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ABSTRACT

In this thesis, we study the energy extraction from rotating black holes in anti-de Sit-

ter (AdS) spacetime (Kerr-AdS black holes), via the Blandford-Znajek (BZ) process.

The motivation is the anti-de Sitter/conformal field theory (AdS/CFT) correspon-

dence which provides a duality between gravitational physics in asymptotically AdS

spacetimes and lower dimensional boundary field theories. The BZ process operates

via a force-free magnetosphere around black holes and the rotational energy of the

black hole is extracted electromagnetically in the form of Poynting flux. The ma-

jor part of the thesis is devoted to obtaining force-free solutions in the Kerr-AdS

background, which generalize traditional BZ solutions in the asymptotically flat Kerr

background. Given the solutions, we use the AdS/CFT to infer dual descriptions in

terms of the boundary field theory, which hopefully will lead to a better understanding

of the energy extraction for rotating black holes.



iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Notations and conventions x

Acknowledgements xii

Dedication xiii

1 Introduction 1

1.1 Rotating black holes and energy extractions . . . . . . . . . . . . . . 1

1.2 BZ process and Kerr-AdS black holes . . . . . . . . . . . . . . . . . . 4

2 Energy extraction from rotating black holes, BZ process and force-

free magnetosphere 10

2.1 Penrose process and superradiance . . . . . . . . . . . . . . . . . . . 10

2.2 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Energy extraction: general analysis . . . . . . . . . . . . . . . . . . . 15

2.3.1 Geometry: 3 + 1 formalism . . . . . . . . . . . . . . . . . . . 15

2.3.2 Kinematics of generic matter fields . . . . . . . . . . . . . . . 17

2.4 Force-free magnetosphere and BZ process . . . . . . . . . . . . . . . . 20

2.5 BZ’s monopole solution . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 AdS/CFT 29



v

3.1 AdS geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 AdS/CFT is a holographic principle . . . . . . . . . . . . . . . . . . . 32

3.3 AdS/CFT is a strong/weak coupling correspondence: the example of

AdS5 × S5/N = 4 SYM . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 AdS/CFT is a UV/IR correspondence: matching degrees of freedom . 37

3.5 Matching of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 The dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Scalar field example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Introducing finite temperature and chemical potentials . . . . . . . . 44

3.9 Fluid/gravity correspondence . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Kerr-AdS black holes and ideal fluid mechanics . . . . . . . . . . . . 50

3.10.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10.2 Comparing partitions from fluid and black hole sides . . . . . 51

3.10.3 Critical angular velocity limit . . . . . . . . . . . . . . . . . . 53

3.10.4 Kerr-Newman-AdS4 . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Monopole in AdS 58

4.1 Michel’s rotating monopole solution in flat spacetime . . . . . . . . . 58

4.2 Rotating monopole(s) in AdS spacetime . . . . . . . . . . . . . . . . 59

4.2.1 The unperturbed monopole . . . . . . . . . . . . . . . . . . . 60

4.2.2 perturbed monopole . . . . . . . . . . . . . . . . . . . . . . . 61

5 BZ in Kerr-AdS background 63

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Kerr-AdS and the slow rotation limit . . . . . . . . . . . . . . . . . . 63

5.2.1 Kerr-AdS solution . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Slow rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Small ‘a’ expansion . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The AdS analogue of the Blandford-Znajek split monopole . . . . . . 70

5.3.1 General form of the equations in the 3+1 formalism . . . . . . 70

5.3.2 Solving equations in the small ‘a’ expansion . . . . . . . . . . 73

5.3.3 Series and numerical solutions . . . . . . . . . . . . . . . . . . 76

5.3.4 Energy-momentum flux in the BZ process . . . . . . . . . . . 78

5.3.5 Matching black hole and asymptotic static spacetime force-free

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



vi

5.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Analytic force-free magnetosphere for small Kerr-AdS black holes . . 85

5.5 Aspects of the dual field theory . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Currents at O(a2) . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Kerr-AdS Magnetospheres in Newman-Penrose formalism 96

6.1 Review of the NP formalism . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Force-free equations in the original NP variables φ0,1,2 . . . . . . . . . 98

6.3 Formulation in modified NP variables associated with an orthonormal

frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 BZ’s monopole solution . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Brennan et al’s solution in Kerr-AdS . . . . . . . . . . . . . . . . . . 102

6.5.1 Derivation of the equations . . . . . . . . . . . . . . . . . . . . 102

6.5.2 Relation to real electromagnetic field components . . . . . . . 103

6.5.3 Some solutions with null currents . . . . . . . . . . . . . . . . 104

6.6 Looking for new solutions (φ1 = 0) . . . . . . . . . . . . . . . . . . . 107

6.6.1 Case 1: =φ′0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6.2 Case 2: c(r, θ, ϕ, t) = ∆r/(2Σ) . . . . . . . . . . . . . . . . . . 112

6.7 Other possible ways to construct force-free magnetosphere . . . . . . 114

7 Conclusion 122

Bibliography 126

A Force-free solutions in Kerr-Schild coordinates 134



vii

List of Tables

Table 3.1 Infinitesimal parameters and generators for conformal transfor-

mations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.2 Symmetries of AdS5 × S5 and N = 4 SYM. . . . . . . . . . . . 40

Table 3.3 Bulk fields Φ and field theory operators O∆. . . . . . . . . . . . 41

Table 6.1 Classification of field and current configurations obeying the con-

servation equation. . . . . . . . . . . . . . . . . . . . . . . . . . 119



viii

List of Figures

Figure 1.1 Snapshot of animation of superradiance. . . . . . . . . . . . . . 2

Figure 1.2 Twists of the magnetic field lines by the rotation of the black hole. 4

Figure 2.1 A sample integral curve C of the first law. . . . . . . . . . . . . 14

Figure 2.2 Decomposition of the static Killing vector ∂t, i.e. ξ(t), into the

normal n to Σt and the shift vector β. . . . . . . . . . . . . . . 16

Figure 2.3 A spacetime region with horizon, AdS boundary and constant-

r(-t) slices in BL coordinates. . . . . . . . . . . . . . . . . . . . 18

Figure 2.4 Constant magnetic flux surface and integration path for EMF. . 24

Figure 2.5 The dependence of the jet power of the BZ process on the black

hole spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.1 AdSd+1 space as represented by a hyperboloid in the d+2-dimensional

flat space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.2 Two descriptions of D3-branes at weak (λ� 1) and strong (λ�
1) couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.3 Extremal and critical angular velocity limits in the (x, ξ)-plane. 51

Figure 4.1 Two sets of poloidal coordinates for AdS, indicating the asymp-

totic squashing of the 2-sphere in BL coordinates. . . . . . . . . 61

Figure 5.1 The condition Ω− ≤ Ω′ ≤ Ω+ for Kµ
Ω′ to be non-space-like for

small and large Kerr-AdS black holes . . . . . . . . . . . . . . . 65

Figure 5.2 rH , l and rH
l

as functions of ξ, in units m = 1. . . . . . . . . . . 68

Figure 5.3 Plots of ω(1) as functions of r1 for various values of c2. . . . . . 77

Figure 5.4 Solution curves corresponding to various choices of ω(1) = 1
4r1

+
c2
C

(r1−2)2

4r1
, by varying c2 from −10 to 10 for each r1. . . . . . . . 79

Figure 5.5 Solution curves with ω(1) = 1/(4r1) for various r1’s. . . . . . . . 80

Figure 5.6 Six possibilities for the relative magnitudes of {ω,Ω′,ΩH}. . . . 81



ix

Figure 5.7 Plots of the azimuthal current c1 as functions of r1 for various

values of c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.8 Ranges of ω(1), c2 and c1 for energy extraction. . . . . . . . . . 92

Figure 6.1 Magnetic field lines as given by (6.131) and (6.132), with Br = 0. 114

Figure 6.2 Blades of simple bivectors. . . . . . . . . . . . . . . . . . . . . . 115



x

Notations and conventions

AdS anti-de Sitter

CFT conformal field theory

BZ Blandford-Znajek

BL Boyer-Lindquist

KS Kerr-Schild

ZAM(O) zero angular momentum (observer)

DEC dominant energy condition

BF Breitenlohner-Freedman

NP Newman-Penrose

KNAdS Kerr-Newman-AdS

m, a, rH , l mass, rotation parameter, horizon radius, and AdS radius for

the Kerr-AdS spacetime; m also the mass of scalar fields

∆ factor in the Kerr metric; dimension of field theory operator

E, T, S, Ω, L energy, temperature, entropy, angular velocity, and angular

momentum in thermodynamics relations

φ scalar field

ϕ azimuthal angular coordinate

ξµ(t), ξ
µ
(ϕ) temporal and azimuthal Killing vectors

Kµ
Ω′ linear combination of two Killing vectors: Kµ

Ω′ ≡ ξµ(t) + Ω′ξµ(ϕ)

ΩH angular velocity of the black hole

ωB Bardeen angular velocity, angular velocity of ZAMOs

Ω∞ asymptotic value of ΩB, angular velocity of the non-rotating

frame at infinity



xi

ω mainly the angular velocity of the magnetic field lines in the

BZ process; also the similar quantities in Penrose process and

superradiance

Fµν , J
µ, T µν electromagnetic field, current, and energy-momentum tensor
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Chapter 1

Introduction

This thesis studies the energy extraction from rotating anti-de Sitter (AdS) black holes

by means of a force-free magnetosphere, generalizing the same mechanism, known as

the Blandford-Znajek (BZ) process, for black holes in flat spacetime. The results are

then interpreted in terms of the conformal field theory (CFT) on the boundary, using

the AdS/CFT correspondence.

In this chapter, we introduce the physics of energy extraction from rotating black

holes and discuss the implications of putting the black hole in the AdS background.

1.1 Rotating black holes and energy extractions

Rotating black holes are important areas of focus in theoretical research. They pos-

sess an ergosphere, a region enclosing the event horizon and characterized by the

non-existence of (timelike) static observers: all observers are forced to rotate in the

same direction as the black hole (though not necessarily infalling). Through the

ergosphere, rotating black holes exhibit the remarkable property that rotational en-

ergy can be extracted through purely classical means. The Penrose process, and

super-radiance, represent the primary examples. The energy extraction relies on the

fact that matter inside the ergosphere can have negative ‘energy-at-infinity’ (energy

as seen by asymptotic observers). While local observers still see positive energies

(for matter obeying appropriate energy conditions), static world lines inside the er-

gosphere lie outside light cones emanating from them. In other words, asymptotic

observers typically represented by static world lines move faster than light relative to

local matter flows and could see the flows as carrying negative energies. Then infall
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Figure 1.1: Snapshot of animation of superradiance. Red color represents the incident
wave and blue color represents the scattered outgoing waves. Image from Frans
Pretorius’ and by Ralf Kahler, KIPAC [2].

of the matter into the horizon will reduce the total mass/energy of the black hole

as seen at infinity and is reflected as a positive energy outflux of some sort. On the

other hand, observers at the horizon necessarily see a positive local energy influx.

This does not contradict the decrease in the black hole mass since the locally defined

energy has incorporated the angular momentum contribution and in fact represents

the entropy term as in the first law of black hole thermodynamics (to be discussed

shortly).

As an example, in the Penrose process, a positive energy particle entering the

ergosphere can split into a negative energy part which falls into the black hole and

a part which carries more positive energy than the original particle and escapes to

infinity. A similar idea underlies superradiance, where an incident wave scatters off

the black hole producing an amplified outgoing wave and an ingoing wave carrying

negative energy into the horizon (as can be computed e.g. for a scalar wave, as in [1]).

A snapshot of an animation of superradiance is shown in fig. 1.1. In both processes,

the dynamics (splitting or scattering of the particle or the wave, respectively) happens

in the ergosphere, which is crucial for producing negative energy flux. The horizon

provides the ingoing boundary condition to digest the negative energy matter. (In

the presence of only an ergosphere but not the horizon, as outside a compact rotating
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star, the negative energy accumulated inside the ergosphere would lead to the so

called “ergosphere instability” [3].) In addition, for superradiance one can impose

reflective boundary conditions at some finite radius, e.g., by putting the black hole

in a box or anti-de Sitter space, so that the wave travels back and forth between the

horizon and the boundary, leading to an instability known as the “black hole bomb”

[4].

To be more specific, the ergosphere is where the energy-defining timelike Killing

vector becomes spacelike. This is a necessary condition for the energy flux vector of

generic matter, defined from the contraction of the energy-momentum tensor and the

energy-defining Killing vector, to be spacelike, provided that the energy-momentum

tensor respects the dominant energy condition. This is in turn necessary for the

energy flux across the horizon, defined from the contraction of the energy flux vector

with the horizon generator, to be outgoing (as is true for the energy flux across

any constant-radius surface outside the horizon). See Chapter 2 for a more rigorous

derivation.

In terms of the energetics, we have gained a global picture of the continuous

energy flow (the outcome of energy extraction) with consistent descriptions at the

horizon and at infinity, though the dynamical details vary for different processes and

are less understood. More insight can be gained from the fact that there is always an

angular momentum extraction along with any energy extraction. In other words, the

matter interacts with the black hole to “brake” its rotation. This is clear from the

first law of black hole thermodynamics dE = T dS + ΩH dL, where {E, T, S, L,ΩH}
are respectively the energy, temperature, entropy, angular momentum and angular

velocity of the black hole. dL < 0 then follows from dE < 0 and dS ≥ 0. The

non-decreasing of entropy dS ≥ 0 is associated with the fact that a local observer at

the horizon (who necessarily rotates with angular velocity ΩH) always sees ingoing

positive energy. Defining the energy with his or her own 4-velocity, this observer

finds a local first law δE = TδS + 0 · δL (“δ” indicating that the variations are not

exact differentials) and would conclude that energy is not extracted but the angular

momentum, defined the same way as for a static observer, keeps decreasing. Thus it

seems that angular momentum extraction is a more robust feature. This point will

be made more explicit once we have the solutions for the BZ process in chapter 5.
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Figure 1.2: Twists of the magnetic field lines by the rotation of the black hole. Yellow
area represents the ergosphere. From [11]. Reprinted with permission from AAAS.

1.2 BZ process and Kerr-AdS black holes

We now turn to the Blandford-Znajek (BZ) process [5] (see also [6, 7, 8, 9, 10]), which

realizes energy extraction through an electromagnetic Poynting flux and is thought

most likely to be the mechanism for power sources in astrophysics, e.g., in active

galactic nuclei and quasars. Astrophysical black holes are usually immersed in ex-

ternal magnetic fields (e.g., supported by accretion discs) and surrounded by plasma

and radiation. For strong magnetic fields, we can neglect matter contributions to

the energy-momentum tensor and work in the force-free limit, i.e., vanishing Lorentz

force by conservation of the electromagnetic energy-momentum tensor alone. Though

the black hole does not source any electromagnetic field to interact with the magneto-

sphere, the spacetime vacuum acts like an electromagnetically active medium so that

the BZ process operates in analogy to a unipolar inductor. In the magnetosphere,

the rotation of the spacetime induces an electric field which, like an electromotive

force, drives poloidal currents. The poloidal currents then produce toroidal magnetic

fields which are needed to slow down the rotation and generate radial Poynting flux.

A more intuitive picture, as shown in fig. 1.2, would be imagining the rotation twists

the magnetic field lines and causes riddles propagating away along the field lines. BZ

process offers a stationary and steady state scenario where energy is continuously

extracted.

The BZ process was one of the triggers of the so called black hole “membrane
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paradigm” [12, 13], where the horizon is replaced by a fictitious membrane (the

stretched horizon) endowed with transport properties such as conductivity. The elec-

tromotive force in the BZ process can be computed by treating the membrane as

the unipolar conductor. The membrane paradigm is a realization of the holographic

principle proposed during the studies of black hole thermodynamics (entropy of the

black hole residing on the 2-D membrane). It has a modern and stricter version, the

AdS/CFT (anti-de Sitter/conformal field theory) correspondence, where the physics

of a black hole in the AdS space (the “bulk”) is captured by that of a CFT on the

boundary (a lower dimensional brane). The present work is motivated by possible

applications of the AdS/CFT correspondence to the BZ process. As a powerful tool,

AdS/CFT guarantees a mapping of bulk field states to observables on the CFT side.

Our first step would be to translate BZ process to asymptotically AdS rotating black

hole backgrounds, given by the Kerr-AdS family of solutions to Einstein’s field equa-

tions, while the original BZ process is formulated in the asymptotically flat case (i.e

Kerr black holes).

The implications of embedding the Kerr black hole in AdS depend on the relative

size rH/l of the black hole, with horizon radius rH , and the AdS curvature scale l.

For ‘small’ black holes with rH � l, the near-horizon geometry is very similar to

Kerr, and thus we expect the appearance of an ergosphere and a direct translation of

the BZ process as observed in asymptotically flat space. In contrast, for large black

holes with rH ≥ l, the AdS boundary conditions become important and modify the

response to the force-free magnetosphere.

The Kerr geometry possesses a unique timelike Killing vector as r →∞, namely

ξµ(t) representing a static observer at infinity. As noted earlier, using this Killing

vector to define energy, one finds an ergosphere outside the horizon, which allows

for energy extraction. In contrast, ‘large’ Kerr-AdS black holes possess a family

of asymptotically timelike Killing vectors, and thus there is no unique definition of

energy for an asymptotic observer at r →∞. Amongst the family of asymptotically

timelike Killing vectors for large black holes, the horizon generatorKµ
ΩH

= ξµ(t)+ΩHξ
µ
(ϕ)

is in fact globally timelike outside the horizon, where ξµ(ϕ) is the axial Killing vector.

In the conventional Boyer-Lindquist (BL) coordinate system for Kerr-AdS geometries

(with rotation parameter a), the angular velocity of zero angular momentum observers

(ZAMOs) ΩB, which determines the horizon angular velocity ΩH , is non-vanishing

asymptotically where it takes the value Ω∞ = −a/l2. Thus, the conformal boundary

of Kerr-AdS spacetime is an Einstein universe rotating with angular velocity ΩH−Ω∞
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[14]. Moreover, one finds that the boundary Einstein universe rotates slower than the

speed of light, provided that ΩH−Ω∞ < 1/l⇔ r2
H > al, i.e., for sufficiently large black

holes. As argued by Hawking and Reall [14], and discussed below in Section 5.3.4, this

along with the dominant energy condition (DEC) implies stability of large Kerr-AdS

geometries and ensures that energy cannot be extracted. On the contrary, small Kerr-

AdS black holes could exhibit a genuine instability, e.g., via superradiance. The onset

of the instability in AdS was identified, via the holographic AdS/CFT correspondence

[15, 16, 17], with the limit in which the dual field theory is rotating at the speed of

light [18]. In this thesis, we consider related questions about the BZ process for

force-free magnetospheres around Kerr-AdS black holes

Recalling that only large black holes, with rH > l, provide saddle points describing

the thermodynamics of the holographic dual theory [18], it follows that the stability of

the dual thermal state is a direct consequence of the existence of the globally defined

timelike Killing vector in the bulk. Although this conclusion suggests the absence

of a direct AdS dual of the BZ process, there are at least two interesting subtleties.

The first is that stability actually relies on the DEC, which is known to be relatively

easy to violate in AdS space, where the Breitenlohner-Freedman (BF) bound allows

small negative masses for perturbing fields. Although there is no apparent need

for the currents which source the BZ force-free magnetosphere to violate the DEC,

this suggests a possible route around the above conclusion that energy extraction

is not possible for large AdS black holes. The second subtlety is that the energy

defined by the globally timelike Killing vector Kµ
ΩH

is apparently not the one that

naturally enters the thermodynamics of the dual field theory. It has been argued

[19] that it is instead the Killing vector Kµ
Ω∞

= ξµ(t) + Ω∞ξ
µ
(ϕ) which should be used

to define the energy E as use of the conserved charge E = Q[KΩ] in the first law

dE = T dS + (ΩH − Ω∞) dL with L = −Q[ξ(ϕ)] ensures that the r.h.s. is an exact

differential. The energy defined in this way does exhibit an ergosphere beyond the

horizon even for large Kerr-AdS black holes. On the other hand, use of the globally

timelike Kµ
ΩH

may be just reflecting the fact that what an observer at the horizon

sees (purely ingoing positive energy satisfying a local version of the first law) can be

shared by a series of co-rotating observers all the way to infinity. This ambiguity

again raises the question of what properties force-free magnetospheres may have for

large black holes, given that they should be described in the dual field theory, and

motivates finding an explicit bulk solution of this type.

Motivated by these arguments, in this thesis we obtain an analogue of the BZ
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(split) monopole force-free magnetosphere [5], with the goal of understanding how it

evolves from small to large Kerr-AdS black holes. While this model is an abstraction

compared to the physical case where the magnetosphere is induced by an accretion

disc, it provides a concrete example in which the radial Poynting flux can be explicitly

computed (see also [20, 21]). The solution to leading order in the Kerr rotation

parameter turns out to be unique, with the axisymmetric magnetosphere co-rotating

with a specific angular velocity, equal to half the angular velocity of the horizon.

More recent numerical work has confirmed this basic picture (see, e.g., [6]). The

primary goal of this thesis is to determine the corresponding solution with global

AdS boundary conditions. We again work in the slow rotation limit, treating both

a� m & a� l, with m the black hole mass parameter. Away from the small black

hole limit, which asymptotically approaches the Kerr case, we find that the field line

angular velocity ω is not uniquely determined. For large black holes, we interpret

these results within the holographic dual in terms of the properties of a fluid in a

rotating magnetic field. We find a consistent picture of stable rotation, as the dual

fluid is neutral at the corresponding order in the rotation parameter.

In the Kerr case, ω is fixed by considering the asymptotic behavior of the magnetic

field and the force-free equation. Requiring the magnetic field fall off fast enough

(∼ 1/r) leaves only one possible value for ω so as to make the force-free equation

non-diverging at large r. In the Kerr-AdS case, the divergence of the equation is less

severe and the way the magnetic field deforms affects ω, which is found to be related

to the O(a2/r2) correction of the magnetic field. Put another way, the Kerr magne-

tosphere can be matched at infinity onto a unique configuration which is the rotating

monopole field in flat spacetime found by Michel [22]. ω, of both the black hole

magnetosphere and the monopole field, is then fixed from the matching. Analogous

monopole field in AdS spacetime however can accommodate an additional arbitrary

O(a2/r2) perturbation which affects ω as with the black hole magnetosphere.

There is even an ambiguity in defining the unperturbed rotating monopole. In

the asymptotic region of the Kerr-AdS black hole one can choose two coordinate

systems whose constant-radius surfaces deform from each other at O(a2): one is the

coordinate system for the standard global AdS metric, and the other is the zero-mass

or large-radius limit of the BL coordinates for the Kerr-AdS metric. We can thus

have two different monopole fields with radial field lines evenly distributed over the

constant-radius surface in each coordinate system (at large radius). While the first

system is natural in pure AdS space, the second (as used in BZ’s original treatment)
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seems reasonable in the black hole case in view of the fact that the horizon is one

of the constant-radius surfaces. However, it is also true that the horizon is a ZAM-

equipotential surface which coincides at infinity with the constant-radius surfaces

in the first (rather than the second) system. (The ZAM potential is defined as the

normalization factor of ZAMO 4-velocity.) It would be interesting to find a monopole-

like field adapted to the ZAM-equipotential surfaces.

The rest of this thesis is organized as follows. In Chapter 2, we give a more com-

plete discussion of the energy extraction from rotating black holes, including brief

derivations of the Penrose process and superradiance, demonstration of energy ex-

traction in terms of the first law, and a general analysis of energy extraction in terms

of the 3+1 formalism. We then review the formulation of the force-free magneto-

sphere dynamics in the BZ process as well as BZ’s (split) monopole solution in the

asymptotically flat spacetime.

Chapter 3 is devoted to a review of the AdS/CFT correspondence, beginning with

the basic framework and implications of the correspondence, and followed by more

concrete applications in aspects relevant to the present subject.

In Chapter 4, as a warm up, we solve the force-free equations for a rotating

monopole in the pure AdS space. The solution serves as the asymptotic configura-

tion of the full Kerr-AdS case and already captures the effect of the AdS boundary

condition on the rotation of the magnetic fields.

Chapter 5 contains the main results with the force-free solution for a rotating

monopole in the Kerr-AdS background. After some preliminaries on the Kerr-AdS

geometry and the slow rotation limit, we present the detailed procedure of solving

the force-free equations, including series and numerical solutions. We also obtain an

analytic solution for the small Kerr-AdS black hole case, obtained as an expansion

about the BZ solution in the Kerr limit. We primarily make use of Boyer-Lindquist

(BL) coordinates, while Kerr-Schild (KS) coordinates which are nonsingular on the

horizon are discussed in Appendix A. Some implications for the dual field theory are

discussed and some comments given on the membrane paradigm interpretation of the

BZ process [13, 23].

Chapter 6 includes a reformulation of the force-free equations in the Newman-

Penrose (NP) formalism, where the equations are first-order. We then make use

of the NP formulation to derive exact solutions in Kerr-AdS for the null current

configuration, generalizing recent solutions by Brennan et al. [21] in the Kerr case.

We also present some special new solutions with non-null currents and discuss other
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possible ways to find force-free solutions.

Conclusions and discussions are given in Chapter 7.
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Chapter 2

Energy extraction from rotating

black holes, BZ process and

force-free magnetosphere

This chapter gives more detailed presentation of the energy extraction process from

rotating black holes, with a review of the Penrose process and superradiance, and

general analyses in terms of thermodynamics and spacetime geometries. We then

concentrate on solving the conservation equations for the force-free magnetosphere.

2.1 Penrose process and superradiance

We give a brief derivation of the Penrose process and superradiance for rotating

black holes. For concreteness, the coordinates xµ = [t, r, θ, ϕ] used below, and in

the majority of this thesis, are implicitly assumed to be the Boyer-Lindquist (BL)

coordinates of the Kerr(-AdS) metric, with the understanding that some general

properties are coordinate-independent. Explicitly, the Kerr metric is

ds2 = −∆

Σ

[
dt− a sin2 θ dϕ

]2

+
Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

[
(r2 + a2) dϕ− a dt

]2

, (2.1)

where ∆ = r2 + a2 − 2mr, Σ = r2 + a2 cos2 θ, with m and a the black hole mass and

rotation parameters. The spacetime, being stationary and axisymmetric, admits two

Killing vectors: the time translational one ξµ(t) and the azimuthal one ξµ(ϕ). Rotating

black holes have the peculiar property that static observers, represented by ξµ(t), can
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not exist arbitrarily close to the horizon, since ξµ(t) becomes spacelike in the ergosphere

which encloses and is connected with the horizon [24]. For a 4-velocity uµ to be

timelike in the ergosphere, we have gµνu
µuν < 0⇒ uϕ > 0, as can be seen by noting

that the only possible negative contribution is from the term gϕtu
ϕut where gϕt < 0.

This is the frame-dragging effect. Especially, a zero angular momentum observer

(ZAMO) is dragged to rotate with the Bardeen angular velocity

ωB ≡ −
gϕt
gϕϕ

, (2.2)

with the angular momentum defined by L ≡ pµξ
µ
(ϕ) for a 4-momentum pµ. ωB ap-

proaches ΩH and Ω∞ at the horizon and at infinity respectively, where ΩH is the

angular velocity of the black hole and Ω∞ = 0 for the Kerr case. ZAMO (for which

we assume ur = uθ = 0 from now on for simplicity) is the generalization of the static

observer. To define the energy E, it is natural to use the asymptotic ZAMO 4-velocity,

which is just ξµ(t) for the Kerr case, and we have E ≡ −pµξµ(t). In a coordinate system

adapted to the Killing vectors (as in BL coordinates), E = −pt and L = pϕ.

Now consider a negative energy particle with 4-velocity uµ in the ergosphere as in

the Penrose process. Expanding the condition uµu
µ < 0 (for timelike uµ) we have

utu
t + uϕu

ϕ + grr(u
r)2 < 0, (2.3)

where ut > 0 for future-pointing 4-velocities, ut > 0 from the assumption E ∝
−uµξµ(t) = −ut < 0, and uϕ > 0 by frame-dragging as noted above. So for (2.3) to

hold it is necessary that

uϕ =
(uϕ
ut
− ωB

)
gϕϕu

t ∝ L < 0, (2.4)

i.e., the particle has negative angular momentum with angular velocity

ω =
uϕ

ut
< ωB ≤ ΩH . (2.5)

Thus, in the Penrose process, the black hole also loses angular momentum; in other

words, it is the rotational energy that is being extracted. One can also rewrite (2.3)

as

(ut + ΩHuϕ)ut + (ω − ΩH)uϕu
t + grr(u

r)2 < 0, (2.6)
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which when (2.4) is satisfied implies −(ut + ΩHuϕ) ∝ EH > 0, where EH is the

energy of the particle defined locally on the horizon using Kµ
ΩH

, so an observer just

outside the horizon always sees an ingoing positive energy flux. Another way to see

the positivity of EH is by noting that EH = E −ΩHL and that from (2.3) and (2.5),

0 < −E < −ωL < −ΩHL. Thus the phenomenon of energy extraction does not

violate the ingoing condition for local energy on the horizon and indeed implies the

latter if all constraints are properly considered as just shown.

For superradiance, consider a massless scalar field φ with the ansatz

φ = R(r)S(θ) exp(−iωt+ im̃ϕ) (2.7)

that solves the wave equation

�φ =
1√
−g

∂µ(
√
−ggµν∂νφ) = 0 (2.8)

in Kerr background (2.1). We quote the solution for the ingoing wave mode at the

horizon [1]

φ = S(θ) exp[−i(ω − m̃ΩH)(t+ r∗)] exp[im̃(ϕ− ΩHt)], (2.9)

where r∗ is the tortoise radial coordinate (see [1] for details). The ingoing energy flux

is found to be

FHE ∝ F r
t ∝ ω(ω − m̃ΩH). (2.10)

For energy extraction FHE < 0, one has the constraint

ω

m̃
< ΩH (2.11)

on the angular frequency, similar to that on the particle’s angular velocity in the

Penrose process (cf. (2.5)). Note that (2.11) involves only ΩH rather than also ωB

since the energy flux is evaluated at the horizon. As will be shown in later chapters,

there is also a similar constraint ω < ΩH for the BZ process, where ω is the angular

velocity of the magnetic field lines.



13

2.2 Thermodynamics

The view on the energy and angular momentum extractions obtained from the above

examples can also be demonstrated in terms of black hole thermodynamics. According

to the first law, the black hole can only lose energy (δE < 0), with non-decreasing

entropy (δS ≥ 0), if it also possesses chemical potentials (e.g., electric potential or

angular velocity). Correspondingly, the black hole mass m can be written as the sum

of two parts: an irreducible mass mirr related to the black hole entropy and a part

mdiss related to the chemical potential. As the names suggest, it is mdiss that sources

the energy outflux while at the same time compensating any increase in mirr.

We consider the example of an uncharged Kerr-AdS black hole whose explicit

metric is not needed here (and will be given later). The relevant metric parameters

are mass m or equivalently the horizon radius rH , rotation parameter a and AdS

curvature length l. Usually with l not treated as a thermodynamic quantity, all

thermodynamic variables are given in terms of (rH , a), and it is possible (at least for

Kerr-AdS) to express (rH , a) as functions of extensive variables (S, L), where L is

the angular momentum conjugate to the angular velocity Ω. Then using (S, L) as

independent variables we have for the energy E (cf. (3.111))

E(S, L) =
m

1− a2/l2
=

√
S

4π

(
1 +

S

πl2

)2

+
πL2

S

(
1 +

S

πl2

)
. (2.12)

The irreducible mass mirr = m(L ∼ a = 0) is indeed a monotonic function of S, while

mdiss is non-zero only if L 6= 0, i.e., the extractable energy is the rotational energy of

the black hole.

One can easily imagine (e.g., by plotting E(S, L)) a process in which a substantial

amount of energy is extracted along a path of decreasing L in the E-S-L space. The

path should be an integral curve of the first law

dE(S, L) = T (S, L) dS + Ω(S, L) dL, (2.13)

where T is the temperature. To find an integral curve we need a relation dL ∼ dS as

in some process. For demonstration purposes we choose

dL =
T

ω′ − Ω
dS, dE =

ω′

ω′ − Ω
T dS, (2.14)
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Figure 2.1: A sample integral curve C of the first law, as seen from E-S and L-S
planes (left), and from the space of the parameters (x ≡ r2

H/l
2, ξ ≡ a2/l2) (right).

The unphysical shaded region in each plot is bounded by the curve representing
extreme black hole solutions. Note that this curve passes exactly through the turning
point of curve C in each plot. Thus in the physical region, both E and L decrease as
S increases. Also, the black hole size rH/l always increases.

where ω′ is a constant. Energy and angular momentum extractions imply 0 < ω′ < Ω.

For Kerr-AdS, Ω = ΩH − Ω∞ (cf. chapter 1), and we fix ω′ = ΩH/2 − Ω∞. Such a

value of ω′ can be realized by a typical choice of ‘ω’ in superradiance (see e.g. [1]) or

BZ process (cf. eqs. (5.73) to (5.75)), with the respective meanings of ω therein as

discussed above, but otherwise just ad hoc. We then integrate the first equation in

(2.14) and substitute the result into (2.12) to get (setting l = 1)

L(S) = S

√
C − 3S2 + 8πS + 2π2 lnS

4π4
(2.15)

E(S) =
√
S(S + π)

√
C − 3S2 + 7πS + 2π2 lnS − π2

4π2
, (2.16)

where C is integration constant. Figure 2.1 shows a sample plot of E(S) & L(S) for
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C = 1.

2.3 Energy extraction: general analysis

In this section, we analyze the energy extraction by examining properties of the

geometry and matter near the horizon. We present these results in a general form

that allows the usual treatment in the Kerr geometry to easily be extended to Kerr-

AdS geometries with various coordinate choices.

2.3.1 Geometry: 3 + 1 formalism

We will use the 3 + 1 formalism [25] which is convenient for presenting our results.

Formally, a non-static spacetime metric can be written as

ds2 = −α2dt2 + hij
(
dxi + βi dt

)(
dxj + βj dt

)
, (i, j = spatial directions). (2.17)

The 1-forms dxi + βi dt are no longer exact; the condition that they vanish defines

the 3-velocities of fiducial observers (FIDOs):

viFIDO =
dxi

dt
= −βi. (2.18)

FIDOs generalize static observers and move orthogonally to the constant-t hypersur-

faces Σt. In other words, the coordinate frame {xi} on Σt is drifting relative to the

FIDO (at each point x) with 3-velocity βi(x), called the “shift vector”. For example,

in the rotating black hole case one has βϕ representing differential rotation of the

coordinate system, though this may be more naturally thought of as FIDOs being

dragged to rotate in the opposite direction. βi can be promoted to a 4-vector

βµ = [0, βi], βµ = [βiβ
i, βi = hijβ

j = git]. (2.19)

The spatial metric hij is the projection of gµν onto Σt. Finally, α measures the

“distance” in proper time between two adjacent hypersurfaces Σt and Σt+δt so that

δτ = αδt.

Dealing in fact with the stationary and axisymmetric Kerr(-AdS) spacetime, in

this thesis we only consider cases with βθ = gθt = 0, general enough to include

both the Boyer-Lindquist (BL) and Kerr-Schild (KS) forms of the metric. For later
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Figure 2.2: Sketch of the decomposition of the static Killing vector ∂t, i.e. ξ(t), into the
normal n to Σt and the shift vector β as given by (2.21). For BL coordinates, n can
also be viewed as representing the ZAMO 4-velocity with angular velocity ωB = −βϕ
(cf. (2.23)).

convenience, we denote the linear combination of two Killing vectors by

Kµ
Ω′ ≡ ξµ(t) + Ω′ξµ(ϕ), (2.20)

for some constant (or function) Ω′, so that Kµ
Ω′ is rotating with angular velocity Ω′

relative to ξµ(t). (We save the unprimed Ω for the angular velocity in thermodynamics.)

If βi 6= 0, ξµ(t) fails to be orthogonal to Σt and can be decomposed as (see fig. 2.2)

ξµ(t) = αnµ + βµ, (2.21)

where nµ is the future-pointing unit normal to Σt:

nµ dxµ = −α dt, nµ∂µ =
1

α
(∂t − βi∂i). (2.22)

nµ thus represents 4-velocities of FIDOs. Note also that the 1-form basis [α dt, dxi +

βi dt] is dual to the vector basis [nµ∂µ, ∂i].

We briefly discuss BL and KS coordinates. In the former (cf. (2.1)),

ωB = −βϕ, (2.23)

the only non-vanishing component of βi, so a ZAMO with 4-velocity Kµ
ωB

is a FIDO.
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Indeed,

Kµ
ωB

= ξµ(t) + (−βϕ)ξµ(ϕ) = αnµ, (2.24)

by (2.21). The horizon is where Kµ
ωB

becomes null; Kµ
ωB

approaches Kµ
ΩH

, the horizon

generator. The horizon locates at α = 0 and can be viewed as the limiting case of

the ZAM-equipotential surfaces α = const.. On the other hand, ξµ(t) becomes null at

gtt = βiβ
i − α2 = 0 which is outside the horizon and defines the boundary of the

ergosphere. (Generally, for the energy-defining Killing vector Kµ
Ω′ , the ergosphere

starts correspondingly at Kµ
Ω′KΩ′µ = 0.)

BL coordinates are singular on the horizon (gtt = −α−2, etc.), and thus it is

also useful to consider KS coordinates (denoted with a tilde) which use a different

foliation Σt̃ that is horizon penetrating. Thus ñµ is no longer aligned with Kµ
ωB

, i.e.,

FIDOs with respect to Σt̃ are no longer ZAMOs. We will make use of BL coordinates

for much of the discussion below, as they are analytically more tractable, but the

transformation {r, θ, ϕ̃(ϕ, r), t̃(t, r)} to KS coordinates is given in Appendix A, where

we also translate a number of subsequent results for comparison.

2.3.2 Kinematics of generic matter fields

Making use of the above idea of spacetime foliation, we proceed to understand the

energy extraction in general terms. For generic matter with energy-momentum tensor

Tµν , define the conserved energy-momentum flux vector (see e.g. §6.4 of [26])

T µ(ξ) ≡ −T µν ξν , (2.25)

where ξµ is a Killing vector. We consider matter satisfying the dominant energy

condition (DEC) which says that T µ(ξ) is non-spacelike and future-pointing if ξµ is

time-like and future-pointing [24]. Applying Gauss’ theorem in a spacetime domain

D:

0 =

∫
D

d4x
√
−g T µ;µ =

∫
∂D

dBµT µ

=

∫
Σt2−Σt1

d3x
√
hnµT µ +

∫
H=ΣrH

dBµT µ +

∫
Σ∞

d3x
√
− 3g kµT µ, (2.26)

where dBµ is the volume element restricted to the boundary ∂D of D. ∂D consists of

two constant-t hypersurfaces Σt1 & Σt2 (t2 > t1) with future-pointing normal nµ and



18

Figure 2.3: A spacetime region with horizon H, AdS boundary Σ∞ and constant-r(-t)
slices Σr,t1,t2 in BL coordinates. With −nµ = α∇µt and kµ = kr∇µr, it holds that on
H both KΩHµ ∝ nµ ∝ ∇µr and −kµ are null normals and [−kµ dxµ, dθ, dϕ, αnµ dxµ]
form a complete basis.

two constant-r hypersurfaces ΣrH & Σ∞ (which are the horizonH and the boundary at

infinity) with normal kµ = [0, kr, 0, 0]. Figure 2.3 depicts D with various surfaces and

vectors (discussed below). The integral on Σ∞ can dropped if appropriate boundary

conditions are chosen (e.g. in asymptotically AdS spacetime). Equation (2.26) then

implies that

E(Σt2)− E(Σt1) + FHE = 0, (2.27)

where E(Σt) ≡ −
∫

Σt
nµT µ(KΩ′) and FHE ≡ −

∫
H dBµT µ(KΩ′) are respectively the

total energy on Σt and the ingoing energy flux across the horizon, and we have used

Kµ
Ω′ as the energy-defining Killing vector.

To evaluate FHE , following [14, 27], one makes use of the ingoing null vector

− kµ ∝ −∇µr ⊥ H (2.28)

and the null horizon generator

KΩHµ

H
= αnµ = −α2∇µt (2.29)

normalized according to (−kµ)Kµ
ΩH

= −1, and the decomposition

Ta$a = −(TµKµ
ΩH

)$1 − [Tµ(−kµ)]$4 + T2$
2 + T3$

3 (2.30)
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of T in the 1-form basis [$1 = −$k = −kr dr, $2 = $θ = dθ, $3 = $ϕ = dϕ, $4 =

$KΩH = −α2 dt]. One finds (using e.g. [28, 26, 29, 27]),

FHE = −
∫
H
T4

?$1 =

∫
H

(−TµKµ
ΩH

)($2 ∧$3 ∧$4) = −(t2 − t1)

∫
H∩Σt

dSTµKµ
ΩH
,

(2.31)

where η14 = η41 = −η22 = −η33 = −1, εrθϕt = 1 = −ε1234 and the last integral is on

the 2-D spatial section of the horizon. Finally, note that on H [1],

nµ =
1

α
KΩHµ = − 1

2κα
∇µ(Kν

ΩH
KΩH ν) =

1

2κα
∇µ[fg(r, θ)∆r] =

fg(r, θ)

2κα
∇µ∆r ∝ kµ.

(2.32)

It follows that KΩHµ is in the ∇µr direction (‖ kµ), which is also the −∇µt direction

(‖ nµ), where κ is the surface gravity and fg(r, θ) is a function of metric components,

so we have

FHE ∝ −
∫
H
T r(KΩ′) =

∫
H
T rt + Ω′T rϕ. (2.33)

Energy extraction happens if FHE ∝ −
∫
H Tµ(KΩ′)Kµ

ΩH
< 0, which implies, given

that Kµ
ΩH

is null on the horizon, that T µ(KΩ′) must be space-like on (and, by conti-

nuity, just outside) the horizon. This in turn implies that the Killing vector Kµ
Ω′ with

which T µ(KΩ′) is defined fails to be time-like in the neighbourhood of the horizon

(by the DEC), i.e., the existence of an ergosphere.

Arbitrarily close to the horizon, Kµ
ΩH

is time-like, meaning that the following

inequality always holds on the horizon

− T r(KΩH ) ≥ 0, (2.34)

so a local observer co-rotating with Kµ
ΩH

sees an ingoing energy flux. For an asymp-

totic observer, on the other hand, who defines energy with Kµ
Ω′ , (2.34) implies

− T r(KΩ′)− (ΩH − Ω′)T r(ξ(ϕ)) ≥ 0 (2.35)

⇒ FHE − (ΩH − Ω′)LHE ≥ 0 (2.36)

⇒ δE − (ΩH − Ω′)δL ≡ TδS ≥ 0, (2.37)

where

FHL ≡
∫
H

dBµT µ(ξ(ϕ)) ∝
∫
H
T r(ξ(ϕ)) = −

∫
H
T rϕ (2.38)

is the total ingoing angular momentum flux across the horizon, and the last step shows
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that the derivation leads to the 1st and 2nd laws of black hole thermodynamics. To

respect the 2nd law, there must also be an angular momentum extraction (δL < 0)

accompanying any energy extraction from the black hole (for ΩH − Ω′ > 0, e.g., the

Kerr case), as noted above. For large AdS black holes where we can choose Ω′ = ΩH

energy extraction is absent [14]. Similar conclusions follow for super-radiance [30].

2.4 Force-free magnetosphere and BZ process

In this section we give a basic description of the force-free magnetosphere, using

the general metric (2.17) in BL coordinates. The problem of formulating energy

extraction via a force-free magnetosphere (i.e. the BZ process) is summarized in the

conservation equations for the energy-momentum tensor of the electromagnetic field,

namely,

T µν;ν = F νµJν = 0, (2.39)

which we also refer to as the force-free equation/condition. In astrophysical situations

we can have very strong magnetic field triggering pair creations so that the magne-

tosphere is filled with plasma, which screens the electric field in co-moving frames

of the current to fulfill the force-free condition. However one neglects the inertia of

the plasma and the currents and their contributions to the energy-momentum tensor.

The current only serves as the medium for the BZ process to operate and its physical

meaning is only through the electromagnetic field, as the rewriting of the derivative

Jµ = F µν
;ν . (2.40)

A constraint put on the electromagnetic field by the force-free equation with non-

zero Jµ is vanishing of the invariant

?FµνF
µν = 0, (2.41)

since ?FµνF
µν ∼ detFµν for antisymmetric Fµν , where ?Fµν ≡ 1

2
εµνρσF

ρσ is the Hodge

dual. (2.41) is called the degeneracy condition. Further assuming stationarity and ax-

isymmetry (so that Fϕt = 0), one deduces from the degeneracy condition the existence

of the ratio

ω ≡ − Ftr
Fϕr

= − Ftθ
Fϕθ

, (2.42)
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which is interpreted as the angular velocity of the magnetic field lines. The field lines

are mainly poloidal (to thread the black hole) and are specified by the vector potential

Aϕ. One last quantity needed to completely specify the electromagnetic field is the

toroidal magnetic field Bϕ = Frθ/
√
−g, for which we more often use the equivalent

quantity

BT ≡ (gϕϕgtt − g2
ϕt)B

ϕ BL
== −α2hϕϕB

ϕ. (2.43)

Thus, the independent field quantities for the force-free magnetosphere are now

Aϕ,r = −
√
−gBθ, Aϕ,θ =

√
−gBr, ω and BT . (2.44)

One can start with some initial configuration of Aϕ representing an external mag-

netic field profile (e.g. that of a non-rotating monopole as in BZ’s original paper), add

to it a perturbation (e.g. due to rotation) and solve the force-free equations to obtain

the complete profile (including ω and BT ) after the perturbation. It is also instructive

to just formally manipulate the mathematical relations among various quantities in

order to reveal some essential properties of the force-free magnetosphere. First, the

relevant quantities for the radial energy and momentum fluxes are respectively

T rt = −ωBT
Aϕ,θ√
−g

, T rϕ = −T
r
t

ω
. (2.45)

They both depend on BT (and the initial Aϕ). An observer co-rotating with angular

velocity ω will see a vanishing locally defined energy flux. Nevertheless, the angular

momentum flux is more robust and not affected by such changes of frame. In turn,

ω and BT are related respectively to the poloidal electric field (Ftr ∼ Ftθ ∼ ω) and

poloidal current JP ≡ (Jr, Jθ) with

Jr = −∂θBT , Jθ = ∂rBT . (2.46)

Again, the electric field can be made to vanish by going to the co-rotating frame with

ω, but JP generally does not as can be seen from the following argument. One can

check the other invariant FµνF
µν ∼ ~B2− ~E2 which should be positive in a magnetically

dominant magnetosphere:

1

2
FµνF

µν = B2
P

[
α2 − hϕϕ(ω − ωB)2

]
+

B2
T

α2hϕϕ
> 0 (2.47)

⇔ cωB
2
P + (Bϕ)2 > 0, (2.48)
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where B2
P ≡ hrr(B

r)2 + hθθ(B
θ)2 > 0 and

cω ≡
1

hϕϕ
− (ω − ωB)2

α2
(2.49)

(which also appears later in (5.40)). In a (rotating) black hole spacetime where a

horizon is present at α = 0, (2.47) generally implies BT 6= 0 and JP 6= 0.

By actually solving the force-free equations in different spacetimes, one finds (using

the example of a monopole field to be discussed in detail shortly) a relation

B2
T ∝ (ω − ΩH)2, ΩH = ωB|r=rH , (2.50)

from the horizon regularity condition for rotating black holes, and a second relation

B2
T ∝ (ω − Ω∞)2, Ω∞ ≡ ωB|r→∞, (2.51)

from exact solutions in the asymptotic static spacetimes (AdS or flat) which rotate

with angular velocity Ω∞ in the black hole coordinates (Ω∞ = 0 for Kerr).1 It

is natural to match the two solutions in the asymptotic region, i.e. equating BT ’s

in (2.50) and (2.51), so that BT cannot vanish, tied to the fact that ΩH 6= Ω∞.2

In other words, BT and JP are generated due to the relative rotation between the

horizon and the boundary, or the fact that KΩ∞ becomes spacelike near the horizon,

i.e. the existence of an ergosphere. One may develop the view that the spacetime

“entity” rotates in the magnetic field like a Faraday disk. In the slow rotation limit,

the coefficients of proportionality in (2.50) and (2.51) are the same, and one gets

the celebrated relation ω = ΩH/2 for the BZ process in Kerr, and an analogous ω =

(ΩH +Ω∞)/2 in Kerr-AdS. Nevertheless, we will show in chapter 4 that the ambiguity

in defining a monopole and the freedom to add perturbations to the monopole result

in modified relations in place of (2.51) and lead to the non-uniqueness of ω.

That BT and JP are produced by the rotation of spacetime can be elucidated

by finding the driving force of JP . For this we turn to the 3+1 formalism, where

the spacetime is effectively replaced by the traditional view of “absolute spaces” Σt

evolving in global time t. The Maxwell’s equations then take the familiar forms in

1Naively, the relation (2.51) also holds for Schwarzschild(-AdS) with Ω∞ = 0.
2We have implicitly assumed that ω and BT are r-independent as for BZ’s (slowly rotating)

monopole solution, thus excluding ω = ωB(r, θ), but otherwise we expect the same qualitative
argument holds generally.
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terms of 3-vectors

B̌i = α ?F it, Ěi =
α

2
εijk

?F jk, Ďi = αF ti, Ȟi =
α

2
εijkF

jk, J̌µ = αJµ = [ρ̌, J̌ i]

(2.52)

where εijk is the 3-d Levi-Civita tensor. The constitutive relations resemble those in

a bi-anisotropic medium [31, 7]:

Ě = αĎ + β × B̌ (2.53)

Ȟ = αB̌ − β × Ď, (2.54)

where α and β are the lapse function and the shift vector. The force-free condition

FµνJ
ν = 0 reads

ρ̌Ě + J̌ × B̌ = 0, Ě · J̌ = 0, (2.55)

implying

Ě · B̌ = Ď · B̌ = 0, (2.56)

which is the degeneracy condition. The existence of ω is such that

Ě = −ω × B̌, (2.57)

where ω = ω∂ϕ. The Poynting flux is Š = Ě × Ȟ .

Ě = 0 in the co-moving frame of the current by (2.55) or in a rotating frame with

ω by (2.57). However there is still a non-zero Ď = −α−1β × B̌ by (2.53), indicating

that the electric field can never be totally screened by the plasma. It is this residual

electric field that serves as the driving force of the poloidal current, analogous to the

electromotive force in a Faraday disk or the surface of a neutron star. (The non-

vanishing of Ď can also be seen from its definition in (2.52) where one always has

terms due to gϕt 6= 0.) The poloidal current then sources the toroidal magnetic field

Ȟϕ needed for the radial Poynting flux and the angular momentum flux. One sees

again the crucial role of β, associated with the ergosphere, in providing Ď which is

referred as the “gravitationally induced” electric field. A similar argument for the sign

of FµνF
µν ∼ B̌2 − Ď2 can be found in [31]. Note that in static spacetimes, although

BT and JP can be non-zero, the driving electromotive force necessarily comes from

ordinary rotating matter, e.g. the accretion disk.

The need to understand the “unipolar inductor” required to produce the electro-

motive force (EMF) was one of the triggers for the black hole membrane paradigm
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Figure 2.4: (From [32]. Reprinted with permission from Springer.) Left: a constant
magnetic flux (Ψ) surface of the magnetosphere around a rotating black hole. Right:
Integration path C for the EMF across two constant magnetic flux surfaces.

[12, 13], where the horizon is treated as a surface endowed with transport properties

such as conductivity and is used to impose boundary conditions. Although as dis-

cussed above, the current driving force is not directly related to the horizon but to

the ergosphere, the membrane paradigm still provides an effective way of calculating

the EMF, given by the following integral along a circuit as shown in fig. 2.4 [32, 12]

EMF ≡ ∆V =

∮
C
αĎ · dl = −

∫
CH
β × B̌ · dl =

ΩH

2π
∆Ψ, (2.58)

which shows the dependence on β except that only the path CH along the (stretched)

horizon contributes (β → 0 at infinity), where Ψ is the magnetic flux as indicated in

the figure.

As nowadays we understand it, the gravitationally induced electric field operates

in the entire region of the ergosphere to drive the poloidal current. The associated

toroidal magnetic field Ȟϕ is the one required to slow down the black hole by pushing

plasma into orbits with negative mechanical energy-at-infinity, resulting in an out-

going flux of mechanical energy-at-infinity. The energy flux changes its nature from

almost purely mechanical close to the horizon to almost purely electromagnetic far

away from it in the form of a Poynting flux (twist of magnetic field lines propagates

away). In a way, the ergospheric plasma and the magnetic field play roles similar to

those of the negative and positive energy particles in the Penrose process.
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2.5 BZ’s monopole solution

In their original paper [5], Blandford and Znajek were able to provide a “proof of

principle” by calculating the energy flux from a slowly rotating black hole with a

(split) monopole magnetic field. The solution was found using an ansatz with a per-

turbative expansion in the rotation parameter a, the zeroth order term given by a

known monopole solution in the Schwarzschild metric. The solution is required to

match that of a rotating radial field in flat spacetime (Michel 1973 [22]) at infinity

and satisfy a certain boundary (regularity) condition on the horizon. McKinney &

Gammie [6] re-derived BZ’s results using KS coordinates, which are free of the co-

ordinate singularity on the horizon, and thus have the advantage of allowing regular

boundary condition on the horizon and dispensing with the need to match to another

solution at infinity. The transformation from BL to KS coordinates (the latter in-

dicated by a tilde on quantities) involves defining new (ϕ̃, t̃) coordinates mixed with

the r coordinate:

dϕ̃ = dϕ+
a

∆
dr (2.59)

dt̃ = dt+
2mr

∆
dr. (2.60)

The transformation is itself singular at the horizon, such that the constant-t̃ surfaces

are now horizon penetrating. Physical quantities in KS coordinates are regular on

the horizon. In particular, the energy and angular momentum fluxes out of the black

hole are [6]

FE = −T rt = −ω sin2 θ
[
2(Br)2r

(
ω − a

2mr

)
−BrB̃ϕ∆

]
, FL = FE/ω (2.61)

(where note that only B̃ϕ is different from the BL value). Evaluated on the horizon

H (setting ∆ = 0),

FHE = 2(Br)2ωrH(ΩH − ω) sin2 θ. (2.62)

Energy extraction is possible if 0 < ω < ΩH . KS coordinates however result in addi-

tional off-diagonal metric components and we find that some general results (without

specializing to the monopole field) take a more concise form in BL coordinates. Most

importantly, the essential equation for Aϕ is the same in both coordinates. We thus

present the subsequent derivations in BL coordinates.

In the stationary and axisymmetric configuration, the force-free magnetosphere
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is effectively described by the following quantities: the angular velocity of the field

lines ω, the toroidal magnetic field BT = (gϕϕgtt − g2
ϕt)B

ϕ and Aϕ. The existence

of ω follows from the degeneracy condition ?F µνFµν = 0, along with stationarity and

axisymmetry ∂t = ∂ϕ, and is given by (cf. (2.42))

ω(θ, ϕ) ≡ −At,θ
Aϕ,θ

= −At,r
Aϕ,r

. (2.63)

The function Aϕ = constant specifies poloidal field surfaces. From the definition

(2.63) and the conservation equation (2.39), one has ω = ω(Aϕ) and BT = BT (Aϕ).

All non-vanishing components of Fµν are expressed in terms of {ω, Aϕ,r = −
√
−gBθ,

Aϕ,θ =
√
−gBr, Bϕ = Frθ/

√
−g}.

The conservation equation (2.39) is now a second order differential equation for

Aϕ, with parameters ω & BT . One can start with a solution found in the non-rotating

limit a = 0 and perturb it by spinning up the black hole, treating a/m � 1. The

conservation equations (2.39) are then solved perturbatively in a. It is convenient to

set m = 1. In this slow rotation limit, we allow the following corrections to the field

quantities:

Aϕ = A(0)
ϕ + a2A(2)

ϕ (2.64)

ω = aω(1) (2.65)

Bϕ = aBϕ
(1), (BT = aB

(1)
T ), (2.66)

keeping terms up to O(a2). The orders of a above are from symmetry considerations.

BZ considered a split monopole model, which models the magnetic field produced

by currents (with suitably chosen radial dependence) on the accretion disk around

a neutral black hole. By symmetry, one can concentrate on the north hemisphere

where the monopole field is initially given by A
(0)
ϕ = −C cos θ. In the perturbation

scenario, one can deduce that ω is r-independent:

∂r[ω(Aϕ)] ∼ O(a3), (2.67)

which is specific to the monopole field. Similarly, BT is also r-independent in BL

coordinates, but the horizon regularity condition that fixes the relation BT (ω) (cf.

(2.50)) is more conveniently derived in the KS coordinates, simply by imposing

B̃T (BT , Aϕ, ω) = 0 on the horizon from the regularity of B̃ϕ ∼ B̃T/∆. (If we solely
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work in the KS coordinates, a relation Bϕ(ω) can be found directly from the regularity

of Bϕ.) Now the equation for Aϕ contains ω(1)(θ) as the only free parameter.

Applying separation of variable on A
(2)
ϕ , it is not difficult to show that it has the

form

A(2)
ϕ = Cf(r) cos θ sin2 θ, (2.68)

and in addition, that ω(1)(θ) = ω(1). The equation for f(r) is

f ′′ +
2f ′

r(r − 2)
− 6f

r(r − 2)
+
[ r + 2

r3(r − 2)
− [ω(1) − 1/8](r2 + 2r + 4)

r(r − 2)

]
= 0. (2.69)

It has a regular singular point at the horizon r = 2 and an irregular one at infinity,

more easily seen using the radial coordinate z = 2/r, so that near z = 0 the equation

behaves like

f ′′(z) + · · ·+ (ω(1) − 1/8)/z4 = 0. (2.70)

This suggests that we should choose ω = 1/8 which turns out to be half of the horizon

angular velocity. One can in fact analytically solve (2.69) and find

f(r) ∼ 1

4r
+O

( ln r

r2

)
(2.71)

at large r.

The value of ω seems quite robust as indicated from numerical studies. It is the

value that ω eventually settles down to during a dynamic simulation. FHE as in (2.62)

also reaches its maximum for this value. Numerical simulations allow one to study

situations for finite a. For example [6], results for a = 0.5 show that in the force-free

region, the feature ω/ΩH ≈ 0.5 persists. It is also found that ω is nearly constant

for a large range of r. Recent numerical studies have lent increasing support to the

ability of the BZ process to account for the high efficiency of observed relativistic jets

[33, 27, 34, 35]. See e.g. fig. 2.5.
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Figure 2.5: The dependence of the jet power of the BZ process on the black hole spin,
reproduced from [33]. ‘BZ’ refers to the original BZ’s formula valid for small a. ‘BZ2’
& ‘BZ6’ are improved estimations (expanded in ΩH to the second and fourth orders
respectively) which explain well the observed luminosities for different a.
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Chapter 3

AdS/CFT

In this chapter we review aspects of the AdS/CFT correspondence, the possible appli-

cation of which to the BZ process in the Kerr-AdS background is the main motivation

and objective of this thesis.

3.1 AdS geometry

The AdS/CFT correspondence states that a gravitational theory in the higher dimen-

sional asymptotically anti-de Sitter (AdS) spacetime is equivalent to a lower dimen-

sional conformal field theory (CFT), usually considered as living on the boundary at

infinity in some ‘radial’ direction of the asymptotically AdS spacetime. The higher

dimensional spacetime is often referred as the “bulk”. In this section we review the

“AdS” part of the correspondence, while the “CFT” part will be reviewed later in

section 3.5 when we consider symmetries.

The AdSd+1 spacetime has a negative constant scalar curvature R = −d(d+1)/l2,

where the length scale l is referred as the AdS radius. It solves the Einstein’s field

equations with negative cosmological constant

Λ = −d(d− 1)

2l2
. (3.1)

The AdS spacetime is most easily visualized as a hyperboloid embedded in the

d+2-dimensional flat space with Cartesian coordinates [X0, Xa, Xd+1] and signature
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Figure 3.1: AdSd+1 space as represented by a hyperboloid in the d+2-dimensional
flat space. The {X0, Xd+1} directions correspond to the two negative signs in the
metric signature, and only one of the {Xa} directions is drawn (d = 1, a = 1). Left:
The grid of global coordinates covering the whole AdS space. Right: The Poincaré
patch, covering half of the original hyperboloid (for clarity, not showing the whole
range of the patch coordinates). On each graph, red lines mark constant radii and
black lines mark constant times. For the global coordinates, the radial coordinate
r is more intuitively related to the distance from the ‘waist’ of the hyperboloid (cf.
(3.3)) and the time coordinate t goes around the hyperboloid. For the Poincaré patch
the radial direction z point diagonally in the Xd-Xd+1 plane from the origin to the
increasing values of both coordinates (and thus cover half of the entire space) and
the time coordinate is along X0 of the embedding space but scaled by z. We have
also set l = 1. To generate the grids we have used the definitions for the intrinsic
coordinates given in [36].

[−,+ . . .+,−], given by the equation [36]

− (X0)2 +
d∑
a=1

(Xa)2 − (Xd+1)2 = −l2. (3.2)

Figure 3.1 depicts a hyperboloid for d = 1, manifesting the rotational symmetry in

the X0-X2 plane with the rotation axis along the X1 direction. The figure also shows

the intrinsic coordinates discussed below.

Intrinsic coordinates [r, t, θi] (i = 1, . . . , d−1), called the global coordinates, can be

introduced on the hyperboloid such that the constant-Xa subspaces of the hyperboloid



31

are circles of radii √
(X0)2 + (Xd+1)2 =

√
l2 + r2 (3.3)

with angular coordinate t/l. These circles are located on a (d− 1)-sphere of radius r

in the {Xa} subspace, i.e., r2 =
∑d

a=1(Xa)2. The (d− 1)-sphere is coordinatized by

the angles {θi}. Here r serves as the radial coordinate and t is the time coordinate

which ranges from −∞ to ∞ after unwrapping the circle.1 The AdS metric then

takes the form

ds2
d+1 = −

(
1 +

r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2 dΩ2
d−1, (3.4)

where dΩ2
d−1 is the line element on the unit (d − 1)-sphere. (Note that in the d = 1

case in fig. 3.1 the (d−1)-sphere appears to be two separate points at equal distances

from the origin of Xa = X1 axis.)

Another useful set of the intrinsic coordinates {z, xµ} covers a subregion, called

the Poincaré patch, of the AdS space. The radial direction z is defined by

l2

z
= Xd +Xd+1, z < 0 <∞ (3.5)

and we have a d-dimensional Minkowski spacetime at each constant z, with Cartesian

coordinates:

xµ =
z

l
Xµ, (µ = 0, . . . , d− 1). (3.6)

Finally, the other linear combination of Xd+1 and Xd is not an independent coordinate

but a function of (z, xµ):

Xd+1 −Xd = z +
xµxµ
z

. (3.7)

The metric for the Poincaré patch reads

ds2
d+1 =

l2

z2
(dz2 + ηµν dxµ dxν), (3.8)

where z = 0 is the boundary and z = ∞ is a degenerate horizon. The boundary at

z = 0 corresponds to r =∞ by noting that the two radial coordinates are related as

z−1 ∝
√

1 +
r2

l2
. (3.9)

1One can do the unwrapping because the space is not simply connected, i.e., the time circle
cannot be continuously shrunk to a point [37].
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On the other hand, the horizon at z = ∞ does not correspond to a particular limit

of r. In addition, as x0 →∞, any constant-z surface will reach r =∞ [36].

The Poincaré patch metric (3.8) is in the form of a Minkowski metric multiplied by

a factor divergent at z → 0, giving rise to a divergent surface area of the boundary and

also an effective divergent potential which makes the AdS space act like a confining

box for propagating modes. Similarly, the global metric (3.4) can also be written in

the form of a diverging factor r2/l2 times a regular metric (i.e. that of the Einstein

static universe) for r → ∞ [38]. A massive particle traveling outwards cannot reach

the boundary and will fall back to the interior. The timelike nature of the AdS

boundary will also allow us to reflect back a massless particle so that it can meet an

interior timelike trajectory (e.g. of an observer) twice.

3.2 AdS/CFT is a holographic principle

The radial direction of the AdS space plays a special role in the AdS/CFT corre-

spondence. As will be reviewed later, it is the radial falloff of the bulk fields that

provides the connection between the bulk and boundary quantities. Moreover, the

radial direction itself can be viewed as emerging from the energy scale of the boundary

CFT. AdS/CFT is thus a realization of the holographic principle [39], where a lower

dimensional theory can encode all the degrees of freedom of a higher dimensional one.

The correspondence is by no means trivial and its realization could be subtle; the two

theories are “dual” to each other, i.e., there is a one-to-one and onto map between

physical contents on the two sides.

In this respect, it should be emphasized that the correspondence is not in the sense

that physics in one theory is merely the manifestation/results of that in another.

For example, with a black hole in the bulk, the boundary theory is said to be at

finite temperature given by the Hawking temperature TH (as used in the black hole

thermodynamics). However, this is not to be confused with the inference that the

boundary is heated up by the Hawking radiation coming from the black hole. The

local temperature due to thermal radiation is redshifted as Tlocal = TH/
√
−gtt ∼ TH/r

at large radius r, while AdS/CFT only deals with the conformal class of the boundary

that is insensitive to this redshift factor (see e.g. [40, 41]). Moreover, for a CFT

without other scales, all non-zero temperatures are equivalent (discussed in detail

later). AdS/CFT is more nontrivial than the case of a usual hologram, where one

is just replicating the information. Here we have two traditionally different theories
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being equivalent and treated on the equal footing.

This results in two ways of exploiting the duality: one can start on either side,

certain aspects of which we understand better, and infer the dual descriptions on the

other side. Usually, the two theories involved are best described in their own regimes

of parameters. The duality then allows us to seek solutions for problems in one

theory by doing calculations in the other. This often transforms a hard calculation

(e.g., non-perturbative in nature) into an easier task, as well as helping to gain new

insights for each theory from a dual point of view.

Relating two theories of different natures also makes the duality conceptually

interesting. In one way, it can be thought of as parallel to the idea of finding a “gauge

gravity” theory, the reformulation of gravity as a gauge theory. In another, the extra

bulk dimension is emergent, corresponding to the energy scale in the boundary field

theory; by going into the bulk, the field theory gets geometrized and covariantized.

At last, it allows one to study quantum gravity using ordinary quantum field theories.

3.3 AdS/CFT is a strong/weak coupling correspon-

dence: the example of AdS5 × S5/N = 4 SYM

The original and primary example [15] of AdS/CFT is the correspondence between

the type IIB string theory in the AdS5 × S5 background and the strongly coupled

4-dimensional N = 4 SU(N) super Yang-Mills (SYM) theory, which is conformally

invariant (unlike QCD). It was found in the studies of D3-branes, where AdS5 × S5

arises as the near horizon geometry of the black 3-brane solution, corresponding to

the low energy supergravity limit of the (set of N coincident) D3-branes, while SYM

is the world volume theory on D3-branes, also in the low energy limit.

The ‘derivation’ of the correspondence can be made through the following dis-

cussion about the physical parameters on the two sides, compiling reviews in e.g.

[42, 43, 44, 45, 46]. We start with a configuration of N parallel coincident D3-branes

in 10-dimensional flat spacetime, with N large. There are open strings ending on the

D3-branes and closed strings off the branes. The string length scale is ls, related to

the (closed) string coupling gs as

2
√

2π3gsl
4
s = l4p = G

1
2
10, (3.10)
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where lp and G10 are the 10-dimensional Planck length and gravitational constant.

For this system, one wishes to consider the quantity

4πgsN ≡
l4

l4s
, (3.11)

where l is a typical length scale which can be thought of as the Schwarzschild radius

for the mass of the branes. Note then that

N =
π2l4√

2l4p
. (3.12)

By dialing up gs, gsN can vary between two limits gsN � 1 and gsN � 1, at which

the theory is tractable, in the following sense:

• gsN � 1 ⇔ l � ls. In this limit, the range of gravitational effect (∼ l) is

much smaller than the string length and can be neglected. The D-branes are

effectively in a flat spacetime background. This is also the regime for the string

perturbation theory since the loop expansion parameter is gsN .

• gsN � 1 ⇔ l� ls. The D-branes, carrying energy and charge, are strongly

gravitating. The spacetime that results is an extremal black 3-brane solution

with an asymptotically flat region connected in the interior to an infinitely long

throat region, at the end of which is the horizon. Its metric is

ds2
10 =

(
1 +

l4

r4

)− 1
2
η(4)
µν dxµ dxν +

(
1 +

l4

r4

) 1
2
(dr2 + r2 dΩ2

S5). (3.13)

The planar horizon is at r = 0 and of radius l (= radius of S5 = r
√
grr as

r → 0).2 It extends along the directions of the D3-branes (i.e. {xµ}). However,

in this picture there are no D3-branes any more and we are just left with closed

strings moving in the background (3.13).

We now take the low energy limits of both the above descriptions, resulting in

• gsN � 1 at low energy. This tells us that we can only probe string excitations

lower than the energy scale l−1
s , which are massless open and closed strings.

Equivalently, one can go to this limit by sending ls itself to zero so that it

2By ‘radius’ of the horizon we mean its location in the radial coordinate ρ4 ≡ l4 + r4 used to
write down the general non-extremal black brane solution as in [42]. The analytical extension over
r = 0 (ρ = l) is possible for the black 3-brane case.
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is relatively small compared to all other length scales (or l−1
s big compared

to other energy scales) we are probing. Gravity appears weak at such long

distances (� ls), as can also be seen from the smallness of the gravitational

constant G10 ∼ g2
s l

8
s . The low energy limit is thus also the decoupling limit

where the strings are free. Especially, the closed strings decouple from the open

strings which turn out to be described by the N = 4 SU(N) SYM gauge theory

on the D-brane world volume.

• gsN � 1 at low energy. In the asymptotically flat region of the black brane ge-

ometry, the low energy limit is implemented in the same way as before, keeping

only massless closed strings. In the throat region, any excitations will actually

appear to have low energies due to the vanishing redshift factor (1+l4/r4)−
1
4 → 0

as r → 0. Decoupling happens again between the two kinds of low energy

excitations in the two regions. In particular, the gravitational potential pre-

vent excitations near the horizon from climbing up the throat and reaching the

asymptotic region. The near horizon geometry (the r � l limit of (3.13)) is

AdS5 × S5:

ds2
10 =

r2

l2
η(4)
µν dxµ dxν +

l2

r2
dr2 + l2 dΩ2

S5 (3.14)

=
l2

z2
(dz2 + η(4)

µν dxµ dxν) + l2 dΩ2
S5 , z ≡ l2

r
, (3.15)

where in the second line one recognizes the Poincaré patch of AdS5.

The result is illustrated in fig. 3.2. To establish the duality, one is led to identify

the two low energy descriptions obtained, i.e., 4-d N = 4 SU(N) SYM theory (+

decoupled closed strings) and string theory on AdS5×S5 (+ decoupled closed strings),

provided that one “pulls” them (in the parameter space) to the same regime of gsN .

Usually, this is done by taking the SYM theory to the gsN � 1 regime where it is

regarded as strongly coupled because its effective coupling is the ’t Hooft coupling

λ ≡ g2
YMN = 4πgsN. (3.16)

On the AdS5×S5 side, although gsN � 1, the coupling gs does not have to be large.

In fact one assumes gs < 1 for the gravitational description to be good (D-strings

being heavy). This is often taken to the extreme case N → ∞ while keeping gsN
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Figure 3.2: Two descriptions of D3-branes at weak (λ � 1) and strong (λ � 1)
couplings. Figures from [47].

fixed. From (3.12), we then have

l

lp
= N

1
4 →∞, (3.17)

which means the quantum gravity effects can be neglected and the gravity theory is

weakly coupled. (Still one has the full non-linear classical theory of general relativity.)

On the field theory side, the N →∞ limit with fixed λ is the so called ’t Hooft limit,

which implies a large number of fields.

In summary, in this example of AdS/CFT one has a duality between strongly

coupled gauge theory in 4-d and weakly coupled gravity theory on AdS5(×S5), as

sketched in the following diagram:

D3-branes (gsN � 1)
gs↑−−−→ black 3-brane (gsN � 1)

low energy (massless open strings)

y ylow energy (near horizon)

SU(N) gauge theory
g2
YM↑−−−→ AdS/CFT.

At last, it worth emphasizing that the duality is expected to hold at any coupling

λ = gsN since both theories can be defined accordingly.
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3.4 AdS/CFT is a UV/IR correspondence: match-

ing degrees of freedom

Since it is advocated that the duality is an exact one-to-one correspondence, despite

the different spacetime dimensions on the two sides, there arises the issue of a possible

mismatch in the number of degrees of freedom. This can be resolved based on the

following observations. The AdS side contains gravity and the formation of black

holes is inevitable if the matter content is large enough. Since the black hole entropy

scales as the area of the horizon, which is less than the area of the boundary, there

is no problem for the boundary field theory to contain the same amount of entropy;

indeed we are in the limit of a large number of boundary fields. The boundary area

can serve as an upper bound (the Bekenstein bound) for the entropy in the bulk

(containing gravity, with or without black holes).

Such considerations reveal an integrated feature of AdS/CFT, namely, it is a

“UV/IR relation”, as first pointed out in [48] in addressing the “information bound”

problem. Consider the AdS5×S5 bulk geometry as in the last section. Since the sur-

face area of the AdS boundary diverges, one replaces the boundary with a regulating

surface at a cutoff radius r̂ = 1 − δ (δ � 1), where r̂ is the (dimensionless) radial

coordinate in the following form the AdS5 metric [49, 48]

ds2 = l2
(1 + r̂2

1− r̂2

)2

dt̂2 − l2
( 2

1− r̂2

)2

(dr̂2 + r̂2 dΩ2
3), (3.18)

as a product of a time axis and a unit 4 dimensional ball, r̂ = 1 being the boundary

and r̂ = 0 the ‘center’ of the ball.3 The cutoff surface (which is a 3-sphere in the

coordinates of (3.18)) has area

A ∝ l3δ−3. (3.19)

(The surface area of S5 at the boundary contributes a constant factor.) This is an

IR cutoff regulating large distance divergence from the AdS space perspective. From

the CFT perspective, δ appears as a UV cutoff. Regarding the information bound,

this can be seen from regulating the number of degrees of freedom of the SU(N) SYM

theory for which

Ndof ∼ N2δ−3, (3.20)

3Near the boundary r̂ = 1, the metric (3.18) can be brought to the Poincaré form (3.8) upon
identifying z/l = 1− r̂ and t/l = t̂ [49].
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if we think the 3-sphere is divided into cells of size ∼ δ and each cell accommodates

N2 field degrees of freedom. The information density is then finite

Ndof/A ∼ N2l−3 ∝ l5G−1
10 ∝ G−1

5 , (3.21)

using (3.10) and (3.12), where G−1
5 is the 5-d Newton constant.

3.5 Matching of symmetries

An important nontrivial test of the correspondence is that symmetries on the two

side coincide. We start by reviewing basics of the symmetry transformations while

introducing CFT, theories invariant under the conformal symmetry transformations.

We consider transformations of the “active” type, i.e., as mappings on both coor-

dinates and fields [50]:

x→ x′ = x′(x) (3.22)

Φ(x)→ Φ′(x′) = F [Φ(x)], (3.23)

where F is some function. Conformal transformations fall into the following types:

• translation

x′
µ

= xµ + aµ, Φ′(x′) = Φ(x) (3.24)

• rotation (Lorentz transformation)

x′
µ

= Λµ
νx

ν , Φ′(x′) = LΛΦ(x) (3.25)

• dilatation

x′
µ

= λxµ, Φ′(x′) = λ−∆Φ(x) (3.26)

• special conformal transformation (SCT)

x′
µ

=
xµ − bµx2

1− 2(b · x) + b2x2
⇔ x′µ

x′2
=
xµ

x2
− bµ. (3.27)

Such transformations map the metric

gµν(x)→ g′µν(x
′) = Ω(x)2gµν(x), (3.28)
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ε −Gx GF

translation aµ Pµ = −i∂µ 0

rotation
1

2
ωµν Lµν = i(xµ∂ν − xν∂µ) Sµν

dilatation α D = −ixµ∂µ −i∆

SCT bµ Kµ = −i(2xµxν∂ν − x2∂µ) −2i∆xµ − xνSµν + κµ

Table 3.1: The infinitesimal parameters ε and the generators G = GF − Fx for the
conformal transformations. Special symbols carrying spacetime indices have been
used to denote Gx. Also, Sµν , ∆ and κµ are values of G (or GF ) at x = 0.

for some function Ω(x). (Transformation rules for the connection, the Riemann and

Ricci tensors are not surprisingly involve derivatives of Ω(x) [51].)

The infinitesimal changes of x and Φ induced by a small parameter ε (which could

carry indices) are expressed as

ξµ ≡ x′µ − xµ = ε
δxµ

δε
(3.29)

δΦ ≡ Φ′(x′)− Φ(x) = ε
δF

δε
(x). (3.30)

The generator G for an infinitesimal transformation is defined through the change of

the functional form of Φ for the same coordinates:

−iεGΦ(x′) ≡ Φ′(x′)− Φ(x′) = δΦ− ξµ∂µΦ(x)

= ε
[δF (x)

δε
− δxµ

δε
∂µΦ(x)

]
,

(3.31)

which also equals to −iεGΦ(x) to the first order in ε. In this definition G includes two

pieces, i.e. G = GF−Gx where GF generates the change in the field via −iεGFΦ = δΦ

and Gx is a “transport term” such that −iεGx = ξµ∂µ. Explicit expressions of ε and G

for conformal transformations are listed in table 3.1. For conformal transformations

ξµ is called the “conformal Killing vector” and constrained to be at most quadratic

in x, given as

ξµ(x) = aµ + ωµνx
ν + αxµ + [2(b · x)xµ − bµx2]. (3.32)

The constant term corresponds to translation, the linear terms include rotation and

dilatation, and the quadratic term corresponds to the special conformal transforma-

tion.



40

N = 4 SU(N) SYM AdS5 × S5

Conformal group: SO(4, 2) Isometry of AdS5: SO(4, 2)
R-symmetry: SU(4) ∼ SO(6) Isometry of S5: SO(6)

Table 3.2: The symmetries of the two theories. The full isometry supergroup of the
AdS5 × S5 background is isomorphic to the N = 4 superconformal symmetry.

For CFTd, the generators Gx obey the following commutations relations

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac), (3.33)

where

Jµν ≡ Lµν , J−2,−1 ≡ D, J−2,µ ≡
1

2
(Pµ−Kµ), J−1,µ ≡

1

2
(Pµ+Kµ), (3.34)

with Jab = −Jba. The indices µ, ν = 0, 1, . . . , d−1 and a, b = −2,−1, 0, . . . , d−1. The

metric ηab = diag(−1, 1, ηµν). Depending on whether ηµν is Euclidean or Lorentzian,

the algebra (3.33) is that of SO(d+ 1, 1) or SO(d, 2). In the d = 4 case, this matches

perfectly with the isometry group of AdS5. Another piece of the isometry, i.e. O(6)

of S5, matches the R-symmetry of SYM theory. The symmetries are summarized in

Table (3.2).

3.6 The dictionary

The observables in CFT are operators O∆ of scaling dimension ∆ (same as in the

generator of dilatation from the last section). They can be used to deform the field

theory by adding to the action a term

δS =

∫
ddxΦ0O∆, (3.35)

where Φ0 stands for the source for O∆, a non-dynamical background field. We are

interested in computing the correlation functions of O∆, usually via functional deriva-

tives of the generating functional (the partition function) defined as

ZCFT [Φ0] ≡
〈

exp

∫
ddxΦ0O∆

〉
, (3.36)
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Φ O∆

scalar φ scalar operator

vector field Aµ U(1) current Jµ

metric gµν energy-momentum T µν

Table 3.3: Bulk fields Φ and field theory operators O∆.

so that the correlation function is

〈O∆(x1) · · · O∆(xn)〉 =
δ

δΦ0(x1)
· · · δ

δΦ0(xn)
ZCFT [Φ0]

∣∣∣∣
φ0=0

. (3.37)

Under AdS/CFT, and moving to Euclidean signature, it is natural to conjecture a

bulk dual of ZCFT [Φ0], which in fact is the partition function of the bulk theory

ZAdS[Φ0] =
[∫
DΦ exp(−IE[Φ])

]
Φ|∂AdS=Φ0

, (3.38)

here represented by a functional integral over all possible bulk field configurations,

subject to the boundary condition Φ|∂AdS = Φ0, where IE is the bulk Euclidean action.

Thus, the boundary values of bulk fields act as sources for CFT operators O∆. The

precise statement of AdS/CFT is then the equality

ZCFT [Φ0] = ZAdS[Φ0] (3.39)

between the two partition functions. In the classical (super)gravity limit, the func-

tional integral in (3.38) can be replaced by a saddle point approximation. Namely,

one only picks up the contributions that solve the classical Einstein’s equation, so

that

ZAdS[Φ0] ≈ exp
(
−IE[Φ]

)
Φ|∂AdS=Φ0

, (3.40)

where IE[Φ] is evaluated on-shell. The duality then allows us to take an existing

solution in classical general relativity and use AdS/CFT as a tool to obtain a dual

field description, where the latter could be a familiar area of physics, e.g., condensed

matter, fluid dynamics, QCD or quark-gluon plasma and there have been fruitful

investigations in these areas using AdS/CFT.

More specifically, Φ may represent different fields, corresponding to different field

operators. A few examples are given in Table (3.3). In practice, with a solution for
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Φ one can examine its asymptotic falloff and extract information on the field theory

side. We next illustrate this with concrete examples.

3.7 Scalar field example

We first consider a massive scalar field φ in Euclidean AdS with metric

ds2
d+1 =

l2

z2

(
dz2 +

∑
µ

dx2
µ

)
, (xµ = xµ), (3.41)

which is just the Wick rotated Poincaré patch metric (3.8). The action is

IE =
1

2

∫
ddx dz

√
g
[
(Oφ)2 +m2φ2

]
, (3.42)

and the equation of motion (2−m2)φ = 0 takes the form[
zd+1 ∂

∂z

(
z−d+1 ∂

∂z

)
+ z2 ∂

∂x2
−m2l2

]
φ(z, x) = 0. (3.43)

Following [16] (also [36]), one recognizes the function

K∆(z, x− x′) = c∆

[ z

z2 + (x− x′)2

]∆

, c∆ =
Γ(∆)

π
d
2 Γ(∆− d

2
)

(3.44)

is a solution that vanishes on the boundary z = 0 except at x = x′. K∆ is in fact a

representation of δ function:

lim
z→0

K∆ = zd−∆δ(x− x′). (3.45)

Thus the general solution can be written as

φ(z, x) =

∫
ddx′K∆(z, x− x′)φ0(x′) (3.46)

with the asymptotic behaviour φ(z → 0, x) → zd−∆φ0(x). K∆ is called the bulk-to-

boundary propagator.

A CFT operator O∆ of scaling dimension ∆ transforms under x→ λx as

O∆(x)→ O∆(λx) = λ−∆O∆(x). (3.47)
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For the partition function (3.36) to be conformally invariant∫
ddxφ0(x)O∆(x) =

∫
dd(λx)φ0(λx)O∆(λx) = λd−∆

∫
ddxφ0(λx)O∆(x), (3.48)

one needs to have

φ0(x)→ φ0(λx) = λ∆−dφ0(x) (3.49)

under the same transformation, i.e. φ0(x) has scaling dimension d−∆ [52].Thus the

bulk field should behave near the boundary as

φ(z, x) ∼ zd−∆φ0(x), z → 0, (3.50)

so that it is invariant under (z, x) → (λz, λx) which is an isometry of the AdS

space [44]. This agrees with the solution found above. We are led to the AdS/CFT

conjecture discussed earlier, that the (scaled) boundary value φ0 of the bulk field acts

as the source on the boundary for the field theory operator O∆.

In fact, the massive scalar solution has two modes and behaves near the boundary

as [53]

φ→ zd−∆+φ0(x) + z∆+A(x), (3.51)

where

∆+ = d/2 +
√
d2/4 +m2l2 (3.52)

is the larger root of

∆(∆− d) = m2l2. (3.53)

Note ∆+ ≥ d/2 ≥ d − ∆+. Usually, the finiteness of the action selects the mode

φ ∼ z∆+ , called the “normalizable mode”, which falls off faster. For the slower falloff

mode φ ∼ zd−∆+ , called then “non-normalizable mode”, the action has a diverging

surface term from integration by parts. A refined statement of AdS/CFT is that

the non-normalizable mode gives the source φ0 for the boundary CFT operator O∆+ ,

while the expectation value of the operator can be read off as

〈O∆+〉 = (2∆+ − d)A (3.54)

from the normalizable mode. In other words, AdS/CFT postulates the duality be-

tween a quantum fluctuating field propagating in the bulk (here the normalizable

mode) and a boundary CFT whose operator is coupled to a classical non-fluctuating
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background field (here given by the non-normalizable mode).

A subtlety arises for

− d2/4 ≤ m2l2 < −d2/4 + 1. (3.55)

(Negative mass squared is allowed without causing instability. The lower bound set

by m2 ≥ −d2/4l2, for real ∆+, is called the Breitenlohner-Freedman (BF) bound.) In

this case, both modes are normalizable. The diverging surface term can be cancelled

by adding a boundary term to the action. One is free to identify either φ0 or A as

the source, and then (2∆−d)A or (2∆−d)φ0 as the expectation value, with ∆ = ∆+

or d−∆+ respectively. Thus, for the mass range (3.55) we can have two CFTs with

operators of different dimensions

∆ = ∆+ ∈ [d/2, d/2 + 1) or ∆ = d−∆+ ∈ (d/2− 1, d/2]. (3.56)

∆ is bounded below by d/2− 1 (as opposed to d/2 in the single CFT case) which is

precisely the unitarity bound for scalar operators. Naively, the Dirichlet prescription

(3.39) only gives the O∆+ theory, since φ0 in (3.51) is the leading falloff. Nevertheless,

the generating functionals of correlation functions in the two theories are in fact

related by a Legendre transform, so that an analogue of (3.39) also holds for the

Od−∆+ theory. See [54] for further discussions and [55, 56] for the case of vector

fields.

3.8 Introducing finite temperature and chemical

potentials

We have been considered pure AdS geometry, which is a maximally symmetric space-

time, satisfying

Rabcd =
R

d(d+ 1)
(gacgbd − gadgbc) = −l−2(gacgbd − gadgbc), (3.57)

for AdSd+1. One can break some of the symmetries by deforming the bulk geometry,

but require that the full symmetry is recovered near the boundary, i.e., the spacetime

is asymptotically AdS. One way of introducing the deformation is by putting a black

hole in the bulk interior, breaking the dilatation symmetry. One could consider the
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simple case of a planar Schwarzschild-AdS solution

ds2
d+1 =

l2

z2

[
−f(z) dt2 + f(z)−1 dz2 + dxi dxi

]
, (3.58)

different from (3.8) by the factor f(z) = 1 − (z/zH)d. On the boundary, f(0) = 1.

In the interior, we have a horizon at z = zH and the solution is characterized by

the black hole size zH/l. Under the dilatation {z, t, xi} → λ{z, t, xi}, we get a black

hole of size rH/(λl). The appearance of a horizon (a particular length scale) in the

IR is equivalent to putting the boundary field in finite temperature, i.e. the Hawking

temperature associated with the horizon, given by

T =
d

4πzH
. (3.59)

The above dilatation also maps the temperature from T to λT . Since the boundary

field is scale invariant, all finite values of the temperature (the only scale in the theory)

are equivalent.

The temperature also arises from considering the Euclidean metric, as the saddle

point used to calculate the bulk partition function in the semiclassical limit. For

Schwarzschild-AdS, one only needs to Wick rotate t to imaginary time t→ −iτ and

use the resulting metric to evaluate the Euclidean action IE. The (z, τ) plane of the

bulk metric is like a disk and the absence of a conical singularity at z = zH (the origin

of the disk in appropriate coordinates) requires τ to be periodic

τ ∼ τ + β, β ≡ 4πzH
d

. (3.60)

The same identification on the boundary means that we are studying a field theory

in a thermal ensemble at finite temperature T = 1/β, the same as the Hawking

temperature of the bulk black hole:

〈O〉T =

∫
DΦ0(x)

〈
Φ0(x), t

∣∣Oe−βH∣∣Φ0(x), t
〉

=

∫
DΦ0(x) 〈Φ0(x), t |O|Φ0(x), t+ iβ〉 ,

(3.61)

To compute the Euclidean action, one has to regulate the divergence due to the

infinite volume of the spacetime. One way is to subtract the two actions computed

for the Schwarzschild-AdS black hole and the empty AdS space (as the zero mass
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black hole limit). Explicitly [57],

IE = − d

16πGN

∫
dd+1x

√
g
[
R +

d(d− 1)

2l2

]
=

d

8πGN

∫
dd+1x

√
g. (3.62)

For Schwarzschild-AdS, one integrates the radial direction from the horizon to some

cutoff radius r = R and the imaginary time from τ = 0 ∼ β. For the empty AdS,

one starts from r = 0 but needs to rescale τ so that its period agrees with that of the

black spacetime on the hypersurface r = R. Then send R→∞ and one finds [57]

IE =
Vol(Sd−1)(l2rd−1

H − rd+1
H )

4GN [dr2
H + (d− 2)l2]

. (3.63)

An alternative and more popular method to regulate the action is by adding to

it a counterterm constructed solely from the intrinsic geometric invariants of the

boundary. With the partition function Z ≈ e−IE , one can obtain the free energy and

entropy via F = −T lnZ = TIE and S = −∂F/∂T , where κ is the gravitational

constant.

Another deformation in the bulk is the addition of a Maxwell field, whose gauged

U(1) symmetry corresponds to a global U(1) symmetry in the boundary field theory.

The asymptotic values of bulk fields become the background fields on the boundary

and introduce new scales. For example, the temporal component of the vector poten-

tial introduces a chemical potential µ = A(0)t(x) on the boundary, where the subscript

“(0)” means the limit z → 0. For the full Einstein-Maxwell action [58]

I =

∫
dd+1y

√
−g
[ 1

2κ2

(
R +

d(d− 1)

l2

)
− 1

4g2
F 2
]

(3.64)

we have the Reissner-Norström-AdS solution given by the metric (3.58) but with

f(z) = 1− (1 + z2
Hµ

2γ−2)(z/zH)d + z2
Hµ

2γ−2(z/zH)2(d−1) (3.65)

in terms of the chemical potential µ, where γ2 = 2g2l2/κ2 is dimensionless. The

temperature is again found by periodically identifying the Euclidean time:

T =
1

4πzH
[d− (d− 2)z2

Hµ
2γ−2]. (3.66)

The dilatation {z, t, xi} → λ{z, t, xi} maps the solution to one with temperature
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λT and chemical potential λµ, leaving the ratio T/µ unchanged. So unlike for the

Schwarzschild-AdS case, boundary field theories are equivalent only if they have the

same value of T/µ, which can be continuously sent to zero.

The free energy is be obtained from the Euclideanized action (3.64) as

F = TIE = − ld−1

2κ2zdH
(1 + z2

Hµ
2γ−2)Vd−1 = f(T/µ)Vd−1T

d, (3.67)

where the function f(T/µ) is found by expressing zHµ in terms of T/µ using (3.66).

We are in the grand canonical ensemble and the charge density in the field theory is

given by

ρ = − 1

Vd−1

∂F

∂µ
=

ld−1µ

κ2γ2zd−2
H

=
(d− 2)ld−3µ

(d− 1)g2zd−2
H

(3.68)

Using AdS/CFT, µ = A(0)t(x) and ρ = 〈jt(x)〉 can also be read off from the

asymptotic behaviour of the vector potential At, as the slower and faster falloffs

respectively, where jµ is the boundary current. Note that the vector potential includes

a constant shift so that it vanishes on the horizon:

Aµ dxµ = µ[1− (z/zH)d−2] dt. (3.69)

Expanding this expression in z one finds consistent results for µ and ρ (as in (3.68),

up to a numeric factor).

A further example with a bulk magnetic field can be given using the dyonic

Reissner-Norström-AdS4 metric having the same form as (3.58) but with

f(z) = 1−
[
1 + γ−2z2

H(µ2 + z2
HB

2)
]
(z/zH)3 + γ−2z2

H(µ2 + z2
HB

2)(z/zH)4, (3.70)

where the dimensionless quantity γ2 = 2g2l2/κ2 with g the gauge coupling. The gauge

potential is

A = µ(1− z/zH) dt+Bx1 dx2. (3.71)

Again, the scale invariance is broken but the rotational invariance is preserved. The

thermodynamic quantities are calculated to be

T =
1

4πzH
(3− γ−2z2

Hµ
2 − γ−2z4

HB
2) (3.72)

G = −T lnZ = − l2

2κ2z3
H

, (3.73)
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where G indicates that we are in the grand canonical ensemble with fixed µ.

3.9 Fluid/gravity correspondence

Another direction of application of the AdS/CFT correspondence is the fluid/gravity

correspondence. Mathematically, it reflects a nontrivial relation between Einstein’s

equations and the relativistic Navier-Stokes equation which describes small pertur-

bations of the above thermal states.

In the black brane case considered above, the scale introduced by finite temper-

ature breaks the dilatation symmetry and we have a one parameter family of black

brane solutions, i.e. (3.58) with (3.59), labelled by the temperature. Another sym-

metry that one can make nontrivial is the Lorentzian symmetry which can be used to

generate a d parameter family of the so called boosted black brane solutions, labelled by

the temperature T and a four-velocity uµu
µ = −1 in the boundary directions. These

parameters are the starting point to construct the stress tensor of a d-dimensional

conformal fluid and eventually towards a fluid/gravity correspondence. What we get

is a one-to-one mapping between the boundary fluid states and a dynamical bulk ge-

ometry with regular horizons. Fluid dynamics describes long wavelength (compared

with the scale set by the temperature4) fluctuations about the global thermal equi-

librium. This implies slowly varying T (x) and uµ(x), as functions of the boundary

coordinates: [59]
∂uµ

T
,
∂ lnT

T
� 1. (3.74)

The fluid is in local thermal equilibrium. Then it is studied in the derivative expan-

sion in the boundary directions and the bulk solution to the Einstein’s equations is

constructed order-by-order.

To present more details, start with the static black brane metric (3.58) rewritten

in coordinates with r = l2/z:

ds2 =
l2 dr2

r2f(r)
+
r2

l2
[−f(r) dt2 + l2δij dxi dxj], f(r) = 1− (rH/r)

d =
(4πl2T

dr

)d
,

(3.75)

Then go to ingoing Eddington coordinates dv = dt + l2 dr
r2f(r)

regular on the horizon,

followed by a boost with constant velocity uµ: v → uµx
µ, xi → Piµx

µ, with Pµν =

4This is the only scale if one does not consider chemical potentials and curved boundary manifold.
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ηµν + uµuν . We arrive at [60]

ds2 = −2uµ dxµ dr + r2[−f(r)uµuν + Pµν ] dxµ dxν , (3.76)

We can use the metric (3.76) to compute the boundary stress tensor and show that

it agrees with that of a d-dimensional conformal fluid, given by

T µν = αT d(ηµν + duµuν), (3.77)

where the dimensionless normalization constant α is proportional to the central charge

of the CFT. Note that this stress tensor is not sourcing the boundary background

metric; it is read off from the normalizable mode of the bulk metric as in the standard

AdS/CFT prescription.

After promoting {T, uµ} to slowly varying functions {T (x), u(x)µ}, one can per-

form a derivative expansion and solve the conservation equation of the fluid to a given

order in ε ∼ ∂x. The next-to-leading order terms in T µν describe dissipations, with

coefficients of ∂T, ∂uµ being the transport coefficients. The bulk Einstein equations

are also solved to a given order, and this yields a regular fluctuating horizon. It can

be compared to the membrane paradigm in which the fluid dynamical properties are

assigned to a timelike stretched horizon just outside the true horizon.

One difference is that the fluid in the AdS/CFT framework lives on the boundary

and captures the whole bulk dynamics. The membrane paradigm deals with a surface

in the IR region of the bulk. Nevertheless, this reflects the UV/IR connection: the

fluid on the boundary is in the long wavelength and low energy limit and should

correspond to the physics near the horizon in the bulk. It has been shown [61] that at

the level of linear response the transport coefficients of the boundary fluid are indeed

fully captured by geometric quantities evaluated at the horizon.

We have been considering the Poincaré patch of the AdS geometry. Compared to

the global coordinates, it has the merit that the boundary is the flat geometry Rd

or R1,d−1, rather than Sd or R × Sd−1. However, in global coordinates the bound-

ary CFT displays a deconfinement-confinement phase transition when considered at

finite temperature. The corresponding phenomenon in the bulk is the Hawking-Page

transition between AdS black holes and thermal AdS space. The large AdS black

hole phase has a dual description in terms of fluid dynamics in the Einstein universe,

which we discuss in the next section.
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3.10 Kerr-AdS black holes and ideal fluid mechan-

ics

In this section we show that large Kerr-AdS black holes are dual to a rotating fluid

on the boundary [62]. Especially, the partition functions from both sides have the

same dependence on the angular velocity, and diverge as the rotation at the boundary

approaches the speed of light. For large horizon radii, the spacetime can be ‘tubewise’

approximated by boosted black brane solutions, extending from the horizon to the

boundary, and the dual fluid description applies. For small horizon radii, the validity

of the fluid description (i.e., long wavelength, slow variation limit) is not guaranteed

[62].

We will present calculations of the partition functions on the boundary side using

fluid mechanics and a model of a conformally coupled scalar field, and compare them

with large black hole results.

3.10.1 Metric

A rotating black hole in the AdS background is given by the Kerr-AdS metric which

reads in 4-d [18]

ds2 = −∆r

Σ

[
dt− a

Ξ
sin2 θ dϕ

]2

+
Σ

∆r

dr2 +
Σ

∆θ

dθ2 +
∆θ sin2 θ

Σ

[r2 + a2

Ξ
dϕ− a dt

]2

,

(3.78)

where

Σ ≡ r2 +a2 cos2 θ, Ξ ≡ 1− a
2

l2
, ∆θ ≡ 1− a

2

l2
cos2 θ, ∆r ≡ (r2 +a2)

(
1+

r2

l2
)
−2mr.

(3.79)

Introducing the orthonormal 1-form tetrad

ω(0) =

√
∆r

Σ

[
dt− a

Ξ
sin2 θ dϕ

]
, ω(1) =

√
Σ

∆r

dr (3.80)

ω(2) =

√
Σ

∆θ

dθ, ω(3) =

√
∆θ

Σ
sin θ

[r2 + a2

Ξ
dϕ− a dt

]
, (3.81)

the metric is just

ds2 = −[ω(0)]2 + [ω(1)]2 + [ω(2)]2 + [ω(3)]2. (3.82)
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Figure 3.3: The plane of (x = r2
H/l

2, ξ = a2/l2). The lower curve represents extreme
black holes and the upper curve represents those rotating with the critical angular
velocity (explained later). They are upper bounds on ξ for fixed x, or equivalently,
lower bounds on x for fixed ξ. For x > 1, the critical angular velocity limit is
represented by the line ξ = 1.

One has the constraint
a

l
< 1 (3.83)

in order to have a regular metric (Ξ 6= 0) and to preserve the signature (∆θ > 0).

This is in addition to the cosmic censorship constraint which reads [63]

a2

l2
≤ a2

extr

l2
=

(rH/l)
2[1 + 3(rH/l)

2]

1− (rH/l)2
, (3.84)

or equivalently rH > rextr
H , where rH is the horizon radius and rextr

H & aextr are for

extremal black holes. Measured in units of l, a black hole with parameters {rH , a, l}
can be represented by a point in the {rH/l, a/l} plane, subject to the constraints

(3.83) and (3.84). For large enough black holes with rH/l > 1/
√

3, (3.83) is more

stringent than (3.84) so we never reach extremality. Later in this section, we introduce

a critical angular velocity bound ac/l which changes dominance with 1 at rH/l = 1.

We sometimes use the shorthand notations x ≡ r2
H/l

2, ξ ≡ a2/l2. Fig. (3.3) shows

curves for a/l = aextr/l, ac/l, 1 on the x-ξ plane.

3.10.2 Comparing partitions from fluid and black hole sides

Under AdS/CFT, the thermodynamics of large Kerr-AdS black holes is shown [62]

to be dual to that of a rotating conformal fluid on the boundary. The boundary is
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conformal to the Einstein universe S2 ×R:

ds2 = − dT 2 + dΘ2 + sin2 Θ dΦ2, (3.85)

where the coordinates are related to the bulk Boyer-Lindquist ones by

cos Θ =

√
Ξ

∆θ

cos θ, Φ = ϕ+ al−2t, T = tl−1 (3.86)

for large radius. The boundary is taken to be the large constant-y hypersurface where

y =
√

∆θ

Ξ
r for large radius. Following [62], to describe a stationary, rigidly rotating

neutral fluid on the unit S2 we need proper energy and entropy densities ρ and s,

the pressure P and the temperature T measured in the local rest frame. The motion

corresponds to the 3-velocity uµ = γ[ut = 1, uθ = 0, uϕ = ω], where γ = (1− v2)−1/2

and v = ω sin θ. The stress-energy tensor is that of a perfect fluid, as a function

T µν = T µν(ρ,P , ω). In addition, T = γτ for constant τ . Thanks to conformal

invariance, the thermodynamic potential Φ = E − T S is of the specific form

Φ = −Vol(S2)T 3h, h = constant, (3.87)

from which one derives ρ = 2P = 2T 3h and s = 3T 2h, using the first law dΦ =

−S dT − P dV . Then the energy Efl, angular momentum Lfl and entropy Sfl of the

fluid, given by integration of T µν(ρ,P) and JµS (ω) = suµ, are obtained as functions

of (τ, h, ω), which in turn yield

Tfl =
∂Efl

∂Sfl

= τ, Ωfl =
∂Efl

∂Lfl

= ω. (3.88)

Now the grand canonical partition function is evaluated using the above results as

lnZ = −Efl − TflSfl − ΩLfl

Tfl

=
Vol(S2)T 2

flh

1− Ω2
fl

. (3.89)

On the gravity side, using the standard formulae for Kerr-AdS black hole thermo-

dynamics [19], we find

lnZ = −E − TS − ΩL

T
=

π(r2
H − l2)(r2

H + a2)2

Ξ[3r4
H + (l2 + a2)r2

H − a2l2]
, (3.90)

Calculating the Euclidean action IE relative to the zero-mass black hole background
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[18] gives the same result: IE = − lnZ. To leading order in the large black hole limit

rH � l we have,

m =
r3
H

2l2
, E =

m

Ξ2
, L =

ma

Ξ2
, S =

πr2
H

Ξ
, T =

3rH
4πl2

, Ω =
a

l2
, (3.91)

so that

lnZ ≈ πr2
H

3Ξ
=

16π3l4T 2

27(1− Ω2l2)
, (3.92)

which agrees with the fluid result (3.89) with the identification

Ω = Ωfl/l, T = Tfl/l, h =
4π2l2

27
. (3.93)

The scaling between the two angular velocities is consistent with the scaling between

the time coordinates in (3.86). Also, we are in the high temperature limit since

T ∼ rH .

3.10.3 Critical angular velocity limit

The angular velocity entering the thermodynamics has a geometric meaning from the

bulk side; it is defined as Ω = ΩH − Ω∞, the angular velocity at which the horizon

is rotating relative to the boundary. This is also the angular velocity of the matter

that rotates in the boundary Einstein universe [14]. The rotation is at the speed of

light in the limit (cf. (5.12))

Ω→ Ωc = 1/l, Ωfl → 1, (3.94)

as can be found by requiring the corresponding 4-velocity be null at the boundary

(and on the equator), and referred hereafter as the critical angular velocity limit.

Below this limit, the horizon-co-rotating Killing vector is globally timelike, so that

we can have thermal radiation co-rotating and in thermal equilibrium with the black

hole all the way to infinity [18].

Note that

Ω− Ωc = −
(a
l
− 1)(a

l
− r2

H

l2
)l

r2
H

l2
+ a2

l2

, (3.95)
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so Ω ≤ Ωc is equivalent to

a

l
≤ min

{r2
H

l2
, 1
}

=


r2
H

l2
if rH

l
≤ 1

1 if rH
l
> 1,

(3.96)

where the former case can be rephrased as ‘globally timelike Killing vector exists

for large black holes with r2
H > al’, while the latter case already implies large black

holes. In the context of the ‘large black hole/fluid’ correspondence discussed above,

Ω = Ωc is at a = l or Ξ = 0 and causes divergences in the extensive thermodynamic

quantities E, S and L, as well as IE of the black hole, since they are all proportional

to inverse powers of Ξ. (It can also be shown that for the 4-velocity uµ = [1, 0, 0,Ωc],

the 4-acceleration aµa
µ ∼ Ξ−2.) Small black holes (rH/l ≤ 1) are less interesting for

which such divergences do not occur when Ω→ Ωc.

To extract the divergent behavior at Ωfl → ±1 from the field theory side, [18]

considered a conformally coupled scalar field φ in the 3-d Einstein universe (3.85),

with the equation of motion (
�− 1

4

)
φ = 0. (3.97)

With the ansatz [64], φ ∝ exp(−iωT )Y m
L (Θ,Φ), where Y m

L (Θ,Φ) are the spherical

harmonics, the mode frequency ω and the angular momentum quantum number L

are related by

ω = L+
1

2
. (3.98)

Then the partition function is given by

lnZ = −
∞∑
L=0

L∑
m=−L

ln
[
1− e−β(ω−mΩfl)

]
, β =

1

T
. (3.99)

In the high temperature (small β) limit the summations can be approximated by

integrals

lnZ ≈ − 1

β2

∫ ∞
0

dy

∫ y

−y
dx ln

[
1− e−(y−Ωflx)

]
=

2ζ(3)

β2(1− Ω2
fl)
. (3.100)

[18] only sums over modes with |x| = y which contribute most as Ωfl → ±1. The
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result is

lnZ ≈ − 1

β2

∫ ∞
0

dy
∑
x=±y

ln
[
1− e−(y−Ωflx)

]
=

π2

3β2(1− Ω2
fl)
. (3.101)

Thus, up to a numeric factor, the conformal scalar field calculation captures the same

divergence at the critical angular velocity limit as the gravity result.

3.10.4 Kerr-Newman-AdS4

We also discuss thermodynamics of charge rotating AdS black holes. We use the

Kerr-Newman-AdS4 metric in Boyer-Lindquist coordinates which is given by (3.78)

or (3.82) with

∆r = (r2 + a2)
(
1 +

r2

l2
)
− 2mr + q2

e + q2
m, (3.102)

and qe & qm are electric and magnetic charge parameters. The Maxwell field is given

by [65]

A = − qer√
∆rΣ

ω(0) − qm cos θ√
Σ∆θ sin θ

ω(3) (3.103)

and

F = −Σ−2[qe(r
2 − a2 cos2 θ) + 2qmra cos θ]ω(0) ∧ ω(1)

− Σ−2[qm(r2 − a2 cos2 θ)− 2qera cos θ]ω(2) ∧ ω(3). (3.104)

The black hole has mass M , angular momentum L, charges {Qe, Qm} and entropy

S given by

M =
m

Ξ2
, L =

ma

Ξ2
(from Komar formula) (3.105)

Qe =
qe
Ξ
, Qm =

qm
Ξ

(from total flux) (3.106)

S = π
r2
H + a2

Ξ
(from horizon area) (3.107)

These serve as the extensive thermodynamic variables. For simplicity, we only con-

sider qm = Qm = 0 and qe = q,Qe = Q.

The intensive variables can be found as follows. For the temperature, we go to

the Euclidean sector by Wick rotating both the time coordinate and the rotation

parameter: t → −iτ , a → iα. This ensures that the metric is real. Then the
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regularity at the horizon requires the identifications τ ∼ τ + β, ϕ ∼ ϕ + iβΩH , with

the inverse temperature

β =
4π(r2

H + a2)

rH
[
1 + a2/l2 + 3r2

H/l
2 − (a2 + q2)/r2

H

] . (3.108)

The angular velocity is that of the horizon relative to the non-rotating frame at

infinity:

Ω = ΩH − Ω∞ = a
1 + r2

H/l
2

r2
H + a2

. (3.109)

Similarly, the chemical potential is also defined to be the difference between values

measured at infinity and the horizon:

µ = AµK
µ
ΩH

∣∣
r→∞ − AµK

µ
ΩH

∣∣
r=rH

= q
rH

r2
H + a2

. (3.110)

One can think of the metric parameters {rH(or m), a, q} as equivalent to either the

set of extensive variables {S, L,Q} or the intensive ones {T,Ω, µ}. (l is not treated

as a thermodynamic variable.) Using the horizon condition ∆r|r=rH = 0 ⇒ m =

m(rH , a, qe), one can obtain the Smarr formula M = M(S, L,Q):

M2 =
(S + πl2)2S

4π3l4
+
S + πl2

l2S
L2 +

(S + πl2

2πl2
+
πQ2

4S

)
Q2. (3.111)

The conjugate intensive variables are computed as

T (S, L,Q) =
∂M

∂S
=

1

2M

[(3S + πl2)(S + πl2)

4π3l4
− πL2

S2
− πQ4

4S2
+

Q2

2πl2

]
(3.112)

Ω(S, L,Q) =
∂M

∂L
=

πL

MS

(
1 +

S

πl2

)
(3.113)

µ(S, L,Q) =
∂M

∂Q
=

πQ

2MS

(
Q2 +

S

π
+

S2

π2l2

)
. (3.114)

One can check that they agree with those defined from the metric, i.e., (3.108), (3.109)

and (3.110).

One can also start from the Gibbs potential

G(T,Ω, µ) = IE/β, (3.115)
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with IE the Euclidean action, and check that the extensive variables derived from

S = −∂G
∂T

, J = −∂G
∂Ω

, Q = −∂G
∂µ

(3.116)

agree with those defined from the metric, i.e., (3.105), (3.106) and (3.107). The

Euclidean action used for the grand canonical ensemble is

IE = − 1

16πG

∫
d4x
√
g(R + 6/l2 − F 2)− 1

8πG

∫
∂

d3x
√
hK + Ict, (3.117)

where Ict is the counterterm built solely from the curvature invariants of the boundary

to regulate the IR divergence. After the variation δIE, the vanishing of the surface

integral imposes δAµ = 0 so that we are in an ensemble with fixed chemical potential.

The action evaluated on the KNAdS solution is

IE(rH , a, q) =
β

4GΞ

(
−r

3
H

l2
+ ΞrH +

a2 + q2

rH
− 2

q2rH
r2
H + a2

)
. (3.118)

The evaluation of (3.116) is possible using (3.108), (3.109) and (3.110).

In summary, in this section we have discussed in detail aspects of the AdS/CFT

correspondence for Kerr(-Newman)-AdS black holes. Many of these features will be

revisited in chapter 5 where we derive and interpret our force-free solutions in Kerr-

AdS.
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Chapter 4

Monopole in AdS

As discussed in chapter 2, the force-free solutions in static spacetimes play important

roles as the asymptotic configurations for solutions in rotating black hole backgrounds.

In the present chapter we discuss solutions in flat and AdS spacetimes in more details.

Novel features in the AdS case arise making the asymptotic matching less trivial.

4.1 Michel’s rotating monopole solution in flat space-

time

We briefly review Michel’s exact solution of a rotating monopole field in flat spacetime

[22]. This solution was used by BZ as the asymptotic configuration for their rotating

monopole in the Kerr background. This approach makes sense basically because the

BL coordinates in which we write the Kerr metric will asymptote to usual spheri-

cal coordinates while the metric asymptotes to flat metric in these coordinates. A

monopole in flat spacetime is given by the radial magnetic field and vector potential,

as usual,

Br =
C

r2
, A(0)

ϕ = −C cos θ. (4.1)

For a monopole in the Kerr black hole background, when a = 0 (the spherically

symmetric case), we can straightforwardly use the same expression as above, now

regarding the coordinates as BL ones. When a 6= 0, we find for the same A
(0)
ϕ

Br =
C

r2 + a2 cos2 θ
, (4.2)
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which in the small a limit deviates from the non-rotating case at O(a2): Br/C ≈
r−2−a2 cos2 θ. Despite this deviation, we refer to (4.2) as the unperturbed monopole.

In order to solve the force-free equation, BZ adds to A
(0)
ϕ an O(a2) term which falls

off at least like 1/r. At the end, we have a poloidal profile (Br, Bθ) with O(a2)

deformations from that of A
(0)
ϕ . We will call it the perturbed monopole.

The rotation of the monopole fields in both the flat and Kerr backgrounds is char-

acterized by a toroidal component BT ∝ Bϕ and an angular velocity ω, on which one

performs the matching. Michel’s solution imposes a relation by solving the conserva-

tion equation T ;ν
µν = 0,

BT (θ) = −C sin2 θω(θ). (4.3)

A second such relation is provided by the horizon regularity condition of BZ’s solution.

Thus BT and ω are completely fixed by the matching. Luckily they are r-independent

in both Michel’s and BZ’s solutions. It is also worth noting that the flat spacetime

monopole can not accommodate an O(a2) deviation in A
(0)
ϕ , which is no longer true

in AdS space, as discussed in the next section.

The subtlety of the matching process in the AdS background lies in the fact that

we have lost the natural mapping between BL coordinates for the Kerr-AdS metric

and the standard global coordinates (y,Θ,Φ, T ) for the AdS space. Especially, (y,Θ)

differs from (r, θ) at O(a2), which results in an O(a2) difference even in A
(0)
ϕ using

(4.1), affecting ω.

Since Michel’s solution is exact for arbitrary finite a, one may expect it to serve

as the asymptotic configuration for some non-perturbative monopole-like solution of

the black hole magnetosphere.

4.2 Rotating monopole(s) in AdS spacetime

We will proceed in this section to find an exact rotating monopole solution in AdS, an

analogue of the Michel solution in flat space [22]. In practice, since the AdS boundary

is only defined up to a Weyl scaling, the definition of the asymptotic monopole is

ambiguous due to possible O(a2) corrections associated with squashing consistent

with axisymmetry. In addition, there is also the possibility to add further r-dependent

O(a2) corrections.
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4.2.1 The unperturbed monopole

The standard AdS metric in global coordinates {y, U = cos Θ,Φ, T} reads

ds2 =
(
1 +

y2

l2
)−1

dy2 +
y2

1− U2
dU2 + y2(1− U2)dΦ2 −

(
1 +

y2

l2
)
dT 2. (4.4)

It is related to the large-r (or zero-mass) Kerr-AdS metric in BL coordinates by

non-trivial transformations [18] which take the form

y = r

√
∆θ

Ξ
, U = u

√
Ξ

∆θ

, Φ = ϕ+
a

l2
t, T = t, (4.5)

at large r (or y). When trying to define a monopole in AdS, a subtlety arises that,

due to the non-trivial U ↔ u transformation, what we called a monopole (i.e., −Cu)

in BL coordinates is not quite the same object as −CU . When there is no rotation

the two ‘monopoles’ are the same (U = u for a = 0). When the black hole is spun

up, an observer at the asymptotic AdS region may adopt one of the following two

reference frames:

1. The asymptotic observer sees a rotating field given simply by −CU as if the

monopole is spun up in a fixed pure AdS background with the standard metric

in (y, U) coordinates (apart from a constant shift in Φ by frame-dragging).

This observer does not know that an interior observer would have switched to

(r, u) coordinates by insisting on the horizon being a constant-r surface (in BL

coordinates).

2. The asymptotic observer does account for the change in their local geometry

caused by the black hole rotation and agrees with the interior observer who

describes the monopole as −Cu. The asymptotic observer would then use new

coordinates (y′, U ′) to recognize the standard AdS geometry at the boundary,

in accordance with the change in the shape of the horizon in the bulk.

The coordinate grids of (y, U) & (r, u) systems are sketched in Fig. 4.1 showing their

relative deformation so that the monopole naturally defined in one system will appear

to have non-uniformly distributed radial field lines as seen in another.

Denoting quantities in AdS metric (4.4) with a bar, the solution for ĀΦ(U) = −CU
is exact, given by

B̄T (U)2 = C2(1− U2)2ω̄(U)2, (4.6)
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Figure 4.1: Poloidal coordinates for AdS are shown, indicating the asymptotic squash-
ing of the 2-sphere in BL coordinates, with the vertical axis being the rotation axis.
Red curves/lines are constant (y, U) grids and blue curves/lines are constant (r, u)
grids using the same set of constants, e.g., U = u = cos π

4
are shown together. The

blue (BL) grid deforms away from those of a unit 2-sphere (times the radial direction).

where we have fixed an integration constant so that B̄T (U = 1) = 0. For

ĀΦ(U) = −Cu(U) ≈ −CU − CU(1− U2)
a2

2l2
+O(a4), (4.7)

which is a monopole with an r-independent perturbation, we find in the small a limit

B̄T (U)2 = C2(1− U2)2[ω̄(U)2 − 3a2/(2l4)]. (4.8)

4.2.2 perturbed monopole

We consider the ansatz with an r-dependent O(a2) correction to the monopole, given

by

ĀΦ(y, U) = −CU + a2U(1− U2)f̄(y), B̄T (U) ≡ a(1− U2)B̄c
T . (4.9)
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The equation for f̄(y) for small a reads,1

f ′′(y) +
2y

y2 + l2
f ′(y)− 6l2

y2(y2 + l2)
f(y) + 2Cl4

(B̄c
T/C)2 − ω̄2

(y2 + l2)2
= 0, (4.10)

which has an analytic solution

f(y) = − c̄2

4πy2

[
2π
(y2

l2
+ 3
)

arctan2 y

l

−
[
(π2 + 12)

(y2

l2
+ 3
)

+ 12π
y

l

]
arctan

y

l
+ 3

y

l
(2π

y

l
+ π2 + 12)

]
, (4.11)

where

c̄2 = −Cl4
[
(B̄c

T/C)2 − ω̄2
]

(4.12)

is an overall free parameter which turns out to be the coefficient of the O(y−2) term

in the expansion,

f(y) = c̄2

[π2 − 12

πl
y−1 + y−2 +O(y−3)

]
. (4.13)

c̄2 renders ω arbitrary. In particular, one could have BT = 0 corresponding to some

configuration without poloidal currents. The O(a2) perturbation is only significant

around y ∼ l.

In conclusion, we have found that for the rotating monopole in AdS, the relation

between ω̄ and B̄T is not unique, and especially becomes arbitrary when including a

radial O(a2) perturbation. In the next chapter wee will find that matching the black

hole solution onto the above cases will result in different values of ω.

1It is worth noting that the equation takes a simpler form f ′′(x)−6f(x)/ sin2 x+2Cl2[(B̄cT /C)2−
ω̄2] = 0 if we define the new radial coordinate x ≡ arctan(y/l).
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Chapter 5

BZ in Kerr-AdS background

5.1 Overview

In this chapter we present in detail the solution of the force-free equations for the ana-

log BZ monopole ansatz in the Kerr-AdS background. We work with BL coordinates

(with KS results given in Appendix A) and the small a limit (a being the rotation

parameter in the metric). Series and numerical solutions are shown for general sizes

of black holes and an analytic solution is found for small black holes. We then use

the AdS/CFT dictionary to interpret our results in terms of the dual field theory.

5.2 Kerr-AdS and the slow rotation limit

In this section we do some preliminary setup, discussing properties of the Kerr-AdS

metric and clarifying notions of ‘slow rotation’ and black hole size.

5.2.1 Kerr-AdS solution

The Kerr-AdS metric in BL coordinates is explicitly given by (3.78) which we repeat

here:

ds2 = −∆r

Σ

[
dt− a

Ξ
sin2 θ dϕ

]2

+
Σ

∆r

dr2 +
Σ

∆θ

dθ2 +
∆θ sin2 θ

Σ

[r2 + a2

Ξ
dϕ− a dt

]2

,

(5.1)
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where

Σ = r2 + a2 cos2 θ, Ξ = 1− a2

l2
(5.2)

∆r = (r2 + a2)
(
1 +

r2

l2
)
− 2mr, ∆θ = 1− a2

l2
cos2 θ. (5.3)

To make connection with the 3+1 form of the metric (2.17), we note the following

relations

hrr =
Σ

∆r

, hθθ =
Σ

∆θ

, hϕϕ =
∆θ(r

2 + a2)2 −∆ra
2 sin2 θ

Ξ2Σ
sin2 θ (5.4)

α2 =
Σ∆r∆θ

∆θ(r2 + a2)2 −∆ra2 sin2 θ
, βi =

[
0, 0,−aΞ

∆θ(r
2 + a2)−∆r

∆θ(r2 + a2)2 −∆ra2 sin2 θ

]
.

(5.5)

We use the same shorthand notation as in section 3.10 for the dimensionless ratios

ξ ≡ a2

l2
≤ 1, x ≡ r2

H

l2
, (5.6)

where the horizon radius rH is the largest root of ∆r = 0, which can be written in

the form

∆r(rH) = 0 ⇔ l

2m
(x+ ξ)(x+ 1) =

√
x. (5.7)

This relation is useful for analyzing the various limiting cases as discussed below. The

angular velocity βϕ = −ΩB in (5.5) varies from the horizon,

ΩH = −βϕ|rH =
aΞ

r2
H + a2

, (5.8)

to the boundary,

Ω∞ = −βϕ|∞ = − a
l2
, (5.9)

and this feature of BL coordinates has to be taken into account in considering the

reference frame of the holographic dual theory. For the discussion of slow rotation

below, it is also convenient to define the critical mass parameter [66],

mext(a) = l

[(
(1 + ξ)2 + 12ξ

) 1
2 + 2(1 + ξ)

][(
(1 + ξ)2 + 12ξ

) 1
2 − (1 + ξ)

] 1
2

3
√

6
, (5.10)

and the constraintm ≥ mext ensures the absence of naked singularities, withm = mext
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Figure 5.1: The condition Ω− ≤ Ω′ ≤ Ω+ for Kµ
Ω′ to be non-space-like is shown for

small (left) and large (right) Kerr-AdS black holes, where z ≡ rH
r

= 1 and 0 are the
horizon and boundary at infinity. The ergosphere for Kµ

Ω′ is where the horizontal line
Ω′ = const. is within the shaded regions. The lines show specific values of angular
velocity, Ω′ = ΩH and Ω′ = Ω∞, plus the axis Ω′ = 0. ΩB(z = 1) = ΩH and
ΩB(z = 0) = Ω∞ = − a

l2
.

Left: {m = 1, a = 0.9, l = 100, cos θ = 0.5} for a faster rotating and smaller black
hole, close to the Kerr limit. Ω∞ and the axis are indistinguishable. There is no
globally time-like Killing vector Kµ

Ω.
Right: {m = 1, a = 0.5, l = 1, cos θ = 0.5} for a slower rotating and larger black hole.
Kµ

ΩH
is now globally time-like.

corresponding to extremal black holes for which ∆r has a double root at the degenerate

horizon.

The Killing vectors ξµ(t) and ξµ(ϕ) can be used to define mass and angular momen-

tum (e.g., through Komar formulae in asymptotic flat spacetimes and the conformal

definition [19] in asymptotic AdS spacetimes), but there is an ambiguity in choosing

the asymptotic timelike Killing vector and this implies that the definition of energy

is not unique. This is significant for the analysis of energy extraction, and we discuss

the range of asymptotically timelike Killing vectors in more detail below. The gen-

eral condition for a Killing vector Kµ
Ω ≡ ξµ(t) + Ω′ξµ(ϕ) (cf. (2.20)) to be non-spacelike

requires Ω− ≤ Ω′ ≤ Ω+ where

Ω± = ΩB ±

√
−
Kµ

ΩB
KΩBµ

hϕϕ

BL
== ΩB ±

α√
hϕϕ

. (5.11)

These bounding contours are shown for two cases in fig. 5.1.

The conformal boundary of Kerr-AdS spacetime is an Einstein universe rotating

with angular velocity Ω = ΩH−Ω∞, where Ω∞ = −a/l2 is the angular velocity of the

non-rotating frame at infinity. A feature of the Kerr-AdS geometry is that, as seen
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from the plot, the Killing vector Kµ
ΩH

is globally timelike, and the Einstein universe

rotates slower than the speed of light, provided

ΩH − Ω∞ <
1

l
⇔ r2

H > al, (5.12)

i.e., for large black holes [18, 65, 67]. The critical angular velocity for the Einstein

universe to rotate at the speed of light corresponds to ΩH = Ω+(r →∞, θ = π/2) =

Ω∞ + 1/l. Usually the ergosphere for Kµ
Ω′ starts at Ω′ = Ω− and extends to the

horizon [24]. The existence of an ergosphere is of course essential for any energy

extraction mechanism from the black hole. However, the plot reveals that there is

no unique time-like Killing vector Kµ
Ω′ at infinity, hence the ambiguity in defining

energy. As argued by [14] and shown explicitly for the BZ process in Section 5.3.4,

with energy defined with the globally time-like Kµ
ΩH

there is no energy extraction

and the black hole is perturbatively stable. On the other hand, consideration of the

thermodynamics of the dual field theory [19] suggests that Kµ
Ω∞

is the appropriate

choice of Killing vector to use in defining energy; namely the unique choice that yields

the first law dE = T dS+(ΩH−Ω∞) dL with the r.h.s. an exact differential. Here we

are adopting the definitions of energy and angular momentum as conserved charges

associated with Killing vectors, denoted E = Q[KΩ′ ] and L = −Q[ξ(ϕ)] [19], with

Q[ξ(t)] =
m

Ξ
, L =

ma

Ξ2
(5.13)

for Kerr-AdS.1 The ambiguity in the definition of energy motivates a more detailed

investigation of the BZ process and force-free magnetospheres even for large Kerr-

AdS black holes. We will turn to this topic in the next section, after describing some

useful features of the slow rotation limit.

5.2.2 Slow rotation

The Kerr-AdS solution is characterized by three parameters {m, a, l} or equivalently

{rH , a, l}. Slow rotation generically implies a regime far from extremality, set by

1Note that, without spoiling the exactness of the r.h.s. of the first law, one can in principal choose
a different Kµ

Ω′ with ∆Ω = Ω′−Ω∞ independent of {L, S}, so that d(E−∆ΩL) = T dS+(ΩH−Ω∞−

∆Ω) dL. In terms of the independent variables {L, S}, we have, r2
H = S

π

[
4L2

(S/π)2(S/(l2π) + 1)
+1

]−1

and a2 = S
π

[
(S/π)2(S/(l2π) + 1)2

4L2
+ S

l2π + 1

]−1

.
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m� mext (see (5.10)) or alternatively rH > rext
H , where

rext
H = l

[−(1 + ξ) +
(
(1 + ξ)2 + 12ξ

)1/2

6

]1/2

. (5.14)

mext & rext
H are the extremal limits of m & rH (see e.g. [63]). For Kerr (l→∞, ξ → 0),

mext = rext
H = a and the condition a

m
� 1 used in the perturbative solution guarantees

m� mext. For Kerr-AdS, m� mext implies,

a

m
� a

mext

∼ O(1) (5.15)

where the latter condition holds for ξ ∈ [0, 1], and thus a
m
� 1 is still a good criterion

for “far from extremality”.

The AdS length scale l enables us to talk about black hole sizes in terms of x ≡ r2
H

l2
.

To gain some intuition, we plot rH , l and rH
l

for various a
m

in fig. 5.2, which shows that

large black holes (x > 1) are only possible for a
m
< 1

2
. Indeed, rearranging ∆r(rH) = 0

formally into a quadratic equation for rH with fixed x: r2
H − 2m

1+x
rH + a2 = 0, the

condition that rH be real is a
m
< 1

1+x2 . As discussed above, large black holes satisfying

r2
H > al ⇔ x >

√
ξ are generically stable [14], so combining the two inequalities we

have,
a

m
<

1

1 + x2
<

1

1 + ξ
, (5.16)

with 1
1+x2 ∈ [0, 1] and 1

1+ξ
∈ [1

2
, 1], for l ∈ (0,∞) keeping ξ ≤ 1. It is then clear

that large black holes ( 1
1+x2 <

1
2
) imply slow rotation and ensure stability, while fast

rotation ( a
m
> 1

2
) allows for an instability (violating the second inequality by insisting

on the first one).

In addition to the slow rotation condition a
m
� 1, our small ‘a’ expansion also

treats a
l
� 1 and includes the following three regimes categorized according to the

relative scale between m and l (and also that between rH and l):

1. small black holes

a� m ∼ rH
2
� l, (5.17)

2. intermediate black holes

a� m ∼ rH ∼ l, (5.18)
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Figure 5.2: rH , l and rH
l

as functions of ξ, in units m = 1. Real solutions for rH
do not exist for all ξ when a

m
→ 1, as expected. Our small ‘a’ expansion is valid for

small values of ξ up to the vertical line in the first graph.

3. large black holes

a� l� rH � m. (5.19)

Note that the criterion r2
H > al for globally time-like Kµ

ΩH
is met in regimes 2 and

3, but may or may not be met in regime 1. In the first graph of fig. 5.2, regime 1

corresponds to the leftmost region of the graph, regime 2 is around the transition

point from small to large black holes where the curves meet and regime 3 is further to

the right up to the vertical line. To be more precise, in terms of the small parameter
a
m
≡ ε, the transition point is at

√
ξ ∼ ε and the vertical line bounding regime 3 would
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be e.g. at
√
ξ ∼ ε

1
2 . The regime to the right of the vertical line is where a

l
∼ O(1)

and is not covered by our small ‘a’ expansion. It describes very large black hole with

sizes diverging as, e.g., rH
l
∼ ε−

1
3 at
√
ξ = 1.

5.2.3 Small ‘a’ expansion

To implement the small a limit, it is useful to define

∆0 ≡ ∆r(a = 0) =
r

l2
(r3 + l2r − 2ml2) =

r

l2
(r − r1)(r2 + r1r + r2

1 + l2), (5.20)

where the second relation identifies the (only real) root r = r1, namely the

Schwarzschild-AdS horizon radius which satisfies

r3
1 + l2(r1 − 2m) = 0. (5.21)

One can check that r1 = rH(ξ = 0) > rH(ξ 6= 0), e.g. by considering the form of

∆r(rH) = 0 as given in (5.7). Of most relevance here, one can show that in the small

a expansion

r1 − rH ∼ O(a2), (5.22)

so the regularity condition for quantities diverging like ∆−nr ∼ (r − rH)−n on the

horizon can be translated to that at r = r1 at each order of the a expansion, i.e.

(r − rH)−1 = (r − r1)−1 + (r − r1)−2O(a2), so we will still refer to the latter as the

“horizon regularity condition”. To leading order in a, the horizon angular velocity

approximates to

ΩH =
a

r2
H

+O(a3) =
a

r2
1

+O(a3). (5.23)

We will also find it useful to treat all quantities as dimensionless by working in

m = 1 units, and ∆0(m = 1) = 0 provides the relation

l2 =
r3

1

2− r1

, (0 ≤ r1 ≤ 2), (5.24)

which allows us to eliminate l in each order of the small a expansion, leaving r1 as

the only free metric parameter. With these conventions, r1 encodes both the AdS

curvature length and black hole sizes: r1 = 2 (l → ∞, r1
l

= 0) is the Kerr and small

black hole limit, while r1 → 0 (l→ 0 ∼ O(a), r1
l
→∞) is the highly curved AdS and

large black hole limit.
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5.3 The AdS analogue of the Blandford-Znajek

split monopole

We turn now to the main task of obtaining an explicit solution for a force-free mag-

netosphere in a Kerr-AdS background. We will work in the probe approximation,

ignoring the back-reaction of the magnetosphere on the geometry.2 As discussed in

chapter 2, the force-free magnetosphere is described by the independent field quan-

tities {Aϕ, BT , ω}, which are all implicit functions of (r, θ). Moreover, as shown by

Blandford and Znajek [5], the function Aϕ = constant specifies poloidal field surfaces,

and thus BT = BT (Aϕ) and ω = ω(Aϕ).

To obtain an explicit solution below, following BZ we will work in the small

‘a’ expansion outlined above, starting from an initial radial magnetic field in the

Schwarzschild limit. The physical situation assumes that the magnetic field is pro-

duced by currents in an accretion disk. A split monopole field is a crude approx-

imation to this with opposite charge in the north and south hemispheres, allowing

for a discontinuity on the equator, associated with the accretion disk. In a more

realistic situation, the accretion disk would produce poloidal magnetic field threading

the equator. For simplicity, in the discussion below, we will not explicitly split the

monopole across the equator. As it turns out, the sign of the magnetic charge does

not affect the direction of the energy flux. We also ignore all dissipative effects in the

accretion disk and concentrate on solving the magnetosphere configurations of the

(non-split) monopole under small ‘a’ perturbation.

5.3.1 General form of the equations in the 3+1 formalism

Rather than solve the force-free equations FµνJ
ν = 0 directly, following [6], we will

consider the conservation equations T µν;ν = 0. Before invoking the explicit Kerr-AdS

metric, we use the general metric (2.17) to derive some important results in concise

forms. Defining the shorthand notations,

dT µ ≡ T µν;ν , (5.25)

{X, Y } ≡ X,rY,θ −X,θY,r, (5.26)

2Relaxing this condition may change the asymptotic form of the geometry, as discussed recently
in [67].
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the definition of ω (cf. (2.42)) implies

{Aϕ, ω} ≡ 0, (5.27)

which means that ω is solely a function of Aϕ as noted above. For T µt & T µϕ that are

relevant for the energy and angular momentum fluxes we have

T rt = −ωBT
Aϕ,θ√
−g

, T θt = ωBT
Aϕ,r√
−g

, (5.28)

Tϕt = ω
[βϕ(ω + βϕ)

α2
− 1

hϕϕ

]
hMNAϕ,MAϕ,N , (5.29)

2T tt =
[(βϕ)2 − ω2

α2
− 1

hϕϕ

]
hMNAϕ,MAϕ,N −

B2
T

hϕϕα2
, (5.30)

and

T rϕ = −T
r
t

ω
, T θϕ = −T

θ
t

ω
, (5.31)

Tϕϕ = −T tt −
B2
T

hϕϕα2
, (5.32)

T tϕ =
βϕ + ω

α2
hMNAϕ,MAϕ,N . (5.33)

For the conservation equation dTµ = 0 we have3

dTr =
Aϕ,r√
−g
(
cω
√
−ghMNAϕ,N

)
,M

+
(hMNAϕ,MAϕ,N)hϕϕ(βϕ + ω)ω,r + 1

2
(B2

T ),r

hϕϕα2
,

(5.34)

dTθ =
Aϕ,θ√
−g
(
cω
√
−ghMNAϕ,N

)
,M

+
(hMNAϕ,MAϕ,N)hϕϕ(βϕ + ω)ω,θ + 1

2
(B2

T ),θ

hϕϕα2
,

(5.35)

dTϕ = −{Aϕ, BT}/
√
−g, (5.36)

dTt = {Aϕ, BTω}/
√
−g, (5.37)

together with the following relations

dTt + ωdTϕ =
1√
−g

BT{Aϕ, ω}
(5.27)
== 0, (5.38)

3We find that the covariant components are more suitable for presenting subsequent results.
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BidTi = − 1√
−gα2

hMNAϕ,MAϕ,N{Aϕ, ω}(βϕ + ω)
(5.27)
== 0, (5.39)

where the indices M,N = r, θ; i, j = r, θ, ϕ and

cω ≡
1

hϕϕ
− (βϕ + ω)2

α2
, (5.40)

as in (2.49). We can write the second order derivative terms in dTr & dTθ more

concisely using a 4-d d’Alembertian:

2̄Aϕ =

1√
−ḡ

(
√
−ḡḡµνAϕ,ν),µ =

1

c2
ω

√
−g

(cω
√
−ggµνAϕ,ν),µ =

1

c2
ω

√
−g
(
cω
√
−ghMNAϕ,N

)
,M
,

(5.41)

owing to the conditions ∂t(. . .) = ∂ϕ(. . .) = 0, where 2̄ is associated with the metric

ḡµν obtained by Weyl transforming gµν ,

ḡµν = cωgµν , ḡµν = c−1
ω gµν ,

√
−ḡ = c2

ω

√
−g. (5.42)

The equations (5.38) & (5.39) are components of the identity,

?F µνdTν(=
?F µνFρνJ

ρ =
1

4
?FαβFαβJ

µ) = 0, (5.43)

and constrain the number of independent equations in dTµ = 0 from four to two. The

fact that a single condition (5.27) gives two constraints follows from the following

general argument. Namely, the existence of non-trivial solutions (i.e., Jµ 6= 0) to

FνµJ
ν(= dTµ) = 0 implies detFµν = 0 which is equivalent to the degeneracy condition

(and to (5.27)) by the identity detFµν = (Fµν
?F µν)2/16 and thus the matrix Fµν

cannot have full rank 4. Fµν thus has rank 2 since antisymmetric matrices can only

have even ranks. We choose one of the independent equations to be dTϕ = 0 or

dTt = 0 which just gives the condition (cf. (5.36), (5.37) and (5.27))

−
√
−gdTϕ = {Aϕ, BT} = 0. (5.44)

Then (5.39) determines the remaining equation to be either dTr = (5.34) = 0 or
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dTθ = (5.35) = 0 which we focus on from now on.4 In the next subsection, we will

make use of the slow rotation expansion to obtain a solution.

5.3.2 Solving equations in the small ‘a’ expansion

Starting from a simple monopole solution in the Schwarzschild-AdS limit, we employ

the following ansatz expanding field quantities about a = 0 (or more precisely an

expansion in a/m), keeping terms up to O(a2),

Aϕ = −Cu+ a2A(2)
ϕ , (5.45)

ω = aω(1), (5.46)

BT = aB
(1)
T , (Bϕ = aBϕ

(1)), (5.47)

where C is proportional to the magnetic charge (if we don’t ‘split’ the monopole),

and u = cos θ. Applying this ansatz to the conditions {Aϕ, ω} = 0 and {Aϕ, BT} = 0

yields

aCω(1)
,r + a3{A(2)

ϕ , ω(1)} = 0, (5.48)

aC(B
(1)
T ),r + a3{A(2)

ϕ , B
(1)
T } = 0. (5.49)

Consistently dropping the O(a3) terms,5 we arrive at the constraints

ω,r = (BT ),r = 0. (5.50)

Counting powers of ‘a’ in dTr and dTu we find

dTr = Aϕ,r︸︷︷︸
O(a2)

c2
ω 2̄Aϕ︸︷︷︸
O(a2)

+
[
O(1) (βϕ + ω)

=0︷︸︸︷
ω,r︸ ︷︷ ︸

O(a2)

+O(1)

=0︷ ︸︸ ︷
(B2

T ),r /2︸ ︷︷ ︸
O(a2)

]
∼ O(a4) (5.51)

dTu = Aϕ,u︸︷︷︸
O(1)

c2
ω 2̄Aϕ︸︷︷︸
O(a2)

+
[
O(1) (βϕ + ω)ω,u +O(1)(B2

T ),u/2︸ ︷︷ ︸
O(a2)

]
∼ O(a2) (5.52)

4Equations (5.34) and (5.35) should correspond to the force-free Grad-Shafranov equation as
presented in, e.g., [8], if we interchange Ψ, $2, δΩ and I there with Aϕ, gϕϕ, βϕ + ω and BT
respectively.

5Although a appears as an overall factor here, the subleading terms do indeed contribute at O(a3)
to dTϕ and at O(a4) to dTt and should be dropped.
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(where it is important to note that 2̄Aϕ has a vanishing O(1) term which is specific

to the monopole field). Thus dTr = 0 is automatically solved to the desired order.

The non-trivial equation dTu = 0 is a second order partial differential equation (PDE)

for A
(2)
ϕ and reads explicitly in the Kerr-AdS metric,6

dTu = A(2)
ϕ,rr +

(1− u2)

∆0

A(2)
ϕ,uu + 2

r3 +ml2

l2∆0

A(2)
ϕ,r

+
1

2C∆2
0

[
C2(1− u2)2

[
r4(ω(1))2 +

(r2

l2
− 2m

r

)
(2r2ω(1) − 1)

]
− r4(B

(1)
T )2

]
,u
, (5.53)

where ∆0 is given in (5.20).

To solve (5.53), we employ a separation of variables A
(2)
ϕ = f(r)g(u). For terms

in the inhomogeneous part with different powers of r to have the same u-dependence,

namely u(1−u2), and for ω(1)(u) & Bϕ
(1)(u) ∼ B

(1)
T (u)/(1−u2) to be regular at u = 1,

we require

ω(1)(u) = ω(1), (5.54)

B
(1)
T (u) = Bc

T (1− u2), (5.55)

where ω(1) and Bc
T are constants. Meanwhile, we can fix

g(u) = u(1− u2). (5.56)

The remaining radial equation is (using (5.21) to replace m with r1)

f ′′(r) +
2r3 + r1(r2

1 + l2)

r(r − r1)(r2 + r1r + r2
1 + l2)

f ′(r)− 6l2f(r)

r(r − r1)(r2 + r1r + r2
1 + l2)

+ 2Cl2
{[C−2(Bc

T )2 − (ω(1))2]l2 − 2ω(1)}r5 + r3 + (2ω(1)r2 − 1)r1(r2
1 + l2)

r3(r − r1)2
(
r2 + r1r + r2

1 + l2
)2 = 0,

(5.57)

with prime denoting the radial derivative. At this point, we can eliminate one of the

6It is interesting to note that eq. (5.53) does not involve r-derivatives of ω(1) and B
(1)
T even if we

do not impose ω
(1)
,r = B

(1)
T,r

= 0. In addition, the inhomogeneous part is a total u-derivative, which

is not obvious from the original form (5.35) of the equation.
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factors (r − r1)−2 in the inhomogeneous part by choosing

(Bc
T )2 = C2

(
ω(1) − 1

r2
1

)2

. (5.58)

Though this may appear ad hoc, it is actually equivalent to BZ’s horizon regularity

condition [5] (a more direct way is to impose the regularity of the invariant (2.47)).

The same relation can be obtained more rigorously from the regularity of B̃ϕ in KS

coordinates, as presented in Appendix A, where the sign ambiguity of Bc
T in (5.58) is

also fixed, given by (A.0.13) & (A.0.19):

Bc
T = −

(
ω(1) − ΩH

a

)
Aϕ,u +O(a3) = C

(
ω(1) − 1

r2
1

)
+O(a3). (5.59)

We proceed with Bc
T fixed via (5.58). Transforming to a dimensionless radial coordi-

nate

z ≡ r1

r
, (5.60)

and using m = 1 units to eliminate l, we arrive at

f ′′(z) +
2z(3z − r1)

(z − 1)[2z2 − (r1 − 2)(z + 1)]
f ′(z) +

6r1f(z)

(z − 1)[2z2 − (r1 − 2)(z + 1)]

− C 4(z2 − 2ω(1)r2
1)(z2 + z + 1) + 2r1(z + 1)

(z − 1)[2z2 − (r1 − 2)(z + 1)]2r1

= 0. (5.61)

The horizon is at z = 1 and spatial infinity at z = 0.

A comparison with the Kerr case is in order. In the Kerr limit (r1 = 2), equation

(5.61) develops a second singular point z = 0 (besides z = 1) near which it behaves

like

f ′′(z) + [2z−1 +O(1)]f ′(z)− [6z−2 +O(z−1)]f(z)

− C

2
z−4(8ω(1) − 1)(1 + 2z + 3z2) +O(z−1) = 0. (5.62)

The leading O(z−4) divergence of the inhomogeneous part can only be removed by

choosing ω(1) = 1/8, a fixed rotation frequency which is half the horizon angular

velocity. For the general Kerr-AdS case (r1 6= 2), the equation is well-behaved at

z = 0 and no obvious constraint on ω(1) is needed. This is the first, and perhaps most

significant, difference we observe in the properties of the force-free magnetosphere in
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the Kerr-AdS background.

5.3.3 Series and numerical solutions

For the Kerr geometry, the indicial equation implies integer asymptotics f(z) ∼ z0, z1

and due to the singular point there is logarithmic scaling. Requiring the boundary

condition f(0) = 0, the expansion for the homogeneous equation has the form

f(z)Kerr =
∞∑
n=1

[
cn + c′n ln(z)

]
zn, (c′1 = 0). (5.63)

It turns out that the inhomogeneous term is only consistent with this regular scaling

at infinity with the unique choice of ω(1) = 1/(8m2) noted above. An analytic solution

for f(z) can then be obtained in terms of dilogarithms. Blandford and Znajek used a

matching condition at infinity that we will return to later to obtain the same result

[5].

For the general Kerr-AdS case, although an analytic solution does not appear

possible - barring a perturbative expansion about the Kerr limit discussed in sec-

tion 5.4 - we can proceed in the same way since the indicial equation has the same

form. The lack of an additional singular point in this case implies the existence of a

regular series solution about z = 0, and we again fix the boundary condition f(0) = 0

corresponding to the normalizable mode in AdS,

fc(z) =
∞∑
n=1

cnz
n. (5.64)

In this case, the inhomogeneous term is nonsingular away from the Kerr limit, and

thus we do not obtain a unique constraint on the field angular velocity ω. Substituting

(5.64) into (5.61) and expanding in z, we obtain recursion relations expressing ω(1)

and cn (n ≥ 3) in terms of c1 and c2:

ω(1) =
1

4r1

+
c2

C

(r1 − 2)2

4r1

, (5.65)

c3 =
2c1r1

3(2− r1)
, (5.66)

cn = cn(c1, c2), (n > 3). (5.67)

Note that ω(1) depends only on c2 (concavity of f(z) at z = 0) and c3 only on c1.
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Figure 5.3: Plots of ω(1) as functions of r1 for various values of c2, based on (5.65).
The second graph shows the region close to the r1-axis.

We will therefore use ω(1) and c2 interchangeably below, and the explicit relation is

shown for various parameters in Fig. 5.3.

For comparison with the numerical solution to be discussed below, it is also useful

to consider a second series solution constructed about the singular point z = 1, i.e.,

the horizon, where we explicitly demand the absence of the logarithmic term:

fb(z) =
∞∑
n=0

bn(z − 1)n, (5.68)

with

ω(1) =
b0

C

r1 − 3

2
− b1

C

(r1 − 3)2

6r1

+
r1 + 3

6r2
1

, (5.69)

bn = bn(b0, b1), n ≥ 2. (5.70)
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The free parameters {ω(1), c1} in fc(z) and {ω(1), b0} in fb(z) are related through two

boundary conditions fb(0) = 0 & f ′b(0) = c1 imposed on the series fb(z) whose radius

of convergence covers z = 0.7 This leaves only one free parameter which we take to

be ω(1) (or equivalently c2), with

c1(r1, c2) or b0(r1, c2) = p(r1)− q(r1)c2 (5.71)

where p(r1) & q(r1) are ratios of polynomials in r1. Matching the expansion e.g. at

z = 0 reproduces the numerical results discussed below to high precision.

The equation for f(z) can be solved numerically by shooting from the boundary

to the horizon for each value of ω(1) (or equivalently c2), by tuning the value of c1

(or b0) until we get a regular solution near z = 1. This fixes the final integration

constant and, as noted above, the values of c1 and b0 are numerically close to those

determined through direct analysis of the series solution using (5.71). Plots of these

solutions are shown in Fig. 5.4 for a range of different r1 values, and for each r1 we

show a set of curves labelled by ω(1) (or more conveniently c2). As the plots show,

for each arbitrarily picked c2, a unique solution curve can be found that is regular

at z = 1 and satisfies f(0) = 0. This agrees with the above analysis using series

solutions, namely that the boundary conditions alone do not put any constraints on

ω. Note that the curve with c2 = 0, that asymptotes to the Kerr solution in the small

black hole limit, has ω = a/(4r1) ≤ ΩH = a/r2
1 for 0 < r1 ≤ 2.

5.3.4 Energy-momentum flux in the BZ process

We can now evaluate the relevant radial energy and angular momentum flux densities

in eqs. (5.28) and (5.31)

T rt = −ωT rϕ = r−2ω(ω − ΩH)A2
ϕ,θ, (5.72)

using the solution (5.59) for BT (after accounting for the differences due to switching

between u and θ coordinates which do not affect the final result, cf. comments below

(A.0.13)). Relating (5.72) to the energy and angular momentum changes in the

7Among the boundary conditions fb(0) = 0, f ′b(0) = c1, fc(1) = b0 & f ′c(1) = b1, only the first
two are consistent with the value of c1 obtained by BZ in the Kerr limit.
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Figure 5.4: In each graph (with fixed r1), a set of solution curves corresponding to

various choices of ω(1) = 1
4r1

+ c2
C

(r1−2)2

4r1
are shown, by varying c2 from −10 to 10

(setting C = 1). Note that for a large black hole with r1 = 0.001, ω(1) varies by a
relative factor of 100 as c2 is varied, while for the small black hole with r1 = 1.9999,
ω(1) only varies by a relative factor of 10−7. Thus the curves effectively zoom in to
the “middle curve” with c2 = 0 as r1 increases, and c2 = 0 is indeed the only solution
in the Kerr limit. The “middle curve” is plotted for various r1’s in Fig. 5.5.

thermodynamic relations, we get from (2.37) & (2.34)

TδS ∝ T rt + ΩHT
r
ϕ = r−2(ω − ΩH)2A2

ϕ,θ ≥ 0, (5.73)
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Figure 5.5: Solution curves with ω(1) = 1/(4r1) (the middle curve in each graph of
Fig. 5.4) for various r1’s. Note both c1 = f ′(0) and b0 = f(1) decrease monotonically
with increasing r1, while the middle part of the curve bounces back when r1 → 2.

which explicitly checks the second law. Similarly, from (2.35),

δE ∝ T rt + Ω′T rϕ = r−2(ω − ΩH)(ω − Ω′)A2
ϕ,θ, (5.74)

δL ∝ −T rϕ = r−2(ω − ΩH)A2
ϕ,θ, (5.75)

from which we see that the ambiguities in ω and Ω′ affect the signs of δE and δL.

Various possibilities (six of them) according to the relative magnitudes of {ω,Ω′,ΩH}
are summarized in the following list and fig. 5.6 (on the plane of {ω/ΩH ,Ω

′/ΩH})

1. Ω′ < ω < ΩH , δE < 0, δL < 0

2. ω < Ω′ < ΩH , δE > 0, δL < 0

3. ω < ΩH < Ω′, δE > 0, δL < 0

4. ΩH < ω < Ω′, δE < 0, δL > 0

5. ΩH < Ω′ < ω, δE > 0, δL > 0

6. Ω′ < ΩH < ω, δE > 0, δL > 0.

So for energy extraction δE < 0 we have either case 1 or 4 above.

The energy-defining Killing vector with Ω′ = ΩH results in a first law without

the δL term so that δE = TδS ∝ (ω − ΩH)2 ≥ 0, and thus there is no energy

extraction, regardless of the value of ω. This is of course consistent with the stability

arguments discussed in earlier sections. However, if we define energy using the Killing
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Figure 5.6: Six possibilities for the relative magnitudes of {ω,Ω′,ΩH} (giving different
signs of δE and δL) as represented by the numbered regions on the {ω/ΩH ,Ω

′/ΩH}
plane. The numbers correspond to the enumerated cases in the main text.

vector with Ω′ = Ω∞ < ΩH , we find that ‘energy’ can be extracted if ω falls in the

range in case 1 above, which is usually expected as in the Kerr case, and we have

δE ∝ (ω + a/l2)(ω − ΩH) < 0. If ω is outside the range in case 1 we have field lines

rotating either backwards (even as seen in the non-rotating frame at infinity) (case 2)

or faster than the black hole (case 6), and there is no energy extraction. These two

possibilities are in fact ruled out, as discussed in section 2.4, if we match the rotating

black hole magnetosphere at infinity to that of the asymptotic static spacetime.

In conclusion, the stability condition apparently implies that any choice of energy-

defining Killing vector, other than via ΩH , leads to a rather benign form of ‘ergo-

sphere’ and BZ process. An outgoing radial Poynting flux is possible, but does not

reflect an instability of the black hole, as it can be turned off by switching to an

alternate definition of energy for an asymptotic observer. In effect, there is still a

net ingoing flux when one properly accounts for both energy and angular momen-

tum. Nonetheless, the fact that the AdS/CFT correspondence points to a specific

definition of ‘energy’ which apparently exhibits this benign ergosphere in the bulk

raises the question of how it is reflected (if at all) in the dual field theory. Moreover,

small black holes do not have a globally timelike Killing vector and there is energy

extraction which does not have an AdS dual. We will turn to dual interpretation
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shortly, after first considering in more detail the matching to AdS monopole solutions

at large radius and also presenting an analytic solution for small black holes.

5.3.5 Matching black hole and asymptotic static spacetime

force-free solutions

As have been seen above, whether we can have energy extraction depends both on

the choice of Ω′ and the actual rotational frequency ω of the magnetosphere. One

requires ω of the monopole in Kerr-AdS background match that in the asymptotic

AdS background. If one only considers an unperturbed monopole in the latter, ω

would be fixed as a function ω = ω(ΩH ,Ω∞), up to an ambiguity in the definition

of the monopole. On the other hand, a monopole with a perturbation in Aϕ can

rotate with arbitrary ω, as revealed by the free parameter c2 in the Kerr-AdS case

(cf. (5.65)) and c̄2 in the AdS case (cf. (4.12)). c2 and c̄2 are related to the subleading

radial falloff of the perturbation and do not affect the boundary condition of Aϕ. One

only needs to match BT and ω, which we now describe and consider as a “consistency

check” that the ambiguity in the black hole magnetosphere solution perfectly matches

the ambiguity in the asymptotic monopole.

We require using the transformations (4.5)

B̄c
T (ω̄(1)) = Bc

T (ω(1)), ω̄(1) = ω(1) +
1

l2
, (5.76)

where the first relation holds to leading order in a (note Bc
T ∼ BT/a) and the second

relation is merely due to the constant shift in the Φ-ϕ transformation. Bc
T (ω(1)) is

given by (5.59):

Bc
T = C

(
ω(1) − 1

r2
1

)
, (5.77)

and B̄c
T (ω̄(1)) has different forms in the following situations, where the values of ω(1)

from matching are also given:

• exact monopole solution (4.6)

(B̄c
T )2 = C2(ω̄(1))2 (5.78)

ω(1) =
l2 − r2

1

2l2r2
1

m=1
===

r1 − 1

r3
1

, c2 = −C
r2

1

. (5.79)



83

• alternative definition of monopole (4.7)

(B̄c
T )2 = C2[(ω̄(1))2 − 3/(2l4)] (5.80)

ω(1) =
2l4 + r4

1

4l2r2
1(l2 + r2

1)
m=1
===

3r2
1 − 4r1 + 4

8r3
1

, c2 =
C

2r2
1

. (5.81)

• perturbative monopole (4.12)

(B̄c
T )2 = C2(ω̄(1))2 − c̄2C/l

4 (5.82)

ω(1) =
l2 − r2

1

2l2r2
1

+
c̄2

C

r2
1

2l2(l2 + r2
1)

m=1
===

r1 − 1

r3
1

+
c̄2

C

(r1 − 2)2

4r3
1

, c2 =
c̄2 − C
r2

1

(5.83)

We have used (5.65) for c2 in each case. The relation ω = ω(ΩH ,Ω∞) can be found

for each of the above cases to be

(5.79) ⇒ ω =
ΩH + Ω∞

2
(5.84)

(5.81) ⇒ ω =
2Ω2

H + Ω2
∞

4(ΩH − Ω∞)
(5.85)

(5.83) ⇒ ω =
ΩH + Ω∞

2
+
c̄2

C

Ω2
∞

2(ΩH − Ω∞)
, (5.86)

which all reduce to ω = ΩH/2 in the Kerr case (Ω∞ = 0), and (except for the last

c̄2-dependent one) satisfy the condition Ω∞ < ω < ΩH for energy extraction if we

use Kµ
Ω∞

as the energy-defining Killing vector. One can also use the black hole size

parameter x = r2
1/l

2 to rewrite the above relations as

(5.79) ⇒ ω

ΩH

=
1− x

2
(5.87)

(5.81) ⇒ ω

ΩH

=
x2 + 2

4(x+ 1)
(5.88)

(5.83) ⇒ ω

ΩH

=
1− x

2
+
c̄2

C

x2

2(x+ 1)
, (5.89)

where one notices the sign difference of the first two results when x > 1.

Naively the rotating monopole solutions in AdS found in chapter 4 are able to

produce energy and momentum fluxes: T yT = −ω̄T yΦ = Cω̄B̄T/y
2. This is not surpris-

ing if we expect them to serve as the asymptotic limits of the interior BZ process.
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Note that the fluxes are singular at y = 0, but this solution needs to be interpreted

with a physical cut-off such as the surface of a star.

For completeness, we also present the currents for the perturbed AdS monopole

solution, assuming ω̄ given by (5.83) from the matching:

Jy = − aU
l2y2

(
C
r2

1 + l2

r2
1

− c̄2
r2

1

r2
1 + l2

)
m=1
=== − aU

2r3
1y

2

[
4C − c̄2(r1 − 2)2

]
, (5.90)

JU = 0, (5.91)

JΦ = −2a2U
c̄2

l2y2(l2 + y2)
m=1
=== −2a2U

c̄2(r1 − 2)2

r3
1y

2[y2(2− r1) + r3
1]
, (5.92)

JT = − aU

y2(l2 + y2)

(
C
r2

1 + l2

r2
1

+ c̄2
r2

1

r2
1 + l2

)
m=1
=== − aU

2y2[y2(2− r1) + r3
1]

[
4C + c̄2(r1 − 2)2

]
,

(5.93)

where we have separated contributions from the monopole (∼ C) and the O(a2)

correction (∼ c̄2). These can be viewed as the asymptotic currents of the BZ process.

Note that JΦ only contains c̄2.

As another example, one can also consider the gauge potential AΦ in the exact

KNAdS ‘vacuum’ solution, expanded for small ‘a’

AΦ = −Cu
[
1 + a2

( 1

l2
+

1− u2

r2

)]
= −CU

[
1 + a2

(3− U2

2l2
+

1− U2

y2

)]
. (5.94)

One obtains a similar configuration that has energy and momentum fluxes.

5.3.6 Summary

To summarize, we have obtained the analog of BZ’s monopole solution in the Kerr-

AdS background. Ambiguities in the configuration of the force-free magnetosphere

arise due to the boundary conditions of the AdS geometry. This is reflected in the

main force-free equation as the lack of regularity constraints at infinity, namely, the

equation is less divergent due to the additional AdS length scale. This can also

be seen from the asymptotic matching to a rotating monopole in pure AdS space.

Closely associated with it, the arbitrariness in choosing the energy-defining Killing

vector makes the energy extraction an observer dependent phenomenon; even with

the ambiguity in the angular velocity of the magnetosphere, there are always frames

in which the ingoing energy flux is non-negative. Nevertheless, we have been able to
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obtain series and numerical solutions which are unique once the free parameters are

fixed.

5.4 Analytic force-free magnetosphere for small

Kerr-AdS black holes

In this section, we determine an analytic solution for the force-free magnetosphere

about a ‘small’ Kerr-AdS black hole, which belongs to the regime (5.17). More

precisely, in the slow rotation, small ‘a’, limit we also expand in rH/l and consider

the leading correction of O(r2
H/l

2). For simplicity below, we will only keep track of

the order in 1/l, and refer to this as the 1/l expansion.

We employ the ansatz

A(2)
ϕ (r, u) =

[
f[0](r) + f[2](r)l

−2
]
Cu(1− u2), (5.95)

ω(1) =
1

8m2
+ ω

(1)
[2] l
−2, (5.96)

Bc
T

C
= ω(1) − 1

r2
1

= − 1

8m2
+ (ω

(1)
[2] − 2)l−2, (5.97)

where ω
(1)
[2] is constant and sub(super)scripts in square brackets indicate the order

in the 1/l expansion. Also, we use m instead of r1 in this section. The ansatz

solves the dTϕ(t) = 0 equation and the dTu = 0 equation (5.53) has the expansion

dT
[0]
u +dT

[2]
u l−2 + · · · = 0. The leading order equation dT

[0]
u = 0 is solved by the known

BZ solution in the Kerr geometry [5, 6]

f[0](r) =
2r − 3m

m4

[
r2

16m

(
2dilog

r

2m
+ ln2 r

2m
+
π2

3

)
− r

4
− m

8
− m2

9r

]
− 1

m4

(
r2

2
− mr

4
− m2

12

)
ln

r

2m
. (5.98)

The next-to-leading-order equation dT
[2]
u = 0 has a solution of the form

f[2](x) =
1

36

[
3C1h1(x) + C2h2(x) + h2(x)

∫
h1(x)h3(x) dx− h1(x)

∫
h2(x)h3(x) dx

]
,

(5.99)
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where x ≡ r
2m

and

h1(x) = −4x2(4x− 3), (5.100)

h2(x) = −12x2(4x− 3) ln
(

1− 1

x

)
− 2(24x2 − 6x− 1), (5.101)

h3(x) = −9

2
x2(8x− 3)(2dilogx+ ln2x) +

3x(48x3 − 90x2 + 43x− 2) lnx

2(x− 1)2
−

48π2x6 − (66π2 + 288)x5 + (14π2 + 324)x4 − (35 + 12ω
(1)
[2] )x3 − 7x2 + 12ω

(1)
[2]

4x2(x− 1)
.

(5.102)

The function h3(x) can be written in a slightly different form

h3(x) = −9x2(8x− 3)
( =Li2

1
x

+Li1
1
x

lnx︷ ︸︸ ︷
Li2

1

x
− ln(x− 1) lnx+ ln2x

)
+

3x(48x3 − 90x2 + 43x− 2) lnx

2(x− 1)2

+
288x5 − 324x4 + (35 + 12ω

(1)
[2] )x3 + 7x2 − 12ω

(1)
[2]

4x2(x− 1)
, (5.103)

using the dilogarithm identities

dilogx = Li2(1− x) = Li2
1

x
+

1

2
lnx ln

x

(x− 1)2
− π2

6

= Li2
1

x
− ln(x− 1) lnx+

1

2
ln2x− π2

6

= Li2
1

x
+ Li1

1

x
lnx− 1

2
ln2x− π2

6
, (x > 1).

(5.104)

With some manipulation, the integrals in (5.99) can be evaluated using Maple. In

particular, the second integral can be simplified using integration by parts, as sketched

below,∫
h2(x)h3(x) dx =

∫
part1 dx+

∫
ln
(x− 1

x

)
part2 dx︸ ︷︷ ︸

=part1a+
( ∫

part1b dx+

∫
ln2x part2b dx︸ ︷︷ ︸

integration by parts

)
. (5.105)



87

Before presenting the explicit result, we note that certain terms in (5.105) appear to

be complex. For example,

4212

35

[
Li3x− Li2x lnx− 1

2
ln(1− x) ln2x

]
, (5.106)

since it contains Lisx, is only real for x ≤ 1 (ln(1−x) = −Li1x) while our x lies in the

range [1,∞). However, all the imaginary parts actually cancel out as can be shown

using the following identities

Li1x = Li1
1

x
− lnx− iπ

(
⇔ ln(1− x) = ln(x− 1) + iπ

)
,

Li2x = −Li2
1

x
− 1

2
ln2 x+

π2

3
− iπ lnx (x > 1),

Li3x = Li3
1

x
− 1

6
ln3 x+

1

3
π2 lnx− 1

2
iπ ln2 x,

or more generally

Lisx+ (−1)sLis
1

x
= 2

bs/2c∑
k=0

ln(−x)(s−2k)Li2k(−1)

(s− 2k)!
. (5.107)

The final solution is given by

f[2](x) =
78x2(4x− 3)

35

(
6Li3

1

x
+ 4Li2

1

x
lnx+ Li1

1

x
ln2 x

)
− 2(120x5 + 195x4 − 234x3 − 312x2 + 78x+ 13)

35

(
Li2

1

x
+ Li1

1

x
lnx

)
− 13(24x2 − 6x− 1) ln2 x

35
+
x(240x4 + 270x3 − 1951x2 + 1397x− 26) lnx

35(x− 1)

+
48x4

7
+

90x3

7
− 2659x2

42
+

1427x

105
, (5.108)

where we have set ω
(1)
[2] = 1/2 to remove the O(x3, x2) divergences at large x, while

O(x) and ln x divergences remain (implying however finite Br and Bθ); in the two

limits,

f[2](x→∞) = −x
3

+
lnx

30
− 833

1800
, (5.109)

f[2](x = 1) =
468ζ(3)

35
+

4π2

3
− 9434

315
. (5.110)



88

Thus we have

ω = a
( 1

8m2
+

1

2l2

)
=

ΩH + Ω∞
2

, (5.111)

BT = C(1− u2)(ω − ΩH) = −Ca(1− u2)
( 1

8m2
+

3

2l2
)
, (5.112)

consistent with matching to the unperturbed monopole (cf. (5.84)). As noted in

section 5.2.2, the criterion r2
H > al for a globally timelike Killing vector may or may

not be met in this ‘small’ black hole limit, and an outgoing energy flux is possible.

5.5 Aspects of the dual field theory

As reviewed in section 3.10, the near-equilibrium behaviour of ‘large’ AdS black holes,

satisfying rH > l, has a dual holographic description in terms of the grand canonical

ensemble for a field theory on the 2+1-dimensional boundary geometry. For rotating

black holes, this system is characterized by a fluid at finite temperature on a rotat-

ing two-sphere, and the force-free magnetosphere we have studied translates to an

electromagnetic perturbation of this rotating fluid. We will focus attention on large

black holes with rH > l for the rest of this section.

To gain insight into the properties of this system, it is useful to compare with

the corresponding Kerr-Newman-AdS (KNAdS) vacuum solution of Einstein-Maxwell

theory revealed in chapter 3. In the slow-rotation regime, and using BL coordinates,

the KNAdS geometry with magnetic charge C admits the expansion

ds2
KNAdS = ds2

KAdS +O(C2) (5.113)

AKNAdS = −C cos θdϕ+O(a). (5.114)

Thus, by working to linear order in C (and thus ignoring magnetic back-reaction

on the Kerr-AdS geometry), we can equivalently consider the force-free solution as

a particular O(a/m) perturbation of the KNAdS background. The first difference

emerges in the O(a) correction to At. For KNAdS, At = Ca cos θ/r2 +O(a3) and this

completes the solution up to O(a3). In contrast, the force-free solution necessarily

satisfies At = −ωAϕ = Cω(1)a cos θ+O(a2), up to a possible constant shift in At that,

as we will see below, can be gauged away. With ω constant, this produces a non-

vanishing boundary limit for At. The holographic dictionary (cf. chapter 3) generally

allows us to isolate the chemical potential and charge density from the asymptotics
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of At ∼ µ + ρ/r + · · · (constant coefficients will be absorbed in this identification,

since the bulk gauge coupling is arbitrary in the limit that we ignore back-reaction

on the metric). In the present case, this would lead to the odd conclusion that the

fluid on the sphere had a θ-dependent chemical potential, but no charge density to

O(a2). However, the full definition of the chemical potential [68],

µl = AµK
µ
ΩH
|r→∞ − AµKµ

ΩH
|r→rH = 0 +O(a3), (5.115)

does in fact vanish to this order, as expected (cf. (3.69)).

This discussion suggests that the distinction between the holographic dual of the

force-free magnetosphere and KNAdS may in effect be rather minor up to O(a).

There is no azimuthal current at this order, and thus the boundary fluid rotates in

the leading-order monopole magnetic field. The absence of a charge density at this

order appears consistent with the conclusion that the angular velocity ω of the elec-

tromagnetic field was not uniquely fixed, at least to O(a), in the solution. I.e. there

is no restriction to rotating a magnetic field in a neutral fluid. Another viewpoint

follows from noting that for an electromagnetic field strength fµν in 2+1 dimensions,

det(fµν) = 0 identically, and thus the force-free condition for the dual fluid fµνj
ν = 0

can always be solved for a specific current configuration independent of the back-

ground field. There is no analog of the constraint tr(?FF ) = 0 required in 3+1

dimensions. This opens the possibility that some of the above conclusions may actu-

ally extend to higher orders in the expansion in the rotation parameter a, where the

vanishing of the charge density need no longer hold. This also suggests that repeating

the calculation in one higher dimension, where the boundary force-free condition is

less trivial, may lead to somewhat different conclusions.

The arguments above imply that, at least to O(a), we can directly translate

various results from the equilibrium thermodynamics of KNAdS duals to the force-

free solution. In fact, to linear order in the magnetic charge, we can adopt KAdS

relations for the field theory temperature,

T ∼ r1

4πl2

(
1 +

l2

r2
1

)
+O(a2)

m=1−→ 1

2πr2
1

+O(a2), (5.116)

and the angular velocity

Ω = ΩH − Ω∞ ∼
a

l2

(
1 +

l2

r2
1

)
+O(a3)

m=1−→ 2a

r3
1

+O(a3). (5.117)
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The two quantities here ΩH and Ω∞ are the bulk angular velocities at r = rH and r =

∞ respectively. The dual field theory is identified as a neutral fluid with temperature

T in a rotating Einstein universe, with angular velocity Ω. These quantities along

with suitable definitions of mass and angular momentum then satisfy the first law, as

discussed earlier [19]. Indeed the partition function of an ideal gas in this background

can be computed and reproduces the structure of the bulk partition function [18, 65,

62], which for KNAdS has the form [68] (cf. (3.67) and (3.89)),

1

V
lnZ = T 2h (µ/T,B(1− Ω2l2)/T 2)

1− Ω2l2
∼ T 2h

(
µ/T,B/T 2

)
+O(a2). (5.118)

The quantity h(µ/T,B/T 2) specifies the partition function of the static charged black

hole. Note that the free energy diverges, and the rotation velocity exceeds the speed

of light, unless Ω < 1/l [18]. In the slow rotation limit, this condition is always

satisfied for a < r1/2 given that we require r1 > l to have a dual description in field

theory.

5.5.1 Currents at O(a2)

The corrections to the free energy arise at O(a2), and thus are only fully calculable on

accounting for the back-reaction to the metric which starts at this order. However,

we can look again at the electromagnetic field, and ask whether this picture of a

neutral dual fluid persists to higher orders in a. In fact, since At = −ωAϕ is generic

for axisymmetric force-free solutions, the O(a2) correction to Aϕ characterized by

f(r) → O(1/r) has the right falloff to produce a contribution to the charge density

at O(a3). However, we would need to compute the full solution at this order to test

whether this remains or is cancelled by other terms.

Nonetheless, since the bulk solution is valid at O(a2), we can read off the corre-

sponding boundary currents from the asymptotics of the gauge field. In particular,

with f(z) → c1z we can (up to normalization), identify the the azimuthal boundary

current,

jϕ = a2c1, (given rH > l), (5.119)

with the results plotted in Fig. 5.7 for various choices of r1 and with c2
C

= −10, −1,

0, 1, 10. As noted above, the field theory charge density jt = −ωjϕ (taking the

asymptotic limit of ∂rAt = −ω∂rAϕ) is of higher order, O(a3), and thus we cannot

perform a nontrivial test of the putative ‘boundary force-free condition’ that is hinted



91

Figure 5.7: Plots of the azimuthal current c1 as functions of r1 for various values of
c2, with c1 obtained by imposing the boundary conditions fb(0) = 0 and f ′b(0) = c1

for the series solution fb(z) constructed up to O((z − 1)10). Note that the boundary
field theory interpretation only holds for large black holes with r1 < 1. The second
graph shows the region close to the r1-axis. For c1, good agreement is found between
the numerical and series results, except for the non-monotonic behaviour of c1 near
r1 ≈ 2.

at by the results at O(a).

Although we are primarily concerned with large black holes in this section, we

note more generally that the condition for energy extraction constrains ω (and thus

c2) to the range Ω∞ < ω < ΩH (or equivalently − (r1−2)2+4

(r1−2)2r2
1
< c2 <

4−r1
(r1−2)2r1

). Corre-

spondingly, we find constraints on cmin
1 (r1) < c1 < cmax

1 (r1), which we plot in fig. 5.8.

Of course, c1 only has a holographic interpretation in terms of the dual current for

large black holes with rH > l.
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Figure 5.8: To have energy extraction for small black holes, ω(1), c2 and c1 must lie
between the top and bottom curves in each plot. The middle curves correspond to
ω = 0. Note that ω

(1)
min/max and c

min/max
2 correspond to c

max/min
1 .

5.5.2 Stability

As discussed in sections 2.3 and 5.2, and briefly reviewed again here, Kerr and Kerr-

AdS geometries have important differences concerning timelike Killing vectors and
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ergospheres. For Kerr black holes in asymptotically flat space, there is a unique nor-

malized Killing vector which is timelike at infinity, Kµ
Ω=0 = ξµ(t). This Killing vector

becomes spacelike inside the ergosphere, allowing for the possibility of energy extrac-

tion from the black hole via super-radiance or the BZ process. In AdS, super-radiant

modes would be reflected back off the boundary, leading to a genuine instability. How-

ever, as reviewed above, this situation changes in large Kerr-AdS geometries, where

a family of Killing vectors remain timelike at infinity. Among this class, the horizon

generator Kµ
ΩH

= ξµ(t) +ΩHξ
µ
(ϕ) is globally timelike, becoming null on the horizon itself.

Thus, for “large” black holes there is no ergoregion for the energy flux vector defined

by T µ = −T µν Kν
ΩH

, which is itself timelike outside the horizon if the dominant energy

condition (DEC) is satisfied. Hawking and Reall have argued that the existence of

this global timelike Killing vector, along with the DEC, ensures stability of Kerr-AdS

if Ω < 1/l [14]. This argument is apparent in the discussion of section 2.3, and implies

that energy cannot be extracted from large Kerr-AdS black holes by super-radiance

or indeed by the BZ process. This argument of course breaks down for small black

holes, which then behave in a similar manner to Kerr geometries.

This stability argument for large black holes ultimately appears consistent with

the above conclusions that the boundary rotating fluid is neutral, albeit to low order

in the rotation parameter. Nonetheless, an important caveat is that the dominant

energy condition needs to be satisfied. In AdS, violating the DEC is not as dramatic as

it would be in flat space since the Breitenlohner-Freedman (BF) bound allows a range

of negative mass e.g. for scalar fields. This loophole was noted by Gubser & Mitra [69]

as a way to realize a Gregory-Laflamme-type instability for large black holes. In the

present case, it is not clear that the currents which produce a force-free magnetosphere

satisfy the DEC,8 but we can try to check this by looking at the asymptotics of the

bulk current, given in terms of the bulk solution as Jµ = F µν
;ν . For the boundary

field theory directions {t, θ, ϕ}, we find the covariant current components,

Jt ∼ 2Cau
l2ω(1) + 1

l2r2
+O(r−5), (5.120)

Ju ∝ ∂rBT (u) = 0, (5.121)

Jϕ ∼ 2Ca2u(1− u2)
(r2

1 + l2)(l2 − r2
1 − 2l2r2

1ω
(1))

l2r4
1r

2
+O(r−4). (5.122)

8The DEC can be verified for the force-free electromagnetic field configuration to O(a2). We find
that −Tµν Kν

ΩH
is indeed a future-directed timelike vector, with the norm scaling as 1/r2 as r →∞.

The O(a2) correction is actually negative, but is necessarily subleading in the slow rotation limit.
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We would like to interpret these falloff conditions in terms of the conformal dimension

∆ of the dual vector operator according to the boundary coupling OµJµ, and compare

with the BF bound. To do this, we can consider modelling the current with a specific

bulk field, and for simplicity consider the case of a charged scalar φ in the bulk,

with the current Jµ = φ∗
↔
Dµ φ. Then Jt = iφ∗φAt, and Jϕ = iφ∗φAϕ. Recall

that the BF bound for a scalar field in (3+1)-D is m2l2 > −9/4, where for scalars

∆(d−∆) = −m2l2. The falloff conditions for the (covariant) current components Jt ∼
Jϕ ∼ 1/r2 +O(1/r4) then imply ∆ = 1, i.e. m2 = −2/l2 which is above the BF bound.

This allows for two possible normalizable falloff conditions, φ ∼ α1/r + α2/r
2 + · · · ,

and those above suggest α1 6= 0 and α2 = 0, which is a consistent choice.9 The result

is of course consistent with the stability of the solution.

The radial component of the current is given by

Jr ∼ 2Cl2au
ω(1)r2

1 − 1

r4r2
1

+O(r−6), (5.123)

which in principle sources another scalar operator, independent of Oµ. Indeed, ex-

pressing Dµ in BL coordinates, the simple scalar model above would imply Jr ∼
iφ∗∂rφ ∼ 1/r3, which is not consistent with the 1/r4 scaling above, suggesting in-

stead a higher dimensional operator.

To conclude this section, we also point out that the azimuthal current Jϕ can

change sign from the horizon to the boundary: in m = 1 units and with z = r1
r

,

Jϕmin = Jϕ(z = 0) ∼ 1 − r2
1ω

(1) − 2r1ω
(1) while Jϕmax = Jϕ(z = 1) ∼ 1 − r2

1ω
(1). For

example, with ω(1) = ΩH/2 = 1/(2r2
1), Jϕmin = 1/2 − 1/r1 < 0 while Jϕmax = 1/2 and

the sign change happens closer to the horizon for smaller r1 (i.e., larger black holes).

This is consistent with the sign change in the ZAMO frame, suggesting a dominant

effect of frame dragging. However, the sign change actually persists for JΦ = Jϕ+ a
l2
J t

as measured with respect to the non-rotating frame at infinity.

Another (perhaps related) observation about the current is that in the Kerr case

it is everywhere space-like (i.e. ‘magnetostatic’) outside the horizon, while for Kerr-

AdS JµJ
µ can change sign. In the presence of both positive and negative charges, a

spacelike ‘magnetostatic’ current is perfectly physical, and indeed is likely the most

stable configuration under the assumption that local electric fields are fully screened.

An example from our solution is the current Jµ(ω = ΩH) ∝ ξµ(t)+ΩHξ
µ
(ϕ) which satisfies

9Note that for near-extremal black holes, this dual operator dimension is also in the range for
which condensation is possible producing a holographic superfluid.
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the force-free condition by noting Fµν
[
ξν(t) +ωξν(ϕ)

]
≡ 0 and can certainly be space-like

for small black holes from the previous discussions. The question of whether timelike

(i.e. electrically dominant) current domains actually imply instabilities of some sort

deserves further investigation.

5.5.3 Summary

In this chapter we have completed the main task of the present thesis, obtaining force-

free solutions for a rotating monopole in Kerr-AdS background, in the slow rotation

limit up to O(a2). The AdS boundary condition render the rotation frequency of

the magnetosphere arbitrary. Drawing an analogy to the field of a KNAdS black

hole in the probe limit, we interpret our results on the boundary side as describing

a freely roting magnetic field in a neutral fluid, up to O(a). Nevertheless, at O(a2)

we identify a dual azimuthal current from our non-trivial radial solutions. Whether a

non-zero charge density appears at O(a3) would require higher order solutions. The

dual description at leading orders is also consistent with the stability arguments for

large black holes.

The question of finding general exact solutions for finite ‘a’ still remains open.

We next present some efforts that have been made in this direction, building on

the remarks about the properties of the current source in the last section. A more

thorough conclusion to the thesis will be given in chapter 7.
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Chapter 6

Kerr-AdS Magnetospheres in

Newman-Penrose formalism

The Newman-Penrose (NP) formalism [70] has successfully been applied in black

hole perturbation theory, and has the merit that the Maxwell equations are first-

order. Especially, exact solutions for finite ‘a’ with null currents have recently been

constructed [21] using the NP formalism. In this chapter we rewrite the Kerr-AdS

force-free equations in the NP formalism and search for new solutions for finite ‘a’

(necessary to understand the dual field theory beyond the limit of chapter 5).

6.1 Review of the NP formalism

The NP formalism [70, 71, 51], makes use of the null tetrad {lµ, nµ,mµ, m̄µ} normal-

ized according to

lµnµ = −mµm̄µ = 1, (6.1)

so that the metric is gµν = 2l(µnν)−2m(µm̄ν), where lµ and nµ are real, mµ is complex

and a bar denotes complex conjugate. The null tetrad is related to a real orthonormal

basis {eµ0 , e
µ
1 , e

µ
2 , e

µ
3} by

lµ =
eµ0 + eµ1√

2
, nµ =

eµ0 − e
µ
1√

2
, mµ =

eµ2 − ie
µ
3√

2
(6.2)

eµ0 =
lµ + nµ√

2
, eµ1 =

lµ − nµ√
2

, eµ2 =
mµ + m̄µ

√
2

, eµ3 =
i(mµ − m̄µ)√

2
(6.3)
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We use indices in parentheses {(1), (2), (3), (4)}, interchangeably with {l, n,m, m̄}
(as indices), to indicate tensor components from contractions with tetrad vectors

{lµ, nµ,mµ, m̄µ} respectively. E.g., the metric with respect to the tetrad appears flat

η(a)(b) = η(a)(b) =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (6.4)

The contractions of the electromagnetic field Fµν with tetrad vectors are specified

by three complex NP variables {φ0, φ1, φ2}, which are conveniently defined as the

coefficients in the expansion of the anti-self-dual part F−µν of Fµν [72]:

F−µν = φ0Uµν + φ1Wµν + φ2Vµν , (6.5)

where F−µν ≡ 1
2
(Fµν + i ?Fµν) and the basis for anti-self-dual bivectors (i.e. anti-

symmetric tensors) is formed using the NP tetrad as,

Uαβ ≡ 2m̄[αnβ], Wαβ ≡ 2(n[αlβ] +m[αm̄β]), Vαβ ≡ 2l[αmβ]. (6.6)

The anti-self-duality of some bivector Aµν is defined through the Hodge dual op-

eration ‘?’ as ?Aµν ≡ 1
2
εµναβA

αβ = −iAµν . Similarly, the self-duality is defined by

the condition ?Bµν = iBµν , for some other bivector Bµν . The anti-self-duality of

the basis bivectors (6.6) implies that their complex conjugates are self-dual, e.g.,
?Ūµν = ?Uµν = −iUµν = iŪµν , and form the basis for self-dual bivectors. Now we can

decompose the electromagnetic bivector as the sum of the anti-self-dual and self-dual

parts:

Fµν = (φ0Uµν + φ1Wµν + φ2Vµν) + (φ̄0Ūµν + φ̄1W̄µν + φ̄2V̄µν). (6.7)

Such a decomposition is consistent with the fact that the double Hodge operations

on bivectors give identically ?? = −1 = (±i)2. By noting that the only non-vanishing

contractions between any two of Uµν , Vµν , Wµν and their conjugates are [51]

UµνV
µν = 2, WµνW

µν = W̄µνW̄
µν = −4, (6.8)

we can express the NP variables as projections onto the anti-self-dual bivector basis
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and equivalently as (the more commonly seen) contractions with tetrad vectors:

φ0 =
1

2
FµνV

µν = Fµνl
µmν (6.9)

φ1 = −1

4
FµνW

µν =
1

2
Fµν(l

µnν + m̄µmν) (6.10)

φ2 =
1

2
FµνU

µν = Fµνm̄
µnν . (6.11)

Using (6.5) and (6.8), we also have

F−
µν
F−µν =

1

2
(I1 + iI2) = 4(φ0φ2 − φ2

1), (6.12)

where

I1 ≡ FµνF
µν = − ?Fµν

?F µν , I2 ≡ Fµν
?F µν = ?FµνF

µν (6.13)

are the two invariants of the electromagnetic field. So the degeneracy condition

becomes

I2 = 8=(φ0φ2 − φ2
1) = 0. (6.14)

6.2 Force-free equations in the original NP vari-

ables φ0,1,2

The force-free equations F(a)(b)J
(b) = 0 are [21]

<(φ1Jn−φ2Jm) = 0, <(φ1Jl−φ̄0Jm) = 0, 2i=φ1Jm̄+φ̄0Jn−φ2Jl = 0. (6.15)

We specify to the Kerr-AdS metric with the following Kinnersley-like tetrad in BL

coordinates [73],1

lµ =
[r2 + a2

∆r

, 1, 0,
aΞ

∆r

]
(6.16)

nµ =
∆r

2Σ

[r2 + a2

∆r

,−1, 0,
aΞ

∆r

]
(6.17)

mµ = −ρ̄
√

∆θ

2

[ia sin θ

∆θ

, 0, 1,
iΞ

∆θ sin θ

]
, (6.18)

1This tetrad corresponds to the metric signature [+,−,−,−]. Also, the t-components differ from
those in [73] by a factor of Ξ.
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listing components in the order [t, r, θ, ϕ]. We have for the current (with J(a) defined

without the 2π factor)

Jl = ρ2∇lφ
′
1 −

1

ρ∆r

√
∆θ sin θ

∇m̄φ
′
0 (6.19)

Jn = −ρ2∇nφ
′
1 +

ρ√
∆θ sin θ

∇mφ
′
2 (6.20)

Jm = ρ2∇mφ
′
1 −

1

ρ∆r

√
∆θ sin θ

∇nφ
′
0 (6.21)

Jm̄ = −ρ2∇m̄φ
′
1 +

ρ√
∆θ sin θ

∇lφ
′
2, (6.22)

where the rescaled NP variables are

φ′0 ≡ ρ∆r

√
∆θ sin θφ0, φ′1 ≡ ρ−2φ1, φ′2 ≡ ρ−1

√
∆θ sin θφ2, (6.23)

and

ρ ≡ − 1

r − ia cos θ
. (6.24)

Note that ρρ̄ = 1/Σ. The above ‘definitions’ (6.19)–(6.22) of the currents have

incorporated the homogeneous Maxwell equations dF = 0 which read

Jl = J̄l, Jn = J̄n, Jm = J̄m̄, Jm̄ = J̄m. (6.25)

Later (in section 6.6) when we present special solutions for φ0,1,2, we will need to

verify (6.25) separately.

6.3 Formulation in modified NP variables associ-

ated with an orthonormal frame

In this section we introduce a set of modified NP variables, in terms of which we find

physical quantities take more concise forms. We first make manifest that only two

of the F (a)(b)J(b) = 0 equations are independent, as noted in section 5.3.1, which we
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choose to be

φ0J(2) = φ̄2J(1) + (φ1 − φ̄1)J(3), (6.26)

φ0J(4) = (φ1 + φ̄1)J(1) − φ̄0J(3). (6.27)

Now define the modified NP variables (with the same φ1)

Φ1 ≡ ∆rρφ0 +
2φ2

ρ
, Φ2 ≡ ∆rρφ0 −

2φ2

ρ
, Φ1,2 =

φ′0 ± 2φ′2√
∆θ sin θ

, (6.28)

and split the current2

2JT(2) ≡ J(2) +
J(1)

k1

, 2JP(2) ≡ J(2) −
J(1)

k1

, (6.29)

2JT(4) ≡ J(4) +
J(3)

k2

, 2JP(4) ≡ J(4) −
J(3)

k2

, (6.30)

where k1 ≡ 2Σ/∆r, k2 ≡ −ρ̄/ρ. Linear combinations of the force-free equations

(6.26) and (6.27) give the following equivalent set in terms of the above newly define

quantities:

(=Φ1 + =Φ2)JP(2) − 2ρ̄∆r=φ1J
P
(4) = 0 (6.31)

(<Φ2 + i=Φ1)JT(2) + Φ̄1J
P
(2) + 2iρ̄∆r=φ1J

T
(4) = 0. (6.32)

The degeneracy condition (6.14) becomes

=(Φ2
1 − Φ2

2 − 8∆rφ
2
1) = 0. (6.33)

The newly defined currents read explicitly

JT(2) =
∂θ(Φ2 sin θ

√
∆θ)

4
√

2Σ sin θ
+

∆rρ
2

2Σ
∂r
φ1

ρ2
− iΞ∂ϕ + a sin2 θ∂t

4
√

2Σ sin θ
√

∆θ

Φ1 (6.34)

2The superscript “T/P” indicates that, e.g., J
T/P
(2) only involves the contractions of Jµ with the

toroidal/poloidal components of nµ. Note that in the Kerr limit, Φ1 & Φ2 are proportional to the
electric and magnetic field components in the orthonormal frame associated with the Carter tetrad,

e.g., Φ1 ∼ (E3 + iB3)Carter etc., and J
T/P
(2)/(4) are proportional to components of the current in this

orthonormal frame [74].
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JP(2) = −∂θ(Φ1 sin θ
√

∆θ)

4
√

2Σ sin θ
− aΞ∂ϕ + (r2 + a2)∂t

2Σ
φ1 + i

Ξ∂ϕ + a sin2 θ∂t

4
√

2Σ sin θ
√

∆θ

Φ2 (6.35)

JT(4) = −ρ∂rΦ2

4
+

√
∆θρ

3

√
2

∂θ
φ1

ρ2
+ ρ

aΞ∂ϕ + (r2 + a2)∂t
4∆r

Φ1 (6.36)

JP(4) =
ρ∂rΦ1

4
− ρaΞ∂ϕ + (r2 + a2)∂t

4∆r

Φ2 − iρ
Ξ∂ϕ + a sin2 θ∂t√

2 sin θ
√

∆θ

φ1. (6.37)

Note that J
T/P
(2) are real and J

T/P
(4) are complex. The real electromagnetic field takes

relatively more compact forms:

Frϕ = −2
a sin2 θ

Ξ
<φ1 −

(r2 + a2) sin θ
√

∆θ√
2Ξ∆r

=Φ2 (6.38)

Frt = 2<φ1 +
a sin θ

√
∆θ√

2∆r

=Φ2 (6.39)

Fθϕ = − a sin2 θ√
2Ξ
√

∆θ

<Φ2 + 2
(r2 + a2) sin θ

Ξ
=φ1 (6.40)

Fθt = −2a sin θ=φ1 +
<Φ2√
2
√

∆θ

(6.41)

BT + iFϕt =
sin θ
√

∆θ√
2Ξ

Φ1. (6.42)

One sees again that the non-vanishing of the poloidal currents JP depends crucially

on the toroidal magnetic field BT ∼ <Φ1. The equations (6.31) & (6.32) form a

useful starting point for further study of force-free solutions in Kerr-AdS away from

the slow-rotation ansatz. We next employ the NP formalism to present some existing

and new solutions.

6.4 BZ’s monopole solution

We first recast BZ’s monopole ansatz using the modified NP variables. This is the

stationary and axisymmetric case with Fϕt ∝ =Φ1 = 0 and all quantities being (ϕ, t)-

independent. The degeneracy condition (6.33) becomes

<Φ2=Φ2 = −8∆r<φ1=φ1. (6.43)
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The two force-free equations (6.31) and (6.32) read explicitly (with Φ1 now real)

(2
√

2∆r=φ1∂r +
√

∆θ=Φ2∂θ)(Φ1 sin θ
√

∆θ) = 0 (6.44)

( <Φ2

2
√

2∆r

∂θ − i
=φ1√

∆θ

∂r

)
(Φ2 sin θ

√
∆θ)−

Φ1∂θ(Φ1 sin θ
√

∆θ)

2
√

2∆r

+ρ2 sin θ(<Φ2∂r + i2
√

2
√

∆θ=φ1∂θ)
φ1

ρ2
= 0.

(6.45)

We also have

ω = Ξ
<Φ2 − 2

√
2a sin θ

√
∆θ=φ1

a sin2 θ<Φ2 − 2
√

2(r2 + a2) sin θ
√

∆θ=φ1

(6.46)

T rt =
Φ1

2Σ
(<Φ2 − 2

√
2a sin θ

√
∆θ=φ1). (6.47)

It can be checked that (6.45) indeed reduces to (5.57) for the slowly rotating monopole

ansatz, while (6.44) is equivalent to {Aϕ, BT} = 0.

6.5 Brennan et al’s solution in Kerr-AdS

The analytic solutions for the BZ process have been restricted to the perturbatively

slow rotation regime. The only exceptions known at present are exact solutions with

null currents [20, 75, 76, 21]. A recent thorough discussion has been given in [21]

using the NP formalism for the Kerr case, which we now generalize to Kerr-AdS.

6.5.1 Derivation of the equations

We consider a null current Jµ along the principle null direction nµ of the NP tetrad

so that only Jl = nµl
µ ≡ J is non-zero, which is real. Then the force-free equations

(6.15) or (6.26) & (6.27) impose

φ2 = 0 = <φ1, (6.48)

which already makes the degeneracy condition (6.14) hold and is stronger than the

latter. In terms of the new variables defined in (6.28) this implies

Φ1 = Φ2 = ∆rρφ0. (6.49)
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In addition, Jn = 0 gives ∇nφ
′
1 = 0 from (6.20), where ∇n becomes simply ∂r if one

transforms to the (Kerr-AdS analogue of) ingoing Kerr coordinates

dψ = dϕ+
aΞ

∆r

dr (6.50)

dv = dt+
r2 + a2

∆r

dr. (6.51)

Then ∂rφ
′
1 = 0 implies =φ1 = 0 for a 6= 0, so φ1 = 0. Similarly, Jm = 0 implies

Φ1(r, θ, ψ, v) = Φ1(θ, ψ, v) in these new coordinates. The whole problem now reduces

to solving one of Maxwell equations Jl = J for some prescribed function J , subject

to the reality of Jl:

√
2J =

√
2<Jl =

1

∆r

√
∆θ sin θ

(
Ξ∂ψ=Φ1 + a sin2 θ∂v=Φ1

)
+
∂θ(<Φ1

√
∆θ sin θ)

∆r sin θ

(6.52)

0 =
√

2=Jl = − 1

∆r

√
∆θ sin θ

(
Ξ∂ψ<Φ1 + a sin2 θ∂v<Φ1

)
+
∂θ(=Φ1

√
∆θ sin θ)

∆r sin θ
,

(6.53)

which reduce to Brennan et al’s equations [21] in the Kerr case. In conclusion, the

requirement of the current being null reduces the force-free equations to a single

Maxwell equation supplemented by a series of constraints on the (NP) field variables

((6.48), etc.).

6.5.2 Relation to real electromagnetic field components

For the above null current configuration, the real field components (in the original

BL coordinates) are

Frθ = − Σ√
2∆r

√
∆θ

<Φ1, Fθϕ = − a sin2 θ√
2Ξ
√

∆θ

<Φ1, Fθt =
1√

2
√

∆θ

<Φ1,

Frϕ = −(r2 + a2) sin θ
√

∆θ√
2Ξ∆r

=Φ1, Frt =
a sin θ

√
∆θ√

2∆r

=Φ1, Fϕt =
sin θ
√

∆θ√
2Ξ

=Φ1.

(6.54)
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(In the ingoing Kerr coordinates: F IK
rθ = 2Frθ, F

IK
rψ = 2Frϕ, F

IK
rv = 2Frt.) Also,

BT =
sin θ
√

∆θ√
2Ξ

<Φ1. (6.55)

The definition of ω only exists for Fϕt ∝ =Φ1 = 0, with

ω = − Fθt
Fθϕ

=
Ξ

a sin2 θ
, (6.56)

and in this case the degeneracy condition ?FµνF
µν = 0 is satisfied trivially with

Frϕ = Frt = Fϕt = 0.

6.5.3 Some solutions with null currents

Stationary (and axisymmetric) case

Analogously to the analysis in [21], assuming stationarity (∂v → 0) and with (6.53)

reducing to

∂θ
[
sin θ
√

∆θ=Φ1(θ, ψ)
]
− ∂ψ

[ Ξ√
∆θ

<Φ1(θ, ψ)
]

= 0, (6.57)

one deduces the existence of an exact 1-form ∂ψS dψ + ∂θS dθ with

∂ψS(θ, ψ) = sin θ
√

∆θ=Φ1(θ, ψ), ∂θS(θ, ψ) =
Ξ√
∆θ

<Φ1(θ, ψ). (6.58)

Using (6.58) one can turn (6.52) into an equation for S.

To further impose axisymmetry, [21] assumes a ψ-independent potential S(θ) so

that

=Φ1 = 0, (6.59)

and (6.52) becomes

[sin θ∆θS
′(θ)]′ =

√
2Ξ∆r sin θJ (r, θ), (6.60)

where a prime denotes θ-derivative. In the Kerr limit, this reduces to the solution

first found by Menon and Dermer [76].

However, one can impose axisymmetry only on the field Φ1 and allow a linear
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ψ-dependence of S, namely, we have the solution

S(θ, ψ) = C1ψ + S1(θ), =Φ1(θ) =
C1

sin θ
√

∆θ

, <Φ1(θ) =

√
∆θ

Ξ
S ′1(θ), (6.61)

with S1(θ) satisfying the same equation (6.60) as S(θ). Setting C1 = 0 gives back the

above case considered in [21].

We can try to solve (6.54) for vector potentials using (6.61). For C1 = 0, and in

addition assuming Aµ to be (ϕ, t)-independent, we find

At(θ) =
S1(θ)√

2Ξ
+ const. (6.62)

Aϕ(θ) = − a√
2Ξ2

∫
S ′1(θ) sin2 θ dθ + const. (6.63)

∂θAr(r, θ)− ∂rAθ(r, θ) =
Σ√

2Ξ∆r

S ′1(θ), (6.64)

with Ar(θ) undetermined. For C1 6= 0, we only allow a ϕ-dependence through a linear

ψ(ϕ, r)-dependence of At (with other Aµ remaining (ϕ, t)-independent) given by

At =
S[θ, ψ(ϕ, r)]√

2Ξ
=

1√
2Ξ

[
C1(ϕ+

∫
aΞ

∆r

dr) + S1(θ)
]
, (6.65)

and we find

Aϕ = − C1√
2Ξ

∫
r2 + a2

∆r

dr − a√
2Ξ2

∫
S ′1(θ) sin2 θ dθ, (6.66)

and (6.64) still holds.

General non-stationary, non-axisymmetric case

An example non-stationary, non-axisymmetric solution presented in [21] can also be

generalized to Kerr-AdS, solving equations (6.52) & (6.53):

<Φ1 = 15
√

∆θX(Ξv) cos θ sin2 θ cosψ (6.67)

=Φ1 =
Ξ√
∆θ

[
−5X(Ξv) sin2 θ sinψ + 3aX ′(Ξv) sin4 θ cosψ +

F1(ψ, v)

sin θ

]
, (6.68)

where X(Ξv) is a real function and we have kept the integration constant F1(ψ, v)

from solving (6.53).
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Again we try to find the vector potential for this solution.

∂rAθ − ∂θAr = −15
√

2X(Ξv)
Σ

∆r

cos θ sin2 θ cosψ (6.69)

∂rAψ − ∂ψAr =
√

2
r2 + a2

∆r

[
5X(Ξv) sin3 θ sinψ − 3aX ′(Ξv) sin5 θ cosψ − F1(ψ, v)

]
(6.70)

∂rAv − ∂vAr = −
√

2
aΞ

∆r

[
5X(Ξv) sin3 θ sinψ − 3aX ′(Ξv) sin5 θ cosψ − F1(ψ, v)

]
(6.71)

∂θAψ − ∂ψAθ = − 15a√
2Ξ
X(Ξv) cos θ sin4 θ cosψ (6.72)

∂θAv − ∂vAθ =
15√

2
X(Ξv) cos θ sin2 θ cosψ (6.73)

∂ψAv − ∂vAψ = − 1√
2

[
5X(Ξv) sin3 θ sinψ − 3aX ′(Ξv) sin5 θ cosψ − F1(ψ, v)

]
.

(6.74)

We consider a simple case X(Ξv) = 0, finding

F1(ψ, v) = −
√

2F1 (6.75)

Av = ∂v

∫
Aθ dθ + F2(r, ψ, v) (6.76)

Aψ = ∂ψ
[∫

Aθ dθ +

∫
F2(r, ψ, v) dv

]
+ F1v + F3(r, ψ) (6.77)

Ar = ∂r
[∫

Aθ dθ +

∫
F2(r, ψ, v) dv +

∫
F3(r, ψ) dψ

]
+ 2F1

(aΞ

∆r

∫
dv − r2 + a2

∆r

∫
dψ
)

+ F4(r),

(6.78)

with Aθ(r, θ, ψ, v) remaining arbitrary. One notices that

A ≡
∫
Aθ dθ +

∫
F2(r, ψ, v) dv +

∫
F3(r, ψ) dψ (6.79)

appears to be pure gauge, so Aµ − ∂µA reads

Aθ = Av = 0, Aψ(v) = F1v, (6.80)
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Ar(r, ψ, v) = 2F1

(aΞ

∆r

∫
dv − r2 + a2

∆r

∫
dψ
)

+ F4(r). (6.81)

As an alternative, we try the ansatz

Av = k1ψ + f1(r) + g1(θ), Aψ = k2v + f2(r) + g2(θ), (6.82)

and find

Aθ = g′1(θ)v + g′2(θ)ψ +K1(r, θ) (6.83)

Ar =
[
f ′1(r)− 2

aΞ

∆r

(k1 − k2)
]
v +

[
f ′2(r) + 2

(r2 + a2)

∆r

(k1 − k2)
]
ψ

+ ∂r

∫
K1(r, θ) dθ +K2(r),

(6.84)

where K1(r, θ) and K2(r) are integration constants.

Energy densities of null current solutions

The energy density for the null current case takes a simple form

− Ttt =
|Φ1|2

2Σ
, −T tt =

r2 + a2

2∆rΣ
|Φ1|2. (6.85)

Then for the stationary and axisymmetric solution (6.61) the energy density can be

an arbitrary function of θ, while for the solution given by (6.67) and (6.68) the energy

density can further have (ψ, v)-dependences.

6.6 Looking for new solutions (φ1 = 0)

The null current solutions presented above have the common constraints φ1 = φ2 = 0

(or φ1 = φ0 = 0 if we assume J(a) = Jn rather than J(a) = Jl), and the electromagnetic

field is necessarily “null” (by which one means I1 = I2 = 0.). In this section we try

to construct some solutions with weaker constraints on the field (so that it is not

null) and then infer the causal nature of the currents a posteriori. The search is

not exhaustive but the solutions we found have non-null currents and provide some

interesting alternatives.

We proceed by first manipulating two special cases:
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1. <φ1 = 0.

The first two force-free equations in (6.15) become <(φ2Jm) = <(φ̄0Jm) = 0

which implies

φ2 = c(r, θ, ϕ, t)φ̄0, (6.86)

for some real function c(r, θ, ϕ, t), and the last equation in (6.15) becomes

2i=φ1Jm̄ + φ̄0[Jn − c(r, θ, ϕ, t)Jl] = 0.

2. =φ1 = 0.

The last equation in (6.15) implies

φ2

φ̄0

=
Jn
Jl
, (6.87)

which is real, and the first two equations in (6.15) are both equivalent to

<(φ1Jl − φ̄0Jm) = 0.

In either case it is still not easy to find a solution, so we simply assume φ1 = 0. This

would be the condition implied by (6.15) if Jl = Jn = 0 which is of interest here (as

an alternative to the Jm = Jm̄ = 0 solutions in [21]). Now the field variables are

φ1 ≡ 0, φ2 = c(r, θ, ϕ, t)φ̄0 ⇔ φ′2 = c(r, θ, ϕ, t)
Σ

∆r

φ̄′0, (6.88)

and the force-free equations (6.15) reduce to

Jn = c(r, θ, ϕ, t)Jl, <(φ̄0Jm) = 0, (6.89)

with Jl = Jn = 0 as a special case. In addition, one needs to check that the identity

J̄m̄ = Jm (by definition) and the condition Jn (or Jl) being real hold for the field

variables constrained as in (6.88). This configuration is degenerate but not null, i.e.,

φ0φ2 − φ2
1 ∝ I1 + iI2 is real and non-zero. Explicitly, we have for the two force-free

equations (6.89) and the two constraints on the currents

J̄n = Jn = cJl ⇒ ∇m̄(φ′0φ̄
′
2) = 0 (6.90)

<(φ̄0Jm) = 0 ⇒ 2<(φ̄′0∇nφ
′
0) = ∇n(φ̄′0φ

′
0) = 0 (6.91)
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J̄m̄ = Jm ⇒ Σ

∆r

∇nφ
′
0 +∇lφ̄

′
2 = 0 (6.92)

Jn = J̄n ⇒ sin θ∆θ∂θ=φ′2 + (Ξ∂ϕ + a sin2 θ∂t)<φ′2 = 0, (6.93)

where we have eliminated c using (the conjugate of) (6.88).

We also impose stationarity and axisymmetry through Fϕt ∝ =Φ1 = 0, which by

(6.28), (6.23) and (6.88) implies3

=
[
φ′0 +

2Σ

∆r

c(r, θ, ϕ, t)φ̄′0
]

= 0, (6.94)

which breaks up into two cases

=φ′0 = 0 and c(r, θ, ϕ, t) =
∆r

2Σ
. (6.95)

We next construct solutions for each case.

6.6.1 Case 1: =φ′0 = 0

In this case we additionally have =φ′2 = 0 by (6.88). Then (6.90), (6.91), (6.92) and

(6.93) reduce respectively to

<(6.90) ⇔ ∂θ(φ
′
0φ
′
2) = 0 (6.96)

=(6.90) ⇔ (Ξ∂ϕ + a sin2 θ∂t)(φ
′
0φ
′
2) = 0 (6.97)

∇nφ
′
0 = 0 (6.98)

∇lφ
′
2 = 0 (6.99)

(Ξ∂ϕ + a sin2 θ∂t)φ
′
2 = 0. (6.100)

It is easy to deduce from (6.96) and (6.97) that

φ′0φ
′
2 = p(r), (6.101)

for some function p(r). We again transform to the ingoing Kerr coordinates {v, r, θ, ψ}
as in section 6.5. Then (6.98) is simply ∂rφ

′
0 = 0 so φ′0 = φ′0(v, θ, ψ), and (6.99) and

3The condition Fϕt = 0 usually corresponds to ∂ϕ, ∂t → 0. Nevertheless for the moment we keep
the full coordinate dependence of the unknowns φ0(r, θ, ϕ, t), φ2(r, θ, ϕ, t) and c(r, θ, ϕ, t).
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(6.100) become, using (6.101),

∆r∂r ln p(r)− 2[aΞ∂ψ + (r2 + a2)∂v]φ
′
0(v, θ, ψ) = 0 (6.102)

(Ξ∂ψ + a sin2 θ∂v)φ
′
0(v, θ, ψ) = 0. (6.103)

The solution formally takes the form

φ′0(v, θ, ψ) = q(θ) exp
[∆r∂r ln p(r)

Σ

(
v − a sin2 θ

Ξ
ψ
)]
, (6.104)

where q(θ) is an arbitrary function of θ. For the r.h.s to be r-independent, one

therefore must have p(r) = p = const.,4 and the solutions are (ψ, v)-independent:

φ′0 = q(θ), φ′2 =
p

q(θ)
, (6.105)

or for the modified NP variables,

Φ1,2 =
q(θ)± 2 p

q(θ)√
∆θ sin θ

. (6.106)

One can check that I2 = 0 trivially for real φ′0,2 and Φ1,2, while the other invariant is

I1 =
Φ2

1 − Φ2
2

∆r

=
8p

∆r∆θ sin2 θ
, (6.107)

with the sign depending on that of p. In fact from (6.107) one finds

0 = ∂θp ∝ Φ1∂θ(Φ1

√
∆θ sin θ)− Φ2∂θ(Φ2

√
∆θ sin θ) ∝ Φ1J

P
(2) + Φ2J

T
(2), (6.108)

which is just one of the force-free equations (6.32) for the current case. (The other one

(6.31) is satisfied trivially due to vanishing coefficients.) Also, the real field quantities

are

BT =
sin θ
√

∆θ√
2Ξ

Φ1, ω =
Ξ

a sin2 θ
(6.109)

Fθϕ = − a sin2 θ√
2Ξ
√

∆θ

Φ2, Fθt =
Φ2√

2
√

∆θ

= −ωFθϕ, Frϕ = Frt = 0. (6.110)

4One may also restrict oneself to the orbits ψ = vΞ/(a sin2 θ), or to the constant-θ surfaces on
which the r-dependent coefficient on the exponent can be made constant: Σ−1∆r∂r ln p(r) = const..
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One sees that ω is fixed (and coincides with (6.56) from the null current case), and

there are essentially two independent quantities: the toroidal and poloidal magnetic

fields, BT and Fθϕ ∝ Br, which are related as (by rewriting (6.107))

B2
T − (F ′θϕ)2 =

4p

Ξ2
, (F ′θϕ ≡

∆θ

a sin θ
Fθϕ). (6.111)

We also write the currents in terms of these more conventional quantities (instead of

NP variables):

JT(2) = − Ξ

4Σ sin θ
∂θF

′
θϕ, JP(2) = − Ξ

4Σ sin θ
∂θBT , JT(4) = JP(4) = 0. (6.112)

One can check the regularities at θ → 0 for the above quantities, against the

known physical configuration of the BZ monopole, for which

BT ∼ O(θ2), F ′θϕ ∼ Br ∼ O(1), Jµ ∼ O(1). (6.113)

Taking a ‘monopole’ field Fθϕ = Ca sin θ (with charge Ca), then

F ′θϕ = C∆θ B2
T = C2∆2

θ +
4p

Ξ2
(6.114)

JT(2) = −Ca2 cos θ
Ξ

2l2Σ
, JP(2) = C2a2 cos θ

Ξ∆θ

2l2ΣBT

. (6.115)

All of the above quantities are ∼ O(θ0), which however means a divergent Bϕ ∝
BT/ sin2 θ. The best one can do is set p = p0 ≡ −C2Ξ4/4 so that

BT = C
a

l
sin θ

√
∆θ + Ξ, (6.116)

but at the price of a divergent JP(2) ∝ 1/BT ∼ O(θ−1). For other values of p, BT may

have a zero at some θ = θ0 with ∆2
θ0

= Ξ2p/p0 resulting in a divergent JP(2). This can

only be avoided if p/p0 < 1.

We therefore need to look for other field configurations than the monopole if the

scaling (6.113) is desired in the current solution. One simple possibility is as follows

(F ′θϕ)2 = −4p

Ξ2
+ sin4 θ, BT = sin2 θ (6.117)

JT(2) = −Ξ cos θ sin2 θ

2ΣF ′θϕ
, JP(2) = −Ξ cos θ

2Σ
. (6.118)
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Similarly, being careful about the possible divergence of JT(2) ∝ 1/F ′θϕ at finite θ, one

finds the constraint p < −Ξ2/4. Thus at least for the above two cases, the constraints

on p make the solutions electrically dominant, i.e. I1 ∝ p < 0.

To further infer the causal nature of the current, we evaluate

J(a)J
(a) = 2JlJn = 4

Σ

∆r

[(JT(2))
2 − (JP(2))

2] =
[∂θ ln q(θ)]2

∆rΣ sin2 θ
p, (6.119)

so p also determines if the current is timelike, spacelike or null. Again for the above

two cases, the currents are always spacelike (for metric signature [+,−,−,−]), as in

the BZ monopole solution (cf. discussions in section 5.5.2).

It is also interesting to evaluate the energy density

−Ttt = −2a2p

∆rΣ
− Ξ2B2

T − 2p

Σ∆θ sin2 θ
(6.120)

−T tt =
[
−2a2p+

r2 + a2

sin2 θ
(Ξ2B2

T − 2p)
] 1

∆r∆θΣ
. (6.121)

The divergences at sin θ = 0 are removed if we choose, e.g.,

Ξ2B2
T − 2p = Ξ2(F ′θϕ)2 + 2p = C sin2 θ, (6.122)

where (6.111) is used and C is constant. In this case the currents are also regular.

Finally, note that BT , Fθϕ and JT,P(2) are each only determined up to a sign as is

clear from (6.111). Or equivalently from (6.106), the sign flip {Φ1,Φ2} → {Φ1,−Φ2}
corresponds to the substitution q(θ) → p/q(θ), {Φ1,Φ2} → {−Φ1,Φ2} corresponds

to q(θ)→ −p/q(θ), and {Φ1,Φ2} → {−Φ1,−Φ2} to q(θ)→ −q(θ).

6.6.2 Case 2: c(r, θ, ϕ, t) = ∆r/(2Σ)

We now turn to the second case in (6.95), which implies

φ′2 =
φ̄′0
2
. (6.123)

We rewrite, again in the ingoing Kerr coordinates,

φ′0 = exp[R(r, θ, ψ, v) + iΘ(r, θ, ψ, v)], φ′2 =
exp[2R(r, θ, ψ, v)]

2φ′0
, (6.124)
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for arbitrary functions R and Θ. Then (6.90), (6.91) and (6.92) reduce respectively

to

<(6.90) ⇔ sin θ∆θ∂θR + a sin2 θ∂vΘ− Ξ∂ψΘ = 0 (6.125)

=(6.90) ⇔ sin θ∆θ∂θΘ + a sin2 θ∂vR− Ξ∂ψR = 0 (6.126)

(6.91) ⇔ ∂rR = 0 (6.127)

<(6.92) ⇔ (r2 + a2)∂vR + aΞ∂ψR = 0 (6.128)

=(6.92) ⇔ (r2 + a2)∂vΘ + aΞ∂ψΘ = 0, (6.129)

and (6.93) turns out to be equivalent to (6.90). (6.127) and (6.128) imply R = R(θ),

and then (6.126) implies Θ = Θ(r, ψ, v). The remaining two equations (6.125) and

(6.129) give the solutions

R(θ) = R = const., Θ(r, ψ, v) = Θ(r). (6.130)

Then the real field quantities are

BT =
√

2
eR cos Θ(r)

Ξ
, ω =

aΞ

r2 + a2
(6.131)

Frϕ = −
√

2
r2 + a2

Ξ∆r

eR sin Θ(r), Frt =
√

2
a

∆r

eR sin Θ(r), Fθϕ = Fθt = 0

(6.132)

JT(4) = −iρe
R∂r sin Θ(r)

2
√

∆θ sin θ
, JP(4) = ρ

eR∂r cos Θ(r)

2
√

∆θ sin θ
, JT(2) = JP(2) = 0. (6.133)

These expressions contain periodic functions of the radial coordinate r, but since

Θ(r) = arg φ′0, we can simply choose

Θ(r) = arctan
( r
rH
− 1
)
. (6.134)

This way Θ(r) ranges from 0 to π/2 for r ≥ rH , and we remove the periodicities.

This choice of Θ(r) also makes Frϕ & Frt regular at r = rH , which should be the case

even in BL coordinates. Unfortunately, the divergences at sin θ = 0 for Bϕ and JT,P(4)

remain. We plot the magnetic field (Bθ, Bϕ) at a constant-r surface in fig. 6.1. For

JaJ
(a) we have

JaJ
(a) = −2JmJm̄ = − e2R

2Σ∆θ sin2 θ
[∂rΘ(r)]2, (6.135)
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Figure 6.1: Magnetic field lines as given by (6.131) and (6.132), with Br = 0. The
disk region represents the sphere at r = 2rH deformed such that the ‘radial’ direction
of the disk corresponding to the θ coordinate on the sphere (θ = 0 at the center and
θ = π at the rim of the disk) and the azimuthal direction corresponding to the ϕ
coordinate. The circle in the middle is at θ = π/2, i.e. the equator. The divergences
of Bθ ∼ 1/ sin θ and Bϕ ∼ 1/ sin2 θ at sin θ = 0 can be seen from the behaviors of the
field lines at the center and the rim.

so the current is always spacelike. The invariant is

I1 =
4e2R

∆r∆θ sin2 θ
, (6.136)

so the solution is magnetically dominant.

6.7 Other possible ways to construct force-free

magnetosphere

In this section we present other possible ways to describe/understand the force-free

magnetosphere and some efforts to construct new solutions. Obtaining force-free

magnetospheres involves essentially dealing with two equations:

I2 = ?FµνF
µν = 0 (6.137)
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Figure 6.2: Blades represented by the planes I, II and III are time-like, space-like and
light-like respectively.

T µν;ν = 0, (6.138)

namely, the degeneracy condition and the conservation equation respectively. Math-

ematically, an antisymmetric tensor or bivector Fµν satisfying I2 = 0 is called simple,

and we denote it with the lower case fµν . Simple bivectors have the property that

they can be written as the wedge product of two 1-forms [77]:

fµν = p[µqν]. (6.139)

(6.139) is equivalent to

fµ[αfνβ](= f[µαfνβ]) = fµρfστδ
ρ
[αδ

σ
ν δ

τ
β] = −I2

3
εµανβ = 0, (6.140)

using the identity εαβγτεµνρτ = −6δα[µδ
β
ν δ

γ
ρ]. This representation can help us visualize

simple bivectors: they lie in the 2-d planes Span(p, q), called the blades [78]. A blade

can be timelike, spacelike or lightlike according to whether it intersects, is outside of

or tangential to the light-cone, as shown in fig. 6.2. The following statements follow:

• ?fµν is also simple;
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• blade of ?fµν ⊥ blade of fµν ⇒ I2 = 0;

• fµνkν = 0, ∀kµ ∈ blade of ?fµν .

Coming back to the force-free equation fµνJ
ν = 0, one has the picture that Jµ

lies in the blade of ?fµν . Moreover, in the case fϕt = 0 one can in fact find pµ and qµ

for (6.139); they are given by (in BL coordinates)

pµ dxµ = fθr dr + fθϕ dϕ+ fθt dt (6.141)

qµ dxµ = fϕr dr + fϕθ dθ. (6.142)

It can be checked explicitly that fµν ∝ p[µqν] using I2 = 0. We also notices that the

vector

kµ∂µ = ∂t + ω∂ϕ (6.143)

satisfies kµpµ = kµqµ = 0, so kµ lies in the blade of ?fµν and is a candidate for the

current.5 One can then try to specify some form of Jµ (e.g. being null) and find

vectors pµ, qν .

A general bivector can be written as the linear combination of a simple bivector

and its dual

Fµν = cosαfµν + sinα ?fµν , (6.144)

for some function α. For example, the Kerr-Newman-AdS field has the form (formed

with two of the orthonormal tetrad):

F = (cosα + sinα ?)ω(0) ∧ ω(1), (6.145)

where

cosα =
qmr

2 − 2qear cos θ − qma2 cos2 θ

(r2 + a2 cos2 θ)
√
q2
e + q2

m

(6.146)

sinα =
−qer2 − 2qmar cos θ + qea

2 cos2 θ

(r2 + a2 cos2 θ)
√
q2
e + q2

m

. (6.147)

Here the simple bivector happens to be the wedge product of basis 1-forms. The

operation of the form (6.144) on bivectors (not necessarily simple ones), sending

F → F̃ ≡ F cosα + ?F sinα, is called a duality rotation [79] and can be compactly

5Using Jµ ∝ kµ in BZ’s solution gives ω = ΩH .
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written using the anti-self-dual F− as

F̃− = e−iαF− ⇔ F̃ + i ?F̃ = e−iα(F + i ?F ). (6.148)

Note that for α = π/2 duality rotation becomes Hodge dual and they commute. On

the other hand, due to the expansion (6.5) of F− with NP variables as coefficients, one

can regard the duality rotation as acting on the NP variables by the same rotation:

φ0,1,2 → e−iαφ0,1,2, (6.149)

while keeping the bivector basis unchanged. It is then clear that the modified NP

variables Φ1 & Φ2 also transform in the same way. In some sense, the expansion

(6.5) implies that the NP variables themselves can be viewed as duality rotating the

anti-self-dual bivector basis (plus a scaling by a factor of |φ0,1,2|).
Under duality rotation, the invariant I ≡ I1 + iI2 transforms as

Ĩ = e−2iαI, (6.150)

as can be seen by noting I = 8(φ0φ2 − φ2
1) from (6.12). I can be used to classify

the electromagnetic field. Any electromagnetic field, modulo a proper orthochronous

Lorentz transformation on the NP tetrad at each spacetime point, falls into one of

the following equivalence classes (the “Ruse-Synge” classes) [72]:

Type A: I 6= 0 (non-null) φ0 = φ2 = 0, φ1 6= 0 (6.151)

Type B: I = 0 (null) φ0 = φ1 = 0, φ2 6= 0 (6.152)

Type C: I = 0 (null) φ1 = φ2 = 0, φ0 6= 0. (6.153)

BZ’s monopole solution (I1 > 0, I2 = 0) is of (a subtype of) Type A, while Brennan

et al’s null solution is of Type B or C. Note that a duality rotation, which acts on

φ0,1,2 and I simply by the phase factor, does not send fields of one class to another.

It does send a general field in Type A to the subtype mentioned above.

Duality rotations has the important property that it preserve the form of energy-

momentum tensor. To see this, consider the following manifestly duality-rotation

invariant expression

∼(Fµν − i?Fµν)∼(Fγρ + i?Fγρ) =
XXXXeiαe−iα(Fµν − i?Fµν)(Fγρ + i?Fγρ) (6.154)
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⇒ ∼(FµνFγρ + ?Fµν
?Fγρ) + i∼(?FµνFγρ − Fµν?Fγρ)

= (FµνFγρ + ?Fµν
?Fγρ) + i(?FµνFγρ − Fµν?Fγρ) (6.155)

Contracting both sides with gνρ then yields T̃µγ = Tµγ, with the imaginary part

vanishing. Another way is by noticing that every component of T(a)(b) is in the form

−2φ0φ̄1 etc. and invoking (6.149). It thus follows that the conservation equation

(6.138) is also invariant under duality rotation: T µν;ν = T̃ µν;ν = 0. This fact can

presumably be used to construct new solutions.

Duality rotation however does change the current Jµ. It usually mixes Jµ and the

‘magnetic current’ Lµ ≡ ?F µν
;ν = 1

2
εµνρτF[ρτ ;ν], yielding

J̃µ − iL̃µ = [eiα(F µν − i?F µν)];ν = eiα(Jµ − iLµ) + ieiα(F µν − i?F µν)α,ν . (6.156)

An alternative expression is obtained by contracting (6.156) with α,µ:

J̃µα,µ − iL̃µα,µ = eiα(Jµα,µ − iLµα,µ). (6.157)

With non-vanishing Lµ, the conservation equation becomes

0 = T µν;ν = −F µρJρ − ?F µρLρ. (6.158)

Given a force-free solution (fµν , I2 = 0, Jµ 6= 0) to the conservation equation, we

are interested in finding a ‘dual’ solution F̃µν that is duality rotated from fµν and

has different features, e.g. a non-degenerate vacuum solution with Ĩ2 6= 0, J̃ = 0 and

likely not stationary or axisymmetric. Conversely, it would also be interesting to

duality rotate a known vacuum solution into a degenerate force-free solution. The

duality rotation is guaranteed to exist with the angle given by [79]

tan 2α = −Ĩ2/Ĩ1, (6.159)

as can be seen from (6.150). For physical reasons, we focus on the case L̃µ = Lµ = 0.

It is however helpful to list all possible configurations that solve the conservation

equation, given in table 6.1. The interesting case to us according to the table is the

duality rotation between Class 1(a) and Class 2(a).

As an example, we apply a duality rotation to the stationary and axisymmetric

solution (6.60) for Brennan et al’s null field configuration (φ1 = φ2 = 0). One requires
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F µρJρ = 0 = ?F µτLτ

Jµ = 0 = Lµ
I2 6= 0 1(a)

I2 = 0 1(b)

Jµ 6= 0, Lµ = 0

I2 = 0

2(a)

Jµ = 0, Lµ 6= 0 2(b)

Jµ 6= 0 6= Lµ 2(c)

F µρJρ = −?F µτLτ 6= 0 Jµ 6= 0 6= Lµ
I2 6= 0 3(a)

I2 = 0 3(b)

Table 6.1: Classification of field and current configurations obeying the conservation
equation (6.158). Class 1 have vanishing (electric and magnetic) currents. Class 2
have at least one non-vanishing current and are degenerate solutions. Degenerate
fields can also happen in other classes. Class 3 are more general solution not of
interest.

that =J̃l = 0:

0 = =J̃l =
<Φ1√
2∆r

[ sinα√
∆θ sin θ

[Ξ∂ψα + sin2 θ(a∂vα− J ′l )]−
√

∆θ cosα∂θα
]

(6.160)

where J ′l ≡ Jl
√

2∆r

√
∆θ/(sin θ<Φ1). Note that <J̃l = =J̃l(sinα → − cosα, cosα →

sinα). One also has J̃m = ¯̃Jm̄(φ̃1 = φ̃2 = 0) = 0 which gives ∂rα = 0. We then look

at two special cases ∂ψα = ∂vα = 0 and ∂θα = 0. Using (6.58) and (6.60) we find for

the first case

csc[α(θ)] = C1∆θ sin θS ′(θ), J̃l =
Jl

cos[α(θ)]
, (6.161)

where C1 is integration constant. For the second case, we find

α(v) = C2v, J̃l = 0, (6.162)

where C2 is integration constant. One sees that a time-dependent duality rotation

maps the original solution to a vacuum solution. Some further examples are

• BZ’s monopole solution

We would like to see if the solution admits a dual vacuum description.

• Kerr-Newman-AdS field (given in (6.145))

One directly sees that it is duality rotated from the degenerate field ω(0) ∧ω(1).

• Wald’s solution [80] in Kerr spacetime
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F = B0

[ar sin2 θ

Σ
− ma(r2 − a2 cos2 θ)(1 + cos2 θ)

Σ2

]
ω(1) ∧ ω(0)

+B0

√
∆r sin θ

Σ
ω(1) ∧ ω(3) +B0

√
∆a sin θ cos θ

Σ
ω(2) ∧ ω(0)

B0 cos θ

Σ

[
r2 + a2 − 2mra2(1 + cos2 θ)

Σ

]
ω(2) ∧ ω(3). (6.163)

The dual degenerate field would not simply be the wedge product of any two

orthonormal basis.

Of course, the KNAdS and Wald solutions do not have any radial energy or

angular momentum fluxes since T rt = T rϕ ≡ 0. One could start with a known solution

to the Einstein’s equation with T rt 6= 0 and interpret the energy-momentum tensor as

that of a degenerate electromagnetic field. This can be achieved in the framework of

Rainich’s “already unified theory” [79] which proposes the following relation between

the spacetime geometry and a simple bivector fµν

Eµανβ = Tµανβ ≡
1

2
(fµαfνβ + ?fµα

?fνβ), (6.164)

where Eµανβ is the “semi-traceless” part of the Riemann tensor Rµανβ as in the “Ricci

decomposition” of Rµανβ [51]

Rµανβ = Cµανβ + Eµανβ +Gµανβ. (6.165)

Here

Cµανβ = Weyl tensor, (“fully traceless” part) (6.166)

Eµανβ ≡
1

2
(gµνSαβ + gαβSµν − gµβSαν − gανSµβ) (6.167)

= gµ[νSβ]α − gα[νSβ]µ, (“semi-traceless” part) (6.168)

Gµανβ ≡
1

12
R(gµνgαβ − gµβgαν) =

1

6
R(gµ[νgβ]α), (“scalar” part) (6.169)

where

Sµν ≡ Rµν −
1

4
gµνR = Rµν −

1

2
gµνR + gµνΛ. (6.170)
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(6.164) contracts to give the Einstein’s equations Sµν = Tµν . Now, with the require-

ment that fµν be simple, one can solve (6.164) for fµν to find [51]

fµνfαβ = Eµναβ − (SστS
στ )−1/2EµνργE

ργ
αβ , (6.171)

which basically says that one can construct a degenerate electromagnetic field from

the geometry, using some other non-electromagnetic Tµν to source the metric.

In conclusion, the search for techniques to efficiently tackle the force-free equations

is by far still incomplete, despite that we have provided different prospectives. This

is of course a reflection of the fact that the force-free equations represents a rather

non-trivial problem and certainly deserves further exploration.
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Chapter 7

Conclusion

This thesis has primarily studied the force-free magnetosphere in Kerr-AdS back-

ground, the family of metrics describing rotating black hole spacetimes that are

asymptotically AdS. Such a configuration allows the rotational energy of the black

hole to be extracted electromagnetically (in the form of a Poynting flux) via the

Blandford-Znajek (BZ) process, originally formulated in asymptotically flat Kerr ge-

ometries. The motivation of the current study to consider asymptotically AdS ge-

ometries is from the AdS/CFT correspondence, under which processes in the AdS

black hole backgrounds (the bulk) admit dual descriptions in terms of the boundary

field theories. The BZ process is a manifestation of the existence of an ergosphere

outside rotating black holes, which also underlies the Penrose process and superradi-

ance. A clear dual field theory description of the bulk ergosphere has been lacking.

By solving the electromagnetic field of the force-free magnetosphere, we wish to find

a direct translation of the results to the boundary side using the standard AdS/CFT

dictionary (in this case regarding the gauge field). To this end, we have generalized

BZ’s monopole solution to Kerr-AdS. The monopole field, though an idealized toy

model, provides a sufficiently good approximation of the electromagnetic field pro-

duced by an accretion disk around the black hole, and captures the basic ingredients

of the force-free magnetosphere capable of generating Poynting fluxes. This model

however is restricted to the perturbative, slow rotation regime. Another task of this

study thus involves finding other more general force-free solutions for arbitrary finite

rotation. The recent advances in this direction are highlighted by the exact analytic

solutions with null currents [76, 21]. Again we reproduce the analogous solutions in

Kerr-AdS and also derive a few new solutions with non-null currents, though with

additional assumptions on the fields.
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To set the stage, we have reviewed in chapter 2 the energy extraction mechanism

and particularly the BZ process in general terms, revealing some essential properties.

Starting with the better known Penrose process and superradiance, we make it clear

that energy extraction is possible due to the frame-dragging effect in rotating space-

times which determines different local energy-defining Killing vectors at infinity and

at the horizon and results in the notion of ergosphere. It is shown that an angular mo-

mentum extraction always occurs and in some sense is more fundamental. Especially

from the viewpoint of a local observer on the horizon, the (positive) energy becomes

ingoing while the angular momentum extraction persists. These points are further il-

lustrated using thermodynamics where the ingoing energy on the horizon corresponds

to the increasing of entropy. We also give a general analysis of the energy-momentum

flux on the horizon and derived the first law incorporating the freedom in choosing

the energy-defining Killing vector. We then turned to reviewing the essential prop-

erties of the force-free magnetosphere and BZ process, emphasizing that the energy

extraction crucially depends on the toroidal component of the magnetic field which is

due to the relevant rotation between the horizon and the boundary. Dynamically, the

rotation of the spacetime induces an electric field driving the poloidal current which

sources the toroidal magnetic field. This instructs us to look for a dual field theory

description of the magnetosphere (or fundamentally the ergosphere of the rotating

spacetime) by examining the falloffs of Aθ and Ar (related to toroidal magnetic field)

or the poloidal current using the AdS/CFT dictionary. Chapter 3 is devoted to a

detailed review of the AdS/CFT correspondence.

Before presenting the main results for the BZ process in Kerr-AdS, in chapter 4

we first derived the solution for a rotating monopole in the pure AdS spacetime,

analogous to Michel’s rotating monopole solution in flat spacetime which is used by

BZ as the asymptotic configuration for their solution. A novelty we found in the AdS

case is the ambiguity in specifying the monopole field; this includes an ambiguity

from choosing different coordinate systems (the standard one and that associated

with the horizon) and the freedom to add perturbations (subleading terms in the

slow rotation limit). As a consequence, the angular velocity of the magnetic field

lines is not uniquely fixed as in the Kerr case. These features seem all connected with

the peculiarity of the timelike boundary of asymptotic AdS spacetimes.

In Chapter 5 we obtain analogues of the BZ split monopole solution for force-free

magnetospheres around a slowly rotating Kerr-AdS black hole up to O(a2). The field

configuration is poloidal, and can be specified by Aϕ, and thus the main differential
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equation to solve is that for f(r) (or f(z)), the radial O(a2) component of Aϕ. In dis-

tinction to the Kerr case originally studied by Blandford and Znajek, the field angular

velocity ω, as a parameter in the equation, is not uniquely determined solely from

the (minimal) boundary conditions. However, it is directly related to the toroidal

magnetic field BT due to the horizon regularity constraint for Bϕ in Kerr-Schild coor-

dinates. Further constraints on ω do arise on imposing specific matching conditions at

large radius with a rotating monopole in AdS. However, as anticipated in chapter 4,

unlike the asymptotically flat space, these matching conditions are in turn non-unique

due to the fact that the AdS boundary is only defined up to a conformal factor, and

this allows a class of higher order multipole corrections. Matching to this full class of

solutions re-introduces the freedom to vary the field angular velocity.

The Kerr-AdS geometry also has the property that the asymptotic timelike Killing

vector is not unique, given by Kµ
Ω′ with a range of values for Ω′, each of which is a

candidate for the energy-defining Killing vector. Especially for large black holes with

rH >
√
al, Kµ

ΩH
is globally timelike, i.e., there is no ergosphere associated with it.

With the ‘energy’ flux into the black hole given by δE ∝ (ω−Ω′)(ω−ΩH) using Kµ
Ω′

as the energy-defining Killing vector, ω is constrained to Ω′ < ω < ΩH for energy

extraction. The above noted ambiguity in ω has a less substantial effect on the energy

flux, since one can always dial Ω′ to change the sign of δE which is thus observer-

dependent. What is more robust is the angular momentum flux δL ∝ ω − ΩH which

remains negative as long as ω < ΩH .

In fact, there are two preferred choices for Ω′, i.e. Ω′ = Ω∞,ΩH . While only

the first can make the first law of thermodynamics an exact differential, the second

seems natural in the perspective of AdS/CFT correspondence, where large Kerr-

AdS black holes with rH/l > 1 holographically describe the thermodynamics of a

strongly-interacting boundary field theory. The existence of a globally well-defined

timelike Killing vector Kµ
ΩH

external to the horizon suggests the absence of energy

extraction through the Blandford-Znajek process (δE ∝ (ω − ΩH)2 ≥ 0) and is

consistent with the stability argument. In this regime, we find that at least for slow

rotation the force-free solution still exists with the arbitrariness in ω corresponding

to the freedom in the dual field theory to rotate a magnetic field through a neutral

plasma. In effect the boundary configuration is also ‘force free’, although the solution

would need to be extended to higher order in ‘a’ to test this in a non-trivial manner.

The distinctive features of the BZ process in the large black hole regime discussed

here make it difficult to provide a more precise AdS/CFT description of the energy
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extraction process. Nonetheless, this question was one of the original motivations for

this work, and it would be interesting to see if the dual field theory picture can be

developed further, perhaps by extending the solutions described here away from the

slow rotation limit.

Our small ‘a’ expansion was general enough to cover large, intermediate and small

black hole regimes. For small black holes, we obtained an analytic solution to first

order in the ratio rH/l, which exhibits a radial Poynting flux with uniquely determined

ω and for rH/l → 0 smoothly approaches the Blandford-Znajek configuration in an

asymptotically flat Kerr background.

Research into force-free solutions in rotating black hole backgrounds has recently

become more active. In Chapter 6 we have generalized the recent exact solutions

[21] associated with null currents to the Kerr-AdS case, as well as generalized the

current configuration to the non-null case, obtaining several solutions under certain

assumptions on the field. While solving the force-free equations generally is still

not possible, solutions in these simplified cases help us gain useful insights into the

problem. For the solutions we obtained, we have given a thorough discussion of

various properties, including the magnetic field, the energy densities and the causal

nature of the currents. In particular, the currents all turn out to be spacelike. We

used the NP formalism, which has proved an efficient tool during the course of the

analysis. We also presented attempts to understand and formulate the force-free

magnetosphere using different ‘languages’ (bivectors etc.) and hope this could lead

to further useful results.

The BZ process features the interrelation of the curved spacetime and the electro-

magnetic field, though not in the full Einstein-Maxwell sense. More precisely, it is the

rotational properties of the Kerr(-AdS) spacetime that are captured by the behavior

of the force-free magnetosphere, especially the outgoing Poynting flux relying on the

existence of an ergosphere. This is already made clear in the slow rotation limit by

BZ’s original split monopole ansatz. Searching for exact and analytic force-free solu-

tions for finite rotation continues to constitute an interesting and challenging subject

of research. The technique of the NP formalism seems promising in this respect.

Existing studies on the relations of the geometry and the degenerate electromagnetic

fields (bivectors) may also provide useful insights and routes into the problem. Fi-

nally, additional understanding may always be gained in the context of AdS/CFT

correspondence that maps the nontrivial force-free solutions to descriptions in terms

of the boundary dual field theory.
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Appendix A

Force-free solutions in Kerr-Schild

coordinates

The analysis in the main part of this thesis can also be carried out using Kerr-Schild

(KS) coordinates (specified with a tilde) which use an alternate foliation Σt̃ that is

horizon penetrating. The Kerr-AdS metric in this coordinate system is given by [81],

d s̃2 =
Σ(

1 + r2

l2

)
(r2 + a2)

d r2 +
Σ

∆θ

d θ2 +
r2 + a2

Ξ
sin2 θ(d ϕ̃+

a

l2
d t̃)2−

(
1 + r2

l2

)
∆θ

Ξ
d t2

+
2mr

Σ

[ Σ(
1 + r2

l2

)
(r2 + a2)

d r − a

Ξ
sin2 θ d ϕ̃+

∆θ

Ξ
d t̃
]2

, (A.0.1)

where r & θ are the same as in BL coordinates and ϕ̃ & t̃ are related to the BL

coordinates by the transformation [81],1

d ϕ̃ = dϕ+
aΞ

∆r

(
1 + ∆r

2mr

) d r = dϕ+
2marΞ

∆r(r2 + a2)
(
1 + r2

l2

) d r (A.0.2)

d t̃ = d t+
2mr

∆r

(
1 + r2

l2

) d r. (A.0.3)

Note that
ϕ̃,r

t̃,r
=

aΞ

(r2 + a2)

r=rH=== ΩH , (A.0.4)

1The KS coordinate φ in [81] is in fact φ = ϕ̃ + a
l2 t, associated with the non-rotating frame at

infinity. Note that (A.0.2) does not reduce to the coordinate transformation used in [6] in the Kerr
limit.
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and thus the transformation {r, θ, ϕ̃(ϕ, r), t̃(t, r)} does not affect ZAMO 4-velocity

components, i.e., K̃ µ̃
ΩB

= Kµ
ΩB

(as long as Kr
ΩB

= 0) and

ΩB = −β̃ϕ − h̃rϕ

h̃ϕϕ
β̃r, (A.0.5)

Kµ
ΩB
KΩBµ = −α̃2 +

h̃rrh̃ϕϕ − h̃2
rϕ

h̃ϕϕ
(β̃r)2,

r=rH=== 0 6= α̃2ñµñ
µ = −α̃2.

(A.0.6)

Since Ki
ΩB
6= −β̃i and Kµ

ΩB
is not parallel to α̃ñµ, the ZAMO is no longer a fiducial

observer. On the horizon where Kµ
ΩB

is the outgoing null generator, α̃ñµ lies inside

the light cone and is ingoing. The horizon condition (A.0.6) does not make any metric

component singular. It is worth noting that for both BL and KS coordinates, grr = 0

on the horizon which is a null constant-r hypersurface.

The transformation only affects the contravariant ϕ, t and covariant r components

of tensorial objects (gµν , Fµν , dTµ, . . . ); in particular, the following quantities are all

invariant: functions of (r, θ) (e.g., det gµν), the derivatives ∂µ (hence the conditions

(. . .),t = 0 = (. . .),ϕ and the bracket structure (5.26)) and the definition and value of

ω. Bϕ and BT transform as

Bϕ =
Fru√
−g

=
F̃ru + ϕ̃,rF̃ϕu + t̃,r

=−ωF̃ϕu︷︸︸︷
F̃tu√

−g
(A.0.7)

= B̃ϕ + (ωt̃,r − ϕ̃,r)B̃r, (A.0.8)

BT = (gϕϕgtt − g2
ϕt)B

ϕ (A.0.9)

= B̃T + (gϕϕgtt − g2
ϕt)(ωt̃,r − ϕ̃,r)B̃r. (A.0.10)

BT is r-independent and B̃T ∼ ∆rB̃
ϕ = 0 on the horizon (for regular B̃ϕ), so

BT = (gϕϕgtt − g2
ϕt)(ωt̃,r − ϕ̃,r)B̃r

∣∣
r=rH

(A.0.11)

= −∆θ(1− u2)

Ξ

r2
H + a2

r2
H + a2u2

(ω − ΩH)Aϕ,u (A.0.12)

= −(1− u2)(ω − ΩH)Aϕ,u +O(a3). (A.0.13)

Note thatBT ’s defined using u and θ differ by a sign, and
√
−g(θ) = Σ

Ξ
sin θ,

√
−g(u) =
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Σ
Ξ

.

Using the same ansatz (5.45)–(5.47) for {Aϕ, ω, B̃T} in the small ‘a’ expansion we

find

d̃Tϕ = aC2

[
B̃

(1)
T,r

Cr2
+ 2ml2(1− u2)

r2(3r2 + l2)ω(1) − 5r2 − 3l2

r6(r2 + l2)2

]
, (A.0.14)

d̃T t = −ωd̃Tϕ, (A.0.15)

d̃T r =
B̃T r

2

C(1− u2)∆0

d̃Tϕ =
B̃ϕr2

C
d̃Tϕ, (A.0.16)

d̃T u = (expression involving 2nd derivatives of Aϕ), (A.0.17)

where ω is constant. d̃Tϕ, d̃T t and d̃T u are the same as in BL coordinates; d̃T r is

now directly proportional to d̃Tϕ. The two independent equations are (A.0.14)=0 &

(A.0.17)=0. Solving (A.0.14) = 0 for B̃
(1)
T and imposing B̃

(1)
T (r = r1) = 0 yields

B̃
(1)
T = −2Cml2(1− u2)

[
ω(1) − 1

r2

r(r2 + l2)
−

ω(1) − 1
r2
1

r1(r2
1 + l2)

]
. (A.0.18)

Substitution into (A.0.10) leads to

BT = C(1− u2)
(
ω − a

r2
1

)
+O(a3), (A.0.19)

which agrees with (A.0.13). This fixes the sign ambiguity of Bc
T in (5.58).
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