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Abstract

In this thesis we study continuous time Markov processes whose state space con-

sists of an assignment of +1 or −1 to each vertex x of a graph G. We will consider

two processes, σ(t) and σ′(t), having similar update rules. The process σ(t) starts

from an initial spin configuration chosen from a Bernoulli product measure with den-

sity θ of +1 spins, and updates the spin at each vertex, σx(t), by taking the value

of a majority of x’s nearest neighbors or else tossing a fair coin in case of a tie.

The process σ′(t) starts from an arbitrary initial configuration and evolves accord-

ing to the same rules as σ(t), except for some vertices which are frozen plus (resp.,

minus) with density ρ+ (resp., ρ−) and whose value is not allowed to change. Our

results are for when σ(t) evolves on graphs related to homogeneous trees of degree

K ≥ 3, such as finite or infinite stacks of such trees, while the process σ′(t) evolves

on Zd, d ≥ 2. We study the long time behavior of these processes and, in the case

of σ′(t), the prevalence of vertices that are (eventually) fixed plus or fixed minus or

flippers (changing forever). We prove that, if θ is close enough to 1, σ(t) reaches

fixation to +1 consensus. For σ′(t) we prove that, if ρ+ > 0 and ρ− = 0, all vertices

end up as fixed plus, while for ρ+ > 0 and ρ− very small (compared to ρ+), the fixed

minus and flippers together do not percolate.
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Introduction

In this work we study the long term behavior of continuous time Markov processes

whose states assign either +1 or −1 (usually called a spin value) to each vertex x in

a graph G. The graphs G we consider are either the lattice Z2 and finite thickness

slabs of Z2, or are related to homogeneous trees of degree K and include finite and

infinite stacks of homogeneous trees. These graphs will be specified in Chapter 1.

In this thesis we consider a number of loosely related models. We will discuss three

types of processes, a much studied one denoted σ(t), a generalized version of σ(t)

denoted σ∗(t), and then a modified one, denoted σ′(t), in which some vertices are

“frozen” – i.e. their spin values are not allowed to change. The modified process

σ′(t) basically corresponds to σ(t) in a random environment where randomly selected

vertices are frozen from time zero, some plus and some minus.

In this chapter we introduce the process σ(t) and known results. The processes

σ∗(t) and σ′(t) will be introduced in Section 1.2 and 1.3.1, respectively. Letting

σ(t) = σ(t, ω), where ω is an element of the probability space Ω which will be

defined later, we denote by σx(t) the value of the spin at vertex x ∈ G at time

t ≥ 0. Starting from a random initial configuration σ(0) = {σx(0)}x∈G drawn from

the independent Bernoulli product measure

µθ(σx(0) = +1) = θ = 1− µθ(σx(0) = −1), (1)

the system then evolves in continuous time according to an agreement inducing

dynamics: at rate 1, each vertex changes its value if it disagrees with more than half
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of its neighbors, and tosses a fair coin in the event of a tie. This process corresponds

to the zero-temperature limit of Glauber dynamics for a stochastic Ising model with

ferromagnetic nearest neighbor interactions and no external magnetic field (see, e.g.,

[9] or [13]), having Hamiltonian

H = −
∑

{x,y}:d(x,y)=1

Jx,yσxσy, (2)

where d(x, y) denotes graph distance (i.e., the minimum number of edges) between

x and y. The continuous time dynamics is defined by means of independent, rate 1

Poisson processes (clocks) assigned at each vertex x. If the clock at vertex x rings

at time t and the change in energy

∆Hx(σ) = 2
∑

y:d(x,y)=1

Jx,yσxσy (3)

is negative (resp., positive), a spin flip is done with probability 1 (resp., 0). To

resolve the case of ties when ∆Hx(σ) = 0, each clock ring is associated to a fair coin

toss and a spin flip is done with probability 1/2. For an introduction to the relation

between our model and the Ising model with Glauber dynamics see Section 0.1.

Let Pdyn be the probability measure for the realization of the dynamics (clock

rings and tie-breaking coin tosses), and denote by Pθ = µθ×Pdyn the joint probability

measure on the space Ω of initial configurations σ(0) and realizations of the dynamics;

an element of Ω will be denoted ω. Another possible source of randomness is the

choice of coupling between spins, Jx,y. The most frequently studied models are

the homogeneous ferromagnet, where Jx,y = +1 for all pairs of nearest neighbors
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{x, y}, and disordered models, where a realization J of the Jx,y’s is chosen from an

independent product measure PJ of some probability measure on the real line. Here

we only consider uncoupled systems, thus we let Jx,y = +1 for all x, y throughout.

This process has been studied extensively in the physical and mathematical lit-

erature – primarily on graphs such as the hyper-lattice Zd and the homogeneous

tree of degree K, TK . A physical motivation, which corresponds to the symmetric

initial spin configuration, is the behavior of a magnetic system following the a deep

quench. A deep quench is when a system that has reached equilibrium at an initial

high temperature T1 is instantaneously subjected to a very low temperature T2. Here

we take T1 = ∞ and T2 = 0. For references on this and related problems see, e.g.,

[9] or [13]. The main focus in the study of this model is the formation and evolution

of boundaries delimiting same spin cluster domains: these domains shrink or grow

or split or coalesce as their boundaries evolve. This model is often referred to as a

model of domain coarsening.

An interesting question is whether the system has a limiting configuration, or

equivalently does every vertex eventually stop flipping? Whether

lim
t→∞

σx(t) (4)

exists for almost every initial configuration, realization of the dynamics and for all

x ∈ G depends on the initial configuration and on the structure of the underlying

graph G. We will refer to the existence of the limit (4) at a vertex x as fixation

at x.

Nanda, Newman and Stein [9] investigated this question when G = Z
2 and θ = 1

2
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and found that in this case the limit does not exist, i.e., every vertex flips forever.

Their work extended an old result of Arratia [1], who showed the same on Z for

θ 6= 0 or 1. It is an open problem to determine what happens for d ≥ 3 when θ = 1
2
.

One important consequence of the methods of [9] is that σx(∞) does exist for almost

every initial configuration, realization of the dynamics and every x ∈ G if the graph

is such that every vertex has an odd number of neighbors, such as for example TK

for K odd.

Another question of interest is whether sufficient bias in the initial configuration

leads the system to reach consensus in the limit. I.e., does there exist θ∗ ∈ (0, 1),

such that for θ ≥ θ∗,

∀x ∈ G,Pθ(∃T = T (σ(0), ω, x) <∞ so that σx(t) = +1 for t ≥ T ) = 1. (5)

We will refer to (5) as fixation to consensus (of +1 or −1). Kanoria and Monta-

nari [12] studied fixation to consensus on homogeneous trees of degree K ≥ 3 for a

process with synchronous time dynamics. Their process has the same update rules

as ours, except that all vertices update simultaneously and at integer times t ∈ N.

For each K, Kanoria and Montanari defined the consensus threshold ρ∗(K) to be the

smallest bias in ρ = 2θ − 1 such that the dynamics converges to the all +1 config-

uration, and proved upper and lower bounds for ρ∗ as a function of K. Fixation to

consensus was also investigated on Zd for the asynchronous dynamics model. It was

conjectured by Liggett [14] that fixation to consensus holds for all θ > 1
2
. Fontes,

Schonmann and Sidoravicius [7] showed this for all d ≥ 2 and θ∗ strictly less but very
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close to 1.

In [11] Howard investigated the Ising spin dynamics in detail on T3 and showed

how fixation takes place. On this tree graph, vertices fixate in spin chains (defined

as doubly infinite paths of vertices of the same spin sign). Though no spin chains

are present at time 0 when θ = 1/2, Howard showed that for any ε > 0, there are

(almost surely) infinitely many distinct +1 and −1 spin chains at time ε. He also

showed the existence of a phase transition in θ: there exists a critical θc ∈ (0, 1
2
)

such that if θ < θc, +1 spin chains do not form almost surely, whereas if θ > θc they

almost surely form in finite time.

In [3] and [4], Damron, Kogan, Newman and Sidoravicius studied coarsening

started from an unbiased initial configuration on finite width slabs of the form Z2 ×

{0, . . . , k−1} with free and periodic boundary conditions and k ≥ 2. Their work was

motivated by the long standing open question to determine whether or not there are

vertices that fixate for d ≥ 3, and for which values of d. It has been implied by Spirin,

Krapivsky and Redner in a computational physics paper [17] that some vertices do

indeed fixate. The results of [3] and [4] on the slabs highlight the differences in long

term behavior between Z2 and what is believed to occur on Z3 based on numerical

results – see [10]. The authors showed that if k = 2 the system fixates with both free

and periodic boundary conditions; if k = 3 with periodic boundary conditions the

system also fixates; for all k ≥ 4 with periodic boundary conditions some vertices

fixate for large times and some do not, and the same holds for all k ≥ 3 with

free boundary conditions. I.e. for all k ≥ 3 with free boundary conditions and

for all k ≥ 4 with periodic boundary conditions, with positive probability, there
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exist vertices which change spin sign forever; we call these vertices flippers. One

interesting question, which remains open, is whether, for a slab on which the system

does not fixate as t → ∞, the set of flipping vertices percolates or alternatively

consists of finite components surrounded by fixed vertices.

The main part of this thesis is motivated by the work of Howard, but for more

general tree-related graphs. The other results and the definition of the σ′ process

are motivated by open questions which arose from [3] and [4]. One set of results,

presented in Section 1.3.1, was done in collaboration with M. Damron, H. Kogan,

C.M. Newman and V. Sidoravicius [6].

0.1 Zero-temperature Glauber dynamics

The Ising model is a model of magnetism in statistical mechanics. A magnetic

system consists of a collection of particles, represented by the vertices of a graph

G = (V,E), which take one of two states, +1 and −1, also called spin values. The

spin value of a particle at a vertex x ∈ V corresponds to the magnetization of the

particle and is denoted as σx. Pairs of nearby neighbors interact with each other,

exerting influence on each others’ spin values. The interactions between spins can

be ferromagnetic, if spins favor matching values or antiferromagnetic, if spins favor

opposite values, or of the spin glass type, if the interactions are both ferromagnetic

and antiferromagnetic.

Common choices for G are the hyper-lattice Zd, the complete graph on N ver-

tices, KN , and the homogeneous tree of degree K, TK . The Ising model with no
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external magnetic field has the following probability measure Pβ on the space of spin

configurations σ = {σx}x∈V :

Pβ(σ) =
e−βH(σ)

Zβ
, (6)

where β ≥ 0 is the inverse temperature, Zβ is a normalization constant and the

Hamiltonian function H(σ) is the energy of configuration σ,

H = −
∑

{x,y}:d(x,y)=1

Jx,yσxσy. (7)

This measure, called a Gibbs distribution, assigns higher probability to lower energy

spin configurations, especially for β large (low temperature). Spins interact with

their nearest neighbors and this interaction, or coupling between x and y, is encoded

in Jx,y. Jx,y determines whether the model is a ferromagnet, an antiferromagnet or

a spin glass. If Jx,y ≥ 0 for all x, y, same spin configurations have lower energy

and neighbors desire to be aligned; this is a ferromagnetic Ising model. If Jx,y ≤ 0,

neighboring spins desire to take opposite values; this is an Ising antiferromagnet.

Typical choices for a ferromagnet are to take Jx,y = 1 for all x, y, as we have done

in this thesis, or to draw the Jx,y’s independently from a probability distribution

supported on [0,∞).

In discrete-time Glauber dynamics, spins may be selected one at a time uniformly

at random from V . When |V | → ∞, after a time rescaling, this is equivalent to

assigning independent, rate one, Poisson clocks to the vertices of G, and updating

the spin at vertex x when its clock rings. The spin update will depend on the local
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field at x, which we define as

Zt
x =

∑
y:d(x,y)=1

Jx,yσy(t). (8)

If the clock at vertex x rings at time t, then the new spin value, σx(t
+), is given by

Prob(σx(t
+) = +1) =

exp[βZt
x]

exp[βZt
x] + exp[−βZt

x]
, (9)

Prob(σx(t
+) = −1) =

exp[−βZt
x]

exp[βZt
x] + exp[−βZt

x]
. (10)

Note that the above probability is the conditional distribution with respect to Pβ of

a +1 (resp. −1) spin at x, conditioned on the current values of all the other spins.

This choice of transition probabilities guarantees that Pβ is an invariant distribution

of the process. We note that there are other versions of Glauber dynamics which

also make Pβ invariant.

For a general reference on Glauber dynamics see [13]. By letting β →∞ (which is

equivalent to letting the temperature tend to zero) we obtain the dynamics described

in the Introduction: Prob(σx(t
+) = sgn(Zt

x)) → 1 for Zt
x 6= 0 and Prob(σx(t

+) =

+1) = Prob(σx(t
+) = −1) = 1

2
for Zt

x = 0. This model, with initial spin configuration

drawn from an independent, Bernoulli product measure, has been studied in [2], [3],

[4], [7], [9], [10], [11], on various graphs and for both biased and unbiased initial

conditions. The unbiased initial configuration given in Equation (1) corresponds to

the infinite temperature limit of the Gibbs measure, thus describing a system that

is instantaneously quenched from infinite temperature to zero temperature.
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Chapter 1

Statements of theorems

In Sections 1.1 and 1.2 of this chapter we state the results we obtained for the

process σ(t), and its generalization, the process σ∗(t). In Section 1.3 we motivate

the definition of the stochastic process σ′(t), and we define this process in Subsec-

tion 1.3.1.

1.1 Results for tree-related graphs

We begin with some notation an definitions of our graphs. Let S∞ denote a doubly

infinite stack of homogeneous trees of degree K ≥ 3, i.e., the graph with vertex set

TK × Z and edge set specified below. The theorems presented in this section are

fixation to consensus results on S∞, semi-infinite and finite width stacks of trees for

the process σ(t) started from initial configuration with probability measure given in

Equation (1). We express S∞ as
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S∞ =
∞⋃

i=−∞

Si, (1.1)

where Si = TK×{i} = {(u, i) : u ∈ TK , i ∈ Z}, and think of this as a decomposition

of the infinite stack S∞ into layers Si. Let the edge set of S∞, E∞, be such that any

two vertices x, y ∈ S∞ are connected by an edge exy ∈ E∞ if and only if:

i x = (ux, i), y = (vy, i) ∈ Si for some i, and the corresponding ux and vy are

adjacent vertices in TK ; or

ii x = (ux, i) for some i and y = (ux, i+ 1); or

iii x = (ux, i) for some i and y = (ux, i− 1).

For a more formal description of the Markov process than the one given in the

Introduction, we associate to each vertex x ∈ S∞ a rate 1 Poisson process whose

arrival times we think of as a sequence of clock rings at x. We will denote the arrival

times of these Poisson processes by {τx,n}n=1,2,... and take the Poisson processes

associated to different vertices to be mutually independent. We associate to the

(x, n)’s independent Bernoulli(1/2) random variables with values +1 or −1, which

will represent the fair coin tosses in the event of a tie. The process σ(t) is associated

to the probability space (Ω,Pθ) defined in the Introduction.

The main result on tree-related graphs is the following theorem, which shows

fixation to consensus for nontrivial θ; its proof is given in Chapter 3. Unlike Kanoria

and Montanari [12], here we do not attempt to obtain good lower bounds on θ∗,

but we restrict ourselves to proving fixation to +1 for θ close enough to 1 with the
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standard majority update rule: when its clock rings, each vertex updates to agree

with the majority of its neighbors or tosses a fair coin in the event of a tie.

Theorem 1.1. Given K ≥ 3, there exists θ∗ < 1 such that for θ > θ∗ the process on

S∞ fixates to consensus.

The same fixation to consensus result holds for the following graphs, as stated in

Theorem 1.2 below, whose proof is also given in Chapter 3:

• Homogeneous trees TK of degree K ≥ 3.

• Finite width stacks of homogeneous trees of degree K ≥ 3 with free or periodic

boundary conditions. These are graphs, which we will denote by Slf and Slp,

with vertex set TK × {0, 1, . . . , l − 1} and edge set Ef and Ep. Ef and Ep are

defined similarly to the edge set E∞ of S∞: two vertices x, y ∈ Slf are connected

by an edge exy ∈ Ef if and only if either condition i above holds; or

1. 1 ≤ i ≤ l − 2 and either condition ii or iii holds; or

2. x = (ux, 0) and y = (ux, 1); or

3. x = (ux, l − 1) and y = (ux, l − 2).

Any two vertices x, y ∈ Slp are connected by an edge exy ∈ Ep if and only if

either condition i holds; or

4. 1 ≤ i ≤ l − 2 and either condition ii or iii holds; or

5. x = (ux, 0) and y = (ux, 1) or y = (ux, l − 1); or

6. x = (ux, l − 1) and y = (ux, l − 2) or y = (ux, 0).
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• Semi-infinite stacks of homogeneous trees of degree K ≥ 3 with free boundary

conditions. These are graphs, which we will denoted by Ssemi, with vertex set

TK × {0, 1, . . .} and edge set Esemi. Two vertices x, y ∈ Ssemi are connected by

an edge exy ∈ Esemi if and only either condition i holds; or

8. 1 ≤ i and either condition ii or iii holds; or

9. x = (ux, 0) and y = (ux, 1).

Theorem 1.2. Fix K ≥ 3 and l ≥ 2 and let G be one of the following graphs: TK,

Slf , Slp or Ssemi. There exists θ∗ < 1 such that for θ > θ∗ the process on G fixates to

consensus.

Our results have natural extensions to other dynamics. In the next section we

state precisely a few theorems about such extensions for the graph S∞, but meanwhile

we discuss them more informally here. Let N0 be the maximum number of neighbors

of a vertex in the graph G; for some M0 >
N0

2
, we can change (arbitrarily) the update

rules for those vertices whose number of +1 neighbors is strictly less than M0, and

the conclusions of Theorem 1.1 or 1.2 remain valid with the same proof. For large

N0, M0 can be taken much larger than N0

2
. A special case of this type of extension of

our results is to modify the update rule in the event of a tie: e.g., instead of flipping a

fair coin, flip a biased coin with any bias p ∈ [0, 1] or do nothing. We can also change

from two-valued spins to any fixed number q of spin values, say 1, 2, . . . , q. The initial

configuration is given by the measure ν(x is assigned color i at time 0) = εi where

i ∈ {1, . . . , q} and
∑

i εi = 1 and the updating is done via the majority rule. We

can think of color 1 as the +1 spin from before, and the other q − 1 colors together
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representing the −1 spin. If ε1 is close enough to 1, we again obtain fixation to +1

consensus. All our results also apply to the discrete time, synchronous dynamics

of [12].

1.2 Results for tree-related graphs with modified

dynamics

In this section we consider a continuous time Markov process, started at t = 0,

whose states assign one of q colors, {1, 2, . . . , q}, to each of the vertices of the infinite

stack S∞ of K-trees for K ≥ 3. The number of neighbors of each vertex in this

graph is K + 2. We denote the stochastic process by σ∗(t), and will treat color 1 as

distinguished. The initial spin configuration is drawn from an independent product

measure ν with

ν(σ∗x(0) = i) = εi, (1.2)

where i ∈ {1, . . . , q} and
∑

i εi = 1. We associate to the vertices x ∈ S∞ independent

rate 1 Poisson processes, and think about the arrival times of these processes as clock

rings; when the clock at x rings, the color at x will be updated while the colors at

all other vertices do not change. The update transition probabilities at each vertex

x are determined only by the colors of the neighbors of x and the vertex x itself.

Let Nx = {x} ∪ {y : exy ∈ E∞} for each vertex x. We define V x to be the (local),

|{1, . . . , q}Nx | × |{1, . . . q}| update transition matrix at x, which gives the transition

probabilities for the color of x given the colors of its neighbors and itself; V x
α,j is the
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probability that the color of x is j after the update given that the color of Nx is α

(i.e., σ∗y = αy for each y ∈ Nx) before the update.

The following theorem is our general result about consensus, restricted to the

graph S∞. Analogous results hold for the other graphs considered in Theorem 1.2.

The main hypothesis of the theorem simply means that, when sufficiently many

neighbors of any vertex x have color 1, then x must update to color 1; all other

transition probabilities can be defined arbitrarily.

Theorem 1.3. Consider the above type of process on S∞ with K ≥ 3. Define an

integer M0, which for K ≥ 5 we set as M0 = K−1, and for K = 3 or 4 as M0 = K.

Suppose that the update transition probabilities V x
α,j have the property that V x

α,1 = 1

whenever |{y : y ∈ Nx\{x}, σ∗y = +1}| ≥M0. Then there exists ε∗ < 1 (depending on

K) such that for ε1 > ε∗ (see Equation 1.2) the process fixates to (color 1) consensus.

Proof. The proof of the theorem when q = 2 becomes straightforward when doing

the following mapping from the colors 1 and 2 of σ∗ to the spin values ±1 of σ:

map color 1 to +1 and color 2 to −1. In this case the proof follows from the same

arguments used to prove Theorem 1.1; these arguments are presented in Chapter 3.

The case q > 2 follows from the same arguments used to prove the case q = 2,

by projecting spin 1 to spin +1 and spin i to spin −1, for i = 2, . . . , q. Even though

the projected process is in general no longer a Markov chain, the proof still follows

from the same arguments.
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1.3 Results for Zd

The graphs we consider in this section are either the d-dimensional lattice Zd or

two-dimensional slabs of width k (with free boundary conditions), which we denote

as Slabk; these are graphs with vertex set Z2×{0, 1, . . . , k− 1} (k ≥ 2) and edge set

Ek = {{x, y} : ‖x− y‖ = 1}, where ‖ · ‖ denotes the Euclidean distance.

Damron, Kogan, Newman and Sidoravicius (see [3] and [4]) studied the long term

behavior of the coarsening dynamics on Slabk, and answered the question presented

in Equation (4) (for periodic as well as free boundary conditions). Here we only

consider k’s for which the limit in Equation (4) does not always exist, namely k ≥ 3

(we do not consider k ≥ 4 with periodic boundary conditions). In this case the

system has both vertices that fixate (in fact some vertices are already fixed starting

at t = 0) and vertices that change spin forever (flippers).

An interesting open question (see Section 1 of [3]) is whether, for a fixed k, the set

of flipper vertices percolates rather than forming only finite components surrounded

by fixed sites. It is not known whether the set of flipper vertices percolates or not.

But, motivated by this question, we give an artificial construction of an infinite set

of flipper vertices as a subset of Slab3 with free boundary conditions. It is artificial

in that the choice of such a final state is done by hand. The fact that all the vertices

of this set flip infinitely often follows from Arratia [1]. We studied the admissible

shapes of such a set in an effort to rule out certain configurations.

An infinite flipping region may appear if the slab stabilizes in a checkerboard-like

pattern of +1’s and −1’s. Figure 1.1 shows a possible state of the system at a very

large time T in a box of fixed size around the origin, by which time the system
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restricted to this box has reached its final state. For simplicity we only show the

configuration of the middle layer, Z2 × {1}, of Slab3.

− + −

+

−

−

+

− +

−

+

0

Figure 1.1: A configuration with an infinite subset of flipper vertices (gray) and fixed
+1 and −1 vertices (white)

The gray area in Figure 1.1 represents the flipper vertices of this configuration

and the white area represents the fixed vertices. The white rectangles labeled + and

− represent two-dimensional pillars of same spin of the form

R = {(x1, x2), . . . , (x1 + L, x2)} × {(x1, x2) . . . (x1, x2 +M)} × {0, 1, 2}, (1.3)

for (x1, x2) ∈ Z2. The pillars with appropriate choices of (x1, x2) and of (L,M)

depending on (x1, x2) form a distorted checkerboard pattern. These pillars, once

formed, are stable (for L,M ≥ 1) for all time with respect to the dynamics. One

other condition we need to impose for the existence of the flipping region above is
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that, if (x1, x2, 1) is a flipper, then σ(x1,x2,2) = +1 and σ(x1,x2,0) = −1. Notice that the

flipping region can branch out and turn, and can have thickness greater than one.

We note that the only vertices that can be flippers on Slab3 are x ∈ Z×{1}, since

if x ∈ Z×{0} or x ∈ Z×{2}, then x has only 5 neighbors and by Nanda, Newman,

Stein [9] x fixates almost surely. This observation motivates the definition of a new

model on Z2 with the usual coarsening dynamics but with some vertices whose spin

is frozen for all time. If the initial configuration on Slab3 is chosen according to a

symmetric Bernoulli product measure, then by the Ergodic Theorem at time zero

there are infinitely many pillar-like same-spin formations that are stable under the

dynamics and are analogous to frozen vertices on Z2. A fairly general version of this

new model will be presented in the following section on Zd without referring to the

motivating model on Slab3.

1.3.1 Z
d with frozen vertices

In this subsection we define a new stochastic process on Zd, which we denote

by σ′(t). The initial configuration of this new process will be assigned as follows.

Fix ρ+, ρ− ≥ 0 with ρ+ + ρ− ≤ 1 and pick three types of vertices (frozen plus,

frozen minus and unfrozen) by i.i.d. choices with respective probabilities ρ+, ρ− and

1− (ρ+ + ρ−). Once the frozen vertices have been chosen and assigned a spin value,

the unfrozen vertices will be assigned spin values in one of two ways. In Theorem 1.4

below, they will be assigned according to an independent, identically distributed

Bernoulli product measure, µ′,
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µ′(σ′x(0) = +1|x is not frozen ) = θ+, (1.4)

µ′(σ′x(0) = −1|x is not frozen ) = θ− = 1− θ+. (1.5)

In Theorems 1.5 and 1.6, they will be assigned arbitrarily. (In other words, the

theorems we prove will be valid for all choices of such spins values.) We will denote

by P = Pρ+,ρ−×P′dyn the overall probability measure where Pρ+,ρ− is the distribution

for the assignment of frozen plus, frozen minus and unfrozen vertices, and P′dyn is

the distribution of the following dynamics for σ′(t). The continuous time dynamics

is defined similarly to that of the σ(t) process. Vertices are assigned independent,

rate 1 Poisson clock processes and tie-breaking fair coins, and flip sign to agree with

a majority of their neighbors; in the event of a tie the value is determined by tossing

fair coins. Frozen vertices, however, never flip regardless of the configuration of their

neighbors.

As usual, we are interested in the long term behavior of this model depending on

the dimension d, the densities of frozen vertices, ρ+, ρ−, and the initial configuration

of non-frozen vertices, which we denote by σ′(0). Note that when ρ+ > 0 and

ρ− > 0, almost surely there exist flipper vertices. To see this, consider the following

configuration for the case d = 2, which has probability (ρ+)2(ρ−)2; the vertex labeled

x in Figure 1.2 below has two frozen neighbors of spin +1 and two frozen neighbors of

spin −1, and thus flips infinitely often. Similar flippers, as well as more complicated

clusters of flippers, occur for any d.
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+1

+1

x − 1− 1

Figure 1.2: A vertex that flips infinitely often

This shows that σ′x(t) does not have a limit as t→∞ for some x, i.e., some vertices

are flippers. When that is the case we are interested in such questions as whether

the flipper vertices percolate. Of course, besides the flippers there are the collections

of fixed plus and of fixed minus vertices and one may ask about the percolation of

the other types of vertices or of the union of two of the three types. Theorem 1.6

below answers one such question.

The following theorems about fixation to consensus and the size of the flipping

cluster were obtained in collaboration with M. Damron, H. Kogan, C.M. Newman

and V. Sidoravicius [6]. They are stated in increasing order of difficulty of the proofs.

The first two theorems are fixation to consensus results for the case of positive initial

density of frozen +1’s and zero initial density of frozen −1’s. The third theorem is a

more general result in which both ρ+, ρ− > 0, but we require ρ− to be much smaller

than ρ+. For this more general case we obtain that the set of flippers together with

(eventually) fixed vertices of spin −1 does not percolate. Complete proofs of the

first two theorems will be given in Chapter 4, along with a sketch of the proof of the

third theorem. A complete proof of the third theorem will be given in a paper in

preparation.
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Theorem 1.4. Consider the stochastic process σ′ on Z2, such that ρ+ > 0, ρ− = 0,

and the initial configuration of non-frozen vertices is given by the Bernoulli product

measure of Equations (1.4) with θ+ = θ− = 1
2
. Then the system fixates to +1

consensus.

Theorem 1.5. Consider the stochastic process σ′ on Zd for any d, with ρ+ > 0, ρ− =

0 and an arbitrary initial configuration of non-frozen vertices, σ′(0). Then the

system fixates to +1 consensus.

Theorem 1.6. Consider the stochastic process σ′ on Zd for any d with ρ+ > 0 and

ρ− > 0 such that ρ− is sufficiently small (depending on ρ+ and d). For an arbitrary

initial configuration of non-frozen vertices σ′(0), the collection of (eventually) fixed

−1’s and flippers together do not percolate.
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Chapter 2

Preliminaries for tree-related

graphs

In this chapter we state some definitions and show a proposition which will be an

ingredient in the proof of Theorem 1.1. In order to prove Theorem 1.1 we will show

that if we take θ close enough to 1, then already at time 0 there are stable structures

of +1 vertices, which are fixed for all time. We will choose these structures to be

subsets (denoted Ti) of the layers Si in the decomposition of S∞ such that they are

stable with respect to the dynamics. We will define a set T as the union of Ti for all

i, and show that for θ close enough to 1, the complement of T is a union of almost

surely finite components.
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2.1 A set of fixed vertices in S∞

Definition 2.1. For i fixed, let T +,l
i (t) be the union of all subgraphs H of Si that

are isomorphic to Tl with σx(t) = +1,∀x ∈ H.

We point out that T +,K−1
i (t) is stable for K ≥ 5, since every x ∈ T +,K−1

i (t) has

K − 1 out of K + 2 neighbors of spin +1 and K − 1 > K+2
2

for K ≥ 5. Not only is

this set stable with respect to the dynamics on S∞ as in Theorem 1.1, but it’s also

stable with respect to the dynamics on Si and the other graphs of Theorem 1.2. Let

T represent the union of T +,K−1
i (0) across all levels Si, i.e.,

T =
∞⋃

j=−∞

Ti, (2.1)

where for shorthand notation, Ti = T +,K−1
i (0).

If K ≤ 4, T as defined above is not stable with respect to the dynamics. In these

cases the argument will be changed somewhat, as discussed in Chapter 3.

2.2 Asymmetric site percolation on TK

The goal of this subsection is to state and prove a geometric probability estimate,

Proposition 2.1, which concerns asymmetric site percolation on TK distributed ac-

cording to the product measure µθ with:

µθ(σx = +1) = θ = 1− µθ(σx = −1),∀x ∈ TK . (2.2)

This equals the distribution of σ(0, ω) restricted to the layers Si, and therefore applies
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to these graphs as well. The statement and proof of Proposition 2.1 require a series

of definitions. The first of these defines graphical subsets of TK , whereas the second

concerns probabilistic events for subgraphs of TK that have a specific orientation.

Later, in the proof of Theorem 1.1 which is given in Chapter 3, Proposition 2.1 will

be applied to certain subsets of Si.

Definition 2.2. Certain rooted subtrees of TK Let x, y in TK be two adja-

cent vertices, and denote by Ay[x] the connected component of x in TK\{y} – see

Figure 2.1.

Let x, y, z be three adjacent vertices in TK, such that x and z are neighbors of y.

Denote by Ax,z[y] the connected component of y in TK \ {x ∪ z} – see Figure 2.2.

Ax[y]Ay[x]

x y

Figure 2.1: Ay[x] and Ax[y] are tree graphs whose roots have coordination num-
ber K − 1

Ax,z[y]

yx z

Figure 2.2: Ax,z[y] is a tree graph whose root has coordination number K − 2
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Definition 2.3. Random (K − 1)-ary trees of spin +1 with a certain

orientation

Let T be a deterministic subtree of TK with at least two vertices, and v be a leaf of

T ; i.e., v has a neighbor v′ in T and (K − 1) neighbors in TK \ T . Tree+[v] is the

event that there is a subgraph H of Av′ [v] isomorphic to TK−1 and containing v, such

that σu = +1,∀u ∈ H – see Figure 2.3.

Let T be a deterministic subtree of TK with at least five vertices, and v be a 2-

point of T (i.e., a vertex of T with exactly two neighbors in T ) that is also good

(i.e., both its neighbors in T are also 2-points of T ). Let v′, w be the two neighbors

of v in T and let w′ be w’s other neighbor in T . Tree+[v, w] is the event that there

is a subgraph H of Av′,w[v] ∪ Av,w′ [w] isomorphic to TK−1 and containing v and w,

such that σu = +1,∀u ∈ H; here Av′,w[v] ∪ Av,w′ [w] is the graph with vertex set

VAv′,w[v] ∪ VAv,w′ [w] and edge set E∞Av′,w[v] ∪ E∞Av,w′ [w] ∪ evw – see Figure 2.4.

v ′v

Tree
+[v] T

Figure 2.3: Tree+[v] is a random (K − 1)-ary tree of spin +1 that contains a leaf, v,
of T
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Tree
+[v, w]

v wv ′ w ′

T

Figure 2.4: Tree+[v, w] is a random (K− 1)-ary tree of spin +1 that contains a good
two 2-point, v, of T , and one of its neighbors, w

For distinct leaves v of T , the events {Tree+[v]}v∈T are defined on disjoint subsets

of TK , and are therefore independent; they are also identically distributed. The same

is true for {Tree+[v, w]}v,w∈T for disjoint pairs {v, w}. The following is essentially

the same as Definition 2.1, with the only difference being that the here we define the

graph T +,l on TK , whereas before we defined the same random graph on Si.

Definition 2.4. Let T +,l be the union of all subgraphs H of TK that are isomorphic

to Tl with σx = +1,∀x ∈ H.

The next proposition estimates the probability that none of the vertices of a given

set Λ belong to any random (K − 1)-ary tree of spin +1 (see Definition 2.3). This

proposition is a main ingredient in the proof of Theorem 1.1.

Proposition 2.1. For any λ ∈ (0, 1),∃θλ ∈ (0, 1) such that for θ ≥ θλ and any

deterministic finite nonempty subset Λ of TK,

µθ(Λ ∩ T +,K−1 = �) ≤ λ|Λ|. (2.3)
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Proof. Let T be the minimal spanning tree containing all the vertices of Λ. We will

call the vertices of Λ the special vertices of T . Note that all the leaves of T are

special vertices.

We first suppose |Λ| ≥ 2; the case |Λ| = 1 will be handled at the end of the proof.

By Lemma A.6 from the Appendix, there exist constants ε1, ε2 ∈ (0,∞) depending

only on K, such that for each such tree T , one or both of the following is valid:

a) there are at least ε1|Λ| leaves v in T , with the events {Tree+(v)} mutually inde-

pendent, and/or

b) there are at least 1
2
ε2|Λ| edges having endpoints v, w in T with v a good special

2-point, and the events {Tree+(v, w)}v,w mutually independent.

Let us first suppose that a) holds. We claim that, for v any leaf of T ,

µθ(Λ ∩ T +,K−1 = �) ≤ [1− µθ(Tree+[v])]ε1|Λ|. (2.4)

The claim follows from a string of inclusions. First,

{Λ ∩ T +,K−1 = �} ⊆
⋂

v∈T,v leaf of T

{v /∈ T +,K−1}. (2.5)

But if v is a leaf of T , then

{v /∈ T +,K−1} ⊆ Tree+[v]c, (2.6)
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so that ⋂
v∈T,v leaf of T

{v /∈ T +,K−1} ⊆
⋂

v∈T,v leaf of T

Tree+[v]c. (2.7)

Labeling ε1|Λ| of the leaves in a) as vj, we restrict the above intersection to the leaves

vj of T , so that

⋂
v∈T,v leaf of T

Tree+[v]c ⊆
ε1|Λ|⋂
j=1

Tree+[vj]
c. (2.8)

Since the events Tree+[vj] are mutually independent,

µθ(Λ ∩ T +,K−1 = �) ≤
ε1|Λ|∏
j=1

µθ(Tree+[v]c), (2.9)

implying the claim.

Alternatively, suppose that b) holds. Now we claim that

µθ(Λ ∩ T +,K−1 = �) ≤ [1− µθ(Tree+[v, w])]
1
2
ε2|Λ|, (2.10)

where v is a good special 2-point of T and w is one of v’s neighbors. This claim also

follows from a string of inclusions. First,

{Λ ∩ T +,K−1 = �} ⊆
⋂

{v,w}∈T,v,w adj.
and v is a good special 2-point of T

{{v, w} /∈ T +,K−1}. (2.11)
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If {v, w} are adjacent and v is a good special 2-point of T , then

{{v, w} /∈ T +,K−1} ⊆ Tree+[v, w]c. (2.12)

As with the proof of the previous claim, we label 1
2
ε2|Λ| of the pairs of vertices given

in b) as {vj, wj}. Then

{Λ ∩ T +,K−1 = �} ⊆
1
2
ε2|Λ|⋂
j=1

Tree+[vj, wj]
c. (2.13)

The second claim follows from the mutual independence of the events Tree+[vj, wj].

The two claims imply (2.3) for |Λ| ≥ 2 by taking

λ > λ∗(θ) = min
{

(1− µθ(Tree+[v])ε1 , (1− µθ(Tree+[v, w])
1
2
ε2
}
, (2.14)

and using Lemma A.3 of Appendix A.1.

If |Λ| = 1, suppose the only vertex in Λ is 0, a distinguished vertex. Then

µθ(0 /∈ T +,K−1) = 1−KTree+[0] (2.15)

with Tree+[0] is defined as in Appendix A.1. Then (2.3) follows in this case by

taking λ > λ∗(θ) = 1−KTree+[0] and using Equation (A.4) and Lemma A.1. This

completes the proof.
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Chapter 3

Proofs of results on tree-related

graphs

In this chapter we present the proofs of Theorems 1.1 and 1.2. To prove these

theorems we study the connected components of S∞ \ T as a subgraph of S∞, and

show that if θ is close enough to 1 these connected components are finite almost

surely. We will show that each of these finite connected components of −1 vertices

shrinks and is eliminated in finite time, leading to fixation of all vertices to +1.

Definition 3.1. For any x ∈ S∞, Dx is the connected component of x in S∞\T :

Dx is the set of vertices y ∈ S∞ s.t. x
S∞\T↔ y, i.e., there exists a path (x0 =

x, x1, . . . , xN = y) in S∞ with every xj /∈ T .

Proposition 3.1. Given K, there exists θ∗ < 1 such that for θ > θ∗, S
∞ \ T is a

union of almost surely finite connected components.

Proof. It suffices to show thatD0 is finite almost surely, where 0 is a distinguished ver-
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tex in S∞. Since Eθ [|D0|] <∞ implies D0 <∞ a.s., it suffices to show

Eθ [|D0|] <∞ .

Let γN represent any site self-avoiding path in S∞ of length |γN | = N ≥ 0 starting

at 0, then by standard arguments

Eθ [|D0|] ≤
∞∑
N=0

∑
γN ,|γN |=N

P(γN ∈ D0), (3.1)

where by γN ∈ D0 we mean that all the vertices of γN belong to D0.

To show the sum is finite we need to bound P(γN ∈ D0). Suppose the vertex set of

γN is Λ1∪ . . .∪ΛJ , where for each 1 ≤ i ≤ J , Λi is a nonempty subset of Sli for some

li ∈ Z with the li distinct. We now apply Proposition 2.1 to Λi in each of the layers

Sli , which are isomorphic to TK . This shows that for any λ ∈ (0, 1),∃θλ ∈ (0, 1) such

that for θ ≥ θλ,

Pθ(Λi ∩ T +,K−1
li

= �) ≤ λ|Λi|. (3.2)

Since the Λi are subsets of distinct levels Sli of S∞, the events {Λi ∩ T +,K−1
li

= �}

are mutually independent. Therefore for θ ≥ θλ,

Pθ(γN ∈ D0) = Pθ
(
{Λ1 ∩ T +,K−1

l1
= �} ∩ . . . ∩ {ΛJ ∩ T +,K−1

lJ
= �}

)
(3.3)

=
J∏
i=1

Pθ
(
{Λi ∩ T +,K−1

li
= �}

)
(3.4)

≤ λ|Λ1|+...+|ΛJ | (3.5)

= λN . (3.6)
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Equation (3.1) and the above bound on Pθ(γN ∈ D0) imply

Eθ [|D0|] ≤
∞∑
N=0

λN
∑

γN ,|γN |=N

1 (3.7)

=
∞∑
N=0

ρ(N)λN , (3.8)

where ρ(N) is the number of self-avoiding paths of length N starting at 0. It is easy

to see that

ρ(N) ≤ (K + 2)(K + 1)N−1. (3.9)

Thus

Eθ [|D0|] ≤ (K + 2)
∞∑
N=0

(K + 1)N−1λN . (3.10)

The proof is finished by choosing θ∗ = θλ for λ < 1
K+1

.

Proof of Theorem 1.1 for K ≥ 5. Taking θ∗ as in Proposition 3.1, S∞ \ T is a union

of almost surely finite connected components:

S∞ \ T =
⋃
i

Di, (3.11)

where the Di’s are nonempty, disjoint and almost surely finite with Di = Dxi for
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some xi.

Fix any i; it suffices to show that Di is eliminated by the dynamics in finite time.

By this we mean that there exists Ti <∞ such that for any y ∈ Di, σy(t) = +1,∀t ≥

Ti, and so the droplet Di fixates to +1. We proceed to show this.

For any set B ⊂ S∞, let

∂B = {x ∈ B such that there is an edge exy ∈ E∞ with y ∈ Bc}. (3.12)

∂(Dc
i ) ⊂ T so ∂(Dc

i ) is stable with respect to the dynamics and for any x ∈ ∂(Dc
i ),

σx(0) = +1.

Since Di is finite it contains a longest path, p = (z, . . . , w). Since p cannot be

extended to a longer path, z must have K + 1 neighbors in Dc
i . When z’s clock first

rings, z flips to +1 and fixates for all later times. This argument can be extended to

show Di is eliminated (i.e., the −1 vertices are all flipped to +1) by the dynamics in

finite time as follows. Consider the set of vertices in Di which have not yet flipped

to +1 by some time t, and take t to infinity. Suppose this limiting set is nonempty.

Since this set is finite, it contains a longest path p̃ = (z̃, . . . , w̃). But now K + 1 of

z̃’s neighbors have spin +1 as t → ∞, implying that z̃ had no clock rings in [T,∞)

for some finite T . This event has zero probability of occurring, which contradicts the

supposition of a nonempty limit set.

The proof of Theorem 1.1 for K = 3 and 4 is slightly different than for K ≥ 5,

since for K = 3 (respectively, K = 4) the Ti’s of Definition 2.1 are not stable with

respect to the dynamics: each vertex v ∈ Ti has 2 (resp., 3) neighbors of spin +1,
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which is always less than a strict majority. The proof for K = 3 or 4 requires a

different decomposition of the space S∞ and definition of stable subsets. With this

purpose in mind, we express S∞ as

S∞ =
∞⋃

i=−∞

S̃i, (3.13)

where S̃i = Tk ×{2i, 2i+ 1} = {(u, j) : u ∈ TK , and j = 2i or 2i+ 1} (see Equation

(1.1) for a comparison). We call a vertex x = (u, 2i) or its partner in S̃i, x̂ =

(u, 2i + 1), doubly open if both σx(0) = +1 and σx̂(0) = +1; this occurs with

probability θ2. We proceed by defining a set of fixed vertices in S∞ in the spirit of

Section 2.1.

Definition 3.2. For i fixed, let T̃ +,l
i be the union of all subgraphs H of S̃i that are

isomorphic to Tl × {2i, 2i+ 1} such that ∀x ∈ H, x is doubly open.

It is easy to see that T̃ +,K−1
i is stable for K = 3 or 4 with respect to the dynamics

on S∞. Let T̃ denote the union of T̃ +,K−1
i across all levels S̃i, i.e.,

T̃ =
∞⋃

i=−∞

T̃i, (3.14)

where T̃i = T̃ +,K−1
i .

Proof of Theorem 1.1 for K = 3 and 4. We map one independent percolation

model, σ(u,j)(0) on S∞ with parameter θ, to another one, σ̃(u,i)(0) on S∞ with pa-

rameter θ2, by defining σ̃(u,i)(0) = +1 (resp., −1) if (u, 2i) is doubly open (resp., is

not doubly open). Propositions 2.1 and 3.1 applied to σ̃ imply that Proposition 3.1
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with T replaced by T̃ is valid for the σ̃(0) percolation model. The rest of the proof

proceeds as in the case for K ≥ 5.

Proof of Theorem 1.2. The proof proceeds analogously to that of Theorem 1.1, ex-

cept that the conclusion of Proposition 3.1, that S∞ \T almost surely has no infinite

components (for θ close to 1), is replaced by an analogous result for G \ TG with an

appropriately defined TG. We next specify a choice of TG for each of the graphs G

given in Section 1.1 and leave further details (which are straightforward given the

proof of Proposition 3.1) to the reader.

For G = TK with any K ≥ 3, we simply label TG = T +,K−1 (see Definition 2.4).

For G = Ssemi, TG depends on K like it did for G = S∞ - i.e., for K ≥ 5, we take

TG =
∞⋃
i=0

T +,K−1
i , (3.15)

and for K = 3 or 4 we take

TG =
∞⋃
i=0

T̃ +,K−1
i . (3.16)

For G = Slf or Slp with K ≥ 5, we take

TG =
l−1⋃
i=0

T +,K−1
i . (3.17)

For G = Slf or Slp with K = 3 or 4, the choice of TG depends on whether l is even

or odd since in the odd case the layers cannot be evenly paired. If l is even, then we

take
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TG =

l−2
2⋃
i=0

T̃ +,K−1
i . (3.18)

For l odd (and ≥ 3), we pair off the first l−3 layers and then use the final 3 layers to

define ˜̃T +,K−1 in which the use of doubly open sites for T̃ +,K−1 is replaced by triply

open sites; then we take

TG =

 l−3
2⋃
i=0

T̃ +,K−1
i

 ∪ ˜̃T +,K−1. (3.19)
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Chapter 4

Proofs of results on Zd

In this chapter we prove the theorems stated in Section 1.3.1. We present the

proofs in order of difficulty and only sketch the most general case, Theorem 1.6.

Though Theorem 1.4 is a special case of Theorem 1.5, we present here two different

proofs, namely a simple proof of Theorem 1.4 that only relies on arguments specific to

the zero-temperature Ising model with Glauber dynamics and a proof of Theorem 1.5

that relies on Bootstrap Percolation arguments. Throughout this chapter we let

BL = [−L,L]d be the cube of side length 2L+ 1 centered at the origin, and BL(x) =

x+ [−L,L]d be the translated cube centered at x ∈ Zd.

4.1 Proof of Theorem 1.4

The proof of Theorem 1.4 is based on the following lemma.
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Lemma 4.1. For any ε > 0, L <∞, there exists TL <∞ such that

P(at some time t ∈ [0, TL], σ′(t)|BL
≡ +1) > 1− ε. (4.1)

Proof. Camia, de Santis, Newman [2] showed that, for any ε > 0, L <∞, there exists

TL <∞ such that

Pθ(at some time t ∈ [0, TL], σ(t)|BL
≡ +1) > 1− ε. (4.2)

A comparison of the processes σ′(t) and σ(t) shows the same is true for σ′(t). This

uses a natural coupling between σ and σ′ in which σ′(t) ≥ σ(t). We do not present

this coupling in detail (we give the full proof of Theorem 1.5, which generalizes

Theorem 1.4, in the next section), but note that σ′(0) ≥ σ(0), since when ρ+ > 0,

for any x ∈ Z2,

P(σ′x(t) = −1) < P(σx(t) = −1). (4.3)

If BL is fully occupied in σ by time TL, it is also fully occupied in σ′.

Proof of Theorem 1.4. For any L ≥ 1, the probability that each box BL has all four

corners frozen plus is

P(BL has all corners frozen plus) = (ρ+)4 > 0. (4.4)

By the Law of Large Numbers, almost surely infinitely many boxes BL have this

property. Since both events {BL has all corners frozen plus} and, by Lemma 1.4,
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{at some time t ∈ [0, TL], σ′(t)|BL
≡ +1} occur with probability approaching 1 as

L→∞, so does their intersection.

If for some L, BL has all four corners frozen plus and σ′(t0)|BL
≡ +1 at some

time t0, then σ′(t)|BL
≡ +1 for all t ≥ t0. To see this note that, after time t0, every

vertex in BL (except the frozen corners) has at least 3 neighbors whose spin value is

+1, and thus cannot flip. Thus almost surely the origin fixates to +1. Of course, the

same arguments apply to any translated cube BL(x) = BL + x, proving the result.

4.2 Proofs of Theorems 1.5 and 1.6

4.2.1 Bootstrap percolation

Following Section 2 of Fontes, Schonmann, Sidoravicius [7] we describe the boot-

strap percolation process that assigns configurations {u, s}Zd
to a subset of Zd; here

u represents the unstable spin and s represents the stable spin at a vertex.

Definition 4.1. The d-dimensional (u→ s) bootstrap percolation process with

threshold γ, defined in a finite or infinite volume Λ ⊆ Zd, starting from the initial

configuration η0 ∈ {u, s}Λ is a cellular automaton which evolves in discrete time

t = 0, 1, 2, . . . and such that at each time unit t ≥ 1 the current configuration is

updated according to the following rules. For each x ∈ Λ,

1 If ηt−1(x) = s, then ηt(x) = s.

2 If ηt−1(x) = u, and at time t − 1 the vertex x has at least γ neighbors in Λ in
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state s, then ηt(x) = s; otherwise the spin at vertex x remains unchanged, i.e.

ηt(x) = u.

We will consider this process with threshold γ = d, as its evolution is close to

our coarsening dynamics and assume the initial configuration to be chosen from an

independent Bernoulli product measure P (η0(x) = s) = p, for p small, on Λ = Zd.

Definition 4.2. A configuration η ∈ {u, s}Λ internally spans a region BL(x) ⊂ Λ,

if the bootstrap percolation restricted to BL(x) started from η0 = η|BL
, ends up with

all vertices of BL in state s. We will denote η|BL
by ηL.

The following proposition, an immediate consequence of results of Schonmann

([16]), provides a key ingredient to our proofs.

Proposition 4.2. [Schonmann] If p > 0, then

lim
L→∞

P (BL is internally spanned) = 1. (4.5)

4.2.2 Preliminary lemmas

We will make a comparison between the bootstrap percolation process on Zd and

our process σ′ by mapping frozen plus spins to stable spins s, and all other spins to

unstable spins u. The frozen minus spin is mapped to u as, even when ρ− > 0, we

will only bootstrap finite regions with no frozen minus vertices. Indeed, the following

definitions will be applied in Lemmas 4.3 and 4.4 only to cubes with no frozen minus

vertices to conclude that at some time t all spins in the cube will be +1.
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We will say that a region BL(x) contains a spanning subset of frozen plus vertices

if the configuration obtained by the above mapping internally spans BL(x) in the

sense of bootstrap percolation.

Definition 4.3. A cube, say BL(x), is entrapped if it contains a spanning subset

of frozen plus vertices. It is captured if it is entrapped and all 2d corners are frozen

plus. It is M-captured (M ∈ {0, 1, . . . , L}) if it is entrapped and for each of the

2d corners Ci, (i = 1, . . . , 2d), and each coordinate direction j = 1, . . . , d there is a

frozen plus vertex within the cube of the form Ci,j = Ci +mej with |m| ≤M (where

e1, . . . , ed are the standard basis vectors of Rd) – see Figure 4.1. Note that captured

is the same as 0-captured.

BL(x)

C1,2

C1,1

C3

C2

C4

C1

Figure 4.1: BL(x) is M-captured

The motivation for the definition of M -captured is that it will be used (in Lemma

4.8) to guarantee that with high probability most of the vertices in the cube BL (at
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least for 1 � M � L) will become fixed plus. Note that, although in the above

definition M = L is allowed, in Lemmas 4.7 and 4.8 we require M < L. But Lemma

4.6 shows that one can indeed choose 1 � M � L. Lemmas 4.3, 4.4 and 4.5,

presented next, will be used in the proof of Theorem 1.5.

Lemma 4.3. Given L and a spanning subset ηL of frozen plus vertices that makes

BL entrapped, consider the σ′ process in Zd with initial spins in ηL taken as frozen

plus and all others in Zd \ ηL taken as minus but not frozen. Then

P(at some time t ∈ [0, 1], σ′(t)|BL
≡ +1) > 0. (4.6)

Proof. The proof follows easily from the following observation: since ηL is a spanning

subset of BL, the bootstrap percolation process (with frozen plus vertices playing the

role of s-vertices) occupies all vertices of BL in a finite number of steps. Since the

threshold γ = d, we can, with a small but positive probability, arrange the clock rings

for t ∈ (0, 1) and tie-breaking coin tosses of the coarsening dynamics to mimic the

dynamics of bootstrap percolation (in a much longer discrete time interval). Thus

σ′(t)|BL
≡ +1 for some t ∈ [0, 1] with positive probability.

The next lemma strengthens the last one by showing that, if we allow the process

to run until a large time, then with probability close to one all the vertices of BL

will flip to +1 before that time.

Lemma 4.4. For any ε > 0, L < ∞, there exists TL < ∞ such that, if the frozen

plus vertices in BL are spanning and there are no frozen minus vertices in BL, then
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for any choice of initial spins in Zd (other than the frozen plus vertices in BL)

P(at some time t ∈ [0, TL], σ′|BL
≡ +1) > 1− ε. (4.7)

Proof. Pick a spanning subset ηL of frozen plus vertices that makes BL entrapped.

By Lemma 4.3 it follows that there is an ε′ > 0 such that, for any m and σ′(m)

(consistent with the frozen vertices in BL),

P(at some time t ∈ [m,m+ 1], σ′(t)|BL
≡ +1|σ′(m)) ≥ ε′. (4.8)

Let TL be a large integer and, by repeatedly applying the last inequality to time

intervals of the form [m,m+ 1], 0 ≤ m < TL, we have

P(at some time t ∈ [0, TL], σ′|BL
≡ +1) ≥ 1− (1− ε′)TL(ηL) (4.9)

> 1− ε (4.10)

providing TL(ηL) is sufficiently large (depending on ε′ and hence on ηL). Finally,

choose TL to be the minimum of TL(ηL) over all finitely many possible spanning

ηL’s.

Lemma 4.5. If ρ+ > 0, then

lim
L→∞

P(Bl is captured for some l ≤ L) = 1. (4.11)
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Proof. Pick a sequence of increasing box sizes Li such that L1 < L2 < . . ., Li →∞

so that, by Proposition 4.2 with p = ρ+,

P(BLi
is not entrapped) <

1

i2
. (4.12)

Thus by the Borel-Cantelli Lemma, almost surely, all but finitely many boxes BLi

are entrapped. Now the probability that each box BLi
has all corners frozen plus

equals

P(BLi
has all corners frozen plus) = (ρ+)2d . (4.13)

By the Law of Large Numbers, almost surely infinitely many boxes BLi
have this

property. But the intersection of two almost sure events is an almost sure event,

therefore infinitely many boxes BLi
are captured, which implies the conclusion of the

lemma.

The remaining lemmas and definition will be used in the proof of Theorem 1.6.

Lemma 4.6. If ρ+ > 0, then

lim
M,L→∞

P(BL is M-captured) = 1, (4.14)

where M,L tend to infinity with no restriction other than M ≤ L.

Proof. By Proposition 4.2, as in the proof of Lemma 4.5,

lim
L→∞

P(BL is entrapped) = 1. (4.15)
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Now for any fixed L and M ≤ L, let AL,M denote the event that there exist frozen

plus spins within distance M from each of the 2d corners of BL in every one of the

d coordinate directions, as in Definition 4.3. Thus the event that BL is M -captured

is the intersection of AL,M with the event that BL is entrapped. The probability of

the event that any specific collection of M vertices contains no frozen plus spins is

(1− ρ+)M . It is then easy to see that

P(AL,M) ≥ ([1− (1− ρ+)M ]d)2d , (4.16)

and this tends to 1 as M →∞ (for fixed d). Since both the events {BL is entrapped}

and AL,M occur with probability approaching 1 as L,M → ∞, so does their inter-

section, which completes the proof.

Definition 4.4. Let B be a box of the form BL + x. We say that B is M-good

if B is M-captured and contains no frozen minus vertices. We define B[M ], the

M-trimming of B as

B \

 2d⋃
i=1

C̄i(M)

 , (4.17)

where each C̄i(M) is a cube within B containing exactly Md vertices including the

ith corner of B - see Figure 4.2 for the cased = 2.

Lemma 4.7. Given ρ+ > 0 and any ε > 0, there exist L <∞ and M < L such that

for all sufficiently small ρ− (depending on d, L,M, ε and ρ+),

P(BL is M-good) > 1− ε. (4.18)
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M

B[M ]

C1

C̄ 1(M)

Figure 4.2: B[M ] (gray), the M -trimming of an M -good box B

Proof. By Lemma 4.6, we may choose M large enough and then L large so that

P(BL is M-captured) ≥ 1− ε

2
. (4.19)

We may also pick ρ− small enough so that the probability that BL contains any

frozen minus vertices is less than ε
2
. Thus by the FKG inequality,

P(BL is M-good) ≥
(

1− ε

2

)(
1− ε

2

)
(4.20)

≥ 1− ε. (4.21)

Lemma 4.8. If BL is M-good with M < L, then with probability one all the vertices

in B[M ] are (eventually) fixed plus.
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Proof. Since BL is M -good, by Lemma 4.4 almost surely for some time t0, σ′(t0)|BL
≡

+1. In this case, if M > 0, σ′(t)|BL
need not stay identically +1 for t > t0 because

vertices near the corners can change from +1 to −1. But a moment’s thought shows

that the only vertices near a corner Ci that can change to −1 are those in a subset

of the cube C̄i(M) - see Definition 4.4. This is because the frozen plus vertices Ci,j

(from Definition 4.3) protect against the flipping of plus vertices beyond a rectangular

parallelepiped contained in C̄i(M). Note that because M < L, every vertex in BL[M ]

has at least d + 1 neighbors in BL[M ]. E.g., for d = 2 (see Figure 4.2), BL[M ] is

the union of two rectangles each of width at least three (hence at least two) so that

every vertex in a rectangle has at least three neighbors in the rectangle. Thus BL[M ]

will have σ′(t)|BL[M ] ≡ +1 for all t ≥ t0. Of course the same arguments apply to any

translated cube BL(x) = BL + x and to BL[M ](x) = BL[M ] + x.

4.2.3 Proofs of main results

The first of the two theorems follows easily from Lemmas 4.4 and 4.5, as follows.

Proof of Theorem 1.5. If the box BL has all 2d corners frozen plus, and if at some

time t0, σ′(t0)|BL
≡ +1, then σ′(t)|BL

≡ +1 for all t ≥ t0. This is because after time

t0 every vertex in BL (other than the corners whose spin value is frozen) will have at

least d+1 plus neighbors, so it won’t flip sign. If BL is also captured, then by Lemma

4.4, with probability one, σ′(t)|BL
≡ +1 will occur for some t. Now by Lemma 4.5,

with probability one, BL will be captured for some L and so σ′(0) will fixate to +1.

But the same argument can be translated to x and BL(x) for any x ∈ Zd.
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Proof of Theorem 1.6. Tile Zd with cubes CL(y) = BL((2L + 1)y), y ∈ Zd. Call

y good if CL(y) is M -good. For disjoint cubes the events of being M -good are

independent, so the collection of good y’s or bad (i.e., not good) y’s defines an

independent percolation model. But we replace the usual nearest neighbor graph on

Zd with a graph G, still with vertex set Zd, but where y1, y2 are neighbors (with edge

{y1, y2}) if ‖y1 − y2‖∞ = 1, so every y has 3d − 1 neighbors. This corresponds (e.g.,

for d = 3), to CL(y1) and CL(y2) sharing either a face or an edge or just a corner.

The reason for changing the notion of neighbor is that a standard (i.e., using only

nearest neighbor edges) cluster of fixed minus and flipper vertices can extend beyond

the standard cluster of M -bad (i.e., not M -good) cubes into the G-cluster of M -bad

cubes and beyond into the G-closure of that G-cluster.

Let C denote the cluster of bad vertices containing the origin in this independent

site percolation model of bad sites in G, and let C̄ denote its closure (where we add

good sites that are neighbors of bad sites in C). The relevance for our σ′ process is

that the G-cluster C∗ containing the origin, consisting of fixed minus together with

flipper vertices, satisfies

C∗ ⊆
⋃
y∈C̄

CL(y). (4.22)

This follows from Lemma 4.8. By standard percolation arguments, there is some

p∗ > 0 (e.g., 1/(3d − 1) since 3d − 1 is the number of neighbors of any vertex in G),

such that, if

P(y is bad) = P(BL is not M-good) < p∗, (4.23)
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then there is no percolation of bad sites and E(|C̄|) <∞. To finish the proof we use

Lemma 4.7 to choose ρ− small enough so that inequality (4.23) is valid, and finally

note that by inequality (4.22),

|C∗| ≤ |C̄|(2L+ 1)d. (4.24)
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Appendix A

A.1 Galton-Watson lemmas

The goal of this section is to show that the quantity

λ∗(θ) = min
{

(1− µθ(Tree+[v])ε1 , (1− µθ(Tree+[v, w])
1
2
ε2
}
, (A.1)

which appears at the end of the proof of Proposition 2.1, converges to 0 as θ → 1.

Here v is a leaf of a subtree T of TK , {v, w} is a pair of adjacent vertices of T such

that v is a good 2-point (as in Definition 2.3), and ε1, ε2 are fixed constants.

For this purpose we consider independent site percolation on TK and let

a1, a2, . . . , aK denote theK neighbors of 0, a distinguished vertex in TK . We associate

to each ai a tree A0[ai] (see Definition 2.2), for i = 1, . . . , K – see Figure A.1.
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aKa2

a3

a1

0

A0[a1]

A0[a3]

A0[a2] A0[aK]

Figure A.1: K-ary tree with labeled vertices and branches

Let T be a subtree of TK such that T contains a1 and 0 is a leaf of T – see

Figure A.2.

a2

aK

a3
0 a1

T

Figure A.2: T is a subtree of TK and 0 is a leaf of T

Let b be one of the neighbors of a2 (other than 0) and T ′ be a subtree of TK

containing b, a2, 0 and a1 (but not a3, . . . , aK) such that a2 is a good 2-point of T ′ –

see Figure A.3.
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a2 0 a1b

a3 aK	
T ′

Figure A.3: T ′ is a subtree of TK that contains b, a2, 0 and a1 such that a2 is a good
2-point of T ′

We consider the events Tree+[0] with respect to T and Tree+[a2, 0] with respect

to T ′ (see Definition 2.3) and estimate µθ(Tree+[0]), µθ(Tree+[a2, 0]) by analyzing a

related Galton-Watson process.

Definition A.1. For any vertex v ∈ TK, let C(v) denote the +1 spin cluster of v,

that is, C(v) is the set of vertices u in TK such that the path from v to u (including

v and u) includes only vertices w, with σw = +1.

Let

Zn = |v ∈ A0[a1] ∩ C(a1) : d(a1, v) = n|, (A.2)

where d(a1, v) represents the graph distance. Z0 = 1 if and only if σa1 = +1, and in

general Zn is the number of vertices in A0[a1] at distance n from a1 that are in a1’s

+1 spin cluster. Zn is a Galton-Watson branching process with offspring distribution

Bin(K − 1, θ).

Let Troot[x] denote a tree with root x, such that x has coordination number K−2

and all the other vertices have coordination number K − 1. The following definition
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is close to that of Tree+[x] (see Definition 2.3 and Figure 2.3), except that here the

(K − 1)-ary tree in question is rooted.

Definition A.2. Random rooted (K − 1)-ary trees of spin +1

Consider two vertices v, v′ ∈ TK such that v′ is a neighbor of v. Let Part+
v′ [v] denote

the event that there exists a subgraph H of TK isomorphic to Troot[v] and contained

in A′v[v], such that for all u ∈ H, σu = +1.

Consider three vertices x, y, z such that x and z are neighbors of y. Let Part+
x,z[y] be

the event that there exists a subgraph H of TK isomorphic to Troot[x] and contained

in Ax,z[y] (see Figure 2.2), such that for all u ∈ H, σu = +1.

Define τ(θ) as

τ(θ) = µθ(Part+
0 [a1]). (A.3)

Part+
0 [ai] and Part+

0 [aj] are independent for i 6= j by construction. The event Tree+[0]

is equivalent to the spin at 0 being spin +1 and the vertices a2, . . . , aK being the

roots of (K − 1)-ary trees of spin +1, so that

µθ(Tree+[0]) = θ τ(θ)K−1. (A.4)

Lemma A.1. τ(θ)→ 1 as θ → 1.

Proof. The proof is a consequence of Proposition 5.30 from [15] (about occurrence

of j-ary subtrees in Galton-Watson processes).

Define τ̃(θ) as

52



τ̃(θ) = µθ(Part+
a1,a2

[0]). (A.5)

The event Tree+[a2, 0] is equivalent to {Part+
a1,a2

[0] ∩ Part+
b,0[a2]}, so that, by the

independence of the events Part+
a1,a2

[0] and Part+
b,0[a2],

µθ(Tree+[a2, 0]) = τ̃(θ)2. (A.6)

Lemma A.2. τ̃(θ)→ 1 as θ → 1.

Proof. This result follows as in the proof of Lemma A.1.

Equations (A.4) and (A.6) imply that µθ(Tree+[0]) and µθ(Tree+[a2, 0]) converge

to 1 as θ → 1, which immediately implies:

Lemma A.3. λ∗(θ)→ 0 as θ → 1.

A.2 Geometric lemmas

Let T be a finite tree with N vertices and maximal coordination number ≤ K.

N1 ≤ N of T ’s vertices are labeled special, such that all of T ’s leaves are special

vertices and the remaining special non-leaf vertices can have any coordination number

≤ K. We remark that in Section 2.2, we start with |Λ| special vertices in TK and

then T is the minimal subtree of TK that contains all the special vertices.

Lemma A.4. Let M1 be the number of leaves in T , M2 the number of 2-points

(vertices with exactly two edges in T ), . . ., MK the number of K-points (vertices
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with exactly K edges in T ); M1 + . . .+MK = N . Then

Mi ≤M1 (A.7)

for i = 3, . . . , K.

Proof. The proof can be found, for example, as part of Theorem 8.1 in [8].

Definition A.3. A good 2-point in T is a 2-point both of whose neighbors are 2-

points. A bad 2-point is a 2-point that is not a good 2-point – see Figure A.4.

good 2-point

Figure A.4: A good 2-point

Lemma A.5. There exist constants ε1, ε2 ∈ (0,∞), depending only on K, such that

either:

a) M1 ≥ ε1N1, and/or

b) there are at least ε2N1 special good 2-points.

Proof. By Lemma A.4

K∑
i=3

Mi ≤ (K − 2)M1, (A.8)

and since
∑K

1 Mi = N ,
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(K − 1)M1 +M2 = M1 +M2 + (K − 2)M1 (A.9)

≥
K∑
1

Mi = N. (A.10)

Thus either (K − 1)M1 ≥ N
K

or M2 ≥ N(K−1)
K

. In the first case, since N ≥ N1,

M1 ≥
N

K(K − 1)
≥ 1

K(K − 1)
N1, (A.11)

and letting ε1 = 1
K(K−1)

gives a).

In the second case M2 ≥ N(K−1)
K

, and if a) is not valid with ε1 = 1
K(K−1)

, then

M1 ≤ N1

K(K−1)
. To prove b) we need to count the various types of special vertices in

T . The set of special vertices is comprised of:

• special good 2-points; let Good denote the set of such vertices,

• special bad 2-points; let Bad denote the set of such vertices,

• special leaves, special 3-points, . . . , special K-points; let Other denote the set

of such vertices.

Since |Good |= N1 − |Bad| − |Other | , we need to upper bound |Other | and

|Bad | . By Lemma A.4,
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|Other | ≤ M1 +M3 + . . .+MK (A.12)

≤ (K − 2)M1 (A.13)

≤ K − 2

K(K − 1)
N1. (A.14)

Now |Bad| ≤ |{all bad 2-points}| and it is easy to see that the latter is upper bounded

by M1 + 3M3 + . . .+KMK . Thus by Lemma A.4,

|Bad | ≤ M1 + 3M3 + . . .+KMK (A.15)

≤ M1(1 + 3 + . . .+K) (A.16)

≤ 1

2
K(K − 1)M1 (A.17)

≤ 1

2
N1, (A.18)

since M1 ≤ N1

K(K−1)
. Thus

|Good| = N1 − |Bad| − |Other| (A.19)

≥ N1

(
1− K − 2

K(K − 1)
− 1

2

)
(A.20)

= N1

(
K2 − 3K + 4

2K(K − 1)

)
. (A.21)

We let ε2 = K2−3K+4
2K(K−1)

> 0 and so |Good| ≥ ε2N1.
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A.3 Probabilistic lemma

Consider site percolation on TK distributed according to the product measure µθ

with

µθ(σx = +1) = θ = 1− µθ(σx = −1),∀x ∈ TK . (A.22)

Let T be a finite subtree of TK with 2 ≤ N1 ≤ |T | of its vertices labeled special,

such that all the leaves are special. As in Lemma A.5, in the following lemma ε1 and

ε2 are strictly positive, finite and depend only on K. For the events Tree+[v] and

Tree+[v, w], see Definition 2.3.

Lemma A.6. Disjoint events

For each such tree T , one or both of the following is valid:

a) there are at least ε1N1 leaves v in T , with the events {Tree+(v)} mutually inde-

pendent, and/or

b) there are at least 1
2
ε2|Λ| edges having endpoints v, w in T with v a good special

2-point, and the events {Tree+(v, w)}v,w mutually independent.

Proof. Lemma A.6.a follows from Lemma A.5.a, since for each of the ε1N1 leaves of

T we can define an event Tree+[v], and these events depend on the spins of disjoint

sets of vertices and are therefore mutually independent.

Otherwise, by Lemma A.5.b there are at least N3 = ε2N1 good special 2-points

in T . These are arranged into p ≥ 1 nonempty maximal chains of adjacent vertices

along T . We order the chains and let ni denote the number of vertices in the ith
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chain, for i = 1, . . . , p; n1, . . . , np ≥ 1 and n1 + . . . + np = N3. We also order the

N3 good special 2-points, {s1, s2, . . . , sN3}, so that they are consecutively ordered in

each chain.

Suppose ni = 1 for some i, and the good special 2-point in this chain is s∗i . Let wi

be one of s∗i ’s neighbors in T and consider the event Tree+[s∗i , wi]. If ni = 2, the ith

chain contains two adjacent special points {s∗i (1), s∗i (2)} and we consider the event

Tree+[s∗i (1), s∗i (2)]. Generally for the ith chain, we pair adjacent good special 2-points

(other than the last if ni is odd) so as to consider bni+1
2
c events Tree+[s∗i (j), s

∗
i (j+1)],

where the last event is Tree+[s∗i (ni), wi] if ni is odd; these events involve disjoint sets

of vertices and are therefore independent. Thus in total we can construct

⌊
n1 + 1

2

⌋
+ . . .+

⌊
np + 1

2

⌋
≥
⌊
N3

2

⌋
(A.23)

mutually independent events.
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