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ABSTRACT 

 

The meta-GGA functionals and random phase approximation are tested for phase 

transitions and a strongly correlated transition metal oxide in this dissertation. One of the 

latest meta-GGA functionals is also employed to study the van der Waals bound system 

in surface science. Our main purpose is to reveal the performance of new exchange-

correlation functionals on various properties and systems. We are also interested in 

seeking the possible relationship between the performance of a semilocal functional and 

its exchange enhancement factor. 

We have studied the structural phase transitions in crystalline Si (insulator to 

metal), SiO2 (insulator to insulator) and Zr (metal to metal) systems, as a test of exchange 

energy semilocal functionals on Jacob’s ladder. Our results confirm the energy-geometry 

delimma of GGAs in three systems. The most sophisticated non-empirical meta-

generalized gradient approximations (meta-GGAs) such as TPSS (Tao-Perdew-

Staroveov-Scuseria) and revTPSS (revised TPSS) give better lattice constants than PBE, 

but the phase transition parameters (energy difference and transition pressure) are smaller 

and less realistic than those from the latter GGA. However, the recent functionals of 

meta-GGA made simple family (MGGA_MS) behave differently to those previous meta-

GGAs, predicting larger and more realistic phase transition parameters. Meanwhile, 

MGGA_MS also delivers the equilibrium geometry of crystalline materials similar to 

previous non-empirical meta-GGAs. 

In contrast to semilocal functionals, the nonlocal functionals such as the range-

separated hybrid functional HSE06 (Heyd-Scuseria-Ernzerhof) and non-self consistent 
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random phase approximation (RPA) are not only able to give the accurate equilibrium 

geometry , but also predict the realistic phase transition parameters for Si and SiO2 

systems. 

The ground state of rutile-type vanadium dioxide (R-VO2) represents a great 

challenge to the current density functional theory. In this dissertation, we investigated the 

electronic structures and magnetism of R-VO2 using exchange-correlation functionals of 

all five rungs on Jacob’s ladder. Our calculations show that all semilocal functionals 

(LSDA, GGAs and meta-GGAs) and hybrid functionals (HSE06) stabilize the spin-

polarized states (ferromagnetic and anti-ferromagnetic states) over non-magentic state, 

which are completely opposite to experimental observation. Suprisingly, LSDA gives the 

best energetic descriptions for magnetic and non-magnetic phases of R-VO2 among 

semilocal functionals and HSE06. Othwerwise, RPA calculations are highly dependent 

on the inputs in the spin polarized case. With PBE inputs, RPA also fails, giving lower 

energies for spin-polarized states than for the non-magnetic phase. Meawhile, the results 

are reversed using LSDA inputs. From the computed equilibrium cell volume, we 

observe the error cancellation in the exchange-correlation hole of most semilocal 

functionals in the spin-polarized calculations. LSDA and RPA do not fit to this picture. 

By analyzing the local magnetic moments of vanadium atoms, it is found that the 

magnetic property predicted from meta-GGA can be related to its exchange enhancement 

factor.  

The physisorption of a molecule on a transition metal surface is also another 

difficult problem in DFT because of the long-range van der Waals interactions. The 

recently developed MGGA_MS family of density functionals is able to capture a portion 
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of intermediate range dispersion interactions. Therefore, we employed MGGA_MS2 to 

study the physisorption of CO2 on Pt (111) surface, and the results are compared to those 

of PBE, PBE+D2 and optB88-vdW methods. The computed binding curves comfirm that 

that MGGA_MS2 indeed captures the van der Waals interactions near the equilibrium 

binding distance, and the obtained binding distance is also in good agreement with 

PBE+D2 and optB88-vdW calculations. By computing the electron density difference 

map (EDDM), we find that the electron densities of CO2 and Pt (111) surface are strongly 

polarized in optB88-vdW, creating the dipole moments in two subsystems. Such effect is 

reduced in MGGA_MS2. For PBE, the polarization of electron density is very weak, but 

not negligible. The α dependence in the exchange enhancement factor of a meta-GGA is 

the key to capture the intermediate range van der Waals interactions. 

 In summary, a meta-GGA functional can step out of the famous “energy-

geometry dilemma” , predicting good lattice constants and phase transition parameters at 

the same time. With the proper construction, a meta-GGA can even capture a portion of 

van der Waals interactions. The RPA is usually more accurate than semilocal functionals 

for many ground state properties. The strongly correlated systems like R-VO2 are still a 

big challenge to present-day density functional theory. We will continue to seek more 

accurate exchange-correlation functionals.                  
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CHAPTER 1 

DENSITY FUNCTIONAL THEORY 

 

 

In 1929, Paul Dirac made a famous statement about the status of quantum 

mechanics at that time. In the paper entitled “Quantum mechanics of many-electron 

systems”, he wrote down the following famous words [1]: 

“The general theory of quantum mechanics is now complete… The underlying 

physical laws necessary for the mathematical theory of a large part of physics and the 

whole of chemistry are thus completely known.” 

 

1.1 Many-Body Hamiltonian 

In quantum mechanics, all possible interactions between particles in a many body 

system are given by its Hamiltonian. Typically, for a system with many electrons and 

nuclei such as a molecule or solid, the full Hamiltonian in the non-relativistic quantum 

mechanics is expressed as [2]: 

 

22 2 21
2 2

1 1 1 1 1 ,0 0
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1 , 0

1 1 1ˆ
2 2 4 2 4

1 1
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n N n N n n
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  (1.1) 

where �̂� is the Hamiltonian operator; m and M are the masses of electron and nucleus; n 

and N represent the total number of electrons and nuclei in the system; ri and RI give the 

positions of i electron and I nucleus; e is the elementary charge; Z is the total charge of 

the nucleus and ε0 is the static dielectric constant in vacuum; ℏ denotes the reduced 



2 

 

Planck constant. The first two terms in the above equation are the kinetic energies for 

electrons ( ˆ
eT ) and nuclei ( ˆ

nT ). The Coulomb attraction between electrons and nuclei is 

given by the third term ( ˆ
enV ). The last two terms represent the Coulomb replusions among 

eletrons ( ˆ
eeV ) and nuclei ( ˆ

nnV ), respectively. 

 

1.2 Born-Oppenheimer Approximation 

In principle, the stationary properties of a many body system can be obtained by 

solving the Schrödinger equation given below. 

 ˆ ( , ) ( , )H r R E r R     (1.2) 

In the equation, the many body Hamiltonian is given by Equation 1.1; E is the 

eigenenergy and ( , )r R is the many body wavefunction; r  and R can be expressed as 

{𝑟1, 𝑟2, … , 𝑟𝑁} and {𝑅1, 𝑅2, … , 𝑅𝑁}, which are the positions of electrons and nuclei, 

respectively. 

Practically, equation 1.2 is not exactly solvable even for a multi-electron atom [1, 

2]. Therefore, one must find the way to simplify the many-body Hamiltonian before 

doing any realistic calculation for molecules and solids. First of all, we can easily notice 

that the mass of an electron is significantly smaller than for nuclei (Note that even in 

Hydrogen atom, the ratio me/mn ≈ 1/1836). Generally, the electrons can follow the motion 

of heavy “sluggish” nuclei at any moment during the electron-nucleus dynamics. 

Otherwise, we may also treat the two subsytems adiabatically, i.e., electrons and nuclei, 

assuming that either there is no energy transfer or the energy flows in an ordered way 
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between two subsystems. Due to these two postulates, the many-body wave function 

given in equation 1.2 can be rexpressed as the multiplication of the wave functions of two 

subsystems 

 ( , ) ( ) ( , )BO er R R r R    (1.3) 

where for eletrons and nuclei, their wave functons are given by ( )R and ( , )e r R , 

respectively. At any moment, for a given configuration of nuclei, the electronic wave 

function ( , )e r R is the eigenstate of electronic Hamiltonian or at least approximately 

the  ground state wave function of electronic part. 

 ˆ ( , ) ( , )e e e eH r R E r R    (1.4) 

The electronic Hamiltonian is given as: 

 ˆ ˆ ˆ ˆ ˆ
e e ee en nnH T V V V      (1.5) 

where all the terms are defined in equation 1.1 for electronic part. Based on Equations 

1.2-1.5, we can rewirte equation 1.2 as: 

 ˆ ˆ( ) ( ) ( , ) ( ) ( , )n e e eT H R r R E R r R       (1.6) 

This equation can be recognized as the famous Born-Oppenheimer approximation 

which decouples electronic degrees of freedom from the total electron-nucleus 

wavefunction [3]. Under the Born-Oppenheimer approximation, the Schrödinger equation 

for nuclei is written as: 

  BO BO
ˆ ˆ( ) ( , ) E ( , ) small correctionsn eT H r R r R       (1.7) 

The “small corrections” usually refer to phonon-electron coupling and a small 

correction to nucleus kinetic energy. In most cases, they are simply ignored or treated as 
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high order perturbations in quantum mechanics. It is generally true that the kinetic energy 

spectrum of electrons is not significantly overlapped with that of nuclei. The Born-

Oppenhemier approximation is accurate enough for the many-body Hamiltonian in most 

quantum mechanical calculations [2]. 

 

1.3 Thomas-Fermi Density Functional 

Theoretically, the ground state properties of a many-body system can be obtained 

by minimizing the total energy with respect to the many-body wavefunction under the 

Born-Oppenhemier approximation. In reality, this strategy requires tremendous efforts to 

make it work numerically even for small systems like atoms and simple molecules. The 

main difficulty is that the total degrees of freedom embedded in the many-body 

wavefunction are huge, and the computational costs scale expontentially as the system 

grows. This is a fundamental bottleneck for applying any wave function based 

optimization method to the large system [2]. 

In 1927, Thomas [4] and Fermi [5] independently employed the electron density 

rather than wave function to compute the total energy of many-body system. The 

relationship between electron density and many-body wave function is usually expressed 

as: 

 
 

 
2

3 3

2

*

2 2 2 2

( ) .... .....

( , ; , ..... , ) ( , ; , ..... , )

N

N

e N N e N N

n r N d r d r
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  (1.8) 

where n(𝑟) is the electron density, σi represents the spin direction of i electron, r is the 

position of each electron. Clearly, for a system with N electrons, the total spacial degrees 
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of freedom are 3N. Meanwhile, using the electron density as the variable, the degrees of 

freedom are always 3 [2]. In Thomas-Fermi density functional, the energy functional, 

which has been drived from the uniform electron gas, is given by 

 
'

2 2/3 3 5/3 3 3 '

'

3 1 ( ) ( )
[ ] (3 ) [ ( )]

10 2
TF

n r n r
E n d r n r d r d r

r r
 


     (1.9) 

where, the first term on the right hand side of equation 1.9 gives the kinetic energy for the 

given electron density distribution; while the second term is the classic Coulomb 

interaction between two electron density distributions. It has been shown that Thomas-

Fermi energy functional can give reasonable results for heavy atoms; however, it is not 

accurate for molecules and solids. The molecules in Thomas-Fermi theory are unbound, 

because the exchange-correlation energy which responsible for most of the cohesive 

energy in condensed phases, is completely ignored in this energy functional [6, 7]. Later, 

the exchange-correlation effects were indeed included in several other earlier versions of 

density functionals such as Thomas-Fermi-Dirac approximation (with local exchange 

only) [6, 8], Thomas-Fermi-Dirac-Gombas approximation (local exchange-correlation) 

[8] and Thomas-Fermi-Dirac-Gombas-Weizsäcker (semilocal correction to kinetic energy 

and local exchange-correlation) [9]. Those earlier energy functionals are considered to be 

still very rough approximations for molecules and solids. They do not predict very 

accurate cohesive energies and equilibrium geometries for condensed phases. Therefore, 

they have never been widely used in any practical calculations for condensed phases [6].  
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1.4 Hohenbergy-Kohn Theorem 

In the Thomas-Fermi energy functional, the electron density is used as the only 

variable which determines the total energy in a unique way. Using the variational 

principle for equation 1.9 under the constraint that the integration of electron density n(r) 

gives the correct total number of electrons in the system, we can minimize the total 

energy density functional with respect to electron density. It is possible that the ground 

state total energy and electron density can be obtained. However, this is not guaranteed, 

because it is not clear if one can actually use electron density to characterize ground state 

properties of a many-body system completely, compared to wave function method [10, 

11]. The possible connection between Schrödinger equation (Equation 1.4) and density 

functional (Equation 1.9) was not clear before the publication of the Hohenberg-Kohn 

theorem in 1960s [12, 13].  

The Hohenberg-Kohn formulation of density functional theory was proposed in 

1964. Two fundamental principles have been established for the ground state properties 

of an interacting electrons gas in an external potential. 

Hohenberg-Kohn theorem I: Using the density as the basic variable [12]. 

The first theorem states that the full many-body ground state is an unique 

functional of electron density n(𝑟). In other words, if the ground state electron density 

ng(𝑟) is known, then it determines the total electron number N (N = ∫ 𝑛𝑔(𝑟)𝑑3𝑟), the 

external potential (𝑉𝑒𝑥𝑡(𝑟)), the Hamiltonian (�̂�𝑒) and all eigenstate wavefunctions 

(𝜓𝑔(𝑟)) of �̂�𝑒. The first theorem is mathematically rigorous and can be proved using 

reductio ad absurdum [2]. 
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Hohenberg-Kohn theorem II: The variational principle [12]. 

The total energy of an interacting many-body system is given as: 

 3[ ] [ ] ( ) ( )vE n Q n v r n r d r     (1.10) 

where 𝐸𝑣[𝑛] is the total energy of the many-particle system for a given external potential 

ν(𝑟); Q[n] represents a universal density functional of electron kinetic energy and 

Coulomb interactions, and which can be expressed as 

 ˆ ˆ[ ] ( , ) (T ) ( , )e e ee eQ n r R V r R     (1.11) 

Applying the variational principle, the minimum of equation 1.10 is obtained with 

the constraint given below for the electron density n(𝑟). 

 3[ ] ( )N n n r d r N    (1.12) 

Note that the electron density is computed from Equation 1.8 using the electron 

wave-function. In the wave-function method, the ground state energy is evaluated as 

𝐸𝑔 = min
𝜓𝑒→𝑁

⟨𝜓𝑒|�̂�𝑒|𝜓𝑒⟩. 𝜓𝑒 can be any normalized trial wavefunction satisfying equation 

1.12. In density functional method, we minimize equation 1.10 using the normalized trial 

electron densities rather than wavefunctions. The special minimization strategy, called 

the Levy-Lieb constrained search method, was firstly given independently by Levy [14] 

and Lieb [10] in their works. As shown in equation 1.13, this method adopts two different 

steps. In the first step, the normalized trial wave-function minimizes the Hamiltonian �̂�𝑒 

for the given density n(𝑟). Then, for the given external potential and the fixed number of 

electrons , we minimize the equation 1.10 for any possible trial density distribution. 
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  (1.13) 

The second step of Levy-Leib constrained search can be rewritten in a more 

familiar density functional form using equation 1.10. 

  min min 3

( ) ( )

ˆmin min [ ] ( ) ( )g e e e
n r N n r N

E H Q n v r n r d r 
 

      (1.14) 

The universal density functional Q[n] is given by: 

 
min minˆ ˆ[ ] e e ee eQ n T V     (1.15) 

For the N electron system, the minimizing of equation 1.13 by varying the many-

body wave-function in 3N space is almost a formidable task. Using the Levy-Leib 

constrained search, the problem of optimizing the wavefunction has been transformed 

into the minimization of equation 1.14 by trial electron density n(𝑟) in 3-dimensional 

space [2]. 

 

1.5 Kohn-Sham Theorem 

The Levy-Leib two-step constrained search indicates that the normalized trial 

wave-function 𝜓𝑒
𝑚𝑖𝑛 can be obtained from the first step. However, it is still unclear how 

it is computed from the density functional theory. The complete answer for this question 

was provided in the works of Kohn and Sham [13] in 1965, later known as the Kohn-

Sham theorem. 
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1.5.1 Adiabatic Connection with Fully Interacting System 

In the Kohn-Sham density functional theory, the total energy functional of an 

interacting system is eventually mapped onto a system with non-interacting electrons 

moving in the effective external potential. It is required that the ground state energy and 

electron density obtained from such a non-interacting model system are exactly the same 

as those of fully interacting system. Therefore, one has to adjust the kinetic energy and 

external potential in the Kohn-Sham system such that it gives the same ground state 

properties as the true interacting many-body system. Thermodynamically, the Kohn-

Sham system can be adiabatically connected to the fully interacting system within the 

following expression [15]. 

 

1

0

ˆ
g e e eE d H        (1.16) 

with 

 ˆ ˆ ˆ ˆ
e ee extH T V V 

      (1.17) 

note that �̂�𝑒
𝜆 represents the electronic Hamiltonian for a fictitious λ interacting system. In 

the adiabatic connection, by varying λ smoothly from 0 to 1, we require that for each λ 

system on the path, the ground state electron density (𝑛𝑔
𝜆(𝑟)) is equivalent 𝑛𝑔

𝜆=1(𝑟). The 

ground state energy now can be calculated as the coupling constant (λ) averaged 

expectation value of the Hamiltonian (�̂�𝑒
𝜆) going from Kohn-Sham non-interacting 

system (with λ = 0) to the fully interacting system (λ = 1). The relationship between 

Kohn-Sham and true interacting systems is given in equation 1.18. 
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  (1.18) 

In the Kohn-Sham system, the Coulomb interactions of electrons are completely 

turned off, and �̂�𝑠 refers to the kinetic energy of non-interacting electrons. The true 

external potential �̂�𝑒𝑥𝑡 is replaced by an effective potential �̂�𝑒𝑓𝑓. The difference between 

�̂� and �̂�𝑠 can be built into the �̂�𝑒𝑓𝑓. As a result, the two kinetic energies are considered to 

be the same in euqation 1.18. 

          

1.5.2 Kohn-Sham Equation 

From equations 1.10 and 1.12, it is straightforward to show that the minimization 

of equation 1.14 can be achieved using the conventional Euler-Lagrange multiplier. The 

new energy density functional is given by 

  3 3[ ] [ ] ( ) ( ) ( )F n Q n v r n r d r n r d r N     
     (1.19) 

where μ is the Euler-Lagrange multiplier and F[n] is simply a functional of density. The 

minimizing of F[n] with respect to electron density n(𝑟) is obtained when the following 

condition is fulfilled. 

 
[ ]

[ [ ]] ( ) 0
Q n

F n v r n
n


  



 
    
 

  (1.20) 

The obtained Euler-Lagrange equation now can be written as 

 
[ ]

( )
Q n

v r
n





    (1.21) 



11 

 

here ν(𝑟) is actually the external potential 𝑣𝑒𝑥𝑡(𝑟), and μ is the chemical potential which 

ensures that the total electron number is always correct in the non-interacting system. The 

form of the universal density functional Q[n] is known [12, 13]. 

 [ ] [ ] [ ] [ ]s H xcQ n T n E n E n     (1.22) 

In this equation, the kinetic energy density functional is represented by 𝑇𝑠[𝑛], and 

𝐸𝐻[𝑛] is the classical electrostatic energy of non-interacting electrons. The last term 

refers to the exchange-correlation energy, mainly accounting for the missing many-body 

effects in Kohn-Sham system. Substituting equation 1.22 into 1.21, we can show that 

 
[ ] [ ]

( ) ( )s xc
H ext

T n E n
V r v r

n n

 


 
      (1.23) 

where 𝑉𝐻(𝑟) represents the classic Coulomb potential (Hartree potential) of electrons 

and which can be computed as 

 3[ ] ( )
( ) H

H

E n n r
V r d r

n r r






 

   (1.24) 

Finally, combining equations 1.18 and 1.23, the effective potential of Kohn-Sham 

system is obtained as 

 
[ ]

( )s
eff

T n
v r

n





    (1.25) 

with 

 ( ) ( ) ( ) ( )eff H xc extv r V r V r V r     (1.26) 

and the exchange-correlation potential 

     /xc xcV r E n n    (1.27) 
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Clearly, equation 1.25 is similar to the single-particle Schrödinger equation where 

each electron moves in a universal effective potential. If we multiple both sides of 

equation 1.25 by the Kohn-Sham single particle wave function 𝜓𝛼
𝐾𝑆(𝑟), the Kohn-Sham 

equation is obtained. 

 21
( ) ( ) ( )

2

KS KS

effV r r r    
 
    
 

  (1.28) 

Here the chemical potential μ has the same meaning as the eigenenergy of Kohn-Sham 

orbital. Meanwhile, the kinetic energy energy functional is defined in the following way 

 3 ˆ[ ] [ ] ( )sT n d r r n r    (1.29) 

where the kinetic energy operator �̂�[𝑟] = 2 ∑ |∇𝜙𝛼
𝐾𝑆|2

𝑎 2⁄ , and the electron density n(r) 

= 2 ∑ 𝑓𝛼|𝜙𝛼
𝐾𝑆|2

𝛼 , where 𝑓𝛼 is the Fermi-Dirac distribution function for α Kohn-Sham 

single particle orbital with eigenenergy 𝜀𝛼. Within this definition for 𝑇𝑠[𝑛], equation 

1.28 can be easily validated using equations 1.25 and 1.29. Similar to Hartree-Fock 

theory, the total ground state energy of the non-interacting system is not equivalent to the 

sum of all eigenenergies of Kohn-Sham single particle orbitals. The exact relationship 

between them is given by 

  3 3 3

1

1 ( ) ( )
[ ] [ ] ( )

2

M

xc xc

n r n r
E d rd r E n V n n r d r

r r








   


     (1.30) 

here M denotes the highest occupied Kohn-Sham single particle orbital and in the spin 

degenerated case M = N/2, with N the total number of eletrons in the system. The 

exchange-correlation potential is already defined in equation 1.27. The possible 

expression for 𝐸𝑥𝑐[𝑛] will be discussed in the next section. Now, the wavefunction of the 
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non-interacting system 𝜓𝑒
𝑚𝑖𝑛 can be constructed from all occupied Kohn-Sham orbitals 

using the following expression. 
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   (1.31) 

Note that the 𝜙𝑖 represents the ith occupied Kohn-Sham single particle orbital. 

equation 1.31 is a typical single Slater determiant for non-interacting, identical and 

indistinguishable Fermions, representing a single reference configuration for N electrons. 

   

1.5.3 Exchange-Correlation Energy Functional 

The exchange-correlation energy is given by the third term in the Equation 1.26. 

The exact mathematical form of this energy functional is unknown in density functional 

theory. Therefore, one must construct its form from a model system. The most well-

known model system is the uniform electron gas. If  the electron density of the system 

varies sufficiently slow, then Hohenberg and Kohn [13] showed that the exchange-

correlation energy functional has the following form 

 3[ ] ( ) [ ]unif

xc xcE n n r n d r    (1.32) 

where 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓

[𝑛] is the exchange-correlation energy per particle of uniform electron gas. 

Equation 1.32 is enssentially the local density approximation (LDA). However, the 

analytical expression of 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓

[𝑛] was not known in the 1960s. The actual breakthrough 

of applying DFT to realistic condensed matters (atoms, molecules and solids) happened 
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much later in 1970s. Within equation 1.32, the local exchange-correlation potential is 

given by 

 
[ ]

( ) [ ( )] ( )
unif

unif xc
xc xc

d n
V r n r n r

dn


    (1.33) 

and euqation 1.30 can be written as 

  3 3 3

1

1 ( ) ( )
( [ ] [ ]) ( )

2

M
unif

xc xc

n r n r
E d rd r n V n n r d r

r r




 



   


     (1.34) 

 

1.6 Exchange-Correlation Functionals 

In this section, a comprehensive review is presented for the exchange-correlation 

functionals, which play the central role in density functional theory. 

 

1.6.1 Exchange-Correlation Hole 

The exchange-correlation can be revealed from the joint probability interpretation 

of many-body wavefunction [6]. The joint density probability refers to a two particle 

density distribution, which is given by 

 
3

23 3

2 1 1 2 2 3 1 1 2 2( , ; , ) N(N 1) ( , ; , , )
N

N e N Nr r d r d r r r r
 

             (1.35) 

where 𝜌2(𝑟1, 𝜎1; 𝑟2, 𝜎2) is the joint density probability, referring to the probability of 

finding the first partice at 𝑟1 with spin index 𝜎1 as well as the second particle at 𝑟2 with 

spin 𝜎2 at the same time. Due to the Pauli exclusive principle, it is known that the 

probability of finding two particles with the same spin (𝜎1 = 𝜎2) in the same position 

(𝑟1 = 𝑟2) is zero. This is basically the origin of the exchange hole surrounding a electron. 
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On the other hand, the electrons also try to avoid getting close to each other, because the 

singularity of on-top Coulomb repulsion between them. Therefore, electrons are 

correlated with each other due to the Coulomb interactions. In contrast to the exchange 

hole, the Coulomb correlation applies to all electrons, no matter what their spins are. The 

two particle distribution function given in equation 1.35 can be rewritten as 

 
12 1 1 2 2 1 2 2 2 1 1( , ; , ) ( ) ( , ; , )r r n r n r r       (1.36) 

Here the one particle density distribution function 𝑛𝜎1
(𝑟1) gives the probability of 

finding the particle with spin 𝜎1 in 𝑑3𝑟1 at 𝑟1. It can be obtained using the expression 

given below. 

 
1

2 3

23 3 3

1 2 3 1 1 2 2( ) N ( , ; , , )
N

N e N Nn r d r d r d r r r r
  

          (1.37) 

Otherwise, the two particle conditional probability 𝑛2(𝑟2, 𝜎2; 𝑟1, 𝜎1) 

provides the probability of finding the second electron with spin 𝜎2 at 𝑟2, given the 

first electron of spin 𝜎1 at 𝑟1. The relationship between exchange-correlation hole 

and two particle distribution function is usually defined as 

 
1 22 1 1 2 2 1 2 2 2 1 1( , ; , ) ( ) ( ) ( , ; , )xcr r n r n r n r r           (1.38) 

here 𝑛𝑥𝑐(𝑟2, 𝜎2; 𝑟1, 𝜎1) is the exchange-correlation hole. Combining equations 1.36 and 

1.38, we find that 

 
22 2 1 1 2 2 2 1 1 2( , ; , ) ( , ; , ) ( )xcn r r n r r n r       (1.39) 

We should note that the exchange hole surrounding the electron of spin 𝜎1 at 𝑟1 

is a negative value, because the Pauli exclusive principle. On the other hand, the total 

𝑛𝑥𝑐(𝑟2, 𝜎2; 𝑟1, 𝜎1) has no restriction on the sign of its values. The physical interpretation 
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of equation 1.39 is that the probability of finding a second electron of spin 𝜎2 at 𝑟2, given 

first electron of spin 𝜎1 at 𝑟1, is decreased due to the exchange-correlation hole 

surrounding the first electron. Since the exchange hole has a different origin than the 

correlation hole,  one can study the properties of exchange and correlation holes 

separately. 

 
1 22 2 1 1 2 2 1 1 , 2 2 1 1( , ; , ) ( , ; , ) ( , ; , )xc x cn r r n r r n r r           (1.40) 

The exchange-correlation energy now can be computed from exchange-

correlation hole by 

 3 3 1 2
1 1 2

1 2

( , )1
[ ] ( )

2

xc
xc

n r r
E n d r n r d r

r r


    (1.41) 

here we use the spin un-resolved quantities in the equation. Substituting equation 1.40 

into 1.41, we can calculate exchange and correlation enerigies independently. The 

exchange hole satisfies several physical constraints which can be shown from Hartree-

Fock theory. In Hartree-Fock theory, the exact exchange energy is calculated by 

 3 3 1 1 2 1 2 1
1 2

1 2

( , ) ( , )1
[ ]

2
x

n r r n r r
E n d r d r

r r
 

    (1.42) 

with the one electron density matrix 𝑛1(𝑟1, 𝑟2) 

  
1 2 3 1

3 3

1 1 2 3 1( , )
N

Nn r r d r d r
    

     (1.43) 

and {⋯ } stands for 

 *

1 1 3 3 1 1 2 2 3 3 1 1( , ; , , ) ( , ; , , )e N N e N Nr r r r r r             (1.44) 

while using the exchange hole, it is obtained by 
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 3 3 1 2
1 1 2

1 2

( , )1
[ ] ( )

2

x
x

n r r
E n d r n r d r

r r


    (1.45) 

Thus, from equations 1.42 and 1.45, it can be easily seen that 

 3 3 3 3 1 21 1 2 1 2 1
1 2 1 1 2

1 2 1 2

( , )( , ) ( , )1 1
( )

2 2

xn r rn r r n r r
d r d r d rn r d r

r r r r
 

       (1.46) 

and 

 

2

1 1 2

1 2

1

( , )
( , )

( )
x

n r r
n r r

n r
    (1.47) 

since the one particle electron density 𝑛(𝑟1) and the absolute square of the density 

matrix 𝑛1(𝑟1, 𝑟2) are non-negative numbers. Therefore, the first constraint for exchange 

hole density is 

 1 2( , ) 0xn r r    (1.48) 

Additionally, the integration of equation 1.47 for 𝑟2 gives the second constraint. 

 

2

1 1 23 3 1
1 2 2 2

1 1

( , ) ( )
( , ) 1

( ) ( )
x

n r r n r
n r r d r d r

n r n r
         (1.49) 

Finally, the last constraint is that the on-top exchange hole at 𝑟1 is given by 

 

2

1 1 1

1 1 1

1

( , )
( , ) ( )

( )
x

n r r
n r r n r

n r
      (1.50) 

where 𝑛1(𝑟1, 𝑟1) = 𝑛1(𝑟1) in a fully spin-polarized system. The exchange hole makes the 

second electron vanish at 𝑟1, given that both electrons have the same spin index. In 

Figure 1.1, we plot the exchange hole distributions of uniform (s = 0) and non-uniform (s 

= 1) cases from the gradient expansion approximation (GEA). 
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Figure 1.1: The exchange holes of uniform (s = 0) and non-uniform (s = 1) electron 

densities. The reference electron is located at the origin. The data for plots are generated 

by GEA. 

 

On the other hand, the electron density is rearranged by the correlation hole, but 

the total number of electrons is conserved. Thus, the only constraint for correlation hole 

is given in equation 1.51, implying that the correlation hole does not have any restriction 

on its sign. Usually, the value of correlation hole is negative at short range around a 

reference electron, and it can be positive far away from 𝑟1. 

 3

1 2 2( , ) 0cn r r d r    (1.51) 

Similar to the evaluation of exchange energy from exchange hole using equation 

1.45, the correlation energy can be calculated from correlation hole as 

 3 3 1 2
1 1 2

1 2

( , )1
[ ] ( )

2

c
c

n r r
E n d r n r d r

r r


    (1.52) 

Finally, using euquations 1.49 and 1.51, we get the constraint for total exchange-

correlation hole. 

 3

1 2 2( , ) 1xcn r r d r     (1.53) 
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In density functional theory, the constraints for exchange-correlation hole shown 

in this section are considered as the fundamental guildlines when building the exchange-

correlation density functionals [16]. 

 

1.6.2 Jacob’s Ladder of Density Functionals 

     The most well-known classification of exchange-correlation functionals used in 

modern first principles calculations based on density functional theory has been proposed 

by Perdew and Schmidt [16, 17]. The ingredients, which can be incorporated in the 

construction of an exchange-correlation functional, are the electron density n(r), density 

gradient ∇n(r) and orbital kinetic energy density (τ = ∑ 𝜏𝜎𝜎 ) for semilocal functionals. 

Meanwhile, the non-local exchange-correlation functionals also use the Kohn-Sham 

single particle orbitals as the input information. In Figure 1.2, the basic idea of sorting 

exchange-correlation functionals by their ingredients on Jacob’s ladder is illustrated. 

 

Figure 1.2: The Jacob’s ladder of density functionals. 
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      The first rung on Jacob’s ladder is the local spin density approximation (LSDA or 

LDA for simplicity in spin non-polarized case) which uses only the local spin electron 

densities to compute the exchange-correlation energy. The general expression of LSDA is 

given by 

 LSDA unif 3

xc xc[ , ] ( ) ( ( ), ( ))E n n n r n r n r d r
   

    (1.54) 

where the spin unresolved density 𝑛(𝑟) = 𝑛↑(𝑟) + 𝑛↓(𝑟), and 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓

(𝑛↑(𝑟), 𝑛↓(𝑟)) is 

already defined as the exchange-correlation energy per particle of uniform electron gas in 

equation 1.32. The most widely used forms of L(S)DA are Vosko-Wilk-Nusair (VWN) 

[18], Perdew-Zunger (PZ) [19], Cole-Perdew (CP) [20] and Perdew-Wang (PW92) [21]. 

The second rung on Jacob’s ladder is the generalized gradient approximation or 

GGA. The exchange-correlation functional of GGA level uses both the local spin density 

𝑛𝜎(𝑟) and the density gradient ∇𝑛𝜎(𝑟) infinitesimally close to 𝑟 as the variables in its 

construction. The expression of exchange-correlation energy of a GGA-level functional 

can be calculated as 

 GGA GGA 3

xc xc[ , ] ( ) ( , , , )E n n n r n n n n d r
     

     (1.55) 

here 𝜀𝑥𝑐
𝐺𝐺𝐴(𝑛↑, 𝑛↓, ∇𝑛↑, ∇𝑛↓) is the exchange-correlation energy per particle of GGA. It 

might be constructed from 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓

(𝑛↑(𝑟), 𝑛↓(𝑟)). Some well-known GGA exchange-

correlation functionals are gradient expansion approximations (GEA) [13, 22, 23 ], 

Perdew-Wang (PW91) [24], Perdew-Burke-Ernzerhof (PBE) [25], revised PBE (revPBE) 

[26], RPBE [27], Armiento-Mattsson (AM05) [28], Wu-Cohen (WC) [29], PBE revised 

for solid (PBEsol) [30] and Zhao-Truhlar (SOGGA) [31]. 
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Meta-generalized gradient approximation or meta-GGA is the third rung on 

Jacob’s ladder. Besides spin-resolved density 𝑛𝜎(𝑟) and density gradient ∇𝑛𝜎, the 

exchange-correlation energy functional of meta-GGA also employs the orbital kinetic 

energy density (𝜏𝜎(𝑟) =
1

2
∑ |∇𝜙𝛼𝜎(𝑟)|2

𝛼 ) as another ingredient. The exchange-

correlation energy is calculated as 

 meta-GGA meta-GGA 3

xc xc[ , ] ( ) ( , , , , , )E n n n r n n n n d r  
       

     (1.56) 

here 𝜀𝑥𝑐
𝑚𝑒𝑡𝑎−𝐺𝐺𝐴(𝑛↑, 𝑛↓, ∇𝑛↑, ∇𝑛↓, 𝜏↑, 𝜏↓) is the exchange-correlation energy per particle of 

meta-GGA. The GGA exchange-correlation energy has been used in meta-GGA 

construction. Many different forms are available for meta-GGA, including Perdew [32], 

Ghosh-Parr [33], Becke-Roussel [34], Van Voorhis-Scuseria [35], Perdew-Kurth-Zupan-

Blaha (PKZB) [36], Tao-Perdew-Staroverov-Scuseria (TPSS) [37], Zhao-Truhlar (M06-

L) [38], revised Tao-Perdew-Staroverov-Scuseria (revTPSS) [39], regularized TPSS 

(regTPSS) [40], meta-GGA made simple family (MGGA_MS) [41-43], Campo-

Gάzquez-Trickey-Vela (meta-VT{8, 4}) [44] and Constantin-Fabiano-Sala (BLOC) [45]. 

The exchange-correlation functional at the fourth rung on Jacob’s ladder is called 

hyper-GGA or hyper-meta-GGA. The strategy adopted to hyper-GGA (meta-GGA) is the 

mixing of semilocal exchange-correlation functionals on the first three rungs with non-

local exchange or correlation functional. Therefore, the exchange-correlation functional 

obtained in this way is usually referred as hybrid functional. A typical hybrid functional 

contains a portion of Hartree-Fock like exact exchange in its exchange energy functional, 

and the correlation energy functional usually keeps the same form as that of a semilocal 

functional (PBE correlation in most cases). All hybrid functionals are nonlocal and 
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orbital dependent. Mathematically, it is more transparent than some semilocal 

functionals. Computationally, it can be 10 to 100 times more expensive than semilocal 

functionals on the first three rungs. In quantum chemistry, the mostly widely used hybrid 

functionals are B3LYP (Becke, three parameter, Lee-Yang-Parr) [46] and the M06 suite 

of meta-hybrid GGA [47, 48]. Meanwhile, the PBE0 [49] and Heyd-Scuseria-Ernzerhof 

(HSE) [50-52] are very popular in structural calculations for solids. 

On the top of Jacob’s ladder, we have the random phase approximation (RPA) 

[15, 53-66]. RPA uses both occupied and unoccupied Kohn-Sham orbitals in its 

exchange-correlation energy functionals. Additionally, RPA is also completely non-local 

in both exchange and correlation functionals,  in constrast to hybrid functional where 

only the exchange part is nonlocal. The most intriguing property of RPA is that the long 

range van der Waals interactions can be described naturally due to its non-local 

construction of correlation energy. RPA is supposed to be the most accurate method for 

isolectronic energy differences in solids in the framework of density functional theory. 

Some earlier tests of RPA on transition metals [58, 64, 66], bulk materials [53-58, 65, 

66], molecules [59, 62] and surfaces [60, 61, 63] indicated that the method is highly 

reliable and accurate. However, the main disadvantage of RPA is its high computational 

costs. Typically, RPA is 100 times slower than semilocal functionals. For large system, it 

is almost not affordable for most modern supercomputers. 
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1.6.3 Mathematical Forms 

Since we are aiming to test exchange-correlation functionals of all five rungs on 

Jacob’s ladder and to use their exchange enhancement factors to explain the 

performances on different properties, it is necessary to review some of them from the 

point of view of their mathematical constructions. 

 

1.6.3.1 Local Spin Density Approximation 

The local spin density approximation (LSDA) plays the fundamental role in the 

construction of other exchange-correlation functionals on Jacob’s ladder. The starting 

point of LSDA is the exchange-correlation energy functional of uniform electron gas. In 

the earlier 1980s, Ceperley and Alder published the computed exchange-correlation 

energy of uniform electron gases at finite temperature using Green’s-function Monte-

Carlo simulation [67, 68]. The total energy density per particle for uniform electron gas is 

given as 

 unif unif unif

t x c( ) ( ) ( )st n n n       (1.57) 

with the kinetic energy per particle 𝑡𝑠(𝑛), exchange energy 𝜀𝑥
𝑢𝑛𝑖𝑓

(𝑛) and correlation 

energy 𝜀𝑥
𝑢𝑛𝑖𝑓

(𝑛) per particle. We define the Wigner-Seitz radius of uniform electron gas 

as 𝑟𝑠 = (3 [4𝜋𝑛]⁄ ) 1/3. The analytical expressions for the first two terms in equation 1.57 

are known. 

  
2/3

2

2
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( ) 3

10
s

s

t n n
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    (1.58) 

  
1/3

unif 2

x

3 0.458
( ) 3

4 s

n n
r

 



     (1.59) 
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The formulation of correlation energy comes from the Monte-Carlo simulations of 

the total energy for uniform electron gas with different 𝑟𝑠 values. The analytical 

expressions used in LSDA are actually the numerical fitting forms of uniform electron 

gas, starting from Monta-Carlo data [67, 68]. The correlation energy per particle of 

uniform electron gas is dependent on 𝑟𝑠 and spin polarizibility (ξ). The latter quantity is 

defined as ξ = (𝑛↑ − 𝑛↑) 𝑛⁄ , where n = 𝑛↑ + 𝑛↓. For spin non-polarized (𝑛↑ = 𝑛↑ = 𝑛 2⁄  

or ξ = 0) and spin fully polarized (ξ = 1) cases, the correlation energies per particle are 

given by Ceperly’s parametrizations of correlation energy for 𝑟𝑠 ≥ 1 

 unif

c

0.1423
( , 0)

(1 1.0529 0.334 )
s

s s

r
r r

 


 
 

  (1.60) 

and 

 unif

c

0.0843
( , 1)

(1 1.398 0.2611 )
s

s s

r
r r

 


 
 

  (1.61) 

then the correlation energy per particle for an arbitrary ξ is calculated by the interpolation 

of euqations 1.60 and 1.61 in the following way: 

 
unif unif unif unif

c c c c1/3

( ) 1
(r , ) (r , 0) (r , 1) (r , 0)

2 1
s s s s

g 
       


       

  (1.62) 

here g(ξ) = [(1+ξ)4/3+(1-ξ)4/3]/2. Note that g(ξ = 0) = 1 and g(ξ = 1) = 21/3. On the other 

hand, the kinetic energy and exchange energy per particle of uniform electron gas in spin 

polarized case are computed as 

 unif

x

0.458
( , ) ( )s

s

r g
r

  


   (1.63) 
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r

    (1.64) 
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with f(ξ) = [(1+ξ)5/3+(1-ξ)5/3]/2. In analogy to g(ξ), we have f(ξ = 0) = 1 and f(ξ = 1) 

= 22/3. The total exchange-correlation energy per particle given in equation 1.54 can be 

easily obtained from equations 1.62-64. It is worth noting that the expressions 1.60 and 

1.61 for uniform electron gas are appropriate for most applications. Perdew and Zunger 

[19] found that for atomic calculations, the correlation energy per particle at high density 

is needed. They have shown that for 𝑟𝑠 ≤ 1 and arbitrary ξ, the correlation energy of 

uniform electron is obtained in a similar way to equation 1.62, but with the following 

expressions for correlation energy in two special cases (See equations 1.60 and 1.61). 

 unif

c ( , 0) 0.0311ln 0.048 0.0020 ln 0.0116s s s s sr r r r r         (1.65) 

 unif

c ( , 1) 0.01555ln 0.0269 0.0007 ln 0.0048s s s s sr r r r r         (1.66) 

Using the equations 1.59-62, the exchange and correlation energies of uniform 

electron gas in two different limits are 

 

unif

x
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unif

x

lim ( )

lim ( ) 0

s

s

s
r

s
r
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r









  



 


  (1.67) 

and 

 

unif

0

unif

lim ( , )

lim ( , ) 0

s

s

c s
r

c s
r

r C

r

 

 





  



 


  (1.68) 

where C is a positive number. Note that 𝑟𝑠 ⟶ ∞ and 𝑟𝑠 ⟶ 0 correspond to low density 

and high density limits. In the high density limit, equations 1.65 and 1.66 give -∞ for 

correlation energy, and obviously they do not exhibit the correct behavior in this case [22, 

25].  Note that equations 1.65 and 1.66 are correct for the uniform gas. Equations 1.67 
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and 1.68 are not correct for this system, although they are correct for systems that have 

fully non-degenerate ground states at the Kohn-Sham level.  

            The electron density of any system can be varied by a strategy called uniform 

scaling. The relationship between scaled and initial electron densities is given by 

3 ( )n n r   , where γ is the scaling parameter. In Figure 1.3, the radial density 

distribution of hydrogenic 1s wave-function is shown for several different scaling 

parameters. The total number of particles is conserved before and after scaling. For the 

uniform electron gas, we can see that when the electron density is scaled, the kinetic 

energy and exchange energy per particle can be calculated from the un-scaled one. The 

scaling properties of correlation are not as simple as exchange energy. 
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x x
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  (1.69) 
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Figure 1.3: The radial density distributions of the hydrogenic 1s orbital using different 

scaling parameters. The analytical expression for radial density of 1s orbital is 𝑛𝜆 =
2𝛾3𝑒−𝛾𝑟. 
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LSDA starts from the exchange-correlation energy of spin-resolved uniform 

electron gas (UEG), so it preserves many good scaling properties of UED. Practically, 

LSDA is also a great success, and it is used in electronic structure calculations nowadays. 

It is found that LSDA is more accurate for compact structures with slowly varying 

densities than it is for atoms and loosly bonded crystals where the electron density 

distribution is less uniform. For extended structures like crystals, the exchange-

correlation hole of LSDA is pretty accurate, but it is too diffuse for atoms where the 

electron densities are more localized than solids [59]. As a result, LSDA usually 

overestimates the cohesive energy for molecules and solids. The lattice constants of 

crystal structures are also underestimated by LSDA. In the surface science, LSDA gives 

good surface energy for metals, but the computed adsorption energy is too large.  

Gunnarsson and Lundqvist [69] discovered that the exchange-correlation hole of 

LSDA satisfies all constraints for the exact hole (See section 1.6.1). To some extent, this 

explains why LSDA gives quite reasonable resutls for condensed phases. 

         

1.6.3.2 Generalized Gradient Approximation 

The earliest version of GGA is the gradient expansion approximation (GEA). The 

exchange-correlation energy functional is given as [22, 69] 

 

GEA LSDA

xc xc

2 2 2

3 3 3

4/3 4/3 2/3 2/3

[ , ] [ , ]

( , ) ( , ) ( , )xc xc xc

E n n E n n

n n n
C n n d r C n n d r C n n d r

n n n n

   

    

     

   



  
    

 (1.70) 

where 𝐶𝑥𝑐
𝜎𝜎′

(𝑛↑, 𝑛↓) is the derived coefficients. 
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The GEA is supposed to be more accurate than LSDA for the slowly varying 

densities satisfying the following conditions: 

 
F

s

n
k

n

n
k

n








  (1.71) 

here, we define the local Fermi wave vector 𝑘𝐹 = (3𝜋2𝑛)1/3 = 2𝜋 𝜆𝐹⁄  and local 

Thomas-Fermi screening wave vector 𝑘𝑠 = √4𝑘𝐹 𝜋𝑎0⁄ = 1 𝜆𝑠⁄ , where 𝜆𝐹 and 𝜆𝑠 are 

local Fermi wave-length and local Thomas-Fermi screening length, and 𝑎0 is the Bohr 

radius (0.529 Å). However, equation 1.71 is never fulfilled by real atoms, molecules and 

solids. As a result, GEA works badly for those systems. Later, it was found that the 

exchange and correlaton holes of GEA violate many constraints which are satisfied by 

LSDA and exact holes [22]. 

PW91 and PBE are the two most important and representative exchange-

correlation functionals at GGA level [24, 25]. PBE is a simplified version of PW91. The 

exchange and correlation functionals are constructed separately. The exchange energy of 

a GGA functional for the spin non-polarized density is usually expressed as: 

 unif 3

x[ ] ( ) ( )GGA

x xE n n n F s d r    (1.72) 

where 𝜀𝑥
𝑢𝑛𝑖𝑓

(𝑛) is the exchange energy of spin non-polarized UEG, given in Equation 

1.59; s is the reduced density gradient, another dimensionless quantiy evaluated by s 

= |∇𝑛| (2𝑘𝐹𝑛)⁄ . 𝐹𝑠  (𝑠) is the gradient enhancement factor, playing the central role in 

exchange energy functional. A general expression for 𝐹𝑠 (𝑠) is given by: 
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  (1.73) 

A non-empirical GGA exchange functional  must satisfy as many contraints as 

possible. Those constraints are [25, 31]: 

1. The spin scaling relation for exchange energy 

 
1 1

[ , ] [2 ,0] [2 ,0]
2 2

x x xE n n E n E n
   

    (1.74) 

2. Uniform density scaling (See also equation 1.69 for UEG) 

 [ ] [ ]x xE n E n    (1.75) 

3. Lieb-Oxford bound 

 4/3 3[ , ] [ , ] 1.679x xcE n n E n n n d r
   

      (1.76) 

with 𝐸𝑥
𝐿𝐷𝐴[𝑛] = −1.679 ∫ 𝑛4/3𝑑3𝑟. 

4. Density in the slow varying limit 

 GGA unif 2 3

x x GE[ ] ( )(1 )E n n n s d r     (1.77) 

with 𝜇𝐺𝐸 = 10/81 ≈ 0.12345679 for the GEA in equation 1.70. 

The enhancement factors of PW91 and PBE are expressed as: 

PW91 [24] 

 

21 100 2

1 4

1 0.19645 sinh (7.7956 ) (0.2743 0.1508 )
( )

1 0.19645 sinh (7.7956 ) 0.004

s
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s s e s
F s

s s s

 



  


 
  (1.78) 

PBE [25] 

 
2

0.804
( ) 1 0.804

0.21951
1

0.804

xF s
s

  



  (1.79) 
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It can be shown that the exchange energy functional of PW91 satisfies all four 

constraints given in equations 1.74-77. Meanwhile, PBE violates the fourth constraint, 

indicating that it does not recover the second order gradient expansion for the density in 

the slow varying limit. Note that in equation 1.73, recovering equation 1.77 requires μ 

= 𝜇𝐺𝐸, and PBE value (0.21951) are two times larger than the correct number. The 

reasons why PBE adopts such value are based on two facts. First of all, the PBE 

exchange energy functional gives the better exchange energy for neutral atoms when 

using the current μ in its form [30]; otherwise, the μ in PBE was also chosen to make 

second order gradient expansion of exchange to cancel that of correlation, because it is 

believed that LSDA is more accurate than GEA for linear response of the uniform gas 

[31]. In Figure 1.4, the gradient enhancement factors of PW91 and PBE are compared to 

LDA and GEA (See equation 1.77). LDA is represented by horizontal line, becase it is 

not dependent on s; GEA violates the sum rule of exchange hole, its profile increases 

monotonically with s without upper limit; PW91 and PBE give similar profiles in most s 

range. For very large s (which energetically may not important), PW91 decreases with s 

and then approaches zero when s⟶∞. The large s behavior of GGA exchange 

enhancement factor is determined by the Leib-Oxford bound. This constraint can be 

satisfied by a GGA in two different ways. The global Leib-Oxford bound is given by 

equation 1.76 as an integration form, requiring 𝐹𝑥(𝑠) ≤ 2.273 or κ ≤ 1.273; meanwhile, 

PBE and PW91 fulfill the local Leib-Oxford bound, requiring 𝐹𝑥(𝑠) ≤ 1.804 or κ ≤ 

0.804. The local Leib-Oxford bound is given by 

 unif 4/3

x ( ) ( ) 1.679xn n F s n     (1.80) 
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Zhang and Yang [26] showed that for the given eletron density, the fulfillment of 

equation 1.80 is sufficient but not a necessary condition for satisfying global Leib-Oxford 

bound.  In contrast, Perdew and coworkers showed that it is also a necessary condition 

[70]. 
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Figure 1.4: The plots of gradient enhancement factor of LDA, GEA, PW91 and PBE. 

The correlation functionals of PW91 and PBE are much complicated than their 

exchange part. The starting points are LSDA and GEA. The general expression of 

correlation energy functional is written by [24, 25] 

 3[ , ] ( , ) ( , , )GGA unif

c c s sE n n n r H r t d r  
 

      (1.81) 

where t is another scaled density gradient, and it is computed by t = |∇𝑛| [2𝑔(𝜉)𝑘𝑠𝑛]⁄ . 𝑘𝑠 

is local Thomas-Fermi screening wave-vector as defined in equation 1.71, and g(ξ) is 

given in equation 1.63, a function related to local spin polarization. H(𝑟𝑠, 𝜉, 𝑡) is the 

gradient correction to correlation energy per particle, and it has different forms in PW91 

and PBE. 
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The constraints for correlation energy functional are not as simple and transparent 

as those of exchange energy functional. Some well-known constraints are [25, 30, 31]: 

1. Second order gradient expansion in slow varying limit (t⟶0) 

 GGA unif 2 3

c GE[ ] ( )(1 )cE n n n t d r     (1.82) 

where the GEA second order expansion coefficient 𝛽𝐺𝐸 = 0.066725. 

2. The rapid varying limit (t⟶∞) 

 [ , ] 0GGA

cE n n
 

   (1.83) 

3. High density limit (𝑟𝑠 ⟶ ∞) 

 [ , ]GGA

cE n n C
 

    (1.84) 

where C is a positive constant (See equation 1.68). The second constraint is required by 

the sum rule of correlation hole (equation 1.51). In the rapid varying limit, the only way 

to satisfy the sum rule is to make the GEA correlation hole vanish. 

The correlation functional of PW91 is given by [24]: 

 0 1( , , )sH r t H H     (1.85) 

where 
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with α = 0.09, ν = (16/π)(3π2)1/3, Cc (0) = 0.004235, Cx = -0.001667, β = νCc(0) and 
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here a = 23.266, b = 7.389×10-3, c = 8.723 and d = 0.472. In equation 1.88, 𝜀𝑐
𝑢𝑛𝑖𝑓

(𝑟𝑠, 𝜉) 

is given in equation 1.62. Note that PW91 uses the expressions of correlation energy of 

UEG in the high density case to interpolate the value at arbitrary ξ (See also equations 

1.65 and 1.66). 

On the other hand, the correlation energy of PBE is a simplified version of PW91 

case, and which is given by [22, 25]: 

 
2 4

3 2

2 2 4
( , , ) g ln 1

1
s

t At
H r t t

At A t


 



   
   

    
  (1.91) 

and 
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  (1.92) 

here γ = 0.031091 and β = 0.066725. 

It can be shown that PBE satisfies all three constraints given in equations 1.82-84 

[22]. While, PW91 violates the third constraint, because it uses euqations 1.65-66 rather 

than 1.60-61. Since LSDA correlation is also built from equations 1.65-66, therefore, 

both LSDA and PW91 do not scale properly in the high density limit [22]. 

Once the expressions for exchange and correlation functional are known, the total 

exchange-correlation energy of GGA can be evaluated as [24]: 

 GGA unif GGA 3

xc x xc[ , ] ( , 0) (r , , )s sE n n n r F s d r  
 

    (1.93) 
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where 𝜀𝑥
𝑢𝑛𝑖𝑓

(𝑟𝑠, 𝜉 = 0) is the exchange energy per particle of spin non-polarized UEG, 

given in equation 1.59, and exchange-correlation gradient enhancement factor 

𝐹𝑥𝑐
𝐺𝐺𝐴(𝑟𝑠, 𝑠, 𝜉) is given by 
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  (1.94) 

here the exchange-correlation energy of GGA per particle is computed as 

 GGA unif unif

xc x c( , , ) ( , 0) ( , ) [ ( , ) H(r , , t)]s s x s sr s r F s r             (1.95) 

With 

 
4/3 4/31

( , ) (1 ) (x) (1 ) (y)
2

x x xF s F F          (1.96) 

and x = 𝑠 (1 + 𝜉)1/3⁄  and y = 𝑠 (1 − 𝜉)1/3⁄ .  

In Figures 1.5 and 1.6, the three-dimensional contours of exchange-correlation 

gradient enhancement factor are displayed for PW91 and PBE in the spin non-polarized 

case (ξ = 0). In the spin fully polarized case (ξ = 1), the shapes of those contours are 

similar to those of the spin non-polarized situation. Although, PW91 satsifies the second 

order gradient expansion for both exchange and correlation energies, PBE and PW91 

curves in this limit are qualitively similar to each other. The main difference between 

PW91 and PBE in their exchange enhancement factors is attributed to the large s 

behavior. Again, both GGAs fulfill the local Leib-Oxford constraint, but when s goes to 

infinity, Fx(s) of PW91 is reduced to zero rather than 1.804 in PBE. The main reason is 

due to another less well-known constraint for exchange-correlation at large s under the 

non-uniform scaling of electron density [44]. The non-uniform scaling of electron density 
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is related to the dimensional crossover, and which could be important for low-

dimensional materials such as carbon nanotubes and layered crystalline structures.      

 

Figure 1.5: The three-dimensional (3-D) contour plot of exchange-correlation 

enhancement factor of PW91 in spin non-polarized case (ξ = 0). 

 

 

 

Figure 1.6: The 3-D contour plot for exchange-correlation enhancement factor of PBE in 

spin non-polarized case (ξ = 0). 
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Several other widely used exchange-correlation functionals of GGA level will be 

briefly reviewed here. 

In 1998, Zhang and Yang [26] slightly revised the exchange part of PBE 

functional, keeping 𝐹𝑥(𝑠) the same as PBE, but using κ = 1.245. The correlation energy 

functional is completely identical to PBE form. This new GGA is named revised PBE or 

revPBE. For any spin polarized physical density, in order to fulfill Leib-Oxford bound for 

exchange energy, the upper limit of κ = 0.804. However, it is found that revPBE does not 

violate equation 1.76 in many calculations for atoms, molecules and surfaces [27]. 

Otherwise, revPBE also does not satisfy equation 1.77.  

Hammer et al. [27] revisited PBE and revPBE, and the new PBE exchange 

gradient enhancement factor proposed by them is given by 

 
2 /( ) 1 (1 )s

xF s e        (1.97) 

here κ = 0.804 and μ = 0.21951. Note that μ is the same as PBE. The PBE correlation is 

adopted in this new PBE known as RPBE. The exchange enhancement factor of RPBE 

imitates the behavior of revPBE for s in the range of 0 to 2.5. For large s, it recovers 

PBE profile. Similarly to PBE and revPBE, RPBE violates the second order gradient 

expansion in small s limit. 

In 2006, Wu and Cohen [29] derived another GGA type exchange enhancement 

factor given below: 
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  (1.98) 

With 



37 

 

 
22 2 410 10
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here κ = 0.804, μ = 0.21951 and c = 0.0079325. Constant c was chosen to recover the 

gradient expansion of Svendsen and von Barth [71] for slowly varying density. This 

expansion is given by: 

 
2 2 610 146 73

( ) 1 ( )
81 2025 405

xF s p q qp Dp O         (1.100) 

with p = s2, q = ∇2𝑛 [4(3𝜋2)
2

3𝑛
5

3]⁄  and D = 0 from the best numerical estimation.   

Obviously, WC06 exchange functional fulfill all four constraints mentioned before. 

In 2008, Perdew et al. [30] slightly modified some coefficients of PBE 

exchange and correlation functionals. The obtained new GGA functional is known as 

PBE revised for solids or PBEsol. The exchange enhancement factor of PBEsol 

recovers the second order gradient expansion for small s, requiring that μ = 𝜇𝐺𝐸 =

10/81. It is also believed that the gradient expansion of correlation energy for small s 

is not quite relevant to real systems. Therefore, PBEsol correlation energy was refitted 

to exchange-correlation energy of jellium surface computed from TPSS [37]. PBEsol 

uses β = 0.046 rather than 𝛽𝐺𝐸 in PBE. 

In the same year, Zhan and Truhlar [38] published SOGGA (second order 

generalized gradient approximation). SOGGA recovers the second order gradient 

expansion in both exchange and correlation parts (See equations 1.77 and 1.82). The 

PBE correlation functional was used without further modification, because it respects 

the equation 1.82. The exchange gradient enhancement factor of SOGGA is written as: 
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where μ = 10/81 and κ = 0.552. 

The exchange gradient enhancement factors of GGA-level functionals 

discussed here are plotted in Figure 1.7. The large s behaviour of 𝐹𝑥(𝑠) is determined 

by κ. Those GGA functionals with large κ values (revPBE, RPBE and etc.), their 

profiles are increased faster than others with the increasing of s. PBEsol, WC06 and 

SOGGA curves at small s are close to GEA profile. SOGGA is very “soft” at large s 

due to its smallest κ value.   
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Figure 1.7: The profiles of exchange gradient enhancement factor of GGA-level 

functionals. 

 

The improvement of GGA over LSDA for many properties of atoms, molecules 

and crystal structrues is significant. First of all, GGA-level functionals correct the 

over-binding problem of LSDA: The GGA atomization energy (cohesive energy) is 

close to experiment. Because the GGA correction to LSDA lowers the total energy of 
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atoms more than that of molecules and solids. GGA level functionals suffer from the 

famous dilemma that the geometry and energetics can not be described accurately at 

the same time [60, 72]. For example, PBEsol, SOGGA and WC06, which recover the 

second order expansion in exchange energy, usually give the good description for 

lattice constants and bulk moduli, but the computed cohesive energy and energy barrier 

are less accurate than PBE. In addition, RPBE and revPBE give the good results for 

surface adsorption energy, but they perform even worse than PBE for lattice geometry. 

At GGA-level, there is no universal functional which is good for all properties (surface 

adsorption, energetics and geometry). 

 

1.6.3.3 Meta-Generalized Gradient Approximation 

Generally, the formulation of the meta-GGA exchange-correlation functional is 

more flexible than GGA and LSDA, because the orbital kinetic energy density is also 

incorporated in its construction (See equation 1.56). In other words, meta-GGAs can 

be much more complicated than GGAs and LSDA. In this dissertation, we will only 

test several non-emiprical meta-GGAs forms such as PKZB [36], TPSS [37], revTPSS 

[39], regTPSS [40] and MGGA_MS variants [41, 42]. Therefore, the discussions here 

are mainly focused on those meta-GGA functionals. Otherwise, we are particularly 

interested in the exchange part of meta-GGAs, because it is found that the performance 

of meta-GGAs on geometry and energetics can be explained using their exchange 

enhancement factors. Since the total exchange-correlation energy is dominated by 



40 

 

exchange energy for normal solids, it is expected to see the correlation between 

performance of a meta-GGA and its exchange enhancement factor. 

The Perdew, Kurth, Zupan and Blaha (PKZB) meta-GGA was constructed 

following the philosophy of PBE GGA-level functional [36]. Besides those constraints 

given in equations 1.74-77, the exchange enhancement factor of PKZB recovers the 

fourth order gradient expansion coefficient of Svendsen and von Barth [71] (See 

equation 1.100). The exchange energy of the meta-GGA for a spin non-polarized 

density can be written as 

 MGGA unif 3

x x[ ] ( ) ( , , )xE n n n F n n d r     (1.102) 

where 𝐹𝑥(𝑛, ∇𝑛, 𝜏) is the exchange enhancement factor, τ is the kinetic energy density. 

In PKZB meta-GGA, the exact form is 

 ( , ) 1
1

xF p q
x






  


  (1.103) 

and 
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  (1.104) 

with 

 
2 2 2/3 8/3 2[4(3 ) ]p n n s     (1.105) 

 
2 2/3 5/33 [2(3 ) ] 9 / 20 /12q n p      (1.106) 

where κ = 0.804, and D = 0.113. Note that D was fixed to zero in equation 1.98. 

Euqation 1.103 is plotable in two special cases: 

1. The single orbital region or one (two) electron density 
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where τ is equivalent to Weizsäcker kinetic energy density (𝜏𝑊), which is the lower 

bound of τ and it is exact for one-electron system. 

2. The slow varying limit of electron density 
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In Figure 1.8, the profiles of equation 1.103 in two cases are shown for 

PKZB. Although, PKZB respects the Leib-Oxford bound, we can see that its 

exchange enhancement factor grows much faster than PBE for relatively large s (s > 

1).  
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Figure 1.8: The profiles of the exchange enhancement factor of PKZB in two special 

cases: the single orbital region (τ = 𝜏𝑊) and the UEG (τ = 𝜏unif). For the convinence, 

PBE and LSDA are also shown in the figure. 
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The correlation energy of PKZB is built based on PBE correlation energy, 

preserving all good properties of PBE (Equations 1.82-84). Another extra advantage of 

a meta-GGA correlation functional is that it can be self-interaction free for spin 

polarized one-electron density. PKZB employs the following expression to compute 

the correlation energy [36]. 
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  (1.111) 

Here the 𝜀𝑐
𝐺𝐺𝐴 is the correlation energy of GGA per particle, and it can be 

compute from equation 1.81. The spin resolved orbital kinetic energy density is 

computed as 𝜏𝜎 = ∑ |∇𝜙𝛼𝜎(𝑟)|2 2⁄𝛼  and the Weizsäcker kinetic energy density (𝜏𝑊
𝜎 ) 

of equation 1.107. The constant C = 0.53, so that the computed surface correlation 

energies for jellium models by PKZB are in close agreement with those of PBE. It is 

easy to verify that for the one-electron system, 𝜏𝜎 = 𝜏𝜎
𝑊 and the term in the curly 

braket of equation 1.111 vanishes. In contrast to GGAs, equation 1.111 is not plottable. 

The first widely used non-empirical meta-GGA is TPSS [37]. The main idea in 

the construction of TPSS exchange energy is that the exchange potential must be finite 

at the nucleus for the ground one- and two-electron densities. TPSS exchange also 

respects the constraints which are are already satisfied by PKZB. The exchange energy 

of TPSS is also computed from equation 1.102, but with the following exchange 

enhancement factor 
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where κ = 0.804 and the function x(p,z) is given as 

 

22
2 2

2 2

2 2

2 3

2

10 146 73 1 3 1

81 (1 ) 2025 405 2 5 2

1 10 10 3
2

81 81 5
( , )

(1 )

b b

z
c p q q z p

z

p e z e p

x p z
e p




          
   

 
    
      

    


  (1.113) 

 

and 

 
1/2

9 ( 1) 2

20 [1 ( 1)] 3
b

p
q

b



 


 

 
  (1.114) 

 
unif

W 





   (1.115) 

 
5

5 3

W p
z

p



 
 


  (1.116) 

here μ = 0.21951, c = 1.59096, e = 1.537 and b = 0.40. Note that p is given in Equation 

1.105, 𝜏𝑊 is defined in equation 1.107 and 𝜏unif is given by equation 1.109. Due to 

the relationships given in equations 1.105, 1.115 and 1.116, the exchange enhancement 

factor of TPSS can be also written as a function of s and α or 𝐹𝑥(𝑠, 𝛼). Simialr to 

PKZB (Equation 1.104), some coefficients in equation 1.113 of TPSS are identical to 

those of equation 1.100, because both meta-GGAs recover the fourth order gradient 

expansion of Svendsen and von Barth [71] in slowly varying limit. The values of α and 

z in two special cases should be checked further. In the UEG, τ = 𝜏unif and 𝜏𝑊 → 0, 
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then α = 1 and z = 0; for the one- or two-electron densities, τ = 𝜏𝑊, we have α = 0 and 

z = 1. Therefore, a meta-GGA level density functional can distinguish two different 

types of electron density in space. The two densities may have the same reduced 

density gradient, thus GGA-level functionals treat them as the same density. The 

convergence of exchange potential at the nucleus for one- or two electron densities in 

TPSS is achieved by requiring that 

 
2
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0x
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dF p s z

ds


 
   (1.117) 

here, s = 0.376 refers to a two-electron exponential density at the nucleus. 

In contrast to PKZB, the exchange enhancement factor of TPSS is plottable for 

arbitrary s and α values. In Figure 1.9, the profiles of equation 1.112 are given for two 

cases, i.e., UGE and one- or two electron densities. They are also compared to PBE 

and LDA curves. Meanwhile, we also plot the 3-D contour of 𝐹𝑥(𝑠, 𝛼) for TPSS in 

Figure 1.10. The main difference between TPSS and PBE is that in the single orbital 

region (α = 0), TPSS gives more negative exchange energy per particle than PBE. This 

is reasonable, because the electron density in the single orbital region is usually more 

localized than uniform electron gas. Therefore, the exchange hole is also expected to 

be more deep and localized aroung the reference electron. The meta-GGA functionals 

can distinguish single orbital region from other electron densities, giving better 

description for exchange energy than GGA functionals do. This is the main advantage 

of the meta-GGA level functional. 
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Figure 1.9: The profiles of exchange enhancement factor of TPSS in two different 

densities are compared to PBE and LDA. Note that α = 0 refers to one- or two electron 

densities, and α = 1 corresponds to UEG case. 

 

 

Figure 1.10: The 3-D contour plot of the exchange enhancement factor of TPSS. 

The correlation energy of TPSS was constructured from a revised PKZB 

correlation energy functional, and can be expressed as 

 MGGA revPKZB revPKZB 3 3

c c c[ , ] [1 ( ) ]WE n n n d d r   
 

    (1.118) 
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where d = 2.8 hartree-1, and 𝜀𝑐
𝑟𝑒𝑣𝑃𝐾𝑍𝐵 the revised PKZB correlation energy functional 

per particle [37]. 
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and 
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        (1.121) 

 
2 4 6(0, ) 0.53 0.87 0.50 2.26C          (1.122) 

where ζ = |∇𝜉|/2(3𝜋2𝑛)1/3. Note that in PKZB correlation energy functional 

(Equation 1.111), the C = 0.53. It is treated as function in TPSS. 

In 2009, Perdew et al. [39] slightly modified the original TPSS exchange-

correlation functional and named the new meta-GGA as revised TPSS or revTPSS. 

The main argument is that TPSS gives good energetics, but the lattice constants are too 

large. The new functional was supposed to give the good results for both geometry and 

energetics (surface energies and cohesive energy). The expressions for exchange and 

correlation functionals of revTPSS are basically the same as those of TPSS. For 

exchange energy, the term 𝑐𝑧2𝑝 (1 + 𝑧2)2⁄  in equation 1.113 is replaced by 

𝑐𝑧3𝑝 (1 + 𝑧2)2⁄ , and set μ = 0.14, c = 2.35204 and e = 2.1677. In Figure 1.11, we plot 

the exchange enhancement factor of revTPSS in two limits, and compare them to 

TPSS, PBE and LDA. Since revTPSS respects PBEsol exchange enhancement factor, 
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and uses a smaller μ than PBE and TPSS. For relatively large s, its profiles grow less 

rapidly than those of TPSS and PBE. 
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Figure 1.11: The profiles of exchange enhancement factor of revTPSS, TPSS, PBE 

and LDA. 

 

In Figure 1.12, the 3-D contour plot of exchange enhancement factor is 

illustrated for revTPSS. 

  

 

Figure 1.12: The 3-D contour plot of the exchange enhancement factor of revTPSS. 
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The correlation energy of revTPSS is simply obtained from TPSS by requiring 

that 

 
0.066725(1 0.1 )

( )
(1 0.1778 )

s
s

s
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  (1.123) 

and 

 
2 4 6(0, ) 0.59 0.9269 0.6225 2.1540C          (1.124) 

where β = 0.066725 in PBE and TPSS. 

The regularized TPSS or regTPSS was proposed by Ruzsinszky et al. [40] in 

2012. The main motivation is to remove the order of limits problem in TPSS and 

revTPSS. Both meta-GGAs employ z and s in their exchange enhancement factors 

(Equation 1.112). However, equation 1.116 implies that the actual value of z is 

dependent on whether s or α tends to zero first. 
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  (1.125) 

As a result, the values of exchange enhancement factor of TPSS or revTPSS are 

different in two limits. In Table 1.1, the exchange enhancemet in different limits is 

given for several meta-GGAs. In the second and third columns, the order of limits 

problem is clearly seen for TPSS and revTPSS. 
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Table 1.1: The exchange enhancement factor of meta-GGAs in different limits. 

 

( , )xF s   TPSS revTPSS regTPSS MGGA_MS0 

0
lim lim

s 
  1.035 1.035 1 0.856 

0 0
limlim

s 
  1.014 1.014 1.147 1.144 

0 0
limlim
s  

 1.133 1.147 1.147 1.144 

0
limlim

s 
 1.804 1.804 1.804 1.290 

 

 

In regTPSS, the exchange enhancement factor is obtained by the interpolation 

of revTPSS exchange enhancement factor for α = 0 and ordinary α values [40]: 

 revTPSS 2 revTPSS revTPSS

x x x( , ) F ( , ) exp( )[F ( , 0) F ( , )]xF s s f cs s s          (1.126) 

and 
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3
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(1 )
f

d









  (1.127) 

where c = 3 and d = 1.475. Note that the correlation part of regTPSS is identical to 

revTPSS, and thus the discussion is omitted here. 

In Figure 1.13, the exchange enhancement factors of regTPSS and revTPSS are 

illustrated. For small s and α, revTPSS profiles drop surprisingly fast, compared to 

regTPSS curves, due to the order of limits problem. In regTPSS, the order of limits 

issue in revTPSS (also in TPSS) has been successfully eliminated.  
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Figure 1.13: The order of limits problem in meta-GGAs. 

 

 

Figure 1.14: The 3-D contour plot of exchange enhancement factor of regTPSS.     

Recently, there is another breakthrough in the developing of meta-GGAs. Sun 

et al. [41-43] discovered that α (See equation 1.115) is able to distinguish three 

different types of chemical interactions in solids, i.e., single covalent bond (α = 0), 

metallic bond (α ≈ 1) and van der Waals interactions (α → ∞). Based on this 

observation, the new meta-GGA form, known as meta-GGA made simple or 
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MGGA_MS, was proposed. In contrast to previous meta-GGAs such as TPSS, 

revTPSS and regTPSS, the importance of α in a meta-GGA exchange enhancement 

factor is emphasized. The α dependence of 𝐹𝑥(𝑠, 𝛼) in this new meta-GGA is 

completely distangled from its s dependence. Otherwise, the PBE-type exchange 

enhancement factor (Equation 1.73) is used in this meta-GGA. Similar to regTPSS, 

MGGA_MS also adopts an interpolation form, but using α = 1 and α = 0 values. The 

exchange enhancement factor of MGGA_MS is expressed as [41, 42] 

 MGGA_MS 1 0 1

x ( , ) ( ) ( )[ ( ) ( )]x x xF s F s f F p F p      (1.128) 

where 
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here 𝜇𝐺𝐸 = 10/81; while, in MGGA_MS0, c = 0.28771, b = 1.0 and κ = 0.29; for 

MGGA_MS1, c = 0.18150, b = 1.0 and κ = 0.404; for MGGA_MS2, c = 0.14601, b = 

4.0 and κ = 0.504. 

The correlation part of MGGA_MS variants use PBE form, but replacing  

constant β by equation 1.123 [41]. The exchange enhancement factors of MGGA_MS, 

TPSS, revTPSS are shown in Figure 1.15. In Figure 1.16, the 3-D contour plot of the 

exchange enhancement factor for MGGA_MS0 is illustrated. From Figure 1.15, the 

most intriguing property of MGGA_MS0 is that its exchange enhancement factor 

increases much slower than TPSS and revTPSS. In addition, the large s limit of 
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MGGA_MS0 is far below that of the other meta-GGAs. The main reason is all 

MGGA_MS variants have very small κ values in their exchange enhancement factors. 

Such small κ is also used in SOGGA functional (See equation 1.99) [31]. Otherwise, 

𝐹𝑥
𝑀𝐺𝐺𝐴(𝑠, 𝛼) of MGGA_MS0 decreases with the increasing of α for small s. Other 

meta-GGAs like TPSS, revTPSS and regTPSS are increased in the same region for s.   
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Figure 1.15: The exchange enhancement factors of TPSS, revTPSS and MGGA_MS0 

are shown for two α values. 

 

 

Figure 1.16: The 3-D contour plot of exchange enhancement factor of MGGA_MS0. 
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The meta-GGA functionals PKZB, TPSS, revTPSS, regTPSS and MGGA_MS 

variants have been tested for the equilibrium geometries and energetics of molecules 

and crystal structures, and the results were also compared with L(S)DA and GGA 

functionals [73, 74]. These earlier calculations indeed showed that meta-GGAs can 

predict the good structural properties and energetics at the same time. However, most 

meta-GGAs are not widely used in solid structural calculations so far. One possible 

reason is that they are only abailable in some main stream plane wave codes very 

recently. 

 

1.6.3.4 Hyper-Generalized Gradient Approximation 

The most widely tested two forms of hyper-GGA are PBE0 [49] and two HSE 

variants (HSE03 and HSE06) [50, 51]. The HSE family belongs to the range-separated 

hybrid functionals. In this dissertation, only HSE06 will be used in our calculations. 

The general ideal of building a hyper-GGA (or hyper-meta-GGA) is to introduce the 

Hartree-Fock like exact exchange into the exchange energy functional. Usually, the 

exchange energy of hyper-GGA is the mixture of Hartree-Fock like exact exchange 

with the semilocal exchange energy functional. The total exchange-correlation energy 

functionals of PBE0 and HSE06 are given by: 

 PBE0 HF PBE PBE

xc x x xc[ ] ( )E n a E E E     (1.132) 

 SR SR SR LRHF PBE PBE PBE PBE

x x x x c[ ] ( ) (1 )HSE

xcE n a E E a E E E        (1.133) 
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where a is an empirical parameter, and usually taken as 0.25. SR and LR refer to the 

short range and long range parts of exchange hole. The partion of exchange energy into 

SR and LR parts is done by decomposing the Coulomb kernel according to 

 
1 ( ) ( )

( ) ( )
erfc r erf r

S r L r
r r r

 

 
      (1.134) 

here μ is the range separation parameter, erf (r) and erfc (r) are the error and 

complementary error functions, respectively. 

The main advandage of using range-separation for exchange part is that the 

high computational costs of PBE0 can be significantly reduced, especially for metallic 

systems where PBE0 does not converge efficiently [51]. Semilocal functionals also 

underestimate the fundamental band gap for semiconductors and insulators, the hyrid 

functionals give more accurate band gaps for those systems [52]. 

 

1.6.3.5 Random Phase Approximation        

The random phase approximation is the fifth rung on Jacob’s ladder. The 

exchange-correlation energy functional is completely non-local for both parts. The 

RPA-level functional is believed to be the most accurate method in the framework of 

density functional theory, and it is the “heaven” of chemical accuracy [75, 76]. In an 

RPA calculation, the conventional DFT results (charge density, wave-function and 

Kohn-Sham single particle energies) are used as the inputs. The RPA method will be 

briefly reviewed here for two reasons: firstly, the formulation of RPA method has been 

done [15]; on the other hand, the expressions of RPA exchange-correlation functional 
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are too complicated and not plottable, compared to semilocal functionals. For more 

technique details, we may refer the readers to the related literature [15, 53-64]. 

In RPA, the total energy is computed as the sum of two different parts: the 

Hartree-Fock energy (EHF) and the correlation energy obtained from adiabatic-

connection fluctuation-dissipation theorem (ACFDT). The expressions of these two 

parts are given as: 

 RPA

t HF cE E E    (1.135) 
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  (1.138) 

where 𝑇𝐾𝑆[𝑛] is the total kinetic energy of Kohn-Sham system; 𝐸𝑖𝑜𝑛−𝑒𝑙 is the 

electrostatic pontential energy of electron-ions system; 𝐸𝐻[𝑛] gives the Hartree energy 

among electrons (See equation 1.9); 𝐸𝑥[{𝜓𝛼𝜎
𝐾𝑆}] represents the Hartree-Fock like exact 

exchange energy, and which is computed from Kohn-Sham single particle orbtials. 

Meanwhile, the correlation energy in RPA is obtained by equation 1.137 where λ refers 

to the coupling constant (See section 1.5.1) that switches the Kohn-Sham non-

interacting system (λ = 0) to fully interacting system (λ = 1). The adiabatic connection 

ensures that transition between two systems is always smooth and the integration of λ 

in equation 1.137 can be done analytically. 𝜒𝜆(𝑟, 𝑟′; 𝑖𝜔) and 𝜒0(𝑟, 𝑟′; 𝑖𝜔) are the 
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linear response functions of fictitious λ-interacting system and non-interacting Kohn-

Sham system, respectively. The calculation of EHF is straightforward using equation 

1.138, because Kohn-Sham single particle orbitals are easily obtained from any 

standard DFT calculation. For the correlation energy, the linear response functions 

must be evaluated first. The linear response functions of fully interacting and Kohn-

Sham systems are defined as 

 1 ( , )
( , ; )

( , )ext

n r t
r r t t

v r t
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with 

 (r , t ) (r , t ) (r , t ) (r , t )eff H xc extv v v v            (1.141) 

where the three terms on the right hand side of equation 1.141 are Hartree potential 

(Equation 1.24), exchange-correlation potential (Equation 1.27) and external potential, 

respectively. By requiring that equations 1.139 and 1.140 are the same, then we have 

 1 0( , ; ) ( , t ) ( , ; ) [ (r , t ) (r , t ) (r , t )]ext H xc extr r t t v r r r t t v v v                     (1.142) 

then applying the chain rule for the expressions on the right hand side of equation 

1.142, 
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with 
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substituting equations 1.143-145 into 1.142, and changing the integration variables, 

and also doing the Fourier transformation from time domain to frequency domain, the 

following relationship is obtained [15]. 
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 (1.146) 

The relationship given in equation 1.146 is named as Dyson equation. It shows 

that the linear response function of a fully interacting system is obtained from the 

Kohn-Sham system self-consistently. For an arbitrary λ-interacting system, its linear 

response function 𝜒𝜆(𝑟, 𝑟′; 𝑖𝜔) is computed in a similar way to equation 1.146. 
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Under the framework of RPA, it is assumed that 𝑓𝑥𝑐= 0. It can be shown that 

 
0 0 v         (1.148) 

with the correlation energy computed by 
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       (1.149) 

where 𝜒0 is computed from the Kohn-Sham occupied and virtual single particle 

orbitals as 
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where 𝜓𝑚 and 𝜓𝑛 are unoccupied and occupied Kohn-Sham single particle orbitals; 

𝜀𝑚 and 𝜀𝑛 are the Kohn-Sham single particle energies. Note that the orbitals and 

energies required for RPA calculations are calculated from equation 1.28. 

 

1.7 DFT+U Correction 

DFT+U is often considered as an empirical method for treating the strong 

correlated system in a better way than conventional semilocal exchange-correlation 

functionals [77-80]. In a strong correlated system, the electron hopping between two 

different lattice sites of a localized orbital is suppressed due to the strong on-site 

Coulomb repulsion. Therefore, the electrons are localized on the lattice site (Wigner 

crystal). However, the semilocal functionals (L(S)DA, GGAs and meta-GGAs) 

underestimate such interaction. Thus, those electrons are too delocalized and can easily 

hop between different sites. The simplest remediation to semilocal functionals is 

adding a penalty functional to them, and the U is actually the penalty function [79]. 

Since, the semilocal functionals give reasonable electronic states for those delocalized 

bonding orbitals. Thus, U is usually only applied to the particularly selected orbitals. 

The total energy of DFT+U is computed as 

      DFT+U

t [ , ] [ ] [ ] [ , ]DFT U dc

t tE n E n E E n         (1.151) 

where 𝐸𝑡
𝐷𝐹𝑇[𝑛] is the total energy computed from any ordinary DFT method, 

𝐸𝑡
𝑈[{𝜓𝛼}] is the U correction to a group of selected Kohn-Sham orbitals, 𝐸𝑑𝑐[𝑛, {𝜓𝛼}] 
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accounts the portion of U correction that has been already included in DFT calculation 

for those orbitals. The last two terms of equation 1.151 are usually combined together. 

The resulting expression for DFT+U method is given by 

  DFT+U

t [ , ] [ ]DFT U

tE n E n E     (1.152) 
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  (1.153) 

where U and J are the on-site Coulomb repulsion energy and inter-orbital exchange 

parameter, respectively. The average occupancy of a localized orbital is obtained by 

𝑛0 = 𝑁0/𝑝, where 𝑁0 = ∑ 𝑛𝑖𝑚𝜎𝑚,𝜎  is the number of localized electrons at site i, and 

p is the degeneracy of the localized spin-orbitals, i.e., for 3d, p = 10, and 4f, p = 14.          

Finally, it can be shown that the Kohn-Sham one-particle effective potential in DFT+U 

is expressed by 
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m m
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         (1.154) 

Usually, U and J two empirical parameters, and might be determined from XPS 

spectra of strong correlated systems [81]. Recently, Mosey et al. [82] and Cococcioni 

et al. [83] showed that U and J can be calculated from ab-inito methods. 
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1.8 DFT+D2 Correction 

The DFT+D2 method aims to treat the long-range van der Waals interacting 

energy in an empirical way on top of a DFT structural calculation [84-86]. This 

method is empirical for two reasons. On one hand, the van der Waals interactions 

between two atoms are computed using a pairwise potential form, similar to the classic 

force field method. On the other hand, the van der Waals coefficients of atoms are 

estimated from the London relationship for the dispersion [84], and those coefficients 

for atomic pairs are obtained from a geometric average of coefficients of components 

[84, 85]. 

The total energy in the DFT+D2 method is expressed by 

 DFT+D2 DFT D2E E E    (1.155) 

with 
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  (1.158) 

where 𝑠6 is a global scaling constant, and its value is known for some exchange-

correlation functionals, i.e., 0.75 (PBE), 1.0 (TPSS), 1.2 (BLYP) and 1.05 (B3LYP); 

𝐶𝑖
6 and 𝐶𝑖𝑗

6  are the van der Waals coefficients of atom and atomic pair, respectively; 

𝑅𝑟 is the sum of two van der Waals radii of i and j atoms. The roles of the damping 
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function 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗) are to remove the mathematical singularity at small 𝑅𝑖𝑗 and to 

scale down the van der Waals interactions of atomic pairs in the short distance where 

the DFT methods are able to describe. In this dissertation, DFT+D2 method will be 

applied to phase transition problem in solid structures. 

 

1.9 Non-Empirical van der Waals Density Functionals 

The main purpose for developing the non-empirical van der Waals density 

functionals (or vdW-DFs) is the same as that of empirical DFT+D2 approach. The 

vdw-DFs are more advanced than DFT+D2 in the sense that, in the former method, 

there is no empirically determined parameter in its formulation. The most well-known 

vdW-DF was proposed by Langreth-Lundqvist group [87] in 2004. The exchange-

correlation energy in vdW-DF is given by 

 
vdW-DF DFT LDA nl

xc x c cE E E E     (1.159) 

where 𝐸𝑥
𝐷𝐹𝑇 represents the exchange energy functional of a DFT method [88]; 𝐸𝑐

𝐿𝐷𝐴 

is the correlation energy functional of LDA; the last term 𝐸𝑐
𝑛𝑙 stands for the non-local 

correlation functional for van der Waals interactions. The general form of 𝐸𝑐
𝑛𝑙 is 

written as 

 
3 31

( ) ( , ) ( )
2

nl

cE d r d r n r r r n r       (1.160) 

Here the key ingredient is the non-local correlation kernel Φ(𝑟, 𝑟′). For the details of its 

construction, one may refer to the works of Dion et al. [87], Thonhasuser et al. [89] 

and Vydrov and Voorhis [90].                                                                                
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CHAPTER 2 

PLANE WAVES AND PAW METHOD 

 

2.1 Plane Waves 

Nowadays, most structural calculations based on density functional theory (DFT) 

for solids are performed using periodic boundary condition (PBC). The plane waves are 

the natural basis set of PBC. 

 

2.1.1 Bloch Theorem 

The crystal structure is completely defined by its lattice constants and atomic 

positions. In 3-dimensional space, the the lattice constants are given by 
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3 31 32 33
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a a a a

   
   

   
   
   

  (2.1) 

where �⃗�1, �⃗�2 and �⃗�3 are lattice vectors in x, y and z directions of Cartesian coordinates; 

ija is the component of each lattice vector in each of three directions. In Figure 2.1, the 

definition of the lattice vectors is shown. For any lattice site, the translational symmetry 

applies. 

 
0R R T    (2.2) 

here 0R is the coordinates of a lattice site, and after applying the translational operation 

(�⃗⃗�), the new position is given by �⃗⃗�. Note that �⃗⃗� is expressed as 

 
1 2 3T ua va wa     (2.3) 
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where u, v and w are integers.  

 

Figure 2.1: The lattice vectors and Cartersian coordinates. 

The reciprocal lattice vectors of a crystal structure can be defined in a similar way 

to equation 2.1, but now the reciprocal lattice vectors are computed from 
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  (2.4) 

where �⃗⃗�1, �⃗⃗�2 and �⃗⃗�3 are the reciprocal lattice vectors. Note that �⃗�1 ∙ (�⃗�2 × �⃗�3) = V, 

where V is the volume of the lattice. It is easy to verify that 2i j ija b  . In the reciprocal 

space, the translational symmetry is preserved as that in real space: 

 
1 2 3G hb mb lb     (2.5) 

here h, m and l are integers.    



 

64 

 

The Bloch wave of a crystal structure is given by 

 , ,( ) ( )exp( )n k n kr u r ik r     (2.6) 

with �⃗⃗� is the wave vector in the first Brillouin zone, and n is the band index; 𝑢𝑛,𝑘(𝑟) is 

the periodic part of the Bloch wave, the phase factor of Bloch wave is given by the 

expontential function or plane wave. If we replace 𝑟 in equation 2.6 by 𝑟′ = 𝑟 + �⃗⃗�, it 

can be rewritten as 

 , ,( ) ( )exp[ ( )]n k n kr R u r R ik r R        (2.7) 

since the periodic part satisfies 
, ,( ) ( )n k n ku r R u r  , then we have 

 , ,( ) ( )exp( ) exp( )n k n kr R u r ik r ik R     
    (2.8) 

which can be simplified as 

 , ,( ) ( )exp( )n k n kr R r ik R      (2.9) 

This is the famous Bloch theorem for electron waves in a crystal structure,  

which shows the translational symmetry under PBC. 

 

2.1.2 Schrödinger Equation in Reciprocal Space 

Here, we would like to have a little discussion about the Schrödinger equation in 

reciprocal space. The main reason is that most ab-inito computing codes are required to 

solve the a set of linear equations to get the eigenstates and engenenergies for single 

particle band dispersions. Those linear equations are derived from Schrödinger equation 

in reciprocal space. 
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The Schrödinger equation in a crystal structure is written as 

 , , ,
ˆ ( ) ( )n k n k n kH r r     (2.10) 
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m

      (2.11) 

where the first term in equation 2.11 is kinetic energy of a Bloch electron, and V(𝑟) is the 

crystal potential, and it might be constructed from superposition of individual atomic 

potential in the crystal structure by 

 ( ) [ ( )]m

m

V r V r R


     (2.12) 

here 𝜏 is the atomic position in the unit cell. 

The Hamiltonian given in equation 2.11 is translational invariant. From the 

Fourier theorem, the Bloch state and crystal potential are the periodic functions. 

Therefore, both can be expanded as Fourier series in reciprocal space. 
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here k GC   and GC   are the Fourier expansion coefficients of Bloch wave and crystal 

potential. Substituting equations 2.13 and 2.14 into 2.10, we get the central equation: 
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For a fixed G of the Bloch state, a set of linear equation should be solved for G  

as 
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2

,[ ( ) ] 0
2

n k k G G k G

G

k G C C C
m

   


      (2.16) 

this is the central equation of Schrödinger equation in PBC. In DFT, the Kohn-Sham 

equation in reciprocal space can be written in a similar form for crystal structure. Finally, 

it is worth noting that the largest expansion coefficient of equation 2.13 is determined by 

k G . In plane wave based DFT codes, the expansion coefficient k GC   is truncated by 

the following expression. 

 
2
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2

cutk G E
m

    (2.17) 

In Figure 2.2, the Fourier expansion of crystal potential or Bloch wave is 

illustrated. All expansion coefficients larger than the radius of the circle are set to zero.  

 

Figure 2.2: The Fourier expansion of Bloch wave or crystal potential in reciprocal space. 
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2.2 Pseudopotentials           

2.2.1 Introduction to Pseudopotentials 

We would like to present a brief review of pseudopotential theory. This is a well-

established field. Many codes are published and available online for generating different 

types of pseudopotentials for one’s own purpose. 

The principles behind the development of pseudopotentials are based on two facts 

[91-95]. Firstly, for valence orbitals, near the nucleus, the radial distribution of electron 

density in the core region shows strong oscillations because of the wave-function is 

constrained by orthogonality. The Fourier transformation of density in the real space near 

the core region to reciprocal space is numerically too expensive, requiring a lot of 

expansion coefficients to be stored during the calculation. Otherwise, recovering the 

exact nodes of them in the core region is not a “must” requirement for many electronic 

calculations, because the core region is simply not involved in chemical bonding between 

atoms. As a result, the nodes in the core region are not important if we are only interested 

in chemical bonds of solids. Secondly, the kinetic energy of the electron in the core 

region is large, and to some extent, the strong Coulomb attraction between electron and 

pseudo-ion is partially or completely cancelled by positive kinetic energy. The resulting 

total potential in the core region for a valence orbital is smooth and without showing the 

singularity. The conclusion we can draw from these two facts is that both the wave-

function and potential in the core region can be nodeless and smooth. In Figure 2.3, the 

differences between pseudized wave-function, potential and those of all-electron results 

are depicted. 
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Figure 2.3: The pseudized wave-function and potential are compared to all-electron 

results. 

 

Numerically, this can be done by solving two Schrödinger equations: one for all-

electron with full potential, and another for pseudo-wavefunction and pseudopotential. 

 ˆ ( ) ( ) ( )al al al alT V r r r    
 

  (2.18) 

 ˆ ( ) ( ) ( )ps ps ps psT V r r r    
 

  (2.19) 
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where ps and al stand for “pseudo” and “all electron”, respectively; 𝑟𝑐 defines the cut-off 

radius where the pseudo-wavefunction and pseudopotential are coincide with all-electron 

resutls; for the pseudized orbital, requiring both Schrödinger equations give the same 

eigenenergy. The most widely used two types of pseudopotentials are normal conserving 

pseudopotentials (NCPPs) [91-94] and ultra-soft pesudopotentials (USPPs) [95]. The 

strating point for their constructions is the same, as shown in equations 2.18 and 2.19, but 
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there are some additional conditions which must be fulfilled in each case. Thedetailed 

discussions are omitted here, because in this dissertation, the first principles calculations 

are performed using the more complicated projector augement wave (PAW) method. 

 

2.2.2 PAW Method 

In NCPPs and USPPs, the wave-function and Coulomb potential of valence 

orbital are artificially smoothed. The resulting pseudo-wavefunction and pseudopotential 

are accurate for general DFT calculations. However, the “nodes” in the core region are 

important in other applications like spin-orbital coupling effects. The PAW method is 

designed to recover the all-electron properties of pseudo-wavefunction and potential in 

the core region on one hand, and also reducing the computational costs at the same time 

on the other hand. 

The PAW method was firstly propsed by Blöchl in 1994 [96, 97]. In this method, 

the space is devided into two sub-regions as shown in Figure 2.4. The total PAW wave-

function is computed as 

  PAW

n n i i i n

i

p         (2.21) 

where PAW

n is the PAW wave-function which recovers the exact behavior of all-electron 

wave-function in the core region; n is the pseudo wave-function expanded in plane 

waves, and which is nodeless in the core region; |𝜙𝑖⟩ is the all-electron partial wave-

function; |�̃�𝑖⟩ and |𝑝𝑖⟩ are atom centered localized functions. The all-electron partial 

wave function is obtained from the radial relativistic Schrödinger equation for the 
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speherical non-spin polarized atom (similar to equation 2.18). Meanwhile, the pseudo-

partial wave function is computed by 

 
2

eff

1
1

2
i ij j k k i ij j k
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p D p p Q p   
   

       
   

    (2.22) 

where ijD  and ijQ  are the characteristic PAW parameters, and they are computed as 

 ij i j i jQ        (2.23) 

 2 2

eff eff

1 1

2 2
ij i j i jD                (2.24) 

Note that the pseudo-partial wave functions i  are equivalent to all-electron 

partial wave functions 
i  outside the cutoff radius, and they match continuously onto 

the all-electron ones inside the core region. The projector functions 
ip  are dual to the 

partial waves: 

 i j ijp     (2.25) 

 

 

Figure 2.4: The pseudization of wave-function in PAW method. 
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2.3 Self-consistent Cycle 

In a typical DFT calculation, the self-consistency is shown in Figure 2.5 [98]. 

Note that the initial charge density is obtained from the superposition of pseudo-atomic 

charge densities.  

 

Figure 2.5: The self-consistent cycle of a DFT calculation.  
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CHAPTER 3 

ASSESSING SEMILOCAL AND HYBRID FUNCTIONALS FOR PRESSURE 

INDUCED PHASE TRANSITONS IN Si, SiO2 AND Zr SYSTEMS 

 

Phase transitons are important in condensed matter physics, and they are also 

relavant to the geometry-energy dilemma of semilocal functionals. Indeed, it was earlier 

work by Hamann [99] on the SiO2 phase transition under the pressure that motivated 

many solid state physicists to switch from LSDA to the PBE GGA. It is known that 

LSDA usually favors the high density phase, and overestimates its stability. Otherwise, 

the GGA PBE predicts good phase transition pressure and energy difference between 

high and low pressures in many cases. The non-empirical meta-GGAs have been rarely 

tested for phase transitions in solids before. We are particularly interested in one 

question: Can meta-GGAs predict good results for equilibrium lattice constants for two 

polymorphs of a solid, as well as the phase transiton parameters such as the energy 

difference between polymorphs and the transition pressure? In order to address this issue, 

we select three different types of phase transition induced by pressure. In the Si system,  

the low pressure phase diamond-structure Si (D-Si) transforms into a high pressure β-tin 

Si phase by compressuring the crystal structure above 10 GPa [100, 101]. This is an 

insulator to metal transition. Meanwhile, the α-quartz to stishovite phase transformation 

is a normal insulator-to-insulator transition. Finally, in the Zr system, both high and low 

pressure phases are metallic; thus, the ω-Zr to β-Zr transition is a normal transformation 

between two metallic phases. We also would like to compare the computed phase 
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transition parameters of meta-GGAs to those of LDA, GGAs and hybrid functional. We 

can see that a meta-GGA has the great potential to give both the geometry and energetics 

correct in solids. 

  

3.1 Introduction to Si, SiO2 and Zr Systems 

Si, SiO2 and Zr systems have been chosen in this dissertation as the model 

systems for testing the pressure induced phase transitions, because they are well-known 

to the scientific community and the accurate experimental transiton pressure is also 

available in each system. 

In Figure 3.1, the crystal structures of two Si polymorphs are shown. In Si system, 

the D-Si is the most stable form at low pressure and temperature [100]. Under the 

hydrostatic pressure, it transforms into a metallic β-tin Si phase at nearly 10 GPa [101].  

The D-Si has a faced centered cubic conventional cell with space group F𝑑3̅𝑚 (227). 

Each conventional cell has eight Si atoms, occupying two special Wyckoff sites 16c (0, 0, 

0) and 8a (0.25, 0.25, 0.25). On the other hand, the high pressure phase β-tin Si has a 

body-centered tetragonal conventional cell with space group I41/𝑎𝑚𝑑 (141). The 

conventional cell has 4 atoms occupying a special Wyckoff site 8c (0, 0, 0). Chang and 

Cohen [100], and Hu et al. [101] also studied several other high pressure phases of Si. 

Their works showed that at least other three different Si phases exist in the range of 0 to 

40 GPa, i.e., body centered cubic (Si-III, ~10 to 0 GPa), primitive hexagonal (Si-IV, ~14 

to 40 GPa) and hexagonal close-packed (Si-V, ~40 GPa). 
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In SiO2 system, α-quartz and stishovite are the two most well-known ploymorphs. 

α-quartz is aboundant in earth crust, and stishovite is famous because the only way to 

create it on the surface of the earth is due to the meteorite impact [99]. The space group 

of α-quartz is P3221 (152), and the unit cell has three SiO2 units. The three Si atoms are 

located at 3a (x, 0, 1/3) Wyckoff site and the remaining six O atoms occupy 6c (x, y, z) 

site, where x, y and z are internal degrees of freedom. The α-quartz and stishovite are 

wide band gap insulators (> 8 eV), and the phase transformation of the former to the  

latter structure is associated with the change of coordinate numbers for both Si and O 

atoms. In α-quartz phase, the basic structural unit is SiO4 tetrahedral, forming a 3-

dimensional network by sharing corners. The coordinate numbers for Si and O are 4 and 

2, respectively. In stishovite, each Si atom is surrounded by six nearest O atoms, forming 

a SiO6 octahedral aligned in [1̅10] direction. Meanwhile, each O atom is linked with 

other three Si atoms. Experimentally, it has been verified that Si-O bonds in stishovite 

show stronger ionic character than those in α-quartz. This can explain why the coordinate 

number of Si in α-quartz is larger than stishovite. The crystal structures of α-quartz and 

stishovite are illustrated in Figure 3.2. 
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(a)                                                (b) 

Figure 3.1: The crystal structures of two Si polymorphs. (a) diamond-structure Si (LP); 

(b): β-tin Si (HP). Note that LP and HP refer to low pressure and high pressure, 

respectively. 

 

 

          

(a)                                                   (b) 

 

Figure 3.2: The crystal structures of SiO2 polymorphs. (a): α-quartz (LP); (b): stishovite 

(HP). The small red balls are oxygen atoms, and the large yellow ones are Si atoms. 

 

Zr has three well-known crystal structures, i.e., the hexagonal close-packed α-

phase, the hexagonal ω-phase with AlB2-type structure and the centered cubic β-phase 

[102-105]. The most stable phase at room tempertature and ambient pressure is α-Zr. The 

α-Zr also transforms into ω-Zr in the range of 2-7 GPa at room temperature [103]. 

Meanwhile, the ω-Zr to β-Zr transition occurs at 30 ±  2 GPa, determined from energy-
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dispersive x-ray diffraction [105]. Ostanin et al. [102] found that the transition pressure is 

35 ±  5 GPa in another experiment. The crystal structures of ω-Zr and β-Zr are shown in 

Figure 3.3. The space group of hexagonal ω-Zr is P6/mmm (191), and each unit cell has 

three Zr atoms. Zr atoms occupy two special Wyckoff positions, 1a (0, 0, 0) and 2d (1/3, 

2/3, 1/2).  On the other hand, the β-Zr has space group Im3̅m (229), and two Zr atoms 

are placed at 2a (0, 0, 0) position. 

 

         

(a)                                 (b) 

Figure 3.3: The crystal structures of two Zr polymorphs. (a): ω-Zr (LP); (b): β-Zr (HP). 

 

3.2 Computational Details 

3.2.1 Density Functional Calculations 

All first-principles calculations with periodic boundary conditions employed the 

VASP program (Vienna ab-initio simulation program), which uses the projector 

augmented wave (PAW) method [97]. In the PAW method, the frozen-core 

approximation is used, and the pseudo-atom is described by PAW pseudopotentials. For 

the plane-wave expansions, the kinetic energy cutoff was set to 500 eV for all 

calculations. The GW-type PAW potentials for Si, O, Zr were employed in this work: 
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Si3s3p3d, O2s2p and Zr4s4p4d5s. These special PAW potentials were constructed by Kresse 

and coworkers in their RPA calculations [55, 56], with accurate scattering properties up 

to ~10 Ry above the vacuum level. The core radii for Si, O and Zr pseudo-atoms were 

0.840 Å, 0.672 Å and 1.06 Å, respectively. The energy integrations were performed in 

the first irreducible Brillouin zone, and the methods used for generating the k mesh 

depended on the space group of the crystal structures. For cubic (D-Si and β-Zr) and 

tetragonal (β-tin Si and stishovite) phases, we used the Monkhorst-Pack method to 

generate 16 × 16 × 16 and 12 × 12 × 14 k meshes for optimizing the crystal structures, 

respectively [106]. The k grids used for α-quartz (trigonal) and ω-Zr (hexagonal) were 14 

× 14 × 10 and 15 × 15 × 19, respectively, and were generated by the Gamma-centered 

method. Similar k-grids were also used to calculate the energy-volume curve for each 

phase. Using the present settings, the total energy was converged to 1 meV.  

The exchange-correlation energy was approximated using functionals on the first 

three rungs of Jacob’s ladder, including the Perdew-Zunger local density approximation 

(LDA) [19], the Perdew-Burke-Ernzerhof (PBE) GGA [25], PBE modified for solids 

(PBEsol) [30], the Tao-Perdew-Staroverov-Scuseria meta-GGA (TPSS) [37], the revised 

TPSS (revTPSS) [39], the regularized revTPSS (regTPSS) [40], the meta-GGA made 

simple (MGGA_MS0) [41] and its other two variants (MGGA_MS1 and MGGA_MS2) 

[42, 43].  

For some structures, the transition pressures were also estimated from other 

exchange-correlation functionals, including the Heyd-Scuseria-Ernzerhof screened hybrid 

functional (HSE06, which mixes the nonlocal Hartree-Fock-type exchange in the short-
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range portion of the electron-electron interaction with PBE exchange) [50-52], and 

various GGAs: Perdew-Wang 91 (PW91, a parent of PBE) [21], Armiento-Mattsson 

(AM05, an early GGA for solids) [28], Wu and Cohen (WC06) [29] and RPBE [27]. 

For the screened hybrid functional HSE06, we employed different k meshes for 

all six phases, i.e., D-Si (10 × 10 × 10), β-tin Si (8 × 8 × 10), α-quartz SiO2 (8 × 8 × 6), 

stishovite (8 × 8 × 10), ω-Zr (8 × 8 × 10) and β-Zr (10 × 10 × 10). Employing the 

downsampling method reduces the computing time significantly. The total energy was 

converged to 5 meV/atom. In the VASP code, the default range separation parameter μ is 

0.20 Å-1 for the semilocal and nonlocal parts of the exchange functional [50, 51]. The 

same value was used in our current work. 

The GW0 calculations were performed for D-Si and stishovite phases with their 

experimental lattice constants using the VASP code [107]. The calculation parameters we 

applied are given below for stishovite: The kinetic energy cutoff (Ecut) was set to 400 eV, 

and the k mesh to 7 × 7 × 9. The frequency dependence of the dielectric function was 

evaluated using 300 Kohn-Sham LDA orbitals. The convergence of the band gap has 

been carefully confirmed using smaller Ecut (380 eV) and k mesh (6 × 6 × 8), and also 

fewer Kohn-Sham orbitals (200). For D-Si phase, we used 350 eV, 8 × 8 × 8 and 96 for 

Ecut, k mesh and the number of Kohn-Sham LDA orbital, respectively. Within the present 

settings, the quasi-particle band gap was converged to 0.01 eV. 

The calculations using the PW91 and WC functionals were carried out in the 

CASTEP code [108, 109]. The crystal structures were re-optimized by ultrasoft 
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pseudopotentials (USPPs) for Si, O and Zr atoms [95]. The plane-wave cutoff was set to 

500 eV, and k grids similar to those presented previously were employed. 

 

3.2.2 Thermal Corrections to Phase Transition Pressure 

The experimental transition pressure is usually measured at room temperature. 

Meanwhile, the DFT calculations are performed by default at 0 K. Therefore, it is 

necessary to include the phonon effects in the computed phase transition parameters. The 

thermal effects such as zero point energy and phonon excitations can be obtained from 

phonon spectrum using the following expressions: 
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where 𝐸𝑍𝑃𝐸 is the zero point energy, N is the total number of atoms in the unit cell, 𝑘𝐵 

and ℏ are the Boltamann constant and reduced Planck constant, respectively, ω is the 

phonon frequency, and g(ω) gives the phonon density of states. Note that the phonon 

density of states must be normalized correctly according to equation 3.3. 

In this dissertation, we have calculated the phonon spectra of SiO2 structures 

using density functional perturbation theory (DFPT) in the CASTEP code [109]. For Si 

and Zr systems, the phonon effects on the transition pressures were taken from the 
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literature. In our phonon calculations, the plane-wave basis set was expanded in 

reciprocal space with a kinetic energy cutoff of 550 eV. USPPs were used to represent the 

pseudo-atoms of Si and O, i.e., Si (3s23p2) and O (2s22p4). For the energy integrations in 

the first irreducible Brillouin zone, the Monkhorst-Pack method was used to generate 6 × 

6 × 8 and 4 × 4 × 4 k-meshes for stishovite and α-quartz, respectively. The convergence 

tests with respect to k-points were carefully conducted. For the exchange-correlation 

energy, only the PBE GGA was employed, because previous studies showed that 

different density functionals usually give quite similar results for the zero-point energy 

(ZPE) and thermal correction to the phase transition pressure [110]. The obtained ZPE 

and finite-temperature correction at each cell volume were added to the energy-volume 

curves. The change of the transition pressure induced by these two factors can be 

calculated from the change of the common tangent line of the energy-volume curves for 

the two phases. 

The predicted lattice constants tabulated in this paper do not include the small 

phonon effects. This makes them more comparable to results in the earlier literature. 

    

3.2.3 Euqation of State 

The phase transition pressure is calculated from slope of the common tangential 

line of two energy versus volume curves for a solid. The common tangential line can be 

computed analytically using the equations of state (EOS) of two ploymorphs. In addition 

to phase transition pressure, other structural parameters are also obtained at the same 

time. In this work, we use the third order Birch-Murnaghan EOS, expressed as: 
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where E0  (the equilibrium energy) and V0 (the equilibrium cell volume), as well as 𝐵0 

and 𝐵0
′  (the bulk modulus and its pressure derivative dB/dP). The pressure of a single 

phase at volume V is –dE/dV. 

In this paper, we have also evaluated the transition volume (Vt) for each phase, 

which is given by the solution of 
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0 0
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t t t

V V V
P V B B

V V V
        (3.5) 

here P(Vt) is the pressure, which we set to the experimental transition pressure before the 

corresponding transition volume Vt is computed for comparison with experiment [111]. 

The theoretical transition pressures are sometimes inaccurate, due mainly to errors in E0 

and not to errors in the other parameters of the equation of state. In other words, the 

largest error in the theoretical transition pressure arises because the EOS of one phase 

displays an erroneous rigid vertical shift with respect to that of the other. 

 

3.2.4 Ingredients of Meta-GGAs 

The exchange energy density of a meta-GGA can be computed if its three 

ingredients such as Wigner-Seitz radius (𝑟𝑠), reduced density gradient (s) and α are 

known. In this dissertation, the three parameters are calculated on the crystallographic 

plane within the expressions: 
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where n is the valence electron density at a specific crystallographic plane. The density 

gradients in the x and y directions are evaluated in order to obtain the total density 

gradient ( , )n x y . ELF refers to the electron localization function, calculated directly by 

the VASP code. For all calculations, the ground state electron density was obtained by the 

LDA method. The lattice constants and atomic positions were fixed to their experimental 

values. 

 

3.3 Diamond-Si to β-tin Si Transition  

3.3.1 Optimized Structures                                 

Figure 3.4 shows the calculated energy-volume curves of D-Si and β-tin Si phases 

using the meta-GGA functionals TPSS, revTPSS, regTPSS and MGGA_MS0. The 

results for other functionals are not given in the figure for simplicity. The figure shows 

that the functional errors are reflected mainly in erroneous vertical displacements of the 

curve for one phase with respect to that for the other. 
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Figure 3.4: The total energies of D-Si (LP) and β-tin Si (HP) phases are calculated as a 

function of cell volume by four different meta-GGA exchange-correlation functionals. 

The total energies are given relative to the cell energy of the D-Si phase at the 

equilibrium volume for each meta-GGA functional. The dotted and solid lines are 

obtained from the third-order Birch-Murnaghan equation of state. 

 

In Tables 3.1 and 3.2, the optimized lattice properties and phase transition 

parameters of the D-Si and β-tin Si phases from different exchange-correlation 

functionals are compared with available experimental results. The equilibrium lattice 

constant of D-Si shows typical trends: too small in LDA, too large in PBE, about right in 

PBEsol, too large but improved over PBE in TPSS, and about right in the other meta-

GGAs.    

For the β-tin Si phase, the MGGA_MS family behaves differently from the other 

density functionals, giving a larger c/a ratio and thus apparently favoring cubic symmetry 

too much. The lattice constants of the β-tin Si phase measured at the transition pressure 

(11.3 GPa) are a = 4.6900 Å, and c = 2.5780 Å, with c/a = 0.5496 [101]. 
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Table 3.1: The structural parameters of diamond-structure Si (D-Si) (LP) computed by 

different exchange-correlation functionals. D-Si is cubic, thus the lattice constants are 

given by a, and V0 is the equilibrium cell volume. B0 and 𝐵′ are bulk modulus and its 

pressure derivative. The cell volume at transition pressure is defined as Vt, computed 

from equation 3.5 where Pt = 11.7 GPa is Si system. 

 

Exc a (Å) V0 (Å3/atom) B (GPa) 𝐵′ Vt (Å3/atom) 

LDA 5.4025 19.71 

19.72a, 17.61b 

97.1 

96.4a, 97b 

4.03 

4.13a, 4.0b 

17.87 

17.86a 

PBE 5.4650 20.40 

20.48a, 18.28b 

89.4 

89.0a, 91b 

4.07 

4.12a, 3.7b 

18.38 

18.42a 

PBEsol 5.4305 20.02 

20.06a 

94.4 

93.9a 

4.02 

4.09a 

18.10 

18.13a 

AM05 5.4315 20.03 

20.07a 

93.6 

93.1a 

4.01 

4.08a 

18.10 

18.13a 

TPSS 5.4516 20.25 92.4 4.03 18.28 

revTPSS 5.4380 20.10 94.1 4.00 18.17 

regTPSS 5.4324 20.04 99.0 3.94 18.19 

MGGA_MS0 5.4408 20.13 101.8 3.92 18.29 

MGGA_MS1 5.4464 20.19 99.9 3.93 18.34 

MGGA_MS2 5.4270 19.98 102.1 3.93 18.18 

HSE06 5.4335 20.05 

20.07a 

101.5 

99.1a 

4.06 

4.00a 

17.90 

18.21a 

Expt 5.4288a 20.0a 99.2a 

97.88c 

4.11a 

4.24c 

18.15a 

aRef [111]; bRef [112] ; cRef [101]. 

 

The computed bulk moduli of D-Si and β-tin Si are given in Tables 3.1 and 3.2. 

Experimentally, the bulk modulus of D-Si is 99.2 GPa [111]. Hu et al. [101] found 97.88 

GPa using the measured elastic constants. Most functionals underestimate the bulk 

modulus of D-Si, but the screened hybrid functional HSE06 gives 101.49 GPa and 99.1 

GPa in this paper and in Ref. 111, respectively, with both values in good agreement with 

experiment. The MGGA_MS family of density functionals and regTPSS give the bulk 

modulus in better agreement with experiment than other semilocal functionals. For the β-

tin Si phase in HSE06, we find a bulk modulus of 119.0 GPa, in good agreement with a 
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previous reference [112]. Finally, for the calculated B`, our results are slightly different 

from other references [111, 112]. However, the agreement among reference values is also 

poor, indicating that B` is sensitive to the parametric fitting. 

Table 3.2: The structural parameters of β-tin Si (HP) computed by different exchange-

correlation functionals. D-Si is tetragonal, thus the lattice constants are given by a and 

ratio c/a, and V0 is the equilibrium cell volume. B0 and 𝐵′ are bulk modulus and its 

pressure derivative. The cell volume at transition pressure is defined as Vt, computed 

from equation 3.5 where Pt = 11.7 GPa is Si system. Since D-Si to β-tin Si transformation 

is revesible, the experimental cell volume of latter phase is not available. 

 
Exc a (Å) c/a V0 (Å3/atom) B (GPa) 𝐵′ Vt (Å3/atom) at (Å) ct/at 

LDA 4.7613 0.5489 

0.548a 

0.546b 

14.81 

14.82a, 13.22b 

120.4 

116.0a 

117b 

4.1 

4.59a 

4.3b 

13.66 

13.63a 

4.6456 0.5411 

0.544a 

PBE 4.8138 0.5487 

0.550a 

0.547b 

15.30 

15.36a 

13.69b 

109.7 

106.4a 

109b 

4.3 

4.57a 

4.1b 

14.03 

14.04a 

4.6862 0.5449 

0.544a 

PBEsol 4.7801 0.5487 

0.548a 

14.98 

15.02a 

119.1 

115.0a 

4.13 

4.52a 

13.80 

13.80a 

4.6707 0.5376 

0.543a 

AM05 4.7609 0.5484 

0.546a 

14.80 

14.82a 

124.1 

120.5a 

4.08 

4.54a 

13.67 

13.67a 

4.6499 

 

0.5434 

0.543a 

TPSS 4.7787 0.5504 15.02 116.3 4.24 13.79 4.6581 0.5458 

revTPSS 4.7650 0.5489 14.85 122.9 4.15 13.72 4.6552 0.5397 

regTPSS 4.7520 0.5615 15.06 127.3 4.01 13.74 4.5992 0.5658 

MGGA_MS0 4.6568 0.5977 15.09 131.3 3.95 13.99 4.6064 0.5681 

MGGA_MS1 4.6758 0.5921 15.13 128.6 4.01 13.99 4.6159 0.5647 

MGGA_MS2 4.6738 0.5876 15.00 130.4 3.99 13.90 4.6023 0.5673 

HSE06 4.7602 0.5491 

0.565a 

14.81 

15.10a 

119.0 

117.0a 

4.32 

4.35a 

13.67 

13.89a 

4.6611 0.5462 

0.557a 

Expt — — — — — 13.96a 4.6900c 0.550a,c 

aRef [111]; bRef [112]; cRef [101]. 

 

3.3.2 Phase Transition Parameters 

The computed phase transition pressure and energy difference are summarized in 

Table 3.3. Hennig et al. [111] have calculated the energy difference between the two 

polymorphs using various methods, and their results are also shown in Table 3.3. In their 

calculations, the quantum diffusion Monte Carlo (DMC) method gives the most accurate 
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values, which were found to be 0.48 eV/atom in Ref. 111 and 0.424 eV/atom in Ref. 113, 

respectively. LDA, the PBEsol GGA, and all of the meta-GGAs outside the MGGA_MS 

family seriously underestimate this energy difference, while the screened hybrid HSE06 

performs well for it. Interestingly, regTPSS gives 0.285 eV/atom, which strongly 

improves the poor performance of revTPSS, suggesting that the order-of-limits error in 

revTPSS is significant here.  

The errors of the various functionals for the transition energy are reflected in the 

transition pressure, which is seriously too low in LDA, PBEsol, and the meta-GGAs 

outside the MGGA_MS family. The phase transition pressure from D-Si to β-tin Si was 

found to be in the range of 10~15 GPa from QMC [110, 111]. Without including the ZPE 

and finite-T effect, the value obtained by HSE06 in this paper is 14.6 GPa. The finite-T 

and ZPE corrections further reduce the transition pressure from D-Si to β-tin Si by 1.3 

GPa in Ref. 114 and 1.0 GPa in a recent calculation [110]. With these thermal 

corrections, HSE06 gives 13.3 GPa, which is larger than the 12.4 GPa reported in Ref. 

111. The transition volumes, calculated as described around equation 3.5, are reasonably 

good for all tested functionals. 
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Table 3.3: The calculated phase transition parameters for D-Si to β-tin Si transformation 

by different exchange-correlation functionals. The zero point energy and finite-

temperature (300 K) correction to transition pressure were estimated from the phonon 

spetra of the two phases using PBE functional, and the value was found to be -1.3 GPa 

(Refs. 111 and 114). We define ΔE0 and ΔV0 as ∆𝐸0 = 𝐸𝐻𝑃 − 𝐸𝐿𝑃 and ∆𝑉0 = 𝑉𝐻𝑃 − 𝑉𝐿𝑃, 

where LP and HP refer to the high and low pressure phases, respectively. 

 

Exc Δ𝐸0 (eV/atom) Δ𝑉0 (Å3/atom) 

 

𝑃𝑡 (GPa) 

LDA 0.206 

0.206a, 0.216d 

4.90 5.7 

5.8a, 6.7b 

PBE 0.290 

0.287a, 0.299d 

5.10 8.4 

8.4a, 9.2b 

PBEsol 0.185 

0.184a 

5.04 4.8 

4.8a 

AM05 0.153 

0.152a 

5.24 3.5 

3.5a 

TPSS 0.265 

0.266d 

5.24 7.3 

revTPSS 0.160 5.25 3.7 

regTPSS 0.285 4.98 8.0 

MGGA_MS0 0.517 5.04 17.3 

MGGA_MS1 0.475 5.06 15.4 

MGGA_MS2 0.429 4.98 13.9 

HSE06 0.398 

0.390a, 0.447d 

5.35 13.3 

12.4a 

Expt — — 10~14a, c 

11~15e 
aRef [111]; bRef [112]; cRef [100]; dRef [113]; eRef [101]. 

 

3.4 α-Quartz to Stishovite Transition 

3.4.1 Optimized Structures 

The computed energy versus volume curves of two SiO2 polymorphs are shown in 

Figure 3.5 for meta-GGAs. The GGAs and LDA resutls are omitted here. 
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Figure 3.5: The calculated energy-volume curves of the α-quartz and stishovite phases. 

The total energies obtained by meta-GGA functionals are given relative to the cell energy 

of the α-quartz phase at the equilibrium volume for each functional. 

 

 

Table 3.4: The optimized equilibrium structural parameters of α-quartz (LP) are given 

for different exchange-correlation functionals. Vt is the cell value computed at transition 

pressure (7.46 GPa) using equation 3.5. 

 
Exc a (Å) c/a V0 (Å3/SiO2) B (GPa) 𝐵′ Vt (Å3/SiO2) 

LDA 4.9041 

4.84a 

1.0969 

1.1177a 

1.104b 

36.95 

 

36.95 

45a 

35b 

5.48 

4.9a 

7.1b 

— 

PBE 5.0153 

4.97a 

1.0951 

1.1107a 

1.099b 

39.41 35.59 

48a, 44b, 

43b 

4.68 

3.0a, 3.2b, 

3.3b 

34.62 

PBEsol 4.9605 1.0996 38.63 32.08 6.05 33.48 

AM05 4.9613 1.1004 38.74 33.07 4.58 34.05 

TPSS 5.0186 1.0922 39.17 34.84 3.92 34.51 

revTPSS 5.0044 1.0954 39.15 36.42 4.07 33.71 

regTPSS 5.0005 1.0936 39.00 43.08 3.88 33.82 

MGGA_MS0 4.9740 1.0933 38.37 38.4 4.97 33.87 

MGGA_MS1 4.9869 1.0953 38.95 43.42 4.19 34.30 

MGGA_MS2 4.9736 1.0933 38.39 46.9 3.86 33.69 

HSE06 4.9568 1.0961 38.28 33.33 5.44 33.90 

Expt 4.92a 

4.921d 

1.099a 

1.097d 

37.73c 38a, 37.2c 

36.5d, 37.4d 

6a, 6.0c 

5.9c, 6.3d 

— 

aRef [99]; bRef [112]; cRef [115]; dRef [116]. 
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We show the calculated structural properties of the SiO2 phases in Table 3.4 and 

Table 3.5. As can be seen from Table 3.4, the lattice constants of α-quartz are 

overestimated by most exchange-correlation functionals other than LDA, suggesting that 

a long-range vdW correction might be needed to shrink the lattice constants. In earlier 

work by Hamann [99], the lattice constants of α-quartz were found to be a = 4.84 Å and c 

= 5.41 Å by LDA, but our calculation using LDA gives a = 4.9041 Å and c = 5.3790 Å. 

The large differences between the two results are probably associated with the different 

pseudopotentials used in Ref. 99 and in our paper. Below the meta-GGA level, PBEsol 

gives better lattice constants and equilibrium cell volume than other semi-local 

functionals. The lattice constants of α-quartz from the MGGA_MS functionals are only 

slightly worse than those of PBEsol and AM05. The MGGA_MS functionals are the only 

ones in Table 3.4 to include a reliable estimate of intermediate-range vdW effects [40-

43]; none of these functionals includes the long-range effects. 
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Table 3.5: The optimized equilibrium structural parameters of stishovite-SiO2 (HP) are 

given for different exchange-correlation functionals. The definition of Vt is similar to 

previous Tables. 

  
Exc a (Å) c/a V0 (Å3/SiO2) B (GPa) 𝐵′ Vt (Å3/SiO2) 

LDA 4.1516 

4.20a 

4.157c 

0.6417 

0.6309a 

0.642b 

0.6394c 

22.96 

22.96c 

 

321.57 

286a 

303b 

313c 

4.21 

4.6a 

4.8b 

4.24c 

 

PBE 4.225 

4.29a 

0.6374 

0.6247a 

0.636b 

24.04 270.36 

260a, 257b, 

249b 

4.42 

3.0a, 4.9b, 

5.0b 

23.54 

PBEsol 4.1892 0.6394 23.51 277.85 4.52 23.08 

AM05 4.1935 0.6377 23.52 295.79 4.32 23.02 

TPSS 4.1984 0.6400 23.68 296.5 4.22 23.28 

revTPSS 4.1972 0.6403 23.68 296.13 4.23 23.27 

regTPSS 4.1932 0.6399 23.59 308.72 4.14 23.10 

MGGA_MS0 4.1901 0.6365 23.42 318.72 4.12 22.88 

MGGA_MS1 4.1890 0.6380 23.45 306.41 4.35 23.01 

MGGA_MS2 4.1717 0.6402 23.24 305.40 6.09 22.78 

HSE06 4.1751 0.6382 23.22 327.30 4.11 22.72 

Expt 4.18a 

4.1777c 

0.6387a 

0.6381c 

23.30c 313a, 306c 

295d 

2.8~6a 

1.3d 

— 

aRef [99]; bRef [112]; cRef [117]; dRef [115]. 

 

In Figure 3.6, we show the equilibrium cell volumes of α-quartz obtained by 

different density functionals. The results of semilocal functionals are compared with the 

random phase approximation (RPA) (See Chapter 4 for details). RPA is able to capture 

the long-range vdW interactions in molecules and solids [55]. MGGA_MS0, 

MGGA_MS2 and HSE06 are better than other tested functionals for the equilibrium 

volume of α-quartz. In section 3.6.2, we will employ pairwise corrections pioneered by 

Grimme [84, 85] for the PBE and TPSS functionals to investigate the effect of long-range 

vdW interaction. The most accurate structural parameters of α-quartz are found from the 

screened hybrid HSE06. This is surprising, because HSE06 includes no long-range vdW 

interaction, although it is believed to give a good description of covalent bonds [118]. 
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For the bulk modulus of α–quartz, Zupan et al [112] found a PBE bulk modulus 

of 44 GPa, which is close to Hamann’s value [99] but not to ours. 
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Figure 3.6: The equilibrium volumes of α-quartz calculated by different density 

functionals on Jacob’s ladder. The results are compared with the experimental value. The 

dashed horizontal line is given to guide the eye. 

 

The lattice constants of stishovite are rather accurate from all tested functionals, 

as shown in Table 3.5. For the bulk modulus of stishovite, both regTPSS and the 

MGGA_MS family of density functionals give results in agreement with experiment [99, 

115, 119]. More recently, Driver and coworkers [120] have employed the quantum 

Monte Carlo (QMC) method, finding the bulk moduli of α-quartz and stishovite to be 32 

GPa and 305 GPa, respectively, with the former value somewhat different from 

experiment. Practically, the accuracy of QMC is considered to be comparable to random 

phase approximation in density functional theory.  

 

 



92 

 

3.4.2 Phase Transition Parameters 

The calculated energy difference between α-quartz and stishovite is given in 

Table 3.6. LDA fails to predict that α-quartz is the ground state of SiO2, so its ΔE0 is 

negative (-0.031 eV/SiO2). In experiment, this energy difference is found to be 0.51~0.54 

eV per SiO2, and the corresponding transition pressure from α-quartz to stishovite is 7.46 

GPa [99]. Our PBE results are in good agreement with experiment and with previous 

PBE calculations. However, as for Si, the meta-GGAs other than those of the 

MGGA_MS family predict transition energies and pressures that are far too low. Among 

thrre MGGA_MS variants, MGGA_MS2 is less accurate than other two forms for the 

transition parameters. 

Table 3.6: The computed phase transition parameters of SiO2 system using different 

exchange-correlation functionals. The ZPE and finite-temperature correction have been 

estimated from the phonon calculations using PBE, and are included in the obtained 

transition pressure. 

 

Exc Δ𝐸0 (eV/SiO2) Δ𝑉0 (Å3/SiO2) 

 

𝑃𝑡 (GPa) 

LDA -0.031 

0.02a, -0.090b 

13.99 -0.37 

PBE 0.532 

0.57a, 0.445b 

15.37 6.94 

7.2a, 6.2b 

PBEsol 0.171 15.12 2.71 

AM05 0.292 15.23 3.79 

TPSS 0.384 15.46 3.84 

revTPSS 0.189 15.47 2.66 

regTPSS 0.167 15.41 2.48 

MGGA_MS0 0.467 14.96 6.16 

MGGA_MS1 0.503 15.50 6.55 

MGGA_MS2 0.286 15.16 3.99 

HSE06 0.484 15.06 6.24 

Expt 0.51~0.54a 

0.525d, 0.48d 

14.43c 7.46a 

aRef [99]; bRef [112]; cRef [117]; dRef [121]. 
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3.5 ω-Zr to β-Zr Transition 

3.5.1 Optimized Structures 

Both ω-Zr and β-Zr are normal metals, so their electron density distributions 

should be more uniform than those of the SiO2 and Si systems. Since the approximate 

exchange-correlation functionals are usually constructed to be exact for the uniform 

electron gas, we would expect that the semi-local functionals can give better results for 

Zr than for the previous cases. As we shall see, that tends to be true, although the LDA 

and HSE06 transition pressures are rather unrealistic. A countervening effect is that the 

changes of energy and volume at the transition are much smaller in Zr than in the 

previous cases, so an accurate transition pressure requires them to have very small 

absolute errors. 

Figure 3.7 shows the dependences of the total energies of the two Zr phases on 

cell volume per atom using the regTPSS functional. The results for the other meta-GGA 

functionals are not shown for clarity, because the computed equilibrium cell volumes and 

energies of ω-Zr and β-Zr structures are too close near the transition pressure. The 

common tangent line is also given in Figure 3.7 for the two energy versus volume curves. 

In Tables 3.7 and 3.8, we show the structural parameters the two structures of Zr 

using different exchange-correlation functionals. The results are also compared to 

experiments. The most reliable transition pressure from ω-Zr to β-Zr was measured by 

Xia et al. [105] using the energy-dispersive X-ray diffraction method with a synchrotron 

light source, and the resulting value is 30 ± 2 GPa. In the same paper, for ω-Zr, the c/a 

ratio, bulk modulus and pressure derivative of bulk modulus were also reported.   
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However, the lattice constants and mechanical modulus of β-Zr were not accurately 

determined due to the limited pressure range applied in that experiment. The calculated 

lattice constants shown in Tables 3.7 and 3.8 for the two Zr phases are compared with the 

experimental results reported by Hao et al. [103] and Greeff et al. [122]. 
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Figure 3.7: The volume dependences of the total energies of the ω-Zr (LP) and β-Zr (HP) 

phases calculated using regTPSS. The solid lines are obtained by fitting the energy-

volume data to the third-order Birch-Murnaghan equation of state and the dashed line is 

the common tangent of the two energy-volume curves. 

  

All tested functionals yield accurate lattice constants for the Zr phases, with 

HSE06 the most accurate. The change of the equilibrium cell volume due to thermal 

expansion may be estimated from the zero-point anharmonic expansion (ZPAE) for cubic 

crystals [74]. The Debye temperature (ΘD) in this method can be calculated using the 

equation given in Ref. 101. For the β-Zr phase, we use ΘD = 269 K computed using 

PW91 in a previous paper [123]. We applied the zero-point anharmonic expansion to 
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correct the PBE cell volume. It was found that cell volume is slightly increased, i.e., 

0.066 Å3/atom, indicating that we can safely use lattice constants obtained at 0 K to draw 

our conclusion. 

Table 3.7: The calculated structural properties of the ω-Zr (LP). Note that ω-Zr is 

hexagonal, thus the lattice parameters are uniquely defined by a and ratio c/a. The cell 

volume Vt at transition pressure (30 GPa) is obtained using equation 3.5.  

 

Exc a (Å) c/a V0 (Å3/atom) B (GPa) 𝐵′ Vt (Å3/atom) 

LDA 4.9222 0.6257 21.54 103.84 3.49 17.68 

PBE 5.0235 

5.056a 

0.6246 

0.6230a 

22.86 95.90 

101.1a, 95.3c 

3.43 

3.27a, 3.44c 

18.60 

PBEsol 4.9715 0.6255 22.18 100.24 3.45 18.04 

AM05 4.9706 0.6255 22.19 99.0 3.43 18.03 

TPSS 5.0045 0.6248 22.61 99.04 3.44 18.46 

revTPSS 4.9957 0.6248 22.49 99.73 3.41 18.31 

regTPSS 4.9892 0.6250 22.40 99.39 3.41 18.29 

MGGA_MS0 5.0030 0.6269 22.66 95.52 3.42 18.50 

MGGA_MS1 5.0090 0.6267 22.74 97.24 3.37 18.53 

MGGA_MS2 5.0080 0.6244 22.57 100.24 3.34 18.47 

HSE06 5.0240 0.6270 22.96 91.05 3.34  

Expt 5.039a 

5.050d 

0.6251a 

0.6237d 

23.09a 104b, 90e 

109e 

2.05b 

4.0e 

 

aRef [103]; bRef [105]; cRef [124]; dRef [122]; eRef [125]. 

 

The computed bulk moduli of two Zr ploymorphs are given in Tables 3.7 and 3.8. 

The bulk modulus of ω-Zr phase predicted by different exchange-correlation functionals 

falls in the experimental range.  

The LDA lattice constants of β-Zr are too small, which results in the largest bulk 

modulus for this phase. The AM05 functional gives a rather small bulk modulus for the 

β-Zr phase, because this functional fails to show a reasonable minimum in the calculated 

energy-volume curve. The bulk moduli of ω-Zr and β-Zr phases computed from HSE06 

are smaller than from the semi-local functionals.  
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Tables 3.7 and 3.8 suggest that most semilocal functionals overestimate ∆V0 

somewhat in comparison with experiment. PBE and MGGA_MS2 work better than other 

tested exchange-correlation functionals for this parameter. The computed ∆V0 for Zr from 

HSE06 is almost one order of magnitude smaller than those from other semilocal 

functionals. The main reason is that HSE06 underestimates the cell volume for ω-Zr, but 

slightly overestimates it for β-Zr, so that the errors reinforce each other instead of 

cancelling. 

  

Table 3.8: The calculated structural properties of the β-Zr (HP). Note that ω-Zr is cubic, 

thus the lattice parameters are uniquely defined by a only. The cell volume Vt  at 

transition pressure (30 GPa) is obtained using equation 3.5. 

 

Exc a (Å) V0 (Å3/atom) B (GPa) 𝐵′ Vt (Å3/atom) 

LDA 3.4681 20.86 92.48 3.71 17.02 

PBE 3.56 

3.58a 

22.56 81.95 

89.7b 

3.60 

3.13b 

17.99 

PBEsol 3.5032 21.49 87.52 3.63 17.39 

AM05 3.5173 21.76 76.51 3.87 17.28 

TPSS 3.5440 22.26 86.08 3.60 17.83 

revTPSS 3.5347 22.08 83.95 3.63 17.66 

regTPSS 3.5327 22.05 86.40 3.57 17.56 

MGGA_MS0 3.5414 22.21 82.14 3.59 17.72 

MGGA_MS1 3.5484 22.34 82.17 3.56 17.86 

MGGA_MS2 3.5440 22.26 84.93 3.51 17.84 

HSE06 3.5774 22.89 78.59 3.52 — 

Expt 3.574a 

3.570b 

22.82a — — — 

aRef [103]; bRef [124]. 
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3.5.2 Phase Transition Parameters 

In Table 3.9, we show the calculated phase transition parameters for Zr system. 

For the phase transition parameter ∆E0, PBE, TPSS, revTPSS and regTPSS values are 

close to each other. The MGGA_MS values are slightly bigger. HSE06 seems to 

overestimate the energy difference between ω-Zr and β-Zr.  

In contrast to Si and SiO2 systems, the phonon corrections significantly affect the 

transition pressure from ω-Zr to β-Zr phases [102]. Hereafter, we only discuss the 

corrected results for different density functionals. As shown in Table 3.9, PBE gives 23.2 

GPa which is slightly smaller than the experimental transition range. Without phonon 

corrections, our PBE value is in good agreement with Ref. 104. Using the same 

functional, Ostanin et al. [102] report 27.0 GPa at 300 K. The LDA overestimates the 

stability of the β-Zr phase, and the transition pressure is too small. In Ref. 102, the 

transition pressure calculated by LDA at 300 K is 18.0 GPa, which is larger than our 

LDA result (9.17 GPa). Cazorla et al. [104] obtained a value of 22 GPa from the WC 

functional, smaller than from PBE. Using a very rough relationship Pt = ΔE0/ΔV0 to 

estimate ω-Zr to β-Zr transition pressure, we find that the transition pressure is strongly 

overestimated by HSE06 (over 200 GPa).  MGGA_MS0 yields 35.3 GPa without 

phonon effects (ZPE and finite T = 300 K). The transition pressure from ω-Zr to β-Zr 

phases is reduced to 31.3 GPa (very close to experiment) by including the two phonon 

corrections. 
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Table 3.9: The phase transition parameters of Zr system. The ZPE and finite-temperature 

correction for the transition pressure have been evaluated from Debye’s quasi-harmonic 

approximation [102]. LDA and PBE give slightly different corrections for transition 

pressure due to ZPE and finite T-effect. For example, at 300 K, PBE gives -4 GPa and 

LDA gives -6 GPa. Our results in this paper were corrected by the PBE value reported in 

Ref. 102 for all functionals other than LDA, and by the LDA correction for the LDA 

functional. 

 

Exc Δ𝐸0 (eV/atom) Δ𝑉0 (Å3/atom) 

 

𝑃𝑡 (GPa) 

LDA 0.059 0.690 9.17 

5-24b 

PBE 0.084 0.300 23.21 

26.8a, 28.2d, 27e, 22b 

PBEsol 0.075 0.685 17.06 

AM05 0.078 0.432 23.28 

TPSS 0.087 0.352 22.56 

revTPSS 0.087 0.410 21.78 

regTPSS 0.088 0.362 26.62 

MGGA_MS0 0.113 0.450 31.25 

MGGA_MS1 0.109 0.400 27.01 

MGGA_MS2 0.123 0.320 28.08 

HSE06 0.200 0.065 — 

Expt — 0.270a 30 ± 2c 
aRef [103]; bRef [104]; cRef [105]; dRef [126]; eRef [127]. 

 

3.6 Effects of van der Waals Interactions 

As can be seen from Figure 3.6, the van der Waals interactions are important in α-

quartz, because semilocal functionals overestimate the equilibrium cell volume. It seems 

that only RPA gives good accurate value. It is known that RPA captures the van der 

Waals interactions naturally due to its nonlocal correlation functional. Besides RPA, the 

van der Waals corrections can also be computed by DFT+D2 and vdW-DF methods. The 

latter two methods are less expensive than RPA. In this section, we would like to study 

the effects of van der Waals interactions on structural and phase transition properties of 
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Si, SiO2 and Zr systems. In the calculations, we employed the pairwise-interaction 

DFT+D2 method of Grimme [84, 85] and the nonlocal density functional optB86b-vdW 

[86] method, both available in the VASP code. Table 3.10 shows the equilibrium volumes 

predicted by these methods for our six phases. By comparison with Tables 3.1, 3.2, 3.4, 

3.5, 3.7 and 3.8, we see that the long-range corrections tend to decrease the cell volumes. 

OptB86b-vdW gives better cell volumes for stishovite, D-Si and β-tin Si than DFT+D2 

does. For α-quartz, the cell volume predicted by optB86b-vdW is too small, and RPA 

gives the best value. The non-empirical MGGA_MS0 functionals, which include some 

intermediate-range dispersion effects, give the best overall performance for equilibrium 

cell volume among all the tested methods. 

 

Table 3.10: The equilibrium cell volumes of the Si, SiO2 and Zr structures computed by 

DFT+D2 and optB86b-vdW methods, which introduce long-range van der Waals 

attraction. For the SiO2 system, the unit is Å3/SiO2; for the other two systems it is 

Å3/atom. The experimental values are not corrected for thermal effects, and the RPA 

value is used instead of the Expt value for β-tin Si to calculate the mean absolute error 

(MAE) of each functional. LP and HP indicate the low-pressure and high-pressure 

structures. 

 
Structures PBE+D2 TPSS+D2 optB86b-vdW MGGA_MS0 RPA Expt 

D-Si (LP) 19.81 19.44 19.98 20.13 20.02 20.00a 

β-tin Si (HP) 15.03 14.46 15.21 15.09 15.24 — 

α-quartz (LP) 38.75 37.02 34.56 38.37 37.75 37.73b 

Stishovite (HP) 23.83 23.49 23.29 23.42 23.66 23.30b 

ω-Zr (LP) 23.17 22.90 21.46 22.66 — 23.09c 

β-Zr (HP) 22.53 22.19 21.13 22.21 — 22.82c 

MAE 0.38 0.51 1.09 0.35 — — 
aRef [111]; bRef [117]; cRef [103]. 
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Figure 3.8: The phase transition parameters of Si, SiO2 and Zr systems computed by 

DFT+D2 and optB86b-vdW methods. The resutls are compared to semilocal functionals 

without long-range van der Waals corrections and experimental results. 

 

The calculated phase transition pressures are illustrated in Figure 3.8. For all three 

considered systems, the DFT+D2 methods are less accurate for phase transition pressure 

than their DFT counterparts. The TPSS+D2 method even predicts a negative transition 

pressure in the SiO2 system. The optB86b-vdW works better for Si and Zr systems than 

for SiO2. In the latter case, the transition pressure obtained from optB86b-vdW is smaller 

and less realistic than that from PBE and TPSS. In all three systems, MGGA_MS0 gives 

the best performance. Therefore, our calculations indicate that, for solids that are not 

primarily van-der-Waals-bound, one should be cautious about using long-range vdW 

corrections for phase transition parameters and equilibrium lattice geometry.                    
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3.7 Effect of Band Gap 

The calculated fundamental band gaps for D-Si, α-quartz and stishovite by LDA, 

GGAs, meta-GGAs, HSE06 and GW0 are given in Table 3.11. Clearly, the most accurate 

band gaps are found by the HSE06 and GW0 methods, in comparison with experimental 

values. Similar to LDA and GGAs, all tested meta-GGA functionals underestimate the 

band gaps for these three solids.  

The underestimation of the fundamental band gap does not necessarily result in a 

poor phase transition parameters for Si and SiO2 systems, contrary to the suggestion of 

Ref. 111. The exact Kohn-Sham method should yield the exact transition parameters, but 

the band structure from even the exact Kohn-Sham multiplicative potential would 

underestimate the gap [128, 129].  

In our calculations, only LDA and GGA have a multiplicative Kohn-Sham 

exchange-correlation potential )(/ rnExc


 , and they do indeed underestimate the gap. For 

computational convenience, our meta-GGA results employ a non-multiplicative 

exchange-correlation potential which tends to underestimate the gap even more, and even 

when the transition parameters are good. The screened hybrid functional HSE06 includes 

a fraction of the non-multiplicative Hartree-Fock exact exchange potential which 

increases and improves the single-particle band gap, in the same general way that the 

non-multiplicative GW0 self-energy does. With some effort, one could construct a 

multiplicative exchange-correlation potential for the meta-GGAs or hybrid functionals, 

which might yield GGA-like gaps without much changing the predicted transition 

parameters for these functionals. 
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Table 3.11: The electronic band gaps of the D-Si, α-quartz and stishovite structures 

estimated from the calculated band-structure densities of states by semilocal and non-

local functionals. The results of PW91 and WC were obtained using the CASTEP code. 

Our band gaps of the Si and SiO2 systems were estimated from the calculated band 

dispersions using optimized crystal structures. Notice that the band gap of Si is indirect 

[Г= (0, 0, 0) to X = (2π/a) (1, 1, 0)]; α-quartz also has an indirect band gap [K= ((2π/a) 

(1/√3, 1/3, 0) to Г]; the band gap of stishovite is direct at the Г point. 

 

Exc D-Si α-quartz Stishovite 

LDA 0.49 5.68 5.90 

PBE 0.62 5.70 5.13 

PW91 0.73 6.06 5.77 

PBEsol 0.49 5.70 5.47 

AM05 0.52 5.84 5.42 

WC06 0.57 5.94 5.68 

RPBE 0.70 5.70 4.95 

TPSS 0.38 5.94 5.56 

revTPSS 0.25 5.50 5.17 

regTPSS 0.25 5.52 5.17 

MGGA_MS0 0.17 5.60 4.25 

MGGA_MS1 0.22 5.55 4.28 

MGGA_MS2 0.22 5.59 4.38 

HSE06 1.14 7.50 8.06 

GW0 1.22 9.40b 8.90 

Expt 1.17a 8.90c 5~6d, 8.75e 
aRef [52]; bRef [130]; cRef [131], dRef [132]; eRef [133]. 

 

3.8 Effect of Exchange Enhancement Factor 

In some cases, we can relate a functional’s performance for the transition 

parameters to the behavior of its plottable exchange enhancement factor Fx. Exchange is 

of course more important than correlation in the higher-density regions that contribute 

more to the total energy. Bonding regions also tend to have small s. 
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Figure 3.9: The exchange enhancement factors for various semi-local functionals. For 

meta-GGAs, α = 1 and s = 0 correspond to uniform electron density. 
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Figure 3.10: The calculated structural energy differences of Si (right vertical scale) and 

SiO2 (left vertical scale) polymorphs from semilocal functionals on the first three rungs at 

Jacob’s ladder. The results imply that an α dependence of 𝐹𝑥 separated from the s 

dependence can significantly improve the energy difference between two polymorphs of 

a solid. 

 

First consider the LDA and GGA functionals. Figure 3.9 shows Fx(s) in the 

physically important range 0< s <3. 𝐹𝑥(𝑠) equals 1 in LDA at all s and in GGA at s = 0. 

Within GGA, it increases with s, and the initial strength of this increase grows from LDA 
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to PBEsol to PBE to RPBE. Tables 3.3, 3.6 and 3.9 suggest that the predicted transition 

pressures tend to increase in the same order.  

For the phase transition parameters, systematic improvement over GGAs and 

LDA is not seen for most meta-GGAs, but only for the MGGA_MS variants. The main 

difference between the MGGA_MS family of density functionals and other tested 

functionals lies in the exchange enhancement factor Fx(s,α), where the weaker s-

dependence in MGGA_MS (Figure 3.9) is countered by a stronger α dependence. Our 

recent works has revealed the significance of α for identifying different bonds in 

molecules and solids [42, 134]. The covalent-single and metallic bonds are characterized 

by α = 0 and 1, respectively. Weak bonds such as van der Waals are characterized by α 

>> 1. By carefully manipulating both α and s dependences in a meta-GGA exchange 

functional, one can describe all different types of chemical bonds more accurately than 

with the ordinary GGAs and LDA. The influences of α and s on the calculated phase 

transition parameters for Si and SiO2 systems are illustrated in Figure. 3.10. 
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Figure 3.11: The exchange enhancement factors of meta-GGA functionals for the α = 0 

and α =1 limits. 
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Figure 3.11: shows the enhancement factors of various meta-GGAs at α = 0 and 1. 

The small-s behavior is like that of GGA (Fx ≈ 1) only for α = 1, with Fx ≈ 1.15 at α = 0. 

Figures 3.12 and 3.13 show in detail how Fx(s,α) varies over the s-α plane, first 

for revTPSS (which yields unrealistically low transition pressures for Si and SiO2), and 

then for MGGA_MS (which is much more realistic). The α dependence at s ≈ 0 reveals 

two qualitative differences between these two meta-GGAs: (1) The MGGA_MS Fx drops 

gradually from ~1.15 to ~1 as α increases from 0 to 1, while the revTPSS Fx drops 

abruptly near α = 0 and then remains close to 1. (2) The MGGA_MS continues to drop 

well below 1 as α increases above 1, while the revTPSS does not. Feature (2) is 

responsible for the much better description of intermediate-range van der Waals 

interaction by MGGA_MS. 

 

Figure 3.12: The exchange enhancement factor of revTPSS, showing the order of limits 

problem at small s and α. 
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Figure 3.13: The exchange enhancement factor of MGGA_MS0,  

Figures 3.14 and 3.15 plot 3/1])4/[3( nrs  , s and α along a line through a bond in 

the low-pressure phases of Si and SiO2. The line for each solid is defined in the Figures 

3.16 and 3.17, which also provide more detailed two-dimensional contour plots. Figures. 

3.14 and 3.15 also show the meta-GGA exchange energy density 𝑛𝜀𝑥
𝑢𝑛𝑖𝑓

𝐹𝑥 (which need 

not be in the same gauge as the conventional exact exchange energy density). Note that 

we use pseudo-atoms instead of real ones, and that the pseudo-density is low (i.e., rs is 

large) in the core regions. 
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Figure 3.14: (a): The computed 𝑟𝑠, s and α distributions for the pseudo-density along a 

line in the [001] direction within the (110) plane, passing through the bond center, for the 

D-Si (LP) crystal using the LDA density (b): The exchange energy densities along the 

same path by LDA, GGAs and meta-GGAs. A and B indicate the interstitial and single 

bond regions, respectively. 

         

First consider the phase transition in Si. The high-pressure phase β-tin is metallic, 

with s ≪ 1 and α ≈ 1 in the bonding regions, so all tested functionals have similar 

exchange energy density there. But the low-pressure phase D-Si gets a much more 

negative exchange energy density in the bonding regions from MGGA_MS than from 

PBE or revTPSS, as shown in Figure 3.14. This arises because of feature (1) above, since 

the covalent single-bonding regions of D-Si have both small s and small α. Thus 

MGGA_MS energetically stabilizes D-Si with respect to β-tin, increasing the transition 

energy difference and the transition pressure. 
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Figure 3.15: The same as Figure 3.14, but for α-quartz SiO2 (LP). A and B label the 

interstitial and Si-O bond regions along a line in the [001] direction on the (100) plane. 

 

Next consider the transition in SiO2, where there is strong electron transfer from 

Si to O in each phase. Ref. 135 indicates that Si-O bonds in stishovite even show stronger 

ionic character than those of α-quartz. As a result, in stishovite, we have O2- ions weakly 

overlapped with Si4+ ions. The overlap of the two 10–electron closed shells leads to large 

α in the bond region, just as we would have for two overlapped Ne atoms. But in this case 

the resulting van der Waals interactions are totally overwhelmed by the electrostatic 

attraction. Therefore, the tested functionals yield similar exchange energy densities for 

the low-pressure phase α-quartz, as shown in Figure 3.15. But the high-pressure phase 

stishovite has large values of α in the bonding region, so feature (2) above yields a much 

less negative exchange energy density from MGGA_MS than from PBE or revTPSS. 

This MGGA_MS energetically destabilizes stishovite with respect to α-quartz, again 

increasing the transition energy difference and the transition pressure. 
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(a)                                 (b) 

 

(c) 

Figure 3.16: The two-dimensional contour plots of the rs, s and α distributions of the D-

Si phase on the (110) plane using the LDA density. (a): rs ; (b): s; (c): α. Note that the 

vertical line refers to the one-dimensional path in [001] direction mentioned in the main 

text. B indicates the bonding region. 
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(a)                             (b) 

 

 

(c) 

 

Figure 3.17: Contour plots of rs, s and α for the α-quartz phase of SiO2 on the (100) 

plane. (a): rs; (b): s; (c): α. The vertical line specifies the one-dimensional path in the 

main text, where the exchange energy density has been calculated for this phase. B 

indicates the bonding region. 

 

3.9 Structural versus Transition Properties 

The meta-GGAs are generally good for structural properties. Except in α-quartz, 

all tested meta-GGAs perform as well as or better than even the PBEsol and AM05 
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GGAs for the equilibrium lattice constants and bulk moduli. Their overall performance 

for these two properties is strongly better than that of the LDA and PBE functionals. 

From the results shown in Tables 3.3-3.9 in the previous section, we find that the 

calculated phase transition parameters are strongly dependent on the exchange-

correlation functional employed, and even on the choice of meta-GGA, for all three 

solids, with the MGGA_MS meta-GGAs giving typically the best results. This intriguing 

conclusion may always be true as long as the energy and volume differences between the 

high- and low-pressure phases are small. The simplest explanation is suggested by the 

estimate Pt = ΔE0/ΔV0:  A small change in either energy difference (ΔE0) or volume 

difference (ΔV0) affects the transition pressure significantly when the two quantities are 

very small.  

The different behaviors of the screened hybrid functional HSE06 for insulating 

and metallic structures have been well documented and explained in previous works by 

Scuseria and coworkers [136-138]. They found that HSE functional has the right 

screening for semiconductors, but too much for large band gap insulators and not enough 

for metals.       
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CHAPTER 4 

ASSESSING RANDOM PHASE APPROXIMATION FOR PRESSURE INDUCED 

PHASE TRANSITIONS IN Si AND SiO2 SYSTEMS 

 

In Chapter 3, we have computed the structural and phase transition parameters of 

Si, SiO2 and Zr systems by semilocal and hybrid functionals on Jacob’s ladder. The 

random phase approximation is the fifth rung on this ladder, and which is also supposed 

to be the most accurate DFT method for isolectronic energy differences in solids. 

Therefore, this Chapter will be dovoted to apply RPA to calculate the similar properties 

for Si and SiO2 systems. Zr system is not considered here because of the high 

computational costs in this particular system within RPA method.  

Recently, Maezono et al. [110] and Hennig et al. [111] calculated the phase 

transition parameters of Si systems using diffusion quantum Monte-Carlo method 

(DMC). Meanwhile, Driver et al. [120] applied the similar method to SiO2 system. It will 

be interesting to compare our RPA results for Si and SiO2 systems to those of DMC 

results.  

 

4.1 Methods and Details   

4.1.1 Computational Parameters 

Our calculations were performed using the Vienna ab-initio simulation program 

(VASP), where the RPA method is implemented non-selfconsistently [56-58]. The 

projector augmented wave (PAW) method within the frozen-core approximation was 
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employed for the pseudopotentials of Si and O atoms, i.e., Si3s3p3d and O2s2p, respectively 

[97]. The non-overlapping core radii for pseudo-Si and O atoms are 0.840 Å and 0.672 Å.  

The cutoff radii for generating partial waves for different angular quantum numbers, the 

number of partial waves and projectors of Si and O PAW potentials can be found in Ref. 

[58]. These special PAW pseudopotentials were built to describe the scattering properties 

of atoms accurately up to 10 Ry above the vacuum level. Their reliability and 

transferability have been extensively tested in Refs. [15] and [58]. We used GGA-PBE 

structures and orbitals as the initial input information for the following RPA calculations. 

The detailed computational parameters of RPA method will be presented in the next 

section. 

The phase transition parameters were also compared to other semilocal and non-

local functionals, including LDA [19], PBE [25], PBEsol [30], TPSS [37], revTPSS [39], 

regTPSS [40], MGGA_MS variants [41, 42] and HSE06 [50, 51], and also to those DMC 

calculations [110, 111, 120]. 

 

4.1.2 Convergence Tests 

In contrast to the conventional DFT calculations, the RPA total energy must be 

calculated separately as RPA correlation energy and Hartree-Fock energy, and both parts 

converge independently [15, 58]. We have performed extensive tests on three parameters 

for the RPA method: kinetic energy cutoff (Ecut), k-mesh and Ecut
GW. The last parameter 

determines the size of the auxiliary plane wave basis for the response function, and the 



 

114 

 

value is usually chosen to be between Ecut/3 and 2Ecut/3 [15, 58]. From the convergence 

tests, we determined some parameters for the RPA calculations, given in Table 4.1. 

Table 4.1: Calculation parameters used for the RPA method. The convergence tests were 

performed for the Hartree-Fock total and RPA correlation energies of α-quartz, stishovite, 

and diamond-Si independently. For metallic beta-tin Si, the total energy converges much 

faster than any individual contribution. The errors shown in the last column are 

meV/SiO2 and meV/atom for SiO2 and Si polymorphs, respectively. 

        

Phase k-point mesh Ecut GW

cutE  Error (meV) 

α-quartz EHF 7×7×8 500 — ±1  

Ec 3×3×3 700 420 ±10 

Stishovite EHF 10×10×12 500 — ±2 

Ec 5×5×6 650 420 ±20 

Diamond-Si EHF 7×7×7 500 — ±1 

Ec 8×8×8 450 350 ±5 

β-tin Si EHF+Ec 8×8×10 500 350 ±10 
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Figure 4.1: The convergence of RPA total energy versus volume curve of D-Si phase 

with respect to k-mesh and Ecut. Using the present settings (Ecut=450 eV, Ecut
GW=350 eV 

and 8×8×8 k mesh), the total energy and equilibrium cell volume can be obtained 

accurately.  
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Figure 4.2: The convergence of RPA total energy versus volume curve with respect to k-

mesh for metallic β-tin Si phase. 
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Figure 4.3: Convergence of the RPA correlation energies of α-quartz and stishovite with 

respect to kinetic energy cutoff values (Ecut). The k-mesh and the auxiliary kinetic energy 

cutoff for the linear response function (Ecut
GW) of each phase are fixed at the indicated 

values. 
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In Figures 4.1 and 4.2, the RPA total energy versus volume curves are shown for 

D-Si and β-tin Sn structures using different k-meshes. In Figure 4.3, the convergence of 

correlation energy with respect to kinetic energy cutoff value is also illustrated for SiO2 

system. We found that for insulators or semiconductors such as SiO2 and D-Si, both 

Hartree-Fock and RPA correlation energies converge rapidly under increase of the k-

point mesh. The main error in the correlation energies is caused by the finite value of Ecut, 

because for semiconductors or insulators the RPA correlation energy usually converges 

as 

 
 

c cut 3/2

cut

( ) c

A
E E E

E

    (4.1) 

where 𝐸𝑐
∞ is the converged RPA correlation energy and A is a fitting parameter which 

characterizes the error due to the finite 𝐸cut. In our calculations, we found that the worst 

case was stishovite, where the absolute error without the extrapolation was predicted to 

be 20 meV/SiO2. For the metallic β-tin Si phase, EHF and Ec were always calculated using 

the same Ecut and k mesh. In addition, the long wave-length part (�⃗� → 0) of the exchange-

correlation energy was excluded in RPA calculation for this phase in order to achieve the 

fastest convergence [58]. For a system with a band gap, the calculations of EHF and Ec 

energies with and without including the long wave-length part give almost the same 

results for the present calculation parameters. For instance, the difference for the 

calculated Etotal (Etotal = EHF + Ec) by the two methods for D-Si phase is 2 meV/atom.  
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4.2 D-Si to β-tin Si Transition 

4.2.1 Structural and Phase Transition Properties 

The computed energy versus volume curves of D-Si and β-tin Si are shown in 

Figure 4.4. In the same figure, the common tangential line of them is also illustrated as 

dashed line, and where the transition pressure from D-Si to β-tin Si can be obtained.  
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Figure 4.4: The energy versus volume curves of the Si structures. The dotted line is the 

common tangent line obtained from the Birch-Murnaghan third-order EOS, and the solid 

lines in the graphs are fitted to the data points by the same EOS. 

 

From Table 4.2, we can see that RPA predicts good equilibrium lattice properties 

of Si polymorphs. The lattice constant and bulk modulus of D-Si have been calculated by 

RPA in Ref. 58, and the values are given as 5.432 Å and 99 GPa, respectively. Our RPA 

calculation gives 5.431 Å and 97.0 GPa for these two properties. The agreement between 

experimental results and RPA calculations is satisfactory for D-Si. Since the D-Si to β-tin 

Si transformation is kinematically reversible, the calculated equilibrium lattice properties 

of β-tin Si phase at 0 GPa can not be compared directly with experiments. However, the 

transition volume can be measured by experiment at the transition pressure. Using the 
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Birch-Murnaghan third-order EOS, we also calculated this quantity and the results are 

given in Table 4.2. The obtained results are slightly larger than the measured ones for Si 

polymorphs. Hennig et al. [111] reported the transition volumes of Si polymorphs from 

diffusion Monte Carlo simulation (DMC); the values are also shown in Table 4.2. The 

RPA calculations are generally in agreement with DMC results. In addition, in the case of 

β-tin Si, our RPA value is slightly better than the DMC value when compared to 

experimental results. 

 

Table 4.2: Equilibrium lattice properties of Si structures from RPA calculations, 

including cell volume (V), c/a ratio, bulk modulus (B), pressure derivative of bulk 

modulus (B`), transition volume (Vt), energy different between two structures (∆E) and 

transition pressure (Pt) The results are compared with experimental values and also with 

DMC calculations. The transition pressure has been corrected by ZPE and finite-

temperature correction (300 K) [114]. 

 

Structure Properties RPA Expa DMCa 

D-Si 

 

V (Å3/cell) 160.17 160.00 159.84 

c/a 1.0000 1.0000 1.0000 

B (GPa) 97.0 99.2 98.0 

B` 4.84 4.11 4.60 

Vt (Å
3/Si) 18.19 18.15 18.14 

   Expa DMCa 

β-tin Si V (Å3/cell) 60.99 — 60.08 

c/a 0.5487 0.5500 0.5500 

B (GPa) 113.5 — 107.0 

B` 4.27 — 4.60 

Vt (Å
3/Si) 13.99 13.96 13.90 

∆E (eV/atom) 0.37 

Pt (GPa) 12.2 
aRef [111]. 
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The calculated phase transition parameters of Si system are given in Table 4.2. 

For the ZPE and FT correction to transition pressure, we simply cite the values from 

published results [110, 114]. The ZPE and FT correction (300 K) shift the D-Si to β-tin Si 

transition pressure by -1.3 GPa in Ref. 114 and -1.0 GPa in a recent study [110]. For the 

D-Si to β-tin Si phase transition, RPA gives a good energy difference and transition 

pressure.  

The RPA phase transition parameters are also compared to other semilocal and 

hybrid functionals in Table 4.3. We can see that semilocal functionals underestimate the 

transition pressure, because the calculated energy difference is not sufficiently large to 

give the correct transition pressure. PBE and TPSS give better energy differences than 

other semilocal functionals. Moreover, both PBEsol and revTPSS predict the phase 

transition parameters less accurately than LDA. We also found that the calculated energy 

difference in RPA is situated between those of HSE06 and DMC. The obtained RPA 

transition pressure is in excellent agreement with experiments. 

  

4.2.2 Discussion 

A reason why most semilocal functionals might perform badly for the D-Si to β-

tin Si phase transition has been discussed in Ref. 111. Since D-Si is a semiconductor and 

β-tin Si is a metal, the phase transition from the former structure to the latter is an 

insulator-to-metal transformation. The electronic structures of the two Si polymorphs are 

significantly different from each other. The well-known disadvantage of semilocal 

exchange-correlation functionals is that they usually underestimate physically-correct 
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energy gaps for semiconductors and insulators because they miss the derivative 

discontinuity in the Kohn-Sham potential at integer electron number [128, 139]. Errors in 

the gap as a second difference of total energies are reflected by errors in the band gap in a 

generalized Kohn-Sham band structure [139]. (While the Kohn-Sham exchange-

correlation potential is a functional derivative with respect to the density, the generalized 

one is with respect to the nondiagonal Kohn-Sham density matrix.) The abrupt change of 

band structure from the semiconducting D-Si phase to metallic β-Sn Si is associated with 

overlapping of the valence and conduction bands and shrinking of the band gap. 

Therefore, the nonlocal functionals such as HSE06 have an advantage in this case, 

because the band gap can be better described by them than by semilocal functionals [111, 

140], and a larger gap presumably tends to stabilize the semiconducting D-Si phase with 

respect to the metallic β-tin phase. In this work, ACFDT-RPA calculation uses the exact 

exchange energy (EXX), and the non-local correlation part (RPA) is calculated using 

linear response theory from the GW approximation (GWA) [107]. The generalized Kohn-

Sham band structure of the present method (EXX+RPA) would resemble the physically-

meaningful GW0 band structure [53]. As a result, the ground-state energy of the D-Si 

phase is equally well described by either HSE06 or RPA. Moreover, the ground-state 

properties of the β-tin Si phase are somewhat similar for different semilocal and nonlocal 

functionals. Thus the good performance of RPA on the D-Si to β-tin Si phase transition 

can be explained. 
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Table 4.3: The phase transition parameters computed from semilocal functionals (LDA, 

GGA and meta-GGAs), hybrid functional (HSE06), RPA and many-body method 

(DMC). The experimental results are given for comparision. Note that theoretical Pt 

values have been corrected by ZPE and finite-temperature correction (300 K) [114]. 

 

Exc ∆E (eV/atom) Pt (GPa) 

LDA 0.206 5.7 

PBE 0.290 8.4 

PBEsol 0.185 4.8 

AM05 0.153 3.5 

TPSS 0.265 7.3 

revTPSS 0.160 3.7 

regTPSS 0.285 8.0 

MGGA_MS0 0.517 17.3 

MGGA_MS1 0.475 15.4 

MGGA_MS2 0.429 13.9 

HSE06 0.398 13.3 

RPA 0.370 12.2 

DMCa 0.420 14.0±1.0 

Expta — 11.3~12.6 
aRef [111]. 

 

4.3 α-Quartz to Stishovite Transition 

4.3.1 Structural and Phase Transition Properties 

Figure 4.5 shows the calculated energy versus volume curves for α-quartz and 

stishovite by RPA. In Table. 4.4, the structural properties of them are given, and which 

are compared to experimental values and DMC calculations. Note that both DMC and 

RPA are considered as the benchmarks among the theoretical methods. 
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Figure 4.5: The energy versus volume curves of the SiO2 structures. The dotted line is 

the common tangent line obtained from the Birch-Murnaghan third-order EOS, and the 

solid lines in the graphs are fitted to the data points by the same EOS.  

 

For the SiO2 system, the RPA also gives a good equilibrium cell volume for the α-

quartz phase, where it only slightly underestimates the equilibrium cell volume by 0.13 

%. However, the calculated bulk modulus of α-quartz is obviously larger than the 

experimental value. Hamann et al. [99] used both LDA and PBE to calculate the bulk 

modulus of α-quartz and stishovite. Interestingly, the RPA calculation overestimates the 

bulk modulus of α-quartz by the same amount as in LDA and PBE. In contrast to α-

quartz, RPA gives a good bulk modulus for stishovite, but the equilibrium cell volume is 

overestimated. One should bear in mind that the present RPA calculations are non-

selfconsistent, and the input structures were optimized using PBE. From Table 4.4, we 

can see that for α-quartz the c/a ratio obtained from PBE agrees less well with experiment 

than for stishovite. The c/a ratio of stishovite deviates from the corresponding 

experimental value by -0.2 %, and that of α-quartz is -0.4 %. Recently, the DMC method 
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has been applied to calculate the phase transition properties of SiO2 polymorphs at 

ultrahigh pressures [120], and the DMC also gave similar results to our RPA calculations 

for α-quartz and stishovite. It can be seen clearly from Table 4.4 that DMC and RPA 

actually predict the same equilibrium cell volume for stishovite. 

 

Table 4.4: The structural parameters of SiO2 phases computed from RPA. DMC and the 

experimental results are given for comparision. Note that theoretical Pt values have been 

corrected by ZPE and finite-temperature correction (300 K) using PBE phonon spectra.  

  

Structure Properties RPA Expa DMCb 

α-quartz 

 

V (Å3/cell) 113.26 113.41 113.44 

c/a 1.0950 1.0995 — 

B (GPa) 44.8 38.0 32.0 

B` 4.89 6.0 7.0 

Vt (Å
3/SiO2) 31.81 — — 

   Expa DMCb 

Stishovite V (Å3/cell) 47.32 46.65 47.34 

c/a 0.6373 0.6387 — 

B (GPa) 311.7 313.0 305.0 

B` 4.26 2.8~6.0 3.7 

Vt (Å
3/SiO2) 22.85 — — 

∆E (eV/atom) 0.39 

Pt (GPa) 5.6 
aRef [99]; bRef [120]. 

 

In Table 4.5, we show the calculated phase transition parameters for SiO2 by 

various semilocal and nolocal density functionals. It is found that the transition pressure 

from α-quartz to stishovite is increased by 0.57 GPa after including ZPE and FT 

correction (300 K). For the α-quartz to stishovite phase transition, PBE gives the best 
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phase transition parameters, and the results are comparable to the benchmark DMC 

calculations [120]. The transition pressures calculated by two meta-GGA functionals 

named TPSS and revTPSS are less accurate than PBE results. The hybrid functional 

HSE06 performs well for SiO2 and the corresponding phase transition parameters are 

similar to DMC results. However, for the same system, RPA shows relatively poor 

performance for transition parameters compared to DMC, HSE06, and PBE. The 

calculated non-selfconsistent RPA energy difference between α-quartz and stishovite is 

smaller than the experimental value by 26.8 %. (RPA selfconsistency might reduce this 

error, if it lowered the energy more for the lower-symmetry α-quartz structure.) 

Therefore, the estimated non-selfconsistent RPA α-quartz to stishovite transition pressure 

is too small. The results shown in Table 4.5 for SiO2 also indicate that both RPA and 

TPSS give similar values for the energy differences between stishovite and α-quartz. 

However, the transition pressure predicted by RPA is larger than that of TPSS; the main 

reason is that TPSS gives a too-large equilibrium cell volume for the quartz phase. 

Similarly, PBE gives the best energy difference for SiO2, but the cell volumes of both 

phases are overestimated, especially for α-quartz (See Tables 3.4-3.6 in Chapter 3). 
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Table 4.5: The phase transition parameters of SiO2 system computed from semilocal 

functionals (LDA, GGA and meta-GGAs), hybrid functional (HSE06), RPA and many-

body method (DMC). The experimental results are given for comparision. Note that 

theoretical Pt values have been corrected by ZPE and finite-temperature correction (300 

K).  

 

Exc ∆E (eV/atom) Pt (GPa) 

LDA -0.031 -0.37 

PBE 0.532 6.94 

PBEsol 0.171 2.71 

AM05 0.292 3.79 

TPSS 0.384 3.84 

revTPSS 0.189 2.66 

regTPSS 0.167 2.48 

MGGA_MS0 0.467 6.16 

MGGA_MS1 0.503 6.55 

MGGA_MS2 0.286 3.99 

HSE06 0.484 6.24 

RPA 0.39 5.6 

DMCa 0.50 6.2~6.5 

Expt 0.51~0.54b 

0.525c, 0.48c 

7.46b 

aRef [120]; bRef [99]; cRef [121]. 

 

4.3.2 Discussion 

The good performance of nonlocal RPA for the equilibrium cell volume of α-

quartz is partly related to the van der Waals interaction in the structure. The RPA 

captures the van der Waals interaction in various solids, including the strongly 

polarizable covalent and ionic solids and molecular crystal structures. For stishovite, the 

main reason for the observed discrepancies between the experimental cell volume and 

those of DMC and RPA is not clear at the moment. Does the underestimation of the 

energy difference by RPA arise from fixing the c/a ratios of α-quartz and stishovite at 
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their PBE values? The previous tests of the non-selfconsistent RPA algorithm on simple 

cubic solids give equilibrium lattice constants in good agreement with experiments [58]. 

Whether this is also true for low-symmetry crystal structures (like α-quartz with four 

internal degrees of freedom associated with atomic positions) is not known. In Figure 4.6, 

we show the calculated energy landscapes of SiO2 structures near their equilibrium 

geometries. The results indicate that the present RPA method does not provide 

satisfactory equilibrium properties (cell volume and c/a ratio) for SiO2 system. From the 

energy landscapes shown in Figure 4.6, the estimated energy difference between 

stishovite and α-quartz is even smaller than that given by using PBE geometries. Notice 

that in calculating the energy landscapes for SiO2 phases, the internal degrees of freedom 

were relaxed using the PBE functional. 

A likelier possibility is that low symmetry solids are more like molecules, in 

which the errors of the RPA correlation energy cancel out of iso-electronic energy 

differences less perfectly than they do for high symmetry solids [141, 142].  Ruzsinszky 

et al. [59] pointed out that the isoelectronic energy differences in solids are typically 

well-described by either RPA or RPA+, but a global hybrid functional such as equation 

4.2 is more accurate for calculating the isoelectronic energy changes in molecules. 

 
total total total

1 1
E (Hybrid)= E (PBE)+ E (RPA)

2 2
  (4.2) 
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Figure 4.6: The energy landscapes of α-quartz and stishovite computed from RPA 

method, with all geometry parameters other than the lattice constants c and a from PBE. 

The energy minimum is in the darkest blue area. The experimental lattice constants are 

indicated by gray circles. The gray squares show the lattice constants found by 

minimizing the RPA energy with respect to a only, at fixed PBE c/a. The unit for lattice 

constants is Å. The local minimum is chosen to be the zero reference energy. (a): α-

quartz (b): stishovite. 

 

 



 

128 

 

In order to verify our conjecture on the molecular nature of SiO2 phases due to 

their low symmetry, we have recalculated the energy differences for Si and SiO2 systems 

roughly using equation 4.3, and the corresponding values are 0.33 eV/atom and 0.46 

eV/SiO2, respectively. 

 (Hybrid)= (PBE)+ (RPA)
1 1

2 2
E E E     (4.3) 

We can see that the calculated energy difference is improved for SiO2, but it is 

worsened for Si.  
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CHAPTER 5 

MAGNETISM AND ELECTRONIC STRUCTURES OF RUTILE-TYPE VO2 

PREDICTED BY JACOB’S LADDER OF DENSITY FUNCTIONALS 

 

In this Chapter, we will test various exchange-correlation functionals for the 

ground state properties of Rutile-type VO2. Similar to some well-known transition metal 

oxides such as FeO, NiO and CoO, R-VO2 is also a strongly correlated system. The 

conventional semilocal functionals do not work properly for such systems. DFT+U and 

hybrid functionals are the two most- used remediations for strongly correlated systems. 

The meta-GGAs and non-self consistent random phase approximation (RPA) have not 

been tested for strongly correlated transition metal oxides. Since meta-GGAs are 

semilocal functionals, they may still fail for those systems. We are particularly interested 

in the non-self consistent RPA method, it is still a puzzle whether if it can give the correct 

ground state energy for R-VO2. 

 

5.1 VO2 Ground State Puzzle    

Vanadium dioxide (VO2) has three known ploymorphs. The tetragonal rutile-type 

VO2 is stable above 340 K at ambient pressure [143]. This high symmetry phase has a 

simple tegtragonal unit cell with space group P42/𝑚𝑛𝑚 (136). There are two formula 

units in the unit cell. The vanadium atoms occupy the special 2a Wyckoff sites: VI (0, 0, 

0) and VII (0.5, 0.5, 0.5). Meanwhile, the oxygens are located at 4f Wyckoff positions: 

±(u, u, 0), ±(1/2+u, 1/2-u, 1/2), where u is the internal degree of freedom. In R-VO2, the 
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basic structural unit is VO6 octahedral, aligned in [11̅0] direction. The VO6 octahedral is 

slightly distorted from the ideal geometry, i.e., the six V-O bonds are divided into two 

longer apical bonds and other four shorter equatorial bonds. The crystal structure of R-

VO2 is shown in Figure 5.1. The ground state electronic structure of R-VO2 is a non-

magnetic metal. Experimentally, it has been shown that the measured magnetic 

susceptibility above the transition temperature exhibits the paramagnetism [143]. 

 

Figure 5.1: The crystal structure of Rutile-type VO2. The small-red balls are oxygens, 

and the large-blue ones are vanadium atoms. The VO6 octahedral is also highlighted in 

the cell. 

 

Below 340 K, R-VO2 is destabilized, and it transforms into a lower symmetry 

monoclinic phase (M-VO2). The M-VO2 has simple monoclinic lattice with space group 

P21/𝑐 (14). The crystallographic parameters of M-VO2 were reported before by 

Anderson [144] and Longo et al. [145]. The crystal structure is illustrated in Figure 5.2. 

The cell volume is doubled, compared to R-VO2 phase. As a result, the M-VO2 has four 

formula units in the unit cell. Vanadium and oxygen atoms occupy the subsets of general 

4e Wyckoff site: ±(x, y, z), ±  (x, ½-y, ½+y), here x, y, z are internal degrees of freedom, 
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and which are different for V and O atoms. The electronic structure of M-VO2 is a non-

magnetic insulator.  

 

Figure 5.2: The crystal structure of low temperature M-VO2 phase. The V-V bond in V2 

dimer is also shown.  

 

 

Figure 5.3: The crystal structure of M2-VO2. Both the dimerized V2 pair and VO6 

octahedral are highlighted.   

 

It is believed that M2-VO2 is an intermediate phase between R-VO2 and M-VO2. 

The existence of M2-VO2 has been confirmed experimentally [146]. The conventional 

cell of M2-VO2 adopts a c-centered monoclinic lattice with space group C2/m. In the 
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conventional cell, there are two different types of metal atoms and three types of 

oxygens. The M2-VO2 has eight formula units in the conventional cell, and all 8 

vanadium and 16 oxygen atoms occupy different subsets of 8j Wyckoff site: ±  (x, y, z), 

±(x, -y, z), (1/2, 1/2, 0)± (x, y, z), and (1/2, 1/2, 0)±(x, -y, z). The crystal structure in 

displayed in Figure 5.3. The electronic structure of M2-VO2 phase is under debate at the 

moment, because half of the V atoms show the similar chemical envoirment to R-VO2, 

while the remaining V atoms are dimerized, and the isolated V-V pairs are formed. Since 

M2-VO2 is an insulator, it is believed that the strong correlation plays the essential role in 

this phase [143]. 

The exact transition mechanism from R-VO2 to M-VO2 is unclear at the moment 

[147-154]. In some earlier works, using the information obtained either from phonon 

dispersions or electronic structures, the phase transition was found to be driven by the 

structural distortion or Peierls transition [143, 148-150]. Such mechanism is supported by 

some experimental results [152, 153]. Havorkort and coworkers [154] studied the 

changes of orbital occupation numbers due to phase transition in VO2 system by 

measuring the V L2,3 XAS spectrum near the transition temperature. They found that the 

localization of 3d electrons is the prerequisite for occurence of the Peierls distortions. On 

the other hand, Korotin et al., [147] calculated the electronic structures of both M-VO2 

and R-VO2 using LSDA and LSDA+U methods. Their results strongly implied a Mott-

Hubbard transition in this system. More recently, Eyert [148] applied HSE06 functional 

to study the magnetism and electronic structures of VO2 structures. It was found that 

HSE06 functional gave the better descriptions for the ground state properties of VO2 
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polymorphs, compared to other semilocal functionals. However, Grau-Crespo et al., 

[155] revisited the magnetic structures and ground state energies evaluated by the HSE06 

functional. They concluded that HSE06 opens the band gap for metallic R-VO2 phase, 

and the obtained magnetic state is wrong for this structure. For example, the HSE06 

functional significantly stabilizes the spurious spin polarized phases (ferromagnetic and 

anti-ferromagnetic states), and  its results are even less accurate than the results 

computed by semilocal functionals tested previously.   

In this dissertation, we will only study the R-VO2 phase. The previous DFT 

results suggest that none of the exchange-correlation approximations on Jacob’s ladder 

could predict the correct ground energy even for this simpliest VO2 phase. We are mainly 

interested in using meta-GGAs and non-self consistent RPA to revisit the ground state 

properties of R-VO2. The results may provide some valuable information for developing 

better exchange-correlation functionals in the future.            

 

5.2 Methods and Details 

5.2.1 DFT Calculations 

The calculations were performed using the projector augmented wave (PAW) 

method in Vienna ab-initio simulation program (VASP) [97]. The PAW pseudopotentials 

employed in this work for V and O atoms were V3p3d4s and O2s2p within the frozen core 

approximation. The plane wave basis was expanded in the reciprocal space using kinetic 

energy cutoff of 500 eV. The evaluations of ground state energy and electron density 

were conducted in the first irreducible Brillouin zone using 12 × 12 × 16 k-mesh of 
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Monkhorst-Pack type [106]. In this paper, we have considered the following meta-GGA 

level of exchange-correlation functionals including TPSS [37], revTPSS [39], regTPSS 

[40], meta-GGA made simple (MGGA_MS0 [41] and MGGA_MS2 [42, 43]). The first 

two meta-GGA functionals have been widely tested for various systems such as atoms, 

molecules and solids [73]. The latter two functionals were devised recently in order to 

further improve the performances of TPSS and revTPSS for some specified issues [40, 

43]. Nevertheless, none of these non-empirically derived meta-GGA functionals have 

been tested for magnetic transition metal oxides. The calculations were also performed 

within local spin polarized density approximation (LSDA) by means of the Perdew-

Zunger scheme [19] and the generalized gradient approximation (GGA) in terms of the 

Perdew-Burke-Ernzerhof (PBE) functional [25].  For the PBE+U method, we have 

employed an earlier implementation of LSDA+U method proposed by Dudarev [156] in 

VASP code, and the effective effU = 3.32 eV (U = 4.0 eV and J = 0.68 eV) was used for 

3d shells of V atom [157]. The calculations within the range separated hybrid functional 

in terms of HSE06 were also conducted for the different magnetic states of R-VO2. Our 

calculation parameters were 400 eV for kinetic energy cutoff and 6 × 6 × 8 k mesh 

generated by Γ-centered method, which are similar to those employed in Ref. [155]. The 

default range separation parameter (μ = 0.20 Å-1) in VASP code was used in the current 

work [50-52]. 

For the RPA calculations, the total energy consists of two different parts, i.e., the 

correlation energy (Ec) and Hartree-Fock exact exchange energy (EHFx). The classic 

Hartree energy and exact exchange energy are included in EHFx term. In the current paper, 
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the R-VO2 was treated as metallic phase. For metallic structure, the special strategy must 

be employed to achieve the numerical convergence [15, 58]. In our RPA calculations, the 

kinetic energy cutoff was set as 430 eV for FM and spin compensated PM states. 

Meanwhile, the AFM required 480 eV to reach the convergence. The k-point mesh was 

generated using the similar method employed in other semilocal functionals. The 

convergence tests were conducted for the calculated energy differences between non-

magnetic and magnetic states of R-VO2 by varying the kinetic energy cutoff and k grid. 

We found that a 6 × 6 × 8 k grid was sufficient to get the converged energy difference 

between the magnetic and non-magnetic states at the satisfactory level (±10 meV/VO2) 

(Details will be presented in next section). 

     

               (a)                                 (b) 

Figure 5.4: Local spin directions in ferromagnetic (FM) and anti-ferromagnetic (AFM) 

states of vanadium sublattice. The oxygens atoms are not shown in the unit cell. 

 

For rutile-type VO2, the calculations were carried out for three different magnetic 

configurations by assuming the local magnetic moments of V atoms in different 

magnitudes and directions, i.e., ferromagnetic (FM, with initial local magnetic moment as 
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2μB), anti-ferromagnetic (AFM, the initial guess of local moment has the similar 

magnitude to FM state) and spin compensated paramagnetic (PM, 0.1μB as the initial 

local moment) states. Note that the spin compensated PM state is different to a realistic 

PM phase. In the former case, the local moment is zero for each magnetic ion, because 

the majority and minority spin densities have the same magnitude at the same atomic site. 

Meanwhile, the local moments carried by magnetic ions in the latter case are not only 

randomly distributed but also vary strongly in magnitude. In Figure 5.4, the crystal 

structure of R-VO2 is illustrated for FM and AFM states. All DFT calculations were spin 

polarized. Additionally, the experimental lattice constants of R-VO2 were used in our 

paper, i.e., a=4.5546 Å and c=2.8514 Å [143]. The internal degrees of freedom of rutile-

type VO2 were optimized accordingly for each exchange-correlation functional. Using 

the current settings, the total energy was converged to 0.001 meV/atom and the mean 

Hellmann-Feynman force acting on atoms was reduced to 0.01 eV/Å. 

 

5.2.2 Convergence Tests for RPA 

The convergence tests have been carried out for all three magnetic states of R-

VO2, using different k-meshes and kinetic energy cutoff values. In this dissertation, some 

main results are presented.  

The absolute convergence of RPA total energy is difficult to reach. From our 

previous work on phase transition in solid using RPA and Refs. 15 and 58, we found that 

the kinetic energy cutoff value and k-mesh are the two most important parameters 

controlling the final quality of the numerical results. In our current paper, the RPA was 
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employed to compute the total energy versus volume curves for three different magnetic 

states of Rutile-type VO2. The criteria for determining the convergence of total RPA 

energy with respect to k mesh is simple. By fixing the size of the plane wave basis 

(ENCUT in vasp input), we have computed the energy versus volume profile for R-VO2 

using different k meshes. As long as the computed energy versus volume curve is 

smooth, for example, the curve does not show any obvious kinks or large fluctuation in 

the magnitude. Then, it is safe to use the k mesh determined in this way for the following 

RPA calculations. For R-VO2, the -centered 6 × 6 × 8 k-mesh is sufficient for RPA 

method. Note that due to the symmetry breaking in different magnetic states, such k-

mesh is equivalent to 50 irreducible k-points in first Brillouin zone (IBZ) for FM state 

and spin compensated PM state. In the case of AFM phase, there are 65 k points in IBZ 

using this k-mesh. 

The next step is to fix the k-mesh, and computing the RPA total energy with 

different kinetic energy cutoff values. However, as discussed in Ref. 15, as long as we 

use finite plane wave basis (ENCUT is finite value), the absolute convergence of RPA 

correlation energy is intractable. Otherwise, the computational costs will be unaffordable 

if the kinetic energy cutoff is too high. In Ref. 61, the authors tested the convergence of 

RPA calculation for a single layer graphite adsorbed on transition metal surfaces using 

the binding energy as the criteria. The similar strategy was employed in this work. We 

have computed the energy differences between two spin polarized magnetic states and the 

spin compensated PM state by varying the ENCUT value in input. It was found that for 

PM and FM states, the energy difference between them is converged to ±10 meV/VO2 by 
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setting ENCUT to 430 eV. Meanwhile, the energy difference of AFM and PM states 

requires 480 eV to reduce the error below ±10 meV/VO2. Due to the hardware limitations 

(WALLTIME limit and Memory per core), the increase of ENCUT further above 500 eV 

were not conducted. 

In Figure 5.5, the total RPA energy versus volume curve are shown. We can see 

that the obtained curves in different magnetic states are smooth. Next, we recalculated the 

energy versus volume curve for FM R-VO2 using a larger kinetic energy cutoff value, 

i.e., 430 eV. The obtained profile is shown in Figure 5.6 together with that of using 350 

eV. The main effect of increasing the ENCUT is to shift the entire curve evenly 

downward. In addition, the computed energy difference between spin compensated PM 

and other two magnetic states (FM and AFM) are illustrated in Figure 5.7. 
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Figure 5.5: The computed total energy versus cell volume curves for FM, AFM and PM 

states of R-VO2 by RPA using PBE inputs (charge density, Kohn-Sham single particle 

energies and geometry.). The computing parameters ENCUT = 350 eV and k-mesh 6 × 6 

× 8 were used in the calculations. The solid lines are obtained by fitting the data to 

equation of state (EOS). 
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Figure 5.6: The energy versus volume curves computed at two different kinetic energy 

cutoff values by RPA. Similar to Figure 5.5, the solid lines are obtained from EOS fitting.  
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Figure 5.7: The convergence tests for the computed energy differences between spin 

compensated PM state and other two magnetic states using RPA. Note that in all 

calculations, the k mesh was fixed to 6 × 6 × 8. 

 

5.2.3 Construction of Proper Local 3d States 

Since the octahedral of VO6 unit in R-VO2 is aligned in [110] and [11̅0] 

directions, therefore, the principal axes of crystallographic coordinates can be different to 
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those axes of local Cartesian coordinates for V atoms. The relationship between two sets 

of coordinate systems is illustrated in Figure 5.8. It is found that the computed angular 

momentum projected density of states of R-VO2 in different magnetic states can be only 

explained using the appropriate 3d orbital sets in the local coordinates. The splitting of 3d 

orbitals in different crystal fields is also depicted in Figure 5.9. Without considering the 

tetragonal distortions, the five-fold degenerated 3d orbitals of V in O3 symmetry split into 

Eg and T2g groups in an octahedral crystal field (Oh). As shown in Figure 5.8, the local 

coordinates for VI or VII atoms are aligned in such way that the local z axis is pointed to 

apical O atoms; x and y axes are aligned to the equatorial O atoms. For the tetragonal 

symmetry, the further splitting of either Eg or T2g groups of orbitals can be easily 

obtained from character table of D4h point group, i.e., 1 2g g gE A B  and 2 1g g gT B E   

(See Figure 5.9). As pointed out in Ref. 143, the deviation of VO6 polyhedral in R-VO2 

from perfect cubic Oh symmetry is usually quite small. Therefore, the notations of cubic 

symmetry are still applicable to the computed electronic structures of R-VO2. The proper 

local d’ orbitals ( 2

'

z
d , 2 2

'

x y
d


,

'

xyd ,
'

yzd and '

xzd ) can be represented by the appropriate linear 

combinations of five normal d orbitals under global crystallographic coordinates (X-Y-Z 

system). For VI and VII, the expressions for local '3d orbitals are given as 
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Note that, the five 3d` orbitals given in equations 5.1 and 5.2 are not rigorously 

normalized. VO2 also crystallizes into a monoclinic phase (M1-VO2) at low temperature 

(below 340 K). The phase transformation of R-VO2 into M1-VO2 is a metal to insulator 

transition, which is accompanied by the dimerization of V atoms in [001] direction. This 

structural transition is also associated with the overlapping of d orbitals with the two 

nearest V atoms in the same direction. Based on the resulting chemical bond types due to 

3d-3d overlapping, the lower laying T2g orbitals can be identified as π and σ orbital 

symmetry [143, 150]. As can be seen from Figure 5.9, 
'

xyd forms the strongest σ-type 
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bond in the sublattice consisting of VII (VI) in [001] direction. Otherwise, the π-bonds are 

dominated by 
'

yzd  and '

xzd orbitals. 

 

Figure 5.8: The global crystallographic coordinates (X-Y-Z) and local vanadium 

Cartesian coordinates (x-y-z) in R-VO2 crystal structure. 

 

 
 

Figure 5.9: The irreducible representations of local 3d states in different crystal fields. 

Note that O3 represents the spherical symmetry (D∞h). 

 

 

5.3 Stability of Different Magnetic States 

Experimentally, the ground state of R-VO2 at room temperature is a non-magnetic 

metal. The previous calculations based on either semi-local functionals (LSDA and 
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GGA) or orbital dependent DFT methods (DFT+U and HSE06) could not reproduce the 

correct ground state of this phase using the experimental lattice constants [148, 155]. The 

obtained total energies of spurious spin polarized (FM and AFM) states are always lower 

than that of spin compensated PM state. For example, Williams et al., [158] have 

calculated the energy differences of R-VO2 in magnetic states (AFM and FM) with 

respect to non-magnetic state. It was found that the energies of FM and AFM phases are 

lowered by 135 meV/ VO2 and 56 meV/VO2 using PBE functional, compared to non-

magnetic phase. HSE06 and DFT+U are less accurate than PBE for the ground state 

energy of PM R-VO2 [155]. One should note that in the works of Williams and 

coworkers [158], both the lattice constants and atomic positions were fixed to their 

experimental values. However, the atomic positions are allowed to relax in our 

calculations. We have applied the exchange-correlation functionals of all five rungs on 

Jacob’s ladder (LSDA, PBE, meta-GGAs, HSE06 and RPA) to calculate the energy 

differences between two magnetic states (FM and AFM) and spin compensated PM state. 

The results are given in Table 5.1. Clearly, none of the tested methods can reproduce the 

experimental ground state of R-VO2. The spurious FM and AFM states are always more 

stable than spin compensated PM state. Otherwise, the FM state has much lower energy 

than AFM state. All exchange-correlation functionals predict the FM state is the ground 

state for R-VO2 except that of LSDA+U. In the latter method, AFM state is slightly more 

stable than FM state by nearly 7 meV per VO2 unit. DFT+U method favors the strong 

localization of 3d electrons, and the electrons of R-VO2 in AFM state are more localized 

than FM state. Therefore, LSDA+U may tend to overestimate the electron localization 
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and which lowers the total energy of AFM below that of FM state. Otherwise, the energy 

differences given by LSDA+U and HSE06 are significantly more negative than semilocal 

functionals and RPA. Our HSE06 values are similar to those reported in Ref. 155. For 

RPA, the starting Kohn-Sham single particle energy and orbitals were computed by PBE. 

The obtained energy difference by non self-consistent RPA is better than PBE for FM 

state, but it is worse than that of PBE in AFM state. Among the five meta-GGA 

functionals, the FM and AFM states of R-VO2 phase are strongly favored by 

MGGA_MS0 and MGGA_MS2, because the calculated energy differences between two 

magnetic states and PM state are significantly more negative than TPSS, revTPSS and 

regTPSS. Meanwhile, TPSS and revTPSS give similar results for the calculated energies. 

The magnetization energies of regTPSS are slightly more negative than revTPSS and 

TPSS. Moreover, the best overall performance for the ground state energy of R-VO2 is 

surprisingly attributed to LSDA method. The total energies of spurious FM and AFM 

states calculated with LSDA are quite close to the spin compensated non-magnetic state, 

indicating that LSDA is more accurate than other DFT methods for ground state energy 

of non-magnetic spin singlet R-VO2 phase.  
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Figure 5.10: The energy differences between two spurious magnetic states (FM and 

AFM) and spin compensated non-magnetic state are calculated using the experimental 

lattice constants and fully relaxed geometry, respectively. Note that for RPA, the values 

marked as “OPT” are obtained by minimizing the total energy with respect to PBE cell 

volume. 

 

 

Table 5.1: The computed energy differences of R-VO2 in three magnetic states by 

different exchange-correlation functionals on Jacob’s ladder using the experimental 

lattice parameters. 

 

Exc ∆EFM-PM (meV/VO2) ∆EAFM-PM (meV/VO2) 

LSDA -33.50 -0.40 

LSDA+U -827.36 -834.80 

PBE -100.71 -8.13 

TPSS -95.24 -4.96 

revTPSS -103.70 -5.83 

regTPSS -115.59 -7.80 

MGGA_MS0 -257.07 -104.38 

MGGA_MS2 -196.94 -49.66 

HSE06 -826.09 

-739.0a 

-567.95 

-700.0a 

RPA -85.90 -43.27 
aRef [155]. 
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Table 5.2: The similar quantities to Table 5.1 are evaluated, but using the optimized 

geometries. 

 

Exc ∆EFM-PM (meV/VO2) ∆EAFM-PM (meV/VO2) 

LSDA -0.11 +0.08 

LSDA+U -352.94 -145.20 

PBE -80.66 -0.09 

TPSS -69.74 -0.12 

revTPSS -75.85 -0.12 

regTPSS -85.15 -0.17 

MGGA_MS0 -245.69 -76.71 

MGGA_MS2 -152.23 -5.83 

HSE06 -756.84 -543.33 

RPA -75.55 -12.50 

 

        

Using the fully relaxed unit cell, we recalculate the energy differences for R-VO2. 

The results are illustrated in Figure 5.10, and also are given in Table 5.2. We can see that 

the computed energy differences generally show a dependence on the geometry. 

Especially for LSDA+U and HSE06, the errors in energy differences between spurious 

magnetic states and non-magnetic state are greatly reduced using the optimized geometry. 

It is also worth noting that LSDA now stabilizes spin compensated PM state over the 

AFM state. The total energy of AFM state is slightly higher than PM state by 0.08 meV 

per VO2. Meanwhile, the total energy of FM state is almost identical to non-magnetic 

phase by LSDA. Moreover, the relative stability of PM state is comparable to AFM state 

by the semilocal functional. The RPA results are also improved through the energy 

minimization strategy. In summary, in the fully relaxed case, LSDA still gives the best 

ground state energy for R-VO2 among all tested density functional methods. 
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In Figure 5.11, the calculated total magnetic moments of V atoms are given 

according to their Wyckoff positions. For R-VO2, the covalent state of V is +4, implying 

a 3d1 configuration. Therefore, the nominal magnetic moment of V is 1 μB. Our 

calculations for FM state of R-VO2 are roughly in agreement with this conjecture for all 

tested density functionals. One should note that obtained magnetic moments of V atoms 

by MGGA_MS0, MGGA_MS2, LSDA+U and HSE06 for R-VO2 in FM state are larger 

than 1μB. Meanwhile, LSDA and TPSS slightly underestimate the local moments in FM 

state. We find that RPA give the exact 1μB in the same magnetic state. In the FM state, 

the RPA local moment for V atom was obtained by minimizing the total cell energy with 

respect to magnetic moment. On the other hand, the results are quite different for AFM 

state. Among semilocal functionals, LSDA, PBE, TPSS, revTPSS and regTPSS predict 

much smaller magnetic moments for V atoms than MGGA_MS variants. The values of 

former exchange-correlation functionals are only 30%~50% of other functionals 

(LSDA+U, MGGA_MS0, MGGA_MS2 and HSE06). HSE06 gives the largest local 

moment for AFM state. The local moments obtained by LSDA+U, MGGA_MS2 and 

HSE06 are close to the exact value of 1μB for V4+ cation. For semilocal functionals, the 

underestimation of local magnetic moment in AFM state implies that the spin up and 

down components are compensated to each other at V site, resulting in an electron 

distribution similar to spin compensated PM state. Sun et al., [159] have tested TPSS and 

revTPSS for the magnetic moments of Fe, Co and Ni in their ferromagnetic state. The 

obtained magnetic moments of these 3d transition metals are in good agreement with 

experimental values. Our results for the R-VO2 and also those of Ref. 159 imply that 
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TPSS and revTPSS describe magnetic moments of ferromagnetic state more accurate 

than anti-ferromagnetic phase. Basically, we found that TPSS and revTPSS give a 

different electronic structure of R-VO2 to other semilocal functionals. The computed 

electronic structures of R-VO2 by regTPSS are somewhat situated between MGGA_MS 

family of density functionals and TPSS or revTPSS. 
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Figure 5.11: The computed local magnetic moments of V atoms by different exchange-

correlation functionals. The horizontal line represents the exact value of local magnetic 

moment carried by a V4+ cation. (a): FM; (b): AFM. The fractional coordinates for VI and 

VII are (0, 0, 0) and (0.5, 0.5, 0.5), respectively.  

 

5.4 3d States Weighted Band Dispersions 

The weighted band dispersions of ferromagnetic R-VO2 in the up spin direction 

are shown in Figure 5.12 for the tested exchange-correlation functionals. The results for 

the spin down electrons are quite similar to those of up spin channel except the band 

energies are shifted due to the exchange splitting. The unit cell of R-VO2 has two VO2 

structural units, implying that total number of bands in each spin channel is doubled, 
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compared to one VO2 formula unit. In our plots, the four lowest laying bands (below -15 

eV)  mainly consist of 2s orbitals of O atoms. The 2s bands are less dispersive and their 

band energies are also far below the Fermi level. Therefore, the overlap of 2s orbitals 

with other nearest atoms are expected to be negligible. From Figure 5.13, we find that 

meta-GGAs predict more negative energy for 2s bands than LSDA, LSDA+U and PBE. 

Among meta-GGAs, MGGA_MS0 and MGGA_MS2 give less negative band energy 

than TPSS, revTPSS and regTPSS for 2s orbitals. Meanwhile, MGGA_MS variants also 

predict the narrower band widths for 2s orbitals than other functionals. The main reason 

why meta-GGAs tend to lower the 2s band energy can be explained using their exchange 

gradient enhancement factors in limit of small s when α is zero. Unlike LSDA and PBE, 

meta-GGAs tested in this paper use α to distinguish the single orbital region (α = 0) and 

uniform electron gas (α = 1) having the same s [36, 37, 39, 41]. In the single orbital 

region, we have α = 0 and small s. The exchange gradient enhancement factor in a meta-

GGA is always larger than LDA and PBE in such case. Therefore, meta-GGAs lower the 

energy of 2s orbital further below that the latter functionals. 
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Figure 5.12: The weighted up spin band dispersions of rutile-type VO2 calculated by 

semilocal functionals and also PBE+U. The size of black dots represents the weights of 

3d orbitals of V atoms. The solid-blue lines are the band dispersions of bulk R-VO2. The 

fractional coordinates for these special high symmetry k points are Z (0, 0, 1/2), A (1/2, 

1/2, ½), M (1/2, 1/2, 0), Γ (0, 0, 0), R (0, 1/2, 1/2) and X (0, 1/2, 0). (a): LSDA; (b): PBE; 

(c): TPSS; (d): revTPSS; (e): regTPSS; (f): MGGA_MS2; (g): LSDA+U; (h): HSE06. 

The Fermi level is set as zero at the top of valence band. 

  

It can be clearly seen from Figure 5.12 that the conduction bands of R-VO2 are 

mainly attributed to 3d states of V atoms. The lower part of d bands is made of six T2g 

type orbitals ( '

xyd , '

yzd  and '

xzd ). Otherwise, the upper d bands consist of other four Eg 



 

153 

 

type orbitals ( 2

'

z
d  and 2 2

'

x y
d


). The band gap of Eg-T2g splitting due to Oh (or D4h) crystal 

field for 3d states in R-VO2 was described in some previous works [143, 147]. In our 

calculations, the tail of T2g states are always overlapped with the head of Eg bands. 

Therefore, no obvious crystal field created band gap can be observed between Eg and T2g 

bands. The mixture of 3d bands with 2p states determines the strength of V-O covalent 

bonds in the structure. For TPSS and revTPSS, the 2p-3d hybridizations are significantly 

stronger than other tested functionals, and which have been clearly illustrated in the 

calculated 3d weighted band dispersions in Figure 5.12. For example, the entire 2p bands 

predicted by revTPSS and TPSS exhibit the strong 3d character. This can be also seen 

from the computed band widths of 2p states. TPSS, revTPSS give the larger band width 

for 2p band than other tested functionals. In the case of PBE+U and HSE06, two 3d 

states, mainly consist of 2z
d (or '

xyd in local x-y-z coordinates) orbital, are fully occupied 

and their positions can be even lower than 2p bands at Γ point. The band gap is opened 

between occupied and unoccupied 3d states. As a result, in LSDA+U and HSE06 

calculations, the R-VO2 is the Mott insulator in FM and AFM states. Interestingly, one 

can see the bands below Fermi level at Γ point show very strong 3d character in TPSS 

and revTPSS calculations. Unlike LSDA+U and HSE06, TPSS and revTPSS are unable 

to open the band gap between occupied and empty 3d bands, both 3d and 2p bands make 

contributions to the density of states at Fermi level. In contrast to TPSS and revTPSS, the 

Fermi surface is mainly dominated by 3d states for the remaining density functionals. 
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Figure 5.13: The relative positions of 2s bands computed by semilocal functionals in FM 

and AFM states. The 2s band positions obtained from LSDA are set as zero. The value of 

Fx(s, α) is evaluated with the assumptions that s→0 and α = 0 for the spherical-like single 

orbital region. 

 

5.5 Angular Momentum Projected Density of States 

The construction of proper local '3d orbitals is the essential step to explain the 

computed density of states. In Figures 5.14 and 5.15, we show the spin polarized density 

of states of FM, AFM and spin compensated PM phases of R-VO2. The results of FM 

phase will be discussed first. As can be seen from Figure 5.14, the electronic structures of 

R-VO2 in FM state can be identified as three different categories. PBE, regTPSS and two 

MGGA_MS functionals predict the half-metal for ferromagnetic R-VO2; LSDA+U and 

HSE06 give a Mott-Hubbard insulator; TPSS and revTPSS compute it as normal 

magnetic metal. Experimentally, the true ground state of R-VO2 at room temperature is a 

non-magnetic metal. Although, Eyert [148] claimed that the recently developed HSE06 

hybrid functional can provide the good results for electronic structure and magnetic 

property of VO2 structures, the later works done by Grau-Crespo and coworkers [155] 

revealed that HSE06 strongly stabilizes the magnetic phases.  



 

155 

 

-10 -8 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 

 

D
e

n
s
it
y
 o

f 
s
ta

te
s
 (

s
ta

te
s
/e

V
)

Energy (eV)

 spin up

 spin down

 d
x

2
-y

2

 d
z

2

 d
yz

+d
xz

 d
xy

LSDA FM

 

(a) 

-10 -8 -6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

 

 

D
e

n
s
it
y
 o

f 
s
ta

te
s
 (

s
ta

te
s
/e

V
)

Energy (eV)

 spin up

 spin down

 d
x

2
-y

2

 d
z

2

 d
yz

+d
xz

 d
xy

revTPSS FM

 

(b)                                                         

-10 -8 -6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

 

 

D
e

n
s
it
y
 o

f 
s
ta

te
s
 (

s
ta

te
s
/e

V
)

Energy (eV)

 spin up

 spin down

 d
x

2
-y

2

 d
z

2

 d
yz

+d
xz

 d
xy

regTPSS FM

 

(c) 
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Figure 5.14: The calculated spin polarized density of states of R-VO2 by different 

exchange-correlation functionals. The angular momentum projected densities of states on 

to 3d orbitals are also shown for up spin direction. The vertical line refers to Fermi level. 

(a): LSDA; (b): revTPSS; (c): regTPSS; (d): MGGA_MS2; (e): LSDA+U; (f): HSE06.  
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In FM R-VO2, the main part of electronic states below the Fermi level is 

attributed to 2p bands of O atoms. The hybridization between 2p and 3d orbitals is seen 

in Figure 5.14. Using the symmetry of local '3d orbitals, Eg orbitals ( 2

'

z
d and 2 2

'

x y
d


) and 

the appropriate linear combinations of 2p shells of O atoms form p-d σ bonds. On the 

other hand, the remaining three-fold degenerated T2g orbitals (
'

xyd ,
'

yzd and '

xzd ) interact 

with 2p orbitals in terms of p-d π bonds. The bonding p-d π and σ bonding states below 

the Fermi level are predominated by 2p character. Meanwhile, those of anti-bonding π 

and σ states above the Fermi level are mainly consisted of 3d orbitals of V atoms. From 

equations 5.1 and 5.2, in the local coordinates, 2z
d and 2 2x y

d


only show T2g symmetry. 

Meanwhile, the linear combinations of xyd , yzd and xzd can have both T2g and Eg 

characters. In our calculations, the strongest mixing of 2p with 3d states is ascribed to 

yz xzd d and zp orbitals at the lower part of 2p bands, and which correspond to the well-

known p-d σ-bonds in transition metal oxides. Otherwise, the mixture of 2

'

z
d (or xyd ) with 

x yp p is also mainly σ-type bonds. At the lower tail of 2p bands, 2z
d is also hybridized 

with x yp p states. In our local coordinates of V atoms, 2xy z
d d is equivalent to

'

xyd

orbital. The crystal orbital formed between them is mainly p-d π type. The chemical 

interactions discussed above in this paper are in agreement with Ref. 160. For semilocal 

functionals, Eg and T2g orbitals are situated mostly above the Fermi level. The computed 

3d projected density of states (DOS) imply that all five 3d orbitals ( xyd , yzd , xzd , 2z
d and

2 2x y
d


) make contributions to T2g states (

'

xyd ,
'

yzd and '

xzd ) near the Fermi level, in 
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agreement with group theory prediction. For TPSS and revTPSS, 2z
d character dominates 

the DOS at Fermi level. The occupied 3d bands on the top of valence band by HSE06 and 

LSDA+U  also mainly consist of 2z
d orbitals. Furthermore, in R-VO2, 

'

xyd has a higher 

energy than 
'

yzd and '

xzd because of D4h symmetry of the distorted VO6 octahedral (See 

Figure. 5.5). This may explain why the position of 2z
d (T2g symmetry) is relatively higher 

than other d orbitals with the same symmetry. The Eg type crystal orbitals can be 

recognized as A1g( 2

'

z
d ) and B2g( 2 2

'

x y
d


) representations in D4h symmetry. The former 

one lies in lower energy than the latter one. As can be seen from Figure 5.14, we find that 

two
xyd bands consist of the lower laying Eg bands. Additionally, 

yz xzd d states play the 

key role in the upper Eg bands. This clearly shows the weak tetragonal distortion of VO6 

octahedral has some effects on the electronic states of 3d bands. 

The computed electronic densities of states in AFM and spin compensated PM 

phases by different DFT methods are shown in Figure 5.15. The electronic structures of 

AFM and PM states resemble to each other. TPSS and revTPSS close the band gap 

between 3d and 2p states. Similar to FM phase, the mixing of 3d and 2p bands predicted 

by these two meta-GGAs is too strong in AFM and PM states. Other tested exchange 

correlation functionals create the band gap between 2p and 3d states. Besides LSDA+U 

and HSE06, AFM states are found to be metallic by semilocal functionals. Meanwhile, it 

is a Mott-Hubbard insulator in LSDA+U and HSE06 calculations. For the insulating 

AFM R-VO2, the density of states at the top of valence band is also dominated by 2z
d  
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orbital, completely similar to FM case. On the other hand, semilocal functionals (LSDA, 

PBE, meta-GGAs) show an evenly occupied 3d states near the Fermi level. In the spin 

compensated PM state, HSE06 opens a band gap between T2g and Eg states. The density 

of states obtained by the same hybrid functional at the Fermi level shows strong 2 2x y
d



character. 
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Figure 5.15: The spin polarized densities of states of AFM and spin compensated PM 

phases. (a): PBE-AFM; (b): PBE-PM; (c): revTPSS-AFM; (d): revTPSS-PM; (e): 

regTPSS-AFM; (f): regTPSS-PM; (g): MGGA_MS2-AFM; (h): MGGA_MS2-PM; (i): 

HSE06-AFM; (j): HSE06-PM. The vertical dashed line represents Fermi level. Note that 

the plots for LSDA, revTPSS, MGGA_MS0 and LSDA+U are not given here, because 

they are similar to the corresponding profiles of PBE, TPSS, MGGA_MS2 and HSE06, 

respectively. The definitions for 3d states are the same as Figure 5.14. 

  

In [001] direction, the sublattice of V atoms can form d-d σ-bonds through the 

overlapping of 
'

xyd orbitals between the nearest unit cells, and which has been considered 

as one possible driven force for tetragonal VO2 transforming into monoclinic phase at 
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low temperature (below 340 K) [143]. Korotin et al. [147] have applied LSDA+U 

method to study the electron localizations in 3d states of M1-VO2 and R-VO2 phases. 

They found the electrons are localized on 
'

xyd  bands at V sites in the monoclinic phase. 

In our calculations, LSDA+U and HSE06 match this picture not only for M1-VO2, but 

also for R-VO2 in their FM and AFM states. In all three magnetic states, 
'

xyd  bands are 

pushed above the Fermi level and mostly not occupied in the computed densities of states 

by semilocal functionals (Figures 5.14 and 5.15). 

 

5.6 Orbital and Atomic Electron Populations 

Since the obtained electronic structures of FM and AFM phases of R-VO2 by 

TPSS and revTPSS are different to regTPSS, MGGA_MS0 and MGGA_MS2. In this 

section, the orbital occupation numbers for V and O atoms are computed for AFM or FM 

phases using semilocal functionals (LSDA, GGA, meta-GGAs), LSDA+U and range-

separated hybrid functional HSE06. The computed orbital occupation numbers are given 

in Figure 5.16 for FM and AFM states and spin compensated PM state. Clearly, the 2p-3d 

hybridizations cause the electron transfer between V and O atoms. As a result, the 

occupation number of 2p bands determines how strong the 2p-3d interactions are in R-

VO2 phase. The on-site U correction only changes the orbital populations for 3d states. 

LSDA and LSDA+U give the similar occupation numbers for 2p states. The main 

influence of U on the computed electronic structure of R-VO2 is that dz2 orbital is 

completely filled in either FM or AFM phase, i.e., 2 2I IIV ( ) V ( )
z z

d d   in FM phase and 
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2 2I IIV ( ) V ( )
z z

d d  in AFM case. On the other hand, from the calculated electron 

populations at 3d and 2p bands and also the weighted band dispersions shown in Figure 

5.12, TPSS and revTPSS predict the different electronic structures for R-VO2 phase to 

other DFT methods. The computed orbital occupation numbers for 2p bands using TPSS 

and revTPSS are much smaller than other density functionals. Each oxygen atom losses 

one more electron in its 2p shell, compared to the occupation numbers of the same orbital 

by other density functionals. Meanwhile, TPSS and revTPSS predict that the 3d bands 

trap two more electrons, leading to a half-filled d5 ( 3 2

2g gt e ) configuration. The 

overestimation of 2p-3d orbital hybridizations facilitates the electron transfer from O to V 

in R-VO2. Otherwise, we have also computed the orbital occupation for each of five 3d 

states, the results are omitted here. It is found that the occupation numbers of 3d states 

obtained by most tested DFT methods are anisotropic, showing that the five 3d orbitals 

are not evenly populated with electrons. LSDA+U and HSE06 represent two extreme 

cases where only one d orbital (dz
2 in X-Y-Z crystallographic coordinates or '

xyd in local x-

y-z coordinates) is fully occupied. On the other hand, TPSS and revTPSS give the 

isotropic orbital occupations for 3d band, resulting in a d5 configuration as mentioned 

before. Nevertheless, the electronic structures computed by TPSS and revTPSS for AFM, 

FM and PM phases are suspicious, because the depopulation of 2d bands is somewhat 

rare and unrealistic in metal oxides.   
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Figure 5.16: The computed electron occupations for different orbitals and atomic species 

in three magnetic states. (a): FM; (b): AFM; (c): spin compensated PM. 

 

5.7 Error Cancellations in Semilocal Functionals 

Rutile-type VO2 is believed to be a strongly correlated non-magnetic metal at 

room temperature. Sometimes standard density functionals can imitate strong correlation 

by developing a spurious spin polarization: The extra exchange then keeps the electrons 

apart in the way that strong correlation does. The classic example is the stretched H2 

molecule. LSDA and GGA descriptions wrongly localize the spin-up electron on one site 

and the spin down on the other, but this leads to nearly right energy. Using the correct 

spin-unpolarized singlet density (spin-compensated PM state in our case) leads to an 

energy that is much too high. As one of the consequences due to the above reasons, it is 

expected that ground state energy and equilibrium cell volume of R-VO2 computed in an 

energy minimized magnetic phase should be more accurate than spin compensated PM 

state. In Figure 5.17, we show the calculated percent errors of different DFT methods for 

equilibrium cell volume. It is generally true that the spurious AFM and FM calculations 
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predict better lattice geometry than that of spin compensated PM case except LSDA and 

RPA. One special case is PBE functional whereas the cell volume obtained from AFM 

state is almost the same as spin-compensated PM state, and both values are in good 

agreement with experimental value. Otherwise, the optimized cell volumes of R-VO2 by 

TPSS, revTPSS and regTPSS in AFM state are identical to the corresponding values in 

PM state. Since the local magnetic moments given by LSDA, PBE, TPSS, revTPSS and 

regTPSS are significantly smaller than other tested DFT methods (LSDA+U, HSE06 and 

two MGGA_MS variants), the ground state electron density distribution of AFM state 

predicted by them is close to a spin compensated PM solution. Therefore, for LSDA, 

PBE, TPSS, revTPSS and regTPSS, the ground state energy and equilibrium cell volume 

in AFM state do not differ too much to those of spin compensated PM state. For LSDA, 

the predicted local spin magnetic moments are too small for both FM and AFM phase, 

indicating that the spin compensated PM state is more favored by this functional than 

other semilocal functionals. As a result, the obtained percent errors for cell volume in 

three different magnetic states are similar to each other. We have already seen that RPA 

also predicts the wrong ground state for R-VO2. The optimized cell volume can be 

obtained by minimizing the total RPA energy as a function of PBE cell volume through 

the fitting of the equation of state (EOS). We find that such geometry optimization 

procedure gives very poor equilibrium cell volume for all three R-VO2 magnetic states. In 

contrast to the tested semilocal functionals, LSDA+U and HSE06, the error cancellation 

is not observed in a spin polarized state for RPA. One possible explanation is that the 

current RPA is implemented self-consistently. The input single particle orbitals and wave 
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functions are computed by semilocal functional (PBE in our case) or even from the 

method mixed with fraction of exact exchange. For a strongly correlated system, the 

correct behavior of correlation hole is essential to obtain the true ground state. However, 

all DFT methods employed in this paper rely on the error cancellation between extra deep 

exchange and less accurate correlation holes, resulting in the nearly correct total 

exchange-correlation hole, but the actual physics is wrong. The deepening of exchange 

part rises the total energy of spin unpolarized singlet state too much. Therefore, none of 

the tested DFT method can give the correct ground state for R-VO2. Thus, the input 

information obtained from various DFT methods for non self-consistent RPA calculation 

may be unreasonable for a strongly correlated system or simply deviate too far from the 

realistic one. The self-consistency is required in this situation, because it has been 

confirmed that the large difference between spin up and down channels in exchange 

potential can be significantly reduced by adding the correlation potential in self-

consistent RPA+EXX method [64, 160]. 

Peng et al. [65] showed that RPA method is sensitive to the DFT inputs in the 

spin polarized case. So far, our RPA calculations are based on self-consistent PBE 

results. From Tables 5.1 and 5.2, we can see that LSDA is more accurate than other tested 

semilocal and hybrid functionals. It might be reasonable to assume that LSDA gives more 

realistic inputs for RPA calculations. Therefore, we have recalculated the energy 

differences between FM, AFM and PM states within LSDA inputs. It is astonishing to see 

that RPA then predicts the correct ground state for R-VO2. The obtained energy 

difference between FM and PM is +619.64 meV/VO2, and that between AFM and PM is 
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+3215.54 meV/VO2. Using different DFT inputs, the non-self-consistent RPA gives 

completely different results in spin polarized case, implying that the calculation must be 

performed self-consistently. 
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Figure 5.17: The computed percent errors of equilibrium cell volume in three different 

magnetic states by semilocal and nonlocal functionals. For RPA, the equilibrium cell 

volume is obtained by fitting the total energy versus volume curve to equation of state.   

 

5.8 Effect of Exchange Enhancement Factor on Magnetism 

It can be seen from Figure 5.11 that some semilocal functionals predict too small 

local magnetic moments for V atoms in AFM state of R-VO2. Since for semilocal 

functional, the magnetic property is dominated by exchange energy, the observed 

extremely small local moments in AFM state could be related to the behaviors of their 

exchange gradient enhancement factors. We plot the gradient enhancement factors of 

LDA, PBE, and several meta-GGAs in Figure 5.18. as a function of α. In meta-GGAs, α 

is used to distinguish different orbital regions and chemical bonds [43]. For PBE, the 

gradient enhancement factors does not depend on α, its value is explicitly determined by 

reduced density gradient only (s). Therefore, they are straight lines in different Fx (s, α) 
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versus α plots. Moreover, LDA is independent on both s and α, implying that LDA 

profile is always a horizontal line with value of unity. Based on their behaviors at large α 

and small s, the tested meta-GGAs can be sorted into three different types. The 

MGGA_MS0 and MGGA_MS2 are the first category, their gradient enhancement factors 

decrease monotonically as α is increased. Otherwise, those profiles of TPSS and revTPSS 

are decreased with α for small s at first, but then increased above unity when α is larger 

than one. Similar to MGGA_MS variants, Fx(s, α) of regTPSS decreases with α 

monotonically at first and then approaches unity (LDA value) when α is infinity, but only 

for extremely small s. There is a minimum near α = 1 in Fx(s, α) of regTPSS at any finite 

value of s. For the relatively large s (s = 1 as an example), the Fx(s, α) of most meta-

GGAs decreases with the increase of α, but their values are still above the LDA limit 

(Figure 5.17). By analyzing the gradient enhancement factors of the tested semilocal 

functionals, we can see that TPSS and revTPSS favor the large α region when s is small. 

Meanwhile, MGGA_MS variants obviously exhibit the opposite trend. Although 

regTPSS indeed intends to decrease the small s and moderate α region in solid, its actual 

behavior is similar to LDA, PBE, TPSS and revTPSS for large α. In Table 5.2, the 

exchange gradient enhancement factors of five meta-GGAs in different limits are 

summarized. Our following analysis shows that the first limit is related to the magnetic 

property of a material predicted by semilocal functionals. It is also interesting to note that 

the same limit is also important for a semilocal functional to capture a portion of 

intermediate range van der Waals interactions in the density weakly overlapped region 

[43]. 
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Figure 5.18: The α dependence of exchange gradient enhancement factors of meta-

GGAs for different s values. LDA and PBE are represented by horizontal lines, because 

both exchange functionals show no dependence on α.  

  

The computed Wigner-Seitz radius (rs = (3/[4πn])1/3), reduced density gradient (s=

2 1/3 4/3/ [2(3 ) ]n n  ) and α are shown in Figure 5.19 for AFM R-VO2 phase using TPSS 

and LSDA+U. TPSS is a representative for those semilocal functionals where the local 

magnetic moments are underestimated significantly, compared to an ideal d1 

configuration for V4+ ion. On the other hand, LSDA+U results are used to illustrate the 
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same parameters computed by MGGA_MS variants, HSE06. In Chapter 3, we found that 

the exchange energy is mainly determined by the behavior of the exchange gradient 

enhancement in the high density region (or small rs). The V-O bonds in R-VO2 show 

relatively strong ionic character. As a result, the valence electron density is very low in 

the interstitial region, and its value is much large in the pseudo-core region. From Figures 

5.19 (a) and (b), one can see that TPSS (LDA, PBE, revTPSS and regTPSS) gives too 

small local moment, because local moment from majority spin density is compensated by 

the minority spin on the same site in AFM state. In the case of LSDA+U (HSE06 and 

MGGA_MS variants), the spin compensation is weak in the pseudo-core region of each 

V atom, leading to large local spin moment. On the other hand, the computed reduced 

density gradient shown in Figure 5.19 (c) and (d) imply that the pseudo-core regions for 

both V and O atoms have small s (s < 1). Meanwhile, the obtained α distribution at V site 

is different to O site. The pseudo-core regions of V atoms have very large α values, and α 

is small at O sites. It is also interesting to note that the strong spin polarization increases 

α for VI site and reduces it for VII atom for the same spin channel (Figure 5.19 (e)). In a 

spin compensated AFM state, α is large for VI and VII atoms in both spin channels 

(Figure 5.19 (f)). For meta-GGAs, the underestimation of local spin moment in AFM R-

VO2 clearly correlated with behaviors of their exchange gradient enhancement factors for 

small s and large α region in high density limit. TPSS, revTPSS and regTPSS give too 

small local moment for AFM R-VO2, because they prefer the small s and larger α region 

more than MGGA_MS variants in the crystal structure. In the high density limit, the spin 

compensated magnetic state maximizes such region in solid. Thus, TPSS, revTPSS and 
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regTPSS give more negative exchange energy density ( [ ]F ( , )unif

x xn n s  ). As can be seen 

from Figure 5.20, using TPSS ingredients, the obtained exchange energy density at VII 

position is more negative than that computed from LSDA+U ingredients. Although, the 

exchange energy density at VI site using TPSS ingredients now is slightly less negative 

than that using LSDA+U inputs, the net effect is the decreasing of local magnetic 

moment in AFM R-VO2 results in more negative total exchange energy for TPSS. We 

believe this is also true for revTPSS and regTPSS. In the FM state, the large exchange 

splitting between majority and minority spins keeps a large local moment surviving for 

all semilocal functionals. Moreover, MGGA_MS variants give larger local magnetic 

moment than LSDA+U and HSE06 in FM state, demonstrating that the decreasing of 

Fx(s, α) monotonically with α is equivalent to introduce more extra exchange in the 

density functional. In order to verify this conjecture, we have calculated the magnetic 

moment of Fe in body centered cubic (BCC) structure. It is known that BCC Fe is a 

ferromagnetic metal below Curie point (1043 K) with a large local moment as 2.22 μB per 

atom. In this case, the local moment is underestimated by LSDA (1.94 μB). PBE (2.17 

μB), TPSS (2.20 μB) and revTPSS (2.19 μB) give the results in good agreement with 

experiments. On the other hand, regTPSS (2.46 μB), MGGA_MS0 (2.63 μB), 

MGGA_MS2 (2.62 μB), LSDA+U (2.60 μB) and HSE06 (2.82 μB) overestimate the value. 

We can see the over prediction of local magnetic moment in BCC Fe by regTPSS and 

two MGGA_MS variants is related to their exchange enhancement factors at large α and 

small s. The main difference between Fe and R-VO2 is that the former structure is 

dominated by metallic bonds resembling the uniform electron gas in the interstitial 
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regions, indicating that both s and α are not too large there (s < 1.5 and α<3). Meanwhile, 

V-O bonds in R-VO2 show strong ionic character, resulting in large s and α in the 

interstitial regions. However, both structures show large α (>10) and small s (<0.5) in the 

high density pseudo-core regions. 

2.410

2.410

1.290

1.290

1.290

1.290

2.130

2.130

1.010

1.010

1.010

1.010

1.570

1.570

1.570

1.570

1.570

1.850

1.850

1.290

1.290

1.290

1.290

2.970

2.970

1.570

1.570

1.570

1.570

2.690

2.690

2.4102.410

2.130

2.130

1.850

1.850

0.7300

1.010

1.290

1.570

1.850

2.130

2.410

2.690

2.970

3.250

3.530

r
s

[110]

[0
0

1
]

V
I

V
II

O O

LSDA+U

1.284

1.284

1.284

1.284

1.284

3.223
3.223

1.561

1.561

1.561

1.561

2.115

2.115

1.007

1.007

1.007

1.007

1.838

1.838

1.284

1.284

1.284

1.284

2.946

2.946

1.561

1.561

1.561

1.561

1.561

2.669

2.669

2.115

2.115

1.838

1.838

0.7300

1.007

1.284

1.561

1.838

2.115

2.392

2.669

2.946

3.223

3.500

V
I

O O

V
II

r
s

[110]

[0
0
1
]

TPSS

 

(a)                                (b) 

0.51660.5166

0.5166

0.5166

0.5166

2.214

2.214

2.214

2.214

0.5166

0.5166

0.9102

0.9102

0.9102

0.9102

0.5166

0.5166

0.5166

0.5166

0.5166

0.5166

0.9102

0.9102

0.5166

0.5166

0.5166

0.5166

0.9102

0.9102

2.214

2.214

2.214

2.214

0.9102

0.9102

0.9102

0.9102

0.91020.9102

0.9102

0.9102

0.9102

0.9102

0.5166

0.9102

0.000

0.2460

0.4920

0.7380

0.9840

1.230

1.476

1.722

1.968

2.214

2.460
V

I
O O

V
II

     s

LSDA+U

[110]

[0
0

1
]

  

0.5040

0.5040

0.5040

0.5040

0.5040
0.5040

0.5040

0.5040

0.5040

0.5040

0.5040

0.5040
0.5040

0.5040

0.5040

0.5040

0.9072

0.9072

0.9072

0.9072

0.9072

0.9072

0.5040

0.5040

0.5040

0.5040

0.9072

0.9072

0.9072

0.9072

0.9072

0.9072

0.5040

0.5040

2.192

2.192

2.192

2.192

0.5040

0.9072

0.9072

0.9072

0.9072

0.9072

0.9072

0.9072

0.000

0.2520

0.5040

0.7560

1.008

1.260

1.512

1.764

2.016

2.268

2.520O OV
I

V
II

  s

TPSS

[110]

[0
0

1
]

 

 (c)                                 (d)                                                                                    



 

174 

 

20.88

20.88

20.88
20.88

20.88

10.46
10.46

10.46

10.46

6.080

6.080

6.080

6.080

20.88

10.46

3.340

3.340

3.340

3.340

6.080

0.6000

6.080

11.56

17.04

22.52

28.00

33.48

38.96

44.44

49.92

55.40



LSDA+U

V
I

[110]

[0
0

1
]

O O

V
II

 

21.02

21.02

21.02

21.02

21.02

9.984

9.984

9.984

9.984

6.1206.120

6.120

6.120

6.120

6.120

21.02

9.984

6.120

3.360

3.360

3.360

3.360

0.6000

6.120

11.64

17.16

22.68

28.20

33.72

39.24

44.76

50.28

55.80

[110]

[0
0

1
]

V
I

O O

V
II



TPSS

 

(e)                                  (f) 

Figure 5.19: The two-dimensional (2-D) contour plots of Wigner-Seitz radius (rs), 

reduced density gradient (s) and α by LSDA+U and TPSS for majority spin density on 

[1̅10] crystallographic plane. (a), (c) and (e) for LSDA+U, and (b), (d) and (f) for TPSS. 

Note that MGGA-MS variants and HSE06 give the similar results to LSDA+U; 

meanwhile, LDA, PBE, revTPSS and regTPSS are analog to TPSS. 
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Figure 5.20: The 2-D contour plots of exchange energy density of TPSS using LSDA+U 

and TPSS ingredients shown in Figure 5.19, respectively. 
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Table 5.3: The values of gradient enhancement factor of semilocal functionals in 

different limits. Note that PBE is independent on α, while LDA has no dependences on 

both s and α.  

 

𝐹𝑥(𝑠, 𝛼) 
0

lim lim
s 

 
0 0

limlim
s 

 
0 0

limlim
s  

 
0

limlim
s 

 

LDA 1 1 1 1 

PBE 1 1 1 1.804 

TPSS 1.035 1.014 1.133 1.804 

revTPSS 1.035 1.014 1.147 1.804 

regTPSS 1 1.147 1.147 1.804 

MGGA_MS0 0.856 1.144 1.144 1.290 

MGGA_MS2 0.972 1.113 1.113 1.504 

Meta-VT{8,4} 1.035 1.014 1.148 0.000 

BLOC 1.035 1.014 1.133 1.804 

 

 

In a strongly correlated system with non-magnetic state as ground state, the 

ground state energy of spin singlet non-magnetic phase obtained from a meta-GGA with 

exchange enhancement factor similar to those of MGGA_MS variants will be less 

accurate than TPSS and revTPSS (See Table 5.3). More recently, two new non-empirical 

meta-GGAs have been published, i.e., meta-VT{8, 4} proposed by Campo and coworkers 

[44] and BLOC meta-GGA derived by Constantin and collaborators [45]. The exchange 

part of both meta-GGAs still suffers from the order of limits problem as TPSS and 

revTPSS do (See Table 5.3). Additionally, the large α and small s behaviors of them are 

also exactly the same as TPSS and revTPSS. Therefore, these new meta-GGAs perform 

similarly to TPSS and revTPSS for the magnetic property of a solid. 
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CHAPTER 6 

PHYSISORPTION OF CO2 MOLECULE ON Pt (111) SURFACE 

 

In this Chapter, we will employ some semilocal and nonlocal functionals to study 

the surface adsorption problem in surface science. The main motivation is to test several 

density functionals for van der Waals interactions, incluing PBE, PBE+D2, MGGA_MS2 

and vdw-DF. In the PBE+D2 and vdw-DF, the long-range van der Waals intractions are 

captured either through the pair-wise corrections or by the non-local correlation 

functional. Recently, it was shown that MGGA_MS2 is also able to describe a portion of 

van der Waals interactions in graphene absorbed on transition metal surfaces [43]. In 

contrast to other three methods, MGGA_MS2 is an empirical semilocal functional. We 

would like to apply this meta-GGA to another particular interesting problem in surface 

science: the physisorption of CO2 molecule on Pt (111) surface. The interactions between 

absorbent and metallic surface are pure van der Waals interactions in this case. The 

computed binding curves will be compared with those of PBE, DFT+D2 and vdW_DF. 

Our earlier tests showed that computational costs of RPA method are completely  

unaffordable within the current hardware, even using the smallest supercell model (19 

atoms). So, RPA method is disregarded in our discussions. The main purpose is to show 

that the semilocal functional at meta-GGA level is able to describe a portion of van der 

Waals interactions at the equilibirum geometry. 
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6.1 CO2 Sequestration 

The CO2 sequestration is aimed to capture and store a large amount of 

atomspheric CO2 molecules produced during the human activities by using either 

chemical or physical methods. The ultimate goal is to reduce or stabilize the CO2 

concentration in atmosphere, probobaly slowing down the global warming process. 

Recent years, the field has attracted much attentation from both academe and industries, 

mainly facilitating by various projects of US Department of Energy (DOE). 

The materials, which have been considered for CO2 sequestration, are basically 

these two catergories: the meta-organic frameworks (MOFs) and surfaces (graphene, 

transition metals and transition metal oxides). The MOFs usually exhibit large pores in 

the crystal structures [162]. Due to the different sizes, those MOFs can be highly 

selective for a particular type of molecule (See Figure 6.1). The properties of these pores 

also determine the uptake capacity of a MOF. In most cases, CO2 molecule is simply 

attached inside the pore by van der Waals interactions [163-166]. With the suitable pore 

size, each pore can accommodate multiple CO2 molecules. The interactions between 

those CO2 molecules are also dispersion interactions. MOFs are not considered in this 

work because of the following two reasons. First of all, the physisorption of CO2 in 

MOFs has been calculated using various DFT methods with van der Waals corrections 

[165, 166]. The performances of DFT+D2 and different versions of vdW-DF methods 

were compared to each other. From Refs. 165 and 166, we can see that the non-empirical 

vdW-DF methods are more accurate than DFT+D2 approach. However, the main 

drawback of vdW-DF method is that the overall performance is dependent of the choice 
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of exchange energy functional. Another reason is obviously related to the computational 

aspect. The crystal structures of MOFs are very complicated and their primitive cells can 

have hundreds of atoms. In this case, RPA is not applicable to them even with the modern 

super-computers. The usage of walltime and memory is huge, because computational 

costs of RPA scale at least as N6, where N is the total number of atoms in the system. For 

semilocal functionals, the calculation is still a challenging task without knowing the CO2 

adsorption geometry from experiments.   

       

(a)                                   (b) 

Figure 6.1: The crystal structures of two widely studied MOFs for CO2 sequestration 

problem. (a): Mg-MOF74 [165]; (b): Ca-BTT [166]. 

  

In contrast to MOFs, the adsorption of CO2 on surfaces of transition metals or 

metal oxides is computationally less expensively for most DFT methods. For small 

system, RPA method can be also applied in the calculations. Since CO2 is chemically 

inert due to its high stability, it interacts with the various surfaces mainly through van der 

Waals interactions. In an ealier comprehensive review of CO2 absorbed on transiton 

metal surfaces given by Freund and Roberts [167], it has been shown that CO2 adopts the 
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linear geometry in a physisorption case, similar to isolated CO2 molecule. In a 

chemisorption, CO2 has a bent geometry because of charge transfer between surface and 

molecule, changing the highest occupied frontier orbital of molecule. The Walsh diagram 

was used in Ref. 167 to explain the change of CO2 geometry in the two situations. In 

some metal or metal oxides surfaces, CO2 can be highly reactive. It is usually either 

dissociated into smaller atomic fragments (C, O, CO or other ions) or attached with an 

extral electron given by the surface to form CO2
- anion. The carbonate and oxalate were 

also observed in experiments. The physisorption and chemisorption can occur on the 

same surface at different distances [167, 168], i.e., Bi (0001), Cu (211), Cu (311), Fe 

(110), Fe (111), Ni (100), Ni (110) an etc. The pure physisorption was seen on Rh (111), 

Pt (111), Pd (111), Ni (111) and Cu (111) surfaces. Among the metal oxides, the 

carnonates and physisorption species have been detected on CaO (100), MgO (100), TiO2 

(110) and ZnO (0001̅); the carboxylates and physisorbed CO2 were seen on Cr2O3 (0001) 

and ZnO (0001) surfaces; only the physisorption was observed on MnO (100), NiO 

(100), SnO2 (110) and Cu2O (111) surfaces [168]. 

In this dissertation, we are mainly focused on the physisorption of CO2 on Pt 

(111) surface. The Pt (111) surface is non-magnetic due to the bulk property of Pt metal. 

Pt (111) surface is the most compacted crystallographic plane of a face centered cubic 

metal. The physisorption is much easier to deal with than chemisorption, because CO2 

keeps its linear geometry, and all likely adsorption sites can be obtained from the local 

symmetry considerations. 
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6.2 Methods and Details 

6.2.1 Adsorption Geometries    

In Figure 6.2, the crystal structure of a face centered cubic (FCC) Pt metal is 

illustrated, and (111) crystallographic plane is also highlighted by the gray polygon. The 

atomic structure of Pt (111) surface is shown in Figure 6.3 by a 4 × 4 supercell. On (111) 

surface, each atom has six nearest neighbours, thus the local symmetry of it is C6. In the 

bulk FCC metal, the stacking sequence in [111] direction is ABCABCABC⋯. Thus, the 

supercell of transition metal (111) surface requires at least 4 layers in [111] direction to 

match with the minimum periodicity of atomic configuration in bulk material.       

 

Figure 6.2: The conventional cell of face centered cubic (FCC) Pt crystal structure. The 

(111) crystallographic plane is shown by the shadowed polygon. 
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Figure 6.3: The atomic configuration of FCC metal on (111) surface. The atoms in 

different layers are represented by different colors. The atoms in the top layer are maked 

by yellow, and those in the second and third layers are indicated by blue and green balls, 

respectively.  

 

Since in this work we only consider the physisorption of CO2 on Pt (111) surface, 

the geometry of CO2 molecule does not change too much, compared to the isolated case. 

Otherwise, the possible alignments of CO2 molecule with respect to surface are only 

limited to two special cases: the main rotational axis of CO2 is either parallel or 

perpendicular to the normal vector of Pt (111) surface. In other words, the CO2 is allowed 

to stand or lay on the surface, but not tilting to the surface. Moreover, considering the 

local symmetry of hexagons formed by atoms on the top layer (See Figure 6.3), there are 

only seven different adsorption geometries for CO2 molecule on Pt (111) surface. In 

Figure 6.4, all seven adsorption geometries are shown. There are three non-equivilent 

geometries when CO2 is aligned perpendicular to surface, and four other geometries in 

the parallel case. It should be noted that since there is no chemical interactions in the 

physisorption, one may only need to distinguish two different CO2 configurations on the 

transition metal (111) surface. This will further reduce the seven possible adosprtion 

geometries in our case to only two, i.e., parallel and perpendicular cases.   
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(a)                                 (b) 

Figure 6.4: The non-equivilent adsorption geometries of CO2 molecule on transition 

metal (111) surface. (a): CO2 ⊥ Pt (111) surface; (b): CO2 ∥ Pt (111) surface. The CO2 

molecule is represented by the ball and stick model in parallel case. 

 

 

Table 6.1: The seven high symmetry adsorption geometries for CO2 molecule 

physisorbed on Pt (111) surface. Their atomic structures are numbered by Roman 

numerals and also indicated in Figure 6.4.   

 

CO2 ⊥ (111) surface CO2 ∥ (111) surface 

I II III IV V VI VII 

Top Bridge Hollow Top-Hollow Top-Bridge Bridge-Hollow Bridge-Bridge 

 

 

6.2.2 Computational Parameters 

All DFT calculations were perfomed using VASP code [97]. The standard PBE-

type PAW pseudopotentials were employed in this work for Pt, C and O atoms. For these 

elements, the the frozen core approximation was applied to the pseudo-atoms, and the 

orbitals treated as valence shells were Pt5d6s, C2s2p and O2s2p. The kinetic energy cutoff 

value for plane wave expansion in reciprocal space was set as 550 eV. The Γ-centered k-

mesh used in this work was 8 × 8 × 1 for the surface supercell. The Monkhorst-Pack 
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method was not employed to generated the k-mesh, because in our case, the supercell of 

(111) surface has hexagonal symmetry. The exchange-correlation functionals considered 

in the calculations were PBE [25], PBE+D2 [84], optB88-vdW [88] and MGGA_MS2 

[42, 43]. Besides PBE, the other three methods are able to describe the van der Waals 

interactions at the different levels of accuracy. MGGA_MS2 belongs to MGGA_MS 

family of density functionals, and all of the density functionals in this family can capture 

a portion of dispersion interactions. All first principles calculations for Pt systems (Pt 

bulk, Pt (111) surface and Pt surface + CO2) were carried out using the spin non-

polarized method. It is well-known that Pt bulk metal and Pt (111) surface are non-

magnetic. Experimentally, CO2/Pt (111) system is also non-magnetic, because the 

interactions between the absorbent and substrate are mainly weak van der Waals 

interactions. In Table 6.2, the computational parameters are shown for PBE+D2 method, 

including the van der Waals C6 coefficients and radii of Pt, O and C elements. For other 

settings, we used the default values in VASP program [84]. 

 

Table 6.2: The C6 coefficients and van der Waals radii of Pt, C and O elements employed 

in the calculations. 

 

Parameter Pta Cb Ob 

C6 (J.nm-6/mol) 19.92 1.75 0.70 

RvdW (Å) 2.074 1.452 1.342 

aRef [169]; bRef [84]. 
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The CO2 molecule and surface supercells were optimized using each DFT method 

mentioned above. For isolated CO2 molecule, the geometry was relaxed in a 10 Å × 14 Å 

× 10 Å supercell. Then, the total energy of an isolated molecule was computed from the 

optimized geometry. For bulk Pt crystal structure, the lattice constant was optimized 

using the PBE functional only. For many transiton metals, PBE usually gives lattice 

constants in good agreement with experimental results. The (111) surface supercells were 

built from those optimized for the crystal structure of Pt. The dimensions of the supercell 

of Pt (111) surfaces were 11.0984 Å × 11.0984 Å × 26.7964 Å ([100]-[010]-[001]). The 

vacuum layer in [001] direction was set to 20.0 Å, avoiding the artificial interactions 

between two slabs in the imaging cells. For the Pt (111) surface, the dimensions of 

supercells were fixed, but the atomic positions in top layer of surface were allowed to 

relax using the selective dynamics in VASP code. Then, the total energy of Pt (111) 

surface supercell was computed. The supercells of CO2/Pt (111) system were built using 

the optimized geometries for the absorbent (CO2) and substrate ((111) surface). The 

supercells of combined system have the same dimensions as the Pt (111) surface itself. 

For our system, the combined CO2/Pt (111) surface supercell has 69 atoms. Among them, 

64 atoms come from the substrate, and the remaining atoms belong to CO2 molecule. In 

Figure 6.5, we show the side views of supercells for two different CO2 configurations. 
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(a)                             (b) 

Figure 6.5: Two different adsorption configurations for CO2 molecule on Pt (111) 

surface. Note that (a) and (b) refer to structures I and IV in Table 6.1. (a): Perpendicular 

configuration; (b): Parallel configuration.  

         

The binding energy curve can be computed from 

 Bind 2 total 2 total 2 totalE (CO +surface)=E (CO +surface)-[E (CO )+E (surface)]   (6.1) 

where the binding energy is defined as the energy difference between the combined 

structure and those of separated subsystems. Using this definition, if the DFT method 

binds the system, then the computed binding energy should be negative. In our case, the 

binding energy is mainly attributed to van der Waals interactions. Therefore, it is 

expected that the magnitude of it is less than 10 kcal/mol (or 0.01 eV/CO2). In Table 6.3, 

the optimized bond lengths of CO2 molecule by different DFT methods are shown and 

which are also compared with experimental value. The bond length is underestimated by 

MGGA_MS2, and the values of other three DFT methods are slightly overestimated. 
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MGGA_MS2 is less accurate for the computed bond length of CO2 than other three 

methods. 

 

Table 6.3: The optimized bond lengths of CO2 molecule by different exchange-

correlation functionals. The experimental value is also given. 

 

Bond PBE PBE+D2 MGGA_MS2 optB88-vdW Expta 

C=O 1.17639 1.17664 1.13496 1.17308 1.16 

aRef [167].    

 

 

6.2.3 Convergence Tests 

For the convergence tests, we will first consider the effects of supercell size on 

the computed binding curve. The optB88-vdW functional was used in the tests, because it 

captures long-range van der Waals interactions, and the computational costs are 

comparable to semilocal functionals (PBE and meta-GGAs). In the tests, we compute the 

binding curves for structures I and IV in Pt system using two different supercells (See 

Figure 6.4 and Table 6.1 for more details): the default supercell (64 Pt atoms + CO2) and 

a small supercell (36 Pt atoms + CO2). Note that in both supercells, the substrate consists 

of 4 atomic layers (Pt atoms). The obtained binding curves are shown in Figure 6.6. 
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(a)                               (b) 

Figure 6.6: The computed binding curves for Pt (111) surface + CO2 system from 

optB88-vdW method. (a): Structure I (Perpendicular configuration); (b): Structure IV 

(Parallel configuration).   

 

From Figure 6.6 (a), we can see that for the perpendicular configuration, the size 

of the supercell has minor effect on the computed binding curve. The equilibrium 

distance is not affected at all, only the binding energy gets more negative when using 

smaller supercell. On the other hand, the binding curve for the parallel configuration 

shows stronger dependence on supercell size, compared to perpendicular case. However, 

the change of the binding energy is not significant, i.e., 0.5 kcal/mol. Similar to 

perpendicular configuration, the equilibrium binding distance is also not sensitive to the 

supercell size for parallel configuration. One should note that the van der Waals 

interactions are stronger in parallel case than perpendicular configuration, considering all 

three atoms in CO2 molecule can interact with metal surface at the equivalent distance in 

the former case. In our latter discussions, all results are computed using the large 

supercell (64 metal atoms and CO2 molecule).            
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6.3 CO2 Physisorbed on Pt (111) Surface 

6.3.1 Binding Curves 

The computed binding curves for all seven possible adsorption geometries shown 

in Figure 6.4 are calculated using PBE and optB88-vdW functionals. Those two methods 

are chosen here, because the former functional is a representative for those semilocal 

functionals which can not capture the long-range van der Waals interactions; otherwise, 

optB88-vdW is a widely used for van der Waals bound systems, and is supposed to be 

more accurate than pair-wise corrections (DFT+D2). Later, we will also compute the 

binding curves by MGGA_MS2 and PBE+D2. 

In Figure 6.7, the binding curves are shown for PBE functional. The first three 

geometries (I, II and III) refer to the perpendicular configuration for CO2 molecule. Due 

the missing of van der Waals interactions in PBE functional, the adosprtion energies are 

small and the binding curves are not distinguiable in this case. The adsorption energies 

are more negative for the other four parallel configurations than perpendicular cases, 

implying the stronger binding between Pt (111) surface and CO2 molecule. At the large 

separation, the binding curves of PBE decay very fast to zero, indicating the missing of 

long-range van der Waals interactions in this semilocal exchange-correlation functional.  
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Figure 6.7: The computed binding curves of seven different adsorption geometries of 

CO2 on Pt (111) surface using PBE. 

 

 

In Figure 6.8, the calculated binding curves are shown for optB88-vdW 

functional. Comparing to PBE binding energies and adsorption distances at the minima, 

the optB88-vdW strongly binds the CO2 molecule on Pt (111) surface. For either 

perpendicular or parallel adsorption geometries, the obtained binding energies are nearly 

ten times more negative than PBE values. Otherwise, the equilibrium binding distances 

are also shorter than those of PBE. It is also interesting to note that optB88-vdW is also 

unable to distinguish I, II and III adsorption geometries. For both PBE and optB88-vdW, 

the bonding energies of four adosprtion geometries in parallel configuration are more 

negative than those in perpendicular case, but the equilibrium distances between 

absorbent and Pt (111) surface in the former cases are longer than later situations. The 

main reason is the electron-electron repulsion between two closed-shell systems, due to 

the Pauli exclusive principle. All adsorption geometries in the parallel configuration 

exhibit stronger such repulsion than perpendicular ones, because CO2 has a linear shape. 
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Among the adsorption geometries IV-VII, the binding energy of VII computed by either 

PBE or optB88-vdW is more negative than others. Note that geometry VII corresponds to 

bridge (C)-bridge (O) site on Pt (111) surface. In the case of IV and V, the carbon atom in 

CO2 molecule is always placed on the top of Pt atom. From the computed binding energy 

curves, these two adsorption geometries are less favored than VI and VII by PBE and 

optB88-vdW in current calculations. In VI and VII, none of atoms in CO2 molecule is 

placed directly above the Pt atoms on the top layer at (111) surface.             
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Figure 6.8: The calculated binding curves of CO2 on Pt (111) surface using optB88-vdW 

functional. 

 

  

Now, we will compute the binding curves of I, III and IV adsorption structures by 

MGGA_MS2 and PBE+D2. In Figures 6.9-6.11, the binding curves of structures I, III 

and IV are shown for PBE, PBE+D2, optB88-vdW and MGGA_MS2. As can be seen 

from Figures 6.9 and 6.10, MGGA_MS2 performes similarly for the two adsorption 

geometries. In our future discussions, we will focus on the results of I and IV. The two 
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adsorption geometries are considered as the representatives for two CO2 configurations 

on Pt (111) surface.   
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Figure 6.9: The computed binding curves of adosprtion geometry I by PBE, PBE+D2, 

MGGA_MS2 and optB88-vdW. 
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Figure 6.10: The binding curves of adsorption-geomtry III computed by PBE, PBE+D2, 

MGGA_MS2 and optB88-vdW. 
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Figure 6.11: The binding curves of adsorption-geometry IV obtained from PBE, 

PBE+D2, MGGA_MS2 and optB88-vdW. 

 

MGGA_MS2 captures a portion of van der Waals interactions. The equilibrium 

distance predicted by this exchange-correlation functional is usually comparable to 

PBE+D2 and optB88-vdW methods. The magnitude of binding energy at the equilibrium 

distance obtained by MGGA_MS2 is smaller than latter two method, i.e., the value is 

usually 1/3 of van der Waals DFT methods. 

   

6.3.2 Adsorption Geometry and Energy 

From the computed binding energy curves for different adsorption-geometries, the 

equilibrium distance and binding energy for each geometry can be extracted. First, we 

show the two quantities for all seven adsorption-geometries using PBE and optB88-vdW 

methods in Table 6.4. From the resutls given in the table, we can clearly see that PBE 

binds the system, but the obtained absolute values of binding energy are too small. As a 
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result, the equilibrium binding distances predicted by PBE are much larger than those of 

optB88-vdW method. Since the experimental values are not available for the studied 

systems, we have computed the two parameters for geometries I and IV using 

MGGA_MS2 and PBE+D2, and the results are compared with PBE and optB88-vdW 

methods in Table 6.5. MGGA_MS2 binds the two structures more than PBE does, and 

the predicted binding distances are more close to PBE+D2 and optB88-vdW methods 

than PBE. The optB88-vdW gives the strongest binding among four DFT methods. 

MGGA_MS2 is situated between PBE+D2 and PBE. 

 

Table 6.4: The calculated binding energies and equilibrium binding distances for seven 

adsorption geometries by PBE and optB88-vdW. 

 

Structure PBE optB88-vdW 

Ebind (kcal/mol) dbind (Å) Ebind (kcal/mol) dbind (Å) 

I -0.1939 3.8971 -3.1527 3.1468 

II -0.1935 3.8890 -3.1473 3.1468 

III -0.1948 3.8809 -3.1406 3.1490 

IV -0.3913 4.0318 -5.0328 3.3779 

V -0.3894 4.0409 -5.2608 3.3859 

VI -0.4250 3.9770 -5.4617 3.3312 

VII -0.4618 3.9223 -5.6879 3.2957 
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Table 6.5: The calculated binding energies and equilibrium distances of structures I and 

IV by different DFT methods.  

 

Exc Structure I Structure IV 

Ebind (kcal/mol) dbind (Å) Ebind (kcal/mol) dbind (Å) 

PBE -0.1939 3.8971 -0.3913 4.0318 

PBE+D2 -1.9631 3.3525 -3.8020 3.4814 

MGGA_MS2 -0.5419 3.4478 -1.1632 3.5607 

optB88-vdW -3.1527 3.1468 -5.0328 3.3779 

 

 

6.3.3 Point Charge Model for CO2 Interacting with Metal Surface 

Although the CO2 molecule interacts with Pt (111) surface through the van der 

Waals forces, the semilocal functional like PBE still binds them together. In the case CO2 

absorbed in MOF, sometimes the binding energy is attributed to the electrostatic 

attraction between CO2 and MOF [165, 166]. This is indeed possible, because the 

covalent bonds in CO2 are highly polarized, due to the big difference of eletronegativities 

of O and C elements. Maurin et al. [170] employed an atomic point charge model to 

study the CO2 molecule in the force field method. The nominal charges assigned to C and 

O atoms are + 0.72 e and – 0.36 e, respectively. Since the valence electron density on Pt 

(111) surface is relatively uniform, it can be treated as the jellium surface. Therefore, the 

electrostatic interacting energy between CO2 and Pt (111) surface might be calculated 
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from a well-known classic model in electrodynamics, i.e., the point charge interacts with 

a metal surface [171], as illustrated in Figure 6.12. 

 

Figure 6.12: The point charge model of CO2 molecule physisorbed on metallic surface. 

  

In the classic electrostatics, the induced surface-charge density due to the point 

charge outside the conducting half-space can be computed by 

 0

2 2 3/2

0

( )
( )

{2 [ ( ) ] }
ind

q z z
n r

r z z

 


 
  (6.2) 

where q represents the point charge outside the metallic surface, and ( )indn r  is the 

induced surface charge density, and z is the distance between external charge and surface, 

z0 refers to the center of gravity of induced charge density. The total induced surface 

charge density is obtained from equation 6.3. 

 ( )ind indq n r dr    (6.3) 

The integral is only performed for r, because the induced density is confined on 

surface for an ideal conducting surface. Otherwise, if we only consider the perpendicular 

configuration for CO2 molecule on Pt (111) surface, and we have z0 = 0 due to the local 
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symmetry in adsorption-geometry I. For the same adsorption geometry, if we employ the 

structural parameters of CO2 (Bond length = 1.17 Å) and the equilibrium distance (~3.85 

Å) in the binding curve computed from PBE, the induced surface charge densities by O 

and C atoms are given by 

 
1 2 3/2

0.220589
( )

(14.8225 )
On r

r



  (6.4) 

 
2 2 3/2

0.354661
( )

(38.3161 )
On r

r



  (6.5) 

 
2 3/2

0.57525
( )

(25.2004 )
Cn r

r
 


  (6.6) 

In Figure 6.13 (a), we plot the three-dimensional contour of the total induced 

surface charge density 
1 2

( ) ( ) ( ) ( )ind O C On r n r n r n r   . Meanwhile, we also plot the radial 

distributions of the induced and the total surface charge densities in Figure 6.13 (b). We 

can see that from this simple point charge model, the induced charge density right below 

the CO2 molecule is positive, while the negative charges are also seen around the positive 

region near the center of the gravity of total induced charge density nind(r). The positive 

surface charge density caused by one of the O atoms closest to the surface cancels most 

negative charges induced by C atom very near z0. After the integration of equation 6.3, 

the total induced charge is + 0.00131 e. Therefore, the point charges of O atoms 

determine the sign of image charge on Pt (111) surface.     
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Figure 6.13: The induced surface charge densities in a point charge model of CO2 

molecule on metallic surface. (a): The three-dimensional contour plot of total induced 

surface charge density; (b) and (c): The radial distributions. 

 

The total electrostatic potential energy between point charges of CO2 molecule 

and the metallic surface can be roughly estimated from the following expression 
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where the elementary charge is given by e = 1.60217657 × 10-19 coulombs, and the 

dielectric constant 
0 = 8.8542 × 10-12 F/m, zi is the coordinate of atoms in CO2 molecule. 

It is found that the total electrostatic potential energy in the adsorption geometry shown 

in Figure 6.12 is only -0.00358 kcal/mol. The value is 50 times less negative than the 

computed value (-0.1932 kcal/mol) for structure I by PBE. Therefore, the simple 

electrostatic attactions between CO2 and Pt (111) surface can not explain why PBE binds 

the system. 

In order to go beyond the simple point charge model, the electron density 

difference maps (EDDM) are calculated for CO2 physisorbed on Pt (111) surface by PBE 

and optB88-vdW functionals. EDDM is defined as 

 
2 2EDDM CO +Pt(111) CO Pt(111)( ) ( ) ( ( ) ( ))r r r r        (6.8) 

here the three terms on the right-hand side of equation are the electron densities of 

combined and the two separated subsystems, respectively. By the definition, the 

increasing of electron density at r implies the positive sign of EDDM ( )r . The change of the 

electron density in the space of the combined structure is usually due to the interactions 

between two subsystems. In Figures 6.14 (a) and (b), the three-dimensional contours of 

EDDM are shown for structure I, computed from PBE and optB88-vdW methods at their 

equilibrium distances. For a better comparison of EDDM of PBE with optB88-vdW, the 

EDDM has been recalculated within the former functional at the equilibrium distance of 

latter one. The new EDDM contour is displayed in Figure 6.14 (c). 

From Figure 6.14, it is seen that the valence electron density on Pt (111) surface 

right below the CO2 molecule is decreased. The effect is enhanced by decreasing the 
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disctance between CO2 and Pt (111) surface. This can be understood from the Pauli 

exclusive principle between the systems with closed shells.  

 

(a) 

 

(b) 
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(c) 

Figure 6.14: The three-dimensional isovalue contours of EDDM of CO2 physisorbed on 

Pt (111) surface. (a): d = 3.85 Å with PBE; (b): d = 3.037 Å with optB88-vdW; (c): d = 

3.037 Å with PBE. Note that in all graphs, the cyan color indicates the decrease of 

electron density, and yellow-blue region refers to the increase of electron density. The 

magnitude of isovalue contours is 0.0001 e/Å3. 

 

In the case of PBE, there is the weak redistribution of charge density on CO2 

molecule at the equilibrium distance, which can not be predicted from the simple point 

charge model. The charges are accumulated on one O atom at the bottom of CO2 

molecule and Pt atom right below it. Therefore, both CO2 and Pt (111) surface are 

slightly polarized even in the PBE calculation. At the short distance (See Figures 6.14 (b) 

and (c)), the CO2 is significantly polarized due to the redistribution of charge density on 

it. PBE and optB88-vdW give similar contours. However, for the metallic substrate, the 

increase of surface charge density in optB88-vdW method is much stronger than in PBE. 

From Figure 6.14 (b), we find that the electron density is accumulated at the Pt atoms 
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right below CO2 molecule and next to it. If the interactions between CO2 and Pt (111) 

surface is mainly caused by the induced dipoles of molecule and substrate, then the non-

local van der Waals functional (optB88-vdW) indeed can reproduce this mechanism. For 

semilocal functional like PBE, the induced dipoles on both molecule and metallic 

substrate are too weak; meanwhile, the repulsion due to the Pauli exclusive principle 

between them is enhanced and also dominates the computed binding energy at short 

distance.            

For MGGA_MS2, the EDDM is also computed at the equilibrium adsorption 

distance (~3.40 Å). The 3-D isovalue contours are similar to Figure 6.14 (c) for PBE at 

short distance. This demonstrates that the polarization of electron density in 

MGGA_MS2 is stronger than that of PBE at the same adsorption distance. As a result, 

MGGA_MS2 predicts more negative binding energy and shorter binding distance than 

PBE does. MGGA_MS2 captures the portion of van der Waals interactions, because of 

its large α dependence in the exchange enhancement factor. In a meta-GGA, we can use α 

to distinguish three different types of chemical bond. For van der Waals bound system, 

we expect to observe α ≫ 1 and s ≈ 0 [41-43]. Basically, MGGA_MS2 disfavors the 

large α region in the computed structure. In the large separation of CO2 from the Pt (111) 

surface, α is increased significantly in the region between the two fragments due to the 

decrease of electron density.        
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CHAPTER 7 

SUMMARY AND CONCLUSIONS  

 

In this dissertation, we have assessed the performances of exchange-correlation 

functionals of all five rungs on Jacob’s ladder on three particular problems: the phase 

transitions between two polymorphs of a solid, a strongly correlated transition metal 

oxide, and the physisorption of molecule on metal surface. Each problem represents a 

challenge for current density functional theory (DFT).   

In Chapter 3, we have tested the performance of LSDA, the PBE GGA, and 

several meta-GGA functionals (TPSS, revTPSS, regTPSS, and MGGA_MS) on the 

structural properties and phase transition parameters for three different systems, i.e., Si, 

SiO2 and Zr. For the structural properties, all tested meta-GGAs are better than the PBE 

GGA, as expected, but for the phase transition pressures the earlier meta-GGAs are worse 

than PBE for Si and SiO2, and only the members of the MGGA_MS family are able to 

predict realistic values. The quality of the results is sensitive to the details of the 

exchange functional. At least for the insulator-to-metal transition in Si, the relative 

performance of various functionals can be understood simply in terms of their plottable 

exchange enhancement factors. We suggest that further improvements to the meta-GGA 

will lead to further improvements in the predicted properties of most molecules and 

solids near equilibrium and under pressure, without sacrificing computational efficiency.   

Our results for normal metals (Zr phases) indicate that all semilocal functionals 

perform more or less similarly for equilibrium lattice constants and bulk modulus. Some 
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meta-GGA functionals (regTPSS and MGGA_MS) can predict phase transition 

parameters for Zr in better agreement with experiment than PBE. For this system, the 

screened hybrid functional HSE06 significantly overestimates phase transition parameters 

(transition energy and pressure). Although the tested functionals are all more accurate for 

the metallic Zr phases than for Si or SiO2, the exceptionally small structural energy and 

volume differences for Zr still make this system challenging to approximate calculations. 

For the transition pressure in general, the approximate exchange-correlation 

energy functional must predict a small energy difference with a small relative error.  That 

is not so hard when the small energy difference arises from a small change in the electron 

density, because then we can expect a great error cancellation in the energy difference 

between similar densities. That explains how even LSDA can predict rather good lattice 

constants in some cases: There is a small change of density associated with a small 

expansion or compression of the lattice. But, for the transition pressure, we have to 

predict a small energy difference arising from a large change of density, and less error 

cancellation can be expected. Therefore, the calculation of transition pressures for 

structural phase transitions remains a challenging test of density functionals. The 

challenge is especially great for silicon dioxide, where the average valence electron 

density changes so strongly at the transition. 

In Chapter 4, we have studied the phase transition parameters of the α-quartz to 

stishovite and D-Si to β-tin Si phase transformations using non-selfconsistent RPA 

calculations. The obtained equilibrium lattice volumes of most structures are in good 

agreement with DMC (or QMC) simulations and experimental results. The calculated 

phase transition pressure and transition volume of Si are also in excellent agreement with 



204 

experimental values. On the other hand, the energy difference between α-quartz and 

stishovite is underestimated by RPA and thus the corresponding transition pressure is 

smaller than those of experiment and several other local and nonlocal functionals. While 

non-selfconsistent RPA seems to work well for the difficult insulator-to-metal transition 

in Si, selfconsistent and geometry-optimized RPA calculations may be needed for the 

low-symmetry crystal structures of SiO2. While non-selfconsistent RPA seems to work 

well for the difficult insulator-to-metal transition in Si, the RPA error cancellation may be 

less perfect in SiO2, as in molecules. 

In Chapter 5, we have assessed the performances of many semilocal (LSDA, 

LSDA+U, GGA and meta-GGAs) and nonlocal (HSE06) density functionals on the 

ground state energy, electronic structures and magnetic property of strong correlated R-

VO2. Our calculations indicate that none of them gives the correct ground state for this 

metal oxide. The spurious spin polarized magnetic phases (FM and AFM) are always 

more stable than spin compensated singlet state. Besides LSDA+U, all semilocal 

functionals predict R-VO2 to be a metallic magnetic phase. Meanwhile, LSDA+U and 

HSE06 give a Mott-Hubbard insulating phase with large local magnetic moments. In 

addition, the widely tested TPSS and revTPSS functionals give the qualitatively different 

electronic structures for R-VO2 to either widely used LSDA and PBE functionals or the 

recently developed meta-GGA functionals (regTPSS and MGGA_MS family of density 

functionals).  

The non-self-consistent RPA calculations based on PBE inputs slightly improve 

the stability of spin-singlet nonmagnetic phase of R-VO2, but it is not sufficient to reverse 

the wrong results given by PBE calculations. Using PBE inputs, the ground state of R-
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VO2 is found to be a ferromagnetic metal by RPA. Meanwhile, the RPA stabilizes the 

spin-compensated PM R-VO2 over FM and AFM states when the inputs are computed 

from LSDA.  For most semilocal functionals, the development of spurious magnetic 

states (FM or AFM) gives more accurate equilibrium lattice geometry than that of the 

spin singlet non-magnetic state by the total energy minimization. LSDA and RPA (with 

PBE inputs) are the two exceptions where in the former case all three computed magnetic 

states (FM, AFM and spin compensated PM) underestimate equilibrium cell volume with 

similar percent errors; while in the latter case, the optimized cell volume for a spurious 

magnetic state is significantly overestimated. For strong correlated R-VO2, the error 

cancellation between the extra exchange and less realistic correlation holes in the 

semilocal functionals is not seen in RPA calculations. For normal solids, RPA is always 

employed as a benchmark method. Our results for R-VO2 suggest that the self-

consistency is required for a strongly correlated system.  

In meta-GGAs, there is a correlation between the predicted magnetic moment and 

the behavior of exchange enhancement factor. Our calculations for either R-VO2 or BCC 

Fe imply that a meta-GGA is capable of giving the accurate local magnetic moment by 

carefully controlling its exchange enhancement factor (Fx(s, α)) in the small s and large α 

regime. The monotonic decrease of Fx(s, α) with α for small s enhances the exchange 

energy, resulting in the large local magnetic moment for magnetic phase. Although, the 

meta-GGAs exhibiting the exchange enhancement factor similar to MGGA_MS variants 

are less accurate than other tested semilocal functionals for the ground state energy of R-

VO2, they are able to capture a portion of van der Waals interactions in the density 
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weakly overlapped case due to the same reason as they overestimate the local magnetic 

moment. 

In Chapter 6, we have computed the binding energy curves of CO2 molecule 

physisorbed on the Pt (111) surface using PBE, PBE+D2, MGGA_MS2 and optB88-

vdW. We are particularly interested in the comparison of binding energy and binding 

distance predicted by MGGA_MS2 to those of PBE+D2 and optB88-vdW methods. Our 

results confirmed that MGGA_MS2 captures a portion of van der Waals interactions, and 

it gives binding distance in good agreement with PBE+D2 and optB88-vdW methods. 

Although MGGA_MS2 significantly improves the description of physisorption problem 

among semilocal functionals, the obtained binding energy is usually ~30% of the latter 

two methods. 

We developed a simple point charge model for CO2 molecule on Pt (111) surface. 

The binding energy estimated from such model is 50 times less negative than the 

computed value. Thus, the electrostatic potential energy along can not explain why a 

semilocal functional like PBE can still bind CO2 on Pt (111) surface. From the obtained 

electron density difference maps (EDDM), we discovered that optB88-vdW predicts the 

strongest electron-density polarizations for both CO2 and Pt (111) surface. For PBE, such 

effect is very weak, but it is not completely negligible. At the short distance, the binding 

energy is dominated by the strong repulsion between electron densities of the two 

fragments due to the Pauli exclusive principle. The advantage of MGGA_MS2 for weak 

van der Waals interactions is mainly attributed to its α dependence in the exchange 

enhancement factor. 
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The results presented in this dissertation for the new meta-GGA functionals and 

random phase approximation reveal the great success and failure of current density 

functional methods on Jacob’s ladder. The need for the development of more advanced 

exchange-correlation functional is ever-growing.     
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