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ABSTRACT

Recent research has shown that compressible signals can be recovered from a

very limited number of measurements by minimizing nonconvex functions that closely

resemble the `0-norm function. These functions have sparse minimizers and, therefore,

are called sparsity-promoting functions (SPFs). Recovery is achieved by solving a

nonconvex optimization problem when using these SPFs. Contemporary methods for

the solution of such difficult problems are inefficient and not supported by robust

convergence theorems.

New signal-recovery methods for compressive sensing that can be used to solve

nonconvex problems efficiently are proposed. Two categories of methods are consid-

ered, namely, sequential convex formulation (SCF) and proximal-point (PP) based

methods. In SCF methods, quadratic or piecewise-linear approximations of the SPF

are employed. Recovery is achieved by solving a sequence of convex optimization

problems efficiently with state-of-the-art solvers. Convex problems are formulated

as regularized least-squares, second-order cone programming, and weighted `1-norm

minimization problems. In PP based methods, SPFs that entail rich optimization

properties are employed. Recovery is achieved by iteratively performing two funda-

mental operations, namely, computation of the PP of the SPF and projection of the

PP onto a convex set. The first operation is performed analytically or numerically
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by using a fast iterative method. The second operation is performed efficiently by

computing a sequence of closed-form projectors.

The proposed methods have been compared with the leading state-of-the-art

signal-recovery methods, namely, the gradient-projection method of Figueiredo, Nowak,

and Wright, the `1-LS method of Kim, Koh, Lustig, Boyd, and Gorinevsky, the

`1-Magic method of Candès and Romberg, the spectral projected-gradient `1-norm

method of Berg and Friedlander, the iteratively reweighted least squares method of

Chartrand and Yin, the difference-of-two-convex-functions method of Gasso, Rako-

tomamonjy, and Canu, and the NESTA method of Becker, Bobin, and Candès. The

comparisons concerned the capability of the proposed and competing algorithms in re-

covering signals in a wide range of test problems and also the computational efficiency

of the various algorithms.

Simulation results demonstrate that improved reconstruction performance, mea-

surement consistency, and comparable computational cost are achieved with the pro-

posed methods relative to the competing methods. The proposed methods are robust,

are supported by known convergence theorems, and lead to fast convergence. They

are, as a consequence, particularly suitable for the solution of hard recovery problems

of large size that entail large dynamic range and, are, in effect, strong candidates for

use in many real-world applications.
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Chapter 1

Introduction

Compressive sensing (CS) is a recent signal processing methodology [20–22, 39] that

enables the recovery of sparse or compressible signals from a very limited number

of measurements, possibly contaminated by noise. The price that must be paid for

compact signal reconstruction is the need of a nontrivial signal-recovery process which

would involve solving a difficult optimization problem. CS is used in analog-to-digital

conversion [108,111], data compression [15,19,53,65,69,88], medical imaging [25,75],

channel coding [5, 38] among many other applications of current interest.

The goal of the recovery process is to find the sparsest signal that is consistent

with the measurements taken. Signal-recovery methods can be used to find sparse

solutions by minimizing a sparsity-promoting function (SPF). Measurement consis-

tency is achieved by ensuring that the Euclidean distance between the measurements

and a linear transformation of the signal found is within a prescribed value.

In theory, the SPF would assume the form of the `0-norm function whose value is

equal to the number of nonzero-valued samples of a signal. Unfortunately, the `0 norm

is of little practical use because the resulting optimization problem is computationally

intractable requiring a combinatorial search as specified in Theorem 1 of [80].

In contemporary signal-recovery methods [8,9,11,18,43,68] the SPF assumes the

form of a convex function such as the `1 norm or the total-variation (TV) norm. These

SPFs are often employed because (1) the resulting optimization problem is convex,

and (2) convex optimization problems have a fairly complete theory and can be solved

efficiently. Under certain conditions, the solutions obtained by such recovery methods

can be optimal, e.g., as stated in Theorem 1 of [21], Theorem 1.1 of [22], and Theorem

5 of [39].

There has been increased interest in the use of nonconvex SPFs that closely re-
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semble the `0-norm function [23, 24, 26, 27, 37, 45, 46, 97, 109]. Nonconvex functions

are desirable because their use can lead to shorter signal representations and reduced

reconstruction error when compared with signals obtained by solving convex prob-

lems [23, 27, 37, 46]. Unfortunately, available iterative methods for the solution of

nonconvex problems for CS are inefficient and are not supported by robust conver-

gence theorems [23,27,46].

In this dissertation, nonconvex CS recovery problems are investigated and efficient

methods and algorithms that can be used for the solutions of such problems are

proposed.

1.1 Background and notation

Let x0 ∈ Rn denote a vector that represents the signal of interest or a transformed

version of the signal in an appropriate representation. It is assumed that vector x0

is s-sparse in the sense that is has only s nonzero coordinates with s < n. The

measurement process is carried out in the presence of a noise signal represented by

vector z ∈ Rm with a upper bound δ such that ||z||2 ≤ δ. Acquisition of x0 is

accomplished with the sensing operation

b = Ax0 + z (1.1)

where b ∈ Rm is a vector representing the measurements taken and A is an m × n
sensing matrix with m� n.

CS theory revolves around random measurements with the entries of matrix A

assuming independent and identically distributed (i.i.d.) Gaussian random variables

with zero mean and variance 1/m [20–22, 39]. Other measurement ensembles can

be used [21] such as the Fourier ensemble where matrix A is obtained by selecting

m rows at random from the n × n discrete Fourier transform (DFT) matrix and

renormalizing the columns of the resulting matrix so that they have unit norm. More

generally, renormalized matrix A is obtained by selecting m rows at random from an

n × n orthonormal matrix. The general case of orthogonal ensembles is of practical

interest because the processing can be carried out by using fast algorithms for matrix-

vector products, e.g., the fast Fourier transform (FFT) algorithm for the DFT or the

fast cosine transform algorithm for the discrete cosine transform (DCT), and so on.
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1.1.1 Sparsity promoting functions

A measure of sparsity of vector x ∈ Rn is given by

Pε(x) =
n∑

i=1

wi pε(|xi|) (1.2)

where ε is a nonnegative regularization parameter, w =
[
w1 w2 · · · wn

]T
is a

vector of nonnegative weights, and pε(|xi|) is the SPF which quantifies the magnitude

of each individual coordinate of x. SPFs are either convex or nonconvex functions

that are carefully chosen to ensure that the minimization of Pε(x) yields a sparse

solution. For example, the convex SPF

pε(|xi|) = |xi|+ ε (1.3)

can be used to find sparse signals. Function Pε(x) is equivalent to the `1 norm of x

when w is a vector of ones and its minimizer is sparse [8, 9, 11,18,43,68].

An example of a nonconvex SPF is given by

pε(|xi|) = (|xi|+ ε)p (1.4)

where 0 < p < 1. Here function Pε(x) is called the weighted ε-`pp norm of x and

its minimization yields sparse solutions [23]. Plots of pε(|xi|) for several values of

parameters p and ε are shown in Fig. 1.1.

Another example of a nonconvex SPF is given by

pε(|xi|) = ln(|xi|+ ε) (1.5)

It has been demonstrated in [23] that sparse solutions can be obtained by minimizing

function Pε(x). Plots of pε(|xi|) for several values of parameter ε are shown in Fig. 1.2.

One last example of a nonconvex SPF is obtained by using the smoothly-clipped
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Figure 1.1: Nonconvex SPF that defines the ε-`pp norm of x: (a) Several values of ε
with p = 2/3 and (b) Several values of p with ε = 0.001.
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Figure 1.2: Nonconvex SPF based on the logarithm of (|xi|+ ε).

absolute deviation (SCAD) function given in [42]

pε(|xi|) =





ε|xi|, |xi| ≤ ε

− [|xi|2 − 2αε|xi|+ ε2] / [2(α− 1)] , ε < |xi| ≤ αε

(α + 1)ε2/2, |xi| > αε

(1.6)

where α > 2. Function Pε(x) has been used in [46] to find sparse signals. Plots of

pε(|xi|) for several values of parameters ε and α are shown in Fig. 1.3.

Hereafter we let C and N denote the classes of convex and nonconvex SPFs,

respectively.
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Figure 1.3: Nonconvex SPF based on the SCAD function: (a) Several values of ε with
α = 3.7 and (b) Several values of α with ε = 0.85.

1.1.2 Signal recovery process

The sparse-signal recovery process can be carried out by solving closely related op-

timization problems. In basis pursuit (BP) methods, recovery is accomplished by

solving the constrained optimization problem

(BPδ) minimize
x

Pε(x)

subject to: ‖Ax− b‖2 ≤ δ
(1.7)

where δ ≥ 0 is an estimate of the square root of the measurement noise energy. In

regularized least-squares (RLS) methods, one solves the unconstrained optimization

problem

(QPλ) minimize
x

1

2
‖Ax− b‖2

2 + λPε(x) (1.8)

where λ ≥ 0 is a regularization term which controls the trade-off between measure-

ment consistency and sparsity. On the other hand, in least absolute shrinkage and

selection operator (LASSO) methods, the constrained optimization problem

(LSσ) minimize
x

‖Ax− b‖2

subject to: Pε(x) ≤ σ
(1.9)

is solved where σ ≥ 0 is a bound on the measure of sparsity of x [9, 11,68].

In the case where pε(|xi|) ∈ C, problems (BPδ), (QPλ), and (LSσ) are closely
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related because parameter λ in (QPλ) is directly related to the Lagrange multiplier

of constraint Pε(x) ≤ σ in (LSσ), and because it is inversely related to the Lagrange

multiplier of constraint ‖Ax− b‖2 ≤ δ in (BPδ). Hence, these problems are equiv-

alent for suitable choices of parameters δ, λ, and σ. Unfortunately, the relationship

between these parameters is hard to compute with the exception of the case where

matrix A is orthogonal [11].

1.2 State-of-the-Art Methods

Parameter δ of problem (BPδ) is assumed to be known a priori in CS applications

because the energy of the noise inherent in (1.1) can be readily estimated, e.g., as in

physical implementations of the measurement process such as the one in [113]. BP

methods are often preferred over RLS and LASSO methods for this reason. Heuristics

are usually employed in RLS methods to find an approximate value of λ in problem

(QPλ) over which the solution found is equivalent to the solution of problem (BPδ).

Efficiencies are achieved by using continuation procedures [43]. In LASSO methods, all

the solutions of problem (LSσ) as a function of parameter σ are completely described.

Thus, an exact value of σ in problem (LSσ) over which the solution found is equivalent

to the solution of problem (BPδ) can be found. Efficiencies are achieved by using

homotopy techniques [40, 86] or a Newton-based root finding procedure [11].

First- and second-order solvers are employed for the solution of the recovery prob-

lem. In second-order methods, the unconstrained problem is solved by using New-

ton’s method or one of its variants while the constrained problem is solved by using

interior-point methods. Accurate solutions are obtained by using second-order solvers

(SOSs), but their use is problematic in large-scale problems as they are required to

solve large systems of linear equations in computing the Newton step. In first-order

methods, the problem is solved by using gradient methods (or subgradient methods

when there is nonsmoothness) in the unconstrained case, or by using projected gradi-

ent/subgradient methods in the constrained case. First-order solvers (FOSs) are not

as accurate as SOSs, but they are efficient for large-scale problems.

The recovery of realistic signals from Gaussian ensembles is problematic because

matrix-vector operations cannot be carried out with fast algorithms and because FOSs

and SOSs require the storage of large sensing matrices in such cases. For instance, the

recovery of an image of 256× 256 pixels from 25, 000 Gaussian measurements would

require the storage and the manipulation of a 25, 000× 65, 536 matrix which requires
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approximately 13.6 gigabytes of memory in the case of double-precision representation

[21]. In the case of orthogonal ensembles, a desirable feature of FOSs and SOSs is

the capability of using matrices A and AT in matrix-vector operations only. As a

result, the solver can handle realistic recovery problems because there is no need for

the storage of these matrices and because matrix-vector operations can be carried out

with fast algorithms. Standard SOSs such as self-dual-minimization (SeDuMi) [102] or

MOSEK [1] do not possess such capability but specialized SOSs like those employed

in [18] or [68] do. Recent FOSs, such as those in [8, 9, 11, 43], are also capable of

handling realistic recovery problems.

1.2.1 First-order solvers

Projected gradient methods are based on the following update formula [90]

x(k+1) = projX
[
x(k) − αk∇F (x(k))

]
(1.10)

where αk ≥ 0 is the step-size parameter, F (x) is the objective function of the opti-

mization problem involved, X denotes the problem constraint set, and projX denotes

the projector onto this set. If we let y(k) denote a point of the form

y(k) = x(k) − αk∇F (x(k))

then the projector in (1.10) is defined by

projX (y(k)) = arg minimize
x∈X

∥∥x− y(k)
∥∥ (1.11)

(see p. 397 of [16]). In the case where the optimization problem involved is an un-

constrained one, the update formula in (1.10) assumes the form

x(k+1) = x(k) − αk∇F (x(k)) (1.12)

which corresponds to that used in gradient methods for the minimization of function

F (x) [90]. We let ∇F (x) = ∂F (x) in (1.10) and (1.12) when F (x) is a nondifferen-

tiable function. In this case, the update formulas in (1.10) and (1.12) now correspond

to a projected subgradient and subgradient methods, respectively.
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The so-called Moreau Envelope (ME) of function F (x) is given by

ψγ(x) = minimize
x̃

[
F (x̃) +

1

2γ
||x̃− x||22

]
(1.13)

where γ > 0 (see [78]). Applying the update formula in (1.12) with α = γ and

F (x) = ψγ(x) results in the closely related update formula [90]

x(k+1) = x(k) − γk∇ψγk(x
(k))

= proxγk
[
F (x(k))

] (1.14)

where proxγ [F (x)] is the proximal-point (PP) mapping of F (x) given by

proxγ [F (x)] = arg minimize
x̃

[
F (x̃) +

1

2γ
||x̃− x||22

]
(1.15)

where γ and x are known as the prox-parameter and the prox-center of (1.15). If

z ∈ proxγ [F (x)], then z is called a PP of function F (x). The update formula in

(1.14) corresponds to that used in PP methods for the minimization of function F (x)

(see [31, 56,78,89,94] and references therein).

1.2.2 Convergence rate of specialized solvers

It is widely known that second-order methods have a much better convergence rate

than first-order methods. Newton’s method is capable of achieving high-accuracy

solutions in a few iterations for a wide class of functions that are Lipschitz continuous,

e.g., the method is efficient when applied to a function F (x) with the property

|F (x′)− F (x)| ≤ κ|x′ − x| for all x,x′ ∈ Rn (1.16)

or, equivalently, with the property

||∇F (x)||2 ≤ κ for all x ∈ Rn (1.17)

when F (x) is differentiable and with the property

||g||2 ≤ κ for all g ∈ ∂F (x) and x ∈ Rn (1.18)
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when F (x) is nondifferentiable where κ ≥ 0. Function F (x) is Lipschitz continuous

with Lipschitz constant κ when the properties in (1.16), (1.17), or (1.18) hold true [96].

Sometimes a gradient method would require a large number of iterations to achieve

reasonably accurate solutions for very simple problems [90]. It has been shown to have

a worst-case convergence rate given by

F (x(k))− F (x∗) = O(1/k) (1.19)

for recovery problems (BPδ), (QPλ), and (LSσ) where x∗ is the minimizer of F (x)

and O(1/k) stands for “is of order 1/k” (see Theorem 4 of [17] or Theorem 3.1 of [8]).

In such a case, (1.19) implies that as k →∞

F (x(k))− F (x∗) < C
1

k

where C is a constant independent of k (see Sec. 1.6 of [55]). Thus, convergence can

be quite slow for such problems.

A method for speeding up the convergence of first-order methods has been de-

scribed by Polyak [91]. The rate of convergence of gradient methods can be signif-

icantly improved by employing a variant of the update formula in (1.12) given by

x(k+1) = x(k) − αk∇F (x(k)) + βk
(
x(k) − x(k−1)

)
(1.20)

where 0 ≤ βk < 1 and x(−1) = x(0). The update formula in (1.20) corresponds to

the so-called heavy-ball or two-step method for the minimization of F (x) [91]. The

computational cost involved in the two-step method is similar to that of gradient

methods because (1.20) requires only slightly more computation than (1.12).

The optimal first-order methods in [81,83] are examples of two-step methods which

have received a lot of attention in the past few years because of their application in

signal recovery problems (see [8, 9]). The method in [81] is essentially a two-step

method for the minimization of Lipschitz differentiable functions where parameter βk

in (1.20) is chosen at each iteration such that

F (x(k))− F (x∗) = O(1/k2) (1.21)

(see Sec. 4.1 of [13]). The two-step method is optimal in the sense that the con-

vergence rate in (1.21) is the highest achievable rate for the class of problems under
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consideration [81]. The method in [83] uses a smooth approximation of F (x) in its

dual space and is applicable to the case where F (x) is nondifferentiable. The approx-

imation is shown to be Lipschitz differentiable and the optimal first-order method

of [81] is applied for its minimization.

1.2.3 First- and second-order solvers in nonconvex problems

The solution techniques discussed so far are directly applicable to the problems in

(1.7), (1.8), and (1.9) in the case where pε(|xi|) ∈ C. In fact, several specialized SOSs

and FOSs based on such solution techniques have been perfected over the past few

years [8,10,18,43,68]. These solvers are driven by advances in the theory and methods

for the solution of convex programming problems. In the case where pε(|xi|) ∈ N ,

signal-recovery methods employ either an indirect or direct approach to the solution

of the nonconvex optimization problem involved.

In the indirect approach, approximation is employed. Nonconvex optimization

problems are relaxed into a sequence of convex subproblems which can be solved ef-

ficiently using specialized FOSs or SOSs. The problem of minimizing a nonconvex

objective function F (x) over a convex set X is approached by (1) finding an approxi-

mation of the solution x(0) ∈ X that can be used as an initial point, and by (2) using

the update formula

x(k+1) = arg minimize
x∈X

F̂x(k)(x) (1.22)

where convex function F̂x(k)(x) denotes an approximation of F (x) at the current point

x(k). As a result of the approximation, the next point x(k+1) is obtained as the solution

of a convex problem. The update formula in (1.22) defines what we call a sequential

convex formulation (SCF) method for this reason. The method is applicable when

the sequence
{
x(k)

}
k∈N in (1.22) converges to a solution of the original nonconvex

problem.

In the direct approach, nonconvex objective functions with convex and differ-

entiable MEs and single-valued PP mappings are employed. These unusually rich

properties can be found in a large range of functions of interest in variational analysis

such as lower-C2 and prox-regular functions (see [89, 96] and references therein). A

function F (x) is said to be lower-C2 on Rn if there exists a constant ρ > 0 such that

F (x) can be written as

F (x) = h(x)− 1

2
ρ||x||22 (1.23)



11

where h(x) is a convex function (see Theorem 10.33 of [96]). On the other hand,

function F (x) is said to be prox-regular at x̄ for v̄ where v̄ ∈ ∂F (x̄), if there exist

constants r > 0 and ε > 0 such that

F (x̃) ≥ F (x) + vT (x̃− x)− r

2
||x̃− x||22 (1.24)

whenever ||x̃−x̄||2 < ε, ||x−x̄||2 < ε, and ||F (x)−F (x̄)||2 < ε with x̃ 6= x, while ||v−
v̄||2 < ε where v ∈ ∂F (x) (see Definition 1.1 of [89]). Because of the aforementioned

properties, results pertaining to the convergence of sequence
{
x(k)

}
k∈N in (1.14) for

the case where F (x) is convex, such as those in [94], can be extended to a nonconvex

setting (see [30, 63, 87]). Thus, PP methods are applicable to the solution of the

nonconvex optimization problem involved.

The remainder of this section describes representative RLS, LASSO, and BP meth-

ods in both convex and nonconvex recovery settings.

1.2.4 RLS Methods

RLS methods date back to the work of Tikhonov [107] where problem (QPλ) has been

proposed for finding an approximate solution of Ax = b when the m × n matrix A

is ill-conditioned or singular. In such ill-posed problems, the solution

xLS = (ATA)−1ATb

of the least-squares problem given by

minimize
x

||Ax− b||22 (1.25)

is a poor approximation to x [84]. In RLS methods, meaningful solution estimates

can be obtained for ill-posed problems. This is achieved by employing regularization

techniques where the problem in (1.25) is regularized by the addition of a term of the

form λPε(x) with λ > 0. In the so-called Tikhonov regularization, a good approximate

can be obtained by solving problem (QPλ) with pε(|xi|) = |xi|2 for overdetermined

problems with m > n.

The use of RLS methods for obtaining sparse solutions to ill-posed problems dates

back to the work of Santosa and Symes [98] where problem (QPλ) with pε(|xi|) = |xi|
was used for finding the inverse of bandlimited reflection seismograms. The use of
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RLS methods for estimating linear models in statistics has been proposed by Fan

and Li in [42]. In the case where the columns of matrix A are orthonormal, the

particular form assumed by the SPF is directly related to the unbiasedness, sparsity,

and continuity of the solution x∗ of problem (QPλ). For instance, unbiasedness is

achieved when p′(|xi|) = 0 for sufficiently large values of |xi| because x∗ is consistent

with vector y = ATb with high probability. On the other hand, when the minimum

of function g(|xi|) = |xi| + p′(|xi|) is positive a sparse solution is obtained. Finally,

when the minimum of g(|xi|) occurs at zero, x∗ is continuous with respect to y in the

sense that small perturbations to y yield small perturbations in x∗ (see Sec. 2 of [42]

for details).

Specialized RLS methods have been proposed for solving signal recovery problems

when pε(|xi|) ∈ C [8, 43, 68]. Because the objective function of problem (QPλ) is not

differentiable, most methods approach a solution indirectly by recasting it as a convex

quadratic programming (QP) problem with linear inequality constraints, namely,

minimize
x,u

‖Ax− b‖2
2 + λ

n∑

i=1

pε(ui)

subject to: − ui ≤ xi ≤ ui, i = 1, · · · , n

In the `1-LS method, the above problem is solved by employing a customized

primal interior-point method [68]. Inequality constraints are removed by adding a

logarithmic barrier term to the objective function. The resulting unconstrained prob-

lem is solved with Newton’s method, and a preconditioned conjugate gradient (PCG)

algorithm [67] is used for solving the linear system of equations associated with com-

puting the search direction. In addition, the SOS can handle large-scale recovery

problems because the PCG algorithm utilizes matrices A and AT in matrix-vector

operations only. Experiments carried out with the `1-LS method suggest the use of

λ = 0.1||2ATb||∞ for recovering signals in CS applications [68].

Another RLS method that approaches a solution of problem (QPλ) by recasting it

as a convex QP problem is the gradient projection for sparse reconstruction (GPSR)

method [43]. This is achieved by splitting variable x of problem (QPλ) into its positive

u and negative v parts for x = u− v with u ≥ 0 and v ≥ 0. Hence, problem (QPλ)

is recast as a bound-constrained quadratic programming (BCQP) problem given by

minimize
z∈X

F (z) ,
{
λ+

[
−ATb ATb

]}
z +

1

2
zT

[
ATA −ATA

−ATA ATA

]
z
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where z =
[
u v

]T
and X = {z ∈ R2n : zi ≥ 0, i = 1, . . . , 2n}. The GPSR method

uses the update formula in (1.10) for minimizing F (z). Each point in the iteration se-

quence can be efficiently computed because the computation of the orthogonal projec-

tor has a simple analytical solution and the computation of the gradient requires one

multiplication each by matrices A and AT . Hence, the processing can be carried out

by using fast algorithms for matrix- vector products in the case of orthogonal ensem-

bles. Different techniques such as the backtracking or the Barzilai-Borwen methods

are employed for choosing step-size αk to speed up the convergence of the iteration

sequence in (1.10) [43]. As in the `1-LS method, the heuristic λ = 0.1||2ATb||∞ is

used for recovering signals in CS applications.

Finally, another recent RLS method for the case of pε(|xi|) ∈ C is the so-called

fast iterative shrinkage-thresholding algorithm (FISTA) [8]. The FISTA method ap-

proaches a solution to problem (QPλ) directly by employing a PP method. Sequence{
a(k)

}
k∈N in (1.14) can be computed as [8]

a(k+1) = arg minimize
x

[
λPε(x) +

1

2
γk

∥∥∥∥x−
(
a(k) − 1

γk
∇||Aa(k) − b||22

)∥∥∥∥
2

2

]

= proxγk

[
λPε

(
a(k) − 1

γk
∇||Aa(k) − b||22

)]

(1.26)

where γ0 = γ1 = · · · = γk are equal to the inverse of the Lipschitz constant of

∇(||Aa(k) − b||22). In the FOS, a solution to problem (QPλ) can be found efficiently

because computation of the PP in (1.26) has a simple analytical solution given by

the so-called thresholding-shrinkage operation for pε(|xi|) = |xi|. In addition, the

computation of the gradient in (1.26) involves only matrix-vector operations with

matricesA andAT . Hence, the processing can be carried out by using fast algorithms

for matrix-vector products in the case of orthogonal ensembles. Acceleration of the

convergence of sequence
{
a(k)

}
is achieved by using the update formula in (1.20) with

βk =
tk − 1

tk+1

(1.27)

where

tk+1 =
1 +

√
1 + 4t2k
2

(1.28)

and t0 = 1. Parameter βk in (1.27) is the same as the one used in the optimal first-

order method in [81]. Thus, the rate of convergence of the FISTA method is given by
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(1.21).

Recently, a family of RLS methods has been proposed for the solution of problem

(QPλ) in the case where pε(|xi|) ∈ N [46]. In these methods, sparsity is promoted

with function Pε(x) as given in (1.2) where w is a vector of ones and the nonconvex

SPF can be written as

pε(|xi|) = g(|xi|)− hε(|xi|) (1.29)

where g(|xi|) and hε(|xi|) are convex functions [46]. The difference-of-two-convex-

functions (DC) programming approach [60] is employed for solving the nonconvex

problem. The solution method is based on the update formula in (1.22) where an

approximation of the objective function F (x) of the problem in (1.8) is constructed

at each step k as

F̂x(k)(x) = ||Ax− b||22 + P̂x(k),ε(x)

where convex function P̂x(k),ε(x) is an approximation of Pε(x) at the solution point

x(k). Using the DC decomposition in (1.29), function P̂x(k),ε(x) can be written as

P̂x(k),ε(x) =
n∑

i=1

w
(k)
i |xi|

which is equivalent to the weighted `1 norm of x. The solution point x(k) is used

for the computation of the weight vector w(k). When w(k) is appropriately chosen,

the sequence of points
{
x(k)

}
k∈N in (1.22) converges to a minimizer of the original

nonconvex problem [46]. Each subproblem in (1.22) is convex and solved with the

GPSR method [43]. A DC method where a solution of problem (QPλ) is obtained

for pε(|xi|) given by (1.4), (1.5), and (1.6) will hereafter be called DC`pp , DCln, and

DCSCAD, respectively.

The properties of the solutions of problem (QPλ) with respect to parameter λ are

addressed in [68]. When pε(|xi|) = |xi|, the solution of problem (QPλ) for λ → 0

has the minimum `1 norm among all points that satisfy equation AT (Ax − b) =

0. Moreover, the solution of (QPλ) tends to the zero vector in the limiting point

λ → ∞. In such a case, however, it has been observed that convergence occurs for

a finite value of λ ≥ ||2ATb|| [68]. The convergence rate of the iteration sequence{
x(k)

}
k∈N in (1.10) or (1.12) slows for decreasing values of λ [43]. In other words, the

computational cost of FOSs may increase considerably as λ→ 0. Because a small λ

is usually required in CS applications, in recent RLS methods reduced computational
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cost is achieved by using continuation procedures [8, 43, 68]. In such procedures,

several (QPλ) problems are solved in sequence for decreasing values of λ starting

with λ = ||2ATb||∞. The solution point of the previous problem is used as the

initial point for the next one. Such procedures reduce the computation required for

the recovery process because the convergence rate of the FOS is improved when an

appropriate initialization is employed [43].

1.2.5 LASSO Methods

LASSO methods originate from the work of Tibishiran [106] where problem (LSσ)

has been proposed for estimating linear models in statistics. The use of bound σ on

function Pε(x) forces zero components in the minimizing solution for small values of

σ. Problem (LSσ) is usually solved by standard SOSs because it can be recast as a

QP problem in the case where pε(|xi|) = |xi| (see Sec. 6 of [106]). LASSO methods

are preferred over RLS methods in CS applications because efficient methods exist for

representing all solutions of problem (LSσ) as a function of parameter σ [11, 40, 86].

Hence, the exact value of σ in problem (LSσ) that solves problem (BPδ) can be found

with a minimal amount of computation.

The use of LASSO methods for the recovery of sparse signals in the case where

pε(|xi|) ∈ C has been proposed in [11]. In the so-called spectral projected-gradient

`1-norm (SPGL1) method, problem (BPδ) is posed as the problem of finding the root

of a single-variable nonlinear equation. At each iteration, an estimate of that vari-

able is used to define a convex optimization problem whose solution yields derivative

information that can be used in a Newton-based root finding algorithm [11]. The

convex optimization problem is solved with a specialized FOS and the processing

can be carried out by using fast algorithms for matrix-vector products in the case

of orthogonal ensembles. The solver is based on the update formula in (1.10) and

it entails the computation of the orthogonal projector onto set ||x||1 ≤ σ. Such a

projector can be efficiently computed as described in Sec. 4.2 of [11].

1.2.6 BP Methods

BP methods originate from the work of Chen et al. [28] where a problem of similar

form to (BPδ) has been proposed for obtaining optimal signal representations in

overcomplete dictionaries. The signal representation found is optimal in the sense

that it has the smallest `1 norm among all representations in the dictionary, i.e., a
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solution of (BPδ) is found for pε(|xi|) = |xi|. BP methods are preferred for carrying

out the recovery process because parameter δ is known in advance and, therefore, a

direct solution to problem (BPδ) can be found.

Several BP methods have been proposed for the case where pε(|xi|) ∈ C. In the `1-

Magic method [18], a specialized SOS has been proposed for the solution of problem

(BPδ). In the case of a noiseless measurement process, i.e., when δ = 0 in (1.1), the

problem (BPδ) reduces to the following optimization problem

(BP) minimize
x

Pε(x)

subject to: Ax = b
(1.30)

and is solved with a primal-dual interior-point solver because it can be recast as a

linear programming (LP) problem. When δ > 0, the problem (BPδ) is recast as

a second-order cone programming (SOCP) problem and is solved with a log-barrier

interior-point solver. The processing can be carried out by using fast algorithms for

matrix-vector products because the SOS employs a conjugate gradient solver to find

an approximate solution to the systems of linear equations involved in computing the

Newton step.

Another BP method for the case where pε(|xi|) ∈ C has recently been proposed

in [9]. When function Pε(x) is equivalent to the weighted `1 norm of x, it can be

written as

Pε(x) = maximize
u∈Q

〈u,Wx〉 (1.31)

where W = diag(w1, w2, . . . , wn) is a matrix with diagonal entries defined by the

nonnegative weights in (1.2) and Q = {u ∈ Rn : ||u||∞ ≤ 1} is the dual feasible set

of function Pε(x) [9]. In the so-called NESTA method, the smoothing technique pro-

posed in [83] is employed to obtain a Lipschitz continuous approximation of function

Pε(x). In such a case, an approximation is given by [9]

P̂µ,ε(x) = maximize
u∈Q

(
〈u,Wx〉 − µ

2
||u||22

)
(1.32)

where µ > 0 is the smoothness parameter. The solution method boils down to finding

a solution to the saddle-point problem

minimize
x∈K

P̂µ,ε(x) (1.33)
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where K = {x ∈ Rn : ||Ax− b||2 ≤ δ}. The solver for the above problem employs

the optimal first-order method in [81] since the smooth approximation P̂µ,ε(x) is

a Lipschitz continuous function. In addition, matrices A and AT can be used in

matrix-vector operations. Thus, the FOS is efficient because (1) the processing can

be carried out by using fast algorithms for matrix- vector products in the case of

orthogonal ensembles, and (2) the convergence rate is the best achievable rate for the

problem under consideration, just as in (1.21).

The so-called iteratively reweighted least squares (IRWLS) method has recently

been proposed as a method for the recovery of sparse signals in CS in the case where

pε(|xi|) ∈ N [27]. The IRWLS method has a long history in the literature of math-

ematical optimization, which made its first appearance in its current form in the

doctoral thesis of Lawson [72] (see Sec. 1 of [37] for details). The use of IRWLS

methods for the recovery of sparse signals dates back to the work of Gorodnitsky et

al. [51]. In the case of a noiseless measurement process, function Pε(x) as given in

(1.2) is used in the recovery process where w is a vector of ones and the nonconvex

SPF is of the form pε(|xi|) = |xi|p for 0 < p < 1 [27]. In such a case, the nonconvex

function Pε(x) is equivalent to the `pp norm of x. The solution method is based on

the update formula in (1.22) where an approximation of the objective function of the

problem in (1.30) is constructed at each step k as [27]

P̂x(k),ε(x) =
n∑

i=1

w
(k)
i |xi|2

where w
(k)
i = |x(k)

i |p−2. Thus, convex function P̂x(k),ε(x) is equivalent to computing the

weighted `2 norm of x. The convergence properties of the IRWLS method have been

addressed in [37]. It is shown that when certain conditions are imposed on matrix

A, the sequence
{
x(k)

}
k∈N in (1.22) converges to a local minimizer of the original

nonconvex optimization problem. In addition, it is shown that the convergence rate

of such a sequence is superlinear and it approaches a quadratic rate when p approaches

0 [37]. Each resulting subproblem in (1.22) is a convex one with the analytical solution

[27]

x(k+1) = W (k)AT
(
AW (k)AT

)−1
b (1.34)

where W (k) = diag(w
(k)
1 , w

(k)
2 , . . . , w

(k)
n ). The use of (1.34) is problematic for large-

scale problems because it requires the solution of a large system of linear equations.

To the author’s knowledge, there are no specialized FOSs or SOSs for weighted `2
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norm problems capable of using fast algorithms for matrix-vector operations with

matrices A and AT .

Finally, another BP method in the case where pε(|xi|) ∈ N is the so-called itera-

tive reweighted `1 (IRWL1) method [23]. In this method, sparsity is promoted with

function Pε(x) as given in (1.2) where w is a vector of ones and the nonconvex SPF

is of the form

pε(|xi|) = log(|xi|+ ε)

The solution method is based on the update formula in (1.22) where an approximation

P̂x(k),ε(x) of the objective function of the resulting nonconvex problem in (1.7) is

constructed at each step k as [23]

P̂x(k),ε(x) =
n∑

i=1

w
(k)
i |xi| (1.35)

with w
(k)
i = 1/(|x(k)

i |+ε). Thus, convex function P̂x(k),ε(x) is equivalent to computing

the weighted `1 norm of x. Each subproblem in (1.22) is a convex one and it is solved

with the `1-Magic method [18]. The solution method belongs to the class of so-called

majorization-minimization (MM) methods (see [62, 70,71] for details).

1.3 Experimental Protocol

Signal-recovery methods are evaluated in terms of their capability of recovering sparse

signals in a wide range of test problems. Hereafter small-, medium-, large-, and very-

large-scale loosely apply to test problems where n < 212, 212 < n < 216, 216 < n < 218,

and n > 218, respectively.

Suitable metrics can be used to measure the reconstruction performance (RP),

the measurement consistency (MC) of the recovered signals, and the computational

cost (CC) of signal reconstruction. These metrics can be estimated by carrying out

the recovery process over diverse sets of measurements several times in numerical

computing environments such as MATLAB. Diversity can be achieved when (1) m

measurements taken are based on s-sparse signals of size n and different values of s

and n are used and (2) sparse signals are generated at random. A widely employed

RP metric is given in terms of the `∞ reconstruction error defined as

e∞ = ||x∗ − x0||`∞
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where x0 is the known signal of interest, and x∗ is the signal found from problem

(BPδ), (LSσ), or (QPλ). Another widely employed RP metric is defined in terms

of the probability of perfect recovery (PPR). Perfect recovery is declared when the

signal recovered is sufficiently close to the known signal, i.e., when the inequality

||x∗ − x0||`∞ ≤ ν (1.36)

holds true where ν > 0 is a small constant. Because there exists a directly propor-

tional relationship between the values of m and s when perfect recovery is achieved

for a given value of n (see discussion on p. 739 of [76]), RP can also be measured

by estimating the minimum required fraction (MRF), m/s, for perfectly recovering

signals of size n. The use of signal-recovery methods that achieve small MRFs is de-

sirable from a practical point of view because the number of measurements required

to represent sparse signals can be reduced.

An MC metric is given in terms of the difference between the Euclidean distance

||Ax∗−b||2 and the estimate of the square root of the measurement noise energy δ. If

we suppose that the recovery process is carried out t times, a data set is obtained by

collecting t recovered signals and by arranging the values of ||Ax∗−b||2 in ascending

order of magnitude. The deviation between the values of this data set and that of δ can

be illustrated by constructing the box plot of ||Ax∗−b||2 as shown in Fig. 1.4. The box

||Ax∗ − b||2

median
maxmin

Q1 Q3IQR
1.5× IQR

3× IQR

1.5× IQR

3× IQR

++

δ

Figure 1.4: Box plot of ||Ax∗ − b||2 illustrated.

plot is a widely used tool in exploratory data analysis and the five-number summary

of the data set in terms of the minimum and maximum observations, the median, and

the lower and upper quartiles are usually employed (see [77] and references therein).

When t is odd, the median, and the lower Q1 and upper Q3 quartiles of the data set

are given, respectively, by the 1
2
(t + 1)th, 1

4
(t + 1)th, and 3

4
(t + 1)th values of the
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rearranged data set. The interquartile range is given by IQR = Q3 − Q1. Values

larger than Q3 + 1.5 × IQR or smaller than Q1 − 1.5 × IQR are considered outliers.

These limits are represented by the red “+” signs.

A CC metric is given in terms of the average CPU time required to carry out the

recovery process in a specified number of trials. CPU time can be obtained by using

MATLAB built-in stopwatch timers, e.g., the tic-toc command. Another CC metric

is given in terms of the average number of matrix-vector operations with matrices A

and AT . The number of such operations can be obtained by incrementing counters

when the matrices involved are used during the recovery process. The CC entailed

by matrix-vector operations is usually the dominant cost involved in the recovery of

large signals.

Numerical simulations are conducted by evaluating the aforementioned metrics for

the recovery of s-sparse signals where the s nonzero values are chosen randomly from

a zero-mean Gaussian distribution of unit variance. By setting the nonzero values at

random, the results are not forced to obey any particular pattern. Alternatively, the

s nonzero values of the known signal of interest can be generated as [9]

x0
i = ηi 10ζiκ (1.37)

where ηi denotes a random sign, i.e., ηi = ±1 with probability 1/2, ζi is uniformly

distributed in [0, 1], and parameter κ quantifies the dynamic range (DR) of signal x0.

A signal with DR of d dB is obtained in (1.37) by letting κ = d/20. Such signals

are recovered from Gaussian or orthogonal ensembles. Renormalized sensing matrices

obtained from Gaussian or orthonormal matrices are employed for generating these

ensembles. In the signal recovery for noisy signals, measurement vector b is obtained

as in (1.1) under the presence of a Gaussian noise vector z assuming a standard

deviation σz. In the case of noiseless signals, we let the standard deviation of vector

z be zero, in which case (1.1) reduces to b = Ax0.

1.4 Original Contributions

As detailed in Sec. 1.2, two major classes of signal-recovery methods can be identified.

Methods in which pε(|xi|) ∈ C [8, 9, 11, 18, 43, 68] and methods in which pε(|xi|) ∈ N
[23,27,46]. The former are based on specialized efficient solvers but deliver inferior RP

metrics relative to the latter when only a limited number of measurements is available
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[23,24,26,27,37,46,109]. Methods of the second class lead to reduced reconstruction

error but they are either inefficient or not supported by robust convergence theorems.

For instance, the family of RLS methods in [46] can perform the recovery process with

several nonconvex SPFs and generates a sequence
{
x(k)

}
k∈N in (1.22) that converges

to a local minimizer of the nonconvex optimization problem involved. However, these

methods are not efficient because they entail the solution of a sequence of (QPλ)

problems for decreasing values of λ. The IRWLS method [27] is supported by a

detailed analysis pertaining to the convergence of sequence
{
x(k)

}
k∈N in (1.22) to

a local minimizer but it cannot be used to recover noisy signals. In addition, it

lacks a specialized solver for each convex subproblem in (1.22) that can exploit fast

algorithms for matrix-vector operations. On the other hand, the IRWL1 method [23]

is capable of carrying out the recovery process under realistic circumstances but it

lacks an analysis pertaining to the convergence of sequence
{
x(k)

}
k∈N in (1.22). In

this dissertation, new efficient signal-recovery methods are proposed that outperform

several state-of-the-art methods.

The proposed methods fall into two categories, namely, SCF based methods and

PP based methods. The methods are supported by robust convergence theorems and

they are based on efficient solvers such as SOSs suitable for recovering signals from

Gaussian ensembles and specialized FOSs capable of handling large-scale recovery

problems for orthogonal ensembles. The relation between the proposed and competing

methods with respect to the type of SPF, recovery problem, and solver employed

is shown in Figure 1.5. In this figure, the proposed and competing methods are

highlighted in yellow and red, respectively.

The proposed methods are of practical use in CS and more generally in the field of

signal processing because numerical results demonstrate that (1) they lead to shorter

more compact signal representations than representations obtained with state-of-the-

art methods while requiring a comparable amount of computation, and (2) they can

solve hard realistic recovery problems of large DR and scale. The proposed methods

are described in detail below.

In Chapter 2, we propose two closely related SCF methods that are applicable

for the recovery of sparse signals from Gaussian ensembles. Sparsity is promoted by

using the SCAD function which is known to satisfy certain conditions of unbiased-

ness, sparsity, and continuity in linear regression analysis described in [42]. Convex

approximations of the SCAD function such as the quadratic approximation (QA) and

the piecewise-linear approximation (PLA) are employed to render computation of the



22

(B
P
δ
)

p ε
(|x

i|)
∈
C

S
O

S

` 1
-M

ag
ic

[1
8]

F
O

S

N
E

S
T

A
[9

]

p ε
(|x

i|)
∈
N

S
O

S

IR
W

L
S

[2
7]

P
L

A
-S

C
A

D

F
O

S

S
C

F
-F

am
il
y

IP
P

P
/

F
IP

P
P

(Q
P
λ
)

p ε
(|x

i|)
∈
C

S
O

S

` 1
-L

S
[6

8]

F
O

S

G
P

S
R

[4
3]

F
IS

T
A

[8
]

p ε
(|x

i|)
∈
N

S
O

S

Q
A

-S
C

A
D

F
O

S

D
C

-F
am

il
y

[4
6]

(L
S
σ
)

p ε
(|x

i|)
∈
C

F
O

S

S
P

G
L

1
[1

1]

Co
nt
in
ua
tio
n
pr
oc
ed
ur
e

N
ew

to
n-
ba
se
d
ro
ot
fin
di
ng

F
ig

u
re

1.
5:

P
ro

p
os

ed
an

d
co

m
p

et
in

g
si

gn
al

-r
ec

ov
er

y
m

et
h
o
d
s

in
C

S



23

minimizer tractable. In the first method, a solution of problem (QPλ) is approached

by employing the QA of the SCAD function. Convex subproblems are solved by using

an SOS where the Newton step can be computed efficiently. A target value of the

regularization term of the recovery problem is approached efficiently by using a contin-

uation procedure. In the second method, a solution to problem (BPδ) is approached

by employing the PLA of the SCAD function. Convex subproblems are reformulated

as SOCP problems and are solved efficiently by using standard SOSs such as SeDuMi.

Numerical simulations demonstrate that the proposed methods achieve superior RP

metrics in terms of increased PPRs and reduced MRFs for perfect recovery when

compared with corresponding competing methods.

In Chapter 3, a new family of SCF methods is proposed, which are suitable for

large-scale recovery problems. Sparsity is promoted with a fairly general class of

nonconvex SPFs that include widely used SPFs as special cases. A convex approx-

imation for the SPF such as the PLA is employed to render computation of the

minimizer tractable. In the new family of SCF methods, subproblems are formulated

as weighted `1-norm minimization problems while an efficient FOS suitable for the

recovery of large signals from Gaussian or orthogonal ensembles is employed. The

sequence of solution points is shown to be a monotonically decreasing sequence of

values of the objective function and, consequently, converges to a sparse minimizer.

Simulation results demonstrate that the new methods are robust, lead to fast conver-

gence, and yield solutions that are superior to those achieved with some competing

state-of-the-art methods.

In Chapter 4, a new PP based method that solves very-large-scale nonconvex op-

timization problems is proposed. Sparse-signal recovery is carried out by minimizing

the sum of a nonconvex SPF and the indicator function of a convex set. The objective

function obtained in this way exhibits unusually rich properties from an optimization

perspective. A PP method is used for minimizing the objective function and a contin-

uation procedure is employed so that a minimum can be efficiently obtained. When

the iteration sequence involved is computed approximately, the method can be ap-

plied by iteratively performing two fundamental operations, namely, computation of

the PP of the SPF and projection of the PP onto a convex set. The first operation

is performed either analytically or numerically by using a fast iterative method while

the second operation is performed by computing a sequence of closed-form projec-

tors. The sequence of points associated with the iterative computation is shown to

converge to a minimizer of the problem at hand and a two-step method with opti-
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mal convergence rate is employed for accelerated convergence. Simulations carried

out with the proposed method show that very-large signals can be recovered, typi-

cally in the range of a million samples, and that the solutions obtained are superior to

those obtained with competing state-of-the-art methods while requiring a comparable

amount of computation.

Finally, in Chapter 5 we draw conclusions and make recommendations for future

research.
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Chapter 2

Sequential Convex Formulation

Methods Based on the Smoothly

Clipped Absolute Deviation

Function

2.1 Introduction

The conditions on a sparsity-promoting function (SPF) for unbiasedness, sparsity, and

continuity of the solution x∗ of problem (QPλ) in (1.8) (see discussion on Sec. 1.2.4)

are satisfied when pε(|xi|) is equivalent to the smoothly-clipped absolute deviation

(SCAD) function [42]. Here we are searching for SPFs that yield unbiased, continuous,

and sparse solutions.

We propose to utilize the SCAD function in signal recovery problems because (1)

the SPF in (1.6) satisfies the conditions for unbiased, continuous, and sparse solutions

simultaneously unlike most widely used SPFs of class C and N such as those in (1.3)

and (1.4), and (2) regularized least-squares (RLS) methods based on the SCAD func-

tion have the so-called “oracle property” when parameter ε in (1.6) is appropriately

chosen [42]. A recovery method is said to have the oracle property if zero-valued

coordinates of the signal of interest x0 are recovered as 0 with probability tending

to 1, and the nonzero-valued coordinates are recovered with the same efficiency as if

such values were known a priori (see Theorem 2 of [42] for details).

In this chapter, we describe two new signal-recovery methods based on the SCAD
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function [104, 105]. The first method is used to solve problem (QPλ) in (1.8) while

the second one is used to solve problem (BPδ) in (1.7). Both methods are based

on the update formula in (1.22) and employ convex approximating functions of the

SCAD function to render the computation of the local minimizer tractable. In the

proposed sequential convex formulation (SCF) methods, we use new efficient second-

order solvers (SOSs) that are applicable for the recovery of sparse signals from Gaus-

sian ensembles. In Sec. 2.2, piecewise-linear and quadratic approximating functions

of the SCAD function are presented and several results pertaining to their applicabil-

ity to SCF methods are obtained. In Secs. 2.3 and 2.4, the proposed RLS and basis

pursuit (BP) methods based on the SCAD function are described, respectively. In

Sec. 2.5, simulation results for the proposed and corresponding competing methods

are presented. In Sec. 2.6, we draw conclusions.

2.2 Convex Approximating Functions

It is assumed in this chapter that Pε(x) is of the form given in (1.2), w is a column

vector of n ones, pε(|xi|) is defined by (1.6), and the gradient vector of Pε(x) is given

by

∇Pε(x) =

[
d

dx1

[pε(|x1|)] · · ·
d

dxn
[pε(|xn|)]

]T
(2.1)

where
d

dxi
[pε (|xi|)] =

d|xi|
dxi

p′ε(|xi|) (2.2)

and

p′ε(|xi|) =





ε, |xi| ≤ ε

(αε−|xi|)
α−1

, ε < |xi| ≤ αε

0, |xi| > αε

(2.3)

Function pε (|xi|) is not differentiable at xi = 0 because d|xi|
dxi

is undefined. Without

loss of generality, it is assumed that xi 6= 0 in (2.2) unless otherwise specified and in

such a case, (2.2) reduces to

d

dxi
[pε (|xi|)] = sign(xi)p

′
ε(|xi|) (2.4)
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Note that the SCAD function as defined in (1.6) is a member of class N because

d2

dx2
i

[pε(|xi|)] = sign(xi)p
′′
ε (|xi|) (2.5)

where

p′′ε (|xi|) =





0, |xi| ≤ ε ∨ |xi| > αε

αε−1
α−1

, ε < |xi| ≤ αε
(2.6)

can assume both positive and negative values. From (1.2) and (2.5), we conclude that

Pε(x) is a nonconvex function because the Hessian matrix of Pε(x) is diagonal with

entries given by (2.5) that can assume both positive and negative values. To render

minimization of Pε(x) tractable, let P̂ε,x(k)(x) denote an approximation of Pε(x) given

by

P̂ε,x(k)(x) =
n∑

i=1

p̂
ε,x

(k)
i

(xi) (2.7)

where convex function p̂
ε,x

(k)
i

(xi) denotes an approximation of pε(|xi|) at xi = |x(k)
i |.

We work with SCF methods that are based on approximating functions that possess

the monotonic decreasing property (MDP) stated in the following definition. This

property is important because it implies that the sequence
{
x(k)

}
k∈N in (1.22) will

converge.

Definition 2.1 (Monotonic Decreasing Property). A convex approximating function

p̂
ε,x

(k)
i

(xi) is said to have the MDP at xi = |x(k)
i | if and only if the conditions

p̂
ε,x

(k)
i

(xi) ≥ pε(|xi|), ∀xi ∈ R ∧ xi 6= x
(k)
i (2.8a)

and

p̂
ε,x

(k)
i

(x
(k)
i ) = pε(|x(k)

i |) (2.8b)

hold true.

SCF methods based on functions with the MDP are applicable to the solution of

nonconvex signal recovery problems. From (2.8a) and (2.8b), we have

n∑

i=1

p̂
ε,x

(k)
i

(xi) ≥
n∑

i=1

pε(|xi|), ∀xi ∈ R (2.9)
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and
n∑

i=1

p̂
ε,x

(k)
i

(x
(k)
i ) =

n∑

i=1

pε(|x(k)
i |) (2.10)

Combining (1.2), (2.7), (2.9), and (2.10), we obtain

P̂ε,x(k)(x) ≥ Pε(x), ∀x ∈ Rn ∧ x 6= x(k) (2.11)

and

P̂ε,x(k)(x(k)) = Pε(x
(k)) (2.12)

Therefore, the use of convex approximating functions with the MDP implies that the

conditions in (2.11) and (2.12) hold for function P̂ε,x(k)(x).

If we suppose that we can find convex approximating functions that have the MDP

at |x(k)
i |, then by applying the update formula in (1.22) with F̂x(k)(x) = P̂ε,x(k)(x),

the inequalities

Pε(x
(k+1)) ≤ P̂ε,x(k)(x(k+1)) < P̂ε,x(k)(x(k)) ≤ Pε(x

(k)) (2.13)

hold true and the sequence
{
Pε(x

(k))
}
k∈N is deemed a monotonically decreasing se-

quence. In addition, such sequence is bounded because function Pε(x) is bounded

from below by zero. Therefore,
{
Pε(x

(k))
}
k∈N is convergent because every bounded

monotonic decreasing sequence is convergent (see monotonic sequence theorem, p.

710 of [100]).

In order to solve the convex subproblems in (1.22), we choose simple approximat-

ing functions such as the piecewise-linear and quadratic functions in the following

subsections.

2.2.1 Quadratic approximation

To obtain a quadratic approximation that is applicable to SCF methods, we consider

a quadratic function of the form

q
x
(k)
i

(xi) = a
x
(k)
i
x2
i + b

x
(k)
i
xi + c

x
(k)
i

(2.14)
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where a
x
(k)
i
6= 0 and b

x
(k)
i
, c

x
(k)
i

are coefficients whose values are dependent on the

value of |x(k)
i |. The stationary point x∗ of the quadratic function is given by

x∗ = −
b
x
(k)
i

2a
x
(k)
i

(2.15)

Because pε(|xi|) in (1.6) is an even function, we conclude that the quadratic function

in (2.14) must also be an even function so that the condition

q
x
(k)
i

(−xi) = q
x
(k)
i

(xi) = pε(|xi|) (2.16)

is satisfied. Such a symmetry of q
x
(k)
i

(xi) implies that x∗ = 0. Therefore, from (2.15),

we obtain

b
x
(k)
i

= 0 (2.17)

since a
x
(k)
i
6= 0. By letting xi = x

(k)
i in (2.16), we obtain

q
x
(k)
i

(−x(k)
i ) = q

x
(k)
i

(x
(k)
i ) = pε(|x(k)

i |) (2.18)

or equivalently

q
x
(k)
i

(|x(k)
i |) = pε(|x(k)

i |) (2.19)

because q
x
(k)
i

(xi) is an even function. Differentiating both sides of (2.19) and solving

for coefficient a
x
(k)
i

, we obtain

a
x
(k)
i

=
1

2|x(k)
i |

p′ε(|x(k)
i |) (2.20)

and by solving for coefficient c
x
(k)
i

in (2.19), we obtain

c
x
(k)
i

= pε(|x(k)
i |)−

1

2|x(k)
i |

p′ε(|x(k)
i |) (|x(k)

i |)2 (2.21)

Therefore, by combining (2.17), (2.20), and (2.21) and letting p̂ q
ε,x

(k)
i

(xi) = q
x
(k)
i

(xi),

the quadratic function in (2.14) can be written as

p̂ q
ε,x

(k)
i

(xi) =
1

2|x(k)
i |

[
x2
i − (|x(k)

i |)2
]
p′ε(|x(k)

i |) + pε(|x(k)
i |) (2.22)
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Function p̂ q
ε,x

(k)
i

(xi) defines a quadratic approximation (QA) of pε(|xi|) at xi = |x(k)
i |.

This approximating function is convex because coefficient a
x
(k)
i

in (2.20) can only

assume positive values (see (2.3)) and the approximation is also a smooth function

of xi. The QA of pε(|xi|) at xi = |x(0)
i | for |x(0)

i | = 5/2 and |x(0)
i | = 3/2 is plotted in

Fig. 2.1.
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Figure 2.1: QA of pε(|xi|) at xi = |x(0)
i |: (a) |x(0)

i | = 5/2 and (b) |x(0)
i | = 3/2.

We now show that the QA is applicable to the solution of nonconvex recovery

problems because it can be used in conjunction with SCF methods.

Proposition 2.1 (Monotonic Decreasing Quadratic Approximation). The convex

approximating function p̂ q
ε,x

(k)
i

(xi) in (2.22) has the MDP at xi = |x(k)
i | for any value

of |x(k)
i | except 0.

Proof. Let x
(k)
i 6= 0. From (2.18), we obtain

p̂ q
ε,x

(k)
i

(x
(k)
i ) = pε(|x(k)

i |) (2.23)

and hence the condition in (2.8b) is satisfied for function p̂ q
ε,x

(k)
i

(xi). Now let

g(xi) = p̂ q
ε,x

(k)
i

(xi)− pε(|xi|) (2.24)

Functions p̂ q
ε,x

(k)
i

(xi) and pε(|xi|) are even as is their summation. Hence, g(xi) is an
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even function. The first-order derivative of g(xi) can be written as

d

dxi
[g(xi)] = xi

{
1

|x(k)
i |

p′ε(|x(k)
i |)−

d

dxi
[pε(|xi|)]

1

xi

}
(2.25)

Without loss of generality, consider the case where xi can only assume positive

values in (2.25), i.e., let xi ∈ (0,∞). From (1.6), we note that pε(|xi|) is a nonde-

creasing function of xi. Hence, d
dxi

[pε(|xi|)] 1
xi

is a nonincreasing function of xi. By

using this property in (2.25), we obtain

d

dxi
g(xi) ≤ 0 for xi ∈ (0, |x(k)

i |) (2.26a)

and
d

dxi
g(xi) ≥ 0 for xi ∈ (|x(k)

i |, ∞) (2.26b)

From 2.26a and (2.26b), we find that function g(xi) must be (1) nonincreasing for

xi ∈ (0, |x(k)
i |), and (2) nondecreasing for xi ∈ (|x(k)

i |, ∞). Therefore, g(xi) has

a minimum at |x(k)
i |. By combining (2.23) and (2.24), we note that function g(xi)

assumes the value of zero at |x(k)
i |. Since g(xi) is an even function, the above analysis

holds true in the case where xi ∈ (−∞, 0). Therefore,

g(xi) ≥ 0 ∀xi ∈ (−∞, 0) ∪ (0,∞) (2.27)

and the condition in (2.8a) is satisfied for function p̂ q
ε,x

(k)
i

(xi) when x
(k)
i 6= 0.

In summary, the conditions in 2.8a and (2.8b) are satisfied for function p̂ q
ε,x

(k)
i

(xi).

Therefore, p̂ q
ε,x

(k)
i

(xi) has the MDP at xi = |x(k)
i | for any value of |x(k)

i | except 0.

The computation of the QA in (2.22) is problematic when |x(k)
i | assumes a value

of zero because the approximation is a function of the reciprocal of |x(k)
i | which is

undefined at |x(k)
i | = 0. We address this issue in Sec. 2.3 when describing the proposed

SCF method based on such an approximation.

2.2.2 Piecewise-linear approximation

The first-order Taylor series approximations of pε(xi) at xi = |x(k)
i | and xi = −|x(k)

i |,
namely,

pε(xi) ≈ pε(|x(k)
i |) +

(
xi − |x(k)

i |
)
p′ε(|x(k)

i |) (2.28)
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and

pε(−xi) ≈ pε(|x(k)
i |) +

(
−xi − |x(k)

i |
)
p′ε(|x(k)

i |) (2.29)

respectively, define convex approximations. By combining (2.28) and (2.29), we ob-

tain

p̂ pl
ε,x

(k)
i

(xi) = pε(|x(k)
i |) +

(
|xi| − |x(k)

i |
)
p′ε(|x(k)

i |) (2.30)

which defines a piecewise-linear approximation (PLA) of pε(|xi|) at xi = |x(k)
i |. This

approximating function is convex because the functions in (2.28) and (2.29) are con-

vex. In addition, the approximating function is a nonsmooth function of xi. The

PLA of pε(|xi|) at xi = |x(0)
i | for |x(0)

i | = 5/2 and |x(0)
i | = 3/2 is plotted in Fig. 2.2.
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Figure 2.2: PLA of pε(|xi|) at xi = |x(0)
i |: (a) |x(0)

i | = 5/2 and (b) |x(0)
i | = 3/2.

We now show that, like the QA, the PLA is applicable to the solution of nonconvex

recovery problems because it can be used in conjunction with SCF methods.

Proposition 2.2 (Monotonic Decreasing Piecewise-Linear Approximation). The con-

vex approximating function p̂ pl
ε,x

(k)
i

(xi) in (2.30) has the MDP at xi = |x(k)
i |.

Proof. By letting xi = x
(k)
i in (2.30), we obtain

p̂ pl
ε,x

(k)
i

(x
(k)
i ) = pε(|x(k)

i |) (2.31)

and the condition in (2.8b) is satisfied for function p̂ pl
ε,x

(k)
i

(xi). Without loss of gen-

erality, consider the case where xi ∈ (0,∞). From (2.5), function pε(|xi|) is concave
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in such a case. A first-order necessary and sufficient condition for the concavity of

pε(|xi|) is given by

pε(|xi|) ≤ pε(|x(k)
i |) +

(
|xi| − |x(k)

i |
)
p′ε(|x(k)

i |) (2.32)

(see p. 70 of [16]). Now let

g(xi) = p̂ pl
ε,x

(k)
i

(xi)− pε(|xi|) (2.33)

By using (2.33) and (2.32), it can readily be shown that g(xi) ≥ 0. Functions p̂ pl
ε,x

(k)
i

(xi)

and pε(|xi|) are even and so is their summation. Hence, g(xi) is an even function and

the above analysis also holds true when xi ∈ (−∞, 0). Therefore,

g(xi) ≥ 0, ∀xi ∈ (−∞, 0) ∪ (0,∞) (2.34)

and the condition in (2.8a) is satisfied for function p̂ pl
ε,x

(k)
i

(xi).

In summary, the conditions in 2.8a and (2.8b) are satisfied for function p̂ pl
ε,x

(k)
i

(xi).

Therefore, p̂ pl
ε,x

(k)
i

(xi) has the MDP at xi = |x(k)
i |.

The approximating function p̂ pl
ε,x

(k)
i

(xi) in (2.30) is in fact the best convex approxi-

mation of function pε(|xi|) because it provides the least upper bound on pε(|xi|). This

is demonstrated in terms of the following proposition.

Proposition 2.3 (Best Convex Approximation). Let A denote the class of all convex

approximating functions with the MDP at xi = |x(k)
i | and let p̂

ε,x
(k)
i

(xi) ∈ A denote a

convex approximating function in class A. The condition

p̂
ε,x

(k)
i

(xi) ≥ p̂ pl
ε,x

(k)
i

(xi) ≥ pε(|xi|), ∀xi ∈ R ∧ xi 6= x
(k)
i (2.35)

holds true for the PLA of function pε(|xi|).

Proof. Since p̂
ε,x

(k)
i

(xi) ∈ A and p̂ pl
ε,x

(k)
i

(xi) ∈ A, it suffices to show that

p̂
ε,x

(k)
i

(xi)− p̂ pl
ε,x

(k)
i

(xi) ≥ 0, ∀xi ∈ R ∧ xi 6= x
(k)
i (2.36)

because in such case the condition in (2.35) is satisfied. By using (2.30) and the
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property p̂
ε,x

(k)
i

(x
(k)
i ) = pε(|x(k)

i |), (2.36) is equivalent to

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥ p′ε(|x(k)
i |), ∀xi ∈ R ∧ xi 6= x

(k)
i (2.37)

Without loss of generality, let xi ∈ (0,∞) and consider the case where |x(k)
i | <

x′i < xi. Because p̂
ε,x

(k)
i

(xi) is a convex function the inequality

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥
p̂
ε,x

(k)
i

(x′i)− p̂ε,x(k)i
(x

(k)
i )

x′i − |x(k)
i |

(2.38)

holds true for p̂
ε,x

(k)
i

(xi) (see Exercise 3.1 of [16]). Because function p̂
ε,x

(k)
i

(xi) has the

MDP at xi = |x(k)
i | the inequality

p̂
ε,x

(k)
i

(x′i)− p̂ε,x(k)i
(x

(k)
i )

x′i − |x(k)
i |

≥ pε(|x′i|)− pε(|x(k)
i |)

x′i − |x(k)
i |

(2.39)

holds true for p̂
ε,x

(k)
i

(xi). Combining (2.38) and (2.39), we obtain

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥ pε(|x′i|)− pε(|x(k)
i |)

x′i − |x(k)
i |

(2.40)

Taking the limit of the above inequality, we have

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥ lim
x′i→|x

(k)
i |

[
pε(|x′i|)− pε(|x(k)

i |)
x′i − |x(k)

i |

]

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥ lim
x′i→|x

(k)
i |

d
dx′i

[
pε(|x′i|)− pε(|x(k)

i |)
]

d
dx′i

[
x′i − |x(k)

i |
]

p̂
ε,x

(k)
i

(xi)− p̂ε,x(k)i
(x

(k)
i )

|xi| − |x(k)
i |

≥ p′ε(|x(k)
i |)

(2.41)

A similar approach can be used to show that (2.41) holds true in the case where

xi < x′i < |x(k)
i |. Since p̂

ε,x
(k)
i

(xi) is even, (2.41) is applicable when xi ∈ (−∞, 0).

Thus, the condition in (2.37) holds true.

A comparison between the QA and the PLA of pε(|xi|) at xi = |x(0)
i | for |x(0)

i | = 5/2
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and |x(0)
i | = 3/2 is illustrated in Fig. 2.3. As can be seen, the PLA yields the tightest

upper bound on function pε(|xi|).
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Figure 2.3: Comparison of the QA and PLA of pε(|xi|) at xi = |x(0)
i |: (a) |x(0)

i | = 5/2

and (b) |x(0)
i | = 3/2

2.3 QA Based RLS Method

An SCF method for the solution of problem (QPλ) in (1.8) is now described [104].

The problem can be expressed as

(QPε) minimize
x

F (x) =
1

2
‖Ax− b‖2

2 + Pε(x) (2.42)

where parameter ε corresponds to the regularization term of problem (QPε) when

pε(|xi|) is given by (1.6). Parameter ε controls the trade-off between measurement

consistency and sparsity of the solution just like parameter λ of problem (QPλ) in

(1.8) (see Sec. 2 of [42] for details). We have seen in Sec. 1.2.3 that SCF methods

are applicable to the minimization of a nonconvex function F (x) over a convex set

X . Thus, problem (QPε) corresponds to the problem of minimizing the nonconvex

function F (x) over set X = Rn. A solution can be found by letting x0 ∈ Rn and by

applying the update formula in (1.22) with

F̂x(k)(x) =
1

2
‖Ax− b‖2

2 + P̂ε,x(k)(x) (2.43)
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where P̂ε,x(k)(x) is based on the QA in (2.22). Hence, (1.22) can be rewritten as

x(k+1) = arg minimize
x∈Rn

F̂x(k)(x) (2.44)

Because function F̂x(k)(x) is based on the QA, we must have

F̂x(k)(x) ≥ F (x), ∀x ∈ Rn ∧ x 6= x(k)

and

F̂x(k)(x(k)) = F (x(k))

Therefore,

F (x(k+1)) ≤ F̂x(k)(x(k+1)) < F̂x(k)(x(k)) ≤ F (x(k)) (2.45)

holds and the update formula in (2.44) assures the monotonic decrease of F (x). A

suitable stopping criterion for the computation of x(k+1) is

∥∥F (x(k+1))− F (x(k))
∥∥

2
≤ εc (2.46)

where εc is a small positive constant since
{
F (x(k))

}
k∈N is a convergent sequence (see

Sec. 2.2).

2.3.1 Dimensionality Reduction

Function P̂ε,x(k)(x) is based on the QA and computation of the update formula in

(2.44) is problematic when a coordinate of x(k) assumes the value of zero. In such a

case, P̂ε,x(k)(x) is undefined (see Sec. 2.2.1). Let

Im = {1, 2, . . . , m} and I(k) =
{
i : |x(k)

i | ≥ εr

}

denote sets of integers of cardinality m and nk, respectively, where εr is a positive

constant. Also let A(Im, I(k)) denote the submatrix that consists of the rows of A

indexed by Im and the columns indexed by I(k). Similarly, let x(k)(I(k)) denotes the

subvector that consists of the columns of x(k) indexed by I(k). In such a case, function

F̂x(k)(x) in (2.43) is redefined as

F̂x̃(k)(x̃) =
1

2
||Ãx̃− b||22 + P̂ε,x̃(k)(x̃) (2.47)
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where Ã = A(Im, I(k)), x̃(k) = x(k)(I(k)), x̃ ∈ Rnk , and

P̂ε,x̃(k)(x̃) =
∑

i∈I(k)
p̂ q
ε,x̃

(k)
i

(x̃i) (2.48)

The new update formula applied to function F̂x̃(k)(x̃) in (2.47) is given by

x̃(k+1) = arg minimize
x̃

F̂x̃(k)(x̃) (2.49)

and the issue of computing the update formula in (2.44) when x
(k)
i = 0 can be

overcome by performing Algorithm 2.1.

Input: x(0) ∈ Rn, εr, εc > 0

Output: x(k+1)

k = 0;

I(k) = {1, . . . , n};
x(k+1) = x(k);

repeat

k = k + 1;

Compute: I(k), A(Im, I(k)), x(k)(I(k));

x
(k)
i = 0 for i 6∈ I(k);

Apply the update formula in (2.49) to obtain x̃(k+1);

x
(k+1)
i = x̃

(k+1)
i for i ∈ I(k);

until
∥∥F (x(k+1))− F (x(k))

∥∥
2
≤ εc;

Algorithm 2.1: Dimensionality Reduction

Because each coordinate of the current point x̃(k) can never assume the value of

zero, function F̂x̃(k)(x̃) is always well-defined and the update formula in (2.49) can

be used for the computation of the next point x̃(k+1). In addition, on the basis of

(2.45), we conclude that the minimization of F̂x̃(k)(x̃) has a sparse solution and the

number of nonzero coordinates of x(k+1) is, therefore, less or equal to the number of

nonzero coordinates of x(k). As a result, the dimension of the convex subproblem in

(2.49) can be reduced from step k to step k+ 1 because |I(0)| ≥ |I(1)| ≥ · · · ≥ |I(k)|
where |I(k)| denotes the cardinality of set I(k) and, therefore, n1 ≥ n2 ≥ . . . ≥ nk. If

parameter εr in Algorithm 2.1 is set too large, a coordinate of x(k) can be incorrectly

updated to zero. This issue can be circumvented by selecting a suitable value of εr.
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2.3.2 Proposed SOS

Function P̂ε,x̃(k)(x̃) in (2.48) can be written as

P̂ε,x̃(k)(x̃) =
∑

i∈I(k)
p̂ q
ε,x̃

(k)
i

(x̃i)

=
1

2
1T
(
X̃2 −

∣∣∣X̃(k)
∣∣∣
2
)
p

(2.50)

where 1 is a column vector of nk ones, matrices X̃ and
∣∣∣X̃(k)

∣∣∣ are given by

X̃ = diag {x̃1, x̃2, . . . , x̃nk} and
∣∣∣X̃(k)

∣∣∣ = diag
{
|x̃(k)
i |
}
i∈I(k)

and p is a column vector of length q given by

p =

[∣∣∣X̃(k)
∣∣∣
−1

∇Pε(x̃
(k))

]
(2.51)

Hence, function F̂x̃(k)(x̃) in (2.47) can be written as

F̂x̃(k)(x̃) =
1

2
||Ãx− b||22 + P̂ε,x̃(k)(x̃)

=
1

2
x̃T ÃT Ãx̃− x̃T ÃTb+

1

2
1T
(
X̃2 −

∣∣∣X̃(k)
∣∣∣
2
)
p

(2.52)

Terms that do not involve x̃ are constant in the minimization of F̂x̃(k)(x̃) and can

be dropped as they do not change the solution. Therefore, each convex subproblem

in (2.49) is equivalent to

minimize
x̃

F̂x̃(k)(x̃) (2.53)

where

F̂x̃(k)(x̃) =
1

2
x̃T ÃT Ãx̃− x̃T ÃTb+

1

2
1TX̃2p

The gradient vector and Hessian matrix of the problem in (2.53) are given by

∇F̂x̃(k)(x̃) = ÃT (Ãx̃− b) + X̃p and ∇2F̂x̃(k)(x̃) = ÃT Ã+ diag(p)

respectively. The update formula for the minimization of F̂x̃(k)(x̃) can be obtained as

x̃i+1 = x̃i −∇2F̂x̃(k)(x̃i)∇F̂x̃(k)(x̃i) (2.54)
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by applying Newton’s method (see Sec. 5.3 of [4]). Because F̂x̃(k)(x̃) is a quadratic

convex function, sequence {x̃i}i∈N in (2.54) converges to the minimizer x̃∗ of F̂x̃(k)(x̃)

in just one step from any initial point x̃0. So we let x̃0 = 0 in (2.54) where 0

is a column vector of nk zeros and the next point x̃1 is the minimizer of F̂x̃(k)(x̃).

Therefore, we obtain the analytical solution

x̃∗ = M−1
[
ÃT (Ãx̃− b) + X̃p

]
(2.55)

where

M = diag(p) + ÃT Ã (2.56)

is an nk × nk matrix.

The computation of (2.55) is problematic because it requires the inversion of a

large nk × nk matrix. Fortunately, matrix M has a special structure that facilitates

the efficient computation of M−1. Suppose for a moment that the magnitudes of the

coordinates of vector p in (2.51) are always greater than zero. In such a case, we note

that (1) matrix diag(p) in (2.56) is invertible and the operation [diag(p)]−1 can be

computed analytically by taking the reciprocal of each coordinate of vector p, and

(2) The number of rows of matrix Ã in (2.56) is much smaller than its number of

columns, e.g., when k is not large in (2.49), m is much smaller than nk. In such a

case, we can employ the Sherman-Morrison-Woodbury formula [54]

M−1 = diag(p)−1 − diag(p)−1AT
(
I +A diag(p)−1AT

)−1
A diag(p)−1 (2.57)

because diag(p)−1 can be easily computed and because the effort involved in the

computation of the m×m matrix inverse

(
I +A diag(p)−1AT

)−1

is small relative to the effort involved in the computation of M−1 since m� nk. In

the case where a coordinate of vector p is zero, we add a small positive constant εd to

such coordinate, e.g., of the order of 10−9, so that matrix diag(p) is always invertible

and (2.57) can be employed for the computation of M−1.
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2.3.3 Continuation procedure

It has been observed that the convergence rate of sequence
{
F (x(k))

}
k∈N in (2.46)

slows for decreasing values of ε [104]. Reduced computational cost can be achieved by

using a continuation procedure where several (QPε) problems are solved in sequence

for decreasing values of ε in the same way as is done in recent RLS methods [8,43,68].

In the proposed continuation procedure, the solution obtained for the previous (QPε)

problem is used as the initial point for the solution of the next (QPε) problem. Thus,

the convergence rate of sequence
{
F (x(k))

}
k∈N for each (QPε) problem is improved

due to an appropriate initialization.

In summary, the proposed SCF method is efficient because (1) the convex sub-

problems can be solved by an efficient SOS, (2) the computation of x(k) in Algorithm

2.1 entails reduced subproblem sizes for increasing values of k, and (3) the convergence

rate of sequence
{
F (x(k))

}
k∈N can be improved by using a continuation procedure.

2.4 PLA Based BP Method

An SCF method for the solution of problem (BPδ) in (1.7) is now described [105].

Using the notation of Sec. 1.2.3, problem (BPδ) entails minimizing nonconvex function

F (x) = Pε(x) over convex set X = K, where K is the closed ball in Rn under an

affine mapping given by

K = {x ∈ Rn : ‖Ax− b‖2 ≤ δ} (2.58)

We can find a solution by letting x0 ∈ K and then applying the update formula

in (1.22) with F̂x(k)(x) = P̂ε,x(k)(x), where P̂ε,x(k)(x) is based on the PLA in (2.30).

Hence, (1.22) can be written as

x(k+1) = arg minimize
x∈K

P̂ε,x(k)(x) (2.59)
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where function P̂ε,x(k)(x) is given by

P̂ε,x(k)(x) =
n∑

i=1

p̂ pl
ε,x

(k)
i

(xi)

=
n∑

i=1

[
pε(|x(k)

i |) +
(
|xi| − |x(k)

i |
)
p′ε(|x(k)

i |)
]

The use of the update formula in (2.59) assures the monotonic decrease of function

Pε(x) of problem (BPδ) because the use of the PLA implies that the inequalities in

(2.13) hold. A suitable stopping criterion for the computation of x(k+1) is

∥∥Pε(x(k+1))− Pε(x(k))
∥∥

2
≤ εc (2.60)

where εc is a small positive constant since
{
Pε(x

(k))
}
k∈N is a convergent sequence (see

Sec. 2.2).

2.4.1 Proposed SOS

In the minimization of P̂x(k)(x), terms that do not involve x are constant and can be

dropped as they do not change the solution. Therefore, each convex subproblem in

(2.59) can be written as

minimize
x∈K

P̂ε,x(k)(x) (2.61)

where

P̂ε,x(k)(x) =
n∑

i=1

p′ε(|x(k)
i |)|xi|

Since function P̂ε,x(k)(x) is based on the PLA, the computation of the update formula

in (2.59) is problematic because P̂ε,x(k)(x) is a nonsmooth function with respect to

x and the convex subproblems are nonsmooth as a result. We address this issue by

(1) introducing an upper bound ui for each term of the summation in (2.61), (2)

splitting each absolute value |xi| in terms of this upper bound as |xi| = (±xi − ui),
and (3) creating inequality constraints in terms of each positive and negative parts of

the upper bounded terms of the summation. Therefore, by letting In = {1, . . . , n}
and Jn = {n+ 1, . . . , 2n} denote sets of n integers, we conclude that the problem
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in (2.61) is equivalent to the smooth convex optimization problem

minimize
x∈K,u

n∑

i=1

ui

subject to: p′ε(|x(k)
i |)(xi − ui) ≤ 0, i ∈ In

− p′ε(|x(k)
i |)(−xi − ui) ≥ 0, i ∈ In

(2.62)

By using the definition of p′ε(|xi|) in (2.3), we can combine the inequality constraints

of the problem in (2.62) to obtain the equivalent problem

minimize
x∈K,u

n∑

i=1

ui

subject to: lj(|x(k)
i |, xi, ui) ≤ 0, (i ∈ In) ∧ [j ∈ (In ∪ Jn)]

(2.63)

where lj(|x(k)
i |, xi, ui) for j ∈ (In ∪Jn) are 2n linear constraints of the form given by

lj(|x(k)
i |, xi, ui) =





εxi − ui, |x(k)
i | ≤ ε(

αε−|x(k)i |
)

α−1
xi − ui, ε < |x(k)

i | ≤ αε

−ui, |x(k)
i | > αε

(2.64a)

for (i = j) ∧ (j ∈ In) and

lj(|x(k)
i |, xi, ui) =





−εxi − u1, |x(k)
i | ≤ ε

−
(
αε−|x(k)i |

)
α−1

xi − ui, ε < |x(k)
i | ≤ αε

0, |x(k)
i | > αε

(2.64b)

for (i = j − n) ∧ (j ∈ Jn).

Consider the linear constraints in (2.64) and let x̃ =
[
x1 · · · xn u1 · · · un

]T

denote the new optimization variable of the problem in (2.63). Whenever |x(k)
i | ≤ ε,

we write the constraints lj(xi, ui) for two indices j in terms of the new variable x̃ and

2n-length column vectors qj for j ∈ In and q̄j for j ∈ Jn with entries qj,l and q̄j,l for



43

l ∈ (In ∪ Jn) given by

qj,l =





ε, l = j

−1, l = j + n

0, otherwise

and q̄j,l =





−ε, l = j − n
−1, l = j

0, otherwise

Similarly, whenever ε < |x(k)
i | ≤ αε, we can write lj(xi, ui) in terms of x̃ and 2n-length

column vectors rj for j ∈ In and r̄j for j ∈ Jn with entries rj,l and r̄j,l for l ∈ (In∪Jn)

given by

rj,l =





αε−|x(k)i |
α−1

, l = j

−1, l = j + n

0, otherwise

and r̄j,l =





−αε−|x(k)i |
α−1

, l = j − n
−1, l = j

0, otherwise

For the last possible case, whenever |x(k)
i | > αε, we can write lj(xi, ui) in terms of x̃

and a 2n-length column vector sj for j ∈ In with entries sj,l given by

sj,l =




−1, l = j + n

0, otherwise

By letting C(k) =
[
cT1 · · · cTn cTn+1 · · · cT2n

]T
denote a 2n× 2n matrix where the

2n-length column vectors ci and ci+n for i ∈ In are given by

ci =





qi, |x(k)
i | ≤ ε

ri, ε < |x(k)
i | ≤ αε

si, |x(k)
i | > αε

and ci+n =





q̄i, |x(k)
i | ≤ ε

r̄i, ε < |x(k)
i | ≤ αε

02n×1, |x(k)
i | > αε

(2.65)

and by letting Ã =

[
A

0q×n

]
and e =

[
0n×1 1n×1

]T
in the problem in (2.63), the

update formula in (2.59) can be written in the equivalent form

x̃(k+1) = arg minimize
x̃∈(K̃∩M̃)

eT x̃ (2.66)
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where

K̃ =
{
x̃ ∈ R2n : ||Ãx̃− b||2 ≤ δ

}
and M̃ =

{
x̃ ∈ R2n : C(k)x̃ ≤ 0

}

Each solution point x̃(k) in (2.66) is obtained by solving a second-order cone program-

ming (SOCP) problem because set M̃ is a convex polytope, set K̃ is a closed ball in

R2n under an affine mapping, and the objective function is a linear function of x̃.

Although reformulating the nonsmooth subproblems in (2.59) into the SOCP sub-

problems in (2.66) entails doubling the dimension of the optimization variable, e.g.,

from x ∈ Rn in (2.44) to x̃ ∈ R2n in (2.66), the amount of computation and storage

required to solve the SOCP subproblems is much less than 2 times that required to

solve the nonsmooth subproblems in (2.44). The reduced effort is due to the fact that

(1) matrices C(k), Ã, and vector e in (2.66) are sparse, and (2) numerical computing

environments such as MATLAB employ data structures to represent sparse vectors

and matrices that use storage space proportional to the number of nonzero entries

of the sparse data and most of the operations with such sparse data requires time

proportional to the number of arithmetic operations on nonzeros entries [49]. For

instance, if we let n
(k)
1 , n

(k)
2 , and n

(k)
3 denote, respectively, the number of coordinates

of x(k) in (2.66) such that the conditions |x(k)
i | ≤ ε, ε < |x(k)

i | ≤ αε and |x(k)
i | > αε are

satisfied, then from (2.65) we conclude that matrix C(k) has only 4(n
(k)
1 +n

(k)
2 ) +n

(k)
3

nonzero entries. In addition, only half the entries of matrix Ã and vector e are

nonzero. Hence, the amount of computation and storage required for the solution of

the SOCP subproblems is reduced. Moreover, due to the SOCP formulation we can

employ standard state-of-the-art SOSs for the solution of SOCP problems such as

self-dual-minimization (SeDuMi) [102]. In conclusion, the update formula in (2.66)

can be computed efficiently.

2.5 Simulation Results

We now present simulation results to evaluate the proposed and corresponding com-

peting methods in terms of their capability of recovering signals in a wide range of test

problems. The proposed and competing methods were evaluated following the exper-

imental protocol discussed in Sec. 1.3. The probability of perfect recovery (PPR) and

minimum required fraction (MRF), m/s, for perfect recovery were employed as recon-

struction performance (RP) metrics. Perfect recovery was declared when ν = 1×10−3
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in (1.36). The average CPU time in seconds was employed as the computation cost

(CC) metric. The RP and CC metrics were estimated by carrying out the recovery

process 100 times over different sets of measurements. Each measurement vector b

was generated by applying a renormalized Gaussian matrix to the signal of interest x0

of length n. The length of vector b was assumed to be m = n/8 and the sparsity s of

x0 was assumed to be in the range m
100
≤ s ≤ m

2
. The MRF, m/s, for perfect recovery

was estimated by finding the minimum value of s in that range where PPR = 1. The

s nonzero values of x0 were chosen randomly from a zero-mean Gaussian distribution

of unit variance. In the recovery of noisy signals, each measurement vector b was

obtained using a Gaussian vector z with σz = 1 × 10−4. In the case of noiseless

signals, we have σz = 0 in which case z = 0.

All experiments were run on a Dell Precision 670 workstation with two 3.2 GHz

dual-core Intel Xeon processors and 4 Gb of RAM using the 64-bit Linux MATLAB

Version 7.13 (R2011b). Software that is publicly available online was used for the

competing methods.1 We used the values suggested in [11,18,43,68] for the parameters

of the competing methods with the exception of the case where such parameter values

impact the precision of the solver employed and, therefore, the accuracy of the solution

found. The solver precision is directly related to the PPR obtained because solutions

that are not accurate result in low PPRs. In such a case, we have increased the solver

precision until no further change in the PPR could be observed. We have found

out that the PPR of the `1-Magic and spectral projected-gradient `1-norm (SPGL1)

methods were improved by increasing the default precision of their respective solvers.

For instance, the optimality tolerance of the SPGL1 method can be controlled by the

parameter “optTol” which has the default value of 1 × 10−4. In our simulations we

have found out that optTol = 1×10−8 yields the best results. In the `1-Magic method,

the tolerance for the primal-dual interior-point solver can be controlled by parameter

“pdtol” in the sense that the solver terminates if the duality gap is less than or equal

to pdtol. The default value of pdtol = 1×10−3 has been changed to pdtol = 1×10−8

1 The codes for the competing methods were obtained from the following Web pages:

RLS methods: `1-LS from S. P. Boyd at http://www.stanford.edu/~boyd/l1_ls/, gradient
projection for sparse reconstruction (GPSR) from M. A. T. Figueiredo at http://www.lx.

it.pt/~mtf/GPSR/.

Least absolute shrinkage and selection operator (LASSO) methods: SPGL1 from M. P.
Friedlander at http://www.cs.ubc.ca/~mpf/spgl1/.

BP methods: `1-Magic from J. Romberg at http://users.ece.gatech.edu/~justin/l1magic/

http://www.stanford.edu/~boyd/l1_ls/
http://www.lx.it.pt/~mtf/GPSR/
http://www.lx.it.pt/~mtf/GPSR/
http://www.cs.ubc.ca/~mpf/spgl1/
http://users.ece.gatech.edu/~justin/l1magic/
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to yield the best results. The tolerance for the log-barrier interior-point solver is

controlled by parameter “lbtol” and the default value of lbtol = 1 × 10−3 has been

changed to lbtol = 1× 10−9.

2.5.1 RLS Methods

The proposed method of Sec. 2.3 will hereafter be called the QA-SCAD method.

The parameters used in the QA-SCAD method were as follows. The initial point

was assumed to be x(0) = ATb, convergence was declared when εc = 1 × 10−7,

and εr = 1 × 10−9. For the continuation procedure we used a decreasing valued

sequence {ε1, . . . , ε5} with ε1 = 0.1||ATb||∞ and ε5 = 5 × 10−4||ATb||∞. A con-

tinuation procedure was also used for the GPSR method with a decreasing valued

sequence {λ1, . . . , λ5} where λ1 = 0.1||ATb||∞ and λ5 = 5 × 10−4||ATb||∞. The

`1-LS method does not support continuation procedures because the SOS employed

is based on an interior-point method. Initialization in interior-point methods is an

active research topic [112] and most interior-point methods cannot benefit from an

appropriate initialization. Thus, the `1-LS method was used to solve problem (QPλ)

in (1.8) with λ = 5× 10−4||ATb||∞.

We carried out recovery simulations to evaluate the proposed and competing meth-

ods for the recovery of noiseless and noisy signals. The results obtained for noiseless

signals of length n = 512 and n = 1, 024 with sparsity s ≤ 5 and s ≤ 7, respectively,

are summarized in Table 2.1. As can be seen, the QA-SCAD method achieved su-

perior RP relative to those of the GPSR and `1-LS methods for the case of noiseless

signals. The CC of the QA-SCAD method was slightly increased relative to that of

the GPSR method and slightly decreased relative to that of the `1-LS method.
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RP CC

n MRF CPU time method

512

21.3 0.8062 `1-LS

21.3 0.0424 GPSR

12.8 0.1714 QA-SCAD

1, 024

18.3 2.2706 `1-LS

32 0.0232 GPSR

18.3 0.4978 QA-SCAD

Table 2.1: Summary of results for RLS methods and noiseless signals.

The results obtained for noisy signals of length n = 512 and n = 1, 024 with sparsity

s ≤ 5 and s ≤ 7, respectively, are summarized in Table 2.2. As can be seen, the QA-

SCAD method achieved superior RP relative to those of the GPSR and `1-LS methods

for the case of noisy signals. The CC of the QA-SCAD method was increased relative

to that of the GPSR method and decreased relative to that of the `1-LS method.

RP CC

n MRF CPU time method

512

21.3 0.8452 `1-LS

21.3 0.0454 GPSR

12.8 0.2499 QA-SCAD

1, 024

18.3 2.5410 `1-LS

32.0 0.0897 GPSR

18.3 1.4409 QA-SCAD

Table 2.2: Summary of results for RLS methods and noisy signals.

The results summarized in Tables 2.1 and 2.2 are described in detail in the fol-

lowing subsections.

Results for noiseless signals

RP and CC of the proposed method are compared with those of the `1-LS and GPSR

methods in Fig. 2.4. As can be seen in Figs. 2.4a and 2.4b, the proposed method
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achieves superior RP relative to the those of the competing methods for different

signal sizes. For instance when n = 512, the MRF, m/s, for perfect reconstruction

has dropped from n/24 in the GPSR and `1-LS methods to n/40 in the QA-SCAD

method. On the other hand, when n = 1, 024 the MRFs for perfect reconstruction of

the QA-SCAD and `1-LS methods were exactly n/56 while that of the GPSR method

was n/32.
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Figure 2.4: RP and CC of RLS-SCAD and competing methods for noiseless signals:
(a) PPR for n = 512, (b) PPR for n = 1, 024, (c) Average CPU time for n = 512,
and (d) Average CPU time for n = 1, 024.

The RP of the proposed method is also consistently better than those of the

competing methods for simulations where the sparse signal was not always perfectly

reconstructed. For instance when n = 512, the PPRs of the QA-SCAD, GPSR, and

`1-LS methods were 74%, 35%, and 13%, respectively, for s = 9. On the other hand,
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when n = 1, 024 the PPRs of the QA-SCAD, GPSR, and `1-LS methods were 72%,

46%, and 38%, respectively, for s = 13.

The CC of the proposed method is comparable to those of the competing methods.

As can be seen in Figs. 2.4c and 2.4d, the average CPU time required by the QA-

SCAD method is of the same order of magnitude as those required by the `1-LS and

GPSR methods.

The average number of points k computed for sequence
{
x(k)

}
k∈N before conver-

gence is plotted in Fig. 2.5. As can be seen, a reduced number of points is computed

when PPR = 1 relative to the number of points computed when PPR 6= 1. In addi-

tion, for both cases the convergence rate of sequence
{
F (x(k))

}
k∈N is improved during

the continuation procedure because the average k reduces as the continuation step

increases.
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n = 1024, PPR = 1
n = 512, PPR 6= 1
n = 1024, PPR 6= 1

Figure 2.5: Average iteration comparison.

Results for noisy signals

The RP and CC of the proposed method are compared with those of the `1-LS and

GPSR methods in Fig. 2.6. As can be seen in Figs. 2.6a and 2.6b, the proposed method

achieves superior RP relative to those of the competing methods for different signal

sizes. For instance when n = 512, the MRF for perfect reconstruction has dropped

from n/24 in the GPSR and `1-LS methods to n/40 in the QA-SCAD method. On the

other hand, when n = 1, 024 the MRFs for perfect reconstruction of the QA-SCAD

and `1-LS methods were exactly n/56 while that of the GPSR method was n/32.

The RP of the proposed method is also consistently better than those of the
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Figure 2.6: RP and CC of RLS-SCAD and competing methods for noisy signals: (a)
PPR for n = 512, (b) PPR for n = 1, 024, (c) Average CPU time for n = 512, and
(d) Average CPU time for n = 1, 024.
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competing methods for simulations where the sparse signal is not always perfectly

reconstructed. For instance when n = 512, the PPRs of the QA-SCAD, GPSR,

and `1-LS methods were 93%, 69%, and 53%, respectively, for s = 7. On the other

hand, when n = 1, 024 the PPR of the QA-SCAD, GPSR, and `1-LS methods were

76%, 40%, and 13%, respectively, for s = 13. The CC of the proposed method and

competing methods are compared in Figs. 2.6c and 2.6d. As can be seen, the average

CPU time required by the QA-SCAD method is of the same order of magnitude to

those required by the `1-LS and GPSR methods.

The average number of points k computed for sequence
{
x(k)

}
k∈N before conver-

gence is plotted in Fig. 2.7. As can be seen, a reduced number of points is computed

when PPR = 1 relative to the number of points computed when PPR 6= 1. In addi-

tion, for both cases the convergence rate of sequence
{
F (x(k))

}
k∈N is improved during

the continuation procedure because the average k reduces as the continuation step

increases.
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Figure 2.7: Average iteration comparison.

2.5.2 BP Methods

The proposed method of Sec. 2.4 will hereafter be called the PLA-SCAD method.

The parameters used in the PLA-SCAD method were as follows. The initial point

x̃0 ∈ K̃ in (2.66) was defined to be x̃(0) = 0, the regularization parameter ε of the

SCAD function was set to ε = 0.1||ATb||∞, and convergence was declared when

εc = 1× 10−7 in (2.60). We used δ = σz
√
m to solve problem (BPδ) in (1.7).

We carried out recovery simulations to evaluate the proposed and competing meth-

ods for the recovery of noiseless and noisy signals. The results obtained for noiseless
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signals of length n = 512 and n = 1, 024 with sparsity s ≤ 11 and s ≤ 22, respectively,

are summarized in Table 2.3. As can be seen, the PLA-SCAD method achieved supe-

rior RP relative to those of the `1-Magic and SPGL1 methods for the case of noiseless

signals. The CC of the PLA-SCAD method was increased relative to those of the

`1-Magic and SPGL1 methods.

RP CC

n MRF CPU time method

512

9.14 0.1037 `1-Magic

21.33 0.1876 SPGL1

5.82 4.0050 PLA-SCAD

1, 024

6.74 0.6643 `1-Magic

18.29 0.5334 SPGL1

5.82 22.5516 PLA-SCAD

Table 2.3: Summary of results for BP methods and noiseless signals.

The results obtained for noiseless signals of length n = 512 and n = 1, 024 with

sparsity s ≤ 9 and s ≤ 25, respectively, are summarized in Table 2.4. As can be seen,

the PLA-SCAD method achieved superior RP relative to those of the `1-Magic and

SPGL1 methods for the case of noisy signals. The CC of the PLA-SCAD method

was increased relative to those of the `1-Magic and SPGL1 methods.

RP CC

n MRF CPU time method

512

12.8 4.2825 `1-Magic

12.8 0.1411 SPGL1

7.1 9.8821 PLA-SCAD

1, 024

12.8 11.0134 `1-Magic

9.8 0.5948 SPGL1

5.1 64.4888 PLA-SCAD

Table 2.4: Summary of results for BP methods and noisy signals.
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The results summarized in Tables 2.3 and 2.4 are described in detail in the fol-

lowing subsections.

Results for noiseless signals

RP and CC of the proposed method are compared with those of the `1-Magic and

SPGL1 methods in Fig. 2.8. As can be seen in Figs. 2.8a and 2.8b, the proposed

method achieves superior RP relative to those of the competing methods for different

signal sizes. For instance when n = 512, the MRF for perfect reconstruction has

dropped from n/24 and n/56 in the SGPL1 and `1-Magic methods, respectively, to

n/88 in the PLA-SCAD method. On the other hand, when n = 1, 024 the MRF for

perfect reconstruction has dropped from n/56 and n/152 in the SGPL1 and `1-Magic

methods, respectively, to n/176 in the PLA-SCAD method.

The RP of the proposed method is also consistently better than those of the

competing methods for simulations where the sparse signal was not always perfectly

reconstructed. For instance when n = 512, the PPRs of the PLA-SCAD, `1-Magic,

and SPGL1 methods were 80%, 49%, and 24%, respectively, for s = 13. On the

other hand, when n = 1, 024 the PPRs of the PLA-SCAD, `1-Magic, and SPGL1

methods were 82%, 30%, and 5%, respectively, for s = 28. However, superior RP

of the proposed method come with an additional CC. As can be seen in Figs. 2.8c

and 2.8d, the average CPU time required by the PLA-SCAD method is increased

relative to those of the `1-Magic and SPGL1 methods.

The average number of points k computed for sequence
{
x(k)

}
k∈N before conver-

gence is plotted in Fig. 2.9. When the signal is always perfectly reconstructed, i.e.,

when s ≤ 11 and s ≤ 22 in Figs. 2.9a and 2.9b, respectively, a reduced number of

points is computed. In such a case, 2 points are computed on average before con-

vergence. However, when 11 < s < 21 and 22 < s < 37 in Figs. 2.9a and 2.9b,

respectively, the average number of points computed increases for increasing values

of s. On the other hand, this increase ceases when s > 21 and s > 37 in Figs. 2.9a

and 2.9b, respectively. In such a case, 17 and 25 points are computed on average

before convergence.
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Figure 2.8: RP and CC of BP-SCAD and competing methods for noiseless signals:
(a) PPR for n = 512, (b) PPR for n = 1, 024, (c) Average CPU time for n = 512,
and (d) Average CPU time for n = 1, 024.
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Figure 2.9: Average iteration comparison: (a) n = 512 and (b) n = 1, 024.

Results for noisy signals

RP and CC of the proposed method are compared with those of the `1-Magic and

SPGL1 methods in Fig. 2.10. As can be seen in Figs. 2.10a and 2.10b, the proposed

method achieves superior RP relative to those of the competing methods for different

signal sizes. For instance when n = 512, the MRF for perfect reconstruction has

dropped from n/40 in the SGPL1 and `1-Magic methods to n/72 in the PLA-SCAD

method. On the other hand, when n = 1, 024 the MRF for perfect reconstruction has

dropped from n/80 and n/104 in the `1-Magic and SGPL1 methods, respectively, to

n/200 in the PLA-SCAD method.

The RP of the proposed method is also consistently better than those of the

competing methods for simulations where the sparse signal was not always perfectly

reconstructed. For instance when n = 512, the PPRs of the PLA-SCAD, `1-Magic,

and SPGL1 methods were 85%, 25%, and 24%, respectively, for s = 13. On the other

hand, when n = 1, 024 the PPRs of the PLA-SCAD, SPGL1, and `1-Magic were 77%,

2%, and 1%, respectively, for s = 28. However, superior RP of the proposed method

come with an additional CC. As can be seen in Figs. 2.10c and 2.10d, the average

CPU time required by the PLA-SCAD method is increased relative to those of the

`1-Magic and SPGL1 methods.

The average number of points k computed for sequence
{
x(k)

}
k∈N before conver-

gence is plotted in Fig. 2.11. When the signal is always perfectly reconstructed, i.e.,

when s ≤ 9 and s ≤ 25 in Figs. 2.11a and 2.11b, respectively, a reduced number of
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Figure 2.10: RP and CC of BP-SCAD and competing methods for noisy signals: (a)
PPR for n = 512, (b) PPR for n = 1, 024, (c) Average CPU time for n = 512, and
(d) Average CPU time for n = 1, 024.
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points is computed. In such a case, 3 points are computed on average before con-

vergence. However, when 9 < s < 21 and 25 < s < 37 in Figs. 2.11a and 2.11b,

respectively, the average number of points computed increases for increasing values

of s. On the other hand, this increase ceases when s > 21 and s > 37 in Figs. 2.11a

and 2.11b, respectively. In such a case, 19 and 28 points are computed on average

before convergence.
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Figure 2.11: Average iteration comparison: (a) n = 512 and (b) n = 1, 024.

2.6 Conclusions

Two new SCF methods that are applicable for the recovery of sparse signals from

Gaussian ensembles have been described [104,105]. Sparsity is promoted by using the

SCAD function which is known to satisfy certain conditions for unbiasedness, sparsity,

and continuity of the solution of the recovery problem. Convex approximations of

the SCAD function such as the QA and the PLA have been presented to render the

computation of the local minimizer tractable and several results pertaining to the

applicability of the approximations to SCF methods were obtained.

In the proposed QA-SCAD method, a solution of problem (QPλ) in (1.8) is ap-

proached by employing the QA of the SCAD function [104]. Convex subproblems are

solved by using an SOS where the Newton step can be computed efficiently. A target

value of the regularization term of the recovery problem is approached efficiently by

using a continuation procedure. In the proposed PLA-SCAD method, a solution to

problem (BPδ) in (1.7) is approached by employing a PLA of the SCAD function [105].
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Convex subproblems are reformulated as SOCP problems and are solved efficiently

by standard SOSs such as SeDuMi [102].

Simulation results demonstrated that the proposed QA-SCAD and PLA-SCAD

methods achieve superior RP metrics in terms of increased PPRs and reduced MRFs

for perfect recovery when compared with competing RLS and BP methods, respec-

tively. The CC metrics of the proposed QA-SCAD method was found to be com-

parable to those of corresponding competing methods, namely, the GPSR [43] and

`1-LS [68] methods. On the other hand, the CC metric of the proposed PLA-SCAD

method is increased relative to those of corresponding competing methods, namely,

`1-Magic [18] and SPGL1 [11] methods.
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Chapter 3

A New Family of Sequential

Convex Formulation Methods

3.1 Introduction

The use of nonconvex sparsity-promoting functions (SPFs) that closely resemble the

`0-norm function is desirable in compressive-sensing (CS) recovery problems because

they lead to short signal representations and small reconstruction error [23, 24, 26,

27, 37, 45, 46, 97, 104, 105, 109]. However, state-of-the-art iterative methods for such

recovery problems are typically inefficient and lack convergence analysis (see Sec. 1.4

for details).

In this chapter, a new family of sequential convex formulation (SCF) methods

that solve nonconvex optimization problems is proposed. The new methods are suit-

able for large-scale recovery problems. Sparsity is promoted with a fairly general

class of nonconvex SPFs that include widely used SPFs as special cases. Optimality

conditions are obtained and local minimizers and saddle points of the problem are

identified. The new family of methods is based on the update formula in (1.22) and

a piecewise-linear approximation (PLA) of the SPF is employed to render computa-

tion of the minimizer tractable. Subproblems of the type in (1.22) are formulated as

weighted `1-norm minimization problems while an efficient first-order solver (FOS)

suitable for the recovery of large signals from Gaussian or orthogonal ensembles is em-

ployed. The sequence
{
x(k)

}
k∈N in (1.22) is shown to be a monotonically decreasing

sequence of values of the objective function and, consequently, converges to a local

minimizer. Simulation results demonstrate that the new methods are robust, lead to
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fast convergence, and yield solutions that are superior to those achieved with some

competing state-of-the-art methods.

The chapter is organized as follows. In Sec. 3.2, a class of nonconvex recovery

problems is proposed and its optimality conditions are examined. In Sec. 3.3, a new

family of SCF methods is described. In Sec. 3.4, simulation results for the proposed

and corresponding competing methods are presented. In Sec. 3.5, conclusions are

drawn.

3.2 Proposed Class of Recovery Problems

This dissertation is concerned with recovery problems based on SPFs that share some

common mathematical properties such as concavity, differentiability, and bounded-

ness. It is, therefore, convenient to present a family of SPFs in terms of the following

definition.

Definition 3.1. Let z ∈ R+
0 where R+

0 denotes the set of all nonnegative real numbers

and let P denote the set of all SPFs with properties:

1. pε(z) is second-order continuously differentiable,

2. pε(z) has a bounded second-order derivative,

3. pε(z) is concave,

4. pε(z) is nondecreasing for increasing values of z, and

5. pε(z) is bounded from below by a real number A

and there exists a constant ε′ > 0 such that A ≥ 0 for ε ≥ ε′.

Class P is of practical interest because (1) it is a subset of class N that includes

several contemporary SPF members identified in 1.1.1, and (2) it leads to an efficient

and robust recovery process. Thus, optimality conditions and efficient methods for

a wide range of nonconvex recovery problems can be obtained. Some examples are

described below.

The SPF in (1.4) is a member of P because function pε(z) = (z + ε)p satisfies

Properties 1 to 5, namely, function pε(z) is a second-order continuously differentiable

function with a second-order derivative given by

p′′ε (z) = p(p− 1)(z + ε)p−2
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and p′′ε (z) is bounded because |p′′ε (z)| ≤ p|p − 1|εp−2. Function pε(z) is (1) concave

because p′′ε (z) can assume only negative values, (2) nondecreasing for increasing values

of z (see Fig. 1.1), and (3) bounded from below by εp because pε(z) ≥ εp for all z ∈ R+
0 .

A second example of an SPF member of P is given in (1.5). Function pε(z) =

ln(z + ε) is a second-order continuously differentiable function with a second-order

derivative given by

p′′ε (z) = −1/(z + ε)2

and p′′(z) is bounded because |p′′ε (z)| ≤ 1/ε2. Function pε(z) is (1) concave because

p′′ε (z) can assume only negative values, (2) nondecreasing for increasing values of z

(see Fig. 1.2), and (3) bounded from below by ln(ε) because pε(z) ≥ ln(ε) for all

z ∈ R+
0 . Furthermore, ln(ε) ≥ 0 for ε ≥ 1.

Yet another example of an SPF member of P is given in (1.6). Function pε(z)

given by

pε(z) =





εz, z ≤ ε

− [z2 − 2αεz + ε2] / [2(α− 1)] , ε < z ≤ αε

(α + 1)ε2/2, z > αε

is a second-order continuously differentiable function with a second-order derivative

given by

p′′ε (z) =




−1/(α− 1), ε < z < αε

0, otherwise

and p′′ε (z) is bounded because |p′′ε (z)| ≤ 1/(α − 1). Function pε(z) is (1) concave

because p′′(z) can assume only nonpositive values, (2) nondecreasing for increasing

values of z (see Fig. 1.3), and (3) bounded from below by 0 because pε(z) ≥ 0 for all

z ∈ R+
0 .

On the other hand, an example of an SPF member of N that is not included in

P is given by

pε(|xi|) = |xi|p (3.1)

where 0 < p < 1. Here function Pε(x) is equivalent to the `pp norm of x. The SPF in

(3.1) is not included in P because the second-order derivative of pε(z) = zp given by

p′′ε (z) = p(p− 1)zp−2

is undefined at z = 0.



62

Reconstruction problems where signal recovery is performed by solving problem

(BPδ) in (1.7) with pε(|xi|) ∈ P are referred to as P-class problems hereafter. In

Sec. 3.2.1, an equivalent formulation of P-class problems facilitating the analysis of

optimality conditions is introduced. In Sec. 3.2.2, optimality conditions on P-class

problems are presented and minimizers are identified.

3.2.1 Smooth reformulation

A P-class problem is a nonsmooth optimization problem because pε(|xi|) ∈ P is a

nonsmooth function of xi. Nonsmoothness can be circumvented by applying a variable

transformation to the argument of the absolute value function as specified in p. 148

of [44]. Let In and Jn denote sets of n integers and Ĩ2n denote a set of 2n integers

given by

In = {1, . . . , n} , Jn = {n+ 1, . . . , 2n} , and Ĩ2n = In ∪ Jn (3.2)

The variable transformation is accomplished by introducing variables ui = max(xi, 0)

and vi = max(−xi, 0), and by letting xi = ui − vi and |xi| = ui + vi in (1.7). Thus,

P-class problems can be expressed in the following equivalent smooth formulation

minimize
u,v

Pε(u,v)

subject to: ‖A(u− v)− b‖2 ≤ δ

ui ≥ 0, vi ≥ 0, i ∈ In

(3.3)

where

Pε(u,v) =
∑

i∈In
pε(ui + vi) (3.4)

Introducing optimization variable x̃ ∈ R2n given by

x̃ =

[
u

v

]
(3.5)

we can write function Pε(u,v) in (3.4) as

Pε(x̃) =
∑

i∈In
pε(x̃i + x̃i+n) (3.6)
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The problem in (3.3) can now be rewritten in the compact form

minimize
x̃∈C̃

Pε(x̃) (3.7)

where C̃ is the convex feasible set given by

C̃ = K̃ ∩ M̃ (3.8)

Set K̃ in (3.8) is the closed ball in R2n under an affine mapping given by

K̃ =
{
x̃ ∈ R2n : ||Ãx̃− b||2 ≤ δ

}
(3.9)

where Ã =
[
A −A

]
, and set M̃ in (3.8) is of the form

M̃ =
{
x̃ ∈ R2n : x̃ ≥ 0

}
(3.10)

In conclusion, nonsmooth P-class problems can be expressed as smooth problems

with the formulation in (3.7). This formulation entails doubling the dimension of

the optimization variable, i.e., from x ∈ Rn to x̃ ∈ R2n. The increase in problem

dimension is of no concern as the reformulation is used for analysis purposes only.

3.2.2 Optimality conditions

Consider the closely related optimization problem

minimize
x̃∈D̃

Pε(x̃) (3.11)

where Pε(x̃) is given by (3.6) and D̃ is the convex feasible set defined by

D̃ = H̃ ∩ M̃ (3.12)

Set H̃ in (3.12) is the solution set of a linear system of equations of the form

H̃ =
{
x̃ ∈ R2n : Ãx̃ = c

}
(3.13)
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where vector c denotes an arbitrary column vector of length m. Set M̃ in (3.12) and

matrix Ã in (3.13) are identical to those defined for the problem in (3.7).

A point x̃∗ is a stationary point of the problem in (3.11) if it satisfies the Karush-

Kuhn-Tucker (KKT) conditions

∇Pε(x̃∗) + ÃTλ∗ + µ∗ = 0 (3.14a)

Ãx̃∗ = c (3.14b)

x̃∗ ≥ 0 (3.14c)

µ∗ ≥ 0 (3.14d)

x̃i∗µi∗ = 0 for i ∈ Ĩ2n (3.14e)

where column vectors λ∗ and µ∗ of length m denote the optimal Lagrange multipliers

(see Section 7.2 of [14]).

We identify three types of stationary points of the problem in (3.11) that are of

interest for our analysis, namely, global and local minimizers and saddle points. A

global minimizer of the problem in (3.11) is a stationary point where function Pε(x̃)

attains its minimum value over feasible set D̃, as stated in the following definition.

Definition 3.2. Stationary point x̃∗ is a global minimizer of the problem in (3.11) if

Pε(x̃) ≥ Pε(x̃∗) for all x̃ ∈ D̃.

A local minimizer of the problem in (3.11) is a stationary point where function Pε(x̃)

attains its minimum value within a given neighborhood. In other words, by consid-

ering a ball of radius α > 0 centered at point x̃∗, or equivalently an α-neighborhood

around x̃∗ given by

B(x̃∗, α) = {x̃ : ‖x̃− x̃∗‖2 ≤ α} (3.15)

we define the local minimizer as follows.

Definition 3.3. Stationary point x̃∗ is a local minimizer of the problem in (3.11) if

there exists an α > 0 such that Pε(x̃) ≥ Pε(x̃∗) for any x̃ ∈ B(x̃∗, α) ∩ D̃.

On the other hand, a saddle point of the problem in (3.11) is a stationary point in

which Pε(x̃∗) is neither a minimum nor a maximum within the neighborhood given

by (3.15).

It is well known that the KKT conditions are sufficient for optimality in convex

minimization problems (see Proposition 2.1.2 of [14]). For instance, if we suppose
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that function Pε(x̃) is convex, then a stationary point x̃∗ satisfying the conditions in

(3.14) must be a global minimizer of the problem in (3.11). Unfortunately, such a

convexity assumption is not valid for the problem at hand because function Pε(x̃) is

based on an SPF of class P and is, therefore, concave. The problem of minimizing

a concave function over a convex set, as defined in (3.11), is equivalent to the prob-

lem of maximizing a convex function over a convex set [59], i.e., maximization and

minimization problems are related by

max
x̃∈D̃

P̄ε(x̃) = −min
x̃∈D̃

[Pε(x̃)]

where P̄ε(x̃) = −Pε(x̃), and thus P̄ε(x̃) is convex. A well known result pertaining to

the optimality of convex maximization problems shows that the KKT conditions are

only necessary for optimality (see Theorem 32.4 of [95]). Thus, a stationary point

x̃∗ satisfying the conditions in (3.14) may not be a global minimizer of the problem

in (3.11), e.g., it may be a local minimizer or a saddle point. We can identify a

stationary point of the problem in (3.11) as a global minimizer, local minimizer, or

saddle point by looking at the number of nonzero coordinates of such a point.

Let S̃ denote the set of all stationary points of the problem in (3.11), and let

S̃r denote the subset of all points in S̃ that have precisely r nonzero coordinates.

Furthermore, let x̃r∗ represent a member of S̃r. First, we identify x̃r∗ as a global

minimizer by using the concept of extreme point of a convex set. The feasible set

in (3.12) can be written as D̃ =
{
x̃ ∈ R2n : Ãx̃ = c, x̃ ≥ 0

}
which shows that it

assumes the form of a polytope, i.e., a convex and connected set with flat, polygonal

faces (see p. 356 of [85]). Several properties of the members of this polytope can be

deduced for the case where matrix Ã is of full row rank. We have a result pertaining

to the rank of sensing matrix A and, consequently, to the rank of Ã, as described in

the following proposition.

Proposition 3.1 (Full Row-Rank Sensing Matrix). Sensing matrix A is of full row

rank, i.e., rank(A) = m.

Proof. Consider the case of Gaussian ensembles and let W̄ = ĀT Ā with Ā = AT .

Since m ≤ n, from Theorem 3.1.4 of [79] we obtain

W̄ � 0 and rank
(
W̄
)

= m (3.16)
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with probability 1. By using the properties of the rank of a matrix [58], we get

rank
(
W̄
)

=rank
(
ĀT Ā

)
=rank

(
Ā
)

=rank
(
ĀT
)

(3.17)

and since ĀT = A, from (3.17), we must have

rank
(
ĀT
)

= rank (A) (3.18)

Hence, combining (3.16) to (3.18), we obtain rank (A) = m with probability 1.

For the case of orthogonal ensembles, (1) the rows of A are orthogonal and,

therefore, linearly independent, and (2) dimensions of A are such that m ≤ n. Thus,

rank (A) = m.

For a polytope defined by a full row-rank matrix, such as that in (3.12), members

with r nonzero coordinates are extreme points of the polytope when r ≤ m (see Sec.

13.2 of [85]). Furthermore, the global minimum of a concave function relative to a

convex set occurs at some extreme point of the set (see p. 342 of [95]). Based on

these results, a global minimizer of the problem in (3.11) is identified in the following

lemma.

Lemma 3.1 (Global Minimizer of Problem in (3.11)). A global minimizer of the

problem in (3.11) is a member of set S̃r when r ≤ m.

Proof. We note that (1) stationary point x̃r∗ must be a member of polytope D̃ on the

basis of the KKT conditions in (3.14b) and (3.14c), and (2) polytope D̃ is defined

by a full-row rank matrix on the basis of Proposition 3.1. Therefore, members of S̃r
with r ≤ m are extreme points (or vertices) of the polytope while members of S̃r with

r > n are not (see Theorem 13.3 of [85]). Thus, a stationary point x̃r∗ with r ≤ m is

an extreme point of polytope D̃. Furthermore, the global minimum of Pε(x̃) relative

to D̃ is attained at an extreme point of D̃ (see Corollary 32.3.1 of [95]).

In summary, (1) x̃r∗ with r ≤ m is an extreme point of D̃, (2) a global minimizer

of the problem in (3.11) is an extreme point of D̃, and (3) x̃r∗ satisfies the KKT

conditions which are necessary for the optimality of the problem in (3.11). Therefore,

a global minimizer of the problem in (3.11) is a member of S̃r when r ≤ m.

We note that a global minimizer is also a local minimizer but the converse is

not necessarily true, see Definitions 3.2 and 3.3. As stated in Lemma 3.1, a global
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minimizer is a member of S̃r when r ≤ m. In fact, every member of S̃r with r ≤ m

is a local minimizer as described in the following lemma.

Lemma 3.2 (Local Minimizers of Problem in (3.11)). The points in set S̃r with

r ≤ m are local minimizers of the problem in (3.11).

Proof. A point x̃r∗ ∈ S̃r with r ≤ m is an extreme point of polytope D̃ and; without

loss of generality, let the r nonzero-valued coordinates of x̃r∗ be x̃1, x̃2, . . . , x̃r and

the (2n− r) zero-valued coordinates x̃r+1, x̃r+2, . . . , x̃2n. For a feasible point x̃ ∈ D̃,

let

F̃ =
{
d̃ ∈ R2n : x̃+ αd̃ ∈ D̃

}
∀α ∈ (0, α′), α′ > 0

denote the cone of the feasible directions of D̃ where each vector d̃ ∈ F̃ is a feasible

direction (see Definition 4.2.1 of [7]). An edge of polytope D̃ is a line segment which

connects adjacent extreme points. Members of cone F̃ that increase one of the r zero-

valued coordinates of an extreme point while keeping all the remaining (2n− r − 1)

fixed at zero are edge directions from that extreme point to an adjacent extreme point

(see pp. 8 and 14 of [50]). Now consider the edge direction

d̃r+1 =
[
d1 d2 · · · dr+1 0 · · · 0

]T
with ||d̃r+1||2 = 1

Since d̃r+1 ∈ F̃ , there exists an appropriate and fixed αm+1 > 0 such that x̃r∗+αd̃r+1

is feasible for any α ∈ (0, αm+1), which implies that dr+1 > 0. Furthermore, d̃ 6= 0 is

a member of cone F̃ if and only if Ãd̃ = 0 and d̃ ≥ 0 (see Definition 2.13 of [50]),

which implies that d1, d2, . . . , dr ≥ 0. Thus, we obtain

Pε(x̃
r
∗ + αd̃r+1)− Pε(x̃r∗) =

r∑

i=1

[
pε(x̃i + αd̃r+1

i )− pε(x̃i)
]

+ pε(αd̃
r+1) ≥ 0

because (1) pε(x̃i + αd̃r+1
i ) − pε(x̃i) ≥ 0 for i = 1, 2, . . . , r (see Property 4 of

Definition 3.1) and (2) pε(αd̃
r+1) ≥ 0 for ε ≥ ε′ (see Property 5 of Definition 3.1).

Using an approach similar to that in the proof of Theorem 3 of [47], we note

that there are at most (2n − r) edge directions of cone F̃ denoted as d̃j with j ∈
{r + 1, r + 2, . . . , 2n}. From the above analysis, we conclude that there exists a

fixed α′ > 0 such that Pε(x̃
r
∗ + αd̃j) ≥ Pε(x̃

r
∗) for all j ∈ {r + 1, r + 2, . . . , 2n} and
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for all α ∈ (0, α′]. Now consider the set of feasible points Ẽ given by

Ẽ =
{
x̃r∗, x̃

r
∗ + α′d̃r+1, x̃r∗ + α′d̃r+2, . . . , x̃r∗ + α′d̃2n

}

The convex hull of set Ẽ , denoted by H(Ẽ), is the collection of all convex combinations

of Ẽ , i.e., x̃ ∈ H(Ẽ) if and only if x̃ can be expressed as

x̃ = υrx̃
r
∗ +

2n∑

j=r+1

υj

(
x̃r∗ + αd̃j

)

where
∑2n

j=r υj = 1 and υj ≥ 0 for j = r, . . . , 2n (see Definition 2.1.3 of [7]). Thus,

for any x̃ ∈ H(Ẽ) and x̃ 6= x̃r∗, we must have Pε(x̃) ≥ Pε(x̃
r
∗). Furthermore, one can

always chose a sufficiently small but fixed α > 0 such that

[
B(x̃r∗, α) ∩ D̃

]
⊂ H(Ẽ)

Therefore, from Definition 3.3, x̃r∗ is a local minimizer and we conclude that the points

in S̃r with r ≤ m are local minimizers of the problem in (3.11)

We have identified local and global minimizers of the problem in (3.11) in terms

of members of S̃r with r ≤ m. It remains to address the case where r > m. As stated

in the following lemma, members of S̃r with r > m are saddle points.

Lemma 3.3 (Saddle Points of Problem in (3.11)). The points in set S̃r with m <

r < 2n are saddle points of the problem in (3.11).

Proof. Let Ãr denote the m × r matrix formed by collecting the corresponding r

column vectors of Ã. Using a similar approach to that in Appendix A of [93], consider

a point x̃r = x̃r∗ + αd̃ε where α > 0 and let d̃ε with ||d̃ε||2 = 1 denote a direction

vector given by

d̃ε = d̃+ ε
[
0 · · · 0 1 0 · · · 0

]T
(3.19)

where d̃ ∈ Nul
(
Ãr
)

is a direction in the null space of Ãr. Suppose for now that ε = 0.

Since matrix Ã is of full row-rank on the basis of Proposition 3.1, dim
[
Nul

(
Ãr
)]

=

r −m [101], which implies that vector d̃ is well defined for r > m since a nontrivial

null space exists for Ãr. Hence, the Taylor series expansion of Pε(x̃
r) about the point
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x̃r∗ is given by

Pε(x̃
r)=Pε(x̃

r
∗) + α[∇Pε(x̃

r
∗)]

T d̃ε +
α2

2
d̃Tε∇2Pε(x̃

r
∗)d̃ε +O(α3) (3.20)

The KKT condition in (3.14a) states that the result of the sum of gradient vector

∇Pε(x̃∗) and Lagrange multiplier vector µ∗ is in the column space of matrix ÃT , i.e.,

[∇Pε(x̃∗) + µ∗] ∈ Col(ÃT ) (3.21)

where Col(ÃT ) denotes the column space of ÃT . From (3.14e), we conclude that the

entries of Lagrange multiplier vector µr∗ in (3.21) must be zero when corresponding

entries of x̃r∗ are nonzero. Therefore, (3.21) can be simplified to

∇Pε(x̃
r
∗) ∈ Col(ÃrT )

and since subspaces Col(ÃrT ) and Nul(Ãr) are orthogonal, the inner product of a

vector in the row space of Ãr with a vector in the null space of Ãr is zero [101]. Thus,

the first term of the Taylor series expansion is zero and (3.20) can be simplified to

Pε(x̃
r) = Pε(x̃

r
∗) +

α2

2
d̃Tε∇2Pε(x̃

r
∗)d̃ε +O(α3)

The second-term in the above Taylor series expansion is nonpositive as pε(x̃i + x̃i+n)

is a concave function from Property 3 in Definition 3.1. Therefore, Pε(x̃
r
∗) ≥ Pε(x̃

r).

Consider now the Taylor series expansion of Pε(x̃
r) in the case where ε 6= 0 in

(3.19), i.e., vector d̃ε is given by direction d̃ plus an arbitrary small perturbation

ε > 0 in its kth entry. Under these circumstances, the Taylor series expansion is

given by

Pε(x̃
r) = Pε(x̃

r
∗) + α[∇Pε(x̃

r
∗)]

T d̃ε +O(α2)

By using the orthogonality of Col(ÃrT ) and Nul(Ãr), we have

Pε(x̃
r) = Pε(x̃

r
∗) + αεp′ε(x̃k + x̃k±n) +O(α2)

and since pε(x̃k + x̃k±n) is nondecreasing and concave, p′ε(x̃k + x̃k±n) is nonincreas-

ing and nonnegative. This implies that the second term in the Taylor expansion is

nonnegative. Therefore, Pε(x̃
r
∗) ≤ Pε(x̃

r).

For the neighborhood B(x̃r∗, α) ∩ D̃, one can choose sufficiently small but fixed
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values of α and ε such that x̃r belongs to B(x̃r∗, α)∩D̃. Furthermore, from the above

analysis we conclude that Pε(x̃
r
∗) is neither a maximum nor a minimum because there

exist values assumed by x̃r in the neighborhood that yield Pε(x̃
r
∗) ≤ Pε(x̃

r) and

Pε(x̃
r
∗) ≥ Pε(x̃

r). Thus, x̃r∗ must be a saddle point. Therefore, points in S̃r with

m < r < 2n are saddle points of the problem in (3.11).

In Lemmas 3.1 to 3.3, we have identified the stationary points of the problem in

(3.11) as global and local minimizers and saddle points by looking at the number of

nonzero coordinates of such points. Because the problem in (3.11) is closely related

to a P-class problem, we are able to relate their minimizers and, therefore, obtain

results for our proposed class of recovery problems. This is done in terms of the

following theorem.

Theorem 3.1 (Minimizers of P-Class Problems). For a P-class problem:

1. The stationary points with at most m nonzero coordinates are local minimizers;

2. A global minimizer is a stationary point with at most m nonzero coordinates;

Proof. Let x̃r∗ denote a stationary point of a P-class problem such as that in (3.7)

that has r nonzero coordinates. Using a similar approach to that in Theorem 1 of [92],

we can define a column vector e∗ of length m given by

Ãx̃r∗ − b = e∗ or Ãx̃r∗ = e∗ + b (3.22)

If x̃r∗ is a stationary point of the problem in (3.7), then it also is a stationary point

of the problem in (3.11) when column vector c as specified in (3.13) is given by

c = e∗ + b. From Lemma 3.1, function Pε(x̃) attains its minimum value when x̃ is a

stationary point with at most m nonzero coordinates. Thus, a global minimizer of the

problem in (3.7) is a stationary point x̃r∗ with r ≤ m. From Lemma 3.2, Pε(x̃
r
∗) with

r ≤ m is a local minimum of function Pε(x̃). Thus, x̃r∗ must be a local minimizer

of the problem in (3.7) when r ≤ m. Furthermore, from Lemma 3.3, Pε(x̃
r
∗) with

m < r < 2n is neither a maximum nor a minimum of function Pε(x̃). Thus, x̃r∗ must

be a saddle point of the problem in (3.7) when m < r < 2n.

From the above analysis, we conclude that for the problem in (3.7) (1) stationary

points with at most m nonzero coordinates are local minimizers and (2) a global

minimizer is a stationary point with at most m nonzero coordinates, which completes

the proof.
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3.3 PLA Based Family of BP Methods

A family of SCF methods for the solution of P-class problems will now be described.

Consider a P-class problem such as problem (BPδ) in (1.7) with pε(|xi|) ∈ P . It can

be shown that Pε(x) is a nonconvex function because the Hessian matrix of Pε(x)

is diagonal with entries that assume both positive and negative values. To render

minimization of Pε(x) tractable, we employ the approximation

P̂ε,x(k)(x) =
n∑

i=1

p̂
ε,x

(k)
i

(xi) (3.23)

where convex function p̂
ε,x

(k)
i

(xi) denotes an approximation of a P-class function at

xi = |x(k)
i |. As in Chapter 2, we will deduce an approximating function that possess

the monotonic decreasing property (MDP) stated in Definition 2.1.

Using a similar approach to that in Sec. 2.2.2, we employ the first-order Taylor

series approximation of a P-class function at xi = |x(k)
i | and xi = −|x(k)

i |

p̂ pl
ε,x

(k)
i

(xi) = pε(|x(k)
i |) +

(
|xi| − |x(k)

i |
)
p′ε(|x(k)

i |) (3.24)

The convex function p̂ pl
ε,x

(k)
i

(xi) in (3.24) defines a PLA of pε(|x(k)
i |) at xi = |x(k)

i |. In

addition, such an approximating function is a nonsmooth function of xi. Applicability

of the PLA to the solution of P-class problems is an immediate consequence of results

proved in Sec. 2.2.2.

Corollary 3.1 (Monotonic Decreasing Piecewise-Linear Approximation). The convex

approximating function p̂ pl
ε,x

(k)
i

(xi) in (3.24) has the MDP at xi = |x(k)
i |.

Proof. As in the proof of Proposition 2.2, we note that pε(|xi|) ∈ P is a concave func-

tion for xi ∈ (0,∞) (see Property 3 in Definition 3.1) and, therefore, the conditions

in 2.8a and (2.34) hold true. Thus, p̂ pl
ε,x

(k)
i

(xi) has the MDP at xi = |x(k)
i |.

Corollary 3.2 (Best Convex Approximation). Let A denote the class of all convex

approximating functions with the MDP at xi = |x(k)
i |, and let p̂

ε,x
(k)
i

(xi) ∈ A denote a

convex approximating function in class A. The condition

p̂
ε,x

(k)
i

(xi) ≥ p̂ pl
ε,x

(k)
i

(xi) ≥ pε(|xi|), ∀xi ∈ R ∧ xi 6= x
(k)
i (3.25)

holds true for the PLA of a P-class function .
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Proof. As in the proof of Proposition 2.3, it suffices to show that the condition in

(2.37) holds true. The conditions in (2.38) and (2.39) hold true for function p̂
ε,x

(k)
i

(xi)

and, therefore, (2.41) is applicable to the cases where xi ∈ (0,∞) and xi ∈ (−∞, 0).

Thus, the condition in (2.37) holds true, which completes the proof.

The results presented in Corollaries 3.1 and 3.2 show that (1) the PLA is applicable

to SCF methods which can be used for the solution of P-class problems, and (2) the

PLA is the best convex approximation of a P-class function as it provides the least

upper bound on such function.

We are now in a position to describe the proposed family of solution methods.

Using the notation of Sec. 1.2.3, a P-class problem such as problem (BPδ) in (1.7)

with pε(|xi|) ∈ P entails minimizing nonconvex function F (x) = Pε(x) over convex

set X = K, where K is the closed ball in Rn under an affine mapping given by

K = {x ∈ Rn : ‖Ax− b‖2 ≤ δ}

We can find a solution of a P-class problem by letting x(0) ∈ K and then applying

the update formula in (1.22) with F̂x(k)(x) = P̂ε,x(k)(x) where P̂ε,x(k)(x) is based on

the PLA in (3.24). Hence, the update formula in (1.22) can be written as

x(k+1) = arg minimize
x∈K

P̂ε,x(k)(x) (3.26)

where

P̂ε,x(k)(x) =
n∑

i=1

p̂ pl
ε,x

(k)
i

(xi)

=
n∑

i=1

[
pε(|x(k)

i |) +
(
|xi| − |x(k)

i |
)
p′ε(|x(k)

i |)
]

A signal recovery method in which a solution of a P-class problem is obtained by

computing the update formula in (3.26) will hereafter be called a P-class method.

Specifically, if we let pε(|xi|) assume the form in (1.4), (1.5), or (1.6), then the P-class

method will be denoted as the P-CM`pp , P-CMln, or P-CMSCAD, respectively.
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3.3.1 Proposed FOS

Below we reformulate the convex subproblems in (3.26) such that the update formula

can be efficiently computed.

In the minimization of P̂ε,x(k) , terms that do not involve x are constant and can

be dropped as they do not change the solution. Therefore, each subproblem in (3.26)

can be written as

minimize
x∈K

P̂ε,x(k)(x) (3.27)

where

P̂ε,x(k)(x) =
∑

i∈In
p′ε(|x(k)

i |)|xi|

From Properties 3 and 4 in Definition 3.1, P-class functions are nondecreasing and

concave. Therefore, p′ε(|xi|) is nonincreasing and nonnegative and

p′ε(|x(k)
i |) |xi| = |p′ε(|x(k)

i |)xi|

Thus, function P̂ε,x(k)(x) can be written as the weighted `1-norm of vector x

P̂ε,x(k)(x) =
∥∥W (k)x

∥∥
1

(3.28)

where W (k) = diag(w
(k)
1 , w

(k)
2 , . . . , w

(k)
n ) is a diagonal weight matrix and w

(k)
i =

p′ε(|x(k)
i |) denotes a nonnegative weight.

Because the problem in (3.27) is equivalent to a weighted `1-norm minimization

problem, we can employ recent state-of-the-art FOSs such as NESTA [9] for its solu-

tion. In other words, the nonsmooth function P̂ε,x(k)(x) in (3.28) has the conjugate

(or dual) representation specified in (1.31) and, therefore, it can be approximated by

(1.32). Furthermore, there exists an analytical solution for the maximization problem

defined by such an approximation (see Sec. 4.3 of [61]) and we can, therefore, obtain

an approximation of the function in (3.28) given by

P̂µ,ε,x(k)(x) = maximize
u∈Q

(
〈u,Wx〉 − µ

2
||u||22

)
=

n∑

i=1

hµ(w
(k)
i xi) (3.29)

where µ > 0 is a smoothness parameter and hµ(x) denotes the Huber penalty function
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given by [61]

hµ(x) =




x2/2µ, |x| ≤ µ

|x| − µ/2, |x| > µ

As a result of (3.29), the smooth convex optimization problem given by

minimize
x∈K

P̂µ,ε,x(k)(x) (3.30)

can be used to find a solution of the nonsmooth problem in (3.27) when µ is appropri-

ately chosen. In addition, the function in (3.29) is Lipschitz continuous and, therefore,

the problem in (3.30) can be solved efficiently by using an optimal first-order method

with convergence rate given by (1.21) (see Secs. 2.2 and 6.1 of [9] for details). The

proposed solver uses matrices A and AT in matrix-vector operations and, therefore,

can handle large-scale weighted `1-norm minimization problems because (1) there is

no need for storage of such matrices, and (2) matrix-vector operations can be carried

out with fast algorithms in the case of orthogonal ensembles.

In summary, the proposed FOS can be used to find the solution of nonsmooth

convex problems such as the one in (3.27). Thus, the update formula in (3.26) can

be efficiently computed. Furthermore, if sequence
{
x(k)

}
k∈N in (3.26) converges to

a solution, large-scale P-class problems can be solved. A convergence analysis is

presented in the following subsection.

3.3.2 Convergence analysis

From Corollary 3.1, the function in (3.24) has the MDP at xi = |x(k)
i | and, therefore,

the conditions
n∑

i=1

p̂ pl
ε,x

(k)
i

(xi) ≥
n∑

i=1

pε(|xi|), ∀xi ∈ R (3.31)

and
n∑

i=1

p̂ pl
ε,x

(k)
i

(x
(k)
i ) =

n∑

i=1

pε(|x(k)
i |) (3.32)

hold true (see Definition 2.1). Combining (1.2), (3.23), (3.31), and (3.32), we obtain

P̂ε,x(k)(x) ≥ Pε(x), ∀x ∈ Rn ∧ x 6= x(k) (3.33)
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and

P̂ε,x(k)(x(k)) = Pε(x
(k)) (3.34)

As a result of (3.33) and (3.34), the inequalities

Pε(x
(k+1)) ≤ P̂ε,x(k)(x(k+1)) < P̂ε,x(k)(x(k)) ≤ Pε(x

(k)) (3.35)

can be shown to hold true by applying the update formula in (3.26) and sequence{
Pε(x

(k))
}
k∈N is deemed a monotonically decreasing sequence. In addition, from

Property 5 in Definition 3.1, function Pε(x) is bounded from below by a real number

proportional toA and, as a result,
{
Pε(x

(k))
}
k∈N is bounded. Therefore,

{
Pε(x

(k))
}
k∈N

converges because every bounded monotonic decreasing sequence converges (see mono-

tonic sequence theorem, p. 710 of [100]).

Let U denote an infinite set of nonnegative integers in their natural order, and let{
x(k)

}
k∈U denote a subsequence of

{
x(k)

}
k∈N in (3.26). For instance, if we let

U = {1, 3, 7, 10, 13, . . .}

then {
x(k)

}
k∈U =

{
x(1), x(3), x(7), x(10), x(13), . . .

}

(see Sec. 4.2 of [115]). Limit points of convergent subsequences
{
x(k)

}
k∈U can be

shown to satisfy the optimality conditions presented in Sec. 3.2.2 by relating the

proposed family of solution methods to the class of majorization-minimization (MM)

methods.

In an MM method, the solution of an optimization problem is obtained by solving

several related subproblems in sequence and, therefore, such an approach entails an

update formula similar to that in (1.22) (see [62, 70, 71] for details). In the context

of MM methods, function F̂x(k)(x) in (1.22) is a called a majorizing function. It can

easily be shown that SCF and MM methods are closely related because a convex

approximation function with the MDP property, as stated in Definition 2.1, is a ma-

jorizing function. The converse, however, is not true. Thus, SCF methods based on

convex approximation functions with the MDP property belong to the class of MM

methods. The numerical stability of MM methods is confirmed by strong theoretical

results presented by Jacobson et al. in [64]. These results include convergence con-

ditions based on upper curvature bounds that are often more easily verifiable than

previously proposed convergence conditions.
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By using the convergence conditions (R1), (R2), (R3), and (C6) of [64] in con-

junction with the optimality conditions presented in Sec. 3.2.2, we can now show that

limit points of convergent subsequences
{
x(k)

}
k∈U are solutions of a P-class problem.

This convergence result is presented in terms of the following theorem.

Theorem 3.2 (Convergence to a Minimizer). The limit point of any convergent sub-

sequence
{
x(k)

}
k∈U is a local minimizer of a P-class problem such as problem (BPδ)

in (1.7) with pε(|xi|) ∈ P. In addition, such a local minimizer is a point with at most

m nonzero coordinates.

Proof. Consider the equivalent smooth formulation of problem (BPδ) in (1.7) with

pε(|xi|) ∈ P as given in (3.7). By using the variable transformation in (3.5), it can

easily be shown that the update formula in (3.26) can be written in terms of the

equivalent update formula

x̃(k+1) = arg minimize
x̃∈K̃

P̂ε,x̃(k)(x̃) (3.36)

where

P̂ε,x̃(k)(x̃)=
n∑

i=1

{
pε(x̃

(k)
i +x̃

(k)
i+n)+

[
x̃i+x̃i+n−(x̃

(k)
i +x̃

(k)
i+n)

]
p′ε(x̃

(k)
i +x̃

(k)
i+n)

}
(3.37)

(see Sec. 3.2.1 for details). Let
{
x̃(k)

}
k∈U denote a subsequence of

{
x̃(k)

}
k∈N in (3.36).

The convergence of
{
x̃(k)

}
k∈U to a stationary point x̃∗ of the problem in (3.7) can be

established as follows. First, we note that set K̃ in (3.9) defines a closed convex set.

Set M̃ in (3.10) can be written as the intersection of 2n sets of the form

M̃ =
⋂

k∈Ĩ2n

M̃k

where M̃k =
{
x̃ ∈ R2n : cTk x̃ ≤ 0

}
is a half-space (see Sec. 2.2.1 of [16]) and ck is a

2n-length column vector with entries ck,i given by

ck,i =




−1, i = k

0, otherwise

Since a half-space defines a closed and convex set [16] and the intersection of closed

sets defines a closed set, set M̃ in (3.10) is a closed convex set. Thus, the feasible
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set C̃ in (3.8) is closed. Second, we note that for the majorizing function defined by

(3.37), the relation P̂ε,x̃(x̃) = Pε(x̃) holds true. This implies that the gradient of

the majorizing function is equal to the gradient of the objective function, namely,

∇P̂ε,x̃(x̃) = ∇Pε(x̃). Third, we note that the Hessian matrix of P̂ε,x̃(x̃) is defined by

a block matrix given by

∇2P̂ε,x̃(x̃) = H =

[
diag(h) diag(h)

diag(h) diag(h)

]

where h ∈ Rn with hi = p′′ε (x̃i + x̃i+n) for i ∈ In. Thus, we obtain a closed-form

expression for the Frobenius norm of matrix H given by

||H||F =

√
4
∑

i∈In
|p′′ε (x̃i + x̃i+n)|2

From Property 2 in Definition 3.1, we have |p′′ε (x̃i + x̃i+n)| ≤ ρ for i ∈ In where

ρ ∈ R+
0 . Therefore, we obtain

‖H‖F ≤
√

4
∑

i∈In
ρ2 (3.38)

The relation in (3.38) implies that the Hessian matrix of function P̂ε,x̃(x̃) is uniformly

bounded (see assumption AM.4, p. 122 of [34]).

In summary, (1) the feasible set C̃ of the problem in (3.7) is closed, (2) the gradient

of the majorizing function P̂ε,x̃(x̃) in (3.37) is equal to the gradient of the objective

function Pε(x̃) of the problem in (3.7), and (3) the curvature of each majorizing

function P̂ε,x̃(x̃) in (3.37) is uniformly upper bounded, which is equivalent to saying

that the Frobenius norm of the Hessian matrix of function P̂ε,x̃(x̃) has a bound such

as that in (3.38). Such curvature bounds of P̂ε,x̃(x̃) hold true because condition (C6)

of [64] is equivalent to assumption AM.4 of [34], see discussion on the relation between

MM and trust-region methods at beginning of Sec. IV of [64]. Therefore, conditions

(R1), (R2), (R3), and (C6) of [64] for the convergence of an MM method applied

to smooth and constrained nonconvex optimization problems also hold true for the

proposed family of methods applied to smooth P-class problems. From Theorem 4.1

of [64], the limit point of any convergent subsequence
{
x̃(k)

}
k∈U is a stationary point

x̃∗ of the problem in (3.7).
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If x̃r∗ is a stationary point of the problem in (3.7), then it is also a stationary point

of the problem in (3.11) when c = e∗ + b where e∗ is given by (3.22). Consider the

case where x̃r∗ is a saddle point, i.e., when m < r < 2n on the basis of Lemma 3.3.

Stationary point x̃r∗ must satisfy the KKT conditions in (3.14) and it must belong to

the solution set H̃ in (3.13). Furthermore, because x̃r∗ is a solution of the linear system

of equations, it can be expressed as x̃r∗ = x̃p+x̃Nul(Ã) where x̃p is a particular solution

in H̃ and x̃Nul(Ã) is in the null space of matrix Ã [101]. Geometrically, set H̃ can be

viewed as a linear variety, i.e., the set defined by the translation of a subspace [73],

since each element of the linear variety H̃ defines a translation of the null space

of Ã by the particular solution x̃p. Now, by using a similar argument to that in

Appendix A of [93], we note that it is simultaneously required from (3.14) that the

saddle point x̃r∗ lie in a linear variety of dimension (r −m) = dim[Nul(Ãr)] and also

that the gradient vector ∇Pε(x̃
r
∗) lie in Col(ÃrT ) which is a subspace of dimension

m. It so happens that generic members of the solution set of a linear system of

equations defined by a full row-rank matrix, such as H̃ in (3.13), do not satisfy these

conditions [93]. Furthermore, the probability of a subsequence of feasible points of

this solution set, such as
{
x̃(k)

}
k∈U , converging to x̃r∗ is zero when m < r < 2n (see

proof of Corollary 3 in [51]).

It should be mentioned that even if convergence to a saddle point were theoretically

possible, in practice the subsequence
{
x̃(k)

}
k∈U would be highly unlikely to converge

to the exact value of a saddle point, x̃∗, due to roundoff errors and, consequently, if

a point in the neighborhood of a saddle point were to be reached, a descent direction

would exist which would cause any descent algorithm to locate another stationary

point. In practice, a descent algorithm will stop only when a local minimum is

located whether the problem has a saddle point or not.

Based on the above arguments, the limit of any convergent subsequence
{
x̃(k)

}
k∈U

is a stationary point x̃r∗ with r ≤ m. From Theorem 3.1, such a stationary point is a

local minimizer of the problem in (3.7) with at most m nonzero coordinates. Further-

more, because of the equivalence between the update formulas in (3.26) and (3.36),

we conclude that the same convergence result also holds true for a P-class problem

such as problem (BPδ) in (1.7) with pε(|xi|) ∈ P , which completes the proof.
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3.4 Simulation Results

We now present simulation results to evaluate the proposed and corresponding com-

peting methods in terms of their capability of recovering signals in a wide range of

test problems. The signal-recovery methods were evaluated following the experimen-

tal protocol discussed in Sec. 1.3. The average `∞ reconstruction error, probability

of perfect recovery (PPR), and minimum required fraction (MRF), m/s, for perfect

recovery were employed as reconstruction performance (RP) metrics. The difference

between the Euclidean distance ||Ax∗ − b||2 and the estimate of the square root of

the measurement noise energy δ was employed as the measurement consistency (MC)

metric. The average CPU time in seconds was employed as the computational cost

(CC) metric. These metrics were estimated by carrying out the recovery process 100

times using Gaussian or orthogonal measurement ensembles.

Each measurement vector b was generated by applying a renormalized Gaussian

or discrete Fourier transform (DFT) matrix to the signal of interest x0. The length of

vector b was assumed to be m = n/8 and the sparsity of x0 was assumed to be in the

range m
100
≤ s ≤ m

2
. The MRF, m/s, for perfect recovery was estimated by finding the

minimum value of s in that range where PPR = 1. In the recovery of noisy signals,

the s nonzero values of x0 were generated as in (1.37) with parameter κ = 1. This

results in signals with a dynamic range (DR) of 20 dB where the absolute values of

its nonzero entries are distributed between 1 and 10. Each measurement vector b was

obtained using a Gaussian vector z with σz = 1 × 10−4 and perfect signal recovery

was declared when ν = 5× 10−2 in (1.36). In the recovery of noiseless signals, the s

nonzero values of x0 were chosen randomly from a zero-mean Gaussian distribution

of unit variance and perfect signal recovery was declared when ν = 1×10−3 in (1.36).

The proposed update formula in (3.26) was applied with the zero vector as initial

point x(0) ∈ K and the stopping criterion

∥∥Pε(x(k+1))− Pε(x(k))
∥∥

2
≤ εc

was used for the computation of x(k+1) where εc = 1 × 10−3. In the proposed FOS,

the approximation in (3.29) was obtained by using µ = 1× 10−6 and µ = 1× 10−4 in

the cases of noiseless and noisy signals, respectively. Computing the update formula

in (3.26) requires the prior selection of several parameters such as the regularization

parameter ε in (1.4) to (1.6), parameter p for the weighted ε-`pp-norm of x in (1.4) and



80

parameter α for the smoothly-clipped absolute deviation (SCAD) function in (1.6).

Empirical evidence suggests that the value of ε should be approximately of the same

order of magnitude as the absolute values of the coordinates of x0 [23,24,26,104,105].

In the case of noiseless signals where nonzero values of x0 were chosen randomly from

a zero-mean Gaussian distribution of unit variance, we used ε = 1. In the case of noisy

signals where nonzero values of x0 were generated as in (1.37) with a resulting DR

of 20 dB, we used ε = 10. Empirical evidence suggests that decreasing the value of p

in (1.4) below 1 down to 0.5 provides continuously improving RP metrics [24,26,37].

We observed the same effect for our method and, for this reason, we used p = 0.5.

Statistical analysis conducted in [42] demonstrates that the use of α = 3.7 in (1.6) is

a near-optimal value for various variable selection problems in statistics. Simulation

results suggest that this result also applies to CS reconstruction problems [104, 105].

Thus, we used α = 3.7.

All experiments were run on a Dell Precision 670 workstation with two 3.2 GHz

dual-core Intel Xeon processors and 4 Gb of RAM using the 64-bit Linux MATLAB

Version 7.13 (R2011b). Software that is publicly available online was used for the

competing methods.1 We used the values suggested in [11, 18, 37, 46] for the several

parameters of the software obtained with the exception of parameters also used in the

proposed P-class methods such as the regularization parameter ε in (1.4) to (1.6), the

value of p in (1.4), and the value of α in (1.6). In effect, the same values of ε, p, and

α were used for the proposed and competing methods for comparison purposes. For

the continuation procedure used in the DC-family of methods, a decreasing sequence

{λ1, . . . , λ5} with λ1 =
∥∥ATb

∥∥
`∞

and λ5 = 1 × 10−4
∥∥ATb

∥∥
`∞

was applied, which

turned out to yield the best results in simulations.

1 The codes for the competing methods were obtained from the respective author’s Web pages:

Regularized least-squares (RLS) methods: Difference-of-two-convex-functions (DC)-family
from A. Rakotomamonjy at http://asi.insa-rouen.fr/enseignants/~arakotom/.

Least absolute shrinkage and selection operator (LASSO) methods: Spectral projected-
gradient `1-norm (SPGL1) from M. P. Friedlander at http://www.cs.ubc.ca/~mpf/spgl1/.

Basis pursuit (BP) methods: `1-Magic from J. Romberg at http://users.ece.gatech.edu/

~justin/l1magic/, and iteratively reweighted least squares (IRWLS) from M. Fornasier at
http://www.ricam.oeaw.ac.at/people/page/fornasier/.

http://asi.insa-rouen.fr/enseignants/~arakotom/
http://www.cs.ubc.ca/~mpf/spgl1/
http://users.ece.gatech.edu/~justin/l1magic/
http://users.ece.gatech.edu/~justin/l1magic/
http://www.ricam.oeaw.ac.at/people/page/fornasier/
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3.4.1 Evaluation of proposed family of BP methods

We first carried out recovery simulations using orthogonal ensembles to evaluate the

relative merits of the proposed P-class methods in the case of noisy signals.

The RP of P-class methods for signals of size n = 65, 536 is compared in Fig. 3.1.

As can be seen, the P-CMln method achieved superior RP relative to that of the P-

CM`pp and P-CMSCAD methods. For instance, the average `∞ reconstruction error of

the P-CMln, P-CM`pp , and P-CMSCAD methods in Fig. 3.1a were 0.0033, 0.5072, and

0.0244, respectively, for s ≤ 2, 542. The MRF for perfect reconstruction in Fig. 3.1b
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Figure 3.1: RP metrics of P-class methods: (a) `∞ recovery error and (b) PPR.

has dropped from 8, 192/2, 132 ≈ 3.8 in the P-CMSCAD and P-CM`pp methods to

8, 192/2, 542 ≈ 3.2 in the P-CMln method.

We compared the average number of points k computed for sequence
{
Pε(x

(k))
}
k∈N

to converge. The results obtained are plotted in Fig. 3.2. As can be seen, convergence

is usually attained very fast since roughly four points are computed, on average, in

simulations where the sparse signal is always perfectly reconstructed. The average

number of points k computed increases for increasing values of s for simulations where

the signal is not always perfectly reconstructed. In such simulations, the P-CMSCAD

method is the fastest. For instance, the average number of points computed by the

P-CMln, P-CM`pp , and P-CMSCAD methods were found to be approximately 99.5, 81.7,

and 70.5, respectively, for s = 3, 157.
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Figure 3.2: Convergence rate of P-class methods.

3.4.2 Comparison of the proposed family of BP methods

with state-of-the-art competing methods

We carried out recovery simulations using Gaussian and orthogonal ensembles to

evaluate the proposed and competing methods for the recovery of noiseless and noisy

signals. The results obtained for noiseless signals of length n = 2, 048 and n = 4, 096

with sparsity s ≤ 45 and s ≤ 96, respectively, are summarized in Table 3.1. As can

be seen, the P-CM`pp method achieved superior RP, reduced CC, and increased MC

relative to those of the `1-Magic and IRWLS methods for the case of noiseless signals

and Gaussian ensembles.

RP CC MC

n e∞ MRF CPU time
median of
||Ax∗−b||2 δ method

2, 048

0.0035 7.7 5.3 1.85× 10−8

0

`1-Magic

0.0470 7.7 6.1 3.8× 10−15 IRWLS

2.7×10−5 5.7 2.0 3.73× 10−15 P-CM`pp

4, 096

0.0089 6.2 24.9 9.69× 10−8

0

`1-Magic

0.0893 7.3 31.7 3.43× 10−14 IRWLS

3.2×10−5 5.3 9.0 7.53× 10−15 P-CM`pp

Table 3.1: Summary of results for noiseless signals and Gaussian ensembles.

The results obtained for noisy signals of length n = 16, 384 and n = 32, 768 with
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sparsity s ≤ 632 and s ≤ 1, 265, respectively, are summarized in Table 3.2. As can be

seen, the P-CMln method achieved superior RP and increased MC relative to those

of the `1-Magic and IRWLS methods for the case of noisy signals and orthogonal

ensembles. The CC of the P-CMln method was slightly increased relative to that of

the SPGL1 method and considerably reduced relative to that of the DCln method.

RP CC MC

n e∞ MRF CPU time
median of
||Ax∗−b||2 δ method

16, 384

1.69 9.1 7.1 46× 10−4

45×10−4

SPGL1

1.53 4.8 195.5 74× 10−4 DCln

0.003 3.2 10.2 45× 10−4 P-CMln

32, 768

1.77 7.4 13.7 5× 10−4

64×10−4

SPGL1

1.53 4.8 318.1 112× 10−4 DCln

0.0032 3.2 19.2 64× 10−4 P-CMln

Table 3.2: Summary of results for noisy signals and orthogonal ensembles.

The results summarized in Tables 3.1 and 3.2 are described in detail in the fol-

lowing subsections.

Results for noiseless signals and Gaussian ensembles

RP and CC of the P-CM`pp method are compared with those of the IRWLS and

`1-Magic methods in Fig. 3.3. As can be seen in Figs. 3.3a to 3.3d, the proposed

method achieved superior RP relative to that of the competing methods for different

signal sizes. For instance, when n = 2, 048 the average `∞ reconstruction error of

the P-CM`pp , IRWLS, and `1-Magic methods in Fig. 3.3a were 2.68 × 10−5, 0.0470,

and 0.0035, respectively, for s ≤ 45 while the MRF for perfect reconstruction in

Fig. 3.3c has dropped from 256/33 ≈ 7.7 in the IRWLS and `1-Magic methods to

256/45 ≈ 5.7 in the P-CM`pp method. On the other hand, when n = 4, 096 the

average `∞ reconstruction error of the P-CM`pp , IRWLS, and `1-Magic methods in

Fig. 3.3b were 3.2× 10−5, 0.0893, 0.0089, respectively, for s ≤ 96 while the MRF for

perfect reconstruction in Fig. 3.3d has dropped from 512/70 ≈ 7.3 and 512/83 ≈ 6.8 in

IRWLS and `1-Magic methods, respectively, to 512/96 ≈ 5.3 in the P-CM`pp method.

As can be seen in Figs. 3.3e and 3.3f, the superior RP of the proposed method comes
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Figure 3.3: RP and CC of P-class and competing methods for noiseless signals: (a)
Average `∞ recovery error for n = 2, 048, (b) Average `∞ recovery error for n = 4, 096,
(c) PPR for n = 2, 048, (d) PPR for n = 4, 096, (e) Average CPU time for n = 2, 048,
and (f) Average CPU time for n = 4, 096.
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with a reduced CC relative to those of the competing methods in simulations where

the sparse signal is always perfectly reconstructed. For instance, when n = 2, 048

the average CPU time required by the P-CM`pp , IRWLS, and `1-Magic methods were

of 2.0, 6.1, and 5.4 seconds, respectively, for s ≤ 45. On the other hand, when

n = 4, 096 the average CPU time required by the P-CM`pp , IRWLS, and `1-Magic

methods were of 9.0, 31.7, and 24.9 seconds, respectively, for s ≤ 96. However, the

CC of the proposed method is increased relative to that of the competing methods

for simulations where the sparse signals was not always perfectly recovered.

The MC of signals recovered by the P-CM`pp method is compared with those of the

IRWLS and `1-Magic methods in Figs. 3.4 and 3.5. Here MC is measured in terms of

how close ||Ax∗− b||2 is to the target value of δ = 0 (see Fig. 1.4). As can be seen in

the box plots2 of ||Ax∗−b||2 in Fig. 3.4, signals recovered with the P-CM`pp method are

more consistent with the measurements taken than those recovered with the IRLWS

and `1-Magic methods when n = 2, 048. For instance, for simulations where s = 45 the

median, and the minimum and maximum observations of ||Ax∗ − b||2 obtained with

the P-CM`pp method were 3.73×10−15, 2.88×10−15, and 4.34×10−15, respectively, as

shown in Fig. 3.4a. On the other hand, the statistics of ||Ax∗−b||2 obtained with the

IRWLS method for the same simulations were 3.8×10−15, 2.58×10−15, and 2.3×10−14

as shown in Fig. 3.4b while those obtained with the `1-Magic method were 1.85×10−8,

9.75 × 10−9, and 7.58 × 10−8 as shown in Fig. 3.4c. As can be seen in the box plots

of ||Ax∗ − b||2 in Fig. 3.5, signals recovered with the P-CM`pp method are also more

consistent with the measurements taken than those recovered with the IRLWS and

`1-Magic methods when n = 4, 096. For instance, for simulations where s = 96 the

median, and the minimum and maximum observations of ||Ax∗ − b||2 obtained with

the P-CM`pp method were 7.53 × 10−15, 6.73 × 10−15, and 8.81 × 10−15, respectively,

as shown in Fig. 3.5a. On the other hand, the statistics of ||Ax∗− b||2 obtained with

the IRWLS method for the same simulations were 3.43 × 10−14, 2.18 × 10−14, and

6.12 × 10−14 as shown in Fig. 3.5b while those obtained with the `1-Magic method

were 9.69× 10−8, 1.62× 10−8, and 4.59× 10−7 as shown in Fig. 3.5c.

Results for noisy signals and orthogonal ensembles

RP and CC of the P-CMln method are compared with those of the DCln and SPGL1

methods in Fig. 3.6. As can be seen in Figs. 3.6a to 3.6d, the proposed method

2A brief explanation of box plots can be found on p. 19. See [77] for a detailed description.
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Figure 3.4: Box plot of ||Ax∗ − b||2 for noiseless signals of n = 2, 048: (a) P-CM`pp

method, (b) IRWLS method, and (c) `1-Magic method.



87

5 31 57 96 122 161 187 226 252
0

0.5

1

·10−14

s

||A
x
∗
−

b
|| 2

δ

(a)

5 31 57 96 122 161 187 226 252
0

2

4

6

·10−14

s

||A
x
∗
−
b
|| 2

δ

(b)

5 31 57 96 122 161 187 226 252
0

2

4

6

8
·10−2

s

||A
x
∗
−

b
|| 2

δ

(c)

Figure 3.5: Box plot of ||Ax∗ − b||2 for noiseless signals of n = 4, 096: (a) P-CM`pp

method, (b) IRWLS method, and (c) `1-Magic method.
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achieved superior RP relative to that of the competing methods for different signal

sizes. For instance, when n = 16, 384 the average `∞ reconstruction error of the P-

CMln, DCln, and SPGL1 methods in Fig. 3.6a were 0.003, 1.53, and 1.69, respectively,

for s ≤ 632 while the MRF for perfect reconstruction in Fig. 3.6c has dropped from

2, 048/224 ≈ 9.1 and 2, 048/428 ≈ 4.8 in the SPGL1 and DCln methods, respectively,

to 2, 048/632 ≈ 3.2 in the P-CMln method. On the other hand, when n = 32, 768

the average `∞ reconstruction error of the P-CMln, DCln, and SPGL1 methods in

Fig. 3.6d were 0.0032, 1.53, 1.77, respectively, for s ≤ 1, 265 while the MRF for perfect

reconstruction in Fig. 3.6d has dropped from 4, 096/551 ≈ 7.4 and 4, 096/857 ≈ 4.8

in the SPGL1 and DCln methods, respectively, to 4, 096/1, 265 ≈ 3.2 in the P-CMln

method. As can be seen in Figs. 3.6e and 3.6f, the superior RP of the proposed

method comes with a CC that is comparable to that of SPGL1 method and reduced

to that of DCln method in simulations where the sparse signal is always perfectly

reconstructed. For instance, when n = 16, 384 the average CPU time required by the

P-CMln, DCln, and SPGL1 methods were of 10.2, 195.5, and 7.2 seconds, respectively,

for s ≤ 632. On the other hand, when n = 32, 768 the average CPU time required

by the P-CMln, DCln, and SPGL1 methods were of 19.2, 318.1, and 13.7 seconds,

respectively, for s ≤ 1, 265. However, the CC of the proposed method is increased

relative to that of the SPGL1 method and comparable relative to that of the DCln

method for simulations where the sparse signals was not always perfectly recovered.

The consistency of signals recovered by the P-CMln method with respect to mea-

surements taken is compared with those of the DCln and SPGL1 methods in Figs. 3.7

and 3.8. Here consistency is measured in terms of how close ||Ax∗ − b||2 is to the

target values of δ = 45.25× 10−4 and δ = 64× 10−4 for n = 16, 384 and n = 32, 768,

respectively (see Fig. 1.4). As can be seen in the box plots of ||Ax∗− b||2 in Fig. 3.7,

signals recovered with the P-CMln method are more consistent with the measurements

taken than those recovered with the DCln and SPGL1 methods when n = 16, 384. For

instance, for simulations where s = 632 the median, and the minimum and maximum

observations of ||Ax∗ − b||2 obtained with the P-CMln method were 45.22 × 10−4,

45.21 × 10−4, and 45.23 × 10−4, respectively, as shown in Fig. 3.7a. On the other

hand, the statistics of ||Ax∗− b||2 obtained with the DCln method for the same sim-

ulations were 73.61 × 10−4, 62.87 × 10−4, and 91.21 × 10−4 as shown in Fig. 3.7b

while those obtained with the SPGL1 method were 46.19 × 10−4, 45.8 × 10−4, and

46.25 × 10−4 as shown in Fig. 3.7c. As can be seen in the box plots of ||Ax∗ − b||2
in Fig. 3.8, signals recovered with the P-CMln method are also more consistent with
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Figure 3.6: RP and CC of P-class and competing methods for noisy signals: (a)
Average `∞ recovery error for n = 16, 384, (b) Average `∞ recovery error for n =
32, 768, (c) PPR for n = 16, 384, (d) PPR for n = 32, 768, (e) Average CPU time for
n = 16, 384, and (f) Average CPU time for n = 32, 768.
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Figure 3.7: Box plot of ||Ax∗ − b||2 for noisy signals of n = 16, 384: (a) P-CMln

method, (b) DCln method, and (c) SPGL1 method.
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Figure 3.8: Box plot of ||Ax∗ − b||2 for noisy signals of n = 32, 768: (a) P-CMln

method, (b) DCln method, and (c) SPGL1 method.



92

the measurements taken than those recovered with the DCln and SPGL1 methods

when n = 32, 768. For instance, for simulations where s = 1, 265 the median, and

the minimum and maximum observations of ||Ax∗ − b||2 obtained with the P-CMln

method were 63.95× 10−4, 63.94× 10−4, and 63.96× 10−4, respectively, as shown in

Fig. 3.8a. On the other hand, the statistics of ||Ax∗ − b||2 obtained with the DCln

method for the same simulations were 112.12× 10−4, 98.34× 10−4, and 137.88× 10−4

as shown in Fig. 3.8b while those obtained with the SPGL1 method were 64.91×10−4,

64.33× 10−4, and 64.99× 10−4 as shown in Fig. 3.8c.

3.4.3 Scalability of proposed family of BP methods

We carried out recovery simulations using orthogonal ensembles to evaluate the scal-

ability of the proposed and competing methods for the recovery of noisy signals. The

effect of problem size on RP and CC of the P-CM`pp and SPGL1 methods were as-

sessed for several values of n in the range of 2, 048 to 262, 144. The results are plotted

in Fig. 3.9. As can be seen in Fig. 3.9a, the MRFs obtained with the P-CM`pp method

are significantly smaller than those obtained with the SPGL1 method from small- to

very-large-scale reconstruction problems.
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Figure 3.9: Scalability assessment of P-class and competing methods: (a) MRF for
perfect reconstruction and (b) Average CPU time.

We assumed during the recovery simulations that the CC was of order nα and

obtained empirical estimates of the exponent α as was done in [43]. The average

CPU time for the P-CM`pp and SPGL1 methods is plotted in Fig. 3.9b. As can be
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seen, the empirical exponent values obtained with the P-CM`pp method are close to

those obtained with the SPGL1 method. In addition, both methods have an empirical

complexity less than quadratic.

The effect of problem size on the convergence rate of sequence
{
Pε(x

(k))
}
k∈N was

assessed for several values of n in the range of 2, 048 to 262, 144. The results are

plotted in Fig. 3.10 for simulations where the signal is always perfectly recovered. As

can be seen, an average of 3.5 to 5.4 points are computed for small- to very-large-scale

reconstruction problems.
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Figure 3.10: Scalability assessment of the convergence rate.

3.5 Conclusions

A new family of signal-recovery methods has been described. Sparsity is promoted

with the class P of SPFs which (1) is fairly general as it includes some widely used

SPFs of class N such as those in (1.4) to (1.6), and (2) it leads to an efficient and

robust recovery process. Results obtained pertaining to the optimality conditions of

P-class problems show that (1) stationary points with at most m nonzero coordinates

are local minimizers, and (2) a global minimizer is a stationary point with at most m

nonzero coordinates.

In the new family of SCF methods, the solution of a P-class problem is approached

by employing a PLA of the P-class function. Convex subproblems are formulated as

weighted `1-norm minimization problems while an efficient FOS based on NESTA [9]

is employed. Thus, the proposed solver is applicable for the recovery of large signals

from Gaussian or orthogonal ensembles. The sequence of solution points was shown
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to be a monotonically decreasing sequence of values of the objective function and

converges to a local minimizer with at most m nonzero coordinates.

Simulation results demonstrate that the new methods are robust, lead to fast

convergence, and achieve superior RP metrics in terms of increased PPRs, reduced

MRFs for perfect recovery, and reduced average `∞ reconstruction error when com-

pared with the `1-Magic [18], IRWLS [37], SPGL1 [11], and DC-family [46] methods.

CC metrics in terms of the average CPU time of the new methods were found to

be comparable to that of the SPGL1 method and reduced to those of the `1-Magic,

IRWLS, and DC-family methods. In addition, scalability results demonstrated that

the new methods are well suited for large-scale recovery problems.
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Chapter 4

A New Proximal-Point Based

Method

4.1 Introduction

State-of-the-art methods applicable to nonconvex recovery problems [23, 27, 46, 104,

105] are based on an indirect solution approach where approximation is employed

(see Sec. 1.2.3 for details). Unfortunately, indirect methods are inefficient for the

solution of very-large-scale problems, typically in the range of a million variables, as

they entail the solution of several subproblems of the same scale in sequence.

In this chapter, a new proximal-point (PP) based method that solves very-large-

scale nonconvex optimization problems is proposed. Sparse-signal recovery is carried

out by minimizing the sum of two functions, namely, the indicator of a closed ball

under an affine mapping and the ε-`pp norm functions. The objective function obtained

in this way exhibits unusually rich properties from an optimization perspective. A PP

method based on the update-formula in (1.14) is used for minimizing the objective

function and a continuation procedure is employed so that a minimum can be found

efficiently for arbitrarily small values of ε. When the Moreau envelope (ME) in

(1.13) is computed approximately, the update-formula can be applied by iteratively

performing two fundamental operations, namely, (1) computation of the PP of the

ε-`pp norm function and (2) projection of the PP onto the closed ball under affine

mapping. The first operation can be performed either analytically or numerically

by using a fast iterative method when p can be expressed by a common fraction.

The second operation is performed efficiently by computing a sequence of closed-form
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projectors onto convex sets. The sequence of points associated with the iterative

computation is shown to converge to a minimizer of the problem at hand and a two-

step method with optimal convergence rate given by (1.21) is employed for accelerated

convergence. Simulations carried out with the proposed method show that very-large

signals can be recovered accurately and efficiently and that the solutions obtained are

superior to those obtained with competing state-of-the-art methods while requiring

a comparable amount of computation.

The chapter is organized as follows. In Sec. 4.2, the proposed recovery problem

is described and its feasible set and objective function are examined. In Sec. 4.3, the

new recovery method is described. In Sec. 4.4, simulation results for the proposed and

corresponding competing methods are presented. In Sec. 4.5, conclusions are drawn.

4.2 Proposed Recovery Problem

Hereafter, Pε(x) is given by (1.2) where w is a column vector of n ones and pε(|xi|)
is defined by (1.4), and column vector g ∈ ∂Pε(x) is a subgradient of Pε(x) where

∂Pε(x) is the subdifferential as in Definition 8.3 of [96]. Here we introduce an uncon-

strained reformulation of the problem in (1.7) that can be solved with PP methods.

Let us rewrite problem (BPδ) in (1.7) in the compact form

minimize
x∈Kδ

Pε(x) (4.1)

where feasible set Kδ denotes the closed ball in Rn under an affine mapping given by

Kδ = {x ∈ Rn : ‖Ax− b‖ ≤ δ} (4.2)

The minimization of function Pε(x) over set Kδ is equivalent to the minimization of

the sum of function Pε(x) and the indicator function of set Kδ over all Rn (see p. 7

of [96]). Thus, problem (BPδ) in (1.7) is equivalent to the unconstrained optimization

problem

(LPε,δ) minimize
x

Fε,δ(x) (4.3)

where Fε,δ(x) is a function of the form

Fε,δ(x) = Pε(x) + IKδ(x) (4.4)
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and IKδ(x) is the indicator function of set Kδ given by

IKδ(x) =





0 x ∈ Kδ
+∞ x 6∈ Kδ

(4.5)

In Sec. 4.2.1, we show that set Kδ can be expressed as the intersection of a finite

number of closed and convex sets which facilitates the computation of its projector.

In Sec. 4.2.2, we present several properties of function Pε(x) that are applicable to

the computation of its PP mapping. In Sec. 4.2.3, we define the solution set of

problem (LPε,δ) and introduce a sequence of values of the regularization parameter

ε. The sequence is applicable to the solution of problem (LPε,δ) when ε approaches

0. In Sec. 4.2.4, we present several properties of the subdifferential mapping and ME

of function Fε,δ(x) in (4.4). These properties are related to the convergence of PP

methods for the problem at hand.

4.2.1 Feasible Set

Let

Az = c+ b (4.6)

where z ∈ Rn and c ∈ Rm. Combining (4.2) and (4.6), we conclude that the feasible

set Kδ can be written as

Kδ = {(z, c) ∈ Rn × Rm : c = Az − b, ||c|| ≤ δ} (4.7)

The linear system of equations in (4.7) is related to the hyperplanes given by

Kδ,i =
{

(z, c) ∈ Rn × Rm : aTi z − 1Ti c = bi
}
, for i ∈ Im (4.8)

where 1i is a column vector of length m with all coordinates zero valued with the

exception of the ith coordinate which assumes the value of 1 and Im = {1, . . . , m}.
The hyperplanes in (4.8) have an equivalent algebraic definition in terms of linear

varieties as stated in the following proposition.

Proposition 4.1 (Linear Varieties). Each set Kδ,i in (4.8) is a linear variety.

Proof. Each set Kδ,i in (4.8) defines a hyperplane in R(m+1) (see Proposition 2 of [74])

and a hyperplane in R(m+1) is an m-dimensional linear variety (see definition on p. 517
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of [74]). Therefore, each set Kδ,i in (4.8) is a linear variety.

The closed ball in Rm in (4.7) is related to the closed ball in R(n+m) under an

affine mapping given by

Kδ,i =

{
(z, c) ∈ Rn × Rm :

∥∥∥∥∥

[
0n×n 0n×m

0m×n Im×m

][
z

c

]∥∥∥∥∥ ≤ δ

}
, for i ∈ {m+ 1} (4.9)

where 0n×n, 0n×m, and 0m×n are n×n, n×m, and m×n zero matrices, respectively,

and Im×m is the m×m identity matrix. Combining (4.7) to (4.9), we conclude that

set Kδ in (4.2) can be expressed as

Kδ =
m+1⋂

i=1

Kδ,i (4.10)

Expressing the feasible set as the intersection of closed and convex sets, as in (4.10),

facilitates the computation of the projector onto the feasible set. Efficient methods

for computing a point in the intersection of convex sets, such as the alternating

projection (AP) method [52], are also applicable for computing the projector onto

the intersection of these sets (see Corollary 2 of [114]).

4.2.2 Sparsity Promoting Function

Let R+ and R− denote the set of all positive and negative real numbers, respectively.

From the definition of the absolute value of xi, function pε(|xi|) can be written as

pε(|xi|) =





pε,−(xi), xi ∈ R−

pε,+(xi), xi ∈ R+

εp, xi = 0

(4.11)

where

pε,−(xi) = (−xi + ε)p (4.12a)

and

pε,+(xi) = (xi + ε)p (4.12b)

On the basis of (1.18), (1.23), and (4.11), the following proposition states that the

sparsity-promoting function (SPF) at hand possess two important properties since
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(1) the magnitude of its subgradients is upper bounded and (2) it can be expressed

as the difference between a finite convex function and a positive multiple of 1
2
|xi|2.

Proposition 4.2 (Lipschitz Continuity and Lower-C2 Properties at R). Function

pε(|xi|) is Lipschitz continuous with constant

κε =
p

ε1−p
(4.13)

and lower-C2 with constant

ρε =
p |p− 1|
ε2−p

(4.14)

at every xi ∈ R.

Proof. The first-order derivatives of functions pε,−(xi) and pε,+(xi) in 4.12a and (4.12b)

are given, respectively, by

p′ε,−(xi) = −p(−xi + ε)p−1

and

p′ε,+(xi) = p(xi + ε)p−1

Because p′ε,−(xi) and p′ε,+(xi) are non-increasing for increasing values of xi, it can be

shown that they are bounded as

0 <
∣∣p′ε,−(xi)

∣∣ ≤ p

ε1−p
and 0 <

∣∣p′ε,+(xi)
∣∣ ≤ p

ε1−p
(4.15)

and from (1.17), pε,−(xi) and pε,+(xi) are Lipschitz continuous functions with constant

κε as described in (4.13). Furthermore, since

lim
xi→0−

pε(|xi|) = lim
xi→0+

pε(|xi|) = εp

the limit lim
xi→0

pε(|xi|) exists and

lim
xi→x̃i

pε(|xi|) = pε(|x̃i|), for x̃i = 0 (4.16)

Consequently, pε(|xi|) is continuous at xi = 0 and, therefore, Lipschitz continuous

with constant κε by virtue of (4.11), (4.15), and (4.16).
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Now let h(|xi|) denote a function of the form

h(|xi|) = pε(|xi|) +
1

2
ρ|xi|2 (4.17)

where ρ > 0. Using an approach similar to that used for pε(|xi|), we have

h(|xi|) =





h−(xi), xi ∈ R−

h+(xi), xi ∈ R+

εp, xi = 0

(4.18)

where

h−(xi) = pε,−(xi) +
1

2
ρ(−xi)2

and

h+(xi) = pε,+(xi) +
1

2
ρ(xi)

2

The second-order derivatives of pε,−(xi) and pε,+(xi) have the minimum and maximum

values

min
xi∈R−

p′′ε,−(xi) = lim
xi→0−

p′′ε,−(xi) = min
xi∈R+

p′′ε,+(xi) = lim
xi→0+

p′′ε,+(xi) =
p(p− 1)

ε2−p
(4.19)

and

max
xi∈R−

p′′ε,−(xi) = lim
xi→−∞

p′′ε,−(xi) = max
xi∈R+

p′′ε,+(xi) = lim
xi→+∞

p′′ε,+(xi) = 0 (4.20)

respectively. Based on (4.19) and (4.20), we conclude that h′′−(xi) ≥ 0 and h′′+(xi) ≥ 0

for values of ρ greater than or equal to that given in (4.14). Thus, h−(xi) and h+(xi)

are convex functions for ρ as given in (4.14).

Lastly, since h(|xi|) is a continuous function at xi = 0, and h−(xi) and h+(xi) are

convex functions, we conclude from (4.18) that h(|xi|) must be a convex function for

ρ as given in (4.14). Thus, pε(|xi|) is a lower-C2 function with constant ρε at every

xi ∈ R because there is an expression of the form

pε(|xi|) = h(|xi|)−
1

2
ρε|xi|2

where h(|xi|) is a convex function (see (1.23)).

The properties of pε(|xi|) in Proposition 4.2 can be easily extended to Pε(x) as



101

stated in the following corollary.

Corollary 4.1 (Lipschitz Continuity and Lower-C2 Properties at Rn). Function

Pε(x) is Lipschitz continuous with constant

κε = n
p

ε1−p
(4.21)

and lower-C2 at every x ∈ Rn with constant ρε given by (4.14).

Proof. From Proposition 4.2, function pε(|xi|) is Lipschitz continuous with constant

κε as given in (4.21) and lower-C2 at every xi ∈ R with constant ρε as given in

(4.14). Thus, based on (1.2), we conclude that Pε(x) must be Lipschitz continuous

with constant κε as given in (4.21) (see Theorem 12.1 of [41]) and lower-C2 at every

x ∈ Rn with constant ρε as given in (4.14) (see Exercise 10.35(a) of [96]).

The properties in Corollary 4.1 and Proposition 4.2 are directly applicable to the

computation of the PP of functions pε(|xi|) and Pε(x) because the PP mapping of

lower-C2, Lipschitz continuous functions is single valued [56].

4.2.3 Solution Set and Regularization Sequence

The normal cone of set Kδ, denoted by NKδ , is equivalent to the subdifferential of the

indicator function IKδ(x) (see Exercise 8.14 of [96]) and if we let v ∈ NKδ(x̄) with

x̄ ∈ Kδ denote a vector which is normal to set Kδ at x̄, then we have the property

vT (x− x̄) ≤ 0, for x ∈ Kδ, v ∈ NKδ(x̄) (4.22)

(see Definition 6.3 of [96]). We define the solution set of problem (LPε,δ) as follows.

Definition 4.1 (Solution Set). Point x∗ε,δ is a solution of problem (LPε,δ) if

∂Fε,δ(x
∗
ε,δ) 3 0 ⇐⇒ ∂ [Pε(x)+IKδ(x)] 3 0 ⇐⇒ ∂Pε(x

∗
ε,δ)+NKδ(x

∗
ε,δ) 3 0 (4.23)

and there exists a closed ball of radius α ∈ (0,+∞] centered at x∗ε,δ given by

B(α,Sε,δ) =
{
x : ||x− x∗ε,δ|| ≤ α

}
(4.24)

such that

Pε(x) ≥ Pε(x
∗
ε,δ), for any x ∈ B(α,Sε,δ) (4.25)
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Furthermore, the set of all points satisfying the conditions in (4.23) and (4.25) defines

the solution set of the problem (LPε,δ), denoted by Sε,δ.

The distance between a given point and a solution point is defined as follows.

Definition 4.2 (Distance to Solution Set). The distance of a feasible point x ∈ Kδ
to the solution set Sε,δ, denoted by d(x,Sε,δ), is defined as

d(x,Sε,δ) = inf
x∗ε,δ∈Sε,δ

||x− x∗ε,δ|| (4.26)

On the basis of Corollary 4.1, function Pε(x) assumes large Lipchitz constants for

arbitrarily small regularization values since κε →∞ as ε→ 0 (see (4.21)). Finding a

point of the solution set Sε,δ in Definition 4.1 is challenging when the regularization

parameter approaches zero because first-order solvers (FOSs), such as that in (1.14),

exhibit slow convergence in the minimization of Lipschitz continuous functions with

large Lipschitz constants [66]. Computation of such a solution point is facilitated

when a sequence of problems of the form in (4.3) are solved for appropriate val-

ues of the regularization parameter. The following definition presents a sequence of

regularization parameters.

Definition 4.3 (Regularization Sequence). Let Iq denote a set of q integers given by

Iq = {1, 2, . . . , q} and let {εj}j∈{0}∪Iq denote a strictly decreasing sequence with the

properties:

1. ε0 is large enough so that, for given values of n and p, we have Pε0(x)−nεp0 ≈ 0,

for all x ∈ Kδ,

2. εq is approximately zero, and

3. εj−1 − εj ≤ ν, for all j ∈ Iq where ν is an arbitrary small positive constant.

Based on Definition 4.3, we define the sequence of problems
{

(LPεj ,δ)
}
j∈{0}∪Iq of the

form in (4.3) for different values of ε. The Euclidean distance between the solutions

of two consecutive problems in such a sequence is described in the following lemma.

Lemma 4.1 (Distance Between Solutions). Let {εj}j∈Iq be a sequence as described in

Definition 4.3, and let Sεj−1,δ and Sεj ,δ denote the solution sets of problems (LPεj−1,δ)

and (LPεj ,δ), respectively. For any x∗εj ,δ ∈ Sεj ,δ and x∗εj−1,δ
∈ Sεj−1,δ, we have

0 ≤ Pεj−1
(x∗εj−1,δ

)− Pεj(x∗εj ,δ) ≤ nνp, for all j ∈ Iq (4.27)
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Furthermore, if the upper bound ν in Property 3 of Definition 4.3 is small enough

such that

Pεj−1
(x∗εj−1,δ

) ≈ Pεj(x
∗
εj−1,δ

), for all j ∈ Iq (4.28)

then we have

||x∗εj−1,δ
− x∗εj ,δ|| < νp

ε1−pj

p
, for all j ∈ Iq (4.29)

Proof. The binomial expansion of function pεj(|xi|) is given by

pεj(|xi|) = (|xi|+ εj)
p

= |xi|p + p|xi|p−1εj +
p(p− 1)

2!
|xi|p−2ε2j +

p(p− 1)(p− 2)

3!
|xi|p−3ε3j + · · ·

(see binomial series, pp. 774 of [100]). From this expansion, we obtain

lim
|xi|→∞

pεj(|xi|) =∞

and because the highest power of |xi| in the expansion is exactly the same as that of

the binomial expansion of function pεj−1
(|xi|), we conclude that functions pεj−1

(|xi|)
and pεj(|xi|) exhibit the same end behaviour, i.e.,

lim
|xi|→∞

pεj−1
(|xi|)

pεj(|xi|)
= 1, for all j ∈ Iq

(see Exercise 50, p. 139 of [100]). Therefore, we have

lim
|xi|→∞

[
pεj−1

(|xi|)− pεj(|xi|)
]

= 0, for all j ∈ Iq (4.30)

and [
pεj−1

(|xi|)− pεj(|xi|)
] ∣∣∣∣
|xi|=0

= εpj−1 − εpj , for all j ∈ Iq (4.31)

Because function pεj(|xi|) is nondecreasing for increasing values of |xi|, we obtain by

combining (4.30) and (4.31)

0 ≤ pεj−1
(|xi|)− pεj(|xi|) ≤ εpj−1 − εpj , for all xi ∈ R (4.32)
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Furthermore, from (1.2) and (4.32), we have

0 ≤ Pεj−1
(x)− Pεj(x) ≤ n

(
εpj−1 − εpj

)
, for all x ∈ Rn (4.33)

Now the binomial expansion of (εj−1−εj)p can be written as

(εj−1−εj)p=εpj−1−pεp−1
j−1εj+

p(p− 1)

2!
εp−2
j−1ε

2
j−

p(p− 1)(p− 2)

3!
εp−3
j−1ε

3
j+· · · , for all j ∈ Iq

Multiplying the negative terms by (εp−1
j )/(εp−1

j ) and simplifying, we can write the

expansion as

(εj−1−εj)p = εpj−1−εpj

[
p

(
εj
εj−1

)1−p
− p(p−1)

2!

(
εj
εj−1

)2−p
+
p(p−1)(p−2)

3!

(
εj
εj−1

)3−p
+· · ·

]

(4.34)

and by rearranging terms, the above infinite series can be written as the power series

∞∑

k=1

ak

(
εj
εj−1

)k
(4.35)

where

ak =
(−1)k−1

k!

(
εj−1

εj

)p k∏

l=1

(p− l + 1)

On the basis of Definition 4.3, we have εj/εj−1 < 1. Therefore, the series in (4.35) is

convergent (see p. 775 of [100]) and can be shown to be lower bounded by

∞∑

k=1

ak

(
εj
εj−1

)k
≥ 1 for all j ∈ Iq (4.36)

Combining (4.34) to (4.36), we have

(εj−1 − εj)p ≥ εpj−1 − εpj (4.37)

and by combining (4.33) and (4.37), we obtain (4.27) (see Theorem 1 of [48]).

Now from Corollary 4.1, function Pεj(x) is Lipschitz continuous with constant

κεj = n
p

ε1−pj

(4.38)
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and because Lipschitz continuity implies uniform continuity, for all τ > 0 we have

||x− x̃|| < τ/κεj ⇒ |Pεj(x)− Pεj(x̃)| < τ, for all x, x̃ ∈ Rn (4.39)

Furthermore, from (4.27) and (4.28), we have

0 ≤ Pεj−1
(x∗εj−1,δ

)−Pεj(x∗εj ,δ) ≈ Pεj(x
∗
εj−1,δ

)−Pεj(x∗εj ,δ) ≤ nνp, for all j ∈ Iq
(4.40)

Combining (4.38) to (4.40), we obtain (4.29), which completes the proof.

On the basis of Lemma 4.1 and Definition 4.3, the Euclidean distance between the

solutions of two consecutive problems in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq approaches

0 as the index j approaches q. As for the continuation procedures (see embedding

algorithm in [3]), we employ an initialization strategy where the solution obtained for

problem (LPεj−1,δ) is used as the initial point for the solution of problem (LPεj ,δ) for all

j ∈ Iq. Efficient computation of each problem is facilitated because the convergence

rate of FOSs, such as that in (1.14), is improved when an appropriate initialization is

employed. The Lipschitz constant of function Pεj(x) increases as the index j increases

in the problem sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq . Slow convergence can be circumvented

by using an initial point that is increasingly closer to the solution of the problem at

hand.

4.2.4 Moreau Envelope and Subdifferential Mapping

Let us define a function closely related to the objective function Fεj ,δ(x) given by

F̃εj ,δ(x) = Fεj ,δ(x)−




nεpj , for j ∈ {0}
Pεj−1

(x∗εj−1,δ
), for j ∈ Iq

(4.41)

On the basis of Definition 4.1, the problem of minimizing function F̃εj ,δ(x) has exactly

the same solution set as the problem of minimizing function Fεj ,δ(x). Thus, we use

both functions interchangeably hereafter. For each value of the regularization param-

eter εj in Definition 4.3 and for each point in the solution set Sεj ,δ in Definition 4.1,

function F̃εj ,δ(x) has the property specified in (1.24). This result is presented in terms

of the following proposition.
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Proposition 4.3 (Prox-Regularity Property at Solution Set). Let {εj}j∈{0}∪Iq be a

sequence as described in Definition 4.3 and consider a point x∗ε,δ in the solution set

Sε,δ. Function F̃εj ,δ(x) in (4.41) is subdifferentially continuous and prox-regular at

x̄ = x∗εj ,δ for v̄ = 0 where v̄ ∈ ∂F̃εj ,δ(x̄). Furthermore, for any x∗εj−1,δ
∈ Sεj−1,δ and

x∗εj ,δ ∈ Sεj ,δ, assume that ν is small enough in (4.27) so that the approximation

Pεj(x
∗
εj ,δ

) ≈ Pεj−1
(x∗εj−1,δ

), for all j ∈ Iq (4.42)

holds true. Under this assumption, we have

F̃εj ,δ(x̄) ≈ 0, for all j ∈ {0} ∪ Iq (4.43)

and there exists a closed ball B(α,Sεj ,δ) in (4.24) so that the inequality

F̃εj ,δ(x) > −rεj
2
||x− x̄||2, for all x 6= x̄ (4.44)

holds true, where rεj is the prox-regularity parameter of F̃εj ,δ(x) given by

rεj =
2κεj
α

(4.45)

and κεj is the Lipschitz constant of Pεj(x).

Proof. The feasible set Kδ in (4.2) is closed and, based on Corollary 4.1, function

Pεj(x) is continuous for all j ∈ {0} ∪ Iq. Thus, function F̃εj ,δ(x) is subdifferentially

continuous at x̄ (see Exercise 13.29 of [96]). In addition, from Example 1.11 of [96],

the level sets of Fεj ,δ(x) given by

Kδ ∩
{
x ∈ Rn : Pεj(x) ≤ ϑ

}
, for ϑ <∞

are closed which implies that F̃εj ,δ(x) is locally lower-semicontinuous at x̄ (see Defi-

nition 1.1 [89]). From Theorem 3.2 of [89], function F̃εj ,δ(x) is prox-regular at x̄ for

v̄ where v̄ ∈ ∂F̃εj ,δ(x̄).

Now by combining (4.41) with Property 1 in Definition 4.3 and (4.42), we obtain

(4.43). For j ∈ {0} ∪ Iq and x 6∈ Kδ or in the case where j ∈ {0} and x ∈ Kδ, the

inequality in (4.44) holds true for any rεj > 0. For j ∈ Iq and x ∈ Kδ, we can write

(4.44) as

Pεj(x)− Pεj(x̄) > −rεj
2
||x− x̄||2, for all x 6= x̄ (4.46)
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by using (4.42). From Definition 4.1, we conclude that the left-hand side of (4.46)

is nonnegative for any x ∈ B(α,Sεj ,δ) and that (4.44) holds true for any rεj > 0. If

x 6∈ B(α,Sεj ,δ) and Pεj(x) ≤ Pεj(x̄), we can write (4.44) as

κεj ||x− x̄|| <
rεj
2
||x− x̄||2, for all x 6= x̄ (4.47)

by using Corollary 4.1 and (1.16) where κεj is the Lipschitz constant of Pεj(x). From

(4.24), we conclude that (4.47) holds true for any rεj given by (4.45). Furthermore,

based on item (c) in Theorem 3.2 of [89], rεj must be the prox-regularity parameter

of F̃εj ,δ(x), which completes the proof.

Prox-regular functions are nonconvex functions that exhibit unusually rich prop-

erties from an optimization perspective. As stated in the following lemma, the ME

of function F̃ε,δ(x) is differentiable and convex when restricted to a neighborhood of

the solution of set of problem (LPε,δ).

Lemma 4.2 (Differentiability and Convexity of Moreau Envelope). Let {εj}j∈{0}∪Iq
be a sequence as described in Definition 4.3 and assume that the approximation in

(4.42) holds true. Consider the ME of function F̃εj ,δ(x) given by

ψγk,εj(x) = minimize
x̃

[
F̃εj ,δ(x̃) +

1

2γk
||x̃− x||2

]
(4.48)

and let γk ∈ (0, 1/rεj) where rεj is the prox-regularity parameter of F̃εj ,δ(x) in (4.45).

There exists a closed ball B(α,Sεj ,δ) in (4.24) for all j ∈ {0} ∪ Iq such that ψγk,εj(x)

with x ∈ B(α,Sεj ,δ) is (1) convex and (2) differentiable with a Lipschitz continuous

gradient given by

∇ψγk,εj(x) =
1

γk

{
x− proxγk

[
F̃εj ,δ(x)

]}
(4.49)

Proof. For all j ∈ {0}∪Iq, function F̃εj ,δ(x) is subdifferentially continuous and prox-

regular at x̄ = x∗εj ,δ for v̄ = 0 where v̄ ∈ ∂F̃εj ,δ(x̄) (see Proposition 4.3). Hence,

results in [89] concerning the operator Tεj ,δ as an F̃εj ,δ(x)-attentive localization of

∂F̃εj ,δ(x) can be restated in terms of ordinary localization (see Remark 5.9 of [89]). In

addition, we conclude from (4.43) and (4.44) that Assumption (4.1) of [89] holds true

for F̃εj ,δ(x) at the values of x̄ and v̄ under consideration. Thus, for γk ∈ (0, 1/rεj)

with rεj given by (4.45), there exists a closed ball B(α,Sεj ,δ) in (4.24) such that
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function ψγk,εj(x) with x ∈ B(α,Sεj ,δ) is (1) convex (see item (a) in Proposition 5.4

of [89]) and (2) differentiable with a Lipschitz continuous gradient given by (4.49)

(see Theorem 4.4 of [89]), which completes the proof.

On the basis of Lemma 4.2, each problem in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq can be

solved efficiently because the update formula in (1.20) with βk given by (1.27) is

applicable (see Sec. 3.2.1 of [90] and Theorem 1 of [81]).

Another property of interest in prox-regular functions is related to their subdiffer-

ential mapping. The operator Tε,δ(x) , ∂F̃ε,δ(x) is said to be monotone if it possesses

the property

(g1 − g0)T (x1 − x0) ≥ 0

whenever g0 ∈Tε,δ(x0) and g1 ∈Tε,δ(x1) (see Definition 12.1 of [96]). Because the

feasible set Kδ in (4.2) is convex, it follows that the indicator function IKδ(x) in (4.5)

is also convex (see p. 28 of [95]). Therefore, the operator Tε,δ is monotone when Pε(x)

is a convex function since F̃ε,δ(x) reduces to the sum of two convex functions which

has a monotone subdifferential mapping (see Theorem 12.17 of [96]). The sequence{
x(k)

}
k∈N in (1.14) has been shown to converge to a solution to the inclusion

Tε,δ(x) 3 0 (4.50)

for any x(0) ∈ Rn and γk > 0 when Tε,δ is monotone (see Theorem 1 of [94]). Thus, PP

methods are applicable to the solution of convex recovery problems. Unfortunately,

monotonicity assumptions are not valid for the recovery problem at hand because

F̃ε,δ(x) is a nonconvex function as Pε(x) is based on an SPF of class N .

The convergence of PP methods under relaxed monotonicity of the subdifferential

mapping (or of its inverse) has been addressed in [30, 63, 87]. Sequence
{
x(k)

}
k∈N in

(1.14) has been shown to converge to a solution to the inclusion in (4.50) provided

that x(0) is close enough to the solution set and γk is large enough (see Theorem 3.1

of [30]). Relaxed monotonicity of the subdifferential mapping in these convergence

conditions is based on the concept of cohypomonotonicity. The operator Tε,δ is said

to be ηε-cohypomonotone if there exists a constant ηε > 0 such that the mapping

T−1
ε,δ +ηε Id

is monotone where Id denotes the identity mapping (see Definition 2.2 of [30]). The re-

laxed monotonicity of the subdifferential mapping of prox-regular functions has been
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identified in [89]. On the basis of Proposition 4.3 and Proposition 5.4 of [89], the

following lemma states that for each value of the regularization sequence εj in Defini-

tion 4.3, the subdifferential mapping of F̃εj ,δ(x) is cohypomonotone when restricted

to a neighborhood of the solution set Sεj ,δ.

Lemma 4.3 (Cohypomonotonicity of Subdifferential). Let {εj}j∈{0}∪Iq be a sequence

as described in Definition 4.3 and assume that the approximation in (4.42) holds

true. There exists a closed ball B(α,Sεj ,δ) in (4.24) for all j ∈ {0} ∪ Iq such that the

operator Tεj ,δ associated with function F̃εj ,δ(x) is ηεj -cohypomonotone on B(α,Sεj ,δ)
for

ηεj ∈ (0, 1/rεj) (4.51)

where rεj is the prox-regularity parameter of F̃εj ,δ(x) in (4.45).

Proof. For all j ∈ {0}∪Iq, function F̃εj ,δ(x) is subdifferentially continuous and prox-

regular at x̄ = x∗εj ,δ for v̄ = 0 where v̄ ∈ ∂F̃εj ,δ(x̄) (see Proposition 4.3). Hence, due

to these properties, results in [89] concerning the operator Tεj ,δ as an F̃εj ,δ(x)-attentive

localization of ∂F̃εj ,δ(x) can be restated in terms of ordinary localization (see Remark

6.9 of [89]). In addition, we conclude from (4.43) and (4.44) that Assumption (4.1)

of [89] holds true for F̃εj ,δ(x) at the values of x̄ and v̄ under consideration. Thus,

there exists a closed ball B(α,Sεj ,δ) in (4.24) such that the operator Tεj ,δ associated

with function F̃εj ,δ(x) is ηεj -cohypomonotone on B(α,Sεj ,δ) for ηεj given by (4.51)

(see item (b) in Proposition 5.4 of [89]), which completes the proof.

On the basis of Lemma 4.3, each problem in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq can be

solved by using PP methods when the convergence conditions specified in Theorem

3.1 of [30] are satisfied.

4.3 Inexact PP Based BP Method

In this section, we propose a new PP method for the solution of the recovery problem

in (4.3). Suppose that for all j ∈ {0} ∪ Iq, we can find an initial point x
(0)
εj within a

closed ball B(α,Sεj ,δ) specified in (4.24). By combining (1.14), (4.3), and (4.49), we
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obtain

x(k+1)
εj

= x(k)
εj
− γk∇ψγk,εj(x

(k)
εj

)

= arg minimize
x

[
Pεj(x)+IKδ(x)+

1

2γk
||x−x(k)

εj
||2
], for all j∈{0}∪Iq

(4.52)

where γk ∈ (0, 1/rεj) for all k ∈ N. On the basis of Lemma 4.2, the ME of func-

tion Fεj ,δ(x) is differentiable and, consequently, the above update formula is applica-

ble to the solution of each problem in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq . Specifically,

each solution point x
(k)
εj lies within the same closed ball B(α,Sεj ,δ) as the sequence{

ψγk,εj(x
(k))
}
k∈N associated with the update formula in (4.52) is monotonically de-

creasing (see Sec. 1.2.1 of [82]). When the minimization problem in (4.48) is solved

exactly, the above update formula is said to be in exact form.

As stated in the following proposition, the proposed PP method is closely related

to projected subgradient methods when in exact form.

Proposition 4.4 (Update Formula in Exact Form). Consider the update formula in

(4.52) and assume that x
(k)
εj ∈ B(α,Sεj ,δ) for all k ∈ N and j ∈ {0} ∪ Iq. Under this

assumption, the update formula can be written as

x(k+1)
εj

= projKδ

[
x(k)
εj
− γk g(k+1)

εj

]
, for all j∈{0} ∪ Iq (4.53)

where

g(k+1)
εj

∈ ∂Pεj(x(k+1)
εj

) (4.54)

Proof. The differentiability and convexity of function ψγk,εj(x) imply that the sub-

problem in (4.52) is convex because it can be written as the minimization of the sum of

the linear approximating function of ψγk,εj(x) and a convex penalty function (see pp.

21 of [90]). Hence, vector x
(k+1)
εj is a minimizer if and only if the zero vector belongs to

the subdifferential of the sum of the functions Pεj(x), IKδ(x), and 1/(2γk)||x−x(k)
εj ||2

and (4.52) holds if and only if

∂

[
Pεj(·) + IKδ(·) +

1

2γk
||(·)− x(k)

εj
||2
]

(x(k+1)
εj

) 3 0

∂

[
Pεj(·) +

1

2γk
||(·)− x(k)

εj
||2
]

(x(k+1)
εj

) +NKδ(x
(k+1)
εj

) 3 0

, for all j ∈ {0} ∪ Iq

(4.55)
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(see Theorem 8.15 of [96]). We write (4.55) as

1

γk
(x(k)

εj
− x(k+1)

εj
) ∈ ∂Pεj(x(k+1)

εj
) +NKδ(x

(k+1)
εj

), for all j∈{0} ∪ Iq (4.56)

and (4.56) holds true if and only if

x(k)
εj
− x(k+1)

εj
− γk g(k+1)

εj
∈ NKδ(x(k+1)

εj
), for all j∈{0} ∪ Iq (4.57)

for some g
(k+1)
εj ∈∂Pεj(x(k+1)

εj ). From (4.22), the inclusion in (4.57) is equivalent to

[
x(k)
εj
− x(k+1)

εj
− γk g(k+1)

εj

]T
(x− x(k+1)

εj
) ≤ 0, ∀ x ∈ Kδ

and since x
(k)
εj ∈ Kδ, we obtain

[
x(k)
εj
− x(k+1)

εj
− γk g(k+1)

εj

]T
(x(k)

εj
− x(k+1)

εj
) ≤ 0 (4.58)

which is true if and only if (4.53) holds by the projection theorem (see Proposition

1.1.9 of [12]), which completes the proof.

On the basis of Proposition 4.4, the update formula in (4.53) is similar to that in

(1.10) with the only difference being that the subgradient is evaluated at a different

point. The update formula in (4.53) is preferred over that in (4.52) because the

projector onto set Kδ can be computed efficiently. Unfortunately, (4.54) is of little

practical use because the subgradient is evaluated at the next solution point x
(k+1)
εj

rather than at the current solution point x
(k)
εj .

In Sec. 4.3.1, we show that for approximate solutions to the minimization problem

in (4.48), the resulting inexact update formula is applied by iteratively performing

two fundamental operations. In Sec. 4.3.2, we show that the first operation can be

performed either analytically or numerically as the limit of an infinite series of nested

radicals. In Sec. 4.3.3, we show that the second operation can be performed by using

a fast convergent version of the AP method. In Sec. 4.3.4, we present convergence

results for the proposed method. In Sec. 4.3.5, we propose a two-step method for

accelerated convergence.
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4.3.1 Proposed FOS

An inexact variant of the update formula in (4.53) is given by

x(k+1)
εj

= projKδ

(
x(k)
εj
− γk g̃(k+1)

εj

)
, for all j∈{0} ∪ Iq (4.59)

where

g̃(k+1)
εj

∈ ∂Pεj(x(k+1)
εj

+ e(k)
εj

) (4.60)

is a subgradient of function Pεj(x), column vector e
(k)
εj given by

e(k)
εj

= z(k)
εj
− x(k+1)

εj
(4.61)

is the error introduced in (4.53), and z
(k)
εj is a solution to the inclusion

1

γk

(
x(k)
εj
− z(k)

εj

)
∈ ∂Pεj(z(k)

εj
), for all j∈{0} ∪ Iq (4.62)

Use of the update formula in (4.59) approximately solves the minimization problem

in (4.48). The approximation error is proportional to the magnitude of vector e
(k)
εj in

(4.61). Because the subgradient is evaluated at point z
(k)
εj , (4.60) is applicable unlike

(4.54) where the subgradient is evaluated at the next solution point x
(k+1)
εj .

As stated in the following proposition, the proposed update formula is applied by

iteratively performing two fundamental operations.

Proposition 4.5 (Inexact Variant of the Update Formula). The update formula in

(4.59) can be written as the iterative computation of the PP of function Pεj(x) followed

by the projection of such a point into the feasible set Kδ, namely,

x(k+1)
εj

= projKδ

(
z(k)
εj

)
, for all j∈{0} ∪ Iq (4.63)

where

z(k)
εj
∈ proxγk

[
Pεj(x

(k)
εj

)
]

(4.64)

Proof. The inclusion in (4.62) holds true if and only if

g̃(k+1)
εj

=
1

γk

(
x(k)
εj
− z(k)

εj

)
, for all j∈{0} ∪ Iq (4.65)

and for some g̃
(k+1)
εj ∈∂Pεj(z(k)

εj ). Combining (4.59) and (4.65), we obtain (4.63). From
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Corollary 4.1, Pεj(x) is a lower-C2 function and, therefore, z
(k)
εj is a PP of Pεj(x

(k)
εj )

because (4.65) implies (4.64) (see Theorem 1 of [56]), which completes the proof.

The proposed update formula in (4.63) defines what we call the iterative proximal-

point projection (IPPP) method. If we assume that the sequence {x(k)
εj }k∈N associated

with (4.63) converges to a solution point x∗εj ∈ Sεj ,δ for all j ∈ {0} ∪ Iq, then the

convergence of such a sequence can be quite slow as index j approaches q because

function Pεj(x) may assume arbitrarily large Lipschitz constants (see Sec. 4.2.3 for

details). This problem is circumvented by employing initialization strategies such as

those used in continuation procedures (see embedding algorithm in [3]). Continuation

procedures are applicable to the problem at hand because function Pεj(x) with j ∈
{0}∪Iq defines a homotopy (or deformation) of the `pp norm of x as the regularization

sequence {εj}j∈{0}∪Iq is a strictly decreasing sequence where the approximations

Pε0(x) ≈ nεp0 and Pεq(x) ≈ ||x||pp

hold true (see Definition 4.3 and Chapter 1 of [3]).

For the initial index j = 0, we choose an initial point x
(0)
ε0 and let the initial point

for the remaining indices be given by

x(0)
εj

= x∗εj−1
, for all j ∈ Iq (4.66)

On the basis of Lemma 4.1, the convergence rate of the IPPP method is improved

by using such an initialization strategy. The Euclidean distance between solutions

of two consecutive problems in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq approaches 0 as the

index j approaches q. Consequently, initial points employed are increasingly closer

to the solution of the problem at hand for increasing j. The IPPP method with

continuation is defined in Algorithm 4.1.

4.3.2 Computation of the PP

Here we are searching for an efficient method for computing the PP of function Pεj(x).

From (1.2) and (1.15), the PP mapping of Pεj(x) is defined by

proxγk
[
Pεj(x)

]
= arg minimize

x̄

[
n∑

i=1

pεj(|xi|) +
1

2γk
||x̄− x||2

]
, for all j ∈ {0} ∪ Iq

(4.67)
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Input: x(0) ∈ Kδ, εc > 0, {εj}j∈Iq , γk ∈ (0, 1/rεj)

Output: x∗εq ∈ Sεq ,δ
x∗ε−1

= x(0);

for j = 0 to q do

x
(0)
εj = x∗εj−1

;

k = −1;

repeat

k = k + 1;

Compute the PP of Pεj(x
(k)
εj ) (see Algorithm 4.2);

z
(k)
εj = proxγk

[
Pεj(x

(k)
εj )
]
;

Compute the projection of z
(k)
εj onto set Kδ (see Algorithm 4.3);

x
(k+1)
εj = projKδ

(
z

(k)
εj

)
;

until ||Fε,δ(x(k+1)
εj )− Fε,δ(x(k)

εj )|| ≤ εc;

x∗εj = x
(k+1)
εj ;

end

Algorithm 4.1: IPPP Method with Continuation

and is closely related to the PP mapping of function pεj(|xi|) which is defined as

proxγk
[
pεj(|xi|)

]
= arg minimize

x̄i

[
pεj(|xi|) +

1

2γk
|x̄i − xi|2

]
, for all j ∈ {0} ∪ Iq

(4.68)

The optimization problems in (4.67) and (4.68) have an unique solution for appropri-

ate values of the prox-parameter γk and the solution of the problem in (4.67) can be

obtained from that of the problem in (4.68). These results are stated in the following

proposition.

Proposition 4.6 (Uniqueness of PP). Let {εj}j∈{0}∪Iq be a sequence as described in

Definition 4.3 and let ρεj denote the lower-C2 constant of Pεj(x). When γk < 1/ρεj ,

the PPs z and zi are uniquely determined by the relations

z = proxγk
[
Pεj(x)

]
⇐⇒ 1

γk
(x−z) ∈ ∂Pεj(z), for all j∈{0}∪Iq (4.69a)

zi = proxγk
[
pεj(|xi|)

]
⇐⇒ 1

γk
(xi−zi) ∈ ∂ pεj(|zi|), for all j∈{0}∪Iq (4.69b)
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The PP mapping of Pεj(x) is related to that of pεj(|xi|) by

proxγk
{
Pεj(x)

}
=
[
proxγk

{
pεj(|x1|)

}
· · · proxγk

{
pεj(|xn|)

}]T
(4.70)

and the PPs z and zi are related by

z =
[
z1 z2 · · · zn

]T
(4.71)

Proof. For all j ∈ {0} ∪ Iq, functions pεj(|xi|) and Pεj(x) are bounded from below

by εj and nεj, respectively. The uniqueness of the PPs of functions pεj(|xi|) and

Pεj(x) follows from their boundedness and from Proposition 4.2 and Corollary 4.1

(see Theorem 1 of [56]). Thus, we obtain 4.69a and (4.69b).

The subdifferential of Pεj(x) is related to that of pεj(|xi|) by

∂Pεj(x) =
n∏

i=1

∂pεj(|xi|), for all j ∈ {0} ∪ Iq (4.72)

(see Corollary 2.4.5 of [116]). Using a similar approach to that in the proof of Lemma

2.9 of [31], it follows from 4.69a and (4.72) that

z = proxγk
{
Pεj(x)

}
⇐⇒ 1

γk
(x− z) ∈ ∂Pεj(z) =

n∏

i=1

∂pεj(|zi|) (4.73)

which is true if and only if

z =
[
proxγk

{
pεj(|x1|)

}
· · · proxγk

{
pεj(|xn|)

}]
(4.74)

Combining 4.69, (4.73), and (4.74), we obtain (4.70) and (4.71), which completes the

proof.

On the basis of (4.11) and Proposition 4.6, we can express the PP zi in (4.69b)

as

zi =





z−, xi ∈ R−

z+, xi ∈ R+

0, xi = 0

(4.75)
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where z− and z+ are PPs determined by the relations

z− = prox−γk
[
pεj ,−(xi)

]
< 0 ⇐⇒ p (−z− + εj)

p−1 =
1

γk
(z− − xi)

z+ = prox+
γk

[
pεj ,+(xi)

]
> 0 ⇐⇒ p (z+ + εj)

p−1 = − 1

γk
(z+ − xi)

(4.76)

and the PP mappings of functions pεj ,−(xi) and pεj ,+(xi) are defined by

prox−γk
[
pεj ,−(xi)

]
=arg minimize

x∈R−

[
pεj ,−(xi)+

1

2γk
|x−xi|2

]

prox+
γk

[
pεj ,+(xi)

]
=arg minimize

x∈R+

[
pεj ,+(xi)+

1

2γk
|x−xi|2

], for all j ∈ {0} ∪ Iq

The computation of the PP zi is facilitated when p in (1.4) is expressed as a common

fraction of the form

p =
l − 1

l
, for any l ∈ {2, 3, . . .} (4.77)

and the PPs z− and z+ are employed. Combining (4.76) and (4.77), we obtain

z− = prox−γk
[
pεj ,−(xi)

]
< 0 ⇐⇒ l − 1

l
(−z− + εj)

− 1
l =

1

γk
(z− − xi) (4.78a)

z+ = prox+
γk

[
pεj ,+(xi)

]
> 0 ⇐⇒ l − 1

l
(z+ + εj)

− 1
l = − 1

γk
(z+ − xi) (4.78b)

and substituting new variables v− and v+ given by

v− = (−z− + εj)
1
l

v+ = (z+ + εj)
1
l

(4.79)

into 4.78a and (4.78b), the relations in (4.78) hold true if and only if

−vl−+εj = prox−γk
[
pεj ,−(xi)

]
< 0 ⇐⇒ vl+1

− +(xi−εj)v−+γk
l−1

l
= 0 (4.80a)

+vl+−εj = prox+
γk

[
pεj ,+(xi)

]
> 0 ⇐⇒ vl+1

+ +(−xi−εj)v++γk
l−1

l
= 0 (4.80b)

hold true. Thus, the PPs z− and z+ can be computed by solving trinomial equations

of the form in (4.80). As stated in the following proposition, the computation of the

PP zi boils down to finding the largest root of a trinomial equation which is obtained
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by combining the trinomial equations on the right-hand side of 4.80a and (4.80b).

Proposition 4.7 (PP and Trinomial Equation). Let {εj}j∈{0}∪Iq be a sequence as

described in Definition 4.3 and assume that γk < 1/ρεj for all j ∈ {0} ∪ Iq. The PP

zi in (4.69b) is given by

zi =





sign(xi)(v
l − εj), |xi| > γk

l − 1

l l
√
εj

0, otherwise

, for all j ∈ {0} ∪ Iq (4.81)

where v is the largest real root of the trinomial equation

vl+1 + (−|xi| − εj)v + γk
l − 1

l
= 0 (4.82)

Proof. On the basis of the uniqueness of zi in (4.69b) and from (4.75),

(4.76), and (4.78) to (4.80), we conclude that v− and v+ are unique real roots greater

than l
√
εj of the trinomial equations on the right-hand side of 4.80a and (4.80b), re-

spectively. The number of real roots greater than l
√
εj in the trinomial equation in

(4.80a) is the same as the number of positive real roots of the transformed equation

obtained from the original one by using the substitution

v̄− = l
√
εj + v− (4.83)

(see p. 126 of [110]). Combining 4.80a and (4.83), the transformed equation is given

by
(
l
√
εj + v̄−

)l+1
+ (xi − εj)

(
l
√
εj + v̄−

)
+ γk

l − 1

l
= 0 (4.84)

which after expanding the binomials and simplifying is equivalent to the polynomial

al+1v̄
l+1
− + alv̄

l
− + al−1v̄

l−1
− + . . .+ a2v̄

2
− + a1v̄− + a0 = 0 (4.85)

where

a` =





1, ` = l + 1
(
l+1
`

)
ε
l+1−`
l

j , ` ∈ {l, l − 1, . . . , 3, 2}
[(
l+1
`

)
− 1
]
εj + xi, ` = 1

γk
l−1
l

+ l
√
εjxi, ` = 0

(4.86)

Let Il = {l + 1, l, l − 1, . . . , 3, 2} and let Il+2 = Il ∪ {1, 0}. The number of
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positive real roots of the polynomial in (4.85) is never greater than the number of

sign changes in the sequence {a`}`∈Il+2
(see Descartes’ rule of signs, p. 121 of [110]).

Since the trinomial equation in (4.80a) has an unique real root greater than l
√
εj, the

polynomial equation in (4.85) must have an unique positive real root. Therefore, the

sequence {a`}`∈Il+2
must have at least one sign change. From (4.86), we have a` > 0

for ` ∈ Il while a1 can be either positive, negative, or zero. Thus, {a`}`∈Il+2
has one

sign change when a0 < 0 or when

xi < −γk
l − 1

l l
√
εj

(4.87a)

By using a similar approach to that used for the trinomial equation in (4.80a), it can

be shown that the existence of a unique real root greater than l
√
εj in the trinomial

equation in (4.80b) implies the inequality

xi > γk
l − 1

l l
√
εj

(4.87b)

From (4.75), (4.76), (4.78), (4.80), and (4.87), we obtain (4.81) and, by combining

the trinomial equations on the right-hand side of 4.80a and (4.80b), we obtain (4.82).

Lastly, since v is the unique real root greater than l
√
εj of (4.82), it must also be the

largest root, which completes the proof.

On the basis of Proposition 4.7, the PP zi in (4.69b) can be computed efficiently

when the trinomial equation in (4.82) is solved either analytically or numerically by

using a fast iterative method. In the general case where l ∈ {2, 3, . . .}, a solution is

obtained as the limit of nested series with infinitely many terms such as

cf {x+ cf [x+ cf(x)]} · · · (4.88)

where c is a real constant. For example, if we let f(x) =
√
x in (4.88), then the re-

sulting infinite series reduces to so-called infinite radicals (see Section II of [57]). The

roots of trinomial equations can be approximated as the limit of infinite radicals, as

is done in [99] or by employing the so-called Bolyai algorithm (see Section 2 of [103]).

The infinite series involved in such approximations have fast convergence. For l = 2

or 3, (4.82) reduces to a polynomial equation of third and fourth degree, respectively.

The roots of cubic and biquadratic equations can be obtained analytically (see Chap-

ter V of [110]). On the basis of these results, the largest real root of the trinomial
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equation in (4.82) is described in the following proposition.

Proposition 4.8 (Root of the Trinomial Equation). Let {εj}j∈{0}∪Iq be a sequence

as described in Definition 4.3. Assume that γk < 1/ρεj for all j ∈ {0}∪Iq and p is of

the form in (4.77). The largest real root of the trinomial equation in (4.82) is given

by the limit of infinite radicals of the form

v =
l+1

√√√√−γk
l−1

l
− (−|xi| − εj)

l+1

√

−γk
l−1

l
− (−|xi| − εj) l+1

√
−γk

l−1

l
− · · · (4.89)

for all l ∈ {2, 3, . . .}. For l = 2 or 3, if we let

c =
3

√

− b
2

+

√
b2

4
+
a3

27
(4.90)

where

b =




γk

l−1
l
, l = 2

−(−|xi| − εj)2, l = 3
(4.91a)

a =




−|xi| − εj, l = 2

−4γk
l−1
l
, l = 3

(4.91b)

then the largest real root has a closed-form expression given by

v =





c− a
3c
, l = 2

1
2

[
√
c− a

3c
+

√
4
√

1
4

(
c− a

3c

)2−γk l−1
l
−
(
c− a

3c

)
]
, l = 3

(4.92)

Proof. Assume the contrary, namely, that for all εj with j ∈ {0} ∪ Iq and for all

l ∈ {2, 3, . . .} the inequality given by

(
γk

l
l−1

l

)l

>

(−|xi| − εj
l + 1

)l+1

(4.93)

holds true for

γk < 1/ρεj ⇒ γk <
l − 1

l2ε
l−1
l

j

(4.94a)
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(see (4.14) and (4.77)) and

|xi| > γk
l − 1

l l
√
εj

(4.94b)

(see (4.81)). If this is the case, then (4.93) must also hold true for

γk =
l − 1

l2ε
l−1
l

j

(4.95a)

and

|xi| = γk
l − 1

l l
√
εj

(4.95b)

Combining (4.93), (4.95a), and (4.95b) and simplifying, we obtain


(l − 1)2

l4ε
l−1
l

j



l

>

[
(l − 1)2

l3(l + 1)εj
+

εj
l + 1

]l+1

(4.96)

which is a contradiction because the right-hand side of (4.96) is greater than its left-

hand side for all εj with j ∈ {0} ∪ Iq and for all l ∈ {2, 3, . . .}. Thus, for values of

γk and |xi| given by 4.94a and (4.94b), respectively, we must have

(
γk

l
l−1

l

)l

<

(−|xi| − εj
l + 1

)l+1

(4.97)

which implies that the trinomial equation in (4.82) has (l− 2) imaginary roots and 3

distinct real roots when l is even and (l− 1) imaginary roots and 2 distinct real roots

when l is odd (see Problems 14 and 15 on p. 113 of [110]).

When l is even, the three distinct real roots are given by (4.89), and by

v1 =





γk
l−1
l l
√
εj

+

γk l−1
l l
√
εj

+

 γk
l−1
l l
√
εj

|xi|+εj

l+1

|xi|+εj


l+1

|xi|+εj





l+1

. . . (4.98)

and

v2 =
l+1

√√√√√−γk
l−1

l l
√
εj
− 1

l
√
l+1

(|xi|+εj)
l+1
l + l+1

√√√√−γk
l−1

l l
√
εj
− 1

l
√
l+1

(|xi|+εj)
l+1
l l+1

√
−γk

l−1

l l
√
εj
. . .

(4.99)
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(see Sec. 10 of [99]). It can be shown that for values of γk and |xi| given by 4.94a

and (4.94b), respectively, root v in (4.89) is always greater than l
√
εj, while roots v1

and v2 in (4.98) and (4.99), respectively, are always less than l
√
εj. When l is even,

the two distinct real roots are given by v and v1. For values of γk and |xi| given by

4.94a and (4.94b), respectively, root v in (4.89) is always greater than l
√
εj, while root

v1 in (4.98) is always less than l
√
εj.

When l=2, the equation in (4.82) has three roots given by (4.92), and by

v1 =

(
−1 + 

√
3

2

)
c−

(
−1 + 

√
3

2

)2
a

3c
(4.100)

and

v2 =

(
−1 + 

√
3

2

)2

c−
(
−1 + 

√
3

2

)
a

3c
(4.101)

(see Chapter 5 of [110]). For values of γk and |xi| given by 4.94a and (4.94b), re-

spectively, we conclude that the roots in (4.92), (4.100), and (4.101) are all real (see

(4.97)). Root v in (4.92) is always greater than
√
εj, while roots v1 and v2 in (4.100)

and (4.101), respectively, are always less than
√
εj. When l=3, the equation in (4.82)

has four roots given by (4.92), and by

v1 =
1

2



√
c− a

3c
−

√

4

√
1

4

(
c− a

3c

)2

−γk
l−1

l
−
(
c− a

3c

)

 (4.102)

v2 =
1

2


−
√
c− a

3c
+

√

4

√
1

4

(
c− a

3c

)2

−γk
l−1

l
−
(
c− a

3c

)

 (4.103)

and

v3 =
1

2


−
√
c− a

3c
−

√

4

√
1

4

(
c− a

3c

)2

−γk
l−1

l
−
(
c− a

3c

)

 (4.104)

(see Chapter 5 of [110]). For values of γk and |xi| given by 4.94a and (4.94b), respec-

tively, we conclude that the roots in (4.92) and (4.102) are real and those in (4.103)

and (4.104) are imaginary (see (4.97)). Root v in (4.92) is always greater than 3
√
εj,

while root v1 in (4.102) is always less than 3
√
εj.

Lastly, from the above arguments, we conclude that roots v in (4.89) and (4.92)
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are unique real roots greater than l
√
εj of the trinomial equation in (4.82). Therefore,

they must also be the largest real roots of (4.82), which completes the proof.

On the basis of Propositions 4.6 to 4.8, the PP of function Pεj(x) can be computed

by using Algorithm 4.2.

Input: εj, x ∈ Rn, γk <
1
ρεj

, l ∈ {2, 3, . . .}, εc > 0

Output: z = proxγk
[
Pεj(x)

]

for i = 1 to n do

if l ∈ {2, 3} then

Compute the root v given by (4.92);

else

v = l+1

√
−γk l−1

l
− (−|xi| − εj);

repeat

v(0) = v;

v = l+1

√
−γk l−1

l
− (−|xi| − εj)v(0);

until ||v − v(0)|| ≤ εc;

end

Compute the PP zi given by (4.81);

end

Compute the PP z given by (4.71);

Algorithm 4.2: Computation of the PP of Pε(x)

4.3.3 Projection onto the Feasible Set

From (1.11) and (4.10), the projection of a point ȳ ∈ Rn+m onto set Kδ is given by

projKδ(ȳ) = arg minimize
y∈⋂m+1

i=1 Kδ,i
‖y − ȳ‖ (4.105)

where convex sets Kδ,i for i ∈ Im are hyperplanes of the form given in (4.8), convex

set Kδ,i for i ∈ {m+ 1} is the closed ball under affine mapping given by (4.9), and
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the variable y ∈ Rn+m is defined in terms of variables z and c in (4.6) as

y =

[
z

c

]
(4.106)

The convex feasibility problem associated with set Kδ is closely related to the opti-

mization problem in (4.105). It reduces to that of finding a common point of closed

and convex sets, i.e.,

find y ∈
m+1⋂

i=1

Kδ,i (4.107)

Here we are searching for an efficient method for the solution of the aforementioned

convex feasibility problem that can use matrices A and AT in matrix-vector opera-

tions only. This same method is applicable for computing the projection of a point

onto set Kδ because the problems in (4.105) and (4.107) can be shown to have the

same solution in such a setting.

Let Im+1 denote a set of m + 1 integers given by {1, . . . , m, m+ 1}. Next, we

partition set Im+1 into M blocks of indices as

Im+1 = I1
m+1 ∪ I2

m+1 ∪ · · · ∪ IMm+1 (4.108)

and let {t(k)}k∈N denote a control sequence over the set {1, . . . , M}, as is done in [2].

The problem in (4.107) can now be solved by applying an update formula of the form

y(k+1) = y(k) + λkLk



∑

i∈It(k)m+1

wi,k projKiδ(y
(k))− y(k)


 (4.109)

where the sequence of weights {wi,k}i∈It(k)m+1
satisfies the conditions

1. {wi,k}i∈It(k)m+1
⊂ [0, 1]

2.
∑

i∈It(k)m+1

wi,k = 1

The relaxation sequence {λk}k∈N satisfies the condition

ε/Lk ≤ λk ≤ 2− ε, for ε ∈ (0, 1)

and Lk ≥ 1 is an extrapolation parameter (see [6, 29, 32, 33]). For example, if we let
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Lk = 1 for all k ∈ N and let the control sequence {t(k)}k∈N be given by

t(k) = k (mod m+ 1) + 1 (4.110)

where the indices It(k)
m+1 are defined by It(k)

m+1 = t(k), then the update formula in (4.109)

would correspond to that used in the AP method of [52].

Each solution point y(k) in (4.109) can be computed efficiently because the pro-

jector onto each set Kδ,i has a simple analytical solution. If we let y(k) be of the form

y(k) =

[
z(k)

c(k)

]
(4.111)

then the projections for i ∈ Im and i ∈ {m+ 1} are given, respectively, by

projKiδ(y
(k)) =

[
z(k)

c(k)

]
+
bi + c

(k)
i − aTi z(k)

||ai||2

[
ai

0

]
(4.112)

and

projKiδ(y
(k)) =






z

(k)

c(k)


 , ||c(k)|| ≤ δ


 z(k)

1
2

(
1+ δ

||c(k)||

)
c(k)


 , ||c(k)|| > δ

(4.113)

(see pp. 398 and 447 of [16]). In addition, accelerated convergence of the sequence{
y(k)

}
k∈N in (4.109) is achieved by using an extrapolation parameter Lk of the form

Lk=





∑
i∈It(k)m+1

wi,k|| projKiδ(y
(k))−y(k)||2

||∑
i∈It(k)m+1

wi,k projKiδ(y
(k))−y(k)||2 , y(k) 6∈

⋂

i∈It(k)m+1

Kiδ

1, otherwise

(4.114)

(see Secs. IV and V of [32]). Thus, by using (4.112) to (4.114), we conclude that the

update formula in (4.109) can be computed efficiently.

For the case of orthogonal ensembles, matrices A and AT can be used in matrix-

vector operations only during computation of the update formula in (4.109). This

is achieved when the index set Im+1 in (4.108) is appropriately partitioned. We use
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M = 2 with I1
m+1 = {1, 2, . . . , m} and I2

m+1 = {m+ 1} in (4.108). The weights

wi,k are of the form

wi,k =





1/m, for i ∈ I1
m+1

1, for i ∈ I2
m+1

(4.115)

and the control sequence {t(k)}k∈N is defined by

t(k) = k (mod M) + 1 (4.116)

Consider the update formula when It(k)
m+1 reduces to the block of indices I1

m+1. From

(4.112) and (4.115), we obtain

∑

i∈I1m+1

wi,k|| projKiδ(y
(k))− y(k)||2 =

1

m

∑

i∈I1m+1

∥∥∥∥∥
bi + c

(k)
i − aTi z(k)

||ai||2

[
ai

0

]∥∥∥∥∥

2

=
1

m

∥∥∥∥∥

[
diag(d)−1(b+ c(k) −Az(k))

0

]∥∥∥∥∥

2
(4.117)

and

∥∥∥∥∥∥
∑

i∈I1m+1

wi,k projKiδ(y
(k))−y(k)

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
1

m

∑

i∈I1m+1

bi+c
(k)
i −aTi z(k)

||ai||2

[
ai

0

]∥∥∥∥∥∥

2

=

∥∥∥∥∥
1

m

[
AT

{
diag(d)−2(b+c(k)−Az(k))

}

0

]∥∥∥∥∥

2

(4.118)

where d denotes a column vector of length m which is formed by collecting the rows

of matrix A as

d =
[
||a1|| ||a2|| · · · ||am||

]T
(4.119)

Because matrix A is orthonormal when orthogonal ensembles are used, vector d

reduces to a column vector of m ones. Therefore, by using (4.117) and (4.118), the

parameter Lk in (4.114) can be written as

Lk=





1
m

∥∥b+c(k)−Az(k)
∥∥2

∥∥ 1
m
AT (b+c(k)−Az(k))

∥∥2 , y(k) 6∈
⋂

i∈I1m+1

Kiδ

1, otherwise

(4.120)
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and from (4.112), (4.115), and (4.120), the update formula in (4.109) reduces to

y(k+1) = y(k) + λkLk


 ∑

i∈I1m+1

wi,k projKiδ(y
(k))− y(k)




=

[
z(k)

c(k)

]
+ λkLk

1

m

[
AT

(
b+ c(k) −Az(k)

)

0

] (4.121)

when the block of indices I1
m+1 is used.

Consider now the update formula when It(k)
m+1 reduces to the block of indices I2

m+1.

From (4.115), we have

∑

i∈I2m+1

wi,k|| projKiδ(y
(k))− y(k)||2 = ||

∑

i∈I2m+1

wi,k projKiδ(y
(k))− y(k)||2

which implies that the parameter Lk in (4.114) can be written as

Lk =





∑
i∈I2m+1

wi,k|| projKiδ(y
(k))− y(k)||2

||∑i∈I2m+1
wi,k projKiδ(y

(k))− y(k)||2 , y(k) 6∈
⋂

i∈I2m+1

Kiδ

1, otherwise

= 1

(4.122)

Therefore, from (4.113) and (4.122), the update formula in (4.109) reduces to

y(k+1) = y(k) + λkLk


 ∑

i∈I2m+1

wi,k projKiδ(y
(k))− y(k)




=

[
z(k)

c(k)

]
+ λk






0

0


 , ||c(k)|| ≤ δ


 0{

1
2

(
1+ δ

||c(k)||

)
−1
}
c(k)


 , ||c(k)|| > δ

(4.123)

when the block of indices I2
m+1 is used.

In summary, we conclude from (4.121) and (4.123) that the computation can

be carried out by using fast algorithms for matrix-vector products in the case of
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orthogonal ensembles. Thus, the update formula in (4.109) is suitable for solving

large-scale recovery problems.

Lastly, consider the solution of the optimization problem in (4.105). As stated in

the following theorem, the update formula in (4.109) can be used for computing not

only a feasible point but also the projection of a point onto the feasible set.

Theorem 4.1 (Feasible Point and Projection of a Point). Let
{
z(k)
}
k∈N denote a

sequence obtained from sequence
{
y(k)

}
k∈N in (4.109) by using the variable transfor-

mation in (4.111). The sequence
{
z(k)
}
k∈N converges to projKδ(z) for every z ∈ Rn.

Proof. Let
{
ȳ(k)

}
k∈N denote a sequence obtained from sequence

{
y(k)

}
k∈N in (4.109)

when Lk = 1 for all k ∈ N and when the control sequence is given by (4.110).

In addition, let
{
z̄(k)
}
k∈N denote a sequence obtained from

{
ȳ(k)

}
k∈N by using the

variable transformation in (4.111).

From Proposition 4.1 and (4.112) and (4.113), we conclude that the update for-

mula associated with
{
z̄(k)
}
k∈N corresponds to that used in an AP method for finding

a point in the intersection of linear varieties. Thus, sequence
{
z̄(k)
}
k∈N converges to

proj⋂m
i=1Kδ,i(z) for every z ∈ Rn (see Corollary 2, pp. 50 of [114]). Now, if sequence{

z̄(k)
}
k∈N converges to a point z̄ ∈ ⋂m

i=1Kδ,i, then sequence
{
z(k)
}
k∈N must also

converge to that same point z̄. This can be shown by combining Lemma 4.1 (iv)

and Proposition 2.2 (iii) of [33] into the proof of Theorem 4.2 of the same reference

(see Theorem 4.1 of [33] for a similar result). Based on the above arguments, we

conclude that
{
z(k)
}
k∈N converges to projKδ(z) for every z ∈ Rn, which completes

the proof.

On the basis of Theorem 4.1, the projection of a point z ∈ Rn onto set Kδ can be

computed by using Algorithm 4.3.

4.3.4 Convergence Analysis

Consider the case where the update formula in (1.14) is applied for the minimization

of function F (x) and the problem in (1.13) is solved approximately. A requirement for

the convergence of such inexact variant of the PP method to a minimizer of F (x) is

that the errors entailed by the approximate solution are summable (see p. 880 of [94]

and p. 732 of [30]). On the basis of these convergence results, a necessary condition for

the convergence of sequence {x(k)
εj }k∈N in (4.63) to a point in the solution set Sεj ,δ for

all j ∈ {0}∪Iq is that the magnitude of the error vector e
(k)
εj in (4.61) is bounded and
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Input: δ ≥ 0, εc > 0, z ∈ Rn,A ∈ Rm×n, b ∈ Rm, λk > 0

Output: projKδ (z)

c(0) = Az − b;
z(0) = z;

k = −1;

repeat

k = k + 1;

Compute the control sequence t(k) given by (4.116);

if t(k) = 1 then

Compute the solution point y(k+1) given by (4.121);

else if t(k) = 2 then

Compute the solution point y(k+1) given by (4.123);

end

until ||y(k+1) − y(k)|| ≤ εc;

projKδ(z) = z(k+1);

Algorithm 4.3: Projection onto Kδ

the resulting error sequence {||e(k)
εj ||}k∈N is monotonically decreasing and summable.

As stated in the following lemma, the errors entailed by the proposed update formula

have the aforementioned properties.

Lemma 4.4 (Boundedness and Summability of the Error). If γk < 1/ρεj for all

j ∈ {0} ∪ Iq, the following properties apply to the error vector e
(k)
εj in (4.61):

1. The magnitude of the error is bounded as

0 ≤ ||e(k)
εj
|| ≤

√
2γkn

p

ε1−pj

, for all k ∈ N, j∈{0} ∪ Iq (4.124)

2. The error sequence {||e(k)
εj ||}k∈N defined by the update formula in (4.59) is a

monotonically decreasing and summable sequence.

Proof. We have

||x(k)
εj
−z(k)

εj
||2 = ||x(k)

εj
− x(k+1)

εj
+ x(k+1)

εj
− z(k)

εj
||2

= ||x(k)
εj
−x(k+1)

εj
||2+||x(k+1)

εj
−z(k)

εj
||2− 2(x(k)

εj
−x(k+1)

εj
)T (z(k)

εj
−x(k+1)

εj
)

(4.125)
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for all k ∈ N. The projection of z
(k)
εj onto set Kδ has the property

[
z(k)
εj
− projKδ(z

(k)
εj

)
]T [

x− projKδ(z
(k)
εj

)
]
≤ 0, for all x ∈ Kδ (4.126)

(see Theorem E.9.1.0.2 of [36]). By using (4.63) and (4.126), we have

(x(k)
εj
− x(k+1)

εj
)T (z(k)

εj
− x(k+1)

εj
) ≤ 0, for all k ∈ N (4.127)

Combining (4.125) and (4.127), we obtain the inequality

||x(k+1)
εj

− z(k)
εj
|| ≤ ||x(k)

εj
− z(k)

εj
||, for all k ∈ N (4.128)

From Corollary 4.1, function Pεj(x) is Lipschitz continuous with constant κεj for

all j ∈ {0} ∪ Iq and, therefore, the Euclidean distance between a PP z
(k)
εj and the

prox-center x
(k)
εj is bounded from above as

||z(k)
εj
− x(k)

εj
|| ≤ 2γkκεj , for all j∈{0} ∪ Iq (4.129)

(see Lemma 2 of [56]). Thus, combining (4.21), (4.61), (4.128), and (4.129), we obtain

(4.124).

Now from (4.63), (4.64), and (4.69a), we obtain

||x(k)
εj
− z(k)

εj
||=
∥∥∥projKδ(z

(k−1)
εj

)− proxγk

[
Pεj(x

(k)
εj

)
]∥∥∥

||x(k)
εj
−z(k−1)

εj
||=
∥∥∥projKδ(z

(k−1)
εj

)−proxγk

[
Pεj(x

(k−1)
εj

)
]∥∥∥
, for all j∈{0} ∪ Iq

(4.130)

Furthermore, the inequality in (4.128) can be written as

||x(k)
εj
− z(k−1)

εj
|| ≤ ||x(k−1)

εj
− z(k−1)

εj
||, for all k ∈ N (4.131)

Therefore, from (1.11), (1.15), (4.130), and (4.131), we must have

||x(k)
εj
− z(k)

εj
|| ≤ ||x(k)

εj
− z(k−1)

εj
||, for all k ∈ N (4.132)

and by combining (4.128) and (4.132), we obtain the inequality

||x(k)
εj
− z(k−1)

εj
|| ≥ ||x(k+1)

εj
− z(k)

εj
||, for all k ∈ N



130

or by using (4.61), the inequality

||e(k)
εj
|| ≥ ||e(k+1)

εj
||, for all k ∈ N (4.133)

Hence, from (4.124) and (4.133), we conclude that the error sequence {||e(k)
εj ||}k∈N

is a bounded monotonically decreasing sequence. Thus, {||e(k)
εj ||}k∈N is convergent

(see monotonic sequence theorem, p. 710 of [100]). By following a similar approach,

it can be shown that the related sequence {||e(k+1)
εj ||/||e(k)

εj ||}k∈N converges to some

limit ` < 1 and, therefore, sequence {||e(k)
εj ||}k∈N is summable (see ratio test, p. 743

of [100]), which completes the proof.

Now let Tε,δ denote the operator associated with the subdifferential mapping of

function F̃ε,δ(x) and let Sε,δ denote the set of minimizers of F̃ε,δ(x). If we suppose that

Tε,δ is monotone and the sequence of prox-parameters {γk}k∈N defined by (4.52) is

forced to assume a value above zero, i.e., inf{γk}k∈N > 0, then the summability of the

errors entailed by the approximate solution of (4.48) is sufficient for the convergence

of inexact variants of the PP method to a solution point x∗ε,δ ∈ Sε,δ (see Theorem

1 of [94]). In the case where Tε,δ is ηε-cohypomonotone, additional conditions for

convergence are necessary such as (1) each solution point x
(k)
ε in (4.52) is within a

neighborhood of Sε,δ, (2) the initial point x
(0)
ε is close enough to Sε,δ, (3) the errors

entailed by the approximate solution are not only summable but smaller than the

difference between the size of the neighborhood of Sε,δ and the distance of x
(0)
ε to Sε,δ,

and (4) the sequence {γk}k∈N is bounded away from ηε (see Theorem 3.1 of [30]). On

the basis of these results, the conditions for the convergence of the IPPP method to

a point in Sεj ,δ for all j ∈ {0} ∪ Iq are stated in Theorem 4.2 below.

Theorem 4.2 (Convergence to Solution Set with Regularization Sequence). Let

{εj}j∈{0}∪Iq be a sequence as described in Definition 4.3. Assume that the approxima-

tion in (4.42) holds true and let ηεj be given by (4.51). Consider applying the update

formula in (4.59) for the solution of each problem in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq

and let x
(0)
ε0 ∈ Kδ denote a given initial point for the solution of problem (LPε0,δ).

For the case where j = 0, there exists a closed ball B(α,Sεj ,δ) in (4.24) such that the

sequence {x(k)
εj }k∈N in (4.59) converges to a solution point x∗εj ,δ ∈ Sεj ,δ if the following

conditions are satisfied:

1. The solution point x
(k)
εj in (4.59) is such that

x(k)
εj
∈ B(α,Sεj ,δ), for all k ∈ N
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2. The sequence of prox-parameters {γk}k∈N defined by (4.59) is such that

2ηεj < inf {γk}k∈N and sup {γk}k∈N <
1

ρεj

3. The distance d(x
(0)
εj ,Sεj ,δ) in (4.26) is such that

d(x(0)
εj
,Sεj ,δ) <

4

5
α

4. The regularization parameter εj is large enough so that

√
2γkn

p

ε1−pj

≈ 0, for all k ∈ N

Furthermore, for the case where j ∈ Iq, there exists a closed ball B(α,Sεj ,δ) in (4.24)

such that the sequence {x(k)
εj }k∈N in (4.59) converges to a solution point x∗εj ,δ ∈ Sεj ,δ if

Conditions 1 and 2 above are satisfied and, in addition, the upper bound ν in Property

3 of Definition 4.3 is small enough so that

∑

k∈N
||e(k)

εj
|| < 1

2

(
4

5
α− νp

ε1−pj

p

)
(4.134)

Proof. Using an approach similar to that in the proof of Theorem 4.3 of [30], the

convergence of sequence {x(k)
εj }k∈N in (4.59) to a solution point x∗εj ,δ ∈ Sεj ,δ for all

j ∈ {0}∪Iq can be established by verifying conditions (i), (iii), and (iv-vii) in Theorem

3.1 of [30] as follows.

There exists a closed ball B(α,Sεj ,δ) in (4.24) such that the operator Tεj ,δ as-

sociated with function Fεj ,δ(x) in (4.4) is ηεj -cohypomonotone on B(α,Sεj ,δ) for all

j ∈ {0} ∪ Iq (see Lemma 4.3). Thus, condition (i) in Theorem 3.1 of [30] holds true

for ηεj given by (4.51) and for all j ∈ {0} ∪ Iq.
Let γεj = inf {γk}k∈N for the corresponding update formula applied to the problem

sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq . Condition (iii) and (iv) in Theorem 3.1 of [30] read

γεj > ηεj , for all j ∈ {0} ∪ Iq (4.135)
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and

ε ≤ 1

1− ηεj/γεj
≤ 2− ε, for all j ∈ {0} ∪ Iq (4.136)

respectively, for some ε ∈ (0, 1). The inequality in (4.135) and the one in (4.136) for

the case where ε→0 are implied by Condition 2 above.

Conditions (v) and (vi) in Theorem 3.1 of [30] read

d(x(0)
εj
,Sεj ,δ) <

4− 2ε

5− 2ε
α, for all j ∈ {0} ∪ Iq (4.137)

and
∑

k∈N
||e(k)

εj
|| <

4−2ε
5−2ε

α− d(x
(0)
εj ,Sεj ,δ)

2− ε , for all j ∈ {0} ∪ Iq (4.138)

respectively, for some ε ∈ (0, 1). For the case where j = 0 and ε→ 0, the inequal-

ity in (4.137) is implied by Condition 3. Furthermore, by combining Condition 4

and (4.124), we obtain
∑

k∈N ||e
(k)
εj || ≈ 0 (see Lemma 4.4). Thus, the inequality in

(4.138) holds true. For the case where j ∈ Iq and ε → 0, by combining (4.26),

(4.29), and (4.66), we obtain d(x
(0)
εj ,Sεj ,δ) < νpε1−pj /p (see Lemma 4.1). Thus, the

inequalities in (4.137) and (4.138) are implied by (4.134).

Lastly, Condition (vii) in Theorem 3.1 of [30] is implied by Condition 1 above for

all j ∈ {0} ∪ Iq, which completes the proof.

4.3.5 Accelerated Convergence with Two-Step Method

The convergence of the IPPP method can be accelerated by employing a two-step

method as detailed below. By applying the update-formula in (1.20) with F (x(k)) =

ψγk,εj(x
(k)) and αk = γk, we obtain a variant of the update formula in (4.52) given

by

x(k+1)
εj

= x(k)
εj
− γk∇ψγk,εj(x

(k)) + βk

(
x(k)
εj
− x(k−1)

εj

)
, for all j∈{0} ∪ Iq (4.139)

where 0 ≤ βk < 1, x
(−1)
εj = x

(0)
εj and the gradient vector ∇ψγk,εj(x

(k)
εj ) is given by

∇ψγk,εj(x
(k)
εj

) =
1

γk

[
x(k)
εj
− projKδ

(
x(k)
εj
− γk g(k+1)

εj

)]
(4.140)

where g
(k+1)
εj is of the form in (4.54) (see Lemma 4.2 and Proposition 4.4). The update

formula in (4.139) corresponds to a two-step method for the solution of each problem



133

in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq . The rate of convergence of sequence {x(k)

εj }k∈N
in (4.139) can be improved over that in (4.52) when parameter βk is appropriately

chosen. If we let βk be given by (1.27) and if we suppose that (1) the ME ψγk,εj(x) in

(4.48) is convex and differentiable with a Lipschitz continuous gradient on the basis

of Lemma 4.2 and (2) the sequence {x(k)
εj }k∈N in (4.52) converges to a solution point

x∗εj ,δ ∈ Sεj ,δ for all j ∈ {0} ∪ Iq, on the basis of Theorem 4.2, then the sequence

{x(k)
εj }k∈N in (4.139) must also converge to a solution point at a rate given by (1.21)

(see Scheme 2.2.9 of [82] and Theorem 1 of [81]).

Now, by following a similar approach as that in Sec. 4.3, we have an inexact

variant of the update formula in (4.139) given by

x(k+1)
εj

= x(k)
εj
− γk∇ψ̃γk,εj(x

(k)
εj

) + βk

(
x(k)
εj
− x(k−1)

εj

)
, for all j∈{0} ∪ Iq (4.141)

where βk is given by (1.27), the inexact gradient ∇ψ̃γk,εj(x
(k)
εj ) is given by

∇ψ̃γk,εj(x
(k)
εj

) =
1

γk

[
x(k)
εj
− projKδ

(
x(k)
εj
− γk g̃(k+1)

εj

)]
(4.142)

and g̃
(k+1)
εj is of the form in (4.60). It has been demonstrated in [35] that the optimal

convergence rate of two-step methods of the form in (4.141) is preserved when the

inexact gradient ψ̃γk,εj(x) is computed only up to a small uniformly bounded error.

Thus, the rate of convergence of sequence {x(k)
εj }k∈N in (4.141) can be improved over

that in (4.59). On the basis of such results, we now show that the sequence {x(k)
εj }k∈N

in (4.141) has an optimal convergence rate as stated in the following proposition.

Proposition 4.9 (Optimal Convergence Rate). Let {εj}j∈{0}∪Iq be a sequence as

described in Definition 4.3 and let γk∈(0, 1/rεj). For all j∈{0}∪Iq, assume that (1)

the ME ψγk,εj(x) in (4.48) is convex and differentiable with a Lipschitz continuous

gradient and (2) the sequence {x(k)
εj }k∈N in (4.59) converges to a solution point x∗εj ,δ ∈

Sεj ,δ. Under these circumstances, there exists a closed ball B(α,Sεj ,δ) in (4.24) such

that if (1) parameter βk is given by (1.27) and (2) the solution point x
(k)
εj is such that

x
(k)
εj ∈ B(α,Sεj ,δ) for all k ∈ N , then the sequence {x(k)

εj }k∈N in (4.141) converges to

a solution point x∗εj ,δ ∈ Sεj ,δ for all j∈{0} ∪ Iq at a rate given by (1.21).
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Proof. From (4.140) and (4.142), we obtain

∥∥∥∇̃ψγk,εj(x
(k)
εj

)−∇ψγk,εj(x
(k)
εj

)
∥∥∥ =

∥∥∥∥
1

γk

[
projKδ

(
x(k)
εj
−γk g(k+1)

εj

)
−projKδ

(
x(k)
εj
−γk g̃(k+1)

εj

)]∥∥∥∥

≤
∥∥∥∥

1

γk

(
x(k)
εj
−γkg(k+1)

εj
−x(k)

εj
+γkg̃

(k+1)
εj

)∥∥∥∥

≤
∥∥∥g̃(k+1)

εj
−g(k+1)

εj

∥∥∥

≤
∥∥∥g̃(k+1)

εj

∥∥∥+
∥∥∥g(k+1)

εj

∥∥∥

(4.143)

for all j ∈ {0} ∪ Iq and for all k ∈ N, where the first inequality follows from the

non-expansiveness of the projection operator (see Theorem E.9.3.0.1 of [36]) and the

last one follows from the triangle inequality.

On the basis of Corollary 4.1 and Lemma 4.4, function Pεj(x) is Lipschitz contin-

uous and ||e(k)
εj || is bounded. Thus, for all j ∈ {0} ∪ Iq and for all k ∈N, we obtain

∥∥∥∇̃ψγk,εj(x
(k)
εj

)−∇ψγk,εj(x
(k)
εj

)
∥∥∥ ≤ 2n

p

ε1−pj

(4.144)

by combining (1.18), (4.21), and (4.143). Therefore, the gradient approximation error

is bounded and convergence of the sequence {x(k)
εj }k∈N in (4.141) to a solution point

x∗εj ,δ ∈ Sεj ,δ at a rate given by (1.21) follows from Theorem 2.2 of [35].

From Proposition 4.5, the update formula in (4.141) can be written as

x(k+1)
εj

= projKδ

(
z(k)
εj

)
+ βk

(
x(k)
εj
− x(k−1)

εj

)
, for all j∈{0} ∪ Iq (4.145)

where z
(k)
εj is given by (4.64). Therefore, the update formula in (4.145) corresponds to

an accelerated version of the IPPP method in (4.63) because (1) such update formula

boils down to the iterative computation of a PP of function Pεj(x) followed by the

projection of such a point into the feasible set Kδ and (2) the sequence {x(k)
εj }k∈N

involved in the computation has an optimal convergence rate on the basis of Proposi-

tion 4.9. Thus, the proposed update formula in (4.145) defines what may be referred

to as the fast iterative proximal-point projection (FIPPP) method. This method with

continuation is described in Algorithm 4.4.
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Input: x(0) ∈ Kδ, εc > 0, {εj}j∈Iq , γk ∈ (0, 1/rεj)

Output: x∗εq ∈ Sεq ,δ
x∗ε−1

= x(0);

for j = 0 to q do

t0 = 1;

x
(0)
εj = x∗εj−1

;

x
(−1)
εj = x

(0)
εj ;

k = −1;

repeat

k = k + 1;

Compute the PP of Pεj(x
(k)
εj ) (see Algorithm 4.2);

z
(k)
εj = proxγk

[
Pεj(x

(k)
εj )
]
;

Compute tk+1 given by (1.28);

Compute βk given by (1.27);

Compute the projection of z
(k)
εj onto set Kδ (see Algorithm 4.3);

x
(k+1)
εj = projKδ

(
z

(k)
εj

)
+ βk

(
x

(k)
εj − x(k−1)

εj

)
;

until ||Fε,δ(x(k+1)
εj )− Fε,δ(x(k)

εj )|| ≤ εc;

x∗εj = x
(k+1)
εj ;

end

Algorithm 4.4: FIPPP Method with Continuation

4.4 Simulation Results

We now present simulation results to evaluate the capabilities of the proposed and

corresponding competing methods in recovering realistic signals in a wide range of test

problems with large dynamic range (DR) and scale. Signal-recovery methods were

evaluated following the experimental protocol described in Sec. 1.3. The average `∞

reconstruction error, probability of perfect recovery (PPR), and minimum required

fraction (MRF) were employed as reconstruction performance (RP) metrics. The

difference between the Euclidean distance ||Ax∗ − b|| and the estimate of the square

root of the measurement noise energy δ was employed as a measurement consistency

(MC) metric. The average CPU time in seconds and the average number of matrix-

vector operations with matricesA andAT were employed as computational cost (CC)
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metrics.

RP, MC, and CC metrics were computed by carrying out the recovery process 100

times using orthogonal measurement ensembles. The length of the signal of interest

x0 was assumed to be n = 1, 048, 576. Each measurement vector b was generated by

applying a renormalized discrete Fourier transform (DFT) matrix to x0. The length

of vector b was assumed to be m = n/8 and the sparsity of x0 was assumed to be

in the range m
100
≤ s ≤ m. The MRF, m/s, for perfect recovery was estimated by

finding the minimum value of s in the aforementioned range where PPR = 1. The

s nonzero values of x0 were generated as in (1.37) with parameter κ ∈ {1, 2, 4, 5}
which results in signals with DRs ranging from 20 dB to 100 dB. For instance, the

absolute values of the nonzero entries of signals of 20 dB are distributed between 1

and 10 while signals of 100 dB have values distributed between 1 and 100, 000. For

noisy signals, each measurement vector b was obtained using a Gaussian vector z

with σz = 1 × 10−4 and perfect signal recovery was declared when ν = 5 × 10−2 in

(1.36). For noiseless signals, perfect recovery was declared when ν = 1× 10−3.

All experiments were run on a Dell Precision 670 workstation with two 3.2 GHz

dual-core Intel Xeon processors and 4 Gb of RAM using the 64-bit Linux MATLAB

Version 8.2.0.701 (R2013b). Software that is publicly available online was used for

the competing methods.1 We used the values suggested in [9, 11] for the several

parameters of the software obtained. Among the competing methods mentioned in

Fig. 1.5, the SPGL1 and NESTA methods were the only two methods capable of ob-

taining consistent results for the problems under consideration. Competing methods

based on second-order solvers (SOSs) such as the iteratively reweighted least squares

(IRWLS) [27], `1-Magic [18], and `1-LS [68] solvers suffered from numerical insta-

bilities when solving the large linear system of equations involved in computing the

Newton step. Competing methods based on FOSs, such as the gradient projection

for sparse reconstruction (GPSR) [43], fast iterative shrinkage-thresholding algorithm

(FISTA) [8], and difference-of-two-convex-functions (DC)-Family [46], do not entail

the solution of large linear systems but they do require heuristics to find an appro-

priate value of λ for the problem (QPλ) in (1.8). The recovery process carried out

1 The codes for the competing methods were obtained from the respective author’s Web pages:

Least absolute shrinkage and selection operator (LASSO) methods: Spectral projected-
gradient `1-norm (SPGL1) from M. P. Friedlander at http://www.cs.ubc.ca/~mpf/spgl1/.

Basis pursuit (BP) methods: NESTA from E. J. Candès at http://www-stat.stanford.edu/

~candes/nesta/.

http://www.cs.ubc.ca/~mpf/spgl1/
http://www-stat.stanford.edu/~candes/nesta/
http://www-stat.stanford.edu/~candes/nesta/
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with approximate values of λ was found to be unreliable for the hard test problems

at hand.

4.4.1 Evaluation of proposed BP method

We carried out simulations to assess the convergence of the proposed method to a

solution when appropriate initialization and supporting sequences are employed. RP

and CC metrics were evaluated for different forms of the SPF and two-step accelera-

tion. Algorithm 4.3 was used with εc = 1×10−6 and for all k ∈ N we used λk = 1 and

λk = 2 − 10 × 10−6 for noiseless and noisy signals, respectively. Algorithms 4.1 and

4.4 were used with εc = 1 × 10−5 while Algorithm 4.2 was used with εc = 1 × 10−9.

The results for noiseless signals of 20 dB are described next.

Convergence assessment

Convergence to a point in the solution set in Definition 4.1 requires the prior selection

of several parameters. On the basis of Theorem 4.2, parameter selection boils down to

finding an appropriate initial point and regularization and prox-parameter sequences.

We employed the initial point

x(0)
ε0

= ATb (4.146)

and a regularization sequence {εj}j∈{0}∪Iq where the first and last terms are given by

ε0 =
⌈
log
∥∥x(0)

ε0

∥∥
∞
⌉

and εq = 10−9 (4.147)

with q = 15, respectively. The remaining terms ε1, . . . , εq−1 are defined by log-

arithmically spaced decreasing numbers between ε0 and εq. From Condition 2 of

Theorem 4.2 and (4.14), (4.21), (4.45), and (4.51), the terms of the prox-parameter

sequence {γk}k∈N lie in the open interval

α
ε1−pj

np
< γk <

ε2−pj

p|p− 1| , for all j ∈ 0 ∪ Iq and k ∈ N (4.148)

Assuming that the size of the neighborhood around a solution point of each problem

in the sequence
{

(LPεj ,δ)
}
j∈{0}∪Iq is unknown, we express γk in (4.148) as

γk = ζ
ε2−pj

p|p− 1| , for some ζ ∈ (0, 1) (4.149)
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Finding a suitable sequence {γk}k∈N reduces to the problem of finding values of ζ such

that convergence to a solution is achieved for the value of α under consideration.

In the recovery of noiseless signals, the set Kδ in (4.2) reduces to a polytope of

the form

Kδ = {x ∈ Rn : Ax = b}

and the solution set Sε,δ in (4.23) now corresponds to the sparse limit points of

the iteration sequence in (4.63) or (4.145) with at most m nonzero coordinates (see

Theorem 3 of [47] and Sec. 13.2 of [85]). Thus, if we let x̄εq denote a limit point of

(4.63) or (4.145) and let rεq denote the number of nonzero coordinates of x̄εq , then

convergence to a solution can be verified by using the following criterion

x̄εq ∈ Sεq ,δ ⇐⇒ rεq ≤ m (4.150)

On the basis of (4.146), (4.147), (4.149), and (4.150), we carried out simulations to

estimate the probability of convergence to a solution, denoted as P
(
x̄εq ∈ Sεq ,δ

)
. The

results for several values of ζ are shown in Fig. 4.1. As can be seen, values of ζ
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ζ = 1.5×10−3

ζ = 1×10−3
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ζ < 5×10−5

Figure 4.1: Probability of convergence in terms of ζ.

in the open interval (0.0015, 1) are appropriate for signal recovery as convergence to

a solution is always achieved. On the other hand, values of ζ in the open interval

(0, 0.0015) lead to unreliable signal recovery because the proposed method does not

always converge to a solution. On the basis of Theorem 4.2, convergence is not

achieved because the inequality on the left-hand side of (4.148) does not hold true

for these values of ζ.
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SPF evaluation

We carried out recovery simulations to evaluate the relative merits of the proposed

method when different values of l in (4.77) are employed. The RP for different values

of l is compared in Fig. 4.2. As can be seen, smaller values of l lead to superior RP.

0.2 0.4 0.6 0.8 1 1.2

·105
10−10
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0.2 0.4 0.6 0.8 1 1.2

·105
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s
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P
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l = 2
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l = 10
l = 100

(b)

Figure 4.2: RP metrics for several values of l: (a) `∞ recovery error and (b) PPR.

For example, the average `∞ reconstruction error for l = 2, 3, 10, and 100 in Fig. 4.2a

was 3.39 × 10−9, 5.9 × 10−7, 0.4783, and 1.0995, respectively, for s ≤ 36, 248. The

MRF for perfect reconstruction in Fig. 4.2b has dropped from 4.2 and 6.2 when l = 10

and 100, respectively, to 3.6 when l = 2 or 3.

The CC for different values of l is compared in Fig. 4.3. As can be seen, smaller

values of l lead to reduced CC in simulations where the sparse signal is always perfectly

reconstructed. Conversely, the CC is not always reduced when perfect reconstruction

is not always achieved. For example, for s ≤ 21, 275 the average CPU time for l = 2,

3, 10, and 100 in Fig. 4.3a was 323.9, 667.4, 963.5, and 856.0 seconds, respectively,

and the average number of matrix-vector operations with matrices A and AT in

Fig. 4.3b was 1.12× 103, 1.3× 103, 1.43× 103, and 1.75× 103, respectively. Similarly,

for s > 21, 275 the average CPU time for l = 2, 3, 10, and 100 in Fig. 4.3a was

1.2798× 103, 1.7186× 103, 2.4368× 103, and 1.8321× 103 seconds, respectively, and

the average number of matrix-vector operations with matrices A and AT in Fig. 4.3b

was 4.06× 103, 3.39× 103, 3.34× 103, and 2.38× 103, respectively.
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Figure 4.3: CC metrics for several values of l: (a) Average CPU time and (b) Number
of matrix-vector operations with A and AT .

Two-step acceleration

We carried out simulations to evaluate the rate of convergence of the proposed

IPPP and FIPPP methods. The average number of points k computed for sequence

{x(k)
εj }k∈N to converge per continuation step j is given in Fig. 4.4. As can be seen,

the two-step acceleration leads to fast convergence. For example, the average number

of iterations required for perfect reconstruction of sparse signals with s = 1, 311 and

s = 21, 275 in Figs. 4.4a and 4.4b has dropped from 465.4 and 818.1 with the IPPP

method to 287.2 and 346.6 with FIPPP method, respectively, This corresponds to

a 38% and 58% decrease in the average number of iterations. Faster convergence is

also achieved when the sparse signal is not always perfectly reconstructed. For ex-

ample, the average number of iterations for s = 96, 140 and s = 121, 095 in Figs. 4.4c

and 4.4d has dropped from 3.3828× 103 and 3.3997× 103 with the IPPP method to

1.2714×103 and 1.2744×103 with the FIPPP method, respectively. This corresponds

to a 62% and 63% decrease in the average number of iterations.

4.4.2 Comparison of the proposed BP method with state-of-

the-art competing methods

We carried out recovery simulations to evaluate the proposed and competing methods

for the recovery of noiseless and noisy signals. Results obtained for noiseless and noisy

signals with sparsity of s ≤ 36, 248 are summarized in Tables 4.1 and 4.2, respectively.
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Figure 4.4: Number of iterations of the IPPP and FIPPP methods per continuation
step, (a) s = 1, 311, (b) s = 21, 275, (c) s = 96, 140, and (d) s = 121, 095.

As can be seen, the FIPPP method achieved superior RP and MC and comparable

CC metrics relative to those of the SPGL1 and NESTA methods. The percent change

in the metrics of the competing methods compared to the metrics of the proposed

method is given in Table 4.3. As can be seen, the number of measurements required

by the FIPPP method to represent signals is significantly reduced relative to those

of the competing methods. We observe a decrease between 41% and 86% in the

MRF. On the other hand, the average CPU time required by the FIPPP method to

reconstruct signals is comparable to those of the competing methods. For example, a

decrease of at most 60% in the average CPU time is achieved for signals of 20 dB while

an increase of at most 75% is achieved for signals of 40 dB. The results summarized

in Tables 4.1 to 4.3 are described in detail in the following subsections.
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Results for noiseless signals

The RP of the FIPPP method is compared with those of the SPGL1 and NESTA

methods in Figs. 4.5 and 4.6. As can be seen, the proposed method achieved superior

RP relative to the other methods for a variety of dynamic ranges. For example,

the average `∞ reconstruction error of the FIPPP, SPGL1, and NESTA methods

for signals of 20 dB in Fig. 4.5a were 4.101 × 10−9, 1.6546, and 1.6393, respectively,

for s ≤ 36, 248. The MRF for perfect reconstruction in Fig. 4.6a has dropped from

8.0 and 6.2 with the SPGL1 and NESTA methods to 3.6 with the FIPPP method

corresponding to a 55% and 41% decrease in the MRF, respectively. Similarly, the

average `∞ reconstruction error of the FIPPP, SPGL1, and NESTA methods for

signals of 100 dB in Fig. 4.5d were 7.7161× 10−6, 18.0536, and 19.7608, respectively,

for s ≤ 36, 248. The MRF for perfect reconstruction in Fig. 4.6d has dropped from

8.0 and 6.1 with the SPGL1 and NESTA methods to 1.7 with the FIPPP method

corresponding to a 79% and 72% decrease in the MRF, respectively.

The CC of the FIPPP method is compared with those of the SPGL1 and NESTA

RP CC MC

DR e∞ MRF CPU time
no. ops.

A & AT
median of
||Ax∗−b|| δ method

20

1.6546 8.0 584.3 1.12×103 8.01× 10−5

0

SPGL1

1.6393 6.2 925.3 3.37×103 1.08× 10−13 NESTA

4.1×10−9 3.6 372.6 1.29×103 1.16× 10−13 FIPPP

40

3.0398 11.6 752.2 1.26×103 7.35×10−5

0

SPGL1

4.3709 8.0 221.2 877.6 8.47× 10−13 NESTA

1.3×10−8 2.6 359.1 1.22×103 8.20× 10−13 FIPPP

80

9.9265 11.6 802.4 1.48×103 7.55× 10−5

0

SPGL1

14.2567 6.2 381.1 1.57×103 6.39× 10−11 NESTA

3×10−7 1.8 388.1 1.34×103 5.96× 10−11 FIPPP

100

18.0536 8.0 873.5 1.56×103 8.29× 10−5

0

SPGL1

19.7608 6.2 565.3 2.25×103 5.75× 10−10 NESTA

7.7×10−6 1.7 394.5 1.36×103 5.34× 10−10 FIPPP

Table 4.1: Summary of results for noiseless signals.
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methods in Figs. 4.7 and 4.8. As can be seen, the proposed method achieved compa-

rable CC relative to the other methods for a variety of dynamic ranges in simulations

where the sparse signal is always perfectly reconstructed. For example, the aver-

age CPU time of the FIPPP, SPGL1, and NESTA methods for signals of 20 dB in

Fig. 4.7a were 372.6, 584.3, and 925.3 seconds for s ≤ 36, 248, respectively, corre-

sponding to a 36% and 60% decrease in the average CPU time obtained with the

SPGL1 and NESTA methods. The average number of matrix-vector operations with

matrices A and AT of the FIPPP, SPGL1, and NESTA methods for signals of 20 dB

in Fig. 4.8a were 1.2941× 103, 1.1257× 103, and 3.375× 103 for s ≤ 36, 248, respec-

tively, corresponding to a 15% increase and 62% decrease in the average number of

matrix-vector operations obtained with the SPGL1 and NESTA methods. Similarly,

the average CPU time of the FIPPP, SPGL1, and NESTA methods for signals of 100

dB in Fig. 4.7d were 394.5, 873.5, and 565.3 seconds for s ≤ 36, 248, respectively,

corresponding to a 55% and 30% decrease in the average CPU time obtained with

the SPGL1 and NESTA methods. The average number of matrix-vector operations

with matrices A and AT of the FIPPP, SPGL1, and NESTA methods for signals of

RP CC MC

DR e∞ MRF CPU time
no. ops.

A & AT
median of
||Ax∗−b|| δ method

20

1.6528 8.0 313.4 585.5 0.036271

0.036204

SPGL1

1.6508 6.2 782.5 3.26× 103 0.036204 NESTA

0.0017 3.6 436.8 1.47× 103 0.0362 FIPPP

40

3.0419 8.0 360.2 673.6 0.036254

0.036204

SPGL1

4.3735 8.0 235.8 887.2 0.036204 NESTA

0.0018 2.6 411.8 1.38× 103 0.036204 FIPPP

80

9.8627 8.0 435.5 865.6 0.036262

0.036204

SPGL1

14.2652 6.2 388.7 1.56× 103 0.036203 NESTA

0.0020 1.8 390.1 1.41× 103 0.036204 FIPPP

100

17.9831 8.0 499.3 989.3 0.036261

0.036204

SPGL1

19.7632 6.2 560.7 2.24× 103 0.036202 NESTA

0.0021 1.7 390.1 1.40× 103 0.036204 FIPPP

Table 4.2: Summary of results for noisy signals.
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metrics of FIPPP

method MRF
CPU
time

no. ops.

A & AT DR

SPGL1

−55% −36% +16% 20

−77% −52% −03% 40

−86% −52% −09% 80

−79% −55% −13% 100

NESTA

−41% −60% −62% 20

−68% +62% +39% 40

−73% +02% −15% 80

−72% −30% −40% 100

(a)

metrics of FIPPP

method MRF
CPU
time

no. ops.

A & AT DR

SPGL1

−55% +39% +151% 20

−68% +14% +105% 40

−77% −10% +63% 80

−79% −22% +42% 100

NESTA

−41% −44% −55% 20

−68% +75% +56% 40

−70% +01% −10% 80

−72% −30% −37% 100

(b)

Table 4.3: Percent change in performance metrics of the proposed method compared
to competing methods, (a) noiseless and (b) noisy signals.

20 dB in Fig. 4.8d were 1.3616× 103, 1.5616× 103, and 2.2489× 103 for s ≤ 36, 248,

respectively, corresponding to a 13% and 39% decrease in the average number of

matrix-vector operations obtained with the SPGL1 and NESTA methods.

The CC of the proposed method is increased relative to that of the NESTA method

and similar to that of the SPGL1 method for simulations where the sparse signal was

not always perfectly recovered. For example, the average CPU time of the FIPPP,

SPGL1, and NESTA methods for signals of 20 dB in Fig. 4.7a were 1.6306 × 103,

1.1224× 103, and 297.7 seconds for s > 36, 248, respectively, corresponding to a 45%

and 448% increase in the average CPU time obtained with the SPGL1 and NESTA

methods. The average number of matrix-vector operations with matrices A and AT

of the FIPPP, SPGL1, and NESTA methods for signals of 20 dB in Fig. 4.8a were

5.5609 × 103, 2.292 × 103, and 978.3 for s > 36, 248, respectively, corresponding

to a 143% and 468% increase in the average number of matrix-vector operations

obtained with the SPGL1 and NESTA methods. Similarly, the average CPU time

of the FIPPP, SPGL1, and NESTA methods for signals of 100 dB in Fig. 4.7d were

1.1311×103, 2.514×103, and 545.1 seconds for s > 36, 248, respectively, corresponding

to a 55% decrease and 108% increase in the average CPU time obtained with the

SPGL1 and NESTA methods. The average number of matrix-vector operations with

matrices A and AT of the FIPPP, SPGL1, and NESTA methods for signals of 100
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Figure 4.5: Average `∞ recovery error of the FIPPP and competing methods for
noiseless signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

dB in Fig. 4.8d were 3.7872 × 103, 4.4293 × 103, and 2.175 × 103 for s > 36, 248,

respectively, corresponding to a 14% decrease and 74% increase in the average number

of matrix-vector operations obtained with the SPGL1 and NESTA methods.

The MC of signals recovered by the FIPPP method is compared with those of

the SPGL1 and NESTA methods in Figs. 4.9 to 4.12. Here MC is measured in

terms of how close ||Ax∗ − b|| is to the target value of δ = 0 (see Fig. 1.4). As can

be seen in the box plots2 of ||Ax∗ − b||, signals recovered with the FIPPP method

are more consistent with measurements taken than those recovered with the SPGL1

and NESTA methods for a variety of dynamic ranges. For example, for simulations

with signals of 20 dB and s = 36, 248, the median and the minimum and maximum

2A brief explanation of box plots can be found on p. 19. See [77] for a detailed description.
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Figure 4.6: PPR of the FIPPP and competing methods for noiseless signals, (a) 20
dB, (b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

observations of ||Ax∗ − b|| obtained with the FIPPP method were 1.1572 × 10−13,

1.1479× 10−13, and 1.1682× 10−13, respectively, as shown in Fig. 4.9a. On the other

hand, the statistics of ||Ax∗−b|| obtained with the SPGL1 method were 8.0102×10−5,

2.9597× 10−5, and 9.9963× 10−5 as shown in Fig. 4.9b while those obtained with the

NESTA method were 1.0757× 10−13, 1.0651× 10−13, and 1.0851× 10−13 as shown in

Fig. 4.9c. For simulations with signals of 100 dB and s = 36, 248, the median and the

minimum and maximum observations of ||Ax∗−b|| obtained with the FIPPP method

were 5.3438 × 10−10, 5.2018 × 10−10, and 5.4575 × 10−10, respectively, as shown in

Fig. 4.12a. On the other hand, the statistics of ||Ax∗− b|| obtained with the SPGL1

method were 8.2889× 10−5, 3.1279× 10−5, and 9.9983× 10−5 as shown in Fig. 4.12b

while those obtained with the NESTA method were 5.7474 × 10−10, 5.5964 × 10−10,
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Figure 4.7: Average CPU time of the FIPPP and competing methods for noiseless
signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

and 5.8649× 10−10 as shown in Fig. 4.12c.

Results for noisy signals

The RP of the FIPPP method is compared with those of the SPGL1 and NESTA

methods in Figs. 4.13 and 4.14. As can be seen, the proposed method achieved supe-

rior RP relative to the other methods for a variety of dynamic ranges. For example,

the average `∞ reconstruction error of the FIPPP, SPGL1, and NESTA methods

for signals of 20 dB in Fig. 4.13a were 0.0017, 1.6528, and 1.6508, respectively, for

s ≤ 36, 248. The MRF for perfect reconstruction in Fig. 4.14a has dropped from 8.0

and 6.2 with the SPGL1 and NESTA methods to 3.6 with the FIPPP method corre-
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Figure 4.8: Number of matrix-vector operations with A and AT for the FIPPP and
competing methods for noiseless signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100
dB signals.

sponding to a 55% and 41% decrease in the MRF, respectively. Similarly, the average

`∞ reconstruction error of the FIPPP, SPGL1, and NESTA methods for signals of

100 dB in Fig. 4.13d were 0.0021, 17.9831, and 19.7632, respectively, for s ≤ 36, 248.

The MRF for perfect reconstruction in Fig. 4.14d has dropped from 8.0 and 6.2 with

the SPGL1 and NESTA methods to 1.7 with the FIPPP method corresponding to a

79% and 72% decrease in the MRF, respectively.

The CC of the FIPPP method is compared with those of the SPGL1 and NESTA

methods in Figs. 4.15 and 4.16. As can be seen, the proposed method achieved

comparable CC relative to the other methods for a variety of dynamic ranges in sim-

ulations where the sparse signal is always perfectly reconstructed. For example, the
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Figure 4.9: Box plot of ||Ax∗ − b|| for noiseless signals of 20 dB: (a) FIPPP, (b)
SPGL1, and (c) NESTA methods.
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Figure 4.10: Box plot of ||Ax∗ − b|| for noiseless signals of 40 dB: (a) FIPPP, (b)
SPGL1, and (c) NESTA methods.
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Figure 4.11: Box plot of ||Ax∗ − b|| for noiseless signals of 80 dB: (a) FIPPP, (b)
SPGL1, and (c) NESTA methods.
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Figure 4.12: Box plot of ||Ax∗ − b|| for noiseless signals of 100 dB: (a) FIPPP, (b)
SPGL1, and (c) NESTA methods.
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Figure 4.13: Average `∞ recovery error of the FIPPP and competing methods for
noisy signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

average CPU time of the FIPPP, SPGL1, and NESTA methods for signals of 20 dB

in Fig. 4.15a were 436.8, 313.5, and 782.5 seconds for s ≤ 36, 248, respectively, corre-

sponding to a 39% increase and 44% decrease in the average CPU time obtained with

the SPGL1 and NESTA methods. The average number of matrix-vector operations

with matrices A and AT of the FIPPP, SPGL1, and NESTA methods for signals of

20 dB in Fig. 4.16a were 1.4676× 103, 585.5, and 3.256× 103 for s ≤ 36, 248, respec-

tively, corresponding to a 151% increase and 55% decrease in the average number of

matrix-vector operations obtained with the SPGL1 and NESTA methods. Similarly,

the average CPU time of the FIPPP, SPGL1, and NESTA methods for signals of 100

dB in Fig. 4.15d were 390.1, 499.3, and 560.7 seconds for s ≤ 36, 248, respectively,

corresponding to a 22% and 30% decrease in the average CPU time obtained with
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Figure 4.14: PPR of the FIPPP and competing methods for noisy signals, (a) 20 dB,
(b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

the SPGL1 and NESTA methods. The average number of matrix-vector operations

with matrices A and AT of the FIPPP, SPGL1, and NESTA methods for signals of

100 dB in Fig. 4.16d were 1.4045 × 103, 989.3, and 2.2447 × 103 for s ≤ 36, 248, re-

spectively, corresponding to a 42% increase and 37% decrease in the average number

of matrix-vector operations obtained with the SPGL1 and NESTA methods.

The CC of the proposed method is increased relative to those of the competing

methods for simulations where the sparse signal was not always perfectly recovered.

For example, the average CPU time of the FIPPP, SPGL1, and NESTA methods

for signals of 20 dB in Fig. 4.15a were 1.514 × 103, 657.3, and 132.6 seconds for

s > 36, 248, respectively, corresponding to a 130% and 1, 042% increase in the average

CPU time obtained with the SPGL1 and NESTA methods. The average number of
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Figure 4.15: Average CPU time of the FIPPP and competing methods for noisy
signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100 dB signals.

matrix-vector operations with matricesA andAT of the FIPPP, SPGL1, and NESTA

methods for signals of 20 dB in Fig. 4.16a were 4.9758×103, 1.1503×103, and 965.1 for

s > 36, 248, respectively, corresponding to a 333% and 416% increase in the average

number of matrix-vector operations obtained with the SPGL1 and NESTA methods.

Similarly, the average CPU time of the FIPPP, SPGL1, and NESTA methods for

signals of 100 dB in Fig. 4.15d were 767.4, 1.3228 × 103, and 668.3 seconds for s >

36, 248, respectively, corresponding to a 42% decrease and 15% increase in the average

CPU time obtained with the SPGL1 and NESTA methods. The average number

of matrix-vector operations with matrices A and AT of the FIPPP, SPGL1, and

NESTA methods for signals of 100 dB in Fig. 4.16d were 2.5744× 103, 2.5435× 103,

and 2.4303×103 for s > 36, 248, respectively, corresponding to a 1% and 6% increase
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Figure 4.16: Number of matrix-vector operations with A and AT for the FIPPP and
competing methods for noisy signals, (a) 20 dB, (b) 40 dB, (c) 80 dB, and (d) 100
dB signals.

in the average number of matrix-vector operations obtained with the SPGL1 and

NESTA methods.

The MC of signals recovered by the FIPPP method is compared with those of the

SPGL1 and NESTA methods in Figs. 4.17 to 4.20. Here MC is measured in terms

of how close ||Ax∗ − b|| is to the target value of δ = 0.03620387 (see Fig. 1.4). As

can be seen in the box plots of ||Ax∗−b||, signals recovered with the FIPPP method

are more consistent with measurements taken than those recovered with the SPGL1

and NESTA methods for a variety of dynamic ranges. For example, for simulations

with signals of 20 dB and s = 36, 248, the median and the minimum and maximum

observations of ||Ax∗−b|| obtained with the FIPPP method were 0.0362, 0.0362, and
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0.036204, respectively, as shown in Fig. 4.17a. On the other hand, the statistics of

||Ax∗− b|| obtained with the SPGL1 method were 0.036271, 0.036105, and 0.036304

as shown in Fig. 4.17b while those obtained with the NESTA method were 0.036204,

0.036204, and 0.036204 as shown in Fig. 4.17c. For simulations with signals of 100

dB and s = 36, 248, the median and the minimum and maximum observations of

||Ax∗−b|| obtained with the FIPPP method were 0.036204, 0.035832, and 0.036204,

respectively, as shown in Fig. 4.20a. On the other hand, the statistics of ||Ax∗ − b||
obtained with the SPGL1 method were 0.036261, 0.036121, and 0.036304 as shown

in Fig. 4.20b while those obtained with the NESTA method were 0.036202, 0.036202,

and 0.036202 as shown in Fig. 4.20c.

4.5 Conclusions

A new signal-recovery method has been described. Sparse-signal recovery is carried

out by minimizing the sum of the ε-`pp norm function and the indicator function of a

closed ball an affine mapping. The objective function obtained in this way exhibits

rich properties such as a convex and differentiable ME and a cohypomonotone sub-

gradient mapping. A PP method is used for minimizing the objective function and a

continuation procedure with a suitable regularization sequence is employed so that a

minimum can be found efficiently. When the iteration sequence is computed approxi-

mately, the method is applied by iteratively performing two fundamental operations,

namely, computation of the PP of the ε-`pp norm function and projection of the PP

onto the closed ball under affine mapping.

The first operation boils down to finding the largest real root of a trinomial equa-

tion when p ∈ {1
2
, 2

3
, 3

4
, . . .} and is performed analytically or numerically by using

a fast iterative method. The second operation boils down to finding a point in the

intersection of convex sets and is performed efficiently by computing a sequence of

closed-form projectors while using matrices A and AT in matrix-vector operations

only. The error sequence entailed by the approximate computation is shown to be

monotonically decreasing and summable. Consequently, the sequence of points asso-

ciated with the iterative computation converges to a minimizer. Accelerated conver-

gence is achieved by using a two-step method with optimal convergence rate.

Simulations demonstrate that very-large signals with a wide dynamic range can be

recovered accurately and efficiently using the proposed method. The results obtained

show that superior RP metrics such as increased PPRs, reduced MRFs for perfect
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recovery, and reduced average `∞ reconstruction error are achieved when using the

proposed method relative to the SPGL1 [11] and NESTA [9] methods. In addition,

superior MC metrics based on the difference between ||Ax∗− b||2 and δ are achieved

when using the proposed method relative to the competing methods. CC metrics

such as the average CPU time and number of matrix-vector operations with A and

AT required by the proposed method were found to be comparable to that of the

competing methods.
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Figure 4.17: Box plot of ||Ax∗−b|| for noisy signals of 20 dB: (a) FIPPP, (b) SPGL1,
and (c) NESTA methods.
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Figure 4.18: Box plot of ||Ax∗−b|| for noisy signals of 40 dB: (a) FIPPP, (b) SPGL1,
and (c) NESTA methods.
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Figure 4.19: Box plot of ||Ax∗−b|| for noisy signals of 80 dB: (a) FIPPP, (b) SPGL1,
and (c) NESTA methods.



162

1311 11293 21275 31257 41239 51221 61203

3.4

3.5

3.6

·10−2

s

||A
x
∗
−

b
||

δ

(a)

1311 11293 21275 31257 41239 51221 61203

3.61

3.62

3.63

·10−2

s

||A
x
∗
−

b
||

δ

(b)

1311 11293 21275 31257 41239 51221 61203

3.62

3.62

3.62

3.62

·10−2

s

||A
x
∗
−

b
||

δ

(c)

Figure 4.20: Box plot of ||Ax∗ − b|| for noisy signals of 100 dB: (a) FIPPP, (b)
SPGL1, and (c) NESTA methods.



163

Chapter 5

Conclusions and Future Work

5.1 Introduction

Several methods for compressive sensing (CS) that can be used to solve a wide range

of problems have been proposed. Compressible signals are recovered from a very

limited number of measurements by minimizing nonconvex sparsity-promoting func-

tions (SPFs) that closely resemble the `0-norm function. The proposed methods fall

into two categories, namely, sequential convex formulation (SCF) and proximal-point

(PP) based methods. Proposed SCF methods include the quadratic approximation

(QA)-smoothly-clipped absolute deviation (SCAD), the piecewise-linear approxima-

tion (PLA)-SCAD methods of Chapter 2, and the P-class family of methods of Chap-

ter 3. Proposed PP methods include the iterative proximal-point projection (IPPP)

and the fast iterative proximal-point projection (FIPPP) methods of Chapter 4. The

proposed and corresponding competing methods were evaluated in terms of their ca-

pability in recovering sparse signals from Gaussian and orthonormal ensembles in a

wide range of test problems. Simulation results demonstrate that the proposed meth-

ods lead to shorter more compact signal representations than those obtained with

competing methods while requiring a comparable amount of computation.

5.2 Conclusions

In the QA-SCAD method, a solution of the recovery problem is approached by em-

ploying the QA of the SCAD function. Convex subproblems are solved by using a

second-order solver (SOS) where the Newton step is computed efficiently. A target
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value of the regularization term of the recovery problem is approached efficiently by

using a continuation procedure. In the PLA-SCAD method, a solution to the recovery

problem is approached by employing a PLA of the SCAD function. Convex subprob-

lems are reformulated as second-order cone programming (SOCP) problems and are

solved efficiently by using state-of-the-art SOSs such as the self-dual-minimization (Se-

DuMi) method. Simulation results demonstrate that the proposed methods achieve

superior reconstruction performance (RP) metrics in terms of increased probability

of perfect recovery (PPR) and reduced minimum required fraction (MRF) for perfect

recovery when compared with competing regularized least-squares (RLS) and basis

pursuit (BP) methods. The computational cost (CC) metric of the QA-SCAD method

was found to be comparable to those of the competing methods, namely, the gradi-

ent projection for sparse reconstruction (GPSR) method of Figueiredo, Nowak, and

Wright and the `1-LS method of Kim, Koh, Lustig, Boyd, and Gorinevsky. On the

other hand, the CC metric of the PLA-SCAD method is increased relative to those of

the competing methods, namely, the `1-Magic method of Candès and Romberg and

the spectral projected-gradient `1-norm (SPGL1) method of Berg and Friedlander.

In the P-class family of methods, the solution of the recovery problem is ap-

proached by employing a PLA of a P-class function. Results obtained pertaining

to the optimality conditions of the P-class problems employed show that their lo-

cal minimizers are sparse points. Convex subproblems are formulated as weighted

`1-norm minimization problems while an efficient first-order solver (FOS) based on

the NESTA method is employed. The proposed solver is capable of using the matri-

ces involved in matrix-vector operations only. The sequence of solution points was

shown to be a monotonically decreasing sequence of values of the objective function

and converges to a sparse local minimizer of a P-class problem. Simulation results

demonstrate that the proposed methods are robust, lead to fast convergence, and

achieve superior RP metrics in terms of increased PPR, reduced MRF for perfect re-

covery, and reduced average `∞ reconstruction error when compared with the `1-Magic

method of Candès and Romberg, the iteratively reweighted least squares (IRWLS)

method of Chartrand and Yin., the SPGL1 method of Berg and Friedlander, and

the difference-of-two-convex-functions (DC)-family of methods of Gasso, Rakotoma-

monjy, and Canu. CC metric, in terms of the average CPU time, of the new methods

was found to be comparable to that of the SPGL1 method and reduced as compared

to those of the `1-Magic, IRWLS, and DC-family methods.

In the IPPP and FIPPP methods, the recovery process is carried out by minimiz-
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ing the sum of the ε-`pp norm function and the indicator function of a closed ball under

affine mapping. The objective function obtained in this way exhibits rich properties

such as a convex and differentiable Moreau envelope (ME) and a cohypomonotone

subgradient mapping. When the iteration sequence is computed approximately, the

method is applied by iteratively performing two fundamental operations, namely,

computation of the PP of the ε-`pp norm function and projection of the PP onto the

closed ball under affine mapping. The first operation boils down to finding the largest

real root of a trinomial equation which can be performed analytically or numerically

as the limit of an infinite series of nested radicals. The second operation boils down to

finding a point in the intersection of convex sets and can be performed efficiently by

computing a sequence of closed-form projectors while using the matrices involved in

matrix-vector operations only. The error sequence associated with the approximate

computation is shown to be monotonically decreasing and summable. Consequently,

the sequence of points associated with the iterative computation converges to a mini-

mizer. Accelerated convergence is achieved by using a two-step method with optimal

convergence rate. Simulation results demonstrate that the proposed methods achieve

superior RP metrics such as increased PPR, reduced MRF for perfect recovery, and

reduced average `∞ reconstruction error relative to the SPGL1 method of Berg and

Friedlander and the NESTA method of Becker, Bobin, and Candès. In addition, su-

perior measurement consistency (MC) metric are achieved when using the proposed

method relative to the competing methods. CC metrics such as the average CPU

time and number of matrix-vector operations were found to be comparable to those

of the competing methods.

Some recommendations pertaining to the proposed methods will now be high-

lighted. In this discussion, small-, medium-, large-, and very-large-scale loosely apply

to test problems with the number of samples of the sparse signals recovered, n, in

the ranges n < 212, 212 < n < 216, 216 < n < 218, and n > 218, respectively. The

QA-SCAD and PLA-SCAD methods are recommended for applications where small

signals need to be recovered very accurately. As these methods are based on SOSs,

very accurate solutions can be obtained but their use becomes problematic in medium-

, large-, and very-large-scale problems as they are required to solve large systems of

linear equations in computing the Newton step. In addition, the solution of these

systems entails the storage and manipulation of large matrices. The P-class family

of methods is recommended for applications where large signals need to be recovered

while employing a wide range of SPFs. These methods are based on an FOS that is
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capable of using the matrices involved in matrix-vector operations only. Therefore,

there is no need for the storage of matrices and matrix-vector operations can be car-

ried out with fast algorithms such as the fast Fourier transform (FFT) when using

orthogonal ensembles. The P-class family of methods is inefficient for the solution of

very-large-scale problems as these methods entail the solution of several subproblems

of the same scale in sequence. The IPPP and FIPPP methods are recommended in

applications where very-large signals need to be recovered accurately and efficiently.

5.3 Future Work

Speeding up the convergence of SCF methods is an important future research di-

rection. Results pertaining to these methods have shown that when perfect signal

recovery is achieved, four subproblems are solved on average for the sequence of

solution points involved to converge. This is typically prohibitive for solving very-

large-scale problems. Hence, the applicability of SCF methods, such as the P-class

family of methods of Chapter 3, can be extended to problems of larger scale if the

average number of subproblems solved can be reduced.

The application of PP based methods for the solution of more general recovery

problems is another interesting future research direction. For example, the ε-`pp norm

function approaches the `0 norm when p → 0 and ε → 0. Hence, improved recov-

ery performance is achieved if the applicability of the IPPP and FIPPP methods of

Chapter 4 can be extended to the case where p < 1
2
. More general recovery problems,

such as the P-class problems of Chapter 3, could also be used to achieve improved

recovery performance.

If compressible signals are recovered by minimizing convex SPFs such as the `1-

norm function, any local minimizer is also the sparsest signal representation when the

number of nonzero-valued samples of the recovered signal and certain matrix condi-

tions are met. Unfortunately, to our knowledge, similar conditions are not known to

exist when nonconvex SPFs are employed. Nevertheless, numerical evidence appears

to suggest that the local minimizers of nonconvex SPFs addressed in this dissertation

have similar properties as their convex counterparts. This unusual property suggests

that the problems examined belong to the so-called class of hidden-convex optimiza-

tion problems identified by Wu, Li, Zhang, and Yang. Motivated by the experimental

results presented in this dissertation, investigating this hypothesis is another inter-

esting future research direction.
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