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ABSTRACT

Zhong, Jinghua Ph.D., Purdue University, May 2014. Modeling and Adaptive Robust
Motion Control of Piezoelectric Actuators. Major Professor: Bin Yao, School of
Mechanical Engineering.

High performance motion trajectory tracking can be achieved on a piezoelectric

stack actuator stage by the combination of a new hysteresis model, judicious modeling

of the dominant dynamics, and adaptive robust control design.

A new hysteresis model for piezoelectric actuators is proposed. Inspired by the

similarity between pre-sliding friction and piezoelectric hysteresis, the Dahl friction

model is extended with non-local memory to model piezoelectric hysteresis. Asymme-

try in hysteresis loops is accommodated with a shaping function, which eliminates the

need for having different parameters for different branches of the hysteresis loops. All

parameters of the hysteresis model can be identified from the outer-loop alone, and

the identified model reduces hysteresis nonlinearity from 14 percent of the actuator

range to less than 1 percent.

A low-order dynamic model is developed by recognizing the domain switching

dynamics of the actuator as the dominant dynamics when the resonant frequency of

the stage is far beyond the application bandwidth. The piezoelectric dynamics is well

approximated by a feed-through gain and a first-order nonlinear dynamics driven by

the input with hysteretic disturbances.

Based on the parameterized model, an adaptive robust controller is designed to

achieve (a) guaranteed transient error under the assumption of bounded uncertain-

ties and disturbances; and (b) asymptotic tracking in the presence of parametric

uncertainties only. Good tracking performance is achieved for large amplitude tra-

jectories up to 100 Hz even when the hysteresis is entirely attenuated as an unknown

disturbance. With additional model compensation from the hysteresis model, the
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final tracking errors are more than two orders of magnitude smaller than previously

reported in literature on an identical actuator.

For single-loop periodic trajectories, performance can be improved without using

an explicit hysteresis model. By approximating the unknown but periodic uncertainty

with harmonic basis functions and adapting their amplitudes online, non-parametric

uncertainty from unknown hysteresis is significantly reduced. Experimental results

demonstrate tracking error down to the sensor noise level for sinusoidal trajectories up

to 100 Hz with moderate amplitudes and less than one percent for large amplitudes.
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1. INTRODUCTION

1.1 Motivation

Positioning stages based on piezoelectric actuators (PEA) are widely used in high-

precision positioning and tracking applications. The actuators are able to produce

sub-nanometer displacements by means of the inverse piezoelectric effect. Their reso-

lution is only limited by the resolution and noise level of driving electronics. They are

also capable of generating very large pushing forces, which deliver very high band-

width in typical positioning mechanisms where low-inertia stage and high-stiffness

flexures are used [1].

Piezo-actuators are crucial components in equipments for nanotechnology. In-

stead of using a single open-loop piezo-tube scanner to generate motion in all three

dimensions, modern scanning probe microscopes (SPM) employ feedback-controlled

piezoelectric scanning stages to achieve higher accuracy and longer range of motion

in the X-Y plane. The throughput of probe-based nanofabrication techniques, es-

pecially those based on nanolithography or indentation using the scanning tip in

Atomic Force Microscopes (AFM), relies heavily on the control performance of the

piezoelectric actuators [2].

Besides SPMs, piezoelectric actuators are also used in optical fiber aligners, dual-

stage hard-drive reading heads, cutting tool compensation, and other applications

where extremely high positioning accuracy and/or large force is needed. Research on

the motion control of piezoelectric actuator stages has not only remained active for

the past three decades but also seen a steady increase.

When driven by a slow voltage at small strain levels, the behavior of piezoelectric

actuators is governed by the classical equation of linear piezoelectricity [3, 4], which

describes a quasi-static linear relationship between applied electric field and generated
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stress. The linear piezoelectric constant along the main axis is a key parameter in

the specification of piezoelectric actuators and provides a good approximation for the

input-to-output gain in open-loop operations if the frequency and range are low.

However, as the demand for range and driving frequency increases for today’s ap-

plications, we are faced with major nonlinearity inherent in piezoelectric materials, in

particular hysteresis, which results from ferroelectric phase transitions of dipole do-

mains in piezo actuators. It leads to severe positioning errors if not properly modeled

and compensated. Voltage-driven piezo actuators, especially “soft” ones designed to

achieve a longer range, can have hysteresis as much as 15% of the total travel.

Piezoelectric actuators display significantly reduced hysteresis when driven by

charge instead of voltage [5], because polarization (charge/area) is directly related

to charge [6]. However, despite many recent advances in the design of charge am-

plifiers [7], the implementation complexity and cost of such techniques limited their

application. No commercial charge amplifiers that can drive the stages at the same

range and frequencies as a voltage driver are yet available from leading piezoelec-

tric actuator manufacturers. Hysteresis compensation and high-bandwidth tracking

control under voltage-driven conditions remains both challenging and important.

1.2 Literature Review

1.2.1 Piezoelectricity

Piezoelectricity, discovered by the Curie brothers in 1880, is the fundamental

property that enables piezoelectric materials to be used as sensors and actuators.

The prefix “piezo-” is derived from the Greek word “piezein” — “to press.” 1 The

term itself summarizes the effect: electric charge generation under applied pressure

or stress. When used for sensing, this direct effect produces voltages that can be

measured when stress is applied.
1Webster’s New World Collegiate Dictionary, 4th Ed.
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Piezoelectric actuators produce displacements by means of the converse piezoelec-

tric effect, which generates strains and displacements under an applied electric field.

It needs to be distinguished from simple electrostriction, which is common to all di-

electric materials, including piezoelectric materials. Under electrostriction, dielectric

materials are polarized almost linearly along the external electric field. No remnant

strain remains when the external field is removed [8,9].

The strain generated from converse piezoelectric effect is mostly irreversible. It

comes from the spontaneous polarization of the dipole domains in piezoelectric ma-

terials. Below the Curie temperature, these domains have two stable configurations.

When the external field is large enough to overcome the energy barrier between the

two states, dipole domains that are not aligned with the external field will switch to

the opposite state. Strain generated from this effect is much larger than that of the

electrostriction, therefore most piezoelectric actuators are manufactured to exploit

this property. Unfortunately, it is also the source of hysteresis in such actuators.

The combined effect of electrostriction and converse piezoelectricity constitutes the

highly nonlinear response we observe in piezoelectric actuators. When these actuators

are used at very low strain levels, the input-output relationship is dominated by the

reversible polarization and is almost linear. In this case, the classical constitutive

equation of linear piezoelectricity is a widely accepted standard [3]. When driven

at much higher strain levels, the hysteresis effect dominates and requires much more

complicated models.

1.2.2 Hysteresis Compensation

Hysteresis is also a Greek name. Its origin, “hysterein,” means to lag behind [10].

Systems with hysteresis do not return to the same output level when the input reverts

to a previously applied value at steady state. While the input-output map of a

hysteresis loop looks similar to the phase-shift observed in the response of a linear

dynamical system, the phenomenon is unrelated to phase delays; it persists when the
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input frequency approaches zero. For piezoelectric materials, the output depends on

the polarization of the dipole domains that are reoriented by the external field. The

“lag” is a direct result of the bi-stability of domains.

Hysteresis models of piezoelectric actuators can generally be categorized into two

classes [11,12]: “Physical” models based on domain level physics, often derived from

thermodynamics laws or statistical mechanics, and purely phenomenological models.

The term “physical” is a bit of a misnomer here, as no physical equations can describe

the domain dynamics of piezoelectric materials well enough. Many phenomenological

modifications and assumptions are necessary even for a single domain [4].

Physical Models

Physical models are derived from the balance of free energy at the lattice or do-

main level. They provide good approximations for the dynamics of single crystal

piezoceramics since the entire bulk is a single domain [4,9]. For polycrystalline piezo-

ceramics, an ensemble of domain level dynamics is needed, with a separate set of

parameters for each subset of domains [13]. They cannot be computed in real time

even for a small number of domains. Since almost all piezo-actuators are made of

polycrystals to have a longer usable range, physical models are unsuitable for control

design.

A subclass of these models, sometimes called “meso-scopic” parameterized models,

are derived from the same principles of statistical mechanics at the domain level, but

the models are parameterized by the distribution of coercive fields measured at the

macroscopic level [14]. Though the models are too complicated and nonlinear for

real-time control, they provide valuable insight to the origin of hysteresis loop shapes

in an actuator.

Seelecke defines an effective electric field for a domain as the difference between the

externally-applied electric field and the internal field from its neighboring domains.

Domains switch alignment when the effective electric field overcomes the coercive
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field inherent to each domain. If we consider a single domain alone, which has equal

and opposite coercive fields, the domain with the weakest coercive fields will switch

first in both directions, which means the ascending and descending curve should be

symmetric. The internal field from the neighboring domains, however, provides a

nonlinear bias field as the polarization changes, causing asymmetry in the hysteresis

loops. While such an interpretation may not be physically true, it is a useful one that

agrees with experimental observations within the limited range of the actuator. It

also motivates a friction-inspired model that will be detailed in the next chapter.

Phenomenological Models

Phenomenological models are purely based on the observed hysteresis. They are

not limited to the description of piezoelectric hysteresis. In fact, many of the popular

models are applied first to magnetic materials or friction induced hysteresis. Such

models include the Duhem model, Maxwell’s model, the Preisach model, their vari-

ants, and many others [15,16]. Some of them use simple curve fitting techniques with

either polynomial or special functions [17,18]. Though not physically based, they are

easy to implement and provide very good approximations for simple input profiles.

However, they are not necessarily easy to identify and do not usually provide enough

accuracy when used for static inverse compensation.

Preisach Models An important class of models are the Preisach model and its

variants, which approximates the hysteresis with a set of relay operators that switch

at different input levels. Frenec Preisach first applied this model to hysteresis in

magnetic materials in 1935 [19]. The distribution of switching thresholds, called the

Preisach distribution function or the Everett function, can be approximated by known

functions or an interpolation of experimental data.

Mayergoyz’s encyclopedic book on hysteresis [20] has been the definitive source

for the Preisach model since its first edition in 1991. For a more concise and recent

presentation, Szabo et al. have an easy-to-follow summary of the scalar model and its
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identification procedures [21]. Smith’s book on models of smart materials also con-

tains a good introduction on the basic Preisach model, though it’s used in a different

interpretation in later chapters for his energy models [22]. Further development and

solutions for special types of distribution functions can be found in [23–25].

The Preisach model is very successful in capturing the basic properties of piezo-

electric hysteresis due to the natural analogy between the relays and the physical

domains of piezoelectric materials. Therefore it is commonly used for static feedfor-

ward compensation when dealing with low frequency trajectories [26]. Memory effects

and minor loop closure, observed in piezoceramics, are automatically satisfied by the

Preisach model.

However, it is not without disadvantages: (i) a large set of quasi-static experiments

are required to build a look-up table, (ii) the typical static model is only accurate

for a low and narrow frequency range, and (iii) the inversion becomes difficult when

piezoelectric dynamics due to broad spectrum of domain-switching time constants are

included [9]. It is therefore not a good choice for high bandwidth real-time motion

control.

Models with Non-local Memory

Preisach models, or any models that are summations of basic hysteretic elements,

have inherent non-local memory. Non-local memory can also be incorporated into

hysteresis models by explicitly keeping track of all reversal points in hysteresis loops.

Bashash and Jalili model the hysteresis as an input nonlinearity [27,28]. Observ-

ing the similarity between minor-loops and their parent-loops, minor-loops are con-

structed with scaled and shifted portions of the major loop. The ascending branch

and descending branch of the major loop are approximated with special functions of

the input voltage. For specific implementation, both exponential functions and poly-

nomials up to the 3rd order have been used. The model is then inverted and used

as a static feedforward. While they are easy to use, curve-fitting models give little
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insight into the structure of the hysteresis and require complicated loop experiments

to identify the scaling and shifting factors needed for minor-loops.

Takács used a similar technique to model ferromagnetic hysteresis. His model,

called the T (x) model, centers around the function T (x) = A0x + B0 tanh(C0x),

which describes the ferromagnetic saturation effect [18]. Even though Takács’s model

is entirely phenomenological, the T (x) function essentially describes the anhysteretic

curve in ferromagnetic materials, which is conceptually similar to the cumulative

distribution function of internal field in Smith and Seelecke’s model for ferroelectric

materials. However, their similarity ends there. All minor-loops in Takács’s model are

described using scaled and shifted versions of the T (x) function, which is completely

phenomenological.

Models with Local Memory Only

With no memory of the loading history, these models cannot fully describe the

hysteresis in piezoelectric actuators. Many of them originate from friction research.

Some are rate-independent and potentially applicable to simple piezo hysteresis loops,

such as the Duhem model, the Bouc-Wen model, the Dahl model for pre-sliding

friction, and the Bliman-Sorine model. The others are rate-dependent and general

enough to model stick-slip friction that are not observed in piezo hysteresis, such as

the LuGre friction model. A more thorough review of friction models can be found

in an excellent survey article by Olsson et al [29].

1.2.3 Dynamic Modeling and Control Design

Creep Dynamics and Resonance Dynamics

The domain-switching dynamics are characterized by a broad spectrum of time

constants. In a step response, the dynamic process is manifested as a slow drift fol-

lowing a quick initial jump. This drift is almost always modeled separately as the
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creep dynamics. It is either considered negligible [12] or compensated in a feedfor-

ward loop [30], even though its dynamics is largely within the bandwidth of typical

applications and should be considered the dominant dynamics, whereas the stage res-

onance dynamics is often much higher and canceled by notch filters. Such modeling

oversight is quite understandable, because the frequency response for piezo actuator

stages is usually obtained at very small output amplitude to avoid distortion from

hysteresis, therefore not showing the dynamics of domain-switching.

Resonance dynamics typically includes the first vibrational mode of the actuator

stage and is commonly modeled as a second order linear system [31]. For piezo

actuator stages with a larger mass and more than one degrees of freedom, the lowest

few vibrational modes are often close in frequency and need to be included in the

model for better performance [32].

Controller Design

To compensate the hysteresis effect and achieve higher positioning accuracy, al-

most all existing schemes attempt to model and invert the hysteresis. The inverted

input is used as a feedforward signal, and the inversion error and other plant dynamics

are compensated using feedback control.

Ge and Jouaneh used the Preisach model and PID feedback [26], and more recently

Basash and Jalili used a special curve-fitting model and sliding mode control [31], just

to name a few. Since their hysteresis model is identified from either quasi-static inputs

or inputs with a narrow frequency band and applied statically, it is difficult to improve

the tracking error for high frequency motion.

Dynamic inversion based on online adaptation has also been attempted by many

researchers. The problem is made simpler when the trajectories are periodic or repet-

itive, because the dipole domains that will switch in the next cycle will be similar, so

the loop shape remains almost identical. In [33], a set of relays similar to those of the

Preisach model are used, and the set of parameters for the relays are adapted online,
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but their method is limited by the requirement of periodicity and monotonicity in the

trajectory and is only valid for operations of very low frequency.

Also based on properties of the Preisach model, Leang and Devasia designed an

iterative learning controller (ILC) and avoided the offline identification of Preisach

relay parameters [34, 35]. Their approach yields excellent final tracking accuracy,

but works only for very slow trajectories that satisfy input-output monotonicity on

individual Preisach loop branches and takes many cycles to converge.

Cruz and Hayward likened the hysteresis to a phase delay and uses a tuned phaser

to reduce hysteresis [36]. It does not require identification of the hysteresis but works

only for single-frequency trajectories. It also needs to be tuned whenever a different

operating frequency is applied, which greatly limits its usefulness. The model is also

inherently flawed because hysteresis is not really a phase delay. In addition, other

nonlinear piezoelectric effects such as the slow drifting [35] and the broad spectrum

of domain switching time constants [9] are not accounted for in all these methods.

1.2.4 Recent Advances

It will be 4 years after my research was finished when this dissertation is finally

submitted in 2014. During this time, the field of hysteresis modeling and piezoelectric

actuator control has continued to evolve. The following survey brings the literature

review up to date with recent advances.

System Design and Driving Methods

Piezoelectric actuators can be driven by voltage, current or charge drivers. Voltage

drivers are most common despite having the most hysteresis, whereas piezoelectric

actuators driven by charge are largely free of hysteresis.

Charge can be measured in a voltage-driven system by inserting a capacitor in

series with the actuator, even though the range will be reduced unless the driving volt-

age is increased correspondingly, because the actuator and the capacitor will have the
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same charge and similar voltage across them. Minase et al. compared voltage, charge

and capacitor insertion methods for driving piezoelectric actuators in a comprehen-

sive review [37]. Instead of measuring charge, Ishikiriyama and Morita measured the

change in permittivity, which has the same benefit of being linear to strain with little

hysteresis [38].

Salah et al. used charge feedback for position control [39]. Huang et al. used

a switched capacitor charge pump [40]. Zhang et al. used a charge driver and its

output voltage as an additional feedback to reduce hysteresis [41], and Fleming, in a

separate paper, designed such circuits [42]. The leakage current in charge drives were

characterized by Sheng et al. for better compensation [43]. Current control is less

straightforward than charge control, but current drivers or current feedback is much

easier to implement, and it still has the benefit of bypassing the hysteresis [44].

Fleming and Leang integrated a force sensor on a piezoelectric actuator to provide

force feedback [45]. In the resulting system, hysteresis is reduced, and the frequency

of the zero in each pole-zero pair is always lower than that of the pole, making it

much easier to achieve good damping.

Despite the progress in alternative driving hardware, simple voltage-driven sys-

tems remain the only commercially available systems with high performance.

Variants of Preisach Models

Preisach-like models remain popular, and rightfully so. Given their general nature,

they will always fit when sufficiently many hysterons/operators are used, and minor-

loop wipe-outs are automatically satisfied. Their high computational cost is becoming

less of an issue on new hardware. Iyer and Tan demonstrated the inverse compensation

of a Preisach model on an FPGA (Field Programmable Gate Arrays) device where

the inverse operators are calculated and summed in parallel [46].

Preisach models are not limited to symmetric hysteresis, even though they are

most often applied to symmetric hysteresis loops. Asymmetry can be incorporated
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by using asymmetric hysterons and/or weighting functions. Jang, Chen and Lee used

a Preisach-model feedforward with a PID feedback loop on a piezoelectric actuator

with asymmetric hysteresis [47]. Jiang et al. (not to be confused with Jang) modeled

the asymmetric hysteresis with a modified Prandtl-Ishlinskii model [48]. In Chapter

2, we show how asymmetry can be introduced through a shaping function without

using Preisach models or modifying the basic hysteresis model itself.

Peng and Chen combined the classical Preisach hysteresis inverse with H2-optimal

control [49]. Liu (Lei) et al. used an SVD-based method to identify Preisach param-

eters when the dicretization level is low and the corresponding least-squares problem

becomes ill-conditioned [50]. The identified Preisach model is then used with a PI

controller for scanning control [51]. Minase et al. identified the Preisach hysteresis

model and creep parameters using an unscented Kalman filter [52]. Al Janaideh et

al. proposed an analytical generalized Prandtl-Ishlinskii model inversion for hysteresis

compensation [53]. They and Li applied the results to a stop-operator-based Prandtl-

Ishlinskii model in the compensation of hysteresis for a piezoelectric actuator [54].

Though theoretically novel, their results provide limited benefit in experimental per-

formance, as hysteresis inversion is only part of the motion tracking problem.

Edardar, Tan and Khalil were not the first to use a Prandtl-Ishlinskii hysteresis

inverse with sliding-mode control, but they were the first to analytically choose the

coefficient of the sliding-mode components based on inversion error bounds [55, 56].

They went on to use singular perturbation to analyze the behavior of a fast linear

system preceded by a hysteresis operator, which has been a common model structure

for piezoelectric actuators [57]. Esbrook and Tan also performed harmonic analysis

to evaluate the Fourier series of the outputs of hysterons subject to sinusoidal and

sawtooth signals [58].

The Maxwell model is a superposition of first-order linear systems, as opposed

to the Preisach model, which is a superposition of static operators such as switch

and play. Liu (Yanfeng) et al. used fractional-order Maxwell models to directly



12

incorporate creep dynamics into the model [59]. They also preshape the trajectory

using the linear plant dynamics to reduce feedforward error [60].

Non-Preisach Models

Bashash and Jalili produced some of the best results in controlling a single piezo-

electric actuator before their focus shifted to 3-dimensional systems. They proposed

a simple constitutive model of hysteresis with minor loops and designed adaptive

sliding-mode feedback controllers to suppress the error of the feedforward model [61].

Similar results using adaptive sliding-mode control (but with different hysteresis mod-

els) were also published by Huang, Tan and Lee [62]. After demonstrating its effec-

tiveness on a one-dimensional actuator [63], Bashash and Jalili applied their robust

adaptive approach to coupled parallel flexure actuator stages [64]. Jalili’s monograph

on piezoelectric-based vibration control contains a comprehensive review of their re-

sults and related work [65].

Cao and Chen used the discrete form of Duhem model and ARMA-based identi-

fication of its parameters [66]. The Bouc-Wen model was used by Rakotondrabe as

hysteresis feedforward [67]. Liu, Chang and Li designed model-reference adaptive con-

trollers around a hysteretic system described by the Bouc-Wen model and showed its

effectiveness on a piezo-positioning stage [68]. Li and Xu used adaptive sliding mode

control with perturbation estimation assuming a Bouc-Wen-like hysteresis model [69].

Li and Xu also used Dahl-model based hysteresis compensation in the positioning

control of piezoelectric actuators on an XY manipulator [70]. This may be the only

recent reference in which the Dahl model is used. Their work was focused on single

loops and made no extensions to the Dahl model to capture more complicated loops.

Our results using a modified Dahl model that predicts minor loops are discussed in

Chapter 2.
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For single-frequency tracking, Gu and Zhu approximated the hysteresis combined

with the dynamic phase lag by ellipses [71, 72], which is similar in concept to the

earlier phaser approach by Cruz-Hernandez and Hayward [36].

Compensation without Hysteresis Models

For complex but periodic trajectories, especially those encountered in surface scan-

ning, iterative and repetitive controllers can effectively achieve high accuracy without

using explicit hysteresis models. The early work by Leang, Zou and Devasia showed

good results using iterative learning control (ILC) [73, 74]. The same approach was

also used by Liu et al. at around the same time [75].

Inversion-based feedforward control and iterative control (IIC) approaches con-

tinued to be actively developed by Zou’s group. Wu and Zou quantified the bound

of the feedforward error and used it in the design of an H∞ robust feedback con-

troller [76]. Yan, Zou and Lin showed excellent tracking performance of their IIC

controller in scanning a pentagram pattern [77]. The same approach was later ap-

plied to 3-dimensional positioning by Yan, Wang and Zou [78]. Wang’s dissertation

in 2013 provides the most recent and complete exposition of their results [79].

Besides being explicitly modeled or iteratively canceled, hysteresis has also been

treated simply as an unknown disturbance. Yi, Chang and Shen used a disturbance

observer to compensate for hysteresis [80]. Liaw and Shirinzadeh modeled the hys-

teresis nonlinearities of a piezo flexure stage as multiplicative uncertainties that are

functions of the position and adapted the parameters along with a sliding-mode robust

controller [81].

Gu et al. designed a robust adaptive control framework around a backlash-like

hysteresis model preceding a linear plant [82]. Their approach occupies a middle

ground between complete hysteresis model inversion methods and (non-repetitive)

model-less methods, and their experimental performance is comparable to most of

the recent results.
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When driven at low strain, the hysteresis effect is less prominent and the (some-

times very low-frequency) resonant dynamics of an actuator stage can be dominant

in motion tracking. For this scenario, Aphale et al. presented the modeling of an

XY stage and the design of an H∞-based controller that achieves fast and accurate

tracking of low-amplitude triangular signals [83].

Final Remark

The research results in this dissertation remain relevant and competitive. New

hardware design did not eliminate the need for hysteresis compensation, the hysteresis

control paradigms remain largely unchanged, and experimental performance saw very

little improvement despite the theoretical advances.

1.3 Objective

Existing modeling and control schemes for piezoelectric actuators require complex

offline identification for hysteresis compensation. They overlook the domain switching

dynamics as the dominant dynamics in the case where the resonance dynamics is fast

and much beyond the closed-loop bandwidth.

In this dissertation, we will show the dominant dynamics of a piezoelectric actu-

ator, develop a control-oriented model that captures the major characteristics of the

dominant dynamics and yet simple enough for adaptive dynamic compensation, and

design adaptive robust controllers to achieve high performance motion tracking for

piezoelectric actuators. A hysteresis compensation model will also be developed with

an emphasis on easy implementation and identification.

1.4 Organization

The rest of the dissertation is organized as follows.
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Chapter 2 details the development of a model for hysteresis compensation with

an emphasis on easy implementation and identification. Experimental results show

excellent static linearity with hysteresis compensation.

Chapter 3 presents the development of a control-oriented model for a piezo-stage

with negligible resonance dynamics and the corresponding design of an adaptive ro-

bust controller. Experimental results are provided to demonstrate the performance

of the controller both with and without hysteresis feedforward.

Chapter 4 shows that tracking performance can be further improved under the

same framework when the desired trajectories are periodic. For such trajectories, the

unknown but periodic portion of the dynamics can be approximated by a superpo-

sition of harmonic basis functions. Experimental results show a decreasing trend in

tracking error as more harmonic terms are used.

Finally, Chapter 5 concludes the dissertation with a summary of contributions

and lists some of the problems from the current research for future research.

The results are presented in this order to be more logical, but they were not

obtained in the same order over the course of the research. The dynamic model and

the adaptive robust controller in Chapter 3 were obtained before the various methods

of hysteresis compensation were developed. The harmonic approximation in Chapter

4 was done next, and the hysteresis “friction” model in Chapter 2 happened last after

repeated failures to find a model that’s simple and useful.
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2. MODELING AND COMPENSATION OF HYSTERESIS

2.1 Model Structure

Piezoelectric actuators or stages are commonly modeled as a system with linear

dynamics preceded by a hysteresis nonlinearity, and a hysteresis inverse is constructed

to cancel the hysteresis [12, 30] (Figure 2.1a). While such a formulation has been

shown to work for many point-to-point or single-loop trajectories, it inherently as-

sumes that the hysteresis depends only on the input and domain polarization happens

instantaneously. Neither of these assumptions are physically true.

Hysteresis

Nonlinearity

Creep

Dynamics

Resonance

Dynamics
Input Output

(a)

Domain

Dynamics

Resonance

Dynamics
Input Output

Charge

Hysteresis

“Friction”

+

_

(b)

Figure 2.1. Model structure. (a) Common model structure; (b) Proposed
model structure.

In this dissertation, the hysteresis is modeled as a feedback friction-like nonlinear-

ity that depends on the output of the actuator (Figure 2.1b). Such a formulation is

motivated by the following factors:
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1. The “memory” of the actuator depends on the domains that have switched in

the past. Only domains that have switched under the applied voltage affect the

branching of hysteresis in the future. As we will show in the next chapter, the

switching of domains is far from instantaneous. The number of domains that

have switched directly relates to the charge output of the actuator.

2. In semi-physical models such as Seelecke’s energy-based model, the energy bar-

rier of domains is a function of the polarization that corresponds to the distribu-

tion of domain barriers, which predicts the barrier that needs to be overcome for

the domain that hasn’t yet switched [13]. This is essentially a rate-independent

relationship from polarization/charge output to a corresponding barrier that

causes hysteresis.

3. The hysteresis in a piezoelectric actuator, when viewed from output to input

after removing a linear slope, is remarkably similar to hysteresis caused by pre-

sliding friction (Figure 2.2). Pre-sliding friction only depends on displacement

and has been extensively studied in the past. A simple friction model may be

a natural place to start in modeling the piezoelectric hysteresis as a feedback

nonlinearity.
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Figure 2.2. Left: Piezoelectric hysteresis; Right: Typical pre-sliding
friction. (Reprinted with permission from [84]. Copyright 2004, American
Institute of Physics.)

2.2 Hysteresis in a Piezoelectric Stack Actuator

2.2.1 The Big Picture

The hysteresis loop we observe in stack actuators is only part of a much larger

hysteresis loop, sometimes referred to as the “butterfly” loop due to its shape (Figure

2.3). During manufacturing, piezoelectric actuators are subject to a large external

electric field while being cooled down from above the Curie temperature, such that

all domains are aligned with the external field. The piezo amplifier normally does not

allow a large negative voltage to be applied to the actuator. When depoled to the

other direction, the actuator may produce negative displacement with an increasing

input, making it useless for actuation.
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Figure 2.3. Actuator range within a full “butterfly” hysteresis. (a) Po-
larization; (b) Strain.

2.2.2 Experimental Setup

Figure 2.4. Experimental setup.
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The experimental setup consists of four parts (Figure 2.4): the positioning stage

with integrated capacitive displacement sensor, a low-voltage driving amplifier, a

dSPACE DS1103 controller board, and a generic PC for dSPACE ControlDesk. The

base of the stage is screw-mounted on a massive vibration isolation table to minimize

induced vibrations in the supporting structure. The capacitive sensor signal has a

noise level of ±0.003 volt, which corresponds to ±3.6 nm of displacement. The driving

amplifier (Physik Instrumente E501.00) has an output range of −20 to 120 volts and

a bandwidth above 2kHz, a decade higher than our desired frequency range, so its

electrical dynamics are considered negligible. It amplifies the control voltage signal

from the dSPACE board by a factor of 10. All input signals in the following results

are the pre-amplified control voltage from dSPACE.

2.2.3 Full-loop Initialization

Piezoelectric actuators have non-local memory. The output from a starting posi-

tion depends on all the minor loops that had been formed before the actuator settled

into this position. To obtain consistent results in experiments, we need to initialize

the actuator by driving it with the full range of available voltage, so that it starts

from a known outer-loop after all minor loops have been wiped out.

Since the pre-amplified input is limited to [−2V, +10V], we first ramp up to +10V

and then come back to −2V before starting the experiments. This is demonstrated in

Figure 2.5, where the stage output measurement saturates at 12μm when the input

exceeds roughly 7.5V, because the analog input on dSPACE has been saturated, even

though the actuator can move beyond 12μm. After the initialization loop, the 2nd

loop is generated by ramping up to +7V. The actuator reaches −3μm at −2V and

11μm at +7V. We consider this 14μm loop the largest usable loop and define it as

the major loop that no subsequent experiments should exceed.
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Figure 2.5. The initialization loop and the major loop.

The experiments intended to show the true hysteresis need to run with pseudo-

static input signals to exclude dynamic phase lag. The input rate is set to 0.1V/s,

at which the actuator consistently forms closed hysteresis loops with negligible creep,

and it is slow enough not to excite the resonance dynamics of the actuator and stage.

Throughout the dissertation, the following terminologies will be used:

Major-loop The largest loop formed by the actuator within its usable range.

Minor-loop Any loop smaller than the major-loop

Outer-loop The larger of two connected loops

Inner-loop The smaller of two connected loops

2.2.4 Asymmetry in Loop Shape

Though the small hysteresis loop in Figure 2.2 is highly symmetric around its

center, the hysteresis loops at a bigger scale warp to the right and become asymmetric

as the actuator goes toward the upper end of its range (see the major loop in Figure

2.5.c). The distortion is similar to strain-hardening and can be interpreted in several



22

ways. For instance, Smith and Seelecke modeled this phenomenon as a distribution of

internal field exerted by the switched domains to their opposing neighbors [14] [13].

As the strain1 increases, the internal field increases nonlinearly as the majority of

domains switch into one direction, causing the effective domain barrier and therefore

the shape of the loops to become asymmetric. A similar phenomenon is observed in

magnetic materials and modeled by the mean field theory [86]. The flexure springs

in the stage may also exhibit a small amount of hardening but is likely not the main

source, as the same distortion is seen in standalone actuators that are not mounted

on flexure stages [13].

2.3 Hysteresis Modeling

Based on observations in the previous section, we now separate the hysteretic

input-output relationship of the actuator into several apparent components (Figure

2.6). The effective barrier for the next switching domain, as the displacement changes,

is a combination of both the switching barrier inherent to the domain and the coun-

teracting internal field from its neighbors, if we adopt the modeling perspective of

Smith and Seelecke. Though we cannot measure and isolate the two, the domain

barrier is 2-fold symmetric and hysteretic, whereas the internal field is nonlinear but

not hysteretic.

After removing a linear component from each, the remaining domain barrier will

be highly similar in shape to pre-sliding friction described by the Dahl friction model,

as we have shown in Figure 2.2. The nonlinear curve from the internal field depends

only on the excess of domains in the positive direction, therefore it can be captured

by a function of displacement, which can be fitted using a high-order polynomial.
1The distribution function in Seelecke’s energy model is actually between electric field and polar-
ization, not strain. Even though the relationship between polarization and strain/displacement is
nonlinear and generally considered quadratic [22], the relationship is one-to-one in the actuator
range. The nonlinear relationship can be safely lumped to the shaping functions defined later in the
chapter. In addition, Georgiou and Mrad have shown that in the range typically used for actuation,
the relationship between polarization and strain is highly linear (Figure 1 in [85]).
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The two linear components are combined into the overall linear gain of the system.

In the next sections, we will model and identify each of these components.

= +

Effective Barrier Domain Barrier

(2-fold symmetric)

y

Internal Barrier

(Non-hysteretic)

y y

u u u

Dahl-like

Hysteretic + +
Linear Linear Nonlinear

+=

Figure 2.6. Components of a piezoelectric hysteresis.

2.3.1 The Dahl Friction Model

In 1968, Philip R. Dahl of the Aerospace Corporation developed a model for pre-

sliding friction in ball bearings [87]. Inspired by the stress-strain relationship in solid

mechanics, Dahl proposed a differential equation in displacement,

dF

dx
= σ
(

1− F
Fc

sgn(v)
)α
, (2.1)

where F is the friction force, x the displacement, σ the stiffness coefficient, Fc the

Coulomb friction force, v the velocity, and α the exponential order that determines

the shape of the curve. If we set the initial condition such that |F0| < Fc, F will

converge to Fc at steady-state as displacement goes towards infinity. Dahl’s model

can also be expressed in the time domain by observing that

dF

dt
= dF
dx

dx

dt
= dF
dx
v = σ

(
1− F
Fc

sgn(v)
)α
v. (2.2)



24

We prefer the displacement form (2.1), because the friction force is only a function of

displacement and the sign of velocity, not the value of velocity. When α = 1, equation

(2.1) is a simple 1st-order linear filter in displacement.

Bliman and Sorine defined the total distance covered by the relative motion in

space, s =
∫ t

0 |v(τ)| dτ , as their new “time” variable and extended Dahl’s model to a

higher-order linear model in the space variable s [88, 89]. Their model has the form

dxs
ds

= Axs +Bvs

F = Cxs, (2.3)

where the velocity in space vs = dx
ds

= sgn(v). Adopting Bliman and Sorine’s space

variable and defining the friction state as z, we can rewrite the 1st-order Dahl’s model

in a concise and normalized form

1
σ

dz

ds
+ z = sgn(v)

F = Fcz, (2.4)

which clearly shows the behavior of the model — a low-pass filter in displacement

with an exponential decay rate σ.

2.3.2 Enforcing Loop Symmetry

The Dahl model only forms closed and symmetric loops between two equal and

opposite values of z, not arbitrary reversals. To enforce a symmetric loop between

any two reversal points, we can extend the Dahl model by adding zr, the friction state

z at the last reversal, to the right-hand side of 2.4, which is equivalent to resetting

z to start from zero at the reversal and assigning the previous value of z to zr such

that the output remains continuous. With the additional term, the model becomes

1
σ

dz

ds
+ z = zr + sgn(v), (2.5)

whose output starts from zr and converges to zr + 1 if the displacement has reversed

toward the positive direction or zr − 1 toward the other.
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2.3.3 Adding Non-local Memory

Equation (2.5) depends only on the last reversal point and has no memory of the

past reversals. If the displacement continues after a loop has been closed, the model

will not follow the parent loop (Figure 2.7).

0

1

z

y

(0)

(1)

(2)

←Wipe−out

Correct path with wipe−out

Wrong path without wipe−out

Figure 2.7. Model behavior with and without non-local memory.

To correctly wipe out a minor loop, we further extend the local memory of zr in

equation (2.5) by recording all past reversal points from the major-loop and replacing

the initial value to that of the immediate parent loop whenever a loop is closed. A

similar technique to implement the memory has been used in the integrated Leuven

model for pre-sliding friction [90]. The final model becomes

1
σ

dz

ds
+ z = zi + sgn(v), (2.6)

where zi is the initial condition for the i-th reversal. The reversal index i grows with

each reversal that forms a new minor loop (Figure 2.8). At each reversal, both y and

z are added to a memory stack. After the i-th reversal, if y crosses yi−1, which is the

reversal point on its parent loop, i is decremented by 2, erasing both reversal points

that form the minor loop, and zi now corresponds to the initial state of the parent
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loop, as if the minor loop never happened. The memory arrays are initialized to have

z(−2) = 1 at y(−2) = +∞ and z(−1) = 0 at y(−1) = −∞, such that the model output

will be bounded by a fictitious infinite major loop that cannot be wiped out.

0
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z

y

(0)

(1)

(2)

(3)

(4)

Figure 2.8. Reversal index.

2.3.4 Adding Asymmetry

In section 2.2.4, we have mentioned that asymmetry in hysteresis loops may be

attributed to an internal field that increases nonlinearly with the strain output. While

analytical distribution functions based on the phase fraction of the domains have

previously been used to model this nonlinearity [13], we do not know the phase

fraction of the actuation range, because a full depoling loop cannot be applied to the

actuator.

Ni et al. observed significant hardening distortion in the restoring force of wire

cable isolators and modeled it as a separate nonlinear force that adds to the output

of a Bouc-Wen model as a shaping function, which is approximated by a 3rd-order

polynomial [91]. For even more drastic distortions such as widening of loops at large

displacement, Al-Majid and Dufour further extend Ni’s approach to define enveloping

functions to shape their symmetric model output [92]. Using extra shaping functions
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for asymmetry keeps the core of the hysteresis model simple and easy to identify. Since

the asymmetry in piezoelectric actuator loops is quite mild, a polynomial shaping

function is sufficient.

2.3.5 The Final Hysteresis Friction Model

Combining the symmetric hysteresis model with memory and the shaping function,

the total hysteresis friction in our system is given by

uh = uh1 + uh2

uh1 = h1z

uh2 =
N∑
i=2
hiy
i (2.7)

where h1is the magnitude of the symmetric hysteresis friction and hi are the coeffi-

cients of the polynomial shaping function. And the total input of the system is

u = 1
k
y + uh (2.8)

where k is a linear gain from u to y.

2.4 Parameter Identification

By the nature of our model, the outer-loop contains all the information needed for

identification. To simplify presentation, the coordinates are shifted such that (u, y)

start from (0, 0). The hysteresis state z starts from zero and reaches zr at the upper

reversal point.

The ascening part of the loop is denoted ua(y) and the descending part ud(y),

both spanning the same range of y. the non-hysteretic part of the input y
k

+∑Ni=2 hiy
i

is shared by both curves, whereas the hysteretic component uh is different. A poly-

nominal order N = 4 has been picked because the next term improves the fit by less

than 0.1%.
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Differentiating u by y, we have
du

dy
= duh1

dy
+ 1
k

+ 2h2y + 3h3y
2 + 4h4y

3 (2.9)

where the term duh1
dy

depends on the direction of the curve.

duh1

dy
= h1

dz

dy

= h1
dz

ds
· sgn(v)

=

⎧⎪⎪⎨
⎪⎪⎩
σh1 − σuh1 along ua(y),

σh1 + σuh1 − σh1zr. along ud(y).
(2.10)

In the ascending direction, the derivative becomes

dua
dy

= σh1 − σuh1 + 1
k

+ 2h2y + 3h3y
2 + 4h4y

3

= (σh1 + 1
k

) + σ(−ua) + (σ
k

+ 2h2)y (2.11)

+(σh2 + 3h3)y2 + (σh3 + 4h4)y3 + (σh4)y4

and in the descending direction,
dud
dy

= σh1 + σuh1 − σh1zr + 1
k

+ 2h2y + 3h3y
2 + 4h4y

3

= (σh1 + 1
k
− σh1zr) + σ(ud) + (−σ

k
+ 2h2)y (2.12)

+(−σh2 + 3h3)y2 + (−σh3 + 4h4)y3 + (−σh4)y4.

The unknown parameters can now be identified from the sum and difference of

these two derivatives. The parameters σ, h2, h3, h4 can be identified through least

squares from the sum
d(ud + ua)
dy

= σ(ud − ua) + h2(4y) + h3(6y2) + h4(8y3) + (2σh1 + 2
k
− σh1zr), (2.13)

and the remaining parameters h1 and k can be obtained, again by least squares, after

substituting the known parameters identified from (2.13) into the difference
d(ud − ua)
dy

= σ(ud + ua − 2h2y
2 − 2h3y

3 − 2h4y
4)− σ
k

(2y)− σh1zr. (2.14)
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The numerical values for all the parameters are

k = 1.961

σ = 0.356

h1 = 1.292

h2 = 3.12× 10−3

h3 = 1.36× 10−4

h4 = 9.04× 10−6

2.5 Model Validation

All parameters in our model are identified using the outer-loop alone. If the

proposed model is valid, the model should correctly produce all loop shapes and wipe

out minor-loops when the initial conditions are matched. Unless otherwise noted,

all experiments in this section are initialized to start from −2V after a full-loop

initialization. The hysteretic friction uh predicted by the model is subtracted from

the true input to show the compensated input-output relationship.

2.5.1 First-order Reversals

First-order reversal loops are the most similar to their parent loops and often

used for hysteresis modeling and identification. Both lower reversals and upper rever-

sals are compensated well by the proposed hysteresis model (Figures 2.9 and 2.10).

Without compensation, the hysteresis in the actuator causes a difference of up to 1.9

micron at the same input, which is 14% of the actuation range. When the predicted

“friction” is subtracted from the input, the input-output relationship becomes highly

linear with a residue of 0.13 micron, which is less than 1% of the actuation range.
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Figure 2.9. 1st-order reversals from the ascending branch of the major-
loop. (a) Input; (b) Output; (c) Hysteresis before compensation; (d)
Hysteresis after compensation.

2.5.2 High-order Reversals with Decreasing Amplitude

In this experiment, the input alternates with decreasing amplitude to form higher-

order reversal curves. The most inner reversal in Figure 2.11 corresponds to an 8th-

order minor-loop. Again, the input-output relationship becomes linear with the same

gain with a residue of 0.12 micron when we subtract the predicted hysteresis from

the input.

2.5.3 Wiped-out Minor Loops

Figure 2.12 shows a more challenging trajectory that contains 3 minor loops on

each side of major loop. When the actuator returns from a minor-loop, once it gets
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Figure 2.10. 1st-order reversals from the descending branch of the major-
loop. (a) Input; (b) Output; (c) Hysteresis before compensation; (d)
Hysteresis after compensation.

past the previous reversal point on the parent loop, the output continues on the parent

loop as if the minor loop never happened. As we can see in Figure 2.12.d, the model

correctly predicts all the minor loops.

2.5.4 Unmatched Initial Conditions

In practice, a full-loop initialization cannot always be done before the desired tra-

jectory. If no information on the previous loading history is available, the hysteresis

model will not correctly predict the hysteresis until all minor loops within the trajec-

tory are wiped-out. However, once the output trajectory has reached both extrema,

all minor-loops previously contained between them will be wiped out, after which

only a constant offset remains.
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Figure 2.11. Minor-loops with decreasing amplitude. (a) Input; (b)
Output; (c) Hysteresis before compensation; (d) Hysteresis after compen-
sation.

The experiment in section 2.5.2 is repeated from zero input without the initial-

ization loop (compare Figure 2.13). The model starts with no knowledge of previous

minor-loops and fails to cancel the hysteresis until the maximum displacement is

reached. Since the normalized friction state is always bounded, the prediction error

never exceeds the width of the original hysteresis loop. Being an uncertainty with a

known bound, it can be attenuated in subsequent controller design. It also has no

effect on steady-state error because it becomes a constant after a finite time when the

the largest loop has been formed. Note that the constant offset in this experiment is

much different from that of the correctly initialized one.
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Figure 2.12. Minor-loops branching from both sides of the major loop.
(a) Input; (b) Output; (c) Hysteresis before compensation; (d) Hysteresis
after compensation.

2.6 Feedforward Compensation of Hysteresis

The model and linear gain identified so far can be used to control the actuator

in open-loop. We start with a pseudo-static triangular trajectory, which has a ramp

rate of 0.2 micron per second and a span of 10 microns. This is close to the input

rate at which we drove the actuator to collect data for hysteresis identification. At

such low speed, the identified model is expected to have an almost perfect fit.

The tracking error is less than 0.11 micron everywhere, which is 1.1% of the

actuation span. After the first ascending curve, the subsequent segments are all within

a 0.05-micron band, suggesting that the actuator is settling into a very repeatable

loop whose hysteresis is well described by the model. A linear fit of the curve y vs.

yd in Figure 2.14.b has a slope of exactly 1 and an offset of only 23 nm.
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Figure 2.13. Compensation with unmatched initial conditions. (a) In-
put; (b) Output; (c) Hysteresis before compensation; (d) Hysteresis after
compensation.

As the ramp rate increases, tracking error starts to grow. At 2 microns per second

(Figure 2.14.d), the largest tracking error is 0.235 micron during part of the first

ascending curve, after which the input-output relationship again remains very linear

and consistent in both directions — y = 0.965yd+ 0.166 with a maximum residual of

0.043.

When the ramp rate reaches 40 microns per second (Figure 2.14.f), equivalent

to a 2-Hz triangular wave with 10 microns peak-to-peak, the error has become too

large for the feedforward controller to be useful by its own, but the compensated

loop after the first ascending curve is still fairly linear with y = 0.92yd + 0.37 with a

maximum residual of 0.059. The hysteresis, when defined as the difference between

the ascending output and descending output, is still within 0.11 micron.
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Most of the error comes from the fixed feedforward gain, which is no longer a good

fit for faster trajectories. The hysteresis between ascending curves and descending

curves is quite constant except where the actuator reverses direction. Constant offsets

are easily compensated by any closed-loop controller with integral control, and an

unknown but constant input gain can be compensated by adaptive control. These

will be addressed in the next chapter.

Running the initialization loop is essential for open-loop feedforward control. Fig-

ure 2.15 shows that the error and offset become as big as the original hysteresis even

for the slowest speed if we skip the initialization and start from an unknown loop

state. However, the initialization may not be necessary if a closed-loop controller is

used to attenuate the error from the mismatched hysteresis model.

2.7 Implementation and Interpretation of the Dahl Hysteresis Model

The hysteresis model has been implemented in C from a direct discretization of

equation 2.6 using forward difference. Such a straightforward implementation has

the benefit of extremely low computational cost, but numerical accuracy will suffer if

the displacement becomes too large in each step of integration, which happens when

either the sampling frequency is too low or the trajectory speed is too high. The

trajectories in our experiments are not fast enough to cause numerical problems.

If numerical accuracy must be guaranteed regardless of step size in displacement,

we can use the analytic solution of equation (2.6) instead of integrating the hysteresis

model along the desired trajectory. For example, if the actuator reverses direction

at position yi with hysteresis friction zi and now goes in the positive direction with

y > yi, the new inner loop is calculated as z = zi + (1− exp(−τ ∗ (y − yi))).
In other words, the extended Dahl model is nothing more than fitting an expo-

nential decay function to the outer hysteresis loop, if it hasn’t been obvious. The

higher-order variants, such as the Bliman-Sorine model, are more general by allow-

ing a superposition of exponential and sinusoidal functions. It is entirely possible to
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achieve the same accuracy using polynomials or combinations of other special func-

tions.

The advantage of the Dahl model thus lies not in its accuracy but in its brevity

of expression and simplicity of implementation. We can identify its parameters using

least squares, because the differential model is linear in both states and parameters.

The solution function, which is a common exponential function, enforces the shape of

hysteresis we desire without much special handling that may be necessary for other

functions. Even though other functions may fit equally well, they cannot be calculated

simply by integrating linearly along the reference trajectory.

These remarks are more personal preferences than engineering requirements. How-

ever, the mathematical form of the model should be simple when the hysteresis en-

countered in the actuator is simple. A general model that will fit everything but

cannot be computed in a short sampling period is not a good model in application.

2.8 Conclusion

The Dahl friction model, with the addition of reversal history and a shaping

function, correctly predicts the hysteresis observed in a common Piezoelectric stack

actuator. All parameters of the new model can be identified from the outer-loop

alone. The hysteresis is reduced from 14% to less than 1% of the actuation range.

When initial conditions are unmatched, the modeling error remains bounded within

the largest uncompensated hysteresis. Once the actuator goes through the largest

loop in the trajectory that wipes out all unknown minor loops, the modeling error

becomes a constant that can be compensated by feedback control, which will the the

subject of Chapter 3.
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Figure 2.14. Actuator response with feedforward compensation is very
good at low speed but degrades at higher speed. (a-b) Output vs. input
and reference at 0.2 μm/sec; (c-d) Output vs. input and reference at 2
μm/sec; (e-f) Output vs. input and reference at 40 μm/sec.
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Figure 2.15. Actuator response with feedforward compensation but no
initialization will have significant error but will still be linear after the
first upper reversal point. (a-b) Output vs. input and reference at 0.2
μm/sec; (c-d) Output vs. input and reference at 2 μm/sec; (e-f) Output
vs. input and reference at 40 μm/sec.
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3. DYNAMIC MODELING AND FEEDBACK CONTROL OF A

PIEZOELECTRIC ACTUATOR WITH NEGLIGIBLE RESONANCE DYNAMICS

In Chapter 2, we have developed a hysteresis model that can be used for feedforward

control. In this Chapter, we will identify the dominant dynamics of the actuator and

design a feedback controller that adapts the gain, rejects an input disturbance, but

assumes no structural knowledge of the hysteresis. They will then be combined for

the best performance.

In the frequency range where only the piezoelectric dynamics dominate, high

tracking accuracy is possible through an integration of adaptive robust control strat-

egy with a control-oriented modeling of nonlinear piezoelectric effects. Specifically,

the fast and slow dynamics of the total stage displacement due to various piezoelec-

tric effects including the rate-dependent hysteresis nonlinearity, the drifting, and the

broad spectrum of domain switching time constants are first identified.

With the control structure in mind, a simple first-order nonlinear model with

unknown parameters and bounded disturbances is used to capture the essence of

the fast and slow dynamics. An adaptive robust controller (ARC) is designed to

effectively compensate for the effect of unknown model parameters and bounded dis-

turbances, which provides an on-line adaptation-based dynamic model compensation

that minimizes tracking errors. Experimental results demonstrate the effectiveness of

the approach even without adding hysteresis feedforward [93,94]. When the hysteresis

friction model is added as a disturbance feedforward, the uncertainty from hysteresis

is further reduced to achieve excellent tracking performance.
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3.1 Introduction

In this chapter, we will take a holistic approach to the modeling and control of a

piezoelectric positioning stage. Specifically, we will significantly reduce the complex-

ity of the model needed to capture all the nonlinear piezoelectric effects for precision

motion control designs through the use of advanced adaptive robust control strat-

egy [95–97] and on-line parameter adaptation. We recognize that, though the time

constants of domain switching dynamics have a broad spectrum and cause various

nonlinear effects (e.g., the slow drifting phenomenon in [35] can be considered as

the effect of the domain switching dynamics having large time constants), in the fre-

quency of interest, the piezoelectric dynamics can be separated into the fast and slow

dynamics.

In terms of controller design, the effect of slow dynamics can be captured by an

unknown slow-changing bounded disturbance and the fast dynamics can be approx-

imated well by a first-order nonlinear dynamics with unknown static gain and time

constant driven by a hysteresis function of the input. By further approximating the

hysteretic function via simple linear functions with unknown gain and bounded ap-

proximation error, we obtain a first order nonlinear model linearly parameterized by

four unknown parameters only, which is sufficient to capture the major characteristics

of various piezoelectric hysteresis nonlinearities for controller designs.

Adaptive robust control (ARC) [95–97] is then applied to compensate for the ef-

fect of unknown parameters and the bounded slow-varying disturbances effectively

through the use of a discontinuous projection based on-line parameter estimation

method. The uncompensated unknown nonlinearities and the effect of transient pa-

rameter estimation errors are further attenuated by fast robust feedback embedded

in the ARC design [98]. As a result, the time consuming identification of the exact

hysteresis piezoelectric nonlinearities is avoided while excellent tracking performance

is achieved.
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3.2 Dynamics of a Piezoelectric Stage System

3.2.1 The Positioning Stage System

The system to be controlled is a commercially available nano-positioning stage

driven by a piezoelectric actuator with an integrated capacitive position sensor, pro-

duced by Polytec PI (Model number P753.11C). The unit has a total measurable

travel of 12 μm when it is driven by an applied control voltage of -2 to 10 volts

(amplified by 10 through the amplifier). We will limit our experiments to a range

within ±2.4μm, as the stage requires very high power to operate at its full range at

high frequencies, which causes potential saturation in the driving amplifier. Since the

goal of this paper is higher accuracy at high frequencies, we prefer a higher available

operating frequency to a longer range of travel. In this range, the actuator already

exhibits a very noticeable amount of hysteresis.

Piezoelectric actuators have non-local memory because different portions of dipole

domains switch under different loading history [9, 20]. To ensure that all our experi-

ments start from a comparable internal polarization state, we apply the same loading

history before each of the experiments for modeling. The control input slowly ramps

up (0.1V/s) from 0 to 10V, then down to -2V and holds at -2V for 10 seconds (Figure

3.1), before any of the following experiments are started. By doing so, almost all of

the domains that can switch in the available input range of -2 to 10V would have been

switched back to a negative state at the terminal input of -2V. The initial positions

after such initialization are within tens of nanometers of each other and considered

practically the same.

The hysteresis caused by dipole domain switching is often considered rate inde-

pendent at low velocities, as in most of the Preisach-based models which assume the

domains switch instantaneously and the same domain will switch at the same input

level. The assumption that the same domain will switch at the same input level may

be reasonable, as demonstrated by the steady-state responses of the stage under two

different inputs with the same final value, a pseudo-static (0.1V/s) ramp input from
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0 to 2V, and a step input from 0 to 2V, shown in Figure 3.2. In the step response,

the stage does not immediately jump to the same output level that the ramp input

reaches at 2V, but slowly and eventually converges to almost the same output level

after 20 seconds. The convergence of outputs shows that steady-state outputs of the

stage for various monotonic inputs with the same steady-state input magnitude but

different ramping-up rate is indeed rate-independent. The portion of dipole domains

that will eventually switch will be the same if the prior loading history and the next

steady-state monotonic input level are the same.

However, the switching of the domains cannot be assumed to occur instantaneously

and independent of input loading rate. As a consequence, rate-dependent hysteresis

loops will occur in reality, as shown in Figure 3.3 where the hysteresis loops corre-

sponding to the responses of the actuator to a 4 volt peak-to-peak triangular input at

three different input loading rates are plotted. The loops start from almost the same

initial positions but are very different from each other in terms of the subsequent hys-

teresis loops. The hysteresis loop for the triangular input with the slowest input rate

of 0.1V/s forms a closed loop during the entire duration of the experiment, while the

other two change with time though eventually converge to some steady-state loops.

As seen from Figure 3.3, the hysteresis loop for the input rate of 10V/s does not reach

the same output level as the loops with slower input rates do when the input reaches

2V.

As will be seen from the frequency responses of the stage obtained using small

amplitudes of sinusoidal input signals in subsection 3.2.2, for frequencies up to 300Hz

studied in this paper, the phase lags caused by the resonance and amplifier dynamics

of the stage are negligible. Considering that the fastest input rate used in Figure 3.3

only translates to 1.25Hz if such input is periodically applied, we can conclude that

the observed rate-dependence phenomena are entirely due to hysteresis of the piezo-

actuator. At higher input rates, one can expect to observe even greater differences in

terms of steady-state hysteresis loops. A model that captures the rate-dependence of

the hysteretic output is thus necessary for better compensation.
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The experimental tests above reveal that the hysteresis of the actuator is rate-

dependent and does not form a well-defined single loop when the input rate in-

creases, which might be the reason why simple Preisach-based implementations are

so hard to identify and work only for a low and narrow frequency range, because

rate-independence, loop closure and IO monotonicity are some of the fundamental

requirements of the classical Preisach models. The rate-dependence of the loops also

implies that dipole domain switching, the cause of the piezo hysteresis, can not be

considered instantaneous even for low input rates, which is one of the emphases of

this dissertation.

3.2.2 Identification of the Plant Model

The total response of the stage consists of two major components: a fast resonance

response that dominates the dynamics in the short travel and high frequency range,

and a hysteretic response due to dipole domain switching in piezoelectric materials,

which resembles a nonlinear relaxation process [11,99].

Resonance Dynamics of the Stage

The frequency response for the resonance dynamics of the stage has previously

been identified using a sinusoidal sweep excitation signal from 0− 12.8kHz [11]. The

amplitude of the output is restricted to 40nm to avoid distortion from hysteresis

as much as possible. The experimental bode plots remain almost identical under

different input offsets (-1,0,2,3V), implying the linear nature of this dynamics (Figure

3.4). The stage has two very close resonance peaks at 5100 and 5800 kHz. Below

300Hz, there is negligible phase delay and the gain stays almost constant. Therefore,

for operating frequencies in this range, the resonance and amplifier dynamics are

negligible and the displacement output of the stage is entirely due to the displacement

of the piezoelectric actuator. To be conservative, we limit our closed-loop bandwidth

to 200Hz and our desired trajectories to 100Hz.
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Figure 3.1. Loading history applied to the actuator before each of the
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history.
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Creep Dynamics

To identify the dynamics that governs the hysteretic output, we apply a 2V step

input to the actuator. Figure 3.5 shows the response of the actuator over a period

of 10 seconds. The resonance of the stage has been removed by a second-order notch

filter and the flat response in the first 10−4 second is likely due to sampling and sensor

delay.

After a very fast response at the beginning, the actuator output continues to drift

over time. The drift rate becomes lower and lower as time progresses. This drift,

sometimes called creep or relaxation, is often modeled by using a series of linear first-

order systems [35], which is simple and effective, but the question is how many terms

to include.

Although we can use as many terms as necessary to fit the response, we consider it

unnecessary for feedback control, because (i) The drift rate may not be the same over

the entire range of operation; (ii) A large number of parameters need to be identified;

(iii) Uncertainties in slow, stable dynamics can be compensated very effectively by

feedback control with fast on-line parameter adaptation. Modeling the system to

the last bit of detail increases computational burden but provides little benefit when

closed-loop control is able to compensate most of the uncertainties.

Since most of the fast stage response happens within the first 0.01 second and

the control bandwidth is up to 200 Hz, we are mainly concerned with the dynamics

that dominate over this period. Figure 3.6 shows the 2-volt step response in linear

time domain during the first 0.005 seconds. After filtering out the resonance dynamics

and accounting for time-delays due to the amplifier and the sensor electronics [11], we

obtain a least squares fit of the response using only two first-order transfer functions

Kss( 0.82
0.000152s+1 + 0.18

0.00236s+1).

Since these parameters are dependent on the input level, they are not directly used

to calculate controller parameters. They serve as a motivation for our final model

structure for control and provide initial estimates of the range of parameter variations
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Figure 3.5. 2V step response of the stage over 10 seconds.
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Figure 3.6. 2V step response of the stage in the first 0.005 seconds.

to be adapted. The time constant of the first dynamics, at 0.000152s, is 2 orders of

magnitude smaller than that of the second one at 0.00236s and far beyond our desired
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bandwidth of 200 Hz. Therefore these dynamics are neglected and will be modeled

as a feed-through gain. The second first-order dynamics thus become the dominant

dynamics of the system within the frequency range that we consider. Based on these

observations, we propose the following simple overall system model for control design

τ ẋh = −xh + b1gt(u),

y = xh + b0gt(u), (3.1)

where gt(u) is a function that maps the input u to the total output of the dipole

domains that will switch at steady state. The feed-through gain b0 represents the

fraction of dipole domains that switch instantaneously, and b1 = 1− b0 is the fraction

of dipole domains that do not. The state xh captures the number of dipole domains

that are switching over time, with τ being their average time constant.

3.3 Adaptive Robust Control of Piezoelectric Actuators

3.3.1 Design Model and Assumptions

The hysteresis mapping gt(u) in (3.1) is not a simple function. It changes when-

ever the output changes direction, as we have observed in Chapter 2, because it

describes the internal state of the dipole domains and depends on the past history

of actuator displacement. Therefore, we only capture the overall gain of the system

and lump the rest as an unknown disturbance to be compensated by fast adaptation

and robust feedback. We would like the controller to achieve decent performance

on its own without any explicit hysteresis compensation. The performance will then

be improved further when the unknown disturbance becomes almost non-hysteretic

when we eventually use hysteresis friction feedforward together with the feedback

controller.

Replacing gt(u) by the function

gt(u) = kuu+ d(t), (3.2)

the system equations are further simplified to



50

τ ẋh = −xh + b1[kuu+ d(t)],

y = xh + b0[kuu+ d(t)]. (3.3)

The term d(t) represents the time-varying mismatch between kuu and gt(u), which is

bounded by the maximum hysteresis at each input level. This is easily measurable

from the outer-loop in a quasi-static experiment, such as the one in Figure 3.3. The

parameter ku captures the slope of the hysteresis loop that covers the entire range of

desired operation, so it depends on the desired length of travel and prior displacement,

but an estimate of its range is also readily available from the quasi-static full-loop

loading experiment we discussed in Chapter 2.

To put the model into the standard form for subsequent adaptive robust control

design, we rewrite (3.3) by defining the state vector �x = [x1, x2]T = [y, u]T and using

v = u̇ as a virtual input (also noting the identity b0 + b1 = 1)

1
b0ku
ẋ1 = − 1

τb0ku
x1 + 1
τb0
x2 + 1
ku

[ 1
τb0
d+ ḋ] + v,

ẋ2 = v, (3.4)

y = x1.

The unknown parameter set θ = [θ1, θ2, θ3, θ4], to be adapted online, are defined as

θ1 = 1
b0ku

, θ2 = 1
τb0ku

, θ3 = 1
τb0

, and θ4 = dn, the nominal value of the term 1
ku

[ 1
τb0
d+ḋ].

Equation (3.4) is now linearly parameterized in terms of θ as

θ1ẋ1 = −θ2x1 + θ3x2 + θ4 + Δ + v, (3.5)

ẋ2 = v, (3.6)

where Δ = 1
ku

[ 1
τb0
d+ḋ]−dn is the uncertain variation between the lumped discrepancy

term and its nominal value. Since the hysteretic discrepancy is bounded in proportion

to dipole domains that can switch in the specified input range, the domains that switch

under the same input are similar, and domains do not switch infinitely fast, we can

make the following practical assumption on the parameters [100], with the notation
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that the relational operator “<” used hereinafter between two vectors is performed

in terms of the corresponding elements of the vectors:

Assumption 3.1 The extent of parametric uncertainties and uncertain nonlineari-

ties is known, i.e.,

θ ∈ Ωθ � {θ : θmin < θ < θmax},
Δ ∈ ΩΔ � {Δ : ‖Δ‖ ≤ δΔ}, (3.7)

where θmin = [θ1min, · · · , θ4min]T , θmax = [θ1max, · · · , θ4max]T , and δΔ are all known.

Under Assumption 3.1, the discontinuous projection based ARC design [95, 100] is

applied to (3.3) to solve the robust tracking control problem. Let θ̂ denote the estimate

of θ and θ̃ the estimation error (θ̃ = θ̂ − θ). The parameter estimate θ̂ is updated

through the parameter adaptation law

˙̂
θ = Projθ̂(Γτe), (3.8)

where Γ is any symmetric positive definite adaptation rate matrix (for simplicity, Γ

is assumed to be a diagonal matrix in the sequel), τe is an adaptation function to be

specified later, and the projection mapping Projθ̂(•) =
[
Projθ̂1(•1), · · · ,Projθ̂4(•4)

]T
is component-wise defined by

Projθ̂i(•i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if

⎧⎪⎪⎨
⎪⎪⎩
θ̂i = θimax and •i > 0, or

θ̂i = θimin and •i < 0;

•i otherwise,

(3.9)

which has the following properties [101]:

P1. θ̂ ∈ Ω̄θ = {θ̂ : θmin < θ̂ < θmax},
P2. θ̃T (Γ−1Projθ̂(Γ•)− •) ≤ 0, ∀ • .

(3.10)
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3.3.2 ARC Controller Design

Defining the difference between the plant output y and desired output yd as the

tracking error e = y − yd = x1 − yd, the error dynamics of the system become

θ1ė = θ1ẋ1 − θ1ẏd
= −θ1ẏd − θ2x1 + θ3x2 + θ4 + Δ + v

= ϕ(�x)T θ + Δ + v, (3.11)

where ϕ(�x)T = [−ẏd,−x1, x2, 1]. Using the standard direct ARC design [100], the

following control law is synthesized, which consists of two parts given by

v = va + vs, va = −ϕ(�x)T θ̂,

vs = vs1 + vs2
vs1 = −ke,

(3.12)

where va is the dynamic model compensation term that cancels the known dynamics

for perfect tracking, and vs is the robust control law consisting of two parts: vs1 is a

simple proportional feedback that stabilizes the nominal system; and vs2 is a robust

feedback that attenuates the effect of all model uncertainties, which is required to

satisfy the following two constraints

C1. e[−ϕT θ̃ + Δ + vs2 ] ≤ ε,
C2. evs2 ≤ 0,

(3.13)

where ε is a positive design parameter representing the attenuation level of the model

uncertainties. The constraint C1 ensures that vs2 will dominate the model uncer-

tainties coming from both parametric uncertainties and uncertain nonlinearities to

achieve the guaranteed attenuation level ε, and constraint C2 ensures that vs2 is dis-

sipative and does not interfere with the parameter adaptation. Several specific forms

of vs2 that satisfy (3.13) are available [96,97,100], with one of the simplest being

vs2 = − 1
4εh

2e, (3.14)
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where h ≥ ‖θmax − θmin‖ ‖ϕ‖+ Δ. It is chosen for our experimental implementation

due to its computational simplicity. With this ARC design, we have the following

theoretical performance:

Theorem 3.2 If the adaptation function in (3.8) is chosen as

τe = ϕ(�x)e, (3.15)

the ARC law (3.12) with the parameter adaptation law (3.8) guarantees that,

A. The magnitude of tracking error is bounded above by

|e|2 ≤ exp(−2k
θ1
t)|e(0)|2 + ε

k
[1− exp(−2k

θ1
t)], (3.16)

where the exponential decay rate 2k
θ1

and the magnitude of final tracking error (|e(∞)| ≤√
ε
k
) can be directly tuned by the controller parameters ε and k.

B. After a finite time, if there exist only parametric uncertainties (i.e., Δ =

0, ∀t ≥ t0), then in addition to the transient error bounds in part A, asymptotic

tracking is achieved (i.e., e→ 0 as t→ 0).

Proof Defining a positive definite function Vs = 1
2θ1e

2 and differentiating, also not-

ing condition C1 of (3.13), we have

V̇s = θ1eė

= e[−ke+ vs + Δ− ϕT θ̃]
≤ −ke2 + ε

= −2k
θ1
Vs + ε, (3.17)

therefore Vs ≤ exp(−2k
θ1
t)Vs(0) + εθ1

2k [1 − exp(−2k
θ1
t)] and |e|2 = 2Vs

θ1
, which leads to

part A.

When Δ = 0, define another p.d. function Va = 1
2θ1e

2 + 1
2 θ̃
TΓ−1θ̃, whose derivative

is

V̇a = θ1eė+ θ̃TΓ−1 ˙̂
θ

= e[−ke+ vs − ϕT θ̃] + θ̃TΓ−1 ˙̂
θ. (3.18)
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Noting condition C2 of (3.13) and the adaptation function (3.15), we have

V̇a = −ke2 + vse+ θ̃T (Γ−1 ˙̂
θ − ϕe)

≤ −ke2 + θ̃T (Γ−1 ˙̂
θ − ϕe)

= −ke2 + θ̃T (Γ−1Projθ̂(Γϕe)− ϕe)
≤ −ke2

≤ 0, (3.19)

which leads to the asymptotic tracking in part B by applying Babarlat’s lemma

[100,102].

Since we introduced an integrator for the input voltage to formulate the problem into

the standard form required for ARC design, the augmented system (3.4) becomes a

relative degree one system with two states. The resulting one-dimensional internal

dynamics for x2 needs to be bounded-input-bounded-output (BIBO) stable for the

actual control input to be bounded and implementable. Substituting the ARC law

into the internal dynamics (3.6), we have

ẋ2 = −θ̂3x2 + [θ̂1ẏd + θ̂2x1 − θ̂4 − ke− h
2

4εe]. (3.20)

Defining a p.d. function V2 = 1
2x

2
2 and differentiating,

V̇2 = x2ẋ2 = −θ̂3x2
2 + [θ̂1ẏd + θ̂2x1 − θ̂4 − ke− h

2

4εe]x2. (3.21)

Since all the terms in the square bracket are bounded, we denote the upper bound of

the entire term by b̄ and also notice that 0 < θ̂3 < θ3min , therefore

V̇2 ≤ −θ3minx2
2 + b̄x2

= −(1− λ)θ3minx2
2 − λθ3minx2

2 + b̄x2

= −(1− λ)θ3minx2
2 − λθ3min

(
x2 − b̄

2λθ3min

)2

+ b̄2

4λθ3min

≤ −(1− λ)θ3minx2
2 + b̄2

4λθ3min
, (3.22)
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where the arbitrary constant λ ∈ (0, 1).

Equation (3.22) implies V2 ≤ x2
2(0)e−(1−λ)θ3min t + b̄2

4λθ3min
[1− (1− λ)θ3mint] ≤

x2
2(0) + b̄2

4λθ3min
, therefore |x2| =

√
2V2 ≤

√
2x2

2(0) + b̄2

2λθ3min
and so x2 ∈ L∞. �

3.4 Experimental Results

3.4.1 Controller Parameters

The dSPACE controller board executes the ARC algorithm at a sampling fre-

quency of 50 kHz, and the controller dynamics are integrated by forward difference.

The controller parameters include the bounds of parameter variations, adaptation

gains, and feedback gains, which are selected as follows.

The slope ku will be bounded by dy
du

along a loop curve, which is between 0.7 and

1.2. The fraction b0 from the step response in Section 3.2.2 was 0.82. We assume that

it can vary from 0.6 to 0.9. The time constant τ was 2.36 × 10−3 and it is assumed

to be within the same magnitude between 1× 10−3 and 5× 10−3. For a loop starting

from zero input and spanning less than 2.5 microns, which is what we will attempt

to track, the offset of the model can be found from the outer hysteresis loop to be

less than 0.25.

Based on these assumed physical bounds, the bounds for the parameters θ1 through

θ4 are roughly θmin = [0.9, 180, 220, −600]T and θmax = [2.4, 2400, 1670, 600]T . The

magnitude of Δ is assumed to be less than dmax = 1200. The initial values for the

model parameters are set to θ̂(0) = [1.6, 600, 600, 0]T , which are within the expected

bounds but arbitrarily chosen. Using different values results in minor differences in

transient error but has no effect on steady state performance.

There is no quantitative method for the selection of the adaptation and feedback

gains. However, there are effective heuristics that borrow insights from linear control

design. For a linear system with a linear controller, its performance is determined

by the poles of the closed-loop error dynamics, which are typically chosen to be well
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damped with a bandwidth higher than that of the desired trajectory. For the linear,

nominal part of our error dynamics,

ë+ k
θ1
ė+ γ4
θ1
e = 0 (3.23)

we need to pick the gains k and γ4 such that it’s well damped and its bandwidth is

above our desired bandwidth of at least 100Hz. Though theoretically we can reduce

ε to arbitrarily bound the transient error, in practice we will excite the resonant

dynamics of the stage if we make it too small and therefore the robust feedback

too aggressive. The rest of the adaptation gains are picked by dividing γ4 with

the regressor bounds, so that the adaptation dynamics are no faster than the linear

integral feedback. Starting from the initial set of values, these control gains are

manually tuned further for better performance. The final values are k = 7000 and

ε = 8×1010. The adaptation rates are chosen as Γ = diag{8, 8×105, 8×105, 1×106}.

3.4.2 Trajectory Filtering

The initial error is an important component of the upper bound for transient

error (Equation 3.16). To reduce transient tracking error, the desired trajectory yd is

generated by filtering the reference trajectory yr with a second order stable system

ÿd + 2ζωnẏd + ω2
nyd = ÿr + 2ζωnẏr + ω2

nyr, (3.24)

with ζ = 1 and ωn = 100Hz = 200π rad/sec. The initial conditions for the desired

trajectory are set to yd(0) = x1(0), ẏd(0) = ẋ1(0).

This is crucial for the experiments on the piezoelectric stage, because it is generally

very hard to move the position back to zero and maintain it without careful input

planning before shutting off the stage. When the stage is turned back on, it usually

starts from an undesirable non-zero initial position that is different from that of the

reference trajectory. The desired trajectory generated by the filter provides a quick

and smooth transition from the initial position of the stage to the true reference



57

trajectory during the first 0.01s, after which the desired trajectory converges to the

reference trajectory.

3.4.3 Tracking Performance

To quantify the performance of our controller, the following performance indices

will be used:

(I1) L2[e] =
√

1
Tf

∫ Tf
0 |e(t)|2dt, the scalar valued L2 norm of the tracking error, a.k.a.

the RMS error, is used as a measure of average tracking performance, where Tf
represents the total running time;

(I2) eM = max
t
{|e(t)|}, the maximum absolute value of the tracking error, is used as

a measure of transient performance;

(I3) eF = max
Tf−2T≤t≤Tf

{|e(t)|}, the maximum absolute value of the tracking error dur-

ing the last 2 periods of the experiment, is used as a measure of final tracking

accuracy for periodic trajectories.

Sinusoidal Trajectories

Table 3.1.
Tracking error for a 2.4 μm, 100-Hz sinusoidal trajectory.

Indices eM (nm) L2[e] (nm) eF (nm)

Values 50.4 7.08 10.3

Figure 3.7 shows the tracking error in the first 10 periods along with the estimated

parameters for a 100Hz sinusoidal trajectory yr(t) = 1200 [1− cos(2πft)](unit:nm),

which has a total travel of 2400nm. The performance indices are given in Table 3.1.

The maximum error eM = 50.4nm, which is 2.1% of the total travel and occurs during
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Figure 3.7. Tracking error and parameter estimates for a 100Hz sinusoid.

the first period when the parameters are far from their converged values. The average

error L2[e] = 7.08nm is only 0.3% of the total travel. The final maximum tracking

error eF = 10.3nm is less than 0.5% of the total travel and on the same magnitude

of the sensor noise level.

From the estimated parameters θ2 and θ3, the “physical” parameter ku is back

calculated and overlayed on top of the stage response in Figure 3.8. The average
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slope of the loop is successfully captured by the estimated parameter, demonstrating

the effectiveness of the adaptation. There is, however, no guarantee that the pa-

rameters will converge to their true values, because our trajectories do not usually

provide enough persistent excitation and the adaptation is very slow when error is

too small. We are able to use very fast adaptation rates without destabilizing the

system, because the robust feedback law in ARC guarantees stability as long as the

parameters are bounded in the prescribed range, regardless of how they change. The

good adaptation shown here is also facilitated by the filtered trajectory. Being a

combination of the sinusoidal reference signal and the transient response of a second

order transfer function, it gives a persistent excitation of enough order during the

initial period than just the sine wave itself.
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Figure 3.8. Input-output loop for the 100Hz sinusoid.

Point-to-point Step Trajectories

Figure 3.9 shows the tracking error in the first 10 periods along with the estimated

parameters for a 2400nm peak-to-peak square wave trajectory with 50% duty cycle
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and a period of 0.1 second. The error given in Figure 3.9 is for the filtered desired

trajectory. It shows how well the actuator response follows the response of a second

order transfer function. Figure 3.10 shows the first 20 ms of the response. The stage

follows the desired 2nd order response almost perfectly with a settling time less than

10 ms. The stage response converges to each new set-point after about 20ms with no

steady-state error.

3.5 Combining Hysteresis Feedforward and Adaptive Robust Feedback

Now that we have confirmed the individual effectiveness of the hysteresis feed-

forward and the adaptive robust controller, they are finally combined for the best

performance (Figure 3.11). The hysteresis “friction” is predicted from the desired

trajectory using the extended Dahl model with memory. Although adding a distur-

bance feedforward does not affect the stability of the feedback loop, the practical

performance depends on careful initialization of both the actuator position and the

trajectory.

Without a full-loop actuator initialization, the feedforward signal may not reduce

the hysteresis. It may instead add to the disturbance Δ of the original system in

equation 3.5, until the historical minor loops are all wiped out when the actuator

has traversed the reach of the trajectory. With initialization, the feedforward model

matches the true hysteresis and cancels most of the unstructured uncertainty, when

the actuator starts from a known state after its loading history has been erased by a

full loop. The remaining uncertainties in the gain and offset of the system are then

handled by adaptation and robust feedback.

The actuator may form small inner loops due to initial transient oscillations that

are not canceled well by the feedforward model, causing larger transient errors than

without feedforward. This did not cause an issue for us, because trajectory initializa-

tion in the feedback loop ensures the initial transient error is small. The parameters

of the initialization filter should be picked such that yd and yr go in the same direc-
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Figure 3.9. Tracking error and parameter estimates for step-like trajec-
tories.

tion initially and quickly converge before the direction of yr changes, otherwise the

actuator will form a small reversal loop at the beginning that is not canceled well

during the transient. These considerations don’t affect theoretical stability and final

tracking error, but are key to good transient tracking in practice.
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Figure 3.10. Magnified step response of the stage.

Figure 3.11. Controller structure combining both adaptive robust feed-
back and hysteresis friction feedforward.
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3.5.1 Sinusoidal Trajectory

Figure 3.12 shows the performance for a 100 Hz sinusoidal trajectory with a peak-

peak amplitude of 10 microns. The tracking is almost perfect after the first period.

The largest tracking error during the 20th period is 0.016 micron, or 0.16% of the

peak-peak amplitude.
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Figure 3.12. Tracking error and parameter estimates for a 10μm, 100-Hz
sinusoid using ARC with Dahl friction feedforward. The tracking is very
good after the first period. (a) Desired trajectory; (b) Control input; (c)
Tracking error during the first 5 periods of the sinusoidal trajectory; (d)
Final tracking error during the 20th period, which is only 0.16% of the
trajectory amplitude; (e-h) Parameter estimates of θ1, θ2, θ3, and θ4.
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3.5.2 Multi-sine Trajectories

Here we repeat the exact same trajectories used by Bashash and Jalili in their

2007 TCST paper [63]. Their results have been obtained three years before on an

identical actuator and a similar dSPACE prototyping system, which provide a rare

opportunity for direct comparison of contemporary experimental results. Table 3.2

shows 6 different trajectory profiles from [63] and Table 3.3 compares the tracking

performance between their design and ours. The orders of the profiles are retained

from [63] for easier verification by the reader.

Table 3.2.
Trajectory profiles from reference [63].

Desired trajectory profile (μm)

(a) 3− 3 cos(20πt)

(b) 4− 4[cos(2πt) + cos(6πt) + cos(10πt) + cos(20πt)]

(c) 3− 3 cos(100πt)

(d) 4− 4[cos(20πt) + cos(30πt) + cos(80πt) + cos(100πt)]

(e) 3− 3 cos(200πt)

(f) 4− 4[cos(60πt) + cos(100πt) + cos(140πt) + cos(200πt)]

Figure 3.13 shows our results for cases (a), (c) and (e), which are single sinusoids

at 10, 50 and 100 Hz with 6 microns peak to peak. In the first column of subplots

are the desired trajectories. The middle column shows the tracking error for the first

5 periods, and the last column shows the final tracking error for the 20th period after

more adaptation.

We have previously demonstrated good performance for a 100-Hz sinusoid of 10

microns in Section 3.5.1. The single-sine trajectories here are less demanding in both

amplitude and frequency, and the tracking errors from our controller are consistently

close to the noise level. Our maximum errors are slightly larger, but it only hap-
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Table 3.3.
Tracking error comparison between our controller and the controller in [63]

Hysteresis Inverse + Sliding Mode [63] Dahl Friction Feedforward + ARC

Max error (%) MSE (μm) Max error (%) MSE (μm)

(a) 1.04 0.03 1.1 3.7× 10−5

(b) 0.84 0.02 0.76 4.0× 10−5

(c) 1.40 0.03 2.4 1.1× 10−4

(d) 1.16 0.02 1.9 5.5× 10−5

(e) 2.32 0.07 4.2 1.8× 10−5

(f) 1.83 0.03 3.0 7.0× 10−5

pens during the initial transient. Adaptation settles within a couple periods and the

subsequent error drops to extremely low levels, as is shown in Figure 3.13.a2.

Figure 3.14 shows cases (b), (d) and (f), which are multi-sine trajectories that form

minor loops in actuator response and more challenging than the single sinusoids. The

trajectory profiles are in the first column, and the second column shows the tracking

error for the first two periods of the slowest component of the sines.

Our mean-squared tracking errors for all six profiles are smaller by more than

2 orders of magnitude. Note that Figures 3.13 and 3.14 are annotated with the

RMS errors of our results instead of MSE. Our MSE in Table 3.3 for the multi-sine

trajectories are [0.000040, 0.000055, 0.000070] compared to their MSE of [0.02, 0.02,

0.03].

The controller in [63] has a Preisach-type hysteresis inverse between the feedback

controller and the plant, and the feedback controller is a sliding-mode controller de-

signed around the 2nd-order resonance dynamics of the actuator stage. Since the

stage resonance is at 5.6 kHz, this dynamics is negligibly fast when the actuator is

only tracking a 100-Hz trajectory. Their sliding-mode controller is essentially atten-

uating the uncertainties in their hysteresis inverse alone, whereas we design around
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the slower, dominant dynamics of the actuator and adapt all the parameters online

for better steady-state performance. Our hysteresis model is used as a disturbance

feedforward outside of the feedback loop, which doesn’t introduce modeling uncer-

tainties in the loop gain when the hysteresis inverse becomes less accurate at higher

frequencies.

3.6 Conclusions

For a piezoelectric actuator with resonant frequencies far beyond the application

bandwidth, the dominant dynamics that should be used for control design is the do-

main switching dynamics. Experimental results show that, even at low input rates,

the hysteretic nonlinearity is rate-dependent, and the dipole domain switching, the

cause of this rate-dependence, cannot be assumed to occur instantaneously and inde-

pendent of input-rate. Instead, the switching dynamics should be explicitly accounted

for if high precision closed-loop control is desired.

A simple control-oriented nonlinear first-order model is enough to achieve a good

balance between the engineering efforts needed for detailed rate-dependent hysteresis

modeling and the achievable overall control performance through advanced model-

based controls. The model structure captures the major characteristics of various

piezoelectric effects, including the rate-dependent hysteresis nonlinearity, the drift-

ing, and the broad spectrum of domain switching time constants, but the parameters

do not need to be identified offline to extreme accuracy. The model is linearly pa-

rameterized by only four parameters so that on-line fast parameter adaptation can be

used to effectively compensate for the effect of unknown hysteresis model parameters

and uncertainties.

An adaptive robust controller (ARC) using discontinuous projection based online

parameter estimation is able to meet the design objective and demonstrate the ef-

fectiveness of the holistic approach. Experimental results from tracking control of

sinusoidal trajectories up to 100 Hz show tracking error on the magnitude of the sen-
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sor noise level, which demonstrate that good tracking accuracy is possible without

exact knowledge of hysteresis or offline identification of a complex model, when ad-

vanced adaptive robust controls are used to generate better dynamic compensation

via on-line adaptation and to reduce transient error via robust feedback.

Reducing unstructured uncertainty is one of the keys to good tracking performance

in adaptive robust control. When the hysteresis friction model is combined with

the adaptive robust controller, much of the unstructured uncertainty coming from

hysteresis is canceled, which helps reduce tracking errors to a level that is orders of

magnitude smaller than previously reported results on the same actuator.
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4. SINGLE-LOOP PERIODIC TRAJECTORY TRACKING CONTROL

4.1 Introduction

In chapter 3, we modeled the overall slope of the hysteretic input-output rela-

tionship and left the discrepancy to be compensated by fast adaptation and robust

feedback. We have proved asymptotic tracking when only parametric uncertainties are

present, but in reality the unmodeled part of the hysteresis always remains. Reducing

non-parametric uncertainty is key to better steady-state tracking. Even though the

friction model cancels most of the hysteresis, a small amount of uncertainty still exists

in the model. Since the friction model is identified offline and not adapted, it is a

static feedforward that cannot be improved by feedback.

The difficulty for perfect tracking is much reduced when the desired trajectory is

periodic or repetitive. Experimentally, when a piezoelectric actuator is driven by a

periodic input, it converges to a steady-state hysteresis loop after a certain number

of cycles, a phenomenon commonly known as “accommodation” [20]. It indicates

that under the same periodic input, the dipole domains that will switch in each cycle

are almost the same. Therefore for periodic trajectories, the required input is highly

periodic.

The periodic input can be adapted by methods such as iterative learning control

(ILC), which updates the input signal using the error signal from the previous period

and avoids inverting complex nonlinear models. This has been shown to achieve exact

tracking for a piezoelectric positioner [34], but the stability and error convergence of

their method is theoretically guaranteed only for trajectories that satisfy the classic

Preisach model, which are slow or pseudo-static trajectories. Though easy to im-

plement, such a method require large computer memory and are sensitive to noise

because the physical dependence of the unknown nonlinearity over the same period
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is overlooked. The known dynamics of the system are also hard to be incorporated.

The tracking error in [34] converges to zero after almost 50 periods. This may be too

long for real-world applications.

A remedy to this problem is proposed by Xu and Yao in [103]. By recognizing the

physical dependence of the values of periodic uncertainties over the same period and

using certain known basis functions to capture such dependence, only the amplitudes

of the basis functions are needed for parameterization, which can be easily adapted

online. It also overcomes the sensitivity to noise because the basis functions natu-

rally smooth out the effect of random noise. Incorporated with the adaptive robust

control (ARC) scheme, it guarantees good transient performance, fast convergence,

and almost perfect tracking when a sufficient number of basis functions are used to

parameterize the unknown periodic nonlinearity.

In this chapter, we assume the same plant dynamics as in Chapter 3, but the

explicit hysteresis model from Chapter 2 will not be used. Instead, we approximate

the hysteretic discrepancy term by a series of harmonic basis functions. The adaptive

robust control scheme is applied to the model, which adapts the unknown parameters

using a discontinuous projection based method, and the uncompensated nonlinearities

are attenuated by robust control laws.

Without using an explicit model for hysteresis, the steady-state tracking error

is reduced to almost the sensor noise level for sinusoidal trajectories up to 100 Hz

and pseudo-triangular (with smoothed turnaround points) trajectories up to 50 Hz.

Tracking error converges to almost the sensor noise level after only a few periods,

demonstrating the effectiveness of the method.

4.2 Revisiting the System Model

In Chapter 3, we have reduced our overall model to a simple first order system
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τ ẋh = −xh + b1gt(u),

y = xh + b0gt(u), (4.1)

where gt(u) is a hysteretic mapping from the input u to the steady-state output of the

system, b0 the feed-through gain, and b1 the input gain of the first order dynamics.

Replacing gt(u) by a linear gain plus a time varying disturbance,

gt(u) = kuu+ dg(t), (4.2)

the system equations are simplified to

τ ẋh = −xh + b1[kuu+ dg(t)],

y = xh + b0[kuu+ dg(t)]. (4.3)

The term dg(t) represents the time-varying mismatch between kuu and gt(u). The

parameter ku captures the average slope of the hysteresis loop that covers the entire

range of desired operation.

Defining the system state vector [x1, x2]T = [y, u]T and using v = u̇ as a virtual

input (also noting the identity b0 + b1 = 1), we rewrite (4.3) as

1
b0ku
ẋ1 = − 1

τb0ku
x1 + 1
τb0
x2 + 1
ku

[ 1
τb0
dg + ḋg] + v,

ẋ2 = v, (4.4)

y = x1.

4.3 Harmonic Function Approximation

The term 1
ku

[ 1
τb0
dg + ḋg] in (4.4), representing the uncertain nonlinearity from

hysteresis, was parameterized as an unknown nominal value plus an unstructured

disturbance in Chapter 3, because that’s all we know about the uncertainty when
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the trajectory is arbitrary1. When the desired trajectory is periodic, however, the

uncertainty term also becomes highly periodic with the same period. We can further

approximate the uncertainty using a finite Fourier series

1
ku

[ 1
τb0
dg + ḋg] = A0

2 +
m∑
n=1

(An cosnωt+Bn sinnωt) + Δ

= ΦTd θd + Δ, (4.5)

where θd = [A0/2, A1, B1, · · · , Am, Bm]T represent the unknown Fourier coefficients,

ΦTd = [1, cosωt, sinωt, · · · , cosmωt, sinmωt] are the basis functions, and Δ is the

unknown variation between the series and the true nonlinearity. Since the mechan-

ical system has a finite bandwidth, the first few terms will be enough for a good

approximation in practice.

To use parameter adaptation, we define the unknown parameter set θT = [θ1, θ2,

θ3, θ
T
d ] with θ1 = 1

b0ku
, θ2 = 1

τb0ku
, and θ3 = 1

τb0
. The state space equation (4.4) is now

linearly parameterized in terms of θ as

θ1ẋ1 = −θ2x1 + θ3x2 + ΦTd θd + Δ + v, (4.6)

ẋ2 = v. (4.7)

4.4 Controller Design

The model is structurally identical to the plant model in Chapter 3, except for the

additional parameters and harmonic regressors for the periodic uncertainty. Therefore

the assumptions, procedures and stability proofs are almost identical to those in

Section 3.3. They have been published separately [104] and are included here for

completeness.
1Though the trajectories in Chapter 3 were all periodic, we never exploited the periodicity in our
controller design.
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4.4.1 Design Assumptions

The diaturbance from hysteresis is bounded in proportion to dipole domains that

can switch in the specified input range. The domains that switch under the same input

are similar, and domains do not switch infinitely fast. With these physical properties

in mind, we can make the following practical assumption on the parameters [100], with

the notation that the relational operator “<” used hereinafter between two vectors is

performed in terms of the corresponding elements of the vectors:

Assumption 4.1 The extent of parametric uncertainties and uncertain nonlineari-

ties is known, i.e.,

θ ∈ Ωθ � {θ : θmin < θ < θmax},
Δ ∈ ΩΔ � {Δ ‖Δ(x, t)‖ ≤ δ(x, t)}, (4.8)

where θmin, θmax, and δ(x, t) are known.

Under the assumption, the discontinuous projection based ARC design is applied

to (4.3) to solve the robust tracking control problem. Specifically, the parameter

estimation θ̂ is updated through a parameter adaptation law of the form

˙̂
θ = Projθ̂(Γτ) (4.9)

where Γ is any symmetric positive definite adaptation rate matrix (for simplicity, Γ

is assumed to be a diagonal matrix), τ is an adaptation function to be specified later,

and the projection mapping Projθ̂(•) is defined by

Projθ̂(•) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if

⎧⎪⎪⎨
⎪⎪⎩
θ̂i = θ̂max and • > 0, or

θ̂i = θ̂min and • < 0;

• otherwise,

(4.10)

which has the following properties [101]:

P1. θ̂ ∈ Ω̄θ = {θ̂ : θmin < θ̂ < θmax},
P2. θ̃T (Γ−1Projθ̂(Γ•)− •) ≤ 0, ∀ • .

(4.11)
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4.4.2 ARC Design

Defining e = x1 − yd as the tracking error, the error dynamics of the system

becomes

θ1ė = θ1ẋ1 − θ1ẏd
= −θ1ẏd − θ2x1 + θ3x2 + ΦTd θd + Δ + v

= ϕT θ + Δ + v, (4.12)

where ϕT = [−ẏd, −x1, x2, ΦTd ]. The following ARC control law is used, which con-

sists of two parts given by

v = va + vs, va = −ϕT θ̂,
vs = vs1 + vs2 , vs1 = −ke,

(4.13)

where va is the adjustable model compensation needed for achieving perfect tracking,

and vs is the robust control law consisting of two parts: vs1 is a simple proportional

feedback used to stabilize the nominal system, and vs2 is a robust feedback used to

attenuate the effect of model uncertainties, which is required to satisfy the following

two constraints
C1. e[−ϕT θ̃ + Δ(x, t) + vs2 ] ≤ ε,
C2. vs2e ≤ 0,

(4.14)

where ε is a positive design parameter representing the attenuation level of the model

uncertainties. In (4.14), constraint C1 is used to represent the fact that vs2 is syn-

thesized to dominate the the model uncertainties coming from both parametric un-

certainties and unmodeled nonlinearities to achieve the guaranteed attenuation level

ε, and the passivity constraint C2 is imposed to ensure that introducing vs2 does not

interfere with the nominal parameter adaptation process. A simple form of vs2 that

satisfy (4.14) is

vs2 = − 1
4εh

2e, (4.15)

where h ≥ ‖θmax − θmin‖ ‖ϕ‖+ δ(x, t). It is used in our experimental implementation

for computational simplicity. The ARC design above has the following theoretical

performance:
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Theorem 4.2 If the adaptation function in (4.9) is chosen as

τ = ϕ(x)e, (4.16)

then the ARC law (4.13) with the parameter adaptation law (4.9) guarantees that

A. In general, all signals are bounded and the tracking error is bounded by

|e|2 ≤ exp(− 2k
θ1max

t)2|e(0)|2
θ1

+ εθ1max2k [1− exp(− 2k
θ1max

t)]. (4.17)

The exponential converging rate 2k
θ1max

and the size of the final tracking error (|e(∞)| ≤√
εθ1max

2k ) can be freely adjusted by the controller parameters ε and k in a known form.

B. If after a finite time, there exist parametric uncertainties only (i.e., Δ(x, t) =

0, ∀t ≥ t0), then in addition to the results in A, zero tracking error is achieved, i.e.,

e→ 0 as t→∞.

Proof Defining a positive definite function Vs = 1
2θ1e

2 and differentiating, also not-

ing constraint C1 of (4.14), we have

V̇s = θ1eė

= e[−ke+ vs + Δ− ϕT θ̃]
≤ −ke2 + ε

≤ − 2k
θ1max

Vs + ε, (4.18)

therefore Vs ≤ exp(− 2k
θ1max
t)Vs(0) + εθ1max

2k [1 − exp(− 2k
θ1max
t)]. Substituting |e|2 = 2Vs

θ1

back leads to part A.

When Δ = 0, define another positive definite function Va = 1
2θ1e

2 + 1
2 θ̃
TΓ−1θ̃,

whose derivative is

V̇a = θ1eė+ θ̃TΓ−1 ˙̂
θ

= e[−ke+ vs − ϕT θ̃] + θ̃TΓ−1 ˙̂
θ. (4.19)
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Noting constraint C2 in (4.14) and the adaptation function (4.16), we have

V̇a = −ke2 + vse+ θ̃T (Γ−1 ˙̂
θ − ϕe)

≤ −ke2 + θ̃T (Γ−1 ˙̂
θ − ϕe)

= −ke2 + θ̃T (Γ−1Projθ̂(Γϕe)− ϕe)
≤ −ke2

≤ 0, (4.20)

which leads to the asymptotic tracking in part B by easily verifying ė ∈ L∞ and

applying Barbalat’s Lemma.

In addition, the system (4.4) has relative degree one, the internal dynamics for x2

needs to be BIBO stable for the actual control input to be bounded and imple-

mentable. Substituting the ARC law into the internal dynamics (4.7), we have

ẋ2 = −θ̂3x2 + [θ̂1ẏd + θ̂2x1 − ΦTd θ̂d − ke−
h2

4εe]. (4.21)

Defining a positive definite function V2 = 1
2x

2
2 and differentiating,

V̇2 = x2ẋ2 = −θ̂3x2
2 +
[
θ̂1ẏd + θ̂2x1 − ΦTd θ̂d − ke−

h2

4εe
]
x2. (4.22)

Since all the terms in the square bracket are bounded, we denote the upper bound of

the entire term by b̄ and also notice that 0 < θ̂3 < θ3min, therefore

V̇2 ≤ −θ3minx2
2 + b̄x2

= −(1− λ)θ3minx2
2 − λθ3minx2

2 + b̄x2

= −(1− λ)θ3minx2
2 − λθ3min

(
x2 − b̄

2λθ3min

)2

+ b̄2

4λθ3min

≤ −(1− λ)θ3minx2
2 + b̄2

4λθ3min
, (4.23)

where the arbitrary constant λ ∈ (0, 1). Equation (4.23) implies V2 ≤ Vb(t) =

x2
2(0)e−(1−λ)θ3mint+ b̄2

4λθ3min [1− (1− λ)θ3mint] ≤ x2
2(0)+ b̄2

4λθ3min , therefore |x2| =
√

2V2 ≤√
2Vb(t) ≤

√
2x2

2(0) + b̄2

2λθ3min and so x2 is bounded. �



78

4.5 Experimental Results

4.5.1 Controller Parameters

The dSPACE controller board executes the ARC algorithm at a sampling fre-

quency of 10 kHz. We will measure the response to sinusoidal trajectories and trian-

gular trajectories with rounded corners. A power spectrum analysis of the hysteresis

loops suggests that only the offset term A0/2 and the odd number harmonics are

significant due to the symmetry of our desired trajectories, so n = [1, 3, 5, · · · ]. In

the experiments, using up to n = 5 is enough to get the error close to the noise level,

and thus ΦTd θd contains 7 terms.

Using the same procedure as in Section 3.4.1, the initial values for the parameters

are set to θ̂(0) = [1.6, 600, 600, 0, 0, 0, 0, 0, 0, 0]T . The bounds of variations are

estimated as θmin = [0.9, 180, 220, −500, −500, −500, −500, −500, −50, −50]T and

θmax = [2.4, 2400, 1670, 500, 500, 500, 500, 500, 50, 50]T . The magnitude of Δ is

assumed to be less than dmax = 500. The parameters used for the ARC controller are

k1 = 8000 and ε = 1010. The adaptation rates are chosen as Γ = diag{8, 8× 105, 8×
105, 2× 106, 2× 106, 2× 106, 2× 106, 2× 106, 2× 106, 2× 106}.

4.5.2 Tracking Performance

To quantify the performance of our controller, we will use the same performance

indices as we did in Chapter 3:

(I1) L2[e] =
√

1
Tf

∫ Tf
0 |e(t)|2dt, the scalar valued L2 norm of the tracking error, is used

as a measure of average tracking performance, where Tf represents the total

running time;

(I2) eM = max
t
{|e(t)|}, the maximum absolute value of the tracking error, is used as

a measure of transient performance.
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(I3) eF = max
Tf−2T≤t≤Tf

{|e(t)|}, the maximum absolute value of the tracking error during

the last 2 periods, is used as a measure of final tracking accuracy for general

periodic trajectories.

Sinusoidal Trajectories

Figure 4.1 shows the tracking error in the first 10 periods for a 100Hz sinusoidal

trajectory r(t) = [1 − cos(2πft)] ∗ 1200[nm], which corresponds to a total travel of

2400nm. The maximum error eM = 33.6nm, which is 1.4% of the total travel. The

average error L2[e] = 4.36nm, which translates to less than 0.2% of the total travel.

The final tracking error eF = 3.07nm is only 0.13% of the total travel and almost the

same as the sensor noise level.

The estimates of the 4 major parameters (θ1 through θ3 and the static component

of the harmonic approximation) are shown in Figure 4.2. The parameters have almost

stopped adapting after the first two periods because the error has already converged

to such a small value. The direct ARC algorithm used here only aims to reduce

tracking error. It does not require nor guarantee parameter convergence, which can

only happen if persistent excitation is satisfied. The major parameter estimates are

very reasonable, even though the simple trajectory may not provide enough excita-

tion, because the trajectory generated from the all-pass filter contains not only the

reference trajectory but also a decaying signal from initial position, which improves

the “richness” of the signal at the beginning.

Figure 4.3 shows the trend of tracking errors as the number of harmonic functions

increases. The transient error is not affected much, as it is determined mostly by

the robust feedback gain, but the average error and final tracking error decrease

as we increase the highest order of harmonics used to approximate the uncertain

nonlinearity.
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Figure 4.1. Tracking error for a 100Hz sinusoid.
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Pseudo-triangular Trajectories

Figure 4.4 shows the tracking error in the first 10 periods for a 50 Hz pseudo-

triangular trajectory. The constant velocity sections of the trajectory have a length

of 2400 nm and occupy 80% of the period. The turn-around points are connected by

smooth constant acceleration sections.

The first 4 estimated parameters are shown in Figure 4.5. The tracking per-

formance is not as good as that of sinusoidal trajectory, which is expected because

the uncertain nonlinearity when tracking triangular wave would take a lot more har-

monics to approximate, but even with the same number of harmonics as before, the

final tracking error is already down to 7.22nm, or 0.3% of the constant velocity scan

length. If more stringent performance is required, more harmonics should be included.

The same decreasing trend in error is observed as we increase the highest order of

harmonics used, which is shown in Figure 4.6.

4.6 Using Harmonic Functions of Displacement

The uncertainty from hysteresis loops formed by periodic trajectories is fundamen-

tally a function of displacement. We may also approximate the periodic uncertainty

using harmonics of displacement instead of time.

4.6.1 Controller Modification

Instead of approximating the uncertainty as

1
ku

[ 1
τb0
dg + ḋg] = A0

2 +
m∑
n=1

(An cosnωt+Bn sinnωt) + Δ

= ΦTd θd + Δ, (4.24)

as we did in section 4.3, we now have

1
ku

[ 1
τb0
dg + ḋg] = A0

2 +
m∑
n=1

(An cosnωss(t) +Bn sinnωss(t)) + Δ

= ΦTd θd + Δ, (4.25)
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Figure 4.4. Tracking error for a 50Hz pseudo-triangular trajectory.



85

0 0.05 0.1 0.15 0.2
1.5

1.6

1.7

E
st

im
at

e 
of

 θ
1

0 0.05 0.1 0.15 0.2
550

600

650

E
st

im
at

e 
of

 θ
2

0 0.05 0.1 0.15 0.2
550

600

650

E
st

im
at

e 
of

 θ
3

0 0.05 0.1 0.15 0.2
−200

0

200

Time (sec)

E
st

im
at

e 
of

 θ
4

Figure 4.5. Major parameter estimates.



86

0 1 2 3 4 5
0

50

100

Highest order of harmonic functions (0, 1, 3, 5)

e M
 (

nm
)

0 1 2 3 4 5

4

4.5

5

Highest order of harmonic functions (0, 1, 3, 5)

L2
[e

](
nm

)

0 1 2 3 4 5
5

10

Highest order of harmonic functions (0, 1, 3, 5)

e F
 (

nm
)

Figure 4.6. Tracking error v.s. highest order of harmonic functions.



87

where s(t) =
∫ t

0 |ẏd(τ)| dτ is the absolute displacement calculated from the desired

trajectory yd, and ωs is the frequency in the displacement domain. The rest of the

controller remains the same.

4.6.2 Experimental Results

Fewer harmonic functions of displacement are needed to approximate the hystere-

sis. Figure 4.7 shows the performance of the controller with only the first harmonics

for a 100-Hz, 9μm sinusoidal trajectory. Without an explicit hysteresis model, we

have reduced the final tracking error to 0.023μm, or 0.26% of the trajectory span,

almost to the level achieved by the final controller in Chapter 3.

Including the 2nd harmonics in the series did not significantly reduce error in the

experiments, but made it much harder to choose the adaptation parameters, keep

the controller stable and balance the transient and steady-state error. A sinusoid

in displacement, when expressed in time, contains more than one frequency. The

energy of the high frequency component may have enough power near the resonant

frequency of the stage. When adapted quickly, the higher harmonics sometimes excite

the resonance in the actuator. No further investigation was done in this research.

4.7 Limitations

Although approximation can be improved by including more and more harmonic

basis functions, the frequency of higher harmonics inevitably approach the resonant

frequency of the actuator. Unless the resonance dynamics is included in the closed-

loop design to achieve higher closed-loop bandwidth, the tracking performance cannot

be improved further, because exciting the unmodeled dynamics can destabilize the

controller. The sampling frequency of the control system will also limit the number

of harmonics that can be used.

When harmonic functions of time are used as part of the dynamic feedforward

signal, they do not excite the unmodeled resonance at steady-state if the selected
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Figure 4.7. Tracking performance using periodic functions of displace-
ment.

harmonics are well below the resonant frequency. We should also keep their adapta-

tion gain small to avoid exciting resonance in the actuator during transient.

With harmonic functions of displacement, it becomes much less straightforward.

A harmonic function with a single frequency in displacement s may contain multiple

frequency components when expressed in time t, except for perfect triangular trajec-

tories, where the absolute displacement is linear in time, s = t × |slope|. It is not

advisable to blindly increase the number of approximation functions without knowing

that high frequency effects are well damped, either by design of the hardware system

itself or by including the higher order dynamics in the plant model.
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4.8 Conclusion

Tracking performance for single-loop periodic trajectories can be drastically im-

proved by approximating the hysteresis uncertainty with a series of harmonic func-

tions. Two types of functions have been used—sinusoidal functions of time and sinu-

soidal functions of displacement.

Using harmonic functions of time, tracking performance is improved as more and

more harmonics are included. Harmonic functions of displacement provides better

approximation to the hysteresis and only the harmonics at the fundamental frequency

are needed to achieve good performance. In both cases, performance is limited by

the resonance dynamics of the actuator stage.
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5. CONCLUSIONS

5.1 Contributions

Three major contributions have been made in this dissertation:

• A numerically efficient hysteresis model that captures the essential properties of

hysteresis in a piezo-electric actuator. The history-dependent hysteresis model is

symmetric in both directions, simplifying implementation and reducing param-

eters, and the asymmetric response is assumed to be caused by other nonlinear

effects such as a nonlinear distribution of internal electric field. The hysteretic

friction model requires only two parameters, and the position-dependent non-

linearity is approximated by a polynomial. All parameters can be identified

from a pseudo-static major loop alone. Hysteresis effect is reduced 15-fold to

less than 1% of the output range.

• An adaptive robust controller design that recognizes the domain-switching dy-

namics as the dominant dynamics and accounts for both parametric and non-

parametric uncertainties in the model. When combined with disturbance feed-

forward using the hysteresis model, it achieves tracking errors that are orders

of magnitude smaller than those published in contemporary literature on the

same actuator.

• An alternative compensation scheme that reduces tracking error to the noise

level for periodic trajectories without using an explicit hysteresis model. Non-

parametric uncertainty is reduced by exploiting the periodic nature of the uncer-

tainty and parameterizing it with harmonic functions in time and displacement.
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Regardless of the method, the philosophy stays the same — parameterize the model as

much as possible to reduce the unstructured uncertainty that contributes to tracking

error, and leave the rest to adaptation and robust feedback.

5.2 Future Directions

The work in this dissertation can be extended in the following directions:

• So far we have only used the simplest form of the Dahl hysteresis model. A

non-integer order or a higher order of the model may provide an even better fit.

• The disturbance feedforward does not include any dynamics. Including the

inverse dynamics of a nominal model may further improve its accuracy.

• The amplitude parameter for the hysteresis friction feedforward is fixed. Can

we improve performance by adapting it online? Can we adapt more or all of the

Dahl model parameters online? Is it possible to use a memory-less hysteresis

model and only rely on fast adaptation?

• As frequency increases, the vibrational dynamics of the stage is no longer negli-

gible. To further push the closed-loop bandwidth, the controller must consider

the resonance dynamics.
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