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Pathway Analysis of Metabolic Networks using Graph

Theoretical Approaches

Ehsan Ullah

Advisor: Prof. Kyongbum Lee, and Prof. Soha Hassoun

Cellular pathways defining biochemical transformational routes are often utilized

as engineering targets to achieve industrial-scale production of commercially useful

biomolecules including polyesters, building blocks for polymers, biofuels, and thera-

peutics derived from isoprenoids, polyketides, and non-ribosomal peptides. Identify-

ing target pathways can be expedited using computational tools, leading to reduced

development cost, time, and effort, and enabling new discoveries with potential

positive impact on human health and the environment.

This thesis addresses three cellular pathway identification problems within

metabolic networks. In the first problem, we identify all stoichiometrically balanced,

thermodynamically feasible and genetically independent pathways, known as Ele-

mentary Flux Modes (EFMs), that can be used to express flux distributions and

characterize cellular function. We develop an algorithm, gEFM, that incorporates

structural information of the underlying network to enumerate all EFMs. The results

show that gEFM is competitive with state-of-the art EFM computation techniques

for several test cases, but less so for networks with larger number of EFMs. In the

second and third problems, we identify individual target pathways with pre-specified

characteristics. We develop an algorithm, PreProPath, for identifying a target path-

way for up-regulation such that the path is predictable in behavior, exhibiting small

flux ranges, and profitable, containing the least restrictive flux-limiting reaction
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in the network. The results show that PreProPath can successfully identify high

ethanol production pathways across multiple growth rates, and for succinate pro-

duction in Escherichia coli (E. coli) as published in the literature. We also develop

an algorithm, Dominant-Edge Pathway, that identifies thermodynamically-favored

reactions along a pathway within the network from a given source metabolite to the

desired destination. The algorithm is used to identify thermodynamically-limiting

pathways in Zymomonas mobilis (Z. mobilis), E. coli and rat liver cell.

The novelty of this thesis is in utilizing graph-based methods to enumer-

ate EFMs and to efficiently explore the pathway design space. Overall, the thesis

advances the state-of-the-art techniques for metabolic pathway analysis.
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Chapter 1

Introduction

Engineering of living cells has shown promise in the production of commercially

useful biomolecules, including polyesters [3], building blocks for industrial polymers

[4], biofuels [5], and therapeutic natural products derived from isoprenoids [6, 7, 8, 9],

polyketides [10, 11], and non-ribosomal peptides [9]. Advancing the engineering of

biological organisms will lead to reduced development cost, time, and effort, which

in turn will enable new discoveries that have a positive impact on human health and

the environment.

Current cell engineering approaches broadly fall into one of three categories.

The first approach is to embed non-native reactions into a host organism to enable

a synthesis route. For example, production of butanol [12, 13] and isopropanol [14],

two potential biofuels, was enabled in E. coli by importing different genes from

Clostridium acetobutylicum. The second approach is to eliminate pathways that

compete for cellular resources [2] or otherwise inhibit product synthesis. In a recent

example, Yomano and co-workers deactivated the methyl glyoxal pathway to reduce

catabolite repression and thereby accelerate co-metabolism of hexose and pentose
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sugars into ethanol [15]. The third approach is to tune the activities of existing

pathways, for example by altering enzyme concentrations through gene expression

changes. It should be noted that the above categorization is far from strict. Indeed,

combinations of the various approaches are increasingly used to simultaneously en-

able new synthesis routes and optimize the yield. Keasling and co-workers have

recently reported on engineered strains of E. coli capable of producing a variety

of fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars

[5]. Fatty acid overproduction was achieved by over-expressing native thioesterases

and acyl-CoA ligases while eliminating β-oxidation. To produce branched chain

alcohols which are non-native to E. coli, a biosynthetic operon for branched chain

amino acids (thrABC ) was over-expressed, genes encoding competing pathways were

deleted, and additional genes encoding the missing synthesis steps were imported

from Salmonella typhimurium and Corynebacterium glutamicum [16].

A common thread in these approaches is that the engineered interventions

targeted pathways, as opposed to individual reactions, as the functional units of

cellular biosynthesis. While experimental approaches have often achieved significant

success, identifying intervention targets and verifying result optimality remain open

questions due to the complexity of biological systems. In this regard, computational

methods can serve as useful guides to efficiently explore the pathway design space.

We explore in this thesis three pathway identification problems. In the first

problem, we revisit the problem of EFM analysis, where we seek to enumerate all

stoichiometrically balanced, thermodynamically feasible and genetically indepen-

dent pathways. We utilize a graph-based approach to solve this problem. In the

second and third problems, we shift to focus on identifying individual pathways with
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pre-specified characteristics. Our solutions to these two problems are also based on

graph-based algorithms, and offer computational efficiency with runtimes that are

polynomial in the size of the network graph. Using such a guided-search approach

provides a computationally efficient alternative to enumeration-based approaches.

1.1 Computational Tools to Guide Strain Engineering

Computational tools can play a critical role in expediting the design process by

exploring design options and validating design choices using simulations before per-

forming lab experiments [17]. Stoichiometric, mass balance, thermodynamic and

regulatory constraints play a critical role in defining and characterizing the flux

space of metabolic networks. Constraints have driven two types of analyses. One

type is based on mathematical optimization frameworks such as linear, quadratic,

and non-linear programming, and are exemplified by techniques such as Flux Bal-

ance Analysis (FBA) [18] and Flux Variability Analysis (FVA) [19]. Such approaches

are used frequently not only to optimize strains [20, 21, 22, 23] but to also validate

models [24, 25, 26].

Another type of analysis is based on pathway identification, where the focus

is on characterizing individual or groups of pathways and their contributions instead

of the overall network behavior. Such analysis has mostly focused on EFM analysis

[27], and there has been little computational effort in efficiently identifying a single

reaction or pathway of interest.

3



1.1.1 EFM Analysis

This thesis addresses problems of identifying network pathways of interest for strain

engineering. One particular powerful pathway analysis technique for analyzing cel-

lular metabolism is EFM analysis. A “flux mode” represents a steady-state flux

pattern where the proportions of fluxes are fixed while their absolute magnitudes

are indeterminate [27]. EFM analysis decomposes a metabolic network into routes

that have three properties: thermodynamic feasibility, quasi steady-state opera-

tion and independence of other pathways [27]. Thermodynamic feasibility imposes

that each irreversible reaction proceeds to have a non-negative flux (turnover) rate.

Quasi steady-state operation ensures that metabolites internal to the network are

neither accumulated nor depleted. Mutual independence of other pathways, to-

gether with the other two properties, guarantees that the EFM decomposition is

unique. EFM analysis has been used for increasing product yield [28, 2], vali-

dating metabolic model construction [29], analyzing and understanding metabolic

networks including robustness, redundancy, reaction correlations, and cellular regu-

lation [30, 31, 32, 33, 34, 35, 36, 37, 35], analyzing competitive microbial strategies

[38], identifying substrate cycles [39, 40], and assessing plant fitness and agricultural

productivity [41].

Computing EFMs has been shown equivalent to computing the extreme rays

of a convex pointed cone [1]. More precisely, once each reversible reaction is split

into a forward and a reverse reaction, the steady-state operation and irreversibil-

ity constraints define a pointed convex cone that lies in the positive quadrant of

the space defined by the network reactions. Any steady-state flux vector for the

network lies within this convex cone and can be expressed as a non-negative linear
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combination of the extreme rays (edges) of the cone. Algorithms for computing

the generating vectors of a convex polyhedral cone can be utilized to compute the

elementary modes. To compute EFMs, Schuster and Hilgetag [27] applied one such

algorithm [42] where rows of the transposed stoichiometric matrix augmented by

the identity matrix are combined pairwise to generate the elementary modes. This

method was later elaborated by adding a dependency test criterion to eliminate

redundant modes [43]. The earlier Schuster and Hilgetag approach [27] is referred

to as the ‘Canonical Basis’ approach [1]. Wagner [44] and Urbanczik and Wagner

[45] proposed to first derive the basis vectors of the null space of all steady-state

conditions, and then calculate the elementary modes by linearly combining the basis

vectors. The algorithm is referred to as the “Null Space” approach, and provides

significant speed up over the Canonical Basis approach [45]. Gagneur and Klamt

[1] showed that the two approaches, the Canonical Basis and the Null Space, are

variants of the double-description method, used to enumerate the extreme rays of

a convex cone (see [46, 47, 48, 49] for a description of this method). The two most

widely used EFM tools, Metatool [50] and EFMTool [51], are based on the Null

Space approach.

We revisit in this thesis the Canonical Basis approach as described by [43],

but from a graph-traversal perspective. The basic underlying idea is from the works

of Mavrovouniotis et al. on the synthesis of metabolic pathways from a given sub-

strate(s) to a given product(s) [52, 53, 54]. Conceptually, the Mavrovouniotis ap-

proach iteratively incorporates the set of stoichiometric constraints associated with

each metabolite, and transforms an initial set of reactions (one-step pathways) into

a final set of pathways that satisfy all the constraints. Schuster et al. [43] suggested
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that the row elimination within the Canonical Basis approach is equivalent to the

Mavrovouniotis approach; however, it was suggested that using matrix formalism in-

stead of graph theory is more elegant when tackling structural analysis of metabolic

networks.

We formulate in this thesis an algorithm, gEFM, that relies on graph traver-

sal to compute the EFMs. The algorithm combines the Mavrovouniotis pathway

synthesis approach [52] with the dependency test identified by Schuster and Hilge-

tag [43]. The main contribution of this work is showing that graph-based approaches

are viable for computing EFMs. Naturally, this contribution extends to enumerating

rays of a convex cone. Because it retains the network structure, gEFM is accessible

and intuitive. Our results show that the runtime of gEFM compares well or im-

proves on that of comparable tools, namely Metatool [50] and EFMTool [51], for a

number of networks. We also examine the impact of network compression and con-

straint ordering, and show that there is a constraint ordering based on the analysis

of the underlying network structure that benefits gEFM.

1.1.2 Pathway Identification

Large-scale stoichiometric models of cellular metabolism nearly always have large

degrees of freedom. Since the models are severely underdetermined, it is not possible

to specify an operating point, i.e. unique flux distribution; rather, the model circum-

scribes an operating cone, i.e. flux ranges bounded by physicochemical, regulatory,

and measurement-derived constraints. The flux ranges provide a quantitative basis

to evaluate the profitability of an engineering intervention, as some interventions will

only produce marginal improvements in flux that are subsumed by the uncertainty
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in the model. We present in this thesis an algorithm for identifying a target pathway

for up-regulation such that the path is predictable in behavior, exhibiting small flux

ranges, and profitable, containing the least restrictive flux-limiting reaction in the

network. Our PreProPath algorithm identifies a path from a starting substrate to a

desired product that most likely contains one or more flux-limiting reactions, where

the likelihood is determined by considering the degrees of freedom in the network.

We evaluate the algorithm through two case studies and comparisons with other

pathway engineering strategies and examples discussed in the literature.

The activity or flux (rate of turnover of molecules) distribution through a

cellular reaction network is highly uneven, and it is unlikely that every possible route

leads to an equally valid target with the same capacity. A more plausible scenario

is that the pathways’ degrees of engagement vary with the cell’s operating environ-

ment (e.g. temperature, pH and nutrient concentration) and regulatory state. In

this context, finding a favorable reaction route with the highest degree of engage-

ment is an important next step for biochemical pathway analysis, especially for the

purpose of engineering a synthetic pathway. We present in this thesis a pathway

search algorithm based on thermodynamic weights. We utilize the Gibbs free energy

change (∆G), a metric whose sign predicts if the reaction favors the formation of the

reactants (positive sign) or products (negative sign). A ∆G close to zero indicates

that a reaction is near equilibrium. Among parallel reactions, our algorithm selects

the energetically favored or dominant reaction based on the sign and magnitude of

the ∆G. Importantly, this algorithm identifies the thermodynamically-limiting reac-

tions in the network from a given source metabolite to the desired destination. We

demonstrate the utility of our algorithm by identifying thermodynamically-limiting
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pathways in Z. mobilis, E. coli and a rat liver cell.

1.2 Thesis Contributions

This thesis provides three graph-based algorithms to solve pathway identification

problems in metabolic networks. The key contributions are:

• Developing a graph-based algorithm, gEFM, for computing EFMs.

• Identifying robust constraint ordering for the Canonical-Basis approach by

incorporating structural information of the underlying network.

• Demonstrating that graph-based approaches are as viable for implementing

the double-description method for enumerating EFMs as matrix-based ap-

proaches.

• Showing that gEFM is competitive with state-of-the-art EFM computational

techniques for several test cases, but less so for networks with a larger number

of EFMs.

• Creating an algorithm,PreProPath, for identifying a path that is predictable

in behavior, exhibiting small flux ranges, and profitable, containing the least

restrictive flux-limiting reaction in the network.

• Using PreProPath to identify high ethanol production pathways across multi-

ple growth rates, and high succinate production pathways in E. coli.

• Adapting the bottleneck edge algorithm [55] to identify bottleneck reactions

in metabolic networks.
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• Developing a generalized algorithm,Dominant-Edge Pathway, for identifying a

pathway with thermodynamically favored reactions.

• Using Dominant-Edge Pathway to identify thermodynamically-limiting path-

ways in Zymomonas mobilis (Z. mobilis), E. coli and a rat liver cell.

1.3 Thesis Organization

This thesis consists of 6 chapters. Chapter 2 provides an overview of metabolic

pathway analysis with a focus on EFM analysis and its important applications.

Chapter 3 describes the gEFM algorithm, a graph-based algorithm used

to enumerate all genetically independent, thermodynamically feasible pathways,

EFMs, that can operate at steady state. The algorithm is proved correct and com-

pared to existing approaches for computing EFMs.

Chapter 4 describes an algorithm, Predictable Profitable Path (PreProPath),

a graph-based algorithm used to identify a pathway containing potential engineering

targets for over production of a desired product from a given source. The algorithm

uses flux measurements and uncertainties associated with the measurements to iden-

tify engineering targets.

Chapter 5 describes Dominant-Edge Pathway algorithm, a graph-based al-

gorithm used to identify bottleneck reactions and an associated pathway from a

specified source metabolite to a desired target metabolite. Dominant-Edge Pathway

is used to identify thermodynamic bottleneck reaction in the metabolic networks.

Chapter 6 summarizes the thesis and outlines directions for future research.
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Chapter 2

Background

Pathway analysis is a powerful approach to enable the rational design of biochemical

networks for optimizing metabolic engineering and synthetic biology objectives such

as production of desired chemicals or biomolecules from specific nutrients. This

chapter provides a historical background on cellular pathway analysis, a review of

the theoretical aspects of EFM analysis, an overview of computational applications

where the use of EFM analysis is imperative, and a review of approximate alternative

EFM decomposition techniques.

2.1 Metabolic Pathway Analysis: A Historical Perspec-

tive

Foundations for stoichiometric pathway analysis were laid by Clarke in 1980 while

focusing on network stability [56]. Clarke considered all the reversible reactions as

irreversible reaction pairs, and the feasible steady-state flux space formed a con-

vex pointed cone. His work provided the basis for convex analysis for metabolic
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networks operating at steady state. Seressiotis and Bailey developed a software sys-

tem for metabolic pathway synthesis (MPS) to identify independent pathways in a

metabolic network [57]. Their algorithm identified all independent pathways from

a given source metabolite to the desired destination metabolite. Mavrovouniotis et

al. developed a computer-aided system for synthesis of pathways in a metabolic

network [52]. Their algorithm iteratively satisfied steady-state constraints to build

all possible pathways in a network. Schuster et al. further extended Mavrovounio-

tis algorithm by using the concept of genetic independence to generate elementary

flux modes [27]. Later, Schilling et al. introduced the concept of Extreme Path-

ways (EP), a minimal set of pathways in a metabolic network that satisfies all EFM

conditions (see next section) along with the following condition: an extreme path-

way cannot be represented as a non-negative linear combinations of other extreme

pathways [58]. It is important to compute the EFMs and not just the EPs because

many biochemically important pathways such as glycolysis are not found using EP

analysis [59].

2.2 Elementary Flux Mode Analysis

A flux mode is a steady-state flux pattern in which flux proportions are fixed while

their absolute magnitudes are indeterminate [36]. Given an m × n stoichiometric

matrix, S, representing m internal metabolites and n reactions, and a n-vector v

of reaction fluxes, three conditions must be met to label v as an “elementary flux

mode”, or “elementary mode”, or “elementary pathway”:

1. EFM Condition 1 (C1): The network reactions proceed in a direction

dictated by thermodynamic feasibility. The flux in a reaction is greater than

11



or equal to zero if the reaction is irreversible. This condition can be expressed

as vi ≥ 0 for all irreversible reactions.

2. EFM Condition 2 (C2): The network is in quasi steady-state condition

with no accumulation or depletion of internal metabolites in the network.

Mathematically, this condition can be expressed as S v = 0, where the rows

of S include only metabolites internal to the network.

3. EFM Condition 3 (C3): Each elementary mode v must be genetically

independent from any other elementary mode in the network. In other words,

there is no other vector y (y 6= v and y 6= 0 and y fulfills C1 and C2) such

that the set of reactions participating in v is strictly a proper subset of the

reactions in y.

EFMs can be used to characterize the flux space of a network operating at steady-

state. The feasible flux space at steady-state comprises all possible operating states

and is captured via a pointed convex polyhedron if all the reactions in the network

are irreversible, as shown in Figure 2.1. Mathematically, the feasible steady-state

flux space of a network with m internal metabolites and n reactions can be repre-

sented as:

P = {v ∈ Rn : S v = 0 and v ≥ 0} (2.1)

where S is stoichiometric matrix of the network and v represents a steady-state

flux. Networks with reversible reactions can be reconfigured by splitting reversible

reactions into irreversible reaction pairs. The extreme rays (edges) of the polyhe-

dral correspond to the EFMs and an extreme ray cannot be expressed as a linear

12



Figure 2.1: A pathway (mode) is geometrically represented as a ray. The dark lines
are the extreme rays of a convex cone drawn in 3-dimensional space. The extreme
rays correspond to EFMs.

combination of two others. Any steady-state flux distribution in the network can be

represented as a non-negative, perhaps non-unique, linear combination of EFMs.

There are two known techniques for computing the extreme rays or vertices

of a polyhedron. The first is based on the double-description method, a convex

analysis technique used to compute the extreme rays of convex polyhedron. The

second is based on pivotal methods, similar to the simplex algorithm. While the

double-description method has been directly utilized in computing EFMs, pivotal

methods have not been directly utilized to implement a tool for computing EFMs.

Furthermore, the performance of pivotal techniques relative to those based on the

double-description method is an open question. Here, an overview of existing EFM

computational techniques based on the double-description method is presented.

2.2.1 The Double-Description Method

The double-description method provides a mechanism for converting between two

equivalent descriptions of a convex cone [49]. The first description captures the

13



constraints that form the convex cone, while the second description enumerates the

extreme rays (or EFMs). The double-description method has been rediscovered

under different names such as Motzkin elimination [46], Chernokova’s algorithm

[47], and beneath-and-beyond methods [60, 61].

The double description method provides an alternative representation of the

flux space by transforming the representative matrix of the network A to an equiv-

alent representative matrix R. Given a representative matrix A of the network the

steady-state flux space can be described as

P = {v = Rλ ∀ λ ≥ 0} (2.2)

where R represents the set of extreme rays.

The general steps of the double-description method [1] are shown in Figure

2.2. First, matrices A and R are initialized. Next, constraints in A are iteratively

processed. Each row of matrix A represents a constraint. The constraint is satisfied

by combining adjacent rays (rays represented as columns) in R to generate new rays,

a step referred to as Gaussian Combination [1]. The double-description method then

identifies adjacent rays that lie on the same cone face intersected by the current

constraint. Matrix R is augmented with additional columns representing newly

generated rays. When all constraints are processed, a post-processing step removes

futile two-cycles that result from splitting reversible reactions, and split reactions

are combined to restore the original network configuration. The final set of EFMs

is in R.

Although the treatment of reversible reactions provides a subtle difference
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Figure 2.2: Flowchart of the double-description method [1].

between EFMs and extreme pathways (EPs) [58, 62], EFM analysis can also be

applied by treating reversible reactions in the same way as that of EP analysis.

For the presentation that follows, it is assumed that reversible reactions in S are

split into forward and reverse independent reactions. Earlier algorithms such as

Schuster’s algorithm [27] used non-split reversible reactions by processing reversible

reactions differently compared to irreversible reactions.

The double-description method has been adapted for EFM computation,

and two techniques, the Canonical Basis [27] and Null Space [44] approaches, have

emerged. The two approaches differ in the initial representative matrix A. The

Canonical Basis approach utilizes the constraints within S matrix, thus represent-

ing constraints on metabolite balancing. The Null Space approach utilizes the null

space of the S matrix, which provides a set of constraints that describe the feasible

15



Table 2.1: Outline of Canonical Basis and Null Space techniques, modified from [1].

Steps Canonical basis approach Null Space approach

Reconfiguration S← [S −Srev ] S← [S −Srev ]

Initialization A← S A← null(S)

R← In R← A

Constraint for each unprocessed row Ai of A for each unprocessed row Ai of A

processing J+ ← {j ∈ J : Ai · rj > 0} J+ ← {j ∈ J : rji > 0}
J− ← {j ∈ J : Ai · rj < 0} J− ← {j ∈ J : rji < 0}
J0 ← {j ∈ J : Ai · rj = 0} J0 ← {j ∈ J : rji = 0}
R′ ← {rj : j ∈ J0} R′ ← {rj : j ∈ J0 ∪ J+}
for(j+, j−) ∈ J+ × J− for(j+, j−) ∈ J+ × J−

Adjacency test if rj
+

and rj
−

adjacent in R if rj
+

and rj
−

adjacent in R

Gaussian R′ ← R′ ∪ {(Ai · rj
+
)rj

−− (Ai · rj
−

)rj
+} R′ ← R′ ∪ {rj

+

i rj
−− rj

−

i rj
+}

combinations

Update R← R′ R← R′

Post-processing R← R \ {futile two-cycles} R← R \ {futile two-cycles}

Reconfiguration back-configuration of R back-configuration of R

flux space in which all metabolites internal to the network are balanced. Conceptu-

ally, during the execution of the double-description method, the Null Space approach

enforces only thermodynamic feasibility constraints (ensuring every flux mode co-

efficient is positive for irreversible reactions), while the Canonical Basis approach

enforces both thermodynamic feasibility and metabolite balancing constraints. The

differences between the Canonical Basis and Null Space implementations of the

double-description method are summarized in Table 2.1. A unifying description of

the Canonical Basis and Null Space approaches were presented by Gagneur and

Klamt [1].

2.2.2 The Canonical Basis Approach

The double-description method was first used by Schuster et al. to compute EFMs

[27]. The algorithm was an adaptation of Mavrovonoitis’ approach for synthesizing

balanced pathways in metabolic networks [52]. Later, Schuster’s algorithm was re-
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labeled as the Canonical Basis approach. Schuster’s algorithm provided a matrix-

based implementation of the double-description method, and Schuster et al. claimed

that graph-based implementations are not viable for computing EFMs.

In the Canonical Basis approach, S is used as the network representative

matrix A. Each row in A corresponds to an internal metabolite and represents a

mass-balance constraint. The corresponding matrix R is initialized with the identity

matrix of size n, where each column r in R represents a flux vector (a ray in the

flux space) that is initialized to a network reaction. When processing constraint Ai,

the net production or consumption of ith metabolite in rj is represented by scalar

product Air
j . A positive value indicates net production, a negative value represents

a net consumption, and zero value represents zero net consumption or production of

the metabolite (metabolite is balanced). In each iteration of the double-description

method, the flux vectors are divided into three groups: J+ (flux vectors producing

the metabolite), J− (flux vectors consuming the metabolite), and J0 (flux vectors for

which the metabolite is balanced). In the Gaussian Combination step, two rays are

combined such that metabolite i is balanced. The adjacency test ensures that only

adjacent rays with respect to constraint Ai are combined. There are three possible

implementations of adjacency testing. In the first, the adjacency of two rays in J+

and J− is decided using a rank test. In the second, two rays are combined, and

then tested for dependency on all newly generated rays within R. In the third,

two rays are combined, and then tested for dependency on any existing ray r+ or

r− or r0 within R. The performance of the rank test is dependent on the size of

the input matrix. The performance of the dependency testing is dependent on the

number of generated rays either in the current step (second test), or in the prior
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step (third test) of the algorithm. In the second test, the number of comparisons

for each generated ray is equal to the product of the number of rays in J+ and J−.

In the third test, the number of comparisons for each generated ray is equal to the

sum of the number of rays in J+, J− and J0. The third test often outperforms the

second test.

2.2.3 The Null Space Approach

The Null Space approach was proposed by Wagner [44]. Both the network matrix

A and equivalent representative matrix R are initialized using the null space of S,

A = R = null(S) = {v ∈ Rn : S v = 0} (2.3)

The double-description method processes each row of A, which represents constrains

on the a constraint that enforces the thermodynamic feasibility of the associated re-

action. The constraint associated with each row is thermodynamic feasibility of

the reaction corresponding to the row. Relative activity of reaction i in flux vec-

tor j is represented by rji . A positive value indicates the reaction operating in the

forward direction (thermodynamically feasible reaction), a negative value indicates

the reaction operating in the reverse direction (thermodynamically infeasible reac-

tion), and zero value represents the reaction is not active meaning the reaction is

not present in the pathway represented by the flux vector. In each iteration of the

algorithm, the flux vectors are grouped into three groups: J+ (flux vectors with

the thermodynamic feasible reaction), J− (flux vectors with the thermodynamic

infeasible reaction), and J0 (flux vectors for which the reaction is not active). The

thermodynamic feasibility of the reaction is satisfied by combining flux vectors rj
+
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and rj
−

(Gaussian combination). The Gaussian combination step combines two

balanced flux vectors resulting in a balanced flux vector. Only adjacent flux vectors

are combined to generate independent flux vectors.

2.3 Imperative Uses for EFM Analysis

While EFM analysis has been utilized in many applications, here we review some

applications where the use of EFM analysis is imperative as it provides fundamental

computational advantages that cannot be captured by other computational methods.

2.3.1 EFM to Characterize the Flux Space

As each flux distribution, v, can be expressed as a non-negative linear combination

of EFMs, it is desirable to compute the contribution of each EFM. This problem

can be mathematically expressed as:

v = Pα (2.4)

where αi in α describes the contribution of a particular EFM in the set of EFMs,

P. However, such a contribution may not be unique as the system is typically

underdetermined, and several approaches have been proposed to identify either a

single representative α or a range of relevant values.

In the α-spectrum method [63], the contribution of each EFM to the flux

distribution can be characterized by finding the range of each αi. This can be
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obtained by solving the following linear optimization problems:

Minimize (or Maximize) αi (2.5)

Subject to

v = Pα

0 ≤ αi ≤ 1 for i = 1, 2, 3, . . . n

The α-weighting of one EFM is dependent on α-weightings of other EFMs. Schwartz

and Kanehisa selected the unique weightings that minimize distance between EFMs

and the given flux distribution using quadratic programming [64] to solve the fol-

lowing objective in the optimization problem above:

Minimize Σ α2
i (2.6)

Hard constraints such as network structure and thermodynamic feasibility [65], as

well as soft constraints such as regulatory and environmental constraints can further

limit the feasible flux space and provide tighter bounds for the α-weightings. For

example, Covert et al. were able to eliminate 67.5% of extreme pathways by adding

regulatory constraints to an example network representing core metabolism.

2.3.2 EFM Count as a Representative Metric for Metabolic Func-

tion

The number of EFMs can be used as a direct measure of metabolic function. EFM

analysis was used to design an E. coli cell minimal in function, only capable of

sustaining cell growth and producing ethanol from pentoses and hexoses [2]. The
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minimal cell functionality was identified by reducing the number of EFMs by knock-

ing out the reactions participating in a large number of EFMs having lower ethanol

and biomass yield. This was achieved through the successive application of the

following steps:

1. Each network reaction was scored based on the number of EFMs remaining af-

ter knocking out the reaction. The score signifies the participation of reactions

in cell functionality.

2. The maximum ethanol and biomass yield was computed in each EFM in order

to filter EFMs with lower ethanol and biomass yield.

3. Reactions with the least score and maximum ethanol and biomass yield were

kept in the cell whereas other reactions were considered for knockouts.

A total of 15000 EFMs were computed for the wild type cell, of which 1000 EFMs

were capable of converting sugars to biomass and ethanol. The designed minimal cell

was achieved using six gene knockouts and contained only eight pathways capable of

converting sugars to biomass and ethanol. The engineered cell was experimentally

validated. Flux-balance based optimization frameworks (e.g. OptKnock [21] and

MOMA [66]) identify cell modifications to optimize both growth and metabolite

production. Such approaches are not suited to minimize cell function defined in

terms of EFM count as in the Trinh approach.

2.3.3 EFM Count as a Representative Metric for Redundancy

The number of EFMs or EPs can be used as a metric to represent redundancy in a

biochemical network. Papin et al. defined redundancy in the context of an external
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state, defined as a vector of exchange fluxes of the network [31]. Redundancy was

defined as the number of EPs that have same external state. A high number of

EPs corresponding to an external state indicates redundancy in the network. Cycli-

cal internal EPs do not contribute to redundancy analysis. Using this technique,

Papin et al. observed a high degree of redundancy in Haemophilus influenzae (H.

influenza) network [31]. An average of 49 EPs corresponded to a unique external

state associated with the production of non-essential amino acids without produc-

tion of succinate. It was also observed that the distribution of redundancy across

unique external states is not uniform indicating that some external states have more

redundant pathways compared to others. Using the same technique, Price et al. cal-

culated redundancy for Helicobacter pylori (H. pylori) network [67]. An average of

46 extreme pathways per unique external state was identified for H. pylori, indicat-

ing a more rigid network compared to H. influenzae.

2.3.4 Using EFMs to Define Network Robustness

Stelling et al. used the number of EFMs as a qualitative indicator of network ro-

bustness [30]. Stelling et al. defined network robustness as insensitivity of network

function to perturbations such as mutations. The results of random gene deletions

in the central metabolism of E. coli show that the network is robust as the maximal

biomass yield of mutants is comparable to that of the wild type strains. Addition-

ally, Stelling et al. related the number of EFMs to the functions performed by a

network. The total number of EFMs provides a quantitative measure of degree of

freedom for cell to perform a cell function. For example, it was shown that E. coli

could consume glucose in 45 times more different ways compared to acetate. The
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number of EFMs provides a network robustness metric but does not correlate with

mutant viability.

2.3.5 Cyclical EFMS are Equivalent to Substrate cycles

A substrate cycle refers to a set of metabolic reactions arranged in a loop resulting

in zero net consumption or production of the metabolites. The cycle operates by

transforming a cofactor, e.g. oxidizing a reducing equivalent. Substrate cycles have

been found experimentally in many parts of metabolism, and have more recently

been ascribed physiological functions, for example, thermogenesis [68]. Futile or

substrate cycles are not to be confused with infeasible loops, which refer to ther-

modynamically infeasible cycles. Schuster et al. suggested that substrate cycles can

be identified from cyclic EFMs with zero net metabolite production or consumption

[59].

Teusink et al. identified ATP-based substrate cycles in Lactobacillus plan-

tarum WCFS1 network using EFM analysis [39]. ATP, ADP, phosphate, water,

and protons were considered as external metabolites. EFM analysis was performed

on the modified network and the resulting cyclical EFMs were labeled substrate

cycles. To avoid enumerating all EFMs for larger networks, Gebauer et al. [69]

used two different approaches, mixed integer linear programming and EFMEvolver

[70] to identify ATP-based substrate cycles. An artificial reaction for ADP phos-

phorylation was added to the network and all the EFMs containing this reaction

were considered substrate cycles. To identify non-ATP-based substrate cycles and

to also tackle the lack of scalability of EFM analysis, Sridharan identified substrate

cycles in human liver metabolism model (HepatoNet1) in the context of modularity
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[71]. Sridharan et al. used ShReD partitioning metric [72] which favors conserva-

tion of cycles within modules. The network was partitioned and exchange reactions

for all the metabolites except cofactors were removed from modules. EFM analysis

was then performed on each module to identify within module substrate cycles. In

this approach, cyclical EFMs based on multiple cofactors are identified compared to

previous approaches [69, 39] where only ATP based substrate cycles were identified.

2.4 Alternative Network Decomposition Methods

While there are several fundamental uses for EFMs, their identification in genome-

scale networks is computationally intractable [73]. Alternate computational tech-

niques can be classified into two categories: sampling-based; or pathways within a

sub-network or under specific constraints.

Barrett et al. [74] used Monte Carlo sampling and principal component

analysis to obtain reactions that account for all range of flux states in the metabolic

network. Their method comprises five steps:

1. Finding the active reactions for a given growth environment

2. Generating large number of random allowable flux states using Monte Carlo

sampling

3. Computing bases using principal component analysis

4. Rotating bases to find biochemically meaningful interpretation of eigenvectors

5. Identifying the reaction sets based on rotated bases

The sampling algorithm generates physiologically unrealistic inefficient flux
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distributions corresponding to high substrate uptake rates and very low growth

rates. To overcome this problem, biasing in the sampling was introduced to gener-

ate flux distributions with growth rates of at least 90% of the maximum achievable

growth rate. The analysis was applied to a reconstructed integrated transcriptional

regulatory and metabolic network of E. coli [75], revealing that the top seven prin-

ciple components are representative of the regulation of gene product activity by

post-translational mechanisms.

As an alternative to finding EFMs in a large network, Kaleta et al. proposed

a method to identify balanced pathways in sub-networks in the context of the entire

network [76]. Kaleta et al. introduced the concept of flux patterns that define

balanced pathways in a sub-network of a bigger network operating at steady-state.

The flux values of the reactions in the sub-network are considered to be non-negative

while considering the flux values of rest of the reactions in the network to be zero.

Specifically, a flux pattern s in a sub-network of reactions 1 ≤ i ≤ k satisfies the

following conditions:

v ≥ 0 (2.7)

S v = 0 (2.8)

∀i ∈ s : vi > 0 (2.9)

∀j ∈ {1 . . . k} \ S : vj = 0 (2.10)

Elementary flux patterns, EFPs, are identified by iteratively solving a mixed-

integer linear program (MILP). Constraints of the MILP are updated in each iter-

ation such that no flux pattern is identified that is a combination of already found
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Figure 2.3: Projection of flux space onto a lower dimension subspace.

flux patterns. The computational complexity of the algorithm is polynomial in the

size of the entire system and exponential in the size of the sub-network. Kaleta et

al. showed that each elementary flux pattern can correspond to at least one EFM in

the complete network. Elementary flux patterns can be used to determine the com-

position of minimal media required for the production of a compound of interest, to

compute minimal cut sets [77], to determine the robustness of metabolic networks,

and to analyze host-pythogen interactions. Although each EFP can be mapped to

at least one EFM, EFPs does not necessarily cover all EFMs. Additionally, different

EFMs can be represented using the same EFPs as the relative flux contributions

along an EFP are not considered.

Marashi et al. addressed the shortcomings of EFPs by introducing the con-

cept of Projected Cone Elementary Modes, ProCEMs, projections of EFMs onto a
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lower dimensional subspace defined by the reactions of the sub-network. Figure 2.3

shows an example in which the flux cone of network comprising three reactions R1,

R2 and R3 is projected onto the subspace defined by reactions R1 and R2. ProCEMs

are computed by projecting the flux cone using the block elimination method [78]

and then using the double-description method on the projected cone to compute

extreme rays, or the ProCEMs.

Kaleta et al. proposed using genetic algorithms to explore the EFM search

space [70]. During exploration, the genetic algorithm generated constraints of an

optimization problem, which was used for the identification of an EFM satisfying

the constraints. MILP can also be used as an alternate approach to find redundant

alternate pathways in a metabolic network. Lee et al. formulated a MILP that can

recursively identify alternate pathways for a given pathway [79].
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Chapter 3

Enumerating Elementary Flux

Modes

Elementary flux mode analysis is a powerful computational technique that has been

used for modeling, analysis, and design optimization for designing many industrially

relevant micro-organisms [80] and developing synthetic biology applications [81]. In

this chapter, an EFM enumeration algorithm, termed graphical EFM or gEFM,

is developed. The algorithm is based on graph traversal, an approach previously

assumed unsuitable for implementing the double-description method. The approach

is derived from a pathway synthesis method proposed by Mavrovouniotis et al. [52].

The algorithm is described and proved correct. gEFM is applied to several test

cases with various sizes and runtimes are reported in comparison with other EFM

computation tools. Unlike other EFM computational techniques, gEFM is robust

to constraint ordering as it retains the structural information of the underlying

network. gEFM is shown competitive with state-of-the-art EFM computational

techniques for several test cases, but less so for networks with a larger number of
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EFMs.

3.1 Methods

3.1.1 Definitions

Before presenting the details of the gEFM algorithm, we provide some definitions

to clarify the exposition. Boldface capital letters denote matrices. Boldface lower

case letters denote vectors. The ith entry of a vector, p, is referred to using the

notation, p[i]. Unless otherwise stated, vectors are column vectors of the appropriate

dimensions.

Definition 1 The structure of a biochemical network is represented by an m ×

n stoichiometric matrix S, where m is the number of metabolites internal to the

network and n is the number of reactions.

The network reactions include exchange reactions that connect the network to a set

of external metabolites not captured in the stoichiometric matrix. The i, j-th entry

of the matrix S, denoted by Sij , is negative (positive) if metabolite mi is a reactant

(product) participating in reaction rj . A zero entry Sij indicates that metabolite mi

does not participate in reaction rj . Each reversible reaction is split into a forward

and a reverse reaction, which we will refer to as a reversible pair.

Metabolites in the network are classified as either external or internal [82].

External metabolites, sometimes referred to as pool metabolites or sources/sinks,

can accumulate. Internal metabolites however do not accumulate under steady-state

conditions.
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Figure 3.1: Example network. Metabolites A, B and F are considered as external
metabolites. (a) Network reactions. (b) Original network. (c) Network after split-
ting reaction R3 into R3f and R3b. (d) Augmented Stoichiometric matrix, with the
S matrix inside the delineated box.

Fig. 3.1(a) presents the set of reactions for an example metabolic network.

The network is specified to have three external metabolites A, B, and F, while all

others are specified as internals. The network can be represented as a hypergraph,

as shown in Fig. 3.1(b). Fig. 3.1(c) shows the network after splitting R3 into a

reversible pair, R3f and R3b. Fig. 3.1(d) illustrates an augmented matrix that

includes both internal and external metabolites. The highlighted section shows the

matrix S associated only with internal metabolites.

Definition 2 A biochemical network is at steady state if the net production rate

equals the net consumption rate for each metabolites internal to the network.

The graph representation of the network provides topological insight into the un-

derlying network. S represents the incidence matrix for a hypergraph G specified

by a set of vertices and a set of edges. A vertex corresponds to a metabolite, and

an edge corresponds to a reaction. The number of vertices equals m + e, where e

represents number of external metabolites, and the number of edges equals n. The
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terms network, graph, and hypergraph are used interchangeably, and so are the

terms reaction, edge, and hyperedge.

An edge in the network may be a hyperedge (e.g. reaction R1 in Fig. 3.1),

with potentially multiple sources and multiple sinks, allowing for multiple reactants

and products. A path, or pathway, in the network is therefore loosely defined as

a sequence of reactions such that products of a reaction are reactants of the next

reaction(s) in the sequence.

A pathway can be represented in two possible ways. A vector of reaction

coefficients, p ∈ Rn, represents the relative turnover rate of each reaction along

the pathway. A pathway may also be represented using a pair of vectors: One

vector of binary values, b ∈ {0, 1}n, indicates reaction participation or lack thereof.

A ‘1’ value indicates that the reaction is active in the pathway, while a ‘0’ value

indicates that the reaction is inactive. A second vector of metabolite coefficients,

c ∈ Rm, represents the net metabolite balance. A positive c[i] coefficient indicates

a net production of metabolite i; a negative value indicates a net consumption. A

zero value indicates a net balance in production and consumption, and the relevant

metabolite is referred to as a balanced metabolite.

The values of b are derived from the reaction coefficients as follows:

b[i] =


1 if p[i] > 0

0 otherwise

(3.1)

Metabolite and reaction coefficients are related as follows:

c = S p (3.2)
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For example, a pathway involving R1, R2, and R3 in Fig. 3.1 operating at steady-

state can be represented as:

p =

[
1 2 2 0 0 0 0

]T
b =

[
1 1 1 0 0 0 0

]T

In the gEFM algorithm, we utilize metabolite coefficients to identify path-

ways producing or consuming a particular metabolite. Reaction coefficients needed

to specify the EFMs are computed from the binary coefficients as described in sec-

tion 3.1.2.8.

Definition 3 A balanced pathway p induces a steady-state condition on a network

S iff

S p = 0 (3.3)

Therefore, all internal metabolite coefficients along a balanced pathway must be

zero.

Definition 4 A pathway is non-decomposable or independent if it cannot be repre-

sented as a non-negative linear combination of other pathways.

The independence of two pathways can be readily derived from their binary

representation using bitwise and operation [49] [1].

Lemma 1 Given two pathways p and p′, with binary representations b and b′
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respectively, p′ is dependent on p iff:

bAND b′ = b (3.4)

For example, the independence of pathway pa consisting of R1, R2, and R4,

and pathway pb consisting of R1, R2, R4, and R5 in Figure 3.1 can be verified by

comparing their binary representation using Lemma 1. Here, the active reactions in

pa are a subset of the active reactions in pb, making pb dependent on pa, and pa

independent of pb.

An elementary flux mode, or flux mode, or elementary mode is a steady-state

flux pattern in which flux proportions are fixed while their absolute magnitudes are

indeterminate [59]. A formal definition of a flux mode is provided below.

Definition 5 Given an m × n stoichiometric matrix, S, three conditions must be

met to label a pathway p as an elementary flux mode:

C1: The network reactions proceed in a direction dictated by thermodynamic fea-

sibility. Each reaction coefficient in p must be non-negative.

C2: The network is in quasi steady-state condition with no accumulation of internal

metabolites in the network. Mathematically,

S p = 0

C3: Each elementary mode must be independent from any other elementary mode

in the network.
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A vector p is thus an EFM if and only if p is thermodynamically feasible,

satisfies quasi-steady state conditions, and there is no other non-null flux vector (up

to a scaling) that satisfies both C1 and C2 and involves a proper subset of the

reactions participating in p.

The elementary flux modes for the example in Fig. 3.1 are illustrated in

Fig. 3.2. The reaction coefficients for each are:

EFM1 =

[
1 2 2 0 0 0 0

]T
EFM2 =

[
1 2 0 0 2 0 2

]T
EFM3 =

[
0 1 0 0 1 1 0

]T
EFM4 =

[
0 0 0 1 1 0 1

]T

Each pathway is an EFM because all reaction directions are consistent with thermo-

dynamic feasibility as specified in the original network. Additionally, each pathway

is balanced, where each metabolite can be produced and consumed without net

accumulation under the stoichiometric constraints specified by the original set of re-

actions in 3.1(a). Finally, each of the EFMs is independent of all others, as specified

by the test in Lemma 1.

The benefit of the EFM decomposition is that any steady-state flux distri-

bution in the network can be represented as a non-negative linear combination of

EFMs. For example, a flux distribution of p =

[
5 15 4 0 11 5 6

]T
can be

written as the linear combination of EFM1, EFM2, and EFM3, weighted by 2, 3,

and 5, respectively.
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Figure 3.2: Elementary flux modes for the network in Fig. 3.1(b).

3.1.2 The gEFM Algorithm

The gEFM algorithm is an iterative algorithm that processes one internal metabolite

at a time to construct partially balanced pathways. Each partially balanced path-

way, referred to as a partial pathway, is balanced (metabolite coefficients of zero)

with respect to processed metabolites, but not necessarily balanced with respect to

unprocessed internal metabolites. Initially, gEFM treats each reaction in the net-

work as a partial pathway. When a metabolite i is processed, new partial pathways

are constructed by combining each partial pathway that produces i with each par-

tial pathway that consumes i. Partial pathways containing a reversible pair (edges

associated with a split reversible reaction) and dependent pathways are identified

and discarded. The process repeats until all internal metabolites are processed. The

remaining pathways are all EFMs. The pseudo code of the algorithm is presented

in Algorithm 1, and implementation details are presented in Appendix A. We
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Algorithm 1: gEFM Pseudocode

1 allPathways(0) ← All reactions in the network
2 for k = 1 to m do

3 v(k) ← Unbalanced internal metabolite at index k

4 inputs(k) ← All pathways in allPathways(k−1) for which v(k) is a
reactant

5 outputs(k) ← All pathways in allPathways(k−1) for which v(k) is
a product

6 allPathways(k) ← allPathways(k−1) \ (inputs(k) ∪ outputs(k))

7 candPathways(k) ← inputs(k) × outputs(k)

8 Remove dependant pathways from candPathways(k)

9 allPathways(k) ← allPathways(k) ∪ candPathways(k)

10 Compute reaction coefficients for each pathway in allPathways(m)

describe the key steps.

3.1.2.1 Initialization (line 1)

Initially, allPathways(0), the set representing viable partial pathways, is initialized

with all network reactions. Each partial pathway is stored as (bj , cj) where bj

represents bit vector for reactions, cj represents metabolite coefficients, and j =

1, 2, ..., |allPathways(0)| is an index of a pathway in allPathways(0).

3.1.2.2 Metabolite Selection (line 3)

The metabolite v(k) that generates the minimal number of input-output combina-

tions is selected during each of the m = 1 . . . k iterations of the algorithm1.

At the beginning of each iteration, the number of combinations is calculated

as the product of the number of input and output partial pathways for each unpro-

cessed metabolite. A partial pathway in allPathways(k−1) that produces metabo-

1k is the index of the internal metabolite selected at step k. Without loss of generality one can

order the metabolites as they appear in the algorithm.
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lite v(k) is treated as an input pathway, and a partial pathway that consumes v(k) is

treated as an output pathway. For example, in the first iteration of the algorithm

when used for the example network in Fig. 3.1(b), metabolite C has such a prod-

uct (equals to 2) and it is processed first. The sign of the metabolite coefficient

associated with v(k) determines if a partial pathway produces or consumes metabo-

lite v(k). This metabolite selection scheme is the same that was suggested by the

Mavrovouniotis pathway synthesis approach [52].

3.1.2.3 Identifying Input, Output, and Non-Participating Partial Path-

ways (lines 4-6)

All input partial pathways are stored in inputs(k) and all output partial pathways

are stored in outputs(k); they are subsequently removed from allPathways(k−1).

Thus, only partial pathways that do not participate in producing or consuming v(k)

are contained in allPathways(k) (line 6).

3.1.2.4 Constructing Candidate Partial Pathways (line 7)

Consider an input partial pathway i ∈ inputs(k) and an output partial pathway

j ∈ outputs(k) of metabolite v(k). For each pair of partial pathways, (i, j), a

new partial pathway is generated by computing bitwise or of the binary reaction

coefficients of the input and output partial pathways:

bi,j = bi OR bj (3.5)
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The metabolite coefficients for the newly generated pathways are updated as follows:

scalei,j = −ci[k]/cj[k] (3.6)

ci,j = ci + scalei,j · cj (3.7)

In a newly generated partial pathway, the coefficient for v(k) is zero because

the output pathway, cj, is scaled such that the input pathway, ci completely con-

sumes v(k). That is, v(k) is balanced along the newly generated pathway. By design,

the scaling factor scalei,j is always positive and ensures that reactions in the result-

ing pathway operate in the forward direction. A newly generated partial pathway

thus satisfies C1.

For the network in Fig. 3.1(b), the following is a list of all bit vectors and

metabolite coefficients corresponding to the network reactions. Note that the path-

way indices for p4, p5, ... p7 are off by 1 from reaction indices in the figure because

reaction 3 is split into forward and reverse reactions. The ordering of the metabolites
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in the c vectors is alphabetical.

b1 =

[
1 0 0 0 0 0 0

]T
c1 =

[
−2 −1 2 0 0 0

]T
b2 =

[
0 1 0 0 0 0 0

]T
c2 =

[
0 0 −1 1 0 0

]T
b3 =

[
0 0 1 0 0 0 0

]T
c3 =

[
0 0 0 −1 0 3

]T
b4 =

[
0 0 0 1 0 0 0

]T
c4 =

[
0 0 0 1 0 −3

]T
b5 =

[
0 0 0 0 1 0 0

]T
c5 =

[
0 0 0 −1 1 0

]T
b6 =

[
0 0 0 0 0 1 0

]T
c6 =

[
0 0 1 0 −1 0

]T
b7 =

[
0 0 0 0 0 1 0

]T
c7 =

[
0 0 0 0 −1 1

]T

When metabolite C is selected in the first iteration of gEFM, metabolite

C has two input partial pathways p1 and p6 and one output partial pathway p2.

Partial pathways p3, p4, p5, and p7 do not participate in producing or consum-

ing metabolite C. The following two candidate partial pathways are generated by
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processing metabolite C:

b1,2 = (b1 OR b2) =

[
1 1 0 0 0 0 0

]T
scale1,2 = 2

c1,2 =

[
−2 −1 0 2 0 0

]T

b6,2 = (b6 OR b2) =

[
0 1 0 0 0 1 0

]T
scale6,2 = 1

c6,2 =

[
0 0 0 1 −1 0

]T

After processing metabolite C, the network is shown in Fig. 3.3. The follow-

Figure 3.3: The network in Figure 3.1 after processing metabolite C.
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ing is the list of partial pathways after processing metabolite C (line 7):

b3 =

[
0 0 1 0 0 0 0

]T
c3 =

[
0 0 0 −1 0 3

]T
b4 =

[
0 0 0 1 0 0 0

]T
c4 =

[
0 0 0 1 0 −3

]T
b5 =

[
0 0 0 0 1 0 0

]T
c5 =

[
0 0 0 −1 1 0

]T
b7 =

[
0 0 0 0 0 1 0

]T
c7 =

[
0 0 0 0 −1 1

]T
b1,2 =

[
1 1 0 0 0 0 0

]T
c1,2 =

[
−2 −1 0 2 0 0

]T
b6,2 =

[
0 1 0 0 0 1 0

]T
c6,2 =

[
0 0 0 1 −1 0

]T

Partial pathways containing a reversible pair are excluded from the candidate

pathways. We use a novel data structure, reversible reaction tree to accomplish this

task. Details of reversible reaction trees are available in section 3.1.4.

During each iteration of gEFM, a reversible reaction tree is created for the set

of input pathways and another for the set of output pathways (lines 4 and 5). The

reversible trees are used when creating new candidate pathways (line 7). The two

subtrees are recursively combined to generate new pathways. When an input subtree
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is combined with an output subtree, their labels are combined using a bitwise or

operation to generate a new label (combo label). If a reversible reaction pair is found

to be active in combo label, the subtrees are not combined because every pathway

generated will have both reactions active, and a reversible reaction can only operate

in one direction for a particular steady state. Checking the subtree labels against

each other thus avoids generating a large number of invalid pathways.

3.1.2.5 Dependency checking (line 8)

All dependent partial pathways in candPathways(k) are identified and removed. A

partial pathway p
(k)
c ∈ candPathways(k) is identified as dependent if it is dependent

on any other pathway in candPathways(k) or if it is dependent on a pathway in

allPathways(k). We use the bit pattern trees [73] data structure to implement

pathway dependency checking.

After processing metabolite C in the network in Fig. 3.1(b), two new partial

pathways p1,2 and p6,2 are generated. These partial pathways are not discarded

because they are independent of each other and of non-participating pathways p3,

p4, p5, and p7.

3.1.2.6 Updating the List of Independent Partial Pathways (line 9)

After removing dependent pathways from candPathways(k), the set is combined with

all non-participating reactions stored in candPathways(k) to generate a listing of all

EFMs with respect to the network induced by the first k metabolites.

42



3.1.2.7 Algorithm Termination

The algorithm iterates until all metabolites are processed. At any stage k, the

partial pathways in allPathways(k) are balanced with respect to the first k metabo-

lites. Since dependent pathways are removed, all pathways in allPathways(k) are

EFMs with respect to the first k metabolites. All of these facts along with combin-

ing all possible input/output partial pathways at each iteration shows that gEFM

algorithm is correct and will generate all EFMs for the original network.

3.1.2.8 Computing reaction coefficients (line 12)

After finding all EFMs, their numerical reaction coefficients are calculated from the

binary vectors [1]. Consider a pathway having bit vector b and corresponding reac-

tion coefficients p. From the binary representation, numerical reaction coefficients

for the non-participating reactions are zero.

By solving the following homogenous linear equation, unknown values for p

can be obtained:

S p = 0 (3.8)

The reaction coefficients can be normalized to the pathway’s first participating re-

action.

Consider an EFM of the network in Fig. 3.1(b) having the following bit

vector:

b =

[
1 1 1 0 0 0 0

]T
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The corresponding reaction coefficients for the bit vector would be:

p =

[
p1 p2 p3 0 0 0 0

]T

Since p can be normalized, assuming p1 = 1

p =

[
1 p2 p3 0 0 0 0

]T

By solving Equation 3.8, coefficients p2 and p3 are found to be:

p =

[
1 2 2 0 0 0 0

]T

3.1.3 Correctness of the gEFM algorithm

New definitions are introduced, and several Lemmas are presented to prove the

correctness of gEFM in constructing pathways that meet the three conditions in

Definition 5.

Definition 6 A stoichiometric matrix S(k) is an k×n submatrix of S that includes

the first k rows (metabolites) of S.

Metabolites that are not represented in S(k) are considered external with respect to

S(k). The matrix S(0) is a zero-row matrix representing the network without any

internal metabolites.

The gEFM algorithm constructs partially balanced pathways with respect

to S(k). That is, each metabolite along a pathway p will have a zero metabolite

coefficient. More formally,
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Definition 7 A partially balanced pathway (or partial pathway) p(k) is balanced

with respect to the first k metabolites in S.

Following Lemmas argue the correctness of gEFM with respect to the con-

struction incremental in the number of metabolites.

Lemma 2 Partial pathways generated in every iteration of gEFM satisfy conditions

C1 in Definition 5.

Proof Initially, prior to the first iteration of the algorithm, all reactions operate in

their specified direction. By construction, a partial pathway producing a metabolite

is combined with a partial pathway that consumes the metabolite. The direction of

all the reactions along the new partial pathways are consistent with earlier construc-

tion steps. Therefore, all partial pathways constructed at each step of the algorithm,

and overall, satisfy condition C1 in Definition 5.

Lemma 3 Partial pathways generated in iteration k of gEFM satisfy condition C2

in Definition 5 for the network specified by S(k).

Proof For S(0), all the network reactions represent partial pathways because no

metabolite is considered internal and each reaction stoichiometry is independently

balanced. A new partial pathway, p(k), is constructed by gEFM by combining

two balanced partial pathways in S(k−1) (i.e. they are balanced with respect to

the first k − 1 metabolites) and balancing a new metabolite, v(k). During step k

of the algorithm, the scaling operations (Equations 3.6 and 3.7) do not affect the

metabolite balance for the first k − 1 metabolites as their coefficients are already
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zero. The following thus holds:

S(k) p(k) = 0

Therefore, condition C2 of Definition 5 for S(k) is satisfied.

Lemma 4 The set of partial pathways generated after every iteration of gEFM

contains only independent partial pathways that satisfy C3 in Definition 5 for the

network specified by S(k).

Proof At each iteration, each generated pathway is tested for independence using

the combinational test (Lemma 1). The resulting set of pathways therefore satisfy

condition C3 of Definition 5 for S(k).

Lemma 5 gEFM produces all EFMs for the network defined by S(k).

Proof At each iteration of the gEFM algorithm, all possible input/output partial

pathway combinations are explored, ensuring that all possible ways of balancing a

metabolite v(k) are considered. Combined with Lemmas 2, 3, and 4, all EFMs for

S(k) are generated.

Theorem 1 The gEFM algorithm generates all EFMs.

Proof In every iteration of gEFM an internal metabolite is balanced. When all the

internal metabolites are balanced, gEFM terminates and the following holds:

S ≡ S(m) (3.9)
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All partial pathways generated after the last iteration satisfy C1 and C2 based on

Lemmas 2 and a 3, respectively. Since the set of generated pathways contain all the

EFMs (lemma 5) and all the dependent pathways are removed (Lemma 4), C3 is

satisfied. Therefore, the set allPathways(m) only contains EFMs.

3.1.4 Implementation Details

Reversible Reaction Trees

Due to splitting reversible reactions into reversible pairs, the gEFM algorithm may

identify a pathway that contains a forward reaction and its corresponding reverse

reaction. Such pathways are rejected during dependency checking because they

will be dependent on the EFM consisting of the cyclic pathway that contains the

reversible pair. EFMs consisting of reversible reaction pairs must be removed from

the final EFM listing. Dependency testing for pathways containing reversible pairs

is costly in terms of computational time. Therefore, the algorithm is modified to

reject such pathways before adding them to the candidate pathway set on line 7

using a reversible reaction tree.

A reversible reaction tree is a binary tree constructed by recursively splitting

the set of pathways based on a reaction belonging to a reversible pair. All pathways

for which the reaction is active are stored in one subtree and all pathways for which

the reaction is inactive are stored in the other. The reaction that splits the pathways

more evenly is selected as the splitting reaction. The process is applied recursively

until each tree node cannot be split any further. For each subtree, a bit vector label

is computed that keeps track of reversible reaction pairs. A ‘1’ value in the label

indicates if a reaction is active (e.g. part of a pathway) within the pathways of the
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the subtree, and a ‘0’ value indicates otherwise.

During each iteration of gEFM, a reversible reaction tree is created for the set

of input pathways and another for the set of output pathways (lines 4 and 5). The

reversible trees are used when creating new candidate pathways (line 7). The two

subtrees are recursively combined to generate new pathways. When an input subtree

is combined with an output subtree, their labels are combined using a bitwise or

operation to generate a new label (combo label). If a reversible reaction pair is found

to be active in combo label, the subtrees are not combined because every pathway

generated will have both reactions active, and a reversible reaction can only operate

in one direction for a particular steady state. Checking the subtree labels against

each other thus avoids generating a large number of invalid pathways.

Dependency Checking

Dependency checking is a fundamental and computationally expensive operation

when generating EFMs. To ensure independence, all partial pathways generated by

the algorithm must be tested for dependency against each other and against non-

participating pathways. However, the implementation can be made more efficient

by discarding any partial pathway with length larger than rank S+1 [83]. Another

method of speeding the implementation is to compare the newly generated partial

pathway against the generating input and output partial pathways instead of other

generated partial pathways. The details of the comparison follow Lemma 7.

Lemma 6 Pathway dependency is transitive. If p1 is dependent on p2 and p2 is

dependent on p3, then p1 is dependent on p3.

Proof Consider three pathways p1, p2 and p3 with binary representations b1, b2
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and b3. Let p1 be dependent on p2, and p2 is dependent on p3. Using Lemma 1,

b1 AND b2 = b2

b2 AND b3 = b3

Consider the dependency test of p1 and p3:

b1 AND b3 = b1 AND (b2 AND b3)

= (b1 AND b2) AND b3

= b2 AND b3

= b3

The above derivation shows that p1 is dependent on pathway p3.

Lemma 7 If a pathway p is dependent on a pathway pcombo, then pathway p is also

dependent on the pathways pin and pout generating pcombo.

Proof A pathway pcombo generated by combining two pathways pin and pout is nat-

urally dependent on pin and pout. Since pathway dependency is transitive (lemma

6), a pathway p is dependent on a pathway pcombo, the pathway p is also dependent

on the pathway pin and on pathway pout.

Consider the set of pathways candPathways(k) is generated by combining

the set of input pathways inputs(k) and the set of output pathways outputs(k)

in an iteration of gEFM. The dependency test is performed for each pathway p ∈

candPathways(k), generated by pin ∈ inputs(k) and pout ∈ outputs(k), and all path-

ways in candPathways(k)\P. Using lemma 7, the same dependency analysis results

are obtained by comparing pathway p with each pathway p′in ∈ inputs(k)\pin and
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p′out ∈ outputs(k)\pout. Within gEFM, the bit pattern trees [73] data structure is

used to implement pathway dependency checking.

3.2 Results

3.2.1 Test Cases

To assess the performance of gEFM and compare with other tools, several biochem-

ical networks with a varying number of reactions and metabolites are selected. The

first network represents adipocyte central carbon metabolism, and was used for flux

profiling and modularity analysis [84]. The second network is a reduced model cap-

turing central carbon metabolism of the Chinese Hamster Ovarian (CHO) cell [85].

The next three networks are variations of an E. coli cell model, which was utilized

when engineering a minimal E. coli cell for the efficient production of ethanol from

hexoses and pentoses [2]. In E. coli(irrev), all reactions in the network are made

irreversible by forcing reversible reactions to operate only in the forward direction.

In E. coli(gluc), glucose is considered as the only carbon source for the production

of ethanol. In the next network, E. coli(xbio), E. coli is allowed to grow on all

sugars without any biomass production. In Helicobacter pylori (H. pylori) [86], a

human gastric pathogen, only one compartment (cytoplasm) is considered with co-

factors removed. In yeast, Saccharomyces cerevisiae (S. cerevisiae) iND750 model

[87], cofactors are removed and only one compartment (cytoplasm) is considered.

The last model represents primary metabolism in Chlamydomonas reinhardtii (C.

reinhardtii) [88], a single celled green alga. Reactions in mitochondria are considered

with phosphate and water removed.
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Table 3.1: Statistics for the test case networks.

Test Case
Uncompressed Compressed

EFMs
Reactionsa Metabolitesb Reactionsa Metabolitesb

Adipocyte 34 (0) 34 (26) 15 (0) 7 (7) 78
CHO 34 (10) 40 (26) 30 (9) 12 (12) 1,431

E. coli (irrev) 70 (0) 68 (52) 26 (0) 12 (12) 840
E. coli (xbio) 70 (19) 68 (52) 47 (8) 21 (21) 40,693
E. coli (gluc) 70 (19) 68 (52) 51 (12) 26 (26) 33,220

H. pylori 413 (0) 287 (287) 140 (0) 23 (23) 753,664
S. cerevisiae (iND750) 179 (19) 147 (147) 81 (19) 29 (29) 4,535,802

C. reinhardtii 121 (0) 39 (39) 110 (0) 28 (28) 4,152,658

aNumber of reversible reactions are in parenthesis
bNumber of internal metabolites are in parenthesis

Several compression methods provided by EFMTool [89] were utilized to min-

imize the size of the test cases. The dead-end metabolite removal method eliminates

internal metabolites that are either only produced or only consumed. Reactions as-

sociated with such metabolites are also eliminated. The coupled-zero compression

method removes all reactions that always carry zero flux at steady state. The

unique-flows compression method removes metabolites that are produced by only

one reaction and consumed by only one other reaction by combining the producing

and consuming reactions. The coupled-combine compression method removes all

flux-coupled reactions, ones for which their relative flux is always constant, except

one reaction. The flux values for the removed reactions can be computed based

on the retained reaction. Similarly, the coupled-contradicting compression method

removes negatively coupled reactions.

All test case statistics (total number of reactions, number of reversible reac-

tions, total number of metabolites, and number of internal metabolites) are listed

in Table 3.1. The table also lists the statistics for the compressed models, where

significant reductions in the number of reactions and metabolites are attained. The

table lists the number of EFMs for each case.
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3.2.2 Computing Platform

gEFM has been benchmarked against Metatool [50] and EFMTool [51]. The MAT-

LAB implementation of MetaTool 5.1 is used with MATLAB 2013. The Java imple-

mentation of EFMTool is used with Java runtime environment 1.6. Because gEFM

does not currently have a multi-threaded implementation and to provide a fair com-

parison, multi-threading was disabled for all tools. All experiments were performed

on a 2.83 GHz Intel Xeon E5440 CPU with 6 MB cache running Red Hat Linux.

3.2.3 Runtime Analysis

The runtimes (in seconds) for the uncompressed and compressed models are reported

in Table 3.2. The first column lists the model names. The next three columns list the

runtime in seconds for all three tools for the uncompressed model, and the following

three columns report the runtimes for the compressed model. When run times were

less than 0.01 seconds, they were reported as < 0.01. Several entries are labeled as

TO (timeout), where the computation did not complete within a given time frame.

A different number of seconds was used for the timeouts depending on network size,

consistently allowing for a timeout window of at least 2× that of the fastest running

tool.

Following observations are made regarding the results. Consistently, Meta-

tool 5.1 computes the EFMs for the smaller examples for both the compressed and

uncompressed models, but the larger examples do not complete as Metatool 5.1

crashes without reporting any errors. EFMTool and gEFM compute EFMs for all

compressed and uncompressed test cases. The network size of H. pylori is larger

than the last two test cases (S. cerevisiae and C. reinhardtii), but H. pylori has a
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Table 3.2: Runtime comparison for Metatool, EFMTool, and gEFM for uncom-
pressed and compressed models. Runtime is in seconds. TO means timeout, where
the computation did not complete in a time frame of twice the maximum time for
other tools.

Uncompressed Compressed
Metatool EFMTool gEFM Metatool EFMTool gEFM

Adipocyte 0.11 0.07 < 0.01 0.09 0.05 < 0.01
CHO(small) 3.50 0.50 0.04 3.17 0.38 0.04
E. coli(irrev) 0.81 0.57 < 0.01 0.73 0.19 < 0.01
E. coli(gluc) 982.05 39.63 2.70 660.60 2.23 1.82
E. coli(xbio) 3,082.09 145.60 0.81 2,468.42 3.78 0.42

H. pylori(iIT341) TO 5,138.54 1,717.17 TO 4,813.18 646.14
S. cerevisiae(iND750) TO 27,029.99 534,375.00 TO 1,094.89 22,553.10

C. reinhardtii TO 153,132.05 471,316.00 TO 104,169.10 150,017.00

significantly smaller number of EFMs.

3.2.4 Comparisons Performed

To better understand how EFMtool and gEFM differ in runtimes, the cumulative

amount of work performed by each tool is quantified. In Table 3.3, the number of

iterations, the cumulative number of combinations generated, and the cumulative

number of comparisons performed by each tool for the compressed and uncompressed

models are listed. The last three columns list the numbers relative to gEFM. For

gEFM, the number of iterations corresponds to the number of internal metabolites,

m, that must be balanced. For EFMTool, the number of iterations corresponds to

the number of constraints on the steady-state operation derived after computing the

null space kernel, and is equal to n− k [1], where n is the number of reactions, and

k is the size of the null space kernel matrix (which is bounded by m).

Combinations correspond to pathways generated by balancing an internal

metabolite in gEFM whereas they correspond to rays generated after processing a

constraint in EFMTool. In each iteration of gEFM, combinations are compared to

the set of (input, output and non-participating) pathways; therefore, the number
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of comparison is equal to product of the number of combinations and the number

of pathways. Similarly in each iteration of EFMTool, the number of comparisons

performed in each iteration is equal to product of the number of combinations and

the number of rays (positive, negative, and zero rays). The number of iterations

and the number of combinations generated in each iteration was recorded and the

number of comparisons was computed for each test case.

For both compressed and uncompressed models, gEFM has a higher number

of iterations than EFMtool, as typically metabolic networks are underdetermined

(fewer constraints than metabolites). For the uncompressed models, gEFM provides

significantly (two orders of magnitude) fewer combinations and comparisons than

EFMTool for E. coli(irrev), E. coli(gluc) and E. coli(xbio), while EFMTool provides

significantly fewer combinations and comparisons for S. cerevisiae and C. reinhardtii.

The runtimes for gEFM are smaller than for EFMTool for examples with similar

number of iterations and slightly smaller number of combinations and comparisons.

3.2.5 Impact of Compression

Comparing the number of comparisons and constraints for the uncompressed and

compressed models, it is clear that EFMTool benefits extensively from compression,

while gEFM does not. gEFM benefits from compression in two ways. First, some

compression methods reduce the number of reactions in the network, which may

reduce the size of the bit vectors used for storing the reactions and in turn reduce

the runtime associated with processing the bit vectors. Each bit vector is a 32-bit

integer array, large enough to represent each reaction with a bit. The reduction

in the number of reactions will be beneficial only if the number of integers needed

55



to represent the bit vectors is reduced. Second, compression reduces the number

of metabolites in the network, which reduces the number of iterations within the

gEFM algorithm. All compression methods can reduce the number of reactions in

the network whereas only some compression methods (i.e. dead-end metabolites,

unique flows, and coupled-combine methods) can reduce the number of metabolites.

Metabolites removed by compression have a very small number of reactions associ-

ated with them, and would have been balanced in the early iterations of gEFM when

applied to the uncompressed network. The reduction in the number of comparisons

for these metabolites is therefore small. For the E. coli(gluc) network, compression

reduces the number of comparisons by 23% whereas for the C. reinhardtii network,

the reduction in the number of comparisons 91%. EFMTool also benefits from com-

pression techniques in two ways. First, the size of bit vectors used for storing the

reactions is reduced because of reduced number of reactions. Second, the number of

constraints is reduced because of the reduced number of reactions in the network,

which produces substantial savings in runtime. EFMtool does not directly benefit

from reducing the number of metabolites.

3.2.6 Impact of Metabolite/Constraint Ordering

The impact of metabolite/constraint ordering on runtime performance of gEFM

and EFMTool was investigated by comparing the runtimes under heuristic ordering

with the best of 10 random orderings. For gEFM, the metabolite to be balanced

was chosen at random. For EFMTool, the rows of the null space kernel matrix were

randomly ordered before applying the double-description method. For each test

case, Table 3.4 lists the best and average runtimes for the 10 runs normalized to the
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Table 3.4: The best of and average runtimes of 10 runs where metabolites (con-
straints) are randomly ordered. The runtimes are normalized to their respective
runtimes using the default heuristics. The ‘-’ indicates that the runtimes were all
less than < 0.01 seconds.

gEFM EFMTool
Best Average Best Average

Adipocyte - - 0.76 0.91

CHO (small) 1.50 1.53 0.78 0.91

E. coli(irrev) - - 0.82 1.00

E. coli(gluc) 4.14 57.84 0.34 0.77

E. coli(xbio) 1.66 43.04 0.70 1.65

runtimes reported in Table 3.2. For gEFM, the fastest runtime among the 10 runs

is always larger than the original runtime of gEFM. On average, random metabolite

ordering significantly (> 10×) increases the runtime as showing for E. coli(gluc) and

E. coli(xbio). For EFMTool, the best runtime among the 10 random runs always

decreases the runtime by 18% to 66%. The average of the 10 random runs is at

most 1.65× the runtime of the original heuristic. Both tools are thus sensitive to

metabolite/constraint ordering. However, the ordering heuristic for gEFM provides

the smallest runtime, whereas the EFMTool ordering heuristic does not.

3.3 Conclusion

In this chapter, the algorithm originally proposed in 1990 by Mavrovouniotis et

al [52] for pathway synthesis is adopted to compute EFMs. While earlier work

[43] adapted this algorithm for EFM computation by identifying a test to remove

dependent pathways, it was suggested that a matrix-based implementation is a more

appropriate realization of the algorithm than graph traversal. In the present study,

the proposed algorithm, gEFM, utilizes graph traversal in constructing the EFMs.

For the first time, it is shown that graph traversal provides a viable approach for
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computing EFMs. The gEFM implementation is shown to be competitive with

state-of-the-art EFM computational techniques for several test cases, but less so for

networks with a larger number of EFMs.

EFMs correspond to the extreme rays of a pointed polyhedral cone. gEFM

is rooted in the double-description method, which establishes two equivalent char-

acterization of a pointed convex cone: one based on the constraints that describe

the hyperplanes forming the convex cone, and another based on the rays spanning

the cone. gEFM implements the double-description method (see [46, 47, 48, 49] for

a description of this method). In each iteration of gEFM, a constraint on balancing

an internal metabolite is processed, and new extreme rays are identified. The gEFM

algorithm combines the input and output pathways of the metabolite to generate

intermediate pathways that lie on the hyperplane associated with the constraint.

Removal of dependent pathways in gEFM (as well as in prior implementations)

identifies the extreme rays. The large number of intermediate pathways and the

resulting demanding dependency checking are currently the major bottlenecks in

the gEFM (and other) implementation.

All methods based on the double-description have been reported sensitive

to the ordering of the constraints, and that dynamic ordering methods are not

necessarily superior [49]. Urbanczik and Wagner observe that it is difficult to remove

such dependency [45]. The results demonstrate this sensitivity for both gEFM and

EFMTool. The variations in the runtime are significantly more pronounced for

gEFM than for EFMTool, showing that gEFM (and thus the canonical approach)

is likely more sensitive to constraint ordering than EFMTool (Null Space approach).

However, it is shown that there is a clear profitable ordering for gEFM. At each
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step, the metabolite selection is based on a tangible choice: producing the smallest

number of new partial pathways. Knowledge of the network structure allows for a

more robust ordering heuristic. In contrast, network topology information is lost

when computing the null space for techniques such as EFMTool and Metatool.

The runtime of gEFM directly correlates first and foremost with the overall

number of generated rays (combinations) and comparisons needed for dependency

checking. Specifically, the runtimes in Table 3.2 correlate with the the number of

cumulative comparisons in Table 3.3. For the same number of comparisons, gEFM

benefits when employing a smaller number of iterations. For example, the number

of comparisons is comparable for the compressed and uncompressed models for H.

pylori while the number of iterations is smaller for the compressed model, and

the runtime for H. pylori is significantly reduced for the compressed model. The

compression techniques utilized were specifically developed for EFMTool, and they

enabled some runtime savings, with an average runtime savings of 55% for EFMTool

and 17% for gEFM for the set of test cases.

Computing elementary modes is a fundamentally computationally intractable

problem. This task is no harder than enumerating the vertices of a bounded polyhe-

dron, whose complexity is a long-standing open problem [90]. It was proven that it

is not possible to enumerate all elementary modes in polynomial time in the number

of reactions unless P=NP [91]. Thus, as the network size scales in the number of

reactions, runtime and memory usage simply increases in proportion greater than

any polynomial function in the number of reactions. The runtime of any algorithm

associated with computing the EFMs will therefore not be computationally efficient

(i.e. polynomial) in the number of reactions or metabolites in the network. Analysis
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of larger metabolic networks will thus require alternate pathway analysis methods,

as demonstrated in the coming chapters.
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Chapter 4

Finding Predictable Profitable

Path

Identification of potential engineering targets in metabolic networks to improve yield

of desired products is a computationally challenging problem. In this chapter, Pre-

ProPath (Predictably Profitable Path) is developed to identify target pathways best

suited for engineering modifications. The algorithm utilizes uncertainties about the

metabolic networks operating state inherent in the underdetermined linear equations

representing the stoichiometric model. Flux Variability Analysis is used to deter-

mine the operational flux range. PreProPath identifies a path that is predictable

in behavior, exhibiting small flux ranges, and profitable, containing the least re-

strictive flux-limiting reaction in the network. The algorithm is computationally

efficient because it does not require enumeration of pathways. The results of case

studies show that PreProPath can efficiently analyze variances in metabolic states

and model uncertainties to suggest pathway engineering strategies that have been

previously supported by experimental data.
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4.1 Methods

4.1.1 Flux Variability Analysis

Given a metabolic network, a flux (network flow), vi, is associated with each reaction

i. It is possible to identify the maximum (or minimum) flux within a network by re-

peatedly applying Flux Balance Analysis (FBA) [18]. This procedure, known as Flux

variability analysis (FVA) [19], identifies flux ranges by maximizing and minimizing

each network flux subject to stoichiometric, physicochemical (e.g. thermodynamic

irreversibility), cell growth, and measurement constraints [92, 93]. Mathematically,

FVA can be expressed as:

Min/Max vi (4.1)

Subject to

S v = 0 (4.2)

vlbi ≤ vi ≤ vubi (4.3)

where S v = 0 implies that the network is operating at quasi-steady state, with no

net production or consumption of metabolites. For exchange reactions, flux bounds,

vlbi and vubi , represent the maximum and minimum nutrient uptake or secretion

rates. Flux bounds for the rest of the reactions correspond to network constraints

relevant to particular operating conditions such as reaction directions. The maxi-

mum (minimum) flux value identified by FVA for a reaction i is denoted by vmax
i

(vmin
i ).

Figure 4.1(a) illustrates a small hypothetical network. Reaction R2 has co-

62



factors h and i. Figure 4.1(b) shows the network after eliminating the cofactors.

Cofactors and currency metabolites were not included in the graph after calculat-

ing flux ranges because paths consisting of these vertices do not reflect carbon flux

[94, 95]. Figure 4.1(c) shows the stoichiometric matrix corresponding to the net-

work in Figure 4.1(b). Metabolites a, b, e, and g are not included in the S matrix

as they are external to the network; however, exchange reactions R1, R3, and R6

are included in the matrix.

Applying FVA to the S matrix in Figure 4.1(c) with the following flux

bounds, v1 = 10 and v6 ≥ 2, the resulting flux ranges, (vmin , vmax), for reac-

tions R1 through R6 are: (10, 10), (0, 8), (0, 8), (0, 8), (2, 10), (2, 10).

Figure 4.1: (a) Example network. (b) Example network without co-factors h and i.
(c) S matrix for network in (b).
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4.1.2 Edge Weighting During Graph-Based Analysis

Flux values can be utilized as edge weightings, we, during graph-based analysis. It

is possible to identify a path between a source, s, and a destination, d, utilizing one

of the following edge weightings:

• To identify a path capable of carrying maximal flux, edge weights are assigned

maximum flux values (vmax
i ). This approach is optimistic as it assumes that

the path is capable of operating under the most favorable conditions, which

may not be attainable in practice.

• To guarantee a minimal flux flowing through a path, edge weights are assigned

minimum flux values (vmin
i ). This approach is conservative in identifying flux

capabilities. Operationally, an edge along the path may carry a flux higher

than the minimal flux vmin
i .

• To identify the path with the least flux variability (i.e. operationally providing

the most predictable fluxes under specified operating conditions), each edge

weight is assigned the flux range, the difference between the maximum and

minimum reaction fluxes obtained using FVA. An edge with a low weight here

indicates a more predictable operating condition when compared to an edge

with a higher weight. Identifying a path from s to d utilizing these edges

weights results in the most predictable path as it operates in the tightest flux

ranges.
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4.1.3 Definitions

A path is an alternating sequence of vertices and edges, v0, e0, v1, e1, v2, . . . , en−1, vn,

beginning and ending with vertices. A path between a source and a destination ver-

tex may contain hyperedges such that some vertices associated with the hyperedges

may not be part of such path. When analyzing a graph, a particular weight of

interest is the bottleneckWeight i, which limits the maximum amount of flux flowing

from s to d along any single path, pi. Within a graph, and among all paths pi be-

tween s and d, the maximum value among all bottleneckWeight i is referred to as the

bottleneckWeight [55]. The edge associated with bottleneckWeight is a bottleneck

edge. More formally,

bottleneckWeight = max ∀pi min e∈pi we

Any path between s and d capable of carrying a flux equal to or greater

than the bottleneckWeight is referred to as a profitable path, as it contains the least

restrictive flux-limiting reaction in the network and can be an engineering target

that can yield profitable increase in yield.

When utilizing flux ranges as weights, one edge e1 is less variable than an

edge e2 if w(e1) is less than w(e2). A path p1 is less variable than a path p2,

if the maximum edge weight along p1 is smaller than the maximum edge weight

along p2. If the maximum edge weights for p1 and p2 are equal, then successively

smaller maximum weights along each path are compared instead. A path that is

least variable is also the most predictable.
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4.1.4 Predictable Profitable Path Conditions

For a given graph, G, a source vertex, s, destination vertex, d, and a flux range

associated with each edge (vmin
i and vmax

i ), the PreProPath algorithm finds the

least variable path that contains the reactions capable of carrying the maximum

flux from s to d. More specifically, PreProPath identifies a path p as a predictably

profitable path if it meets the following two conditions:

Condition 1. Path p is profitable: all reactions along p are guaranteed to

have a flux carrying capacity equal to or greater than the bottleneckWeight.

Condition 2. Path p is predictable: p is the least variable path among all

profitable paths pj .

To illustrate these conditions, consider paths P1 − P4 from s to d in a hypo-

thetical network graph. Each path consists of three edges, with vmax
i edge weights

representing the maximum possible fluxes obtained using FVA:

P1 = (30, 50, 100)

P2 = (30, 70, 120)

P3 = (30, 100, 110)

P4 = (20, 80, 130)

Paths P1−P3 have the same largest (among all paths) smallest (within path) weight

of 30, which is the bottleneckWeight. P1, P2, and P3 are equivalent in terms of flux

capacity limits as the largest flux through each of these paths will be at most 30.

Paths P1, P2, and P3 therefore satisfy Condition 1; however, P4 does not.

Now consider weights assigned to P1, P2, and P3 based on flux ranges (vmax
i
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- vmin
i ) found using FVA:

P1 = (2, 3, 8)

P2 = (3, 6, 8)

P3 = (1, 7, 11)

Examining the largest range within each of the three pathways, both P1 and P2 have

the smallest (among paths) maximum (within path) range of 8. Between P1 and

P2, P1 is less variable than P2, as P1 has the next smallest maximum range (value

3), thus satisfying Condition 2. Among all four paths, P1 is profitable (capable

of carrying flux above the bottleneckWeight) and the most predictable because it

exhibits the least variability when compared to other profitable paths.

When analyzing a network graph without explicit path enumeration, identi-

fying the least variable path, one with the smallest (among paths) maximum (within

path) weight, is not straightforward. A näıve approach is to successively select the

lowest edge weight until a path is found from source to destination. Consider for ex-

ample network in Figure 4.2, with source s and destination d. Such a näıve approach

will result in considering the edges in the following weight order: 3, 4, 5, 6, 7, 8,

and then 10. At that point, there is a path from s to d, but it encompasses multiple

paths, and in this case, the entire network is selected. The algorithm, PreProPath,

selects the edges of the profitable path successively, first selecting the edge with the

largest-weight edge necessary to complete the path from s to d, and then selecting

the edge with the next largest weight, and so on.
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4.1.5 PreProPath Algorithm

The PreProPath algorithm identifies a predictably profitable path from source to

destination by executing two consecutive searches on the network graph. The first

search identifies a profitable graph, a subset of the original graph G in which every

reaction can operate at or above the flux limit, bottleneckWeight. The profitable

graph can be found by removing from G all edges having weight less than bottle-

neckWeight. Every path from s to d in the profitable graph thus meets Condition

1.

In the second search, the objective is to identify the least variable path in

the profitable graph. Edge weights in the profitable graph are set to flux ranges as

calculated using FVA. Edges are selected successively (through multiple passes) to

build the predictably profitable path. During each pass and in order of increasing

edge weights, edges in profitable graph are selected for building a path from s to

d. The passes stop when a path from s to d can be established using the selected

edges. A post-processing step allows the identification of the path that meets both

Condition 1 and Condition 2.

The pseudo code for the PreProPath algorithm is presented in Fig. 4.3. On

line 1, a weighted graph G is created from the S matrix. The edge weights are set

to either vmax or vmin depending on the metabolic engineering application and the

appropriateness of utilizing an optimistic or conservative approach. On line 2, the

bottleneckWeight is found in G using the single source-single destination bottleneck

algorithm (e.g. [55]).

The first search spans lines 3 through 7. Starting with an empty graph

profitableGraph, edges with weight equal to or greater than bottleneckWeight are
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PreProPath Algorithm(S, s, d, vmin, vmax)
1. Create a graph G from S using either vmax or vmin as edge weights
2. Identify bottleneckWeight for paths from s to d
3. Create an empty graph profitableGraph
4. for each edge e in G
5. if(weight(e) ≥ bottleneckWeight)
6. add edge e to profitableGraph
7. for each edge e, set edge weights in profitableGraph to be (vmax[e]− vmin[e])
8. Create an empty graph predictableProfitableGraph
9. while there does not exist a path from s to d in predictableProfitableGraph

10. predictable ← maximum limiting edge in profitableGraph from s to d
11. remove predictable and all edges with weight greater than weight of

predictable from profitableGraph
12. add predictable to predictableProfitableGraph
13. return path from s to d in predictableProfitableGraph

Figure 4.3: Pseudo code for PreProPath Algorithm.

added to profitableGraph. Each edge in profitableGraph is then assigned the flux

range as a weight in preparation for the second search.

The second search spans lines 8 through 13. An empty graph predictableProf-

itableGraph is created. The maximum limiting edge, predictable, in profitableGraph

is iteratively selected and removed from profitableGraph. This maximum limiting

edge is found by first sorting all edge weights in profitableGraph, and then succes-

sively adding edges in increasing weight to an initially empty graph until a path from

s to d is found. The last added edge is the maximum limiting edge. All edges with

weights larger than the maximum limiting weight are removed from profitableGraph.

The edge predictable is then added to predictableProfitableGraph. The process is re-

peated until a path from s to d is found in predictableProfitableGraph. The iterative

process successively builds the predictable profitable path in predictableProfitable-

Graph, one edge at a time in order of decreasing variability. The returned path on

line 13 is the predictableProfitablePath from s to d.

Fig. 4.2(b-e) illustrates the execution of the second search in the PreProPath
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Algorithm (lines 8-13) on the graph in Fig. 4.2(a). First, the edge with weight 10

is identified as the one with the maximum limiting weight. It is removed from prof-

itableGraph and added to the predcitableProfitableGraph (colored green), as shown

in Fig. 4.2(b). Next, the edge with weight 7 is identified as the limiting edge. It is

removed from profitableGraph and added to the predcitableProfitableGraph (colored

green), as shown in Fig. 4.2(c). Additionally, the edge with weight 8 is removed

from profitableGraph (colored dotted red). This process is repeated in Fig. 4.2(d)

and Fig. 4.2(e). After the second search terminates, there is only one path (colored

green) in Fig. 4.2(e) from s to d. This is the predictable profitable path.

4.2 Results

The PreProPath algorithm is applied to two test cases involving a small- and large-

scale metabolic model with 48 and 2382 reactions, respectively.

4.2.1 Ethanol Production in E. coli

The first test case examined the production of ethanol from glucose in E. coli. As

a first-generation biofuel, ethanol garnered significant attention from the metabolic

engineering research community [96]. The network model used in the case study was

constructed to represent E. coli growing on a minimal medium with glucose as the

sole carbon and energy source [97]. The model comprised the following metabolic

pathways: glycolysis, pentose phosphate pathway, TCA cycle, anapleurotic reac-

tions, redox-associated reactions, oxidative phosphorylation/maintenance reactions,

membrane transport reactions, and biomass synthesis. This model was used to cal-

culate the metabolic flux distributions in E. coli at several steady states. For each
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reaction in the model, a lower and upper bound was calculated by minimizing and

maximizing the flux subject to stoichiometric and measurement constraints. Exper-

imental data for glucose uptake and growth rates were taken from published studies

involving chemostat cultures [98], and are summarized in Appendix B. The growth

rates corresponded to the following approximate doubling times: 200, 100, 80, 60,

50, 40 and 30 min. Overall, the relative magnitudes of flux ranges with respect

to glucose uptake were similar across different growth rates. The reactions with

higher maximal flux values were found in glycolysis and pathways producing for-

mate, ethanol and acetate as shown in Fig. 4.4. At all growth rates, the largest flux

ranges were calculated for conversion of phosphoenolpyruvic acid (PEP) to pyruvate

(PYR), followed by fructose-6-phosphate (F6P) to fructose-1,6-biphosphate (F16P),

and malate (MAL) to oxaloacetate (OAA).

The flux data corresponding to different growth rates were at first separately

analyzed. The maximum reaction flux (upper bound) is used as the edge weight

to determine the flux-limiting reaction. Reactions with weights smaller than the

flux-limiting step were pruned to isolate the profitable network. For every growth

Figure 4.4: Flux distributions (mmol/gDCW/hr) in E. coli network for different
growth rates. Flux distributions are plotted for growth rates of (A) 200 and (B) 50
minutes. Reactions are arranged in ascending order of flux lower bound.
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Figure 4.5: E. coli network for ethanol production. Upper bounds of flux range
are used as weights for the identification of profitable network. Red lines highlight
pathways in the profitable network. The competing pathways deleted by Trinh et
al. [2] are marked with X.

rate, the profitable network comprised glycolysis reactions (Fig. 4.5). As there were

no competing pathways in the profitable network, the subsequent search for the

predictable pathway led to the trivial result.

A pessimistic approach of using the minimal reaction flux (lower bound) as

the edge weight is also investigated to identify the profitable network. For every

growth rate, the resulting profitable network comprised glycolysis and the pentose

phosphate pathways (Fig. 4.6). The subsequent search for the predictable pathway

based on flux ranges eliminated the pentose phosphate pathway, which contained

reactions with larger flux ranges compared to glycolysis.

To determine if there was a predictably profitable consensus pathway across

different growth rates, the above analysis was repeated using pooled data. For each

reaction, the lower and upper flux bounds were set to the minimum of the lower

bounds and maximum of the upper flux bounds respectively, irrespective of the
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Figure 4.6: E. coli network for ethanol production. Lower bounds of flux range
are used as weights for the identification of profitable network. Red and blue lines
highlight competing pathways in the profitable network for the production of ethanol
from glucose. The red pathway is more predictable when compared to blue. The
competing pathways deleted by Trinh et al. [2] are marked with X.

growth rate. As was the case for each of the different growth rates, glycolysis was

more predictably profitable compared to the pentose phosphate pathway.

4.2.2 Succinate Production in E. coli

In the second test case, succinate production from glucose is analyzed using a

genome-scale model of E. coli metabolism (iAF1260) [99]. Succinate is a com-

mercially valuable chemical used as a precursor for numerous industrial products,

including pharmaceuticals and biodegradable polymers [100].

The upper and lower bounds of the reaction fluxes in the model were cal-

culated by constraining a subset of internal and external fluxes using previously

reported measurements for the MG1655 strain of E. coli assuming an error range

of ±5% on the measured fluxes [101]. The upper bounds of ethanol transport reac-
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Figure 4.7: Flux distributions (mmol/gDCW/hr) of reactions in TCA cycle of E.
coli network. Reactions are arranged in ascending order of flux upper bound.

tions were reduced, similar to a previous study [102]. Based on these flux ranges,

the profitable network comprised the reactions of glycolysis and the TCA cycle. In

this network, the flux ranges of reactions in the reductive arm of the TCA cycle,

involving the conversion of oxaloacetate (OAA) to malate, fumarate, and eventually

to succinate, were smaller than the flux ranges of the remaining reactions in the

TCA cycle (Fig. 4.7). Consequently, the most predictably profitable synthesis route

consisted of 14 reactions spanning the reactions of glycolysis and the reductive arm

of the TCA cycle (Fig. 4.8).

4.2.3 Increasing the Flux through the Profitable Pathway

To evaluate the predictably profitable pathway identified by the PreProPath algo-

rithm as a target for succinate overproduction, the impact of over-expressing one or

more enzymes in the pathway is investigated. Similar to a previous study [103], the

smallest level of guaranteed succinate production was calculated by solving a linear

program whose objective is to minimize the succinate flux. Over-expression of an

enzyme was modeled by raising the lower bound of the corresponding reaction flux.

Flux ranges were computed using FVA. Glucose uptake was set to a nominal value
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Figure 4.8: E. coli network for succinate production. Red lines highlight pathways
for the production of succinate from glucose.

of 100 mmol/gDCW/hr and allowed to vary ±5%. All flux ranges computed by

FVA are provided in Appendix C. Two sets of experiments were performed where

the lower bound of the biomass flux was set to 1% and to 5% of the wild-type

(iAF1260) value (3 mmol/gDCW/hr).

First the impact of over-expressing a single enzyme is investigated, i.e. in-

creasing the lower bound of a reaction flux. An increase in the minimal succinate flux

was found for three enzymes in the profitable pathway; these were enolase (ENO),

fumarate reductase (FRD3), and phosphoenol pyruvate carboxylase (PPC) (Table

4.1). The magnitude of the minimal succinate flux depended on the enzyme and

varied with the amount of increase in the lower bound (Fig. 4.9 and 4.10). How-

ever, the lower bound could not be increased without limit. For all three enzymes,

a threshold was found beyond which the linear program became infeasible. The

widest range of feasible solutions was found for FRD3 (Table 4.1). Over-expressing
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FRD3 also afforded the highest minimal succinate flux. Near the upper limit of

the lower bound for FRD3, the minimal succinate flux reached 99% and 96% of

the theoretical maximum for 1% and 5% of the wild-type biomass flux, respectively.

Over-expressing PPC resulted in the lowest minimal succinate flux. However, even

intervention yielded significant increases in succinate flux, above 48% and 44% of

the theoretical maximum, when the lower bounds for the biomass flux were set to

1% and 5% of the wild-type flux, respectively.

Next it is investigated whether over-expressing an enzyme, one at a time, out-

side of the profitable pathway could also lead to an increase in the minimal succinate

flux. The only enzyme over-expressions able to produce succinate at a level similar

to that obtained by over-expressing enzymes in the predictably profitable pathway

were oxidative phosphorylation reactions acting as cellular transport reactions.

Finally, the impact of over-expressing pairs of enzymes is characterized (Fig.

4.11 and 4.12). The calculations were performed exhaustively, since the predictably

profitable pathway consisted of only 10 reactions, excluding exchange reactions.

Approximately half of the 45 unique combinations (55%) resulted in a non-zero

minimal flux of succinate. The best combinations (supporting a minimal succi-

nate flux exceeding 75% of the theoretical maximum) involved at least one of the

three enzymes identified from the single over-expression analysis (ENO, FRD3, and

PPC). In addition, fumarase (FUM) was also identified as an attractive engineering

target, specifically in combination with FRD3 or PPC for 1% biomass production.

In these cases, the main contribution of FUM was to enlarge the effective over-

expression range of the other enzyme. For example, when the lower bound of FUM

flux is placed within the range of the wild type, only a narrow range is available
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for PPC over-expression to achieve a higher minimal succinate flux (exceeding 75%

of the theoretical maximum). In contrast, reducing FUMs lower bound to below

20 mmol/gDCW/hr widens the PPC over-expression range four-fold (Fig. 4.11b).

Similarly, the lower bound of PPC flux when reduced below 150 mmol/gDCW/hr,

widens the ENO over-expression range five-fold (Fig. 4.11c). In all cases support-

ing a minimal succinate flux greater than 75% of the theoretical maximum, the

increase in the minimal succinate flux positively correlated with an increase in the

lower bound of ENO, FRD3 or PPC. In this regard, the double over-expressions did

not identify any new enzymes for flux increase. Therefore, additional combinations

involving triple or quadruple over-expressions were not further investigated.

The engineering targets identified by the PreProPath algorithm varied with

different biomass production rates due to the different requirements for biomass pre-

cursors. For example, FUM was not identified as a potential enzyme for intervention

when the lower bound for biomass flux was set to 5% of the wild-type flux. The

over-expression ranges also depended on the growth rates. For higher growth rate,

the over-expression level of the enzymes was lower compared to lower growth rate,

reflecting a lower yield of succinate for a faster growing cell. For example, the flux

range of PPC was found to be 335-356 mmol/gDCW/hr for 1% biomass production

compared to 327-344 mmol/gDCW/hr for 5% biomass production.

4.3 Conclusion

In this chapter, an efficient computational method is developed to identify engi-

neering targets for increased production of compounds in metabolic networks. The

method is “uncertainty-aware” as it considers degrees of freedom in the model and
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multiple metabolic states arising because of different uptake rates. The algorithm

is based on guided search and avoids exhaustive exploration of all pathways in the

network. The effectiveness of the method was demonstrated by applying it to two

test cases. In the first test case, the algorithm identified pathways for the maximum

production of target compounds across different steady-state flux distributions re-

flecting different growth rates. In the second test case, the over-expression of en-

zymes along the succinate-producing pathway in E. coli is characterized, which was

identified by the algorithm as the predictable profitable path. An important feature

of the PreProPath algorithm is that it can take into account different flux states,

as determined by measured rates of metabolite exchange with the medium, when

searching for pathways with particular attributes. In the first test case, PreProPath

identified the same pathway, glycolysis, across different growth rates, underscoring

the singular importance of this pathway in ethanol production.

PreProPath is effective in analyzing biochemical pathways without direct

enumeration of all possible pathways. The algorithm is an alternative to explic-

itly enumerating all elementary pathways followed by search for a pathway with a

specific property (predictability and profitability, in this case). To increase ethanol

production in E. coli as in the first test case, Trinh et al. identified and then ana-

lyzed over 15,000 EFMs to determine gene knockout targets [2]. To narrow down

the candidate pathways, EFMs that do not contribute to ethanol production were

eliminated. The remaining ethanol-producing EFMs were then grouped into six

“families” based on the type of sugar substrate. Using eight gene knockouts, path-

ways competing with ethanol producing pathways were removed. The identified

predictably profitable pathway is the same one identified by Trinh et al.
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In the case studies, bottleneck reactions that refer to flux-limiting reactions

are considered. A reaction can be “flux-limiting” due to various reasons such as

reaction kinetics or regulatory effects. The method simply identifies such a reaction

within the context of a specific network at a particular flux distribution. A dis-

tinction between flux-limiting and rate-limiting is drawn. A flux-limiting reaction

does not necessarily correspond to a “rate-limiting” reaction, which was believed to

be the slowest step in a series of reactions, and was often associated with the first

committed step of a pathway. Metabolic Control Analysis [103], applicable only in

the context of small network perturbations, shows that such flux-limiting reactions

exist if the first reaction step is completely insensitive to its product, which is not

typically the case.

The results of the case studies suggest that the PreProPath algorithm can

efficiently guide the search for pathway engineering targets. While the results were

promising, they also pointed to limitations of the present analysis. First, the analysis

does not distinguish between degrees of freedom in a model arising from insufficient

equality constraints and variances associated with measurements. These two differ-

ent sources of uncertainty can both lead to flux variability, which forms the basis of

the PreProPath algorithm. However, the relative magnitudes of these uncertainties

directly influence the results. For example, the second case study showed that it

is possible to obtain a different predictably profitable pathway depending on the

metabolic state. Clearly, metabolic states can only be distinguished meaningfully,

if the uncertainties in the measurements are sufficiently small. One way to discrim-

inate between the variances arising from the two different sources of uncertainty is

through sensitivity analysis, for example based on Monte Carlo simulations, which

83



systematically assess the impact of measurement errors. Second, the analysis as-

sumed that a reaction with a small value for its flux range is more profitable to

genetically boost than another with a higher range value. The algorithm presented

here can be adapted to utilize edge weights that correspond to a different desired

objective.
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Chapter 5

Finding Bottleneck Reactions

Increasing the yield of a desired product from a given source metabolite in a mi-

croorganism can improve the efficiency of production. One approach to solve this

problem is to alleviate bottleneck in the pathways from the source metabolite to

the desired product. Due to complexity of the metabolic networks, identification of

all the pathways from the given source to the desired product is a computationally

challenging task. In this chapter, the problem of identifying a bottleneck reac-

tion in metabolic networks is addressed. The algorithm developed in the chapter

is based on Dijkstra’s shortest-path algorithm that explores the network without

enumerating all pathways. The algorithm identifies the best bottleneck reaction,

Dominant-Edge, from the source metabolite to the desired product and identifies a

path, Dominant Path, containing the Dominant-Edge. Later, the dominant path is

augmented to identify a pathway from the source metabolite to the desired prod-

uct. The algorithm has polynomial runtime in terms of number of metabolites and

reactions in the network. The chapter focuses on application of the algorithm to

identify thermodynamic bottlenecks in metabolic networks.
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5.1 Methods

5.1.1 Free Energy

Gibbs free energy is most useful for chemical processes at a given temperature and

pressure (isothermal and isobaric) and often used in biology [104]. In this thesis,

the standard Gibbs free energy change is used to estimate the expected likelihood

of the corresponding reaction. The Gibbs free energy change (∆G) of a reaction

is a thermodynamic quantity whose sign in principle indicates whether a reaction

is likely to occur (negative) or not occur (positive) spontaneously. Very recently,

a related thermodynamic quantity, entropy (∆S), of an EFM has been shown to

significantly correlate with its flux [105]. Here, group contribution theory [106] is

used to estimate the standard ∆G (∆G◦) values of metabolic reactions, which in

turn serves as a first-order approximation of the “true” ∆G values under a well-

defined and idealized condition (1 M concentrations of all reactants and products,

25 ◦C and neutral pH). The algorithm uses ∆G to weight the edges to conceptually

simplify the formulation.

5.1.2 Representation of Metabolic Networks

A metabolic network is represented as a graph Gm = (V,E), where V and E are

sets of metabolites and reactions, respectively. When an edge represents part of a

reaction the edge is referred as a sibling edge. The reactants or products of a single

reaction are referred to as sibling vertices. A value ge is associated with each edge,

representing the ∆G of the corresponding reaction. A path s → t is defined as a

sequence of vertices and edges starting from vertex s and ending at vertex t.

A transpose of the network graph is obtained by reversing the direction of
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every edge, maintaining sibling relationships. The union operator ∪ is used between

a subgraph N and a set of edges or nodes to create an equal or larger subgraph in

terms of number of nodes and/or edges.

5.1.3 Dominant Paths

The algorithmic objective is to identify a network path that is energetically favored

or “dominates” in the production of a particular metabolite. The limiting step

(bottleneck) in production along a path is the reaction (edge) that has the smallest

ge (i.e. least negative ∆G). Among several parallel paths, a dominant-edge path will

have the largest limiting step. The bottleneck shortest path is a well-known problem

[107]. Therefore, terms similar to those in the Bottleneck Shortest Path Problem

are used, whose goal is to determine the limiting capacity of any path between two

specified vertices in a given network [108].

The bottleneck energy bp of a path p from s to t is defined as:

bp = max e∈p ge (5.1)

The edge along p responsible for setting the bottleneck energy for the path is referred

to as the bottleneck edge for path p.

The bottleneck of a vertex t is defined as:

bv = min p:p is a s→t path bp (5.2)
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5.1.4 Stoichiometrically Balanced Pathways

Isolating a path in a graph sense is desirable and meaningful in many conventional

applications (e.g., traveling salesman problem, network flow algorithms). However,

in the context of biological applications, it is more meaningful to identify a path-

way. A pathway from s to v is a subgraph in the network that contains a path

s → v, and an augmenting set of connected edges and nodes. These augmenting

components are needed to ensure overall stoichiometric balance. That is, a stoi-

chiometrically balanced pathway will not have any dangling internal nodes. The

augmenting components can also be thought of as paths that complete the con-

version of any remaining intermediates (unused by the main path) to the target

metabolite.

5.1.5 Problem

The following problem is solved: Given a metabolic network graph Gm = (V,E),

and starting and ending vertices s and t, find the dominant-edge pathway from s

to t. In this thesis, a dominant-edge pathway is defined based on ∆G. However,

other measures such as flux data can also be used, if available, to determine the

dominant-edge pathway.

Two sub-problems are identified. The first involves finding the dominant-

edge path s → t, and the second consists of augmenting the dominant-edge path

to create a stoichiometrically balanced pathway. The first problem resembles the

Bottleneck Shortest Path Problem. However, as explained shortly, when the first

problem is solved, not only a path from s→ t is found, but additional sibling edges

and sibling nodes are also found that are integral parts of the dominant-edge path-
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way. The second problem therefore involves graph traversals to identify the relevant

augmenting components to produce a stoichiometrically balanced pathway. There-

fore an algorithm, Dominant-Edge Pathway, is provided which first finds a partially

dominant pathway, PDP , and then augments it to produce a stoichiometrically

balanced pathway, SBP .

5.1.6 Dominant-Edge Pathway Algorithm

The details of the algorithm are given in Figure 5.1. Algorithm Dominant-Edge

Pathway begins by finding a set of edges R that contains all edges responsible for

setting the bottleneck energy for all vertices in Gm. Next, based on R, the function

EXTRACT-DOMINANT-PATH determines the dominant-edge path from s → t,

along with all sibling edges and vertices associated with this path. That path is

referred to as PDP . Then, to ensure stoichiometric balance, the augmentation

technique must be implemented iteratively in both the forward and backward direc-

tions, because sibling edges and vertices can occur in either the forward or reverse

direction. Therefore, first AUGMENT-PATHWAY based on PDP is called, and

then AUGMENT-PATHWAY based on the transpose of PDP is called. The pro-

cess repeats until SBP does not grow.

To find the dominant-edge path, modified Dijkstra’s algorithm [109] is used,

which identifies the single-source shortest path. In Dijkstra’s algorithm, all distances

are initialized to infinity with the exception of the source vertex distance, which is

initialized to zero. Each vertexs predecessor is set to NIL. Dijkstra’s algorithm

utilizes relaxation. Relaxing an edge (u, v) checks if the shortest distance to v found

so far can be improved by going through u, and if so, the shortest distance to v is
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DOMINANT-EDGE-PATHWAY(Gm, s, t)
1. R ← FIND-BOTTLENECK-ENERGIES (Gm, s)
2. PDP ← EXTRACT-DOMINANT-PATH (s, t, R)
3. SBP ← PDP
4. while SBP is growing
5. SBP ← AUGMENT-PATHWAY (s, t, SBP )
6. SBP ← SPB ∪ transpose(AUGMENT-PATHWAY(t, s, transpose (SBP )))
7. return SBP

FIND-BOTTLENECK-ENERGIES(Gm, s)
1. INITIALIZE-DOMINANT-PATH (Gm, s)
2. Q ← the set of all nodes in Gm except s
3. S ← s; R ← {}
4. while Q is not empty
5. x ← extract lowest energy vertex in Q
6. r ← {} if previous[x] is undefined OR r ← edge(previous[x], x)
7. U ← set of products of r in Q ∪ {x}
8. S ← S ∪ U ; R ← R ∪ {r}
9. for each vertex v in U

10. RELAX(v)
11. remove v from Q
12. return SBP

INITIALIZE-DOMINANT-PATH(Gm, s)
1. for each vertex v in Gm

2. energy[v] ← ∞
3. previous[v] ← undefined
4. reaction[v] ← undefined
5. for each neighbor v of s
6. energy[v] ← ge(edge(s, v))

RELAX(u)
1. for each neighbor v of u
2. alt ← max(energy[u], ge(edge(u, v)))
3. if alt < energy[v]
4. energy[v] ← alt
5. reaction[v] ← edge(u, v)
6. previous[v] ← u

EXTRACT-DOMINANT-PATH(s, t, R)
1. PDP ← {t}
2. u ← t
3. while u is not equal to s
4. PDP ← {previous[u], reaction[u]} ∪ PDP
5. if edge e is a sibling edge, then
6. PDP ← PDP ∪ {sibling edges(u)} ∪ {sibling vertices(u)}
7. u ← source(e)

AUGMENT-PATHWAY(s, t, PDP )
1. augmentMore ← TRUE
2. while augmentMore
3. augmentMore ← FALSE
4. for each vertex v in PDP
5. if outdegree(v) = 0 and v is not t
6. R′ ← FIND-BOTTLENECK-ENERGIES(v)
7. PDP ← PDP ∪ EXTRACT-DOMINANT-PATH(v, t, R′)
8. augmentMore ← TRUE
9. return PDP

Figure 5.1: Pseudo code of Dominant-Edge Pathway algorithm.

updated. The predecessor to v responsible for this new shortest path value is also

updated. Dijkstra’s algorithm maintains a set S of vertices whose shortest-path

90



weights from the source have already been determined. The algorithm repeatedly

selects the vertex u, not in S, with the minimum shortest-path estimate, adds u

to S, and relaxes all edges leaving u. A min-priority queue keyed by the distance

values of the vertices is used to efficiently extract u.

The algorithm, FIND-BOTTLENECK-ENERGIES, differs from Dijkstra’s

shortest path algorithm as follows. Each vertex is associated with three variables:

energy, reaction and previous. energy[v] refers to the bottleneck energy of path

from source to the vertex v that will be assigned to v. reaction[v] refers to the

edge from a vertex u to v responsible for setting energy[v]. previous[v] refers to a

vertex u connected to v through an edge (u, v) where u is responsible for setting

reaction[v]. The initialization step sets the energies to ∞, except for the source

vertex from which the search begins. Note that an edge in the graph may have

more than one source, and thus both reaction and previous variables are needed

for implementing the algorithm. Another difference is in the relaxation step. The

energy assigned to a vertex v is the maximum energy of ge, the ∆G associated with

edge e leading from u to v, and the energy of vertex u. A min-priority queue is used,

Q, keyed by energy of the vertices stored in Q. The set S stores all the vertices

whose bottleneck energies have already been determined.

The algorithm FIND-BOTTLENECK-ENERGIES works as follows. While

visiting vertices, this algorithm models the effect of selecting favored reactions by

including minimum energy vertex (metabolite) into its frontier, S. All variables

are initialized as shown in INITIALIZE-DOMINANT-PATH. Q is initialized with

all nodes in Gm. The algorithm repeatedly extracts a vertex x with the minimum

energy, and process it as follows. First, the set of all sibling vertices associated with
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vertex x are found and stored into a set U (steps 6 & 7). In step 8, U is added

to S, as the bottleneck energy of all vertices in U are now determined. This step

ensures that once a reaction was used to set the bottleneck energy of a vertex, the

energy of all sibling vertices are set and cannot be changed by further processing of

the vertices. Similarly, R is augmented to include an edge r responsible for placing

a vertex x in S. Each outgoing edge of the sibling vertices is then relaxed. The

extraction continues until all vertices in Q have been processed.

Once the bottleneck energy from source vertex s to every node in the graph

and each reaction[v] values are found, all edges in R are removed that do not belong

to the dominant-edge path. Function EXTRACT-DOMINANT-PATH executes a

traversal from the target to the source, adding vertices and edges to PDP , including

sibling vertices and edges. The traversal includes sibling edges and sibling vertices

and thus results in a PDP (as opposed to a path).

The function AUGMENT-PATHWAY finds a dangling node d (no outgoing

edges) in PDP (line 5), and finds a partial dominant pathway, PDP , from d to

t. This operation occurs by computing bottleneck energies starting with d using

FIND-BOTTLENECK-ENERGIES, and then adding vertices and edges found us-

ing EXTRACT-DOMINANT-PATH between d and t. This process applies to all

dangling nodes originally in PDP as well as nodes found during finding partial

dominant pathways from d.

The runtime of FIND-BOTTLENECK-ENERGIES is similar to Dijkstra’s

algorithm. It depends on the implementation of the priority queue. For a binary

max-heap implementation when all vertices are reachable from the source, the run

time is O(|E|ln|V |). The run time of EXTRACT-DOMINANT-PATH is O(|V |).
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The run time for AUGMENT-PATHWAY is dominated by FIND-BOTTLENECK-

ENERGIES, which is executed multiple times, but less than |V |. Based on the

empirical results, the number of times FIND-BOTTLENECK-ENERGIES is called

is typically small, and can be treated as a constant.

5.1.6.1 Example 2

The goal is to find the dominant-edge pathway from vertex s to vertex t in Figure 5.2.

The energy of each reaction edge is marked along the edges. Consider four parallel

paths from s to t: {s, e, f, d, t}, {s, e, d, c, t}, {s, f, d, t}, and {s, f, t}. The bottleneck

energy along each of these paths is -5, -9, -15, and -15. In this example, the first

two paths are thus not dominant paths. However, the last two paths contain sibling

vertices d and t. The dominant pathway cannot have one of the paths and not the

other to ensure stoichiometric balance. If, for example, vertices {s, f, t} are chosen,

then the reaction with Gibbs energy -20 will produce metabolite d. Therefore will

must include both of these paths to produce a dominant-edge pathway including

vertices {s, f, t, d}, and edges {(s, f), (f, t), (f, d), (d, t)}. The bottleneck energies

associated with applying FIND-BOTTLENECK-ENERGIES are denoted next to

each vertex. The dashed edges are found using EXTRACT-DOMINANT-PATH.

The dotted edge (d, t) is found using AUGMENT-PATHWAY.

5.2 Results

The Dominant-Edge Pathway algorithm was tested on three examples with varying

numbers of metabolites and reactions. The results were compared to those found us-

ing the EFM analysis tool efmtool [110]. The examples are culled from the literature
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Figure 5.2: Example metabolic network. Numbers along edges indicate the Gibbs
Free Energy Change. Numbers above each vertex denote bottleneck energies asso-
ciated with each vertex. The dashed and dotted lines are the edges associated with
the dominant pathway.

as there currently are no benchmark suites available to evaluate the algorithm. The

∆G for each reaction was computed using an available online tool [111]. The first

test case consists of 21 metabolites and 20 reactions and includes pathways compris-

ing the central carbon network of Z. mobilis expressing heterologous enzymes for

xylose utilization [112]. The number of EFMs for this model was 2. The second test

case is based on a recently published model of an ethanol producing strain of E. coli

[2]. This network consists of 47 metabolites and 60 reactions, with three metabo-

lites inputs: fructose, glucose, and xylose. The number of EFMs for this model was

33,000. The second test case was modified by removing a reaction responsible for

biomass production (cell growth). This modified model is referred as case 2A. The

number of edges of the graph for 2A was significantly reduced because the reaction

removed was associated with several sibling edges. The third test case is a model

of the rat liver cell [113]. This model consists of 38 metabolites and 60 reactions.

While this model is of the same scale as the E. coli test models, it supports a larger

number of reversible input-output pairings. A more detailed liver model having 110
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metabolites and 119 reactions is also considered as test case. This detailed model is

referred as 3A.

The relationship between the EFMs and the pathways found using Dominant-

Edge Pathway is highlighted, before presenting the results of each case study. One

way to use EFM analysis to find the dominant-edge pathway is to analyze all elemen-

tary modes connecting the source and target metabolites. This subset of elementary

modes can then be rank-ordered based on the least negative reaction ∆G in each

mode to identify the pathway containing the lowest thermodynamic barrier. The

pathway(s) found using this method may coincide, be part of, or partially over-

lap with the dominant-edge pathway. EFM analysis does not necessarily find the

same pathway identified using Dominant-Edge Pathway as EFM finds all possible

pathways that can cover the source and destination metabolites.

The overlap possibilities between EFM and Dominant-Edge Pathway results

are summarized in Table 5.1. The columns in the table indicate the following: test

case number, source metabolite, target metabolite, number of metabolites and re-

actants along the dominant-edge pathway found using the Dominant-Edge Pathway

algorithm, and the number of relevant modes found by EFM.

In the first test case, the EFM and Dominant-Edge Pathway analyses produce

identical pathways. In the second example (test case 2), the three dominant-edge

pathways, each corresponding to a different input metabolite, are proper subsets

of 169, 156, and 725 elementary modes. In test case 2A, two of the dominant-

edge pathways are identical to those found using EFM, and the third pathway was

having partial overlap with EFM. In the third example, there was only partial

overlap between the dominant-edge pathways and the modes found using EFM
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analysis. The number reported in the last column in the table indicates the number

of elementary modes that contained at least 50% of the reactions found in the

Table 5.1: Results of DOMINANT PATH Algorithm compared to paths (modes)
found using EFM analysis.

Test Case Inputs Output Metabolites Reactions EFM Modes

1 Glucose Ethanol 13 12 1

1 Xylose Ethanol 20 19 1

2 Fructose Ethanol 12 11 169

2 Glucose Ethanol 13 12 156

2 Xylose Ethanol 21 19 725

2A Fructose Ethanol 12 11 1

2A Glucose Ethanol 13 12 1

2A Xylose Ethanol 21 19 1

3 Alanine Glucose 10 10 14

3 Alanine Urea 8 8 3

3 Cysteine Glucose 10 10 14

3 Cysteine Urea 8 8 3

3 Glycine Alanine 2 3 1

3 Glycine Glucose 11 11 20

3 Glycine Cysteine 2 3 1

3 Glycine Urea 9 9 9

3 Tyrosine Glucose 12 1 18

3 Tyrosine Urea 8 7 5

3 Acetyl-CoA Glucose 15 14 30

3 Acetyl-CoA Urea 11 10 9

3 Serine Glucose 10 10 15

3 Serine Urea 8 8 5

3A Alanine Glucose 33 33 -

3A Alanine Urea 13 15 -

3A Cysteine Glucose 54 62 -

3A Cysteine Urea 17 17 -

3A Glycine Alanine 47 52 -

3A Glycine Glucose 56 63 -

3A Glycine Cysteine 6 4 -

3A Glycine Urea 20 19 -

3A Tyrosine Glucose 42 46 -

3A Tyrosine Urea 38 42 -

3A Acetyl-CoA Glucose 33 33 -

3A Acetyl-CoA Urea 21 26 -

3A Serine Glucose 54 61 -

3A Serine Urea 21 20 -
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corresponding dominant-edge pathway. For the test case 3A EFM analysis was not

completed (over 1.5 million modes were reported by the tool before it crashed after

3 days of execution) so only number of metabolites and number of reactions present

in dominant-edge pathway are reported.

The significance of the Dominant-Edge Pathway algorithm thus lies in its

ability to efficiently identify thermodynamically favored reaction routes without

costly enumeration-based path analysis. This is evident in the runtime and memory

requirements needed to perform the analysis. The run time for all test cases was < 1

second using a single 3 GHz quad-core Pentium computer with 4 GB of RAM. The

efmtool run time was 1 second for the first and third examples, and 10 seconds for

the second example. When the Dominant-Edge Pathway algorithm was applied to

the detailed model, the resulting pathways had similarity with the pathways found

using reduced model while maintaining a run time of less than 1 second.

5.3 Conclusion

This thesis presents a novel algorithm for pathway analysis of biochemical networks.

The Dominant-Edge Pathway algorithm departs from prior efforts on exhaustive

enumeration in the following ways. Given a desired pathway feature, e.g. ther-

modynamic favorability, the algorithm merges the weight assignment and the path

identification steps. The algorithm provides an efficient search process compared to

enumeration-based approaches such as EFM and extreme pathway analysis. Sto-

ichiometric balancing is applied at the end of the search process, after the main

trunk of the path has been generated, again saving run-time. The main limitation

of the algorithm deals with the uncertainty of the Gibbs free energy estimates used
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to characterize the thermodynamic favorability of the reactions. On the other hand,

the algorithm is general with respect to the type of the reaction (edge) weight, and

could be expanded to use measurement derived steady-state flux weights. In conclu-

sion, the results of the analysis indicate that the algorithm presented in this thesis

provides an efficient alternative to the enumeration based approaches, especially for

applications where the input and output metabolites are a priori defined.
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Chapter 6

Conclusions and Future

Directions

This thesis presented three graph-based algorithms for the analysis of metabolic net-

works. The algorithms developed here include gEFM, a graph-based algorithm used

to enumerate elementary flux modes in metabolic networks; PreProPath algorithm,

used to identify predictable profitable pathways; and Dominant-Edge Pathway al-

gorithm, used to identify bottleneck reactions. The results demonstrate that graph-

based approaches are not only powerful but are also viable for metabolic network

analysis.

6.1 Thesis Summary

The thesis provides some key contributions to pathway analysis of metabolic net-

works. First, an algorithm, gEFM, is developed for computing the elementary

flux modes within a metabolic network. The algorithm is iterative, processing one
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metabolite-balancing constraint at a time to generate partial pathways that are vet-

ted for independence against all prior generated such pathways. The algorithm im-

plements the canonical approach, which in turn is a variant of the double-description

method. The thesis demonstrates for the first time that graph-based approaches are

viable for computing EFMs, and by natural extension, for computing the extreme

rays of a convex cone. The main advantage of gEFM is utilizing the underlying struc-

tural information to derive a robust ordering for processing the metabolite balancing

constraints. When applied to several test cases, gEFM is found to be competitive

for several test cases when compared to other EFM computational methods.

Second, potential targets for engineering interventions are identified to im-

prove production of a desired product from the given source metabolite using the

PreProPath algorithm. The algorithm presented here can be adapted to utilize edge

weights that correspond to a different desired objective. The method is “uncertainty-

aware” as it considers degrees of freedom in the model and multiple metabolic states

arising because of different uptake rates. The algorithm is based on guided search

and avoids exhaustive exploration of all pathways in the network. The results of the

case studies suggest that the algorithm can efficiently guide the search for pathway

engineering targets.

Third, a bottleneck or limiting reactions from a given source metabolite

to the desired destination metabolite in a metabolic networks are identified using

the Dominant-Edge Pathway algorithm. It is shown that the approach is efficient

because it does not enumerate all the pathways between source and destination

metabolite. The analysis for thermodynamic bottlenecks for different test cases

shows that the algorithm can be applied to large-scale models for which enumeration
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of all the pathways is not feasible. Moreover, the algorithm can be used to identify

other types of bottlenecks such as flux bottleneck by changing the edge-weighting

scheme.

6.2 Future Research Directions

This thesis covers three graph-based pathway analysis techniques. The following are

some possible extensions of the work discussed in the thesis:

• Adjacency test is the most computationally expensive step in EFM analysis.

Implementation of adjacency test on graphical processing units (GPUs) can

improve performance of EFM analysis because of availability of huge number

of concurrent threads.

• Network partitioning for scalability of EFM analysis can be explored. Parti-

tioning of network for gEFM algorithm is natural. Performing EFM analysis

on partitions and then merging the partitions may improve the performance

of EFM analysis.

• EFM analysis identifies pathways that can represent all possible steady-states.

In reality, some of the EFMs are not biologically feasible. There is a need for

computational methods to remove biologically infeasible pathways by incor-

porating more constraints such as physiological constraints and regulatory

constraints.

• For identification of potential engineering targets, flux variations in the net-

work are used as edge weights in PreProPath algorithm. By incorporating reg-

ulatory information in edge weights, predictability of PreProPath algorithm
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can be further improved.

• Enumerating all the pathways is a fundamentally computationally intractable

problem. To avoid enumeration of all the pathways approximate methods such

as probabilistic (random walk) can be used to identify a set of pathways that

represent the feasible flux space.

• Adapting algorithms to high performance computing platforms can be ex-

plored to improve the performance of existing algorithms for pathway analysis.

This includes mapping complex data structures to the memory models of high

performance computing platforms and modification of algorithms to support

concurrent execution.

• Advances in proteomics, metabolomics and fluxomics have provided large

volumes of data that can be used to improve existing pathway analysis ap-

proaches. EFM analysis can benefit from these advances by identifying the

most significant EFMs based on the ‘omics’ data.
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Algorithm 1: EFMGenerator class

Description: This class removes metabolites to generate elementary flux modes

1 class EFMGenerator
2 begin

3 List<Pathway > pathways
4 boolean [ ] metatbolitesRemoved

5 EFMGenerator (List<Pathway > reactions)
6 begin
7 pathways ← reactions
8 metatbolitesRemoved ← new boolean [MetaboliteCount]
9 for i← 0 to (MetaboliteCount− 1) do

10 if Metabolite i is external then
11 metatbolitesRemoved [i] ← true
12 end
13 else
14 metatbolitesRemoved [i] ← false
15 end

16 end

17 end

18 generateEFMs ()
19 begin
20 while There are unprocessed metabolites do
21 m ← Unprocessed metabolite with minimum number of combinations
22 Pathway [ ] inputs ← All pathways in pathways for which m is a reactant
23 Remove inputs from pathways
24 ReversibleTree inputTree ← new ReversibleTree (inputs)
25 BitPatternTree bptIn ← a new BitPatternTree of inputs
26 Pathway [ ] outputs ← All pathways in pathways for which m is a product
27 Remove outputs from pathways
28 ReversibleTree outputTree ← new ReversibleTree (outputs)
29 BitPatternTree bptOut ← a new BitPatternTree of outputs
30 BitPatternTree bptNon ← a new BitPatternTree of pathways
31 generateCombinations (bptIn, bptOut, bptNon, inputTree.root, outputTree.root)
32 metatbolitesRemoved [m] ← true

33 end

34 end

35 end
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Algorithm 2: EFMGenerator class

Description: This class removes metabolites to generate elementary flux modes

1 class EFMGenerator
2 begin

3 void generateCombinations (BitPatternTree bptIn, BitPatternTree bptOut ,
BitPatternTree bptNon, ReversibleTreeNode input , ReversibleTreeNode output , int m)

4 begin
5 activeReversibleReactions ← input.activeReversibleReactions | output.activeReversibleReactions
6 if activeReversibleReactions has reversible reaction pair then
7 return
8 end
9 if (input is not leaf) and (output is not leaf) then

10 generateCombinations (bptIn, bptOut, bptNon, input.child0, output.child0, m)
11 generateCombinations (bptIn, bptOut, bptNon, input.child0, output.child1, m)
12 generateCombinations (bptIn, bptOut, bptNon, input.child1, output.child0, m)
13 generateCombinations (bptIn, bptOut, bptNon, input.child1, output.child1, m)

14 end
15 else if (input is not leaf) and (output is leaf) then
16 generateCombinations (bptIn, bptOut, bptNon, input.child0, output, m)
17 generateCombinations (bptIn, bptOut, bptNon, input.child1, output, m)

18 end
19 else if (input is leaf) and (output is not leaf) then
20 generateCombinations (bptIn, bptOut, bptNon, input, output.child0, m)
21 generateCombinations (bptIn, bptOut, bptNon, input, output.child1, m)

22 end
23 else
24 foreach Pathway i in input do
25 foreach Pathway o in output do
26 Pathway combo ← new Pathway (i, o)
27 if !bptIn.isSuperset (combo, i) and !bptOut.isSuperset (combo, o) and

!bptNon.isSuperset (combo) then
28 combo.updateMetaboliteCoefficients (m)
29 pathways.add(combo)

30 end

31 end

32 end

33 end

34 end

35 end
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Algorithm 3: BitPatternTree class

Description: This class represents a bit pattern tree

1 class BitPatternTree
2 begin

3 boolean bitsUsed [ ]
4 BitPatternTreeNode root

5 BitPatternTree()
6 begin
7 root ← new BitPatternTreeNode ()
8 bitsUsed ← new boolean [ReactionCount]

9 end

10 void addPathway(Pathway p)
11 begin
12 for i← 0 to (ReactionCount− 1) do
13 bitsUsed ← false
14 end
15 root.addPathway(p, bitsUsed)

16 end

17 boolean isSuperset(Pathway p)
18 begin
19 return root.isSuperset(p)
20 end

21 end
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Algorithm 4: BitPatternTreeNode class

Description: This class represents a bit pattern tree node

1 class BitPatternTreeNode
2 begin

3 boolean leaf
4 BitPatternTreeNode child0, child1
5 int splitBit
6 List<Pathway > pathways
7 ReactionBitData label

8 BitPatternTreeNode()
9 begin

10 leaf ← true
11 child0 ← null
12 child1 ← null
13 splitBit ← −1
14 pathways ← new List<Pathway > ()

15 end

16 boolean isSuperset(Pathway p)
17 begin
18 if p.isSupersetOf(label ) then
19 return true
20 end
21 if leaf then
22 foreach Pathway pth in pathways do
23 if p = pth then
24 continue
25 end
26 if p.isSupersetOf(pth) then
27 return true
28 end

29 end
30 return false

31 end
32 else
33 if p.reactions[splitBit ] = 1 then
34 if child1.isSuperset(p) then
35 return true
36 end

37 end
38 return child0.isSuperset(p)

39 end

40 end

41 end
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Algorithm 5: BitPatternTreeNode class contd.

39 class BitPatternTreeNode
40 begin

41 void addPathway(Pathway p, boolean [ ] bitsUsed)
42 begin
43 if leaf then
44 pathways.add(p)
45 if pathways.size > MAX PATHWAYS then
46 split (bitsUsed)
47 end
48 label ← label and p.reactions

49 end
50 else
51 bitsUsed[splitBit ] ← true
52 if p.reactions[splitBit ] = 1 then
53 child1.pathways.add(p, bitsUsed)
54 end
55 else
56 child0.pathways.add(p, bitsUsed)
57 end
58 label ← label and p.reactions

59 end

60 end

61 void split (boolean [ ] bitsUsed)
62 begin
63 leaf ← false
64 child0 ← new BitPatternTreeNode ()
65 child1 ← new BitPatternTreeNode ()
66 splitBit ← Unused bit with min difference of 1 and 0 count in pathways
67 foreach Pathway p in pathways do
68 if p.reactions[splitBit ] = 1 then
69 child1.pathways.add(p)
70 child1.label ← child1.label and p.reactions

71 end
72 else
73 child0.pathways.add(p)
74 child0.label ← child0.label and p.reactions

75 end

76 end

77 end

78 end
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Algorithm 6: ReversibleTree class

Description: This class represents a tree which partitions on basis of reversible reaction pairs

1 class ReversibleTree
2 begin

3 ReversibleTreeNode root

4 ReversibleTree(Pathway [ ] pathways)
5 begin
6 bitsCannotBeUsed ← getBitsCannotBeUsedToSplit (pathways)
7 root ← new ReversibleTreeNode (pathways, 0, pathways.size, bitsCannotBeUsed, new

ReactionBitData ())

8 end

9 ReactionBitData getBitsCannotBeUsedToSplit (Pathway [ ] pathways)
10 begin
11 ReactionBitData bitsCannotBeUsed ← new ReactionBitData ()
12 foreach reaction r in the network do
13 if r is not in any reversible reaction pair then
14 bitsCannotBeUsed [r] ← true
15 end
16 else if r is not active in all pathways then
17 bitsCannotBeUsed [r] ← true
18 end
19 else
20 bitsCannotBeUsed [r] ← false
21 end

22 end
23 return bitsCannotBeUsed

24 end

25 end
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Algorithm 7: ReversibleTreeNode class

Description: This class represents a node in ReversibleTreeNode

1 class ReversibleTreeNode
2 begin

3 Pathway [ ] pathways
4 boolean leaf
5 int start, end, splitBit
6 ReversibleTreeNode child0, child1
7 ReactionBitData activeReversibleReactions
8 ReactionBitData label

9 ReversibleTreeNode(Pathway [ ] p, int s, int e, ReactionBitData bitsCannotBeUsed ,
ReactionBitData a)

10 begin
11 pathways ← p
12 leaf ← true
13 start ← s
14 end ← e
15 activeReversibleReactions ← a
16 if a reversible reaction pair is active in activeReversibleReactions then
17 end ← start
18 return

19 end
20 splitBit ← Bit, which can be used, with min difference of 1 and 0 count in pathways
21 if splitBit < 0 then
22 label ← bitwise and of reactions in the pathways region [start,end)
23 return

24 end
25 activeReversibleReactions [splitBit ] ← true
26 bitsCannotBeUsed[splitBit ] ← true
27 leaf ← false
28 middle ← partition ()
29 child0 ← new ReversibleTreeNode (pathways, start, middle, bitsCannotBeUsed,

activeReversibleReactions.clone())
30 child1 ← new ReversibleTreeNode (pathways, middle, end, bitsCannotBeUsed,

activeReversibleReactions.clone())
31 label ← child0.label and child1.label;

32 end

33 int partition ()
34 begin
35 move all the pathways with inactive splitBit towards begining of pathways region [start,end)
36 return index of split point

37 end

38 end
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Algorithm 8: Pathway class

Description: This class represents a pathway in the network

1 class Pathway
2 begin

3 double metCoeff [ ]
4 ReactionBitData reactions
5 Pathway parent1, parent2

6 Pathway(Pathway a, Pathway b)
7 begin
8 parent1 ← a
9 parent2 ← b

10 reactions ← parent1.reactions | parent2.reactions

11 end

12 void updateMetaboliteCoefficients(int m)
13 begin
14 metCoeff ← new double [UnprocessedMetaboliteCount]
15 double scalingFactor ← −parent1.metCoeff [m] / parent2.metCoeff [m]
16 for i← 0 to (UnprocessedMetaboliteCount− 1) do
17 metCoeff [m] ← parent1.metCoeff [i] + scalingFactor ∗ parent2.metCoeff [i]
18 end

19 end

20 boolean isReactantMetabolite(int m)
21 begin
22 return metCoeff [m] < 0
23 end

24 boolean isProductMetabolite(int m)
25 begin
26 return metCoeff [m] > 0
27 end

28 boolean isSubsetOf(Pathway p)
29 begin
30 return (reactions = (reactions & p.reactions))
31 end

32 boolean isSupersetOf(Pathway p)
33 begin
34 return (p.reactions = (reactions & p.reactions))
35 end

36 end
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Appendix B

Supplementary Data for

Ethanol Production in E. coli
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Appendix C

Supplementary Data for

Succinate Production in E. coli
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