
SIMD and GPU-Accelerated Rendering of Implicit Models

by

Pourya Shirazian
Iran University of Science and Technology, 2008

Azad University of Tehran, 2005

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Pourya Shirazian, 2014
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

SIMD and GPU-Accelerated Rendering of Implicit Models

by

Pourya Shirazian
Iran University of Science and Technology, 2008

Azad University of Tehran, 2005

Supervisory Committee

Dr. Brian Wyvill, Supervisor
(Department of Computer Science, University of Victoria)

Dr. Roy Eagleson, Outside Member
(Department of Electrical and Computer Engineering, Western University)

Dr. Paul Lalonde, Departmental Member
(Department of Computer Science, University of Victoria)

iii

Supervisory Committee

Dr. Brian Wyvill, Supervisor
(Department of Computer Science, University of Victoria)

Dr. Roy Eagleson, Outside Member
(Department of Electrical and Computer Engineering, Western University)

Dr. Paul Lalonde, Departmental Member
(Department of Computer Science, University of Victoria)

ABSTRACT

Implicit models inherently support automatic blending and trivial collision detection
which makes them an effective tool for designing complex organic shapes with many
applications in various areas of research including surgical simulation systems. How-
ever, slow rendering speeds can adversely affect the performance of simulation and
modelling systems. In addition, when the models are incorporated in a surgical sim-
ulation system, interactive and smooth cutting becomes a required feature for many
procedures.

In this research, we propose a comprehensive framework for high-performance
rendering and physically-based animation of tissues modelled using implicit surfaces.
Our goal is to address performance and scalability issues that arise in rendering
complex implicit models as well as in dynamic interactions between surgical tool and
models.

Complex models can be created with implicit primitives, blending operators, affine
transformations, deformations and constructive solid geometry in a design environ-
ment that organizes all these in a scene graph data structure called the BlobTree. We
show that the BlobTree modelling approach provides a very compact data structure
which supports the requirements above, as well as incremental changes and trivial col-
lision detection. A GPU-assisted surface extraction algorithm is proposed to support

iv

interactive modelling of complex BlobTree models.
Using a finite element approach we discretize those models for accurate physically-

based animation. Our system provides an interactive cutting ability using smooth
intersection surfaces. We show an application of our system in a human skull cran-
iotomy simulation.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures x

Acknowledgements xvi

Dedication xvii

1 Introduction 1
1.1 General aim of this Research . 1
1.2 Motivation . 3
1.3 Limitation of Current Models . 4
1.4 Contributions . 5
1.5 Overview . 6

2 Background Material 7
2.1 Implicit Modelling . 7
2.2 Sweep Surfaces and Sketching . 10
2.3 Related Work . 11

2.3.1 Surface extraction methods 12
2.3.2 GPU-Accelerated rendering of implicits 15
2.3.3 Volume mesh cutting . 16

3 High Performance Rendering on Multi-Core Architectures 19

vi

3.1 Architecture Constraints . 20
3.2 Naming Conventions . 21
3.3 Algorithm . 22

3.3.1 BlobTree Linearization . 24
3.3.2 Surface Extraction . 26

3.4 MPU size Analysis . 29
3.5 Results . 34
3.6 Chapter Conclusions . 41

4 GPU discretization 43
4.1 Many-cores architectures . 44
4.2 Data Structures . 46
4.3 Memory foot prints . 48
4.4 Stackless BlobTree traversal . 49
4.5 GPU Surface Extraction Algorithm 53
4.6 Analysis and Results . 56

5 Deformable Model 59
5.1 Overview . 59
5.2 Physical Model . 60
5.3 Collision and Contact with tools . 62
5.4 Results . 65

6 Real-time Cutting 70
6.1 Overview . 70
6.2 Tetrahedral Mesh Data structure . 72
6.3 Cutting Algorithm . 76

6.3.1 Edge Intersections . 77
6.3.2 Produce cut-node list . 78
6.3.3 Filter intersected-edges . 80
6.3.4 Compute configuration codes for cut elements 80
6.3.5 Topological Updates . 83

6.4 Cutting Results . 84

7 Evaluation, Analysis and Comparisons 89
7.1 Previous work . 90

vii

7.2 Architectural constraints . 91
7.3 Experiments . 91

7.3.1 The Eggshell Model . 91
7.3.2 Craniotomy . 93

8 Conclusions 97
8.1 Future Work . 98

Bibliography 100

viii

List of Tables

Table 3.1 Comparison of speedups and field value evaluations per triangle
(FVEPT) for polygonization of Tower model with different SIMD
instruction sets. Note that FVEPT was 17 before adding SIMD
optimizations. 37

Table 3.2 Comparison of our polygonization method against Schmidt et al.
’s [62] when rendering Medusa model at 5 different resolutions
on one single core with AVX instructions. All timings are in
milliseconds. 41

Table 4.1 Memory footprint of the input BlobTree in our GPU polygoniza-
tion algorithm in bytes. The entire BlobTree for a model with
64K nodes (primitives and operators) takes up about 20 MiB in
our current system. 49

Table 4.2 Stackless BlobTree traversal improved the performance of our
BlobTree field evaluation significantly. Here is the comparison
between our novel stackless approach versus the stack-based im-
plementation for various models. Timings are the average of 100
runs. 57

Table 5.1 The following deformable models are used in our experiments. . 65

Table 6.1 The following look-up table is used to differentiate between differ-
ent cutting configurations based on the number of cut-edges and
cut-nodes. All cases subdivide tetrahedral elements into smaller
cells except for case Z where the original cell is left intact. . . . 81

Table 6.2 Lookup table for generating sub-elements for type A configuration 82
Table 6.3 Lookup table for generating sub-elements for type B configura-

tion. Sub-elements are separated by semi-colon to fit on the line. 82
Table 6.4 Mesh quality measurements. 86

ix

Table 7.1 Segmented brain data-set statistics. 93

x

List of Figures

Figure 2.1 BlobTree structure of a coffee mug created with CSG and skeletal
implicit primitives. 10

Figure 3.1 The MPU is our unit of computation per each core illustrated
as a 2D cross section here. Field-values due to every 4 or 8
points are computed in parallel with SSE or AVX instructions,
respectively. When the field at a vertex is zero no iso-surface will
pass in the neighborhood of a unit circle (sphere in 3D) centered
at that vertex. 22

Figure 3.2 Left Column: The one-time preparation steps before scheduling
kernel functions for computation. Middle Column: The early
discard kernel function. Right Column: The MPU processing
kernel function. 23

Figure 3.3 The reduction process combines all transformation nodes at prim-
itives. After the operation, all internal operators are associated
with identity transformation matrices. 24

Figure 3.4 The BlobTree is flattened to a structure of arrays (SOA), and
is stored at aligned memory addresses for performance reasons.
Each row represents an array of values of the same type. N is
determined in such a way that the entire structure fits in the
cache memory of the processor. 25

Figure 3.5 Top: A cell edge is intersected with part of the surface shown
in blue. By performing one field evaluation using AVX or two
with SSE instructions the interval containing the intersection
point can be identified. The final root is computed using linear
interpolation within the interval marked with bold line segment. 28

Figure 3.6 Average time spent per eachMPU when polygonizing the Towers
model. 31

xi

Figure 3.7 Total polygonization time in milliseconds when polygonizing the
Towers model. 32

Figure 3.8 Ratio of intersected to total number of MPU s. 32
Figure 3.9 Maximum time in milliseconds spent in idle mode while other

active threads finish their current work. The less is better, since
it indicates a more uniform workload distribution across the run-
ning threads. 33

Figure 3.10Total memory usage per each MPU processing, reported here
in kilobytes. The limit in this case is the last level cache mem-
ory available on the processor to fit the entire data structures
required for the processing of a MPU efficiently. 34

Figure 3.11Average polygonization time of the towers model when running
on SNB processor. Horizontal axis is the number of threads.
Vertical axis is time measured in milliseconds. 36

Figure 3.12Average polygonization time of the towers model when running
on NHM processor. Horizontal axis is the number of threads.
Vertical axis is time measured in milliseconds. 36

Figure 3.13Reducing cellsize parameter results in moreMPU generation and
increase in polygonization time. However, at a certain cellsize
our early discard method stops polygonization time increase by
rejecting all empty MPU s more efficiently. 38

Figure 3.14Towers model per-core time breakdowns. Each bar represents a
logical core on the processor for a total of 12 cores. Vertical axis
is the total polygonization time. 190463MPU s processed with 12
cores in 9283 milliseconds. This chart shows the portion of time
spent in each step of the algorithm when rendering the towers
model on the SNB processor with 8-wide AVX instructions. . . 39

Figure 3.15Towers model created with skeletal primitives and binary oper-
ators in our incremental designing system. The model is a grid
of 8 by 8 towers for a total of 7360 operators and 7296 primitives. 40

Figure 3.16Medusa model courtesy of Schmidt et al. [62]. 42

xii

Figure 4.1 The compact BlobTree scenegraph representation for GPU poly-
gonization and tetrahedralization algorithms. The structure is
aligned at 16 bytes (4 floats). 1- The header. 2- Skeletal im-
plicit primitives. 3- Operators. 4- Affine transformation nodes.
5- Control points for sketched objects. Refer to section 4.2 for
details. 47

Figure 4.2 Stackless BlobTree traversal algorithm performs faster on deep
tree traversals. The route is computed once and encoded into
the tree upon transferring the input data structures to the GPU. 51

Figure 4.3 Sample models for testing our GPU polygonization method. From
left to right: Cake, tumor and 3slabs. 57

Figure 4.4 Polygonization time breakdown in milliseconds for the three mod-
els shown in the previous section. Vertex processing is the most
compute-intensive stage due to the Newthon-Raphson root find-
ing method employed and the evaluation of colors and normals
which require additional traversals. 58

Figure 5.1 High-level system software pipeline to support deformations and
cutting. 60

Figure 5.2 System solver component for the stage 5 of our pipeline. External
forces are computed using our collision detection technique which
is discussed in the next section. 61

Figure 5.3 To compute the external forces applied by the medical tools, we
exploit the trivial collision detection facilities of the underlying
implicit model. 62

Figure 5.4 Plot of equation 5.1. Horizontal axis is the field value which
is changing from 0 to 1 in this graph. The vertical axis is the
distance to the iso-surface. 63

Figure 5.5 The K-ring neighborhood of a vertex p can be accessed using our
tetrahedral mesh data-structure. Here, the first and second rings
of vertex p are shown in orange and pink, respectively. 65

Figure 5.6 The effect of cellsize parameter in the total number of generated
tetrahedral cells for the physics mesh. Vertical axis is reported
in thousands of elements. 66

xiii

Figure 5.7 Tumor model is pushed from the top using our probe tool. Left:
The volume mesh used as physics model shown in gray. Middle:
Model pushed down for compression. Right: The surface mesh
deformations are in sync with that of the volume mesh. 66

Figure 5.8 The force is applied to the 3slabs model horizontally. The green
slab is fixed to the wall in this experiment. Deformations are
wider on the red slab. Middle: the volume mesh shown in gray. 67

Figure 5.9 The cake model is a 3 level structure which is compressed from
above in this experiment. The sequence of images show the in-
creasing stages of deformation from the beginning to the end.
Last image on the bottom row is the surface mesh which is al-
ways in sync with the physics model. 67

Figure 5.10The contact surface of our probe tool and the tumor model shown
in green triangles. The computed contact force is applied to all
vertices in the green area. 68

Figure 5.11System solve time reported in milliseconds vs. the cellsize pa-
rameter used for the volume discretization. 68

Figure 5.12Total volume versus the cellsize parameter for discretization.
Maximum volume change in all of our experiments was less than
1 percent. 69

Figure 6.1 The cut trajectory in blue and the sweep-surface shown in pink.
The scalpel passes through the shell model for cutting. 71

Figure 6.2 A tetrahedral element in its canonical view. Iterating over nodes,
edges and faces of each element is one of the primary operations
in a geometric algorithm that manipulates such elements. The
order we chose here is not the only possible one but it simplifies
the cutting algorithm and element subdivision process as we will
see later. 72

Figure 6.3 Top-down and bottom-up mesh links. The top-down relation-
ships is explicitly defined in the structure of the mesh. An ex-
ample of the bottom-up links is shown here: Edges e1..e4 are
incident to node p1 and therefore the set {p0, p2, p3, p4} is the
one-ring neighborhood of node p1. Faces F1..F3 are incident to
edge e5 and both tetrahedral cells are incident to face F2. . . . 74

xiv

Figure 6.4 Left: The edge to be split. Right: Splitting an edge produces a
new edge from the point of intersection to the original endpoint.
New points newp0 and newp1 are initially co-located. 76

Figure 6.5 Dashed line represents the cut trajectory. For all the edges in-
tersected by the cut sweep surface the end point closest to the
sweep surface is selected. If the node lies within a threshold h,
it is marked as a cut-node painted in blue and all the incident
edges to that node are removed from the cut-edges list. The red
dots are the intersection points associated with the remaining
cut-edges. 79

Figure 6.6 Nodes 0-3 are the original cell nodes shown in blue dots. Splitting
each of the 6 edges can produce two additional nodes up to 12
more nodes which are placed at indices 4-15 shown in black dots. 83

Figure 6.7 Two implicit spheres are blended and tetrahedralized for our
physics simulation system. The peanut model is cut 3 times.
Top-Left: The original volumetric mesh. Top-Right: Model cut
horizontally with the scalpel tool. Bottom-Left: Diagonal cut-
ting, Bottom-Right: Vertical cut. Blue dot represent the inter-
section points on the original edges. 84

Figure 6.8 The tumor model above is composed of 10 point primitives and
a blending operator. Top-Left: the original mesh, Top-Right:
The mesh after a horizontal cut, Bottom-Left: The vertical cut,
Bottom-Right: mesh after a diagonal cut. 85

Figure 6.9 Number of tetrahedral cells after each cut operation. The hori-
zontal axis is the cut number starting from cut 0 or the original
mesh. The vertical axis is the number of cells. 87

Figure 6.10The ratio of intersected cells to newly added cells for tumor (top)
and peanut model (bottom). Each blue bar represents the count
of cells intersected with the scalpel tool while the orange bar next
to it, is the number of newly generated cells after subdividing
those intersected cells. 88

Figure 7.1 Eggshell model before being drilled by our cutting tool. 92
Figure 7.2 Eggshell model after being drilled by our cutting tool. Left: The

first drill, Right: After drilling 6 holes to the model. 92

xv

Figure 7.3 The scene setup for the craniotomy operation. 94
Figure 7.4 Cutting tool is defined as a tube with a base composed of a curve

approximated with N line segments. Collisions between the tool
and the tissue are monitored constantly. 94

Figure 7.5 Cross section view of the brain layers. The skull shown in pink
is cut using a scalpel avatar to show all the other layers depicted
in blue. 95

Figure 7.6 Simulation of the craniotomy operation using our surgical simu-
lation framework with support for interactive cutting. 96

xvi

ACKNOWLEDGEMENTS

I would like to thank:

My parents and my sister, For supporting me at all stages of my education and
their unconditional love.

Brian Wyvill, For his mentoring and support, encouragement and patience.

Jean-Luc Duprat, For reviewing my code and excellent hardware architecture guid-
ance in my project.

Zahed, Hamed, Nina, Kazem, Herbert, For their friendship and exciting con-
versations, proof-reading the papers and technical help.

Roy and Sandrine, For seeing me in Los Angeles, the awesome dinner at Hard
Rock Cafe and guiding my research on the way.

GRAND, Mitacs, For funding and supporting my research. Reviews for posters
and positive feedbacks.

Intel Corp. For providing the latest hardware and servers for my research.

Arash Mohammadi, For his great friendship and tennis practices in Victoria, all
the good memories.

The cause of everything that happens to you is in you; you should therefore look
within yourself to find the cause.

Ostad Elahi

xvii

To Dr. Bahram Elahi for his valuable lessons and scientific approach to life.

Chapter 1

Introduction

1.1 General aim of this Research

Rendering complex, dynamic implicit models in real-time and with some level of user
interaction is a challenging problem with many applications in different areas of re-
search including virtual surgery [25]. A complete model should be quite realistic,
interactive and should enable the user to modify the topology of the objects. Ren-
dering such models on commodity hardware and supporting high fidelity which in
general implies high accuracy and interactive frame rates are two contrasting con-
strains. This is due to the lack of algorithms and techniques that can efficiently map
the modelling problems in this domain to the parallel architecture of the graphics
processor to support high quality generation and rendering of those objects.

A number of proposals have been recently presented to fulfill these two objectives.
But even if the efficiency of the simulation models have been largely improved in
the last few years, object modelling and deformation remains a rather complex task
and can be solved in interactive time only on models composed by a few hundreds of
cells. In addition, integrating effects such as cut and lacerations, makes the simulation
model more complex. In modern interactive simulation environments the ability to
cut 3-dimensional geometry in real-time is of fundamental importance. This creates
the need for efficient cutting algorithms that process the underlying representation.
In surgery simulation, interactive cutting algorithms enable the dynamic simulation
of scalpel intersections that open immediately behind the scalpel [54]. Cutting a
volumetric mesh under deformation is a non-trivial problem, due to several conflict-
ing requirements. First, the cutting process should not create badly shaped elements,

2

which could cause numerical instabilities during deformation calculation. Second, cut
trajectory should be closely approximated for realistic appearance and third, perform-
ing volume and surface mesh connectivity changes in real-time requires performance
tuned data-structures and algorithms which are not trivial for implementation. So
far, most methods have concentrated only on one of these issues.

Therefore the following major problems are identified in the surgical simulation
domain:

• Modelling complex tissues that are readily available for simulation [52, 50, 29].

• Real-time visualization of those tissues [13, 11].

• Performing interactive mesh connectivity modifications on complex models while
under deformation [35, 81, 19, 34].

We present a comprehensive solution to these problems as following. First, our
proposed modelling solution captures the key advantages found in volumetric mod-
elling approaches using implicit surfaces [11, 87, 84, 85, 86, 63, 6]. Automatic blending
and compact representation are the major benefits of using implicit surfaces for mod-
elling. In addition, the ability to perform inside-outside tests easily is an inherent
advantage in implicit models when implementing physically based simulations requir-
ing collision tests. The BlobTree [84] combined blending, affine transformations and
constructive solid geometry (CSG) operators in a comprehensive and compact scene
graph data-structure. BlobTree provides the ability to create complex models incre-
mentally [63]. Our contribution is the novel technique that bridges the gap between
modelling and physically-based simulation of implicit objects, i.e. the created models
are immediately available for interaction with surgical tools and with other tissues in
the environment.

Secondly we propose a solution for high performance and scalable visualization
of complex models created by BlobTree method. Volumetric models in general are
often several orders of magnitude slower during visualization [10, 11]. We propose a
data-driven algorithm for rendering complex implicit models in real-time on multi-
core processors [66], later, we fine tune that algorithm for running on many core
architectures such as the ones in high-end graphical processing units (GPUs).

Third, we take a novel approach in development of a stable and realistic cutting
system. Our GPU-assisted interactive cutting algorithm allows arbitrary cuts in the

3

model and can enable many scenarios for tissue manipulation while under deforma-
tions.

In what follows, the implicit modelling approach to model design will be studied.
To achieve the initial goal of this research, a computational framework for designing,
rendering and animating tissues has been developed and the details of the process is
documented in the following chapters.

1.2 Motivation

Laparoscopic surgery brought new technologies into the operating room and created
a distance between the surgeon and the patient. More recently, other minimally inva-
sive techniques have been proposed, such as natural orifice transluminal endoscopic
surgery, which can be considered as an evolution of laparoscopic surgery. The new
surgical techniques developed in Laparoscopy required the surgoens in the field to go
under training to adapt themselves to the new environment. With the loss in depth
perception and decreased levels of tactile sensation, the new technique was certainly
different from conventional open surgery.

Without open organ surgery, modern surgeons do not get training in the motor
skills of the previous generation. Thus there is a motivation to develop realistic sur-
gical simulations using real-time deformable models, and haptic rendering for further
realism [45]. The following benefits have been reported from using surgical simulation
systems [46, 4]:

• Systematic training and objective assessment of technical competence;

• Skills learned thanks to the simulator are transferable to the operating room;

• In case of rare pathological cases or when the best surgical strategy could not be
found, The simulation can aid in developing patient-specific surgical techniques;

• The ability to use augmented reality for image-guided surgery (i.e. to improve
the accuracy and limit the adverse effects of surgery).

In order to achieve these benefits, accurate, real-time bio-mechanical models are
needed together with interactions with medical devices. Such interactions involve
tissue manipulation and tissue dissection.

4

In this context, modelling and high-performance rendering are the core require-
ments for a simulation scenario. The development of fast algorithms for rendering,
contact response, cutting and haptic feedback of soft tissues can enable a number of
the aforementioned applications.

1.3 Limitation of Current Models

The requirements listed below are considered in our design of a robust modelling
system for simulation:

• Complex models should be created incrementally from simpler, primary com-
ponents that promote reusability.

• Visualization of complex models should be interactive and the result of modifi-
cations to the model should be seen in real-time.

• Interactions with the surrounding anatomy and with medical devices need to
involve advanced contact models that can be computed in real-time.

• Guided cutting with scalpel and other variants of dissection operations e.g.
drilling, should be supported.

• Modelling and simulation should be tightly coupled to enable the design of
realistic environments for surgical training.

Popular existing techniques are based on mass-spring networks, methods based on
linear elasticity, and explicit finite element models for non-linear materials [29, 50].

Mass-spring networks are quite simple to implement and very fast to compute,
but they fail to properly characterize tissue deformation as they introduce artificial
anisotropy through the choice of the mesh, and make it difficult to relate spring
stiffness to material properties such as Young’s modulus [19].

Most methods assume Linear elasticity based on small displacements and pre-
computed response values to accelerate the computations. The small strain assump-
tion is very restrictive. In addition, during any topological modifications e.g. in
cutting, the pre-computed values have to be recalculated which masks their effective-
ness in the overall performance of the system.

5

Cutting deformable tissues is one of the most sought after features in a surgical
simulator. In an interactive system with high expectations of realism and perfor-
mance, the implementation of topological modifications can become very complex.
The proposed solutions suffer from smoothness of the cutting plane or slower solve
time due to lots of extra nodes added to the system. In chapter 6 we review all the
related work in this topic and present our high performance cutting algorithm which
is built into our physically-based simulation system.

1.4 Contributions

In this research we take into account the requirements of modern surgical procedures
and introduce a new modelling framework with the ability to perform real-time cutting
in a complex model (i.e. complex in terms of the number of implicit primitives
and operators used to construct the model and also the number of finite element
cells involved in the physical simulation), providing a high performance system for
modelling and visualization with applications in surgical simulation.

Contributions described in this thesis fall into four broad categories: a mod-
elling system to create complex tissues under the heading of the BlobTree ; a high-
performance subsystem for rendering; a high-performance mesh connectivity mod-
ification algorithm to support cutting and a real-time Craniotomy simulation for
neurosurgery simulation. The full contributions list is as following:

• A comprehensive modelling framework supporting a broad set of skeletal im-
plicit primitives, sketched primitive objects, warping, blending, affine trans-
formations and constructive solid geometry operators in the compact BlobTree
structure. Our framework also provides a software architecture for physically-
based animation of rigid and deformable models.

• An algorithm for interactive polygonization of implicit surfaces on multi-core
architectures with SIMD instructions (Peer reviewed contribution [66]).

• An optimized GPU-assisted algorithm for high-performance polygonization of
implicit surfaces on many-core architectures. As opposed to related work in
this domain which is based on static implicit functions or constant range data,
our rendering method applies to dynamic, data-driven BlobTree scene graph for
complex implicit models.

6

• A high-performance algorithm for cutting rigid and deformable tissues interac-
tively.

• Smooth cutting of complex volumetric meshes to avoid producing the jagged
lines without the need for a post-processing step.

• A novel mesh data-structure suitable for storing dynamic meshes on the GPU
to support real-time modifications during cutting

• Real-time Craniotomy simulation for neurosurgery and biopsy simulations.

1.5 Overview

In the next chapter we start by providing background material on implicit modelling
technique, the BlobTree scene-graph and the concept of sketch-based, incremental
modelling. We continue by reviewing the related work in surface extraction algorithms
from volumetric models and mesh connectivity modifications.

Chapter 3 presents our rendering framework to visualize complex BlobTree models
using multi-core architectures. Building on the outcomes of chapter 3, the improved
results are reviewed in chapter 4.

Chapter 5, presents our system to support deformations and elastic behavior of
tissues. The overall software pipeline to support the entire simulation system is
presented in this chapter as well.

In Chapter 6 we present one of the main contributions of this thesis which is the
high performance tissue cutting. After a brief overview of the related work we present
our novel technique in cutting complex soft tissues interactively. Chapter 7 showcases
a skull craniotomy simulation scenario and provides comments on the operation itself
and the achieved results.

In Chapter 8 we provide a summary of the results in the previous chapters and
review the limitations of the current system and some discussions on the future work
in this research topic.

7

Chapter 2

Background Material

This chapter provides a short summary of the material which is relevant to the subject
of this research. We describe the concepts underlying implicit modelling, CPU and
GPU architectural differences and scalability issues. The chapter concludes with a
review of the related work in this domain.

2.1 Implicit Modelling

Parametric surfaces such as Bezier patches has a generative form that enables two di-
mensional iteration over the surface directly. However, in the case of implicit models,
the surface is surrounded by the object’s volume and an extraction process is required
to access the iso-surface. The formal definition of the surface and volume in this case
is as following:

S =
{
M = (x, y, z) ∈ R3|F (x, y, x) = c

}
(2.1)

V =
{
M = (x, y, z) ∈ R3|F (x, y, x) ≥ c

}
(2.2)

Function F computes the field value at a certain position M . c is a constant and
is called the iso-value which is set to 0.5 in our system. For each point in space if the
field is greater than c the point is considered inside the model otherwise outside.

Most of the primitives used in the BlobTree are built from geometric skeletons,
which are incorporated in other implicit modelling software packages such as Blob-
Tree.net [20] or ShapeShop [63]. They are ideally suited to prototype shapes of
arbitrary topology [31, 11].

8

The modeller has access to various skeletal primitives which are the basic building
blocks of the system for constructing complex shapes. Each primitive is a distance
field dS which encompasses a volume of scalar values. In its raw form dS is un-
bounded, by modifying dS with a field function g, the influence of the field is bounded
to a finite range.

Usually the function maps the distances to the range [0, 1], where the field has
values of 1 at the skeletons and 0 after a certain distance to the skeleton (usually at
distance 1). A discussion of field function is provided in [67]. Skeletal implicit primi-
tives are combined using binary operators, which are applied pair-wise to field-values
f, and represented by a node in the BlobTree , whose children are either primitives or
operators themselves.

Field values are computed for the child-nodes and combined to yield a new value
according to the operator type. This makes it possible to go beyond the classical
Boolean operators, and define general blend operators that e.g. create smooth tran-
sitions between shapes. The most common operator that creates a smooth transition
between several values is called the summation blend [11]:

FA(x, y, z) =

i=NA∑
i=1

Fi(x, y, z) (2.3)

Where an implicit model A is generated by summing the influences of NA skeletal
elements: The field value due to an skeletal element at a point in 3D-space is computed
as filtered distance to its skeleton where the filter function (i.e. falloff function) is
defined as follows [84]:

gwyvill(x) =

1 if x ≤ 0

(1− x2)3 if 0 < x < 1

0 if x ≥ 1

(2.4)

In equation 2.4, x is clamped to the range [0, 1]. This polynomial smoothly de-
creases from 1 to 0 over the valid range, with zero tangents at each end. An important
property of this skeletal primitive definition is that the scalar field is bounded, mean-
ing that f = 0 outside some sphere with finite radius. Bounded fields guarantee
local influence, preventing changes made to a small part of a complex model from
affecting distant portions of the surface. Local influence preserves a “principle of least
surprise”that is critical for interactive modelling.

Normals can be derived from gradients which are computed by evaluating 4 field

9

values and performing a numerical approximation:

∇F (x, y, z) =

F (x+ δ, y, z)− f
F (x, y + δ, z)− f
F (x, y, z + δ)− f

(2.5)

Where f = F (x, y, z) is the field at point (x, y, z).
Each skeletal primitive has a bounded region of influence in space. For each node

in the tree an axis-aligned bounding box is computed which is used to trivially reject
those field queries that are outside the box. The bounding box of the entire model is
computed as the union of all primitive nodes bounding boxes.

For evaluating the field at a point P in a BlobTree model such as the one shown
in figure (2.1), the tree structure should be traversed from root to leaves recursively.
Each operator combines the values of its children according to its type. For example,
for a simple blend the values are summed. A leaf node represents a primitive, and
returns the value by applying equation 2.4 to the distance of P from the primitive.

10

Figure 2.1: BlobTree structure of a coffee mug created with CSG and skeletal implicit
primitives.

For visualization purposes the BlobTree is queried numerous times to evaluate the
field. As suggested in [62] accelerating field computation will have a large impact on
the overall surface extraction process.

2.2 Sweep Surfaces and Sketching

Implicit primitives in our system are created from skeletons which are simple geomet-
rical shapes such as points, line segments or polygons from which volumetric distance

11

fields are created. In order to support more complex geometries Schmidt et al. pro-
posed the implicit sweep objects technique where the 2D shape sketched by the user
is sampled and an implicit approximation is created from the sample points [61]. This
is done by fitting a thin-plate spline as a base shape to the sampled points using vari-
ational interpolation [78]. One advantage of creating the base shape using variational
interpolation is that the resulting implicit field is C2 continuous, a property needed
when the shape is involved in several blending operations [3].

A continuous 2D scalar field is created from several field value samples (mi, vi),
where mi describes the position of the sample and vi is the desired field. The thin-
plate spline used to create the variational implicit field fc(u) is defined in terms of
these points weighted by corresponding coefficients wi combined with a polynomial
P (u) = c1ux + c2uy + c3.

fc(u) =
∑
i∈N

wi(‖u−mi‖)2ln(‖u−mi‖) + P (u) (2.6)

The weights wi and coefficients c1, c2, and c3 are found by solving a linear system
defined by evaluating equation 2.6 at each known solution fc(mi) = vi. The resulting
thin plate spline can then be used as the basis of several different primitives:

• Inflated Objects

• Swept object along a trajectory

• Revolving object around axis

These sketched objects can then be used in the same way as the standard skeletal
implicit primitives to create unique 3D shapes. Such unique shapes were not possible
to create in previous collaborative environments, especially given the small memory
footprint needed to transfer the information when using this technique.

2.3 Related Work

In the following we review the related work associated with the major contributions
of our research. The surface extraction methods that attempted to enhance the
performance of the sampling process on multi-core CPU processors are reviewed first.
Some others attempted to exploit the processing power on the GPU and mapped the
same problem to many-core processors. Later the previously proposed algorithms

12

for cutting volumetric meshes and the application of this framework in a surgical
simulation (Craniotomy) are studied.

2.3.1 Surface extraction methods

Several methods for polygonization of implicit surfaces have been proposed which
can be classified based on speed, accuracy of the output mesh or quality. Comparing
these methods in terms of performance reveals that space partitioning methods are
the fastest and the most popular. The paper [87] was the first to introduce a method
for finding iso-surfaces using uniform space subdivision into cubic cells. A seed cell
on the surface was found by starting at a vertex close to each primitive and evalu-
ating the field at cell vertices along each of the three axes to find a surface crossing.
Vertices inside the volume were classified as ‘hot’ and ‘cold’ outside. A hash table
was used to keep track of processed cells to avoid redundant field evaluations and
to avoid storing any cells that did not contain part of the surface. Only adjacent
cells that share an intersecting edge with their parent were processed, and a second
cubic subdivision served to reduce the number of primitives considered in each field
evaluation. Ambiguous cases were ameliorated by taking another sample from the
center of the face. A similar method was later introduced as Marching Cubes in [47].
The main difference between the two algorithms was that Lorenson et al. applied
their method to discrete volume data instead of sampling a continuous function and
in Lorenson’s method the space was completely partitioned into cubic voxels and all
cubes were visited.

Bloomenthal showed that the ambiguous cases can be dealt with by subdividing
cells into tetrahedra [9], and also that a six tetrahedron subdivision was superior
to subdividing into five [32]. The fact that tetrahedral simplices have 4 vertices
reduces the total number of configurations to 16 (or 3 by symmetry), however, the
number of redundantly generated triangles as a result of this decomposition increases
significantly. We will refer to marching cubes and tetrahedra, with MC and MT
respectively throughout this chapter.

There have been many enhancements proposed for both MC and MT. Some gain
advantage by classifying cubes according to different criteria and surface edge inter-
section calculation and number of field function evaluations. For example, Dietrich
et al. [22], did a statistical analysis of cube configurations in MC that are responsible
for most of the degenerate triangles in the output mesh. Their algorithm avoids those

13

cube configurations by inserting an extra vertex into the cell when generating trian-
gles as was done in [87] where an extra sample was taken. This reduces the statistical
occurrence of the problem.

Triquet et al. [77] enhanced MT by applying time-stamps on calculated values
and using hash tables for retrieving them. They also pre-computed surface vertices
along crossing edges which are shared with adjacent voxels and referenced previously
calculated values to avoid re-evaluating them. This latter enhancement was also done
in Bloomenthal’s polygonizer [9] and was a fairly common feature of implicit surface
polygonizer’s of the 1990s.

Beside enhancing serial algorithms some attempts were made to increase the per-
formance of MC by dividing the workload between multiple CPUs or on a network
grid of computers. Mackerras proposed an MIMD implementation of MC algorithm
[48]. The bounding volume is divided into uniform blocks and each processor runs
a serial implementation of MC on one or more blocks. They reported that because
of efficient usage of cache their method showed a speed-up greater than the total
number of physical processors involved. Hansen and Hinker presented a parallel im-
plementation of MC [33]. They labeled each cube with a virtual processor identifier to
avoid complexities in communicating between processors, then each cube is processed
independently. They reported linear speed-up by increasing the number of physical
processors. Their method spends constant time on each processor regardless of the
number of polygons in a cubic cell.

The advent of shader programs and GPGPU computing interested some to port
serially computationally intensive programs to the GPU. Space partitioning methods
like MC and MT are good candidates for these devices since each cell (either tetra-
hedra or cube) can represent an independent volume to be processed on a separate
SIMD core.

Kipfer and Westermann proposed a GPU-accelerated Marching Tetrahedra algo-
rithm that stores the topology of the surface on the GPU [39]. They used a span-
space interval tree to cull tetrahedral elements that don’t intersect with the surface.
Caching edge-surface intersections helped them to avoid redundant calculations. For
computing edge-surface intersections they used linear interpolation for finding roots
along each edge which is less accurate and degrades the quality of the output mesh.

Johansson et al. accelerated iso-surface extraction using graphics hardware [36].
They stored MC cases on the GPU and used a vertex program to compute surface
intersection points. They used a span-space data-structure similar to [17] to enhance

14

the cell classification phase in MC. Their method shows a speedup order of 13 over
the naive algorithm.

Tatarchuk et al. presented an iso-surface extraction algorithm implemented us-
ing DirectX [76]. They used graphics hardware to visualize medical data. They
maximized utilization of SIMD units on the GPU by separating their polygonization
(which is a hybrid of marching cubes and marching tetrahedra) into two phases: Fast
cube tetrahedralization and a marching tetrahedra pass. Each input voxel position is
dynamically computed in the vertex shader, then they used the geometry shader and
stream-out features of DirectX 10 to tessellate voxels into six tetrahedra spanning the
voxel cube. However their method is limited to medical volume datasets.

The polygonization method proposed by Yang et al. [88], is the enhanced version
of the Araujo’s method [58]. The main idea is to subdivide the bounding box of the
entire model into eight parts and then process them in parallel.

For each part, a seed point is found on the surface and is increasingly expanded to
form a local mesh for that part by using the surface tracking approach. Using local
curvature of the implicit surface, triangles of varying sizes are produced. However,
their method is not scalable since it can not guarantee finding a seed point per each
sub box in case the number of sub boxes increases. They reported very slow rendering
times even for the simple models that they have tested their system with.

In a similar work Knoll et al. [41] proposed interactive raytracing of arbitrary
implicits with SIMD interval arithmetic. They used SSE instructions for fast compu-
tation of interval arithmetic and ray traversal algorithm. However, their method is
restricted to static implicit functions and algebraic surfaces.

None of the proposed methods above used a modelling framework to define their
input data in a hierarchical structure similar to the BlobTree. The proposed methods
are limited to constant volume data or static algebraic implicit functions to represent
the underlying volume.

In a closely related work, Schmidt et al. [62] used a field caching mechanism inside
the BlobTree to perform fast potential field reconstruction without traversing the
entire tree. They used a trilinear reconstruction filter for field value and a triquaratic
filter for gradient interpolation. They evaluated cache efficiency by polygonizing a
BlobTree model once using cache nodes and the other time without. They reported
up to 16 times speedup for polygonizing a model with different resolutions. However,
their method is not scalable since the cache nodes cannot be updated from different
processing threads without using locking mechanisms or a data race condition can

15

occur.

2.3.2 GPU-Accelerated rendering of implicits

GPU accelerated rendering techniques has been the topic of interest for the graphics
community in the past two decades. Several GPU-accelerated algorithms have been
proposed for fast triangulation and rendering of iso-surfaces that are defined by vol-
ume data-sets, algebraic surfaces and radial-basis functions. In this section we will
review the most related works.

Chochlík et al. proposed a GPU accelerated polygonization algorithm for dy-
namically changing implicit surfaces [16]. Their method is based on the marching
tetrahedra (MT) algorithm. The model is partitioned into cubic cells first and then
each cell is subdivided into 6 tetrahedra to be further processed using the GPU geome-
try shading stage. The vertices are marked inside if their associated field is above zero
and outside otherwise. A configuration index is computed per each tetrahedra based
on the inside/outside vertices. The triangle mesh is produced which is shaded using
the fragment shader stage. No further analysis has been made on the performance
of their algorithm and the input models are limited to time varying simple algebraic
surfaces. The used a linear interpolation root finding method which produces low
quality output.

Buatois et al. proposed a GPU accelerated iso-surface extraction method based
on MT, similar to Chochlík et al. [14]. The texture memory to transfer the position
and field values of the grid vertices. They presented an analysis of the performance of
their algorithm using a fluid simulation volume data-set. They reported that excessive
texture fetches can be a bottleneck in the performance of their method.

Tatarchuk et al. proposed a GPU iso-surface extraction algorithm which is a hy-
brid of marching cubes and marching tetrahedra [75]. They start by voxelizing an
implicit grid into discrete cube cells and then convert that to a tetrahedral represen-
tation. They implemented an MT algorithm on geometry shader stage of DirectX10
API. For root finding method they fitted a parabola along the intersecting edges and
evaluated a quadratic equation which produces a better approximation. They tested
their system using the visible human volume data-set. Their method is limited to
static volume datasets and is not usable in a data-driven setting where the topology
of the underlying model changes.

With modern hardware and fast GPUs, ray tracing of implicit surfaces is the

16

subject of much research. Knoll et al. [40] presented CPU and GPU algorithms that
can achieve interactive visualization for common algebraic surfaces. The surfaces
used in by Knoll et al. are not arbitrary implicit models but surfaces generated
using traditional kernels or functions. Similar surfaces are presented by Singh and
Narayanan for real-time ray tracing of implicit surfaces using the GPU [70].

Kipfer and Westermann [39] accelerated rendering of implicit surfaces by avoiding
redundant computation of edge surface intersections. Our method also employs this
feature to reduce the overhead. They also use features of the GPU to reformulate
the iso-surface identification and reduces numerical computations and memory access
operations. They used a span-space data-structure to avoid processing non surface
intersecting elements.

Kanai et al. [38] proposed a rendering method for sparse low-degree implicit
surfaces (SLIM) using ray casting approach. The ray and IS intersection test has
been carried out on the fragment processing stage. They employed level of detail
rendering and view frustum culling to speedup the rendering. The coefficients for
the IS are passed in using textures. They reported high quality and interactive rates
for several models. The large number of processed fragments is the bottleneck in
this process and models with lower number of nodes could be rendered slower than
more complex models that cover less fragments. Although Kanai et al. ’s work is
data-driven but the increasing cost of fragment processing is the main bottleneck in
their system. Also since they are not producing any mesh the computations will be
lost after rendering.

2.3.3 Volume mesh cutting

A number of approaches has been proposed by the computer graphics community to
enable cutting of deformable and rigid models. Except for a few methods most of
them use tetrahedral meshes for the volumetric mesh representation. Bielser et al.
performed an adaptive refinement of the tetrahedral elements cut by a virtual scalpel
[8]. In another work Bielser et al. presented a progressive approach to cutting [7],
where the decomposition of a tetrahedron is changed depending on the movement of
the cutting tool inside an element. However, the approach is highly non-trivial to
implement and also poses some stability problems due to badly-shaped elements.

Mor et al. tried to reduce the number of sub-elements created while cutting
tetrahedral meshes [51]. One of the major issues in cutting is the creation of ill-

17

shaped elements i.e. skinny elements, which can adversely affect the performance
and stability of the system solver. Some work attempted to avoid such elements
via mesh alignment techniques [53, 74]. Other methods tried to solve the issue by
removing them completely which resulted in volume loss and jagged lines along the
cut surface.

Wu et al. [81] proposed an algorithm for 3D mesh cutting using a combination
of the adaptive octree refinement with an iterative composite element hierarchy to
enable simulating high-resolution cuts with a small number of degrees of freedom
(DOFs). They used the dual contouring method [37] to keep the sharp creases along
the cut. Due to the high computational cost and naive implementation their method
is not scalable and has yet to become an interactive cutting approach.

In a closely related work Courtecuisse et al. presented a soft-tissue cutting system
with haptic feedback [19]. Their cutting strategy follows Mor et al. [51] work and
suffers from jagged lines along the cut surface as shown in their examples of a laparo-
scopic hepatecotomy. They also produce too many new nodes when subdividing cut
elements.

Jerabkova et al. proposed a solution to the ill-shaped elements problem by using
hexahedral elements instead of tetrahedra [34]. Their approach relies on fine-level
voxels to model object surface and simulate cutting. The volume data requires more
memory space than traditional, surface-based models. Cutting is performed by re-
moving voxels. For sufficiently small voxels this typically remains unnoticeable but
it may result in significant volume loss in case of a large number of cuts.

Jin et al. proposed a meshless total Lagrangian adaptive dynamic relaxation
cutting algorithm to predict the steady-state responses of soft tissue [35]. A cloud
of points is used for discretization and approximation of the deformation field within
the continuum without generation of finite element meshes. They didn’t report any
performance measurements and the quality of the cuts could not be verified with the
simple truth cube model they reported in their paper.

Sifakis et al. [69] proposed a geometric algorithm for placing cracks and incisions
on tetrahedralized deformable objects. Their method is similar to the virtual node
algorithm in that they avoid sliver elements and their associated stringent timestep
restrictions. Producing ill-conditioned triangles on the material surface can have
a negative effect on collision handling specially in case of a self collision. Also in
their system a cut that partially intersects a tetrahedron without separating it into
disconnected fragments will not allow the material to separate within that embedding

18

tetrahedron.
Steinemann et al. [73] created a hysteroscopy simulator and minimized the number

of added elements after a tetrahedral subdivision by cutting along existing edges and
faces. The problem with their system is that the result of the cutting is produced only
after it has been completed and this leads to a delay in the system. Unfortunately
they didn’t report any performance statistics of their algorithm.

In the following sections we provide an overview of the system and the data
structures involved in the process and our cutting algorithm. The chapter is concluded
by the analysis of the simulation results.

19

Chapter 3

High Performance Rendering on
Multi-Core Architectures

One of the main challenges in animating deformable tissues is their rendering which
requires to support high frame-rates [66]. In order to leverage the benefits offered
by BlobTree modelling the rendering issue has to be tackled accordingly. In this
chapter we present a parallel method for speeding up the generation of a polygon
mesh from an implicit model [66]. Although the method is applicable to many types
of implicit surfaces, we focus on surfaces generated from fields surrounding geometric
primitives, known as skeletal implicit surfaces, [11] that are discussed in chapter 2.
The model data structure is a tree whose leaf nodes are primitives, and internal nodes
are operators; the BlobTree, [84]. Currently the BlobTree supports operations such
as; arbitrary blends, boolean operations, warping at a local and global level including
contact deformations. Geometric transformation matrices are also stored as nodes in
the tree so the data structure is also a scene graph.

A BlobTree is typically visualized by polygonization to produce a triangle mesh
to be rasterized by the graphics processor. Direct ray tracing [11] can also be used,
to produce high quality images. Both methods require computation of the field value
which can only be evaluated by traversing the BlobTree structure. The field due
to each operator depends on its child nodes and the leaves are the primitives which
can be any implicitly defined function; e.g. distance field due to geometric skeletal
elements.

Implicit modelling using the BlobTree has several advantages over other modelling
methods. Various different blends are simple to represent, as are free-form volume

20

deformations and constructive solid geometry operations (CSG) [30]. Other operators
such as detecting contact, and warping surfaces accordingly (see [15]), can easily be
represented as nodes in the BlobTree.

An incremental, sketch based BlobTree system was built by Schmidt et al. [63],
promoting flexibility and modular design for the creation of complex models, and most
of the earlier problems with the methodology have been overcome [6]. Although direct
manipulation is possible [63], very complex models can only be visualized interactively
as coarse meshes. Hence the need for a faster polygonizer. The BlobTree facilitates
incremental modelling, a strategy that promotes flexibility and modular design for
creating complex models.

The main contribution presented here is a high performance polygonization al-
gorithm that scales well with the number of physical cores and SIMD vector width
available on modern processors.

As opposed to previous work that attempted to render implicit surfaces defined by
static algebraic surfaces or volumetric scanned data, our method is data-driven where
the definition of the surface can change over time. This feature is particularly useful
in collision detection applications such as surgical simulations where the interaction
of the surgical tools and deformable tissues should be visualized in real-time [43].

In addition we have improved the performance of the algorithm that finds the
intersection of a cube edge and the surface, by making use of the SIMD architecture,
to find the intersection in a single run of a field evaluation kernel.

The chapter is organized as follows; In section 3.3 our algorithm is explained
along with the improvements made to the distance-field computation process. Our
performance results and future work are presented in sections 3.5 and 3.6, respectively.

3.1 Architecture Constraints

In this section we define some processor architecture constraints, i.e. minimum re-
quirements from the hardware side to implement our algorithm as efficiently as pos-
sible. The algorithm scales with the number of physical cores and the SIMD vector
width available on the processor. See results section (3.5).

Our current implementation leverages both Intel SSE with 4 float wide and Intel
AVX with 8 float wide SIMD instruction sets. Using a cache-aware technique our
algorithm is designed to minimize the movement of cache lines in and out of the
processor’s on-chip memory. To this end the technique requires at least 256 kilobytes

21

of last level cache memory per each processor core. The input data structures take
about 192 kilobytes of memory in our implementation.

Although our test environment was Intel based, our algorithm should be imple-
mentable on any multicore machine with SIMD instructions and sufficient cache.

3.2 Naming Conventions

The polygonization method used, is a space partitioning algorithm based on [87],
which uses a uniform grid of a user defined cell size (cellsize). In order to leverage
the SIMD parallel computation capabilities of the processor, the bounding box of the
model is divided into axis-aligned grids of 8x8x8 vertices where each grid is called
model partitioning unit (MPU).

An MPU is 7 ∗ cellsize as shown in figure 3.1. Each MPU contains 7*7*7 or 343
cubic cells. In section 3.4, a detailed study is made on various dimension sizes and
the impact of this parameter on the overall performance. An MPU is called empty if
it does not intersect with the iso-surface of the model. The list of all MPU s is called
the MPUSET and a half open interval [a, b) over MPUSET is called an MPURANGE
which contains consecutive MPU s from a to b− 1.

22

Side <=1

Ra
diu
s=
1

1 2 3 4 5 6 7

CellSize

AVXSSE

Figure 3.1: The MPU is our unit of computation per each core illustrated as a 2D
cross section here. Field-values due to every 4 or 8 points are computed in parallel
with SSE or AVX instructions, respectively. When the field at a vertex is zero no
iso-surface will pass in the neighborhood of a unit circle (sphere in 3D) centered at
that vertex.

3.3 Algorithm

The input to our algorithm is a BlobTree data structure, representing an implicit
model whose iso-surface we wish to find. Output is a triangle mesh. The model
bounding box and the cellsize parameter are supplied by the user to control the
resolution of the final mesh.

The BlobTree structure is first converted into a compact, linear structure required
for SIMD optimization techniques, then the model bounding box is divided into the
MPUSET with respect to the cellsize parameter. The MPUSET is processed in par-
allel using multiple cores; with a fast emptyMPU rejection method and SIMD surface
extraction algorithm the mesh contained within intersectingMPUs is extracted. The
algorithm has no synchronization points except after all MPU s are processed and the
triangle mesh is sent to the GPU for rasterization. The left column in figure (3.2)

23

displays these preparation steps in order. The following sections describe this whole
process in detail.

We start by describing the initialization phase and continue with the surface ex-
traction details in the next section. The algorithm starts by computing the size of
an MPU side (7 cells) and dividing the bounding box of the model into a 3D grid of
MPU s, where each MPU is assigned a unique global identifier. The main idea of our
algorithm is parallel processing of the set of all MPU s (MPUSET) using multicore
and SIMD processing techniques.

Our algorithm recursively splitsMPUSET into disjointMPURANGE s where each
MPURANGE is assigned to an idle core on the processor. The granularity of the di-
visions can be determined by the average amount of machine cycles spent to process
an MPU, however, in our implementation we resort to the solution provided by Intel
Threading Building Blocks (TBB) [57], which provides a non-preemptive task schedul-
ing system to take care of the differences in task loads by monitoring processors and
starting new tasks on idle cores automatically (work-stealing) [57].

Figure 3.2: Left Column: The one-time preparation steps before scheduling kernel
functions for computation. Middle Column: The early discard kernel function. Right
Column: The MPU processing kernel function.

24

3.3.1 BlobTree Linearization

The first step in our algorithm is the BlobTree reduction and pruning as suggested
by Fox et al. [24]. As shown in figure 3.3, after the reduction process, the leaf nodes
are associated with the combined transformations of all nodes in that branch of the
BlobTree . Using this technique the transformation for the internal nodes can be
removed since they are simplified to identity matrices.

T0

Union

T2

Intersect

T1

Blend

T3

Cylinder

T4

Polygon

T5

Sphere

T6

Cube

(a) The original BlobTree .

I

Union

I

Intersect

I

Blend

T3T1T0

Cylinder

T4T1T0

Polygon

T5T2T0

Sphere

T6T2T0

Cube

(b) The BlobTree after the flattening process.

Figure 3.3: The reduction process combines all transformation nodes at primitives.
After the operation, all internal operators are associated with identity transformation
matrices.

In the second step, using the same linearization algorithm proposed for quadtrees
[44]; the BlobTree is converted into a pointerless representation to achieve cache-
memory efficiency by keeping all input data structures at aligned memory addresses
and fitting the entire BlobTree model into the last level cache memory of the processor
(see figure 3.4).

25

N Primitives

position

direction

Transform links

AABB

1 2 3 N-2 N-1 N

1 2 N-2 N-1 N 3

N Operators

flags

children
links

AABB

1 2 3 N-2 N-1 N

1 2 N-2 N-1 N 3

N Transformation Nodes

matrix 1 2 3 N-2 N-1 N

Figure 3.4: The BlobTree is flattened to a structure of arrays (SOA), and is stored
at aligned memory addresses for performance reasons. Each row represents an array
of values of the same type. N is determined in such a way that the entire structure
fits in the cache memory of the processor.

The flattening process converts the pointer based BlobTree into a structure of
arrays. The operators have access to their children using the integer based links for
direct access. The operator flags determine the type of children i.e. primitive or
operator. Each primitive has an associated link to a transformation node (e.g. link
zero is associated with the identity transformation matrix to be reused globally.) N
is computed based on the size of memory in the last level cache of the processor. An
approximation of N can be computed as following:

26

N = b 0.6 ∗ LLC
sizeofOp+ sizeofPrim+ sizeofTransform

c (3.1)

LLC denotes the size of cache memory available per each core in bytes. Other
variables, as their name suggests, are the sizes of one operator, one primitive and
one transformation node, respectively. Only 60 percent of the cache storage is as-
signed for the BlobTree structure, since there are certainly other input structures and
intermediate variables that need to be stored for the processing on each core.

Using this estimation the computed value for N is 1200 in one of our systems with
a total cache memory of 256 KiBytes per core. In our current implementation the
memory usage is 96, 56 and 64 bytes per each primitive, operator and transformation
nodes, respectively.

The final linearized BlobTree is in the format of cache-aligned structure of arrays.
With this arrangement several computations can be optimized with SIMD instruc-
tions, e.g. applying a transformation matrix on a vector of 4 or 8 vertices as opposed
to scalar computation. The output mesh is also in the format of cache-aligned struc-
ture of arrays which is the key to compute colors, normals and other attributes in
SIMD fashion.

3.3.2 Surface Extraction

In our algorithm we assign field values for every vertex of every MPU that is not
trivially rejected with the method explained in the following, and compute the trian-
gular mesh representing the iso-surface. This approach combines elements of several
algorithms ([87, 47, 9]).

We extended the method proposed by Zhang et al. [89] to trivially reject all
empty MPU s. The observation made is that according to equation 2.4, if the field
value at a given vertex is zero then the shortest distance from that vertex to the
iso-surface is greater than or equal to one (See figure 3.1). Using this fact empty
MPU s can be identified very fast by evaluating the fields at the 8 vertices of each
MPU and rejecting it of all 8 fields are zero. However, this test is only applicable
when the cellsize parameter is smaller than or equal to 1/7 or 0.1428. For larger
cellsizes the iso-surface may still intersect with the MPU while the fields at vertices
of the MPU are zero. This process is depicted in the middle column of figure (3.2).
For a discussion on cellsize versus performance see section 3.5.

For larger cellsizes we shoot 8 rays from the center of theMPU to its eight vertices,

27

using the technique of Zhang et al. per each step we march 0.866c (0.866 is half of
the diagonal of an MPU with side one and c being the cellsize parameter) along each
ray. At each step we compute the fields for the 8 vertices along the rays; if a non-zero
field is found then the MPU is further processed, otherwise we march along the rays
until we reach the vertices of the MPU.

If an MPU is not rejected then it is further processed for surface extraction. A
local copy of the linearized BlobTree is provided per each core in order to avoid false-
sharing among cores [12]. Using SIMD processing techniques field values for all 512
vertices of MPU are computed. With SSE or AVX instructions this step requires 128
or 64 field evaluation kernel runs, respectively (figure 3.1).

All the fields are stored in a memory aligned array of 512 floating points. This tech-
nique avoids reevaluating field values while processing cells in the next step. Storing
field values from a SIMD register into memory aligned address can be accomplished
with a SIMD instruction in parallel. After this step all 343 cells of the MPU are
processed. Per each cell, the 8 vertex field values are gathered in SIMD fashion. Each
vertex with a field greater than or equal to iso-value is labeled one otherwise zero.
The configuration index of the cell is computed using the SIMD method shown in
algorithm 1. A configuration index is computed to access the table as in [47]. We
used the modified marching cubes table proposed by Dietrich et al. that eliminates
many of the degenerate triangles produced in the original MC algorithm [22]. For the
ambiguous cases we take another sample from the center of the cell [87, 22].

Algorithm 1 SIMD computation of cell configuration. Pseudo code provided for
AVX SIMD computation. Similar code can be written in SSE.
1: Gather the 8 vertex field values of the cell
2: simd index = cmp_ge8(fields, simd(0.5))
3: index = and8(index, simd(1.0))

4: index = mul8(index,maskPower)

5: index = hadd8(index, index)

In algorithm (1) fields is an array of 8 vertex field values, line 2 performs a parallel
comparison between iso-value and fields. In line 4 maskpower shifts the field values
into the appropriate slot in the SIMD array and finally line 5 performs a horizontal
add operation on the values to compute the configuration index.

For each intersecting edge there is one inside and one outside vertex. Using a root
finding method the point of intersection of the iso-surface is computed and stored in

28

a hash table to be reused by the neighboring cells that share that vertex.
For the root finding methods that do not require gradient information such as

regula falsi or bisection method, the field value should be evaluated multiple times
along the edge, which will degrade the performance of the system. Other methods
such as Newthon-Raphson require gradient information, and as mentioned in equation
(2.5) each gradient computation involves 4 extra field evaluations. We describe a root
finding technique based on SIMD instructions that computes the root with only one
extra field evaluation in AVX (two with SSE) with adequate precision. By subdividing
the intersecting edge into 8 vertices and evaluating the field values, the exact interval
containing the final root can be identified. Performing linear interpolation in that
interval will produce the final root (figure 3.5), it is trivial to show when the number
of intervals increases the interpolation error decreases [49].

0.22 0.25 0.30 0.36 0.40 0.550.20 0.60

Intersection Point

CellSize

C H

Figure 3.5: Top: A cell edge is intersected with part of the surface shown in blue. By
performing one field evaluation using AVX or two with SSE instructions the interval
containing the intersection point can be identified. The final root is computed using
linear interpolation within the interval marked with bold line segment.

Algorithm (2) summarizes the process of surface extraction which is run per each
MPU. Lines 1 through 25 are related to the MPU discard method explained earlier

29

in this section. Lines 26 through 42 shows the cell processing technique which is
optimized using SIMD cell configuration computation and our root finding method.
Since color and normal attributes should only be computed for final mesh vertices,
this step is performed last to fully leverage SIMD optimizations by performing every 4
or 8 attribute computations in one SIMD call which greatly enhances the throughput
of the system and minimizes BlobTree traversals.

3.4 MPU size Analysis

In a separate experiment we studied the impact of various MPU dimension sizes in
the overall performance of the algorithm.

As shown in figure 3.1, the default dimension for an MPU is 8 along each side.
Smaller sizes result in more MPU work items and larger MPU s consume more pro-
cessing time per each item. Finding the optimal value for the dimension size is the
primary goal of this experiment.

One requirement for the MPU size parameter is that it has to be a multiple of
SIMD width of the processor that it runs on (4 on SSE and 8 on AVX), otherwise
the computations are wasted in the regions outside the boundary of the MPU (See
figure 3.1).

For this experiment, the model shown in figure 3.15, is polygonized with increasing
values of the MPU size.

30

Algorithm 2 Algorithm for surface extraction of an MPU using AVX SIMD in-
structions, Similar code can be written for SSE instruction set. Input is linearized
BlobTree T , lower vertex of MPU and the cellsize parameter. Output is the local
mesh contained in the MPU
1: side← cellsize ∗ 7
2: simd v ←Compute MPU vertices
3: if side ≤ 1 then
4: simd f ← T.compute_field8(v)
5: if f == 0 then
6: return;
7: end if
8: else
9: flag ← true

10: incr = 0.866 ∗ cellsize
11: d = incr
12: while d ≤ side ∗ 0.866 do
13: Shoot rays from center of MPU to its 8 vertices
14: simd v ←Travel along the rays for distance d
15: simd f ← T.compute_field8(v)
16: if f ! = 0 then
17: flag ← false
18: break;
19: end if
20: d = d + incr;
21: end while
22: if flag == true then
23: return;
24: end if
25: end if
26: float fieldCache[512];
27: for all simd vertex in mpu vertices do
28: simd f ← T.compute_field8(vertex)
29: Store f in appropriate location in fieldCache
30: end for
31: for all cell in mpu do
32: f ← gather8(cell, fieldCache)
33: edges←Compute cell config from f to access table
34: for i = 1→count of edges do
35: if root for ith edge is not stored in edge table then
36: Compute and store root associated with ith edge
37: Add root to mesh vertices
38: end if
39: end for
40: Add cell triangles to mesh
41: end for
42: compute color and normal for all vertices (every 8 vertices in parallel)

31

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

8	 12	 16	 20	 24	 28	 32	

Ti
m
e	
in
	 m

ill
is
ec
on

ds
	

MPU	 Dimension	 Size	

Avg	 Time	 Spent	 Per	 MPU	 [ms]	

Figure 3.6: Average time spent per each MPU when polygonizing the Towers model.

The MPU dimension is increased from 8 to 32 in the steps of 4 units at a time. As
shown in figure 3.6, the amount of processing time spent per each MPU is increased
as larger units of work are being processed.

The fastest polygonization time is when the MPU dimension is set to 20 in this
experiment. This is depicted in figure 3.7. All the numbers used in these graphs are
the average of 10 runs.

32

4096	

8192	

16384	

32768	

8	 12	 16	 20	 24	 28	 32	

Ti
m
e	
in
	 m

ill
is
ec
on

ds
	

MPU	 Dimension	 Size	

Total	 Polygoniza6on	 Time	 [ms]	

Figure 3.7: Total polygonization time in milliseconds when polygonizing the Towers
model.

By keeping the cellsize parameter as constant, the early discard method described
in section 3.3.2, is used only in case of a MPU with the dimension size of 8. Since
the side length is still smaller than one with this dimension.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

8	 12	 16	 20	 24	 28	 32	

Ra
#o

	

MPU	 Dimension	 Size	

Ra/o	 of	 Intersected	 to	 Total.	 Higher	 is	 beAer.	

Figure 3.8: Ratio of intersected to total number of MPU s.

33

One of the interesting graphs is figure 3.8, which illustrates the ratio of intersected
MPU s to total count as the dimension size increases. The highest ratio (more than
85 percent) is achieved when the largest dimension size (32) is used for processing.

However as shown in figure 3.9, increasing the MPU dimension will adversely
widen the time difference between all threads to finish their processing. The reason
for this phenomenon is that when the units of work are large, having even a few more
of them in the processing queue of a thread can lead to a major imbalance in the
workload distribution among all threads.

1	

2	

4	

8	

16	

32	

64	

128	

256	

8	 12	 16	 20	 24	 28	 32	

Ti
m
e	
in
	 m

ill
is
ec
on

ds
	

MPU	 Dimension	 Size	

Time	 to	 Finish	 [ms].	 Less	 is	 be9er.	

Figure 3.9: Maximum time in milliseconds spent in idle mode while other active
threads finish their current work. The less is better, since it indicates a more uniform
workload distribution across the running threads.

Figure 3.9 exhibits an expected behavior: With the dimension size of 8 there are
as many as 145152 MPU s for processing, by refering to graph 3.6 the time spent per
each item in this case is a fraction of a millisecond (approximately 140 microseconds).

In case of the dimension 32, a MPU is 64 times larger than the one with dimension
8 and the total count suddenly drops to 2023 and with the average processing time
of 10 milliseconds per each MPU (10 milliseconds is almost 72 times larger than the
amount of time reported for a dimension 8 MPU).

The last graph in this section is associated with the amount of physical memory
required to store the input data-structures for processing a unit of work as efficiently
as possible. We made an effort to fit all the required data-structures inside the cache

34

memory available on the processor cores. One of the main reasons that we chose the
default dimension size of 8 for the MPU is the fact that this memory is smaller on
the older generations of processors and increasing the dimension size will increase the
required memory as shown in figure 3.10. However, our algorithm is scalable and for
modern processors with access to larger cache memory, the higher MPU dimensions
can be used.

0	

100	

200	

300	

400	

500	

600	

700	

800	

8	 12	 16	 20	 24	 28	 32	

Ca
ch
e	
U
sa
ge
	 in
	 [K

iB
]	

MPU	 Dimension	 Size	

Total	 Cache	 Memory	 Usage.	 Less	 is	 be?er.	

Figure 3.10: Total memory usage per each MPU processing, reported here in kilo-
bytes. The limit in this case is the last level cache memory available on the processor
to fit the entire data structures required for the processing of a MPU efficiently.

3.5 Results

We have implemented our algorithm using Intel threading building blocks in C++
on a Linux platform. We used two systems with different configurations. On the first
system which has Intel i7-3960X processor with Sandy Bridge architecture, there are
6 physical cores given that each core runs in hyper-threaded mode; up to 12 threads
can run in parallel on this machine. This processor supports both SSE and AVX
instructions and there is a last level cache memory of 15 megabytes which is shared
between all cores.

The second system is a server with 4 Intel X7560 processor with Nehalem archi-
tecture. Each processor has 8 physical cores or 16 in hyper-threaded mode and has

35

24 megabytes of last level cache memory and it does not support AVX instructions.
Together these 4 processors provide us with as many as 32 physical cores (64 when
hyper-threaded) on this server. We refer to these two systems with SNB and NHM
respectively.

On the first experiment our goal was to prove the scalability of our algorithm.
Figures (3.11, 3.12) show the average running time of the algorithm when rendering
towers model (figure 3.15) on SNB and NHM systems, respectively. The BlobTree of
the towers model has 7360 operators and 7296 primitives and a depth of 64 levels.
In this test the cellsize parameter kept as a constant value of 0.14 which we found it
to be a balance between number of triangles produced and the quality of the output
mesh.

In order to show the effect of SIMD optimizations we have tested our algorithm
with scalar, 4-wide SSE and 8-wide AVX instructions. SSE being on average 4.58x
faster than scalar and AVX being on average 7.35x faster than scalar run. As illus-
trated in figure 3.11 when the number of threads increases past 6, two threads run
on every core; sharing hardware resources on the hyperthreaded cores. The slope is
reduced because each thread gets less resources than it would if it ran alone on the
core. Past 12 threads, we schedule multiple threads per core, and they start to thrash
the cache; making the algorithm memory bound.

Figure 3.12 shows the performance of our algorithm when running on the NHM
system. Doubling number of threads, doubled the performance of the algorithm on
this machine up to 33rd thread. The same behavior is shown and hyper-threaded
cores start to compete for memory access when having more than 32 threads running
on this machine.

36

1

4

16

64

256

1024

4096

16384

65536

262144

1 2 4 8 16 32 64

Ti
m
e
in
m
ill
is
ec
on
ds

Threads

Scalar SSE(4FloatsSIMD) AVX(8FloatsSIMD)

Figure 3.11: Average polygonization time of the towers model when running on SNB
processor. Horizontal axis is the number of threads. Vertical axis is time measured
in milliseconds.

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

1 2 4 8 16 32 64 128

Ti
m
e
in
m
ill
is
ec
on
ds

Threads

Scalar SSE(4FloatsSIMD)

Figure 3.12: Average polygonization time of the towers model when running on NHM
processor. Horizontal axis is the number of threads. Vertical axis is time measured
in milliseconds.

37

Table 3.1: Comparison of speedups and field value evaluations per triangle (FVEPT)
for polygonization of Tower model with different SIMD instruction sets. Note that
FVEPT was 17 before adding SIMD optimizations.

Processor SIMD Method Speedup FVEPT

SNB SSE 4.58x 4
SNB AVX 7.35x 2
NHM SSE 4.25x 4

Table 3.1 shows the effect of using SIMD optimizations in our algorithm. With
SSE and AVX the theoretical speedups are 4 and 8 times, respectively. Due to mem-
ory alignment techniques and proper caching mechanisms the speedup with 4-wide
SSE is greater than 4. The AVX speedup can be improved more once scatter/gather
instructions are implemented on the SNB processors which will improve the per-
formance of surface extraction algorithm. Number of field evaluations per triangle
shows the average amount of times the field evaluation kernel called to compute a
single vertex in the output mesh.

In another experiment we studied the effect of our early discard method when the
side of each MPU is less than one (figure 3.13). Starting from a large cellsize, we
reduced the cellsize in uniform steps and measured the polygonization time. The red
curve shows the polygonization time when the discard method described in section
3.3.2 is not being used and the blue curve is the timing when that method is in effect.
Note that with the blue curve as soon as the MPU side is less than one; (cellsize =
0.14) empty MPU s started to get discarded efficiently thus the constant part of the
time value is reduced at that point.

38

0

5000

10000

15000

20000

25000

30000

35000

0
.3

0

0
.2

9

0
.2

8

0
.2

7

0
.2

6

0
.2

5

0
.2

4

0
.2

3

0
.2

2

0
.2

1

0
.2

0

0
.1

9

0
.1

8

0
.1

7

0
.1

6

0
.1

5

0
.1

4

0
.1

3

0
.1

2

0
.1

1

0
.1

0

P
o

ly
go

n
iz

at
io

n
 t

im
e

 in
 m

ill
is

e
co

n
d

s

Cell size

Without discard method With discard method

Figure 3.13: Reducing cellsize parameter results in more MPU generation and in-
crease in polygonization time. However, at a certain cellsize our early discard method
stops polygonization time increase by rejecting all empty MPU s more efficiently.

Figure 3.14 shows the polygonization time breakdown when rendering the towers
model on SNB processor. Horizontal axis is the core number for a total of 12 cores on
that system. As can be seen from the top of this chart; the idle time is very short and
the cores are active almost all the time. This shows that the work stealing algorithm
scales well. 190463 MPU s are processed and 116723 of them are intersected with the
iso-surface (40 percent were empty). 40 percent of the MPUSET has been processed
in less than 10 percent of the total polygonization time.

39

Discard

Surface
Extraction

Field
Evaluation

Idle
(WAIT)

0%

100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 3.14: Towers model per-core time breakdowns. Each bar represents a logical
core on the processor for a total of 12 cores. Vertical axis is the total polygonization
time. 190463 MPU s processed with 12 cores in 9283 milliseconds. This chart shows
the portion of time spent in each step of the algorithm when rendering the towers
model on the SNB processor with 8-wide AVX instructions.

40

Figure 3.15: Towers model created with skeletal primitives and binary operators in
our incremental designing system. The model is a grid of 8 by 8 towers for a total of
7360 operators and 7296 primitives.

These results demonstrate the scalability of our algorithm both in the number of
SIMD vector lines and the number of cores available on each processor.

Finally, we compare our method against Schmidt et al. ’s [62] using the Medusa
model provided by them which has 2920 primitives and 11 operators and the tree
structure has a depth of 6 (figure 3.16).

The Medusa model is programmatically reconstructed in our modelling system
and the results of its polygonization are already published by Schmidt et al. [62].

We divided polygonization timings reported in [62] by 8 as the best AVX optimized
version of Schmidt’s method. Then we ran our polygonization algorithm optimized
with AVX instructions on a single core for Medusa model (See table 3.2).

41

Table 3.2: Comparison of our polygonization method against Schmidt et al. ’s [62]
when rendering Medusa model at 5 different resolutions on one single core with AVX
instructions. All timings are in milliseconds.

CellSize Our method Schmidt’s method Speedup

0.01 5220 6228 1.19x
0.03 3441 3653 1.06x
0.05 1071 2175 2.03x
0.10 264 1292 4.89x
0.14 108 721 6.67x

The results shows that our algorithm outperforms that of Schmidt et al. by a
factor of 6 when running on a single core in lower resolutions.

3.6 Chapter Conclusions

In this chapter we presented a new parallel polygonization algorithm using SIMD
processing techniques that takes advantage of a multi-core machine. Our main con-
tribution is a scalable algorithm both in terms of the number of cores available on
multicore architectures and the number of SIMD vector width as shown in the re-
sults section. We also presented a SIMD technique for finding the intersection of an
iso-surface and a cube edge.

42

Figure 3.16: Medusa model courtesy of Schmidt et al. [62].

43

Chapter 4

GPU discretization

In the previous chapter we presented an algorithm for polygonization of the BlobTree
scene graphs on multi-core architectures. The output of that algorithm is a list of
vertices with their associated attributes such as position, color and normal and a list
of triangles that defines the connectivity of the surface mesh. While the surface mesh
is used for rasterization it can also facilitate collision detection and contact modelling
algorithms as we will see in the following chapters. In this chapter we present an im-
proved version of that algorithm that can take advantage of the processing capabilities
of the GPU and provides scalable rendering performance on many-core architectures.

Building on top of the results from our SIMD polygonization algorithm, in this
chapter we present our work in optimizing that algorithm for many-core architectures
such as GPU. The following are some of the reasons behind this effort:

1. The polygonization process extracts a triangle mesh which ultimately requires
rasterization for rendering. Using a GPU implementation both steps can be
fused together thus avoiding the expensive read-backs.

2. GPUs provide a higher degree of SIMD processing which is also called SIMT
for single instruction multiple threads. Using the same strategy, multiple units
execute the same fetched and decoded instruction; however, on the GPU side
there is a wider access to register sets, multiple flow paths and access to mul-
tiple memory addresses that can scale the performance of each running thread
significantly.

3. Using flexible and portable OpenCL programming, the polygonization code can
be written in simple, scalar arithmetic and the runtime environment will handle

44

multi-threaded task parallelism and vector width SIMD processing on the target
hardware. This is certainly much more readable and extensible code than using
non-portable, machine intrinsic functions for SIMD processing.

When compared to the related work in the field, our proposed method has the
following benefits:

• It is dynamic, i.e., the input to our algorithm is a dynamic BlobTree structure
that can change in every frame. This is a key advantage that can enable interac-
tive modelling sessions in an implicit framework, i.e. the result of modifications
to the model can be viewed in real-time. After each change the associated
meshes are updated dynamically.

• It is high performance. The proposed GPU-based data-structure is compact
enough to enable rendering complex BlobTree models in the order of 60,000
nodes. (64,000 nodes only requires about 20MiB of video memory in our sys-
tem).

The next section provides an overview on the design differences between a CPU
and a GPU. Other considerations for memory and access patterns are discussed in
that section. Next the data-structure and the new algorithm are explained. The
chapter concludes with the results and analysis.

4.1 Many-cores architectures

One of the main differences between a multi-core CPU versus a many-core GPU
architecture is the fact that the former is optimized for the fast execution of a single
task by supporting a broad-set of instructions in hardware, where as the latter can
accommodate heavy parallel processing in the format of single instruction multiple
data (SIMD).

CPU designers incorporate complex multi-cycle pipeline methodologies to amor-
tize the amount of computation in a single machine cycle, e.g. by overlapping the
execution of independent instructions at different cores, all cores of a processor are
kept busy working on a different instruction. GPU designs take a different approach
to parallelism. They achieve higher SIMD throughput by assigning more of the chip
area to arithmetic logic units (ALUs) and less to fancy branch predictions and flow

45

control. GPUs also have access to higher memory bandwidth when compared to their
CPU counterparts.

The advent of programmable graphics pipeline opened up new avenues to exploit
computational resources of the GPU hardware. Before the introduction of general-
purpose GPU (GPGPU) programming languages, such as open compute language
(OpenCL), researchers in the field were forced to use computer graphics shading
languages (e.g. glsl, cg) to gain access to the many-core architecture of GPUs.

Many of the terms associated with solving rendering issues were borrowed to
explain solutions to problems in other domains of science. Terms such as vertex,
fragment and texture which define entities in a graphics shading problem were used
to refer to the processing threads, work items and the input for a solution to a prob-
lem in high performance computing domain. In addition to the lack of a general
language for computing on the GPUs, the complexity of mapping the problem do-
main to the graphics pipeline complicated the implementations and lead to various
ad-hoc solutions to the same problems. For instance, Georgii et al. created an inter-
active cloth simulation by implementing a mass-spring system using fragment shader
programming on an ATI X800 graphics card [28]. As another example Sørensen et
al. reviewed several shader programming techniques for accelerating linear system
solving on GPUs with applications in surgical simulation [71].

At the time of this writing, the following languages are commonly used for GPGPU
computing:

• Nvidia CUDA (Compute Unified Device Architecture)

• Microsoft’s DirectCompute

• OpenCL which is a standard language maintained by Khronos Group

Among all, OpenCL is the only language that is designed to be platform and host
operating system independant, DirectCompute supports all hardware vendors but is
limited to Windows and CUDA is only available on Nvidia’s hardware.

OpenCL and CUDA share similar concepts in their programming model [27]. One
of the major drawbacks of OpenCL when compared to CUDA is the initialization
delay associated with the kernel compile process at runtime. The delay is significant
for long and complex kernels and at the time of this writing, no offline compiler is
offered by Nvidia to alleviate this issue. One way to improve this is to compile and

46

store the binaries on disk upon the first kernel invocation and reuse the precompiled
binaries for subsequent executions.

The other technical issue that we faced with OpenCL is that the performance
optimizations made on one platform are not transferred to other platforms. This
situation has been experienced by other researchers in the field and essentially there
is no guaranteed portability for the tuning and optimizations of the kernels. The
algorithms that are presented in this chapter are implemented using OpenCL.

OpenCL and CUDA use similar memory model to execute kernels on the GPU.
Each thread of execution on the GPU has access to a limited amount of local memory
that is private to that thread. The local memory for the thread is used to store the
stack frames. It is also used in register spilling, which occurs when the local and
private variables of the thread can not fit into the register file of the physical core and
they spill to the local memory. Each thread belongs to a thread block. In OpenCL
terms a thread is referred to as a processing element and a thread block is called a
compute unit.

All processing elements within a compute unit has access to a shared memory
block, which is accessible by all processing elements within the same block. Beside
the local and shared memory spaces, all processing elements have access to a global
memory block which has the slowest access time when compared to the other two
spaces.

Physically, the local and shared memory spaces can be seen as level 1 and level 2
cache memory on the CPU and the global memory as the main memory (i.e. video
memory on the GPU).

4.2 Data Structures

The BlobTree linearization step introduced in (section 3.3.1) is modified to create a
compact representation of the input model in our GPU polygonization algorithm.

All the structures are aligned at 16 bytes (four floating points) memory addresses.
This is similar to the texture accessing techniques in graphical shader programming
languages such as GLSL or Cg, where four floats represent the RGBA values of a texel
accordingly. If a primitive node has an associated transformation node with a non-
identity transformation matrix, that matrix will be stored in the primitive matrices
section of the input structure and an associated identifier (id) will be provided to the
primitive. The inverse of the primitive matrix is computed and the first three rows

47

are stored for further field computations. To transform the axis-aligned bounding
boxes of the primitives, the full forward transformation matrix is stored in the box
matrices section of the structure and it can be accessed using the same id provided for
the primitive matrix. Figure (4.1) depicts this pointerless representation in details.

Header

Box
Lower

Box
Upper

Ly

Lz

Lx

1 1

UyUx

Uz

P# O#

M# RT

TP

Count of Primitives, Operators, Matrices and
index of the root operator

Primitives (Upto MAX_PRIM_NODES)

position direction params color ctrl points

Operators (Upto MAX_OP_NODES)

type

type

LC

RC NX

F1 F2

F3 F*

Hx Hy

1Hz

Lx Ly

1Lz

Box
Lower

Box
Upper

params

RC OPLC OPRANGE

F* Flag Bits

0123456 - 31

UNARY IS RCBREAK RES

Px Py

Pz

Dx Dy

Dz

F1 F2

F3 F41 1

R G

B A

RB RE

CB CE

TP MX

PR SB

x1 y1

z1

x2 y2

z2

x3 y3

z3 w3w1 w2

x4 y4

z4 w4

x5 y5

z5 w5

x0 y0

z0 w0

xm ym

zm wm

3x4 Inverse Transformation for Primitives [row][col]

00 01 02 03 10 11 1312 20 21 22 23

...

4x4 Forward Transformation for Primitive Bounding Boxes

00 01 02 03 10 11 1312 20 21 22 23

00 01 02 03 10 11 1312 20 21 22 23

Node 1

Node 2

Node N

00 01 02 03 10 11 1312 20 21 22 23 30 31 32 33

00 01 02 03 10 11 1312 20 21 22 23 30- 31 32 33

00 01 02 03 10 11 1312 20 21 22 23 30 31 32 33

...

1

2

3

4

5Control Points For Sketched Objects

Node 1

Node 2

Node N

...

M Ctrl Points

...

...

Figure 4.1: The compact BlobTree scenegraph representation for GPU polygonization
and tetrahedralization algorithms. The structure is aligned at 16 bytes (4 floats). 1-
The header. 2- Skeletal implicit primitives. 3- Operators. 4- Affine transformation
nodes. 5- Control points for sketched objects. Refer to section 4.2 for details.

Each input data-structure is numbered in figure (4.1) for further reference. We
review the details in the following:

1. The header section defines the lower and upper corner of the axis-aligned bound-
ing box enclosing the entire model, i.e. the convex hull of the input BlobTree .
The header also contains the count of primitives, operators and the transforma-
tion nodes. The id associated with the root operator of the tree is also defined
in the header.

2. The definition of each primitive is encoded in 6 texels. The TP field in the
first texel numerically encodes the type of skeletal primitive. The other three
fields in this texel are MX, PR and SB that link this primitive to its inverse
transformation matrix, the parent and the sibling elements respectively. The
following texels define the position, direction, skeleton-specific parameters and
the color of the primitive. For the primitives that are computed from sketched

48

control points (e.g. the thin-plate spline primitives [78, 31]) the indices to the
associated first and last control points are stored in the last texel.

3. A BlobTree operator is defined in 4 texels. Similar to the structure shown in
figure 3.4, links are provided to the child nodes. Other fields added to support
our stackless BlobTree traversal algorithm which is explained in the following
sections. The NX field defines the next operator node in the BlobTree traversal
route. The F ∗ field contains the flag bits that provide more control over the
operator and the definition of each can be found at the bottom of figure 4.1.
Bits 1 and 0 are set in case the left child or the right child of the current node are
operators as well. Bit 2 is set if the LC and RC indices are actually defining a
range of indices for primitive children. If the unary flag is set then the operator
has only one child which is stored in the LC field. Bit 4 is set when the current
operator appears as a right node for its parent. Bit 5 is the break route flag
and is discussed further in our stackless BlobTree routing algorithm. The rest
of the bits are reserved for future use.

4. As mentioned above the inverse of the transformation matrices are computed
and the first three rows are stored in our input structure for field computation
purposes. The elements are depicted in the format of [row][column]. The for-
ward transformation is stored as a 4x4 matrix in a separate input structure for
performance reasons.

5. The control points associated with the sketched primitives are all stored in
this section. Each control point is defined with their XYZ coordinate and an
associated weight value.

4.3 Memory foot prints

After analyzing the performance of our OpenCL kernels, register spilling often found
to be the major cause for many latencies. Resorting to shared memory spaces, re-
ducing number of intermediate variables in field-evaluation kernels and avoiding loop
unrolling in some cases helped to optimize the performance. Upon every change in the
input BlobTree the linearized BlobTree is updated and transferred from main memory
to the GPU. Currently the maximum number of nodes is set at 64K which covers all
of the complex cases we modelled for this thesis. However, for larger BlobTree models

49

we can easily increase this amount to support them. The memory footprint of our
current BlobTree representation is summarized in table 4.1. Each row in the table
represents a BlobTree with a specific number of nodes. Starting from the simplest
BlobTree with only one node (e.g. a sphere primitive) to the most complex BlobTree
with one million nodes. The middle columns in the table are the break down of the
required memory size per each component in the compacted BlobTree data structure.

Table 4.1: Memory footprint of the input BlobTree in our GPU polygonization
algorithm in bytes. The entire BlobTree for a model with 64K nodes (primitives and
operators) takes up about 20 MiB in our current system.

Nodes Header Primitives Operators Prim Mtx Box Mtx Ctrl Points Total

1 48 96/Prim 64/Op 48/Prim 64/Prim 16/Point 320
1K 48K 96K 64K 48K 64K 16K 320K
64K 3072K 6144K 4096K 3072K 4096K 1024K 20M
1M 48M 96M 64M 48M 64M 16M 320M

4.4 Stackless BlobTree traversal

As shown in figure 3.14 the major bottleneck of the algorithm presented in chapter
3 is the surface extraction process. The expensive operations in that stage is the
computation of normals and colors which require extra field evaluations and hence
performance degradation.

In this section we describe our novel stackless BlobTree traversal algorithm. With-
out a stack to be maintained the BlobTree traversal incurs less memory footprint.
When dealing with small local memory available per thread on the GPU this reduc-
tion in memory usage improves the performance of the running kernels significantly.
The idea behind the stackless traversal is to pre-compute a serial route to visit and
evaluate all the operator nodes in the tree without using a global temporary storage
to keep track of the visited nodes. An index based data structure is designed to
provide sibling node access as well as two-way parent child relationships. This type
of links help to perform horizontal and vertical moves in the tree structure.

In high performance rendering algorithms the use of hierarchical spatial data struc-
tures for acceleration reasons is common. Visiting nodes in such structures requires
a stack-based depth-first search (DFS) traversal algorithm. Unfortunately, even the

50

latest GPU architectures are poorly suited for implementing such algorithms.
A complex BlobTree scene-graph data structure may contain thousands of prim-

itives and operators which can lead to deep tree structures. Using the original DFS
algorithm, the fieldvalue evaluation process has two stages: A “down traversal” fol-
lowed by an “up traversal”.

During the down traversal stage all operators starting from the root node are
visited and pushed onto an operators stack until a leaf node (primitive) is reached at
which point the field due to the primitive is computed and pushed onto a separate
fields stack and the next stage which is the up traversal begins.

During the up traversal stage the operators are popped out of the stack and per
each child an associated field is popped from the fields stack for the operator to
combine them in its own specific way. The resulting field is again pushed back on
the fields stack. This process continues until the operators stack get emptied and the
final fieldvalue due to the root node is computed and returned.

Performing many push and pop operations limit the performance of the traversal
process. The other issue relates to the inherently dynamic storage requirement for
the stack itself. Although, creating a fixed-size stack is possible but since the stack
size is a function of the number of nodes in the input, this will ultimately limit the
maximum number of nodes in a complex scene. If N is the maximum number of nodes
(primitives plus operators) allowed in a BlobTree model then the minimum number
of elements to be stored in the stack during the traversal process is equivalent to the
depth of the tree. Implementing a stack in the global video memory will require very
expensive memory transfers and is not an option for a real-time rendering algorithm.

Our algorithm is based on the neighbor cell-links concept in the stackless traversal
of spatial subdivision trees which is first introduced by Samet et al. [59, 60]. Using
a similar technique Popov et al. presented a stackless KD-Tree traversal for high
performance GPU ray tracing algorithm [56].

The novelty of our technique is in the route computation and evaluation process
which is completely different than what is proposed in Samet’s and Popov’s work. In
our system, the geometry is not explicitly defined in the input structure at the time of
route computation. Both Samet’s and Popov’s algorithms are based on spatial data-
structures that provide explicit access to the geometry and therefore it is possible
to recompute the missing sibling and parent-child relationships if they are not pre-
computed. The second difference is the fact that not all the child nodes in accelerator
structures such as KD-Trees or BSP-trees need to be visited to answer an inclusion

51

query, but in case of a BlobTree structure all nodes are visited in order to compute
the final field due at a point in space. Once the field is computed then it is trivial
to answer the inclusion query. A third difference is in the order of evaluating the
operator nodes. Some operations such as difference, are not commutative and need a
specific handling when computing the route. Such differences require special handling
that clearly show the need for a different tree traversal algorithm.

The algorithm is divided into two stages. A preprocessing stage to compute a
traversal route for the entire BlobTree and the GPU-based stackless traversal stage
to compute the field-value due to a given point in space. The following will describe
these two stages in greater details.

1 2 5

6

7

8 9

1

3 4

10

11

2

4

3

5

6

7

8

9

10 Start Here

End Here and return Field

Route Flip at a break node

parent

rope

rope

Figure 4.2: Stackless BlobTree traversal algorithm performs faster on deep tree traver-
sals. The route is computed once and encoded into the tree upon transferring the
input data structures to the GPU.

52

Encoding traversal route

The first stage in our algorithm is to compute a route to visit all nodes in the Blob-
Tree and finally encode that route in the GPU input data-structure. This process
is performed only once and is not a bottleneck in the system. The one-time fixed
cost paid for this stage on the CPU is regained when many fieldvalue evaluations are
performed in parallel on the GPU without the extra cost associated with the stack
storage.

To compute the route the following steps are performed on the CPU side as a
preprocessing stage:

Using the naive BlobTree traversal algorithm the nodes are visited from root to
leaves. Two stacks are maintained in this process, an operators stack S1 and a break
nodes stack S2. The latter is defined in the following:

1. If one of the children is an operator A and the other is a primitive B. The
parent for A is set to the current node and then it is pushed onto S1.

2. If both children are operators. The right child is set as a break node and is
pushed on to S2. The route at break nodes is flipped to the left branch of the
tree, see figure 4.2.

3. If the two children are both primitives: First the root of the BlobTree is set to
the current node if it has not been set before. (Refer to the BlobTree header
format in figure 4.1 for the location of the root field shown as RT .) A rope is
created between the two primitives, linking the two nodes and a break node B
is popped from S2. The next node for B is set to the current node.

4. This process is continued until S1 is emptied.

Up-sweep traversal on the GPU

Figure 4.2, shows the final route for a sample BlobTree . The benefits of this type of
routing encoded into the tree is that there is no need for storing a deep stack for the
intermediate operators. Using this new approach the tree is now only evaluated from
bottom to top.

The BlobTree root node RT marks the starting point of the traversal. This field is
stored in the header section of the data structure as illustrated in figure 4.1. Using the

53

new traversal route this field is set to the operator node 10 for the example BlobTree
shown in figure 4.2.

In case of an operator where all its children are primitives, the field due to each
child is computed before the operator evaluation. The computed field is stored in the
global field variable F1 and using the link to the next node provided in the structure
(NX) the evaluation continues to the next operator in the tree at an upper level
(up-sweep). When evaluating an operator with one primitive child then the field due
to the primitive child is computed before applying the current operator to F1 and
performing the up-sweep (nodes 5 to 9 in figure 4.2).

When visiting a break node the field is computed as usual but this time it is
stored in the special variable F2, instead. In addition at a break node, the NX field
in the structure points to a non-parent operator (operator 4 for break node 3 in the
example).

The process continues until the first node in the tree is evaluated at which the
F1 and F2 values store the children fields for their parent. The NX field associated
with the first node points to itself which marks the end of the traversal process.

4.5 GPU Surface Extraction Algorithm

In this section we present our GPU polygonization algorithm which is based on our
novel field value evaluation technique described in the previous section. Since the
following steps are implemented using OpenCL on the GPU we will use the term
kernel which is a single thread of execution on the GPU. Please refer to section 4.3 for
a description of the memory model for general purpose GPU (GPGPU) programming.

We start by computing the axis-aligned bounding box of the model by traversing
the tree from root to leaves and applying the transformation matrices at leaf nodes
(primitives). Using the cellsize parameter supplied by the user the bounding box
is subdivided into a grid of voxels. The kernel ComputeAllFields then computes a
fieldvalue per each vertex of the voxel grid and stores that value in the format of
XYZF where XYZ denotes the position and F is the so-called field at that point.

After computing all the fields, the grid edges are processed in the following order.
Each vertex in the grid is connected to at most 6 other directly adjacent vertices.
Starting from the lower corner of the voxel grid the kernel ProcessEdges visits the
corresponding vertex in the grid and examines only the edges that start from that
vertex and extend to the adjacent vertices in the next index step. This way all edges

54

in the voxel grid are checked and redundant traversals can be avoided. Needless to
say that at boundary vertices the kernel may process less than 3 edges per each vertex
(i.e. the ones that are within the convex-hull of the model). Upon each kernel run
at this stage the index address to the corresponding vertex and its 3 other adjacent
vertices is computed as shown in the algorithm 3. Per each vertex an inclusion query
is performed (i.e. The fieldvalue at that vertex is compared against the iso-value. If it
is greater than or equal the isovalue the vertex is considered inside otherwise outside
the model). Two values are stored before completion of this kernel call. The first is
the count of crossed edges at that vertex and the second one is a 3 bits flag which
basically locates the intersected edges along x, y or z axes.

Algorithm 3 ProcessEdges kernel counts the number of intersected edges and their
corresponding axes. This kernel runs per each vertex in the voxel grid.
1: v = queryV ertexInclusion(i, j, k)

2: vx = queryV ertexInclusion(i+ 1, j, k)

3: vy = queryV ertexInclusion(i, j + 1, k)

4: vz = queryV ertexInclusion(i, j, k + 1)

5: count = (v ⊕ vx) + (v ⊕ vy) + (v ⊕ vz)
6: flag = (((v ⊕ vx) << 2)or((v ⊕ vy) << 1)or(v ⊕ vz))

In the above algorithm the queryVertexInclusion function checks whether the ver-
tex at a specified voxel grid index is inside the model i.e. the field value at that
vertex is greater than or equal to the isovalue. Then it performs the same test for
the end-points of the edges emanating from the current vertex along the primary
axes. If both endpoints of an edges are inside (or outside) the model then there is
no intersection between the iso-surface and the voxel grid. Variable count stores the
number of intersections associated with the current vertex at the grid address (i, j, k).
In addition a 3 bits flag variable holds the state of the intersections along the primary
edges in the format of XY Z.

After processing all edges, the array EdgeBuffer contains the count of intersected
edges per each vertex in the voxel grid. In order to compute the total number of
output vertices in the triangle mesh the prefix-sum [64] of EdgeBuffer is computed
and stored in a separate gpu memory buffer called ScannedEdges. The total number
of vertices is the sum of the last elements in the EdgeBuffer and ScannedEdges arrays.
Before computing the vertex attributes such as the position, color and normal, the

55

associated memory buffers are allocated on the device using the total number of
vertices computed in the previous step.

After this stage the vertex attributes of the mesh can be computed by executing a
root finding method on the intersected edges and storing the output vertices in their
appropriate buffer locations using the offsets in ScannedEdges. We use a Newton-
Raphson root finding method which converges to the iso-surface using the gradient of
the field [49]. At each iteration the root is displaced closer to the surface according
to the method given by Overveld et al. ([79]):

r = r +
(iso− f(r))
∇V (r).∇V (r)

(4.1)

Where r is the root, f(r) is the field at r and ∇V (r) is the gradient of the field at
r. A maximum of four iterations was sufficient to provide smooth results in our tests.
After computing the root position other attributes such as the color and normal at
that vertex are also computed and stored in their designated buffers. The next step is
to process the cells in the voxel grid in parallel and compute a configuration index per
each cell for extracting the topology of the triangles. There is no BlobTree traversal
at this stage since the computed fields will be provided to the kernel function. The
configuration table is supplied as a texture and can be accessed using sampler unit
for fast access. The number of triangles that are output per each cell is stored in a
buffer called FaceBuffer.

In order to find the total number of triangle elements, a prefix-sum scan is applied
to the FaceBuffer array in the same way that total number of vertices is computed
previously. The buffer ScannedFaces will be used to hold the offset values per each
cell.

The final stage in our GPU polygonizer is producing the triangles. For this purpose
the kernel function GenerateFaces is called per each cell in the voxel grid. No BlobTree
traversal is required for this stage. Only the cells which intersect with the iso-surface
are processed. Upon each kernel run the indices for the eight vertices of the current
cell are computed.

To process cell configurations we used the improved marching cubes table by
Dietrich et al. [22], which avoids most of the small and badly shaped triangles. The
table is supplied to the kernel as a texture of size 256 rows by 16 columns. To access
the entries in the table the texture sampler on the hardware can be used. Per each cell
the configuration index is computed using the previously stored fields. Each entry

56

in the table is the index of an edge in the cell (There are 12 edges per each cell).
Algorithm 4 shows how the triangle elements are computed in this stage.

Algorithm 4 GenerateFaces kernel function computes the triangle indices per each
cell and outputs them directly into an OpenGL index buffer for rasterization. All the
buffers can be read back from the GPU and stored.
1: index = globalCellIndex(i, j, k, dim)

2: config = cellconfig(i, j, k)

3: if config == 0 or config == 255 then
4: return;
5: end if
6: cellcorners = cellCornerIndices(i, j, k, dim)

7: offset = ScannedFaces[index]

8: count = FaceBuffer[index]

9: for i = 1→count do
10: edge = sample(configtable, int2(edge, index))
11: start = EdgeStartIndex[edge]

12: axis = EdgeAxis[edge]

13: elements[offset+ i] = ScannedEdges[cellcorners[start]] + axis

14: end for

Upto five triangles can be extracted from each cell. Lines 11 and 12 in the al-
gorithm assign the start index of an edge and its associated axis using two constant
buffers supplied to the kernel for this purpose. The element entry is computed as an
index to the global vertex buffer. The ScannedEdges buffer holds the global offset for
all the intersected edges as previously discussed.

4.6 Analysis and Results

In this section we review the effects of the previous optimizations on the overall perfor-
mance of the system. In our experiments we tested the effect of the stackless BlobTree
traversal algorithm using a set of models created with our incremental modelling sys-
tem. To make a fair comparison the same algorithm implemented on the GPU using
the OpenCL framework once with the stack and the other time with the stackless
method presented in section 4.4. The results are shown in the following table:

57

Table 4.2: Stackless BlobTree traversal improved the performance of our BlobTree
field evaluation significantly. Here is the comparison between our novel stackless
approach versus the stack-based implementation for various models. Timings are the
average of 100 runs.

Model Name Field Queries Grid Stack-based (ms) Stack-less (ms) Speedup

Tumor 16240 29*20*28 21 0.8 26x
cake 18975 33*23*25 17 1 17x
3slabs 28750 46*25*25 30 2 15x

Figure 4.3: Sample models for testing our GPU polygonization method. From left
to right: Cake, tumor and 3slabs.

When using stacks, the register spilling phenomenon mentioned previously de-
grades the performance due to the higher cost of accessing the shared memory. Con-
ditional push and pops in the stack-based method also stalls the performance of the
kernels.

Faster field evaluations using the stackless algorithm also improves the perfor-
mance of our root-finding method and the overall polygonization time. In the fol-
lowing we review per kernel time break-time which provides a close look at hotspots
(most time-consuming locations) in our implementation.

58

tumor
105 ms

cake
108 ms

3slabs
79 ms

44

18

17

22 19

58

17

10

17

18

40

LEGEND

Ti
m

e
 (

m
s)

Fields

Edges

ScanEdges

Vertices

CellConfigs

ScanFaces

Faces

Figure 4.4: Polygonization time breakdown in milliseconds for the three models
shown in the previous section. Vertex processing is the most compute-intensive stage
due to the Newthon-Raphson root finding method employed and the evaluation of
colors and normals which require additional traversals.

As it can be seen computing vertices is still the most time-consuming stage due to
the extra tree traversals required for high quality gradiant-based Newthon-Raphson
root-finding method. Computing other attributes such as colors and normals would
also need 1 and 4 traversals respectively. The prefix-sum scan operator employed
here uses multi-pass computing. The extra cost of kernel calls has increased the
cost of using these operators. Several optimizations can be performed to benefit the
overall performance. By vectorizing all kernels the core SIMD units can be used
more efficiently. The prefix-sum scan operator can also be implemented in such a
way that the memory-bank conflicts are completely avoided and the data-accesses
are performed in parallel.

59

Chapter 5

Deformable Model

Interactive visualization techniques developed in the previous chapters support a Blob-
Tree based modelling system for the incremental construction process. In a surgical
simulation scenario, tissues undergo various levels of deformations and topological
modifications. Researchers in the field studied different approaches to recreate the
elastic behavior of tissues. The two main challenges that are reported continuously
in this field are interactivity and fidelity of motion [50].

Based on the foundation built so far, we create a deformable model to support
the required interactions with surgical tools i.e., elastic deformations by pushing the
tissue. The novelty of our method is in the real-time collision and contact response
computation using the implicit model, which is discussed in section 5.3.

The next chapter will address the problem associated with cutting, which is a
primary operation in many surgical simulation scenarios. The goal is to make a
comprehensive system that bridges the gap between modelling and simulation of
tissues.

5.1 Overview

A software pipeline is developed to support physically based simulation of deformable
tissues using our implicit modelling framework, figure 5.1.

60

Input:	 	
Primi%ves	
Operators	
Warps	

Transforms	

Output:	
Simula%on	

Volume	
Discre%za%on	

Polygoniza%on	

BlobTree	
Implicit	

Modelling	
System	

Finite	 Element	
Force	 Model	
System	 Solver	

Collisions	 and	
CuDng	 System	

1	 2	 3	 4	 5	

Figure 5.1: High-level system software pipeline to support deformations and cutting.

Stages 1 and 2 in the pipeline are associated with the modelling process which
is already discussed in chapter 2. Stage 3 is associated with the polygonization al-
gorithms that are developed in chapters 3 and 4. Also in stage 3 is the volume
discretization technique that converts the BlobTree model into a tetrahedral mesh for
physical simulation, this process is discussed further in section 5.2. The material that
is discussed in the current and the next chapters are associated with the stage 4 of
the pipeline shown above. The output of the system is the simulation environment
that facilitates deformations and cutting which is the final output.

5.2 Physical Model

The deformable model has to be considered as a continuous volume in order to repro-
duce its elastic, volumetric effects. In our system, the BlobTree model is discretized
into a tetrahedral mesh using the algorithm proposed by Labelle et al. [42]. This
step is performed once the modelling stage is completed and the tissue is ready for
the simulation. This is a one time process and is not a bottleneck in our system.

A fine-grained cell-size parameter captures the exterior part of the model while
a coarser sampling is used to produce the internal tetrahedral cells. This approach
allows us to maintain a balanced number of tetrahedral cells for the physics simulation.
The output of this stage is called volume mesh in order to differentiate it from the
surface mesh extracted using the polygonization algorithm in the previous chapters.
An edge-based data structure representing the tetrahedral meshes in our system is
described in section 6.2.

61

Setup	 Mass,	 S+ffness	 and	 Damping	
Matrices	 in	 Volume	 Mesh	

Is	 Collision	
Reported?	

Integrator	

Apply	 reported	
external	 forces	

No

Apply	 vertex	 deforma+ons	 to	 	
Volume	 and	 Surface	 Meshes	

Yes

Next Frame

Setup	 FEM	 Force	 Model	

Figure 5.2: System solver component for the stage 5 of our pipeline. External forces
are computed using our collision detection technique which is discussed in the next
section.

As shown in figure 5.2, the volume mesh is augmented with a finite element force
model. For a detailed discussion on finite element concepts, refer to [5]. In our
system we chose the co-rotational linear elastic force model. One of the drawbacks of
pure linear force models is that under large deformations, they can lead to inflated
volume artifacts, which is not desirable in a deformable model for surgical simulations.
The co-rotational model assumes that deformation at each element is composed of
a rotation and a small displacement. This separation is achieved by using polar
decomposition of the deformation gradient, and it removes the linearization artifacts
mentioned earlier [5]. A validation step such as the one performed in the work of
Shahingohar et al. helps to compare the stability and accuracy of the deformable
model [65].

The elastic properties of tissues are applied during the force model setup. From
figure 5.2, in case of collision with medical devices, the external forces due to the
contact response are computed and integrated in our system. This step is further

62

explained in the next section. Finally all computed displacements are applied to the
meshes.

5.3 Collision and Contact with tools

The interactions of medical devices and the tissue model has to be accounted for to
support surgical training scenarios. The way these contacts are handled impacts the
overall behavior of the system with respect to the deformable tissues. Figure 5.3,
shows the collision and contact handling module in our system.

AABB	 Collision	 Test	

Collided
?	

Collision	 Test	 with	 Implicit	 Model	

Collided
?	

Compute	 the	 Penetra:on	 Depth	
Using	 Implicit	 model	

No	
Collision	

No

No

Yes

Yes

Compute	 and	 apply	 the	 external	
force	 to	 the	 impact	 region	

Figure 5.3: To compute the external forces applied by the medical tools, we exploit
the trivial collision detection facilities of the underlying implicit model.

Medical tools are modelled as simple polygonal shapes in our system. The user
moves the tool freely and to compute the collision of the tool and the model several
steps are performed in order. First, the axis aligned bounding box (AABB) of the
tool is tested against the AABB of the model and if an intersection is detected the
process continues further. The second collision test is performed by computing the
field at vertices of the tool model. In case of our probing tool which is modelled as

63

a cube, the field at vertices of the cube are computed. If a field at a vertex is above
the iso-value, then that vertex is inside the model and an intersection is detected.

To compute the distance, the inverse of the field function from equation 2.4 is
used:

distwyvill(f) =

 1 if f = 0√
(1− f 1

3)− k if 0 < f ≤ 1
(5.1)

In equation 5.1, f is the input field and k is called the iso-distance value which is
the perpendicular distance from the iso-surface to the nearest skeleton of the model.
k can be computed easily by using the the iso−value which is set to 0.5 in our system
as the output of equation 2.4, solving that equation for x yields to the constant value
of 0.4541 for k.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

-0.5

-0.25

0.25

0.5

Figure 5.4: Plot of equation 5.1. Horizontal axis is the field value which is changing
from 0 to 1 in this graph. The vertical axis is the distance to the iso-surface.

Figure 5.4, is the plot of equation 5.1 in the range [0, 1] for the field value. When
the field is equal to the iso-value, then the associated vertex is on the surface, hence
the zero distance. A positive value for distance is due the fact that the collision has
not happened yet but the vertex is in close proximity of the surface, whereas negative
values indicate a penetration into the model.

In case of a collision, the penetration depths are computed for the all colliding
vertices of the tool. The contact force is computed based on the penetration depth, the
direction of the tool and the gradient of the field as shown in the following equation:

64

CF (v) = (
∇F (v) + T

‖∇F (v) + T‖
) ∗ distwyvill(gwyvill(v)) ∗ s (5.2)

The output of equation 5.2 is a force vector at point v, T is a directional vector
that represents the tool trajectory. The direction of the final external force is adjusted
using the gradient of the field i.e., instead of using the tool trajectory vector (T),
directly; we use the average of T and the field gradient at v. This choice is made to
compensate for the tangential tool trajectories that can cause unintended shearing at
the boundary edges of the model.

gwyvill(v) and ∇F (v) are the field and gradient at vertex v, respectively. s is the
impact factor to adjust the external force magnitude.

Using this technique, the contact forces are computed upon collisions of the tool
and the model. To apply this external force to the physical model we use a force
propagating technique based on the volume mesh data structure described in section
6.2. This step is further explained in the following.

The edge-based data structure for the tetrahedral mesh provides access to all the
adjacent vertices to a given vertex. This functionality can provide the access to the
K-ring neighborhood of a contact point to perform force propagation. Figure 5.5,
shows an example of this function for a contact point p. The external force computed
for P is propagated to the first and second rings with decreasing magnitudes at each
step. This technique provides a more realistic distribution of the collision force for
the simulation of tool-model interactions.

65

	 	

p

Figure 5.5: The K-ring neighborhood of a vertex p can be accessed using our tetra-
hedral mesh data-structure. Here, the first and second rings of vertex p are shown in
orange and pink, respectively.

5.4 Results

In this section we present our results in simulating the behavior of several deformable
models created using our implicit modelling framework. Table 5.1, provides details
of the models. The number of tetrahedral cells reported in this table are extracted
using a small cellsize of 0.1.

Table 5.1: The following deformable models are used in our experiments.

name primitives operators finite element cells

tumor 10 1 130K
3slabs 4 1 120K
cake 11 1 85K

Figure 5.6 shows the effect of cellsize parameter in the number of finite element
cells generated for the physical mesh. As shown in this graph, increasing the step
size for the volume discretization process, results in larger finite element cells and
decreases the total count of elements.

66

0	

20	

40	

60	

80	

100	

120	

140	

0.1	 0.11	 0.12	 0.13	 0.14	 0.15	 0.16	 0.17	 0.18	 0.19	 0.2	

N
um

be
r	 o

f	 E
le
m
en

ts
	

Th
ou

sa
nd

s	

CellSize	 For	 Tetrahedraliza8on	

Number	 of	 tetrahedral	 cells	 vs.	 sampling	 cellsize	

Tumor	

Figure 5.6: The effect of cellsize parameter in the total number of generated tetra-
hedral cells for the physics mesh. Vertical axis is reported in thousands of elements.

Figures 5.7 and 5.8 show the tumor and the 3slabs models when compressed
with the probe tool, respectively. The surface mesh which is extracted with our
polygonization method is deformed using the computed displacements for the volume
mesh. The 3slabs model in figure 5.8 is fixed to the green wall and the external forces
applied by the probe tool barely reach the green slab.

Figure 5.7: Tumor model is pushed from the top using our probe tool. Left: The
volume mesh used as physics model shown in gray. Middle: Model pushed down
for compression. Right: The surface mesh deformations are in sync with that of the
volume mesh.

67

Figure 5.8: The force is applied to the 3slabs model horizontally. The green slab is
fixed to the wall in this experiment. Deformations are wider on the red slab. Middle:
the volume mesh shown in gray.

In the third experience, the cake model which is placed on the ground is com-
pressed from the top using the probe tool. The 6 images shown in figure 5.9 illustrate
the progression of deformations sequentially.

Figure 5.9: The cake model is a 3 level structure which is compressed from above in
this experiment. The sequence of images show the increasing stages of deformation
from the beginning to the end. Last image on the bottom row is the surface mesh
which is always in sync with the physics model.

Figure 5.10 shows the contact surface of the probe tool and the volume mesh.
The external forces are propagated to the volume mesh via the green vertices in the
figure. All collisions are detected correctly using the technique described in section
5.3.

68

Figure 5.10: The contact surface of our probe tool and the tumor model shown in
green triangles. The computed contact force is applied to all vertices in the green
area.

0	

100	

200	

300	

400	

500	

600	

0.1	 0.11	 0.12	 0.13	 0.14	 0.15	 0.16	 0.17	 0.18	 0.19	 0.2	

So
lv
e	
Ti
m
e	
in
	 m

ill
is
ec
on

ds
	

CellSize	 For	 Polygoniza6on	

System	 Solve	 Time	 vs.	 CellSize	

Tumor	

3SLABS	

Figure 5.11: System solve time reported in milliseconds vs. the cellsize parameter
used for the volume discretization.

Figure 5.11, illustrates the system solve time as the cellsize parameter increases
uniformly. Larger cellsize results in smaller amount of finite element cells which
takes less time to solve for displacements. One way to keep the number of internal
tetrahedral cells low is by using the adaptive volume discretization technique that
uses a coarser grid to extract the elements. As overshoot in figure 5.11 at cellsize
0.12 is due to a sudden increase in the number of finite element cells despite using a
coarser grid size. At this point the algorithm was unable to use the coarser grid for
the internal sampling and a higher percentage of elements are created using the finer

69

grid.

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

0.1	 0.11	 0.12	 0.13	 0.14	 0.15	 0.16	 0.17	 0.18	 0.19	 0.2	

Re
st
	 V
ol
um

e	

CellSize	 For	 Tetrahedraliza5on	

Rest	 Volume	 vs.	 Cellsize	 	

Tumor	
3Slabs	

Figure 5.12: Total volume versus the cellsize parameter for discretization. Maximum
volume change in all of our experiments was less than 1 percent.

One of the required features of a model for surgical simulation scenarios is volume
preservation. The total volume of the model should not change when it goes under
deformations.

In an experiment, the volume is computed and logged while the model is deformed
using the probe tool (see figure 5.12). Maximum volume change is always less then 1
percent in this test for both models and the same results holds under various cellsizes.
Both models used a constant Poisson ratio of 0.45 in all tests.

70

Chapter 6

Real-time Cutting

One of the main objectives of a virtual reality based surgical simulation system is
the removal of pathologic tissue [73, 54]. Cutting imposes many challenges to the
development of a robust, interactive surgical simulation, not only because of the
nonlinear material behavior exhibited by soft tissue, but also due to the complexity
of introducing the cutting-induced discontinuity.

We developed our new volumetric mesh cutting system named “VolCut” in the
context of a human skull craniotomy simulation. When an abnormality of the brain
is suspected, a brain needle biopsy is performed and guided precisely by a computer
system to avoid serious complications. A small hole is drilled into the skull, and a
needle is inserted into the brain tissue guided by computer-assisted imaging techniques
(CT or MRI scans). The actual biopsy process can not be seen by the surgeon. For
this reason, non-progressive cutting, where a tetrahedral element is decomposed after
the sweep surface traverses the tetrahedral elements, is a reasonable approximation
for that application. Also, in the current stage of our system, we do not model any
haptic interaction of the cutting tool with the tissue during a cut.

6.1 Overview

The physics simulation in VolCut uses tetrahedral meshes to compute deformations.
In this section, we present our GPU-assisted approach to cutting tetrahedral meshes
in real-time. The input to VolCut is a cut trajectory and an edge-based data structure
representing the tetrahedral mesh.

The tetrahedral mesh itself is extracted from the BlobTree model that is created

71

using the incremental modelling system described in section 2.1. The complete process
is summarized below:

• The user models the elastic tissue using the BlobTree approach (section 2.1)

• The proposed GPU-accelerated polygonization algorithm provides real-time up-
dates for the modifications that are made to the model throughout the design
process (section 4.5)

• The final model is converted to a tetrahedral mesh with the algorithm presented
by Si et al. [68]. This is a one-time process and is not a bottleneck in the system.
The triangle mesh extracted in the previous stage is used as an input to the
tetrahedralization algorithm. The output is a volumetric tetrahedral mesh.

• Our physics simulation handles the dynamic behavior of the model and handles
the collisions with other objects in the environment including the scalpel.

As shown in figure 6.1, the user moves the cutting tool and the system records
the path of the blade endpoints shown in purple. The first intersection between the
recorded trajectory and the model marks the beginning of the cutting process. When
the tool completely traverses the model the system computes the cutting configura-
tions as described below.

(a) The trajectory of the cutting tool (b) The shell model after cut

Figure 6.1: The cut trajectory in blue and the sweep-surface shown in pink. The
scalpel passes through the shell model for cutting.

The following steps are performed to complete the cut induced by the scalpel on
the mesh:

1. Using the GPU-accelerated algorithm described in section 6.3.1, the intersection
of the sweep-surface and all the edges of the mesh are computed. The output
of this stage is a list of cut-edges and their associated intersection points.

72

2. A GPU kernel function is used to compute the distance of the nodes in the cut-
edges and the end points of the cut tool (section 6.3.2). This way the nodes that
are too close to the sweep-surface are identified and a different configuration
is used to produce subdivided elements in the next stage to avoid ill-shaped
elements. The output of this stage is a list that associates edges with their
cut-nodes.

3. Using a look-up table all the cut tetrahedra are decomposed into sub-elements
(section 6.3.4).

4. The nodes identified to be close enough to the cut trajectory are snapped to
the sweep surface.

5. The solver system is synchronized with the latest mesh changes, all the mass,
damping and stiffness matrices are updated.

6.2 Tetrahedral Mesh Data structure

Figure 6.2 shows the structure of a tetrahedral element and the order we chose to
name the nodes, edges and faces in its canonical orientation. In this figure P0 to P3 are
the nodes (i.e. degrees of freedom in the context of system deformation computation),
e0 to e5 the edges and F0 to F3 are the faces of the element.

Figure 6.2: A tetrahedral element in its canonical view. Iterating over nodes, edges
and faces of each element is one of the primary operations in a geometric algorithm
that manipulates such elements. The order we chose here is not the only possible one
but it simplifies the cutting algorithm and element subdivision process as we will see
later.

73

In a complex mesh of tetrahedral elements accessing each of these components is
a necessary requirement for implementing any topological modifications. Therefore
the main module in our cutting algorithm is an edge-based data structure that maps
tetrahedral elements to their associated faces and the faces to their associated edges
and finally the edges to their nodes. The minimal set of operations frequently used
by most algorithms are as following:

• Access to individual vertices, edges, faces and tetrahedral elements. This in-
cludes the enumeration of all elements in unspecified order.

• Per each vertex, access to all the directly adjacent nodes to that vertex (i.e.
one ring neighborhood see figure 6.3). A typical use-case for this operation is
the uniform distribution of the external forces applied to the mesh. Also many
mesh simplification algorithms are based on such operators.

• Top-down and bottom-up hierarchical access to the mesh entities (An example
is shown in figure 6.3). Top-down access is inherently provided in the structure
of the mesh entities e.g. elements are comprised of faces and faces are made
up of set of edges etc. In case of the bottom up access some algorithms will
benefit to have the incident edges of a certain node, or in case of edges all the
incident faces of a given edge and for a given face all the incident elements to a
particular face in the mesh. This type of access patterns are particularly useful
for topological modification scenarios and the required book-keeping operations.

74

p0

p1

p2

p3

e3

e1
e4

e2

F1

F2

F3

p4

e5

Bottom-Up

node -> edges

edge -> faces

face -> cells

Top-Down

edge -> nodes

face -> edges

cell -> faces

Figure 6.3: Top-down and bottom-up mesh links. The top-down relationships is
explicitly defined in the structure of the mesh. An example of the bottom-up links
is shown here: Edges e1..e4 are incident to node p1 and therefore the set {p0, p2, p3,
p4} is the one-ring neighborhood of node p1. Faces F1..F3 are incident to edge e5 and
both tetrahedral cells are incident to face F2.

• Insertion and removal operations for nodes, edges, faces and elements. These
operations require extra care in order to keep the top-down and bottom-up links
up-to-date. As we will see in our cutting algorithm deferred removal operations
can make process much simpler by delaying the actual removal until after all the
identified entities are visited and the new entities are inserted to the structure.
This is due to the fact that removal operations will update the internal links
between mesh entities therefore two consecutive access operations might find the
mesh at different states which is not intended in the original proposed algorithm.

• Update operations for nodes, edges, faces and elements. What is important
here is to keep the top-down and bottom-up links up-to-date. For-instance in
case of an edge update as soon as the two endpoints of the edge is modified
all the incident faces (higher level entity) of that edge and also all the incident
edges of the end points of the edge (lower level entity) should be updated.

The rest position of each node is stored which can be used to update the physics
model and to interpolate the position of newly added nodes in case of cutting. Ac-
cessing edges using the bottom-up structure is expensive: First the list of incident
edges to one of the endpoints of the edge is accessed and then a serial search on

75

that list is done to find an edge with the matching end points. This has logarithmic
complexity with respect to the number of edges in the structure. Instead we chose to
use a hash-table to access edges using a key derived from the two end-points of the
edge. Below is how this key is computed for a given edge [13, 11]:

key64 = (nodes [1] << 32) & nodes [0] (6.1)

This computation is performed when a new edge in inserted into the structure
and can produce keys for 264 edges uniquely. The hash-map then associates this key
to its corresponding edge index thereby providing constant-time access. Using this
technique the faces can also be accessed though their associated node indices which
can be convenient for some applications.

Nothing is removed directly from the mesh storage buffers but rather upon cutting,
the elements are added to the freelist and later the garbage collection removes all
the freelist items from the mesh storage buffers.

When cutting an edge, an edge-update process is performed followed by a new
edge insertion. The update process splits the original edge in two. Algorithm 5
describes this process (also see figure 6.4):

Algorithm 5 Splitting an edge in our volumetric mesh data structure. The input
to this algorithm is the index of the edge to be splitted and the distance t along the
edge where the intersection happens. Figure 6.4 shows this operation in detail.
1: edge← fetchEdge(index)

2: n0← fetchNode(edge.from)

3: n1← fetchNode(edge.to)

4: newp0.rest = n0.rest+ (n1.rest− n0.rest) ∗ t
5: newp0.pos = n0.pos+ (n1.pos− n0.pos) ∗ t
6: idxNewP0← addNewPoint(newp0)

7: newp1← newp0

8: idxNewP1← addNewPoint(newp1)

9: setEdge(index, edge.from, idxNewP0)

10: insertEdge(idxNewP1, edge.to)

Algorithm 5 starts by computing the co-located intersection points newp0 and
newp1 using the provided distance t and the end-points of the original edge. Then
both the current and rest positions of the new points are computed. The new points

76

are appended to the appropriate mesh storage lists and the current edge is updated
to end at newp0. Another edge from newp1 to the original end point is added later.
Figure 6.4 shows this process.

from

to

edge0

from

to

edge0

edge1

newp0

newp1

Figure 6.4: Left: The edge to be split. Right: Splitting an edge produces a new edge
from the point of intersection to the original endpoint. New points newp0 and newp1
are initially co-located.

Upon topological modifications, events are generated to notify cutting algorithms
of the internal changes in the mesh structure. This is also useful for debugging and
evaluation purposes and can be logged for accounting the sequence of changes made
to the original mesh. The events include update, insertion and removal of nodes,
edges, faces and elements.

In the next section we describe the cutting algorithm which is based on the edge-
based data structure presented in this section.

6.3 Cutting Algorithm

Our cutting algorithm follows the same strategy presented by Ganovelli et al. [26]
which suggests use of lookup tables to handle different configurations. We also applied
the optimizations suggested by Steinemann and Mor et al. [73, 51] to have minimal
new elements added to the mesh cut. The novelty of our method lies in its generality
in the scope of cut tools e.g., scalpel versus tube-shaped, and its performance for
updating mesh connectivity in real-time, and finally its ability to handle cuts of
various sizes and trajectories e.g., freehand versus axis-locked cuts.

The first stage in our cutting algorithm is detecting the cut sweep-surface. The
input to this stage is the cut trajectory which is a list of points that the scalpel

77

passed through in Euclidean space. The cut trajectory is not collected until the axis-
aligned bounding box of the cutting tool intersects with that of the tissue. The tissue
bounding box is expanded to rule out the boundary cases where the surface of the
model contacts with its own bounding box. In such cases the scalpel might miss the
surface if the bounding box test fails to detect the initial contact.

6.3.1 Edge Intersections

Using a GPU kernel function the intersection of the sweep-surface and all the edges
of the model are computed. The input to this stage is the list of edges of the model
and 4 points defining the sweep-surface quadrilateral. Since the intersection of a
triangle and a line segment is faster to compute than a quadrilateral, we use two
intersection tests per each edge to figure out whether the segment is split or not. The
implementation of our edge triangle intersection follows the Ray-Triangle intersection
test given in [2].

Similar to our GPU polygonization method in section 4.5, a prefix-sum operator
counts the number of intersections and also compacts the resulting array of inter-
section points. The final output of this stage is a list of intersection points and the
associated edge indices.

78

Algorithm 6 EdgeIntersections The kernel function that computes intersections of
edges and the sweep-surface. The prototype of the kernel follows the listing above
and the algorithm here represents one thread of the execution.
1: if dim.x ≥ countEdges then
2: return
3: end if
4: scanF lags[dim.x]← 0

5: tri0← triangle(0, 1, 2, sweepSurface)

6: tri1← triangle(0, 2, 3, sweepSurface)

7: edge0← edgeBuffer[dim.x ∗ 2]
8: edge1← edgeBuffer[dim.x ∗ 2 + 1]

9: res← IntersectSegmentTri(edge0, edge1, tri0, p)

10: if res = 0 then
11: res = IntersectSegmentTri(edge0, edge1, tri1, p)

12: end if
13: if res 6= 0 then
14: scanIntersections[dim.x]← p

15: scanIndices[dim.x]← dim.x

16: scanF lags[dim.x]← 1

17: end if

Each thread of execution will examine one edge of the mesh. The blade quadri-
lateral is divided to two triangles named tri0 and tri1 as shown in algorithm 6. The
two endpoints of the current edge are retrieved from the mesh storage buffer called
edgebuffer. The function named “IntersectSegmentTri” computes the intersection
point of a line segment and a triangle. If the first triangle does not intersect with
the blade end-points the test is repeated for the second triangle. If there is a valid
intersection point, it is stored in the appropriate output buffer “scanIntersections”, the
index of the intersected edge is stored at “scanIndices” and a flag that later identifies
successful intersection tests is written to “scanFlags”. These buffers are compacted
later using sum-scan operators discussed in the previous chapter.

6.3.2 Produce cut-node list

Following the improvement made by Steinmann et al. [73] to minimize the number
of subdivided elements; per each intersection point which is “too close” to one of the

79

edge endpoints; the sweep surface is snapped to that endpoint (see figure 6.5). The
associated endpoint is also stored in a separate list called “cut-nodes”. In our system
if an intersection point lies within the 20 percent of its associated edge length radius
then it is considered as a “cut node”. This value avoided the most skinny elements.
An analysis on the quality factors of the tetrahedral elements is made later in this
chapter. The cut-nodes are later used to produce special subdivision cases which
output non-skinny tetrahedral elements.

Figure 6.5: Dashed line represents the cut trajectory. For all the edges intersected
by the cut sweep surface the end point closest to the sweep surface is selected. If the
node lies within a threshold h, it is marked as a cut-node painted in blue and all the
incident edges to that node are removed from the cut-edges list. The red dots are the
intersection points associated with the remaining cut-edges.

Algorithm 7 ProduceCutNodeList The function that builds the cut-nodes list from
the intersected edges. If an intersection is within the predefined distance of an edge
endpoint it is considered as a “cut-node”.
1: for i = 0 to cutEdges.count− 1 do
2: ce← cutEdges [i]

3: edge← mesh.edge(ce.handle)

4: normalizedT ← ce.t/length(edge.from, edge.to)

5: if normalizedT < h then
6: cutNodes.insert(edge.from)

7: else
8: if normalizedT > 1.0− h then
9: cutNodes.insert(edge.to)

10: end if
11: end if
12: end for

80

In algorithm (7) the intersection distance is normalized using the length of the
associated edge. If the normalized distance is within the predefined threshold h then
the start point of the edge is a cutnode. Otherwise if the condition is true on the
other end point then that end point is added as the cut-node.

6.3.3 Filter intersected-edges

All the edges that are incident to a “cut-node” are removed from the list of intersected-
edges. Since our mesh data structure already has the bottom-up links, it is trivial to
access all the incident edges per each node.

6.3.4 Compute configuration codes for cut elements

After building the list of cut-edges and cut-nodes, all the tetrahedral cells are in-
spected for intersection. The list of cut-edges and cut-nodes are implemented as
hash-tables in our system, therefore, performing a query operation can be done in
constant time and this step is not a bottleneck in our system. Per each cell all the 6
edges are checked against the cut-edges hash table in the same order given in figure
6.2. If an edge is included in the cut-edges hash table then a flag bit is set for that
particular edge. The same process is performed for the 4 nodes of each cell and a 4
bits cutnode code is computed for that cell. Using the lookup table given in table
6.1 and the number of cut-edges and cut-nodes; per each cell a cut configuration is
computed. If the number of cut-edges and cut-nodes are both zero then that cell is
left intact otherwise it is added to the list of intersected cells to be processed later.

81

Table 6.1: The following look-up table is used to differentiate between different cutting
configurations based on the number of cut-edges and cut-nodes. All cases subdivide
tetrahedral elements into smaller cells except for case Z where the original cell is left
intact.

type state #cut edges #cut nodes

A complete 3 0
B complete 4 0
C progressive 1 0
D progressive 2 0
E progressive 3 0
X complete 2 1
Y complete 1 2
Z complete 0 3

Based on its cut configuration a tetrahedral cell is subdivided into smaller ele-
ments. In our system a separate lookup table is implemented per each of the above
cut configurations. The reason is that each configuration leads to a different number
of subdivided elements, however; it is also possible to combine all lookup tables into
one. Table 6.2 shows the generated cells for the cut type A. In this configuration only
3 out 6 edges of a tetrahedra are cut and that should lead to C(n, r) = C(6, 3) = 20

different cut edges (without repetition and order does not matter). However, valid
cut edges are the ones that separate one node from the other three that will lead to
the compact lookup table in 6.2. The first column is the cut-edge code associated
with that configuration row e.g. A56 denotes cut type A with edges 3, 4, 5 being
cut where each each represent one bit in the code. The second column is the list of
generated tetrahedral cells. Cut A produces 4 cells. Nodes 0-3 are the original nodes
creating the original cell. When each edge shown in figure 6.2 is cut in the middle
two additional nodes are added to that cell these extra nodes are defined at indices
4-15 as shown in figure 6.6.

The lookup table for type B is shown in table 6.3. Four edges are being cut in
configuration type B and per each cell 6 sub-elements are generated. Cutting 4 out
of 6 edges should result in C(n, r) = C(6, 4) = 15 distinct cut-edges. However, using
the same analogy only 3 valid cuts are able to split the cell in two disjoint parts.
Those cuts are summarized in table 6.3.

82

Case Z is trivial since the cell is left intact. For case Y two tetrahedral elements
are being generated and one edge is being split only. Case X is very similar to A in
the sense that one original node is being separated from the rest of the simplex. In
cases X and Y the cut-nodes are duplicated and the new cells are generated based
on the split edges and the original nodes and their associated duplicates. Since we
haven’t implemented progressive cutting yet cases C, D and E are left for future work.

Table 6.2: Lookup table for generating sub-elements for type A configuration

config cut edges generated cells

A56 3, 4, 5 {0, 12, 10, 14}, {3, 13, 11, 15}, {3, 1, 15, 11}, {1, 2, 3, 11}
A37 0, 2, 5 {1, 4, 8, 15}, {3, 9, 5, 14}, {0, 3, 14, 5}, {0, 2, 3, 5}
A11 0, 1, 3 {2, 5, 6, 11}, {3, 7, 10, 4}, {3, 1, 4, 10}, {0, 1, 3, 10}
A22 1, 2, 4 {3, 13, 9, 7}, {1, 8, 12, 6}, {1, 2, 12, 6}, {0, 1, 2, 12}

Table 6.3: Lookup table for generating sub-elements for type B configuration. Sub-
elements are separated by semi-colon to fit on the line.

config cut edges generated cells

B46 1, 2, 3, 5 {2, 6, 11, 1; 8, 11, 15, 1; 6, 11, 8, 1; 3, 7, 9, 10; 3, 10, 0, 9; 0, 14, 10, 9}
B51 0, 1, 4, 5 {3, 7, 13, 15; 15, 1, 4, 7; 15, 1, 3, 7; 0, 12, 14, 6; 2, 5, 6, 14; 0, 14, 6, 2}
B29 0, 2, 3, 4 {4, 10, 12, 0; 0, 8, 12, 4; 0, 8, 1, 4; 3, 9, 13, 5; 2, 5, 11, 3; 3, 13, 5, 11}

83

Figure 6.6: Nodes 0-3 are the original cell nodes shown in blue dots. Splitting each of
the 6 edges can produce two additional nodes up to 12 more nodes which are placed
at indices 4-15 shown in black dots.

6.3.5 Topological Updates

During the cutting process, the intersected cells are being replaced by sub-cells as
discussed in the previous section. Cell removal operation involves updating the entire
mesh structure which can be expensive if performed during the cut process. In our
system all the intersected cells are being placed on a pending list for later deletion
which will be visited by a post-processing stage called “garbage collection”. This way
the indices of the mesh entities are left intact during the cutting process and then
once the cut is finalized the mesh can be cleaned and any unused entities such as cells,
faces, edges or nodes are being purged to keep the structure as compact as possible
for the next cutting operations.

The mentioned “garbage collection” process starts by visiting all the cells in the list
of pending items for deletion. First, the list is sorted in increasing order of cell indices,
this step is required to correctly update only the position of the items appearing in
the subsequent index levels.

Then using the bottom up access links (list of incident cells per each face), the list
of unreferenced faces is extracted which contains all faces that are not associated with
any cells. The same operation is then performed for edges and nodes. At each step
the list of unreferenced entities are sorted and all the items in those lists are removed
from the internal container structures. Finally, all the containers are compacted and

84

the indices of remaining entities are updated accordingly.

6.4 Cutting Results

In this section we review the results for the cutting algorithm presented in this chapter.
Two models are considered for this analysis and a more complex cutting scenario is
presented in chapter 7. The model shown in figure 6.7 is composed of two implicit
spheres that are blended and tetrahedralized for physics simulation. The resulting
volumetric mesh is cut horizontally, vertically and diagonally using the scalpel tool.

Figure 6.7: Two implicit spheres are blended and tetrahedralized for our physics
simulation system. The peanut model is cut 3 times. Top-Left: The original volu-
metric mesh. Top-Right: Model cut horizontally with the scalpel tool. Bottom-Left:
Diagonal cutting, Bottom-Right: Vertical cut. Blue dot represent the intersection
points on the original edges.

The second model is the tumor model composed of 10 blended spheres. Using the
same process the model is tetrahedralized for physical simulation and cut 3 times.
Figure 6.8 shows the result of these topological modifications.

85

Figure 6.8: The tumor model above is composed of 10 point primitives and a blending
operator. Top-Left: the original mesh, Top-Right: The mesh after a horizontal cut,
Bottom-Left: The vertical cut, Bottom-Right: mesh after a diagonal cut.

To analyse the quality of the tetrahedral mesh after the cutting process several
attributes are being considered. First, the number of elements before and after each
cut. More elements will increase the system solve time and degrade the performance
of the physical simulation due to the larger matrix dimensions involved in the pro-
cess. Badly shaped (skinny) tetrahedral elements impose stricter constraints on the
simulation time step [73, 26]. In order to get an understanding of the quality of the
tetrahedral mesh after the cuts, element counts and several other quality measures
are considered [55].

• The ratio between largest and smallest tetrahedron volume

• The ratio between largest and smallest edge length

• The lowest aspect ratio of all tetrahedra

The aspect ratio of a tetrahedra is measured as following:

β =
CR

3 ∗ IR
(6.2)

Where CR is the circumsphere radius of an element and IR is the inscribed-sphere
computed by the following equation [55]:

86

IR =
4V∑4

i=1 SAi

(6.3)

Where V is the volume of a tetrahedra, SAi is the surface area of the ith triangle
face of an element.

Table 6.4: Mesh quality measurements.

original peanut peanut after 3 cuts original tumor tumor after 3 cuts

Nodes 4437 8933 8035 15821
Edges 25420 46466 46121 82711
Faces 39108 67388 70998 120212
Cells 18124 28322 32911 50605
Vmax/Vmin 84.927 58.253 316.898 287.596
lmax/lmin 42.367 47.547 40.045 130.556
AspectRatiomin 3× 10−7 3× 10−7 10−6 10−6

Graichen et al. presented an excellent study on the tetrahedral mesh quality
measures [55]. Thin, wedge-like, flat and sliver elements (where 4 points of the element
are co-planar) are the source of poor simulation results. Table 6.4 summarizes the
statistical quality factors before and after cutting the two example meshes. The
original volumetric mesh of both of these models are extracted from their associated
BlobTree representation using our GPU tetrahedralization algorithm presented in
chapter 4.

As it can be seen from the results the cutting method presented in this chapter
does not increase the ratio of maximum to minimum volume after the cuts are made.
This means that the element subdivision stage in our system does not introduce ill-
shaped elements to the mesh. The ratio of the maximum to minimum edge-length
did not change drastically. However, a local re-meshing process after the cut specially
in the vicinity of the cut region can improve the quality of the mesh significantly.

The element count has increased steadily after each cut operation. Figure 6.9
shows the trend of element increase after N cuts are made to the mesh.

87

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5

N
um

be
r o

f e
le

m
en

ts

cut number

Tetrahedral cells count after each cut

peanut

tumor

Figure 6.9: Number of tetrahedral cells after each cut operation. The horizontal axis
is the cut number starting from cut 0 or the original mesh. The vertical axis is the
number of cells.

Figure 6.10 provides a clear understanding of how many new cells are added to
the mesh after each cut operation. The blue bar in this figure shows the number of
cells that are intersected with the cut surface per each cut. Following the algorithm
given in section 6.3.4 the intersected cells are subdivided and replaced by new set
of generated cells shown in orange. On average the ratio of newly generated cells to
intersected cells is 3.6 from these results. This is due to the fact that most of the cut
configurations are of type A which result in a 1 to 4 subdivision.

88

1606

1071

1280

1291

977

5770

3845

4612

4593

3513

0 1000 2000 3000 4000 5000 6000 7000 8000

1

2

3

4

5

Ratioof intersected cellsto new cells for tumor
model

intersected cells new cells

1276

927

1296

1174

1065

4570

3319

4766

4184

3805

0 1000 2000 3000 4000 5000 6000 7000

1

2

3

4

5

Ratio of intersected cells to new cells for peanut
model

intersected cells new cells

Figure 6.10: The ratio of intersected cells to newly added cells for tumor (top) and
peanut model (bottom). Each blue bar represents the count of cells intersected with
the scalpel tool while the orange bar next to it, is the number of newly generated
cells after subdividing those intersected cells.

89

Chapter 7

Evaluation, Analysis and
Comparisons

During the past decade a new thrust has appeared with the development of tissue
modelling techniques which could make it possible to develop patient-specific simu-
lations. Whenever the best surgical strategy is unclear or the patient presents a rare
pathology such simulations could be beneficial. Other use-cases for such systems is
in surgical skill training which is a long and tedious process of acquiring fine motor
skills. In all those scenarios physically-based animation of tissues is challenging and
has lots of room for improvement.

Our methods presented in the previous chapters have been integrated into our
surgical simulation system. The result is a comprehensive environment for tissue
modelling and simulation with support for cutting. We present our results in the
context of a skull craniotomy procedure.

Craniotomy is a surgical operation in which a part of skull, called a bone flap
is temporarily removed to access the brain. The operation is performed on patients
with brain lesions, traumatic brain injury (TBI) or for brain biopsy purposes. Some
treatment procedures are done by deep implantation of brain stimulators; Parkinson
disease, epilepsy and cerebellar tremor are examples of such cases that require a
craniotomy for the implantation process.

Small dime-sized craniotomies are called burr holes or keyhole craniotomies. In
order to precisely control surgical and biopsy instruments through these small holes,
the surgeons frequently use image-guided computer systems or endoscopes. Burr holes
or keyhole craniotomies are used for minimally invasive procedures to:

90

• insert a shunt into the ventricles to drain cerebrospinal fluid (hydrocephalus)

• insert a deep brain stimulator to treat Parkinson Disease

• insert an intracranial pressure (ICP) monitor

• remove a small sample of abnormal tissue (needle biopsy)

• drain a blood clot (stereotactic hematoma aspiration)

• insert an endoscope to remove small tumors and clip aneurysms

In the following sections we review the previous work in this domain and then
describe our experimental setup . The chapter concludes with results and analysis.

7.1 Previous work

Abe et al. fabricated plastic skull models of seven individual patients by stereolithog-
raphy from three-dimensional data based on computed tomography (CT) bone images
[1]. Surgical approaches and areas of craniotomy were evaluated using the fabricated
skull models. They reported a better understanding of anatomic relationships, preop-
erative evaluation of the proposed procedure and improved educational experiences
for the residents and medical staff as the benefits of their system. They also reported
that the time and cost of making such models are the main disadvantages of using
them.

Wong et al. loaded patient specific CT scans of cranial bone and CT angiogra-
phy of intracranial circulation into the Dextroscope workstation supplied by Volume
Interactions Pte. Ltd [80]. They showed various use-cases of the zoom, rotate, move
and crop functions of the Dextroscope to visualize various angles of positioning the
craniotomy. However, their system does not provide a physically-based simulation of
the procedure.

Stadie et al. performed a study on the effectiveness of virtual reality systems
for placing the craniotomies in minimally invasive procedures [72]. They used the
Dextroscope and RadioDexter workstations supplied by Volume Interactions Pte.
Ltd. to visualize and annotate the 3D VR models. Those systems are also used to
measure the curvilinear distances of the proposed craniotomy centers on the patients
skull model but they can not perform a cutting procedure on the input VR models.

91

7.2 Architectural constraints

We are able to perform interactive cuts on a model with more than 60,000 cells. The
GPU accelerated cutting algorithm presented in chapter 6 requires a modern GPU
with OpenCL support. The system we used for this experiment is equipped with
an Nvidia Geforce GTX760 with 2GB of video memory and 1152 CUDA cores. The
CPU is an Intel Core i7-4770K with 256 KB, 1MB and 8MB of L1 to L3 cache. This
processor has 4 cores and up to 8 threads can run in parallel. Our system is also
equipped with 16 GB of main memory.

7.3 Experiments

In this section we review the experiments that are performed to evaluate the per-
formance and quality of our cutting algorithm in the context of the Craniotomy
procedure. In the first experiment we use an eggshell model that helps us to study
the quality of the cut surfaces and the amount of time it takes to apply mesh mod-
ifications in the associated data-structures. Fewer finite element cells in the eggshell
model helps us to isolate the mesh quality issues in the vicinity of the cut surfaces.

Later we use the human skull model and drill multiple holes at different locations in
the bone tissue. The location of the drills are chosen according to the recorded videos
of various brain biopsy procedures. Beside the experiments with the drilling tool,
the scalpel tool is also used for the visualization of the internal mesh cross-sections,
which can be helpful in the study of scanned volume data-sets from arbitrary viewing
angles.

Our system also allows controlled cutting along the major axes. The main benefit
of this feature is in studying the effects of vibrations and other hand movements when
cutting models interactively, i.e. by comparing the axis-locked, controlled cutting to
the same scenario with free-hand movements, one can investigate the effect of small
vibrations along the cut trajectory and how it can lead to the generation of small and
wedge-shaped elements in the volume mesh.

7.3.1 The Eggshell Model

Before drilling an actual skull mesh with many tetrahedral elements we tested our
system on a spherial model similar to an eggshell. This model is composed of 840

92

nodes and 2280 tetrahedral cells. The outer surface is composed of two layers of
tetrahedral elements only (see figure 7.1). To create this model implicitly a smaller
sphere is subtracted from a larger one.

Figure 7.1: Eggshell model before being drilled by our cutting tool.

After the drilling operation, only 120 new elements are added to the mesh for
a total of 2400 elements. The entire process is completed interactively. The small
disjoint parts fall down on the ground due to gravity. Each disjoint part becomes an
independent deformable model in our system and subject to forces and deformations.
Figure 7.2 left, shows the mesh after being drilled for the bare hole. In order to
perform a stress test on the model 6 holes are drilled in various locations of the
eggshell model (see figure 7.2, right).

Figure 7.2: Eggshell model after being drilled by our cutting tool. Left: The first
drill, Right: After drilling 6 holes to the model.

93

After completing this experiment successfully our algorithm showed to be robust
enough to handle more complex meshes. In the next stage a real data-set of skull
tissue is used for the craniotomy operation.

7.3.2 Craniotomy

Fang et al. published a tetrahedral mesh data-set of the brain tissues [23]. The MRI
scanned data is segmented into the following four regions:

1. Skull and scalp

2. Cerebro-spinal fluid (CSF)

3. Gray-matter

4. White-matter

The high-resolution version of these segments are not published at the time of this
writing so we used the lower resolution which has enough details of the organ for our
simulation scenarios. The data-set is converted from its original format (MATLAB
mat file) to our volumetric mesh format. Table 7.1 shows number of nodes, edges,
faces and tetrahedral cells per each segment after the conversion process:

Table 7.1: Segmented brain data-set statistics.

skull csf gray matter white matter

Nodes 14739 37136 50741 23737
Edges 89681 181593 268300 126441
Faces 141498 251823 384989 184536
Cells 66554 107460 167528 81833

Due to its stiff material properties the skull tissue is modelled as a rigid material
in our simulation system. Figure 7.3 shows the skull mesh in its initial position.

94

Figure 7.3: The scene setup for the craniotomy operation.

The cutting tool in this scenario is a tube-shaped device which can drill into the
skull tissue and separate the bone matter. In our system, the tool is defined as a
curve approximated by N line segments. The tool movement is tracked in the space
and the system checks for collisions between the tool and the model continuously.
Figure 7.4 shows the polygonal shape of the cutting tool while in contact with the
skull tissue.

Figure 7.4: Cutting tool is defined as a tube with a base composed of a curve
approximated with N line segments. Collisions between the tool and the tissue are
monitored constantly.

When in contact with the skull tissue the intersection of the side wall of the tool
is computed against the edges of the skull model. With N line segments the cutting

95

tool has N quadrilateral faces on its side wall, the edge intersection test is performed
in our system by calling the kernel function given in algorithm 6 once per each quad.
After each call the hash-table storing the cut-edges is filled with the new cuts.

The cutting configurations presented in section 6.3.4 are extracted based on one
intersection per edge, therefore it’s not possible to cut a given edge more than once.
In our system we only accept the first cut-edge and this did not produce any visual
defects. Perhaps a more robust implementation would be to approximate the cutting
tool curve based on the size of the longest edge in the mesh. After the cutting is made
the mesh is separated and each of the disconnected parts is converted into a separate
node in our scene-graph structure. This operation results in correct detection of the
self-collisions in the subsequent frames of the simulation.

The internal gray, white and CSF matters are also included in this simulation.
The drilling operation only affects the skull tissue and in fact it does not pass the
Dura layer. This condition is a requirement for the successful completion of this
procedure.

Figure 7.5 shows the cross section view of the brain. The skull is cut with a scalpel
tool to show the internal tissues which are drawn in blue for better visibility.

Figure 7.5: Cross section view of the brain layers. The skull shown in pink is cut
using a scalpel avatar to show all the other layers depicted in blue.

96

Figure 7.6: Simulation of the craniotomy operation using our surgical simulation
framework with support for interactive cutting.

Figure 7.6 shows the operation (before, during and after drilling the first and the
second holes). During the drilling process 845 and 940 tetrahedral cells are being cut
in the vicinity of the drilling tool for the first and second holes, respectively. The
interaction of the drilling tool and the skull was interactive at all times, supporting
at least 60 frames per second.

97

Chapter 8

Conclusions

We presented a system for modelling and interactive rendering of complex implicit
objects which bridges the gap between modelling and simulation. This is better than
what has been done by Cani et al. [15].

Our SIMD polygonization method is peer reviewed [66]. The proposed algorithm is
scalable, dynamic and data-driven as opposed to the related work in this area where
the input model can be either simple static functions or constant range data-sets
[36, 75, 41, 88]. The BlobTree pruning and linearization described in section 3.3.1,
is an important step for designing compact and cache-line optimized input data-
structure and the presented method is generic enough to be reused in applications
involving hierarchical and tree-based structures.

Our proposed SIMD polygonization method is later optimized for using GPU ac-
celeration. The proposed compact data-structure for BlobTree in section 4.2 enables
the transfer and rendering of large BlobTree in the order of 60,000 nodes interactively
(as shown in that chapter using our compact data-structure a 64K nodes BlobTree
only takes about 20 MB in video memory). The result is a high performance polygo-
nization method that enables real-time updates in our incremental modelling system.
This result is better than the work of [41, 70] in rendering implicit models and the
work of [88, 16] in polygonization techniques.

An intuitive volumetric mesh data-structure is proposed which is suitable for stor-
ing dynamic meshes on the GPU to support real-time modifications during cutting.
Our cutting results show that the presented data-structure is more performant and
can benefit the related work in this domain [82, 83, 19].

Our proposed GPU-based data-structure enables real-time updates of the volumet-
ric meshes upon cutting. Our cutting algorithm as shown in section 6.3 is interactive

98

for approximately 100,000 finite element cells. This is sufficient to cover many sur-
gical scenarios. The resulting finite element cells are of high quality (the tetrahedral
cells are not flat or wedge-shaped) as shown in section 6.4. This is better than what
has been done in the work of Courtecuisse et al. [19]. The cut edges are smooth,
not jagged and a minimal amount of tetrahedral elements are created as the result of
elements subdivision and this is better than the results published by Courtecuisse et
al. and Steinemann et al. [19, 73].

We presented a Craniotomy simulation based on our real-time cutting algorithm
and the segmented brain data-set published by Fang et al. [23]. Given the large
number of finite element cells in the brain mesh (around 100,000), our simulation
still runs at interactive rates and the cutting output is smooth for a high-quality
simulation as shown in section 7.3.2. Colchester et al. used superimposed surface
mesh for guiding a Craniotomy simulation [18]. Abe et al. used plastic skull models
for training this procedure [1]. To the best of our knowledge our proposed method is
the only physically-based simulation for this specific procedure.

The following provides a summary of all the contributions made in this work:

1. A comprehensive modelling framework based on the BlobTree scenegraph for
designing complex tissues. Our framework also provides a software architecture
for physically-based animation of rigid and deformable models.

2. An algorithm for interactive polygonization of implicit surfaces on multi-core
architectures with SIMD instructions (peer reviewed).

3. An optimized GPU-accelerated algorithm for high-performance polygonization
of implicit surfaces on many-core architectures.

4. A novel mesh data-structure suitable for storing dynamic meshes on the GPU
to support real-time modifications during cutting.

5. Smooth, interactive cutting for complex tissues

6. A real-time Craniotomy simulation for neurosurgery and biopsy simulations.

8.1 Future Work

There are many areas in which the proposed system may be improved. The polygo-
nization method introduced in chapter 4 can be further extended to support more

99

complex implicit primitives such as skeletal curve primitives. Such primitives can be
helpful in modelling vain and other tube-shaped tissues. Support for implicit decals
as suggested in [21] can help in creating realistically textured organs.

Our cutting algorithm can also be extended to support progressive cuts. Progres-
sive cuts can enhance the level of realism perceived in cutting. Also incorporating a
fluid simulation will enhance the cutting scenario for simulating blood and CSF fluids
in the brain. Procedural models such as L-Systems can be used to simulate the small
blood vessels in the brain biopsy simulation.

As computational power continues to increase, and optimization algorithms con-
tinue to improve, implicit surfaces are likely to play a much larger role in computer
graphics. It is the sincere hope of the author that this research demonstrates what
that role might be, and will encourage others to explore this domain.

100

Bibliography

[1] Masamitsu Abe, Kazuo Tabuchi, Masaaki Goto, and Akira Uchino. Model-based
Surgical Planning and Simulation of Cranial Base Surgery. Neurologia medico-
chirurgica, 38(11):746–751, 1998.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[3] Loïc Barthe, Brian Wyvill, and Erwin De Groot. Controllable Binary Csg Opera-
tors for "Soft Objects". International Journal of Shape Modeling, 10(02):135–154,
2004.

[4] Cagatay Basdogan, Suvranu De, Jung Kim, Manivannan Muniyandi, Hyun Kim,
and Mandayam a Srinivasan. Haptics in minimally invasive surgical simulation
and training. IEEE computer graphics and applications, 24(2):56–64, 2004.

[5] K J Bathe. Finite element procedures, volume 2. Prentice hall Englewood Cliffs,
NJ, 1996.

[6] Adrien Bernhardt, Loic Barthe, Marie-Paule Cani, and Brian Wyvill. Implicit
Blending Revisited. Computer Graphics Forum, 29(2):367–375, June 2010.

[7] D. Bielser, P. Glardon, M. Teschner, and M. Gross. A state machine for real-time
cutting of tetrahedral meshes. Graphical Models, pages 377–386, 2004.

[8] Daniel Bielser, VA Maiwald, and MH Gross. Interactive Cuts through 3 Dimen-
sional Soft Tissue. Computer Graphics Forum, 1999.

[9] J. Bloomenthal. An implicit surface polygonizer. Graphics gems IV, 1:324–349,
1994.

101

[10] J. Bloomenthal and B. Wyvill. Interactive techniques for implicit modeling. In
Proceedings of the 1990 symposium on Interactive 3D graphics, pages 109–116.
ACM New York, NY, USA, 1990.

[11] Jules Bloomenthal, Bajaj Chandrajit, Jim Blinn, Marie-Paule Cani-Gascuel,
Alyn Rockwood, Brian Wyvill, and Geoff Wyvill. Introduction to implicit sur-
faces. Morgan Kaufmann, 1997.

[12] William J Bolosky and Michael L Scott. False sharing and its effect on shared
memory performance. USENIX Systems on USENIX Experiences, 1801:1–15,
1993.

[13] Mario Botsch, Leif Kobbelt, Pauly Mark, Alliez Pierre, and Levy Bruno. Polygon
Mesh Processing. AK Peters, Ltd., 2010.

[14] Luc Buatois, Guillaume Caumon, and B. Lévy. GPU accelerated isosurface
extraction on tetrahedral grids. Advances in Visual Computing, pages 383–392,
2006.

[15] Marie-Paule Cani-Gascuel and Mathieu Desbrun. Animation of Deformable
Models Using Implicit Surfaces. IEEE Transactions on Visualization and Com-
puter Graphics, 3:39–50, 1997.

[16] Matúš ChochlÍk. GPU-Accelerated Polygonization of Implicit Surfaces. Journal
of Information, Control and Management Systems, 10(2), 2012.

[17] P Cignoni, P Marino, C Montani, E Puppo, and R Scopigno. Speeding up
isosurface extraction using interval trees. IEEE Transactions on Visualization
and Computer Graphics, 3(2):158–170, 1997.

[18] AC Colchester and J. Zhao. Craniotomy simulation and guidance using a stereo
video based tracking system (VISLAN). Visualization in Biomedical Computing,
2359:541–551, September 1994.

[19] Hadrien Courtecuisse, Hoeryong Jung, Jérémie Allard, Christian Duriez,
Doo Yong Lee, and Stéphane Cotin. GPU-based real-time soft tissue defor-
mation with cutting and haptic feedback. Progress in biophysics and molecular
biology, 103(2-3):159–68, December 2010.

[20] Erwin De Groot. Blobtree modelling. PhD thesis, University of Calgary, 2008.

102

[21] Erwin de Groot, Brian Wyvill, Loïc Barthe, Ahmad Nasri, and Paul Lalonde. Im-
plicit Decals: Interactive Editing of Repetitive Patterns on Surfaces. Computer
Graphics Forum, 33(1):141–151, 2014.

[22] Carlos a. Dietrich, Carlos E. Scheidegger, João L.D. Comba, Luciana P. Nedel,
and Cláudio T. Silva. Marching Cubes without Skinny Triangles. Computing in
Science & Engineering, 11(2):82–87, March 2009.

[23] Qianqian Fang. Mesh-based Monte Carlo method using fast ray-tracing in
Plücker coordinates. Biomedical optics express, 1(1):165–175, 2010.

[24] M. Fox, C. Galbraith, and B. Wyvill. Efficient use of the BlobTree for ren-
dering purposes. In Shape Modeling and Applications, SMI 2001 International
Conference on., pages 306–314, May 2001.

[25] Laure France, Alexis Angelidis, Philippe Meseure, Marie-Paule Cani, Julien
Lenoir, François Faure, and Christophe Chaillou. Implicit Representations of
the Human Intestines for Surgery Simulation. ESAIM: Proceedings, 12:42–47,
2002.

[26] F Ganovelli and P Cignoni. A multiresolution model for soft objects supporting
interactive cuts and lacerations. Computer Graphics Forum, 19(3):271–281, 2000.

[27] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa.
Heterogeneous Computing with OpenCL: Revised OpenCL 1. Newnes, 2012.

[28] Joachim Georgii and Rüdiger Westermann. Mass-spring systems on the GPU.
Simulation Modelling Practice and Theory, 13(8):693–702, November 2005.

[29] SFF Gibson and B Mirtich. A survey of deformable modeling in computer graph-
ics. MERL - A MITSUBISHI ELECTRIC RESEARCH LABORATORY, 1997.

[30] Abel Gomes, Irina Voiculescu, Joaquim Jorge, Brian Wyvill, and Callum Gal-
braith. Implicit Curves and Surfaces: Mathematics, Data Structures, and Algo-
rithms. Springer Verlag, 2009.

[31] Herbert Grasberger, Pourya Shirazian, Brian Wyvill, and Saul Greenberg. A
data-efficient collaborative modelling method using websockets and the BlobTree
for over-the air networks. Proceedings of the 18th International Conference on
3D Web Technology - Web3D ’13, pages 29–37, 2013.

103

[32] A Guéziec and R Hummel. Exploiting triangulated surface extraction using
tetrahedral decomposition. IEEE Transactions on Visualization and Computer
Graphics, 1(4):342, 1995.

[33] C.D. Hansen and P Hinker. Massively parallel isosurface extraction. In Pro-
ceedings of the 3rd conference on Visualization’92, pages 77–83. IEEE Computer
Society Press, IEEE Computer Society Press, 1992.

[34] Lenka JeÅŹábková, Guillaume Bousquet, Sébastien Barbier, François Faure, and
Jérémie Allard. Volumetric modeling and interactive cutting of deformable bod-
ies. Progress in biophysics and molecular biology, 103(2-3):217–24, December
2010.

[35] Xia Jin, Grand Roman Joldes, Karol Miller, and Adam Wittek. Computational
Biomechanics for Medicine. pages 73–80, 2013.

[36] Gunnar Johansson and Hamish Carr. Accelerating marching cubes with graphics
hardware. Proceedings of the 2006 conference of the Center for Advanced Studies
on Collaborative research - CASCON ’06, page 39, 2006.

[37] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of
hermite data. ACM Transactions on Graphics (TOG), 21(3):339–346, July 2002.

[38] Takashi Kanai, Y Ohtake, H Kawata, and K Kase. Gpu-based rendering of sparse
low-degree implicit surfaces. Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and Southeast Asia,
pages 165–171, 2006.

[39] Peter Kipfer and R. Westermann. GPU construction and transparent rendering
of iso-surfaces. In Proceedings Vision, Modeling and Visualization, volume 5,
2005.

[40] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. Fast
Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic.
Computer Graphics Forum, 28(1):26–40, March 2009.

[41] Aaron Knoll, Younis Hijazi, Charles Hansen, Ingo Wald, and Hans Hagen. Inter-
active Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic. 2007
IEEE Symposium on Interactive Ray Tracing, pages 11–18, September 2007.

104

[42] F Labelle and JR Shewchuk. Isosurface stuffing: fast tetrahedral meshes with
good dihedral angles. ACM Transactions on Graphics (TOG), pages 1–10, 2007.

[43] S.D. Laycock and A.M. Day. A Survey of Haptic Rendering Techniques. Com-
puter Graphics Forum, 26(1):50–65, March 2007.

[44] Michael Lee and Hanan Samet. Navigating through triangle meshes implemented
as linear quadtrees. ACM Transactions on Graphics (TOG), 19(2):79–121, April
2000.

[45] Ming Lin and Kenneth Salisbury. Haptic Rendering - Beyond Visual. Ieee Com-
puter Graphics And Applications, (April):22–23, 2004.

[46] A Liu, F Tendick, K Cleary, and C Kaufmann. A survey of surgical simulation:
applications, technology, and education. Presence: Teleoperators and Virtual
Environments, 12(6):599–614, 2003.

[47] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques, volume 87, page 169. ACM, 1987.

[48] P Mackerras. A fast parallel marching-cubes implementation on the Fujitsu
AP1000. Computer Science Technical Report TR-CS-92-10, The Australian Na-
tional University, 1992.

[49] JH Matthews. Numerical Methods for Computer Science, Engineering and Math-
ematics. 1987.

[50] U Meier, O López, C Monserrat, M C Juan, and M Alcañiz. Real-time deformable
models for surgery simulation: a survey. Computer methods and programs in
biomedicine, 77(3):183–97, March 2005.

[51] AB Mor and Takeo Kanade. Modifying soft tissue models: Progressive cutting
with minimal new element creation. Medical Image Computing and Computer-
Assisted Intervention–MICCAI, pages 598–607, 2000.

[52] Andrew Nealen and Matthias Müller. Physically based deformable models in
computer graphics. Computer Graphics Forum, 25:809–836, 2006.

105

[53] Han-Wen Nienhuys and A Frank van der Stappen. A Surgery Simulation Sup-
porting Cuts and Finite Element Deformation. In Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2001: Lecture Notes in Com-
puter Science, volume 2208, pages 145–152. 2001.

[54] HW Nienhuys and AF van der Stappen. Supporting cuts and finite element
deformation in interactive surgery simulation. Procs. of the Fourth International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 145–152, 2001.

[55] V N Parthasarathy, C M Graichen, and A F Hathaway. A comparison of tetrahe-
dron quality measures. Finite Elements in Analysis and Design, 15(3):255–261,
1994.

[56] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing. Com-
puter Graphics Forum, 26(3):415–424, September 2007.

[57] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core pro-
cessor parallelism, volume 23. O’Reilly Media, Inc., 2007.

[58] B Rodriguesdearaujo and J Armandopiresjorge. Adaptive polygonization of im-
plicit surfaces. Computers & Graphics, 29(5):686–696, 2005.

[59] Hanan Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR), (2), 1984.

[60] Hanan Samet. Hierarchical spatial data structures. Design and Implementation
of Large Spatial Databases, pages 191–212, 1990.

[61] R. Schmidt and B. Wyvill. Implicit sweep surfaces. Technical report, Citeseer,
2005.

[62] R. Schmidt, B. Wyvill, and E. Galin. Interactive implicit modeling with hierar-
chical spatial caching. International Conference on Shape Modeling and Appli-
cations 2005 (SMI’ 05), pages 104–113, 2005.

[63] R. Schmidt, B. Wyvill, MC C Sousa, and JA A Jorge. Shapeshop: Sketch-based
solid modeling with blobtrees. In ACM SIGGRAPH 2006 Courses, page 14.
ACM, 2006.

106

[64] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for GPU computing. Proceedings of the 22Nd ACM SIGGRAPH/EU-
ROGRAPHICS Symposium on Graphics Hardware, (GH ’07):97–106, 2007.

[65] Aria Shahingohar and Roy Eagleson. A framework for GPU accelerated de-
formable object modeling. International Journal of High Performance Comput-
ing Applications, 26:203–214, November 2012.

[66] Pourya Shirazian, Brian Wyvill, and Jean-Luc Duprat. Polygonization of implicit
surfaces on Multi-Core Architectures with SIMD instructions. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 89–98, Cagliari, Italy,
2012.

[67] P Shirley, S Marschner, M Ashikhmin, M Gleicher, N Hoffman, G Johnson,
T Munzner, E Reinhard, K Sung, W Thompson, P Willemsen, and B Wyvill.
Fundamentals of computer graphics. AK Peters, Ltd., 2009.

[68] Hang Si. TetGen - A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator. Technical report, 2006.

[69] Eftychios Sifakis, KG Der, and R Fedkiw. Arbitrary cutting of deformable tetra-
hedralized objects. ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 73–80, 2007.

[70] Jag Mohan Singh and P J Narayanan. Real-time ray tracing of implicit sur-
faces on the GPU. IEEE transactions on visualization and computer graphics,
16(2):261–272, 2010.

[71] Thomas Sangild Sø rensen and Jesper Mosegaard. An Introduction to GPU
Accelerated Surgical Simulation. pages 93–104, 2006.

[72] Axel T. Stadie, Ralf A. Kockro, Luis Serra, Gerrit Fischer, Eike Schwandt, Pe-
ter Grunert, and Robert Reisch. Neurosurgical craniotomy localization using a
virtual reality planning system versus intraoperative image-guided navigation.
International Journal of Computer Assisted Radiology and Surgery, 6:565–572,
2011.

[73] D. Steinemann, M. Harders, M. Gross, and G. Szekely. Hybrid Cutting of De-
formable Solids. IEEE Virtual Reality Conference (VR 2006), pages 35–42, 2006.

107

[74] Denis Steinemann, MA Otaduy, and Markus Gross. Fast arbitrary splitting of
deforming objects. Eurographics/ ACMSIGGRAPH Symposium on Computer
Animation, pages 63–73, 2006.

[75] N. Tatarchuk, J. Shopf, and C. DeCoro. Real-Time isosurface extraction using
the GPU programmable geometry pipeline. In ACM SIGGRAPH 2007 courses,
page 137. ACM, 2007.

[76] N Tatarchuk, J Shopf, and C Decoro. Advanced interactive medical visualization
on the GPU. Journal of Parallel and Distributed Computing, 68(10):1319–1328,
2008.

[77] Frederic Triquet, Laurent Grisoni, Philippe Meseure, and Christophe Chaillou.
Realtime visualization of implicit objects with contact control. Proceedings of
the 1st international conference on Computer graphics and interactive techniques
in Austalasia and South East Asia - GRAPHITE ’03, 1(212):189, 2003.

[78] Greg Turk and JF O’Brien. Shape transformation using variational implicit
functions. ACM SIGGRAPH 2005 Courses, 2005.

[79] K. van Overveld and B. Wyvill. Shrinkwrap: An efficient adaptive algorithm for
triangulating an iso-surface. The Visual Computer, 20(6):362–379, 2004.

[80] George K C Wong, Canon X L Zhu, Anil T. Ahuja, and Wai S. Poon. Cran-
iotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality
environment. Neurosurgery, 61:564–568, 2007.

[81] Jun Wu, Christian Dick, and Rüdiger Westermann. Interactive High-Resolution
Boundary Surfaces for Deformable Bodies with Changing Topology. Proceedings
of 8th Workshop on Virtual Reality Interaction and Physical Simulation (VRI-
PHYS), pages 29–38, 2011.

[82] Wen Wu and Pheng Ann Heng. A hybrid condensed finite element model with
GPU acceleration for interactive 3D soft tissue cutting. Computer Animation
and Virtual Worlds, 15(34):219–227, July 2004.

[83] Wen Wu and Pheng Ann Heng. An improved scheme of an interactive finite
element model for 3D soft-tissue cutting and deformation. The Visual Computer,
21(8-10):707–716, August 2005.

108

[84] B. Wyvill, A. Guy, and E. Galin. Extending the CSG Tree - Warping, Blending
and Boolean Operations in an Implicit Surface Modeling System. In Computer
Graphics Forum, volume 18, pages 149–158. John Wiley & Sons, 1999.

[85] B. Wyvill and K. van Overveld. Polygonization of implicit surfaces with con-
structive solid geometry. International Journal of Shape Modeling, 2(4):257–274,
1996.

[86] Brian Wyvill and Kees van Overveld. Warping as a modelling tool for csg/implicit
models. In Shape Modelling Conference, University of Aizu, Japan, volume m,
pages 1–20, 1997.

[87] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The
visual computer, 2(4):227–234, 1986.

[88] Bin Yang, Gui-Lin Chen, and Ming-Yong Pang. Parallel Polygonization of Im-
plicit Surfaces. 2010 International Symposium on Intelligence Information Pro-
cessing and Trusted Computing, pages 220–223, October 2010.

[89] Yi Zhang, Xin Wang, and X.J. Wu. Fast Visualization Algorithm for Implicit
Surfaces. In Artificial Reality and Telexistence–Workshops, 2006. ICAT ’06. 16th
International Conference on, pages 339–344. IEEE Computer Society, 2006.

