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ABSTRACT 
 
 
 
 
Title of Dissertation: RETRIEVING QUANTIFIABLE SOCIAL 

MEDIA DATA FROM HUMAN SENSOR 
NETWORKS FOR DISASTER MODELING 
AND CRISIS MAPPING 

  
 Oleg Aulov, Ph.D., 2014 
  
Dissertation directed By: Milton Halem 

Research Professor, 
Department of Computer Science and Electrical 
Engineering, UMBC 
Distinguished Information Scientist, Emeritus 
NASA Goddard Space Flight Center 

 

This dissertation presents a novel approach that utilizes quantifiable social 

media data as a human aware, near real-time observing system, coupled with 

geophysical predictive models for improved response to disasters and extreme events. 

It shows that social media data has the potential to significantly improve disaster 

management beyond informing the public, and emphasizes the importance of 

different roles that social media can play in management, monitoring, modeling and 

mitigation of natural and human-caused extreme disasters. 

  In the proposed approach Social Media users are viewed as “human sensors” 

that are “deployed” in the field, and their posts are considered to be “sensor 

observations”, thus different social media outlets all together form a Human Sensor 

Network. We utilized the “human sensor” observations, as boundary value forcings, 

to show improved geophysical model forecasts of extreme disaster events when 



  

combined with other scientific data such as satellite observations and sensor 

measurements. Several recent extreme disasters are presented as use case scenarios. 

In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated 

the Gulf of Mexico, the research demonstrates how social media data from Flickr can 

be used as a boundary forcing condition of GNOME oil spill plume forecast model, 

and results in an order of magnitude forecast improvement.  

In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we 

demonstrate how the model forecasts, when combined with social media data in a 

single framework, can be used for near real-time forecast validation, damage 

assessment and disaster management. Owing to inherent uncertainties in the weather 

forecasts, the NOAA operational surge model only forecasts the worst-case scenario 

for flooding from any given hurricane. Geolocated and time-stamped Instagram 

photos and tweets allow near real-time assessment of the surge levels at different 

locations, which can validate model forecasts, give timely views of the actual levels 

of surge, as well as provide an upper bound beyond which the surge did not spread.  

Additionally, we developed AsonMaps—a crisis-mapping tool that combines 

dynamic model forecast outputs with social media observations and physical 

measurements to define the regions of event impacts. 
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Chapter 1  

INTRODUCTION 

Social media has been developing at a very fast pace and is at a stage where 

there is a live stream of real-time data being shared on social networks. This 

dissertation presents an approach of collecting quantifiable data from social networks 

to form a Human Sensor Network (HSN), where the user inputs and devices are 

viewed as “global sensors” on the planet and their posts as real time geolocated 

“observations”. 

Emergency responders have long-established protocols for response 

management and mitigation. For disaster modeling and risk assessment, they rely on 

data and geophysical model forecasts collected by other government agencies, and on 

conventional media outlets for communication of risk and evacuation orders to the 

public. Only recently have emergency responders begun to utilize Social Media 

outlets such as Facebook and Twitter for the purpose of communicating urgent 

information to populations affected by disasters. Physically based ground and satellite 

sensor observations deployed for potential disasters such as earthquakes, tsunamis, 

volcanoes, floods, fires, oil spills and even nuclear meltdown events are available to 

geophysical models in near real time. Currently, the process of harvesting, analyzing 

and providing spatial and temporal maps from a variety of online social media 

products available with geolocated features in near real-time to first responders 

during and after extreme weather events for mitigating the economic and human is 

non-existent operationally. The flow of information from social media users to the 
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emergency responders is presently in its infancy and in the early stages of research. 

This dissertation presents methods and frameworks that would allow Emergency 

Responders to "listen" to the affected public by monitoring Social Media outlets for 

posts related to the disaster at hand. This approach is invaluable in providing 

Emergency Responders with timely situational awareness, understanding of how the 

disaster has affected different areas and segments of the population and allowing for 

more accurate assessments of the needs of different neighborhoods. It is also useful in 

validating the forecasts of risk assessment and geophysical models. 

As use-case scenarios, we focus on natural and human-caused disasters such 

as The Deepwater Horizon oil spill that caused tremendous environmental damage, 

the Tohoku earthquake and tsunami that resulted in the Fukushima nuclear disaster, 

the Hurricane Sandy that has devastated the Atlantic coast of the United States and 

Typhoon Haiyan that has devastated the Philippines.  

For the Hurricane Sandy use case scenario over 8 million tweets and around 

370 thousand Instagram images referencing hurricane Sandy were collected. For the 

use-case of Typhoon Haiyan around 900 thousand tweets and over 150 thousand 

Instagram images were collected. For the Deepwater Horizon oil spill, over 900 

photos were collected from Flickr photo sharing social media platform. 

Viewing Social Media data as a Human Sensor Network allows us to extract 

images and named entities as quantifiable geolocated, time stamped sensor 

observations. We use these observational data to validate geophysical model forecasts 

during extreme events such as hurricanes, tsunamis and aerosol distributions from 

fires and volcanic eruptions. 
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As a result of this research, we developed a heterogeneous, near real-time 

human sensor web engine called AsonMaps that uses streaming APIs of different 

social media outlets to harvest posts related to disasters. 

1.1 FORMAL THESIS STATEMENT 

Quantifiable information from streams of social media data can serve as a real-

time, situation aware human sensor network during and after natural and human 

caused extreme disasters for the purpose of assimilation of social media 

observations into geophysical models to improve forecasts and to generate locally 

resolved event driven real-time model output products to address improvements in 

mitigating the economic and human life toll. . 

 

1.2 CONTRIBUTIONS 

This section lists the computational scientific contributions of this dissertation 

from both a theoretical and applied perspective. Our contributions are: 

• Implementing a prototype concept of a Human Sensor Network in which 

social media posts are viewed as sensor observations and a variety of different 

social media data sets are acquired and analyzed in near real time following 

and during real case extreme disasters. 

• Studied the use-case scenario of the Deepwater Horizon oil spill disaster of 

2010 and presented methods of extracting quantifiable geolocated and time-

stamped beached oil observations to be used with the General NOAA 

Operational Modeling Environment (GNOME) to improve the oil spill plume 
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movement forecast based on the quantifiable information obtained from the 

social media data to better determine the uncertainties in model parameters. 

• Demonstrated the potential of using social media data for near real-time 

validation of geophysical model forecasts of storm surges and resulting 

flooding by studying the use case of the Hurricane Sandy of 2012 that 

devastated the Atlantic coast. 

• Developed and deployed the AsonMaps platform for visualization of social 

media data and geophysical model forecasts in a single framework that allows 

coupling geophysical model forecasts with Human Sensor Network 

observations from social media data and street level mapping information 

from Google Maps anywhere in the world. 

• Generated scripts for semiautomatic near real-time collection and aggregation 

into BigCouch database of the live stream of social media data from Instagram 

and Twitter that is ready to be tested in real time during the next disaster. 

• Developed the search and sub-setting capability of AsonMaps by 

implementing ElasticSearch on the CHMPR IBM iDataPlex ‘Bluewave’ 

cluster for indexing and filtering of the social media data and have also 

deployed AsonMaps platform across a 6 node iDataPlex cluster with 

InfiniBand network for scalability and operational testing of the platform 

during future live disaster events. 

• Showed that AsonMaps capability of invoking geophysical disaster models 

can be used to validate forecasts using USGS sensor data as well as 

quantifiable social media data. 



 

 5 

1.3 MOTIVATION 

In this section, we explain the motivation behind the proposed work as well as 

potential and real scenarios where the contribution of our research could be 

invaluable. We use the same definition of “disaster” that is used by FEMA and the 

community at large. Disaster is “[a]n event that requires resources beyond the 

capability of a community and requires a multiple agency response”. In general, 

disaster goes through stages of mitigation, preparedness, response, and recovery [1], 

[2].  

In the past decade, the world consistently experienced about 400 disasters a 

year. According to Peduzzi [3], since the 1900s, there was an exponential increase in 

the number of disasters, as can be seen on Figure 1 below.  

This increase can be attributed to population growth, improvements in 

information recording and access, or changes in the occurrences of extreme weather 

events or climate change (such as global warming). Regardless of the exact reasons, 

people and ecosystems all over the world face dangers to their life, health, property 

and sustenance. To list just the recent few extreme events in the past three years, 

consider: Hurricane Sandy in October 2012, which devastated Northeastern United 

States, portions of the Caribbean, and the Mid-Atlantic, with a cost estimated at 71.3 

billion dollars [4]; and the Tōhoku earthquake in 2011 off the coast of Japan and 

resulting tsunami, which caused 15,870 deaths, with an estimated economic cost of 

235 billion US dollars. According to the World Bank report, this was the most 

expensive natural disaster in world history. The Earthquake and Tsunami caused the 

Fukushima Daiichi nuclear meltdown disaster—the biggest since Chernobyl—which 
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resulted in three reactor meltdowns and enormous quantities of radioactive material 

being leaked into the environment. The list of recent disasters continues with the 2010 

Deepwater Horizon oil spill, the 2010 Haiti earthquake, the 2010 eruptions of 

Eyjafjallajökull volcano, and others. 

Red Cross/Red Crescent Emergency Response and Disaster Management 

Resource Center breaks down the disasters by categories into biological—such as 

epidemic outbreaks; geophysical–such as earthquakes and landslides; 

climatological—such as heat waves and droughts; hydrological—such as avalanches 

and floods; technological—such as blackouts; complex/manmade—such as terrorist 

attacks; and meteorological—such as  tropical cyclones. These designations are 

Figure 1 - Trends in number of reported disasters. Peduzzi [3] 
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shown in Figure 2 above. Hydro-meteorological disasters account for half of all these 

disasters.  

In the past decade we have witnessed the development of disruptive 

communication technology at a revolutionary rate. In the late nineties websites started 

deploying technology beyond static pages, and the term “Web 2.0” was coined. Since 

then, we experienced rapid social media development and now have dozens of sites 

hosting petabytes of user generated data. The evolution of social media is so rapid 

that the scientific community is struggling to keep up with mining its data anywhere 

beyond the mere surface.  

During the September 11 terrorist attacks, many people relied on SMS text 

messaging and pagers for communication. Now – just over ten years later – social 

media users Tweet and post photos on Instagram in real time from their smartphones 

Figure 2 - Disaster related statistics from Red Cross and Red Crescent Societies. Total
number of disasters between 2004 and 2008: 1574 
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and tablets. Although the primary purpose of such online activity is social interaction 

between friends, traditional media outlets now look to social media to improve their 

reporting and get hints about newsworthy events, and corporations use social media 

to promote their products and increasingly mine it to get insights on public perception 

and satisfaction with their products. Unfortunately, the use of social media for 

disaster management is in its infancy.  

In April of 2012, the Computing Community Consortium (CCC) held the 

Visioning Workshop on behalf of NSF and submitted an executive summary report 

on “Computing for Disaster Management” to the CISE Director. The report 

recommendations call for fundamental new research in socio-technical systems “to 

harness the opportunities offered by the spread of new classes of devices, sensors, 

networks and social media. The needed research investigation will encompass 

multiple diverse disciplines and will have to address significant challenges of scale 

Figure 3 - Illustration from the "Computing for Disasters" report that shows possible data
processing improvements that can result from advances in computing [1]. 
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complexity and uncertainty” [1], [5]. The report also stipulates that a holistic 

approach to disaster modeling is needed where there are strong ties of communication 

between the formal and informal stakeholders (government agencies vs. citizens), as 

can be seen in the Figure 3 borrowed from the report. 

In the past few years, the United States government has expressed increased 

interest in exploring the use of social media in disaster management not just 

passively, as a means to disseminate information, but also actively, by using the 

unique tools of social media to allow emergency responders to communicate directly 

with disaster victims, and to increase situational awareness by observing user 

activities during disaster situations.  

On September 6, 2011, the Congressional Research Service prepared a 

resource document for members of Congress entitled “Social Media and Disasters: 

Current Uses, Future Options, and Policy Considerations.” In this document, the 

researchers express that while currently social media is considered merely an 

additional tool for emergency management, as the use of social media becomes more 

and more mainstream, citizens will increasingly expect FEMA and other agencies to 

communicate in this way. Additionally, the report recognizes that social media has 

the potential to open up lines of communication that other forms of media do not 

allow, and can be accessed even when other forms of media are unavailable due to 

power outages, etc. [5]. 

On June 4, 2013, the House Homeland Security subcommittee on emergency 

preparedness, response, and communications held a hearing surrounding the use of 

social media as a tool during natural and man-made disasters. In this hearing, 
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committee members recognized that social media is no longer just one means of 

communicating, but is quickly becoming a primary means of communicating and 

receiving information. Noting the importance of these media during situations like the 

Hurricane Sandy, the Boston Marathon bombings of 2013 and the 2013 tornadoes in 

the Midwest, members of the committee expressed interest in utilizing these media 

more efficiently in order to reduce damages, prevent loss of life, effectively manage 

the immediate aftermath of the event, and plan for the rebuilding [6]. 

In both instances, officials acknowledged that many of the potential 

applications of social media to disaster management were merely speculative, while 

others have little substantiated evidence because they are only recently being 

explored [7]. Because of this, many emergency management organizations have 

continued with passive use of the media to disseminate information, and not explored 

its full potential as an efficient disaster management tool. 

1.4 HARVESTING SOCIAL MEDIA AND GEOPHYSICAL DATASETS 

To conduct the experiments in support of the thesis statement, we collected 

social media data and geophysical data related to a number of distinct types of 

extreme disaster events.  

The first dataset was in support of studying the use of social media data during 

the Deepwater Horizon oil spill. We obtained the wind fields from NCDC that were 

generated by the NCEP eta regional forecast model and the ocean current data from 

the ROM ocean model. The surface winds and ocean surface currents data were 

retrieved from the repository of the Department of Oceanography at Texas A&M 

University. We retrieved the USGS shoreline data of the Gulf of Mexico area from 
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the Coastline Database hosted at NOAA’s National Geophysical Data Center. We 

used NOAA/NOS medium resolution coastline data designed for 1:70,000 scales. 

Chapter 5 provides more details about the collection of this dataset. 

In anticipation of landfall from Hurricane Sandy, we have collected over 8 

million tweets and around 370 thousand Instagram images referencing Hurricane 

Sandy including all the metadata related to the user, including the “likes” and the 

“comments”; and over 900 thousand tweets and over 150 thousand Instagram images 

referencing Typhoon Haiyan. Twitter is very restrictive with access to historic data 

and only goes back a few days; as a result we used their real-time streaming API to 

collect the tweets. We started the data collection around 4 am on Monday, October 

29th, hours before Sandy made landfall, and stopped the collection around 4 am on 

Thursday, November 1st, 2012. After several hurricane related search attempts we 

composed our stream query to filter tweets that mention the terms “Hurricane”, 

“Sandy”, “frankenstorm”, “frankensandy”, “hurricanesandy”, “superstorm”, 

“naturaldisaster”. For Typhoon Haiyan, we started collecting tweets mentioning the 

words “typhoon”, “haiyan”, “yolanda”, “yolandaph” on November 6th, 2013 at 9pm 

and stopped on November 11th. 

Instagram data was collected retroactively since there is no limitation on 

accessing historical Instagram posts. Most photos have a short description with 

hashtags. We were able to retrieve the photos related to the hurricane by querying for 

the “hurricanesandy” hashtag, and related to typhoon querying the words “typhoon”, 

“typhoonhaiyan”, “typhoonyolanda”. 
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Additionally, we collected other minor Twitter and Instagram datasets that 

could be useful in future studies. A few noteworthy datasets include tweets 

mentioning Hurricane Sandy during the 1-year anniversary (#sandyyearlater), and 

tweets and photos of several snowstorms that affected the greater Washington, DC 

area.  

It is important to note that with such an abundant amount of data available for 

mining from social media, inadvertently there will be data points that provide false 

information. For example, during Hurricane Sandy a popular photoshopped image of 

a baby shark swimming next to someone’s front porch was circulating in the social 

media outlets and was even covered by several TV news channels. Although such 

cases fall beyond the scope of this dissertation, other researchers are already 

developing algorithms for detection of such false information [8]. 
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Chapter 2 

RELATED WORK 

This section provides a summary of related work that includes a variety of 

projects that successfully used social media to observe and study different 

geophysical phenomena as well as some traditional sources of sensor observations. 

2.1 TWITTER EARTHQUAKE DETECTOR 

Many examples have been noted of individuals tweeting about experiencing 

an earthquake even before media outlets received official reports of the event. Tweets 

about an earthquake experienced, appear within seconds of the event, as opposed to 

official scientific reports that can take up to 20 minutes, depending on the location of 

Figure 4 - Screenshot of Twitter Earthquake Detector (TED). Red star indicates the
epicenter while circles of different color indicate the frequency of tweets. Note that the red
circle is in the area of the highest population rather then around the epicenter. 
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the earthquake. In response to this trend, U.S. Geological Survey (USGS) developed a 

Twitter Earthquake Detector (TED) [9]. TED is a system that gathers in real time 

tweets related to earthquakes, and processes them to provide geolocated areas where 

people felt shaking. It can potentially improve the earthquake response products as 

well as hazard information gathering and delivery and could therefore improve the 

effectiveness of emergency response efforts. Figure 4 shows a snapshot of TED in 

action displaying a map of the San Francisco, CA area. Different colors of circles 

indicate frequency of tweets in that area that include the word Earthquake. 

2.2 AIRTWITTER  

In the past decade, there has been a trend online to create mashups. Mashups 

are web-based applications that combine together or heavily rely on multiple other 

Figure 5 - Screenshot of Air Twitter Mashup displaying air quality related twitter feed. 
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web-based applications to create a new type of application. AirTwitter is one such 

mashup application that monitors social media data, identifies air-quality and 

pollution-related events, and records and monitors this information. AirTwitter 

aggregates RSS feeds from different social media sites such as Twitter, YouTube, 

Flickr, Delicious, and others. It processes the data to weed out all the feeds unrelated 

to air quality. Then, it establishes a baseline of normal frequency of air-quality data. 

As a result, AirTwitter provides an aggregated, preprocessed, single feed of data with 

the ability to detect the air-quality-related events, such as volcano eruptions and forest 

fires as shown on Figure 5 [10]. 

2.3 #UKSNOW MAP  

This Google Maps/Twitter mashup online application, called #uksnow Map, 

Figure 6 - #uksnow Map. Google Map on the left with white circles of varying size indicating
snow conditions. Tweet feed on the right listing tweets that were used to generate the map. 
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tracks in real time snow reports and displays them on the map. The pound sign in the 

beginning of the name is a pun on the twitter hash tag used for this application. 

#uksnow Map is based on crowdsourcing. In this mashup, Twitter users are asked to 

report about the snow conditions in their area. Tweets should include the #uksnow 

hashtag, location, and snow rating on a scale from 0 to 10. The location is represented 

as a postal code, a town name, or a Twitter geotag (latitude and longitude). The snow 

scale is very loose—the snow is rated as 0 for no snow at all, 1–2 for a few flakes, 5 

for a steady snow, and 10 for a blizzard. Attaching photos and including the depth of 

the snow is also encouraged. The application keeps track of tweets tagged with the 

#uksnow tag and displays them on a Google Maps map in real time. Figure 6 

demonstrates a screenshot of #uksnow Map. On the left portion of the screen is a 

Google Maps window zoomed into the United Kingdom. Superimposed white circles 

of varying diameter indicate the intensity of the snow. On the right section of the 

screen is a live tweet feed that is used to generate the map in real time [11].  

2.4 INTERACTION WITH THE AFFECTED POPULATION 

In [12] Yefeng et al. presented the MobiQ platform that they developed. This 

platform allows users to pose questions of geo-temporal importance, such as whether 

the line is very long at a certain business establishment at the moment, or whether 

there are any seats left at a social event. MobiQ forwards the question to several 

Weibo users that, based on their recent posts, are likely to be in the area and know the 

answer. The replies are then aggregated and presented to the inquiring user. Such a 

system can also be used in disasters to determine whether neighborhoods lost power, 

or certain intersections got flooded. 
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Neubig, et al., in the wake of the 2011 Tohoku earthquake and tsunami in 

Japan, developed a system based on Named Entity Recognizers and NLP algorithms 

to mine Twitter for names of people affected by the disaster and assess the status of 

their safety. The information was aggregated in a central repository for the purpose of 

helping the relatives find their loved ones and for disaster mitigation tasks [13].  

In [14], [15] Goolsby et al. lay down the concept of Crisis Community Maps. 

The paper covers in depth a variety of quickly forming social media communities that 

emerged as a result of crises such as the terrorist attacks in Mumbai in 2008 and the 

Haiti Earthquake of 2010 etc., and states that emergency responders become more 

receptive to non-authoritative sources of crisis data in exchange for robust situational 

updates. Information flow and information isolation between different layers of 

organizations and public are described.  

Figure 7 - Screenshot of the Debris Tracker iPhone App. On the bottom of the screen the 
automatically included GPS position can be seen. 
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2.5 MARINE DEBRIS TRACKER MOBILE APP 

Marine Debris Tracker Mobile App is an app for both iOS and Android 

devices that was developed by University of Georgia’s Southeast Atlantic Marine 

Debris Initiative in collaboration with NOAA Marine Debris Division. This citizen 

science app allows users to easily track and upload sightings of debris on the 

coastlines. The app provides a list of common debris classifiers and automatically 

geotags the submitted information using the Phone’s GPS. Figure 7 shows the 

screenshot of the Debris Tracker iPhone app. All the submissions are aggregated on 

the Marine Debris Tracker Website - www.marinedebris.engr.uga.edu/data [16].

Figure 8 shows the screenshot of the Debris Tracker web application that overlays the 

aggregated debris reports on a Google Maps map. 

Figure 8 - Screenshot of the Web App of the aggregator part of the debris tracker. Google
map is shown with some user uploaded sightings locations. 
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2.6 LITMUS: LANDSLIDE DETECTION BY INTEGRATING MULTIPLE 

SOURCES 

Musaev et al. from Georgia Institute of Technology developed a landslide 

detection system that relies on heterogeneous sources of data such as USGS seismic 

network data, NASA rainfall data and various social media sources. The data from 

social media sources is processed in a series of steps including keyword filtering, 

named entity recognition and geolocation and is combined with the USGS and NASA 

data to produce a list of detected landslides [17]. Figure 9 demonstrates the screenshot 

of the LITMUS produced map. 

2.7 GOOGLE CRISIS RESPONSE 

Google has been committed to providing support to emergency responders 

and the public since Hurricane Katrina of 2005 by providing a variety of tools that 

allow them to utilize Google frameworks to improve disaster response and mitigation.

Figure 9 - LITMUS Landslide Information System 
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A non-exhaustive list includes Google Person Finder that during disasters helps 

emergency responders and the affected population to locate missing people and to 

reconnect those that got separated. Google Public Alerts is a platform for 

dissemination of emergency related alerts based on the threat location relative to the 

user location. Google Crisis Map is a mapping platform based on Google Maps that 

presents important crisis related information from a variety of sources on a single 

interactive map. Figure 10 shows a screenshot of the Google Crisis Map showing the 

path of Hurricane Sandy in a light blue overlay. Orange markers indicate power 

outage areas as reported by the power companies [18]. 

2.8 SATELLITE OBSERVATIONS DURING DISASTERS 

One of NASA’s Earth Science Data Systems Program’s products is the Land 

Figure 10 - Google Crisis Map screenshot showing the path of Hurricane Sandy and the
locations of the power outages reported by the power companies.
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Atmosphere Near real-time Capability for EOS (LANCE). LANCE consists of data 

products from MODIS, OMI, AIRS, and MLS that are available within 3 hours from 

observation and is useful for forecasters and emergency responders in cases of 

disasters [19]. 

  



 

 22 

Chapter 3  

STATE OF THE ART IN DISASTER MODELING AND 

FORECASTING 

The following chapter describes geophysical models that are operationally 

deployed for specific extreme events. We describe these models and show how we 

either have or are currently conducting studies to assimilate social media data to 

improve their forecast skills. 

3.1 GNOME MODEL 

For the purposes of oil spill plume movement prediction on the surface of the 

ocean, NOAA’s Emergency Response Division (ERD) of the Office of Response and 

Restoration (OR&R) employs a geophysical model called GNOME, which stands for 

General NOAA Operational Modeling Environment. GNOME was extensively used 

for issuing daily operational oil spill forecasts during the devastating disaster of the 

Deepwater Horizon oil spill. The model uses surface winds, surface ocean currents, 

and other processes as input to predict the movement and spread of oil on the ocean 

surface as well as how the predicted oil trajectories might reach coastal beaches and 

islands. The model is affected by uncertainty in currents and winds observations and 

forecasts as well as by the rate of oil spill and the thickness of oil reaching the surface 

of the ocean. GNOME also has the capability of predicting the weathering behavior 

of pollutants. The model is initialized by setting up a spill scenario that takes as an 

input the shoreline, surface winds, surface ocean currents/tides, and the observed 

location of oil plumes on the surface of the ocean. As an output, GNOME produces 
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an animation of how the plume moves, mixes, and weathers over time as well as a 

batch file with a series of data points representing time series of predicted locations of 

oil particles. In its core, GNOME software uses basic Lagrangian-Eulerian particle 

tracking algorithms [20], [21], [22]. The area of interest is divided into a grid and a 

certain user-defined amount of oil in each cell is viewed as a single granule 

[Lagrangian element (LE)] that is influenced by the velocities of the universal movers 

such as winds and currents. The output of the GNOME model represents the LE of 

the spilled oil trajectory as splots (spill dots). Black splots represent the best guess 

trajectory estimate and red splots represent the minimum regret. Best guess 

trajectories are calculated under the assumption that the winds and currents data 

accurately represent the actual winds and currents over the period of the scenario, and 

that the initial input of splots representing the observed location of the sheen of oil 

from satellite updates are accurate as well. The best guess forecast trajectory takes 

into account the turbulence that is inherent in the surface winds and ocean surface 

currents. Red splots, on the other hand, represent the minimum regret trajectory. 

Minimum regret trajectory takes into account the inherent uncertainty of the winds 

and ocean currents models and specifies the boundary beyond which there is a high 

probability that the oil will not propagate (probability in the order of 90%). Minimum 

regret trajectories are useful for purposes of indicating trajectory uncertainties that are 

less probable than the best guess trajectory, but that may be potentially more 

destructive [23], [24], [25]. Figure 11 demonstrates the GNOME model initialized 

with the coastline of the Gulf of Mexico. Purple arrows visualize the surface currents. 

The red and black areas are splots of minimum regret and best guess forecasts. 
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GNOME has a few parameters that are adjustable by the user and are generally set 

experimentally. Those parameters include number of splots per spill, windage 

percentage range for each spill, pollutant release rate, along- and cross-current 

uncertainty percentage, wind speed scale, and total wind angle scale. 

In its core GNOME uses basic Lagrangian-Eulerian equations. We assume that the 

thickness of the oil slick on the surface of the ocean is negligible in comparison to the 

thickness of the water [23], [24], [25]. The governing equations for the movement of 

the oil slick in the 3-D space x, y, z over time t are: 
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Cs is the concentration of oil on the surface of water;  

Cv is the volume of oil concentration in the suspended layer per volume of water  

u, v, w are components of surface current velocity;  

Figure 11 - Screenshot of GNOME initialized with surface winds, ocean currents and
coastline data for Deepwater Horizon oil spill scenario. 
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α1 is the coefficient of the probability of an oil droplet reaching the surface 

γ is the surface oil dispersion coefficient 

us, vs are the components of the drift velocity 

K is the diffusion coefficient in the respective direction 

vb is the buoyant velocity of the suspended oil parcels 

Se is the rate of evaporation 

Sd is the rate of dissolution 

Ms is the effect on the distribution of the surface oil due to the mechanical spreading; 

Ds is the effect on the distribution of surface oil due to the shoreline deposition [25]. 

According to Reddy, advection is the main mechanism that governs the drifting of the 

suspended oil and the surface oil slick. The drift velocities us, vs are considered a 

weighed combination of the velocity of the surface currents with the velocity of the 

surface winds. The weighting parameters that are generally used to combine the air 

surface winds and the ocean currents are: 

     [23] 

3.2 SLOSH MODEL 

For the purposes of storm surge forecasting, analysis and evacuation planning, 

the National Hurricane Center (NHC), National Weather Service (NWS) and Federal 

Emergency Management Administration (FEMA) employ a computerized numerical 

model called SLOSH which stands for Sea, Lake and Overland Surges from 

Hurricanes.  

 As an input, SLOSH uses storm track, radius of maximum winds and the 

pressure difference between the storm and the rest of the environment, as well as the 



26

topographic and bathymetric data for the basin of interest, and as an output predicts 

the level of surge at each grid cell of the area of interest. Since it is a lot more 

important to have a higher resolution forecast around the coastal area than in the open 

ocean, SLOSH uses a polar or an elliptic/hyperbolic grid as seen on the example 

image on Figure 12 below. 

Surge modeling is deterministic in nature and can generate very accurate 

forecasts, given an accurate hurricane forecast and precise landfall location. Since the 

NHC cannot predict where exactly the hurricane will make a landfall, or at what exact 

time, the SLOSH model provides a probabilistic forecast of Maximum Envelope of 

Water (MEOW). For a storm of a given category, wind speed and direction this 

forecast indicates the highest possible level of surge at any given grid cell. Such an 

approach is meant to cope with the weather forecast uncertainties. 

Figure 12 - Screenshot of SLOSH model scenario initialized for the New Orleans area. The
grid cells noticeably get smaller and smaller closer to the shoreline, thus providing finer
forecast resolution. 
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The other forecast that SLOSH provides is Maximum of the Maximums (MOM). 

This forecast displays the highest level of water for a given tide and hurricane 

category and is intended for assessing the worst-case scenario of a potential 

hurricane, since no real hurricane will produce such a surge. 

The model does not take into account rainfall or river overflows, and is 

strongly affected by the uncertainty of its input data, which is often very sparse and 

inaccurate. Water levels are affected by tides and waves, and the size of grid cells are 

in the order of kilometers. In order to overcome the shortcomings of a single 

deterministic surge forecast run, thousands of SLOSH model runs are executed with 

different input parameters and different hurricane categories to produce, as a result, 

two composite products – MEOW (Maximum Envelope of Water), MOM (Maximum 

of MOEWs) as shown in the example in Figure 13. 

Figure 13 - Screenshot of SLOSH model scenario initialized for the New Orleans area.
Displaying the MEOW analysis. The lines indicate possible hurricane path and the color
code different level of surge. 
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 Since it is uncertain where exactly a hurricane will make landfall, SLOSH is 

run multiple times for each hurricane category and forward speed with parallel 

hurricane tracks, and as a result produces an output of a single MEOW that displays 

for each grid cell the highest water level the model produced from all the runs. Thus, 

a single MEOW is generated for a hurricane of a given category and forward speed, 

tide level and direction. MOM is a composite of all the MEOWs with different 

forward speeds, tide levels and directions, but same hurricane category; thus each 

hurricane category will have its own MOM composite product. The purpose of these 

two composite products is to provide a manageable amount of information for 

evacuation planning [26]. 

SLOSH was developed in 1992 by Jelesnianski et al. [26], [27] and is 

essentially based on the transport equations developed by Platzman in 1963 [28]. The 

governing equations are as follows: 

 

 

 

where: 

U,V = components of transport 

g = gravitational constant 

D = relative depth of quiescent water 

h = relative height of water 

h0 = hydrostatic water height 
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f = Coriolis parameter 

xτ,yτ = components of surface stress 

Ar,….Ci = bottom stress terms 

3.3 ADVANCED 3-D CIRCULATION MODEL (ADCIRC) 

ADCIRC is a finite-element-based 3-D numerical circulation model initially 

developed by U.S. Army Corps of Engineers and the US Navy to predict sea surface 

elevation and circulation in coastal areas, and is used, among other things, for 

flooding and pollutant transport forecasts and studies. Unlike SLOSH, ADCIRC 

works at a significantly higher resolution and at the same time is capable of 

generating forecasts over large computational domains [29]. 

The model is driven by the inputs of surface winds, ocean currents, tides and 

Figure 14 - Screenshot of the CERA webpage showing the ADCIRC forecast for Hurricane
Sandy on an interactive map 
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atmospheric pressure. 

The governing equations of ADCIRC model are based on 3-D near-horizontal 

Cartesian coordinate equations as follows: 

 

 

 

where: 

f - Coriolis parameter 

g  - acceleration due to gravity 

Γ - tide generating potential 

ν - molecular viscosity 

p(x,y,z,t) - time-averaged pressure 

ρ(x,y,z,t) - density of water 

ρ0 - reference density of water 

t – time 

Figure 14 shows a screenshot of a Coastal Emergency Risks Assessment (CERA) 

group’s website overlaying the ADCIRC model forecast for Hurricane Sandy on an 

interactive map. The purpose of the mapping tool is to provide emergency responders 

a tool for situational awareness in times of hurricanes. 
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3.4 ATMOSPHERIC DISPERSION MODEL 

Atmospheric dispersion model is a geophysical model that is used to forecast 

the fate of air pollutants (i.e. movement and dispersion) in the atmosphere. One 

popular model that is used by NOAA is HYSPLIT. The HYSPLIT (Hybrid Single-

Particle Lagrangian Integrated Trajectory) model is a complete system for computing 

simple air parcel trajectories to complex dispersion and deposition simulations. It 

computes the trajectory of a single pollutant particle using the winds data and taking 

into account turbulence and dispersion of a pollutant. Figure 15 below demonstrates 

the output of the HYSPLIT model overlaid on top of the Google Earth image [30],

[31]. The governing equations of the HYSPLIT model are too involved and are 

omitted from this dissertation in the interest of space, but can be found in the NOAA 

Technical Memorandum ERL ARL-224 [31].  

Figure 15 - Example of the HYSPLIT model overlaid on Google Earth depicting the smoke
from the fires in Peachtree City, GA 
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Chapter 4 

CONCEPTS OF HUMAN SENSOR NETWORK AND 

QUANTIFIABLE SOCIAL MEDIA DATA 

This chapter describes the concept of Human Sensor Network and presents 

several different types of quantifiable information that can be retrieved from social 

media posts. 

4.1 A THEORETICAL CONCEPT OF THE HUMAN SENSOR 

NETWORK 

The concept of wireless sensor networks, sensor networks, and sensor web in 

Figure 16 – Visualization of a sensor web. (Courtesy of Matt Heavner, University of Alaska
Southeast) 
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general is well established, with a rich body of research covering plethora of topics 

such as power harvesting, efficient networking, node security and battling rogue 

nodes etc., and even has its own standardization body called Open Geospatial 

Consortium [32]. In this dissertation a novel concept of a Human Sensor Network is 

presented. Figure 16 shows a visualization of a sensor web. 

In this approach the users of different social media platforms are viewed as 

"sensors" deployed in the field, ands their posts and comments are viewed as 

"observations".  All the different social media platforms combined form a Human 

Sensor Network. As a result, we get a massive near real-time geo-locatable and time-

stamped stream of sensor observations. 

These observational data is used to validate geophysical model forecasts 

during extreme events such as hurricanes, tsunamis and aerosol distributions from 

fires and volcanic eruptions. Using data assimilation techniques such HSN 

observations can be directly incorporated into geophysical models to achieve better 

forecasts as demonstrated in the results section in two different disaster scenarios. 

It is important to point out and explain the distinct difference between HSN 

concept and the complimentary field of Citizen Science. Citizen Science is primarily 

based on crowdsourcing the tasks to a large group of volunteers that require minimal 

training to correctly perform these desired tasks to achieve scientific value. In the 

HSN approach the social media users engage in their day-to-day activities and social 

interactions and are neither trained to perform any of the observational tasks nor are 

aware that their posts are being analyzed in such matter. 
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The term “Human Sensor Network” occasionally appeared in the literature for 

several years now, those references carried the meaning of humans performing 

observations in a citizen science paradigm such as in the case of water availability 

[33], or carried the meaning of a sensor that is carried by a human, such that the 

average travel speed is determined by interrogating a smartphone without the 

person’s knowledge [34]. Poser et al. describe the concept of humans as sensors in 

which quantitative estimates of flood damage were made based on phone interviews 

with the affected population [35]. In the 2010 American Geophysical Union meeting 

we presented the concept of Human Sensor Network as a near real-time observational 

system that is based on querying live streams of social media posts [36]. 

4.2 QUANTIFIABLE SOCIAL MEDIA DATA 

Social media is evolving very rapidly and is useful in many different social 

aspects of our lives; however, in order to be able to view the social media posts as 

sensor observations, incorporate them into geophysical and mathematical models, and 

establish scientifically sound reproducible results, we need to be able to extract 

quantifiable data from social media. 

By quantifiable social media data we mean something that can be measured, 

identified, located or counted, based on the information provided in the social media 

post and assigned a numeric value for the data at hand. E.g., a photo indicates 

presence of oil on the shore – true, false (1 or 0), or a photo indicating 2.5 feet of 

surge, etc. Identification and extraction of entities from the textual content can also be 

represented numerically. Once the contents of social media posts are quantified 
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numerically, we are able to integrate it into mathematical and geophysical models in a 

much similar way to any other sensor network measurements. 

There are several conceptual types of quantifiable sensor observations that can 

be collected from the HSN. One type of sensor is a trigger alarm—the equivalent of a 

smoke alarm. If a smoke alarm goes off in an apartment building, then the people in 

the vicinity are alerted to the potential hazard and would check the area and/or 

evacuate. However, if no smoke alarm is going off, there is no way to know whether 

everything is safe or there is hazard and the smoke alarm did not detect it, or smoke 

alarm is malfunctioning or even non-existent. A comparable example from HSN is 

the oil sensor in the case of the Deepwater Horizon oil spill disaster. Photos from 

Flickr were collected where beachgoers would take photos of tarballs washing up on 

the beach. The HSN sensors were acting like trigger alarms. If the photo of tarballs 

exists then it is clear that in that particular location there is beaching oil, but if there 

are no photos of tarballs available for a particular location then no information can be 

perceived about the beaching of oil for that area. 

In the case of a categorical sensor a discrete observational value is available 

such as, for instance, the amount of snow on a scale from 0 to 10 in the #uksnow 

project mentioned in the related work chapter. 

A more sophisticated HSN sensor type provides measurements on a 

continuous scale such as, for instance, an inundation level in feet during flooding. 

Orthogonal to the measurements mentioned above is the named entity 

recognition (NER) from the textual content of the post. NER algorithms can detect 

things like names of organizations, locations, quantities etc. from unstructured text 
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and can provide additional source of quantifiable data. Those named entities that have 

a location associated with them can be geo-referenced using a gazetteer service. A 

gazetteer service is in essence a directory of names of places and their geographic 

coordinates. Using such an approach allows us to know the locations of places that 

are mentioned in social media posts during disasters. 

4.3 HANDHELD AND WEARABLE DEVICES FOR HUMAN SENSOR 

NETWORKS 

It is important to point out that although in this work a large portion of social 

media posts was generated using smartphones equipped with a camera and a GPS, 

those smartphones constitute just one type of a handheld, networked device. At 

present, there are many new types of networked handheld and wearable devices that 

are actively being developed and marketed. Some examples include smartphones with 

biometric sensors, barometric pressure sensors, Geiger counters [37] etc. Networked 

wearable devices with personal metrics trackers such as sleep quality, heart rate, 

blood pressure, steps walked etc. are also gaining popularity [38]. Social media posts 

that include records from those devices can be an important source of quantifiable 

data as well. Thus, a Human Sensor Network paradigm in a broader generalized sense 

pertains to any social media platform and operates with posts submitted from any 

type of source, whether it is a conventional personal computer, a handheld device or a 

wearable device. 
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Chapter 5  

EXPERIMENTAL RESULTS USE-CASE 1:  

HUMAN SENSOR NETWORKS FOR OIL SPILL 

MODELING 

This chapter presents the results of the research that was conducted at the 

Center for Hybrid Multicore Productivity Research, UMBC that was funded by the 

National Science Foundation under the RAPID MRI award titled: “An Interactive 

Human Sensor Web for Improved Model Predictions of the Dispersion of the 

Deepwater Horizon Gulf Oil Spill”.  The contents of this chapter are predominantly 

based on the paper that was published in the Special Centennial Issue of the IEEE on 

Remote Sensing of Natural Disasters [39]. The research presented and tested a novel 

approach of incorporating social media data into geophysical models.  A new 

paradigm was proposed in which social media (SM) users are viewed as “sensors” 

that are deployed in the field, and their posts as “sensor observations”. All the users 

together form a human sensor network (HSN). These observations can serve as a low-

cost augmentation to an observing system, which can be incorporated into 

geophysical models together with other scientific data such as satellite observations 

and sensor measurements. 

This research focused on the Deepwater Horizon oil spill disaster of 2010 as a 

use case scenario. In the aftermath of the disaster, the public was very active in 

discussing its impact and implications across a range of social media outlets. Many 

people who witnessed firsthand the damage caused by the oil—such as birds soaked 
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in oil or tar balls washing up on the shore—reported their accounts in different social 

media outlets. People posted photos and videos of oiled beaches, tweeted from their 

smart phones if they were prohibited from swimming because of oil pollution, and so 

on. The National Incident Command under Admiral Thad Allen saw the potential of 

this data and utilized social media mining to gauge and monitor the mood of the 

public affected by the BP disaster [40]. Though the primary purpose of such online 

activity is social interaction between friends, increasingly traditional media outlets 

look to social media to improve their reporting and get hints about newsworthy 

events. In this chapter, we describe how social media data can be used as physical 

observations to provide boundary forcing corrections to oil spill model predictions 

that employ generic parameterizations such as the coupling between the surface air 

and ocean drift velocities. These social media data can help adjust other parameters in 

the oil spill model as well. We examined various social media outlets and collected 

the data that were related to the Deepwater Horizon oil spill disaster. We converted 

these data for scientific use in geophysical models. For many of these data reports, we 

can extract observation location and temporal information. In addition, by comparing 

multiple reports from different observers (i.e. sensors), we can apply quality controls 

on the usefulness of the SM data.  

5.1 SHORELINE DATA 

In order to make the oil spill movement forecasts, the GNOME model needs 

to be properly set up with the shoreline data that defines the map separating land from 

water, as well as the surface winds and ocean currents forecast data. We generated a 

custom shoreline map data file for the purpose of the boundary condition that 
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specifies where the separation of ocean surface and land is so that the model knows 

where the oil plume is floating and where it makes landfall. The GNOME model 

expects a map file that contains a list of latitude/longitude points that represent a 

polygon of land. We extracted the USGS shoreline data of the Gulf of Mexico area 

from the Coastline Database hosted at NOAA’s National Geophysical Data Center 

[41]. We used NOAA/NOS medium resolution coastline data designed for 1:70,000 

scales. This coastline data consists of many lists of latitude/longitude tuples. Each list 

contains various numbers of those tuples and represents a small portion of the 

shoreline in the cylindrical-equidistant projection. Then we linked all these lists 

together in the right order to create a single list that represented the entire shoreline of 

the Gulf coast. Since the model expects a polygon representing the land, and assumes 

that everything else is water, it was necessary for us to add arbitrary latitude/longitude 

points in the area of the state of New Mexico as well as the South Pacific area of 

Mexico. As a result, we got a polygon shape that represented the shape of the land 

around the Gulf of Mexico and that can be ingested into the GNOME model. 

Although in our model scenario the Pacific Ocean was abruptly starting after New 

Mexico, it did not matter since the forecasts and computations were strictly limited to 

a narrow region of the Gulf Coast and the area around the Macondo well. We also did 

not take into account in our model the unlikely possibility of oil being moved to 

Europe with the Gulf Stream and therefore we did not incorporate any shoreline data 

for European countries. 
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5.2 OCEAN CURRENTS AND SURFACE WINDS DATA 

We obtained the wind fields from NCDC that were generated by the NCEP 

Eta Regional Forecast Model and the ocean current data from the ROM ocean model. 

The surface winds and ocean surface currents data were retrieved from the repository 

of the Department of Oceanography at Texas A&M University. 

The atmospheric surface wind data are produced by NOAA’s NCEP ETA-12 

model and provide 24-hour forecasts with output every three hours on a regular grid 

with a grid spacing of 12 km. The Eta model, developed by Zaviša Janjić and Fedor 

Mesinger, derives its name from the name of the model’s vertical step mountain 

coordinate. The basis of the model is to minimize errors due to the gradient force 

computation, advection and diffusion. The vertical coordinate is defined by 

 

 

 

where pt is the pressure at the top of the domain, ps is the pressure of the model’s 

lower boundary, zs is the elevation of the model’s lower boundary and pref is the 

reference pressure state [42]. For the purpose of our research we are only interested in 

the first layer of the model that correlates to the winds on the ocean surface. 

The ocean surface currents data are produced by the Regional Oceanographic 

Modeling System (ROMS) generated by the Texas General Land Office (TGLO). 

ROMS provides a 24-hour hourly forecast, 4 times a day, on a regular grid. ROMS is 

a high-resolution, free-surface, hydrostatic, primitive-equation ocean model that uses 
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terrain-following coordinates in the vertical curvilinear coordinates in the horizontal 

plane [43]. In its core it is based on the S-coordinate Rutgers University Ocean Model 

(SCRUM) [44]. The primitive horizontal momentum equations of this model are 

given as 

 

and 

where f is the Coriolis parameter, D is the horizontal viscous and diffusive term, F is 

the forcing term, KM is the vertical eddy viscosity, and ϕ is the dynamic pressure. 

5.3 SOCIAL MEDIA MODEL INPUT DATA 

For the purpose of this study, we collected data from Flickr. Flickr is a widely 

used image and video hosting site as well as a web services framework. It features 
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http://api.flickr.com/services/rest/?method=flickr.photos.search&api
_key=70920bca63b7452f4ff6a7bdbb7f3f75&tags=tar+balls&min_taken_date=
2010-04-20+00%3A00%3A00 &max_taken_date=2010-10-20+00%3A00%3A00&
bbox=-95.668945%2C+28.07198%2C+-85.825195%2C+31.203405&has_geo=1&
extras=geo%2C+path_alias%2C+date_taken&auth_token=72157626247331502-
22c36f6dd37efa88&api_sig=89078181e2169738d46489f44f070843

<photo id="5016704044" owner="37281343@N03" secret="9db693ebb5" 
server="4144" farm="5" title="DSC_1225" ispublic="1" isfriend="0" 
isfamily="0" latitude= "30.371133" longitude="-86.918726" 
accuracy="16" place_id="uwvhGpebBZlHgiRz" woeid="2457354" 
geo_is_family="0" geo_is_friend="0" geo_is_contact="0" 
geo_is_public="1" pathalias="mmmeeks" datetaken="2010-08-04 
17:48:24" datetakengranularity="0" />

Figure 17 - Example of a Flickr API request query (top) and response (bottom) 
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a) April 21st, 2010 – April 27th, 2010

 

b) April 21st, 2010 – May 11th, 2010 

 

c) April 21st, 2010 – May 30th, 2010 

 

d) April 21st, 2010 – September 9th, 2010 

Figure 18 - Accumulative Flicker data superimposed on a regional map. We can observe
how as time goes by more and more areas get covered with oil. 



 

 43 

many social networking traits such as the ability for users to add people to a list of 

their contacts, forming communities, tagging people on photos and videos, tagging 

content with keywords, the ability to comment on photos, etc. As a result Flickr is not 

only a popular social media portal in its own right, but also widely used by bloggers 

to host images that are imbedded in their blogs. Unless explicitly disabled by the user, 

photos and videos posted on Flickr include EXIF metadata such as date and time 

when the photo was taken, camera make and model, camera settings and geolocation. 

Although the ratio of geolocated Flickr images is very small, we expect it to grow 

rapidly due to hi-tech manufacturers objective to embed GPS devices not only in 

smartphones, but also in regular photo cameras [45]. Currently the vast majority of 

geolocated photos on Flickr are taken with a GPS enabled smart phone such as 

iPhone, Blackberry or Android-based device. If the EXIF metadata is not available 

the user has an option of geotagging the photo by hand by selecting the location on 

the map where the photo was taken; if the timestamp is not available, Flickr will 

automatically assume that the upload time is the time the photo was taken. We started 

our data mining task with a simple search on the Flickr website for the query “BP oil 

spill”, which returned over 20,000 results. Many of those images were related to 

protests against BP, political events related to the disaster, and other related events 

that were of no practical use for us, since we were only looking for oil HSN data in 

the form of images that evidenced oil slicks on the water and oil tar balls washing up 

on the shores. One such example is shown on Figure 19 showing a photo of oil 

covered plastic soda bottle lying in the sand. For developers, Flickr provides API 

access to their service. For our work, Flickr API proved to be much more flexible and 
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powerful then the services accessible via the website. Using Flickr API, we were able 

to request only the images that were geotagged as well as supply our search query 

with a bounding box of lower left corner at 28.07198, -95.668945 and upper right 

corner at 31.203405, -85.825195 to retrieve only the images from the Gulf coast area. 

We executed two search queries — one for “tar balls”, and the other one for “oil 

spill” during the period of April 20th, 2010 to October 20th, 2010. They resulted in 

two disjoint sets of 22 and 168 images respectively for a total of 190 images. Figure 

17 shows an example of REST API query, and the corresponding response from the 

Flickr API. Note attributes “latitude”, “longitude”, “accuracy” and “datetaken”. 

Accuracy is a value in the range from 1-16 that represents the accuracy of the geo-

location with the world level being 1, country level being about 3, region about 6, city 

-11 and street -16 (Default is 16) [46]. We wrote a script that parses the XML 

Figure 19 – Screenshot of Flickr website showing an example of the oil spill related photo
that was shared showing oil coated plastic bottle on the sand. 
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response received from Flickr API and that generates a map with desired markers 

corresponding to the latitude/longitude tuple of each image. Using this script we 

generated a series of maps of the Gulf coast of Mexico and incrementally 

superimposed Flickr data that we collected in the previous step at the corresponding 

latitude, longitude coordinates. As a result we got a series of maps indicating the 

sightings of oil or tar balls along the shoreline of the coast at different times. Figure 

18 displays the maps that were generated for different periods. Figure 18 (a) shows 

the points for the period from April 21st through April 27th. Here we only see points 

around the location of the Deepwater Horizon drilling rig. Figure 18 (b) shows points 

for the period of April 21st through May 11th, and here we observe additional points 

for the sightings of oil washing up in the area of Fort Morgan and Fort McRee. Figure 

18 (c) is for the period from April 21st through May 30th, and here we see additional 

points in the regions of Black Bay and Ship Island. Figure 18 (d) is for the period of 

April 21st through September 9th and we observe that many more areas in-between 

start to fill in.  

5.4 APPROACH 

In this section we describe how we process the social media data and present 

the results of the integration experiments as series of the GNOME trajectory forecasts 

with different parameters that explore the parametric sensitivities of the model. 

Once the GNOME model was initialized for the area of the Deepwater 

Horizon oil spill, we introduced the spill itself at the exact location of the rig and for 

simplicity assumed that all the oil was spilling on the surface. In our first experiment 
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Figure 20 - The results of different model runs show that the amount of oil released and the
number of splots used do not alter the direction of the oil flow and the ultimate location
where the model predicts it will make a landfall. 

 

a)7,000 bbl and 1,000 Lagrangian elements per week, 7 barrels per splot 

 

b) 35,000 bbl and 1,000 Lagrangian elements per week, 35 barrels per splot 

 

c) 35,000 bbl and 5,000 Lagrangian elements per week, 7 barrels per splot 

 

d) 350,000 bbl and 50,000 Lagrangian elements per week, 7 barrels per splot
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we altered the rate of spill and the number of splots used to represent the oil. We ran 

the scenario from the moment that the spill started until the 8th of June. Figure 20 

summarizes our results. Figure 20 (a) indicates a spill at a rate of 7000 barrels a week 

with 7 barrels per splot, Figure 20 (b) indicates a spill at a rate of 35,000 barrels a 

week with 35 barrels per splot, Figure 20 (c) indicates a spill at a rate of 35,000 

barrels a week with 7 barrels per splot, and Figure 20 (d) indicates a spill at a rate of 

350,000 barrels a week with 7 barrels per splot. Figure 20 (a) and (b) allow us to 

analyze the influence of the spill rate on the oil propagation given a constant number 

of splots used in the model. The rate changes from 7000 barrels a week to 35000 

barrels a week, but the number of splots is kept at 1000 per week. Figure 20 (b) and 

(c) allow us to analyze the influence of the number of splots on the oil propagation 

given a constant spill rate used in the model. The rate of spill is kept at 35,000  per 

week and the number of splots changes from 1000 per week to 5000 per week. Figure 

20 (d) increases both the rate of spill and the number of splots in order to have a 

bigger picture of the influence of those two variables on the GNOME model. As a 

result of this experiment, we observed from Figure 20 (a) and (b) that the amount of 

oil released does not alter the direction of the oil flow or the ultimate location where 

the model predicts it will make landfall. Likewise, the number of splots does not alter 

the direction of the oil flow or the ultimate location where the model predicts it will 

make landfall, as can be seen in Figure 20 (b) and (c). Figure 20 (d) indicates the 

worst-case scenario (highest rate of spill) with a substantially higher number of 

splots. The resulting output had exactly the same pattern of oil—however, it had a 
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much better resolution (less grainy). It is important to mention that the model run that 

generated Figure 20 (d) also took a substantially longer time to run. 

5.5 ASSIMILATION OF SOCIAL MEDIA DATA WITH GNOME MODEL 

Now that we developed and presented a method to aggregate social media 

data, convert it into a format of latitude, longitude, timestamp triplets and plot it on 

the map, we were able to combine the HSN social media data with different forecasts 

of  the GNOME model that correlate with different variable parameters of the model. 

We picked June 8th as our comparison date and ran the GNOME model from the day 

the spill started until June 8th. For the first experiment our spill was set up at a rate of 

350k barrels per week with a representation of 1000 Lagrangian elements per week. 

Then we compared the results of different runs with the HSN data and summarized it 

in Figure 21 and Figure 22. Green stars indicate the social media data from Flickr, 

while red dots indicate the GNOME forecast of the oil spill. Figure 21 (a) shows the 

correlation of the default setting of the GNOME model with wind factor of 1% to 4%. 

Figure 21 (b) shows the correlation of HSN with the GNOME forecast set to wind 

factor of 5% to 8%, and Figure 21 (c) is for wind factor of 9% to 12%. For the second 

experiment, we kept the same date of June the 8th with 350k barrels spilling per week 

with the representation of 1000 Lagrangian Elements per week and windage of 1% to 

4%. This time we introduced diffusion into the model and altered the diffusion 

variables. Figure 22 displays the results of this experiment on a map. Figure 22 (a) 

shows no diffusion. Figure 22 (b) shows the forecast with the diffusion coefficient of 

100,000 cm2 per second and an uncertainty factor of 2. Figure 22 (c) shows the 

forecast with a diffusion coefficient of 200,000 cm2 per second and an uncertainty 
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a) April 20 - June 8, 2010 trajectory forecast - 350,000 bbl/week, 1000 Lagrangian elements 
per week with 1-4% windage and no diffusion 

 

b) April 20 - June 8, 2010 trajectory forecast - 350,000 bbl/week, 1000 Lagrangian elements 
per week with 5-8% windage and no diffusion

c) April 20 - June 8, 2010 trajectory forecast - 350,000 bbl/week, 1000 Lagrangian elements 
per week with 9-12% windage and no diffusion 

Figure 21 - Comparison of the results of different GNOME model trajectory forecasts and 
their correlation to social media data. Red dots indicate the Lagrangian elements from 
GNOME model while green stars represent social media data. We can see that depending on 
the settings of the model parameters some forecasts correlate better with social media data 
then others.
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a) April 20 - June 8, 2010 trajectory forecast - 350,000 bbl/week, 1000 Lagrangian elements 
per week with 1-4% windage 

 

b) April 20 - June 8, 2010 trajectory forecast – 350k bbl/week, 1000 Lagrangian elements per 
week with 1-4% windage, and Diffusion Coeff. of 100k cm2/sec with Uncertainty Factor of 2

c) April 20 - June 8, 2010 trajectory forecast – 350k bbl/week, 1000 Lagrangian elements per 
week with 1-4% Winds and Diffusion Coeff. of 200k cm2/sec with Uncertainty Factor of 2 

Figure 22 - Comparison of the results of different GNOME model trajectory forecasts and 
their correlation to social media data. Red dots indicate the Lagrangian elements from 
GNOME model while green stars represent social media data. We can see that depending on 
the settings of the model parameters some forecasts correlate better with social media data 
then others.
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factor of 2. Now that we have run multiple experiments and have gotten both social 

media data and GNOME forecast data in the same format, we can analyze the results 

of our experiments.  

5.6 RESULTS 

We assumed that the social media data was the ground truth and we compared  

GNOME model forecasts to that ground truth by calculating the root mean square 

error (RMS).  

 The RMS calculation was performed as following: for each point of social 

media data, we found the closest Lagrangian element point from the forecast and we 

calculated the geometric distance in kilometers. We squared each such distance, 

summed all the distances together and extracted the square root of that sum. Our 

calculations are summarized in Figure 23. The first three entries are for experiments 

with different winds and currents combinations and no diffusion. The last two entries 

assume the windage of 1% to 4% and introduce the comparison of two different 

diffusion coefficients.  

Parameters RMS Error 

Windage: 1-4 % 20.443 

Windage: 5-8 % 1.365 

Windage: 9-12% 11.499 

Diffusion: 100,000 cm2/sec 12.096 

Diffusion: 200,000 cm2/sec 5.931 

Figure 23 – This table summarizes the RMS errors between social media data and different 
runs of the GNOME model. 
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It is important to point out that a change of windage of a few percentage 

points (from 1%-4% to 5%-8%) resulted in the RMS change of an order of magnitude 

(from 20.4 to 1.3). Similar outcome is observed when diffusion is introduced. We 

have also conducted additional studies—not presented in this paper—on the size of 

the initial oil plume, in particular, a simulated hand-drawn map of the oil spill similar 

to that of the MODIS sun glint reflection on May 24, 2010, shown in Figure 24. This 

study showed increased beached oil trajectories, indicating the need for realistic 

quantitative mapping of the thickness of inferred oil spill images [47]. Currently, 

trained technicians create the NESDIS composite product by hand. Some research has 

been conducted on automating such processes using Machine-Learning techniques;

such as the work of L. Corucci on oil spill classification of multispectral satellite 

Figure 24 - Screenshot of ERMA Gulf Response mapping site displaying MODIS image of
sun-glint reflecting from the oil plume of the Deepwater Horizon disaster on May 24, 2010 as
well as NESDIS anomaly analysis composite product derived from COSMO SKYMED-2,
MODIS TERRA and RADARSAT-2 for the same date (green superimposed polygon). 
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images using Neuro-Fuzzy technique [48] and the work of D. Lary on dust source 

classification from satellite imagery using self-organizing maps [49]. 

5.7 HUMAN SENSOR NETWORKS FOR OIL SPILL DETECTION FROM 

SATELLITE IMAGERY 

During oil spill disasters, trained analysts at NOAA/NESDIS process satellite 

observations and manually integrate data from numerous sources to produce a 

polygonal map that identifies the locations of possible detected oil on the surface of 

the ocean. These polygon maps are assimilated into GNOME model. Figure 25 shows 

a NESDIS composite analysis of COSMO SKYMED-2, MODIS TERRA, 

Figure 25 - The NESDIS composite analysis of COSMO SKYMED-2, MODIS TERRA,
RADARSAT-2 as of May 24, 2010 displaying the polygon that represents anomaly in red. 
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Figure 26 - MODIS image for May 24, 2010 that shows sun-glint reflecting from the oil 
plume of the Deepwater Horizon disaster. 

 

Figure 27 – Self Organizing Map output of the MODIS image for May 24, 2010 
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RADARSAT-2 as of May 24, 2010 displaying the polygon that represents anomaly in 

red.  

We demonstrated the feasibility of an automated algorithm to detect and map 

surface oil distributions from satellite observations. We employ a Self Organizing 

Map (SOM) machine-learning algorithm. A SOM algorithm is a type of an 

unsupervised neural network that produces a low-dimensional discrete representation 

of a higher dimensional input space while preserving its topological properties [50]. 

This low order representation is called a map. It is important to distinguish this lower 

order discrete representation map, which in essence bins the data into groups by 

similarity, and the geographic map on which these data are projected.  

Once the map is created we use social media data from Flickr together with 

other ground observations to make an educated guess of which cluster represents the 

oil plume. 

 Shoreline Cleanup Assessment Technique (SCAT) program had multiple 

teams operating across the coastal zones surveying shorelines, making assessments of 

the oiling conditions and producing a consistent and standardized data collection.   

shows ERMA web tool displaying SCAT data on the map. 

Figure 26 is a MODIS image for May 24, 2010 that shows sun-glint reflecting 

from the oil plume of the Deepwater Horizon disaster. Figure 27 shows the results of 

processing MODIS data for the same date using SOM algorithm. We can clearly 

observe that SOM was very successful in picking the regions of oil slick - Figure 27 

is in very good agreement with Figure 25 and Figure 26. We also see how social 

media data, combined with SCAT data on Figure 18 and Figure 28, agrees well with 
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the results of SOM in Figure 27. The input space to the SOM was picked by trial and 

error until satisfactory map was produced. Additional research that falls beyond the 

scope of this dissertation is required to develop an approach to programmatically pick

the group from SOM that is most likely to represent the oil plume. 

In the future we plan to develop an approach for selecting the input space 

automatically. One potential approach that we plan to experiment with is use of 

genetic algorithms for automated selection of input space. 

5.8 SUMMARY 

We processed the social media data and converted it to physical observations 

that list latitude, longitude and timestamp when the oil landfall was observed. The 

latitude and longitude can be obtained in different ways depending on the source of 

the post. In the case of a tweet that was posted from a smart phone, this information is 

Figure 28 - ERMA web tool displaying SCAT data on the map 
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available in the metadata of the tweet itself, since Twitter geo-locates tweets that are 

posted from smart phones. In the case of Flickr images, some cameras, especially 

those built into smart phones, often automatically geotag the photos, and this 

information is often preserved in the metadata of the image. In the cases where the 

tweet was sent from a computer we can still get a more coarse location from the 

geolocation of the IP address of the Twitter user. Twitter provides such a coarse 

location as well. In the case where the photograph or the video was not geotagged, as 

well as in the case of most blog posts we will have to extract such information from 

the textual content such as image descriptions or reader comments. Such extraction 

can be automated using text analysis tools and named entity recognizers. In our case 

we used only the data that was already geotagged. We processed social media data 

from Flickr to be in the format of the observational geophysical data, and used it as a 

boundary condition to assess the sensitivity and agreement of time dependent 

parameters in the GNOME model with social media data. We quantified the 

differences between the forecast and the social media observations by calculating the 

RMS error. We observed that minor changes in initial conditions of the forecast 

model can lead to an order of magnitude increase in consistency with specified Flickr 

data.  

  



 

 58 

Chapter 6  

EXPERIMENTAL RESULTS USE-CASE 2:  

HUMAN SENSOR NETWORKS FOR DISASTER 

RESPONSE DURING HURRICANES 

This section presents the results of the research that was conducted at the 

Center for Hybrid Multicore Productivity Research, UMBC, that was funded by the 

National Science Foundation under the RAPID MRI award titled: “Rapid Response 

for a Human Sensor Aware Fukushima Debris Monitor and Prediction System”.  The 

contents of this section are predominantly based on the short paper that was presented 

at the 11th International Conference on Information Systems for Crisis Response and 

Management in May 2014. 

As a use-case scenario, we focus on Hurricane Sandy that devastated the East 

Coast of the United States in fall of 2012. We have collected over 8 million tweets 

and around 370 thousand Instagram images referencing hurricane Sandy. 

In this use-case scenario we use NOAA's SLOSH (Sea, Lake and Overland 

Surges from Hurricanes) model and P-Surge to provide a forecast for Hurricane 

Sandy. Due to inherent uncertainties in the weather forecasts, those models only 

present the worst-case scenario for any given hurricane. We demonstrate how the 

model forecasts and social media data, if combined in a single framework, can be 

used for near-real time forecast validation, damage assessment and disaster 

management. Geolocated and time stamped Instagram photos allow us to assess the 

surge levels at different locations, thus, not only validating the model forecasts, but 
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also giving a timely glimpse into the actual levels of the surge. Photos of flooded 

streets, cars and basements allow us to have a rough estimate of the surge level at that 

given location and time, while photos of rainy, yet not flooded scenes allow us to 

determine an upper bound beyond which the surge did not spread. Geolocated tweets 

can be used to not only monitor the emotional response of different geographic areas 

affected by the disaster, but also provide insight into the problems that different 

communities experience such as power outages, elevated crime (looting etc.), and 

refusal to evacuate. 

Figure 29 - Screenshot of SLOSH model forecast configured for the New York City basin.
Diagonal lines indicate different parallel landfall paths for which the maximum envelope of
water is computed. 



 

 60 

6.1 FORECASTING THE IMPACT OF HURRICANE SANDY 

“The Sea, Lake and Overland Surges from Hurricanes (SLOSH) model is a 

computerized numerical model developed by the National Weather Service (NWS) to 

estimate storm surge heights resulting from historical, hypothetical, or predicted 

hurricanes by taking into account the atmospheric pressure, size, forward speed, 

radius of maximum winds and track data combined with topography and bathymetry 

of a given basin. These parameters are used to create a model of the wind field which 

drives the storm surge” [51]. The main purpose of SLOSH model is to determine the 

potential surge for a given basin and use it as a basis for risk analysis and evacuation 

planning. Although there are other hurricane models such as ADCIRC, we chose 

SLOSH because it is the major model used by NHC, FEMA, NWS, NOAA and 

USACE and is also the basis for Hurricane Evacuation Studies [26], [52]. 

SLOSH model setup requires selection of a basin from a predetermined list of 

basins for which the model has the terrain and bathymetry data. Most of the data 

comes from USGS and NGDC. The model utilizes a polar coordinate system with its 

center located in the center of the basin. Such a setup has smaller grid cells (higher 

precision) on land, and larger grid cells (lower precision) out in the ocean where high 

accuracy is not necessary. As a result, the model is very robust without sacrificing the 

accuracy on land where it matters most. Figure 29 shows a screenshot of the SLOSH 

model configured for Hurricane Sandy. 

NWS ran thousands of hypothetical surge forecasts for all the basins available 

in the SLOSH model and provides precomputed MEOW and MOM results for the 

users. 
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The accuracy of the SLOSH model forecast is in the range of +/- 20% based 

on validation against historic hurricane data. This accuracy is based on the 

assumption that the exact path of the hurricane is known [26], [51], [52]. Moreover, 

SLOSH model does not take into account rainfall, wind driven waves, rivers etc. 

6.2 OVERVIEW OF THE VARIETY OF QUANTIFIABLE SOCIAL 

MEDIA OBSERVATIONS 

This subsection demonstrates several types of quantifiable social media 

observations that can be obtained from the HSN in the case of Hurricane Sandy. The 

methods that can be utilized for faster and more accurate measurements will also be 

discussed. 

One of the most significant measurements that can be extracted in near real-

time is the flood level in different locations and at different times. On Figure 30 (a) 

we observe Radcliffe Road flooded in Island Park, NY. The building in the photo is 

the public library adjacent to Francis X Hegarty Elementary School. The level of the 

water completely covers the wheels of the Toyota Camry parked by the library. We 

can conclude that the water level is around two feet. From the topography data, we 

know that the elevation at Lat/Long (40.600498199,-73.657997131) is around 9 feet 

and therefore the surge level is around 11 feet above sea level. Figure 30 (b) shows a 

screenshot of a Google Street View of the same location, which in cases when it is 

difficult to estimate the depth of water, can be used for comparison to see the area 

without the floodwaters. Additionally, there is an abundance of photos of streets in 

the rain that are not flooded, for instance, the photo on Figure 31 shows Flatbush 
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(a)  

(b)  

Figure 30 – (a) Island Park Public Library on the eve of Hurricane Sandy making landfall, 
(b) Google Street View of Island Park Public Library for comparison. 
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avenue in Brooklyn, NY at location 40.61834, -73.9325 (less then a mile away from

Jamaica Bay) that is wet from rain, but is not flooded. Such photos are of high 

importance as well because they can be used to determine the upper bound of the 

storm surge beyond which the surge did not spread. 

Another type of sensor data is the detection of power outages. Figure 32

demonstrates two tweets, one mentioning that the user lost power (a); the other one 

mentions that despite strong winds the user still has power (b). Many Instagram 

photos show candle lit rooms and have captions mentioning the power outages as 

well. Users also often tend to report when the power is restored. 

Figure 31 – Photo of Flatbush avenue in Brooklyn, NY on the morning of October 29th, 2012. 
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Figure 32 - AsonMaps showing the tweet that indicates: (a) power outage and flooding, 
(b) presence of strong winds and explicitly indicates no power outage 

 

6.3 THE USGS HIGH WATER MARKS DATASET 

In extreme cases such as Hurricane Sandy, at the request of FEMA the USGS 

deploys teams of expert scientists that survey the flooded areas. As soon as the water 

retreats and it is safe to conduct the survey, the scientists visit a list of predetermined 

sites of interest that are known to be in areas prone to flooding, and record the highest 

level of standing water. The height of water is usually determined by the sludge mark 

left on the walls of buildings. Figure 33 shows a USGS expert logging the surge level 

based on a wash line in front of the building. Figure 34 shows a screenshot of the 

USGS map indicating the locations where High Water Marks (HWM) data is 

available. The coverage of HWM is very sparse – only around 20 experts were 

deployed in New York and about the same number in New Jersey [53]. A comparison 
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of the coverage of HWM on Figure 34 to the AsonMaps coverage of HSN 

observations on Figure 38 clearly shows the overwhelming abundance of near real-

time HSN observations that can be vital for situational awareness in times of disasters 

and crises. 

6.4 VALIDATION OF HSN OBSERVATIONS AGAINST USGS HWM 

For the purpose of establishing reproducible scientific basis for validity of 

HSN measurements, there is a great value in validating the HSN observations against 

currently established observation methods such as HWM. We identified a multitude 

of coinciding HSN and HWM observations that would allow us to not only validate 

the HSN observations, but also determine with much higher resolution the levels of 

the flooding. It is important to indicate that HSN data was not only abundant along 

the coast, but also into the mainland. 

Figure 33 – Photo of the USGS expert logging the surge level at location 40.576315, -
73.859819 with elevation of 11.2 feet in Queens County, NY based on the wash line in front
of building as part of the High Water Marks effort. The height of water above ground was
determined to be at 5.4 feet. 
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Figure 35 demonstrates one such validation example where a USGS High 

Water Marks data point and a Human Sensor observation from Instagram coincide at 

the same geographic location. Figure 35 (a) shows photos of a flooded house with a 

wash line clearly seen on the wall, for site “HWM-NY-NAS-708”, which is located at

geographic coordinates of 40.59 latitude, -73.64 longitude and elevation of 9.3 feet

above sea level. The expert surveyed the location using GPS and marked the peak 

date of surge of 10/30/2012 with the height of 1.3 feet above ground. For illustrative 

purposes the field notes are attached in Appendix B. Figure 35 (b) shows an 

Instagram photo from the same geographic location showing the flooded street. 

Figure 34 – USGS map of greater New York City area marking the available High Water
Marks data points as grey diamonds, and the surge areas in blue. 
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Figure 35 - Validation example showing USGS HWM data point and HSN observation from 
Instagram coinciding geospatially. 
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6.5 RESULTS 

In this use-case scenario our research demonstrates the feasibility of the HSN 

approach in using those observations for early validation of the surge model forecasts.  

We have applied the proposed principles to the Hurricane Sandy disaster and were 

able to identify from the HSN observations not only the geographic regions that were 

flooded with a rough estimate of the water levels, but also the regions that did not get 

flooded. The photos with flooded streets are used to estimate the flood level, and the 

photos of streets that are wet from rain but not flooded are used to determine the 

upper bound beyond which the surge did not spread. Given the topography data of the 

observed location, we can determine the elevation at which the given flood 

observation occurred and extrapolate it to the neighboring vicinity of other areas of 

the same elevation. 

Figure 36 - Google Earth 3D visualization of the SLOSH model forecast for the Lower East
Side of Manhattan. 
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SLOSH forecasts are coarse and inherently imprecise because of the limitation 

of the grid cell size and because the forecast gives the worst-case scenario for each 

grid cell. We were able to compare our observations with the SLOSH model forecast, 

validate the forecast, and attain higher accuracy of flood levels not possible in 

SLOSH due to the coarse grid level. Figure 36 shows visualization of the SLOSH 

surge forecast for The Lower East Side of Manhattan in Google Earth. The yellow 

color corresponds to a surge level of about 6 feet; however, it is clear that several 

street blocks fall within the same grid point forecast. Figure 37 shows another 3D 

example of a SLOSH model forecast visualization on Google Earth. Here it is clearly 

visible that multiple city blocks in Staten Island, NY are covered under a single grid 

point of the forecast. 

Figure 37 - Google Earth 3D visualization of the SLOSH model forecast around Staten
Island, NY 



 

 70 

Chapter 7  

VIRTUAL SOCIAL MEDIA OBSERVATORY 

FOR DISASTERS 

For the purpose of testing the initial formulation of a transformational rapid 

response to disasters, we developed major components that will eventually lead to a 

situationally aware Virtual Social Media Observatory for Disasters. The purpose of 

this observatory is to detect and apply web based information to assist the impacted, 

as well as to provide responders with more effective information in response to 

extreme events occurring anywhere in the world. These tools facilitate harvesting of 

real-time Human Sensor Network observations and generate Disaster Maps that are 

able to visualize massive amounts of social media data from heterogeneous sources of 

both text and images. We have also developed the tools to extract quantifiable 

observations at resolutions down to the street and house level to assess the damage 

from disasters and locate people in distress. 

7.1 ASONMAPS PLATFORM 

One of the major components of the Virtual Social Media Observatory for 

Disasters is AsonMaps. AsonMaps platform consists of a web application front end, 

and a storage, indexing and geophysical model augmentation back end. The front end 

provides tools to search, subset, and mark-up social media data and to select the 

geophysical model forecasts of interest. The results are visualized on a Google Maps 

map displaying street level satellite imagery, social media observations, and 

geophysical model forecasts. Figure 38 shows a screenshot of AsonMaps platform set 
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up for Hurricane Sandy use-case scenario. AsonMaps has the capability to simulate 

the timeline of a disaster for the purpose of learning in retrospect by animating the 

social media posts as the disaster progresses. 

In order to keep up with the fast stream of live tweets and store them in a 

flexible format for a variety of future applications we used a 6-node BigCouch

cluster. BigCouch is a distributed, scalable implementation of CouchDB. CouchDB is 

a NoSQL, schema-less key-value database that uses RESTful interface and stores data 

as JSON objects. There are many reasons why BigCouch was determined to be the 

best fit for AsonMaps Platform. Some of the major factors are its ability to handle 

large volume of write operations that is useful in cases of extreme disasters when 

there is a very high volume of social media activity that needs to be harvested in real 

time. The very low memory and processor overhead for write operations allows other 

software, such as ElasticSearch, to run concurrently on the same cluster. BigCouch 

Figure 38 - Screenshot of AsonMaps platform centered on the greater New York City area.
The overlay indicates different surge heights in different colors. Geolocated tweets are
marked with a blue bird icon and Instagram images with a camera icon. 
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also implements a feature called “_changes” that makes newly added data instantly 

available for access. 

In order to interpret our data we needed an efficient method of searching and 

sub-setting it along multiple dimensions. For this task we deployed ElasticSearch on 

the 6-node cluster. ElasticSearch is a RESTful, distributed search engine based in its 

core on Apache Lucene text indexing library. The benefit of ElasticSearch in our 

project is that it is a scalable, standalone engine that can be easily incorporated with 

other components. Although less popular and less established then Solr, ElasticSearch 

has some features that make it a much more desirable choice for the AsonMaps 

platform. ElasticSearch employs the concept of “rivers” which are special plugins that 

facilitate ElasticSearch to pull data from different sources to be indexed. There is a 

river for CouchDB that has a capability of following the _changes log of the 

BigCouch database, thus continuously providing an up-to-date index of the social 

media data as it arrives without needing to rebuild the index. Such a combination 

facilitates the AsonMaps platform to provide a near real-time capability of viewing 

and analyzing the social media data in cases of disasters when timely situational 

Figure 39 - AsonMaps platform diagram 
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awareness is crucial for emergency response tasks. Figure 39 shows a conceptual 

diagram of the AsonMaps platform. 

 The 6-node cluster is part of the IBM iDataPlex system at CHMPR / UMBC 

that was donated by NASA under the Stevenson-Wydler Congressional Act. Each 

node is a dual processor, quad core Intel XEON 2.8GHz with 24GB of RAM and 250 

GB of local storage interconnected via the InfiniBand switch. Such a setup facilitates 

robust future expansion of AsonMaps when new sources of social media data and 

new geophysical models get integrated. 

 For illustrative purposes of storage needs, in the use-case of Hurricane Sandy, 

the 8 million-tweet dataset occupies 62 GB of storage, and the 370k Instagram photos 

occupy around 24 GB of storage with an additional 1.2 GB for the metadata. Some 

details of data storage, retention, preservation of access, and terms of service of 

different data providers are discussed in Appendix C, titled Data Management Plan. 

7.2 ASONMAPS IN OPERATOR MODE 

We developed a special mode of operation of AsonMaps that allows an 

emergency response operator to browse through a subset of geolocated social media 

posts and mark-up posts of interest with operator generated metadata that categorizes 

the post to belong to a criteria of interest and allows for quicker subsequent recall. For 

example, Figure 40 (a) shows an Instagram photo of empty shelves in the bread aisle 

at a grocery store with a description stating, “I guess I won’t be buying bread 

today…” Such a photo is indicative of a food shortage in a given location at a given 

time and can be marked-up to belong to a “food shortage” category. Multiple such  
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(a)  

(b)  

Figure 40 – AsonMaps in Operator Mode. (a) Example of food shortage; (b) Example of 
flooding with an option of specifying the depth in feet; 
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posts can be useful for those emergency responders that manage the food supply 

during disasters. 

 Figure 40 (b) shows an Instagram photo of a flooded street that in the 

Operator Mode can be marked-up as such, together with the estimated level of water 

in feet. 

The mark-up categories are flexible and can be easily added or edited based 

on the disaster at hand. Such a setup potentially makes AsonMaps flexible to be used 

during disasters that are unprecedented. Appendix D shows additional Instagram 

photos of interest. 

7.3 LIMITATIONS OF ASONMAPS 

To give an objective review of AsonMaps, this section will list non-

exhaustively some of the limitations of the platform in its present state. 

One of the major limitations is that at present no pixel level information is 

taken into account when indexing and displaying the Instagram observations. Once 

the photo is placed on the map and the emergency responder views it, the pixel level 

information is used in the decision to mark up the photo as important or use it as 

observation. The system also lacks a means of validating the correctness of the 

photo’s geolocation information or distinguishing between the location where the 

photo was taken from the location where the photo was uploaded and shared. 

 Although the academic community is actively researching methods of 

detecting fake, fabricated images posted on social media platforms, our system 

currently does not employ any such methods. 
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Chapter 8  

CONCLUSIONS 

This dissertation reports our findings in researching systematic ways of 

extracting quantifiable information from social media sources and incorporating it 

into a variety of geophysical models. The Introduction chapter explained the 

significance, urgency and societal benefits that would potentially result from our 

findings.  

This doctorate research contributes to the field of Computer Science in the 

area of data mining of Web 2.0 and beyond by providing scientific knowledge, 

methodology and algorithms to harvest and represent social media data as sensor 

observations that allow for the incorporation of these data into a variety of 

geophysical models. 

We have developed the tools to harvest real-time observations from social 

media and generate Disaster Maps that are able to collect massive amounts of data 

from heterogeneous social media sources of both text and images. We have also 

developed the APIs and tools to map these data and extract quantifiable observations 

that can be used to generate maps at resolutions down to the street and house level to 

assess the damage from disasters and people in distress. 

We coupled these observations with model predictions to correlate observable 

information with model-based forecasts. Massive quantities of social media data 

require Big Data solutions for harvesting, storage, and analysis reporting. For this 

task we used a high performance iDataPlex compute cluster. We used a Map Reduce 

based BigCouch distributed database to aggregate the data, and ElasticSearch cluster 
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to index the data for rapid querying. As a result we were able to process millions of  

social media observations. 

We developed major components that will eventually lead to a situation aware 

Virtual Social Media Observatory for Disasters, one of the major components of 

which is AsonMaps. AsonMaps is a beneficial platform that has applications in 

multiple aspects of disaster management. Before a disaster hits, AsonMaps can be 

used to monitor the public response to the evacuation requests and other preparation 

actions. During hurricanes, AsonMaps provides a near real-time impact assessment, 

and following the event can provide micro-scale geographic evidence of the disaster 

impact. The AsonMaps Platform can also be used as a simulator for disaster response 

training by replaying the social media observations as if they were happening in real 

time. 

 Using the AsonMaps platform in the case of Hurricane Sandy, we were able to 

identify the geographic regions that were flooded and provide a rough estimate of the 

surge levels as well as determine the flood free regions from the photos of streets that 

were wet from rain, but not flooded. Given the topography data of the observed 

location, we determined the elevation at which the given flood occurred and 

extrapolated it to the neighboring vicinity of other areas of the same elevation. Using 

the animation mode of the AsonMaps platform we were able to simulate the timeline 

of a disaster and learn how SM posts trace the disaster impact and correlate with the 

model forecasts. We demonstrated an actual use-case of HSN observations in 

operational disaster forecast models and presented time sensitive data that can be 

invaluable for disaster response. 
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What was critical in the use of social media data in this use case scenario was 

the fact that the data possessed geolocated information both visual in terms of photos 

and in natural language content. Although social media sources are rapidly evolving, 

more and more quantitative information is becoming available from handheld and 

wearable devices and other social media platforms for physical modeling. The 

challenge will be in the validation of the quality and reliability of these observations. 

We demonstrated actual use of Human Sensor Network observations in 

operational disaster forecast models and presented time sensitive data that can be 

invaluable for disaster response. 

We processed social media data from Flickr to be in the format of the 

observational geophysical data, and used it as a boundary condition to assess the 

sensitivity and agreement of time dependent parameters in the GNOME model with 

social media data. We quantified the differences between the forecast and the social 

media observations by calculating the RMS error. We observed that minor changes in 

initial conditions of the forecast model can lead to an order of magnitude increase in 

consistency with specified Flickr data. 

 We collected several unique datasets of social media data as well as 

geophysical and observational data for several disasters, such as Tweets, Instagram 

photos, USGS High Water Marks, SLOSH forecasts etc. from Hurricane Sandy; 

Tweets from Typhoon Haiyan; Flickr photos from the Deepwater Horizon oil spill, 

that can be a valuable resource for future studies in this fast-growing area of research. 
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Chapter 9  

FUTURE WORK 

In the future we plan to conduct a comparative study of the datasets from 

Typhoon Haiyan and Hurricane Sandy and present insights into the similarities and 

differences of social media reports of similar in nature disasters that affect vastly 

different types of populations (rural vs. urban etc.). 

We plan to expand our framework to be able to integrate it with Amazon 

Mechanical Turk in order to crowdsource the labeling task. We intend to create a 

feature that would allow us to rapidly create the labeling guidelines, select the 

candidate labeling subset of the data, and post the labeling task on Amazon 

Mechanical Turk. 

We also plan to expand our platform to include many other geophysical 

models that can benefit from augmentation of Human Sensor Network data. Currently 

we are working on adding the General Operational Modeling Environment and the 

Hybrid Single Particle Lagrangian Integrated Trajectory Model. 

In our current work we assumed that the geolocation information of Instagram 

photos obtained from the metadata is the actual location of where the photo was 

taken. However this is not always true. Additionally, only a small percentage of all 

the photos had geolocation associated with them. We also have not addressed the 

means of conducting analysis of the photos themselves on a pixel-by-pixel basis. In 

our future work, we plan on expanding the capabilities of AsonMaps to be able to 

provide analytical tools capable of using the pixel level data of the photos as well. We 

will do so by utilizing the capabilities of LIRE library. LIRE (Lucene Image 
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Retrieval) is an open source Java library for Lucene that has the capability of 

indexing images and finding images that appear similar visually [54], [55]. Since 

AsonMaps relies on ElasticSearch, we will add a Content Based Image Retrieval 

Plugin for ElasticSearch called “ElasticSearch-Image” that in its core is based on the 

LIRE library. Using such an implementation, we will explore the possibility of 

aggregating a large reference dataset of geo-referenced street level imagery from 

Google Street View and using it to geolocate those Instagram photos for which the 

location was not provided by the API. Those Instagram photos for which the 

geolocation was available in the metadata will be used to validate our approach. 

The situational awareness of our Virtual Social Media Observatory for 

Disasters can greatly benefit from a crowdsourcing service such as MobiQ because it 

will provide the means for emergency responders to ask users to upload photos and 

report on the situation at hand. If such a service appears on Twitter or Instagram it 

will be a very desirable candidate for incorporation into the AsonMaps platform. 

In the future we intend to finalize the experiments of detecting oil plumes 

from satellite imagery using self-organizing maps and social media observations. 

Currently, the input space to the SOM is picked by trial and error until a satisfactory 

map is produced. In the future we plan to develop an approach for selecting the input 

space automatically, possibly by utilizing genetic algorithms. 

In the Deepwater Horizon oil spill study we demonstrated how changes in 

model parameters result in order of magnitude improvements of the forecast 

accuracy. However, the parameters were arbitrarily modified from their default 

settings to demonstrate the proof of concept. In future studies we intend to employ a 
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more systematic approach, such as gradient descent, to figure out which parameters to 

modify for subsequent model runs. Additionally, we plan on exploring methods of 

combining HSN observations with conventional sensor observations by using data 

assimilation. There are several well-known data assimilation techniques that could 

potentially be applied to HSN. One such technique is discussed in Appendix A. 
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Appendix A 

DATA ASSIMILATION 

In earth sciences such as meteorology, oceanography and hydrology we often 

want to determine as best we can the current state of the underlying geophysical 

system and predict what the state of the system will be in the near future, a.k.a. 

forecast. If the system is deterministic, such as a weather system, the better our guess 

of the current state of the system, the better our forecast of the future state of the 

system will be [56]. 

Difficulties arise due to the limitations that we have in our measurements as 

well as the underlying geophysical model that describes the real-life system. Our 

measurements have uncertainties due to such factors as the inherent nature of the 

sensor, the environment in which the sensor is positioned (for instance remote 

sensing) and the precision of the sensor. In addition to those uncertainties, our 

underlying physical model also has multiple sources of parameter uncertainties such 

as the uncertainty due to the grid that we choose to use, the accuracy of our 

computations, or due to the nature of the model itself. In addition to uncertainty, it is 

infeasible to gather enough observations to better determine the initial state of our 

model. A commonly used approach to address such a limitation is to derive initial 

conditions of the model by using statistical combination of observations and short-

range forecasts [56]. “Using all available information to determine as accurately as 

possible the state of the atmospheric (or oceanic) flow” is known as data assimilation 

[57]. In a broader sense, data assimilation is the combination of observational data 

with the underlying dynamical principles governing the system under observation. 
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Data assimilation carries on by analysis runs or cycles. Each cycle essentially 

balances the uncertainty in the data and the forecast, and, as a result, produces an 

analysis that is considered the best estimate of the current state of the system. Each 

cycle combines the current and the past observations with the underlying numerical 

model of the system and produces a new state called “analysis”. In the next cycle the 

model is advanced in time and this newly produced analysis becomes the forecast part 

of the input into the data assimilation system to produce the next analysis for the next 

time step. 

2-Dimensional Variational Data Assimilation is a particular data assimilation 

approach that, in its core, is based on the concept of adjusting the initial conditions of 

the underlying mathematical model instead of the final analysis. In a simplified 2-

Dimensional variational data assimilation, a time window of a certain length is 

chosen from which the observations are ingested. In the simplified 2-DVAR 

assimilation, the optimal state of the system is found via minimization of a certain 

cost function J that is defined as: 

 

where:  

x is the predicted model state 

xb is the a-priori (background) model state 

B is the background error covariance matrix 

y the observed variables 

H a non-linear observation operator, which projects the model state in the observation 

space 
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R is the observation error covariance matrix. 

Generally the observation operator H is non-linear and therefore J has to be 

found through an iterative process, however in our case of a simplified 2D-VAR we 

assume that H is linearizable, thus we can calculate the Jacobian through perturbation 

δx of state x: 

 

where: 

δy is the change in the observation variable y, due to the perturbation of the model 

state x.  

 

Thus T analyzed state xa is: 

 

 

where K is the gain matrix such that: 

 

[58], [59]. 
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Appendix B 

HIGH WATER MARKS FIELD FORM EXAMPLE 
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Appendix C 

DATA MANAGEMENT PLAN 

 

The source code for the front-end of the AsonMaps platform is hosted on 

Google Project Hosting site and is available to the public as a read-only download at 

the following address: https://code.google.com/p/asonmaps/ 

Twitter data and Instagram metadata are stored in a 6-node BigCouch 

distributed cluster on BlueWave (part of the iDataPlex system at CHMPR / UMBC). 

The actual photos from Instagram are stored on the NFS drive on Bluegrit. 

The data is bound by the Twitter Terms of Service and Instagram Terms of 

Use agreements respectively, and due to those agreements’ strict limitations are 

currently not allowed to be redistributed, shared or made otherwise publicly available. 

However, if in the future Instagram or Twitter will change their terms, the data will 

be made available in compliance with those terms. The current terms of use can be 

found at the following links: 

https://twitter.com/tos 

https://dev.twitter.com/terms/api-terms 

http://instagram.com/about/legal/terms/api/ 

The CHMPR center expects the NSF IUCRC phase 2 extension for another 5 years 

and this data will be available internally for future research for at least the duration of 

the current NSF extension of the CHMPR center. 
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Appendix D 

INSTAGRAM PHOTOS OF INTEREST 
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GLOSSARY 

ADCIRC –  ADvanced CIRculation Model 
AIRS –  Atmospheric Infrared Sounder 
API –   Application Programming Interface 
CCC –  Computing Community Consortium 
CERA –  Coastal Emergency Risks Assessment 
CHMPR –  Center for Hybrid Multicore Productivity Research 
CISE –  Computer and Information Science Engineering 
COSMO -  Constellation of small Satellites for the Mediterranean basin 

Observation 
EOS -   Earth Observing System 
ERD -   Emergency Response Division 
ERMA -  Environmental Response Management Application 
EXIF -  Exchangeable Image File format 
FEMA -  Federal Emergency Management Agency 
GNOME -  General NOAA Operational Modeling Environment 
GPS -   Global Positioning System 
HSN -   Human Sensor Networks 
HWM -  High Water Marks 
HYSPLIT -  Hybrid Single Particle Lagrangian Integrated Trajectory Model 
JSON -  JavaScript Object Notation 
LANCE -  Land Atmosphere Near real-time Capability for EOS 
LIRE -  Lucene Image REtrieval 
LITMUS -  Landslide Detection by Integrating Multiple Sources 
MEOW -  Maximum Envelope of Water 
MLS -   Microwave Limb Sounder 
MODIS -  Moderate-resolution Imaging Spectroradiometer 
MOM -  Maximum of Maximums 
MRI -   Major Research Instrumentation 
NASA -  National Aeronautics and Space Administration 
NCDC -  National Climatic Data Center 
NCEP -  National Centers for Environmental Prediction 
NESDIS -  National Environmental Satellite, Data, and Information Service 
NGDC -  National Geophysical Data Center 
NHC -   National Hurricane Center 
NLP -   Natural Language Processing 
NOAA -  National Oceanic and Atmospheric Administration 
NOS -   National Ocean Service 
NSF -   National Science Foundation 
NWS -  National Weather Service 
OR&R -  Office of Response and Restoration 
REST -  Representational State Transfer 
ROMS -  Regional Ocean Modeling System 
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RSS -   Rich Site Summary 
SCAT -  Shoreline Cleanup and Assessment Technique 
SCRUM -  S-Coordinates Rutgers University Model 
SLOSH -  Sea, Lake, and Overland Surges from Hurricanes 
SMS -   Short Message Service 
SOM -  Self-Organizing Map 
TED -   Twitter Earthquake Detector 
TGLO -  Texas General Land Office 
UMBC -  University of Maryland Baltimore County 
USGS -  United States Geological Survey 
XML -  Extensible Markup Language 
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