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Statistical analysis of 3-dimensional motions of humans, animals or objects is 

instrumental to establish how these motions differ, depending on various influences or 

parameters.  When such motions involve no stretching or tearing, they may be described 

by the elements of a Lie group called the Special Euclidean Group, denoted SE(3).  

Statistical analysis of trajectories lying in SE(3) is complicated by the basic properties of 

the group, such as non-commutativity, non-compactness and lack of a bi-invariant metric.  

This necessitates the generalization of the ideas of “mean” and “variance” to apply in this 

setting. 

We describe how to exploit the unique properties of a formalism called Conformal 

Geometric Algebra to express these generalizations and carry out such statistical analyses 

efficiently; we introduce a practical method of visualizing trajectories lying in the 6-

dimensional group manifold of SE(3); and we show how this methodology can be 

applied, for example, in testing theoretical claims about the influence of an attended 

object on a competing action applied to a different object.  

The two prevailing views of such movements differ as to whether mental action-

representations evoked by an object held in working memory should perturb only the 

early stages of subsequently reaching to grasp another object, or whether the perturbation 

should persist over the entire movement.  Our method yields “difference trajectories” in 

SE(3), representing the continuous effect of a variable of interest on an action, revealing 

statistical effects on the forward progress of the hand as well as a corresponding effect on 

the hand’s rotation. 

 



 iv 

Table of Contents 

 
Supervisory Committee ...................................................................................................... ii 
Abstract .............................................................................................................................. iii 
Table of Contents ............................................................................................................... iv 
List of Figures ..................................................................................................................... v 
Acknowledgments.............................................................................................................. vi 
Introduction ......................................................................................................................... 1 

Background and Related Work ....................................................................................... 4 
The Geometry of Lie-Group Statistics ........................................................................ 4 
The Path to Conformal Geometric Algebra ................................................................ 6 

The Algebra of Geometry ............................................................................................... 8 
Drawbacks of Conventional Vector Algebra .............................................................. 8 
Advantages of Geometric Algebra ............................................................................ 10 

A Guided Tour of Geometric Algebra .............................................................................. 14 
Statistical Analysis in (3) ............................................................................................. 23 

Logarithms Using Conformal Geometric Algebra ....................................................... 30 
Estimating the Geodesic Barycentre ............................................................................. 32 
Estimating the Covariance Matrix ................................................................................ 41 

Application to Reach-to-Grasp Trajectories ..................................................................... 43 
Method .......................................................................................................................... 46 

Experimental Set-up and Procedure .......................................................................... 48 
Subjects ..................................................................................................................... 51 
Data Acquisition ....................................................................................................... 51 
Data Analysis and Filtering ...................................................................................... 52 

Results ........................................................................................................................... 54 
Congruency Effects for Conditions With Hand Rotation ......................................... 65 
Congruency Effects for Conditions With No Hand Rotation ................................... 76 
Statistical Effect Size ................................................................................................ 84 

Discussion of Experimental Results ............................................................................. 87 
Summary and Conclusions ............................................................................................... 91 
Bibliography ..................................................................................................................... 92 
Appendix A: Basic Concepts of Geometric Algebra ........................................................ 99 
Appendix B: The Conformal Model of 3

 ...................................................................... 106 
Appendix C: Multivectors as Operators ......................................................................... 111 
Appendix D: Screw Transformations ............................................................................. 116 
Appendix E: Connections, Geodesics and Dispersion .................................................... 119 

 



 v 

List of Figures 

 
Figure 1 - Geometry of the screw transformation. ............................................................ 31 
Figure 2 - Trial sequence for each of the four conditions. ................................................ 47 
Figure 3 - The experimental set-up. .................................................................................. 48 
Figure 4 - Placement of the subject................................................................................... 49 
Figure 5 - Complete set of stimuli. ................................................................................... 50 
Figure 6 - Placement of the sensors on the hand. ............................................................. 52 
Figure 7a - Typical box plot showing the translation part of the trajectory.  Raw data for 

subject 10. ................................................................................................................... 55 
Figure 7b - Typical ball plot showing the rotation part of the trajectory.  Raw data for 

subject 10. ................................................................................................................... 56 
Figure 7c - Box plot showing the same data as figure 7a, averaged separately by 

condition. .................................................................................................................... 57 
Figure 7d - Ball plot showing the same data as figure 7b, averaged separately by 

condition. .................................................................................................................... 58 
Figure 7e - Box plot with same parameters as figure 7c, but for a different subject. ....... 59 
Figure 7f - Ball plot with same parameters as figure 7d, but for a different subject. ....... 60 
Figure 8a - Thumb position difference: vertical grasp from horizontal start. ................... 66 
Figure 8f - Thumb position difference: horizontal grasp from vertical start. ................... 66 
Figure 8b - Index finger position difference: vertical grasp from horizontal start. .......... 67 
Figure 8g - Index finger position difference: horizontal grasp from vertical start. .......... 67 
Figure 8c - Middle finger position difference: vertical grasp from horizontal start. ........ 68 
Figure 8h - Middle finger position difference: horizontal grasp from vertical start. ........ 68 
Figure 8d - Back of hand position difference: vertical grasp from horizontal start. ......... 69 
Figure 8i - Back of hand position difference: horizontal grasp from vertical start. .......... 69 
Figure 8e - Wrist position difference: vertical grasp from horizontal start. ..................... 70 
Figure 8j - Wrist position difference: horizontal grasp from vertical start. ...................... 70 
Figure 9a - Back of hand rotation difference: vertical grasp from horizontal start. ......... 73 
Figure 9b - Back of hand rotation difference: horizontal grasp from vertical start. ......... 73 
Figure 10a - Thumb position difference: vertical grasp from vertical start. ..................... 77 
Figure 10f - Thumb position difference: horizontal grasp from horizontal start. ............. 77 
Figure 10b - Index finger position difference: vertical grasp from vertical start. ............. 78 
Figure 10g - Index finger position difference: horizontal grasp from horizontal start. .... 78 
Figure 10c - Middle finger position difference: vertical grasp from vertical start. .......... 79 
Figure 10h - Middle finger position difference: horizontal grasp from horizontal start. .. 79 
Figure 10d - Back of hand position difference: vertical grasp from vertical start. ........... 80 
Figure 10i - Back of hand position difference: horizontal grasp from horizontal start. ... 80 
Figure 10e - Wrist position difference: vertical grasp from vertical start. ........................ 81 
Figure 10j - Wrist position difference: horizontal grasp from horizontal start. ................ 81 
Figure 11a - Back of hand rotation difference: vertical grasp from vertical start. ............ 83 
Figure 11b - Back of hand rotation difference: horizontal grasp from horizontal start. ... 83 
Figure 12a - Overall effect size: vertical grasp from horizontal start. .............................. 85 
Figure 12b - Overall effect size: horizontal grasp from vertical start. .............................. 85 
Figure 12c - Overall effect size: vertical grasp from vertical start. .................................. 86 
Figure 12d - Overall effect size: horizontal grasp from horizontal start........................... 86 

 



 vi 

Acknowledgments 

 

Firstly, I would like to thank Dr. Peter Driessen for his keen foresight, unwavering 

support, and very practical advice.  Without him, this dissertation would never have been 

written.  Secondly, I would like to thank Dr. Daniel Bub for his endless patience, kind 

encouragement, and steadfast refusal to take no for an answer.  Without him, this 

dissertation would have been very different.  And last but certainly not least, I would like 

to thank Dr. Mike Masson for his light-handed guidance, conscientious attention to detail, 

and steady focus on the big picture.  I am particularly grateful to Daniel and Mike for 

inviting me along on a journey of scientific discovery that turned out to be most fruitful 

and rewarding. 

 



1 

Introduction 

Many 3D movements of interest in science and engineering can be modelled as the 

motion of an articulated rigid body, consisting of a set of articulations connected together 

by joints.  Subject to constraints imposed by the joints, each articulation undergoes rigid 

body motion, which is any 3D motion that does not involve stretching or tearing.  Such 

movements entail rotation about a point as well as translation of that point through 

space; we refer to this combination as displacement.  The set of all such displacements 

forms a transformation group which is also a continuous manifold (that is, a Lie group), 

called the Special Euclidean group of rigid body motions in 3-dimensional space and 

denoted (3).  The statistical analysis of such motions plays a very important role in a 

wide range of applications. 

In particular, any human movement – for example, reaching toward and grasping an 

object –  can be modelled in this way.  The statistical analysis of rigid body motion is 

thus crucial for determining how actions vary in response to a given set of experimental 

parameters.  Consider a group of individual subjects who carry out the same action over a 

large number of trials under two or more conditions.  The critical question is whether the 

average trajectories generated in the various conditions differ from one another, and if so, 

in what way.  Current approaches to this problem are almost universally restricted to the 

analysis of 1 or 2 (effective) dimensions, and even those analyses that purport to study 

spatial trajectories are usually limited to projections of these trajectories onto the 

coordinate planes [Bicchi, Gabiccini, & Santello 2011; Chapman, Gallivan, Wood, 
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Milne, Culham, & Goodale 2010a; Ramsay & Silverman 2005].  Consequently, there is a 

tendency to extract less information from the measured data than they actually contain.  

What is badly needed is an efficient methodological approach that provides statistical 

tests of entire trajectories, including all six degrees of freedom: three for translation and 

three for rotation. 

In a great many cases, the problem can be reduced to estimating the “means” and 

“covariances” of coeval sets of time-dependent 3D rigid body motions, and exploiting the 

“covariances” to discriminate between the “means.”  We enclose these terms in quotes 

because their usual definitions do not carry over literally to the case of a group like 

(3), which is non-commutative and whose group manifold is curved, non-compact, 

and non-Riemannian.  We must therefore modify the definitions of our terms to be 

consistent with these properties of (3), while retaining the core concepts: the effective 

location of a set of samples and the dispersion of the samples about that location.  In this 

context, the essence of the idea of a mean or effective location is perhaps best captured 

by defining it as the barycentre (centre of mass) of a set of weighted points: the point 

about which the dispersion of the given points is minimized and, equivalently, about 

which the sum of the moments vanishes. 

Each observation of a moving rigid body yields a displacement from its original 

position and orientation – that is, an element of (3), corresponding to a point in the 6-

dimensional manifold of the group.  Over time, this results in a sequence of such 

elements, which traces a curve or trajectory in that manifold.  Thus the time evolution of 



 3 

the kinematic state of the rigid body moving through 3D space is represented by a point 

moving along the curve in (3).  Given a collection of repetitions of the movement 

sampled at discrete intervals, each repetition contributes one point to a cloud of points for 

each sampling interval, and we take the curve passing through the barycentres of these 

clouds to be the effective trajectory of the cloud as a whole.  In order to perform time-

dependent statistical comparisons of 3D rigid body motions, then, we need ways of 

calculating barycentres and measuring dispersions of clouds of points in the 6D group 

manifold of (3).  This paper presents an efficient way of doing this using Conformal 

Geometric Algebra. 

We begin with some background material and a survey of related work.  Then we 

motivate the formalism of Geometric Algebra and illustrate how expressively it unifies 

fundamental geometric constructs, including the conformal model of 3D Euclidean 

geometry and the elements of the Special Euclidean group.  Next, we outline some of 

some of the basic ideas which characterize mathematical statistics in a group-theoretical 

setting.  This leads into a description of the algorithm we have developed for statistical 

analysis of trajectories lying in (3), and the data visualization techniques we have 

found most useful for interpreting the results.  Finally, we provide an example of how 

these statistical procedures can be used to provide crucial evidence on how control of a 

reach-and-grasp action is modulated by higher-level cognitive influences. 
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Background and Related Work 

The Geometry of Lie-Group Statistics 

In a Riemannian manifold, we have a natural measure of distance, determined by the 

metric tensor, so the natural measure of dispersion is the weighted sum of squared 

distances from the barycentre.  In this case, we define a geodesic between any two points 

to be the minimum-length curve joining them; conversely, we define the distance 

between any two points as the length of the geodesic joining them. 

Using these concepts, we obtain the well-known Fréchet, or Karcher, mean [Fréchet 

1948; Karcher 1977] of elements of a commutative group whose manifold is Riemannian.  

For a non-commutative group, the metric must additionally be bi-invariant (invariant 

under both left- and right actions of the group elements).  When such a metric exists, it is 

always possible to use it in conjunction with the group operation to define a barycentre 

[Moakher 2002], and a closed-form solution has been given recently [Fiori 2010] for 

matrix representations of (3), the group of 3D rotations. 

For any group endowed with a bi-invariant Riemannian metric, bi-invariance of the 

barycentre defined using that metric is automatic.  However, many important Lie groups, 

including (3), do not possess such a metric.  One effective expedient in such cases is to 

calculate the average in the tangent space [Govindu 2004], which, being a vector space, is 

naturally endowed with a Euclidean metric.  Under certain conditions, this yields an 

acceptable approximation of the group mean.  See Sharf et al. [2010] for a recent survey.  

Buchholz & Sommer [2005] use geometric algebra to do this in (3) and Gebken & 
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Sommer [2008] extend the approach to (3).  It must be emphasised, however, that this 

approach yields usable results only when the dispersion is small. 

In the non-Riemannian, non-commutative case, we have no metric, but the idea of 

dispersion remains meaningful because we can still define bi-invariant geodesics.  We do 

this using an affine connection (in particular, the unique torsion-free connection given by 

Cartan and Schouten [1926]), which determines how the tangent space transforms when 

transported along any curve in the manifold.  We thus define the geodesic between two 

points to be the unique curve joining them, along which transverse acceleration (more 

precisely, the covariant derivative of the curve’s tangent vector) vanishes.  Such curves 

turn out to be one-parameter subgroups, so we can use the group logarithm and 

exponential map to pass back and forth between the Lie group and its Lie algebra.  The 

Lie algebra is just a flat vector space, tangent to the group manifold at the group’s 

identity element.  Being a vector space, it does have a metric, by means of which we may 

induce an affine parameter (analogous to arc length) along any given geodesic in the 

group manifold.  This does not constitute a metric in the group manifold, however, 

because it fails to satisfy the triangle inequality.  Nonetheless, it does suffice to define 

moments about a common point of intersection of a set of geodesics, yielding a measure 

of dispersion which permits a barycentre to be defined in a consistent way. 

In the case of (3), we can always parameterize the resulting geodesics as scalar 

multiples of screw displacements (rotations about an axis coupled with translation along 

that axis), because of a long-known result called Chasles’ Theorem [Mozzi 1763; Chasles 
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1830], according to which every rigid body displacement can be expressed as a screw 

displacement.  Thus we have a rigorous theoretical foundation upon which to ground the 

statistical analysis of 3D kinematic data, as described by trajectories lying in the 6D 

group manifold of (3). 

The Path to Conformal Geometric Algebra 

A fair amount of work has been done on the statistical analysis of planar trajectories 

[Maroulas 2012; Brillinger 2010], but the methods commonly used do not generalize well 

to the case of 3D rigid body motions.  Analyses which rightly belong in (3) typically 

either retreat to one of the subgroups, 3 [Chapman et al., 2010a; Faraway, Reed, & 

Wang, 2007] or (3) [Choe, 2006], in order to simplify the calculations, or resort to the 

unnecessary intricacies of differential geometry and matrix group representations [Pennec 

& Arsigny, 2013]. 

Our work overcomes these limitations by employing an invariant, coordinate-free 

formalism which defines an associative and invertible product on geometric objects, 

called the geometric product.  This formalism, called Geometric Algebra [Dorst, Fontijne 

& Mann 2009; Doran & Lasenby 2007], represents points, lines, planes, volumes, and so 

on, by multivectors – linear combinations of monomials formed by geometric products of 

vectors.  All of these constructs have a declarative interpretation, according to which they 

represent geometric entities, and also have a procedural interpretation, according to 

which they represent geometric transformations.  Thus the representation of geometric 
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objects is unified with the representation of elements of the transformation groups acting 

on them. 

This is in contradistinction to the bulk of the work in the area of statistical analysis of 

3D kinematic data [e.g. Chirikjian 2012, 2010; Chirikjian & Kyatkin 2001], which uses 

4D homogeneous vectors to model Euclidean geometry and 4×4 homogeneous matrices 

represent the Euclidean motion group.  This formulation adjoins an explicit 

representation of the origin, lying outside the 3D vector space being modeled, and has 

been in common use long enough that its advantages are widely appreciated, though its 

drawbacks [Blinn 2002; Goldman 2003] are less well known. 

We circumvent these drawbacks by adopting a 5D conformal model of Euclidean 

geometry, well known in the 18th century, which fell into obscurity before recently 

experiencing something of a renaissance [Hestenes 2001; Sobczyk 2013].  This model 

extends the homogeneous model by adjoining an explicit representation of the point at 

infinity.  The very significant benefits of doing this are outlined in the next section.  In 

consequence, we are led to work in a branch of geometric algebra particularly well suited 

to this model, called Conformal Geometric Algebra [Hestenes 2010, 2001; Lasenby et al. 

2004; Dorst & Mann 2002; Mann & Dorst 2002]. 

The application of conformal geometric algebra to analysis of articulated rigid bodies 

[McCarthy & Soh 2011; Selig & Bayro-Corrochano 2009] and problems related to 3D 

motion capture [Aristidou 2010; Chavarria-Fabila 2009; Zhao et al. 2006] is gaining 

acceptance, and it has been used to solve problems in 3D computer vision, like the 
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perspective n-point problem [Buchholz & Sommer 2005; Dorst 2005; Gebken & Sommer 

2008].  Valkenburg & Dorst [2011] discuss the estimation of elements of (3) using 

conformal geometric algebra, but they proceed by maximizing a particular class of 

similarity measures applied to the transformed objects and are thus unable to provide a 

measure of dispersion in the group manifold of the transformations themselves.  The use 

of conformal geometric algebra for time-dependent hypothesis testing based on statistical 

comparison of trajectories in the group manifold of (3), however, has not previously 

been described in the literature.  This is the problem which our work solves. 

The Algebra of Geometry 

Drawbacks of Conventional Vector Algebra 

Analytic geometry is usually done by assigning coordinates to points and deducing the 

properties of geometric objects from (arithmetic) operations on these coordinates.  This 

leads to a very specific mindset: we think of vectors as tuples of numbers which behave 

differently if we arrange them in rows or columns, we represent operations on vectors 

(elements of transformation groups) by matrices, and we introduce the imaginary unit as 

an abstract quantity, which mysteriously squares to –1, by fiat. 

Necessary though this may ultimately be for purposes of calculation, doing so from the 

outset has many shortcomings – not least of which being lack of homogeneity and 

manifest covariance, i.e., it makes the origin seem special, and forces us to prove that our 

results are not merely fortuitous consequences of our choice of coordinates.  Of course, 

there is nothing special about the origin, and the relationships between geometric objects 
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cannot possibly depend on how we choose coordinates.  Yet there is no general way to 

exploit these powerful facts in conventional vector algebra and tensor analysis. 

Calculations in vector algebra are greatly hampered by the fact that it rests on two very 

different vector products – the inner (dot) product and the outer (cross) product – neither 

of which is invertible.  Not only does this result in an artificial proliferation of special 

cases which exist only to compensate for the poverty of the notation, it complicates 

calculations, e.g., by forcing the adoption of iterative techniques, all dictated by the tricks 

needed in different contexts to avoid the need to “divide by” geometric constructs like 

vectors.  Even worse, the cross product is defined only in 3D and the vectors it produces 

transform differently under reflection than those produced in other ways, leading to yet 

another mystery, the distinction between axial and polar vectors.  This appears already in 

elementary mechanics, and as we proceed to study more advanced subjects, we are forced 

to introduce more exotic constructs – differential forms, quaternions, spinors, twistors 

and so on – whose physical and geometric interpretations become increasingly conflated. 

The most important consequence of the ability to divide by a vector this is that it makes 

it possible to differentiate with respect to a vector directly, rather than cobble vector 

differentiation together out of differentiation with respect to the individual components.  

This is what permits the coordinate-free formulation to extend beyond algebra and give 

rise to a geometric calculus. 
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Advantages of Geometric Algebra 

Geometric algebra is an alternative formulation of the familiar geometric constructs, 

whose incisive clarity and broad generality have only relatively recently begun to be fully 

appreciated [Hestenes 1988, Hestenes 1991; Hestenes & Sobczyk 1987], and which 

follows very simply and naturally from the unification of the inner and outer products 

into the geometric product, which is invertible and associative, but not commutative.  

Formally, geometric algebra is Clifford algebra [Clifford 1878] augmented by a specific 

geometric interpretation, refined from the one given by Hermann Grassmann [1844; 

1877].  This elegant and powerful formalism has languished at the periphery of 

mathematics and physics, of interest primarily to a small cadre of specialists, for well 

over a century.  Only in the last decade have reference works appeared which are aimed 

at a wider audience of physicists, engineers and computer scientists [Doran & Lasenby 

2007; Dorst et al. 2009]. 

By working in geometric algebra, we can dispense entirely with the unwieldy 

machinery of coordinates, index manipulation, and matrix representations, because the 

properties of the underlying geometric objects are reflected directly in the elements of the 

algebra.  Coordinates need not be introduced until the final stages of calculating results.  

Thus geometric algebra permits exceptionally clear and concise problem representations, 

enhancing geometric insight and conceptual transparency while improving computational 

efficiency.  Not only does geometric algebra provide a single unified framework 

containing all of the above mentioned formalisms, it unifies metric, affine, projective and 

conformal geometry with complex numbers, quaternions, octonions – indeed, all the 
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composition algebras – and thereby endows imaginary units with a very real geometric 

interpretation while revealing axial vectors to be nothing more than an artifact of 

overloading a single algebraic entity with multiple geometric interpretations (representing 

a plane by its normal vector is a trick that only works in three dimensions). 

Being coordinate free, expressions in geometric algebra are inherently covariant, and 

transformation groups do not require matrix representations, so they cannot exhibit 

coordinate singularities (e.g. the “gimbal lock” which plagues rotation matrices) or 

artifactual redundancies (e.g. Euler angles lead to 12 different representations of the same 

rotation matrix).  When coordinates are finally introduced at some convenient stage of a 

calculation, representations in geometric algebra are considerably more compact and 

efficient than conventional ones.  Of particular interest to us, (3) has 6 parameters, but 

the corresponding 4×4 homogeneous matrices have 16 elements, leaving 10 highly 

nonlinear constraints, which are artifacts of the representation and completely extraneous 

to the group itself.  The equivalent objects in geometric algebra have only 8 elements and 

2 quadratic (unit magnitude) constraints.  This advantage of geometric algebra only 

increases with the dimensionality of the group manifold. 

Another benefit, which we exploit repeatedly below, is that all the objects of interest 

belong to a single graded algebra, which makes transitions between a Lie group and its 

Lie algebra seamless.  Many awkward postures one is compelled to adopt in standard Lie 

theory (viz, the split personality of the word, adjoint) simply become moot.  In geometric 

algebra, one simply has multivectors acting on multivectors by conjugation, 1qvq , and 
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the group product pq  is no different than any other instance of the geometric product in a 

nested conjugation 1 1pqvq p  ; it is simply a matter of emphasis: 1 1pq v q p      vs. 

1 1p q v q p     . 

In standard representations, the group of translations acts additively, while the group of 

rotations acts multiplicatively.  For groups like (3), this complicates calculations 

immensely: repeated applications of group elements result in unwieldy, non-invertible 

polynomials, and the group exponential and logarithm are cumbersome to work with.  In 

order to circumvent this, we must adopt a model of Euclidean geometry that permits a 

multiplicative formulation of the group of translations. 

The homogeneous model represents points in 3D space by rays through the origin in 

4D space.  Thus the representation is projective and the origin is removed from the object 

space.  When we extend this model by adjoining the point at infinity, the representation 

becomes conformal and the object space is represented by a horosphere – a uniformly 

curved 3D manifold of rays lying in the 4D null cone of a 5D space – which has a 

geometry that is nonetheless Euclidean.  This results in numerous very significant 

benefits, which are not widely known.  Fontijne & Dorst [2003] give a detailed 

comparison of the various 3D, 4D and 5D formalisms as they concern computer graphics, 

and the thrust of their argument is equally valid the present context. 

In the homogeneous model, the rotations are compact but the translations are not, and 

this forces us to treat rotations and translations very differently.  In the conformal model, 

rectilinear objects (called flats: lines, planes, etc.) are unified with uniformly curved 
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objects (called rounds: circles, spheres, etc.).  A line (plane) is just a circle (sphere) 

passing through the point at infinity – an obvious property which cannot be exploited in 

the homogeneous model because there is no way to express it, but in conformal 

geometric algebra it becomes trivial [Hestenes 2001; Lasenby et al. 2004].  The 

importance of this cannot be overstated, because it removes the formal distinction 

between rotations and translations and thereby compactifies the group manifold.  In 

consequence, rigid body displacements reduce to orthogonal transformations. 
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A Guided Tour of Geometric Algebra 

We sketch very briefly the aspects of geometric algebra required to underpin the main 

result, and give additional detail, including proofs and figures, in the appendices, but we 

must refer the reader to the literature for a thorough treatment.  Our main purpose here is 

to show how the basic elements of geometry, and the transformations acting on them, can 

be represented by a unified algebra and its operations. 

Beginning with the basic notion of a zero-dimensional point, we construct higher-level 

entities by extension.  Thus we form a vector by extending a point towards another point 

to create an oriented line segment.  Similarly, we extend the vector to form a bivector by 

sweeping it along a second vector to create an oriented area.  For two independent vectors 

a  and b , we represent this operation by a product, called the outer product or wedge 

product, a b .  This is the oriented area of the parallelogram formed when b  is swept 

along a .  The orientation is given by the order of the factors: 

 a b b a   sin     a b a b  (1) 

where  x  is the magnitude of x  and   is the angle from a  to b .  A bivector of this 

simple form is called a 2-blade and a general bivector may consist of a linear 

combination of 2-blades. 

A trivector is then formed by sweeping a bivector along a third vector to form a 

directed parallelepiped, and so on.  The wedge product of n  independent vectors is called 

an -n blade, and we refer to n  as its grade.  The general term multivector refers to a 

linear combination in which the blades need not all be of the same grade. 



 15 

While the operation of extension is grade-increasing, the operation of contraction is 

grade-decreasing.  We represent this operation by another product, called the inner 

product, or dot product, a b , formed by projecting one vector onto another and 

multiplying the resulting lengths: 

a b b a  cos     a b a b  (2) 

Now, the dot product depends on the parallel parts its factors, and the wedge product 

depends on their perpendicular parts.  Thus we can define a new, more general product, 

the geometric product, which depends on both: 

 ab a b a b       ab a b  (3) 

However, the viewpoint of underlying geometric algebra is to reverse this logic, so we 

consider the geometric product to be fundamental and derive the other two products from 

its symmetric and anti-symmetric parts: 

1

2
   a b ab ba  

1

2
   a b ab ba  (4) 

From this starting point, it is very easy to show that every vector squares to a scalar, and 

this allows us to define the inverse of a vector, and indeed the inverses of arbitrary 

blades: 

2 1

2

1
a R a a

a

    1 1 1

2 2 2 2 2 2
( )

b a ba ab
ab b a

b a a b a b

       (5) 

where 2 2a a    is a scalar and we have introduced the operation of reversion by the 

notation ab ba , meaning that we take the geometric products in reverse order, so the 

reverse of ab  is just ba .  General multivectors do not necessarily have inverses, though 
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blades always do.  An invertible multivector of unit magnitude is called a versor, and in 

such case we have 1xx   or just 1x x  . 

We employ the following notation.  Scalars: , ,a b c…  Vectors: , ,a b c …  Bivectors: 

, ,a b c …  General multivectors: , ,a b c …  We call the basis vectors of a space etalons, 

and denote them by 1 2 3, ,e e e …  Geometric products of etalons are denoted by multiple 

subscripts, so 12 1 2 1 2e e e e e   , 123 1 2 3 1 2 3e e e e e e e     etc.  Etalons may square to 

+1, –1, or 0.  A space having p  etalons squaring to +1, q  etalons squaring to –1, and r  

etalons squaring to 0 is said to have signature ( , , )p q r , and dimension   n p q r .  The 

geometric algebra of this space is denoted , ,p q rG .  By convention, trailing zeros are 

dropped, so ,p qG  means , ,0p qG  and so on.  The geometric algebra of an -n dimensional 

space contains elements of every grade from 0 to n , with the real number 1 acting as the 

etalon of grade 0. 

Consider now the Euclidean plane spanned by the etalons 1 2{ , }e e , both squaring to 1.  

The geometric algebra of the plane, 2G , is spanned by the elements 1 2 12{1, , , }e e e .  Just 

as every scalar is linearly dependent on the unit scalar 1, every bivector in the 12-e plane 

is linearly dependent on the unit bivector 
12

e .  Further, 2
12 1e   , which follows 

immediately from our definitions: 2
12 1 2 1 2 1 2 2 1 1 1 1e e e e e e e e e e e       .  Therefore 

12e  is a very real geometric object which behaves exactly like the imaginary scalar 

1i   .  Hence we call it the pseudoscalar of the plane. 

The significance of this fact cannot be overstated; it hinges on the fact that 2
G , the 

even subalgebra of 2G  spanned by the even-grade elements 12{1, }e , is isomorphic to the 
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complex numbers, with the operation of reversion standing in for complex conjugation.  

Indeed, any element z  of 2
G  with 1zz   can be put in the form 12cos sinz e   .  If 

1 2e e v x y  is any vector in the plane, then 

12 1 2 12

1 2

(cos sin )( )(cos sin )

( cos2 sin 2 ) ( cos2 sin 2 )

z z e e e e

e e

   

   

   

   

v x y

x y y x
 (6) 

but this is just the result of rotating v  by an angle of 2 .  In addition, for any two versors 

we have 12 12 12(cos sin )(cos sin ) cos( ) sin( )ab e e e              .  Thus 

the versors act on each other by simple multiplication, yielding composition, and act on 

the vectors in the plane by conjugation, producing a rotation. 

Further, we can define the exponential of a bivector using the standard power-series 

definition of the exponential function, exp !x x   n
n .  Substituting the bivector 

12e  for x , we have 

2 2 1
12

12 12

0 0 0

12

( ) ( 1) ( ) ( 1) ( )
exp

! 2 ! 2 1 !

cos sin

cos sin

e x
e e

e

  


 

 



  

  
    

    

 

  
n n n n n

n n n
n n n

: : :

 (7) 

so that every versor is the exponential of a bivector and, conversely, every bivector is the 

logarithm of a versor.  Versors of this kind are called rotation versors, or simply rotors, 

independent of the dimensionality of the space in which they are embedded. 

Taken together, these results create a most remarkable situation.  The geometric 

algebra 2G  contains a unified representation of, firstly, the Euclidean plane (the vector 

space spanned by the elements of odd grade 1 2{ , }e e ), secondly, the Lie group (2) of 
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rotations in the plane (in the guise of its double cover, Spin(2), consisting of the rotors 

belonging to the even subalgebra 2
G , spanned by the elements of even grade 12{1, }e ), 

and thirdly, its Lie algebra (consisting of the bivectors, spanned by 12e  alone).  In 

Appendix C, we demonstrate that vectors generate reflections by conjugation, and 

therefore bivectors generate rotations by conjugation because every rotation is the result 

of two successive reflections.  Standard Lie theory arrives at the equivalent conclusion by 

a rather involved differential-geometric argument, but for us it is an elementary 

consequence of the algebraic encoding of the underlying geometry. 

In Appendix A, we generalize this to 3G , the geometric algebra of 3D Euclidean space.  

The space is spanned by the etalons 1 2 3{ , , }e e e , so its geometric algebra is spanned by 

the elements 1 2 3 23 31 12 123{1, , , , , , , }e e e e e e e .  Its even subalgebra 3
G  is spanned by the 

even-grade elements 23 31 12{1, , , }e e e , and its unit trivector 123 1 2 3 1 2 3e e e e e e e    , 

with 2
123 1e   , is the pseudoscalar of 3D space.  In this case, the pseudoscalars of the 

coordinate planes, 2 2 2
23 31 12 1e e e    , correspond to (a right-handed version of) the 

quaternion basis { , , }i j k , so the even subalgebra is isomorphic to the quaternions and the 

rotors cos sinr    r , with 23 31 12e e e  x y zr  , 2 2 2 1  x y z , so 2 1 r  and 

1rr  , are isomorphic to the unit quaternions, forming a faithful representation of 

Spin(3), the double cover of the Lie group (3) of rotations in space, with the vector 

space spanned by the bivectors 23 31 12{ , , }e e e  forming its Lie algebra. 

In the models of Euclidean geometry considered above, the group of translations acts 

additively.  We, however, require a multiplicative representation, so we adopt a richer 
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model.  We do this by embedding our representation of 3D Euclidean space in a 5D space 

of Minkowski signature.  Thus, we have the etalons 1 2 3{ , , , , }e e e e e  , with 

2 2 2 2
1 2 3 1e e e e      and 2 1e   .  This leads to the geometric algebra 4,1G , but the 

real benefit comes from shifting to another geometric algebra for the same space, 3,0,2G .  

This is accomplished by a simple change of basis: 1
2oe e e     , e e e      .  It is 

easily verified that 2 2 0oe e  , so oe  and e  are null vectors.  However, orthonormal 

null vectors behave differently from orthonormal vectors which are not null.  Indeed, 

0 1e e    and 0e e e  , the pseudoscalar of the plane spanned by { , }e e  , with 

2 1e  . 

Appendix B explains why we call oe  the origin and e  the point at infinity.  Briefly, 

we stereographically project the 3D Euclidean space spanned by 1 2 3{ , , }e e e  onto the 

surface of the 3-sphere in the 4D Euclidean space spanned by 1 2 3{ , , , }e e e e , then we 

project the result onto the 4D null “cone” of the full 5D Minkowski space, forming a 

curved 3D submanifold, called the horosphere.  For any 3D point x , this leads to the 

canonical representation 

21
02

( )p e e  x x x  (8) 

This is the conformal model of Euclidean geometry.  Remarkably, the resulting curved 

manifold of null vectors is isomorphic to 3D Euclidean space, with metric defined as 

usual, by the inner product: 2p p       x y x y .  Not only that, but the rotors preserve 

their function in this seemingly unlikely setting: rp r p r r    x x . 
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Most importantly, working in the conformal model allows us to define translation 

versors, or translators.  If 1 2 3e e e  t x y z  is any 3D vector, then the null bivector 

1 2 3e e e e     t x y z  is a generator of translations.  Intuitively, we may picture it as 

the arc length swept out by an infinitesimal rotation with an infinite radius; the limit, as 

r  and 0   while r  remains constant.  However, this is only an aid to 

understanding.  To show that the versor exp( )t e t  is a translator by purely algebraic 

means, without resorting to limits or approximations, we use the familiar power-series 

expansion of the exponential 

2 2

0

exp 1
!

e
t e e e




  



 
      

t
t t t

n

n
n

2

1

!

1

e

e








   

 


t

t

n n

n
n  (9) 

and verify that (1 ) (1 ) 2tp t e p e p           x t x t x t , which is just the result of 

translating x  by 2t .  Further, 1tt  , and 1 1 1st e e e            s t s t .  Thus the 

translators are indeed versors which act on each other by simple multiplication, yielding 

composition, and act on the vectors in the horosphere by conjugation, producing a 

translation.  The conformal model of Euclidean space is crucial for this argument, 

because it is easily verified that tp t p t t    x x .  Indeed, t t x x , so every translator 

reduces to the identity transformation when acting on Euclidean space directly. 

We are now in a position to introduce the general element of (3) as the product of a 

translator and a rotor, which we shall refer to as a motor.  Let the vector t ad , 2 1a , 

so the translator 1 1
2 2

exp( ) 1t e e    a ad d  translates by distance d  along a .  And 



 21 

let the vectors b  and c  define a bivector  bcr , 1rr , so the rotor 

1 1 1
2 2 2

exp( ) cos sinr      bc bc  rotates by angle   in the bc  plane.  Then their 

product is the motor 

1 1 1 1 1
2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

exp( )exp( ) 1 cos sin

cos sin cos sin

scalar bivector quadvector

m tr e e

e e

  

   

 

 

         

     

a bc a bc

bc a abc

d d

d d  (10) 

which acts on the horosphere by performing the indicated rotation followed by the 

indicated translation.  That is, mp m trp rt tp r r t p r r           x x x x t , so motors 

represent general rigid body motions when working in the conformal model of Euclidean 

geometry.  We have 1mm trtr trrt tt    , so motors are versors, meaning that 

1m m  . 

We have thus found a geometric algebra which contains a model of 3D Euclidean 

space (represented by the horosphere), a unitary representation of the Lie group of rigid 

body motions (the motors), and a representation of its Lie algebra (spanned by the unit 

bivectors 23 31 12{ , , }e e e  and the null bivectors 1 2 3{ , , }e e e   ).  All of this is completely 

consistent with standard Lie theory – just simpler.  We have used only elementary 

algebraic operations, and this greatly simplifies the calculations we are about to 

undertake. 

In standard Lie theory, the elements of the Lie algebra are constructed by taking the 

derivative of the group action at the identity.  Thus they are conceived as “tangent 

vectors” in the abstract sense, meaning that they satisfy the axioms of a flat vector space 
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which is tangent to the group manifold at the identity.  In geometric algebra, we represent 

these as bivectors, but these also form an abstract vector space.  Thus we sometimes refer 

to bivectors as “tangent vectors” below, both to make contact with standard Lie theory 

and to emphasise their role in the formal differential geometry of the group manifold. 

We close this section with two facts that are very easy to establish using our 

representation of (3) and its Lie algebra, but require much more intricate constructions 

and very careful argumentation in the standard Lie theory.  Firstly, any curve of the form 

exp    s sx  passes through the identity element, where we have  s x .  It is 

immediate that          s t s t , so curves of this kind are one-parameter subgroups.  

In standard Lie theory, we say that such a curve passes through the identity with tangent 

vector x .  Secondly, for every bivector x  and for all versors g  and h , we have 

1 1exp expg g g g     x x  and 1 1log logghg g h g      , again by simple algebra.  In 

standard Lie theory, these two equalities follow from the fact that the exponential map 

commutes with the adjoint action.  Not only these facts themselves, but the ease with 

which such facts are obtained using conformal geometric algebra, are pivotal to the 

development of our argument in the next section. 
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Statistical Analysis in (3) 

In general terms, our problem may be stated as follows.  Given a set of points 1x  Nk k  

lying in the manifold of a Lie group, and a set of real-valued weights 1  Nk k  which sum 

to 1, we define the barycentre as 2
0 argmin ( )

x

x x


 , where 2 x    is the function we use 

to measure dispersion of the xk  about x and  is the group to which the xk  belong.  In 

the simplest case, each point represents a member of the additive group of Euclidean 

translations.  The natural definition of dispersion in this case us just the weighted sum of 

squared distances from the barycentre, which we find by setting the derivative of the 

dispersion to zero.  Thus 

2 2

1

( )x x x 


   
N

k k

k

     
2

1

2x x x 


     
N

k k

k

 (11a) 

0

2
0

1

1
| 0x x x x 



    
N

k k

k
N

 (11b) 

yields the arithmetic mean and variance familiar from basic statistics.  Similarly, 

2 2
0

1

( ) log logx x x 


   
N

k k

k

     
2

0

1

2
log logx x x

x
 



     
N

k k

k

 (12a) 

0

1

2
0

1 1

1
| 0 exp logx x x x x

 
 

   
       

   
   
  k

N
N N

k k k

k k
N

 (12b) 

yields the geometric mean, and so on.  In these expressions, exp and log are the ordinary 

exponential and logarithmic functions.  But the positive real numbers under 

multiplication are a Lie group, and the real numbers under addition are its Lie algebra.  
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Thus we can view exp and log as mappings back and forth between a Lie group and its 

Lie algebra.  We adopt this viewpoint because it lends itself to the generalizations we 

need for the problem at hand.  Indeed, it is crucial to our approach.  Because Euclidean 

space under addition is its own Lie algebra, the first example also fits this pattern, though 

the group is additive, so we use multiplication and addition on the right hand side of eq. 

11b in place of the exponentiation and multiplication in eq. 12b. 

Of course, we want the barycentre to depend only on properties intrinsic to the elements, 

and not on the arbitrary conventions we use to describe them, so bi-invariance is an 

essential property which we want it to have.  This is guaranteed in the above examples, 

because the group manifolds possess bi-invariant Riemannian metrics.  Now, a 

Riemannian metric is a positive-definite bi-linear form defined on a manifold, and it is 

well known [Zefran et al. 1999] that there are exactly two bi-invariant bi-linear forms on 

(3), neither of which is positive-definite: the Killing form, which is degenerate (it 

vanishes identically), and the Klein form, which is indefinite (it can be positive, negative 

or zero).  Consequently, there is no bi-invariant Riemannian metric on (3). 

Remarkably, this does not prevent us from defining a bi-invariant mean on (3), 

because we can still define geodesics joining the points xk  to the barycentre 0x .  We do 

this by giving up the idea of finding a minimum-length curve between two points, and 

rely on the more general definition of a geodesic as a curve along which the acceleration 

relative to the manifold vanishes at each point.  Even in the absence of a metric, we can 

parameterize a curve by an affine parameter which permits us to carry out the necessary 
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calculations, even though it fails to satisfy the triangle inequality, and therefore does not 

qualify as a metric. 

We are free to do this because the group structure of the manifold is essentially 

topological, and does not uniquely determine its geometry.  It is the connection which 

specifies the geometry by specifying how the tangent space transforms as its point of 

tangency to the manifold moves along a curve that lies in the manifold.  In general, a 

change in any vector lying in the tangent space will be composed of a intrinsic part, 

which is entirely contained in the tangent space, and an extrinsic part, which lies entirely 

outside it.  The intrinsic part is called the covariant derivative, and if it is zero, then the 

vector remains constant, relative to the tangent space at each point – and therefore, 

relative to the manifold – as it is transported along the curve.  Such transport is called 

parallel transport. 

How the change in the vector is decomposed into intrinsic and extrinsic parts is 

determined by the connection, which specifies the transformation of the tangent space 

brought about by moving the point of tangency along the curve.  Under parallel transport, 

the vector and the tangent space transform together in lock step, so the relative 

transformation between them (the covariant derivative) vanishes.  Thus a point moving 

along the curve undergoes no acceleration, relative to the manifold, when the curve 

parallel-transports its own tangent vector.  Such a curve is called a geodesic. 

There are infinitely many connections, which differ in the curvature and torsion they 

assign to the manifold at each point.  In keeping with generally-familiar notation, we 
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write the covariant derivative of a vector field y  along a curve with tangent vector x  as 

x y  without losing sight of the fact that x  and y  are elements of the Lie algebra, 

which we represent as bivectors.  A rigorous definition of multivector derivative may be 

found in Hestenes & Sobczyk [1987] or Doran & Lasenby [2007]; for a standard 

treatment of the differential geometry of Lie groups, see Nomizu [1956].  For given x  

and y , which depend on the position a  in the group manifold, we refer to x y  as the 

action of the connection relative to the group’s tangent space at a .  Using this notation, 

the torsion is just 

( , ) [ , ]T    x yx y y x x y  (13) 

and the curvature is 

[ , ]( , ) ( ) ( )R      x y y x x yx y z z z z  (14) 

When a bi-invariant metric ijg  exists, it fixes both curvature and torsion at every point in 

the manifold, so there is a unique connection, called the Levi-Civita connection, which is 

compatible with the metric.  In this case the connection coefficients, or Christoffel 

symbols m
ij , are defined by the relation 

i

m
j k mk ijg     .  When there is no such 

metric, we can still write 
i

k
j ij k      and derive the transformation connecting tangent 

spaces at neighbouring points from the Maurer-Cartan form, which maps the tangent 

space at any point of the manifold to the tangent space at the identity; that is, from the 

tangent space at any element of the group to the Lie algebra.  Affine connections of this 

type are uniquely determined by their action at the identity, 1|
x

y , in which writing the 
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identity as 1 is not a mere notational convention; in geometric algebra, the real number 1 

actually does serve as the identity element of the group. 

Of these, the family known as Cartan-Schouten connections [Cartan & Schouten 1926; 

Nomizu 1954] satisfy 1| 0 x x  for every vector x in the tangent space at the identity; 

that is, for every element of the Lie algebra.  Now, the Cartan-Schouten connections 

which are bi-invariant are of the form 1| ,   ax y x y , for some real constant a , as 

shown by Laquer [1992].  Of these, two have zero curvature and constant torsion, and 

one has constant curvature and zero torsion: 

The (+)-connection is defined by 1| ,   x y x y  0R   ,T   x y  

The (0)-connection is defined by 1
1 2
| ,   x y x y  1

4
, ,R     x y z  0T   

The (–)-connection is defined by 1| 0 x y  0R   ,T   x y  

This table follows by direct substitution of the action 1|x y  into eq. 13 and 14, together 

with the Jacobi identity. 

Clearly, the vanishing of the torsion makes the antisymmetric part of the covariant 

derivative equal to the Lie derivative: [ , ]  x yy x x y .  This has the consequence, 

crucial for our purposes, that the curves which parallel-transport their own tangent 

vectors under the action of the connection are also the integral curves of their tangent 

vectors under the group action.  The unique, torsion-free, bi-invariant Cartan-Schouten 0-

connection satisfies exactly this requirement.  Hence, every geodesic is a one-parameter 

subgroup; that is, a curve of the form exp    s sx .  This is why it is essential to work 
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in a compact representation of the group, because it is then guaranteed that every element 

of the group lies on a geodesic through the identity. 

The bi-invariance of the Cartan-Schouten 0-connection fixes the geometry in such a 

way that the geodesic  s  passing from 0x  to xk  remains invariant when the curve is 

transformed to pass from the identity to 1
0x x

k .  But this is just the one-parameter 

subgroup 1
0exp log( )x x     ks s , and for this curve, the affine measure increases 

monotonically from 0s  at the identity to 1
0log( )x x  ks  at 1

0x x
k .  Hence, we may 

define the dispersion of our weighted set of points as 

2 1 2
0

1

( ) log( )kx x x  



  
N

k

k

 (15) 

This formula is very reminiscent of eq. 12a, but we are now dealing with the group 

logarithm of a noncommutative group, so the computation of derivatives is not so 

straight-forward.  In view of these results, Pennec & Arsigny [2013] suggested a fixed-

point algorithm, as follows: 

Set the initial estimate of 0x  to 0,0 1x   

Repeat 1
0, 1 0, 0,

1

exp log nx x x x 




 
   

 
 

N

n n k k

k

 until 1 2 2
0, 1 0, 0,log x x x

    n n n  

Essentially, this algorithm performs gradient descent, and terminates when the change 

in the solution between successive iterations is smaller than some fixed fraction   of the 

dispersion.  Gebken & Sommer [2008] apparently use a similar algorithm on (3), but 

give very little detail.  Buss & Fillmore [2001] give a derivation and a proof of 
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uniqueness in the context of (3), but the result carries over to (3), and indeed to any 

group for which the one-parameter subgroups are geodesics of the Cartan-Schouten (0)-

connection. 

When this algorithm converges, we have 0, 1 0, 0x x x  n n , so we must have 

1
0

1

exp log 1x x 



 
   

 
 

N

k k

k

  or just  
1

0

1

log 0x x 



  
N

k k

k

 (16) 

Thus the dispersion is minimized when the affine displacements along the geodesics sum 

to zero.  In Appendix E, we show that the point 0x  which satisfies this equation is 

invariant under left-displacements, right-displacements, and inversion.  Therefore it is the 

unique bi-invariant barycentre of the points 1x  Nk k  with weights 1  Nk k . 

This algorithm, implemented in terms of matrix representations of (3), incurs heavy 

computational penalties.  Firstly, because the matrix exponential and logarithm must be 

calculated by cumbersome series expansions [Cardoso & Leite 2010].  Secondly, because 

the Baker-Campbell-Hausdorff (BCH) formula makes an infinite series of commutations 

out of the logarithm of a product of general group elements, recent improvements in 

efficiency [Weyrauch & Scholz 2009] notwithstanding. 

In addition, even though a measure of dispersion is defined, corresponding roughly to 

the idea of variance, the existing work on geodesic barycentres provides no practical 

means of calculating any anisotropy in the dispersion, analogous to covariance.  

Therefore it is unable to provide a reliable means of performing statistical comparisons 

between geodesic barycentres, let along curves passing through such barycentres.  In the 
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following sections, we show how to use conformal geometric algebra to solve these 

problems. 

Logarithms Using Conformal Geometric Algebra 

As before, we write the general element of (3) as a motor m , composed of a 

translation versor 1 1
2 2

exp 1t e e     t t  and rotation versor 1
2

expr   r  

1 1
2 2

cos sin   r  so that 

1 1 1 1 1
2 2 2 2 2

exp exp 1 cos sinm tr e e              t tr r  (17) 

where t  is the translation vector and   is the angle of rotation in the plane of the unit 

bivector r .  The logarithm of the motor expressed in this form is given by the Baker-

Campbell-Hausdorff (BCH) formula: 

1 1 1 1 1
2 2 2 2 8

log log exp exp , ...m e e e               t t tr r r  (18) 

where ,e e e     t t tr r r  is the commutator product.  The fact that the bivectors et  

and r  do not generally commute makes this is an infinite series, and this is an obstacle to 

efficient statistical calculations in (3).  To overcome it, we seek to refactor the motor 

in terms of versors that do commute.  We therefore decompose the vector t  into the sum 

of a part u  that lies in the plane of r  and a part w  that is perpendicular to it, so that 

 t u w , where the translation by w  commutes with the rotation in the plane of r , but 

the translation by u  does not.  This is easy to do using the fact that r  is a unit bivector, 

so 1rr .  Thus 

            t t t t t u wrr r r r r r r  (19) 

We then define a new versor s  by writing 
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m tr wu r w ur ws         (20) 

where 1
2

1u e  u  and 1
2

1w e  w  are translation versors formed from the vectors u  

and w .  The versors w  and s  commute because s ur  acts solely in the plane of r  and 

w  acts perpendicular to it. 

We now seek a vector v , from which we can form 1
2

1v e  v , allowing us to write 

s ur vrv  .    From the following figure 1 below, it is clear that the product ws  

expresses the motor in screw form, whereby v  must satisfy r r u v v .  Essentially, v  

translates the screw axis to the origin, r  performs the rotation, v  translates back, and w  

translates along the screw axis. 

 

Figure 1 - Geometry of the screw transformation. 

It is also clear from this figure that =  vv  is the radius of the screw, so 1
2

2 sin u v .  

After some algebraic manipulations, which can be found in Appendix D, we obtain the 

motor in screw form: 

t

w

u

v r rv–
 r
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1 1 1 1 1
2 2 2 2 2

exp exp 1 cos sinm ws wvrv e v v e v v               w wr r  (21) 

Because w  and s  commute, the BCH formula terminates and we can write the logarithm 

very simply as 

1 1
2 2

log log( ) log( ) log( )m ws w s e v v     w r  (22) 

which, after further algebra detailed in Appendix D, yields  

11 1 1
2 2 2

log sincm r e 
       w u r  (23) 

Taking the squared magnitude of this quantity is straight forward: 

2 2 2 21
4

log 1m         w v  (24) 

In this form, it is easy to see that, when 0  , we recover the flat metric of 3 ; when 

0t  (forcing 0w  and 0v ), we recover the bi-invariant metric of (3); in the 

general case, we have a smoothly varying blend of the two, which is a suitable affine 

parameter for geodesics of the Cartan-Schouten (0)-connection of (3) but does not 

constitute a metric of (3), as we have seen. 

Estimating the Geodesic Barycentre 

Let 7
0 1 2 3 1 2 3 1, , , , , , Tm      Nk k k k k k k k ka a a a x x x  be a set of N  data (either 

measurements or the result of a previous calculation) representing elements of (3) as 

motors, where the ika  are the components of a quaternion ak  representing the rotation 

and the ikx  are the components of a vector xk  representing the translation, both with 

respect to a fixed reference frame 1 2 3{ , , }e e e .  We put 1
02

cos | |a k k ka  and 

1
2

sin | | | |a k k k ka , with 2 2 2 2
1 2 3| |   k k k ka a aa  and 2 2 2 2 2

0 1 2 3| |a    k k k k ka a a a , in 

which we have introduced 1  k  to ensure that all rotations are uniformly oriented so 
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as to belong to the component of the group which is continuously connected to the 

identity, and thus corresponds to (3).  This can easily be handled in preprocessing, so 

without loss of generality, we can absorb the k  into the ka  in the remainder of the 

development.  The quaternion ak  then represents a rotation by angle k  in the plane of 

the unit bivector ˆ | |k k ka a a .  Thus 

1 1 1
2 2 2

0 1 23 2 31 3 12

ˆ ˆ| |exp | | cos sin

0

a a a

e e e

        

     

k k k k k k k k

k k k k k ka a a a a

a a

a
 (25) 

is a noisy estimate of a rotation versor, 

1 1 1 1 1
1 1 2 2 3 32 2 2 2 2

exp 1 1x e e e e           x xk k k k k kx x x  (26) 

is a noisy estimate of a translation versor, and 

1
2

1 1 1
2 2 2

1 1
2 2

ˆ

1

| | 1 cos sin

0

0 0

z z m x a e

a e

e e

 





 

         

     

   

x

x

x x

k k k k k k k

k k k k k

k k k k k k

a

a a

a

a

a a

 (27) 

is a noisy estimate of a motor with scalar, bivector, and quadvector parts 

0

1
2 2

1
4 2

(scalar part)

(bivector part)

(quadvector part)

0

0

z

z e

z e





  

       

  

x x

x

k k

k k k k k k

k k k

a

aa a

a

 (28) 

in which we have used  x x xk k k k k ka a a .  In components, this reads 



 34 

0 1 23 2 31 3 12 4 1 5 2 6 3 7 123

0

1 23 2 31 3 12

1
0 1 3 2 2 3 12

1
0 2 1 3 3 1 22

1
0 3 2 1 1 2 32

(scalar part)

(bivec

z e e e e e e e

e e e

e

e

e

   







       



   


      



      


      

k k k k k k k k k

k

k k k

k k k k k k

k k k k k k

k k k k k k

z z z z z z z z

a

a a a

a x x a x a

a x x a x a

a x x a x a

1
1 1 2 2 3 3 1232

tor part)

(quadvector part)e     k k k k k kx a x a x a

 (29) 

The quadvector is completely determined by the scalar and the bivector, so it plays no 

further part in our analysis.  The zk  and the mk  stand in 1-to-1 correspondence, so we 

refer to both as a motor, except when the context fails to make it clear which is meant. 

Since the data are noisy, each given motor mk  differs from the unknown true value mk  

by some unknown error term m k
.  Thus mm m  

kk k , meaning 

0

0 1 2 3

0

0 1 23 2 31 3 12

23 31 12

aa a

e e e

e e e

          

   

       

k k k

k k k k

k k k a k

k k k k

a a a a

a

a a a a

aa

 (30a) 

1 2 3

1 1 2 2 3 3

1 2 3

e e e

e e e

     

     

xx x
k

k k k

k k k k k

x x x

x x x

 (30b) 

Also, each datum has a 7×7 covariance matrix 

, ,
,

, ,

aa ax
mm

xa xx

  
     

k k

k
k k

 (31) 

where ,aa k  is the 4×4 auto-covariance of the quaternion, ,xx k  is the 3×3 auto-

covariance of the vector, and , ,
T

ax xa  k k  is their 4×3 cross-covariance.  If the data are 

calculated values, then presumably a covariance matrix will have been calculated for 
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each one.  If the data are measurements, then the sample covariance matrix may be used 

instead.  If nothing else, a diagonal matrix, formed from the RMS measurement noise, 

can serve as a simple estimate of the covariance matrix. 

Letting 1
02

1p yb e      y b b  denote the estimated geodesic barycentre of the 

mk , we write the vector of parameters to be estimated as 7
0 1 2 3 1 2 3, , , , , , b b b b y y y .  

As with the data, we have pp p   , meaning. 

0

0 1 2 3

0

0 1 23 2 31 3 12

23 31 12

bb b

e e e

e e e

          

   

       

b

b b b b

b

b b b b

bb

 (32a) 

1 2 3

1 1 2 2 3 3

1 2 3

e e e

e e e

     

     

yy y

y y y

y y y

 (32b) 

Our approach to finding p  will be to use a linear mixed-effects model with constraints, 

expressed in Gauss-Helmert form.  Petersen & Koch [2010] show that this is essentially a 

reformulation of the extended Kalman filter in block form.  Further, it is robust against 

inhomogeneous and anisotropic noise [Kanatani & Niitsuma 2012].  Essentially, the idea 

is to estimate the true data and parameter values by varying the parameter and minimally 

varying the given data so as to exactly satisfy all the constraints which are operative in 

the problem.  We now proceed to formulate an objective function which we can minimise 

to achieve this goal. 

The condition of minimally varying the data will be realized by permitting data values 

to vary in inverse proportion to the precision with which they are known, and forcing 

more highly correlated values to covary more closely than less correlated ones.  This can 
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be accomplished by scaling the variations by the inverse of the covariance matrix and 

minimizing the resulting sum.  Thus each datum contributes a term 

1
, , ,11 1

, , , , , , ,2 2
, , ,

( )
aa ax aT T T

m m m mm m a x
xa xx x

S




     

                   

k k k

k k k k k k k
k k k

 (33) 

and the overall sum is just 

11 1
, , (1) (1) (1)2 2

( ) ( ) T
m m m m

k

S S        k k  (34) 

where 

,1

,1

,2

,2(1)

,

,

a

x

a

x

a

x

 
 
 
 
 
   
 
 
 
  

N

N

   and   

,1 ,1

,1 ,1

,2 ,2

,2 ,2(1)

, ,

, ,

0 0

0 0

0 0

aa ax

xa xx

aa ax

xa xx

aa ax

xa xx

  
  
 
  
 

    
 
 

  
   

N N

N N

 (35) 

but this leaves the ,a k  and ,x k  interleaved.  While this gives the covariance matrix a 

nice block diagonal form, it turns out that separating the ,a k  and ,x k  is instrumental to 

putting the equations in a form that can be easily solved in closed form.  Thus we put 

,1

,2

,

a

a
a

a

 
 
  
 
 
 N

     

,1

,2

,

x

x
x

x

 
 
  
 
 
 N

     
a

m
x

 
    

  (36) 

and 
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,1

,2

,

0 0

0 0

0 0

aa

aa
aa

aa

 
 
  
 
 

 N

     

,1

,2

,

0 0

0 0

0 0

ax

ax
ax

ax

 
 
  
 
 

 N

 (37a) 

,1

,2

,

0 0

0 0

0 0

xa

xa
xa

xa

 
 
  
 
 

 N

     

,1

,2

,

0 0

0 0

0 0

xx

xx
xx

xx

 
 
  
 
 

 N

 (37b) 

whereby 

aa ax
mm

xa xx

  
     

     
1

mm T

A B

B C

  
   

 
 (38) 

in which the definitions of A , B  and C  follow from the standard formula for the inverse 

of a partitioned matrix and the fact that T
xa ax   .  Thus we can write the first part of our 

objective function as 

11
2

( ) T
m m m mm mS       (39) 

with partial derivative with respect to the residuals given by 

1( )
m m m mm mS 

      (40) 

Now, while this quantity is to be minimized, the constraints must be satisfied exactly.  

These fall into three types: those which constrain the data alone, those which constrain 

the parameter alone, and those which constrain them jointly.  The first two simply require 

the rotors to be unitary.  For each datum, this leads to a constraint ,g a x g a    k k k k  

1 0a a  k k , and for the parameter, we have , 1 0g b y g b bb        .  Thus, to first 

order, we have 
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, ,

, ,

( ) ( ) ( ) ( ) 0T
a a a

g g

g a g a g a g a

c J

       



k k k k k k

k k

 (41a) 

,

( ) ( ) ( ) ( ) 0T
b b b

b g b

g b g b g b g b

c J

       


 (41b) 

Renaming the terms as indicated, this reads , , , 0g a gJ c  k k k  and , 0g b b bJ c   .  We 

can now form the matrices 

,1

,2
,

,

0 0

0 0

0 0

g

g
g a

g

J

J
J

J

 
 
 


 
 
  N

     

,1

,2

,

g

g
a

g

c

c
c

c

 
 
 


 
 
  N

 (42) 

and stack these equations to read , 0g a a aJ c   .  Since we are requiring that these 

constraints must be satisfied exactly, we introduce Lagrange multipliers al  N  and 

bl   to obtain the next part of our objective function: 

, , , ,, , , T T
g a b a b g a a g a a g b b g b bS l l J c l J c l              (43) 

with partial derivatives 

,a

T
g g a aS J l   ,b

T
g g b bS J l   (44a) 

,a

T
l g g a a aS J c       ,b

T
l g g b b bS J c       (44b) 

The last constraint is a bit more involved.  It is the one which requires the parameter 

being estimated to be the geodesic barycentre of the data.  But we have already shown in 

eq. 16 that this means 
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1

1

1
2

1

ˆ

, , , , log

0

k

f m p f a x b y p m

e



  









       

      



 w v

N

k k k k k

k

N

k k k kr

 (45) 

where, of course, , , ,a x b y  w wk k k k , , , ,a x b y  v vk k k k , and , , ,a x b y  k k k kr r  are 

determined by writing the product 1p m
k  in screw form and taking its logarithm as 

detailed above.  Thus, to first order, we have 

, ,

, , , ,

, ,

, , , , , , 0

, , ,

, , , , , ,

, , , , , ,

a x b y

f

T T
a a x x

a x

T
b b y

b

f a x b y f a x b y

f a x b y

c

f a x b y f a x b y

J J

f a x b y f a x b y

J



             

  



         

      

k k k k k k

k k

k k k k k k k k

k k

k k k k
T

y

yJ

 

 (46) 

Thus we form 

,1 ,2 ,

,1 ,2 ,
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x x x x
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J J J J
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N

N
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so the equation reads 0a a x x b b y y fJ J J J c         .  Now we introduce one 

more Lagrange multiplier 7
fl   to obtain the last part of our objective function: 

, , , , T
f a x b y f a a x x b b y y f fS l J J J J c l                 (48) 

with partial derivatives 

a

T
f a fS J l       

x

T
f x fS J l       

b

T
f b fS J l       

y

T
f y fS J l   (49a) 

f

T
k f a a x x b b y y fS J J J J c             (49b) 

In total, then, we have 
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, , , , , , , , , ,

, , , ,

a x b y a b f m a x g a b a b

f a x b y f

S l l l S S l l
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            

     
 (50) 

and we will find p  by solving 

, , , , , ,

, , , , , , argmin , , , , , ,

a x b y a b f

a x b y a b f a x b y a b f
l l l
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                
 (51) 

This is achieved when the derivatives of S  with respect to the residuals and the Lagrange 

multipliers all vanish.  That is, when 
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The first pair, second pair, and last three of these equations can be put in the form 

, 0
0

0 0

T T a
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x
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A B J J
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 (53a) 
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 (53c) 

Now, putting 
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we have 

1 0T
mm m mJ l         0T

pJ l       m m p p lJ J c     (55) 

The first of these immediately gives us T
m mm mJ l   .  We substitute this into the third 

to get 1T
m mm m p p ll J J J c        , which we substitute into the second to get an 

explicit, closed-form solution for p : 

1 1 1T T T T T T
p p m mm m p p m mm m l p l

T

Q Q

J J J J J J J c S J Q c

S

              (56) 

Now, we simply set pp p    and repeat until convergence is achieved, taking final 

value of p  as our best estimate of p .  It should be noted that this is the only iteration in 

the estimation process.  Conformal geometric algebra has enabled us to eliminate 

iteration from the calculation of logarithms of group elements, eliminate the iterative 

BCH formula for the calculation of logarithms of products of group elements, and 

formulate the estimation problem so as to eliminate the iterative calculation of the 

residuals at each step of the minimization of the objective function. 

Estimating the Covariance Matrix 

Once we have the barycentre, the covariance matrix is very easily calculated from 

quantities we already have in hand.  If we evaluate lc  at p , where 0b   and 0y  , 

we have 
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and, by definition, 
p p

T T T T T
pp p p p l l pS J Qc c Q J S        .  Substituting the former 

into the later, we have 
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 (58) 
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Application to Reach-to-Grasp Trajectories 

We will now discuss an application of this novel methodology to an experiment in 

cognitive psychology, addressing the question of how competing action plans for reach-

and-grasp responses are resolved over time.  It is well-established that attending to a 

picture of a manipulable object evokes motor cortical activity; this finding is consistent 

with the view that the depicted object automatically leads to a mental representation of 

hand actions associated with it [e.g., Chao & Martin 2000; Grèzes, Tucker, Armony, Ellis 

& Passingham 2003; Handy, Grafton, Shroff, Ketay & Gazzaniga 2003].  Behavioural 

evidence supports the inference that manipulable objects evoke motor representations 

consistent with the objects’ form and function [Bub, Masson, & Cree 2008; Bub & 

Masson 2010; Sumner & Husain 2008; Witt et al. 2010].  Of particular interest is the 

nature of these representations and their influence on the planning and execution of a 

subsequent action.  One view holds that the mental representations of actions induced by 

a depicted object remain sufficiently abstract that the influence of such representations 

should be confined to the planning stages and effectively decoupled from the on-line 

control of movement [Glover 2004; Liu, Chua & Enns 2008; Milner & Goodale 2008].  

The alternative view holds that an object evokes action representations coded in a form 

compatible with the actual execution of a motor program, which, once active, may then 

compete with and affect the entire course of an unrelated grasping action [Cisek 2007; 

Cisek & Kalaska 2005]. 



 44 

Evidence supporting the latter view is provided by behavioural studies, in which 

subjects are required to initiate a reaching response before one of a number of available 

targets is specified [Chapman et al. 2010a; Stewart et al. 2013].  Under these 

circumstances, the motor system can plan multiple reaches to the targets, and the initial 

movement appears to represent an average of these plans.  So far, the evidence on the 

evocation of multiple action plans is limited to motor planning under conditions of 

uncertainty, characterized by competition between action plans that occurs when subjects 

do not know what the final target will be, and is fully resolved soon after the target is 

specified.  Another form of competition arises when we attend to one object that evokes 

an action plan, but engage in a competing action applied to a separate object.  For 

example, in a variant of the well known Eriksen flanker task [Eriksen & Eriksen 1974] a 

target arrow signals the direction of movement while irrelevant flanker arrows either 

conflict or agree with the intended action.  Under these circumstances, the intended 

action is clearly specified but competition may occur from the action plan evoked by the 

irrelevant stimuli [Coulthard et al. 2008]. 

Characterizing the influence of a previously attended object on a grasping action 

requires that the trajectory of the hand under the influence of a competing object be 

compared with the trajectory of the hand when no such competition is present.  The 

method described in this work allows the statistical analysis of dynamic changes in the 

motion of the hand against a complex background of substantial between- and within-

subjects variation.  As a result, we were able to capture very subtle perturbations of 
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reach-to-grasp trajectories and characterize their dependence on experimental 

manipulations.  This is a significant methodological advance. 

In some previous studies, analyses have been restricted to the measurement of the 

aperture between the thumb and forefinger [Glover & Dixon 2002; Glover, Rosenbaum, 

Graham & Dixon, 2004; Jakobson & Goodale 1991].  Others have relied on measuring 

joint angles to represent the shape of the hand as it approaches a target object [Santello, 

Flanders & Söchting, 1998, 2002; Santello & Söchting 1998].  These techniques, 

however, do not provide a means of statistically comparing the nature of the differences 

in hand trajectories between conditions.  Hansen and colleagues [Hansen & Elliott 2009; 

Hansen, Elliott & Khan 2008] developed a method to measure, at various time points 

during a reach response, the variability across trials of the location of a sensor attached to 

the hand.  Their analysis depicted the momentary variability of location along each axis 

in three-dimensional space.  Their statistical method, however, did not consider rotations 

at all; nor was their analysis used to compare positional differences in trajectories across 

conditions.  The methodology most closely resembling our approach used functional 

analysis of variance applied to the location of a single sensor during reach-and-point 

motions [Chapman et al. 2010a, 2010b].  This analysis was confined to two-dimensional 

projections of a three-dimensional trajectory, while Stewart et al. [2013] utilized two-

dimensional projections of translation and of one rotational vs. one translational degree of 

freedom. 
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In contrast, our method captures, for the first time, moment-by-moment differences in 

the rotation and translation of the articulations of the hand, represented by a sequence of 

elements of (3), which a samples of a continuous trajectory lying in the six-

dimensional group manifold of (3).  To visualize experimental effects on the hand’s 

movement, we represent statistical differences as a pair of three-dimensional projections 

of the full six-dimensional trajectory—one being the projection onto 3, the subgroup of 

three-dimensional translations, and the other being the projection onto (3), the 

subgroup of three-dimensional rotations.  We refer to the former as a box plot, and the 

latter as a ball plot.  These are described in the Data Analysis section. 

Method 

The experimental task allowed us to examine how a depiction of an object with a 

handle influences a horizontal or vertical power (clenched fist) grasp.  In each trial 

sequence (see figure 2), a photo was shown of an object with a horizontal or vertical 

handle (e.g., frying pan or beer mug).  The object could be in its canonical orientation 

(shown in the figure), rotated 90° clockwise, or rotated 90° counterclockwise.  The object 

photo was followed by a cue indicating which one of two response elements the subject 

should reach for and grasp.  One of the response elements was a horizontal handle and 

the other was a vertical handle, as shown at the bottom right of the figure.  On each trial, 

the orientation of the object’s handle in the photograph was either congruent or 

incongruent with the cued action (e.g., a beer mug is congruent with a vertical power 

grasp but incongruent with a horizontal one), for a total of four possible conditions.  This 
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allowed us to measure the impact of this mental representation on the kinematics of the 

reach-and-grasp response. 

 

Figure 2 - Trial sequence for each of the four conditions. 

The trajectories of fingertips, back of hand, and wrist were monitored using magnetic 

sensors that delivered information on position and rotation over time.  Any condition-

related variation in the trajectory of any of these articulations of the hand was termed a 

difference trajectory.  In the absence of a difference, this trajectory would necessarily 

hover close to the origin of the box plot or ball plot, whereas a difference was deemed 

statistically significant whenever the difference trajectory moved at least 2 standard 

errors away from the origin.  Because we were particularly interested in the effect of a 

competing action representation on the rotation of the hand, we emphasized conditions in 
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which moving from the start to the end position of a cued grasp required a 90° rotation of 

the hand (e.g., from a horizontal start, with the palm facing downward, to a vertical grasp, 

such as that used to grasp a teapot handle). 

Experimental Set-up and Procedure 

Stimuli were presented on a rear-projection display.  A response box was located 

directly in front of the subject, and two acrylic response elements were mounted on a 

base located between the display 

and the response box, as shown in 

figure 3.  The subject was seated 

facing the display and 

approximately 80 cm away from 

it, as shown in figure 4.  Reach-

and-grasp responses were made 

by lifting off from the response 

box and reaching forward about 

30 cm to grasp one the response 

elements.  Half of the subjects 

started from a horizontal position (hand flat with open palm facing downward and resting 

on the response box), and the other subjects started from a vertical position (flat hand 

with the wrist and hand in a vertical orientation, with the edge of the hand resting on the 

response box). 

 

Figure 3 - The experimental set-up. 
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The response elements were displaced slightly from the midline, one to the left and the 

other to the right.  The left-side element was a tall, C-shaped form 14 cm in height that 

afforded a vertical grasp.  The 

right-side element was a right-

angled form with a horizontal arm 

extending 9 cm rightward from a 

vertical post (9 cm in height) that 

afforded a horizontal grasp.  The 

response elements occupied the 

same position for all subjects, 

rather than being counterbalanced with respect to position, so that reach-and-grasp 

trajectories across subjects would be as similar as possible. 

In the first phase of the procedure, subjects practiced responding to the two hand cues 

by making vertical or horizontal reach-and-grasp response, as indicated by the cues.  In 

the second phase of the testing session, subjects were familiarized with the priming 

objects to ensure that they could easily be named.  The final phase of the experiment 

consisted of 24 practice and 288 critical trials.  At the beginning of each trial, a fixation 

cross appeared on the display screen until the subject placed his or her right hand in the 

designated start position, resting on the response box.  The fixation cross then 

disappeared, and 500 ms later, the image of the priming object was presented for 300 ms.  

The object’s image was then replaced by the image of the hand cue indicating the 

 

Figure 4 - Placement of the subject. 
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response that was to be made (see figure 2).  The subject then executed the corresponding 

reach-and-grasp response as quickly as possible.  The subject continued to hold the 

response element until an auditory signal indicated that the trial was over.  Across the 

practice and critical trials, each of the two possible actions was performed equally often, 

and each was primed equally often by the 12 object images (4 objects × 3 versions).  The 

trials were presented in a random order for each subject.  To ensure that subjects attended 

to the priming object, we asked them to report the name of the object after completing the 

reach-and-grasp response on a randomly selected 20% of trials. 

  The complete set of object primes is shown in figure 5.  Gray-scale digital 

photographs of a hand posed in a right-handed vertical power grasp and in a right-handed 

horizontal power grasp (palm down) were used as 

cues to indicate the action to be performed on a 

trial.  Gray-scale digital photographs of four objects 

oriented for use with the right hand served as 

priming stimuli.  Two objects were congruent with 

a vertical grasp when presented in their canonical 

orientation (beer mug and teapot), and two were 

congruent with a horizontal grasp when in their 

canonical orientation (frying pan and flashlight). 

Two additional versions of the object 

photographs were created, but the trials using these images were not part of the analysis 

 

Figure 5 - Complete set of stimuli. 
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reported here for reasons outlined below under Data Analysis and Filtering.  One version 

was generated by rotating the object 90° (counterclockwise for the beer mug and teapot; 

clockwise for the frying pan and flashlight) to produce an image that was compatible with 

the alternate grasping action.  An object in that orientation could be grasped, and a simple 

90° rotation of the wrist to vertical or horizontal (palm down) would reorient the object 

so that it would be ready for use.  The second version of the photographs was created by 

rotating the mirror-image view of the object 90° (clockwise for the beer mug and teapot; 

counterclockwise for the frying pan and flashlight).  Again, these images afforded the 

alternate action, but now a grasp followed by a simple 90° rotation of the wrist to vertical 

or horizontal would result in the object being held in an upside-down position. 

Subjects 

Eighteen right-handed students at the University of Victoria participated for extra 

credit in an undergraduate psychology course.  This sample size is consistent with those 

in previous studies of hand trajectories and was established before data collection began. 

Data Acquisition 

Five magnetic sensors were attached by surgical tape to subjects’ right hand, positioned 

on the nails of the thumb, index finger, and middle finger; on the back of the hand; and 

on the dorsal surface of the wrist.  A cable ran from each sensor up the arm and down the 

back; the cables were held in place by a fingerless glove, an upper-arm cuff, and a 

shoulder harness, all made of lightweight fabric.  We used an Innovative Sports Training 

(Chicago, IL) MotionMonitor integrated system equipped with 8-mm Ascension 
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Technology (Burlington, VT) miniBird sensors that simultaneously measured position 

and orientation (to provide information about rotation).  Figure 6 shows the positioning of 

the sensors on the hand, and the placement of the cables connecting the sensors to the 

data acquisition system can be seen in figure 4. 

  

a) Sensors 4 and 5; respectively back of 

hand and wrist. 

b) Sensors 1, 2, and 3; respectively thumb, 

index finger, and middle finger. 

Figure 6 - Placement of the sensors on the hand. 

Data from the sensors were collected at a 60-Hz sampling rate using MotionMonitor 

software.  The recording epoch for a trial extended from 1 second prior to the hand lifting 

off the response box until 1.5 seconds after lift-off.  This time range was adequate to 

capture normal reach-and-grasp responses. 

Data Analysis and Filtering 

Our design included a number of conditions, only some of which are relevant to the 

question of how a canonically viewed object affects the trajectory of a reach-and-grasp 

action.  Although rotated objects were included as primes, they present a special 

interpretive problem that the present experimental design cannot adequately address.  
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Namely, an object such as a rotated beer mug invites a horizontal grasp on the basis of its 

visible form but a vertical grasp on the basis of its canonical properties.  As a result, it is 

not possible to determine which of these influences affects the trajectory of the hand.  

Our interest was specifically in how canonically oriented objects influence the production 

of a reach-and-grasp response.  Moreover, because our technique offered, for the first 

time, the possibility of assessing statistical differences in the rotation as well as the 

translation of the hand, we were particularly interested in actions that required a wrist 

rotation when moving from the starting position to the final grasp posture.  Therefore, our 

primary analyses were restricted to trials on which the priming object was presented in its 

canonical view, and we emphasized conditions in which the reach-and-grasp response 

required a wrist rotation.  In the next section we will, however, include a brief description 

of the priming results for trajectories that did not involve a wrist rotation. 

Statistical outliers in the data set were identified on a sensor-by-sensor basis to reject 

invalid data while retaining good data from other sensors in the same trial.  Data for a 

particular sensor in a specific trial were discarded if there were more than 30 missing 

samples in total (at a 60 Hz sampling rate), or more than 15 consecutive missing samples, 

both of which were artifacts of the sensor system.  We also excluded a sensor’s data for a 

trial if (a) it exhibited a sudden, physically implausible jump in position, velocity, or 

acceleration, (b) it contained a quaternion of non-unit magnitude, or (c) the lift-off or 

reach time was outside a defined range (100-1,000 ms for lift-off; 250-1,250 ms for 

reach).  An entire trial was excluded if the subject made an incorrect reach and grasp 
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response.  In all, 86% of the entire set of sensor records were retained.  Any missing 

samples in a retained sensor record were interpolated in (3) so that translation and 

rotation were interpolated together. 

Finally, retained sensor records were time-normalized as follows.  The linear speed 

tangent to the trajectory was low-pass filtered using an 8th-order, zero-phase Butterworth 

filter with cut-off frequency of 8 Hz.  Then the trajectory was followed forward and 

backward from the point of peak speed (near the midpoint of the trajectory), until the 

speed dropped below a threshold of 5 cm/s.  These points were taken to be the start and 

end of the movement.  The trajectory between these points was interpolated, again in 

(3), with a resolution of 100 intervals to generate a time-normalized path. 

From the data obtained in this way, mean trajectories and a three-dimensional 

representation of the standard error of the mean at each sampled point in the trajectory 

(which we call an error volume) were calculated by subject and condition for each sensor.  

Difference trajectories representing the change in the paths followed by the hand in the 

congruent versus incongruent priming conditions, with error volumes based on these 

changes, were then calculated for each subject.  Finally, difference trajectories were 

averaged across subjects, and aggregate error volumes were computed. 

Results 

The plots shown in figure 7 illustrate the nature of the trajectories produced by our 

reach-and-grasp task and the computational challenges associated with evaluating 

differences between those trajectories.  Figure 7a is a three-dimensional depiction of
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Figure 7a - Typical box plot showing the translation part of the trajectory.  Raw data for subject 10. 
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Figure 7b - Typical ball plot showing the rotation part of the trajectory.  Raw data for subject 10. 
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Figure 7c - Box plot showing the same data as figure 7a, averaged separately by condition. 



 

 58 

 

 

Figure 7d - Ball plot showing the same data as figure 7b, averaged separately by condition. 
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Figure 7e - Box plot with same parameters as figure 7c, but for a different subject. 
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Figure 7f - Ball plot with same parameters as figure 7d, but for a different subject. 



61 

 

the position trajectory (i.e., position as a function of time) for each of the five sensors, 

which we call a box plot.  The plot shows all trials from one subject making a horizontal 

grasp from a vertical starting position when the action associated with the prime object 

matched the grasping action being produced (congruent condition).  The three dimensions 

represent forward motion (y axis), lateral motion (x axis), and vertical motion (z axis).  

The trajectories begin near the origin of the plot (i.e., x = y = z = 0) and move forward 

along the y-axis until the fingers curl around the response element (note the curved path 

reported by the sensors for the index and middle fingers).  Trial-to-trial variability in 

movement is characterized by displacement among the individual trajectories.  The plot 

also shows two-dimensional projections of the trajectory (in desaturated colour) on each 

of the three coordinate planes (i.e., xy, yz, and zx).  These projections assist in visualizing 

the trajectory’s three-dimensional shape and allow one to clearly see how it changes 

along two dimensions at a time.  For example, on the yz plane (side view), one can easily 

see the curvature of the two fingers as they form themselves around the horizontal 

response element at the end of the movement. 

Figure 7b is a three-dimensional depiction of the rotation trajectory (i.e., rotation as a 

function of time) of each sensor over the course of the movement for the same trials 

shown in figure 7a.  We call this way of displaying rotation trajectories a ball plot.  Each 

point on the rotation trajectory corresponds to the quaternion representing the momentary 

axis and amount of rotation experienced by a particular sensor. 
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As we have seen, a rotation can be represented by a unit versor of the form 

1 1
2 2

ˆcos sina    a , where   is the angle of rotation and 1 23 2 31 3 12
ˆ e e e  a a aa  is a 

unit bivector spanning the plane of rotation.  In three-dimensional space, this plane has a 

unique normal vector â , called its dual, and this is just the axis of rotation.  Using 

geometric algebra, the dual of a multivector is easily calculated; we simply multiply by 

the inverse of the pseudoscalar, 1
123 123e e   .  Thus 

123 1 23 2 31 3 12 123 1 1 2 2 3 3
ˆˆ e e e e e e e e         a a a a a a aa      (ps1) 

The vector 1
2

ˆsin v a  thus lies on the axis of rotation, and the angle of rotation is a 

function of its length: 12sin | |  v , which is single-valued as long as we restrict the 

angle to lie in the range       .  The one drawback is that this function is 

nonlinear, but this is the price we pay for a three-dimensional representation of a four-

dimensional object.  We can do this because the unit-magnitude constraint reduces the 

number of degrees of freedom from four to three.  Essentially, we have mapped the unit 

3-sphere in four-dimensional space into the interior of the unit ball in three dimensional 

space. 

Returning now to figure 7b, the trajectories begin at the right side of the plot and 

progress leftward from there.  Near the end of the movement, for example, the index 

finger as it curls around the response element is still rotating into a horizontal position 

from the vertical starting point.  This can be seen by consulting the xy and yz two-

dimensional projections.  In the xy projection (overhead view, lying below the ball plot), 

the end point of the index finger sensor’s trajectory lies in the negative region of the x 
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axis and the positive region of the y axis.  This captures the fact that as this finger curls 

inward, it is still rotating into the horizontal position.  In addition, the yz projection, 

shown to the left of the ball plot (side view), indicates that this point also lies in the 

positive region of the z axis, which implies that the curling action occurred while the 

finger retained some vertical aspect. 

Because the notion of a ball plot is likely to be unfamiliar to many, we provide a 

second example of how to interpret rotation, applied again to the index finger.  Consider 

the starting point of its trajectory shown in figure 7b.  As the ball plot and its two-

dimensional projections imply, displacement of this starting point from the origin occurs 

almost exclusively along the x axis.  This means that if we construct a vector from the 

origin to the initial point of the index finger’s rotation trajectory, the direction of rotation 

would primarily be around the x axis pointing in the positive direction, which indicates 

that at the start of the movement, the index finger is moving upward and rotating toward 

the body. 

Figure 7c shows the average position trajectory of each sensor for the congruent and 

incongruent conditions separately, and figure 7d shows the corresponding average 

rotation trajectories.  Data are for the same subject and action as in figures 7a and 7b.  

Note that averaging across trajectories from different trials, which naturally vary in the 

time required to complete the action, necessitates defining trajectories in normalized 

time.  That is, the full trajectory for a trial must be parceled into segments corresponding 

to particular proportions of the total time taken to complete the movement on that trial.  
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Averaging across trials can then be done for each of these portions of the trajectories.  

Error volumes representing one standard error of the mean in three dimensions are 

plotted for these trajectories.  These volumes were particularly small for the position 

trajectory and therefore are occluded in the figure by the line drawn along the trajectory.  

The rotation trajectories also feature directional cones providing information on the 

temporal progression of the trajectory. 

Figures 7e and 7f show the corresponding average trajectories and error volumes for a 

different subject.  Notice that for both the position and rotation trajectories, the within-

subjects differences between conditions are much more subtle than the between-subjects 

differences within conditions.  Our analytic approach calculates difference trajectories 

(i.e., the difference between congruent and incongruent conditions) within subjects before 

aggregating them across subjects, which thereby allows subtle differences between 

conditions to be detected even in the presence of large between-subjects variation in 

trajectories.  It should be noted that the word “difference” is used here in a suitably 

generalized sense.  It applies literally only to the group of translations, which acts 

additively.  The group of rotations, on the other hand, acts multiplicatively.  To cover 

both cases, we define the difference between two displacements to be the displacement 

that takes us from the first to the second.  Thus, the difference from 3a    to 

3b    is 3d     such that b da , or just 1d ba .  We show the translation part 

of that difference in a box plot and the rotation part in a ball plot. 
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Congruency Effects for Conditions With Hand Rotation 

We now discuss the prime object’s effect on a grasping action using differences of 

average position trajectories.  These difference trajectories show the position of a sensor 

in the incongruent condition at a given time point, relative to the position of that sensor in 

the congruent condition at that time.  An effect of congruency will be revealed by a 

difference trajectory that progresses further away from the origin as the effect accrues 

over time.  If there is no effect of the relationship between the object in working memory 

and the hand movement being executed, then the difference trajectory should remain near 

the origin, meaning that the origin should remain within the error volume throughout the 

time course of the movement. 

As can be seen from the difference trajectories displayed in figure 8, the object in 

working memory had, indeed, a substantial impact on the reach-and-grasp response.  

These difference trajectories reveal positional and rotational differences (incongruent 

relative to congruent) and are shown as solid lines with directional cones placed at 

intervals of 10% of normalized time.  The origin is indicated by a bright green ball of 

radius 1 mm.  Because we are plotting difference trajectories, the scale of the axes in 

figure 8, though still in millimetres, is more fine-grained than in figure 7.  Error volumes 

corresponding to differences of 1 standard error of the mean are depicted as semi-

transparent ellipsoids around each trajectory and were computed independently at 

successive points along the trajectory.  To assist with interpretation of these trajectories, 

we also provide two-dimensional projections as in figure 7.  These projections show the 

error volumes as overlapping ellipses. 
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Figure 8a - Thumb position difference: vertical grasp from horizontal start. 

 

Figure 8f - Thumb position difference: horizontal grasp from vertical start. 
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Figure 8b - Index finger position difference: vertical grasp from horizontal start. 

 

Figure 8g - Index finger position difference: horizontal grasp from vertical start. 
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Figure 8c - Middle finger position difference: vertical grasp from horizontal start. 

 

Figure 8h - Middle finger position difference: horizontal grasp from vertical start. 
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Figure 8d - Back of hand position difference: vertical grasp from horizontal start. 

 

Figure 8i - Back of hand position difference: horizontal grasp from vertical start. 
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Figure 8e - Wrist position difference: vertical grasp from horizontal start. 

 

Figure 8j - Wrist position difference: horizontal grasp from vertical start. 
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Consider first the action in which subjects moved from a horizontal starting position 

(fingers extended, palm facing down) to a vertical power grasp (figures 8a-e).  The 

figures show that for all of the sensors except the index finger, the difference trajectory 

moved a substantial distance away from the origin in the negative direction (backward) 

along the y axis, up to a maximum average exceeding 14 mm, before turning to the 

positive direction.  As an example of this effect, consider the difference trajectory for the 

thumb.  This trajectory begins near the origin and moves in the negative direction to a 

maximum of about 16 mm along the y axis.  The directional cones indicate that this 

relative lag continues to increase until about the midpoint of the action (the fourth of ten 

cones), then the difference between the congruent and incongruent condition is 

progressively reduced until the grasp is completed.  This pattern implies that in roughly 

the first half of the movement in the incongruent condition, there was less forward 

progress relative to the congruent condition.  Over the remainder of the movement, this 

difference necessarily diminished in normalized time because the hand landed in 

approximately the same position at the end of both congruent and incongruent trials.  

This effect is especially clear when looking at the two-dimensional projection on the xy 

plane. 

Notice that another effect is revealed both in the xy projection and in the projection on 

the zx plane.  The trajectory is displaced to the right along the x axis during the second 

half of the movement.  The same rightward displacement occurs for all the other sensors 

as well, although to only a minor extent for the index finger.  This excursion to the right 
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in the incongruent condition appears to be due to an attraction to the alternate response 

element (horizontal handle), which was positioned to the right of midline and was 

compatible with the prime object presented in that condition. 

A more interesting result concerns the effect of congruency on the thumb’s position 

over the course of the trajectory.  As indicated by the projection on the zx plane, the 

thumb was substantially lower in the incongruent than in the congruent condition 

(maximum average difference = 8 mm on the z axis during the middle part of the 

movement), more so than is seen with the other sensors.  This exaggerated downward 

position of the thumb provides evidence that when the priming object invites a horizontal 

grasp, the thumb tends to remain in a pronated position as the hand moves into the 

vertical grasp.  Positions of the middle finger along the x axis provide intriguing evidence 

on how this interference was overcome.  This sensor displays an exaggerated rightward 

excursion in the last quarter of the movement (maximum average difference = 6 mm on 

the x axis), apparently counteracting the sustained pronation of the thumb.  The segments 

of the mean difference trajectories described here are all more than 2 standard errors 

away from the origin. 

An account of the effect of the object in working memory, consistent with the above, 

can be derived from the difference trajectory ball plots displayed in figure 9.  Figure 9a 

plots differences in rotation between the congruent and incongruent conditions (i.e., 

rotation in the incongruent condition, relative to the congruent condition, as a function of 
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Figure 9a - Back of hand rotation difference: vertical grasp from horizontal start. 

 

Figure 9b - Back of hand rotation difference: horizontal grasp from vertical start. 
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normalized time) for the vertical grasp.  Once again, note the scale difference.  The ball 

radius in figure 7 is 1, corresponding to a 180° rotation, while the ball radius in figure 9 is 

0.03, corresponding to a rotation of only about 3.4°.  Data are displayed for the sensor on 

the back of the hand because it provided the most stable estimate of rotational position.  

The form of the path, projected onto the horizontal (xy) plane, provides the clearest 

interpretation of the rotational effects.  In this plane, the y axis projects from the origin 

toward the midline of the observer.  To interpret the difference trajectory, one considers 

the axis and angle determined by the vector from the origin to each point on the 

trajectory, just as was done when interpreting figure 7. 

The sense of the rotation is determined by the right hand rule: when the thumb of the 

right hand is aligned with the vector defining the axis, the fingers curl in the direction of 

the difference rotation (i.e., a counterclockwise rotation about the vector).  This rotational 

difference indicates that in the incongruent condition, the sensor of interest lagged in its 

rotation from the horizontal starting position to the final vertical grasp.  That is, relative 

to the position of the sensor in the congruent condition at a particular point in the 

trajectory, in the incongruent condition, the sensor was rotated counterclockwise away 

from that orientation (i.e., more toward a flat, horizontal position).  In the latter part of 

the movement, this difference was resolved as the hand formed the vertical orientation 

required by the cued grasp posture. 

It is highly significant that a pattern of effects complementary to those we have just 

discussed was obtained when the hand moved from a vertical start position to a horizontal 
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grasp.  For the position trajectories (figures 8f-j), there was again a lag in the forward 

motion of the hand in the incongruent condition, which can be seen most clearly in the xy 

plane for the thumb sensor (maximum average = 12 mm on the y axis).  There was also a 

leftward deviation for all sensors toward the location of the vertical response element 

(located to the left of midline), which was compatible with the incongruent object prime.  

This deviation can be most clearly seen in either the xy plane or the zx plane for each of 

the sensors, but especially for the thumb (maximum average = 6 mm on the x axis).  In 

addition, the thumb and fingers remained relatively high on the z axis in the incongruent 

condition through the first half of the movement (compatible with the vertical grasp 

afforded by the depicted object in that condition).  To see this, note that in the yz plane 

(corresponding to a side view of the box plot), the trajectories curve upward along the z 

axis after about the first third of the movement.  In the case of the index finger, for 

example, the maximum average upward deviation is nearly 6 mm.  These positional 

displacements were more than 2 standard errors from the origin over much of the 

trajectory.  Then the thumb descended (the downward deflection began between the fifth 

and sixth directional cones), followed by the fingers (between the sixth and seventh 

directional cones).  The early descent of the thumb appears to have counteracted the 

tendency for the index and middle fingers to remain in a vertical position. 

The ball plot shown in figure 9b confirms this description of events.  Examining the yz 

projection, one can see that the trajectory extends primarily away from the observer along 

the y axis (with some elevation on the z axis that remains within about 30°).  A vector 
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extending from the origin away from the observer to the most extreme point on the 

trajectory together with the right-hand rule indicates that the rotational difference consists 

of a clockwise rotation primarily around the y axis.  This direction of rotation for the 

difference trajectory is due to the fact that the position of the sensor in the incongruent 

condition, relative to the congruent condition, is closer to the upright starting position.  In 

other words, the rotation of the back of the hand from upright to pronated is slower in the 

incongruent condition.  We infer that the downward trajectory of the thumb, which 

begins prior to the downward trajectory of the other fingers, plays a role in counteracting 

the initial slowing of the hand’s rotation. 

Congruency Effects for Conditions With No Hand Rotation 

When subjects made a reach and grasp response that did not require a rotation of the 

hand (e.g., a vertical grasp from a vertical starting position), there were two effects of the 

object held in working memory on movement trajectories.  Plots of the difference 

trajectories for each sensor’s position are shown in figure 10, with vertical action in 

figures 10a-e, horizontal action in figures 10f-j).  Corresponding ball plots showing the 

difference trajectories for the rotation of each sensor are shown in figures 11a and 11b, 

respectively.  For the horizontal grasp made from a horizontal start position, the index 

and middle fingers lagged in forward motion in the incongruent condition.  Near the end 

of the response, the fingers made an upward excursion followed by a quick downward 

adjustment.  This extra motion makes sense given that the object displayed in the 
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Figure 10a - Thumb position difference: vertical grasp from vertical start. 

 

Figure 10f - Thumb position difference: horizontal grasp from horizontal start. 
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Figure 10b - Index finger position difference: vertical grasp from vertical start. 

 

Figure 10g - Index finger position difference: horizontal grasp from horizontal start. 
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Figure 10c - Middle finger position difference: vertical grasp from vertical start. 

 

Figure 10h - Middle finger position difference: horizontal grasp from horizontal start. 
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Figure 10d - Back of hand position difference: vertical grasp from vertical start. 

 

Figure 10i - Back of hand position difference: horizontal grasp from horizontal start. 
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Figure 10e - Wrist position difference: vertical grasp from vertical start. 

 

Figure 10j - Wrist position difference: horizontal grasp from horizontal start. 
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incongruent condition invites a vertical grasp.  The rotation of the back of the hand is 

consistent with this interpretation.  The ball plot of the corresponding sensor shows that 

the incongruent condition yields a slight flexion and supination of the wrist, presumably 

reflecting the influence of the irrelevant object on the trajectory of the horizontal grasp.  

The net result of the inadvertent influence of this conflicting motor representation was 

that the final position of the back of the hand was angled more toward a slightly more 

vertical posture.  More obviously, all sensors showed a pronounced leftward excursion in 

the incongruent condition (maximum average = 8 mm for the index finger on the x axis).  

This can be understood by noting that the response element associated with the 

incongruent grasp was located to the left of body midline and, remarkably, the trajectory 

in the incongruent condition showed an attraction to that element en route to completion 

of the horizontal grasp.  In the case of the vertical grasp made from a vertical start 

position, the incongruent object induced a brief excursion to the right for all sensors 

before the hand reached its final posture (maximum average = 5 mm for the index finger 

on the x axis).  This outcome is pleasingly symmetrical with the result for the horizontal 

grasp; in both cases, the hand deviates in the direction of the response element associated 

with the incongruent grasp.  The ball plot for rotation of the sensor attached to the back of 

the hand in this case showed a small clockwise rotation in the incongruent condition, 

again suggesting that the hand was inclined toward the incongruent response element. 

Thus, in the absence of the need to rotate the hand to perform the required grasp, the 

only appreciable congruency effect on hand position that was apparent for those actions 
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Figure 11a - Back of hand rotation difference: vertical grasp from vertical start. 

 

Figure 11b - Back of hand rotation difference: horizontal grasp from horizontal start. 
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was in the incongruent condition, in which the hand drifted laterally toward the incorrect 

response element in the first half of the trajectory, consistent with what was seen with the 

actions requiring a rotation as described above.  With respect to rotational differences, 

during a vertical grasp, the sensor on the back of the hand indicated that the hand rotated 

around the x axis so that the fingers were elevated slightly in the incongruent relative to 

the congruent condition.  When making a horizontal grasp, there was a tendency in the 

incongruent condition to rotate the hand slightly forward, away from the body. 

Statistical Effect Size 

To address the question of whether the effects of the object context extended 

throughout the hand’s trajectory, rather than being confined to the early stages of 

movement, we plotted the combined translation and rotation effect size for each sensor as 

a function of normalized time in figure 12. 

This was calculated as the Hotelling distance, defined as the square root of Hotelling’s 

[1931] 2T  statistic, which is just the squared difference between the means divided by 

the pooled variance.  This quantity can be thought of as a generalized signal-to-noise 

ratio; it is essentially the heteroscedastic generalization of the square of the Mahalanobis 

[1936] distance.  These measures are in accord with the Riemannian geometry of the 

manifold of multivariate normal distributions as laid down by Skovgaard [1984] and 

finally subsumed by the very elegant information geometry of Amari [1990].  This work 

does not call for the full generality of Amari’s information geometric methods, however, 

because second order statistics are assumed throughout. 
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Figure 12a - Overall effect size: vertical grasp from horizontal start. 

 

Figure 12b - Overall effect size: horizontal grasp from vertical start. 
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Figure 12c - Overall effect size: vertical grasp from vertical start. 

 

Figure 12d - Overall effect size: horizontal grasp from horizontal start. 
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Figure 12a shows that, for the vertical grasp made from a horizontal starting position, 

the congruency effect for all sensors but the index finger was greater than 2 standard 

errors of the mean even after the midpoint of the trajectory.  Near the end of the 

trajectory, the effect for some sensors was still greater than 2 standard errors above zero.  

Note that the middle finger in the vertical-grasp condition shows some perturbations in 

the last part of the trajectory.  These are likely caused by small movements of the sensor 

due to its imperfect attachment to the finger for some subjects.  This artifact appears in 

both conditions requiring a vertical grasp.  For the horizontal grasp made from the 

vertical starting position (figure 12b), the maximal effect size occurred in the last quarter 

of the trajectory for the sensor on the back of the hand, and the effect remained over 2 

standard errors away from zero for that sensor even at the end of the movement. 

In the two conditions not requiring rotation (figures 12c and 12d), the effect sizes were 

somewhat smaller, and tended either to hover at the threshold of significance, (e.g., the 

thumb in figure 12c) or to trend roughly towards greater significance in the second half of 

the movement. 

Discussion of Experimental Results 

Previous reports have shown that the trajectory of the hand in a pointing task and of an 

eye movement to a target can deviate toward or away from the spatial location of a 

distractor [Song & Nakayama 2008; Tipper, Howard & Houghton 1998; Van der Stigchel 

2010; Weaver, Lauwereyns & Theeuwes 2011].  Computational models of trajectories 

that curve away from a distractor are based on the idea of localized areas of inhibition 
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that operate on neuronal populations responsible for encoding the distractor location 

[Doyle & Walker 2001; Tipper, Howard & Paul 2001].  A further mechanism is required 

to counteract the influence of the distractor so that the trajectory curves back toward the 

target location [McSorley, Haggard & Walker 2004].  Situations in which the hand or eye 

curves toward instead of away from a distractor occur when attention is forced to the 

distractor because of task demands [Song & Nakayama 2008].  For example, selecting a 

target using its unique colour as the cue inevitably generates internal competition from 

among a set of homogeneously coloured distractors.  This competition is the result of 

lateral interactions between the neuronal populations that separately encode the locations 

of the target and distractors [McPeek & Keller 2001]. 

In our experiment, attention was forced to the visual object that had to be held in 

memory while the reach-and-grasp action was programmed and executed.  Remarkably, 

the competition we observed was generated at least in part by a mental representation of a 

potential action to an object held in working memory.  Thus, analogously to visual search 

experiments that have examined hand and eye trajectories attracted toward a spatial 

distractor, the dynamics of the grasp posture of the hand in our task was affected by the 

“virtual grasp” associated with the object.  This competition between the intended and the 

virtual grasps altered both the translation and rotation of the articulations of the hand in 

principled ways.  We observed three qualitatively distinct effects.  When the grasping 

response required a rotation, an incongruent object in working memory appeared to 

generate a virtual counterforce that was compensated for during the movement.  For 
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example, pronation of the hand was altered when the distracting object invited supination, 

and vice versa.  Regardless of whether rotation was required, during the first half of the 

reach action, an incongruent object in working memory slowed forward progress and 

attracted the hand toward the competing response element.  The latter result converges 

nicely with previous demonstrations showing analogous effects for both hand and eye 

movements in two dimensions [McSorley et al. 2004; Song & Nakayama 2008]. 

The evidence we obtained goes well beyond previous work that has shown effects of 

physically present distractor objects on the trajectory of a hand or eye movement toward 

a target location [McSorley et al. 2004; Song & Nakayama 2008; Tipper et al. 1998; 

Weaver et al. 2011].  The distracting action representation in our task was evoked by an 

object in memory that was no longer visible when the grasping action was planned and 

executed.  Nevertheless, the entire trajectory of the movement, as well as the articulation 

of the hand, were altered under the competing influence of the distracting object (see 

figure 12). 

Other research examining the effect of an irrelevant word or object on the trajectory of 

hand actions has relied on traditional kinematic measures, such as time to peak velocity 

and thumb-forefinger aperture [e.g., Gentilucci, Benuzzi, Bertolani, Daprati & Gangitano 

2000; Gentilucci & Gangitano 1998; Glover & Dixon 2002; Glover et al. 2004].  These 

results indicate that effects are confined to relatively early stages of the trajectory and 

dissipate during the course of the movement.  Measures such as velocity and aperture, 

however, are inherently constrained by the fact that the hand must arrive at an end point 
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with the thumb and forefinger spaced in accordance with the size of the grasped object.  

It is inevitable, then, that these kinematic measures eventually must be determined by the 

parameters of the target and can admit no influence of context on later stages of the 

movement.  Our statistical methodology allowed us to track changes as small as a 

fraction of a degree in the rotation of the hand and a few millimetres in its position, and it 

clearly established that the on-line control of movement is continuously modulated by 

conceptually driven representations of action, in much the same way that movement is 

continuously informed by the presence of competing objects in space.  Overcoming the 

competing affordances of an object in working memory when carrying out an intended 

action is much like resolving competition between action plans evoked by objects in 

space. 
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Summary and Conclusions 

We have seen how geometric algebra provides an approach to the representation of 

geometric objects and the transformations acting on them which allows us to arrive at 

some of the more advanced results from the theory of Lie groups by a greatly simplified 

path, and thereby to define barycentres and dispersion in non-commutative, non-compact 

Lie groups without a bi-invariant metric.  In the specific case of (3), we have applied 

these tools to the formulation of a random-effects statistical model of the trajectories 

swept out in the group manifold by the motions of the articulations of the human hand 

during reach-to-grasp movements carried out in differing cognitive states.  We have 

introduced the combination of box plots and ball plots to aid in data visualization and 

interpretation of these results.  The new results we have been able to establish in this way 

have proven the robustness and usefulness of the methodology. 
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Appendix A: Basic Concepts of Geometric Algebra 
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The Geometric Product

geometric product: sum of inner and outer products

ab a b a b 

 
1

2
a b ab ba  

wedge product

 perpendiculars

 yields a bivector

 anticommutes

 
1

2
a b ab ba 

dot product

 parallel parts

 yields a scalar

 commutes  
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The Geometric Product is Invertible

every vector squares to a scalar ...

2 2 2

2 2 2 2

a b a ab ba b

a b a b ab ba a b

      

       

... and this lets us divide by vectors

1 1 1

2

1
1aa a a a a

a

     
 

 

The Inverse of an Arbitrary Blade

inverting a bivector leads us to define reversion

and this generalizes inversion to any arbitrary blade
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2
| |

| |

b b
b b bb

bb b
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1 1 1 1 1 1

1 1 1

2 2

( )( ) ( ) (1) 1

( )

uv v u u vv u u u uu
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uv v u
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     

  

   

   
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Signature (2 ,0): Unit Bivectors Square To –1

unit bivectors are geometric roots of –1

these bivectors lead to circular functions

wherever appears in formulae, look for a bivector!

2 2 2 2

2 2 2

( )

1, 1 1

uv uvuv uvvu u v

u v

       

    

b bb

b

i

 
 

Signature (1 ,1): Unit Bivectors Square To +1

unit bivectors are geometric roots of unity

these bivectors lead to hyperbolic functions

2 2 2 2

2 2 2

( )

1, 1 1

uv uvuv uvvu u v

u v

       

    
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The Geometric Elements of the Plane

12e

2e

1e

12e

2e

1e

12 1 2 1 2e e e e e  

 the unit square 
(bivector)

 the axes 
(vectors)

1 2 ˆ ˆ, ,e e   x y

 
 

The Geometric Algebra of the Plane,     .

 writing the pseudoscalar as

makes it obvious that

12e2e
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1e1

12e2e1e1
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12e

1e 1 12e 2e
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i1e i

1

1e
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i1e i1e1

1e i
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1e 1 i 1e i

11e i i 1e

1i 1e i 1e

i1e i

1
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1e1
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1e i

i
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i1e i
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1e

1e1

i1e i1e1

1e i

i

1e 1 i 1e i

11e i i 1e

1i 1e i 1e

 The algebra has 4 elements:

 scalar:

 vectors:     and

 bivector:      (pseudoscalar)12e

2e1e

1

i

2
G
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(even subalgebra)
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Other Signatures: and .

 Transform to null basis

ee
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 Minkowski plane:
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The Null Basis Vectors,     and     .oe
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The Geometric Algebra of Space,     .

3
G

3G
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Appendix B: The Conformal Model of 3 

The Conformal Geometric Algebra,         .

 we start with                    and append

to form

 then a simple change of basis

results in                                    which has two

null basis vectors:
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Stereographic Projection in 1D
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Stereographic Projection in 2D
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The Projective Null Cone
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The Horosphere.
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The Horosphere - Another View.
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Expressing the Horosphere Mapping in         .

 set                           to get

 then set         to get back to

3,0,2G
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The Conformal Point                              .

 being null vectors, points have no magnitude

 dot product of two points = distance between them
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The Geometric Primitives in CGA
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for details, see Lasenby et al., 2004
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Appendix C: Multivectors as Operators 

Vectors Generate Reflections

v
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Bivectors Generate Rotations
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Exponential of a Negative Bivector

2 3 4 5

2 4 3 5

1 ...
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 

b b b b b b

b

b

 for unit bivector   , , and scalar     we haveb



 Lie algebra  exp  Lie group  log  Lie algebra

2 1 b

cos sin cos sin ie i e        b
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Rotation Versors
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 rotation is takes place in the plane of the bivector
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Rotation of Conformal Points

 the horosphere is closed under rotation
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Exponential of a Null Bivector

 for a unit vector    and a scalar    we havea d
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Translation Versors

 the horosphere is closed under translation
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Translators and Rotors are Unit Versors

 for translators, independent of    and

 for rotors, independent of    and
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Motors (          ): Combined Translator & Rotor

 the product of translator   and rotor    is a motor:

 the horosphere is closed under the its action

 and of course motors are unit versors
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Appendix D: Screw Transformations 
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Algebra of the Screw Transformation

 we extract the parallel and perpendicular parts

 set                                         , likewise    and   :

 now,                 and           , so                       and

1
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1 1
2 2

exp 1w e e     w w u v
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The Logarithm of a Motor

 we can now put the motor in screw form:

 in which the tanslation and rotation commute, so
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Baker-Campbell-Hausdorff Formula

 translation and rotation generally don’t commute, so
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where                       is the commutator producta b ab ba 

Baker-Campbell-Hausdorff Formula

 

 finally, we use                                        and

to write

 whereby

Square Magnitude of a Screw Logarithm

1 1
2 2

1 1
2 2

logm e v v

e



 





  

     

w

w v

b

b

1 1
2 2

1 1
2 2

logm e v v

e



 





  

     

w

w v

b

b

2 11 1v v r e
      ub b

2 1 11
2

1 sincr r         u u vb

2 2 2 21
4

log 1m         w v
2 2 2 21

4
log 1m         w v

 



 

 

119 

Appendix E: Connections, Geodesics and Dispersion 

One-Parameter Subgroups

 screw logs are not metric – no triangle inequality

 not bi-invariant – has no such bilinear form

 Killing form is degenerate, Klein form is indefinite

 but we can form 1-parameter subgroups

 we can always pick a bi-invariant connection such

that these 1-parameter subgroups are geodesics

(3)

1, 2 2 2
ˆexp 1 cos sine            ts s ss sx x b

 
 

Cartan-Schouten Connections

 Cartan connections uniquely determined by

 Cartan-Schouten connections have              , so

1-parameter subgroups are geodesics

 those of the form                      are bi-invariant
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1
1 2
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1
1 2
|x y x y  

1| 0x y 

1
4

R x y z   

0R 

0T 

T x y  
 

 



 

 

120 

Dispersion and Barycentre as Fixed Point

 let dispersion about    of   motors    , weights     , be

 fixed-point algorithm (Pennec & Arsigny, 2013):
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wrepeat

1 2 2
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The Barycentre Nulls the Weighted Sum

 suppose we have convergence, so

then

or just

0, 1 0, 0x x x  i i

1
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1

log 0x x



  
n

k k

k

w
1

0

1

log 0x x



  
n

k k

k

w

1
0, 1 0, 0,

1

exp log

1

x x x x




 
    
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Invariance of the Barycentre

 left invariance is immediate

 right invariance follows from

 so we also have invariance under inversion

1 1 1 1
0 0 0x x x a a x ax ax          k k k

1 1 1 1
0 0 0x x x aa x x a x a         k k k

1 1 1 1 1 1
0 0 0x x x x x x           k k k

1 1 1
0 0 0 0

1 1

log logx x x x x x  

 

 
      

 
 
n n

k k k k

k k

w w

 
 


