
CARBON STOCKS AND CYCLING IN THE AMAZON BASIN: 

MEASUREMENT AND MODELING OF NATURAL DISTURBANCE AND 

RECOVERY USING AIRBORNE LIDAR

BY

MARIA O’HEALY HUNTER 

BA Physics, Mount Holyoke College, 2004

DISSERTATION

Submitted to the University of New Hampshire 
in Partial Fulfillment of 

the Requirements for the Degree of

Doctor of Philosophy 

in

Natural Resources and Earth Systems Science

September, 2014



UMI Number: 3581824

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori Publishing

UMI 3581824
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



This dissertation has been examined and approved.

Advisor, Michael M. Keller, Ph.D 
Affiliate Professor
Department of Natural Resources and Earth Systems Science

Bobby Braswell, Ph.D
Affiliate Research Associate Professor
Department of Natural Resources and Earth Systems Science

Mark Ducey, Phf 
Professor
Department of Natural Resources and the Environment

Michael Lefsky, Ph.D
Associate Professor
Department of Ecosystem Science and Sustainability 
Colorado State University

M^ry E. Martin, Ph.D
Research Assistant Professor 
Earth Systems Research Center

8 / 1 / 2 J 1 4
Date



ACKNOWLEDGEMENTS

This research was supported by NASA Earth and Space Science Fellowship 

NNX09AO46H in addition to NASA grants NNG06GE11 A, NNX09AI33G, 

NNG04G073G and NNX06AH36G, NSF grant DEB0721140 and USAID Sustainable 

Landscapes.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS......................................................................................  iii

LIST OF TABLES.....................................................................................................  ix

LIST OF FIGURES................................................................................................... xi

ABSTRACT..............................................................................................................  xiv

CHAPTER PAGE

I. INTRODUCTION..................................................................................................  1

Gap phase patterns and carbon-cycling in tropical forests................................ 1

Problem Description............................................................................................. 5

Data Exploration and Uncertainty Analysis.................................................. 6

Gap Dynamics................................................................................................. 8

Relating Light Conditions to Regrowth within G aps...................................  10

Summary...............................................................................................................  11

II. PENETRATION OF WAVEFORM LIDAR INTO TROPICAL FOREST 
CANOPIES...............................................................................................................  12

Abstract.................................................................................................................  12

Introduction...........................................................................................................  13

Objectives.............................................................................................................  19

Methods................................................................................................................  19

Airborne Lidar D ata........................................................................................  19

GLAS Lidar D ata............................................................................................. 22

Synthetic Waveforms......................................................................................  23



Canopy Penetration.........................................................................................  25

Results...................................................................................................................  28

Synthetic Waveforms......................................................................................  28

Defining the Outer-Canopy-Surface..............................................................  29

Discussion.............................................................................................................  37

Synthetic Waveforms......................................................................................  37

Lidar Penetration.............................................................................................. 41

Conclusions...........................................................................................................  45

III. MEASUREMENT OF TREE HEIGHT AND TROPICAL FOREST 
BIOMASS ESTIMATION.....................................................................................  48

Abstract.................................................................................................................  48

Introduction...........................................................................................................  49

Methods................................................................................................................  54

Site Descriptions.............................................................................................. 54

Field Inventory Measurement......................................................................... 59

Airborne Lidar D ata........................................................................................  62

Lidar Estimation of Tree Heights.................................................................... 64

Statistical Analysis and Simulation................................................................  66

Results...................................................................................................................  68

Precision of Ground Based Height Measurements.......................................  68

Accuracy of Field Measurements of Height Compared to L idar.................  69

Effect of Height Error on Plot Level Biomass..............................................  70

Height Prediction via Allometry..................................................................... 72

Optimization of Height Measurements for Biomass Prediction..................  75

Discussion.............................................................................................................  75

V



Height Measurement Precision......................................................................  76

Height Measurement Accuracy......................................................................  79

Biomass Precision...........................................................................................  82

Height Allometries..........................................................................................  85

Height Allometric Optimization....................................................................  86

Conclusions........................................................................................................... 87

Acknowledgements..............................................................................................  88

Author Contributions...........................................................................................  89

IV. STRUCTURAL DYNAMICS OF TROPICAL MOIST FOREST G APS  90

Abstract................................................................................................................. 90

Introduction........................................................................................................... 91

Methods................................................................................................................ 97

Site Descriptions.............................................................................................  97

Airborne Lidar D ata........................................................................................  98

Field Surveys..................................................................................................  100

Height Structure..............................................................................................  101

Gap Definitions................................................................................................ 101

Distribution of Gap A rea................................................................................. 102

Gap Creation and Lifetimes............................................................................ 103

Gap Contagiousness........................................................................................  105

Results...................................................................................................................  106

Variability of Forest Structure........................................................................  106

Height Change................................................................................................. 107

Dynamic Gap Definition and Minimum Gap S ize .......................................  108

vi



Gap Area.......................................................................................................... 110

Gap Creation and Lifetimes............................................................................  I l l

Gap Contagiousness........................................................................................  114

Discussion............................................................................................................. 117

Gap Definition................................................................................................. 117

Gap Area.......................................................................................................... 119

Gap Creation and Forest Turnover.................................................................  120

Gap Contagiousness........................................................................................  122

Conclusions........................................................................................................... 123

Author Contributions...........................................................................................  124

V. EFFECT OF LIGHT AVAILABILITY ON HEIGHT GROWTH IN 
TROPICAL FORESTS..........................................................................................  125

Introduction.......................................................................................................... 125

Methods................................................................................................................  128

Site Description................................................................................................ 128

Field Surveys.............................................................   129

Airborne Lidar D ata........................................................................................  129

Incoming Radiation.........................................................................................  130

Modeled Annual Solar Radiation...................................................................  131

Analysis............................................................................................................ 135

Results...................................................................................................................  136

Field Surveys................................................................................................... 136

Estimates of Incoming Radiation...................................................................  138

Modeled Annual Solar Radiation...................................................................  140

Effects of Light Availability on Growth........................................................ 142

vii



Discussion..............................................................................................................  145

Field Surveys.................................................................................................... 145

Modeled Annual Solar Radiation....................................................................  146

Effects of Light Availability on Growth......................................................... 148

Conclusions............................................................................................................  152

VI. CONCLUSION.................................................................................................. 154

Primary Results...................................................................................................... 154

Next Steps..............................................................................................................  157

REFERENCES...........................................................................................................  160

viii



LIST OF TABLES

I. INTRODUCTION.................................................................................................... 1

II. PENETRATION OF WAVEFORM LIDAR INTO TROPICAL FOREST 
CANOPIES............................................................................................................... 12

Table 2.1 Summary of airborne lidar survey p lo ts...............................................  20

Table 2.2 Height offset with varying outer-canopy-surface depth and canopy 
surface model scale..............................................................................................  32

III. MEASUREMENT OF TREE HEIGHT AND TROPICAL FOREST 
BIOMASS ESTIMATION.......................................................................................  48

Table 3.1 Data used to address each of the five questions posed by this 
research.................................................................................................................  55

Table 3.2 Site locations and climatic characteristics............................................  55

Table 3.3 Details of field and lidar data collection..............................................  56

Table 3.4 Transect live biomass and 95% confidence interval due to height 
uncertainty based on 1000 repetitions................................................................  71

Table 3.5 Site average biomass based on multiple biomass allometries (Chave 
2005 and Chambers 2001) and height allometries (Feldpausch 2011 Regional 
and Pan-Tropical)................................................................................................. 84

IV. STRUCTURAL DYNAMICS OF TROPICAL MOIST FOREST G A PS  90

Table 4.1 Details of airborne lidar data collections..............................................  99

Table 4.2 Frequency of gap formation presented for both sites and gap 
definitions............................................................................................................. I l l

Table 4.3 Gap recurrence frequencies based on persistence times calculated 
from the inter-sample period growth..................................................................  113

Table 4.4 Estimates of annual mortality based on field and lidar samples  116

ix



V. EFFECT OF LIGHT AVAILABILITY ON HEIGHT GROWTH IN 
TROPICAL FORESTS......................................................................... 125

Table 5.1 Input parameters to ArcGIS ‘Area Solar Radiation’ to o l....................  133

Table 5.2 Model forms tested to predict height change using initial height and 
annual solar radiation...........................................................................................  135

Table 5.3 Details of study areas including gap fraction, canopy height and 
estimated solar radiation......................................................................................  141

Table 5.4 Parameters of models fit to vertical growth data within six areas of 
interest within Tapajos National Forest..............................................................  142

Table 5.5 Parameters of models fit to vertical growth data in gap areas (areas 
with less than 10 m initial height) within six areas of interest within Tapajos 
National Forest..................................................................................................... 144

x



LIST OF FIGURES

I. INTRODUCTION.................................................................................................... 1

Figure 1.1 Schematic diagram of data and topics.................................................. 6

II. PENETRATION OF WAVEFORM LIDAR INTO TROPICAL FOREST 
CANOPIES...............................................................................................................  12

Figure 2.1 Potential issues with the definition of the outer-canopy-surface 
based on two spatial parameters: the scale of the horizontal window used to 
determine the "local" maximum value and the depth of the outer-canopy- 
surface zone considered.......................................................................................  18

Figure 2.2 GLAS waveform locations overlaid on a canopy height map 
generated using airborne lidar data collected in June and July 2008 ...............  22

Figure 2.3 Example synthetic waveform (black) with gaussian decomposition 
(light grey) and cumulative summation of energy (dark grey).......................... 24

Figure 2.4 Classification of lidar point returns within a 1 m by 50 m swath at 
Tapajos National Forest, Brazil (Area 14) into outer canopy (red), inner 
canopy (yellow) and ground (green) components.............................................  27

Figure 2.5 Percentage of returns in the outer canopy surface with depth of 
outer canopy surface for each of the six considered scales of the canopy 
surface model (CSM )...........................................................................................  31

Figure 2.6 Comparison of horizontal and vertical scales used to define canopy 
layers.....................................................................................................................  34

Figure 2.7 Relationship between mean height of returns within the outer- 
canopy-surface and the mean height of all returns............................................  35

Figure 2.8 The percentage of returns within the outer canopy surface ranges 
from 37 - 65% when an outer-canopy-surface depth of 1 m is considered. It 
is also a strong indicator of the error in prediction of overall mean height 
from the outer-canopy-surface height.................................................................  36

Figure 2.9 GLAS and synthetic waveforms compared for two waveforms 
within Site 15 (Tapajos National Forest)............................................................  39

xi



Figure 2.10 Cumulative percentage of returns in the outer (blue) and inner 
(green) canopy regions by height for four waveforms with increasing mean 
height and varying percentage of returns in the outer canopy surface.............  43

III. MEASUREMENT OF TREE HEIGHT AND TROPICAL FOREST
BIOMASS ESTIMATION......................................................................................... 48

Figure 3.1 Crown Ellipses of canopy and emergent stems overlaid on the 
canopy height m odel.............................................................................................. 64

Figure 3.2 Comparison of field measured height to the height estimated using 
the Lidar Canopy Height Model (CHM) for emergent stem s............................  65

Figure 3.3 Precision of repeated height measurement of 174 trees during the 
2009 field campaign at Tapajos National Forest.................................................  69

Figure 3.4 Comparison of allometric scaling relationship. Regional, Pan- 
tropical and site-specific allometries based on field measurements at four 
sites: Tapajos, Reserva Ducke, Tanguro and Cauaxi..........................................  73

Figure 3.5 Effect of sample size on the resulting diameter to height allometric 
equation for Reserva Ducke.................................................................................  74

Figure 3.6 Comparison of site-specific Diameter: Height Allometries................ 83

IV. STRUCTURAL DYNAMICS OF TROPICAL MOIST FOREST G A P S   90

Figure 4.1 Distribution of canopy surface heights in 2008 airborne lidar data 
acquisitions...............................................................................................................  107

Figure 4.2 Mean and confidence interval of height change between initial and 
final lidar data acquisitions......................................................................................  108

Figure 4.3 Gap formation anomaly with distance from existing g aps....................  115

V. EFFECT OF LIGHT AVAILABILITY ON HEIGHT GROWTH IN
TROPICAL FORESTS................................................................................................  125

Figure 5.1 Field measured growth by canopy class and light availability class .. 137

Figure 5.2 Incoming radiation in PAR wavelengths at Tapajos Tower and 
fraction of shady days..............................................................................................  138

xii



Figure 5.3 Area 6 canopy height and estimated total annual solar radiation 
composed of weighted sums of direct and diffuse radiation.............................  139

Figure 5.4 Relationship between initial canopy height (m) and estimated 
annual solar radiation (kWh nr2) ......................................................................... 140

Figure 5.5 Modeled canopy height difference based on initial canopy height 
and annual solar radiation....................................................................................  143

Figure 5.6 Correlation between incident solar radiation and height change for 
individual gap height bins of 2 m ........................................................................ 150

xiii



ABSTRACT

CARBON STOCKS AND CYCLING IN THE AMAZON BASIN: 

MEASUREMENT AND MODELING OF NATURAL DISTURBANCE AND 

RECOVERY USING AIRBORNE LIDAR 

by

Maria O’Healy Hunter 

University of New Hampshire, September, 2014 

Forest structure, the three dimensional distribution o f living and dead plant 

material including live crowns, understory vegetation and coarse woody debris, is the 

concrete physical form of carbon storage, the framework for biodiversity, and the 

instantaneous manifestation of disturbance and recovery processes. The frequency of 

disturbance and rate of decomposition drives the fractions of living and dead biomass, 

and the size of and intensity of disturbance drives the rate and species composition of 

forest recovery; both are primary sinks and sources in the carbon cycle. To improve 

understanding of disturbance and recovery processes, high-resolution airborne LIDAR 

(light detection and ranging) data from the Amazon region is combined with field 

measurements to analyze forest structure. These measurements are incorporated into a 

simple model to estimate light availability and the associated changes in carbon stocks. 

This work improves the understanding of Amazon forest dynamics and its role in the 

carbon cycle.



CHAPTER ONE

INTRODUCTION

PATTERNS OF GAPS AND CARBON CYCLING IN TROPICAL FORESTS

Our understanding of carbon cycling and ecosystem dynamics in tropical ecosystems is 

limited by a lack of information about patterns o f disturbance and recovery. 

Measurements of forest structure advance knowledge of current forest form and also 

provide evidence of how a forest has changed through time. A primary driver of forest 

structure is the size and frequency of disturbance or gaps (Brokaw 1985). Gaps are a 

prominent feature on the tropical forest landscape and key to carbon cycle of tropical 

forests (Brokaw 1985, Denslow 1987, Molino and Sabatier 2001). Gap phase dynamics 

maintain high light environments within closed forest canopies and promote natural 

regeneration and turnover (Bormann and Likens 1979, Oliver and Larson 1996).

Oliver and Larson (1996) describe gap-phase regeneration with four stages: stand 

initiation, stem exclusion, understory re-initiation and old-growth. Although this work 

was focused on northern hardwood forests, processes described are similar in the tropics 

(Brokaw and Busing 2000). The period of time necessary to pass through stand initiation 

varies widely and is partly dependent on the gap formation process (fire, wind-throw,
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landslide) and environmental controls such as drought. Stand establishment is typically 

most rapid when it is formed from advanced regeneration existing prior to the disturbance 

event (Franklin et al. 2002). This is generally the case in the Brazilian Amazon where 

disturbances that remove advanced generation are rare (Franklin et al. 2002, Cochrane 

2003, Del Bom Espirito-Santo et al. 2010).

Despite the importance of forest structure, existing studies in tropical forests are most 

often at the plot-scale and non-randomly distributed (Phillips et al. 1998, Saatchi et al. 

2007). Rare larger plots exist, but are infrequent across the tropics (Hubbell and Foster 

1986, Lewis et al. 2009). Remote sensing provides a means for more objective and 

comprehensive sampling, but traditional optical instruments are limited in the amount of 

information they provide about structure (Gibbs et al. 2007). However, LIDAR (light 

detection and ranging) remote sensing provides a feasible method of studying forest 

structure at local and regional scales, especially when used in combination with other 

measurements and models.

Forest structure changes over time and space due to disturbance and recovery. Natural 

disturbances vary from small and frequent individual tree falls to large infrequent 

disturbances and lead to a mosaic of forest stands varying in size, age and species 

composition (Brokaw 1985, Steege et al. 2006). Variability in the species composition of 

recently disturbed areas is affected by increased nutrient and light availability within 

forest canopy openings (Denslow 1987, Tabarelli and Mantovani 2000); larger gaps are 

more likely to be colonized by faster growing pioneers such as Cecropia (Brokaw 1985).



Given that the size of a disturbance affects the degree to which light and nutrients are 

available, patterns in the scale and frequency of disturbance affect regional carbon 

dynamics.

Light availability is a primary controller of the rate at which forests recover from 

disturbance. However, it is difficult to measure light availability throughout complex 

forest ecosystems especially at the landscape scale. In temperate forests methods have 

been developed that take into account the stature and placement of surrounding 

vegetation, either directly or through the calculation of gap geometries (Monserud and Ek 

1977, Hibbs 1982, Canham 1988). Canham (1988) reports general agreement between a 

light index based on gap geometry and the percent transmission of photosynthetically 

active radiation (PAR) compared to open conditions. Canham (1988) further showed that 

growth was significantly higher within the higher light conditions of gaps as compared to 

closed-canopy forests. In tropical forests, Denslow (1990) showed increased relative 

growth rates at gap centers as compared to gap edges. However, the extent to which light 

availability controls variation in tree growth in tropical ecosystems is still not well 

understood. As tree grow taller they are generally exposed to higher light environments 

(Metcalf et al. 2009), but few studies take into account tree size and light availability 

simultaneously.

Lidar (Light Detection And Ranging), an active remote sensing technique, provides a 

valuable tool to measure forest canopy structure that has been applied infrequently in
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ecological studies (Lefsky et al. 2002). Lidar sensors on ground, airborne or space-based 

platforms emit short duration laser pulses that are reflected off of leaf, branch and ground 

matter. Round trip time of the reflected pulse is recorded and converted to distance to the 

reflected surface. Lidar sensors can record the temporal pattern of the returned energy 

(the waveform) or provide discrete returns that represent individual reflected surfaces 

within the laser-beam path. Discrete-retum lidar systems automatically threshold the 

returned waveform to above a given energy level. These systems typically return between 

1 and 4 points for each emitted pulse. Though lidar does not directly measure biomass, 

previous work has shown that both full waveform and single return discrete lidar 

correlate strongly with ground-based measurements of biomass on the plot level by 

correlation with height and fractional cover (Lefsky et al. 1999a, Drake et al. 2002b).

Lidar provides more information that just height and fractional cover. Based on height 

measurements alone, canopy surface light availability can be modeled in a simplified 

manner. However, airborne and terrestrial lidar provide a three-dimensional cloud of 

points representing individual reflective surfaces. With limited assumptions about 

occlusion and signal die-off, this cloud of points can be transformed to a matrix of 

vegetation presence / absence that quantifies vegetation structure (Stark et al. 2012). 

Theoretically, by using information about vegetation structure, light availability through 

the day, and throughout the year, can be modeled with more detail for any point in a 

forest. In turn, information on light availability can then be correlated with patterns of



growth measured in the field or through lidar remote sensing. This approach links forest 

disturbance size, light availability and regrowth rates across the landscape.

ERQBLEM DESCRIPTION

Disturbances within tropical forests have been described over small areas using field 

data, and larger areas using optical remote sensing (Chambers et al. 2013, Espirito-Santo 

et al. 2014a). Studies have concentrated on changes in the light environment within gaps 

(Poulson and Platt 1989, Canham et al. 1990), nutrient availability (Denslow et al. 1998), 

and growth for a limited sub-set of species (Denslow 1987). While models have been 

used to study gap dynamics over broad regions (Huang et al. 2008), direct measurements 

have come from field-based studies that are limited in area. Lidar data, that can measure 

gaps at landscape scales, was previously not available within the Brazilian Amazon and 

has been used infrequently in ecological studies in tropical forests (Drake et al. 2002a, 

Clark et al. 2004, Thomas et al. 2008). With repeat measurements, lidar is capable of 

measuring gap dynamics over large areas. I propose using lidar data collected at 2008 and 

2012 to investigate the dynamics of gaps and generalized growth within gap 

environments across two landscapes within the Brazilian Amazon. Multi-temporal lidar 

data can be used to test relations between light availability and growth at a landscape 

scale. However, detailed understanding of airborne lidar data and field estimates of 

carbon dynamics are necessary to inform functional analyses (Figure 1.1).



Data Inputs

M u lti- tem p o ra l  A irb o rn e  L idar

2008/2012 
Res. Ducke and 
Tapajos Natl For.

G ro u n d  B ased  M ea su rem en ts

Bi-annual survey of living 
and dead vegetation, % 
canopy openness

1. D a ta  E xp lo ra t ion  a n d  E r ro r  A n a ly s i s

Analyze properties (including errors) 
of lidar (Ch. 2) and ground-based 
measurements (Ch. 3)

I. G a p  D y n a m ics

Develop functional gap v 
definition for lidar and 
define landscape-scale 
gap processes (Ch. 4) n

3. E ffec t  o f  L oca l  L igh t A v a ilab i l i ty

Compare growth measured in 
the field and via multi­
temporal lidar with modeled 
light availability (Ch. 5)

Figure 1.1 Schematic diagram o f data and topics incorporated into the work presented 
here.

Data Exploration and Uncertainty Analysis

Following initial exploration of the data, I identified two key uncertainties. First, how 

effectively does discrete return lidar data penetrate into tropical forests and second, how 

important are accurate measurements of tree height for quantification of field biomass. 

When using multi-temporal data sets other issues are raised including the consistency 

between lidar data collections and repeatability of field measurements.
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In Chapter 2 ,1 specifically aim to improve understanding of where returns are located 

within forest canopies which will improve my ability to model forests measured. I also 

aim to determine practical scales for determining the outer canopy surface that can be 

used to develop Canopy Height Models that will be used throughout this thesis. I 

specifically aim to answer the following questions: What is the estimated error of geo­

location of lidar returns? Can small footprint lidar data available to us be used to simulate 

GLAS waveforms? How can we best define the outer-canopy-surface zone? Is most 

energy returned from the outer-canopy-surface zone and, if not, what errors are 

introduced when we use a hypsometric interpretation of waveform power?

Lidar remote sensing data alone is not sufficient to estimate carbon stocks or changes 

within forests. Estimation of tropical forest biomass is ultimately linked to the estimation 

of biomass of individual trees (although see Clark and Kellner, 2012). Individual tree 

biomass estimates depend upon allometric equations that are developed using a finite 

number of individuals from a limited region or a broader combination of sites (Chambers 

et al., 2001, and others). Recently, regional or global allometries, based on significantly 

larger sample sizes have been used, and are assumed to be more robust for regions 

without site-specific equations (e.g. Chave et al. 2005).

The Chave et al. (2005) allometry uses stem diameter and wood density, and optionally 

total tree height. Chave et al. (2005) suggested that the inclusion of height in biomass 

allometries may not reduce overall precision, but removes typical biases. Therefore, the
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accuracy of biomass estimation for individual trees and subsequently for plot scale 

biomass fundamentally depends on the accuracy of tree height measurements. Field- 

based measurement of tree height in tropical forests are error-prone because of dense 

understory vegetation, and tall and closed canopies conditions that limit the line o f sight. 

In chapter 3 ,1 aim to evaluate the effect of tree height accuracy on biomass estimation 

accuracy by answering the following questions: How precise and accurate are ground- 

based tree height measurements using a hand-held clinometer and metric tape? What is 

the effect of tree-level uncertainty in height on the estimation of plot biomass? Are global 

and/or regional height-diameter relations adequate for accurate biomass estimation? How 

can fieldwork be optimized to achieve acceptable accuracy in plot level biomass while 

limiting the number of tree height measurements used?

Gap Dynamics

Gaps are a prominent feature on the tropical forest landscape and key to the dynamics 

and species distribution of tropical forests (Brokaw 1985, Denslow 1987, Molino and 

Sabatier 2001). Gap phase dynamics maintain high light environments within closed 

forest canopies and promote natural regeneration and turnover (Bormann and Likens 

1979, Oliver and Larson 1996). While the dynamic processes of regeneration and 

turnover of individuals and species are the ecological rationale for the study of gaps 

across the landscape, gaps are often treated as static environments defined in terms o f 

light availability or vegetation height (Whitmore et al. 1993, van der Meer et al. 1994).
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Lidar remote sensing has been used to successfully describe surface canopy roughness 

and forest structure at varying scales (Drake et al. 2002a, Lefsky et al. 2002, Frazer et al. 

2005). Recently, lidar has been used for tropical gap studies, for example, to examine size 

frequency distributions over large areas (400 - 125000 ha) (Kellner et al. 2009, Asner et 

al. 2013, Lobo and Dalling 2014). These studies use traditional gap definitions, where 

height thresholds define gaps.

In chapter 4 ,1 aim to use multi-temporal lidar data to define gaps in a way that takes into 

account the structural dynamics of the forest. Lidar is particularly well suited to this task 

because it measures height accurately, and can cover large areas (Vepakomma et al.

2011). The high resolution of airborne lidar allows for measurements of individual tree 

growth and mortality as well as generalized views of the forest structure. I intend to 

define the rate of gap formation, the size frequency, distribution and regrowth rates of 

gaps at two contrasting forest areas by asking the following questions: What is an 

ecologically appropriate definition for gaps at the two well-studied forest sites in the 

Brazilian Amazon? What is the distribution of gap area and gap size at these two sites? 

What is the frequency of gap creation and how long do gaps persist within a landscape? 

How does the frequency of gap creation compare to field estimates of mortality? And 

finally, are gaps contagious?



Relating Light Conditions to Regrowth within Gaps

Local ecosystem modeling allows for testing our current understanding of interactions 

between plants and environmental factors. While many environmental factors are difficult 

to determine without extensive field sampling, incoming light availability can be modeled 

based on canopy geometry and known atmospheric conditions. In chapter 5, light 

availability is modeled for six scenes within one of the focus sites w ithin the Brazilian 

Amazon (Tapajos National Forest) following the equations of Rich et al. (Rich 1990,

Rich et al. 1994, Fu and Rich 2002). A detailed canopy height model is used to generate a 

hemispherical viewshed for each pixel, identifying the portion of the sky visible for each 

portion of the scene. This is combined with the solar path specific to  the scene location to 

determine incoming direct solar radiation. Diffuse radiation is calculated for each 

location based on the proportion of global solar radiation that is diffused and the portion 

of the sky visible. Local tower data was used to determine the fraction of direct and 

diffuse radiation by month. This model was implemented within ArcGIS 9.2.

I aim to determine the extent to which light availability effects growth within Tapajos 

National Forest. While similar studies have been conducted in the past, none have used 

high density lidar data that allow for the classification of light environments at the 

individual tree / pixel scale. I intend to investigate the effects of light availability by 

asking the following questions: What are the trends in field measured parameters of 

growth (including diameter, crown radius and height increment) with simplistic field
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assessments of light availability? How does modeled incident solar radiation compare 

with assumed patterns based on gap size and gap fraction? To what extent does the light 

environment explain variability in height change as measured by multi-temporal lidar 

data?

SUMMARY

The primary objective of this research is to quantify the effect of disturbance size and 

frequency on the rate and pattern of carbon cycling. Each of the steps listed above, from 

determining data uncertainties to gap dynamics and investigation of local light 

environments lead to advances in the understanding of forest structure and light controls 

on growth within the humid tropics. This research will open many additional questions 

that will be taken briefly into consideration in the thesis conclusion, Chapter 6.
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CHAPTER TWO

PENETRATION OF WAVEFORM LIDAR INTO TROPICAL FOREST CANOPIES

Dissertation chapter rejectedfrom publication in Remote Sensing o f  Environment after 

submission in collaboration with H. Duong and M. Lefsky.

2.0 ABSTRACT

Forest ecologists, foresters and others are interested in the estimation of forest structure 

for varied reasons, from growth and yield models in commercial plantations, to biomass 

estimation for REDD+ projects, or predictions o f plant and animal biodiversity important 

to ecosystem management. Lidar, a form of active remote sensing, has proven capable of 

distinguishing biomass and basal area of forests characteristic of later stages of 

development (Lefsky et al. 1999a, Drake et al. 2002a, 2002b, Lefsky et al. 2005b). 

However, these metrics are strongly weighted by the largest (most likely to be the tallest) 

trees. As interest grows in estimates o f structural characteristics of forests that are less 

heavily weighted by large trees (such as the overall size distribution), understanding the 

location of lidar returns within the canopy becomes increasingly important (Zimble et al. 

2003, Chasmer et al. 2006, Palace et al. 2010). In this work an attempt is made to define 

the outer canopy surface to describe the locations of lidar returns within the canopy
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surface. Direct comparison of synthetic waveforms based on airborne lidar data with 

GLAS waveforms collected over the Brazilian Amazon shows that GLAS waveforms are 

not significantly different from synthetic waveforms in terms of a commonly used index 

of canopy height (HOME - the height of median energy) or percentage of near ground 

returns. Further analysis of the airborne lidar data shows that 53% of lidar returns come 

from the outer canopy surface, with large variation between individual waveforms and 

high sensitivity to the scale used for identification of the outer canopy surface. This 

implies that a hypsometric approach to waveform analyses (which assumes that most 

returns are from the outer canopy) will introduce large errors.

2.1 INTRODUCTION

Structural characteristics of forest ecosystems such as height, crown size and position of 

vegetation are important for ecosystem studies at multiple scales. These measurements 

can be used to estimate stand-level biomass, basal area and size structure, and provide 

insights into growth and mortality (Gillespie et al. 1992, Keller et al. 2001). The presence 

and absence of vegetation in various height strata is also used to predict plant and animal 

biodiversity (Goetz et al. 2007). However, field measurement of forest structural 

characteristics is often limited to small areas due to limited access to the upper canopy 

and the time consuming nature of the measurements.
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Passive remote sensing (i.e. Landsat and MODIS sensors) has been  used to estimate 

aspects of forest structure such as average crown size and gap fraction (Asner and Keller 

2002, Wang et al. 2005, Palace et al. 2010). However, these sensors are unable to measure 

canopy height that would allow them to distinguish between la te r  stages of forest 

development (Saatchi et al. 2007). Lidar remote sensor is an active  remote sensing 

technique that is capable of measuring components o f  forest structure including those 

necessary to distinguish later stages of forest development such as height and canopy 

rugosity (Parker and Russ 2004). This is of great importance fo r  the study of primary 

tropical forests with dense canopy cover.

Lidar (light detection and ranging) estimates canopy structure b y  directly measuring the 

distance to reflected objects using a laser pulse. Lidar remote sensing techniques provide 

a method of rapidly estimating forest structural characteristics over large areas and have 

been shown to estimate dominant crown size (Forzieri et al. 2009, Palace et al. 2010), gap 

distribution (Weishampel et al. 2000, Gaulton and Malthus 2010), canopy height (Drake 

et al. 2002a, 2002b), tree height (Zimble et al. 2003) as well as biomass and basal area 

(Nelson et al. 1988, Lefsky et al. 2005a).

The area illuminated by the laser pulse (footprint) and the method o f recording a 

returning pulse vary between instruments. Footprint size varies from 5 cm to 70 m, and 

sensors record single- or multiple- discrete returns or full-waveforms. In the case of a 

single-return system the sensor records the time to the first or la s t  return only,
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corresponding to the maximum canopy height or ground respectively. A return is 

determined as a peak of returned energy that exceeds a noise threshold. Multiple-retum 

sensors typically record three to four returns. Full-retum sensors record the amount of 

energy returned per time step for the entire light pulse. Most commercial sensors which 

are flown on aircraft are single or multiple-retum sensors. Research-oriented and some 

commercial sensors record a full waveform from either aircraft or satellite platforms. 

Waveforms record the vertical distribution of surfaces that were illuminated by the laser, 

but there is no general understanding o f how those surfaces are distributed in complex 

canopies (however see Chasmer et al. 2006, Neuenschwander et al. 2008). Some methods 

of waveform interpretation report metrics that only specify the heights at which various 

energy thresholds are met and do not require assumptions about the three-dimensional 

distribution of these surfaces. Metrics such as the Height O f Median Energy (HOME) 

have precise definitions within the context of waveform analysis but their meaning as 

related to the physical organization of canopies is unclear.

There are two general interpretations o f the physical meaning of these metrics. One 

assumes that the majority of reflected light comes from a shallow zone near the outer 

canopy surface (the hypsometric approach of Parker et al. 2001, see also Lefsky et al. 

1999a, 1999b, N^sset and ykland 2002, Popescu et al. 2002). If this assumption holds 

true, the power of the waveforms is proportional to the area of tree crown surface at that 

height, which allows direct interpretations of tree size distributions. An alternate 

assumption posits that light penetrates into the canopy according to the approach of



Mac Arthur and Horn (1969) and that the rate of extinction is low enough to allow for 

substantial penetration into the interior of the canopy (Blair and Hofton 1999, Drake et al. 

2002b, Pesonen et al. 2010). If  this assumption is correct then this approach allows direct 

retrieval of the vertical distribution of all canopy surfaces (not just the illuminated sample 

of surfaces) via the MacArthur-Hom transformation.

A direct test of the validity of the MacArthur-Hom interpretation is extremely difficult as 

it requires that the actual three dimensional distribution of foliage and non-photosynthetic 

surfaces to be known. Indirect evaluation of the MacArthur-Hom interpretation relies on 

comparison of vegetation profiles created using lidar data from downward-looking 

airborne and upward-looking terrestrial sensors. If canopies are structured in accordance 

to the assumptions made by MacArthur and Horn, then their approach should be able to 

reconcile these two sets of disparate observations. Although these comparisons have 

found that observations from the upward- and downward- orientation will create 

generally similar vertical features (Lefsky et al. 1999b, 1999a, Harding et al. 2001, Lovell 

et al. 2003, Hilker et al. 2010) no definite comparison has yet been published.

Preliminary work presented by Leitold (2009) shows improved agreement between 

upward- and downward- oriented lidar systems by applying a Beer's Law correction.

In contrast, a direct test of the hypsometric approach is possible by estimating the fraction 

of energy returned from the outer-canopy-surface zone and testing the effect of observed 

departures from the underlying assumptions. While this test is not possible using
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waveform lidar, it can be done using conventional discrete return lidar data to synthesize 

lidar waveforms. Data of this type has been shown to closely match coincidentally 

collected waveform data (Blair and Hofton 1999) if the discrete return data is collected at 

high spatial density with small footprints. However, the data presented here have a larger 

footprint size and lower spatial density than the data presented by Blair and Hofton. Their 

data were collected with a footprint size of approximately 5 cm but had only single 

returns while the data used in this study have a footprint size of 15 - 20 cm and include 

up to four returns. An additional complication is that the footprint size of the waveforms 

they used for comparison with the synthesized waveforms was 25 m, whereas the GLAS 

footprints used here were 60 m. As a consequence, we first test the agreement between 

synthesized and GLAS waveforms.

As the hypsometric approach assumes that most returned energy comes from the outer 

canopy surface, a primary methodological concern is the definition of the outer-canopy- 

surface zone. The optimal definition will be as shallow as possible while capturing the 

shape of individual crown surfaces, lower tree crowns in canopy openings and the ground 

surface (Figure 2.1). While this is easy to describe qualitatively, we performed a 

quantitative analysis of key parameters in the delineation of the outer-canopy-surface 

zone.
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(a) Too narrow. Frequent penetration 
between leaves leads to returns from 
inner canopy region.

(b) Too wide. Misses crown 
curvature and spaces between 
crowns.

Tr
(c) Too shallow. Can be too stringent 
a limit (eg. only top 25 cm) or only 
capture the top of canopies if the 
width is large.

(d) Too deep. Returns from within 
the inner canopy may be classified 
as part of the outer surface.

(e) Ideal. Outer surface curvature 
and between canopy spaces are 
captured without inclusion of inner 
canopies.

Figure 2.1 Definition o f the outer-canopy-surface was examined on the basis o f  two 
spatial parameters: the scale o f the horizontal window used to determine the "local" 
maximum value and the depth o f the outer-canopy-surface zone considered. Potential 
issues with the scales o f canopy surface identification are detailed here, with grey arrows 
representing returns from the inner canopy, and black arrows returns from the outer- 
canopy-surface.
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2.2 OBJECTIVES

This research focuses on the following questions:

- Can small footprint lidar data available to us be used to simulate GLAS 

waveforms?

- How can we best define the outer-canopy-surface zone?

- Is most energy returned from the outer-canopy-surface zone and, if not, what 

errors are introduced when we use a hypsometric interpretation of waveform power?

2.3 METHODS

Airborne Lidar Data

Airborne lidar data was collected by Esteio Ltd. (Curitiba, Brazil) between June 7 and 

July 3 2008 in the Brazilian Amazon. Seventeen areas, a total o f4700 ha (Table 2.1), 

were flown in the regions of Manaus (Amazonas State) and Santarem (Para State). The 

instrument was a Leica ALS-50, a discrete-retum lidar capable of capturing four returns 

(1st, 2nd, 3rd and last). Flights were conducted between 700-900 m above ground level 

which resulted in a footprint size of 15-20 cm diameter (approximately 0.025 m2). The 

maximum two-sided scan angle was 30 degrees. Minimum return densities of 10 pts m 2 

were specified at Tapajos Km 67 and Reserva Ducke and 3 pts m*2 at other sites. With up



to four returns for every shot, mean return densities of 12.1 for low density sites and 46.7 

for high density sites were observed.

Table 2.1 Summary o f  plots surveyed with airborne lidar in June and July o f2008 by 
Esteio Ltd (Curitiba, Brazil). UTM center coordinates are UTM 20S fo r  Manaus plots 
and UTM 2 IS  fo r  plots near Santarem. Sites 11-14 were flown with a return density over 
10 returns per m2.

Site Region Area
Overflown
(hectares)

Mean Return Maximum 
Density (SD) Return 

Density

UTM E 
Center

UTMNC

1 Manaus 516 10.6 (9.3) 198 822208 9741109
2 Manaus 42 8.2 (8.4) 143 842939 9734987
3 Manaus 229 9.4 (9.6) 189 847054 9733793
4 Manaus 244 13.1 (11.1) 188 849090 9735397
5 Manaus 139 12.0(10.1) 194 850423 9731633
6 Manaus 145 15.0(13.2) 232 857405 9729685
7 Manaus 3.3 10.6 (7.5) 112 859442 9729818
8 Manaus 3.4 16.2(10.0) 141 859831 9729676
9 Manaus 3.9 23.0 (14.0) 159 859492 9729329
10 Manaus 593 10.4 (9.5) 193 811542 9711484
11 Manaus 469 38.3 (28.8) 470 841106 9674444
12 Manaus 485 39.7 (34.6) 421 841229 9673542
13 Manaus 486 52.4 (43.5) 487 841497 9672453
14 Santarem 400 53.4 (32.5) 555 727386 9684047
15 Santarem 810 13.4(11.9) 282 726439 9666276
16 Santarem 53 13.0(10.6) 162 726814 9664391
17 Santarem 87 10.6 (9.5) 139 728142 9662631

Point data was geo-referenced by Esteio Ltd and delivered in LAS format, including 

information on the position of the returned point, intensity o f the return, and return 

number (1-4). Position errors were tested using areas of overlapping data from multiple 

flight lines. Features identifiable in both scenes were used to identify spatial offset
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between overlapping ground returns. The mean differences did not exceed 70 cm vertical 

and 40 cm horizontal.

A “bare earth” digital elevation model (DEM) with 2 m horizontal spatial resolution was 

developed using the Tiffs program (Toolbox for Lidar Data Filtering and Forest Studies, 

Chen 2007) using both first and last return lidar data at each study site. Tiffs uses 

progressively larger window sizes for morphological operations (similar to Zhang et al. 

2003), but without the assumption of a constant slope. Height within the canopy was 

calculated for each point by subtracting off the local elevation as estimated using the 

DEM. A canopy surface model was created by calculating the maximum canopy heights 

within 0.5 m resolution pixels.

The original 0.5 m resolution canopy surface model (CSM) was modified to create five 

additional surface models simulating the first return obtained at increasing footprint size. 

This was conducted using the morphological operator “dilate” that replaces every pixel 

value with the maximum pixel value within a given structural element. In this analysis, 

square structural elements with the following edge lengths were applied: 1 m, 2 m, 3 m, 4 

m and 5 m.
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GLAS Lidar Data

The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and Elevation 

Satellite (ICESat) collected full waveform lidar data between 13 January 2003 and 11 

October 2009. Individual footprints of between 40 m and 90 m diameter were recorded 

every 175 m along the satellite’s path with between track distances of less than 10 km in 

the tropics. One hundred and sixty-three waveforms fell within six regions of airborne 

lidar data. Figure 2.2 shows the locations of GLAS footprints overlapping one airborne 

lidar region of 229 ha located near Manaus, Brazil (Site 3). Orientation and shape o f the 

footprints show the effects of eccentricity and azimuth of variation of the GLAS data.

9734200

9734000

9733800

9733600

in i
9733400

8 4 6 0 0 0 8 4 6 5 0 0 8 4 7 0 0 0 8 4 7 5 0 0 8 4 8 0 0 0
East (m)

Figure 2.2 GLAS waveform locations overlaid on a canopy height map generated using 
airborne lidar data collected in June and July 2008. The area shown is a Biodiversity o f  
Forest Fragments Project (BDFFP; Site 3) plot in the vicinity o f  Manaus, Amazonas 
state, Brazil. This is one o f 17 areas flown, totaling over 4700 ha sampled.

Illumination intensity over lidar footprints has a two-dimensional Gaussian distribution; 

by convention, the footprint radius is defined as the distance where the relative intensity 

has decreased to e'2 (Blair and Hofton 1999). In the data considered here (observation 

periods from L2B to L3H), the footprint diameter of GLAS sensors varied between 51.2
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m and 89.8 m (mean of 60.6 m and standard deviation of 14.0 m) (Attributes for ICESat 

Laser Operations Periods, http://nsidc.org/datayicesat/glas_laser_ops_attrib.pdf).

Synthetic Waveforms

GLAS waveforms were compared with waveforms synthesized from airborne lidar 

returns collected coincident with GLAS footprints. Each lidar return was weighted by the 

product of its intensity (as recorded by the sensor) and the relative power of laser 

illumination caused by the Gaussian distribution of energy within the laser beam (Blair 

and Hofton 1999, Pang et al. 2008, Duong et al. 2008). Vertical smoothing was 

performed to match the Gaussian distribution of energy within the laser pulse itself. This 

was done for two cases: using all lidar returns and using first returns only.

Fifty-six waveform pairs were used in the final analysis of synthetic waveforms. Other 

waveform pairs were removed due to problems with vertical referencing of the GLAS 

waveform and incomplete overlap. Three waveform-based metrics were calculated for 

each waveform and waveform pairs were compared (GLAS v. synthetic). The three 

metrics compared were: Maximum height, height of median energy (HOME) and 

percentage of power at less than two meters from the ground (Figure 2.3). All metrics 

were based on the gaussian decomposition of the waveform.
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Figure 2.3 Example synthetic waveform (black) with gaussian decomposition (light grey) 
and cumulative summation o f energy (dark grey). Vertical arrows display maximum 
height and height o f median energy (HOME). The region shaded dark grey demonstrates 
the proportion o f power at less than 2 m above ground. A ll metrics are calculated from  
the gaussian decomposition o f the waveform with ground elevation determined as the 
peak o f the lowest Gaussian. Each metric is calculated using the same methods fo r GLAS 
waveforms and synthetic waveforms based on all returns and 1st returns o f  airborne lidar 
data.

The metrics were defined as follows: Ground elevation was determined as the peak of the 

lowest Gaussian. Maximum height is the distance between the ground elevation and the 

start of the waveform signal. The start of the waveform signal is defined as the highest 

point at which the signal returned is above the background noise threshold (Harding and 

Carabajal 2005, Lefsky et al. 2005a). The height of median energy (HOME) is the 

distance from the ground elevation to the median of waveform power above a noise 

threshold (Drake et al. 2002a). Within this analysis, percentage of ground return of the
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waveform is defined as the ratio of the total signal power less than two meters above the 

ground return to the total power of the waveform.

The effect of the large difference in collection times (spanning 239 - 1565 days between 

GLAS and airborne lidar data collection) was filtered for by applying a minimum 

correlation coefficient of 0.75. This serves to remove waveform pairs that present large 

changes in structure due to tree-falls or other events.

Canopy Penetration

Definition of the outer-canopy-surface zone was examined on the basis o f two spatial 

parameters: the width of the horizontal window (scale) used to determine the local 

maximum value and the depth of the zone considered. Potential issues with the scale of 

canopy surface identification are detailed in Figure 2.1. If  the horizontal scale considered 

is too narrow (Figure 2. la) objects within the inner-canopy that reflect light back to the 

sensor due to small openings in the outer canopy may be classified as part o f  the outer- 

canopy-surface. This will yield an extremely rough outer canopy surface and runs 

counter to the common sense notion of an outer-canopy-surface defined by crown height, 

diameter and shape. If the horizontal scale considered is too wide (Figure 2. lb), crown 

curvature will not be captured, and crowns or terrain surfaces within gaps between 

crowns will also be missed.



Variation in the depth of the outer-canopy-surface zone is also important. The effects of a 

shallow depth vary depending on the horizontal scale used (Figure 2. lc). In the case of a 

narrow horizontal scale it is possible to use a depth that is too shallow. In this case, 

returns that are near the outer-canopy-surface will be erroneously classified as inner 

canopy. In the case of larger horizontal scales only the tops of canopies will be included, 

missing large portion of canopies with curved outer surfaces. If a deep zone is classified 

as outer canopy, it is likely that inner canopy regions will be included in the outer- 

canopy-surface zone (Figure 2. Id). An ideal definition of the outer-canopy-surface 

includes the upper surface of each crown (whether flat topped or curved), ignores spaces 

between leaves of individual crowns but captures small gaps between crowns and does 

not capture inner canopy regions (Figure 2. le).

Scales were compared and canopy penetration evaluated based on multiple factors 

including percentage of returns within each canopy layer. For each set of ALS returns 

coincident with a single GLAS footprint, returns were classified by region: outer-canopy- 

surface, ground and inner-canopy (Figure 2.4, red, green and yellow points respectively).
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Figure 2.4 Classification o f lidar point returns within a 1 m by 50 m swath at Tapajos 
National Forest, Brazil (Area 14) into outer canopy (red), inner canopy (yellow) and 
ground (green) components using a 5 m outer-canopy-surface depth and canopy surface 
model with 5 m horizontal scale. Percentage o f  returns from the outer-canopy-surface 
(Yoouter), percentage o f returns from within the canopy (Yoinner), percentage o f returns 
near the ground surface (Yoground), outer canopy mean height (red dashed line; p o u te r ) , 

and overall mean height (black dashed line; pa») are reported. The height offset is the 
outer-canopy-surface mean height minus the overall mean height: Boxed regions show 
potential problems in outer canopy surface delineation due to the wide pixel size o f  the 5 
m canopy surface model and the large depth considered. Boxes 1 and 3 show regions with 
no outer canopy surface points due to the wide pixel size o f the 5m canopy surface model. 
Box 1 has a clear outer-canopy-surface layer that is 5 - 10 m below the surrounding 
canopies. Box 3 shows a region with a sharp drop-off in outer canopy height and 
penetration to the near ground surface. Box 2 shows a potential problem with an overly 
large depth considered to be the outer canopy surface. Here, a large number o f  returns 
are classified as outer canopy that appear to be within canopy points.

The classification of each point is determined by comparison with the CSM consisting of 

local maximum heights. Returns within a given distance of the CSM height are classified 

as outer-canopy-surface returns. Returns within the same distance of the DEM are 

classified as near ground returns. The balance is defined as within canopy. Six horizontal
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scales (the original CSM at 0.5 m scale and the five degraded CSM's) and five vertical 

depths (1 m -  5 m) were considered.

In addition we use a new metric, the mean height of returns classified as outer canopy 

surface minus the mean height of all returns which we refer to as the height offset (Figure 

2.4). The height offset quantifies a practical aspect of the hypsometric approach's 

applicability and is defined such that waveforms that fully support the hypsometric 

approach will show an offset of zero. This occurs under two conditions. The first is the 

most straight-forward case, where all returns are within the outer-canopy-surface. 

However, there is a second possibility where much of the energy in the waveform is from 

within the canopy but the vertical distribution o f that energy closely follows the 

distribution of those we consider part of the outer canopy surface. If so, even though we 

cannot assume that most points come from the outer canopy, we could still use the 

vertical distribution of the waveform to estimate the vertical distribution of crown area.

2.4 RESULTS

Synthetic Waveforms

Synthetic waveforms generally under-estimated maximum height and HOME as 

compared to GLAS waveforms. This is true for synthetic waveforms constructed using 

both first and all returns. For first returns, the difference in maximum height (GLAS 

value -  synthetic value) for the 56 waveform pairs used in this analysis is 5.90 m on
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average with a standard deviation o f 8.21 m, and for HOME the difference was 2.35 m 

(5.2 m standard deviation). When calculated for all returns the differences are less 

pronounced; the difference in maximum height was 4.25 m (9.3 m  standard deviation), 

and HOME 1.35 m (6.0 m S.D.). Values of maximum height and HOME are all 

significantly different from zero in the case of 1st returns. When all returns are used, 

maximum height is significantly different from zero, bu t height o f  median energy is not. 

The standard deviation of each metric was greater than the difference between the mean 

and zero. Results did not change when a minimum correlation coefficient of 0.75 was 

applied.

The ratio of energy within 2 m meters of the ground surface to th e  total waveforms 

energy was higher for synthetic waveforms than for GLAS waveforms. Using first 

returns only the energy ratio of GLAS waveforms was 3 percentage points lower with a 

range of -37% - +31% and a standard deviation of 12 points. W hen all returns were 

included the energy ratio o f GLAS waveforms had a mean 1.6 percentage points lower 

with the same range and a standard deviation of 13 points. In neither case was the mean 

significantly different from zero.

Defining the Outer-Canopy-Surface

In Figure 2.4, the effect of a 5 m horizontal width and 5 m  outer-canopy-surface depth are 

shown. The CSM is degraded so that each pixel represents the maxim um  height within a
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5 x 5 m window. Returns within 5 m of the CSM height are classified as outer canopy 

surface returns (Figure 2.4, red). Returns within 5 m of the DEM are classified as near 

ground returns (Figure 2.4, green). The remainder are classified as inner-canopy-retums 

(Figure 2.4, yellow). Percentage of returns within each layer is calculated as are the mean 

heights of all returns and returns within the outer-canopy-surface. Returns in the outer- 

canopy-surface account for 33.3% of all returns and have a mean height of 36.3 m. The 

internal canopy points are 59.7% of the total, and the near ground returns are 6.9% of the 

total. This area shows a large height offset of 12.4 m between all points and the outer 

canopy surface points.

Three regions within Figure 2.4 are boxed to display problems with the large pixel width 

(horizontal scale) of the CSM (5 m) and the large outer-canopy-surface depth (5 m). As 

shown in Figure 2.1, the use of a large pixel width causes low returns that are along-side 

higher canopies to be mis-classified as inner-canopy-surface elements. These lower 

returns may include a small gap between canopies, or be a wide canopy that is bordered 

by taller trees. Boxes 1 and 3 of Figure 2.3 show regions with no returns classified as 

outer-canopy-surface due to the large pixel width and taller surrounding trees. Box 1 

highlights a region with clumped returns between 6 and 10 m below the surrounding 

canopies. In Box 3 the outer-canopy-surface height declines sharply from 43 m to 5 m 

over a 6 m span. A narrow horizontal scale is necessary to capture this rapid variation.

The use of a deep outer-canopy-surface depth results in the inclusion of inner canopy 

space as seen in Box 2. This occurs independently of the CSM scale.

30



oCO

o<D

oin

oco
CSM Scale 

0.5 m - e - 3 m
4 m
5 m

o
CM

2 mo

2 3 4 51

Depth of outer canopy surface (m)

Figure 2.5 Percentage o f returns in the outer canopy surface with depth o f  outer canopy 
surface for each o f the six considered scales o f the canopy surface model (CSM).

The percentage of returns in the outer-canopy-surface varied from 23 -  66% over the full 

range of depth and horizontal scales tested (Figure 2.5). The percentage of returns within 

the outer-canopy-surface is more dependent on the scale of the canopy surface model 

(CSM) than the depth of outer-canopy-surface considered. The highest percentage of 

outer-canopy-surface returns was found at the 0.5 m scale with a rapid decrease as the 

scale increased, likely due to decreased coverage. The height offset was also smallest at 

the 0.5 m scale. At this scale the height offset varied from 4.15 m -  4.37 m (Table 2.2). 

This gradually increased as the CSM was degraded; at the 5 m scale the height offset 

varied from 6.95 m -  8.06 m. At no scale was the height of returns from within the outer- 

canopy-surface representative of the mean height of the full set of returns. T-tests showed
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significant difference (p < 0.001) in the mean heights for all cases considered. This is

expected given the relatively low percentage of points within the outer-canopy-surface.

Table 2.2 Height offset and standard deviation with varying outer-canopy-surface depth 
(1 - 5 m) and canopy surface model scale (0.5 m to 5 m).

Horizontal scale of CSM

Depth of outer- 
canopy-surface 
(m)

0.5 x 0.5 m 1 x 1 m 2 x 2 m 3 x 3 m 4 x 4 m 5 x 5 n
1 m 4.37 5.38 6.24 6.93 7.52 8.06

(1.54) (1.47) (1.73) (1.97) (2.18) (2.38)
2 m 4.33 5.25 6.08 6.74 7.32 7.85

(1.48) (1.44) (1.68) (1.91) (2.12) (2.32)
3 m 4.28 5.11 5.89 6.52 7.07 7.57

(1.44) (1.43) (1.66) (1.88) (2.09) (2.28)
4 m 4.22 4.96 5.69 6.28 6.80 7.26

(1.42) (1.43) (1.66) (1.88) (2.08) (2.27)
5 m 4.15 4.81 5.49 6.04 6.52 6.95

(1.42) (1.46) (1.67) (1.88) (2.08) (2.28)

Given the high percentage of outer-canopy-surface returns and low height offset found 

for the 0.5 m horizontal scale, we checked for inter-leaf or inter-branch penetration.

Either type of penetration within individual canopies would cause an increase in outer- 

canopy-surface percentage and decrease in height offset. Though inter-leaf penetration is 

expected to occur only when outer-canopy leaves are smaller than the footprint size of 

lidar data, given the current data set there is no way to quantitatively describe the point at 

which inter-branch or inter-leaf penetration begins to occur, requiring visual inspection to 

rule out it's occurrence. Regions were visually inspected in each of the three study 

regions and penetration within individual canopies was not found at the 0.5 m horizontal 

scale. Given the lack of within-canopy penetration in combination with the high 

percentage of returns within the outer-canopy-surface and low height offset, 0.5 m was 

chosen as the best horizontal scale for the available airborne lidar data set.
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At the 0.5 m horizontal scale the height offset was smallest with a 5 m depth considered 

(4.15 m), increasing slightly to 4.37 m for a 1 m depth. As no significant difference was 

found between the height offset for 1 m depth and any other depth considered (p>0.1), 

there was no justification for using an outer-canopy-surface depth beyond the initial 1 m 

depth tested.

To display the effects of variation in scales, the outer canopy characteristics are shown for 

both the chosen scale and a larger horizontal scale and depth for a region of Tapajos 

National Forest (Figure 2.6). At the 0.5 m horizontal scale and 1 m outer-canopy-surface 

depth the variability o f the outer-canopy-surface is captured without including points that 

appear to be inner canopy elements (Figure 2.6a). The overhead view mimics that of the 

canopy surface model itself (Figure 2.6b). When the 5 m scale CSM is used and depth is 

not increased the canopy surface is not well captured; crown curvature is not captured, 

nor are small openings or lower canopies. This scale more successfully separates 

individual emergent crowns, though it also captures low areas where no emergent crown 

is within 5 m. Increasing the depth improves the detection o f the crown surface (Figure 

2.6c) but excludes transition regions between crowns and continues to miss lower crowns 

and small openings to near the ground surface (Figure 2.6d). The issues in outer canopy 

delineation that occur in Figure 2.6 were previously presented in Figure 2.1. Specifically, 

the issues presented in Figure 2.1 panels (b) and (d) demonstrating potential problems 

when the horizontal scale is too wide or the vertical limit is too deep and the combination
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of these issues demonstrated on the right-side o f Figure 2.1c. At the 0.5 m horizontal 

scale and lm depth none of the potential issues are present. Between-leaf penetration is 

not present leading to returns being marked as outer canopy that are beneath other 

canopies (Figure 2.1a), and outer canopy surfaces are well captured (left side of Figure 

2.1c).
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Figure 2.6 Comparison o f horizontal and vertical scales used to define canopy layers, (a 
-  b) CSM at 0.5 m scale and 1 m depth and (c — d) degraded CSM at 5 m scale and 5 m 
depth. Panels (a) and (c) display lidar point returns within a 1 m by 50 m swath at 
Tapajos National Forest, Brazil into outer canopy (red), inner canopy (yellow) and 
ground (green) components. Dashed lines show the mean height o f the outer canopy 
surface (red) and all points (black); The percentage o f returns in each canopy region is 
also reported. Panels (b) and (d) show an overhead view o f  lidar point returns within 
outer canopy surface. Color varies with height, and the bounding box delineates the 1 m 
x 50 m transect shown in panels (a) and (c) respectively.
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Figure 2.7 Mean height o f returns within the outer-canopy-surface is consistently higher 
but correlated with the mean height o f  all returns. There is a significant linear correlation 
with a slope o f  1.18 and an intercept o f  0.63 m.

Using the 0.5 m scale CSM and 1 m outer canopy depth, variation between individual 

footprints was investigated. Mean height of returns within the outer canopy surface is 

consistently higher but correlated with the mean height of all returns (Figure 2.7). There 

is a significant linear correlation with a slope of 1.18 and an intercept o f 0.63 m. 

However, the coefficients of this relationship are expected to vary widely (i.e. depending 

on the forest type, disturbance patter, etc.) and are therefore not likely to be applicable 

beyond this study. The height offset varied from 1. 5m-  9.6 m  (mean 4.4 m) and is 

negatively correlated with the percentage of returns within the outer-canopy-surface (R2 

= 0.65; p-val <0.001; Figure 2.8). The percentage within the outer canopy surface varied
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from 37.6 -  65.4% and was not well correlated with mean height (R2 = 0.18). This 

implies that canopy structures that influence the percentage o f outer-canopy-surface 

returns are independent of mean height. This further strengthens the argument that while 

median height is a strong predictor of biomass and basal area, this is due to the 

importance of the tallest trees as opposed to the ability of this metric to represent overall 

canopy structures.
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Figure 2.8 The percentage o f returns within the outer canopy surface ranges from 37 - 
65% when an outer-canopy-surface depth o f 1 m is considered. It is also a strong 
indicator o f the error in prediction o f overall mean height from the outer-canopy-surface 
height. There is a significant linear correlation with a slope o f  -20.29 and an intercept o f 
15.12 m.
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2.5 DISCUSSION

Synthetic Waveforms

The comparison of synthetic waveforms based on all returns and based on first returns to 

GLAS waveforms demonstrated significant differences in maximum height in both cases. 

Synthetic waveforms based on first returns also demonstrated significant differences in 

HOME as compared to GLAS waveforms whereas no significant difference was seen in 

this metric for synthetic waveforms based on all returns. The ratio of energy within 2 m 

of the ground was not significantly different between GLAS waveforms and either set of 

synthetic waveforms. Some of the structural differences may be due to temporal de- 

correlation as airborne lidar data was collected 239 - 1565 days after the GLAS 

waveforms. However, this is unlikely as results did not change when waveforms were 

filtered selecting those with a cross-correlation factor greater than 0.75. The cross­

correlation factor serves as a proxy for filtering waveforms with large changes in canopy 

structure.

Two waveforms with varying maximum height and HOME are shown in Figure 2.9, 

allowing for a side by side comparison of GLAS and synthetic waveforms under different 

conditions. Given that calculated metrics are dependent on the gaussian decomposition of 

each waveform, this is shown with the initial waveform (black) and the cumulative 

distribution of power (dark grey). Figure 2.9A demonstrates a case where the gaussian
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decomposition of the GLAS waveform is comprised of two peaks; a narrow peak that 

captures the initial strong return of power, and a wide peak that includes 3-4 small noisier 

features between 135 m and 165 m elevation. As the ground elevation is defined as the 

peak of the lowest gaussian, the ground elevation is approximately 161m elevation. The 

fraction of power returned from less than 2 m above the ground is 0.35. The synthetic 

waveform based on all returns for the same location has a gaussian decomposition 

comprised of five narrow peaks. The lowest peak, that is used to calculate the ground 

elevation, is centered around 154 m. This is a difference of 7 m from the estimated 

ground elevation based on the gaussian decomposition of the GLAS waveform. The 

elevation corresponding to the HOME is approximately 167 m for the synthetic 

waveform and 169 m for the GLAS waveform and the elevations used to calculate 

maximum height are nearly identical. However, due to the large difference in estimated 

ground elevations, large differences are seen in HOME and maximum height as well. The 

synthetic waveform based on first returns is extremely similar to that based on all returns. 

When inspecting the three waveforms side by side it is apparent that the overall width is 

similar, as is the location of the dominant peak (near 174 m elevation). The second most 

dominant peak of the synthetic waveform coincides with a pulse of energy in the GLAS 

waveform (near 155 m elevation). The primary driver of differences between the GLAS 

and synthetic waveforms in this case is the difference in ground elevation.
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Figure 2.9 GLAS and synthetic waveforms compared fo r  two waveforms within Site 15 
(Tapajos National Forest). The cumulative energy distribution (dark grey) and the 
Gaussian decomposition o f  each waveform (light grey) are shown for each waveform. 
Lines display maximum height, height o f median energy (HOME) and the estimated 
ground elevation. Power less than 2 m is displayed as the dark grey shaded region and 
values for all metrics are printed within each panel. The GLAS waveform (panel 1), the 
synthetic waveform constructed using all airborne lidar returns (panel 2) and the 
synthetic waveform constructed using first returns (panel 3) are compared in panel 4 in 
grey, black and red respectively.
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In the second case study (Figure 2.9B) the GLAS waveform is best described by four 

gaussians of varying widths with the lowest peak at 145 m elevation defining the ground. 

The gaussians follow the shape of the waveform better than they capture the magnitude. 

The height of median energy is 25.8 m (terminating at an elevation of approximately 171 

m) and the maximum height is 43.2 m (terminating at an elevation of approximately 188 

m). The synthetic waveform based on all returns is best characterized by five gaussians, 

and the synthetic waveform based on first returns is best characterized by six, although 

both waveforms have similar shape and magnitude throughout. The ground elevation is 

approximately 145 m and the elevation of the first return (corresponding to maximum 

height) is at 191 m in both cases. The height of median energy varies minimally; 

terminating at elevations of 165 m for all returns and 167 m when only first returns are 

used. The ground elevation and overall signal width are similar between GLAS and 

synthetic waveforms. The greatest variation is seen in HOME which incorporates the 

magnitude of waveform features.

As is seen in these two examples, the statistics used for waveform description are reliant 

on the gaussian decomposition as well as the initial waveform. In both cases shown, 

synthetic waveforms based on all returns and based on first returns showed minimal 

differences. However, when all waveform pairs are taken into account significant 

differences are seen in the comparison with GLAS waveforms. Specifically, the 

difference in HOME between GLAS and synthetic waveforms based on first returns is 

significant, whereas it is not when the GLAS waveform is compared to the synthetic
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waveform based on all returns. This is likely due in part to the effect of small differences 

in the synthetic waveforms on the gaussian decomposition from which metrics are 

calculated.

Lidar Penetration

Investigation of the penetration of airborne lidar through the canopy surface did not 

support the theory that the majority of reflected light comes from a shallow zone near the 

outer-canopy-surface (the hypsometric approach). A maximum of 66% of returns were 

found within the outer-canopy-surface at the highest resolution of canopy surface model 

and the most lenient definition of the outer-canopy-surface depth (within 5 m of the 

outer-canopy-surface). At this scale there remained a significant offset of 4.15 m between 

the mean height of the outer-canopy-surface returns and the mean height of all returns. 

This indicates that the power of the waveforms is not proportional to the area of tree 

crown at a given height which limits our ability to directly interpret the tree size 

distribution from lidar waveforms.

To determine the extent that observed waveforms diverged from the assumption that the 

majority of reflected light comes from a shallow zone near the outer-canopy-surface, the 

outer-canopy-surface must be defined on the basis of two spatial parameters: the depth of 

the zone considered and the width of the horizontal window (scale) used to determine the 

“local” maximum value. Six horizontal scales were tested, varying from 0.5 m to 5 m and
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compared in terms of their ability to capture canopy variability. It is important that the 

optimal scale is able to capture variability such as the transition zones from tall emergent 

crowns to the ground surface (Figure 2.1). The 0.5 m horizontal scale showed the lowest 

height offset and the highest percentage of returns in the outer-canopy-surface of the 

scales tested without presenting inter-leaf or inter-branch penetration.

It is expected that a footprint size smaller than the average leaf size would allow for 

increased penetration within individual canopies. With 1 cm diameter footprints Parker 

and Russ (2004) showed penetration to the ground surface despite an instrument that was 

limited to first-returns. While the authors show a significant difference between ground 

estimates of mean foliage height and lidar-based estimates, it is not expected that these 

two estimates will ever be equivalent due to within canopy shading. However, it is 

expected that a canopy surface model with a horizontal scale near the scale of the 

individual footprint will yield an outer-canopy-surface that has the same mean height as 

the complete lidar data set.

As no significant differences were found in the height offset as the depth was increased 

we conclude that the additional returns included by increasing the outer-canopy-surface 

depth do not result in a significant change in mean height. Given that the coverage was 

also not significantly affected by increasing the depth of the outer canopy surface, it was 

determined that a i m  depth was sufficient to capture the outer canopy surface.



Using the optimal scale determined for the outer canopy surface, w e are able to determine 

the extent that waveforms deviate from the assumptions o f the hypsometric interpretation 

of waveform power and the errors that are introduced when the hypsometric 

interpretation is applied. The extent of deviation is merely the percentage of returns 

coming from regions within the inner canopy and near the ground surface. A mean of 

47% of returns came from these regions; 44.4% within the canopy and 2.7% within 1 m 

of the ground. However, this is widely variable depending on the  individual GLAS 

footprint compared, ranging from 34.6 - 62.4%. Four footprints w ith  varying levels of 

penetration into the inner canopy are shown in Figure 2.10. For each  footprint the 

cumulative number of returns is displayed divided between the ou ter canopy surface 

(blue) and inner canopy and ground (green). The proportional num ber of tree crowns is 

also displayed based on average crown size by height class in 5 m  increments (Keller, et 

al. unpublished data).
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Figure 2.10 Cumulative percentage o f  returns in the outer (blue) and  inner (green) 
canopy regions by height fo r  four waveforms with increasing m ean height and varying 
percentage o f  returns in the outer canopy surface. Points represent the proportional 
number o f  returns in each region (black in the outer canopy, and grey in the inner 
canopy) with size proportional to canopy size at a given height.
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The first panel of Figure 2.10 (panel A) demonstrates a footprint with low overall height 

and mid-level penetration through the outer canopy surface. The number of returns within 

the outer-canopy-surface increase sharply from 0 -  9 m height and then gradually 

decrease in an approximately linear fashion to 40 m height. Returns within the inner 

canopy demonstrate a linear decrease from 0 -  20 m height with a minimal number of 

returns continuing until 34 m. In terms of the cumulative percentage of returns displayed, 

this equates to a sharp decrease in width of the blue region between 0 - 9 m followed by a 

linear decrease in this width above 9m. The number of returns in the smallest size class 

(height between 0 -  5 m) is over four times greater when returns from within the canopy 

are included. Under the assumptions o f the hypsometric approach, all canopies in Figure 

2.10 would be considered to be part o f the outer-canopy-surface.

The second two panels of Figure 2.10 (panels B and C) have mean overall heights near 

20 m, but demonstrate variability in the percentage of returns within the outer-canopy- 

surface as well as widely varying canopy structure. Returns within the outer canopy 

surface of panel B show a peak in the number of returns at 15 m, decreasing sharply on 

either side. From 18 -  35 m height the number o f returns in the outer canopy is 

approximately linear near the half-max of the earlier peak and then decrease from 3 5 -4 2  

m. The outer canopy returns for panel C show a gradual increase from 0 -  20 m with an 

overall low number of returns in this region. A sharp peak in the number of returns 

occurs at 30 m, decreasing on either side to a maximum height of 40 m. The inner canopy



returns of panel B peak near 12 m, and those of panel C show two rounded peaks, one 

near 25 m and the other at approximately 3 m from the ground.

The fourth panel of Figure 2.10 (panel D) demonstrates a waveform region with high 

overall canopy height and high maximum canopy height. A minimal but non-zero number 

of outer canopy returns are present from 0 -  10 m; a low and relatively constant number 

of returns from 10 -  30 m; and a large number of returns from 33 -  50 m. The variability 

in the inner canopy returns is smaller, with returns present through the entire profile with 

two moderate peaks, one at approximately 35 m and the other near 15 m.

Of cases demonstrated, only panel D showed a nearly stable level o f inner canopy returns 

through the height profile. In other cases the number of inner canopy returns was highly 

variable, and independent of the distribution of returns within the outer-canopy-surface. 

Cases that show a clumping of inner canopy returns near the ground result in an 

exaggeration of the number of small to medium statured trees in the outer canopy under 

the hypsometric assumption.

2.6 CONCLUSIONS

High density airborne lidar data is here compared with GLAS waveforms, potentially 

providing a possible method for forest structural attributes on a global scale. GLAS has 

been successfully used for estimation of biomass and basal area of tropical forests, but
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analysis of size distributions and other complex structural characteristics has only begun 

recently (Palace et al. 2010). Derivation of size distributions from GLAS is dependent on 

the assumption that the power returned from a given height within the waveform is 

proportional to the surface area at that height within the canopy. This assumption has 

been tested and refuted.

We tested this assumption by evaluating the percentage of returns within GLAS 

footprints that come from the outer-canopy-surface. To do this, we determined the best 

scales for separating the canopy surface from all returns. At this scale (0.5 m CSM scale 

and 1 m depth), we found that 53% of returns came from within the outer canopy surface, 

44% from the inner canopy and 3% from within 1 m of the ground. As the scale varied, 

the percentage of returns in the outer canopy surface increased as the depth considered 

outer canopy increased, and decreased as the resolution of the canopy surface model 

decreased showing overall variation of 23 - 66 percent. Additionally, we found that the 

percentage of returns in the outer canopy surface was not constant, but varied widely 

between individual footprints.

From these findings we conclude that without further modeling of light environments 

within the canopy calculations of forest structure variables, such as stem size 

distributions based on GLAS waveforms, are likely to include large errors.
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Concluding Points:

1. Synthetic waveforms constructed using all returns are not significantly different from 

GLAS waveforms with regard to HOME or the percentage o f returns from near the 

ground surface.

2. The horizontal and vertical scale used to define the outer canopy cause the percentage 

of returns within the outer-canopy-surface to vary significantly (23 - 66%)

3. The preferred scale chosen is 0.5 m horizontal scale and 1 m depth. At this scale, the 

outer canopy surface contains 53% of the total number of returns.

4. The percentage of returns in the outer-canopy-surface is highly variable between 

individual waveforms (i.e. there is no simple method to account for the penetration of 

lidar below the canopy surface).

5. The hypsometric approach to waveform analysis will induce large errors due to the 

relatively small percentage of returns in the outer-canopy-surface and the high variability 

between individual waveforms.
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CHAPTER THREE

TREE HEIGHT AND TROPICAL FOREST BIOMASS ESTIMATION

Dissertation chapter published in Biogeosciences (www.biogeosciences.net/ 

10/8385/2013/) in collaboration with D. Victoria, M. Keller, and D. Morton.

3x0 ABSTRACT

Tropical forests account for approximately half o f above-ground carbon stored in global 

vegetation. However, uncertainties in tropical forest carbon stocks remain high because it 

is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical 

forests are determined using allometric relations between tree stem diameter and height 

and biomass. Previous work has shown that the inclusion of height in biomass 

allometries, compared to the sole use o f diameter, significantly improves biomass 

estimation accuracy. Here, we evaluate the effect of height measurement error on biomass 

estimation and we evaluate the accuracy of recently published diameter:height 

allometries at four areas within the Brazilian Amazon. As no destructive sample of 

biomass was available at these sites, reference biomass values were based on allometries. 

We found that the precision of individual tree height measurements ranged from 3 to 20%
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of total height. This imprecision resulted in a 5-6% uncertainty in biomass when scaled to 

1 ha transects. Individual height measurement may be replaced with existing regional and 

global height allometries. However, we recommend caution when applying these 

relations. At Tapajos National Forest in the Brazilian state of Para, using the pantropical 

and regional allometric relations for height resulted in site biomass 21% and 25% less 

than reference values. At the other three study sites, the pan-tropical equation resulted in 

errors of less than 2%, and the regional allometry produced errors of less than 12%. As an 

alternative to measuring all tree heights or to using regional and pantropical relations, we 

recommend measuring height for a well distributed sample of about 100 trees per site. 

Following this methodology, 95% confidence intervals o f transect biomass were 

constrained to within 4.5% on average when compared to reference values.

3.1 INTRODUCTION

Tropical forests are an important component of global carbon stocks. They contribute an 

estimated 428 Pg (1 Pg = 1015 g) of carbon globally, divided approximately evenly 

between vegetation and soils (Watson 2000). This total is approximately one fifth o f the 

global carbon stock, and the vegetation component is one half of the above ground 

carbon stored in vegetation of all biomes. However, there is a great deal o f  uncertainty in 

these numbers (Watson 2000). While some of this uncertainty is due to the unknown 

amount of deforestation and degradation in tropical forests, another large component is 

due to the uncertainties involved in estimating standing biomass in the field (Houghton
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2005). This uncertainty is compounded when a limited area sampled is used to predict 

biomass over large tracts o f forest.

Because of their high carbon density, tropical forests are increasingly viewed as an 

avenue for mitigation of climate change. In an effort to reduce deforestation and 

degradation by creating monetary value for the carbon in forests, the United Nations has 

developed REDD (Reducing Emissions from Degradation and Deforestation) (Gibbs et 

al. 2007). However, to implement this framework it is first necessary to quantify carbon 

stocks.

In an effort to create global biomass maps that can serve as REDD baseline carbon stock 

estimates, moderate and coarse resolution optical and microwave data from satellites has 

been combined with lidar remote sensing by ICESat to extrapolate field measured 

biomass over the global extent of tropical forest (Saatchi et al. 2011, Baccini et al. 2012). 

Recognizing the importance of biomass estimation the European Space Agency is 

scheduled to launch the BIOMASS radar satellite mission in 2020 in an effort to create 

three dimensional maps of the world’s forests (Le Toan et al. 2011). NASA missions 

(such as the completed ICESat and the upcoming ICESat II lidar missions) have 

secondary goals of estimating forest biomass (Lefsky et al. 2007, Nelson 2010, Saatchi et 

al. 2011). However, neither existing nor planned remote sensing data sets directly 

measure biomass; they all rely on field data in combination with allometric estimations 

for calibration (see Clark and Kellner, 2012).
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In most applications, estimation of tropical forest biomass is ultimately linked to the 

estimation of biomass of individual trees (although see Clark and Kellner 2012 who 

suggests an alternative approach). Individual tree biomass estimates depend upon 

allometric equations that are developed using a finite number of individuals from a 

limited region or a broader combination of sites (Chambers et al., 2001, and others). By 

necessity, these allometries are often applied beyond the region(s) for which they were 

developed, and often beyond the range of diameters sampled as well (Chave et al. 2003). 

Unfortunately, allometric equations do not transfer without error across all sites. For 

example, Vieira et al. (2008) applied allometric equations developed at sites in the central 

Amazon and Puerto Rico to Atlantic Forest trees and compared them with an allometry 

specific to the Brazilian Atlantic Forest. Equations developed at Puerto Rico and the 

central Amazon deviated by more than 36% and 68% respectively from the Atlantic 

forest values. Recently, broader analyses have been conducted that create regional and 

global allometric relations based on data from multiple sites (Chave et al. 2005, 

Feldpausch et al. 2012). These allometries are based on significantly larger sample sizes, 

and are assumed to be more robust for regions without site-specific equations. The Chave 

et al. (2005) allometry uses stem diameter and wood density, and optionally total tree 

height. Feldpausch et al (2011) have developed global and regional equations to relate 

height to diameter for sites where height measurements are lacking.
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Studies in temperate and tropical regions have shown the advantages of species-specific 

biomass and volume allometries (Litton and Boone Kauffman 2008, Basuki et al. 2009). 

Given the variation in tree form and growth properties, species specific allometries are 

desirable. However, the species diversity present in tropical forests makes this 

prohibitively costly for most sites. For example, a study conducted near Manaus showed 

280 - 285 species per hectare for three hectares sampled for trees greater than 10 cm 

diameter (De Oliveira and Mori 1999). Sites in the Brazilian Amazon typically have 

upwards of 100 tree species per hectare (Campbell et al. 1986), most of which do not 

have species specific allometries.

The inclusion of height in allometric equations greatly improves the accuracy of 

individual tree biomass estimation (Maia Araujo et al. 1999, Chave et al. 2005, Vieira et 

al. 2008, Feldpausch et al. 2012, Lima et al. 2012). Chave reported that the inclusion of 

height for stand level estimates of biomass reduced error from 19.5% to 12.8%, across all 

forms of tropical forests and across continents (Chave et al. 2005). At Brazilian sites 

specifically, the root mean squared error of individual tree biomass was reduced from 

16% to 6%.

The accuracy of biomass estimation for individual trees and subsequently for plot scale 

biomass fundamentally depends on the accuracy of tree height measurements. Tree 

heights can be difficult to measure under the best conditions (Rennie 1979, Williams et 

al. 1994). Height measurements are dependent on forest conditions, observer experience,
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and the equipment used. Tropical forests typically include significant obstacles for 

traditional field-based estimates of tree heights, including dense understory vegetation, 

tall canopies, and closed-canopy conditions that limit the line o f  sight. Tree height 

measurements in tropical forests are both labor intensive and have potentially large 

errors. Although researchers agree that height is a valuable addition when estimating 

biomass, the degree of acceptable error has been debated. Williams and Schreuder (2000) 

compared a diameter-only allometry to a diameter: height allometry and found that a 

height error of up to 40% was acceptable in temperate forests before the use of a 

diameter-only equation provided a better biomass estimate. Molto and colleagues (2013) 

showed that a height error of 2-5% can significantly influence estim ates of above ground 

biomass for a tropical forest in French Guiana. We evaluate how tree  height accuracy 

affects biomass estimation accuracy for moist tropical forests in Brazil by responding to a 

number of questions.

- How precise are ground-based tree height measurements using a hand-held 

clinometer and metric tape?

- How accurate are ground-based tree height measurements using the clinometer 

approach?

- What is the effect of tree-level uncertainty in height on th e  estimation of plot 

biomass?

- Are global and/or regional height-diameter relations adequate for accurate 

biomass estimation?

53



-How can field work be optimized to achieve acceptable accuracy in plot level 

biomass while limiting the number of tree height measurements used?

3.2 METHODS

Site Descriptions

Data from five sites in four regions of contrasting forest structure distributed across the 

Brazilian Amazon were used to answer the questions posed above (Table 3.1). The 

precision of ground-based tree height measurements was evaluated by comparing repeat 

measurements of height at one of the field sites, Tapajos km 67. The accuracy of height 

measurements was evaluated by comparing field and lidar data at two sites in the Tapajos 

National Forest and one at Reserva Ducke. The resulting estimates o f accuracy were 

applied at Tapajos sites and at Reserva Ducke to answer the third question, and the 

remaining questions were addressed using field data from all sites.

Regional and pan-tropical height-diameter allometries published by Feldpausch et al. 

(2011) include local climate and structural parameters. Climate data for all sites was 

extracted from the WorldClim 2.5 minute resolution database (Hijmans et al. 2005) in 

order to conform to climatic data requirements proposed by Feldpausch et al. (2011) and 

is presented in Table 3.2. The precipitation variability was defined as the standard



deviation of monthly precipitation divided by the mean. Dry season length was defined as 

the number of months with less than 100 mm of precipitation.

Table 3.1 Data used to address each o f  the five questions posed by this research. Lidar 
data were available fo r  three o f  the five sites.

Site Reserva Tapajos Tapajos Tanguro Cauaxi
Ducke km 67 km 83_________________

Data Available Field Lidar Field Lidar Field Lidar Field Field
Ql. Precision of ground-based X
height measurements
Q2. Accuracy of ground-based X X X X X X
height measurements
Q3. Effect of height uncertainty X X X X X X
on biomass prediction
Q4. Use of global / regional X X X X X X X X
diameter-height allometries
Q5. Optimization of field data X X X X X X X X
collection

Table 3.2 Site locations and climatic characteristics. Climatic data are from the 
WorldClim 2.5 minute resolution database (Hijmans et al., 2005). The precipitation 
variability is defined as the standard deviation o f  monthly precipitation divided by the 
mean. Dry season length is defined as the number o f  months with precipitation less than 
100 mm.

Site Reserva
Ducke

Tapajos 
km 67

Tapajos 
km 83

Tanguro Cauaxi

Location 59°57’W 54°57’W 54°58’W 52°23’W 48°17’W
2°57’S 2°51’S 3°01’S 13°04’S 3°45’S

Mean annual temperature (C) 27 25 25 25 27

Average precipitation (mm) 2208 1909 1909 1740 2200

Precipitation variability (%) 33 45 45 79 85

Dry season length (months) 1 5 5 5 6
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Forest structural characteristics including basal area, maximum diameter measured and 

mean canopy height all vary among sites and are presented in Table 3.3. The mean 

canopy height was calculated from field data as Lorey’s height (basal area weighted mean 

height).

Table 3.3 Details o f  field and lidar data collection. Lidar data were collectedfor three o f  
the five sites: Reserva Ducke, Tapajos km 67 and Tapajos km 83. Lorey s height is the 
basal-area-weighted mean canopy height fo r  all trees measured. *The nominal sample 
area o f the field survey is reported at Tapajos and Reserva Ducke sites, as diameter- 
dependent line sampling was conducted.

Site Reserva
Ducke

Tapajos 
km 67

Tapajos 
km 83

Tanguro Cauaxi

Number of trees measured (N) 817 913 852 844 2171

Tree heights measured (Nht) 817 913 852 308 306

Area sampled (ha)* 3.0 5.1 5.1 6.7 14

Basal Area (m2ha_1) of trees >10 
cm diameter

28.7 31 17.6 17.1 35.2

Diameter range measured (cm) 5 - 128 5-213 5 - 186 10-70 20 -192

Lorey’s height (m) 30 38 38 19 39

Date of field data collection 10/2009 06/2009 01/2010 11/2005 07/2000

Area of lidar data collected (ha) 1200 400 768 NA NA

Mean CHM height (m) 25 34 34 NA NA

Date of lidar data collection 06/2008 06/2008 06/2008 NA NA
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Reserva Adolpho Ducke

Reserva Adolpho Ducke (59°57’W 2°57’S) is a 10,000 ha forest preserve managed by the 

National Institute for Amazon Research (INPA) north of Manaus, Brazil. It is dominated 

by rolling terrain (30 - 120 m.a.s.l.) cut by small streams and covered by upland terra 

firme forest with a large number of palms present, especially in seasonally flooded 

valleys. The soils vary with topography with oxisols similar to those of Tapajos National 

Forest (see below) present on the upland plateaus, ultisols on the slopes and spodosols in 

the valleys (Chauvel et al. 1987). These soils are acidic and low in nutrients. Mean annual 

temperature is 27° C, and precipitation averages 2208 mm with a short dry season ( 1 - 3  

months) during July - September (Table 3.2).

Tapajos National Forest- Tapajos km 67 and Tapajos km 83

The Tapajos National Forest (54°58’W, 2°51 ’S) is a 550,000 ha reserve situated south of 

Santarem, Brazil between the Tapajos River and the Cuiaba-Santarem Highway 

(BR-163). The reserve is dominated by upland forests on a nutrient-poor, clay oxisol 

plateau (Silver et al. 2000). The mean annual temperature and precipitation at Tapajos are 

25° C and 1909 mm, respectively. The dry season generally lasts five months, from July- 

December (Vieira et al. 2004). Two field sites were installed within the Tapajos National 

Forest referred to by their entrance points along the BR-163 highway; an undisturbed 

forest site (Tapajos km 67) and a selectively-harvested site (Tapajos km 83).
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Fazenda Tanguro

Fazenda Tanguro (52°23‘W 13°4’S) is a private land holding of approximately 80,000 ha 

within the municipality of Querencia, Mato Grosso. Located near the forest-cerrado 

transition, Fazenda Tanguro is classified as transitional forest characterized by 

comparatively low biomass and tree species diversity. Soils are oxisols throughout this 

generally flat region, with slopes less than 2 degrees (Balch et al. 2008). It has a mean 

temperature of 25° C, annual precipitation of approximately 1740 mm and a 5 - 6 month 

dry season lasting from May to September (Balch et al. 2010). Though the annual 

temperature and dry season length are similar to that of Tapajos, the variability in 

precipitation is much higher at Tanguro.

Fazenda Cauaxi

Fazenda Cauaxi is a mainly forested land holding in the municipality of Paragominas in 

eastern Para state (48°17’W 3°45’S). The topography o f this area is flat to mildly 

undulating and is characterized by tropical dense moist forest with a mean temperature of 

27°C, annual precipitation averaging 2200 mm and a 5 - 6 month dry season from July 

through November (Pereira et al. 2002). The soils within the region are classified as 

dystrophic yellow latosols following the Brazilian system (Radambrasil 1983).
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Field Inventory Measurements

Reserva Adolpho Ducke

Five 500 m transects were installed at Reserva Ducke in October o f  2009. Diameter- 

dependent line sampling using a diameter factor of 10.0 (following Schreuder et al.,

1987) was conducted along each 500 m transect including trees greater than 5 cm 

diameter. A total of 817 living trees were sampled at Reserva Ducke. The resulting 

average nominal plot size was approximately 0.6 ha, calculated as the average maximum 

distance from the transect times transect length.

Stems were mapped with respect to the transect, and geo-located using differential GNSS 

(Trimble GeoXH 6000 series receivers with estimated post-processed accuracy of 

< 0.5 m using Trimble Pathfinder Office V.5 software). Four differential GNSS (dGNSS) 

points were taken along each transect at roughly equal intervals. Individual tree positions 

were calculated using the two closest dGNSS points to any given stem.

For each stem, diameter at breast height (DBH), total height and crown extent were 

measured. Where buttresses or trunk deformities were present, diameter was measured 

above the deformation. Total height and bottom of canopy height were measured using a 

clinometer and tape-measure and calculated trigonometrically. The clinometer is used to 

measure the angle to the canopy top and bottom as well as the angle from the viewer to
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the base of the trunk. All angles measured were under 50 degrees to minimize error 

within the trigonometric calculation. A tape-measure was used to measure the distance 

from the observer to the measurement point. In the case of measurements on sloped 

ground, the slope of the tape-measure was also measured and the distance corrected. 

Heights were calculated trigonometrically. All height measurements were taken by a 

single observer. Crown radius was measured in four cardinal directions with respect to 

the trunk. Notes were taken on the availability of light to the tree crown (full direct, 

partial direct, full indirect light) and the crown's position within the canopy (emergent, 

canopy or sub-canopy). Emergent trees were defined as those standing above the 

surrounding tree’s canopies, not those taller than the dominant canopy height. While 

multiple life forms (including vines and palms) and standing dead were included in the 

field sampling, only the living trees were analyzed.

Tapajos National Forest- Tapajos km 67 and Tapajos km 83

A total of twelve 500 m transects were installed; six within the old-growth portion 

(Tapajos km 67) of Tapajos National Forest in June 2009, and another six in a selectively- 

logged portion (Tapajos km 83) in January 2010. The sampling method and 

measurements at the Tapajos sites were the same as at Reserva Ducke (see above). A total 

of 1765 living trees were sampled at Tapajos, with a resulting average nominal plot size 

of 0.85 ha.



Geolocation of individual stems at the Tapajos sites differed from the methods at Reserva 

Ducke. Stems were mapped with respect to the transect, and geo-located using 

differential GNSS (Trimble GeoXH 6000) in combination with data collected using hand­

held GPS units (Garmin 76csx). Differential GNSS was used to collect a point at the start 

of each transect and hand-held GPS measurements taken at 50 m increments. Hand-held 

GPS points were used to determine the orientation of the transect. At two transects a 

greater density of differential GNSS was available (approximately six points spaced 

every 100 m along the transect) and transect and tree positions were compared to the 

single dGNSS point in combination with hand-held GPS data. Transect positions varied 

up to 19.2 meters and individual trees had a horizontal RMS error of 5.7 m.

During the survey of Tapajos km 67 a random subset of 20% of trees (174 individuals) 

were remeasured within a week of the initial survey. Diameter at breast height, bottom of 

canopy height, top of canopy height and light characteristics were all remeasured to 

assess the repeatability of field measurements. Remeasurement of all stems at this site 

occurred in July 2010.

Fazenda Tanguro

Eighteen 0.37 ha circular plots were installed in 2005, designed for correlation with 

satellite-based lidar footprints (ICESat-GLAS). Further sampling design information is 

available in Lefsky et al. (2005a). Total height, commercial height (height to lowest
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branch) and longest crown dimension of all trees greater than 35 cm diameter were 

measured. Trees with 10 cm to 35 cm diameter were measured in a sub-plot of 0.075 ha 

with a random subset of 20% selected to measure canopy characteristics. Both total and 

commercial height were measured using a clinometer and tape measure.

Fazenda Cauaxi

Fourteen 1 ha plots (500 x 20 m transects) were surveyed at Fazenda Cauaxi in 2000 for 

trees greater than 20 cm diameter, totaling 2271 individuals (Asner and Keller 2002, 

Asner et al. 2012). Additional crown measurements were taken for a subset of 300 stems. 

These crown measurements included top of canopy height, commercial height and crown 

width along the estimated longest axis. See Asner, et al. (2002) for the complete 

methodology. Tree heights were estimated using a handheld laser range finder 

(Impulse-200LR, Laser Technology Inc., Englewood, CO), that measures distance using 

laser ranging and estimates height using a clinometer incorporated into the instrument.

Airborne Lidar Data

Airborne lidar was collected over Tapajos National Forest and Reserva Ducke between 

June 7 and July 3 2008 by Esteio, Ltda. (Curitiba, Parana, Brazil) using a Leica ALS-50 

discrete-retum lidar system capable o f capturing four returns per outgoing pulse. Flights 

were conducted between 700 - 900 m above ground level, resulting in a footprint



diameter of 15 - 20 cm. The instrument was operated with a two sided  scan angle of 30 

degrees. Minimum pulse densities o f 10 pulses nr2 were specified at Tapajos km 67 and 

Reserva Ducke and 3 pulses nr2 at Tapajos km 83. With up to 4 returns per outgoing 

pulse and flight line overlaps, mean return densities o f 46.7 points n r 2 for high density 

sites and 12.1 points nr2 for low density sites were observed. Position errors were tested 

using overlapping data from multiple flight lines. Features identifiable in both scenes, 

such as the crown edges o f emergent trees were used to estimate position error. Mean 

differences did not exceed 70 cm vertical and 40 cm horizontal. T h is  is an extremely 

conservative estimate of point accuracy as it includes both the geolocation error and error 

due to the likelihood of repeat sampling of the exact same point w ith in  the tree crown.

The lidar point cloud was summarized to create a Digital Terrain M odel (DTM) and 

Canopy Height Model (CHM). The DTM was created by first separating ground returns 

following the algorithm of Zhang et al. (2003). The density of ground returns was 0.44 

per m2 at Tapajos km 67, 0.19 at Tapajos km 83 and 0.83 per m2 a t  Reserva Ducke. Using 

a similarly high density of data collection and the same methods fo r  constructing a DTM 

(1 m grid), a mean error of less than 10 cm was achieved (V. Leitold, personal 

communication). Delauney triangulation was used to create a triangular irregular network 

(TIN) of ground hits, and the TIN was then used to interpolate D T M  elevations on a 

raster grid of 1 m spatial resolution. Additionally, the TIN was u sed  to interpolate the 

elevation of every feature return in every grid cell, and feature heights were calculated as 

the difference from this elevation (Cook et al. 2013). The CHM w a s  created by selecting
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the greatest height of all non-ground return points within a given lm grid cell (minimum 

of 3 returns per grid cell).

Lidar Estimation of Tree Heights

Figure 3.1 The canopy height model is shown fo r  a region o f  Tapajos km 67, with darker 
shades o f grey corresponding to lower canopy heights. Field data collected along a 
transect within this area include four measurements o f crown radius and position. These 
field data were used to draw crown ellipses for emergent stems that are overlaid on the 
canopy height model.

Georeferenced crown locations were used to estimate tree heights from the lidar data at 

the Tapajos and Reserva Ducke sites. For each crown, an ellipse of crown inclusion was 

created based on four crown radii measured in the field in combination with the geo-
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referenced trunk position (Figure 3.1). The 99th percentile height of the lidar data within 

each crown ellipse was defined as the lidar estimated maximum tree height.
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Figure 3.2 Comparison o f  field-measured height to that estimated using the lidar canopy 
height model (CHM) for stems with emergent crowns at Reserva Ducke and Tapajos sites 
(Tapajos km 67 and Tapajos km 83). RMSE o f  emergent crowns is 7.3 m. Where multiple 

field heights were taken fo r  emergent stems, mean values are shown with error bar 
showing the range o f repeated measurements.

The comparison of lidar height to field height measurements was limited to emergent 

stems, as they are expected to be visible in the lidar canopy height model (Figure 3.2). 

Emergent stems were considered to be any tree whose canopy is above its immediate
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neighbors. To assess the extent to which the time period between lidar and field data 

collections may affect our results, we compared field heights of emergent trees measured 

with a one year inter-sample period at Tapajos km 67.

Statistical Analysis and Simulation

To analyze the effect of the uncertainty in tree height on biomass estimates, a Monte 

Carlo analysis was conducted. Stems with multiple measurements at Tapajos km 67 

(n=174) were split into four diameter classes with an equal number of stems: 5 - 7.3 cm, 

7.4 -13.7 cm, 13.8 - 33.4 cm, and greater than 33.5 cm. The standard deviation of the 

differences between initial and repeat height measurements was calculated for each class. 

Returning to the full data set, a series of random numbers normally distributed with a 

mean of zero, and a standard deviation matching that of the height difference within each 

diameter class was calculated. A random number from this distribution was added to each 

field height measurement and the Chave Model I (Chave et al. 2005) moist forest 

allometry was then used to re-calculate biomass for each stem, using a site average wood 

density of 0.64. The simulation was conducted 1000 times, and the resulting transect 

level biomass was reported.

To assess the necessity of time consuming height measurements at individual sites, site- 

specific diameter to height allometric relationships were compared with the best regional 

and pan-tropical allometries published by Feldpausch et al. (2011). Feldpausch et al.
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(2011) found that environmental and structural parameters significantly improved 

diameter-height allometries. Both the regional and pan-tropical allometries include 

environmental (Table 3.2) and structural parameters (Table 3.3) that are site-dependent. 

Tapajos sites were combined because they have the same inherent structure, and the basal 

area of Tapajos km 67 was used to calculate regional and pan-tropical allometries as the 

basal area at Tapajos km 83 was reduced due to selective harvest. Site-specific 

allometries were fit to a log-log formulation following Feldpausch et al. (2011) using all 

field measurements of height. Individual stems were weighted evenly within each of four 

diameter classes, determined by the range of diameters sampled at a given site. The range 

of diameters used to determine the four diameter classes spans from the minimum to the 

99th percentile of diameters measured. In order to divide the diameters into bins, the full 

range is further divided into fractional sub-ranges: 0 - 0.22,0.22 - 0.35, 0.35 - 0.51, 0.51 - 

1.0. Although these four diameter classes are weighted equally, the first three sub-ranges 

are divided in half to further distribute the sample.

At sites where heights were measured for all trees (Tapajos sites and Reserva Ducke), 

reference values for site and transect level biomass were calculated using field measured 

height. At Tanguro and Cauaxi reference values for biomass were calculated by applying 

the site-specific diameter:height allometries. To determine the approximate sample size of 

tree height necessary to estimate biomass within 5% of the value calculated based on all 

trees, bootstrap resampling was applied. For a given sample size, the entire data set was 

subset 1000 times (sampling without replacement within each subset) and allometries



were fit to each subset. The weighting scheme applied for the site specific fit was also 

applied to sample stems by diameter class. To determine the given allometry’s accuracy 

in terms of biomass prediction, field data was regrouped to compare approximately 1 ha 

sized plots in all cases.

3.3 RESULTS

Precision of Ground-based Height Measurements

Remeasurement of 174 stems from the Tapajos km 67 field survey showed no significant 

difference from zero between the first and second measurements (t-test p = 0.38). The 

overall mean difference in height (first measurement minus second measurement) was 

1.1m, with a standard deviation of 4.7 m. There was a slight tendency toward lower 

remeasured heights (i.e. positive residuals) both overall and by diameter class (Figure 

3.3). The difference between first and second measurements were an average of 16.57% 

of the mean height measured (median of 11.9%). Dividing the remeasured heights into 

four diameter classes with an equal number of samples, the standard deviation of height 

differences within individual size classes increases by a factor of eight from 1.09 m to 

8.17 m. This represents an increase in relative terms as well as absolute terms and 

suggests that field measurements of tall trees are less precise than short trees.
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Figure 3.3 Height measurements were repeated fo r  174 trees during the 2009field  
campaign at Tapajos km 67. Box width is proportional to the square root o f  the sample 
size. The mean height difference for all remeasured trees is 1.1 m, with a standard 
deviation o f 4.7 m.

Accuracy of Field Measurements of Height Compared to Lidar

The height difference between emergent crowns measured in the field versus the height 

estimated using lidar was -1.4 m (lidar - field height). The mean residual of lidar minus 

field height was -1.3 m at Reserva Ducke (standard deviation of 6.4 m), -2.0 m at Tapajos 

km 67 (standard deviation of 8.9 m), and -0.9 m at Tapajos km 83 (standard deviation of

6.6 m). There are two possible explanations of these differences; One possibility is an 

overestimation of field height, the second possibility is an underestimation by lidar. A 

third possible explanation, that sampled trees grew during the time period between lidar 

and field data collections, was discarded. Comparing field heights of emergent trees 

measured at Tapajos km 67 with a one year inter-sample period showed no significant 

difference in mean heights (paired t-test p=0.34; mean of differences = -0.37 m and 

standard deviation = 3.6 m). Height residuals (lidar minus field height) show a slight 

positive trend when regressed against lidar height. This is consistent with the observation
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that heights are increasingly difficult to measure above the dominant forest canopy (34 m 

at Tapajos and 25 m at Reserva Ducke). However, the uncertainty o f field measurements 

is larger than the mean residual in all cases.

Effect of Height Error on Plot Level Biomass

At Tapajos the 95% confidence interval of transect-level biomass due to variability in 

field estimated heights ranged from 13-22 Mg h a 1 with transect biomass estimates 

ranging from 147 to 398 Mg h a 1 (Table 3.4). The mean biomass is lower and more 

variable at Tapajos km 83 (288 Mg h a 1) as compared with the old-growth site Tapajos 

km 67 (325 Mg ha*1). Typically, transects with higher biomass show a larger 95% 

confidence interval and smaller error in terms of percent biomass, although this is 

dependent on the size distribution of individual trees. The 95% confidence interval as a 

percentage of biomass ranged from 5.2% to 8.7% with a mean of 6.3%.

Although repeat field measurements were not available for Reserva Ducke, the height 

error estimated at Tapajos was applied to estimate variability due to the lack o f precision 

of field measurements. The 95% confidence interval of transect biomass ranged from 17 

to 21 Mg ha'1 with biomass estimates ranging from 306 to 431 Mg h a 1. Based on these 

calculations the lack of precision in height measurements results in a 95% confidence 

interval of 5.0% to 5.7% of biomass.



To test the effect of the potential bias towards over-estimating field height, the mean

residual was subtracted from trees within 10 m o f the mean canopy height and above.

This shrank the height of canopy and emergent trees by 1.82 meters at Tapajos and 1.23

meters at Reserva Ducke resulting in an average decrease o f 4.1% of transect level

biomass at Reserva Ducke and an average decrease of 3.5% at Tapajos.

Table 3.4 Transect live biomass and 95% confidence interval due to height uncertainty as 
calculated using the Monte Carlo analysis described in section 2.2: Statistical Analysis 
and Simulation.

Site Transect Biomass (Mg h a 1) 95% confidence 
interval

Tapajos km 83 1 344 20

2 310 18

3 350 21

4 314 17

5 263 17

6 146 13

Tapajos km 67 1 267 18

2 365 22

3 318 22

4 267 17

5 339 21

6 398 21

Reserva Ducke 1 361 19

2 306 17

3 336 19

4 431 21

5 373 20
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Height Prediction via Allometry

The variability in the diameter and height ranges between sites was large, with maximum 

heights varying between 39 and 66 m, and maximum diameters ranging from 70 to 213 

cm. This variability is indicative of some of the variation in site specific diameter to 

height allometries. Two of the sites evaluated are within the eastern-central Amazon 

region: Tapajos and Reserva Ducke; whereas the Cauaxi and Tanguro sites are within the 

Brazilian Shield according to the classification of Feldpausch, et al. (2011).

Pan-tropical and regional allometries resulted in substantial differences in estimated 

heights and biomass at both the individual tree and transect scales (Figure 3.4). At all 

sites, heights calculated using generalized allometries were compared with heights 

modeled using site-specific allometries based on all field measured heights. At Tapajos 

the pan-tropical and regional allometries estimated tree heights as 22% and 27% less than 

the field height based model, with percentages calculated by evenly weighting across all 

diameter classes. Pan-tropical and regional allometries performed better at Reserva 

Ducke. There, the height estimate based on the pan-tropical equation was 1% higher than 

the field height based allometry whereas the regional equation resulted in height 

estimates 12% lower.
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Figure 3.4 Comparison o f allometric scaling relationships. Regional and pan-tropical 
allometries from Feldpausch et al. (2011) that include site-specific climatic and 
structural parameters (reported in Table 3.2 and Table 3.3, respectively) and a site- 
specific allometry (field) based on height and diameter measurements at all sites: 
Reserva Ducke, Tapajos, Tanguro and Cauaxi.

At Tanguro and Cauaxi, both sites within the Brazilian shield, the generalized allometries 

performed well. At Tanguro, the pan-tropical equation fit the site extremely well, with an 

average height 0.3% higher than the field height based allometry. The regional equation 

also performed relatively well at this site, averaging a 4% over-estimation. At Cauaxi, the 

regional and pan-tropical equations also performed well, with heights 1% higher than the
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field height based allometry using the regional equation and 1% lower when using the 

pan-tropical allometry.

40 Trees Sampled 60 Trees Sampled

□> o>

Diameter (cm) Diameter (cm)-1 ha Plots -1 ha Plots
100 Trees Sampled80 Trees Sampled

O l

m

Diameter (cm) -1 ha Plots Diameter (cm) -1  ha Plots

Figure 3.5 Effect o f  sample size on the resulting diameter-to-height allometric equation 
for Tanguro. Dashed lines represent a range o f  10% difference in height. The grey area 
represents the range o f bootstrap estimates. Boxplots show the variability in six 1 ha 
transect biomass estimates due to differences in the predicted tree height based on sample 
sizes o f40, 60, 80 and 100 stems.

Applying these height allometries to the estimation of biomass the regional Feldpausch 

allometry was 25% lower than the reference biomass at Tapajos and 12% lower at 

Reserva Ducke. The same allometry resulted in higher estimates o f biomass at Tanguro 

(by 4%) and at Cauaxi (by 1%). The pan-tropical allometry resulted in lower estimates of 

biomass at Tapajos (by 21%), Reserva Ducke (by 1%) and Cauaxi (by 2%). This 

allometry yielded biomass estimates 1% above the reference value at Tanguro. Reference
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biomass values were calculated using individual field measured tree heights at Tapajos 

and Reserva Ducke and site-specific allometries based on all field measured heights at 

Tanguro and Cauaxi (bold values in Table 3.3).

Optimization of Height Measurement for Biomass Prediction

We ask whether local measurements of height:diameter relationships are important to 

improve biomass estimates in tropical forests and if so, how much effort must be put into 

local estimation. Sample sizes o f40, 60, 80 and 100 trees were tested for each of the four 

sites. For each sample, an equal number of trees were chosen from each of four diameter 

classes (defined in section 3.2: Statistical Analysis and Simulations). A subset of 40 trees 

resulted in 95% confidence intervals of transect biomass of 7 -10% across sites. 

Increasing the sample to 100 trees decreased this variability to between 4 and 6% at all 

sites. As expected, as the sampled number of trees increased, the allometry became 

increasingly consistent with that found for all stems (Figure 3.5). Likewise, the variance 

in biomass estimates due to the differences in allometry converged.

3.4 DISCUSSION

We aimed to evaluate how precisely and how accurately we could measure tree height on 

the ground. We then evaluated how the uncertainty in tree height measurements 

translated into uncertainty in biomass estimates. Because height is important for biomass
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estimation, we evaluated the accuracy of global or regional allometries. That evaluation 

suggests caution when employing those relations. We evaluated a labor-efficient 

alternative as we discuss below.

Height Measurement Precision

The variability in the field measured tree heights was significantly greater for trees above 

the mean canopy height. We note that the imprecision of height measurements causes a 

small error (5% to 9%, mean of 6%) in transect level biomass.

Most sources of height measurement error are pronounced for large trees. We recognize 

five sources o f uncertainty that contribute to the precision of field height measurements. 

Issues in the field measurement of height are: offset between measured distance and 

crown top position, tree top occlusion, ground slope, obstacles for distance 

measurements, and clinometer operator error.

Differences between the distance measured and the true horizontal distance to the crown 

can cause an unbiased error in height measurement. It is equally likely that distances are 

overestimated as underestimated. In obvious cases, such as where the trunk was sloped, 

or the canopy was offset from the trunk location, we attempted to correct the distance 

measurement in the field. The uncertainty associated with displacement o f crown tops



from trunk locations is most pronounced for the largest trees with large crowns (Andersen 

et al. 2006).

As the distance between the observer and the tree increases, visibility is reduced by 

surrounding vegetation resulting in tree top occlusion. This effect was most pronounced 

for large crowned trees with relatively flat crowns. For the ground-based observer, the 

flat-topped canopies of some broad leaf trees were indistinguishable from a more rounded 

shape, even at large distances without obstructions. The observer made assumptions 

about crown shape to approximate the total tree height. This error was reduced by 

increasing the distance from the tree and diminishing the extent that the view of the 

tallest crown point would be occluded by the crown itself.

Ground slope, if not properly accounted for, will cause a systematic overestimation of the 

distance between the observer and the stem measured. This overestimation of distance 

will result in an overestimate of height. This was only an issue for sites that were 

measured using a clinometer (Tapajos sites, Reserva Ducke, Tanguro). The laser range 

finder automatically corrects for slope when calculating horizontal distance. O f the four 

sites measured with a clinometer, only Reserva Ducke had notable slopes and for this 

site, the slope of the measurement tape was measured and the distance corrected.

The distance measurement is also affected by obstacles. When pulling a measuring tape 

through the forest it is necessary to weave through understory vegetation and other trees.
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This will create a small bias towards over-estimating distance. G iven that the individual 

making measurements must have a line of site with the trunk base, o r a ground position 

directly beneath the canopy maximum, this line of site can also be used to pass the 

measuring tape. The measuring tape is always pulled taught and leveled before any 

reading is made to minimize the potential for overestimating distance.

Because of the perceived difficulty of measuring distance properly, many researchers 

prefer to use laser range finders or hypsometers (RAINFOR 2009, Chave 2005).

However, it is worthwhile to point out that replacement o f  the tape and clinometer with a 

laser range finder does not preclude two major sources o f error, offset between measured 

distance and crown top position and tree top occlusion. Identifying the correct tree top 

position is the most difficult part of the measurement and the more sophisticated 

instrumentation does nothing to improve this situation. In addition, the laser range finder 

adds a source of error. Specifically, the presence of dense understory vegetation may lead 

to underestimation of the distance between the observer and the tree  o f interest because of 

intervening obstacles inadvertently hit by the laser beam (i.e. leaves, branches). This 

uncertainty led to our preference for direct measurement using a tape  measure at the more 

recently studied sites.

As with any measurement, operator error may occur. The largest differences in repeat 

height measurement may have been cases of mistaken identity (the crown of one tree was 

thought to be another). In a comparison of multiple height measurement techniques,
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Rennie (1979) showed that measurements made with clinometers were generally precise, 

but showed a slight underestimation bias for the tallest trees measured. However, when 

conducting a similar experiment Williams et al. (1994) showed a slight underestimation 

bias for small trees (less than 10 m) and an overestimation bias for tall trees (greater than 

20 m). This overestimation bias was more pronounced for conifers than for all species, 

though the 95% confidence interval contained zero in all cases.

Recently, researchers have proposed an alternative method o f height estimation (‘the sine 

method’) that does not require a horizontal distance measurement (Goodwin 2004). This 

measurement uses a single distance and angle measurement to the highest point on the 

tree crown using a laser range finder or hypsometer, and a second measurement of 

distance and angle to the tree base. The vertical component o f each measurement can be 

calculated by the equipment used and added to yield the total tree height. Larjavaara and 

Muller-Landau (2013) compared this technique to the traditional tangent method used 

here and showed that the tangent method resulted in large errors, but unbiased results, 

consistent with results presented here. The sine method, however, resulted in 

underestimation of height by an average of 20%.

Height Measurement Accuracy

The errors that contribute to field height measurement precision likewise contributed to 

measurement accuracy. Errors due to slope and due to obstacles when measuring distance



will result in overestimation of the horizontal distance and lead to overestimation of tree 

height. Errors associated with the difficulty in seeing the tree top may result in 

underestimation or overestimation of tree height. To assess the accuracy of height 

measurement, field measured heights were compared with lidar estimated heights for 

emergent stems. Errors that contribute to lidar height error are: overtopping of canopy 

stems, geolocation error, and lidar measurement error (Popescu et al. 2002, Andersen et 

al. 2006, 0rka et al. 2010).

Overtopping of canopies will result in a positive bias for lidar heights. This bias is due to 

the use of the Canopy Height Model (CHM) for extracting lidar heights. In our study, this 

model filtered for the tallest returns within a given 1 m grid cell. By filtering for the 

highest points, only trees whose canopies are not over-topped by surrounding crowns or 

by taller vegetation are correctly measured (see Figure 3.1). This was taken into account 

when making comparison between lidar and field heights by only comparing emergent 

stems.

Error in lidar estimations of height are also expected due to error in crown position. Tree 

canopy positions were referenced to the trunk position, which was referenced to the 

transect. Transects were geolocated using a combination of differential GNSS and 

navigational GPS measurements. Errors are present in each of these components that may 

cancel or compound each other to affect canopy position. These errors will have the 

largest impact on the smallest crowns. Emergent crowns tend to have large canopies that
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extend beyond the extent of location error. Emergent crowns average 6.2 m radius while 

the stem RMS error in horizontal position was about 5.7 m. This, in combination with the 

lack of local over-topping vegetation results in more accurate lidar heights for the tallest 

and largest canopies (i.e. emergent trees) compared to smaller, lower canopies.

The expected vertical uncertainty of the lidar instrument is 15 cm. The precision of field 

measurement was 3.8 m for trees within 10 m below the dominant canopy height, and 

greater than 8.2 m for trees above this height. Previous research has shown a consistent 

bias toward underestimation of height using lidar remote sensing in both broadleaf and 

coniferous trees. Gaveau and Hill (2003) showed an underestimation of 2.1 m for 

broadleaf trees, and Ronnholm et al. (2004) showed an underestimation of 0.7 - 1.4 m 

somewhat dependent on tree species (Gaveau and Hill 2003, Ronnholm et al. 2004, Wang 

and Glenn 2008). Clark et al. (2004) found similar results for a tropical forest in Costa 

Rica. Gaveau and Hill (2003) showed that this underestimate of height is likely due to 

penetration of the lidar signal into the upper section of the canopy. However, this 

potential bias is small when compared to the uncertainty in field estimates of canopy tree 

height.

Our field heights were consistently higher than lidar heights for emergent trees. This is 

consistent with Williams (1994) results showing height measured with a clinometer to be 

biased about 1 m high on average for trees over 20 m, and in opposition to the results of 

Rennie (1979) showing a slight low bias. This result is also consistent with results
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showing underestimation of height based on lidar CHMs due to penetration of the outer 

canopy surface (Gaveau and Hill 2003). Whether this difference is due to true 

overestimation of height in the field or due to lidar penetration is unclear. This 1-2 m 

potential bias represents a difference of less than 6% of the mean height o f emergent 

trees.

The accuracy and precision of lidar and field measured heights further affects our ability 

to measure changes in height over short time spans. Where lidar data is available it 

provides a more accurate source of height information for canopy and emergent stems. 

This improved accuracy and precision reduce the variability in height measurement.

Given that height growth in gaps is greater than l m y 1 (Fredericksen and Pariona 2002), 

significant changes in height should be distinguishable over shorter time spans using lidar 

as compared to field data once trees exceed a maximum height accessible by extensible 

measuring poles (10 to 15 m).

Biomass Precision

The effect of height imprecision on biomass is approximately 6% and the effect of 

potential inaccuracy on biomass is smaller (4.1% at Reserva Ducke and 3.5% at Tapajos) 

despite the large uncertainty in the height of tall trees (8 - 10.5 m for trees greater than 

34 m). The uncertainty in biomass on the plot basis is less that the uncertainty o f height in 

the largest trees partly because the measurement errors cancel each other out. More
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importantly, the errors are greatest for the largest trees and most biomass was in medium- 

statured trees (canopy stratum) that had smaller relative error in height measurements.

o

o

-  Reserva Ducke
- - Tapajos
- Tanguro
- - Cauaxi

100 150 200

Diameter (cm)

Figure 3.6 Comparison o f site-specific diameter-height allometries fo r  the four study 
areas.

Height has been repeatedly shown to improve biomass estimates as compared with 

diameter only in allometric relations for tropical forest trees (Maia Araujo et al. 1999, 

Chave et al. 2005, Vieira et al. 2008, Feldpausch et al. 2012, Lima et al. 2012). This result 

is obvious from inspection of height:diameter relations (Figure 3.6). All four areas 

studied here are moist tropical forests within the Brazilian Amazon but their 

diameter:height allometries vary significantly. Some of this variability in diameter-height 

allometries is believed to be due to climatic variability (Feldpausch et al., 2011). Tree 

architecture and variable species assemblages are also important drivers. Vieira et al. 

(2008) used two diameter-only allometries to estimate biomass in the Brazilian Atlantic
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forest (Chave et al. 2005 and Chambers et al. 2001) and found overestimates of biomass 

by 52% and 68% respectively.

Table 3.5 Above-ground biomass estimate based on various allometries fo r  the fie ld  sites 
detailed here. The two Tapajos sites (Tapajos km 67 and Tapajos km 83) are combined 
due to minimal difference in site-specific allometries. The biomass allometries applied 
are the Chave et al. (2005) Model I  allometry including wood density, diameter and field  
measured tree height ("Field H t”); the Chave et al. (2005) Model I  allometry with site- 
specific model o f  diameter: height ("Modeled Ht ”); the Chave et al. (2005) Model II 
equation without a height term ("Chave - D ”); the Chambers et al. (2001) allometry 
based purely on diameter; the Chave et al. (2005) Model I  allometry including height 
modeled using the Feldpausch et al. (2011) regional equation ("Regional”), and the 
Chave et al. (2005) Model I  allometry including height modeled using the Feldpausch et 
al. (2011) pantropical height allometry ("Pantropic”). Percent difference from the fie ld  
height value is shown for Reserva Ducke and Tapajos, andfrom the modeled height fo r  
Tanguro and Cauaxi. This is referred to as the reference case in the text and emboldened 
here.

Site Field Ht Modeled Ht Chave - D Chambers Regional Pantropic

Reserva
Ducke

361 363 (+1%) 382 (+6%) 346 (-4%) 317 (-12%) 358 (-1%)

Tapajos 307 312 (+2%) 317 (+4%) 277 (-10%) 231 (-25%) 243 (-21%)

Tanguro NA 121 170 (+40%) 184 (+52%) 126 (+4%) 122 (+1%)

Cauaxi NA 328 360 (+10%) 261 (-21%) 331 (+1%) 322 (-2%)

We compared a number of approaches to biomass estimation using both height and 

diameter information for the four areas in our study (Table 3.5). Applying diameter only 

equations to estimate biomass led to variation o f between 4% to 52% from our reference 

case (Table 3.3, bold values). The largest effect was found at Tanguro, which has the 

smaller stature of a transitional forest. Other areas generally showed differences of less



than 10%, though the Chambers et al. (2001) allometry performed significantly worse at 

Cauaxi.

Height Allometries

We evaluated the overall accuracy of the Feldpausch et al. (2011) regional and pan­

tropical height allometries based on only four areas. In three cases the relations worked 

well but based on the substantial differences at one of the four areas we advise caution 

when applying generic diameter:height allometries. A sensitivity analysis conducted for 

Tapajos shows the inaccuracy in the diameter to height allometry is caused by variation in 

climatic variables, most importantly, dry season length. Applying the climatic variables 

specific to Manaus (which has a significantly shorter dry season) curiously yielded a 

better fit to the Tapajos data. This suggests that the inclusion of climatic parameters may 

not be universally advantageous.

The potential for inaccuracy of regional and pan-tropical allometries suggests that site- 

specific allometries are preferable for accurate estimates o f biomass. When formulating 

site-specific allometries it is necessary to take into account the distribution of biomass at 

the site. The sampling scheme described in the methods section weighs diameter classes 

by their proportional biomass. The weighting scheme presented was applicable to all 

areas despite the variability in diameter ranges. Site-specific allometries estimate biomass
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within 2% at Reserva Ducke and Tapajos compared to our reference case where all tree 

heights were measured.

Height Allometric Optimization

Given the potential for error using regional diameter:height allometries and the 

importance of height in estimating biomass it is advantageous to have site specific 

diametenheight allometries. Because height measurements are time consuming, it is 

important to minimize the number of height measurements necessary to define an 

allometry to within a target uncertainty. Sample sizes tested were limited by the small 

number of trees in the largest diameter classes. While allometries fit to Tapajos data were 

well constrained at the largest diameter sizes, allometries fit to data from Reserva Ducke 

were not. However, the variability in predicted height for the largest diameter stems made 

little difference in the predicted biomass at the transect scale due to the extremely small 

number of individuals in the largest classes. The RAINFOR network has recommended a 

stratified sample for measuring heights (RAINFOR, 2009) with height measurements for 

a total of 40 trees divided equally between four diameter classes: 10-20  cm, 20 - 30 cm, 

30 - 50 cm, and > 50 cm. This smaller sample size would result in a 95% confidence 

intervals of transect level biomass approximately twice that of the 100 tree sample 

suggested here (see Figure 3.5).
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3.5 CONCLUSIONS

We found that the precision of height measurements of individual trees ranged from 3 to 

20% of total height, leading to a mean error of 16% in the estimate of individual tree 

biomass. When scaled to the plot level, this lack of precision of height measurements led 

to 5 - 6% uncertainty in overall plot biomass. Ground based measurements of height 

exceeded airborne lidar measurements of height by an average of 1.4 m. Whether this is 

due to overestimation of field height or underestimation by lidar, or a combination of 

these factors is unclear. If this represents a positive bias in field height, then overall plot- 

level biomass based on field measurements would be biased 4% high.

The use of diameter-based allometries, including pan-tropical and regional height- 

diameter relationships led to large biases for individual site biomass when compared to 

local field height measurements (Figure 3.4): -25% and -12% at Tapajos and Reserva 

Ducke respectively using the Feldpausch regional allometry. The pan-tropical allometry 

performed better at Reserva Ducke (-1%), but maintained a large bias at Tapajos (-21%). 

For other sites, the regional and pan-tropical allometries were within 4% of field-based 

height:diameter relationships. We recommend caution when employing regional and 

global relations and suggest that field work can be optimized by measuring the height of 

approximately 100 individuals to build a site specific height-diameter allometry. This 

approach reduced the potential uncertainty in the biomass of 1 ha plots due to the 

diameter:height allometiy to an average of 4.5% for all sites studied (Figure 3.5).
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Regional and global biomass estimates (e.g. Asner et al., 2011; Baccini et al., 2012; 

Saatchi et al., 2011) that use remote sensing and statistical algorithms for scaling 

ultimately depend upon the measurements of individual trees. Tree biomass estimates rely 

on field height measurements or estimates based on diameter-height allometries. Based 

on our work at sites in the Brazilian Amazon it is unclear whether heights of trees above 

mean canopy height were biased or merely imprecise. The majority of sources of field 

height error tend toward overestimation of height, whereas lidar has been shown to 

underestimate height. This potential bias in field height results in an overestimate of 

biomass by about 4%. This bias is small considering all of the uncertainties involved in 

field biomass estimates and is drawn from a limited set of measurements. However, given 

the availability of airborne lidar height estimates at an increasing number of tropical field 

sites, we recommend further investigation of this potential bias because of the important 

role of tropical forests in the global carbon cycle.
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CHAPTER FOUR

STRUCTURAL DYNAMICS OF TROPICAL MOIST FOREST GAPS

Dissertation chapter accepted with minor revisions to PLoS ONE in collaboration with 

M. Keller, D.C. Morton, B. Cook, M. Lefsky, M.J. Ducey, S.R. Saleska, R.C. de Oliveira

Jr., andJ. Schietti.

4,0 ABSTRACT

Gap phase dynamics are the dominant mode of forest turnover in tropical forests. 

However, gap processes are infrequently studied at the landscape scale. We used multi­

temporal lidar data covering 1000 ha split between two sites, the Tapajos National Forest 

and Reserva Ducke in the Brazilian Amazon to study gap dynamics. We defined a gap as 

an area of significant growth, that corresponds to areas > 10 m2 with height less than 10 

m. Applying this definition to repeated lidar acquisitions at two sites, we found over 

twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Reserva 

Ducke (2.0 %). On average, gaps were smaller at Reserva Ducke, and closed slightly 

more rapidly, with estimated height gains of 1.2 m y 1 versus 1.1 m y 1 at Tapajos. Gap 

centers showed the same overall height change as all gap areas at Reserva Ducke, but 

show slight variation at Tapajos (1.3 m y 1 versus 1.1m y 1). These rates accounted for
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the interplay between gap edge mortality, horizontal ingrowth and  gap size at the two 

sites studied. We estimated that approximately 10% of gap area closed via horizontal 

ingrowth at Reserva Ducke as opposed to 6% at Tapajos National Forest. The 

comparative effects of height loss (interpreted as damage and/or mortality) and horizontal 

ingrowth into gaps were similar at Reserva Ducke, whereas height loss at gap edges had a 

comparatively stronger effect at Tapajos. Both sites demonstrate an  increase in the 

likelihood of mortality in the immediate vicinity (~6 m) of existing gaps or gap 

contagiousness.

4.1 INTRODUCTION

Gaps are a prominent feature on the tropical forest landscape and key to the dynamics 

and species distribution of tropical forests (Brokaw 1985, Denslow 1987, Molino and 

Sabatier 2001). Gap phase dynamics maintain high light environments within closed 

forest canopies and promote natural regeneration and turnover (Bormann and Likens 

1979, Oliver and Larson 1996). While the dynamic processes o f regeneration and 

turnover of individuals and species are the ecological rationale fo r  the study of gaps 

across the landscape, gaps are often treated as static environments defined in terms of 

light availability or vegetation height (Whitmore et al. 1993, van der Meer et al. 1994).

The majority of tropical forest turnover occurs via small to medium gaps caused by single 

trees or small groups of trees (Brokaw 1982). In the Brazilian Am azon, natural
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catastrophic disturbances that destroy understory vegetation such as large-scale fire and 

wind-throw events are rare (Cochrane 2003, Espirito-Santo et al. 2010). One method of 

describing the structural development of forest regeneration following disturbance is that 

of Oliver and Larson (1996). Their methodology includes four stages: stand initiation 

from existing seed-banks or advanced regeneration, stem exclusion via density-dependent 

mortality, understory re-initiation and old-growth. Although this work was focused on 

temperate forests, processes described are similar in the tropics (Brokaw and Busing 

2000). Stand establishment is typically most rapid when it is formed from advanced 

regeneration existing prior to the disturbance event (Franklin et al. 2002). The growth of 

advanced regeneration is one method of gap closure. However, small gaps may also close 

via horizontal ingrowth of surrounding vegetation.

Gaps are environments where high light conditions promote high growth. But gaps are 

not only changing environments themselves, but promote change in the surrounding 

forest. Ray and colleagues (Ray et al. 2005) showed that gaps change the microclimate of 

their immediate area as well as the surrounding forest. The change in the outer canopy 

surface also promotes the penetration of wind into the forest understory (Laurance et al. 

1998). It has been hypothesized that this increased wind in combination with uneven 

growth of tree canopies may result in increased mortality o f trees surrounding gaps, or 

gap contagiousness (Jansen et al. 2008).

92



For measurement purposes, gaps in the forest matrix must be defined by vertical and 

horizontal limits (van der Meer et al. 1994). The vertical limit is a maximum vegetation 

height, and the horizontal is the minimum gap size. The selection of these limits has 

usually been determined by feasibility o f field measurements as opposed to the dynamics 

of forest structure. Considering the ecological importance of gaps, a gap definition should 

include areas of forest canopy below the dominant canopy height that receive abundant 

light to promote rapid growth.

Variability in gap definition leads to difficulty in comparing between gap studies, and 

calculated metrics (van der Meer et al. 1994). Two common gap definitions based on 

fieldwork are those proposed by Brokaw (1982) and Runkle (1981). Brokaw gaps are 

defined as openings in the forest canopy that extend to two meters above the ground 

(Brokaw 1982). The gap perimeter is defined by the innermost point reached by foliage at 

the two meter height, and is measured in at least eight directions. However, an opening 

can meet this definition despite a small tree or thin branch extending into the gap. Runkle 

(1981) defines a gap as an opening in the forest canopy that extends to the base of 

surrounding canopy trees. Canopy trees are typically classified as those above 20 m in 

height. This definition was designed to capture regions with expected changes in light 

environments, including areas directly and indirectly affected by the canopy opening. 

Independent of the definition used, field studies o f gaps generally cover small areas and 

are unlikely to capture large, infrequent gaps.



Landscape scale studies typically use satellite-based remote sensing that cannot resolve 

small and medium sized gaps (Chambers et al. 2009, Negron-Juarez et al. 2011,

Chambers et al. 2013). Studies using Landat show limited success in estimating gap 

fraction at the pixel level (approximately 0.1 ha) but fail to capture gaps o f the smallest 

sizes (Asner et al. 2002, Negron-Juarez et al. 2011). At higher resolution, passive optical 

images such as IKONOS are complicated by the presence of shadows (Asner 2003, 

Espirito-Santo et al. 2014b). Passive optical imagery also has to contend with the 

problems presented by clouds, which are prevalent in the humid tropics. At the other 

extreme, field plots rarely capture areas greater than 1 ha. The Center for Tropical Forest 

Science (CTFS) affiliated with the Smithsonian Institution operates a network of field 

plots, of which the largest are 50 ha (Hubbell and Foster 1986, Muller-Landau et al. 

2006). Although these are significantly larger than the majority of field plots, they are 

still not large enough to capture landscape scale patterns of disturbance and recovery 

(Hubbell et al. 1999, Nath et al. 2006).

A promising method for analyzing both gap percentage and gap size distributions is high- 

resolution active remote sensing. Lidar (light detection and ranging or laser scanning) is 

an active remote sensing method that can collect multiple ranging measurements per 

square meter and provides highly accurate height information. It has been used to 

successfully describe surface canopy roughness and forest structure at varying scales 

(Drake et al. 2002a, Lefsky et al. 2002, Frazer et al. 2005). Recently, lidar has been used
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for tropical gap studies, for example, to examine size frequency distributions over large 

areas (400 - 125000 ha) (Kellner et al. 2009, Asner et al. 2013, Lobo and Dalling 2014).

Using lidar data, height thresholds define gaps. For example, applying the Brokaw 

definition to lidar remote sensing classifies continuous regions of the canopy height 

model with height of less than 2 m (Kellner and Asner 2009, Boyd et al. 2013, Asner et 

al. 2013). It is not expected that this would yield similar results as field studies because it 

is not practicable to allow for exceptions such as small trees or thin branches. Also, the 

primary justification for using the Brokaw gap definition, its convenience for field 

application, is not applicable in the case of lidar remote sensing. We seek an alternative 

definition that accounts for the structural dynamics of the forest, and is easy to apply to 

multi-temporal lidar data.

To develop a gap definition based on structural dynamics it is important to understand 

patterns of growth. Limited information is available on the rate of height regrowth in 

tropical forests, especially in naturally formed gaps. Field studies that have been 

conducted typically focus on a few dominant or pioneer species as opposed to properties 

of the gap as a whole (Brokaw 1987, De Steven 1988, Whitmore and Brown 1996). An 

alternative to tracking individual tree growth is to estimate mean growth rates to predict 

gap closure over time. Lidar is particularly well suited to this task as it measures height 

accurately, and can cover large areas (Vepakomma et al. 2011). The high resolution of
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airborne lidar allows for measurements o f individual tree growth and mortality as well as 

generalized views of the forest structure.

Tapajos National Forest and Reserva Ducke are intensively studied field sites within the 

Brazilian Amazon (Chauvel et al. 1987, Keller et al. 2004, Vieira et al. 2004, de Castilho 

et al. 2006, Pyle et al. 2008). While no study of small gap dynamics has been conducted 

at Reserva Ducke, recently a paper was published using IKONOS imagery covering 167 

ha of Tapajos National Forest (Espirito-Santo et al. 2014b). In 2008, airborne lidar was 

collected over both sites (Stark et al. 2012), with a second airborne lidar data collection 

approximately four years after the initial collection covering approximately 400 ha of 

Tapajos National Forest and 600 ha of Reserva Ducke. We apply this data to analyze gap 

presence, formation and closure at the landscape scale. Our goals are to define the rate of 

gap formation, the size frequency, distribution and regrowth rates of gaps at these two 

contrasting forest areas by asking the following questions:

- What is an ecologically appropriate definition for gaps at the two sites?

- What is the distribution of gap area and gap size at two sites in the Brazilian 

Amazon?

- What is the frequency of gap creation and how long do gaps persist within a 

landscape?

- How does the frequency of gap creation compare to field estimates o f mortality?

- Are gaps contagious?
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4.2 METHODS

Site Descriptions

We analyze data from two sites within the Brazilian Amazon to answer the questions 

posed above. These two sites have been frequently studied, but no comprehensive 

analysis of gap dynamics has been completed at these sites on a landscape scale.

Tapajos National Forest

The Tapajos National Forest (54°57’W 2°51’S) is a 550,000 ha reserve situated within 

the state of Para, Brazil along the eastern shore of the Tapajos River. The reserve is 

primarily upland forest, and includes patches with canopy level palms. The dominant 

soils are nutrient-poor, clay, Oxisols (Silver et al. 2000). A pronounced dry season lasts 

approximately five months, from July - December (Vieira et al. 2004). Personal 

observations suggest that gap creation events occur more often during the wet season, 

consistent with other neotropical forests (Brokaw 1985). This is supported by the finding 

of Espirito-Santo (Espirito-Santo et al. 2014b) that showed the most frequent form of 

mortality is snapped trunks, associated with the high winds of the rainy season. However, 

inventories of coarse woody debris production did not show a strong seasonal pattern 

(Palace et al. 2007).
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Reserva Ducke

Reserva Ducke (59°57’W 2°57’S) is a 10,000 ha forest preserve managed by the National 

Institute for Amazon Research (INPA) bordering the city of Manaus, in the state of 

Amazonas, Brazil. The reserve is covered by upland terra firme forest with a large 

number of understory palms and occasional canopy level palms, especially in seasonally 

waterlogged valleys. The soils vary with the rolling topography (30 - 120 m.a.s.l.) with 

Oxisols dominant in upland areas, Ultisols on the slopes and Spodosols in the valleys 

(Chauvel et al. 1987). These soils are acidic and low in nutrients. There is a short dry 

season, lasting 1 -3  months, generally occurring from July through September. Standing 

death is the dominant form of mortality (54%) followed by snapping and uprooting (de 

Toledo et al. 2012).

Airborne Lidar Data

Airborne lidar data was collected in 2008 with a minimum required data density of 10 

returns per m2 and actual mean return densities at each site near 40 returns per m2. A 

second airborne lidar data set was collected using a different lidar system in February 

2012 at Reserva Ducke, and August 2012 at Tapajos National Forest (Tapajos) (Table 4.1) 

with a minimum required data density of 4 returns per m2. The resulting time between 

sampling periods was 44 months at Reserva Ducke and 48 months at Tapajos. The total



area available for multi-temporal analysis was 398 ha at Tapajos and 603 ha at Reserva 

Ducke.

Table 4.1 Details o f  airborne lidar data collections.

Data
Characteristics

Lidar System

Flight Altitude

Divergence

Footprint Size at 
nadir

Pulse Frequency

Acquisition Date

Minimum return 
density (nr2)

Ground return 
density (nr2)

Initial Collection 

Tapajos Res. Ducke

Final Collection 

Tapajos Res. Ducke

Leica ALS50-II Leica ALS50-II ALTM
3100EA

700 - 900 m 

15 mrad 

10 cm

118 kHz 

06-07/2008 

10

0.44

700 - 900 m 

15 mrad 

10 cm

118 kHz 

06-07/2008 

10

0.83

600 m 

25 mrad 

15 cm

50 kHz 

08/2012 

4

0.49

ALTM
3100EA

600 m

25 mrad

15 cm

50 kHz 

02/2012 

4

0.19

Canopy height models (CHMs) and Digital Terrain Models (DTMs) were produced using 

the processing methods developed for NASA Goddard’s Lidar, Hyperspectral, and 

Thermal Airborne Imager (G-LiHT) (Zhang et al. 2003, Cook et al. 2013). This 

methodology separated vegetation and ground returns to develop a gridded representation 

of the ground surface (DTM) and height estimates of lidar returns from canopy and 

understory vegetation (CHM). Data for the Tapajos site were processed separately for 

each data collection. At Reserva Ducke, we produced a unified DTM based on both 

year’s data (St-Onge and Vepakomma 2004, Vepakomma et al. 2011). This processing



approach provided the most robust estimate of ground topography from which to generate 

CHM data layers (1 m resolution) for each year. For Tapajos, the differences among years 

were trivial and it was not necessary to produce a unified DTM.

Field Surveys

Diameter-dependent line sampling was conducted along six 500 m transects at Tapajos 

National Forest and five transects at Reserva Ducke. Initial field surveys were conducted 

in June 2009 (Tapajos) and October 2009 (Reserva Ducke) and over 1000 trees were 

sampled at each location (Hunter et al. 2013). Permits for field work were obtained from 

the Instituto Chico Mendes (ICMBio) for work conducted at Tapajos National Forest and 

Institute Nacional de Pesquisas da Amazonia (INPA) for work at Reserva Ducke. Live 

trees as well as standing dead greater than 5 cm diameter were included in each survey. 

For all living stems the crown radius was measured in each of four cardinal directions. 

The mean crown radius was calculated and a circular crown area estimated for each stem. 

The mean crown radius per site was calculated by multiplying each crown radius 

measurement by the numbers of trees per hectare that a given tree represents. Transects 

were resampled in July 2011 at Tapajos National Forest and October 2011 at Reserva 

Ducke. Percent mortality was estimated from trees that died between samples and 

corrected to an annual value. The fraction of fallen versus standing dead trees was 

estimated based on the height measurements for dead stems. A non-parametric bootstrap



analysis (Efron and Tibshirani 1994) was used to calculate 95% confidence intervals of 

annual mortality.

Height Structure

Distributions of canopy heights were compared for all sites and years. The height 

structure of the canopy was investigated using a random sub-sample of 1000 heights from 

each CHM, and comparisons between years were repeated 1000 times. Comparisons 

were also made between sites using the same technique. Sites and years were tested for 

significantly different height structures with a two-sided Kolmogorov-Smirnov test (R 

version 3.0.1). P-values reported are the average of 1000 tests.

Gap Definitions

We defined a gap using a dynamic measure of height change and a static minimum 

horizontal extent. We refer to this dynamic gap as a region characterized by significant 

vertical growth that accounts for the transient nature of gaps and the high light 

environment that exists at low canopy heights (see results). Expected vertical height 

change was determined by initial canopy height. To examine the height change at both 

sites while minimizing the effect of spatial autocorrelation we took a randomly 

distributed subset of 60 pixels from each initial integer height. At the most infrequent 

heights this is approximately a 1% sample. Tukey’s HSD test was used to compare height
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changes between initial height subsets. We compare this definition to the Brokaw 

(Brokaw 1982) definition, because the latter has been most commonly used.

The minimum horizontal gap area applied to both definitions was based on the average 

crown area of all trees greater than 5 cm diameter based on the living trees surveyed at 

both sites in 2009.

Distribution of Gap Areas

Both the Brokaw and dynamic gap definitions were applied to CHMs for each year and 

site. This was done by first classifying each CHM raster into gap and non-gap pixels. Gap 

pixels were then transformed into polygons, and those with areas of less than the 

minimum gap size were removed from analysis.

Gaps classified in each temporal acquisition were then used to calculate the size 

frequency distribution of gaps following a modified application of Clauset et al (2009). 

This technique fits gap size distributions to a power-law using a maximum likelihood 

estimator (Gloor et al. 2009, Chambers et al. 2009, Lloyd et al. 2009) and a fixed 

minimum gap size.
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Gaps were also tested for the degree of spatial autocorrelation using Moran’s I (Arc 10.1) 

an index that ranges from -1 (indicating perfect dispersion) to 1 (perfect correlation), with 

zero representing near perfect randomness.

Gap Creation and Lifetimes

New gap areas were analyzed in terms of their total area and the gap recurrence interval 

(tri) was calculated using Equation 4.1.

Equation 1 accounted for the non-gap area (Aundisturbed) that became gap (Agap) over the 

sampling period (ts). However, this excluded disturbances that could have both formed 

and closed between samples. We compared gap recurrence intervals calculated using 

equation 1 with recurrence intervals estimated using data from each of the individual time 

periods (to) (Equation 4.2). In that case, the persistence time (tp) was substituted for the 

sample period and the full acquisition (Atotai) was used to calculate the ratio of sampled 

area to disturbed area.

Persistence time (tp) was calculated as the gap height cutoff divided by the mean height 

change per year. The mean height change per year was calculated using all height change

Aundisturbed 
Agap Eq 4.1

tr2 tp Agap Eq 4.2
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measurements within gap areas (both height gain and height loss). Persistence times were 

calculated applying both the Brokaw (Brokaw 1982) gap definition and the dynamic gap 

definition.

In order to examine gap closure, the height change of each gap pixel between final and 

initial survey times was analyzed. To separate horizontal encroachment from vertical 

growth into gap areas on changing canopy height, the innermost section of gaps were 

separately classified for each site. The gap centers were defined as areas more than 5 m 

from the gap edge at Reserva Ducke where smaller gaps are prevalent and more than 10 

m from the gap edge at Tapajos. These distances were more than twice the amount of 

lateral growth measured in temperate forests over a comparable time period (Runkle and 

Yetter 1987). Collecting these gap center pixels, the mean and standard deviation of 

height change were calculated. Maximum vertical growth was conservatively estimated 

as any change in height less than the mean plus three standard deviations. This captures 

100% of the data at the gap center, and is consistent with the assumption that horizontal 

ingrowth was not possible at large distances from gap edges. Change in height that 

exceeded expected maximum vertical growth was assumed to be caused by horizontal 

ingrowth. Areas of height loss were excluded from this analysis, as these were considered 

evidence of repeated disturbance in gap areas. The proportion of area within each growth 

category (horizontal ingrowth, vertical growth and height loss) was compared with 

distance from gap edge and gap size.



Gap Contagiousness

We defined gap contagiousness following Jansen et al. (Jansen et al. 2008) as the 

increased risk of disturbance around existing gaps. Jansen et al. (2008) specifically 

hypothesized that: (1) Canopy disturbance risk decreases with increasing distance from 

gaps; (2) Canopy disturbance risk is elevated in the edge zone of existing gaps; and (3) 

Gap bordering trees have increased risk of mortality.

To assess whether canopy disturbance risk decreases with increasing distance from gaps 

or is elevated in the edge zone of existing gaps, we first calculated the minimum distance 

between all non-gap pixels and the nearest gap in the initial acquisition. We then 

separated the distances to pixels classified as gaps in the 2012 lidar data collections. The 

frequency of each distance was calculated, and the distribution of distances to new gap 

pixels was subtracted from the distribution of distances across the acquisition. A 

Kolmogorov-Smimov test was applied to test the second hypothesis.

Jansen, et al. (2008) originally applied these three hypotheses to field data on 5660 trees 

greater than 10 cm diameter collected over a 12 ha area. Because we do not have field 

data for the full extent of the lidar data collection we applied a modified test for the third 

hypothesis. As opposed to testing the effect of gaps on all stems, we tested the effect of 

gaps on emergent stems (greater than 40 m tall) so that canopies and partial canopies that 

were present in 2008 but not in the second data collection were tallied. Canopies for
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which any point was within 10 m of gaps in the 2008 data set w ere  considered to be near

gaps.

4.3 RESULTS

Variability of Forest Structure

The canopy surface (maximum vegetation height per pixel) at Reserva Ducke had a near 

Gaussian distribution with a mean canopy height of 26 m (Figure 4.1). In contrast, 

Tapajos National Forest had a skewed distribution o f heights th a t  was significantly 

different from the distribution of heights at Reserva Ducke (ICS-test p-value < 2.5e-12). 

The dominant canopy at Tapajos National Forest was between 35 m and 40 m, but there 

was a sub-dominant layer that shows near equal frequency from  15 - 30 m (mean of 

28 m). Both the mean canopy height and the 99th percentile canopy height were higher at 

Tapajos (99th percentile height of 54 m as opposed to 49 m). C anopy height distributions 

were not significantly different between time periods (KS-test p-values > 0.05 for both 

sites). The difference in canopy structure may reflect the difference in mortality rates 

between the two sites. Annual mortality at Tapajos was estimated from field surveys as 

2.1% with a 95% confidence interval of 1.5% - 2.8%. At Reserva Ducke, annual 

mortality was 1.4%, with a 95% confidence interval o f  0.8% - 2.2%.
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Figure 4.1 Distribution o f  canopy surface heights in 2008 airborne lidar acquisitions. 
Shown for (a) Reserva Ducke and (b) Tapajos National Forest.

Height Change

Height change between the initial and final lidar data collections varied with the initial 

vegetation height (Figure 4.2). The mean height change decreased exponentially with 

increasing initial height and became consistently less than zero above 20 m initial height 

at Tapajos National Forest and 18 m at Reserva Ducke.
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Figure 4.2 Mean and confidence interval o f height change between initial andfinal lidar 
data acquisitions. Data collected at (a) Reserva Ducke and (b) Tapajos National Forest 
overlaid with the Brokaw (1982) and dynamic gap definitions ’height cutoffs, and the 
transition height where height change is not significantly different from zero based on 
Tukeys HSD (horizontal segments at the base o f  the figure). Each horizontal line 
displaying Tukey s HSD results spans initial height bins for which there is no significant 
difference (p-value > 0.05).

Dynamic Gap Definition and Minimum Gap Size

Similar to traditional gap definitions, we used a height cutoff to determine gap areas. 

Moving from the top of the canopy down, we examined the distribution o f height change 

for each initial canopy height bin. The transition height was defined as the tallest initial 

height with a positive mean height change (20 m at Tapajos National Forest and 18 m at 

Reserva Ducke). We then compared the distribution of height change of all lower initial 

height bins with the transition height (Figure 4.2). We defined the height cutoff for our 

dynamic gap definition as the tallest initial height that showed significantly greater 

change in height than the transition class (Tukey’s HSD p-value < 0.05). In other words,
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these were the areas showing a statistically significant signal of height increase. This 

cutoff height was 10 m at both Tapajos National Forest and Reserva Ducke. Gaps were 

defined as contiguous areas o f the CHM with height less than 10 m at both sites.

The minimum gap size (in m2 of area) was defined as an approximation of the mean 

canopy area for trees greater than 5 cm diameter at breast height (DBH = 1.3 m). The 

calculation of mean canopy radius took into account the basal-area weighting of the 

initial sample. The mean radius length was 2.07 m for trees at Tapajos National Forest 

and Reserva Ducke, corresponding to an estimated crown area of 13.4 m2. This was 

approximated as 10 m2 for ease of application and applied to both the Brokaw and 

dynamic gap definitions. Thus our dynamic gap definition was defined as an area > 10  

m2 where the lidar measured canopy height is always < 10 m.

Testing the effect of the minimum gap size using the 2008 data from Tapajos National 

Forest, we found that the proportion of area in gap decreased linearly from 4.6% with a 4 

m2 minimum gap size to 3.9% using a 20 m2 minimum gap size, or less than 0.1% 

decrease per m2 increase in minimum size. This change in the gap area resulted in an 

approximate 2-year increase in recurrence interval per m2 increase in minimum size.

109



Gap Area

Tapajos showed a greater area in gap at both time periods using both definitions. Using 

the dynamic gap definition, Reserva Ducke had between 1.7 and 2.2% of area delineated 

as gap. This was below half of the 4.1 to 5.5% of area at Tapajos National Forest. Both 

sites showed a larger percentage gap during the second sampling (Table 4.2). Gaps at 

Tapajos showed no statistically significant spatial autocorrelation as analyzed using 

Moran’s I suggesting near perfect randomness (I = 0.004; p-value=0.5). At Reserva 

Ducke, gaps showed a weak spatial autocorrelation (I = 0.05; p-value<0.05).

Not only was the total area different between sites, but the distribution of gap sizes at the 

two sites was also different (KS test p-value < 0.01). The mean gap size at Reserva 

Ducke was smaller than at Tapajos National Forest, as was the maximum gap size. The 

mean gap sizes were 35 m2 and 68 m2 respectively with a maximum gap size of 0.05 ha 

at Reserva Ducke and 0.9 ha at Tapajos. The exponent of the gap size power-law 

distributions averaged 2.16 at Reserva Ducke with 95% confidence intervals from 2.12 - 

2.20. At Tapajos National Forest the exponent was 1.88 using the dynamic gap definition 

for both years (95% confidence interval of 1.84 - 1.90).

Applying the Brokaw definition while retaining the 10 m2 area cutoff, we found that the 

proportion of area in gap was much lower, although the general comparison between sites 

was the same with a higher proportion in gap at Tapajos National Forest. The calculated
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power law exponents were significantly higher (3.26 and 2.91 at Reserva Ducke for 2008 

and 2011 respectively and approximately 2.86 at Tapajos National Forest for both years) 

and the overall number of gaps was low (Nmax= 106). Kolmogorov-Smimov tests showed 

that gap size distributions did not differ between years (Table 4.2).

Table 4.2 Frequency o f gap formation presentedfor both sites and gap definitions. The 
area covered by lidar at both time periods is reported with the percent initial gap area, 
percent final gap area, and the percent o f  the amount offinal gap area newly formed  
between samples for both the dynamic gap definition (10 m height cutoff} and the Brokaw 
(1982) gap definition (2 m height cutoff) fo r  a minimum gap area o f  10 m2. A 
Kolmogorov-Smimov test was used to compare the distributions o f gap sizes between 
years for each site by definition.

Site Sample Initial Gap Final Gap Percent New KS-test
Area (ha) Area (%) Area (%) Gap (%) p-value

Dynamic Gap

Reserva Ducke 602 1.20 1.52 64.2 0.39

Tapajos 398 4.37 5.49 23.2 0.33

Brokaw (1982) Gap

Reserva Ducke 602 0.01 0.04 98.9 0.78

Tapajos 398 0.03 0.11 98.8 0.95

Gap Creation and Lifetimes

Using the dynamic gap definition, approximately 65% of gap area at the second sampling 

was formed in the time between samplings at Reserva Ducke (3.67 years). At Tapajos 

National Forest 23% of gap area was formed between the samples, a period of 4 years.
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Despite differences in the proportion of new gap area, the recurrence intervals are similar:

377 years at Reserva Ducke and 316 years at Tapajos National Forest.

To estimate recurrence intervals from a single acquisition requires an estimate of the 

amount of time that gaps are visible on the landscape (persistence time). The persistence 

time of gaps was calculated based on the height change observed over the sample period 

(Table 4.3). Height loss, which may represent repeat disturbance or decomposition 

following tree-fall events accounted for 13.4% o f gap area at Reserva Ducke and 22.6% 

at Tapajos National Forest. Taking repeat disturbance into account resulted in estimated 

annual growth rates of 1.23 m y 1 at Reserva Ducke and 1.10 m y 1 at Tapajos National 

Forest.

Recurrence times calculated from a single acquisition were longer than those calculated 

based on new gap formation alone at Reserva Ducke and shorter at Tapajos National 

Forest. At Reserva Ducke the recurrence times were 675 years and 532 years for the 

initial and final acquisitions respectively. At Tapajos, recurrence times were 208 years 

and 165 years.

Using the Brokaw (1982) definition, almost 100% of the final gap area was new since the 

initial sample. Recurrence intervals were over ten times longer than those calculated at 

both sites using the dynamic gap definition, suggesting recurrence intervals calculated 

using the Brokaw gap definition are unrealistic. At Reserva Ducke the recurrence interval
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was 9,009 years, longer than the estimated 3,725 years at Tapajos National Forest.

Growth was estimated as 2.36 m y*1 at Reserva Ducke and 2.52 m y 1 at Tapajos for initial 

heights less than 2 m. This rapid height change resulted in persistence times o f  less than a 

year at both sites. Recurrence intervals calculated for individual acquisitions were 

extremely variable.

Table 4.3 Gap recurrence frequencies based on persistence times calculatedfrom the 
inter-sample growth period. Inter-sample period growth takes into account both height 
gain and height loss in gap areas. Three recurrence frequencies are presented: ‘New 
Formation’ takes into account only areas that were not gap at the time o f the initial 
acquisition (Eq.l); ‘Initial Acq. ’and ‘Final Acq. ’recurrence frequencies are each 
calculated based on a single lidar data acquisition using Equation 4.2.

Dynamic Gap 

Reserva Ducke 

Tapajos 

Brokaw (1982) Gap 

Reserva Ducke 

Tapajos

Persistence Recurrence Time y (tr)

Time y (tp) New Formation Initial Acq. F in a l Acq.

8.1

9.1

0.9

0.8

371

301

9009

3725

675

208

7416

2367

532

165

2122

732

The recurrence frequencies and persistence times presented are specific to the gap size 

and shape of each site at the time of sampling. For individual pixels, height changes over 

40 m were observed over the inter-sample period at both sites and was attributed to 

horizontal growth of surrounding canopies. To gain a better understanding o f methods of
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gap closure, we estimated the extent to which horizontal ingrowth played a role at both 

sites. The mean positive height change per year at gap centers (assumed unaffected by 

horizontal ingrowth) was 1.2 m y 1 (sd = 0.9) at Reserva Ducke and 1.8 m y 1 (sd=0.7) at 

Tapajos National Forest. Maximum vertical growth was estimated to capture all gap 

center height changes (approximately 4 m per year at each site). All height changes 

greater than this were assumed to be horizontal ingrowth. We estimate that 9.8% of gap 

area at Reserva Ducke closed through horizontal ingrowth and 6.1% of gap area at 

Tapajos National Forest. Repeat disturbance (height loss) accounted for 13.4% of area at 

Reserva Ducke and 22.6% of area at Tapajos National Forest. When height loss was 

included, the average height change at gap centers was similar to the overall height 

change of gaps (1.1 m y 1 at Reserva Ducke and 1.3 m y 1 at Tapajos). However, this 

percentage varied when only the region within 5 m of gap edges was analyzed. In this 

region a higher percentage showed height loss at Tapajos National Forest (26.9%), but a 

lower percentage at Reserva Ducke (10.6%).

Gap Contagiousness

Canopy disturbance risk did not consistently increase with decreasing distance from gaps 

at either Reserva Ducke or Tapajos National Forest. At Reserva Ducke there was an 

increased risk of gap formation (compared to site mean) at distances of less than 10 m 

from existing gaps (Figure 4.3a). At Tapajos National Forest, this increased risk extended 

to 8 m from existing gaps (Figure 4.3b). Although there was not a consistent increase
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with decreasing distance from gaps, there was an increased risk near to existing gaps (KS 

test p-val < 0.01). At both sites this zone of influence was strongest within 6 m of existing 

gaps.
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Figure 4.3 For each site, the average probability o f gap formation between 2008 and 
2012 was calculated. Next, the probability o f  gap formation was calculated based on 
distance from existing gaps. The average probability was subtractedfrom the probability 
based on distance from gaps in 2008 and the resulting difference (Gap Formation 
Anomaly) was plotted against distance fo r each site (a) Reserva Ducke and (b) Tapajos 
National Forest.

We looked for further evidence of gap contagiousness by counting mortality events for 

emergent trees. We found 177 full crown and a further 74 partial crown mortality events 

at Tapajos National Forest. Of these events, 49% were within 10 m of existing gaps, 

compared to 34% of the data that were within this same distance. The full crown 

mortality events represented 8.5% of counted emergent crowns in 2012, or 2.1% annual 

mortality of emergent crowns. At Reserva Ducke, we found 114 full crown mortality
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events, and 34 partial crown events. The full crown events represented 7.2% of emergent 

crowns counted in 2011 (1.9% annual mortality). Annual mortality rates as estimated 

from lidar were not significantly different from field based measurements of emergents or 

the overall sample at Tapajos National Forest (Table 4.4).

Table 4.4 Estimates o f annual mortality for all trees estimatedfrom fie ld  sample as well 
as emergent trees (> 40 m) for both field  and lidar samples. The number o f  newly dead 
trees (Nm), total sample size (N), percent annual mortality as well as the fraction fallen 
dead are presented. Fallen dead were considered those with height o f  less than 10 m in 
the 2011 survey.

All Field 

Field
Emergents

Lidar
Emergents

Nm

23

0

Reserva Ducke 

N %  Ann. %
Mortality Fallen

899

16

1.4 53.0

114 1,583 1.9

Nm

49

3

Tapajos National Forest 

N % Ann. % 
Mortality Fallen

1,137

61

177 2,082

2.1

2.9

2.1

59.1

28.9

At Reserva Ducke lidar based estimates of emergent tree mortality were not significantly 

different from overall site mortality. The distribution of mortality events is more similar 

to the distribution overall at Reserva Ducke; 20.3% of mortality events were within 10 m 

of gaps, and 16% of the area sampled. Mortality of the largest trees was consistent with 

the general trend of gap contagiousness. Observations showed higher than expected 

mortality near gaps at both sites with a 15% difference at Tapajos National Forest and a 

4% difference at Reserva Ducke (observed - expected).
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4.4 DISCUSSION

Gap Definition

We sought a functional gap definition based on light penetration through the canopy 

permitting high growth rates. It is not expected that a single set o f  horizontal or vertical 

limits will be appropriate for all sites due to different dynamics. T he  two sites studied 

show large variability in canopy structure, but analysis o f canopy dynamics resulted in 

one consistent gap definition for both sites. This may be due in part to their similarities as 

moist tropical forests. Both the vertical and horizontal limits derived are within the ranges 

applied in previous studies. The height limit is close to those applied in the field by 

Young and Hubbell (1991) and to remote sensing data by Gaulton et al. (2010). We note 

that our quantitative dynamic gap definition can be calculated for any forest site where 

appropriate multitemporal data is available.

Comparing our dynamic gap definition to the fixed Brokaw definition, we find that 

application of the Brokaw definition to lidar data underestimated canopy openness and 

overestimated gap recurrence intervals. A previous remote sensing study on gap 

frequency in Peru does not present canopy openness or gap recurrence intervals, but tests 

the gap size distribution of the Brokaw and other gap definitions (Boyd et al. 2013). They 

showed no significant difference between the Brokaw gap definition and other height 

cutoffs when examining the gap size distribution in Peru (Boyd e t al. 2013) whereas we
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also observe significant differences in this variable. These differences may be due to the 

shape of gaps, annual variability, or the infrequency of newly formed gaps penetrating to 

within 2 m of the ground at our sites. Another important difference in our methods from 

those of Boyd et al. is the horizontal size limit applied. While Boyd et al. (2013) applied a 

2 m2 minimum gap size, we applied a 10 m2 minimum gap size. Our larger minimum size 

reduced the total area of Brokaw gaps significantly (from 3824 m2 with 1 m2 minimum 

gap area to 709 m2 at Reserva Ducke in 2008). However, when no minimum gap size is 

applied differences between the Brokaw and dynamic gap definitions remained 

significant (0.01% Brokaw gap versus 1.9% dynamic gap at Reserva Ducke).

As shown by Hubbell and Foster (1986), the death of canopy trees often does not indicate 

the death of all understory vegetation. They reported that small stems frequently 

remained in gaps up to 4 - 5 m in height. Lieberman et al. (1985) reported broken and 

damaged stems within a tree fall gap that were well above 2 m. Of the trees that were 

broken and died, they reported that all were less than 10 m tall (maximum 7 m). O f those 

that were broken and survived two were above the 10 m threshold applied here.

The minimum area of gaps delineated had a comparatively small affect on the gap 

characteristics presented here. Starting from a minimum area of 4 m2 we found that a 

1 m2 increase in the minimum gap size results in a 0.1% decrease in total gap area and an 

approximate 2 year increase in recurrence interval. In contrast, the fractional area changes 

significantly when the height limit of the gap definition changes. Lobo and Dalling
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(2014) also showed an exponential increase in the percent area in gap when the height 

limit is increased.

Gap Area

We measured about twice as much proportional area in gap at the Tapajos National Forest 

as compared to Reserva Ducke. The Tapajos National Forest distribution of gap sizes was 

weighted more strongly toward large gaps. Compared with other tropical sites, Tapajos 

National Forest has a more varied canopy structure, but the distribution of gap sizes is 

similar to previously published values (Kellner et al. 2009, Chambers et al. 2009, Boyd et 

al. 2013, Asner et al. 2013, Lobo and Dalling 2014). Unfortunately, the proportion of area 

in gap is not always reported in gap studies. O f sites with similar measurements, a study 

conducted at Tambopata (Boyd et al. 2013) that applies a minimum gap size of 2 m2 

reported proportion of area in gap and found that approximately 1.1% of the area studied 

was considered gap when applying the Brokaw gap definition, higher than at either of the 

sites considered here. In contrast, a study conducted in Panama using a 5 m2 minimum 

gap size found 0.41% of area in gap when applying the Brokaw gap definition, and 

6.04% of area in gap when applying a 10 m height cutoff (Lobo and Dalling 2014).
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Gap Creation and Forest Turnover

Estimates of forest turnover by gap processes do not equate with field estimates of 

mortality (Lieberman et al. 1985, van der Meer et al. 1994). Not only do trees die without 

creating gaps, but single gaps may be formed by multiple trees (Putz et al. 1983, Gale and 

Barfod 1999, Gale and Hall 2001, Chao et al. 2009, Ferry et al. 2010). Espirito-Santo et 

al. (2013) found that gap formation resulted from about 30% of tree mortality events at 

the Tapajos National Forest. Therefore, we expect that remote sensing based estimates of 

gap recurrence intervals should be considerably longer than the recurrence intervals 

implied by mortality statistics. The extremely long recurrence intervals estimated based 

on a maximum height of 2 m and a minimum area of 10 m2 (Brokaw gaps) is an artifact 

of the very small proportion of gap area when this definition is applied to lidar data.

The increased gap creation, faster dynamics and larger gap sizes of Tapajos National 

Forest should also be associated with faster regrowth within gaps. However, we observed 

slower average vertical growth in gaps at Tapajos National Forest compared to Reserva 

Ducke. Larger gap sizes at Tapajos National Forest are expected to result in higher light 

availability at Tapajos National Forest, resulting in faster growth (Stark et al. 2012). We 

attribute the lower observed average height change to the strong influence of repeat 

disturbance at gap edges, especially for gaps over 50 m2. While Tapajos and Reserva 

Ducke show similar levels of repeat disturbance for gaps less than 50 m2 (approximately 

15%), gaps greater than 50 m2 have higher repeat disturbance rates at Tapajos (28%
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within 5 m of gap edges) and lower rates at Reserva Ducke (10% within 5 m of gap 

edges). Additionally, gaps are smaller at Reserva Ducke, and horizontal ingrowth has a 

stronger effect with a conservative estimate of 10% of gap area closing via horizontal 

ingrowth versus 6% at Tapajos National Forest. Furthermore, when only positive change 

data from gap centers were analyzed, maximum vertical growth rates are consistent with 

published values from other tropical forests (Brokaw 1987) and our result of larger 

average height change at Tapajos National Forest is consistent with the expectations of 

faster dynamics at this site (Stark et al. 2012).

The differences between turnover times as estimated from change between lidar data 

collections versus those based on single acquisitions highlights uncertainties due to the 

variability in persistence times. Given the variability in growth rates, persistence times 

are not well understood (Asner et al. 2004). Logging studies show canopy closure in 

terms of gap fraction as estimated from hemispherical photographs but rarely include 

information on understory height growth (Fredericksen and Pariona 2002, Pereira et al. 

2002, Schulze and Zweede 2006). The increasing availability of repeat collections of 

lidar data in tropical as well as temperate ecosystems will improve our understanding of 

growth at the stand and landscape scales for gap and non-gap environments.
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Gap Contagiousness

While gaps have clumped distributions (Poorter et al. 2009), it is debatable whether gaps 

influence the creation of other gaps (also known as gap contagiousness). Young and 

Hubbell (1991) surveyed large trees within Barro Colorado Island and hypothesized that 

gap contagiousness would occur over time due to observed canopy asymmetry. Jansen et 

al. (2008) tested four hypotheses related to canopy disturbance risk and the magnitude of 

canopy disturbances with relation to proximity to gaps and initial gap size within a 12 ha 

area of tropical forest in French Guiana. While new gaps formed more frequently close to 

existing gaps, the authors showed that this was due to the respective area at each distance 

from gaps within the landscape, and was not evidence for gap contagiousness. The 

authors concluded that in the forests of French Guiana surveyed newly formed gaps were 

consistent with previous theories of tropical rain forests as “patches with predictable 

regeneration cycles”.

Although gap contagiousness has not been conclusively shown, edge effects are a well 

known phenomena in fragmented landscapes. Laurance et al. (1998) showed increased 

mortality within 100 m of the forest edge, and suggested that this may be due to increased 

wind turbulence and changes in the local microclimate. While natural gaps within the 

forest matrix may not experience increased wind turbulence, changes in the local 

microclimate do occur (Ray et al. 2005).
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Our results suggest that gap contagiousness does occur surrounding natural forest gaps 

but has an extremely small effective range. This was shown for all gaps and specifically 

in terms of the mortality of large trees. The small effective range (approximately 6 m at 

both sites) suggests that the gap definition used will have a strong effect on evidence for 

or against contagiousness. Jansen uses an expanded gap definition that is based on the 

Brokaw definition of a gap as a region where vegetation does not exceed 2 m height. The 

expanded gap definition, based on Runkle (1981) requires a central area of greater than or 

equal to 4 m2 of less than 2 m height, but the gap edge is defined by the trunk locations of 

surrounding trees of at least 20 m in height. Young and Hubbell (1991) uses a different 

gap definition where gap areas were defined as areas greater than 25 m2 with canopy 

height less than 10 m. Jansen and colleagues’s gap definition will therefore include larger 

areas, but classify fewer gaps. This is apparent in their results that show mortality rates 

approximately twice as high within gaps as compared to the surrounding forest (Jansen et 

al. 2008).

4.5 CONCLUSIONS

We found that forest canopy structure is significantly different between the two sites 

studied in the Brazilian Amazon. Additionally, the growth rates within gaps were highly 

dependent on the initial height of vegetation examined. For vegetation less than 10 m in 

height, we observed average height changes of approximately 4.5 m at both sites. This 

equates to 1.2 m y 1 at Reserva Ducke and 1.1 m y 1 at Tapajos National Forest. With
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regards to gaps, the gap size frequency was significantly different between the sites, as 

well as between gap definitions. The gap size frequency did not change between sample 

years, although the proportional area in gaps varied between years, suggesting that rates 

of canopy turnover are not constant through time. Both sites showed evidence of gap 

contagiousness, although the range of influence was extremely limited which may 

account for conflicting results in the literature.

Experiment concept and design were completed by MOH in collaboration with MK,

MJD, ML, SRS and DCM. MOH, ML and JS contributed to raw data processing of the 

initial 2008 lidar data collection. MOH, MK, DCM and BC contributed to processing the 

2012 lidar data. BC and DCM re-analyzed raw lidar data using the G-LiHT processing 

tools and created the merged DTM for Reserva Ducke. MOH collected field data at 

Reserva Ducke and Tapajos National Forest with logistical assistance from RCdO, JS and 

SRS.
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CHAPTER FIVE

EFFECT OF LIGHT AVAILABILITY ON HEIGHT GROWTH IN TROPICAL

FORESTS

5.1 INTRODUCTION

Variability in light is a key driver for forest growth and succession (Cannell and Grace 

1993). Successional processes in tropical forests are typically driven by small gaps 

(Denslow 1987, Espirito-Santo et al. 2014a) that have been shown to have highly variable 

light environments. Variation has been shown both between gap sizes and gap geometries 

and well as within individual gaps, moving from gap centers to edges (Poulson and Platt 

1989, Whitmore et al. 1993, Brown 1996).

Historically, estimation of light level within gaps depended on the use of forest structural 

models, canopy hemispherical photography or similar techniques including the LAI-2000 

(Welles and Norman 1991). Whitmore et al. (1993) showed that canopy openness as 

predicted by hemispherical photographs was a strong indicator of local microclimate. 

Machado and Reich (1999) evaluated instantaneous light measurements’ ability to predict 

transmitted light available during the growing season and found that hemispherical 

photography, LAI-2000 and instantaneous measurement of photosynthetic photon flux
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density were well correlated with overall light availability. Additionally, they show that of 

tested techniques, hemispherical photographs had the lowest correlation with total light 

available (67%) whereas the LAI-2000 had the highest correlation (90%).

While previous research has shown the ability of instantaneous measurements to predict 

total light available for a given gap location, it is difficult to take the high degree of local 

variability into account in order to understand the influences of light in gaps across a 

broader landscape. Light patterns near the forest floor are influenced by complex 

interactions between all vegetation layers, and forest structural parameters such as basal 

area, mean tree height, mean crown area and stem density are not sufficient to predict 

light environments (Montgomery and Chazdon 2001). This suggests the difficulty of 

accurately estimating light environments without direct measurements or complex 

models. Even detailed forest inventory measurements are likely insufficient given the 

variability in tree architecture inherent in tropical forest ecosystems (however see 

Marthews et al. 2008).

Airborne lidar remote sensing provides detailed structural measurements of forest 

ecosystems (Lefsky et al. 2002, Lee and Lucas 2007, Vierling et al. 2008). Lidar sensors 

emit short duration laser pulses that are reflected by leaves, branches and the ground. The 

round trip time of the reflected pulse is recorded and converted to distance to the 

reflected surface. Discrete airborne lidar provides a three-dimensional cloud of points 

representing reflected surfaces. This data has been directly used to estimate understory
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vegetation distribution (Martinuzzi et al. 2009) as well as estimate understory biomass 

based on height and fractional cover (Miura and Jones 2010, Morsdorf et al. 2010, 

Estomell et al. 2011). With limited assumptions about occlusion and signal die-off (e.g. 

Stark et al. 2012) it is possible to also use this data within a modeling framework to 

predict light environments.

High light environments have been shown to increase survivorship and growth of 

seedlings in tropical moist forests (Brokaw 1985, Denslow et al. 1990). The increased 

survival of seedlings in gap environments depends on light availability as well as a 

decrease in pathogens due to warmer temperatures, drier air and increased circulation. 

Though mortality is higher for saplings in gaps, growth is also generally higher. Welden 

et al. (1991) showed increased growth in gap environments for about half o f species in a 

study on Barro Colorado Island, in Panama. This variability in response to gap 

environments is thought to be due to competition between saplings, as well as mortality 

of surrounding trees and branches (Hubbell and Foster 1986, Young and Hubbell 1991).

As trees grow taller, they are generally exposed to increasing light environments (Metcalf 

et al. 2009). This interdependence between light availability and tree height must be taken 

into account to accurately estimate growth. However, there are few studies that take into 

account tree size and light availability at the same time (Riiger et al. 2011b).
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In this study, we aim to test the ability to predict height change in a tropical forest 

ecosystem based on a simple model that uses the spatial distribution o f initial vegetation 

height in a canopy height model derived from lidar to predict solar radiation. Multi­

temporal lidar data collected over a four year interval was used to estimate initial height 

and height change. Six 1 ha areas within the Tapajos National Forest, Para, Brazil were 

used as test areas within the approximately 400 ha of overlapping lidar data between time 

periods. For these test areas, annual incident solar radiation was estimated for the canopy 

surface at a 1 m resolution. Predicted height changes based on initial height and solar 

radiation are compared to height change as measured by field inventory. Here we report 

on trends in field measurements of growth (diameter, height and crown radius 

increments) as a function of field assessments of light availability and crown position. We 

then present results of a simple model of solar radiation for areas with varying gap sizes 

and geometries, and compare trends in the prediction o f height change from modeled 

light availability and initial height to field assessments.

5.2 METHODS

Site Description

Tapajos National Forest (54°58’W, 2°51 ’S) is a 550,000 ha forest reserve o f tropical 

moist forest within the central Brazilian Amazon. The reserve contains upland forests on 

nutrient-poor, clay Oxisols (Silver et al. 2000) with limited topographic variability. Mean
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annual temperature is 25°C and mean annual precipitation is 1909 mm (Hijmans et al. 

2005). The dry season, defined by months with less than 100 mm rain, typically lasts 

from July through December (Vieira et al. 2004). We studied an undisturbed portion of 

the reserve although other regions of the reserve have been selectively-harvested.

Field Survey

Six transects of 500 m were installed within the study area in June 2009. Stems greater 

than 5 cm diameter were sampled using a diameter-dependent line sample using a 

diameter factor of 10.0 (Schreuder et al. 1987). We mapped stems with respect to the 

transects and geolocated the transects using a combination of differential GNSS and 

navigational GPS units. For each stem, we measured diameter, height and crown 

dimensions and noted canopy position and light availability. All stems were remeasured 

in July 2011. A total of 1193 stems were measured; 1137 stems were sampled in 2009 and 

1142 in 2011. For further details of field sampling procedures see Hunter et al. (2013).

Airborne Lidar Data

Airborne lidar data was collected at the study site between June 7 and July 3 2008 and 

between 30-31 July 2012 and 3-4 September 2012. A digital terrain model (DTM) and 

canopy height model (CHM) was created for each lidar acquisition at a 1 m2 resolution 

following Cook et al. (2013). Six 1 ha areas were selected for further analysis within the
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400 ha covered by both data acquisitions. These areas include field-sampled transects and 

a wide variety of light environments.

Incoming Radiation

Incident photosynthetically active radiation (PAR) measurements taken on a canopy 

tower within the study area were used to estimate properties of incoming solar radiation. 

Incoming PAR was measured at 63.6 m elevation from January 3, 2002 to January 19, 

2006 and reported as hourly means and standard deviations (Hutyra et al. 2007).

Tower data were analyzed to determine the maximum incident PAR and average PAR for 

sunny and cloudy conditions. The maximum incident PAR was defined as the 99th 

percentile of PAR measurements. Sunny conditions were defined as those with greater 

than 70% of the maximum PAR for a given month and hour. Cloudy conditions were 

defined as those with less than 70% of maximum PAR. The number of cloudy days per 

month was calculated as the number of cloudy measurements (NShade(m)) divided by the 

total number of measurements (Ntotai(m)) in a given month (Eq 5.1).

-  ^shadejm)
Jdm) Ntotalfjn) Eq5.1
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Modeled Annual Solar Radiation

Annual incoming solar radiation was estimated for each of the six selected areas using the 

model of Rich et al. (Rich 1990, Rich et al. 1994) and further developed by Fu and Rich 

(Fu et al. 2000, Fu and Rich 2002). This model was developed to characterize the spatial 

and temporal variability of insolation across landscapes (Fu and Rich 2002) by simulating 

the influence of shadow patterns at discrete intervals through time. The variability in 

elevation, surface orientation and obstruction create strong local variability that cannot be 

modeled from simple interpolation o f point measurements.

The area solar radiation calculation has been implemented in the spatial analysis package 

of ArcGIS (v9.2). We employed this function using the lidar CHMs as the only spatially 

explicit inputs. The model generates a hemispherical viewshed for each pixel within the 

raster, wherein the amount of sky visible is determined based on canopy topography. In 

our case the sky visibility was based on canopy surface topography at a 1 m resolution. 

The canopy height model for each area of interest was used as the spatially explicit input. 

The ‘area solar radiation’ tool also requests a slope input that can be determined either 

from the input raster or specified as a flat ground surface. Given that we are simulating 

the canopy surface as opposed to the ground surface this parameter was interpreted as the 

slope of the canopy surface elements. As leaf angle is highly variable, and likely not 

correlated to the slope of the outer canopy surface, we chose to specify a flat ground 

surface.
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The ‘area solar radiation’ function calculates a sunmap that i s  a raster representation of 

the sun track over the sample period that we used to estimate direct radiation. Based on 

inputs including the year, time of year, day interval and time interval and center longitude 

and latitude from the input raster we estimated annual solar radiation for the 2009 

calendar year, the first full year after initial lidar data collection. We modeled light 

conditions for one day per month at 2 hour intervals. The sunm ap is overlaid with the 

viewshed previously calculated to model direct radiation. T h e  calculation of direct solar 

radiation is completed according to equation 5.2.

Dir6 a = SConst * • SunDure,a ' SunGap6ja Eq 5.2

This equation calculates direct solar radiation (Dir) as a function of constant solar flux 

outside of the atmosphere (SCOmt = 1367 W nr2), the transmissivity of the atmosphere (ft) 

that is dependent on the relative optical path length (m), the tim e duration represented by 

a sky sector (SunDur) specific to the sunmap (generally the d ay  interval multiplied by the 

hour interval), and the gap fraction for a sky sector (SunGap). Additional terms taking 

into account the interaction between solar angles and surface angles were not included as 

we specified a ‘flat ground surface’. The majority o f these variables are dependent on the 

zenith angle (6) and azimuth angle (a).
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Table 5.1 Input parameters to ArcGIS 9.2 ‘Area Solar Radiation ‘tool. 

Input Parameter Value

Sky Area

Year

Days

Day Interval 

Hour Interval 

Slope Input 

Calculation Directions 

Diffuse Fraction 

Transmission

200 

2009 

by month 

7 

2

Flat Surface 

32

monthly value 

0.5

The area solar radiation tool next generates a skymap that is used to estimate diffuse solar 

radiation. The skymap generated is a raster representation of the full sky hemisphere 

divided into a specified number of zenith and azimuth components. We employed the 

default calculation for 8 zenith divisions and 16 azimuth divisions. Diffuse radiation is 

estimated based on the direction of the centroid of each raster component. The skymap 

was overlaid with viewsheds previously calculated to determine the diffuse radiation 

component at each 1 m resolution pixel of the original input raster of the canopy height 

model. The diffuse solar radiation was calculated within the solar radiation tool based on 

Equation 5.3.

Dijhe,a = Rgib' Pdtf • D ur • SkyG ape<a ' W eighte,a Eq 5.3
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This equation takes into account global normal radiation (Rgib calculated based on Eq 

5.4), the proportion of global radiation flux that is diffused (Pdif), the time interval of the 

analysis (Dur), the proportion of visible sky for a given sky sector (SkyGap), and the 

proportion of diffuse radiation originating from a given sky sector {Weight). The global 

normal radiation (Eq 5.4) includes parameters previously defined for equation 5.2 

including the constant solar flux outside of the atmosphere (Scomt) and the transmissivity 

of the atmosphere (J3) and the proportion of diffuse radiation (Pdif). The proportion of 

diffuse radiation in equations 5.3 and 5.4 was determined on a monthly basis following 

the equation published by Butt et al. (2010) that calculates the diffuse proportion based 

on the proportion of cloudy conditions calculated using equation 5.1. This equation was 

developed for Caxiuana, Para, a site within the eastern Amazon of Brazil.

R sw = (Scons, -S O ”® ) )  4  (1 - P dlf)  Eq 5.4

Simulations were run for each month using weekly time steps, and output on a monthly 

basis. Total solar radiation was calculated following equation 5.5.

S R = Z m[2 (D ifn e,a) +  S (D ire^)] Eq 5.5

This equation sums diffuse and direct light summed over all zenith and azimuth angles 

for a given month and then sums over all months. Summed output values are in units of 

watt-hours per meter-squared (Wh n r2).



Analysis

For each of the six scenes analyzed, initial canopy height and annual solar radiation were 

tested as predictors of canopy height change. Based on results presented in Hunter et al. 

(2014; Chapter 4) we separated lateral growth from trees surrounding gaps, mortality 

events including branch falls, and vertical growth within gaps. Based on this prior study, 

we modeled the influence of light on vertical growth only (positive height changes less 

than 3.9 m y r 1) and on all height changes based on the full data set. We also investigated 

gap areas specifically both for all height changes and vertical growth only.

Six models were tested to predict height change, representing possible combinations of 

linear and natural log transformations (Table 5.2). Log transformation implies a 

saturation of the effect of a given term. Each model was fit using the generalized linear 

model function (R-Project v2.15) tested for all sites data together as well as each site 

individually. The best model was chosen based on the lowest AIC, with additional 

consideration of the adjusted correlation coefficient (R2 value).

Table 5.2 Model forms tested to predict height change (HC) using initial height (Ht) and 
annual solar radiation (SR) as predictive variables.

Ml HC = a + b*Ht + c*SR

M2 HC = a + c*SR

M3 HC = a + b*Ht

M4 HC = a + b*log(Ht) + c*SR

M5 HC = a + b*Ht + c*log(SR)

M6 HC = a + b*log(Ht) + c*log(SR)
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The comparative effect of solar radiation and initial height are initially compared using 

models 2 and 3, that each take into account a single parameter. To further test the effect of 

these individual components, a de-trending analysis was conducted. In this analysis, 

linear and log-linear relationships were first applied to initial height versus height change 

measured (HCmeas) using the generalized linear model function and parameters were fit 

(Eq. 5.6).

HCmeas =  a + b H t or HCmeas= a +  b ln(//?) Eq 5.6

Model parameters were then used to calculate a modeled value for height change 

(HCmodei) based on initial height alone (Ht). The modeled value of height change was then 

removed from the measured value, resulting in a de-trended value for height change 

(HCdei). This value (HCdei) was then regressed against solar radiation (SR) testing both 

linear and natural logarithm formulations (Eq. 5.7).

HCdet = c +  d  SR or HCdet =  c +  d  ln(S7?) Eq 5.7

5.3 RESULTS

Field Surveys

Growth of individual trees was estimated over the two-year sample interval in terms of 

diameter, height, and crown radius increments. Data demonstrate increasing diameter
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increment and crown radius increment with increased light availability. A weak positive 

signal for height increment is also shown, though errors in field measurements of height 

are large (Hunter et al. 2013). Similar patterns are shown when growth is separated by 

canopy position alone, with increasing mean growth shown as the canopy position 

changes from suppressed to emergent canopy positions. However, when height increment 

is regressed against initial measured height, a slight but significant negative correlation is 

found (intercept = 1.22, slope = -0.09, p-value < 0.001). This regression indicates that 

short vegetation had the greatest positive height change, and vegetation over 13.4 m 

showed a tendency toward decreasing height. Positive correlations are found for both 

crown radius and diameter increments.

Tapajos
Tapajos

■ ii

Suppressed Canopy Emergent 
Ind. Par. Full Ind. Par. Full Ind. Par. Full

Suppressed Canopy Emergent 
Ind. Par. Full Ind. Par. Full Ind. P ar. Full

Suppressed Canopy 
Ind. Par. Full Ind. Par. Full

Emergent 
Ind. Par. Full

Figure 5.1 Field measured growth by canopy class and light availability class.

When field measurements of growth are divided into classes based on both canopy 

position and light availability, trends are more difficult to determine. This may in part be 

due to small sample sizes for some classes. Diameter increment increases most strongly 

within canopy position classes, with a slight trend visible for suppressed trees and no 

trend observable for emergents (Figure 5.1a). Diameter increment likewise increases for
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indirectly illuminated and partially illuminated stems. There is no consistent trend for 

growth within canopy classes with regard to height or crown radius increment. For stems 

receiving indirect light there is an increasing trend of height increment, but this trend is 

not visible for partially or fully illuminated stems (Figure 5.1b). Crown radius likewise 

increases for both stems receiving indirect and partial sunlight (Figure 5.1c). No trend is 

visible for fully illuminated crowns for any metric.

Estimates of Incoming Radiation
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Figure 5.2 Incoming radiation in PAR wavelengths at Tapajos Tower and fraction o f  
shady days. The 99th percentile o f  incoming PAR is shown fo r  the 1600 -1700 GMT hour 
(approximately 1230 local time) by month. Average sun PAR is estimated as the average 
PAR ofperiods with greater than 70% o f max PAR. Average shade PAR is the average o f  
the remaining measurements. The proportion o f shade days per month was estimated as 
the number o f shade measurements divided by the total number of measurements.
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Modeled incoming radiation based on latitude and longitude varied with maximum 

values occurring during September. Maximum PAR as measured by the meteorological 

tower varied by hour, with mean values ranging from 1677 |imol m V  at 1230 and 457 

pmol m 'V 1 at 1630 local time. However, no distinct seasonal pattern was observed. At 

1230 local time the mean sunlit PAR was 1384 pmol n r V  and the mean shade PAR was 

848 pmol m 'V 1. Estimates of the proportion of cloudy days varied from 0.19 to 0.65 with 

fewer cloudy days during the five month dry season (July through November). This
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Figure 5.3 Area 6 canopy height (m; A) and estimated total annual solar radiation (kWh 
m~2; B) composed o f direct radiation (C) and diffuse radiation (D) components.
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proportion of cloudy days represented diffuse proportion ranging from 0.34 - 0.70 (Fig

5.2).

Modeled Annual Solar Radiation

Based on the raw direct and diffuse radiation output by the model, the maximum value of 

incident solar radiation is 2603 kWh n r2. The maximum direct radiation is 1484 kWh n r2 

and the maximum diffuse is 1120 kWh n r2.

Estimated annual solar radiation varied from 9.18 to 2604 kWh nr2 within the test scenes 

(example scene presented in Figure 5.3). Solar radiation was highly variable at the 

canopy surface with a mean of 1682 kWh n r2 and a standard deviation of 636 kWh n r2. 

In general, solar radiation was lower at lower initial canopy heights (slope = 33.1, R2 = 

0.44). However, there were a number of pixels where low canopy heights had high solar 

radiation and where tall canopy heights had low solar radiation (Figure 5.4).

Figure 5.4 Relationship between initial 
canopy height (m) and estimated annual 
solar radiation (kWh m 2) fo r  all areas o f  
interest. Boxplot o f data binned into 10 m 
canopy height classes is overlaid.
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The mean annual solar radiation varied between the studied areas, with low mean solar 

radiation generally correlated with high gap fraction (Table 5.3). When only areas in gap 

are considered, the opposite trend is observed with solar radiation increases with 

increasing gap fraction. However, there is significant variation in both leading to non­

significant slopes when linear correlations were tested.

In general, annual solar radiation showed a slight negative correlation with height change 

over the four-year inter-sample period (slope = -0.003). This is the case when all solar 

radiation values are considered as well as only areas corresponding to vertical growth or 

gap areas.

Table 5.3 Details o f  study areas including gap fraction, mean and standard deviation o f  
canopy height (m) and mean modeled solar radiation (kWh m r2)  for the fu ll scene as well 
as gap areas.

Site Gap
Fraction

Mean Canopy 
Height

Canopy
Height
(sd)

Mean Solar 
Radiation

M ean Solar 
Radiation in 
Gap

Area 1 3.86 27.45 9.80 1743 891

Area 2 15.15 22.86 11.88 1620 992

Area 3 23.25 21.10 11.49 1751 1283

Area 4 2.77 35.79 12.76 1747 487

Area 5 40.29 16.07 11.17 1507 1104

Area 6 4.65 25.50 9.29 1721 629
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Effects of Light Availability on Growth

To separate the effects of solar radiation and initial canopy height on lidar measured 

height change, a series of models were tested that take both parameters into account. 

Results presented are for the prediction of vertical height change only. Initially testing 

models for all initial heights that include only solar radiation (M2) or initial height (M3) 

as predictors, we find that incident solar radiation is a stronger predictor of height change. 

While the AIC further declines and variance explained improves with the addition of the 

initial height parameter (Ml), the difference is small.

Table 5.4 Parameters o f models fit  to vertical growth data within six areas o f interest 
within Tapajos National Forest.

Model a b c R2 AIC

Ml 5.656 -0.018 -0.002 0.24 130655

M2 5.603 -0.002 0.24 130799

M3 4.330 -0.082 0.14 134178

M4 6.270 -0.353 -0.002 0.24 130630

M5 16.164 -0.032 -1.796 0.25 130529

M6 17.254 -0.544 -1.827 0.24 130593

Of models including all parameters, the variability in height change explained is not 

extremely variable with 24 - 25% explained in all cases. Model M5, which uses a linear 

relationship with initial canopy height and the log transformation of solar radiation,
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showed the minimum AIC and maximum R2 value with a total o f  25% of variance 

explained (Table 5.4). Model 3, the only model tested that did n o t include the solar 

radiation term, had the highest AIC and explained the least variance overall (14%).

Figure 5.5 Modeled canopy height difference over the four y ea r  inter-sample period 
based on initial canopy height (x-axis) and annual solar radiation (y-axis).

When models were tested at individual areas, model M5 had th e  lowest AIC at four o f the 

six areas, explaining between 25% and 31 % of variance (Fig 5 .5 ). The best fit model is of 

the form:
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HC = 16.164 - 0.032 Ht - 1 .7961n(Si?) Eq 5 8

At two of the individual areas (area 3 and area 5) M5 was not the best fit, but explained 

28% and 13% of variance respectively. At area 3, M6 had the lowest AIC and explained 

the most variance (30%), whereas at area 5, M4 had the lowest AIC and explained the 

most variance (15%).

Table 5.5 Parameters o f models f i t  to vertical growth data in gap areas (areas o f  less than 
10 m initial height) within six areas o f  interest within Tapajos National Forest.

Model a b c R2 AIC

Ml 6.231 -0.187 -0.001 0.05 27445

M2 5.094 -0.001 0.04 27520

M3 5.198 -0.222 0.02 27635

M4 6.864 -1.030 -0.001 0.05 27443

M5 12.132 -0.177 -1.069 0.06 27396

M6 12.654 -0.964 -1.058 0.06 27396

Testing the same models within gap areas (those with initial height less than 10 m) less 

variance is explained by all models (Table 5.5). Incident solar radiation remains a 

stronger predictor of height change than initial height. Of models including both 

parameters, between 5.4 and 6.3% of variance was explained and model 5 again showed 

the lowest AIC and highest variance explained. For gap areas the best fit model was of 

the form:

HC=  12.132 -0.177 -Ht - 1.069-In(SR) Eq5.9
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All models tested showed a negative relationship between initial height and height 

change as well as between solar radiation and height change.

Detrending analysis also showed negative relationships between height change and both 

initial height and solar radiation. The linear regression between initial height and height 

change is presented as model 3 in Table 5.4 and explained 14% of variability. The natural 

log regression of these parameters explained slightly less variability and had a higher AIC 

(AIC=134399 as opposed to AIC=134178). Estimated solar radiation was then tested for 

linear and log-normal relationships with the de-trended value. The resulting linear 

relationship (intercept=1.73, slope=-0.0022) explained 24% of remaining variability. The 

log-normal relationship explained slightly less variability (23%) and had a higher AIC 

(AK>135565 as opposed to AIC=135305).

5.4 DISCUSSION 

Field Surveys

Increasing trends of growth are shown with increasing crown illumination and canopy 

class for diameter increment. However, trends are not visible within canopy classes when 

observing changes in height or crown radius despite strong correlation between crown 

radius and stem diameter. When we regressed diameter and crown radius increment 

against initial height, positive correlations were found, whereas a negative correlation
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was found when height increment was regressed against initial height. The difference 

between results when observing canopy class versus initial height may be due to the large 

uncertainty in height measurements, especially o f tall stems (Hunter et al. 2013). Trends 

are more visible within illumination classes for all metrics, suggesting that solar radiation 

may be a stronger driver of growth potential than initial height. This is consistent with 

results from Ruger et al. (201 lb) showing stronger dependence on solar radiation than 

initial height. Additionally, our results showing increasing height growth for indirectly 

illuminated stems (primary understory stems) are consistent with the positive height 

increment demonstrated by Ruger et al. (2011b) and others.

It is important to remember that the field surveys include a large proportion of understory 

plants that are not accessible via remote sensing analysis. Canopy and emergent stems 

accounted for 54% of the 2009 field inventory. O f these, approximately 20% were 

classified as having crowns that were fully illuminated and 77% were classified as having 

partially illuminated crowns. Over 3% of stems were classified as receiving indirect light 

only despite being a part of the canopy layer. This may be due to patches of emergents 

strongly shading the dominant canopy layer.

Modeled Annual Solar Radiation

The solar radiation tool within ArcGIS provides significant improvements over previous 

studies that used shade indices as a proxy for measured light available. Estimates of solar
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radiation produced by this tool were similar to those published for the Amazon (Butt et al. 

2010). Rarely has light availability been measured in such a way that allows for 

individual trees exposure to be characterized, especially higher into the forest canopy.

One recent example in the literature was published by Ruger et al. (2009), who developed 

a methodology applicable to high density forest inventory data that takes into account 

multiple layers of vegetation. They matched the probability distribution o f this shade 

index with the probability distribution of 396 relative irradiance measurements at the 

near-ground level (Wirth et al. 2001). While this index showed correlation with growth 

for understory saplings, it could not be tested against light levels higher in the canopy.

While this solar radiation tool allows for distinct advantages, the simple framework may 

not be sufficient to accurately model solar radiation. A primary weakness of this model is 

the absence of transmitted radiation through the canopy surface. This is expected to cause 

significant variability in the amount of light available at lower canopy heights. Senna et 

al. (2005) reported that transmittance between the canopy top and 15 m at Tapajos 

National Forest varied from 20% - 70% throughout the year. A study completed in the 

Venezuelan Amazon (Anhuf and Rollenbeck, 2001) showed on average 80% of light was 

transmitted through the top 8 - 10 m of canopy with significant spatial variability. Both 

studies show large amounts of light transmitted through the canopy surface that are not 

accounted for in this model framework.
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Effects of Light Availability on Growth

The model chosen explains 25% of variability in observed changes in height. This is 

similar to the variability explained when predicted biomass increment was compared with 

lidar metrics on the 1 ha scale (Stark et al. 2012), and significantly greater than variability 

explained by tree size and shade index (Ruger et al. 201 la). The approach used here is 

much simpler than these previous studies that use Bayesian techniques in combination 

with more complex models.

While tree height is an important parameter for forest yield modeling, it is most 

commonly modeled using diameter - height allometries or age - height allometries.

Golser et al. (1997) presented a model o f observed height increments for Austrian forests. 

This model includes species specific information on the potential height increment as 

well as multiple competition indices and an additional index taking edge effects into 

account (Golser and Hasenauer 1997). Many of these variables are directly associated 

with solar radiation, though they may also take into account nutrient limitation due to 

surrounding vegetation or crowding.

One study recently tests the effect of tree height and light availability on growth at Barro 

Colorado Island, Panama and showed that light availability had a stronger effect on 

diameter increment than initial height (Ruger et al. 2011b). However, this study used an 

adaptive shading index as opposed to a direct measurement o f light availability. The
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general result is consistent with our finding that light availability is a stronger predictor of 

height increment that initial height alone.

Overall, the best model shows a negative correlation with both increasing height and 

increasing light availability. While the negative correlation with height was expected 

because of slowing height change over time and is consistent with previously published 

results (Ruger et al. 2011b), a positive correlation with increasing light availability was 

expected based on previous studies. The two study areas where the overall best model did 

not perform as well as other models are the two areas with highest gap fraction (Table

5.2). In these two areas, high overall gap fraction is correlated with larger gap sizes. 

However, when gap areas were analyzed separately, the negative correlation between 

solar radiation and height change remained. These results suggest that physiological 

conditions present in large gaps other than increased light availability may drive observed 

growth or potential issues with the modeled solar radiation values themselves.

To further investigate this unexpected finding, we closely examined relationships 

between solar radiation and height change for individual height increments. We were 

particularly interested in vegetation classified as gaps in the 0 -10 m height range. For all 

height classes, negative correlations between solar radiation and height change persisted 

with no discernible pattern for slope or intercept of linear regressions (Fig 5.6).
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gap height bins o f 2 m.

One potential explanation for this counter-intuitive result is the consideration o f solar 

radiation at the pixel-scale. As individual crowns were not delineated, available solar 

radiation was not averaged to apply to the tree as a whole. This is expected to introduce 

an unknown error in the approximation of overall canopy illumination that would 

influence relationships between growth and light availability. Using area 6 as a test case, 

semi-variograms were run on the canopy height model and estimated solar radiation to 

look for differing scales of variability. The dominant scale of variation was significantly
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longer for the canopy height model (25 m as opposed to 13 m) suggesting strong 

variability in light level within tree canopies.

The negative trend found between height increment and solar radiation is also not 

consistent with field data previously presented. Differences with presented field data may 

be partially methodological. In addition to the differences in scale mentioned above, the 

solar radiation model only takes into account stems reaching the outer canopy surface, 

therefore excluding suppressed vegetation subject to diffuse light only. In presenting 

results from our field inventory analysis, understory stems were considered alongside 

canopy and emergent trees. Stancioiu and O’Hara (2005) studied the effects of light 

availability on a fir-spruce forest in Romania and included overstory as well as 

understory vegetation. They showed that for silver fir the annual height increment 

decreases at high light levels as compared to moderate light. Given that the canopy 

surface is exposed to higher light environments, this may explain some pattern of 

decreasing height increment with increasing light.

Also, the effect of species level differences were not taken into account in this study. 

Responses to light variation have previously been shown to vary significantly dependent 

on both functional groupings and individual species without regard to function (Ruger et 

al. 2011b). In contrast, Coomes and Allen (2007) investigated a single species in New 

Zealand and found that competition for light had a strong influence on the growth of
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small trees, but not larger stems whereas competition for nutrients affected trees of all 

sizes.

5.5 CONCLUSIONS

Field inventory measurements show increased diameter and crown radius increments 

with increased light availability, however, increases in height are not apparent. However, 

as positive diameter increment is correlated with positive height increment, we expect 

that height increment should also have a positive correlation with increased light 

availability. A potential cause for the lack of correlation in field measurements is the 

lower accuracy for measurements of height than diameter or crown radius.

Raw estimates of light availability are similar to expected values. Diffuse radiation 

accounts for a smaller portion than direct radiation at the canopy surface. Trends visible 

within the total solar radiation corresponded to expected differences. Low canopy height 

generally received lower solar radiation and small gaps showed lower incident radiation 

than large gaps.

Approximately 25% of the variability in vertical height change was explained by initial 

height and incident solar radiation. Solar radiation was a stronger predictor of height 

change than initial height. Height change showed a negative correlation with both initial 

height and solar radiation when modeled in a simplified framework. Though the negative
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correlation was expected with regards to initial height, it was unexpected for solar 

radiation. These results may be due to the simplistic model treatment of light interaction 

with the canopy surface or bias in estimates of available solar radiation due to the 

absence of crown characterization. Other possibilities for this counter-intuitive result are 

the relative infrequency of extreme low light conditions that are common in the canopy 

understory most frequently studied in the field. Other possible explanations include the 

influence of species and physiological processes including nutrient competition and water 

availability that were not accounted for in this study.
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CHAPTER SIX

CONCLUSION

PRIMARY RESULTS

The primary objective of this research was to quantify the effect of disturbance size and 

frequency on the rate and pattern of carbon cycling. Gap phase dynamics maintain high 

light environments within closed forest canopies and promote natural regeneration and 

turnover (Bormann and Likens 1979, Oliver and Larson 1996). The size of disturbance 

affects the degree to which light and nutrients are available (Denslow et al. 1990). Recent 

research has shown the particular importance of small and intermediate size gaps (less 

than 1 ha) at the landscape scale (Espirito-Santo et al. 2014b, Chambers et al. 2013).

Lidar is a remote sensing tool that is particularly well suited for ecological studies at the 

landscape scale as it can capture high density information on vegetation height and some 

stand structural characteristics. This information has been previously used to study 

variability in biomass, map gap size distributions and determine wildlife habitat (Drake et 

al. 2002b, Kellner et al. 2009, Vierling et al. 2008).

In chapter 2 1 specifically addressed the consistency of lidar remote sensing, and 

variability of metrics as analysis scales changed. I found that certain metrics, including
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the height of mean energy (HOME) and the percentage of returns near the ground surface 

were consistent between satellite and airborne platforms and across a multi-year time 

span. As lidar data is point based, maps of topography and forest structural characteristic 

are based on aggregations of the raw data at varying scales. Typically, a horizontal 

resolution is defined, and for some parameters (including height density) a vertical 

resolution as well, for summarizing the point data. I showed that the summary scale (both 

horizontal and vertical) led to significant variability in the outer canopy surface. Given 

the high degree of spatial variability, I concluded that small horizontal scales (0.5 -1  m) 

were best for capturing canopy surface structure. I also addressed an assumption that has 

driven previous analysis of waveform lidar: self-similarity between the outer canopy 

surface (CHM) and the full patterns of returns. Independent of the summary scale 

applied, I concluded that canopy surface structure was not representative of the forest 

structure as a whole.

In chapter 3 I compared lidar and field measurements for estimation of total heights for 

canopy and emergent level trees. The difference between lidar and field estimates of 

height was small compared to the imprecision of field measurements of height (3 - 20%), 

resulting in an average uncertainty of 16% for individual stems. When scaled to the plot 

level, this lack of precision of height measurements led to 5 - 6% uncertainty in overall 

plot biomass. Despite uncertainties in height, carefully selected site-specific field 

measurements showed strong advantages over published regional and pan-tropical height 

allometries. In one case of four examined, the pan-tropical allometry led to an
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underestimate of biomass by 25%. Measuring 100 stems in the fie ld  reduced plot-level 

variation in biomass to less than 5%. Using a combination of fie ld  and lidar 

measurements of height can likely reduce this error further.

While chapters 2 and 3 addressed specific issues with lidar remote sensing and biomass 

estimation, the remaining two chapters focused on patterns of disturbance and recovery 

and controls on these processes. In chapter 4 , 1 quantified differences in canopy structure 

and gap size distribution and frequency between two well-studied sites in the Brazilian 

Amazon. I developed a gap definition that was based on measurable growth where gaps 

are defined as areas greater than 10 m2 with vegetation < 10 m in  height. Using this 

definition, I showed that average growth in gaps is similar at bo th  sites despite the larger 

gap fraction at Tapajos National Forest, and faster turnover rate. B y comparing gap 

centers to gap edges, I concluded that vertical growth was significantly higher at Tapajos 

National Forest as compared to Reserva Ducke but that the stronger signal of horizontal 

ingrowth at Reserva Ducke and more frequent repeat disturbance at Tapajos led to the 

similar numbers overall. With regard to controls over disturbance and recovery, in chapter 

4 1 further concluded that repeat disturbance within gap areas w a s  frequent, accounting 

for 13% and 23% of gap area at Reserva Ducke and Tapajos National Forest respectively 

and that gap contagiousness occurred at both Tapajos National Forest and Reserva Ducke, 

but was limited to 6 - 8 m from gap edges.
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In chapter 5 ,1 investigated the extent to which variability in canopy height change is 

controlled by initial height and incident solar radiation. I modeled incident solar radiation 

using a detailed model of the canopy surface and I found that solar radiation was a much 

stronger predictor of height change than initial height, explaining 24% of variance 

compared to 13%. Gap size and initial canopy height controlled incident solar radiation, 

though significant variability was observed. Unexpectedly, initial height and solar 

radiation both showed negative correlations with height change. Whether this was driven 

by observations of the canopy surface as opposed to understory vegetation, or whether 

further parameters that were unaccounted for such as species variability with height or 

nutrient competition influenced observed patterns is an open question.

NEXT STEPS

This investigation led to advances in the understanding of forest structure and light 

controls on growth within the humid tropics. In chapter 4 I investigated gap creation and 

turnover at the landscape scale, and in chapter 5, addressed the importance of light to 

regrowth in local environments. In the future, I plan to scale-up analyses conducted as 

part of chapter 5 from individual 1 ha test areas to the landscape scale o f the lidar data 

available (100s of ha). The additional information will help address how gap orientation 

and perimeter to area ratios effects light environments and subsequently, growth.
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Additionally, I hope to continue to explore how forest structure and patterns of 

disturbance and growth translate into changes in above-ground biomass. This requires an 

understanding of patterns occurring throughout the matrix o f forest vegetation, beyond 

surface processes. Further work to capitalize on the information available within airborne 

lidar beyond the simple use of canopy height models (CHMs) will be necessary.

Stark et al. (2012) published the results of a model that used lidar data to account for light 

availability throughout the vertical extent of the forest canopy at the 1 ha scale. 

Interestingly, Stark’s work explained a similar level of variability as the model used in 

chapter 5 that uses only the canopy surface. Stark’s model integrated horizontally and this 

may result in a degradation of predictive ability. Perhaps light truly accounts for 25% of 

variability? Or perhaps an improved model of light availability that includes both 

horizontal and vertical variability will result in better predictions of growth?

One way to use a greater portion of the information provided by airborne lidar data is 

through synthesis with highly detailed models. The detailed radiative transfer model 

(DART) considers forest structure (Gastellu-Etchegorry 2008) based on a three- 

dimensional matrix of vegetation presence and absence. Lidar data may be used as inputs 

for this model (Morton et al. in prep). This model also allows for variability in cloud 

fraction throughout the day as well as the year, which may cause significant differences 

in light availability. While this model is specifically aimed to predicting light 

environment from scenes developed directly from airborne lidar or detailed field
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measurements, other models that aim to predict carbon cycling may benefit from the 

detail of lidar generated scenes.

Recent work by Espirito-Santo et al. (2014a) shows that small gaps are the primary 

method of forest turnover in the Brazilian Amazon. Nearly 100% of biomass loss 

(99.98%) is due to disturbances less than 5 ha in size. Over 88% of mortality-induced 

biomass loss is due to gaps less the 0.1 ha. Chambers et al. (2013) further emphasizes the 

importance of small to intermediate gaps in forest turnover. They approximate 95% of 

disturbances consist of 15 or fewer trees, and nearly 99% of disturbances consisting of 82 

trees or less (8 Landsat pixels or 0.7 ha). They further conclude that plots greater than 10 

ha are necessary to determine temporal trends in biomass change within the Central 

Amazon.

Recent airborne sampling within the Brazilian Amazon as part of the Sustainable 

Landscapes project has collected data at several 1000 ha areas. Plots of 100 ha or greater 

can adequately characterize differences in small gap frequencies, as I showed in chapter

4. These landscape scale samples will allow for greater understanding of gap frequency 

and gap characteristic variability. By understanding disturbance patterns and regrowth at 

the landscape scale, as well as variability between landscapes, and the effect of these 

patterns on carbon stocks, regional and continental scales o f carbon cycling can be better 

understood.
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