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ABSTRACT

ON THE GENERALIZED INCE EQUATION

by

Ridha Moussa

The University of Wisconsin - Milwaukee, 2014

Under the Supervision of Professor Hans Volkmer

We investigate the Hill differential equation,

(0.0.1) (1 + A (t)) y′′ (t) +B (t) y′ (t) + (λ+D (t)) y (t) = 0,

where A (t) , B (t) , and D (t) are trigonometric polynomials. We are interested in

solutions that are even or odd, and have period π or semi-period π. Equation (0.0.1)

with one of the above conditions constitute a regular Sturm-Liouville eigenvalue

problem. Using Fourier series representation each one of the four Sturm-Liouville

operators is represented by an infinite banded matrix. In the particular cases of Ince

and Lamé equations, the four infinite banded matrices become tridiagonal. We then

iii



investigate the problem of coexistence of periodic solutions and that of existence of

polynomial solutions.
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5.1. The Generalized Jacobi Elliptic Functions 106

5.2. A Generalization of Lamé’s Equation. 108
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1

CHAPTER 1

Introduction and Preliminary Concepts

The Ince and Lamé equations reside in the “land beyond Bessel”, they are (conflu-

ent) Heun equations when brought into algebraic form. The equations have periodic

coefficients, so they are Hill equations with spectral parameters λ and h, respectively.

Ince’s equation has three additional parameters a, b, d, whereas Lamé’s equation has

two, ν and k. Employing Jacobi’s amplitude t = am z, Lamé’s equation is transformed

to its trigonometric form, and this is a particular Ince equation. Mathieu’s equation is

an instance of Ince’s equation (a = b = 0) but not of Lamé’s equation. Lamé [37, 38]

discovered his equation in the 1830’s in connection with the problem of determining

the steady temperature in an ellipsoidal conductor with three distinct semi-axes when

the temperature is prescribed on the surface of the conductor. By introducing ellip-

soidal coordinates he found formulas for the temperature in terms of doubly-periodic

solutions of Lamé’s equation, called Lamé polynomials. Throughout the remainder

of the nineteenth century the best analysts of their time worked on the theory of

Lamé’s equation, among them Heine [21], Hermite [23], Klein [36] and Lindemann

[44], the latter being famous for his proof that is a transcendental number. In the

twentieth century, Ince [31, 32] introduced simply-periodic Lamé functions. The well

known Handbook of Higher Transcendental Functions, Volume III, by Erdélyi et al.

[1] contains a very readable overview of the results of Ince and others. Strutt [65]

gives applications of Lamé functions in engineering and physics. Jansen [34] treats

simply-periodic Lamé functions and applies them to antenna theory. In the second

half of the twentieth century, Arscott was the leading expert on Lamé’s equation. He

wrote several papers [4, 5, 6, 7] on Lamé polynomials and dedicated one chapter of

his well known book [8] to the Lamé equation.
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The first known appearance of the Ince equation is in Whittaker’s paper [83,

Equation (5) ] on integral equations. Whittaker emphasized the special case a = 0,

and this special case was later investigated in more detail by Ince [27, 30]. Magnus

and Winkler’s book [45] contains a chapter dealing with the coexistence problem for

the Ince equation. Also Arscott [8] has a chapter on the Ince equation with a = 0.

Arscott points out that the Ince equation was never considered by Ince and should

be called the generalized Ince equation. We use the name Ince equation following the

practice in [45]. A large part of the theory of Lamé’s equation carries over to the Ince

equation, and, in fact, becomes more transparent in this way. For one thing, working

with Ince’s equation does not require knowledge of the Jacobian elliptic function

appearing in Lamé’s equation. For instance, Jansen [34] preferred to work with the

trigonometric form of Lamé’s equation. The Ince equation has another advantage over

Lamé’s equation. The formal adjoint of Ince’s equation is again an Ince equation. The

adjoint equation is found by the parameter substitution

(a, b, λ, d)→ (a,−4a− b, λ, d− 4a− 2b).

If we apply the corresponding substitution to the trigonometric form of Lamé’s equa-

tion, then, unfortunately, the adjoint equation is not a Lamé equation anymore. This

leads to a somewhat awkward theory of Lamé’s equation, for example, there are two

different Fourier expansions for a simply-periodic Lamé function; see [1, Page 65 ].

Actually, one expansion suffices if we work with Ince’s equation. An important fea-

ture of the Ince equation is that the corresponding Ince differential operator (whose

eigenvalues are λ) when applied to Fourier series can be represented by an infinite

tridiagonal matrix. It is this part of the theory that makes the Ince equation particu-

larly interesting. For instance, the coexistence problem which has no simple solution

for the general Hill equation has a complete solution for the Ince equation; see Section

3.5.
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Lamé functions were originally introduced to solve certain problems in applied

mathematics “by hand”. Unfortunately, these computations are involved and never

became very popular. Today, however, Lamé and Ince functions excel on modern

computers, and so it is not surprising that Lamé and Ince functions enjoy a renais-

sance in applied mathematics. For example, Lamé functions are used in biomedical

engineering [33], and Ince functions are used in thermodynamics [2]. In addition,

symbolic manipulation software makes working with the Ince and Lamé equations so

much more enjoyable than it used to be.

This dissertation is an investigation of the theory of Ince and Lamé equations.

When studying the Ince equation, it became apparent that many of its properties

carry over to a more general class of equations “the generalized Ince equation” .

These linear second order differential equations describe important physical phenom-

ena which exhibit a pronounced oscillatory character; behavior of pendulum-like sys-

tems, vibrations, resonances and wave propagation are all phenomena of this type

in classical mechanics,(see for example [57]). while the same is true for the typical

behavior of quantum particles (Schrödinger’s equation with periodic potential). Be-

fore considering the Ince and Lamé equations and generalization in more detail, we

include a summary of some important concepts that will be used throughout this

thesis.

1.1. Sturm-Liouville Spectral Theory

Consider the Sturm-Liouville equation

(1.1.1) − (p (t) y′ (t))
′
+ q (t) y (t) = λr (t) y (t) , a < t < b.

We assume that p : (a, b)→ (0,∞) is continuously differentiable, r : (a, b)→ (0,∞) is

continuous and q : (a, b)→ R is continuous. In Coddington and Levinson [10] it is as-

sumed that r (t) = 1 but this can be always be achieved by the Sturm transformation.
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We choose c ∈ (a, b) and set

ξ =

∫ t

c

r (x) dx, y (t) = Y (ξ) .

Then we obtain

− (P (ξ)Y ′ (ξ))
′
+Q (ξ)Y (ξ) = λY (ξ) ,

where

P (ξ) = r (t) p (t) , Q (ξ) =
q (t)

r (t)
.

In Titchmarsh [67] it is assumed that p (t) = r (t) = 1. If p (t) r (t) is twice

continuously differentiable then we can achieve this by Liouville transformation. We

choose c ∈ (a, b) and set

η =

∫ t

c

(
r (x)

p (x)

)1/2

dx, W (η) = (p (t) r (t))
1/4 ω (t) .

Then we obtain

−W ′′ (η) +Q (η)W (η) = λW (η) ,

where

Q (η) =
f ′′ (η)

f (η)
+ k (η)

and

f (η) = (p (t) r (t))
1/4 , k (η) =

q (t)

r (t)
.

Example 1.1.1. Consider

(1.1.2) − y′′ = λ
1

t
y,

so that p (t) = 1, q (t) = 0, r (t) = 1
t
. We take the interval (a, b) = (0, ∞) . The Sturm

transformation is

ξ =

∫ t

1

dx

x
= ln t.

Then

P (ξ) =
1

t
= e−ξ.
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For Y (ξ) = y (t) we obtain the differential equation

−
(
e
(−ξ)Y ′)′ = λY.

The Liouville transformation (we can take c = 0) is

η =

∫ t

0

x
−1/2dx = 2t

1/2, f (η) = t
−1/4 =

(η
2

)−1/2

, Q (η) =
3

4
η−2.

We obtain the differential equation

−Y ′′ + 3

4

1

η2
Y = λY.

1.1.1. Regular Sturm-Liouville Problems. The end point a is called regular

if a ∈ R and the functions p, q, r : [a, b)→ R satisfy the same assumptions as before

but now on [a, b) . If a is not regular, it is called singular. Similar definitions apply to

b. Suppose that a and b are regular end points. Then we impose boundary conditions

(1.1.3) cosαy (a) = sinα (p′) (a) ,

and

(1.1.4) cos βy (b) = sin β (p′) (b) ,

where α, β ∈ R. A complex number λ is called an eigenvalue if there exists a non

trivial solution y (eigenfunction corresponding to λ) of (1.1.1), (1.1.3), (1.1.4). In

the case of regular Sturm-Liouville problems eigenvalues are real and eigenspaces are

one-dimensional.

Theorem 1.1.2. The eigenvalues form an increasing sequence λn, n ∈ N0, con-

verging to infinity. An eigenfunction φn (t) has exactly n zeros in (a, b) . If the eigen-

functions are normalized according to∫ b

a

r (t) |φn (t)|2 dt = 1,
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then the sequence φn (t) , n ∈ N0, forms an orthonormal basis in the Hilbert space

L2
r (a, b) .

If λ ∈ C is not an eigenvalue, then the Green’s function is

G (t, x, λ) =

{
ψ1 (t, λ)ψ2 (x, λ) if a ≤ t ≤ x ≤ b
ψ2 (t, λ)ψ1 (x, λ) if a ≤ x ≤ t ≤ b

,

where ψ1 (t, λ) is a solution of (1.1.1), (1.1.3) and ψ2 (t, λ) is a solution of (1.1.1),

(1.1.4) such that

ψ2 (t, λ) p (t)ψ′1 (t, λ)− ψ1 (t, λ) p (t)ψ′2 (t, λ) = 1.

If f : [a, b]→ C is a continuous function, and λ is not an eigenvalue then

y (t) =

∫ b

a

G (t, x, λ) f (x) dx

is the solution of the inhomogeneous differential equation

− (p (t) y′)
′
+ q (t) y − λr (t) y = f (t)

which satisfies the boundary conditions (1.1.3), (1.1.4). If we set y = φn and f (t) =

(λn − λ) r (t)φn (t) , then

φn (t) = (λn − λ)

∫ b

a

r (x)G (t, x, λ)φn (x) dx.

1.2. Introduction to the Theory of Hill’s Equation

1.2.1. Hill’s Equation. The Hill equation is the linear differential equation of

the second order

(1.2.1) c0 (t) y′′ (t) + c1 (t) y′ (t) + c2 (t) y (t) = 0

with continuous coefficients cj : R→ C with period ω > 0,

cj (t+ ω) = cj (t) ∀t ∈ R,
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and c0 (t) 6= 0 for all t ∈ R. If y (t) is a solution then also (Ty) (t) = y (t+ ω) is

a solution. This defines a linear map T from the two dimentional linear space of

solutions into itself. Therefore, there exists a nontrivial solution y (t) (called Floquet

solution) and a complex number ρ (called multiplier) such that

y (t+ ω) = (Ty) (t) = ρy (t) .

When ρ = ±1 we obtain solutions with period ω or semi-period ω

y (t+ ω) = y (t) , y (t+ ω) = −y (t) .

We choose a fundamental system of solutions y1, y2 determined by the initial

conditions

y1 (0) = 1, y′1 (0) = 0, y2 (0) = 0, y′2 (0) = 1.

Then

(Ty1) (t) = y1 (t+ ω) = x11y1 (t) + x21y2 (t) ,

(Ty2) (t) = y2 (t+ ω) = x12y1 (t) + x22y2 (t) .

From the initial conditions for y1, y2 we obtain the matrix representation of T with

respect to the basis y1, y2

(1.2.2) T =

 x11 x12

x21 x22

 =

 y1 (ω) y2 (ω)

y′1 (ω) y′2 (ω)

 .
By Abel’s formula for the Wronskian

DetT = exp

(
−
∫ ω

0

c1 (t)

c0 (t)
dt

)
.

Therefore, the multipliers ρ are the roots of the equation

(1.2.3) ρ2 − (y1 (ω) + y′2 (ω)) ρ+ detT = 0.
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This quadratic equation has the two non zero solutions ρ1, ρ2. The corresponding

characteristic exponents m1, m2 are defined by ρk = eiωmk . There are two cases.

(1) ρ1 6= ρ2. Let y1, y2 be Floquet solutions with multipliers ρ1, ρ2 respectively.

They form a fundamental system of solutions. If we define

pk (t) = e−imktyk (t) ,

then

pk (t+ ω) = pk (t) ,

therefore we can write

yk (t) = eimkpk (t) , k = 1, 2.

(2) ρ1 = ρ2. There are two possibilities. If ρ1 is an eigenvalue of T with geometric

multiplicity 2 then we can proceed as in the first case. If ρ = ρ1 = ρ2 = eiωm

has geometric multiplicity 1, let y1 be the corresponding Floquet solution,

and let y2 be a linearly independent solution. we have

T y1 = ρy1, T y2 = dy1 + ρy2, d 6= 0.

If we define

p1 (t) = e−imty1 (t) , p2 (t) = e−imty2 (t)− d

ωρ
t p1 (t)

then

pk (t+ ω) = pk (t) , k = 1, 2,

and we can write

y1 (t) = eimtp1 (t) , y2 (t) = eimt (tp1 (t) + p2 (t)) .
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Equation (1.2.1) is called stable if all solution are bounded in R. Otherwise it is called

unstable. The equation is stable if and only if |ρk| = 1 for k = 1, 2, and the geometric

multiplicity of ρ1 is 2 when ρ1 = ρ2.

Next, we add the assumption that the coefficients in (1.2.1) are real-valued and

that

(1.2.4)

∫ ω

0

c1 (t)

c0 (t)
dt = 0.

Assumption (1.2.4) implies det T = 1 and so ρ1ρ2 = 1. We define the discriminant

D = traceT = y1 (ω) + y′2 (ω) .

If ρ = eiωm then equation (1.2.3) becomes

(1.2.5) D = ρ+ ρ−1 = eiωm + e−iωm = 2 cos (ωm) .

Since D is a real number there are these possibilities:

(1) D > 2 or D < −2. Then ρ1, ρ2 are distinct, real and one of them is larger

than 1 in absolute value. Thus (1.2.1) is unstable.

(2) −2 < D < 2. Then ρ1,ρ2 are distinct, conjugates of each other and have

absolute value 1. Thus (1.2.1) is stable.

(3) D = 2. Then ρ1 = ρ2 = 1 and there exists a Floquet solution with period ω.

The equation is stable if and only if all solutions of (1.2.1) have period ω.

(4) D = −2. Then ρ1 = ρ2 = −1 and there exists a Floquet solution with semi-

period ω. The equation is stable if and only if all solutions of (1.2.1) have

semi-period ω.

In the case where all solutions have period ω, or all solutions have semi-period ω we

speak of coexistence of Floquet solutions with period ω or semi-period ω.

Example 1.2.1. We consider the Fourier equation

(1.2.6) y′′ + λy = 0, λ = c2, c ≥ 0.
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We can choose ω > 0 arbitrarily. Let us take ω = π. We obtain

y1 (t) = cos (ct) , y2 (t) =
1

c
sin (ct)

and

T =

 cos (cπ) c−1 sin (cπ)

−c sin (cπ) cos (cπ)

 .
The discriminant is

D = 2 cos (cπ) .

Therefore, ρ = e±icπ. The equation is stable for all c > 0 but unstable for c = 0.

Floquet solutions with period π exist for c = 2n with n = 0, 1, 2, . . . , and Floquet

solutions with semi-period π exist for c = 2n + 1 with n = 0, 1, 2, . . . We have

coexistence of Floquet solutions with period ω or semi-period ω for c = n, n =

1, 2, 3, . . . , but not for c = 0.

1.2.2. Hill’s Equation with Spectral Parameter. We consider Hill’s equa-

tion with parameter λ

(1.2.7) − (p (t) y′)
′
+ q (t) y = λr (t) y,

where p, q , r : R→ R are functions with period ω, q continuous, p continuously

differentiable and positive, and r continuous and positive. Note that assumption

(1.2.4) holds.

The discriminant D (λ) becomes real analytic function of the real parameter λ

which sometimes is called a Lypanov function. In general we can prove the following

properties of D (λ) .

Theorem 1.2.2. The discriminant D (λ) has the following properties,

(1) lim
λ→−∞

D (λ) =∞;

(2) D′ (λ) 6= 0 whenever −2 < D (λ) < 2;

(3) if D (λ) = ±2 and D′ (λ) = 0 then ±D′′ (λ) < 0;
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(4) there is a sequence δk →∞ such that D () ≤ 2,

For the proof see Chapter 8, Section 3 in Coddington and Levinson [10].

It follows from this theorem that the λ’s for which (1.2.7) admits a Floquet solution

with period ω form a non decreasing sequence λn, converging to infinity. Values of λ

for which there is coexistence of Floquet solutions with period ω are counted twice.

Similarly the λ’s for which (1.2.7) admits a Floquet solution with semi-period ω form

a non decreasing sequence µn, n = 0, 1, 2, . . . , converging to infinity. We have the

inequalities

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < . . .

If λ ∈ (−∞, λ0] then equation (1.2.7) is unstable. The interval (−∞, λ0] is

the zero-th instability interval. The intervals [µ2m, µ2m+1] , [λ2m+1, λ2m+2] are the

(2m+ 1) th and (2m+ 2) th instability intervals, m = 1, 2, . . . , with the exception,

if these intervals shrink to one point [λ, λ] (in the case of coexistence) then (1.2.7)

is stable at this value λ. If λ lies in one of the intervals where D (λ) ∈ (−2, 2) then

equation (1.2.7) is stable. We call these intervals the stability intervals.

1.2.3. The Even Hill Equation. Consider equation (1.2.1) and suppose that

co, c2 are even functions and c1 is an odd function:

c0 (−x) = c0 (x) , c2 (−x) = c2 (x) , c1 (−x) = −c1 (x) .

This implies that detT = 1. If y (t) is a solution then also y (−t) is a solution. If

y (t) is a Floquet solution with multiplier ρ then y (−t) is a Floquet solution with

multiplier 1/ρ. In particular, a Floquet solution with period or semi-period ω must

be even or odd unless all solutions have period or semi period ω.

By inverting the matrix T in (1.2.2) we get

y1 (t) = y′2 (ω) y1 (t+ ω)− y′1 (ω) y2 (t+ ω) .
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If we substitute t = −ω we obtain y1 (−ω) = y1 (ω) = y′2 (ω) . Therefore the discrimi-

nant simplifies to

D = 2y1 (ω) .

Now consider the Hill equation (1.2.7) with spectral parameter λ under the as-

sumptions of Subsection 1.2.2. In addition we assume that p, q, r are even. Then

for every λ we have an even Hill equation. In this case it is customary to intro-

duce a slightly different scheme of notation for the solutions of D (λ) = ±2. Let

α2n, n = 0, 1, 2, . . . ,denote the increasing sequence of those λ’s for which there ex-

ists an even Floquet solution with period ω. Let α2n+1, n = 0, 1, 2, . . . , denote the

increasing sequence of those λ’s for which there exists an even Floquet solution with

semi-period ω. Let β2n+1, n = 0, 1, 2, . . . , denote the increasing sequence of those

λ’s for which there exists an odd Floquet solution with semi-period ω. Let β2n+2,

n = 0, 1, 2, . . . ,denote the increasing sequence of those λ′s for which there exists an

odd Floquet solution with period ω. The n−th instability interval is then the interval

between αn and βn. Note that αn < βn, αn > βn, and αn = βn are possible.

1.3. Outline

In this first chapter we briefly outlined the subject of interest. We discussed

the form and basic properties of the Sturm-Liouville problem and the properties of

Hill’s equation that are needed for the remainder of the thesis. In the remaining

chapters, some specific techniques are considered for the analysis of the Ince and

Lamé differential equations and their generalization. These chapters are organized as

follows.

Chapter two. Introduces a generalization of Ince’s equation. The main proper-

ties of Ince’s equation apply to a more general class of equation that we called the

generalized Ince equation.
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Chapter three. Discusses in detail the Ince equation, in particular the problem of

coexistence of periodic solution, and that of the existence of polynomial solutions in

trigonometric form.

Chapter four. investigates Lamé’s equation The substitution t = π
2
− am z trans-

forms Lamé’s to an Ince equation, in this way a large part of the theory of Lamé’s

equation carries over to the Ince equation.

Chapter five. Generalizes Lamé’s equation using the so called generalized elliptic

functions. When transformed to its trigonometric form, this equation becomes a

generalized Ince equation.

Chapter six. Discusses the technique of separation of variables applied to the wave

equation in some special coordinate systems. This precess leads to Ince and Lamé

differential equations.

Chapter seven. Presents mathematical and physical applications, and special re-

sults, in particular a section on the instability interval of the generalized Ince equation.

Chapter eight. Concludes the thesis.
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CHAPTER 2

A Generalization of Ince’s Differential Equation

2.1. The Differential Equation

We consider the Hill differential equation

(2.1.1) (1 + A (t)) y′′ (t) +B (t) y′ (t) + (λ+D (t)) y (t) = 0

where

A (t) =

η∑
j=1

aj cos (2jt) ,

B (t) =

η∑
j=1

bj sin (2jt) ,

D (t) =

η∑
j=1

dj cos (2jt) .

Here η is a positive integer, the coefficients aj, bj, dj, for j = 1, 2, ..., η are specified

real numbers. The real number λ is regarded as a spectral parameter. We further

assume that
η∑
j=1

|aj| < 1. Unless stated otherwise solutions y (t) are defined for t ∈ R.

We will at times represent the coefficients aj, bj, dj, for j = 1, 2 . . . , η in the vector

form: a = [a1, a2, . . . , aη] , b = [b1, b2, . . . , bη] , d = [d1, d2, . . . , dη] .

The polynomials

(2.1.2) Qj (µ) := 2ajµ
2 − bjµ−

dj
2
, j = 1, 2, . . . , η,

will play an important role in the analysis of (2.1.1). For ease of notation we also

introduce the polynomials

(2.1.3) Q†j (µ) := Qj (µ− 1/2) , j = 1, 2, . . . , η.
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Equation (2.1.1) is a natural generalization to the original Ince’s equation

(2.1.4) (1 + a cos (2t)) y′′ (t) + (b sin (2t)) y′ (t) + (λ+ d cos (2t)) y (t) = 0.

Ince’s equation by itself includes some important particular cases, if we choose for

example a = b = 0, d = −2q we obtain the famous Mathieu’s Equation

(2.1.5) y′′ (t) + (λ− 2q cos (2t)) y (t) = 0,

with associated polynomial

(2.1.6) Q (µ) = q.

If we choose a = 0, b = −4q, and d = 4q (ν − 1) , where q, ν are real numbers, Ince’s

equation becomes Whittaker-Hill equation

(2.1.7) y′′ (t)− 4q (sin 2t) y′ (t) + (λ+ 4q (ν − 1) cos 2t) y (t) = 0,

with associated polynomial

(2.1.8) Q (µ) = 2q (2µ− ν + 1) .

Equation (2.1.1) can be brought to algebraic form by applying the transformation

ξ = cos2 t. For example when η = 2, and a = b = 0, we obtain

(2.1.9)
d2y

dξ2
+

1

2

(
1− 2ξ

ξ (1− ξ)

)
dy

dξ
+

1

4

(
8d2ξ

2 + (2d1 − 8d2) ξ − d1 + d2 + λ

ξ (1− ξ)

)
y = 0.

2.2. Eigenvalues

Equation (2.1.1) is an even Hill equation with period π. We are interested in

solutions which are even or odd and have period π or semi period π i.e. y (t+ π) =

±y (t) . We know that y (t) is a solution to (2.1.1) then y (t+ π) , and y (−t) are also

solutions. From the general theory of Hill’s equation we obtain the following lemmas:
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Lemma 2.2.1. Let y (t) be a solution of (2.1.1), then y (t) is even with period π

if and only if

(2.2.1) y′ (0) = y′ (π/2) = 0;

y(t) is even with semi period π if and only if

(2.2.2) y′ (0) = y (π/2) = 0;

y(t) is odd with semi period π if and only if

(2.2.3) y (0) = y′ (π/2) = 0;

y(t) is odd with period π if and only if

(2.2.4) y (0) = y (π/2) = 0.

For the proof see [14, Theorem 1.3.4 ]

Lemma 2.2.2. Equation (2.1.1) can be written in the self adjoint form

(2.2.5) − ((1 + A (t))ω(t)y′ (t))
′ −D (t)ω (t) y (t) = λω (t) y (t) ,

where

(2.2.6) ω(t) = exp

(∫
B (t)− A′ (t)

1 + A (t)
dt

)
.

Note that ω(t) is even and π-periodic since the function B(t)−A′(t)
1+A(t)

is continuous,

odd, and π-periodic.

Proof. Let r (t) = (1 + A (t))ω (t) . (2.2.5) can be written as,

(2.2.7) (−r(t)y′(t))′ −D(t)ω(t)y(t) = λω(t)y(t),
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which is equivalent to

(2.2.8) − r′(t)y′(t)− r(t)y′′(t)−D(t)ω(t)y(t) = λω(t)y(t).

Noting that

r′(t) = (1 + A(t))ω′(t) + A′(t)ω(t),

and

ω′(t) =
B(t)− A′(t)

1 + A(t)
ω(t),

we see that

r′ (t) = B(t)ω(t).

Therefore, (2.2.8) can be written as

(2.2.9) −B(t)ω(t)y′(t)− (1 + A(t))ω(t)y′′(t)−D(t)ω(t)y(t) = λω(t)y(t).

Since ω(t) is strictly positive, the lemma follows. �

In the case of Ince’s equation (2.1.4), we have the following formula for the function

ω

(2.2.10) ω (t) :=


(1 + a cos 2t)−1−b/2a if a 6= 0,

exp
(−b

2
cos 2t

)
if a = 0.

When η ≥ 2, the function can be computed explicitly using Maple. For example, let

us consider the case η = 2, with a =
[
1
4
, 1
8

]
,b = [1, 1] . Applying (2.2.6), we obtain

ω (t) =
1(

7 + 2 cos 2t+ 2 (cos 2t)2
)3 .

Equation (2.1.1) with one of the boundary conditions in Lemma 2.2.1 is a regular

Sturm-Liouville problem. From the theory of Sturm-Liouville ordinary differential

equations it is known that such an eigenvalue problem has a sequence of eigenvalues

that converge to infinity. These eigen values are denoted by α2m, α2m+1, β2m+1, and
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β2m+2, m = 0, 1, 2, . . . to correspond to the boundary conditions in lemma 2.2.1 re-

spectively. This notation is consistent with the theory of Mathieu and Ince’s equations

(see [45, 79]). Lemma 2.2.1 implies the following theorem.

Theorem 2.2.3. The generalized Ince equation admits a nontrivial even solution

with period π if and only if λ = α2m (a,b,d) for some m ∈ N0; it admits a nontrivial

even solution with semi-period π if and only if λ = α2m+1 (a,b,d) for some m ∈ N0; it

admits a nontrivial odd solution with semi-period π if and only if λ = β2m+1 (a,b,d)

for some m ∈ N0; it admits a nontrivial odd solution with period π if and only if

λ = β2m+2 (a,b,d) for some m ∈ N0.

Example 2.2.4. To gain some understanding about the notation we consider

the almost trivial completely solvable example, the so called Cauchy boundary value

problem

(2.2.11) y′′ (t) + λy (t) = 0,

subject to the boundary conditions of lemma 2.2.1. We have the following for the

eigenvalues λ in terms of m = 0, 1, 2 . . .

1. Even with period π we have λ = α2m = (2m)2 .

2. Even with semi-period π we have λ = α2m+1 = (2m+ 1) 2.

3. Odd with semi-period π we have λ = β2m+1 = (2m+ 1) 2.

4. Odd with semi-period π we have λ = β2m+2 = (2m+ 2) 2.

The formal adjoint of the generalized Ince equation is

(2.2.12) ((1 + A (t)) y (t))′′ − (B (t) y (t)) ′ + (λ+D (t)) y (t) = 0.

By introducing the functions

B∗ (t) = 2A′ (t)−B (t) =

η∑
j=1

− (2jaj + bj) sin (2jt) ,
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D∗ (t) = D (t) + A′ (t)−B′′ (t) =

η∑
j=1

−
(
4j2aj + 2jbj − dj

)
cos (2jt)

we note that the adjoint of (2.1.1) has the same form and can be written in the

following form:

(2.2.13) (1 + A(t))y′′(t) +B∗(t)y′(t) + (λ+D∗(t))y(t) = 0.

Lemma 2.2.5. If y(t) is twice differentiable defined on R, then, y(t) is a solution

to the generalized Ince equation if and only if ω(t)y(t) is a solution to its adjoint.

Proof. We Know that

B∗ = 2A′ −B, D∗ = D + A′′ −B′, ω′ =
B − A′

1 + A
ω,

and

ω′′ =
(B′ − A′′) (1 + A)− A′ (B − A′) + (B − A′)2

(1 + A)2
ω.

For ease of notation, let

p =
B − A′

1 + A
, q =

(B′ − A′′) (1 + A)− A′ (B − A′) + (B − A′) 2

(1 + A) 2
,

then

(1 + A) (ωy)′′ +B∗ (ωy)′ + (λ+D∗) (ωy)

= (1 + A) (ω′′y + 2ω′y′ + ωy′′) +B∗ (ω′y + ωy′) + (λ+D∗) (ωy)

= (1 + A) (qωy + 2pωy′ + ωy′′) +B∗ (pωy + ωy′) + (λ+D∗) (ωy).

Substituting for p, q, B∗, and D∗ and simplifying we obtain

(1 + A) (ωy)′′ +B∗ (ωy)′ + (λ+D∗) (ωy)

= ω ((1 + A)y′′ +By′ + (λ+D)y) .

�
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From lemma 2.2.5 we know that if y is twice differentiable, y is a solution to

the generalized Ince’s equation with parameters λ, a, b, and d if and only if ωy is a

solution to its formal adjoint. Since the function ω is even with period π, the boundary

condition for y and ωy are the same. Therefore we have the following theorem.

Theorem 2.2.6. We have for m ∈ N0,

(2.2.14) αm (aj, bj, dj) = αm
(
aj,−4jaj − bj, dj − 4j2aj − 2jbj

)
, j = 1, 2, . . . η,

(2.2.15) βm+1(aj, bj, dj) = βm+1(aj,−4jaj − bj, dj − 4j2aj − 2jbj), j = 1, 2, . . . η.

From Sturm-Liouville theory we obtain the following statement on the distribution

of eigenvalues.

Theorem 2.2.7. The eigenvalues of the generalized Ince equation satisfy the in-

equalities

(2.2.16) α0 <
{
α1

β1

}
<
{
α2

β2

}
<
{
α3

β3

}
< · · ·

The theory of Hill’s equation [45] gives the following results

Theorem 2.2.8. If λ ≤ α0 or λ belongs to one of the closed intervals with distinct

endpoints αm, βm, m = 0, 1, 2, . . . , then the generalized Ince equation is unstable. For

all other real values of λ the equation is stable. In the case

(2.2.17) αm (a,b,d) = βm (a,b,d)

for some positive integer m and the parameters a, b, d the degenerate interval [αm, βm]

is not an instability interval: The generalized Ince equation is stable if

λ = αm (a,b,d) = βm (a,b,d) .
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2.3. Eigenfunctions

By theorem 2.2.3, the generalized Ince’s equation with λ = α2m (a,b,d) admits a

non trivial even solution with period π. It is uniquely determined up to a constant fac-

tor. We denote this Ince function by Ic2m(t) = Ic2m (t; a,b,d) when it is normalized

by the conditions Ic2m(0) > 0 and

(2.3.1)

∫ π/2

0

(Ic2m (t)) 2dt =
π

4
.

The generalized Ince’s equation with λ = α2m+1(a,b,d) admits a non trivial even

solution with semi-period π. It is uniquely determined up to a constant factor. We

denote this Ince function by Ic2m+1 (t) = Ic2m+1 (t; a,b,d) when it is normalized by

the conditions Ic2m+1 (0) > 0 and

(2.3.2)

∫ π/2

0

(Ic2m+1 (t)) 2dt =
π

4
.

The generalized Ince equation with λ = β2m+1 (a,b,d) admits a non trivial odd

solution with semi-period π. It is uniquely determined up to a constant factor. We

denote this Ince function by Is2m+1 (t) = Is2m+1 (t; a,b,d) when it is normalized by

the conditions
d

dt
Is2m+1 (0) > 0 and

(2.3.3)

∫ π/2

0

(Is2m+1 (t))2 dt =
π

4
.

The generalized Ince equation with λ = β2m+2 (a,b,d) admits a non trivial odd

solution with period π. It is uniquely determined up to a constant factor. We denote

this Ince function by Is2m+2 (t) = Is2m+2 (t; a,b,d) when it is normalized by the

conditions
d

dt
Is2m+2 (0) > 0 and

(2.3.4)

∫ π/2

0

(Is2m+2 (t)) 2dt =
π

4
.

From Sturm-Liouville theory [10, Chapter 8, Theorem 2.1] we obtain the following

oscillation properties.
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Theorem 2.3.1. Each of the function systems

(2.3.5) {Ic2m}∞m=0 ,

(2.3.6) {Ic2m+1}∞m=0 ,

(2.3.7) {Is2m+1}∞m=0 ,

(2.3.8) {Is2m+2}∞m=0

is orthogonal over [0, π/2] with respect to the weight ω (t), that is, for m 6= n,

(2.3.9)

∫ π/2

0

ω (t) Ic2m (t) Ic2m (t) dt = 0,

(2.3.10)

∫ π/2

0

ω (t) Ic2m+1 (t) Ic2m+1 (t) dt = 0,

∫ π/2

0

ω (t) Is2m+1 (t) Is2m+1 (t) dt = 0,(2.3.11) ∫ π/2

0

ω (t) Is2m+2 (t) Is2m+2 (t) dt = 0.(2.3.12)

Moreover, each of the previous system is complete over [0, π/2].

Using the transformations that led to Theorem 2.2.6, we obtain the following

result.

Theorem 2.3.2. We have

(2.3.13) Icm (t; a,b∗,d∗) = cm (a,b,d)ω (t; a,b) Icm (t; a,b,d)

(2.3.14) Ism (t; a,b∗,d∗) = sm (a,b∗,d∗)ω (t; a,b) Ism (t; a,b,d)
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where cm (a,b,d) and sm (a,b,d) are positive and independent of t, and

b∗ =
[
b∗1, b

∗
2, . . . , b

∗
η

]
, d∗ =

[
d∗1, d

∗
2, . . . , d

∗
η

]
,

with

b∗j = −4jaj − bj, d∗j = dj − 4j2aj − 2jbj, j = 1, 2, . . . , η.

The adopted normalization of Ince functions is easily expressible in terms of the

Fourier coefficients of Ince functions and so is well suited for numerical computa-

tions; However, it has the disadvantage that equations (2.3.13) and (2.3.14) require

coefficients cm and sm which are not explicitly known.

Of course, once the generalized Ince functions Icm and Ism, are known we can

express cm and sm in the form

(2.3.15) cm(a,b,d) =
1

ω(0; a,b)

Icm(0; a,b∗,d∗)

Icm(0; a,b,d)
,

(2.3.16) sm(a,b,d) =
1

ω(0; a,b)

Ism(0; a,b∗,d∗)

Ism(0; a,b,d)
.

If we square both sides of (2.3.13)and (2.3.14)and integrate, we find that

(2.3.17) c2m

∫ π/2

0

(ω(t; a,b)Icm(t; a,b,d))2dt = π/4,

(2.3.18) s2m

∫ π/2

0

(ω(t; a,b)Ism(t; a,b,d))2dt = π/4.

If ω(t; a,b) is very simple, then it is possible to evaluate the integrals in (2.3.17),

(2.3.18) in terms of the Fourier coefficients of the generalized Ince functions. This

provides another way to to calculate cm and sm.
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Once we know cm and sm, we can evaluate the integrals on the left-hand sides of

the following equations

(2.3.19)

cm

∫ π/2

0

ω (t; a,b) (Icm (t; a,b,d)) 2dt

=

∫
Icm (t; a,b,d) Icm (t; a,b∗,d∗) dt.

(2.3.20)

sm

∫ π/2

0

ω (t; a,b) (Ism (t; a,b,d)) 2dt

=

∫
Ism (t; a,b,d) Ism (t; a,b∗,d∗) dt.

The integrals on the right-hand sides of (2.3.19) and (2.3.20) are easy to calculate

once we know the Fourier series of Ince functions.

2.4. Operators and Banded Matrices

In this section we introduce four linear operators associated with equation (2.1.1),

and represent them by banded matrices of width 2η−1. It is this simple representation

that is fundamental in the theory of the generalized Ince equation. We assume known

some basic notions from spectral theory of operators in Hilbert space.

Let H1 be the Hilbert space consisting of even, locally square-summable functions

f : R→ C with period π. The inner product is given by

(2.4.1) 〈f, g〉 =

∫ π/2

0

f (t) g (t)dt.

By restricting functions to [0, π/2], H1 is isometrically isomorphic to the standard

L2(0, π/2). We also consider a second inner product

(2.4.2) 〈f, g〉ω =

∫ π/2

0

ω (t) f (t) g (t)dt,

We consider the differential operator

(2.4.3) (S1y) (t) = − (1 + A (t)) y′′ (t)−B (t) y′ (t)−D (t) y (t) .
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The domain D (S1) of definition of consists of all functions y ∈ H1 for which y and

y′are absolutely continuous and y′′ ∈ H1. by restricting functions to [0, π/2], this

corresponds to the usual domain of a Sturm-Liouville operator associated with the

boundary conditions (2.2.1). It is known [35, Chapter V, Section 3.6] that S1 is self-

adjoint with compact resolvent when considered as an operator in (H1, 〈 , 〉ω), and its

eigenvalues are α2m (a,b,d) , m = 0, 1, 2, . . . . All eigenvalues of S1 are simple. If we

consider S1 as an operator in the Hilbert space(H1, 〈 , 〉) , then its adjoint S∗1 is given

by the operator

y → − ((1 + A (t)) y (t))′′ + (B (t) y (t))′ −D (t) y (t) ,

on the same domain D (S1) ; see [35, Chapter III, Example 5.32]. The adjoint S∗1 is

of the same form as S1 but with b, d replaced by b∗, d∗, respectively. By Theorem

2.2.6, we see that S∗1 has the same eigenvalues as S1. Let `2 (N0) be the space of

square-summable sequences x = {xn}∞n=0 with its standard inner product 〈 , 〉 . Then

(T1x) :=
x0√

2
+
∞∑
n=1

xn cos (2nt) ,

defines a bijective linear map T1 : `2 (N0)→ H1. Consider the operatorM1 := T−11 S1T1

defined on

(2.4.4) D (M1) = T−11 (D (S1)) =

{
x ∈ `2 (N0) :

∞∑
n=0

n4 |xn|2 <∞

}
.

Let en denotes the sequence with a 1 in the nth position and 0’s in all other positions,

we also define un(t) := (T1en)(t), i.e u0(t) = 1√
2

and un(t) = cos(2nt) for n = 1, 2, . . .

We find that the operator M1 can be represented in the following way,

(2.4.5) M1en =



η∑
j=1

√
2qj0ej if n = 0,

rnen +

η∑
j=1

qj−nδn−je|n−j| +

η∑
j=1

qjnen+j ifn ≥ 1,
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where δ0 =
√

2 and δk = 0 if k 6= 0, and rn = 4n2, n ∈ N. Note that the factor
√

2

should appear only with e0.

M1 is self-adjoint with compact resolvent in `2(N0) equipped with the inner prod-

uct 〈T1x, T1y〉ω . This inner product generates a norm that is equivalent to the usual

`2(N0). The operator M1 has the eigenvalues α2m (a,b,d) and the corresponding

eigenvectors form sequences of Fourier coefficients for the functions Ic2m.

Now consider the operator S2 that is defined as S1 in (2.4.3) but in the Hilbert

space H2 consisting of even functions with semi-period π. This operator has eigen-

values α2m+1 (a,b,d) , with eigenfunctions Ic2m+1 (t) , m = 0, 1, 2, . . . Using the basis

cos (2n+ 1) t, n ∈ N0, then,

(T2x) (t) :=
∞∑
n=0

xn cos (2n+ 1) t

defines a bijective linear map T2 : `2 (N0)→ H2. Consider the operatorM2 := T−12 S2T2

defined on

D (M2) = T−12 (D (S2)) =

{
x ∈ `2 (N0) :

∞∑
n=0

n4 |xn|2 <∞

}
.

Let un (t) := (T2en) (t) = cos (2n+ 1) t, for n = 0, 1, 2, . . . , we get the following

formula for M2

(2.4.6) M2en = rnen +

η∑
j=1

q†j−ne|n−j+ 1
2 |− 1

2
+

η∑
j=1

q†jn+1en+j, n ≥ 0,

where

q†jn = Qj

(
n− 1

2

)
, j = 1, 2, . . . , η, rn =


1 + q†j0 if n = 0,

(2n+ 1)2 if n ≥ 1.

Now consider the operator S3 that is defined as S1 but in the Hilbert space

H3 consisting of odd functions with semi-period π. This operator has the eigenval-

ues β2m+1 with eigenfunctions Is2m+1 (t) , m = 0, 1, 2, . . . . Using the basis functions
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sin (2n+ 1) t, n ∈ N0.

(T3x) (t) :=
∞∑
n=0

xn sin (2n+ 1) t

defines a bijective linear map T3 : `2 (N0)→ H3. Consider the operatorM3 := T−13 S3T3

defined on

D (M3) = T−13 (D (S3)) =

{
x ∈ `2 (N0) :

∞∑
n=0

n4 |xn|2 <∞

}
.

Let un(t) := (T3en)(t) = sin (2n+ 1) t, for n = 0, 1, 2, . . . , we have the following

formula for M3,

(2.4.7) M3en = r†nen +

η∑
j=1

q†j−nεje|n−j+ 1
2 |− 1

2
+

η∑
j=1

q†jn+1en+j,

where

q†jn = Qj

(
n− 1

2

)
, j = 1, 2, . . . , η, r†n =


1− q†10 if n = 0,

(2n+ 1)2 if n ≥ 1,

and

εj =


1 if n ≥ j

−1 if n < j

.

Finally, consider the operator S4 that is defined as S1 but in the Hilbert space H4

consisting of odd functions with period π. This operator has the eigenvalues β2m+2

with eigenfunctions Is2m+2, m = 0, 1, 2, . . . Using the basis sin (2n+ 2) t, n ∈ N0,

(T4x) (t) :=
∞∑
n=0

xn sin (2n+ 2) t
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defines a bijective linear map T4 : `2 (N0) → H4. Consider the operator M4 :=

T−14 S4T4 defined on

D (M4) = T−14 (D (S4)) =

{
x ∈ `2 (N0) :

∞∑
n=0

n4 |xn|2 <∞

}
.

Let un(t) := (T4en)(t) = sin (2n+ 2) t, for n = 0, 1, 2, . . .Then, the formula for M4 is

(2.4.8) M4en = rnen +

min(n,η)∑
j=1

qj−n−1εjen−j −
η∑

j=n+2

qj−n−1ej−n−2 +

η∑
j=1

qjn+1en+j,

where

rn = (2n+ 2)2 , n = 0, 1, 2, . . . .

Example 2.4.1. For the Whittaker-Hill equation (2.1.7) in the following form

[22]

(2.4.9) y′′ +
(
λ+ 4αs cos 2t+ 2α2 cos 4t

)
y = 0, α ∈ R, s ∈ N,

the function ω (t) from (2.2.6) is equal to 1, therefore the operators Sj, j = 1, 2, 3, 4,

are self-adjoint on the Hilbert spaces (H1, 〈 , 〉) , j = 1, 2, 3, 4, respectively. Hence the

infinite matrices Sj, j = 1, 2, 3, 4, are symmetric. They are represented by

(2.4.10) M1 =



0 −2
√

2αs −
√

2α2 0 · · ·

−2
√

2αs 4− α2 −2αs −α2 · · ·

−
√

2α2 −2αs 16 −2αs · · ·

0 −α2 −2αs 36 · · ·

0 0 −α2 −2αs · · ·

0 0 0 −α2 · · ·

0 0 0 0 · · ·
...

...
...

...



,
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(2.4.11) M2 =



1− 2αs −α (2s+ α) −α2 0 · · ·

−α (2s+ α) 9 −2αs −α2 · · ·

−α2 −2αs 25 −2αs · · ·

0 −α2 −2αs 49 · · ·

0 0 −α2 −2αs · · ·

0 0 0 −α2 · · ·

0 0 0 0 · · ·
...

...
...

...



,

(2.4.12) M3 =



1 + 2αs −α (2s− α) −α2 0 · · ·

−α (2s− α) 9 −2αs −α2 · · ·

−α2 −2αs 25 −2αs · · ·

0 −α2 −2αs 49 · · ·

0 0 −α2 −2αs · · ·

0 0 0 −α2 · · ·

0 0 0 0 · · ·
...

...
...

...



,

(2.4.13) M4 =



4− α2 −2αs −α2 0 · · ·

−2αs 16 −2αs −α2 · · ·

−α2 −2αs 36 −2αs · · ·

0 −α2 −2αs 64 · · ·

0 0 −α2 −2αs · · ·

0 0 0 −α2 · · ·

0 0 0 0 · · ·
...

...
...

...



.
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2.5. Fourier Series

The generalized Ince functions admit the following Fourier series expansions

(2.5.1) Ic2m(t) =
A0√

2
+
∞∑
n=1

A2n cos (2nt) ,

(2.5.2) Ic2m+1(t) =
∞∑
n=0

A2n cos (2n+ 1) t,

(2.5.3) Is2m+1(t) =
∞∑
n=0

B2n+1 sin (2n+ 1) t,

(2.5.4) Is2m+2(t) =
∞∑
n=0

B2n+2 sin (2n+ 2) t.

We did not indicate the dependence of the Fourier coefficients on m, a, b, d. The

normalization of Ince functions implies

(2.5.5)
∞∑
n=1

A2
2n = 1,

A0√
2

+
∞∑
n=1

A2n > 0,

(2.5.6)
∞∑
n=1

A2
2n+1 = 1,

∞∑
n=0

A2n+1 > 0,

(2.5.7)
∞∑
n=1

B2
2n+1 = 1,

∞∑
n=0

(2n+ 1)B2n+1 > 0,

(2.5.8)
∞∑
n=1

B2
2n+2 = 1,

∞∑
n=0

(2n+ 1)B2n+2 > 0.

Using relations (2.3.13) and (2.3.14), we can represent the generalized functions

in a different way

(2.5.9) Icm (a,b,d) = (ω (t; a,b) cm (a,b,d))−1 Icm (a,b∗,d∗) ,
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(2.5.10) Ism (a,b,d) = (ω (t; a,b) sm (a,b,d))−1 Ism (a,b∗,d∗) ,

where

b∗j = −4jaj − bj, d∗j = dj − 4j2aj − 2jbj, j = 1, 2, . . . , η.

Therefore, we can write

Ic2m (a,b,d) = (ω (t; a,b))−1
(
C0√

2
+
∞∑
n=1

C2n cos (2nt)

)
,(2.5.11)

Ic2m+1 (a,b,d) = (ω (t; a,b))−1
(
∞∑
n=0

C2n+1 cos (2nt)

)
,(2.5.12)

Is2m+1 (a,b,d) = (ω (t; a,b))−1
(
∞∑
n=0

D2n+1 sin (2nt)

)
,(2.5.13)

Is2m+2 (a,b,d) = (ω (t; a,b))−1
(
∞∑
n=0

D2n+2 sin (2nt)

)
,(2.5.14)

where

Cm = (cm (a,b,d))−1Am, Dm = (sm (a,b,d))−1Bm,

and the Fourier coefficients An and Bn belong to the parameters a, b∗, d∗. Properties

of the coefficients Cn and Dn follow from those of An and Bn.

A generalized Ince function is called a generalized Ince polynomial of the first

kind if its Fourier series (2.5.1), (2.5.2), (2.5.3), or (2.5.4) terminates. It is called

a generalized Ince polynomial of the second kind if its expansion (2.5.11), (2.5.12),

(2.5.13), or (2.5.14) terminates. If they exist, These generalized Ince polynomials and

their corresponding eigenvalues can be computed from the finite subsections of the

matrices Mj, j = 1, 2, 3, 4 of Section 2.4.

Example 2.5.1. Consider the equation

(2.5.15) (1 + cos 2t+ cos 4t) y′′ + (sin 2t+ sin 4t) y′ + λy = 0,
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one can check that if we set λ = 0, then any constant function y is an eigenfunction

corresponding to the eigenvalue α0 = 0. The adopted normalization of Section 2.3

implies that Ic0(t) = 1√
2
. It is a generalized Ince polynomial (even with period π).
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CHAPTER 3

Ince’s Equation

The first known appearance of the Ince equation is in Whittaker’s paper [83,

Equation (5)] on integral equations. Whittaker emphasized the special case a = 0,

and this special case was later investigated in more detail by Ince [28, 30]. Magnus

and Winkler’s book [45] contains a chapter dealing with the coexistence problem for

the Ince equation. Also Arscott [8] has a chapter on the Ince equation with a = 0.

Arscott points out that the Ince equation was never considered by Ince and should

be called the generalized Ince equation. We use the name Ince equation following the

practice in [45].

one of the important features of the Ince equation is that the corresponding Ince

differential operator when applied to Fourier series can be represented by an infinite

tridiagonal matrix. It is this part of the theory that makes the Ince equation particu-

larly interesting. For instance, the coexistence problem which has no simple solution

for the general Hill equation has a complete solution for the Ince equation.

In this chapter we further investigate the four infinite matrices of Section 2.4 in the

case of Ince’s equation . It is their structure that will allow a rigorous discussion of the

problems of coexistence of periodic solutions and that of the existence of polynomial

solutions.

3.1. Operators and Tridiagonal Matrices

Recall that Ince’s equation is:

(3.1.1) (1 + a cos (2t)) y′′ (t) + (b sin (2t)) y′ (t) + (λ+ d cos (2t)) y (t) = 0.
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In this case relation (2.4.5) reduces to

M1en =


r0e0 + q0e1 if n = 0

q−nen−1 + rnen + qnen+1 if n ≥ 1

,

where

(3.1.2) rn := 4n2, qn :=


√

2Q (n) if n = −1, 0,

Q (n) otherwise.

We may represent M1 by an infinite tridiagonal matrix:

(3.1.3) M1 =



r0 q−1 0 0 0 0 · · ·

q0 r1 q−2 0 0 0 · · ·

0 q1 r2 q−3 0 0 · · ·

0 0 q2 r3 q−4 0 · · ·
...

...
...

...
...

...


.

For x ∈ D (M1) , M1x can be computed by the usual multiplication of matrix by

column vector. Note thatM1 is self-adjoint with compact resolvent in `2 (N0) equipped

with the inner product 〈T1x, T1y〉ω. This inner product generates a norm that is

equivalent to the usual `2-norm. The operator M1 has the eigenvalues α2m(a, b, d) and

the corresponding eigenvectors form sequences of Fourier coefficients for the functions

Ic2m; see Section 2.5 .

The matrix representation of S2 from Section 2.4 is

(3.1.4) M2 =



r†0 q†−1 0 0 0 0 · · ·

q†0 r†1 q†−2 0 0 0 · · ·

0 q†1 r†2 q†−3 0 0 · · ·

0 0 q†2 r†3 q†−4 0 · · ·
...

...
...

...
...

...


,
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where

(3.1.5) q†n := Q

(
n− 1

2

)
, r†n :=


1 +Q

(
−1

2

)
if n = 0,

(2n+ 1)2 if n ∈ N.

The matrix representation M3 of S3 is the same as M2 except for replacing r†0 by

1=Q† (−1/2) . Finally, the matrix representation M4 of S4 is the same as M1 except

that the first row and column in (3.1.3) have to be deleted.

The matrices Mj are instances of the following type of diagonally dominant ma-

trices. Consider the infinite tridiagonal matrix:

(3.1.6)



σ0 τ1 0 0 0 0 · · ·

ρ1 σ1 τ2 0 0 0 · · ·

0 ρ2 σ2 τ3 0 0 · · ·

0 0 ρ3 σ3 τ4 0 · · ·
...

...
...

...
...

...


defined by given real sequences {σn}∞n=0 , we assume that the diagonal sequence tends

to infinity

(3.1.7) lim
n→∞

σn = +∞

and that the diagonal is dominant in the following sense: there are θ ∈ (0, 1) and

n0 ∈ N such that

(3.1.8) 2 max
(
τ 2n+1 + ρ2n, τ

2
n + ρ2n+1

)
≤ θ2σ2

n, n ≥ n0

The matrix(3.1.6) induces an operator M in the Hilbert space H = `2 (N0). The

domain of definition D (M) of M is

D (M) :=

{
{xn}∞n=0 ∈ H :

∞∑
n=0

σ2
n |xn|

2 <∞

}
,
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and, for x ∈ D (M) (ρ0 = τ0 = 0)

(Mx)n = ρnxn−1 + σnxn + τn+1xn+1.

By assumption (3.1.8), Mx ∈ H is well defined.

Lemma 3.1.1. Suppose (3.1.7) and (3.1.8) hold. The operator M is closed and

has compact resolvent. The adjoint M∗of M is is the operator defined in the same

manner as M but with ρn and τn interchanged. The eigenvalues of M and M∗agree.

Proof. Let F be the “diagonal part” of M , that is, F is the self-adjoint operator

defined by F (x)n = σnxn on D (F ) = D (M) . Let G = M − F be the “off-diagonal

part” of M. By replacing σn by σn + ω with sufficiently large ω we may assume,

without loss of generality, that σn > 0 and that (3.1.8) holds for all n ≥ 0. Then

(3.1.9) ‖Gx‖ ≤ θ ‖Fx‖ , ∀x ∈ D (F ) .

Since 0 < σn →∞, F−1 exists and is a compact operator. Let T = GF−1 : H → H.

By (3.1.9), ‖T‖ < θ < 1. Hence M−1 = F−1 (T + I)−1 is a compact operator; see

[35, p. 196]. Therefore, M is a closed operator with compact resolvent.

Define N in the same manner as M but with ρn, τn interchanged. It is easily

checked that 〈Mx, y〉 = 〈x,Ny〉 for all x, y ∈ D (F ) . Since M−1 and N−1 exist and

are bounded operators on H, we conclude that N = M. By [35, Section III.6.6], the

eigenvalues of M are the conjugates of the eigenvalues of M. Since the entries of M

are real, this implies that the eigenvalues of M and N agree. �

Eigenvectors of M and M∗ are related as follows.

Lemma 3.1.2. Suppose (3.1.7), (3.1.8) hold, and ρn 6= 0, τn 6= 0 for all n ∈ N. If

{xn}∞n=0 defined by

(3.1.10) yn :=
τ1τ2 . . . τn
ρ1ρ2 . . . ρn

xn

is an eigenvector of M∗ belonging to the same eigenvalue.
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Proof. It is easy to verify that formally M∗y = y, so it remains to show that y is

in the domain of M∗. By Lemma 3.1.2, there is an eigenvector {zn} of M∗ belonging

to the eigenvalue λ . Since τn 6= 0 for all n, x0 6= 0, and, since ρn 6= 0 for all n, z0 6= 0.

Therefore, we may assume that z0 = x0. Then yn = zn for all n which shows that y

lies in the domain of M∗. �

For a general theory of operators defined by infinite tridiagonal matrices we refer

to [35, Chapter VII]. The eigenvalue problem for tridiagonal matrices is closely related

to the theory of continued fractions and three-term difference equations. We present

the definitions and results of these theories that we need in the following section; see

also [56].

3.2. Three-Term Difference Equations

For given complex sequences {an}∞n=0 and {bn}∞n=0 , consider the three-term recur-

sion

(3.2.1) xn+1 = bnxn + anxn−1, n > 1.

A solution {xn}∞n=0 is uniquely determined by its initial values x0 and x1. The solutions

of (3.2.1) form a two-dimensional linear space. We say that a nontrivial solution {un}

of is recessive if there is a second solution {vn} such that vn 6= 0 for large n and

lim
n→∞

un
vn

= 0.

If {un}, {vn} are like this, then they form a fundamental system of solutions: every

solution {xn} has the form

xn = αun + βvn.

In particular, a recessive solution (if it exists) is uniquely determined up to a constant

nonzero factor.
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Let {Cn}∞n=0 , {Dn}∞n=0 be the solutions determined by

C0 = 1, C1 = 0, D0 = 0, D1 = 1.

Then the finite continued-fraction

a1
b1 + a2

b2+···+
an−1
bn−1

=
a1
b1+

a2
b2+

. . .
an−1
bn−1

=
Cn
Dn

is meaningful if Dn 6= 0. The infinite continued-fraction

(3.2.2)
a1
b1+

a2
b2+

a3
b3+

. . .

is called convergent ([56]) with value ξ∈ C if Dn 6= 0 for large n and

lim
n→∞

Cn
Dn

= ξ.

The continued-fraction diverges unessentially if Cn 6= 0, and

lim
n→∞

Dn

Cn
= 0.

Theorem 3.2.1. The continued-fraction (3.2.2) converges if and only if (3.2.1)

admits a recessive solution {un} with u0 6= 0. In this case

(3.2.3)
a1
b1+

a2
b2+

a3
b3+

. . . = −u1
u0
.

The continued-fraction (3.2.2) diverges unessentially if and only if (3.2.1) admits a

recessive solution {un} with u0 = 0.

Proof. Assume that (3.2.2) converges to ξ. Define un := Cn − ξDn, vn := Dn.

Then un
vn
→ 0 and u0 = 1. If (3.2.2) diverges unessentially then define un := Dn,

and vn := Cn. Then un
vn
→ 0 and u0 = 0. For the converse statement, let {un}

be a recessive solution of (3.2.1). Let vn be another solution so that un
vn
→ 0. Let
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w := v1u0 − v0u1 6= 0, and

α =
v1
w
, β = −u1

w
, γ = −v0

w
, δ =

u0
w
.

and

Cn = αun + βvn, Dn = γun + γvn.

If u0 6= 0, then δ 6= 0 and

Cn
Dn

=
αun
vn

+ β

γ un
vn

+ δ
→ β

δ
= −u1

u0
.

If u0 = 0, then δ = 0, β 6= 0 and Dn
Cn
→ 0 �

Equation shows that continued-fractions may be used to find recessive solutions.

Theorem 3.2.2. Assume that

(3.2.4) |bn| ≥ |an|+ 1 for n ≥ 1.

(a) The continued-fraction (3.2.2) converges to ξ ∈ C with |ξ| ≤ 1. (b) The difference

equation (3.2.2) admits a recessive solution {un} with |u1| ≤ |u0| 6= 0. (c) For every

solution {xn} of (3.2.1) there is n0 such that xn = 0 for n ≥ n0 or xn 6= 0 for n ≥ n0.

Proof. (a) Define

En :=
n∏
j=1

|aj| , E0 := 1.

By Induction on n we show that

(3.2.5) |Dn+1| ≥ |Dn|+ En forn ≥ 0.
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Since D1 = 1, D0 = 0, and E0 = 1, (3.2.5) is true for n = 0. Assume (3.2.5) is true

for n = m− 1 ≥ 0. We have

|Dm+1| ≥ |bm| |Dm| − |am| |Dm−1|

≥ (|am|+ 1) |Dm| − |am| |Dm|+ |am|Em−1

= |Dm|+ |am|Em−1

and so

|Dm+1| ≥ |Dm|+ Em.

This proves (3.2.5). Define the Wronskian

wn := Cn+1Dn − CnDn+1.

We have

wn = Cn+1Dn − CnDn+1

= (bnCn + anCn−1)Dn − Cn (bnDn + anDn−1)

= −an (CnDn−1 − Cn−1Dn)

= −anwn−1

and

(3.2.6) wn = (−1)n−1
n∏
j=1

aj.

We obtain from

Cn+1

Dn+1

− Cn
Dn

=
wn

Dn+1Dn

and (3.2.5), (3.2.6) that∣∣∣∣Cn+1

Dn+1

− Cn
Dn

∣∣∣∣ ≤ En
|Dn+1Dn|

≤ |Dn+1| − |Dn|
|Dn+1Dn|

≤ 1

|Dn|
− 1

|Dn+1|
.
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Hence, for m > n,

(3.2.7)

∣∣∣∣CmDm

− Cn
Dn

∣∣∣∣ ≤ 1

|Dn|
− 1

|Dm|
.

Thus

ξ = lim
n→∞

Cn
Dn

exists and |ξ| ≤ 1.(b) Follows from (a) and Theorem 3.2.1.(c) Let {xn} be a solution

of (3.2.1). if xm = xm+1 = 0, then xn = 0 for all n ≥ m. If xm = 0, xm+1 6= 0, then

xn 6= 0 for all n ≥ 0. �

If (3.2.4) holds for all n ≥ n0 and an 6= 0 for all n ≥ 1, then we have a recessive

solution with |un| ≤ |un+1| 6= 0 for n ≥ n0.

If we assume

(3.2.8) |bn| ≤ |an|+ θ, n ≥ 1

with a constant θ > 1, then

|Dn+1| ≥ |bn| |Dn| − |an| |Dn−1| ≥ (|an|+ θ) |Dn| − |an| |Dn| ≥ θ |Dn−1| ,

gives

(3.2.9) |Dn| ≥ θn−1 forn ≥ 1.

In particular, from (3.2.7) we obtain the error estimate

(3.2.10)

∣∣∣∣CnDn

− ξ
∣∣∣∣ ≤ 1

θn−1
forn ≥ 1.

Theorem 3.2.3. Assume (3.2.8) holds with θ > 1, and 0 6= an → a ∈ C, bn → b ∈

C. Then z2 = bz + a has two solutions u, v with |u| < 1 < |v| . If {xn} is a recessive

solution of (3.2.1) then

lim
n→∞

xn+1

xn
= u.
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For every nontrivial solution {xn} which is not recessive

lim
n→∞

xn+1

xn
= v.

Proof. Let {xn} be a recessive solution, and define yn = xn+1

xn
. Since |xn| ≤

|xn+1| ,we have that |yn| ≤ 1. Setting b = u+ v, a = −uv, we get

|yn+1 − u| ≥ |yn| |yn+1 − u|

= |yn (bn − b) + an − a+ v (yn − u)|

≥ |v| |yn − u| − |bn − b| − |an − a| .

Since |yn| ≤ 1 this shows that yn → u.

Set yn = Dn+1

D−n , by (3.2.5), |yn| ≥ 1. Then

|yn+1 − v| =

∣∣∣∣bn − b+
an − a
yn

+
u

yn
(yn − v)

∣∣∣∣
≤ |u| |yn − v|+ |bn − b|+ |an − a.|

Since |yn+1| ≤ |bn| + |an| , {yn} is bounded. Hence yn → v. The statement of the

theorem follows. �

3.3. Fourier Series

We already know by Section 2.5 that the Ince functions admit the following Fourier

series expansions

(3.3.1) Ic2m(t) =
A0√

2
+
∞∑
n=1

A2n cos (2nt) ,

(3.3.2) Ic2m+1(t) =
∞∑
n=0

A2n+1 cos (2n+ 1) t,

(3.3.3) Is2m+1(t) =
∞∑
n=0

B2n+1 sin (2n+ 1) t,
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(3.3.4) Is2m+2(t) =
∞∑
n=0

B2n+2 sin (2n+ 2) t.

The normalization of Ince functions implies

(3.3.5)
∞∑
n=1

A2
2n = 1,

A0√
2

+
∞∑
n=1

A2n > 0,

(3.3.6)
∞∑
n=1

A2
2n+1 = 1,

∞∑
n=0

A2n+1 > 0,

(3.3.7)
∞∑
n=1

B2
2n+1 = 1,

∞∑
n=0

(2n+ 1)B2n+1 > 0,

(3.3.8)
∞∑
n=1

B2
2n+2 = 1,

∞∑
n=0

(2n+ 2)B2n+2 > 0.

We know from Section 2.4 that {A2n}∞n=0 is an eigenvector of the infinite matrix

M1 belonging to the eigenvalue α2m. Similarly, {A2n+1}∞n=0 is an eigenvector of M2,

{B2n+1}∞n=0 is an eigenvector of M3, and {B2n+2}∞n=0 is an eigenvector of M4. This

yields the following difference equations for the Fourier coefficients.

Theorem 3.3.1. Using the matrix entries (3.1.3), (3.1.4) we have

(3.3.9) − α2mA0 + q−1A2 = 0,

(3.3.10) qn−1A2n−2 +
(
4n2 − α2m

)
A2n + q−n−1A2n+2 = 0, n ≥ 1,

(3.3.11)
(
q†0 + 1− α2m+1

)
A1 + q†−1A3 = 0,

(3.3.12) q†nA2n−1 +
(
(2n+ 1)2 − α2m+1

)
A2n+1 + q†−n−1A2n+3 = 0, n ≥ 1,
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(3.3.13)
(
q†0 + 1− β2m+1

)
B1 + q†−1B3 = 0,

(3.3.14) q†nB2n−1 +
(
(2n+ 1)2 − β2m+1

)
B2n+1 + q†−n−1B2n+3 = 0, n ≥ 1,

(3.3.15) (4− β2m+2)B2 + q−2B4 = 0,

(3.3.16) qn−1B2n−2 +
(
4n2 − β2m+2

)
B2n + q−n−1B2n+2 = 0, n ≥ 1

If Q or Q† admit integer zeros these difference equations may not allow forward

or backward recursion beginning with values for two consecutive Fourier coefficients.

Nevertheless, we know from the results in Section 2.4 that the sequences of Fourier

coefficients are uniquely determined by the difference equations in Theorem 3.3.1 and

the normalizing conditions (3.3.5), (3.3.6), (3.3.7), (3.3.8).

From Section (3.2) we draw the following conclusions.

Theorem 3.3.2. Let {xn} be any of the sequences {A2n} , {A2n+1} , {B2n+1} or

{B2n+2} of Fourier coefficients of Ince equation. There is n0 such that either xn = 0

for all n ≥ n0 or xn 6= 0 for all n ≥ n0. In the latter case, we have

(3.3.17) lim
n→∞

xn+1

xn
=


1
a

(√
1− a2 − 1

)
if a 6= 0,

0 if a = 0.

Proof. Let a 6= 0. By Theorem 3.3.1 we have for n ≥ n1 > 1, {xn} satisfies a

difference equation of the form (3.2.1) with an 6= 0 for n ≥ n1 > 1. Moreover

A2n+2 = −(4n2 − α2m)

q−n−1
A2n −

qn−1
q−n−1

A2n−2,

B2n+2 = −(4n2 − β2m+2)

q−n−1
B2n −

qn−1
q−n−1

B2n+2,

A2n+3 = −
(
(2n+ 1)2 − α2m+1

)
q†−n−1

A2n+1 −
q†n

q†−n−1
A2n−1,
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B2n+3 = −
(
(2n+ 1)2 − β2m+1

)
q†−n−1

B2n+1 −
q†n

q†−n−1
B2n−1.

Moreover

lim
n→∞

−(4n2 − α2m)

q−n−1
= lim

n→∞
− 4n2

2an2
= −2

a
,

lim
n→∞

−
(
(2n+ 1)2 − α2m+1

)
q†−n−1

= lim
n→∞

− 4n2

2an2
= −2

a
,

lim
n→∞

− qn−1
q−n−1

= −1,

lim
n→∞

− q†n

q†−n−1
= −1.

Then {xn} satisfies a difference equation of the (3.2.1) with an 6= 0 for n ≥ n1 > 1,

and

lim
n→∞

an = −1, lim
n→∞

bn = −2

a
.

The solutions u, v of z2 = − 2
a
z − 1 with |u| < 1 < |v| are

u =
1

a

(√
1− a2 − 1

)
, v = −1

a

(√
1− a2 + 1

)
.

By Theorem 3.2.2, we must have xn = 0 for all large n or xn 6= 0 for all large n. In the

latter case since {xn} ∈ `2 (N0) , {xn} is a recessive solution of (3.2.1), n ≥ n1, and

thus xn+1

xn
converges to u by theorem (3.2.3). For a = 0, the proof uses the remark

after Theorem 3.2.3. �

The case xn = 0 for large n will be considered in more detail in Section 3.4.

Let b∗, d∗ be defined as in section 2.3. The Fourier coefficients {A2n} of Ic2m (t; a, b, d)

form an eigenvector of M1, whereas the Fourier coefficients {A∗2n} of Ic2m (t; a, b∗, d∗)

form an eigenvector of M∗
1 belonging to the same eigenvalue α2m (a, b, d) . Therefore,

up to a constant factor, the sequences {A2n} and {A∗2n} are related according to

Lemma 3.1.2, where ρj and σj are determined by identifying the matrices (3.1.3) and

(3.1.6). We assumed that Q has no integer zero. Similar remarks apply to other Ince
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functions which yield the following relations

(3.3.18) A∗2n =
q−1q−2 . . . q−n
q0q1 . . . qn−1

A2n

(3.3.19) A∗2n+1 =
q†−1q

†
−2 . . . q

†
−n

q†1q
†
2 . . . q

†
n

A2n+1,

(3.3.20) B∗2n+1 =
q†−1q

†
−2 . . . q

†
−n

q†1q
†
2 . . . q

†
n

B2n+1,

(3.3.21) A∗2n+2 =
q−2q−3 . . . q−n−1

q1q2 . . . qn
A2n.

We now apply results from Section 3.2 to obtain continued-fraction equations for

the eigenvalues of Ince’s equation.

Theorem 3.3.3. (a) Let Q (n; a, d, d) 6= 0 for all n ∈ Z, and let k ∈ N0. The

eigenvalues λ = α2m (a, b, d) , m ∈ N0, are the solutions of the equation

rk − λ−
pk

rk−1 − λ−
pk−1

rk−2 − λ−
. . .− p2

r1 − λ−
− p1
r0 − λ

(3.3.22)

=
pk+1

rk+1 − λ−
pk+2

rk+2 − λ−
pk+3

rk+3 − λ−
. . . ,(3.3.23)

where

pn := q−nqn−1,

with rn, qn from (3.1.2). The left-hand side (3.3.22) of the equation is a finite

continued-fraction, and the right-hand side (3.3.23) is an infinite continued-fraction.

If k ∈ N, the eigenvalues λ = β2m+2 (a, b, d) m ∈ N0, are the solutions of the

equation that we obtain by omitting the last fraction
p1

r0 − λ
in (3.3.22). (b) Let

Q† (n; a, d, d) 6= 0 for all n ∈ Z, and let k ∈ N0. The eigenvalues λ = α2m+1 (a, b, d) ,
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m ∈ N0, are the solutions of the equation

r†k − λ−
p†k

r†k−1 − λ−
p†k−1

r†k−2 − λ−
. . .− p†2

r†1 − λ−
−(3.3.24)

=
p†k+1

r†k+1 − λ−
p†k+2

r†k+2 − λ−
p†k+3

r†k+3 − λ−
. . . ,(3.3.25)

where

p†n := q†−nq
†
n−1

with r†n, q
†
n from (3.1.5). The eigenvalues λ = β2m+1 (a, b, d) , m ∈ N0, are the solu-

tions of the equation that we obtain by changing r†0 by 1− q†0.

Proof. (a) Consider the sequence xn = A2n of Fourier coefficients of Ic2m. By

Theorem 3.3.1 {xn}satisfies

(3.3.26) (r0 − λ)x0 + q−1x1 = 0,

(3.3.27) qn−1xn−1 + (rn − λ)xn + q−n−1xn+1 = 0, n ∈ N.

Setting

zn := q−1q−2 . . . q−nxn.

Substituting in (3.3.26), we have

(r0 − λ) z0 + z1 = 0,

then,

(3.3.28) z1 = − (r0 − λ) z0.
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Substituting in (3.3.27), we have

qn−1
zn−1

q−1q−2 . . . q−n+1

+ (rn − λ)
zn

q−1q−2 . . . q−n+1q−n

+q−n−1
zn+1

q−1q−2 . . . q−n+1q−nqn−1
= 0, n ∈ N,

which is equivalent to

qn−1zn−1 + (rn − λ)
zn
q−n

+
zn+1

q−n
= 0, n ∈ N,

therefore, we have

(3.3.29) zn+1 = − (rn − λ) zn − pnzn−1, n ∈ N.

Since {zn} is a recessive solution of (3.3.29), formula (3.2.3) applied to (3.3.29) for

n > k gives

(3.3.30)
pk+1

rk+1 − λ−
pk+2

rk+2 − λ−
pk+3

rk+3 − λ−
. . . = −zk+1

zk
.

(3.3.29) also gives

(3.3.31) − zk+1

zk
= rk − λ+

pn
zk
zk−1

,

From (3.3.28) and (3.3.31) for n = 1, 2, ..., k, we obtain the finite continued-fraction

(3.3.32) − zk+1

zk
= r − λ− pk

rk−1 − λ−
pk−1

rk−2 − λ−
. . .

p2
r1 − λ−

p1
r0 − λ

.

Now (3.3.30), (3.3.32) yield the desired equation. By retracing the steps, we see that

this equation has no other solutions than α2m, m ∈ N0. �

Using estimate (3.2.10), one can show that the continued fractions appearing in

Theorem 3.3.3 are meromorphic functions of λ.

If Q or Q† have integer zeros, then we may use Theorem 2.7.1 to derive continued-

fraction equations for the eigenvalues.
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3.4. Ince Polynomials

An Ince function is called an Ince polynomial (of the first kind) if its corresponding

Fourier series (3.3.1), (3.3.2), (3.3.3) or (3.3.4) terminates. Clearly, such solutions

exist if and only if the corresponding infinite matrix Mj has at least one zero in the

diagonal below its main diagonal. We now investigate this possibility in more detail.

For k ∈ N, let M1,k be the principal k × k submatrix in the north west corner of

M1. Further, let L1,k be the principal submatrix of M1 complementary to M1,k, that

is

(3.4.1) L1,k =


rk q−k−1 0 0 0 . . .

qk rk+1 q−k−2 0 0 . . .

0 qk+1 rk+2 q−k−3 0 . . .

...
...

...
...

...


.

We consider L1,k as an operator in `2 (Nk) , Nk = {k, k + 1, . . .} , defined for sequences

{xn}∞n=k with
∞∑
n=k

n4 |xn|2 <∞. We may apply Lemma 3.1.1 to this operator. Simi-

larly, we define matrices Mj,k, Lj,k for k = 2, 3, 4.

We will need the following Theorem for the proof of the Theorem 3.4.2

Theorem 3.4.1. The eigenvalues αm and βm are real-analytic functions of (a, b, d) .

Proof. We already know by Lemma 2.2.5 that Ince’s equation may be written

in the formally self-adjoint form

(3.4.2) − ((1 + a cos 2t)ω (t) y′)
′ − d (cos 2t)ω (t) y = λω (t) y,

where

ω (t) :=


(1 + a cos 2t)−1−b/2a if a 6= 0,

exp
(−b

2
cos 2t

)
if a = 0.

Let y (t) = y (t; a, b, d) be the solution of Ince’s equation with y (0) = 1, y′ (0) = 0.

By a theorem on analytic parameter dependence, f (λ, a, b, d) = y′ (π/2;λ, a, b, d) is
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a real-analytic function of its four variables. We have

f (α2m (a, b, d) , a, b, d) = 0.

Let z (t) := ∂λ/∂λ If we differentiate (3.4.2) with respect to λ, we obtain a differential

equation for z.We multiply this equation by y and subtract equation (3.4.2) multiplied

by z. Then we integrate between 0 and π/2 and obtain

(1− a)ω (π/2) (y′ (π/2) z (π/2)− y (π/2) z′ (π/2)) =

∫ π/2

0

ω (t) y (t)2 dt.

This implies

− (1− a)ω (π/2)
∂f

∂λ
(α2m (a, b, d) , a, b, d) =

∫ π/2

0

ω (t) y (t)2 dt 6= 0,

where

y (t) = y (t;α2m (a, b, d) , a, b, d) .

Hence, by the implicit function theorem, α2m (a, b, d) depends analytically on (a, b, d) .

In a similar way, we show that the other eigenvalue functions are real-analytic. �

Theorem 3.4.2. (a) Let p be an integer zero of Q, and let k be defined by k :=

1
2

+
∣∣1
2

+ p
∣∣ . The eigenvalues of M1,k are α2m (a, b, d) , m = 0, 1, 2, . . . , k − 1, and

The eigenvalues of L1,k are α2m (a, b, d) , m = k, k + 1, . . . Moreover if k ≥ 2, The

eigenvalues of M4,k are β2m+2 (a, b, d) , m = 0, 1, 2, . . . , k − 2, and The eigenvalues of

L4,k are β2m+2 (a, b, d) , m = k−1, k, . . . (b) Let p be an integer zero of Q†, and let k be

defined by k := |p| . The eigenvalues of M2,k are α2m+1 (a, b, d) , m = 0, 1, 2, . . . , k− 1,

and The eigenvalues of L2,k are α2m+1 (a, b, d) , m = k, k + 1, . . . The eigenvalues

of M3,k are β2m+1 (a, b, d) , m = 0, 1, 2, . . . , k − 1, and The eigenvalues of L3,k are

β2m+1 (a, b, d) , m = k, k + 1, . . .

Proof. We only prove the statement concerning M1, the proofs for the other

matrices are similar. One of the entries qk−1, q−k in M1 is zero. We assume first that

qk−1 = 0. We abbreviate M := M1, K := M1,k, L := L1,k.
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Observation 1) : K and L do not have a common eigenvalue.

Assume that Ky = λy and Lz = λz with y = (y0, y1, . . . , yk−1) 6= 0 and z =

(zk, zk+1, . . .) 6= 0. These vectors should be thought of as column vectors. Since

qk−1 6= 0, the vector x = (y0, y1, . . . , yk−1,, 0, 0, . . .) satisfies Mx = λx. Assume there

is a vector u = (u0, . . . , uk−1) such that (k − λ)u = h with h = (0, . . . , 0,−q−kzk) .

Then v = (u0, . . . , uk−1, zk, zk+1, . . .) satisfies Mv = λv. This is impossible since x, v

are linearly independent and the eigenvalues of M are simple. On the other hand, if h

does not belong to the range ofK−λ, then there are δ and a vector u = (u0, . . . , uk−1)

such that (K − λ)u = y + δh. Note that the rank of K − λ is k − 1 because the

eigenspaces of M and thus of K are one-dimensional. It follows that the vector

v = (u0, . . . , uk−1, δzk−1, δzk, . . .) satisfies (M − λ) v = x. This shows that the root

space of M corresponding to the eigenvalue λ has dimension at least 2 which again

is impossible because the eigenvalues of M are simple.

Observation 2): The set of eigenvalues of M is the union of the set of eigenvalues

of K and the set of eigenvalues of L.

Let Mx = x with x = (x0, x1, . . .) 6= 0. Then z = (zk, zk+1, . . .) satisfies Lz = z.

If xn 6= 0 for some n > k, then λ is an eigenvalue of L. If xn = 0 for all n ≥ k,

then (x0, x1, . . . , xk−1) is an eigenvector of K corresponding to the eigenvalue λ . Let

Ky = λy with y = (y0, y1, . . . , yk−1) 6= 0. Then x = (y0, . . . , yk−1, 0, 0, . . .) satisfies

Mx = λx. Hence λ is an eigenvalue of M. Let Lz = λz with z = (zk, zk+1, . . .) 6= 0. By

1), one can find a vector (z0, z1, . . . , zk−1) such that x = (z0, z1, . . .) satisfies Mx = λx.

Hence is an eigenvalue of M. This completes the proof of 2).

Let t ∈ (0, 1] Since Q (µ; ta, tb, td) = tQ (µ; a, b, d) , the zeros of Q (·; ta, tb, td) are

independent of t. Hence we may use the results 1), 2) also for ta, tb, td in place

of a, b, d. Let K (t) be the matrix K with each element in its subdiagonal and

superdiagonal multiplied by t. For every t ∈ [0, 1] , the eigenvalues of K (t) lie in the

set {α2m (ta, tb, td) : m ∈ N0} . Moreover, the eigenvalues of K (0) are α2m (0, 0, 0) =

4m2, m = 0, 1, ..., k=1. By Theorem 3.4.1, the functions λ2m (t) = α2m (ta, tb, td) are
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continuous, and we know that λ0 (t) < λ1 (t) < λ2 (t) < . . . Since the eigenvalues

of K (t) depend continuously on t [35, Chapter 2], we obtain that K (t) has the

eigenvalues α2m (ta, tb, td) , m = 0, 1, ..., k− 1. In particular, the eigenvalues of K are

α2m (a, b, d) , m = 0, 1, ..., k− 1. By 1) and 2), it follows that the eigenvalues of L are

α2m (a, b, d) , m = k, k + 1, ... This completes the proof of the theorem if qk−1 = 0.

If q−k = 0 then we consider M∗ in place of M . We complete the proof by using

Lemma 3.1.1 and the results obtained in the first part of the proof. �

We are now in a position to characterize all Ince polynomials (of the first kind.)

Theorem 3.4.3. (a) If Q (p; a, b, d) 6= 0 for all p ∈ N0, then none of the Ince

functions Ic2m (t; a, b, d) and Is2m+2 (t; a, b, d) is an Ince polynomial. If a = b = d = 0,

all of these functions are Ince polynomials. Otherwise set

k := max {p ∈ N0 : Q (p) = 0}+ 1.

Then Ic2m (t; a, b, d) is an Ince polynomial if and only if m ∈ {0, 1, 2, . . . , k − 1} , and

Is2m (t; a, b, d) is an Ince polynomial if and only if m ∈ {0, 1, 2, . . . , k − 2} . (b) If

Q† (p; a, b, d) 6= 0 for all p ∈ N0, then none of the Ince functions Ic2m+1 (t; a, b, d) and

Is2m+1 (t; a, b, d) is an Ince polynomial. If a = b = d = 0, all of these functions are

Ince polynomials. Otherwise set

k† := max
{
p ∈ N : Q† (p) = 0

}
.

Then Ic2m (t; a, b, d) is an Ince polynomial if and only if m ∈
{

0, 1, 2, . . . , k† − 1
}
,

and Is2m (t; a, b, d) is an Ince polynomial if and only if m ∈
{

0, 1, 2, . . . , k† − 1
}
.

Proof. Since the proofs for Ic2m, Ic2m+1, Is2m+1, Is2m+2 are similar, we consider

only Ic2m. If Ic2m is written in the form with a terminating series, then there is p ∈ N0

Such that A2p 6= 0, and A2n = 0, for n > p. By equation (3.3.10) of Theorem (3.3.1),

we have

qpA2p +
(
4 (p+ 1)2 − α2m

)
A2p+2 + q−p−2A2p+4 = 0,
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which implies qp = Q (p) = 0, and α2m is an eigenvalue of M1,p+1. By Theorem (3.4.2)

m ∈ {0, 1, . . . , p}. By definition of of k we have p < k. Thus m ∈ {0, 1, . . . , k − 1}.

Conversely, assume Q (p) = 0 with p ∈ N0. By Theorem 3.4.2, the eigenvalues of

M1,p+1are α2m, m = 0, 1, . . . , p, if (x0, x1, . . . , xp) is a corresponding eigenvector, then

Ic2m(t) =
x0√

2
+

p∑
n=1

xn cos (2nt)

up to a constant factor. So Ic2m is an Ince polynomial. �

Ince polynomials and their eigenvalues can be computed from the eigenvalues and

eigenvectors of a finite tridiagonal matrix Mj,k.

Example 3.4.4. Let a < 1, b ∈ R, p ∈ N0, by setting Q (p) = 0, and solving for

the parameter d, we can construct an Ince differential equation that have polynomial

solutions Ic2m and Is2m+2. Solving Q (p) = 0 for d gives d = 4ap2− 2bp. For example

when a = 1
2
, b = 1, and p = 2 we get d = 4. By Theorem 3.4.3 we have that

k = p+ 1 = 3. The corresponding matrix M1,k is

M1,3 =


0 0 0

−2
√

2 4 4

0 −2 16

 ,

with eigenvalues

α2m =
{

0, 10− 2
√

7, 10 + 2
√

7
}
.

The entries of eigenvectors of M1,3 are the coefficient of the associated Ince polyno-

mials Ic2m. That is,

α0 = 0, Ic0 = 9 + 8 cos 2t+ cos 4t,

α2 = 10− 2
√

7, Ic2 =
4

6− 2
√

7
cos 2t+ cos 4t,

α4 = 10 + 2
√

7, Ic2 =
4

6 + 2
√

7
cos 2t+ cos 4t.
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To find Ince polynomials Is2m+2, we consider the submatrix M4,k−1,

M4,2 =


4 4 0

−2 16 10

0 0 36

 ,

then

β2m+2 =
{

10− 2
√

7, 10 + 2
√

7
}
,

we find two more Ince polynomials

β2 = 10− 2
√

7, Is2 =
4

6− 2
√

7
sin 2t+ sin 4t,

β4 = 10 + 2
√

7, Is4 =
4

6 + 2
√

7
sin 2t+ sin 4t.

Let M1 have a zero in its superdiagonal and let k be defined as in Theorem

3.4.2. Then its adjoint M∗
1 has a zero in its subdiagonal. Using Theorem 2.3.2,

eigenvectors of of M∗
1,k lead to Ince functions which are products of (ω (t; a, d, d))−1and

a trigonometric polynomial. Such Ince functions are Ince polynomials of the second

kind. For such solutions there holds an obvious analogue of Theorem 3.4.3. Moreover,

if we consider an eigenvector {xn}∞n=k of L1,k and define xn = 0 for n = 0, 1, 2, . . . , k−1,

then we obtain an eigenvector of M1. This leads to Ince functions with a Fourier

series whose first k coefficients are zero. Similar remarks apply to the matrices Mj,

j = 2, 3, 4.

Let us look at some examples.

Example 3.4.5. We choose

(3.4.3) a = 1/2, b = 0, d = 2.
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Then Q (µ) = µ2 − 1, has zeros ±1. From Theorem 3.4.3(a) we find three Ince poly-

nomials of the first kind:

α0 = 0, Ic0 (t) =
1

3
(2 + cos 2t) ,

α2 = 4, Ic2 (t) = cos 2t,

β2 = 4, Is2 (t) = sin 2t.

We know that

ω

(
t;

1

2
, 0, 2

)
=

1(
1 + 1

2
cos 2t

) =
2

(2 + cos 2t)
,

then Ic0 is also an Ince polynomial of the second kind:

Ic0 (t) =
2

3

(
ω

(
t;

1

2
, 0, 2

)−1)
.

Example 3.4.6. Now consider

(3.4.4) a = 1/
√

3, b = 6a, d = −8a.

Then Q (µ) = 2a (µ− 1) (µ− 2) has zeros µ = −1, 2. By Theorem 3.4.3(a), there are

five Ince polynomials :

α0 = −4, Ic0 (t) =
1√
7

(√
3− cos 2t

)
,

α2 = 8, Ic2 (t) =
1√
10

(√
3 + 2 cos 2t

)
,

α4 = 16, Ic0 (t) =
1√

7
√

13

(
3 + 4

√
3 cos 2t+ 5 cos 4t

)
,

β2 = 4, Is2 (t) = sin 2t,

β4 = 16, Is4 (t) =
1√
7

(
2
√

3 sin 2t+
√

3 sin 4t
)
.

There are no Ince polynomials of the second kind for the choice (3.4.3).
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3.5. The Coexistence Problem

Ince’s equation admits two linearly independent solutions with period π if and

only if λ = α2m (a, b, d) = β2m (a, b, d) for some m ∈ N. Ince’s equation admits two

linearly independent solutions with semi-period π if and only if λ = α2m+1 (a, b, d) =

β2m+1 (a, b, d) for some m ∈ N0. In Theorem 3.5.2 we determine all values of m, a, b, d

for which αm (a, b, d) = βm (a, b, d) . More generally, we determine the sign of αm−βm

in Theorem 3.5.4.

Theorem 3.5.1. If Q (µ; a, b, d) has no integer zero then

α2m (a, b, d) 6= β2m (a, b, d) for allm ∈ N.

If Q† (µ; a, b, d) has no integer zero then

α2m+1 (a, b, d) 6= β2m+1 (a, b, d) for all m ∈ N0.

Proof. Since the proofs of the two statements are similar, it will be sufficient

to prove the first. Assume, if possible, that α2m = β2m for some m ∈ N. Consider

the Fourier coefficients {A2n} , {B2n} of Ic2m and Is2m, respectively. By Theorem

3.3.1 the sequences xn = A2n and yn = B2n satisfy the same difference equation of

the form (3.2.1) for n ≥ 3. By assumption an 6= 0 for all n. Since both solutions are

recessive, there is a constant c such that A2n = cB2n for all n ∈ N. from Theorem

3.3.1, equations (3.3.10), (3.3.15) for n = 1 yield

q0A0 + (4− α2m)A2 + q−2A4 = 0,

(4− β2m+2)A2 + q−2A4 = 0.

So A0 = 0, and A2n = 0 for all n ∈ N, which is a contradiction. �
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Theorem 3.5.2. (a) Let Q (µ; a, b, d) = 0 have at least one integer root µ, and let

` be defined by

(3.5.1) ` :=
1

2
+ min

{∣∣∣∣12 + µ

∣∣∣∣ : µ ∈ Z with Q (µ; a, b, d) = 0

}
.

Then

α2m (a, b, d) 6= β2m (a, b, d) if m = 1, 2, . . . , `− 1

α2m (a, b, d) = β2m (a, b, d) if m = `, `+ 1, . . .

(b) Let Q† (µ; a, b, d) = 0 have at least one integer root µ, and let `† be defined by

(3.5.2) `† := min
{
|µ| : µ ∈ Z with Q† (µ; a, b, d) = 0

}
.

Then

α2m+1 (a, b, d) 6= β2m+1 (a, b, d) if m = 0, 1, 2, . . . , `† − 1

α2m+1 (a, b, d) = β2m+1 (a, b, d) if m = `†, `† + 1, . . .

Proof. (a) We apply Theorem 3.4.2. Since L1,` = L4,`−1, α2m (a, b, d) = β2m (a, b, d)

if m ≥ `. The matrix M4,`−1 is obtained from M1,` by deleting the first row and the

first column. Since M1,` is a finite tridiagonal matrix with nonzero entries in its sub-

diagonal and superdiagonal, M1,` and M4,`−1 have no common eigenvalues. There-

fore α2m (a, b, d) 6= β2m (a, b, d) if m = 1, 2, . . . ` − 1. (b) Similarly by Theorem 3.4.2,

L2,`† = L3,`† , so α2m+1 (a, b, d) = β2m+1 (a, b, d) if m ≥ `†. The matrices M2,`† and M3,`†

are the same except for the first entree. Since both matrices are finite tridiagonal with

nonzero entries in their subdiagonals and superdiagonals, M2,`†and M3,`† have no com-

mon eigenvalues. Therefore α2m+1 (a, b, d) 6= β2m+1 (a, b, d) if m = 0, 1, 2, . . . `†−1. �

Example 3.5.3. Consider Mathieu’s equation

(3.5.3) y” (t) + (λ− 2q cos (2t)) y (t) = 0,
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where q is a nonzero real number.

We have,

Q (µ) = Q† (µ) = q.

Both polynomials have no zeros. By Theorem 3.4.3, equation (3.5.3) does not have any

polynomial solution. Applying Theorem 3.5.2, we see that α2m 6= β2m and α2m+1 6=

β2m+1 for all m.

We define signx for a real number x by −1, 0, 1 according to x < 0, x = 0, or

x > 0, respectively.

Theorem 3.5.4. We have, for m ∈ N,

(3.5.4) sign (α2m (a, b, d)− β2m (a, b, d)) = sign
m−1∏
n=−m

Q (n; a, b, d) ,

and, for m ∈ N0,

(3.5.5) sign (α2m+1 (a, b, d)− β2m+1 (a, b, d)) = sign
m∏

n=−m

Q† (n; a, b, d) .

Proof. Since the proofs of (3.5.4) and (3.5.5) are similar, we will only prove

(3.5.4). If Q (n) = 0 for at least one n = −m,−m+ 1, . . . ,m− 1, then Theorem 3.5.2

implies (3.5.4). Hence we assume that

(3.5.6)
m−1∏
n=−m

Q (n; a, b, d) 6= 0.

By Theorems 3.5.1 and 3.5.2, (3.5.6) is equivalent to

α2m (a, b, d) 6= β2m (a, b, d) .

Since Q (µ; ta, tb, td) = tQ (µ; a, b, d) , we obtain that

(3.5.7) F (t) = α2m (ta, tb, td)− β2m (ta, tb, td)
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is either positive for all t ∈ (0, 1] or negative for all t ∈ (0, 1] By Theorem (3.3.3)(a)

with k = m, the eigenvalue α2m (ta, tb, td) satisfies the continued-fraction equation

(3.5.8) f (λ, t) = g (λ, t) ,

where

f (λ, t) = rm − λ−
t2pm

rm−1 − λ−
t2pm−1

rm−2 − λ−
. . .− t2p2

r1 − λ−
− t2p1
r0 − λ

g (λ, t) =
t2pm+1

rm+1 − λ−
t2pm+2

rm+2 − λ−
. . .

Similarly, β2m (ta, tb, td) satisfies the continued-fraction equation

(3.5.9) f1 (λ, t) = g (λ, t) ,

where

f1 (λ, t) = rm − λ−
t2pm

rm−1 − λ−
t2pm−1

rm−2 − λ−
. . .− t2p2

r1 − λ
.

Claim 1: There is δ > 0 such that, for t ∈ (0, δ) , f (λ, t)− g (λ, t) and f1 (λ, t)−

g (λ, t) are decreasing functions of λ ∈ I, where

I = [rm − 1, rm + 1] .

To prove Claim 1, note that f (λ, t) = rm − λ− t2f0 (λ, t) , where f0 (λ, t) is analytic

for λ ∈ I and t ∈ (−δ, δ) if δ > 0 is sufficiently small. Hence df
dλ
→ −1 as t → 0

uniformly for λ ∈ I. The same is true for f1 (λ, t) . We have g (λ, t) = t2g0 (λ, t) , where

g0 (λ, t) is analytic for λ ∈ I and t ∈ (−δ, δ) . Therefore, dg
dλ
→ 0 as t → 0 uniformly

for λ ∈ I. Hence, d(f−g)
dλ
→ −1, and d(f1−g)

dλ
→ −1 as t→ 0 uniformly for λ ∈ I. This

establishes Claim 1.

Claim 2: There is δ > 0 such that, for t ∈ (0, δ) , and λ ∈ I,

sign (f (λ, t)− f1 (λ, t)) = sign
m∏
n=1

pn.



60

To prove Claim 2, note that

sign
t2p1
r0 − λ

= −sign p1.

If m = 1, this proves Claim 2. Assume m ≥ 2. For 0 < t < δ, with δ sufficiently small

we have

r1 − λ < 0, r1 − λ−
t2p1
r0−λ

< 0.

Hence

sign

(
t2p2

r1 − λ− t2p1
r0−λ

− t2p2
r1 − λ

)
= −sign (p1p2) .

If m = 2, this proves Claim 2. Continuing in this way we obtain Claim 2 for every m.

We now prove (3.5.4) . Choose δ > 0 such that the statements of Claim 1 and

Claim 2 hold. Also choose δ so small so that α2m (ta, tb, td) and β2m (ta, tb, td) lie in I

for t ∈ (0, δ) . This is possible since α2m (ta, tb, td) and β2m (ta, tb, td) are continuous

functions of t and their common value at t = 0 is rm. By Claim 1, for every t ∈ (0, δ) ,

the functions f (λ, t)=g (λ, t)and f1 (λ, t)=g (λ, t) are decreasing for λ ∈ I. They have

the zeros α2m (ta, tb, td) and β2m (ta, tb, td) , respectively. Now Claim 2 yields

signF (t) = sign
m∏
n=1

pn

for t ∈ (0, δ) . Since F (t) is either positive for all t ∈ (0, 1] or negative for all t ∈ (0, 1] ,

we obtain (3.5.4). �

Note that Theorems 3.5.1 and 3.5.2 are contained in Theorem 3.5.4. Theorem

3.5.4 was proved in [78] based on previous results in [45].

Example 3.5.5. Choosing a = 1/2, b = 0, d = 1, m = 5. We obtain,

sign (α10 − β10) = −1,

sign (α11 − β11) = 1.
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For the Mathieu equation (3.5.3), Theorem 3.5.4 yields

sign (α2m − β2m) = sign
m−1∏
n=−m

Q (n)

= sign q2m

= sign q.2

sign (α2m+1 − β2m+1) = sign
m∏

n=−m

Q (n)

= sign q2m+1

= sign q.

This is [48, Satz 12, page 119].

For the Whittaker-Hill equation (2.1.7), we obtain

sign (α2m − β2m) = sign
m−1∏
n=−m

Q (n)

= sign
m−1∏
n=−m

2q (2µ− ν + 1)

= sign q2
m−1∏
n=−m

(2µ− ν + 1)

sign (α2m+1 − β2m+1) = sign
m∏

n=−m

Q (n)

= sign
m∏

n=−m

(2µ− ν + 1)

= sign q
m∏

n=−m

(2µ− ν + 1) .

This result improves [45, Theorem 7.9].

We may summarize results on (nontrivial) Ince polynomials (of the first or second

kind) and coexistence of solutions with period π for the Ince equations as follows.
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(1) Q (µ) has no integer zero. Then there are no Ince polynomials, and no

coexistence of solutions with period π occurs.

(2) Q (µ) has exactly one integer zero. Define ` by (3.5.1) Then coexistence

of solutions with period π occurs for λ = α2m = β2m with m ≥ ` and

Ince polynomials exist for λ = α2m, m = 0, 1, ..., `=1 and for λ = β2m,

m = 1, 2, ..., `=1 These polynomials are of the first kind if the integer zero

of Q is nonnegative and of the second kind if it is negative. In particular,

linearly independent Ince polynomials do not coexist, and an Ince polynomial

cannot be of the first and second kind simultaneously.

(3) Q (µ) has precisely two integer zeros. Define ` by (3.5.1), and define k in

the same way but with min replaced by max. Then coexistence of solutions

with period occurs for λ = α2m = β2m, m ≥ ` and Ince polynomials exist

for for λ = α2m, m = 0, 1, ..., k=1 and for λ = β2m. m = 1, 2, ..., k=1. In

particular, if λ = α2m = β2m with m = `, `+ 1..., k− 1, then Ince’s equations

admits a fundamental system of solutions consisting of Ince polynomials. If

one of the zeros of Q is nonnegative while the other is negative, there are

Ince polynomials which are of the first and second kind simultaneously but

such solutions do not coexist with another solution with period .

(4) a = b = d = 0. Then Ince’s equations is trivial. All solutions with period

π are Ince polynomials, and there is coexistence for all eigenvalues except

λ=α0.

We may summarize results on (nontrivial) Ince polynomials (of the first or second

kind) and coexistence of solutions with semi-period π for the Ince equations as follows.

(1) Q† (µ) has no integer zero. Then there are no Ince polynomials, and no

coexistence of solutions with semi-period π occurs.

(2) Q† (µ) has exactly one integer zero. Define `† by (3.5.2) Then coexistence of

solutions with semi-period π occurs for λ = α2m+1 = β2m+1 with m ≥ `† and

Ince polynomials exist for λ = α2m+1, m = 0, 1, ..., `†=1 and for λ = β2m+1,
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m = 0, 1, ..., `†=1 These polynomials are of the first kind if the integer zero

of Q is nonnegative and of the second kind if it is negative. In particular,

linearly independent Ince polynomials do not coexist, and an Ince polynomial

cannot be of the first and second kind simultaneously.

(3) Q† (µ) has precisely two integer zeros. Define `† by (3.5.2), and define k† in

the same way but with min replaced by max. Then coexistence of solutions

with semi-period occurs for λ = α2m+1 = β2m+1, m ≥ `† and Ince polyno-

mials exist for for λ = α2m+1, m = 0, 1, ..., k†=1 and for λ = β2m+1, m =

0, 1, ..., k†=1. In particular, if λ = α2m+1 = β2m+1 with m = `†, `†+1..., k†−1,

then Ince’s equations admits a fundamental system of solutions consisting of

Ince polynomials. If one of the zeros of Q is nonnegative while the other is

negative, there are Ince polynomials which are of the first and second kind

simultaneously but such solutions do not coexist with another solution with

semi-period π.

(4) a = b = d = 0. Then Ince’s equations is trivial. All solutions with semi-

period π are Ince polynomials, and there is coexistence for all eigenvalues.

Example 3.5.6. We choose

a =
1

2
, b = −3, d = −4.

Then Q (µ) = (µ+ 1) (µ+ 2) has zeros µ = −1, and µ = −2. We find that ` = 1,

k = 2. We may draw the following conclusions:

(1) Coexistence of solutions with period occurs for λ = α2m = β2m, m ≥ 1.

(2) Ince polynomials exist for λ = α2m, m = 0, 1.

α0 = 0, Ic0 (t) = −1 + cos 2t,

α2 = 4, Ic2 (t) = cos 2t.
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(3) Ince polynomials exist for λ = β2m, m = 1.

β2 = 4, Is2 (t) = cos 2t.

(4) The functions Ic2 (t) = cos 2t and Is2 (t) = sin 2t coexist for the eigenvalue

λ = α2 = β2 = 4, and constitute a fundamental system of solutions.

3.6. Separation of Variables

The partial differential equation describing vibrations of an elliptic membrane

whose density diminishes radially from the center can by solved by the method of

separation of variables in elliptic coordinates; see [29]. One is led to ordinary differ-

ential equations that can be transformed to Ince’s equation with a = 0.

We will obtain the Ince equation directly by considering the following partial

differential equation

(3.6.1)
∂2u

∂x2
+
∂2u

∂y2
− 2b

(
x
∂u

∂x
+ y

∂u

∂y

)
− 2du = 0,

where b and d are real constants. In elliptic coordinates

(3.6.2) x = cosϕ cosh ξ, y = sinϕ sinh ξ,

the equation assumes the form

(3.6.3)
∂2u

∂ϕ2
+
∂2u

∂ξ2
+ b

(
sin 2ϕ

∂u

∂ϕ
− sinh ξ

∂u

∂ξ

)
+ d (cos 2ϕ− cosh ξ)u = 0

We separate variables u (ϕ, ξ) = u1 (ϕ)u2 (ξ) , to obtain

(3.6.4)

u2 (ξ)

(
d2u1
dϕ2

− 2 (b sinϕ)
du1
dϕ

+ 2 (d cosϕ)u1

)
+ u1 (ϕ)

(
d2u2
dξ2
− 2 (b sinh ξ)

du2
dξ

+ 2 (d cos ξ)u2

)
= 0,
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which is equivalent to

(3.6.5)

d2u1
dϕ2 + (b sinϕ) du1

dϕ
+ (d cosϕ)u1

u1 (ϕ)
= −

d2u2
dξ2
− (b sinh ξ) du2

dξ
− (d cosh ξ)u2

u2 (ξ)
.

Setting both sides equal to the separation constant −λ, we obtain the following two

ordinary differential equations in each of the variables ϕ and ξ,

d2u1
dϕ2

+ (b sinϕ)
du1
dϕ

+ (λ+ d cosϕ)u1 = 0,(3.6.6)

d2u2
dξ2
− (b sinh ξ)

du2
dξ
− (λ+ d cosh ξ)u2 = 0.(3.6.7)

Equation (3.6.6) is an Ince equation, and (3.6.7) is a modified Ince equation. Using

the substitution ϕ = iξ in (3.6.6), we obtain

d2v

dϕ2
+ (b sinϕ)

dv

dϕ
+ (λ+ d cosϕ) v = −d

2v

dξ2
+ (b sinh ξ)

du1
dξ

+ (λ+ d cosh ξ) v

= −
(
d2v

dξ2
− (b sinh ξ)

dv

dξ
− (λ+ d cosh ξ) v

)
= 0,

then, equation (3.6.7) is obtained by substituting ϕ = iξ in (3.6.6).

Ince polynomials lead to polynomial solutions of (3.6.1).

Example 3.6.1. Choose

b =
√

3, d = −2
√

3, λ = −2,

then u1 (ϕ) =
√

3 − cos 2ϕ solves (3.6.6), so u2 (ξ) =
√

3 − cosh 2ξ solves (3.6.7),

and

(3.6.8) u =
(√

3− cos 2ϕ
)(√

3− cosh 2ϕ
)

= 2 +
(

2−
√

3
)
x2 −

(
2 +
√

3
)
y2

satisfies (3.6.1).
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To derive the Ince equation with a 6= 0 by the method of separation of variables

we proceed as follows. Consider the partial differential equation

(3.6.9)
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
−
(

1 +
b

a

)
1

z

∂u

∂z
= 0,

where a and b are real constants with a and real constant with a ∈ (−1, 0) . We

introduce sphero-conal coordinates in the half-space z > 0 by

x = rk cosϕ cosh ξ,(3.6.10)

y = r
k

k′
cosϕ cosh ξ,(3.6.11)

z = r
1

k′
(
1− k2 cos2 ϕ

)1/2 (
1− k2 cos2 ξ

)1/2
,(3.6.12)

where

r > 0, 0 ≤ ϕ < 2π, 0 < ξ < arcosh
1

k
.

The numbers k,k′ ∈ (0, 1) are determined by

k2 =
2a

1− a
, k′2 = 1− k2.

The coordinate surfaces are spheres x2+y2+z2 = r2 and elliptic cones. In spheroconal

coordinates equation (3.6.9) becomes

(3.6.13)

(1 + a cos 2ϕ)
∂2u

∂ϕ2
+ (1 + a cosh 2ξ)

∂2u

∂ξ2
+ b sin 2ϕ

∂u

∂ϕ

− b sinh 2ξ
∂u

∂ξ
+ a (cos 2ϕ− cosh 2ξ)

(
r2
∂2u

∂r2
+

(
1− b

a

)
r
∂u

∂r

)
= 0.

We separate variables u = v (ϕ, ξ)u3 (r) to obtain

(3.6.14)

(1 + a cos 2ϕ) ∂2v
∂ϕ2 + (1 + a cosh 2ξ) ∂2v

∂ξ2
+ b sin 2ϕ ∂v

∂ϕ
− b sinh 2ξ ∂v

∂ξ

a (cosh 2ξ − cos 2ϕ) v

=
r2 d

2u3
dr2

+
(
1− b

a

)
r du3
dr

u3
.
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Using the separation constant d
a
, (3.6.14) separates into

(3.6.15)

(1 + a cos 2ϕ)
∂2v

∂ϕ2
+ (1 + a cosh 2ξ)

∂2v

∂ξ2

+ b sin 2ϕ
∂v

∂ϕ
− b sinh 2ξ

∂v

∂ξ
+ d (cos 2ϕ− cosh 2ξ) v = 0,

(3.6.16) r2
d2u3
dr2

+

(
1− b

a

)
r
du3
dr
− d

a
u3 = 0.

Next, we separate variables v = u1 (ϕ)u2 (ξ) in equation (3.6.15) to obtain

(3.6.17)

(1 + a cos 2ϕ) d2u1
dϕ

+ b sin 2ϕdu1
dϕ

+ (d cos 2ϕ)u1

u1

= −
(1 + a cosh 2ξ) d2u2

dξ
− b sinh 2ξ du2

d
− (d cosh 2ξ)u2

u2
.

Setting both sides of (3.6.17) equal to −λ we obtain

(3.6.18) (1 + a cos 2ϕ)
d2u1
dϕ

+ b sin 2ϕ
du1
dϕ

+ (λ+ d cos 2ϕ)u1 = 0,

(3.6.19) (1 + a cosh 2ξ)
d2u1
dϕ
− b sinh 2ξ

du1
dϕ
− (λ+ d cos 2ξ)u1 = 0.

The function u = u1 (ϕ)u2 (ξ)u3 (r) will satisfy (3.6.9) if there are constants d and

λ such that u1 (ϕ) solves the Ince equation (3.6.18), u2 (ξ) solves the modified Ince’s

equation (3.6.19), and u3 (r) solves the Euler equation (3.6.16). If aν2 − bν − d = 0,

that is, Q
(
ν
2

)
, then equation (3.6.16) admits the solution rν .

Ince polynomials lead to solutions of(3.6.9) which are homogeneous polynomials

in x, y, z.

Example 3.6.2. Let,

a = −1/
√

3, b = 6a, d = −8a, λ = −4,
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then u1 (ϕ) =
√

3+cos 2ϕ solves (3.6.18), and so u2 (ϕ) =
√

3+cosh 2ξ solves (3.6.19).

Q
(
ν
2

)
= 0, has solution ν = 2, therefore u3 (r) = r2solves (3.6.6), and the function

u = r2
(√

3 + cos 2ϕ
)(√

3 + cosh 2ξ
)

=
(

6 + 2
√

3
)
x2 +

(
6− 2

√
3
)
y2 + 2z2

satisfies (3.6.9).

Ince polynomials for a 6= 0 are related to special cases of Heun polynomials which

again are special cases of Heine-Stieltjes polynomials [66, Section 6.8], and, for Heine-

Stieltjes polynomials, the corresponding process of separation of variables is treated

in [77]. The homogeneous polynomials solving (3.6.9) generalize classical spherical

harmonics, and a theory parallel to that for spherical harmonics can be created for

them.

3.7. Integral Equation for Ince Polynomials

We derive Whittaker’s integral equations for Ince polynomials [84].

Consider the differential operators

Su := − (1 + a cos 2s)
∂2u

∂s2
− b sin 2s

∂u

∂s
− d (cos 2s)u,(3.7.1)

Tu := − (1 + a cos 2t)
∂2u

∂t2
− b sin 2t

∂u

∂t
− d (cos 2t)u.(3.7.2)

If u1 (s) and u2 (t) are solutions of the same Ince equation (2.1.4), then u (s, t) =

u1 (s)u2 (t) satisfies the partial differential equation

(3.7.3) Su = Tu.

We now apply a well known method to derive integral equations; see [59, Section

1.2]. The kernel of the integral equations will be suitable solutions of (3.7.3). Let

n ∈ N0 be such that Q (n/2) = 0. We notice that (x+ iy)n is a solution of the partial

differential equations (3.6.1) and (3.6.9). Therefore, by transforming to elliptic and
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sphero-conal coordinates, respectively, we find that

(3.7.4) Kn (s, t; a) =
(√

1− a sin s sin t
√

1 + a cos s cos t
)n

satisfies (3.7.3). Now, consider the Fredholm integral operator

(3.7.5) (Fv) (s) :=

∫ π/2

−π/2
ω (t, a; b)Kn (s, t; a) v (t) dt

which is self-adjoint on the Hilbert space L2
ω (−π/2, π/2) with the weight ω from

(2.2.6). The operator has rank n+1. Therefore, F has exactly n+1 nonzero eigenvalues

counted according to multiplicity.

Theorem 3.7.1. (a) Let Q (n/2)) = 0 with even n∈ N0. The Ince polynomials

Ic2m (t; a, b, d) , m = 0, 1, ..., n/2, and Is2m (t; a, b, d), m = 1, 2, ..., n/2, are eigenfunc-

tions of the integral operator (3.7.5) corresponding to nonzero eigenvalues.

(b) Let Q(n/2) = 0 with odd n∈ N0. The Ince polynomials Ic2m+1 (t; a, b, d) ,

m = 0, 1, ..., n/2, and Is2m+1 (t; a, b, d), m = 1, 2, ..., n/2, are eigenfunctions of the

integral operator (3.7.5) corresponding to nonzero eigenvalues.

Proof. We prove only (a), the proof of (b) being similar. Let v (t) be a solution

of Ince’s equation with period π . Since Kn satisfies(3.7.3),

SFv (s) =

∫ π/2

−π/2
SKn (s, t)ω (t) v (t) dt =

∫ π/2

−π/2
TK (s, t)ω (t) v (t) dt.

Taking into account that Kn (s, ·) , ω and v have period π, integration by parts gives.

SFv (s) =

∫ π/2

−π/2
Kn (s, t) T̃ (ωv) (t) dt,

where T̃ is the formal adjoint of T, that is, the operator we obtain from T by replacing

b and d by b = =4a=b and d = d=4a=2b, respectively. By Theorem 2.3.2, T̃ (ωv) =

λωv. Hence SFv = λFv which means that Fv solves the same Ince equation as v.

Clearly, Fv has period π and is even or odd when v is even or odd, respectively.

This shows that the functions Ic2m, Is2m+2, m ∈ N0, are eigenfunctions of F. By
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Theorem 2.3.1, these functions form a complete orthogonal set of eigenfunctions forF

in L2
ω (−π/2, π/2) . Moreover, F maps these functions to trigonometric polynomials of

degree at most n. Therefore, the eigenvalues corresponding to Ic2m and Is2m vanish

for m > n/2, and the eigenvalues are nonzero for the remaining n+1 Ince polynomials.

�

3.8. The Lengths of Stability and instability intervals

If αn < βn or βn < αn then [αn, βn] or [βn, αn] is the n−th instability interval of

Ince’s equation (3.1.1). For fixed a, b, d the signed length

(3.8.1) αn (τa, τb, τd)− βn (τa, τb, τd) , n = 1, 2, 3, . . .

of the nth instability interval is an analytic function of τ ∈ (−1, 1) which can be be

expanded in a power series about t = 0.

Example 3.8.1. Consider the case a = b = 0, d = −2 (Mathieu’s equation) and

take n = 5. Then

αn (τa, τb, τd) = 25 +
1

48
τ 2 +

11

774144
τ 4 +

1

147456
τ 5 +

37

891813888
τ 6 + . . .

βn (τa, τb, τd) = 25 +
1

48
τ 2 +

11

774144
τ 4 − 1

147456
τ 5 +

37

891813888
τ 6 + . . .

The coefficients of these power series can be computed with software like Maple. We

see that power series expansions agree up to the term including t4. There are no

explicit formulas known for those coefficients of these power series.

For example, the signed length of the 5−th instability interval is given by the

difference

(3.8.2) α5 (0, 0,−2τ)− β5 (0, 0,−2τ) =
1

73728
τ 5 +

7

169869312
τ 7 + . . .
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Levy and Keller [43] proved the following result for the leading term of the length

of instability intervals of example 3.8.1

(3.8.3) αm (0, 0,−2τ)− βm (0, 0,−2τ) =
2τm

(2m−1 (m− 1)!)2
(1 +O(τ 2)).

The goal in this section is to generalize the previous result to Ince’s equation.

3.8.1. Instability intervals for odd m. Let a, b, d be given real numbers with

|a| < 1, and Consider as in Chapter 2 the Ince operator

Iy(t) = − (1 + τa cos 2t) y′′ (t)− τb (sin 2t) y′ (t)− τd (cos 2t) y (t) .

We represent the operator I by infinite tridiagonal matrices. If I is applied to to

Fourier series of the form

(3.8.4) x(t) =
∞∑
n=0

xk cos (2n+ 1) t,

we obtain the matrix representation

(3.8.5) M2 (τ) =



r†0 + τq†0 τq†−1 0 0 0 0 · · ·

τq†0 r†1 τq†−2 0 0 0 · · ·

0 τq†1 r†2 τq†−3 0 0 · · ·

0 0 τq†2 r†3 τq†−4 0 · · ·
...

...
...

...
...

...


,

where

r†n = (2n+ 1)2 , n = 0, 1, 2, . . .

q†j = Q(j − 1

2
), Q (µ) = 2aµ2 − bµ− d

2
.



72

The operator A (τ) , τ ∈ (0, 1) defines an unbounded self-adjoint operator in the

sequence Hilbert space `2 (N0) equipped with the inner product

(3.8.6)

〈x, y〉A,ω =

∫ π
2

0

ω (t)

(
∞∑
n=0

xn cos (2n+ 1) t

)(
∞∑
n=0

yn cos (2n+ 1) t

)

=
∞∑
n=0

(∫ π
2

0

ω (t) cos (2n+ 1) t

)
xnyn.

This inner product and the standard inner product

〈x, y〉 =
∞∑
n=0

xnyn

generate equivalent norms. The operator A (τ) is bounded below with compact re-

solvent and its eigenvalues are α2n+1 (τ) := α2n+1 (τa, τb, τd) , n = 0, 1, 2, . . .

Similarly, if the the Ince operator is applied to Fourier sine series of the form

(3.8.7) x(t) =
∞∑
n=0

xk sin (2n+ 1) t,

we obtain the infinite matrix

(3.8.8) M3 (τ) =



r†0 − τq
†
0 τq†−1 0 0 0 0 · · ·

τq†0 r†1 τq†−2 0 0 0 · · ·

0 τq†1 r†2 τq†−3 0 0 · · ·

0 0 τq†2 r†3 τq†−4 0 · · ·
...

...
...

...
...

...


,

note that the matrix M3 (τ) is the same as M2 (τ) except q†0, by −q†0 in the upper left

corner. The operator M3 (τ) , τ ∈ (0, 1) defines an unbounded self-adjoint operator

in the sequence Hilbert space `2 (N0) equipped with the inner product

(3.8.9)

〈x, y〉 =

∫ π
2

0

ω (t)

(
∞∑
n=0

xn sin (2n+ 1) t

)(
∞∑
n=0

yn sin (2n+ 1) t

)

=
∞∑
n=0

(∫ π
2

0

ω (t) sin (2n+ 1) t

)
xnyn
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This inner product and the standard inner product

〈x, y〉 =
∞∑
n=0

xnyn

generate equivalent norms. The operator B (τ) is bounded below with compact re-

solvent and its eigenvalues are β2n+1 (τ) := β2n+1 (τa, τb, τd) , n = 0, 1, 2, . . .

Now consider the eigenvalue α2n+1 (τ) for a fixed n, and a corresponding eigen-

vector u (τ) = (u0 (τ) , u1 (τ) , u2 (τ) , . . .) . For small |τ | , un (τ) 6= 0 and we adopt the

normalization un (τ) = 1. Then uk (τ) is an analytic function of τ in a neighborhood

of τ = 0. Similarly, let v (τ) = (v0 (τ) , v1 (τ) , v2 (τ) , . . .) be an eigenvalue of B∗ (τ)

corresponding to the eigenvalue β2n+1 (τ) normalized by vn (τ) = 1. We obtain the

adjoint B∗ (τ) by reflection at the main diagonal as usual. One can verify easily

that B∗ (τ) is the same as B (τ) but with a, b, d replaced by a∗ = a, b∗ = −4a − b,

d∗ = d− 4a− 2b, respectively.

Lemma 3.8.2. For |τ | sufficiently small, we have

(α2n+1 (τ)− β2n+1 (τ)) 〈u (τ) , v (τ)〉 = 2τq†0u0 (τ) v0 (τ)

Proof. We have

〈(M2 −M3)u, v〉 = 〈M2u, v〉 − 〈M3u, v〉

= 〈M2u, v〉 − 〈M∗
3 v, u〉

= (α2n+1 − β2n+1) 〈u, v〉 .

Since M2 and M3 agree except in left upper corner, everything cancels in the left-hand

side except 2τq†0u0 (τ) v0 (τ) . �

Lemma 3.8.3. For k = 0, 1, . . . , n− 1, we have

(3.8.10) uk (τ) = τn−k
n−1∏
j=k

q†−j−1
(2n+ 1)2 − (2j + 1)2

+O
(
τn−k+1

)
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and

(3.8.11) vk (τ) = tn−k
n−1∏
j=k

q†j+1

(2n+ 1)2 − (2j + 1)2
+O

(
τn−k+1

)
.

Proof. Since A (τ)u (τ) = α2n+1 (τ)u (τ) we obtain that

(3.8.12)
(
τp0 + r†0 − α2n+1 (τ)

)
u0 (τ) + τp−1u1 (τ) = 0

and

(3.8.13) τpjuj−1 (τ) +
(
r†j − α2n+1 (τ)

)
uj (τ) + τp−j−1uj+1 (τ) = 0, j = 1, 2, 3, . . .

We know that uj (0) = 0 for j 6= n. using (3.8.12) and (3.8.13) for j = 1, 2, . . . , n−2 we

find that uk (τ) = O (τ 2) when k ≤ n−2. In a similar way, we see that uk (τ) = O (τ 3)

when k ≤ n−3. In general, we obtain that uk (τ) = O
(
τn−k

)
for k < n. Using un = 1in

(3.8.13) for j = n− 1 (or (3.8.12) when n = 1), we get

(
r†n−1 − r†n

)
un−1 (τ) + τq†−n = O

(
τ 2
)

which yields claim (3.8.10) when k = n− 1. In a similar way, we find that

(
r†n−2 − r†n

)
un−2 (τ) + τq†−n+1un−1 (τ) = O

(
τ 3
)
.

Substituting the previous result on un−1 (τ) this proves (3.8.10) when n = k − 2.

Continuing in this fashion we prove (3.8.10) for all k. The proof of (3.8.11) is almost

the same. �

Theorem 3.8.4. Let a, b, d ∈ R with |a| < 1. Then, for fixed n = 0, 1, 2, . . . ,

(3.8.14) α2n+1 (τa, τb, τd)− β2n+1 (τa, τb, τd) =
2τ 2n+1 (1 +O (τ 2))

(22n (2n!))2

n∏
j=−n

q†j ,

where

q†j := Q

(
j − 1

2

)
, Q (µ) = 2aµ2 − bµ− 1

2
d.
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Proof. Since

〈u (τ) , v (τ)〉 = 1 +O (τ) ,

Lemma 3.8.3 and Lemma 3.8.3 give

(1 +O (τ))α2n+1 (τ)− β2n+1 (τ) = 2τq†0 (u0 (τ) v0 (τ)) (1 +O (τ))

= 2τ 2n+1q†0

n−1∏
j=k

q†−j−1

(2n+ 1)2 − (2j + 1)2

n−1∏
j=k

q†j+1

(2n+ 1)2 − (2j + 1)2
(1 +O (τ)) .

Since α2n+1 (τa, τb, τd)−β2n+2 (τa, τb, τd) is an odd function of t, this yields (3.8.14).

�

3.8.2. Instability intervals for even m. If the operator I is applied to to

Fourier series of the form

(3.8.15) x(t) = x0 +
∞∑
n=1

xk cos 2nt,

we obtain the matrix representation

(3.8.16) M1 =



r0 τq−1 0 0 0 0 · · ·

τq0 r1 τq−2 0 0 0 · · ·

0 τq1 r2 τq−3 0 0 · · ·

0 0 τq2 r3 τq−4 0 · · ·
...

...
...

...
...

...


.

where

rn = (2n)2 , n = 0, 1, 2, . . .

qj = Q (j) , Q (µ) = 2aµ2 − bµ− d

2
.
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The operator M1 (τ) , τ ∈ (0, 1) defines an unbounded self-adjoint operator in the

sequence Hilbert space `2 (N0) equipped with the inner product

(3.8.17)

〈x, y〉A,ω =

∫ π
2

0

ω (t)

(
x0 +

∞∑
n=1

xn cos (2n+ 1) t

)(
y0 +

∞∑
n=0

yn cos (2n+ 1) t

)

This inner product and the standard inner product

〈x, y〉 =
∞∑
n=0

xnyn

generate equivalent norms. The operator A (τ) is bounded below with compact re-

solvent and its eigenvalues are α2n (τ) := α2n (τa, τb, τd) , n = 0, 1, 2, . . .

Similarly, if the the Ince operator is applied to Fourier sine series of the form

(3.8.18) x(t) =
∞∑
n=0

xk sin (2n+ 2) t,

we obtain the infinite matrix M4 which is obtained from M1 by deleting the first

row and the first column. The operator M4 (τ) , τ ∈ (0, 1) defines an unbounded

self-adjoint operator in the sequence Hilbert space `2 (N0) equipped with the inner

product

(3.8.19)

〈x, y〉 =

∫ π
2

0

ω (t)

(
∞∑
n=0

xn sin (2n+ 2) t

)(
∞∑
n=0

yn sin (2n+ 2) t

)

=
∞∑
n=0

(∫ π
2

0

ω (t) sin (2n+ 2) t

)
xnyn

This inner product and the standard inner product

〈x, y〉 =
∞∑
n=0

xnyn

generate equivalent norms. The operator M4 (τ) is bounded below with compact

resolvent and its eigenvalues are β2n+2 (τ) := β2n+2 (τa, τb, τd) , n = 0, 1, 2, . . . .
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The proof of the following theorem for the stability intervals for even m is similar

to that of odd m discussed above.

Theorem 3.8.5. Let a, b, d ∈ R with |a| < 1. Then, for fixed n = 1, 2, 3, . . . ,

(3.8.20) α2n (τa, τb, τd)− β2n (τa, τb, τd) =
2τ 2n−1 (1 +O (τ 2))

(22n−1 (2n− 1)!)2

n∏
j=−n

qj,

where

qj := Q (j) , Q (µ) = 2aµ2 − bµ− 1

2
d.

3.9. Further Results

Following Eastham [14, Section 2.4], one can treat the eigenvalue problem

y (t+ π) = eiνπy (t)

for the Ince equation, where the characteristic exponent is given. If ν is real this

leads to self-adjoint operators and infinite tridiagonal matrices as for the eigenvalues

problems studied in this chapter. Mennicken [49] gives methods for the computation

of the characteristic exponent.

Ince [28, 30] investigates the asymptotics of Ince functions for a = 0. Moreover,

Ince’s papers also contain bounds for the eigenvalues and other interesting results.

Volkmer [70] studies the characteristic polynomials of the matrices Mj,k and uses

them to approximate eigenvalues of Ince’s equation.

When we substitute ξ = cos 2t, Ince’s equation becomes

(3.9.1)
d2y

dξ2
+

1

2

(
1

ξ
+

1

ξ − 1
+

1

2aξ + 1− a

)
dy

dξ
+

λ+ d (2ξ − 1)

4ξ (1− ξ) (2aξ + 1− a)
y = 0.

If a 6= 0, this is a Heun equation with regular singular points at 0, 1, a−1
2a

and∞. The

indices at 0 and at 1 are 0 and 1/2. The indices at a−1
2a

are 0 and 1+ b
2a

and the indices

at infinity are the roots of Q (−ρ) = 0. If a = 0, then (3.9.1) is a confluent form of

Heun’s equation. Therefore, results on the Heun equation are applicable to the Ince

equation. In particular, Ince polynomials are trigonometric polynomials which can be
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transformed to ordinary polynomials and then become Heine-Stieltjes polynomials;

see [66, Section 6.8]. Thus results on Heine-Stieltjes polynomials are applicable to

Ince polynomials.
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CHAPTER 4

The Lamé Equation

4.1. The Differential Equation

The Lamé differential equation is

(4.1.1)
d2w

dz2
+
(
h− ν (ν + 1) k2 sn2 (z, k)

)
w = 0.

The number k denotes the modulus of the Jacobian elliptic function sn z = sn (z, k) .

For the definitions and properties of the Jacobian elliptic functions sn, cn, dn, the

Jacobian amplitude am and the complete elliptic integrals K, and K ′, we refer to

[86]. The most important formulas can be found in Appendix C of [7].

We will assume that ν is real although we need only that ν (ν + 1) is real. Then,

without loss of generality, we assume that ν ≥ −1
2
. The third parameter h is the

spectral parameter and will also be always real. The functionsn z is meromorphic on

C with simple poles at each point z = 2pK + (2q + 1)K ′i, p, q ∈ Z.

Since ku sn (u+ iK ′)→ 1 as u→ 1, we find that (4.1.1) has regular singular points

2pK + (2q + 1)K ′i, p, q ∈ Z, with indices −ν and ν + 1. Unless stated otherwise we

will consider solutions of (4.1.1) in R. These solutions can be continued analytically

to the horizontal strip −K ′ < =z < K ′.

The function sn2z has period 2K. Therefore, if w (z) is a solution of (4.1.1) then

also w (z + 2K) is a solution. Hence Lame’s equation is a Hill’s equation with period

2K. Also note that sn2z is an even function. Therefore, if w (z) is a solution of (4.1.1),

then w (−z) is also a solution. Hence Lamé’s equation is an even Hill’s equation. The

function sn2z has a second period 2iK ′. Therefore, if w (z) is a solution of (4.1.1)

defined on the vertical strip 0 < <z < 2K then also w (z + 2iK ′) is a solution. Hence

Lamé’s equation can also be considered as a Hill’s equation with period 2iK ′. Since
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the two lines <z = 0, =z = K intersect at K, instead of asking for even or odd

solutions it is more natural to ask for solutions which are even or odd about K, that

is, w (K − z) = ±w (K + z) . Note that sn2z is even about K.

If we substitute

(4.1.2) t =
π

2
− am z,

then

dt

dz
= − dn z, sn z = cos t, cn z = sin t, dn2 z = 1− k2 cos2 t,

and Lamé’s equation becomes

(4.1.3)
(
1− k2 cos2 t

) d2w
dt2

+ k2 sin t cos t
dw

dt
+
(
h− ν (ν + 1) k2 cos2 t

)
w = 0.

Equation (4.1.3) is equivalent to

(4.1.4)

(
1− k2

2− k2
cos t

)
d2w

dt2
+

k2

2− k2
sin 2t

dw

dt

+

(
2h− ν (ν + 1) k2

2− k2
− ν (ν + 1) k2

2− k2
cos 2t

)
w = 0.

Equation (4.1.4) is an Ince equation with parameter

(4.1.5) − a = b =
k2

2− k2
, λ =

2h− ν (ν + 1) k2

2− k2
, d = −ν (ν + 1) k2

2− k2
.

If we substitute

(4.1.6) ξ = sn2z = cos2 t,

Lamé equation becomes a particular case of the Heun equation

(4.1.7)
d2w

dξ2
+

1

2

(
1

ξ
+

1

ξ − 1
+

1

ξ − k−2

)
dw

dξ
+

hk−2 − ν (ν + 1) ξ

4ξ (ξ − 1) (ξ − k−2)
w = 0.
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We substitute

(4.1.8) g = (e1 − e3)h+ ν (ν + 1) e3,

(4.1.9) η = (e1 − e3)−
1
2 (z − iK ′) ,

(4.1.10) ζ = ℘ (η) ,

where ℘ is the elliptic function of Weierstrass with corresponding constants e1, e2, e3.

Then Lamé equation becomes

(4.1.11)
d2w

dη2
+ (g − ν (ν + 1)℘ (η))w = 0,

and

(4.1.12)

d2w

dζ2
+

1

2

(
1

ζ − e1
+

1

ζ − e2
+

1

ζ − e3

)
dw

dζ
+

g − ν (ν + 1) ζ

4 (ζ − e1) (ζ − e2) (ζ − e3)
w = 0.

4.2. Eigenvalues

Consider the Lamé equation (4.1.1) with given values for k and ν. A solution

w (z) is even about K and has period 2K if and only if w (z) satisfies the boundary

conditions

(4.2.1) w′ (0) = w′ (K) = 0.

Lamé’s equation (4.1.1) together with the boundary conditions (4.2.1) pose a regular

Sturm-Liouville eigenvalue problem with spectral parameter h. Therefore, the cor-

responding eigenvalues h form a real increasing sequence that tends to infinity. We

denote these eigenvalues by a2mν (k2) .
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Similarly, a solution y (z) of Lamé’s equation is even about K and has semi-period

2K if and only if

(4.2.2) w (0) = w′ (K) = 0.

The corresponding sequence of eigenvalues is denoted by a2m+1
ν (k2) .

A solution y (z) of Lamé’s equation is odd about K and has semi-period 2K if

and only if

(4.2.3) w′ (0) = w (K) = 0.

The corresponding sequence of eigenvalues is denoted by b2m+1
ν (k2) .

A solution w (z) of Lamé’s equation is odd about K and has period 2K if and

only if

(4.2.4) w (0) = w (K) = 0.

The corresponding sequence of eigenvalues is denoted by b2m+2
ν (k2) .

All four sequences of eigenvalues are increasing and m = 0, 1, 2, ... The eigenfunc-

tions belonging to these eigenvalues are the Lamé’s functions. They will be studied

in more detail in Section 4.3 .

The notation of the eigenvalues is chosen in such a way that an even or odd

superscript is associated with Lamé’s functions with period 2K or semi-period 2K,

respectively. The letter a denotes eigenvalues associated with Lamé functions which

are even about K, whereas the letter b denotes eigenvalues associated with Lamé

functions which are odd about K. Originally, Ince [32] had used the letters a and

b in connection with even and odd Lamé functions, respectively. We adopted the

notation introduced by Erdélyi et al. [1] which is of advantage in section about Lamé

functions with imaginary period. In order to compare with work of Ince one just

has to exchange a2m+1
ν and b2m+1

ν . One should also note that amν (k2) is defined for

m = 0, 1, 2, ..., whereas bmν (k2) is defined only for m = 1, 2, 3, ... If we define a, b, d
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by (4.1.5) the eigenvalues of Lamé’s equation can be expressed

(4.2.5) 2amν
(
k2
)

= ν (ν + 1) k2 +
(
2− k2

)
αm (a, b, d) ,

(4.2.6) 2bmν
(
k2
)

= ν (ν + 1) k2 +
(
2− k2

)
βm (a, b, d) .

From Theorems 2.2.7, 3.5.4 we obtain the following results.

Theorem 4.2.1. The eigenvalues of Lamé’s equation interlace according to

a0ν <

 a1ν

b1ν

 <

 a2ν

b2ν

 <

 a3ν

b3ν

 < . . .

We have, for m ∈ N,

(4.2.7) sign
(
a2mν

(
k2
)
− b2mν

(
k2
))

= sign
m−1∏
n=−m

(2n− ν) (2n+ ν + 1) ,

and, for m ∈ N0,

(4.2.8) sign
(
a2m+1
ν

(
k2
)
− b2m+1

ν

(
k2
))

= sign
m∏

n=−m

(2n− 1− ν) (2n+ ν) .

In particular, we have coexistence

amν
(
k2
)

= bmν
(
k2
)

if and only if ν ∈ {0, 1, 2, . . . ,m− 1} .

Using the relationships (4.2.5), (4.2.6), Theorem 3.3.3 provides continued-fraction

equations for the eigenvalues of Lamé’s equation.

4.3. Eigenfunctions

The eigenfunctions of Lamé’s equation corresponding to the eigenvalues

(4.3.1) a2mν
(
k2
)
, a2m+1

ν

(
k2
)
, b2m+1

ν

(
k2
)
, b2m+2

ν

(
k2
)
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are denoted by

(4.3.2) Ec2mν
(
z, k2

)
, Ec2m+1

ν

(
z, k2

)
, Es2m+1

ν

(
z, k2

)
, Es2m+2

ν

(
z, k2

)
,

respectively. These are the (simply-periodic) Lamé functions. As eigenfunctions these

functions are only determined up to a constant factor. We normalize them by the

conditions

(4.3.3)

∫ K

0

dn z
(
Ecmν

(
z, k2

))2
dz =

π

4
,

(4.3.4)

∫ K

0

dn z
(
Esmν

(
z, k2

))2
dz =

π

4
.

To complete the definition, Ecmν (K, k2) is positive and d
dz
Esmν (K, k2) is negative.

Since d
dz

am z = dn z , this agrees with the normalization of Ince functions, and

we obtain

(4.3.5) Ecmν
(
z, k2

)
= Icm (t, a, b, d) ,

(4.3.6) Esmν
(
z, k2

)
= Ism (t, a, b, d) ,

where t, z are related by (4.1.2), and a, b, d are given in (4.1.5).

From Sturm-Liouville theory we derive the following property of Lamé functions.

Theorem 4.3.1. Each of the Lamé functions (4.3.2) has precisely m simple zeros

in the open interval (0, K). The superscript 2m, 2m+1, or 2m+2 equals the number

of zeros in the half-open interval (0, 2K] .

The analog of Theorem 2.3.1 for Lamé functions is the following

Theorem 4.3.2. Each of the function systems

(4.3.7)
{
Ec2mν

(
z, k2

)}∞
m=0

,
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(4.3.8)
{
Ec2m+1

ν

(
z, k2

)}∞
m=0

,

(4.3.9)
{
Es2m+1

ν

(
z, k2

)}∞
m=0

,

(4.3.10)
{
Es2m+2

ν

(
z, k2

)}∞
m=0

,

is orthogonal over[0, K], that is, for m 6= n,

(4.3.11)

∫ k

0

Ec2mν (t)Ec2nν (t) dt = 0,

(4.3.12)

∫ k

0

Ec2m+1
ν (t)Ec2n+1

ν (t) dt = 0,

(4.3.13)

∫ k

0

Es2m+1
ν (t)Es2n+1

ν (t) dt = 0,

(4.3.14)

∫ k

0

Es2m+2
ν (t)Es2n+2

ν (t) dt = 0, .

Moreover, each of the system (4.3.7), (4.3.8), (4.3.9), (4.3.10) is complete over [0, K].

4.4. Fourier Series

By (4.3.5), (4.3.6), the Fourier series from Section 2.5 give Fourier series for Lamé

functions

(4.4.1) Ec2mν (z, k2) =
A0√

2
+
∞∑
n=1

A2n cos (2nt) ,

(4.4.2) Ec2m+1
ν (z, k2) =

∞∑
n=0

A2n+1 cos (2n+ 1) t,
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(4.4.3) Es2m+1
ν (z, k2) =

∞∑
n=0

B2n+1 sin (2n+ 1) t,

(4.4.4) Es2m+2
ν (z, k2) =

∞∑
n=0

B2n+2 sin (2n+ 2) t.

Where t, z are related by (4.1.2). The coefficients satisfy the normalization relations

(2.5.5), (2.5.6), (2.5.7), (2.5.8) and the three-term difference equations given in The-

orem 3.3.1 with a, b, d from (4.1.5). If {xn} denotes any of the sequences {A2n} ,

{A2n+1} , {B2n+1} , {B2n+2} , Theorem 4.6.3 yields that either xn = 0 for large n, or

xn 6= 0 for all large n. In the latter case

(4.4.5) lim
n→∞

xn+1

xn
=

k2

(1 + k′)2
,

where

(4.4.6) k′ :=
√

1− k2

is the complementary modulus.

Using relations (2.3.13), (2.3.14) we can represent Lamé functions in a second way

in terms of Ince functions. We first note that with a, b from (4.1.5)

ω (t; a, b) = (1 + a cos 2t)−
1
2 = 2−

1
2

(
2− k2

)− 1
2
(
1− k2 cos 2t

)− 1
2

= 2−
1
2

(
2− k2

)− 1
2 (dn z)−1 .

(4.4.7)

(4.4.8) Ecmν (z, k2) = 2−
1
2

(
2− k2

)− 1
2 cm (a, b, d)−1 dn z Icm (t; a, b∗, d∗) ,

(4.4.9) Esmν (z, k2) = 2−
1
2

(
2− k2

)− 1
2 sm (a, b, d)−1 dn z Ism (t; a, b∗, d∗) ,
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where

b∗ = −4a− b =
3k2

2− k2
, d∗ = d− 4a− 2b =

−k2

2− k2
(ν (ν + 1)− 2) .

Therefore, we can write

(4.4.10) Ec2mν (z, k2) = dn z

(
C0√

2
+
∞∑
n=1

C2n cos (2nt)

)
,

(4.4.11) Ec2m+1
ν (z, k2) = dn z

(
∞∑
n=0

C2n+1 cos (2n+ 1) t

)
,

(4.4.12) Es2m+1
ν (z, k2) = dn z

(
∞∑
n=0

D2n+1 sin (2n+ 1) t

)
,

(4.4.13) Es2m+2
ν (z, k2) = dn z

(
∞∑
n=0

D2n+2 sin (2n+ 2) t

)
,

where

Cn = 2−
1
2

(
2− k2

)− 1
2 cm (a, b, d)−1An,

Dn = 2−
1
2

(
2− k2

)− 1
2 cm (a, b, d)−1Bn,

and the Fourier coefficients An and Bnbelong to the parameters a, b∗, d∗. Properties

of the coefficients Cn and Dn follow from those of An and Bn; see Section 2.5. For

example, we obtain (4.4.5) also for the sequences {C2n} , {C2n+1} , {D2n+1} , {D2n+2} .

One should note that the sequence {A2n} is an eigenvector of the matrix M1 with

a, b, d from (4.1.5), whereas {C2n} is an eigenvector of its adjoint. Both eigenvec-

tors belong to the same eigenvalue. In others words, {A2n} and {C2n} are right and

left eigenvectors of the same infinite tridiagonal matrix belonging to the same eigen-

value. Lemma 3.1.2 connects these eigenvectors. Similar remarks apply to the other

sequences of Fourier coefficients.
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Because of the special form of the weight (4.4.7) we can express the normalization

of these sequences more directly as follows.

Theorem 4.4.1. We have

(4.4.14)

(
1− k2

2

) ∞∑
n=0

C2
2n −

k2

2

(
√

2C0C2 +
∞∑
n=1

C2nC2n+2

)
= 1,

(4.4.15)

(
1− k2

2

) ∞∑
n=0

C2
2n+1 −

k2

2

(
1

2
C2

1 +
∞∑
n=1

C2n+1C2n+3

)
= 1,

(4.4.16)

(
1− k2

2

) ∞∑
n=0

D2
2n+1 +

k2

2

(
1

2
D2

1 −
∞∑
n=1

D2n+1D2n+3

)
= 1,

(4.4.17)

(
1− k2

2

) ∞∑
n=0

D2
2n −

k2

2

∞∑
n=1

D2nD2n+2 = 1,

(4.4.18)
C0√

2
+
∞∑
n=1

C2n > 0,
∞∑
n=0

C2n+1 > 0,

(4.4.19)
∞∑
n=0

(2n+ 1)D2n+1 > 0,
∞∑
n=0

(2n+ 2)D2n+2 > 0.

Proof. Since

dn2z = 1− k2

2
− k2

2
cos 2t,

we have

π

4
=

∫ K

0

dnz
(
Ec2mν

(
z, k2

))2
dz

=

∫ π/2

0

(
1− k2

2
− k2

2
cos 2t

)(
C0√

2
+
∞∑
n=1

C2n cos (2nt)

)2

dt.
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Using 2 cos (2t) cos (2nt) = cos 2 (n+ 1) t+ cos 2 (n− 1) t, we obtain (4.4.14). Formu-

las (4.4.15), (4.4.16), (4.4.17) are proved similarly, and (4.4.18), (4.4.19) follow from

(2.5.5), (2.5.6), (2.5.7), (2.5.8). �

4.5. Lamé Functions with Imaginary Periods

We consider Lamé’s equation as a Hill equation with period 2iK ′ along the line

<z = K. In order to transform to real variables, we set

(4.5.1) z = K + iK ′ − iu u ∈ R.

By Jacobi’s imaginary transformation,

sn (z, k) =
dn (iu, k)

k sn (iu, k)
=

1

k
dn (u, k′) .

Hence

k2sn2 (z, k) = 1− k′2sn2 (z, k′) ,

and Lamé’s equation becomes

(4.5.2)
d2w

du2
+
(
ν (ν + 1)− h− ν (ν + 1) k′2sn2 (u, k′)

)
w = 0.

This is again Lamé’s equation with k replaced by k′ and the spectral parameter

replaced by ν (ν + 1)− h. We have proved the following theorem.

Theorem 4.5.1. Lamé’s equation (4.1.1) admits a nontrivial solution which is

even about K and has period 2iK ′if and only if h = ν (ν + 1) − a2mν (k′2) for some

m ∈ N0. A corresponding eigenfunction is Ec2mν (i (z −K − iK ′) , k′2) .

Lamé’s equation admits a nontrivial solution which is even about K and has semi-

period 2iK ′if and only if h = ν (ν + 1)−a2m+1
ν (k′2) for some m ∈ N0. A corresponding

eigenfunction is Ec2m+1
ν (i (z −K − iK ′) , k′2) .
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Lamé’s equation admits a nontrivial solution which is odd about K and has semi-

period 2iK ′if and only if h = ν (ν + 1)−b2m+1
ν (k′2) for some m ∈ N0. A corresponding

eigenfunction is Es2m+1
ν (i (z −K − iK ′) , k′2) .

Lamé’s equation (4.1.1) admits a nontrivial solution which is odd about K and has

period 2iK ′if and only if h = ν (ν + 1)−b2m+2
ν (k′2) for some m ∈ N0. A corresponding

eigenfunction is Es2m+2
ν (i (z −K − iK ′) , k′2) .

Because of this theorem it is not necessary to introduce new notations for eigen-

values and eigenfunctions of Lamé’s equation with period or semi-period 2iK ′.

4.6. Lamé Polynomials

A Lamé function is called a Lamé polynomial of the first kind if its Fourier series

(4.4.1), (4.4.2), (4.4.3), or (4.4.4) terminates. It is called a Lamé polynomial of the

second kind if its expansion (4.4.10), (4.4.11), (4.4.12), or (4.4.13) terminates.

From Theorem 3.4.3 and its analogue for Ince polynomials of the second kind,

and from (4.1.5), we obtain the following result.

Theorem 4.6.1. The Lamé function Ecmν is a Lamé polynomial if and only if ν is a

nonnegative integer and m = 0, 1, ..., ν. The Lamé function Esmν is a Lamé polynomial

if and only if ν is a positive integer and m = 1, 2, ..., ν. The Lamé polynomials are of

the first kind or second kind if ν −m is even or odd, respectively.

There are the following eight types of Lamé polynomials

(4.6.1)

1) Ec2m2n
(
z, k2

)
, 2) Ec2m+1

2n+1

(
z, k2

)
,

3) Es2m+1
2n+1

(
z, k2

)
, 4) Ec2m2n+1

(
z, k2

)
,

5) Es2m+2
2n+2

(
z, k2

)
, 6) Ec2m+1

2n+2

(
z, k2

)
,

7) Es2m+1
2n+2

(
z, k2

)
, 8) Es2m+2

2n+3

(
z, k2

)
,

where n ∈ N0 and m = 0, 1, 2, . . . , n in each case.
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These Lamé polynomials and their corresponding eigenvalues can be computed

from the finite matrices Mj,l, j = 1, 2, 3, 4, of Section 2.4 as follows. Recall that the

polynomial Q defining the entries of the matrices is given by

(4.6.2) Q(µ) = − k2

2 (2− k2)
(2µ− ν) (2µ+ ν + 1) .

1) Let ν = 2n with n ∈ N0. Then

(4.6.3) a2m2n
(
k2
)

=
1

2

(
2− k2

)
α2m +

1

2
ν (ν + 1) k2, m = 1, 2, . . . , n,

where α2m are the eigenvalues of M1,n+1. The corresponding Lamé polynomials are

(4.6.4) Ec2m2n
(
z, k2

)
=
A0√

2
+

n∑
p=1

A2pT2p (sn z) ,

where Tp is the Chebyshev polynomial of the first kind defined by Tp (cos t) = cos (pt) .

The coefficients (A0, A2, . . . , A2n) form a right eigenvector of M1,n+1 belonging to the

eigenvalue α2m.The eigenvector is normalized according to (2.5.5) (with A2p = 0

forp > n.)

2) Let ν = 2n+ 1 with n ∈ N0. Then

(4.6.5) a2m+1
2n+1

(
k2
)

=
1

2

(
2− k2

)
α2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,

where α2m+1 are the eigenvalues of M2,n+1. The corresponding Lamé polynomials are

(4.6.6) Ec2m+1
2n+1

(
z, k2

)
=

n∑
p=0

A2p+1T2p+1 (sn z) ,

The coefficients (A1, A3, . . . , A2n+1) form a right eigenvector of M2,n+1 belonging to

the eigenvalue α2m+1. The eigenvector is normalized according to (2.5.6).

3) Let ν = 2n+ 1 with n ∈ N0. Then

(4.6.7) b2m+1
2n+1

(
k2
)

=
1

2

(
2− k2

)
β2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,
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where β2m+1 are the eigenvalues of M3,n+1. The corresponding Lamé polynomials are

(4.6.8) Es2m+1
2n+1

(
z, k2

)
= cn z

n∑
p=0

B2p+1U2p+1 (sn z) ,

where Up is the Chebyshev polynomial of the second kind defined by Up (cos t) =

sin(p+1)t
sin t

. The coefficients (B1, B3, . . . , B2n+1) form a right eigenvector of M3,n+1 be-

longing to the eigenvalue B2m+1. The eigenvector is normalized according to (2.5.7).

4) Let ν = 2n+ 1 with n ∈ N0. Then

(4.6.9) a2m2n+1

(
k2
)

=
1

2

(
2− k2

)
α2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,

where α2m+1 are the eigenvalues of M1,n+1. The corresponding Lamé polynomials are

(4.6.10) Ec2m2n+1

(
z, k2

)
= dn z

(
C0√

2
+

n∑
p=0

C2pT2p (sn z)

)
,

The coefficients (C0, C2, . . . , C2n) form a right eigenvector of M1,n+1 belonging to the

eigenvalue α2m.The eigenvector is normalized according to (4.4.14), (4.4.18).

5) Let ν = 2n+ 2 with n ∈ N0. Then

(4.6.11) b2m+2
2n+2

(
k2
)

=
1

2

(
2− k2

)
β2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,

where β2m+1 are the eigenvalues of M4,n+1. The corresponding Lamé polynomials are

(4.6.12) Ec2m+2
2n+2

(
z, k2

)
= cn z

n∑
p=0

B2p+2U2p+1 (cn z) ,

The coefficients (B2, B4, . . . , B2n+2) form a right eigenvector of M4,n+1 belonging to

the eigenvalue β2m+2. The eigenvector is normalized according to (2.5.8).

6) Let ν = 2n+ 2 with n ∈ N0. Then

(4.6.13) a2m+1
2n+2

(
k2
)

=
1

2

(
2− k2

)
α2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,
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where α2m+1 are the eigenvalues of M2,n+1. The corresponding Lamé polynomials are

(4.6.14) Ec2m+1
2n+2

(
z, k2

)
= dn z

n∑
p=0

C2p+1T2p+1 (sn z) ,

The coefficients (C1, C3, . . . , C2n+1) form a right eigenvector of M2,n+1 belonging to

the eigenvalue β2m+2. The eigenvector is normalized according to (4.4.15), (4.4.18).

7) Let ν = 2n+ 2 with n ∈ N0. Then

(4.6.15) b2m+1
2n+2

(
k2
)

=
1

2

(
2− k2

)
β2m+1 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,

where β2m+1 are the eigenvalues of M3,n+1. The corresponding Lamé polynomials are

(4.6.16) Es2m+1
2n+2

(
z, k2

)
= dn z cn z

n∑
p=0

D2p+1U2p (sn z) ,

The coefficients (D1, D3, . . . , D2n+1) form a right eigenvector of M3,n+1 belonging to

the eigenvalue β2m+1. The eigenvector is normalized according to (4.4.16), (4.4.19).

8) Let ν = 2n+ 3 with n ∈ N0. Then

(4.6.17) b2m+2
2n+3

(
k2
)

=
1

2

(
2− k2

)
β2m+2 +

1

2
ν (ν + 1) k2, m = 0, 1, . . . , n,

where β2m+2 are the eigenvalues of M4,n+1. The corresponding Lamé polynomials are

(4.6.18) Es2m+2
2n+3

(
z, k2

)
= dn z cn z

n∑
p=0

D2p+2U2p+1 (sn z) ,

The coefficients (D2, D4, . . . , D2n+2) form a right eigenvector of M4,n+1 belonging to

the eigenvalue β2m+2. The eigenvector is normalized according to (4.4.17), (4.4.19).

Example 4.6.2. Let n = 2, k = 1/2, and choose ν = 2n, from equation (4.1.5)

we have

a = −1

7
, b =

1

7
, d = −6

7
.
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The matrix M1,n+1 is

M1,3 =


0

3

7

√
2 0

3

7

√
2 4 −3

7

0 0 16

 ,

with eigenvalues

α0 = 2− 4

7

√
13, α2 = 2 +

4

7

√
13, α4 = 16,

α0 = 2− 4

7

√
13, α2 = 2 +

4

7

√
13, α4 = 16,

and corresponding eigenvectors

V0 =


−

√
2

−7+
√
13

1

0

 , V2 =


√
2

7+
√
13

1

0

 , V4 =


−
√
2

1566

− 28
783

1

 .

We also find that the Lamé eigenvalues a2m2n (k2)

a04 =
17− 2

√
13

4
, a24 =

17 + 2
√

13

4
, a44 =

33

2
,

with corresponding Lamé polynomials of type 1)

Ec04
(
z, k2

)
= − 1

−7 +
√

13
+ cos 2t,

Ec24
(
z, k2

)
=

1

7 +
√

13
+ cos 2t,

Ec44
(
z, k2

)
= − 1

1566
+− 28

783
cos 2t+ cos 4t.
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We have shown that the eight types of Lamé polynomials can be written as poly-

nomials in sn, cn, dn as follows.

1)w (z) = P
(
sn2 z

)
= w (2K − z) = w (2K + z) = w (z + 2iK ′)

2)w (z) = sn z P
(
sn2 z

)
= w (2K − z) = −w (2K + z) = w (z + 2iK ′)

4)w (z) = dn z P
(
sn2z

)
= w (2K − z) = w (2K + z) = −w (z + 2iK ′)

5)w (z) = sn z cn z P
(
sn2z

)
= −w (2K − z) = w (2K + z) = −w (z + 2iK ′)

6)w (z) = sn z dn z P
(
sn2z

)
= w (2K − z) = −w (2K + z) = −w (z + 2iK ′)

7)w (z) = cn z dn z P
(
sn2z

)
= −w (2K − z) = −w (2K + z) = w (z + 2iK ′)

8)w (z) = sn z cn z dn z P
(
sn2z

)
= −w (2K − z) = w (2K + z) = w (z + 2iK ′)

where P denotes a polynomial. If follows that Lamé polynomials are elliptic functions

with periods 4K and 4iK ′ that solve Lamé’s equation. We now prove the converse

statement.

Theorem 4.6.3. A nontrivial elliptic function with periods 4K and 4iK ′ that

solves Lamé’s equation is a constant multiple of a Lamé polynomial.

Proof. Let w (z) be a nontrivial elliptic function with periods 2K and 2iK ′, even

about K, which solves Lamé’s equation for some given h, ν, k. The function w (z)

is also even about iK ′, so its Laurent expansion at iK ′ contains only even powers

of z − iK ′. Since sn z is odd about iK ′ and has a simple pole at iK ′, there is a

polynomial P such that P (z) := w (z)− P (sn2z) is analytic at iK ′ and g (iK ′) = 0.

Since g (z) has periods 2K and 2iK ′ and can have poles only at 2pK + (2q + 1)K ′i,

p, q ∈ Z, g (z) is an entire elliptic function, and thus w (z) = P (sn2z) by Liouville’s

theorem. Substituting (4.1.2), we find that P (cos2 t) is a solution of the Ince equation

that corresponds to Lamé’s equation. This solution can be written as a finite linear

combination of cos (2nt) , n ∈ N0. Therefore, w (z) is a Lamé polynomial of the first
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kind. Arguing similarly, we see that the statement of the theorem is true if w (z) has

period or semi-period 2K, period or semi-period 2iK ′, and is even or odd about K.

Now let w (z) be a nontrivial elliptic function with periods 4K and 4iK ′ which

solves Lamé’s equation. By Floquet’s theorem, w (z) has period or semi-period 2K

and period or semi-period 2iK ′. If w (z) is neither even nor odd, then all solutions are

of this form. It follows from the first part of the proof that the Lamé equation has

two linearly independent solutions which are Lamé polynomials. This is impossible.

Hence w must be even or odd and the proof is complete. �

The following result is due to Erdélyi [16].

Theorem 4.6.4. Let ν ∈ N0. Then

(4.6.19) amν
(
k2
)

+ aν−mν

(
k′2
)

= ν (ν + 1) , m = 0, 1, . . . ν,

and Ecmν (z, k2) is a constant multiple of Ecν−mν (i (z −K − iK ′) , k′2) . Moreover,

(4.6.20) bmν
(
k2
)

+ bν−m+1
ν

(
k′2
)

= ν (ν + 1) , m = 1, 12, . . . ν,

and Esmν (z, k2) is a constant multiple of Esν−m+1
ν (i (z −K − iK ′) , k′2) .

Proof. Let ν = 2n with n ∈ N0, and consider the Lamé polynomials Ec2pν (z, k2)

for p = 0, 1, . . . , n. Employing the substitution (4.5.1) we find that the function

wp := Ec2pν (i (z −K − iK ′) , k′2) solves Lamé’s equation (4.1.1) with hp := ν (ν + 1)−

a2pν (k′2) . Therefore, wp (z) is a Lamé polynomial of type 1), and it belongs to the

eigenvalue hp. By Theorem 4.6.1 hp must equal a2mν (k2) for some m = 0, 1, . . . n.

Taking into account the ordering of the eigenvalues, we obtain

ν (ν + 1)− aν−2mν

(
k′2
)

= a2mν
(
k2
)
, m = 0, 1, . . . , n.

Moreover, Ecν−2mν (i (z −K − iK ′) , k′2) must be a constant multiple of Ec2mν (z, k2) .

The other seven types of Lamé polynomials are treated similarly. �



97

From Theorems 4.3.1 and 4.6.4 we obtain the following theorem on the distribution

of zeros of Lamé polynomials.

Theorem 4.6.5. Let n ∈ N0 and m = 0, 1, . . . , n. Each of the Lamé polynomials

4.6.1 has m zeros in (0, K) and n−m zeros in (K,K + iK ′) .

4.7. Lamé Polynomials in Algebraic Form.

Every Lamé polynomial (4.6.1) can be written as

w (z) =
(
sn2z

)ρ (
cn2z

)σ (
dn2z

)τ
P
(
sn2z

)
,(4.7.1)

where ρ, σ, τ are either 0 or 1
2
. Using the identities

dn2z = 1− k2sn2z, cn2z = 1− sn2z,

and the substitution ξ = sn2z, we find that every Lamé polynomial (4.6.1) can be

written as a quasi-polynomial

ξρ (1− ξ)σ
(
1− k2ξ

)τ
P (ξ) .(4.7.2)

The polynomial P (ξ) is of degree n, and, by Theorem 4.6.5, it has m simple zeros

in (0, 1) and n −m simple zeros in (1, k−2) . The functions (4.7.2) satisfy the Heun

equation (4.1.7). This shows that the functions (4.7.1) are special cases of Heun

quasi-polynomials, or, more generally, of Heine-Stieltjes quasipolynomials

The existence of quasi-polynomial solutions of (4.1.7) and various of their prop-

erties can be proved directly by the following method due to Stieltjes [64].

Let n ∈ N0, m = 0, 1, 2, . . . n, k ∈ (0, 1) and ρ, σ, τ ∈ {0, 1/2} be given. Let D be

the open convex domain in Rn consisting of (ξ1, ξ2, . . . , ξn) satisfying

(4.7.3) 0 < ξ1 < ξ2 < . . . < ξm < ξm+1 < . . . < ξn < k−2.
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Define the function

(4.7.4) g (ξ1, ξ2, . . . , ξn) :=

(
n∏
p=1

ξ
ρ+ 1

4
p |1− ξp|σ+

1
4
(
1− k2ξp

)τ+ 1
4

)∏
q<r

(ξq − ξr)

for (ξ1, ξ2, . . . , ξn) in the closure of D, that is , for (ξ1, ξ2, . . . , ξn) satisfying

(4.7.5) 0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξm ≤ ξm+1 ≤ . . . ≤ ξn ≤ k−2.

For (ξ1, ξ2, . . . , ξn) ∈ D, we calculate

(4.7.6)
∂ ln g

∂ξp
=
ρ+ 1

4

ξp
+
σ + 1

4

ξp − 1
+

τ + 1
4

ξp − k−2
+

n∑
p 6=q=1

1

ξp − ξq
.

If we calculate the Hessian matrix of second partial derivatives of ln g, we see that

the entries in its main diagonal are negative, all other entries are positive and the

row sums are negative. By looking at Gershgorin circles, we find that the Hessian is

negative definite. It follows that ln g is a strictly concave function on D. Since g is

defined and continuous on a compact subset of Rn it attains its absolute maximum.

Since g is nonnegative and vanishes along the boundary of its domain of definition,

the maximum is attained at a point in D. Since ln g is strictly concave, this point is

uniquely determined. Therefore, the system of equations

(4.7.7)
ρ+ 1

4

ξp
+
σ + 1

4

ξp − 1
+

τ + 1
4

ξp − k−2
+

n∑
p 6=q=1

1

ξp − ξq
= 0, p = 1, 2, . . . , n,

has a unique solution (ξ1,0, ξ2,0, . . . , ξn,0) ∈ D. By direct calculation, one can show

that the system of equations (4.7.7) holds if and only if the function

(4.7.8) ξρ (1− ξ)σ
(
1− k−2ξ

)τ n∏
j=1

(ξ − ξj,0) ,

satisfies (4.7.6). The method proves that, given n, m, k, ρ, σ, τ there is a unique

vector (ξ1,0, ξ2,0, . . . , ξn,0) ∈ D such that the function in (4.7.8) satisfies (4.7.6). The

system (4.7.7) admits the following electrostatic interpretation: Given three point

masses fixed at ξ = 0, ξ = 1, and ξ = k−2 with positive charges ρ+ 1/4, σ+ 1/4, and
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τ + 1/4 respectively, and n movable point masses at ξ1, . . . ξn arranged according to

(4.7.3) with unit positive charges, the equilibrium position is attained for ξj = ξj,0 for

j = 1, 2, . . . n.

4.8. Integral Equations

Let w1 (z) and w2 (z) be a pair of solutions of the same Lamé equation for some

given parameters h, ν, k. Then the function

(4.8.1) v (x, y) = w1 (x)w2 (y) , x, y ∈ R,

satisfies the hyperbolic partial differential equation

(4.8.2) ∂21v − ∂22v − k2ν (v + 1)
(
sn2 x− sn2 y

)
v = 0.

We apply Riemann’s method of integration to this equation. Consider the symmetric

function g of four real variables defined by

(4.8.3)

g (x, y, x0, y0) := k2 snx sn y snx0 sn y0

− k2

k′2
cnx cn y cnx0 cn y0 +

1

k′2
dnx dn y dnx0 dn y0,

or, equivalently,

(4.8.4) g (x, y, x0, y0) := 1 + 2
(f (x+ y)− f (x0 + y0)) (f (x− y)− f (x0 − y0))
(f (x+ y) + f (x0 + y0)) (f (x− y) + f (x0 − y0))

,

where

f (z) := k sn z + dn z.

Equality of the right-hand sides of (4.8.3) and (4.8.4) follows from the addition formu-

las for the Jacobian elliptic functions. The calculation is lengthy but nowadays can

be carried out easily with mathematical software like Maple. The Maple command

expand forces application of the addition theorems, and then the difference of the
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right-hand sides simplifies to 0. Define the function

(4.8.5) R (x, y, x0, y0) := Pν (g (x, y, x0, y0)) ,

where P is the Legendre function. Since f (z) > 0 for real z, the representation

4.8.4 shows that g (x, y, x0, y0) ∈ (−1,∞) On this interval, Pν is real-analytic, so R

is a real-analytic function on R4. Another calculation shows that R as a function

of (x, y) solves (4.8.2) for any (x0, y0) . This may also be derived from Section 3.10

where equation (4.8.2) is obtained by the method of separation of variables from

the Laplace equation. Formula (4.8.4) shows that g (x, y, x0, y0) = 1 on the lines

y − y0 = ± (x− x0) . Since P (1) = 1, it follows that

(4.8.6) R (x, y0 ± (x− x0) , x0, y0) = 1.

Therefore, R is the Riemann function of the partial differential equation (4.8.2). Set

a := R∂2v − v∂2R, b := R∂1v − v∂1R,

where v is the function defined in (4.8.1). Since , we obtain ∂1a = ∂2b, we obtain

(4.8.7)

∫
C

a (x, y) dx+ b (x, y) dy = 0

for for every closed rectifiable path C in R2.

We choose the pentagonal path C = C1 + C2 + C3 + C4 + C5, see Figure 4.8.1,

where x0, y0, y1 are arbitrary real numbers. By (4.8.6), R = 1 on C3 and C4.

Evaluating the line integrals along C3 and C4 using appropriate parameterizations,

we find

(4.8.8)

∫
C3

a (x, y) dx+ b (x, y) dy = v (x0, y0)− v (x0 + 2K, y0 + 2K) ,
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(4.8.9)

∫
C4

a (x, y) dx+ b (x, y) dy = v (x0, y0)− v (x0 − 2K, y0 + 2K) .

We now assume that w1 has period 4K. Since R (., y, x0, y0) has period 4K, a (., y)

and b (., y) also have period 4K for all y. It follows that

(4.8.10)

∫
C2

a (x, y) dx+ b (x, y) dy = −
∫
C5

a (x, y) dx+ b (x, y) dy,

(4.8.11)

∫
C1

a (x, y) dx+ b (x, y) dy =

∫ x0+2K

x0−2K
a (x, y1) dx =

∫ 2K

−2K
a (x, y1) dx.

Combining (4.8.7), (4.8.8), (4.8.9), (4.8.10), (4.8.11), we obtain

(4.8.12)

w1 (x0 + 2K)w2 (y0 + 2K)− w1 (x0)w2 (y0)

=
1

2

∫ 2K

−2K
(w′2 (y1)R (x, y1, x0, y0)− w2 (y1) ∂2R (x, y1, x0, y0))w1 (x) dx.

Now w1 has period or semi-period 2K, that is, there is σ ∈ {−1, 1} such that

(4.8.13) w1 (x+ 2K) = σw1 (x) .

Hence the left-hand side and so the right-hand side of (4.8.12) vanish when w2 = w1.

Therefore, multiplying (4.8.12) by w1 (y1), we obtain

(4.8.14)

(w1 (x0 + 2K)w2 (y0 + 2K)− w1 (x0)w2 (y0))w1 (y1)

=
1

2
W [w1, w2]

∫ 2K

−2K
R (x, y1, x0, y0)w1 (x) dx,

where W [w1, w2] denotes the (constant) Wronskian of w1, w2. If w1, w2 are linearly

dependent, then (4.8.14) is trivially true. So let w1, w2. be linearly independent. By

Floquet’s theorem, there is τ such that

(4.8.15) w2 (x+ 2K) = σw1 (x) + τw2 (x) .
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Using (4.8.13) and (4.8.15) we rewrite the left-hand side of (4.8.14) as

(w1 (x0 + 2K)w2 (y0 + 2K)− w1 (x0)w2 (y0))w1 (y1) = w1 (x0)w1 (y0)w1 (y1) .

We proved the following theorem.

Theorem 4.8.1. Let w1 be one of the Lamé functions Ecmν or Esmν . Then there

exists a constant µ such that, for all x0, y0, y1 ∈ R,

(4.8.16) µw1 (x0)w1 (y0)w1 (y1) =

∫ 2K

−2K
R (x, y1, x0, y0)w1 (x) dx.

The constant µ can be written in the form

µ =
2στ

W [w1, w2]

where w2 is a solution of the same Lamé equation satisfied by w1, linearly independent

of w1 and σ, τ are determined from (4.8.13), (4.8.15).

As a corollary we obtain the following integral equations for Lamé functions.

Theorem 4.8.2. The Lamé function w1 (z) = Ec2mν (z, k2) satisfies

(4.8.17) w1 (z)w2 (K) =

∫ K

0

Pν

(
1

k′
dnx dn z

)
w1 (z) dz,

where w2 is the solution of (4.1.1) with h = a2mν (k2) determined by w2 (0) = 0, and

w′2 (0) = 1;

The Lamé function w1 (z) = Ec2m+1
ν (z, k2) satisfies

(4.8.18) w1 (z)w2 (K) = −k2 snx

∫ K

0

sn z P ′ν

(
1

k′
dnx dn z

)
w1 (z) dz,

where w2 is the solution of (4.1.1) with h = a2m+1
ν (k2) determined by w2 (0) = 1, and

w′2 (0) = 0;

The Lamé function w1 (z) = Es2m+1
ν (z, k2) satisfies

(4.8.19) w1 (z)w′2 (K) =
k2

k′
cnx

∫
cn z P ′ν

(
1

k′
dnx dn z

)
w1 (z) dz,
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where w2 is the solution of (4.1.1) with h = b2m+1
ν (k2) determined by w2 (0) = 0, and

w′2 (0) = 1;

The Lamé function w1 (z) = Es2m+1
ν (z, k2) satisfies

(4.8.20) w1 (z)w′2 (K) =
k4

k′
snx cnx

∫ K

0

snx cn z P ′′ν

(
1

k′
dnx dn z

)
w1 (z) dz,

where w2 is the solution of (4.1.1) with h = b2m+2
ν (k2) determined by w2 (0) = 1, and

w′2 (0) = 0.

Proof. To prove (4.8.17) we use Theorem 4.8.1 with x0 = x, y0 = 0, y1 = K. We

have W [w1, w2] = w1 (0) , and, by (4.8.15) with x = −K, τw1 (K) = 2w2 (K) Then

(4.8.17) follows by noting that the function under the integral is even with period

2K. The other equations follow similarly after differentiating equation (4.8.16) with

respect to y0, y1, and y1 and y0, respectively. �

We note that ν ∈ N0 for Lamé polynomials in which case the Legendre function P

becomes the Legendre polynomial of degree ν. We also note that the factor of w1 (x)

on the left-hand sides of the integral equations vanishes if and only if w2 also has

period 4K, so if and only if odd and even periodic solutions coexist. By Theorem

4.2.1 this happens if and only if ν ∈ N0 and m > ν. This section is based on [72, 74].

4.9. Asymptotic Expansions

As ν →∞ the eigenvalue function amν (k2) has the asymptotic expansion

(4.9.1) amν ∼ pκ− τ0 − τ1κ−1 − τ2κ−2 − ...

Where

(4.9.2) κ = k (ν (ν + 1))
1/2 , p = 2m+ 1.
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Figure 4.8.1. integration path
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The coefficients are given by

(4.9.3)

τ0 =
1

23

(
1 + k2

) (
1 + p2

)
,

τ1 =
p

26

((
1 + k2

)2 (
p2 + 3

)
− 4k2

(
p2 + 5

))
,

τ2 =
1

210

(
1 + k2

) (
1− k2

)2 (
5p4 + 34p2 + 9

)
,

τ3 =
p

214

((
1 + k2

)4 (
33p4 + 410p2 + 405

)
−24k2

(
1 + k2

)2 (
7p4 + 90p2 + 95

)
+ 16k2

(
9p4 + 130p2 + 173

))
,

τ4 =
1

216

((
1 + k2

)5 (
63p6 + 1260p4 + 2943p2 + 486

)
− 8k2

(
1 + k2

)3 (
49p6 + 1010p4 + 2493p2 + 432

)
16k4

(
1 + k2

) (
35p6 + 760p4 + 2043p2 + 378

))
.

The first three terms in (4.9.1) were given by Ince [32] . The expressions for τ3 and

τ4 are due to Müller [50]. Additional terms can be derived using the algorithm from

[50] with the help of Maple.



105

The asymptotic expansion (4.9.1) also holds for bmν (k2) , since the difference bmν (k2)−

amν (k2) becomes exponentially small as ν →∞ according to

(4.9.4) bmν
(
k2
)
− amν

(
k2
)

=
(1− k2)−m−1/2

m!
√

2π
(8kν)m+3/4

(
1− k
1 + k

)ν+1/2 (
1 +O

(
ν−

1/2
))

as ν →∞. This formula was derived in [79] based on results from [82].

4.10. Further Results

Hargrave and Sleeman [20] investigate the asymptotic behavior of Lamé polyno-

mials as ν → ∞. Mueller [50, 51, 52] finds asymptotic expansions for solutions of

the Lamé wave equation. Erdélyi [18] and Sleeman [62] study expansions of Lamé

functions in series of Legendre functions. Volkmer [76] considers the expansion of

analytic functions of two variables in terms of products of Lamé polynomials. Triebel

[68] applies Lamé functions in the theory of conformal maps. Patera and Winternitz

[53] find bases for the rotation group. Erdélyi [17], Shail [60, 61], Whittaker [85]

and Volkmer [73, 75] study integral equations for Lamé functions. Sleeman [63] has

integral relations for Lamé functions involving double integrals. Lambe [39, 41] gives

additional results on Lamé polynomials. Volkmer [76, 79] gives additional results on

the Lamé equation. Arscott and Khabaza [9] compute tables of Lam´e polynomials.

Jansen [34] computes Lamé functions. Ritter [58] and Dobner and Ritter [13] com-

pute Lam´e polynomials. If ν − 1/2 is an integer, Lamé’s equation admits solutions

which are non-rational algebraic functions of sn z cn z dn z. Erdélyi [15], Ince [31]

and Lambe [40] investigate these algebraic Lamé functions. Maier [46, 47] obtains

interesting new results on the Lamé equation.
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CHAPTER 5

A Generalization of Lamé’s Equation

In this Chapter we discuss a generalization of Lamé’s equation due to Pawellek

[54]. This generalization is achieved by the use of so called generalized elliptic func-

tions [55].

5.1. The Generalized Jacobi Elliptic Functions

Let 0 < k2 < k1 < 1. We now introduce generalized Jacobian functions s, c, d1, d2;

[55], [71]. We set

(5.1.1) κ :=

(
k21 − k22
1− k22

)1/2

∈ (0, 1), k′2 =
√

1− k22, κ′ =
√

1− κ2,

and

(5.1.2) p(u, k1, k2) :=
(
k′22 + k22 sn2(k′2u, κ)

)−1/2
.

We have to specify the choice of root in (5.1.2). The function p is used only on

the lines =u = 0, k′2<u = K := K(κ) and k′2=u = K ′ := K(κ′). On the first two lines

k′22 + k22 sn2(k′2u, κ) > 0 and we use the positive root to define p. On the third line we

define p as follows. We set u = u′ + iK
′

k′2
with u′ ∈ R. Then

k′22 + k22 sn2(k′2u, κ) = k′22 + k22κ
−2 sn−2(k′2u

′, κ)

and we define

p(u, k1, k2) =
sn(k′2u

′, κ)√
k′22 sn2(k′2u

′, κ) + k22κ
−2

for u = u′ + i
K ′

k′2
, u′ ∈ R.

Then p is an analytic function of u on each of the three lines.
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Now we set

(5.1.3)

s(u, k1, k2) = sn(k′2u, κ)p(u, k1, k2),

c(u, k1, k2) = k′2 cn(k′2u, κ)p(u, k1, k2),

d1(u, k1, k2) = k′2 dn(k′2u, κ)p(u, k1, k2),

d2(u, k1, k2) = k′2p(u, k1, k2).

These functions satisfy

(5.1.4) s2 + c2 = 1, d2
i = 1− k2i s2, i = 1, 2.

The derivatives of the elliptic functions together with definitions (5.1.3) gives the first

derivatives

(5.1.5)

s′ (z) = c (z) d1 (z) d2 (z) ,

c′ (z) = −s (z) d1 (z) d2 (z) ,

d′1 (z) = −k21s (z) c (z) d2 (z) ,

d′2 (z) = −k22s (z) c (z) d1 (z) .

From their properties, we can think of the functions (5.1.3) as generalizations of

the usual Jacobi elliptic functions sn (z, k) , cn (z, k) , dn (z, k) , and they reduce to

them as k2 → 0. From the doubly-periodic properties of the Jacobian elliptic functions

we can deduce that the generalized elliptic functions s (z) , c (z) , d1 (z) , and d2 (z)

are quasi-doubly periodic

(5.1.6) s

(
z +

4K (κ)

k′2

)
= s

(
z +

2iK (κ′)

k′2

)
= ±s (z) ,

(5.1.7) c

(
z +

4K (κ)

k′2

)
= c

(
z +

2K (k) + 2iK (κ′)

k′2

)
= ±c (z) ,

(5.1.8) d1

(
z +

2K (κ)

k′2

)
= d1

(
z +

4iK (κ′)

k′2

)
= ±d1 (z) ,
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(5.1.9) d2

(
z +

2K (κ)

k′2

)
= d2

(
z +

2iK (κ′)

k′2

)
= ±d2 (z) .

For more details on the generalized elliptic function see [55]. This section is based

on [54, 55].

5.2. A Generalization of Lamé’s Equation.

We consider the equation

(5.2.1)
d2w

dz2
+ (h+ V (z))w = 0,

where

(5.2.2)

V (z) :=
(
αk21k

2
2 + βk22

)
s4 (z, k1, k2)−

(
ν (ν + 1) k21 + γk22 + δk21k

2
2

)
s2 (z, k1, k2) .

The number k1and k2 are such that 0 < k2 < k1 < 1, and denote the moduli of

the generalized Jacobian elliptic function s (z) = s (z, k1, k2) . We assume that the

parameters α, β, γ, δ, ν are real. The parameter h is the spectral parameter and will

also be always real. Equation 5.2.2 is a natural generalization of the Lamé equation

4.1.1. Also note that as k2 → 0, 5.2.2 reduces to the original Lamé equation.

If we substitute ξ = s2 (z, k1, k2) , we get

(5.2.3)

d2w

dξ2
+

1

2

(
1

ξ
+

1

ξ − 1
+

1

ξ − k−21

+
1

ξ − k−22

)
dw

dξ

− hk−21 k−22 + Az2 −Bz
4ξ (ξ − 1)

(
ξ − k−21

) (
ξ − k−22

)w = 0,

with

A = α + βk−21 , B = ν (ν + 1) k−22 + γk−21 + γ.

Equation (5.2.3) is a generalization of the algebraic form of Lamé equation (5.2.3). It

is of Fuchsian type with five regular singular points. The exponents are 0 and 1
2

for

z = 0, 1, k−21 , k−22 and 1
2

[
1±

(
1 + α + βk−21

) 1
2

]
for ∞.
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By the substitution of t = a (z, k1, k2) , where a (z, k1, k2) is defined by

(5.2.4)
dt

dz
=
√(

1− k21 sin2 t
) (

1− k22 sin2 t
)
,

(the function a (z, k1, k2) can be understood as the generalization of Jacobi’s ampli-

tude function am (z, k)) and using

(5.2.5)
d2t

dz2
=

1

2

(
k21k

2
2 − k21 − k22

)
sin 2t− 1

4
k21k

2
2 sin 4t,

with w (z) = y (t) , equation (5.2.1) becomes a generalized Ince equation with η = 2

(5.2.6)

(1 + a1 cos 2t+ a2 cos 4t) y′′+(b1 sin 2t+ b2 sin 4t) y′+(λ+ d1 cos 2t+ d2 cos 4t) y = 0,

where the coefficients aj, bj, dj, j = 1, 2, and λ are given by

(5.2.7) a1 =
k21 + k22 − k21k22

2 + 3
4
k21k

2
2 − k21 − k22

,

(5.2.8) a2 =
1
4
k21k

2
2

2 + 3
4
k21k

2
2 − k21 − k22

,

(5.2.9) b1 = −a1,

(5.2.10) b2 = −2a1,

(5.2.11) d1 =
ν (ν + 1) k21 + (γ − β) k22 − (δ − α) k21k

2
2

2 + 3
4
k21k

2
2 − k21 − k22

,

(5.2.12) d2 =
1
4

(αk21k
2
2 + βk22)

2 + 3
4
k21k

2
2 − k21 − k22

,

(5.2.13) λ =
2h− ν (ν + 1) k21 +

(
3β
4
− γ
)
k22 −

(
3α
4
− δ
)
k21k

2
2

2 + 3
4
k21k

2
2 − k21 − k22

.
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Note that coefficients (5.2.7), (5.2.8), (5.2.9), (5.2.10), (5.2.11), (5.2.12), (5.2.13) re-

duce to (4.1.5) as k2 → 0.

From (5.1.6) we know that the function s2 (z, k1, k2) has period 2K

(5.2.14) K := 2k′−12 K (κ) ,

where κ is defined by (5.1.1) and K (κ) is the complete elliptic integral of the first

kind. Therefore, if w (z) is a solution of (5.2.1) then also w (z + 2K) is a solution.

Hence the generalized Lamé equation is a Hill’s equation with period 2K. Also note

that s2 (z) is an even function. Therefore, if w (z) is a solution of (5.2.1), then w (−z)

is also a solution. Hence (5.2.1) is an even Hill’s equation. The function s2 (z) has a

second period 2iK′, where

(5.2.15) K′ := k′−12 K (κ′) .

Hence, (5.2.2) can also be considered as a Hill’s equation with period iK′. Since

the two lines <z = 0, =z = K intersect at K, instead of asking for even or odd

solutions it is more natural to ask for solutions which are even or odd about K, that

is, w (K− z) = ±w (K + z) . Note that s2 (z) is even about K. Solutions to (5.2.1)

with period 2K and 4K correspond to solutions to (5.2.6) with period π and 2π

respectively.

A solution w (z) is even about K and has period 2K if and only if w (z) satisfies

the boundary conditions

(5.2.16) w′ (0) = w′ (K) = 0.

Equation (5.2.1) together with the boundary conditions (5.2.16) pose a regular Sturm-

Liouville eigenvalue problem with spectral parameter h. Therefore, the corresponding

eigenvalues h form a real increasing sequence that tends to infinity. We denote these

eigenvalues by

a2m := a2m
(
k21, k

2
2, α, β, γ, δ, ν

)
.
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Similarly, a solution w (z) of equation (5.2.1) is even about K and has semi-period

2K if and only if

(5.2.17) w (0) = w′ (K) = 0.

The corresponding sequence of eigenvalues is denoted by

a2m+1 := a2m+1

(
k21, k

2
2, α, β, γ, δ, ν

)
.

A solution w (z) of equation (5.2.1) is odd about K and has semi-period 2K if

and only if

(5.2.18) w′ (0) = w (K) = 0.

The corresponding sequence of eigenvalues is denoted by

b2m+1 := b2m+1

(
k21, k

2
2, α, β, γ, δ, ν

)
.

Finally, solution w (z) of equation (5.2.1) is odd about K and has semi-period 2K

if and only if

(5.2.19) w (0) = w (K) = 0.

The corresponding sequence of eigenvalues is denoted by

b2m+2 := b2m+2

(
k21, k

2
2, α, β, γ, δ, ν

)
.

All four sequences of eigenvalues are increasing and m = 0, 1, 2, ...The eigenfunc-

tions belonging to these eigenvalues are the generalized Lamé functions. The notation

of the eigenvalues is chosen in such a way that an even or odd subscript is associated

with the generalized Lamé functions with period 2K or semi-period 2K, respectively.

The letter a denotes eigenvalues associated with the generalized Lamé functions which
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are even about K, whereas the letter b denotes eigenvalues associated with the gen-

eralized Lamé which are odd about K.

One should also note that am is defined for m = 0, 1, 2, ..., whereas bm is defined

only for m = 1, 2, 3, ... If we define aj, bj, dj, j = 1, 2 by (5.2.7), (5.2.8), (5.2.9),

(5.2.10), (5.2.11), (5.2.12) the eigenvalues of the generalized Lamé equation can be

expressed as

(5.2.20)

2am
(
k21, k

2
2

)
= ν (ν + 1) k21 −

(
3β

4
− γ
)
k22 +

(
3α

4
− δ
)
k21k

2
2

+

(
2 +

3

4
k21k

2
2 − k21 − k22

)
αm (a,b,d) ,

(5.2.21)

2bm
(
k21, k

2
2

)
= ν (ν + 1) k21 −

(
3β

4
− γ
)
k22 +

(
3α

4
− δ
)
k21k

2
2

+

(
2 +

3

4
k21k

2
2 − k21 − k22

)
βm (a,b,d) ,

where αm, βm are the eigenvalues of equation (5.2.6) corresponding to even and odd

eigenfunctions respectevily.

From Sturm-Liouville theory we obtain the following result.

Theorem 5.2.1. The eigenvalues of Lamé’s equation interlace according to

a0 <

 a1

b1

 <

 a2

b2

 <

 a3

b3

 < . . .

The eigenfunctions of Lamé’s equation corresponding to the eigenvalues

(5.2.22) a2m, a2m+1, b2m+1, b2m+2

are denoted by

(5.2.23) Ec2m
(
z, k21, k

2
2

)
, Ec2m+1

(
z, k21, k

2
2

)
, Es2m+1

(
z, k21, k

2
2

)
, Es2m+2

(
z, k21, k

2
2

)
,
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respectively. These are the (simply-periodic) generalized Lamé functions. As eigen-

functions these functions are only determined up to a constant factor. We normalize

them by the conditions

(5.2.24)

∫ K

0

d1 (z) d2 (z)
(
Ecm

(
z, k21, k

2
2

))2
dz =

π

4
,

(5.2.25)

∫ K

0

d1 (z) d2 (z)
(
Esm

(
z, k21, k

2
2

))2
dz =

π

4
.

To complete the definition, Ecm (K, k21, k
2
2) is positive and d

dz
Esm (K, k21, k

2
2) is nega-

tive.

Since d
dz

a (z) = d1 (z) d2 (z) , this agrees with the normalization of the generalized

Ince functions, and we obtain

(5.2.26) Ecm
(
z, k21, k

2
2

)
= Icm (t; aj, bj, dj) ,

(5.2.27) Esm
(
z, k21, k

2
2

)
= Ism (t; aj, bj, dj) ,

where t, z are related by (5.2.4), and aj, bj, dj, j = 1, 2 are given by (5.2.7), (5.2.8),

(5.2.9), (5.2.10), (5.2.11), (5.2.12)

From [10, Chapter 8, Theorem 2.1 ] we obtain the following oscillation properties.

Theorem 5.2.2. Each of the functions (5.2.23)has precisely m simple zeros in

the open interval (0,K). The superscript 2m, 2m + 1, or 2m + 2 equals the number

of zeros in the half-open interval (0, 2K] .

The analog of Theorem 2.3.1 for the generalized Lamé functions is the following

Theorem 5.2.3. Each of the function systems
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(5.2.28)
{
Ec2m

(
z, k21, k

2
2

)}∞
m=0

,

(5.2.29)
{
Ec2m+1

(
z, k21, k

2
2

)}∞
m=0

,

(5.2.30)
{
Es2m+1

(
z, k21, k

2
2

)}∞
m=0

,

(5.2.31)
{
Es2m+2

(
z, k21, k

2
2

)}∞
m=0

,

is orthogonal over[0,K], that is, for m 6= n,

(5.2.32)

∫ k

0

Ec2m
(
z, k21, k

2
2

)
Ec2n

(
z, k21, k

2
2

)
dt = 0,

(5.2.33)

∫ k

0

Ec2m+1

(
z, k21, k

2
2

)
Ec2n+1

(
z, k21, k

2
2

)
dt = 0,

(5.2.34)

∫ k

0

Es2m+1

(
z, k21, k

2
2

)
Es2n+1

(
z, k21, k

2
2

)
dt = 0,

(5.2.35)

∫ k

0

Es2m+2

(
z, k21, k

2
2

)
Es2n+2

(
z, k21, k

2
2

)
dt = 0,

Moreover, each of the system (5.2.28), (5.2.29), (5.2.30), (5.2.31) is complete over[0,K].
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By (5.2.26), (5.2.27), the Fourier series from Section 2.5 give Fourier series for the

generalized Lamé functions

(5.2.36) Ec2m(z, k21, k
2
2) =

A0√
2

+
∞∑
n=1

A2n cos (2nt) ,

(5.2.37) Ec2m+1(z, k
2
1, k

2
2) =

∞∑
n=0

A2n+1 cos (2nt) ,

(5.2.38) Es2m+1(z, k
2
1, k

2
2) =

∞∑
n=0

B2n+1 cos (2nt) ,

(5.2.39) Es2m+2(z, k
2
1, k

2
2) =

∞∑
n=0

B2n+2 cos (2nt) .

With the function ω (t; aj, bj) , j = 1, 2 from (2.2.6) and using the relations

(2.3.13), (2.3.14), the functions (5.2.23) can be represented in the following way

(5.2.40) Ecm(z, k21, k
2
2) = (ω (t; aj, bj) cm (aj, bj, dj))

−1 Icm
(
a∗j , b

∗
j , d
∗
j

)
,

(5.2.41) Esm(z, k21, k
2
2) = (ω (t; aj, bj) sm (aj, bj, dj))

−1 Ism
(
a∗j , b

∗
j , d
∗
j

)
,

where

b∗j = −4jaj − bj, d∗j = dj − 4j2aj − 2jbj, j = 1, 2.

Therefore, we can write

(5.2.42) Ec2m(z, k21, k
2
2) = (ω (t; ai, bi))

−1

(
C0√

2
+
∞∑
n=1

C2n cos (2nt)

)
,

(5.2.43) Ec2m(z, k21, k
2
2) = (ω (t; ai, bi))

−1

(
C0√

2
+
∞∑
n=1

C2n cos (2nt)

)
,
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(5.2.44) Es2m+1(z, k
2
1, k

2
2) = (ω (t; ai, bi))

−1

(
∞∑
n=0

D2n+1 cos (2nt)

)
,

(5.2.45) Es2m+2(z, k
2
1, k

2
2) = (ω (t; ai, bi))

−1

(
∞∑
n=0

D2n+2 cos (2nt)

)
,

where

Cm = (cm (ai, bi, di))
−1Am,

Dm = (sm (ai, bi, di))
−1Bm,

and the Fourier coefficients An and Bn belong to the parameters aj, b
∗
j , d

∗
j , j = 1, 2.

Properties of the coefficients Cn and Dn follow from those of An and Bn; see Section

2.5.

A function from (5.2.23) is called a generalized Lamé polynomial of the first kind

if its Fourier series (5.2.36), (5.2.37), (5.2.38), or (5.2.39) terminates. It is called a

generalized Lamé polynomial of the second kind if its expansion (5.2.42), (5.2.43),

(5.2.44), or (5.2.45) terminates. If they exist, These Lamé polynomials and their

corresponding eigenvalues can be computed from the finite matrices Mj,l, j = 1, 2, 3, 4,

where the matrices Mj are The pentadiogonal infinite matrices

(5.2.46) M1 =



r0
√

2q1−1
√

2q2−2 0 · · ·
√

2q10 r1 + q2−1 q1−2 q2−3 · · ·
√

2q20 q11 r2 q1−3 · · ·

0 q21 q12 r3 · · ·

0 0 q22 q13 · · ·

0 0 0 q23 · · ·

0 0 0 0 · · ·
...

...
...

...



,
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(5.2.47) M2 =



r†0 + q†10 q†1−1 + q†2−1 q†2−2 0 · · ·

q†11 + q†20 r†1 q†1−2 q†2−3 · · ·

q†21 q†12 r†2 q†1−3 · · ·

0 q†22 q†13 r†3 · · ·

0 0 q†23 q†14 · · ·

0 0 0 q†24 · · ·

0 0 0 0 · · ·
...

...
...

...



,

(5.2.48) M3 =



r†0 − q
†1
0 q†1−1 − q

†2
−1 q†2−2 0 · · ·

q†11 − q
†2
0 r†1 q†1−2 q†2−3 · · ·

q†21 q†12 r†2 q†1−3 · · ·

0 q†22 q†13 r†3 · · ·

0 0 q†23 q†14 · · ·

0 0 0 q†24 · · ·

0 0 0 0 · · ·
...

...
...

...



,

(5.2.49) M4 =



r1 − q2−1 q1−2 q2−3 0 . . .

q11 r2 q1−3 q2−4 · · ·

q21 q12 r3 q1−4 · · ·

0 q22 q13 r4 · · ·

0 0 q23 q14 · · ·

0 0 0 q24 · · ·

0 0 0 0 · · ·
...

...
...

...



,
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where

qjn = Qj (n) , rn = 4n2.

q†jn = Qj(n− 1/2), r†n = (2n+ 1)2 .

M4 has the same form as M1, except the first row and the first column are deleted

and the first entry in the upper left corner is replaced by r1 − q2−1. Notice also that

M2 and M3 have the same form except for the 3 entries in the upper left corner.

From the entries of the matrices Mj, j = 1, . . . 4, we deduce the five term recur-

rence relations for the coefficients An, Bn of equations (5.2.36), (5.2.38), (5.2.38), and

(5.2.39)

(5.2.50) −α2mA0 +
√

2q1−1A2 +
√

2q2−2A4 = 0,

(5.2.51)
√

2q10A0 +
(
4 + q2−1 − α2m

)
A2 + q1−2A4 + q2−3A6 = 0,

(5.2.52)
√

2q20A0 + q11A2 + (16− α2m)A4 + q1−3A6 + q2−4A8 = 0,

(5.2.53)
q2n−2A2(n−2) + q1n−1A2(n−1) + (rn − α2m)A2n

q1−nA2(n+1) + q2−(n+1)A2(n+2) = 0 n > 2,

(5.2.54)
(

4− q†10 − α2m+1

)
A1 +

(
q†1−1 + q†2−1

)
A3 + q†2−2A5 = 0,

(5.2.55)
(
q†11 + q†20

)
A1 + (9− α2m+1)A3 + q†1−2A5 + q†2−3A7 = 0,

(5.2.56)
q†2n−1A2n−3 + q†1n A2n−1 +

(
r†n − α2m+1

)
A2n+1

+ q†1−(n+1)A2n+3 + q†2−(n+2)A2n+5 = 0, n ≥ 2,
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(5.2.57)
(

1− q†10 − β2m+1

)
B1 +

(
q†1−1 − q

†2
−1

)
B3 + q†2−2B5 = 0,

(5.2.58)
(
q†11 − q

†2
0

)
B1 + (9− β2m+1)B3 + q†1−2B5 + q†2−3B7 = 0,

(5.2.59)
q†2n−1B2n−3 + q†1n B2n−1 +

(
r†n − β2m+1

)
B2n+1

+ q†1−(n+1)B2n+3 + q†2−(n+2)B2n+5 = 0, n ≥ 2,

(5.2.60)
(
4− q21 − β2m+2

)
B0 + q1−2B2 + q2−3B4 = 0,

(5.2.61) q11B0 + (16− β2m+2)B2 + q1−3B4 + q2−4B6 = 0,

where αm, βm are the eigenvalues of equation (5.2.6) that correspond to even and odd

eigenfunctions respectively. Using (5.2.20), (4.2.6), we can find recurence relations

for the eigenvalues am, bm of equation (5.2.2).
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CHAPTER 6

The Wave Equation and Separation of Variables

6.1. Elliptic Coordinates

In 1860 Mathieu encountered his equation when he solved the problem of the

vibrating elliptic membrane with fixed boundary (elliptical drum) [8]. Let the mem-

brane be bounded by the ellipse

x2

a2
+
y2

b2
= 1, a > b > 0.

The problem is to find non trivial solutions u (x, y) of the wave equation

∂2u

∂x2
+
∂2u

∂y2
+ ωu = 0

defined inside the ellipse which vanish along ellipse. We consider elliptic coordinates

x = c cosh ξ cos η, y = c sinh ξ sin η,

where c =
√
a2 − b2, so (±c, 0) are the foci of the ellipse. The interior of the ellipse

is given by 0 ≤ ξ < ξ0, 0 ≤ η < 2π where ξ0 is determined from a = c cosh ξ0,

b = c sinh ξ0. Setting u (x, y) = v (ξ, η) we obtain

−∂
2v

∂ξ2
− ∂2v

∂η2
=

1

2
c2ω (cosh 2ξ − cos 2η) v.

Separation of variables v (ξ, η) = v1 (ξ) v2 (η) leads to the ordinary differential equa-

tions (see section 3.6)

−v′′1 + 2µ cosh (2ξ) v1 = λv1,

−v′′2 + 2µ cos (2η) v2 = λv2,
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where λ is the separation constant and 4µ = c2ω. Since u has to be well-defined

function inside the ellipse we need v2 to have period 2π which forces v2 to have

period π or semi-period π. So we arrive at Mathieu’s equation and we have to find

its solutions with period π or semi-period π.

6.2. Sphero-Conal Coordinates in Rk+1

We introduce sphero-conal coordinates on Rk+1; see [71]; fix real numbers

(6.2.1) a0 < a1 < a2 < · · · < ak.

Let (x0, x1, . . . , xk) be in the positive cone of Rk+1

(6.2.2) x0 > 0, . . . , xk > 0.

Its sphero-conal coordinates r, s1, . . . , sk are determined in the intervals

(6.2.3) r > 0, ai−1 < si < ai, i = 1, . . . , k

by the equations

(6.2.4) r2 =
k∑
j=0

x2j

and

(6.2.5)
k∑
j=0

x2j
si − aj

= 0 for i = 1, . . . , k.

The latter equation determines s1, s2, . . . , sk as the zeros of a polynomial of degree k

with coefficients which are polynomials in x20, . . . , x
2
k.

In this way we obtain a bijective (real-)analytic map from the positive cone in

Rk+1 to the set of points (r, s1, . . . , sk) satisfying (6.2.3). The inverse map is found
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by solving a linear system. It is also analytic, and it is given by

(6.2.6) x2j = r2
∏k

i=1(si − aj)∏k
j 6=i=0(ai − aj)

.

Sphero-conal coordinates are orthogonal, and its scale factors (metric coefficients) are

given by Hr = 1, and

(6.2.7) H2
si

=
1

4

k∑
j=0

x2j
(si − aj)2

= −1

4
r2
∏k

i 6=j=1(si − sj)∏k
j=0(si − aj)

, i = 1, 2, . . . , k.

Consider the Laplace equation

(6.2.8) ∆u =
k∑
i=0

∂2u

∂x2i
= 0

for a function u(x0, x1, . . . , xk). Using (6.2.7) we transform this equation to sphero-

conal coordinates, and then we apply the method of separation of variables

(6.2.9) u(x0, x1, . . . , xk) = u0(r)u1(s1)u2(s2) . . . uk(sk).

For the variable r we obtain the Euler equation

(6.2.10) w′′0 +
k

r
w′0 +

4λ0
r2
w0 = 0

while for each of the variables s1, s2, . . . , sk we obtain the Fuchsian equation

(6.2.11)
k∏
j=0

(s− aj)

[
u′′ +

1

2

k∑
j=0

1

s− aj
u′

]
+

[
k−1∑
i=0

λis
k−1−i

]
u = 0.

More precisely, if λ0, . . . , λk−1 are any given numbers (separation constants), and

if u0(r), r > 0, solves (6.2.10) and ui(si), ai−1 < si < ai, solve (6.2.11) for each

i = 1, . . . , k, then u defined by (6.2.9) solves (6.2.8) in the positive cone of Rk+1

(6.2.2).
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6.2.1. Special Case k = 2. Sphero-conal coordinates r, β, γ form an orthogonal

coordinate system in R3. They are connected with Cartesian coordinates x, y, z

x = kr sn β sn γ,(6.2.12)

y = i
k

k′
r cn β cn γ,(6.2.13)

z = i
1

k′
r dn β dn γ.(6.2.14)

where

(6.2.15) r ≥ 0, β = K + iβ′, 0 ≤ β′ ≤ 2K ′, 0 ≤ γ ≤ 4K.

The coordinate system depends on the modulus k ∈ (0, 1) of the Jacobian elliptic

functions. The coordinate surfaces are spheres and confocal cones given by

x2 + y2 + z2 = r2,(6.2.16)

x2

b2
+

y2

b2 − 1
− z2

k−2 − b2
= 0, b = sn β,(6.2.17)

x2

c2
− y2

1− c2
− z2

k−2 − c2
= 0, c = sn γ,(6.2.18)

where

1 ≤ b2 ≤ k−2, 0 ≤ c2 ≤ 1.

The wave equation

(6.2.19) ∇2u+ ω2u = 0

transformed to sphero-conal coordinates takes the form

(6.2.20) k2
(
sn2 β − sn2 γ

) ((
r2ur

)
r

+ ω2r2u
)
− uββ + uγγ = 0.

This equation admits separated solution
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(6.2.21) u (r, β, γ) = u1 (r)u2 (β)u3 (γ) ,

where u1, u2, u3 satisfy the differential equations

(
r2u′1

)′
+
(
ωr2 − ν (ν + 1)

)
u1 = 0,(6.2.22)

u′′2 +
(
h− ν (ν + 1) k2 sn2 β

)
u2 = 0,(6.2.23)

u′′3 +
(
h− ν (ν + 1) k2 sn2 γ

)
u3 = 0,(6.2.24)

with separation constants h and ν . We obtain the differential equation (6.2.22) of

spherical Bessel functions, and twice Lamé’s equation (4.1.1).

Assume that ν ∈ N0 and consider the Lamé polynomials Ecmν , m = 0, 1, ..., ν,

Ecmν , m = 0, 1, ..., ν; see Section (4.6). Then the functions

(6.2.25) rνEcmν (β)Ecmν (γ) , rνEsmν (β)Esmν (γ)

are solutions of (6.2.19) with ω = 0, so they are a harmonic functions of x, y, z.

Theorem 6.2.1. The functions (6.2.25) are harmonic polynomials in x, y, z ho-

mogeneous of degree ν.

Proof. Consider the Lamé polynomial E = Ecm2n, m = 0, 1, 2, . . . n. Then E (z) =

P (sn2 z) , where P is the polynomial of degree n with simple real zeros:

(6.2.26) P (ξ) = d

n∏
j=1

(ξ − θj) .

From the definition of sphero-conal coordinates, we obtain

(6.2.27) r2
(
sn2 β − θ

) (
sn2 γ − θ

)
= θ (θ − 1)

(
θ − k−2

)(x2
θ

+
y2

1− θ
+

z2

θ − k−2

)
.
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By (6.2.26), (6.2.27)

(6.2.28) r2nE (β)E (γ) = d2
n∏
j=1

θj (θj − 1)
(
θj − k−2

)(x2
θj

+
y2

1− θj
+

z2

θj − k−2

)

which shows that r2nE (β)E (γ) is a (harmonic) polynomial inx, y, z which is homo-

geneous of degree 2n. The other types of Lamé polynomials are treated similarly. �

We note that the eight types of Lamé polynomials lead to harmonic polynomials

f(x, y, z) of the following parities:

(6.2.29)

1) f (x, y, z) = f (−x, y, z) = f (x,−y, z) = f (x, y,−z)

2) f (x, y, z) = −f (−x, y, z) = f (x,−y, z) = f (x, y,−z)

3) f (x, y, z) = f (−x, y, z) = −f (x,−y, z) = f (x, y,−z)

4) f (x, y, z) = f (−x, y, z) = f (x,−y, z) = −f (x, y,−z)

5) f (x, y, z) = −f (−x, y, z) = −f (x,−y, z) = f (x, y,−z)

6) f (x, y, z) = −f (−x, y, z) = f (x,−y, z) = −f (x, y,−z)

7) f (x, y, z) = f (−x, y, z) = −f (x,−y, z) = −f (x, y,−z)

8) f (x, y, z) = −f (−x, y, z) = −f (x,−y, z) = −f (x, y,−z)

It follows from Theorem 6.2.1 that, for every ν ∈ N0 the functions

(6.2.30)

Ecmν (β)Ecmν (γ) , m = 0, 1, 2, . . . ν, Esmν (β)Esmν (γ) , m = 1, 2, . . . ν,

are spherical harmonics of degree when considered as functions defined on the unit

sphere S in R3. Let L2 (S) be the space of square-integrable functions defined on

S equipped with its natural inner product. The volume element in sphero-conal

coordinates is

r2
(
k2 sn2 β − sn2 γ

)
drdβ′dγ.
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Therefore, if two functions f, g ∈ L2 (S) are expressed in sphero-conal coordinates,

their inner product is given by

(6.2.31) 〈f, g〉 =

∫ 4K

0

∫ 2K′

0

(
sn2 β − sn2 γ

)
f (β, γ) g (β, γ)dβ′dγ.

Theorem 6.2.2. The system of 2ν + 1 spherical harmonics forms (6.2.30) an

orthogonal basis in the linear space of spherical harmonics of degree ν .

Proof. The linear space of spherical harmonic of degree ν has dimension 2ν + 1

Thus it is sufficient to show that the spherical harmonics E (β)E (γ) and Ẽ (β) Ẽ (γ)

are orthogonal for different Lamé polynomials E, Ẽ. If E, Ẽ have different types, the

spherical harmonics have different parities, thus they are orthogonal. So let E and Ẽ

be two different Lamé polynomials of the same type. By Theorem 4.3.2

(6.2.32)

∫ K

0

E (γ) Ẽ (γ) dγ = 0,

and, by the remarks in Section 4.5

(6.2.33)

∫ K′

0

E (β) Ẽ (β) dβ′ = 0.

In (6.2.32), (6.2.33) we can replace K by 4K and K ′ by 2K ′, respectively. Then

orthogonality of E (β)E (γ) , Ẽ (β) Ẽ (γ) with respect to the inner product (6.2.31)

follows. �

It is well known that spherical harmonics are complete in L2 (S) that is, if an

orthogonal basis is selected in the space of spherical harmonics of degree ν for every

ν ∈ N0 then the combined system of all these bases forms an orthogonal basis in

L2 (S) . Therefore, we obtain the following theorem.

Theorem 6.2.3. The system of all functions (6.2.30) with ν ∈ N0 forms an

orthogonal basis of spherical harmonics. Every function f ∈ L2 (S) can be expanded

in a Fourier series with respect to this basis which converges to f in L2 (S) .
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The corresponding expansion of analytic functions in series of the products (6.2.30)

is investigated in [76].

So far we have considered solutions of (6.2.19) built from Lamé polynomials.

Other Lamé functions also lead to solutions which are useful in applications. An

important example is the problem of the vibrating elliptic membrane M on the sphere

S treated in [34]. The set M forms a part of the sphere which in sphero-conal

coordinates corresponds to a rectangle in the (β′, γ)−plane. The problem is to find

eigenfunctions of the Laplace-Beltrami equation (equation (6.2.19) with the radius

r separated off) with boundary conditions at the boundary of M. This problem is

analogous to the problem of the vibrating elliptical membrane in the plane which can

be solved using Mathieu functions. In a similar way, the corresponding problem on

the sphere can be solved with the help of simply-periodic Lamé functions.

Now we consider sphero-conal coordinates in the half-space z > 0 as in Section

3.6 by

x = rk cosϕ cosh ξ,(6.2.34)

y = r
k

k′
cosϕ cosh ξ,(6.2.35)

z = r
1

k′
(
1− k2 cos2 ϕ

)1/2 (
1− k2 cos2 ξ

)1/2
,(6.2.36)

where

r > 0, 0 ≤ ϕ < 2π, 0 < ξ < arcosh
1

k
, k, k′ ∈ (0, 1) , k′2 = 1− k2.

In this case equation (6.2.19) with ω = 0 becomes

(6.2.37)

(
1 +

k2

2 + k2
cos 2ϕ

)
∂2u

∂ϕ2
+

(
1 +

k2

2 + k2
cosh 2ξ

)
∂2u

∂ξ2
+

k2

2 + k2
sin 2ϕ

∂u

∂ϕ
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− k2

2 + k2
sinh 2ξ

∂u

∂ξ
+

k2

2 + k2
(cos 2ϕ− cosh 2ξ) r2

∂2u

∂r2
= 0.

We separate variables u = u1 (ϕ)u2 (ξ)u3 (r) using separation constants d and λ to

obtain

(6.2.38)

(
1 +

k2

2 + k2
cos 2ϕ

)
d2u1
dϕ

+
k2

2 + k2
sin 2ϕ

du1
dϕ

+ (λ+ d cos 2ϕ)u1 = 0,

(6.2.39)

(
1 +

k2

2 + k2
cosh 2ξ

)
d2u2
dϕ
− k2

2 + k2
sinh 2ξ

du2
dϕ
− (λ+ d cos 2ξ)u2 = 0.

(6.2.40) r2
d2u3
dr2

+−d (2 + k2)

k2
u3 = 0.

6.2.2. Special Case K = 3. Taking k = 3, sphero-conal coordinates in R4 can

be written in terms of Jacobian elliptic functions (but this will not be possible in

dimension higher than 4.) Using a linear substitution s = cs̃+ d, we assume without

loss of generality that a0 = 0 a1 = 1, a2 = k−21 and a3 = k−22 with 0 < k2 < k1 < 1.

Then (6.2.6) becomes

x20 = r2k21k
2
2s1s2s3,

x21 = r2
k21k

2
2

k′21 k
′2
2

(1− s1)(s2 − 1)(s3 − 1),

x22 = r2
k22

k′21 (k21 − k22)
(1− k21s1)(1− k21s2)(k21s3 − 1),

x23 = r2
k21

k′22 (k21 − k22)
(1− k22s1)(1− k22s2)(1− k22s3).

We now substitut
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s1 = s2 (α1, k1, k2) , 0 < k′2α1 < K,

s2 = s2 (α2, k1, k2) , α2 =
K

k′2
+ iα′2, 0 < k′2α

′
2 < K ′,

s3 = s2 (α3, k1, k2) , α3 = α′3 +
K ′

k′2
, 0 < k′2α

′
3 < K,

where K := K (κ) and K ′ := K (κ′) are the elliptic integral of the first kind, with κ

and κ′ defined the same way as in Section 5.1.

The maps αi → si are bijections. Using (5.1.4) , we obtain

x0 = rk1k2s (α1, k1, k2) s (α2, k1, k2) s (α3, k1, k2) ,

x1 = −rk1k2
k′1k

′
2

c (α1, k1, k2) c (α2, k1, k2) c (α3, k1, k2) ,

x2 = ir
k2

k′1k
′
2κ

d1 (α1, k1, k2) d1 (α2, k1, k2) d1 (α3, k1, k2) ,

x3 = r
k1
k′22 κ

d2 (α1, k1, k2) d2 (α2, k1, k2) d2 (α3, k1, k2) .

This representation is only valid for the positive cone R4. But now we can allow

0 < k′2α1 < 4K, 0 < k′2α
′
2 < K ′, −K < k′2α

′
3 < K to cover (almost) the whole space

R4.

6.3. Ellipsoidal Coordinates

Ellipsoidal coordinates α, β, γ form an orthogonal coordinate system in R3. They

are connected with Cartesian coordinates x, y, z by

x = k snα sn β sn γ,(6.3.1)

y = − k
k′

cnα cn β cn γ,(6.3.2)

z =
i

kk′
dnα dn β dn γ.(6.3.3)
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where

(6.3.4) α = K + iK ′ − α′, 0 ≤ α′ ≤ K, β = K + iβ′, 0 ≤ β′ ≤ 2K ′, 0 ≤ γ ≤ 4K.

The coordinate surfaces are confocal ellipsoids and hyperboloids with one or two

sheets given by

x2

a2
+

y2

a2 − 1
− z2

a2 − k−2
= 1, a = snα,(6.3.5)

x2

b2
+

y2

b2 − 1
− z2

k−2 − b2
= 1, b = sn β,(6.3.6)

x2

c2
− y2

1− c2
− z2

k−2 − c2
= 1, c = sn γ,(6.3.7)

where

k−2 ≤ a2 <∞, 1 ≤ b2 ≤ k−2, 0 ≤ c2 ≤ 1.

The wave equation (??) transformed to ellipsoidal coordinates α, β, γ is

(6.3.8)

(
sn2 β − sn2 γ

)
uαα +

(
sn2 γ − sn2 α

)
uββ +

(
sn2 α− sn2 β

)
uγγ

+ ω2k2
(
sn2 α− sn2 β

) (
sn2 β − sn2 γ

) (
sn2 β − sn2 γ

)
= 0.

It admits solutions of the form

(6.3.9) u (α, β, γ) = u1 (α)u2 (β)u3 (γ) ,

where u1, u2, u3 each satisfy the Lamé wave equation

(6.3.10) u′′ +
(
h− ν (ν + 1) k2 sn2 (z, k) + k2ω2 sn4 (z, k)

)
u = 0.

When ω = 0, this is the Lamé equation. For ω 6= 0, (6.3.10) can be considered as a

generalization of Lamé’s equation.

If we substitute
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(6.3.11) t =
π

2
− am z,

then

dt

dz
= − dn z, sn z = cos t, cn z = sin t, dn2 z = 1− k2 cos2 t,

and the Lamé wave equation (6.3.10) becomes

(6.3.12)(
1− k2 cos2 t

)
u′′ + k (sin t cos t)u′ +

(
h− ν (ν + 1) k2 cos2 t+ k2ω2 cos4 t

)
u = 0.

Equation (6.3.12) is equivalent to the generalized Ince equation

(6.3.13) (1 + a1 cos 2t)u′′ + b1 (sin 2t)u′ + (λ+ d1 cos 2t+ d2 cos 4t)u = 0,

where,

(6.3.14)

−a1 = b1 =
k2

2− k2
,

d1 = − k

2− k2
(
ν (ν + 1)− ω2

)
.

d2 =
k2ω2

4 (2− k2)

λ =
2h−

(
ν (ν + 1)− 3ω2

4

)
k2

2− k2

Consider a Lamé polynomial E and form the function

(6.3.15) E (α)E (β)E (γ)

which is a harmonic functions of x, y, z.

Theorem 6.3.1. Let E be a Lamé polynomial. Then (6.3.15) is a harmonic poly-

nomial in x, y, z.
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Proof. The definition of ellipsoidal coordinates leads to the identity

(6.3.16)(
sn2 α− θ

) (
sn2 β − θ

) (
sn2 γ − θ

)
= θ (θ − 1)

(
θ − k−2

)(x2
θ

+
y2

θ − 1
+

z2

θ − k−2
− 1

)
.

Let E be a Lamé polynomial of the first type written as E (z) = P (sn2 z) with P as in

(6.2.26). Then (6.3.16) shows that the function (6.3.15) is a (harmonic) polynomial.

The proof for the other types of Lamé polynomials is similar. �

The harmonic polynomials derived from (6.3.15) are called ellipsoidal harmonics;

see [8, §9.8.1], [24, Chapter XI] and [86, Chapter 23]. The parities of these polyno-

mials for the eight types of Lamé polynomials are again given by (6.2.29). Ellipsoidal

harmonics can be used to solve boundary value problems for harmonic functions in-

volving ellipsoids.
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CHAPTER 7

Mathematical Applications

7.1. Instability Intervals

We consider the generalized Ince equation in the following form

(7.1.1) (1 + εA (t)) y′′ (t) + εB (t) y′ (t) + (λ+ εD (t)) y (t) = 0.

where A (t) , B (t) , D (t) are trigonometric polynomials defined the same way as in

Chapter 2 and

|ε|
η∑
j=1

|aj| < 1.

Equation (7.1.1) contains the spectral parameter λ and the perturbation parameter

ε.

In this section we investigate the length Lm of the m-th instability intervals of

equation (7.1.1). Volkmer [80] finds The leading term in the expansion of Lm in terms

of ε. These results are extension of earlier work of Levy and Keller [43].

From Chapter 2, we know that The eigenvalue problem of (7.1.1) splits into four

problems with eigenfunctions that are even or odd, and have period or semi period

π. The eigenvalues λ form two increasing sequences {αm (ε)}∞m=0 and {βm (ε)}∞m=0

converging to infinity, where the eigenvalues αm, βm correspond to even and odd

eigenfunctions, respectively, and an even or odd subscripts m indicates that the cor-

responding eigenfunction have period π, respectively. in the unperturbed case ε = 0,

we have

(7.1.2) αm (0) = βm (0) = m2.
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The m-th instability interval of (7.1.1) is the interval with end points αm, βm for

m ≥ 1. The eigenvalue αm may be the left or right end point of this interval. We

may call αm − βm the signed length of the m-th instability interval. The analytic

functions αm (ε) and βm (ε) can be expanded of powers of ε. In this expansion of the

signed length αm − βm many terms cancel, the goal is to find the term with lowest

power of ε which does not vanish.

In the case A (t) = B (t) = 0, Levy and Keller [43] (see also Arnold [3]) proved

that

(7.1.3) αm (ε)− βm (ε) = ωmε
p+1 +O

(
εp+2

)
ε→ 0,

where

(7.1.4) m = pη + q, q = 1, 2, . . . η, p = 0, 1, 2, . . .

Moreover, Levy and Keller [43] gave an explicit formula for ωm when q = η. One

should note that that ωm may be zero for particular values of m and the coefficients

aj,bj, dj. Several of the improvements made by Volkmer [80] to the results found

in [43], are presented in this section. Our contribution to this discussion consists of

developing a Maple code capable of computing these instability intervals symbolically

and numerically (see Appendix A.) For additional results on the lengths of instability

intervals see also [11, 12, 26]. For a general account of perturbation theory see Kato

[35]. All proofs of results presented in this section can be found in [80].

7.1.1. The m-th instability intervals for odd m. Let m be a given positive

odd integer. Let y be an eigenfunction of (7.1.1) belonging to the eigenvalue λ = αm.

it admits the Fourier expansion

(7.1.5) y =
∞∑
k=0

A2k+1 cos (2k + 1) t
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where
∞∑
k=0

A2
2k+1 (2k + 1)2 <∞.

If ε = 0 then Am 6= 0 and A2k+1 = 0 for 2k + 1 6= m. If |ε| is small enough, Am is

nonzero, and we are permitted to normalize by

(7.1.6) Am = 1.

The Fourier coefficients Ak+1 (ε) are defined uniquely, and they are analytic func-

tions of ε in a neighborhood of ε = 0. Substituting (7.1.5) in (7.1.1) and comparing

coefficients, we obtain the formula

(7.1.7)
(
αm − (2k + 1)2

)
A2k+1 = ε

k∧η∑
j=1

Cj (2j − 2k − 1)A2k−2j+1

+ε

η∑
j=1

Cj (2j + 2k + 1)A2k+2j+1 + ε

η−k−1∑
i=1

Ci+k+1 (2i+ 1)A2i+1

where k = 0, 1, 2, . . . , and Cj is the quadratic polynomial

(7.1.8) Cj (µ) :=
1

2

(
ajµ

2 + bjµ− dj
)
.

If k ≥ η then (7.1.7) contains the empty sum
∑η−k−1

i=1 which is defined as 0.

The adjoint equation to (7.1.1) ( see Section 2.2 ) is

(7.1.9) (1 + εA(t))z′′ + εB∗(t)z′ + (λ+ εD∗(t))z = 0,

where

B∗ = 2A′ −B, D∗ = D + A′′ −B′.

We obtain (7.1.9) from (7.1.1) by replacing bj, dj by

(7.1.10) b∗j = −4jaj − bj, d∗j = −4j2aj − 2jbj + dj.
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The polynomial C∗j (µ) := 1
2

(
ajµ

2 + b∗jµ− d∗j
)

is related to Cj (µ) by

(7.1.11) C∗j (µ) = Cj (2j − µ) .

Since (7.1.1) and its adjoint (7.1.9) have the same eigenvalues, there is an eigenfunc-

tion z of (7.1.9) belonging to the eigenvalue λ = βm. It admits the Fourier expansion

(7.1.12) z =
∞∑
k=0

Bk+1 sin (2k + 1) t.

We again use the normalization

Bm = 1.

Substituting (7.1.12) in (7.1.1) and comparing coefficients, we obtain the formula

(7.1.13)
(
βm − (2k + 1)2

)
Bk+1 = ε

k∧η∑
j=1

Cj (2k + 1)B2k−2j+1

+ε

η∑
j=1

Cj (−2k − 1)B2k+2j+1 − ε
η−k−1∑
i=1

Ci+k+1 (2k + 1)B2i+1,

where k = 0, 1, 2, . . .

From Standard methods from perturbation theory, we have the following estimate

on the domains of analyticity of the eigenvalues αm (ε) and βm (ε) .

Theorem 7.1.1. If m is positive and odd then the eigenvalues functions αm (ε)

and βm (ε) are analytic in the disk |ε| < rm, where

(7.1.14) rm := min

{
2m− 2

C (m) + C (m− 2)
,

2m+ 2

C(m) + C(m+ 2)

}
,

and

C (µ) :=
1

2

(
aµ2 + bµ+ d

)
, a :=

η∑
j=1

|aj| , b :=

η∑
j=1

|bj| , d :=

η∑
j=1

|dj| .

If m = 1 the first term on the right-hand side of (7.1.14) is to be omitted, and if

a = b = c = 0 we set rm :=∞.
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Example 7.1.2. Taking a =
[
1
2
, 0
]
, b = [2, 2] , d = [2, 1] in Theorem 7.1.1, with

the help of Maple we obtain the following formula for rm

rm = min

{
2m− 2

1
4

(
m2 + (m− 2)2

)
+ 4m− 1

,
2m+ 2

1
4

(
m2 + (m+ 2)2

)
+ 4m+ 7

}
.

The following formula will be essential to calculate ωm in (7.1.3).

Theorem 7.1.3. For all positive add m, we have

(7.1.15) (αm − βm)
∞∑
k=0

A2k+1B2k+1 = 2ε

η−1∑
k=0

η−k−1∑
i=0

Ci+k+1 (2i+ 1)A2i+1B2k+1.

Next, define the sequence {u2k+1}k=0 by um := 1, u2k+1 := 0 for 2k + 1 > m, and

the recursively, for ` = 1, 2, . . . , j = 0, 1, 2, . . . , η − 1,

(7.1.16) um`+2j := em`+2j

j∑
i=0

Cη−j+i (m`−1 + 2i)um`−1+2i,

where

(7.1.17) m` := m− 2`η,

and

(7.1.18) ek :=
1

m2 − k2
.

Also, define u∗2k+1 the same way as u2k+1but with Cj replaced with C∗j .

Theorem 7.1.4. Let

(7.1.19) m = 2n+ 1, n = rη + q where q = 0, 1, . . . , η − 1, r = 0, 1, 2, . . .

(a) If m` ≤ 2k+ 1 ≤ m`−1 with ` = 0, 1, 2, . . . , r, then the Taylor expansions of A2k+1

and B2k+1 in powers of ε have the form

(7.1.20) A2k+1 = u2k+1ε
` +O

(
ε`+1

)
,
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(7.1.21) B2k+1 = u∗2k+1ε
` +O

(
ε`+1

)
.

(b) If k = 0, 1, . . . , q − 1 then

(7.1.22) A2k+1 =

(
u2k+1 + e2k+1

η−k−1∑
j=q

Cj+k+1 (2j + 1)u2j+1

)
εr+1 +O

(
εr+2

)
,

(7.1.23) B2k+1 =

(
u∗2k+1 − e2k+1

η−k−1∑
j=q

Cj+k+1 (2j + 1)u∗2j+1

)
εr+1 +O

(
εr+2

)
.

ωm can be determined in the following result by combining theorems 7.1.3 and

7.1.4.

Theorem 7.1.5. Let m be of the form (7.1.19).(a) If 2q < η then (7.1.3)holds

with p = 2r and

(7.1.24) ωm = 2

η−q−1∑
k=q

η−k−1∑
i=q

Ci+k+1 (2i+ 1)u2i+1u
∗
2k+1.

(b) If 2q ≥ η then (7.1.3)holds with p = 2r + 1 and

(7.1.25) ωm = 2

η−1∑
k=q

η−k−1∑
i=0

Ci+k+1 (2i+ 1)u2i+1u
∗
2k+1 + Ci+k+1 (2k + 1)u2k+1u

∗
2i+1.

7.1.2. The m-th instability intervals for even m. We now consider eigen-

values αm, βm of (7.1.1) for a given positive even integer m. Let y be an eigenfunction

(7.1.1) belonging to eigenvalue λ = αm. It admits the Fourier expansion

(7.1.26) y =
∞∑
k=0

A2k cos (2kt) .

We again normalize using equation (7.1.6). Substituting (7.1.26) in (7.1.1) and com-

paring coefficients, we get

(7.1.27)
(
αm − (2k)2

)
A2k = ε

k∧η∑
j=1

Cj (2j − 2k)A2k−2j
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+ε

η∑
j=1

Cj (2j + 2k)A2k+2j + ε

η−k∑
i=1

Ci+k+1 (2i)A2i

for k = 1, 2, . . . , and

(7.1.28) αmy0 = ε

η∑
j=1

Cj (2j) y2j.

Consider an eigenfunction z of (7.1.9) belonging to the eigenvalue λ = βm. It

admits the fourier expansion

(7.1.29) z =
∞∑
k=0

Bk+1 sin (2kt) .

Using the normalization

Bm = 1,

substituting (7.1.29) in (7.1.1) and comparing coefficients, we obtain the formula

(7.1.30)(
βm − (2k)2

)
B2k = ε

(k−1)∧η∑
j=1

Cj (2k)B2k−2j

+ ε

η∑
j=1

Cj (−2k)B2k+2j − ε
η−k∑
i=1

Ci+k (2k)B2i, k = 1, 2, . . .

Theorem 7.1.6. For all positive even m, we have

(7.1.31) (αm − βm)
∞∑
k=1

A2kB2k = 2ε

η∑
k=i

η−k∑
i=0

Ci+k (2i)A2iB2i.

The sequences {u2k} and {u∗2k} are defined as in Subsection 7.1.1.

Theorem 7.1.7. Let

(7.1.32) m = 2n, n = rη + q where q = 1, 2, . . . , η, r = 0, 1, 2, . . .
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(a)If m` ≤ 2k ≤ m`−1 where ` = 0, 1, 2, . . . , r, then the taylor expansions of A2kand

B2k in powers of ε have the following form

(7.1.33) A2k = u2kε
` +O

(
ε`+1

)
,

(7.1.34) B2k = u∗2kε
` +O

(
ε`+1

)
.

(b) If k = 1, . . . , q − 1 then

(7.1.35) A2k =

(
u2k + e2k

η−k∑
j=q

Cj+k (2j)u2j

)
εr+1 +O

(
εr+2

)
,

(7.1.36) B2k =

(
u∗2k − e2k

η−k∑
j=q

Cj+k (2j)u∗2j

)
εr+1 +O

(
εr+2

)
.

(c) If k = 0 then

(7.1.37) A0 = u0εr
r+1 +O

(
εr+2

)
.

The next theorem is the equivalent to theorem 7.1.5 for even m.

Theorem 7.1.8. Let m be of the form (7.1.32).

(a) If 2q < η then (7.1.3)holds with p = 2r and

(7.1.38) ωm = 2

η−q∑
k=q

η−k∑
i=q

Ci+k (2i)u2iu
∗
2k.

(b) If 2q ≥ η then (7.1.3)holds with p = 2r + 1 and
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(7.1.39) ωm = 2

η∑
k=q

Ck (0)u0u
∗
2k + 2

η∑
k=q

η−k∑
i=1

Ci+k (2i)u2iu
∗
2k + Ci+k (2k)u2ku

∗
2i.

7.1.3. A matrix formula for ωm. Formulas (7.1.24), (7.1.25), (7.1.38), (7.1.39)

are sufficient to compute ωm. However there is another formula for ωm in terms of

matrix algebra. This formula is the basis for our maple code to compute ωm ( see

Appendix A )

Define the η × η lower triangular matrices

(7.1.40)

Fk :=



Cη (mk) 0 0 0 . . . 0

Cη−1 (mk) Cη (mk + 2) 0 0 . . . 0

Cη−2 (mk) Cη−1 (mk + 2) Cη (mk + 4) 0 . . . 0

...
...

...
...

...
...

C1 (mk) C2 (mk + 2) C3 (mk + 4) . . . . . . Cη (mk + 2η − 2)


and theη × η diagonal matrices

Ek := diag (emk,emk+2, . . . , emk+2s−2) .

Then (7.1.16) leads to

(7.1.41)


um`

um`+2

...

um`+2s−2


= E`F`−1E`−1F`−2 . . . E2F1E1F0


1

0

...

0


,
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Table 1. instability intervals example

m 1 2 3 4 5

ωm 2.50000000 0.62500000 0.04150391 0.00352648 0.00020829

where ` = 1, 2, 3, . . . Let Gk be the same matrix as Fk but with Dj replaced by D∗j .

Then

(7.1.42)


u∗m`

u∗m`+2

...

u∗m`+2s−2


= E`G`−1E`−1G`−2 . . . E2G1E1G0


1

0

...

0


.

Theorem 7.1.9. Let m be of the form (7.1.4), then (7.1.3) holds, where ωm is the

entry in the first column and (η − q + 1)st row of the matrix

(7.1.43) W := 2FpEpFp−1Ep−1 . . . E2F1E1F0.

Example 7.1.10. In the case of the Ince equation, we have η = 1, which forces q

to be equal to 1 in (7.1.4). Since we can write

m = p+ 1, p = 0, 1, 2, . . .

we obtain the following for the Ince equation with coefficients a = 1/2, b = 1,

d = −1; see Table 1

By writing out a product of lower triangular matrices explicitly, (7.1.41) can be

written in the alternate form

(7.1.44) u2m−2i =
∑

i1+i2+···+i`=i

∏̀
k=1

em−Ik+1
Dik (m− Ik) for (`− 1) η < i < `η

where the sum is taken over all (i1, i2, . . . , i`) ∈ {1, 2, . . . , η}` with sum i, and Ik :=

2
∑k−1

ν=1 iν . Similarly we can formulate Theorem 7.1.9 in the following way.
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Theorem 7.1.11. Let m be of the form (7.1.4), then (7.1.3) holds with

(7.1.45) ωm =
∑

j1+j2+···+jp=m

p∏
k=1

em−Jk

p∏
σ=0

DJσ (m− Jσ) ,

where the sum is extended over all (j0, j1, . . . , jp) ∈ {1, 2, . . . , η}p+1 with sum i,

and Ik := 2
∑k−1

ν=1 jν .

Example 7.1.12. If m = 10, and η = 3, then according to (7.1.4) we have p = 3,

q = 1, and (7.1.45) reads

ω10 =
1

352800
D3 (−4)D2 (0)D2 (4)D3 (10) +

1

268800
D3 (−4)D2 (0)D3 (6)D2 (10)

+
1

268800
D2 (−6)D3 (0)D2 (4)D3 (10) +

1

204800
D2 (−6)D3 (0)D3 (6)D2 (10)

+
1

338688
D3 (−4)D3 (2)D1 (4)D3 (10) +

1

258048
D3 (−4)D3 (2)D2 (6)D2 (10)

1

145152
D3 (−4)D3 (2)D3 (8)D1 (10) +

1

338688
D3 (−4)D1 (−2)D3 (4)D3 (10)

+
1

258048
D2 (−6)D2 (−2)D3 (4)D3 (10) +

1

145152
D1 (−8)D3 (−2)D3 (4)D3 (10) .

7.2. A Hochstadt Type Estimate

Consider the generalized Ince Equation

(7.2.1) (1 + A (t)) y′′ (t) + λy (t) = 0,

where

A (t) =

η∑
j=1

aj cos 2jt, η ∈ N.

Dividing both sides of (7.2.1) by (1 + A (t)) , and letting ω (t) = (1 + A (t))−1we

obtain

(7.2.2) y′′ (t) + λω (t) y (t) = 0.

We now follow Hochstadt [25] who gave estimate for the stability intervals using

the Prüfer angle. Let y (t) be a non trivial real solution of (7.2.1) with λ > 0. There
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are continuously differentable functions θ, r : R→ R such that

√
λω (t)y (t) = r (t) sin θ (t) , y′ (t) = r (t) cos θ (t) .

θ (t) is called the modified Prüfer angle. Then r and θ satisfy the differential equations

(7.2.3) r′ =
1

2

ω′ (t)

ω (t)
r sin2 θ,

(7.2.4) θ′ =
√
λω (t) +

1

4

ω′ (t)

ω (t)
r sin (2θ) .

Let

0 ≤ λ0 < λ1 ≤ λ2 < λ3 . . .

denote the values of λ for which (7.2.1) admits Floquet solutions with period π, and

let

µ0 ≤ µ1 < µ2 ≤ µ3 < . . .

denote the values of λ for which (7.2.1) admits Floquet solutions with semi-period π

(this is the notation used in Section 1.2.) The stability intervals for (7.2.1) are

S0 = (λ0, µ0) , S1 = (µ1, λ1) , S2 = (λ2, µ2) , . . .

and the instability intervals are

I0 = (−∞, 0] , I1 = [µ0, µ1] , I2 = [λ1, λ2] , . . .

Lemma 7.2.1. let λ > 0. (a) λ ∈ Ik if and only if there is a real solution θ of

(7.2.4) such that

(7.2.5) θ (π)− θ (0) = kπ.

(b) λ ∈ Ik if and only if

(7.2.6) θ (π)− θ (0) ∈ (kπ, (k + 1) π)
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for every solution of (7.2.4).

Proof. (a) let λ ∈ Ik. There is a real Floquet solution y of (7.2.1) such that

y (t+ π) = ρy (t) ,

with ρ ∈ R. Then the corresponding Prüfer angle θ satisfies

θ (π)− θ (0) = mπ,

where m is a non negative integer. Since y has m zeros in [0, π) and using Theorem

3.1.3 in [8] , we obtain that m = k.

Conversely let θ be a real solution of (7.2.4) with (7.2.5). Then there is a real

solution y of (7.2.1) that generates the Prüfer angle θ and this y satisfies y (t+ π) =

ρy (t) with real ρ. Than λ must be in one of the instability intervals. Part (b) follows

from (a) . �

Theorem 7.2.2. Set

u :=

∫ π

0

√
ω (t)dt, v :=

1

4

∫ π

0

|ω′ (t)|
ω (t)

dt.

Suppose that v < π/2. Then for every k = 0, 1, 2, . . .

(7.2.7)

[(
kπ + v

u

)2

,

(
(k + 1) π − v

u

)2
]
∈ Sk.

Proof. Integrating (7.2.4) between t = 0 and t = π, we obtain∫ π

0

θ′dt =

∫ π

0

(√
λω (t) +

1

4

ω′ (t)

ω (t)
r sin (2θ)

)
dt

≤
√
λu+

∫ π

0

1

4

ω′ (t)

ω (t)
r sin (2θ) dt.

And we see that every real solution (7.2.1) satisfies

(7.2.8)
∣∣∣θ (π)− θ (0)−

√
λu
∣∣∣ ≤ ∣∣∣∣∫ 1

4

ω′ (t)

ω (t)
r sin (2θ) dt

∣∣∣∣ ≤ v.
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Equation (7.2.8) gives

(7.2.9) − v +
√
λu ≤ θ (π)− θ (0) ≤ v +

√
λu,

if λ is in the interval on the left hand side of (7.2.7) it follows that

(7.2.10) kπ < θ (π)− θ (0) < (k + 1) π.

By Lemma 7.2.1(b) , λ ∈ Sk. �

As an application, consider the the frequency modulation equation[45]

(7.2.11) (1 + a cos 2t) y′′ (t) + λy (t) = 0, 0 < a < 1.

From Theorem 7.2.2 we obtain the following result.

Theorem 7.2.3. The stability intervals Sk, k = 0, 1, 2, . . . of equation 7.2.11 sat-

isfy

(7.2.12)4 (1 + a)

kπ + 1
2

ln
(
1+a
1−a

)
K
(√

2a
1+a

)
2

, 4 (1 + a)

(k + 1) π − 1
2

ln
(
1+a
1−a

)
K
(√

2a
1+a

)
2 ∈ Sk.

Where K is the complete elliptic integral of the first kind.

7.3. A Special Case

We consider the equation

(7.3.1) y′′ (t) + b1 (sin 2t) y′ (t) + (λ+ d1 cos 2t+ d2 cos 4t) y (t) = 0,

where b1, d1, d2 are given real numbers and λ is the spectral parameter. Equation

(7.3.1) is a special case of the generalized Ince equation with η = 2. Adding the

assumption b21 + 8d2 ≥ 0, equation (7.3.1) can be transformed to the Ince equation

(7.3.2) z′′ (t) + b (sin 2t) z′ (t) +
(
λ̃+ d cos 2t

)
z (t) = 0,
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where

(7.3.3) b = −
√
b21 + 8d2, d = d1 − b1 −

√
b21 + 8d2, λ̃ = λ+ d2,

by mean of the transformation

(7.3.4) y (t) = z (t) exp

(
b1 +

√
b21 + 8d2
4

cos 2t

)
.

The associated polynomials to equation (7.3.2) are

Q (µ) =
√
b21 + 8d2µ+

1

2

(
b1 − d1 +

√
b21 + 8d2

)
,(7.3.5)

Q† (µ) =
√
b21 + 8d2µ+

1

2
(b1 − d1) ,(7.3.6)

whereas the associated polynomials to equation (7.3.1) are

Q1 (µ) = −b1µ−
d1
2
,(7.3.7)

Q2 (µ) = −d2
2
,(7.3.8)

Q†1 (µ) = −b1µ+
b1 − d1

2
,(7.3.9)

Q†1 (µ) = −d2
2
.(7.3.10)

If b1 + 8d2 > 0, define the real numbers p and p† by

(7.3.11) p := −1

2

b1 − d1 +
√
b21 + 8d2√

b21 + 8d2
, p† :=

1

2

d1 − b1√
b21 + 8d2

.

By Section 3.5 we have the following result on coexistence of solutions with period π

and semi period π for equation (7.3.1)

Theorem 7.3.1.

(a) If p /∈ Z, then no coexistence of solutions with period π occurs.

(b) If p† /∈ Z, then no coexistence of solutions with semi-period π occurs.
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(c) If p ∈ Z, define ` by

(7.3.12) ` :=
1

2
+

∣∣∣∣p+
1

2

∣∣∣∣ ,
then coexistence of solutions with period π occurs for λ = α2

2m = β2
2m with m ≥ `.

(d) If p† ∈ Z, define `† by

(7.3.13) `† :=
∣∣p†∣∣ ,

then coexistence of solutions with semi-period π occurs for λ = α2
2m+1 = β2

2m+1 with

m ≥ `†.

Example 7.3.2. We consider equation (7.3.1) with b1 = d1. We have p = −1/2

and p† = 0, therefore α2
2m 6= β2

2m and α2
2m+1 = β2

2m+1 for m = 0, 1, 2, . . .

In the case b1 = 0, d1 = 2θ1, d2 = 2θ2. Equation (7.3.1) becomes

(7.3.14) y′′ (t) + (λ+ 2θ1 cos 2t+ 2θ2 cos 4t) y (t) = 0.

Note that the substitution (7.3.2) transforms (7.3.14) to an Ince equation with

(7.3.15) a = 0, b = −4
√
θ2, d = 2θ1 − 4

√
θ2, λ̃ = λ+ 2θ2.

Urwin and Arscott [69] investigate equation (7.3.14). Lebedev and Pergamenceva

[42] find integral equations for periodic solutions of the same differential equation.

7.4. Nonlinear Evolution Equation

The combined KdV-mKdV equation is the is the nonlinear, dispersive partial

differential equation for a function u of two real variables, space x and time t

(7.4.1)
∂u

∂t
+ (α + γu)u

∂u

∂x
+ β

∂3u

∂x3
= 0,

where α, β, γ are fixed real numbers.



149

Equation (7.4.1) is widely used in various branches of physics, such as plasma

physics, fluid physics, quantum field theory. It has been investigated thoroughly in

the literature as it is used to model a variety of nonlinear phenomena (see [81]).

Following [19], we seek a travelling wave solutions to (7.4.1) of the form

(7.4.2) u := u (ξ) , ξ := k (x− ct) ,

where k and c are wave number and wave speed, respectively.

Substituting (7.4.2) into (7.4.1), we have

(7.4.3) ((α + γu)u− c) du
dξ

+ βk2
d3u

dξ3
= 0.

Integrating equation (7.4.3) with respect to ξ and setting the integration constant to

zero, we obtain

(7.4.4) βk2
d2u

dξ2
+
γ

3
u3 +

α

2
u2 − cu = 0.

Next, we consider the perturbation method (see [35]) by setting

(7.4.5) u = u0 + εu1 + ε2u2 + . . . ,

where ε (0 < ε � 1 ) is a small perturbation parameter. Substituting (7.4.5) into

(7.4.4), we obtain the following zeroth-order and first-order equations

ε0 : βk2
d2u0
dξ2

+
γ

3
u30 +

α

2
u20 − cu0 = 0,(7.4.6)

ε1 : βk2
d2u1
dξ2

+
(
γu20 + αu0 − c

)
u1 = 0.(7.4.7)

To solve the zeroth-order equation (7.4.6), assume a solution of the form

(7.4.8) u0 = a0 + a1 sn ξ,

where the function sn ξ has modulus m (0 < m < 1). Substituting equation (7.4.8)

into equation (7.4.6), the expansion coefficients a0 and a1 can easily be determined
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as

(7.4.9)

a0 = − α

2γ
, a1 = ±

√
−6β

γ
mk,

c = −α
2

6γ
, k2 = − α2

12βγ (1 +m2)
,

and the zeroth-order solution is

(7.4.10) u0 = − α

2γ
±

√
−6β

γ
mk sn ξ.

Substituting the zeroth-order exact solution (7.4.10) into the first-order equation

(7.4.7) yields

(7.4.11)
d2u1
dξ2

+
((

1 +m2
)
− 6m2 sn2 ξ

)
u1 = 0.

Equation (7.4.11) is a Lamé equation, one can check that its solution is

(7.4.12) u1 = A cn ξ dn ξ,

where A is an arbitrary constant. Hence, equation (7.4.12) is the first-order exact

solution of combined mKdV-KdV equation (7.4.1).

7.5. Two Degree of Freedom Systems and Vibration Theory

Some dynamic systems that require two independent coordinates, or degrees of

freedom, to describe their motion, are called “two degree of freedom systems”. For a

two degree of freedom system there are two equations of motion, each one describing

the motion of one of the degrees of freedom. In general, the two equations are in

the form of coupled differential equations. Assuming a harmonic solution for each

coordinate, the equations of motion can be used to determine two natural frequencies,

or modes, for the system.

In many of such dynamical systems, one is faced with the concept of free vibra-

tions; this means that although an outside agent may have participated in causing
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an initial displacement or velocity, or both, of the system, the outside agent plays no

further role, and the subsequent motion depends only up on the inherent properties of

the system. This is in contrast to ”forced” motion in which the system is continually

driven by an external force.

As an example, Recktenwald and Rand [57] study autoparametric excitation in

a class of systems having the following very general expressions for kinetic energy T

and potential energy V :

T =
1

2
ẋ2 + β (x, y) ẏ2,(7.5.1)

V =
1

2
x2 +

1

2
ω2y2 + α22x

2y2 + α13xy
3 + α04y

4,(7.5.2)

with the assumption that the function β (x, y) has the form

(7.5.3) β (x, y) = β00 + β01x+ β10y + β02x
2 + β11xy + β20y

2.

To investigate the linear stability of the x−mode

(7.5.4) x = cos t, y = 0,

set

x = cos t+ u, y = v,

in Lagrange’s equations

d

dt

(
∂ (T − V )

∂ẋ

)
− ∂ (T − V )

∂x
= 0,

d

dt

(
∂ (T − V )

∂ẏ

)
− ∂ (T − V )

∂y
= 0,

which gives

(7.5.5) ü+ u = 0,
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and

(7.5.6)

(
2β00 + A2β02 + 2Aβ01 cos t+ A2β02 cos 2t

)
v̈

+
(
−2Aβ01 sin t− 2A2β02 sin 2t

)
v̇

+
(
λ+ A2α22 + A2α22 cos 2t

)
v = 0.

Equation (7.5.6) can be put in the form of a generalized Ince equation

(7.5.7)

(1 + a1 cos t+ a2 cos 2t) y′′ + (b1 sin t+ b2 sin 2t) y′ + (λ+ d1 cos t+ d2 cos 2t) y = 0

where the coefficients a1, a2, b1, b2, d1, and d2 are given by

a1 =
2Aβ01

2β00 + A2β02
,

a2 =
A2β01

2β00 + A2β02
,

b1 =− a1,

b2 =− 2a2,

d1 =0,

d2 =
A2α22

2β00 + A2β02
,

λ =
ω2 + A2α22

2β00 + A2β02
.

In [57], the authors find sufficient conditions for the coexistence of solutions with

period and semi-period 2π.
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CHAPTER 8

Conclusion

This dissertation is an attempt of a thorough investigation of Ince and Lamé

equations, and their generalizations. All of these equation are linear second order

ordinary differential equations with periodic coefficients. In particular, they are even

Hill equations with period ω (with period π for Ince’s equation and 2K for Lamé’s

equation). We are interested in solutions which are even or odd and have period ω

or semi-period ω. From the general theory of Hill’s equation the problem splits into

four regular Sturm-Liouville problems:

• Even with period ω.

• Even with semi-period ω.

• Odd with semi-period ω.

• Odd with period ω.

Using Fourier series representation of the solution, each one of these Sturm-Liouville

operators is represented by a banded infinite matrix.

When studying the Ince equation, it became apparent that many of the techniques

can be useful in treating a more general class of equation ”the generalized Ince equa-

tion”. In chapter two we introduced the general frame work and gave formulas to

calculate the entries of the banded infinite matrices associated with the generalized

Ince equation. For example in the case of Ince’s equation this process gives rise to

four tridiagonal infinite matrices, which were discussed in detail in chapter three, the

tridiagonal structure also allowed the investigation of the problem of coexistence of

periodic solution (Section 3.5) and that of the existence of polynomial solutions in

trigonometric form.
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Chapter four was dedicated to Lamé’s equation. Employing Jacobi’s amplitude

t = am z, Lamé’s equation is transformed to its trigonometric form, and this is a

particular Ince equation. In a similar fashion we discussed a generalization of Lamé’s

equation found in [54], which is then transformed to a particular case (η = 2) of the

generalized Ince equation.

As in the case of Mathieu’s equation, Lamé and Ince equations appears in the

process of separation of variables of some partial differential equation problems in

certain special coordinate systems, such as sphero-conal coordinates. These ideas

were discussed in chapter six (in the case of the wave equation).

chapter seven was a collection of mathematical and physical applications that we

felt were relevant to the discussion. The analysis was supplemented by Maple codes

that can be found in the Appendix.

In section 6.3, we considered the problem of separation of variables for the wave

equation

∇2u+ ω2u = 0.

In ellipsoidal coordinate system, the wave equation admits separable solutions of the

form

(8.0.8) u (α, β, γ) = u1 (α)u2 (β)u3 (γ) ,

where u1, u2, u3 each satisfy the Lamé wave equation

(8.0.9) u′′ +
(
h− ν (ν + 1) k2 sn2 (z, k) + k2ω2 sn4 (z, k)

)
u = 0.

For future work, we would like to investigate equation (8.0.9) as another generaliza-

tion of Lamé’s equation. The transformation t = π
2
− am z, transforms (8.0.9) to a

generalized Ince equation of the form

(8.0.10) (1 + a1 cos 2t)u′′ + b1 (sin 2t)u′ + (λ+ d1 cos 2t+ d2 cos 4t)u = 0,
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in particular, we would like to find condition for coexistence of periodic solutions.
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APPENDIX A

Maple Code

Infinite matrix M1 (even with period π boundary conditions) of Section 2.4

Loading LinearAlgebra

# Functions A (t) , B (t) , and D (t)

A := proc (a, t)

local s; s := Dimension(a);

sum(’a[i]’*cos(2*i*t), i = 1 .. s)

end proc

B := proc (b::Vector, t)

local s; s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc

# The generalized Ince operator

T := proc (a, b, d, y, t)

-(1+A(a, t))*(diff(diff(y, t), t))-B(b, t)*(diff(y,t))-A(d, t)*y

end proc

u := proc (n, t)

options operator, arrow;

cos(2*n*t)

end proc

# Coefficients aj, bj, dj, j = 1, ..., η

a := Vector([a1, a2]);

b := Vector([b1, b2]);
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d := Vector([d1, d2]);

# Computation the entries Infinite Matrix M1

r := proc (n, j)

options operator, arrow;

simplify(4*(int(T(a, b, d, u(n, t),t)*u(j, t), t = 0 .. (1/2)*Pi))/Pi)

end proc

# Display of a finite section (upper left corner of M1)

N := 10

Aevp := proc (a, b, d, n)

local A, k, l, v, w;

A := Matrix(n, n, 0);

for k to n do

for l to n do w := k-1; v := l-1;

if w = 0 or v = 0 then A[k, l] := r(v,w)/sqrt(2)

else A[k, l] := r(v, w)

end if

end do

end do;

A

end proc

B := Aevp(a, b, d, 7)

Infinite matrix M2 (even with semi-period π boundary conditions) of Section 2.4

Loading LinearAlgebra

# Functions A (t) , B (t) , and D (t)

A := proc (a, t)

local s; s := Dimension(a);
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sum(’a[i]’*cos(2*i*t), i = 1 .. s)

end proc

B := proc (b::Vector, t)

local s; s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc

# The generalized Ince operator

T := proc (a, b, d, y, t)

-(1+A(a, t))*(diff(diff(y, t), t))-B(b, t)*(diff(y,t))-A(d, t)*y

end proc

u := proc (n, t)

options operator, arrow;

cos((2*n+1)*t)

end proc

# Coefficients aj, bj, dj, j = 1, ..., η

a := Vector([a1, a2]);

b := Vector([b1, b2]);

d := Vector([d1, d2]);

# Computation the entries Infinite Matrix M1

r := proc (n, j)

options operator, arrow;

simplify(4*(int(T(a, b, d, u(n, t),t)*u(j, t), t = 0 .. (1/2)*Pi))/Pi)

end proc

# Display of a finite section (upper left corner of M1)

Aevp := proc (a, b, d, n)

local A, k, l, v, w;

A := Matrix(n, n, 0);

for k to n do
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for l to n do

w := k-1; v := l-1;

A[k, l] := r(v, w)

end do

end do;

A

end proc

B := Aevp(a, b, d, 7)

Infinite matrix M3 (odd with semi-period π boundary conditions) of Section 2.4

Loading LinearAlgebra

# Functions A (t) , B (t) , and D (t)

A := proc (a, t)

local s; s := Dimension(a);

sum(’a[i]’*cos(2*i*t), i = 1 .. s)

end proc

B := proc (b::Vector, t)

local s; s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc

# The generalized Ince operator

T := proc (a, b, d, y, t)

-(1+A(a, t))*(diff(diff(y, t), t))-B(b, t)*(diff(y,t))-A(d, t)*y

end proc

u := proc (n, t)

options operator, arrow;

sin((2*n+1)*t)
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end proc

# Coefficients aj, bj, dj, j = 1, ..., η

a := Vector([a1, a2]);

b := Vector([b1, b2]);

d := Vector([d1, d2]);

# Computation the entries Infinite Matrix M1

r := proc (n, j)

options operator, arrow;

simplify(4*(int(T(a, b, d, u(n, t),t)*u(j, t), t = 0 .. (1/2)*Pi))/Pi)

end proc

# Display of a finite section (upper left corner of M1)

Aevp := proc (a, b, d, n)

local A, k, l, v, w;

A := Matrix(n, n, 0);

for k to n do

for l to n do

w := k-1; v := l-1;

A[k, l] := r(v, w)

end do

end do;

A

end proc

B := Aevp(a, b, d, 7)

Infinite matrix M4 (odd with period π boundary conditions) of Section 2.4

Loading LinearAlgebra

# Functions A (t) , B (t) , and D (t)
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A := proc (a, t)

local s; s := Dimension(a);

sum(’a[i]’*cos(2*i*t), i = 1 .. s)

end proc

B := proc (b::Vector, t)

local s; s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc

# The generalized Ince operator

T := proc (a, b, d, y, t)

-(1+A(a, t))*(diff(diff(y, t), t))-B(b, t)*(diff(y,t))-A(d, t)*y

end proc

u := proc (n, t)

options operator, arrow;

sin((2*n+2)*t)

end proc

# Coefficients aj, bj, dj, j = 1, ..., η

a := Vector([a1, a2]);

b := Vector([b1, b2]);

d := Vector([d1, d2]);

# Computation the entries Infinite Matrix M1

r := proc (n, j)

options operator, arrow;

simplify(4*(int(T(a, b, d, u(n, t),t)*u(j, t), t = 0 .. (1/2)*Pi))/Pi)

end proc

# Display of a finite section (upper left corner of M1)

Aevp := proc (a, b, d, n)

local A, k, l, v, w;
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A := Matrix(n, n, 0);

for k to n do

for l to n do

w := k-1; v := l-1;

A[k, l] := r(v, w)

end do

end do;

A

end proc

B := Aevp(a, b, d, 7)

Weight ω in the self adjoint form of the generalized Ince equation

Loading LinearAlgebra

# Functions A (t) , B (t) , and D (t)

A := proc (a, t)

local s; s := Dimension(a);

sum(’a[i]’*cos(2*i*t), i = 1 .. s)

end proc

B := proc (b::Vector, t)

local s; s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc

Loading PDEtools

# Coefficients aj, bj, dj, j = 1, ..., η

a := Vector([a1, a2]);

b := Vector([b1, b2]);

d := Vector([d1, d2]);
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# ω (t) formula

”r(t):=(B(b,t)-diff(A(a,t),t))/(1+A(a,t));”

”s(t):=&int;r(t) &DifferentialD;t;”

”omega(t):=(e)ˆ(s(t) );”

”simplify( omega(t), ’size’ )”

Test for Ince’s polynomials and coexistence of solutions with period π

Loading LinearAlgebra

Q := proc (a, b, d)

local T; T := Vector(1, 2, 0);

T :=[(1/4)*(b+sqrt(bˆ2+4*a*d))/a, -(1/4)*(-b+sqrt(bˆ2+4*a*d))/a]

end proc

Incepoly := proc (T)

local p, q, l, k, ma, mi;

p := type(T[1], integer);

q :=type(T[2], integer);

if p = false and q = false then

print(’There is no Ince polynomials,

no coexistence of solutions with period Pi occurs’)

elif p = true and q = false

then l := 1/2+abs(1/2+T[1]);

if l = 1 then

print(’Ince polynomials with eigenvalues α2m when m is equal to);

print(0)

elif

l = 2 then

print(’Ince polynomials with eigenvalues α2m when m is equal to’);
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print(0, 1);

print(’Ince polynomials with eigenvalues β2m when m is equal to’);

print(1)

elif l = 3 then

print(’Ince polynomials with eigenvalues α2m when m is equal to’);

print(0,1,2);

print(’Ince polynomials with eigenvalues β2m when m is equal to’);

print(1,2);

else

print(’Ince polynomials with eigenvalues α2m when m is equal to’);

print(0, 1, () .. (), l-1);

print(’Ince polynomials with eigenvalues β2m when m is equal to’);

print(1, () ..(), l-1)

end if;

print(’solutions with period π coexist, α2m = β2m, for m equals’);

print(l, l+1, () .. (), infinity);

if T[1] < 0 then

print(’All Ince polynomials are of the second kind polynomials’)

else

print(’All Ince polynomials are of the first kind polynomials’)

end if

elif p = false and q = true then

l := 1/2+abs(1/2+T[2]);

if l = 1 then

print(’Ince polynomials with eigenvalues α2m when m is equal to’);

print(0)

elif

l = 2 then
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print(’Ince polynomials with eigenvaluesα2m when m is equal to’);

print(0, 1);

print(’Ince polynomials with eigenvaluesβ2m when m is equal to’);

print(1);

elif l = 3 then

print(’Ince polynomials with eigenvaluesα2m when m is equal to’);

print(0, 1,2);

print(’Ince polynomials with eigenvaluesβ2m when m is equal to’);

print(1,2)

else

print(’Ince polynomials with eigenvaluesα2m when m is equal to’);

print(0, 1, () .. (), l-1);

print(’Ince polynomials with eigenvaluesβ2m when m is equal to’);

print(1, () ..(), l-1)

end if;

print(’Solutions of period π coexist.’);

print(’α2m = β2m when m is equal to’);

print(l, l+1, () .. (), infinity);

if T[1] < 0 then

print(’All Ince polynomials are second kind polynomials’)

else

print(’All Ince polynomials are first kind polynomials’)

end if

else l :=1/2+min(abs(1/2+T[1]), abs(1/2+T[2]));

k := 1/2+max(abs(1/2+T[1]),abs(1/2+T[2]));

print(’Solutions of period π coexist.’);

print(’α2m = β2m when m is equal to’);

print(l, l+1, () .. (), infinity);
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if k = 1 then

print(’Solutions of period π coexist.’);

print(’α2m = β2m when m is equal to’);

print(0)

elif k = 2 then

print(’Ince polynomials with eigenvalues α2m when m equals’);

print(0, 1);

print(’Ince polynomials with eigenvalues β2m when m equals’);

print(1)

elif k = 3 then

print(’Ince polynomials with eigenvalues α2m when m equals’);

print(0, 1,2);

print(’Ince polynomials with eigenvaluesβ2m when m equals’);

print(1,2)

else

print(’Ince polynomials with eigenvaluesα2m when m equals’);

print(0, 1, () .. (), k-1);

print(’Ince polynomials with eigenvaluesβ2m when m equals’);

print(1, () ..(), k-1)

end if

end if

end proc

Test for Ince’s polynomials and coexistence of solutions with semi-period π

Loading LinearAlgebra

> Q := proc (a, b, d)

local T; T := Vector(1, 2, 0);
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T := [(1/4)*(b+sqrt(bˆ2+4*a*d))/a+1/2, 1/2-(1/4)*(-b+sqrt(bˆ2+4*a*d))/a]

end proc;

> Incepoly := proc (T)

local p, q, l, k, ma, mi;

p := type(T[1], integer);

q := type(T[2], integer);

if p = false and q = false then

print(’There is no Ince polynomials, and no coexistence of solutions with semi-

period π occurs’)

elif p = true and q = false then

l := abs(T[1]);

if l = 1 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0)

elif l = 2 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1)

elif l = 3 then

print(Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1, 2);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, 2)

else

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);
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print(0, 1, () .. (), l-1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, () .. (), l-1)

end if;

print(’Solutions with semi-period π coexist, α2m+1 = β2m+1, when m equals’);

print(l, l+1, () .. (), infinity);

if T[1] < 0 then

print(’All Ince polynomials are second kind polynomials’)

else

print(’All Ince polynomials are first kind polynomials’)

end if

elif

p = false and q = true then

l := abs(T[2]); if l = 1 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0)

elif l = 2 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1)

elif l = 3 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1, 2);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, 2)
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else

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1, () .. (), l-1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, () .. (), l-1)

end if;

print(’Solutions of period coexist with α2m+1 = β2m+1 when n equals’);

print(l, l+1, () .. (), infinity);

if T[1] < 0 then

print(’All Ince polynomials are second kind polynomials’)

else print(’All Ince polynomials are first kind polynomials’)

end if

else

l := min(abs(T[1]), abs(T[2]));

k := max(abs(T[1]), abs(T[2]));

print(’Solutions of period coexist with α2m+1 = β2m+1 when n equals’);

print(l, l+1, () .. (), infinity);

if k = 1 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0)

elif k = 2 then

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1)

elif k = 3 then
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print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1, 2);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, 2)

else

print(’Ince polynomials with eigenvalues α2m+1 when m equals’);

print(0, 1, () .. (), k-1);

print(’Ince polynomials with eigenvalues β2m+1 when m equals’);

print(0, 1, () .. (), k-1)

end if

end if

end proc;

Transformation of Ince’s equation to algebraic form

Loading PDEtools

Ince := (1+a*cos(2*t))*(diff(diff(y, t), t))+b*sin(2*t)*(diff(y, t))

+(lambda+d*cos(2*t))*y = 0;

f := y(t);

y := g(t);

tr := {t = arccos(sqrt(z))};

R := dchange(tr, Ince)

Transformation of the generalized Ince equation to algebraic form

Loading LinearAlgebra

A := proc (a, t)

local s;
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s := Dimension(a);

sum(’a[i]’*cos(2*i*t), i = 1 .. s);

end proc

B := proc (b::Vector, t)

local s;

s := Dimension(b);

sum(’b[i]’*sin(2*i*t), i =1 .. s)

end proc;

f := y(t):

Loading PDEtools

a := Vector([a1, a2, a3]);

b := Vector([b1, b2, b3]);

d := Vector([d1, d2, d3]);

GInce := (1+A(a, t))*(diff(diff(f, t), t))+B(b, t)*(diff(f, t))

+(lambda+A(d,t))*f = 0;

tr := {t = arccos(sqrt(z))};

dchange(tr, GInce);

Instability intervals of Section 7.1 A matrix formula for ωm

Loading LinearAlgebra

# Polynomials Dj, j = 1, 2, . . . , η

C := proc (j, t) local s;

s := Dimension(a);

(1/2)*a[j]*tˆ2+(1/2)*b[j]*t-(1/2)*d[j]

end proc

# Coefficients a, b, d

a := Vector([a1, a2, a3])
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b := Vector([b1, b2, b3])

d := Vector([d1, d2, d3])

s := Dimension(a)

# Definition of ml: Equation (7.1.17)

ml := proc (m, l)

m-2*l*s

end proc

ek := proc (m, k)

1/(mˆ2-kˆ2)

# Definition of ek: Equation (7.1.18)

end proc

Ek := proc (k, m)

local V, i;

V := Matrix(s, s, 0);

for i to s do

V[i, i] :=ek(m, ml(m, k)+2*i-2)

end do;

V

end proc

# Definition of matrix Fk: Equation (7.1.40)

Fk := proc (k, m)

local V, mk, i, j;

V := Matrix(s, s, 0);

for i to s do

for j to i do

V[i, j] := C(s-i+j, ml(m, k)+2*j-2)

end do

end do;
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V

end proc

# Definition of m: Equation (7.1.4)

m := proc (p, q)

p*s+q

end proc

# Matrix W : Theorem 7.1.9

W := proc (p, q) local V, i;

V := 2.*Fk(0, m(p, q));

for i to p do

V := Fk(i,m(p, q)).Ek(i, m(p, q)).V

end do;

V

end proc

# For example if m = 10, η = 3, then according to (7.1.4) p = 3, and q = 1

T := W(3, 1);

# ωm is the entry in the first column and (η − q + 1) = 3 row of the matrix T

ωm:= T[3, 1]

Separation of variables in Section 3.6 : Ince equation when a = 0

Loading PDEtools

pde := diff(u(x, y), x, x)+diff(u(x, y), y, y)-2*b*(x*(diff(u(x, y),x))

+y*(diff(u(x, y), y)))-2*d*u(x, y) = 0

# Change of variables to elliptic coordinates

tr := {x = cos(eta)*cosh(xi), y = sin(eta)*sinh(xi)}

pde1 := dchange(tr, pde)

pde1 := subs(u(eta, xi) = v(eta)*w(xi), pde1)
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pde1 := simplify(pde1)

pde1 := simplify(-pde1*(-cosh(xi)ˆ2+cos(eta)ˆ2))

pde1 := combine(pde1, ’trig’)

Separation of variables in Section 3.6 : Ince equation when a = 0

Loading PDEtools

Loading Student:-MultivariateCalculus

pde := diff(u(x, y, z), x, x)+diff(u(x, y, z), y, y)

+diff(u(x, y, z), z,z)-(1+b/a)*(diff(u(x, y, z), z))/z = 0

# choose a and b in (-1,0)

a := ’a’;

b := ’b’

# Define k and k’ ( both are in (0,1))

k := sqrt(2*a/(a-1));

k1 := sqrt(1-kˆ2);

# change of variables to sphero-conal coordinates

tr := {x = r*k*cos(eta)*cosh(xi), y = r*k*sin(eta)*sinh(xi)/k1,

z =r*(1-kˆ2*cos(eta)ˆ2)ˆ(1/2)*(1-kˆ2*cosh(xi)ˆ2)ˆ(1/2)/k1}

pde1 := dchange(tr, pde, {eta, r, xi}, simplify)



175

APPENDIX B

Matlab Code

Infinite matrix M1 (Even with period π boundary conditions) of Section 2.4

func t i on y=M1(a , b , d , n)

%Matrix M1 f o r even with per iod p i (nu=2)

M=ze ro s (n , n ) ;

f o r i =1:n

M( i , i )=r ( i ) ;

end

f o r i =2:n

M( i , i−1)=Q1(a , b , d , i −2);

end

f o r i =3:n

M( i , i−2)=Q2(a , b , d , i −3);

end

f o r i =1:n−1

M( i , i +1)=Q1(a , b , d,− i ) ;

end

f o r i =1:n−2

M( i , i +2)=Q2(a , b , d,− i −1);

end

M(2 ,2)= r (2)+Q2(a , b , d ,−1) ;

M(1 ,2)=( s q r t ( 2 ) )*Q1(a , b , d ,−1) ;
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M(1 ,3)=( s q r t ( 2 ) )*Q2(a , b , d ,−2) ;

M(2 ,1)=( s q r t ( 2 ) )*Q1(a , b , d , 0 ) ;

M(3 ,1)=( s q r t ( 2 ) )*Q2(a , b , d , 0 ) ;

y=M;

end

Infinite matrix M2 (Even with semi-period π boundary conditions) of Section 2.4

func t i on y=M2(a , b , d , n)

%matrix M2 f o r Ince ’ s equat ion ( s=2) even with semi per iod p i

M=ze ro s (n , n ) ;

f o r i =2:n

M( i , i )=rd ( i ) ;

end

M(1 ,1)=1+Qd1(a , b , d , 0 ) ;

f o r i =3:n

M( i , i−1)=Qd1(a , b , d , i −1);

end

M(2 ,1)=Qd1(a , b , d ,1)+Qd2(a , b , d , 0 ) ;

f o r i =3:n

M( i , i−2)=Qd2(a , b , d , i −2);

end

f o r i =2:n−1

M( i , i +1)=Qd1(a , b , d,− i ) ;

end

M(1 ,2)=Qd1(a , b , d,−1)+Qd2(a , b , d ,−1) ;
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f o r i =1:n−2

M( i , i +2)=Qd2(a , b , d,− i −1);

end

y=M;

end

Infinite matrix M3 (Odd with semi- period π boundary conditions) of Section 2.4

func t i on y=M3(a , b , d , n)

% Matrix M2 f o r Ince ’ s equat ion ( s=2) even with semi per iod p i

M=ze ro s (n , n ) ;

f o r i =2:n

M( i , i )=rd ( i ) ;

end

M(1 ,1)=1−Qd1(a , b , d , 0 ) ;

f o r i =3:n

M( i , i−1)=Qd1(a , b , d , i −1);

end

M(2 ,1)=Qd1(a , b , d,1)−Qd2(a , b , d , 0 ) ;

f o r i =3:n

M( i , i−2)=Qd2(a , b , d , i −2);

end

f o r i =2:n−1

M( i , i +1)=Qd1(a , b , d,− i ) ;

end



178

M(1 ,2)=Qd1(a , b , d,−1)−Qd2(a , b , d ,−1) ;

f o r i =1:n−2

M( i , i +2)=Qd2(a , b , d,− i −1);

end

y=M;

end

Infinite matrix M4 (Odd with period π boundary conditions) of Section 2.4

func t i on y = M4(a , b , d , n)

% Matrix M4 odd with per iod p i ( s=2) Ince equat ion

M=M1(a , b , d , n+1);

N=ze ro s (n , n ) ;

f o r i =1:n

f o r j =1:n

N( i , j )=M( i +1, j +1);

end

end

y=N;

end
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[38] G. Lamé. Mémoire sur l’équilibre des temperatures dans un ellipsoide. Jour. de Math. Pures

and et Appl., IV:126–163, 1839.

[39] C. G. Lambe. Polynomial expressions for Lamé functions. Quart. J. Math. Oxford (2), 2:53–59,
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175, 2004.

[80] H. Volkmer. Instability intervals of the Ince and Hill equations. Analysis, 25:189–204, 2005.

[81] Abdul-Majid Wazwaz. Partial Differential Equations and Solitary Waves Theory. Springer-

Verlag Berlin Heidelberg, 2009.

[82] M. Weinstein and J. Keller. Hill’s equation with a large potential. SIAM J. Appl. Math, 45:200–

214, 1985.

[83] E. T. Whittaker. On a class of differential equations whose solutions satisfy integral equations.

Proc. Edinburgh Math. Soc, 33:14–33, 1915.

[84] E. T. Whittaker. On a class of differential equations whose solutions satisfy integral equations.

Proc. Edinb. Math. Soc., 33:14–33, 1915.

[85] E. T. Whittaker. On Lamé’s differential equation and ellipsoidal harmonics. Proc. London Math.

Soc., 14:260–268, 1915.

[86] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press,

Cambridge, 1927.



184

ridha moussa

Curriculum Vitae

Education

2014 university of wisconsin-milwaulkee

Ph.D, Mathematics, May 2014

Dissertation: A Generalization of Ince’s Equation

Advisor: Hans Volkmer

2008 university of wisconsin-milwaukee

Masters of Science, Industrial Mathematics, August 2008

Thesis: Theoretical and Numerical Studies of Parabolic Equations

Advisor: Dexuan Xie

2006 university of wisconsin-milwaulkee

Bachelors of Science, Applied Mathematics & Physics, August 2006

1997 university of tunis el manar

University Diploma of Scientific Studies, Physics, June 1997

Experience

2008–14 Graduate Lecturer, Mathematics, University of Wisconsin-Milwaukee

2006–08 Teaching Assistant, Mathematics, University of Wisconsin-Milwaukee

Courses

Intermediate Algebra (Online Lecture), one semester.

Intermediate Algebra (Lecture using MyMathLab), one semester.

Intermediate Algebra (Lecture using ALEKS), one semester.

Intermediate Algebra (Lecture ), two semesters.

Preparation for College Mathemematics (Lecture using ALEKS), one se-

mester.



185

Essentials of Algebra (Lecture using ALEKS), one semester.

Introduction to Numerical Analysis (Laboratory using MATLAB).

Calculus and Analytic Geometry I (Lecture), three semesters.

Calculus and Analytic Geometry III (Lecture), two semesters.

Contemporary Applications of Mathematics (Lecture), two semesters

Survey-Calculus/Analytic Geometry (Lecture), three semesters.

Survey-Calculus/Analytic Geometry (Discussion), five semesters.

Introcuction to Mathematical statistics I, (Grader), one semester.

Honors and Awards

2012 Ernst Schwandt Teaching Award.

2006 Alice Siu-Fun Leung Award in Mathematics.

References

Hans Volkmer, Dissertation Advisor, volkmer@uwm.edu

Gabriella Pinter, Associate Chair, gapinter@uwm.edu

Jay Beder, Assistant Chair, beder@uwm.edu


	List of Tables
	List of Figures
	Chapter 1. Introduction and Preliminary Concepts
	1.1. Sturm-Liouville Spectral Theory
	1.2. Introduction to the Theory of Hill's Equation
	1.3. Outline

	Chapter 2. A Generalization of Ince's Differential Equation
	2.1. The Differential Equation 
	2.2. Eigenvalues
	2.3. Eigenfunctions
	2.4. Operators and Banded Matrices 
	2.5. Fourier Series 

	Chapter 3. Ince's Equation 
	3.1. Operators and Tridiagonal Matrices
	3.2. Three-Term Difference Equations
	3.3. Fourier Series
	3.4. Ince Polynomials
	3.5. The Coexistence Problem 
	3.6. Separation of Variables
	3.7. Integral Equation for Ince Polynomials
	3.8. The Lengths of Stability and instability intervals
	3.9. Further Results

	Chapter 4. The Lamé Equation
	4.1. The Differential Equation 
	4.2. Eigenvalues
	4.3. Eigenfunctions
	4.4. Fourier Series
	4.5. Lamé Functions with Imaginary Periods
	4.6. Lamé Polynomials
	4.7. Lamé Polynomials in Algebraic Form.
	4.8. Integral Equations
	4.9. Asymptotic Expansions
	4.10. Further Results

	Chapter 5. A Generalization of Lamé's Equation 
	5.1. The Generalized Jacobi Elliptic Functions
	5.2. A Generalization of Lamé's Equation.

	Chapter 6. The Wave Equation and Separation of Variables
	6.1. Elliptic Coordinates
	6.2. Sphero-Conal Coordinates in Rk+1
	6.3. Ellipsoidal Coordinates

	Chapter 7. Mathematical Applications
	7.1. Instability Intervals 
	7.2. A Hochstadt Type Estimate
	7.3. A Special Case 
	7.4. Nonlinear Evolution Equation 
	7.5. Two Degree of Freedom Systems and Vibration Theory 

	Chapter 8. Conclusion
	Appendix A. Maple Code
	Appendix B. Matlab Code
	Bibliography
	Bibliography

