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ABSTRACT

The main purpose of this dissertation is to investigate necessary optimality con-

ditions for a class of very general nonsmooth optimization problems called the math-

ematical program with geometric constraints (MPGC). The geometric constraint

means that the image of certain mapping is included in a nonempty and closed set.

We first study the conventional nonlinear program with equality, inequality and

abstract set constraints as a special case of MPGC. We derive the enhanced Fritz John

condition and from which, we obtain the enhanced Karush-Kuhn-Tucker (KKT) con-

dition and introduce the associated pseudonormality and quasinormality condition.

We prove that either pseudonormality or quasinormality with regularity implies the

existence of a local error bound. We also give a tighter upper estimate for the Fréchet

subdifferential and the limiting subdifferential of the value function in terms of quasi-

normal multipliers which is usually a smaller set than the set of classical normal

multipliers.

We then consider a more general MPGC where the image of the mapping from

a Banach space is included in a nonempty and closed subset of a finite dimensional

space. We obtain the enhanced Fritz John necessary optimality conditions in terms

of the approximate subdifferential. One of the technical difficulties in obtaining such

a result in an infinite dimensional space is that no compactness result can be used

to show the existence of local minimizers of a perturbed problem. We employ the

celebrated Ekeland’s variational principle to obtain the results instead. We then apply

our results to the study of exact penalty and sensitivity analysis.
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We also study a special class of MPCG named mathematical programs with e-

quilibrium constraints (MPECs). We argue that the MPEC-linear independence con-

straint qualification is not a constraint qualification for the strong (S-) stationary con-

dition when the objective function is nonsmooth. We derive the enhanced Fritz John

Mordukhovich (M-) stationary condition for MPECs. From this enhanced Fritz John

M-stationary condition we introduce the associated MPEC generalized pseudonor-

mality and quasinormality condition and build the relations between them and some

other widely used MPEC constraint qualifications. We give upper estimates for the

subdifferential of the value function in terms of the enhanced M- and C-multipliers

respectively.

Besides, we focus on some new constraint qualifications introduced for nonlinear

extremum problems in the recent literature. We show that, if the constraint functions

are continuously differentiable, the relaxed Mangasarian-Fromovitz constraint qual-

ification (or, equivalently, the constant rank of the subspace component condition)

implies the existence of local error bounds. We further extend the new result to the

MPECs.
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Chapter 1

Introduction

This thesis is dedicated to a thorough investigation of various enhanced stationari-

ty concepts and constraint qualifications for nonsmooth optimization problems and

their applications. Only first-order necessary conditions are investigated. Sufficient

conditions, are for the most part not considered, which remains a subject for future

research. Nonetheless, it is our opinion that, at the time of print, this thesis contains

an exhaustive discussion of the state of the art of the enhanced first-order theory for

nonsmooth mathematical programming problems.

1.1 Background on enhanced optimality condition-

s

Consider the mathematical program with geometric constraints in Rn:

(MPGCRn) min
x∈X

f(x) (1.1)

s.t. F (x) ∈ Λ,
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where f : Rn → R and F : Rn → Rm are mappings, X and Λ are nonempty and

closed subsets of Rn and Rm respectively. The problem MPGCRn is very general since

it includes as special cases the conventional nonlinear program, the cone constrained

program, the mathematical program with equilibrium constraints [49, 68], the prob-

lems considered in [27,72], the semidefinite program, and the mathematical program

with semidefinite cone complementarity constraints [21].

In the case when F (x) := (h(x), g(x), x) and Λ := {0}p × Rq
− × X , problem

MPGCRn is the nonlinear programming problem (NLP) in the form:

(NLP) min f(x)

s.t. x ∈ F ,

where the feasible region F consists of equality and inequality constraints as well as

an additional abstract set constraint X ⊆ Rn,

F = X ∩ {x : h1(x) = 0, . . . , hp(x) = 0} ∩ {x : g1(x) ≤ 0, . . . , gq(x) ≤ 0} (1.2)

and all functions are assumed to be continuously differentiable.

In 1948, Fritz John [38] proposed the now well-known Fritz John necessary opti-

mality condition for smooth optimization problems with inequality constraints only.

In 1967, Mangasarian and Fromovitz [50] extended the Fritz John condition to smooth

optimization problems with equality and inequality constraints (i.e. X = Rn). For

the smooth case, Fritz John condition asserts that if x∗ is a local optimal solution of

problem (NLP) with X = Rn, then there exist scalars λ∗1, . . . , λ
∗
p and µ∗

0, · · · , µ∗
q not
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all zero, satisfying µ∗
j ≥ 0 for all j = 0, 1, . . . , q and

0 = µ∗
0∇f(x∗) +

p∑
i=1

λ∗i∇hi(x∗) +
q∑

j=1

µ∗
j∇gj(x∗), (1.3)

0 = µ∗
jgj(x

∗), (1.4)

where ∇φ(x) denotes the gradient of the function φ at x. Condition (1.4) is referred

to as the complementary slackness condition (CS for short). We call a multiplier

(λ∗1, · · · , λ∗p, µ∗
1, · · · , µ∗

q) satisfying the Fritz John condition (1.3)-(1.4) with µ∗
0 = 1

and µ∗
0 = 0 a normal multiplier and an abnormal multiplier respectively. It follows

from the Fritz John condition that if there is no nonzero abnormal multiplier then

there must exist a normal multiplier. This simple corollary from the Fritz John

condition leads to the so-called No Nonzero Abnormal Multiplier Constraint Qualifi-

cation (NNAMCQ for short) or the so-called Basic Constraint Qualification for the

Karush-Kuhn-Tucker (KKT for short) condition to hold at a local minimum. It was

Mangasarian and Fromovitz who first pointed out that the Fritz John condition can

be used to derive the KKT condition under the condition that the gradient vectors

∇hi(x∗), i = 1, . . . , p

are linearly independent and there exists a vector d ∈ Rm such that

∇hi(x∗)Td = 0 i = 1, . . . , p,

∇gj(x∗)Td < 0 j ∈ A(x∗),

where A(x∗) := {j : gj(x∗) = 0} is the set of active inequality constraints at x∗, using

the fact that the above condition is equivalent to the NNAMCQ by the Motzkin’s

transposition theorem. The above condition is now well-known as the Mangasarian-
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Fromovitz Constraint Qualification (MFCQ).

The first but weaker versions of the enhanced Fritz John conditions were consid-

ered in a largely overlooked analysis by Hestenes [30] for the case of smooth opti-

mization problem without an abstract set constraint. A version of the enhanced Fritz

John condition first given by Bertsekas in [5] for a smooth problem with X = Rn

states that if x∗ is a local optimal solution of problem (NLP) with X = Rn, then

there exist scalars λ∗1, . . . , λ
∗
p and µ∗

0 ≥ 0, · · · , µ∗
q ≥ 0 not all zero satisfying (1.3) and

the following sequential property: If the index set I ∪ J is nonempty, where

I = {i|λ∗i ̸= 0}, J = {j ̸= 0|µ∗
j > 0},

then there exists a sequence {xk} ⊆ X converging to x∗ such that for all k,

f(xk) < f(x∗), λ∗ihi(x
k) > 0, ∀i ∈ I, µ∗

jgj(x
k) > 0, ∀j ∈ J. (1.5)

Condition (1.5) is stronger than the complementary slackness condition (1.4) since if

µ∗
j > 0, then according to condition (1.5), the corresponding jth inequality constraint

must be violated arbitrarily close to x∗, implying that gj(x
∗) = 0. For this reason,

the condition (1.5) is called the complementarity violation condition (CV for short)

by Bertsekas and Ozdaglar [7].

Since the enhanced Fritz John condition is stronger than the classical Fritz John

condition, it results in a stronger KKT condition under a weaker constraint qualifica-

tion than the MFCQ. The enhanced Fritz John condition has been further extended

to the case of smooth problem data with a convex abstract set constraint in Bert-

sekas [5] and with nonconvex set in Bertsekas and Ozdaglar [7] and Bertsekas, Nedić

and Ozdaglar [6].

The first result on the enhanced Fritz John condition for nonsmooth problems with
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no abstract set constraint can be found in Bector, Chandra and Dutta [4] where the

classical gradient is replaced by the Clarke subdifferential. Duality results for convex

problems in terms of the enhanced Fritz John condition have also been studied by

Bertsekas, Ozdaglar and Tseng in [9].

Moreover, if we denote

F (x) :=


g(x)

h(x)

Ψ(x)

 , Λ := Rp
− × {0}q × Cm, (1.6)

where R− denotes the nonpositive orthant {v ∈ R | v ≤ 0} and

Ψ(x) :=



G1(x)

H1(x)

...

Gm(x)

Hm(x)


, C := { (a, b) ∈ R2 | 0 ≤ a ⊥ b ≥ 0}, (1.7)

problem MPGCRn results in the mathematical program with equilibrium constraints

formulated as follows:

(MPEC) min
x∈X

f(x)

s.t. hi(x) = 0 i = 1, . . . , p, gj(x) ≤ 0 j = 1, . . . , q,

Gl(x) ≥ 0, Hl(x) ≥ 0, Gl(x)Hl(x) = 0 ∀l = 1, . . . ,m.

MPECs form a class of very important problems, since they arise frequently in

applications; see [18,49,68]. MPECs are known to be a difficult class of optimization

problems due to the fact that usual constraint qualifications, such as the LICQ and
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the MFCQ, are violated at any feasible point (see [87, Proposition 1.1]). Thus, the

classical KKT condition is not always a necessary optimality condition for a MPEC.

Alternatively, one can therefore use the Fritz John approach to derive necessary opti-

mality conditions since these conditions do not require any constraint qualifications.

However, it should also be noted that the standard Fritz John conditions applied to

MPECs do not give much information regarding the signs of the Lagrange multipliers.

Recently, Kanzow and Schwartz [42] studied the enhanced version of the Fritz John

conditions.

1.2 Main contributions

The purpose of the thesis is mainly to develop enhanced stationarity conditions and

introduce new constraint qualifications for nonsmooth optimization problems, includ-

ing NLP, MPEC and MPGC. We may divide the thesis into two parts: The first part

includes chapters 2-4 in which we study the enhanced optimality conditions and as-

sociated constraint qualifications, and the second part consists of chapter 5 in which

we investigate some new constraint qualifications introduced in the recent literature.

The chapter-to-chapter description of the thesis follows:

Chapter 2 For nonsmooth NLP we first derive the enhanced Fritz John condition. We then

derive the enhanced KKT condition and introduce the associated pseudonor-

mality and quasinormality condition. We prove that either pseudonormality

or quasinormality with regularity on the constraint functions and the set con-

straint implies the existence of a local error bound. Finally we give a tighter

upper estimate for the Fréchet subdifferential and the limiting subdifferential of

the value function in terms of quasinormal multipliers which is usually a smaller

set than the set of classical normal multipliers.
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Chapter 3 For the first time, we obtain the enhanced Fritz John necessary optimality

conditions for a nonsmooth mathematical program with geometric constraints

where F (x) is a mapping from a Banach space to a finite dimensional space. The

enhanced Fritz John condition allows us to obtain the enhanced KKT condition

under the pseudonormality and the quasinormality conditions. We then prove

that the quasinomality is a sufficient condition for the existence of local error

bounds. Finally we obtain a tighter upper estimate for the subdifferentials of the

value function of the perturbed problem in terms of the enhanced multipliers.

Chapter 4 We first show that, unlike the smooth case, the mathematical program with

equilibrium constraints linear independent constraint qualification is not a con-

straint qualification for the strong stationary condition when the objective func-

tion is nonsmooth. We argue that the strong stationary condition is unlikely

for a mathematical program with equilibrium constraints with a nonsmooth ob-

jective function to hold at a local minimizer. We then focus on the study of the

enhanced version of the Mordukhovich stationary condition, which is a weaker

optimality condition than the strong stationary condition. We introduce the

MPEC Pseudonormality, the MPEC Quasinormality, and the MPEC Constant

Positive Linear Dependence, and show that the enhanced Mordukhovich sta-

tionary condition holds under them. Moreover we study the relations between

the constraint qualifications and some other widely used constraints constraint

qualifications for the MPEC. We also prove that quasinormality with regularity

implies the existence of a local error bound. Finally, we give upper estimates

for the subdifferential of the value function in terms of the enhanced M- and

C-multipliers respectively.

Chapter 5 We show that, the relaxed Mangasarian-Fromovitz constraint qualification (or,

equivalently, the constant rank of the subspace component condition) implies



8

the existence of local error bounds. We further extend the new result to the

MPEC. In particular, we show that the MPEC relaxed (or enhanced relaxed)

constant positive linear dependence condition implies the existence of local M-

PEC error bounds.

1.3 Backgrounds on nonsmooth analysis

This section contains some background material on nonsmooth analysis and prelim-

inary results which will be used later. We give only concise definitions and results

that will be needed in this thesis. For more detailed information on the subject

our references are Borwein and Lewis [11], Borwein and Zhu [12], Clarke [16], Clarke,

Ledyaev, Stern and Wolenski [17], Loewen [46], Mordukhovich [61,62] and Rockafellar

and Wets [74].

We first give the following notations that will be used throughout the thesis. We

denote by B(x∗, ϵ) the closed ball centered at x∗ with radius ϵ and B the closed unit

ball centered at 0. For a set C, we denote by int C, cl C, conv C its interior, closure

and convex hull respectively. We let distC(x
∗) denote the distance of x∗ to set C. For

a function g : Rn → R, we denote by g+(x) := max{0, g(x)} and if it is vector-valued

then the maximum is taken componentwise. For a cone N , we denote by N o its polar.

For a set-valued map Φ : Rn ⇒ Rn, we denote by

lim sup
x→x0

Φ(x) :=

ξ ∈ Rn :
∃ sequences xk → x0, ξk → ξ,

with ξk ∈ Φ(xk) ∀k = 1, 2, . . .


lim inf
x→x0

Φ(x) :=

ξ ∈ Rn :
∀ sequences xk → x0,∃ξk ∈ Φ(xk) ∀k = 1, 2, . . .

such that ξk → ξ

 ,

the Painlevé-Kuratowski upper (outer) and lower (inner) limit respectively.
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Definition 1 (Subdifferentials). Let f : Rn → R ∪ {+∞} be a lower semicontin-

uous (l.s.c.) function and x0 ∈ domf := {x ∈ Rn : f(x) < +∞}. The proximal

subdifferential of f at x0 is the set

∂πf(x0) :=

ξ ∈ Rn :
∃σ > 0, η > 0 s.t.

f(x) ≥ f(x0) + ⟨ξ, x− x0⟩ − σ∥x− x0∥2 ∀x ∈ Bδ(x0)

 .

The Fréchet (regular) subdifferential of f at x0 is the set

∂̂f(x0) :=

{
ξ ∈ Rn : lim inf

h→0

f(x0 + h)− f(x0)− ⟨ξ, h⟩
∥ h ∥

≥ 0

}
.

The limiting (Mordukhovich or basic) subdifferential of f at x0 is the set

∂f(x0) :=
{
ξ ∈ Rn : ∃xk → x0, and ξk → ξ with ξk ∈ ∂̂f(xk)

}
= {ξ ∈ Rn : ∃xk → x0, and ξk → ξ with ξk ∈ ∂πf(xk)} .

The singular limiting (Mordukhovich) subdifferential of f at x0 is the set

∂∞f(x0) :=
{
ξ ∈ Rn : ∃xk → x0, and tkξk → ξ with ξk ∈ ∂̂f(xk), tk ↓ 0

}
= {ξ ∈ Rn : ∃xk → x0, and tkξk → ξ with ξk ∈ ∂πf(xk), tk ↓ 0} .

Let f : Rn → R be Lipschitz near x0. The Clarke subdifferential (generalized gradient)

of f at x0 is the set

∂cf(x0) = clconv∂f(x0).

In general we have the following inclusions, which may be strict:

∂πf(x0) ⊆ ∂̂f(x0) ⊆ ∂f(x0) ⊆ ∂cf(x0).
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In the case where f is a convex function, all subdifferentials coincide with the subd-

ifferential in the sense of convex analysis, i.e.,

∂πf(x0) = ∂̂f(x0) = ∂f(x0) = ∂cf(x0) = {ξ : f(x)− f(x0) ≥ ⟨ξ, x− x0⟩ ∀x}.

When f is strictly differentiable (see the definition, e.g. in Clarke [16]), ∂f(x0) =

∂cf(x0) = {∇f(x0)}. A l.s.c. function f is said to be subdifferentially regular ( [61,

Definition 1.91]) at x0 if ∂f(x0) = ∂̂f(x0). It is known that for a locally Lipschitz

continuous function, the subdifferential regularity is the same as the Clarke regularity

(see [16, Definition 2.3.4] for the definition).

The following facts about the subdifferentials are well-known.

Proposition 1.3.1. (i) A function f : Rn → R is Lipschitz near x0 and ∂f(x0) =

{ζ} if and only if f is strictly differentiable at x0 and the gradient of f at x0 is

equal to ζ.

(ii) If a function f : Rn → R is Lipschitz near x0 with positive constant Lf , then

∂f(x0) ⊆ LfB.

(iii) A l.s.c. function f : Rn → R ∪ {+∞} is Lipschitz near x0 if and only if

∂∞f(x0) = {0}.

(iv) Let a ∈ R. Then

∂max{0, a} =


{0} a < 0

[0,1] a = 0

{1} a > 0

,

∂|a| =


{−1} a < 0

[-1,1] a = 0

{1} a > 0

.
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Definition 2 (Proximal subdifferentiability). Let f : Rn → R∪{+∞} be a l.s.c. func-

tion and x0 ∈ domf . We say that f is proximal subdifferentiable at x0 if ∂
πf(x0) ̸= ∅.

Proposition 1.3.2 (The Density Theorem). ( [17, Theorem 3.1]) Let f : Rn → R ∪

{+∞} be a l.s.c. function. Then the set of points x0 ∈ domf such that ∂πf(x0) ̸= ∅

is dense in domf .

Definition 3 (Normal cones). Let Ω be a nonempty subset of Rn and x0 ∈ clΩ. The

convex cone

N π
Ω(x0) :=

{
ξ ∈ Rn : ∃σ > 0 s.t. ⟨ξ, x− x0⟩ ≤ σ∥x− x0∥2 ∀x ∈ Ω

}
is called the proximal normal cone to Ω at x0. The convex cone

N̂Ω(x0) :=

{
ξ ∈ Rn : lim sup

x→x0,x∈Ω

⟨ξ, x− x0⟩
∥x− x0∥

≤ 0

}

is called the Fréchet (regular) normal cone to Ω at x0. The nonempty cone

NΩ(x0) := lim sup
x→x0

N̂Ω(x0) = lim sup
x→x0

N π
Ω(x0)

is called the limiting (Mordukhovich or basic) normal cone to Ω at x0. The Clarke

normal cone is the closure of the convex hull of the limiting normal cone, i.e.,

N c
Ω(x0) = clconvNΩ(x0).

In general we have the following inclusions, which may be strict:

N π
Ω(x0) ⊆ N̂Ω(x0) ⊆ NΩ(x0) ⊆ N c

Ω(x0).

We say a set Ω is regular if N̂Ω(x) = NΩ(x) for all x ∈ Ω.
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Lemma 1.1. [74, Theorem 6.11] Let Ω be a nonempty subset of Rn and x0 ∈ clΩ.

A vector ξ ∈ N̂Ω(x0) if and only if there is a function φ which is smooth on Rn with

−∇φ(x0) = ξ and its global minimum on Ω is achieved uniquely at x0.

Proposition 1.3.3 (Tangent-normal polarity). ( [74, Theorem 6.26, Theorem 6.28])

Let Ω be a nonempty subset of Rn and x0 ∈ clΩ.

NΩ(x0)
o = lim inf

x
Ω→x0

TΩ(x),

where TΩ(x) := lim supτ↓0
Ω−x
τ

denotes the contingent cone to Ω at x.

Proposition 1.3.4 (Calculus rules). (i) Let f : Rn → R be Lipschitz near x0 and

g : Rn → R ∪ {+∞} be l.s.c. and finite at x0. Let α, β be nonnegative scalars.

Then

∂(αf + βg)(x0) ⊆ α∂f(x0) + β∂g(x0).

(ii) [65, Corollary 3.4] Let f : Rn → R ∪ {+∞} be l.s.c. near x0 and g : Rn → R

be Lipschitz near x0. Assume that ∂̂g(x0) ̸= ∅ for all x near x0. Then

∂(f − g)(x0) ⊆ ∂f(x0)− ∂g(x0).

(iii) Let φ : Rm → Rn be Lipschitz near x0 and f : Rn → R be Lipschitz near φ(x0).

Then

∂(f ◦ φ)(x0) ⊆ ∪ξ∈∂f(φ(x0))∂⟨ξ, φ⟩(x0).

(iv) Let f : Rn → R be Lipschitz near x∗ and C be a closed subset of Rn. If x∗ is a

local minimizer of f on C, then 0 ∈ ∂f(x∗) +NC(x
∗).

(v) Let f : Rn → R be Fréchet differentiable at x∗ and C be a closed subset of Rn.

If x∗ is a local minimizer of f on C, then 0 ∈ ∇f(x∗) + N̂C(x
∗).
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Chapter 2

Enhanced Karush-Kuhn-Tucker con-

dition and weaker constraint quali-

fications

2.1 Introduction

In this chapter we focus on the NLP problem (1.2). Unless otherwise indicated we

assume throughout this chapter that f, hi(i = 1, . . . , p), gj(j = 1, . . . , q) : Rn → R are

Lipschitz continuous around the point of interest and X is a nonempty closed subset

of Rn.

2.1.1 Motivation and contribution

One of the main results of this chapter is an improved version of the enhanced Fritz

John condition for problem (NLP) with Lipschitz problem data based on the limiting

subdifferential and limiting normal cone. Even in the case of a smooth problem,

This chapter is the content of Ye, J.J. and Zhang, J., “Enhanced Karush-Kuhn-Tucker condition
and weaker constraint qualifications”. Math. Program., series B., (2013). 139, 353-381.
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our improved enhanced Fritz John condition provides some new information. In

our improved CV, we have an extra condition that the sequence {xk} can be found

such that the functions f, hi(i ∈ I), gj(j ∈ J) are proximal subdifferentiable at xk

(see Definition 2). Note that our improved CV is stronger than the original CV for

the smooth problem since a continuously differentiable function may not be proximal

subdifferentiable (a sufficient condition for a function to be proximal subdifferentiable

is C1+, i.e. the gradient of the function is locally Lipschitz).

Based on the enhanced Fritz John condition, Bertsekas and Ozdaglar [7] intro-

duced the so-called pseudonormality and quasinormality as constraint qualifications

that are weaker than the MFCQ. Since our improved enhanced Fritz John condition

is stronger than the original enhanced Fritz John condition even in the smooth case,

our pseudonormality and quasinormality conditions are even weaker than the origi-

nal pseudonormality and quasinormality respectively and are much weaker than the

NNAMCQ (which is in general weaker than the MFCQ in the nonsmooth case).

In recent years, it has been shown that constraint qualifications have strong con-

nections with certain Lipschitz-like property of the set-valued map F : Rp+q ⇒ Rm

defined by the perturbed feasible region

F(α, β) := {x ∈ X : h(x) = α, g(x) ≤ β},

where h := (h1, . . . , hp), g := (g1, . . . , gq). For the case of a smooth optimization

problem with X = Rn, by Mordukhovich’s criteria for pseudo-Lipschitz continuity

( [60, 61]), MFCQ (or equivalently NNAMCQ) at a feasible point x∗ is equivalent to

the pseudo-Lipschitz continuity (or so-called Aubin continuity) of the set-valued map

F(α, β) around (0, 0, x∗). Calmness of a set-valued map (introduced as the pseudo

upper-Lipschitz continuity by Ye and Ye [85] and coined as calmness by Rockafellar

and Wets [74]) is a much weaker condition than the pseudo-Lipschitz continuity. It is
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known that the calmness of the set-valued map F(α, β) around (0, 0, x∗) is equivalent

to the existence of local error bound for the constraint region, i.e., the existence of

positive constants c, δ such that

distF(x) ≤ c(∥h(x)∥1 + ∥g+(x)∥1) ∀x ∈ Bδ(x∗) ∩ X . (2.1)

In this chapter we show that either pseudonormality or quasinormality with regulari-

ty on the constraint functions and the set constraint implies that the set-valued map

F(α, β) is calm around the point (0, 0, x∗). Hence pseudonormality and quasinormal-

ity are much weaker than the NNAMCQ.

NNAMCQ plays an important role in the sensitivity analysis. In particular it

is a sufficient condition for the value function of a perturbed problem to be Lisp-

chitz continuous (see e.g. [47, 48]). In this chapter we apply our improved enhanced

KKT condition to derive an estimate for the Fréchet subdifferential and the limiting

subdifferential of the value function. We provide a tighter upper estimate for the

Fréchet subdifferential and the limiting subdifferentials of the value function in terms

of the quasinormal multipliers. As a consequence we show that the value function is

Lipschitz continuous under the perturbed quasinormality condition which is a much

weaker condition than the NNAMCQ.

2.1.2 Scopes of the chapter

The rest of this chapter is organized as follows. In the next section, we derive the

improved enhanced Fritz John condition. New constraint qualifications, the enhanced

KKT and the relationship between pseudonormality and quasinormality are given in

Section 2.3. Section 2.4 is devoted to the sufficient condition for the existence of

local error bounds. In Section 2.5, the results is applied to the sensitivity analysis to
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provide a tighter upper estimate for the subdifferential of the value function.

2.2 Enhanced Fritz John necessary optimality con-

dition

For nonsmooth problem (NLP), the classical Fritz John necessary optimality condi-

tion is generalized to one where the classical gradient is replaced by the generalized

gradient by Clarke ( [15], see also [16, Theorem 6.1.1]). The limiting subdifferential

version of the Fritz John condition was first obtained by Mordukhovich in [59] (see

also [78, Corollary 4.2] for more explicit expressions).

The following theorem strengthens the limiting subdifferential version of the Fritz

John conditions by replacing the complementary slackness condition with a stronger

condition [Theorem 2.1(iv)], and hence their effectiveness has been significantly en-

hanced. Although [Theorem 2.1(iv)] is slightly stronger than the complementarity

violation condition of Bertsekas and Ozdaglar [7], for convenience we still refer to it

as the complementarity violation condition (CV).

Theorem 2.1. Let x∗ be a local minimum of problem (NLP). Then there exist scalars

µ∗
0, λ

∗
1, . . . , λ

∗
p, µ

∗
1, . . . , µ

∗
q, satisfying the following conditions:

(i) 0 ∈ µ∗
0∂f(x

∗) +
∑p

i=1 ∂(λ
∗
ihi)(x

∗) +
∑q

j=1 µ
∗
j∂gj(x

∗) +NX (x
∗).

(ii) µ∗
j ≥ 0, for all j = 0, 1, . . . , q.

(iii) µ∗
0, λ

∗
1, . . . , λ

∗
p, µ

∗
1, . . . , µ

∗
q are not all equal to 0.

(iv) The complementarity violation condition holds: If the index set I∪J is nonemp-

ty, where

I = {i|λ∗i ̸= 0}, J = {j ̸= 0|µ∗
j > 0},
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then there exists a sequence {xk} ⊆ X converging to x∗ such that for all k,

f(xk) < f(x∗), λ∗ihi(x
k) > 0, ∀i ∈ I, µ∗

jgj(x
k) > 0, ∀j ∈ J,

and f, hi(i ∈ I), gj(j ∈ J) are all proximal subdifferentiable at xk.

Proof. Similar to the differentiable case in Bertsekas and Ozdaglar [7], we use a

quadratic penalty function approach originated with McShane [52] to prove the result.

For each k = 1, 2, . . . , we consider the penalized problem

(Pk) min F k(x) = f(x) +
k

2

p∑
i=1

(hi(x))
2 +

k

2

q∑
j=1

(g+j (x))
2 +

1

2
∥x− x∗∥2

s.t. x ∈ X ∩ B(x∗, ϵ),

where ϵ > 0 is such that f(x∗) ≤ f(x) for all feasible x with x ∈ B(x∗, ϵ). Since

X ∩ B(x∗, ϵ) is compact, by the Weierstrass theorem, an optimal solution x
k of the

problem (Pk) exists. Consequently

f(xk) +
k

2

p∑
i=1

(hi(x
k))2 +

k

2

q∑
j=1

(g+j (x
k))2 +

1

2
∥xk − x∗∥2 = F k(xk)

≤ F k(x∗) = f(x∗). (2.2)

Since f(xk) is bounded over x ∈ X ∩ B(x∗, ϵ), we obtain from (2.2) that

lim
k→∞
|hi(xk)| = 0, i = 1, . . . , p,

lim
k→∞
|g+j (xk)| = 0, j = 1, . . . , q

and hence every limit point x̄ of {xk} is feasible; i.e., x̄ ∈ F . Furthermore, (2.2)
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yields

f(xk) +
1

2
∥xk − x∗∥2 ≤ f(x∗), ∀k. (2.3)

So by taking limit as k →∞, we obtain

f(x̄) +
1

2
∥x̄− x∗∥2 ≤ f(x∗).

Since x̄ ∈ B(x∗, ϵ) and x̄ is feasible, we have f(x∗) ≤ f(x̄), which combined with

the preceding inequality yields ∥x̄−x∗∥ = 0 so that x̄ = x∗. Thus, the sequence {xk}

converges to x∗, and it follows that xk is an interior point of the closed ball B(x∗, ϵ)

for all k greater than some k̄.

For k > k̄, since xk is an optimal solution of (Pk) and x
k is an interior point of

the closed ball B(x∗, ϵ), we have by the necessary optimality condition in terms of

limiting subdifferential in Proposition 1.3.4 (iv) that

0 ∈ ∂F k(xk) +NX (x
k).

Applying the calculus rules in Proposition 1.3.4 (i),(iii) to ∂F k(xk) we have the exis-

tence of multipliers

ξki := khi(x
k), ζkj := kg+j (x

k) (2.4)

such that

0 ∈ ∂f(xk) +

p∑
i=1

∂(ξki hi)(x
k) +

q∑
j=1

ζkj ∂gj(x
k) + (xk − x∗) +NX (x

k). (2.5)
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Denote by

δk :=

√√√√1 +

p∑
i=1

(ξki )
2 +

q∑
j=1

(ζkj )
2,

µk
0 :=

1

δk
, λki :=

ξki
δk
, i = 1, . . . , p, µk

j :=
ζkj
δk
, j = 1, . . . , q. (2.6)

Then since δk > 0, dividing (3.13) by δk, we obtain for all k > k̄,

0 ∈ µk
0∂f(x

k) +

p∑
i=1

∂(λki hi)(x
k) +

q∑
j=1

µk
j∂gj(x

k) +
1

δk
(xk − x∗)

+ NX (x
k). (2.7)

Since by construction we have

(µk
0)

2 +

p∑
i=1

(λki )
2 +

q∑
j=1

(µk
j )

2 = 1 (2.8)

the sequence {µk
0, λ

k
1, . . . , λ

k
p, µ

k
1, . . . , µ

k
q} is bounded and must contain a subsequence

that converges to some limit {µ∗
0, λ

∗
1, . . . , λ

∗
p, µ

∗
1, . . . , µ

∗
q}.

Since hi is Lipschitz near x∗, we have

∂(λki hi)(x
k) ⊆ ∂[(λki − λ∗i )hi](xk) + ∂(λ∗ihi)(x

k) by Proposition 1.3.4 (i)

⊆ Lhi
|λki − λ∗i |B+ ∂(λ∗ihi)(x

k) by Proposition 1.3.1 (ii),

where Lhi
is the Lipschitz constant of hi. Similarly,

µk
0∂f(x

k) ⊆ Lf |µk
0 − µ∗

0|B+ µ∗
0∂f(x

k),

µk
j∂gj(x

k) ⊆ Lgj |µk
j − µ∗

j |B+ µ∗
j∂gj(x

k),
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where Lf , Lgj are the Lipschitz constants of f, gj. Hence we have from (3.14) that

0 ∈ µ∗
0∂f(x

k) +

p∑
i=1

∂(λ∗ihi)(x
k) +

q∑
j=1

µ∗
j∂gj(x

k) +
1

δk
(xk − x∗)

+(Lf |µk
0 − µ∗

0|+
p∑

i=1

Lhi
|λki − λ∗i |+

q∑
j=1

Lgj |µk
j − µ∗

j |)B+NX (x
k).

Taking limit as k → ∞, by the definition of the limiting subdifferential and the

limiting normal cone (or the fact ∂f is outer semicontinuous [74, Proposition 8.7]),

we see that µ∗
0, λ

∗
i and µ∗

j must satisfy condition (i). From (2.4) and (2.6), µ∗
0 and µ∗

j

must satisfy condition (ii) and from (2.8), µ∗
0, λ

∗
i and µ∗

j must satisfy condition (iii).

Finally, to show that condition (iv) is satisfied, assume that I ∪ J is nonempty

(otherwise there is nothing to prove). Since λki → λ∗i as k →∞ and λ∗i ̸= 0 for i ∈ I,

for sufficiently large k, λki have the same sign as λ∗i . Hence we must have λ∗iλ
k
i > 0

for all i ∈ I and sufficiently large k. Similarly µ∗
jµ

k
j > 0 for all j ∈ J and sufficiently

large k. Therefore from (2.4) and (2.6) we must have λ∗ihi(x
k) > 0 for all i ∈ I and

µ∗
jgj(x

k) > 0 for all j ∈ J and k ≥ K0 for some positive integer K0. Consequently

since I∪J is nonempty, it follows that there exists either i ∈ I such that hi(x
k) ̸= 0 or

j ∈ J such that gj(x
k) ̸= 0 for all k ≥ K0 and hence from (2.2) we have f(xk) < f(x∗)

for all k ≥ K0. It remains to show the proximal subdifferentiability of the functions

f, hi(i ∈ I), gj(j ∈ J) at xk. By the density theorem in Proposition 1.3.2, for each

x
k with k ≥ K0, there exists a sequence {xk,l} ⊆ X with liml→∞ x

k,l = x
k such that

f, hi, gj are proximal subdifferentiable at xk,l. Since

f(xk) < f(x∗), λ∗ihi(x
k) > 0, ∀i ∈ I, µ∗

jgj(x
k) > 0,∀j ∈ J,
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we have that and for all sufficiently large l,

f(xk,l) < f(x∗), λ∗ihi(x
k,l) > 0, ∀i ∈ I, µ∗

jgj(x
k,l) > 0,∀j ∈ J.

For each k ≥ K0, choose an index lk such that l1 < . . . < lk−1 < lk and

lim
k→∞

x
k,lk = x∗.

Consider the sequence {xk} defined by

xk = x
(K0+k),(lK0+k), k = 1, 2, . . . .

It follows from the preceding relations that {xk} ⊆ X ,

lim
k→∞

xk = x∗, f(xk) < f(x∗), λ∗ihi(x
k) > 0, ∀i ∈ I, µ∗

jgj(x
k) > 0,∀j ∈ J,

and f, hi(i ∈ I), gj(j ∈ J) are all proximal subdifferentiable at xk.

The condition (iv) is illustrated in Figure 2.1.

2.3 Enhanced KKT condition and weakened CQs

Based on the enhanced Fritz John condition, we define the following enhanced KKT

condition.

Definition 4 (Enhanced KKT condition). Let x∗ be a feasible point of the problem

(NLP). We say the enhanced KKT condition holds at x∗ if the enhanced Fritz John

condition holds with µ∗
0 = 1.
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Figure 2.1: Existence of µ∗ and {xk}

Theorem 2.2. Let x∗ be a local minimum of problem (NLP). Suppose that there is

no nonzero vector (λ, µ) ∈ Rp × Rq
+ such that

0 ∈
p∑

i=1

∂(λihi)(x
∗) +

q∑
j=1

µj∂gj(x
∗) +NX (x

∗), (2.9)

and the CV condition defined in [Theorem 2.1(iv)] hold. Then the enhanced KKT

condition holds at x∗.

Proof. Under the assumptions of the theorem, (i)-(iv) of Theorem 2.1 never hold if

µ∗
0 = 0. Hence µ∗

0 must be nonzero. The enhanced KKT condition then holds after a

scaling.

Note that the condition in Theorem 2.1 is not a constraint qualification since it

involves the objective function f . However Theorem 2.2 leads to the introduction of
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some constraint qualifications for a weaker version of the enhanced KKT condition

to hold. In the smooth case, the pseudonormality and the quasinormality are slightly

weaker than the original definitions introduced by Bertsekas and Ozdaglar [7].

Definition 5. Let x∗ be in the feasible region F .

(a) x∗ is said to satisfy NNAMCQ if there is no nonzero vector (λ, µ) ∈ Rp × Rq
+

such that (2.9) and CS holds: µjgj(x
∗) = 0 for all j = 1, . . . , q.

(b) x∗ is said to be pseudonormal (for the feasible region F) if there is no vector

(λ, µ) ∈ Rp×Rq
+ and no infeasible sequence {xk} ⊆ X converging to x∗ such that

(2.9) and the pseudo-complementary slackness condition (pseudo-CS for short)

hold: if the index set I ∪ J is nonempty, where I = {i|λi ̸= 0}, J = {j|µj > 0},

then for each k
p∑

i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k) > 0,

and hi(i ∈ I), gj(j ∈ J) are all proximal subdifferentiable at xk for each k.

(c) x∗ is said to be quasinormal (for the feasible region F) if there is no nonzero

vector (λ, µ) ∈ Rp × Rq
+ and no infeasible sequence {xk} ⊆ X converging to

x∗ such that (2.9) and the quasi-complementary slackness condition (quasi-CS

for short) hold: if the index set I ∪ J is nonempty, where I = {i|λi ̸= 0}, J =

{j|µj > 0}, then for all i ∈ I, j ∈ J , λihi(x
k) > 0 and µjgj(x

k) > 0, and

hi(i ∈ I), gj(j ∈ J) are all proximal subdifferentiable at xk for each k.

Since Quasi-CS =⇒ Pseudo-CS =⇒ CS, the following implications hold:

NNAMCQ =⇒ Pseudonormality =⇒ Quasinormality.

The first reverse implication is obviously not true. [7, Example 3] shows that the

second reverse implication is not true either. We will show later that under the
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assumption that NX (x
∗) is convex, quasinormality is in fact equivalent to a slightly

weaker version of pseudonormality. In [7, Proposition 3.1] Bertsekas and Ozadaglar

showed that any feasible point of a constraint region where the equality functions

are linear and inequality functions are concave and smooth and there is no abstract

constraint must be pseudonormal. In what follows we extend it to the nonsmooth

case.

Proposition 2.3.1. Suppose that hi are linear and gj are concave and X = Rn. Then

any feasible point of problem (NLP) is pseudonormal.

Proof. We prove it by contradiction. To the contrary, suppose that there is a feasible

point x∗ which is not pseudonormal. Then there exists nonzero vector (λ, µ) ∈ Rp×Rq
+

and a sequence {xk} ⊆ X converging to x∗ such that (2.9) and the following condition

hold: for each k
p∑

i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k) > 0. (2.10)

By the linearity of hi and concavity of gj, we have that for all x ∈ Rn,

hi(x) = hi(x
∗) +∇hi(x∗)T (x− x∗) i = 1, . . . , p,

gj(x) ≤ gj(x
∗) + ξTj (x− x∗) ∀ξj ∈ ∂gj(x∗), j = 1, . . . , q.

By multiplying these two relations with λi and µj and by adding over i and j, respec-

tively, we obtain that for all x ∈ Rn and all ξj ∈ ∂gj(x∗), j = 1, . . . , q,

p∑
i=1

λihi(x) +

q∑
j=1

µjgj(x)

≤
p∑

i=1

λihi(x
∗) +

q∑
j=1

µjgj(x
∗) + [

p∑
i=1

λi∇hi(x∗) +
q∑

j=1

µjξj]
T (x− x∗)

= [

p∑
i=1

λi∇hi(x∗) +
q∑

j=1

µjξj]
T (x− x∗)
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where the last equality holds because we have

λihi(x
∗) = 0 for all i and

q∑
j=1

µjgj(x
∗) = 0.

By (2.9), since NRn(x∗) = {0} there exists ξ∗j ∈ ∂gj(x∗), j = 1, . . . , q such that

p∑
i=1

λi∇hi(x∗) +
q∑

j=1

µjξ
∗
j = 0.

Hence it follows that for all x ∈ Rn,

p∑
i=1

λihi(x) +

q∑
j=1

µjgj(x) ≤ 0

which contradicts (4.4). Hence the proof is complete.

Definition 6. Let x∗ be a feasible point of problem (NLP). We call a vector (λ, µ) ∈

Rp × Rq
+ satisfying the following weaker version of the enhanced KKT conditions a

quasinormal multiplier:

(i) 0 ∈ ∂f(x∗) +
∑p

i=1 ∂(λ
∗
ihi)(x

∗) +
∑q

j=1 µ
∗
j∂gj(x

∗) +NX (x
∗).

(ii) There exists a sequence {xk} ⊆ X converging to x∗ such that the quasi-CS as

defined in Definition 5 holds.

Since the only difference of the quasinormality with the sufficient condition given

in Theorem 2.2 is the condition f(xk) < f(x∗), it is obvious that the quasinormality

is a constraint qualification for the weaker version of the enhanced KKT condition to

hold and hence the following result follows immediately from Theorem 2.2 and the

definitions of the three constraint qualifications.

Corollary 2.3. Let x∗ be a local minimizer of problem (NLP). Then if x∗ satisfies
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NNAMCQ, or is pseudonormal, or is quasinormal, then the weaker version of the

enhanced KKT condition holds at x∗.

It is known that NNAMCQ implies the boundedness of the set of all normal

multipliers (see e.g. [40]). In what follows, we show that the set of all quasinormal

multipliers are bounded under the quasinormality condition.

Theorem 2.4. Let x∗ be a feasible point for problem (NLP). If quasinormality holds

at x∗, then the set of all quasinormal multipliers MQ(x
∗) is bounded.

Proof. To the contrary, suppose thatMQ(x
∗) is unbounded. Then there exists (λn, µn) ∈

MQ(x
∗) such that ∥(λn, µn)∥ → ∞ as n tends to infinity. By definition of a quasinor-

mal multiplier, for each n, there exists a sequence {xkn}k ⊆ X converging to x∗ such

that

0 ∈ ∂f(x∗) +
p∑

i=1

∂(λni hi)(x
∗) +

q∑
j=1

µn
j ∂gj(x

∗) +NX (x
∗), (2.11)

µn
j ≥ 0, ∀j = 1, . . . , q, (2.12)

λni hi(x
k
n) > 0 ∀i ∈ In, µn

j gj(x
k
n) > 0 ∀j ∈ Jn, (2.13)

hi(i ∈ In), gj(j ∈ Jn) are proximal subdifferential at xkn, (2.14)

where In := {i : λni ̸= 0} and Jn := {j : µn
j > 0}.

Denote by ξn := λn

∥(λn,µn)∥ and ζn := µn

∥(λn,µn)∥ . Assume without loss of generality

that (ξn, µn)→ (ξ∗, µ∗) . Divide both sides of (2.11) by ∥(λn, µn)∥ and take the limit,

we have

0 ∈
p∑

i=1

∂(ξ∗i hi)(x
∗) +

q∑
j=1

ζ∗j ∂gj(x
∗) +NX (x

∗).
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It follow from (2.12) that ζ∗j ≥ 0, for all j = 1, . . . , q. Finally, let

I = {i : ξ∗i ̸= 0}; J = {j : ζ∗j > 0}.

Then I ∪J is nonempty. By virtue of (2.13), there are some N0 such that for n > N0,

we must have ξ∗i hi(x
k
n) > 0 for all i ∈ I and ζ∗j gj(x

k
n) > 0 for all j ∈ J . Moreover

by (2.14), hi(i ∈ In), gj(j ∈ Jn) are proximal subdifferential at xkn. Thus there exist

scalars {ξ∗1 , . . . ξ∗p , ζ∗1 , . . . , ζ∗q } not all zero and a sequence {xkn} ⊆ X that satisfy the

preceding relation an so violate the quasinormality of x∗. Hence the proof is complete.

Combining the proof techniques of Theorem 2.1 and [8, Lemma 2] in the following

proposition we can extend [8, Lemma 2] to our nonsmooth problem.

Lemma 2.5. If a vector x∗ ∈ F is quasinormal, then all feasible vectors in a neigh-

borhood of x∗ are quasinormal.

Proof. Assume that the claim is not true. Then we can find a sequence {xk} ⊆ F

such that xk ̸= x∗ for all k, xk → x∗ and x∗ is not quasinormal for all k. This implies,

for each k, the existence of scalars ξk1 , . . . , ξ
k
p , ζ

k
1 , . . . , ζ

k
q and a sequence {xk,l} ⊆ X

such that

(1) 0 ∈
∑p

i=1 ∂(ξ
k
i hi)(x

k) +
∑q

j=1 ζ
k
j ∂gj(x

k) +NX (x
k),

(2) ζkj ≥ 0, for all j = 1, . . . , q,

(3) ξk1 , . . . ξ
k
p , ζ

k
1 , . . . , ζ

k
q are not all equal to 0,

(4) {xk,l} converges to xk as l → ∞, and for each l, ξki hi(x
k,l) > 0 for all i with

ξki ̸= 0 and ζjgj(x
k,l) > 0 for all j with ζkj > 0, and for these i, j, hi and gj are

Fréchet subdifferentiable at xk,l.
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For each k, denote

δk =

√√√√ p∑
i=1

(ξki )
2 +

q∑
j=1

(ζkj )
2, λki =

ξki
δk

; 1 = 1, . . . , p; µk
j =

ζkj
δk
, j = 1, . . . , q.

Since δk ̸= 0 and NX (x
k) is a cone, conditions (1) - (4) yields the following set of

conditions that gold for each k for the scalars λk1, . . . , λ
k
p, µ

k
1, . . . , µ

k
q :

(i)

0 ∈
p∑

i=1

∂(λki hi)(x
k) +

q∑
j=1

µk
j∂gj(x

k) +NX (x
k), (2.15)

(ii) µk
j ≥ 0, for all j = 1, . . . , q,

(iii) λk1, . . . λ
k
p, µ

k
1, . . . , µ

k
q are not all equal to 0,

(iv) {xk,l} converges to xk as l → ∞, and for each l, λki hi(x
k,l) > 0 for all i with

λki ̸= 0 and µjgj(x
k,l) > 0 for all j with µk

j > 0, and for these i, j, hi and gj are

proximal subdifferentiable at xk,l.

Since by construction we have

p∑
i=1

(λki )
2 +

q∑
j=1

(µk
j )

2 = 1, (2.16)

the sequence {λk1, . . . , λkp, µk
1, . . . , µ

k
q} is bounded and must contain a subsequence

that converges to some nonzero limit {λ∗1, . . . , λ∗p, µ∗
1, . . . , µ

∗
q}. Assume without loss of

generality that {λk1, . . . , λkp, µk
1, . . . , µ

k
q} converges to {λ∗1, . . . , λ∗p, µ∗

1, . . . , µ
∗
q}. Taking

the limit in (2.15), in analogy to Theorem 2.1, by [17, Theorem 3.8] and the closedness
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of normal cone, we see the limit must satisfy

0 ∈
p∑

i=1

∂(λ∗ihi)(x
∗) +

q∑
j=1

µ∗
j∂gj(x

∗) +NX (x
∗).

Moreover, from conditions (ii)-(iii) and (2.16), it follows that µ∗
j ≥ 0, for all j =

1, . . . , q, and λ∗1, . . . , λ
∗
p, µ

∗
1, . . . , µ

∗
q are not all equal to 0. Finally, let

I = {i|λ∗i ̸= 0}; J = {j|µ∗
j > 0}.

Then I ∪J is nonempty and, it is easy to see there are some K0 such that for k > K0,

we must have λ∗iλ
k
i > 0 for all i ∈ I and µ∗

jµ
k
j > 0 for all j ∈ J . From condition (iv)

, it follows that for each k > K0, there exists a sequence {xk,l} ⊆ X with

lim
l→∞

xk,l = xk,

and for all l, xk,l ̸= xk,

λ∗ihi(x
k,l) > 0, ∀i ∈ I, µ∗

jgj(x
k,l) > 0,∀j ∈ J,

and for those index i ∈ I, j ∈ J , hi, gj are all proximal subdifferentiable at xk,l. For

each k > K0, choose an index lk such that l1 < . . . < lk−1 < lk and

lim
k→∞

xk,lk = x∗.

Consider the sequence {ςk} defined by

ςk = x(K0+k),(lK0+k), k = 1, 2, . . . .
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It follows from the preceding relations that ςk ⊆ X and

lim
k→∞

ςk = x∗; λ∗ihi(ς
k) > 0, ∀i ∈ I; µ∗

jgj(ς
k) > 0,∀j ∈ J,

and for those index i ∈ I, j ∈ J , hi, gj are all Fréchet subdifferentiable at ςk. The

existence of scalars {λ∗1, . . . , λ∗p, µ∗
1, . . . , µ

∗
q} and sequence {ςk} ⊆ X satisfies the pre-

ceding relation violates the quasinormality of x∗, thus completing the proof.

In the following result we obtain a specific representation of the limiting normal

cone to the constraint region in terms of the set of quasinormal multipliers. Note

that our result is sharper than the result of Bertsekas and Ozdaglar [8, Proposition

1] which gives a representation of the Fréchet normal cone in terms of the set of

quasinormal multipliers for the case of smooth problems with a closed abstract set

constraint. The result is also sharper than the one given by Henrion, Jourani and

Outrata [29, Theorem 4.1] in which the representation is given in terms of the usual

normal multipliers.

Proposition 2.3.2. If x̄ is quasinormal for F , then

NF(x̄) ⊆

{
p∑

i=1

∂(λihi)(x̄) +

q∑
j=1

µj∂gj(x̄) +NX (x̄) : (λ, µ) ∈MQ(x̄)

}
.

Proof. Let v be a vector that belongs to NF(x̄). Then by definition, there are se-

quences xl → x̄ and vl → v with vl ∈ N̂F(x
l) and xl ∈ F .

Step 1. By Lemma 2.5, for l sufficiently large, xl is quasinormal for F . By Lemma

1.1, for each l there exists a smooth function φl that achieves a strict global minimum

over F at xl with −∇φl(xl) = vl. Since xl is a quasinormal vector of F , by Theorem
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2.2, the weaker version of the enhanced KKT condition holds for problem

minφl(x) s.t. x ∈ F .

That is, there exists a vector (λl, µl) ∈ Rp × Rq
+ such that

vl ∈
p∑

i=1

∂(λlihi)(x
l) +

q∑
j=1

µl
j∂gj(x

l) +NX (x
l) (2.17)

and a sequence {xl,k} ⊆ X converging to xl as k →∞ such that for all k, λlihi(x
l,k) >

0, ∀i ∈ I l, µl
jgj(x

l,k) > 0,∀j ∈ J l, and hi(i ∈ I l), gj(j ∈ J l) are proximal subdifferen-

tiable at xl,k, where I l = {i : λli ̸= 0} and J l = {j : µl
j > 0}.

Step 2. We show that the sequence {λl1, . . . , λlp, µl
1, . . . , µ

l
q} is bounded. To the

contrary suppose that the sequence {λl1, . . . , λlp, µl
1, . . . , µ

l
q} is unbounded. For every

l, denote

δl =

√√√√1 +

p∑
i=1

(λli)
2 +

q∑
j=1

(µl
j)

2, ξli =
λli
δl
, i = 1, . . . , p, ζ lj =

µl
j

δl
, j = 1, . . . , q.

Then from (4.5) it follows that

vl

δl
∈

p∑
i=1

∂(ξlihi)(x
l) +

q∑
j=1

ζ lj∂gj(x
l) +NX (x

l).

Since the sequence {ξl1, . . . , ξlp, ζ l1, . . . , ζ lq} is bounded, for the sake of simplicity, we

may assume that {ξl1, . . . , ξlp, ζ l1, . . . , ζ lq} → {ξ∗1 , . . . , ξ∗p , ζ∗1 , . . . , ζ∗q } ̸= 0 as l → ∞.

Taking limits in the above inclusion, similar to the proof of Theorem 2.1 we obtain

0 ∈
p∑

i=1

∂(ξ∗i hi)(x̄) +

q∑
j=1

ζ∗j ∂gj(x̄) +NX (x̄),
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where ζ∗j ≥ 0 for all j = 1, . . . , q and ξ∗1 , . . . , ξ
∗
p , ζ

∗
1 , . . . , ζ

∗
q are not all zero. Let

i ∈ I∗ := {i : ξ∗i ̸= 0}. Since ξli → ξ∗i ̸= 0 as l →∞, ξli ̸= 0 and has the same sign as

ξ∗i for sufficiently large l. Consequently since ξlihi(x
l,k) > 0 we have also ξ∗i hi(x

l,k) > 0

for all sufficiently large l and all k. Similarly let j ∈ J∗ := {j : ζ∗j > 0}, we have

ζ∗j gj(x
l,k) > 0. Also similar to the proof of Theorem 2.1, by using the density theorem

we can find a subsequence {xl,kl} ⊆ {xl,k} ⊆ X converging to x̄ as l → ∞ such that

for all sufficiently large l,

ξ∗i hi(x
l,kl) > 0 ∀i ∈ I∗, ζ∗j gi(x

l,kl) > 0 ∀j ∈ J∗

and hi(x
l,kl)(i ∈ I∗), gj(x

l,kl)(j ∈ J∗) are proximal subdifferentiable at xl,kl . But

this is impossible since x̄ is assumed to be quasinormal and hence the sequence

{λl1, . . . , λlp, µl
1, . . . , µ

l
q} must be bounded.

Step 3. By virtue of Step 2, without loss of generality, we assume that

{λl1, . . . , λlp, µl
1, . . . , µ

l
q} converges to {λ1, . . . , λp, µ1, . . . , µq} as l→∞.

Taking the limit in (4.5) as l→∞, we have

v ∈
p∑

i=1

∂(λihi)(x̄) +

q∑
j=1

µj∂gj(x̄) +NX (x̄).

Similar to Step 2, we can find a subsequence {xl,kl} ⊆ {xl,k} ⊆ X converging to x̄

as l → ∞ such that for all sufficiently large l, λihi(x
l,kl) > 0, ∀i ∈ I, µjgj(x

l,kl) >

0, ∀j ∈ J , and hi(i ∈ I), gj(j ∈ J) are proximal subdifferentiable at xl,kl , where

I = {i : λi ̸= 0} and J = {j : µj > 0}.

From Propositions 2.3.2 and calculus rule 1.3.4 (v), the following enhanced KKT

necessary optimality condition for the case where the objective function is Fréchet
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differentiable (but may not be Lipschitz) follows immediately. Note that for a Fréchet

differentiable function which is not Lipschitz continuous, the limiting subdifferential

may not coincide with the usual gradient and hence the following result provides a

sharper result for this case.

Corollary 2.6. Let x∗ be a local minimizer of problem (NLP) where the objec-

tive function f is Fréchet differentiable at x∗. If x∗ either satisfies NNAMCQ, is

pseudonormal, or is quasinormal, then the weaker version of the enhanced KKT con-

dition holds.

We close this section with a result showing that quasinormality and a weaker

version of pseudonormality coincide under the condition that the normal cone is

convex and the constraint functions are strictly differentiable at the point x∗. This

result is an extension of a similar result of Bertsekas and Ozdaglar [7, Proposition

3.2] in that we do not require the function to be continuously differentiable at x∗.

Proposition 2.3.3. Let x∗ ∈ F . Assume that for each i = 1, . . . , p, j = 1, . . . , q,

hi(x), gj(x) are strictly differentiable at x∗, and the limiting normal cone NX (x
∗)

is convex. Then x∗ is quasinormal if and only if the following weaker version of

pseudonormality holds: there are no vector (λ, µ) ∈ Rp×Rq
+ and no sequence {xk} ⊆

X converging to x∗ such that

(i) 0 ∈
∑p

i=1 λi∇hi(x∗) +
∑q

j=1 µj∇gj(x∗) +NX (x
∗).

(ii) λihi(x
k) ≥ 0 for all i and µjgj(x

k) ≥ 0 for all j, and if the index sets I ∪ J ̸= ∅

where I = {i|λi ̸= 0} J = {j|µj > 0} then

p∑
i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k) > 0, ∀k

and hi(i ∈ I), gj(j ∈ J) are proximal subdifferentiable at xk.
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Proof. It is easy to see that the weaker version of pseudonormality implies the quasi-

normality. So what we have to do is to show the converse. To the contrary, suppose

that the quasinormality holds but the weaker version of pseudonormality does not

hold. Then there exist scalars λ1, . . . , λp, µ1, . . . , µq and a sequence {xk} ⊆ X con-

verging to x∗ such that (i)-(ii) hold. Condition (ii) implies that λihi(x
k) > 0 for some

ī such that λī ̸= 0 or µjgj(x
k) > 0 for some j̄ such that µj̄ > 0. We now suppose that

such j̄ exists (the case where j̄ does not exist but ī exists can be similarly proved

and we omit it here). Without loss of generality, we can assume j̄ = 1 and µ1 = 1

(otherwise we can normalize it) such that (i) holds:

−
(
∇g1(x∗) +

p∑
i=1

λi∇hi(x∗) +
q∑

j=2

µj∇gj(x∗)
)
∈ NX (x

∗). (2.18)

Since g1(x
k) > 0 for all k, µ2, . . . , µq, λ1, . . . , λp are not all equal to 0, otherwise it

would contradicts the quasinormality of x∗. Besides, because NX (x
∗) is closed and

convex, by [7, Lemma 2.2] there exists a vector d̄ ∈ NX (x
∗)∗ with ⟨d̄,∇g1(x∗)⟩ < 0,

⟨d̄,∇gj(x∗)⟩ > 0 for all j = 2, . . . , q, such that µj > 0 and ⟨d̄, λi∇hi(x∗)⟩ > 0 for all

i = 1, . . . , p, such that λi ̸= 0.

In the remaining part of the proof, we show that the scalars

µ1 = 1, µ2, . . . , µq, λ1, . . . , λp

achieved above satisfy condition: λihi(x
k) > 0 ∀i ∈ I := {i : λi ̸= 0}, µjgj(x

k) >

0 ∀j ∈ J := {j = 2, . . . , q : µj > 0} which would contradicts the fact that x∗ is

quasinormal. Since gj and hi are strictly differentiable at x∗, the gradients coincide
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with the limiting subdifferentials, i.e.,

∇(µjgj)(x
∗) = lim

k→∞
ρkj for some ρkj ∈ ∂π(µjgj)(x

k)

∇(λihi)(x∗) = lim
k→∞

ϱkj for some ϱki ∈ ∂π(λihi)(xk).

By Proposition 1.3.3, for vector d̄ ∈ NX (x
∗)∗ and the sequence xk converging to x∗

constructed above, there is a sequence dk ∈ TX (xk) such that dk → d̄. By virtue

of xk → x∗, dk → d̄ and ⟨d̄,∇(µjgj)(x
∗)⟩ > 0 for all j = 2, . . . , q, with µj > 0,

⟨d̄,∇(λihi)(x∗)⟩ > 0 for all i = 1, . . . , p, with λi ̸= 0, we have that, for all sufficiently

large k, ⟨dk, ρkj ⟩ > 0 for all j = 2, . . . , q, with µj > 0, ⟨dk, ϱki ⟩ > 0 for all i = 1, . . . , p,

with λi ̸= 0. Since dk ∈ TX (xk), there exists a sequence {xk,l} ∈ X such that, for

each k, we have xk,l ̸= xk for all l and

xk,l → xk,
xk,l − xk

∥xk,l − xk∥
→ dk

∥dk∥
, as l →∞,

hi, gj are proximal subdifferentiable at xk,l. Since ρkj ∈ ∂π(µjgj)(x
k) ⊆ ∂̂(µjgj)(x

k),

by definition of the Fréchet subdifferential, for some vector sequence υ converging to

0, and for each j = 2, . . . , q, with µj > 0,

µjgj(x
k,l) ≥ µjgj(x

k) + ⟨xk,l − xk, ρkj ⟩+ o(∥xk,l − xk∥)

≥ µj⟨
dk

∥dk∥
+ υ, ρkj ⟩∥xk,l − xk∥+ o(∥xk,l − xk∥)

where the second inequality above follows from the assumption that µjgj(x
k) ≥ 0,

for all j and xk. It follows that, for l and k sufficiently large, there exists xk,l ∈ X

arbitrary close to xk such that µjgj(x
k,l) > 0 and, gj are proximal subdifferentiable

at xk,l for all j = 2, . . . , q, with µj > 0. Similarly, for l and k sufficiently large, there

exists xk,l ∈ X arbitrary close to xk such that λihi(x
k,l) > 0 and, hi are proximal
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subdifferentiable at xk,l for all i = 1, . . . , p with λi ̸= 0.

2.4 Sufficient conditions for error bounds

In this section we show that either pseudonormality or quasinormality plus the sub-

differential regularity condition on constraints implies the existence of local error

bounds. Our results are new even for the smooth case.

In order to derive the desired error bound formula (2.1), let us first rewrite the

constraint region (1.2) equivalently as follows:

F = {x ∈ X : ∥h(x)∥1 + ∥g+(x)∥1 = 0}. (2.19)

By [79, Theorem 3.3], to prove the desired error bound result we only need to

derive the following estimation.

Lemma 2.7. Let x∗ be feasible for problem (NLP) such that pseudonormality holds.

Then there are δ, c > 0 such that

1

c
≤ ∥ξ∥1 ∀ξ ∈ ∂π(∥h(x)∥1 + ∥g+(x)∥1 + δX (x)), x ∈ B δ

2
(x∗) ∩ X , x /∈ F ,

where δX (x) denotes the indicator function of the set X at x.

Proof. To the contrary, assume that there exists a sequence {xk} → x∗ with xk ∈

X \ F and ξk ∈ ∂π(∥h∥1 + ∥g+∥1 + δX )(x
k) for all k ∈ N such that ∥ξk∥1 → 0. By

the calculus rule in Proposition 1.3.4 (i), (iii) and Proposition 1.3.1 (iv), we can find

bounded multipliers (µk, λk) with µk ≥ 0 such that

ξk ∈
q∑

i=1

∂(λki hi)(x
k) +

q∑
j=1

µk
j∂gj(x

k) +NX (x
k) (2.20)
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for all k ∈ N. Hence, we may assume without loss of generality that it converges to

a limit (λ, µ). Taking the limit as k →∞ in (3.12) yields

0 ∈
p∑

i=1

∂(λihi)(x
∗) +

q∑
j=1

µj∂gj(x
∗) +NX (x

∗).

In addition, by the existence of λki , µ
k
j and Proposition 1.3.1 (iv), for k large enough,

it is easy to see that

λihi(x
k) ≥ 0 ∀i = 1, . . . , p,

µjgj(x
k) ≥ 0 ∀j = 1, . . . , q.

Since xk /∈ F for all k, at least one functional constraint has to be violated infinitely

many times. Using again Proposition 1.3.1 (iv), it is easy to see that there exists

at least one multiplier λi or µj not equal to zero, and the corresponding product

is strictly positive for all k such that the constraint is violated, i.e. if constraint

hi(x
k) = 0 is violated for infinitely many k, we may have λi ̸= 0 and λihi(x

k) > 0 for

all those k, if the constraint gj(x
k) ≤ 0 is violated for infinitely many k, we may have

µj > 0 and µjgj(x
k) > 0 for all those k. Therefore

p∑
i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k) > 0

at least on a subsequence. Moreover by the density theorem in Proposition 1.3.2

hi(i ∈ I), gj(j ∈ J) can be selected to be proximal subdifferentiable at xk. This,

however, implies that pseudonormality is violated in x∗ since xk is chosen from X , a

contradiction.

Using the local error bound result of [79, Theorem 3.3], we obtain the following

error bound result.
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Theorem 2.8. Let x∗ be feasible for problem (NLP) such that pseudonormality holds.

Then the local error bound holds: there exist positive constants c and δ such that

distF(x) ≤ c(∥h(x)∥1 + ∥g+(x)∥1) ∀x ∈ Bδ(x∗) ∩ X .

By Clarke’s exact penalty principle [16, Proposition 2.4.3] we obtain the following

exact penalty result immediately.

Corollary 2.9. Let x∗ be a local minimizer of problem (NLP). If pseudonormality

holds at x∗, then x∗ is a local minimizer of the penalized problem:

min f(x) + α(∥h(x)∥1 + ∥g+(x)∥1)

s.t. x ∈ X ,

where α ≥ Lfc, Lf is the Lipschitz constant of f and c is the error bound constant.

Notice that Corollary 2.9 even works for nonstrict local minima x∗ in the nons-

mooth case. However, we find that the exact penalty result in [7, Proposition 4.2],

established in the smooth case, requires x∗ to be a strict local minimum, and it is

stated in [7, Example 7.7] that this assumption might be crucial. The example is the

following:

min f(x1, x2) := x2 s.t. h(x1, x2) := x2/(x
2
1 + 1) = 0.

The feasible points are of the form

(x1, 0) with x1 ∈ R.

And each feasible point is a local minimum. Since the gradient ∇h(x1, x2) is nonzero,

every feasible point is quasinormal. The authors claim that pseudonormality at a
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nonstrict local minimum may not imply the exact penalty since for any c > 0,

inf
(x1,x2)∈R2

{x2 + c|x2|/|x21 + 1|} = −∞,

which shows that a local optimal solution of the original problem is not a global

optimal solution of the penalized problem. However this example is not a counter

example since (x1, 0) is a local minimum of the function x2 + c|x2|/|x21 + 1| for large

enough c > 0. Since the limiting subdifferential agrees with the classical gradient

when a function is strictly differentiable, we stress, that not only did we extend the

exact penalty result in [7] to a more general case, but we also improved their result

in another way. We have now answered positively the open question raised in [42]

in which the authors ask whether or not the proof technique based on error bound

and the exact penalty principle of Clarke (which is completely different from the one

used in [7]) can be used to prove the exact penalty result in [7] with a nonstrict local

optimum.

The following example shows that the converse of Theorem 2.9 does not hold.

Since when the objective function is Lipschitz continuous, the existence of an exact

penalty function implies the exact penalty. It also shows that the existence of an

exact penalty function does not imply pseudonormality.

Example 1. Consider the locally Lipschitz optimization problem

min f(x) = |x1|+ |x2|

s.t. g(x) = |x1| − x2 ≤ 0

x ∈ X

where X is denoted as {(x1, x2)|x21 + (x2 + 1)2 ≤ 1}. At the only feasible point
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x∗ = (0, 0), ∂g(x∗) = {(ζ,−1)| − 1 ≤ ζ ≤ 1} and NX (x
∗) = {t(0, 1)|t ≥ 0}. However,

if we choose µ = 1 and a sequence {xk} located in X where for each k = 1, 2, . . .,

xk = (cos(π
2
− π

2k
),−1 + sin(π

2
− π

2k
)), we have 0 ∈ µ∂g(x∗) +NX (x

∗) and µg(xk) > 0

for all k > 1. This implies x∗ is not pseudonormal. However it is easy to see that the

error bound holds:

distC(x) ≤ |x1| − x2 = |x1|+ |x2| ∀x ∈ X

with C = {0, 0)} and X = {(x1, x2) : x21 + (x2 + 1)2 ≤ 1}.

Naturally, after showing that pseudonormality implies the existence of local error

bound, we would like to explore the relation between quasinormality and the error

bound property. In [57, Theorem 2.1], under the assumption that the constraint

functions are C1+, Minchenko and Tarakanov show that quasinormality implies the

error bound for a smooth optimization problem with X = Rn. In what follows, we

will show that quasinormality implies the error bound property for our nonsmooth

optimization problem (NLP) under the condition that the constraint functions are

subdifferential regular and the abstract constraint set is regular. Since a smooth

function must be subdifferentially regular, our results show that the condition of C1+

for the constraint functions in Minchenko and Tarakanov [57, Theorem 2.1] can be

removed.

Theorem 2.10. Assume in the constraint system (1.2) that X is a nonempty closed

regular set. Further let x∗ ∈ F , assume hi(x) are continuously differentiable, gj(x)

are subdifferentially regular around x∗ (automatically holds when gj are convex or C1

around x∗). If x∗ is a quasinormal point of F , then there exist positive numbers c
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and δ, such that

distF(x) ≤ c(∥h(x)∥1 + ∥g+(x)∥1) ∀x ∈ Bδ(x∗) ∩ X . (2.21)

Proof. By assumption we can find δ0 > 0 such that ∂̂hi(x) is nonempty and gj(x)

are subdifferentially regular for all x ∈ Bδ0(x∗). Since the required assertion is always

true if x∗ ∈ intF , we only need to consider the case when x∗ ∈ ∂F . In this case,

(2.21) can be violated only for x /∈ F . Let us take some sequences {xk} and {xk} ,

such that xk → x∗ ,xk ∈ X \ F , and xk =
∏

F(x
k), the projection of xk onto the set

C. Note that xk → x∗, since ∥xk − x
k∥ ≤ ∥xk − x∗∥. For simplicity we may assume

both {xk} and {xk} belong to Bδ0(x∗) ∩ X .

Since xk − xk ∈ N π
F (x

k) ⊆ N̂F(x
k), we have

ηk =
x
k − xk

∥xk − xk∥
∈ N̂F(x

k).

Since x∗ is quasinormal, from Lemma 2.5 it follows that the point xk is also

quasinormal for all sufficiently large k and, without loss of generality, we may assume

that all xk are quasinormal. Then, by Proposition 2.3.2 and Proposition 1.3.4 (iv),

there exists a sequence {ξk1 , . . . , ξkp , ζk1 , . . . , ζkq } with ζkj ≥ 0, such that

ηk ∈
p∑

i=1

ξki∇hi(xk) +
q∑

j=1

ζkj ∂gj(x
k) +NX (x

k), (2.22)

and there exists a sequence {xk,l} ⊆ X , such that xk,l → xk as l → ∞ and for all

l = 1, 2, . . ., ξki hi(x
k,l) > 0 for i ∈ Ik; ζkj gj(xk,l) > 0 for j ∈ Jk, where Ik = {i : ξki ̸= 0}

and Jk = {j : ζkj > 0}. As in the proof of Step 2 in Proposition 2.3.2, we can show that

the quasinormality of x∗ implies that the sequence {ξk1 , . . . , ξkp , ζk1 , . . . , ζkq } is bounded.

Therefore, without loss of generality, we may assume {ξk1 , . . . , ξkp , ζk1 , . . . , ζkq } con-
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verges to some vector {ξ∗1 , . . . , ξ∗p , ζ∗1 , . . . , ζ∗q }. Then there exists a number M0 > 0,

such that for all k, ∥(ξk, ζk)∥ ≤M0.

Without loss of any generality, we may assume that xk ∈ B δ0
2
(x∗) ∩ X \ F and

xk ∈ Bδ0(x∗) ∩ X for all k. Setting (ξ̄k, ζ̄k) = 2(ξk, ζk), then from (2.22) for each k

there exist ρkj ∈ ∂gj(xk), ∀j = 1, . . . , q, and ωk ∈ NX (x
k) such that

x
k − xk

∥xk − xk∥
=

xk − xk

∥xk − xk∥
+

p∑
i=1

ξ̄ki∇hi(xk) +
q∑

j=1

ζ̄kj ρ
k
j + 2ωk.

We obtain from the discussion above that

∥xk − xk∥ =
⟨xk − xk,xk − xk⟩
∥xk − xk∥

=
⟨ xk − xk

∥xk − xk∥
+

p∑
i=1

ξ̄ki∇hi(xk) +
q∑

j=1

ζ̄kj ρ
k
j + 2ωk,xk − xk

⟩
≤

⟨ xk − xk

∥xk − xk∥
+

p∑
i=1

ξ̄ki∇hi(xk) +
q∑

j=1

ζ̄kj ρ
k
j ,x

k − xk
⟩
+ o(∥xk − xk∥)

≤
p∑

i=1

⟨
ξ̄ki∇hi(xk),xk − xk

⟩
+

q∑
j=1

⟨
ζ̄kj ρ

k
j ,x

k − xk
⟩
+ o(∥xk − xk∥)

≤
p∑

i=1

ξ̄ki

(
hi(x

k)− o(∥xk − xk∥)
)
+

q∑
j=1

ζ̄kj

(
gj(x

k)− o(∥xk − xk∥)
)

+o(∥xk − xk∥)

≤ 2
∣∣∣ p∑
i=1

ξki hi(x
k) +

q∑
j=1

ζkj gj(x
k)
∣∣∣+ 2

∣∣∣ p∑
i=1

ξki +

q∑
j=1

ζkj + 1
∣∣∣o(∥xk − xk∥)

≤ 2
∣∣∣ p∑
i=1

ξki hi(x
k) +

q∑
j=1

ζkj gj(x
k)
∣∣∣+ 1

2
∥xk − xk∥

where the first inequality comes from the fact that X is regular, the third one arises

from the subdifferential regularity assumption of hi(x) and gj(x) in Bδ0(x∗)∩X , and

the last one is valid because without loss of generality, we may assume for k sufficiently
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large,

o(∥xk − xk∥) ≤ 1

4(M0 + 1)
∥xk − xk∥

since xk − xk → 0 as k tends to infinity. This means

distF(x
k) = ∥xk − xk∥ ≤ 4M0

( p∑
i=1

|hi(xk)|+
q∑

i=1

g+j (x
k)
)
.

Thus, for any sequence {xk} ⊆ X converging to x∗ there exists a number c > 0 such

that

distF(x
k) ≤ c(∥h(xk)∥1 + ∥g+(xk)∥1) ∀k = 1, 2, . . . .

This further implies the error bound property at x∗. Indeed, suppose the contrary.

Then there exists a sequence x̃
k → x∗, such that x̃k ∈ X \ F and distF(x̃

k) >

c(∥h(x̃k)∥1 + ∥g+(x̃k)∥1) for all k = 1, 2, . . . , which is a contradiction.

A natural question to ask is: Is the quasinormality strictly stronger than the error

bound property. This question has been answered positively in [57, Example 2.1],

with a smooth optimization problem without an abstract set constraint.

2.5 Sensitivity analysis of value functions

In this section we consider the following perturbed optimization problem:

(NLPa) min f̂(x, a) (2.23)

s.t. x ∈ F(a),

with

F(a) = {x ∈ X : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}, (2.24)



44

where X is closed subset of Rn, f̂ : Rn×Rn → R, ĥ : Rn×Rn → Rp, ĝ : Rn×Rn → Rq

are Lipschitz continuous around (x̄, ā).

In practice it is often important to know how well the model responds to the

perturbation a. For this we need to consider, for instance, the value function V(a)

related to the parametric optimization problem:

V(a) := inf
x∈F(a)

f̂(x, a), (2.25)

with the solution map S(·) defined by

S(a) := {x ∈ F(a) : V(a) = f̂(x, a)}. (2.26)

In the recent paper [66], Mordukhovich, Nam and Yen obtain some new results for

computing and estimating the Fréchet subgradient of the value function in parametric

optimization (2.23)-(2.24) with smooth and nonsmooth data using normal multipliers.

In the following result we estimate the Fréchet subdifferential of the value function

by using the quasinormal multipliers instead. Since the set of quasinormal multipliers

are smaller than the set of normal multipliers, our estimate provides a tighter bound

for the Fréchet subdifferential of the value function.

Let M r
Q(x̄, ā) denotes the set of vectors (λ, µ, γ) ∈ Rp × Rq

+ × R such that

0 ∈ r∂f̂(x̄, ā) +
p∑

i=1

∂(λiĥi)(x̄, ā) +

q∑
j=1

µi∂ĝj(x̄, ā) + (0, γ) +NX (x̄)× {0}

and there exists a corresponding sequence {(xk, ak)} ⊆ X × Rn converging to (x̄, ā)

such that λiĥi(x
k, ak) > 0 for all i ∈ I := {i : λi ̸= 0}, µj ĝj(x

k, ak) > 0 for all

j ∈ J := {µj > 0}, and ĥi(i ∈ I), ĝj(j ∈ J) are proximal subdifferentiable at (xk, ak)

for each k.
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Theorem 2.11. Let V(a) be the value function as defined in (2.25) and x̄ ∈ S(ā).

Assume also that (x̄, ā) is quasinormal for the constraint region

{(x, a) ∈ X × Rn : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}.

Then one has the upper estimation:

∂̂V(ā) ⊆ {−γ : (λ, µ, γ) ∈M1
Q(x̄, ā)}. (2.27)

Proof. There is nothing to prove if ∂̂V(ā) = ∅. Let γ ∈ ∂̂V(ā) ̸= ∅. Then by definition

of the Fréchet subdifferential, for arbitrary κ > 0, there exists δκ > 0 such that

V(a)− V(ā) ≥ ⟨γ, a− ā⟩ − κ∥a− ā∥ ∀a ∈ Bδκ(ā).

By definition of the value function, for every x ∈ F(a), we have f̂(x, a) ≥ V(a) and

hence

f̂(x, a)− ⟨γ, a− ā⟩+ κ∥a− ā∥ ≥ f̂(x̄, ā) ∀x ∈ F(a).

Thus, (x̄, ā) is a local optimal solution to the optimization problem

min f̂(x, a)− ⟨γ, a− ā⟩+ κ∥a− ā∥

s.t. ĥi(x, a) = 0, i = 1, . . . , p,

ĝj(x, a) ≤ 0, j = 1, . . . , q,

(x, a) ∈ X × Rn.

Since (x̄, ā) is quasinormal by assumption, by the enhanced KKT condition (Theorem

2.3), there exist a vector (λ , µ) ∈ Rp × Rq
+ and a sequence {(xk, ak)} ⊆ X × Rn
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converging to (x̄, ā) such that the following conditions hold:

0 ∈ ∂f̂(x̄, ā) +
p∑

i=1

∂(λiĥi)(x̄, ā) +

q∑
j=1

µj∂ĝj(x̄, ā) +

NX×Rn(x̄, ā)−

 0

γ

+ κ

 0

B

 , (2.28)

λiĥi(x
k, ak) > 0 ∀i ∈ I, µj ĝj(x

k, ak) > 0 ∀j ∈ J,

ĥi(i ∈ I), ĝj(j ∈ J) are proximal subdifferentiable at (xk, ak).

The desired upper estimation follows since κ is arbitrary.

We now give a tighter estimate for the limiting subdifferential of the value function

in terms of the quasinormality.

Theorem 2.12. Let V(a) be the value function as defined in (2.25). Suppose that

the growth hypothesis holds, i.e., there exists δ > 0 such that the set

{x ∈ X : ĥ(x, ā) = α, ĝ(x, ā) ≤ β, f̂(x, ā) ≤M, (α, β) ∈ δB}

is bounded for each M ∈ R. Assume that for each x̄ ∈ S(ā), (x̄, ā) is quasinormal for

the constraint region

{(x, a) ∈ X × Rn : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}. (2.29)

Then the value function V(a) is l.s.c. near ā and

∂V(ā) ⊆
∪

x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M1
Q(x̄, ā)}

∂∞V(ā) ⊆
∪

x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M0
Q(x̄, ā)}
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Proof. By [47, Theorem 3.6], the value function V(a) is lower semicontinuous near ā

under our assumption.

Step 1. Let v be a vector that belongs to ∂V(ā), by definition there are sequences

al → ā and vl → v with vl ∈ ∂̂V(al). By the growth hypothesis, for l sufficiently

large, we may find a solution xl ∈ S(al). Following [16, Theorem 6.5.2], without

loss of generality we may assume xl converges to an element x̄ ∈ S(ā). Since (x̄, ā)

is quasinormal and it is a limit point of the sequence {(xl, al)}, by Lemma 2.5 we

find that for sufficient large l, (xl, al) is also quasinormal for the constraint region

(2.29) and hence from Theorem 2.11 it follows that for each l there exist a vector

(λl , µl) ∈ Rp × Rq
+ and a sequence {(xl,k, al,k)}k ⊆ X × Rn converging to (xl, al) as

k →∞ such that

(0, vl) ∈ ∂f̂(xl, al) +
p∑

i=1

∂(λliĥi)(x
l, al) +

q∑
j=1

µl
j∂ĝj(x

l, al) +NX (x
l)× {0},

(2.30)

λliĥi(x
l,k, al,k) > 0 ∀i ∈ I l, µl

j ĝj(x
l,k, al,k) > 0 ∀j ∈ J l, (2.31)

ĥi(i ∈ I l), ĝj(j ∈ J l) are proximal subdifferentiable at (xl,k, al,k), (2.32)

where I l := {i : λli ̸= 0}, J l := {j : µl
j > 0}. Similar as in Step 2 of the

proof of Proposition 2.3.2, we may obtain the boundedness of the multipliers se-

quence {λl1, . . . , λlp, µl
1, . . . , µ

l
q}. Therefore, without loss of generality, we may assume

{λl1, . . . , λlp, µl
1, . . . , µ

l
q} converges to {λ1, . . . , λp, µ1, . . . , µq}. Taking the limit on both

sides of (2.30), similar to Theorem 2.1, we obtain

(0, v) ∈ ∂f̂(x̄, ā) +

p∑
i=1

∂(λiĥi)(x̄, ā) +

q∑
j=1

µj∂ĝj(x̄, ā) +NX (x̄)× {0}.

Also we find a sequence {(xl,kl , al,kl)} ⊆ X × Rn converging to x̄ as l → ∞ and is
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such that for all l, λiĥi(x
l,kl , al,kl) > 0,∀i ∈ I, µjgj(x

l,kl , al,kl) > 0, ∀j ∈ J , and hi, gj

are proximal subdifferentiable at xl,kl , where I = {i|λi ̸= 0} and J = {j|µj > 0}.

Step 2. Let v ∈ ∂∞V(ā). By definition there are sequence al → ā, vl ∈ ∂̂V(al)

and tl ↓ 0 such that tlvl → v. Similar as in Step 1, for each l there exist a vector

(λl , µl) ∈ Rp × Rq
+ and a sequence {(xl,k, al,k)} ⊆ X × Rn converging to (xl, al) such

that (2.30)-(2.32) hold. Multiplying both sides of (2.30) by tl we have

(0, tlvl) ∈ tl∂f̂(xl, al) +

p∑
i=1

∂(tlλ
l

iĥi)(x
l, al) +

q∑
j=1

tlµl
j∂ĝj(x

l, al)

+NX (x̄)× {0}. (2.33)

Since (x̄, ā) is quasinormal for the constraint region (2.29), similarly as in Step 2 of

the proof of Proposition 2.3.2, the sequence

{tlλl1, . . . , tlλlp, tlµl
1, . . . , t

lµl
q}

must be bounded as l → ∞. Without loss of generality assume that the limit is

{λ1, . . . , λp, µ1, . . . , µq}. Talking limits in (2.33), we have

(0, v) ∈
p∑

i=1

λi∂ĥi(x̄, ā) +

q∑
j=1

µj∂ĝj(x̄, ā) +NX (x̄)× {0}.

The rest of the proof is similar to Step 1.

From Theorem 2.12 we derive the following very interesting result which signifi-

cantly improves the classical result in that our sufficient condition is the perturbed

quasinormality which is much weaker than the classical condition of NNAMCQ (see

e.g. [47, Corollary 3.7]).

Corollary 2.13. Let V(a) be the value function as defined in (2.25). Suppose that
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the growth hypothesis holds at each x̄ ∈ S(ā).

(i) Assume that (x̄, ā) is quasinormal for the constraint region (2.29). If

∪
x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M0
Q(x̄, ā)} = {0}, (2.34)

then the value function V(a) is Lipschitz continuous around ā with

∅ ̸= ∂V(ā) ⊆
∪

x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M1
Q(x̄, ā)}.

In addtion to the above assumptions, if

∪
x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M1
Q(x̄, ā)} = {−γ̄}

for some (λ̄, µ̄, γ̄) ∈M1
Q(x̄, ā), then V is strictly differentiable at ā and ∇V(ā) =

−γ̄.

(ii) For the functions ϕ = f̂ ,±ĥi, ĝj, suppose that the partial limiting subdifferential

property holds at (x̄, ā):

∂ϕ(x̄, ā) = ∂xϕ(x̄, ā)× ∂aϕ(x̄, ā).

Also assume that (x̄, ā) is quasinormal for the constraint region (2.29). If

∪
x̄∈S(ā)

{
p∑

i=1

∂a(λiĥi)(x̄, ā) +

q∑
j=1

µj∂aĝj(x̄, ā) : (µ, λ) ∈ M̃0
Q(x̄, ā)

}
= {0} (2.35)
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then the value function V(a) is Lipschitz continuous around ā and

∅ ≠ ∂V(ā) ⊆
∪

x̄∈S(ā)

(µ,λ)∈M̃1
Q(x̄,ā)

{
∂af̂(x̄, ā) +

p∑
i=1

∂a(λiĥi)(x̄, ā) +

q∑
j=1

µi∂aĝj(x̄, ā)

}

(2.36)

where M̃ r
Q(x̄, ā) denotes the set of perturbed quasinormal multipliers which are

the set of vectors (λ, µ) ∈ Rp × Rq
+ such that

0 ∈ r∂xf̂(x̄, ā) +
p∑

i=1

∂x(λiĥi)(x̄, ā) +

q∑
j=1

µj∂xĝj(x̄, ā) +NX (x̄)

and there exists a corresponding sequence {(xk, ak)} ⊆ X × Rn converging to

(x̄, ā) such that λiĥi(x
k, ak) > 0 for all i ∈ I := {i : λi ̸= 0}, µj ĝj(x

k, ak) > 0

for all j ∈ J := {µj > 0}, and ĥi(i ∈ I), ĝj(j ∈ J) are proximal subdifferentiable

at (xk, ak) for each k.

(iii) Suppose that the partial limiting subdifferential property at (x̄, ā) holds as in

(ii) and M̃0
Q(x̄, ā) = {0} for each x̄ ∈ S(ā). Then the value function V(a) is

Lipschitz continuous around ā and (2.36) holds.

Proof. (i) It follows from Theorem 2.12 that

∪
x̄∈S(ā)

{−γ : (λ, µ, γ) ∈M0
Q(x̄, ā)} = {0}

implies that ∂∞V(ā) = {0}. We conclude that the value function is Lipschitz around

ā by virtue of Proposition 1.3.1 (iii). The assertion about the strict differentiability

then follows from Proposition 1.3.1 (i).

(ii) It is clear that under the partial limiting subdifferential property, (2.34) is

equivalent to (2.35). The conclusion then follows from applying Theorem 2.12 and
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Proposition 1.3.1 (iii).

(iii) follows immediately from (ii) and the fact that M̃0
Q(x̄, ā) = {0} implies the

quasinormality of (x̄, ā).
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Chapter 3

Mathematical programs with geomet-

ric constraints in Banach spaces: En-

hanced optimality, exact penalty, and

sensitivity

3.1 Introduction

In this chapter we extend the enhanced optimality, exact penalty, and sensitivity

discussed in chapter 2 from Rn to a more general infinite dimensional space. Unless

otherwise stated, we denote by X a Banach space and by X∗ its dual space equipped

with the weak∗ topology and by Y an Euclidean space together with the inner product

⟨· , ·⟩ equipped with the orthogonal basis E = {e1, . . . , em}. We study the following

general mathematical program with geometric constraints such that the image of a

This chapter is the content of Guo, L., Ye, J.J. and Zhang, J., “Mathematical programs with
geometric constraints in Banach spaces: enhanced optimality, exact penalty, and sensitivity.” (2013).
SIAM J. Optim., 23, 2295-2319.
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mapping from a Banach space is included in a closed subset of a finite dimensional

space:

(MPGC) min
x∈Ω

f(x) (3.1)

s.t. F (x) ∈ Λ,

where f : X → R and F : X → Y are Lipschitzian near the point of interest, Ω and

Λ are nonempty and closed subsets of X and Y respectively.

The classical Fritz John (FJ) necessary optimality condition for (MPGC) with

continuously differentiable functions {f, F}, Ω = X, and convex geometric constraint

Λ takes the following form: There exist r ≥ 0 and µ ∈ Y not all equal to zero such

that

0 = r∇f(x∗) +∇F (x∗)∗µ and µ ∈ NΛ(F (x
∗)), (3.2)

where ∇φ(x) is the Fréchet derivative of mapping φ at x, A∗ denotes the adjoint of

a linear operator A, and NΛ(y) denotes the normal cone of Λ at y in the sense of

convex analysis [73]:

NΛ(y) =

 {d ∈ Y | ⟨d, z − y⟩ ≤ 0 ∀z ∈ Λ} if y ∈ Λ,

∅ if y /∈ Λ.

From the FJ condition, it follows immediately that if x∗ is a locally optimal solution of

(MPGC) and the no nonzero abnormal multiplier constraint qualification (NNAMCQ)

or basic constraint qualification (Basic CQ) [74] holds at x∗, i.e., there is no nonzero

µ such that

0 = ∇F (x∗)∗µ and µ ∈ NΛ(F (x
∗)),
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then there exist r > 0 (which can be taken as 1) and µ ∈ Y such that the KKT

condition holds

0 = ∇f(x∗) +∇F (x∗)∗µ and µ ∈ NΛ(F (x
∗)).

Since Y is assumed to be a finite dimensional space and Λ is a closed convex set, by

virtue of [10, Corollary 2.98], the NNAMCQ is equivalent to the Robinson’s CQ

0 ∈ int{F (x∗) +∇F (x∗)X− Λ},

where “int” denotes the topological interior of a given set.

When {f, F} are nonsmooth but locally Lipschitzian and Λ is not a convex set,

the FJ condition can be obtained by replacing the usual derivatives and the normal

cone in the sense of convex analysis with the limiting subdifferential and the limiting

normal cone respectively if the underlying space X is an Asplund space (an Asplund

space X is a Banach space such that every separable closed subspace of X has a

separable dual, see Mordukhovich [61,62]), and by the Clarke subdifferential and the

Clarke normal cone respectively if X is a general Banach space (see Clarke [16]).

Although the NNAMCQ or the Basic CQ provides an easy way to verify constraint

qualification, it may be fairly strong for some applications and in particular for certain

classes of optimization problems such as bilevel programs, mathematical programs

with equilibrium constraints [21, 49,68,86,87], they are never satisfied.

3.1.1 Purpose and contribution

The main purpose of this chapter is to study the enhanced optimality condition

for (MPGC) when the space X is a Banach space and Y is an Euclidean space.

Such a result is new even for the classical smooth nonlinear program. There are two
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technical difficulties involved when the space X is not finite dimensional. First, unlike

the finite dimensional case, the quadratic penalization approach in chapter 2 cannot

be employed any more because the compactness of the closed unit ball is possibly

invalid in a Banach space X, which plays a key role in guaranteeing the existence

of enhanced sequential approximating solution by using the Weierstrass theorem in

chapter 2. Nevertheless, by virtue of the optimization process, for any ϵ > 0, a

problem in the form as (MPGC) always possesses an ϵ-optimal solution (see [10]

for definition), provided that the optimal value of the problem is finite. Inspired

by this fact, we employ the Ekeland’s variational principle instead to construct a

cluster of ϵ-optimal solutions, and each of them becomes the minimizer of a certain

slightly perturbed problem. We then employ generalized calculus to obtain necessary

optimality conditions for the perturbed problem. The second difficulty lies in applying

the basic calculus rules and passing to the limit as ϵ tends to zero. When the space X is

finite dimensional, the limiting subdifferential and the limiting normal cone have nice

calculus rules and are known to be closed as set-valued maps. The nice calculus rules

and the robust property allow one to obtain the desired result. However, when X is an

infinite dimensional Banach space, the limiting subdifferential for locally Lipschitzian

functions may even be empty, and hence the basic calculus rules may fail and the

robust property may not hold in general. To cope with the second difficulty, we use

the approximate subdifferential developed by Ioffe [35,36] instead. The approximate

subdifferential seems to be the most natural analytic tool in our situation since it

has fairly rich calculus rule for locally Lipschitzian functions and the approximate

subdifferential and the approximate normal cone are known to be closed as set-valued

maps. Moreover, the approximate subdifferential for locally Lipschitzian functions is

minimal (as a set) among all subdifferentials that have desired properties, and is in

general smaller than the Clarke subdifferential. When the underlying space X is a
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weakly compactly generated (WCG) Asplund space, the approximate subdifferential

coincides with the limiting subdifferential [61, Theorem 3.59] and hence in this case,

we obtain the desired result in terms of limiting subdifferential. Recall that X is

WCG if there is a weakly compact set K ⊆ X such that X is equal to the closure

of the span of K. Canonical examples of WCG Aspund spaces are reflexive Banach

spaces, see, e.g., [61] for further discussions.

In recent years, it has been shown that constraint qualifications have strong con-

nections with the stability of feasible region under certain perturbation p:

F (p) := {x ∈ Ω |F (x, p) ∈ Λ},

where p is in a topological space P. For the case of a smooth optimization problem

with convex geometric constraint Λ and X = Ω, it is known that the Robinson’s CQ

at x∗ ∈ F(p∗) implies the stability for the constraint region (see [10, Theorem 2.87]),

i.e., the existence of a neighborhood U of (x∗, p∗) such that for all (x, p) ∈ U ∩(X×P),

distF (p)(x) = O(distΛ(F (x, p))),

and hence the existence of local error bounds, i.e., there exist positive constants

{κ, δ0} such that

distF (p∗)(x) ≤ κdistΛ(F (x, p
∗)) ∀x ∈ Bδ0(x∗) ∩ X.

In fact, the above stability results still hold in an infinite dimensional space even if

the set Λ is not convex and X is replaced with a closed subset Ω under the NNAMCQ

which can be easily derived by using the error bound result as in [80, Theorem 2.4].

Error bounds have important applications in sensitivity analysis of mathematical
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programming and in convergence analysis of some algorithms. In his seminal pa-

per [31], Hoffman showed that a linear inequality system in a finite dimensional space

has a global error bound. Such a result was generalized to an infinite dimensional

Banach space by Ioffe [34]. For a general constraint system, the existence of error

bounds usually requires some conditions. As we discussed above, the Robinson’s C-

Q and the NNAMCQ imply a local error bound for (MPGC). Therefore, the error

bound estimates can be obtained straightforwardly for smooth nonlinear programs

and nonlinear semidefinite programs (NLSDP) with the constraint systems taking

the geometric forms respectively (see [10, Example 2.92, Example 2.93]). Very re-

cently, for the case of nonsmooth (NLP), it was shown in chapter 2 that either the

pseudonormality or the quasinormality with regularity on the constraints implies the

existence of local error bounds, which extends the result in [57] where all constraints

are assumed to be twice continuously differentiable. In this chapter, we show that

a local error bound for nonsmooth (MPGC) exists under the quasinormality, which

generalizes and improves all earlier results since except the constraint qualification,

neither additional regularity condition nor continuous differentiability assumption is

required.

3.2 Preliminaries

We denote by F the feasible region of (MPGC) and denote by Bδ(x) := {y ∈ X | ∥y−

x∥ < δ} the open ball centered at x with radius δ > 0. As usual, BX and BX∗ stand

for the closed unit balls of the space X and its dual X∗ respectively.

In addition to section 1.3, we next summarize some preliminary material in varia-

tional analysis in infinite dimensional spaces that will be needed in this chapter. We

refer the reader to [16,35,36,61,62,77] for more details and discussions.



58

For a set-valued map S : X ⇒ X∗, unless specified, we denote by

Lim sup
x→x∗

S(x) := {v ∈ X∗|∃ sequences xk → x∗ and vk
w∗
→ v

with vk ∈ S(xk) for all k}.

the sequential Painlevé–Kuratowski upper limit with respect to the norm topology of

X and the weak∗ topology of X∗.

Given Ω ⊆ X and ϵ ≥ 0, define the collection of ϵ-normals to Ω at x∗ ∈ Ω by

N̂ϵ(x
∗,Ω) := {v ∈ X∗ | lim sup

x
Ω→x∗

⟨v, x− x∗⟩
∥x− x∗∥

≤ ϵ}. (3.3)

where x
Ω→ x∗ means that x → x∗ with x ∈ Ω. When ϵ = 0, elements of (3.3) are

called Fréchet normals and their collection, denoted by N̂Ω(x
∗), is the prenormal cone

to Ω at x∗. The basic/limiting normal cone NΩ(x
∗) to Ω at x∗ is defined as

NΩ(x
∗) := Lim sup

x
Ω→x∗,ϵ↓0

N̂ϵ(x,Ω).

If X is an Asplund space, then the limiting normal cone has the following simpler

expression (see [61, Theorem 2.35])

NΩ(x
∗) := Lim sup

x
Ω→x∗

N̂Ω(x).

For Ω ⊆ X and x∗ ∈ Ω, the contingent cone TΩ(x∗) to Ω at x∗ is the set defined

by

TΩ(x∗) := Lim sup
t→0,t≥0

Ω− x∗

t
, (3.4)
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where the “Lim sup” is taken with respect to the norm topology of X. If the “Lim sup”

in (3.4) is taken with respect to the weak topology of X, then the resulting construc-

tion, denoted by T w
Ω (x∗), is called the weak contingent cone to Ω at x∗.

The Clarke tangent cone to Ω at x∗ is defined by

T c
Ω(x

∗) := {v | ∀xk → x∗, ∀tk ↓ 0,∃vk → v∗ s.t. xk + tkv
k ∈ Ω ∀k},

and the Clarke normal cone to Ω at x∗ is the dual to the Clarke tangent cone to Ω

at x∗, i.e.,

N c
Ω(x

∗) := T c
Ω(x

∗)o,

where Co := {x | ⟨x, v⟩ ≤ 0 ∀v ∈ C} denotes the polar of set C. In the general

Banach space setting, we have

cl∗convNΩ(x
∗) ⊆ N c

Ω(x
∗),

where “cl∗conv” denotes the weak∗ closure of the convex hull and the inclusion rela-

tionship above holds with equality when X is an Asplund space.

Let φ : X→ R be an extended-real-valued function with φ(x∗) finite. The set

∂̂ϵφ(x
∗) := {v ∈ X∗ | lim inf

x→x∗

φ(x)− φ(x∗)− ⟨v, x− x∗⟩
∥x− x∗∥

≥ −ϵ}

is called the (Fréchet-like) ϵ-subdifferential of φ at x∗. When ϵ = 0, the Fréchet-

like ϵ-subdifferential reduces to the Fréchet subdifferential, denoted by ∂̂φ(x∗). The

basic/limiting subdifferential of φ at x∗ is defined by

∂φ(x∗) := Lim sup
x

φ→x∗,ϵ↓0
∂̂ϵφ(x),
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where x
φ→ x∗ means that x→ x∗ and φ(x)→ φ(x∗). The singular subdifferential of

φ : X→ R at x∗ is defined by

∂∞φ(x∗) := Lim sup
x

φ→x∗,ϵ↓0,t↓0
t∂̂ϵφ(x).

If X is an Asplund space, then we have the following simpler form ( [61, Theorems

2.34 and 2.38])

∂φ(x∗) := Lim sup
x

φ→x∗

∂̂φ(x) and ∂∞φ(x∗) := Lim sup
x

φ→x∗,t↓0
t∂̂φ(x).

Next we introduce the approximate subdifferential developed by Ioffe [35, 36].

The lower Dini directional derivative of φ at x∗ along the direction d is given by

D−φ(x∗, d) := lim inf
d′→d,t↓0

φ(x∗ + td′)− φ(x∗)
t

,

and the Dini ϵ-subdifferential of φ at x∗ is defined by

∂−ϵ φ(x
∗) := {v ∈ X∗ | ⟨v, d⟩ ≤ D−φ(x∗, d) + ϵ∥d∥ ∀d ∈ X}.

As usual, we set ∂−ϵ φ(x
∗) := ∅ if |φ(x∗)| = ∞. The approximate subdifferential of φ

at x∗ is given by

∂aφ(x∗) :=
∩
L∈L

Lim sup
x

φ→x∗

∂−0 (φ+ δ(·, L))(x) =
∩

L∈L,ϵ>0

Lim sup
x

φ→x∗

∂−ϵ (φ+ δ(·, L))(x),

where L is the collection of all finite dimensional subspaces of X, δ(·, L) is the indictor

function of L, and Lim sup stands for the topological counterpart of the Painlevé-

Kuratowski upper limit with sequences replaced by nets. The G-normal cone N g and
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its nucleus Ñ g to Ω at x∗ are defined by

N g
Ω(x

∗) = cl∗Ñ g
Ω(x

∗) and Ñ g
Ω(x

∗) :=
∪
λ>0

λ∂adistΩ(x
∗).

The A-normal cone to Ω at x∗ is defined by

N a
Ω(x

∗) := ∂aδ(x∗,Ω).

It follows from [36, Proposition 3.4], [61, Section 2.5.2, Page 238], and [36, Proposition

3.3] that

N c
Ω(x

∗) = cl∗convN g
Ω(x

∗), NΩ(x
∗) ⊆ Ñ g

Ω(x
∗), and N g

Ω(x
∗) ⊆ N a

Ω(x
∗).

Clearly,

NΩ(x
∗) ⊆ Ñ g

Ω(x
∗) ⊆ N g

Ω(x
∗) ⊆ N c

Ω(x
∗).

If Ω is convex, then N (x∗) = Ñ g
Ω(x

∗) = N g(x∗) = N c(x∗) is the normal cone of Ω at

x∗ in the sense of convex analysis.

Now we introduce the Clarke subdifferential of locally Lipschitian functions. In

this paragraph we assume that φ is Lipschitian near x∗. Recall that the Clarke’s

generalized derivative of φ at x∗ along the direction d is defined by

φo(x∗, d) := lim sup
x→x∗,t↓0

φ(x+ td)− φ(x)
t

.

The Clarke subdifferential of φ at x∗ is defined by

∂cφ(x∗) := {v ∈ X∗ | ⟨v, d⟩ ≤ φo(x∗, d) ∀d ∈ X}.
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In the general Banach space setting, we have

cl∗conv∂φ(x∗) ⊆ ∂cφ(x∗),

where the inclusion relationship above holds with equality when X is an Asplund

space. It follows from [61, Section 2.5.2, Page 238] and [35, Proposition 3.3] that

∂φ(x∗) ⊆ ∂aφ(x∗) and ∂aφ(x∗) ⊆ ∂cφ(x∗).

If, in addition, φ is convex, then ∂aφ(x) = ∂φ(x) = ∂cφ(x) is the same as the

subdifferential of φ at x∗ in the sense of convex analysis.

The following propositions provide a summary of some of the important properties

of the approximate subdifferential, see [24, 35, 36, 41, 61]. For a set-valued map S :

X ⇒ X∗, we say S is closed if its graph is closed in the appropriate topology.

Proposition 3.2.1. Let f : X→ R be Lipschitzian near x∗ with positive modulus Lf .

Then the following results hold:

(i) [35, Proposition 3.3] and [16, Proposition 2.1.2] cl∗conv∂af(x∗) = ∂cf(x∗) ⊆

LfBX∗.

(ii) [24, Theorem 1.1] If x∗ is a local minimizer of f on X, then 0 ∈ ∂af(x∗).

Proposition 3.2.2. [24, Theorem 1.4] Let f : X→ R be Lipschitzian near x∗. Then

the set-valued map

(λ, x)→ ∂a(λf)(x)

is closed at (λ∗, x∗), i.e.,

∂a(λ∗f)(x∗) = Lim sup
λ→λ∗,x

f→x∗

∂a(λf)(x) ∀λ∗ ∈ R.
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For a locally Lipschitzian function in WCG Asplund spaces, at each point the lim-

iting subdifferential set coincides with the approximate subdifferential set [61, Theo-

rem 3.59]. Thus, the limiting subdifferential enjoys the robust property as in Propo-

sition 3.2.2 in the WCG Asplund setting. Note that even for a locally Lipschitzian

function, the limiting subdifferential might not enjoy the robustness property in a

non-WCG Banach space (see [61, Example 3.61]).

Proposition 3.2.3. [35, Proposition 2.3] The A-normal cone mapping N a
Ω(·) =

∂aδ(·,Ω) is closed, i.e.,

N a
Ω(x

∗) = Lim sup
x

Ω→x∗

N a
Ω(x) ∀x∗ ∈ Ω.

Proposition 3.2.4 (Calculus rules). (i) [35, Corollary 4.1.1] Let f, g : X→ R ∪

{+∞} be lower semicontinuous near x∗, finite at x∗, and at least one of them

is Lipschitzian near x∗ ∈ X. Let α, β be positive scalars. Then

∂a(αf + βg)(x∗) ⊆ α∂af(x∗) + β∂ag(x∗),

where γ · ∅ := ∅ for any nonzero scalar γ.

(ii) [41, Theorem 2.5 and Remark (2)] Let φ : X→ Y be Lipschitzian near x∗ and

f : Y→ R be Lipschitzian near φ(x∗). Then f ◦ φ is Lipschitzian near x∗ and

∂a(f ◦ φ)(x∗) ⊆ ∪ξ∈∂af(φ(x∗))∂
a⟨ξ, φ⟩(x∗).

(iii) [24, Corollary 1.2] Let fi : X → R (i = 1, . . . , n) be Lipschitzian near x∗ and

f(x) := max{fi(x) | i = 1, . . . , n}. Then f(x) is Lipschitzian near x∗ ∈ X and

∂af(x∗) ⊆ conv{∂afi(x∗) | i ∈ I(x∗)},
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where I(x∗) := {i | fi(x∗) = f(x∗)} is the set of active indices.

3.3 Enhanced Fritz John condition

For nonsmooth problem (MPGC), the classical Fritz John necessary optimality condi-

tion is generalized to one where the classical gradient is replaced by the limiting sub-

differential (see Mordukhovich [61]) and the Clarke subdifferential (see Clarke [16]),

respectively. The following theorem strengthens the classical Fritz John condition

(i.e., conditions (i)-(ii) of Theorem 3.1) through a stronger sequential condition (iii)

of Theorem 3.1, and hence their effectiveness has been significantly enhanced. Taking

limits in (3.5) it is easy to see that condition (ii) is included in condition (iii). In

order to emphasize the enhanced properties, however, we keep the redundant con-

dition (ii) in Theorem 3.1. Note that the following result depends on the chosen

basis E = {e1, . . . , em} and, since Y is assumed to be finite dimensional, the limit-

ing normal cone of Λ coincides with the nucleus of the G-normal cone of Λ at any

point [61, Theorem 3.59(ii)].

Theorem 3.1. Let x∗ be a local minimizer of problem (MPGC). Then for all choices

of bases E , there exist a scalar r ≥ 0 and a vector η∗ ∈ Y not all zero, such that the

following conditions hold:

(i) 0 ∈ r∂af(x∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗) + Ñ g

Ω(x
∗);

(ii) η∗ ∈ NΛ(F (x
∗));

(iii) If the index set I := {i | ⟨η∗, ei⟩ ̸= 0} is nonempty, then there exists a sequence
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{(xk, yk, ηk)} ⊆ Ω× Λ× Y converging to (x∗, F (x∗), η∗) such that for all k,

f(xk) < f(x∗),

ηk ∈ NΛ(y
k), (3.5)

⟨η∗, ei⟩⟨F (xk)− yk, ei⟩ > 0 ∀i ∈ I. (3.6)

Proof. Without loss of generality we may assume that x∗ is a global minimizer of

problem (MPGC). First of all, we observe that if x∗ is a local minimizer of the

problem

min f(x) (3.7)

s.t. x ∈ Ω,

then by the Clarke exact penalty principle [16, Proposition 2.4.3], there exists κ > 0

such that x∗ is a local minimizer for

min f(x) + κdistΩ(x).

Then by Proposition 3.2.1(ii) and Proposition 3.2.4(i), we have

0 ∈ ∂af(x∗) + κ∂distΩ(x
∗) ⊆ ∂af(x∗) + Ñ g

Ω(x
∗).

Hence the proof is complete by letting r = 1 and η∗ = 0. In the following, we assume

that x∗ is not a local minimizer of problem (3.7). By introducing a slack variable

y ∈ Y for the geometric constraint F (x) ∈ Λ, we first reformulate problem (MPGC)
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as follows:

(MPGC)′ min f(x)

s.t. F (x)− y = 0,

x ∈ Ω, y ∈ Λ.

Then (x∗, y∗) with y∗ = F (x∗) is a global minimizer for problem (MPGC)′. For each

k = 1, 2, . . . , we consider the function F k : X× Y→ R defined by

F k(x, y) := max{f(x)− f(x∗) + 1

2k
, |⟨F (x)− y, e1⟩|, . . . , |⟨F (x)− y, em⟩|}.

Since (x∗, y∗) is a global minimizer of (MPGC)′, we have

F k(x, y) > 0 ∀(x, y) ∈ Ω× Λ,

which, together with F k(x∗, y∗) = 1
2k
, implies

F k(x∗, y∗) < inf
(x,y)∈Ω×Λ

F k(x, y) +
1

k
. (3.8)

Since x∗ is not a local minimizer of problem (3.7), then there exists a sequence {x̃k}

with x̃k ∈ Ω such that x̃k → x∗ and

f(x̃k) < f(x∗) ∀k.

Then ∥F (x̃k)− y∗∥ = ∥F (x̃k)− F (x∗)∥ → 0. Thus we can choose the sequence {x̃k}

such that

F k(x̃k, y∗) <
1

2k
= F k(x∗, y∗). (3.9)
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This and (3.8) imply

F k(x̃k, y∗) < inf
(x,y)∈Ω×Λ

F k(x, y) +
1

k
.

Clearly, F k is Lipschitzian near (x∗, y∗) and hence, by the Ekeland’s variational

principle (see, e.g., [61, Theorem 2.26], [77, Corollary 8.2.6]), there exists (xk, yk) ∈

Ω× Λ such that
∥(xk, yk)− (x̃k, y∗)∥ ≤ 1√

k
,

F k(xk, yk) ≤ F k(x̃k, y∗),

F k(xk, yk) ≤ F k(x, y) + 1√
k
∥(x, y)− (xk, yk)∥ ∀(x, y) ∈ Ω× Λ.

(3.10)

It follows that (xk, yk) → (x∗, y∗) as k → ∞ and for each k, (x, y) = (xk, yk) is a

global minimizer of the problem

min F̃ k(x, y) := F k(x, y) +
1√
k
∥(x, y)− (xk, yk)∥

s.t. (x, y) ∈ Ω× Λ.

Then by the Clarke exact penalty principle, there exists κ ≥ 0 such that (x, y) =

(xk, yk) is a global minimizer of the problem

min F̃ k(x, y) + κdistΩ×Λ(x, y)

s.t. (x, y) ∈ X× Y.

Thus, we have by the necessary optimality condition (Proposition 3.2.1(ii)) and

calculus rule (Proposition 3.2.4(i)) that

0 ∈ ∂aF̃ k(xk, yk) + κ∂adistΩ(x
k)× κ∂adistΛ(yk). (3.11)
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Applying the calculus rules (Proposition 3.2.4(iii)), there exist nonnegative scalars

{rk, η̂k1 , . . . , η̂km} such that for each k,

rk +
m∑
i=1

η̂ki = 1 (3.12)

and

0 ∈ rk

 ∂af(xk)

0

+
m∑
i=1

η̂ki ∂
a|ψi|(xk, yk) +

1√
k

 BX∗

BY


+ κ

 ∂adistΩ(x
k)

∂adistΛ(y
k)

 , (3.13)

where ψi(x, y) := ⟨F (x)−y, ei⟩ and η̂ki = 0 if i is not an active index. Since the active

indices only count in the maximum rule and F k(xk, yk) > 0, we may assume that for

each k, ψi(x
k, yk) = ⟨F (xk) − yk, ei⟩ = 0 implies η̂ki = 0, otherwise we can choose a

subsequence. Define

η̃ki := (sign ⟨F (xk)− yk, ei⟩)η̂ki ,

where sign 0 = 0. We then obtain by the chain rule (Proposition 3.2.4(ii)) that

η̂ki ∂
a|ψi|(xk, yk) =

 ∂a⟨F, η̃ki ei⟩(xk)

−η̃ki ei

 .

This and (3.13) imply that

0 ∈ rk

 ∂af(xk)

0

+
m∑
i=1

 ∂a⟨F, η̃ki ei⟩(xk)

−η̃ki ei

+

 BX∗√
k

BY√
k

+ κ

 ∂adistΩ(x
k)

∂adistΛ(y
k)


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that is,

 0 ∈ rk∂af(xk) +
∑m

i=1 ∂
aη̃ki ⟨F, ei⟩(xk) + 1√

k
BX∗ + κ∂adistΩ(x

k),

η̃k ∈ 1√
k
BY + κ∂adistΛ(y

k),
(3.14)

where η̃k :=
∑m

i=1 η̃
k
i ei.

Since by construction we have rk+
∑m

i=1 |η̃ki | = 1, the sequence {(rk, η̃k1 , . . . , η̃km)} is

bounded and must contain a subsequence that converges to some limit (r, η̄1, . . . , η̄m),

where r ≥ 0 and (r, η̄1, . . . , η̄m) ̸= 0. By virtue of the closedness of the subdifferential

(Proposition 3.2.2), it follows from (3.14) that

 0 ∈ r∂af(x∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗) + κ∂adistΩ(x

∗),

η∗ ∈ κ∂adistΛ(y∗),
(3.15)

where η∗ =
∑m

i=1 η̄iei. Thus, 0 ∈ r∂af(x∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗) + Ñ g

Ω(x
∗),

η∗ ∈ Ñ g
Λ(F (x

∗)).

To show that condition (iii) is satisfied, assume that I ̸= ∅ (otherwise there is

nothing to prove). Since

η̃k ∈ 1√
k
BY + κ∂adistΛ(y

k) ⊆ 1√
k
BY + Ñ g

Λ(y
k),

there exists ρk ∈ BY such that

ηk := η̃k +
1√
k
ρk ∈ Ñ g

Λ(y
k).

Since η̃k → η∗ as k →∞, it is easy to see that ηk → η∗. Since η̃ki → η̄i = ⟨η∗, ei⟩ ̸= 0
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for each i ∈ I, η̃ki has the same sign as ⟨η∗, ei⟩ for sufficiently large k. Hence we must

have ⟨η∗, ei⟩η̃ki > 0 for all i ∈ I and sufficiently large k. By the definition, η̃ki have

the same sign as ⟨F (xk)− yk, ei⟩, therefore we must have ⟨η∗, ei⟩⟨F (xk)− yk, ei⟩ > 0

for all i ∈ I and sufficiently large k. Moreover, it follows from the definition of F k

and (3.9)–(3.10) that

f(xk)− f(x∗) + 1

2k
≤ F k(xk, yk)

≤ F k(x̃k, y∗)

<
1

2k

and hence f(xk) < f(x∗). The proof is complete by noting that the limiting normal

cone of Λ coincides with the nucleus of the G-normal cone of Λ at any point in the

finite dimensional setting [61, Theorem 3.59(ii)].

Since for any function φ and set S, it must hold that (see, e.g., [36, Proposition

3.4])

∂gφ(x) ⊆ ∂cφ(x) and Ñ g
S (x) ⊆ N

c
S(x),

the following holds immediately.

Corollary 3.2. Let x∗ be a local minimizer of problem (MPGC). Then there exist

a scalar r ≥ 0 and a vector η∗ ∈ Y not all zero, such that conditions (ii)–(iii) of

Theorem 3.1 hold and

0 ∈ r∂cf(x∗) +
m∑
i=1

∂c⟨η∗, ei⟩⟨F, ei⟩(x∗) +N c
Ω(x

∗).

Since in the WCG Asplund space setting, the limiting subdifferential and limiting

normal cone coincide with the approximate subdifferential and the nucleus of the G-

normal cone respectively [61, Theorem 3.59], we have the following result immediately.
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Corollary 3.3. Assume that X is a WCG Asplund space. Let x∗ be a local minimizer

of problem (MPGC). Then there exist a scalar r ≥ 0 and a vector η∗ ∈ Y not all zero,

such that conditions (ii)–(iii) of Theorem 3.1 hold and

0 ∈ r∂f(x∗) +
m∑
i=1

∂⟨η∗, ei⟩⟨F, ei⟩(x∗) +NΩ(x
∗).

We now specialize Theorem 3.1 to problem NLPBanach where f : X→ R, h : X→

Rp, g : X→ Rq are Lipschitzian near the optimal solution and Ω is a nonempty closed

subset of X. Let

F (x) := (h(x), g(x)) and Λ := {0}p × Rq
−, (3.16)

By virtue of Theorem 3.1, we are now able to establish the enhanced Fritz John

condition for the nonsmooth nonlinear programs in a Banach space, which improves

Theorem 2.1 in chapter 2. Note that the set Λ in (3.16) is a convex cone.

Corollary 3.4. Let x∗ be a local minimizer of problem NLPBanach. Then there exist

r ≥ 0, λ∗ ∈ Rp, µ∗ ∈ Rq not all zero, such that

(a) 0 ∈ r∂af(x∗) +
∑p

i=1 ∂
a(λ∗ihi)(x

∗) +
∑q

j=1 µ
∗
j∂

agj(x
∗) + Ñ g

Ω(x
∗);

(b) 0 ≤ −g(x∗) ⊥ µ∗ ≥ 0;

(c) If (λ∗, µ∗) ̸= 0, then there exists a sequence {xk} ⊆ Ω converging to x∗ such

that for all k, f(xk) < f(x∗) and

λ∗i ̸= 0 =⇒ λ∗ihi(x
k) > 0, µ∗

j > 0 =⇒ gj(x
k) > 0.

Proof. Letting F and Λ be defined as in (3.16), it is not hard to see from Theorem 3.1

and the explicit expression for the normal cone NΛ(F (x
∗)) that there exist r ≥ 0, λ∗ ∈
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Rp, µ∗ ∈ Rq not all zero, such that conditions (a)–(b) hold and there exists a sequence

{(xk, ŷk, ỹk, λk, µk)} ∈ Ω×{0}p×Rq
−×Rp×Rq converging to (x∗, h(x∗), g(x∗), λ∗, η∗)

such that for all k, f(xk) < f(x∗),

(λk, µk) ∈ N{0}p×Rq
−
(ŷk, ỹk), (3.17)

and

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk)− yk, ei⟩ > 0, (3.18)

where η∗ := (λ∗, µ∗) and F (xk) := (h(xk), g(xk)). Since ŷk = 0, it is easy to see from

(3.18) that

λ∗i ̸= 0 =⇒ λ∗ihi(x
k) > 0.

If µ∗
j > 0, then it follows from (3.18) that gj(x

k) > ỹkj . We next show that there

exists a subsequence {ỹkıj }ı∈N such that ỹkıj = 0 ∀ı ∈ N. Assume to the contrary that

ỹkj < 0 for all sufficiently large k and then it follows from (3.17) that µk
j = 0, which

implies that µ∗
j = 0 by taking a limit as k →∞. This contradicts assumption µ∗

j > 0

and hence we have

µ∗
j > 0 =⇒ gj(x

kı) > 0 ∀ı ∈ N.

Therefore, condition (c) also holds by choosing and resetting this subsequence. The

proof is complete.

Our next task is to specialize our result to the nonlinear semidefinite program:

(NLSDP) min
x∈X

f(x)

s.t. H(x) ∈ S l
−,
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where f : X → R and H : X → S l, S l is the linear space of all l × l real symmetric

matrices equipped with the usual Frobenius inner product ⟨· , ·⟩, and S l
− is the cone

of all l× l negative semidefinite matrices in S l. Note that for simplicity, we omit the

usual equality and inequality constraints since they can be handled as in the usual

nonlinear program. For A ∈ S l, we denote by λ(A) ∈ Rl the vector of its eigenvalues

ordered in a decreasing order as follows:

λ1(A) ≥ · · · ≥ λl(A).

Clearly, (NLSDP) is equivalent to the problem

min f(x) (3.19)

s.t. λ1(H(x)) ≤ 0.

For A ∈ S l, the notation diag(λ(A))∈ S l is used for the diagonal matrix with the

vector λ(A) on the main diagonal. It is known that any A ∈ S l admits an eigenvalue

decomposition as follows:

A = Udiag(λ(A))UT

with a square orthogonal matrix U = U(A) such that UTU = I whose columns are

eigenvectors of A. Let ui(A) be the ith column of matrix U(A). Note that since λ1

is convex (see, e.g., [51, Proposition 1.1]), the approximate subdifferential coincides

with the subdifferential in the sense of convex analysis.

Lemma 3.5. [45, 69] The subdifferential of λ1(A) : S l → R in the sense of convex
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analysis is given by

∂aλ1(A) = conv{ui(A)ui(A)T | i = 1, . . . , d(A)}

= {
d(A)∑
i=1

τiui(A)ui(A)
T |

d(A)∑
i=1

τi = 1, τi ≥ 0 i = 1, . . . , d(A)},

where d(A) is the multiplicity of the largest eigenvalue of the matrix A.

We get the following results immediately by applying Corollary 3.4 to the problem

(3.19). Note that we let S l
+ = −S l

−.

Corollary 3.6. Assume that x∗ is a local minimizer of problem (NLSDP). Then there

exist r ≥ 0 and Γ∗ ∈ S l
+, which are not both zero, such that

(a) 0 ∈ r∂af(x∗) + ∂a⟨Γ∗, H⟩(x∗);

(b) Γ∗ ∈ S l
+, ⟨Γ∗, H(x∗)⟩ = 0;

(c) If Γ∗ ̸= 0, then there exists a sequence {xk} converging to x∗ such that for all

k, f(xk) < f(x∗) and λ1(H(xk)) > 0.

Proof. Since x∗ is a local minimizer of problem (3.19), it follows from Corollary 3.4

that there exist {r, µ∗} such that (r, µ∗) ̸= 0 and

(i) 0 ∈ r∂af(x∗) + µ∗∂a(λ1 ◦H)(x∗);

(ii) r ≥ 0, 0 ≤ −λ1(H(x∗)) ⊥ µ∗ ≥ 0;

(iii) If µ∗ ̸= 0, then there exists a sequence {xk} ⊆ X converging to x∗ such that for

all k, f(xk) < f(x∗) and λ1(H(xk) > 0.

It follows from Proposition 3.2.4(ii), Lemma 3.5, and (i) above that there exists

Γ∗ = µ∗
d(H(x∗))∑

i=1

τ ∗i ui(H(x∗))ui(H(x∗))T

∈ µ∗conv{ui(H(x∗))ui(H(x∗))T | i = 1, . . . , d(H(x∗))}
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such that

0 ∈ r∂af(x∗) + ∂a⟨Γ∗, H⟩(x∗), (3.20)

where d(H(x∗)) is the multiplicity of the largest eigenvalue of the matrix H(x∗).

It is easy to see that Γ∗ ∈ S l
+ and, from the definition of ∂aλ1(H(x∗)) and (ii)–(iii)

above of this proof that

⟨Γ∗, H(x∗)⟩ =
⟨
µ∗

d(H(x∗))∑
i=1

τ ∗i ui(H(x∗))ui(H(x∗))T , H(x∗)
⟩

= µ∗
d(H(x∗))∑

i=1

τ ∗i

⟨
ui(H(x∗))ui(H(x∗))T , H(x∗)

⟩
= µ∗

d(H(x∗))∑
i=1

τ ∗i

⟨
1, ui(H(x∗))TH(x∗)ui(H(x∗))

⟩
= µ∗λ1(H(x∗))

d(H(x∗))∑
i=1

(
τ ∗i ui(H(x∗))Tui(H(x∗))

)
= µ∗λ1(H(x∗))

= 0.

Then, conditions (a) and (b) in this corollary hold. We next show condition (c). From

the definition of Γ∗, we have that

Γ∗ ̸= 0⇐⇒ µ∗ ̸= 0.

Then from (iii) above we have the desired result. The proof is complete.
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3.4 Enhanced KKT condition and weaker constrain-

t qualification

Based on the enhanced Fritz John condition for problem (MPGC) in the previous

section, we define the following enhanced KKT condition for problem (MPGC). We

denote by N e
Λ(F (x

∗)) the set of elements in the normal cone η∗ ∈ NΛ(F (x
∗)) such

that there exists a sequence {(xk, yk, ηk)} ⊆ Ω× Λ× Y converging to (x∗, F (x∗), η∗)

such that for all k,

ηk ∈ NΛ(y
k)

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk)− yk, ei⟩ > 0.

Note that in this above case, if η∗ = 0, then the existence of the approximate sequence

is trivial.

Definition 7 (Enhanced KKT point). Let x∗ be a feasible point of the problem

(MPGC).

(a) We say that x∗ is an enhanced KKT point if there exists η∗ ∈ NΛ(F (x
∗)) such

that

(i) 0 ∈ ∂af(x∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗) + Ñ g

Ω(x
∗),

(ii) If ⟨η∗, ei⟩ ̸= 0, then there exists a sequence {xk, yk, ηk} ⊆ Ω × Λ × Y

converging to (x∗, F (x∗), η∗) such that for all k,

f(xk) < f(x∗),

ηk ∈ NΛ(y
k),

⟨η∗, ei⟩ ≠ 0 =⇒ ⟨η∗, ei⟩⟨F (xk)− yk, ei⟩ > 0.
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(b) We say that x∗ is a weaker enhanced KKT point if there exists η∗ ∈ N e
Λ(F (x

∗))

such that (i) above holds.

It is clear that an enhanced KKT point is a weaker enhanced KKT point.

Definition 8. Let x∗ ∈ F .

(a) x∗ is said to satisfy the no nonzero abnormal multiplier constraint qualification

(NNAMCQ) if there is no nonzero vector η∗ ∈ NΛ(F (x
∗)) such that

0 ∈
m∑
i=1

∂a⟨η∗, ei⟩⟨F, ei⟩(x∗) + Ñ g
Ω(x

∗); (3.21)

(b) x∗ is said to be pseudonormal for F if there is no vector η∗ ∈ NΛ(F (x
∗))

such that (3.21) holds and there exists a sequence {(xk, yk, ηk)} ⊆ Ω × Λ × Y

converging to (x∗, F (x∗), η∗) such that for each k,

ηk ∈ NΛ(y
k) and ⟨η∗, F (xk)− yk⟩ > 0;

(c) x∗ is said to be quasinormal for F if there is no nonzero vector η∗ ∈ N e
Λ(F (x

∗))

such that (3.21) holds;

(d) x∗ is said to satisfy the enhanced Guignard constraint qualification (EGCQ) if

F is Fréchet differentiable at x∗ and

N̂F (x∗) ⊆ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗).

The relationships among the first three constraint qualifications are obvious:

NNAMCQ =⇒ pseudonormality =⇒ quasinormality.



78

The enhanced KKT condition under the quasinormality follows immediately from

Theorem 3.1 and the definition of the quasinormality.

Theorem 3.7. Let x∗ be a local minimizer of problem (MPGC). Suppose that x∗ is

quasinormal. Then x∗ is an enhanced KKT point.

We now make some comments on the EGCQ. It is well-known that TF (x∗)o =

N̂F (x∗) in a finite dimensional space. We next consider the case of standard nonlinear

constraints, i.e., X := {x ∈ Ω | F (x) ∈ Λ} with Ω = Rn, F (x) and Λ are defined as

in (3.16). In this case,

LF (x∗)o = ∇F (x∗)∗NΛ(F (x
∗)),

where

LF (x∗) := {d | ∇F (x∗)d ∈ TΛ(F (x∗))}

is the linearized cone of F at x∗. Since the inclusion N e
Λ(F (x

∗)) ⊆ NΛ(F (x
∗)) may

hold strictly, in the case of standard nonlinear constraints, the EGCQ is stronger

than the condition TF (x∗)o ⊆ LX (x
∗)o, which is the so-called Guignard constraint

qualification (GCQ).

Next we show that the quasinormality implies the EGCQ in the case where X

admits a Fréchet smooth renorm [61, Page 35]. To this end, we first show that the

EGCQ is the weakest constraint qualification for weaker enhanced KKT points when

the objective is Fréchet smooth in a Banach space.

Lemma 3.8. [61, Theorem 1.30] Assume that X admits a Fréchet smooth renorm.

Then for every d ∈ N̂S(x
∗), there is a concave Fréchet smooth function φ : X→ R that

achieves its global maximum relative to S uniquely at x∗ and such that ∇φ(x∗) = d.
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Theorem 3.9. Suppose that x∗ ∈ F is a local minimizer for the optimization problem

minx∈F θ(x), where θ is Fréchet differentiable at x∗, and

N̂F (x∗) ⊆ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗). (3.22)

Then, x∗ must be a weaker enhanced KKT point of minx∈F θ(x). Conversely, assume

that X admits a Fréchet smooth renorm and x∗ ∈ F is a weaker enhanced KKT

point of min
x∈F

θ(x) for any convex Fréchet smooth function θ at x∗ with x∗ being a local

minimizer, then (3.22) holds.

Proof. Let x∗ be locally optimal for problem min
x∈F

θ(x). Then it follows from [61,

Proposition 5.1] that −∇θ(x∗) ∈ N̂F (x∗). Thus if (3.22) holds, then

−∇θ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗)

and hence x∗ is an enhanced KKT point of min
x∈F

θ(x).

Conversely suppose that if x∗ ∈ F is a local minimizer for an optimization problem

min
x∈F

θ(x) with convex Fréchet smooth objective functions, then x∗ must be a weaker

enhanced KKT point of the problem. Let d ∈ N̂F (x∗). By Lemma 3.8, there exists

a convex Fréchet smooth function φ such that −∇φ(x∗) = d and argminx∈Fφ(x) =

{x∗}. It follows that x∗ is a weaker enhanced KKT point of min
x∈F

φ(x), i.e.,

−∇φ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) +NΩ(x
∗).

Thus, d = −∇φ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗). Therefore, by the arbitrariness

of d ∈ N̂F (x∗), (3.22) holds.

The following result follows from Theorem 3.9.

Corollary 3.10. Assume that {f, F} are Fréchet differentiable at x∗. If x∗ is a
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local minimizer of problem (MPGC) and the EGCQ holds at x∗, then x∗ is a weaker

enhanced KKT point.

Corollary 3.11. Assume that X admits a Fréchet smooth renorm and F is Fréchet

differentiable at x∗. Then the quasinormality implies the EGCQ.

Proof. It follows from Theorem 3.7 that for any locally Lipshitzian objective function

f , if a local minimizer satisfies the quasinormality, then it is an enhanced KKT point.

Since a convex Fréchet smooth function is locally Lipschitzian ( [10, Proposition

2.107]), it follows from Theorem 3.9 that the EGCQ holds at this point.

3.5 Error bound and exact penalty

In this section, we prove that a local error bound exists under the quasinormality in

the general Banach space. Our results are new even for the finite dimensional space.

For nonsmooth finite dimensional (NLP) problem, the existence of a local error

bound has been proved under the pseudonormality or under the quasinormality with

extra regularity conditions on the constraint functions in chapter 2, where [79, The-

orem 3.1] plays a significant role. In this section, we show that the quasinormality

alone implies the existence of a local error bound without imposing any regularity

conditions. We first establish the following estimate, which will lead to the possibility

of applying [79, Theorem 3.1].

Lemma 3.12. Let x∗ be feasible for problem (MPGC) and

Φ(x, y) := max
1≤i≤m

{|ψi(x, y)|} with ψi(x, y) := ⟨F (x)− y, ei⟩.

If x∗ is quasinormal, then there exist δ > 0 and c > 0 such that for all (ξ, υ) ∈
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∂a(Φ + distΩ×Λ)(x, y) with (x, y) ∈ Bδ(x∗, F (x∗)) ∩ (Ω× Λ) and x /∈ F ,

∥(ξ, υ)∥ ≥ c.

Proof. Suppose to the contrary that there exists a sequence {(xk, yk)} ⊆ Ω × Λ

converging to (x∗, F (x∗)) with xk /∈ F and (ξk, υk) ∈ ∂a(Φ + distΩ×Λ)(x
k, yk) such

that ∥(ξk, υk)∥ → 0. Since F (xk) /∈ Λ and yk ∈ Λ for all k, we have ∥F (xk)− yk∥ > 0

and hence Φ(xk, yk) > 0. By the sum rule Proposition 3.2.4(i), we have

(ξk, υk) ∈ ∂aΦ(xk, yk) + ∂adistΩ(x
k)× ∂adistΛ(yk). (3.23)

Since F is assumed to be locally Lipschitzian, applying the maximum rule (Proposi-

tion 3.2.4(iii)) in calculating the subdifferential of Φ(x, y) := max1≤i≤m{|ψi(x, y)|} at

(xk, yk) yields the existence of nonnegative scalars {µ̂k
1, . . . , µ̂

k
m} such that

m∑
i=1

µ̂k
i = 1 and ∂aΦ(xk, yk) ⊆

m∑
i=1

µ̂k
i ∂

a|ψi|(xk, yk), (3.24)

where µ̂k
i = 0 if i is not an active index. Since Φ(xk, yk) > 0, any i ∈ {1, . . . ,m} such

that ψi(x
k, yk) = 0 is not an active index. Hence, for all i = 1, . . . ,m, ψi(x

k, yk) =

⟨F (xk)− yk, ei⟩ = 0 implies µ̂k
i = 0. Define

µ̃k
i := (sign ⟨F (xk)− yk, ei⟩)µ̂k

i .

We then obtain by the chain rule that

µ̂k
i ∂

a|ψi|(xk, yk) =

 ∂aµ̃k
i ⟨F, ei⟩(xk)

−µ̃k
i ei

 . (3.25)
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From (3.23)–(3.25), we obtain

 ξk

υk

 ∈ m∑
i=1

 ∂aµ̃k
i ⟨F, ei⟩(xk)

−µ̃k
i ei

+

 ∂adistΩ(x
k)

∂adistΛ(y
k)

 ,

that is,

 ξk ∈
∑m

i=1 ∂
aµ̃k

i ⟨F, ei⟩(xk) + ∂adistΩ(x
k),

υk ∈
∑m

i=1 µ̃
k
i (−ei) + ∂adistΛ(y

k).
(3.26)

Since by the construction
∑m

i=1 |µ̃k
i | = 1, the sequence {(µ̃k

1, . . . , µ̃
k
m)} is bounded

and must contain a subsequence that converges to some limit (µ̄1, . . . , µ̄m) ̸= 0. Tak-

ing limits as k → ∞, by virtue of the closedness of the subdifferentials (Proposition

3.2.2), it follows from (3.26) that

 0 ∈
∑m

i=1 ∂
a⟨µ∗, ei⟩⟨F, ei⟩(x∗) + ∂adistΩ(x

∗),

µ∗ ∈ ∂adistΛ(y∗),

where µ∗ :=
∑m

i=1 µ̄iei. Then we have

 0 ∈
∑m

i=1 ∂
a⟨µ∗, ei⟩⟨F, ei⟩(x∗) + Ñ g

Ω(x
∗),

µ∗ ∈ Ñ g
Λ(F (x

∗)).

Since Y is finite dimensional, by [61, Theorem 3.59], we have

µ∗ ∈ Ñ g
Λ(F (x

∗)) = NΛ(F (x
∗)).

Since µ̃k
i → µ̄i = ⟨µ∗, ei⟩ ̸= 0 as k →∞ for i ∈ J where J := {i | ⟨µ∗, ei⟩ ≠ 0}, µ̃k

i

has the same sign as ⟨µ∗, ei⟩ for sufficiently large k. Hence we must have ⟨µ∗, ei⟩µ̃k
i > 0
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for all i ∈ J and sufficiently large k. By the definition, µ̃k
i has the same sign as

⟨F (xk) − yk, ei⟩, thus we must have ⟨µ∗, ei⟩⟨F (xk) − yk, ei⟩ > 0 for all i ∈ J and

sufficiently large k. Since υk → 0, µk :=
∑m

i=1 µ̃
k
i ei + υk → µ∗ and then it follows

from (3.26) and the fact that Y is finite dimensional that

µk ∈ Ñ g
Λ(y

k) = NΛ(y
k).

However, these facts above and µ∗ ̸= 0 imply that the quasinormality is violated at

x∗ and hence a contradiction.

Now we are ready to give the main result of this section about the existence of

local error bounds.

Theorem 3.13. Let x∗ be feasible for problem (MPGC). Suppose that x∗ is quasi-

normal. Then the local error bound holds, i.e., there exist δ0 > 0 and κ > 0 such

that

distF (x) ≤ κdistΛ(F (x)) ∀x ∈ Bδ0(x∗) ∩ Ω.

Proof. According to Lemma 3.12, there exist constants δ > 0 and κ > 0 such that

for all (ξ, υ) ∈ ∂a(Φ+ distΩ×Λ)(x, y) with (x, y) ∈ (Bδ(x∗)×Bδ(F (x∗))∩ (Ω×Λ) and

x /∈ F ,

∥(ξ, υ)∥ ≥ 1

κ
,

where Φ(x, y) = max1≤i≤m{|⟨F (x) − y, ei⟩|}. It follows from [79, Theorem 3.1] that

for all x ∈ B δ
2
(x∗) ∩ Ω and y ∈ B δ

2
(F (x∗)) ∩ Λ,

distS(x, y) ≤ κ∥F (x)− y∥, (3.27)
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where S := {(x, y) ∈ Ω × Λ | F (x) − y = 0}. Let distΛ(F (x)) = ∥F (x) − yx∥ with

yx ∈ Λ. It follows from the continuity that there exists δ0 ∈ (0, δ
2
) such that if

x ∈ Bδ0(x∗) ∩ Ω, then yx ∈ B δ
2
(F (x∗)). Thus, it follows from (3.27) that for each

x ∈ Bδ0(x∗) ∩ Ω,

distS(x, yx) ≤ κ∥F (x)− yx∥ = κdistΛ(F (x)). (3.28)

It is clear that for each x,

distF (x) ≤ distS(x, yx).

This and (3.28) imply that

distFX(x) ≤ κdistΛ(F (x)) ∀x ∈ Bδ0(x∗) ∩ Ω.

The proof is complete.

As one of the main results, [57] has proven that the quasinormality implies the

existence of a local error bound for smooth nonlinear programs in Rn. Still in Rn,

Theorem 2.10 in chapter 2 extends [57, Theorem 2.1] to nonlinear programs with

nonsmooth objective and constraints, and shows that the quasinormality implies local

error bounds under some regularity conditions. Taking into account the previous

results for problem (MPGC), we can now eliminate the extra regularity conditions

and hence complete the investigation for local error bounds under the quasinormality

for nonsmooth (NLP) problems in an infinite dimensional space. The improvement

of our result owes much to the new approach constructing the enhanced sequential

structure.

Corollary 3.14. Let x∗ be feasible for problem (NLPBanach). Suppose that x∗ is



85

quasinormal. Then the local error bound holds, i.e., there are δ > 0 and κ > 0 such

that

distF1(x) ≤ κ(∥h(x)∥+ ∥g+(x)∥) ∀x ∈ Bδ(x∗) ∩ Ω,

where F1 is the feasible region of (NLPBanach).

We can also get the existence of local error bounds for the nonlinear semidefinite

program (NLSDP) easily.

Corollary 3.15. Let x∗ be feasible for problem (NLSDP). Suppose that x∗ is quasi-

normal. Then the local error bound holds, i.e., there are δ > 0 and κ > 0 such

that

distF2(x) ≤ κλ1(H(x))+ ∀x ∈ Bδ(x∗),

where F2 is the feasible region of (NLSDP).

Taking Theorem 3.13 into account, we can now follow the Clarke’s exact penalty

principle [16, Proposition 2.4.3] and then get an exact penalty result for (MPGC)

immediately.

Corollary 3.16. Let x∗ be a local minimizer of problem (MPGC). If the quasinor-

mality holds at x∗, then x∗ is a local minimizer of the following penalized problem:

min
x∈Ω

f(x) + κLfdistΛ(F (x))

where Lf is the Lipschitzian constant of f near x∗ and κ is the error bound constant.
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3.6 Sensitivity analysis

Mordukhovich and Nam [63], Mordukhovich et al [66], and Mordukhovich et al [64]

studied the limiting subdifferential and singular subdifferential of value functions

(or marginal functions) of a class of general optimization problems with abstract

set-valued mapping constraints in Banach spaces and, Dempe et al [19] and [20]

investigated the sensitivity of two-level value functions of pessimistic bilevel program

and optimistic bilevel program in Rn respectively in terms of classical KKT multipliers

by making use of the advanced tools of variational analysis [61]. In this section, we

will study the sensitivity of value functions of (MPGC) and give much tighter upper

estimate in terms of enhanced KKT multipliers. Consider the following parametric

mathematical program with geometric constraints:

(MPGCp) min
x∈Ω

f(x, p)

s.t. F (x, p) ∈ Λ,

where f : X × P → Y and F : X × P → Y are locally Lipschitzian, and topological

space P is assumed to be a Banach space in this section. Denote by F (p) the feasible

region of problem (MPGCp). We focus on the value function

V(p) := inf{f(x, p) | x ∈ F (p)}

and the solution mapping

O(p) := {x ∈ F (p) | f(x, p) = V(p)}.

To derive the sensitivity result in this section, we need to use the closedness of



87

the approximal subdifferential and approximate normal cone. Since the nucleus of

G-normal cone Ñ g
Ω(x

∗) as a set-valued map is not necessarily closed in Banach spaces,

we consider the following slightly stronger quasinormality throughout this section by

noting that the A-normal cone includes the nucleus of G-normal cone as a subset.

Definition 9. (x∗, p∗) is said to be strongly quasinormal for {(x, p) ∈ Ω×P | F (x, p) ∈

Λ} if there is no nonzero vector η∗ ∈ Y such that

(1) 0 ∈
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗) +N a

Ω(x
∗)× {0}, η∗ ∈ NΛ(F (x

∗, p∗));

(2) There exists a sequence {xk, pk, yk, ηk} converging to (x∗, p∗, F (x∗, p∗), η∗) such

that for all k,

ηk ∈ NΛ(y
k), ⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk, pk)− yk, ei⟩ > 0.

The set of multipliers η∗ ∈ NΛ(F (x
∗, p∗)) satisfying (2) above is also denoted by

N e
Λ(F (x

∗, p∗)).

The following shows that the strong quasinormality is robust. Since the proof is

similar to Lemma 1.1 in chapter 2 and [70, Lemma 2], we omit it here.

Proposition 3.6.1. If the strong quasinormality holds at (x∗, p∗) ∈ {(x, p) ∈ Ω ×

P | F (x, p) ∈ Λ}, then it holds at all feasible points near (x∗, p∗).

It is well known that the MFCQ implies that the multiplier mapping is locally

bounded (i.e., uniformly compact). The following shows that the strong quasinormal-

ity implies that the ϵ-quasinormality multiplier mapping

(ϵ, x, p)→MQ(ϵ, x, p) :=

{η ∈ N e
Λ(F (x, p)) | ϵ ∈ ∂af(x, p) +

m∑
i=1

∂a⟨η, ei⟩⟨F, ei⟩(x, p) +N a
Ω(x)× {0}}
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is locally bounded. Since its proof is similar to Theorem 2.4 in chapter 2, we also

omit it here.

Proposition 3.6.2. If the strong quasinormality holds at

(x∗, p∗) ∈ {(x, p) ∈ Ω× P | F (x, p) ∈ Λ},

then the ϵ-quasinormality multiplier mapping MQ is locally bounded at (ϵ∗, x∗, p∗),

where ϵ∗ is an arbitrary given element in X∗.

For sake of simplicity, given ϵ ≥ 0 and r ≥ 0, we denote by Qr
ϵ(x

∗, p∗) the set of

vectors (η∗, ζ) satisfying

(i) 0 ∈ r∂af(x∗, p∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗) − (0, ζ) + N a

Ω(x
∗) × ϵBP∗ with

r ≥ 0 and η∗ ∈ NΛ(F (x
∗, p∗)),

(ii) If η∗ ̸= 0, then there exists a sequence {(xk, pk, yk, ηk)} ⊆ Ω × P × Λ × Y

converging to (x∗, p∗, F (x∗, p∗), η∗) such that for all k,

f(xk) < f(x∗),

ηk ∈ NΛ(y
k),

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk, pk)− yk, ei⟩ > 0.

Theorem 3.17. Let x∗ ∈ O(p∗). Assume that (x∗, p∗) is strongly quasinormal for

the region {(x, p) ∈ Ω× Y | F (x, p) ∈ Λ}. Then for any ϵ > 0, we have

∂̂ϵV(p∗) ⊆ {ζ | (η∗, ζ) ∈ Q1
ϵ(x

∗, p∗)}.

Proof. Let ζ ∈ ∂̂ϵV(p∗). Then by the definition of ϵ-subdifferential, for each ϵ̄ > 0,
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there exists δϵ̃ > 0 such that

V(p)− V(p∗) ≥ ⟨ζ, p− p∗⟩ − (ϵ+ ϵ̃)∥p− p∗∥ ∀p ∈ Bδϵ̃(p∗).

By the definition of value functions, we have f(x, p) ≥ V(p) for every x ∈ F (p) and

hence

f(x, p)− ⟨ζ, p− p∗⟩+ (ϵ+ ϵ̃)∥p− p∗∥ ≥ f(x∗, p∗), ∀x ∈ F (p) ∀p ∈ Bδϵ̃(p∗).

Thus, (x∗, p∗) is a locally optimal solution to the optimization problem

min
x∈Ω,p∈P

f(x, p)− ⟨ζ, p− p∗⟩+ (ϵ+ ϵ̃)∥p− p∗∥

s.t. F (x, p) ∈ Λ.

Since (x∗, p∗) is strongly quasinormal for the above problem, it follows from Theorem

3.7 that there exist η∗ ∈ NΛ(F (x
∗, p∗)) and κ ≥ 0 such that

(i) 0 ∈ ∂af(x∗, p∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗)− (0, ζ) +N a

Ω(x
∗)× (ϵ+ ϵ̃)BP∗ .

(ii) If η∗ ̸= 0, then there exists a sequence {(xk, pk, yk, ηk)} ⊆ Ω × P × Λ × Y

converging to (x∗, p∗, F (x∗, p∗), η∗) such that for all k,

f(xk) < f(x∗),

ηk ∈ NΛ(y
k),

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk, pk)− yk, ei⟩ > 0.

The desired result is obtained since ϵ̃ is arbitrary.

Definition 10. We say that the inf-compactness holds for (MPGCp) with p = p∗ if
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there exist a number α and a compact set S such that for each p in some neighborhood

of p∗, the level set

{x ∈ F (p) | f(x, p) ≤ α}

is nonempty and contained in S.

Theorem 3.18. Assume that the inf-compactness holds for problem (MPGC). Sup-

pose that for each x∗ ∈ O(p∗), (x∗, p∗) is strongly quasinormal for the constraint region

{(x, p) ∈ Ω×Y | F (x, p) ∈ Λ)}. Then the value function V(p) is lower semicontinuous

around p∗ and

∂V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (η∗, ζ) ∈ Q1
0(x

∗, p∗)},

∂∞V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (η∗, ζ) ∈ Q0
0(x

∗, p∗)}.

Proof. The lower semicontinuity follows from the proof of [10, Proposition 4.4] im-

mediately. We complete the proof by considering the following two cases:

(a) Let ζ ∈ ∂V(p∗). By the definition, there exist sequences pl
V→ p∗, ϵl ↓ 0,

and ζ l
w∗
→ ζ with ζ l ∈ ∂̂ϵlV(pl). Since the inf-compactness holds, the set {x ∈

F (pl) | f(x, pl) ≤ α} is nonempty when l is sufficiently large. By the inf-

compactness again, there exists xl ∈ O(pl) and, without loss of generality, we

may assume that xl → x∗. Since V(pl)→ V(p∗) and

V(pl) = f(xl, pl)→ f(x∗, p∗),

we have f(x∗, p∗) = V(p∗). Thus, x∗ ∈ O(p∗). Since the strong quasinormal-

ity holds at (x∗, p∗) and (pl, xl) → (p∗, x∗), by Proposition 3.6.1, the strong

quasinormality holds at (xl, pl) for each sufficiently large l. Thus, we have from



91

Theorem 3.17 that, for each sufficiently large l, there exist ηl and κ ≥ 0 such

that

(1) (0, ζ l) ∈ ∂af(xl, pl) +
∑m

i=1 ∂
a⟨ηl, ei⟩⟨F, ei⟩(xl, pl) + N a

Ω(x
l) × ϵlBP∗ with

ηl ∈ NΛ(F (x
l, pl)).

(2) If ηl ̸= 0, then there exists a sequence {(xl,k, pl,k, yl,k, ηl,k)} ⊆ X×P×Λ×Y

converging to (xl, pl, F (xl, pl), ηl) such that for all k,

f(xl,k) < f(xl),

ηl,k ∈ NΛ(y
l,k),

⟨ηl, ei⟩ ≠ 0 =⇒ ⟨ηl, ei⟩⟨F (xl,k, pl,k)− yl,k, ei⟩ > 0.

By the quasinormality assumption and Proposition 3.6.2, the sequence {ηl} is

bounded. Thus, without loss of generality, we may assume that {ηl} converges

to η∗. Taking a limit in (1) above, it is not hard to see from the weak∗ closedness

of the approximate subdifferential and normal cone that

 (0, ζ) ∈ ∂af(x∗, p∗) +
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗) +N a

Ω(x
∗)× {0},

η∗ ∈ NΛ(F (x
∗, p∗)).

Also by the diagonal rule, we can find a sequence {(xl,kl , pl,kl , yl,kl , ηl,kl)} con-

verging to (x∗, p∗, y∗, η∗) as l→∞ such that for all l,

f(xl,kl) < f(x∗)

ηl,kl ∈ NΛ(y
l,kl),

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xl,kl , pl,kl)− yl,kl , ei⟩ > 0.
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Therefore, it follows that (η∗, ζ) ∈ Q1
0(x

∗, p∗).

(b) Let ζ ∈ ∂∞V(p∗). By the definition, there exist sequence pl
V→ p∗, ϵl ↓ 0,

ζ l ∈ ∂̂ϵlV(pl), and tl ↓ 0 such that tlζ
l → ζ. Similar as (a) in this proof, for

each l sufficiently large l, there exist ηl and κ ≥ 0 such that (1)–(2) in (a) of

the proof hold. It is easy to get from (1) that

 (0, tlζ
l) ∈ tl∂af(xl, pl) +

∑m
i=1 ∂

a⟨tlηl, ei⟩⟨F, ei⟩(xl, pl) +N a
Ω(x

l)× tlϵlBP∗ ,

tlη
l ∈ NΛ(F (x

l, pl)).
(3.29)

By the quasinormality assumption and Proposition 3.6.2, the sequence {tlηl}

is bounded. Without loss of generality, assume that {tlηl} converges to η∗.

Taking a limit as k → ∞ in (4.16), we have from the weak∗ closedness of the

approximate subdifferential and normal cone that

 (0, ζ) ∈
∑m

i=1 ∂
a⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗) +N a

Ω(x
∗)× {0},

η∗ ∈ NΛ(F (x
∗, p∗)).

The rest of the proof is similar to (a).

The proof is complete.
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Chapter 4

Enhanced Karush-Kuhn-Tucker con-

dition for mathematical programs with

equilibrium constraints

4.1 Introduction

In this chapter, we study first-order necessary optimality conditions for the nons-

mooth (MPEC). Since there are several different approaches to reformulate MPECs,

various stationarity concepts such as Strong, Mordukhovich and Clarke (S, M and

C)- stationarity arise (see [75, 82, 84, 85] for detailed discussions). The S-stationary

condition, which is now well-known to be equivalent to the classical KKT conditions

(see [23]), is the strongest among all stationary concepts for MPECs. For an MPEC

with smooth problem data, it is shown that MPEC-LICQ is a constraint qualification

The content of this chapter is taken from Ye, J.J. and Zhang, J., “Enhanced Karush-Kuhn-Tucker
condition for mathematical programs with equilibrium constraints.” J. Optim. Theo. Appl., doi:
10.1007/s10957-013-0493-3, and part of Guo, L., Lin, G.H., Ye, J.J. and Zhang, J. (2014), “Sensi-
tivity Analysis of the value function for parametric mathematical programs with equilibrium con-
straints.” SIAM J. Optim., vol. 24, 1206-1237.
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for S-stationarity (see [49, 81]). Moreover, MPEC-LICQ is a generic property [76],

and hence it is not too stringent and can be satisfied for many smooth MPECs. It is

tempting to assume that MPEC-LICQ is also a constraint qualification for MPECs,

where the objective function is local Lipschitz but nonsmooth. In this chapter, we

show through example that MPEC-LICQ is not a constraint qualification for MPECs,

where the objective function is nonsmooth.

In this chapter, we not only extend Kanzow and Schwartz’s results in [42] to the

nonsmooth case, but also other than proving the enhanced M-stationary condition un-

der the MPEC generalized quasi-normality and pseudo-normality for the nonsmooth

MPEC, we derive some results which are new even for the smooth case. We show that

if the equality functions and the complementarity functions are affine, the inequality

function is concave and the abstract constraint set is polyhedral, then the MPEC

generalized pseudo-normality holds at each feasible point. In [42], it was shown that

the MPEC generalized pseudo-normality is a sufficient condition for the existence of

a local error bound for a smooth MPEC. In this chapter, we improve this result by

showing that the MPEC quasi-normality implies the existence of a local error bound

under some reasonable conditions.

Recently, constraint qualifications such as quasi-normality (see Chapter 2), Con-

stant Positive Linear Dependance (CPLD) (see [71]) and Relaxed Constant Positive

Linear Dependence (RCPLD) (see [1]) have all been shown to provide weaker con-

straint qualifications than MFCQ. In this chapter we introduce a weaker version of

the MPEC-CPLD and show that it is a stronger condition than the MPEC general-

ized quasi-normality. Consequently this weaker version of the MPEC-CPLD is also

a constraint qualification for the enhanced M-stationary condition and a sufficient

condition for the existence of a local error bound.
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4.2 Enhanced stationary conditions for MPEC

In this chapter we study the MPEC problem (1.8), where f, hi(i = 1, . . . , p), gj(j =

1, . . . , q) : Rn → R are Lipschitz continuous around the point of interest, Gl, Hl(l =

1, . . . ,m) : Rn → R are continuously differentiable, and X is a closed subset of Rn.

Let F denote the feasible region. Let x∗ be a feasible point of problem (MPEC). We

define the following index sets:

A(x∗) := {j|gj(x∗) = 0},

I00 := I00(x
∗) := {l|Gl(x

∗) = 0, Hl(x
∗) = 0},

I0+ := I0+(x
∗) := {l|Gl(x

∗) = 0, Hl(x
∗) > 0},

I+0 := I+0(x
∗) := {l|Gl(x

∗) > 0, Hl(x
∗) = 0}.

Recall that the MPEC-LICQ holds at a feasible point x∗ if the gradient vectors

{∇hi(x∗)|i = 1, . . . , p}, {∇gj(x∗)|j ∈ A(x∗)},

{∇Gl(x
∗)|l ∈ I00 ∪ I0+}, {∇Hl(x

∗)|l ∈ I00 ∪ I+0}

are linearly independent (see [76]). The following example shows that MPEC-LICQ

may not be a constraint qualification for S-stationary condition if the objective func-

tion is not differentiable.

Example 2. Consider the MPEC: min−y + |x− y| subject to x ≥ 0, y ≥ 0, xy = 0.

It is easy to see that (0, 0) is a minimizer and MPEC-LICQ holds at every point of

the feasible region. The S-stationary condition is the existence of µ ≥ 0, ν ≥ 0 such
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that  0

0

 =

 β

−1− β

+ µ

 −1
0

+ ν

 0

−1

 (4.1)

with β ∈ [−1, 1] being an element in the subdifferential of the convex function | · | at

the origin. However, (4.1) never holds and hence (0, 0) is not an S-stationary point.

Remark 1. We may construct a class of MPECs with nonsmooth objectives that have

local minimizers satisfying MPEC-LICQ but not S-stationarity. Indeed, consider an

MPEC with affine complementarity constraints: min f(x) s.t. 0 ≤ G(x)⊥H(x) ≥

0, where a⊥b means that the vectors a and b are perpendicular. Since G(x) and H(x)

are affine, a local optimal solution to the above MPEC is also a local optimal solution

to the penalized problem

min
[
f(x) +M(∥G(x)− y∥+ ∥H(x)− z∥)

]
s.t. 0 ≤ y⊥z ≥ 0

for some M > 0, where ∥ · ∥ denotes the Euclidean norm. For the penalized problem

above, MPEC-LICQ holds at each feasible point but the objective function is non-

smooth. However, a local optimal solution is not always an S-stationary point for

the penalized problem since otherwise it would also be an S-stationary point for the

original problem as well, which may not be true.

Nevertheless, the S-stationary condition is important for MPECs. It provides

sharper optimality condition than the M- or the C-stationary condition. If MPEC

LICQ is not a constraint qualification, are there any suitable constraint qualifications

under which a local optimal solution of a MPEC with nonsmooth objective functions

is an S-stationary point? Recall that in the case of MPEC, each feasible point violates

MFCQ. However, what about other known weaker constraint qualifications? Izmailov
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et al. [37] conclude that RCPLD, and hence CPLD cannot be expected to hold with

any frequency in cases of interest. As a matter of fact, Izmailov et al. [37] state that

if RCPLD can hold, there remains no “degrees of freedom” for optimization, which

in the context of MPEC is not the relevant case. Although it is possible to construct

examples where RCPLD and even CPLD hold (as shown in [37] that CPLD holds for

MPEC with all constraints being identically zero, which is of course extremely patho-

logical), for practical MPECs with “degree of freedom” for optimization, (R)CPLD

cannot be expected to hold.

It is natural to ask how likely the quasinormality can hold for an MPEC. To

show it is possible for the quasinormality to hold we consider the following MPEC

as a standard nonlinear programming problem with inequality constraints G(x) ≥

0, H(x) ≥ 0 and equality constraint G(x)H(x) = 0.

Example 3. Consider the MPEC:

min f(x) := |x|

s.t. G(x) ≥ 0, H(x) ≥ 0, G(x)H(x) = 0,

where H(x) = x and G(x) is defined as follows:

G(x) :=


−(x+ 1)2 x < −1,

0 −1 ≤ x ≤ 1,

−(x− 1)2 x > 1.

It is easy to see the set of feasible solution is all points lying in the interval [0, 1] and

MPEC LICQ fails at x∗ = 0. Suppose there are scalars λG ≥ 0, λH ≥ 0, λGH such

that

−λGG′(x∗)− λHH ′(x∗) + λGH [G(x∗)H ′(x∗) +H(x∗)G′(x∗)] = 0.
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Then we can take λH = 0. Since G′(x∗) = 0 and G(x∗)H ′(x∗) + H(x∗)G′(x∗) = 0,

λG and λGH can be chosen to be nonzero. However, since G(x) = 0 for all x in the

neighborhood of x∗ = 0, for any sequence {xk} → x∗, for k large enough, there always

holds

λGHG(x
k)H(xk) = 0, for λGH ̸= 0; λGG(x

k) = 0, for λG > 0,

which means that x∗ is quasinormal.

However, this example is also pathological. We next argue that for practical

MPECs formulated as a standard nonlinear programming, quasinormality cannot be

expected to hold. Consider MPEC formulated as a standard nonlinear programming

and observe that the limiting subdifferentials of the constraints at any x has the form



∂h(x)

∂g(x)

−∇G(x)

−∇H(x)

(∇H(x))TG(x) + (∇G(x))TH(x)


. (4.2)

Of interest is to consider a bi-active (we say that an index l is bi-active at x∗ if

Hl(x
∗) = Gl(x

∗) = 0) feasible point x∗ of MPEC. Then the last row of the subdifferen-

tial (4.2) at x∗ equals zero identically. Hence there always exist abnormal multipliers

(λ, µ, γ, ν, τ) = (0, 0, 0, 0, e) ∈ Rp × Rq
+ × Rm

+ × Rm
+ × Rm not all zero such that

0 ∈
p∑

i=1

∂(λihi)(x
∗) +

q∑
j=1

µj∂gj(x
∗)

−
m∑
l=1

[(γl − τlHl(x
∗)∇Gl(x

∗) + (νl − τlGl(x
∗))∇Hl(x

∗)] +NX (x
∗),

where e = (1, . . . , 1) is the vector of all 1s. Therefore, for quasinormality to hold at
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x∗, Gl(x
k)Hl(x

k) cannot be strictly positive for all l ∈ {1, . . . ,m} and any arbitrary

sequence {xk} converging to x∗, which is extremely atypical.

The conclusion is that neither (R)CPLD nor quasinormality can be expected to

hold for MPEC in cases of interest. In other words, the enhanced Fritz John condition

in chapter 2 is not in general applicable for MPEC if treated as a NLP. Recently,

Kanzow and Schwartz [42] have introduced the MPEC-tailored enhanced Fritz John

condition for smooth MPEC with no abstract set constraint. In this chapter, we

extend Kanzow and Schwartz’s result into the more general nonsmooth case and hence

leading up to several MPEC-tailored weaker CQs. However, the reason why we did not

simply apply the result from chapter 2 but we exploit the particular structure of the

complementarity constraints within our MPEC is to obtain suitable sign constraints

on the multipliers (as it was done in [42]). As a matter of fact, direct application of

chapter 2 would have led to conclusions with artificial slack variable y and z involved,

which are less favorable than ours as they depend only on x. Note that even in the

setting of standard MPEC, where all functions are smooth and there is no abstract

constraint, our new enhanced Fritz John M-stationary condition is still stronger and

provides more information than the original Fritz John M-stationary condition derived

by Kanzow and Schwartz in [42] for the following reason: a continuously differentiable

function may not be proximal subdifferentiable (a sufficient condition for a function

to be proximal subdifferentiable is that the function is C1+, i.e., the function is

continuously differentiable and its gradient is Lipschitz continuous).

Theorem 4.1. Let x∗ be a local minimizer of problem (MPEC). Then, there are

multipliers α, λ, µ, γ, ν such that

(i) 0 ∈ α∂f(x∗)+
∑p

i=1 ∂(λihi)(x
∗)+

∑q
j=1 µj∂gj(x

∗)−
∑m

l=1[γl∇Gl(x
∗)+νl∇Hl(x

∗)]+

NX (x
∗);

(ii) α ≥ 0, µ ≥ 0, γl = 0, ∀l ∈ I+0(x
∗), νl = 0, ∀l ∈ I0+(x

∗), and either γl > 0,
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νl > 0 or γlνl = 0 ∀l ∈ I00(x∗);

(iii) α, λ, µ, γ, ν are not all equal to zero;

(iv) If λ, µ, γ, ν are not all equal to zero, then there exists a sequence {xk} ⊆ X

converging to x∗ such that for all k,

f(xk) < f(x∗),

if λi ̸= 0, then λihi(x
k) > 0, if µj > 0, then µjgj(x

k) > 0,

if γl ̸= 0, then γlGl(x
k) < 0, if νl ̸= 0, then νlH(xk) < 0.

Proof. The results can be proved by combining the techniques and the results in [42,

Theorem 3.1] and Chapter 2.

Based on the result above, we define the following enhanced M-stationary condi-

tions.

Definition 11 (Enhanced M-stationary conditions). Let x∗ be a feasible point of

problem (MPEC). We say the enhanced M-stationary condition holds at x∗ iff there

are multipliers λ, µ, γ, ν such that

(i) 0 ∈ ∂f(x∗)+
∑p

i=1 ∂(λihi)(x
∗)+

∑q
j=1 µj∂gj(x

∗)−
∑m

l=1[γl∇Gl(x
∗)+νl∇Hl(x

∗)]+

NX (x
∗);

(ii) µ ≥ 0, γl = 0, ∀l ∈ I+0(x
∗), νl = 0, ∀l ∈ I0+(x∗), and either γl > 0, νl > 0 or

γlνl = 0 ∀l ∈ I00(x∗);

(iv) If λ, µ, γ, ν are not all equal to zero, then there exists a sequence {xk} ⊆ X
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converging to x∗ such that for all k,

if λi ̸= 0, then λihi(x
k) > 0,

if µj > 0, then µjgj(x
k) > 0,

if γl ̸= 0, then γlGl(x
k) < 0,

if νl ̸= 0, then νlH(xk) < 0.

We call the multipliers λ, µ, γ, ν the MPEC quasi-normal multipliers corresponding to

x∗.

Motivated by Theorem 4.1 and the related discussion in Chapter 2, we now intro-

duce some MPEC-variant CQs. Note that although Definition 12(d) is weaker than

the MPEC-CPLD introduced in [32,43], where all functions involved are continuously

differentiable and X = Rn, for convenience we still refer to it as MPEC-CPLD. The

MPEC-RCPLD was first introduced in [28] and has been proven to be a sufficient

condition for M-stationarity in [26].

Definition 12. Let x∗ be a feasible solution of problem (MPEC).

(a) x∗ is said to satisfy MPEC-NNAMCQ iff there is no nonzero vector (λ, µ, γ, ν)

such that

(i) 0 ∈
∑p

i=1 ∂(λihi)(x
∗) +

∑q
j=1 µj∂gj(x

∗)−
∑m

l=1[γl∇Gl(x
∗) + νl∇Hl(x

∗)] +

NX (x
∗);

(ii) µ ≥ 0, γl = 0, ∀l ∈ I+0(x
∗); νl = 0, ∀l ∈ I0+(x∗), and either γl > 0, νl > 0

or γlνl = 0 ∀l ∈ I00(x∗).

(b) x∗ is said to satisfy MPEC generalized pseudo-normality iff there is no nonzero

vector (λ, µ, γ, ν) such that
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(i) 0 ∈
∑p

i=1 ∂(λihi)(x
∗) +

∑q
j=1 µj∂gj(x

∗)−
∑m

l=1[γl∇Gl(x
∗) + νl∇Hl(x

∗)] +

NX (x
∗);

(ii) µ ≥ 0, γl = 0, ∀l ∈ I+0(x
∗); νl = 0, ∀l ∈ I0+(x∗), and either γl > 0, νl > 0

or γlνl = 0 ∀l ∈ I00(x∗);

(iii) There exists a sequence {xk} ⊆ X converging to x∗ such that for all k,

p∑
i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k)−

m∑
l=1

[γlGl(x
k) + νlHl(x

k)] > 0.

(c) x∗ is said to satisfy MPEC generalized quasi-normality iff there is no nonzero

vector (λ, µ, γ, ν) such that

(i) 0 ∈
∑p

i=1 ∂(λihi)(x
∗) +

∑q
j=1 µj∂gj(x

∗)−
∑m

l=1[γl∇Gl(x
∗) + νl∇Hl(x

∗)] +

NX (x
∗);

(ii) µ ≥ 0, γl = 0, ∀l ∈ I+0(x
∗); νl = 0, ∀l ∈ I0+(x∗), and either γl > 0, νl > 0

or γlνl = 0 ∀l ∈ I00(x∗).

(iii) If λ, µ, γ, ν are not all equal to zero, then there exists a sequence {xk} ⊆ X

converging to x∗ such that, for all k,

if λi ̸= 0, then λihi(x
k) > 0,

if µj > 0, then gj(x
k) > 0,

if γl ̸= 0, then γlGl(x
k) < 0,

if νl ̸= 0, then νlH(xk) < 0.

(d) In addition to the basic assumptions for the problem (MPEC), suppose that

h, g are continuously differentiable at x∗ and X = Rn. x∗ is said to satisfy

MPEC-CPLD iff for any indices set I0 ⊆ P := {1, 2, . . . , p}, J0 ⊆ A(x∗),
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LG
0 ⊆ I0+(x

∗) ∪ I00(x∗) and LH
0 ⊆ I+0(x

∗) ∪ I00(x∗), whenever there exist λi,

µj ≥ 0 for all j ∈ J0, γl and νl not all zero, such that

0 =
∑
i∈I0

λi∇hi(x∗) +
∑
j∈J0

µj∇gj(x∗)−
∑
l∈LG

0

γl∇Gl(x
∗)−

∑
l∈LH

0

νl∇Hl(x
∗)

and either γlνl = 0 or γl > 0, νl > 0 ∀l ∈ I00(x∗), there is a neighborhood U(x∗)

of x∗ such that, for any x ∈ U(x∗),

({∇hi(x)|i ∈ I0}, {∇gj(x)|j ∈ J0}, {∇Gl(x)|l ∈ LG
0 }, {∇Hl(x)|l ∈ LH

0 })

are linearly dependent.

(e) In addition to the basic assumptions for the problem (MPEC), suppose that h, g

are continuously differentiable at x∗ and X = Rn. Let I0 ⊆ P be such that

{∇hi(x∗)}i∈I0 is a basis for span{∇hi(x∗)}i∈P. x∗ is said to satisfy MPEC-

RCPLD iff there is a neighborhood U(x∗) of x∗ such that

(i) {∇hi(x)}i∈P has the same rank for every x ∈ U(x∗).

(ii) For every J0 ⊆ A(x∗), LG
0 ⊆ I0+(x

∗)∪ I00(x∗) and LH
0 ⊆ I+0(x

∗)∪ I00(x∗),

whenever there exist λi, µj ≥ 0 for all j ∈ J0, γl and νl not all zero such

that

0 =
∑
i∈I0

λi∇hi(x∗) +
∑
j∈J0

µj∇gj(x∗)−
∑
l∈LG

0

γl∇Gl(x
∗)−

∑
l∈LH

0

νl∇Hl(x
∗),

and either γlνl = 0 or γl > 0, νl > 0 ∀l ∈ I00(x∗); then the vectors

({∇hi(x)|i ∈ I0}, {∇gj(x)|j ∈ J0}, {∇Gl(x)|l ∈ LG
0 }, {∇Hl(x)|l ∈ LH

0 })
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are linearly dependent for any x ∈ U(x∗).

It is easy to see that MPEC-NNAMCQ⇒ MPEC generalized pseudo-normality⇒

MPEC generalized quasi-normality.

For the standard nonsmooth nonlinear program where the equality functions are

linear, inequality functions are concave and there is no abstract constraint, Chapter 2

showed that the pseudo-normality holds automatically at any feasible point. In what

follows, we extend this result to MPEC.

Theorem 4.2. Suppose that hi are linear, gj are concave, Gl, Hl are all linear and

X is polyhedral. Then any feasible point of problem (MPEC) is MPEC generalized

pseudo-normal.

Proof. We omit the abstract set X since it can be represented by several linear in-

equalities. We prove the theorem by contradiction. To the contrary, suppose that

there is a feasible point x∗ that is not MPEC generalized pseudo-normal. Then

there exists nonzero vector (λ, µ, γ, ν) ∈ Rp ×Rq ×Rm ×Rm and infeasible sequence

{xk} ⊆ X converging to x∗ such that

0 ∈
p∑

i=1

λi∇hi(x∗) +
q∑

j=1

µj∂gj(x
∗)−

m∑
l=1

[γl∇Gl(x
∗) + νl∇Hl(x

∗)], (4.3)

where µ ≥ 0, µj = 0 ∀j /∈ A(x∗), γl = 0 ∀l ∈ I+0(x
∗), νl = 0 ∀l ∈ I0+(x∗) and either

γlνl = 0 or γl > 0, νl > 0 ∀l ∈ I00(x∗). Furthermore, for each k,

p∑
i=1

λihi(x
k) +

q∑
j=1

µjgj(x
k)−

m∑
l=1

[γlGl(x
k) + νlHl(x

k)] > 0. (4.4)
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By the linearity of hi, Gl, Hl and concavity of gj, we have that, for all x ∈ Rn,

hi(x) = hi(x
∗) +∇hi(x∗)T (x− x∗) i = 1, . . . , p,

Gl(x) = Gl(x
∗) +∇Gl(x

∗)T (x− x∗) l = 1, . . . ,m,

Hl(x) = Hl(x
∗) +∇Hl(x

∗)T (x− x∗) l = 1, . . . ,m,

gj(x) ≤ gj(x
∗) + ξTj (x− x∗) ∀ξj ∈ ∂gj(x∗), j = 1, . . . , q.

By multiplying these four relations with λi, γl, νl and µj and by adding over i, l and

j respectively, we obtain that, for all x ∈ Rm and all ξj ∈ ∂gj(x∗), j = 1, . . . , q,

p∑
i=1

λihi(x) +

q∑
j=1

µjgj(x)−
m∑
l=1

(γlGl(x) + νlHl(x))

≤
p∑

i=1

λihi(x
∗) +

q∑
j=1

µjgj(x
∗)−

m∑
l=1

(γlGl(x
∗) + νlHl(x

∗))

+
[ p∑

i=1

λi∇hi(x∗) +
q∑

j=1

µjξj −
m∑
l=1

(γl∇Gl(x
∗) + νl∇Hl(x

∗))
]T

(x− x∗)

=
[ p∑

i=1

λi∇hi(x∗) +
q∑

j=1

µjξj −
m∑
l=1

(γl∇Gl(x
∗) + νl∇Hl(x

∗))
]T

(x− x∗),

where the last equality holds because we have

λihi(x
∗) = 0 for all i and

q∑
j=1

µjgj(x
∗) = 0,

m∑
l=1

γlGl(x
∗) = 0,

m∑
l=1

νlHl(x
∗) = 0.

By (4.3), there exists ξ∗j ∈ ∂gj(x∗), j = 1, . . . , q such that

p∑
i=1

λi∇hi(x∗) +
q∑

j=1

µjξ
∗
j −

m∑
l=1

[γl∇Gl(x
∗) + νl∇Hl(x

∗)] = 0.

Hence it follows that for all x ∈ Rn,
∑p

i=1 λihi(x) +
∑q

j=1 µjgj(x) −
∑m

l=1[γlGl(x) +

νlHl(x)] ≤ 0, which contradicts (4.4). The proof is complete.
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The CPLD was introduced by Qi and Wei in [71] and was used to analyze SQP

algorithms. [3] showed that for smooth nonlinear programs, the CPLD condition

implies the quasi-normality and hence is a constraint qualification as well. In what

follows, we show that the MPEC-CPLD introduced in this chapter implies MPEC

generalized quasi-normality. We first recall the following lemma, a proof of which

may be found in [1, Lemma 1].

Lemma 4.3. If x =
∑m+p

i=1 αiνi with νi ∈ Rn for every i, {νi}mi=1 is linearly indepen-

dent and αi ̸= 0 for every i = m+1, . . . ,m+p, then there exist J ⊆ {m+1, . . . ,m+p}

and scalars ᾱi for every i ∈ {1, . . . ,m} ∪ J such that

• x =
∑

i∈i,...,m∪J ᾱiνi,

• αiᾱi > 0 for every i ∈ J ,

• {νi}i∈{i,...,m}∪J is linearly independent.

Theorem 4.4. Let x be a feasible solution of problem (MPEC) where h, g are con-

tinuously differentiable such that MPEC-CPLD holds. Then x is MPEC generalized

quasi-normal.

Proof. For brevity, we drop the equality and the inequality constraint in the proof,

since the main difficulties are induced by the complementarity constraints. Assume

that x is feasible and the MPEC-CPLD condition holds at x. If x satisfies MPEC-

NNAMCQ, we are done. Suppose MPEC-NNAMCQ does not hold. Then, there

exists a nonzero vector (γ, ν) ∈ Rm×Rm such that 0 = −
∑m

l=1[γl∇Gl(x)+νl∇Hl(x)],

γl = 0 ∀l ∈ I+0(x), νl = 0 ∀l ∈ I0+(x) and either γlνl = 0 or γl > 0, νl > 0 ∀l ∈ I00(x).
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Define the index sets:

LG
+(x) := {l ∈ I0+(x)|γl > 0}, LG

−(x) := {l ∈ I0+(x)|γl < 0},

LH
+ (x) := {l ∈ I+0(x)|νl > 0}, LH

− (x) := {l ∈ I+0(x)|νl < 0},

I++
00 (x) := {l ∈ I00(x)|γl > 0, νl > 0}, I+0

00 (x) := {l ∈ I00(x)|γl > 0, νl = 0},

I−0
00 (x) := {l ∈ I00(x)|γl < 0, νl = 0}, I0+00 (x) := {l ∈ I00(x)|γl = 0, νl > 0},

I0−00 (x) := {l ∈ I00(x)|γl = 0, νl < 0}.

Since (γ, ν) is a nonzero vector, the union of the above sets must be nonempty and

we may write

0 = −[
∑

l∈LG
+(x)

γl∇Gl(x) +
∑

l∈LG
−(x)

γl∇Gl(x)]− [
∑

l∈LH
+ (x)

νl∇Hl(x) +
∑

l∈LH
− (x)

νl∇Hl(x)]

−
∑

l∈I++
00 (x)

[γl∇Gl(x) + νl∇Hl(x)]− [
∑

l∈I+0
00 (x)

γl∇Gl(x) +
∑

l∈I−0
00 (x)

γl∇Gl(x)]

−[
∑

l∈I0+00 (x)

νl∇Hl(x) +
∑

l∈I0−00 (x)

νl∇Hl(x)].

Assume first that LG
+(x) is nonempty. Let l1 ∈ LG

+(x). Then,

−γl1∇Gl1(x) =
∑

l∈LG
+(x)\{l1}

γl∇Gl(x) +
∑

l∈LG
−(x)

γl∇Gl(x)

+[
∑

l∈LH
+ (x)

νl∇Hl(x) +
∑

l∈LH
− (x)

νl∇Hl(x)]

+
∑

l∈I++
00 (x)

[γl∇Gl(x) + νl∇Hl(x)]

+[
∑

l∈I+0
00 (x)

γl∇Gl(x) +
∑

l∈I−0
00 (x)

γl∇Gl(x)]

+[
∑

l∈I0+00 (x)

νl∇Hl(x) +
∑

l∈I0−00 (x)

νl∇Hl(x)].
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If ∇Gi1(x) = 0, the single-element set {∇Gi1(x)} is linearly dependent. By MPEC-

CPLD, the set {∇Gi1(y)} must be linearly dependent for all y in some neighborhood

of x. Therefore, ∇Gi1(y) = 0 for all y in an open neighborhood of x. Since Gi1(x) = 0,

this implies that Gi1(y) = 0 for all y in that neighborhood. Hence for any sequence

xk → x, Gi1(x
k) = 0 always holds. That is, there is no sequence xk → x such that

λi1Gi1(x
k) > 0.

Assume now that ∇Gi1(x) ̸= 0. Then, by Lemma 4.3, there exist index sets

L̄G
+(x) ⊆ LG

+(x) \ {i1}, L̄G
−(x) ⊆ LG

−(x), L̄
H
+ (x) ⊆ LH

+ (x), L̄
H
− (x) ⊆ LH

− (x)

Ī++
00 (x) ⊆ I++

00 (x), Ī+0
00 (x) ⊆ I+0

00 (x), Ī
−0
00 (x) ⊆ I−0

00 (x),

Ī0+00 (x) ⊆ I0+00 (x), Ī
0−
00 (x) ⊆ I0−00 (x)

such that the vectors

{∇Gl(x)}l∈L̄G
+(x), {∇Gl(x)}l∈L̄G

−(x), {∇Hl(x)}l∈L̄H
+ (x), {∇Hl(x)}l∈L̄H

− (x),

{∇Gl(x)}l∈Ī++
00 (x), {∇Hl(x)}l∈Ī++

00 (x), {∇Gl(x)}l∈Ī+0
00 (x), {∇Gl(x)}l∈Ī−0

00 (x),

{∇Hl(x)}l∈Ī0+00 (x), {∇Hl(x)}l∈Ī0−00 (x)

are linearly independent and

−γl1∇Gl1(x) = [
∑

l∈L̄G
+(x)

γ̄l∇Gl(x) +
∑

l∈L̄G
−(x)

γ̄l∇Gl(x)]

+[
∑

l∈L̄H
+ (x)

ν̄l∇Hl(x) +
∑

l∈L̄H
− (x)

ν̄l∇Hl(x)] +
∑

l∈Ī++
00 (x)

[γ̄l∇Gl(x) + ν̄l∇Hl(x)]

+[
∑

l∈Ī+0
00 (x)

γ̄l∇Gl(x) +
∑

l∈Ī−0
00 (x)

γ̄l∇Gl(x)] + [
∑

l∈Ī0+00 (x)

ν̄l∇Hl(x) +
∑

l∈Ī0−00 (x)

ν̄l∇Hl(x)]
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with

γ̄l > 0,∀l ∈ L̄G
+(x), γ̄l < 0,∀l ∈ L̄G

−(x), ν̄l > 0, ∀l ∈ L̄H
+ (x), νl < 0,∀l ∈ L̄H

− (x),

γ̄l > 0, νl > 0,∀l ∈ Ī++
00 (x), γ̄l > 0,∀l ∈ Ī+0

00 (x), γ̄l < 0, ∀l ∈ Ī−0
00 (x),

ν̄l > 0,∀l ∈ Ī0+00 (x), ν̄l < 0, ∀l ∈ Ī0−00 (x).

By the linear independence of the vectors and continuity arguments, the vectors

{∇Gl(y)}l∈L̄G
+(x), {∇Gl(y)}l∈L̄G

−(x), {∇Hl(y)}l∈L̄H
+ (x), {∇Hl(x)}l∈L̄H

− (x),

{∇Gl(y)}l∈Ī++
00 (x), {∇Hl(y)}l∈Ī++

00 (x), {∇Gl(y)}l∈Ī+0
00 (x), {∇Gl(y)}l∈Ī−0

00 (x),

{∇Hl(y)}l∈Ī0+00 (x), {∇Hl(y)}l∈Ī0−00 (x)

are linearly independent for all y in a neighborhood of x. However, by the MPEC-

CPLD assumption, the vectors

γi1∇Gi1(y), {∇Gl(y)}l∈L̄G
+(x), {∇Gl(y)}l∈L̄G

−(x), {∇Hl(y)}l∈L̄H
+ (x), {∇Hl(x)}l∈L̄H

− (x),

{∇Gl(y)}l∈Ī++
00 (x), {∇Hl(y)}l∈Ī++

00 (x), {∇Gl(y)}l∈Ī+0
00 (x), {∇Gl(y)}l∈Ī−0

00 (x),

{∇Hl(y)}l∈Ī0+00 (x), {∇Hl(y)}l∈Ī0−00 (x)

are linearly dependent for all y in a neighborhood of x. Therefore, λi1∇Gi1(y) must

be a linear combination of the vectors for all y in a neighborhood of x. By [3, Lemma

3.2], there exists a smooth function φ defined in a neighborhood of (0, . . . , 0) such

that, for all y in a neighborhood of x,

∇φ(0, . . . , 0) = ({γ̄}l∈L̄G
+(x), {γ̄}l∈L̄G

−(x), {ν̄}l∈L̄H
+ (x), {ν̄}l∈L̄H

− (x), {γ̄}l∈Ī++
00 (x),

{ν̄}l∈Ī++
00 (x), {γ̄}l∈Ī+0

00 (x), {γ̄}l∈Ī−0
00 (x), {ν̄}l∈Ī0+00 (x), {ν̄}l∈Ī0−00 (x)),
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−λi1Gi1(y) = φ
(
{Gl(y)}l∈L̄G

+(x), {Gl(y)}l∈L̄G
−(x), {Hl(y)}l∈L̄H

+ (x), {Hl(y)}l∈L̄H
− (x),

{Gl(y)}l∈Ī++
00 (x), {Hl(y)}l∈Ī++

00 (x), {Gl(y)}l∈Ī+0
00 (x), {Gl(y)}l∈Ī−0

00 (x),

{Hl(y)}l∈Ī0+00 (x), {Hl(y)}l∈Ī0−00 (x)

)
.

Now suppose that {xk} is an infeasible sequence that converges to x and such that

Gl(x
k) > 0,∀l ∈ L̄G

+(x), Gl(x
k) < 0,∀l ∈ L̄G

−(x),

Hl(x
k) > 0, ∀l ∈ L̄H

+ (x), Hl(x
k) < 0,∀l ∈ L̄G

−(x),

Gl(x
k) < 0, Hl(x

k) < 0,∀l ∈ Ī++
00 (x),

Gl(x
k) < 0,∀l ∈ Ī+0

00 (x), Gl(x
k) > 0,∀l ∈ Ī−0

00 (x),

Hl(x
k) < 0, ∀l ∈ Ī0+00 (x), Hl(x

k) > 0,∀l ∈ Ī0−00 (x).

By virtue of Tarloy’s expansion of φ at (0, . . . , 0), for k large enough, we must

have −λi1Gi1(x
k) ≥ 0. Again, there is no sequence xk → x such that λi1Gi1(x

k) > 0.

The proofs for the other cases are entirely analogous to the proof for this case.

Therefore, MPEC-CPLD implies MPEC generalized quasi-normality.

The following result follows immediately from Theorem 4.4 and the definitions of

the three constraint qualifications.

Corollary 4.5. Let x∗ be a local minimizer of problem (MPEC). If x∗ satisfies MPEC-

CPLD, or is MPEC generalized pseudo-normal, or MPEC generalized quasi-normal,

then x∗ is an enhanced M-stationary point.

4.3 MPEC error bound

As one of their main results, Kanzow and Schwartz proved in [42] that the MPEC

generalized pseudo-normality implies the existence of a local error bound for smooth
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MPECs. Combining the proof techniques of Theorem 2.1 in Chapter 2 and [42,

Theorem 4.5], we can extend [42, Theorem 4.5] to the nonsmooth MPEC. The MPEC

generalized quasi-normality is weaker than the MPEC generalized pseudo-normality.

It is desirable to find conditions under which the existence of a local error bound

holds under the MPEC generalized quasi-normality. We will answer this question in

Theorem 2.10. Before we can do so, we need to prove some preliminary results, which

will facilitate the proof of Theorem 2.10.

Lemma 4.6. If a feasible point x∗ is MPEC generalized quasi-normal, then all feasible

points in a neighborhood of x∗ are MPEC generalized quasi-normal.

Proof. For simplicity, we drop the equality and the inequality constraints in the proof.

Assume that the claim is not true. Then we can find a sequence {xk} such that xk ̸= x∗

for all k, xk → x∗ and xk is not quasi-normal for all k. This implies, for each k, the

existence of scalars {γk, νk} not zero and a sequence {xk,t} ⊆ X such that

(1) 0 ∈ −
∑m

l=1[γ
k
l ∇Gl(x

k) + νkl ∇Hl(x
k)] +NX (x

k),

(2) γkl = 0 ∀l ∈ I+0(x
k), νkl = 0 ∀l ∈ I0+(xk) and either γkl ν

k
l = 0 or γkl > 0, νkl >

0 ∀l ∈ I00(xk),

(3) {xk,t} converges to xk as t → ∞, and for each t, −γkl Gl(x
k,t) > 0,∀l ∈

Gk, −νkl Hl(x
k,t) > 0, ∀l ∈ Hk, where Gk = {l|γkl ̸= 0} and Hk = {l|νkl ̸= 0}.

For each k, denote by γ̃k := γk

∥(γk,νk)∥ , ν̃
k := νk

∥(γk,νk)∥ . Assume without any loss of

generality that (γ̃k, ν̃k)→ (γ∗, ν∗). Dividing both sides of (1) above by ∥(γk, νk)∥ and

taking the limit, we have

(1) 0 ∈ −
∑m

l=1[γ
∗
l∇Gl(x

∗) + ν∗l∇Hl(x
∗)] +NX (x

∗),

(2) γ∗l = 0 ∀l ∈ I+0(x
∗), ν∗l = 0 ∀l ∈ I0+(x∗) and either γ∗l ν

∗
l = 0 or γ∗l > 0, ν∗l >

0 ∀l ∈ I00(x∗),
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(3) {ςk} converges to x∗ as k → ∞, and for each l, −γ∗l Gl(ς
k) > 0, ∀l ∈ G,

−ν∗l Hl(ς
k) > 0, ∀l ∈ H, where G = {l|γ∗l ̸= 0},H = {l|ν∗l ̸= 0}.

Indeed, for indices l ∈ I00(x∗), for each k,

γ̃kl = 0, ν̃kl free, if l ∈ I+0(x
k),

γ̃kl free, ν̃
k
l = 0, if l ∈ I0+(xk),

either γ̃kl ν̃
k
l = 0 or γ̃kl > 0, ν̃kl > 0, if l ∈ I00(xk),

and hence that either γ∗l ν
∗
l = 0 or γ∗l > 0, ν∗l > 0 ∀l ∈ I00(x

∗). The existence of

scalars {γ∗, ν∗} and sequence {ςk} violates the MPEC quasi-normality of x∗, thus

completing the proof.

In the following result, we obtain a specific representation of the limiting normal

cone to the constraint region in terms of the set of MPEC quasi-normal multipliers.

Proposition 4.3.1. If x̄ is MPEC generalized quasi-normal for F, then NF(x̄) belongs

to the set

{
p∑

i=1

∂(λihi)(x̄) +

q∑
j=1

µj∂gj(x̄)−
m∑
l=1

[γl∇Gt(x̄) + νl∇Ht(x̄)] +NX (x̄)|(λ, µ, γ, ν)

}
,

where (λ, µ, γ, ν) ∈ MQ(x̄) denotes the set of quasi-normal multipliers corresponding

to x̄.

Proof. For simplicity, we omit the equality and the inequality constraints in the proof.

Let v be an element of set NF(x̄). By definition, there are sequences xl → x̄ and

vl → v with vl ∈ N̂F(x
l) and xl ∈ F.

Step 1. By Lemma 4.6, for l sufficiently large, xl is MPEC generalized quasi-

normal. By [74, Theorem 6.11], for each l, there exists a smooth function φl that
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achieves a strict global minimum over F at xl with −∇φl(xl) = vl. Since xl is a

MPEC generalized quasi-normal vector of F, by Theorem 4.1, enhanced M stationary

condition holds for problem minφl(x) s.t. x ∈ F. That is, there exists a vector (γl, ν l)

such that

vl ∈ −
m∑
t=1

[γlt∇Gt(x
l) + νlt∇Ht(x

l)] +NX (x̄), (4.5)

with γlt = 0 ∀t ∈ I+0(x
l), νlt = 0 ∀l ∈ I0+(x

l) and either γltν
l
t = 0 or γlt > 0, νlt >

0 ∀l ∈ I00(x
l). Moreover let Gl = {l|γlt ̸= 0},Hl = {t|νlt ̸= 0}, then there exists a

sequence {xl,k} converging to xl as k →∞ such that for all k, −γltGt(x
l,k) > 0,∀t ∈

Gl, −νltHt(x
l,k) > 0, ∀t ∈ Hl.

Step 2. We show that the sequence {γl, ν l} is bounded. To the contrary, suppose

that the sequence {γl, ν l} is unbounded. For every l, denote by γ̃l := γl

∥(γl,νl)∥ , ν̃
l :=

νl

∥(γl,νl)∥ . Assume without any loss of generality that (γ̃l, ν̃l)→ (γ∗, ν∗). Dividing both

sides of (4.5) by ∥(γl, ν l)∥ and taking the limit; similarly to the proof of Lemma 4.6,

we obtain

(1) 0 ∈ −
∑m

t=1[γ
∗
t∇Gt(x̄) + ν∗t∇Ht(x̄)] +NX (x̄),

(2) γ∗t = 0 ∀t ∈ I+0(x̄), ν
∗
t = 0 ∀t ∈ I0+(x̄) and either γ∗t ν

∗
t = 0 or γ∗t > 0, ν∗t >

0 ∀t ∈ I00(x̄),

(3) {ς l} converges to x̄ as l→∞, and for each l, −γ∗tGt(ς
l) > 0, ∀t ∈ G, −ν∗tHt(ς

l) >

0,∀t ∈ H, where G = {t|γ∗t ̸= 0},H = {t|ν∗t ̸= 0}.

However, this is impossible since x̄ is assumed to be MPEC quasi-normal, and

hence the sequence {γl, ν l} must be bounded.

Step 3. By virtue of Step 2, without any loss of generality, we assume that {γl, ν l}
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converges to {γ, ν} as l→∞. Taking the limit in (4.5) as l→∞, we have

v ∈ −
m∑
l=1

[γl∇Gl(x̄) + νl∇Hl(x̄)] +NX (x̄).

with γt = 0 ∀t ∈ I+0(x̄), νt = 0 ∀t ∈ I0+(x̄) and either γtνt = 0 or γt > 0, νt > 0 ∀t ∈

I00(x̄). Similarly to Step 2, we can find a subsequence {ς l} that converges to x̄ as

l→∞, and for each l,

−γtGt(ς
l) > 0, ∀t ∈ G, −νtHt(ς

l) > 0, ∀t ∈ H,

where G = {t|γt ̸= 0},H = {t|νt ̸= 0}.

Taking into account the previous two results, we are now able to obtain a local

error bound result for MPECs under the MPEC quasi-normality.

Theorem 4.7. Let x∗ ∈ F, the feasible region of problem (MPEC). Assume that hi

are C1, gj(x) are subdifferentially regular around x∗ in the sense of [61, Definition

1.91(i)] (automatically holds when gj are convex or C1 around x∗), X is a nonempty,

closed and regular in the sense that NX (x) = N̂X (x) for all x ∈ Ω. If x∗ is MPEC

generalized quasi-normal and the strict complementarity condition holds at x∗, then

there are δ, c > 0 such that for each x ∈ B δ
2
(x∗) ∩ X ,

distF(x) ≤ c(∥h(x)∥1 + ∥g+(x)∥1 +
m∑
l=1

distC(Gl(x), Hl(x))), (4.6)

where C := {(a, b) ∈ R|a ≥ 0, b ≥ 0, ab = 0}.

Proof. For simplicity, we omit the equality constraints in the proof. By assumption

we can find δ0 > 0 such that gj(x) are subdifferentially regular for all x ∈ Bδ0(x∗).

Since the required assertion is always true if x∗ is in the interior of set F, we only
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need to consider the case when x∗ is in the boundary of F. In this case, (4.6) can

be violated only for x /∈ F. Let us take some sequences {xk} and {xk} , such that

x
k → x∗, xk ∈ X \ F, and xk =

∏
F(x

k), the projection of xk onto the set F. Note

that xk → x∗, since ∥xk−xk∥ ≤ ∥xk−x∗∥. For simplicity, we may assume both {xk}

and {xk} belong to Bδ0(x∗) ∩ X .

Since xk − xk ∈ N π
F (x

k) ⊆ N̂F(x
k), we have ηk = x

k−xk

∥xk−xk∥ ∈ N̂F(x
k).

Since x∗ is quasi-normal, it follows from Lemma 4.6 that the point xk is also

quasi-normal for all sufficiently large k and, without any loss of generality, we may

assume that all xk are quasi-normal. Then, employing Proposition 4.3.1, there exists

a sequence {µk, γk, νk} such that

ηk ∈
q∑

j=1

µk
j∂gj(x

k)−
m∑
l=1

[γkl ∇Gl(x
k) + νkl ∇Hl(x

k)] +NX (x
k), (4.7)

µk ≥ 0, µk
j = 0 ∀j /∈ A(xk), γkl = 0 ∀l ∈ I+0(x

k), νkl = 0 ∀l ∈ I0+(x
k) and either

γkl ν
k
l = 0 or γkl > 0, νkl > 0 ∀l ∈ I00(x

k), and there exists a sequence {xk,s} ⊆

X , such that xk,s → xk as s → ∞ and for all s, µk
j gj(x

k,s) > 0 for j ∈ Jk and

−γkl Gl(x
k,s) > 0, ∀l ∈ Gk, −νkl Hl(x

k,s) > 0,∀l ∈ Hk, where Jk = {j|µk
j > 0} and

Gk = {l|γkl ̸= 0},Hk = {l|νkl ̸= 0}. As in the proof of Step 2 in Proposition 4.3.1,

we can show that the quasi-normality of x∗ implies that the sequence {µk, γk, νk}

is bounded. Therefore, without any loss of generality, we may assume {µk, γk, νk}

converges to some vector {µ∗, γ∗, ν∗}. Then there exists a number M0 > 0, such that

for all k, ∥(µk, γk, νk)∥ ≤ M0. Without any loss of generality, we may assume that

x
k ∈ B δ0

2
(x∗) \ F and xk ∈ Bδ0(x∗) for all k. Setting (µ̄k, γ̄k, ν̄k) = 2(µk, γk, νk), then

from (5.4), for each k, there exist ρkj ∈ ∂gj(xk), ∀j = 1, . . . , q and ωk ∈ NX (x
k) such
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that

x
k − xk

∥xk − xk∥
=

xk − xk

∥xk − xk∥
+

q∑
j=1

µ̄k
jρ

k
j −

m∑
l=1

[γ̄k∇Gl(x
k) + ν̄kl ∇Hl(x

k)] + ωk.

We obtain from the discussion above that

∥xk − xk∥ = ⟨ x
k − xk

∥xk − xk∥
,xk − xk⟩

=
⟨ xk − xk

∥xk − xk∥
,xk − xk

⟩
+

q∑
j=1

⟨
µ̄k
jρ

k
j ,x

k − xk
⟩

−
m∑
l=1

⟨
γ̄kl ∇Gl(x

k) + ν̄kl ∇Hl(x
k),xk − xk

⟩
+
⟨
ωk,xk − xk

⟩
≤

q∑
j=1

⟨
µ̄k
jρ

k
j ,x

k − xk
⟩
−

m∑
l=1

⟨
γ̄kl ∇Gl(x

k) + ν̄kl ∇Hl(x
k),xk − xk

⟩
+ o(∥xk − xk∥)

≤
q∑

j=1

µ̄k
j

(
gj(x

k) + o(∥xk − xk∥)
)
−

m∑
l=1

γ̄kl

(
Gl(x

k) + o(∥xk − xk∥)
)

−
m∑
l=1

ν̄kl

(
Hl(x

k) + o(∥xk − xk∥)
)
+ o(∥xk − xk∥)

≤ 2
[ q∑

j=1

µk
j gj(x

k)−
m∑
l=1

(
γkl Gl(x

k) + νkl Hl(x
k)
)]

+2
∣∣∣ q∑
j=1

µk
j +

m∑
l=1

γkl +
m∑
l=1

νkl + 1
∣∣∣o(∥xk − xk∥)

≤ 2
[ q∑

j=1

µk
j gj(x

k)−
m∑
l=1

(
γkl Gl(x

k) + νkl Hl(x
k)
)]

+
1

2
∥xk − xk∥,

where the first inequality comes from the fact that X is regular, the second comes

from the subdifferential regularity assumption of gj(x) in Bδ0(x∗), and the last one is

valid because, without any loss of generality, we may assume for k sufficiently large,
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o(∥xk−xk∥) ≤ 1
4(M0+1)

∥xk−xk∥ since xk−xk → 0 as k tends to infinity. This means

distF(x
k) = ∥xk − xk∥ ≤ 4M0

( q∑
i=1

g+j (x
k) + ϕ(G(xk), H(xk))

)
,

where

ϕ(G(xk), H(xk)) =
m∑
l=1

max{−Gl(x
k),−Hl(x

k), Gl(x
k)−Hl(x

k),min{Gl(x
k), Hl(x

k)}}.

Thus, for any sequence {xk} ⊆ X converging to x∗ there exists a number c > 0 such

that

distF(x
k) ≤ c(∥g+(xk)∥1 +

m∑
l=1

distC(Gl(x
k), Hl(x

k))) ∀k = 1, 2, . . . .

This further implies the error bound property at x∗. Indeed, suppose the contrary.

Then there exists a sequence x̃k → x∗, such that x̃k ∈ X \ F and

distF(x̃
k) > c(∥g+(x̃k)∥1 +

m∑
l=1

distC(Gl(x̃
k), Hl(x̃

k)))

for all k = 1, 2, . . . , which is a contradiction.

4.4 Sensitivity analysis for nonsmooth MPEC

This section considers the following mathematical program with equilibrium con-

straints formulated as a mathematical program with complementarity constraints
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subject to perturbation p:

(MPECp) min
x∈X

f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,

0 ≤ G(x, p) ⊥ H(x, p) ≥ 0,

where f : Rn+n → R, g : Rn+n → Rq, h : Rn+n → Rp, and G,H : Rn+n → Rm, X is

a nonempty and closed subset of Rn. In this section, we assume that all the involved

functions {f, g, h,G,H} are only Lipschitzian around the point of interest. (MPECp)

is called a parametric mathematical program with complementarity constrains. For

given p, we denote by F(p) the feasible region of (MPECp). The value function of

(MPECp) is an extended-valued function defined by

V(p) := inf{f(x, p) | x ∈ F(p)}

and the optimal solution mapping is a set-valued mapping defined by

O(p) := {x ∈ F(p) | f(x, p) = V(p)}.

For sake of simplicity, we denote

F (x, p) :=


g(x, p)

h(x, p)

Ψ(x, p)

 , Λ := Rq
− × {0}p × Cm, (4.8)
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where R− denotes the nonpositive orthant {v ∈ R | v ≤ 0} and

Ψ(x, p) :=



G1(x, p)

H1(x, p)

...

Gm(x, p)

Hm(x, p)


, C := { (a, b) ∈ R2 | 0 ≤ a ⊥ b ≥ 0}. (4.9)

Thus, the feasible region of (MPECp) can be rewritten as F(p) := {x ∈ X | F (x, p) ∈

Λ}. For a given feasible point x∗ ∈ F(p∗), we define the following index sets:



A∗ := { j | gj(x∗, p∗) = 0},

I∗0+ := { l | Gl(x
∗, p∗) = 0 < Hl(x

∗, p∗)},

I∗00 := { l | Gl(x
∗, p∗) = 0 = Hl(x

∗, p∗)},

I∗+0 := { l | Gl(x
∗, p∗) > 0 = Hl(x

∗, p∗)}.

The MPEC generalized Lagrangian function of (MPECp) is given by

L r(x, p;λ, µ, γ, ν) := rf(x, p)+g(x, p)Tµ+h(x, p)Tλ−G(x, p)Tγ−H(x, p)Tν. r ≥ 0,

Compared with the developments on optimality conditions, algorithms, and sta-

bility, there are only a few publications on the sensitivity of the value function for

(MPECp). Lucet and Ye [47,48] addressed the sensitivity of the value function for op-

timization programs with variational inequality constraints (OPVIC), which includes

MPEC as a special case. They established an upper estimate of the limiting subdif-

ferential of value function in terms of the normal coderivative multipliers for OPVIC.

For (MPECp), they gave upper estimates for the singular subdifferential and limiting

subdifferential of the value function by C-, M-, and S-multipliers under the conditions
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that the growth condition and some normality conditions hold. In this section, we

obtain some sharper upper estimates for the singular subdifferential and the limiting

subdifferential of the value function for (MPECp) based on the enhanced Fritz John

condition for MPECs under the weaker conditions that the restricted inf-compactness

and some quasinormality conditions hold. For sake of simplicity, we denote

∂xL
r(x, p;λ, µ, γ, ν) := r∂xf(x, p) +

q∑
j=1

µj∂xgj(x, p) +

p∑
i=1

∂x(λihi)(x, p)

+
m∑
l=1

∂x(γlGl)(x, p) +
m∑
l=1

∂x(νlHl)(x, p).

Note that the limiting subdifferential of L r at (x, p, λ, µ, γ, ν) with respect to x is not

equal to the right hand side of the above equation and, for simplicity, we use all plus

signs in the formula above in contrast with the standard MPEC Lagrangian function.

4.4.1 Subdifferential via enhanced M-multipliers

Let us first give the enhanced Fritz John type M-stationary condition for (MPECp∗).

In fact, Kanzow and Schwartz [42, Theorem 3.1] have presented the smooth enhanced

Fritz John type M-stationary condition. In the following, we show that, for the

nonsmooth case, any local minimizer for MPEC is also an enhanced Fritz John type

M-stationary point.

An enhanced Fritz John optimality condition is given for a very general mathe-

matical program with geometric constraints in Banach spaces in chapter 3. We next

specialize this result to MPEC. By means of (4.8)–(4.9), (MPECp) can be rewritten

as the more compact form

min
x∈X

f(x, p) (4.10)

s.t. F (x, p) ∈ Λ.
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Since problem (4.10) is of the form considered in chapter 3, we can specialize Corollary

3.3 in section 3.3 to problem (4.10).

Theorem 4.8. Let x∗ ∈ F(p∗) be a local minimizer of (MPECp∗). Then there exists

0 ̸= (r, λ∗, µ∗, γ∗, ν∗) with r ≥ 0 such that

(1) 0 ∈ ∂xL r(x∗, p∗;λ∗, µ∗, γ∗, ν∗) +NX (x
∗), µ∗ ≥ 0, µ∗

j = 0 (j /∈ A∗), γ∗l = 0 (l ∈

I∗+0), ν
∗
i = 0 (l ∈ I∗0+), γ∗l ν∗l = 0 or γ∗l < 0, ν∗l < 0 (i ∈ I∗00);

(2) There exists a sequence {xk} ⊆ X converging to x∗ such that, for each k,

µ∗
j > 0 =⇒ µ∗

jgj(x
k, p∗) > 0, λ∗i > 0 =⇒ λ∗ihi(x

k, p∗) > 0

γ∗l ̸= 0 =⇒ γ∗l Gl(x
k, p∗) > 0, ν∗l ̸= 0,=⇒ ν∗l Hl(x

k, p∗) > 0,

and {h, g,G,H} are all differentiable with respect to x at (xk, p∗).

Proof. Since x∗ is a local minimizer of (4.10) for p = p∗, by Corollary 3.3 in chapter

3, there exist a scalar r ≥ 0 and a vector η∗, not all zero, such that the following

conditions hold, where {ei | i = 1, · · · , q+p+2m} is the orthogonal basis of Rq+p+2m:

(i) 0 ∈ r∂xf(x∗, p∗) +
∑q+p+2m

i=1 ∂x⟨η∗, ei⟩⟨F, ei⟩(x∗, p∗) +NX (x
∗);

(ii) η∗ ∈ NΛ(F (x
∗, p∗));

(iii) There exists a sequence {(xk, yk, ηk)} converging to (x∗, F (x∗), η∗) such that,

for all k,

f(xk, p∗) < f(x∗, p∗),

ηk ∈ NΛ(y
k), (4.11)

⟨η∗, ei⟩ ̸= 0 =⇒ ⟨η∗, ei⟩⟨F (xk, p∗)− yk, ei⟩ > 0. (4.12)
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Let η := (λ, µ, γ, ν) and y := (y1, y2, y3, y4) with appropriate dimensional components

corresponding to (f, h,G,H). By the explicit expression of limiting normal cone NΛ

(see, e.g., [27, Proposition 5.1]), we have (1) immediately. We next show (2). It

follows from (iii) that {xk} ⊆ X , {y1,k} ⊆ Rq
−, {y2,k} = {0}p, {(y3,k, y4,k)} ⊆ Cm, and

µ∗
j > 0 =⇒ µ∗

j(gj(x
k, p∗)− y1,kj ) > 0, λ∗i > 0 =⇒ λ∗i (hi(x

k, p∗)− y2,ki ) > 0, (4.13)

γ∗l ̸= 0 =⇒ γ∗l (Gl(x
k, p∗)− y3,kl ) > 0, ν∗l ̸= 0,=⇒ ν∗l (Hl(x

k, p∗)− y4,kl ) > 0. (4.14)

Next, we show that, for each sufficiently large k, {y1,kj , y2,ki , y3,kl , y4,kl } in (4.13)–

(4.14) is equal to 0. Assume to the contrary that there exists a subsequence such that

it does not hold. We first notice that y2,k = 0. Thus, we consider the following three

cases:

• If y1,kj < 0 for a subsequence K1 ⊆ {1, 2, . . . }, then NR−(y
1,k
j ) = {0} ∀k ∈ K1.

Thus it follows from (4.11) that µk
j → µ∗

j = 0 asK1 ∋ k →∞, which contradicts

µ∗
j > 0.

• If y3,kl > 0 for a subsequence K2 ⊆ {1, 2, . . . }, then y4,kl = 0, ∀k ∈ K2. Thus, it

follows from the explicit expression of NX that γkl → γ∗l = 0 as K2 ∋ k → ∞,

which contradicts γ∗l ̸= 0.

• Similarly as above we can show that it is impossible to have y4,kl < 0, k ∈ K3

for some subsequence K3 ⊆ {1, 2, . . . }.

So far we have shown (2) except the differentiability of {h, g,G,H} with respect to x

at (xk, p∗). By the Rademacher’s theorem, if a function ψ is Lipschitzian around x∗,

then ψ is differentiable almost everywhere around x∗. Based on this fact, if xk → x∗

and ψ(xk) > 0, then one can always find a sequence {x̄k} with ψ(x̄k) > 0 such that

for all k, ψ is differentiable at x̄k and ∥x̄k − xk∥ ≤ 1
k
. Hence we have shown that the
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sequence {x̄k} satisfies the condition (2). The proof of the theorem is complete by

resetting xk with x̄k for each k.

Definition 13. Given r ≥ 0 and x∗ ∈ F(p∗), we let M r
M(x∗, p∗) denote the set of

vectors (λ, µ, γ, ν, ζ) such that

(i) 0 ∈ ∂(x,p)L r(x∗, p∗;λ, µ, γ, ν)− (0, ζ) +NX (x
∗)× {0};

(ii) µ ≥ 0, µj = 0 (j /∈ A∗), γl = 0 (l ∈ I∗+0); νl = 0 (l ∈ I∗0+), γlνl = 0 or γl <

0, νl < 0 (l ∈ I∗00);

(iii) There exists a sequence {(xk, pk)} ⊆ X × Rn converging to (x∗, p∗) such that,

for each k,

µj > 0 =⇒ µjgj(x
k, pk) > 0, λi ̸= 0 =⇒ λihi(x

k, pk) > 0,

γl ̸= 0 =⇒ γlGl(x
k, pk) > 0, νl ̸= 0 =⇒ νHl(x

k, pk) > 0,

and {h, g,G,H} are all differentiable at (xk, pk).

In order to study the subdifferential of the value function of (MPECp), the fol-

lowing constraint qualification for ghpF will be useful.

Definition 14. Let x∗ ∈ F(p∗). We say that the MPEC M-quasinormality holds at

x∗ ∈ F(p∗) if (λ, µ, γ, ν, 0) ∈M 0
M(x∗, p∗) =⇒ (λ, µ, γ, ν) = {0}.

Lemma 4.9. Let x∗ ∈ O(p∗). Assume that (p∗, x∗) is MPEC M-quasinormal for the

constraint region gphX . Then the following upper estimate holds:

∂̂V(p∗) ⊆ {ζ | (λ, µ, γ, ν, ζ) ∈M 1
M(x∗, p∗)} (4.15)

Proof. Let ζ ∈ ∂̂V(p∗). Then, by the definition of Fréchet subdifferential, for an
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arbitrary ϵ > 0, there exists δϵ > 0 such that

V(p)− V(p∗) ≥ ζT (p− p∗)− ϵ∥p− p∗∥, ∀p ∈ B(p∗, δϵ).

By the definition of value function, we have f(x, p) ≥ V(p) for every x ∈ F(p) and

hence

f(x, p)− ζT (p− p∗) + ϵ∥p− p∗∥ ≥ f(x∗, p∗), ∀x ∈ X (p), ∀p ∈ B(p∗, δϵ).

Thus, (x∗, p∗) is a locally optimal solution of the optimization problem

min f(x, p)− ζT (p− p∗) + ϵ∥p− p∗∥

s.t. g(x, p) ≤ 0, h(x, p) = 0,

0 ≤ G(x, p) ⊥ H(x, p) ≥ 0,

(x, p) ∈ X × Rn.

By Theorem 4.8 and the MPEC M-quasinormality assumption, there exists a vector

(λ, µ, γ, ν) such that the following conditions hold:

(i) 0 ∈ ∂(x,p)L 1(x∗, p∗, λ, µ, γ, ν)− (0, ζ) +NX (x
∗)× {0} + ϵ

 0

B

, µ ≥ 0, µj =

0 (j /∈ A∗), γl = 0 (l ∈ I∗+0); νl = 0 (l ∈ I∗0+), γlνl = 0 or γl < 0, νl < 0 (l ∈ I∗00);

(ii) There exists a sequence {(xk, pk)} ⊆ X × Rn converging to (x∗, p∗) such that,

for each k,

µj > 0 =⇒ µjgj(x
k, pk) > 0, λi ̸= 0 =⇒ λihi(x

k, pk) > 0,

γl ̸= 0 =⇒ γlGl(x
k, pk) > 0, νl ̸= 0 =⇒ νlHl(x

k, pk) > 0,
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and {h, g,G,H} are all differentiable at (xk, pk).

The desired upper estimate follows since ϵ is arbitrary.

We now give a tighter estimate for the limiting subdifferential of the value function

in terms of the enhanced M-multipliers than the one given in [47, 48]. To this end,

we first give several lemmas.

The following lemma is similar to Lemma 2.5 in chapter 2 and Proposition 3.6.1

in chapter 3.

Lemma 4.10. If a vector (p∗, x∗) is MPEC M-quasinormal for the constraint region

gphF, then there exists a neighborhood V of (p∗, x∗) such that all vectors (p, x) ∈

gphF ∩ V are MPEC M-quasinormal.

The following lemma can be obtained from the proof of [47, Lemma 3.4].

Lemma 4.11. Assume that φ : Rn → R∪{∞} is Lipschitzian around x∗. If uk → u∗,

vk → v∗, and xk → x∗ with vk → ∂(ukφ)(xk), then v∗ ∈ ∂(u∗φ)(x∗).

To finally establish the estimate for subdifferential of value function, we also need

the following restricted inf-compactness.

Definition 15. [16, Hypothesis 6.5.1] We say that the restricted inf-compactness

holds around p∗ if V(p∗) is finite and there exist a compact Ω and a positive number

ϵ0 such that, for all p ∈ Bϵ0(p∗) for which V(p) < V(p∗) + ϵ0, the problem (MPECp)

has a solution in Ω.

Theorem 4.12. Assume that the restricted inf-compactness holds for (MPECp) around

p∗. Then the value function V(p) is lower semicontinuous at p∗. Suppose further that,

for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC M-quasinormal for the constraint region gphF.
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Then

∂V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 1
M(x∗, p∗)},

∂∞V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 0
M(x∗, p∗)}.

Proof. The lower semicontinuity follows from the restricted inf-compactness immedi-

ately [15, Page 246]. We complete the proof by considering the following two cases:

(a) Let ζ ∈ ∂V(p∗). By the definition, there exist sequences pl →V p
∗ and ζl → ζ

with ζl ∈ ∂̂V(pl). Since the restricted inf-compactness holds, V(p∗) is finite. Since

V(pl) → V(p∗), we have V(pl) < V(p∗) + ϵ0 for each sufficiently large l. By the

restricted inf-compactness again, there exists xl ∈ O(pl) for each sufficiently large l

and {xl} is bounded. Without loss of generality, we assume that xl → x∗. Since

V(p∗)← V(pl) = f(xl, pl)→ f(x∗, p∗), k →∞,

we have f(x∗, p∗) = V(p∗) and hence x∗ ∈ O(p∗). Since the MPEC M-quasinormality

holds at (x∗, p∗) and (xl, pl)→ (x∗, p∗), by Lemma 4.10, the MPEC M-quasinormality

holds at (xl, pl) for each sufficiently large l. Thus, it follows from Lemma 4.9 that,

for each sufficiently large l, there exists a vector (λl, µl, ul, vl) such that

(i) (0, ζl) ∈ ∂(x,p)L 1(xl, pl;λl, µl, ul, vl) +NX (x
l)× {0};

(ii) µl ≥ 0, µlj = 0 (j /∈ Al), γll = 0 (l ∈ Il+0); ν
l

l = 0 (l ∈ Il0+), γll νll = 0 or γll <

0, νll < 0 (l ∈ Il00);
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(iii) there exists a sequence {(xl,k, pl,k)}k converging to (xl, pl) as k →∞ such that

µlj > 0 =⇒ µljgj(x
l,k, pl,k) > 0, λli ̸= 0 =⇒ λlihi(x

l,k, pl,k) > 0,

γlı ̸= 0 =⇒ ulıGı(x
l,k, pl,k) > 0, νlȷ ̸= 0 =⇒ vlȷHȷ(x

l,k, pl,k) > 0,

and {h, g,G,H} are all continuously differentiable at (xl,k, pl,k),

where {Al, Il0+, I
l

00, I
l

+0} is index sets corresponding to (xl, pl). Since (p∗, x∗) is MPEC

M-quasinormal, by using the reduction to absurdity, we can show that the sequence

{(λl, µl, γl, νl)} is bounded (see, e.g, Theorem 2.4 of chapter 2 or Proposition 3.6.2

of chapter 3. Thus, without loss of generality, we may assume that {(λl, µl, γl, νl)}

converges to (λ, µ, γ, ν). Taking a limit in (i)–(ii) above and noting that (ii) is the more

compact form (λl, γl, νl) ∈ NRq
−
(g(xl))×NCm(G(xl), H(xl)), it follows from Lemma

4.11 and the outer semiconituity of limiting subdifferential and limiting normal cone

that

(0, ζ) ∈ ∂(x,p)L 1(x∗, p∗;λ, µ, γ, ν) +NX (x
∗)× {0},

µ ≥ 0, µj = 0 (j /∈ A∗), γl = 0 (l ∈ I∗+0); νl = 0 (i ∈ I∗0+),

γlνl = 0 or γl < 0, νl < 0 (l ∈ J ∗);

Moreover, by the diagonal rule, we can find a sequence {(xl,kl , pl,kl)} converging to

(x∗, p∗) as l →∞ and, for all l,

µj > 0 =⇒ µjgj(x
l,kl , pl,kl) > 0, λi ̸= 0 =⇒ λihi(x

l,kl , pl,kl) > 0,

γı ̸= 0 =⇒ γıGı(x
l,kl , pl,kl) > 0, νȷ ̸= 0 =⇒ νȷHȷ(x

l,kl , pl,kl) > 0,

and {h, g,G,H} are differentiable at (xl,kl , pl,kl). Therefore (λ, µ, γ, ν, ζ) ∈M 1
M(x∗, p∗).

(b) Let ζ ∈ ∂∞V(p∗). By the definition, there exist sequences pl →V p∗, ζl ∈
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∂̂V(pl), and tl ↓ 0 such that tlζ
l → ζ. Similarly as (a), for each l sufficiently large l,

there exists a vector (λl, µl, γl, νl) such that (i)–(ii) hold. Multiplying (i) by tl implies

(0, tlζ
l) ∈ ∂(x,p)(tlL 1)(xl, pl;λl, µl, γl, νl) +NX (x

l)× {0}. (4.16)

Since (p∗, x∗) is MPEC M-quasinormal, by using the reduction to absurdity, we can

show that the sequence {tlλl, tlµl, tlγl, tlνl} is bounded (see, e.g, Theorem 2.4 of

chapter 2 or Proposition 3.6.2 of chapter 3. Without loss of generality, we may

assume that {tlλl, tlµl, tlγl, tlνl} converges to {λ, µ, γ, ν}. Taking a limit in (4.16),

we have from Lemma 4.11 and the outer semiconituity of limiting subdifferential and

limiting normal cone that

(0, ζ) ∈ ∂(x,p)L 0(x∗, p∗;λ, µ, γ, ν) +NX (x
∗)× {0}.

The rest of the proof is similar to (a).

Corollary 4.13. Assume that the restricted inf-compactness holds for (MPECp)

around p∗. Suppose that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC M-quasinormal

for the constraint region gphF. If

∪
x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 0
M(x∗, p∗)} = {0},

then the value function V is Lipschitzian around p∗ with

∅ ̸= ∂V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 1
M(x∗, p∗)}.
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In addition to the above assumptions, if

∪
x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 1
M(x∗, p∗)} = {ζ},

then V is strictly differentiable at p∗ and ∇V(p∗) = ζ.

We now consider the special case where all the functions {f, g, h,G,H} are differ-

entiable. In this case, Definition 13(i) becomes

(i)1 0 ∈ ∇xL r(x∗, p∗;λ, µ, γ, ν) +NX (x
∗); (i)2 ζ = ∇pL r(x∗, p∗;λ, µ, γ, ν).

We define the set of the singular and nonsingular enhanced M-multipliers as the set

of vectors (λ, µ, γ, ν)

(i) 0 ∈ ∇xL r(x∗, p∗;λ, µ, γ, ν) +NX (x
∗);

(ii) µ ≥ 0, µj = 0 (j /∈ A∗), γl = 0 (l ∈ I∗+0); νl = 0 (l ∈ I∗0+), γlνl = 0 or γl <

0, νl < 0 (l ∈ I∗00);

(iii) There exists a sequence {(xk, pk)} ⊆ C converging to x∗ such that, for each k,

µj > 0 =⇒ µjgj(x
k, p∗) > 0, λi ̸= 0 =⇒ λihi(x

k, p∗) > 0,

γl ̸= 0 =⇒ γlGl(x
k, p∗) > 0, νl ̸= 0 =⇒ νlHl(x

k, p∗) > 0,

and {h, g,G,H} are all differentiable at (xk, p∗).

M i
M(ζ, x, p) := {(λ, µ, γ, ν) | (λ, µ, γ, ν, ζ) ∈Mr

M(x, p)}.

When all the functions {f, g, h,G,H} are differentiable, under this circumstance, the

set M i
M(ζ, x, p) is actually the set of multipliers (λ, µ, γ, ν) which are independent
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of ζ. Thus, we denote the singular and nonsingular enhanced M-multipliers sets as

M i
M(x, p), i = 0, 1, respectively.

The following example shows that our result Theorem 4.12 is much sharper than

its M-counterpart [48, Theorem 4.4].

Example 4. Consider the problem

min
x

f(x) ≡ 1

s.t. g(x) := x1 + x2 + p ≤ 0,

0 ≤ G(x) := x1 + p ⊥ H(x) := x2 ≥ 0.

It is clear that the value function V(p) ≡ 1 and for p∗ = 0, the unique feasible

solution (x∗1, x
∗
2) = (0, 0) is the optimal solution. By solving the following singular

and nonsingular M-stationarity systems for the parametric MPEC at x∗ ∈ X (p∗)

µ

 1

1

+ γ

 1

0

+ ν

 0

1

 =

 0

0

 ,

µ ≥ 0, γ < 0, ν < 0 or γν = 0,

we find the sets of singular and nonsingular M-multipliers:

Mr(x∗, p∗) := {µ(1,−1,−1) | µ ≥ 0}, r = 0, 1.

Since the set of singular M-multipliers contains nonzero vector, [48, Theorem 4.4] is

not applicable and one cannot even get the Lipschitz continuity of the value function.

However, for any sequence (xk, pk) → (x∗, p∗) and any multiplier µ(1,−1,−1) with
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µ > 0, the following system of inequalities does not hold

µ(xk1 + xk2 + pk) > 0, −λ(xk1 + pk) > 0, −µxk2 > 0.

Thus, the sets of enhanced singular and nonsingular M-multipliers areMr
M(x∗, p∗) =

{(0, 0, 0)} for r = 0, 1, which are contained strictly in Mr(x∗, p∗) for r = 0, 1, respec-

tively. Then the MPEC M-quasinormality holds at x∗ ∈ F(p∗). Since

{µ+ γ | (µ, γ, ν) ∈M0
M(x∗, p∗)} = {µ+ γ | (µ, γ, ν) ∈M1

M(x∗, p∗)} = {0},

by Corollary 4.13, we have that the value function V is strictly differentiable with

∇V(p∗) = 0.

4.4.2 Subdifferential via enhanced C-multipliers

In this subsection, we study the subdifferential of the value function in terms of the

enhanced C-multipliers. To this end, we first give the nonsmooth enhanced Fritz John

type C-stationarity condition for MPECs.

Lemma 4.14. [67, Theorems 7.5 and 7.6] Let g(x) := max{gi(x) | i = 1, · · · ,m},

where gi : Rn → R ∪ {∞}, and I(x̄) := {i | gi(x̄) = g(x̄)}. Let gi, i = 1, · · · ,m, be

Lipschitzian around x̄. Then g is Lipschitzian around x̄ and

∂g(x̄) ⊆
∪
{∂(

∑
i∈I(x̄)

λigi)(x̄) |
∑
i∈I(x̄)

λi = 1, λi ≥ 0, i ∈ I(x̄)}.

Let f(x) := min{fi(x) | i = 1, · · · ,m}, where fi : Rn → R ∪ {∞}, and J(x̄) :=

{i | fi(x̄) = f(x̄)}. Assume that fi is lower semicontinuous near x̄ for i ∈ J(x̄) and



132

lower semicontinuous at x̄ for i /∈ J(x̄). Then f is lower semicontinuous near x̄ and

∂f(x̄) ⊆
∪
{∂fi(x̄) | i ∈ J(x̄)}.

Theorem 4.15. If x∗ is a local minimizer of (MPECp∗), then there exist nonzero

vectors (r, λ, µ, γ, ν) with r ≥ 0 such that

(i) 0 ∈ ∂xL r(x∗, p∗;λ, µ, γ, ν) +NX (x
∗);

(ii) µ ≥ 0, µj = 0 (j /∈ A∗), γl = 0 (l ∈ I∗+0), νl = 0 (l ∈ I∗0+), γlνl ≥ 0 (l ∈ I∗00);

(iii) there exists a sequence {xk} ⊆ X converging to x∗ such that, for each k,

µj > 0 =⇒ µjgj(x
k, p∗) > 0,

λi ̸= 0 =⇒ λihi(x
k, p∗) > 0,

γl ̸= 0 =⇒ γl min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

νl ̸= 0 =⇒ νl min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

and {h(·, p∗), g(·, p∗),min(Gl, Hl)(·, p∗)} are all differentiable at xk.

Proof. Since the feasible region F(p) of (MPECp) can be written as

F(p) = {x ∈ X | g(x, p) ≤ 0, h(x, p) = 0,min(G(x, p), H(x, p)) = 0}.

Thus, by Theorem 2.1 of chapter 2 or Corollary 3.4 of chapter 3, there exist nonzero

vectors (r, λ, µ, ξ) with r ≥ 0 such that the following conditions hold:

(i) 0 ∈ r∂xf(x∗, p∗) +
∑q

j=1 µj∂xgj(x
∗, p∗) +

∑p
i=1 ∂x(λihi)(x

∗, p∗)

+
∑m

l=1 ∂x(ξl min(Gl, Hl))(x
∗, p∗) +NX (x

∗), µ ≥ 0, µj = 0 (j /∈ A∗);
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(ii) There exists a sequence {xk} ⊆ X converging to x∗ such that, for each k,

µj > 0 =⇒ µjgj(x
k, p∗) > 0,

λi ̸= 0 =⇒ λihi(x
k, p∗) > 0,

ξl ̸= 0 =⇒ ξl min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

and {h(·, p∗), g(·, p∗),min(Gl, Hl)(·, p∗)} are all differentiable at xk.

We investigate ∂x(ξl min(Gl, Hl))(x
∗, p∗) in the following two cases:

(1) ξl ≥ 0: It follow from Lemma 4.14 that

∂x(ξl min(Gl, Hl))(x
∗, p∗) = ξl∂x min(Gl, Hl)(x

∗, p∗)

⊆


ξl∂xGl(x

∗, p∗), l ∈ I∗0+,

ξl∂xHl(x
∗, p∗), l ∈ I∗+0,

ξl∂xGl(x
∗, p∗) ∪ ξl∂xHl(x

∗, p∗), l ∈ I∗00.

(2) ξl < 0: It follow from Lemma 4.14 that

∂x(ξl min(Gl, Hl))(x
∗, p∗) = ∂xmax(ξlGl, ξlHl)(x

∗, p∗)

⊆


∂x(ξlGl)(x

∗, p∗), l ∈ I∗0+,

∂x(ξlHl)(x
∗, p∗), l ∈ I∗+0,

{∂x(αξlGl)(x
∗, p∗) + ∂x((1− α)ξlHl)(x

∗, p∗) | 0 ≤ α ≤ 1}, l ∈ I∗00.

Therefore, by defining the multipliers {γ, ν} using {ξ, α}, the desired result follows

from (i)–(ii) and (1)–(2) immediately.

Remark 2. In the above theorem, all the nonsmooth functions are required to be

differentiable at a given sequence in our nonsmooth enhanced optimality conditions in
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contrast to the required proximal subdifferentiability at a given sequence in Theorem

2.1 of chapter 2. Because all the involved functions are required to be Lipschitzian

around the point of interest, by Rademacher’s theorem instead of the density theorem

in [17, Theorem 3.1], the proximal subdifferentiability in Theorem 2.1 of chapter 2

can be replaced by the differentiability.

Definition 16. Given r ≥ 0, we let M r
C(x

∗, p∗) denote the set of vectors (λ, µ, γ, ν, ζ)

at x∗ ∈ F(p∗) such that

(i) 0 ∈ ∂(x,p)L r(x∗, p∗, λ, µ, γ, ν)− (0, ζ) +NX (x
∗)× {0};

(ii) µ ≥ 0, µj = 0 (j /∈ A∗), γl = 0 (l ∈ I∗+0); νl = 0 (l ∈ I∗0+), γlνl ≥ 0 (l ∈ I∗00);

(iii) There exists a sequence {(xk, pk)} ⊆ X × Rn converging to (x∗, p∗) such that,

for each k,

µj > 0 =⇒ µjgj(x
k, pk) > 0,

λi ̸= 0 =⇒ λihi(x
k, pk) > 0,

γl ̸= 0 =⇒ γl min(Gl(x
k, pk), Hl(x

k, pk)) > 0,

νl ̸= 0 =⇒ νl min(Gl(x
k, pk), Hl(x

k, pk)) > 0,

and {h, g,min(Gl, Hl)} are all differentiable at (xk, pk).

Definition 17. We say that the MPEC C-quasinormality holds at (p∗, x∗) for the

region gphX if (λ, µ, γ, ν, 0) ∈M 0
C(x

∗, p∗) =⇒ (λ, µ, γ, ν) = 0.

It is not difficult to verify that the MPEC C-quasinormality persists in some

feasible neighborhood.

Similarly to the previous subsection, we can easily get the following results.
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Theorem 4.16. Assume that the restricted inf-compactness holds for (MPECp) around

p∗. Then the value function V(p) is lower semicontinuous at p∗. Suppose further that,

for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC C-quasinormal for the constraint region gphF.

Then

∂V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 1
C(x

∗, p∗)},

∂∞V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, γ, ν, ζ) ∈M 0
C(x

∗, p∗)}.

Corollary 4.17. Assume that the restricted inf-compactness holds for (MPECp)

around p∗. Suppose that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC C-quasinormal

for the constraint region gphX . If

∪
x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 0
C(x

∗, p∗)} = {0},

then the value function V is Lipschitzian around p∗ with

∅ ̸= ∂V(p∗) ⊆
∪

x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 1
C(x

∗, p∗)}.

In addition to the above assumptions, if

∪
x∗∈O(p∗)

{ζ | (λ, µ, γ, ν, ζ) ∈M 0
C(x

∗, p∗)} = {ζ},

then V is strictly differentiable at p∗ and ∇V(p∗) = ζ.

We now consider the special case where all the functions {f, g, h,G,H} are differ-

entiable. In this case, Definition 16(i) becomes

(i)1 0 ∈ ∇xL r(x∗, p∗;λ, µ, γ, ν) +NX (x
∗); (i)2 ζ = ∇pL r(x∗, p∗;λ, µ, γ, ν).
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We define the set of the singular and nonsingular enhanced C-multipliers as the set

of vectors (λ, µ, γ, ν) satisfying (i)1 and Definition 16(ii)–(iii), and denote them by

Mr
C(x

∗, p∗), r = 0, 1, respectively.

The following example shows that Theorem 4.16 is much sharper than its C-

counterpart [48, Theorem 4.8].

Example 5. Consider the following example

min
x

f(x) := x21 + x22

s.t. g(x) := x1 + x2 + p ≥ 0,

0 ≤ G(x) := x1 + p ⊥ H(x) := x2 ≥ 0.

The value function V(p) =

 0 p ≥ 0

p2 p < 0
is a smooth function. For p∗ = 0, the unique

optimal solution x∗ = (0, 0). By solving the following singular and nonsingular C-

stationarity systems for the parametric MPEC at x∗ ∈ F(p∗):

−µ

 1

1

+ γ

 1

0

+ ν

 0

1

 =

 0

0

 , µ ≥ 0, γν ≥ 0,

we find the sets of singular and nonsingular C-multipliers:

Ci(x∗, p∗) := {(1, 1, 1)λ | λ ≥ 0}, i = 0, 1.

Since the set of singular C-multipliers contains nonzero vector, [48, Theorem 4.8] is

not applicable and one cannot even get the Lipschitz continuity of the value function.

However, for any sequence (xk, pk)→ (x∗, p∗) and any multiplier µ(1, 1, 1) with µ > 0,
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the following system of inequalities does not hold:

µ(xk1 + xk2 + pk) < 0, µmin(xk1 + pk, xk2) > 0. (4.17)

Thus, the sets of singular and nonsingular enhanced C-multipliers areMi
C(x

∗, p∗) =

{0} for i = 0, 1, which are contained strictly in Ci(x∗, p∗) for i = 0, 1, respectively.

Therefore, the MPEC C-quasinormality holds at x∗ ∈ F(p∗). Since

{µ+ γ | (µ, γ, ν) ∈M0
C(x

∗, p∗)} = {µ+ γ | (µ, γ, ν) ∈M1
C(x

∗, p∗)} = {0},

by Corollary 4.17, we get that the value function is strictly differentiable at p∗ with

∇V(p∗) = 0.

4.5 Conclusions

In this chapter, we have shown that the MPEC-LICQ is not a constraint qualification

for S-stationary condition if the objective function is not differentiable. Moreover,

we have derived the enhanced M-stationary condition and introduced the associated

generalized pseudo-normality and quasi-normality conditions for nonsmooth MPECs.

We have also introduced a weaker version of the MPEC-CPLD and shown that it

implies the MPEC quasi-normality. We have shown the existence of a local error

bound under either the MPEC generalized pseudo-normality or quasi-normality un-

der the subdifferential regularity condition. Finally we give upper estimates for the

subdifferential of the value function in terms of the enhanced M- and C-multipliers

respectively.
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Chapter 5

New results on constraint qualifica-

tions for nonlinear programming prob-

lems

5.1 Introduction

In this chapter we study the following nonlinear programming problem in Rn:

min f(x) s.t. g(x) ≤ 0, h(x) = 0, (5.1)

where f : Rn → R and g : Rn → Rq, h : Rn → Rp are all continuously differentiable

functions. Let F be the feasible region of problem (5.1). For x∗ ∈ F , we denote by

A(x∗) the index set of active inequality constraints at x∗, i.e., A(x∗) := {j : gj(x∗) =

This chapter is the content of Guo, L., Zhang, J. and Lin, G.H., “New Results on Constraint
Qualifications for Nonlinear Extremum Problems and Extensions.” J. Optim. Theo. Appl., doi:
10.1007/s10957-013-0510-6.
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0}, and by Λ(x∗) the set of Lagrangian multipliers associated with x∗, i.e.,

Λ(x∗) := {(λ, µ) : ∇xL(x
∗, λ, µ) = 0, µ ≥ 0, ⟨g(x∗), µ⟩ = 0},

where the Lagrange function L(x, λ, µ) is defined by

L(x, λ, µ) := f(x) + ⟨g(x), µ⟩+ ⟨h(x), λ⟩.

It is well-known that one main role of constraint qualifications is to provide the

validity of the Lagrange’s principle, that is, to ensure the existence of Lagrangian

multipliers associated with a local minimizer; see, e.g., [25, 40, 50]. Recently, some

constraint qualifications such as the relaxed constant rank constraint qualification

(RCRCQ) [56], the relaxed constant positive linear dependence condition (RCPLD)

[1], the constant rank of the subspace component condition (CRSC) [2], the relaxed

Mangasarian–Fromovitz constraint qualification (RMFCQ) and the constant rank

Mangasarian-Fromovitz constraint qualification (CRMFCQ) [44] are introduced for

nonlinear programming problems. These constraint qualifications are weaker than the

standard LICQ and MFCQ and most of them have been extended to the MPECs; see

chapter 4. The relations among these constraint qualifications are presented in [1,2,28]

and the relations between these constraint qualifications and local error bounds are

investigated in [2, 13,55,56].

In this chapter, we continue to study the above new constraint qualifications. We

define the linearized cone of problem (5.1) at x∗ ∈ F by

L(x∗) := {d : ⟨∇gj(x∗), d⟩ ≤ 0 (j ∈ A(x∗)), ⟨∇hi(x∗), d⟩ = 0 (i = 1, · · · , p)} .

Definition 18. Given A := {a1, · · · , al} and B := {b1, · · · , bs}, (A,B) is said to be
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positively linearly dependent iff there exist α and β such that α ≥ 0, (α, β) ̸= 0, and

l∑
i=1

αia
i +

s∑
j=1

βjb
j = 0.

Otherwise, (A,B) is said to be positively linearly independent.

Andreani et al. presented the RCPLD condition in [1], which is a relaxation of

the CPLD introduced in [71], and they further proposed a weaker constraint qual-

ification, called CRSC, in [2]. More recently, two relaxed constraint qualifications,

called CRMFCQ and RMFCQ respectively, were introduced in [44].

Definition 19. Let x∗ ∈ F . (i) We say that the constant rank Mangasarian-

Fromovitz constraint qualification (CRMFCQ) holds at x∗ iff

(a) there exists δ > 0 such that {∇hi(x)}pi=1 has the same rank for each x ∈ Bδ(x∗);

(b) there exists d such that

⟨∇gj(x∗), d⟩ < 0 (j ∈ A(x∗)), ⟨∇hi(x∗), d⟩ = 0 (i = 1, · · · , p).

(ii) Let I ⊆ {1, · · · , p} be such that {∇hi(x∗)}i∈I is a basis for span {∇hi(x∗)}pi=1.

We say that the relaxed constant positive linear dependence (RCPLD) condition holds

at x∗ iff there exists δ > 0 such that

(c) {∇hi(x)}pi=1 has the same rank for each x ∈ Bδ(x∗);

(d) for each A ⊆ A(x∗), if ({∇gj(x∗) : j ∈ A}, {∇hi(x∗) : i ∈ I}) is positively

linearly dependent, then {∇gj(x),∇hi(x) : j ∈ A, i ∈ I} is linearly dependent

for each x ∈ Bδ(x∗).

(iii) Let J− := {j ∈ A(x∗) : −∇gj(x∗) ∈ L(x∗)o}. We say that the constant rank of

the subspace component (CRSC) condition holds at x∗ iff there exists δ > 0 such that
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the family of gradients {∇gj(x),∇hi(x) : j ∈ J−, i ∈ {1, · · · , p}} has the same rank

for every x ∈ Bδ(x∗).

(iv) Let A0 := {j ∈ A(x∗) : ⟨∇gj(x∗), d⟩ = 0 for all d ∈ L(x∗)}. We say that

the relaxed Mangasarian-Fromovitz constraint qualification (RMFCQ) holds at x∗ iff

there exists δ > 0 such that the family of gradients {∇gj(x),∇hi(x) : j ∈ A0, i ∈

{1, · · · , p}} has the same rank for every x ∈ Bδ(x∗).

Note that the RMFCQ is actually the generalized Mangasarian-Fromovitz con-

dition introduced in [53], which requires the following redundant condition: There

exists d such that

⟨∇hi(x∗), d⟩ = 0 (i ∈ {1, · · · , p}), ⟨∇gj(x∗), d⟩ = 0 (i ∈ A0),

⟨∇gj(x∗), d⟩ < 0 (j ∈ A(x∗)\A0);

see [44] for more details. It is not difficult to verify that J− = A0. Therefore, the

CRSC coincides with the RMFCQ. It follows from [2, Theorem 4.3] that the RCPLD

implies the CRSC (or, equivalently, the RMFCQ).

5.2 New results on constraint qualifications

In this section, we give some new results related to the constraint qualifications listed

in the last section.

Theorem 5.1. The CRMFCQ implies the RCPLD.

Proof. Assume that the CRMFCQ holds at x∗. Let I ⊆ {1, · · · , p} be such that

{∇hi(x∗)}i∈I is a basis for span {∇hi(x∗)}pi=1. Then, {∇hi(x∗)}i∈I is linearly in-

dependent. This, together with (b) in Definition 19, implies that the system {x :



142

g(x) ≤ 0, hi(x) = 0 (i ∈ I)} satisfies the MFCQ at x∗. By the Motzkin’s transpo-

sition theorem, the family of gradients ({∇gj(x∗) : j ∈ A(x∗)}, {∇hi(x∗) : i ∈ I})

is positively linearly independent. Thus, the condition (d) in Definition 19 holds.

Since (a) coincides with (c) in Definition 19, the RCPLD holds at x∗. The proof is

complete.

Thus, we have the following relations:

CRMFCQ =⇒ RCPLD =⇒ CRSC/RMFCQ.

The following example from [1] shows that the converse of Theorem 5.1 is not true.

Example 6. Consider the constraint system

{x ∈ R2 : h(x) = 0, g1(x) ≤ 0, g2(x) ≤ 0},

where h(x) := −(x1+1)2−x22+1, g1(x) := x21+(x2+1)2−1, and g2(x) := −x2. Pick

a feasible point x∗ = (0, 0). It is not hard to verify that the RCPLD holds at x∗. On

the other hand, it is easy to verify that the following system in d has no solution:

⟨∇g1(x∗), d⟩ < 0, ⟨∇g2(x∗), d⟩ < 0.

This means that the CRMFCQ fails at x∗.

Guo and Lin [26] gave an upper estimate of the Fréchet normal cone in the set-

ting of MPEC under the so-called MPEC-RCPLD condition. Since, for nonlinear

problems, the MPEC-RCPLD reduces to the RCPLD, we have the following result

immediately.
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Theorem 5.2. If the RCPLD holds at x ∈ F , then

NF(x) ⊆ ∇g(x)N[−∞,0]q(g(x)) +∇h(x)N{0}p(h(x)).

Proof. If the RCPLD holds at x, by [26, Theorem 4.1], we have

N̂F(x) ⊆ ∇g(x)N[−∞,0]q(g(x)) +∇h(x)N{0}p(h(x)).

Since the RCPLD persists in some feasible neighborhood of x (see [1, Theorem 4]),

we have the desired conclusion.

Kruger et al. [44, Theorem 2] showed that the CRMFCQ is robust, which means

that, once it is satisfied at x∗, for any objective function f and any local minimizer

x of problem (5.1) in a feasible neighborhood of x∗, x must be a stationary point

of (5.1). In fact, we can show a stronger result, that is, it persists in some feasible

neighborhood of x∗ or, in other words, it is well-posed in the sense of [44,54].

Theorem 5.3. If the CRMFCQ holds at x∗ ∈ F , then there exists δ′ > 0 such that

the CRMFCQ holds at each x ∈ F ∩ Bδ′(x∗).

Proof. Let δ and d be given as in Definition 19 (i). Let I ⊆ {1, · · · , p} be such

that {∇hi(x∗)}i∈I is a basis for span {∇hi(x∗)}pi=1. Then {∇hi(x∗)}i∈I is linearly

independent, which together with (b) in Definition 19, implies that the system F1 :=

{x : g(x) ≤ 0, hi(x) = 0 (i ∈ I)} satisfies the MFCQ at x∗. Since the MFCQ

persists in some feasible neighborhood of x∗, there exists δ1 ∈ (0, δ) such that, for

each x ∈ Bδ1(x∗) ∩ F1,

– {∇hi(x)}i∈I is linearly independent;
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– there exists d such that

⟨∇hi(x), d⟩ = 0 (i ∈ I), ⟨∇gj(x), d⟩ < 0 (j ∈ A(x)). (5.2)

On the other hand, since {∇hi(x)}pi=1 has the same rank for each x ∈ Bδ(x∗), we

can choose δ2 ∈ (0, δ1) such that {∇hi(x)}i∈I is a basis for span {∇hi(x)}pi=1 for each

x ∈ Bδ2(x∗). Thus, the vectors {∇hi(x) : i ∈ {1, · · · , p}\I} can be represented by

{∇hi(x)}i∈I and hence, by (5.2),

⟨∇hi(x), d⟩ = 0 (i = 1, · · · , p). (5.3)

From (a) in Definition 19, F ⊆ F1, and (5.2)–(5.3), we have the desired result by

letting δ′ = δ2
2
. This completes the proof.

5.3 Local error bounds

In this section, we discuss the existence of local error bounds for the constraint system

F .

Definition 20. The system F is said to admit a local error bound at x∗ ∈ F iff there

exist δ > 0 and κ > 0 such that

distF(x) ≤ κ(∥h(x)∥+ ∥g+(x))∥), ∀x ∈ Bδ(x∗).

Since the above inequality automatically holds if x ∈ F , we only need to focus

on the infeasible points near the reference point. There are many approaches such

as the primal space error bound criteria in terms of slopes and the dual criteria in

terms of dual subdifferentials (see, e.g., [22, 79]) can be used to see whether a local
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error bound exists. Another way is to verify the boundedness of KKT multiplier

sequence associated with the closest feasible solution sequence from any infeasible

sequence to the feasible region [55,56]. In this section, we employ the latter way due

to our observation that the proof techniques used in the literature can be somehow

improved.

Let y ∈ Rn\F . Denote by
∏

F(y) the projection set of y onto F under the

Euclidean norm, that is,
∏

F(y) is the solution set of the optimization problem

min
x

fy(x) := ∥x− y∥ s.t. x ∈ F .

Note that, if y /∈ F , fy is continuously differentiable with respect to x. For any given

y /∈ F , we denote by Λy(x) the set of multipliers of the above problem at x.

We next give a characterization of the existence of local error bounds for F .

Theorem 5.4. The following assertions are equivalent:

(a) The system F admits a local error bound at x∗ ∈ F .

(b) For each sequence {yk} converging to x∗ ∈ F with yk /∈ F , there exists a

number M > 0 such that, for all k, the condition Λk
M(xk) = {(λ, µ) ∈ Λyk(x

k) :

∥(λ, µ)∥ ≤M} ≠ ∅ with some point xk in
∏

F(y
k).

Proof. The implication (a)⇒(b) follows from [55, Theorem 2] immediately. We next

show (b)⇒(a).

Let yk → x∗ with yk /∈ F and xk ∈
∏

F(y
k). It is obvious that xk → x∗ as k →∞.

We then have yk − xk → 0 as k → ∞. If x∗ ∈ intF , the assertion is obviously

true. Consider the case where x∗ ∈ ∂F . By the assumption, there exists a multiplier

sequence {(λk, µk)} with λk ≥ 0 and ∥(λk, µk)∥ ≤ M for all k such that, for each k
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and j,

µk
j gj(x

k) = 0,
xk − yk

∥xk − yk∥
+

q∑
j=1

µk
j∇gj(xk) +

p∑
i=1

λki∇hi(xk) = 0. (5.4)

We obtain from the above discussion that, for each k sufficiently large,

∥xk − yk∥ =
⟨ q∑

j=1

µk
j∇gj(xk) +

p∑
i=1

λki∇hi(xk), yk − xk
⟩

≤
q∑

j=1

µk
j

(
gj(y

k)− gj(xk) + o(∥vk − xk∥)
)

+

p∑
i=1

λki

(
hi(y

k) + o(∥yk − xk∥)
)

=

q∑
j=1

µk
j gj(y

k) +

p∑
i=1

λki hi(y
k) +

( q∑
j=1

µk
j +

p∑
i=1

λki

)
o(∥yk − xk∥)

≤
q∑

j=1

µk
j gj(y

k) +

p∑
i=1

λki hi(y
k) +

1

2
∥yk − xk∥,

where the third equality follows from µk
j gj(x

k) = 0 for each k and i, and the last

inequality follows from the fact that o(∥yk−xk∥)
∥yk−xk∥ → 0 as k → ∞ and the boundedness

of {(λk, µk)}. This means

distF(y
k) = ∥yk − xk∥ ≤ 2M

( q∑
j=1

g+j (y
k) +

p∑
i=1

|hi(yk)|
)
.

Thus, for any sequence {yk} converging to x∗ with yk /∈ F , there exists a number

M > 0 such that, for each k sufficiently large,

distF(y
k) ≤ 2M(∥h(yk)∥1 + ∥g+(yk)∥1). (5.5)

Suppose to the contrary that the local error bound condition does not hold, i.e., there
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exists yk → x∗ with yk /∈ F such that, for each k sufficiently large,

distF(y
k) > k(∥h(yk)∥+ ∥g+(yk)∥).

This contradicts (5.5) and hence the local error bound condition holds at x∗ ∈ F .

In the above theorem, to guarantee the existence of local error bounds, we only

require the constraint functions to be once continuously differentiable. Therefore,

Theorem 5.4 improves [56, Theorem 2] and [13, Lemma 4.2], where the constraint

functions are assumed to be once continuously differentiable and have locally Lips-

chitzian derivatives. By virtue of Theorem 5.4, we can show that the RCPLD implies

the local error bound condition if the constraint functions are continuously differen-

tiable, which improves [1, Theorem 7] and [13, Theorem 4.1] because the constraint

functions only need to be once continuously differentiable here.

Theorem 5.5. If the RCPLD holds at x∗ ∈ F , then the local error bound condition

holds at x∗, i.e., there exist δ > 0 and κ > 0 such that

distF(x) ≤ κ(∥h(x)∥+ ∥g+(x)∥), ∀x ∈ Bδ(x∗).

Proof. To make use of Theorem 5.4, it is sufficient to prove that condition (b) of

Theorem 5.4 holds if the RCPLD holds. We only need to consider the case where

x∗ ∈ ∂F . Let xk → x∗ with xk /∈ F and x̄k ∈
∏

F(x
k). Obviously, we have xk − x̄k ∈

N̂F(x̄
k) and hence

xk − x̄k

∥xk − x̄k∥
∈ N̂F(x̄

k). (5.6)

Since x̄k → x∗ as k → ∞ and the RCPLD persists in a feasible neighborhood of x∗

(see [1, Theorem 4]), the RCPLD holds at x̄k when k is sufficiently large and then,
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by (5.6) and Theorem 5.2, there exist λk ≥ 0 and µk such that

xk − x̄k

∥xk − x̄k∥
=

∑
j∈A(x̄k)

µk
j∇gj(x̄k) +

p∑
i=1

λki∇hi(x̄k). (5.7)

Let I ⊆ {1, · · · , p} be such that {∇hi(x∗)}i∈I is a basis for span {∇hi(x∗)}pi=1. Then

{∇hi(x∗)}i∈I is linearly independent. By the RCPLD assumption, {∇hi(x)}pi=1 has

the same rank for each x ∈ Bδ(x∗). Thus, it is not hard to see that {∇hi(x̄k)}i∈I is

a basis for span {∇hi(x̄k)}pi=1 for each k sufficiently large. Thus, it follows from (5.7)

and Lemma 4.3 that there exist Ak ⊆ A(x̄k) and µ̄k ≥ 0, λ̄k such that

xk − x̄k

∥xk − x̄k∥
=

∑
j∈Ak

µ̄k
j∇gj(x̄k) +

∑
i∈I

λ̄ki∇hi(x̄k),

and the vectors

{∇hi(x̄k), ∇gj(x̄k) : i ∈ I, j ∈ Ak} (5.8)

are linearly independent. Without any loss of generality, we assume that Ak ≡ A

(otherwise, we can choose a subsequence). Thus, we have

xk − x̄k

∥xk − x̄k∥
=

∑
j∈A

µ̄k
j∇gj(x̄k) +

∑
i∈I

λ̄ki∇hi(x̄k). (5.9)

Let µ̄k
j = 0 when j ∈ {1, · · · , q}\A and λ̄ki = 0 when i ∈ {1, · · · , p}\I. We next

show that {∥(λ̄k, µ̄k)∥} is bounded. Without any loss of generality, we assume to the

contrary that ∥(λ̄k, µ̄k)∥ → ∞ as k →∞ and (λ̄k,µ̄k)

∥(λ̄k,µ̄k)∥ → (λ∗, µ∗) ̸= 0. Dividing (5.9)

by ∥(λ̄k, µ̄k)∥ and taking a limit, we have

∑
j∈A

µ∗
j∇gj(x∗) +

∑
i∈I

µk
i∇hi(x∗) = 0.
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This and (5.8) contradict the RCPLD assumption at x∗. Thus, {∥(λ̄k, µ̄k)∥} is bound-

ed, i.e., there exists a number M > 0 such that the condition Λk
M(x) = {(λ̄, µ̄) ∈

Λvk(x) : ∥(λ̄, µ̄)∥ ≤M} ̸= ∅ holds at x̄k =
∏

F(x
k). It follows from Theorem 5.4 that

the system F admits a local error bound at x∗.

By the fact that the RCPLD implies the existence of local error bounds, An-

dreani et al. [2] showed that, under the twice continuous differentiability of constraint

functions, the CRSC (or, equivalently, the RMFCQ) implies the existence of local

error bounds. Kruger et al. [44, Theorem 4] showed the same result under the locally

Lipschitz continuity of derivatives of constraint functions.

Corollary 5.6. If the CRSC (or, equivalently, the RMFCQ) holds at x∗, then there

exist δ > 0 and κ > 0 such that

distF(x) ≤ κ(∥h(x)∥+ ∥g+(x)∥), ∀x ∈ Bδ(x∗).

Proof. First, as stated in [2, Lemma 5.3], the constraints in J− := {j ∈ A(x∗) :

−∇gj(x∗) ∈ L(x∗)o} are actually equality constraints in a neighborhood of x∗. It is

natural to consider the feasible set FE:

FE = {x : hi(x) = 0 ∀i ∈ I, gj(x) = 0 ∀j ∈ J−, gj(x) < 0 ∀j ∈ A(x) \ J−} ,

which is equivalent to the original feasible set F close to x∗. It is trivial that the

CRSC point (with respect to F) x∗ verifies RCPLD as a feasible point of the set FE.

Now, using Theorem 5.5, the system FE admits a local error bound at x∗, which

requires only once continuous differentiability of the involved constraint functions.

Then following the proof idea of [2, Theorem 5.5], we obtain the desired result.

Since the local error bound condition is equivalent to the calmness of the associated
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perturbed constraint mapping [39], we have the following result from [39, Proposition

1] and Corollary 5.6 immediately.

Corollary 5.7. If the CRSC (or, equivalently, the RMFCQ) holds at x∗, then the

Abadie constraint qualification holds at x∗, i.e., TF(x∗) = L(x∗).

Moldovan and Pellegrini [58] introduced a regularity condition for nonlinear prob-

lems to ensure the validity of Lagrange’s principle. From Corollary 5.7 and [58, The-

orem 4.1], we can obtain the following result immediately.

Corollary 5.8. If the CRSC (or, equivalently, the RMFCQ) holds at x∗, then the

regularity condition given in [58] holds at x∗.

5.4 Extensions to MPEC

In this section, we extend the results given in the previous sections to the MPEC

problem defined in chapter 4.

As discussed in section 4.2 of chapter 4 that, since the feasible region of the MPEC

problem contains some complementarity constraints, most constraint qualifications

including the RCPLD are not satisfied with any degree of freedom. This means that

Theorem 5.5 cannot be applied to MPEC directly. In order to derive similar results

for MPEC, some new techniques based on the special structure of MPEC are needed.

In [13], Chieu and Lee gave lots of results under a new MPEC constraint qual-

ification called MPEC-rCPLD and the condition that the constraint functions are

continuously differentiable and their derivatives are locally Lipshitizian. In fact, we

can improve Theorem 4.2 and Corollaries 4.1–4.2 given in [13] to the case where

the constraint functions are only once continuously differentiable by making use of

Theorem 5.4 instead of [13, Lemma 4.2].
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Next we discuss the local error bound condition for the constraint region of the

MPEC. Let F denote the feasible region. In [26], the MPEC-RCPLD introduced

in [28] was shown to be a constraint qualification for M-stationarity. In what follows,

we next show that the MPEC-RCPLD implies the existence of local error bounds

if the strict complementarity condition holds. We also give a sufficient condition to

admit a local error bound in the setting of MPEC. Since the strict complementarity

is a strong assumption, for a slightly stronger constraint qualification called MPEC-

ERCPLD, we show that it can imply the existence of local error bounds.

Given a point x and three index sets I1 ⊆ {1, · · · , p}, I2, I3 ⊆ {1, · · · ,m}, we

denote

G (x; I1, I2, I3) := {∇hi(x),∇Gı(x),∇Hȷ(x) : j ∈ I1, ı ∈ I2, ȷ ∈ I3}.

Definition 21. Let x∗ ∈ F and I1 ⊆ {1, · · · , p}, I2 ⊆ I0+, I3 ⊆ I+0 be the index sets

such that G(x∗; I1, I2, I3) is a basis for spanG(x∗; {1, · · · , p}, I0+, I+0). We say that

the MPEC relaxed constant positive linear dependence condition (MPEC-RCPLD)

holds at x∗ iff there exists δ > 0 such that

– G(x; {1, · · · , p}, I0+, I+0) has the same rank for each x ∈ Bδ(x∗);

– for each I4 ⊆ A(x∗) and I5, I6 ⊆ I00, if there exist multipliers {λ, µ, γ, ν} with

µj ≥ 0 for each j ∈ I4 and either γlνl = 0 or γl > 0, νl > 0 for each l ∈ I00,

which are not all zero, such that

∑
j∈I4

µj∇gj(x∗) +
∑
i∈I1

λi∇hi(x∗)−
∑

ı∈I2∪I5

uı∇Gı(x
∗)−

∑
ȷ∈I3∪I6

vȷ∇Hȷ(x
∗) = 0,
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then, for any x ∈ Bδ(x∗), the vectors

{∇gj(x) : j ∈ I4}, {∇hi(x) : i ∈ I1},

{∇Gı(x) : ı ∈ I2 ∪ I5}, {∇Hȷ(x) : ȷ ∈ I3 ∪ I6}

are linearly dependent.

In order to describe the local error bound condition for MPEC in a compact form,

we rewrite the feasible region of the MPEC as F = {x : F (x) ∈ Λ}, where

F (x) := (g(x), h(x),Ψ(x))T , Ψ(x) := (G1(x), H1(x), · · · , Gm(x), Hm(x)),

and

Λ :=]−∞, 0]p × {0}q × Cm, C := { (a, b) ∈ R2 : 0 ≤ a ⊥ b ≥ 0}.

For any (a, b) ∈ C, it is easy to verify that (see, e.g., [42])

NC(a, b) =

(d1, d2) :

d1 ∈ R, d2 = 0 if a = 0 < b

d1 = 0, d2 ∈ R if a > 0 = b

either d1 < 0, d2 < 0 or d1d2 = 0 if a = b = 0

 .

Theorem 5.9. Suppose that the MPEC-RCPLD and the strict complementarity con-

dition hold at x∗ ∈ F. Then x∗ satisfies a local error bound, i.e., there exist δ > 0

and c > 0 such that

distF(x) ≤ c distΛ(F (x)), ∀x ∈ Bδ(x∗).
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Proof. Suppose to the contrary that there exists xk → x∗ such that

distF(x
k) > k distΛ(F (x

k)). (5.10)

It is obvious that xk /∈ F. Since F is closed, we may choose x̄k ∈
∏

F(x
k), that is, x̄k

is an optimal solution of the problem

min fk(x) := ∥xk − x∥ s.t. g(x) ≤ 0, h(x) = 0, 0 ≤ G(x) ⊥ H(x) ≥ 0.(5.11)

Since xk /∈ F, fk is continuously differentiable with respect to x. Since the MPEC-

RCPLD persists in some feasible neighborhood of x∗ (see [14, Theorem 4.3]) and

x̄k → x∗, the MPEC-RCPLD holds at x̄k for each k sufficiently large. Due to the fact

that the MPEC-RCPLD is a constraint qualification for M-stationarity [26, Corollary

4.1], x̄k is an M-stationary point of problem (5.11) when k is sufficiently large. Since

the MPEC-RCPLD holds at x∗, it follows from the proof of [28, Theorem 4.1] that

the multiplier stability (see [27, Definition 3.3]) for problem (5.11) holds at x∗, that

is, there exists a bounded multiplier sequence

{(µk, λk,−γk,−νk) ∈ N[−∞,0]q(g(x̄
k))×N{0}p(h(x̄

k))×NCm(G(x̄k), H(x̄k))}

such that, for each k,

xk − x̄k

∥x̄k − xk∥
=

q∑
j=1

µk
j∇gj(x̄k) +

p∑
i=1

λki∇hi(x̄k)−
m∑
ı=1

γkı∇Gȷ(x̄
k)−

m∑
ȷ=1

νkȷ∇Hȷ(x̄
k).

(5.12)

It is easy to see that, for each i, j, and ı,

µk
j gj(x̄

k) = 0, λki hi(x̄
k) = 0, γkı G

k
ı (x̄

k) = 0, νkı H
k
ı (x̄

k) = 0.
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Let ∥(λk, µk, γk, νk)∥ ≤M for each k. It follows from (5.12) that, for each k sufficiently

large,

∥xk − x̄k∥ =

q∑
j=1

µk
j ⟨∇gj(x̄k), xk − x̄k⟩+

p∑
i=1

λki ⟨∇hi(x̄k), xk − x̄k⟩

−
m∑
ı=1

γkı ⟨∇Gı(x̄
k), xk − x̄k⟩ −

m∑
ı=1

νkı ⟨∇Hı(x̄
k), xk − x̄k⟩

=

q∑
j=1

µk
j (gj(x

k)− gi(x̄k)) +
p∑

i=1

λki (hi(x
k)− hi(x̄k)))

−
m∑
ı=1

γkı (Gı(x
k)−Gı(x̄

k))−
m∑
ı=1

νkı (Hı(x
k)−Hı(x̄

k)) + o(∥xk − x̄k∥)

=

q∑
j=1

µk
j gj(x

k) +

p∑
i=1

λki hi(x
k)−

m∑
ı=1

γkı Gı(x
k)−

m∑
ı=1

νkı Hȷ(x
k)

+o(∥xk − x̄k∥),

≤
q∑

j=1

µk
j gj(x

k) +

p∑
i=1

λki hi(x
k)−

m∑
ı=1

γkı Gı(x
k)−

m∑
ı=1

νkı Hı(x
k)

+
1

2
∥xk − x̄k∥. (5.13)

Clearly, for each i and j, we have

µk
j gj(x

k) ≤ µk
j g

+
j (x

k), λki hi(x
k) ≤ |λki ||hi(xk)|. (5.14)

We next show that

−γkı Gı(x
k)− νkı Hı(x

k) ≤ 2Mϕ(Gı(x
k), Hı(x

k)), (5.15)

where

ϕ(Gı(x
k), Hı(x

k)) := max
(
−Gı(x

k),−Hı(x
k),−Gı(x

k)−Hı(x
k),min(Gı(x

k), Hı(x
k))

)
.
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Note that (−γkı ,−νkı ) ∈ NC(Gı(x̄
k), Hı(x̄

k)) implies

γkı ν
k
ı = 0 or γkı > 0, νkı > 0. (5.16)

Consider the following four cases:

• If γkı Gı(x
k) ≥ 0 and νkı Hı(x

k) ≥ 0, the above inequality (5.15) is trivial.

• If γkı Gı(x
k) < 0 and νkı Hı(x

k) > 0, we can claim that γkı > 0. In fact, otherwise,

if γkı < 0, we have νkı = 0 by (5.16), which gives a contradiction with νkı Hı(x
k) >

0. If γkı > 0, we have

−γkı Gı(x
k)− νkı Hı(x

k) ≤ −γkı Gı(x
k)

≤ γkı ϕ(Gı(x
k), H(xk))

≤ Mϕ(Gı(x
k), Hı(x

k)).

• The case where γkı Gı(x
k) > 0 and νkı Hı(x

k) < 0 is similar to the second case.

• If γkı Gı(x
k) ≤ 0 and νkı Hı(x

k) ≤ 0, by (5.16), we only need to consider the

following cases:

– If γkı ≥ 0 and νkı ≥ 0, then

−γkı Gı(x
k)− νkı Hı(x

k) ≤ γkı ϕ(Gı(x
k), Hı(x

k)) + νkı ϕ(Gı(x
k), Hı(x

k))

≤ 2Mϕ(Gı(x
k), Hı(x

k)).

– If γkı < 0 and νkı = 0, by the definition of (γkı , ν
k
ı ), we have Hı(x̄

k) ≥

Gı(x̄
k) = 0 and hence, due to x̄k → x∗ and the strict complementarity, we

have Hı(x
∗) > Gı(x

∗). Since xk → x∗, we have Hı(x
k) > Gı(x

k) for each k
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sufficiently large. Then

−γkı Gı(x
k)− νkı Hı(x

k) = −γkı Gı(x
k)

≤ MGı(x
k)

= M min(Gı(x
k), Hı(x

k))

≤ Mϕ(Gı(x
k), Hı(x

k)).

– The case where γkı = 0 and νkı < 0 is similar to the above case.

In consequence, (5.15) holds. It follows from (5.13)–(5.15) that, for any k sufficiently

large,

distF(x
k) = ∥xk − x̄k∥ (5.17)

≤ 4M
( q∑

j=1

g+j (x
k) +

p∑
i=1

|hi(xk)|+
m∑
ı=1

ϕ
(
Gı(xk), Hı(xk))

)
.

From [42, Lemma 4.1], we have ϕ(G(xk), H(xk)) =
∑m

l=1 distC(Gl(x
k), Hl(x

k)). It

then follows from (5.17) that, for any k sufficiently large,

distF(x
k) ≤ 4nMdistΛ(F (x

k)),

which gives a contradiction with (5.10). Thus, the local error bound condition holds

at x∗ and so the proof is complete.

In what follows, we give a sufficient condition to admit a local error bound in the

setting of MPEC. For simplicity, if y /∈ F, we denote byMy(x) the set of M-multipliers
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of the following problem at x:

min
x

∥y − x∥

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0.

That is,My(x) is the set of multipliers (µ, λ, γ, ν) ∈ N[−∞,0]q(g(x)) ×N{0}p(h(x)) ×

NCm(G(x), H(x)) satisfying

y − x
∥x− y∥

=

q∑
j=1

µk
j∇gj(x) +

p∑
i=1

λki∇hi(x)−
m∑
ı=1

γkı∇Gȷ(x)−
m∑
ȷ=1

νkȷ∇Hȷ(x).

Theorem 5.10. Suppose that, for each sequence {xk} converging to a strictly com-

plementary solution x∗ with xk /∈ F , there exists a number M > 0 such that, for

all k, the condition Mk
M(x) = {(λ, µ, u, v) ∈Mxk(x) : ∥(λ, µ, γ, ν)∥ ≤M} ̸= ∅ holds

with some point x in
∏

F(x
k). Then X admits a local error bound at x∗.

Proof. It is not difficult to obtain the desired result from the proof process of Theorem

5.9.

The strict complementarity condition in Theorems 5.9–5.10 is a strong assumption.

However, for the following slightly stronger constraint qualification, called MPEC-

r̃CPLD in [14], the strict complementarity assumption is redundant to ensure the

same result to hold.

Definition 22. Let x∗ ∈ F and I1 ⊆ {1, · · · , p}, I2 ⊆ I0+, I3 ⊆ I+0 be the index sets

such that G(x∗; I1, I2, I3) is a basis for spanG(x∗; {1, · · · , p}, I∗0+,K∗). We say that

the MPEC enhanced relaxed constant positive linear dependence condition (MPEC-

ERCPLD) holds at x∗ iff there exists δ > 0 such that

– G(x; {1, · · · , p}, I0+, I+0) has the same rank for each x ∈ Bδ(x∗);
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– for each I4 ⊆ A(x∗) and I5, I6 ⊆ I00, if there exist vectors {λ, µ, γ, ν} with

µj ≥ 0 for each j ∈ I4, which are not all zero, such that

∑
j∈I4

µj∇gj(x∗) +
∑
i∈I1

λi∇hi(x∗)−
∑

ı∈I2∪I5

uı∇Gı(x
∗)−

∑
ȷ∈I3∪I6

vȷ∇Hȷ(x
∗) = 0,

then, for any x ∈ Bδ(x∗), the vectors

{∇gj(x) : j ∈ I4}, {∇hi(x) : i ∈ I1},

{∇Gı(x) : ı ∈ I2 ∪ I5}, {∇Hȷ(x) : ȷ ∈ I3 ∪ I6}

are linearly dependent.

Theorem 5.11. Suppose that the MPEC-ERCPLD holds at x∗ ∈ F. Then x∗ satisfies

a local error bound.

Proof. (Our proof technique is similar to [14, Theorem 3.2]. For the sake of com-

pleteness, we give a brief proof here.) Noting that the existence of local error bounds

for a constraint system is equivalent to the calmness of the associated perturbed con-

straint system mapping (see, e.g., [39, page 438]), we investigate the calmness of the

following perturbed constraint mapping:

F(p, q, r, s) :=

x :
g(x) + p ≤ 0, h(x) + q = 0

0 ≤ G(x) + r ⊥ H(x) + s ≥ 0

 .

Clearly, F(0, 0, 0, 0) = F. We next show the result by the mathematical induction.

First, if m = 0, which means that the constraint system F has no complementarity

constraints, then X reduces to an ordinary system of equalities and inequalities and

it is easy to see that the RCPLD holds at x∗. By Theorem 5.5 and the equivalence

of local error bounds and calmness, we get the desired result.



159

Suppose that the calmness condition holds at x∗ for each m ≤ k. In order to show

that the calmness condition holds at x∗ when m = k + 1, we consider the constraint

system mappings

F1(p, q, r, s) :=

x :

g(x) + p ≤ 0, h(x) + q = 0

Gk+1(x) + rk+1 = 0, Hk+1(x) + sk+1 ≥ 0

0 ≤ Gı(x) + rı ⊥ Hı(x) + sı ≥ 0, ı ∈ {1, · · · , k}


and

F2(p, q, r, s) :=

x :

g(x) + p ≤ 0, h(x) + q = 0

Gk+1(x) + rk+1 ≥ 0, Hk+1(x) + sk+1 = 0

0 ≤ Gı(x) + rı ⊥ Hı(x) + sı ≥ 0, ı ∈ {1, · · · , k}

 .

Denote by Fi := Fi (0, 0, 0, 0) for i = 1, 2. It is easy to verify that F1(p, q, r, s) ∪

F2(p, q, r, s) = F(p, q, r, s). Since the existence of local error bounds is a kind of local

property, without any loss of generality, we may assume that x∗ ∈ F1 ∩ F2. It is not

hard to verify that the MPEC-ERCPLD holds at x∗ for F1 and F2. Since both F1

and F2 have k complementarity constraints, by the induction hypothesis, there exist

κ > 0 and δ > 0 such that

distF1(x) ≤ κ∥(p, q, r, s)∥, ∀x ∈ Bδ(x∗) ∩ F1(p, q, r, s), ∀(p, q, r, s) ∈ Bδ(0),

distF2(x) ≤ κ∥(p, q, r, s)∥, ∀x ∈ Bδ(x∗) ∩ F2(p, q, r, s), ∀(p, q, r, s) ∈ Bδ(0).

Thus, for any x ∈ Bδ(x∗) ∩ F(p, q, r, s) and (p, q, r, s) ∈ Bδ(0), we have

distF(x) = min(distF1(x), distF2(x)) ≤ κ∥(p, q, r, s)∥.
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This completes the proof.

Since the MPEC-RCPLD coincides with the MPEC-ERCPLD when the strict

complementarity condition holds, Theorem 5.9 can also be considered as a corollary

of Theorem 5.11.

From [39, Proposition 1], we have the following result immediately. Note that,

by direct calculation, the linearized cone LF(x
∗) := {d : ∇F (x∗)Td ∈ TΛ(F (x∗))} is

actually the MPEC linearized cone (see also [26,27,42]).

Corollary 5.12. Suppose that the MPEC-ERCPLD holds at x∗ ∈ F or the MPEC-

RCPLD holds at a strictly complementary point x∗ ∈ F. Then the MPEC Abadie CQ

holds at x∗, i.e., TF(x∗) = LF(x
∗).

Since the objective function of the MPEC is continuously differentiable and hence

locally Lipschitzian, it follows from the Clarke’s exact penalty principle [16, Proposi-

tion 2.4.3] that the following exact penalty result holds.

Corollary 5.13. Let x∗ be a local minimizer of the MPEC. If the MPEC-ERCPLD

holds at x∗ ∈ F or the MPEC-RCPLD holds at a strictly complementary point x∗ ∈ F,

then x∗ is a local minimizer of the following penalized problem:

min f(x) + cLfdistΛ(F (x))

where Lf is a Lipschitzian constant of f and c is the local error bound constant in

Theorem 5.9.

From Corollary 5.13 and [74, Theorem 10.1], it is easy to get that, if x∗ is a local

minimizer of the MPEC, then

0 ∈ ∂f(x) + cLf∂distΛ(F (x
∗)),
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and hence x∗ is an M-stationary point by making use of the exact expression of

∂distΛ(F (x
∗)) [42, Lemma 4.2]. Moreover, it follows from [42, Lemma 4.1] that

distΛ(F (x)) =

q∑
j=1

max(gj(x), 0) +

p∑
i=1

|hi(x)|+
m∑
ı=1

distC(Gı(x), Hı(x))

=

p∑
i=1

max(gi(x), 0) +

q∑
j=1

|hj(x)|+
m∑
ı=1

Υı(x
k),

where Υı(x
k) = max

(
−Gı(x

k),−Hı(x
k),−Gı(x

k)−Hı(x
k),min(Gı(x

k), Hı(x
k))

)
. As

a result, by smoothing the “max” and “min” functions, some approximation methods

may be proposed to solve the MPEC.
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