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A front-tracking shock-capturing method for two fluids

Abstract

This dissertation presents a new high-order front tracking method for two-phase hyperbolic

systems of conservation laws separated by a contact discontinuity. A review of existing methods

for moving and/or irregular boundaries shows the significance of accurate geometry data and flux

calculation near the interface to achieve a high order method. A general method for hyperbolic

systems of conservation laws is presented along with the implementations of numerical methods

for simulations of gas dynamics in 2-D using the Euler equations. Convergence tests show the new

method is second order accurate for smooth solutions and first order in presence of shocks. Also

the new method is used for simulation of Richtmyer-Meshkov instability, in which results are in

agreement with both theoretical and experimental approaches.
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CHAPTER 1

Introduction

Hyperbolic systems of conservation laws are fundamental in continuum physics, and the treat-

ment of their discontinuities is an important subject in fluid dynamics. Such systems have various

applications in different fields. For example, study of cell membrane and cell behavior has appli-

cations in wound healing and development of tissues [1, 2]. Another example is study of bubble

dynamics which is relevant in investigation of boiling heat transfer, cloud cavitation, bubble columns

and reactors in the chemical industry [3, 4]. One may also find the importance of this study in flame

propagation, detonation, deflagration and their transitions [5, 6]. In essence, fundamental study of

interface dynamics between two fluids and corresponding instabilities, such as Kelvin-Helmholtz,

Rayleigh-Taylor and Richtmyer-Meshkov[7, 8], has significance in many scientific fields. Therefore,

many numerical methods have been developed to study these systems with different approaches.

Ideally, numerical methods are convergent with respect to some power of the mesh size h

for smooth solutions, that is, O(hp) for a p-th order convergent method. In the presence of a

discontinuity, e.g., a shock or a material interface, numerical methods may have lower rate of

convergence. Many of them have O(1) truncation error, that is, are not convergent. This is one of

the main concerns of designing a numerical method for systems of conservation laws and will be

addressed in the dissertation. In addition, if the numerical method does not treat the discontinuity

specifically, it may smear out the discontinuity, and as a result, lack a sharp representation of the

discontinuity in the solution. Special treatments are required to make a solution convergent and

keep the discontinuities sharp while enforcing conservation.

A moving material interface, the general case when two different phases are separated by a

material front that moves due the surrounding phases dynamics, is the case discussed in this

dissertation. The numerical methods for modeling such system may encounter some difficulties

such as front representation in two and higher dimensions, small volume fraction CFL limitation

for fixed grid methods, loss of order of local truncation error at the material interface, and complex
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heuristic algorithms for front handling. These issues are discussed below by explaining some of the

numerical methods, and possible design criteria to avoid them.

A new 2-D front-tracking method for hyperbolic systems of conservation laws is introduced. In

this chapter a general definition of the problem and an overview of the previous studies and different

approaches are presented. The second chapter contains the definition for the new method and

details of the discretization procedure. The general algorithm and details of the implementations

in 2-D are covered in chapter three. Chapter four contains the convergence tests and verifications

studies, finished with the summary and conclusion.

1.1. Problem definition

The main focus in this study is on the numerical methods for hyperbolic systems of conservation

laws. A general formulation for such systems, in D spatial dimensions and with m conserved

quantities, is as follows:

∂U

∂t
+∇ · ~F = 0, (1.1)

U = U(x, t), x ∈ Ω ⊂ R
D, (1.2)

~F = (F1 . . .FD) = ~F(U), (1.3)

U, Fd ∈ R
m, (1.4)

where U is a vector of conserved variables, and ~F is the corresponding flux vector defined in the

problem domain Ω. A material interface F(t) separates the problem domain into two subdomains

Ω1(t) and Ω2(t). Each phase is governed by the equation system stated above while fulfilling the

Rankine-Hugoniot jump condition on the front,

~ns · ~F1 − sfU1 = ~ns · ~F2 − sfU2, (1.5)

where ~ns is the spatial normal vector on the front from Ω1 to Ω2, and sf is the front velocity in

the direction of ~ns (Figure 1.1).
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Ω1(t) Ω2(t)

F(t)

~ns

Figure 1.1. Two-phase flow domain and the moving interface.

1.2. Previous studies

The flows of immiscible fluids, separated by a resolved material interface, is a common phe-

nomenon in fluid mechanics, and various numerical methods have been developed and successfully

used to study it. A broad distinction between these methods arises from their mechanical system

point of view. The two mainstream viewpoints are Lagrangian and Eulerian. In the Lagrangian

description of a moving fluid, mesh points are defined on material particles and move with them,

see Figure 1.2(a), which results in equations without convective terms. Aligning the interface

on the moving grid brings a simple description of the interface. Although, difficulties may arise

when material distortion causes entanglement of the mesh, that may be resolved with remesh-

ing/rezoning. See the Lagrangian methods of Dukowics [9], Fritts and Boris [10], and the arbitrary

Eulerian-Lagrangian (ALE) method of Huerta [11] for examples of this approach. In the Eulerian

description of a fluid, mesh grids are fixed and material distortions can be handled. Because of the

fixed grid meshing numerical methods are more straight forward in areas away from the interface,

see Figure 1.2(b). The Eulerian description has convective terms in the formulation which may add

complications to the numerical methods.

Another distinction between these methods is the numerical algorithms they are using, which

may be categorized in general as finite element methods (FEM), finite difference methods (FDM)

and finite volume methods (FVM). Finite element methods try to find an approximate solution

of the boundary value problem in each computational cell while minimizing the error for general

solution when putting them together. Finite difference methods look at the problem in pointwise

discretized domain and approximate differential operators with discretized difference operators.
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Finite volume methods discretize the problem domain with computational cells and approximate

the solution as an average value in each cell. These values are changed based on the fluxes calculated

between cells. In each approach, accuracy of the numerical approximation procedures determine

the overall error introduced into the solution.

Generally, FEMs are based on unstructured meshes while FDMs and FVMs are solved on

structured grids. Although irregular meshes are more capable of representing arbitrary geometries,

mesh generation and maintenance for time dependent domains are more complex than dealing with

a lower dimension entity, such as a front in 2-D domain on a regular Cartesian grid in FDMs/FVMs.

Also, it is easier to apply high order shock capturing methods on the Cartesian grid rather than

on a unstructured mesh.

(b)

(a)

t = t1 t = t2 > t1

Figure 1.2. Front tracking with (a) an irregular mesh and Lagrangian method
(the computational mesh deforms and move with the front) (b) a regular mesh and
Eulerian method (the computational mesh is static).

4



Also, it is possible to classify these methods by their front representation and the way they

handle the phase calculations near and on the front. In general, front tracking methods treat

the interface explicitly and front capturing methods take the front as a steep gradients over a

short distance. See examples of methods for front representation in Figure 1.3. One class of

front-tracking methods is surface tracking [12]. Many developments have been done using surface-

tracking methods [13, 14], although complex algorithms are involved for front entanglement and

difficulties could arise for generalization to higher dimensions (see §1.3.2 for more details). For

instance, the topology of the solution to Riemann problems is not known for the general case

[15]. Volume-tracking methods introduce a simpler front representation. The domain of a phase is

defined by the volume fraction values that a phase occupies in each computational cell. Therefore,

the interface position is identified by the cells which have multiple phases in them, and evolved by

solving an auxiliary evolutionary PDE. This approach is useful for interfaces with lots of topology

changes, but lacks subgrid scale resolution [16]. Interface reconstruction methods were used to

extract geometrical information from volume-tracking methods by finding the rectangular, piecewise

linear or piecewise parabolic representation of the interface from volume fraction information [16,

17]. With the introduction of level set methods new front-tracking methods were developed for high

order implicit front evolution [18, 19]. New interface reconstruction methods have been developed

to extract geometry information from level set functions with arbitrary accuracy [20, 21].
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Figure 1.3. Examples of front representation (a) using particles for surface tracking
type of methods (b) using volume fraction for volume tracking type of methods (c)
distance function for level set type of methods.
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Depending on available information on front position, finite volume and finite difference methods

developed different ways to calculate state variables and fluxes near and on the front. The material

interface moves, and for fixed grid methods, it may make small fractional cells near the interface.

The small volume of those cells force severe limitation on unmodified finite volume and finite

difference methods. As an example, a conservative finite volume discretization of equation (1.1)

with a moving boundary for D = 1, grid size h in space and time step ∆t gives

Un+1
i =

Λn
i

Λn+1
i

Un
i − ∆t

Λn+1
i h

DF
n,n+1
i , (1.6)

where Un
i is the discretized value of U at cell i, Λn

i is the volume fraction of the cell i at time step

n and DF
n,n+1
i is the flux difference for control volume of cell i between time steps n and n + 1

(Figure 1.4). The small volume fraction issue may be described as the numerical error associated

with the right hand side of (1.6). When Λn+1
i → 0, an unmodified finite difference or finite volume

discretization may become unstable. This can also be shown by the CFL condition,

∆t ≤ min(Λn
i ,Λ

n+1
i )h

vmax
i

(1.7)

where vmax
i is the maximum magnitude of the wave speed in cell i. For a regular cell, with Λn+1

i = 1,

a typical time step is O( h
vmax
i

). However, for a fractional cell near the front this may be much smaller

if the volume fraction for that cell is small. Therefore, an unmodified method would severely limit

the time step, or it will become unstable if it violates this necessary condition. Several approaches

have been developed to address, resolve or circumvent this problem, such as cell merging [22], the

h-box method [23], the ghost fluid method [19], and the single phase approximation [24, 25]. One

other approach is the hybrid conservative method of Chern and Colella [26] and Bell et al. [27],

which combines the conservative finite volume method with a nonconservative but stable update,

and maintains global conservation using a redistribution algorithm. This idea has been successfully

used for embedded boundary methods for static [28] and time-dependent [20] domains, and for a

second-order conservative front-tracking method in one dimension [29].

The above classifications are not strict and there are several hybrid methods that benefit from

multiple approaches. Examples of some these methods are discussed below in more detail, conclud-

ing with the approach used for the new method.
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Moving boundary

Figure 1.4. Discretization of a finite volume method in 1-D and time with a moving boundary.

1.3. Selected studies

1.3.1. XFEM - A finite element method. One of the issues in the field of moving interfaces

is the way to define the interface with respect to computational grids. The same problem comes up

in the analysis of cracks and fractures and their propagation. The extended finite element method

(XFEM) was first introduced by Belytschko and Black [30] for modeling arbitrary discontinuities in

a function. With a similar methodology, Chessa and Belytschko [31] developed a method to model

the moving interface in a two-phase flow system. Based on the XFEM method, some enriched

shape functions are added to the FEM base functions to have the desired type of discontinuity,

e.g., discontinuity in the function or its derivatives. So the solution in the cells which include parts

of an interface can approximate the discontinuity at the interface while normal shape functions are

applicable to the cells away from the interface (Figure 1.5).

Tracking the interface was done by approximating the interface structure with a level set func-

tion. In this method, the level set function is the signed distance to the interface and approximated

by the same mesh and shape functions as the variables which have the discontinuity on the in-

terface. The standard level set evolution equation, in the form of a variable coefficient advection

equation, governs the motion of the interface. For updating the interface position, a cut-off function

is also used to reduce the computational contribution from the parts of domain that are far from

the interface. Using these structures, the Navier-Stokes equations were solved by a characteristic

based split algorithm using the projection method of Chorin [32]. Examples such as a bubble rising

to a free surface and a drop falling onto a thin film show the capability of this method for modeling

the dramatic topological changes in the interface [31, 33].
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Figure 1.5. (a) Finite element mesh with enriched nodes around the interface. (b)
Example of finite element shape functions in R1 .

1.3.2. Glimm’s method. In surface tracking methods, the interface is represented with set

of marker points and interpolation between them. Glimm et al. developed a method based on this

approach [12, 13, 14]. This algorithm is a combination of grid-based and grid free methods. A

marker particle method, in which particles are located on the interface, is used. They proposed to

update the front dynamics with a grid free method and the fluid dynamics away from the interface

with a grid based method. This hybrid method, called the locally grid-based method, converts the

grid free representation of interface to the grid-based model to apply the grid based method in

bifurcation regions. To avoid the small control volume problem, they used cell-merging. That is,

a small cell on the front is merged with a regular neighbor cell to create a cell large enough to

avoid small cell CFL limitation. Although it is a straight-forward problem in one dimension, the

extension to higher dimensions is not always a well-behaved procedure and may lose resolution near

the interface.

1.3.3. Peskin’s method. Peskin developed the Immersed Boundary (IB) method to simulate

cardiac mechanics and blood flow dynamics around heart (for references and applications see the

review paper by Peskin [34]). A method was developed in which a Cartesian grid is used for

simulation with an Eulerian method. However, the interface is represented with a set of elastic

fibers whose orientation is determined by massless particles which are evolved with a Lagrangian

method, i.e., the particle velocity is the velocity of the surrounding fluid. The front-fluid interaction
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is completed by the force from a constitutive law such as Hooke’s law. Since this force is pointwise

and local, a smoothed Dirac delta function is used for coupling it with the fluid dynamics. Such

methods are widely applied in the cases that interface geometry is complex such as simulation of

biological systems, since the geometry representation is decoupled from the general grid structure.

1.3.4. h-box method. Here, it is noteworthy to mention the h-box method developed by

Berger and LeVeque [23, 35] for the approximation of hyperbolic conservation laws on irregular

grids. They resolved the time step limitation of a small cell by defining a new region, the h-box,

with length h equal to the regular cell size, on the edges of the small cell. Variables on an h-box

are derived by the weighted average of the values of cells which that h-box covers; that is a local

averaging. Then variables and corresponding fluxes on those edges are found by the solution of

the Riemann problem which is initialized by the states derived from the h-box cells instead of the

original small cell (Figure 1.6). By this procedure the small cell volume problem is fixed.

x
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(
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Uk+ 1
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(
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k+ 1

2

)

Figure 1.6. h-box method to drive the state variables on the edges of an irregular cell.

1.3.5. Mass redistribution methods. A group of Eulerian based methods are the finite

volume methods, defined on Cartesian grids. The interface is expressed by its position on the

grid or a volume-of-fluid representation and updated using front tracking/capturing approaches. A

short summary of the method introduced by Chern and Colella [26] brought here as an example of

these approaches.

This method is developed for a two-phase fluid with a moving interface. Each step starts with

updating the position of the front. The interface divides the domain into two parts and crosses

some of the computational cells, making two partitions in those cells. The front speed is needed

for finding the position of the front at the next time step. This is found by solving the Riemann
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problem on the front. Initial values for the Riemann problem are the average values over space

of the variable on each side of the front in the crossed cell (Figure 1.7.a). Special attention is

given to the case when the volume of one of the partitions is very small, since that may lead to an

inaccurate average value. To overcome this problem, the average value is calculated not only on

the partition of the cell but also on the nearest neighbor cell. The solution to the Riemann problem

also provides the state variables on the front which are needed to derive the continuous flux across

the front based on the Rankine-Hugoniot relations.

b

R( , )

b

x

t

b

b

(a)

(b)

Figure 1.7. Chern-Colella method in 1-D, (a) Averaging process for solving Rie-
mann problem. (b) Mass redistribution based on characteristics.

To update the solution away from the front an explicit conservative finite volume method is

applied that only needs the fluxes on the faces of the cell. These fluxes are accessible through

the solution of the Riemann problem on each face. If a cell is close to the front, average values

of variables on the front, as stated before, are used. To update the cells containing the front,

the same conservative method may be used while considering that it only applies to a part of

the cell. As explained before, this calculation has a division by the size of the partition, which

may cause a problem for small partitions. It is possible to use a linear combination of this flux

with another stable flux, and use the fraction size as the linear coefficient of conservative to resolve

unstable flux difference term. This flux modification makes the method nonconservative. Therefore,

the mass difference between the conservative and nonconservative update should be calculated,

and redistributed to the nearby cells to maintain the global conservation. Following the physical
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intuition, the remaining mass is propagated according to the characteristics. This is done by

projecting the excess mass on eigenvectors of the system in primitive variables, and modifying

the nearby cell values (Figure 1.7.b). Bell et al. [27] extended this method by using the unsplit

second-order Godunov algorithm coupled with local adaptive mesh refinement.

1.3.6. Effective single phase method. Miller and Puckett developed a numerical method

for front capturing in multiple condensed phases [25] based on the work of Colella, Glaz and

Ferguson [24]. They used the volume-of-fluid interface representation. To update the solution

on the interface, they used the effective single phase definition for the variables in the cells that

contain more than one phase [24]. This approach becomes useful in the solution of the approximate

Riemann problem on multiphase cell edges. A second-order volume-of-fluid interface reconstruction

algorithm was used to update the cells on the front. On a multiphase edge, an edge of a cell which

is multiphase or may become multiphase, fluxes for each phase are estimated through a linear

approximation to the interface boundary and then finding the contribution of each phase in the

upstream direction. The linear approximation is a least-squares optimization to the volume-of-fluid

representation of the interface. The conservation equations can be decoupled, to some extent, for

each phase considering the appropriate constraints on volume fraction of phases and its temporal

change in each computational cell. This leads to a self-consistent advection equation for volume

fraction which can be discretized along with the conservation equations for each phase to develop

the update procedure. The only concern is when the adjacent phases have very different physical

properties, e.g., solid and fluid.

1.3.7. Interface reconstruction method. Miller and Colella developed a method for 3D

shock capturing of coupled solid-fluid multiphase systems [36]. For each phase, the dynamics are

solved separately in parallel to a volume-of-fluid representation for the interfaces. Along with the

material properties, all of the state variables are multivalued in a cell that crossed by an interface.

This method updates the state variables using a finite volume method for each phase. Therefore,

small volume fraction and CFL timestep limitations may occur which are resolved by the algebraic

method of Bell et al. [27]. The update procedure needs fluxes and variables at the cell edges. A
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two-step hybrid update and excess mass redistribution is applied to maintain general conservation

[26, 27].

In this method, away from the interface, appropriate single-phase solvers were applied, e.g., the

solver developed by Colella and Woodward [37] for fluids and the solver developed by of Miller and

Colella [38] for solids. In each step, the interface is reconstructed as the best-fit piecewise planar

representation to the volume-of-fluid description of the interface. To advance the fluid fraction, an

advection equation is used for each phase. In this algorithm, the volume of phases advected through

faces of a cell is calculated using a spatially unsplit advection algorithm, and the advection equation

is solved in a conservative form. It is also notable that for flux calculation a phase extension done

by averaging in two passes with special treatment of vector and tensor properties. This approach

extrapolated vector length along with the vector components in each direction, and scaled the

extrapolated vector.

1.3.8. A second order accurate front tracking method. Gatti-Bono et al. developed a

front tracking method in 1-D [29] based on the previous hybrid update and mass redistribution

methods [26, 27, 36]; a finite volume method with a redistribution algorithm to avoid CFL time-

step limitation while maintaining global conservation. In this method extra attention was given

to the average of the variables on front cells and their difference with the values at the center of

the computational cell, that is, the difference between a center and a centroid value, which may be

different to O(h) in the front cells.

In this method, the front is explicitly known with its position and speed on the grid. In the

update procedure, a modified finite volume method, the front speed is evaluated in two steps. A

second-order extrapolation of conserved variables was computed and the corresponding Riemann

problem was solved to provide the first approximation of front speed and geometry change. Then,

variables at the half time step were derived, which gives the fluxes at the half time step. Using a

non-conservative update an intermediate approximation of the variables at the next time step are

calculated and consequently the front velocity at the next time step is estimated. The high order

front velocity at half time step is the average of this speed and the first approximation, permitting

a second-order accurate calculation of the geometry. A standard Godunov method with the van

Leer limiter was employed to find fluxes at time centers and centroids to advance the variables in
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time using conservative and nonconservative flux differences. After updating variables, the mass

difference between the conservative and nonconservative method are redistributed to the neighbor

cells with respect to the characteristics while considering reflection and refraction of the waves on

the front. This approach resulted in a method with second order solution error while tracking

the material interface, which is promising for showing the effectiveness of using more accurate,

geometry based flux calculation near the front.

1.3.9. Embedded boundary method on a Cartesian grid. Although embedded boundary

methods do not consider the moving interfaces directly, the approaches they use to handle the

complex geometries are inspiring for methods used in free interface problems. For example, Gatti-

Bono et al. [29] derived their 1-D front tracking method based on the approach of the embedded

boundary method of Colella et al. [28].

The embedded boundary method developed by Colella et al. [28] resolves the small-cell insta-

bility problem by using a combination of conservative and non-conservative but stable fluxes on

irregular control volumes and redistributing the difference in mass to neighboring cells, similar to

front tracking methods [26, 27]. The interesting part of this method is the approach to find the

fluxes on the covered faces and algorithms for extrapolating state variables on covered faces.

1.3.10. Geometry information extraction. The accuracy of a finite volume method has a

strong dependence on the accuracy of flux calculations, and hence the accuracy of the geometrical

information of the front. The methods developed by Ligocki et al. [21] and Miller and Trebotich

[20] introduced an algorithm to calculate the geometrical details of an embedded boundary with

an arbitrary accuracy. Using an implicit definition of the domain, this method defines irregular

computational cells that are cut by the embedded boundary, writes the divergence theorem for the

flux terms, and expands the fluxes using the Taylor expansion around the appropriate centroids to

have a definition of flux divergence based on integrals of polynomials over the volume and surface

of the control volume. Using the divergence theorem recursively it is possible reduce the degree of

the moments terms while keeping the accuracy intact. At the bottom of the recursion procedure,

the solution of the one-dimensional case is found explicitly using 1-D root-finding.
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1.4. Method criteria

As described above, several methods have been developed for modeling a system with a moving

interface. They have similarities and differences in every aspect. The goal here is to choose a method

for simulation of a moving material interface in 2-D while keeping the possibility of extension to

higher dimensions.

Examples of methods with either regular grids or unstructured meshes are covered above. For

a method on an unstructured mesh that conforms to the interface, the re-griding procedure to

overcome mesh entanglement is a problem which only adds complexity to the algorithm and is not

suited for conservative systems. Also for a fixed grid Lagrangian method, the theoretical approach

for analysis of error and accuracy is more complicated than for an Eulerian method. In addition,

implementing the method on a Cartesian grid is less intricate and a Cartesian grid is more suitable

for applying the parallel computation and adaptive mesh refinement. Therefore, it is preferred to

use an Eulerian method on a Cartesian grid.

The other objective is to achieve second order global accuracy, at least for smooth solutions.

The aforementioned methods generally cover this goal away from the interface. Therefore, the main

concern is the accuracy and stability near the interface. Here, a method that achieves its accuracy

with a precise treatment of state variables and geometries near the interface is preferred. This is

done by Gatti-Bono et al. with special treatment of centered and centroid states in the Cartesian

cells in 1-D [29]. A strategy is to extend on this approach, knowing the finite volume methods

are well suited for the systems of conservation laws. Because of structural similarity to embedded

boundary methods of Colella et al. [28], it is possible to employ comparable algorithms at irregular

cells for flux calculations.

Because of well known issues such as front entanglement, explicit front modeling should be

avoided. It is more practical to use level set methods, in which the interface is described implicitly.

The level set method has the potential to represent complex geometries and provide accurate

geometry information [20, 21].

To summarize, the new method is based on the hybrid conservative finite volume of Chern and

Colella [26], Colella et al. [28] and Pember et al. [39], as a 2-D extension of the 1-D work of Gatti-

Bono et al. [29]. The method depends on accurate flux calculation near the front for high-order
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accuracy. A level set method is applied for front representation and evolution [40, 41, 42], while

applying the space-time geometry extraction [20, 21] for accurate geometry information near the

front. This approach results in a second-order front-tracking method. Convergence tests show the

second-order convergence for smooth phase solutions, and first-order convergence in the presence

of shocks.
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CHAPTER 2

Problem definitions and discretization

2.1. Definitions

2.1.1. Gas dynamics. Although the new method is developed for general hyperbolic systems

of conservation laws, the presentation here is restricted to the 2-D Euler equations. Following the

equation (1.1), the conservative variables and corresponding fluxes for 2-D Euler equations are

defined as

U = (ρ, ρu, ρv, E)T , (2.1)

F1 =
(
ρu, ρu2 + p, ρuv, (E + p)u

)T
, (2.2)

F2 =
(
ρv, ρuv, ρv2 + p, (E + p)v

)T
, (2.3)

where ρ is the gas density, u and v are the velocities in the x and y direction respectively, p is the

pressure and E is the total energy and defined by the equation of states for ideal polytropic gas,

E ≡ p

γ − 1
+

1

2
ρ
(
u2 + v2

)
, (2.4)

where γ is the ratio of specific heats. Primitive variables W = (ρ, u, v, p)T are used for flux

calculations. The equation system in primitive variables is

∂W

∂t
+

D∑

d=1

Ad ∂W

∂xd
= 0, (2.5)

with D = 2 and

A1 =




u ρ 0 0

0 u 0 1
ρ

0 0 u 0

0 γp 0 u




, A2 =




v 0 ρ 0

0 v 0 0

0 0 v 1
ρ

0 0 γp v




. (2.6)
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The physical problem domain is discretized with a Cartesian grid with size h in space and ∆t in

time. That is, cell i is defined as Υi = [i, (i+ 1)h], i ∈ Z
D where 1 is a vector of ones. The spatial

and space-time control geometries are defined as

Vi,α(t) = Υi ∩Ωα(t), (2.7)

Cn
i,α = Vi,α(t)× [tn, tn+1], (2.8)

where α ∈ {1, 2} is the phase indicator (Figure 2.1). A regular space-time control volume1 is a

ih (i+ 1)h

i i+ e1

i+ e2

jh

(j + 1)h

x

y

Υi

x
y

t




ih
jh
n∆t







(i+ 1)h
(j + 1)h
(n+ 1)∆t




Υ× [tn, tn+1]

Irregular
Af

i

V n
i,1 V n

i,2F(tn)

Ai− 1

2
e2,1 Ai− 1

2
e2,2

Cn
i,1 Cn

i,2

(a)

Regular
control volume

control volume

(~xi− 1

2
e1 , t

n+ 1

2 )

(~xi, t
n)

(b)

(c)

(~xf,ni , tf,ni )

(~xn
i− 1

2
e2,1

, tn
i− 1

2
e2,1

)

(~xn
i− 1

2
e2,2

, tn
i− 1

2
e2,2

)

+

+

+

+

+
~xn
i,1

~xn
i,2

Figure 2.1. Geometry discretization and definitions.

rectangular cube in R
D × T with 2D faces2 and two cells3. Here, (~xn

i , t
n) and (~xn+1

i , tn+1) are

the centers of the cell Υi at time n and n + 1 respectively. Centers of the faces are located at

(~xi± 1

2
ed , t

n+ 1

2 ) where ed is the unit vector in direction d and sign ± indicates that the face located

on lower or higher side in direction d, and are at time n+ 1
2 (Figure 2.1.b).

1An object in R
D
× T

2An object in R
D−1

× T

3An object in R
D
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A cell is called irregular if it intersects with the front. V n
i,α and V n+1

i,α are cut cells in R
D. Since

such cells are fractional the position of the center and centroid are different. The centroid of V n
i,α

is located at (~xn
i,α, t

n). For the faces, if a face only coincides with the Cartesian grid, it is denoted

as An
i± 1

2
ed,α

, and its centroid as (~xn
i± 1

2
e2,α

, tn
i± 1

2
e2,α

). If a face coincides with the front it is written

as Af
i with the centroid at (~xf,ni , tf,ni ) (Figure 2.1.c). Based on the above definitions the cell and

face fractions are specified as follows:

Λn
i,α =

|V n
i,α|
hD

, an
i± 1

2
ed,α

=
|An

i± 1

2
ed,α

|
∆t hD−1

, af,ni =
|Af,n

i |
∆t hD−1

. (2.9)

The cell centroid ~xn
i,α is defined as the center of V n

i,α,

~xn
i,α =

1

|V n
i,α|

∫

V n
i,α

~x dV, (2.10)

and face centroids

(
~xn
i+ 1

2
ed,α

, tn
i+ 1

2
ed,α

)
=

1

|An
i+ 1

2
ed,α

|

∫

An

i+1
2
ed,α

(~x, t) dA dt, (2.11)

(
~xf,ni , tf,n

)
=

1

|Af,n
i |

∫

Af,n
i

(~x, t) dA dt, (2.12)

where dV = dxD and dA = dxD−1 for D > 1. The average space-time normal vector on the front

for cell i is defined as

~nn
i,α =

1

|Af,n
i |

∫

Af,n
i

~nα dA dt, (2.13)

where ~nα is the outward normal vector for phase α.

2.1.2. Front dynamics. A level set function is used to represent the front. The level set

φ(~x, t) is a continuous function with





φ(~x, t) < 0 in Ω1(t)

φ(~x, t) = 0 on F(t)

φ(~x, t) > 0 in Ω2(t).

(2.14)
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Therefore, the interface is represented by the zero level set F(t) ≡ φ0 = {~x|φ(~x, t) = 0}. The level

set is updated using the level set equation [18],

φt + ~νext · ∇φ = 0, (2.15)

where ~νext is the extended velocity and defined in R
D. The extended velocity represents the

movement of the whole level set function and is defined to match the front velocity on the front,

~νext = ~νf on F(t). (2.16)

The level set function is used for calculating accurate geometric features of the front. Therefore,

it is helpful to define and maintain φ as a smooth function. Level set function φ is initialized as a

signed distance function that satisfies (2.14),

φ(~x, 0) = ±l(~x), (2.17)

where l is the distance of point ~x to the front F(0). The level set equation (2.15) moves the zero

level set correctly but may change the level set function away from being a distance function. Level

set function φ is kept as a distance function, that is |∇φ| = 1, by carefully generating the extended

velocity [43], and by using a redistancing procedure [42]. The details are described in §3.4 and

§3.5.

2.2. Discretization

2.2.1. Gas dynamics. The conservation equation may be written in the following compact

form (
∇,

∂

∂t

)
·
(
~F,U

)
= 0, (2.18)

or in the integral form ∫

Cn
i,α

(
∇,

∂

∂t

)
·
(
~F,U

)
dV dt = 0. (2.19)
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To derive the finite volume method, the divergence theorem is applied to (2.19) in space and time

over the space-time control volume Cn
i,α,

∮

∂Cn
i,α

~nα ·
(
~F,U

)
dA = 0, (2.20)

where ~nα is the outward space-time normal vector on the surface of control volume ∂Cn
i,α and dA

is in R
D−1 × T . Separating this integral to three parts based on the surface types results in

∫

∂Cn
i,α

∣∣
t=tn

∨
t=tn+1

~nα ·
(
~F,U

)
dA+

∫

∂Cn
i,α

∩(Υi(t)×[tn,tn+1])
~nα ·

(
~F,U

)
dA

+

∫

∂Cn
i,α

∩F(t)
~nα ·

(
~F,U

)
dA = 0. (2.21)

Discretizing in space and time gives

|V n+1
i,α |Un+1

i,α − |V n
i,α|Un

i,α

+
D∑

±,d=1

(
±|An

i± 1

2
ed,α

|Fcd,n

i± 1

2
ed,α

)
+ |Af,n

i |~nn
i,α ·

(
~Ff,n
i,α ,U

f,n
i,α

)
= O(hD+1∆t). (2.22)

Here, Un
i,α represents the average value of U(~x, t) in V n

i,α,

Un
i,α =

1

Λn
i,α h

D

∫

V n
i,α

U(~x, n∆t) dV +O
(

h2

Λn
i,α

)
, ∀Λn

i,α > 0, (2.23)

and is calculated at ~xn
i,α, the centroid of V n

i,α. F
cd,n

i± 1

2
ed,α

is the average flux at the space-time centroid

of the corresponding faces in direction d, and ~Ff,n
i,α and U

f,n
i,α are the average front flux and state

variable at the centroid of the front, respectively. Following the free-stream-preserving discretization

of Pember et al. [39] the calculation on the front may be written in terms of fractional face areas

on the Cartesian grid instead of relying on an estimation of the front area itself:

|V n+1
i,α |Un+1

i,α − |V n
i,α|Un

i,α +
D∑

±,d=1

(
±|An

i± 1

2
ed,α

|Fcd,n

i± 1

2
ed,α

)

−
D∑

d=1

(|An
i+ 1

2
ed,α

| − |An
i− 1

2
ed,α

|)Ff,n
i,d,α − (|V n+1

i,α | − |V n
i,α|)Uf,n

i,α = O(hD+1∆t). (2.24)
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Dividing by hD and substituting cell and face areas with unitless cell and face fractions gives

Λn+1
i,α Un+1

i,α − Λn
i,αU

n
i,α +

∆t

h

D∑

±,d=1

(
±an

i± 1

2
ed,α

(
F
cd,n

i± 1

2
ed,α

− F
f,n
i,d,α

))

−
(
Λn+1
i,α − Λn

i,α

)
U

f,n
i,α = O(h∆t). (2.25)

An interim conserved variable Un,n+1 is defined as the conserved variable evaluated at time tn and

at the cell centroid position of time tn+1,

U
n,n+1
i,α = U(~xn+1

i,α , tn). (2.26)

Using (2.26), an explicit update equation form of (2.25) is

Un+1
i,α = U

n,n+1
i,α −∆tDF

n,C
i,α , (2.27)

where DF
n,C
i,α is the conservative flux difference defined as

DF
n,C
i,α =

Λn+1
i,α U

n,n+1
i,α − Λn

i,αU
n
i,α

Λn+1
i,α ∆t

+
1

Λn+1
i,α h




D∑

±,d=1

±
(
an
i± 1

2
ed,α

(
F
cd,n

i± 1

2
ed,α

− F
f,n
i,d,α

))

− h

∆t

(
Λn+1
i,α − Λn

i,α

)
U

f,n
i,α

)
. (2.28)

Note that DF
n,C
i,α may become unstable for small cell fraction Λn+1

i,α . Therefore a nonconservative

but stable flux difference is introduced,

DF
n,NC,cr
i,α =

1

h

D∑

±,d=1

(
±F

cr,n

i± 1

2
ed,α

)
, (2.29)

where F
cr,n

i± 1

2
ed,α

is the flux evaluated on the face centers. This calculation results in a cell center

estimate of the nonconservative flux. Then, it is extrapolated to the cell centroid position at time

tn+1, which gives DF
n,NC
i,α . A linear combination of DF

n,C
i,α and DF

n,NC
i,α is used for the update

equation to avoid the small cell problem of the finite volume methods [44]. By picking Λn+1
i,α as the
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linear coefficient of DF
n,C
i,α a stable update method is achieved:

Un+1
i,α = U

n,n+1
i,α −∆t

[
Λn+1
i,α DF

n,C
i,α +

(
1− Λn+1

i,α

)
DF

n,NC
i,α

]
. (2.30)

To maintain the conservation property of the method the mass difference between mass increment

of the conservative update method (2.27) and hybrid update method (2.30) is calculated

δMn
i,α = Λn+1

i,α

([
Un+1

i,α −U
n,n+1
i,α

]
Conservative

−
[
Un+1

i,α −U
n,n+1
i,α

]
Hybrid

)
,

δMn
i,α = ∆tΛn+1

i,α

(
1− Λn+1

i,α

)(
DF

n,NC
i,α −DF

n,C
i,α

)
, (2.31)

and the excess mass is redistributed to the appropriate neighbor cells of cell i.

2.2.2. Front dynamics. The level set equation (2.15) is discretized in space using the WENO

method for Hamilton-Jacobi equations by Jiang and Peng [41]. The level set function at any time

step is only needed in a band around the zero level set (Figure 2.2). The local level set method

of Peng et al. [40] is applied to reduce the computational work of updating the level set function.

This means the update method applies to the cells in a band around the zero level set. The update

band should be wide enough to provide enough information to calculate the gradient for few cell

around zero level set.

For time discretization a two-step Adams-Bashforth method is used. For the ODE system

φt = L(φ), φ(~x, 0) = φ0, (2.32)

the update algorithm at time step n is





φ̃n+1 = φn +∆tL(φn)

(Dφ)n = φ̃n+1 − φn

φn+1 = φn + 3
2(Dφ)n − 1

2(Dφ)n−1.

(2.33)

The above method is second-order accurate in time with the initial starting value (Dφ)−1 = (Dφ)0.

For the level set update equation the L operator is defined as L(φ) = −~νext · ∇φ.
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The algorithm to calculate the front velocity on the front centroids at time tn is described in

§3.3 . The extension method to find the extended velocity ~νext in the cell centers of the update

band is explained in §3.4.

F(t)

Update band

Ω1(t)

Ω2(t)

Figure 2.2. The local level set method: calculation are done only on the cells in
the update band.
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CHAPTER 3

Algorithm

3.1. General method

At the beginning of each time step it is assumed that the following data are available.

• Conserved variable Un
i,α for each phase evaluated at cell centroid, ~xn

i,α.

• Front position F(tn) and corresponding level set φn at time step n.

• Geometrical features: cell, face and interface centroids, cell fractions and interface normal

vectors for control volumes between time tn and tn+1. The geometry algorithm of Miller

and Trebotich [20] is applied to calculate these terms. Depending on the required accuracy

for geometrical features, a number of level set functions at previous time steps are needed.

The goal is to find a second-order estimate of the interface position F
(
tn+1

)
and conserved variables

Un+1
i,α at time tn+1. The algorithm for one time step is as follows:

(1) For each phase, extrapolate cell centered variables from cell centroid data and convert to

primitive variables Wn
i,α. A linear extrapolation is sufficient. See §3.2 for details.

(2) Extrapolate fromWn
i,α to the front centroids at time n and solve the 1-D Riemann problem

in the front-normal direction. This procedure includes rotating the system of equations on

the front to the front-normal direction and solving the Riemann problem in that direction.

See §3.2 and §3.3 for details.

(3) Calculate ~νf from the solution of the Riemann problem on the front and extend the velocity

field to a band around the zero level set. See §3.4 for details.

(4) Update the level set function to φn+1 using the method (2.33).

(5) Calculate geometrical features using φn+1, φn, . . . φn−k where k determines the number of

level set functions used from previous time step calculations. Find the cell, face and front

centroids, normal vector and cell and face fractions needed to calculate the conservative

flux difference and hybrid update equation.
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(6) If a cell may become uncovered,

{
Υi ∩Ωa(t

n) = ∅, Υi ∩Ωa(t
n+1) 6= ∅

}
,

determine its value Wn
i,α by extrapolation. See §3.2 for details.

(7) For all cells in which Wn
i is known, find high-order slopes using symmetric fourth-order

stencils where possible, and one-sided stencils otherwise. Apply van Leer slope limiting.

See §3.6 for details.

(8) For all cells in which Wn
i,α is known, use upwind-filtered characteristic tracing to find half

time step face center states W
n+1/2
i,±,d . See §3.7.1 for details.

(9) If a given face is exterior, that is it has only one face state, determine the missing face

state by extrapolation (See §3.7.2 for details) and solve the Riemann problem on all faces.

(10) Include transverse flux terms (corner coupling) [45, 46]. Details are described in §3.7.1.

This is straight forward for interior faces. However the data may not be available to

do corner coupling for an exterior face. So, after updating the interior faces, redo the

extrapolation for missing side of exterior faces as explained in the previous step.

(11) Solve the Riemann problem on all face centers and compute the cell-centered nonconser-

vative flux difference.

(12) Extrapolate the nonconservative flux difference from cell centers to cell centroids. See §3.2

for details.

(13) If a face is irregular, find the left and right states on the face centroid using the space-

time extrapolation from face center values and solve the Riemann problem. See §3.7.3 for

details.

(14) Extrapolate to the front centroids from the cell centroid state from each phase, and solve

the Riemann problem to calculate the state variables and flux terms on the front. See

§3.7.4 for details.

(15) Compute the conservative flux difference.

(16) Extrapolate U
n,n+1
i,α from cell centroid data. See §3.2 for details.

(17) Calculate Un+1
i,α using the hybrid update equation (2.30).
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(18) Balance the excess mass between phases on the front and redistribute the balanced excess

mass to neighbor cells in each phase. See §3.8 for details.

The above algorithm is done for each time step. The CFL condition is considered to pick a

stable value for ∆t. The Courant number is defined as

ϑ =
∆t

h
max
i,p

|λp
i |, (3.1)

where |λp
i | is the p-th wavespeed of the cell center primitive variables in control volume i. The time

step is chosen to satisfy

ϑ ≤ 1, (3.2)

in each timestep.

3.2. Local grid interpolation

The interpolation steps used in the algorithm are linear estimates based on the local grid data.

To interpolate the value of function G at target point ~xt based on the support data point at ~xs,

the Taylor expansion of G(~xs) centered at ~xt is used,

G(~xs) ≈ G(~xt) +∇G(~xt)(~xs − ~xt). (3.3)

By gathering enough support point data around the target, a least-squares problem is created to

solve for G(~xt), 


1 (~x1 − ~xt)/h
...

...

1 (~xm − ~xt)/h





 G(~xt/h)

∇G(~xt/h)


 =




G(~x1/h)
...

G(~xm/h)


 , (3.4)

where ~x1, . . . , ~xm are support points. The support points are chosen based on the nearest cell

criteria to the target cell position. The algorithm starts with the most compact stencil possible and

try solve the above least-square system with QR decomposition (Figure 3.1). More support data

points are added if values on the diagonal of R are too small and therefore error bound is too big

for solution to be acceptable. The heuristic cut-off value that used for this limit in the simulations

is 10−10 for each element and 10−15 for multiplication of all diagonal elements of R.
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The above algorithm is used for steps 1, 2, 6, 12 and 16 of the algorithm described in §3.1.

Note that the neighbor cell data is not used if it is an irregular cell for steps 1 and 16. However

the neighbor cell data is used for support points in steps 2, 6 and 12 of the algorithm regardless of

being from a regular or an irregular cell.
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Figure 3.1. (a) Sets of nearest neighbor cell stencils. Each number represent a
group of neighbor cells with the same approximate distance to the center cell. (b)
Interpolation from cell centroid data to cell center: Target point (the cell center) is
shown with × and support points are shown with •. In this example only set 1 and
2 of nearest neighbor cells are used.

3.3. Solution on the front

The state variables on the front are needed to calculate the front speed and the flux on the front.

The states variables from each phase are extrapolated to the front centroids where the Riemann

problem is solved in the front normal direction to determine the states on the front.

Assume Wα = (ρα, uα, vα, pα)
T for α = 1, 2 are the extrapolated states and ~ns = (nx ny)

T is

the spatial normal vector on the front. The rotation matrix is defined as

R =


 nx ny

−ny nx


 , (3.5)

where R · ~z rotates ~z from the laboratory frame to the coordinate system in which first axis is

aligned in the front normal direction. Vector components of the state variables, velocity in case of
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Euler equation, are then rotated using this rotation matrix R (Figure 3.2)

(ûα, v̂α)
T = R · (uα, vα)T , α = 1, 2. (3.6)

W1

W2

~ns

Ŵ1 Ŵ2

R =

(
nx ny

−ny nx

)

e1

Figure 3.2. Laboratory frame rotation on the front

The Riemann problem is solved in the x direction with WL = Ŵ1 and WR = Ŵ2 to calculate the

neighboring states on the contact discontinuity W∗
L and W∗

R, see Figure 3.3 and Appendix B,

(
(ρ∗L, u

∗, v∗L, p
∗)T , (ρ∗R, u

∗, v∗R, p
∗)T
)
= R

f
x

(
(ρ1, û1, v̂1, p1)

T , (ρ2, û2, v̂2, p2)
T
)
. (3.7)

Vector components of the solution are rotated back to the laboratory frame by multiplying by

R−1 = RT ,

(u∗1, v
∗
1)

T = R−1 · (u∗, v∗L)T , (3.8)

(u∗2, v
∗
2)

T = R−1 · (u∗, v∗R)T . (3.9)

This procedure is used twice in each iteration of the method. First, it is applied to find the state

variables on the front at time n (step 2 of the algorithm §3.1). The solution of the Riemann problem

is used to determine the front velocity for updating the level set equation. The normal velocity

component is unique for the solution on front. The tangential velocites are different but they do not

contribute in the evolution of the level set equation. The average value is picked for the calculation
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Star region

WL =




ρL
uL
vL
pL


 WR =




ρR
uR
vR
pR




W∗
L =




ρ∗L
u∗

v∗L
p∗


 W∗

R =




ρ∗R
u∗

v∗R
p∗




C
on

tact
D
iscon

tin
u
ity

(u+ c)

(u− c)

(u, u)

1-wave
3-w

av
e

(u∗, p∗)

x

t

Figure 3.3. Structure of the solution of the 2-D split Riemann Problem. The
solution has three waves in regard to the eigenvalues u− c, u and u+ c. The middle
wave is always a contact discontinuity and 1-wave and 3-wave are either shock or
rarefaction waves. The solution is separated into four regions. The left-most and
right-most regions preserve the initial states. The two middle regions (star region)
connect the two side regions with some discontinuities on each wave family. The
contact discontinuity separates the two middle regions with a jump in density and
tangential velocity while keeping normal velocity and pressure constant.

of the front velocity on the corresponding front centroid,

~νf = R−1 ·
(
u∗,

v∗L + v∗R
2

)T

. (3.10)

Second, this procedure is applied to find the state variables on the front centroid (~xf,ni , tf,ni )

to calculate the flux between phases (step 14 of the algorithm §3.1). Normal velocity at the star

region u∗ is replaced with the interface velocity that is calculated from the geometry information

of moving front,

sf =
−nt√
n2
x + n2

y

, ~nn
i = (nx, ny, nt)

T . (3.11)

With this procedure, it is ensured that the cancellation due to the moving front in the Rankine-

Hugoniot jump condition is done completely and the method is conservative. See Appendix C for

more details.
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3.4. Velocity extension

To update the level set equation, the velocity field is needed in a band around the zero level set.

The solution on the front, see §3.3, gives the velocity on front centroids, which should be extended

to the center of the cells in the band around the zero level set.

To keep φ a signed distance function after updating the level set equation one needs to impose

the following condition on the velocity [43]:

∇(~νext,d) · ∇φ = 0, d = 1, . . . , D, (3.12)

which means that velocity is constant along the level set gradient. Here, the extension algorithm

developed by Peng et al. [40] and Zhao et al. [47] is used. To extend the quantity q with condition

∇q · ∇φ = 0,

qt + S(φ)
∇φ

|∇φ| · ∇q = 0 (3.13)

is solved as a internal boundary value problem, where S(φ) is the sign function defined as

S(φ) =





−1 if φ < 0,

0 if φ = 0,

+1 if φ > 0,

(3.14)

and approximated by

S(φ)δ =
φ√

φ2 + δ2
, (3.15)

where δ is a small smoothing parameter which is taken as h. The characteristics of (3.13) are

normal to the front and pointing outward from the front, that is, it is only sufficient to initiate q

on a narrow band around φ0 and then solve (3.13).

To initialize a narrow band around the zero level set, cells that have at least one neighbor cell

with opposite level set sign amongst their 3D − 1 neighbors are picked. Applying the extension

condition (3.12) means the extended velocity field does not change in the direction of the level set

gradient. Therefore, if a projection from a point outside the front, such as the center of a cell in

the initialization band ~xc (see Figure 3.4), in the direction of the level set gradient toward the front
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reaches a point on the front such as ~xf ,

~xf ≈ ~xc − φ(~xc)
∇φ(~xc)

|∇φ(~xc)|
, (3.16)

the extension condition (3.12) recovers

~ν(~xf ) = ~ν(~xc). (3.17)

To find the velocity at ~xf , a linear interpolation is applied using the velocity values on the front

centroids in the 3D cells near ~xf . If m front centroid points reside in the vicinity of ~xf , the

least-squares equation system (3.18) is solved for νd(~xf ),




1 ~x1 − ~xf
...

...

1 ~xm − ~xf





 νd(~xf )

∇νd(~xf )


 =




νd(~x1)
...

νd(~xm)


 , d = 1, . . . , D. (3.18)

The singular value decomposition (SVD) method is used to solve the interpolation equation system.

Since, it is possible that support points be placed on a line, and make system (3.18) underdeter-

mined.

The extension equation (3.13) is solved by iteration as described by Peng et al. [40] while

applying the high-order WENO discretization of Jiang and Peng [41] to increase the accuracy of

the method and decrease the number of needed iterations.

3.5. Redistancing

The level set method inherently has some diffusive nature which may cause deviation from a

distance function or loss of area or volume. Sussman et al. [48] introduced the redistancing equation

in artificial time τ

φτ + S(φ̃)(|∇φ| − 1) = 0, (3.19)

where S is the sign function and φ̃ = φ(~x, τ = 0). The redistancing equation (3.19) is solved using

the improved Hamilton-Jacobi WENO algorithm with Godunov approximation in space and the

third-order TVD Runge-Kutta method in time [42].
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Figure 3.4. Initialization of velocity field in a narrow band around zero level set.

3.6. Slope calculation

The slopes are calculated in cell center primitive variables similar to the procedure by Colella

et al. [28]. For a cell that has at least two neighbor cells on each side, the fourth order centered

difference is calculated. A lower order differences is used for a cell which has fewer available

neighbor cells. The van Leer limiter ∆vL(δWC , δWL, δWR) is applied when the center, left and

right differences are available. It is defined on the expansion in characteristic variables for centered

and one-sided differences:

∆vL =
∑

k

ζkrk,

ζk =





min(2|ζkL|, 2|ζkR|, |ζkC |) if ζkL · ζkR > 0,

0 otherwise,

ζkL = lk.δWL, (3.20)

ζkR = lk.δWR,

ζkC = lk.δWC ,
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where lk and rk are the corresponding left and right orthonormal eigenvectors of Wn
i,α. The second

order center difference and first and second order one sided differences in direction d are defined as

∆CWi,α =
1

2
(Wn

i+ed,α −Wn
i−ed,α),

∆LWi,α = Wn
i,α −Wn

i−ed,α,

∆RWi,α = Wn
i+ed,α −Wn

i,α, (3.21)

∆LLWi,α =
1

2
(3Wn

i,α − 4Wn
i−ed,α +Wn

i−2ed,α),

∆RRWi,α =
1

2
(−3Wn

i,α + 4Wn
i+ed,α −Wn

i+2ed,α).

When at least two cells on each side in direction d are available, Figure 3.5.a, the fourth order

limited difference is calculated

∆d
xW

n
i,α = ∆vL(∆BWi,α,∆

LWi,α,∆
RWi,α),

∆BWi,α =
2

3

((
W − 1

4
∆d

2W

)

i+ed,α

−
(
W +

1

4
∆d

2W

)

i−ed,α

)
, (3.22)

∆d
2W

n
i,α = ∆vL(∆CWi,α,∆

LWi,α,∆
RWi,α).

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

(a)

(b)

(c)

(d)

i i + e
d

i + 2ed
i − 2ed

i − e
d

Figure 3.5. Possible stencil variations for slope calculation. The shaded area is
the domain of the other phase.
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When only one cell is available on each side in direction d, Figure 3.5.b, the second order limited

difference is applied.

∆d
xW

n
i,α = ∆vL(∆CWi,α,∆

LWi,α,∆
RWi,α). (3.23)

When there is no cell available on one side but at least two cells are available on the other side,

Figure 3.5.c, the one sided second order limited difference is used.

∆d
xW

n
i,α =





min(∆LLWi,α,∆
LWi,α) if ∆LLWi,α ·∆LWi,α > 0,

0 otherwise,
(3.24)

∆d
xW

n
i,α =





min(∆RRWi,α,∆
RWi,α) if ∆RRWi,α ·∆RWi,α > 0,

0 otherwise.
(3.25)

And if there is no cell available on one side and only one cell is available on the other side, Fig-

ure 3.5.d, the one sided first order difference ∆LWi,α or ∆RWi,α is used to calculate ∆d
xW

n
i,α

3.7. Flux calculation

There are four different fluxes needed to apply the hybrid update method. These fluxes are

defined based on the type of the face that the flux calculated on, which are regular, covered, irregular

and front. See Figure 3.6 for an example of face types on an irregular control volume.

x
y

t

a b

d c

e f

h g

i

j

l

k

Phase 1

Phase 2

Figure 3.6. Face definitions on an irregular control volume. Respect to phase 1,
aehd is a regular face, adli and ehkj are irregular faces, and bcgf is a covered face.
Respect to phase 2, bcgf is a regular face, bcli and fgkj are irregular faces, and
aehd is a covered face. Quadrilateral ilkj is the front face for both phases.
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3.7.1. Flux on a regular face. The most common flux calculated is F
cr,n

i± 1

2
ed,α

for a regular

face, that is the flux calculated on the face center (~xi± 1

2
ed , t

n+ 1

2 ). This is calculated using the

high-order Godunov method with transverse flux correction in primitive variables [28, §4]. In

summary

W̃
n+ 1

2

i,±,d,α = Wn
i,α +

1

2

(
±I− ∆t

h
Ad

i,α(W
n
i,α)

)
P±(∆

d
xW

n
i,α), (3.26)

P±(∆
d
xW

n
i,α) =

∑

±λk>0

(
lk.∆

d
xW

n
i,α

)
rk, (3.27)

where ∆d
xW

n
i,α is the centered spatial difference calculated in direction d, λk are the eigenvalues of

Ad
i,α, and lk and rk are the corresponding left and right eigenvectors. An initial Riemann problem

is solved based on these extrapolation of primitive variables at the half time step and an initial

estimate for the flux is calculated,

F̃
cr,n

i± 1

2
ed,α

= Fd

(
Rd

(
W̃

n+ 1

2

i,+,d,α,W̃
n+ 1

2

i+ed,−,d,α

))
. (3.28)

The transverse flux is applied to find the corrected extrapolation of primitive variables on the face

centers,

W
n+ 1

2

i,±,d,α = W̃
n+ 1

2

i,±,d,α − ∆t

2h
∇UW

(
F̃
cr,n

i+ 1

2
ed,α

− F̃
cr,n

i− 1

2
ed,α

)
, (3.29)

and the second Riemann problem is solved to calculate the unique values of primitive variables and

fluxes on the face centers,

W
cr,n

i+ 1

2
ed,α

= Rd

(
W

n+ 1

2

i,+,d,α,W
n+ 1

2

i+ed,−,d,α

)
, (3.30)

F
cr,n

i± 1

2
ed,α

= Fd

(
W

cr,n

i± 1

2
ed,α

)
. (3.31)

3.7.2. Flux on a covered face. A covered face does not reside in the space-time domain of

the corresponding phase. The upwinding extrapolation method that is used for flux calculation on

a regular face only provides the state variable on one side of the covered face. A local extrapolation

method is applied to calculate the state variables on the other side [28, §5.2]. For cell i with a

covered face with respect to phase α and unit normal vector ~n defined to point outside of the
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corresponding phase domain the up, side and corner neighbor cells are defined as

iu = i− sd
′

ed
′

+ sded,

is = i− sded,

ic = i− sd
′

ed
′

,

where d and d′ are 1 or 2, d 6= d′ and sd = sign(nd). Based on the side of the unknown face value,

support points on the same face side of the neighbor cells are defined as

Wu = W̃
n+ 1

2

iu,±,d,α,

Ws = W̃
n+ 1

2

is,±,d,α + sd∆dW,

Wc = W̃
n+ 1

2

ic,±,d,α,

where ∆dW is the linear interpolation of the difference variables at the neighbor cells used for the

extrapolation,

∆d′′W =





|nd′ |
|nd|

∆d′′
2 Wn

ic,α +
(
1− |nd′ |

|nd|

)
∆d′′

2 Wn
is,α if |nd| ≥ |nd′ |,

|nd|
|n′

d
|
∆d′′

2 Wn
ic,α +

(
1− |nd|

|n′

d
|

)
∆d′′

2 Wn
iu,α if |nd| < |nd′ |,

, (3.32)

for d′′ = 1, 2. The covered face extrapolation is calculated by

Wf =





|nd′ |
|nd|

Wc +
(
1− |nd′ |

|nd|

)
Ws +

(
|nd′ |
|nd|

sd
′

∆d′W + sd∆dW
)

if |nd| ≥ |nd′ |,
|nd|
|n′

d
|
Wc +

(
1− |nd|

|n′

d
|

)
Wu +

(
|nd|
|n′

d
|
sd∆dW + sd

′

∆d′W
)

if |nd| < |nd′ |.
(3.33)

The first two terms on left are the interpolation between neighbor state variables, and the rest is

the extrapolation in the normal direction (see Figure 3.7). Depending on the availability of the

neighbor cell data the covered face extrapolation value is assigned by

W̃
n+ 1

2

i∓ed,±,d,α
=





Wf if both required neighbor cells exist,

Wu (orWs) if onlyWu (orWs) exists,

Wc if onlyWc exists,

Wn
i∓ed,α

if neither neighbor cells exists.

(3.34)
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Figure 3.7. Extrapolation to a covered face. Here, the left face of cell i is a covered
face respect to the phase domain Ω2. Dots are the extrapolated state variables in
d = 1 direction those are available using method described in §3.7.1. The state
variables are not available at point T. Based on the direction of ~n, neighbor cells ic

and is are used for the calculation. That is, the state variables are extrapolated from
C to B. Then state variables are interpolated from A and B to X and extrapolated
along ~n to point T.

3.7.3. Flux on an irregular face. An irregular face is created when the front intersects with

a face of the control volume. The average flux is evaluated on a irregular face using the primitive

variables on the face centroid,

F
cd,n

i± 1

2
ed,α

= Fd

(
W

cd,n

i± 1

2
ed,α

)
. (3.35)

The primitive variable on the face center, calculated in section 3.7.1, is extrapolated to the face

centroid using the average slopes of two surrounding cells in time and space,

W
cd,n

i± 1

2
ed,α

= Wα

(
~xn
i± 1

2
ed,α

, tn
i+ 1

2
ed,α

)
(3.36)

= W
cr,n

i± 1

2
ed,α

+
(
~xn
i± 1

2
ed,α

− ~xi± 1

2
ed

)
.ed

(
∆d′

x W
n
i,α +∆d′

x W
n
i±ed,α

2h

)

+

(
t cd,n
i± 1

2
ed,α

−
(
n+

1

2

)
∆t

)(∆tW
n
i,α +∆tW

n
i±ed,α

2∆t

)
, d 6= d′,
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where ∆tW
n
i,α is an estimate of time difference calculated as

∆tW
n
i,α =

1

2

(
1

2D

∑

±

D∑

d=1

W
cr,n

i± 1

2
ed,α

−Wn
i,α

)
. (3.37)

3.7.4. Flux on the front. The flux on the front is calculated using the Riemann problem de-

scribed in section 3.3 and Appendix B. The initial states for the Riemann problem are extrapolated

from the cell center primitive states using the local slopes in space and time for each phase,

W̃
f,n
i,α = W̃α

(
~xf,ni , tf,ni

)
(3.38)

= Wn
i,α +

1

h

D∑

d=1

(
~xf,ni − ~xn

i

)
.ed∆d

xW
n
i,α +

1

∆t

(
t f,ni − n∆t

)
∆tW

n
i,α.

The solution to the Riemann problem in the front normal direction with initial states W̃
f,n
i,1 and

W̃
f,n
i,2 gives the primitive state on both sides of the front, W

f,n
i,1 and W

f,n
i,2 , which are used for

calculation of Ff,n
i,α and U

f,n
i,α .

3.8. Excess mass balance and redistribution

To preserve the general conservation the mass difference between hybrid methods and conserva-

tive method (2.31) should be redistributed [26]. First, the excess mass on the front cells is balanced

based on the characteristics. Then, the excess mass on each side is projected on the characteristics

of the cell centered values,

δMn
i,α =

m∑

k=1

bk,αrk,α, (3.39)

where rk,α are the right eigenvectors of
∂~F

∂U
(Un

i,α). Then, the contribution of excess mass to each

side is calculated:

δMn
i,1 = b0,1r0,1 + b1,1r1,1 + b2,1r2,1 + b0,2r0,2, (3.40)

δMn
i,2 = b1,2r1,2 + b2,2r2,2 + b3,2r3,2 + b3,1r3,1. (3.41)

Note that this balancing procedure is omitted for the density component, since it does not cross

the interface.
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In general, the redistribution method is

Un+1
j,α := Un+1

j,α + wi,j δM
n
i,α, j ∈ N(i), (3.42)

where N(i) indicates a set of cells in neighborhood of cell i and weight coefficients satisfy following

conditions [28],

wi,j ≥ 0,
∑

j∈N(i)

wi,j Λ
n+1
j = 1. (3.43)

Here, the weight coefficient is

wi,j =
1∑

l∈N(i) Λ
n+1
l

(3.44)

where N(i) is the neighborhood of cell i in each phase, containing cell i. Using the above weight

coefficients gives

Λn+1
j,α Un+1

j,α := Λn+1
j,α Un+1

j,α +
Λn+1
j,α∑

k∈N(i) Λ
n+1
k,α

δMn
i,α, j ∈ N(i), (3.45)

which means the excess mass of cell i is redistributed into neighbor cells in proportion to their cell

fraction at time n+ 1.

39



CHAPTER 4

Test and verification

4.1. Convergence test - Smooth perturbation

The new method is implemented using the algorithm described in previous chapter. First, it is

tested for a 2-D perturbation problem. The problem domain is a 1 by 1 square. The initial front is

a circle with radius 0.27 centered at the center of the problem domain. The phase inside the front

has a smooth bell-shaped perturbation in the pressure component of the form

pin(r) = pbase


1 + 256α

(
r + rp
2rp

−
(
r + rp
2rp

)2
)4

 , r ≤ rp, (4.1)

where pbase = 1 is the background value of pressure, α = 0.15 determines the peak to base value of

the perturbation, rp = 0.25 is the radius of the perturbation and r is the distance from the center

of the problem domain. The initial density is constant and equals 1 for both phases and the initial

velocities are zero. The initial pressure for the phase outside the front equals pbase. Both phases

are the same material, γ = 1.4. With Courant number of 0.5, simulation is done to a fixed time

t = 0.6 to allow the perturbation to pass the front. As shown in Figure 4.1 the final result has

the expected symmetry. Since the same material is chosen for both phases, it is expected to have

continuous states on the front, which is confirmed for the simulation results. Also, a simulation

for a single phase setup with the same initial condition is done and results are compared to the

two-phase simulation in Figure 4.1. Qualitatively, there are no difference between single phase and

two-phase simulations.

To make quantitative comparisons, the error for conservative state variables are defined as

E2h
i,α = U2h

i,α(t)−Ue
i,α(t), (4.2)

where U2h
i,α(t) is calculated with spatial grid size 2h and Ue

i,α is the exact solution. Since the exact

solution is not available, it is replaced with the solution from the simulation with a finer grid. That
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Figure 4.1. Density profile for smooth perturbation test at at t = 0.6 on a 512 ×
512 grid. Left: dual phase simulation, front position shown with solid line. Right:
result for single phase simulation with no front-tracking. The color table limits are
[0.9, 1.04].

is, if the finer grid calculation is done by step size h, the exact solution is replaced with

Ue
i,α(t) ≈

∑
j∈M(i) Λ

h
j,αU

h
j,α(t)∑

j∈M(i) Λ
h
j,α

, (4.3)

where M(i) are the cells in the finer grid solutions those are corresponding to the cell i in the

coarser grid solution. In other words, M(i) is the box defined by two cells 2i and 2i+1 at its lower

left and upper right corners.

The total error in the L1, L2 and L∞ norms are

ǫhL1
=

∑

α

∑

i∈Ωα

hdΛh
i,α|Eh

i,α|, (4.4)

ǫhL2
=

∑

α


∑

i∈Ωα

hdΛh
i,αE

h
i,α

2




1

2

, (4.5)

ǫhL∞
=

∑

α

max
i∈Ωα

|Eh
i,α|, (4.6)

and the convergence rate is calculated by

p =
log
(
ǫ2h

ǫh

)

log(2)
. (4.7)
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The simulation for the expansion of the perturbation is done in six grid sizes from 1
32 to 1

1024 ,

and the solution errors and convergence rates are calculated based on Richardson method explained

above. As shown in Table 4.1, the new method shows second-order convergence in L1, L2 and L∞

for all conserved variables. It is also verified that conserved variables are satisfying the discrete

conservation identity for each phase in its domain,

∑

i∈Ωα

|V n+1
i,α |Un+1

i,α =
∑

i∈Ωα

|V n
i,α|Un

i,α

−
∑

i∈∂Ωα




D∑

±,d=1

(
±|An

i± 1

2
ed,α

|Fcd,n

i± 1

2
ed,α

)
+ |Af,n

i |~nn
i,α ·

(
~Ff,n
i,α ,U

f,n
i,α

)

 , (4.8)

to the machine precision.

4.2. Convergence test - Shock channel

A shock wave test similar to the Sod [49] shock tube problem is picked to test our method for

a problem with an initial captured discontinuity. The domain is a [2, 0.5] channel. Initially the

discontinuity is set in phase 1 at x = 1 and the interface is a sine wave φ0(y) = η0 sin(ωy + θ) + x0

at x0 = 1.5. The wavelength is the same as the width of the channel λ = 0.5 which gives ω =

2π/λ = 4π. The interface amplitude is set to η0 = 0.16 and phase is θ = π/2 (Figure 4.2). The

initial values for each phase are shown in Table 4.2. Solid wall and periodic boundary conditions

are used for vertical and horizontal boundaries, respectively. The simulation is done up to time

t = 0.6, allowing the shock wave to pass through the interface. Using five grid size from 1/32 to

1/512, error and convergence rates are calculated (see Table 4.3). Since there is a captured shock,

a discontinuity that is not tracked, in the solution, a drop in the convergence rate to first-order is

observed. The same drop of convergence rate is found when the single phase simulation is done

with the similar initial conditions. The final result for finest resolution is shown in Figure 4.2.

4.3. Shock channel - Richtmyer-Meshkov instability

To test our algorithm in a case comparable to experiment the initial growth of Richtmyer-

Meshkov instability (RMI) is simulated with the new method. RMI occurs when a sudden ac-

celeration is forced on an interface separating fluids with different densities. A shock passing the
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ρ
h L1 rate L2 rate L∞ rate
1/32 1.59e-03 2.43e-03 1.56e-02
1/64 1.92e-04 3.05 2.73e-04 3.15 1.96e-03 2.99
1/128 3.13e-05 2.61 4.42e-05 2.63 5.49e-04 1.83
1/256 6.25e-06 2.33 8.56e-06 2.37 8.61e-05 2.67
1/512 2.01e-06 2.01 2.18e-06 1.98 2.31e-05 1.90

ρu
h L1 rate L2 rate L∞ rate
1/32 7.74e-04 1.12e-03 5.61e-03
1/64 1.76e-04 2.14 2.50e-04 2.17 2.33e-03 1.27
1/128 2.57e-05 2.78 4.19e-05 2.58 9.44e-04 1.30
1/256 5.46e-06 2.23 8.01e-06 2.39 2.54e-04 1.89
1/512 1.44e-06 1.92 2.03e-06 1.98 4.89e-05 2.38

ρv
h L1 rate L2 rate L∞ rate
1/32 5.54e-04 1.03e-03 5.08e-03
1/64 1.42e-04 2.14 2.00e-04 2.17 1.92e-03 1.27
1/128 2.29e-05 2.78 3.63e-05 2.58 8.18e-04 1.30
1/256 5.40e-06 2.23 7.81e-06 2.39 2.27e-04 1.89
1/512 1.43e-06 1.92 2.02e-06 1.98 4.38e-05 2.38

E
h L1 rate L2 rate L∞ rate
1/32 5.54e-03 8.54e-03 5.51e-02
1/64 6.56e-04 3.08 9.53e-04 3.16 6.93e-03 2.99
1/128 1.07e-04 2.62 1.53e-04 2.64 1.92e-03 1.85
1/256 2.09e-05 2.36 2.94e-05 2.38 3.00e-04 2.68
1/512 5.21e-06 2.00 7.53e-06 1.96 8.29e-05 1.86

Table 4.1. Error and convergence rate for 2-D perturbation problem.

Phase 1: post-shock Phase 1: pre-shock Phase 2
ρ 3 1 1
u 0 0 0
v 0 0 0
p 3 1 1
γ 1.4 1.4 1.276

Table 4.2. Initial values for shock channel problem.

interface of two different gasses is an example of RMI. It is observed that an initial small pertur-

bation on the interface grows after passage of a shock wave in a wide range of Mach numbers [50].

Such growth has been characterized as having a linear phase at the beginning of the process [51],

before the nonlinear evolution of spike and bubble development, and of turbulent mixing.
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Phase 1 Phase 2

Figure 4.2. Shock channel initial configuration (top). Pressure profile at t = 0.6.
The same color table as Figure 4.1 is used with limits [1.67, 3.0] for phase 1 and
[1.0, 1.72] for phase 2 (bottom).

h ρ rate ρu rate
1/32 8.58e-03 8.27e-03
1/64 3.84e-03 1.16 3.48e-03 1.25
1/128 2.09e-03 0.88 1.82e-03 0.94
1/256 1.13e-03 0.89 9.71e-04 0.90
h ρv rate E rate
1/32 1.89e-03 2.64e-02
1/64 9.43e-04 1.01 1.01e-02 1.28
1/128 5.60e-04 0.75 5.20e-03 0.96
1/256 2.92e-04 0.94 2.71e-03 0.94

Table 4.3. Error in L1 and convergence rate for the shock channel problem.

Phase 1: post-shock Phase 1: pre-shock Phase 2
ρ (g/cm3) 1.872× 10−3 1.351× 10−3 5.494× 10−3

u (cm/s) 1.013× 104 0 0
v (cm/s) 0 0 0
p (g/(cm.s2)) 1.453× 106 9.650× 104 9.650× 104

γ 1.276 1.276 1.4
Table 4.4. Initial values for RMI problem.

The setup for the simulation is comparable with an experiment done by Collins and Jacobs

[52]. The domain for this simulation is a [23.73 cm, 5.93 cm] channel. The initial shock is located

at x = 10 cm and the interface is placed at x = 12 cm with a pre-shock sinusoidal perturbation of

amplitude a−0 = 0.18 cm and wavelength λ = 5.93 cm. The initial condition for phase 1 (pre-shock)
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and phase 2 gases are picked to be comparable to the cited experiment, and phase 1 (post-shock)

initial conditions were chosen based on Rankine-Hugoniot jump condition to have a shock with

Ma = 1.21 in phase 1. With Courant number 0.5 the dynamics of the front and phases are

simulated up to time 0.4ms and the convergence rate of the method is measured (see Table 4.5).

Richtmyer [51] derived the impulsive growth rate relation for the amplitude of the perturbation

based on the linear theory which describes the development of the instability after refraction of

shock while the perturbation is small enough to be considered in the linear regime of the process,

dη

dt
= kA+∆Vfη

+
0 , (4.9)

where k is the wavenumber of the perturbation, A+ is the post-shock Atwood number, ∆Vf is

the velocity jump on the front following the shock refraction and η+0 is the post-shock initial

perturbation amplitude. For the simulation, it is initialized to have k = 2π/λ, ρ+1 = 2.07 × 10−3,

ρ+2 = 9.05× 10−3, A+ = (ρ+2 − ρ+1 )/(ρ
+
2 + ρ+1 ) = 0.63, ∆Vf = 6356.24 and η+0 = 0.15 in CGS units.

The calculated amplitude growth using equation (4.9) is dη/dt = 624.82 cm/s.

Nx ρ rate ρu rate
128 7.87e-06 1.44e-01
256 3.62e-06 1.12 6.49e-02 1.15
512 3.00e-06 0.27 5.21e-02 0.32
1024 1.22e-06 1.30 2.43e-02 1.10
Nx ρv rate E rate
128 2.68e-02 1.76e+04
256 1.08e-02 1.31 8.14e+03 1.11
512 5.79e-03 0.90 6.68e+03 0.29
1024 3.47e-03 0.74 2.84e+03 1.23

Table 4.5. Error in L1 and convergence rate for RMI problem. Nx is the number
of cells in x direction

From the simulation results, the amplitude of the interface is plotted in its linear regime (Fig-

ure 4.4). A linear fit shows a growth rate of dη/dt = 606.64 cm/s while the amplitude growth rate

from the experiment [52] is 628.64 cm/s. The simulation results show good match (≈ 3% error)

with experimental and analytical results.

After the initial linear regime of the RMI test, where crests and troughs are symmetric, the

interface grows nonlinearly. It becomes visible by appearance of an asymmetric bubble and spike,
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Phase 1 Phase 2

Figure 4.3. RMI problem initial configuration (top). Pressure profile at t = 0.4ms.
The same color table as Figure 4.1 is used with limits [1.87 2.11]× 10−3 (g/cm3) for
phase 1 and [5.49 9.28]× 10−3 (g/cm3) for phase 2 (bottom).

followed by the spike rolling-up. The RMI simulation is continued to time t = 2.8ms to observe the

nonlinear evolution of the front (Figure 4.5). Simulation is stopped when the front curvature in-

creased near the tip of the spikes. At these regions, the level set function becomes non-differentiable,

which is not applicable for geometry information extraction.

4.4. Summary and conclusion

A new front-tracking method is developed for contact discontinuities using the finite volume

approach on a Cartesian grid. Including the geometry information at the irregular front cells is an

essential part to this approach and achieved by applying the level set method for front representation

and evolution, while profiting from the accurate geometry calculation algorithms [20, 21].

Algorithms needed to implement the method are presented and implemented for numerical

test. Simple convergence and stability tests show the new method is second-order in L1, L2 and

L∞ norms when tracking the material interface and no other discontinuity is present in the solution.

Also it is shown that in the presence of a captured shock the convergence reduces to first-order in

L1. Further validation is done with the simulation of initial developments of Richtmyer-Meshkov

instability. Simulations results are in good agreement with theory and experimental results. A
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Figure 4.4. Amplitude of the perturbation on the front in RMI simulation

Figure 4.5. RMI problem front evolution. From left to right, t = 0 initial single
mode perturbation , t = 0.7ms linear growth of perturbation, t = 1.4ms asymmetric
growth of crests and troughs, t = 2.1ms formation of bubble and spike, and t =
2.8ms Spike roll-up.

extended simulation case shows the capability of the method for handling complex geometries to

the limit of geometry information extraction method.
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It should be noted that many parts of the above algorithms may be implemented differently. For

example the interpolation and extrapolation algorithms may include cautionary limiting operators

[39] or different redistribution algorithm may be applied [28]. Although such details may vary from

case to case, here, it is shown that a second-order method is achievable, if accurate geometrical

information are considered and incorporated in the algorithm.

Further work is needed to develop and study robust and accurate interpolation and extrap-

olation methods for the algorithm. It would be an advantage to implement a mesh refinement

algorithm. An adaptive mesh refinement(AMR) algorithm would increase the resolution locally,

where needed, while keeping computational cost low, respect to the whole domain resolution in-

crease. Implementation in three spatial dimension is also another extension that would be useful

for applying this method on 3-D problems which would have broader physical application.
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APPENDIX A

Notation

Notation Description

D Spatial dimension

U Conservative variables

F Conservative fluxes

Ω Phase domain

~ns Spatial normal vector

~n Space-time normal vector

F Front/interface position

sf Magnitude of front velocity in the front normal direction

∆t Time discretization step

h Space discretization step

ρ Density

u Velocity in x direction

v Velocity in y direction

p Pressure

E Total energy

γ Ratio of specific heats

W Primitive variables

A Jacobian matrix of flux variables

Υ Cell in Cartesian grid

V Control cell (in space)

C Control volume (in space-time)

A Face of a control volume
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Λ Cell fraction

a Area fraction

φ Level set function

~νext Extended velocity field

DFC Cell centroid conservative flux difference

DFNC Cell centroid nonconservative flux difference

DFNC,cr Cell center nonconservative flux difference

δM Excess mass

F
cd,n

i± 1

2
ed,α

Flux at face centroid

F
cr,n

i± 1

2
ed,α

Flux at face center

F
f,n
i,d,α Flux at front centroid

(~xi, t
n) Space-time position of a cell center

(
~xi± 1

2
ed , t

n+ 1

2

)
Space-time position of a regular face center

(
~xn
i,α, t

n
)

Space-time position of a cell centroid
(
~xn
i± 1

2
e2,α

, tn
i± 1

2
e2,α

)
Space-time position of a fractional face centroid

(
~xf,ni , tf,ni

)
Space-time position of front centroid
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APPENDIX B

Numerical solution to Riemann problem on the contact

discontinuity

The solution to Riemann problems is needed to calculate the state variables and fluxes on the

front centroid between the two phases. The Riemann problem for the 2-D Euler equations is defined

R
f
x(WL,WR) = (W∗

L,W
∗
R), (B.1)

WL = (ρL, uL, vL, pL)
T , (B.2)

WR = (ρR, uR, vR, pR)
T , (B.3)

W∗
L = (ρ∗L, u

∗, vL∗, p∗)T , (B.4)

W∗
R = (ρ∗R, u

∗, vR∗, p∗)T , (B.5)

with γ = γL for the phase on the left and γ = γR for the phase on the right side. An approximate

Riemann solver [53] is used to calculate the state variable in the star region, Figure B.1. The sound

speeds are

cL =

√
γLpL
ρL

, cR =

√
γRpR
ρR

, (B.6)

and the Lagrangian sound speeds are defined as

wL = ρLcL, wR = ρRcR. (B.7)
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The pressure and normal velocity in the star region and densities are calculated as follows,

p∗ =
1

wL + wR
(wRpL + wLpR + wRwL(uL − uR)) , (B.8)

u∗ =
1

wL + wR
(wLuL + wRuR + (pL − pR)) , (B.9)

ρ∗L = ρL +
p∗ − pL

c2L
, (B.10)

ρ∗R = ρR +
p∗ − pR

c2R
. (B.11)

The tangential component of the velocity does not change passing the 1-wave or 3-wave disconti-

nuity,

v∗L = vL, v∗R = vR. (B.12)

Star region

WL =




ρL
uL
vL
pL


 WR =




ρR
uR
vR
pR




W∗
L =




ρ∗L
u∗

v∗L
p∗


 W∗

R =




ρ∗R
u∗

v∗R
p∗


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Figure B.1. Structure of the solution of the 2-D split Riemann Problem.
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APPENDIX C

Front velocity and Riemann solution

Here, the reasoning for replacing u∗ with sf after solving the Riemann problem on the front

centroid is shown. For ease of demonstration the D = 2 case is discussed, but this would be valid

for any spatial dimension.

It is assumed that after solving the Riemann problem in the front normal direction the solution

is

R
f
x

(
Ŵ1,Ŵ2

)
=
(
(ρ∗L, u

∗, v∗L, p
∗)T , (ρ∗R, u

∗, v∗R, p
∗)T
)
. (C.1)

The front flux on the front centroid is calculated from equation (2.22).

F
front,n
i,α = |Af,n

i |~nn
i,α ·

(
~Ff,n
i,α ,U

f,n
i,α

)
. (C.2)

Since the free stream preservation method is applied, |Af,n
i |~nn

i,α can be written as

|Af,n
i |~nn

i,α =




|An
i− 1

2
e1,α

| − |An
i+ 1

2
e1,α

|

|An
i− 1

2
e2,α

| − |An
i+ 1

2
e2,α

|

|An
i− 1

2
e3,α

| − |An
i+ 1

2
e3,α

|




=




∆Ax,α

∆Ay,α

∆At,α


 . (C.3)

Therefore, the spatial normal vector ~ns and rotation matrix are

~ns =
1√

∆A2
x,α +∆A2

y,α


 ∆Ax,α

∆Ay,α


 , R =

1√
∆A2

x,α +∆A2
y,α


 ∆Ax,α ∆Ay,α

−∆Ay,α ∆Ax,α


 . (C.4)

The solution of the Riemann problem is rotated back to the laboratory frame,

W
f,n
i,α =




ρ∗α
∆Ax,αu∗−∆Ay,αv∗α√

∆A2
x,α+∆A2

y,α

∆Ay,αu∗+∆Ax,αv∗α√
∆A2

x,α+∆A2
y,α

p∗




. (C.5)
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Primitive variables in equation (C.5) is used to calculate the front flux value for density channel in

equation (C.2),

F front,n
i,α,mass =




∆Ax,α

∆Ay,α

∆At,α


 ·




ρ∗α
∆Ax,αu∗−∆Ay,αv∗α√

∆A2
x,α+∆A2

y,α

ρ∗α
∆Ay,αu∗+∆Ax,αv∗α√

∆A2
x,α+∆A2

y,α

ρ∗α




(C.6)

= ρ∗α


u∗(∆A2

x,α +∆A2
y,α)√

∆A2
x,α +∆A2

y,α

+∆At


 (C.7)

Since mass does not cross the contact discontinuity, F front,n
i,α,mass should be zero, which gives

u∗ =
−∆A2

t,α√
∆A2

x,α +∆A2
y,α

. (C.8)

Dividing the nominator and denominator by |Af,n
i | results in

u∗ =
−nt√
n2
x + n2

y

= sf . (C.9)

Replacing u∗ with sf ensure the correct numerical evaluation of flux calculation on the front

and consistent flux calculation with the evolution of the front geometry. This is not only for density

but for all conserved variables, which can be shown using the similar method as above. Also, one

can say that it is necessary to pick u∗ = sf to satisfy Rankine-Hugoniot jump condition in a

conservative and physical manner.
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