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Abstract

Primitive Model Simulations and

Mean-Field Studies of

Electric Double Layers

by

Brian Giera

When a charged surface, such as an electrode, colloid, or protein, is submerged into an

ionic fluid, ions within the electrolyte rearrange into electric double layers (EDLs) that

electrostatically screen the interfacial charge. The temperature, absolute permittivity,

bulk electrolyte concentration, and ion valence dictate the EDL thickness O(1� 100nm)

over which the applied potential, due to the surface charge, drops. The electrostatic

potential and ion distributions within EDLs have long been described by mean-field local-

density approximations (LDAs) that assume flat electrodes, uncorrelated ions, and bulk

forms for the chemical potential. LDAs model many-body interactions within electrolytes

using e↵ective fields, and, in the case of Gouy-Chapman theory, assume point-sized ions

in a continuum solvent. Despite its restrictive assumptions, the LDA approach continues

to remain in heavy use for over a century because it is simple, yet qualitatively captures

important aspects of EDLs. Nevertheless, a conclusive framework for understanding the

behavior and limitations of these widely used class of models remains to be drawn.

The objective of this work is to elucidate LDA failure mechanisms and supplement or
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supplant mean-field treatments of electrochemical systems that fail to capture correlated

behavior. In particular, we develop an exceedingly general method, which requires no

a priori model and identifies whether EDLs in a given electrolyte can obey a LDA, or

whether more advanced approaches (e.g. integro-di↵erential equations, atomistic simula-

tions, etc.) are required, irrespective of the source of LDA breakdown. This “model-free”

approach uses empirical or simulated data to directly determine whether any LDA can

possibly describe measured EDL profiles.

We demonstrate this model-free test with the Primitive Model using extensive molec-

ular dynamics simulations of EDLs with explicitly treated ion interactions in which LDAs

are by no means guaranteed to work. We combine continuum-level theoretical studies

with complementary simulations in order to bridge the molecular and continuum de-

scriptions of excluded volume e↵ects within EDLs. We critically assess the accuracy of

LDA models of implicit solvent electrolytes with equal and di↵erently sized ions. We also

pose a novel LDA model that seeks to address solvation, polarizability, and finite-size

interactions present in actual and simulated EDLs with explicit solvent.
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ñ

± Dimensionless density of cations or anions . . . . . . . . . . . . 7
⇢ Free charge density of ions . . . . . . . . . . . . . . . . . . . . 7
q

+ Cation valence . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
n

+ Cation density . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xvi



q

� Anion valence . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
n

� Anion density . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
⇢̃LDA Dimensionless local-density approximation for

free charge density of ions . . . . . . . . . . . . . . . . . . . . . 7
⇢LDA Local-density approximation for free charge density

of ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
I Ionic strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
q

± Valence of cations or anions . . . . . . . . . . . . . . . . . . . . 7
q Valence of cations or anions . . . . . . . . . . . . . . . . . . . . 7
n

±
B Bulk density of cations or anions . . . . . . . . . . . . . . . . . 8

nB Bulk density of cations or anions . . . . . . . . . . . . . . . . . 8
µ

±
B Bulk chemical potential of cations or anions . . . . . . . . . . . 8

µB Bulk chemical potential of cations or anions . . . . . . . . . . . 8
�D Debye ‘screening’ length . . . . . . . . . . . . . . . . . . . . . . 8
⇢̃ Dimensionless free charge density of ions . . . . . . . . . . . . 8
�B Bjerrum length . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
" Absolute permittivity . . . . . . . . . . . . . . . . . . . . . . . 8
kBT Thermal energy . . . . . . . . . . . . . . . . . . . . . . . . . . 8
µ̃

±
LDA Dimensionless local-density approximation

for the total chemical potential of cations or anions . . . . . . 8
⌃ Electrode surface charge density . . . . . . . . . . . . . . . . . 8
⌃ref Characteristic surface charge density . . . . . . . . . . . . . . . 8
µ̃

+
ex Dimensionless excess chemical potential of cations . . . . . . . 9

µ̃

�
ex Dimensionless excess chemical potential of anions . . . . . . . . 9

⌃̃LDA Dimensionless local-density approximation for the
surface charge density . . . . . . . . . . . . . . . . . . . . . . . 9

�̃0 Dimensionless electrostatic surface potential . . . . . . . . . . . 9
z̃B Dimensionless location in the bulk . . . . . . . . . . . . . . . . 9
�̃B Dimensionless electrostatic bulk potential . . . . . . . . . . . . 9
µw(z) Non-local excess chemical potential accounting

for wall-ion interactions . . . . . . . . . . . . . . . . . . . . . . 9
z Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
µ̃

±
GC Dimensionless Gouy-Chapman local-density

approximation for the total chemical potential
of cations or anions . . . . . . . . . . . . . . . . . . . . . . . . 10

⌃̃GC Dimensionless Gouy-Chapman local-density
approximation for the surface charge density . . . . . . . . . . 10

⇢̃DH Dimensionless Debye-Hückel local-density
approximation for the free charge density . . . . . . . . . . . . 10

�̃DH Dimensionless Debye-Hückel local-density
approximation for the electrostatic potential . . . . . . . . . . 10

⌃̃DH Dimensionless Debye-Hückel local-density
approximation for the surface charge density . . . . . . . . . . 10

�B Bulk volume fraction of ions . . . . . . . . . . . . . . . . . . . 11
� Ion diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xvii



� Volume fraction of ions . . . . . . . . . . . . . . . . . . . . . . 11
�Bik Bikerman local-density approximation for the

volume fraction ions . . . . . . . . . . . . . . . . . . . . . . . . 11
µ

±
Bik,ex Bikerman local-density approximation for the

excess chemical potential of cations or anions . . . . . . . . . . 11
µ̃

±
Bik Dimensionless Bikerman local-density

approximation for the total chemical potential
of cations or anions . . . . . . . . . . . . . . . . . . . . . . . . 12

⌃̃Bik Dimensionless Bikerman local-density approximation of the sur-
face charge density . . . . . . . . . . . . . . . . . . . . . . . . . 12

µ

±
CS,ex Carnahan-Starling local-density approximation for

the excess chemical potential of cations or anions . . . . . . . . 12
µ̃

±
CS Dimensionless Carnahan-Starling local-density

approximation for the total chemical potential
of cations or anions . . . . . . . . . . . . . . . . . . . . . . . . 12

⇢̃CS Dimensionless Carnahan-Starling local-density
approximation for the free charge density of ions . . . . . . . . 13

µ̃

+
CS Dimensionless Carnahan-Starling local-density

approximation for the total chemical potential
of cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

µ̃

�
CS Dimensionless Carnahan-Starling local-density

approximation for the total chemical potential
of anions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

µ

i Total chemical potential of an ion of type i . . . . . . . . . . . 14
Q Canonical partition function . . . . . . . . . . . . . . . . . . . 14
N

i Number of ions of type i . . . . . . . . . . . . . . . . . . . . . 14
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Ũ

±
w Dimensionless wall potential for the cathode or anode . . . . . 16

✏w Wall energy parameter . . . . . . . . . . . . . . . . . . . . . . 16
� Dimensionless group that defines the relative strength between

the excluded volume and electrostatic
attraction of the electrode . . . . . . . . . . . . . . . . . . . . . 17

n� Density of anions . . . . . . . . . . . . . . . . . . . . . . . . . 19
n� Density of cations . . . . . . . . . . . . . . . . . . . . . . . . . 19
n

B Bulk ion density . . . . . . . . . . . . . . . . . . . . . . . . . . 19
n

B
+ Bulk cation density . . . . . . . . . . . . . . . . . . . . . . . . 19

n

B
� Bulk anion density . . . . . . . . . . . . . . . . . . . . . . . . . 19

µ

ex
± (ni) Local-density approximation for the excess chemical potential

of cations or anions . . . . . . . . . . . . . . . . . . . . . . . . 20
µ

wall
± (z) Non-local excess chemical potential accounting

for wall-cation or wall-anion interactions . . . . . . . . . . . . . 20
µ

ex
± Excess chemical potential of cations or anions . . . . . . . . . . 21

�z Relative change distance from an electrode . . . . . . . . . . . 22
⌃e↵ E↵ective charge density some distance from an electrode . . . . 22
�⌃ Relative change in e↵ective charge density . . . . . . . . . . . . 22
⇢(0,⌃) Free charge density at the electrode or “contact value” . . . . . 23
S(z,⌃; ...) Similarity variable or similarity coordinate . . . . . . . . . . . 24
S Similarity variable or similarity coordinate . . . . . . . . . . . 24
⇢̃DH(0, ⌃̃) Debye-Hückel local-density approximation

for the contact value . . . . . . . . . . . . . . . . . . . . . . . . 24
SDH Debye-Hückel local-density approximation similarity coordinate 24
⇢̃GC(0, ⌃̃) Gouy-Chapman local-density approximation for the contact value 25
SGC Gouy-Chapman local-density approximation

similarity coordinate . . . . . . . . . . . . . . . . . . . . . . . . 25
�̃

0 Dimensionless electrostatic surface potential . . . . . . . . . . . 26
�

0 Electrostatic surface potential . . . . . . . . . . . . . . . . . . 26
�B Bulk volume fraction of ions . . . . . . . . . . . . . . . . . . . 26
µ

ex
CS Carnahan-Starling local-density approximation for the excess

chemical potential of cations or anions . . . . . . . . . . . . . . 26
� E↵ective hard-sphere diameter for a Weeks-Chandler-Andersen

particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
�WCA Diameter of a Weeks-Chandler-Andersen particle . . . . . . . . 26
µ̃i Dimensionless local-density approximation

for the total chemical potential of an ion of type i . . . . . . . 27

xix
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Chapter I

Introduction

I.1 Organization of the Dissertation

Chapter I introduces electric double layers (EDLs) and the range of disciplines and

technologies involving EDLs that underscore their broad importance. We motivate our

pursuit of a better understanding of two prevalent modeling approaches used to describe

EDLs: mean-field local-density approximations (LDAs) and Primitive Model simulations.

In Chapter II, we present a model-free test that specifically identifies whether an EDL

in a given electrolyte obeys a LDA, or whether a more advanced approach (e.g. integro-

di↵erential equations, atomistic simulations, etc.) is required, irrespective of the source

of LDA breakdown. In Chapter III, we explore LDA breakdown mechanisms with com-

plementary Primitive Model simulations by focusing on the simplest, non-trivial class of

electrolytes: equi-sized ions of equal and opposite valence in a homogeneous, implicit sol-

vent. In Chapter IV, we investigate electrolytes comprised of di↵erently-sized and discuss

the limitations of implicit solvent electrolyte models. Finally, Chapter V summarizes the
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main results of the dissertation an provides future research directions to investigate EDL

models that explicitly account for the solvent.

I.2 Motivation and Applications

Nanoscale electric double layers (EDLs) form at all interfaces between charged sur-

faces (including electrodes [Israelachvili, 1992], colloids [Quesada-Pérez et al., 2003],

proteins [Grochowski and Trylska, 2007], and cell membranes [Andelman, 1995]) and

electrolytes [Luo et al., 2006] or ionic liquids [Kornyshev, 2007]. The EDL is the excess

concentration of ions that forms due to the competition between electrostatic attraction

of oppositely-charged counter-ions towards the interface, and osmotic repulsion down

resulting concentration gradients. Detailed ion density profiles are experimentally ac-

cessible for a variety of EDL systems [Fedorov and Kornyshev, 2014], e.g. from x-ray

reflectivity measurements of liquid-liquid interfaces [Luo et al., 2006] and Langmuir mono-

layers [Shapovalov and Brezesinski, 2006, Shapovalov et al., 2007], or neutron scattering

of colloidal clay systems [Williams et al., 1998]. EDLs play a central role in colloidal sus-

pensions [Russel et al., 1989, Hansen and Lowen, 2000], polyelectrolytes [Vlachy, 1999],

micro- and nanofluidics [Schoch et al., 2008, Van Der Heyden et al., 2006], and in electric

double layer capacitors (EDLCs, or supercapacitors) [Conway, 1999, Simon and Gogotsi,

2008] that store energy electrochemically across the EDL. The EDL structure governs

di↵erential capacitance [Fedorov and Kornyshev, 2008], electrokinetic flow [Squires and

Bazant, 2004, Netz, 2003, Van Der Heyden et al., 2005], surface conductivity [Messinger

and Squires, 2010, Deryagin and Dukhin, 1969], capacitive desalination [Biesheuvel and
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Bazant, 2010, Rica et al., 2012, Zhao et al., 2012], and rational design of EDLCs [Largeot

et al., 2008a, Simon and Gogotsi, 2010].

Electric double layer capacitors are environmentally friendly energy storage devices

that are used to regulate power supply to unbalanced electrical grids, recapture the brak-

ing energy of light rail cars, busses, and elevators, and store intermittent energy from

solar, wind, or tidal energy sources [DOE, 2007]. An EDLC functions similarly to a

parallel plate capacitor in which an applied voltage drives charge separation to electro-

chemically store energy. In a conventional capacitor, high surface area plates separated

by a thin dielectric result in large capacitances. EDLCs, therefore, o↵er tremendous

capacitances as charge separation occurs at the interface of high surface area electrodes

across O(1 � 100) nm EDLs. An EDLC is comprised of two conducting electrodes that

enclose an ionic fluid as shown in Figure I.1. EDLC electrodes are predominately made

of porous carbon because of its controllable surface-area range of 1000 - 2000 m2/g, high

electrical conductivity, good corrosion resistance, wide temperature stability window, as

well as low cost [Pandolfo and Hollenkamp, 2006, Simon and Gogotsi, 2008].

The potential dropped across the double layer �� and capacitance C of an EDLC

determines the amount of stored energy

Ustored =
1

2
C(��)2. (I.2.1)

The electrical stability window of the ionic fluid determines the maximum voltage an

EDLC can withstand. The breakdown voltage of aqueous and organic electrolytes typi-

cally is 0.9 and 2.5-2.7 volts, respectively [Simon and Gogotsi, 2008]. Ionic liquids (ILs)

are solvent-free mixtures of ions that act as molten salts below 100 °C [Welton, 1999].

3



Porous
Electrode

Cation
Separator

Solvated Anion Current
Collector

EDLC

Figure I.1: Schematic of a charged electric double layer capacitor (EDLC) adapted
from [Ed-China, 2010, Ultracapacitor, 2010]. EDLCs are comprised of high surface area
porous electrodes immersed in an ionic fluid made up of cations, anions, and possibly
solvent. An external potential di↵erence and/or net charge density on the electrode
causes ions to rearrange into nanoscale charge-screening EDLs that balance the interfa-
cial charge. The ion-permeable separator prevents electrical contact between electrodes.

Certain ILs are electrochemically stable beyond 4 volts [Simon and Gogotsi, 2008] and

are used in commercially available EDLCs [Lewandowski and Galiski, 2004, Sato et al.,

2004, Tsuda and Hussey, 2007, Balducci et al., 2007]. However, ILs generally have low

conductivity (<5 mS/cm) at room temperature [Hapiot and Lagrost, 2008], which limits

their use to high temperature (>60 °C) applications such as breaking energy recovery

in hybrid electric vehicles [Balducci et al., 2007]. To increase energy storage, the pores

of modern EDLCs electrodes are engineered to be roughly the same size as the solvated

and/or bare ions by using various carbon precursors and di↵erent synthesis techniques [Si-

mon and Gogotsi, 2008]. Though it is not fully understood, large increases in capacitance

arise as ions partially or fully desolvate [Chmiola et al., 2006, Lin et al., 2009] or as bare

IL ions become confined [Largeot et al., 2008b] as they enter a charged pore of similar

size. It is suspected that a distorted solvation shell allows for closer approach of the bare

ion to the electrode, which may lead to improved capacitance [Chmiola et al., 2006].
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Models and simulations have been developed to interpret and predict EDL structure

and capacitance. Many simple approaches remain popular because they are relatively

easy to use while still capturing many features of EDLs. The most widely-used approach

to modeling EDLs are local-density approximations (LDAs) [Bazant et al., 2009, Gouy,

1910] that assume bulk-like mean-field ion interactions and neglect ion ordering. As such,

LDA predictions inherently neglect non-local correlations and often fail when describing

EDLs in experimentally relevant regimes [Israelachvili, 1992, Russel et al., 1989], e.g.

highly packed regions near strongly charged electrodes. Despite their well-known failure

mechanisms, LDA models have been proposed to treat short-ranged enthalpic [Caprio

et al., 2004, Grochowski and Trylska, 2007] and steric interactions between equisized [Bik-

erman, 1942, Kilic et al., 2007b] and asymmetric [Biesheuvel and Soestbergen, 2007] ions,

for the capacitance of ionic liquid systems [Kornyshev, 2007, Fedorov and Kornyshev,

2008, Fedorov et al., 2010], electrochemical cells [Rica et al., 2012, Conway, 1999], and

ion distributions near liquid-liquid interfaces [Luo et al., 2006, Shapovalov and Brezesin-

ski, 2006].

All mean-field electric double layers derived within the local-density framework obey

universal self-similar scaling that yield strictly monotonic density profiles [Giera et al.,

2013]. Consequently, planar LDA EDL profiles for a given electrolyte collapse onto a

single, master curve when plotted against “similarity coordinates” that are a combina-

tion of system variables. Without assumptions or considering any specific LDA model,

it is straightforward to analyze empirically or computationally-derived EDL profiles and

determine similarity coordinates directly from free charge density contact value expres-

sions [Giera et al., 2013]. If the LDA approach can possibly succeed, measured or com-
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puted free charge density profiles will collapse onto a universal curve as a function of an

intrinsic, derivable similarity coordinate. On the other hand, if measured EDL profiles

do not collapse, similarity coordinates reveal the boundaries of LDA feasibility space,

beyond which more sophisticated treatments capable of addressing correlation e↵ects are

needed. Models that can capture noncollapsing profiles require more involved integral

equation theories [Quesada-Pérez et al., 2003], computationally expensive atomistic sim-

ulations [Jonsson et al., 1980, Torrie and Valleau, 1980, Moreira and Netz, 2002], or

perhaps di↵erent approaches altogether. It would therefore be advantageous to know be-

forehand if LDAs, which give rapidly solvable partial di↵erential equations, are feasible

before deriving advanced EDL models.

I.3 Overview of Electric Double Layer Models

To be instructive, we give a review of two prominent implicit solvent models of fully

charged electric double layer systems. Mean-field Local-density approximations (LDAs)

assume homogenous ion interactions and adopt physically-motivated chemical potential

models that neglect spatially dependent ion-ion and ion-wall correlations [Bazant et al.,

2009]. The Primitive Model (PM) is the simplest possible electrolyte model that, un-

like LDAs, explicitly accounts for size-induced and/or electrostatic correlations amongst

ions with pairwise interaction potentials [Henderson, 1983]. We provide codes in Appen-

dices A and B that we use to solve the LDA models and PM simulations discussed in

Sections I.3.1 and I.3.2, respectively.
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I.3.1 Mean-field Local-density Approximations

Local-density approximations require the chemical potential at every point in space r

to depend only on local quantities such as the density of ions n± or electrostatic potential

�

µ

i
LDA (r) = µ

i
⇤(T ) + kBT lnni + q

i
e�+ µ

i
ex , (I.3.1)

where kB is the Boltzmann constant, T is temperature, qi is ion valence, and e is the

elementary charge. Equation (I.3.1) is expressed as the sum of the standard chemical

potential, ideal chemical potential, mean electrostatic field, and excess chemical potential,

respectively. Far from the electrode, the chemical potential approaches a constant bulk

value

µ

i
LDA (r ! rB) ! µ

i
B = µ

i
⇤(T ) + kBT lnni

B + q

i
e�B + µ

i
ex,B. (I.3.2)

We express Eq. (I.3.1) relative to Eq. (I.3.2)

µ̃

i
LDA (r) =

µ

i
LDA � µ

i
B

kBT
= ln ñi + q

i
�̃+ µ̃

i
ex ⌘ 0 , (I.3.3)

and define non-dimensional variables ñi = n

i
/n

i
B and �̃ = (���B)/�T, where �T = kBT/e

is the thermal potential. We rearrange Eq. (I.3.3) for ñ±, solve for the free charge density

⇢= e(q+ n

++q

�
n

�),

⇢̃LDA ⌘ ⇢LDA

2eI
=

1

2I

±
X

i

n

i
q

i exp
⇣

�q

i
�̃

⌘

exp
��µ̃

i
ex

�

, (I.3.4)

that we non-dimensionalize by the ionic strength

I =
1

2

±
X

i

n

i
B

�

q

i
�2

. (I.3.5)

We limit our discussion to symmetric electrolytes comprised of ions with equal and op-

posite valence q

±= ±q, I = nBq
2, and that have equivalent bulk values for the density
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n

±
B=nB, electrostatic potential �B, and because of stoichiometry µ

±
B=µB, Mean-field mod-

els for electric double layers relate the electrostatic potential and free charge density of

ions using Poisson’s equation

�

2
Dr2

�̃ = �⇢̃ , (I.3.6)

where the Debye length

�D =
1p

8⇡�BI
. (I.3.7)

naturally arises to define the characteristic distance over which ions electrostatically

screen the net charge on the electrode. The pairwise Bjerrum length

�B =
e

2

4⇡"kBT
(I.3.8)

characterizes the distance between elementary charges in a uniform continuum with per-

mittivity ". For charges separated farther than �B, the pairwise electrostatic energy is

less than the thermal energy kBT .

For any given LDA, we can evaluate the capacitance via electrode charge density

versus electrostatic voltage curves using µ̃

±
LDA and the general definition for the reduced

electrode charge density

⌃

⌃ref

⌘ �r̃�̃(0) , (I.3.9)

where we nondimensionalize by

⌃ref =
e

4⇡�B�D
, (I.3.10)

and the characteristic length is �D. To do this, we determine the roots of µ̃±
LDA = 0 in

Eq. (I.3.3) to obtain the free charge density’s dependence on the voltage, i.e., find ⇢̃ =

8



⇢̃(�̃,µ̃+
ex,µ̃

�
ex, ...) from Eq. (I.3.4). Since (1/2)[(�̃0)2]0 ⌘ �̃

00 and �̃00 = �⇢̃ from Eq. (I.3.6),

we rearrange Eq. (I.3.9) for the surface charge-voltage relationship

⌃̃LDA = sign(�̃0)

s

�2

Z �̃
0

0

⇢̃LDA

⇣

�̂, µ̃

+
ex, µ̃

�
ex, ...

⌘

d�̂. (I.3.11)

The ratio of ⌃̃LDA/�̃0 in Equation (I.3.11) gives the integral or total capacitance and

d⌃̃LDA/d�̃0 is the di↵erential capacitance. Charge-voltage curves are relatively easy to

measure [MacDonald and Jr, 1962] and provide a crucial metric for electric double layer

capacitor design. However, Eq. (I.3.11) integrates out important features revealed by

spatial EDL profiles that are obtained from the full solution of Eq. (I.3.6).

We complete the LDA model for planar EDLs by determining the potential that

self-consistently solves Eqs. (I.3.4) and I.3.6) after specifying boundary conditions at the

surface of the electrode

�̃ (0) = �̃0 , (I.3.12)

and in the bulk

�̃ (z̃B) = �̃B ⌘ 0. (I.3.13)

Analytical LDA models define the bulk to be infinitely far from the surface, z̃B ! 1.

For LDAs that require numerical methods to solve, we specify the bulk to be z̃B = 10 and

check our solutions against Eq. (I.3.3) to verify that the chemical potential is spatially

invariant. Equation (I.3.4) is general and can be easily modified for electrolytes with

additional species or even non-local excess terms like µw(z) to arrive at non-LDA models

that accounts for ion-wall interactions [Qiao and Aluru, 2003, Qiao and Aluru, 2004b, Joly

et al., 2004].
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The classic Poisson-Boltzmann approach represents the simplest mean-field planar

LDA, which assumes ideal, point-like ions that establish and respond to a mean-electric-

field in a structureless, continuum solvent. It is solved by the Gouy-Chapman [Gouy,

1910, Chapman, 1913] (GC) model of the EDL and is only appropriate for dilute elec-

trolytes with weakly-charged ions and electrodes. In this idealized limit, the excess term

in Eq. (I.3.1) vanishes to give the GC chemical potential

µ̃

±
GC = ln ñ± ± q�̃ ⌘ 0 , (I.3.14)

which reveals GC ions to follow a direct Boltzmann distribution ñ

± = exp(⌥q�̃). Re-

arranging for the free charge density and inserting into Eq. (I.3.6), we arrive at the

Poisson-Boltzmann Equation

r̃2
�̃ = sinh

⇣

q�̃

⌘

. (I.3.15)

The GC surface charge-voltage relationship for planar geometries from Eq. (I.3.11) gives

⌃̃GC =

r

�2 cosh
⇣

q�̃0

⌘

= 2 sinh

 

q�̃0

2

!

. (I.3.16)

In the Debye-Hückel (DH) limit characterized by dilute electrolytes, low surface volt-

ages �̃0 ⌧ 1, and infinitesimal applied charge densities ⌃̃ ⌧ 1, the linearized form of

Eq. (I.3.15) is solved by ⇢̃DH= ��̃DH, �̃DH = �̃0 exp(�z̃), and ⌃̃DH = �̃0. All LDAs reduce

to the DH form in the dilute regime far from weakly-charged EDLs. The exponential

decay of the free charge density is also asymptotically exact in the limit of infinitely

charged electrodes; di↵ering only by constants [Attard, 1996].

Despite its near-ubiquitous use, the GC-LDA (and Eq. (I.3.15) more generally) has

long been known to fail for various reasons. Boltzmann-distributed densities grow ex-

ponentially with �̃, predicting volume fractions that would exceed close packing of real

10



ions [Bikerman, 1942, Kilic et al., 2007b]. Here we discuss the widely-used Bikerman and

Carnahan-Starling LDA models that move beyond GC by adopting chemical potential

expressions from homogenous systems of equi-sized ions with bulk-volume fraction

�B =
⇡

3
nB�

3 (I.3.17)

and diameter �. Like the GC-LDA, these models assume an implicit solvent and neglect

electrostatic correlation e↵ects. However, they account for finite-sized e↵ects with bulk-

like forms for exclude volume contributions to the chemical potential that depend on the

local volume fraction

� (r) =
�B

2
(ñ+ + ñ

�). (I.3.18)

The Bik-LDA adopts a mean-field lattice-gas model for the EDL with sites on a cubic

lattice that contain at most one ion [Bikerman, 1942]. Empty sites represent the implicit

solvent. Near su�ciently charged electrodes [Kilic et al., 2007b, Kilic et al., 2007a],

lattice sites completely saturate with counter-ions such that �Bik = �

3(n+ + n

�) ! 1.

The Bikerman excess chemical potential

µ

±
Bik,ex

kBT
= � ln

✓

1 � �B

2
(ñ+ + ñ

�)

◆

(I.3.19)

can be derived from the configurational degeneracies of non-overlapping ions amongst

available lattice sites [Kornyshev, 2007]. Following Eqs. (I.3.2) and (I.3.3), the Bikerman

chemical potential is expressed relative to its bulk value to give the dimensionless relation

µ̃

±
Bik = ln ñ± ± q�̃+ ln

✓

1 � �B

1 � �B(ñ+ + ñ

�)/2

◆

⌘ 0. (I.3.20)
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Equation (I.3.20) can be solved for ñ± to reveal a Fermi-Dirac (instead of a Boltzmann)

distribution. The Bikerman free charge density is inserted into Eq. (I.3.6) to obtain

r̃2
�̃ =

sinh
⇣

q�̃

⌘

1 + 2�B sinh2
⇣

q�̃/2
⌘

. (I.3.21)

The surface charge-voltage relationship for the Bik-LDA is given by

⌃̃Bik =

r

2

�B

ln
h

1 + 2�B sinh2
⇣

q�̃0/2
⌘i

. (I.3.22)

In the case of point-sized ions, �B ! 0 and Eqs. (I.3.20-I.3.22) recover the GC-LDA and

Poisson-Boltzmann Eq. (I.3.15).

More accurate models for excluded volume contributions to the bulk chemical poten-

tial frequently rely on the Percus-Yevik integral equation and virial and compressibility

expansions of a homogeneous hard-sphere fluid [Hansen and McDonald, 1986, Barker

and Henderson, 1976]. The Carnahan-Starling (CS) equation of state [Carnahan and

Starling, 1969] is an accurate approximation [Song et al., 1989] that combines the hard-

sphere equations of state from the virial and compressibility routes [McQuarrie, 1976] to

obtain

µ

±
CS,ex

kBT
=

8� � 9�2 + 3�3

(1 � �)3
. (I.3.23)

The ideal and electrostatic chemical potentials and Equation (I.3.23) are expressed

relative to the bulk to obtain the dimensionless total CS-LDA chemical potential [Bazant

et al., 2009, Attard, 1993]

µ̃

±
CS = ln ñ± ± q�̃+

1

(1 � �)2
+

2

(1 � �)3
+

�B � 3

(1 � �B)3
⌘ 0. (I.3.24)

The three terms that depend on the local and bulk volume fraction are analogous to the

rightmost term in the Bik-LDA Eq. (I.3.20). As with all LDAs, the chemical potentials

12



for both ion types given by Eq. (I.3.24) are solved to determine the free charge density as a

function of voltage that is then used in Eq. (I.3.6), i.e. find ⇢̃CS(�̃) from {µ̃+
CS,µ̃

�
CS= 0, 0}.

Although the CS-LDA requires numerical methods to solve, it recovers the GC limit as

�B ! 0, just like Bikerman theory.

I.3.2 Molecular Dynamics Simulations of Primitive Model Elec-

trolytes

The Primitive Model of the electric double layer gives three physical length scales:

the screening length �D that is calculated from equilibrated bulk ion concentrations; the

Bjerrum length �B that is set by ion valence, thermal energy, and uniform permittivity ";

and the ion diameter � that sets the total bulk volume fraction of ions �B = �

3
/(24�B�2D).

Nondimensionalizing lengths by �D reveals any PM EDL to be uniquely specified by

three dimensionless parameters: �B, �B/�D, and ⌃/⌃ref . Exact solutions of the PM

often are determined using correlation functions and integral equations, with simulation

techniques like Density Functional Theory, Monte Carlo, or Molecular Dynamics (MD).

In this thesis, we use MD simulations of the PM EDL that treat ions as charged particles

in an implicit solvent between uniformly charged plates as shown in Figure I.2. We focus

on PM EDLs in the canonical ensemble, in which the general expression for the chemical

potential of an ion of type i is given by

µ

i

kBT
= �

✓

@ lnQ

@N

i

◆

. (I.3.25)
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The total partition function is

Q =

" ±
Y

i

(kBT )N
i

N

i!
exp

✓

N

i
µ

i
⇤(T )

kBT

◆

#

ZZ

...

Z

e

�Ũ(rN )drN , (I.3.26)

where the reduced potential energy

Ũ(rN) ⌘ U(rN)

kBT
= Ũpair(r

N) + Ũone(z̃
N) (I.3.27)

is separated into pairwise ion-ion Ũpair and one-body Ũone ion-electrode interactions

amongst N =N

+ +N

� total ions [Hill, 1960]. We assume ions that have equal masses and

thus identical standard chemical potentials µ

±
⇤ (T ) = �kBT ln (kBT/ ⇤3) and de Broglie

wavelengths ⇤± = ⇤.

For a given configuration of this PM, the ion-ion contribution to the potential energy

depends on pairwise distances rij = |ri � rj|

Ũpair(r
N) =

N
X

i<j

ŨCoulomb(rij) + ŨWCA(rij  �). (I.3.28)

The Coulomb potential is long-ranged

ŨCoulomb(r) = q

i
q

j �B

r

(I.3.29)

and captures electrostatic interactions between point-charges with �B given by Eq. (I.3.8).

In this work, we use the repulsive Weeks-Chandler-Andersen [Weeks et al., 1971] (WCA)

potential

ŨWCA(r  �) =
✏WCA

kBT



(�6 � r

6)2

r

12

�

, (I.3.30)

to account for finite-size e↵ects between ions with characteristic energy ✏WCA that ap-

proach closer than their WCA diameter �. Similar to hard-sphere systems, WCA particles

separated farther than � do not interact, i.e. ŨWCA(r > �) ⌘ 0. The very steep WCA
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L�w

�

�+ ��

�D�Bz = 0

Figure I.2: Schematic of the Primitive Model of an implicit solvent electrolyte. Anions
and cations (blue and orange spheres) concentrate near the cathode and anode (orange
and blue rectangles) to screen the interfacial charge on the electrode and form electric
double layers with characteristic thickness �D. Ion-ion interactions are treated explic-
itly using pairwise potentials [Eqs. (I.3.28)-(I.3.30)] that depend on the Bjerrum length
�B and ion diameter �. Wall-ion interactions are computed from one-body potentials
[Eqs. (I.3.31)-(I.3.34)] that confine ions within a distance L between oppositely-charged
electrodes with uniform charge density ⌃± and wall thickness �w.
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potential dictates the minimum inter-ion separation distance r

min ⇠ O(�). Therefore,

the dominant contributions to the pairwise potential depend on the relative magnitudes

of �B and �. We assume any observable correlations are due only to finite-sized e↵ects

for electrolytes where �B ⌧ �.

The ion-electrode interactions include electrostatic and steric terms that only depend

on the distance from electrodes separated by L̃ = L/�D

Ũone(z̃
N) =

N
X

i=1

Ũfield(z̃
i) + Ũ

+
w

✓

z̃

i  �w

�D

◆

+ Ũ

�
w (z̃

i � L̃). (I.3.31)

The electrostatic field term in Equation (I.3.31),

Ũfield(z̃) = �q

i⌃̃z̃ , (I.3.32)

accounts for the potential energy ions experience between two uniformly charged elec-

trodes with equal and opposite surface charge density. The wall-ion interaction depends

on the wall thickness parameter �w and the distance an ion penetrates either wall

�p(z̃) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�w � z̃�D if z̃  �w/�D,

0 if �w/�D < z̃ < L/�D,

z̃�D � L if z̃ � L/�D.

(I.3.33)

The wall potential is the repulsive part of the 9-3 potential

Ũ

±
w (�p) =

✏w

kBT

r

5

18



1

(1 � �p/�w)9
� 3

(1 � �p/�w)3
+ 2

�

(I.3.34)

with characteristic energy ✏w and Ũ

±
w (�p = 0) = 0.

A force balance between the electrostatic attraction and steric repulsion experienced

by a counter-ion penetrating the wall,

� dŨfield

dz̃
= �dŨw

d�p

d�p
dz̃

, (I.3.35)
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gives

(1 � �p/�w)
10 + �

�

(1 � �p/�w)
6 � 1

�

= 0 , (I.3.36)

where

� =
3
p
10

2

✓

✏w�D

kBT �w⌃̃q

±

◆

(I.3.37)

defines the relative strength of the parameters used in Eqs (I.3.32) and (I.3.34). For

highly repulsive and strongly-charged electrodes, which is characterized by � ! 0, the

expected penetration distance,

1 � �p

�w

⇠ �
1

10

, (I.3.38)

is fairly insensitive to the applied field strength. Thus, the variance in �p is insignificant

provided the wall potential is su�ciently steep.

I.4 Outlook

Local-density approximations and Primitive Model simulations have been used almost

ubiquitously to describe electric double layers in many fields, ranging from implicit sol-

vation models of biomolecular systems to thermodynamic solubility theories to electroki-

netic flows, porous electrode dynamics, nanopore conductance, membrane potentials, to

name a few. Throughout this thesis, we research LDA and PM descriptions of planar

EDLs and investigate methods to systematically identify failure mechanisms to reveal

LDA and PM feasibility space. We also seek to suitably adapt these approaches in the

regimes they do fail in order to develop improved models that enhance understanding of

electrochemical systems.
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Chapter II

Model-free Test of Local-density

Mean-field Behavior in Electric

Double Layers

In this Chapter, we derive a self-similarity criterion that must hold if a planar electric

double layer (EDL) can be captured by a local-density approximation (LDA), with-

out specifying any specific LDA. Our procedure generates a similarity coordinate from

EDL profiles (measured or computed), and all LDA-EDL profiles for a given electrolyte

must collapse onto a master curve when plotted against this similarity coordinate. Non-

collapsing profiles imply the inability of any LDA theory to capture EDLs in that elec-

trolyte. We demonstrate our approach with molecular simulations, which reveal dilute

electrolytes to collapse onto a single curve, and semi-dilute ions to collapse onto curves

specific to each electrolyte, except where size-induced correlations arise.
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II.1 Sustained Search for Improved Local-Density Ap-

proximations

For over a century, EDL structure has been almost universally modeled using the

Poisson-Boltzmann equation (PBE), which takes the form

�

2
Dr2

✓

qe�

kBT

◆

=
n� � n+

2nB
= sinh

✓

qe�

kBT

◆

, (II.1.1)

for binary electrolytes, but can easily be generalized for multiple ion species and va-

lences [Russel et al., 1989]. Here � is the electrostatic excess chemical potential relative

to the bulk, �D = (8⇡�BnB)�1/2 is the Debye ‘screening’ length, nB = n

B
+ = n

B
� is the

bulk ion density, �B = (qe)2/(4⇡"kBT ) is the Bjerrum length, beyond which thermal en-

ergy kBT exceeds the electrostatic energy between charges ±qe in a uniform continuum

with permittivity ". The PBE (II.1.1), solved for planar EDLs by Gouy and Chapman

(GC) [Gouy, 1910, Chapman, 1913], assumes ideal, point-like ions that establish (and

respond to) a mean electric field in a structureless, continuum solvent.

Despite its near-ubiquitous use, the GC theory (and PBE more generally) has long

been known to fail for various reasons. Boltzmann-distributed densities grow exponen-

tially with �, predicting ions of diameter � that can exceed close-packing [Bikerman,

1942, Kilic et al., 2007b]. Experiments [Bazant et al., 2009, Israelachvili, 1992] and

computations [Henderson and Boda, 2009, Qiao and Aluru, 2004a] suggest inherently

non-PBE e↵ects due to ion shape [Hansen and Lowen, 2000, Fedorov et al., 2010]; sol-

vation [Wang and Wang, 2011, Kalcher et al., 2010]; size- [Kornyshev, 2007, Guerrero-

Garćıa et al., 2010] and electrostatically-induced ordering [Lamperski and Henderson,
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2011, Moreira and Netz, 2004, Gillespie et al., 2011, Grosberg et al., 2002, French et al.,

2010, Levin, 2002]; dielectric inhomogeneities [López-Garćıa et al., 2011, Lauw et al.,

2009, Pascall and Squires, 2010]; and physicochemical [Qiao and Aluru, 2003, Qiao and

Aluru, 2004b, Joly et al., 2004] and discrete charge [Naji et al., 2005, Vangaveti and

Travesset, 2012] wall-ion interactions.

Nonetheless, the PBE (II.1.1) remains appealing since it can be solved rapidly for

systems and geometries that would be far larger than atomistic simulations would allow.

A sustained search for modified PBEs has thus ensued [Bazant et al., 2009], seeking

to preserve the local, mean-field assumptions that give simple PDEs like (II.1.1), while

accounting for phenomena beyond PB/GC. Widely used local-density approximations

(LDAs) assume ions to respond to additional interactions that depend only on local

ion densities, with ‘excess’ chemical potential µex
± (ni), as in bulk-like systems [Bazant

et al., 2009, McQuarrie, 1976]. Wall-ion interactions µwall
± (z) may also be included in the

Boltzmann distribution,

n± = n

B
± exp

✓

⌥ qe�

kBT
� µ

ex
± (ni)

kBT
� µ

wall
± (z)

kBT

◆

, (II.1.2)

or additional ion species, which are then used in (II.1.1) to yield a modified non-LDA

PBE. LDAs have been used to treat short-ranged enthalpic [Caprio et al., 2004, Gro-

chowski and Trylska, 2007] and steric interactions between equi-sized [Bikerman, 1942,

Kilic et al., 2007b] and asymmetric [Biesheuvel and Soestbergen, 2007] ions, and to model

ionic liquids [Kornyshev, 2007], electrochemical cells [Rica et al., 2012], and ion density

profiles from x-ray reflectivity measurements of liquid-liquid interfaces [Luo et al., 2006]

and Langmuir monolayers [Shapovalov and Brezesinski, 2006].
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Despite their appealing simplicity, there is no reason to expect a priori that any

LDA can accurately describe EDLs in a particular electrolyte [Levin, 2002]. For ex-

ample, molecular simulations have revealed strong dielectric inhomogeneities [Bonthuis

et al., 2011], which continuum EDL theories have treated using integro-di↵erential equa-

tions [Bonthuis et al., 2011] or Ginzburg-Landau expansions [Bazant et al., 2011]; neither

is compatible with a LDA theory. LDAs neglect structuring e↵ects due to ion-surface,

ion-ion, and ion-solvent correlations that may be significant in actual EDLs [Levin, 2002].

Increasingly powerful atomistic simulations can reveal EDL features for specific ion and

solvent chemistries [Shim and Kim, 2010], but are typically impractically expensive for

even moderate size or time scales. Ideally, a continuum theory could be developed for

large-scale modeling that nonetheless respects the physico-chemical properties of a spe-

cific electrolyte, e.g. by incorporating µ

ex
± obtained from molecular simulations or mea-

surements into a LDA.

Current LDA searches assume some (physically-motived) form of µex
± and then assess

the consequences. If a particular µex
± fails to capture measured or simulated EDL behav-

ior, however, one does not know whether a di↵erent choice might succeed, or whether

the LDA approach is itself bound to fail. It is thus crucial to know whether an EDL can

possibly be captured by any LDA – and therefore whether a simple PDE can be derived

for its description in more complex geometries and systems.
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II.2 Solving Local-density Approximation Similarity

Variables

Without assumptions or considering any specific LDA model, it is straightforward

to analyze empirically or computationally-derived EDL profiles and determine “similar-

ity variables” directly from free charge density contact value expressions. We can then

use similarity variables to systematically determine whether it is possible for any LDA

to describe EDLs in a particular electrolyte. This forms the basis of the “model-free”

method we develop to identify EDL regimes that exhibit LDA behavior as described

in Section II.3. If the LDA approach can possibly succeed, measured or computed free

charge density profiles will collapse onto a universal curve as a function of an intrinsic,

derivable similarity variable. Where measured EDL profiles do not collapse, similarity

coordinates reveal the boundaries of LDA feasibility space, beyond which more sophisti-

cated treatments capable of addressing correlation e↵ects are needed.

We derive similarity variables by starting with a deceptively simple question: does

an ion in an EDL ‘know’ the location of the surface (Fig. II.1)? In any LDA EDL, an

ion located a distance z from a surface with charge density ⌃ would behave the same if

a less-charged surface were �z closer, provided that the e↵ective charge density ⌃e↵ at

�z obeyed

⌃e↵ = ⌃ � �⌃ = ⌃ +

Z �z

0

⇢(ẑ,⌃)dẑ. (II.2.1)

More formally, any LDA description yields an EDL whose free charge density ⇢ = qe(n+�

n�) falls onto a single, master curve ⇢(z,⌃). LDA-EDL density profiles, each with a
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Figure II.1: Universality of local-density approximation electric double layers: any ion
located a distance z+�z from an interface of surface charge density ⌃ (top right) would
‘feel’ no di↵erent than were the interface located a distance �z closer (bottom right)
with lower e↵ective surface charge density ⌃ � �⌃ given by Eq. (II.2.1). All LDA EDLs
represent a portion of a single, universal charge density profile ⇢LDA (left).

di↵erent ⌃, can thus be shifted by some �z(�⌃) to fit onto the universal EDL profile.

This self-similarity enables an equation for the universal EDL curve for any local-

density approximation to be derived explicitly, since charge densities in di↵erently-

charged EDLs obey the underlying self-similarity

⇢(z,⌃) = ⇢(z + �z,⌃ + �⌃), (II.2.2)

where �⌃ and �z are related via Eq. (II.2.1). For small �⌃ and �z, the Taylor expansion

of (II.2.2) and �⌃/�z = �⇢(0,⌃) via (II.2.1) combine to give a self-consistency equation,

@⇢

@z

�

�

�

�

⌃

=
@⇢

@⌃

�

�

�

�

z

⇢(0,⌃). (II.2.3)

Any EDL that obeys a LDA— regardless of the specific µex
± (ni) — must obey Eq. (II.2.3).

Conversely, comparing simulated or measured EDL profiles against (II.2.3) directly re-

veals whether any simple LDA µ

ex
± can possibly exist that successfully captures that EDL.

Ion-wall interactions µwall
± (z) do not obey this relation, but the arbitrariness of ‘z = 0’ al-
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lows Eq. (II.2.3) to be used once with an e↵ective origin chosen to lie beyond the ion-wall

interaction range.

The free charge density ⇢ can be derived explicitly from (II.2.3) using the method

of characteristics, provided ⇢(0,⌃) is known, measured, or simulated. Furthermore, ⇢

depends only on a similarity variable S(z,⌃; ...), given by

S = ⌃̃ exp

 

�z̃ �
Z ⌃̃

0

"

1

⇢̃(0, ⌃̂; ...)
+

1

⌃̂

#

d⌃̂

!

, (II.2.4)

where we use non-dimensionalized variables z̃ = z/�D, ⇢̃ = (�D/⌃ref)⇢ and ⌃̃ = ⌃/⌃ref ,

where ⌃ref = qe/(4⇡�B�D). The charge density is then given by

⇢̃(S) = ⇢̃(z̃ = 0, ⌃̃ = g

�1 [S]) , (II.2.5)

where g[⌃̃] = ⌃̃ exp
⇣

� R ⌃̃

0
[1/⇢̃(0, ⌃̂; ...) + 1/⌃̂]d⌃̂

⌘

.

Given the free charge density at contact, S can be solved explicitly and embeds

physical quantities like ion size �, screening length �D, electrostatic strength �B, distance

z, and surface charge density ⌃. S then collapses LDA EDLs in a given electrolyte

onto a single master curve. The Debye-Hückel (DH) limit, valid for low EDL potentials

� ⌧ kBT/qe and negligible excess contributions µex
± ! 0, provides an instructive example.

In this restrictive regime, the linearized Eq. (II.1.1) [Russel et al., 1989] gives

⇢̃DH(0, ⌃̃) = �⌃̃ , (II.2.6)

and Eqns. (II.2.4-II.2.5) can be solved explicitly to give

SDH = ⌃̃ exp(�z̃) (II.2.7)

and

⇢̃DH = �SDH. (II.2.8)
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One may solve Eq. (II.2.3) by identifying a similarity-variable that yields solutions of

the form ⇢̃(S[z̃, ⌃̃]) where S = f(b[z̃]⇥g[⌃̃]). Inspired by the Debye-Hückel (DH) solution

given by Eq. (II.2.7), we posit b = exp(�z̃) and substitute ⇢̃ = f

⇣

g[⌃̃; ...] ⇥ exp(�z̃)
⌘

in

Eq. (II.2.3) to arrive at

�
✓

df

dS

◆

ge

�z̃ =

✓

df

dS

◆✓

dg

d⌃̃
⇢̃(0, ⌃̃; ...)

◆

e

�z̃
. (II.2.9)

Noting dg/g = d ln g, we first add and subtract the known form for ⇢̃DH(0, ⌃̃) described

in Eq. (II.2.6) before evaluating

�
Z

d ln g =

Z

d⌃̂

⇢̃DH(0, ⌃̂)
+

Z

 

1

⇢̃(0, ⌃̂)
� 1

⇢̃DH(0, ⌃̂)

!

d⌃̂ , (II.2.10)

which converges for all ⌃̃.

Beyond the linear regime, the Gouy-Chapman theory yields an analytical similarity

variable that measures the mean-field strength between an electrified plate and uncorre-

lated point-sized ions. Inserting the GC contact expression [Henderson, 1983],

⇢̃GC(0, ⌃̃) = �⌃̃
q

1 + (⌃̃/2)2 , (II.2.11)

into Eq. (II.2.3) gives

SGC = 4e�z̃



q

1 � (2/⌃̃)2 � (2/⌃̃)

�

=

0

@

2

1 +
q

1 + (⌃̃/2)2

1

A ⌃̃e

�z̃
, (II.2.12)

that reduces to SDH for ⌃̃ ⌧ 1. Notably, SGC varies continuously between two limiting

behaviors: (i) SGC ! SDH ! 0 far from weakly charged surfaces (z̃ ! 1, ⌃̃ ! 0), and

(ii) SGC ! 4 near strongly charged surfaces (z̃ ! 0, ⌃̃ ! 1).

To determine the GC free charge density as a function of the GC similarity vari-

able ⇢̃GC(SGC) = ⇢GC/2qenB, use (1/2)[(�0)2]0 = �

00 = sinh(�)d� before integrating
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Eq. (II.1.1), then solve for both the interfacial charge density ⌃̃,

⌃̃ = � d�̃

dz̃

�

�

�

�

�

z̃=0

= 2 sinh

 

�̃

0

2

!

e

�0
, (II.2.13)

and the surface potential �̃0 = �

0
e/kBT = 2 sinh�1(⌃̃/2). Integrate Eq. (II.1.1) a second

time, substitute �̃0, then rearrange to arrive at,

�̃ = tanh�1 (SGC/4) . (II.2.14)

Finally, insert Eq.(II.2.14) into Eq. (II.1.1) ,

⇢̃GC = � d

dSGC

 

d�̃

dSGC

dSGC

dz̃

!

dSGC

dz̃
= �16SGC(16 + S

2
GC)

(16 � S

2
GC)

2
. (II.2.15)

The GC free charge density thus diverges in the SGC ! 4 limit, ⇢̃GC ! ⇢̃DH for SGC ⌧ 1,

and approaches electroneutrality (⇢̃GC ! 0) as SGC ! 0.

Similarity variables from modified local-density approximations may require numeri-

cal methods to determine the often more complicated forms of ⇢̃ = ⇢̃(S(z̃, ⌃̃;�B
, �/�D, ...).

For instance, one can derive a modified mean-field theory that locally accounts for ex-

cluded volume e↵ects between equisized ions using the Carnahan-Starling (CS) equation

of state. The CS model describes a hard-sphere liquid with the following excess chemical

potential

µ

ex
CS

kBT
=

�(8 � 9� + 3�2)

(1 � �)3
, (II.2.16)

that depends on the local volume fraction of ions

�(z) = ⇡�

3
/6
X

ni. (II.2.17)

When used to describe repulsive, e.g. WCA particles, the value of � depends on an

e↵ective hard-sphere diameter assigned to the ions; we find that � ⇡ 0.90�WCA does
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an excellent job of reproducing actual chemical potentials calculated using the particle

insertion technique. It is numerically easier and mathematically equivalent to solve for

the case of a single electrode with the following chemical potential,

µ̃i[�̃, ñi] =
µi � µ

B

kBT
= ln (ñi) ± q�̃+ µ̃

ex
CS[�

B(ñ+ + ñ�)/2] ⌘ 0. (II.2.18)

Now we express ñ� in terms of ñ+ and �̃ by subtracting µ̃+ from µ̃� and rearranging for

ñ�,

ñ� = ñ+ exp(2q�̃). (II.2.19)

Inserting Eq. (II.2.19) into Poisson’s equation �00 = �⇢̃, we obtain,

�̃

00 = ñ+

⇣

exp(2q�̃) � 1
⌘

/2 , (II.2.20)

which is subject to boundary conditions at the electrode

�̃(z̃ = 0) = �̃

0
, (II.2.21)

(or �̃(L/�D) = �̃

0
� for two electrodes) and in the bulk

�̃ (z̃ ! 1) ! 0. (II.2.22)

In practice for numerical reasons, we replace the second boundary condition in Eq. (II.2.22)

at infinite distances with �̃ (L/2�D) = 0. We solve for ñ+(�) by demanding that

Eq. (II.2.19) be constant in space (a condition for equilbrium) and inserting into Eq. (II.2.18).

Then, that is used with (II.2.20) and the boundary conditions to solve a single ODE, not

coupled ones. In the case of �B = 0, Eqns. (II.2.16) and (II.2.20) return their point-sized

(Gouy-Chapman) expressions as expected. Numerically solving these equations, we then

determine ⇢̃CS(0, ⌃̃) that is used to compute SCS(z̃, ⌃̃,�B).
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II.3 Testing Electric Double Layers for a Suitable

Local-density

Approximation Without Making Assumptions

Having derived Eq. (II.2.3) — a general, model-free condition that must be satisfied

for any planar EDL describable by LDAs — we now use molecular dynamics to explicitly

simulate ions within fully formed EDLs for which LDA physics is by no means guaranteed.

To focus on the general applicability of our results, we employ the simplest model for

ions that captures many-body interactions, rather than using force fields and characteris-

tics specific to a particular electrolyte system. Specifically, we use LAMMPS [Plimpton,

1995] to simulate Primitive Model (PM) electrolytes: charge-centered Weeks-Chandler-

Andersen [Weeks et al., 1971] ions of diameter �WCA and charge ±qe in an implicit

Langevin solvent [Schneider and Stoll, 1978] with constant permittivity ", bound by uni-

formly charged repulsive 9/3 surfaces separated by a distance L in a xy-periodic system.

Defining system parameters gives three physical length scales: the Bjerrum length �B that

reflects ion valence, permittivity and thermal energy; the screening length �D, which is

measured from equilibrated bulk ion concentrations; and the e↵ective hard-core ion di-

ameter � ⇡ 0.90�WCA that sets the bulk volume fraction �B = �

3
/(24�B�2D). We choose

the system size L to be large enough by comparison to be irrelevant. Nondimensional-

izing lengths by �D reveals any PM electrolyte/surface to be uniquely specified by three

dimensionless parameters: �B, �B/�D, and ⌃/⌃ref . We list parameters from all PM

simulations in Section II.5.
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For each PM electrolyte {�B; �B/�D} and surface charge ⌃̃, we equilibrate O(800-

1400) ions for five million MD time steps, then evenly collect fifty thousand snapshots

over fifty million steps, requiring 50-100 CPU hours per run. We then measure the

time-averaged free charge density and e↵ective local surface charge vs. distance z̃ from

the wall, and regression fit ⇢̃PM(z̃) versus ⌃̃e↵(z̃) to a second order polynomial. Having

regression fit the Primitive Model profiles with ⇢̃PM(0, ⌃̃) = a1⌃̃ + a2⌃̃2, we then use

(II.2.4) to obtain PM similarity variables of the form

SPM(z̃, ⌃̃) = e

�z̃
⇣

a1 + a2⌃̃
⌘1/a

1

⌃̃�(1+a
1

)/a
1

. (II.3.1)

If any viable LDA theory exists for that electrolyte {�B; �̃B}, then computed ⇢̃PM profiles,

re-plotted against SPM, must collapse onto a master curve.

Figure II.2 shows EDL profiles computed in seven distinct PM electrolytes with ions

from low to moderate valence (0.05 . �B/�D . 1) and very low volume fractions �B 

8 ⇥ 10�4, each for 100 distinct surface charge densities (0  ⌃̃ . 10) and measured

at 250 distinct positions. Under these dilute conditions, one would expect the PB/GC

theory to hold, especially at small �̃, �̃B, and ⌃̃. Indeed, ⇢̃PM collapses when plotted

against SPM (Fig. II.2a), and also against ⌃̃e↵ (Fig. II.2b). Furthermore, even di↵erent

electrolytes collapse onto the same curve, irrespective of the specific electrolyte properties

{�B; �̃B}, as is true for GC theory. In fact, the GC similarity variable SGC (II.2.12)

captures the observed universal profile very well (Fig. II.2c), and closely matches the

computed, model-free SPM (Fig. II.2d).

Next, we simulate semi-dilute electrolytes with weakly-charged but moderately sized

PM ions (�B ⌧ � < �D), where we suspect GC will fail due to finite-sized e↵ects. We
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SGC

SGC

SPM

(c)

(a)

(b)

(d)

Increasing ⌃̃: 0 ! 10

Decreasing z̃ ! 0

⌃e↵(z̃)/⌃ref

�B/�D

Figure II.2: MD simulations of dilute Primitive Model electrolytes (�B  8⇥10�4) show
underlying LDA behavior. (a) For a wide range of conditions, free charge density profiles
all collapse onto a universal curve, when plotted against a similarity coordinate SPM,
which is derived from (II.2.4) using ⇢PM(0,⌃) obtained from simulation data. (b) The
charge density ⇢(z,⌃) collapses when plotted against ⌃e↵(z), which is itself indicative
of LDA behavior. (c) The Gouy-Chapman similarity variable (II.2.12) also collapses
simulation data well. (d) The similarity variables SPM and SGC, independently-derived,
are practically indistinguishable for SGC  0.4, and di↵er by less than 4% for 1.6 <

SGC . 3.2.
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⌃̃ �⌃̃
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�
D
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S
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M
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C
S

lim
�B!0

⇢̃CS ⌘ ⇢̃GC

" �B = 0.50

Figure II.3: MD simulations of PM electrolytes with large (�/�D ' 3/15), weakly charged
(�B/�D ' 0.1/15) ions at constant bulk volume fraction �̄B = 0.044 ± 0.001 show LDA
behavior, beyond a surface monolayer (with packing fraction �0). (a) Charge density
profiles for various surface charge densities ⌃̃ collapse onto a single curve when plotted
against S

0
PM, obtained by evaluating (II.2.4) using measured data. (b) EDL density

profiles collapse when plotted against ⌃̃e↵ that is reduced by the measured charge density
of the monolayer �⌃̃. (c) The similarity coordinate SCS generated using the Carnahan-
Starling LDA approach also collapses simulated density profiles beyond the correlated
region. A one-parameter (�B) family of universal EDL curves is generated from (II.2.4)-
(II.2.5) using the CS-LDA approach. (d) The theoretical SCS matches the measured S

0
PM

to within 10% for these simulations.
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then determine whether such non-GC EDLs can nonetheless be captured by LDAs using

our model-free method (Fig. II.3). For these ions, specific wall-ion interactions drive

surface ion monolayers to form at high ⌃̃ and/or �B. Since our model-free test holds

outside the range of specific wall-ion interactions, we define ‘z̃ = 0’ in Eq. (II.2.4) to lie

beyond the surface ion monolayer, z̃ > �/�D, and adopt a reduced applied surface charge

density

⌃̃0 = ⌃̃ � �⌃̃ , (II.3.2)

where

�⌃̃ = �
Z �/�

D

0

⇢̃PMdẑ , (II.3.3)

corrects for the monolayer charge. Indeed, Fig. II.3b shows density profiles ⇢̃0PM(z̃ =

�̃, ⌃̃0; �̄B = 0.044) for eleven simulations that collapse onto a single curve when plotted

against ⌃̃e↵ and the similarity variable S

0
PM. Despite GC breakdown, our test reveals

EDLs in these electrolytes to obey some underlying LDA model.

Motivated by the existence of a viable LDA theory, we consider the Carnahan-

Starling [Carnahan and Starling, 1969] (CS) hard-sphere model that accounts for excess

hard-sphere repulsions µex
CS(�) using the local volume fraction [Bazant et al., 2009, Russel

et al., 1989] of same sized ions. Evaluating the computed contact expression ⇢̃CS(z̃ =

0, ⌃̃;�B), we calculate SCS(z̃, ⌃̃;�B) via Eq. (II.2.4), and generate a family of universal

curves for di↵erent �B in Fig. II.3c. The CS-LDA correctly produces the universal curve

onto which the EDLs simulated with �̄B ' 0.044 collapse against ⌃̃e↵ (Fig. II.3b) —

but only up to a point, beyond which collapse is lost due to non-local ordering adjacent

to the surface. The CS-LDA approach misses the oscillatory portions of PM EDLs, as
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any LDA would, but decently captures the mean-field strength of steric interactions in

non-correlated EDL regimes.

II.4 Conclusion

In summary, we have presented a general and powerful formalism to identify and

elucidate local-density approximation behavior in planar EDLs, following a simple obser-

vation: LDA ions do not know the interface location. Our model-free approach enables

EDL profiles – whether simulated or measured – to be directly analyzed, and to deter-

mine whether any LDA can possibly succeed. In the regimes where the computed S does

not collapse the EDL profiles, any search for a LDA will be fruitless.

In explicit MD simulations of GC-like electrolytes, our approach generated a similar-

ity variable that successfully collapsed a wide range of simulated EDLs onto a universal

curve that matched the GC prediction. In electrolytes where GC fails due to steric repul-

sion between ions, our approach collapses measured EDL profiles onto non-GC universal

profiles — but only up to a point, beyond which collapse is lost due to non-local ordering

adjacent to the electrode. A modified PBE that treats finite-size interactions using the

Carnahan-Starling equation of state captured this data particularly well. More generally,

our approach immediately reveals whether it is possible for any LDA theory to predict

measured (or simulated) profiles, and plots like Figs. II.2b and II.3b inform when and

whether one should pursue LDA treatments at all.

Lastly, the model-free test holds for planar EDLs, which are (fortunately) the easiest

to compute and measure. Irrespective, the results of the approach presented here hold
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for more general geometries. We expect that once a LDA is revealed to be possible for a

given electrolyte, and the corresponding µ

ex
± (ni) determined, the modified PBE derived

using the appropriate LDA (Eqs. II.1.1-II.1.2) should hold as a three-dimensional PDE,

valid for more general geometries.

II.5 Appendix: Simulation Details

In the tables below, we list parameters from all Primitive Model simulations with total

number of ions Ntot of diameter �WCA and Bjerrum length �B; measured screening length

�D; and electrode charge density ⌃ as defined in the text. In the case of monovalent

ions (|q±| = 1) in an aqueous electrolyte at room temperature, the Bjerrum length is

�B = 0.7 nm. For instance, the square orange markers in Figure 2 represent simulations

with �WCA/�B = 1/1 (meaning the diameter of the solvated ions is 0.7 nm) and �B/�D =

1/10. The solvated ion diameters would correspond to NaCl ions with screening length

�D ⇡ 7 nm, bulk ion concentrations [Na+] = [Cl�] = ⇢

B where ⇢B ⌘ (8⇡�B�2D)
�1 is

⇢

B =

✓

1030

8⇡ ⇥ 7m ⇥ 702m2

◆✓

m3

103L

◆✓

mole

6.022 ⇥ 1023

◆

⇡ 2 ⇥ 10�3 M , (II.5.1)

and ionic strength to be (q2Na⇢
B
Na + q

2
Cl⇢

B
Cl)/2 ⇡ 2 mM. The total bulk volume fraction of

ions is

�B =
⇡�

3

6
2⇢B ⌘ �

3

24�B�2D
=

✓

(0.90 ⇥ 7)3m3 ⇥ 10�30

24(7m ⇥ 10�10)(702m2 ⇥ 10�20)

◆

⇡ 3 ⇥ 10�4
. (II.5.2)
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Table II.1: Figure II.2 PM Results: �WCA/�B = 1/0.5

⌃ �D Ntot �

0
e/kBT

0.0000 9.977 800 0.00
0.0040 9.970 802 0.27
0.0080 10.096 802 0.54
0.0122 10.010 806 0.80
0.0166 9.982 808 1.08
0.0212 10.012 816 1.36
0.0262 9.990 818 1.65
0.0315 9.989 824 1.88
0.0374 9.993 838 2.19
0.0510 10.016 858 2.76
0.0589 10.052 870 3.06
0.0678 10.053 884 3.32
0.0888 9.976 924 3.94
0.1154 9.953 980 4.59

Table II.2: Figure II.2 PM Results: �WCA/�B = 1/1

⌃ �D Ntot �

0
e/kBT

0.0000 9.986 800 0.01
0.0020 10.019 802 0.30
0.0040 9.994 802 0.51
0.0061 10.012 806 0.82
0.0083 10.027 808 1.10
0.0106 9.920 816 1.35
0.0131 9.900 820 1.65
0.0158 9.971 830 1.91
0.0187 9.923 840 2.16
0.0255 9.939 864 2.75
0.0295 9.940 882 2.98
0.0339 9.863 908 3.27

35



Table II.3: Figure II.2 PM Results: �WCA/�B = 2/5

⌃ �D Ntot �

0
e/kBT

0.0000 20.073 800 0.02
0.0004 20.084 806 0.53
0.0008 19.913 816 1.05
0.0013 19.854 838 1.57
0.0019 19.809 870 2.09
0.0026 19.949 914 2.59
0.0034 20.074 972 3.12
0.0044 20.055 1050 3.63
0.0096 20.184 1454 5.17

Table II.4: Figure II.2 PM Results: �WCA/�B = 1/3

⌃ �D Ntot �

0
e/kBT

0.0000 10.004 800 0.00
0.0007 10.002 802 0.28
0.0013 9.951 802 0.59
0.0020 9.953 806 0.86
0.0028 9.943 808 1.10
0.0035 9.999 816 1.38
0.0044 9.967 818 1.65
0.0053 10.005 824 1.94
0.0062 10.012 838 2.18
0.0073 10.024 848 2.46
0.0085 9.999 858 2.73
0.0098 10.045 870 3.00
0.0113 10.004 884 3.28
0.0129 10.036 902 3.55
0.0148 9.966 924 3.84
0.0192 9.865 980 4.41
0.0321 10.038 1128 5.63
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Table II.5: Figure II.2 PM Results: �WCA/�B = 1/5

⌃ �D Ntot �

0
e/kBT

0.0000 10.239 800 0.00
0.0004 10.211 802 0.30
0.0008 10.248 802 0.56
0.0012 10.192 806 0.82
0.0016 10.261 810 1.12
0.0021 10.293 812 1.39
0.0026 10.348 812 1.68
0.0031 10.336 812 1.96
0.0037 10.481 812 2.20
0.0050 10.573 812 2.84
0.0058 10.690 812 3.10
0.0066 10.890 812 3.35
0.0087 11.147 812 3.97
0.0113 11.570 812 4.62

Table II.6: Figure II.2 PM Results: �WCA/�B = 1/7

⌃ �D Ntot �

0
e/kBT

0.0000 9.993 800 0.00
0.0003 10.000 802 0.31
0.0006 10.009 802 0.60
0.0009 9.977 806 0.89
0.0012 10.013 808 1.17
0.0015 10.018 816 1.47
0.0019 10.006 818 1.75
0.0022 10.031 824 2.01
0.0027 9.980 838 2.30
0.0031 9.997 848 2.53
0.0036 10.068 858 2.80
0.0042 10.046 870 3.04
0.0048 10.095 884 3.31
0.0056 10.112 902 3.58
0.0063 10.045 924 3.84
0.0083 9.980 980 4.32
0.0138 10.029 1128 5.37
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Table II.7: Figure II.2 PM Results: �WCA/�B = 1/10

⌃ �D Ntot �

0
e/kBT

0.0000 9.938 800 0.03
0.0002 10.060 802 0.37
0.0004 9.951 802 0.75
0.0006 10.015 806 1.14
0.0008 10.042 808 1.47
0.0011 9.963 816 1.84
0.0013 10.033 818 2.10
0.0016 10.030 824 2.39
0.0019 9.993 838 2.68
0.0022 10.107 848 2.98
0.0026 10.081 858 3.29
0.0029 10.098 870 3.49
0.0034 10.111 884 3.78
0.0039 10.252 902 4.02
0.0044 10.137 924 4.26
0.0058 10.027 980 4.76
0.0096 10.241 1128 5.74

Table II.8: Figure II.3 PM Results: �WCA/�B = 3/0.10

⌃ �D Ntot �

0
e/kBT

0.3848 14.799 1312 4.55
0.2961 14.739 1232 3.57
0.2259 14.872 1162 2.90
0.1964 14.769 1136 2.56
0.1700 14.802 1104 2.25
0.1247 14.847 1066 1.73
0.1051 14.923 1048 1.53
0.0872 14.941 1034 1.27
0.0553 14.939 1016 0.83
0.0268 14.961 1004 0.39
0.0000 15.027 1000 0.00
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Chapter III

Characterizing Di↵use and

Correlated Electric Double Layers

with Finite-sized Ions

In Chapter II, we show all mean-field electric double layers derived within the local-

density framework obey universal self-similar scaling that yield strictly monotonic density

profiles [Giera et al., 2013]. Consequently, planar LDA EDL profiles for a given electrolyte

collapse onto a single, master curve when plotted against “similarity coordinates” that

are a combination of system variables. Without assumptions or considering any specific

LDA model, it is straightforward to analyze empirically or computationally-derived EDL

profiles and derive similarity coordinates directly from free charge density contact value

expressions. The model-free test for applicability of LDAs determines whether the LDA

approach can possibly succeed, but not which LDA is appropriate. Here, we compare
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predictions of several common LDAs against extensive Molecular Dynamics simulations

that incorporate steric interactions.

III.1 Motivation

One of the most important physical interactions to capture is the excluded volume

of ions that arise in ionic EDLs [Bazant et al., 2009]. We use a variant of the Primitive

Model that treats the ions as charged Weeks-Chandler-Andersen [Weeks et al., 1971]

spheres in an implicit solvent. We examine the Bikerman [Bikerman, 1942] (Bik) and

Carnahan-Starling [Bazant et al., 2009] (CS) LDA models that incorporate excess terms

in the chemical potential to account for the finite-size of ions in a continuum solvent.

The Bik-LDA is a long-standing lattice-gas model with an analytical free charge den-

sity [Bazant et al., 2009, Kornyshev, 2007]. It assumes ions occupy a cubic lattice where

the empty sites, which represent solvent, saturate with ions at large applied electrode

charge densities. The CS-LDA adopts the Carnahan-Starling equation of state [Carnahan

and Starling, 1969] that models ions as a structureless hard-sphere fluid. We compare

extensive PM simulations against the Bik- and CS-LDA to illustrate where they work

and explain their breakdown mechanisms.

We find the CS equation of state accurately predicts the measured chemical potential

components from our PM simulations over a wide range of electrolytes and volume frac-

tions in near-bulk regions far from the electrode, whereas the Bikerman model fails at

all but infinitesimal volume fractions. Consequently, the resulting CS-LDA model out-

performs the Bik-LDA when predicting the total capacitance, ideal chemical potential

40



of ions, voltage, and excluded volume chemical potential profiles. Since the LDA frame-

work permits only monotonic density profiles [Paasch and Übensee, 1982, Attard, 1996],

these LDAs fail to capture oscillatory portions of PM EDLs that arise from correlated

ion packing, as could be expected of any LDA. Independent of any specific LDA, we

define a correlation length, `cor, that gives a useful diagnostic of EDL behavior near the

breakdown of LDAs. We examine the PM EDLs to identify the thickness of the corre-

lated region, `cor, beyond which non-local e↵ects are negligible where the general LDA

approach should hold. We then demonstrate where and why these LDAs fail by evaluat-

ing how `cor depends on bulk volume fraction and applied charge density. At distances

farther than `cor from the electrode, the CS-LDA accurately predicts PM EDL profiles

from a wide range of electrode charge densities and bulk volume fractions.

III.2 Computing the Chemical Potential from Prim-

itive Model Electrolytes

We perform 2D periodic MD simulations using LAMMPS [Plimpton, 1995] to compute

Primitive Model electric double layers. The system is maintained at constant temperature

with a Langevin thermostat [Schneider and Stoll, 1978], which approximates the dynam-

ics due to an implicit solvent. Charge-centered WCA ions with characteristic energy

✏WCA = kBT are confined within a distance L between two repulsive walls with uniform

charge density ±⌃, thickness �w, and characteristic energy ✏w = kBT via Eqs. (I.3.28-

I.3.34). We evaluate the Coulomb potential with a PPPM slab Ewald sum [Hockney and
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Eastwood, 1989] with the default accuracy of 10�4. We choose the periodic dimensions

and spacing between the electrodes to exceed all other length scales to be irrelevant to

predicted behaviors. For each PM electrolyte {�B; �B/�D} and surface charge ⌃̃, we

equilibrate O(800-1400) ions for 5 million time steps, then collect 50 thousand snap-

shots over 50 million steps, requiring 50-100 CPU hours per run. We then measure

time-averaged ion densities, voltages, and spatial profiles of the excluded volume excess

chemical potential using Widom insertion [Widom, 1978, Frenkel and Smit, 2001] using

250-500 million total test insertions per simulation.

Unlike local-density approximation EDLs described by Eqs. (I.3.4) and (I.3.6), we

configure the PM to account explicitly for the pairwise interactions in Eq. (I.3.30) that

can give rise to non-mean-field behavior. In molecular simulations, the chemical potential

components can be computed directly and independently using particle coordinates from

PM EDLs. By symmetry, profiles will be uniform in the periodic x- and y-dimensions.

At equilibrium, the reduced ion density at each instant is given by

ñ

i(z̃) ⌘ n

i(z̃)

nB,PM
=

1

nB,PM

±
X

i

�Dirac[z̃ � z̃

i]

A

, (III.2.1)

where A is electrode area, �Dirac is the Dirac delta-function, and the bulk density is

nPM,B =

*

n

±

 

L̃ � 1

2
 z̃B  L̃+ 1

2

!+

. (III.2.2)

is average value in the bulk for all 50 thousand snapshots. At each snapshot, the free

charge density along the z̃-direction is

⇢̃(z̃) ⌘ ⇢

2enPM,B
=

1

2

N i
X

i

q

i
ñ

i(z̃). (III.2.3)
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The instantaneous voltage is calculated using Eqs. (I.3.6) and (III.2.3)

�̃(z̃) ⌘ �� �B

�T

= �1

2

Z z̃B

z̃

 

Z z̃B

z̃

⇢̃(ŝ)dŝ

!

dẑ. (III.2.4)

Equation (III.2.4) is consistent with our convention in Section I.3.1, i.e. �̃(z̃B) ⌘ 0. In

these PM EDL simulations, ions have the same size and electrodes have opposite charges.

Therefore, the average total voltage dropped across either EDL is equal and opposite,

i.e. h�̃i(0) = �h�̃i((L+ 2�w)/�D).

Finally, we can compute the excluded volume chemical potential using Widom inser-

tion [Widom, 1978, Frenkel and Smit, 2001]. For su�ciently large N

±, Eq. (I.3.25) can

be expressed as

⌦

µ̃

i
↵

=
µ

±
⇤ (T ) � µB

kBT
+ ln

⌦

n

i
↵� ln

D

e

��Ũ0

E

, (III.2.5)

which requires ensemble-averaging Boltzmann factors of the change in energy �Ũ

0 =

Ũ(N+1, V, T )� Ũ(N, V, T ) due to a randomly-inserted test ion with charge q0. Compar-

ing Eqs. (I.3.3) and (III.2.5), the rightmost term with �Ũ

0 equals the electrostatic po-

tential and excess chemical potential. In the limit q0 ! 0, Eq. (I.3.27) equals Eq. (I.3.30)

and accounts only for excluded volume – and not electrostatic – contributions to the

chemical potential [Svensson et al., 1991].

Widom insertion is inaccurate in regimes that approach close packing, which is

�HS & 0.64 for hard spheres [Berryman, 1983]. In very dense regions, inserted WCA

test particles will likely overlap multiple neighboring particles so that �Ũ

0 � 1. The

numerical precision needed to ensemble-average exponentially small Boltzmann factors

requires an impractical number of test insertions. Eq. (III.2.5) can thus be used to di-

rectly measure the excluded volume chemical potential µEV,± = µ

EV in non-close-packed

43



regions if the test particle is uncharged. We use these measurements in a variety of

PM EDLs to compare against LDA models for the chemical potential with bulk-like

expressions that only depend on local quantities, such as the packing fraction.

III.3 Results and Discussion

Here, we assess the Bikerman and Carnahan-Starling LDAs that seek to model steric

e↵ects within di↵use regions of the EDL. Thus, LDAs break down wherever ions exhibit

correlations that often occur near highly charged electrodes and/or in very concentrated

regions. Before comparing how e↵ectively the CS-LDA and Bik-LDA capture simulated

PM EDL profiles, we first determine an e↵ective hard ion size as input to these models.

For the Bik-LDA, the lattice spacing is often taken to be the solvation shell diameter

for ions in aqueous EDLs [Kilic et al., 2007b], fit to experimental data [Bazant et al.,

2009], or is assigned by enforcing voltage-dependent expressions to distinguish between

di↵erently-sized cations and anions in the case of ionic liquids [Kornyshev, 2007]. For

the CS equation of state for hard-spheres, Barker, et. al. [Barker and Henderson, 1976]

prescribes an e↵ective hard-sphere diameter �e↵ from the WCA diameter � that we set

in simulation

�e↵ =

Z �

0

h

1 � e

�Ũ
WCA

(r)
i

dr. (III.3.1)

We compute �e↵ from Eq. (I.3.23) to calculate the CS-LDA. The e↵ective size of the

WCA ions we use in our simulations nearly is constant, e.g. �e↵/� = 0.9048 ± 10�5 for

(0.5  �  6.1).
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III.3.1 Di↵use Electric Double Layer Descriptions

Figure III.1 shows CS-LDA and Bik-LDA predictions of excluded volume chemical

potential measurements taken from 343 PM EDL simulations that span weakly and

strongly charged ions. Fig. III.1 also includes values obtained using fully periodic Monte

Carlo simulations of uncharged WCA particles, where electrostatic correlations and wall-

ordering e↵ects are explicitly omitted, in Fig. III.1(a). We evaluate various LDA models

for µ

EV as a function of local packing fraction within three distinct spatial regimes: in

the bulk [Fig. III.1(a)], in the semi-di↵use region located between three and six WCA

ion diameters from the electrode [Fig. III.1(b)], and adjacent to the electrode within

three ion diameters [Fig. III.1(c)]. In all cases, CS-LDA outperforms the Bik-LDA over

all volume fractions, especially in bulk-like regions and at smaller packing fractions. CS

predictions are practically indistinguishable from bulk chemical potential measurements,

provided we use the e↵ective hard sphere diameter given by Eq. (III.3.1). Bik-LDA,

however, consistently under-predicts and disagrees qualitatively even if we use a best fit

with the e↵ective ion size as a free parameter.

Far from the electrode, PM ions interact as they would in a purely homogenous sys-

tem [Fig. III.1(a)]. CS accurately describes bulk-like excluded volume interactions in both

dilute and highly-packed regimes. Closer to the wall, steric contributions cannot be de-

scribed solely from the local volume fraction. In the intermediate region between the bulk

and wall, the PM chemical potential no longer collapses onto CS due to emergent size-

induced correlations at � & 0.40 [Fig. III.1(b)]. Adjacent to the electrode, both LDAs fail

dramatically beyond � & 0.10, where ion ordering is significant at [Fig. III.1(c)]. Con-
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(c)

(a)

(b)

0.08 <�/�D< 2.4

Figure III.1: Local-density approximations for the excluded volume excess chemical po-
tential and Primitive Model measurements from weakly- and strongly-charged electric
double layers 0  ⌃̃  15. (a) Bulk measurements from PM EDLs [markers] and un-
charged WCA particles

⇥

µ

WCA
⇤

collapse onto the Carnahan-Starling LDA
⇥

µ

CS
⇤

when
using the e↵ective hard-sphere diameter from Eq. (III.3.1). The Bikerman LDA

⇥

µ

Bik
⇤

fails at all but infinitesimal volume fractions, even when determining a best fit
⇥

µ

Bik
fit

⇤

with the e↵ective lattice size as a free parameter. (b) Between 3-6 ion diameters from
the electrode, CS fails to capture µ

EV for � & 0.40 due to significant ion ordering. (c)
Adjacent to the electrode, CS works only for semi-dilute volume fractions � . 0.10.
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sequently, we expect the CS-LDA to predict EDL profiles better in uncorrelated regimes

with low to moderate volume fractions and within bulk-like regions.

Figure III.2 presents the same data as in Fig. III.1 in a heat map that shows how

deviations of the excluded volume chemical potential from CS and measured bulk values

vary with local volume fraction and distance from the electrode. Darker colors correspond

to larger deviations from bulk chemical potential expressions. Grey regions could feasibly

be described by a LDA model. Deviations beyond ±3 kBT are removed in order to

give a clearer qualitative picture. Test particle insertions into the valleys (red regions)

would require more energy than if inserted into a homogeneous system at the same local

volume fraction. This physically corresponds to the reduced density between correlated

consecutive layers of ions packed near the surface. Thus, CS cannot account for the

reduced density between adjacent ion layers. Figure III.2(a) shows noticeable di↵erences

above � & 0.15 that exhibit oscillations at higher volume fractions that dampen with

increasing distance. Figure III.2(b) is an analogous plot to Fig. III.2(a) that uses a cubic

spline interpolant of bulk PM EDL measurements as a function of volume fraction instead

of Eq. (I.3.23). The two heat maps are similar, which demonstrates the accuracy of the

CS model. Each comparison exhibits alternating peaks and valleys, which is consistent

with ion ordering in PM EDLs. The bulk chemical potential expressions in Figure III.2

fail to capture significant ion-ion correlations near the electrode.

Having compared Bik-LDA and CS-LDA models with measured excluded volume

chemical potential from PM EDLs of di↵erent ion charges, sizes, and bulk concentrations,

we more closely evaluate these LDAs using a smaller subset of simulations with weakly-

charged ions over a range of applied electrode surface charge densities. We use these
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�3 < µ̃CS(�e↵)� µ̃EV < 3 �3 < µ̃EV
B (�)� µ̃EV < 3

(b)(a)

Figure III.2: Deviations of the measured local chemical potential from CS predictions
(left) and measured bulk values (right) within ±3 kBT for the same data as in Figure III.1.
Blue peaks correspond to the excluded volume of ion layers and red valleys signify the
void space between layers. Excluded volume correlations are significant within oscillatory
regions where LDA models fail.
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simulations to elucidate LDA breakdown regimes as low valence PM EDLs respond to

di↵erent volume fractions and applied field strengths. Since these specific LDAs neglect

electrostatic correlations, we restrict PM EDLs whose ions cannot approach closer than

the Bjerrum length, i.e. �B/� ⌧ 1. Imposing this constraint, we simulate 8 sets of PM

EDLs that di↵er by ion diameter: each with nearly the same bulk volume fraction within

a set, but under 11 di↵erent applied surface charge densities ranging 0  ⌃̃ < 7.1. These

88 simulations have nearly identical Bjerrum lengths �̃B = 0.0068 ± 0.0002 and roughly

constant screening lengths �̄D = 14.6 ± 3%.

Figure III.3 compares the surface charge density versus voltage predictions from the

Debye-Hückel, Gouy-Chapman, Bikerman, and Carnahan-Starling local-density approxi-

mations against the Primitive Model simulation results. For EDLs with finite-sized ions,

the voltage drop across PM EDLs is greater for larger bulk volume fractions at any given

applied charge density. At small voltages and electrode charge densities, all of the LDAs

and PM EDLs collapse onto the linear DH-LDA capacitance. However, the DH, GC, and

Bik-LDAs fail to predict the capacitance for {�̃0, ⌃̃} & 1. Only the CS-LDA accurately

captures excluded volume interactions at increased voltages and bulk volume fractions.

The DH and GC-LDAs, which neglect steric e↵ects, always predict larger capacitances

for PM EDLs with non-zero volume fractions.

The Bik-LDA is better than GC in that it does not predict divergent capacitances.

Instead, it overpredicts the capacitance because the Bikerman excluded volume chemical

potential, Eq. (I.3.19), grossly underestimates measured values for µ̃EV [Fig. III.1(a-c)].

Over the studied range of �B  0.42, the energy required to pack spherical WCA ions

exceeds that of lattice ions. Bikerman counter-ions reach higher concentrations that PM
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Figure III.3: Surface charge density versus total potential drop from 8 sets of PM EDLs
that di↵er in bulk volume fraction. All simulations collapse onto LDA predictions in
the low charge limit {⌃̃, �̃0} ! 0. Beyond �̃0 & 1, Debye-Hückel and Gouy-Chapman
diverges and Bikerman always overestimates the integrated capacitance (⌃̃/�̃0) so only
semi-dilute curves are included for clarity. Carnahan-Starling qualitatively matches PM
capacitance, but consistently gives higher values at increased charge densities and bulk
volume fractions.
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EDLs simulations allow, which in turn leads to greater capacitances at large voltages.

The CS-LDA describes the PM over the range of measured surface potentials for these 8

sets of bulk volume fractions. CS accurately predicts µ̃EV except near the electrode where,

like GC and Bikerman, it underestimates the majority of measured values [Fig. III.1c].

CS thus slightly overestimates the capacitance for strongly charged electrodes ⌃̃ & 5 and

appreciable bulk volume fractions �B � 0.10, which implies that it will underestimate

PM voltage profiles in this regime.

Considering the CS-LDA captures the total capacitance over a wide range of electrode

surface charge densities and bulk volume fractions [Fig. III.3], how well does it describe

spatial profiles for each of the chemical potential components? To address this, we

solve the CS-LDA via Poisson’s Eq. (I.3.6) using Eq. (I.3.24). Figure III.4 compares

CS-LDA predictions with PM EDLs of moderate and large bulk volume fractions. We

truncate the profiles at ten ion diameters from the wall, beyond which the simulated

and CS-LDA chemical potential profiles converge to their bulk values. In accordance

with Figs. III.1-III.3, CS-LDA predictions best-describe PM EDLs with smaller volume

fractions in regions far from weakly-charged electrodes where profiles are observed to be

monotonic. Ideal chemical potentials from simulation exhibit size-induced oscillations,

which cannot be captured by CS or any LDA model. Co-ion densities are exceedingly

small, ñ+ ⇡ exp(�10), near the surface where the CS-LDA is most prone to failure.

The oscillatory region for counter-ions is more pronounced at higher charge densities and

larger bulk volume fractions. As expected from capacitance measurements [Fig. III.3],

the electrostatic potential from CS-LDA is slightly lower than PM profiles.

The CS-LDA qualitatively describes the PM excluded volume excess chemical poten-

51



Figure III.4: Components of the chemical potential from CS-LDA and PM EDL simu-
lations at �̄B = 0.20 [left] and �̄B = 0.42 [right]. Size-induced oscillations within PM
EDLs are less pronounced in the chemical potential profiles of co-ions [first row] than
counter-ions [second row], and are more pronounced at larger electrode charge densities
and bulk volume fraction. The total voltage [third row] dropped across both CS and PM
EDLs increases with bulk volume fraction and electrode charge density due to increas-
ingly significant excluded volume interactions. Measured values for the excluded volume
chemical potential [fourth row] become unreliable in densely correlated regimes owing to
use of the Widom insertion method.
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tial far from weakly-charged electrodes. Closer to the electrode, the CS-LDA overpredicts

measured values as in Figs. III.1 and III.2. PM EDLs with �̄B = 0.20 exhibit oscillations

in µ̃

EV within two ion diameters at large electrode densities ⌃̃ & 2. In PM EDLs with

�̄B = 0.42, Widom insertions are not reliable in dense regions near highly charged ⌃̃ & 3.9

electrodes. WCA ions overlap at the largest electrode surface charge density where the

surface packing fraction is extremely large �0 ⇡ �B exp(2.5)/2 > 1. Figure III.5 gives

snapshots from PM EDL simulations that demonstrate larger ions to overlap more read-

ily as they approach the electrode. EDLs with large packing fractions are prone to ion

layering, which is distinct from di↵use behavior farther from the electrode. The gen-

eral LDA approach, which neglects pairwise ion interactions, would fail to describe these

highly correlated PM EDL regimes.

III.3.2 Characterizing Correlations

There may be correlations that do not manifest oscillations along the spatial axis. For

instance, Monte Carlo simulations of Primitive Model EDLs comprised of point-sized

counter-ions (�B � �) exhibit significant 2-dimensional ordering at strongly-charged

electrodes with discrete or uniform charge densities [Moreira and Netz, 2004]. These

so-called 2D Wigner crystals exist in equilibrium with a di↵use electrolyte far from the

electrode. Despite these highly correlated long-ranged Coulomb interactions, the counter-

ion densities in the z-direction are well-described by monotonic non-LDA models derived

from strong coupling theory [Netz, 2001].

We simulate a limited class of electrolytes with weakly-charged ions. We maintain
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Towards the Bulk �!

�B = 0.42

�B = 0.20

�B = 0.05

z = �w

Figure III.5: Snapshots from PM EDL simulations with distinct bulk volume fractions
and nearly equal surface charge densities ¯̃⌃ = 3.09 ± 0.04 give a qualitative picture of
how the ion layering depends on bulk volume fraction �B = {0.05, 0.20, and 0.42} and/or
relative ion size �̃ = {0.21, 0.33, and 0.42}. The time-averaged profiles of the two largest
PM EDLs [Fig. III.4] reveal oscillations in ion density to be more pronounced at larger
ion sizes.
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Coulomb correlations are negligible by comparison to size-induced correlations for PM

EDLs characterized by �B ⌧ �. In Fig. III.4, ideal and excluded chemical potential

profiles exhibit oscillations and reveal that even weakly-charged PM ions form correlated

layers at the electrode, which grow with increasing applied charge density and bulk

volume fraction. We define correlated EDL regimes in terms of oscillations in free charge

density profiles. Despite these steric correlations, CS-LDA predictions appears to describe

the PM simulations outside of some correlation length `cor.

In principle, one could compare PM to LDA profiles and define `cor wherever devia-

tions exceed some meaningful threshold. However, this estimate for `cor would then be

influenced by whatever LDA and/or subjective criteria were chosen. To elucidate how

`cor depends on the properties of the electrolyte and applied field strength, we determine

`cor from the location where oscillations in ⇢̃ can be attributable only to bulk fluctuations.

Independent of any particular LDA model, we adopt (admittedly subjective) criterion to

develop an algorithm to extract `cor solely from simulated PM free charge density profiles

as described in the Section III.5.

Figure III.6 demonstrates this approach on PM EDLs with a large bulk volume frac-

tion, �̄B = 0.42, for a range of applied surface charge densities. We first generate a quintic

spline interpolant ⇢̃spline from discrete free charge density profiles, each measured at 250

distinct positions. We then compute the numerical derivative to locate all extrema, zN,

by solving d⇢̃spline(zN)/dz = 0. To ascertain whether or not a given z

N is `cor, we identify

the extremum farthest from the electrode that is due to finite-size induced ordering. Ion

layering is evident near the electrode where extrema alternate between peaks and valleys.

In addition, adjacent maxima and minima have O(�) spacing. Farther from the bulk, it
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is less clear if extrema are the result of excluded volume interactions, bulk fluctuations,

or from numerical anomalies in our interpolating function. To determine `cor indepen-

dent from a specific LDA, each extremum is examined as a possible candidate boundary

between di↵use and correlated regimes.

Although a specific LDA model is not used in Fig. III.6, the values for `cor obtained

from the model-free approach appear to capture the spatial regimes where CS-LDA de-

parts from the the free charge density profiles. Admittedly, the algorithm could be refined

by applying additional and/or di↵erent criteria. For instance, zN also can be interrogated

from the wall moving bulk-wards to determine `cor from the average result. It is possible

to establish various thresholds that depend on ⌃̃, �B, or even incorporate additional

information from simulations such as the voltage, excluded volume chemical potential,

total density ñ

+ + ñ

�, or higher derivatives of ⇢̃. In principle, one may take a more op-

portunistic approach and assume a particular LDA model to prime the search; however,

this defeats the original intent to determine `cor purely from the simulation data.

We apply this algorithm to 88 PM EDL simulations of weakly-charged ions with

fixed Bjerrum and screening length [shown previously in Fig. III.3]. We normalize `cor

by ion diameter, which is the only parameter besides ⌃̃ that varies between simulations.

Figure III.7 aggregates these results into a contour plot that succinctly shows PM EDLs

with low ⌃̃ and �B to exhibit negligible correlations, while the thickest correlated regions

correspond to large ⌃̃ and �B. This result corroborates Figs. III.4 and III.6 in that at

any given �B, the correlated layer(s) grow(s) with increasing field strength. PM EDLs

with the largest �B exhibit correlated layers up to seven ion diameters at the highest ⌃̃.

We hypothesize any PM EDL with weakly-charged ions (�B . � . �D) should exhibit
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⌃̃ = 6.4

5.1

3.9
3.5
3.1
2.3
2.0
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1.0
0.49

Figure III.6: A model-free method to determine `cor from simulated PM free charge
densities with �̄B = 0.42. We generate spline interpolants from discrete profiles, find
extrema z

N, and identify `cor by examining deviations of potentially correlated regions
⇢̃(zN � �) from exponential fits of bulk-like regions ⇢̃fit(zN + �). Although `cor appears to
coincide with onset of deviations from CS-LDA profiles, this approach is independent of
CS or any specific LDA.
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Figure III.7: Contour plot of the correlation length measured 88 PM EDLs of constant
Bjerrum and screening length using the algorithm demonstrated in Fig. III.6. The corre-
lated region is observed to grow with increasing electrode charge density and bulk volume
fraction.

similar qualitative trends as in Fig. III.7 as long as electrostatic correlations are mitigated

by ions that are larger than the Bjerrum length.

Having extracted `cor from PM EDLs, we now explore the properties of the correlated

region. Since size-induced oscillations are the result of ion layering, the ion diameter

is the appropriate characteristic length scale for the correlated region. We thus non-

dimensionalize Poisson’s Eq. (I.3.6) by the ion diameter and express the voltage relative

to the surface (as opposed to the bulk) potential
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= �⇢cor. (III.3.2)
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From Equation (III.3.2), we define the reduced correlated free charge density

⇢̃cor ⌘ ⇢cor

2enB

✓

�

�D

◆2

= ⇢cor
�

2

⌃ref�D

. (III.3.3)

We integrate Eq. (III.3.2) once to obtain the correlated surface charge

⌃̃cor ⌘ �⌃cor
�

⌃ref�D

=

Z ˜̀
cor

0

⇢̃cordẑ (III.3.4)

and again to obtain the voltage drop across the correlated region

��̃cor ⌘ �
✓

�cor � �0

�T

◆

=

Z ˜̀
cor

0

 

Z ˜̀
cor

0

⇢̃cor(ŝ)dŝ

!

dẑ. (III.3.5)

The ratio of Eqs. (III.3.4) and (III.3.5) gives the integrated capacitance of the correlated

EDL region.

Figure III.8 shows ⌃̃cor versus ��̃cor on a logarithmic scale to reveal the correlated

EDL capacitance across nearly three decades of computed values. Correlated PM EDL

capacitance is observed to obey a power law, which we determine by fitting data from

all bulk volume fractions. Without fitting, the CS-LDA accurately predicts correlated

regions of semi-dilute, moderate, and highly-concentrated PM electrolytes. Although the

free charge density exhibits oscillations within ˜̀
cor, integrating ⇢̃cor to obtain ⌃̃cor and

��̃cor, which follow CS-LDA.

Since the CS-LDA captures the correlated PM EDL capacitance across a large range

of charge densities, surface potential, and bulk volume fractions, we use it as a benchmark

to quantify non-LDA contribution from the entire PM EDLs. We do not need to know

the correlation length, but instead define the non-LDA free charge density by subtracting

the CS-LDA predictions from the PM profiles

⇢̃nonLDA ⌘ ⇢nonLDA

2enB

= ⇢̃� ⇢̃CS , (III.3.6)
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Figure III.8: Surface charge density versus electrostatic potential dropped across the cor-
related layer of dilute and concentrated CS-LDA and PM electrolytes. CS-LDA captures
the correlated capacitances at each bulk volume fraction. A best fit of data for all bulk
volume fractions reveals correlated PM EDLs to follow a 3/4 power law for nearly three
decades of charge density and surface potential measurements.
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where distance is non-dimensionalized by �D. We integrate ⇢̃nonLDA to obtain the non-

LDA contributions to the electric charge density

⌃̃nonLDA ⌘ ⌃nonLDA

⌃ref

= �
Z z

B

/�
D

0

⇢̃nonLDAdẑ , (III.3.7)

and integrate Eq. III.3.7 to get the non-local electrostatic potential drop for the entire

electrolyte

�̃nonLDA ⌘ �nonLDA

�T

=

Z z
B

/�
D

0

⌃̃nonLDAdẑ. (III.3.8)

Figure III.9 indicates that the minimal variance in the non-local surface charge density

(⌃̃nonLDA . ±0.22) and non-local surface potential (�̃nonLDA . ±0.60) indicate the CS-

LDA to accurately predict the overall capacitance of the PM EDLs.

III.4 Conclusion

In this chapter, we compare predictions from several mean-field local-density approx-

imations of Primitive Model simulations of the electric double layer to elucidate LDA

failure mechanisms. The PM treats ion-ion interactions with pairwise potentials to ex-

plicitly capture ion-ion correlations that LDAs do not. We explore the specific case

of size-induced correlations in which non-LDA ion layering gives rise to oscillatory ion

densities and chemical potentials. We investigate chemical potential profiles from these

models across low and high bulk volume fractions and electrode charge densities. We also

examine spatial free charge densities to determine the boundary, `cor, between correlated

and di↵use EDL regimes. We find the Carnahan-Starling LDA to accurately describe the

di↵use portion of PM chemical potential profiles [Figs. III.1-III.4] at distances beyond
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Figure III.9: Contributions from the non-local surface charge density and electrostatic
potential beyond the Carnahan-Starling local-density approximation do not exhibit a
clear trend. The small values for ⌃̃nonLDA and �̃nonLDA indicate the accuracy of the
CS-LDA predictions of these PM EDL simulations.

62



the correlation length from the electrode [Fig. III.6]. Within the correlated layer, the

free charge density exhibits non-monotonicity that is impossible to describe by any LDA.

Nevertheless, the CS-LDA accurately describes the total capacitance of the correlated re-

gion of PM electrolytes comprised of weakly-charged ions for a wide range of bulk volume

fractions.

III.5 Appendix: Model-free Determination of the

Correlation Length

We develop a model-free test to distinguish `cor from all zN that exploits the scaling of

highly-charged bulk-like EDLs with equi-sized ions, i.e. ⇢̃LDA(�̃ � 1) ⇡ exp
⇣

+�̃� µ̃

EV
⌘

.

We postulate free charge density profiles within di↵use EDLs regimes to follow an expo-

nential decay similar to Debye-Hückel

⇢̃(z ± �z) ⇡ b exp (�z/g) (III.5.1)

across small spatial windows �z ! 0. Although Debye-Hückel is known to fail to describe

free charge densities with finite charge densities, we postulate that Equation (III.5.1)

might describe ⇢̃(z±�z) over very short distances � ⇠ O(�z) provided that we determine

constants b and g by fitting bulk-wards data. To clarify, we examine each candidate

correlation boundary, zN, fit an exponential to the portion of the PM profiles within

one ion diameter towards bulk, and find R

2 � 0.85. We then use ⇢̃fit to compare the

free charge density towards the bulk ⇢̃(zN + �) to the potentially correlated free charge

density portion nearer the electrode ⇢̃(zN � �). More specifically, we compute the root
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mean square in order to quantify deviations between ⇢̃fit and ⇢̃(zN ± �). If we find both a

maxima and minima that exceed five times the RMS, we declare zN to be `cor and do not

interrogate the remaining z

N. If the di↵erence is negligible, we investigate the nearest

extremum that is closer to the electrode. Whenever ⇢̃(zN + �) ⇡ ⇢̃(zN � �) is true for all

z

N, the free charge density is entirely bulk-like and there is no correlation length, which

is likely at low ⌃̃ and �B.
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Chapter IV

Local-Density Approximations of

Electrolytes with Size Asymmetric

Ions

In this Chapter, we explore electric double layer systems comprised of equal-charged

ions with dissimilar size. In Chapter III, we show that the Carnahan-Starling local-

density approximation (CS-LDA) gives surprisingly accurate predictions of the total ca-

pacitance and chemical potential profiles. Motivated by these findings, we examine a

local-density approximation (LDA) based on an extension of the CS equation of state to

account for mixtures of particles that vary in size and concentration derived by Boubĺık,

Mansoori, Carnahan, Starling, and Leland (BMCSL) [Boubĺık, 1970, Mansoori et al.,

1971]. Here we compare the BMCSL-LDA to Primitive Model (PM) simulations of elec-

trolytes that span a range of volume fractions and size ratios. We find the BMCSL-LDA
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predicts PM capacitance profiles when counter-ions are larger than co-ions; however, it

captures neither the capacitance nor the chemical potential profiles when co-ions are

larger than counter-ions.

IV.1 Motivation

Ion size asymmetry is a well-established source of size-induced correlation that results

in oscillatory free charge density profiles [Bazant et al., 2009]. Oscillatory profiles are

often said to signal “overcharging” because ion correlations decrease entropy, causing the

di↵use electric double layer to contract; this in turn attracts more counter-ions than re-

quired to neutralize the surface charge [Guldbrand et al., 1984, Israelachvili, 1992, Hansen

and Lowen, 2000]. Monte Carlo (MC) simulations of electrolytes with asymmetrically

sized hard-sphere ions between planar electrodes exhibit overcharging at small applied

potentials when the counter-ions are smaller than co-ions [Guerrero-Garćıa et al., 2010].

Furthermore, Density Functional Theory and MC simulations of ionic liquids with un-

equal ion sizes show the capacitance of positively and negatively charged electrodes to

exhibit asymmetric maxima. At a given bulk concentration, the capacitance of an elec-

trode peaks at higher values as the size of the counter-ion decreases [Lamperski et al.,

2014].

A variety of models have been proposed to capture the behavior of di↵erently-sized

ions [Bazant et al., 2009]. A contact-value theorem for mixtures of ions has been proposed

that suggests size asymmetry can cause charge separation at the electrode that results in a

non-zero potential at zero charge density [Henderson and Boda, 2009]. However, compar-
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isons to MC simulations reveal the contact-value expression holds only at small electrode

charge densities [Bhuiyan and Henderson, 2011] and also fails at low concentrations [Feng

and Chapman, 2011]. Integral equation theories (IETs) qualitatively agree with the

Gouy-Chapman model for dilute solutions of monovalent ions where short-ranged corre-

lations are negligible [Attard, 1996]. IETs have been shown to capture correlations in

more concentrated systems comprised of asymmetrically-sized ions [Quesada-Pérez et al.,

2003]. IETs make approximations to the Ornstein-Zernike equation [McQuarrie, 1976] to

relate the total and direct correlation functions for solvent (if desired) and ions to their

densities and interaction potentials [Vlachy, 1999, Attard, 1996, Quesada-Pérez et al.,

2003].

IETs demonstrate overcharging caused by ion correlation e↵ects in systems with

monovalent counter-ions smaller than co-ions in a variety of scenarios: with two pla-

nar electrodes [Greberg and Kjellander, 1998, Martin-Molina et al., 2006] or a spherical

macro-ion electrode [Guerrero-Garćıa et al., 2010], multivalent ions with planar [Quesada-

Perez et al., 2004, Greberg and Kjellander, 1998, Martin-Molina et al., 2006] and spherical

[González-Tovar et al., 2004] electrodes, highly concentrated electrolytes [Quesada-Perez

et al., 2004], and highly charged electrodes [Greberg and Kjellander, 1998, Guerrero-

Garćıa et al., 2010]. IETs successfully capture ion density oscillations that results from

correlation e↵ects, which are not possible to describe with local-density approximations.

However, all IETs fail for dilute solutions of multivalent ions [Jimenez-Angeles et al.,

2003, Henderson et al., 1983, Rogde and Hafskjold, 1983] as the species’ radial distri-

bution functions in such systems indicate the formation of dimers, which is a subject of

controversy and suspected to be an artifact of the simplified Ornstein-Zernike equation
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[Henderson et al., 1983]. Additionally, these methods require significant e↵ort to solve

numerically [Attard, 1996, Bazant et al., 2009].

Although LDAs cannot capture oscillatory portions of density profiles, we explore

their ability to describe electrolytes with weakly charged ions of di↵erent size for a range

of concentration, size ratios, and bulk volume fractions. Specifically, we investigate the

Boubĺık, Mansoori, Carnahan, Starling, and Leland (BMCSL) [Boubĺık, 1970, Mansoori

et al., 1971, Hansen and McDonald, 1986] equation of state that accounts for systems

of hard-sphere electrolytes comprised of ions with unequal size. It is a mathematically

convenient expression that has been incorporated into local-density approximations to de-

scribe electric double layer systems with dissimilar ion sizes [Biesheuvel and Soestbergen,

2007, Lue et al., 1999]. The BMCSL-LDA predicts di↵erent capacitance profiles for an-

odes and cathodes for electrolytes with size asymmetric ions [Caprio et al., 2004]. In this

Chapter, we use the BMCSL-LDA to analyze a variety of EDL systems with moderate

volume fractions of asymmetrically sized ions that are weakly- and oppositely-charged.

IV.2 Overview of the BMCSL Local-Density Approx-

imation

The BMCSL equation of state is determined using the virial and compressibility

expansions of mixtures of hard-spheres [Hansen and McDonald, 1986], which are then

combined according to the Carnahan-Starling (CS) EOS. The compressibility equation

is derived from fluctuations in the grand canonical ensemble while the virial equation is

68



obtained by di↵erentiating the logarithm of the configurational integral. These two routes

are identical provided exact forms for the radial distributions of hard-sphere mixtures

are used.

Although there are many ways to approximate the radial distribution function [Mc-

Quarrie, 1976], the BMCSL and CS theories use the Percus-Yevik integral equation [Man-

soori et al., 1971] and Scaled Particle Theory [Boubĺık, 1970] to determine the compress-

ibility factor Z = PV/NkBT from the virial and compressibility routes. The generalized

forms for the compressibility factor Z

c and virial Z

v for a hard-sphere mixture of m

components are given by [Lebowitz and Rowlinson, 1964],

Z

c =
⇥

(1 + � + �2) � 3�(y1 + y2�)
⇤

(1 � �)�3
,

Z
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is determined from the mole fraction of the ith component. Here y1, y2, and y3 are defined

as follows
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⌥ij =
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i

⇥

(�i � �j)
2
/(�i�j)

⇤p
xixj. (IV.2.4)

In the case of single component system �i = �j, the CS EOS for a pure hard-sphere
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system is determined from Equation (IV.2.1) via [Mansoori et al., 1971]

Z

CS =
1

3
(2Zc + Z

v) . (IV.2.5)

which agrees with hard-sphere simulations at volume fractions below close packing �HS .

0.64 [Song et al., 1989]. Z

BMCSL is determined according to Eqs. (IV.2.1)-(IV.2.5) for

the case of unequal ion sizes. The excess chemical potential is derived directly from the

compressibility [Mulero et al., 1999, McQuarrie, 1976]

µex = kBT



Z �
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�
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. (IV.2.6)

We derive a mean-field theory that uses the excess chemical potential for an ion of

size � [Biesheuvel and Soestbergen, 2007] in a system of m = 2 components by solving

Eqs. (IV.2.1)-(IV.2.6) and rearranging to obtain
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(IV.2.7)

where the diameters of big �big and small �small ions and the density of big ñbig and small

ñsmall ions is accounted for by

⇠↵ =
⇡n

B

6

�

ñbig�
↵
big + ñsmall�

↵
small

�

. (IV.2.8)

Equation (IV.2.8) is a function of the subscript ↵ and equals the total volume fraction

of big �big and small �small, i.e ⇠3 = � ⌘ �big + �small.

The BMCSL excess chemical potential is used to express the total chemical potential

of a mixture of ions

µ̃

BMCSL
i =

µ

BMCSL
i � µ

B
i

kBT
= ln ñi + q

i
�̃+

µ

BMCSL
ex (�i) � µ

BMCSL
ex,B (�i)

kBT
. (IV.2.9)
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In practice, Equation (IV.2.9) is solved numerically to determine the free charge density

as a function of electrostatic potential ⇢̃BMCSL(�̃). The free charge density is used in

Eq. (I.3.11) to compute the surface charge density versus electrostatic potential to obtain

the total capacitance. The spatial profiles for the electrostatic potential, ion densities, and

excess chemical potentials are determined by solving Poisson’s Eq. (I.3.6) with ⇢̃BMCSL(�̃).

We provide Mathematica code in Appendix A that follows the procedures outlines in

Chapter I.3.1 to solve the BMCSL-LDA.

Although Eq. (IV.2.7) gives an expression notably more complicated than the CS

model, the limiting cases of the BMCSL excess chemical potential help describe its be-

havior. Equation (IV.2.7) vanishes in the limits of point-sized ions

µ

BMCSL
ex (�big ! �small ! 0) ! 0 , (IV.2.10)

and/or infinitely dilute concentrations

µ

BMCSL
ex (nB ! 0) ! 0 ,

µ

BMCSL
ex (ñbig ! ñsmall ! 0) ! 0 ,

(IV.2.11)

in which case Eq. (IV.2.9) recovers Gouy-Chapman theory. In the limit of point-sized

ions amongst finite-sized ions, Eq. (IV.2.7) gives

µ

BMCSL
ex (�small ! 0) ! �kBT ln (1 � �big) ,

µ

BMCSL
ex (�big 6= 0) ! µ

CS
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(IV.2.12)

In the limit of a nearly pure system where the density of one species is vanishingly small,

Eq. (IV.2.7) gives a similar form to Eq. (IV.2.12)

µ
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µ

BMCSL
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(IV.2.13)
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In systems with m = 1 components where ions have the same size, BMCSL recovers the

Carnahan-Starling excess chemical potential for

µ

BMCSL
ex (�big ! �small) ! µ

CS
ex (�) = kBT

�(8 � 9� + 3�2)

(1 � �)3
. (IV.2.14)

Eq. (IV.2.14) applies to both ion types and is di↵erent than Eqs. (IV.2.12) and (IV.2.13)

in which large and small ions have distinct forms for the excluded volume chemical

potential.

IV.3 Methods

We perform 2D periodic MD simulations using LAMMPS [Plimpton, 1995] to model

Primitive Model electrolytes of cations and anions with equal valence and unequal di-

ameters. As discussed in Chapters I.3.2 and III.2, the system is maintained at constant

temperature with a Langevin thermostat [Schneider and Stoll, 1978], which approximates

the dynamics due to an implicit solvent. Charge-centered WCA ions with characteristic

energy ✏WCA = kBT and diameters �i are confined within a distance L. At the boundaries

are two repulsive walls with uniform charge density ±⌃, thickness �w, and characteristic

energy ✏w = kBT via Eqs. (I.3.28-I.3.34). Since the electrodes are oppositely charged, the

counter-ions to the anode are co-ions to the cathode. Thus every PM simulation gives

two distinct EDLs each with inverse ratios of the counter-ion to co-ion diameter �c/�co.

We determine the ion size to be the e↵ective hard-sphere radius given by Eq. (III.3.1) as

input to Eq. (IV.2.9).

We ensure that any observable spatial correlations in the EDL are due only to excluded

volume e↵ects by enforcing �B < �small in all simulations. We evaluate the Coulomb
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potential with a PPPM slab Ewald sum [Hockney and Eastwood, 1989] with the default

accuracy of 10�4. We choose the periodic dimensions and spacing between the electrodes

to exceed all other length scales so that they are irrelevant to predicted behaviors. For

each PM electrolyte {�B;�B/�D} and surface charge ⌃̃, we equilibrate O(800-1400) ions

for 5 million time steps, then collect 50 thousand snapshots over 50 million steps, requiring

50-100 CPU hours per run. We then measure time-averaged ion densities, voltages,

and spatial profiles of the excluded volume excess chemical potentials using the Widom

insertion method [Widom, 1978, Frenkel and Smit, 2001], with 250-500 million total test

insertions per simulation per ion size.

IV.4 Results and Discussion

Figure IV.1 compares the surface charge density versus voltage predictions from the

Gouy-Chapman and BMCSL local-density approximations against the Primitive Model

simulations of electrolytes, across a wide range of ion size ratios and bulk volume frac-

tions. The voltage drop across PM EDLs is greater for larger bulk volume fractions and

increasingly large counter-ions at any given applied charge density. The capacitance,

which is given by ⌃̃/�̃0, decreases with increasing counter-ion size. At small voltages and

electrode charge densities, all of the LDAs and PM EDLs collapse onto the linear GC-LDA

capacitance. Beyond {�̃0, ⌃̃} & 1, the GC-LDA always fails to predict the capacitance

and the BMCSL-LDA fails to describe EDLs with larger co-ions. The BMCSL-LDA only

captures PM EDLs with �c/�co � 1 across all bulk volume fractions and applied surface

charge densities. This suggests BMCSL-LDA predictions of the simulated electrostatic
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(c)

(a)

(b)

�̄B = 0.05

�̄B = 0.17 �̄B = 0.37

Figure IV.1: Surface charge density versus potential drop of Primitive Model and BMCSL
local-density approximations of electrolytes with di↵erently-sized ions and bulk volume
fractions �̄B = 0.05 (a), �̄B = 0.17 (b), and �̄B = 0.37 (c). All simulations collapse
onto LDA predictions in the linear capacitance regime {⌃̃, �̃0} ⌧ 1. Beyond �̃0 & 1, the
Gouy-Chapman and BMCSL-LDA overestimate the capacitance (⌃̃/�̃0) of PM EDLs
comprised of co-ions that are larger than counter-ions �c/�co < 1. Furthermore, the
BMCSL-LDA predictions worsen as �c/�co ! 0. The BMCSL-LDA captures the PM
EDLs across a wide range of surface potentials, charge densities, and volume fractions
for large ion size ratios �c/�co � 1.
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Figure IV.2: BMCSL-LDA and Primitive Model-derived free charge density [top] and
electrostatic potential [bottom] profiles for an electrolyte comprised of anions half as
large as cations with �̄B = 0.17. At the cathode (a), counter-ions are smaller than co-
ions and the BMCSL-LDA overestimates the free charge density and underestimates the
voltage. At the anode (b), counter-ions, which are larger than co-ions, layer at the anode
under large applied fields ⌃̃ . �1. The BMCSL-LDA capture the free charge density
outside the oscillatory region and the voltage over the entire domain.

potential will be lower for a given surface charge density and the BMCSL free charge

density will be larger than PM values when co-ions are larger than counter-ions.

The BMCSL-LDA captures the total capacitance for PM EDL systems over a wide

range of electrode surface charge densities and bulk volume fractions [Fig. IV.1] in cases

with co-ions that are smaller than counter-ions, but not for �c/�co < 1. Considering this,

how well does it describe spatial profiles for each of the free charge density, voltage, and

chemical potential components? Figure IV.2 compares BMCSL-LDA profiles from the

cathode and anode for a single PM EDL simulation with a moderate bulk volume fraction
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[shown in Fig. IV.1(b)]. At the cathode, co-ions are twice as large as counter-ions, where

the BMCSL-LDA gives inaccurate predictions of the PM values. We truncate the profiles

at fifteen ion diameters from the wall, beyond which the simulated and BMCSL-LDA

and PM profiles converge to their bulk values. In accordance with Figure IV.1, BMCSL-

LDA predictions best-describe PM EDLs with large �c/�co ratios and in regions far from

weakly-charged electrodes where profiles are observed to be monotonic.

In Figure IV.2(a) for EDLs with �c/�co = 0.5, the BMCSL-LDA gives slightly larger

values for the PM free charge density for nonzero cathode charge densities. Also, the

PM electrostatic potential profiles are slightly larger than BMCSL-LDA predictions for

surface charge densities ⌃̃ & 1.9. At the cathode, larger counter-ions layer at the electrode

where the free charge density profiles exhibit overcharging as far out as ⇠ 5�c at the most

strongly applied charge densities. Beyond this layering, the BMCSL-LDA accurately

captures the data. The electrostatic potential profiles agree over the entire anodic region.

Comparing Figs. IV.2(a) and (b), the BMCSL-LDA performs better large ions outnumber

small ions in highly concentrated regions. Therefore, BMCSL more accurately describes

EDLs where counter-ions are larger than co-ions.

Figure IV.3 details the ideal and exclude volume chemical potential profiles for the

PM EDL shown in Fig. IV.2 with �̄B = 0.17. Fig. IV.3(a) shows the cathodic profiles

(�co = 2�c) are poorly described by the BMCSL-LDA. The BMCSL-LDA only captures

the co- and counter-ion ideal chemical potentials in the bulk region beyond ⇠ 10�c.

The ideal chemical potential of PM co-ions is grossly underestimated, e.g. at ⌃̃ = 3.6,

the predicted ideal co-ion chemical potential at the surface is ⇠ 150 times smaller than

the simulated values and the disagreement is worse at larger ⌃̃. The PM counter-ion
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Figure IV.3: Chemical potential profiles from the BMCSL-LDA and Primitive Model of
EDLs with large co-ions (a) and large counter-ions (b) [same simulations as in Fig. IV.2
with �̄B = 0.17]. The BMCSL-LDA only describes the ideal chemical potential [first row]
of co-ions that are smaller than counter-ions. The ideal chemical potential of counter-
ions [second row] is captured by the BMCSL-LDA, except where ions layering occurs
near highly-charged electrodes |⌃̃| & 1. EDLs with larger counter-ions exhibit more
pronounced oscillations in both the ideal counter-ion and excluded volume chemical po-
tential of co-ions [µ̃EV

co , third row]. The BMCSL-LDA grossly overestimates µ̃EV
co in each

simulation. The excluded volume chemical potential of counter-ions [µ̃EV
c , fourth row]

collapses onto BMCSL-LDA predictions only for EDLs with larger counter-ions. The
BMCSL-LDA overestimates µ̃

EV
c for EDLs smaller co-ions and also predicts a shallow

minimum between 8 and 12�c that is not present in the PM profiles.
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ideal chemical potential exhibits oscillations within ⇠ 1�c at cathodic charge densities

⌃̃ & 3.1, which the BMCSL-LDA cannot describe. Outside of the non-monotonic regime,

the BMCSL-LDA qualitatively matches the simulated profiles, but gives slightly higher

values for all ⌃̃ within ⇠ 10�c. BMCSL-LDA overestimates the counter-ion profiles and

underestimates the co-ion densities, which suggests why the BMCSL-LDA over predicts

the free charge density in Figure (IV.2).

The BMCSL-LDA does not describe the co- and counter-ion excluded volume chem-

ical potential profiles within . 13�c from the cathode where counter-ions are smaller.

The BMCSL-LDA completely misses the non-monotonicity exhibited by the simulated

excess chemical potential of profiles co-ions. The excess chemical potential of PM co-ions

is at least an order of magnitude lower than BMCSL-LDA predictions. BMCSL-LDA

also does not qualitatively describe the counter-ion excess chemical potential, especially

at the largest surface charge density, where it instead predicts slight non-monotonic

behavior between 8 and 12�c. In the PM simulations, smaller counter-ions concentrate

⇠ exp(2)/ exp(�5) ⇡ 1000 times more at the electrode than do larger co-ions. In regimes

where the large species is dilute and the small species is concentrated, the BMCSL-LDA

, which assumes a homogenous mixture, misses the excluded volume chemical potential

of both species and overestimates µ̃EV
co (= µ̃

EV
big ) and underestimates µ̃EV

c .

Fig. IV.3(b) shows the anodic chemical profiles where co-ions are smaller than counter-

ions (�c = 2�co). Although the BMCSL-LDA underestimates the ideal co-ion chemical

potential at �⌃̃ & 1, it qualitatively matches the behavior of PM simulations. The

BMCSL-LDA captures the PM ideal counter-ion chemical potential beyond & 5�c, where

the simulations exhibit oscillations. The counter-ion ideal chemical potentials of the PM
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and BMCSL-LDA agree beyond the oscillatory region. Beyond the linear limit ⌃̃ & 1,

the co-ion density is exponentially small and thus the free charge density is dominated by

counter-ions. Thus, although the BMCSL-LDA underestimates the ideal co-ion chemical

potential, the BMCSL-LDA still is able to predict the free charge density of EDLs with

larger counter-ions in Figure (IV.2). The excess chemical potential of co-ions is poorly

described for non-bulk regions and the BMCSL-LDA grossly overestimates the measured

values. Although the excluded volume chemical potentials predictions of co-ions are o↵

by as much as four times at the highest charged anode, the counter-ion profiles are well

described by the BMCSL-LDA. In regimes where the large species is concentrated and

the small species is dilute, the BMCSL-LDA accurately describes the excluded volume

chemical potential of the small species and overestimates that of the big species.

Figures (IV.2) and (IV.3) show the BMCSL model to completely miss regimes where

small ions outnumber large ones and only capture the excluded volume chemical potential

of concentrated regions populated mainly by large particles. In Figure IV.4, we observe

the discrepancy between BMCSL predictions of the excluded volume chemical potential

for big and small particles in systems with fixed bulk volume fraction as a function of

particle size ratio and relative concentration of big particles. To do this, we employ

the Widom insertion method to measure µ̃

EV
big and µ̃

EV
small from a series of fully periodic

MD simulations of uncharged WCA particles where electrostatic correlations and wall-

ordering e↵ects are explicitly omitted. An additional benefit is that these simulations

require . 10% the computational expense of the PM EDL simulations that require Ewald

summations to account for Coulombic ion-ion interactions.

Fig. IV.4 shows the BMCSL to give accurate predictions in limit of indistinguishable
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(a) (b)

Figure IV.4: Deviations of BMCSL equation of state predictions of the chemical potential
of fully periodic systems of uncharged asymmetrically-sized WCA particles at fixed bulk
volume fraction �B = 0.05 (a) and �B = 0.20 (b). BMCSL fails to capture the chemical
potential of both big [top] or small [bottom] particles outside of the single-component
regime, �big/�small = 1, that is well captured by the Carnahan-Starling equation of state.
The BMCSL model captures the excess chemical potential in the limit of nearly pure
systems: Nbig/Ntot ! 1 for big ions or Nbig/Ntot ! 0 for small ions. The disagreement
is worse at small concentrations of big particles and at larger bulk volume fractions.
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particles (�big ! �small) where it recoups the CS model as described in Eq. IV.2.14.

In the limit of a nearly pure system for systems with unequal particles sizes described

by Eq.(IV.2.13), the BMCSL model only captures the excess chemical potential of the

dominant component. In this nearly pure limit, however, the discrepancy is the worst

for the minority component. The BMCSL predictions are slightly better for smaller

particles and at lower volume fractions for the entire range of relative concentration of

large particles. Overall, the BMCSL excess chemical potential is only accurate for the

majority component in nearly pure systems or in the limit of indistinguishable particles

where it predicts the CS form for both species.

In Figures IV.2-IV.4, we find the BMCSL-LDA does not describe the total capacitance

nor spatial profiles of the chemical potential components in regions where large ions are

outnumbered by small ions. The BMCSL-LDA appears to fail to predict electric double

layer behavior for electrolytes with co-ions that are smaller than counter-ions. Can

we develop a more suitable model within the LDA framework that improves upon the

BMCSL excess chemical potential?

To determine if the LDA approach can possibly describe EDLs with smaller co-ions,

we can apply the model-free test for LDA EDL behavior discussed in Chapter II.2. In

order for the general LDA approach to hold, EDL profiles from a given electrolyte must

collapse when plotted along a similarity coordinate

S = ⌃̃ exp

 

�z̃ �
Z ⌃̃

0

"

1

⇢̃(0, ⌃̂; ...)
+

1

⌃̂

#

d⌃̂

!

. (IV.4.1)

Equation (IV.4.1) requires an expression for the contact value ⇢̃(0, ⌃̂; ...) that captures all

the data. One can investigate whether a ⇢̃(0, ⌃̂; ...) will collapse measured EDL profiles
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by parametrically plotting free charge density along the e↵ective charge density

⌃̃(z̃) ⌘ ⌃(z/�D)

⌃ref

=

Z z̃

0

⇢̃dẑ. (IV.4.2)

In Figure IV.5, we investigate PM EDL profiles with �co = 2�c and �̄B = 0.17, para-

metrically plot ⇢̃(z̃) versus ⌃̃(z̃), and find no suitable ⇢̃(0, ⌃̂; ...) exists. Excluded volume

e↵ect cause oscillations in the free charge density that prevent the overall collapse of the

data. We include BMCSL-LDA predictions to show that it also does not describe all the

PM EDLs. Since there is not a form for ⇢̃(0, ⌃̂; ...) that captures all of the simulations,

we must investigate alternative non-LDA approaches in an attempt to describe EDLs

with co-ions are larger than counter-ions.

IV.5 Alternative Non-LDA Electric Double Layer Mod-

els

There are a variety of compressibility expressions for hard-sphere systems [Mulero

et al., 1999] that can be tried in attempt to improve upon the BMCSL approach; how-

ever, they must be benchmarked against experimental data or simulation to be certain

of their accuracy [Henderson and Boda, 2009]. The BMCSL EOS has been compared

to CS predictions of vapor-liquid equilibria [Dimitrelis and Prausnitz, 1986] for a variety

of mixtures of non polar spherical molecules that di↵er in molecular size, e.g. neon/ar-

gon, argon/neopentane, methane/n-decance, etc. Although BMCSL outperforms the CS

model for �big & 2�small, the BMCSL EOS overestimates the pressure at a given compo-

sition for all of the experimental systems at every temperature and especially at higher
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�

BMCSL

Figure IV.5: Contact value expressions ⇢̃(0, ⌃̃) for Primitive Model and BMCSL electric
double layers with �̄B = 0.17. PM EDLs collapse onto BMCSL contact value expressions
only in the low charge limit ⌃̃ ! 0 and/or in the bulk ⇢̃ ! 0. The general LDA approach
is not suitable wherever the PM EDL profiles do not collapse.
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concentrations. MC simulations of hard spheres show the performance of BMCSL con-

tact value predictions to drop significantly for dilute solutions of large particles, also for

cases where �big & 2�small [Feng and Chapman, 2011]. BMCSL estimates of the pressure

of MC simulations of three component hard-sphere mixtures were five times lower than

numerical error [Hansen-Goos and Roth, 2006]. Considering the deficiencies of the BM-

CSL model reported in the literature and apparent inability of LDAs to describe EDLs

with smaller co-ions [Fig. IV.5], we briefly discuss alternative non-LDA EDL models that

do not rely solely on the BMCSL EOS.

Density Functional Theory (DFT) is a computational integral equation technique that

has been extensively tested against bulk and inhomogenous hard sphere systems [Roth,

2010]. The essential task of DFT is to determine a functional for the Helmholtz free

energy, ⌦, that can be expressed as a functional of the density distribution, ⌦ = ⌦[⇢(r)],

of particles that comprise that system. Furthermore, the equilibrium density profile,

⇢0(r), is determined as that which minimizes the functional: ⌦[⇢(r) 6= ⇢0(r)] > ⌦[⇢0(r)].

Therefore, by fully minimizing the free energy functional one obtains the thermodynamic

properties of the system via ⌦ and the structure of the system in the form of ⇢0(r) [Roland,

2006].

A popular extension of DFT is called Fundamental Measure Theory that can ac-

curately describe mixtures of hard-sphere systems. Fundamental Measure Theory is a

non-local approach that uses weighted densities to account for behavior within inhomo-

geneous systems [Bazant et al., 2009]. These “weighted density approximations” (WDA)

are then used within chemical potential expressions to more accurately account for pack-

ing e↵ects between di↵erently-sized particles [Roth, 2010]. WDAs have been used to
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develop electric double layer models that require solutions to non-linear integral equa-

tions to obtain ion distributions and voltage profiles. LDAs have been shown to fail where

WDAs succeed in describing planar EDL systems comprised of equal [Patra and Ghosh,

2002, Wang et al., 2011] and asymmetric [Gillespie et al., 2005] ions, and in colloidal

systems [Antypov et al., 2005] that exhibit overcharging. These approaches, which go

beyond the LDA assumptions, may be required to properly describe the detailed structure

of concentrated EDLs with excluded volume e↵ects.

IV.6 Conclusion

We find the BMCSL-LDA accurately predicts the integrated capacitance across a

wide range of applied surface charge densities, electrostatic surface potentials, and bulk

volume fractions only when the counter-ion size is greater or equal to the co-ion. The

BMCSL-LDA slightly underestimates the free charge density and voltage profiles when

�c/�co < 1, but captures these quantities outside of regions where larger counter-ions layer

at highly charged electrodes. Overall, the BMCSL-LDA is a poor descriptor of ideal and

excluded volume chemical potential component profiles for EDLs with co-ions larger than

counter-ions. BMCSL predictions of excluded volume chemical potential measurements

of bulk systems of di↵erently sized WCA particles reveal the BMCSL model to only

describe nearly pure systems characterized by infinitesimal concentrations of one species

or indistinguishable particles in the limit where BMCSL recovers the Carnahan-Starling

EOS. We probe PM EDL profiles with �co = 2�co and �̄B = 0.17 and find that no contact

value expression collapses the simulation data. By self-similarity scaling arguments, we
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determine alternative non-LDA modeling techniques are required to accurately describe

size asymmetric PM EDLs where co-ions are the smaller species.
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Chapter V

Conclusions

V.1 Implications

In Chapter II, we developed a general and powerful formalism to identify and elu-

cidate LDA behavior in EDLs that follows from a remarkably simple observation: in

any LDA, an ion does not know where the interface is located. Without assumptions,

our approach enables one to analyze planar EDLs and determine directly from contact

value expressions whether any LDA can possibly succeed, without considering any spe-

cific LDA models. If a LDA will work, measured profiles of the free charge density for

many di↵erent electrolyte systems will collapse onto a single, master curve as a function

of an intrinsic, derivable similarity variable. Where measured EDL profiles do not col-

lapse onto a similarity variable, the test reveals the boundaries of LDA feasibility space,

beyond which more sophisticated treatments capable of addressing correlation e↵ects are

needed. Our model-free approach is broadly applicable, and will be valuable in assessing

potential LDA behavior in more general electrolytes, e.g. where finite-sized e↵ects (as
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discussed in Chapters II and III), solvation e↵ects, emergent electrostatic correlations,

and/or discrete interfacial charges play an important role.

It is straightforward to apply this model-free approach to much more general elec-

trolytes. The simplest extension would involve asymmetric electrolytes – with two or

more ion species of di↵erent size (as discussed in Chapter IV) and/or valence. In that

case, one can anticipate that some µ

ex
± (�±) [Biesheuvel and Soestbergen, 2007], analo-

gous to µ

ex
CS for equi-sized ions, could be found to work in a trial LDA. No obvious µex

± ,

however, exists for less straightforward electrolytes – e.g. measured or computed with

explicit solvent and specific chemical force fields. Nonetheless, our model-free test will

immediately reveal whether any LDA can be found that captures such EDL behavior.

Similarity variables from distinct LDAs have distinct functional forms. For exam-

ple, SGC (which collapses point-like EDL profiles) diverge, whereas SCS (which collapses

semi-dilute EDL profiles) do not. Any di↵erence in S observed between anodic and ca-

thodic EDLs immediately reveals anions and cations to have unequal size and/or valence.

Indeed, these model-free similarity-variables may serve as “fingerprints” specific to that

particular electrolyte. Our approach is broadly applicable to EDL profiles from simula-

tions, x-ray reflectivity measurements, etc., and will be valuable in assessing potential

LDA behavior in more general electrolytes, e.g. where solvation e↵ects, discrete inter-

facial, and/or electrostatic and excluded volume correlations charges play a significant

role.

In Chapter III, we explore the specific case of size-induced correlations in which non-

local ion layering gives rise to oscillatory free charge densities. We also examine spatial

free charge densities to determine the boundary between correlated and di↵use EDL
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regimes, `cor. We illustrate a model-free technique in Fig. III.6 to extract the correlation

length by identifying the boundary where oscillations the PM EDL charge density profiles

are due to bulk fluctuations versus excluded volume e↵ects. We apply this method to a

series of PM EDL simulations and can map the thickness of the correlated region as a

function of bulk volume fraction and electrode charge density [Fig. III.7]. In principle, a

variant of this approach could be applied to characterize empirically derived ion density

profiles. With this information, an empirical description of the correlation length as

a function of electrode charge density and bulk volume fraction could help to interpret

broad classes of electrolytes and/or ionic liquid systems. When electrostatic contributions

also become relevant, we may be able to define a correlation length; however, we explore

only systems where finite-sized e↵ects contribute to correlations.

Models that predict the location where correlations begin may provide reasonable

estimates for deciding what regimes to model using rapidly solvable LDAs versus where

more detailed analysis is required. Extrapolating these results to experimental systems,

chemically specific e↵ects may be constrained to some region near the interface that is

analogous to correlated regimes within highly-charged and/or concentrated PM EDLs.

This could help to interpret x-ray reflectivity, neutron scattering, or other experimental

probes of EDL systems. As photons or neutrons are reflected, they scatter in di↵erent

directions with a probability proportional the squared amplitude. When the di↵raction

signals are counted, information about the relative phases is lost. The well-known “phase

problem” does not allow a unique determination of ion density profiles. Thus, a common

practice is to construct a model for n

±(z) from physical and chemical considerations,

calculate a structure factor from this guess, and make iterative adjustments until the
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model reproduces reflectivity data [Sloutskin et al., 2005]. In the case of molecular

dynamics [Luo et al., 2006] and Monte Carlo simulations that are used to compute

guesses for n±(z), considerable computational expense could be saved by combining the

di↵use and correlated descriptions.

In Chapter IV, we explore LDA and PM simulations of EDL for electrolytes comprised

of di↵erently-sized ions. Specifically, we investigate the Boubĺık, Mansoori, Carnahan,

Starling, and Leland-LDA (BMCSL-LDA) [Boubĺık, 1970, Mansoori et al., 1971] that

is derived from an extension of the Carnahan-Starling equation of state. We use the

BMCSL-LDA to analyze a variety of EDL systems with moderate volume fractions of

asymmetrically sized ions that are weakly and oppositely charged. We find the BMCSL-

LDA predicts PM EDL behavior when the counter-ions are larger than co-ions. We

briefly discuss a variety of non-local approaches that go beyond the LDA assumptions in

order to obtain detailed descriptions of asymmetric EDL systems.

V.2 Future Directions: Primitive Models and Local-

Density Approximations of Solvent E↵ects

The mean-field local density approximations and Primitive Models of the electric

double layer that we have discussed assume implicit solvent electrolytes comprised of

ions in a continuum. In real EDL systems, solvent has structure and its ability to solvate

ionic species and participate in neutralizing electrode surface charge drastically influences

ion concentration profiles [Israelachvili, 1992]. There are a variety of promising modeling
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approaches to treat solvent interactions within electrolytic systems; however, no model is

universally accepted [Maginn and Elliott, 2010]. The choice of a suitable method involves

a trade o↵ between computational expense and accuracy amongst the myriad of available

theoretical and computational techniques.

Explicit solvent models of aqueous electrolytes often treat ions as charge-centered par-

ticles and solvent as neutral particles, possibly with attractive ion-ion, ion-solvent, and

solvent-solvent interactions. The simplest approach that captures non-trivial ion-solvent

interactions is a variant of the Primitive Model. The Solvent PM includes additional

uncharged particles that represent solvent and charged-centered particles that represent

ions. Adaptations to the Solvent PM may replace hard- or WCA-spheres with Lennard-

Jones particles to treat van der Walls-like e↵ects. The Solvent PM is a relatively less

computationally less expensive compared to other models that use force fields character-

istics specific to a particular electrolyte system. A prominent molecular solvent model

treats water as a rigid triangle with simple point-charges (SPC) that is parameterized

using empirical data [Burt et al., 2014, Berendsen et al., 1987]. Molecular Dynamics sim-

ulations of aqueous EDLs that use a SPC solvent show solvated ions to layer at the both

charged and uncharged electrodes causing density oscillations [Crozier et al., 2000, Spohr,

1998, Spohr, 2002]. In addition, explicit water simulations with asymmetrically-sized ions

demonstrate that smaller ions tend to acquire rigid solvation shells, which prevents sur-

face adsorption and results in di↵erent density profiles at the anode and cathode [Spohr,

1998, Spohr, 2002].

A natural extension of this work involves understanding the key solvation features of

a model electrolyte without the complexities (and computational di�culties) of treating
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water itself. For example, it is straightforward to modify the PM molecular simulation

input files used in this thesis [Appendix B] by adding uncharged particles into the sim-

ulation. However, these Solvent PM simulations require at least ten times the particles

of implicit solvent models to explore electrolytes with reasonable bulk volume fractions,

�B & 0.65. Since the computational expense scales as O(N2), we are motivated to find a

simpler model system that contains su�cient, nontrivial, and relevant physics to explore

an extensive range of EDL behavior.

We now present novel three component LDA models that seek to address a variety of

non-ideal solvent interactions within the EDL. To do this, we assume chemical potential

models for finite-sized anions, cations, and neutral solvent species
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S) ⌘ 0 ,

µ̃

S =
µ

S � µ

S
B

kBT
= ln ñS + µ̃
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(V.2.1)

In the limit of point-sized solvent particles µ̃

S
ex ! 0, the solvent does not interact with

ions and behaves like a ideal gas

µ̃

S = ln ñS ⌘ 0 , (V.2.2)

with uniform concentration ñ

S = 1. If we then assume equi-sized ions to obey the

Carnahan-Starling equation of state, Equation (V.2.1) returns the CS-LDA that describes

the electrolyte as a homogeneous mixture of charged hard spheres in a vacuum. In the

limit of point-sized ions µ̃±
ex ! 0 in a finite-sized solvent, the total ion chemical potential

is given by the BMCSL-LDA for vanishing small to large particle size ratios given by
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Eq. (IV.2.12). In the ideal limit where all species are point-sized, Eqs. (V.2.1) returns

GC-LDA described by Eq. (I.3.14).

One might model the Solvent PM by assuming the CS excess chemical potential for

all species µ̃

i
ex = µCS,ex[�] in Eq. (V.2.1). In this regime, the Solvent-LDA describes a

homogeneous system of equal-sized charged and uncharged hard-spheres. Following the

general procedure outlined in Chapter I.3.1 to solve a LDA model, we determine the free

charge density of ions in a LDA solvent:

⇢̃CS�Solvent ⌘ ⇢CS�Solvent

2eI
=

1

2I

±
X

i

n

i
q

i exp
⇣

�q

i
�̃� µ̃CS,ex[�]

⌘

, (V.2.3)

which depends on the local volume fraction of all three species
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i(r) ⌘ �+ + �� + �S
. (V.2.4)

We insert Eq. (V.2.3) into Eqs. (I.3.6) and (I.3.11) to compute the surface charge density

versus potential curves and density profiles.

Figure V.1 shows the integrated capacitance and density profiles for Solvent-LDA

EDLs in three distinct regimes: equal and finite-sized species (CS-Solvent), point-sized

solvent with finite-sized ions (CS-LDA), and point-sized ions and solvent (GC-LDA).

Preliminary results from these predictions suggest the total capacitance to increase with

the volume fraction of hard-sphere solvent. This agrees with Solvent Primitive Model sys-

tems that demonstrate an increased capacitance as the concentration of solvent particles

increases [Boda et al., 1998, Boda et al., 2000, Boda and Henderson, 2000]. Comparing

the CS-LDA and CS-Solvent LDAs, the counter- and co-ion concentrations are larger

when the excluded volume of the solvent is treated. Excluded volume interactions within

highly concentrated regions cause the solvent density to deplete near the electrode.

93



Figure V.1: Solvent-LDA predictions of surface charge density versus electrostatic poten-
tial drop [left] and ion and solvent density profiles [right]. In the the linear capacitance
regime {⌃̃, �̃} ! 0, all LDAs converge onto the GC-LDA (dotted) that describes point-
sized ions �±

B ! 0 and solvent �S
B ! 0. Beyond the low charge limit {⌃̃, �̃} > 1, the

GC-LDA diverges whereas LDAs that describe equi-sized ions with �+
B + ��

B = 0.15
predict larger capacitances for finite-sized solvent with �S

B = 0.50 (solid, Solvent-LDA)
compared to assuming the solvent to be point-sized (dashed, CS-LDA). At a fixed surface
voltage �̃0 = 7, counter-ion densities are largest in the GC-LDA model and smallest in
the CS-LDA. Co-ion densities are lowest in the CS-LDA and largest in the GC-LDA.
Near the electrode, the Solvent-LDA predicts a depleted region of solvent density that
converges to the bulk value within ⇠ 4�D.

94



Solvent and ion species interact through both excluded volume and van der Waals

forces within real electric double layer systems. To account for solvation interactions

within our LDA model, we might express the excess Helmholtz free energy due to solva-

tion interactions AS
ex per volume V as

A

S
ex ⌘
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i

N

i
w
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= N
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+N

�
w
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S
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, (V.2.5)

where the number of ions N i of type i interact with N

S solvent molecules with solvation

interaction energy w

i. The solvation energy could be parameterized from the Born ion

solvation energy or the characteristic energy scale of Solvent PM electrolytes that include

attractive interactions. Negative values correspond to attractive interactions and w

i = 0

represents a hard-sphere system. One might assume the solvent equally solvates the ions

w

i = w

±.

The excess chemical potential due to solvation is determined from Eq. (V.2.5)
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to obtain the reduced solvent-ion interactions
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and solvent-solvent interactions

µ̃
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Eqs. (V.2.7) and (V.2.8) and the CS excess chemical potential can then incorporated into

Eq. (V.2.1) to account for electrolytes comprised of charge-centered hard cores that are

solvated by uncharged hard spheres.
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Another important interaction to account for when modeling electrolytes is the di-

electric response of a polarizable solvent [Bazant et al., 2009]. To address dielectric

saturation, a theory based on the Poisson-Boltzmann equation was posed that intro-

duced a field-dependent permittivity [Grahame, 1950]. Another approach involves the

Dipolar Poisson-Boltzmann equation (DPBE), which has been developed to explicitly

capture features of a dipolar solvent within the mean-field LDA framework [Abrashkin

et al., 2007]. The DPBE is derived by assuming that each molecular dipole has a fixed

magnitude p0 and that ions can be either point-sized or behave as a Bikerman lattice gas.

Solutions to the DPBE predict an increase in the permittivity in EDL regions near the

electrode, which disagrees with empirical findings [Bazant et al., 2009]. It also permits

unphysical large concentrations near the electrode [Abrashkin et al., 2007].

One might attempt to account for size-e↵ects by assuming an electrolyte comprised

of monovalent hard-sphere ions within a dipolar solvent confined between two oppositely

charged plates separated by distance L. If one assumes the excluded volume e↵ects are

described by the Carnahan-Starling equation of state, the modified form of the DPBE is

given by

� d2
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where the function G(u) = cosh u/u � sinh u/u2 is related to the Langevin function

L(u) = coth u � 1/u by G = (sinh u/u)L. The boundary condition at the z̃ = 0 charge

plane is

� d�̃(0)

dz̃
=

p0

e�D

✓

n

S
B

n

±
B

◆

G
"

p0

e�D

d�̃(0)

dz̃

#

+ ⌃̃ , (V.2.10)
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and at z̃ = L/�D is

� d�̃(L/�D)

dz̃
=

p0

e�D

✓

n

S
B

n

±
B

◆

G
"

p0

e�D

d�̃(L/�D)

dz̃

#

� ⌃̃. (V.2.11)

Equations (V.2.9)-(V.2.11) account for hard-sphere interactions amongst charged ions

and hard-sphere solvent dipoles. However, one may also account for van der Waals

interactions by incorporating models for the excess chemical potential due to solvation

as in Eqns. (V.2.7)-(V.2.8).

Using these simple, yet physically intuitive Solvent-LDAs alongside complementary

Solvent Primitive Model simulations, we can begin to address the following questions:

• How does the capacitance and equilibrium density and chemical potential profiles

respond as we vary the size and concentration of solvent?

• How do these model electrolytes respond when ions preferably solvate one ion versus

the other, i.e. w+
< w

i?

• How do these model electrolytes respond to a polarizable solvent?

• How do the Solvent-LDA and Solvent PM compare to each other? Can simple

models capture the essential physics without the computational expense?

• Can we develop improved LDA models using simulation results from Solvent PM

or more molecularly detailed solvent models?

• How well do LDA similarity coordinates collapse empirically derived EDL profiles?

• Can we rationalize specific ion-ion or ion-solvent systems in order to develop im-

proved models that describe actual EDL systems?

In this dissertation, we have shown the venerable LDA modeling approach to provide

simple, yet qualitatively accurate descriptions of electric double layers. We illustrate that
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it is possible to reveal the feasibility space of LDA models and to develop more suitable

LDA chemical potentials that are specific to experimentally-interesting regimes. In ad-

dition to what we have shown here, numerous scientific e↵orts have demonstrated LDA

models to accurately describe and engineer a variety of electrochemical systems: ionic

liquids, aqueous electrolytes, asymmetric electrolytes comprised of ions with di↵erent size

and/or valence, electric double layer capacitors, and capacitance desalination devices.
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Appendix A

General Local-density

Approximation Solver Source Code

Below we provide source code that can be used to solve general local-density ap-

proximation models using both numerical and analytical techniques. We provided de-

tailed solutions of the Bikerman, Carnahan-Starling, and BMCSL asymmetrically-sized

ion models. We also show how to numerically compute similarity variable from the CS

model, i.e. SCS. Although we chose to write this code using Mathematica, it is possible

to use open-source languages such as python-based Sage.

ClearAll[“Global̀*”];ClearAll[“Global̀*”];ClearAll[“Global̀*”];

(*Define constants*)(*Define constants*)(*Define constants*)
(*C for cations and A for anions*)(*C for cations and A for anions*)(*C for cations and A for anions*)
qC = 1;qC = 1;qC = 1;
qA = �qC;qA = �qC;qA = �qC;

⇢Abulk = 0.00185418910071;⇢Abulk = 0.00185418910071;
⇢Abulk = 0.00185418910071;
⇢Cbulk = ⇢Abulk;⇢Cbulk = ⇢Abulk;
⇢Cbulk = ⇢Abulk;
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(*Ionsizes = 0.90 ⇤ �WCA*)(*Ionsizes = 0.90 ⇤ �WCA*)(*Ionsizes = 0.90 ⇤ �WCA*)
�C = 2.47227980171;�C = 2.47227980171;
�C = 2.47227980171;
�A = 4.94455055541;�A = 4.94455055541;
�A = 4.94455055541;

⇣ = 5.27; (*zeta-potential*)⇣ = 5.27; (*zeta-potential*)
⇣ = 5.27; (*zeta-potential*)

zB = 10.; (* In units of � D*)zB = 10.; (* In units of � D*)zB = 10.; (* In units of � D*)

step = 0.001;step = 0.001;step = 0.001;

(*Carnahan � Starling chemical potential*)(*Carnahan � Starling chemical potential*)(*Carnahan � Starling chemical potential*)

µCS[� ]:=
�(8�9⇤�+3⇤�2)

(1��)3
µCS[� ]:=

�(8�9⇤�+3⇤�2)
(1��)3µCS[� ]:=

�(8�9⇤�+3⇤�2)
(1��)3

(* Two Component BMCSL chemical potential*)(* Two Component BMCSL chemical potential*)(* Two Component BMCSL chemical potential*)
⇠[n ,A ,C ]:=(⇡/6) ⇤ (⇢Abulk ⇤ A ⇤ �A^

n+ ⇢Cbulk ⇤ C ⇤ �C^
n)⇠[n ,A ,C ]:=(⇡/6) ⇤ (⇢Abulk ⇤ A ⇤ �A^

n+ ⇢Cbulk ⇤ C ⇤ �C^
n)

⇠[n ,A ,C ]:=(⇡/6) ⇤ (⇢Abulk ⇤ A ⇤ �A^
n+ ⇢Cbulk ⇤ C ⇤ �C^

n)
�ion = ⇠[3, 1, 1]�ion = ⇠[3, 1, 1]�ion = ⇠[3, 1, 1]

µBMCSL[A ,C , � ]:=µBMCSL[A ,C , � ]:=
µBMCSL[A ,C , � ]:=

�
⇣

1 + 2⇤�^3⇤⇠[2,A,C]^3
⇠[3,A,C]^3 � 3⇤�^2⇤⇠[2,A,C]^2

⇠[3,A,C]^2

⌘

⇤ Log[1 � ⇠[3, A, C]]�
⇣

1 + 2⇤�^3⇤⇠[2,A,C]^3
⇠[3,A,C]^3 � 3⇤�^2⇤⇠[2,A,C]^2

⇠[3,A,C]^2

⌘

⇤ Log[1 � ⇠[3, A, C]]�
⇣

1 + 2⇤�^3⇤⇠[2,A,C]^3
⇠[3,A,C]^3 � 3⇤�^2⇤⇠[2,A,C]^2

⇠[3,A,C]^2

⌘

⇤ Log[1 � ⇠[3, A, C]]

+3⇤�⇤⇠[2,A,C]+3⇤�^2⇤⇠[1,A,C]+�^3⇤⇠[0,A,C]
1�⇠[3,A,C]

++3⇤�⇤⇠[2,A,C]+3⇤�^2⇤⇠[1,A,C]+�^3⇤⇠[0,A,C]
1�⇠[3,A,C]

++3⇤�⇤⇠[2,A,C]+3⇤�^2⇤⇠[1,A,C]+�^3⇤⇠[0,A,C]
1�⇠[3,A,C]

+
3⇤�^2⇤⇠[2,A,C]
(1�⇠[3,A,C])^2

⇣

⇠[2,A,C]
⇠[3,A,C]

+ � ⇤ ⇠[1, A, C]
⌘

3⇤�^2⇤⇠[2,A,C]
(1�⇠[3,A,C])^2

⇣

⇠[2,A,C]
⇠[3,A,C]

+ � ⇤ ⇠[1, A, C]
⌘

3⇤�^2⇤⇠[2,A,C]
(1�⇠[3,A,C])^2

⇣

⇠[2,A,C]
⇠[3,A,C]

+ � ⇤ ⇠[1, A, C]
⌘

��^3 ⇤ ⇠[2, A, C]^3 ⇤
⇣

⇠[3,A,C]^2�5⇤⇠[3,A,C]+2
⇠[3,A,C]^2⇤(1�⇠[3,A,C])^3

⌘

��^3 ⇤ ⇠[2, A, C]^3 ⇤
⇣

⇠[3,A,C]^2�5⇤⇠[3,A,C]+2
⇠[3,A,C]^2⇤(1�⇠[3,A,C])^3

⌘

��^3 ⇤ ⇠[2, A, C]^3 ⇤
⇣

⇠[3,A,C]^2�5⇤⇠[3,A,C]+2
⇠[3,A,C]^2⇤(1�⇠[3,A,C])^3

⌘

(*This solves MPB � Bik to determine z � dependence*)(*This solves MPB � Bik to determine z � dependence*)(*This solves MPB � Bik to determine z � dependence*)

NDSolve
hn

 

0[z] == �Sqrt
h

2Log[1+2⇤�ion⇤Sinh[ [z]/2]^2]
�ion

i

, [0] == ⇣

o

,

NDSolve
hn

 

0[z] == �Sqrt
h

2Log[1+2⇤�ion⇤Sinh[ [z]/2]^2]
�ion

i

, [0] == ⇣

o

,NDSolve
hn

 

0[z] == �Sqrt
h

2Log[1+2⇤�ion⇤Sinh[ [z]/2]^2]
�ion

i

, [0] == ⇣

o

,

 , {z, 0, zB},AccuracyGoal ! 12] , {z, 0, zB},AccuracyGoal ! 12]
 , {z, 0, zB},AccuracyGoal ! 12]

 Bik[z ] =  [z]/.%[[1]]; Bik[z ] =  [z]/.%[[1]];
 Bik[z ] =  [z]/.%[[1]];

CBik[ Bik ]:= 1
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])

CBik[ Bik ]:= 1
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])CBik[ Bik ]:= 1
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])

ABik[ Bik ]:= Exp[2⇤ Bik]
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])

ABik[ Bik ]:= Exp[2⇤ Bik]
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])ABik[ Bik ]:= Exp[2⇤ Bik]
2⇤Exp[ Bik]+�ion(1�2⇤Exp[ Bik]+Exp[2⇤ Bik])

(*CS LDA Solver*)(*CS LDA Solver*)(*CS LDA Solver*)
(*ui = 1 � ni*)(*ui = 1 � ni*)(*ui = 1 � ni*)
uA0[ ,�B ]:=uA0[ ,�B ]:=uA0[ ,�B ]:=

Min
h

Exp[ ] � 1, If
h

�B > 0, 0.99
⇣

2
�B(Exp[�2 ]+1)

� 1
⌘

,Exp[ ] � 1
ii

Min
h

Exp[ ] � 1, If
h

�B > 0, 0.99
⇣

2
�B(Exp[�2 ]+1)

� 1
⌘

,Exp[ ] � 1
ii

Min
h

Exp[ ] � 1, If
h

�B > 0, 0.99
⇣

2
�B(Exp[�2 ]+1)

� 1
⌘

,Exp[ ] � 1
ii

uA1[ ,�B ]:=v/.uA1[ ,�B ]:=v/.uA1[ ,�B ]:=v/.
FindRoot[Exp[ � µCS[�B(v + 1)(Exp[�2 ] + 1)/2] + µCS[�B]] � 1 == v,

FindRoot[Exp[ � µCS[�B(v + 1)(Exp[�2 ] + 1)/2] + µCS[�B]] � 1 == v,FindRoot[Exp[ � µCS[�B(v + 1)(Exp[�2 ] + 1)/2] + µCS[�B]] � 1 == v,

{v, uA0[ ,�B]}]{v, uA0[ ,�B]}]{v, uA0[ ,�B]}]

101



uA[ ,�B ]:=If[ � 0, uA1[ ,�B], (uA1[� ,�B] + 1)Exp[2 ] � 1]uA[ ,�B ]:=If[ � 0, uA1[ ,�B], (uA1[� ,�B] + 1)Exp[2 ] � 1]uA[ ,�B ]:=If[ � 0, uA1[ ,�B], (uA1[� ,�B] + 1)Exp[2 ] � 1]

ACSguess0 = Interpolation[Table[{ , 1 + uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];ACSguess0 = Interpolation[Table[{ , 1 + uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];ACSguess0 = Interpolation[Table[{ , 1 + uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];

CCSguess0 = Interpolation[Table[{ ,Exp[�2 ⇤  ] ⇤ (1 + uA[ ,�ion])},CCSguess0 = Interpolation[Table[{ ,Exp[�2 ⇤  ] ⇤ (1 + uA[ ,�ion])},CCSguess0 = Interpolation[Table[{ ,Exp[�2 ⇤  ] ⇤ (1 + uA[ ,�ion])},
{ ,�0.5, ⇣ ⇤ 2, step}]];{ ,�0.5, ⇣ ⇤ 2, step}]];{ ,�0.5, ⇣ ⇤ 2, step}]];

uAinterp0 = Interpolation[Table[{ , uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];uAinterp0 = Interpolation[Table[{ , uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];uAinterp0 = Interpolation[Table[{ , uA[ ,�ion]}, { ,�0.5, ⇣ ⇤ 2, step}]];

ifreeCS = Interpolation[Table[{ ,CCSguess0 � ACSguess0},ifreeCS = Interpolation[Table[{ ,CCSguess0 � ACSguess0},ifreeCS = Interpolation[Table[{ ,CCSguess0 � ACSguess0},
{ ,�0.5, 30, step}]];{ ,�0.5, 30, step}]];{ ,�0.5, 30, step}]];

(*Charge � voltage can be determined without solving Poisson’s equation*)(*Charge � voltage can be determined without solving Poisson’s equation*)(*Charge � voltage can be determined without solving Poisson’s equation*)
ChargeVoltageCS[ ]:=

p

2 ⇤ Abs[NIntegrate[ifreeCS[volt], {volt, , 0}]];ChargeVoltageCS[ ]:=
p

2 ⇤ Abs[NIntegrate[ifreeCS[volt], {volt, , 0}]];ChargeVoltageCS[ ]:=
p

2 ⇤ Abs[NIntegrate[ifreeCS[volt], {volt, , 0}]];

(* Modified PBE for CS � LDA to determine z � dependence*)(* Modified PBE for CS � LDA to determine z � dependence*)(* Modified PBE for CS � LDA to determine z � dependence*)

NDSolve
hn

 ”[z] + (uAinterp0[ [z]]+1)(Exp[�2 [z]]�1)
2

== 0,NDSolve
hn

 ”[z] + (uAinterp0[ [z]]+1)(Exp[�2 [z]]�1)
2

== 0,NDSolve
hn

 ”[z] + (uAinterp0[ [z]]+1)(Exp[�2 [z]]�1)
2

== 0,

 [0] == ⇣, [zB]==0}, , {z, 0, zB}, [0] == ⇣, [zB]==0}, , {z, 0, zB},
 [0] == ⇣, [zB]==0}, , {z, 0, zB},
Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];

 CS[z ] =  [z]/.%[[1]]; CS[z ] =  [z]/.%[[1]];
 CS[z ] =  [z]/.%[[1]];

uAsoln[z ]:=uAinterp0[ CS[z]]uAsoln[z ]:=uAinterp0[ CS[z]]uAsoln[z ]:=uAinterp0[ CS[z]]

uCsoln[z ]:=(uAsoln[z] + 1)Exp[�2 CS[z]] � 1uCsoln[z ]:=(uAsoln[z] + 1)Exp[�2 CS[z]] � 1uCsoln[z ]:=(uAsoln[z] + 1)Exp[�2 CS[z]] � 1

FreeCS[z ]:=0.5 ⇤ (uCsoln[z] � uAsoln[z])FreeCS[z ]:=0.5 ⇤ (uCsoln[z] � uAsoln[z])FreeCS[z ]:=0.5 ⇤ (uCsoln[z] � uAsoln[z])

CCS[z ]:=1 + uCsoln[z]CCS[z ]:=1 + uCsoln[z]CCS[z ]:=1 + uCsoln[z]

ACS[z ]:=1 + uAsoln[z]ACS[z ]:=1 + uAsoln[z]ACS[z ]:=1 + uAsoln[z]

(*Computing similarity variable from CS � LDA, SCS.(*Computing similarity variable from CS � LDA, SCS.(*Computing similarity variable from CS � LDA, SCS.
Similarity variables from other LDAs can be computed similarly*)Similarity variables from other LDAs can be computed similarly*)Similarity variables from other LDAs can be computed similarly*)

contactGC[⌃ ]:= � ⌃
q

1 +
�

⌃
2

�2
;contactGC[⌃ ]:= � ⌃

q

1 +
�

⌃
2

�2
;contactGC[⌃ ]:= � ⌃

q

1 +
�

⌃
2

�2
;

SGC[z ,⌃app ]:=

✓

2

�✓

1 +
q

�

⌃app
2

�2
+ 1

◆◆

⇤ ⌃app ⇤ Exp[�z];SGC[z ,⌃app ]:=

✓

2

�✓

1 +
q

�

⌃app
2

�2
+ 1

◆◆

⇤ ⌃app ⇤ Exp[�z];SGC[z ,⌃app ]:=

✓

2

�✓

1 +
q

�

⌃app
2

�2
+ 1

◆◆

⇤ ⌃app ⇤ Exp[�z];

⌃CS = �Table[NIntegrate[ifreeCS[x], {x, z, zB}], {z, 0, zB, step}];⌃CS = �Table[NIntegrate[ifreeCS[x], {x, z, zB}], {z, 0, zB, step}];⌃CS = �Table[NIntegrate[ifreeCS[x], {x, z, zB}], {z, 0, zB, step}];

rhoCS = Table[ifreeCS[z], {z, 0, zB, step}];rhoCS = Table[ifreeCS[z], {z, 0, zB, step}];rhoCS = Table[ifreeCS[z], {z, 0, zB, step}];
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contactCS = {}; Do[AppendTo[contactCS,List[⌃CS[[i]], rhoCS[[i]]]],contactCS = {}; Do[AppendTo[contactCS,List[⌃CS[[i]], rhoCS[[i]]]],contactCS = {}; Do[AppendTo[contactCS,List[⌃CS[[i]], rhoCS[[i]]]],
{i, 1,Length[⌃CS]}]; contactCS = Interpolation[contactCS];{i, 1,Length[⌃CS]}]; contactCS = Interpolation[contactCS];{i, 1,Length[⌃CS]}]; contactCS = Interpolation[contactCS];

dlnhCS[⌃ ]:= 1
contactGC[⌃]

� 1
contactCS[⌃]

dlnhCS[⌃ ]:= 1
contactGC[⌃]

� 1
contactCS[⌃]dlnhCS[⌃ ]:= 1

contactGC[⌃]
� 1

contactCS[⌃]

(*find where dlnh goes to zero*)(*find where dlnh goes to zero*)(*find where dlnh goes to zero*)
⌃valCS = ⌃/.FindRoot[dlnhCS[⌃] == 0., {⌃, .5}];⌃valCS = ⌃/.FindRoot[dlnhCS[⌃] == 0., {⌃, .5}];⌃valCS = ⌃/.FindRoot[dlnhCS[⌃] == 0., {⌃, .5}];

(*artificially modify dlnh so that it goes to zero and stays there*)(*artificially modify dlnh so that it goes to zero and stays there*)(*artificially modify dlnh so that it goes to zero and stays there*)
dlnh2CS[⌃ ]:=If[⌃ > ⌃valCS, dlnhCS[⌃], 0.]dlnh2CS[⌃ ]:=If[⌃ > ⌃valCS, dlnhCS[⌃], 0.]dlnh2CS[⌃ ]:=If[⌃ > ⌃valCS, dlnhCS[⌃], 0.]

lnhCS[⌃app ]:=NIntegrate[dlnh2CS[⌃], {⌃, 0.,⌃app}]lnhCS[⌃app ]:=NIntegrate[dlnh2CS[⌃], {⌃, 0.,⌃app}]lnhCS[⌃app ]:=NIntegrate[dlnh2CS[⌃], {⌃, 0.,⌃app}]

SCS[z ,⌃app ]:=SGC[z,⌃app]Exp[lnhCS[⌃app]]SCS[z ,⌃app ]:=SGC[z,⌃app]Exp[lnhCS[⌃app]]SCS[z ,⌃app ]:=SGC[z,⌃app]Exp[lnhCS[⌃app]]

(*BMCSL LDA Solver*)(*BMCSL LDA Solver*)(*BMCSL LDA Solver*)
ABMCSLhighvolt[ ]:=A/.ABMCSLhighvolt[ ]:=A/.ABMCSLhighvolt[ ]:=A/.
FindRoot[Log[A] == �qA ⇤  � µBMCSL[A, 0, �A] + µBMCSL[1, 1, �A],FindRoot[Log[A] == �qA ⇤  � µBMCSL[A, 0, �A] + µBMCSL[1, 1, �A],FindRoot[Log[A] == �qA ⇤  � µBMCSL[A, 0, �A] + µBMCSL[1, 1, �A],
{A, 0.55 ⇤ ACSguess0[ ]},MaxIterations ! 10000];{A, 0.55 ⇤ ACSguess0[ ]},MaxIterations ! 10000];{A, 0.55 ⇤ ACSguess0[ ]},MaxIterations ! 10000];

ABMCSL0 = Interpolation[Table[{ ,ABMCSLhighvolt[ ]},ABMCSL0 = Interpolation[Table[{ ,ABMCSLhighvolt[ ]},ABMCSL0 = Interpolation[Table[{ ,ABMCSLhighvolt[ ]},
{ ,�0.5, ⇣ ⇤ 2, step}]];{ ,�0.5, ⇣ ⇤ 2, step}]];{ ,�0.5, ⇣ ⇤ 2, step}]];
ABMCSL[ ]:=Re[A]/.FindRoot[{ABMCSL[ ]:=Re[A]/.FindRoot[{ABMCSL[ ]:=Re[A]/.FindRoot[{
Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],
Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},
{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},
MaxIterations ! 10000];MaxIterations ! 10000];MaxIterations ! 10000];

CBMCSL[ ]:=Re[C]/.FindRoot[{CBMCSL[ ]:=Re[C]/.FindRoot[{CBMCSL[ ]:=Re[C]/.FindRoot[{
Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],
Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},
{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},
MaxIterations ! 10000];MaxIterations ! 10000];MaxIterations ! 10000];

FBMCSL[ ]:=((qC ⇤ Re[C] + qA ⇤ Re[A])/2)/.FindRoot[{FBMCSL[ ]:=((qC ⇤ Re[C] + qA ⇤ Re[A])/2)/.FindRoot[{FBMCSL[ ]:=((qC ⇤ Re[C] + qA ⇤ Re[A])/2)/.FindRoot[{
Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],Log[C] == �qC ⇤  � µBMCSL[A,C, �C] + µBMCSL[1, 1, �C],
Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},Log[A] == �qA ⇤  � µBMCSL[A,C, �A] + µBMCSL[1, 1, �A]},
{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},{{A, 0.5 ⇤ ABMCSL0[ ]}, {C,CCSguess0[ ]}},
MaxIterations ! 10000];MaxIterations ! 10000];MaxIterations ! 10000];

iABMCSL = Interpolation[Table[{ ,ABMCSL[ ]},iABMCSL = Interpolation[Table[{ ,ABMCSL[ ]},iABMCSL = Interpolation[Table[{ ,ABMCSL[ ]},
{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];

iCBMCSL = Interpolation[Table[{ ,CBMCSL[ ]},iCBMCSL = Interpolation[Table[{ ,CBMCSL[ ]},iCBMCSL = Interpolation[Table[{ ,CBMCSL[ ]},
{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];
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iFreeBMCSL = Interpolation[Table[{ ,FBMCSL[ ]},iFreeBMCSL = Interpolation[Table[{ ,FBMCSL[ ]},iFreeBMCSL = Interpolation[Table[{ ,FBMCSL[ ]},
{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];{ ,�0.5, ⇣ ⇤ 1.5, step}]];

ChargeVoltageBMCSL[ ]:=ChargeVoltageBMCSL[ ]:=ChargeVoltageBMCSL[ ]:=
p

2 ⇤ Abs[NIntegrate[iFreeBMCSL[volt], {volt, , 0}]];
p

2 ⇤ Abs[NIntegrate[iFreeBMCSL[volt], {volt, , 0}]];p

2 ⇤ Abs[NIntegrate[iFreeBMCSL[volt], {volt, , 0}]];

(* Modified PBE for BMCSL � LDA to determine z � dependence*)(* Modified PBE for BMCSL � LDA to determine z � dependence*)(* Modified PBE for BMCSL � LDA to determine z � dependence*)
NDSolve[{ ”[z] + iFreeBMCSL[ [z]] == 0, [0] == ⇣,

NDSolve[{ ”[z] + iFreeBMCSL[ [z]] == 0, [0] == ⇣,NDSolve[{ ”[z] + iFreeBMCSL[ [z]] == 0, [0] == ⇣,

 [zB]==0}, , {z, 0, zB}, [zB]==0}, , {z, 0, zB},
 [zB]==0}, , {z, 0, zB},
Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];Method ! {“Shooting”, “MaxIterations” ! 10000},AccuracyGoal ! 12];

 BMCSL[z ] =  [z]/.%[[1]]; BMCSL[z ] =  [z]/.%[[1]];
 BMCSL[z ] =  [z]/.%[[1]];

ABMCSL[z ]:=iABMCSL[ BMCSL[z]];ABMCSL[z ]:=iABMCSL[ BMCSL[z]];ABMCSL[z ]:=iABMCSL[ BMCSL[z]];

CBMCSL[z ]:=iCBMCSL[ BMCSL[z]];CBMCSL[z ]:=iCBMCSL[ BMCSL[z]];CBMCSL[z ]:=iCBMCSL[ BMCSL[z]];

FreeBMCSL[z ]:=iFreeBMCSL[ BMCSL[z]];FreeBMCSL[z ]:=iFreeBMCSL[ BMCSL[z]];FreeBMCSL[z ]:=iFreeBMCSL[ BMCSL[z]];
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Appendix B

LAMMPS Source Code

Here we provide example Molecular Dynamics code for di↵erently-sized WCA ions in
a Langevin solvent. The time evolution of a MD system is deterministic and governed
by Newton’s equations of motion. The MD Primitive Model developed in this research
uses the Verlet algorithm to propagate the particles by a time step, �t. The algorithm
is derived from a Taylor expansion of a particle’s position vector, ri, in time, t, and is
presented in simplified form below:

ri(t+ �t) = 2ri(t) � ri(t � �t) +
fi(t)

mi
�t

2 + O(�t

4). (B.0.12)

A particle’s mass, mi, current, ri(t), and past, ri(t� �t), coordinates, as well as current
total force, fi(t), determine the future particle positions, ri(t + �t). The derivative of
the potential, U(r) described in Eq. (I.3.27) gives the force on a particle

f i = �rU(r). (B.0.13)

Unlike the Monte Carlo method that can only be used to simulate systems at equilibrium,
MD can be used to extract dynamical information on the properties of the system [Frenkel
and Smit, 2001, Allen and Tildesley, 1987].

We use LAMMPS to compute our MD simulations and provide example code below.
Detailed information about the LAMMPS can be found at lammps.sandia.gov.

1 # Initialize simulation box

2 dimension 3

3 boundary p p f

4 units lj

5 atom_style charge

6 region simbox block -12 12 -12 12 -251 251 units box

7 create_box 2 simbox

8

9 # Place 1162 ions in an equilibrium configuration according

to GC theory with input parameters:
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10 # (Debye Length ,Bjerrum ,zeta) = (~15,0.1,3.0)

11 create_atoms 1 single -10.88 -10.93 -248.50 units box

12 create_atoms 2 single -11.06 -11.28 248.50 units box

13 # Omitting 1158 insertions for brevity

14 create_atoms 1 single -3.93 -3.35 -0.50 units box

15 create_atoms 2 single -3.83 -3.55 0.50 units box

16

17 # Create groups

18 group A type 1

19 group C type 2

20 group ions type 1 2

21

22 # Set masses and charges

23 mass 1 1.0

24 mass 2 1.0

25 set group A charge -1

26 set group C charge 1

27

28 # Set Bjerrum length , which equals 1/dielectric for these

ion valences and pairwise potentials

29 dielectric 10.0

30

31 # Set time step

32 timestep 0.001

33

34 # Setup output format of thermodynamic information

35 thermo_style custom step temp etotal pe ecoul evdwl cpu

36 thermo 1000

37

38 # Parameterize Langevin thermostat with implicit solvent

interactions

39 velocity all create 1.0 3

40 fix thermostat all langevin 1.0 1.0 25 3

41 fix timeintegration all nve

42

43 # Set potentials:

44 # Bound particles within repulsive 9/3 walls

45 fix anode all wall/lj93 zlo -251 1 1.165 1 units box

46 fix cathode all wall/lj93 zhi 251 1 1.165 1 units box

47

48 # This pushes potentially overlapping particles apart

49 pair_style soft 3.0

50 pair_coeff * * 60.0 3.0

51 run 35000

52
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53 # Add single -body interaction with uniformly charged

electrode with surface charge density ~ Force*dielectric

54 fix A_field A addforce 0.0 0.0 0.28390

55 fix C_field C addforce 0.0 0.0 -0.28390

56

57 # Parameterize charge -centered WCA spheres with size ratio

of 3

58 pair_style lj/cut/coul/long 5.61513 15.0

59 pair_coeff 1 * 1. 1.61887 1.81712

60 pair_coeff 2 * 1. 5.00251 5.61513

61

62 # Parameterize slab PPPM Ewald summations

63 kspace_style pppm 1E-4

64 kspace_modify slab 3.0

65 pair_modify shift yes

66

67 # Equilibration run

68 run 5000000

69

70 # Production run

71 dump dump1 all custom 1000 OutputFilename.gz id type x y

z xu yu zu vx vy vz fx fy fz

72 run 50000000

73 undump dump1

74

75 # Generate short trajectory for movie -making purposes

76 dump Movie_dump all atom 1000 MovieOutput.all

77 run 500000
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Appendix C

Copyright License

This work is licensed under Creative Commons-Attribution (CC BY 4.0). Full license:

https://creativecommons.org/licenses/by/4.0/legalcode. Summary: https://

creativecommons.org/licenses/by/4.0/.
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