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Abstract

In previous papers about searches on star graphs several patterns have been made appar-

ent; the speed up only occurs when graphs are “tuned” so that their time step operators

have degenerate eigenvalues, and only certain initial states are effective. More than that,

the searches are never faster than O
(√

N
)

time. In this thesis the problem is defined rigor-

ously, the causes for all of these patterns are identified, sufficient and necessary conditions

for quadratic-speed searches for any connected subgraph are demonstrated, the tolerance

of these conditions is investigated, and it is shown that (unfortunately) we can do no better

than O
(√

N
)

time. Along the way, a useful formalism is established that may be useful

in future work involving highly symmetric graphs. For a much shorter, abridged version of

the first half of this thesis, see [1].

The tools and techniques so derived are then used to demonstrate that tree graphs can

be used for the computation of Boolean functions. The philosophy of Farhi’s work [2] on

the continuous-time NAND tree is applied to a discrete-time walk with any (AND, OR,

NAND, or NOR) gate at each vertex. Tentative results show that the vast majority of

possible Boolean functions on N bits can be calculated in O
(√

N
)

time.
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1 Introduction and Review of Quantum Walks

A graph is a structure composed of vertices connected to each other by edges. If we

imagine a particle that can sit on on a vertex and move randomly to connected vertices,

then we describe where it may be at a given time or the path that it takes using the study of

random walks. The particle “randomly walks” from one vertex to the next to the next, with

the probability of moving between any pair of vertices described by a transition matrix.

Random walks fall broadly into two categories: continuous-time walks and discrete-time

walks (the second of which is the focus of this thesis).

Through the study of random walks we can learn remarkable facts about the behavior

of some large structures with simple components. For example, if we take an infinite

set of vertices indexed by the integers and connect them sequentially (so that vertex j

is connected to both vertices j − 1 and j + 1, ∀j), then we can talk about a “random

walk on a line”. In particular, if the probability of a particle jumping to either of the

adjacent vertices is equal and time-invariant, then we find that we have a useful model of

one-dimensional Brownian motion. We can describing the probability of a particle being at

vertex j at time step t as P (j; t). If we place the particle at the origin at time zero, we find

that the probability distribution of the particle some time later is roughly Gaussian. More

precisely, if P (0; 0) = 1, then P (j; t) = 1
2t

( t
t+j
2

)
≈
√

2
πte
− 2j2

t , for t+j
2 ∈ Z. With even this

trivial example we can model, for example, the diffusion of silt in pipes, and can already

see the O(
√
t) rate of that diffusion.
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A “quantum walk” is a quantum version of a random walk [3]. In a quantum walk,

a particle’s motion is governed by probability amplitudes, whereas in a classical random

walk it is governed by probabilities. Importantly, this means that the time-step operator

of a classical walk is stochastic while the operator for a quantum walk is unitary. While

not immediately obvious, this distinction leads to wildly different (and useful) behaviors.

This difference can be clearly seen by comparing the random walk just discussed with the

“Hadamard walk”, which is arguably the closest quantum analog.

Unitarity implies that the process of the walk must necessarily be reversible. This

requires that, at each step, the particle “remember” where it previously was. One method

of resolving this issue is to include an ancillary “coin” to each vertex which can be in either

of two states: | ↑〉 or | ↓〉. In the Hadamard walk the time step operator performs the

following:

U|j〉| ↑〉 =
|j + 1〉| ↑〉+ |j − 1〉| ↓〉√

2
(1)

U|j〉| ↓〉 =
|j + 1〉| ↑〉 − |j − 1〉| ↓〉√

2
(2)

The probability of finding a particle with state |ψ(x;m)〉 on a given vertex is P (x;m) =

|(〈j|〈↑ |) |ψ(x;m)〉|2 + |(〈j|〈↓ |) |ψ(x;m)〉|2. The state of a particle after m time-steps is

|ψ(x;m)〉 = Um|ψ(x; 0)〉, where |ψ(x; 0)〉 is the initial state. So, for example, if |ψ(x; 0)〉 =

|0〉| ↑〉, then U|ψ(x; 0)〉 = 1√
2

(| − 1〉| ↓〉+ |1〉| ↑〉) and P (1; 1) = P (−1; 1) = 1
2 . Af-

ter only one step the Hadamard walk yields the same results as the classical random
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walk. However, after a few more time-steps we can begin to see the effect of interference.

|ψ(x; 3)〉 = U3|ψ(x; 0)〉 = 1√
8

(| − 3〉| ↓〉 − | − 1〉| ↑〉+ |1〉(| ↓〉+ 2| ↑〉)〉+ |3〉| ↑〉) and there-

fore P (−3; 3) = P (−1; 3) = P (3; 3) = 1
8 and P (1; 3) = 5

8 . Clearly this is a departure from

the behavior of the classical walk, where P (−1; 3) = P (1; 3) = 3
8 . Advancing time rapidly

shows that these differences are profound.

Figure 1: Probability vs. position at t = 100 for the classical and Hadamard walks de-

scribed above.

While the classical walk diffuses and has a variance of O(
√
t), the quantum walk propa-

gates and has a variance of O(t). Rather than approaching a Gaussian curve, the Hadamard

walk oscillates around P (x;m) = 2m
π(m−x)

√
m2−2x2

[3]. Just as bizarre, the probability of a
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random walk crossing to the left of the initial position is 1 for the classical walk and 2
π for

the Hadamard walk [6].

Of course, the novel behavior of quantum walks is not limited to the line, and the

applications are not limited to abstract math. Like classical walks, the time can be either

continuous [4] or advance in discrete steps [5, 7]. Within the discrete- time walks, there are

another two types. In the coined walk, the particle sits on the vertices and an extra degree

of freedom, a quantum coin, is needed to make the dynamics of the walk unitary. In a

“scattering walk” the particle sits on the edges and the two-state coin is replaced [8] by the

two directions on that edge. There have been a number of experimental implementations

of quantum walks, some using trapped ions [9, 10] and others using photons in optical

networks [11]-[14].

Quantum walks have already proven useful in finding new quantum algorithms and

expanding the applicability of previously known algorithms. The notion of a quantum

walk was introduced in 1993 [5] and an analysis of the Hadamard walk had to wait until

2001 [6].

In [7] the notion of the quantum walk was placed on a more rigorous footing. For

example, because quantum walks are always quasi-periodic (this is a property of unitary

Markov processes) there’s nothing directly analogous to a steady state, so a new notion was

defined by using time-averaging. This time-average steady state was then used to define

new notions for mixing, filling, and dispersion times. More importantly, they demonstrated

that quantum walks provide at most a “polynomially faster” speed up over classical walks.
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Only more recently has interest started to take off as new applications are found. In

particular, quantum walks have been shown to be useful for searches: finding marked

structures, such as cliques [21], or structures that break the symmetry of a graph [22, 23].

In most cases there is a distinguished vertex, one whose behavior is different from the

others, and the object is to find this vertex [16]-[20]. The first such algorithm was found in

2003 and described a search on the vertices of a hypercube [16]. In that case, a database

search on 2N items was reformulated as a walk on an N -dimensional hypercube and a

quadratic speed up was the result, which typically seems to be the case with quantum

searches.

While it is certainly true that quantum walks, and walks in general, can be used to

study the behavior of things that are literally connected to each other (networks, fiber

optic bundles, etc.), the graphs we study may be substantially more abstract but none the

less useful. The “element distinctness problem” asks whether or not all of the elements

in a set are distinct from each other. Classically, this can be solved for a set of size N in

O (N logN) time, but using quantum walks this problem can be solved in O
(
N

2
3

)
time

[15]. This algorithm relies on reducing the problem to a search on the Johnson graph

of the set in question. For a set S, the Johnson graph J(S, k) has one vertex for every k

element subset of S, and two vertices are connected by an edge if they share k−1 elements.

With the introduction of a repeated element comes the introduction of new edges into the

Johnson graph of the set. So, this set theory problem becomes a graph, and the quantum

walk provides an algorithm that functions faster than any known classical algorithm.
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In the scattering model of quantum walks [8] the states are defined on edges, with

two states on every edge; one for each of the two possible directions. So, if two vertices

connected by some edge are labeled a and b, then |a, b〉 is the state on the edge that

points from a to b, and |b, a〉 is the state on the edge pointing from b to a. If the vertices

are labeled 1, · · · ,m, then a state of the system is written |Ψ〉 =
∑m

j,k=1 αj,k|j, k〉, where

αj,k ∈ C, 0 ≤ |αj,k| ≤ 1, and
∑m

j,k=1 |αj,k|2 = 1. These α’s are probability amplitudes, and

|αj,k|2 is the probability of measuring |Ψ〉 and detecting the particle in the state |j, k〉.

Each vertex hosts a local unitary operator that maps all of the incoming states to

outgoing states. That is, if v is a vertex, and {aj} is the set of connected vertices, then the

unitary operator defined on v, denoted Uv, performs a mapping Uv : {|aj , v〉} → {|v, aj〉}.

Notice that the notation used to describe the states indicates which vertex operator to

apply. The only operator that will act on the state |s, t〉 is Ut, and the vertex operator

most recently applied to |s, t〉 was Us. The time step operator, U, is defined as all of the

Uv taken together; U = ⊕vUv, where this direct sum is taken over all vertices. Like each

Uv, U is unitary, but unlike each of the vertex-specific operators, U is an endomorphism.

As such, we can talk about the eigenvalues and eigenvectors (equivalently, ”eigenstates”)

of U. Because the edge state implies immediately which of the vertex operators to apply,

we will in general only talk about U as a whole and abandon the vertex-specific notation.

For example, U|s, t〉 = ⊕vUv|s, t〉 = Ut|s, t〉, but it is unnecessary on the right hand side

to indicate which vertex operator is being used, since it is already announced by the state,

“|s, t〉”.

6



The eigenvalues of U all have modulus 1, and there is no ”steady state”. In an intuitive,

not-rigorous sense, because U must be unitary (it is a quantum mechanical time evolution

operator) it must conserve information. That is, for any given state there is a unique pre-

image. But a particle on a vertex at time t could have been on any adjacent vertex at time

t − 1. In the earliest attempts to define a quantum analog to discrete random walks the

states were again defined on the vertices, but it was quickly found that an ancillary “coin

space” needed to be attached to each vertex to maintain unitarity and keep track of the

state’s previous vertex. The edge state formalism (e.g., |a, b〉) is an equivalent formalism

that eliminates the need for ancillary spaces, while still carrying the additional information

required.

Definition For the purposes of this thesis a “search” is defined to be a process used

to distinguish between N − 1 identical elements, and one marked element that a priori can

be any of the N total elements. Under this definition the Shor algorithm, for example,

is not a search because it is used to find numbers with certain properties that set them

apart. The set of numbers being considered are not all equally likely to be “marked”. Part

of the reasoning behind this definition is that it leads naturally to graphs with very high

symmetry, which substantially reduces the dimension and difficulty of the problem.

Define a mapping φ : E → E, where E is the set of edges, to be some rearrangement

of edges such that U = φ−1 ◦U ◦ φ, or equivalently φ ◦U = U ◦ φ. φ is called a quantum

graph automorphism [24], and it is a rearrangement of edges and vertices that leaves the

7



effect of U invariant. If there is a set of edges that can be mapped into each other by

some quantum graph automorphism, then we say that these edges belong to the same

equivalence class, and a uniform superposition of states on these edges is seen as a single

edge on the “collapsed graph”.

For example, consider the complete graph K3 with vertices labeled A,B,C. Define A to

be a strictly reflecting vertex (i.e., U|B,A〉 = |A,B〉) and B and C as strictly transmitting

(i.e., U|B,C〉 = |C,A〉). We find that the only non-trivial quantum graph automorphism

is the one that exchanges B and C. That is, φ makes the following exchanges: |A,B〉 ↔

|A,C〉, |B,A〉 ↔ |C,A〉, and |B,C〉 ↔ |C,B〉.

Figure 2: Collapsing a graph.

Whereas the original graph consisted of six states,

G = {|A,B〉, |B,A〉, |A,C〉, |C,A〉, |B,C〉, |C,B〉}, the collapsed graph consists of only

three states, GA = { 1√
2

(|A,B〉+ |A,C〉) , 1√
2

(|B,A〉+ |C,A〉) , 1√
2

(|B,C〉+ |C,B〉)}.

There are two things to notice here. First, this set is closed under the action of U, and

8



second, each state in GA is mapped to itself under φ. Indeed, the states on any collapsed

quantum graph are composed of exactly those states that are left invariant under the action

of every φ.

Definition For any graph G with a time step operator U we define the “collapsed

graph” or “automorphism graph” as GA ≡ {|ψ〉 : φ|ψ〉 = |ψ〉,∀φ where U = φ−1Uφ}.

That is, the collapsed graph is composed only of those states that are left invariant under

the mapping of every automorphism that commutes with U.

It is straightforward to demonstrate that GA is closed under U. If |ψ〉 is a state on GA,

then

|ψ〉 ∈ GA

⇒ φ|ψ〉 = |ψ〉

⇒ Uφ|ψ〉 = U|ψ〉

⇒ φU|ψ〉 = U|ψ〉

⇒ U|ψ〉 ∈ GA
By using collapsed quantum graphs we can decrease the dimension of the state space

substantially. In the example above the number of dimensions was cut in half, but the

greater the symmetry the greater the decrease in dimensions.

In this thesis, the high dimensionality of a large star graph is replaced with a variable

and then the behavior of the graph in response to changes in that variable are analyzed. It

will be shown that searches on star graphs with N edges can be executed in O
(√

N
)

time,

9



and that the subgraph used to “mark” an edge can be any known graph (this is a great

generalization over the Grover algorithm). It will be shown that the algorithm is tolerant

of some noise, with a bound dictated by the size of the star graph.

Some of the tools used will be applied toward the question of what structures can be

detected through the use of signals reflected off of a graph. A technique will be described

for finding the proportion of differently marked edges in a star graph. Finally, it will be

shown that tree graphs can be used to calculate most Boolean functions in O
(√

N
)

time,

where N is the number of inputs, by using a discrete time quantum walk that reflects a

signal off of the tree graph. This is also a generalization over previous results [2].

In section 2 a motivating example, the “Grover Graph”, is introduced and the search

algorithm is stated explicitly.

In section 3 some of the necessary mathematical machinery is constructed.

In section 4 the central idea behind the algorithm, “pairing”, is established and several

important theorems governing the behavior of pairing are proven.

In section 5 we investigate how much the graph can be changed before a the algorithm

breaks down.

In section 6 the results regarding searches on the star graph are summarized and some

methods of generalization are described.

In section 7 the tools and philosophies used in the first half of the paper are applied

to the problem of determining the structure of a given graph through the interpretation of

10



signals “reflected” off of the graph.

In section 8 those techniques are applied to star graphs and tree graphs. It is shown

that tree graphs, properly prepared, can be used to calculate any given Boolean function.

11



2 Star Graphs With an Arbitrary Subgraph

Figure 3: A star graph with an unspecified subgraph, G.

This section describes the model that will be used throughout this thesis.

In figure 3 the 0 vertex is the “hub vertex”. A hub vertex is a vertex with N connections,

where N is allowed to vary. It is generally assumed that the reflection and transmission

coefficients at a hub are the same for each of the N edges, so any incoming state, |j, 0〉 will

be mapped to

U|j, 0〉 = r|0, j〉+ t
∑
k 6=j
|0, k〉 (3)

Unitarity at the hub requires that |r|2 + (N −1)|t|2 = 1 and 2Re(r∗t) + (N −2)|t|2 = 0.

We will assume that the hub is a standard “diffusive vertex” which means that r = −1+ 2
N

and t = 2
N , although it is easy to generalize away from this (section 6).

The subgraph, G, is attached to any one of the N edges radiating from vertex 0. We

assume throughout this thesis that the structure of G is known, but not the vertex to which

12



it is attached. We can, without loss of generality, assume that it is attached to vertex 1,

and in this way, vertex 1 is “marked”.

Vertices 2 through N “reflect with a phase of φ”, which means that U|0, j〉 = eiφ|j, 0〉.

φ is left with an unspecified value, so that it can be used to “dial in” certain eigenvalues

of U (how this is done will be shown momentarily).

Vertices 0 and 1, the states between them, and everything in G make up the Right side

of the graph.

Vertices 0 and 2 through N, as well as the edges connecting them, are called the Left

side of the graph.

Throughout this thesis I will be referring to Right or Left eigenvalues or vectors. This

will always indicate that the thing in question is native to that side of the graph, as

opposed to the traditional meaning (e.g., normally a “left eigenvector” is one such that

〈v|M = λ〈v|).

The goal of a quantum search on a star graph is to somehow get the probability am-

plitude on the states |0, 1〉 and |1, 0〉 as high as possible, so that when a measurement is

made the result is likely to be the marked edge. In this way the marked edge is found,

and the search completed. Typically it is assumed that measurements cannot be made on

G itself since, in some sense, if we had access to G we wouldn’t be looking for it. So if a

particle would have been measured on an edge in G, the measurement is assumed to be a

null result. This turns out to be a smaller problem than it might seem at first and so a

better, less-specific goal is to get the state supported mostly on the Right side.

13



The effect of U on |0, 1〉, as well as on any of the states in G, is different for different

graphs, and will be left as a “black box”.

For every value of N ≥ 2 we have another, different graph, and a new problem to solve.

However, by taking advantage of the obvious symmetries on the Left side, this graph can

be collapsed substantially. For ease of notation define the following:

|in〉 ≡ 1√
N − 1

N∑
j=2

|j, 0〉 (4)

|out〉 ≡ 1√
N − 1

N∑
j=2

|0, j〉 (5)

This is the collapsing discussed in the previous section. While there may be additional

collapsing/simplification taking place inside of the subgraph, G, that will not be directly

addressed in this thesis. At the hub vertex we find that U does this:

U|in〉 = [r + (N − 2)t]|out〉+ t
√
N − 1|0, 1〉 (6)

U|1, 0〉 = r|0, 1〉+ t
√
N − 1|out〉 (7)

Rewriting this in terms of a new perturbation variable, ε ≡ 1
N , we find:

U|in〉 = (1− 2ε)|out〉+ 2
√
ε− ε2|0, 1〉 (8)

14



U|1, 0〉 = (−1 + 2ε)|0, 1〉+ 2
√
ε− ε2|out〉 (9)

Note that U is a function of ε, and define U0 ≡ U|ε=0. The number of edges, N ,

connected to the hub vertex is the only variable in the graph, and studying the dependence

of the eigenvalues and eigenvectors on ε = 1
N will be the focus of most of this thesis. Unless

otherwise noted, assume that every variable (eigenvalues, eigenvectors, etc.) is a function

of ε. In general, denote f0 ≡ f(ε)|ε=0. For example, suppose |w〉 is an eigenvector of U. It

may depend on ε, because U depends on ε. |w0〉 is the corresponding eigenvector of U0,

defined as |w0〉 ≡ |w〉 |ε=0, and it is constant.

When ε = 0, which is the N → ∞ limit, the states of the two sides of the graph, Left

≡ {|in〉, |out〉} and Right ≡ {G, |0, 1〉, |1, 0〉}, are kept separate by U0. The eigenvalues

and vectors of both the Left and Right sides are changed relatively little by ε (this will

be proven), so once they have been found they can be used without modification. Clearly,

ε = 0 is the easiest case to work with, and dealing with very large values of N (where

search algorithms are useful) corresponds to very small values of ε. Phrased in this way,

the problem lends itself naturally to a perturbative approach.

It is worth taking a moment to repeat that, and to point out how profound it is. The

original problem involved an infinite family of graphs indexed by the number of edges in

the star graph, N , each of which had a Hilbert space of dimension 2N + |G|, where |G| is

the number of edge states in G. But by using the symmetry of vertices 2 through N to
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collapse the graph, the problem now only considers a single graph with a Hilbert space of

no more than dimension 4 + |G| and a single non-constant vertex (the “hub”) that behaves

like a valve between the Left and Right sides in a simple and predictable way.

Because the location of vertex 1 is unknown, the initial states we have access to are of

the form,

|ψ〉 =
α√
N

N∑
j=1

|j, 0〉+
β√
N

N∑
j=1

|0, j〉 (10)

Which can also be written,

|ψ〉 = α|in〉+ β|out〉+O

(
1√
N

)
(11)

In other words, the initial state is (to within a small error) just a superposition of |in〉

and |out〉.

There’s absolutely nothing stoping us from starting with a state like 1√
N

∑N
j=1(−1)j |0, j〉.

However, this state breaks the graph’s symmetry a bit, since we now have to treat the odd

and even vertices separately, and the graph becomes that much more unwieldy.

A cursory look at U0 reveals that the eigenvalues from the Left side of the graph

are λ = ±ei
φ
2 , and that the corresponding eigenvectors are 1√

2

(
|out〉 ± ei

φ
2 |in〉

)
. It will

be shown that if the Right side of the graph shares one or both of these eigenvalues,

then a “rotation” (as described in section 4) may occur, and an initial state of the form

|`0〉 = 1√
2

(
|out〉 ± ei

φ
2 |in〉

)
will move into another eigenstate with the same eigenvalue,
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|r0〉, in the Right side in O
(√

N
)

time.

So, finding G boils down to finding one of the eigenvalues and eigenvectors of the Right

side, and this can be done by “dialing in” φ so that the Left side shares an eigenvalue with

the Right. This, by the way, is the great advantage of star graphs; any eigenvalue can be

easily attained, and there are only two dimensions (|in〉 and |out〉). That said, the results

and techniques of this thesis can be applied far more generally.

The “paired” eigenvalues of U that are involved in searches with a quadratic speed up

take the form λ(ε) =
∑∞

j=0 aj(±
√
ε)j (this will be proven). In what follows, it will often be

advantageous to write this as λ = λ0e
±ic
√
ε +O(ε). It will be shown that finding a known

graph merely requires matching Left and Right eigenvalues of U0.

2.1 Grover Graph Example

For the Grover graph, G is simply a vertex that reflects with a phase of π. The Grover

graph is named for the Grover algorithm, which it exactly emulates. This example is simple

enough that it can be completed by hand. The pairing of eigenvectors, the
√
ε dependences

and errors, as well as the O(
√
N) time required to execute the search are all evident here.

The Grover graph is a motivating example, but in the appendix a more complicated

graph, the “bolo graph”, is used to demonstrate how the various theorems and techniques

of this thesis can be quickly applied.

The basis states of the (collapsed) Grover graph are:
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|ψ1〉 = |out〉

|ψ2〉 = |in〉

|ψ3〉 = |0, 1〉

|ψ4〉 = |1, 0〉

The time step matrix, U, is defined as before with the addition that U|0, 1〉 = −|1, 0〉.

So, using the basis states as listed above,

U =



0 1− 2ε 0 2
√
ε− ε2

eiφ 0 0 0

0 2
√
ε− ε2 0 2ε− 1

0 0 −1 0


and U0 =



0 1 0 0

eiφ 0 0 0

0 0 0 −1

0 0 −1 0


The characteristic polynomial for U0 is C0(λ) = λ4−(eiφ+1)λ2+eiφ = (λ2−eiφ)(λ2−1).

This clean factoring is symptomatic of the separation of the Right and Left sides when

ε = 0. Clearly, double roots can be found when φ = 0, so in what follows φ will be set to 0.

The eigenvectors on the Left are |`(1)〉 = 1√
2

(|out〉+ |in〉) and |`(−1)〉 = 1√
2

(|out〉 − |in〉),

for λ = ±1, and the eigenvectors on the Right are |r(1)〉 = 1√
2

(|0, 1〉 − |1, 0〉) and |r(−1)〉 =

1√
2

(|0, 1〉+ |1, 0〉), for λ = 1 and λ = −1 respectively.

The characteristic polynomial for U (with φ = 0) is C(λ) = λ4 − 2(1− 2ε)λ2 + 1. The

solutions of this equation are λ(ε) = ±
√

1− 2ε± 2i
√
ε− ε2, where the ±’s are independent

of each other. The four eigenvalues and their associated eigenvectors are:
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λ(1)(ε) =
√

1− 2ε+ 2i
√
ε− ε2,

λ(2)(ε) =
√

1− 2ε− 2i
√
ε− ε2,

λ(3)(ε) = −
√

1− 2ε+ 2i
√
ε− ε2,

λ(4)(ε) = −
√

1− 2ε− 2i
√
ε− ε2,

|V (1)(ε)〉 = 1
2



√
1− 2ε+ 2i

√
ε− ε2

1

−i
√

1− 2ε+ 2i
√
ε− ε2

i


, |V (2)(ε)〉 = 1

2



√
1− 2ε− 2i

√
ε− ε2

1

i
√

1− 2ε− 2i
√
ε− ε2

−i


,

|V (3)(ε)〉 = 1
2



√
1− 2ε+ 2i

√
ε− ε2

−1

−i
√

1− 2ε+ 2i
√
ε− ε2

−i


, |V (4)(ε)〉 = 1

2



√
1− 2ε− 2i

√
ε− ε2

−1

i
√

1− 2ε− 2i
√
ε− ε2

i


.

Notice that looping ε around 0 permutes {λ(1)(ε), λ(2)(ε)} and {λ(3)(ε), λ(4)(ε)}. This

property is important later. Written more simply,

λ(1)(ε) = ei
√
ε +O(ε),

λ(2)(ε) = e−i
√
ε +O(ε),

λ(3)(ε) = −ei
√
ε +O(ε),

λ(4)(ε) = −e−i
√
ε +O(ε),
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|V (1)(ε)〉 = 1
2



1

1

−i

i


+O(

√
ε) = 1√

2

(
|`(1)〉 − i|r(1)〉

)
+O(

√
ε),

|V (2)(ε)〉 = 1
2



1

1

i

−i


+O(

√
ε) = 1√

2

(
|`(1)〉+ i|r(1)〉

)
+O(

√
ε),

|V (3)(ε)〉 = 1
2



1

−1

−i

−i


+O(

√
ε) = 1√

2

(
|`(−1)〉 − i|r(−1)〉

)
+O(

√
ε),

|V (4)(ε)〉 = 1
2



1

−1

i

i


+O(

√
ε) = 1√

2

(
|`(−1)〉+ i|r(−1)〉

)
+O(

√
ε).

Notice that the two eigenspaces of U0 are both two dimensional, and are spanned

differently. For example, the 1-eigenspace is spanned by {|`(1)〉, |r(1)〉} as well as by

{|V (1)(0)〉, |V (2)(0)〉}. Moreover, the space spanned by {|V (1)(ε)〉, |V (2)(ε)〉} for 0 < ε� 1

is nearly the same. Using the eigenvectors of U0, instead of the “true” eigenvectors of U

does introduce errors, but they are small (this will be proven).

20



The only reasonable initial states we have access to, under the assumption that the

target vertex, 1, is unknown, are even superpositions of the form 1√
N

∑N
j=1 |0, j〉 and

1√
N

∑N
j=1 |j, 0〉. These states are located almost completely on the Left side and are nearly

equal to |out〉 and |in〉, as their inner product reveals:

〈out|
(

1√
N

∑N
j=1 |0, j〉

)
= 1√

N(N−1)

∑N
j=2〈0, j|0, j〉 =

√
N−1
N = 1−O

(
1
N

)
This means that the initial states will always start on the Left, up to a tiny er-

ror. Setting the initial state to be (approximately) in the 1-eigenspace we find: |ψ〉 =

1√
2N

∑N
j=1 (|0, j〉+ |j, 0〉) = 1√

2
(|in〉+ |out〉) +O(

√
ε) = |`(1)〉+O(

√
ε).

Applying U repeatedly yields:
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Um|ψ〉

= Um
(
|`(1)〉+O(

√
ε)
)

= Um|`(1)〉+O(
√
ε)

= 1√
2
Um|V (1)〉+ 1√

2
Um|V (2)〉+O(

√
ε)

= 1√
2
eim
√
ε|V (1)〉+ 1√

2
e−im

√
ε|V (2)〉+O(

√
ε)

= 1
2
√
2



eim
√
ε + e−im

√
ε

eim
√
ε + e−im

√
ε

−ieim
√
ε + ie−im

√
ε

ieim
√
ε − ie−im

√
ε


+O(

√
ε)

= 1√
2



cos (m
√
ε)

cos (m
√
ε)

sin (m
√
ε)

− sin (m
√
ε)


+O(

√
ε)

So, if m = π
2
√
ε

= π
2

√
N , then to within an error of O

(
1√
N

)
the system will be on the

Right side, in either the state |0, 1〉 or |1, 0〉. A measurement at this time will complete the

search.

It is worth pointing out that if we hadn’t set φ = 0 then the “true” eigenvectors |V (k)(ε)〉

would have been almost entirely constrained to one side or the other. This is because

|V (k)(0)〉 span the same eigenspaces as the Right and Left eigenvectors of U0. If the Right

and Left sides share no common eigenvalues, then we have four distinct eigenvalues and
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four distinct eigenspaces. So, rather than being a rearrangement of the eigenvectors of

U0, as was the case above, the |V (k)(ε)〉 are merely tiny perturbations of each of them

individually.

Grover originally described his algorithm with a diffusion operator and an oracle oper-

ator. The diffusion operator is here replaced by the hub vertex, and the oracle with the

differently-phased reflections from the remaining vertices. The result is exactly the same,

and we can see that Grover’s proof of optimality is merely a statement about the nature

of the hub. That is, there’s no way to modify the hub alone to get a better speed up.

2.2 The Search Algorithm on a Star Graph

Why this algorithm works will be derived throughout the next several sections. Details

about the errors and tolerances are addressed in sections 5 and 6.

• Step 1) Find the eigenvalues and eigenvectors of the Right side.

Setting ε = 0 separates the two sides and we are free to find the eigenvalues and

vectors of U0 that correspond only to the Right side.

• Step 2) Select a target eigenvalue.

Every eigenspace on the Right side that is in contact with the hub vertex is a viable

target. For a given eigenvalue there is only one possible target eigenvector on the

Right, |r0〉.

• Step 3) Tune the Left side eigenvalues to match the target eigenvalue.
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If the reflection coefficient at the end of edges 2 through N is eiφ, the eigenvectors

on the Left are |`0〉 = |out〉±ei
φ
2 |in〉√

2
and the eigenvalues are λ = ±ei

φ
2 .

• Step 4) Initialize the system with the state |Ψ〉 = 1√
2N

∑N
j=1 (|0, j〉+ λ|j, 0〉).

It can’t be helped that this initial state overlaps the Right side on the edge between

vertex 1 and the hub, however this has very little impact on the results since it is

such a tiny part of the initial state.

• Step 5) Iterate the time step operator, U, m = bπ
√
N

2c c times. Where c =
√

2 |〈1, 0|r0〉|.

This “rotates” the initial state into the target eigenstate on the Right.

• Step 6) Measure the system.

Being on the Right side means that the probability of measuring any edge other than

those in the subgraph G or on the edge connecting G to the hub is very small.

2.3 Important Points

• An important difference between U0 and U is that U0 treats the Left and Right

sides separately and is therefore block-diagonal, whereas U transmits across the hub

with amplitude
√
ε. That is, 〈out|U|1, 0〉 ≈ 2

√
ε.

• A uniform superposition of the edge states is nearly equal (O(ε)) to some combination

of |in〉 = 1√
N−1

∑N
j=2 |j, 0〉 and |out〉 = 1√

N−1
∑N

j=2 |0, j〉. As such, any symmetric

initial state on the edges connected to the hub will be concentrated almost entirely
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on the Left side.

• This example shows that a quantum search algorithm can be seen as a “rotation”

from the Left to the Right in O(
√
N) time steps.
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3 Algebraic Functions and the Behavior of Zeros

In this section we will consider the relationship between the zeros of a polynomial and

the coefficients of that polynomial. Later these results will be applied to characteristic

polynomials. For more background on the math used in this section see [25] and [26].

Definition A “globally analytic function” is an analytic function that is defined as

every possible analytic continuation of an analytic function from a particular point in a

domain. Globally analytic functions can be many-valued.

For example, the globally analytic function f(z) =
√
z has two branches (when z 6= 0):

f (0)(reiθ) =
√
rei

θ
2 and f (1)(reiθ) =

√
rei

θ
2
+π with the branch cut (arbitrarily) taken at

θ = 0.

Just to emphasize the point that globally analytic functions can be many-valued, if

f(z) = 4
√
z, then f(16) = 2, 2i,−2,−2i, that is; f is “4-valued”. For the different branches,

f (0)(16) = 2, f (1)(16) = 2i, f (2)(16) = −2, and f (3)(16) = −2i.

Theorem 3.1. If f(z) is globally analytic in an annulus around 0, and is m-valued, then

f(z) can be expressed as a Puiseux series (a Laurent series with certain rational powers)

of the form f(z) =
∑∞

n=−∞Anz
n
m . Moreover, the m different branches of f , f (k), can

be separated by an arbitrary branch cut through the annulus and expressed as f (k)(z) =∑∞
n=−∞Anω

knz
n
m , where ω is a primitive mth root of unity, ω = ei

2π
m .

Proof The proof of this theorem is included in the appendix.
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Define P (z, ε) to be a polynomial in z and ε, written P (z, ε) =
∑d

j=0 aj(ε)z
j , where

each aj(ε) is a polynomial.

Assume that ad(0) 6= 0 and that P (z, 0) has no zeros with a multiplicity higher than 1.

That is, P (z, 0) has d independent roots: λ(1), · · · , λ(d).

Theorem 3.2. If P (z, ε) is a degree d polynomial in z, then there exists an open disk D,

containing 0, and d analytic functions, f (1), · · · , f (d), such that:

(i) P
(
f (k)(ε), ε

)
= 0, ε ∈ D

(ii) f (k)(0) = λ(k)

(iii) P (λ, ε) = 0, ε ∈ D ⇒ λ = f (k)(ε), for some k

Note that f (k) are indexed functions, and not necessarily branches of the same globally

analytic function. It is true that when P (z, ε) is not simultaneously reducible in both z

and ε the zeros are all branches of a single globally analytic function of ε, however it is not

necessary to know that here.

Proof In appendix.

Issues can crop up with the theorem above; specifically, if P (z, 0) has a repeated zero.

But before dealing with higher order roots we need a few more tools.

Theorem 3.3. If P (z, ε) is an irreducible polynomial in z and ε, then all of the double

roots of P are isolated in the ε-plane. That is, if for some value ε0, P (z, ε0) has a double

root, then there exists δ > 0 such that when 0 < |ε− ε0| < δ, P (z, ε) does not have a double
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root in z.

Proof In appendix.

Theorem 3.4. In the neighborhood of a zero of P (z, ε) of multiplicity s > 1, the zeros take

the form f (j)(ε) =
∑∞

n=−∞Anω
jnε

n
H , where H ≤ s. Specifically, the zeros are branches of

one or more Hi-valued global analytic functions, with the given Puiseux series expansion,

such that
∑
Hi = s.

Proof In appendix

Notice that the only new case that this last theorem applies to are repeated roots.

We’ve continued to assume that ad(ε) 6= 0.

The reason the “Hi’s” have been introduced is to deal with the possibility that a

multiple root may not permute all of the branches of the function. For example, it may

be the case that λ(1)(0) = λ(2)(0) = λ(3)(0) = λ(4)(0), but that looping around ε = 0 only

permutes λ(1)(ε) and λ(2)(ε), in which case H1 = 2, H2 = 1, and H3 = 1.

3.1 A Note on the Analyticity of the Characteristic Polynomial

In the section above it was assumed that the polynomial P (z, ε) is a polynomial with

respect to both z and ε. Yet a quick look at U reveals that this may not necessarily be the

case for the characteristic polynomial, since U contains entries of O(
√
ε).

However, it can be shown that for the situation being considered in this thesis C(z, ε) =
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|U(ε)− zI| is always a polynomial with respect to ε. In fact, it is affine with respect to ε.

Theorem 3.5. Assume that U is a time step matrix as described so far. That is, there is

a Left and Right side and these are connected only through a hub vertex with N edges where

the reflection and transmission coefficients are r = −1 + 2
N and t = 2

N . Then C(z, ε) =

|U− zI| is an affine polynomial of ε = 1
N , and can be written C(z, ε) = C0(z) + εf(z).

Proof The proof of this is in the appendix.

Clearly, C(z, ε) = C0(z) + εf(z) can never be factored into two polynomials in z and ε.

The roots of an irreducible polynomial (such as this) can always be expressed as a single

globally analytic function. An interesting consequence of this (not essential to this thesis)

is that while looping ε around zero may not permute all of the zeros, there is always a path

through the ε-plane which does.

For example, the zeros of the Grover graph are λ(ε) = ±
√

1− 2ε± 2i
√
ε− ε2. Looping

around ε = 0 switches the sign on the inner “±” (i.e., −2i
√
ε− ε2 ↔ 2i

√
ε− ε2), thereby

permuting the zeros in pairs. So, H1 = H2 = 2. However, a loop around ε = 1
2 switches the

sign on the outer “±”, so each branch of the function is connected to each of the others.

3.2 Important Points

• If P (z, ε) is a polynomial in both z and ε and P (λ0, 0) = 0, then the zeros are

functions of the form λ(j)(ε) =
∑∞

n=−∞An

(
ei

2π
H
j
)n
ε
n
H where H ≤ deg (λ0, P (z, 0)).

• For a star graph as described in section 2, the characteristic polynomial of the time

29



step operator is a polynomial in z and an affine polynomial in ε. That is; it takes

the form C (z, ε) = C0(z) + εf(z), where C0(z) is the characteristic polynomial of U0

and f(z) is some polynomial in z. deg(C0) > deg(f).
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4 Pairing

In the last section it was seen that the zeros, λ(k), of a (characteristic) polynomial with

coefficients that are polynomials of ε take the form

λ(k)(ε) =
∞∑

j=−∞
Ajω

jkε
j
H (12)

and these eigenvalues are grouped together into sets of size H which permute when ε

loops around zero. For any given eigenvalue of U0 there can be more than one of these sets,

and they may have different sizes. When the polynomial in question is the characteristic

polynomial of the time step operator of a quantum walk, C(z, ε) = a0(ε) + a1(ε)z + · · · +

ad−1(ε)z
d−1 + zd, then some new restrictions are brought into play.

The perturbation is assumed to be set up in such a way that for some path in the

ε-plane starting at ε = 0 U is unitary and along this path and therefore |λ(k)(ε)| = 1, ∀k.

In a star graph U is unitary for all positive integer values of N . Since ε = 1
N this path is

along the positive real axis in the ε-plane.

Theorem 4.1. The eigenvalues, λ, of the matrix for a quantum walk, U, with a char-

acteristic polynomial that is a polynomial in both λ and ε, can only take the form of

λ(ε) =
∑∞

j=0Ajε
j or λ(ε) =

∑∞
j=0(±1)jAj (

√
ε)
j
.

Proof Since U0 is unitary, limε→0 λ(ε) exists and is finite (|λ(k)(0)| = 1, for all k). There-

fore the Puiseux series for λ(k)(ε) has no negative terms. For a particular eigenvalue of U0,

λ0, with multiplicity at least H, the various branches satisfy λ(k)(ε)−λ0 =
∑∞

j=1Ajω
jkε

j
H .
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We can explore how the H branches, {λ(1)(ε), · · · , λ(H)(ε)}, separate from λ0 by looking at

the angle (phase difference) between two branches, λ(k)(ε) − λ0 and λ(j)(ε) − λ0. If ∆ is

the angle between two complex numbers, x and y, then |x||y| cos (∆) = Re(xy∗). So,

|λ(k)(ε)− λ0||λ(j)(ε)− λ0| cos (∆) = Re
(
(λ(k)(ε)− λ0)(λ(j)(ε)− λ0)∗

)
⇒ |A1ω

kε
1
H +O(ε

2
H )||A1ω

jε
1
H +O(ε

2
H )| cos (∆) = Re

(
(A1ω

kε
1
H +O(ε

2
H ))(A1ω

jε
1
H +O(ε

2
H ))∗

)
⇒
(
|A1|2|ω|k+j |ε|

2
H +O(ε

3
H )
)

cos (∆) = Re
(
|A1|2ωk(ω∗)j |ε| 2H +O(ε

3
H ))
)

⇒
(
|A1|2 +O(ε

1
H )
)

cos (∆) = Re
(
|A1|2ωk−j +O(ε

1
H ))
)

⇒ cos (∆) =
Re
(
|A1|2ωk−j+O(ε

1
H ))

)
|A1|2+O(ε

1
H )

⇒ cos (∆) = Re
(
ωk−j

)
+O(ε

1
H )

⇒ cos (∆) = cos
(
2π
H (k − j)

)
+O(ε

1
H )

⇒ ∆ = arccos
(

cos
(
2π
H (k − j)

)
+O(ε

1
H )
)

⇒ ∆ = 2π
H (k − j) +O(ε

1
H )

So, the angle between any two branches is at least 2π
H . Indeed, the H directions that the

different zeros take as they move away from λ0 are initially evenly spaced. The only effect

of ε taking different paths from zero is to rotate every (λ(k)(ε)−λ0). If there is a path that

maintains the unitarity of U(ε), then for values of ε along that path |λ(k)(ε)| = 1. But for

small values of ε the unit circle is essentially a line. Specifically, if λ(k)(ε) are restricted to

the unit circle and λ(k)(ε)−λ0 are evenly spaced, then either the angle between λ(1)(ε)−λ0

and λ(2)(ε)− λ0 must be π, or λ(ε) is single-valued. Therefore H = 1 or H = 2.

�

This theorem does not say that the roots of the characteristic polynomial have degree

at most two. Indeed, the Bolo graph example (in the appendix) has a degree 3 root at
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z = −1. This theorem is stating that whatever the degree of the root, looping around ε = 0

permutes those roots at most in pairs.

Definition Two eigenvalues are said to be “paired” when a small loop around 0 in

the ε-plane causes them to switch (H = 2). As seen above, paired eigenvalues vary on

the order of O(
√
ε), and non-paired eigenvalues vary by O(ε). In addition, the associated

eigenvectors and eigenprojections, P, are also said to be paired.

Theorem 4.2. ||P(k)(ε)−P(k)(0)|| = O(
√
ε) and |V (k)(ε)〉 = |V (k)(0)〉+O(

√
ε).

Proof The proof of this is included in the appendix.

In that proof it was shown that P(k)(ε) can be expressed as a power series in
√
ε. This

means that since we can define |V (k)〉 using these projections, not only do we find that

the eigenvectors can likewise be written as power series in
√
ε, but we automatically gain

normalization: |〈V (k)|V (k)〉| = 1,∀ε. What follows barely deserves to be a theorem, but it

needs to be emphasized.

Theorem 4.3. If the vector |W 〉 is some combination of eigenvectors of U, |W 〉 =∑
j aj |V (j)〉 where the aj are independent of ε, then |W 〉 = |W0〉 + O(

√
ε), where |W0〉 ≡

limε→0 |W 〉.

Proof Since all eigenprojections can be written as power series in
√
ε, eigenvectors with

distinct eigenvalues can as well and it follows that a linear combination of such eigenvectors
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can also be written as a power series in
√
ε. |W 〉 =

∑∞
j=0(
√
ε)j |Wj〉 = |W0〉+O(

√
ε).

�

An extremely useful consequence of these theorems is that eigenvectors of U0, which

are easy to find, can be used as approximations of the exact eigenvectors of U, which are

difficult to find, are variable, and needlessly complex.

Theorem 4.4. U|V (k)(ε)〉 = λ(k)(ε)|V (k)(ε)〉 for all k. Define S = span{|V (1)(0)〉, · · · , |V (j)(0)〉}

to be some subset of eigenvectors of U0, and PS as the projection operator onto S.

If |u〉 ∈ S, then ∀m

i) PS⊥Um
0 |u〉 = 0

ii) PS⊥Um|u〉 = O(
√
ε)

That is, if |u〉 ∈ S, then Um
0 |u〉 is also in S, and Um|u〉 is almost entirely in S.

Proof The proof of this theorem is trivial, but takes up a lot of space. It can be found

in the appendix.

The essential idea behind this theorem is that if an initial state starts in an eigen-

state or collection of eigenstates of U0, then it will approximately stay there under ar-

bitrarily many applications of U. This means that, when setting up a search, only one

eigenspace/eigenvalue of U0 needs to be considered. This keeps the situation much simpler.
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4.1 Necessary and Sufficient Conditions for Pairing

In this section it will be shown that the eigenvectors of U0 can be disjointly divided up

into “constant eigenvectors” and “active eigenvectors”.

Theorem 4.5 (the three-case theorem). If λ0 is a root of C0(z) with multiplicity s, then

one and only one of the following cases applies to the “λ0 family” of roots of C(z, ε),

{λ(1)(ε), · · · , λ(s)(ε)}, where λ(k)(0) = λ0, ∀k.

i) λ(k)(ε) = λ0, ∀k. That is, all of the roots are constant.

ii) λ(k)(ε) = λ0, for all but one value of k. This root takes the form λ(k)(ε) = λ0e
ibε +

O(ε2).

iii) λ(k)(ε) = λ0, for all but two values of k. These two are paired and take the form

λ± = λ0e
±ic
√
ε +O(ε).

Proof From theorem 3.5, the characteristic equation can be written C(z, ε) = C0(z) +

εf(z). Making the substitution z = λ0 + δ this becomes 0 = C(λ0 + δ, ε) =
∑

j=s ajδ
j +

ε
∑

j=t bjδ
j , where t = deg(λ0, f). If s ≥ t, then

0 =
∑

j=s ajδ
j + ε

∑
j=t bjδ

j

⇒ ε
∑

j=t bjδ
j = −

∑
j=s ajδ

j

⇒ ε
(
btδ

t +O(δt+1)
)

= −asδs +O(δs+1)

⇒ ε = −as
bt
δs−t +O(δs−t+1)

⇒ δ = O
(
ε

1
s−t
)

However, by theorem 4.1 we know that unitarity implies s − t ≤ 2. Therefore, if λ0 is

35



a zero of C0(z) with multiplicity s, then it must also be a zero of f(z) with a multiplicity

of at least s− 2. This leads to three cases:

i) If deg(λ0, f) ≥ s, then 0 = C(z, ε) = (z − λ0)s(g(z) + εh(z)), where g(λ0) 6= 0. Here

the entire λ0 family is identically equal to λ0, and has no ε dependence.

ii) If deg(λ0, f) = s − 1, then 0 = C(z, ε) = (z − λ0)s−1((z − λ0)g(z) + εh(z)), where

g(λ0), h(λ0) 6= 0. In this case s− 1 of the members of the λ0 family are constant, and the

last root is a solution of 0 = (z − λ0)g(z) + εh(z) = (g(λ0)δ + O(δ2)) + ε(h(λ0) + O(δ)).

But this implies that δ = O(ε).

iii) If deg(λ0, f) = s− 2, then 0 = C(z, ε) = (z − λ0)s−2((z − λ0)2g(z) + εh(z)), where

g(λ0), h(λ0) 6= 0. Therefore, all but two members of the λ0 family are constant, and the

remaining two are of the form λ0 + O(
√
ε). But by theorem 3.4, and the definition of

pairing, an eigenvalue of this form can only show up with another eigenvalue to which it is

paired. It follows that, since there are no other possible eigenvalues to pair with, the two

non-constant members of the λ0 family must be paired with each other.

�

Since there is only one paired set of eigenvectors for a given λ0, we can label them |V +〉

and |V −〉, where U|V ±〉 = λ0e
±ic
√
ε+O(ε)|V ±〉 = λ0e

±ic
√
ε|V ±〉+O(ε).

In the next few theorems the following properties will be important.

Theorem 4.6. Assume that |V 〉 ≡ |V0〉 +
√
ε|V1〉 + O(ε), |W 〉 ≡ |W0〉 +

√
ε|W1〉 + O(ε),

〈V |V 〉 = 〈W |W 〉 = 1 ∀ε, and 〈V |W 〉 = 0 ∀ε, then
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i) 〈V0|V0〉 = 1

ii) 〈V0|V1〉+ 〈V1|V0〉 = 0

iii) 〈V0|W1〉+ 〈V1|W0〉 = 0

Proof These three results are immediate, upon inspection.

�

Theorem 4.7. Paired eigenvectors “straddle the hub”. That is, if |V 〉 is a paired eigen-

vector, then |V0〉 has both a Left and Right side component.

Proof Paired eigenvectors have eigenvalues that always take the form λ = λ0e
ic
√
ε+O(ε).

〈V |U|V 〉 = λ〈V |V 〉 = λ

⇒ (〈V0|+
√
ε〈V1|) (U0 +

√
εU1) (|V0〉+

√
ε|V1〉) +O(ε) = λ0 + icλ0

√
ε+O(ε)

⇒ 〈V0|U0|V0〉+
√
ε (〈V1|U0|V0〉+ 〈V0|U0|V1〉+ 〈V0|U1|V0〉) = λ0 + icλ0

√
ε

⇒ λ0 +
√
ε (λ0〈V1|V0〉+ λ0〈V0|V1〉+ 〈V0|U1|V0〉) = λ0 + icλ0

√
ε

⇒
√
ε (λ0 [〈V1|V0〉+ 〈V0|V1〉] + 〈V0|U1|V0〉) = icλ0

√
ε

⇒ λ0 [0] + 〈V0|U1|V0〉 = icλ0

⇒ 〈V0|U1|V0〉 = icλ0

Since U1, the O (
√
ε) terms of U, is only involved in the transmission between the Left

and Right sides, in order for 〈V0|U1|V0〉 to be non-zero, |V0〉 must show up on both sides.

That is; if |V0〉 was entirely supported on the Right side, then U1|V0〉 would be entirely

supported on the Left side.

�
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Theorem 4.8. Assume that the Right side λ0-eigenspace of U0 is D dimensional.

1) If the λ0-eigenspace of U0 is bound in G, then the λ0-eigenspace of U is D dimen-

sional and all of the associated eigenvectors are constant. This is case i) of the Three Case

Theorem.

2) If the λ0-eigenspace of U0 is in contact with the hub vertex, then the Right sided

λ0-eigenspace of U is D-1 dimensional and the D-1 associated eigenvectors are constant

and bound in G. This leaves one eigenvector which is non-constant in ε, and is in contact

with the hub vertex. This is either case ii) or case iii) of the Three Case Theorem.

Proof The first result is trivial. If an eigenvector is bound in G, then varying ε (which

only affects reflection and transmission across the hub vertex) can’t have any impact on it.

So, for eigenvectors bound in G, U|V 〉 = U0|V 〉 = λ0|V 〉. The contra-positive is likewise

clear; if an eigenvector is non-constant, then it must be in contact with the hub vertex.

The second result is far more hard won, and is included in the appendix.

In the proof of the above theorem (in the appendix), the Left side was given a particular

form; it consisted of the states |in〉 and |out〉, with U|out〉 = eiφ|in〉. It may seem strange

that a particular form for the Left side can be used to say such general things about the

Right side. But keep in mind that what’s been shown is that a certain number of the Right

side λ0 eigenvectors are bound in G. Once we know that an eigenvector on the Right is

definitely not in contact with the hub vertex, then it doesn’t matter what the Left side is

doing.
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This last theorem can be stated far more succinctly as,

Theorem 4.9. Excluding a special case, a Right side eigenvector is constant and has a

constant eigenvalue if and only if it is not in contact with the hub vertex.

That special case is λ20 + eiφ = 0. When this happens the eigenvectors on each side are

“balanced”, and there is no net flow of probability across the hub. In the Grover graph

example, this happens when eiφ = −1, which means that all of the edges become identical

to the marked edge. As a result, the quantum graph can be collapsed to just two states:

|A〉 = 1√
N

∑N
j=1 |0, j〉 and |B〉 = 1√

N

∑N
j=1 |j, 0〉. Without two sides, there is no net flow. In

general, even though there may not be a further collapsing of the graph, when λ20 + eiφ = 0

there is no net flow of probability across the hub.

Definition This unique non-constant member of the λ0 family of eigenvectors, |w〉,

depends on the Left side. But while |w〉 may depend on φ and ε, |w0〉 ≡ limε→0 |w〉 does

not. It is unique so long as λ20 6= eiφ (so long as there is no pairing). |w0〉 is precisely the

λ0 eigenvector of U0 lost when moving from the ε = 0 case to the ε 6= 0 case. This |w0〉 is a

uniquely defined Right side λ0 eigenvector of U0, and it is called the “Right side active λ0

eigenvector”. An essentially identical proof demonstrates the existence of “Left side active

λ0 eigenvectors”.

Definition All of the other λ0 eigenvectors are bound in G, and so are called “bound

λ0 eigenvectors”. Bound eigenvectors are independent of ε, or any structure on the far side
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of the hub. If the λ0-eigenspace of U0 is D-dimensional overall, then the space of bound

λ0 eigenvectors of U will be D, D-1, or D-2 dimensional depending on whether the Left

and Right sides have active eigenvectors.

Definition The “active subspace” is the span of all of the active eigenvectors of U0,

for all eigenvalues. Since it is the compliment of the span of all of the bound eigenvectors,

and each non-constant eigenvector is perpendicular to every bound eigenvector, every non-

constant eigenvector is contained in the active subspace.

Theorem 4.10 (The fundamental pairing theorem). The λ0-eigenspace is in contact with

both the Left and Right sides of the hub vertex if and only if there exists paired vectors |V ±〉

with eigenvalues of the form λ0e
±ic
√
ε +O(ε).

Proof The proof of this is somewhat involved and so is included in the appendix. Among

the useful results of the Fundamental Pairing Theorem is the fact that U can be expressed

in the following form:

U

 |`0〉
|r0〉

 = λ0

 cos(c
√
ε) i sin(c

√
ε)

i sin(c
√
ε) cos(c

√
ε)


 |`0〉
|r0〉

+O(ε) (13)

And, with correctly chosen complex phases, the paired eigenvectors take the form:

|V ±〉 =
|`0〉 ± |r0〉√

2
+O

(√
ε
)

(14)
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So, on each side of the hub vertex we have a unique active eigenvector and paired

eigenvectors are just combinations of the active eigenvectors from both sides, up to an

error of O(
√
ε). This makes the situation pretty simple, and we can ignore the bound

states entirely.

4.2 The Efficiency of Searches Using Paired Eigenvectors

In order to execute a search in O
(√

N
)

it is necessary to use paired eigenspaces, since this

is where changes of O(
√
ε) can take place. The question addressed in this section is: given

an initial state on one side of the hub vertex, how much of it can be transferred to the

other? That is, what is the lower bound on the probability of a successful measurement

under ideal conditions? Happily, the answer is 1− |O(
√
ε)|.

In the course of proving the fundamental pairing theorem an important additional fact

was also proven, and is worth noting separately.

Theorem 4.11. Paired eigenvectors are always evenly divided across the hub vertex. That

is, if P is a projection onto either the Left or Right side and |V ±〉 is a paired eigenvector,

then |〈V ±0 |P|V
±
0 〉| = 1

2 .

Proof As established in the fundamental pairing theorem, |V ±0 〉 = 1√
2

(|`0〉 ± |r0〉). For

the Left side projector,
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|〈V ±0 |PL|V ±0 〉|

= 1
2 | (〈`0| ± 〈r0|) PL (|`0〉 ± |r0〉) |

= 1
2 | (〈`0| ± 〈r0|) |`0〉|

= 1
2 |〈`0|`0〉+ 0|

= 1
2

The same holds for the Right side projector.

�

Theorem 4.12. If the paired eigenvalues are of the form λ± = λ0e
±ic
√
ε + O(ε), then

c = |〈`0|U1|r0〉| = 2 |〈out|`0〉| |〈1, 0|r0〉|.

Proof In the last subsection it was established that

U

 |`0〉
|r0〉

 = λ0

 cos(c
√
ε) i sin(c

√
ε)

i sin(c
√
ε) cos(c

√
ε)


 |`0〉
|r0〉

+O(ε).

From which it follows that,
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〈`0|U|r0〉

= 〈`0|U0|r0〉+ 〈`0|U1|r0〉
√
ε+O(ε)

= λ0〈`0|r0〉+ 〈`0|U1|r0〉
√
ε+O(ε)

= 0 + 〈`0|U1|r0〉
√
ε+O(ε)

= 〈`0|U1|r0〉
√
ε+O(ε)

⇒ i λ0 sin(c
√
ε) +O(ε) = 〈`0|U1|r0〉

√
ε+O(ε)

⇒ i λ0c
√
ε+O(ε) = 〈`0|U1|r0〉

√
ε+O(ε)

⇒ c = −i λ∗0〈`0|U1|r0〉
Because 1 = |λ±| we can infer that c is real, and we can therefore use the somewhat

simpler expression c = |〈`0|U1|r0〉|. Finally,

c = |〈`0|U1|r0〉|

= |〈`0|out〉〈out|U1|1, 0〉〈1, 0|r0〉|

= 2 |〈`0|out〉| |〈1, 0|r0〉|

= 2 |〈out|`0〉| |〈1, 0|r0〉|

�

Theorem 4.13. Um, where m =
⌊

π
√
N

2|〈r0|U1|`0〉|

⌋
, exchanges the Left and Right λ0 active

eigenvectors, |`0〉 and |r0〉, almost completely (to within O(
√
ε)).

Proof To show that U interchanges |`0〉 and |r0〉 it suffices to show that |〈r0|Um|`0〉| =
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1 +O(
√
ε). Note that m =

⌊
π

2c
√
ε

⌋
= π

2c
√
ε

+O(1), since the floor function rounds down by

at most 1.

|〈r0|Um|`0〉|

= 1
2

∣∣(〈V +
0 | − 〈V

−
0 |
)
Um

(
|V +

0 〉+ |V −0 〉
)∣∣

= 1
2 |(〈V

+| − 〈V −|) Um (|V +〉+ |V −〉)|+O(
√
ε)

= 1
2

∣∣∣(〈V +| − 〈V −|)
(

(λ0e
ic
√
ε+O(ε))m|V +〉+ (λ0e

−ic
√
ε+O(ε))m|V −〉

)∣∣∣+O(
√
ε)

= 1
2 |λ

m
0 |
∣∣∣(〈V +| − 〈V −|)

(
eic
√
ε+O(ε))m|V +〉+ (e−ic

√
ε+O(ε))m|V −〉

)∣∣∣+O(
√
ε)

= 1
2

∣∣∣∣(eic√ε+O(ε)
) π

2c
√
ε
+O(1)

−
(
e−ic

√
ε+O(ε)

) π
2c
√
ε
+O(1)

∣∣∣∣+O(
√
ε)

= 1
2

∣∣∣eiπ2 +O(
√
ε) − e−i

π
2
+O(
√
ε)
∣∣∣+O(

√
ε)

= 1
2

∣∣∣eiπ2 − e−iπ2 +O(
√
ε)
∣∣∣+O(

√
ε)

=
∣∣sin (π2 )∣∣+O(

√
ε)

= 1 +O(
√
ε)

�

So, when m =
⌊

π
√
N

2|〈r0|U1|`0〉|

⌋
, |〈r0|Um|`0〉| = 1 +O(

√
ε). This means that searches with

|`0〉 as the initial state are almost guaranteed to succeed, and all of the work that goes into

setting up the search: choosing an initial state, knowing what to look for afterward, and

figuring out how many times to iterate U, has now been pushed back to finding the active

eigenvectors |`0〉 and |r0〉.

Even this is relatively straightforward. |r0〉 can be found be looking for the one eigen-
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vector of PRU0 with eigenvalue λ0 that is in contact with the hub vertex. This can be

done in a few ways. For example, by removing each bound λ0 eigenvector, or by comparing

the λ0-eigenspaces of U0 and a quantum graph with the hub vertex’s behavior replaced

with something simple, like U|1, 0〉 = 0. Trivially, if the Right side λ0-eigenspace is one

dimensional and in contact with the hub, then the λ0 eigenvector is the active eigenvector.

The value of N or ε, and the entire Left side, are unimportant to determining the active

eigenvectors.

4.3 Best Choice Selection and the Best Time Bound

The bigger c is the faster a search will proceed. So, when the eigenvalue can be selected

(when the Left side is such that it can be tuned to any given eigenvalue), the best choice is

that eigenvalue with the largest value of c. The question remains: how good will the best

choice be?

The specificity of the star graph described in section 2 allows us to be more precise

about the value of c. Regardless of the value of φ, |〈out|`0〉| = 1√
2
. Therefore, c =

2|〈out|`0〉| |〈1, 0|r0〉| =
√

2|〈1, 0|r0〉|.

So for a star graph, 0 ≤ c ≤
√

2. Since m =
⌊
π
2c

√
N
⌋
, not being able to bound c from

below means not being able to bound m from above. While we can’t bound c from below

in general, we find that we can bound the largest value from below.

Define d to be the number of Right side active eigenvectors, denoted |r(j)0 〉 for j =

1, · · · , d. These eigenvectors have eigenvalues λ0e
ic(j)
√
ε. While there is no lower bound for
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all of these, we can construct a lower bound for at least some of them.

Theorem 4.14. For Left side eigenvectors of the form |`0〉 = 1√
2

(
|out〉+ ei

φ
2 |in〉

)
, if d

is the number of Right side active eigenvectors, then
∑d

j=1

(
c(j)
)2

= 2 and there exists at

least one j such that c(j) ≥
√

2
d .

Proof |1, 0〉 is adjacent to the hub vertex and therefore |1, 0〉 is entirely contained

in the active subspace. It follows that 1 =
∑d

j=1

∣∣∣〈1, 0|r(j)0 〉
∣∣∣2 = 1

2

∑d
j=1

(
c(j)
)2

. Since

E
[(
c(j)
)2]

= 2
d , we know that there is at least one j such that

(
c(j)
)2 ≥ 2

d , which implies

that c(j) ≥
√

2
d .

�

Definition The last theorem shows that there is at least one eigenvalue such that

m ≤ π
2
√
2

√
dN . This is the “best time bound” on the star graph. If the eigenvalue with

the highest value of c is used, then the search will require this many time steps at most.

best time bound =
π
√
dN

2
√

2
≤
π
√

(|G|+ 2)N

2
√

2
(15)

Where |G| is the number of states in G. Examples can be constructed where there is

an arbitrarily small value of c(j) =
√

2 |〈1, 0|r0〉| for some values of j, but not for all. So

long as there is a bound on the size of G, there is at least one eigenvalue where c(j) can

be bound from below, and the corresponding number of required time steps is bound from

above.
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4.4 Important Points

For a star graph, with ε = 1
N :

• For a given eigenspace of U0 on either side, there is a unique vector called the

“active eigenvector” that is dependent on ε and is in contact with the hub. All other

eigenvectors in the same eigenspace are bound (not in contact with the hub) and are

constant.

• The restriction to the unit circle requires that the roots of the characteristic polyno-

mial take the form λ(ε) =
∑∞

j=0Ajε
j or λ±(ε) =

∑∞
j=0(±1)jAj (

√
ε)
j
. In the latter

case the roots are said to be “paired”.

• There is a pairing if and only if the Right and Left side both have an active eigenvector

with the same eigenvalue. In the case that the eigenvalues of either side of the graph

can be controlled, then a matching eigenvalue needs to be “dialed in”.

• The eigenvalues and eigenvectors of U vary from those of U0 by O(
√
ε). There

might have been issues when an eigenspace of U0 is degenerate, but we can uniquely

specify eigenvectors of U0 in these degenerate spaces by taking the limit of the non-

degenerate eigenvectors of U as ε→ 0.

• When there is no pairing these “constructed by limit” eigenvectors of U0 are the

active eigenvectors. In the case that there is a pairing we find that the paired eigen-

vectors, |V ±〉, of U are equal to a very specific combination of the Right and Left
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active eigenvectors: 1√
2

(|`0〉 ± |r0〉) +O(
√
ε).

• Paired eigenvalues can be expressed as λ± = λ0e
±ic
√
ε+O(ε), where c = |〈`0|U1|r0〉| =

limε→0
1√
ε
|〈`0|U|r0〉|.

• The optimal number of time steps for a search is m = b π2c
√
Nc.

• For |`0〉 = |out〉 + ei
φ
2 |in〉, we find that there is always a value of φ such that the

paired eigenvalues produced will have c >
√

2
d , where d is the number of Right side

active eigenvectors. For this value of c, m < π
2

√
dN
2 .

• After m time steps the probability of the state being either in G or on the edge

between G and the hub is 1−O(
√
ε).
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5 Tolerances

For any number of reasons the Left and Right eigenvalues may not exactly match. However,

the pairing doesn’t break immediately, but instead fades away quickly as the disagreement

between the eigenvalues increases. The eigenvalues don’t have to be exactly equal in order

for a O(
√
N) search, but they do have to be nearly equal by an amount dictated by ε.

This section will make heavy use of the math introduced in section 3.

5.1 Grover Graph example revisited

This is exactly the same situation previously seen in section 2.1, but now we are allowing

eiφ to take values other than 1. The advantage of the Grover graph is that it is simple

enough that it is exactly solvable, even with this generalization.

The characteristic polynomial is C(z) = z4 − (1− 2ε)(1 + eiφ)z2 + eiφ.

The four eigenvalues, expressed as one global function, is

λ = ±

√
1
2(1− 2ε)(eiφ + 1)±

√(
eiφ−1

2

)2
− (eiφ + 1)2(ε− ε2).

Where the ±’s are independent. In the original example, φ = 0, so
(
eiφ−1

2

)2
= 0 and

looping ε around zero permutes pairs of eigenvalues. When φ = 0, then to lowest order

λ = ±1± i
√
ε+O (ε) = ±e±i

√
ε +O (ε).

When φ 6= 0 the characteristic polynomial no longer has a double zero when ε = 0. We

can still expand around ε = 0, but we find that the power series is in ε, not
√
ε.
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λ =


±ei

φ
2

(
1 + i cot

(
φ
2

)
ε
)

+O
(
ε2
)

±
(

1− i cot
(
φ
2

)
ε
)

+O
(
ε2
) =


±ei

φ
2 ei cot(

φ
2 )ε +O

(
ε2
)

±e−i cot(
φ
2 )ε +O

(
ε2
) (16)

Clearly the pairing has been lost. However, the double zero required for pairing hasn’t

vanished, merely moved. This new location is ε0. To find it we set the discriminant equal

to zero and solve for ε. In this particular case the discriminant is exactly what’s found

under the inner radical, D = (eiφ− 1)2− 4(eiφ + 1)2ε+ 4(eiφ + 1)2ε2. We find immediately

that ε0 = 1
2 ±

1
eiφ+1

ei
φ
2 = 1

2 ±
1

2 cos(φ2 )
. We’re interested in the zero that corresponds to

ε0|φ=0 = 0, and find that ε0 = 1
2 −

1

2 cos(φ2 )
= − 1

16φ
2 + O(φ4). Expanding λ as a power

series in
√
ε− ε0 =

√
ε− 1

2 + 1

2 cos(φ2 )
, which we find can be done, the eigenvalues can now

be written,

λ = ±ei
φ
4 ± iei

φ
4

√
cos

(
φ

2

)√
ε− ε0+O(ε−ε0) = ±ei

φ
4 e±i

√
ε−ε0 +O(φ2

√
ε− ε0, ε−ε0) (17)

Notice that if |ε| � |ε0|, then the quadratic behavior is recovered. This will be discussed

in substantially more detail below.

There’s something subtle that happens with the eigenvectors here as well. When φ = 0,

all four of the eigenvectors of U are evenly divided between the Left and Right sides, to

within O (
√
ε). That is, U has four eigenvectors and when φ = 0 the limit of all of them,

as ε→ 0, are evenly divided between the two sides since all four are paired.

When φ 6= 0, U0 has four distinct eigenvalues: {1, ei
φ
2 ,−1,−ei

φ
2 }. Therefore, the four
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eigenvectors of U, in the limit as ε → 0, converge to two couples of vectors. Two on the

Left for λ0 = ei
φ
2 ,−ei

φ
2 , and two on the Right for λ0 = 1,−1.

Clearly there is a dramatic difference between these limits. This is a “twisting” of the

eigenvectors of U that occurs around a double zero. A careful reading of theorem 4.2

reveals that it says that eigenvectors are continuous when they have distinct eigenvalues.

When an eigenvalue is degenerate this “continuity of eigenvectors” becomes a “continuity

of eigenspaces”. There are two degenerate eigenspaces when ε = 1
2 −

1

2 cos(φ2 )
(when φ = 0

these are the λ = ±1 eigenspaces of the original graph). Picking either, the degenerate

space turns into two paired eigenvectors as ε moves away from this point, and it turns into

two non-paired and single sided eigenvectors as φ moves away from this point.

From either direction the two eigenvectors of U converge to the same degenerate

eigenspace. The fact that the vectors they converge to are different is unimportant.

5.2 Altering the Graph

We know that eigenvalues can pair, and that their values vary on the order of
√
ε = 1√

N
,

when U0 has an identical eigenvalue on both the Left and Right sides. However, we can

hope that there should be some leeway, and that there will be pairing for nearly equal

eigenvalues. The concern here is that changing the graph will turn a double root of C(z, 0)

into a closely-spaced pair of distinct roots of C(z, 0). Since pairing and quadratic speed

searches depend on the existence of double roots, these may be lost along with the double

root.
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Define a new parameter, ξ, which describes a change in the graph, such as a change in

the reflection and transmission coefficients of some of the vertices. Further, define ξ such

that C(z, ε, ξ) is a polynomial in all of its arguments, and so that C(z, 0, 0) has a double

root in z. ξ = eiφ − 1 ≈ iφ, from section 5.1, is the motivating example.

Theorem 5.1. If U has entries that are analytic functions of a given variable, ξ, then the

eigenvectors of U, and by extension the eigenvalues, vary by O(ξ).

Proof Using the same argument seen in the proof of theorem 4.2 (which is in the

appendix) we can show that the resolvent, R(ζ, ε, ξ) = (U− ζI)−1, can be expressed as

a power series in ζ,
√
ε, and ξ. Since R(ζ, ε, ξ) is a power series in ξ, it follows that the

eigenprojections, P(k)(ε, ξ) = − 1
2πi

∮
λ(k) R(ζ, ε, ξ)dζ, and the eigenvectors, |V (k)〉, are also

expressible as power series in ξ.

Because each eigenvector can be written as |V 〉 = |V0〉 + ξ|V1〉 + ξ2|V2〉 + · · ·, and

because by definition U = U0 + ξU1 + ξ2U2 + · · · it follows that the eigenvalues cannot

have fractional exponents in ξ.

U|V 〉 = λ|V 〉

⇒ (U0 +O(ξ))(|V0〉+O(ξ)) = (λ0 +O(ξs))(|V0〉+O(ξ))

⇒ U0|V0〉+O(ξ) = λ0|V0〉+O(ξs) +O(ξ)

⇒ O(ξ) = O(ξs) +O(ξ)

⇒ s ≥ 1

�
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Notice that this theorem does not rule out ordinary pairing of O(
√
ε), since U has

entries of the form 2
√
ε− ε2 = 2

√
ε+O

(
ε

3
2

)
.

ξ has been defined so that C(z, 0, 0) has a double root. By applying the arguments of

section 3 to isolated roots of C(z, ε, ξ) we find that those roots, λ(k)(ε, ξ), are analytic with

respect to both ε and ξ.

Theorem 5.2. Changing ξ causes the location of double-zeros to drift. That is, a new

value of ε that depends on ξ, labeled ε0, may be found such that C(z, ε0(ξ), ξ) has a double

root in z, and ε0(ξ) is a continuous function of ξ.

Proof Consider the discriminant of C, defined as D =
∏
j>k(λ

(j) − λ(k))2, where {λ(k)}

are the roots of C in the variable z. The well-known and relevant properties of D(ε, ξ)

are 1) D(ε, ξ) = 0 if and only if C(z, ε, ξ) has a double root in z, and 2) if C(z, ε, ξ) is a

polynomial in its arguments, then D(ε, ξ) is also a polynomial in its arguments.

Because C(z, 0, 0) has a double root, we know that D(0, 0) = 0. Using the same trick

that was used to describe the behavior of λ with respect to ε (theorem 3.2), we can describe

the new location of the double root in ε space with respect to ξ as ε0(ξ) = 1
2πi

∮
t∂tD(t,ξ)D(t,ξ) dt =∑

j bj(
s
√
ξ)j where s is less than or equal to the multiplicity of the root in D(ε, ξ) in the

variable ε. The important thing to notice here is that ε0(ξ) is continuous with respect to

ξ.

�

Note that since we’re assuming that C(z, 0, 0) has a double root, ε0(0) = 0.
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As shown in thm. 3.4, the only time that the Puiseux series of λ(k)(ε) can have non-

integer powers is when the expansion is taken about the location in the ε-plane of a double

root of C(z, ε). With the introduction of ξ, as shown in the last theorem, the location

of the double root is a function, ε0(ξ). In order for the Puiseux series of λ(k)(ε) to have

half-integer powers in ε it must be expanded about ε0 and so it takes the form λ(k)(ε, ξ) =∑∞
n=0 an(ξ)

(√
ε− ε0(ξ)

)n
.

There are no new issues with expanding around ε = ε0 as opposed to ε = 0, and the

above series can certainly be constructed.

5.3 Nearly-Paired Eigenvalues

Assume that the graph is altered in the manner described in the last subsection. Define the

Left and Right eigenvalues when ε = 0 as λ` and λr respectively. These are both analytic

functions of ξ, and thus the phase difference between them can also be described as an

analytic function of ξ. Define this phase difference as δ.

eiδ = λ`λ
∗
r (18)

So long as λ`λ
∗
r is invertible as a function of ξ, we can express ξ as a power series in δ

and δ ∝ ξ + O(ξ2). This is a fairly reasonable assumption. In the Grover Graph example

provided at the beginning of this section δ = φ
2 .

So, we can reasonably assume that U, the eigenvectors, and the eigenvalues are all
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analytic functions of δ = λ`λ
∗
r . In addition the point in the ε-plane about which the

eigenvalues permute, ε0, is a continuous function of δ.

We can now write λ as a power series in δ and
√
ε− ε0.

λ± =
∞∑
j=0

(±1)jaj(δ)
(√

ε− ε0(δ)
)j

(19)

Since ex is an analytic function, we can express this in a somewhat more convenient

form:

λ± = e
i
∑∞
j=0(±1)jbj(δ)

(√
ε−ε0(δ)

)j
(20)

Already we can make a few observations. Since these eigenvalues must have modulus

1 over a range of values of ε and δ, it follows that bj(δ) is real for all j. This is important

for the following proof.

Theorem 5.3. If the Left and Right eigenvalues have a phase difference of δ, then the

location of the double root, ε0, is given by ε0 = −
(
δ
2c

)2
+O

(
δ4
)
.

Proof Since λ is a power series is
√
ε and δ, it follows that

λ(0, δ) = eib0(δ)+ib1(δ)
√
−ε0(δ)+ib2(δ)(−ε0(δ))+··· is a power series in δ. Therefore, either

ε0(δ) is a power series in δ2, or all of the odd terms (b1, b3, . . .) are zero. However this can’t

be the case, since b1(0) = c (this is the same c used throughout the rest of this thesis). So,

ε0 is a power series in δ2.

From the definition of δ, eiδ = λ`λ
∗
r , we find that:
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eiδ = λ`λ
∗
r

=

[
ei
∑∞
j=0 bj(δ)(

√
−ε0)

j
] [
ei
∑∞
j=0(−1)jbj(δ)(

√
−ε0)

j
]∗

=

[
ei
∑∞
j=0 bj(δ)(

√
−ε0)

j
] [
e−i

∑∞
j=0(−1)jbj(δ)(

√
−ε0)

j
]

= ei
∑∞
j=0(1−(−1)j)bj(δ)(

√
−ε0)

j

⇒ δ =
∑∞

j=0

(
1− (−1)j

)
bj(δ) (

√
−ε0)j

= 2b1(δ)
√
−ε0 + 2b3(δ) (

√
−ε0)3 + · · ·

= 2b1(δ)
√
−ε0 +O

(
δ3
)

= 2 (b1(0) +O(δ))
√
−ε0 +O

(
δ3
)

= 2c
√
−ε0 +O

(
δ2
)

⇒ 2c
√
−ε0 = δ +O

(
δ2
)

⇒ ε0 = −
(
δ
2c

)2
+O

(
δ3
)

Finally, since ε0 is a power series in δ2, ε0 = −
(
δ
2c

)2
+O

(
δ4
)
.

�

Notice also that
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λ`λr

=

(
e
i
∑∞
j=0 bj(δ)

(√
0−ε0(δ)

)j)(
e
i
∑∞
j=0(−1)jbj(δ)

(√
0−ε0(δ)

)j)
= ei2

∑∞
j=0 b2j(δ)(−ε0(δ))

j

= ei2b0(δ)ei2
∑∞
j=1 b2j(δ)(−ε0(δ))

j

= ei2b0(δ)eO(δ2)

= ei2b0(δ) +O
(
δ2
)

⇒ eib0(δ) =
√
λ`λr +O

(
δ2
)

We can now write,

λ± = e
i
∑∞
j=0(±1)jbj(δ)

(√
ε−ε0(δ)

)j

= eib0(δ)e
±ib1(δ)

√
ε−ε0(δ)+i

∑∞
j=2(−1)jkbj(δ)

(√
ε−ε0(δ)

)j

=
(√
λ`λr +O

(
δ2
))
e±i(c+O(δ))

√
ε−ε0(δ)+O(ε−ε0)

=
√
λ`λre

±ic
√
ε−ε0(δ)+O

(
δ
√
ε−ε0(δ),ε−ε0

)
+O

(
δ2
)

=
√
λ`λre

±ic
√
ε−ε0 +O

(
δ2, δ
√
ε− ε0, ε− ε0

)
So, the double zeros of the characteristic polynomial and the pairing of the eigenvectors

and eigenvalues aren’t lost. The new double zero is halfway between λ` and λr. The pairing

still exists, however it is in terms of

√
ε+

(
δ
2c

)2
+O (δ4), not

√
ε.
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5.4 Nearly-Paired Eigenvectors

Eigenvalues and eigenspaces vary by O (δ,
√
ε). This is an important distinction to make.

The fundamental pairing theorem is essentially the statement that when δ = 0, then

|V ±0 〉 ≡ limε→0 |V ±〉 = 1√
2

(|`0〉 ± |r0〉). However, when δ 6= 0 we find that |V ±0 〉 must each

converge independently to |`0〉 and |r0〉. |V ±0 〉 is defined as a limit of eigenvectors of U,

and must itself be an eigenvector of U0. But if λ` 6= λr, then no combination of the Left

and Right active eigenvectors can be eigenvectors of U0.

Therefore, limδ,ε→0 |V ±(δ, ε)〉 doesn’t exist. Clearly, the “angle” between |V ±(δ, ε)〉

and the active eigenvectors, |`0〉 and |r0〉, is somehow dependent on δ and possibly some

relationship between δ and ε.

With some foresight, define:

|V +(δ, ε)〉 = cos (ω) |`0〉+ sin (ω) |r0〉+O(δ,
√
ε) (21)

|V −(δ, ε)〉 = − sin (ω) |`0〉+ cos (ω) |r0〉+O(δ,
√
ε) (22)

That is, we can define ω using cos(ω) ≡ 〈`0|V +(δ, ε)〉+O(δ,
√
ε).

Theorem 5.4. The angle between the paired eigenvectors and the active eigenvectors, ω,

is to lowest order a function of δ2

4c2ε
.

Proof The proof of this is included in the appendix.
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This relationship (as derived in the proof of the above theorem) is

sin2(2ω) =

(
1 +

δ2

4c2ε
+O

(
δ3

ε
, δ, ε

))−1
(23)

In the first version of this proof, when dealing with exactly-matched eigenvalues, there

was no issue with taking the limit ε → 0 to find the value of ω. However, in this case we

have terms involving δ2

ε making that difficult.

5.5 Tuning

We now make the declarations that δ2

4c2ε
≡ t = O(1) and that O (δ, ε) is still small. In this

way we can take the limit as both ε and δ go to zero, but fix a relationship between them.

Then,

sin2(2ω) = (1 + t+O (tδ, δ, ε))−1

⇒ sin2(2ω) = (1 + t+O (δ, ε))−1

⇒ sin2(2ω) = 1
1+t

⇒ t sin2(2ω) = 1− sin2(2ω)

⇒ t = cos2(2ω)

sin2(2ω)

⇒ t = cot2(2ω)

When t ≈ 0, N �
(
2c
δ

)2
and ω ≈ π

4 . In this case the graph behaves like a normal,

paired system. That is, the mis-matching of the eigenvalues is not large enough to affect
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the algorithm. The paired eigenvectors are each equal combinations of both the Right and

Left active eigenvectors (to within O(
√
ε, δ)), and quadratic speed searches can be executed

using the vectors |`0〉 and |r0〉.

For t ≈ 0, in the {|`〉, |r〉} basis,

U = λ0

 cos(c
√

(1 + t)ε) −i sin
(
c
√

(1 + t)ε
)

−i sin
(
c
√

(1 + t)ε
)

cos(c
√

(1 + t)ε)

+O(ε)

When t� 1, N �
(
2c
δ

)2
and ω ≈ 0. The system does not behave like a paired system,

but instead behaves as though there are no matched eigenvalues at all. So, for large values

of t the initial state stays where it is. The Left and Right eigenstates are decoupled, and

are no longer useful for a search.

For t� 1, in the {|`〉, |r〉} basis,

U = λ0

 eic
√

(1+t)ε 0

0 e−ic
√

(1+t)ε

+O(tε)

“t” describes how “well tuned” a pair of active eigenvectors are for given values of ε

and δ. It also provides an easy way to move back and forth between ε and ε − ε0, since

ε− ε0 = ε+
(
δ
2c

)2
+O

(
δ4
)

= ε(1 + t) +O
(
δ4
)
. Graphs with a large value of t are “poorly

tuned”, and graphs with a small value of t are “well tuned”.

We now wish to calculate P (m) = |〈r0|Um|`0〉|2, which is the probability of a successful

search, using |`0〉 as an initial state and |r0〉 as a target state, after m time steps. How this

depends on t will be considered in the following theorem.
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Theorem 5.5. There is a better than 50% chance of a successful search of the N edges of

the hub vertex using the states |`0〉 and |r0〉 after m =
⌊
π
2c

√
N
⌋

iterations of the time step

operator, whenever

δ < c

√
2

N
(24)

where δ is the difference in phase between the Left and Right eigenvalues, and c =

|〈r0|U|`0〉|.

Proof The proof of this theorem will be included in the appendix.

So, when the error between the Left and Right eigenvalues is less than c
√

2
N , then we

can ignore that error, and the algorithm will continue to work normally more than half of

the time. We can do slightly better. A careful reading of the proof reveals that the lower

bound on the probability is actually closer to ≈ 58.7%. The usual ”O(
√
ε, δ)” error does

appear here, because that extra 8% can be used to ignore these terms for sufficiently large

values on N (N ≥ O(100)) and sufficiently small values of δ (δ ≤ O(0.1)).

5.6 Important Points

• Left and Right eigenvalues of U0 don’t need to match exactly for a pairing to exist,

merely be very close: |λ− λ′| = δ � 1.

• The double root “drifts left” in the ε-plane as a graph is perturbed: ε0 = −
(
δ
2c

)2
+

O(δ4).
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• If δ < c
√

2
N , then all concerns over the eigenvalues not matching can be ignored

completely, and the algorithm will still work as normal more than half of the time.
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6 Summary of Results for Star Graph Searches

Take as given a star graph as described in section 2, with an attached subgraph G and a

time step operator U. Define ε = 1
N , where N is the number of edges attached to the hub

vertex.

• There are two kinds of eigenvectors of U0: bound eigenvectors, and active eigenvec-

tors. For a given eigenvalue, λ0, of U0 there is at most one active eigenvector, |r0〉.

The “Right side λ0 active eigenvector” is unique, and will exist if and only if the λ0

eigenspace of U0 is in contact with the Right side of the hub.

• Bound eigenvectors are completely isolated inside of G and are independent of ε.

• The same statements apply to the Left side (although frequently throughout this

thesis we have assumed it to have a fixed, simple structure), and the Left side active

λ0 eigenvector is denoted |`0〉.

• There is a pairing if and only if both the Left and Right sides have an active eigen-

vector with the same eigenvalue. A pairing means that there are eigenvalues of U

of the form λ± = λ0e
±ic
√
ε + O(ε). To first order, these eigenvalues vary by O(

√
ε),

instead of by O(ε) as non-paired eigenvectors do. Paired eigenvalues are so named

because they always appear in pairs.

• The eigenvectors associated with the two eigenvalues λ± are |V ±〉 which have the

property that |V ±0 〉 = 1√
2

(|`0〉 ± |r0〉), for properly chosen phases.
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• There can be no eigenvectors or eigenvalues that vary faster than O (
√
ε).

• |`0〉 and |r0〉 are rotated almost entirely into each other in O
(√

N
)

time. That is,

there exists m such that |〈r0|Um|`0〉| = 1 +O(
√
ε).

• That value of m is m =
⌊
π
√
N

2c

⌋
, where c is defined by the paired eigenvalues, λ0e

±ic
√
ε.

Writing the U as U = U0 +
√
εU1 + · · ·, the value of c is c = |〈r0|U1|`0〉|. For a Left

side consisting of only the states |out〉 and |in〉, we find that c =
√

2|〈1, 0|r0〉|.

• We can quickly find a λ0, |`0〉, and |r0〉 because all of them are determined entirely

by U0, which tends to be easy to work with. This is because, in addition to being

block-diagonal (the blocks corresponding to the Left and Right sides), U0 is often

sparse, and unlike U, it has no dependence on ε. With |`0〉 and |r0〉 in hand, the

values of c and m follow immediately.

• λ0 doesn’t need to be an exact double eigenvalue in order for a quadratic speed up

to occur, however the allowable difference in the eigenvalues, δ, is smaller for larger

values of N . That is; larger searches require more exact control.

• When δ < c
√

2
N , the probability of a successful search after m =

⌊
π
√
N

2c

⌋
iterations

of U is greater than 50%.

6.1 Sources of Error

In practice, the errors are produced by:
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• Approximations of all of the important terms (i.e., λ = λ0e
ic
√
ε +O(ε)).

• The initial state is not exactly equal to |`0〉, since it has a small component on the

Right side.

• |`0〉 and |r0〉 are eigenvectors of U0, not U, but are approximated by linear combina-

tions of |V ±〉: the actual eigenvectors of U with eigenvalues λ±.

• Rounding error due to the fact that m must be an integer.

• λ0 may not be an exact double root, but instead a pair such that |λ0−λ′0| = δ �
√
ε.

All of these produce errors of O(
√
ε) = O

(
1√
N

)
or less in the final state. This is

unlikely to be a problem on any individual run of the algorithm, and can be easily dealt

with by repetition.

6.2 Generalizations and Future Work for Highly Symmetric Graphs

Generalized Values of r and t

In section 2, r and t were introduced, along with the unitarity conditions:

|r|2 + (N − 1)|t|2 = 1 (25)

2Re(tr∗) + (N − 2)|t|2 = 0 (26)
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Throughout this thesis the standard solution, r = −1+2ε, t = 2ε, has been used, where

ε = 1
N as usual. These are found by assuming arg(r) = π and arg(t) = 0. However, by

allowing arbitrary phase angles we find a family of solutions:

r =
1− 2ε√

1− 4 sin2 (x− y)(ε− ε2)
eix (27)

t =
−2 cos (x− y)ε√

1− 4 sin2 (x− y)(ε− ε2)
eiy (28)

where cos(x − y) < 1. This condition is necessary for the second unitary condition to

have solutions. In the collapsed graph we find RR = r and RL = r + (N − 2)t to be the

reflection coefficients for the hub vertex from the Right and Left sides respectively, and

T = t
√
N − 1 as the transmission coefficient. By unitarity, |RR|2 + |T |2 = |RL|2 + |T |2 = 1

and R∗RT + RLT
∗ = 0. We can use this last relation to quickly find RL = −R∗R

(
T
T ∗

)
=

−R∗Rei2y.

We can now use this to re-visit theorems 3.5 and 4.2. In the proof of theorem 3.5

we found that T 2 − RRRL = 1 for the standard r and t, but this generalized solution

may put that clean result at risk. Luckily, T 2 − RRRL = |T |2ei2y − (RR)(−R∗Rei2y) =(
|T |2 + |RR|2

)
ei2y = ei2y.

In the proof of 3.5 it was shown that C(z, ε) = p1(z) + p2(z)RR(ε) + p3(z)RL(ε), where

p1, p2, p3 are polynomials. So, while we still have a clean result, C(z, ε) is no longer a

polynomial of ε. But if a substitution is made, r = (1−2ε)eix√
1−4 sin2 (x−y)(ε−ε2)

= eix − 2 cos2(x−

y)eixε + O(ε2) ≡ eix(1 − 2µ), then C(z, µ) is a polynomial with respect to µ. Notice that
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µ is real when ε is real, and when x = π and y = 0 we find µ = ε. Using µ instead of ε in

section 3 we find that paired eigenvalues are of the form λ = λ0e
±i√µ + O(µ). However,

because µ = O(ε), this result is the same as the original: λ = λ0e
±i
√
ε + O(ε). Otherwise,

since
√
µ = O(

√
ε), µ = O(ε), and so on, all of the other results in this thesis remain the

same.

Multiple Copies of G

Assume there are N total edges connected to the hub vertex, as before, but rather than

1 edge connected to G there are M edges connected to M copies of G. These various copies

of G can be connected to each other, but (for this generalization) in such a way that in the

automorphism graph there is only one remaining edge on the Left and Right sides.

The reflection and transmission coefficients are RL = r+(N −M −1)t, RR = r+(M −

1)t = −1 + 2MN , and T = t
√
M
√
N −M . Plugging in the standard solutions, r = −1 + 2

N

and t = 2
N , yields RL = 1− 2MN , RR = −1 + 2MN , and T = 2

√
M
N −

(
M
N

)2
, where again RL

and RR are the Left and Right side reflection coefficients respectively. Clearly, by using

ε = M
N instead of ε = 1

N all of the behavior of a single copy of G is recovered (see section

2). Using the general solution for r and t doesn’t provide quite such a clean result. For

example, T =
−2 cos (x−y)

√
M
N
−(MN )

2√
1−4 sin2 (x−y)( 1

N
− 1
N

2
)
eiy. But notice that to first order, like the standard

solution, this is proportional to
√

M
N .

The important result to take away from this generalization is that we can expect

searches to take a time of O

(√
N
M

)
. N
M is the “effective degree” of the hub vertex.
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Multiple Subgraphs

If there are multiple subgraphs that share a common eigenvalue but have different

forms, then it can be shown that they will behave collectively as though they were a single

subgraph. The probability of a particular subgraph being the result of a search increases

with increasing c, as one might expect. These results fall immediately out of the fact that if

there are S Right side subgraphs, each with a λ0 active eigenvector, then we can construct

S − 1 “un-communicating” eigenstates from a linear combinations of those vectors. This

leaves one “collective” active eigenvector that is a linear combination of the constituent

active eigenvectors, weighted by their values of c.

The un-communicating eigenvectors are in contact with the hub vertex, but are bound

in the sense that they are independent of ε and destructively interfere in such a way that

they never interact with the Left side.

General Highly-Symmetric Graphs

The star graph gives us a way of looking at the behavior of a hub vertex in depth.

For highly symmetric graphs with bounded diameter (the maximum distance between any

pair of vertices is bound), we will find at least one hub vertex. Using the techniques of

this thesis it should be fairly straight forward to generalize to automorphism graphs with

multiple hubs. For example, in the investigation of the behavior of finite-depth tree graphs.
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7 Quantum Sounding

The situation in question is an arbitrary graph, G, attached to an infinite string of edges.

The vertices on this string are labeled 0, 1, 2, ... where 0 is a given vertex of G. We define

the unitary time step operator on the edges as the one that passively moves each edge state

one step. I.e., U|j, j + 1〉 = |j + 1, j + 2〉 and U|j + 1, j〉 = |j, j − 1〉. The behavior of U in

the graph G is not specified here.

“Quantum Sounding” is the practice of gaining information from about G by sending

signals along the tail, and then “listening” to the response. It is named in analogy to

“depth sounding”, which is a primitive form of sonar. Like depth sounding we find that

we can gain some information, but not a detailed picture.

To simplify the question of how incoming and outgoing states interact with G we will

first consider the much simpler (and finite) graph where the infinite tail is cut off at vertex

1 and replaced with a reflection that multiplies by α. That is:

U|0, 1〉 = α|1, 0〉 (29)

Each section will conclude with an example where the results of that section will be

applied to the Bolo graph.
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Figure 4: The Bolo Graph

7.1 The Characteristic Polynomial

Theorem 7.1. C(z, α) = |zI−U| = b(z)(f(z) + αg(z)), where each of these are polyno-

mials in z, f(z) and g(z) share no common factors, and the roots of b(z) all have modulus

1.

Proof This is easy to verify immediately by inspection of the matrix U− zI. α appears

once, so every term in the characteristic polynomial either contains an α or doesn’t. Clearly,

the characteristic polynomial is affine in α.

We can collect the terms with and without α’s into two polynomials. Trivially, those

polynomials can be labeled b(z)f(z) and αb(z)g(z), where b(z) is the collection of all of

the factors common to both polynomials.

Finally, since the roots of b(z) are independent of α, and since U can be unitary (when

|α| = 1), the roots of b(z) are eigenvalues of a unitary matrix and therefore have modulus

1.

�
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In everything that follows b(z) either doesn’t play a roll, is not relevant, or factors out.

So, it will be suppressed. A lot can be gained by the simple fact that U is unitary when

|α| = 1.

Theorem 7.2. C(z, α) = g0αz
d+sC∗

(
1
z ,

1
α

)
, ∀z, ∀α 6= 0 where C∗ indicates the coef-

ficients are conjugated, or equivalently, f(z) = zs
∏d
j=1 (z − ηj) , g(z) = g0z

d′f∗
(
1
z

)
=

g0
∏d
j=1

(
1− zη∗j

)
, where d′ = d+ s is the degree of C(z, α).

Proof In what follows assume that |α| = 1. This means that U is unitary, and the

roots of the associated characteristic polynomial, C(z, α), all have modulus 1. While this

proof will only consider f(z) and g(z), it works in exactly the same way for b(z)f(z) and

b(z)g(z).

Define C(z, α) =
∏d′

k=1 (z − λk) =
∑d′

k=0 fkz
k + α

∑d′

k=0 gkz
k. Note that fd′ = 1 and

gd′ = gd′−1 = 0, since when the determinant was taken any term with α necessarily did

not include 2 diagonal elements (2 powers of z).

f(λk) + αg(λk) = 0

⇔ C(λk, α) = 0

⇔ (C(λk, α))∗ = 0

⇔ C∗(λ∗k, α
∗) = 0

⇔ C∗
(

1
λk
, 1α

)
= 0

⇔ 0 = f∗
(

1
λk

)
+ 1

αg
∗
(

1
λk

)
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Therefore, C(z, α) and C∗
(
1
z ,

1
α

)
have the same set of zeros. It also follows that

αzd
′
C∗
(
1
z ,

1
α

)
= αzd

′
f∗
(
1
z

)
+ zd

′
g∗
(
1
z

)
is a polynomial in z and α which, again, has the

same set of zeros. Therefore, αzd
′
C∗
(
1
z ,

1
α

)
and C(z, α) are proportional to each other.

bCα(z)

= αzd
′
(C∗) 1

α

(
1
z

)
= αzd

′
[∑d′

k=0 f
∗
k

1
zk

+ 1
α

∑d
k=0 g

∗
k

1
zk

]
= α

∑d′

k=0 f
∗
kz

d′−k +
∑d

k=0 g
∗
kz
d′−k

= α
∑d′

k=0 f
∗
d′−kz

k +
∑d

k=0 g
∗
d′−kz

k

⇒


bfk = g∗d′−k

bgk = f∗d′−k
Now,

fd′ = 1 ⇒ b = g∗0

gd′−1 = gd′ = 0 ⇒ f0 = f1 = 0

It follows that, since the constant term in a characteristic equation is equal to the

determinant, 1 = |αg0| = |g0|. We now have that C(z, α) = g0αz
d′C∗

(
1
z ,

1
α

)
.

This last equation is merely a statement about the polynomial C(z, α). It is true

regardless of the value of α.

C(z, α) = g0αz
d′C∗

(
1

z
,

1

α

)
(30)

in general, ∀α 6= 0. Or equivalently,
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f(z) = g0z
d′g∗

(
1

z

)
(31)

g(z) = g0z
d′f∗

(
1

z

)
(32)

�

We can say even more about the characteristic polynomial. The zeros of f(z) and g(z)

have a very particular behavior and relationship.

Theorem 7.3. C(z, α) = zs
d∏
j=1

(z − ηj)︸ ︷︷ ︸
f(z)

+α g0

d∏
j=1

(
1− zη∗j

)
︸ ︷︷ ︸

g(z)

and 0 < |ηj(α)| < 1, ∀j.

Proof We know already that f(z) = g0z
d′g∗

(
1
z

)
. It follows that for ηj 6= 0, f(ηj) =

0 ⇔ g
(

1
η∗j

)
= 0. Therefore, if f(z) = zs

∏
j (z − ηj), then g(z) ∝

∏
j

(
z − 1

η∗j

)
. With g0

the constant term in g(z), we can write g(z) = g0
∏
j

(
1− zη∗j

)
.

Notice that f(z) and g(z) share a root if and only if ηj = 1
η∗j

or |ηj | = 1. But this is

the necessary condition for, and an important property of, the roots of b(z). So, since we

are assuming that f and g share no common factors, |ηj | 6= 1.

When α = 0, U|0, 1〉 = 0 and the eigenvalues of U are the roots of C(z, 0) = f(z). If a

unit eigenvector, defined by U|Vj〉 = ηj |Vj〉, has the form |Vj〉 = Sj |0, 1〉+ |Gj〉, then
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|ηj |2 = 〈Vj |U†U|Vj〉

= 〈Vj |U†U|Vj〉

=
(
S∗j 〈0, 1|+ 〈Gj |

)
U†U (Sj |0, 1〉+ |Gj〉)

= 〈Gj |U†U|Gj〉

= 〈Gj |Gj〉

⇒ 0 ≤ |ηj | ≤ 1

〈Gj |U†U|Gj〉 = 〈Gj |Gj〉 is due to the fact that, aside from the 1 vertex, U is unitary.

Finally, since |ηj | 6= 1, we have that the roots of f satisfy 0 ≤ |ηj | < 1.

�

Theorem 7.4. When |α| = 1, the solutions of C(z, α) are distinct.

Proof When |α| = 1 we know that U is unitary. An immediate consequence of which is

the fact that U is diagonalizable and expressible as U =
∑

λ λPλ, where Pλ is a projection

operator onto the λ-eigenspace. Each of these projections can be expressed in terms of the

resolvent, which in turn can be written as a power series in α − α0 near α0, where α0 is

any arbitrary point on the unit circle.

This implies that the projection operators can likewise be expressed as a power series in

α− α0, and since Pλ = |Vλ〉〈Vλ|, it follows that the eigenvectors share the same property.

Finally, since U and |Vλ〉 are power series in α − α0, and U|Vλ〉 = λ|Vλ〉, we can see that

the eigenvalues themselves, λ, are power series in α− α0.
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Now define c0(z)(z − λ0)t = f(z) + α0g(z). Note that according to the last theorem

g(z) 6= 0 when |z| = 1.

0 = f(λ) + αg(λ)

= f(λ) + α0g(λ) + (α− α0)g(λ)

= c0(λ)(λ− λ0)t + (α− α0)g(λ)

⇒ (λ− λ0)t = − g(λ)
c0(λ)

(α− α0)

⇒ λ = λ0 +O ( t
√
α− α0)

However, since the eigenvalues are expressible as a power series in α − α0, t = 1.

Therefore, because α0 is arbitrary, the degree of any zero of f(z) + αg(z) is one when

|α| = 1.

�

In this proof it was important that |α| = 1 because it ensures that U is unitary. For a

finite set of values of α (off the unit circle) the characteristic polynomial can have higher

degree roots, however at those points we find that U is no longer diagonalizable and the

degenerate eigenvalues correspond to generalized eigenvectors.

7.1.1 Example

The states on the Bolo graph are
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|ψ1〉 = |1, 0〉

|ψ2〉 = |A, 0〉

|ψ3〉 = |b〉

|ψ4〉 = |0, A〉

|ψ5〉 = |0, 1〉
and U is defined to act on these states as

U =



0 0 0 0 α

0 0 0 −1 0

2
3

2
3 −1

3 0 0

2
3 −1

3
2
3 0 0

−1
3

2
3

2
3 0 0


The characteristic polynomial, |zI−U|, is z5 + 1

3z
4 + 1

3(α−1)z3 + 1
3(1−α)z2 + 1

3αz+α

which can be factored and re-written as

|zI−U| = (z + 1)︸ ︷︷ ︸
h(z)

z2
(
z − 1

3
(1 + i

√
2)

)(
z − 1

3
(1− i

√
2)

)
︸ ︷︷ ︸

f(z)

+α

(
1− z 1

3
(1 + i

√
2)

)(
1− z 1

3
(1− i

√
2)

)
︸ ︷︷ ︸

g(z)

 (33)

Clearly, ηj =
{

1+i
√
2

3 , 1−i
√
2

3

}
, s = 2, and g0 = 1.

76



7.2 Imitating the Pure Momentum State

The response to an infinite incoming signal of the form
∑∞

k=0 λ
k|k+ 1, k〉 can be found by

finding the eigenstate for λ of the form |V 〉 =
∑∞

k=0 λ
k|k+1, k〉+R(λ)

∑∞
k=0 λ

−(k+1)|k, k+

1〉+ |G〉.

The R(λ) in this equation is the effective reflection coefficient for G. This function

encapsulates all of the information we can obtain from G from each pure momentum state:

the difference in phase between the incoming and outgoing signals. For a given pure

momentum state, G can be replaced by a vertex that reflects with phase R(λ).

The eigenstate |V 〉 can be imitated by finding the eigenstates of the graph defined

by replacing the “runway” with U|0, 1〉 = α|1, 0〉. The λj-eigenstate must take the form

|Vj〉 = Sj |1, 0〉+
λj
α Sj |0, 1〉+ |Gj〉. In this way we “feed the output to the input”, and the

amplitude on the “input edge”, |1, 0〉, is multiplied by λ in each time step (exactly as it

was in the case with the infinite tail). This method resolves issues with non-normalizable

states, but introduces a new variable, α. As we shall see, this method provides remarkable

insights.

Upon brief inspection, R(λj) =
λ2
j

α . The question now is whether or not there exists an

α such that any eigenvalue, λj , can be “dialed up”.

Theorem 7.5. When α loops once around the unit circle the eigenvalues cyclicly permute

one step. That is, looping α changes λj → λj+1 and λd′ → λ1, where arg (λ1) < arg (λ2) <

· · · < arg (λd′).
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Figure 5: Looping α once around the unit circle permutes the eigenvalues as shown.

Proof We know that looping α once (returning it to its original value) can’t change the

spectrum of the eigenvalues, so the effect must be a permutation. In addition, since the

eigenvalues are always distinct for every value of |α| = 1, this permutation must be cyclic;

the eigenvalues can’t “slide past each other” on the unit circle.

So we know that looping α produces a permutation of the eigenvalues of the form

λj → λj+t (where λd′ ≡ λ0). The only question that remains is the value of t.
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Define λ = eiθ. The eigenvalues satisfy

0 = f(λ) + αg(λ)

⇒ −f
(
eiθ
)

= αg
(
eiθ
)

⇒ −eisθ
∏d
j=1

(
eiθ − ηj

)
= αg0

∏d
j=1

(
1− eiθη∗j

)
⇒ −eisθ

∏d
j=1

(
eiθ − ηj

)
= αg0

∏d
j=1 e

iθ
(
eiθ − ηj

)∗
⇒ iπ + isθ +

∑d
j=1 log

(
eiθ − ηj

)
= i arg (α) + log (g0) + idθ +

∑d
j=1 log

(
e−iθ − η∗j

)
⇒ i arg (α) = iπ − log (g0) + i(s− d)θ +

∑d
j=1

[
log
(
eiθ − ηj

)
− log

(
e−iθ − η∗j

)]
⇒ i arg (α) = iπ − log (g0) + i(s− d)θ + 2i

∑d
j=1 arg

(
eiθ − ηj

)
⇒ arg (α) = π + i log (g0) + (s− d)θ + 2

∑d
j=1 arg

(
eiθ − ηj

)
At this point we allow θ to smoothly increase by 2π, then take the difference. Since

|ηj | < 1, the angle between eiθ and ηj sweeps from 0 to 2π monotonically.

⇒ ∆ arg (α) = (s− d)2π + 2
∑d

j=1 2π

⇒ ∆ arg (α) = (s+ d)2π

⇒ ∆ arg (α) = 2πd′

Looping a given eigenvalue once around the unit circle, causes α to loop s + d = d′

times. Looping an eigenvalue once is a permutation of the form λj → λj+d′ = λj . It

follows that if looping α once produces a permutation of the form λj → λj+t, then looping

λj means that α loops d′

t times. But we know that looping an eigenvalue once requires α

to loop d′ times, and therefore t = 1.
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Theorem 7.6. Any eigenvalue λ, such that |λ| = 1, can be induced by choosing the correct

value of α. Moreover, this value of α is unique.

Proof In the last theorem it was shown that the eigenvalues, which are functions of

α = eia, have the property that λj |a=2π = λj+1|a=0. These functions are continuous, so

every value between these eigenvalues exist as well, by the intermediate value theorem.

Moreover, arg(λ) is a strictly monotonic function of arg(α), and therefore there is only one

permissible value of α for a given eigenvalue.

This can be seen by first showing that ∂
∂θ arg

(
eiθ − ηj

)
> 1

2 when |ηj | < 1. This can be

proven by either using the inscribed angle theorem to establish a lower bound or by direct

calculation. It follows that

arg (α) = π + (s− d)θ + i log (g0) + 2
∑d

j=1 arg
(
eiθ − ηj

)
⇒ ∂

∂θ arg (α) = (s− d) + 2
∑d

j=1
∂
∂θ arg

(
eiθ − ηj

)
> (s− d) + 2d

(
1
2

)
= s ≥ 0

⇒ ∂
∂θ arg (α) > 0

Therefore arg(α) and arg(λ) are strictly monotonic functions of each other, and α(λ)

is single-valued.

�

We now have enough mathematical machinery in place to describe any incoming pure

momentum state,
∑∞

k=0 λ
k|k+1, k〉, as well as the graph’s response, R(λ)

∑∞
k=0 λ

−(k+1)|k, k+

1〉.
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Theorem 7.7. The graph attached to vertex zero can be replaced by a single vertex with

frequency-dependent reflection coefficient R(λ) = λ2

α = −λ2 g(λ)f(λ) .

Proof By finding an appropriate value of α we can “feed the output to the input” in such

a way that at time step n the amplitude of the state |1, 0〉 is λn. This happens when we

can find a λ-eigenvector of the form |V 〉 = S|1, 0〉+ R(λ)
λ S|0, 1〉+ |G〉, where |G〉 ≡ PG|V 〉

(the projection of the eigenvector onto the states in the graph G), and S is a normalizing

real constant. We can see this because

U
[
S|1, 0〉+ R(λ)

λ S|0, 1〉+ |G〉
]

= λ
[
S|1, 0〉+ R(λ)

λ S|0, 1〉+ |G〉
]

⇒


U [S|1, 0〉+ |G〉] = R(λ)S|0, 1〉+ λ|G〉

Sα
λ R(λ)|1, 0〉 = Sλ|1, 0〉

⇒


U [S|1, 0〉+ |G〉] = R(λ)S|0, 1〉+ λ|G〉

R(λ) = λ2

α

As shown above (thm. 7.6), any eigenvalue can be realized for some value of α. We

can therefore solve for α using the characteristic equation: α = −f(λ)
g(λ) . Plugging into the

second of the above equations we see that

R(λ) = −λ2 g(λ)

f(λ)
= − g0

λs−2

∏
j

1− λη∗j
λ− ηj

(34)

where |η| < 1, by thm. 7.3.

�

If the graph is sent the signal x[n] = cλn (that is; at time step n the amplitude of the

81



state |1, 0〉 is cλn), then it will respond in exactly the same way that a vertex that reflects

with phase eiφ = R(λ) at vertex 0 would respond. Theorem 7.6 shows that we can solve for

α, and in theorem 7.7 we did exactly that. Now that we have an equation for the reflection

coefficient we see that α, and the rest of the machinery needed to make the graph finite,

are no longer necessary and can be left to work “in the background”.

Knowing the roots of f(z) is helpful for understanding the behavior of the reflection

coefficient, but those roots are not necessary for a direct calculation since we can express

R(λ) = −λ2 g(λ)f(λ) .

7.2.1 Example

The characteristic equation for the Bolo graph is C(z, α) =

(z+1)
[
z2
(
z − 1

3(1 + i
√

2)
) (
z − 1

3(1− i
√

2)
)

+ α
(
1− z 13(1 + i

√
2)
) (

1− z 13(1− i
√

2)
)]

.

This has five roots and when |α| = 1 all five have modulus 1.

The frequency response is

R(eiθ) = −

(
1− eiθ 1−i

√
2

3

)(
1− eiθ 1+i

√
2

3

)
(
eiθ − 1+i

√
2

3

)(
eiθ − 1−i

√
2

3

) (35)

Graphing the magnitude of the relevant part of the polynomial (ignoring the “b(z) =

z + 1”) demonstrates the theorems in this section.
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Figure 6: The graph of the magnitude of the characteristic polynomial, |C(z, α)|, where

α = eix and z = eiy. The troughs are the locations of the roots.

7.3 Arbitrary Inputs

In the language of signal analysis, the last section was a derivation of the “frequency

response” of the graph G. We can define the input x[n] (output y[n]) as the amplitude on

the state |1, 0〉 (state |0, 1〉) at time step n. The input can be encoded onto the tail in an

initial state of the form |input〉 =
∑∞

k=0 x[k]|k + 1, k〉.

At time step n, the overall state of the graph and tail will be:
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∞∑
k=0

x[k + n]|k + 1, k〉+
∞∑
k=0

y[n− k]|k, k + 1〉+ |G〉 (36)

In general we can assume that y[k] = 0, ∀k ≤ 0 since only positive values of k can be a

reaction to the input.

Using the frequency response we can derive an expression for the “impulse response”,

h[n], which is the response y[n] produced from the input x[n] = δ[n], the Kronecker delta

function. The response of any signal can be found using the fact that y[n] = (x ∗ h)[n] =∑
k h[k]x[n− k]. So rather than being a single example, the impulse response is the key to

finding the response to any input.

Theorem 7.8. The impulse response, h[n], is given by h[n] = − 1
2πi

∮
|z|=1 z

n g(z)
f(z) dz

Proof For a single frequency, x[n] = λn, we find that

y[n] =
∑

k h[k]x[n− k]

=
∑

k h[k]λn−k

=
∑

k h[k]λ−kλn

=
(∑

k h[k]λ−k
)
x[n]

We already have a way of writing this from the previous section. Setting
∑∞

k=0 λ
k|k +

1, k〉 + R(λ)
∑∞

k=0 λ
−(k+1)|k, k + 1〉 + |G〉 equal to

∑∞
k=0 x[k + n]|k + 1, k〉 +

∑∞
k=0 y[n −

k]|k, k + 1〉+ |G〉 we find that
∑

k h[k]λ−k = R(λ)
λ = −λ g(λ)f(λ) . Using λ = eiω:
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∑
k h[k]λ−k = −λ g(λ)f(λ)

⇒
∑

k h[k]e−iωk = −eiω g(e
iω)

f(eiω)

⇒
∑

k h[k]eiω(n−k) = −ei(n+1)ω g(e
iω)

f(eiω)

⇒
∫ 2π
0

∑
k h[k]eiω(n−k) dω = −

∫ 2π
0 ei(n+1)ω g(e

iω)
f(eiω)

dω

⇒ 2πh[n] = −
∫ 2π
0 ei(n+1)ω g(e

iω)
f(eiω)

dω

⇒ h[n] = − 1
2π

∫ 2π
0 ei(n+1)ω g(e

iω)
f(eiω)

dω

⇒ h[n] = − 1
2πi

∮
|z|=1 z

n g(z)
f(z) dz (z = eiω, dz = ieiωdω)

This is a perfectly nice integral, since the zeros of f(z) are all on the interior of the unit

disk (thm. 7.3). There may have been an issue with taking the integral
∫ 2π
0

∑
k h[k]eiω(n−k) dω,

since we can only assume that h[n] ∈ `2 (is square-summable). However, as will be seen

shortly, h[n] is composed of exponentially decaying signals which is ideal for integrals of

this form.

�

So, the impulse response is:

h[n] = − 1

2πi

∮
|z|=1

zn
g(z)

f(z)
dz = − g0

2πi

∮
|z|=1

zn−s
∏
k

1− zη∗k
z − ηk

dz (37)

and again, this can be used to find the response to any incoming signal, x[n], through

convolution: y[n] = (x ∗ h)[n].
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Using residue calculus we can solve this directly

h[n]

= − g0

2πi

∮
|z|=1 z

n−s∏
k

1−zη∗k
z−ηk dz

= −g0
∏
k

(
1
−ηk

)
δ[n− s+ 1]− g0

∑
j(1− |ηj |2)

∏
k 6=j

(
1−ηjη∗k
ηj−ηk

)
ηn−sj

= Ω0δ[n− s+ 1] +
∑

j Ωjη
n
j

where Ωj =


−g0

∏
k

(
1
−ηk

)
, j = 0

−g0 1−|ηj |
2

ηsj

∏
k 6=j

(
1−ηjη∗k
ηj−ηk

)
, j 6= 0

So the impulse response is a set of exponentially decaying signals corresponding to the

zeros of f(z).

7.3.1 Bound, Semi-bound, and Unbound Eigenstates

Define Ů as the time step operator corresponding to α = 0. That is, Ů|0, 1〉 = 0. Trivially,

|zI− Ů| = b(z)f(z). These eigenvalues of Ů come in three forms.

Bound eigenvalues have modulus 1 and are roots of b(z). The corresponding eigen-

vectors are entirely contained within G and can be ignored in the context of sending and

receiving signals from the graph.

Semi-bound eigenvalues take the form 0 < |ηj | < 1 and correspond to the exponentially

decaying signals.

Unbound eigenvectors are those with eigenvalue zero. Their contribution is a simple

delay (of s − 2 time steps, where s is the multiplicity of the 0-eigenvalue) and constant
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phase change.

7.3.2 Example

The first few terms of the impulse response of the bolo graph can be found by direct

computation:

n Un|1, 0〉 y[n]

0 |1, 0〉 0

1 2
3 |b〉+ 2

3 |0, A〉 −
1
3 |0, 1〉 −1

3

2 −2
3 |A, 0〉 −

2
9 |b〉+ 4

9 |0, A〉+ 4
9 |0, 1〉

4
9

3 −4
9 |A, 0〉 −

10
27 |b〉+ 2

27 |0, A〉 −
16
27 |0, 1〉 −

16
27

4 − 2
27 |A, 0〉 −

14
81 |b〉 −

8
81 |0, A〉 −

44
81 |0, 1〉 −

44
81

Alternatively,

Ω0 = −
(

9
(1+i

√
2)(1−i

√
2)

)
= −3

Ω1 = −
1−
∣∣∣ 1+i

√
2

3

∣∣∣2(
1+i
√

2
3

)2

(
1−
(

1+i
√

2
3

)(
1+i
√

2
3

)
(

1+i
√

2
3

)
−
(

1−i
√

2
3

)
)

= 2− i
√

2

Ω2 = −
1−
∣∣∣ 1−i√2

3

∣∣∣2(
1−i
√

2
3

)2

(
1−
(

1−i
√

2
3

)(
1−i
√

2
3

)
(

1−i
√

2
3

)
−
(

1+i
√

2
3

)
)

= 2 + i
√

2

So for n ≥ 1, h[n] = −3δ[n− 1] +
(
2− i

√
2
) (

1+i
√
2

3

)n
+
(
2 + i

√
2
) (

1−i
√
2

3

)n
. We find

that this yields precisely the same results as the direct computation (and with substantially

greater ease).
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The bound eigenstate of the Bolo graph is:{
λ = −1, |ψ(−1)〉 = |A,0〉−|b〉+|0,A〉√

3

}
.

The two semi-bound eigenstates are:{
λ = 1±

√
2i

3 , |ψ(±)〉 = 1±2
√
2i

3
√
6
|A, 0〉+ 2±

√
2i

3
√
6
|b〉+ 1∓

√
2i

3
√
6
|0, A〉+

√
2
3 |0, 1〉

}
.

Finally, there is a unbound eigenstate and an unbound generalized eigenstate:{
λ = 0, |ψ(0)〉 = |0, 1〉, |ψ(0)′〉 = −1

3 |1, 0〉+ 2
3 |A, 0〉+ 2

3 |b〉
}

.

Here U2|ψ(0)′〉 = U|ψ(0)〉 = 0.

7.4 Detecting Poles

When η = (1− δ)eiτ , for small δ, we find that the pole is difficult to detect when the signal

frequency differs from τ . By the inscribe angle theorem, we know that arg
(
eiθ + 1

)
= θ

2

for θ 6= π. It follows that 2 arg(eiθ − η) = 2(τ + π) + 2 arg(ei(θ−τ−π) + (1− δ)) ≈ 2τ + 2π+

[θ − τ − π] = θ + (τ + π). That is, a given pole may change the phase of the reflection

coefficient by approximately the same amount for all θ 6≈ τ .

A little trigonometry reveals that tan
(
arg(eiθ − (1− δ)

)
= sin(θ)

cos(θ)−1+δ . For |θ| < δ:

2 arg
(
eiθ − (1− δ)

)
=

2θ

δ
+O (δ) (38)

But for |θ| > δ:

2 arg
(
eiθ − (1− δ)

)
= θ ± π − 2δ

θ
+O

((
δ

θ

)3
)

(39)
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This means that the reflection coefficient jumps by 2π as it passes a pole, η, and that

the width of that jump is O(δ), where |η| = 1− δ.

7.5 Important Points

• A graph G has an effective reflection coefficient R(λ) = −λ2 g(λ)f(λ) = − g0

λs−2

∏
j

1−λη∗j
λ−ηj

where |ηj | < 1 ∀j.

• f(z) and g(z) can be found by finding the characteristic polynomial of the time step

operator that acts on G with the first vertex in the attached tail replaced by a vertex

with reflection coefficient α. This characteristic equation takes the form |zI−U| =

b(z) (f(z) + αg(z)) = b(z)
(
zs
∏d
j=1 (z − ηj) + αg0

∏d
j=1

(
1− zη∗j

))
. The roots of

b(z) all have modulus 1 and correspond to bound states, which are not involved with

the reflection coefficient.

• The impulse response, h[n], can be used to find the returned signal, y[n], that is the

response of the graph to any incoming signal, x[n], using convolution, y[n] = (h∗x)[n].

We find that h[n] = − 1
2πi

∮
|z|=1 z

n g(z)
f(z) dz.

• This response is made up of a set of infinite and exponentially decaying signals, and a

single finite signal. These correspond to the non-zero eigenvalues and zero eigenvalue

respectively of the time step operator when α = 0.

• The effective reflection coefficient, R(λ), increases suddenly by 2π in the neighbor-

hood of poles that are close to the edge of the unit circle. For a given pole, η, the
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width of this jump is ≈ 2δ across, where |η| = 1− δ.
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8 Application to Classes of Graphs

The only information we can hope to gain from a signal are the zeros of f(z), s, and g0.

Every other quantity described so far can be determined from these.

However, a graph with d′ edge states can have any of a huge number of arrangements,

and each vertex in that graph can have any appropriate unitary operator. It is unreasonable

to hope for a way of determining the structure of a completely arbitrary graph by studying

its responses to signals.

However, if we restrict the graph to being one of a restricted family of graphs, then we

can expect to get some information about the structure.

8.1 Star Graphs with Differently Marked Edges

Assume that we know that there are N edges, that the terminating vertex of some of these

reflect without phase change, and that some flip the phase (multiply by -1). The question

is: can we determine the number of each type of edge?

Define the states

|ψ1〉 = |0, A〉

|ψ2〉 = |A, 0〉

|ψ3〉 = 1√
M

∑M
j=1 |0, j〉

|ψ4〉 = 1√
M

∑M
j=1 |j, 0〉

|ψ5〉 = 1√
N−M

∑N
j=M+1 |0, j〉

|ψ6〉 = 1√
N−M

∑N
j=M+1 |j, 0〉
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r = −1 + 2
N+1 , t = 2

N+1

Then the time step operator can be written

U =



0 −1 + 2
N+1 0 2

√
M

N+1 0 2
√
N−M
N+1

α 0 0 0 0 0

0 2
√
M

N+1 0 −1 + 2M
N+1 0 2

√
M(N−M)

N+1

0 0 −1 0 0 0

0 2
√
N−M
N+1 0 2

√
M(N−M)

N+1 0 −1 + 2(N−M)
N+1

0 0 0 0 1 0


C(z) = z6 +

(
α− 2α

N+1 + 4M
1+N −

2N
1+N

)
z4 +

(
−1 + 4Mα

N+1 + 2N
1+N −

2Nα
1+N

)
z2 + α

=



z2
(
z4 +

(
4M

1 +N
− 2N

1 +N

)
z2 +

(
1− 2

1 +N

))
︸ ︷︷ ︸

f(z)

+α

((
1− 2

N + 1

)
z4 +

(
4M

N + 1
− 2N

1 +N

)
z2 + 1

)
︸ ︷︷ ︸

g(z)

The non-zero roots of f(z) are

η = ±̊

√
1− 2M + 1

N + 1
±
√

1− 4M(N −M)

N + 1
(40)

These four roots are negatives and/or complex conjugates of each other. We find that

there is a simple formula for |η|:
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|η|4 =

∣∣∣∣∣±̊
√

1− 2M+1
N+1 ±

√
1−4M(N−M)

N+1

∣∣∣∣∣
4

=

∣∣∣∣1− 2M+1
N+1 ±

√
1−4M(N−M)

N+1

∣∣∣∣2
=
(

1− 2M+1
N+1

)2
+

(√
4M(N−M)−1

N+1

)2

= 1− 4M+2
N+1 + 4M2+4M+1

(N+1)2
+ 4M(N−M)−1

(N+1)2

= 1 + −4MN−4M−2N−2+4M2+4M+1+4MN−4M2−1
(N+1)2

= 1− 2N+2
(N+1)2

= 1− 2
N+1

⇒ |η| = 4

√
1− 2

N+1 = 1− 1
2N +O

(
1
N2

)
This means that the value of M does not affect how difficult it is to get a result.

Instead we find the phase of η retains information about the value of M . Define R ≡ M
N .

η2 =
(

1− 2M+1
N+1

)
± i
(√

4M(N−M)−1
N+1

)
, so if the phase of η is τ , then we find that:

93



sin(2τ) =

√
4M(N−M)−1

N+1√
(1− 2M+1

N+1 )
2
+

(√
4M(N−M)−1

N+1

)2

=

√
4M(N−M)−1√

(N+1−2M−1)2+
(√

4M(N−M)−1
)2

=

√
4M(N−M)−1√

(N−2M)2+4M(N−M)−1

=
√

4M(N−M)−1
N2−4MN+4M2+4MN−4M2−1

=
√

4M(N−M)−1
N2−1

=
√

4RN(N−RN)−1
N2−1

= 1√
1− 1

N2

√
4R(1−R)− 1

N2

= 2
√
R(1−R)

√
1− 1

4R(1−R)N2

(
1 +O

(
1
N2

))

⇒


sin(2τ) = 2

√
R(1−R) +O

(
1
N2

)
, R = O(1)

τ =
√

M
N +O

(
1
N

)
, R = O

(
1
N

)
The problem of finding R = M

N can now be reduced to finding the phase of the root of

f(z) in the first quadrant. Noting that g0 = 1, s = 2, d = 4, and assuming that θ 6≈ τ :
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arg(R(eiθ))

= arg(−g0) + (2− s+ d)θ −
∑

j 2 arg(eiθ − ηj)

= π + 4θ −
∑4

j=1 2 arg(eiθ − ηj)

≈ π + 4θ −
∑4

j=1 θ + π + arg(ηj)

= π −
∑4

j=1 arg(ηj)

= π − [τ + π]− [τ ]− [−τ + π]− [−τ − π]

= π

This is precisely the frequency response of a reflection by -1 at vertex 0 (which is

approximately what the graph is).

However, when eiθ passes around the “far side” of ηj , we find that arg(eiθ − ηj) jumps

by π and the phase of the reflection coefficient jumps by 2π. The closer ηj is to the unit

circle, the quicker the jump.

From the results of section 7.4, when θ = O( 1
N ),

arg

(
eiθ −

(
1− 1

2N

))
= 2Nθ +O

(
1

N

)
(41)

This means that in order to detect one of the η’s we need to detect an interval in which

R(eiθ) 6= π, and that difference is only detectable within O
(
1
N

)
of the correct value.

So, if a pulse is sent and it is found that R(eiθ) 6= π, then sin(2θ) = 2
√
R(1−R).

However, since the target window is only O
(
1
N

)
wide, we can expect that the pulse must
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be O(N) long. This is an unimpressive result, since simply counting and tallying up the

edges (a brute force classical algorithm) takes O(N) time.

Figure 7: The frequency response for N=100, M=40. sin(2θ) = 2
√

0.4(1− 0.4) ⇒ θ ≈

{0.68, 2.46, 3.82, 5.60}.

8.2 Logic Tree Graphs

We can encode bits into reflection coefficients of vertices on the tree. Define:

b→ Rb = (−1)b (42)

That is, R0 = 1 and R1 = −1. Since a non-trivial graph has a non-trivial reflection,

we need to specify a frequency at which the reflection functions are evaluated. The phase

necessary for useful logical operations is ±i. It turns out that there are no other frequencies

or reflection coefficients that are similarly useful. This can be shown by starting with
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R0 = eiφ0 and R1 = eiφ1 and assuming, for example, that {R0, R1} → R0. Either Ri = ±1,

or we find that the logical operation is a tautology.

Figure 8: The model for a non-terminating vertex in the tree.

The Logic Tree graph performs a logic operation at each vertex. The input of the

operation performed at vertex C are the reflection coefficients RA(±i), RB(±i), and the

output is RC(±i).

For example, the NAND gate is the standard diffusive vertex, with r = 2
3 and t = −1

3 .

The time step operator for this toy graph is,
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U =



0 0 0 0 0 α

0 0 0 0 RB 0

0 0 0 RA 0 0

2
3

2
3 −1

3 0 0 0

2
3 −1

3
2
3 0 0 0

−1
3

2
3

2
3 0 0 0



where

|ψ1〉 = |D,C〉

|ψ2〉 = |A,C〉

|ψ3〉 = |B,C〉

|ψ4〉 = |C,B〉

|ψ5〉 = |C,A〉

|ψ6〉 = |C,D〉

The effective reflection coefficient at C, to a signal from the direction of vertex D, can

be calculated from the characteristic equation:

C(z) = z2
[
z4 + RA+RB

3 z2 − RARB
3

]
+ α

[
1
3z

4 − RA+RB
3 z2 −RARB

]

From the earlier results:

RC

(
eiθ
)

= −
(
eiθ
)2 g (eiθ)

f (eiθ)
= −e

i4θ − (RA +RB) ei2θ − 3RARB
3ei4θ + (RA +RB) ei2θ −RARB

(43)

Recall that these reflection coefficients are functions of eiθ themselves and are being

evaluated at eiθ = ±i.

If the parent vertices reflect with RA = RB = R1 = −1, then the vertex C reflects

with:

R1,1 (±i) = − i
4 − (R1 +R1) i

2 − 3R1R1

3i4 + (R1 +R1) i2 −R1R1
= −1− 2− 3

3 + 2− 1
= 1 = R0 (44)

For RA = R0 and RB = R1, vertex C reflects with:
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R0,1 (±i) = − i
4 − (R0 +R1) i

2 − 3R0R1

3i4 + (R0 +R1) i2 −R0R1
= −1 + 0 + 3

3 + 0 + 1
= −1 = R1 (45)

For RA = RB = R0, there seems to be an issue with calculating the reflection:

R0,0 (±i) = − i4 − 2i2 − 3

3i4 + 2i2 − 1
= −1 + 2− 3

3− 2− 1
=

0

0
(46)

However, all that’s happening is that a bound ±i-eigenstate exists when RA = 1 = RB.

This means that ±i is a root of the characteristic polynomial, and z2 + 1 must appear in

both f(z) and g(z) (that is, it should have been included in b(z) and removed already).

Indeed, we find:

R0,0 (λ) = − λ4−2λ2−3
3λ4+2λ2−1 = − (λ2+1)(λ2−3)

(λ2+1)(3λ2−1) = − λ2−3
3λ2−1

And therefore,

R0,0 (±i) = − i2 − 3

3i2 − 1
= −−1− 3

−3− 1
= −1 = R1 (47)

But this is exactly the logical structure of a NAND gate:

RA RB RC

R0 R0 R1

R0 R1 R1

R1 R0 R1

R1 R1 R0
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8.2.1 Different Gates

In the last subsection U =


0 B

GNAND 0

 =



0 0 0 0 0 α

0 0 0 0 RB 0

0 0 0 RA 0 0

2
3

2
3 −1

3 0 0 0

2
3 −1

3
2
3 0 0 0

−1
3

2
3

2
3 0 0 0



The “bits matrix”, B =



0 0 α

0 RB 0

RA 0 0


, encode the input bits to the gate in the form

of the reflection coefficients. The gate matrix, GNAND =



2
3

2
3 −1

3

2
3 −1

3
2
3

−1
3

2
3

2
3


, encodes the

NAND operation, as demonstrated in the last subsection. Using exactly the same set of

steps (characteristic equation→ frequency response equation→ responses for {RA, RB} =

{1, 1}, {1,−1}, {−1,−1}), we find that
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GNAND = G∧ =



2
3

2
3 −1

3

2
3 −1

3
2
3

−1
3

2
3

2
3


,

GAND = G∧ =



2
3

2
3 −1

3

2
3 −1

3
2
3

1
3 −2

3 −2
3


,

GNOR = −GNAND = G∨ =



−2
3 −2

3
1
3

−2
3

1
3 −2

3

1
3 −2

3 −2
3


,

GOR = −GAND = G∨ =



−2
3 −2

3
1
3

−2
3

1
3 −2

3

−1
3

2
3

2
3


We can therefore express any sequence of AND, OR, NAND, and NOR operations on

a set of input bits by mapping those bits into the ±1 reflection coefficients of the leaves,

and mapping the gates into the local time step operators of each of the other vertices. The

result of one level of computation is fed into the next in the form of the effective reflection

coefficient of each intermediate vertex.

The reflection coefficient of a given vertex, in terms of the reflection coefficients of the
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previous two vertices, A and B, are:

RAND = R[A ∧B] =
z4 − (A+B)z2 − 3AB

3z4 + (A+B)z2 −AB
(48)

ROR = R[A ∨B] = −z
4 + (A+B)z2 − 3AB

3z4 − (A+B)z2 −AB
(49)

RNAND = R[A∧B] = −z
4 − (A+B)z2 − 3AB

3z4 + (A+B)z2 −AB
(50)

RNOR = R[A∨B] =
z4 + (A+B)z2 − 3AB

3z4 − (A+B)z2 −AB
(51)

(52)

8.2.2 Signal Window

To execute a calculation on a logic tree it is necessary to use an input signal that is very

close to the pure momentum state with phase ±i. The response is returned in the form

of the reflection coefficient at the base of the tree graph. However, the larger the tree,

the more poles exist and the more rapidly the reflection coefficient changes. This forces

us to use a signal with a narrower spectrum. By the uncertainty principle, the size of the

allowable spectrum is inversely proportional to the minimum length of the signal and thus

dictates the computational time.

We define the “window” for a given R(z) as
[
π
2 − L,

π
2 + L

]
, where Re

[
R
(
ei(

π
2
±L)
)]

=

0. Within this window the real part of R is either entirely positive (for logical 0) or entirely

negative (for logical 1).
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Figure 9: Re
[
R
(
eiθ
)]

for a logic tree of depth 6. Since Re [R (i)] = R (i) = 1 the result

was a logical zero, but in order to see that we would need to send the graph a signal with a

frequency spread of no more than approximately 0.1. The “spiking” effect caused by poles

near the edge of the unit circle is clearly visible here.

Not surprisingly, it is remarkably difficult to predict the size of the window, which can

vary widely even among trees of the same depth. We do find however, that the average size

of the window follows the familiar O
(

1√
N

)
pattern. Finding a quick method for predicting

the window size for a given tree is a clear and important next step, and will be the subject

of future work.
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Figure 10: Top: the mean window size for trees of depths 2-6 vs. N = 2D. Bottom: the

window sizes of 100 trees (each) of depths 2-6 vs. N = 2D. While the mean closely follows

the curve 1√
N

, the individual trees may have substantially smaller or larger windows. We

find that depth is merely a rough predictor of computational time.
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9 Tables

What follows is a table of the reflection coefficients for several small Logic Trees. It lists

the reflection function itself (with bound states factored out), the position of all of the

poles, and the window size. In order to save room, we will use the notation: 4 (a+ bi) ≡

{a+ bi, a− bi,−a+ bi,−a− bi}.
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Logic R(z) Poles W

0 1 −

1 −1 −

0∨ 0 z2+3
3z2+1

±0.577i 0.92

1∨ 0 z4+3
3z4+1

4 (0.537 + 0.537i) 1.10

1∨ 1 z2−3
3z2−1 ±0.577 2.22

0 ∨ 0 − z2+3
3z2+1

±0.577i 0.92

1 ∨ 0 − z4+3
3z4+1

4 (0.537 + 0.537i) 1.10

1 ∨ 1 − z2−3
3z2−1 ±0.577 2.22

0∧ 0 − z2−3
3z2−1 ±0.577 2.22

1∧ 0 − z4+3
3z4+1

4 (0.537 + 0.537i) 1.10

1∧ 1 − z2+3
3z2+1

±0.577i 0.92

0 ∧ 0 z2−3
3z2−1 ±0.577 2.22

1 ∧ 0 z4+3
3z4+1

4 (0.537 + 0.537i) 1.10

1 ∧ 1 z2+3
3z2+1

±0.577i 0.92
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Logic R(z) Poles W

[1 ∧ 1] ∧ [1 ∧ 1] 3z4−2z2−9
9z4+2z2−3 ±0.691,±0.836i 0.32

[1 ∧ 0] ∨ [0 ∨ 0] −3z6−z4−3z2+9
9z6−3z4−z2+3

±0.802i,

4(0.777 + 0.340i)

0.38

[1 ∧ 1] ∧ [1 ∨ 0] 3z6−z4−3z2+9
9z6−3z4−z2+3

±0.802i,

4(0.777 + 0.340i)

0.38

[1 ∨ 0] ∧ [1 ∨ 0] 3z6+3z4+z2+9
9z6+z4+3z2+3

±0.752,

4(0.705 + 0.520i)

0.46

[1 ∧ 0] ∨ [1 ∨ 0] −9z12+9z8+19z4+27
27z12+19z8+9z4+9

4(0.670 + 0.670i),

4(0.327 + 0.834i),

4(0.834 + 0.327i)

0.54

[0 ∧ 0] ∨ [0 ∧ 0] −3z4+2z2−9
9z4−2z2−3 ±0.836,±0.691i 0.62

[1 ∧ 1] ∨ [1 ∨ 0] −9z8−6z6+20z4−18z2+27
27z8−18z6+20z4−6z2+9

4(0.492 + 0.668i),

4(0.829 + 0.389i)

0.90

[0 ∧ 1] ∧ [0 ∨ 0] 9z8−6z6+20z4−18z2+27
27z8−18z6+20z4−6z2+9

4(0.492 + 0.668i)

4(0.829 + 0.389i)

0.90

[1 ∧ 0] ∧ [1 ∧ 0] 3z6−3z4+z2−9
9z6−z4+3z2−3

±0.752,

4(0.520 + 0.705i)

0.96
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Logic R(z) Poles W

[0 ∧ 1] ∧ [0 ∧ 1] 3z6−3z4+z2−9
9z6−z4+3z2−3

±0.752,

4(0.520 + 0.705i)

0.96

[0 ∧ 0] ∧ [0 ∨ 0] z4+3
3z4+1

4(0.537 + 0.537i) 1.10

[0 ∧ 0] ∧ [0 ∧ 0] 3z4−4z2+9
9z4−4z2+3

4(0.632 + 0.421i) 1.40

Logic R(z) Poles W

[(1 ∧ 1) ∧ (1 ∧ 1)]

∧

[(1 ∧ 1) ∧ (1 ∧ 1)]

9z6−7z4+3z2+27
27z6+3z4−7z2+9

±0.928i,

4(0.706 + 0.351i)

0.137

[(1 ∧ 0) ∧ (1 ∧ 0)]

∧

[(1 ∧ 0) ∨ (0 ∨ 0)]

81z12−36z10+153z8−112z6+291z4−108z2+243
243z12−108z10+291z8−112z6+153z4−36z2+81

4(0.416 + 0.763i),

4(0.704 + 0.669i),

4(0.835 + 0.338i)

0.72

[(0 ∧ 0) ∧ (0 ∧ 0)]

∧

[(0 ∧ 0) ∧ (0 ∧ 0)]

9z6−13z4+15z2−27
27z6−15z4+13z2−9

±0.794,

4(0.587 + 0.618i)

1.134
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A Appendix

A.1 The Bolo Subgraph

The bolo graph (which resembles a bolo tie) has a bound state, and 4 Right side active

eigenvectors. Using techniques established earlier we can quickly decide on the best eigen-

value and Left side eigenvector to use as an approximate initial state to ensure the quickest

search. For the purposes of this example, N = 106.

Figure 11: The Right side of this graph is the “Bolo Graph”.

We can get all the information we need from U0, so we can ignore the Left side entirely.

Define the basis vectors as:

|Ψ1〉 = |0, 1〉

|Ψ2〉 = |A, 1〉

|Ψ3〉 = |b〉

|Ψ4〉 = |1, A〉

|Ψ5〉 = |1, 0〉
And in this basis define the effect of U0 as:
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U0 =



0 0 0 0 −1

0 0 0 −1 0

2
3

2
3 −1

3 0 0

2
3 −1

3
2
3 0 0

−1
3

2
3

2
3 0 0


This is an equal scattering in three directions at vertex 1. The difference is that a signal

returns from the b arm in 1 time step, and from the A arm in 2.

Step 1) Find the eigenvalues and eigenvectors of the Right side.

The characteristic polynomial is C0(z) = z5 + 1
3z

4 − 2
3z

3 + 2
3z

2 − 1
3z − 1, and the five

eigenvalues are then found to be: λ =
{
−1,−1, 1, 13

(
1 + i2

√
2
)
, 13
(
1− i2

√
2
)}

.

Already we know that there must be at least one bound eigenstate with eigenvalue -1,

since the active eigenvector for each eigenvalue is unique and -1 is degenerate (thm. 4.8).

The eigenvectors, in the same order, are:

|bound(−1)〉 = 1√
3

[|A, 1〉 − |b〉+ |1, A〉]

∣∣r(−1)〉 =
√

3
8

[
|0, 1〉 − 1

3 |A, 1〉 −
2
3 |b〉 −

1
3 |1, A〉+ |1, 0〉

]
∣∣r(1)〉 = 1

2 [−|0, 1〉+ |A, 1〉 − |1, A〉+ |1, 0〉]∣∣∣∣r( 1+i2
√

2
3

)〉
=
√
3
4

[(
− 1

3 + 2
√
2

3 i
)
|0, 1〉+

(
− 1

3 + 2
√
2

3 i
)
|A, 1〉+

(
2
3 + 2

√
2

3 i
)
|b〉+ |1, A〉+ |1, 0〉

]
∣∣∣∣r( 1−i2

√
2

3

)〉
=
√
3
4

[(
− 1

3 −
2
√
2

3 i
)
|0, 1〉+

(
− 1

3 −
2
√
2

3 i
)
|A, 1〉+

(
2
3 −

2
√
2

3 i
)
|b〉+ |1, A〉+ |1, 0〉

]
All of the last four eigenvectors are active eigenvectors. This is immediately obvious

because 〈0, 1|r(j)〉 6= 0 for each of them, so they are hub adjacent. The λ0 = −1 active
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eigenvector can be found by first finding the unique bound eigenvector. What remains in

the −1 eigenspace must be the active eigenvector.

The active eigenspace is 6-dimensional and is spanned by these four Right side and the

two Left side active eigenvectors. Paired, or otherwise dependent on ε, eigenvectors are

always expressible as superpositions of these six active eigenvectors. Even if the Left side

were replaced with something more interesting, the four active eigenvectors listed above

would provide all the information necessary to analyze how the Right side interacts.

Step 2) Select a target eigenvalue.

We already have enough information to see which of these states, or rather which of

these eigenvalues, is the best target for a search. Because the optimal number of iterations

for a quadratic search is is given by m = b π2c
√
Nc (thm. 4.13), and since c = |〈`0|U1|r0〉| =

√
2|〈1, 0|r0〉| (thm. 4.12), the state that overlaps |1, 0〉 most will yield the shortest search

time. Additionally, a large value of c(j) means that the Right side active eigenvector is

concentrated closer to the hub, which means that states on the edge between 0 and 1 are

more likely to be measured, which is important if we assume that the states in G are

unmeasurable (i.e., cannot be the result of a measurement).
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√
3
4 = c(−1) =

√
2
∣∣〈1, 0|r(−1)〉∣∣√

1
2 = c(1) =

√
2
∣∣〈1, 0|r(1)〉∣∣√

3
8 = c

(
1
3
+i 2
√

2
3

)
=
√

2

∣∣∣∣〈1, 0
∣∣∣r( 1

3
+i 2
√

2
3

)〉∣∣∣∣
√

3
8 = c

(
1
3
−i 2
√

2
3

)
=
√

2

∣∣∣∣〈1, 0
∣∣∣r( 1

3
−i 2
√

2
3

)〉∣∣∣∣
Clearly, λ0 = −1 is the best choice, since max{c(j)} = c(−1) =

√
3
4 . We know (thm.

4.14) that there is always some c(j) ≥
√

2
d =

√
2
4 = 1√

2
, so a value of

√
3
4 is not surprising.

Step 3) Tune the Left side eigenvalues.

The Left side λ0 = −1 active eigenvector is
∣∣`(−1)〉 = 1√

2
(|out〉 − |in〉), and this eigen-

state is only possible when eiφ = λ20 = (−1)2 = 1. So, by setting φ = 0, the eigenvalues

on the Left become ±1. This does mean that, since both sides now share both 1 and -1

as eigenvalues, paired states can exist for both eigenspaces. However, by initializing with

the -1 eigenstate, the +1 state is unimportant. We want to match the -1 state because it

is the fastest (largest value of c(j)).

Step 4) Initialize the system with the state |Ψ〉 = 1√
2·106

∑106

j=1 (|0, j〉 − |j, 0〉).

To within an error of O(0.1%) = O
(

1√
106

)
, this is equal to the Left side λ0 = −1

eigenstate,
∣∣`(−1)〉 = 1√

2(106−1)

∑106

j=2 (|0, j〉 − |j, 0〉). Since we assume that we don’t know

to which edge the Bolo graph is attached, we can’t start entirely in the -1 Left active

eigenstate. That said, 〈`(−1)|Ψ〉 = 2(106−1)
2·103
√

(106−1)
= 0.9999995, so these two states are
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essentially equal.

Step 5) Iterate the time step operator, U.

Use U to step time forward m = 1813 =
⌊
π√
3

√
106
⌋

=
⌊

π
2c(−1)

√
106
⌋

times. This process

will cause the state to rotate from
∣∣`(−1)〉 to

∣∣r(−1)〉, to within an additional error of O(0.1%)

produced by the rounding of the floor function, and the fact that the paired eigenvectors,

|V ±〉, are only very closely approximated by combinations of
∣∣`(−1)〉 and

∣∣r(−1)〉.
Step 6) Measure the system. The probability of the particle being detected on the edge

between vertices 0 and 1 is p =
∣∣∣〈0, 1

∣∣∣r(−1)〉∣∣∣2 +
∣∣∣〈1, 0

∣∣∣r(−1)〉∣∣∣2 =
∣∣∣√3

8

∣∣∣2 +
∣∣∣√3

8

∣∣∣2 = 3
4 . This

“3
4” is good news, since it means that the algorithm won’t need to be repeated extensively.

Finally, the Left and Right eigenvalues need not be exact. According to theorem 5.5,

the search will still work more than half of the time when the difference between the Left

and Right eigenvalues, δ, satisfies δ < c(−1)
√

2
N =

√
3
4

√
2

106 ≈ 0.001. So, for N = 106, the

complex phase of the Left eigenvalue should be in the range [π − 0.001, π + 0.001].

Notice that, aside from finding the value of m and estimating errors, N (or ε) was

never considered at all. Indeed the the Left and Right sides are handled separately from

beginning to end.
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A.2 Proofs from section 3 (Algebraic Functions and the Behavior of

Zeros)

Theorem. 3.1 If F (z) is globally analytic in an annulus around 0, and is m-valued,

then F (z) can be expressed as a Puiseux series (a Laurent series with certain rational

powers) of the form F (z) =
∑∞

n=−∞Anz
n
m . Moreover, the m different branches of F ,

F (j), can be separated by an arbitrary branch cut through the annulus and expressed as

F (j)(z) =
∑∞

n=−∞Anω
jnz

n
m , where ω is a primitive mth root of unity, ω = ei

2π
m .

Proof Consider the annulus in the z-plane defined by Dz = {z : 0 < r < |z| < R}, and

the mapping z = ζm. Define G(ζ) ≡ F (ζm) on the annulus Dζ = {ζ : 0 < r
1
m < |ζ| < R

1
m }.

G inherits its analyticity from F , since d
dζG(ζ) = d

dζF (ζm) = dz
dζ

d
dzF (z). In addition, G is

single valued. Defining any one of the branches of F to be the principle branch, f0, and

taking the value of G(x) = F (0)(xm), x ∈ R, we can then define G(z) to be the terminal

value of any analytic continuation of G from x. While F (z) has m branches, G(ζ) has m

corresponding 2π
m wedges.

Continuation along a path, Cζ , that starts at x ∈ R+ and traverses once around the

circle |ζ| = x corresponds to traversing the circle Cz, defined by |z| = xm, in Dz, m times.

But since F (z) is m valued, traversing |z| = xm m times will return F to the principle

branch. Thus, G(xe2πi) = G(x), and more generally G(ζe2πi) = G(ζ), for ζ ∈ Dζ .

Since G(ζ) is analytic and single-valued in the annulus Dζ , it admits a Laurent series:

G(ζ) =
∑∞

n=−∞Anζ
n. Therefore, the globally analytic m-valued function F can be written
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as F (z) = G(z
1
m ) =

∑∞
n=−∞Anz

n
m .

Notice that if the initial branch, F (0)(z) =
∑∞

n=−∞Anz
n
m , is analytically continued

once around Cz a 2π phase is added to z and we find the function taking values on the

next branch cut (so a very natural ordering of the branch cuts is here defined by subsequent

loops around z = 0). We find that F (1)(z) =
∑∞

n=−∞An(e2πi)
n
m z

n
m =

∑∞
n=−∞Anω

nz
n
m ,

where ω = ei
2π
m . j loops around z = 0 yields F (j)(z) =

∑∞
n=−∞Anω

jnz
n
m .

�

Theorem. 3.2 If P (z, ε) is a degree d polynomial in z, then there exists an open disk D,

containing 0, and d analytic functions, f (1), · · · , f (d), such that:

(i) P (f (k)(ε), ε) = 0, ε ∈ D

(ii) f (k)(0) = λ(k)

(iii) P (λ, ε) = 0, ε ∈ D ⇒ λ = f (k)(ε), for some k

Note that f (k) are indexed functions, and not necessarily branches of the same globally

analytic function. While it is true that when P (z, ε) is not simultaneously reducible in

both z and ε, the zeros (as functions or ε) are all branches of the same globally analytic

function, it is not necessary to know that here.

Proof Since the zeros of P (z, 0) are distinct, ∃δ such that |z − λ(k)| ≤ δ contains no

zeros other than λ(k). Define Ck to be the loop defined by |z−λ(k)| = δ. By the argument

principle 1
2πi

∮
Ck

∂zP (z,0)
P (z,0) dz = 1. Here we are assuming that the zeros of P (z, 0) are all of

degree 1, and there is only one zero inside of Ck. The case of higher degree zeros is dealt
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with in theorem 3.3.

The zeros of P (z, ε) are continuous functions of the coefficients of P (z, ε) (other than

ad at ad = 0), and the coefficients of P (z, ε) are continuous functions of ε. By definition

∃σ > 0 such that when ε < σ, |f (k)(ε) − λ(k)| < δ. In other words, the zero will stay

within Ck, so for small values of ε, 1
2πi

∮
Ck

∂zP (z,ε)
P (z,ε) dz = 1. Notice that we’ve only used the

definition of fk(ε) as the zero of P (z, ε) corresponding to λ(k), independent of its analytic

properties.

This integral can be used to pick out the value of the zero, f (k)(ε), by multiplying the

argument of the integral by z. By the residue calculus:

f (k)(ε) = 1
2πi

∮
Ck
z ∂zP (z,ε)

P (z,ε) dz

The important thing to notice here is that, since P (z, ε) is a polynomial of ε, near ε = 0

fk(ε) is analytic.

Repeating this process for each of the d simple zeros of P (z, 0) yields the d analytic

functions f (1)(ε), · · · , f (d)(ε) that are the zeros of P (z, ε).

�

Theorem. 3.3 If P (z, ε) is an irreducible polynomial in z and ε, then all of the double

roots of P are isolated in the ε-plane. That is, if for some value of ε0 P (z, ε0) has a double

root, then there exists δ > 0 such that when 0 < |ε− ε0| < δ, P (z, ε) does not have a double

root in z.

The proof of this requires the introduction of a new object: the discriminant.
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Definition The “discriminant of P”, D[P ], is a function of the coefficients of a poly-

nomial P , and D[P ] ≡ a2d−2d

∏
j>k(λ

(j) − λ(k))2, where ad is the leading coefficient of P ,

and {λ(k)} are the zeros of P .

Clearly the discriminant is zero if and only if P has a repeated root, and this is the

property that makes it so appealing.

A known fact about the discriminant is that it is the resultant of P and ∂zP , which is

in some sense like being the gcd(P, ∂zP ). One of the methods of finding the discriminant

is very much like Euclid’s algorithm for finding the gcd of two numbers, but rather than

finding combinations of the two numbers that produce the lowest non-zero value, the dis-

criminant involves finding the combination of polynomials that produces the lowest degree

non-zero polynomial. For example, if P (z) = Az2 +Bz +C, then ∂zP (z) = 2Az +B, and

2P − z∂zP = Bz + 2C

⇒ 2A(2P − z∂zP )−B∂zP = 4AC −B2

Which is the well-known discriminant for quadratic equations. So, D[P ] = B2−4AC =

(−4A)P + (2Az +B)∂zP .

The things to keep in mind here are:

i) D = 0 if and only if P (z) has a repeated zero.

ii) D is not a function of z.

iii) D is a polynomial in the coefficients of P .

iv) If the coefficients of P are polynomials of ε, then so is D.

Proof D(ε) inherits its analyticity from P (z, ε). Because D is analytic, if it has a non-
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isolated zero, then it must be identically zero. But if the discriminant of P is always zero,

then P always has a double root, and must therefore be reducible into factors. Because

the original assumption was that P (z, ε) is irreducible, D cannot be identically zero, and

therefore any zeros of D(ε) are isolated. This means that changing ε splits a multiple

zero into simple zeros in general, and if P (z, 0) has a repeated root, then within a small

punctured disk about ε = 0, P (z, ε) has only simple roots.

�

Theorem. 3.4 In the neighborhood of a zero of P (z, ε) of multiplicity s > 1, the zeros take

the form f (j)(ε) =
∑∞

n=−∞Anω
jnε

n
H , where H < s. Specifically, the zeros are branches of

one or more Hi-valued global analytic functions, with the given Puiseux series expansion,

such that
∑
Hi = s.

Proof Without loss of generality, assume that the zero of multiplicity s is found at ε = 0,

so f (1)(0) = f (2)(0) = · · · = f (s)(0). In the last theorem it was shown that within a small

disk excluding ε = 0 these s functions are different. For some ε0 within this punctured disk

we can apply theorem 3.2 verbatim to show that f (1)(ε), · · · , f (s)(ε) are analytic functions.

However, they may not necessarily be single-valued. If they are analytically contin-

ued in a loop around ε = 0 they may come back with a different value. By definition

P (f (k)(ε), ε) = 0, and there are only d possible such functions. As a result, if f (k)(ε)

does not return to its original value it must return as one of the other functions. There-

fore, looping around ε = 0 permutes f (1), · · · , f (s). If H loops brings fk back to its
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original value, then f (k) is a branch of an H-valued global analytic function. Clearly,

H < s since there are only s available functions to permute. The s different functions

can be grouped according to which of the global analytic functions they’re branches of,

{f (1), f (2), · · · , f (H1)}{f (H1+1), · · · , f (H1+H2)} · · ·, where
∑
Hi = s

Since these functions are branches of a global analytic function in an annulus, by

theorem 3.4 these functions must be of the form f (j)(ε) =
∑∞

n=−∞Anω
jnε

n
H .

�

Proof That the Characteristic Polynomial is Affine in ε

For a hub vertex with reflection coefficients r and t, we know that unitarity implies |r|2 +

(N − 1)|t|2 = 1 and 2Re(r∗t) + (N − 2)|t|2 = 0. The most commonly used solution, and

the one assumed throughout this thesis, is r = −1 + 2ε, t = 2ε. The generalized solution is

handled in section 7.

In the automorphism graph we found that the reflection coefficients are RL = r +

(N − 2) t = 1 − 2ε and RR = r = −1 + 2ε, for the Left and Right sides respectively, and

the transmission coefficients between the two sides is T = t
√
N − 1 = 2

√
ε− ε2.

Theorem. 3.5 Assume that U is a time step matrix as described so far. That is, there is

a Left and Right side and these are connected only through a hub vertex with N edges where

the reflection and transmission coefficients are r = −1 + 2
N and t = 2

N . Then C(z, ε) =

|U− zI| is an affine polynomial of ε = 1
N , and can be written C(z, ε) = C0(z) + εf(z).
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Proof First, some cumbersome notation. Define |M| to be the determinant of the matrix

M, |M|(i,j) to be the determinant with the (i, j) term replaced with a zero, and |M|<i,j>

to be the determinant of M with the ith column and jth row removed. Note that if M is

an n× n matrix, then |M|(i,j) is also n× n, and |M|<i,j> is (n− 1)× (n− 1).

In what follows we will make use of the fact that we can remove an element from the

determinant of M, but must include a determinant of a minor matrix. For example,∣∣∣∣∣∣∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣∣∣∣∣∣∣
= a

∣∣∣∣∣∣∣∣
e f

h i

∣∣∣∣∣∣∣∣− d
∣∣∣∣∣∣∣∣
b c

h i

∣∣∣∣∣∣∣∣+ g

∣∣∣∣∣∣∣∣
b c

e f

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

a b c

d e f

0 h i

∣∣∣∣∣∣∣∣∣∣∣∣
+ g

∣∣∣∣∣∣∣∣
b c

e f

∣∣∣∣∣∣∣∣
This is can be more succinctly written, |M| = |M|(1,3)+g|M|<1,3>. Notice that |M|(1,3)

is 3× 3, while |M|<1,3> is 2× 2.

If we list all of the Left side states first, then

U ≡

 UL Tij

Tkl UR


where UL and UR are the restrictions of U to the Left and Right sides, and Tij and Tkl

are all zero except for a single T = 2
√
ε− ε2 at the indicated coordinate. Note that if the

T ’s are at the coordinates (i, j) and (k, l), then the reflection coefficient for the left side,

RL, can be found at (k, j) and similarly RR can be found at (i, l). It is now straightforward

to see,

C(z, ε) =

∣∣∣∣∣∣∣∣
UL − zI Tij

Tkl UR − zI

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣
UL − zI 0

Tkl UR − zI

∣∣∣∣∣∣∣∣+ (−1)i+jT

∣∣∣∣∣∣∣∣
UL − zI 0

Tkl UR − zI

∣∣∣∣∣∣∣∣
<i,j>

=



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
+(−1)k+lT

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<k,l>

+(−1)i+jT

∣∣∣∣∣∣∣∣
UL − zI 0

Tkl UR − zI

∣∣∣∣∣∣∣∣
<i,j>

There’s a slight abuse of notation in this step. Since the third term has had the jth

row removed, the coordinate of Tkl is not (k, l), but is instead (k, l − 1). It follows that,

=



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣+ (−1)k+lT

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<k,l>

+(−1)i+jT

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,j>

+(−1)i+j+k+(l−1)T 2

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,j>,<k,l>

The second and third terms of this last line are both equal to zero. In the second term

the lth column is removed, but since UR−zI is a square matrix, removing a row leaves the

columns linearly dependent. Thus the matrix is degenerate, and the determinant is zero.

A similar argument holds for the third term. Both of the non-zero blocks of the fourth

term are square matrices, and are therefore the determinant is not necessarily zero. We
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now have,

C(z, ε) =

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣− (−1)i+j+k+lT 2

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,j>,<k,l>

(53)

This is enough to show that C(z, ε) is a polynomial in both z and ε. However, this can

be taken a step further. RR is the i, l term and RL is the k, j term. Repeating the same

trick we find that∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l)

+ (−1)i+lRR

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>

=



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l)

+(−1)i+lRR

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,(k,j)

+(−1)j+k+i+lRRRL

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,<k,j>
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=



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),(k,j)

+(−1)j+kRL

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),<k,j>

+(−1)i+lRR

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,(k,j)

+(−1)i+j+k+lRRRL

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,<k,j>

By definition we know that∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,<k,j>

=

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,j>,<k,l>

since these matri-

ces are missing the same rows and columns. We can now write,

C(z, ε) =



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),(k,j)

+(−1)j+kRL

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),<k,j>

+(−1)i+lRR

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,(k,j)

+(−1)i+j+k+l
(
RRRL − T 2

) ∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,<k,j>

And finally, using the fact that RR = −1 + 2ε, RL = 1− 2ε, and T = 2
√
ε− ε2,
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C(z, ε) =



∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),(k,j)

+(−1)j+k(1− 2ε)

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
(i,l),<k,j>

−(−1)i+l(1− 2ε)

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,(k,j)

−(−1)i+j+k+l

∣∣∣∣∣∣∣∣
UL − zI 0

0 UR − zI

∣∣∣∣∣∣∣∣
<i,l>,<k,j>

(54)

it is worth noting that RRRL − T 2 = −1 is not a coincidence dependent on how the

solutions to the unitarity condition are chosen, but is in fact the unitarity condition itself.

Thus, if we had used a solution different from r = −1 + 2ε, t = 2ε, we would find that

RRRL − T 2 is always a constant.

The long manipulation in this proof is nothing more than a careful removal of every ε-

dependent element of U, so the explicit ε in the above equation is in fact the only remaining

ε. Clearly, the characteristic polynomial is a polynomial in z and an affine polynomial in

ε. With C0(z) ≡ |U0 − zI| we can now write

C(z, ε) ≡ |U− zI| = C0(z) + εf(z) (55)

�
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A.3 Proofs from section 4 (Pairing)

Theorem. 4.2 ||P(k)(ε)−P(k)(0)|| = O(
√
ε) and |V (k)(ε)〉 = |V (k)(0)〉+O(

√
ε).

Proof The “resolvent” is a matrix defined as R(ζ, ε) = (U− ζI)−1.

When ζ0 is not an eigenvalue of U,

U− ζI

= U0 − ζ0I− (ζ − ζ0)I + (U−U0)

= U0 − ζ0I− (ζI− ζ0I + U−U0)R(ζ0, 0)(U0 − ζ0I)

= [I− (ζI− ζ0I + U−U0)R(ζ0, 0)](U0 − ζ0I)

⇒ R(ζ, ε) = R(ζ0, 0)[I− ((ζ − ζ0)I + U−U0)R(ζ0, 0)]−1

Since U0 is a known unitary matrix, for which ζ0 is not an eigenvalue, we know that

R(ζ0, 0) is well-defined. The entries of U can be expanded as power series in
√
ε, and

since the entries of U are continuous functions of ε, ||U − U0|| can be made arbitrarily

small. Therefore, for small values of ε and (ζ − ζ0) we find that ||(ζ − ζ0)I + (U−U0)|| <

||R(ζ0, 0)||−1, and therefore R(ζ, ε) can be written as a double power series in ζ and
√
ε.

Interesting things happen when ζ = λ(k). The projection operator onto the λ(k)-

eigenspace can be expressed as P(k) = − 1
2πi

∮
R(ζ, ε)dζ, where the integral is taken over

a curve that loops once around λ(k), and no other eigenvalues. This can be shown by

applying P(k) to the eigenvector |V (j)〉.

Since |V (j)〉 = R(ζ, ε)(U−ζI)|V (j)〉 = (λ(j)−ζ)R(ζ, ε)|V (j)〉 we know that R(ζ, ε)|V (j)〉 =

1
λ(j)−ζ |V

(j)〉.

It follows that,
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P(k)|V (j)〉

= − 1
2πi

∮
R(ζ, ε)dζ|V (j)〉

= − 1
2πi

∮
R(ζ, ε)|V (j)〉dζ

= − 1
2πi

∮
1

λ(j)−ζ |V
(j)〉dζ

= 1
2πi

∮
1

ζ−λ(j)dζ|V (j)〉

= δjk|V (j)〉
The last step follows from the residue theorem, and the assumption that the integral is

over a path that encloses only λ(k). [P(k)]2 = P(k), so P(k) is a projection, and P(j)P(k) =

δjkP
(k), by the orthogonality of eigenvectors with different eigenvalues. Notice that this

is not a projection onto a particular eigenvector with eigenvalue λ(k), but is a projection

onto the eigenspace for λ(k).

The important thing is that since R(ζ, ε) is expressible as a power series in
√
ε, then

so is P(k).

Away from ε = 0 the eigenvalues are distinct, and thus the eigenprojections are 1-

dimensional and can be written P(k) = |V (k)〉〈V (k)|. So if the entries of P(k) take the form

of
∑∞

n=0 cn(
√
ε)n, then so do the entries in the corresponding eigenvector.

�

Theorem. 4.4

U|V (k)(ε)〉 = λ(k)(ε)|V (k)(ε)〉 for all k. Define S = span{|V (1)(0)〉, · · · , |V (j)(0)〉} to be

some subset of eigenvectors of U0, and PS as the projection operator onto S.
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If |u〉 ∈ S, then ∀m

i) PS⊥Um
0 |u〉 = 0

ii) PS⊥Um|u〉 = O(
√
ε)

That is, if |u〉 ∈ S, then Um
0 |u〉 is also in S, and Um|u〉 is almost entirely in S.

Proof i)

|u〉 ∈ S

⇒ |u〉 = α1|V (1)(0)〉+ · · ·+ αj |V (j)(0)〉

⇒ Um
0 |u〉 = α1

[
λ(1)(0)

]m |V (1)(0)〉+ · · ·+ αj
[
λ(j)(0)

]m |V (j)(0)〉

⇒ Um
0 |u〉 ∈ S

ii)

Notice first that U0 is unitary, so ||U0|| = 1. Since it has entries of O(
√
ε), ||U−U0|| =

O(
√
ε) and therefore ||U|| ≤ ||U0||+O(

√
ε) = 1+O(

√
ε). When on the “unitary preserving

path” (ε ∈ R+, 0 ≤ ε ≤ 1
2), ||U|| = 1.

|u〉 ∈ S

⇒ |u〉 = α1|V (1)(0)〉+ · · ·+ αj |V (j)(0)〉

= |u〉 = α1|V (1)(ε)〉+ · · ·+ αj |V (j)(ε)〉+O(
√
ε) thm. 4.3

⇒ Um|u〉 = α1[λ
(1)(ε)]m|V (1)(ε)〉+ · · ·+ αj [λ

(j)(ε)]m|V (j)(ε)〉+ UmO(
√
ε)

= α1[λ
(1)(ε)]m|V (1)(ε)〉+ · · ·+ αj [λ

(j)(ε)]m|V (j)(ε)〉+O(
√
ε) unitarity

= α1[λ
(1)(ε)]m|V (1)(0)〉+ · · ·+ αj [λ

(j)(ε)]m|V (j)(0)〉+O(
√
ε) thm. 4.3

Since α1[λ
(1)(ε)]m|V (1)(0)〉+ · · ·+ αj [λ

(j)(ε)]m|V (j)(0)〉 ∈ S, PS⊥Um|u〉 = O(
√
ε).

�
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Theorem. 4.8

Assume that the Right side λ0-eigenspace of U0 is D dimensional.

1) If the λ0-eigenspace of U0 is bound in G, then the λ0-eigenspace of U is D dimen-

sional and all of the associated eigenvectors are constant. This is case i) of the Three Case

Theorem.

2) If the λ0-eigenspace of U0 is in contact with the hub vertex, then the Right sided

λ0-eigenspace of U is D-1 dimensional and the D-1 associated eigenvectors are constant

and bound in G. This leaves one eigenvector which is non-constant in ε, and is in contact

with the hub vertex. This is either case ii or case iii of the Three Case Theorem.

Proof The first result is trivial. If an eigenvector is bound in G, then varying ε (which

only affects reflection and transmission across the hub vertex) can’t have any impact on it.

So, for eigenvectors bound in G, U|V 〉 = U0|V 〉 = λ0|V 〉.

For the second result we assume that the λ0-eigenspace is in contact with the hub

vertex, and we will use the set up described in section 2. Define |V 〉 = α|in〉 + β|out〉 +

γ|1, 0〉 + δ|0, 1〉 + |G〉, where |G〉 = PG|V 〉 and U|V 〉 = λ0|V 〉. So |V 〉 is in contact with

the hub vertex, is an eigenvector of U, and has a constant eigenvalue. It may seem too

restrictive to assume that the Left side has a particular form, but we will find that it makes

no difference.

The rough idea of the proof is to show that if |V0〉 is a hub-adjacent λ0 eigenvector of

U0, then |V 〉 cannot be a λ0 eigenvector of U. Instead, the eigenvalue must be a non-
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constant function of ε. Since a λ0 eigenvector is lost when we change from the ε = 0 case

to the ε 6= 0 case, we can say that if the λ0-eigenspace of U0 is D dimensional, then the

λ0-eigenspace of U is D-1 dimensional.

Assume that there is no Left side λ0-eigenspace. By the Three Case theorem and

theorem 4.7, the only possibilities are that all of the eigenvectors in the λ0 family are

constant, or there is one unique non-constant eigenvector. Since the λ0 space of U0 is

entirely Right sided, |V0〉 takes the form |V0〉 = γ0|1, 0〉+ δ0|0, 1〉+ |G0〉. It follows that,

U0|V0〉 = λ0|V0〉

⇒ −γ0|0, 1〉+ U0 [δ0|0, 1〉+ |G0〉] = γ0λ0|1, 0〉+ δ0λ0|0, 1〉+ λ0|G0〉

⇒


γ0 = −δ0λ0

U0 [δ0|0, 1〉+ |G0〉] = γ0λ0|0, 1〉+ λ0|G0〉
Keep both of these innocent looking results in mind for a moment.

Now extending to the ε 6= 0 case,

U|V 〉 =

α
[
(1− 2ε)|out〉+ 2

√
ε− ε2|0, 1〉

]
+βeiφ|in〉+γ

[
(−1 + 2ε)|0, 1〉+ 2

√
ε− ε2|out〉

]
+U [δ|0, 1〉+ |G〉]

U|V 〉 = λ0|V 〉 ⇒



|in〉 : βeiφ = αλ0

|out〉 : α(1− 2ε) + γ2
√
ε− ε2 = βλ0

|0, 1〉 : α2
√
ε− ε2 + γ(−1 + 2ε) = δλ0

U [δ|0, 1〉+ |G〉] = γλ0|1, 0〉+ λ0|G〉

This is difficult to solve directly, but fortunately the last of these four relations can be

used to eliminate a variable. Notice that U [δ|0, 1〉+ |G〉] = U0 [δ|0, 1〉+ |G〉] since both
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|0, 1〉 and |G〉 are unaffected by the hub vertex. Beginning with the last relation from both

the ε = 0 and ε 6= 0 cases,
U0 [δ0|0, 1〉+ |G0〉] = γ0λ0|0, 1〉+ λ0|G0〉

U [δ|0, 1〉+ |G〉] = γλ0|1, 0〉+ λ0|G〉

⇒


U0 [δ0|0, 1〉+ |G0〉] = γ0λ0|0, 1〉+ λ0|G0〉

U0 [δ|0, 1〉+ |G〉] = γλ0|1, 0〉+ λ0|G〉

⇒ [δ∗0〈0, 1|+ 〈G0|] U†0U0 [δ|0, 1〉+ |G〉] = (γ∗0λ
∗
0〈1, 0|+ λ∗0〈G0|) (γλ0|0, 1〉+ λ0|G〉)

⇒ δ∗0δ〈0, 1|0, 1〉+ 〈G0|G〉 = γ∗0γλ
∗
0λ0〈1, 0|1, 0〉+ λ∗0λ0〈G0|G〉

⇒ δ∗0δ + 〈G0|G〉 = γ∗0γ + 〈G0|G〉

⇒ δ∗0δ = γ∗0γ

⇒ δ∗0δ = (−δ∗0λ∗0) γ

⇒ δ = −λ∗0γ

⇒ −δλ0 = γ

So we now have four straightforward equations and four variables:

βeiφ = αλ0

α(1− 2ε) + γ2
√
ε− ε2 = βλ0

α2
√
ε− ε2 + γ(−1 + 2ε) = δλ0

γ = −δλ0
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⇒



β = αλ0e
−iφ

α(1− 2ε) + (−δλ0)2
√
ε− ε2 = βλ0

α2
√
ε− ε2 + (−δλ0)(−1 + 2ε) = δλ0

⇒


α(1− 2ε)− δλ02

√
ε− ε2 = (αλ0e

−iφ)λ0

α2
√
ε− ε2 = δλ02ε

⇒


α(1− λ20e−iφ − 2ε) = δλ02

√
ε− ε2

α2
√
ε− ε2 = δλ02ε

⇒


α(1− λ20e−iφ − 2ε) = δλ02

√
ε− ε2

δ = α
√
ε−ε2
λ0ε

⇒ α(1− λ20e−iφ − 2ε) =
(
α
√
ε−ε2
λ0ε

)
λ02
√
ε− ε2

⇒ α(1− λ20e−iφ − 2ε) = α(2− 2ε)

⇒ α(λ20 + eiφ) = 0

Unless φ was specifically chosen so that eiφ +λ20 = 0 it follows that α = β = γ = δ = 0,

which contradicts the statement that |V0〉 is in contact with the hub vertex. What has just

been shown is that if |V0〉 is a λ0 eigenvector of U0 in contact with the hub vertex, then

|V 〉 either has a different eigenvalue or eiφ + λ20 = 0.

First assume that λ20 + eiφ 6= 0 and λ20 − eiφ 6= 0 (there is no Left side λ0-eigenspace).

If the λ0 eigenspace of U0 is in contact with the hub vertex, then by moving from the
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ε = 0 case to the ε 6= 0 case at least one eigenvector is lost. Since λ20 − eiφ 6= 0, by thm.

4.7 there can be no pairing. The Three Case Theorem then implies that there is at most

only one non-constant eigenvalue in the λ0 family. So, only one eigenvector is lost and if

the Right side λ0-eigenspace of U0 is D dimensional, then the Right side λ0-eigenspace of

U must be D-1 dimensional.

�

The Fundamental Pairing Theorem

Theorem. 4.10 The λ0-eigenspace is in contact with both the Left and Right sides of

the hub vertex if and only if there exists paired vectors |V ±〉 with eigenvalues of the form

λ0e
±ic
√
ε +O(ε).

Proof Both sides of the λ0-eigenspace have an active eigenvector, because both sides

are in contact with the hub (thm. 4.8). Define |`0〉 and |r0〉 to be the Left and Right side

active eigenvectors.

Assume that |P 〉 and |Q〉 are eigenvectors with eigenvalues in the λ0 family, and that

both are in contact with the hub vertex. They may be paired, or one or both may be

constant. |P 〉 and |Q〉 are in the active subspace, and |P0〉 and |Q0〉 are in the λ0-eigenspace

of U0, so it follows that span{|P0〉, |Q0〉} = span{|`0〉, |r0〉}. Define the eigenvalues of |P 〉

and |Q〉 to be λ0e
ip(ε) and λ0e

iq(ε), where p(0) = q(0) = 0.

Because the spans are equal and two dimensional there exists a transformation between

the orthonormal bases, {|`0〉, |r0〉} and {|P0〉, |Q0〉}, which we can write
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 |`0〉
|r0〉

 =

 eiγ cos(ω) eiδ sin(ω)

eiγ+iη sin(ω) −eiδ+iη cos(ω)


 |P0〉

|Q0〉

.

By carefully choosing the relative phases between all four vectors, we can assume with-

out loss of generality that

 |`0〉
|r0〉

 =

 cos(ω) sin(ω)

− sin(ω) cos(ω)


 |P0〉

|Q0〉

, with 0 ≤ ω ≤ π
2 ,

and use this to define |`〉 and |r〉 as:

 |`〉
|r〉

 =

 cos(ω) sin(ω)

− sin(ω) cos(ω)


 |P 〉
|Q〉

.

Notice that while |`0〉 and |r0〉 are eigenvectors of U0, |`〉 and |r〉 are not eigenvectors of

U, they’re merely defined in terms of the eigenvectors |P 〉 and |Q〉. Since eigenvectors can

be expressed as power series in
√
ε, we can write |`〉 = |`0〉+

√
ε|`1〉+ O(ε), and similarly

for |r〉.

In the {|P 〉, |Q〉} basis U = λ0

 eip(ε) 0

0 eiq(ε)


and a similarity transform allows us to write this in the {|`〉, |r〉} basis,

U =

 cos(ω) sin(ω)

− sin(ω) cos(ω)


 λ0e

ip(ε) 0

0 λ0e
iq(ε)


 cos(ω) − sin(ω)

sin(ω) cos(ω)



= λ0

 cos(ω) sin(ω)

− sin(ω) cos(ω)


 cos(ω)eip(ε) − sin(ω)eip(ε)

sin(ω)eiq(ε) cos(ω)eiq(ε)



= λ0

 cos2(ω)eip(ε) + sin2(ω)eiq(ε) sin(ω) cos(ω)
(
−eip(ε) + eiq(ε)

)
sin(ω) cos(ω)

(
−eip(ε) + eiq(ε)

)
cos2(ω)eiq(ε) + sin2(ω)eip(ε)



Using the trig identities cos2(ω) = 1+cos(2ω)
2 , sin2(ω) = 1−cos(2ω)

2 , and sin(ω) cos(ω) =

133



sin(2ω)
2 we find

U = λ0

2

 eip(ε) + eiq(ε) + cos(2ω)
(
eip(ε) − eiq(ε)

)
sin(2ω)

(
−eip(ε) + eiq(ε)

)
sin(2ω)

(
−eip(ε) + eiq(ε)

)
eip(ε) + eiq(ε) − cos(2ω)

(
eip(ε) − eiq(ε)

)


This is enough to determine the value of ω.

Notice that 2|U12| = | sin(2ω)||eip(ε)−eiq(ε)| and |U11−U22| = | cos(2ω)||eip(ε)−eiq(ε)|. It

follows that 4|U12|2
4|U12|2+|U11−U22|2 = sin2(2ω)|eip(ε)−eiq(ε)|2

sin2(2ω)|eip(ε)−eiq(ε)|2+cos2(2ω)|eip(ε)−eiq(ε)|2 = sin2(2ω)

sin2(2ω)+cos2(2ω)
=

sin2(2ω).

Or more simply, sin2(2ω) =

(
1 +

∣∣∣U11−U22
2U12

∣∣∣2)−1. We can calculate |U11 −U22| and

|U12| directly:
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|U11 −U22|

= |〈`|U|`〉 − 〈r|U|r〉|

= |〈`0|U0|`0〉 − 〈r0|U0|r0〉

+
√
ε (〈`1|U0|`0〉+ 〈`0|U1|`0〉+ 〈`0|U0|`1〉 − 〈r1|U0|r0〉 − 〈r0|U1|r0〉 − 〈r0|U0|r1〉) |+O(ε)

= |λ0〈`0|`0〉 − λ0〈r0|r0〉

+
√
ε (λ0〈`1|`0〉+ 〈`0|U1|`0〉+ λ0〈`0|`1〉 − λ0〈r1|r0〉 − 〈r0|U1|r0〉 − λ0〈r0|r1〉) |+O(ε)

= |λ0 − λ0 +
√
ε (λ0[(〈`1|`0〉+ 〈`0|`1〉)− (〈r1|r0〉+ 〈r0|r1〉)] + 〈`0|U1|`0〉 − 〈r0|U1|r0〉) |+O(ε)

= |0 +
√
ε (λ0[0− 0] + 〈`0|U1|`0〉 − 〈r0|U1|r0〉) |+O(ε)

=
√
ε|〈`0|U1|`0〉 − 〈r0|U1|r0〉|+O(ε)

=
√
ε|0− 0|+O(ε)

= O(ε)

In the last step here we used the fact that |`0〉 and |r0〉 are one-sided, and since U1 is

only involved in transmitting between the Left and Right sides, 〈`0|U1|`0〉 = 〈r0|U1|r0〉 = 0.

|U12|

= |〈r|U|`〉|

= |〈r0|U0|`0〉+
√
ε (〈r1|U0|`0〉+ 〈r0|U1|`0〉+ 〈r0|U0|`1〉) |+O(ε)

= |λ0〈r0|`0〉+
√
ε (λ0〈r1|`0〉+ λ0〈r0|`1〉+ 〈r0|U1|`0〉) |+O(ε)

=
√
ε|〈r0|U1|`0〉|+O(ε)

By construction, 〈P |Q〉 = 0 ⇒ 〈r|`〉 = 0, and in the last step this fact is used twice.
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First 〈r0|`0〉 = 0 and second, by theorem 4.6, 〈r0|`1〉+ 〈r1|`0〉 = 0. By assumption, |`0〉 and

|r0〉 are adjacent to the hub vertex, 〈r0|U1|`0〉 6= 0.

So we now have that |U12| = O(
√
ε) and |U11 − U22| = O(ε). It follows that

sin2(2ω) =

(
1 +

∣∣∣U11−U22
2U12

∣∣∣2)−1 = (1 +O(ε))−1 ⇒ sin2(2ω) = 1, since ω was originally de-

fined independently of ε (e.g., cos(ω) = 〈`0|V +
0 〉). So, sin(2ω) = ±1, and since 0 ≤ ω ≤ π

2 ,

we find that ω = π
4 . Now U takes a much simpler form in the {|`〉, |r〉} basis:

U = λ0
2

 (eip(ε) + eiq(ε)) (eip(ε) − eiq(ε))

(eip(ε) − eiq(ε)) (eip(ε) + eiq(ε))

+O(ε)

Since |eip(ε) − eiq(ε)| = 2|U12| = O(
√
ε) it follows that p(ε) − q(ε) = O(

√
ε). So,

p(ε) = O(
√
ε) or q(ε) = O(

√
ε). Without loss of generality, assume that p(ε) = c

√
ε+O(ε).

In addition,

U11 = 〈`|U|`〉

= 〈`0|U0|`0〉+
√
ε (〈`1|U0|`0〉+ 〈`0|U1|`0〉+ 〈`0|U0|`1〉) +O(ε)

= λ0〈`0|`0〉+
√
ε (λ0〈`1|`0〉+ 0 + λ0〈`0|`1〉) +O(ε)

= λ0 + λ0
√
ε (〈`1|`0〉+ 〈`0|`1〉) +O(ε)

= λ0 +O(ε)

Since λ0
2 (eip(ε) + eiq(ε)) = λ0 + O(ε), p(ε) + q(ε) has no

√
ε term, and therefore q(ε) =

−c
√
ε+O(ε).

Clearly, this situation is case iii in the three-case theorem, and since there are only two

non-constant eigenvalues, and all eigenvalues that vary by O(
√
ε) are paired with another

eigenvalue, these two eigenvalues are paired to each other (and not merely coincidentally
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related). So by definition |P 〉 and |Q〉 are paired eigenvectors. In fact, they are |V ±〉.

The reverse implication, that the λ0-eigenspace of U0 is adjacent to both sides of the

hub vertex if there exists paired eigenvectors, is a direct result of theorem 4.7.

�

A.4 Proofs from section 5 (Tolerances)

With some foresight, define:
|V +(δ, ε)〉 = cos (ω) |`0〉+ sin (ω) |r0〉+O(δ,

√
ε)

|V −(δ, ε)〉 = − sin (ω) |`0〉+ cos (ω) |r0〉+O(δ,
√
ε)

Theorem. 5.4 The angle between the paired eigenvectors and the active eigenvectors, ω,

is to lowest order a function of δ2

4c2ε
.

Proof The (arbitrary) phase of each of the eigenvectors can be carefully chosen so that

each of these amplitudes are real, and so that 0 ≤ ω ≤ π
2 .

Define


|`〉 = cos (ω) |V +(δ, ε)〉 − sin (ω) |V −(δ, ε)〉

|r〉 = sin (ω) |V +(δ, ε)〉+ cos (ω) |V −(δ, ε)〉

and define


|V +(δ, ε)〉 = cos (ω) |`〉+ sin (ω) |r〉

|V −(δ, ε)〉 = − sin (ω) |`〉+ cos (ω) |r〉
.

|`〉 and |r〉 are projections of the corresponding active eigenvectors onto the space

spanned by the paired eigenvectors. As such, Span{|`〉, |r〉} = Span{|V +〉, |V −〉} is an

invariant subspace of U.
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U

 |`〉

|r〉


=

 cos (ω) sin (ω)

− sin (ω) cos (ω)


 λ+ 0

0 λ−


 cos (ω) − sin (ω)

sin (ω) cos (ω)


 |`〉

|r〉


=
√
λ`λr

 cos (ω) sin (ω)

− sin (ω) cos (ω)


 eic

√
ε−ε0 0

0 e−ic
√
ε−ε0


 cos (ω) − sin (ω)

sin (ω) cos (ω)


 |`〉

|r〉

 + O(∆)

=
√
λ`λr

 cos (ω) sin (ω)

− sin (ω) cos (ω)


 cos (ω) eic

√
ε−ε0 − sin (ω) eic

√
ε−ε0

sin (ω) e−ic
√
ε−ε0 cos (ω) e−ic

√
ε−ε0


 |`〉

|r〉

 + O(∆)

=
√
λ`λr

 cos2 (ω) eic
√
ε−ε0 + sin2 (ω) e−ic

√
ε−ε0 − sin (ω) cos (ω)

(
eic
√
ε−ε0 − e−ic

√
ε−ε0

)
− sin (ω) cos (ω)

(
eic
√
ε−ε0 − e−ic

√
ε−ε0

)
cos2 (ω) e−ic

√
ε−ε0 + sin2 (ω) eic

√
ε−ε0


 |`〉

|r〉

 + O(∆)

=
√
λ`λr

 cos(c
√
ε− ε0) + i cos(2ω) sin(c

√
ε− ε0) −i sin(2ω) sin

(
c
√
ε− ε0

)
−i sin(2ω) sin

(
c
√
ε− ε0

)
cos(c

√
ε− ε0)− i cos(2ω) sin(c

√
ε− ε0)


 |`〉

|r〉

 + O(∆)

Where O(∆) = O(δ2, δ
√
ε− ε0, ε − ε0). Using the same technique used in the proof of

the Fundamental Pairing theorem we can find an expression for ω:

4|Ulr|2
|Ull−Urr|2+4|Ulr|2

= 4 sin2(2ω) sin2(c
√
ε−ε0)

4 cos2(2ω) sin2(c
√
ε−ε0)+4 sin2(2ω) sin2(c

√
ε−ε0)

= sin2(2ω) sin2(c
√
ε−ε0)

sin2(c
√
ε−ε0)

= sin2(2ω)

Once again, to solve for ω we need to find |Ull −Urr|2 and 4|Ulr|2:
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|Ull −Urr|2

= |〈`|U|`〉 − 〈r|U|r〉|2

=



|〈`0|U0|`0〉 − 〈r0|U0|r0〉+ 〈`1|U0|`0〉 − 〈r1|U0|r0〉

+〈`0|U0|`1〉 − 〈r0|U0|r1〉+ 〈`0|U1|`0〉 − 〈r0|U1|r0〉

+O(ε)|2

= |λl − λr + λl〈`1|`0〉 − λr〈r1|r0〉+ λl〈`0|`1〉 − λr〈r0|r1〉+ 0− 0 +O(ε)|2

= |λl − λr + λl (〈`1|`0〉+ 〈`0|`1〉)− λr (〈r1|r0〉+ 〈r0|r1〉) +O(ε)|2

= |λl − λr +O(ε)|2

= |λ0ei
δ
2 − λ0e−i

δ
2 +O(ε)|2

= |2iλ0 sin
(
δ
2

)
+O(ε)|2

= 4 sin2
(
δ
2

)
+O(δε, ε2)
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4|Ulr|2

= |〈`|U|r〉|2

= |〈`0|U0|r0〉+ 〈`1|U0|r0〉+ 〈`0|U0|r1〉+ 〈`0|U1|r0〉|2

= |0 + λr〈`1|r0〉+ λl〈`0|r1〉+ 〈`0|U1|r0〉|2

= |λ0
(
ei
δ
2 〈`1|r0〉+ e−i

δ
2 〈`0|r1〉

)
+ 〈`0|U1|r0〉|2

= |iλ0 sin
(
δ
2

)
(〈`1|r0〉 − 〈`0|r1〉) + 〈`0|U1|r0〉|2

= |iλ0 sin
(
δ
2

)
(〈`1|r0〉 − 〈`0|r1〉) |2 + 2Re

[
iλ0 sin

(
δ
2

)
(〈`1|r0〉 − 〈`0|r1〉) 〈r0|U1|`0〉

]
+|〈`0|U1|r0〉|2

= sin2
(
δ
2

)
|〈`1|r0〉 − 〈`0|r1〉|2 + 2Re

[
iλ0 sin

(
δ
2

)
(〈`1|r0〉 − 〈`0|r1〉) 〈r0|U1|`0〉

]
+ c2ε

= c2ε+O
(
δ2ε, δε

)
= c2ε+O (δε)

Plugging these in to the formula for sin2 (2ω),
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sin2(2ω) = 4|Ulr|2
|Ull−Urr|2+4|Ulr|2

=
(

1 + |Ull−Urr|2
4|Ulr|2

)−1
=

(
1 +

4 sin2( δ2)+O(δε,ε2)

4c2ε+O(δε)

)−1
=
(

1 + sin2
(
δ
2

)
1

c2ε+O(δε)
+ O(δε,ε2)

c2ε+O(δε)

)−1
=

(
1 +

sin2( δ2)
c2ε

1
1+O(δ) + O(δ,ε)

1+O(δ)

)−1
=

(
1 +

sin2( δ2)
c2ε

+O
(
δ3

ε

)
+O(δ, ε)

)−1
=
(

1 + δ2

4c2ε
+O

(
δ3

ε , δ, ε
))−1

Since we have made no statement about how ε and δ are related, this cannot be further

simplified. However, assuming that both variables are small, we can say that the largest

term is 1 + δ2

4c2ε
.

�

Theorem. 5.5 There is a better than 50% chance of a successful search of the N edges of

the hub vertex using the states |`0〉 and |r0〉 after m =
⌊
π
2c

√
N
⌋

iterations of the time step

operator, whenever

δ < c

√
2

N
(56)

where δ is the difference in phase between the Left and Right eigenvalues, and c =

|〈r0|U|`0〉|.
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Proof First, we find an expression for P (m, t),

P (m, t)

= |〈r0|Um|`0〉|2

= |(sin (ω) 〈V +(δ, ε)|+ cos (ω) 〈V −(δ, ε)|) Um (cos (ω) |V +(δ, ε)〉 − sin (ω) |V −(δ, ε)〉)|2

+O (
√
ε, δ)

=
∣∣sin (ω) cos (ω) (λ+)

m − sin (ω) cos (ω) (λ−)
m∣∣2 +O (

√
ε, δ)

=
∣∣∣sin (ω) cos (ω) eimc

√
ε−ε0 − sin (ω) cos (ω) e−imc

√
ε−ε0

∣∣∣2 +O (
√
ε, δ)

= |sin (ω) cos (ω)|2
∣∣∣eimc√ε−ε0 − e−imc√ε−ε0∣∣∣2 +O (

√
ε, δ)

= |sin (ω) cos (ω)|2
∣∣∣eimc√(1+t)ε − e−imc

√
(1+t)ε

∣∣∣2 +O (
√
ε, δ)

= |2 sin (ω) cos (ω)|2
∣∣∣sin(mc√(1 + t)ε

)∣∣∣2 +O (
√
ε, δ)

= sin2 (2ω) sin2
(
mc
√

(1 + t)ε
)

+O (
√
ε, δ)

= 1
1+t sin2

(
mc
√

(1 + t)ε
)

+O (
√
ε, δ)

Notice that this is not a function of ε, it is a function of (1 + t)ε. This raises issues,

because we may chose the wrong value of m. m =
⌊

π
2c
√
ε

⌋
is the value that would be chosen

if the graph was assumed to be “correctly tuned”, with δ = 0. Knowing only that the

“error” between the eigenvalues is small, this value of m is the natural choice.

m =

⌊
π

2c
√

(1+t)ε

⌋
is the value of m that should be chosen if δ is known, and is being

compensated for. That is, if the exact difference between the eigenvalues is known, then

the number of iterations can be adjusted to give a slightly better chance of success.
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Taking into account the difference between the eigenvalues,

P

(⌊
π

2c
√

(1+t)ε

⌋)
= 1

1+t sin2

([
π

2c
√

(1+t)ε
+O(1)

]
c
√

(1 + t)ε

)
+O (

√
ε)

= 1
1+t sin2

(
π
2 +O

(√
(1 + t)ε

))
+O (

√
ε)

= 1
1+t cos2

(
O
(√

(1 + t)ε
))

+O (
√
ε)

= 1
1+t +O ((1 + t)ε,

√
ε)

= 1
1+t +O (

√
ε)

And not taking into account the difference δ, but instead assuming that δ = 0,

P
(⌊

π
2c
√
ε

⌋)
= 1

1+t sin2
([

π
2c
√
ε

+O(1)
]
c
√

(1 + t)ε
)

+O (
√
ε)

= 1
1+t sin2

(
π
2

√
1 + t+O

(√
(1 + t)ε

))
+O (

√
ε)

= 1
1+t sin2

(
π
2

√
1 + t

)
+O

(√
(1 + t)ε,

√
ε
)

= 1
1+t sin2

(
π
2

√
1 + t

)
+O (

√
ε)

1
2 < 1

1+t sin2
(
π
2

√
1 + t

)
≤ 1

1+t over the interval 0 ≤ t ≤ 1
2 . This condition can be

rewritten,
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t ≤ 1
2

⇒ δ2

4c2ε
≤ 1

2

⇒ δ2N
4c2
≤ 1

2

⇒ δ2 ≤ 2c2

N

⇒ δ ≤ c
√

2
N

This means that P
(⌊

π
2c

√
N
⌋)

> 1
2 whenever δ < c

√
2
N .

�
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