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ABSTRACT

Proteins participate in the majority of cellular processes. To determine the function of a
protein it is not sufficient to solely know its sequence, its structure in isolation, or how it works
individually. Additionally, we need to know how the protein interacts with other proteins in
biological networks. This is because most of the proteins perform their main function through
interactions. This thesis sets out to improve the understanding of protein-protein interaction
networks (PPINs). For this, we propose three approaches:
(1) Studying measures and methods used in social and complex networks.

The methods, measures, and properties of social networks allow us to gain an understanding
of PPINs via the comparison of different types of network families. We studied and evaluated
models that describe social networks to see which models are useful in describing biological
networks. We investigate the similarities and differences in terms of the network community
profile and centrality measures.
(2) Studying PPINs and their role in evolution.

We are interested in the relationship of PPINs and the evolutionary changes between species.
We investigate whether the centrality measures are correlated with the variability and similar-
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ity in orthologous proteins.
(3) Studying protein features that are important to evaluate, classify, and predict interactions.

Interactions can be classified according to different characteristics. One of these characteris-
tics is the energy (that is the attraction or repulsion of the molecules) that occurs in interacting
proteins. We identify which type of energy values contributes better to predicting protein-
protein interactions. We argue that the number of energetic features and their contribution to
the interactions can be a key factor in predicting transient and permanent interactions.

Contributions of this thesis include: (1) We identified the best community sizes in PPINs.
This finding will help to identify important groups of interacting proteins in order to better
understand their particular interactions. We furthermore find that the generative model de-
scribing biological networks is very different from the model describing social networks A
generative model is a model for randomly generating observable data. We showed that the
best community size for PPINs is around ten, very different from the best community size for
social and complex network (around 100). We revealed differences in terms of the network
community profile and correlations of centrality measures; (2) We outline a method to test
correlation of centrality measures with the percentage of sequence similarity and evolutionary
rate for orthologous proteins. We conjecture that a strong correlation exists. While not obtain-
ing positive results for our data, we believe that the reason for this is the integration problem
of today’s data sets. Therefore, (3) we investigate a method to discriminate energetic features
of protein interactions that in turn will improve the PPIN data. The use of multiple data sets
makes possible to identify the energy values that are useful to classify interactions. For each
data set, we performed Random Forest and Support Vector Machine with linear, polynomial,
radial, and sigmoid kernels. The accuracy obtained in this analysis reinforces the idea that en-
ergetic features in the protein interface help to discriminate between transient and permanent
interactions.



v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures x

Acknowledgements xvi

Dedication xvii

1 Introduction 1
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10
2.1 Proteins, interactions and networks . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Relationship among sequences . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Protein-Protein Interaction Networks . . . . . . . . . . . . . . . . . . 17
2.1.5 The meaning of dN/dS ratio in molecular evolution . . . . . . . . . . 18

2.2 Graph theory definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 General terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Social networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Measures from social networks . . . . . . . . . . . . . . . . . . . . . 28



vi

3 How do biological networks differ from social networks? 31
3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Conductance and community profiling . . . . . . . . . . . . . . . . . 34
3.2.2 Biological networks analyzed . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Network community plot analysis . . . . . . . . . . . . . . . . . . . 36

3.3 Modelling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Modelling results and discussion . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Centrality differences between biological and other networks . . . . . 43

3.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Finding correlations between orthologs using centrality measures, percentage
of similarity and rate of evolution 47
4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Step 1: Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Step 2: Centralities . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Step 3: Amino acid divergence. . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 Step 4: Merging values . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Percentage of similarity . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4 Divergence: dN/dS ratio . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5 Centrality measures, percentage of similarity and dN/dS ratio . . . . 80
4.3.6 Percentage of similarity and dN/dS ratio . . . . . . . . . . . . . . . 87
4.3.7 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Improving feature selection to predict protein-protein interactions 92
5.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Method and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Data Retrieval and Formatting . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Findings and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 118



vii

6 Conclusions and future work 120
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Limitations due to data sets available 135

B Example dN/dS ratio 137



viii

List of Tables

Table 2.1 Six simple paths and one shortest path from vertex vC to vertex vY in
graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 2.2 Eccentricity for vertices of Graph G. . . . . . . . . . . . . . . . . . . . 23
Table 2.3 Simple paths for all the pairs of Graph T in Figure 2.11. 15 of these

paths (underlined) are shortest. . . . . . . . . . . . . . . . . . . . . . . 25
Table 2.4 Shortest paths that pass through a vertex v in Graph T from Figure 2.11. 25
Table 2.5 Shortest paths pass through C and F from Table 2.4. . . . . . . . . . . . 26
Table 2.6 Betweennes for every vertex of Graph T in Figure 2.11. . . . . . . . . . 26
Table 2.7 Betweenness values for each vertex in Graph Q. . . . . . . . . . . . . . 27
Table 2.8 Distance matrix of Graph T in Figure 2.13. . . . . . . . . . . . . . . . . 28
Table 2.9 Closeness values of Graph T in Figure 2.13. . . . . . . . . . . . . . . . 28
Table 2.10 Conductance for communities in graph H. . . . . . . . . . . . . . . . . 30

Table 3.1 Biological networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 3.2 Statistical Data of the networks. . . . . . . . . . . . . . . . . . . . . . 39
Table 3.3 Spearman correlation between centrality measures for biological networks. 43
Table 3.4 Spearman correlation between centrality measures for social and com-

plex networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4.1 Network information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 4.2 Betweenness statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 4.3 Closeness statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 4.4 Degree statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 4.5 Number of pairs of proteins categorized by difference of betweenness. . 76
Table 4.6 Statistics of percentage of similarity between pairs of species. . . . . . . 77
Table 4.7 Number of pairs of proteins categorized by percentage of identity. . . . 78
Table 4.8 dN/dS ratio statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 4.9 Comparison between Spearman’s results of Hahn’s paper and our research. 88
Table 4.10 Spearman’s correlation by species. . . . . . . . . . . . . . . . . . . . . 89
Table 4.11 Spearman’s correlation by pair of species. . . . . . . . . . . . . . . . . 89



ix

Table 5.1 Types and contributions calculated by FastContact for each complex.
Energy (E) and Residue (R). . . . . . . . . . . . . . . . . . . . . . . . 101

Table 5.2 Position, name and energy of the complex. . . . . . . . . . . . . . . . . 104
Table 5.3 Representation of the features to be used: (a) vector X and (b) Vector

transposed X t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 5.4 Matrix 1, types of energies and features calculated by FastContact per

each complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 5.5 Minimum and maximum numbers of energetic and residues values ob-

tained among 298 complexes. . . . . . . . . . . . . . . . . . . . . . . . 107
Table 5.6 Matrix 2, types of energies and features calculated by FastContact per

each complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 5.7 Maximum accuracies of the data sets (including old list/Data set 0(20+,20−)),

according to classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 5.8 Maximum accuracies of the classifiers, according to different sizes of

training and testing data sets . . . . . . . . . . . . . . . . . . . . . . . 115
Table 5.9 Maximum accuracies of data sets, according to different sizes of training

and testing data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table B.1 Nucleotide sequences and the respectively protein sequence. . . . . . . 137
Table B.2 Analysis first site from Table B.1, first codon from both sequences ACT

(amino acid T) and ACA (amino acid T). . . . . . . . . . . . . . . . . . 138
Table B.3 Analysis third codon from Table B.1 for both sequences, TTA (amino

acid L) and ATA (amino acid I). . . . . . . . . . . . . . . . . . . . . . 138
Table B.4 Proportion of SYN and NONS in codon 4. . . . . . . . . . . . . . . . . 139
Table B.5 Proportions of SYN and NONS for each site. . . . . . . . . . . . . . . 139



x

List of Figures

Figure 1.1 Main goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 1.2 Prediction using two different Networks. . . . . . . . . . . . . . . . . 4
Figure 1.3 Prediction using one Network. . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.4 Representation of PPINs, PPIs and proteins comparison. . . . . . . . . 5

(a) PPINs, two species represented by graphs. . . . . . . . . . . . . . . . 5
(b) Subgraphs of PPIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(c) Two proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.5 Phases for the selection of energetic features and validation of efficiency
in the classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 Representation of protein structures. . . . . . . . . . . . . . . . . . . . 13
Figure 2.2 Three domains in protein 1pkn [13]. . . . . . . . . . . . . . . . . . . . 13
Figure 2.3 Representation of PPI zone (Complex 1A6D, from data set used in

Chapter 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(a) Protein complex, protein A and B. . . . . . . . . . . . . . . . . . . . 15
(b) Interaction zone (colors). . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.4 Paralogs and orthologs. Protein to the right: interactions of different
species; protein to the left: interaction between genes of the same species. 17

Figure 2.5 Orthologs, paralogs, and co-orthologs. . . . . . . . . . . . . . . . . . . 17
(a) Interactions of proteins in three different species. . . . . . . . . . . . . 17
(b) Two proteins from the same species together related with a protein from

a different species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2.6 Graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

(a) Vertices in Graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
(b) Edges in Graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.7 Adjacency and degree in Graph G. . . . . . . . . . . . . . . . . . . . . 21
(a) Adjacent vertices in Graph G. . . . . . . . . . . . . . . . . . . . . . . 21
(b) Degree for vertex vE in Graph G. . . . . . . . . . . . . . . . . . . . . 21

Figure 2.8 Simple paths and shortest path in Graph G. . . . . . . . . . . . . . . . 21



xi

(a) Path in Graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(b) Simple paths and shortest path from vertex vC to vertex vY in Graph G. 21

Figure 2.9 Neighbors and eccentricity of vertex vA in Graph G. . . . . . . . . . . 22
(a) Neighbors of vertex vA in Graph G. . . . . . . . . . . . . . . . . . . . 22
(b) Eccentricity of vertex vA in Graph G. . . . . . . . . . . . . . . . . . . 22

Figure 2.10 Neighbors, eccentricity of vertex vA and diameter and radius of Graph G. 23
(a) Distance matrix of Graph G in Figure 2.6a. . . . . . . . . . . . . . . . 23
(b) Adjacency matrix of Graph G in Figure 2.6a. . . . . . . . . . . . . . . 23

Figure 2.11 Graph T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 2.12 Graph Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2.13 Graph T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 2.14 Graph H and three communities. . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.1 A networks and three communities. Communities 1, 2, and 3 are densely
connected internally and sparsely connected with the rest of the graph. . 34

Figure 3.2 Network community profiles for biological networks computed using
the local spectral clustering (red/dark) and bag-of-whiskers (green/light)
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(a) Arabidopsis thaliana. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(b) Caenorhabditis elegans 1. . . . . . . . . . . . . . . . . . . . . . . . . 37
(c) Caenorhabditis elegans 2. . . . . . . . . . . . . . . . . . . . . . . . . 37
(d) Drosophila melanogaster. . . . . . . . . . . . . . . . . . . . . . . . . 37
(e) Echericha coli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(f) H pylo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(g) Homo sapiens 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(h) Homo sapiens 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(i) Mus musculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(j) Saccharomyces cerevisie . . . . . . . . . . . . . . . . . . . . . . . . . 37
(k) Schizosaccharomyces pombe. . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.3 Network community profiles (red/dark) and bag-of-whiskers (green/light)
algorithms of two social networks and a power-grid network (a) 4,941
nodes [117], (b) 81,306 nodes [65], and (c) 4,039 nodes [65]. . . . . . 38

(a) CDG - Spectral and Whiskers algorithm. . . . . . . . . . . . . . . . . 38
(b) Twitter - Spectral and Whiskers algorithm. . . . . . . . . . . . . . . . 38
(c) Facebook - Spectral and Whiskers algorithm. . . . . . . . . . . . . . . 38



xii

Figure 3.4 Network community profiles of biological networks (red/dark) and their
rewired (green/light) networks. The profiles of the original networks
and their rewired counterparts exhibit a similar nature. This is not the
case for social and other complex networks. . . . . . . . . . . . . . . . 41

(a) Arabidopsis thaliana. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(b) Caenorhabditis elegans 1. . . . . . . . . . . . . . . . . . . . . . . . . 41
(c) Caenorhabditis elegans 2. . . . . . . . . . . . . . . . . . . . . . . . . 41
(d) Drosophila melanogaster. . . . . . . . . . . . . . . . . . . . . . . . . 41
(e) Echericha coli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(f) H pylo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(g) Homo sapiens 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(h) Homo sapiens 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(i) Mus musculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(j) Saccharomyces cerevisie. . . . . . . . . . . . . . . . . . . . . . . . . . 41
(k) Schizosaccharomyces pombe. . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.5 Network community profiles (red/dark) compared to profiles of rewired
networks (green/light). The profiles of the rewired networks are dif-
ferent from those of the original networks. Recall, that for biological
networks, we observe the opposite, the profiles of the rewired networks
are the same as the originals. . . . . . . . . . . . . . . . . . . . . . . . 42

(a) Twitter - Spectral and rewired netwwork. . . . . . . . . . . . . . . . . 42
(b) Facebook - Spectral and rewired netwwork. . . . . . . . . . . . . . . . 42
(c) CGD - Spectral and rewired netwwork. . . . . . . . . . . . . . . . . . 42

Figure 3.6 Comparison of Spearman’s rank correlations between biological net-
works and social networks. Betweenness - Degree. . . . . . . . . . . . 44

Figure 3.7 Comparison of Spearman’s rank correlations between biological net-
works and social networks. Degree - Closeness. . . . . . . . . . . . . . 45

Figure 3.8 Comparison of Spearman’s rank correlations between biological net-
works and social networks. Betweenness - closeness. . . . . . . . . . . 45

Figure 4.1 Relation between species. Red line (segmented), compare centralities between

species. Blue line (continuous), alignments between species from the same

family Ce with Cb, Dm with Db, and Sc with Sp [44]. . . . . . . . . . . . . 48
Figure 4.2 Methodology overview. . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 4.3 Step 1. Orthologous selection from pair of species. . . . . . . . . . . . 53
Figure 4.4 Integration of formats. . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xiii

Figure 4.5 Step 2. Obtaining centrality measures. . . . . . . . . . . . . . . . . . . 58
Figure 4.6 Step 3. Obtaining dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . 59
Figure 4.7 Matching the values from steps 1, 2, and 3. . . . . . . . . . . . . . . . 61
Figure 4.8 Step 1: obtaining orthologs of human and mouse. . . . . . . . . . . . . 63
Figure 4.9 Step 2: obtaining centrality values of human and mouse. . . . . . . . . 64
Figure 4.10 Step 3: obtaining dN/dS ratio values of human and mouse. . . . . . . . 64
Figure 4.11 Step 4: Merge the three sets from step 1, 2, and 3 of human and mouse. 65
Figure 4.12 Step 1: obtaining orthologs of worm and fly. . . . . . . . . . . . . . . 66
Figure 4.13 Step 2: obtaining centrality values of worm and fly. . . . . . . . . . . . 67
Figure 4.14 Step 3: obtaining dN/dS ratio values of worm and fly. . . . . . . . . . 67
Figure 4.15 Step 4: Merge the three sets from steps 1, 2, and 3 of worm and fly. . . 68
Figure 4.16 Betweenness centrality in the four species. . . . . . . . . . . . . . . . 70

(a) Worm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(b) Fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(c) Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(d) Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.17 Closeness centrality in the four species. . . . . . . . . . . . . . . . . . 71
(a) Worm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(b) Fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(c) Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(d) Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.18 Degree centrality in the four species. . . . . . . . . . . . . . . . . . . . 73
(a) Worm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
(b) Fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
(c) Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
(d) Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.19 Difference between centrality measures. . . . . . . . . . . . . . . . . . 75
(a) ∆nbc worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(b) ∆nbc human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(c) ∆ncl worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(d) ∆ncl human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(e) ∆dg worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(f) ∆dg human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.20 Percentage of similarity. . . . . . . . . . . . . . . . . . . . . . . . . . 77
(a) Worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
(b) Human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xiv

Figure 4.21 dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
(a) Worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
(b) Human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.22 Betweenness in human and mouse. (a) Percentage similarity and (b)
dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

(a) ∆nbc and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 81
(b) ∆nbc and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.23 Betweenness in worm and fly. (a) Percentage similarity and (b) dN/dS
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

(a) ∆nbc and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 82
(b) ∆nbc and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.24 Closeness in human and mouse. (a) Percentage similarity and (b) dN/dS
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

(a) ∆ncl and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 83
(b) ∆ncl and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.25 Closeness in worm and fly. (a) Percentage similarity and (b) dN/dS ratio. 84
(a) ∆ncl and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 84
(b) ∆ncl and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.26 Degree in human and mouse. (a) Percentage similarity and (b) dN/dS
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

(a) ∆dg and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 85
(b) ∆dg and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.27 Degree in worm and fly. (a) Percentage similarity and (b) dN/dS ratio. . 86
(a) ∆dg and percentage of similarity. . . . . . . . . . . . . . . . . . . . . 86
(b) ∆dg and dN/dS ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.28 Percentage of similarity and dN/dS ratio. . . . . . . . . . . . . . . . . 87
(a) Human-mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.29 Percentage of similarity and dN/dS ratio. . . . . . . . . . . . . . . . . 88
(a) Worm-fly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.30 Data integration problem. . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.1 Phases for the selection of energetic features and validation of efficiency
in the classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.2 Data Retrieval and Formatting Phase. . . . . . . . . . . . . . . . . . . 97
Figure 5.3 Complex 1spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

(a) Complex chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



xv

(b) Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 5.4 Complex, ligand and receptor. . . . . . . . . . . . . . . . . . . . . . . 98
Figure 5.5 Complex chains. Chain are visualized in different colors. . . . . . . . . 98
Figure 5.6 Protein data bank format. . . . . . . . . . . . . . . . . . . . . . . . . . 99

(a) Initial description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
(b) Atoms section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.7 Location of the energies for the complex, ligand, receptor, and ligand-
receptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.9 1spp complex. The residues and amino acid are labeled in the chains. . 102
Figure 5.8 Example of FastContact output data. . . . . . . . . . . . . . . . . . . . 103
Figure 5.10 Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

(a) Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(b) Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(c) Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(d) Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(e) Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.11 Selection Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 5.12 Evaluation Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 5.13 Cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 5.14 Percentage split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 5.15 Classifiers accuracy per data set. (a) SVM Linear, (b) SVM Polynomial

2, (c) SVM Polynomial 3, (d) SVM Radial, (e) SVM Sigmoid, (f) Ran-
dom Forest. The Y axis corresponds to the percentage of accuracy. The
X axis corresponds to the data sets 1(−), 2(+), and 3(+,−); which are
repeated because of the use of multiple split sizes of the training and
testing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

(a) Support Vector Machine - Linear. . . . . . . . . . . . . . . . . . . . . 117
(b) Support Vector Machine - Polynomial 2. . . . . . . . . . . . . . . . . 117
(c) Support Vector Machine - Polynomial 3. . . . . . . . . . . . . . . . . 117
(d) Support Vector Machine - Radial. . . . . . . . . . . . . . . . . . . . . 117
(e) Support Vector Machine - Sigmoid. . . . . . . . . . . . . . . . . . . . 117
(f) Random Forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.16 Phases for the Selection of energetic features and validation of effi-
ciency in the classification with ranking. . . . . . . . . . . . . . . . . . 119

Figure 6.1 Future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



xvi

ACKNOWLEDGEMENTS

I would like to thank:

Germán, porque sin tí, estos esfuerzos no valen la pena. TAM.

Mi gran familia, por hacerse cargo the Almendra y Aserrín, mientras estudio en el otro polo.
Y por estar siempre para nosotros, incluso a la distancia.

Ulrike, Alex and John, for guiding me in this process of ups and downs, while giving me
support and encouragement. Thank you so much.

Conicyt, Chile, por financiarme con una beca para realizar este doctorado.

Universidad del Bío-Bío, Chile, por confiar en mí y permitirme el tiempo para perfeccio-
narme.

Tatiana

Fall, 2014



xvii

To my everything,
Germán.



Chapter 1

Introduction

Why is it important to study proteins and protein-protein interaction networks (PPINs)?
Proteins participate in the majority of cellular processes. Moreover, the functions of pro-

teins are specific to each and the proteins allow cells maintain their integrity, to defend against
external agents, to repair damage, as well as control and regulate functions. It is not possible
to determine the function of a protein knowing only its sequence or structure in isolation, or
how it works individually. This is because most of the proteins perform their main function
through interactions. Therefore, we need to know which proteins interact and under which
conditions. For this reason characterizing the partners is crucial to understand the functional
role of individual proteins and the organization of the entire biological processes. Recent
progress in technology has made possible the gathering of an improved and increased amount
of data such as sequence data and gene or protein interactions. This leads to the complex
process of analyzing data to discover structures and functions of genes and proteins.

A long-term goal of this research is to contribute towards a better understanding of protein
networks through the improvement of the analysis of existing data using network analysis. The
analysis of networks using different methods permits identifying important characteristics of
proteins and their interactions. Network measures contribute to the possibility of inferring or
predicting functions and interactions of similar proteins in different species. PPINs provide a
valuable framework to understand the functional organization of the proteome. This permits
the comparison of networks coming from different species and the prediction of interaction
behaviors that could be useful for better understanding of evolution, diseases, and functions.

The main goal of this thesis is to improve the understanding of protein-protein interaction
networks. For this, we propose three approaches:
(1) Studying measures and methods used in social and complex networks.

The methods, measures, and properties of social networks allow us to gain an understanding
of PPINs via the comparison of different types of network families. We studied and evaluated
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models that describe social networks to see which models are useful in describing biological
networks. We investigate the similarities and differences in terms of the network community
profile and centrality measures.
(2) Studying PPINs and their role in evolution.

We are interested in the relationship of PPINs and the evolutionary changes between species.
We investigate whether the centrality measures are correlated with the variability and similar-
ity in orthologous proteins.
(3) Studying protein features and their importance in the classification of interactions.

We identify which types of energies contribute better to predict protein-protein interactions.
We argue that the number of energetic features and their contribution to the interactions can
be a key factor in predicting transient and permanent interactions.

We worked with unweighted networks, which means that every connection or interaction
is assumed to have the same value or relevance in the network. The decision to use unweighted
networks was due to not having enough information about the interactions for all the networks
of the species that we are using. We think that point (3) will help improve the quality of
the PPINs (see Figure 1.1). This improvement will consist of adding more information to
the networks, specifically to the edges (interactions). As a consequence, the outcomes would
be different and more meaningful from those obtained with unweighted networks, in turn
improving the quality of the outcomes of point (1) and point (2).

Methods – tools
social and complex

networks

Comparing PPIN
from different

species

Classifying pairs
of PPIs

Improve understanding of
protein-protein interaction networks (PPINs)

Figure 1.1: Main goal.

1.1 Research questions

Despite the large amount of information available, the search for better understanding of pro-
teins and their interactions continues. The information available is growing with each con-
ducted research [13, 110]; these projects contribute to the knowledge about proteins and their
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interactions. As the number of research projects and the amount of data grows, an overlap of
information is produced. This overlap helped create reliable PPINs or validate already exist-
ing ones. It also allows us to do a prediction of interactions without in-vivo experiments, thus
reducing the period of time for the study and classification of interactions.

However, the use of data from different projects presents us with a challenge: the studies
are done in different scenarios (see Appendix A). Examples of these scenarios are the methods
used for interaction identification, data used for protein classification, and data formats used to
publish results. Nevertheless, the data available is still useful for studying and learning about
proteins. In this thesis, we validate our results by considering data sets for the same species,
but coming from different source.

Our research is focused mainly on the study of protein-protein interaction networks. More
exactly, our goal is to understand the differences and similarities of proteins from different
networks for different species. For this we will use methods from Social Network Analysis,
Evolutionary Analysis, and Machine Learning.

Our aim is that by comparing proteins and their PPINs using different measures, we can
identify patterns in proteins and networks with relevant features and parameters, which will
allow us to provide new insights on the way the proteins interact. We study PPINs of different
species in order to identify those patterns that allow us to understand how proteins interact in
a specific way independently of which species the proteins belong to.

We use different parameters, such as the network topology, orthologous protein relation-
ships, centrality measures, sequence similarities, and protein features. The idea is to use
multiple parameters for further analysis and more robust results.

Comparing PPI and PPINs allows us to make predictions about proteins and their interac-
tions. One way is to do this is to determine the areas (subnetworks) of the network or specific
proteins in the network with high similarities. Thanks to such patterns, we expect to be able to
predict interactions. For example, consider two networks (see Figure 1.2) where one of them
is well known (left, species 1) and the other one is not (right, species 2). We use the knowledge
of one network to find new information about the other network, following similar patterns in
both networks. In the case of having available only one network, it is possible to analyze the
protein interactions to obtain good predictions of new interactions (see Figure 1.3).

To reach our research goal of better understanding the PPINs, we set out to ask the follow-
ing research questions:

1. Which social network analysis methods are useful to analyze PPINs?

There are many measures used in social networks, such as, centrality measures, topo-
logical, and conductance (measures how strong and how connected the graph is). For
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some of them, such as conductance for example, there are no specific studies where
biological networks, or specifically protein-protein interaction networks, are the main
point of study. The goal of using conductance combined with spectral algorithms is to
identify which are the best subnetworks (or communities) in PPINs. We further ask if
it is possible to identify differences between PPINs and social networks using a "Best-
Community Analysis" type of investigation.

2. Are centrality measures (closeness, betweenness and degree), percentage of similarity,
and amino acid divergence correlated for any given protein over (evolutionary) time?

We focused on the study of the evolution of protein-protein interactions (PPIs).

We think that is not efficient to use centrality measures as a method to identify orthologs.
It meight be possible that certain proteins could have similar centrality values but in fact
they are not related at all. Instead, first we use their sequence data to do the ortholog
identification. After that we can study the relations of proteins according to their cen-
trality values in the networks.

Some more specific questions that we address in this thesis are: Which are the protein
differences between species at the amino acid sequence level?. What is the percentage
of protein similarity between very different species and close species? Are the centrality
values of orthologous proteins similar to each other?

3. Is it possible to improve the selection of protein characteristics in order to discriminate
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between types of protein-protein interactions regarding the duration of the interaction?

Central to this are the energetic features in the surfaces of the interacting proteins that
allow the discrimination between permanent and transient protein-protein interactions
(different time duration). A more specific question we address is: Which specific ener-
getic features are better predictors (with higher classification accuracy) for these types
of interactions?
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Figure 1.4: Representation of PPINs, PPIs and proteins comparison.

We study protein-protein interactions at three different levels.

• First, at the level of PPINs (species – see Figure 1.4a), we compare networks of different
species (Research question 2).

• Second, at the level of subnetworks (sets of PPIs – see Figure 1.4b), we consider param-
eters such as the number of shared subnetworks between networks, and conductance
measures to evaluate the sizes of the subnetworks in order to identify differences be-
tween PPIN and social networks (Research question 1).

• Third, at the level of proteins (see Figure1.4c), we compare individual proteins in dif-
ferent species (Research question 2) in order to evaluate the correlation between their
centrality measures and sequence similarity (see Figure1.4c: hs9 and ce3). We also
classify interactions between two proteins (Research question 3) in order to predict new
interactions (see Figure1.4c: hs9−hs5).

1.2 Methodology

In this section, we introduce the methodology developed to study the three research questions
proposed in the previous section. This methodology is depicted in Figure 1.5. The three phases
correspond to the "Data Collection" section, followed by the "Research Question" section, and
"Interpretation of the data" section. Each phase is explained in detail as follows.
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Figure 1.5: Phases for the selection of energetic features and validation of efficiency in the
classification.

Methodology: Data Collection

In the data phase (Figure 1.5 – top box) we gather all the information and data necessary for
the study of our research questions.

First, we gather a list of social networks to be used as a tool for comparison and validation
for the best-community research.

Second, we collect a set of PPI networks from different species. We collect different
species, in some cases we have species with more than one network because they come from
different sources. This data will be used for research question 2 and 3 (see Figure 1.5 compar-
ison PPIN and social networks, and PPIN comparison).

Third, we collect information about sequences of all the proteins and cDNA from the
different species that we are using.

Fourth, we gather a list of protein-protein interactions to be used to predict protein inter-
action types. For this part, we use interactions that are already classified. In this way, we can
train our methods and validate them.

In the following we outline our methodology on how we address our main research ques-
tions.
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Methodology: Research Questions

• Research question 1. Differences between PPIN and social and complex networks.

These classes of networks exhibit differences related to the size of the community (sub-
networks). Here we use measures from Graph Theory and Social Networks to determine
the differences. This is done using an algorithm to obtain subnetworks from different
sizes and evaluate each of them using the eigenvalues of the subnetwork with respect to
the whole network. We perform this analysis for both families of networks, PPINs and
social and complex networks.

• Research question 2. PPIN comparisons.

We conduct a study of proteins that present a behaviour that could be related to proteins
from other species. We investigate how to identify the relevance of a protein in the
network and its neighbors. For this, we combine different data sets to be able to do a
crossing of the data obtained and obtain more information about proteins in different
species.

• Research question 3. PPI type classification.

Here, we focus on the study and analysis of energetic features of protein interactions
to predict two types of interactions related to the time length of the interaction. We
start with the creation of the database to be used and extract relevant features. Next,
we proceed to a detailed feature selection and construction of robust Machine Learning
classifiers. Lastly, we perform a thorough validation using different sizes of training and
test data sets.

Methodology: Interpretation of the data

Our results from the investigation of the three research questions are as follows.

Differences between PPIN and social and complex networks. After a detailed study of com-
munity structure in different families of PPINs and social and complex networks using
advanced, state-of-the-art network tools, we conclude that the best community sizes for
different families are vastly different. Surprisingly, the best community size for PPINs
is about ten, which is an order of magnitude smaller than the values for the other net-
work families. Furthermore, we observe that the generating community models for the
different families we study are also quite different.

PPIN comparison. We identify orthologus proteins from different pair of species and we
compare their percentage of similarity, centrality measures, and evolutionary rate to
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identify some patterns that could help understand the evolution of these proteins. What
we found is that there is no pronounced correlation between network measures and evo-
lutionary rate of species. In other words, the well preserved proteins over evolutionary
time showed to have a variety of centrality values (low and high). While this is a nega-
tive result, we believe it is nevertheless interesting because it is contrary to the intuitive
belief that network measures and evolutionary rate of proteins are correlated.

PPI classification. By considering numerous energetic features capturing the way the pro-
teins interact in their interface with each other, we were able to build robust Machine
Learning classifiers that achieved a high success rate in predicting the type (transient
or permanent) of interaction between proteins. Namely, the accuracy we achieved was
in the order of 87%, which is significantly better than the level achieved by previous
works.

The work done in Chapter 3 and 5 have been published the conference proceedings of the
International Conference on Advances in Social Networks Analysis and Mining (ASONAM
2014). And presented in the International Symposium on Network Enabled Health Informat-
ics, Biomedicine and Bioinformatics 2014 (as a part of ASONAM 2014).

1.3 Thesis overview

The remainder of the thesis is as follows:

• Chapter 2 introduces different terminologies and definitions needed for a better under-
standing of the topics in this research. The chapter is divided into three sections: in-
troduction to biological definitions (proteins and interactions), graph theory definition
used for the analysis, and measures used in social networks.

• Chapter 3 exposes the community size differences between PPINs and social networks
found using a spectral algorithm. Also are presented the similar centrality measure
values for the different classes of networks.

• Chapter 4 presents the study of proteins relations between species (ortholog - conserva-
tion). This is done through comparisons on percentage of similarity, centrality measures
and changes in the proteins at the amino acid level.

• Chapter 5 describe our analysis on protein-protein interactions to improve the feature
selection to classify proteins according to the duration of the interactions.
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• In Chapter 6 we summarize the contributions of the thesis and propose future work and
open questions.
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Chapter 2

Background

Our research focuses on protein-protein interaction networks. We introduce some terminology
and concepts to the reader to facilitate the understanding of the present work. The chapter
is divided in three sections: Proteins, interactions and networks; graph theory; and social
networks.

The first section introduces terminology related to protein-protein networks. We start with
background on proteins, the main focus of this research. We describe their main functions and
how the proteins are structured to perform their function. Also, we describe their role in the
networks. Lastly, we explaine the meaning of amino acid sequence divergence in molecular
evolution.

The second section introduces the necessary graph theory definitions used for representa-
tion and subsequent analysis of the data. Here, we describe basic properties of a graph and
the centrality measures that will be used to analyze the PPINs in two of the three approaches
outlined. The centrality measures are betweenness, closeness and degree.

The last section introduces basics in social network. In particular, we explain the conduc-
tance which we use to analyze the research data in the first approach.

2.1 Proteins, interactions and networks

Today there is a close collaboration between computer science and biology. The study of dif-
ferent areas in biology has led to a large volume of data and information available especially in
the area of genomics and genetics. Despite the large amount of sequence data and advances in
experimental techniques to provide approximate models of the structure and dynamics of pro-
teins (X-ray crystallography or nuclear magnetic resonance), each day the difference between
the number of sequences and the number of known structures increases. Structure prediction
methods aim to provide a model to conduct biological studies and provide a structural basis
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for the interpretation of biological phenomena when there is no experimentally determined
structure.

Most of the cell processes that support life involve interactions between genes. Proteins
are encoded by genes [64]. Each gene has a unique position (or location) in the genome and
a unique name, which is typically also given to the protein. This naming system, and the fact
that individual genes can be cloned and expressed to generate pure protein solution, result in
the fact that proteins are often studied in isolation. However, it is probably safe to say that
no protein can function on its own. Even proteins known best for binding DNA, RNA, and
non-protein ligands have protein binding partners. To understand species and their systems,
it is not enough to identify their proteins, but also the interactions between these proteins in
order to better comprehend the species. For this reason, researchers started to study known
interactions and new ones [37, 94].

Notably, there is a huge amount of data obtained from sequencing projects. The data
provides to the researchers with different levels of information about the species (e.g. DIP
[105], BioGRID [30], HPRD [96], Genbank [11, 12], UniProt [111]).

Some of the main interests when studying proteins are how to computationally manipulate
and explain the large amount of data generated from different sources. Also, the interactions of
different fields, such as, biology, mathematics, computer science, and bioinformatics play an
important role in creating models, algorithms, and methods to help describe, classify, analyze,
and visualize data. In our research, we use different social network and graph theory tools to
explain or interpret in a better way the data and results we obtain from our analysis of PPINs.

2.1.1 Proteins

Proteins determine the shape and structure of cells and control the majority of life processes.
The functions of proteins are specific to each and allow cells to maintain their integrity, defend
against external agents, repair damage, control and regulation functions, among others.

Proteins are molecules composed essentially of carbon, hydrogen and oxygen. They may
also contain nitrogen, and certain types of proteins contain phosphorus, iron, magnesium and
copper and other elements. Amino acids are characterized by having a carboxyl group (-
COOH) and an amino group (-NH2). The other two parts of the carbon are saturated with an
H atom and a radical group called variable R. A peptide bond is a covalent bond is established
between the carboxyl group of an amino acid and the amino group of the next, resulting in the
detachment of a molecule of water [62].

The bond between two amino acids results in a peptide; if the number of amino acids that
form the molecule is not greater than 10, is called oligo-peptide, if it exceeds 10 is called
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poly-peptide and if the number is more than 100 amino acids (approx.) it is referred to as a
protein. Proteins have one or more long chains of amino acid residues. A protein chain could
have a range of 50 to 2000 amino acid residues.

The organization of a protein is defined by four structural levels called: primary, secondary,
tertiary and quaternary structure. Each of these levels gives the arrangement of the previous
level in the space [77].

The structures are (see Figure 2.1 for representation):

• The primary structure: the polypeptide chain and the order in which these amino acids
are found. The function of a protein depends on its sequence and the forms it takes.

• The secondary structure: this is the arrangement of the amino acid sequence in space.
Amino acids, as they are being linked, acquire a stable spatial conformation, secondary
structure. There are two types of structure: α–helix and β–sheet.

• The tertiary structure or three-dimensional structure: reports on the disposition of the
secondary structure of a polypeptide to fold back on itself. This conformation remains
stable thanks to the existence of links (intramolecular interactions) between the radical R
of amino acids. Some examples of types of links are: the disulfide bridge between amino
acid radicals having sulfur; the hydrogen bonds; the electrical bridges; and hydrophobic
interactions [76].

• Quaternary structure: arrangement of multiple folded proteins unioned by weak bonds
of several polypeptide chains with tertiary structure to form a protein complex.

All correct folding depends on whether a protein is able to form properly its structure. If
the protein does not fold, it will not be able to fulfill its biological function. The study of the
biological function of proteins and their interactions is closely related to the three-dimensional
structure of a native protein, which is determined by the multiple interactions that occur be-
tween the amino acids forming the polypeptide chain. The three-dimensional structure of a
protein under physiological conditions is considered the most stable of the possible structures.

A protein domain is a part of a given protein sequence and tertiary structure that can
change, function, and exist independently of the rest of the protein chain [102]. The size
of individual structural domains varies from 36 residues to 692 residues, with an average of
approximately 100 residues. Many proteins only contain a single domain [119] (see Figure
2.2 for a three domain representation of a protein).
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Figure 2.1: Representation of protein structures.

Figure 2.2: Three domains in protein 1pkn [13].

Properties of proteins

Some of the properties of proteins are: (1) Specificity, which means that each protein performs
a particular function that is directed by its primary structure and spatial conformation. Any
change in the protein structure may mean a loss of function; (2) Denaturation, which is the
loss of tertiary structure, by breaking the bridges that form the structure. When a water-soluble
protein is denatured, it becomes insoluble in water and precipitates. Denaturation may occur
due to changes in temperature or pH variations. In some cases, the denatured proteins can
return to their original state via a process called renaturation; (3) The influence of the type
of residue and structure in the accessibility to the solvent. First it describes the analysis used
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to determine the parameters for the prediction interface algorithm, which includes accessibil-
ity or structural information such as the interaction between beta structures folded or helical
structures. These data can be obtained via the identification of surface regions involved in
protein-protein interactions; (4) Solubility. This property is maintained as long as the strong
and weak links are present. Increasing the temperature and pH, the solubility is lost; and (5)
Electrolytic capacity is determined by electrolysis.

2.1.2 Protein Interactions

The interactions between atoms of the amino acids are subject to restrictions imposed by topo-
logical connectivity of the chain. Stabilizing interactions maintain the native structure forma-
tion. Destabilizing interactions interrupt the formation of the native structure and prevent the
proteins from acquiring a structure that is incompatible with their biological function. The
perfect balance between stabilizing and destabilizing interactions results in a native protein
folding. In the presence of additional molecules or other proteins it is possible to form at-
tractive and repulsive forces (energies) between molecules or proteins (interactions with other
amino acid chains). These interactions may lead to the formation of intermolecular associ-
ations (interactions between molecules) or aggregates, such as: protein-protein interactions,
protein-DNA interactions, protein-small molecules interactions [1], or protein-ligand inter-
actions, among others. These interactions depend on the different circumstances, such as,
temperature, pH, ionic strength, the entities involved, and the environment. The focus of our
research is protein-protein interactions.

Despite knowing the structures of many proteins, there are no methods to predict protein-
protein interactions (PPI) with high accuracy. These methods can not indicate how proteins
interact with each other and in which way. For this reason, it is not possible to predict the
stability of the interaction, since one cannot determine the function of a protein, knowing only
the sequence or structure in isolation. It should be noted that there is still no full understanding
of the folding of a protein. The structural information of proteins has not advanced as quickly
as information about sequences and functions.

The technology has made it possible to study interactions between proteins using large
scale experiments. However, the available information on protein interactions comes from
studying three-dimensional structures of protein complexes with in-vivo interaction exper-
iments (techniques performed in a living organism and stored in PDB [13]). Recall that
protein-protein interactions (PPI) happen when two or more proteins bind together to carry
out their biological function in a protein-protein interaction network.

There are different methods used to identify PPIs. The first method used was co-immu-



15

noprecipitation [28]. After that, the yeast-2-hybrid assay (Y2H) [28] made it possible to in-
vestigate interactions between pairs of proteins or protein domains. Since 2000, mass spec-
trophotometry (MS) [36] has been the most common way to study PPIs. This tool allows
even higher throughput than Y2H and is not limited to pairwise interactions [88]. As a result,
large protein-protein interaction networks (PPINs) have been generated. According to Von
Mering [114], combinations of methods to identify protein interactions (MS, Y2H, correlated
mRNA expression) are typically better than the independent use of them. Also, the overlap-
ping of interactions identified by different researchers creates a better scenario to understand
the functions of proteins involved in each species. Such overlapping contributes to the creation
of more robust PPINs [101].

When a protein participates in an interaction, it uses one or many parts of its surface. If we
have two proteins that interact, they will interact on a portion of their surface. For example, if
we have two interacting cubes each cube is using 1/6 of it surface to interact. The 1/6 surface
is named interaction zone (union site). The interaction zone has different features from the
remaining 5/6 of the cube.

Interaction Zone

Proteins are composed of amino acids. The characteristics of amino acids who are in the area
of the interaction, such as, their position and their surface geometry (shape) finally define
some of the properties that characterize its mode of action or interaction capabilities of other
proteins or molecules. When a protein is involved in a protein-protein interaction (PPI), the
PPI involves one or more of its surfaces.

(a) Protein complex, protein A and B. (b) Interaction zone (colors).

Figure 2.3: Representation of PPI zone (Complex 1A6D, from data set used in Chapter 5).
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When we have two proteins interacting, one portion of protein A is touching protein B
(see in Figure 5.3, where protein A and protein B). The zone where both proteins have contact
is called the interaction zone (interface). This is a general description for the binding sites
(see Figure 2.3b). This interaction zone has properties different from the rest of the surface
allowing the proteins to interact specifically with one or more proteins.

2.1.3 Relationship among sequences

Sequences diverge during evolution, most commonly due to the replacement of nucleotides in
genes in a sequence. The amount of divergence between two sequences can tell us how closely
two sequences are related. Duplications or repetitions in either sequence alter the sequence
alignments. The degree of similarity between genes reflects the evolutionary relationship be-
tween them [91]. The comparison of whole genome sequences from two or more organisms
can reveal the location of a previously unknown gene.

It is possible to create alignments with gene sequences (DNA code) and protein sequences
(amino acid code). The alignments show the similarity of sequences.

Next, we give some definitions. Two gene sequences (in short, genes) are homologs, if they
are related by descent from a common ancestral DNA sequence. The term homolog applies to
the relationship of genes separated by the event of speciation or to the relationship of genes
separated by the event of gene duplication [2, 25].

Two genes are orthologs, if they belong to different species that evolved from a common
ancestral gene by speciation of a parental sequence. Ortholog identification is essential for
reliable prediction of the functions of genes in the sequenced genomes [2, 86]. Also, there are
sequences from different organisms that have a high degree of similarity (their sequences are
similar) but the functional relationship between these genes has not been demonstrated.

Genes are often duplicated to generate multiple copies contained in the genome. After
these duplications the genes could diverge in their function. The relationship between genes
of the same species is called paralogous (related by duplication) [2] (see Figure 2.4). The
function and sequence information of an individual gene (protein) can help to understand the
relationship between and within species. If two sequences A and A′ are paralogs, and both
are related (common ancestral gene) to a specific sequence B from another species, then the
relationship between A and A′ with B is called co-orthologous (see Figure 2.5b).



17

gene A
fly

Paralogs
(Same species)

Orthologs
(different species)

gene A'
fly

gene A
fly

gene B
worm

Figure 2.4: Paralogs and orthologs. Protein to the right: interactions of different species;
protein to the left: interaction between genes of the same species.

Orthologs
(different species)

gene A
fly

gene B
worm

gene C
mouse

(a) Interactions of proteins in
three different species.

Paralog (fly - fly)
Co-Ortholog  [(fly-fly)-worm]

gene B
worm

gene A
fly

gene A'
fly

(b) Two proteins from the same species to-
gether related with a protein from a differ-
ent species.

Figure 2.5: Orthologs, paralogs, and co-orthologs.

• Figure 2.4, on the left: The paralogous relationship between two sequences from the
same species; and on the right, orthologous relationship between two sequences from
different species.

• Figure 2.5a: An orthologous relationship is possible between many sequences.

• Figure 2.5b: There are two proteins from the fly species. They are both co-orthologs of
the worm protein. The worm protein is a co-ortholog of the two fly proteins.

Orthologs can be able to maintain their function during evolution. Unlike paralogs, they
evolve new functions, even if these are related to the original one. Orthologs and paralogs are
also homologs [86].

2.1.4 Protein-Protein Interaction Networks

A protein can have interactions with many different proteins. Therefore, one can view the
interaction of proteins as biological networks. Every protein has an important role in its net-
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work, this role covers the function and interactions of the protein. PPINs provide a valuable
framework to understand the functional organization of the proteome, to permit the compar-
ison of networks from different species, and to predict some behaviors that could be useful
for better understanding of evolution and functions. Knowing the protein and its environment
makes it possible to predict all or some of its functions. This knowledge would contribute to
identify proteins and their interactions.

One concern is how large networks are managed. As the size of a network increases also
the complexity that is associated with the variability of the data. With all the data gathered
from these methods, the set of proteins and interactions are evaluated to see the robustness of
the data.

In Brohee et al. [18] a comparison of four algorithms is made: Markov clustering (MCL),
restricted neighborhood search clustering, super paramagnetic clustering, and molecular com-
plex detection. The algorithms are used to evaluate various methods such as MS, Y2H, genetic
studies and their rates of false positives and miss fraction of the existing interactions. They
analyzed the sensitivity and robustness of the algorithms and the alterations in the graphs,
concluding that MCL is remarkably robust to be used with altered graphs (there are edges
removed and added). Clustering methods are used in the study of PPINs because they can be
effective approaches for the identification of protein complexes or functional modules [115].

A PPIN consists of a set of PPIs [51, 112]. The choice of a representation of a PPIN
depends on which features are to be modeled. When using graph theory, all the proteins in
an organism and all possible interactions between them are represented by a graph [93]. Each
vertex represents a protein and each edge can represent a variety of interactions – physical,
metabolic, genetic, or biochemical [35]. Use Graph theory approaches to analyze biological
networks are important since they can detect properties that would possibly remain undetected
otherwise. To compare the values of different graphs it is a challenging task, due to the fact
that data stem from different sources (different projects – in-vivo or in-silico) and methods
(for example, Y2H and MS).

2.1.5 The meaning of dN/dS ratio in molecular evolution

In genetics, the dN/dS ratio (also called Ka/Ks ratio) is a way of measuring the rate of sequence
change in a gene that tells us something about the selective evolutionary pressures that are
acting on a protein-coding gene. It tells us whether the sequence of the gene is under pressure
to stay the same, change, or drift randomly. Synonymous mutations (SYN) are mutations
that do not cause any changes in a protein (silent mutation). And non-synonymous mutations

(NONS) are mutations that do result in changes in a protein.
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Definitions

dN is the total number of non-synonymous changes (#NONS) divided by the number of
non-synonymous sites (#NONSsites), making it a measure of how often these potential
changes happen. dN = #NONS

#NONSsites .

dS is the total number of synonymous changes (#SY N) divided by the number of synonymous
sites (#SY N sites), making it a measure of how often these potential changes happen (can
be viewed as a proxy of background mutation). dS = #SY N

#SY Nsites .

dN/dS ratio measures how often the average mutation in a gene is resulting in a change in
the protein it produces. The ratio indicates the extent of changes at the amino acid level
after normalized by silent mutational changes at the DNA level. Hence, it is a proxy for
positive selection pressure in coding genes. This definition assumes selection only at the
protein level, not at the DNA or RNA level. dN/dS ratio is used to infer the direction and
magnitude of natural selection acting on protein coding genes. dN/dS ratio is designed
to study divergence because its definition assumes fixed changes.

Next we present the interpretations of the different values for dN/dS

Ratio equal to one (dN
dS = 1).

If mutations in a gene are random, or equally likely to cause changes or not. A ratio of
one indicates neutral evolution.

Ratio around 1 (dN
dS ≈ 1).

This indicates either neutral evolution at the protein level or the average of the sites
under positive and negative selective pressures. The gene or protein at different times
along its evolution may cancel each other out, giving an average value that may be lower,
equal or higher than one.

Ratio greater than one (dN
dS > 1).

This indicates the positive selective pressure. Comparisons of homologous genes with a
high dN/dS ratio are usually said to be evolving under positive or Darwinian selection.

Ratio less than one (dN
dS =< 1).

This indicates pressures to conserve protein sequence. Ratio less than one implies puri-
fying selection (stabilizing).
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2.2 Graph theory definitions

2.2.1 General terminology

This section describes some definitions from graph theory and social networks that we use in
our work on protein networks. For references of the terminology we refer to [16, 26, 32, 46,
116, 128].

We define an undirected graph as G = (V,E) where V is the vertex set and E is the edge
set (see Figure 2.6a). The elements of V = {v1,v2, . . . ,vn} are called vertices. The size of V is
the number of elements in V that is n = |V |.
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(a) Vertices in Graph G.
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(b) Edges in Graph G.

Figure 2.6: Graph G.

The elements of E = {e1,e2, · · · ,em} are called edges. The size of E is the number of
elements in E, that is m = |E| (see Figure 2.6b).

In a graph G, two vertices vi and v j are adjacent if they are joined by an edge (vi,v j) ∈ E.
For example, vE and vF in Figure 2.7a are adjacent vertices.
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(a) Adjacent vertices in Graph G.
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(b) Degree for vertex vE in Graph G.

Figure 2.7: Adjacency and degree in Graph G.

The degree dg(v) of a vertex v in a graph G is the number of edges incident to v [26, 46].
A vertex of degree zero denotes an isolated vertex or singleton. That is a singleton is a vertex
v with no incident edges in G. In Figure 2.7b the degree of vE is dg(vE) = 4.

A path u1,u2,v3, · · · ,ur is a sequence of vertices in G with (ui,ui+1) ∈ E for 1 ≤ i ≤ n.
We call u1 the start vertex of the path and ur the end vertex. A simple path is a path that does
not contain repeated vertices. The length of a simple path is the number of edges that it uses.
Figure 2.8a depicts path vB,vA,vE ,vF of length 3.
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(a) Path in Graph G.

vA

vD

vB

vE vF

vJ

vK

  
     

vG

vH

     

vC

vM

    

vZ
vT

vN

vO

vI

vP

vX

vQ

vS
vV

vW

vR

vU

vY     

(b) Simple paths and shortest path from vertex vC to
vertex vY in Graph G.

Figure 2.8: Simple paths and shortest path in Graph G.
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A shortest path between two vertices vi and v j in G is a path from vi to v j of shortest
length, also called geodesic. The length of a shortest path from vi to v j is called the distance

dist(vi,v j) from vi to v j. In the case of vertices vC and vY in Figure 2.8b, there are 6 simple
paths with start vertex vC and vertex vY (see Table 2.1). The shortest path has distance 3.

Number Simple path Path length
1 |{vC,vS,vV ,vY}| 3
2 |{vC,vS,vV ,vW ,vY}| 4
3 |{vC,vS,vV ,vX ,vY}| 4
4 |{vC,vQ,vR,vS,vV ,vY}| 5
5 |{vC,vQ,vR,vS,vV ,vW ,vY}| 6
6 |{vC,vQ,vR,vS,vV ,vX ,vY}| 6

Table 2.1: Six simple paths and one shortest path from vertex vC to vertex vY in graph G.

The set of neighbors or the neighborhood NG(v) of v consist of all the vertices adja-
cent to v, not including v itself. The closed neighborhood NG[v] of v includes v also, that is
NG[v]=NG(v)∪{v}. The eccentricity ξG(v) of a vertex v in a graph G is the maximum distance
from v to any other vertex vi in the graph, v 6= vi.

Consider vertex vA in Figure 2.9a. Its neighborhood is NG(vA) = {vB,vD,vT ,vE}. The
closed neighborhood is NG[vA] = {vA,vB,vD,vT ,vE} or NG[vA]= NG(vA)∪{vA} (see also Fig-
ure 2.10b, adjacency matrix). The eccentricity of vA is ξG(vA) = 6 (see path in Figure 2.9b).
The value is obtained from the maximum value in Figure 2.10a distance matrix, column A

(row I).
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(a) Neighbors of vertex vA in Graph G.
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(b) Eccentricity of vertex vA in Graph G.

Figure 2.9: Neighbors and eccentricity of vertex vA in Graph G.
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(a) Distance matrix of Graph G in Figure 2.6a. (b) Adjacency matrix of Graph G in Figure 2.6a.

Figure 2.10: Neighbors, eccentricity of vertex vA and diameter and radius of Graph G.

Using the distance matrix from Figure 2.10a we obtain the maximum and minimum ec-
centricity values for the rest of the vertices (see Table 2.2).

B C D E F G H I J K M N O P Q R S T U V W X Y Z
ξG(v) 5 5 7 7 8 8 8 9 9 9 9 8 8 7 6 7 6 7 8 7 8 8 8 8

Table 2.2: Eccentricity for vertices of Graph G.

The diameter D(G) of a graph G is the maximum eccentricity over all vertices in the graph.
The radius R(G) of a graph G is the minimum eccentricity over all vertices in the graph. The
periphery of a graph is the set of vertices that has maximum eccentricity. The vertices in this
set are called peripheral vertices. The center of a graph is the set of vertices that has minimum
eccentricity. The vertices in this set are called central vertices. The density of a graph G is the
ratio of the number of edges and the number of possible edges in G.

For our the example the measures are obtained from Table 2.2. The diameter of G is
D(G) = 9 and G’s radius is R(G) = 5. The periphery is {vI,vJ,vK,vM} and the center vertices
are {vB,vC}. The average degree of G is d̄g = 2.32. The density of G is d̄

n−1 = 2.32
25−1 = 0.097.

Next we introduce terminology that measures centralities in graphs.
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2.2.2 Centrality measures

Betweenness

The betweenness (also sometimes called betweenness centrality) of a vertex v is based on
the number of shortest paths from all vertices to all others in G that pass through v. Before
defining betweenness formally we recall that the distance of two vertices a and b is the length
of a shortest path connecting a and b. Therefore the following holds.

• distG(a,a) = 0, for every a ∈V .

• distG(a,b) = distG(b,a) for a,b ∈V.

• A vertex v ∈V lies on a shortest path between vertices a,b ∈V if and only if
distG(a,b) = distG(a,v)+distG(v,b).

We define

NSPab is the total number of shortest paths between vertex a ∈V and vertex b ∈V .

NSPab(v) is the number of all those shortest paths between vertex a ∈ V and b ∈ V that pass
through vertex v ∈V . a 6= b 6= v ∈V .

The betweenness bc(v) of a vertex v in a graph G is defined as follows:

bc(v) = ∑
a6=b6=v∈V

NSPab(v)
NSPab

The normalized betweenness nbc(v) of a vertex v in an undirected graph G is

nbc(v) =
bc(v)

(N−1)(N−2)/2
,

where N is the number of vertices in the graph G that is N = |V |. Note that nbc(v) ∈ [0,1].
We further note

• If a is adjacent to b, then NSPab = 1.

• If there is no path connecting a and b in G, then NSPab = 0.

• A vertex v with high betweenness has a strong influence over paths in the graph [32,
33, 120]. This means, if v is removed from the graph then its connectivity is affected
considerably.
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Example 1. Betweenness

Consider a graph T in Figure 2.11, with 6 vertices and 6 edges. We calculate the betweenness

for every vertex in the graph. We have 15 vertex pairs (see Table 2.3). The are also 24 simple
paths between the vertex pairs.

H

F

C

EB G

Figure 2.11: Graph T .

C B E F G H
C - CB,CEB CE,CBE CF CFG CH
B - - BE,BCE BCF ,BECF BCFG,BECFG BCH,BECH
E - - - ECF ,EBCF ECFG,EBCFG ECH,EBCH
F - - - - FG FCH
G - - - - - GFCH
H - - - - - -

Table 2.3: Simple paths for all the pairs of Graph T in Figure 2.11. 15 of these paths (under-
lined) are shortest.

In Table 2.3 we underlined all the shortest paths between pairs. There are 8 shortest paths
that pass through vertex C, and 4 shortest paths pass through vertex F .

All vertices that participate in shortest paths passing through C or F are shown in Table
2.4.

Vertex v Shortest paths through vertex v
C {B−H, B−F, B−G, E−H, E−F, E−G, H−F, H−G}
F {C−G, B−G, E−G, H−G}

Table 2.4: Shortest paths that pass through a vertex v in Graph T from Figure 2.11.

Next, we calculate the betweenness for vertices C and F . Table 2.5a and Table 2.5b show
the number of shortest paths for each vertex pair in T , as well as the number of those paths
that pass through C and F , respectively.

Finally, we can calculate the betweenness of C and F . For graph T we have N = 6. In
Table 2.6 we present the betweenness values and normalized betweenness values. Note that
here (N−1)(N−2)

2 = 10.
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Vertex v Pair NSPab/NSPab(v)

C

{B−F} 1/1 = 1
{B−G} 1/1 = 1
{B−H} 1/1 = 1
{E−F} 1/1 = 1
{E−G} 1/1 = 1
{E−H} 1/1 = 1
{F−H} 1/1 = 1
{G−H} 1/1 = 1

(a) Shortest paths pass through C

Vertex v Pair NSPab/NSPab(v)

F
{C−G} 1/1 = 1
{B−G} 1/1 = 1
{H−G} 1/1 = 1
{E−G} 1/1 = 1

(b) Shortest paths pass through F

Table 2.5: Shortest paths pass through C and F from Table 2.4.

Vertex v bc(v) nbc(v)
C 1+1+1+1+1+1+1+1 = 8 8/10 = 0.533
F 1+1+1+1 = 4 4/10 = 0.267

Table 2.6: Betweennes for every vertex of Graph T in Figure 2.11.

We can see in Table 2.6 that vertex C has higher betweenness than F . This means that
vertex C is more central than vertex F in the graph.

Example 2. More than one shortest path

In contrast to above example, more than one shortest path between a given pair of vertices
may exist

H

C

E

BA

Figure 2.12: Graph Q.

For example in graph Q in Figure 2.12 there are three pairs of vertices that have more than
one shortest path: A−H with ABCH and ABEH; B−H with BCH and BEH; and C−E with
CBE and CHE.

For every case are two shortest paths, that is NSPAH = NSPBH = NSPCE = 2
Table 2.7 shows the different shortest paths vertex B,C,E or H, respectively. For example

vertex B participates in 5 shortest paths (column Shortest paths), but three of them have a
different shortest path through another vertex.
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Vertex v Shortest paths passing vertex v bc(v)
B ABC,ABE,ABCH/2,ABEH/2,CBE/2 1+1+0.5+0.5+0.5=3.5
C ABCH/2,BCH/2 0.5+0.5=1
E ABEH/2,BEH/2 0.5+0.5=1
H CHE 0.5

Table 2.7: Betweenness values for each vertex in Graph Q.

We can see in Table 2.7 that vertex B has the highest betweenness (3.5) even though there
is more than one short path.

Closeness or closeness centrality

The closeness evaluates how close a vertex v is to all other vertices in the graph [116].
More formally, the closeness of a vertex v is the inverse of the sum of distances from v to

all other vertices:
cl(v) =

1
∑

t∈V
dist(v, t)

,

where ∑
t∈V

dist(v, t) is the sum of shortest path distances from v to all others vertex in V .

The normalized closeness ncl(v) of a vertex v in an undirected graph G is

ncl(v) = cl(v)(N−1)

where N is the number of vertices in the graph G [16].

Example: Closeness

Consider graph T in Figure 2.13 with 6 vertices and 6 edges. We calculate the closeness for
every vertex in the graph.

H

F

C

EB G

Figure 2.13: Graph T .

We first obtain the distances for all pairs of vertices. The distance matrix for graph T is
ahown in Table 2.8.
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C B E F G H
C - 1 1 1 2 1
B 1 - 1 2 3 2
E 1 1 - 2 3 2
F 1 2 2 - 1 2
G 2 3 3 1 - 3
H 1 2 2 2 3 -

Summed values 6 9 9 8 12 10

Table 2.8: Distance matrix of Graph T in Figure 2.13.

Next, cl(v) is calculated for each vertex in graph T . Closeness values and normalized

closeness values are shown in Table 2.9.

Closeness Normalized closeness

C 1
6 =0.167 5

6 = 0.83

B 1
9 =0.111 5

9 = 0.56

E 1
9 =0.111 5

9 = 0.56

F 1
8 =0.125 5

8 = 0.63

G 1
12 =0.083 5

12= 0.42

H 1
10 =0.1 5

10= 0.5

Table 2.9: Closeness values of Graph T in Figure 2.13.

We can see in Table 2.9 that vertex C has the highest closeness (0.83) in the graph T .
This means vertex C is the nearest to all other vertices in the graph T (higher values assume a
positive meaning in term of node proximity, vertex C is more central).

2.3 Social networks

2.3.1 Measures from social networks

Communities in graphs

In our work, we evaluate similarities and differences between social networks and biology
networks. Here, we introduce the concepts from social networks and social network analysis
necessary for this work. Social networks are structures where actors (nodes) represent people
or other entities, like organizations, embedded in a social context, and where the connection
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between the entities (edges) represent interaction, collaboration, or influence between these
entities [70].

An interesting characteristics of a graph is how nodes are grouped together. Edges may
denote relationships, such as friendship, acquaintances, classmates, colleagues, or business. A
community or cluster is a connected subgraph that can be viewed as a set of nodes that share
some common characteristics or functions (interest, goal, or project) [21, 128].

There are studies of methods for finding communities in networks. The algorithms used
to find communities are based on dividing the network in subnetworks where the number of
edges inside the subnetwork is relatively large (this means communities are strongly connected
internally), and the edges between communities are relatively sparse (weakly connected to the
outside) [21].

In this research, we use the term community as a set of nodes that share a function or
feature and having a strong relation between them.

There are methods from the area of data mining that identify various aspects of network
organization [128]. Clustering algorithms are used to identify sets of nodes that are more
likely to interact with each other than with nodes outside the set.

Next, we consider conductance, which measures the quality of a community.

Conductance

The conductance of a graph measures how strongly connected the graph is. A low conduc-

tance means that there is some bottleneck in the graph, that is, a subset of nodes is not well
connected with the rest of the graph. A high conductance means that the graph is well con-
nected. Before defining conductance of a graph we define the conductance of a subset of the
vertices in the graph. Here, the measure is applied to a set of nodes with respect to the rest of
the nodes in the graph: subsets of nodes are weighted to reflect their importance [38].

Let G = (V,E) be an undirected graph and S⊂V be a set of nodes with |S| ≤ 1
2 |V |.

V = {v1,v2, ...,vi, ...,v j, ...,vn}
E = {e1,e2,e3, ...,em}
Then the conductance φ(S) in G is defined as

φ(S) =

∣∣{ei j ∈ E : vi ∈ S and v j 6∈ S}
∣∣

min{∑vi∈S dg(vi),∑v j 6∈S dg(v j)}
,

where
∣∣{ei j ∈ E : vi ∈ S and v j 6∈ S}

∣∣ shows the total number of edges with endpoint in the
community and one endpoint in the complement of the community and ∑vi∈S dg(vi) the sum
of the degree of nodes in the community.
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The conductance of a graph is defined as the minimum conductance over all possible
subsets.

φ(G) = min
S⊂V

ϕ(S)

Example: Conductance

Consider graph H in Figure 2.14 with 13 vertices and 18 edges. We calculate the conductance

for the three communities in the graph.

1
2

3

Figure 2.14: Graph H and three communities.

Communities 1, 2, and 3 from Figure 2.14 are densely connected internally and sparsely
connected with the rest of the graph. In table 2.10 are the conductances for each community.

Community
∣∣{ei j ∈ E : vi ∈ S and v j 6∈ S}

∣∣ ∑vi∈S dg(vi) Cd

1 2 12 2
12 = 0.167

2 3 10 2
10 = 0.3

3 2 8 2
8 = 0.25

Table 2.10: Conductance for communities in graph H.

The best community is number one with the lowest conductance, Cd(1) = 0.167. The
second best community is community number 3, Cd(3) = 0.25. Conductance of graph H is
the minimum of the values obtained in column Cd, Cd(G) = 0.167.
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Chapter 3

How do biological networks differ from
social networks?

In this chapter we outline important differences between (1) protein interaction networks
(PPIN) and (2) social and other complex networks in terms of fine-grained network com-
munity profiles. While these families of networks present some general similarities, they also
have some stark differences in the way the communities are formed. Namely, we find that the
sizes of the best communities in such biological networks are an order of magnitude smaller
than in social and other complex networks. We furthermore find that the generative model
describing biological networks is very different from the model describing social networks.
While for latter the Forest-Fire model best approximates their network community profile, for
biological networks it is a random rewiring model that generates networks with the observed
profiles. Our study suggests that these families of networks should be treated differently when
deriving results from network analysis, and a fine-grained analysis is needed to better under-
stand their structure.

3.1 Literature review

Protein interaction networks have been the focus of numerous works in the research commu-
nity. Pavlopoulos et al. [93] and Mason et al. [81] studied how to find the most important nodes
in large protein networks. They utilize such information for better determining protein func-
tions [93] and identifying drug targets [81]. Pavlopoulos et al. [93] use a different approach
and different models and methods to reveal hidden properties and features of a network. They
indicate that the structure of these protein networks are linked to function. The protein net-
work topology analysis is limited because it provides a static perspective of the system and



32

not a dynamic perspective. Mason et al. [81] focus on network analysis to determine the role
of proteins or genes of unknown function to identify potential applications in medicine (drugs
for different diseases). They design effective containment strategies for infectious diseases
providing early diagnosis of neurological disorders through detecting abnormal patterns of
neural synchronization in specific brain regions.

Barabassi and Oltvai in [7] study the general properties of the proteins in networks coming
from complex interactions. They identify the interlink between structure, topology, network
usage, robustness and function. Using network tools allowed them to see a different perspec-
tive of proteins and genes. Barabassi and Oltvai in [7] make the case that with respect to the
common measures of network structure, the proteins in these networks and people in social
networks behave similarly. In this work, however, we show that this is not always the case.

To understand the biological significance of systems, many researchers applied different
models, approaches, and methods to identify motifs or patterns that indicate common prop-
erties. They analyze the networks in detail using measures like network centralities [60, 89],
network topologies [97, 124], cluster analysis [72, 100], or network models [93].

Clustering algorithms (also called community-detection algorithms) are used to under-
stand the organization of networks and their functions through the identification of protein
complexes or functional modules [81, 115]. The clustering algorithms typically join proteins
in groups (communities) according to attributes that are shared by the proteins in the group.
These algorithms show that identifying and predicting communities also helps identifying
important nodes (proteins) in the network. There also comparative analyses of different clus-
tering algorithms have been performed to identify those that are better at predicting relevant
communities. Wang et al. in [115] present a detailed clustering algorithm comparison for
extracting clusters from protein interaction networks. Most of the algorithms focus on protein
complexes and functional modules. Some more recent works [63, 103] propose improving
the prediction of protein function by utilizing protein community information. Also, Lee et
al. [63] apply a method that improves modularity solutions to predict protein functions. How-
ever, the aforementioned works do not make use of conductance scores as we do.

Centrality measures help to analyze the different communities and evaluate how a gene
or protein is relevant for its community, other communities or the complete network [126].
They did an analysis of topological properties in different networks. Also, they propose the
integration of different approaches for future predictive models. Centrality measures (such
as, betweenness, closeness or degree) give evidence that there is a close relationship between
the centrality of a node and its essentiality in the network [81]. One example is presented by
Goh et al. [41]. They examined biological networks and found that betweenness and degree of
nodes are significantly correlated. Girvan and Newman [38] use edge betweenness to detect
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community peripheries. They were able to detect known structure with high sensitivity and
reliability.

3.2 Methodology

We focus on the structural differences of protein interaction networks versus social and other
complex networks. While there are some similarities between them, there are nevertheless
significant differences, mainly in the community structure of these networks. This is in con-
trast to the widely held belief that biological networks are very similar to social networks and
thus tools and insights from the latter can be easily applied to or extended for the former [7].
We show that best communities are smaller in size by an order of magnitude in biological
networks compared to those in social networks.

Community detection is very important not only for social networks, but also for biological
networks. This is because communities can provide for a better understanding and insight
on the fine grained structure of biological networks and the way their different parts work
together.

We compute for our study the network community profiles (NCPs) of 11 large protein-
interaction networks. NCPs are based on the notion of conductance that captures the ratio of
edges connecting nodes within the community with nodes outside the community to edges
inside the community. The smaller the conductance of a set of nodes, the more community-
like the set is. Conductance is extensively used to measure the cohesiveness of a community
and has been shown to have parallels with the theory of random walks on networks.

Along the lines of [68], we investigate the conductance of communities over all the pos-
sible size scales. The main question we explore is: What are the best community sizes and
community qualities for each network family? The network community profile is one of the
best tools to answer this question. Intuitively, NCP extracts the conductance of the best com-
munity as a function of the size values considered. While NCP is NP-hard to compute, there
are several approximation algorithms that give satisfactory solutions [68].

We present the following empirical findings. First, the conductance of the best communi-
ties for each size scale (k) decreases initially, and the global minimum is typically achieved
for k = 10. This is in contrast to social networks where the global minimum is reached for
k = 100 or greater, an order of magnitude bigger than the global minimum for biological
networks. Second, at the size of about k = 10, the NCP for biological networks exhibits an
uptrend, which means that the community structure deteriorates as more nodes are considered
in communities. In other words, the communities start blending with each other and gradually
disappear. And third, differently from social networks, the generative model explaining this
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type of behavior is not Forest Fire [66, 67], but a random rewiring model [83] conditioned on
the same degree distribution as the original graph.

Knowing that the best communities in biological networks are an order of magnitude
smaller than communities in social networks is very important. This is because community
structure can help us to decide which are the possible missing links to further investigate.
Clearly, there is a higher chance that there is a missing link between nodes within a com-
munity than between nodes not in the same community. Exploring missing links in social
networks is not particularly expensive. However, it is quite expensive to do so for biological
networks. Therefore, the smaller the meaningful communities, the fewer missing links we
need to explore in a laboratory setting. A community profile plot helps in better understanding
the costs of further investigating missing links in biological networks.

3.2.1 Conductance and community profiling

We consider the networks to be undirected graphs. The conductance of a set gives a score for
the quality of the set as a community [38]. For a formal definition see subsection 2.3.1.

1
2

3

Figure 3.1: A networks and three communities. Communities 1, 2, and 3 are densely con-
nected internally and sparsely connected with the rest of the graph.

The higher number of edges that cross the boundaries of a set S, the higher the conductance
γ(S), and the lower the community structure of S. Hence, for detecting good communities,
we look for sets of low conductance. These are sets that are densely connected internally
and sparsely connected with the rest of the graph. In Figure 3.1, we observe three good
communities: 1, 2, and 3. The values are the following:

1. There are 2 edges that separate community 1 from the rest of the network. The sum of
the degree of nodes in the community is 12. The conductance is 2

12 = 0.167.

2. There are 3 edges that separate community 2 from the rest of the network. The sum of
the degree of nodes in the community is 10. The conductance is 3

10 = 0.3.
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3. There are 2 edges that separate community 1 from the rest of the network. The sum of
the degree of nodes in the community is 8. The conductance is 2

8 = 0.25.

We note that there are many community measures. However, as noted by prominent works
[58, 109], the conductance captures the gestalt of communities [127], and therefore is used
frequently to perform community detection [17,74,106]. In community profiling we select the
best community for each size and plot their conductance scores. In order to find communities
with good conductance (minimum values), we use the local spectral clustering algorithm of [4]
and the bag-of-whiskers clustering algorithm of [68]. Whiskers are sets of nodes connected
to the rest of the graph by one edge; bag-of-whiskers are sets of such whiskers. As shown
in [68], bags-of-whiskers give communities with very good conductance scores.

3.2.2 Biological networks analyzed

We considered many of the reasonable-sized protein interaction networks1 available. From a
total of 55 networks, coming from 16 species, we focus here on 11 of them (Table 3.1). The
results for other networks are comparable. The networks we consider have sizes varying from
708 to 15,337 nodes, and from 1,357 to 133,645 edges. The data sets were obtained from vari-
ous sources (see column ’Reference’ in Table 3.1). To evaluate the different networks sources,
we work with two networks for two species, Caenorhabditis elegans and Homo sapiens. We
validate our results by considering data sets for the same species, but coming from different
source.

Biological Networks Nodes Edges Reference
Arabidopsis thaliana 7,050 16,263 BioGrid [110]
Caenorhabditis elegans 1 3,895 7,758 BioGrid [110]
Caenorhabditis elegans 2 2,528 3,706 Harvard [24]
Drosophila melanogaster 8,127 38,839 BioGrid [110]
Echericha coli 2,874 11,538 DIP [121]
H pylo 708 1,357 DIP [121]
Homo sapiens 1 15,337 133,645 BioGrid [110]
Homo sapiens 2 6,711 17,348 Mint [71]
Mus musculus 4,602 9,841 BioGrid [110]
Saccharomyces cerevisie 5,376 24,734 Mint [71]
Schizosaccharomyces pombe 4,008 55,362 BioGrid [110]

Table 3.1: Biological networks.

1We will refer to these networks as biological networks. We note that there are also other types of biological
networks that we plan to study as part of our future work.
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3.2.3 Network community plot analysis

As shown in [68] most social networks exhibit the following community profile structure. Up
to a certain size the slope of NCP is downward: as the size increases the conductance values
decrease. This in turn means that the best sets become increasing community-like. At size
of 100 or more, the NCP reaches a global minimum. This implies that the best communities
in social networks are typically of size 100 or more. If the number of nodes in a community
is larger than 100 or more, the NCP of most social networks is upward sloping over several
orders of magnitude. This means that after a certain size, typically at least 100, the commu-
nities become less meaningful and they blend more and more with the whole network. For
other networks, such a power-grid networks, the NCP is almost always slopping downwards.
This means the more nodes are added to communities the better they become in terms of
conductance.

Initially a spectral algorithm was implemented but the running time was not efficient. We
decided to use the algorithm used in Leskovec et al. [68]. We used the SNAP Package [65],
the specific function used was Plots the network Community Profile (NCP – ncpplot package).
The algorithm use Spectral algorithm to define the clusters and the conductance to evaluate
the communities.

In Figure 3.2 and Figure 3.3 we show the community profiles for biological and social
networks and a power-grid network. We show the conductance scores of the best communities
computed, using the Local Clustering algorithm of [4] and the Bag-of-Whiskers algorithm of
[68]. A local clustering of a vertex quantifies how close its neighbors are to being a clique. The
local clustering information is propagated into larger communities in a subtle and location-
specific manner. In the case of bag-of-Whiskers algorithm, it was created by [68] where they
artificially create communities from disconnected whiskers and measure conductance of such
clusters.

In Figure 3.2 we depict, network community profiles for biological networks. They are
computed using the local spectral clustering and bag-of-whiskers algorithms. The conduc-
tance values are shown a long axis Y, and the number of nodes in the corresponding cluster
a long axis X. Both algorithms give a network community profile that is initially downward
slopping, then trending upwards. The global minimum for both methods, across most of the
biological networks, is at about a community size value of ten. This is in stark contrast to net-
work community profiles for social and other complex networks. Also, observe that whiskers
give significantly better communities than local spectral clustering.

See Table 3.2 for statistical data of the networks.
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In Figure 3.3, we show the community profiles of two social networks, Twitter and Face-
book, as well as the community profile of a power-grid network. We observe that the commu-
nity profiles of the two social networks have a downward slope up to a certain community size,
and then they trend upward. In the case of NCP of the power-grid is always going downward.
Similar extensive results for social networks are presented in [68], this corroborate our results.
Their global minimum orders of magnitude greater than the global minima we observe for
biological networks. Also, we observe that there are no whiskers for the Twitter and Facebook
networks, i.e. there are no communities that are barely connected to the rest of the network.
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(a) CDG - Spectral and Whiskers algorithm.
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(b) Twitter - Spectral and Whiskers algorithm.
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(c) Facebook - Spectral and Whiskers algorithm.

Figure 3.3: Network community profiles (red/dark) and bag-of-whiskers (green/light) algo-
rithms of two social networks and a power-grid network (a) 4,941 nodes [117], (b) 81,306
nodes [65], and (c) 4,039 nodes [65].

We show the NCP of biological networks in Figure 3.2. We observe a similar shape of
the NCPs as for the studied of social networks. Initially the slope is downward, then upward.
However, the global minimum is not reached at size 100 or greater as for social networks, but
surprisingly at size about 10, an order of magnitude smaller! This indicates that biological
networks present a very different community structure when compared to social networks
as their local structure appears much more local than social networks. We also observe that
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whiskers give significantly better communities than Local Clustering. This means that the best
communities are only barely connected to the rest of the graph for biological networks.

3.3 Modelling results

3.3.1 Modelling results and discussion

A natural question we would like to answer is: What generative model best fits biological
networks? For social networks, [68] shows that a Forest-Fire model, where new edges are
added via a recursive burning mechanism in an epidemic-like fashion, generates networks
with network profiles that closely resemble profiles of social networks.

In contrast, a Forest-Fire model is not the right choice for biological networks [68]. Sur-
prisingly, we observed that a rewiring model proposed by [83] can generate networks with
a network community profile that closely resembles profiles of biological networks. The
rewiring model works as follows. Starting with the original network we randomly select pairs
of edges and switch their nodes. By doing this many times, we obtain a random graph with
the same degree sequence as the original one.

We show the NCPs with rewiring in Figure 3.4 for biological networks, and in Figure 3.5
for the two social networks and the power-grid network. We observe that the NCPs for the
rewired networks behave similar to those for the original biological networks. On the other
hand, the behavior of the NCPs for the rewired social networks and the power-grid network
is quite different from their original counterparts. This reinforces once more the fact that the
internal structure of communities in biological networks is very different from that observed
in social and other complex networks.
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(a) Twitter - Spectral and rewired netwwork.
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Figure 3.5: Network community profiles (red/dark) compared to profiles of rewired networks
(green/light). The profiles of the rewired networks are different from those of the original
networks. Recall, that for biological networks, we observe the opposite, the profiles of the
rewired networks are the same as the originals.
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3.3.2 Centrality differences between biological and other networks

We applied Spearman’s rank correlation to determine the relation between the centrality mea-
sures used in the biological and social networks. We obtained Spearman’s rank correlation for
three centrality measures, betweenness (nbc), closeness (ncl), and degree (dg) for all biologi-
cal networks (see Table 3.3), and several social and complex networks (see Table 3.4).

Networks ncl/nbc dg/nbc dg/ncl

Arabidopsis thaliana 0.429 0.863 0.318
Caenorhabditis elegans 1 0.484 0.926 0.500
Caenorhabditis elegans 2 0.535 0.963 0.568
Drosophila melanogaster 0.832 0.909 0.865
Echericha coli 1 0.736 0.916 0.848
H. pylo 0.771 0.969 0.794
Homo sapiens 1 0.594 0.852 0.684
Homo sapiens 2 0.631 0.864 0.603
Mus musculus 0.520 0.861 0.475
Saccharomyces cerevisie 0.804 0.859 0.799
Schizosaccharomyces pombe 0.749 0.867 0.790

Table 3.3: Spearman correlation between centrality measures for biological networks.

Networks ncl/nbc dg/nbc dg/ncl

Coauthor ships in science 0.382 0.486 0.627
AstroPhysics collaboration 1 0.650 0.714 0.834
AstroPhysics collaboration 2 0.562 0.645 0.748
Energy Physics, Phenomenology 0.523 0.624 0.720
Energy physics, Citation 0.472 0.596 0.828
Energy Physics, Theory 0.615 0.805 0.650
Condense Matter collaboration 0.558 0.721 0.698
R&Quantum Cosmology collab. 0.553 0.676 0.589
Enron email 0.516 0.758 0.506
Social circles: Facebook 0.479 0.788 0.430
Power grid western states 1 0.296 0.804 0.233

Table 3.4: Spearman correlation between centrality measures for social and complex net-
works.
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The set of social and complex networks where selected because are the smallest of their
type and can be compared with the biological networks that have similar sizes. The correla-
tions for each comparison — ncl/nbc, dg/nbc, and dg/ncl — are presented in Table 3.3 and
Table 3.4.

All networks exhibit a strong correlation between degree and betweenness centrality. How-
ever, we also observe that the biological networks show a significantly stronger correlation be-
tween degree and betweenness, and between closeness and betweenness (Figures 3.6, 3.7, and
3.8). This interesting observation suggests once more that the structure of these two families
of networks is quite different, in contrast to the often held belief that they are pretty much the
same in terms of structure.

In Figures 3.6, 3.7, and 3.8 we present the comparison of Spearman’s rank correlations
between biological networks and social networks. We observe that the degree and betweenness
correlation is significantly higher than the other correlations. Also, the correlation is more
pronounced for biological networks than for social networks (see in Figure 3.6). This indicates
that despite the high correlation, in both cases there is a clear difference between biological
and social networks.

Regarding the correlation between degree and closeness in Figure 3.7, both families of
networks exhibit a similar behaviour, with the median for biological networks being slightly
higher than the median for social networks.

Biological Social

0
.5

0
.6

0
.7

0
.8

0
.9

Betweenness − Degree

Networks

Figure 3.6: Comparison of Spearman’s rank correlations between biological networks and
social networks. Betweenness - Degree.
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Figure 3.7: Comparison of Spearman’s rank correlations between biological networks and
social networks. Degree - Closeness.

Finally, betweenness and closeness correlation in Figure 3.8 shows a higher median for
biological networks than for social and complex networks.
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Figure 3.8: Comparison of Spearman’s rank correlations between biological networks and
social networks. Betweenness - closeness.
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3.4 Conclusions and future work

We presented an empirical study on the fine-grained structural differences between biological
networks (namely protein interaction networks) and social and other types of networks (around
100 or more). We revealed surprising differences in terms of the network community profile
and correlations of centrality measures. More specifically, we showed that the best community
size in terms of community conductance is at about a size value of ten, and this holds across
almost all the available protein networks of a reasonable size. Such a community size is an
order of magnitude lower than that for social and other networks.

The shape of NCPs for both biological and social networks is quite similar; they initially
slope downward, then upward. This behaviour is different from that of other networks (neither
biological nor social).

We can see from our centrality values that our protein networks are mature. The species
used in this research have been studied for years.

Knowing the best size of a community in a PPIN, we can suggest to researchers to continue
to focus on networks (work in the laboratory - in-vivo) where the size of the community is still
not the best size (1̃0). Community sites of k < 10 indicate that the networks still do not have
enough information (proteins or interactions).

As future work, we would like to extend our experiments to biological networks of other
types, such us, metabolic, gene regulatory and neural networks, and examine a wider range of
network measures at fine levels of granularity.
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Chapter 4

Finding correlations between orthologs
using centrality measures, percentage of
similarity and rate of evolution

Sequences can be able to diverge during evolution. The amount of divergence between two
sequences can tell us how closely two sequences are related (degree of similarity), and it
reflects the evolutionary relationship between them [91].

Sequence divergence measures the total number of differences between two sequences.
Percentage of similarity measures how similar two sequences are. With these two measures
alone we cannot know the type of change (details of the changes) that occurred to the se-
quences. The higher the percentage of similarity between two sequences, the lower the number
of changes in the amino acid sequence (dN/dS ratio) should be. And, the lower the percent-
age of similarity between two sequences, the higher the number of changes in the amino acid
sequence should be. Finally, the amino acid divergence measures the type of changes (con-
sidering the gene position in the codon) that occurred in the sequence (dN/dS ratio or test for
positive selection, see 2.1.5 for definition).

Our research is focused on the study of the evolution of protein-protein interactions (PPIs).
To do this, we quantify amino acid divergence, percentage of similarity, and three traits associ-
ated (centrality measures) with protein-protein interactions for orthologous genes in different
species. The centrality measures used are betweenness (bc), closeness (cl), and degree (dg).
See section 2.2 for definitions. The species we considered are:

• fly (Drosophila melanogaster - dm),

• worm (Caenorhabitis elegans - ce),
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• mouse (Mus musculus - mm), and

• human (Homo sapiens - hs).

We predict that the percentage similarity, dN/dS ratio divergence, and the three inter-
action traits will be correlated. Our prediction is based upon work published by Hahn and
Kern [44]. They found that slow-evolving proteins (conserve selection) in S. cerevisiae, D.

melanogaster, and C. elegans have high betweenness scores. Although their work provides
a foundation for our research, there are several substantial differences: The first is the evolu-
tionary time span being considered. In the work by Hahn and Kern, a slow-evolving protein
was one that changed little between close relatives. For example, a slow-evolving protein in
D. melanogaster was one that had a very similar ortholog in D. pseudoobscura (Dp) - both are
flies, and a slow-evolving protein in C. elegans was a protein that had a very similar ortholog
in C. briggsae (Cb) - both are worms (shown in Figure 4.1).

Cb Ce

DpDm

Sc Sp

Fly

YeastWorm

Figure 4.1: Relation between species. Red line (segmented), compare centralities between species.
Blue line (continuous), alignments between species from the same family Ce with Cb, Dm with Db,
and Sc with Sp [44].

Thus, despite including yeast, fly, and worm in their study, no comparisons (at the se-
quence level) across these species were made. A second difference is that Hahn and Kern
did not report betweenness values for the protein from in the con-generic species used in the
amino acid sequence comparisons. That is, while slow-evolving proteins in D. melanogaster

tended to have high betweenness scores, we have no interaction data for these proteins in D.

pseudoobscura.
In this research we identify the same genes (i.e., orthologs) in fly, worm, mouse and human,

and compare sequence data to protein-protein interaction data (traits) over a much longer time
scale. Another key strength of our approach is that we consider PPI data that are available for
all species in this research. The three PPI measures were calculated from data downloaded
from public databases. The main challenge in our approach is the identification of orthologs
across such a broad evolutionary time scale.
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How does gene duplication and divergence at the amino acid sequence level correlate with
changes in the PPI parameters we have measured? If the interactions of a protein change
over time it could mean that its sequence has changed too (the amino acids have changed) or
its partners are different. In the case of changes at the amino acid level, the protein changes
if mutations are non-synonym (big changes in the sequence), otherwise the protein does not
change if mutations are Synonym (small changes in the sequence). This will be explained in
more detail in the following sections.

4.1 Literature review

We will discuss how to compare PPINs among species using measures and tools developed
for other areas, such as, math, sociology, social networks, and biology.

To understand the species and their systems it is not enough to identify the proteins in
them, all the interactions between these proteins are needed to comprehend the species. For
this reason, researchers started to study the interactions and trying to identify new ones [37].
The interactions can be classified according to the definition proposed by [88].

There are different methods to identify these interactions, such as, Y2H (Yeast two hy-
brid assay), MS (mass spectrometry), Correlated mRNA expression, and genetic interac-
tions [28, 36, 114]. In [114] the authors compared some of these methods to study protein
interactions. Since each method has its own benefits and drawbacks, their conclusion was that
the combination of these methods is better than using them independently.

In [18], the authors made the comparison of four algorithms (Markov clustering, restricted
neighborhood search clustering, super paramagnetic clustering, and molecular complex de-
tection) to evaluate the resulting cluster from annotated complexes. In a protein interaction
network, clustering is used as an effective approach for identifying protein complexes or func-
tional modules [115].

The networks normally are represented by graphs where the nodes are proteins and the
edges are their interactions. Using graph theory to analyze biological networks allows us to
show properties and functions that were hidden in the network.

The use of graph theory in the study of the topology of biological networks is successfully
applied by Pavlopoulos et al. [93]. They studied in detail the interactions, motifs and clusters
using graph theory tools to explain better the behaviour of the networks. They concluded that
there is a close relation between the structure of the network and the function of the nodes.

According to [61, 82, 93], the topology studies (structure of the networks) are limited be-
cause the data is from a specific time and does not reflect the dynamic system of a network.

In [22,47,98], the authors proposed that using a global network algorithm, it is possible to
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work with only the network topology and no additional information.
According to Przulj [98], sequence and topology provide complementary ideas of biolog-

ical knowledge.
There are also new algorithms for the identification of orthologs [69, 92]. The authors

of [92] presented a new global alignment algorithm that evaluates functions and structure of
each protein and its neighbors.

Most of the network analysis measures stems from graph theory [93]. Measures of cen-
trality have an important role in the study of the different relationships between and within
species. Centrality is measured as the connectivity of a protein, counting the total number of
its interactions [54]. Greater connectivity means more direct contacts for the protein [31].

The analysis of networks using centrality measures permits to identify important elements
between the proteins (nodes) and their interactions (edges). The three measures of centralities
are based on: Connectivity (degree), closeness or betweenness. These are three measures that
we will be using in a different part of the research (see section 2.2 for the definitions). In the
case of biological networks, proteins in a good position can influence those proteins that do
not have the same importance in the network [43, 44, 49, 116].

Betweenness (bc) is a centrality measure that indicates the frequency that a protein appears
in the shortest way that connects two other proteins. Here we consider how many shortest
paths are between these relevant proteins, because they control the flow of the network. Ac-
cording to Hahn et al. (2004), the structure and function of the protein have effects on the
evolutionary rate in the protein networks [48]. Genes that are more central are more likely to
be lethal when knocked out [53], and to evolve more slowly [43].

The idea is to identify which proteins are the most central in each species. So, identifying
those proteins according to the centrality measures could permit to see patterns that could
explain the evolution between these species.

Proteins with high betweenness are more likely to be essential and the evolutionary age
of proteins is positively correlated with betweenness [57] (it in the center of the network). In
the case that a protein has low centrality it is likely located in the periphery of the network.
The authors exposed that rewiring of interactions via mutation is an important factor in the
production of such proteins. In [59, 125], they use modularity based on bc values allowing to
have a relationship between the functions of a network and its components.

These measures are used to identify essential proteins of PPINs. To analyze the PPIN from
different species, centrality measures on the networks of all species are determined. Each
network is used to determine the relative importance of a protein in the network. Moreover,
we use the orthologous classification of these networks, this means we have a set of clusters
composed by proteins (from different networks) grouped by percentage sequence similarity
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and centrality measures. Therefore, the definition of orthologs is an additional and important
factor in the analysis.

4.2 Methodology

Our goal is to determine if orthologs from two different species are similar with respect to
their different traits. The traits that we are using are the centrality measures (see 2.2.2 for
definitions), the sequence similarity, and the dN/dS ratio (see 2.1.5 for definition).

For a given species α we call the PPIN Hα . Each species is composed of proteins, the
protein set is called Wα . Every protein in Wα is represented as kαi. When we compare the
PPINs of two different species α and β , we refer to protein pairs as ti j with ti j = {kαi,kβ j}.

Using the general idea of Hahn and Kern’s research we define: the species to be compared,
the methods and constrains for the orthologous classification, the centrality measures and
algorithms (to organize the data and integrate the data) to be used. All these will permit to
find those proteins of Hα that has a high sequence similarity and a possible correlation with
proteins of Hβ .

Comparisons are done for two different species (α and β ). First, Worm and Fly, and next
Human and Mouse. These pairs of species were specifically chosen because they have good
quality PPIs and their protein and cDNA sequences are available. We will carry out from the
selection of the protein sequences, their alignments and subsequent orthologous classification
using sequence analysis with BLASTp.

After finishing the comparison of the first two species, we reviewed our process and we
realized that: the constraints used were not so stringent and this ultimately led to not having a
fine orthologous selection; The orthologs obtained were not unique (a protein from specie A
has more than one match in species B). We refine the constraints used to improve the orthologs
classification. These constraints are necessary to keep only those orthologs with their best
percentage of similarity. We create a procedure (see Figure 4.2) to identify orthologs, calculate
the amino acid divergence and the centrality measures.
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Ortholog ListStep 4

Results and discussionStep 5

dN/dS
Orthologs

identification Centralities

Step 1 Step 3Step 2

Figure 4.2: Methodology overview.

Figure 4.2 presents the five main steps of our work: Alignments of protein sequences,
centrality measures, amino acid divergence (dN/dS ratio), merging of values, and the analysis
of the results. In sections below, we present in detail the five steps used for the selection
of the pairs of orthologs according to the proposed constrains. When we discuss about best
orthologs we are referring to those pairs of proteins (A and B), where protein A is the best
match to protein B, and the other way around. The best match means the pair with the higher
percentage of sequence similarity. In section 4.3.5 we present the differences between the
different experiments.

4.2.1 Step 1: Alignments

The goal of step 1 is to obtain a list of candidate orthologs from two different species that
contain the best ortholog pairs for each protein (see Figure 4.3). From Ensembl [29] we took
the protein sequences from both species. Later, we use BLASTp to do the reciprocal alignment
(RBH).

BLAST is a basic local alignment search tool [86]. BLAST compares primary biological
sequence information. It compares a query sequence (A) with an other sequence (B) to identify
segments of the sequence (B) that resemble the query sequence A [3]. BLASTp compares
specifically protein sequences (all with all).
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Best pairs for species α

Run BLASTp,
and results for species β

Best pairs for species β:
OrthoList-αβ

Synonym Species Lists
A : SynList-α
B: SynList-β

Merging: OrthoSynList-αβ

Run BLASTp,
and results for species α

Step 1 Protein sequences
 species β

Protein sequences
species α

Figure 4.3: Step 1. Orthologous selection from pair of species.

For example, we have two species α and β that represent the two input files from BLASTp.
The protein sequences from each species are Wα = {kα1,kα2,kα3,kα4,kα9} and
Wβ = {kβ1,kβ2,kβ3,kβ4}. To identify the orthologs we need to execute the BLASTp in both
directions (RBH). First α→β , were α is the query and β the subject. Second, we do the
same, but we swap α and β to β is the query and α the subject. The idea is to obtain the best
match for each protein taking in consideration the alignments from both directions, scores
and percentage of similarity. The results from using BLASTp is a list of pairs with similarity
scores, in this case we have two lists, one from each direction. Following the example, from
the alignment results we have eighteen pairs with different similarity scores as follows:
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Direction α → β : {kα1,kβ2} : 40; Direction β → α : {kβ1,kα1} : 30;
{kα1,kβ3} : 50; {kβ1,kα2} : 40;
{kα1,kβ4} : 60; {kβ1,kα3} : 50;
{kα2,kβ2} : 15; {kβ2,kα4} : 45;
{kα3,kβ3} : 80; {kβ3,kα3} : 80;
{kα4,kβ2} : 45; {kβ4,kα1} : 60;
{kα2,kβ1} : 40; {kβ2,kα2} : 15;
{kα9,kβ3} : 95 {kβ4,kα8} : 30;

{kβ5,kα2} : 70;
{kβ3,kα9} : 95

We create an algorithm that has five functions:

1. Concatenate the BLASTp results (get results from both sets);

2. Select best scores using the query species (the highest scores for each protein).

3. Select the maximum score without duplications;

4. Select the best score for subject species; and

5. Integration of formats.

The details of the five functions are as follows:

Concatenate BLASTp results

Initially, we took from Ensembl [29] two sets of protein sequences from different species
(more exactly, we used all the sequence available). We run BLASTp with these sequences.
The two sets of protein pairs (P) from BLASTp results are loaded together in memory using
python.

BLASTp compares specifically protein sequences (all with all). Now, we need to take
only those protein pairs ti j with proteins from different species (the goal is to keep only
candidate orthologs). Each ti j has the following attributes: id species_1, id species_2, percent
identity, alignment length, mismatches, gaps, query start and end position, subject start and
end position, e-value, and bit score.

At this point, the proteins are not uniquely matched with proteins in the other species. This
means, a protein might appear in more than one ti j. We need to find the best match (that is,
the one with highest similarity). Therefore, we organize the data by creating a group for each
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of the proteins in Hα (the protein ID kαi was used to label the groups). In each group there is
one or more proteins from Hβ that share similarities with this specific protein kαi.

The goal of concatenating and cleaning is to reduce the number of comparisons and du-
plications (this is possible to see in the results section). For each protein kβ j included in a
group it is added an attribute that indicate the direction of the query in BLASTp, A = α → β

or B = β → α . Following the example, here we have six groups and each consists of one to
five proteins with its score values and direction.

kα1 : [[kβ4,60,A], [kβ1,30,B], [kβ4,60,B], [kβ6,60,B]]
kα2 : [[kβ2,70,A], [kβ1,70,A], [kβ1,70,B], [kβ2,70,B], [kβ5,70,B]]
kα3 : [[kβ3,80,A], [kβ1,50,B], [kβ3,80,B]]
kα4 : [[kβ2,45,A], [kβ2,45,B]]
kα8 : [[kβ4,30,B]]
kα9 : [[kβ3,95,A], [kβ3,95,B]]

Select best score for proteins in species Hα

Now, that the groups are sorted we use filters to keep only those t pairs with the highest score
in each group. This is necessary due to the possibility of many kβ j for one kαi. In this case,
we take out the pairs [kα1,kβ1,30,B] and [kα3,kβ1,50,B] due to lower scores. This results in
six groups, and each group contains elements of highest score only.

kα1 :[[kβ4,60,A], [kβ4,60,B], [kβ6,60,B]]
kα2 :[[kβ2,70,A], [kβ1,70,A], [kβ1,70,B], [kβ2,70,B], [kβ5,70,B]]
kα3 :[[kβ3,80,A], [kβ3,80,B]]
kα4 :[[kβ2,45,A], [kβ2,45,B]]
kα8 :[[kβ4,30,B]]
kα9 :[[kβ3,95,A], [kβ3,95,B]]

Select maximum score

Because we want to use the RBH to select the orthologous candidates we only need to keep
the alignments or the pairs that have the same proteins, same score and different directions (A
and B). For example, in kα4 there are two t, [kα4,kβ2,45,A] and [kα4,kβ2,45,B], where in both
cases the protein is kβ2, the scores are the same, and the directions are different. We keep only
one [kα4,kβ2,45] and this pair is one of the best match for both proteins (kα4 and kβ2) at this
point.
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kα1 :[[kβ4,60,A], [kβ4,60,B]
kα2 :[[kβ2,70,A], [kβ1,70,A],

[kβ1,70,B], [kβ2,70,B]]
kα3 :[[kβ3,80,A], [kβ3,80,B]]
kα4 :[[kβ2,45,A], [kβ2,45,B]]
kα8 :[]
kα9 :[[kβ3,95,A], [kβ3,95,B]]

⇒

kα1 :[kβ4,60]
kα2 :[kβ2,70]
kα3 :[kβ3,80]
kα4 :[kβ2,45]
kα9 :[kβ3,95]

In the case of our groups kα1, kα2, kα3, kα4, and kα9 group, kα2 has two proteins with the
same values [kα2,kβ2,70] and [kα2,kβ1,70]. We choose one of them [kα2,kβ2,70]. The final
groups are kα1, kα2, kα3, kα4, kα9.

There is a possibility that a group contains duplicates (more than two pairs with the same
score and same direction), the duplicates are removed.

Select best score for proteins in species Hβ

Now that we have the maximum scores for each protein in Hα , we need to select the maximum
score for each protein in Hβ . We call a pair a final pair (kαi,kβ j) when each protein is the best
match of the other protein (for both proteins the other one is the highest score). We take the
groups one by one and we organize them by proteins of Hβ . So, three groups are created
kβ4,kβ3 and kβ2.

kα1 : [ kβ4,60 ]
kα2 : [ kβ2,70 ]
kα3 : [ kβ3,80 ]
kα4 : [ kβ2,45 ]
kα9 : [ kβ3,95 ]

⇒
kβ4: [[kα1,60]]
kβ3: [[kα3,80],[kα9,95]]
kβ2: [[kα2,70],[kα4,45]]

⇒
kβ4: [kα1,60]
kβ3: [kα9,95]
kβ2: [kα2,70]

Here it is possible to obtain more than one pair for a protein ([kβ3,kα3,80], [kβ3,kα9,95]).
To deal with such situations we applied the same functions as aboce (point 2 and 3). We
eliminate directions because all of them have already been verified. Finally, we have a set of
protein pairs ({kβ4,kα1}, {kβ3kα9}, and {kβ2kα2}) were each protein in the pair is the best for
each other, this set is named "OrthoList- αβ ".

Integration of formats

Our final goal is to correlate alignment score, centrality and divergence values from proteins of
different species. The data sets need to be merged into one large data set to proceed to search
for correlations. The data used for alignment scores and centrality measures are from different
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sources. An inconvenience is how to integrate or merge the data when the proteins have
different identification names. A match is not possible with these notations (original names).
This is not an uncommon problem, Gabaldon mentioned in [34] that the lack of standardized
formats makes comparisons or integration of data sets challenging and time-consuming.

Best pairs for species β:
OrthoList-αβ

Synonym Species Lists
A : SynList-α
B: SynList-β

Merging: OrthoSynList-αβ

Figure 4.4: Integration of formats.

Each data set has the following format:

• alignments data format {ENS-id-α , ENS-id-β , . . ., values} and

• centrality format {entrez-id, . . ., values}.

It is necessary to obtain a list of synonyms that unifies these two formats. We got the lists
of proteins for each species (α,β ) from Ensembl (ENS) with the following format {ENS-id-α ,
ENS-id-β , entrez-id}. Next, we merged these three lists: OrthoList-αβ , SynList-α , SynList-β .

There are three types of results: First, there is no entrez-id for one of the two ensembl
id ENS-id-α or ENS-id-β ); second, there is no entrez-id for both proteins (ENS-id-α and
ENS-id-β ) and third, there is entrez-id for both proteins.

Here, we only use the third one because we need both to try to discover any correlation
between the centrality measures from the species networks and its alignment relation. For this
reason, there are orthologs that are not used in the next step. The three lists that are intersected,
we created a new one OrthoSynList-αβ that includes all the values from OrthoList-αβ plus
an extra field with the entrez-id for each protein from α or β .

4.2.2 Step 2: Centralities

Definitions and examples of centrality measures are discussed in section 2.2. A vertex with
high bc (betweenness) has a strong influence over paths in the network. The bc value is
not only a consequence of vertex positions, we can also see how centralized the graph is
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[32, 33, 120]. Recall that bc of a vertex is the proportion of all geodesics between pairs of
other vertices that include this vertex (that is, it measures how frequently a vertex appears on
all shortest path between two other vertices in a network). The relationship between the bc of
all vertices can expose much about the overall network structure.

The individual bc values show the type of control that a vertex can have in the network. If
the network is low in density there is not much control, in the opposite case when the density
is high there is the potential to control. In the case of biological networks, having a protein in
a good position permits the protein to influence (that is produce changes with its interactions)
the proteins that do not have the same importance [43, 44, 49, 116].

Using bc allows us to reveal proteins that, over evolutionary time, have conserved roles in
the network. The centrality values (in the case of betweenness-bc and closeness-cl) in each
species need to be normalized first (normalized betweenness-nbc and normalized closeness-
ncl), to be able to compare them. Due to, the different network sizes (proteins and interac-
tions). Because of the normalization, in the big networks the nbc or ncl values could be in
average smaller.

For example, if an ortholog from two different species have bc values that are similarly
high, this could suggest that the proteins conserve their network role. So, identifying these
orthologs will allow us to see patterns (or any relation) that explain the evolution of different
species. Further, this allows us to identify orthologs that have not conserved their network
roles.

Now, the goal of this step is to calculate the centrality measures for all proteins of each
species α and β (see Figure 4.5). For this research we are using the following centrality mea-
sures: degree, betweenness, and closeness. To be able to calculate the values it is necessary to
have a network of the species. A network is composed of proteins (kαi) and the interactions
between them (e.g. a protein-protein interaction kαi,kαx).

Protein-protein
Interactions: Species β

Protein-protein
Interactions: Species α

Centrality Measures
Species A

CentrList-α

Centrality Measures
Species B:

CentrList-β

Step 2

Figure 4.5: Step 2. Obtaining centrality measures.

For the construction of the network, a list of protein-protein interactions (PPI) were ex-
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tracted for each species from BioGRID [30]. Every PPI pair has the next attributes: BioGRID
Interaction ID and Pub Code. In the case of each protein has the next attributes: Entrez Gene
Interactor, BioGRID ID Interactor, Systematic Name Interactor, Official Symbol Interactor.
For our research, we are using all the attributes except the Systematic Name Interactor (an
attribute that its not useful for our research). Each protein can be in more than one interaction
(as the start or end) or be interacting with itself. Using the PPI, we get a list of unique proteins.

Now, that the data are complete, it is necessary to change it to Gephi’s format1 (new
correlative identification names), a program that is used to represent the data and calculate
the centralities [9]. For each protein we have the next attributes: Id, Label (Entrez Gene),
Eccentricity (ξ ), normalized closeness (ncl), and normalized betweenness (nbc). After the
centrality values are calculated, we integrated them with the interaction attributes.

The result of this step are two lists of PPIs with the information from BioGRID and the
centrality values. The final lists are CentrList-α and CentrList-β .

4.2.3 Step 3: Amino acid divergence.

In this step we calculate the amino acid divergence
(dN

dS ratio
)

for all the pairs resulting from
step one (OrthoSynList−αβ , see Figure 4.3). Here we measure how often the average muta-
tion in a gene is resulting in a change of the protein it produces.

Here we are using the same protein sequences from step one, a list of the pair interactions,
and we the set of cDNA2 (complementary DNA) sequence also from the Enembl site [29] (see
Figure 4.6).

Divergence:
 dN/dSList-αβ

Step 3 cDNA sequences
 species α

cDNA sequences
species β

Protein sequences
 species β

Protein sequences
species α

Figure 4.6: Step 3. Obtaining dN/dS ratio.

1Gephi, Graph Visualization and Manipulation software. http://www.gephi.org
2This intron-free DNA is constructed using intron-free mRNA as a template. It is, therefore, a complementary

copy of the mRNA, and is called complementary DNA (cDNA)
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To do the calculations we use the package PAML [123]. This program contains the al-
gorithms to calculate synonymous (dS) and non-synonymous (dN) substitution rates using:
Needleman—Wunsch dynamic programming algorithm for sequence alignment; scoring ma-
trix BLOSUM50 with every possible substitution has assigned a score base on its observed
frequencies in the alignment of related proteins. The BLOSUM50 matrix is used for align-
ments with gaps; PAL2NAL, a program that converts sequence alignment of proteins and the
corresponding DNA (or mRNA) sequences into a codon alignment; and Codeml is a wrapper
for estimating evolutionary rate (dN/dS) using two algorithms, first to implement the codon
substitution model, and second to implement the amino acid substitution model. Both use
maximum likelihood.

In our results we observed some errors, mainly because of the sequence files, where the
proteins have some extra amino acids, or the initial or final amino acid is missing. So there
are differences between the protein and cDNA sequences. In some cases the errors were not
expected because the files came from the same server, but the data are from different versions
and sources. This problem did not occur in step one because BLASTp recognized the problem
and avoided using the extra amino acids. We discarded those pairs with errors.

Here the rate ratio results are integrated in one only set that contain a merge between
species-α , alignmentsScores-α , rate-αβ , alignmentsScores-β , and species-β . The list is
called dN/dSList-αβ .

species-α alignmentsScores-α Ratekαikβ j alignmentsScores-β species-β

| \ / |
Network Alignments from BLASTp Network

Due to the presence of errors the resulting list dN/dSList-αβ has fewer number of pairs that
the initial list OrthoSynList-αβ . The list dN/dSList-αβ will be integrated to the list resulting
from step two and three on step four.

4.2.4 Step 4: Merging values

Finally with all the data obtained from alignments, centrality measures and sequence diver-
gence we proceed to merge all this data from the two species, using as a connector the align-
ment obtained. This was done in three steps: first, alignment results with synonyms; second,
centrality with the previous one; and finally this result with the divergence dN/dS ratio. We
use this order to reduce the sizes of the data sets and the processing time (see Figure 4.7).
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Complete merging: OrthoListαβStep 4

Results and discussionStep 5

dN/dSList-αβOrthoSynList-αβ CentrαList 
CentrβList

Step 1 Step 3Step 2

Figure 4.7: Matching the values from steps 1, 2, and 3.

• Step 1: OrthoSynList-αβ has the following fourteen attributes:

- kαi, kβ j, - iniQuerykβ j,
- alignmentLengthkαikβ j, - endQuerykβ j,
- PercentIdentitykαikβ j, - BitScorekαikβ j,
- mismatcheskαikβ j, - e− valuekαikβ j,
- iniQuerykαi, - geneEntrezkαi, and
- gapkαikβ j, - geneEntrezkβ j.
- endQuerykαi,

• Step 2. CentrList-α and CentrList-βList has the following fifteen attributes:

- kαi,kβ j, - Labelkβ j,
- PercentIdentitykαikβ j, - ξ kαi,
- BitScorekαikβ j, - ξ kβ j,
- e− valuekαikβ j, - Clkαi,
- geneEntrezkαi, - nclkβ j,
- geneEntrezkβ j, - nbckαi, and
- Labelkαi, - nbckβ j.

• Step 3. dN/dSList-αβ has the following three attributes:

- kαi,
- kβ j,
- Ratekαikβ j
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• Step 4: MergeList. The final list is with the following fourteen attributes:

- kαi, kβ j, - ξ kαi,
- PercentIdentitykαikβ j, - ξ kβ j,
- BitScorekαikβ j, - Clkαi,
- e− valuekαikβ j, - nclkβ j,
- geneEntrezkαi, - nbckαi, and
- geneEntrezkβ j, Ratekαikβ j.
- nbckβ j,

Here we can say in detail that protein kαi has a betweenness of bckαi and it has a percentage
of similarity of PercentIdentitykαikβ j and a rate ratio of Ratekαikβ j, with protein kβ j which
has a betweenness of Bckβ j.

4.3 Results

We apply our methodology to two pairs of species: Human-mouse (hs-mm) and Fly-worm
(dm-ce). For each pair, we performed the five steps explained in section 4.2.

4.3.1 Data management

Human and Mouse orthologs

We use four types of data sets for each species: number of cDna sequences, number of peptide
sequences for orthologs and dN/dS ratio, protein-protein interactions (PPI), and synonyms
files.

In step 1, we use only the protein sequences of size (see Figure 4.8):

Species Human (hs) Mouse (mm)

Number of peptide sequences∗ 95,639 50,877
∗ Fasta format.

From the BLASTp results we obtain two files: one with 8,397,674 alignments pairs αβ

(the comparisons are all with all) and the second file with 3,668,268 alignments pairs βα .
After eliminating all the paralog pairs (focusing in orthologs) and selection of the best match
for each protein (highest scores), the result is the OrthoList-αβ of 7,173 alignments pairs
(human-mouse).
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Best pairs for species α:
21,507

Run BLASTp,
and results for β:

3,668,268

Best pairs for species β.
OrthoList-αβ: 7,173

Synonym Species Lists
α: 108,384
β:   53,839

SynList-α: 100,906
SynList-β:    48,644

OrthoSynList-αβ: 6,914

Run BLASTp,
and results for α:

8,397,674

Step 1 Protein sequences
 Mouse (β): 50,877

Protein sequences
Human (α): 95,639 

Figure 4.8: Step 1: obtaining orthologs of human and mouse.

Next, we merge these results with the synonym files (100,906 human and 48,644 mouse).
The synonym files have a high number of proteins. Here, an inconvenience is that not all of the
proteins are in OrthoList-αβ . We create a final file with 6,914 alignments pairs (OrthoSynList-

αβ ). Every pair has the data from BLASTp and we add the synonym name to be able to
merge/concatenate this data with the centrality values that we obtain from (step 2).

In step 2, we use the PPI networks from Biogrid [30].

Species Human (hs) Mouse (mm)

Protein-protein interactions (PPI) 106,159 9,410

We calculate the three centrality measures (betweenness, closeness, and degree− dg)
for both networks. In the case of betweenness and closeness the values were normalized
(nbc,ncl). We obtain a set of 14,473 proteins in human and 4,555 proteins in mouse (see
Figure 4.9).
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Protein-protein
Interactions: Mouse (β)

9,410

Protein-protein
Interactions: Human (α)

106,159

Centrality Measures α
CentrList-α: 14,473

Centrality Measures β:
CentrList-β: 4,555

Step 2

Figure 4.9: Step 2: obtaining centrality values of human and mouse.

In step 3 we use again the protein sequences from step 1, and the cDNA data sets of (see
Figure 4.10):

Species Human (hs) Mouse (mm)

Number of cDna sequences∗ 211,716 92,484
∗ Fasta format.

For the dN/dS calculations we have a set of all combinations between the 211,716 cDNA
with 95,639 of human and 92,484 cDNA with 50,877 of mouse.

Divergence:
 dN/dSList-αβ

Step 3 cDNA sequences
Human (α): 211,716

cDNA sequences
Mouse (β): 92,484

Protein sequences
 Mouse (β): 50,877

Protein sequences
Human (α): 95,639 

Figure 4.10: Step 3: obtaining dN/dS ratio values of human and mouse.

In step 4, we merge the results with the sequence divergence values (see Figure 4.11). In
this case the final value is reduced from 1,168 to 947 pairs. Here we have problems with
the sequences as we mentioned in section "Amino acid divergence" 4.2.3 (proteins have some
extra amino acids, or the initial or final amino acid is missing). The total number is reduced
because an inconsistency between a peptide and a nucleotide sequences.
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OrthoList-αβ: 1,168Step 4

Results and discussion: 
human and mouse

Step 5

dN/dSList-αβ
OrthoSynList-αβ:

 6,914
CentrList-α: 14,473
CentrList-β: 4,555

Step 1 Step 3Step 2

Figure 4.11: Step 4: Merge the three sets from step 1, 2, and 3 of human and mouse.

The final merge is a file with 947 alignments pairs. Every pair has an identity score,
centrality values, and dN/dS ratio.

Worm and Fly orthologs

We use the same four types of data sets for each species: number of cDna sequences, number
of peptide sequences, protein-protein interactions (PPI), and synonyms files.

In step 1, we use only the protein sequences of size (see Figure 4.12):

Species Worm (ce) Fly (dm)

Number of peptide sequences∗ 31,234 24,719
∗ Fasta format.

From the BLASTp results we obtain two files: one with 2,019,871 alignments pairs (the
comparisons are all with all) and the second file with 2,563,523 alignments pairs. After elim-
inate all the paralog pairs (focus in orthologs) and selection of the best match for each protein
(highest scores), the result is the OrthoList-αβ of 4,316 alignments pairs (worm-fly).
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Best pairs for species α:
10,467

Run BLASTp,
and results for β:

2,563,523

Best pairs for species β.
OrthoList-αβ: 4,316

Synonym Species Lists
α: 33,200
β: 29,189

SynList-α: 20,333
SynList-β: 26,798

OrthoSynList-αβ: 2,766

Run BLASTp,
and results for α:

2,019,871

Step 1 Protein sequences
 Fly (β): 24,719

Protein sequences
Worm (α): 31,234 

Figure 4.12: Step 1: obtaining orthologs of worm and fly.

Next, we merge these results with the synonym files (20,333 worm and 26,798 fly). We
create a final file with 2,766 alignment pairs (OrthoSynList-αβ ). Every pair has the data from
BLASTp and we add the synonym name to be able to merge/concatenate this data with the
centrality values that we obtain from step 2.

In step2, we use the PPI networks from Biogrid [30].

Species Worm (ce) Fly (dm)

Protein-protein interactions (PPI) 7,215 34,798

We calculate the three centrality measures (betweenness, closeness, and degree− dg)
for both networks. In the case of betweenness and closeness the values were normalized
(nbc,ncl). We obtain a set of 3,611 proteins in worm and 7,568 proteins in fly (see Figure
4.9).
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Protein-protein
Interactions: Fly (β)

34,798

Protein-protein
Interactions: Worm (α)

7,215 

Centrality Measures α
CentrList-α: 3,611

Centrality Measures β:
CentrList-β: 7,568

Step 2

Figure 4.13: Step 2: obtaining centrality values of worm and fly.

In step 3 we use again the protein sequences from step 1, and the cDNA data sets of (see
Figure 4.14):

Species Worm (ce) Fly (dm)

Number of cDna sequences∗ 57,844 29,173
∗ Fasta format.

For the dN/dS calculations we have a set of all combinations between the 57,844 cDNA
with 31,234 of worm and 29,173 cDNA with 24,719 of fly.

Divergence:
 dN/dSList-αβ

Step 3 cDNA sequences
Worm (α): 57,844

cDNA sequences
Fly (β): 29,173

Protein sequences
 Fly (β): 24,719

Protein sequences
Worm (α): 31,234 

Figure 4.14: Step 3: obtaining dN/dS ratio values of worm and fly.

In step 4, we merge the results with the sequence divergence values (see Figure 4.15), in
this case the final value is reduced for only 1 pair from 582 to 581 pairs. The total number is
reduced because an inconsistency between a peptide and a nucleotide sequences.
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OrthoList-αβ: 582Step 4

Results and discussion: worm and flyStep 5

dN/dSList-αβ
OrthoSynList-αβ:

 2,766
CentrList-α: 3,611
CentrList-β: 7,568

Step 1 Step 3Step 2

Figure 4.15: Step 4: Merge the three sets from steps 1, 2, and 3 of worm and fly.

The final merge is a file with 581 alignments pairs. Every pair has an identity score,
centrality values, and dN/dS ratio.

After finishing the 5 steps methodology, we proceed to analyze the two sets of orthologs,
human-mouse and worm-fly. In the next sections we describe and interpret the data using the
different measures, centrality, percentage of similarity, and dN/dS ratio.

We start evaluating each measure separately to be able to identify the individual character-
istics of the data. For a summary of the networks’ data see Table 4.1.

Worm Fly Human Mouse

Protein 3,611 7,568 14,476 4,555

Interactions 7,215 34,708 106,159 9,410

Table 4.1: Network information.

The networks present different sizes in proteins and interaction number. We calculate the
modularity class for the four species to see how sparse or concentrated the proteins are in
the network. There are 29 and 48 classes (subnetworks) in fly and worm respectively. This
could indicate that the proteins in worm are more disperse than the proteins in the fly. Human
and mouse present a different observation, both have a similar distribution between number of
classes and proteins (88 and 19 classes respectively).

4.3.2 Centrality measures

In this section we describe the results from the three centrality measures betweenness, close-
ness, and the degree (see section 2.2 for definitions). The number of pairs evaluated is reduced
because we identify proteins with the same genes in one species. For example, there are two
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orthologs A-A’ and B-B’. (A, B) from species one and (A’, B’) from species 2. In this case
the names are different (A,B) but the genes associated with A and B are the same. Because of
this we expect similar bc and degree for both.

For each centrality we evaluate the data in the species and in the pair of species.

4.3.2.1 Betweenness

In Table 4.2 we have a summary of the betweenness values for the four species. In all the cases
there are proteins with betweenness zero. This means, the proteins are in the periphery area
or not-well connected in the network and therefore do not occur in many paths. The human
species has almost 49% of proteins with betweenness zero, mainly because human is the
species with higher number of proteins with respect to the number of interactions. The average
betweenness is the same for all the networks, although they have different sizes (proteins and
interactions) mainly because of the outliers. The median shows that most of their values are
concentrated in a low range. We need to consider that. when large networks are normalized
the values could be very low.

Betweenness Worm Fly Human Mouse

Minimum 0 0 0 0

Maximum 0.28 0.01 0.85 0.13

Average 0.001 0.001 0.001 0.001

Median 0.0003 0.0001 0.0001 0.0000001

Standard deviation 0.01 0.001 0.03 0.01

Table 4.2: Betweenness statistics.

We can see from Table 4.2 that the proteins in these networks do not act as bridges between
clusters in the network, as the proteins have low betweenness centrality. In this case, we can
say that the majority of the proteins does not participate in shortest paths that necessarily have
to go through them (that is they are not so central on average). In Figure 4.16, we have a
representation of the betweenness values for the four species. We can see that the pattern of
low values is repeated in all four, except for the high values in the right side of the worm and
fly charts (between 0.01-0.08 in worm and between 0.01-0.14 in mouse).
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(a) Worm.
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(b) Fly.
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(c) Human.
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(d) Mouse.

Figure 4.16: Betweenness centrality in the four species.

4.3.2.2 Closeness

As we did in the section above, in Table 4.3 are the closeness values for the four species.
The average of the closeness is low because most of the values are concentrating on a low
(median) range. Except for human that presents higher values, the average is similar to the
median. According to the standard deviation with 0.05 the rest of the values are not dispersing
with respect to the mean.

Closeness Worm Fly Human Mouse

Minimum 0 0 0.19 0

Maximum 1 1 0.69 1

Average 0.27 0.25 0.38 0.26

Median 0.25 0.24 0.41 0.21

Standard deviation 0.16 0.07 0.05 0.21

Table 4.3: Closeness statistics.
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In Figure 4.17 we can see that the four charts present outliers, that could change the values
obtained (average and standard deviation).
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(b) Fly.

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Proteins

C
lo
se
n
e
ss

(c) Human.
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(d) Mouse.

Figure 4.17: Closeness centrality in the four species.

4.3.2.3 Degree

In Table 4.4 we have the summary of the degree values for the four species. The average degree
for human is higher than the rest of the species mainly because of the size of the network, but
also because of the high number of interactions known. However, we need to consider that the
highest degree for human is only one protein (isolated case), the next highest degree is 417, a
number that is closer to the degree of the other species.
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Degree Worm Fly Human Mouse

Minimum 0 0 0 0

Maximum 524 122 8605 152

Average 5.5 9.15 39.8 4.36

Median 2 4 12 2

Standard deviation 25.34 13.21 331.75 9.48

Table 4.4: Degree statistics.

Worm and fly networks

The worm has the highest degree (with a few proteins) but fly has a greater number of proteins
with high degree. The fly’s network has three proteins with degree zero where their orthologs
in the worm network have degree one. In the case of worm’s network there is only one protein
with degree zero and its orthologs in fly network has degree six. Over all the pairs of proteins
(582) there are 80 orthologs where both have degree 1. Also, there are 100 orthologs with the
same degree value (the range is between degree 1 and 18). There are 104 orthologs with the
difference of one degree. This means the proteins did not change their degree although these
are in different species. However, there are 292 orthologs that made changes in their degree
with a difference between 2 and 15. Of two orthologs the variation of the degree is over 200.
It is important to mention that the highest degree in fly is 122. In the case of worm the three
highest degrees are 524, 202, 135. In both species these values have the highest nbc of the
respective network.
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Figure 4.18: Degree centrality in the four species.

Human and mouse networks

Mouse network has one protein with degree zero where their orthologs in the human network
has degree 56 with 100% percentage of similarity. In the case of human network there are
two proteins with degree zero and its orthologs in the mouse network both have degree 1. The
degree values in mouse are gradually increasing until the 10th highest degree from 52 to 152.
In the case of human network the 10th highest degree range from 300 to 8000.

The highest degree in human network is 8605, degree of two proteins (ENSP344818 and

ENSP442800), also they have the same nbc (0.85). These proteins have different pairs of
proteins (ENSMUSP19649 with ENSP344818; and ENSMUSP115578 with ENSP442800), both
cases have 100% sequence similarity. Overall the pairs of proteins, there are 53 pairs where
both have degree 1. Also, there are 79 pairs with the same degree between 1 and 10 (26 of
those are between 2 and 10). In this case, proteins with high degrees have high nbc, those with
low degree have low nbc. The separation was made according to the number of repetitions of
the differences.

It is important to mention that the highest degree in mouse is 152. In the case of human
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the three highest degrees are 8605, 417, and 338. In both species these values have the highest
nbc of the respective network. Except for a protein in human that has degree 144 and the nbc

is the second highest.

4.3.2.4 Difference between the measures

We create three new attributes to observe how close or far the centrality values are between
these orthologs.

• ∆nbc = |nbc (speciesα)−nbc (speciesβ )|,

• ∆ncl = |nbc (speciesα)−nbc (speciesβ )|, and

• ∆dg = |nbc (speciesα)−nbc (speciesβ )|.

These attributes are the differences between each measure from the pairs of species.
In Figure 4.19 are the representation of the three deltas centrality measures for the or-

thologs. The smaller the ∆value is, the more similar the values are between the orthologous
proteins. Here in Figure 4.19b and 4.19b, we can observe that almost all the betweenness
values are close to zero. This means their values are almost the same.

The orthologs with larger differences are in human-mouse (see Figure 4.19d) where the
closeness shows a different behaviour when compared with the rest of the charts. It is impor-
tant to mention that although the values are very low (close to zero), there are variations in the
values (not all the values are the same).
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(a) ∆nbc worm-fly.
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(b) ∆nbc human-mouse.
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(c) ∆ncl worm-fly.
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(d) ∆ncl human-mouse.
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(e) ∆dg worm-fly.
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(f) ∆dg human-mouse.

Figure 4.19: Difference between centrality measures.

Using the data of the deltas, we create categories for one of the centrality measures, the
∆nbc values. Every category has different ranges, the idea is to be able to obtain more infor-
mation than the charts (see Table 4.5).
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Range
Worm-Fly Human-Mouse

Frequency Percentage Frequency Percentage

0 85 14.6% 81 6.93%

1.00E-09-1.00E-08 0 0% 2 0.17%

1.00E-08-1.00E-07 0 0% 19 1.63%

1.00E-07-1.00E-06 4 0.69% 40 3.42%

1.00E-06-1.00E-05 34 5.84% 101 8.65%

1.00E-05-1.00E-04 94 16.15% 303 25.94%

0.0001 -0.001 203 34.88% 403 36.82%

0.001 -0.01 149 25.60% 175 14.98%

0.01 -0.09 12 2.06% 14 1.20%

0.09 1 0.17% 3 0.20%

Total 582 100% 1168 100%

Table 4.5: Number of pairs of proteins categorized by difference of betweenness.

The ∆nbc values are very small (Table 4.5 column Range), this is a consequence of the
normalization when calculating the centrality measures. From the data we can see that worm
and fly have an important number of proteins (85 of 582) that do not differ, 14.6%, that means
proteins have same nbc. As we have mentioned before, this could mean that the orthologs
have the same betweenness or both have value zero. This is very different in human-worm,
where the big group is in the range 0.0001 - 0.001 with a 36.82% difference over the total.
Moreover, there is 6.93% with the same nbc. Comparing both pairs of species the differences
are similarly distributed. The pairs with both nbc values equal to zero were not considered for.
The remaining pairs, all have for one of the two proteins nonzero nbc.

4.3.3 Percentage of similarity

These values were calculated using BLASTp. In Table 4.6 is a summary of the data obtained
from the alignments.
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Similarity HS/MM CE/DM

Minimum 43.48 20.19

Maximum 100 98.68

Average 93.46 48.03

Median 96.95 44.98

Standard deviation 9.06 15.83

Table 4.6: Statistics of percentage of similarity between pairs of species.

We can conclude that most of the orthologs in human-mouse have high similarity, contrary
to what happens in worm-fly. Also, the similarity values in human-mouse are closer (low
standard deviation), this means, are not disperse. See Figure 4.20b.
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(a) Worm-fly.
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(b) Human-mouse.

Figure 4.20: Percentage of similarity.

Here, we also create categories where the data were classified according to the percentage
of similarity as shown in Table 4.7. First, we count the number of pairs for each category
and then calculate the percentage of this number over the total number of pairs. The majority
of the similarity values are close to 100% and in the 100 percentage category (see Figures
4.20a and 4.20b). If we do a protein analysis (see every protein sequence), it would be better
to choose a limit or threshold over the 75% percentage of similarity so the analysis could be
made deeply in less number of pairs.
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Range
Worm-Fly Human-Mouse

Frequency Percentage Frequency Percentage

0 - 19 0 0% 0 0%

20- 29 63 10.82% 0 0%

30- 39 154 26.46% 0 0%

40- 49 135 23.20% 5 0.43%

50- 59 97 16.67% 6 0.51%

60- 69 73 12.54% 25 2.14%

70- 79 35 6.01% 77 6.59%

80- 89 21 3.61% 154 13.18%

90- 99 4 0.69% 649 55.57%

100 0 0% 252 21.58%

Total 582 100% 1168 100%

Table 4.7: Number of pairs of proteins categorized by percentage of identity.

The high ranges of human-mouse (between 80-100) contain more than 90% of the align-
ments pairs. Moreover, the range between 90-99% has more than 50% of the orthologs (649
of 1168). In worm and fly there is not a high percentage of identity between these two species
(see Figure 4.7). More than the 50% of the pair alignments are between 30-59 percentage of
identity. The high ranges (between 80 - 100) only have a 4.3% of the pairs. We could con-
clude according to these results that human and mouse are similarly closer in evolution (high
percentage of similarity) than worm and fly (low percentage of similarity).

4.3.4 Divergence: dN/dS ratio

In Table 4.8 we present the summary of the values obtained in the dN/dS ratio. Here we
observe that most of the orthologs do not present big changes. When the dN/dS ratio is small
(dN/dS<1) means that there are not so many changes at the protein sequence level (purifying
selection).

dN/dS ratio Worm-fly Human-mouse

Minimum 0.001 0.001

Maximum 0.40 0.93

Average 0.02 0.09

Median 0.01 0.04

Standard deviation 0.03 0.11

Table 4.8: dN/dS ratio statistics.
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Now, if we compare the results from both pairs of species, we would expect low values in
human-mouse because of their similarities. However, the values for worm-fly are very low,
close to zero. Our interpretation of these results is that the proteins are the same in both
species, they have not undergone any change in their amino acid sequence since the event of
speciation. This is very unusual. These lower values will need a further evaluation, which we
proposed as future work. There is a very small set of orthologs (see Figure 4.21 a and b) that
contains outliers with higher dN/dS ratio values.
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(a) Worm-fly.
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(b) Human-mouse.

Figure 4.21: dN/dS ratio.

Next, we present more details of the data obtained from the dN/dS ratio. The highest
degree (ortholog ENSMUSP104347 ENSP379180, 100% - 152) in mouse has a low dN/dS =

0.001. The highest degree (ortholog ENSMUSP19649 ENSP344818 100% - 8605) in human
has a dN/dS = 0.003, below the median.

The highest degree in fly (FBpp0081600 ZK792.6 76.19% -122) has a low dN/dS of 0.002
The highest degree in worm (FBpp0070141 C32F10.2 23.81% - 524) has a dN/dS = 0.0111,
above the median.

The general observation with respect to the dN/dS results is that both pairs of species
(fly-worm and humna-mouse) have a low divergence with a rate below 1 (purifying selection).

That the sequences tend to have low betweenness values is interesting. As we mentioned,
few connections appear in the proteins on the periphery of a network, which gives them the
freedom to vary. When the proteins are highly connected, the ability to change is constrained.
Orthologs with a low dN/dS means that the amino acids are not to free to made changes.
Now, we evaluate the centrality measures with respect to the other two measure percentage of
similarity and dN/dS ratio.
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4.3.5 Centrality measures, percentage of similarity and dN/dS ratio

In this section we evaluate the ∆value of betweenness, closeness and degree. Every chart has
two representations, the percentage of similarity or dN/dS ratio (curve) and the centrality ∆

(dots). Along the Y-axis (left) we have the scale for the percentage of similarity or dN/dS

ratio and on the Y-axis (right) the scale for the centralities. On the X-axis we have the set of
orthologs. All the charts are sorted by the percentage of similarity or dN/dS ratio.

4.3.5.1 Betweenness

Human and mouse orthologs

First, we have the betweenness values for human-mouse related to percentage of similarity
and dN/dS ratio. Figure 4.22a shows that high percentage of similarity values do not change
the difference between the betweenness values of the proteins in the orthologs (∆). Figure
4.22b shows that do not matter if the dN/dS ratio is high or low (the protein have changed or
not) the difference between the nbc is still low.
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(b) ∆nbc and dN/dS ratio.

Figure 4.22: Betweenness in human and mouse. (a) Percentage similarity and (b) dN/dS ratio.

Worm and fly orthologs

Next we consider the betweenness values for worm-fly. Figure 4.23a shows that is does not
matter whether the percentage of similarity is high or low the ∆nbc is still low (proteins with
very similar nbc values). Figure 4.23b shows that low dN/dS ratio values do not change the
∆nbc of the proteins in the orthologs (∆).
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(b) ∆nbc and dN/dS ratio.

Figure 4.23: Betweenness in worm and fly. (a) Percentage similarity and (b) dN/dS ratio.

Observing the four species we can conclude that betweenness does not vary depending on
the percentage of similarity or the dN/dS ratio. The proteins in the orthologs keep similar
betweenness values.

4.3.5.2 Closeness

Human and mouse orthologs

Second, we consider the closeness values. Figure 4.24a shows that those orthologs with 100%
of similarity have low ∆ncl values. Closeness values show variations between low and high
(outliers), when the percentage of similarity values are below 100%. In this case the closeness
values are more disperse than the betweenness values and the ∆ncl values are higher than the
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∆nbc values. Figure 4.24b shows that is does not matter whether the dN/dS ratio is high or
low: the difference between the ∆ncl values does not show any variation. In the right side of
the plot, we can see that when the similarity is 100% the closeness maintains an increase in
the values.
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Figure 4.24: Closeness in human and mouse. (a) Percentage similarity and (b) dN/dS ratio.

Worm and fly orthologs

Figure 4.25a shows that most of the ∆ncl values are small and a set of approximate 30 or-
thologs have with high ∆ncl values. These do not have a correlation with the percentage of
similarity values. Figure 4.25b shows the same behaviour as the previous chart. There is no
visible relation between the ∆ncl values and dN/dS ratio values. In the left side of the plot, we
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can see that when the dN/dS ratio values are close to zero the closeness maintains an increase
in the values.
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Figure 4.25: Closeness in worm and fly. (a) Percentage similarity and (b) dN/dS ratio.

After studying the four species we can conclude that closeness does not vary depending on
the percentage of similarity or the dN/dS ratio. The closeness of the proteins in the orthologs
have more variations than the betweenness, although small variations.

4.3.5.3 Degree

Human and mouse orthologs

Third, we have the degree values. Figure 4.26a shows that the ∆dg values are dispersed. This
means we have low ∆dg values with similarity values between 60% and 100%. Further, we
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have high ∆dg values (outliers) with percentage of similarity close to 80% and 100%. Figure
4.26b shows the same behaviour as the previous chart. There is no visible relation between
the ∆dg values and dN/dS ratio values.
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Figure 4.26: Degree in human and mouse. (a) Percentage similarity and (b) dN/dS ratio.

4.3.5.2 Worm and fly orthologs

Figure 4.27a shows that it does not matter whether the percentage of similarity is high or low:
the ∆nbc is still low, with some outliers. Figure 4.27b shows that low dN/dS ratio values do
not change the difference between the ∆dg of the proteins in the orthologs.
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Figure 4.27: Degree in worm and fly. (a) Percentage similarity and (b) dN/dS ratio.

We can conclude that protein sequence variation is not correlated with network parame-
ters. This is confirmed in the correlation section. We observe that very similar proteins (high
percentage of similarity) may have similar or different network values. Conversely, different
proteins (orthologs) may have different or very similar network parameters

This is interesting because we predicted that protein sequence conservation with function
conservation protein sequences (orthologs) are much more variable than orthologous network
values.

Among network parameters (measures used): few orthologs have different degrees (even
though they do have different sequences); and few orthologs have different closeness values.
But an interesting set of around 25 orthologs has very different closeness values (even though
the sequence similarity is not correlated with closeness).
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4.3.6 Percentage of similarity and dN/dS ratio

The next two charts present the relation or not between dN/dS ratio and percentage of simi-
larity.

In the case of human and mouse in Figure 4.28 the dN/dS ratio values are more concen-
trated because around the 80% of the pairs have a percentage of identity over 75%. Moreover,
there are dN/dS ratio values close to one and many other close to zero. So, we can say that
between human and mouse we have a high percentage of conserved protein sequences and a
few pairs that are close to a neutral evolution.
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Figure 4.28: Percentage of similarity and dN/dS ratio.

There are 815 of 947 orthologs with less than 0.2 dN/dS ratio, this is a 86.1% over the
total of orthologs. Also, 916 of 947 orthologs with less than 0.4 dN/dS ratio, this is a 96.7%
over the total of orthologs. Last, 4 of 947 orthologs around one dN/dS ratio, this is a 0.4%
over the total of orthologs.

For worm and fly in Figure 4.29 the dN/dS ratio values are spread because the differences
in the percentage of similarity of each orthologs. However, all of them present values that
are below 0.4 dN/dS ratio, this shows conserve protein sequences. Also, the majority of the
values (531 orthologs) are close to zero, that is the 92% of the total number of orthologs.
The values are spread between 20% and 100% percentage of similarity. The unexpected low
dN/dS ratio values showed in Figure 4.21 a) made this plot has an unusual behaviour. Where
it is not relevant if the percentage similarity is high or low, the dN/dS ratio values are always
low.
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Figure 4.29: Percentage of similarity and dN/dS ratio.

4.3.7 Correlations

In this section we review the correlation between the measures studied above. Also, we did a
comparison with the results of article [44] that motivates this research.

Table 4.9 shows the results obtained in Hahn’s paper and our results. We compare only
worm and fly because these were the species that Hahn used. The values obtained from our
networks follow the same behaviour as Hahn’s networks. There are some differences in the
values and this is likely due to difference in size of proteins and interactions.

Hahn TGB

Fly Worm Fly Worm

dg−nbc 0.94 0.96 0.96 0.94

dg−ncl 0.84 0.55 0.87 0.36

ncl−nbc 0.78 0.54 0.83 0.31

dN−nbc -0.07 -0.12 -0.104 -0.119

dN−dg -0.06 -0.11 -0.098 -0.095

dN−ncl -0.05 -0.03 -0.068 -0.034

Table 4.9: Comparison between Spearman’s results of Hahn’s paper and our research.

In Table 4.10 and 4.11 we present our results after using Spearman’s correlation on all the
measures used. From Table 4.10 we conclude that the measures used are not correlated in
their specific networks, and that is transferred to the relation between the networks, too. These
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results confirm the results presented in the previous sections. We have the exceptions showed
in Table 4.9.

Fly Worm Mouse Human

dg−nbc 0.943 0.878 0.868 0.823

ncl−nbc 0.826 0.298 0.174 0.683

dg−ncl 0.872 0.360 0.181 0.817

dN−nbc -0.100 -0.133 -0.064 -0.178

dN−dg -0.095 -0.090 -0.036 -0.173

dN−ncl -0.068 -0.036 0.004 -0.149

dS−nbc 0.056 0.088 -0.032 -0.066

dS−dg 0.072 0.091 -0.025 -0.054

dS−ncl 0.061 0.095 0.019 -0.016

dN/dS−nbc -0.064 -0.091 -0.050 -0.157

dN/dS−dg -0.065 -0.081 -0.021 -0.160

dN/dS−ncl -0.037 -0.068 0.008 -0.142

Table 4.10: Spearman’s correlation by species.

From Table 4.11 we conclude that none of the centrality values exhibit a direct correla-
tion with the sequence similarity. This means that does not matter the level of similarity the
centrality values could be high or low. This happens in both pairs of species.

Fly-Worm Mouse-Human
Similarity - dN/dS -0.509 -0.644
Similarity - ∆nbc 0.171 0.094
Similarity - ∆nl -0.056 0.039
Similarity - ∆dg 0.148 0.211
dN/dS - ∆nbc -0.056 -0.096
dN/dS - ∆nl 0.045 0.011
dN/dS - ∆dg -0.061 -0.150

Table 4.11: Spearman’s correlation by pair of species.

According to the Spearman’s values we cannot predict centrality values of one species
using the percentage of similarity with another one. For example, to predict centrality values
of mouse using human network. We have the same situation with the dN/dS ratio, there is no
correlation. Between percentage of similarity and the dN/dS ratio exists correlation and this
confirms their meaning. The higher the similarity, the lower the changes in the orthologs (low
dN/dS ratio) and vice versa.
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4.4 Conclusions and future work

In this chapter we initially predicted that protein sequence conservation would be correlated
with function conservation.

Our goal was to determine if orthologs are similar with respect to the different traits.
This means the values obtained from the networks parameters (centrality measures) would
be correlated with percentage of sequence similarity and sequence divergence (dN/dS ratio).

We defined a methodology to gather the different data for the network parameters and
the centrality measures. One of the main challenges in this research is the identification of
orthologs across such a broad evolutionary time scale.

We studied four PPINs and their further role in evolution, specifically the study of orthol-
ogous proteins between human and mouse, and worm and fly. We selected the orthologs for
these two pairs of species using percentage of sequence similarity.

Next, we calculated the three centrality measures (betweenness, closeness, and degree)
to identify which proteins are the most central in each species and if they have functions or
similarities in common in different species. At last, we calculated the dN/dS ratios to see the
differences between the proteins that are orthologs.

Our results show that on average the three centrality measures are very similar between
the orthologous proteins. The difference of the centrality values is small, this indicates the
centrality values are very similar between the orthologs. This happens in both pairs of species
worm-fly and human-mouse.

Both cases, fly-worm and human-mouse, present very low values in the amino acid diver-
gence. This means that both were present purifying selection. The number of synonymous
changes is higher than non-synonymous changes.

The results indicate that there is no correlation between network parameters (centrality
measures) and protein sequence variation (percentage of sequence similarity and amino acid
sequence divergence). This means, the role that proteins have in the network is not directly
correlated with their sequence variation.

Next, we present some interpretations of our results and ideas for future work:

• Because the amino acid variation values are too low, we think that by calculating the
dN/dS ratio of only the segments of the sequence that interact with other proteins we
could obtain a more accurate value of the amino acid variation of the protein.

• The proteins (orthologs) that have sequence changes and maintain their role (centrality
values) in the network could be because the proteins in the neighborhood had changed
too. Due to the changes in the neighboring proteins, this made possible to keep the same
structure of the neighbourhood for the orthologs.
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• The dismissed data in this chapter because of the integration problem could be an im-
portant factor in the results obtained. As we can see in Figure 4.30 (in the case of worm
and fly) there is a big amount of data that are dismissed because we do not have the
specific names to identify the proteins from different sources. Improving the amount of
data could improve the results obtained with respect to the correlation between centrality
measures and percentage similarity or dN/dS ratio.

BLASTp
(BRH:worm-fly
and fly-worm)

Synonym
fly

Centralities
fly

Synonym
worm

Centralities
worm

3,611

7,568

4,316

20,333
26,798

Figure 4.30: Data integration problem.

• There is still missing information in these networks. There are proteins and interactions
that have not been studied yet. This could affect the centrality measures obtained.

• The dN/dS ratio values obtained for worm-fly are very low. These lower values will
need a further evaluation, mainly because the model that we are using for the calcula-
tions underestimate ds and overestimate dn values. So, it is used a maximum-likelihood
method to reduce the over or under estimating of substitution rates. We propose to do
a simple dN/dS ratio so we compare both results and see what is producing these low
dN/dS ratio values.
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Chapter 5

Improving feature selection to predict
protein-protein interactions

Protein–protein Interactions (PPIs) are known for their important role in diverse biological
processes. Characterizing the partners of PPIs is crucial to understand the functional role
of individual proteins and the organization of entire biological processes. One of the issues
to understand and classify PPIs is to characterize their interfaces (interaction zone, defined
in the previous section 2.1) in order to discriminate between types of interactions. For this
research we are working with one type of interaction classification defined by Nooren and
Thornton [88]. This classification sorts interactions by the duration time of the interaction, in
this case transient and permanent interactions (these terms will be explained in detail in the
next sections).

The stability of PPIs depends on many features. One of the features is the energetic fea-
tures of interacting surfaces. This chapter explores the interaction zone between pairs of pro-
teins in order to identify features that can differentiate between types of interactions. In this
research we will focus only on energetic features related to the interaction zone. This zone
is located where the interaction occurs between the two proteins (see section 2.1.2 for the
definition). In the following sections we assume that the interacting proteins form a protein
complex.

We identify energetic features that discriminate protein complexes in two classes: transient
and permanent. Focusing only on the interaction zone. The classification is made using ener-
getic features from the three-dimensional structure of the complex using the FastContact [19]
application. To obtain the energetic features of an interaction we use an application named
FastContact [19]. The set of protein complexes used for this research were obtained from
Mintseris’ study [84]. The energetic features for this study were extracted from this set.

We argue in this chapter that the number of energetic features and their contribution to
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the interactions can be a key factor to predict between transient and permanent interactions.
Moreover, the number of energetic features used can be adjusted according to the size of the
complex. This is because not all the proteins and interaction zones studied have the same size.
We evaluate different Machine Learning classifiers to predict these interactions, using a set
of 298 complexes obtained from other study [84], in terms of their known three-dimensional
structure.

5.1 Literature review

Protein-protein interactions (PPIs) are involved in multiple cellular processes such as the reg-
ulation of gene expression, and different processes where the oligomerization is a requirement
in order to function. These interactions can be attractive or repulsive, which may result in the
formation of intermolecular clusters or aggregates. PPIs depend on the protein surfaces and
on the environmental conditions, such as, temperature and pH [2].

Over the past years, there have been studies and research on the functions and interactions
of proteins. In these studies the methods (characteristics, geometry, probability) and technolo-
gies (computational, biological) used have changed [56,104]. Although there is no established
method that allows to know in one procedure a protein in whole and allow the management of
protein-protein interactions in a real environment (in vivo) [2].

The methods currently used are artificial and are identified as: in silico work performed
on computer (via computer simulation) and in vitro technique to develop in a test tube, or
controlled environment outside a living organism [2]. For those reasons, efforts are being
made to understand the responsible factors for interactions between proteins at the atomic
level (in detail) primarily responsible for these interactions [52, 56, 104, 113].

Efforts have been directed to characterize the geometry (shape) [62], and the physico-
chemical properties (energy of interaction interface) [20], and the preference of residues to
appear on the surface [39], the role of hydrogen bonds, saline bridges and hydrophobic inter-
actions [122]. Others include the loss of surface accessible to the solvent [108] as a result of
the interaction and the analysis of the conservation of residues on the interaction surface [75].

The most studied feature is the amino acids composition of protein-protein interfaces (in-
teraction zone). A comprehensive study was conducted by Ofran et al. [90], who introduced a
theory-based analysis method to study six types of interfaces (functional). There are two types
of internal interactions (intra and inter-domains) and four types of external interactions (homo
and hertero obligomers; and homo and hetero complexes). Intra-domain are the interactions
between residues in the same domain in the same structural domain in the case of inter-domain
is in different structural domains in the same chain. Homo complexes and homo obligomers
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are interactions between residues on two different chains that have identical sequence, the
difference is that the first are transient and the second are permanent. Hetero complexes and
hetero obligomers are interactions between two non-identical chains, complexes are from two
different proteins and obligomers are from the same protein respectively. The study [90] con-
cluded that the amino acid composition of these surfaces are different, as there is only 1.5%
of similarity between the internal and external surfaces, and 0.2% similarity between hetero
surfaces belonging to homo complexes.

Nooren and Thornton [88], performed a classification of different types of interactions,
proposing the followings interactions:

• Homo and hetero oligomeric complexes. These two groups are differentiated based on
their composition. Homo-oligomers are when the interactions occurs between identical
chains; and the complexes are hetero-oligomer when the interactions occurs between
non-identical chains.

• Obligate and non-obligate complexes. These two groups are discriminated based on
their affinity. Obligate interactions are when the components can not exist independently
(unstable on their own in vivo); and non-obligate interactions are when the components
of the interaction can exist independently (interact alone or paired).

• Transient and permanent complexes. These two groups are differentiated based on the
lifetime (or stability) of the complex. Transient interactions associate and dissociate
temporarily in-vivo (short-term interaction and subject to major mutations) – less sta-
ble. Therefore, they have a temporary nature; and permanent interactions are usually
more stable and irreversible (longer duration) [40]. The transient are more difficult to
discriminate and understand, due to their short life [55].

Permanent interactions (lasting over time) are composed of multiple subunits (identical or
different), and usually more stable because there are not many changes in this conformation.
Also, transient interactions (temporary) can produce strong and weak links, but of very short
period of time, which makes their analysis difficult [55, 88]. Therefore, the proteins involved
in the interaction undergo changes that are difficult to reproduce in order to be studied [55,88,
107]. The stability of the interactions depends on the energetic features of protein surfaces,
which can change under different environmental and physiological conditions.

Qi et al. [99], conducted research on protein-protein interactions to determine the accu-
racy of predictions of interactions using six methods of classification: Random Forest (RF),
RF-based k-Nearest-Neighbor, Naive Bayes, decision trees, logistic regression, and Support
Vector Machine. These six classifiers were used with different features and then the results
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of the performances were compared. Finding these features may have different significance
depending on the type of prediction. In this case, the classifier Random Forest was shown to
be the most robust and favourable for the three above-mentioned tasks among the six methods
for predicting protein-protein interactions.

The classification of a new element using Random Forest is performed by each tree (each
tree performs its own classification) on the forest. Then, the forest classification based on the
most lending made by subtrees. Random Forest classify a new object analysis it for subjected
to analysis by each of the trees in the forest. Each tree provides a classification for the new
object. Next, the forest chooses the classification based on majority vote. Random Forest can
combine different types of data, do not assume characteristics in the data, and it can manage
very well the noise and the missing values.

The protein-protein interaction interface has been widely studied to predict protein inter-
action sites. Nevertheless, a success rate of 70% correct prediction has been independently
achieved by several different groups [15,27,87,129]. A success rate of 77.78% correct predic-
tion has been achieved by Maleki et al. [78–80] with SVM when using desolvation energies of
atom type features (one type of energy). Gutiérrez et al. [42] achieved 81% using the forward
selection strategy and the Chernoff distance to measure the class separability (ranking of the
features), without discriminating by type of energy (all the energies provided by the interaction
were used). Also, the best accuracy was obtained using the Loog-Duin Linear method [73].

Several studies point out that to find the characteristics that determine the best way inter-
action, it is necessary to evaluate the physico-chemical criteria present in most proteins [6].
This means that we must study the characteristics involved in the interaction and in the rest of
the protein.

5.2 Method and data

In this section we present our developed methodology. To select the relevant features and their
validation we devised a three-phase method, which is depicted in Figure 5.1. The three phases
correspond to data retrieval and formatting, followed by the selection of characteristics, and
the evaluation of the selected characteristics. Each of these phases are composed of different
steps that will be described in the next subsections.
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Figure 5.1: Phases for the selection of energetic features and validation of efficiency in the
classification.

5.2.1 Data Retrieval and Formatting

5.2.1.1 Complex Database Retrieval

To begin identifying the relevant features and subsequent classification, we created a combined
database of the information provided by the work of Mintseris and Weng (list of complexes)
[85] and the Protein Data Bank [13] (Figure 5.2).
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Figure 5.2: Data Retrieval and Formatting Phase.

Complexes

Mintseris and Weng studied the surface of PPIs complexes using 326 complexes. They manu-
ally (laboratory work) separated the 326 complexes in 211 transient and 115 permanent com-
plexes [84]. The transient and permanent classification of interactions used in Mintseris’ work
was defined by Nooren and Thornton [88] on complex interaction of known three dimensional
structure.

The list of complexes classified in transient and permanent interactions by [84] are pairs
of proteins. This means every complex has two interacting proteins. Figure 5.3 has three
different representations of a complex [13]. Figure 5.3a shows the chains and proteins (in
different colors) in the complex; and Figure 5.3b shows the surface of the complex, the colors
indicate where the proteins are.

(a) Complex chains (b) Surface

Figure 5.3: Complex 1spp.

When proteins participate in a complex, one is called ligand and the other one receptor.
These names are assigned solely to differentiate the proteins from each other. Figure 5.4 has
a representation of a complex and its proteins.
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Ligand Receptor Complex

Figure 5.4: Complex, ligand and receptor.

The complexes from Mintseris work [84] are from different species. This means, every
complex (or pair of proteins) was classified independently from each other.

An interaction has its own characteristics or features and these depend on: the individual
features of each protein and the features of the chains participating directly in the interaction
(details in section 2.1). Proteins have more than one chain, but for this research we focus only
on those chains that participate actively in the interaction. The names of the chains involved
in the interaction were given by [84] in the complexes list. These chains are used to evaluate
the interaction of the complex. Figure 5.5 shows an example of chains in complex 1spp [13].
The chains are in different scale of colors.

Figure 5.5: Complex chains. Chain are visualized in different colors.

As was mentioned above, to obtain the features it is necessary to know the three–dimensional
structure of all proteins participating in a complex.

Three–dimensional structures

The structural information of these complexes is stored in the repository of three-dimensional
structural data of large biological molecules named Protein Data Bank (PDB) [13].

All the proteins in PDB were determined experimentally in a laboratory using different
experiment methods, such as, ray crystallography (x-RAY) or NMR spectroscopy. These
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proteins are contribution from biologist and biochemists from around the world. Currently the
repository has around 96,322 proteins structures [14].

Every molecule or protein submitted to the repository require a specific format, defined
in [118]. Some of the information required are related to identification, authorship, sequences,
atoms and coordinates (see Figure 5.6). The Cartesian coordinates information are the position
(x,y,z) of each atom in the protein which forms the atomic structure of a protein (see Figure
5.6b).

(a) Initial description.

(b) Atoms section.

Figure 5.6: Protein data bank format.
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The list of complexes consists of the name of the complex and the two chains that partic-
ipate directly in the interaction. The name of the complex is in a format used by PDB. The
chains – representing one from each protein – named chain 1 and chain 2. For example the
complex 1EY X A : B is representing to R-phycoerythrin from Gracilaria chilensis [23]. Where
chain A from protein one (ligand) interact with chain B from protein two (receptor).

We retrieve structural information for every complex in our list from PDB. For the prepa-
ration of the data, every complex was checked manually to eliminate duplications of residues;
we then separated the proteins in two different files (following the requirements for the next
step).

The result of this step is a complex database with consolidated data from [85] and [13].
The next step consisted of calculating the energetic features per complex.

5.2.1.2 Energetic Features per Complex Calculation

FastContact, Estimation of Contact and Binding Free Energies

The extraction of the energetic properties of the surface and interface of the interaction zone
was performed using FastContact [19], a PPI analysis program. FastContact is a free energy
scoring function and estimated the interaction between two proteins [19]. This program was
chosen because it produces data such as the contribution of amino acids to the electrostatic
energies, desolvation energies and free energies in complexes.

The electrostatic energy (Eelec). The electrostatic energies are associated1 with the particu-
lar configuration of a set of point charges in a defined system. It is the force with which
the positive and negative charges attract. Electrostatic energies of the same sign (for
example two positive) are repulsive while between opposite sign (one positive and one
negative) are attractive.

Desolvation energy (Gdes). Desolvation energy are the amount of energy needed to move the
water molecules interacting with the protein or what is the same, the force with which
the protein retains water molecules.

Binding free energy (Gbind). Free energy is the internal energy of a system minus the amount
of energy that cannot be used to perform work. When a protein interacts with another:
there is a balance between the complex and the dissociated state and the complex. The
difference in binding free energy is the energy required to dissociate the complex. If the
complex formation is favored then the ∆Gdes is negative; If dissociation of the complex

1Rupture of a molecule into simpler molecules or atoms.
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is favored ∆Gdes is positive. Ie., is the amount of energy required to dissociate the
complex.

Estimation of the binding free energy, electrostatics energies, and residue contact free
energies shows the active parts of the protein in the interaction [19].

The interaction between two protein is estimated as

∆Gbind = ∆Eelec +∆Gdes,

where ∆Eelec is the total electrostatic energy [95]. ∆Gdes is the total desolvation en-
ergy. And last, ∆Gdes is calculated by an empirical contact potential of the form ∆Gdes =

g(r)∑∑ ei j, where ei j denotes the atomic contact potential between atom i of the receptor and
j of the ligand. g(r) is a smooth function varying between two limits defined by [19]

Set of features

For each complex, FastContact provides five different types of energies distributed in proteins,
complex and interaction. Table 5.1 shows the summary of the energies availables. Also, we
have the type of values in the column Values. The E-value is the energy, the R value is the
residue and AA value is the amino acid where the energy is coming from. Column Values used

indicates that we use only the numeric values for our research.
Figure 5.7 shows where the energies from Table 5.1 are located.

Type of contribution Values Values used

(1) Residues contributing to the binding free energy E, R, AA E, R

(2) Ligand residues contributing to the desolvation free energy E, R, AA E, R

(3) Ligand residues contributing to the electrostatics energy E, R, AA E, R

(4) Receptor residues contributing to the desolvation free energy E, R, AA E, R

(5) Receptor residues contributing to the electrostatics energy E, R, AA E, R

(6) Receptor–ligand residue electrostatic contacts E, R, AA, R, AA E, R, R

(7) Receptor–ligand residue free energy contacts E, R, AA, R, AA E, R, R

Table 5.1: Types and contributions calculated by FastContact for each complex. Energy (E)
and Residue (R).



102

Ligand Receptor

Receptor-Ligand

Complex

Figure 5.7: Location of the energies for the complex, ligand, receptor, and ligand-receptor.

The FastContact output data is shown in Figure 5.8. Every column represents one of the
seven energies presented in Table 5.1. From columns 1 to 5 are two values (R, AA) associated
with each energy (E) and in columns 6 and 7 are four values associated with each energy (see
table Table 5.1 rows 6 and 7, values=R, AA, R, AA). The last two columns have more values
because the energies are generated by the interaction of the ligand and receptor. So, the first
(R, AA) represents to ligand values and the second (R, AA) represents to receptor values for
the energy E.

FastContact provides the top 20 positive and top 20 negative residues contributing to the
different energies. Figure 5.9 shows a visual example of the different residues associated to an
amino acid in a protein (1spp). The data obtained need to be organized to create the data sets
to do the tests.

Figure 5.9: 1spp complex. The residues and amino acid are labeled in the chains.

There are two values that were not mentioned, desolvation free energy and electrostatic
(4r) energy. Both explained in the FasContact section. This values are obtained from the
complex, no from individual parts. Table 5.2 shows an example of the energies obtained from
this two values.
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Desolvation Free Energy: 1.31434864
Electrostatic (4r) Energy: -53.0412104

Table 5.2: Position, name and energy of the complex.

As was mentioned above each energy has associated one residue and one amino acid,
in the case of the contact energies it has associated two residues and two amino acids. An
energy may or may not contribute to a protein-protein interaction. The energy value can be
negative, zero or positive. When the energy value is negative, the residue of the amino acid
contributes to the interaction (attraction between two proteins). The more negative the value,
the higher the contribution. When the energy value is zero, the amino acid does not produce
either attraction or repulsion between two proteins. And when the energy value is positive, the
amino acid contributes less to the interaction (repulsion between two proteins)

Complex (1)
Energy (2)
Energy (3)
Energy (4)
Residue (5)
aa (6)
Energy (7)
Residue (8)
aa (9)
...

...
Energy (638)
Residue (639)
aa (640)
Residue (641)
aa (642)

(a) Organization of
values for one com-
plex (X)

Complex feature 1 feature 2 · · · feature 642

(b) Vector (X t )

Table 5.3: Representation of the features to be used: (a) vector X and (b) Vector transposed
X t .

The data obtained from this application served to create a database of energetic features,
which was cleaned to work with the most relevant data. The data is represented with a vector
of static dimension. X is a vector with n number of variables required, X = [x1,x2, ...,xn]

t

Where t is the transposed of X . Each component of the vector represents one feature, this
means, a characteristic that it is expected to be significant for the classification (see Table 5.3
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for representation of the data). x1,x2, ...,xn are the features (i = 1,2, ...,n) and C the set of
classes used (c1,c2, ...,cn).

These specific features describe a specific complex. In this case we know the classes so
this feature can be added to the vector of each complex. The final data set is represented with a
matrix of m complex (rows) and n features (columns) and the additional columns for the class.
As an example, if we take the output from Figure 5.8, all these data would be in one row of
the matrix. The final matrix is represented in Equation (5.1):

M =


c1 x1,1 x1,2 ... x1,n

c2 x2,1 x2,2 ... x2,n

... ... ... ... ...

cc xm,1 xm,2 ... xm,n

 (5.1)

Using this matrix as a references and the most relevant data, two matrices were created
containing the necessary features for their selection. From the two matrices, we obtained 4
different data sets to evaluate.

Matrix 1

The values for Matrix 1 were obtained from the output of the standard version of FastContact
making a total of 642 features, plus the class of the interaction —permanent or transient for
each of the 296 complexes. The matrix has dimensions 296×642 in Equation (5.2).

M1 =


c1 x1,1 x1,2 ... x1,642

c2 x2,1 x2,2 ... x2,642

... ... ... ... ...

cc x296,1 x296,2 ... x296,642

 (5.2)

The details are shown in Table 5.1. Every type of energies has the 20 Max and 20 Min, so
in total we have 40 energies by each type (column "20+,20− Features: Matrix 1"). And, if
we add the two values (E,R) for each energy, we have a total of 80 features by type (column
"20+,20− Features: Total").
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Chain Type of energy Energies, residues
(20+,20−) Features

Matrix 1 Total

Complex Desolvation free energy 1

Electrostatic energy 1

Free energy union 2 (E & R) 40 (20+,20−) 80

Ligand Desolvation free energy 2 (E & R) 40 (20+,20−) 80

Electrostatics energy 2 (E & R) 40 (20+,20−) 80

Receptor Desolvation free energy 2 (E & R) 40 (20+,20−) 80

Electrostatics energy 2 (E & R) 40 (20+,20−) 80

Receptor—Ligand Electrostatic energy contacts 3 (E & R & R) 40 (20+,20−) 120

Free energy contacts 3 (E & R & R) 40 (20+,20−) 120

Class 1

Grand total of features calculated 643

Table 5.4: Matrix 1, types of energies and features calculated by FastContact per each com-
plex.

5.2.1.3 Limits and features formatting

During the creation of Matrix 2, we determined that a complex can have less than 40 energetic
values, and the standard version of FastContact provides the top 20 positive and negative
values (see Figure 5.10a). As it is shown in Table 5.5, there is at least one complex with 21
energetic values; that is, there would be an overlap of 19 features for that complex (see Figure
5.10b). Instead of using 40 energetic values, it should be used either 21 or add missing values,
otherwise, there would be 19 features being double counted (see Figure 5.10c).

The previous example helps to highlight the relevance of our contribution: by having the
whole population of features, it is possible to expose the overlap of energetic values. There-
fore, one contribution of this work is based on the number of features studied. Additionally,
it was also possible to consider the differences between negative, zero and positive energies;
and a bigger number of energetic features in every complex to determine their contribution in
the protein–protein interaction (see Figures 5.10d and 5.10e). With this information, we were
able to compare the results of different data sets, having confidence that there was no overlap
in the data (see Matrix 2 box in Figure 5.2).

There are big complexes in the list, so the number of features is higher than the average,
as we can see in Table 5.5 row Receptor–Ligand. For this reason, we evaluated the sizes of
the complex and we left out a set of 28 complex from the set of complex to avoid noise in our
data.
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Figure 5.10: Cases.

Chain Type of energy Min Max Used

Complex Free energy union 29 1,520 29

Ligand Desolvation free energy 29 1,520 21
Electrostatics energy 29 1,520 21

Receptor Desolvation free energy 21 1,479 21
Electrostatics energy 21 1,479 21

Receptor—Ligand Electrostatic energy contacts 2,064 129,999 268
Free energy contacts 2,064 129,999 268

Table 5.5: Minimum and maximum numbers of energetic and residues values obtained among
298 complexes.

Matrix 2

From this group of 326 complexes, we conducted our study in a sample of 298 complexes,
94 complexes representing permanent protein-protein interactions, and 204 complexes repre-
senting the transient protein-protein interactions. As we explain above we left 28 complexes
outside the sets becasue are too big to be compare with the rest of the complex.

The second matrix (Column Matrix 2 in Table 5.1) has dimensions 298×1836, yielding a
total of 1836 features for each of the 298 complexes –Equation (5.3).
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M2 =


c1 y1,1 y1,2 ... y1,1,836

c2 y2,1 y2,2 ... y2,1,836

... ... ... ... ...

cc y298,1 y298,2 ... y298,1,836

 (5.3)

The values for Matrix 2 were obtained from a custom version of FastContact. Instead
of the top 20 positive and negative energetic values, FastContact was customized to provide
an arbitrary number of such energies. We were motivated to explore the number of features
that FastContact could determine per complex, and to utilize such information to obtain better
results. As a preliminary result, we obtained an overview of the range of energetic features
available, which is summarized in Table 5.6. The criteria of features selection in this study
relies on the minimum number energetic values available. We chose the minimum number in
order to have the same number of features —of a same type— per complex.

Table 5.6 provides a reference for the types of energy and the features available for Matrix
2. In the case of Complex (column Chain), we chose to study the top 29 features (column
Used), which corresponds to the minimum number of features of free energy union available in
every complex. Next, both ligand and receptor (column Chain) should be equally represented
as these are the proteins interacting with each other. To maintain an even number of features
in both ligand and receptor, we chose the minimum value available among all of them, in this
case the minimum is between 21 and 29.
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Chain Type of energy Features
n Features

Matrix 2 Total

Complex Desolvation free energy 1

Electrostatic energy 1

Free energy union 2 (E & R) 29 (14+,15−) 58

Ligand Desolvation free energy 2 (E & R) 21 (10+,11−) 42

Electrostatics energy 2 (E & R) 21 (10+,11−) 42

Receptor Desolvation free energy 2 (E & R) 21 (10+,11−) 42

Electrostatics energy 2 (E & R) 21 (10+,11−) 42

Receptor—Ligand Electrostatic energy contacts 3 (E & R & R) 268 (134+,134−) 804

Free energy contacts 3 (E & R & R) 268 (134+,134−) 804

Class 1

Grand total of features calculated 1837

Table 5.6: Matrix 2, types of energies and features calculated by FastContact per each com-
plex.

In all these cases, there are zero–values in those complexes with small number of non-zero
values. From our point of view, an attribute with zero values is better than a missing value
and there is no overlap because we have already considered different data sets for positive and
negative values.

However, when the number of features available was high (as in the case of Receptor–
Ligand), we considered the minimum number of non–zero values available that were either
positive or negative. In this case, to keep a balance between positive and negative energetic
values, we also considered the minimum common number of features available. For example,
a complex with 268 negative energy values, 687 positive values and the remaining zeroes, we
chose 268 because this would enable us to work with a data set of only negatives values. We
applied these set of criteria to extract the data sets explained below.

From Matrix 2, as explained above, we extracted 3 data sets:

1. A list with only negatives energies. Only the energies that contribute (separately) the
most to the interaction with a total of 1837 features including the feature class (see in
Table 5.6 row Class). This mean, .

2. A list with only positive energies. Only the energies that contribute (separately) the least
to the interaction with a total of 1837 features including the class.

3. A list with both top negative and positive energies. The number of energies proportional
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to the size of the complex, considering the energies contribute (separately) the most and
the least to the interactions, with a total of 1837 features including the class. For data set
3, we split the number of energetic values by half; that is, if the limit were 29 energetic
values, then we would select the top 15 of negative values and the top 14 of positive
values (with a reduced number of energetic values available, we granted a preference to
negative values because they contribute more to an interaction).

5.2.2 Selection

The data sets obtained in the previous step are unranked (not sorted by any type of relevance)
(Figure 5.11). Thus, the top energy values —either positive or negative— of every selected
feature provides the same predictor value. We are not excluding any feature, except for the
amino acids because are text variables and not numbers. It might be possible to rank the
features in a data set, however, this study is focused on unranked data as a first step towards a
major goal.

An unranked data set enables to identify the best classification method to the data provided
by FastContact, only considering the negative, positive or both type of values. In a future work,
we plan to explore ranking the features used in this research, and determine which might be the
most relevant to discriminate between transient and permanent protein-protein interactions.

Selection

Dataset 0
(20+, 20{)

643 features

Data Set 3
(+, {)

1837 features

Data Set 2
(+)

1837 features

Data Set 1
({)

1837 features

Limits &
Features
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No
Ranking

2
(+)

1
({)

0
(20+, 20{)

3
(+,{)

Python

Figure 5.11: Selection Phase.

5.2.3 Evaluation

In this step we applied two classifiers to each of the four data sets: Support Vector Machine
(SVM) and Random Forest (Figure 5.12).
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Figure 5.12: Evaluation Phase.

Support Vector Machine is a system to train linear learning machines efficiently for classi-
fication. The nonlinear SVM learning is obtained by using the so-called kernel-based functions
for transforming the input attribute space in a working space of much higher dimensionality
(thereby increasing the computational capacity of the linear learning machines). A hyperplane
is needed to separate the two classes, so that the distance between the optimal hyperplane and
nearest training pattern is maximum. Thus, we obtained six result outputs per each data set.
These classifiers were performed using software Weka [45].

Random Forest is a learning method for classification that works by creating a multitude of
decision trees at training time and giving the class by individual trees. For this case the training
data is no random divided by us, instead the algorithm for the classification does the division
using a random algorithm. In the algorithm it is possible to define different parameters, such
as, maximum depth of the trees produced, selection from top p features, and number of trees
as output. The Random Forest error rate depends on the correlation between any two trees
in the forest. The higher the correlation the higher the Random Forest error rate, this means
for all is a weak classifier. A way to reduce the error rate is to increase the strength of the
individual trees. In Random Forest, the test options cross-validation or percentage split are
estimated internally, during the run.

To obtain the best accuracy, we explored two test options to train and test each data set
and to evaluate the classifiers: q-Folds Cross Validation and Percentage Split. q-Folds Cross
validation divides the data set in q disjoint groups of equal size. It starts with the first iteration,
where the first group q1 is used for test and the remaining q2, ...qn for training. The second
iteration for test group q2 two and the remaining q1, ...,qn for training is taken, and so on, until



112

each group has been used as a test set (see Figure 5.13). After the q iterations an average is
calculated with the q accuracy results. The classifier is trained q times (ni

q , if ni ≥ q). In the
case of our research the q was changed according to the classifier and kernel used.

Data
set

Training set

Test set

q=5

5-Fold

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Validation accuracy:

Final accuracy:

  80%        85%         81%          82%        86%
Average (iteration 1, iteration 2, …, iteration 5)
= 82.8%

Size test set 
  = size data set
             q

Figure 5.13: Cross validation.

A split percentage denotes the total percentage (100%) divided into two percentages to
select the size of the data set that will be used as a training and test set. For example, we have
a set of 20 objects divided in two classes (c1 and c2). Next, we select a percentage split of 80%
for training and 20% for testing (see Figure 5.14). The 4 objects in the test set are predicted
individually obtaining a probability distribution for each instance. Later, those instances with
high probability are selected as correctly classified. In the case of the example, we have 3
objects correctly classified over 4 object with a 75% of precision. In addition, we applied
multiple folds and percentage split sizes.

80%

20%

Training set 

Test set

Size test set = 4

Size training set = 16

Instances #: 

Actual class:

Predicted:

Error:

Probability
distribution:

   1        2         3        4  
  
   c1      c1       c2      c2

   c2      c1       c2      c2

  0.7     0.2      0.1     0.3

   0.3     0.8      0.9     0.7

Correctly classified instances: 75%

Data set size=20

Figure 5.14: Percentage split.

Finally we selected those that provided higher accuracy, which are presented in section
5.3. The purpose is to compare the data set 0 (20+,20−) (with 643 features) against the other
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three data sets (with 1,837 features each). That is, if the use of a larger number of features
could improve the prediction between transient and permanent interactions.

5.3 Findings and discussion

In this section we present the results obtained from the application of two classifiers SVM and
Random Forest and the methods used to split the data for training and testing data sets. The
accuracies obtained from all the classifications are from the test data sets.

As stated in section 5.2.3, we applied multiple sizes of training and test sizes to train and
test the data, selecting the ones that provided higher accuracy. These results are summarized
in Tables 5.8 and 5.9, which show the maximum accuracies obtained for each data set and
each classifier, respectively. Both tables are explained in detail later in this section.

Table 5.7 presents the highest accuracies obtained for each classifier, distributed across
the four data sets described in section 5.2.1. The highest values in each row and columns are
presented in bold.

Datasets
Support Vector Machine (SVM) Random

Linear Polyn 2 Polym 3 Radial Sigmoid Forest

1 (−) 77.52% 86.67% 81.62% 83.33% 71.91% 83.33%
2 (+) 86.67% 80.00% 80.00% 80.00% 74.03% 77.52%
3 (+,−) 86.67% 77.92% 81.82% 83.33% 80.00% 80.53%
0 (20+,20−) 72.97% 67.79% 69.49% 77.52% 74.15% 83.33%

Table 5.7: Maximum accuracies of the data sets (including old list/Data set 0(20+,20−)),
according to classifiers.

From the point of view of classifiers,

• the data sets 1(−) to 3(+,−) present the best accuracy when using SVM;

• the data set 1(−) when used with kernel Polynomial 2, and

• the data sets 2(+) and 3(+,−) when using kernel Linear.

We can conclude that to classify complexes whose only energetic values available are neg-
atives, then it is recommended to perform SVM Polynomial 2. Similarly, to classify complexes
with only positive values (2(+)), or both negative and positive combined (3(+,−)), then it is
recommended to perform SVM Linear.
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From the point of view of data sets, Table 5.7 shows that data set 3(+,−) presents the
best accuracies with respect to other data sets. All of them were obtained using the SVM
classifier with different kernels: Linear, Polynomial 3, Radial, and Sigmoid (86.60%, 81.80%,
83.30%, and 80.00% respectively). We can conclude that having both positive and negative
energetic values in the same data set might lead to better classification; that is, better than
classifying them separately. Besides, the data sets with more features (1,837 in 1(−), 2(+),
and 3(+,−)) perform better than the data set with less features (643 in 0(20+,20−)). The
later only performs well with Random Forest classifier.

Table 5.8 presents the maximum accuracies of the classifiers, according to different sizes
of training and testing data set. At the top, a list of multiple sizes used in to split the data
into training and testing data sets. This part is subdivided in two: cross validation foldings
(the numbers ended on F–Fold, e.g. 10–Fold) and percentage splits (the remaining ones, e.g.
80–20). At the bottom —last two rows— is the summary of the highest values found in the
top part, separated by each split method.

In Table 5.8, Percentage Split presents better accuracy than Cross Validation for every
classifier. The best ones with splits 80–20 (83.30% performing Random Forest) and 90–10
(86.6% performing SVM with kernels Linear and Polynomial 2). We can conclude that the
training set using Percentage Split provides better results than Cross Validation for the data
sets studied.

Table 5.9 contains the maximum accuracies obtained for the data sets 1(−), 2(+), and
3(+,−); according to different sizes of training and testing data. As in Table 5.8, the table is
split in two. At the top, a list of multiple sizes used to split the data into training and testing
data sets, and at the bottom, a summary of the highest values of each data set. The purpose
of this table is to compare the three data sets of the same size and different types of energetic
values, therefore, the data set 0(20+,20−) does not fit in this analysis.
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Training Support Vector Machine (SVM) Random

Test Linear Polyn 2 Polyn 3 Radial Sigmoid Forest

02–Fold 69.46%

05–Fold 74.83%

08–Fold 77.85% 79.87%

10–Fold 75.83% 75.16% 68.45% 71.48% 68.46% 80.53%

12–Fold 77.47% 74.83%

14–Fold 79.87%

15–Fold 70.47%

20–80 69.75%

38–62 80.54%

50–50 80.53%

66–34 72.28%

70–30 77.52% 71.91% 71.91% 77.52%

74–26 77.92% 74.03%

78–22 81.82% 75.76%

80–20 80.00% 81.67% 83.33%

81–19 77.19%

90–10 86.67% 86.67% 80.00% 83.33% 80.00%

Cross-validation 75.83% 77.47% 77.85% 71.48% 68.46% 80.53%

Split 86.67% 86.67% 81.82% 83.33% 80.00% 83.33%

Table 5.8: Maximum accuracies of the classifiers, according to different sizes of training and
testing data sets

Overall, sets 1(−) and 3(+,−) have better results than set 2(+). Both of them present
accuracy equal or higher than 80% in four splits, whereas 2(+) only in one. As in Table
5.8, Percentage Split presents better accuracy than Cross Validation for every data set. We
can conclude that regardless of the data sets used, the best choice to split the data studied is
Percentage Split.

Figure 5.15 presents a different representation of the results obtained in the classifications.
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Training Datasets

Test 1 (−) 2 (+) 3 (+,−)

02–Fold 69.46%

05–Fold 73.49% 74.83%

08–Fold 79.87% 76.51%

10–Fold 80.54% 76.51% 80.54%

12–Fold 77.18% 68.45%

14–Fold 79.86%

15–Fold 70.47%

20–80 69.75%

38–62 80.54%

50-50 80.53

63-34 72.28

70–30 77.53% 77.52% 77.53%

74–26 74.03% 77.92%

78–22 75.76% 81.82%

80–20 83.33%

81–19 77.19%

90–10 86.67% 86.67% 86.67%

Cross Validation 80.55% 76.50% 80.5%

Split 86.67% 86.67% 86.67%

Table 5.9: Maximum accuracies of data sets, according to different sizes of training and testing
data sets

Each chart corresponds to the performance of each classifier: SVM Linear, SVM Polyno-
mial 2, SVM Polynomial 3, SVM Radial, SVM Sigmoid, and Random Forest. We observe
that data set 2(+) is a good data set when is used with SVM linear kernel (Figure 5.15a),
providing an accuracy of 86.6%. The data set 1(−) is a good data set when is used with SVM
polynomial 2 kernel, SVM Radial, and Random forest obtaining the highest accuracy (Figure
5.15b, 5.15d, and 5.15f, respectively) . Finally, data set 3(+,−) is a good data set when is
used with SVM Polynomial 3 kernel, SVM Radial, and SVM Sigmoid (Figure 5.15c, 5.15d,
and 5.15e, respectively). We can conclude that knowing the composition of a data set it is
possible to recommend a classifier that delivers a better classification.
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5.4 Conclusions and future work

We have proposed an approach to improve the prediction of the protein-protein interaction
type, transient or permanent. We have investigated three additional criteria to define a data
set, based on a proportional selection of energies according to the total of features delivered
by FastContact for each complex. We considered data sets of positive energies, negatives
energies, and both altogether. For each data set, we performed Random Forest and SVM
with linear, polynomial, radial, and sigmoid kernels. The traditional data sets found in the
literature consist of a fixed number of features. In complexes with a small area of interaction,
there might be overlap of results if they are not considered carefully. Our approach can help
to prevent such situation reducing the minimum number of features for each complex.

Energetic features of protein complex interfaces are able to discriminate between transient
and permanent classes of interaction. The use of more features to classify these complexes
permits to improve in 5.6% the accuracy of the classification. We obtained a 86.6% of accuracy
performing SVM with Linear kernel. This result was obtained using percentage split, 90% of
the data set for training (268 complexes) and 10% of the data set for testing (30 complexes).
In this case, 86.67% of the 30 complexes were classified correctly. The use of multiple data
sets 1(−), 2(+) and 3(+,−) makes possible to identify the energy values that are useful to
classify complexes. Not only to determine the type of interaction, but also to identify which
type of energy value (positive or negative) contributes better to describe the protein-protein
interaction.

The accuracy obtained in this analysis reinforce the idea that energetic features in the
interface helps to discriminate interactions between transient and permanent. Although, more
work is needed in order to calculate error rates and perform more validations. Nevertheless,
the current results, of a work in progress, are encouraging.

From here, we can now further combine algorithms to rank features according to their
relevance, such as the forward search proposed in [42] but in this case with more features.
This might enable better classification with smaller data sets.

It might be possible to rank the features in a data set. As a future work, we plan to explore
ranking the features (see Figure 5.16 in a continuous blue line – Selection step) and evaluate
the most relevant features to discriminate between transient and permanent protein-protein
interactions.
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Chapter 6

Conclusions and future work

6.1 Contributions

Our main goal of this thesis was to improve the understanding of protein-protein interaction
networks. For this, we proposed three approaches:

The first approach focused on an empirical study on the fine-grained structural differ-
ences between protein protein interaction networks and social and complex networks. When
identifying best community sizes in social and complex networks, a successful approach is
to combine methods finding the conductance with spectral algorithms. We found that these
methods work well for PPINS. We identified the best sizes for a group of related proteins for
performing their function. We determine that the best community size in terms of community
conductance is around size ten, and that this holds across most available protein networks of a
reasonable size. The PPINs best community size is 10 times smaller than the best community
size for social and complex networks. We these results it is possible to identify differences be-
tween these two types of networks in terms of the network community profile and correlations
of centrality measures.

The second approach focuses on the study of PPINs and their further role in evolution,
specifically the study of orthologous proteins. We are interested in the relationship of PPINs
and the evolutionary changes in different species. This will contribute to the understanding of
specific PPINs. For this we investigated whether the centrality measures would exhibit cor-
relation with evolutionary changes or conservation. We worked with unweighted networks,
which means that every connection or interaction is assumed to have the same value or rele-
vance in the network. The decision to use unweighted networks is due to the fact that there
is not enough information about the interactions for all the networks (species) that we are
using. We believe that without the use of the orthologous classification it can happen that
identified proteins that exhibit similar centralities are in fact not related in sequence and func-



121

tion. We found that the percentage of sequence similarity varies for very distant species and
similar species, in our case worm-fly and human-mouse. The centrality values of orthologous
proteins, however, are similar.

Despite conjecturing that there exists a correlation between the centrality values and per-
centage of sequence similarity and/or dN/dS ratios we could not confirm such a correlation.
A possible reason for this could be the use unweighted graphs.

The third approach focuses on addressing this problem. Is it possible to improve the se-
lection of protein characteristics to discriminate protein-protein interactions according to the
duration of the interaction? There are energetic features in the surfaces of the interacting
proteins that allow the discrimination between permanent and transient protein-protein inter-
actions. The use of more features to classify these complexes permits to improve the accuracy
of the classification by 5.6%. For each data set, we performed Random Forest and SVM with
linear, polynomial, radial, and sigmoid kernels. We obtained an accuracy of 86.6% when per-
forming SVM with linear kernel. The accuracy obtained in this analysis reinforces the idea
that energetic features in the interface help to discriminate interactions between transient and
permanent.

The good results in the last approach provide the idea of evaluating the possibility to incor-
porate the features selected in the networks used in approaches 1 and 2. We believe that our
third approach helps to improve the quality of the PPINs by adding more information or value
to the interaction of the networks. This information will help to create more reliable weighted
PPINs, highlighting the proteins and interactions that are more relevant. Having a network
with these values will improve our centrality measures used in approach 2 and also give us
more accurate results to investigate possible correlations between centrality measures and per-
centage of sequence similarity and/or dN/dS ratios. As a consequence, the results of this
improved approach would be more meaningful compared to those obtained with unweighted
networks, that is improving the quality of the outcomes of approaches one and two. Recall
that our long-term goal was to contribute to the understanding of specific functions of pro-
teins to prevent or mitigate the effect of diseases in sick organisms. Our finding, namely best
community sizes in PPINs, may contribute to improving the understanding of protein func-
tions because we have a better knowledge of the group (community) of proteins their interact
with. The ability to discriminate interactions according to their energetic features will lead to
a better understanding of the PPIs in general. This may further contribute to providing essen-
tial information of PPIs to prevent or control diseases through an improved understanding of
protein-protein interaction networks.
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6.2 Future Work

We would like to extend further our experiments associated with social networks (chapter
3). One possibility is to investigate more species than the once we already studied. Another
possibility is to investigate biological networks of other types (such as, gene regulatory or
metabolic networks), and finally examine a wider range of network measures at fine levels of
granularity.

We further suggest focusing on orthologs with only high percentage of sequence similarity
and to analyze in more detail the centrality values and the proteins that are participating in
these comparisons.

Our methodology in chapter 5 can be refined using ranked features. The ranking should
be assigned by the relevance of the feature. Also, the features selected can be subclassified for
a better classification with smaller data sets.

We already proposed the idea to create more reliable weighted PPINs using energetic fea-
tures (see Figure 6.1). We belief that our third approach (study of PPI) will improve the quality
of PPINs, as it will add more information or value to interaction in PPIs. Also, we may be
able to highlight more relevant proteins and interactions. This information could allow us to
create more reliable weighted PPINs. This means that more reliable weighted networks could
improve the quality of outcomes of chapters 3 (Community profile network and Centrality
measures) and 4 (comapring PPIN from different species),

Methods – tools
social and complex

networks

Comparing PPIN
from different

species

Classifying pairs
of PPI

Better analysis and understanding of
protein-protein interaction networks

PPIN

Figure 6.1: Future work.
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Appendix A

Limitations due to data sets available

Below are some of the inconveniences and limitations of the data available from different
sources (websites and servers).

Network size. A limitation of working with several species (biological networks) is the amount
of information available from each of them (different sizes, number of nodes and inter-
actions). For some species, it is possible to have more than one network due to the large
amount of studies on protein-protein interactions.

It is difficult to make comparisons between the networks because of the different sizes
in their data sets (proteins and interactions), for this reason we normalized the data.
The biological data (protein-protein interaction networks) used in this research is from
databases BIOGRID [13] and Ensembl [29]. We prioritize the standardization of the
data over its size. In the case of the social and complex networks used, we selected
those networks with sizes similar to the biological networks to be able to compare them.

Balance. The number of proteins is very different from the number of interactions between
species. For example in our data set, the mouse network has 24,855 proteins, but the
number of interactions is only 776. In the case of yeast, there are 6,659 proteins, the
number of interactions is 164,718, which is 24 times the number of its proteins [92].

PPINs have characteristics in common with social and complex networks, for example,
Facebook network has 4,039 nodes and 88,234 interactions, almost 22 times the number
of proteins [65].

Integration. A lack of standardized definitions among the names of genes and proteins in
different networks is an important limitation to the current research and should be given
consideration when drawing conclusions about the final findings. It is necessary to have
some variable names in common to be able to make comparisons between different
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species. As many of these data sets are non-standard and also not well documented,
integrating and sharing biological data becomes a challenge.

Data format. Most of the information that we are interested in is available in public refer-
ence databases. The inconvenience is that the data are stored in a variety of formats and
nomenclatures in a multitude of different systems. Finding and extracting the correct im-
portant data, combining data sources and coping with their distribution and differences
is a difficult task. For example, the variety of experimental studies (yield related) over
non-identical data could have inherent weaknesses that might affect the results. Exam-
ples of databases with different formats are: PROSITE [50], DIP [105], and Pfam [10].
This format problem is common, therefore attempts exist to integrate these data. An
example of this is the database InterPro [5].
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Appendix B

Example dN/dS ratio

Suppose we have the following two nucleotide sequences with their amino acid translation
(protein sequences) using the universal genetic code. We need to identify the similarities
and differences between this two homologous sequences and classify them as synonymous or
non-synonymous.

Nucleotide Sequence 1 ACT CCG TTA AGC GTA GGA CAT AGG
- - * - - - * - - - - * - - * - * - * - - * - -

Nucleotide Sequence 2 ACA CCG ATA AGG GTG GAA TAT CGG
Protein Sequence 1 T P L S V G H R

- - * * - * * -
Protein Sequence 2 T P I R V E Y R

Codon 1 2 3 4 5 6 7 8

Table B.1: Nucleotide sequences and the respectively protein sequence.

In Table B.1, we have 24 nucleotides in each sequence, three nucleotides per codon. The
asterisks in the nucleotide sequences indicate the nucleotide site where the two sequences
differ. In the case of the protein sequence, we have 8 amino acids and the asterisks indicate
that the amino acid are different.

From the protein sequences we can observe that four of the nucleotide substitutions cause
an amino acid change. There are 4 non-synonymous (NONS) substitutions and three synony-
mous (SYN) substitutions, with a total of seven nucleotide substitutions.

We need to count the number of NONS and SYN nucleotide sites. We start with the first
codon for both sequences, ACT (T–Thr) and ACA (T–Thr) respectively. Next, we consider
the first position (a NONS site) in both sequences, the first nucleotide is A. Changes in this
nucleotide will cause an amino acid change, for example Table B.2 (first two columns below
the column 1st. position) shows the possible changes in the case of a substitution at A. For
sequence 1 and 2, the possible changes are S–Serine, P–Proline, A–Alanine. In the last two
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rows of the table are the number of NONS and SYN for the possible mutation, in this case
we have zero SYN (none of the possibilities are synonymous changes) and one NONS (all the
possibilities are non-synonymous changes) in every sequence.

Next, consider the second position (a NONS site), we have the same situation that first
position. Any change of these nucleotides C (seq.1 and seq.2), always have a change in the
amino acid in both sequences (see Table B.2 column 2nd. position). If we consider the third
position (a SYN site), we can see that all the possible changes of the nucleotides T (seq.1)
and A (seq.2) all form the same amino acid, T . The proportion of SYN and NONS for these
sequences is SYN=1 and NONS=0.

1st pos. 2nd pos. 3rd pos.
Seq. 1 Seq. 2 Seq. 1 Seq. 2 Seq. 1 Seq. 2
TCT=S TCA=S ATT=I ATA=I ACA=T ACT=T
CCT=P CCA=P AAT=A AAA=L ACC=T ACC=T
GCT=A GCA=A AGT=S AGA=A ACG=T ACG=T
S= 0

3 =0 S= 0
3 =0 S= 0

3 =0 S= 0
3 =0 S= 3

3 =1 S= 3
3 =1

N= 3
3 =1 N= 3

3 =1 N= 3
3 =1 N= 3

3 =1 N= 0
3 =0 N= 0

3 =0

Table B.2: Analysis first site from Table B.1, first codon from both sequences ACT (amino
acid T) and ACA (amino acid T).

We did the same counting for the eight codons. However, there are cases where changes in
the third position made caused in the amino acid, too. When a nucleotide in the third position
(in a codon) mutate and the possible resulting codons code for different amino acids than the
original we need to indicate the proportion of the changes in SYN and NONS count. We code
the three possible resulting codons (as we did before) and next we consider the proportion of
SYN and NONS of the possibilities.

1st position 2nd position 3rd position
Seq. 1 Seq. 2 Seq. 1 Seq. 2 Seq. 1 Seq. 2

TGC=C TGG=W ATC=I ATG=M AGT=S AGT=S
CGC=R CGG=R ACC=T ACG=T AGA=R AGA=R
GGC=G GGG=G AAC=N AAG=K AGG=R AGC=S

S=0; N=1 S= 1
3 ; N= 2

3 S=0; N=1 S=0; N=1 S= 1
3 ; N= 2

3 S= 1
3 ; N= 2

3

Table B.3: Analysis third codon from Table B.1 for both sequences, TTA (amino acid L) and
ATA (amino acid I).

We have this situation in codon four in Table B.3 of the example (see Table B.1). In codon
four we have sequence one, AGC (Ser–S) and sequence two, AGG (Arg–R). In the 3rd position

column we have the possible codons for sequence 1, with AGT, AGA, AGG is coding Ser–S,
Arg–R, and Arg–R respectively. With 1/3 SYN (we have only one Ser–S) and 2/3 NONS (we
have two other amino acid). Sequence 2 with AGT, AGA, AGC is coding Ser–S, Arg–R, and
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Ser–S respectively. With 1/3 SYN (we have only one Arg–R) and 2/3 NONS (we have two
other amino acid).

The overall average for the site, considering both sequences as the starting point for mu-
tation, it is shown in the third row of Table B.4. This site made a portion SYN and a portion
NONS.

Pos. Sequence 1 and 2 S N
1st 1

2 (0S+1N)+ 1
2 (

1
3 S+ 2

3 N) 1
6

5
6

2nd 1
2 (1N)+ 1

2 (1N) 0 1
3rd 1

2 (
1
3 S+ 2

3 N)+ 1
2 (

1
3 S+ 2

3 N) 1
3

2
3

Table B.4: Proportion of SYN and NONS in codon 4.

In Table B.5 are the proportions for each site that are SYN and NONS respectively (last
two rows).

Seq.1 ACT CCG TTA AGC GTA GGA CAT AGG

- - * - - - * - - - - * - - * - * - * - - * - -

Seq.2 ACA CCG ATA AGG GTG GAA TAT CGG

SYN 001 001 1
6 0 1

2
1
6 0 1

3 001 00 2
3 0 1

6
1
6

1
3 0 2

3

NONS 110 110 5
6 1 1

2
5
6 1 2

3 110 11 1
3 1 5

6
5
6

2
3 1 1

3

Table B.5: Proportions of SYN and NONS for each site.

Now we can calculate the ratio dN
dS . First, it is necessary the sum all the SYN substitutions:

1+1+
1
6
+

1
2
+

1
6
+

1
3
+1+

2
3
+

1
6
+

1
6
+

1
3
+

2
3
= 6.1667

Next, the sum all the NONS substitutions:

1+1+1+1+
5
6
+1+

1
2
+

5
6
+1+

2
3
+1+1+1+1+

1
3
+1+

5
6
+

5
6
+

2
3
+1+

1
3
= 17.8333

Now, we calculate the total number of NONS divided by the number of NONS sites,
dN = #NONS

#NONSsites

dN =
4

17.8333
= 0.224

And, the total number of SYN divided by the number of SYN sites, dS = #SY N
#SY Nsites

dS =
3

6.1667
= 0.489



140

Finally the ratio dN
dS for these two sequences is dN

dS = 0.224
0.489 = 0.458.

According to the two initial DNA sequences, we have 16 non-synonymous sites and eight
synonymous sites. From the proteins sequence view, there are four proteins substitutions
between the two sequences from a total of seven proteins. We could interpret as a positive
selection because more than 50 percent (four protein change from a total of seven) of the
proteins in the sequences change.

However, according to our ratio results we can say that this case is a purifying selection
(with a dN/dS ratio of 0.458) and not a positive selection. The possible mutations are not
16 NONS and 8 SYN but 17.8333 NONS and 6.166 SYN. The difference between the values
are those cases where the nucleotides in the third position made NONS changes instead of the
SYN and the cases where the amino acid tolerate changes in the first position (Arg and Leu
according to the universal genetic code). The four NONS changes are over 17.8333 NONS
sites and these are 22% of the total, and the three SYN changes are over 6.1667 SYN sites
and these are 48.9% of the total. Proportionally there are more SYN changes than NONS, this
means, there are more SYN changes. At the end, there are not making substantial changes in
the sequence (conserve protein sequence).


