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ABSTRACT 
 
 
 

 
Title of Document: REMOTE SENSING OF VEGETATION 

STRUCTURE USING COMPUTER VISION   
  
 

Jonathan P. Dandois, Ph.D., 2014 

  
Directed By: Dr. Erle C. Ellis, Department of Geography and 

Environmental Systems 
 
 
High-spatial resolution measurements of vegetation structure are needed for improving 

understanding of ecosystem carbon, water and nutrient dynamics, the response of 

ecosystems to a changing climate, and for biodiversity mapping and conservation, among 

many research areas.   Our ability to make such measurements has been greatly enhanced 

by continuing developments in remote sensing technology – allowing researchers the 

ability to measure numerous forest traits at varying spatial and temporal scales and over 

large spatial extents with minimal to no field work, which is costly for large spatial areas 

or logistically difficult in some locations.  Despite these advances, there remain several 

research challenges related to the methods by which three-dimensional (3D) and spectral 

datasets are joined (remote sensing fusion) and the availability and portability of systems 

for frequent data collections at small scale sampling locations.  Recent advances in the 

areas of computer vision structure from motion (SFM) and consumer unmanned aerial 

systems (UAS) offer the potential to address these challenges by enabling repeatable 

measurements of vegetation structural and spectral traits at the scale of individual trees.   

However, the potential advances offered by computer vision remote sensing also present 

unique challenges and questions that need to be addressed before this approach can be 



  

used to improve understanding of forest ecosystems.  For computer vision remote sensing 

to be a valuable tool for studying forests, bounding information about the characteristics 

of the data produced by the system will help researchers understand and interpret results 

in the context of the forest being studied and of other remote sensing techniques.  This 

research advances understanding of how forest canopy and tree 3D structure and color 

are accurately measured by a relatively low-cost and portable computer vision personal 

remote sensing system: 'Ecosynth'.   Recommendations are made for optimal conditions 

under which forest structure measurements should be obtained with UAS-SFM remote 

sensing.  Ultimately remote sensing of vegetation by computer vision offers the potential 

to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, 

but also seeing the trees in the forest and the leaves on the trees.  
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Chapter 1: Introduction and Research Background 
 
Forests cover roughly 30% of global land area and hold 70-90% of terrestrial 

aboveground and belowground biomass, a key sink of global carbon (FAO and JRC 

2012).  Accurate understanding of the spatial extent, condition, quality, and dynamics of 

forests is vital for understanding their role in the biosphere (Houghton et al. 2009).  

Obtaining such information through field work alone would be extremely labor intensive 

and has been made possible within the last four decades by remote sensing technologies 

that map the extent and dynamics of structural, spectral, and even taxonomic traits of 

forests at spatial scales ranging from the single leaf to the entire planet (Defries et al. 

2000; Lefsky et al. 2002; Zhang et al. 2003; Parker and Russ 2004; Hansen et al. 2008; 

Asner and Martin 2009; Richardson et al. 2009).  Even so, no one remote sensing 

instrument can simultaneously capture structural and spectral traits and dynamics of 

forests at high spatial resolution (Lefsky and Cohen 2003).  

Such technical limitations limit the potential research that can be carried out for 

improving understanding of forest ecosystems using remote sensing. In other words, 

ecologists are often unable to answer important questions about forest ecology due to the 

lack of tools needed to collect the necessary measurements.   Several such questions are 

posed here along with the potential benefits and challenges of using remote sensing to 

answer them.   

What are the spatial and temporal patterns of forest canopy phenology at the scale 

of individual crowns / tree species and how does this vary within and across sites?  

Remote sensing has made great advances to improving understanding of canopy 

dynamics at regional and global extents, but due to limitations of the remote sensing 
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instruments these observations are often only made at coarse resolutions (> 250 m pixel 

size), with the result that information about the phenology of individual trees is lacking.  

Such fine scale observations are expected to provide important insights into the 

relationship between the climate and the forest canopy, particularly as it pertains to the 

response of individual species to climate change (Richardson et al. 2007; Richardson et 

al. 2009).   

What are the dynamics of canopy biomass density at seasonal and longer time 

intervals across different forest types?  Fine scale observations of canopy three-

dimensional (3D) structure are vital for understanding the density and dynamics of forest 

biomass as they provide information on canopy height as well as canopy, but these 

observations are difficult to obtain from satellite remote sensing systems due to a lack of 

spatial resolution and 3D information gaps (Houghton et al. 2009).  While observations 

obtained from aircraft-based remote sensing (e.g., LIDAR, light detection and ranging) 

do provide the necessary measurements of 3D structure, these are too costly to collect at 

the necessary time scales. 

How does the amount of tree flower and fruit production vary through time and as 

a function of climate, species, and local edaphic conditions?  One of the main benefits of 

remote sensing to ecological research is that it enables a 'bird's-eye' view of the forest 

canopy, providing observations from a point of view that is difficult or impossible for a 

person to achieve otherwise, for example the timing and amount of canopy fruits and 

flowers (Wright et al. 1999).  Even so, due to technical limitations and trade-offs of 

different remote sensing instruments (Lefsky and Cohen 2003) such observations are 

often unavailable at either the spatial or temporal resolution needed, or may be 
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unavailable due to frequent cloud cover, for example in the humid tropics (Hansen et al. 

2008; Beuchle et al. 2011). 

Recent advances in consumer, automated unmanned aerial systems (UAS) and 

automated computer vision structure from motion algorithms (SFM) offer the potential to 

address these challenges by enabling remote sensing of forest structural and spectral traits 

at high spatial resolution and frequencies, albeit at relatively small spatial extents (< 100 

ha).  UAS equipped with consumer digital cameras enables automated and repeatable 

aerial image acquisitions and SFM enables the creation of 3D 'point cloud' models that 

are similar to those produced by LIDAR but with multi-spectral (red-green-blue, RGB) 

color spectral information associated with each point.  Combined, UAS-SFM remote 

sensing has already enabled mapping of canopy structure and spectral dynamics at the 

scale of individual trees ('Ecosynth', Dandois and Ellis 2010, 2013), yet despite this 

progress important information about the nature and quality of Ecosynth point clouds 

remains unstudied.    

Ecosynth 3D-spectral point clouds are produced from images alone based on 

algorithms that were originally intended for visualization (Snavely et al. 2010).  The 

image feature algorithms used for automatically matching images, a pre-requisite for the 

photogrammetric 3D reconstruction algorithms used in SFM, are often developed to work 

on hard objects with discrete boundaries, like the edges and corners of buildings, books, 

walls, or solid objects (Gil et al. 2010; Wu 2010; Gauglitz et al. 2011) and vegetation is 

often considered noise in such research (Omerčević et al. 2008).  This means that unlike 

with other remote sensing, a definition of what is being measured, what an individual 

datum (a point cloud point) represents, is lacking. This makes more in-depth 
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interpretability or comparison of the data to other types of measurements difficult.  And 

while measures of data quality that are used for LIDAR remote sensing of forests can be 

applied to SFM systems (e.g., evaluating point clouds based on metric accuracy to a 

standard like tree height for LIDAR), because the mechanisms of recording a 

measurement are different, it is unknown how changes in the conditions under which an 

observation is made will influence the quality and subsequent applications of the product.  

This dissertation research aims to address these uncertainties and in doing so introduce a 

new form of 'personal remote sensing' for observation of forest structural and spectral 

traits. 

1.0 Research Objectives 

The main objectives of this research are to (1) define a new form of 'personal remote 

sensing' of forest canopies using UAS and SFM (Ecosynth), (2) to improve understanding 

of what is being measured by this system ('What is a point cloud point?'), and (3) to 

evaluate the quality of Ecosynth point clouds of forest canopies and how changing the 

way the data is collected will influence data quality.  To address these objectives, this 

dissertation is divided into three main research chapters, summarized below.  In addition 

to these chapters, section 1.1 below summarizes the relevant literature on current progress 

in remote sensing of forests, the increasing role of UAS in remote sensing, as well as 

background in computer vision SFM research, and the ways in which the quality of 

remote sensing datasets is evaluated. 

 Chapter 2 presents the proof-of-concept of Ecosynth UAS-SFM remote sensing with 

the objective of characterizing the 3D structure and color-spectral dynamics of 

Temperate Deciduous forest canopies.  This chapter presents research that has already 
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been published by the lead author (Dandois and Ellis 2013) and helps sets the stage 

for more in depth exploration of SFM remote sensing. 

 Chapter 3 addresses the question of what is being measured by SFM remote sensing, 

with particular attention on the individual point cloud point and 'image features', 

'What is a point?'  A novel graphical user interface (GUI) is developed to facilitate 

manual classification and interpretation of computer vision points as 'image features'. 

 Chapter 4 defines relevant measures of the quality of Ecosynth point clouds of forest 

canopies, including measures of canopy height, geometric accuracy, point cloud 

density, and canopy penetration.   A rigorous remote sensing experiment is carried 

out to evaluate how the quality of Ecosynth point clouds varies as a function of flight 

configuration, weather conditions, and image processing.  Recommendations are 

made for optimal flight configuration strategies for remote sensing of forest canopies.  

 The dissertation concludes with a review of the major findings of these research 

chapters and also suggestions for future research using Ecosynth UAS-SFM remote 

sensing of vegetation, in particular as it pertains to the exploitation of computer vision 

image features as a means for classifying point cloud points into ecologically distinct 

categories like leaves and branches or potentially even fruits and flowers. 

 

Research on the use of Ecosynth SFM remote sensing began in 2010 when the author 

used SFM and images collected with a kite to make accurate estimates of canopy height 

compared to field based measurements (Dandois and Ellis 2010).  This dissertation builds 

upon that research and is organized to reflect the path of scientific discovery that took 

place as research questions were posed that aimed to better understand how traits of the 
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canopy could be measured by Ecosynth and to improve understanding of the 

measurement system itself.  Chapter 2 of this dissertation reflects a major advance over 

earlier Ecosynth research as the use of automated UAS overcomes many of the 

challenges with consistently and reliably collecting images over a fixed area that occurred 

when a kite was used (Dandois and Ellis 2010, 2013).  Research in Chapter 2 also 

explores the potential of using the inherent fusion of 3D-color spectral information from 

Ecosynth to characterize the dynamics of canopy structural and spectral traits at the scale 

of individual trees, a feat not practical or possible with other forms of remote sensing to 

date.  However, the research of Chapter 2 also raises its own set of questions: what are 

the SFM point cloud points and how are they related to canopy objects?  How does 

changing the conditions under which data are collected (lighting, altitude, overlap) 

influence point cloud data quality and what might be the optimal data collection 

conditions?  Chapters 3 and 4 of this dissertation address those questions and in doing so 

place a bounding understanding around Ecosynth SFM 3D-spectral remote sensing of 

forest canopies as a valuable tool for forest ecology research.   

The organization of this dissertation as well as its context and contribution to 

remote sensing of forest canopies in general, builds upon research into the use of LIDAR 

remote sensing for observing forests.  The goal of early LIDAR research aimed to 

evaluate how well the new technology could be used to measure canopy height, and was 

often limited to a single line scan along the flight path and required significant manual 

processing and analysis (Nelson et al. 1988).  As the technology advanced, so too did the 

applications and ways in which the canopy could be described, for example through the 

use of more sophisticated sensors that could map canopy structure over larger areas and 
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provide a more detailed depiction of canopy vertical structure (Lefsky et al. 2002).  At 

the same time, research was carried out to improve understanding of the properties of the 

LIDAR measurement itself, including sources of measurement error as well the 

relationship between the LIDAR measurements and the properties of the objects being 

observed (Baltsavias 1999a, Glennie 2007).  More recently, with increased access to 

multiple LIDAR datasets over the same locations, researchers also examined the 

relationship between the data collection configuration (altitude, sensor settings) and 

observations of the canopy (Næsset 2009a, 2009b). By developing a bounding 

understanding of the way in which LIDAR observes the forest canopy, researchers are 

able to evaluate change in forest biomass density based on data collected from different 

sensors with different configurations (Hudak et al. 2012).  Similarly, this understanding 

makes it possible to develop advanced canopy height metrics that are invariant to changes 

in both canopy structure and sensor configurations (e.g., top-of-canopy height TCH; 

Asner and Mascaro 2014).  Ultimately, it is the goal of this dissertation research to take a 

similar approach for evaluating how Ecosynth UAS-SFM remote sensing can be used for 

observing forest canopies and to place a bounding understanding on the properties of 

those observations.  In doing so, this research will open the door for new research 

applications that are not possible or practical with existing forms of remote sensing, 

including characterizing canopy structural and spectral dynamics at the scale of 

individual trees and potentially even observing the flowering of individual crowns. 
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1.1 Background 

1.1.1 Current progress and challenges in remote sensing of forests 

Remote sensing is recognized as a fundamental part of earth system monitoring and is a 

core component of the National Ecological Observation Network (NEON; Schimel et al. 

2011), the monitoring requirements of the REDD+ program (Reducing Emissions from 

Deforestation and forest Degradation; Goetz and Dubayah 2011; Saatchi et al. 2011), and 

several national scale forest monitoring programs (Shimabukuro et al. 2014).  Global 

estimates of forest area extent and change are made possible by optical satellite remote 

sensing systems that produce images of the reflectance of electromagnetic energy from 

the land surface at frequencies ranging from days to weeks and spatial resolutions 

ranging from 10's  - 100's of meters (Achard and Hansen 2014).  In particular, the 

MODIS (250 – 1000 m resolution, Moderate Resolution Imaging Spectrometer; Zhang et 

al. 2003) and Landsat (30 m resolution; Hansen et al. 2008; Roy et al. 2014)  satellite 

systems are increasingly preferred for this purpose over the use of national or regional 

reporting due to inconsistent methods, updating, and levels of quality (FAO and JRC 

2012).  Remote sensing systems with high temporal resolutions like MODIS (1 to 2 day 

repeat time) are driving similar advances in understanding ecosystem dynamics (e.g., 

phenology, Zhang and Goldberg 2011), including the response of terrestrial ecosystems 

to changes in climate and land use (Morisette et al. 2008; Frolking et al. 2009).  Even so, 

there are inevitable tradeoffs between the spatial resolution, spatial extent, and temporal 

frequency possible with any one particular sensor, with finer spatial resolution coming at 

the cost of reduced extent and frequency (Lefsky and Cohen 2003). In addition, many 

areas of the planet, for example the humid tropics, are frequently under-sampled by 
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satellite imagery due to occlusion of the land surface by cloud cover and haze (Hansen et 

al. 2008; Beuchle et al. 2011).  

Mapping forest cover alone is also insufficient for accurately characterizing 

changes in biomass and ecosystem functions as knowledge of the quality of forests is 

needed, including estimates of forest structure and density as it relates to forest type, 

climate, topography, and other environmental variables (DeFries et al. 2007; Dolan et al. 

2009; Houghton et al. 2009; Zolkos et al. 2013; Magdon et al. 2014).   Measurement of 

forest canopy structure is best suited to active systems like LIDAR (Light Detection and 

Ranging) and SAR (Synthetic Aperture Radar) which simultaneously capture information 

about canopy structure and the ground surface below the canopy to provide estimates of 

canopy height, from which it is possible to estimate canopy biomass density when 

combined with measurements obtained in the field (Dubayah and Drake 2000; Treuhaft et 

al. 2004).  One short-lived satellite LIDAR sensor (GLAS, Geoscience Laser Altimeter 

System) demonstrated the value of such measurements over large spatial extents (U.S. 

states) for capturing forest structure to assess biomass change when combined with maps 

of forest area change from Landsat (Dolan et al. 2009).  However no satellite LIDAR 

systems currently exist for capturing forest structure across large scales (Dubayah et al. 

2010; Goetz and Dubayah 2011) and satellite-based SAR often lacks the resolution to 

accurately discriminate between the ground and the top of canopy or struggles with other 

issues related to data co-registration (Ni et al. 2014).  Estimation of canopy height is 

possible by applying stereo photogrammetric techniques to pairs of satellite-based optical 

images, but this too requires an accurate mapping of the understory terrain under most 

forest conditions (St. Onge et al. 2004; St. Onge et al. 2008).   
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Active remote sensing by airplane, in particular by LIDAR, often remains the 

preferred or only choice for characterizing canopy structure.  LIDAR systems estimate 

the height and structure of the land surface based on the laser energy returned to the 

sensor after reflecting off of physical surfaces and is often depicted in the form of three-

dimensional (3D) point clouds (Dubayah and Drake 2002; Lefsky et al. 2002).  LIDAR 

remote sensing of vegetation 3D structure is a vital tool for carbon accounting (Lefsky et 

al. 2002; Lim et al. 2003; Frolking et al. 2009; Houghton et al. 2009; Goetz and Dubayah 

2011), commercial and scientific forestry (Næsset and Gobakken 2008; Næsset 2011), 

ecosystem modeling (Thomas et al. 2008; Zhao and Popescu 2009; Antonarakis et al. 

2011), and quantitative assessments of habitat suitability and biodiversity (Goetz et al. 

2007; Vierling et al. 2008; Jung et al. 2012).   

Recently, an advanced airborne remote sensing system was introduced that 

enables high-accuracy and high-resolution observations of vegetation structural and 

spectral traits through an integrated 'fusion' of LIDAR and hyperspectral remote sensing, 

yielding unprecedented capabilities for observing biodiversity and ecosystem functioning 

beyond the capabilities of either sensor alone (CAO, Carnegie Airborne Observatory; 

Asner et al. 2007; Asner and Martin 2009; Baldeck and Asner 2013, 2014).  CAO 

achieves high-accuracy fusion based on an integrated sensor system that records LIDAR 

and hyperspectral imaging data at the same time from the same aircraft, combined with 

high-precision and accuracy GPS (Global Positioning System) and IMU (Inertial 

Monitoring Unit) equipment that enables precise location of both datasets relative to each 

other and the real world (≈ 1/3 pixel positioning, 0.45 – 1.45 m spatial resolution, Asner 

et al. 2007). This system overcomes many of the challenges faced when fusion is 
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attempted in a post-hoc fashion with LIDAR and imaging data collected from different 

sensors on separate missions, which includes issues with accurate data co-registration 

(Hudak et al. 2002; Mundt et al. 2006; Geerling et al. 2007) and the mis-match between 

2D image pixels and 3D structure data points that occurs when a forest canopy is 

observed from different viewpoints (Popescu and Wynne 2004; Packalén et al. 2009).  

However, this integrated fusion technology remains prohibitively expensive for repeat 

monitoring of the same area at anything more frequent than annual intervals (Kampe et 

al. 2010; Schimel et al. 2011).   Airborne LIDAR flights in general often cost a minimum 

of USD$20,000 per flight regardless of study area size (Erdody and Moskal 2010), 

representing a significant barrier to widespread application, especially for local 

environmental management and in ecological field studies based on annual or more 

frequent observations at numerous small sites or sampling plots (e.g., Holl et al. 2011). 

The challenges presented by relying on airborne and satellite remote sensing 

alone have given rise to a variety of 'personal remote sensing systems' for measuring 

vegetation structure and spectral traits at high spatial resolution and frequency.   

Terrestrial LIDAR scanning (TLS) equipment that was primarily developed and used for 

engineering and industrial 3D scanning are now being deployed for modeling individual 

tree structure (Lefsky and McHale 2008; Hosoi and Omasa 2009; McHale et al. 2009), 

for modeling the distribution of photosynthetic and non-photosynthetic vegetation in the 

canopy (Seielstad et al. 2011), and for studying forest understory and canopy structure 

(Dassot et al. 2011).  LIDAR scanning equipment commonly used for downward looking 

aerial scanning of forest structure has also been used from the ground looking up into the 

canopy for creating detailed profiles of canopy structure along sampling transects to 
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study the differences in forest vertical structure across different stand types (Parker et al. 

2004; Hardiman et al. 2011).  Seidel et al. (2011) provide a detailed review of the 

literature related to ground based measurements of canopy structure using manual and 

close-range sensor methods, including hemispherical photography, radiation sensors, and 

ground-based LIDAR.   

Similar advances are being made in personal ground based remote sensing of 

vegetation optical properties. Annual time-series of close-range red-green-blue (RGB) 

color images of a fixed location above a forest collected daily from ordinary digital 

cameras can be used to track forest canopy phenology (Richardson et al. 2007).  This has 

proven useful for understanding ecosystem carbon dynamics and when studied across 

multiple seasons may be useful for studying ecosystem response to climate change 

(Richardson et al. 2009; Mizunuma et al. 2013).  Ryu et al. (2014) measured the 

phenology of multiple height strata within a forest canopy based on measurements from 

light emitting diodes (LEDs) of narrow wavelengths operating in 'reverse' mode (Ryu et 

al. 2010) for recording the amount of incoming light instead emitting light themselves.  

These technologies demonstrate that remote sensing does not have to be carried out from 

airplanes and satellites and that operating within a sampling framework can enable more 

in-depth insight into canopy structure and optical properties, often with relatively 

inexpensive equipment. 

Two recent technological developments offer similar potential for overcoming the 

challenges of capturing forest structural and spectral traits at high spatial resolution and 

frequency: automated consumer-grade, hobbyist unmanned aerial systems (UAS) and 

relatively easy-to-use automated computer vision structure from motion algorithms 
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(SFM).  Consumer grade UAS have reached a level of technical maturity to enable on-

demand observation of forests at high spatial resolution and frequency using off-the-shelf 

digital cameras, ushering in an era of personal aerial remote sensing of forest canopies 

(Anderson and Gaston 2013).  Easy-to-use SFM algorithms provide an automated image 

processing pipeline for producing inherently fused 3D-spectral point clouds of forest 

canopies from images alone (Snavely et al. 2006), providing LIDAR fusion-like datasets 

without the need for advanced integrated sensor technology. 

1.1.2 UAS for remote sensing 

The use of UAS has become increasingly common for remote sensing applications for 

studying vegetation, addressing some of the issues of portability and repeat collection of 

airborne and satellite remote sensing data.  High spatial resolution photo mosaics were 

generated from photos taken with regular digital cameras mounted on remote controlled 

aircraft for monitoring crop health and nutrient status (Hunt et al. 2005; Hunt et al. 2009; 

Hunt et al. 2010) and rangelands (Rango et al. 2009).  Recently, plantation tree height 

was estimated with high precision (≈ 0.5 m error) from a miniature LIDAR on a 

consumer UAS (Wallace et al. 2012; Wallace et al. 2014).   Several recent studies 

provide a relatively comprehensive review of UAS for a variety of remote sensing 

applications and include information about different platforms, payloads, flight 

controllers, and potential applications (Eisenbeiss 2009; Anderson and Gaston 2013; 

Colomina and Molina 2014). 

Compared to prior work that involved manually controlled UAS flight, Eisenbeiss 

(2009) demonstrated that UAS had reached a level of technological maturity to facilitate 

the systematic collection of photogrammetric image 'blocks' over small areas (0.4 ha – 10 
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ha), similar to what could be achieved with manned aircraft but at significantly reduced 

cost.  They used existing photogrammetric software packages to manually align image 

sequences of between 40 - 160 photos and produce 3D digital surface models (DSMs) 

and found sub-meter accuracy in elevations compared to LIDAR and other reference 

data.   They suggested that potential applications of UAS remote sensing could include 

quantifying sediment volume change, landscape slope and topography, and estimated the 

outer surface height of corn crop canopy to study cross-pollination dynamics (Eisenbeiss 

2007; Vogler et al. 2009).  But they also note major logistical challenges to repeatedly 

using this approach including the need to manually register image sets, which was time 

consuming and limited the number of photos, and therefore area, that could be covered.   

1.1.3 Computer vision structure from motion 

At around the same time that UAS was increasing in popularity for remote sensing, 

Snavely et al. (2006) demonstrated highly automated 3D reconstruction of scenes from 

unordered sets of digital photos collected from the Internet.  Based on prior research from 

both photogrammetry and computer vision, they demonstrated that with images alone, the 

3D structure of a scene could be modeled automatically with no initial knowledge of 

camera location based on the concepts of multi-view geometry using a technique referred 

to as structure from motion (SFM; Hartley and Zisserman 2000).   The free and open-

source software Bundler produced from that research represented a breakthrough in 3D 

modeling of scenes as it did not require the manual input and photogrammetric constraint 

of precise camera location information that limited the research of Eisenbeiss (2009).  

Instead of requiring time-consuming manual registration of images or information on 

camera location, the Bundler SFM algorithm uses automatically extracted 'image features' 
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to automatically match and align corresponding points across images. Given images 

alone, Bundler automatically produces a LIDAR-like 3D point cloud model of the scene 

with red-green-blue (RGB) color information from images inherently 'fused' with each 

point.    

SFM algorithms follow three main processing steps to produce 3D point clouds 

from images alone: feature identification, feature matching, and bundle adjustment based 

on feature matches. In the feature identification stage, an 'image feature detector' 

algorithm is applied to all of the images to determine potential 'features' within each 

image that may be suitable for being tracked or matched in other images based on feature 

locations and 'feature descriptors'.  While the terms are often used interchangeably, in this 

work the term 'detector' is used to refer to the feature detection algorithm and 'descriptor' 

is used to refer to that which is produced by the algorithm. There are many kinds of 

feature detectors, but most generally employ a two-step process of first 'locating' potential 

features based on image morphology to find specific patterns and then producing a 

'feature descriptor' at or around the feature location that will be used in the feature 

matching stage (Szeliski 2011). Image features are reviewed in greater detail in Section 

1.1.5.  The result is a collection of features for each image that contain information about 

where the feature was located within in an image (XY coordinates of a point) and a 

numeric descriptor that acts like a feature signature or fingerprint.   

In the feature matching stage, features are matched across images based on 

comparison of the numeric descriptor associated with each image, for example by 

determining which feature numeric descriptors are mathematically closest to each other 

by a measure of distance within the descriptor space (Snavely et al. 2006).  Information 
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on feature matches is then used to parameterize the bundle adjustment process which 

seeks to optimize for the location of features as points in 3D space and the location and 

calibration of the cameras that observed those points within the same 3D space by 

minimizing the reprojection error of matching points across images (Triggs et al. 1999).   

The result is a 3D point cloud model of the observed scene where each point corresponds 

to a location that was observed by the feature detector, matched to other features, and 

used as part of the optimization process.  SFM was used to produce 3D models of bare 

substrates from images collected with a camera positioned over a cliff (de Matías et al. 

2009).  Dandois and Ellis (2010) demonstrated the use of Bundler for characterizing 

forest canopy structure from images collected with a kite and ordinary digital camera.  

After georeferencing to the local geographic coordinate system, they showed that this 

relatively simple remote sensing system ('Ecosynth') produced estimates of canopy height 

comparable to those made in the field and LIDAR.  Bundler is used in Chapter 3 where 

its data model is described in detail. 

1.1.4 UAS-SFM remote sensing 

Other similar SFM software solutions quickly appeared after Bundler, including the 

commercial, closed-source Agisoft Photoscan (http://www.agisoft.ru/).  Photoscan is used 

in Chapter 2 and Chapter 4 as its computation optimization enables processing of large 

image sets in less time compared to Bundler (Dandois and Ellis 2013).  Inspired by the 

ease with which UAS could be programmed for autonomous image collection and SFM 

could be used for automated 3D reconstruction, these technologies were quickly adopted 

for environmental research and a new form of remote sensing emerged.  Tao et al. (2011) 

suggested the potential of using autonomous UAS and SFM for characterizing canopy 
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structure, but provided no quantitative assessments.  Researchers began using SFM and 

images collected from kites, on the ground, or from consumer grade autonomous UAS to 

characterize bare ground, stream channel topography, and archaeological sites in 3D 

(Lucieer et al. 2011; Verhoeven 2011; Castillo et al. 2012; d'Oleire-Oltmanns et al. 2012; 

Dey et al. 2012; Harwin and Lucieer 2012; James et al. 2012; James and Robson 2012; 

Rosnell and Honkavaara 2012; Turner et al. 2012; Westoby et al. 2012; Fonstad et al. 

2013).  Recent UAS-SFM remote sensing research is summarized in Table 1. 
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Table 1: Summary of recent SFM remote sensing research, sorted by publication year, including 
information about the image collection platform and data collection configuration, SFM processing 
algorithm, major research application and findings.  AGL = Above Ground Level. 

Study Platform Data collection 
configuration 

Algorithm Application Major findings related 
to data quality 

de Matías et 
al. 2009 

Handheld Camera held over 
outcropping 
above rock 
surface 

Unspecified, 
custom SFM 

Mapping of bare 
ground topography 

< 25 cm horizontal and 
vertical error compared 
to a total station 

Dandois and 
Ellis 2010 

Kite Unordered, wind 
dependent 20 – 
110 m AGL 

Bundler Estimating canopy 
height, biomass 

R2  0.53 – 0.80, RMSE 
< 4.3 m to field heights, 
> 40 % error in biomass 
estimates 

Lucieer et al. 
2011 

Manual RC 
Helicopter 

50 m AGL Bundler and 
PMVS 

Imaging of moss 
beds 

3 cm spatial alignment, 
visually satisfactory 

Tao et al. 
2011 

Unspecified 
UAS 

Unspecified, > 60 
% forward 
overlap & > 40 % 
side overlap 

Unspecified, 
Bundler-like SFM 

Mapping canopies No comparison to field 
heights, merely 
suggests potential 

Verhoeven 
2011 

Kite, manned 
aircraft 

Unspecified Photoscan Mapping 
archaeological site 
topography 

Suggests potential for 
mapping archaeological 
sites 

Castillo et al. 
2012 

Handheld Ground – along 
stream channel 

Bundler and 
PMVS 

Stream channel 
modeling and gully 
erosion and change 

< 5% error in stream 
cross-sectional error 
compared to LIDAR 

Dey et al. 
2012 

Handheld Ground, walking 
along vineyard 
rows 

Bundler and 
PMVS 

Classification of 
grapes on a vine 

Accuracy > 95 % for 
accurately identifying 
grapes on a vine 

Harwin et al. 
2012 

Oktokopter 
multirotor 
UAS 

30 – 50 m AGL Bundler and 
PMVS 

Mapping bare 
ground topography 

< 10 cm horizontal and 
vertical accuracy 
compared to high 
quality GCPs 

James et al. 
2012 

Handheld and 
manned 
ultralight 

Ground, 800 m 
AGL 

Bundler and 
PMVS 

Mapping bare 
ground topography 

Comparable to LIDAR 
for mapping volume 
change with ~80 % 
reduction in workflow 
time 

James and 
Robson  
2012 

Handheld, 
fixed point  

Ground – around 
lava flow areas 

Bundler and 
PMVS 

Mapping lava flow 
area morphology 
and channels 

Suggest sub-meter 
accuracies of 
topography 

Rosnell and 
Honkavaara 
2012 

Quadcopter, 
multirotor 
UAS 

70 m AGL, 55 – 
70 % side, 75 – 
90 % forward 
overlap 

Photosynth SFM, 
SOCET SET 
photogrammetry 

Producing digital 
surface models 
over field, grass, 
forest, asphalt, and 
gravel 

High image overlap is 
desirable – SFM 
produced more surface 
noise than 
photogrammetric 
software 

Turner et al. 
2012 

Oktokopter 
multirotor 
UAS 

50 m AGL Bundler and 
PMVS 

Mapping bare 
ground topography 

Sub-meter accuracy < 
15 cm  

Westoby et 
al. 2012 

Handheld Ground – along 
terrain profile 

Bundler and 
PMVS 

Mapping bare 
ground topography 

Sub-meter precision of 
terrain models 
compared to TLS 

Dandois and 
Ellis 2013 

Hexacopter 
Multirotor 
UAS 

~ 80 – 90 m 
AGL, 50 % 
sidelap, > 90 % 
forward overlap 

Photoscan Estimate canopy 
height, biomass, 
canopy spectral 
phenology 

R2 > 0.83, RMSE < 4.4 
m to field heights, 
strong correlation of 
canopy greenness to 
MODIS NDVI 

Fonstad et al. 
2013 

Kite Unordered, 100 m 
AGL 

Photosynth Mapping bare 
topography 

R2 = 0.97, RMSE 1.0 m 
compared to LIDAR, 
sub-meter positioning 
precision to high-
accuracy GPS 
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This rapid growth culminated recently in the mapping of forest canopy structure 

and spectral dynamics using UAS and SFM at the scale of individual trees and at the 

extent of field plots (< 10 ha), offering the potential to address some of the challenges to 

remote sensing of forests (Dandois and Ellis 2013).  Applications of UAS-SFM remote 

sensing continue, including for mapping forest height (Lisein et al. 2013), vineyard 

structure (Mathews and Jensen 2013), stream channels (Javernick et al. 2014), and single 

tree structure (Morgenroth and Gomez 2014).  Leberl et al. (2010) argue that the rapid 

rise in computer vision SFM 3D reconstructions from images ('3D-vision') is saving 

photogrammetry due to otherwise complicated workflows made obsolete by LIDAR 

remote sensing, which provides users with 'instant gratification.'  Colomina and Molina 

(2014), in their review of UAS for remote sensing, mention Bundler and Photoscan as 

photogrammetric software tools for producing digital surface models (DSMs), but do not 

mention the potential for modeling of forest canopy structure from SFM and only briefly 

reference applications relative to forests as it pertains to the ability of UASs to carry 

spectral and thermal imaging, LIDAR or SAR payloads. 

Table 1: Continued 
Study Platform Data collection 

configuration 
Algorithm Application Major findings related to 

data quality 
Liesin et al. 
2013 

Gatewing, 
fixed wing 
UAS 

225 m AGL, 75 % 
forward and side 
overlap 

MicMac 
SFM 

Estimate canopy 
height 

R2 > 0.96 to LIDAR, >0.82 
to field measurements with < 
1.7 m RMSE error  

Matthews and 
Jensen 2013 

Hawkeye 
kitewing 
UAS 

125 m AGL Photoscan Predict vineyard 
LAI 

R2 0.56 compared to field 
measured LAI 

Javernick et al. 
2014 

Manned 
helicopter 

600 – 800 m AGL Photoscan Mapping stream 
channel 
morphology 

< 1m RMSE error in 
mapping channel bathymetry 

Morgenroth 
and Gomez 
2014 

Handheld Ground – around 
tree 

Photoscan Mapping single 
tree structure 

Close agreement (< 5 % 
error) between field and 
laser measured tree 
measurements 
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1.1.5 Background on computer vision image features 

Aside from the rising popularity in the use of SFM for remote sensing, the use of 

computer vision in remote sensing is not new and there are many examples of the use of 

computer vision concepts to improve, speed-up, automate, and otherwise enhance remote 

sensing research tasks and applications.  A growing body of recent research also 

highlights the role that computer vision plays in advancing ecological research directly 

and not through remote sensing per se, often serving a similar role as it does for remote 

sensing by enhancing or automating existing ecological research tasks.  The use of 

computer vision in remote sensing and ecological research span many applications, 

including image matching, tracking, and classification.  In all cases, the benefit provided 

by computer vision often rests in the concepts and algorithms for establishing 'image 

features.'  The reader is referred to the Glossary at the end of the dissertation for reference 

to common terms relevant for computer vision ecological remote sensing.  

Image features are a fundamental component of computer vision research as they 

represent the quantification of particular aspects of an image that can be described by a 

numerical vector and used by a computer algorithm to attempt to recreate human vision 

tasks (Szeliski 2011).  Image features take many forms and may be as simple as a set of 

three numbers describing the mean red, green, and blue color value of all pixels within an 

image or as complex as a large collection of 100's – 1000's of numerical vectors that 

describe patterns of image intensity, texture, and shapes.  The creation of image features 

involves two main steps: feature detection and feature description (Li and Allinson 2008; 

Szeliski 2011).  In the feature detection stage, image features are located within an image 

based on the identification of a particular signal or pattern in the image which is often 
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divided into geometric categories of points or corners, regions, patches or blobs, and lines 

or edges.  Several studies review common feature detectors within these major categories 

(Zhang and Lu 2004; Mikolajczyk and Schmid 2005; Li and Allinson 2008; Szeliski 

2011).  In the feature description stage, a numerical vector is computed around each 

detected feature location that describes aspects of the pixel values of the image within a 

region around the feature based on patterns or filters, distributions of pixel intensity 

values, texture patterns, shapes, derivatives, or the image color moments (mean, variance, 

skew, kurtosis).  Combined, an image feature refers to a specific location (XY 

coordinate) within an image and a numerical vector feature descriptor at that location.  

Image features are often classified based on their invariance to particular types of image 

distortion that would occur when the same point is observed from different locations, 

including invariance to changes in scale, rotation, and illumination (Lowe 2004; 

Mikolajczyk and Schmid 2004).  

Applications of computer vision to ecological research often involve leveraging 

what computer vision does well, recreating and automating human vision tasks (Szeliski 

2011), to tasks that would otherwise be difficult or impossible with manual labor alone.  

One popular example is the free software ImageJ (Abràmoff et al. 2004) which enables a 

variety of image processing and analysis tasks including image thresholding and edge 

detection as well as the extraction of image statistics in an easy-to-use and user-friendly 

graphical user interface.  Other common applications of computer vision to ecological 

research involve the automatic characterization of animal behavior through the use of 

computer vision motion tracking techniques based on image features.  Several have used 

image morphology techniques (e.g., differencing, Gaussian smoothing; Szeliski 2011) to 
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track the motion of mosquitos (Spitzen et al. 2013) and pigs (Ahrendt et al. 2011) within 

fixed areas.  Ohayon et al. (2006) used computer vision motion tracking to improve 

understanding of the relationship between barn owl head movement leading up to attack 

movement.  Computer vision image mosaicking and segmentation algorithms have been 

used to map and delineate coral reef communities (Lirman et al. 2007; Beijbom et al. 

2012). 

Remote sensing has also benefitted from algorithms and concepts of computer 

vision that provide semi-automated or automated solutions to remote sensing problems, 

often opening the door for new forms of image analysis, and often also based on image 

features.  One of the most common ways that computer vision overlaps with remote 

sensing is in the use of image features for automated alignment or registration of multiple 

images (de Matías et al. 2009; Huang et al. 2009; Lingua et al. 2009; Zhang et al. 2009; 

Schwind et al. 2010; Oh et al. 2011).  In these cases, image features are detected in each 

input image and corresponding features are matched to each other based on a measure of 

distance or difference based on the numeric feature descriptor.  Images can then be 

aligned to each other based on knowledge of these correspondences and the known 

location of features.  Image features serve this role as a core component of the algorithms 

behind the recently popular use of computer vision structure from motion (SFM) for 

remote sensing (Section 1.1 Background).  Image features are used by SFM as a 

substitute for the manual identification of tiepoints that represents one of the major 

limitations and logistical challenges of traditional photogrammetric approaches 

(Eisenbeiss 2007; Eisenbeiss 2009).  Wallace et al. (2012) used image features and SFM 

on frames extracted from video to estimate the trajectory of a UAS equipped with a 
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miniature LIDAR and found that the use of SFM significantly improved the geometric 

accuracy of the LIDAR product compared to using UAS GPS and IMU information 

alone.  

Along with their use for image registration and image tracking, image features are 

also used for automated image classification. In image classification, a library of images 

that have already been classified is used to generate representative feature descriptors, 

which might be considered like image signatures, which are then used to attempt to 

classify new images or sections of images based on the knowledge obtained from the 

reference images (Szeliski 2011).  This form of image classification is often referred to as 

using 'local features' or a 'bag of features' approach (BOF; Lazebnik et al. 2006).  The 

theory behind classification with BOF is that the sematic content of an image or parts of 

an image can be identified based on the collection of image features that make up the 

image and relative to an existing library of already classified images and image features 

(Oliva and Torralba 2001; Csurka et al. 2004; Vogel and Schiele 2004; Fei-Fei and 

Perona 2005). In a BOF approach, multiple image features are produced and aggregated 

into a 'bag' for a single image or segmented regions of an image.  The collection of 

features within a given bag is then interpreted to represent a feature signature for that 

image or image segment and is compared to an existing library of image classification 

bags to attempt to automatically describe what is in the un-classified image.  This is 

conceptually similar to the use of spectral signatures in remote sensing for the 

characterization of land cover types (Rees 2001).  

Beijbom et al. (2012) used image feature descriptors from a reference library of 

images of corals to automatically classify coral communities from new image surveys.  
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Image features, along with image segmentation, are used for automatic detection and 

classification of leaves and flowers (Nilsback 2009; Kumar et al. 2012; Kendal et al. 

2013).  Recently, the use of image features combined with citizen science has gained 

increasing popularity for producing classification databases from camera trap images and 

videos of animals, including for estimating regional animal abundance and tracking the 

behavior of insects, bears, and apes, among many organisms (as reviewed by Desell et al. 

2013).   Recent research has also extended the use of image features and classification for 

'geographic image retrieval' of high resolution remote sensing images (Newsam and Yang 

2007; Yang and Newsam 2008, 2013).  In these studies, the Scale Invariant Feature 

Transform (SIFT; Lowe 2004), the same algorithm that is used for image matching by 

Bundler and in other research, was used to classify segments of high resolution aerial 

imagery into different categories of land cover, including forest, suburbs, marinas, urban 

areas, and parks.   

The use of computer vision image features spans a range of applications including 

recognition of image and scene content and semantic classification. By limiting the 

interpretation of computer vision SFM points clouds to only considering 3D structure or 

the fusion of 3D structure and color, a large area of potential new research applications is 

discarded, including the automated mapping in 3D of individual canopy objects like 

leaves, branches, fruits, and flowers.  Detailed mapping of such canopy objects could 

prove valuable for understanding the spatial heterogeneity of canopy structure, for 

example by providing estimates of leaf clumping and canopy gaps (Hilker et al. 2008).  

The use of image features may also be useful for automatically quantifying the amount of 

canopy fruits and flowers, which is a significant factor for understanding the relationship 
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between forest plant and animal communities (Wright et al. 1999), but which is 

challenging to measure in practice by manual methods alone due to the difficulties with 

accessing the forest canopy.  The role, quality, and nature image features in SFM remote 

sensing of vegetation is explored in greater detail in Chapter 3. 

1.1.6 Review of remote sensing data quality research 

The evaluation of remote sensing data quality can be divided into three categories of 

theoretical, empirical, and applied methodological approaches, depending upon the goal 

of the research and the resources available.  In a theoretical data quality approach, 

mathematical or physical-based understanding of the process of data collection by the 

remote sensing sensor is used to simulate observations and the error in observations by 

manipulation of system variables, which may include sensor configurations, scene 

weather conditions, and the properties of the land surface being observed (Börner et al. 

2001).  In optical imaging remote sensing the theoretical approach to data validation 

involves first developing a detailed understanding of the spectral response of the imaging 

sensor and then employing a model of surface light reflectance (i.e., radiative transfer 

model) to predict the characteristics of light that will be reflected to the sensor (Koetz et 

al. 2007).  Radiative transfer models are also used to simulate how canopy structure is 

characterized by LIDAR to understand the relationship between such measurements and 

canopy traits like height, leaf clumping, leaf area (leaf area index, LAI), or leaf angle 

(Hilker et al. 2008). Theoretical understanding of LIDAR sensors facilitates analysis of 

the sources of error in range estimates given different conditions of local topographic 

variation and sensor configuration (Baltsavias 1999a; Habib and Cheng 2006; Glennie 

2007; Habib et al. 2009).  
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A theoretical model for simulating SFM reconstructions of forest canopies from 

UAS imagery would require a system for producing synthetic aerial images of a scene 

with the ability to control for differences in altitude, overlap, and lighting, among many 

variables, while at the same time taking into account observable changes in the scene due 

to changing field of view and parallax from the perspective of a moving camera.   These 

synthetic image sets could then be supplied to SFM to produce synthetic 3D point cloud 

models, from which it could be possible to characterize changes in point cloud quality as 

a function of different tunable parameters within the model.  Existing tools do not capture 

the necessary combination of attributes to simulate photo-like images of a canopy.  Some 

image simulation algorithms exist for producing single synthetic satellite images, 

however these are produced at coarse resolutions (> 30 m x 30 m) and spatial extents (> 

100 km x 100 km) and are based on other existing images of the same place as reference 

(Schott et al. 1999; Ientilucci and Brown 2003; Schott et al. 2012).  Radiative transfer 

models that are used to simulate optical image remote sensing do not reproduce a true 

'image' of the scene, even though they are able to capture the expected spectral 

reflectance of that area (Börner et al. 2001; Guanter et al. 2009).  And while substantial 

progress has been made in the development of radiative transfer models for simulating 

and evaluating remote sensing observations of vegetated surfaces, there are still 

challenges with accurately representing the optical properties of canopies in the form of 

model parameters, including measures of the spatial distribution, size and clumping of 

canopy foliage (Kuusk et al. 2014), factors which may strongly influence the way in 

which a canopy is observed in a photograph and 'seen' by SFM feature descriptors 

(explored in Chapter 3).   3D radiative transfer and ray-tracing models are used for 
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simulating the 3D canopy structure observed by LIDAR (Lovell et al. 2005; Morsdorf et 

al. 2009; Antonarakis et al. 2011) but such systems are not designed to produce photo-

like images and would likely require the development of new feature descriptors in order 

to carry out the necessary feature matching steps in SFM.  As such, a theoretical 

approach to evaluating the data quality of Ecosynth UAS-SFM remote sensing data 

products is outside the scope of the current work. 

While theoretical data models exist for optical imaging and LIDAR, it is more 

common that research takes on an empirical or applied methodological approach to 

evaluate the quality of remote sensing products.   Empirical data quality measures can be 

used to characterize the precision of a dataset as it exists on its own, without necessarily 

being applied to any particular research task.  These empirical quality measures can then 

be considered quality 'traits' of the dataset that may be useful for understanding how good 

the dataset will be for a given application, compared to other similar datasets with 

different trait values.  Empirical data quality traits also have the advantage of being 

relatively easy to compute without the need for dataset specific field work or manual 

analysis.  Empirical measures of data quality often seek to address two issues: are the 

data in the correct place and how accurately is something observed. The geometric 

quality of optical images is often evaluated by comparison of the horizontal and vertical 

error of manually identified ground control points (Poli et al. 2014; Wolf et al. 2014).  

The radiometric quality of optical images is evaluated by quantifying the noise in spectral 

bands based on statistical measures of variability (standard deviation, roughness) within 

areas that should otherwise be relatively spectrally homogenous like large bare areas or 

water (Baltsavias et al. 2001; Poli et al. 2014).  Image radiometric quality may also be 
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evaluated by comparing the spectral information at a homogenous location across 

multiple image scenes for image calibration and comparing spectral information of image 

features with spectral reflectance recorded with field spectrometer equipment at 

approximately the time of image collection (Yang and Lo 2000; Hunt et al. 2010).  

Empirical quality measures are also used as a form of quality control.  For example, 

dedicated spectral bands are used to automatically estimate potential sources of error in 

satellite remote sensing, including the amount of cloud cover within a satellite image at 

the time of collection (Roy et al. 2014).   

The primary measure of data quality for LIDAR is an estimate of the precision of 

3D structure or vertical height measurements.  Typically, the quality of LIDAR is 

reported as a measure of the horizontal and vertical error of LIDAR points relative to 

ground control points or relatively flat and homogenous surfaces with known elevations 

(Habib and Cheng 2006; Gatziolis and Andersen 2008; Habib et al. 2009).  Habib et al. 

(2009) proposed a measure of LIDAR quality based on the amount of horizontal and 

vertical displacement between overlapping LIDAR swaths over the same areas.  They 

found that by applying an automated fitting algorithm (Iterative Closest Point, ICP; Besl 

and McKay 1992) they could measure how much one swath had to be moved in order to 

be optimally aligned with another swath over the same area and quantified horizontal and 

vertical error of the LIDAR point cloud based on the magnitude of this displacement. 

Finally, it is common to evaluate the quality of a dataset through application to a 

particular research task.  In an applied approach, the dataset is treated as the final product 

and is used to estimate some other characteristic of the scene, evaluated based on a better 

measurement of that characteristic.   This applies to when LIDAR, SFM, and stereo or 
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multiple-stereo photogrammetry 3D data are used to estimate tree height and are 

compared to field-based estimates of height using regression analysis (Lefsky et al. 2002; 

Lim et al. 2003; St. Onge et al. 2004; Ofner et al. 2006; Hirschmugl et al. 2007; St. Onge 

et al. 2008; Dandois and Ellis 2010, 2013).  The applied accuracy approach is also 

employed when optical or optical-3D fusion datasets are used to classify different classes 

of vegetation and other land covers, and are commonly evaluated using the kappa statistic 

(Key et al. 2001; Dalponte et al. 2008; Ke et al. 2010).  In the case of both LIDAR and 

SFM, data quality is commonly evaluated by considering how well a 3D surface is 

characterized.  Points in a LIDAR or computer vision 3D model are compared to either 

the nearest other point on a surface or to a surface interpolated from a reference 3D 

dataset (Baltsavias 1999b; Seitz et al. 2006; Habib et al. 2009; Strecha et al. 2009).   

Recently, several LIDAR studies have taken advantage of the coincidence of 

multiple datasets collected over the same area to provide insights into how different data 

collection strategies contribute to differences in datasets and the forest metrics derived 

from those datasets.  Previous studies showed that while changes in flight altitude and 

pulse rate will change the sampling of the forest canopy, as measured by point cloud 

density (points m-2), forest metrics derived from point clouds (e.g., canopy height and 

related measures of canopy volume and biomass density) are relatively robust and 

unaffected by different scan configurations (Næsset 2009b; Næsset 2009a).  A study that 

examined the use LIDAR of collected over the course of several years found that even 

though the data were collected with different parameters, estimates of canopy height as 

well as derived estimates of change in canopy height and biomass, were closely matched 

to field estimates and were again relatively invariant to differences in scan configuration 
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(Hudak et al. 2012).  However, others have shown that some canopy metrics are strongly 

dependent upon scanning configurations, particularly the resolution with which the 

canopy is sampled.  For example, the scale of canopy gaps detected by LIDAR depends 

strongly upon the footprint size of the laser beam (Cook et al. 2009) and it is often 

accepted that LIDAR will under-predict the height of the peak of coniferous trees as the 

laser beam will be more likely to hit the crown 'shoulders' (Magnussen et al. 2010).  

1.1.7 Sources of error in remote sensing canopy structure measures 

Using applied techniques, remote sensing has enabled the observation of many 

aspects of forest canopy structural, spectral, and recently even taxonomic traits.  There 

are numerous reviews available that characterize the state-of-the-science for remote 

sensing of vegetation traits, including structure and diversity (Nagendra 2001, Lefsky et 

al. 2002, Lim et al. 2003, Turner et al. 2003, Bergen et al. 2009).  These reviews often 

characterize the types of measurements that can be obtained from different remote 

sensing sensors along with the different resolutions that are possible with each (spectral, 

spatial, and temporal).  However, studies often do not describe sources of error and 

potential challenges that arise when actually trying to apply these remote sensing 

techniques to characterizing vegetation traits.   

Estimates of vegetation structure and canopy height in particular from remote 

sensing, while becoming increasingly routine, are subject to several significant sources of 

error. One of the greatest sources of error is in the quality of the digital terrain model 

(DTM) used for interpreting heights from surface elevations.  This includes errors that 

arise in attempting to filter a dataset to find the ground under the forest, or when canopy 

surface and ground measurements are obtained from different sensors where mis-
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registration between the two datasets can lead to significant errors in height estimates 

(Sithole and Vosselman 2004; Næsset 2009b; Ni et al. 2014). Another major source of 

error in remote sensing estimates of canopy structure involves the relationship between 

the measurement of height in the field and the way the canopy is observed by the sensor.  

Field estimates of canopy height are often based on field sampling plots which may 

contain significant errors in height measurements (Bragg 2008; Goetz and Dubayah 

2011; Larjavaara and Muller-Landau 2013).  Errors in geolocation between field and 

remote sensing data and the fact that remote sensing observations of plots may observe 

canopy structure for crowns that fall within the plot boundary but which were not 

included in field estimates because the stem was outside the plot, can also lead to 

significant errors in height estimates (Frazer et al. 2011).  Canopy height is often 

estimated from remote sensing 3D structure measurements from distribution-based 

metrics (e.g., mean, median or the Nth quantile of 3D observations within a plot) which 

may produce a biased estimate of plot canopy height due to the fact that the remote 

sensing instrument may observe more of the upper parts of the canopy (Magnussen and 

Boudewyn 1998; Parker and Russ; 2004; Hopkinson et al. 2006; Frazer et al. 2011).  

Application of a remote sensing instrument to measuring canopy properties therefore 

requires an understanding of the way in which the instrument observes the canopy as well 

as the quality of those observations as a function of the sensor itself and the thing being 

observed.  
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Chapter 2: High spatial resolution three-dimensional mapping of 
vegetation spectral dynamics using computer vision 

Abstract 

High spatial resolution three-dimensional (3D) measurements of vegetation by remote 

sensing are advancing ecological research and environmental management.  However, 

substantial economic and logistical costs limit this application, especially for observing 

phenological dynamics in ecosystem structure and spectral traits.  Here we demonstrate a 

new aerial remote sensing system enabling routine and inexpensive aerial 3D 

measurements of canopy structure and spectral attributes, with properties similar to those 

of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling 

high frequency observations within a single growing season.  This 'Ecosynth' 

methodology applies photogrammetric 'structure from motion' computer vision 

algorithms to large sets of highly overlapping low altitude (< 120 m) aerial photographs 

acquired using off-the-shelf digital cameras mounted on an inexpensive (< USD$4000), 

lightweight (< 2 kg), hobbyist-grade unmanned aerial system (UAS).  Ecosynth 3D point 

clouds with densities of  30 – 67 points m-2 were produced using commercial computer 

vision software from digital photographs acquired repeatedly by UAS over three 6.25 ha 

(250 m x 250 m) Temperate Deciduous forest sites in Maryland USA.  Ecosynth point 

clouds were georeferenced with a precision of 1.2 – 4.1 m horizontal radial root mean 

square error (RMSE) and 0.4 – 1.2 m vertical RMSE.  Understory digital terrain models 

(DTMs) and canopy height models (CHMs) were generated from leaf-on and leaf-off 

point clouds using procedures commonly applied to LIDAR point clouds.  At two sites, 

Ecosynth CHMs were strong predictors of field-measured tree heights (R2 = 0.63 to 0.84) 

and were highly correlated with a LIDAR CHM (R = 0.87) acquired 4 days earlier, 
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though  Ecosynth-based estimates of aboveground biomass and carbon densities included 

significant errors (31 – 36% of field-based estimates).  Repeated scanning of a 50 m x 50 

m forested area at six different times across a 16 month period revealed ecologically 

significant dynamics in canopy color at different heights and a structural shift upward in 

canopy density, as demonstrated by changes in vertical height profiles of point density 

and relative RGB brightness.  Changes in canopy relative greenness were highly 

correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical 

differences in canopy color revealed the early green up of the dominant canopy species, 

Liriodendron tulipifera, strong evidence that Ecosynth time series measurements can 

capture vegetation structural and spectral phenological dynamics at the spatial scale of 

individual trees.  The ability to observe individual canopy phenology in 3D at high 

temporal resolutions represents a breakthrough in forest ecology.  Inexpensive user-

deployed technologies for multispectral 3D scanning of vegetation at landscape scales (< 

1 km2) heralds a new era of participatory remote sensing by field ecologists, community 

foresters and the interested public. 

1.0 Introduction 

High spatial resolution remote sensing of vegetation structure in three-dimensions (3D) 

has become an important tool for a broad range of scientific and environmental 

management applications, including national and local carbon accounting (Frolking et al. 

2009; Houghton et al. 2009; Goetz and Dubayah 2011), fire spread and risk modeling 

(Andersen et al. 2005; Skowronski et al. 2011), commercial and scientific forestry 

(Næsset and Gobakken. 2008), ecosystem modeling (Thomas et al. 2008; Zhao and 

Popescu 2009; Antonarakis et al. 2011), quantitative assessments of habitat suitability 
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and biodiversity (Vierling et al. 2008; Jung et al. 2012) and serves as a core data product 

of the National Ecological Observation Network (NEON; Schimel et al. 2011).  Recent 

advances in 3D remote sensing have combined 3D measurements with rich spectral 

information, yielding unprecedented capabilities for observing biodiversity and 

ecosystem functioning (Asner and Martin 2009).  Remote sensing systems with high 

temporal resolutions are driving similar advances in understanding ecosystem dynamics 

in forests (Richardson et al. 2009) and globally (Zhang and Goldberg 2011), including 

the response of terrestrial ecosystems to changes in climate and land use (Morisette et al. 

2008; Frolking et al. 2009; Richardson et al. 2009), yet no single instrument is technically 

or logistically capable of combining structural and spectral observations at high temporal 

and spatial resolutions.  Here we demonstrate an inexpensive user-deployed aerial remote 

sensing system that enables high spatial resolution 3D multispectral observations of 

vegetation at high temporal resolutions, and discuss its prospects for advancing the 

remote sensing of forest structure, function and dynamics.  

Tree heights, generally in the form of canopy height models (CHM), are the most 

common remotely sensed 3D vegetation measurements.  CHMs can be produced using 

stereo-pair and multiple-stereo photogrammetry applied to images acquired from aircraft 

and satellites (Hirschmugl et al. 2007; St. Onge et al. 2008) and active synthetic aperture 

radar (SAR) sensors (Treuhaft et al. 2004), but are now most commonly produced using 

active LIDAR remote sensing (Light Detection and Ranging).  LIDAR CHMs with 

precisions of 0.2 – 2 m can be produced across forest types and acquisition settings (i.e., 

altitude, point density, etc.; Andersen et al. 2006; Wang and Glenn 2008) based on the 

return times of laser pulses reflected from canopy surfaces and the ground, by generating 
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models of understory terrain elevations (digital terrain models; DTM) and top canopy 

surface heights, which are then subtracted (Dubayah and Drake 2000; Popescu et al. 

2003).  Canopy heights and other metrics of vertical structure are useful for estimating 

aboveground biomass and carbon density (Lefsky et al. 2002; Goetz and Dubayah 2011), 

biomass change (from multiple LIDAR missions; Hudak et al. 2012), fire risk (Andersen 

et al. 2005; Skowronski et al. 2011), and for individual tree extraction by species 

(Falkwoski et al. 2008; Vauhkonen et al. 2008) among many other scientific and 

management applications.    

While conventional airborne LIDAR acquisitions have become less expensive 

over time, they remain very costly for researchers and other end-users, especially if 

required at high spatial resolution over a few small areas or at high temporal frequencies 

(Gonzalez et al. 2010; Schimel et al. 2011).  When applied over large spatial extents (e.g., 

> hundreds of square kilometers) LIDAR can be used to map aboveground biomass at a 

cost of USD$0.05 - USD$0.20 per hectare (Asner 2009).  However, typical commercial 

aerial LIDAR acquisitions often cost a minimum of USD$20,000 per flight regardless of 

study area size (Erdody and Moskal 2010), representing a significant barrier to 

widespread application, especially for local environmental management and in ecological 

field studies based on annual or more frequent observations at numerous small sites or 

sampling plots (e.g., Holl et al. 2011).  Even LIDAR satellite missions require local 

calibration data from multiple small sampling locations dispersed across spatial scales 

(Defries et al. 2007; Frolking et al. 2009; Dubayah et al. 2010).   

The fusion of active-3D and optical-image remote sensing datasets has become 

increasingly common for the mapping of vegetation structural and spectral traits for 
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applications including the measurement of aboveground biomass and carbon, identifying 

individual species, and modeling the spatial heterogeneity of vegetation biochemistry 

(Turner et al. 2003; Anderson et al. 2008; Vitousek et al. 2009; Ke et al. 2010).  

However, the need to combine data from different sensors presents multiple challenges to 

both analysis and application, including areas of no data, spatial misalignment, and the 

need to reduce the quality of one dataset to match the other, such as coarsening LIDAR 

structural observations to match optical image observations; Hudak et al. 2002; Geerling 

et al. 2007; Mundt et al. 2006; Anderson et al. 2008).  Recent advances in 3D remote 

sensing have combined active 3D and spectral measurements in a calibrated sensor 

package (Asner and Martin 2009).  Yet despite their high utility, integrated fusion 

instruments remain too costly to be deployed at the frequent time intervals needed to 

capture vegetation temporal dynamics at the same location within a growing season 

(Kampe et al. 2010; Schimel et al. 2011).   

To overcome the cost and logistical barriers to routine and frequent acquisition of 

high spatial resolution 3D datasets, three rapidly emerging technologies can be combined: 

low-cost, hobbyist-grade Unmanned Aircraft Systems (UAS), high speed consumer 

digital cameras (continuous frame rates >1 s-1), and automated 3D reconstruction 

algorithms based on computer vision.  Recent advances in hobbyist grade UAS capable 

of autonomous flight make it possible for an individual to obtain over the Internet a small 

(< 1 m diameter), light-weight (< 2 kg), and relatively low-cost (< USD$4000) aerial 

image acquisition platform that can be programmed to fly a specified route over an area 

at a fixed altitude (e.g., 100 m above the ground).  Dandois and Ellis (2010) demonstrated 

that high spatial resolution 3D 'point cloud' models of vegetation structure and color 
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(RGB; red-green-blue) can be produced by applying Structure from Motion computer 

vision algorithms (SFM; Snavely et al. 2010) to sets of regular digital photographs 

acquired with an off-the-shelf digital camera deployed on a kite, without any information 

about sensor position and orientation in space (Dandois and Ellis 2010; Snavely et al. 

2010).  While this early 'Ecosynth' system proved capable of yielding useful data, kite 

platforms proved incapable of supporting the consistent repeated acquisitions of 

overlapping high quality images needed to observe dynamics in vegetation structure and 

color at high spatial resolutions in 3D over larger areas.   

This study will demonstrate that by enhancing Ecosynth methods using automated 

UAS image acquisition techniques, high spatial resolution multispectral 3D datasets can 

be repeatably and consistently produced, thereby enabling the structural and spectral 

dynamics of forest canopies to be observed in 3D; a major advance in the remote sensing 

of forest ecosystems.  Ecosynth methods encompass the full process and suite of 

hardware and software used to observe vegetation structural and spectral traits from 

ordinary digital cameras using computer vision.  Ecosynth methods are not presented as a 

replacement for remote sensing systems designed to map large extents, but rather as an 

inexpensive user-deployed system for detailed observations across local sites and 

landscapes at scales generally less than 1 km2, much like ground-based Portable Canopy 

LIDAR (PCL; Parker et al. 2004; Hardiman et al. 2011), or web-cam phenology imaging 

systems deployed at carbon flux towers (PhenoCam; Richardson et al. 2009; Mizunuma 

et al. 2013).   Nevertheless, the general utility and maturity of Ecosynth methods for 

routine and inexpensive forest measurements on demand will be demonstrated by 

comparing these with estimates of understory terrain, canopy height, and forest 



 

53 
 

aboveground biomass density produced by field and LIDAR methods across three > 6 ha 

forest study sites.  The unprecedented ability of Ecosynth methods to simultaneously 

observe vegetation structural and spectral dynamics at high spatial resolutions is then 

demonstrated by comparing vertical profiles of vegetation structure (Parker and Russ 

2004) and RGB relative brightness (Richardson et al. 2009; Mizunuma et al. 2013) 

acquired at six times across the Northern Temperate growing season to data from 

vegetation stem maps, discrete return LIDAR, and a MODIS NDVI time series.  

1.1 Computer vision for remote sensing 

Automated photogrammetric systems based on computer vision SFM algorithms 

(Snavely et al. 2008) enable the production of geometrically precise 3D point cloud 

datasets based entirely on large sets of overlapping digital photographs taken from 

different locations (Dandois and Ellis 2010; Dey et al. 2012; Rosnell and Honkavaara 

2012).  SFM relies on photogrammetric methods that have already been used for 

estimating tree height from overlapping images acquired using large-format, 

photogrammetric-grade cameras coupled with flight time GPS and IMU data, including 

automated feature extraction, matching and bundle adjustment (Ofner et al. 2006; 

Hirschmugl et al. 2007), and these methods have been discussed as a viable alternative to 

LIDAR for 3D forestry applications (Leberl et al. 2010).  However, SFM differs from 

prior photogrammetric applications in that camera position and orientation data that are 

conventionally acquired using GPS and IMU instruments carried by the aircraft are 

removed from the 3D modeling equation, and instead the 3D reconstruction of surface 

feature points is determined automatically based on the inherent 'motion' of numerous 

overlapping images acquired from different locations (Snavely et al. 2008). The result is 
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an extremely simple remote sensing instrument: an ordinary digital camera taking highly 

overlapping images while moving around or along objects.   

SFM techniques have already proved successful for accurate 3D modeling of built 

structures, bare geological substrates, and fine-spatial scale individual plant structure (de 

Matías et al. 2009; Snavely et al. 2010; Dey et al. 2012; Harwin and Lucieer 2012).  SFM 

has been applied to generate 3D surface models of open fields, forests and trees from 

aerial images acquired from a remote-controlled multi-rotor aircraft (Tao et al. 2011; 

Rosnell and Honkavaara 2012).  Recently, Wallace et al. (2012) used SFM algorithms to 

improve the calculation of sensor position and orientation on a lightweight UAS (≈ 5 kg 

with payload) carrying a mini-LIDAR sensor with lightweight GPS and new micro-

electromechanical system (MEMS) based IMU equipment (2.4 kg), finding sub-meter 

horizontal and vertical spatial accuracies of ground targets (0.26 m and 0.15 m, 

respectively). That study found low variance (0.05 m - 0.25 m) of manually extracted 

individual tree height measurements from the LIDAR point cloud but did not compare 

these with field measured tree heights.   

1.2 UAS for remote sensing 

UAS are increasingly being deployed for low-cost, on-demand aerial photography and 

photogrammetry applications (Rango et al. 2009; Hunt et al. 2010; Harwin and Lucieer 

2012).  Rosnell and Honkavaara (2012) used an autonomous multirotor aircraft to take 

aerial photos in a grid pattern to generate orthomosaics and land surface elevation models 

using photogrammetry and computer vision software.  Lin et al. (2011) recently explored 

the deployment of LIDAR sensors on relatively small UAS (11.5 kg with platform, 

battery and payload) suggesting a technology useful for measuring forest structure, but 



 

55 
 

without demonstrating the production of canopy height or other forestry measures.  As 

both conventional LIDAR and photogrammetric techniques require precise measurements 

of sensor position and orientation during flight, these techniques require high-accuracy 

global positioning systems (GPS) and inertial monitoring units (IMU), both of which are 

relatively expensive and heavy instruments (> 10 kg) that tend to limit applications to the 

use of relatively large UASs (> 10 kg) and higher altitudes (> 120 m), invoking logistical 

and regulatory requirements similar to those of conventional manned aircraft. 

2.0 Materials and methods 

2.1 Study areas 

Research was carried out across three 6.25 ha (250 m x 250 m) forest research study sites 

in Maryland USA; two areas on the campus of the University of Maryland Baltimore 

County (UMBC; 39°15'18"N 76°42'32"W) and one at the Smithsonian Environmental 

Research Center in Edgewater Maryland (SERC; 38°53'10"N 76°33'51"W).  UMBC sites 

are centered on and expanded from the smaller study sites described by Dandois and Ellis 

(2010). 

The first UMBC study site, 'Knoll' centers on a forested hill surrounded by 

turfgrass and paved surfaces, peaking at about ≈ 60 m ASL (above mean sea level) and 

gradually descending by 5 to 20 m.  Forest is composed of a mixed-age canopy (mean 

canopy height 25 m, max. 42 m) dominated by American beech (Fagus grandifolia), oak 

(Quercus spp.), and hickory (Carya spp.) but also including several large mature white 

ash (Fraxinus americana) and tulip-poplar (Liriodendron tulipifera).  The second UMBC 

study site, 'Herbert Run', consists of a remnant forest patch similar in size and 

composition (mean canopy height 20 m, max. 34 m) to the Knoll (elevation 55 m ASL) 
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but steeply sloping (up to 50% grade) down to a riparian forest along a small stream 

(Herbert Run; 40 m ASL) and back up to a road running parallel to the stream. The 

riparian forest canopy consists mostly of an even-aged stand of black locust (Robinia 

pseudoacacia) overstory with black cherry (Prunus serotina) understory along the steep 

stream banks, with honey locust (Gleditsia triacanthos) and green ash (Fraxinus 

pennsylvanica) becoming dominant in closest proximity to the stream.  

The 'SERC' study site is located approximately at the center of the 'Big Plot' at the 

Smithsonian Environmental Research Center in Edgewater, Maryland that has been the 

long-term focus of a variety of forest ecology and remote sensing studies (Parker and 

Russ 2004; McMahon et al. 2010).  The site is comprised of floodplain with a gradual 

slope (8 % mean grade) from a small hill (≈ 19 m ASL) at the north to a riparian area (≈ 0 

m ASL) to the east and south.  The canopy is dominated by tulip-poplar, American beech, 

and several oak (Quercus spp.) species in the overstory (mean canopy height 37 m, max. 

50 m). 

2.2 Forestry field methods 

At UMBC sites, a 25 m x 25 m subplot grid was staked out within forested areas using a 

Sokkia Set 5A Total Station and Trimble TSC2 Data Logger based off of the local 

geodectic survey network (0.25 m horizontal radial RMSE,  0.07 m vertical RMSE; 

WGS84 UTM Zone 18N datum).  Tree location, species, and diameter at breast height 

(DBH) of trees greater than 1 cm DBH were hand mapped within the subplot grid 

between June 2012 and March 2013.  Tree heights were measured by laser hypsometer 

during leaf-off conditions over the same period for the five largest trees per subplot, 

based on DBH, as the average of three height measurements taken at approximately 120° 
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intervals around each tree at an altitude angle of < 45°.  Subplot canopy height was then 

estimated as the mean height of the 5 tallest trees, i.e., average maximum height. 

Field data for SERC were collected as part of a long-term forest inventory and 

monitoring program as described by McMahon et al. (2010).  In that project, individual 

trees greater than 1 cm DBH were mapped to a surveyed 10 m x 10 m subplot grid using 

a meter tape placed on the ground and were identified to species. For the current study, a 

sample of field measured tree heights were obtained by overlaying a 25 m x 25 m subplot 

grid across the existing stem map in GIS and selecting the five largest trees per subplot 

based on DBH.  During winter 2013, tree heights were measured as described above in 

30 of the 100 25 m x 25 m subplots: 26 in randomly selected subplots and 4 in a group of 

subplots that comprise a 50 m x 50 m subset area. 

2.3 Aerial LIDAR 

LIDAR data covering UMBC sites were acquired in 2005 by a local contractor for the 

Baltimore County Office of Information Technology with the goal of mapping terrain at 

high spatial resolution across Baltimore County MD, USA.  The collection used an 

Optech ALTM 2050 LIDAR with Airborne GPS and IMU under leaf-off conditions in 

the spring of 2005 (2005-03-18 – 2005-04-15; ≈ 800 – 1,200 m above ground surface; ≈ 

140 knots airspeed; 36 Hz scan frequency; 20° scan width half angle; 50 kHz pulse rate; 

≈ 150 m swath overlap; mean point density 1.5 points m-2; NAD83 Harn Feet horizontal 

datum; NAVD88 Feet vertical datum).  More recent LIDAR data for UMBC sites was 

not available (Baltimore County has a 10 year LIDAR collection plan), so the 2005 

LIDAR dataset represents the only existing 3D forest canopy dataset at these sites.  

Airborne LIDAR data for SERC were collected 2011-10-05 by the NASA GSFC G-LiHT 



 

58 
 

(Goddard LIDAR-Hyperspectral-Thermal; Cook et al. 2012) remote sensing fusion 

platform (350 m above ground surface; 110 knots airspeed; 300 kHz pulse repetition 

frequency; 150 kHz effective measurement rate; 30° scan width half angle; 387 m swath 

width at 350 m altitude; mean point density 78 points m-2; WGS84 UTM Zone 18N 

horizontal coordinate system; GEOID09 vertical datum; data obtained and used with 

permission from Bruce Cook, NASA GSFC on 2012-02-22). 

2.4 Ecosynth—computer vision remote sensing 

The term 'Ecosynth' is used here and in prior research (Dandois and Ellis 2010) to 

describe the entire processing pipeline and suite of hardware involved in generating 

ecological data products (e.g., canopy height models (CHMs), aboveground biomass 

(AGB) estimates, and canopy structural and spectral vertical profiles) and is diagrammed 

in Figure 1.  The Ecosynth method combines advances and techniques from many areas 

of research, including computer vision structure from motion, UAS, and LIDAR point 

cloud data processing.   

2.4.1 Image acquisition using UAS 

An autonomously flying, hobbyist-grade multi-rotor helicopter, 'Mikrokopter Hexakopter' 

(Figure 1a; HiSystems GmbH, Moormerland, Germany; http://www.mikrokopter.de) was 

purchased as a kit, constructed, calibrated and programmed for autonomous flight 

according to online instructions.  The flying system included a manufacturer-provided 

wireless telemetry downlink to a field computer, enabling real-time ground monitoring of 

aircraft altitude, position, speed, and battery life. 
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Image acquisition flights were initiated at the geographic center of each study site 

because Hexakopter firmware restricted autonomous flight within a 250 m radius of 

takeoff, in compliance with German laws. This required manual piloting of the 

Hexakopter through a canopy gap at the Knoll and SERC sites; flights at Herbert Run 

were initiated from an open field near study site center.   Flights were programmed to a 

predetermined square parallel flight plan designed to cover the study site plus a 50 m 

 
Figure 1: Workflow for Ecosynth remote sensing (details in Appendix A1.1). 
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buffer area added to avoid edge effects in image acquisitions, by flying at a fixed altitude 

approximately 40 m above the peak canopy height of each study site.  Once the 

Hexakopter reached this required altitude, as determined by flight telemetry, automated 

flight was initiated by remote control.  Flight paths were designed to produce a minimum 

photographic side overlap of 40 % across UMBC sites and 50 % at SERC owing to 

higher wind prevalence at that study site at the time of acquisition; forward overlap was > 

90 % for all acquisitions.  

A Canon SD4000 point-and-shoot camera was mounted under the Hexakopter to 

point at nadir and set to "Continuous Shooting mode" to collect 10 megapixel resolution 

photographs continuously at a rate of 2 frames s-1.  Camera focal length was set to 

"Infinity Focus" (≈ 4.90 mm) and exposure was calibrated to an 18 % grey camera target 

in full sun with a slowest shutter speed of 1/800 seconds.  Images were acquired across 

each study site under both leaf-on and leaf-off conditions as described in Appendix 1.2. 

Two leaf-on acquisitions were produced at the Knoll study site to assess repeatability of 

height measurements and spectral changes caused by Fall leaf senescence (Leaf-on 2; 

Appendix 1.2). At SERC, four additional data sets were collected across a 16 month 

period to capture the structural and spectral attributes of the canopy at distinct points 

throughout the growing season (winter leaf-off, early spring, spring green-up, summer 

mature green, early fall leaf-on, senescing). Upon completion of its automated flight plan, 

the aircraft returned to the starting location and was manually flown vertically down to 

land. 
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2.4.2 3D point cloud generation using SFM 

Multi-spectral (red-green-blue, RGB) three-dimensional (3D) point clouds were 

generated automatically from the sets of aerial photographs described in Appendix 1.2 

using a purchased copy of Agisoft Photoscan, a commercial computer vision software 

package (http://www.agisoft.ru; v0.8.4 build 1289).  Photoscan uses proprietary 

algorithms that are similar to, but not identical with, those of Bundler (Personal email 

communication with Dmitry Semyonov, Agisoft LLC, 2010-12-01) and was used for its 

greater computational efficiency over the open source Bundler software used previously 

for vegetation point cloud generation (estimated at least 10 times faster for photo sets 

>2000; Dandois and Ellis 2010).  Photoscan has already been used for 3D modeling of 

archaeological sites from kite photos (Verhoeven 2011) and has been proposed for 

general image-based surface modeling applications (Remondino et al. 2011).   

Prior to running Photoscan, image sets were manually trimmed to remove photos 

from the take-off and landing using the camera time stamp and the time stamp of GPS 

points recorded by the Mikrokopter.  Photoscan provides a completely automated 

computer vision SFM pipeline, taking as input a set of images and automatically going 

through the steps of feature identification, matching and bundle adjustment.  To generate 

each 3D RGB point, Photoscan performs several tasks as part of an automated computer 

vision SFM pipeline (Verhoeven 2011).  This is accomplished by automatically 

extracting 'keypoints' from individual photos, identifying 'keypoint matches' among 

photos (e.g., Lowe 2004), and then using bundle adjustment algorithms to estimate and 

optimize the 3D location of feature correspondences together with the location and 
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orientation of cameras and camera internal parameters (Triggs et al. 1999; Snavely et al. 

2008).  SFM process is described in detail in Section 1.1.3 of Chapter 1.  

Photoscan was run using the 'Align Photos' tool with settings: 'High Accuracy' 

and 'Generic Pair Pre-selection'.  The 'Align Photos' tool automatically performs the 

computer vision structure from motion process as described above, but using proprietary 

algorithms.   According the manufacturer's description, the 'High Accuracy' setting 

provides a better solution of camera position, but at the cost of greater computation time.   

Similarly, the 'Generic Pair Pre-selection' setting uses an initial low accuracy assessment 

to determine which photos are more likely to match, reducing computation time.  After 

this, no other input is provided by the user until processing is complete, at which time the 

user exports the forest point cloud model into an ASCII XYZRGB file and the camera 

points into an ASCII XYZ file. 

Photoscan was installed on a dual Intel Xeon X5670 workstation (12 compute 

cores) with 48GB of RAM, which required 2-5 days of continuous computation to 

complete the generation of a single point cloud across each study site, depending roughly 

on the size of the input photo set (Appendix 1.2).  Point clouds thus produced consisted 

of a set of 3D points in an arbitrary but internally consistent geometry, with RGB color 

extracted for each point from input photos, together with the 3D location of the camera 

for each photo together with its camera model, both intrinsic (e.g., lens distortion, focal 

length, principle point) and extrinsic (e.g., XYZ location, rotational pose along all three 

axes), in the same coordinate system as the entire point cloud (Figure 1b).    
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2.4.3 SFM point cloud georeferencing and post-processing 

Ground control point (GCP) markers (five-gallon orange buckets) were positioned across 

sites prior to image acquisition in configurations recommended by Wolf and Dewitt 

(2000).  The XYZ locations of each GCP marker were measured using a Trimble GeoXT 

GPS with differential correction to within 1 m accuracy (UTM; Universal Transverse 

Mercator projection Zone 18N, WGS84 horizontal datum).  The coordinates of each GCP 

marker in the point cloud coordinate system were determined by manually identifying 

orange marker points in the point cloud and measuring their XYZ coordinates using 

ScanView software (Menci Software; http://www.menci.com).  Six GCPs were selected 

for use in georeferencing, the center-most and the five most widely distributed across the 

study site; remaining GCPs were reserved for georeferencing accuracy assessment.   

A 7-parameter Helmert transformation was used to georeference SFM point 

clouds to GCPs by means of an optimal transformation model implemented in Python 

(v2.7.2; Scipy v0.10.1; Optimize module) obtained by minimizing the sum of squared 

residuals in X, Y, and Z between the SFM and GCP coordinate systems, based on a 

single factor of scale, three factors of translation along each axis, and three angles of 

rotation along each axis (Figure 1c; Wolf and Dewitt 2000). Georeferencing accuracy 

was assessed using National Standard for Spatial Data Accuracy (NSSDA) procedures 

(RMSE = Root Mean Square Error, RMSEr = Radial (XY) RMSE, RMSEz = Vertical 

(Z) RMSE, 95 % Radial Accuracy, and 95 % Vertical Accuracy; Flood 2004), by 

comparing the transformed coordinates of the GCP markers withheld from the 

transformation model with their coordinates measured by precision GPS in the field.  

This technique for georeferencing is referred to as the 'GCP method'. 
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GCP markers at SERC were obscured by forest canopy under leaf-on conditions, 

so georeferencing was only achievable using GPS track data downloaded from the 

Hexakopter.  This method was also applied to the Knoll and Herbert Run datasets to 

evaluate its accuracy against the GCP method.  Owing to hardware limitations of the 

Hexakopter GPS, positions could only be acquired every 5 seconds, a much lower 

frequency that was out of synch with photograph acquisitions (2 frames s-1).  To 

overcome this mismatch and the lower precision of the Hexakopter GPS, the entire aerial 

GPS track (UTM coordinates) and the entire set of camera positions along the flight path 

(SFM coordinate system) were fitted to independent spline curves, from which a series of 

100 XYZ pseudo-pairs of GPS and SFM camera locations were obtained using an 

interpolation algorithm (Python v2.7.2; Scipy v0.10.1; Interpolate module) and then used 

as input for the georeferencing of point clouds using the same Helmert transformation 

algorithm used in the GCP method.  This technique for georeferencing is referred to as 

the 'spline method'.  SERC georeferencing accuracy with the spline method was then 

assessed during leaf-off conditions based on 12 GCP markers placed along a road 

bisecting the study site that were observable in the SFM point cloud, using the same 

methods as for UMBC sites (Appendix 1.3). However, the poor geometric distribution of 

these GCP markers across the SERC study site precluded their direct use for 

georeferencing. 

2.4.4 Noise filtering of SFM point clouds 

Georeferenced SFM point clouds for each study site included a small but significant 

number of points located far outside the possible spatial limits of the potential real-world 

features, most likely as the result of errors in feature matching (Triggs et al. 1999).  As in 
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LIDAR postprocessing, these 'noise' points were removed from point clouds after 

georeferencing using statistical outlier filtering (Sithole and Vosselman 2004).  First, 

georeferenced point clouds were clipped to a 350 m x 350 m extent: the 250 m x 250 m 

study site plus a 50 m buffer on all sides to avoid edge effects.  A local filter was applied 

by overlaying a 10 m grid across the clipped point cloud, computing standardized Z-

scores (Rousseeuw and Leroy 1987) within each grid cell, and removing all points with 

|Z-score| > 3; between 1 % and 2 % of input points were removed at this stage (Appendix 

1.2).  While filtering did remove some verifiable canopy points, filters were implemented 

instead of manual editing to facilitate automation. At this point, 'Ecosynth' point clouds 

were ready for vegetation structure measurements.   

2.4.5 Terrain filtering and DTM creation 

After georeferencing and noise-filtering of computer vision point clouds, a 1 m grid was 

imposed across the entire clipped point cloud of the study site and the median elevation 

point within each 1 m grid cell was retained; all other points were discarded.  Understory 

digital terrain models (DTMs) were then generated from these median-filtered leaf-on 

and leaf-off point clouds using morphological filter software designed for discrete return 

LIDAR point clouds (Figure 1d; Zhang et al. 2003; Zhang and Cui 2007).  This software 

distinguished terrain points based on elevation differences within varying window sizes 

around each point within a specified grid mesh.  This algorithm enabled convenient 

batching of multiple filtering runs with different algorithm parameters, a form of 

optimization that is a common and recommended practice with other filtering algorithm 

packages (Zhang et al. 2003; Sithole and Vosselman 2004; Evans and Hudak 2007, 

Tinkham et al. 2012) and has previously been used across a range of different forest 
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types, including high biomass redwood forests of the Pacific northwest (Gonzalez et al. 

2010), Florida mangroves (Simard et al. 2006; Zhang 2008) and in prior studies at similar 

sites (Dandois and Ellis 2010).  Ordinary Kriging was then used to interpolate 1 m raster 

DTMs from terrain points using ArcGIS 10.0 (ESRI, Redlands, CA; Popescu et al. 2003).   

Ecosynth DTM error was evaluated across 250 m x 250 m sites as a whole 

relative to slope and land cover classes (Clark et al. 2004) following NSSDA procedures 

(Flood 2004).  Land cover across the Knoll and Herbert Run sites was manually 

interpreted and digitized in ArcGIS 10.0 from a 2008 leaf-off aerial orthophotograph (0.6 

m horizontal accuracy, 0.3 m pixel resolution, collected 2008-03-01 – 2008-04-01) into 

seven categories: forest (woody vegetation > 2 m height), turfgrass, brush (woody 

vegetation < 2 m height), buildings, pavement, water, and other (i.e., rock rip-rap, 

unpaved trail).  Land cover feature height (e.g., greater or less than 2 m) and 

aboveground feature outline (e.g., for buildings and forest canopy) was determined from 

the Ecosynth canopy height model for each study site.  The SERC study site was 

classified as all forest.   

LIDAR understory DTMs were generated at UMBC sites using a bare earth point 

cloud product provided by the LIDAR contractor and interpolated to a 1 m grid using 

Ordinary Kriging.  Despite being collected 5 years prior to the current study, the 2005 

LIDAR bare earth product still provides an accurate depiction of the relatively unchanged 

terrain at the UMBC study sites.  A LIDAR understory DTM was generated for the 

SERC study site using the morphological terrain filter on the set of 'last return' points and 

interpolating to a 1 m grid using Ordinary Kriging. 
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2.4.6 CHM generation and canopy height metrics 

Sets of aboveground point heights were produced from Ecosynth and LIDAR point 

clouds by subtracting DTM cell values from the elevation of each point above each DTM 

cell; points below the DTM were discarded (Popescu et al. 2003).  To investigate the 

accuracy of Ecosynth methods, aboveground point heights for Ecosynth leaf-on point 

clouds were computed against three different DTMs; those from leaf-on Ecosynth, leaf-

off Ecosynth, and LIDAR bare earth; LIDAR CHMs were only processed against LIDAR 

DTMs.  All aboveground points ≥ 2 m in height were accepted as valid canopy points and 

used to prepare CHM point clouds.  CHM point height summary statistics were 

calculated within 25 m x 25 m subplots across each study site, including median (Hmed), 

mean (Hmean), minimum (Hmin), maximum (Hmax), and quantiles (25th, 75th, 90th, 

95th and 99th = Q-25, Q-75, Q-90, Q-95 and Q-99 respectively).  At all sites, Ecosynth 

and LIDAR CHM metrics were compared with field measured heights of the five tallest 

trees within each subplot using simple linear regressions (Dandois and Ellis 2010), 

although for Knoll and Herbert Run, LIDAR comparisons at these sites must be 

considered illustrative only: the long time delay since LIDAR data acquisition biases 

these from any direct quantitative comparisons.  At SERC, where Ecosynth and LIDAR 

were collected only a few days apart in 2010, Ecosynth canopy height statistics were also 

compared directly with LIDAR height statistics within 25 m x 25 m grid cells overlaid 

across the SERC study site and compared using simple linear regression.  For each site, 

one outlier was identified (Grubbs 1969) and removed from analysis where Ecosynth 

overestimated field height by > 10 m due to: tree removal (Knoll), tall canopy spreading 
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into a plot with few small trees (Herbert Run), and a plot that had only one large tree and 

several smaller, suppressed understory trees (SERC). 

2.4.7 Prediction of aboveground biomass and carbon from 3D point clouds 

Ecosynth and LIDAR CHMs were used to predict forest canopy aboveground biomass 

density (AGB Mg ha-1) at all study sites using linear regression to relate canopy height 

metrics to field based estimates of biomass within forested 25 m x 25 m subplots.  

Biomass density was estimated by first computing per tree biomass using standardized 

allometric equations for the 'hard maple/oak/hickory/beech' group (Jenkins et al. 2003; 

AGB = EXP(-2.0127 + 2.4342×LN(DBH))), summing total AGB per subplot and then 

standardizing to units of Mg ha-1 (Hudak et al. 2012).  Linear regression was then used to 

predict subplot AGB from CHM height metrics, with prediction error computed as the 

RMSE error between observed and predicted AGB values (Lefsky et al. 1999; Drake et 

al. 2002).  Aboveground forest carbon density was estimated by multiplying AGB by a 

factor of 0.5 (Hurtt et al. 2004).  As with estimates of canopy height, AGB predictions 

obtained from LIDAR at Knoll and Herbert Run would be expected to show large errors 

due to the large time difference between LIDAR (2005) and field measurements (2011).  

Nevertheless, AGB predictions were made at all sites using both Ecosynth and LIDAR to 

demonstrate the general utility of Ecosynth for similar applications as LIDAR. 

2.4.8 Repeated seasonal 3D RGB vertical profiles 

Computer vision RGB point clouds were used to assess forest spectral dynamics in 3D by 

producing multiple point cloud datasets of the SERC site in leaf-off  (Winter), early 

spring (Spring 1), spring green-up (Spring 2), mature green (Summer), early senescing 

leaf-on (Fall 1), and senescing (Fall 2) conditions between October 2010 – June 2012 
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(Appendix 1.2).  A single 50 m x 50 m sample area was selected for its diverse fall 

colors, clipped from each point cloud and stratified into 1 m vertical height bins for 

analysis. Canopy height profiles (CHPs) were then generated for all points within the 50 

m x 50 m sample area across the six point clouds, with each 1 m height bin colorized 

using the mean RGB channel value of all points within the bin.  The relative RGB 

channel brightness (e.g., R/(R+G+B)) was computed based on the mean RGB point color 

within each 1 m bin (Richardson et al. 2009).   A CHP of the sample area was also 

generated from the leaf-on G-LiHT point cloud for comparison, combining all returns.  

For each of the six seasonal point clouds, the relative green channel brightness (i.e., 

G/(R+G+B), Strength of green: Sgreen) was extracted for all points within the height bin 

corresponding to mean field measured canopy height within the 50 m x 50 m sample area 

(Richardson et al. 2009; Mizunuma et al. 2013).  Ecoysnth Sgreen values were plotted 

based on day of year (DOY) against the MODIS NDVI time series for 2011 (MOD13Q1; 

16-day composite; 2011-01-01 – 2011-12-19; one 250 m pixel centered on 38° 53' 

23.2"N 76° 33' 35.8"W; ORNL DAAC 2012).  Regression analysis was used to directly 

compare MODIS NDVI and Sgreen values based on the closest MODIS NDVI DOY 

value for each Ecosynth DOY Sgreen value, or the mean of two NDVI values when an 

Ecosynth observation fell between two MODIS observations. 

3.0 Results 

3.1 Image acquisition and point cloud generation 

Image acquisition flight times ranged from 11 to 16 minutes, acquiring between 1600 and 

2500 images per site, depending mostly on prevailing winds.  As wind speeds approached 

4.4 m s-1 (9.8 mph), flight times increased substantially, image acquisition trajectories 
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ranged further from plan, and photo counts increased.  Wind speeds > 4.4 m s-1 generally 

resulted in incomplete image overlap and the failure of point cloud generation and were 

thus avoided.  Point cloud generation using commercial SFM software required between 

27 – 124 hours of continuous computation to complete image processing across 6.25 ha 

sites, depending in part on the number of photographs (Appendix 1.2). 

3.2 Characteristics of Ecosynth point clouds 

Ecosynth point clouds are illustrated in Figure 2 and described in Appendix 1.2. Point 

cloud density varied substantially with land cover and between leaf-on and leaf-off 

acquisitions (Table 1, Figure 3), with forested leaf-on point clouds generally having the 

highest densities (Table 1).  Densities of leaf-off point clouds were similar across all 

three study sites (20 – 23 points m-2), and leaf-on densities were similar across UMBC 

sites (27 – 37 points m-2), but the leaf-on SERC  cloud was twice as dense (67 points m-2) 

as the leaf-on UMBC clouds.  Point cloud density varied substantially with land cover 

type at the Knoll and Herbert Run, and was generally highest in types with the greatest 

structural and textural complexity such as forest, low brush and rock riprap (29 – 54 

points m-2; Table 1) and lowest in types that were structurally simple and had low 

variation in contrast like roads, sidewalks, and turfgrass (7 – 22 points m-2). However, 

building roof tops had similar point densities to vegetated areas at Herbert Run (35 points 

m-2), where shingled roofs were present, compared with simple asphalt roofs at Knoll.  
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Figure 2: Ecosynth RGB point clouds across 250 m x 250 m sites (Knoll, Herbert Run 
and SERC; purple outline) under leaf-on (a, b) and leaf-off (c, d) conditions and 
viewed from overhead (a, c) and obliquely with same heading (b, d). Point clouds 
have black background; brightness and contrast enhanced using autocorrect settings in 
Microsoft Visio software. 
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Table 1: Ecosynth and LIDAR point cloud density for different land cover types.  
Blanks indicate land cover type not present within study site. 
 

  Point cloud density by land cover class: mean(SD) [min,max] (points m-2) 
  Forest Turfgrass Brush Buildings Pavement Water Other All 

Knoll          
Leaf-on 
1  54(72) 

[0,1030] 
22(16) 
[0,160] - 21(21) 

[0,168] 
12(14) 
[0,147] 

30(19) 
[1,92] - 37(57) 

[0,1030] 

Leaf-off   35(23) 
[0,207] 

19(12) 
[0,153] - 10(12) 

[0,156] 
7(10) 

[0,183] 
12(9) 
[0,68] - 24(21) 

[0,207] 

LIDARa  1.7(0.9) 
[0,7] 

1.8(1.0) 
[0,7] - 1.7(1.1) 

[0,6] 
1.7(1.0) 

[0,6] 
0.3(0.7) 

[0,2] - 1.7(1.0) 
[0,7] 

Herbert Run 
Leaf-on   34(27) 

[0,249] 
20(16) 
[0,249] 

48(24) 
[1,144] 

34(30) 
[0,251] 

19(16) 
[0,170] - 42(22) 

[3,140] 
27(23) 
[0,251] 

Leaf-off   12(15) 
[0,174] 

26(14) 
[0,173] 

39(19) 
[4,128] 

36(28) 
[0,198] 

17(13) 
[0,199] - 29(18) 

[0,111] 
20(17) 
[0,199] 

LIDARa  1.8(1.4) 
[0,12] 

2.1(1.8) 
[0,18] 

2.6(2.0) 
[0,8] 

3.3(2.7) 
[0,20] 

2.4(2.0) 
[0,12] - 1.7(1.4) 

[0,8] 
2.1(1.8) 
[0,20] 

SERC          
Leaf-on  67(60) 

[0,829] - - - - - - 67(60) 
[0,829] 

Leaf-off   23(19) 
[0,1194] 

- - - - - - 23(19) 
[0,1194] 

LIDARb  45(16) 
[0,173] 

- - - - - - 45(16) 
[0,173] 

a Combined density of first return and bare earth points. 
b Combined density of first and last return. 
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Figure 3: Point cloud density maps from Ecosynth under (a) leaf-on and (b) leaf-off 
conditions compared with (c) LIDAR across the Knoll, Herbert Run and SERC sites 
(same orientation as Figure 2a).  LIDAR densities combine first and last returns.  
Commercial LIDAR at Knoll and Herbert Run sites have lower density map legend as 
indicated.  
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Point cloud georeferencing accuracies are reported in Table 2.  For the Knoll and 

Herbert Run sites, horizontal georeferencing accuracies of 1.2 m – 2.1 m RMSEr and 

vertical accuracies of 0.4 m – 0.6 m RMSEz were achieved using the GCP method.  

Horizontal and vertical accuracies of 4.1 m and 1.2 m, RMSEr and RMSEz respectively, 

were achieved for the SERC leaf-off point cloud using the spline method.  However, the 

spline method produced lower horizontal and vertical accuracies (higher RMSE) than the 

GCP method at the Knoll and Herbert Run sites (RMSEr = 3.5 m – 5.4 m; RMSEz = 1.7 

m – 4.7 m, Appendix A1.4).  Horizontal and vertical RMSE for LIDAR are generally 

much lower (0.15 m, 0.24 m, contractor reported). 

 

 

 

 

Table 2: Point cloud georeferencing error and accuracy across study sites for the GCP 
method. 

 Horizontal  Vertical 

 RMSEx RMSEy RMSEr 

95 % 
Radial 

Accuracy 

 

RMSEz 
95 % Vertical 

Accuracy 
Knolla 
Leaf-on 1 0.36 1.59 1.63 2.82  0.59 1.15 
Leaf-off  0.99 0.69 1.21 2.09  0.62 1.22 
Herbert Runa 
Leaf-on 0.71 1.79 1.93 3.33  0.61 1.20 
Leaf-off 1.75 1.07 2.05 3.55  0.39 0.76 
SERC 
Leaf-onb - - - -  - - 
Leaf-offc 2.46 3.31 4.13 7.14  1.16 2.28 

a Accuracy is reported for the ''GCP method'', table of accuracies of the ''spline 
method'' for these sites is provided in Appendix A1.2. 
b Accuracy could not be assessed because canopy completely covered GCPs. 
c Georeferenced using aerial GPS ''spline method''. 
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3.3 Digital terrain models 

Understory DTMs generated from computer vision are compared with LIDAR bare earth 

DTMs in Table 3 and Figure 4.   Ecosynth DTM errors were higher under forest cover 

than in open areas at the Knoll and Herbert Run sites (Figure 4).  Ecosynth leaf-off 

DTMs more accurately captured understory terrain than Ecosynth leaf-on DTMs (leaf-off 

RMSEz = 0.89 m – 3.04 m; leaf-on RMSEz = 2.49 m – 5.69 m; Table 3).  At the Knoll, 

DTM difference maps between Ecosynth leaf-off and LIDAR (Figure 4c) revealed large 

error sinks (< -5 m) in the north-west, north-east, and southern portions of the study site.  

Leaf-on DTMs generally overestimated understory terrain elevation at all three study 

sites (Figure 4c) resulting in spikes of error (> 5 m) compared to LIDAR DTMs. At all 

sites, DTM differences between Ecosynth and LIDAR were larger in forest compared 

with non-forest areas (Figure 4c and d; Table 4). 

 

 
 
 
 
 

 

Table 3: Understory digital terrain model (DTM) errors (meters) across entire study 
sites compared to LIDAR Bare Earth DTM. 

  Mean (SD) Range RMSEz 
95 % Vertical 

Accuracy 
Knoll 
Leaf-on 1  1.21 (2.17) -11.18 – 13.97 2.49 4.88 
Leaf-off   1.10 (2.83) -39.96 – 10.30 3.04 5.96 
Herbert Run 
Leaf-on   2.84 (3.77)    -4.81 – 20.69 4.72 9.25 
Leaf-off  0.61 (0.64) -12.07 – 8.57 0.89 1.73 
SERC 
Leaf-on   4.90 (2.90) -5.42 – 13.25 5.69 11.15 
Leaf-off  0.84 (1.28) -9.84 – 6.47 1.53 3.00 
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Figure 4: Digital terrain maps (DTM) from (a) LIDAR and (b) leaf-off Ecosynth and 
differences (Δ) between LIDAR and (c) leaf-off and (d) leaf-on Ecosynth DTMs 
across the Knoll, Herbert Run and SERC sites (same orientation as Figure 2a). 
Negative differences highlight areas where Ecosynth DTM is lower than LIDAR.  
DTM legends for (a) and (b) differ from (c), as indicated. 
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3.4 Canopy height, biomass and carbon estimates 

Use of Ecosynth and LIDAR CHMs to predict field measured tree heights across forest 

subplots at all sites is described in Table 5 and plotted for Ecosynth only in Figure 6.  At 

the Knoll and Herbert Run sites, results demonstrate that Ecosynth CHMs adequately 

predicted field-measured heights of the five tallest trees per subplot (i.e., average 

maximum height, AvgTop5) when either Ecosynth leaf-off (R2 = 0.82 – 0.83) or LIDAR 

DTMs (R2 = 0.83 – 0.84) were used.  When Ecosynth leaf-on DTMs were used, the 

quality of canopy height predictions was much lower (R2 = 0.62 – 0.67).  For the SERC 

site, Ecosynth predictions of field measured canopy height were very low for all DTMs 

(R2 = 0.07– 0.30) and lower than would be expected when LIDAR was used to estimate 

field heights (R2 = 0.50).  For Ecosynth, field height prediction errors with the leaf-off 

Table 4: Understory DTM error compared to LIDAR bare earth DTM across different 
land cover types for terrain slopes ≤ 10°. Reported as Mean error ± SD (RMSE) in 
meters. 
 

  Forest Turfgrass Brush Buildings Pavement Water Other All 
Knoll          

Leaf-
on 1  

1.80 ± 
2.85 

(3.37) 

0.56 ± 
0.22 

(0.60) 
- 

1.11 ± 
1.19 

(1.63) 

0.28 ± 
1.02 

(1.06) 

-0.69 ± 
0.30 

(0.75) 
- 

1.09 ± 
2.15 

(2.41) 

Leaf-
off   

2.27 ± 
1.51 

(2.72) 

0.68 ± 
0.69 

(0.97) 
- 

0.68 ± 
3.03 

(3.11) 

1.80 ± 
2.85 

(4.49) 

-1.48 ± 
0.20 

(1.49) 
- 

0.79 ± 
3.00 

(3.10) 
Herbert Run 

Leaf-
on   

4.16 ± 
3.73 

(5.58) 

0.87 ± 
0.40 

(0.95) 

1.62 ± 
0.25 

(1.64) 

1.72 ± 
1.02 

(2.00) 

0.93 ± 
0.38 

(1.00) 
- 

0.76 ± 
0.17 

(0.78) 

2.06 ± 
2.67 

(3.38) 

Leaf-
off   

0.46 ± 
0.57 

(0.73) 

0.57 ± 
0.49 

(0.75) 

0.71 ± 
0.17 

(0.73) 

0.83 ± 
1.20 

(1.46) 

0.61 ± 
0.31 

(0.68) 
- 

0.72 ± 
0.08 

(0.72) 

0.56 ± 
0.57 

(0.80) 
SERC          

Leaf-
on   

4.90 ± 
2.90 

(5.69) 

- - - - - - 4.90 ± 
2.90 

(5.69) 

Leaf-
off   

0.84 ± 
1.28 

(1.53) 

- - - - - - 0.84 ± 
1.28 

(1.53) 
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DTM (RMSE = 3.9 – 9.3 m) were generally higher than when the LIDAR DTM was used 

(RMSE = 3.2 – 6.8 m) but lower than when the leaf-on DTM was used (RMSE = 7.1 – 

10.9 m).  LIDAR CHMs at Knoll and Herbert Run showed a strong relationship to field 

measurements (R2 = 0.71 & 0.77), but had larger errors (RMSE = 5.7 & 5.4 m) as 

expected given the 5 years elapsed between LIDAR and field measurements.  At SERC, 

estimates of error between Ecosynth and LIDAR predictions of field canopy height were 

comparable (RMSE = 3.3 & 3.6 m).  Direct comparison of Ecosynth and LIDAR CHMs 

at SERC, where data was collected only days apart, also revealed strong agreement 

between the two sensor systems (R = 0.87, RMSE = 2.3 m; Appendix A1.5), suggesting 

that the two sensors were characterizing the canopy with a similar degree of precision. 

 

 
Figure 5: Overhead maps of (a) Ecosynth and (b) LIDAR canopy height models 
(CHM) across the Knoll, Herbert Run and SERC sites (same orientation as Figure 2a).  
Ecosynth CHMs produced using LIDAR DTMs. 



 

79 
 

 
 

 

Table 5: Best linear regression predictors (canopy height metric with the highest R2) 
of field measured mean heights of the 5 tallest trees per subplot (AvgTop5) across 
forested areas of the Knoll, Herbert Run, and SERC sites based on Ecosynth methods 
with different DTMs and LIDAR alone. RMSE is deviation in meters between field 
measured AvgTop5 and the specified subplot canopy height metric. 
 
 Linear Model R2 RMSE (m) 
Ecosynth    
Knoll Leaf-on 1    
with Ecosynth leaf-on DTM AvgTop5 = 0.77×Hmed – 0.1 0.63 6.9 

with Ecosynth leaf-off  DTM AvgTop5 = 0.67×Hmed + 2.0 0.82 6.9 

with LIDAR DTM AvgTop5 = 0.73×Hmed + 3.1 0.83 4.4 
Knoll Leaf -on 2    
with Ecosynth leaf-on DTM AvgTop5 = 0.82×Q-25 – 4.1 0.67 9.4 

with Ecosynth leaf-off  DTM AvgTop5 = 0.72×Q-25 – 1.7 0.83 9.3 

with LIDAR DTM AvgTop5 = 0.81×Q-25 – 1.6 0.84 6.8 
Herbert Run     
with Ecosynth leaf-on DTM AvgTop5 = 0.78×Q-25 – 5.3 0.62 10.9 

with Ecosynth leaf-off  DTM AvgTop5 = 0.88×Hmean – 0.3 0.83 3.9 

with LIDAR DTM AvgTop5 = 0.93×Hmed – 0.3 0.84 3.2 

SERC    

with Ecosynth leaf-on DTM AvgTop5 = 0.39×Q-90 + 15.9 0.30 7.1 

with Ecosynth leaf-off  DTM AvgTop5 = 0.23×Q-90 + 26.3 0.07 4.6 

with LIDAR DTM AvgTop5 = 0.40×Q-90 + 20.7 0.25 3.3 
    
LIDAR    

Knoll  AvgTop5 = 0.66×Hmed + 3.9 0.71 5.7 

Herbert Run AvgTop5 = 0.90×Hmed – 2.30 0.77 5.4 

SERC AvgTop5 = 0.50×Q-75 + 17.3 0.50 3.6 
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Figure 6: Ecosynth estimated best linear regression predictors (Table 5) of field 
measured average maximum height per subplot (AvgTop5) across forested areas of 
the Knoll (a), Herbert Run (b), and SERC (c) sites. Ecosynth canopy heights estimated 
using LIDAR DTMs. Linear regression lines (dashed), R2, linear models, and RMSE 
(m) are presented for each comparison, with solid gray reference lines along the one-
to-one ratio. Circled data points are outliers based on Grubb's test (> 3 SD from the 
mean) and are not included in regression analysis. 
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Aboveground biomass (AGB) predictions from Ecosynth and LIDAR CHMs at 

all sites are shown in Table 6.  For Knoll and Herbert Run, Ecosynth predictions of field 

estimated AGB showed relatively strong relationships, but also relatively high error (R2 =  

0.71 & 0.73; RMSE = 94 & 87 Mg ha-1, Table 6), with errors representing approximately 

31 – 36 % of field estimated per subplot mean AGB densities from allometric equations.  

LIDAR predictions of AGB at Knoll and Herbert Run showed similar relationships to 

those from Ecosynth, but with 3 – 9 % more error relative to field estimated mean AGB 

(R2 = 0.63 & 0.72; RMSE = 101 & 107 Mg ha-1), a result that is expected given the time 

lag between LIDAR data acquisition and field measurements.  At SERC, where Ecosynth 

and LIDAR data were collected at approximately the same time, the close resemblance of 

AGB predictions (Table 6) provides strong evidence that these systems generally yield 

similar estimates of AGB and aboveground carbon, which is approximated by 

multiplying AGB by a factor of 0.5 (Hurtt et al. 2004). 

 

Table 6: Predicted aboveground biomass (AGB) from Ecosynth and LIDAR canopy 
height metrics across forested 25 m subplots at Knoll, Herbert Run, and SERC sites. 
Simple linear models predicting AGB are presented for the canopy height metric 
producing the highest R2.   Estimated AGB values are from allometric models. 
    Ecosynth  LIDAR b 

 n 
(plots) 

Estimated 
Mean 
AGB  

(Mg ha-1) 

Estimated 
AGB  
CV 

Prediction 
Error 

RMSE  
(Mg ha-1) 

Linear 
Model R2  

Prediction 
Error 

RMSE 
(Mg ha-1) 

Linear 
Model R2 

Knoll 
Leaf-
on 1 

32 299 53 % 94a 
28.3 × 

Hmed – 
313.2 

0.71 
 

101a 
32.3× 

Hmean 
– 332.4 

0.63 

           
Herbert 
Run 40 240 65 % 87a 

23.9 × 
Q-90 – 
329.9 

0.73 
 

107a 
23.4× 

Hmax – 
130.3 

0.72 

           

SERC 100 341  40 % 112a 
18.3 × 
Q-90 – 
300.4 

0.27 
 

106 a 
24.9× 

Q-90 – 
562.1 

0.34 

a RMSE values are cross-validated  (Drake et al. 2002) 
b LIDAR at Knoll and Herbert Run is from 2005 and therefore biased, LIDAR at 
SERC is from 2011 
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3.5 Vertical canopy profiles 

Vertical canopy height profiles (CHPs) of Ecosynth CHMs are shown in Figure 7 for a 

selected 50 m x 50 m sample area at SERC, illustrating the relative frequency of points 

within 1 m height bins and their mean RGB color.   CHPs from the Spring 2, Summer, 

Fall 1 and Fall 2 time periods (Figure 7g, 7i, and 7k) showed a similar vertical density 

profile as the single leaf-on LIDAR acquisition at this site.  However, at the same time 

periods, Ecosynth observed almost no points in the understory and at ground level when 

compared with both LIDAR and Ecosynth Winter and Spring 1 scans (Figure 7a and 7c).  

Mean RGB channel brightness was fairly constant across the vertical profile in each time 

period, except in the Spring 1 and Fall 1 time periods, with slightly lower green and 

higher blue levels at the top of the canopy under early senescing conditions (Fall 1, 

Figure 7j), and slightly higher green at the same height under early spring conditions 

(Spring 1, Figure 7d).  Time series comparison of MODIS NDVI (MOD13Q1) for 2011 

and Ecosynth Sgreen for the 38 – 39 m height bin for the corresponding day of year 

(DOY) is shown in Figure 8.  For the observed time periods, the time series pattern of 

Ecosynth Sgreen closely matched that of MODIS NDVI and corresponding NDVI and 

Sgreen values were highly correlated (R2 = 0.88). 
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4.0 Discussion 

4.1 Ecosynth canopy height models (CHMs) 

Ecosynth CHMs produced strong predictions of field-measured tree heights at the Knoll 

and Herbert Run (R2 = 0.82 – 0.84, Table 5, Figure 6), well within the typical range of 

LIDAR predictions (Andersen et al. 2006, Wang and Glenn 2008), except when Ecosynth 

leaf-on DTMs were used for CHM generation (R2 = 0.62 – 0.67, Table 5).  At the SERC 

site, Ecosynth CHM predictions of field-measured tree height were very weak (R2 = 0.07 

- 0.30) regardless of DTM used as were LIDAR CHM predictions (R2 = 0.50, Table 5).  

Weaker prediction power of Ecosynth and LIDAR CHMs at SERC may be explained by 

the relatively lower variation in average maximum canopy height at that site (coefficient 

of variation, CV, 9 %) compared to Knoll or Herbert Run (CV = 23 % & 32 %; Figure 6, 

 
Figure 8: Time series of Ecosynth relative green brightness (green line) and MODIS 
NDVI (black line) across the SERC site.  Relative green brightness is for each 
Ecosynth point cloud (Figure 7) at the 38 m – 39 m height bin; error bars are standard 
deviation.  Linear regression line (dashed), R2, and linear models are presented in 
subset, with solid gray reference line along the one-to-one ratio. 
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Appendix A1.3).  At all sites, prediction errors were lowest when the LIDAR DTM was 

used (RMSE = 3.2 - 4.4 m) except for the Knoll leaf-on 2 CHM where prediction errors 

were large regardless of DTM (RMSE = 6.8 - 9.4 m).  For that dataset, relatively higher 

prediction errors may be explained by noting that the best linear regression model, 

selected based on the highest R2 value, is based off of the 25th percentile (Q-25) canopy 

height metric, resulting in underestimation of field measured average maximum canopy 

height and high RMSE error.  The next 'best' regression models based on R2 alone show 

much lower RMSE error (Hmean: R2 = 0.83, RMSE = 4.1 m; Hmed: R2 = 0.81, RMSE = 

3.5 m), results which are more similar to predictions with other CHMs.   

While the practice of predicting canopy height from the 'best' of many (often 

highly correlated) metrics derived from 3D point clouds is common-place, either from 

LIDAR or computer vision structure from motion (Næsset and Gobakken 2005; Næsset 

and Gobakken 2008; Dandois and Ellis 2010; Lisein et al. 2013), these results suggest 

limitations of this approach.  Estimates of canopy height from distribution-based metrics 

may be strongly biased by the structure of the canopy and the properties of the remote 

sensing instrument, which will influence the shape of the vertical height distribution from 

which quantile metrics are derived (Magnussen and Boudewyn 1998; Hopkinson et al. 

2006).  This effect was seen for both Ecosynth and LIDAR at the SERC site where both 

instruments under-predicted the field measured average maximum canopy height by 

roughly 4 meters and the distribution of points was highly skewed to the top of the 

canopy only, with few points observed in the understory (Figure 7i).  In general, 

Ecosynth distribution-based canopy height metrics under-predicted field estimated 

average maximum canopy height at all sites (Figure 6) as did LIDAR at the SERC site 
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(Figure 7, Appendix A1.5).  Recently, a new canopy height metric was introduced that is 

intended to be more comparable across different instruments and data collections and 

which is not as susceptible to variation in point cloud penetration into the canopy (Asner 

and Mascaro 2014).  This top of canopy height measure (TCH) corresponds to the 

average maximum height of the outer surface of the canopy observed within a fixed area. 

Since the outer canopy surface is primarily what is being observed by remote sensing 

instruments (Parker and Russ 2004), especially for 3D point clouds that do not penetrate 

deeply into the canopy (Figure 7), such a measure may be ideally suited for estimating 

canopy height from Ecosynth and future research should consider this as an alternative to 

distribution-based metrics. 

Ecosynth canopy surface heights closely resembled those mapped using LIDAR 

at SERC, where datasets were collected four days apart (SERC, Figure 5).  At this site, 

Ecosynth and LIDAR CHMs were strongly correlated (R = 0.87), differing by < 2.3 m 

RMSE (Appendix A1.5), well within the error range of plot level canopy height 

predictions from small footprint LIDAR, which are generally between 1 and 3 m RMSE, 

(Clark et al. 2004, Andersen et al. 2006; Hyyppä et al. 2008).  Errors in LIDAR 

predictions of field measured tree heights at the Knoll and Herbert Run (RMSE = 5.7 & 

5.4 m) are readily explained by the 5 year time lag between LIDAR acquisition and field 

measurements.  While comparisons of Ecosynth and LIDAR CHMs at the Knoll and 

Herbert Run sites are biased by the 5 year time lag, a number of ecologically relevant 

changes in canopy structure are observable in Figures 5a and 5b.  At the Knoll, Ecosynth 

revealed a large tree gap just north of center in the forest where a large beech had fallen 

down after the LIDAR acquisition, the planting of about 30 small ornamental trees (≈ 10 
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m height) to the south-east of the main forest area, and general increases in tree height 

over 5 years.  At Herbert Run, rapid growth of black locust, honey locust and green ash 

trees is visible in a recovering riparian forest area (below road).     

Errors in Ecosynth canopy height predictions are less well understood than those 

for LIDAR, but include some similar sources, including errors in measuring tree height 

and location in the field, DTM error, and errors introduced by limitations of the sensor 

system (Andersen et al. 2006; Hyyppä et al. 2008; Falkowski et al. 2008).   With LIDAR, 

lower flight altitudes generally produce more accurate observations of the forest canopy, 

at the cost of reduced spatial coverage (Hyyppä et al. 2008).  Ecosynth images were 

acquired at much lower altitudes than typical for LIDAR (40 m above canopy vs. > 350 

m, Appendix A1.2), but it is not known if higher altitudes, which would increase the 

spatial coverage of observations, would also reduce the accuracy of height measurements, 

or even increase it.  The point densities of Ecosynth were comparable to the dense point 

clouds produced by the NASA G-LiHT LIDAR at SERC (Table 1), but it is not known 

whether Ecosynth point densities are correlated with the accuracy of canopy height 

estimates.  LIDAR studies indicate that estimates of height, biomass, and other structural 

attributes are relatively robust to changes in point cloud density down to 0.5 points m-2 

(Næsset and Gobakken 2005; Næsset 2009; Treitz et al. 2012).   

In Ecosynth methods, overstory occlusion limits observations and point densities 

lower in the canopy.  Leaf-on DTMs were therefore of much lower quality than those 

from leaf-off conditions, lowering the accuracy of CHMs that can be produced in regions 

without a leaf-off period.  However, repeated estimates of forest canopy heights confirm 

that Ecosynth methods are robust under a range of forest, terrain, weather, flight 
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configuration, and computational conditions.  For example, at the Knoll site, two leaf-on 

image collections acquired with different canopy conditions and color due to autumn 

senescence, different lighting conditions (clear and uniformly cloudy; Appendix A1.2) 

and were processed using different versions of computer vision software (Photoscan 

v0.8.4 and v0.7.0), yet these produced canopy height estimates comparable to field 

measurements when LIDAR or Ecosynth leaf-off DTMs were used (Knoll leaf-on 1 R2 = 

0.83 & 0.82; leaf-on 2 R2 = 0.84 & 0.83; Table 5).  Nevertheless, the accuracy and 

density of Ecosynth point clouds do appear to be sensitive to a number of poorly 

characterized factors including camera resolution, flight altitude, and the SFM algorithm 

used for 3D processing, justifying further research into the influence and optimization of 

these factors to produce more accurate estimates of vegetation structure. 

4.2 Predictions of aboveground biomass and carbon 

At Knoll and Herbert Run, Ecosynth predictions of canopy height metrics and field 

estimated AGB (R2 = 0.71 & 0.73; Table 6) were comparable to those common for 

LIDAR and field measurements, which have R2 ranging from 0.38 to 0.80 (Lefksy et al. 

2002; Popescu et al. 2003; Zhao et al. 2009).  However, at SERC both Ecosynth and 

LIDAR predictions of field estimated AGB were lower than would be expected (R2 = 

0.27 & 0.34).  When assessed using cross-validated RMSE as a measure of AGB 

prediction 'accuracy' (Drake et al. 2002; Goetz and Dubayah 2011), Ecosynth AGB was 

also less accurate than field estimates based on allometry and LIDAR (Table 6).  In 

addition to errors in canopy height metrics, AGB error sources include field 

measurements along with errors in allometric modeling of AGB from field measurements 

which include uncertainties of 30 % - 40 % (Jenkins et al. 2003).   Another limit to the 
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strength of AGB predictions (R2) is the relatively low variation in canopy heights and 

biomass estimates across this study; higher R2 are generally attained for models of forests 

across a wider range of successional states (Lefsky et al. 1999).  For example at SERC, 

the relatively low variation in subplot AGB (coefficient of variation, CV, 40 %) relative 

to other sites (53 % & 65 %) may explain the low R2 and large error in LIDAR estimates 

of AGB (R2 = 0.34, RMSE = 106 Mg ha-1); at the Knoll and Herbert Run, 2005 LIDAR 

AGB predictions cannot be fairly compared with those based on 2011 field 

measurements.   Despite their generally lower quality, Ecosynth canopy height metrics 

can be successfully combined with field measurements of biomass, carbon or other 

structural traits (e.g., canopy bulk density, rugosity) to generate useful high-resolution 

maps for forest carbon inventory, fire and habitat modeling and other research 

applications (Vierling et al. 2008; Skowronski et al. 2011; Hudak et al. 2012).      

4.3 Observing canopy spectral dynamics in 3D 

Vertical profiles of forest canopy density and color generated from Ecosynth point clouds 

reveal the tremendous potential of computer vision remote sensing for natively coupled 

observations of vegetation structure and spectral properties at high spatial and temporal 

resolutions (Figure 7, Figure 8).  Canopy structure observed by LIDAR and Ecosynth 4 

days apart at SERC under early fall (Fall 1) conditions yielded similar point densities 

across canopy height profiles with a notable peak around 30m (Figure 7i), and similar 

densities were observed under senescing (Figure 7k) and summer conditions (Figure 7g).  

As expected, under leaf off-conditions Ecosynth point density showed a completely 

different pattern, with the highest density observed near the ground (Figure 7a).  

Comparison of green and senescent canopy color profiles reveals a shift in relative 
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brightness from 'more green' to 'more red' (Figure 7j & 7l), caused by increasing red leaf 

coloration in deciduous forests during autumn senescence that has also been observed in 

annual time series from stationary multispectral web cameras in deciduous forests in New 

Hampshire, USA (Richardson et al. 2009).  Under leaf-off conditions, colors were fairly 

constant across the vertical canopy profile with the relatively grey-brown coloration of 

tree trunks and the forest floor (Figure 7b). During spring green-up, the canopy profile 

showed a strong increase in canopy density in the upper layers, likely due to the 

emergence of new small leaves and buds (Figure 7c), and this is confirmed by slight 

increases in relative green brightness at the top of the canopy (Figure 7d).   

Summer and fall canopy profiles (Summer, Fall 1, Fall 2) had greater point 

densities than LIDAR at the overstory peak, but few to no points below this peak (Figures 

7g, 7i, and 7k), likely because dense canopy cover under these conditions occluded and 

shadowed understory features.  When cameras cannot observe forest features, they cannot 

be detected or mapped using computer vision algorithms, a significant limitation to 

observing forest features deeper in the canopy, especially under leaf-on conditions.  

Conversely, the spring green-up profile (Spring 2; Figure 7e) showed a greater density of 

points in the understory compared to summer and fall profiles, but also a lower peak.  

This may be due to the fact that Spring 2 photos observed deeper into the canopy from 

being over-exposed (e.g., brighter but with reduced contrast) due to changes in 

illumination during the scan flyover, resulting in more well illuminated shadows (Cox 

and Booth 2009). 

 The strength of greenness (Sgreen) in the overstory at SERC followed a similar 

pattern throughout the growing season as the MODIS NDVI time series over the same 
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area and Sgreen was highly correlated with corresponding MODIS NDVI DOY values 

(R2 = 0.88; Figure 8), suggesting that Ecosynth may be a useful proxy for NDVI.  NDVI 

measured with satellite remote sensing provides strong predictions of ecosystem 

phenology and dynamics (Pettorelli et al. 2005; Morisette et al. 2008; Zhang and 

Goldberg 2011) and high spatial resolution, near surface observations obtained with 

regular digital cameras can provide more detailed information to help link ground and 

satellite based observations (Richardson et al. 2009; Graham et al. 2010; Mizunuma et al. 

2013).   High spatial and temporal resolution 3D-RGB Ecosynth data provides an 

additional level of detail for improving understanding of ecosystem dynamics by 

incorporating information about canopy 3D structural change along with color spectral 

change.  The increase in Sgreen at the top of the canopy in the Spring 1 point cloud may 

be associated with the dominant Liriodendron tulipifera (tulip-poplar) tree crowns within 

the forest, which are expected to green-up first in the season (Appendix A1.6; Parker & 

Tibbs 2004).   

Unlike current LIDAR image fusion techniques,  Ecosynth methods natively 

produce multispectral 3D point clouds without the need for high precision GPS and IMU 

equipment, enabling data acquisition using inexpensive, lightweight, low altitude UAS, 

thereby facilitating routine observations of forest spectral dynamics at high spatial 

resolutions in 3D, a new and unprecedented observational opportunity for forest ecology 

and environmental management.  Ecosynth methods may also complement LIDAR image 

fusion collections by enabling high frequency observations of forest canopy dynamics in 

between infrequent LIDAR acquisitions, with LIDAR DTMs enhancing Ecosynth CHMs 

in regions where forests do not have a leaf-off season.   



 

92 
 

4.4 General characteristics of Ecosynth 3D point clouds 

Ecosynth point clouds are generated from photographs, so 3D points cannot be observed 

in locations that are occluded from view in multiple photos, including understory areas 

occluded by the overstory, or in areas masked in shadow, leading to incomplete 3D 

coverage in Ecosynth datasets.  In contrast, LIDAR provides relatively complete 

observations of the entire canopy profile, from top to ground, even in leaf-on conditions, 

owing to the ability of laser pulses to penetrate through the canopy (Dubayah and Drake 

2000).  Nevertheless, 3D point clouds produced using UAS-enhanced Ecosynth methods 

compare favorably with those from aerial LIDAR, though positional accuracies of 

Ecosynth point clouds were significantly lower (horizontal error = 1.2 m – 4.1 m; vertical 

error = 0.4 m – 1.2 m; Table 2) than those derived from LIDAR (0.15 m, 0.24, contractor 

reported).  While lower positional accuracies are certainly an important consideration, 

accuracies in the one to four meter range are generally considered adequate for most 

forestry applications (Clark et al. 2004), and are consistently achieved by Ecosynth 

methods under all conditions. 

Ecosynth point cloud densities (23 – 67 points m-2) were substantially higher than 

those common for commercial LIDAR products (1.5 points m-2; UMBC sites) and were 

comparable with the research-grade LIDAR datasets acquired during testing of the 

NASA G-LiHT fusion system for remote sensing of vegetation (> 78 points m-2 ; SERC 

site; Cook et al. 2012).  Point densities were higher for leaf-on point clouds (27 – 67 

points m-2) compared with leaf-off point clouds (20 – 24 points m-2; Table 1; Figure 3) 

and also in forested versus non-forested areas within sites.  Structurally homogenous and 

simple land surfaces (e.g., rooftops, open grass, pavement) produced far fewer points 
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when compared with structurally complex surfaces (e.g., forest canopy, riprap and low 

brush; Table 1).  This higher point density in tree covered areas is most likely the result 

of high textural variation in image intensity and/or brightness, which are the basis for 

feature identification in computer vision (de Matías et al. 2009), though the greater height 

complexity of forested areas is probably also a factor.  Regardless of mechanism, the 

density and accuracy of 3D point clouds produced by Ecosynth methods across forested 

landscapes are clearly sufficient for general forestry applications.  

4.5 Practical challenges in producing Ecosynth point cloud measurements 

4.5.1 Image acquisition using UAS 

UAS image acquisition systems generally performed well, but required significant 

investments in training and hardware.  Operator training and system building required six 

weeks and was accomplished using only online resources.  To maintain image acquisition 

capabilities on demand in the face of occasional aircraft damage and other issues, it was 

necessary to purchase and maintain at least two, and better three, fully functional UAS 

imaging systems, an investment of approximately USD$4000 for the first unit and 

USD$3000 for additional units (some equipment was redundant).  Automated UAS 

image acquisitions by trained operators were mostly routine (the 9 scans of this study 

were acquired in 11 acquisition missions), enabling repeated acquisitions on demand 

across 6.25 ha sites using the same flight plan with flight times < 15 min.  The only major 

limitations to acquisition flights were precipitation and wind speeds > 4.4 m s-1, which 

caused significant deflection of the aircraft and incomplete image acquisitions.  

Technological developments in hobbyist-grade UAS are very rapid and accelerating, 

improving capabilities, driving down prices and increasing availability, as exemplified by 
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the rapid growth and spread of the Ardupilot (http://copter.ardupilot.com/) open-source 

UAS autopilot platform and the DIYdrones online community (http://diydrones.com). 

4.5.2 Computation 

The commercial computer vision software used in this study required > 27 hours to 

produce a single 3D point cloud across a 250 m x 250 m site when run on a high-end 

computer graphics workstation with full utilization of all CPU and RAM resources 

(Appendix A1.2).  The widely available open source computer vision software, Bundler 

(Snavely et al. 2008), would likely take more than one month to produce similar results.  

These computational limits are being overcome by more rapid and efficient open-source 

computer vision algorithms now under development, utilizing parallel processing (e.g. 

Agarwal et al. 2009) and Graphical Processing Units in calculations (Wang and Olano 

2011), and by redesigning the computer vision processing pipeline to incorporate the 

sequential structure of image acquisitions (Wang and Olano 2011). 

4.5.3 Georeferecing 

Two different georeferencing techniques were used to produce Ecosynth point clouds: 

one based on ground markers visible from the air (GCP method) and one based on the 

aircraft GPS path (spline method).  As would be expected from the relatively low 

precision of the inexpensive lightweight GPS in the UAS, the spline method consistently 

produced point clouds with lower horizontal and vertical RMSE (4.3 m, 2.5 m; Appendix 

A1.4) than the GCP method (1.7 m, 0.6 m; Table 2).  This is likely the major source of 

the large georeferencing errors observed at the SERC site (4.1 m, 1.2 m), where ground 

markers were obscured by the tree canopy.  Use of a more precise (and expensive) 

aircraft GPS, improving the georeferencing accuracy of the spline method algorithms, 
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and the development of other techniques for georeferencing without GCP markers would 

be useful foci for future research, as field marker placement is both time consuming and 

fruitless in closed canopy forests without regular canopy gaps.  One possible solution 

may be the development of algorithms that combine aerial GPS locations directly with 

the camera intrinsic parameters solved for by computer vision algorithms (Xiang and 

Tian 2011).  It might also be useful to improve the georeferencing accuracy of the GCP 

method by more accurately surveying GCP marker locations (mapping-grade GPS was 

used in this study) - a relevant consideration at field research sites where permanent GCP 

markers can be established to facilitate repeated data collections. 

4.5.4 Terrain models 

DTM accuracy fundamentally constrains the accuracy of canopy height and related 

measures of vegetation structure (Andersen et al. 2006; Wang and Glenn 2008). Ecosynth 

DTMs showed large deviations from LIDAR DTMs (Figure 4), which are expected to 

have elevation precisions of approximately ± 2 m RMSE depending on many factors not 

specifically evaluated in the current study (Kobler et al. 2007; Gatziolis et al. 2010; 

Tinkham et al. 2011).  As would be expected, the precision of Ecosynth DTMs was 

highest under leaf-off conditions (RMSEz = 0.73 m to 2.72 m) compared with leaf-on 

acquisitions (3.37 m to 5.69 m; Table 3; Figure 4), and were also more precise in the non-

forested areas of the Knoll and Herbert Run (0.60 to 4.49 m) compared with forested 

areas.  Nevertheless, Ecosynth leaf-off DTMs accurate to within 1 – 3 m RMSE error 

when compared to LIDAR DTMs can be produced that are adequate for estimating and 

mapping forest canopy heights.  
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In Tropical Moist Forests and other regions without leaf-off periods, the limited 

leaf-on DTM accuracy of Ecosynth methods remains a significant challenge to producing 

accurate measurements of vegetation structure.  Even under leaf-off conditions, there are 

multiple challenges to producing accurate Ecosynth DTMs.  Leaf-off point densities in 

forested areas of Herbert Run (Figure 3b) were much lower than at other sites; non-forest 

densities were comparable (Table 1).  Some inherent characteristic of Herbert Run forests 

might explain this, but differences in lighting conditions offer a stronger explanation.  

Imagery used for Herbert Run DTM generation were collected under overcast conditions, 

in contrast with the Knoll (partly cloudy) and SERC (clear), where brighter understory 

illumination may have enhanced computer vision point recognition and produced deeper 

and denser understory point clouds.  Further study of the effects of lighting and other 

scene conditions may help identify more optimal strategies for Ecosynth DTM 

production. 

A second challenge in Ecosynth DTM production is terrain filtering.  Even after 

noise filtering to remove extreme outliers, Ecosynth DTMs tended to retain large sinks 

caused by low outliers in the terrain point cloud that were not removed by terrain filtering 

algorithms, which were designed for LIDAR point clouds (Sithole and Vosselman 2004).  

These sinks are clearly visible in the north-east, north-west, and southern part of the 

Knoll leaf-off DTM (Figures 4b and 4c).  DTM accuracy is generally influenced by 

terrain slope, vegetation cover and by the type of filtering algorithm employed (Sithole 

and Vosselman 2004; Tinkham et al. 2011; Tinkham et al. 2012), with the greatest 

accuracies usually achieved by manual filtering (Kobler et al. 2007; Gatziolis et al. 2010).  

Improved terrain filtering algorithms designed specifically for Ecosynth DTM production 
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would likely create stronger results than those designed for LIDAR point clouds- another 

useful area for future study. 

4.5.6 Advancing computer vision remote sensing 

By combining automated UAS image acquisition with state-of-the-art computer vision 

algorithms, consistent and repeatable high-spatial resolution 3D point clouds of 

vegetation were produced across study sites with practical levels of computer resources, 

largely addressing the major challenges raised in prior work (Dandois and Ellis 2010).  

Yet substantial room remains to improve understanding of the parameter space of 

computer vision remote sensing systems (Table 7).  With LIDAR, observational error 

models and the effects on accuracy of different sensor parameters including altitude and 

scan resolution are well understood thanks to decades of research (Glennie 2007; Næsset 

2009).  With Ecosynth, basic questions remain about the effects on accuracy of basic 

elements of the remote sensing system (e.g., the platform, camera, processing algorithms, 

etc.,) and the conditions of observation (e.g., wind, illumination, forest type and 

phenology, etc.,), and these parameters likely interact in determining the quality and 

accuracy of Ecosynth results.  It is also not clear precisely how computer vision 

algorithms 'see' canopy structure to identify features in imagery (e.g., leaves, branches, 

gaps, etc.), and how ecologically relevant spectral information might be better acquired 

by these algorithms.  Future investigations of these factors influencing Ecosynth data 

quality and accuracy across a range of different forest types should enable a more 

complete understanding of how Ecosynth methods can be optimized to measure forest 

structural and spectral traits and their dynamics.   
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5.0 Conclusions 

Ecosynth methods produce coupled spectral and structural observations at the high spatial 

and temporal resolutions required to observe vegetation phenology in 3D, portending new 

approaches to observing and understanding the dynamics of woodland ecosystems.  

Moreover, Ecosynth yields 3D forest measurements and mapping products comparable to 

LIDAR and field-based methods at low economic and logistical costs, facilitating 

multispectral 3D scanning of vegetation on demand at landscape scales (< 1 km2) by end 

users of these data, heralding a new era of participatory remote sensing by field 

ecologists, community foresters, and even the interested public. Applications of Ecosynth 

Table 7: Key factors influencing the quality of data obtained by computer vision 
remote sensing. 

Factor Effects on data quality 
Platform Altitude, speed, and flight path overlap affect the detail and depth 

of canopy that can be observed. Camera angle and potentially 
camera array structure may affect point densities, detail and depth 
of observations into canopy. 

Camera Resolution, frame rate, overlap, exposure, color settings, spectral 
channels (RGB, NIR) may all affect feature identification and 
matching, resulting in different point cloud spectral properties and 
densities.   

Algorithms  Algorithms for feature identification, feature matching, use of 
secondary densification algorithms, color assignment to features, 
and camera calibration may affect point cloud 3D model accuracy, 
density and spectral properties. 

Georeferencing UAS GPS and GCP quality affect spatial accuracy of point clouds 
and estimates of vegetation structure. 

Post-processing,  
filtering 

Different filtering algorithms (e.g., DTM filtering) affect accuracy 
in terrain and canopy height models 

Wind Route following errors can reduce image overlaps, moving leaves 
and branches limit feature matching and generate positional errors. 

Illumination Brighter light/full sun increase shadow, leading to decreased 
penetration in CHP. Diffuse lighting appears to increase 
penetration in CHP but also lowers contrast, reducing feature 
identification. 

Forest: type,  
species, phenology 

The same computer vision techniques may produce different 
results in different forest types (e.g. closed canopy needleleaf 
forests vs. open canopy deciduous woodlands), as demonstrated 
for the same canopies under different phenological conditions. 
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range from high spatial resolution 3D observations of vegetation phenology at the cutting 

edge of ecological research, to the monitoring of forest carbon stocks or habitat quality 

by local land managers and conservation groups (Goetz and Dubayah 2011).  This is only 

the beginning of the transformation of remote sensing by computer vision technologies.  

By combining inexpensive imagery with computation for 3D canopy reconstruction, 

computer vision remote sensing systems can be made ever more light-weight, 

inexpensive and easy to use.  As computing powers increase, Ecosynth and related 

methodologies might ultimately enable multispectral 3D remote sensing on demand by 

anyone with a cell-phone. 
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Chapter 3: What is a point?  Analysis of computer vision image 
features of vegetation 

Abstract 

Computer vision structure from motion (SFM) algorithms are becoming increasingly 

popular for producing LIDAR-like three-dimensional (3D), multi-spectral point clouds of 

tree and forest canopy vegetation, yet much remains unknown about what the datasets 

produced by these algorithms are measuring, limiting potential applications and 

comparisons to other forms of remote sensing of vegetation.  Here we examine the way in 

which vegetation is represented by SFM 3D-spectral fusion point clouds and evaluate the 

empirical quality of those observations.  3D-spectral point clouds of a single free-

standing tree and three Temperate Deciduous forest patches are produced with the free 

and open source Bundler SFM algorithm and SIFT feature detector, based on photos 

collected from the ground and air by an automated hobbyist unmanned aerial system 

(UAS).  3D-spectral 'fusion' quality was evaluated by comparison between point and 

image color as well as the color of painted targets placed in free-standing trees under 

leaf-on and leaf-off conditions.  Evaluation of what is 'seen' in SFM point clouds was by 

clustering of the SIFT image feature descriptors associated with points as well as manual 

interpretation of descriptors in a custom graphical user interface.  Painted targets placed 

in the test tree were correctly classified (observed with the correct color) by SFM point 

clouds at a higher rate under leaf-off conditions than under leaf-on conditions (93 % vs. 

29 %) due primarily to the fact that targets were frequently not observed by SFM under 

leaf-on conditions.  Analysis of point cloud 'image features' by clustering of SIFT 

numeric descriptors revealed that points are located at places within the scene that when 

photographed are either brighter or darker than the immediate surroundings.  SIFT 
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clusters showed high overlap in the frequency of manual classification tags and in general 

showed no strong connection to real canopy objects or the semantic content of images 

(e.g., leaves, branches, crowns, etc.).  Combined, these results indicate that the quality of 

SFM 3D-fusion products and the relationship between data points and real-world objects 

is closely linked to the feature detector used in the structure from motion pipeline which 

regulates how the scene is sampled with points.  In general, feature detectors have not 

been developed and tested with the goal of 3D scanning of vegetation in mind, suggesting 

potential new areas of research.  Future interpretation of SFM 3D-spectral point cloud 

data for vegetation should more strongly consider the role of the feature detector in 

interpreting results and also for its potential for classification of point cloud points into 

distinct categories, for example pavement, grass, trees, or even leaves, fruits, and flowers. 

1.0 Introduction 

Three-dimensional (3D), multi-spectral observations of forest canopies by automated 

computer vision structure from motion (SFM) algorithms represent a transformative 

technological advance for ecological remote sensing.  Relatively easy-to-use SFM 

algorithms and increased access to automated hobbyist unmanned aerial systems (UASs) 

has lowered the barrier to entry for remote sensing of vegetation structural and spectral 

attributes (Snavely et al. 2010; Anderson and Gaston 2013; Dandois and Ellis 2013).  

SFM algorithms produce a 'point cloud' dataset that is similar in appearance to a discrete 

return LIDAR (Light Detection and Ranging) point cloud but with RGB (red-green-blue) 

color associated with each point from the images.  This new form of SFM UAS-enabled 

remote sensing enables on-demand, high-resolution observation of vegetation for 

estimating canopy structure and biomass (Dandois and Ellis 2010; Lisein et al. 2013), the 
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topography of stream channels and bare geologic substrates (Harwin and Lucieer 2012; 

Westoby et al. 2012; Javernick et al. 2014), the structure of single trees (Morgenroth and 

Gomez 2014), and even the seasonal dynamics of forest canopies at the scale of 

individual trees based on repeat observations (Dandois and Ellis 2013).    

The inherent 'fusion' of structural 3D and optical color-spectral information in 

computer vision SFM remote sensing opens the door for advanced forms of analysis of 

forest canopies that had previously been out of reach.  Fusion remote sensing enables 

improved tree crown classification and even biodiversity mapping, among many 

applications (Asner et al. 2007; Asner and Martin 2009; Baldeck and Asner 2013, 2014).  

To date, remote sensing fusion has only been possible by combining 3D and spectral 

measurements from different sensors, which is costly do to well, may not be accessible 

as-needed or for frequent monitoring, and presents its own challenges due to the 

differences in the way in which different sensors observe the canopy (Hudak et al. 2002; 

Popescu and Wynne 2004; Mundt et al. 2006; Geerling et al. 2007; Packalén et al. 2009; 

Kampe et al. 2010; Schimel et al. 2011).  Computer vision SFM remote sensing offers the 

potential to overcome these challenges by producing an inherently fused 3D-spectral 

remote sensing dataset from the same sensor.  In addition, because of the low cost and 

ease with which UAS can be deployed from image acquisition, individual researchers can 

not only access but produce on their own 3D-spectral fusion measurements of vegetation 

canopies when and where needed, a feat not previously possible with existing forms of 

remote sensing (Dandois and Ellis 2013).   
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Even so, much remains unknown about the empirical quality of the 3D-spectral 

fusion datasets produced by computer vision SFM remote sensing and how the 

observations are actually representing canopy objects (Chapter 2: Section 4.5.6, Table 7; 

Dandois and Ellis 2013).  What are SFM point cloud points and how are they related to 

canopy objects?  Does an individual point represent a leaf, branch, part of a crown, or 

something entirely unrelated to the canopy?  What is the quality of the inherent 3D-

spectral fusion of an SFM point cloud?  Is the color of a point in the correct place?  Such 

uncertainties limit interpretability of the measurements relative to more well understood 

remote sensing and field data and also limit the widespread application of SFM remote 

sensing to ecological applications.  We aim to address these questions and in doing so 

improve understanding of how vegetation is observed or ‘scanned’ by a computer vision 

structure from motion remote sensing system.   

1.1 SFM for remote sensing 3D-spectral fusion 

SFM remote sensing produces a LIDAR-like 3D point cloud dataset where color is 

inherently assigned ('fused') to points as part of the overall processing pipeline.  The 

fusion of optical color-spectral imagery with three-dimensional structural remote sensing 

data, primarily from Light Detection and Ranging (LIDAR), represents the state-of-the-

art for characterizing ecosystem vegetation.  3D-spectral fusion products improve 

understanding of ecosystem vegetation beyond what can be achieved with either system 

alone, for example in describing the spatial heterogeneity of forest canopy biochemistry 

(Vitousek et al. 2009), fuel loading (Erdody and Moskal 2010), land cover types (Tooke 

et al. 2009; Zhou et al. 2009), and even in the discrimination of individual forest canopy 

tree species (Asner and Martin 2009; Ke et al. 2010; Baldeck and Asner 2013, 2014).    
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Despite this potential, the actual practice of fusing data from two separate sensor 

systems is challenging due to mismatches in spatial coverage and misalignment, different 

scales of observation (e.g., pixel size vs. LIDAR foot print size), and the inherent 

difficulties in attempting to collect co-synchronous data from two systems (Hudak et al. 

2002; Mundt et al. 2006; Geerling et al. 2007; Anderson et al. 2008).  Precision 

integrated LIDAR-spectral fusion systems address these challenges (Asner and Martin 

2009) and are currently being deployed as part of national scale remote sensing 

campaigns, yet these systems are too costly to deploy at high frequencies or at study sites 

on an as-needed basis (Kampe et al. 2010; Schimel et al. 2011) and so remain out of 

reach for most field scientists. By enabling inherently fused structural and spectral 

measurements of vegetation from a single sensor, SFM may overcome many of the 

existing technical challenges of remote sensing fusion that occur when structure is 

measured from one sensor and spectral traits are measured from another.  Despite this 

potential, SFM 3D-spectral fusion data quality has only been evaluated at coarse spatial 

scales (250 m x 250 m) relative to satellite remote sensing observations (Dandois and 

Ellis 2013) and not to the precision of individual points or at fine scale (e.g., ca. 0.1 m). 

1.2 Bundler 'Photo-Tourism' SFM data model 

Prior Ecosynth research used two different SFM algorithms for producing 3D point 

clouds of forests from images.  Dandois and Ellis (2010) used the free and open source 

Bundler algorithm (Snavely et al. 2006), but later the commercial, closed source software 

Agisoft Photoscan (http://www.agisoft.ru) was used because it enabled faster 

reconstruction of large image datasets compared to Bundler (Chapter 2, Dandois and Ellis 

2013).  The current research uses Bundler because it enables access to information about 
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the SFM reconstruction process that cannot be accessed in Photoscan due to the 

commercial and proprietary nature of the later. Bundler was not developed with the 

specific intent of being applied to vegetation and the image datasets used in its 

development did not specifically contain vegetation as the focus of the reconstruction, 

(e.g., the Trevi Fountain and Coliseum in Rome, the Great Wall of China, and the Statue 

of Liberty).  Bundler uses the Scale Invariant Feature Transform (SIFT; Lowe 2004) 

feature detector to identify potential features to match across images.  Figure 1 diagrams 

the Bundler data model showing the link between point cloud 3D-RGB points, feature 

views on each point, and the SIFT feature descriptor associated with each view.  While 

the terms are often used interchangeably, in this work the term 'detector' is used to refer 

to the feature detection algorithm and 'descriptor' is used to refer to that which is 

produced by the algorithm. 

 

Figure 1: Diagram of Bundler data model: (a) a 3D-RGB point cloud, (b) a point 
'view list', (c) a set of point 'views', (d) 'image feature tiles' associated with each view, 
(e) a single 'image feature tile' with a circle indicating the scale of the original feature, 
and (f) the 128-D SIFT image feature descriptor as a histogram and numerical vector. 
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In the Bundler data model, each point cloud point (Figure 1a) is represented by a vector 

of numbers that describe the point's XYZ location, RGB color, and the list of views on 

that point from multiple images (Figure 1b).  In the example in Figure 1, the selected 

point was determined by the feature detector and feature matching to have been viewed in 

9 images (Figure 1b & 1c), at a location in 3D space and the corresponding 2D locations 

in the image spaces by bundle adjustment.  Each SIFT feature descriptor can be 

represented in two forms: as an 'image feature tile' (Figure 1e) and as a 128-dimensional 

(128D) numeric feature descriptor vector (Figure 1f).  When viewed in reverse, Figure 1 

also diagrams the SFM pipeline from the perspective of a single image feature from 

feature identification (1e & 1f) and matching (1d & 1c), to the representation of the 

feature as a point in the 3D point cloud produced by the bundle adjustment stage with 

color associated with each point (1b & 1a). 

1.3 SIFT Scale Invariant Feature Transform feature detector 

The image feature tile (Figure 1e) contains information about the XY location of the 

feature in the image, its scale in terms of pixel size, and a measure of its relative 

orientation based on the dominant gradient of intensities within each tile.  The SIFT 

feature detector determines the location of feature points within gray-scale versions of the 

original images as locations of local minima or maxima of the Difference of Gaussian 

representation of the image within a scale-space pyramid (Lowe 2004).  In other words, 

SIFT first produces a scale-space representation of the original image by iteratively 

blurring the image using a Gaussian filter and then resampling to a reduced resolution to 

simulate the effect of viewing the same scene from a greater distance (Lindeberg 1994; 

Hay et al. 2002).  At each resampled resolution (scale octave) each Gaussian blurred 
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image is subtracted from its neighboring blurred image to produce a stack of Difference 

of Gaussian (DOG) images which represent distinct edges (Figure 1 in Lowe 2004).  A 

feature point is located at any pixel in a DOG image that is a maximum or minimum 

relative to the pixels immediately around it and the pixels above or below in the adjacent 

DOG images (Figure 2 in Lowe 2004).  The location and scale of the point identified in 

this step is represented by the red circle in Figure 1e.  The image feature tile is much 

larger than the size of the point (roughly 6x larger) as SIFT computes the numeric feature 

descriptor describing image gradients across a square area around each point (Lowe 

2004).  The numeric feature descriptor, often displayed as a histogram (Figure 1f), 

represents the sum of the magnitude of gradients in 8 primary directions within a 4x4 grid 

of subregions overlaid on the image feature tile (Figure 7 in Lowe 2004). 

SIFT has been used for many applications, including in remote sensing for 

automated image registration and multiple image fusion (de Matías et al. 2009; Huang et 

al. 2009; Lingua et al. 2009; Zhang et al. 2009; Schwind et al. 2010; Oh et al. 2011).  

Although it was not designed specifically for SFM reconstruction of vegetation, its initial 

testing included images of '…outdoor scenes, human faces, aerial photographs, and 

industrial images…' (p. 8, Lowe 2004).   Recently, Yang and Newsam (2013) used SIFT 

to classify different land cover types in high-resolution aerial imagery.  By applying 

multiple levels of k-means clustering to SIFT numeric descriptors, they found that groups 

of SIFT features within a given spatial area can be used to accurately discriminate among 

different landcover types (e.g., urban areas, suburbs, water, coastline, etc.).  Similarly, 

SIFT feature descriptors linked to Bundler point cloud points were used to find the 

location of a particular object (the face of a clock tower) within a 3D point cloud of a city 
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plaza based on matching of the SIFT feature of the clock face in a reference image to the 

SIFT features of each point in the point cloud (Li et al. 2011).  These studies highlight the 

important role that the feature detector plays in the SFM process with regard to what is 

being represented by the point cloud.  In order to understand what SFM point cloud 

points represent, it is necessary to examine the features that were identified and matched 

at the point locations in images.   

1.4 Research objectives 

This research aims to improve understanding of the way in which forest canopies are 

represented by SFM 3D-spectral point clouds and to evaluate the empirical quality of 

those observations by focusing on two primary research questions: (1) What are SFM 

point cloud points? and (2) What is the quality of SFM 3D-spectral data fusion?.  The 

quality of 3D-spectral fusion was evaluated by measuring the classification accuracy of 

painted targets placed in the tree under leaf-on and leaf-off conditions by SFM and also 

by a terrestrial laser scanner (TLS) with an attached calibrated camera for image fusion.  

To evaluate what SFM point cloud datasets are observing, i.e., what are points / what is 

'seen', a custom graphical user interface was developed that prompts users to supply 

semantic tags (e.g., tree, grass, car) to the SIFT 'image features' identified at each point 

cloud point, which were then compared to clusters of SIFT features based on their 

numeric feature descriptors.  It was hypothesized that if point cloud points represented 

real canopy objects like leaves, branches, and crowns, then clusters of SIFT image 

features would contain a relatively higher proportion of the semantic tags associated with 

those objects. 
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2.0 Materials and methods 

2.1 Data collection 

2.1.1 Ground-based scanning of a single tree 'test subject' 

To evaluate the quality of SFM fusion 3D-color point clouds, a single free-standing tree 

was used as a 'test subject' to facilitate repeated imaging and to allow for placement of 

painted targets to guide analysis.  A red maple (Acer rubrum; height: 5.2 m; DBH: 0.13 

m) was scanned under leaf-on (2012-08-20) and leaf-off (2013-03-05) conditions using 

an Olympus E-PL2 DSLR digital camera on a 2.0 m pole and a RIEGL VZ-400 terrestrial 

LIDAR scanner (TLS) equipped with an Nikon D700 DLSR digital camera for built in 

LIDAR-color fusion.   TLS LIDAR height was 1.6 m and the accessory camera mount 

was 0.4 m above this, or 2.0 m above ground.  Prior to scanning, foam balls (diameters: 

0.05 m, 0.07 m, 0.15 m) were painted matte red and hung throughout the tree (leaf-on: n 

= 11; leaf-off: n = 14).  In each season, SFM digital images and TLS scans were collected 

at the same time at roughly mid-day (10:00 - 14:00) to minimize the effect of shadows, 

but changes in lighting based on relative location of camera and sun were unavoidable.  

Ten replicates of SFM digital images were taken at 2.5° / 0.3 m intervals around the 

entire tree at a 7 m radius.  Four TLS laser scans plus digital images were collected from 

orthogonal positions at 7 m distance from the tree (i.e., north, east, south, and west).  

Single tree scan configuration is diagrammed in Appendix A2.1. 

2.1.2 Canopy aerial imagery from hobbyist UAS 

Aerial image data from prior research (Chapter 1; Dandois and Ellis 2013) collected 

using a point and shoot digital camera and a hobbyist multirotor unmanned aerial system 
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(UAS), plus one additional flight, was used to evaluate the relationship between SFM 

image features, vegetation objects, and other types of landcover.  Aerial image datasets 

represent three Temperate Deciduous forest areas, captured under varying conditions of 

flight altitude, levels of cloud cover (clear and overcast), wind, and canopy phenological 

state (leaf-on, senescing, leaf-off), described in Appendix A2.2.  For each flight a subset 

of approximately 1/3 of the original image set, or roughly 600 photos, covering a 250 m x 

100 m area was used for the current study. 

2.2 Data processing 

2.2.1 TLS data processing 

Leaf-on and leaf-off TLS scans were processed separately within the RISCAN-Pro 

software package (v1.7.3 release 6034) following manufacturer instructions.  Reflective 

targets placed on tripods around the tree were used to automatically co-register individual 

TLS scans into a single 360° point cloud model.  The same reflective targets were also 

used to manually refine the calibration between TLS scans and digital images collected 

from the on-board DSLR.  RGB color from the digital images was then automatically 

'fused' to the 3D point cloud based on the pixel color at the projection of each point into 

the corresponding image.   TLS point clouds were then manually trimmed to only include 

points of the tree itself and exported into ASCII text files containing the XYZ location 

and RGB color of points.  A set of 10 random samples of 90,000 points each was 

generated for each TLS point cloud as a form of replication to match the number and 

approximate average point count of SFM point cloud replicates.  A detailed description of 

TLS data-processing is provided in Appendix A2.3. 
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2.2.2 SFM 3D-RGB point clouds from digital images 

Three-dimensional (3D) multi-spectral (red-green-blue; RGB) point clouds were 

generated from ground and aerial image datasets using the open source Bundler SFM 

algorithm (v0.4, Snavely et al. 2010, available online: 

https://www.cs.cornell.edu/~snavely/bundler/, accessed: 2012-08-23).  As distributed, 

Bundler uses of the Scale Invariant Feature Transform feature detector algorithm to 

identify keypoints for matching across images (SIFT; Lowe 2004; available online: 

http://www.cs.ubc.ca/~lowe/keypoints/, accessed: 2012-08-23).  Computation required 

on average 12 - 24 hours for ground image datasets and 27 - 552 hours for aerial image 

datasets on a dual Intel Xeon X5670 workstation (12 compute cores) with 48GB of RAM 

running 64-bit Ubuntu 12.04.  Aerial point cloud datasets were georeferenced to the 

WGS84 UTM Zone 18N projected coordinate system based on UAS GPS telemetry and 

filtered using the Python-based free and open source Ecosynth online tools 

(http://code.ecosynth.org/EcosynthAerial, accessed: 2014-05-01) following Dandois and 

Ellis (2013).  Single tree point cloud datasets were manually trimmed to include only the 

points of the tree.  To compare the 3D structure derived from TLS and SFM point clouds, 

it was necessary to spatially align the point clouds into the same coordinate system 

(Henning and Radtke 2006; Hosoi et al. 2010).  All SFM and TLS point clouds were 

spatially co-registered by the iterative closest point (ICP) alignment method (Besl and 

McKay 1992) within the open-source software Meshlab (http://meshlab.sourceforge.net/, 

v1.3.2 64-bit, accessed: 2014-05-01).  A detailed description of the Meshlab ICP co-

registration workflow is provided in Appendix A2.4.   



 

120 
 

2.2.3 Extracting points at painted targets 

Threshold filtering based on the amplitude of returned laser energy was used to identify 

TLS points at painted targets (Dassot et al. 2011; Seielstad et al. 2011).  Reflected laser 

energy at targets was relatively higher than that of the surrounding foliage, but similar to 

large branches, so threshold-filtered point clouds were manually trimmed to remove any 

non-target points.  For each target, a 'target area' was defined based on the TLS points 

associated with that target as a cube centered on the average of XYZ coordinates with a 

side length equal to the average range in each XYZ dimension.  Points in each TLS and 

SFM replicate falling inside the target areas were set aside for additional analysis. 

2.2.4 Extracting image features for SFM aerial point clouds 

To evaluate whether SFM points can be linked to discrete vegetation objects (e.g., leaves, 

branches, crowns, etc.), a collection of point 'image features' was extracted for a simple 

random sample of 250 points from each SFM aerial point cloud for a total of 2000 points.  

For each sampled point, the 128D SIFT feature descriptor and a thumbnail image feature 

tile were created based on the first view of the point from the Bundler view list (Figure 

1b).  The thumbnail image feature tile was centered on the XY location of the point 

within the original image and of an approximate size to match the region over which the 

SIFT descriptor was evaluated (Li et al. 2011).   Summary RGB color statistics were 

computed for the entire image feature tile as well as the smaller region in the center of the 

tile where the SIFT feature was located in scale space (Figure 1e). 
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2.3 Data analysis 

2.3.1. Evaluation of 3D-RGB fusion quality 

The accuracy of SFM fusion was evaluated by calculating the dominant hue color value 

of points observed in the target area (2.2.3) relative to the red color of the painted targets, 

as defined by the range of hue color values (330° – 20°) manually extracted from images 

of the targets (Manjunath et al. 2001; Lee et al. 2003; Aptoula and Lefèvre 2009).  A 

target was classified as 'observed' if the point cloud replicate contained more than 1 point 

within the target 3D search area.  A 'correct' 3D-color fusion observation was one in 

which on average > 50 % of the points observed at a target location had a hue color value 

within the red range.    It was not logistically possible to place painted targets in the forest 

canopy to evaluate SFM fusion quality in aerial images in the same way as was done for 

the tree test subject.  Instead, several empirical measures of color quality were evaluated 

directly from samples of aerial SFM points by comparing point color to the mean color of 

corresponding image pixels for the first image feature tile associated with each point (i.e., 

the smaller point 'blob' and not the larger support region, Figure 1e).  Measures of point 

to image feature tile color quality included the difference in the hue color value as well as 

the correlation and ratio between RGB channel values, measures of spectral quality 

applied in evaluation of remote sensing imagery (Teillet et al. 2001; Biggar 2003).  The 

same measures were also calculated for ground-based SFM point clouds of the tree test 

subject. 

2.3.2 Evaluation of SFM image features 

To examine what SIFT features are observing, an interactive graphical user interface 

(GUI) was developed that allows the user to see each image feature tile, its relative 
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location within an original image, and tag the feature with semantic tags (Appendix 

A2.5).  A set of common tags spanning five descriptive categories (color, shape, surface, 

vegetation objects, and other objects; Appendix A2.6) was produced after two rounds of 

'training' in which multiple user groups were asked to supply semantic tags of image 

feature tiles based on their own interpretation.  The sample of image features from SFM 

aerial point clouds (2.2.4) was then presented to a group of users, who then supplied tags 

for each feature.  K-means clustering was then carried out on the image feature 128D 

SIFT keys only at multiple levels of k.  Clustering stability analysis was used to 

determine the most stable number of clusters (Manjunath et al. 2001; Lange et al. 2004; 

Jain 2010). The frequency of manually identified tags for each cluster was then plotted to 

estimate the association of clusters to distinct semantic classes. 

3.0 Results 

3.1 Evaluation of SFM point cloud fusion quality  

SFM and TLS fusion accuracy is reported in Table 1 in the form of classification error 

matrices for leaf-on and leaf-off ground-based point clouds of the tree test subject 

(Congalton 1991).  Average TLS and SFM fusion classifications are reported in the same 

error matrix for either leaf-on or leaf-off datasets to facilitate comparisons between the 

two methods, but the TLS data is not considered as ground-truth reference.  Instead, the 

reference classification is simply that all targets (n = 11 leaf-on; n = 14 leaf-off) should 

be classified as red.   
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Classification accuracies differed by fusion method and by season based on 

observation rates of target points and the colors assigned to those points.  SFM 

classification accuracy was highest under leaf-off conditions (93 %; Table 1b) where all 

targets were observed across all replicates, the average number of points per target was 

relatively high (29 points per target, range 3 - 105), and on average 60 % of points had a 

red hue (Figure 2b).  SFM classification accuracy was much lower under leaf-on 

conditions (27 %; Table 1a) where on average 59 % of targets were observed, the average 

number of points per target was relatively low (3 points per target, range 0 - 27), and only 

40% of points were classified with a red hue (Figure 2a).  TLS classification accuracies 

were higher than SFM in leaf-on conditions and lower in leaf-off conditions (45 % and 

29 %, respectively; Table 1).  TLS observed all targets under leaf-on and leaf-off 

conditions and with relatively higher density than SFM under the same conditions (leaf-

on: 11 points per target, range 0 - 45; leaf-off: 41 points per target, range 12 - 77), but 

points were less likely to have a red hue (39 % and 37 %, respectively; Figure 2c and 2d). 

A single target in a single TLS leaf-on sub-sampled replicate was not observed by any 

Table 1: Target classification accuracy as error matrices between leaf-on and leaf-off 
TLS and SFM point clouds as the average observation rates per target across 
repetitions.  A target was classified as red if more than 50 % of the points found 
within the target 3D search area had a red hue (330° – 20°).  Breakdown of 
classification of points per target and per replicate are provided in Appendix A2.7. 
(a)  TLS Leaf-on  

SFM 
Leaf-
on 

 Red Not 
red 

Sum 

Red 1 2 3 
Not 
red 4 4 8 

 Sum 5 6 11 
SFM Accuracy  = 3/11 = 27 % 
TLS Accuracy = 5/11 = 45 % 

Overall Agreement = 5/11 = 45 % 
Kappa = -0.14 

 

(b)  TLS Leaf-off 

SFM 
Leaf-
off 

 Red Not 
red 

Sum 

Red 4 9 13 
Not 
red 0 1 1 

 Sum 4 10 14 
SFM Accuracy  = 13/14 = 93 % 

TLS Accuracy = 4/14 = 29 % 
Overall Agreement = 5/14 = 36 % 

Kappa =  0.06  
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points.   Under leaf-on conditions TLS points were no more likely than SFM points to be 

red at the right location (TLS: 39 % vs. SFM: 40 %, Figure 2a and 2c).  Under leaf-off 

conditions TLS and SFM observed the same number of targets, but SFM points were 

almost twice as likely to be red (TLS: 37 % vs. SFM: 60 %).  The result is that SFM had 

higher classification accuracy than TLS under leaf-off conditions and lower accuracy 

under leaf-on conditions.  There was low agreement between TLS and SFM classification 

of painted targets (45 % and 36 %) and the very small kappa values indicate that any 

agreement is likely by chance alone, suggesting that the two systems 'see' the tree and 

targets differently. 

 

Differences in fusion classification accuracy due to the color assigned to points 

can been be seen as peaks in the hue histogram (Figure 2) which provide an indication of 

dominant colors within a sample (Aptoula and Lefèvre 2009). Under leaf-on and leaf-off 

(a)

 

(b)

 
(c)

 

(d)

 
Figure 2:  Mean histograms of point hue for points that fell 'inside' the target zone 
(white bars) and points that fell 'outside' the target zone (gray bars) for SFM (top row) 
and TLS (bottom row) point clouds under leaf-on and leaf-off conditions. Error bars 
are standard error (n=10).  Black vertical lines are red hue cutoff region (330° – 20°). 
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conditions, the color of TLS points inside and outside the target areas were similar, with a 

large number of points inside the target areas showing non-target, non-red colors, 

contributing to low overall accuracy (45 % and 29 %, respectively).  Similarly SFM leaf-

on point clouds also had a large number of non-red points inside the target areas, similar 

to the color of points outside target areas, resulting in relatively low accuracy (27 %).  

The highest accuracy in target classification was obtained by SFM under leaf-off 

conditions (93 %) where there were few non-red points inside target areas.    

Examples of low observation rates of targets in the SFM leaf-on point clouds are 

diagrammed in Figure 3, which shows the location of all SIFT feature points assigned to 

a single image view on the tree and three targets that were not assigned 3D point cloud 

points for this view (Figure 3a).  Green triangles indicate the location of all SIFT features 

located within the image and pink circles highlight only those points that were included 

in the 3D point cloud from this 'view', representing approximately 7 % of all points 

identified in the image.  The insets show 3 examples of painted red targets where no point 

cloud points were identified for this image and highlight the complex role of the feature 

detector in 3D-spectral fusion.  Insets show a zoomed-in region around the targets in (3a) 

in RGB overlaid with SIFT feature points and in gray-scale without feature points.  Gray-

scale version is provided for visual reference since SIFT identifies features in scale-space 

based on a gray-scale version of the image.  Inset (b) shows where SIFT identified a point 

at a fully visible target, but the point was not used in the point cloud for this view.  Inset 

(c) shows a target that was completely visible, but where points were only identified 

around the edge of the target.  Inset (d) shows a target that was partially visible but where 

no points were generated.  Inset (d) also highlights a target where no points were 
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observed in the target area under any SFM leaf-on replicate.  Targets that were not 

observed in SFM leaf-on point clouds were > 1 m from the outer hull of the tree and there 

was a weak negative relationship between the average rate at which a target was observed 

and distance to the outer hull of the tree (R2 = 0.34 p-value < 0.1). 

 

Mean absolute difference between point hue and average hue image feature tile 

hue (Figure 1e) ranged from 1.8 % - 8.4 % with an average of 5.1 % across all aerial and 

ground SFM point clouds (Table 2).  RGB channel values were highly correlated between 

points and image feature tiles (average R2 = 0.83), with the exception of the leaf-off 

ground target set, where correlations were much lower (R2 = 0.42 - 0.43).  Average RGB 

channel ratio between point and image feature tile color, a measure for spectral 

 
Figure 3: Example of the role of the SIFT detector in the placement of point cloud 
points. (a) original image overlaid with all SIFT points (green triangles) and point 
cloud points (pink circles), (b) – (d) insets show targets that were not assigned a point 
cloud point for this view with the associated gray-scale version of each inset at right. 
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calibration of remote sensing (Teillet et al. 2001; Biggar et al. 2003), showed close 

agreement (average 1.06) but also large range +/- 25 % (ratio 0.77 - 1.28).  

 

Evaluation of the 3D structure quality of SFM compared to TLS is diagrammed in 

Figures 4 and 5.  Figure 4 shows a comparison of 3D voxel (volumetric pixels, 0.001 m3 

resolution) models of the tree for a single SFM and TLS replicate under leaf-on (a) and 

leaf-off conditions (b).  Panels show a single 0.1 m 'vertical' slice at the middle of the tree 

along the same axes where voxels contained at least one point, similar to a medical 

'tomographic' image, and characterize where tree structure (e.g., foliage, branches) was 

observed by the scanning system (Holden et al. 2000; Parker et al. 2004).   

Table 2: SFM point color precision as measured by the difference between point color 
and average color of pixels at the corresponding point location within original images 
for random samples of points from aerial image sets and points located within target 
areas for ground sets. 

Sample Dataset 
Point vs. image feature  

hue Absolute Difference 
Mean (SD) (as percent) 

Point vs. image 
feature 

RGB Channel 
Correlation (R2) 

Point vs. image 
feature 

RGB Channel 
Average ratio 

R G B R G B 
Ground Leaf-on 
targets a 5.1 % (8 %) 0.80 0.82 0.84 1.02 1.03 1.02 

Ground Leaf-off 
targets a 8.4 % (10 %) 0.43 0.42 0.43 1.12 1.27 1.24 

HR_2010_10_06 b 4.3 % (6 %) 0.96 0.95 0.96 1.01 1.01 1.02 
HR_2011_03_05 b 7.5 % (11 %) 0.85 0.87 0.87 1.00 1.01 1.01 
HR_2012_08_24 b 1.8 % (2 %) 0.86 0.84 0.83 1.05 1.03 1.18 
KN_2010_10_08 b 4.3 % (7 %) 0.90 0.88 0.89 1.10 1.08 1.14 
KN_2010_10_24 b 4.3 % (6 %) 0.96 0.95 0.96 1.01 1.01 1.02 
KN_2011_03_11 b 7 % (11 %) 0.93 0.93 0.93 1.01 1.01 1.01 
SE_2011_10_08 b 3.4 % (6 %) 0.74 0.74 0.57 1.10 1.08 1.28 
SE_2012_02_26 b 5.2 % (9 %) 0.93 0.93 0.91 1.01 1.01 1.02 
Mean 5.1 % 0.84 0.83 0.82 1.04 1.05 1.09 
SD 2 % 0.16 0.16 0.18 0.05 0.08 0.11 

a Reported values are for the aggregate of all target points from all replicates 
b Reported values are for all points within the simple random of sample of 250 points extracted from each point cloud. 
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Right panels shows the vertical profile of the normalized cross-correlation (NCC; 

Holden et al. 2000) as a measure of similarity between SFM and TLS for each 0.1 m 

'horizontal' slice along the height of the tree.  Under leaf-on conditions, SFM observed 

little of the interior the tree compared to TLS (Figure 4a, NCC < 0.5), with low voxel 

overlap (24 %) predominantly along the trunk and exterior of the tree.  A much different 

pattern was observed for leaf-off models (Figure 4b) where SFM generated a more 

comparable 3D profile of the tree compared to TLS and with greater overlap (NCC > 0.5, 

65 %).  Combining leaf-on and leaf-off models improved NCC and overlap relative to 

leaf-on models alone (Appendix A2.8, NCC > 0.5, overlap 54 %). 

(a) Leaf-on 

 
SFM TLS Overlap NCC 

(b) Leaf-off 

 
SFM TLS Overlap NCC 

Figure 4: Tomographic slices of a 0.1 m section of leaf-on (a) and leaf-off (b) SFM 
and TLS point clouds.  Pixels represent a 0.1 m cube within which at least 1 point was 
located.   All slices are co-registered to the same coordinate system and viewpoint. 
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Despite differences in the way that the interior of the tree is observed by SFM and 

TLS, both methods produced similar vertical foliage profiles (VFPs) under leaf-on and 

leaf-off conditions and when leaf-on and leaf-off datasets were combined (Figure 5).  

VFPs were not significantly different based on Kolmogorov-Smirnov (K-S) tests of 

distributions (Parker and Tibbs 2004) on pairs of SFM and TLS replicates (average p-

values < 0.0001), but showed distinct differences at upper and lower parts of the test tree 

across comparisons. 

(a) 

 

(b) 

 

(c) 

 
Figure 5: Mean vertical foliage profiles (VFPs) for SFM and TLS-subsampled point 
clouds under leaf-on and leaf-off conditions, and with leaf-on and leaf-off point clouds 
combined.  Differences between SFM and TLS VFPs were not statistically significant 
based on Kolmogorov-Smirnov (K-S) test of distributions (p < 0.0001).  
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Although TLS and SFM VFPs were not significantly different based on K-S tests 

of distributions, the profiles show a consistent pattern of over and under estimation of 

vertical density.    This does not immediately appear related to large differences in 3D 

structure of each point cloud, NCC between leaf-off TLS and SFM replicates was 

relatively high, indicating close agreement in overall 3D structure.    The differences may 

be related to the way in which the feature detector governs the way that 3D space is 

'sampled' in a SFM system.  SIFT appeared to favor the outer edges of the tree, placing 

more points per image and more points that were matched to the point cloud at the upper 

edges of the crown compared to images of the core of the crown and lower half (Figures 

2 and 6).   

 

 
Figure 6: Example images used in single tree SFM reconstruction under leaf on (top) 
and leaf off (bottom) conditions and image view maps showing the density of where 
point cloud points were viewed from the perspective of the images.  This corresponds 
to the density of points across all images for a single SFM replicate as diagrammed by 
pink circles in Figure 3. 
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3.2 Evaluation of point cloud image features 

K-means clustering of the 128D SIFT key descriptors from SFM point cloud features 

consistently showed that image feature tiles cluster into two main groupings: points that 

are relatively brighter than the surroundings and points that are relatively darker than the 

immediate surroundings (Figure 7).   Right panels in Figure 7 highlight this distinctive 

pattern by showing the average gray-scale intensity of all image feature tiles associated 

with a cluster, after tiles were resized to the same dimensions.  The point is located at the 

center of each image tile and the 128D feature descriptor is determined based on image 

content around that point (Figure 1).   

 

 
Figure 7:  Clustering results (k =2) on SIFT 128D descriptor for 2000 points from 
aerial SFM point clouds.  Left panels show 12 image feature tiles closest to cluster 
centroid.  Center panels show the frequency distribution of the scale (meters) of 
cluster features.  Right panels show the 'mean gray-scale intensity' of all cluster image 
feature tiles resized to the same size (200 pixels square). 
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There was no significant difference between the metric scale of image feature tiles 

associated with each cluster based on Kruskal-Wallis (K-W) non-parametric test of 

samples (Figure 7, center panels).  Visual inspection of exemplar image feature tiles per 

cluster, features closest to the cluster centroid, revealed no distinct patterns in image 

content (Figure 7, left panels).  These patterns were observed when clustering was 

performed on the entire set of 2000 features pooled from all datasets, for each individual 

set of 250 features sampled from each aerial dataset, and also for samples of 250 features 

from ground-based leaf-on and leaf-off point clouds of the single test tree (Appendix A 

2.10).   Comparison of the gray-scale intensity of point color to the mean gray-scale 

intensity of the entire image feature tile around a point revealed the same pattern, with the 

sign of the difference between point and tile intensity being directly related to cluster 

association for > 99 % of points (Figure 8).   

 

 
Figure 8: Scatter plot of the gray-scale intensity of points versus the mean gray-scale 
intensity of the image feature tile around each point, symbolized by the same SIFT 
clusters as in Figure 7.  Points located below the one-to-one line have a point that is 
brighter than its surroundings, points above the line are darker than the surroundings, 
as shown in the example images. 
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For all clustering results, the number of clusters k was determined by cluster 

stability analysis (Manjunath et al. 2001; Lange et al. 2004; Jain 2010), which 

consistently identified only the two main stable clusters per sample dataset when all 

sample points were supplied for clustering (Figure 7, Appendix A2.10).   Cluster 

association of SIFT descriptors followed the pattern of representing either bright or dark 

spots as k was increased (e.g., k=10), but it was also observed that K-W tests showed that 

the distributions of feature scale within clusters was significantly different, potentially 

due to the presence of few very large features > 10 m in size (Appendix A2.11). 

Results of manual identification ('tagging') of image feature tiles are shown in 

Figure 9.  Clustering was performed separately on bright and dark points (Figure 8) for 

leaf-on and leaf-off sets.  In general, the frequency of tags per cluster did not reveal a 

strong association between clusters of SIFT image feature tiles and semantic categories of 

objects (e.g., leaves in one cluster, branches in another, etc.)  Instead, many of the same 

tags appeared frequently within the top 50 % and 85 % of all tags associated with a single 

cluster. Tags describing feature color (e.g., green, white, brown, etc.) appeared frequently 

across all clusters, which is to be expected since the SIFT algorithm identifies features 

within a gray-scale version of the image only and SIFT feature descriptors would not 

contain color information (Figure 3).  There were several unique tags within the top 50 % 

of each cluster, revealing two broad cluster groupings across leaf-on and leaf-off point 

clouds: points of leafy green foliage from trees with the unique tag 'single tree/crown' and 

points of gray pavement and linear features with the unique tags of 

'pavement/road/asphalt' and 'line'.  Even so, these tags occurred with relatively low 

frequency overall (< 10 %), which suggests that they are not highly representative of the 
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semantic identity of all features within that cluster.  Clusters of bright and dark points 

from leaf-off aerial point clouds also showed a significant difference in the scale of 

features within clusters, which appeared to be associated with the presence of very large 

features > 10 m in size within a single cluster per group (Appendix A2.12).  In general, 

the results of comparing the manual classification of image feature semantic content with 

clustering of SIFT 128D feature descriptors did not support the hypothesis that feature 

clusters are associated with distinct groups of canopy objects.  

 

Leaf-on 
Bright points Dark points 

(a) 

 

(b) 

 

1 1 

2 2 

3  

Figure 9: Sorted frequency distributions of manually identified 'tags' per image feature 
cluster for leaf-on aerial point cloud sample datasets.  Clustering was performed 
separately on bright and dark points (Figure 8).  Cluster frequency plots are truncated 
to the top 85 % to aid readability.  Dotted horizontal lines indicate the 50th percentile. 
Starred tags ('*') are unique non-color tags in the top 50 % within the clustered dataset. 
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4.0 Discussion  

The objectives of this research were to evaluate the empirical quality of SFM 3D-spectral 

observations and to improve understanding of the way in which forest canopies are 

represented by SFM point cloud points and was motivated by two overarching questions: 

What is a point cloud point? and What is the quality of the inherent 3D-spectral fusion of 

a point cloud point?  Two related research questions were posed to guide this research: 

Does an individual point cloud point represent a distinct canopy object like leaf, branch 

or part of a crown? and Is the color of a point in the correct location in 3D space? 

Leaf-off 
Bright points Dark points 

(c) 

 

(d) 

 

1 1 

2 2 

3 3 

Figure 9: Continued for features from leaf-off point clouds. 
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4.1 What is a point?  Whatever the feature detector wants it to be 

The results indicate that what the points represent in the observed scene and how well 

they do so in terms of the fusion of structural and spectral information is largely 

dependent up on the feature detector that is used for matching points across images.  

Findings of this research are summarized in Table 3 as a collection of the three primary 

traits of a SFM point cloud point.   

 

Table 3: What is a point?  Three primary traits of a SIFT-based SFM point cloud point 
 
 Image Sample Numeric Feature 

Descriptor 
3D coordinate and RGB 
color 

D
es

cr
ip

tio
n 

A portion or sample of the 
original image, with a 
specific XY coordinate, 
scale and rotation with 
respect to the image, as 
determined by the feature 
detector.  

A vector of numeric 
values generated on a 
support region of the 
image around the point 
which is used for 
matching, as defined by 
the feature detector. 

Point with XYZ coordinates and 
RGB color corresponding to 
where the point was located in the 
image and obtained by an 
interpolation around point 
location 

Q
ua

lit
y 

SIFT only locates points at 
parts of the image that are 
brighter or darker than the 
surroundings. 

Individually, describe 
that a bright or dark 
spot was located, but do 
not contain sufficient 
information to be linked 
to semantic category.   

Point RGB color is closely 
matched to image color in the 
same location (5 – 6 % 
difference).  Point RGB color is 
also descriptive of object color, if 
the object can be 'seen' by the 
detector (93 % target 
classification accuracy when all 
targets were seen). 

Im
pl

ic
at

io
ns

 

3D sampling of a scene is 
determined by what the 
detector will 'see' which 
controls where points are 
located. 

Classification of points 
and point clouds by 
'feature' category based 
on descriptors may 
require that features are 
grouped first into 
collections or 'bags'. 

SFM color and structure fusion 
does not have occlusion effects 
that occur when two different 
sensors are used (e.g., a LIDAR 
and a camera), but instead will 
have greater errors of omission 
where 3D space is not sampled 
because it was not seen in the 
images or was not sampled due to 
the feature detector.  

Fu
tu

re
 

R
es

ea
rc

h 

Examine the use of other 
detectors, perhaps ones 
designed for sampling 
vegetation.  Examine how 
sampling of vegetation or 
parts of vegetation varies 
with different detectors. 

Image features 
combined with object 
delineations from point 
clouds could be used for 
species or canopy 
object mapping (e.g., 
fruits, flowers, etc.). 

Examine relationship between 
SFM color fusion and types of 
features or other fine-scale 
measurements of vegetation color 
(e.g., high resolution aerial 
imagery, field spectrometer). 
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In the current research the SIFT (Scale invariant feature transform; Lowe 2004) 

was used by the Bundler SFM algorithm for feature detection and matching.  In many 

ways, the results of this research are strongly dependent upon the fact that SIFT was used 

instead of another algorithm and it should be expected that summary of conclusions in 

Table 3 would possibly be very different if a different feature detector were used.   For 

example, the sampling of the image space by the SIFT detector appeared strongly 

dependent upon the fact that SIFT searches for features within a scale-space of a gray-

scale version of the image (Figure 3), with the result that some painted targets, although 

clearly visible in RGB space, were not as visible in gray-scale and therefore were not 

sampled.  Other feature detectors may have produced different and even better results for 

finding the painted targets, for example an implementation of SIFT that makes use of 

color information like hue or a combination of red and green (Van de Sande et al. 2010). 

The discussion below reviews the results that are summarized in Table 3 with particular 

attention to the role of the SIFT feature in understanding the results. Rather than being a 

weakness of the current research, the fact that the observation of tree and canopy 

vegetation by SFM is so strongly dependent upon the choice of feature detector presents 

exciting new opportunities for computer vision ecology that are discussed in the sections 

below.  

4.2 Point as an image sample 

The results suggest that the way in which vegetation in a scene is sampled or 'seen' by 

SFM is strongly linked to the feature detector. Analysis of the image features associated 

with each point based on image feature tiles and numeric descriptors (Figure 1) revealed 

that the SIFT algorithm placed points within the scene at places that were either brighter 
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or darker than the surroundings (Figures 7, 8).   SIFT features were observed across a 

range of spatial scales (1 cm - > 20 m) and in general there did not appear to be any 

relationship between clusters of SIFT 128D numeric descriptors and the scale of the 

feature represented by the descriptor.  However, statistically significant differences in the 

scale of features associated with clusters was observed among bright and dark points 

from leaf-off aerial point cloud sets and also when clustering was applied to all aerial 

point cloud points (N = 2000) at larger levels of k than determined by cluster stability 

analysis.  It was unclear whether this was due to the presence of very large features (> 10 

m in size) within certain clusters or some other factor (Appendices A2.11 and A2.12).  

Even so, these results are to be expected given the intent and implementation of the SIFT 

detector. SIFT is designed to find 'scale-invariant' features that in theory provide a 

representation of an image feature that will be similar across a range of viewing distances 

by searching for the most stable features within a scale-space (Lindeberg 1994; Lowe 

2004).  To do this, SIFT identifies local minima and maxima within the scale-space 

representation of the image, with the result that it responds most strongly to places within 

the image with relatively high contrast that are either brighter or darker than the 

surroundings.   This means that points are only placed at the location where SIFT was 

able to identify the specific pattern that it was programmed to identify.  Parts of the 

image where no feature was produced, or which were unable to be successfully matched 

to the same feature in other images will not be 'sampled' in the point cloud, regardless of 

whether something was visible in an image (Figure 3).  Similar situations arise in other 

forms of remote sensing.  For example, spectral information of the land surface in optical 

satellite imagery is absent or significantly altered in areas that are heavily shadowed due 
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to clouds (Huang et al. 2010).  With infrared LIDAR, no returns are recorded over areas 

of water because the laser pulse was absorbed instead of reflected back to the recording 

instrument (McKean et al. 2009), and LIDAR will sample 3D space at different rates due 

to distance to the sensor and the angle of incidence between the land surface and laser 

pulse, among many factors (Glennie 2007).   

4.3 Point as a feature descriptor 

Clustering analysis of SIFT numeric feature descriptors revealed that points are located at 

places in the image that are either brighter or darker than the immediate surroundings.  

The 128D numeric descriptors consistently clustered into either of these two categories 

across all datasets and for data collected under a variety of conditions.  SIFT numeric 

descriptors were also evaluated to assess the degree to which a single point descriptor 

contains sufficient information to be classified as a particular type of landscape feature 

(car, grass, canopy, etc.,).  It was hypothesized that if SIFT feature descriptors contained 

a unique pattern for different types of objects or landcovers, then the tags describing 

those objects or landcovers should occur with greater frequency in the related 128D 

descriptor cluster.  Comparison of the frequency with which manually identified tags 

occurred within clusters of SIFT features revealed no strong connection to the semantic 

content of images (e.g., leaves vs. branches vs. cars, Figure 9).   This suggests that 

similarities among image feature numeric descriptors that are represented by k-means 

clusters are more strongly associated with patterns of bright or dark spots than the actual 

content of the images (e.g., tree cover, leaves, pavement, etc.).  In other words, there was 

no strong evidence to suggest that SFM point cloud points are related actual canopy 
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objects, instead the results (Figures 7, 8 and 9) point strongly to the conclusion that points 

only represent the pattern that the feature descriptor was programmed to identify.   

These results are in contrast with other studies that showed a strong relationship 

between SIFT image feature descriptors and different types of land cover observed in 

high resolution aerial images (Newsam and Yang 2007; Yang and Newsam 2008, 2013).  

However, there was a significant difference between the methods applied in that study 

compared to ours.  Instead of evaluating the classification of features individually, Yang 

and Newsam (2013) applied a 'bag of features' approach  (Lazebnik et al. 2006; Zhang et 

al. 2006) to classify specific spatial regions of high-resolution images based on the 

descriptors found within each region and found strong agreement with a high degree of 

separation across different types of landcover.  The conceptual difference between that 

study and ours was that we began with the hypothesis that a single image feature 

contained information that could be linked to a particular kind of landcover.  Yang and 

Newsam (2013) begin with the hypothesis that collection of features together in a 'feature 

bag' contain sufficient information to be classified or segmented into a particular 

landcover. 

4.4 Point as a 3D-RGB point 

Results of evaluating SFM 3D fusion quality indicate that there are two important aspects 

to determining how well color and 3D structure are represented together in a 3D point 

cloud: whether or not a given 3D space was 'sampled' and whether the color of what was 

sampled in a space was represented correctly.   The accuracy with which a 3D point 

cloud point was assigned the correct color for the corresponding 3D space in the real 

world (i.e., 'Is the color of a point in the correct place?') depended strongly upon the way 
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in which SFM sampled the space. Whether or not a space was sampled depended strongly 

on the feature detector (4.2).  In this case, the SIFT feature detector only placed points at 

locations that were identified as brighter or darker than the surroundings (Figures 7, 8) 

with the result that sometimes points were not placed at painted targets in the 3D point 

cloud even when the targets were clearly or partially visible in the images (Figure 3).  In 

examination of the quality of SFM 3D-spectral fusion based on the classification 

accuracy of painted targets, it was found that fusion accuracy was quite good (93 %, leaf-

off) when all targets were 'seen' in the point cloud, but fusion accuracy was much lower 

(27 %, leaf-on) when targets were not seen as frequently (Table 1).  There was however a 

strong agreement between the color of points and the average color (hue, R, G, B) of 

point image feature tile (Figure 1e).  Values of the percentage of hue difference, as well 

as RGB channel correlation and ratio all showed strong agreement between point color 

and average image feature tile at the location where SIFT identified a feature point 

(means: 5.1 % hue difference, 0.83 RGB channel R2, 1.06 RGB channel ratio).  There is 

one notable exception where point vs. image feature RGB channel correlation was quite 

low (mean R2 = 0.42) for the ground leaf-off datasets.  Visual inspection of the image 

feature tiles (Figure 1e) for these points as compared to leaf-on points, which showed 

correlations comparable to aerial scans (mean R2 = 0.82), reveals that the difference may 

be due to the way in which the feature detector was able to 'see' painted targets. Leaf-on 

points at target areas were often observed against a background of foliage while leaf-off 

points were often observed against a background of sky which was much brighter than 

the target and which may have caused low correlation values (Appendix A2.9).  

Combined, these results suggest that the color of points at a given point in 3D space will 
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be in close agreement (mean 5 - 6 %) to where the same point was observed in images 

and that in general points will be located in the right place if they were seen by the 

feature detector.   

4.5 SFM and TLS see vegetation differently 

TLS and SFM showed very different fusion quality when evaluated based on 

classification accuracy of painted targets owing to the fact that the two systems 'see' 

vegetation in different ways.  For example, TLS always observed all targets under leaf-on 

and leaf-off conditions, but classification accuracy tended to be quite low (45 % and 29 

%, respectively) as points inside the target areas were just as likely to be red as they were 

to match the color of points outside the target area (Figure 2).  In addition, overall 

agreement between TLS and SFM was also low (45 % and 36 %) and the negative and 

small kappa values (-0.14 and 0.06) indicate that agreement between TLS and SFM is not 

significantly different than agreement by chance alone (Congalton 1991). This difference 

may be due to the way in which the fusion of 3D color information is carried by each 

system.  In SFM, 3D-fusion is an inherent part of the reconstruction process where the 

location and color of points comes from the same data source, a sampling of the images 

by the feature detector.  For TLS, 3D comes from the laser scanner and color comes from 

the camera sensor each with a different optical center and field of view of the scene.  This 

means that the laser points might see something the camera cannot see, for example at a 

location that is occluded from the point of view of the camera (Popescu and Wynne 2004; 

Packalén et al. 2009) or locations that the camera only sees as shadow or black pixels but 

for which the active laser beam is able to 'see' the structure that is obscured from view by 

the camera.  Differences in the way in which SFM and TLS see vegetation were also 
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apparent when comparing tomographic slices of 3D voxel models of the single tree test-

subject under leaf-on and leaf-off conditions.   In general, SFM and TLS observed the 

outer 3D structure of the tree in a similar manner (Figures 4 & 5) and this result is in line 

with prior work that examined the relationship between the 3D structure of forest 

canopies observed by SFM from aerial images as compared to airborne LIDAR and field-

based measurements (Dandois and Ellis 2010, 2013; Lisein et al. 2013).  However, there 

were also distinct differences in the representation of tree structure by each sensor 

system.  TLS tended to see more of the interior structure of the tree than SFM, especially 

under leaf-on conditions.  This may be due to the fact that the active infrared laser beam 

is unaffected by shadows or areas of low contrast that caused reduced point sampling for 

SFM and the high sampling rate of the TLS also resulted in a greater number of points 

that were not occluded by the outer leaf surfaces  (Hosoi et al. 2010).   Differences in 

vertical foliage profiles (VFPs, Figure 5), are not as easily explained.  One potential 

explanation for the large mismatch between TLS and SFM VFPs at the lower and upper 

parts of the tree crown (Figure 5) may be due to the fact that SFM tended to place more 

on the outer edges of the tree and the interior, relative to the point of view of the camera 

(Figures 2 & 6), with the result that the bottom parts of the tree crown were sampled with 

a lower than average point cloud density.   

4.6 The fusion of computer vision and ecological remote sensing 

The data collected in this research provides a unique test-set that could be used for future 

research aimed at developing and evaluating the quality of SFM products of vegetation.  

Future research could use the image datasets collected here to determine how changing 

the feature detector or modifying images (e.g., through contrast or brightness 
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enhancement) will change how vegetation and targets are 'seen' by SFM.  In addition, 

future work should also examine the effects that additional computer vision processing 

will have on data processing.  As implemented in this study, Bundler produces only a 

'sparse' point cloud dataset consisting only of those points that were identified by SIFT, 

matched across images, and contributed to the bundle adjustment optimization (Snavely 

et al. 2006).  Snavely et al. (2006) suggest that 'denser' point clouds can be obtained with 

additional levels of 'dense-matching' processing that require information about camera 

internal calibration and external location and orientation that are obtained from the sparse 

bundle adjustment stage.  Examples of such algorithms include the Patch-based or 

Cluster-based Multi-View Stereo algorithms (PMVS, CMVS; Furukawa et al. 2010; 

Furukawa and Ponce 2010).  Denser point clouds obtained from such processing may 

contribute to an improved sampling of 3D space and observation of vegetation and 

painted targets, but the quality of fusion measurements from this new processing still 

needs to be evaluated and the test datasets developed in this study could be used for such 

development. 

The graphical user interface and test datasets may also be useful for exploring a 

whole new area of computer vision for ecological remote sensing: computer vision 

feature based remote sensing.  Future research should evaluate the potential of a 'bag of 

features' approach for classifying SFM point clouds to landcover or tree functional type 

through pre-segmentation of groups of features into 2D pixels or 3D volume-pixels 

(voxels), or even to individual tree crown species through tree crown delineation based 

on point cloud 3D structural and spectral traits (Alexander 2009; Ke and Quackenbush 

2011).  The datasets and graphical user interface developed in this study can be used to 
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help calibrate or evaluate such feature descriptor-based classifications.  There are also 

many feature detectors available for identifying potential points for matching across 

images.  From the point of view of computer vision, they are often grouped based on the 

type of shape or object that they detect and represent in the image, for example points, 

patches or blobs, lines, and edges (Schmid et al. 2000; Mikolajczyk and Schmid 2004; 

Szeliski 2011). Future work should also consider the potential of dedicated vegetation 

feature detectors based around properties of plant, leaf, and flower color and structure 

(Nilsback 2009; Kendal et al. 2013).  Along with providing the necessary match 

information needed for SFM 3D reconstructions, such vegetation-specific detectors may 

also be useful for automatically mapping and quantifying the amount of canopy fruits and 

flowers, which is a significant factor for understanding the relationship between forest 

plant and animal communities (Wright et al. 1999), but which is challenging to measure 

in practice by manual methods alone due to difficulties with accessing the forest canopy.   

There is also potential to explore the relationship between landscape pattern and 

the scale-space representation of the landscape that is made possible by the SIFT feature 

descriptor.   The application of scale-space theory to the study of aerial remote sensing 

images of trees and forests may be particularly useful for improving understanding of the 

multi-scale patterns of these types of landcovers within a landscape (Hay et al. 2002).   

While the current research was unable to show a strong relationship between the scale of 

features within k-means clusters of SIFT 128D numeric descriptors, future research 

should consider the potential hierarchical nature of SIFT feature scale as it pertains to 

components of the forest canopy.  For, example, from a physiological point of view a 

forest canopy is composed of all the leaves, branches, twigs and crowns of the forest trees 
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(Parker 1995) and although k-means clustering of all features based on the 128D 

descriptor alone did not reveal multi-scale patterns, perhaps grouping features into scale-

specific 'bags' first would reveal patterns of vegetation unique to different scales.  Such 

scale-based features bags may reveal 'optimal' scales for observing different aspects or 

patterns of vegetation (Hay et al. 2002). 

5.0 Conclusions 

The results from this analysis reveal that the properties of a computer vision structure 

from motion point cloud are constrained at the moment of observation by the feature 

detector used for matching and bundle adjustment and in this study, results were 

dependent upon the SIFT feature detector.  While it may be possible for a human operator 

to indicate a semantic meaning or classification of the context within which a point is 

located, e.g., forest, pavement, tree, bush, roof, etc., ultimately the feature detector is 

merely responding to a very specific type of signal within the image domain, bright spots 

surrounded by dark or dark spots surrounded by bright, which are identified by the 

algorithm independent of any semantic or ecological meaning. It follows then that the 

results of the current work may be different if a different feature detector is used in the 

place of SIFT.  Indeed, future work should consider conducting structure from motion 

using feature detectors specifically designed for identifying and tracking ecological 

entities.  For example, detectors could be developed to identify individual leaves, flowers, 

or fruits (e.g., cones, acorns, samara).  In addition, future work should also consider a 

'bag-of-features' approach to improve classification results of feature descriptors by first 

grouping features based on pre-defined spatial boundaries.  For example, to what extent 

can individual tree species by classified based on groups of feature descriptors within 
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delineated tree crowns?    The fusion of computer vision with ecological research 

represents an exciting new frontier for remote sensing of the structural, spectral, and 

taxonomic complexity of terrestrial ecosystems. 
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Chapter 4: Optimal conditions for aerial measurements of forest 
canopy structure using computer vision 

Abstract 

Three-dimensional (3D), multi-spectral measurement of forest canopies by consumer 

unmanned aerial systems (UAS) and computer vision structure from motion (SFM) 

algorithms is transforming remote sensing for ecological research.  UAS-SFM remote 

sensing systems (e.g. Ecosynth) enable LIDAR-like, high spatial resolution 

measurements of vegetation structural and spectral traits on-demand.  Yet application of 

this emerging technology has out-paced understanding of the relationship between data 

quality and the conditions of data collection.  In this research, Ecosynth UAS-SFM 

remote sensing (Dandois and Ellis 2013) was used to produce 3D multispectral point 

clouds of Temperate Deciduous forest canopies at multiple levels of UAS flight altitude 

and photographic overlap, scene weather conditions, and with multiple image processing 

methods.  Variation in measures of point cloud quality traits and metrics was evaluated 

within and across data collection configuration levels.  Ecosynth estimates of canopy 

height were robust to large variation in data collection conditions and were highly 

correlated with field and LIDAR estimates of canopy height (R2 = 0.87 & 0.99).  Under 

optimal scanning conditions (clear lighting, high altitude, and high photographic side 

overlap) Ecosynth produced accurate estimates of canopy height compared to field 

measurements (RMSE = 4.5 m) and LIDAR (RMSE = 2.4 m).  Optimal Ecosynth point 

clouds had horizontal and vertical geometric accuracy < 1.7 m RMSE, an average point 

cloud density of 35 points m-2 in forested areas, and an average canopy penetration of 

roughly 20 % or 5 m.  Ecosynth point cloud quality was generally improved by 

increasing photographic overlap, yet this also resulted in significant increases in SFM 
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computation time. Ecosynth canopy height error was higher on cloudy days when image 

contrast was low compared to clear days when image contrast was relatively higher.  

Differences between quality and overlap, lighting, and image contrast may be related to 

the behavior of computer vision 'image features' within the SFM processing pipeline, but 

access to such features was restricted due to the use of a commercial, closed-source SFM 

algorithm.  Recommendations are made for optimal UAS-SFM remote sensing data 

collection strategies.  Future research should use free, open-source SFM algorithms to 

access computer vision image features to improve understanding of the relationship 

between point cloud quality and scanning conditions. 

1.0 Introduction 

The combination of hobbyist unmanned aerial systems (UASs) combined with automated 

computer vision structure from motion (SFM) 3D image processing represents a 

transformative shift in remote sensing capabilities for the evaluation of forest canopies.  

Such 'personal remote sensing systems' (e.g., Ecosynth) enable on-demand observations 

of vegetation structural and spectral traits at high spatial resolution over small extents and 

frequencies not possible or practical with existing forms of airborne or satellite remote 

sensing (Chapter 2, Dandois and Ellis 2010, 2013).  Personal remote sensing systems 

have enabled accurate mapping of canopy height (Tao et al. 2011, Lisein et al. 2013) and 

biomass density as well as the discrimination of structural and color-spectral phenology 

traits at the scale of individual trees (Dandois and Ellis 2010, 2013).  Similar systems 

have also been used for mapping stream channel geomorphology (Castillo et al. 2012, 

Javernick et al. 2014), mapping vineyard and orchard plant structure (Dey et al. 2012, 

Mathews and Jensen 2013), the topography of bare substrates (de Matías et al. 2009, 
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Harwin and Lucieer 2012, James et al. 2012, James and Robson 2012, Rosnell and 

Honkavaara 2012, Westoby et al. 2012), and mapping lichen and moss extent and 

coverage (Turner et al. 2012).  However, rapid application of UAS and SFM for research 

has out-paced understanding of the quality of the products derived from these 

technologies.  While automated hobbyist UAS reduces the barrier to entry for remote 

sensing data collection (Anderson and Gaston 2013), little is known about the 

relationship between observations of vegetation structural and spectral metrics and the 

conditions under which observations are obtained.  This research aims to address these 

uncertainties by defining relevant measures of SFM point cloud quality and then 

characterizing how these measures change under different observation conditions. 

1.1 UAS-SFM remote sensing 

Use of SFM and UAS for remote sensing has increased rapidly thanks to the relative ease 

with which these technologies can be deployed for research applications.  Recent 

research spans a range of applications, algorithms, data collection methods (including 

UAS, manned aircraft, and ground-based strategies), and flight configurations, 

summarized in Table 1 of Chapter 1.  SFM research that used UAS was conducted at a 

range of flight altitudes (30 m – 225 m above ground level, AGL) and parameters of 

photographic overlap (from 40 % to > 90 % forward and side overlap).  These studies 

also used different SFM applications (both free, open-source and commercial, closed-

source), as well as different data collection platforms, including fixed-wing and 

multirotor, autonomous and manually operated UAS, kites, full-scale manned aircraft, 

and even photos collected by individuals walking on the ground around scenes.  While 

these studies arrive at the similar conclusion that accurate 3D reconstructions of 
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landscapes (including vegetation and topography) can be produced with SFM remote 

sensing, the diversity of methods with which the research was carried out highlights a 

significant challenge and research opportunity for this burgeoning remote sensing field. 

Many of these challenges were also presented at the end of Chapter 2 (Section 

4.5.6, Table 7; Dandois and Ellis 2013).  Despite the tremendous potential of new areas 

of research made possible by Ecosynth UAS-SFM remote sensing, that research highlight 

many uncertainties about the way in which the data could be collected.  It is not clear 

how changes in UAS flying altitude, photographic overlap, and resolution as well as 

wind, cloud cover, and light will influence the quality of SFM point clouds or even what 

the relevant measures of quality might be for such a system.  It is also unclear how such 

changes in SFM point cloud quality will influence vegetation measurements, in particular 

metrics of canopy structure like height and biomass.  Næsset (2009a) highlighted similar 

challenges in the use of LIDAR for remote sensing of forest canopies, noting the large 

diversity in data collection strategies, including differences in sensor, flying altitude, and 

pulse repetition frequency.  They argued that lack of understanding of how such 

differences would influence canopy metrics could potentially limit future applications, in 

particular when multiple datasets are combined to assess change.  They demonstrated 

significant differences in LIDAR point cloud traits as a function of scan configuration, in 

particular point cloud density, but noted that canopy structure measurements were 

relatively robust to a range of collection strategies.  Current research on the relationship 

between attributes of LIDAR data quality and derived products (e.g., Cook et al. 2009; 

Næsset 2009b; Næsset 2009a; Hudak et al. 2012) are made possible by over 25 years of 

LIDAR remote sensing of vegetation, from the earliest research on using LIDAR for 
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estimating forest biomass (Nelson et al. 1988) that seems extremely simple compared to 

modern remote sensing capable of accurately mapping canopy biomass at large scales 

(Asner and Mascaro 2014).  Similar bounding understanding of the quality of UAS-SFM 

canopy products is required to advance this growing remote sensing field from a novel 

concept to a practical research tool. 

1.3 Research objectives 

The objectives of this research are to improve understanding of the quality of UAS-SFM 

forest canopy products and the relationship between quality and the conditions under 

which data are collected using empirical and applied methodological approaches (Chapter 

1, Section 1.1.6).  Based on relevant measures used in LIDAR and optical image remote 

sensing, three categories of Ecosynth point cloud quality measurements are defined that 

describe point cloud geometric positioning accuracy, canopy sampling as a function of 

point cloud density and canopy penetration, estimates of canopy structure, and point 

cloud color radiometric quality.  Empirical traits and forest canopy metrics of Ecosynth 

SFM 3D point cloud models are evaluated across a range of different data collection 

conditions.  A replicated set of Ecosynth UAS-based image acquisitions were carried out 

under crossed treatments of lighting, flight altitude, and image overlap.  Variation in traits 

and metrics were compared within and across treatment levels as well as to wind speed 

measured from a nearby weather station and to post-processing based variations in image 

datasets.  Forest canopy metrics derived from Ecosynth products were compared to field 

based measurements of canopy height and also to a high-resolution (≈ 10 points m-2) 

discrete-return LIDAR point cloud collected during the same period as UAS collections. 

Radiometric quality of Ecosynth 3D-RGB (red-green-blue) point cloud color values were 



 

158 
 

evaluated by measurement of variation or contrast within different land covers, including 

forest, pavement, grass, and rooftops. 

2.0 Materials and methods 

2.1 Data collection 

2.1.1 Study area and field data 

Research was carried out at the same three 6.25 ha (250 m x 250 m) Temperate 

Deciduous forest research study sites in Maryland USA used in prior Ecosynth UAS 

SFM remote sensing research (Chapter 2, Dandois and Ellis 2013).  Two sites ('Herbert 

Run' and 'Knoll') are located on the campus of the University of Maryland Baltimore 

County (UMBC: 39°15′18″N 76°42′32″W) and one at the Smithsonian Environmental 

Research Center in Edgewater Maryland (SERC: 38°53'10"N 76°33'51"W).  In the 

current study, the majority of UAS flights were carried out at the Herbert Run study site 

on the UMBC campus.  Each site was divided into 25 m x 25 m plots and the average 

height of the five largest (by DBH) trees plot was used to estimate the average maximum 

canopy height (Dandois and Ellis 2013).  Above ground biomass density (Mg ha-1) was 

estimated for each plot following Dandois and Ellis (2013) by allometric modeling of the 

DBH of all stems greater than 1 cm DBH within each plot  (Jenkins et al. 2003). Average 

field estimated AGB across all plots (n= 49) at Herbert Run was 204 Mg ha-1 with a 

standard deviation of 156 Mg ha-1. 

2.1.2 UAS image acquisition under a controlled experimental design 

Image data were collected with a Canon ELPH 520 HS digital camera attached to a 

hobbyist, commercial multirotor UAS consisting of Mikropkopter frames (HiSystems 
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GmbH, http://www.mikrokopter.de) and Arducopter flight electronics (3D Robotics, Inc., 

http://copter.ardupilot.com) in 'octo' and 'hexa' configurations of 8 and 6 propellers 

(http://wiki.ecosynth.org) and following Dandois and Ellis (2013).   Images were 

collected at roughly 2 frames per second (fps) at 10 megapixels (MP) resolution and 

"Infinity" focus (≈ 4 mm focal length) using fixed white balance and exposure settings 

calibrated to an 18 % gray card with an unobstructed view of the sky.  Image datasets 

were collected following a crossed factorial experimental design based on combinations 

of light, altitude above the canopy, and photographic side overlap, described in Table 1a.  

Two levels of lighting, uniformly clear and uniformly cloudy (diffuse) were controlled 

for by selecting specific days for flight based on desired lighting conditions.  Four levels 

of flight altitude above the canopy (20 m, 40 m, 60 m, 80 m) and four levels of 

photographic side overlap (0 %, 25 %, 50 %, 75 %) were controlled for by pre-

programming of automated UAS waypoint flight paths based on a designated flight 

altitude above the launch location and by the spacing between parallel flight tracks, 

respectively.  Flight configurations that include each of the three variables are outlined in 

Table 1b.   

UAS were programmed to fly at an average of 6 m s-1 (13.4 mph). Due to 

maximum flight time limits the hexacopter configuration was used on flights less than 15 

minutes in flight time or 4 km in flight distance and the octocopter configuration was 

used for longer flights, < 25 minutes flight time and < 8 km flight distance.  Five 

replicates were planned for each treatment which were flown from 2013-06-21 to 2013-

10-21.  Automated waypoint control, take-off, and landing modes were used to facilitate 

rapid collection of replicate and in general replicates were collected between 09:00 - 
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16:00 each day.  All treatments with five replicates were flown at the Herbert Run site on 

the campus of UMBC (Dandois and Ellis 2013), and several treatments were flown with 

replication at the Knoll and SERC sites.  Due to rapidly changing lighting conditions on 

some days or human error, five flight configurations were collected with between 2 - 4 

replicates, instead of the planned 5 replicates.  Several flight configurations at low 

altitudes and low levels of side overlap were not collected due to onset of autumn leaf 

senescence as the rapidly changing condition of the forest canopy resulted in a loss of 

experimental control on the canopy itself, as a result, a total of 82 replicates were 

collected.  Based on flight design, all UAS flights conducted in this research were carried 

out below 120 m (≈ 400 feet) above the surface.  Wind speed during UAS flights over the 

Herbert Run area was measured by eddy covariance instrumentation at approximately 90 

m MSL on top of a building on the UMBC campus.  Wind speeds were extracted from 

eddy covariance data logs by matching time stamps with UAS GPS telemetry time 

stamps for each flight.  Average wind speeds during flights ranged from 0.6 – 5.9 m s-1 

(1.3 – 13 mph) and were converted to values of Beaufort scale for comparison across 

datasets (http://www.spc.noaa.gov/faq/tornado/beaufort.html, accessed: 2014-05-20). 

2.1.3 Aerial LIDAR 

Discrete-return LIDAR data were acquired over all three sites (Knoll, Herbert Run, and 

SERC) on 2013-10-25 by the contractor Watershed Sciences, Inc.  LIDAR was collected 

with a nominal point density of 10.06 points m-2 (0.028 m and 0.017 m horizontal and 

vertical accuracy).  While some seasonal change was already underway at the time of 

acquisition, the data represents the only comparable leaf-on LIDAR for the UMBC 

campus that can be used for analysis of Ecosynth point cloud canopy quality measures 
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(Dandois and Ellis 2013).  The contractor-provided 1 m x 1 m gridded bare earth filtered 

product was used as a digital terrain model (DTM) for extracting heights from LIDAR 

and Ecosynth point clouds.  The points corresponding only to the LIDAR first return 

were extracted for each 6.25 ha study site to serve as a 'gold-standard' measure of the 

overall surface structure (Habib et al. 2009). 

 

Table 1: Experimental design of Ecosynth flights (a).  Boxes with "X" indicate 
treatments that were successfully flown, gray shaded boxes indicate treatments that 
were not covered by data collection. (b) shows configurations of individual flights. 
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(b) Flight configurations 
L A S N 

Clear 20 m 75 % 4 
Clear 40 m 50 % 5 
Clear 40 m 75 % 2 
Clear 60 m 50 % 5 
Clear 60 m 75 % 5 
Clear 80 m 0 % 5 
Clear 80 m 25 % 5 
Clear 80 m 50 % 5 
Clear 80 m 75 % 7 
Cloudy 20 m 75 % 5 
Cloudy 40 m 50 % 5 
Cloudy 40 m 75 % 3 
Cloudy 60 m 50 % 5 
Cloudy 60 m 75 % 2 
Cloudy 80 m 0 % 5 
Cloudy 80 m 25 % 5 
Cloudy 80 m 50 % 4 
Cloudy 80 m 75 % 5 
 

L: CLEAR                     

L: CLOUDY                     

A: 20 m X X             

A: 40 m X X             

A: 60 m X X             

A: 80 m X X             

S: 0 % X X    X         

S: 25 % X X    X         

S: 50 % X X  X X X         

S: 75 % X X X X X X         

L = Lighting: uniformly CLEAR or CLOUDY conditions  

A = Nominal flight altitude above highest canopy point  
S = Photographic side overlap (sidelap)  
N = Number of replicates actually collected  
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2.2 Data processing 

All Ecosynth image replicates were processed into 3D-RGB point cloud datasets using 

the commercial and closed-source Agisoft Photoscan SFM software package (64-bit, 

v0.91, build 1703) following Dandois and Ellis (2013).  Point clouds were produced 

using the 'Align Photos' tool with settings 'high' accuracy, 'generic' pair pre-selection, and 

the default of maximum 40,000 point features per image (refer to Section 1.1.5, Chapter 1 

for a review of image features).  Point clouds produced in Photoscan were then processed 

following Ecosynth data processing procedures (Dandois and Ellis 2013, 

http://code.ecosynth.org/EcosynthAerial), which included filtering to remove stray noise 

points and georeferencing into the WGS84 UTM Zone 18N projected coordinate system 

by optimized 'spline' fitting of the SFM camera point 'path' to the UAS GPS telemetry 

path.  This approach required an estimate of the horizontal location and elevation of the 

camera during flight.  Horizontal location was obtained from latitude and longitude 

values reported from the UAS GPS telemetry which were transformed to the UTM 

projected coordinate system.  Elevation was available in two forms: a relative elevation 

above the launch location from on-board pressure sensor and an absolute elevation by a 

built-in combination of GPS-based elevation and pressure sensor elevation.  

Manufacturer reported specifications of the pressure sensor estimate precision of +/- 1.7 

m within the nominal operating ranges found during data collection for this study (+/- 0.2 

millibar at 20° C and 1000 millibar nominal pressure).  UAS GPS was enabled to use the 

WAAS (Wide Area Augmentation System) when available, which has a 95% horizontal 

and vertical precision limit of 4 m (FAA 2008).  All relative elevation values were 

aligned to the local vertical datum by addition of the elevation of the launch location in 
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meters above mean sea level (MSL) as reported by the LIDAR DTM.    Comparison of 

relative and absolute elevation values to copter elevations recorded with a Trupulse 360B 

handheld laser rangefinder (+/- 1 m precision to low quality targets) revealed 

significantly greater error and variation from absolute height measurements than from 

relative height measurements (RMSE = 10.5 m vs. 6.6 m, p < 0.0001).  A calibration 

model was then developed to estimate the true elevation of the copter based on the 

relative elevation values recorded in the UAS telemetry (R2 = 0.999, 1.2 m RMSE 

residual error, Appendix A3.1).  All Ecosynth point clouds were georeferenced using 

calibrated relative UAS elevation values. 

In addition to the experimental treatments tested through field data collection 

(Table 2), several additional treatments representing different forms of post-processing 

were tested by manipulating the original replicate images.  A single set of five image 

replicates collected under the same conditions (clear lighting, 80 m altitude, 75 % side 

overlap, collected 2013-08-26) were also processed under different variations of image 

processing and computation to evaluate the effects of these variables on point cloud traits 

and metrics.  These replicates were processed into 3D-RGB point clouds after images had 

been down-sampled from the original 10 MP to reduced resolution (7.5 MP, 5 MP, 2.5 

MP, 1 MP, 0.5 MP, 0.3 MP).  The same replicates, at original 10 MP resolution, were 

also processed into point clouds after incrementally sub-sampling the image sequences 

from every single image to every 10th image, corresponding to a decrease in forward 

photographic overlap from ≈ 96 % to 60 %.  To facilitate the large amount of 

computation required to process the 82 replicates for the main set of treatments (Table 2), 

plus additional replicates of reduced resolution (n = 35) and forward overlap (n = 50), 
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SFM reconstructions were run on multiple computers with different configurations of OS, 

RAM, and CPU resources.  A set of the same replicates were also run on each computer 

to evaluate what if any effect that variable would have on point cloud traits and metrics.  

In total over 4,500 compute hours (> 188 compute days) were required to process all of 

the image datasets used in this study.  A single replicate was also run in two other 

versions of Photoscan, v0.84 which was used in prior research (Dandois and Ellis 2013) 

and version 1.04 the latest version (2014-05-25), as well as an enhanced version of the 

popular free and open source Bundler-PMVS pipeline (Table 1) designed to take 

advantage of GPU computing and UAS GPS telemetry information named 'Ecosynther' 

(v0.8, http://code.ecosynth.org/Ecosynther, accessed: 2014-05-26). 

2.3 Data analysis 

Ecosynth data quality was measured based on three main categories of empirical traits 

and applied forest canopy metrics that were extracted from georeferenced Ecosynth point 

clouds: positioning accuracy, canopy sampling, and canopy structure.  Positioning 

accuracy traits were divided into measures of the horizontal and vertical positioning error 

(meters root mean square error, RMSE) and calculated as 'relative' and 'absolute' 

positioning error.  Canopy sampling traits described point cloud density and canopy 

penetration.  Metrics of canopy structure describe error in Ecosynth estimates of canopy 

height and aboveground biomass density relative to LIDAR and field measurements.  The 

radiometric quality of Ecosynth point clouds was also measured based on the amount of 

variation in red, green, and blue channel brightness and grayscale intensity within 

different landcovers. 
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2.3.1 Measurements of position accuracy 

Relative positioning accuracy was defined based on the goodness of fit of the SFM 

'camera' path to the UAS GPS telemetry path.  This was measured as meters RMSE of the 

XY and Z distance between a camera point and the closest segment of two GPS points 

along the UAS GPS track.  Because SFM camera and scene points are located within the 

same coordinate system, this 'Path error' value measures how close the entire SFM point 

cloud was aligned to the UAS-GPS positioning data during the georeferencing step.  

Following Habib et al. (2009) the absolute positioning error of Ecosynth SFM point cloud 

datasets was evaluated automatically by computing the horizontal and vertical 

displacement required to rigidly align the SFM point cloud to the LIDAR first return  

point cloud based on 3D translation and rotation only and without scaling.  LIDAR 

horizontal and vertical positioning accuracy was estimated to be less than 3 cm by the 

manufacturer and served as a 'gold-standard' of the 3D geometry of the scene for 

comparison against Ecosynth measurements.   A Python implementation of the Iterative 

Closest Point algorithm (ICP; Besl and McKay 1992) was used for the rigid alignment 

and measures of 'ICP error' refer to the horizontal and vertical RMSE in meters of the 

location difference between same SFM point cloud points before and after alignment.  

ICP fitting to LIDAR was only used to measure absolute positioning accuracy of point 

clouds and no other metrics were computed based on these 'fitted' point clouds.  To 

provide an absolute measure of positioning accuracy that does not require a coincident 

high-resolution LIDAR acquisition, the average difference between the known launch 

location altitude in meters above sea level from the DTM and the estimated elevation of 

the same location in each Ecosynth point cloud was measured.  While this measure was 
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based on a coincident LIDAR acquisition, such a measure can be produced relative to any 

DTM that would be used for estimating canopy heights from Ecosynth point clouds, 

including when it is only possible to obtain old LIDAR DTMs that no longer accurately 

portray canopy height (Dandois and Ellis 2010, 2013) or potentially even satellite remote 

sensing based DTMs (Ni et al. 2014). 

2.3.2 Measurements of canopy structure 

To evaluate the accuracy with which Ecosynth SFM point clouds characterized canopy 

structure, gridded canopy height models (CHMs) at 1 m x 1 m pixel resolution were 

produced for all SFM point cloud datasets and for the first-return of LIDAR points based 

on the highest point elevation within each grid cell after subtraction of LIDAR digital 

terrain model (DTM) values from each point cloud elevation (Dandois and Ellis 2013).  

Within each 25 m x 25 m field plot, the top-of-canopy height (TCH; Asner and Mascaro 

2014; Mascaro et al. 2014) was calculated from CHMs based on the average of all pixel 

values within the plot.  While it is common in applications of SFM and LIDAR point 

clouds to estimate canopy height based on the 'best' of many, often correlated, height 

metrics (e.g., mean, median, minimum, maximum, every 10th percentile; Næsset 2009; 

Dandois and Ellis 2010, 2013; Lisein et al. 2013), TCH was selected as a measure that is 

more comparable across different remote sensing representations of the canopy surface 

and one that is less susceptible to differences in canopy penetration depth (Asner and 

Mascaro 2014; Mascaro et al. 2014). Measures of data quality from canopy height are 

defined as the RMSE error between Ecosynth, field, and LIDAR measurements at the 

scale of 25 m x 25 m (0.06 hectare) field plots.  Aboveground biomass density (Mg ha-1) 



 

167 
 

was estimated for each plot at the Herbert Run site using Ecosynth TCH estimates 

following Dandois and Ellis (2013).   

2.3.3 Measures of canopy sampling 

Two additional measures of data quality were defined that characterize the way in which 

the canopy is sampled or 'seen' by Ecosynth SFM point clouds: point cloud density 

(points m-2) and canopy penetration (the coefficient of variation of point cloud heights), 

both of which are calculated first within a raster grid of 1 m x 1 m cells and then 

averaged across forested areas.  Previous research has suggested the strong relationship 

between LIDAR canopy height metrics and measures of point cloud density (Næsset 

2009).  Measures of canopy penetration are also related to canopy height metrics 

(Chasmer et al. 2006a; Chasmer et al. 2006b; Wasser et al. 2013), as well as canopy 

habitat (Goetz et al. 2007; Jung et al. 2012).    

2.3.4 Radiometric quality of Ecosynth point clouds  

The radiometric quality of Ecosynth point clouds was evaluated by quantifying the 

variability (standard deviation) of the color of points inside 1 m x 1 m bins, which was 

then averaged by landcover.  Radiometric quality was measured on a per channel basis 

for the red, green, and blue (RGB) color of points as well as point grayscale intensity 

(Gray = 0.299×R + 0.587×G + 0.114×B; Yang and Newsam 2013).  This measure of 

radiometric quality provides an indication of the amount of noise in Ecosynth point 

colors within a fixed area (Yang and Lo 2000; Baltsavias et al. 2001; Poli et al. 2014), but 

can also be interpreted as a measure of color contrast (Peli 1990; Cox and Booth 2009), 

which has a strong influence on the stability of computer vision image features used in 

SFM reconstruction (Lowe 2004). 
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3.0 Results 

3.1 Ecosynth SFM estimates of canopy structure 

Ecosynth SFM estimates of canopy height based on the top-of-canopy height (TCH) 

measure were robust to a large range of scanning conditions.  In general, Ecosynth TCH 

was highly correlated with the average maximum height per plot (R2 = 0.87) but with 

relatively high average root mean square error (RMSE range = 3.3 – 10.5 m, average 6.5 

m).  By comparison, LIDAR TCH was similarly correlated with field measured plot 

heights (R2 = 0.88) but with slightly lower error (RMSE = 5.5 m. Figure 1c).   Both 

Ecosynth and LIDAR TCH under-predicted field measured canopy height but were 

highly correlated with each other (R2 = 0.99, RMSE range = 0.8 – 6.3 m, average 2.4 m).  

Under optimal scanning conditions (clear skies, 80 m altitude above the canopy, 75 % 

side photographic overlap), Ecosynth TCH estimated field measured canopy height with 

4.5 m and 4.6 m RMSE error at the Herbert Run and SERC sites (Table 2, Figure 1a). At 

all sites, Ecosynth TCH estimates had relatively low error compared to LIDAR TCH (1.5 

– 2.2 m RMSE) and generally high correlation values (R2 = 0.89 – 0.99; Table 2, Figure 

1b). Explanation of suggested optimal scanning conditions is provided in the sections 

below.  Ecosynth TCH values showed relatively constant precision with an average 

standard deviation of 2.5 m, which was un-related to canopy height (Figure 1d).   The 

correlation between Ecosynth TCH and field heights was low at SERC due to low 

variation in field heights (Chapter 2, Dandois and Ellis 2013).  Error in tree height 

estimates was high at Knoll sites for both Ecosynth and LIDAR (7.9 m and 6.4 m, 

respectively).  
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Sources of error in Ecosynth TCH estimates of canopy height appear to include 

error in the vertical positioning of the point cloud relative to the DTM used for estimating 

heights, the amount of photographic overlap, and even scene lighting.  A large portion of 

the vertical error in Ecosynth TCH predictions of height (RMSE) was explained by the 

Table 2: Summary of Ecosynth TCH estimates relative to field and LIDAR 
measurements averaged across optimal replicates at Herbert Run and for one replicate 
each of optimal settings at Knoll and SERC sites. 
 

  Compared to Field Heights Compared to LIDAR TCH 
Site N RMSE (m) R2 RMSE (m) R2 
Herbert Run 7 4.5 0.86 2.2 0.99 
Knoll 1 7.9 0.79 2.0 0.99 
SERC 1 4.6 0.19 1.5 0.89 

Figure 1: Regression between Ecosynth average TCH per plot across optimal 
replicates (n = 7) to (a) field and (b) LIDAR TCH, (c) LIDAR TCH and field 
measurements, (d) the standard deviation in Ecosynth TCH by height, and (e) 
Ecosynth TCH RMSE error relative to vertical offset of Ecosynth from LIDAR DTM 
(e) across all replicates (n = 82).   Solid line (a - c) is one to one line, error bars in are 
standard deviation, dotted lines are linear model and dashed line in (d) is the mean.  
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amount of vertical positioning error of the entire point cloud, as measured by the fit 

between Ecosynth and LIDAR point clouds (ICP-Z error, R2 = 0.71, Table 3) and the 

difference between the estimated and known elevation of the launch location (Launch 

Elevation Difference, R2 = 0.73, Figure 1e).  Average RMSE error in Ecosynth TCH 

compared to both field and LIDAR estimates doubled as forward overlap was reduced 

from > 96 % to 60 % (RMSE = 3.7 m to 7.9 m, R2 = 0.99; RMSE = 2.0 m to 3.9 m,  R2 = 

0.87; Table 3).  The strong relationship between error in Ecosynth TCH estimates of field 

canopy height and the launch location elevation difference (Figure 1e) across all 

replicates highlights the substantial effect of accuracy co-registration between surface and 

terrain models (Chapter 1, Section 1.1.7; Sithole and Vosselman 2004; Næsset 2009b; Ni 

et al. 2014).  Accounting for this offset by adding the value of Launch Location Elevation 

Difference to the Z value of each point on per point cloud basis improved RMSE error 

across all datasets compared to field estimates (RMSE range  = 3.2 – 6.1 m, average 4.2 

m).  Offset correction reduced the range of RMSE error in Ecosynth TCH estimates 

compared to LIDAR TCH and barely affected average error across all replicates (RMSE 

range = 1.2 – 4.0 m, average 2.5 m).  Offset correction also improved error (reduced 

RMSE) in Ecosynth TCH estimates relative to field measurements for the set of datasets 

collected under optimal conditions (average RMSE = 3.7 m)  but increased Ecosynth 

TCH error relative to LIDAR TCH (average RMSE = 3.1 m). The influence of 

accounting for DTM offset on other conditions (Table 3) was not addressed in the current 

study.  
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This effect appeared to be explained by rapidly decreasing point cloud density as 

a function of forward overlap.  RMSE error of Ecosynth TCH was negatively correlated 

with the logarithm of point cloud density for both field and LIDAR estimates (R2 = 0.99 

& 0.76, respectively; Figure 2).  There was no significant effect of image resolution 

above 5 MP on Ecosynth TCH compared to field estimates and LIDAR, however, 

Photoscan reconstruction failed at resolutions below 5 MP.  Error in Ecosynth TCH 

estimates increased as altitude decreased (R2 = 0.77, Table 3), which may be due to 

reduced forward overlap at lower altitudes given constant camera shutter speed (≈ 2 fps) 

and UAS speed (≈ 6 m s-1).  Translating values of flight altitude to values of percent 

forward overlap: 96 % at 80 m, 95 % at 60 m, 92 % at 40 m and 84 % at 20 m, reveals 

the same strong trend between mean Ecosynth TCH error and forward overlap (R2 = 

0.97) that was observed when forward overlap was artificially reduced by sub-sampling 

images from the same set of replicates.  Measures of absolute positioning accuracy 

(RMSE meters ICP-XY and ICP-Z error, Launch Elevation Difference) and TCH error 

relative to field measurements and LIDAR were higher on cloudy days compared to clear 

days (p < 0.01, Table 3). 
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Ecosynth estimates of per plot above ground biomass density (AGB) based on 

linear regression of TCH were highly correlated with field estimated AGB (R2 = 0.81) 

with 64 Mg ha-1 RMSE error, or about 31 % of field estimated mean AGB density across 

all plots (Figure 3a).  Ecosynth AGB estimates were relatively precise across all 

replicates with a 95 % CI of +/- 3.8 Mg ha-1 or ≈ 2% of mean AGB density.   LIDAR 

estimates of field estimated AGB were similar to those from Ecosynth: R2 = 0.82, RMSE 

= 59 Mg ha-1 or 29% of field estimated mean AGB (Figure 2b).   

 

 

 
 

Figure 2: Scatter plots of the relationship between mean point cloud density and mean 
Ecosynth TCH error relative to field measurements and LIDAR TCH estimates for a 
single set of 5 replicates sub-sampled from every image to every 10th image to 
simulate decreasing forward photographic overlap. Top axis indicates corresponding 
forward overlap: 60%, 64%, 68%, 72%, 76%, 80%, 84%, 88%, 92%, and 96%. 
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3.2 Influence of scanning conditions on point cloud positioning accuracy  

Four empirical traits describing point cloud relative and absolute positioning accuracy 

were evaluated as a function of scanning conditions and relative to canopy height metrics.  

Relative horizontal positioning error (Path-XY) was strongly influenced by changes in 

flight altitude and photographic forward and side overlap (R2 = 0.64 – 0.98, p < 0.05, 

Table 3) but in general was un-related or weakly correlated with canopy height and other 

metrics (R2 = 0.0 – 0.24, Table 3).  Relative vertical positioning error (Path-Z) was 

unrelated to canopy metrics and to changes in lighting and altitude, but increased with 

decreasing photographic overlap.  However, measures of relative positioning error 

provide a valuable quality control metric for characterizing large errors in SFM 

reconstruction.  At image resolutions below 5 MP, Photoscan SFM reconstructions 

completely failed and measures of relative positioning error reflected this in RMSE 

values > 30 m.  Measures of absolute positioning error were only affected by changing 

light conditions and where un-affected by changes in all other scanning conditions.  

Horizontal (ICP-XY) and vertical (ICP-Z) absolute positioning error were higher under 

 
Figure 3: Average Ecosynth (a) and LIDAR (b) TCH estimated AGB (Mg ha-1) 
relative to field estimated AGB. Solid line is one to one line, error bars are standard 
deviation of Ecosynth AGB per plot. 
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cloudy conditions compared to clear conditions (p < 0.05, Table 3) and differences in 

lighting explained some of the variation in ICP-Z at different levels of altitude 

(interaction p < 0.01) and side overlap (interaction p < 0.05). 

3.3 Influence of scanning conditions on measures of canopy sampling 

Forest area point cloud density showed several distinctive trends within different 

treatments (Table 3).   In general, point cloud density was highest under conditions of the 

highest amount of photographic forward and overlap.  Point cloud density was unchanged 

by changing resolution (10, 7.5, to 5 MP) on the same set of images, which is counter to 

the understanding that increased image resolution will increase the number of image 

features and potentially the number of point cloud points (Lowe 2004) and is likely due 

to the setting for the maximum number of allowed features per image in Photoscan.  

However, these results are inconsistent with the observed relationship that point cloud 

density increased with decreasing flight altitude, (R2 = 0.98), which should represent both 

an increase in observed detail in images and a decrease in photographic overlap at fixed 

UAS and camera speed.   By comparison, average LIDAR first return point cloud density 

in forested areas was 10.8 points m-2, similar to the acquisition specification of 10.06 

points m-2.  There was a significant difference (p < 0.05) in mean point cloud density 

under different lighting conditions, with roughly 30 % more points m-2 observed on 

average on cloudy days compared to clear days (43 vs. 33 points m-2).   

Average canopy penetration (CP), measured as the average percent coefficient of 

variation of heights within 1 m x 1 m bins in forested areas, was significantly lower under 

cloudy conditions compared to clear lighting conditions (18 % vs. 15 %, p < 0.01, Table 

3).  This means that on average, Ecosynth point clouds observed up to 1 m deeper into 
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the canopy on clear days compared to cloudy days.  CP was also significantly influenced 

by photographic overlap, increasing with increasing side overlap (15 % to 18 %, R2 = 

0.94) and decreasing with decreasing forward overlap (18 % to 2 %, R2 = 0.90, p < 

0.001).   Average CP across all Ecosynth replicates was 17 %, by comparison average 

forest area CP for the LIDAR first return point cloud was 29 %.  The difference between 

Ecosynth and LIDAR average CP in forested areas was significantly different than zero 

(one-sampled t-test: t = 40.85, p < 0.05) and equates to LIDAR observing roughly 2.5 m - 

3.5 m deeper into the canopy than Ecosynth at canopy heights of 20 – 30 m. 

3.4 Influence of wind of point cloud quality 

Results of comparing mean wind speed during flight, based on the Beaufort wind force 

scale, to measures of Ecosynth traits and metrics are summarized in Table 4.  In general, 

increasing wind speed led to increased error in point cloud vertical positioning and 

estimates of canopy height (R2 = 0.13 – 0.99).   Increased wind speed was weakly 

correlated with decreased relative and absolute horizontal positioning error (R2 = 0.23 & 

0.27) and was related to average forest area point cloud density.   Even so, the only 

statistically significant trend at the α = 0.5 level was between wind speed and average 

canopy penetration (R2 = 0.79, p < 0.05), where increased wind speed led to a 12 % 

increase in CP (17 % to 19 %).  These results suggests that the factor of wind speed alone 

is not enough for predicting error in Ecosynth TCH estimates, but that TCH error is likely 

to be greater on windier days compared to calm days.   
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3.5 Radiometric quality of Ecosynth point clouds 

Average radiometric variation across channels (RGB and grayscale intensity) ranged 

from 2.0 % - 5.9 % and was highly correlated with the structural complexity of the land 

surface, as measured by the mean rugosity or bumpiness of different landcovers (R2 = 

0.74, Figure 4, Table 5).   The lowest values of average color-spectral variation (2.0 % - 

3.1 %) were observed in the turf areas that were the most homogenous across the 

landscape and also had low structural complexity.  The highest values of average color-

spectral variation (3.3 % - 5.9 %) were observed in areas of forest and buildings.  High 

variation is expected over forests as a result of the structural complexity of the forest 

canopy, due to relatively bumpy 3D structure (1.7 m rugosity) the color-spectral signal 

represents a mix of illuminated and shaded surfaces (Ogunjemiyo et al. 2005).   

 

Table 4: Variation in Ecosynth point cloud quality traits and metrics as a function of 
average wind speed during each flight based on the Beaufort wind force scale.  
 
 Mean wind speed during flight 

Beaufort wind force (m s-1) (mph) 
   

 1 
(0.3 – 1.5) 

(1 – 3) 

2 
(1.6 – 3.4) 

(4 – 7) 

3 
(3.5 – 5.4) 

(8 – 12) 

4 
(5.5 – 7.9) 
(13 – 17) 

R R2 F-test 

Path-XY Error 
RMSE (m) 1.30 1.20 1.60 0.71 -0.48 0.23 NS 
Path-Z Error 
RMSE (m) 0.38 0.43 0.48 0.51 0.99 0.99 NS 
ICP-XY Error 
RMSE (m) 2.51 1.80 2.22 1.95 -0.52 0.27 NS 
ICP-Z Error 
RMSE (m) 2.49 3.03 2.54 3.40 0.67 0.44 NS 
Launch Location Elevation 
Difference (m) 1.63 3.01 2.90 2.91 0.73 0.54 NS 
Ecosynth TCH to Field  Height  
RMSE (m) 5.41 5.65 5.39 6.67 0.75 0.57 NS 
Ecosynth TCH to LIDAR TCH 
RMSE (m) 2.48 2.48 2.08 2.93 0.36 0.13 NS 
Average Forest  
Point Density (points m-2) 47 35 36 45 -0.11 0.01 NS 
Average Forest 
Canopy Penetration (% CV) 17 16 18 19 0.89 0.79 p < 0.05 
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High color-spectral variation over buildings was not expected, as structurally 

simple roof-tops should be represented with a relatively homogenous signal, similar to 

that of pavement and turf.  High variation in buildings may be the result of edge effects 

around building edges where due to horizontal positioning errors (section 3.2) sides of 

buildings were counted within the building landcover areas. Within forest areas, the 

average variation in point color per channel was strongly influenced by the lighting 

conditions of the flight (Figure 5).  Color variation can also be considered a measure of 

contrast and results show that forest areas were observed with lower contrast on cloudy 

days compared to clear days (p < 0.0001 for all per channel and intensity differences).  

Relatively low image contrast is known to reduce the 'stability' or quality of computer 

vision feature detectors used in SFM reconstruction (Lowe 2004; Vonikakis et al. 2012) 

and this difference in contrast may explain the observed increase in point cloud vertical 

positioning and canopy height error on cloudy days compared to clear days (Table 3). 

Figure 4: Radiometric precision of Ecosynth point clouds per channel averaged within 
different landcovers across all main replicates at the Herbert Run site (n = 82).  
Average channel percent deviation measures variation (standard deviation) in point 
color within 1 m x 1 m bins, interpreted as a percentage of the maximum potential 
channel brightness (255). 
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3.6 Influence of computation resources on Ecosynth point cloud quality 

Ecosynth point clouds processed in Photoscan (v0.91) required between 0.5 - 164 hours 

of computation, which was primarily a function of the number of photos used in the 

reconstruction and the resources of the computer used for processing.  Across all 

Table 5:  Mean and standard deviation of the percent channel variation for red, green, 
and blue point colors as well as the point color gray scale intensity and mean rugosity 
by landcover at Herbert Run.  
 

 Per Channel Mean (SD) Percent Deviation Mean 
Rugosity 

(m)  RED GREEN BLUE INTENSITY 

TURF 3.1 (0.7) 2.9 (0.7) 2.0 (0.5) 2.8 (0.7) 0.45 

PAVEMENT 4.1 (0.6) 3.9 (0.6) 3.6 (0.6) 3.9 (0.6) 0.41 

BRUSH 4.1 (1.1) 4.1 (1.0) 2.3 (0.5) 3.9 (1.0) 1.18 

OTHER 4.4 (1.2) 4.3 (1.2) 3.4 (1.0) 4.2 (1.2) 0.29 

BUILDINGS 5.4 (1.1) 4.9 (1.1) 4.7 (1.0) 4.9 (1.1) 0.97 

FOREST 5.3 (1.3) 5.9 (1.3) 3.3 (0.6) 5.4 (1.2) 1.73 

    R2 = 0.74 

 
Figure 5: Average variation or contrast of point cloud point color values per channel 
within forest areas only under either clear or cloudy (diffuse) lighting conditions.  All 
per channel differences in average variation under different lighting were significantly 
different based on analysis of variance (p < 0.0001).  
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replicates, computation time was highly correlated with roughly the square of the number 

of photos, R2 = 0.96, Figure 6).  This is line with the understanding that in the process of 

identifying potential matches across images to supply to the bundle adjustment, an SFM 

algorithm needs to compare every image to every other image (i.e., N2, Snavely et al. 

2008).  Number of photos, and therefore computation time, was also strongly dependent 

upon flight configuration.  Flights with high overlap required more photographs, resulting 

in an increase in computation time (Table 3).  Running the same set of photos in the same 

version of Photoscan on different computers resulted in little overall change in Ecosynth 

point cloud traits and metrics, but a large change in computation time (Table 6).   The 

average variation in traits and metrics within replicates ranged from 0.1 – 6.7 % of the 

mean, with computation time being most affected by computer resources.   

 

Table 6: Computation time, quality traits and metrics for the same ‘standard’ dataset 
run across 6 computer configurations, running version 0.91 of Photoscan. 
 

 Average within replicate variation  
across 6 different computers 

Point Cloud Traits and Metrics SD % CV 
Path-XY Error 
RMSE (m) 0.01 m 0.8 % 

Path-Z Error 
RMSE (m) 0.002 m 0.7 % 

ICP-XY Error 
RMSE (m) 0.11 m 6.7 % 

ICP-Z Error 
RMSE (m) 0.06 m 3.9 % 

Launch Location Elevation 
Difference (m) 0.04 m 1.5 % 

Ecosynth TCH to Field  Height  
RMSE (m) 0.01 m 0.2 % 

Ecosynth TCH to LIDAR TCH 
RMSE (m) 0.01 m 1.2 % 

Average Forest  
Point Density (points m-2) 0.02 points m-2 0.1 % 

Average Forest 
Canopy Penetration (% CV) 0.4 % 2.4 % 

Computation Time (hours) 7.9 hours 18 % 
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Point clouds produced in different versions of Photoscan (v0.91 and v1.04) were 

nearly identical based on measures of point cloud quality traits and metrics, with the only 

noticeable difference being that the latest version of Photoscan required ¼ the 

computation time on the same computer, explained as 'improved image alignment 

performance' in the program's version change log (Table 7). Point clouds produced using 

the free and open-source Ecosynther implementation of the Bundler-PMVS pipeline were 

evaluated as 'sparse' and 'dense' point clouds.  Sparse point clouds reflect the output of 

Bundler sparse bundle adjustment alone and points correspond to the image features 

identified and matched across images as part of the SFM reconstruction process (Snavely 

et al. 2008; Chapter 3).  Dense models are produced by an additional level of processing 

that produces a dense set of points based on the 3D camera geometry produced in the 

sparse bundle adjustment stage (Furukawa and Ponce 2010), a step commonly used in 

other UAS-SFM remote sensing applications (Table 1, Chapter 1).  Dense processing 

produced an 8x increase Ecosynther point cloud density.  Ecosynther required roughly 50 

% more computation time to produce a sparse model compared to Photoscan v0.91, with 

 
Figure 6: Computation time required for SFM processing in Photoscan v0.91 based on 
the number of photos. 
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dense point clouds requiring an additional 4.6 hours of computation after the sparse point 

clouds were produced.  Ecosynther sparse point clouds were 20 % less dense than 

Photoscan point clouds and had half the canopy penetration (9 % vs. 18 %).  Ecosynther 

dense point clouds were roughly 70 % more dense than Photoscan point clouds but also 

had lower canopy penetration (13 % vs, 18 %).  TCH estimates of field measured canopy 

height from the sparse point cloud were similar to those from Photoscan, however the 

dense point cloud showed increased RMSE error (3.8 m – 5.3 m).   The difference 

between Ecosynth and LIDAR TCH was lowest for the Ecosynther dense point cloud 

(RMSE = 2.0 m) compared to the sparse point cloud and Photoscan point clouds (RMSE 

= 2.9 – 3.0 m).   

 

Table 7: Comparison of Ecosynth point cloud quality traits and metrics for a single 
replicate processed under different SFM algorithms. 

Point Cloud Traits and Metrics Photoscan 
v0.84a 

Photoscan 
v0.91 a 

Photoscan 
v1.04 a 

Ecosynther 
v0.8 

Sparse b 

Ecosynther 
v0.8 Dense 

b 
Path-XY Error 
RMSE (m) 1.1 1.1 1.1 1.1 1.1 

Path-Z Error 
RMSE (m) 0.3 0.3 0.3 0.7 0.7 

ICP-XY Error 
RMSE (m) 1.6 1.6 1.6 1.9 1.9 

ICP-Z Error 
RMSE (m) 1.0 0.9 0.9 0.8 0.8 

Launch Location Elevation 
Difference (m) 0.9 0.9 0.9 0.6 0.6 

Ecosynth TCH to Field  Height  
RMSE (m) 3.8 3.9 3.9 3.8 5.3 

Ecosynth TCH to LIDAR TCH 
RMSE (m) 3.4 3.0 2.9 2.9 2.0 

Average Forest  
Point Density (points m-2) 88 36 34 7 59 

Average Forest 
Canopy Penetration (% CV) 18 18 18 9 13 

Computation Time (hours) 30.4 44.9 10.7 61.8 Sparse + 
4.6 

a All versions of Photoscan run with same computer and settings,  Chapter 2. 
b Ecosynther v0.8 run on Amazon EC2 computer instance: g2.2xlarge, Intel Xeon E5-
2670, 8 CPU processors, 15 GB RAM, NVIDIA GPU with 1,536 cores and 4 GB 
video RAM. 
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4.0 Discussion 

4.1 Ecosynth remote sensing of forest canopies under varying conditions 

Through a crossed experimental design with a relatively large number of replicates at the 

same site (n = 82), this research estimated field-measured average maximum canopy 

height based on the top-of-canopy height (TCH) of Ecosynth point clouds within 0.06 ha 

(25 m x 25 m) plots based on multiple data collection configurations.  Analysis showed 

relatively high average RMSE error compared to field measured heights (mean RMSE = 

6.5 m) and prior studies (RMSE = 1.7 – 4.4 m; Chapter 2; Dandois and Ellis 2010, 2013; 

Lisein et al. 2013).  Even so, the large number of replicates collected at the same site 

revealed a consistent precision of Ecosynth estimates of canopy height (mean SD = 2.5 

m).  Under optimal conditions (clear skies, 80 m altitude above the canopy, and 75 % 

side photographic overlap) Ecosynth estimates of canopy height compared to both field 

and LIDAR measurements were significantly better.   Average RMSE in Ecosynth TCH 

estimates of canopy height was 4.5 m compared to field estimates and 2.2 m compared to 

LIDAR TCH under optimal scanning conditions. Error in Ecosynth TCH measurements 

was strongly linked to the co-registration of Ecosynth point clouds to the DTM used for 

estimating heights.  Accurate co-registration of DSMs and DTMs from different data 

sources represents a major challenge to accurately estimating canopy structure (St Onge 

et al. 2008; Ni et al. 2014) and remains a significant challenge for using Ecosynth to 

estimate canopy height.   The importance of DTMs in estimates of canopy height is 

addressed more thoroughly in Chapter 2 (Dandois and Ellis 2013).   Accounting for DTM 

offset based on the measure 'Launch Location Elevation Difference', substantially 

reduced the error in Ecosynth TCH estimates relative to field measurements: average 
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RMSE 4.5 to 3.7 m for the optimal set of point clouds, 6.5 m to 4.2 m average across all 

replicates.  Interestingly, DTM offset correction actually increased RMSE error between 

Ecosynth and LIDAR TCH values within the set of optimal point clouds and across all 

replicates (average RMSE = 2.4 m to 2.5 m, 2.2 m to 3.1 m, respectively), although the 

reason why is unclear.  This form of DTM correction can be easily applied to Ecosynth 

datasets collected at other sites as it only requires a single reference measure of the 

altitude of the ground where the copter was launched, a measure that could be obtained 

from a high quality DTM (e.g., LIDAR) or by mapping-grade GPS (e.g., Trimble Geo 

XT with sub-meter precision). While this form offset correction did show improved 

estimates of canopy height, the effect of this correction on the results of the factorial 

experimental design (Table 3) were not addressed.  Future research should reevaluate the 

observed trends in point cloud traits and metrics after mis-registration between DTM and 

point cloud has been addressed.  

Even with errors in co-registration between Ecosynth DSMs and LIDAR DTMs, 

Ecosynth TCH estimates across three different sites were highly correlated with those 

from LIDAR (R2 = 0.83 - 0.99) and with relatively low error (RMSE = 1.7 - 2.5 m) 

compared to results from field measurements (Table 2).  That both Ecosynth and LIDAR 

TCH underestimated field measured average maximum canopy height by on average > 4 

m may be explained in part by error in field measurements, but also in the way in which 

in the canopy is described by 3D canopy height models (CHMs).   Field based estimates 

of tree height have been found to have significant error (1 m to > 6 m) owing to the 

challenges in observing the top of trees from the ground below (Bragg 2008; Goetz and 

Dubayah 2011; Larjavaara and Muller-Landau 2013).  In this study, field measurements 
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describe per plot canopy height based on the average height of the 5 tallest trees per plot 

(by DBH), representing the 5 tallest points of the outer canopy surface within a plot if all 

tree crowns reach the outer surface.  The measure of top-of-canopy height (TCH), 

represents the average height over the entire outer surface of the canopy as observed by 

the remote sensing instrument, whether Ecosynth or LIDAR (Asner and Mascaro 2014).  

It is not surprising then that TCH underestimates field estimated height since field 

measures are from the tallest observed point for the largest trees in a plot and most of the 

canopy surface observed by LIDAR or Ecosynth should technically be lower than these 

tallest points, whether for a single crown or multiple crowns.  Ecosynth TCH estimates of 

field-estimated AGB followed similar patterns relative to field and LIDAR measurements 

due to the fact that AGB is modeled from per plot height estimates. 

4.2 Recommendations for optimal data collection 

Along with enabling estimates of the precision of Ecosynth point cloud measurements, 

the large number of replicates collected in this research at varying levels of light, altitude, 

photographic overlap, and wind, makes it possible to suggest optimal data collection 

configurations for future UAS-SFM remote sensing.  Optimal Ecosynth point cloud 

quality (low geometric error, low canopy height error, high point cloud density, and high 

canopy penetration) was obtained under configurations that maximized photographic 

overlap.  All other factors being equal, such conditions led to reduced error in canopy 

height estimates, increased point cloud density, and increased penetration of points into 

the canopy.  Within the set of replicates collected here, optimal conditions were achieved 

on clear days, at an altitude of 80 m above the canopy and with 75 % side photographic 
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overlap (Table 2, Figure 1).  Table 8 summarizes the Ecosynth point cloud quality traits 

and metrics obtained under these optimal conditions.  

 

However, increased overlap also resulted in an increased number of photos which 

significantly increased computation time (≈ N1.8, based on Photoscan v0.91 across 

multiple computing platforms).  Flight configurations that minimize the number of photos 

while still providing a large amount of photographic overlap will provide an optimal 

trade-off between point cloud quality and computation time.  Eisenbeiss (2009) also 

found improved results with high amounts of photographic overlap > 75 %.  Computation 

time could be reduced by running SFM with only every other image from the data 

collection, at the estimated mean cost of roughly 0.5 m increased error in field height 

predictions.  

Table 8: Average Ecosynth point cloud quality traits and metrics for the 'optimal' 
Ecosynth data collection: clear skies, 80 m altitude, 75 % side overlap processed with 
Photoscan v0.91, n=7. 
 

Point Cloud Traits and Metrics Average Ecosynth Quality 
Traits and Metrics  

Path-XY Error 
RMSE (m) 1.1 m 

Path-Z Error 
RMSE (m) 0.5 m 

ICP-XY Error 
RMSE (m) 1.7 m 

ICP-Z Error 
RMSE (m) 1.6 m 

Launch Location Elevation 
Difference (m) 1.2 m 

Ecosynth TCH to Field  Height  
RMSE (m) 4.5 m 

Ecosynth TCH to LIDAR TCH 
RMSE (m) 2.2 m 

Average Forest  
Point Density (points m-2) 35 points m-2 

Average Forest 
Canopy Penetration (% CV) 20 % 

Computation Time (hours) 45.4 hours 
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The relationship between photographic overlap and point cloud quality may be 

related both to aspects of SFM reconstruction and also to the way in which the canopy is 

sampled by the SFM point cloud.  From the point of view of SFM, decreased 

photographic overlap equates to an increase in the spacing between adjacent images and 

in the angle between views (view-angle) on the same feature from multiple images. 

Increasing the view-angle on the same feature leads to rapidly decreasing performance in 

the ability of the feature descriptor to correctly and consistently match the location, scale, 

and orientation of the same feature in different images (Lowe 2004).   While it is not 

possible to know exactly what feature descriptor is used by Photoscan, it is said to be 

SIFT-like (Chapter 2), and the ability of SIFT to match features across images decreases 

rapidly after the view-angle increases beyond 20° (Lowe 2004).   Based on the camera 

and UAS settings used here, view angles exceeded this threshold at 80 m above canopy 

height when photographic overlap was less than 72 %.  Without additional levels of 

processing, SFM will only create points that have been matched as features across images 

and which contribute to the bundle adjustment solution (Chapter 3; Snavely et al. 2008). 

A decreased number of feature matches could then lead to the observed decrease in point 

cloud density, resulting in reduced sampling of the canopy and potentially increased error 

in canopy height estimates (Næsset 2009).  In addition, those points that are matched 

under conditions of reduced overlap and view-angle may have reduced reliability of 

location estimation within and across images (Lowe 2004) resulting in reduced quality of 

3D point locations and increases in height error. 

This study found that the optimal weather conditions for Ecosynth UAS-SFM 

scanning were days with clear skies and light wind speeds (< 3 mph or 1.5 m s-1).  
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Cloudy days resulted in reduced contrast in images of the canopy and increased error in 

both positioning accuracy traits and canopy structure metrics, potentially due to the link 

between image contrast and the stability of SFM feature detectors (Chapter 3, Lowe 

2004, Vonikakis et al. 2012).   Flights carried out on windy days showed increased error 

in point cloud quality traits and metrics, but differences based on wind speed alone were 

not significantly different than zero. Even so, high wind speeds should be avoided as they 

will cause the UAS to use more power to maintain position and reach waypoints during 

autonomous flight, resulting in reduced potential flight time that may lead to incorrect 

estimates of available battery life for a given mission.  At average wind speeds up to 17 

mph or 7.9 m s-1 the UAS was able to carry out missions without running out of battery 

power.  Increased wind speed may increase error in 3D point cloud quality by introducing 

error into the SFM-bundle adjustment step that assumes that the only thing moving is the 

camera and not the features.  On windy days the image features (Chapter 3) will move 

between image frames (leaves fluttering or branches swaying) and SFM may incorrectly 

estimate the 3D location of the feature because of this motion.   

Further exploration of the relationship between measures of point cloud quality 

and the behavior of the SFM algorithm is limited by the fact that a commercial and closed 

source SFM algorithm was used in computation.  Future SFM remote sensing research 

should consider the potential of using a free and open source computation algorithm to 

enable additional analysis of the relationship between image features and data quality.  

Comparisons in Ecosynth point cloud quality traits and metrics between Photoscan and a 

free, open-source SFM algorithm (Ecosynther) revealed similar point cloud positioning 

accuracy regardless of algorithm, but large differences in TCH estimates, point cloud 
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density, canopy penetration, and computation time depending on the level of post-

processing applied in the algorithm (e.g., sparse versus dense processing).  Even so, the 

use of a free, open source SFM algorithm provides access to the image features used in 

reconstruction and may make it possible to extract additional information about the 

relationship between point cloud quality and features as well as new canopy metrics from 

image features (e.g., mapping of fruits or flowers, metrics of leaf clumping or gap size).   

For example, access to image features would make it possible to compare the relationship 

between feature association (e.g., bright spots vs. dark spots, Chapter 3) and point cloud 

quality.   

4.3 Future research on Ecosynth UAS-SFM point cloud data quality 

While this research captured the relationship between Ecosynth point cloud quality and 

several key aspects describing data collection configurations, there are many more 

potential interactions that remain unexplored.  Future work can take advantage of the data 

quality framework established here to evaluate other data collection and processing 

configurations, including different flight configuration levels, additional SFM post-

processing, changing camera settings, or other weather conditions.   

This research only considered a few major levels of photographic overlap and 

flight altitude and it is unclear if other levels in between those tested would provide even 

more optimal data quality or reduced computation time.  For example, we tested levels of 

50 % and 75 % side overlap and found that point cloud quality was better with more side 

overlap at the cost of more photographs and increased computation time.  Future research 

could consider if similar improvements in data quality can be achieved by going from 50 

% to 60 % side overlap, which would require fewer images for a given area, camera 
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settings, and flight altitude than 75 % side overlap.   While there was a strong connection 

between increasing Ecosynth point cloud quality and decreasing photographic overlap 

(Table 3), all levels of side overlap were not fully crossed with all levels of altitude 

(Table 1).  While capturing these additional levels within the original data collection may 

have provided more potential criteria for considering optimal flight configurations, all of 

the levels not captured represent decreases in both forward and side photographic 

overlap.  Given the already strong connection between overlap and point cloud quality, it 

is expected that these additional levels would support the current results while increasing 

the sample size and computation requirements by roughly 40 % with full replication.  

Photoscan SFM alignment settings were left constant throughout all image processing 

(Section 2.2) and it is not known how changing these settings will influence point cloud 

quality or help explain observed differences in point cloud quality (Section 3.3).  This 

research also did not explore additional levels of post-processing available in Photoscan, 

which includes using estimates of camera location from UAS GPS telemetry to reduce 

computation time by limiting the number of required image comparisons, processing that 

produces a more dense point cloud after the initial SFM reconstruction, or changing the 

maximum number of points per image to use.  It is unclear then if there exists a 

combination of reduced image resolution and forward overlap, plus different levels of 

SFM computation that could produce point clouds of similar or better quality but with 

reduced computation requirements.  

This research highlighted a strong link between the contrast with which the forest 

canopy is observed in images and the subsequent quality of structure measurements 

obtained from SFM reconstruction.  The same camera with the same calibration settings 
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was used for all data collection, but it is unclear if different camera settings or even 

image post-processing could improve or change results.  Varying camera exposure 

settings or even capturing multiple exposure settings over the same area (i.e., 'bracketed' 

exposure; Cox and Booth 2009) may produce images with improved contrast.  In 

addition, image color corrections like histogram equalization may be useful for 

artificially enhancing image contrast to reduce the influence of scene lighting conditions 

during flight.  This may be particularly useful for days when it is not possible to collect 

images under constant uniformly clear or uniformly cloudy conditions where the fixed 

exposure settings at the beginning of the flight and rapidly changing cloud cover result in 

images that are alternately over- or under- exposed (Chapter 2; Dandois and Ellis 2013).   

It is also possible to carry out near-infrared remote sensing with UAS using modified off-

the-shelf digital cameras (Hunt et al 2005) or custom light-weight multi-spectral cameras 

(Berni et al. 2009; Turner et al. 2012) and future work should consider the potential of 

using such sensors for mapping canopy NDVI (Normalized Difference Vegetation Index) 

at high spatial resolution and in 3D, providing links between canopy structure, optical 

properties, and biophysical parameters (Dandois and Ellis 2013; Ryu et al. 2014).   

Finally, future research should more closely examine the relationship between point 

cloud quality and the features identified in images for SFM reconstruction.  This link 

could explain the observed relationship between image contrast and measures of the 3D 

structure quality of forest canopies.  Such questions could not be explored in this chapter 

in the same way as was done in Chapter 3 because the closed source nature of Photoscan 

prohibits access to the image features.  Evaluation of the patterns observed in this 

research through use of point clouds generated by free and open-source SFM algorithms 
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like Ecosynther, may help shed light on the vital role that the image feature descriptor 

plays in SFM remote sensing, an element of the 'sensor system' which may be as 

fundamental as the image pixel in optical image remote sensing or the laser spot in 

LIDAR remote sensing. 

5.0 Conclusions 

The measurement of vegetation structural and spectral traits by automated SFM 

algorithms and consumer UAS is a rapidly growing part of the field of remote sensing.  

However, because UAS-SFM remote sensing is user-deployed and based on user-

specified hardware (UAS and camera), software (SFM algorithms and post-processing), 

and data collection configurations (altitude and overlap), datasets can be produced under 

many different 'sensor' configurations and there exists no clear understanding of data 

quality measures or of the relationship between data quality and data collection 

configurations.  This research defined several diagnostic quality measures based on 

LIDAR and optical image remote sensing, including point cloud positioning accuracy, 

point cloud density, canopy penetration, and radiometric noise or contrast, that can be 

used to describe point clouds and also to characterize sources of error in canopy height 

measurements.  Using these quality measures, strong links were identified between 

vegetation structure measurements and the behavior of the SFM algorithms relative to the 

amount of photographic overlap and also to the quality of input images (image contrast).  

Recommendations were made for optimal flight configurations for future research aimed 

at characterizing canopy structure.  UAS-SFM research is currently inspired to recreate 

the functionality of LIDAR for characterizing ecosystem vegetation structure, likely in 

large part due to the fact that the datasets produced by such systems are made available in 
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a similar form: a 3D point cloud.  Yet the future of UAS-SFM remote sensing lies not in 

how it can recreate existing tasks, but how in it can be used to integrate computer vision 

research into ecological remote sensing, including the potential for automated mapping 

and identification of canopy objects like leaves, fruits, and flowers through the use of 

image features.  If UAS provides field scientists with a birds-eye view of the landscape, 

computer vision will provide the 'ecologists-eye' view of the elements within that 

landscape. 
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Chapter 5:  Conclusions 
 
The main objectives of this research were to define a new form of remote sensing of 

forest canopies (Ecosynth), to improve understanding of what is being measured by this 

system by addressing the question 'What is a point cloud point?', and to evaluate the 

quality of Ecosynth point clouds of forest canopies and how changing the way the data is 

collected will influence data quality.  Ecosynth remote sensing with structure from 

motion (SFM) and unmanned aerial systems (UAS) was introduced along with a 

processing pipeline to produce ecological products from SFM three-dimensional (3D) 

point clouds.  This pipeline was used to produce estimates of forest canopy height and 

canopy color-spectral phenology in 3D (Chapter 2).  The nature of Ecosynth point cloud 

points was evaluated by examining the 3D-color quality of individual points at painted 

targets in a tree and based on comparison of point image features to manual classification 

of image semantic content (Chapter 3). Using a crossed experimental design, the quality 

of Ecosynth point clouds of forest canopies was evaluated across a range of different 

flight plans, weather conditions, and image processing with recommendations for optimal 

scanning configurations (Chapter 4).  Ultimately, the computer vision 'image feature' was 

identified as a prominent factor in understanding the quality of both individual Ecosynth 

points and of the entire point cloud.   

 Three major research questions were posed in Chapter 1 that are arguably difficult 

or impossible to examine with existing forms of remote sensing, due to either technical or 

logistical constraints, or both.  To review, those questions were: What are the spatial and 

temporal patterns of forest canopy phenology at the scale of individual crowns / tree species 

and how does this vary across within and across sites?  What are the dynamics of canopy 
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biomass density at seasonal and longer time intervals across different forest types? How does 

the amount of tree flower and fruit production vary through time and as a function of climate, 

species, and local edaphic conditions?  The major outcome of the dissertation is that 

researchers now have access to the necessary tools for attempting to answer these questions. 

Ecosynth computer vision ecological remote sensing enables on-demand observations of 

canopy 3D structural and spectral traits at high spatial resolution and at frequent intervals, a 

feat not possible or practical with other forms of remote sensing to date. This dissertation 

research has demonstrated that Ecosynth ecological remote sensing techniques can be used 

repeatedly to collect high resolution observations of canopy structural and spectral traits at 

the scale of individual trees (Chapter 2, Chapter 4).  Research that aimed to improve 

understanding of what SFM remote sensing is observing with respect to the forest canopy 

revealed the strong role that the computer vision image feature played in how the canopy is 

seen, opening the door for more targeted feature based remote sensing of forest canopies, for 

example for tracking individual flowers on a crown (Chapter 3).  The sections below 

summarize the major findings and contributions of each research chapter and highlight 

potential areas for future research.  That is followed by recommendations for how to take 

advantage of the potential for using computer vision image features in Ecosynth UAS-

SFM remote sensing of forest canopies. 

1.0 Major findings and contributions of research chapters 

1.1 Major findings and contributions from Chapter 2 

Chapter 2 presented Ecosynth remote sensing as a combination of UAS hardware, SFM 

software, and post-processing steps for producing forest canopy data products over small 

spatial extents (< 10 ha), but at high spatial resolution and high frequency. Ecosynth 
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measurements of canopy height were comparable to LIDAR and field based 

measurements, but the quality of height measurements depended strongly on the quality 

of the digital terrain model (DTM) used for estimating heights from point cloud 

elevations.  DTMs produced from Ecosynth point clouds under leaf-off forest conditions 

produced more accurate estimates of canopy height than those produced from leaf-on 

point clouds owing to the fact that leaf-off point clouds observed more of the forest floor.  

However, leaf-off point clouds still showed considerable errors relative to a more 

accurate LIDAR DTM and generally overestimated the elevation of the understory 

terrain, leading to underestimates of canopy height.   Ecosynth point clouds were also 

produced over a single forest at six times across a 16 month period, capturing a full cycle 

of canopy phenology.  Ecosynth vertical profiles of both 3D structure and color tracked 

the change in the canopy phenology from the winter leaf-off state through the spring 

greening, summer, and then autumn senescence.  The pattern of canopy greenness 

matched that of satellite observations from the Moderate Resolution Imaging 

Spectrometer (MODIS; Zhang et al. 2003) and also revealed dynamics at the scale of 

individual trees, highlighting the use of Ecosynth techniques for observing local canopy 

dynamics not observed by coarse-resolution satellite sensors.    

The major contributions of Chapter 2 include the first ever use of UAS and SFM 

for characterizing the dynamics of canopy structure and color throughout a growing 

season as well the Python based pipeline used for processing point clouds into products 

(Dandois and Ellis 2013).   The 'Ecosynth Aerial' pipeline is built on this research and the 

initial work of the lead author, but was developed into its current state through the help of 

many others and is now available online as a free and open-source code repository 
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(http://code.ecosynth.org/ecosynthaerial, visited 2014-06-08).   This chapter is already 

inspiring new research using Ecosynth techniques.  Building on an existing forest 

restoration experiment (Holl et al. 2011), Ecosynth techniques are being used to 

characterize canopy height within different planting treatments and also to evaluate the 

potential of using Ecosynth canopy structure measurements (e.g., height, roughness, 

openness) to predict the abundance of frugivorous and insectivorous bird species with 

promising results. Ecosynth techniques will soon be deployed within existing forest plots 

of the Smithsonian Tropical Research Institute (STRI) in Panama to track the phenology 

of the tropical forest canopy. 

1.2 Major findings and contributions of Chapter 3 

Research of chapter 3 was motivated to address the question 'What is a point cloud 

point?' and was carried out using techniques inspired from both remote sensing and 

computer vision.  The quality of point cloud point 3D location and RGB color fusion was 

evaluated by identifying painted targets placed in a single free-standing tree that was 

scanned by ground-based Ecosynth SFM and terrestrial LIDAR (TLS) under leaf-on and 

leaf-off conditions.  Results showed that Ecosynth point 3D-color accuracy was highest 

under conditions when targets were clearly visible in images, but that this depended 

strongly upon what was actually 'seen' by the computer vision image feature descriptor 

SIFT (Scale Invariant Feature Transform; Lowe 2004).  SIFT appeared to favor areas of 

high contrast and so painted targets that were imaged with low contrast were often not 

observed by SFM points.  This finding was re-enforced by analysis of SIFT features as 

numerical feature descriptors and as image feature thumbnail tiles, which revealed that 

SIFT favors parts of the image that are either brighter or darker than the surroundings 
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following a roughly two-dimensional Gaussian shape. There was a weak relationship 

between SIFT feature descriptors and manually identifying image tags, indicating that 

points alone may not be directly linked to any real-world semantic meaning.   

The first major contribution of this research was in the creation several datasets 

that could be used for development of computer vision tools for making observations of 

forests and vegetation.  Results of single tree scanning were strongly dependent on the 

use of the SIFT feature detector, but future research can make use of the image datasets 

and high quality TLS 3D scans to evaluate different SFM implementations using different 

feature detectors. The other major contribution of this research is the Python-based 

graphical user interface (GUI) for tagging image features and a database of classified 

point cloud image features that could be used for additional computer vision ecological 

research.  Computer vision image databases used for image feature research typically 

contain pictures of faces, buildings, cars, and similar objects and if forests or vegetation 

are contained in image datasets it is often if the form of landscape-style pictures and not 

the high resolution aerial images used in this research (Fei-Fei and Perona 2005).  Recent 

research on the use of image features for 'geographic image retrieval' focused on 

discriminating between different types of landcovers alone and did not focus on 

evaluating features within forest canopies (Yang and Newsam 2013). Using a 'bag of 

features' approach, future research could use the datasets and GUI used here to evaluate 

the use of image features for classifying parts of the forest canopy, including leaf clumps, 

gaps, or even fruits and flowers. 
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1.2 Major findings and contributions of Chapter 4 

The research of Chapter 4 focused on defining measures of the quality of Ecosynth point 

clouds of forest canopies and evaluating how those measures of quality change as the 

conditions of data collection change.  Measures of point cloud quality included traits 

describing the geometric positioning accuracy, point cloud density, and canopy 

penetration, as well as metrics describing the estimated error of canopy height estimates 

relative to field and LIDAR measurements.  The results showed that photographic 

overlap made the largest contributions to explaining variation in point cloud quality 

across a range of data collection configurations.  Results also suggested that point clouds 

produced from images collected on cloudy days had increased error compared to when 

images were collected on clear days.  Images on cloudy days had significantly less 

contrast than those from clear days and increased error in height measurements may have 

been due to reduced stability of image feature locations as a result of reduced contrast, a 

result which is in line with understanding of feature detector behavior (Lowe 2004).   

The major contribution of the research presented in Chapter 4 is an understanding 

of how measures of point cloud quality will vary as the data collection conditions vary.  

Prior UAS-SFM research was collected across a broad range of altitudes and levels of 

overlap (see Chapter 1) and prior to this research there was no clear understanding of 

how those differences would influence results.  In addition, other studies typically only 

focus on one measure of point cloud quality, error relative to LIDAR or field 

measurements, this study highlighted the importance of looking at other measures 

including point cloud density and canopy penetration.  Finally, through the collection of a 

large sample of point cloud datasets (n = 82) spanning a range of scanning conditions, 
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this research was able to make recommendations for optimal data collection strategies, 

specifically the recommendation to maximize photographic overlap for a given area 

while minimizing the number of photos to reduce SFM computation costs. 

2.0 The rise of computer vision ecological image features 

Prior research has focused exclusively on how the products produced by UAS-SFM 

remote sensing systems (3D point clouds, canopy height models, digital surface models) 

are like LIDAR and can be used as a substitute for LIDAR and LIDAR-color fusion 

datasets.  While this dissertation shows how that interpretation can lead to novel 

measurements of forest canopies that are not possible or practical with LIDAR, for 

example the observation of canopy structural and spectral phenology (Chapter 2), it does 

not address the full potential of computer vision remote sensing of forests.  One 

overarching finding of this dissertation research was the recognition of the important role 

that computer vision image features play in the way in which forest canopies are 

observed by a UAS-SFM remote sensing system.  The image feature was the focus of 

Chapter 3 and it was demonstrated that the properties of the 3D point cloud produced by 

SFM are strongly dependent upon the image feature detector used for matching images.  

Results from Chapter 4 suggest that image features also play an important role in 

understanding the quality of Ecosynth point clouds of forests under different scanning 

conditions with point cloud quality being strongly influenced by photographic overlap 

and image contrast, factors which will strongly influence the behavior of feature 

detection and matching algorithms (Lowe 2004).   

Based on these findings, image features are defined here as the fundamental 

observation unit or minimum mapping unit of computer vision SFM remote sensing.  By 
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comparison, a picture element or pixel is the minimum unit of optical image remote 

sensing, as is the laser pulse for LIDAR remote sensing (Campbell 1996; Dubayah and 

Drake 2000; Glennie 2007). This definition makes it possible to interpret the quality and 

behavior of SFM point clouds of forest canopies, as was done in Chapters 3 and 4, but 

also opens the door for new research applications that leverage both aerial remote sensing 

and computer vision research.  As discussed in Chapter 1, image features are used for a 

number of applications, including classifying images or parts of images into different 

types of landcover (Yang and Newsam 2013) and even as different leaves or flowers 

(Nilsback 2009; Kumar et al. 2012; Kendal et al. 2013).  Combining computer vision 

image feature research with UAS-SFM aerial remote sensing could lead to novel 

applications like automatically counting and mapping flower cover of tree crowns.  This 

is diagrammed conceptually in Figure 1.   

The tropical tree Dipteryx panamensis has bright pink flowers (Figure 1a) that are 

visible even when viewed from 150 m altitude by a camera on a UAS (Figure 1b). A 

group of Dipteryx flowers were identified on a crown as an image feature based 

potentially on distinct contrast with the green foliage (Figure 1c) and was matched across 

multiple images (Figure 1d) resulting in a pink 3D point on the crown within the whole 

point cloud (Figure 1e). Counting the number of such pink points within a single crown, 

for example following 3D-based crown segmentation (Fisher et al. 2013; Hu et al. 2014), 

may provide an estimate of the flower cover of the crown, an important but difficult to 

measure parameter of tropical canopies (Wright et al. 1999).  Future research should 

explore such potential and also consider how the image features of points within a single 

crown ('crown bag of features') may be useful for discriminating between different genus 
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or species of canopy trees, similar to how time-series of per-crown spectral phenology 

signatures in Temperate Deciduous forests can be used for diversity mapping (Key et al. 

2001). 

 

While a computer vision image feature approach to ecological remote sensing 

presents many exciting research opportunities, future research should also consider the 

value of synthesis or summary research aimed at defining and describing this new 

approach within the context of existing remote sensing techniques.  A useful example for 

 
Figure 1: Conceptual diagram highlighting a single flower cluster from SFM point 
cloud image features.  Dipteryx panamaenis flower cluster viewed on ground (≈ 1m, 
a), and by a UAS (≈ 150 m, b, c).  Flower 'feature' was observed and matched across 
multiple images (d), and as a single point cloud point (e).  Image (a) is for reference 
and is not the same as (b).  UAS imagery and 3D point clouds from the 50 ha 
permanent plot on Barro Colorado Island (BCI), Panama, 2013-06-11, produced by J. 
P. Dandois, unpublished research, (a) courtesy Stephanie Bohlman, BCI, 2013-06-11. 



 

207 
 

such synthesis research comes from the community of researchers engaged in geographic 

object-oriented image analysis (GEOBIA; Blaschke et al. 2014).  Much like the current 

rise in UAS-SFM remote sensing, the area of object-oriented remote sensing was 

motivated by increased access to new hardware and software capabilities for remote 

sensing: very high resolution airborne and satellite imagery with pixel sizes smaller than 

the objects they represent (H-res; Strahler et al. 1986) and image processing software that 

enabled the creation of 'image-objects' or groups of image pixels with similar properties 

relative to the surroundings, also inspired by computer vision (Benz et al. 2004).  Much 

as was done in this dissertation, research about GEOBIA has focused on describing what 

was being measured by image objects and how they related to geographic objects 

(Castilla and Hay 2008).  GEOBIA research also focused on the definitions and 

vocabulary of object-oriented remote sensing, and such an exercise would also be useful 

for future research on ecological image feature remote sensing.   

The term 'image features' or simply 'features' is well understood within the 

computer vision community, but readers from the fields of remote sensing or GIS 

(Geographic Information Systems) may associate different meanings to this term.  

Quackenbush (2004) uses the term 'features' and 'objects' interchangeably to describe 

shapes (points, lines, areas) that could be delineated from an image by a manual operator 

but instead are extracted automatically by computer algorithm.  The GIS software 

ArcGIS (Environmental Systems Research Institute, Redlands, CA) uses the term 

'features' to describe a vector-based geographic entity that provides the spatial 

representation of a real-world object and is linked to a database record.  However, there 

are also similarities. Computer vision, remote sensing, and GIS all consider features to 
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have two main attributes: a shape or spatial characteristic and a descriptive or attribute 

characteristic.  Synthesis of the similarities and differences between computer vision, 

remote sensing, and GIS 'features' would serve as a valuable point of cross-over to 

leverage the strengths of each discipline.   

3.0 Concluding remarks 

In conclusion, the rapid rise of two new technologies, autonomous, consumer unmanned 

aerial systems (UAS) and automated structure from motion image processing algorithms 

(SFM), opens the door to new ways to carry out research on forest canopies. The 

relatively low financial and logistical cost of combining these technologies enables 

remote sensing of forest canopy structural and spectral traits at spatial resolutions and 

frequencies not possible or practical with other forms of remote sensing, albeit at 

relatively small sampling extents (e.g., 10 - 50 ha). In addition, the use of SFM 

algorithms makes it possible to describe forest canopies based on computer vision image 

features, which offers the potential for providing a sematic or ecological classification 

along with measurements of 3D structure and color.  Ultimately, this dissertation research 

should serve as a roadmap for this new area of ecological remote sensing, making it 

possible for future researchers to use computer vision to see the trees through the forest. 
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Appendices 
 

Appendix 1: Supplemental material for Chapter 2 

 
A1.1: Workflow for computer vision (CV) remote sensing (Ecosynth).   
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A1.2: Image acquisition and computer vision data processing characteristics across study 
sites (6.25 ha) for Knoll and Herbert Run sites. 

  Knoll  Herbert Run 
  Leaf-on 1 Leaf-on 2 Leaf-off  Leaf-on Leaf-off  
Flight date  10/8/10 10/24/10 3/11/11  10/6/10 3/5/11  
Canopy condition  green senescing bare  green bare  

Weather  clear overcast partly 
cloudy  partly 

cloudy overcast  

Flight altitude (m)  
mean(SD)  
[min, max] 

 59 (10) 
[30,76] 

67 (10) 
[39,84] 

98 (10) 
[67,115]  61 (9) 

[34,77] 
59 (9) 
[32,76]  

Flight start time 
(local)  13:37 12:21 12:26  12:36 10:05  

Flight duration 
(minutes)  ≈ 12 ≈ 12 ≈ 16  ≈ 11 ≈ 13  

Number of photos  1678 1869 2454  1808 2039  
Computation time 
(hours)  51.3 106.3a 123.6  32.0 54.3  

         
Point Cloud 
Statistics         

Total points 
generated  4,180,955 3,580,210 3,618,287  4,336,176 3,433,124  

Points removed 
from study site by 
noise filter 

 39,312 30,873 26,606  42,822 44,790  

Filtered points 
within study site  1,745,621 1,690,594 1,607,440  1,755,471 1,286,574  

Point Density 
(points m-2)  
mean(SD) 
[min, max] 

 37(57) 
[0,1030] 

27(25) 
[0,222] 

24(21) 
[0,207]  27(23) 

[0,251] 
20(17) 
[0,199]  

a Point cloud processed using earlier version of computer vision software (Agisoft 
Photoscan v0.7.0 build 651) 
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A1.2 (Continued): Image acquisition and computer vision data processing characteristics 
across study sites (6.25 ha) for SERC site. 

   SERC 
   Winter Spring 1 Spring 2 Summer Fall 1 Fall 2 
Flight date   2/26/12 4/9/11 4/29/11 6/28/12 10/8/11 11/13/10 

Canopy condition   Bare  
leaf-off 

Early 
spring 

Spring 
green-up 

Mature 
green 

Early fall 
leaf-on 

Fall 
senescing 

Weather   clear overcast 
variable 
cloud & 

sun 
clear clear clear 

Flight altitude (m)  
mean(SD)  
[min, max] 

  72 (13) 
[55,120] 

75 (7) 
[65,109] 

72 (7) 
[58,105] 

66 (8) 
[53,90] 

40 (7) 
[27,74] 

44 (8) 
[28,73] 

Flight start time 
(local)   13:26 10:47 12:08 13:45 11:02 10:32 

Flight duration 
(minutes)   ≈ 12 ≈ 12 ≈ 18 ≈ 13 ≈ 14 ≈ 12 

Number of photos   1889 1842 2511 405 b 1952 1843 
Computation time 
(hours)   39.6 32.8 39.5 1.5 b 27.3 16.2 

         
Point Cloud 
Statistics         

Total points 
generated   2,439,999 2,401,380 7,417,442 1,795,192 5,500,149 2,168,235 

Points removed 
from study site by 
noise filter 

  20,112 50,485 93,016 21,485 74,477 47,947 

Filtered points 
within study site   1,476,371 1,473,194 5,021,651 1,752,542 4,167,055 1,500,547 

Point Density 
(points m-2)  
mean(SD) 
[min, max] 

  23(19) 
[0,1194] 

12(13) 
[0,501] 

40(26) 
[0,227] 

49(34) 
[0,587] 

67(60) 
[0,829] 

14(16) 
[0,193] 

b Short processing time and small number of photos due to camera shutting down early in 
flight, possibly due to high heat in excessive of 38° C at time of flight 
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A1.3: Summary of field measured tree heights of the average of the 5 tallest trees per 
subplot (AvgTop5) at Knoll, Herbert Run, and SERC 
 

 
n 

(plots) 
Mean 
(m) 

Standard 
Deviation 

(m) 
Coefficient of 

Variation (CV)  Range 
Knoll 32 25.3 5.9 23% 11.5 – 36.4 
Herbert Run 38 20.2 6.5 32% 8.6 – 35.5 
SERC 29 36.6 3.4 9% 31.4 – 43.5 

 
 
 
A1.4: Point cloud georeferencing error and accuracies across sites based on the spline method. 
 

 Horizontal  Vertical 

 RMSEx RMSEy RMSEr 
95% 

Radial Accuracy 
 

RMSEz 
95% Vertical 

Accuracy 
Knoll        
Leaf On 1 2.47 3.33 4.14 7.17  2.30 4.49 
Leaf Off  3.51 4.05 5.36 9.28  4.71 9.24 
Herbert Run        
Leaf On 2.97 3.02 4.23 7.33  2.41 4.73 
Leaf Off 2.43 2.55 3.53 6.10  1.71 3.35 
SERC        
Leaf Ona - - - -  - - 
Leaf Off 2.46 3.31 4.13 7.14  1.16 2.28 
a Accuracy could not be assessed because canopy completely covered GCPs. 
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A1.5: LIDAR-estimated best linear regression predictor (Table 6) of field measured 
average maximum height per subplot (AvgTop5; a) and linear regression model of 
Ecosynth and LIDAR-estimated mean canopy height per plot (b) for the SERC site.  
Ecosynth and LIDAR canopy heights estimated using LIDAR DTM.  Linear regression 
lines (dashed), R2, linear models, and RMSE (m) are presented for each comparison, with 
solid gray reference lines along the one-to-one ratio. Circled data point in (a) is an outlier 
based on Grubb's test (> ±3 SD from the mean) and is not included in regression analysis. 
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A1.6:  Map showing close correspondence of Ecosynth time-series data with stem map 
locations of the dominant Liriodendron tulipifera canopy trees at a 50 m x 50 m sample 
area of the SERC site.   Point cloud points from Ecosynth Spring 1 subset at SERC 
(Figure 7) with heights ≥ 37 m are shown in green colored by the  point relative green 
brightness or 'strength of green' (i.e., Sgreen = G/(R+G+B)).  Grey and white circles 
correspond to the tree stem locations (stems ≥ 10 cm DBH), with white circles indicating 
Liriodendron tulipifera, and grey circles representing all other tree species. Crown class 
is labeled for all dominant and co-dominant canopy trees. Map is shown on a grey 
background for visualization only.  Blank areas of the map mean that there were no 
Ecosynth points in that area with heights ≥ 37 m in the Spring 1 dataset and no stems 
with DBH ≥ 10 cm within the stem map.  Tree stems without a 'D' or 'CD' crown class 
label are of either an intermediate or suppressed class.  
 
 
  



 

217 
 

Appendix 2: Supplemental material for Chapter 3 

A2.1 

Diagram of computer vision structure from motion (SFM) and terrestrial LIDAR scanner 
(TLS) single tree scan configuration.  Scanning was carried out around circle of 7 m 
radius from tree trunk center.  TLS was positioned as indicated by gray boxes at north, 
east, south, west orthogonal positions around tree.  SFM photos were taken 2.5° / 0.3 m 
intervals around circumference of scan area with camera centered on tree trunk. 

 
 
 

A2.2  

Table describing UAS aerial image datasets 
 

Site Knoll Knoll Knoll Herbert 
Run 

Herbert 
Run 

Herbert 
Run SERC SERC 

Flight date 10/08/10 10/24/10 3/11/11 10/06/10 8/24/12 3/5/11 10/08/11 2/26/12 
Canopy 
condition 

Early fall 
leaf-on 

Mid fall, 
senescing Leaf-off Early fall 

leaf-on 
Summer, 

green 
Winter, 
Leaf off 

Fall 
senescing 

Winter, 
leaf off 

Lighting Clear 
 

Diffuse, 
cloudy 

Diffuse, 
partly 
cloudy  

Partly 
cloudy Clear Diffuse, 

cloudy Clear Clear 

Wind (m s-1) 2.4 2.9 5.4 3.5 2.8 < 0.3 1.3 2.9 
Average flight 
altitude above 
canopy 
(meters) 

40 40 40 40 20 40 40 40 

Number of 
photos 558 629 861 573 764 681 596 550 

Computation 
time (hours) 97 27 85 85 552 52 356 105 
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A2.3 

Detailed TLS data post-processing  
 
TLS data were processed in the RIEGL RISCAN Pro software.  The following processing 
tasks were carried out on each scan project (i.e., a set of four orthogonal scans) for both 
leaf-on and leaf-off scans.  Red-green-blue (RGB) color is assigned to each point from 
photos collected by the DSLR camera mounted on top of the TLS using the 'Apply Color' 
tool.  For optimal color fusion, the user must manually refine the calibration between the 
laser and camera optical centers by identifying matching tiepoints between an image of 
the laser scan and the color images at common locations, e.g., easily identifiable corners, 
reflective targets, etc.  The software then automatically applies color from the images to 
each TLS laser point by using the refined calibration to map the color image pixel 
corresponding to the same location in the laser scan.  Next, each set of four orthogonal 
TLS scans within a scan project were co-registered into the same 3D point cloud.  During 
scanning in the field, an automated target searching function is used while the scanner is 
still set up at each scan location.  Using this function, the scanner can automatically find, 
or be manually guided by user interaction, the location of the reflective targets placed 
within the scene.  The scanner then repeatedly scans the targets at a very high resolution 
(< 0.001 m) to refine target location in 3D space.  The refined target locations are then 
stored within the scan project for automated co-registration in the lab.  The automated co-
registration process attempts to align the scans together by determining the correct 
pairing of target locations that minimizes residual error across all target pairings based on 
rotating and translating the point cloud scans in 3D space relative to a single scan, i.e., 
applying rotation and translation factors along each X, Y, and Z axis.  The point clouds 
are then merged into a common coordinate system based on the optimal rotation and 
translation factors.  The merged RGB point cloud is then manually cropped by the user to 
include only the area of the single tree and exported as an XYZRGB ASCII text file.   

The TLS point clouds were also filtered to include just the points corresponding 
to the red targets to facilitate further analysis.  Filtering was carried out using built in 
tools in RiScan Pro and was based on identifying the range of returned laser energy that 
best corresponded to the targets.  Prior research has found that the amplitude values of 
TLS scans can be used to classify point clouds based on the type of material that is 
scanned, e.g., green leaf material vs. bark and branches.   This was done by first manually 
segmenting the point cloud to only points of a single target and calculating the range of 
amplitudes of reflected energy for that target.  This amplitude range was then used as the 
filtering threshold for segmenting targets from the entire point cloud.  Segmented point 
clouds of targets only were then exported as XYZRGB ASCII text files.     
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A2.4  

Meshlab ICP point cloud registration methods 

TLS and SFM point clouds were manually co-registered into the same coordinate 
system using the following method implemented in the open source 3D software Meshlab 
(v1.3.3 64-bit available online: http://meshlab.sourceforge.net/, downloaded 2014-04-02).  
All work on point clouds was carried out in the Stanford PLY file format.  In practice, all 
models converged to a minimum AvgError within at most 2 runs of the Iterative Closest 
Point (ICP) algorithm, i.e., additional runs did not improve the estimate of AvgError.  For 
leaf-off models, the mean and SD AvgErr were 0.0049 m and 0.0005 m, with a median of 
0.0048 m.  For leaf-on models the mean and SD AvgErr were 0.0112 m and 0.0007 m, 
with a median of 0.0111 m. 

 
1. First, point clouds were manually trimmed to contain only points of the tree itself, 

from the base of the tree out to all branches.  Some singular stray noise points 
persisted in both TLS and SFM models and were removed by first computing the 
radius or distance around each point using the 'Estimate Radius from Density' 
function based on the 16 nearest neighbors and removing any points with a radius 
larger than the 99th percentile of radius values for the whole point cloud (i.e., 
removing 1% of the points with the lowest density or greatest distance to another 
point).  

2. The 'Measure' tool was then used to measure distances between common points 
within each point cloud in order to estimate a scaling factor from SFM to TLS point 
clouds. The point clouds were manually rotated in two adjacent windows in Meshlab 
to approximately the same point of view.  Then, similar points in each model were 
visually identified, e.g., the tips of prominent branches or the location of red 
Styrofoam ball targets, and the distances between these points in each point cloud 
were recorded.   

3. Distance between the same points was measured in the TLS and SFM point clouds.  
Six pair distances were identified for each SFM and TLS point cloud with the same 
pairs identified for point clouds by both methods.  A scale ratio was computed for 
each distance pair (DTLS / DSFM) and the mean scale ratio applied to each of the XYZ 
values of the coordinates of each corresponding SFM point cloud                   
[XYZscaled = (HTLS / HCVSFM) × XYZSFM] in Excel or by command line in Python 
using the Numpy module (v1.8.2, http://www.numpy.org/) when the point cloud was 
too large to be loaded into Excel. 

4. Next, the SFM point cloud was roughly manually aligned to the TLS point cloud 
using the 'Point Based Glueing' interface within the 'Align' tool.  This interface 
prompts the user to identify matching points between the two models, which it then 
uses to rotate and translate one model relative to the other.  At least 4 tiepoints were 
identified, typically at the ends of prominent branches.  Following 'Point Based 
Glueing', the point clouds were aligned using the Iterative Closest Point (ICP) 
alignment to refine the rotation and translation of the SFM point cloud to the TLS 
point cloud.  The ICP algorithm works by taking a random sample of points from 
both models and attempts to minimize the distance between point pairs in each model.  
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This is repeated with new point sets until the minimized distance achieves a user 
specified threshold.  At that point, the last rotation and translation values are applied 
to the entire point cloud.  A threshold of 0.005 m (5 mm) was used here for aligning 
the TLS and SFM point clouds as it was found through repeated iterations that the 
models could not be aligned with greater precision.  The new rotation and translation 
values were then fixed to the SFM point cloud, which was then exported to a new 
XYZRGB ASCII text file.  This process was repeated for aligning each leaf-on and 
leaf-off SFM model to the corresponding TLS model for the same season.  An exact 
workflow was developed for this task: 

a. First import the TLS model into a new project in Meshlab, then import the 
scaled & filtered SFM model. 

b. Start the 'Alignment' tool. 
c. Highlight the TLS model from the list of models in the Alignment tool 

window and select 'Glue Here Mesh' and 'Set as Base Mesh' from the buttons. 
d. Highlight the SFM model from the list of models. 
e. Select 'Point Based Glueing' 
f. Select tie points of approximately matching points/features in each model: 

i. At least 4 points are required. 
ii. Leave 'Allow Scaling' disabled/unchecked because a scaling factor has 

already been applied. 
iii. Double click a point in one model, then double click the 'same' point in 

the other model.  Order does not matter.  To remove a point hold 
Control and double-click. 

iv. Click 'OK' when finished. 
g. Close the 'Align Tool' window and open the View > Show Layer Dialog from 

the main Meshlab window. 
h. Remove the TLS model from the current project by right clicking on its name 

in the Layer window and selecting 'Delete Current Mesh.'   
i. Right-click on the SFM model and select 'Freeze Current Matrix'.  The 'Point 

Based Glueing' routine created a 4x4 rotation and translation matrix to match 
the alignment provided by the tiepoints.  'Freezing' the matrix applies the 
rotation and translation values to the point cloud.   

j. Export the SFM point cloud to a new file: File > Export Mesh As.  Provide a 
new file name and use the PLY format.  When prompted, choose to include 
'Colors' and 'Radius' and disable/uncheck 'Binary Encoding'.  The SFM point 
cloud has now been scaled to match the TLS model and provided with an 
approximate translation and rotation to be roughly aligned with the TLS 
model. 

k. Close the current project and open a new project in Meshlab. 
l. Import the TLS model first and by itself, then import the pre-aligned SFM 

model from the previous step separately.  
m. Open the 'Align' tool. 
n. Highlight the TLS model and select 'Glue Here Mesh' and 'Set as Base Mesh'. 
o. Highlight the SFM model and select 'Glue Here Mesh'. 
p. Open the 'Default ICP Params' dialog and set the following parameters: 

i. Sample number: 1000 (Default) 
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1. Practice found no improvement in increasing this number. 
ii. Minimal Starting Distance: 0.3 

1. As in 0.3 m or 30 cm and represents the minimum distance 
between a set of randomly selected point pairs to begin the ICP 
alignment. 

iii. Target Distance: 0.005 
1. As in 0.005 m or 5 mm.  Practice found that this is a minimum 

value of this parameter for this application beyond which no 
improvements in the measure of average error are obtained. 

iv. Max iteration: 50 
1. Practice found no improvement by increasing this number. 

v. Normalized Equal Sampling: ON 
vi. MSD Reduce Factor: 0.8 (Default) 

vii. Sample Cut High: 0.75 (Default) 
viii. Rigid Matching: ON (we do not want ICP to apply a scaling factor) 

ix. These parameters were determined by running multiple iterations 
across multiple point cloud sets and observing the visual quality of the 
alignment and the value of 'AvgErr' reported by the program which 
provides an estimate of the mean difference between a set of randomly 
selected point pairs in the same 3D region of space.  It is not truly a 
measure of alignment error or accuracy, but merely a measure of fit 
between the two models. 

q. Click 'Process' to perform the ICP alignment. In practice, this approach 
typically converged to the 'Target Distance' value after one iteration of ICP 
alignment.  Further runs of alignment did not show improvement in the 
AvgErr parameter. 

r. 'Freeze' the alignment matrix and export the SFM point cloud as in (h) – (j) 
above. 

5. The above process was used first to align the leaf-off SFM point clouds to the leaf-off 
TLS point cloud.  To align leaf-on and leaf-off point clouds, the TLS point clouds for 
the two time periods were first aligned to each other, leaf-on to leaf-off, then the leaf-
on SFM point clouds were aligned to the leaf-on TLS point cloud, putting all point 
clouds in the same coordinate system as the TLS leaf-off point clouds.  Co-
registration of the leaf-on SFM and TLS models used the same process as above, but 
co-registration of the leaf-on and leaf-off TLS models required a slight modification 
of the process, as described below. 

a. ICP alignment was unable to correctly rotate and translate the two leaf-on and 
leaf-off TLS models due the large differences in the crown 3D geometry 
between the two scans.   

b. To address this, the two models were first cropped to contain points only of 
the main tree trunk (≈ 1.3 m above ground) and approximately 0.2 m of the 
lowest branches that are not obstructed by leaves in both scans.  Visual 
inspection determined that this part of the tree was the most similar across the 
scans taken in different seasons.   

c. 'Point Based Glueing' was first used to roughly align the point clouds together.   
Then, the 'Manual Rough Glue' function was used to manually rotate and 
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translate the leaf-on model along all three axes to be approximately visually 
aligned with the leaf-off.   

d. With the models roughly visually aligned, the ICP 'Process' was run until there 
was no discernible change in the alignment of the models based on visual 
inspection.  The resulting rotation and translation matrix for the leaf-on TLS 
point cloud of the tree trunk was then exported as a plain-text alignment file 
(ALN) and applied to the entire leaf-on model by changing the referenced file 
name for the rotation and translation matrix in the ALN file , re-loading the 
ALN file as a project, which automatically loads and applies the matrix to the 
full leaf-on TLS point cloud, and then following (4h) – (4j) above to 'Freeze' 
and export the aligned point cloud.  
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A2.5 

Example screenshot of custom graphical user interface developed to help users provide 
semantic tags (Appendix A 2.6) to SFM SIFT image feature tiles. 

 

A2.6 

Set of common tags spanning five descriptive categories (color, shape, surface, 
vegetation objects, and other objects provided to users for tagging image feature tiles in 
custom graphical user interface (Appendix A 2.5). 
COLOR SHAPE SURFACE OBJECT VEG OBJECTS 

Bright  Round Pavement / road / 
asphalt 

Building Branch 

Dark Line Dirt / bare / soil Vehicle Single Tree / Crown 
Black Angle/Corner Water Curb Single Leaf 
Gray Box/Rectangle  Dumpster Leaves/Foliage 
Green   Fence Grass / field/ turf 
Brown   Lamp/light Shrub 

Red   Window Forest/ Many/ Tree 
Crowns 

White   Shadow Tree Trunk 
Blue     

Yellow     
 



 

224 
 

A2.7 

Table showing breakdown of classification of points per target and per replicated for 
SFM and TLS single tree scans under leaf-on and leaf-off conditions.  Values show 
proportion of points located within the target area for each replicate that fell within the 
red hue cutoff region (330 – 20).  Blank cells (‘—‘) indicate that no points were observed 
at the target area.  Cells with value of 0.00 had > 1 point within the target area, but no 
points were within the red cutoff region.  Averages, for which classification accuracy is 
calculated on, consider blank values (‘—‘) as 0.  Values of ‘Average Red’ indicate the 
average proportion of points located at a target that were red.  Values greater than 0.5 are 
highlighted in bold face and indicate that a target was ‘accurately classified’. 
 
SFM Leaf-on point clouds 

SFM Leaf-on Target                     
SFM replicate 1 2 3 4 5 6 7 8 9 10 11 
1 0.33 -- -- -- -- 0.00 -- -- 0.00 -- 1.00 
2 -- 0.67 0.75 -- -- -- -- -- 0.18 -- 0.50 
3 -- 0.59 -- -- 0.33 -- -- -- 0.23 -- 0.17 
4 0.00 0.50 1.00 1.00 1.00 0.44 -- -- 0.40 -- 1.00 
5 0.00 0.86 0.86 -- 0.60 -- 0.00 -- 0.25 -- 0.75 
6 0.13 0.67 -- 0.00 0.40 0.50 0.00 -- 0.10 -- 1.00 
7 0.00 0.83 0.33 0.00 -- -- -- -- 0.25 -- 0.29 
8 0.25 1.00 1.00 0.00 1.00 0.00 -- -- -- -- 0.50 
9 0.00 0.60 1.00 0.00 -- 0.50 0.00 -- 0.20 -- 0.00 
10 0.30 0.71 0.33 0.00 0.00 0.67 -- -- 0.40 -- 1.00 
Average Red 0.08 0.64 0.55 0.11 0.37 0.16 0.00 0.00 0.18 0.00 0.58 
Had points (0.59) 0.80 0.90 0.70 0.60 0.60 0.60 0.40 0.00 0.90 0.00 1.00 

 
TLS leaf-on sub-sampled point clouds 

TLS  Leaf-on Target                     
TLS replicate 1 2 3 4 5 6 7 8 9 10 11 
1 0.25 0.09 0.89 1.00 0.33 1.00 0.36 1.00 0.00 0.27 0.14 
2 0.00 0.13 0.36 1.00 0.48 0.67 0.69 -- 0.00 0.36 0.40 
3 0.00 0.23 0.55 1.00 0.63 1.00 0.50 1.00 0.00 0.35 0.00 
4 0.00 0.11 0.56 1.00 0.36 0.86 0.50 -- 0.00 0.35 0.13 
5 0.40 0.29 0.50 1.00 0.63 0.60 1.00 -- 0.00 0.37 0.13 
6 0.17 0.00 0.88 0.67 0.62 0.75 0.70 -- 0.00 0.27 0.17 
7 0.38 0.00 0.83 1.00 0.58 0.71 0.55 1.00 0.00 0.46 0.25 
8 0.50 0.00 0.53 1.00 0.39 0.67 0.33 0.00 0.00 0.45 0.17 
9 0.14 0.25 0.88 1.00 0.64 0.75 0.65 -- 0.00 0.29 0.33 
10 0.29 0.00 0.80 1.00 0.61 0.70 0.65 1.00 0.00 0.46 0.20 
Average Red 0.20 0.12 0.66 0.96 0.52 0.78 0.59 0.00 0.00 0.00 0.19 
had points (0.95) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 
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A2.7  (continued) 
SFM Leaf-off point clouds 

SFM Leaf-off Target                        
SFM replicate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.65 0.83 1.00 0.77 1.00 0.67 0.79 0.90 0.39 0.64 0.50 0.71 0.38 0.79 
2 0.84 0.93 0.89 0.90 1.00 0.67 0.75 0.80 0.44 0.64 0.55 0.60 0.47 0.76 
3 0.64 0.85 0.94 0.68 1.00 0.25 0.67 0.86 0.33 0.32 0.60 0.63 0.50 0.86 
4 0.77 0.79 0.95 0.84 1.00 0.62 0.83 0.91 0.46 0.78 0.53 0.61 0.38 0.83 
5 0.88 0.78 0.90 0.71 1.00 0.73 0.67 0.90 0.46 0.73 0.72 0.60 0.57 0.67 
6 0.67 0.78 0.70 0.61 1.00 0.58 0.88 0.86 0.46 0.52 0.71 0.60 0.65 0.75 
7 0.76 0.93 0.82 0.73 1.00 0.71 1.00 0.92 0.36 0.74 0.55 0.70 0.45 0.80 
8 0.70 0.77 0.86 0.69 1.00 0.59 0.80 0.90 0.36 0.86 0.48 0.66 0.51 0.70 
9 0.79 0.75 0.80 0.84 1.00 0.73 0.83 0.85 0.36 0.67 0.72 0.61 0.63 0.52 
10 0.66 0.65 0.93 0.82 1.00 0.89 0.80 1.00 0.30 0.68 0.56 0.50 0.54 0.83 
Average Red 0.74 0.81 0.88 0.76 1.00 0.64 0.80 0.89 0.39 0.66 0.59 0.62 0.51 0.75 
Had points (1.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
TLS Leaf-off point clouds 

TLS Leaf-off Target                        
TLS replicate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.51 0.11 0.59 0.43 1.00 0.26 0.57 0.16 0.06 0.32 0.16 0.31 0.40 0.51 
2 0.61 0.00 0.52 0.45 0.84 0.40 0.67 0.14 0.04 0.29 0.13 0.28 0.34 0.53 
3 0.42 0.11 0.53 0.35 0.82 0.29 0.42 0.11 0.09 0.25 0.29 0.24 0.43 0.51 
4 0.51 0.07 0.25 0.38 0.90 0.43 0.65 0.12 0.10 0.18 0.17 0.32 0.39 0.47 
5 0.59 0.18 0.33 0.44 0.82 0.26 0.61 0.08 0.09 0.14 0.27 0.20 0.47 0.49 
6 0.54 0.11 0.45 0.38 0.87 0.30 0.70 0.21 0.13 0.17 0.37 0.27 0.43 0.50 
7 0.60 0.08 0.40 0.40 0.88 0.25 0.53 0.08 0.05 0.28 0.28 0.31 0.39 0.57 
8 0.48 0.07 0.41 0.40 0.95 0.25 0.56 0.11 0.12 0.21 0.29 0.30 0.49 0.41 
9 0.56 0.11 0.35 0.37 0.76 0.43 0.62 0.16 0.00 0.35 0.17 0.27 0.46 0.51 
10 0.48 0.12 0.43 0.49 0.85 0.28 0.68 0.20 0.04 0.14 0.26 0.26 0.51 0.42 
Average Red 0.53 0.10 0.43 0.41 0.87 0.32 0.60 0.14 0.07 0.23 0.24 0.28 0.43 0.50 
Had points (1.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

226 
 

A2.8 

Tomographic slices of a 0.1 m (10 cm) section of combined leaf-on and leaf-off SFM and 
TLS point clouds centered at roughly the center of the tree stem.  Pixels represent a 0.1 m 
x 0.1 m x 0.1 m cube (0.001 m3; 1,000 cm3) within which at least 1 point cloud point was 
located.   All slices are co-registered to the same coordinate system (scale, rotation and 
translation) such that pixels are the same in each model. 
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A2.9 

Samples of SFM image feature tiles from leaf-on and leaf-off single tree point cloud 
scans highlighting differences in the background around each feature that may contribute 
to differences in point vs. image feature tile RGB channel correlation and ratio.  All SFM 
image feature tiles associated located within target areas for a single leaf-on replicate 
shown at actual relative scale, n = 55. 
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A2.9 (continued) 
All SFM image feature tiles associated located within target areas for a single leaf-off 
replicate shown at actual relative scale,  n = 382. 
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A2.10 

Clustering results on SIFT 128D numeric descriptors for all datasets (Appendix A 2.2) 
and on a sample of points from leaf-on and leaf-off single tree datasets.   
 
Knoll 10/08/10 

 
  



 

230 
 

Knoll 10/24/10 

 
Knoll 3/11/11 
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Herbert Run 10/06/10 

 
 
 
 
Herbert Run 8/24/12 
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Herbert Run 03/05/11 

 
 
 
 
SERC 10/08/11 
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SERC 02/26/12 
 

 
 
 
  



 

234 
 

Single Tree Leaf-on 8/20/12 
 

 
 
 
 
 
 
 
 
 
 



 

235 
 

 
 
 
 
Single Tree Leaf-off 3/5/2013 
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A2.11 

Clustering results on all SIFT 128D descriptors for all datasets at k=10 clusters. 
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A2.12 

Clustering results on all SIFT 128D numeric descriptors broken up by bright or dark spot 
and by leaf-on or leaf-off aerial datasets. 
 
Leaf-on 'bright' points 
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Leaf-on 'dark' points 
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Leaf-off 'bright' points 
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Leaf-off 'dark' points 
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Appendix 3: Supplemental material for Chapter 4 

A3.1 

Calibration of Arducopter telemetry altitude values. (a) box plots of planned versus actual 
altitude recordings from absolute and relative elevation values, (b) calibration curve of 
relative heights to actual heights, (c) raw measurements used for calibration. 
 
A3.1a Boxplots of the relationship between planned altitude (meters above mean sea 
level, MSL) and mean values of 'absolute' (gray) and 'relative' (black) altitude from 
Arducopter telemetry files from n = 72 flight replicates.  Mean altitude values are shown 
as points with horizontal 'jitter' to highlight variability in actual flight altitude values for a 
given planned altitude.   
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A3.1b Calibration model used to correct relative altitude values to laser rangefinder 
measured altitude for georeferencing of point clouds. 
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A3.1c Raw calibration values 

  Telemetry Altitude 

Replicate 
Flight 1 

Laser 
measured 
height + 
MSL 

Relative 
Height + 
MSL 

Absolute 
Height + 
MSL 

1 57.6 60.6 67.8 
2 66.6 70.6 76.2 
3 75.3 80.5 85.5 
4 84.3 90.5 94.8 
5 93.4 100.5 103.8 
6 104.6 110.5 114 
7 112.6 120.5 122.9 
8 121.7 130.5 132.4 
9 131.5 140.5 141.7 
10 141.5 150.5 151.8 
11 150.3 160.6 160.6 
12 160.3 170.2 169.9 
     
Flight 2    
1 59.1 60.6 67.1 
2 68.0 70.5 76.4 
3 77.3 80.5 85.2 
4 86.7 90.5 94.8 
5 96.5 100.6 105.7 
6 105.5 110.7 116.1 
7 110.5 120.6 126 
8 124.3 130.6 135.3 
9 134.3 140.5 145.2 
10 143.3 150.5 154.1 
11 153.3 160.6 163.6 
12 161.3 170.5 172.7 
     
Flight 3    
1 59.1 60.6 71 
2 68.5 70.6 79.5 
3 77.2 80.5 88 
4 86.8 90.5 97 
5 95.3 100.5 106.2 
6 105.3 110.6 116.2 
7 114.7 120.5 125.3 
8 124.0 130.6 135 
9 133.3 140.6 144.7 
10 143.3 150.6 153.8 
11 152.3 160.6 162.7 
12 161.3 169.8 170.9 
    
 RMSE m 6.6 10.5 
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Glossary 
 

BOF – Bag of features:  A computer vision concept used for classifying images based on 
comparing the frequency / occurrence of a collection of image features within a 
specific grouping (a bag) to a reference database of features that includes 
information on feature semantic content. 

CHM – Canopy height model:  A digital dataset (raster / grid or vector / points) that 
depicts the height above the ground of forest canopy.  Calculated by subtracting a 
DTM from a DSM on a per-pixel / per-point basis. 

Computer Vision: Field of computer science that aims to recreate human vision tasks 
(classification, recognition, motion tracking, 3D/depth) by analysis of digital 
images. 

DSM – Digital surface model:  A digital dataset (raster/grid or vector / points) that 
depicts the elevation values of the surface relative to the datum, e.g., elevation 
above mean sea level.  When DSM values are differenced to DTM values, a CHM 
can be produced. 

DTM – Digital terrain model: A digital dataset (raster/grid or vector / points) that depicts 
that elevation values of the ground surface relative to the datum after a filtering 
algorithm has been applied to remove objects above the surface (trees, shrubs, 
buildings).  Subtracting a raster DTM from a DSM produces a CHM. 

Ecosynth:  The combination of hardware (cameras, UAS) and software (SFM algorithms, 
processing code) that forms a personal remote sensing system for producing 3D-
multispectal fusion datasets of vegetation at low-cost and on-demand. 

Feature:  A data structure in computer vision that refers to an entity that has been 
identified in a 2D image or 3D model by an algorithm (feature detector) for which 
descriptive information is retained (feature descriptor) to locate or compare that 
entity to others in other images or datasets. 

Feature Descriptor:  A numerical vector (string of numbers) that are created by an 
algorithm (feature detector) to provide a description of an image feature. 

Feature Detector: A computer vision algorithm that is designed to automatically identify 
features within 2D images or 3D models based on locating particular patterns 
(edges, corners, lines, points, etc.) and then generating a descriptor around the 
location where the pattern was observed. 

Remote Sensing Fusion:  Typically, the combination or overlay of remote sensing 
datasets from different sensors that produce different kinds of measurements (3D 
and optical image), more generally, the creation of a digital dataset that represents 
the combined observation of the 3D and spectral properties of the land surface.   
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Scale-space: A transformation of a signal (1D, 2D, 3D) that depicts that signal at multiple 
scales, represented by multiple levels of smoothing.  The scale-space 
representation of an image (2D) depicts the image as it would appear at 
increasingly coarse resolutions or viewed from greater distance.  The scale-space 
representation of an image is a valuable tool for locating features using a feature 
detector. 

SFM – Structure from motion:  A concept in computer vision (and associated algorithms) 
that seeks to automatically determine the location from where images were taken 
in relationship to each other along with the 3D geometry or structure of the 
objects observed within images. SFM uses information about the correspondence 
or matches of features across images as input to a bundle adjustment algorithm, 
which seeks to determine the optimal set of parameters that minimizes the 
reprojection error of points within and across images in 2D and 3D space.  

SIFT – Scale invariant feature transform:  A computer vision feature detector algorithm 
that uses scale-space to identify features and produce feature descriptors in a gray-
scale version of an image that are invariant to changes in image scale and also 
illumination and rotation.  SIFT feature descriptors are represented by an XY 
location within an image, a measure of the scale or size of the feature, the 
orientation of the feature, and a 128 dimensional numerical vector that describes 
the pattern of image gradients around the feature location in a gray-scale version 
of the image.  

UAS – Unmanned aerial system:  The combination of hardware (aircraft, GPS, flight 
controller) and software (flight control program, mission planning software) that 
combined enable autonomous flight of a remote controlled aircraft. 

  



 

246 
 

 


