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Abstract

A core technique of modern tools for formally reasoning about computing

systems is generating and dispatching queries to automated theorem provers,

including Satisfiability Modulo Theories (SMT) provers. SMT provers aim at the

tight integration of decision procedures for propositional satisfiability and de-

cision procedures for fixed first-order theories – known as theory solvers. This

thesis presents several advancements in the design and implementation of the-

ory solvers for quantifier-free linear real, integer, and mixed integer and real

arithmetic. These are implemented within the SMT system CVC4. We begin by

formally describing the Satisfiability Modulo Theories problem and the role of

theory solvers within CVC4. We discuss known techniques for building solvers

for quantifier-free linear real, integer, and mixed integer and real arithmetic

around the Simplex for SMT algorithm. We give several small improvements to

theory solvers using this algorithm and describe the implementation and the-

ory of this algorithm in detail. To extend the class of problems that the theory

solver can robustly support, we borrow and adapt several techniques from lin-

ear programming (LP) and mixed integer programming (MIP) solvers which

come from the tradition of optimization. We propose a new decision proce-

dure for quantifier-free linear real arithmetic that replaces the Simplex for SMT

algorithm with a variant of the Simplex algorithm that performs a form of opti-

mization – minimizing the sum of infeasibilties. In this thesis, we additionally

describe techniques for leveraging LP and MIP solvers to improve the perfor-

mance of SMT solvers without compromising correctness. Previous efforts to

leverage such solvers in the context of SMT have concluded that in addition to
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being potentially unsound, such solvers are too heavyweight to compete in the

context of SMT. We present an empirical comparison against other state-of-the-

art SMT tools to demonstrate the effectiveness of the proposed solutions.
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Introduction

The Satisfiability Modulo Theories (SMT) problem is to decide whether or not a

logical statement can be made true–or satisfied–within a first-order theory. This

allows for asking queries of the form – can you make the statement “x plus y is

strictly less than 3, y is not less than 0, and x is equal to 4” true if x and y are

real numbers? The intuitive answer is of course not! The role of the theories

is to restrict the meanings of statements such as “plus,” “greater than” or even

“4” so that they match our intuition about arithmetic and formally allow solvers

of SMT queries to also conclude this example is unsatisfiable. Solvers for SMT

have specialized decision procedures in order to be able to decide individual

theories. The focus of this thesis is on the decision procedure for the theories of

real, integer, and mixed integer and real arithmetic. SMT solvers aim to be an

efficient form of automated theorem proving capable of handling computationally

challenging problems and are designed to be quick and robust on problems of

interest.

SMT solvers were developed to be a back-end technology to perform sym-

bolic reasoning for other tools arising from formal methods. These tools auto-

matically generate SMT queries in order to express and reason about comput-

ing systems. Computing systems are ubiquitous in modern life. From general

purpose computing devices like cellphones to small specialized devices such

as thermostats, more and more objects in everyday life contain some form of

computational reasoning. As these increasingly complicated devices spread, so

too does buggy software and hardware. The common practice used to ame-

liorate bugs is to test and simulate computing systems to find the presence of
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bad behaviors. These practices have the advantage of being easy to understand.

They are also effective at catching many simple bugs and demonstrating that

the program or circuit can perform as expected on many examples. However, a

problem with testing and simulation is that while they can prove the existence

of bugs, they typically cannot guarantee the non-existence of bugs due to the

large number of possible behaviors.

The subfield of formal methods attempts to use computational tools to log-

ically specify and reason about computational systems. Techniques such as

model checking and abstract interpretation can be used to prove the absence of

bugs in existing software systems while areas such as synthesis attempt to au-

tomatically build systems that by construction must fulfill a given specification.

There are also tools to automatically generate test cases that are guaranteed to

exhibit new traces for every generated test. What unites formal methods is the

use of symbolic, formal and logical specifications for computers and computer

programs, as well as the development and application of computational tools to

assist in reasoning about such logical specifications.

The improvements in model checking algorithms over the past 30 years have

closely followed improvements in symbolic reasoning. Model checkers began

using explicit constructions of finite automata [30]. A great advance in mak-

ing model checking scalable was the creation of symbolic model checking to

represent sets of states and the semantics of transition relations using a logi-

cal representation called Binary Decision Diagrams (BDDs) [62,83]. While BDD

based model checking continues to have its strengths, most state-of-the-art re-

search in model checking and verification is based upon using propositional

satisfiability (SAT) queries as a way of modeling the executions of finite state
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systems [15]. What has driven the success of this approach is the rapid im-

provement in SAT solvers over the past two decades. The growth of efficient-

in-practice SAT solvers has led to these solvers being used in a wide variety

of new and unforeseen ways, including solving mathematical conjectures [75].

Some have even called it the “SAT Revolution” [25].

SMT solvers lift propositional satisfiability to reason over first-order logical

theories. SMT solvers are built by tightly interleaving the steps of a modern

SAT solver with calls to theory solvers that reason over finite sets of first-order

literals for built-in theories. The built-in theories give semantics or meaning

to such first-order statements, and these semantics allow us to conclude that

“x must be strictly less than 3 if x plus y is strictly less than 3, and y is not

less than 0.” By extending the language the solvers can natively handle, SMT

solvers offer a richer and more natural language for expressing a multitude of

problems. From describing the temperature gauges in a controller to modeling

computer memory to modeling the relative positions of airplanes in air traffic

control systems, the list of applications of SMT solvers keeps growing [8].

This thesis is concerned with improving the theory solvers for the satisfia-

bility of quantifier-free linear real arithmetic, quantifier-free linear integer arith-

metic, and quantifier-free linear mixed integer and real arithmetic problems.

This thesis makes the following contributions:

1. The thesis discusses in detail the design and construction of theory solvers

for arithmetic. Such a discussion is usually considered too low-level for

research papers in SMT. This leads to an unfortunate situation where the

implementers of SMT solvers must independently learn the small pitfalls

and optimization improvements. This thesis attempts to address all of the
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major design decisions and procedures underlying CVC4’s state-of-the-art

theory solver for arithmetic. We additionally describe key data structures

and formalize the internally used inference rules. This discussion is given

mostly in terms of the Simplex for SMT algorithm as it forms the core of

this work and is the simplest decision procedure described.

2. The thesis additionally gives a number of small improvements to the Sim-

plex for SMT algorithm. This includes a method of bookkeeping for effi-

ciently detecting theory conflicts. We describe a new method of strength-

ening the conflicts found by the Simplex for SMT algorithm. A new model

generation procedure is described that allows the decision procedure to

handle disequalities via splitting-on-demand lemmas.

3. A new theory solver is given for quantifier-free linear real arithmetic that

extends the core infrastructure for the Simplex for SMT algorithm and

replaces the central decision procedure. This new decision procedure is

a variant of the Simplex algorithm, which on every step minimizes the

sum-of-infeasibilities function. By adding this minimization, the algo-

rithm seeks to address a major problem with the robustness of the Sim-

plex for SMT procedure. We give experimental results that compare the

two algorithms and provide partial insights into the strengths of both. A

new heuristic conflict minimization procedure for this method is given

that avoids performing additional search.

4. A major contribution of this thesis is a new method for taking advantage

of existing floating point linear programming Simplex solvers and branch-

and-cut solvers. Because floating point arithmetic is inexact, rounding er-
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rors can lead to incorrect results, making inexact solvers inappropriate for

direct use in theorem proving. Previous efforts to leverage such solvers in

the context of SMT have concluded that in addition to being potentially

unsound, such solvers are too heavyweight to compete in the context of

SMT. We describe techniques for integrating Linear Programming solvers

and branch-and-cut Mixed Integer Programming solvers that can dramat-

ically improve the performance of SMT solvers on challenging instances

without compromising correctness. The solution leaves the search of the

Mixed Integer Programming solver unchanged, but requires the solver to

implement additional logging while generating cutting planes.

Organization of The Thesis

Chapter 1 begins this thesis with an introduction to the theoretical and prac-

tical background of SMT solving. It gives a brief introduction to many-sorted

first-order logic, the fundamental language of SMT solvers. The chapter then

formally defines the SMT problem. The SAT problem is defined as a subcase

of SMT. We then give an introduction to three procedures for solving SAT: the

classical Davis-Putnam and Davis-Putnam-Logemann-Loveland (DPLL) pro-

cedures and their modern synthesis in the Conflict Driven Clause Learning

(CDCL) procedure. We move from SAT, to discussing the DPLL(T) architecture

which ties together a CDCL solver with theory solvers to form decision proce-

dures for the SMT problem. This chapter will hopefully make clear how the

theory solvers developed in later chapters fit into the larger context of an SMT

solver, and the interface between the theory solver and the rest of the system.

Chapter 2 gives an introduction to the Simplex for SMT theory solver and
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its associated Simplex decision procedure. The chapter begins with a high level

overview of the solver: its invariants, its preprocessing and its core operations.

The remaining chapters of this thesis build upon this abstract introduction. Af-

ter this introduction, the rest of chapter is devoted to an in-depth discussion of

this algorithm and how it is implemented. This deep dive covers many top-

ics usually considered uninteresting for research publications, but that are im-

portant for the efficiency and soundness of such solvers. Topics covered in-

clude: the delta-rational numeric representation, the soundness of inference

rules built upon delta-rational arithmetic, the implementation of the tableau,

the row-based propagation procedures, and how to backtrack the solver. An

advantage of performing this deep dive is that it gives a sufficiently detailed

view of the solver to describe our novel bookkeeping for eager conflict detec-

tion, our technique for conflict minimization, and the soundness of our model

building procedure. We also go out of our away to explain the Simplex for SMT

algorithm’s relationship to optimization, and we show how to unify the reason-

ing done by this theory solver and the solver for Chapter 3 as following from a

single variant of Farkas’ Lemma.

Chapter 3 builds directly upon the theory solver described in Chapter 2 to

describe a new sum-of-infeasibilities Simplex solver. The chapter begins with

a discussion of a classical optimizing Simplex solver. We then define sum-of-

infeasibilities and give an algorithm for selecting operations to minimize this

function. The chapter then discusses a new heuristic conflict minimization pro-

cedure. This conflict minimization method avoids performing additional Sim-

plex search. We give experimental results that compare the two algorithms and

provide partial insights into the strengths of both. The contents of this chapter
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were previously published in FMCAD’13 [73].

Chapter 4 gives an introduction to theory solvers that lift the Simplex tech-

niques given in Chapters 2 and 3 to quantifier-free linear integer arithmetic and

quantifier-free linear mixed integer and real arithmetic. This includes a discus-

sion of branching, cutting-plane generation, and rewriting within the context

of SMT solving. We also give a description of more traditional branch-and-cut

Mixed Integer Programming solvers for optimization. This chapter is meant as

an introduction to these topics and does not include original contributions.

Chapter 5 discusses theory solvers for quantifier-free linear real, integer, and

mixed integer and real arithmetic based on leveraging existing floating point

linear programming and mixed integer programming solvers. We discusses an

adaptation of previous work for reseeding an exact precision solver, and new

methods for attempting to reproduce the implicit proofs of infeasibility coming

from Mixed Integer Programming solvers. At the end of this chapter, we give an

overall empirical comparison of the techniques presented in this thesis against

other state-of-the-art SMT solvers. This chapter concludes with the insights we

have gained from the empirical comparison, and suggested future work to ex-

tend this approach. The contents of this chapter appear in FMCAD’14 [74].

Chapter 6 concludes this thesis with an overview of the contributions in the

thesis and their place in the path towards building better decision procedures

for quantifier-free linear real, integer and mixed integer and real arithmetic. Ad-

ditional commentary and detailed proofs are given in Appendix A.
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Chapter 1

Satisfiability Modulo Theories

This chapter provides background to Satisfiability Modulo Theories (SMT)

solving. Readers familiar with these topics are encouraged to skip sections as

they see fit. Section 1.1 begins with a description of First-Order Logic. The

SMT problem is formally defined using many-sorted first-order logic in Sec-

tion 1.2. The propositional satisfiability problem is then defined as a subcase

of SMT and decision procedures for this problem are described in Section 1.3.

Section 1.4 gives the DPLL(T) architecture for combining SMT reasoning with

efficient propositional satisfiability solvers. The final section (1.5) gives an in-

troduction to the CVC4 SMT solver and theory solvers.

1.1 First-Order Logic

First-order logic is a language used for making precise statements. It gen-

eralizes propositional (or Boolean logic) to include functions, relations, quanti-

fiers and variables ranging over a fixed domain of discourse. One of the great

8



strengths of classical first-order logic is that it makes precise a notion of “truth.”

“Can X be true?” “If X is true, must Y be true?” “Is X always true?” First-order

logic provides a foundation for making such statements and claims with math-

ematical precision.

This section introduces a many-sorted variant of first-order logic. When

combining different domains in mathematics, one usually states what domains

a variable refers to: “If x is an integer, then (cons x NIL) is a list of integers.”

Many-sorted logic builds upon classical [single-sorted] logic by labeling and cat-

egorizing everything in its language into explicit domains or sorts. This helps

maintain clarity when dealing with multiple domains at once, and it makes

many-sorted logic the natural formal basis of SMT solving.

1.1.1 Syntax

A signature Σ is a set of function and sort symbols, and a function ToSort

that relates the function symbols to sort symbols. A sort or sort symbol gives

a name to a domain of discourse. A signature always implicitly contains the

distinguished sort symbol Bool for the Boolean domain. The ToSort function

maps each function symbol f ∈ Σ into a pair containing a k-tuple of sort symbols

for the domain of f and a sort symbol indicating f’s codomain. The arity of the

function is the number k.

For example, a signature for real arithmetic is usually given as

ΣR = 〈Real, 0, 1,+, ·,<〉

where: Real is a sort symbol, 0 and 1 are 0-ary function symbols into Real, +
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and · are 2-ary function symbols from 〈Real, Real〉 to Real, and < is a 2-ary

relation symbol from 〈Real, Real〉 to Bool. Function symbols with Bool domain

like < are often referred to as predicate or relational symbols (or just predicates

and relations).

Included in the logic are a number of “core” or implicitly included function

symbols. For every sort symbol S, we also require that there is an implicit equal-

ity symbol =S which is a 2-ary predicate symbol with the domain 〈S,S〉. The

implicitly included function symbols over Bool are ∧ (and), ∨ (or), and =Bool

(Boolean equivalence), which are 2-ary function symbols over Bool, and ¬ (not),

which is a 1-ary propositional function symbol. These symbols are known as

logical connectives. The semantics of these symbols is given later. Note that these

symbols, like Bool, are assumed to be in all signatures and are not explicitly

written out. In the previous example, the signature ΣR implicitly included the

sort Bool, the predicate =Real, the logical connective ∧, etc.

First-order logic over a signature Σ includes an infinite set of variable sym-

bols. Each variable is explicitly associated with a sort in Σ. The terms of Σ are

generated by applying function symbols to terms and variables of the correct

sort. We denote that the term t has sort S by t : S. The terms of Σ and their

associated sorts are defined as the minimal inductive set constructed by:

• x : Swhere x is a variable with the sort symbol S,

• the application of a function symbol (f t1 t2 . . . tk) : D where ToSort(f) =

〈〈C1, . . .Ck〉 ,D〉 and for all i, ti : Ci,

• the application of a “for all” quantifier (∀x.t) : Bool where x is a variable

symbol and t : Bool, or
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• the application of an “exists” quantifier (∃x.t) : Bool where x is a variable

symbol and t : Bool.

Throughout the thesis I will switch between LISP-like notation for function ap-

plication and infix notation when appropriate and unambiguous. Additionally,

as the application of a constant function symbol has no arguments, the paren-

thesis can be dropped without ambiguity.

The formulas of the language of Σ are the terms of sort Bool. The atoms of Σ

are formulas that are either variables with sort Bool or a function application of

a non-logical connective (i.e. not the application of ∧, ∨, ¬, or =Bool). Literals

are either an atom a or the negation of an atom ¬a.

Consider again the example signature ΣR with variables x with sort Real

and bwith sort Bool. The variable x is a term with x : Real. The symbol 1 : Real

is a term constructed by the application of the constant function symbol 1 to 0

arguments. The terms b : Bool and (=Real 0 x) : Bool are formulas, literals and

atoms while the term (¬ (< 0 x)) is a formula and a literal but not an atom.

1.1.2 Semantics

The language of Σ-terms is given its semantics by structures. A Σ-structure

contains a map from each sort symbol S ∈ Σ to a non-empty set, U(S) (the

universe of S or its domain), and a map from each function symbol f in Σ to

a function fU such that if ToSort(f) = 〈〈C1, . . .Ck〉 ,D〉 then fU is a function from

U(C1)× · · · × U(Ck)→ U(D).
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The built-in Bool sort is required to have a two-element domain

U(Bool) =
{

trueU, falseU
}

.

The logical connectives ∧U, ∨U, and ¬U are required to match their standard

truth table definitions.

x y x∧U y x∨U y ¬Ux

falseU falseU falseU falseU trueU

falseU trueU falseU trueU trueU

trueU falseU falseU trueU falseU

trueU trueU trueU trueU falseU

(1.1)

Further, the equality predicate =U
S for each sort symbol S is required to faithfully

interpret equality over U(S) i.e. the equality predicate maps xU,yU ∈ U(S) to

trueU iff xU and yU are the same object in U(S).1

An interpretation M is an extension of a Σ-structure that additionally maps

each variable symbol x : S in the logic into u ∈ U(S), denoted xM = u. We

denote by M [x→ u] the interpretation that is “updated” by mapping x to u in

M. More formally, M [x→ u] has the same domain as M, maps every variable

that is not x to the same element as M, and maps the variable x : S to u ∈ U(S).

A notion of evaluation is defined for all Σ terms:

• Eval(M, x) = xM for a variable x,

• Eval(M, (f t1 . . . tk)) = (fU Eval(M, t1) . . . Eval(M, tk)),

1 See [49, Pages 83,127-128,140-141] for details on handling equality in Σ.
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• Eval(M,∀x.φ) = trueU if for all u ∈ U(S), Eval(M [x→ u] ,φ) = trueU

holds (and it evaluates to falseU otherwise), and

• Eval(M,∃x.φ) = trueU if for some u ∈ U(S), Eval(M [x→ u] ,φ) = trueU

holds (and it evaluates to falseU otherwise).

The |= symbol is used to denote the satisfaction relation. The interpretation M

satisfies the formula φwhenever Eval(M,φ) = trueU. This is written asM |= φ.

It will be clear from the context what signature Σ is currently in use. When

Σ is clear from the context, instead of Σ-formula, Σ-interpretation, etc., we use

“formulas”, “interpretations”, etc. The language of Boolean connectives is ex-

tended for convenience to include implication⇒, exclusive-or ⊕, and the con-

stants true and false. Additionally, each sort S is required to have an if-then-else

function symbol, iteS, with the domain 〈Bool,S,S〉 and codomain S. Every in-

terpretationM is required to satisfy the following for any t : S, e : S and c : Bool.

M |= c =⇒ (iteS c t e) =S t and M |= (¬c) =⇒ (iteS c t e) =S e

When the condition c of the iteS is true, then the iteS term is equal to its second

child t, the “then” child. Otherwise, the iteS term equals its third child e, the

“else” child. The pattern above where s, t, c are any appropriate terms is known

as a formula schema. The subscript S on =S and iteS is similarly dropped when

S is clear.

1.1.3 Entailment and Satisfiability

A formula φ logically entails a formulaψ if for any interpretationM such that

M |= φ, then M |= ψ. Here the symbol “|=” is overloaded in φ |= ψ to denote φ
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entailsψ. Formulas φ andψ are logically equivalent wheneverφ |= ψ andψ |= φ.

A formula φ is satisfiable if there exists an interpretation M that satisfies φ.

Using the notion of logical entailment, φ |= false is used to denote that φ is

unsatisfiable. Formulas φ and ψ are equisatisfiable when φ is satisfiable iff ψ is

satisfiable.

1.1.4 Theories

The set of free variables of a term t, free(t), is defined inductively as:

• free(x) = {x} if x is a variable,

• free((f t1 t2 . . . tk)) = ∪i∈[1,k] free(ti) for function applications,

• free(∀x.φ) = free(φ) \ {x}, and

• free(∃x.φ) = free(φ) \ {x}.

A sentence is a first-order formula with no free variables. If M and M ′ are in-

terpretations with the same underlying structure (i.e. they agree on everything

but the variable assignment), then M |= φ iff M ′ |= φ for any sentence φ. Infor-

mally, this means that sentences are agnostic to variable assignments and only

care about the structure underlying the interpretation. A formula φ is valid if it

is satisfied in all interpretations. We again employ the “|=” symbol to denote va-

lidity by dropping the left hand side, and write |= φ. Simple examples of valid

formulas are propositional tautologies such as:

|= P⊕Q⊕ P = Q.
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A term t is quantifier-free iff t syntactically contains no quantifiers. A quantifier-

free formula φ is equisatisfiable with its existential closure

(∃x1. (∃x2 . . . (∃xn.φ ) . . .))

where x1, x2, . . . , xn is any enumeration of free(φ), the free variables in φ.

Theories are sets of sentences closed under logical entailment. A set of sen-

tences S is closed under logical entailment if for all φ ∈ S, whenever φ |= ψ,

then ψ ∈ S. A model of a theory T is a structure that satisfies all sentences in

T. The interpretations of a theory, Mod(T), are all of the interpretations M that

extend the models of T.2

1.2 The SMT Problem

The Satisfiability Modulo Theories problem is to decide whether a formula φ

has a satisfying interpretation in the theory T. A formulaφ is satisfiable modulo

T if there is an interpretation M ∈ Mod(T) such that M |= φ. We write M |=T φ

as shorthand forM ∈Mod(T) andM |= φ.

Theories of interest are ones that are expressive enough to model interesting

problems, but also have efficient decision procedures. What distinguishes SMT

solvers from other automated first-order logic solvers is that SMT solvers build

efficient specialized solvers for theories of particular interest instead of focusing

on more general methods (e.g. first-order resolution). In order to develop spe-

cialized solvers, the theory T [or theories] the solver can solve are built into the

2 Note that most authors use Mod(T) to reflect the models of T instead of the interpretations.
Hence the notation Mod(·).
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solver (as opposed to being specified by input axioms). For example, the theory

of arrays allows for reasoning about memory reads and writes, the theory of

fixed-width bitvectors naturally encodes common CPU arithmetic instructions,

and the combination of these two theories gives a natural logic for encoding

assembly instructions. Developing new theories allows for new domains to be

expressed succinctly by developing specialized procedures. The core set of the-

ories that most state-of-the-art general-purpose SMT solvers support are:

• Booleans,

• uninterpreted functions,

• linear mixed real and integer arithmetic,

• fixed-width bitvectors,

• arrays, and

• inductive datatypes.

The parametric theories, such as uninterpreted functions, arrays, and datatypes,

can be used to mix together base theories, such as bitvectors and arithmetic, into

combined theories. (See Sec. 1.5.5 for more on combination.)

Theories explicitly restrict the semantics of function symbols given by the in-

terpretations. Much in the same way that the function symbol ∧ is restricted so

that ∧U is indistinguishable from the standard “and function,” theories restrict

the semantics of their interpreted symbols such as +, 0, <, etc. These interpreted

symbols are restricted by the set of sentences in the theory referencing the sym-

bols (called axioms). Examples of axioms are statements such as 0 is the additive
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identity of +:

∀(a : Real)a+ 0 = a

or that addition preserves the order of <

∀(a,b, c : Real)a < b =⇒ a+ c < b+ c.

These axioms require that the functions + and 0 have certain properties that

make them behave according to our expectations on + and 0. Fixed-width

bitvectors on the other hand are finite and can be defined using a standard model

where the bitvector operations are defined by a propositional equivalent circuit.

However, fully defining theories in either of these fashions is outside of the

scope of this thesis. (Interested readers are directed to [65, Section 2].) When

designing an SMT solver, it is of great benefit to design the solver with respect

to a standard model. This fixes how to implement the operations and greatly

simplifies reasoning. The standard models for many theories, however, are infi-

nite. The intention of the axioms of the theory is to restrict the function symbols

to act like their counterparts in the standard interpretation. There may be some

concern that a formula could be satisfiable in the theory, but not hold in the

standard model. Fortunately, the theories the later chapters cover, such as real

arithmetic, are all complete. A complete theory is one in which every sentence is

logically equivalent modulo the interpretations of the theory. (For every pair of

models A,B of the theory and any Σ-sentence φ, A |= φ iff B |= φ.) This means

that models of the theory cannot be distinguished by Σ-sentences. In arithmetic,

this means that the function +U cannot be distinguished over U from the stan-

dard + function over the R by a ΣR formula. If a theory is complete with a
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standard model, this significantly simplifies the design of a theory solver. The

solver may then be designed around the standard model as a formula is satis-

fiable iff it is satisfiable in the standard model. This allows for both the theory

solver designer [and the user] to treat such interpreted theory symbols “+” as if

they are the mathematical function. (Some theories of interest are not complete.

See Chapter 4.)

Signatures Σmay be explicitly extended with new uninterpreted function sym-

bols. For example, to declare an uninterpreted function f from an integer and a

Boolean to bitvectors with 2 bits in the SMT-LIBv2.0 language, we write

(declare-fun f (Int Bool) ( BitVec 2)) (1.2)

These are not interpreted by the theory. All that is known about these functions

is that they act like functions over their domains. Given the declaration (1.2),

(f 5 true) is well-formed while (f 5 0) is not.

Many of the notions from first-order-logic can be extended modulo T using

the restricted notion of satisfaction modulo T:

• entailment modulo T (φ |=T ψ): for every M ∈ Mod(T), if M |=T φ, then

M |=T ψ,

• validity modulo T (|=T φ): ifM ∈Mod(T),M |=T φ, and

• equisatisfiability modulo T, φ is satisfied by some M ∈ Mod(T) iff ψ is

satisfied by someM ′ ∈Mod(T).

Past this point, the modifier “modulo T” may be dropped for brevity when it is

clear from the context that we are working modulo the theory T.
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A decision procedure is a terminating algorithm that when given an input pro-

duces either a yes or a no answer to a formal problem. A semi-decision procedure

always reports yes when the answer is yes, but may fail to report no when the

answer is no. An SMT solver is a procedure for deciding whether φ is satisfiable

(Sat) or unsatisfiable (Unsat) for a fixed theory T. In general, an SMT solver

may not even be a semi-decision procedure and may in addition to answering

Sat or Unsat may report unknown or fail to terminate. An SMT solver is sound if

whenever it reports Sat, then the input φ is satisfiable, and whenever it reports

Unsat the input φ is unsatisfiable. An SMT solver is complete if it always either

reports Sat or Unsat. A theory T is decidable if has a sound and complete pro-

cedure for checking satisfiability. Many SMT theories of interest are in general

undecidable, i.e. they cannot have a decision procedure. (See Chapter 4.)

SMT solvers implement effective-in-practice procedures to handle fragments

of their input languages. These fragments are known as logics. Most SMT

solvers focus on building satisfiability procedures for quantifier-free formulas.

Quantifier reasoning is then built on top of the decision procedures for the

quantifier-free fragments by performing sound but incomplete instantiation [43,

96]. Instantiation may be made complete in many important applications [102];

however, this requires proving locality properties for fixed quantifiers. A theory

admits quantifier elimination iff for all formulas φ there exists a logically equiva-

lent quantifier-free formula φQF. If there exists a procedure for computing φQF

given φ and the quantifier-free satisfiability problem is decidable, then quan-

tifier elimination forms a decision procedure for the theory. All theories that

admit quantifier elimination are complete.3

3 See [64] for more on quantifier elimination.
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Logics can additionally limit what kinds of terms can be constructed. For

example, linear arithmetic can be defined by not allowing any multiplication

symbols, and difference logic further restricts arithmetic to only have atoms of

the from x− y 6 cwhere c is a rational constant.

Instead of just deciding the satisfiability of φ and answering Sat or Unsat,

SMT solvers may also be model producing and proof producing. A model produc-

ing SMT solver, in addition to answering Sat, returns along with the answer a

handle H to a satisfying interpretation M, (Sat H). The handle H is a function

that maps any term t into tM. In simple cases, H is just an assignment of each

variable x that appears in φ. For example,

φ : x > 0 ∧ y 6 5 ∧ ((x = y+ 5)∨ (x = y− 5))

is satisfied by the handle [x→ 1], [y→ −4]. The additional level of indirection

produced by using handles instead of variable assignments, allows for support-

ing infinite representations and the additional computation sometimes needed

to refine abstractions of interpretations into interpretations.

1.3 Decision Procedures for SAT

The SMT problem is a generalization of the propositional satisfiability (SAT)

problem. The SAT problem may be viewed as a special case: the satisfiability of

φ where the only sort in φ is Bool and φ is quantifier-free. The SAT problem is

the classic NP-complete problem.

A clause is a finite disjunction of literals. For example, (p∨ q∨ r) is a clause

over the propositional variables p, q and r. Viewing clauses as sets instead of
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just binary disjunctions simplifies quite a bit of reasoning around associativity

and commutativity of ∨. For simplicity, we additionally allow clauses with 0 or

1 literal. A clause with 0 literals is called the empty clause and is equivalent to

false. Clauses with 1 literal are called unit clauses. A formula φ is in conjunc-

tive normal form (CNF) if it is a conjunction of clauses. The following is a CNF

formula over the propositional variables p, q and r:

(p∨ q∨ r)∧ (¬p)∧ (¬q). (1.3)

Currently, the best performing general decision procedures for the SAT prob-

lem work by first reducing a SAT formula φ to an equisatisfiable CNF formula

φ ′, and then using a decision procedure for CNF formulas. The reduction to

CNF may be implemented by a straightforward recursive algorithm that works

by adding for every subformula ψ an additional variable xψ such that in all sat-

isfying models M, M |= ψ = xψ, and encoding each equivalence in CNF [109].

The result of applying this reduction to a propositional formula φ is an equisat-

isfiable formula φ ′. A major advantage of working in CNF is that it provides

a uniform representation that enables specialized techniques and simpler rea-

soning compared to an arbitrary structure. If any of the literals in the clause

is known to be true, the clause is satisfied and the rest of the clause can be ig-

nored. Equivalently, all of the literals in the clause must be false for the clause

to be unsatisfied. Section 1.5.11 gives rewriting rules that simplify a formula in

CNF to either not contain either the constants true or false, or to be exactly the

constants true or false. The CNF solver can then be assumed to only have to

deal with CNF formulas not containing constants.
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The simple but powerful resolution rule takes two clauses C ′ ≡ {x} ∪ C and

D ′ ≡ {¬x}∪D and infers a new clause C∪D that does not contain x:

{x}∪C {¬x}∪D

C∪D
RESOLUTION

(1.4)

Inference rules like this are read as follows: whenever the top (the antecedents)

holds then the bottom (the consequent) holds as well. If M satisfies C ′ and D ′,

then M must satisfy C ∪D regardless of whether x evaluates to true or false in

M. Sound inferences only derive valid entailments: if φ infers ψ, then φ |= ψ.

All of the inference rules given will be sound, but most will not be proven.

The Davis-Putnam (DP) procedure is a sound and complete procedure for

SAT that uses resolution as its primary workhorse [35, 37]. The procedure is

given as input a set of clauses CDB. DP selects a Bool variable x that appears

in some clause, and then exhaustively applies resolution over the clauses in

CDB over the variable x to infer a new set of clauses that do not contain x. The

union of these new clauses with the clauses that did not previously contain x

are equisatisfiable with the original set of clauses. If the procedure ever derives

the empty clause, then the problem is Unsat. Resolution can only get stuck if

a variable is pure, all instances of a variable x in the clauses are either positive

(x) or negative (¬x). Such pure variables can be safely eliminated by effectively

assigning them to either true or false respectively. The clauses containing a

pure variable x can be dropped or ignored as the result is an equisatisfiable set

of clauses. DP then recursively checks the resulting set of clauses CDB
′ (from

either resolution or pure variable elimination) for satisfiability. If all variables
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have been eliminated, then CDB is either empty in which case the problem is Sat,

or CDB contains the empty clause and is Unsat.

The Davis-Putnam-Logemann-Loveland (DPLL) SAT procedure takes the

DP procedure and reorients its focus to recursively look for models [35, 36].

(Pseudocode for DPLL is given in Fig. 1.1.) DPLL tries to find a satisfying partial

model to a set of clauses, CDB, over n Boolean variables. It does this by recur-

sively guessing an assignment to each variable and checking whether the set of

guesses made satisfy the clauses. To improve upon naively enumerating and

testing all 2n variable assignments, DPLL tries to do better by using one guess

to learn the assignments of more variables before guessing again. An assign-

ment of a variable x to constant value v will be denoted [x→ v] (following the

notation for substitution). The guess or decision that the Boolean variable x gets

the value v ∈ {true, false} is a marked variable assignment [x→ v]d. The de-

cision [x→ v]d is added to a stack of partial assignments called a trail. The

decision level is the total number of decisions on the trail. Appending a vari-

able assignment [x→ v] to the trail simulates adding either the unit clauses {x}

(for v = true) or {¬x} for (v = false). After adding the decision, the procedure

performs a restricted form of resolution called unit propagation that only derives

unit clauses.

UNIT-PROP

p1, . . . ,pn ¬q1, . . . ,¬qm ¬p1 ∨ . . . ∨¬pn ∨ q1 ∨ . . . ∨ qm ∨ r

r

(1.5)

A derived unit clause r effectively forces the variable x appearing in the clause

to be assigned to a value v. If r is positive (a variable x), then xmust be assigned
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to true, while if r is negative (¬x), then v = false. Whenever a new unit r and

[x→ v] is learned, then either:

• x is not assigned in trail and [x→ v] is added to trail as a propagation.

• If [x→ v] is already on trail, r is satisfied and can be ignored,

• Or if [x→ ¬v] is already on trail, then r cannot be satisfied, and this

branch must be Unsat.

Once a branch is known to be Unsat, the procedure terminates and returns

Unsat. Unit propagation is applied to a fix-point – either the rule has derived a

contradiction or the rule cannot derive any new unit clauses. If it is not the case

that all variables appear in the trail, another variable is selected for branching

and the process recursively continues. If all variables are in the trail, Unit-Prop

is exhausted, and there are no conflicts, the branch [and the original problem] is

Sat.

Efficient implementations of DPLL can substantially outperform naive im-

plementations. No new copies of the input clauses need to be made or removed

as nothing but unit clauses are derived. Those can directly be handled with the

trail. The program’s recursion may be fully simulated by using the trail and

marking decision literals differently than propagations. Recursion amounts to

pushing a new decision [x→ v]d onto the trail and restarting the main loop.

To simulate returning, the solver backtracks to the previous decision, flips the

assignment of that decision, removes the decision marking ([x→ ¬v]), and con-

tinues as normal. If there is no decision to be flipped on the trail, all of DPLL’s

branches have been explored and the problem is Unsat. More significantly there

are efficient datastructures such as watched literals and clause databases that
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DPLL(CDB , trail ) :
apply UNIT-PROP using trail and CDB to a f i x−point
i f both [x→ true] and [x→ false] f o r any x :

re turn Unsat
i f AllClausesAreSat (CDB , trail ) :

re turn Sat
e l s e :

S e l e c t some x such t h a t x i s not on trail

trailtrue ← trail∪ [x→ true]d
i f DPLL(CDB , trailtrue ) == Sat :

re turn Sat
trailfalse ← trail∪ [x→ false]d
i f DPLL(CDB , trailfalse ) == Sat :

re turn Sat
re turn Unsat

Figure 1.1: Psuedocode for the DPLL algorithm.

can make Unit-Prop very efficient. Further lines of research examine heuristics

for which variable to choose as a decision and what value it should be assigned,

and when to restart the SAT search [14, 66, 86, 94]. This non-recursive, non-

destructive and efficient reformulation eliminates a large amount of overhead.

The Conflict Driven Clause Learning (CDCL) framework provides a mod-

ern, sound and complete procedure for SAT that combines the strengths of DP

and DPLL [81, 101]. CDCL uses a DPLL-style search for satisfying assignments

by making decisions and applying Unit-Prop. CDCL additionally associates

with each propagated literal the id of the clause that propagated it as part of the

trail, [x→ v]id. What distinguishes CDCL from DPLL, is that whenever CDCL

derives both [x→ true] and [x→ false], it learns a clause that heuristically ex-

plains this inconsistency or conflict. CDCL specifically tries to learn a conflict

clauseC = {¬`1,¬`2, . . . ,¬`k} where each `i is currently true in the trail, and

CDB |= C (as CDB∧¬C |= false). A simple algorithm for guessingC is the negation
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of all of the decisions. The solver can safely add such a C to the database as

CDB |= C implies that CDB is logically equivalent to CDB ∧C.

The solver then backtracks to the lowest decision level such that C would have

been propagated by UNIT-PROP if it had been in CDB before. (More formally, the

prefix of trail up to the decision level ` can apply UNIT-PROP to C to assign a

variable x to v and previously at level ` ′ > `, xwas assigned ¬v. The variable x is

known as the Unique Implication Point [101].) The search then proceeds again

from this point. The conflict now propagates at least one literal in opposite po-

larity, cutting off the previous set of decisions. This naive conflict generation

algorithm almost simulates DPLL. More advanced algorithms for generating

conflict clauses examine the derivation of both [x→ true] and [x→ false]. The

trail and the clause ids associated with each Unit-Prop propagation define an

implicit implication graph. Conflict analysis algorithms examine this implica-

tion graph in order to generate conflicts [81, 101]. The result is smaller and less

redundant conflicts that cut off significantly more future search space. These

algorithms can be viewed as performing highly selective forms of resolution

to derive C. CDCL solvers alternate between this search for satisfying assign-

ments, and learning from its failures to derive new facts to guide future search.

1.4 DPLL(T)

The most common architecture for building general purpose SMT solvers is

DPLL(T) [11, 54, 90, 99]. The architecture weds together a DPLL or CDCL-style

SAT solver augmented with T-specific reasoning to produce an SMT decision
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procedure. Part of the reason for the popularity of DPLL(T) solvers is that the

architecture cleanly separates propositional reasoning from theory reasoning.

The theory-specific reasoning is handled by a theory solver. Theory solvers are

modules that can perform certain classes of reasoning over T. The core facility a

theory solver provides is to decide the satisfiability of conjunctions of T-literals.

An augmented SAT solver is used to solve the Boolean abstraction of the for-

mula where every theory atom [and quantified formula] is handled as a propo-

sitional variable. These are asserted to the theory solver as literals. The the-

ory solver then checks the T-satisfiability of the set of asserted theory literals,

A = {p1, . . . ,pM}. If the asserted literals are satisfiable and the SAT solver has

found a propositionally consistent assignment to the Boolean abstraction, then

the original input formula is satisfiable. However, if A is inconsistent, then some

subset C of A is inconsistent and the negation of C is T-valid.

∧
pi∈C

pi |=T false

|=T

∨
pi∈C

¬pi

THEORY-CONFLICT

(1.6)

The derived clause
∨
pi∈C ¬pi is T-valid and is sent to the SAT solver. The SAT

solver then adds this clause to its clause database. This newly-added clause is

(by construction) falsified in the SAT solver, and a modified version of conflict

clause generation is invoked to backtrack the SAT solver. If the SAT solver ever

concludes that its clause database is infeasible, then the valid theory lemmas

and the original propositional structure are enough to infer that the original

input is Unsat.
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There are many candidate modes of operation and interplay between SAT

solvers and theory solvers. One popular explanation of the relationship be-

tween the SAT solver and the theory solver is that the theory solver contains

an infinite set of theory-valid lemmas that the SAT solver is querying on de-

mand [11, 99]. Three naive modes of operation that are easy to explain are fully

lazy, fully eager, and in-the-loop. A fully eager strategy enumerates all possibly

relevant theory lemmas before SAT solving. Instances of fully eager strategies

in practice include Ackermanization for uninterpreted functions, and some bit-

blasting strategies for fixed-width bitvectors [11, Section 26.3]. Ackermanization

adds the lemmas that enforce that the result of two instances of a function are

equal whenever all of the arguments are equal:

(
k∧
i=1

ti = si

)
=⇒ (f t1 . . . tk) = (f s1 . . . sk).

Fully lazy on the other hand waits for the SAT solver to build a full Boolean sat-

isfying assignment before checking for theory consistency. In-the-loop solving

checks for theory satisfiability at specific points throughout the SAT search: be-

fore making a decision and before concluding SAT. Most general-purpose SMT

solvers opt for carefully tuned balances of spreading inferences over eager, lazy

or in-the-loop flavors of reasoning where it has been deemed experimentally

appropriate.

This section has so far only described a minimal abstract DPLL(T) interface

calculus where the theory solver provides only satisfiability checks. The next

section will implicitly describe the full abstract DPLL(T) calculus via the SMT

solver CVC4.
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1.5 The CVC4 Architecture

CVC4 is a state-of-the-art Satisfiability Modulo Theories solver [7]. CVC4 is

the fourth in the line of the Cooperating Validity Checker (CVC) SMT solvers

which supplanted the Stanford Validity Checker [6, 9, 13, 103]. The implemen-

tation of CVC4 is a refinement of Abstract DPLL(T) [90]. This section gives a

high level description of the architecture of CVC4.

1.5.1 User Interaction

CVC4 provides users with a native C++ binary interface. Built on top of

this interface are several APIs for other programming languages and textual

interfaces for the languages: SMT-LIB version 1.2 [95], SMT-LIB version 2.0 [12],

TPTP [105] and the CVC presentation language. The most popular language

for describing SMT problems is the SMT-LIB 2.0 language. The core of the user

interface can be defined using a key subset of the SMT2 commands. The user

interacts with CVC4 though the following major commands:

• (set–logic LogicString):

This command specifies what logic (Sec. 1.2) the problem is over. This

informs the solver of what theories and combinations of theories may be

used (additionally it may change what decision procedure is used). If this

is left unspecified, CVC4 assumes an “ALL SUPPORTED” logic that en-

ables the widest range of supported formulas. This command must pre-

cede all of the other commands in this list.

• (push):

This increases an integer called the user-context-level. Each context-level
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forms a scope for declarations and assertions. The user-context-level is

initially zero.

• (pop):

This decreases the user-context-level. If the context-level ever becomes

negative, the input is malformed.

• (declare–fun Name ([Sorts]) Sort):

This declares an uninterpreted function symbol “Name” that operates over

a list of sorts that form the domain of the function and the sort of the

codomain of the function. Variables are declared as uninterpreted con-

stants by leaving the domain list empty, e.g. (declare–fun x () Real).

• (assert φ):

Asserts that the formula φ holds in the current user assertion level. This

is implicitly pushed onto the back of a stack of user assertions, AU. This

stack will be automatically snapped back to the correct length upon a user

(pop).

• (check–sat):

The solver checks for the T-satisfiability of AU and returns either: Unsat,

Sat or Unknown.

• (get–model):

After a (check–sat) call that answers Sat, a model-producing SMT solver

(like CVC4) can return a handle H to a satisfying interpretation.

Figure 1.2 gives an abstraction of the C++ public interface that CVC4 provides

for these calls. Most of these actions are reasonably straightforward with almost

30



c l a s s SmtEngine {
void se tLog ic ( s t r i n g l o g i c ) ;
void push ( ) ;
void pop ( ) ;
Resul t assertFormula ( Expr e ) ;
Resul t smtCheckSat ( ) ;
Model getModel ( ) ;

} ;

Figure 1.2: Abstraction of the CVC4 SmtEngine.

all of the work being delegated to SMTCHECKSAT. There are many user queries,

like (get–model), the solver can answer after a SMTCHECKSAT to help the user

in a variety of tasks such as proofs, unsat cores, assignments, and lemma-lifting

[29]. These are outside of the scope of this thesis.

1.5.2 SMTCHECKSAT

The SMTCHECKSAT routine is responsible for orchestrating the overall solv-

ing process. It is responsible for simplifying the input problem, setting up the

problem to be solved, dispatching the problem to the decision procedures and

saving the results of the decision procedures for future user queries.

The SMTCHECKSAT routine is given in Fig. 1.3. The routine begins by mak-

ing a copy of the user assertions AU as a list of internal equisatisfiable assertions

A. Working on a copy frees A to be rewritten into more efficient forms without

necessarily maintaining logical equivalence across user (pop) operations. The

handle to the model H is maintained to translate between interpretations for A

and the user input. The internal assertions are then preprocessed. Preprocessing

transforms A with the goal of making the problem more efficiently solvable. The

assertions are then further transformed by theory sanitization. The full language
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Resul t SmtEngine : : checkSat ( ) throw ( . . . ) {
A := copy AU ;
Model H := empty
preprocess (A , H ) ;
for each p in A :

theoryPur i fy (p , H ) ;
for each p in A :

propEngine . a s s e r t (p , H )
r es := propEngine . checkSat ( )
i f re s i s Sat :

theoryEngine . f ina l izeModel (H , M)
s t o r e H

. . . // Save i n f o for other user quer ies
return r es

}

Figure 1.3: Abstraction of the CVC4 SMTCHECKSAT routine.

that SMT solvers support is not supported directly by the theory solver. Sanitiz-

ing reduces these more complex expressions that theory solvers do not support

to [equisatisfiable] terms that theories support. (Preprocessing and sanitizing

are discussed more in Sections 1.5.8 and 1.5.9.) SMTCHECKSAT then sends all of

the sanitized assertions to the PROPENGINE. The PROPENGINE is an abstraction

of the SAT solver in DPLL(T) while the THEORYENGINE abstracts the theory T

in DPLL(T). The PROPENGINE works with the THEORYENGINE (see Sec. 1.5.5)

to then decide satisfiability. (See sections 1.5.3 and 1.5.5.) Based on the result

of this call, SMTCHECKSAT, performs some post-processing, caches the post-

processing, and returns the result.
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1.5.3 PROPENGINE

The PROPENGINE abstracts deciding propositional satisfiability of the asser-

tions A sent to it. The PROPENGINE works together with the THEORYENGINE

to then decide the satisfiability of A. Figure 1.4 visualizes the flow of commu-

nication between the PROPENGINE, the THEORYENGINE, and the individual

theory solvers. The assertions in A are efficiently converted into equisatisfiable

clauses using a caching CNF converter ToCnf. The CNF converter allocates new

propositional variables for inner Boolean terms when necessary. The cache of

the converter creates a one-to-one correspondence between theory atoms and

a propositional variable. A version of the main solving loop of CDCL which

has been extended for theory reasoning is given in Sec. 1.5.4. Whenever the

propositional variable correspondence to a theory atom is set to a value, the

THEORYENGINE is sent the assertion as a literal. The THEORYENGINE then com-

municates back the theory satisfiability of these assertions using theory lemmas.

A theory lemma is a theory-valid formula φ that the theory solver is requiring

the PROPENGINE to satisfy in the propositional abstraction. The PROPENGINE

adds the lemma φ to its own assertions, converts it to CNF, and integrates these

clauses into the state of the CDCL search. (Lemmas are sanitized before go-

ing to the PROPENGINE.) Theory lemmas include theory conflicts, splitting-on-

demand lemmas, quantifier instantiations, and other forms of theory lemmas in

CVC4.4 When the theory solvers do not emit lemmas, this can either be inter-

preted as Sat or Unknown depending on the context.5

Splitting-on-demand is a technique that allows theories to request that the

4 Andrew Reynolds’ thesis discusses how quantifiers are handled in CVC4 [96].
5 See Section 1.5.4 for a discussion of when this means Sat or Unknown.
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SAT solver locally enumerate cases [10]. For example, if the literal x 6= y is sent

to the theory of real arithmetic, but under the current candidate handleH, x and

y are assigned the same value, the solver can request the split:

x = y∨ x < y∨ x > y

The SAT solver then decides that either x > y or x < y is true and sends this

to the theory solver. This simplifies solver design as the solvers do not need

to build the additional machinery to enumerate these cases, to recombine the

individual proofs or to design a decision procedure that natively handles the

entire input language.

The THEORYENGINE also propagates theory literals to the PROPENGINE that

have been inferred using the current assertions.6 During the conflict analysis

phase, PROPENGINE can ask the THEORYENGINE for an explanation of the prop-

agated literals as a conjunction of previous assertions.

explanation(l) =
∧
ai∈A

ai such that
∧
ai |=T l

This allows the CDCL solver to use the clause explanation(l) =⇒ l to explain

the propagation of l lazily.

1.5.4 CDCL(T)

The CDCL loop of CVC4 requires tightly interweaving theory reasoning at

crucial steps. The psuedocode for combining CDCL with theories is given in

6 CVC4 currently follows DPLL(T) and requires the propagated literals to have correspond-
ing SAT variables.
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Figure 1.4: A visualization of the DPLL(T) communication in CVC4.
(Courtesy Liana Hadarean)
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Fig. 1.5. The current version of CVC4 1.4 uses minisat 2.2.0 with adaptations

for use with DPLL(T) as its underlying SAT solver. The two crucial abstract

datastructures are the clause database, CDB, and the trail of SAT propagations, as-

signments and theory propagations, trail. The procedure unfolds roughly the

same way as CDCL (Sec. 1.3). The main loop begins by saturating UNIT-PROP,

and if inconsistent, learning a conflict and then backtracking (lines 4-11). Run-

ning UNIT-PROP to a fix-point is often referred to as Boolean Constraint Propa-

gation (BCP). As the SAT variables are assigned in trail, the variables corre-

sponding to theory atoms and their assignments are sent to THEORYENGINE as

assertion literals and pushed onto a stack of assertions A. If the partial assign-

ment trail is consistent with CDB, the THEORYENGINE is called for an in-the-

loop consistency check, known in CVC4 as a standard effort check (line 12). A

standard effort check may report either:

1. (Sat H) if A is T-satisfiable,

2. (Unsat C) if A contains a T-conflicting subset C,7

3. (Lemma φ) where φ is a T-lemma, or

4. Unknown if the theory solver decides the check is too expensive.

What is done in standard effort checks is heuristic. The solver may always re-

turn Unknown. What is appropriate depends on the theory solver. The stan-

dard effort checks are not required for correctness, but are useful for reduc-

ing the search space explored earlier than if the checks are only performed

at leaves. If there are any pending theory lemmas, these are imported into

7 The response (Unsat C) is implemented as a wrapper around
(
Lemma

∨
`∈C ¬`

)
with ad-

ditional debugging and logging.
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CDB and the main loop is restarted to check for conflicts and further propaga-

tion (lines 13-15). If there are no pending lemmas, THEORYENGINE is asked to

propagate theory literals (line 16). If theory literals were propagated, the main

loop is restarted to again check propositional consistency of the clauses and

to propagate more (lines 17-18). If the clause database CDB is satisfied by the

partial assignment trail, the propositional abstraction has been satisfied. The

THEORYENGINE then does a full effort check. A full effort check is required to

report either

1. (Sat H) if A is T-satisfiable,

2. (Unsat C) if A contains a T-conflicting subset C, or

3. (Lemma φ) where φ is a T-lemma and (*) φ is not currently proposition-

ally satisfied.8

Full effort checks are required for the correctness of reporting satisfiable. The

THEORYENGINE and theory solvers must commit to either reporting the set of

assertions is satisfiable, unsatisfiable, or if theory solver is unsure, it must send

out a lemma that forces the SAT solver to make additional decisions (hence the

new (*) condition).

If (Sat H) is reported for the theory, the CDCL solver returns Sat with the

current trail trail as the propositional variable assignment and the CDCL(T)

solver can combine H and trail to build a satisfying interpretation for the user

input assertions. If there are lemmas of the form (Unsat C) or (Lemma φ), the

main loop is again restarted. Finally, if the CDB is not yet satisfied by the trail,

8 Formally, the condition (*) on full effort lemmas is that the CNF abstraction of φ, ToCnf(φ),
is not satisfied by the current trail, trail.
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the solver pushes the sat-level and decides a value for an unassigned variable.

Note that removing lines 12-20 and 20-24 results in the standard abstraction of

CDCL.

1.5.5 THEORYENGINE

General purpose SMT solvers such as CVC4 support multiple input theories

T. The THEORYENGINE provides an abstraction of the solvers for many different

theories as a single combined theory. It is responsible for being an intermediary

between the PROPENGINE and the theory solvers, dispatching atoms to the cor-

rect theory solver, and performing theory combination. Literals such as s < t

are dispatched to the theory solver for arithmetic while (f x) = (f (f x)) is sent to

uninterpreted functions. This maintains clear lines of separation for implement-

ing different theories. Suppose that f’s codomain is Real, there could be atoms

where it is unclear which theory to dispatch to such as (f x) < t. This makes

the term (f x) shared between two theories that must agree on what (f x) is if the

problem is satisfiable. The THEORYENGINE acts as the combination of the partic-

ipating theories. CVC4 uses a modern version [68, 108] of the classical Nelson-

Oppen method [87]. Under some restrictions on the theories, Nelson-Oppen

ensures that if both theories agree on an alignment, either (s = t) or (s 6= t)

for all shared terms s and t (of the same sort), then the procedure can generate

a combined model and soundly conclude Sat for the combination. CVC4 fur-

ther optimizes this method using lazy combination [20] and care graphs [68] to

reduce the number of equalities guessed.
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1 CDCL(T ) :
2 sat−l e v e l := user−l e v e l
3 loop :
4 i f ( BCP() = Unsat )
5 β := CONFLICT-ANALYSIS(CDB, trail)
6 i f ( β < user−l e v e l ) :
7 re turn Unsat
8 e l s e :
9 Backtrack (CDB , trail , β )

10 sat−l e v e l := β

11 continue
12 theoryEngine . check ( S tandardEf for t )
13 i f ( there are enqueued T−lemmas ) :
14 import T−lemmas as c l a u s e s i n t o CDB
15 //may requi re C o n f l i c t−Analysis/Backtrack
16 continue
17 theoryEngine . propagate ( )
18 i f ( there are enqueued T−propagations ) :
19 push T−propagated l i t e r a l s onto trail

20 continue
21 i f ( AllClausesAreSat (CDB , trail ) ) :
22 theoryEngine . check ( F u l l E f f o r t )
23 i f ( there are enqueued T−lemmas ) :
24 continue
25 return Sat
26 [x→ v]d := PickBranch ( c lauses , t r a i l )
27 sat−l e v e l := sat−l e v e l + 1
28 push [x→ v]d onto trail

Figure 1.5: DPLL(T) extended CDCL loop
Psuedocode for a DPLL(T) extended CDCL loop.
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1.5.6 Theory Solvers

Theory solvers are procedures for deciding the satisfiability of conjunctions

of assertions A in a logic for a theory T. An abstracted interface for a theory

solver is given in Fig. 1.6. Theory solvers receive new assertions from the THE-

ORYENGINE. When the PROPENGINE wants to know the T-consistency of its as-

sertions, it requests the THEORYENGINE to perform a TheorySolver::check(·)

which the THEORYENGINE sends to each theory solver. Both standard effort and

full effort checks output lemmas onto an output stream that the THEORYENGINE

polls and forwards to the PROPENGINE after each check. As discussed in Sec-

tion 1.5.4, standard effort checks are in-the-loop and not required for consis-

tency. Full effort checks, on the other hand, are required to output a conflict

lemma if the assertions are inconsistent or a splitting lemma to refine an un-

known state.

Theory solvers may be directed to propagate theory-entailed literals. CVC4

currently restricts the propagated literals to be over atoms the PROPENGINE

or THEORYENGINE know about. The THEORYENGINE tells the theory solvers

which atoms are known to the PROPENGINE using T-PREREGISTER(p). To bet-

ter support sharing the THEORYENGINE supports propagating equalities and

disequalities between shared terms. If t is shared, the THEORYENGINE calls

TheorySolver::addSharedTerm(t). Once t and s are marked as shared, the the-

ory solver may propagate s = t or s 6= t if it is entailed. A propagated literal p

is sent out on the output stream and is then handled by THEORYENGINE. The

theory solver may be asked to explain any of the propagations it has made in

the current sat-level using T-EXPLAIN(p).
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c l a s s TheorySolver {
void a s s e r t ( L i t e r a l p ) ;
void check ( e f f o r t ) ;
void addSharedTerm ( Term t ) ;
void p r e r e g i s t e r (Atom p ) ;
void propagate ( ) ;
void expla in ( Propagated L i t e r a l p ) ;

} ;

Figure 1.6: Abstraction of a Theory Solver.

1.5.7 Context Levels and Backtracking

A key concept in developing DPLL(T) SMT solvers is the notion of context

dependence. Most system components are designed to be consistent with respect

to a given set of assertions. The two major sets of assertions are the user as-

sertions AU and the SAT solver’s set of assertions trail (which are sent to the

theory solvers). Both sets of assertions are implemented as stacks which im-

plicitly represent conjunctions. Assertions are added to the tops of these stacks

in the current context-level. Increasing the context-level is done by an explicit

push of the context level. On a push, the sizes of the assertion lists is saved. The

context-level is decreased by an explicit pop operation. On a pop, the top of the

stack of assertions is popped until the size of the stack matches the size that was

saved on the previous push.

SMT solvers are designed to “live on the stack.” Their datastructures are

designed to be either: dependent upon sat level, dependent on the user context-

level, local to a function call or global. Datastructures that are dependent on the

context-level are automatically backtracked to a previous state. They make and

save incremental amounts of work in response to new assertions that they then
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lose when the assertion is popped. This helps make the solvers more incremen-

tal, efficient, and in many cases easier to reason about.

1.5.8 Preprocessing

Preprocessing passes transform a set of assertions, A, with the goal of mak-

ing them more efficiently solvable. What preprocessing passes are allowed to do

is quite broad: the only theoretical limit on what preprocessing passes can do is

that the resulting A ′ is equisatisfiable and that handles for A ′ can be converted

into handles for A [41]. Examples of preprocessing include:

• Learning that a literal ` is entailed by A (much like BCP in SAT).

• If an equality x = t is entailed by A and t does not contain x, then t may

be substituted for x everywhere in A.

• If a term such as x+ t is unconstrained, e.g. x is a variable that only ap-

pears in x+ t, then x+ tmay be replaced by a fresh variable y.

• The theory may add clauses that are likely to speed up the propositional

search, e.g. (x 6 2) =⇒ (x 6 5).

• Attempt to solve a bitvector problem using a smaller bit-width and see if

the satisfying answer scales.

The eager style reasoning discussed in Sec. 1.4 is done only by preprocessing

passes in CVC4. Section 2.1.2 discusses theory preprocessing for arithmetic.
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1.5.9 Theory Sanitizing

The input language that SMT solvers are capable of supporting may not

directly correspond to the language the theory solvers can efficiently support.

Theory sanitizing passes reduce these more complex expressions into terms that

the theory can support. These new constraints may require adding fresh new

theory variables that do not appear in the original formula, and adding new

constraints to ensure that the proper semantics of the more complex expression

are satisfied. These new variables are often called skolems after Thoralf Skolem.

The result of sanitizing is an equisatisfiable formula. Equisatisfiable transfor-

mations often introduce new variables that are restricted to take on the value

of more complex expressions. These new variables are often substituted for the

original expressions. We write s[t/u] to denote the result of replacing the term

t with the term u whenever it appears in the term s.9 Examples of sanitizing

include:

• replacing non-Boolean ite terms in A with a skolem s,

A[(ite c t e) /s]∧ (ite c (= s t) (= s e))

• removing all instances of a user defined non-recursive macro functionm =

λx.e,

A[(m t)/e[x/t]]

• and replacing function symbols with internally defined macros.

9 We are ignoring variable capture during substitution for simplicity.

43



Expanding internal macro functions allows for solving some particularly diffi-

cult cases that may even require two theories. The primary motivation of in-

ternally defined macros is to handle division-by-zero. The SMT-LIB standard

requires assigning a total function to the function symbol / which includes as-

signing (/ t 0) a real value for all t. CVC4 handles this by replacing (/ t s)

with (
ite (= s 0) (/by−0 t) (/total t s)

)
sending (/by−0 t) to the uninterpreted function theory as a shared term, and

otherwise using a version of division /total that CVC4 can safely make total

arbitrarily.

1.5.10 Nodes

Formulas, terms, and sorts are all built on top of the Node datastructure in

CVC4. Nodes form a Directed Acyclic Graph (DAG). The leaves of the DAG are

variables and constants. Nodes representing applications of built-in functions

simply contain a list of children. Every Node has a Kind that describes what

each Node is. If a Node has a Kind indicating that it is a variable, then the rest

of the node is a unique unsigned integer. Every datastructure that is a constant

has a unique kind associated with it (The Kind also indicates a unique C++ type

for this constant.) Built-in theory function symbols and logical connectives each

have their own kind. Uninterpreted functions have the kind APPLY and take

the first child as the function being applied.10

Nodes are structurally identical if they are built from the same sequence of

10 Similar constructs to uninterpreted functions that cannot be built into the language, such
as constructors and selectors for the theory of datatypes, are built using analogs of APPLY.
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function applications over the same variables and constants. To indicate that

two Nodes s and t are structurally equal, we write s ≈ t. The memory associ-

ated with Nodes belongs to a NodeManager. The NodeManager is responsible

for controlling the pool of Nodes. Upon the creation of nodes the NodeMan-

ager uses hash-consing to ensure that if s ≈ t, then the Nodes are also equal

up to pointer equality. The NodeManager used throughout a given SmtEngine

is global for efficiency and clarity. Nodes use reference counting for garbage

collection, and the NodeManager periodically reclaims zombie nodes (nodes

without an incoming edge). Cycles in the Node graph cannot happen as Nodes

form a DAG. The user-exposed Expr class combines a Node with a pointer to

the NodeManager that owns the Node.

1.5.11 Rewriting

The REWRITER procedure performs T-valid term transformations. These are

simple equational rules that are frequently invoked to create simpler terms and

simplify the number of cases handled by other components.

For example, the simple rewriting rules shown in Fig. 1.7 allow for removing

the constants true and false from a set of clauses. Each of these rules allows for

either removing an instance of true or false or reducing the height of the Node.

All of the rules for binary connectives need to be applied up to commutativity,

i.e. both φ = true and true = φ should trigger EQ-TRUE. Exhaustive application

of these rules reduces a propositional formula to either true, false or a formula

not containing true or false. These rules also preserve CNF. CVC4’s rewriter

has three main properties. The most important is that all its transformations are
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¬true
false

NOT-TRUE
¬false

true
NOT-FALSE

true ∨φ

true
DISJ-TRUE

false ∨φ

φ
DISJ-FALSE

true ∧φ

φ
CONJ-TRUE

false ∧φ

false
CONJ-FALSE

true = φ

φ
EQ-TRUE

false = φ

¬φ
EQ-FALSE

Figure 1.7: Example rewrite rules
Example Rewrite Rules.

theory valid,

|=T t = REWRITER(t).

Next, the rewriter is idempotent. Applying the rewriter to the result of a rewritten

node returns the same node,

REWRITER(t) ≈ REWRITER(REWRITER(t)).

To denote that a term t rewrites to a term s, we write

t
REWRITER−−−−−−→ s as shorthand for REWRITER(t) ≈ s.

A rewriter is strongly normalizing over a set of terms S if for all s, t ∈ S, there

are terms s ′, t ′ ∈ S such that t REWRITER−−−−−−→ t ′, s REWRITER−−−−−−→ s ′ and

|=T s = t iff t ′ ≈ s ′.

The rewriter is required to be strongly normalizing over the set of terms built
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over [interpreted] constants by interpreted function application, i.e. the rewriter

should evaluate interpreted functions over constants to constant terms. Beyond

constant evaluation, rewrites can be used for a number of purposes:

• Rewrites may be used to simplify formulas so cases do not constantly have

to be reimplemented. For example, reducing ∨ containing true to true or

∧ chains that contain both x and ¬x to false, etc.

• Rewrites can eliminate convenient but unnecessary symbols such as unary

negation or division by a non-zero rational constant q.

−u→ −1 · u

( / s q)→
(

1
q

)
· u

• More powerful rewrites can increase DAG sharing by simplifying many

equivalent formulas to the same node.

(x+ y+ z) = (y+ (x+ z)) = (x+ x+ y+ y+ 2 · z)/2

• Even more extensive rewrites can put a theory’s atoms into a normal form.

Atoms in a normal form are logically equivalent iff syntactically equal.

REWRITER(t) 6≈ REWRITER(s) =⇒ t 6= s is satisfiable

CVC4’s rewriter is cached so that repeated calls to the rewriter stay relatively
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inexpensive. Calling the rewriter on a node that has already been rewritten

should be roughly as expensive as one hashtable lookup.

1.5.12 If-then-else Term Removal

A straightforward procedure for removing if-then-else terms is to replace

each ite term with a fresh Skolem variable. Let (ite c t e) be an if-then-else term

with sort S in φ, and let s be a fresh variable of sort S that does not appear in φ.

Let φ ′ be the result of replacing (ite c t e) with s,

φ ′ ≡ φ[(ite c t e)/s]

then φ and φ ′ ∧ (s = (ite c t e)) are equisatisfiable. By taking this one step

further and lifting the ite above the equality in s = (ite c t e), we get that

φ and φ ′ ∧ (ite c (= s t) (= s e)) are equisatisfiable .

By applying this transformation to all non-Boolean ite terms in a bottom-up

fashion, this results in an equisatisfiable formula that does not contain any non-

Boolean ite terms in linear time. Boolean ite terms can be directly supported

during CNF conversion. (See Section 2.1.2 for a description of an analogous

equisatisfiable reduction.)
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Chapter 2

Simplex for Satisfiability Modulo

Theories

Theory solvers for quantifier-free linear real arithmetic take as input compar-

isons of linear terms. For example, all of the following are atoms in quantifier

free real arithmetic:

x = 5 + z, z− y > 1, −
1
5
x− y > 0, y > −1. (2.1)

The terms of linear arithmetic are sums of rational constants and real vari-

ables multiplied by rational constants, e.g. 1
5x + y, 0, x, 5 + z, etc. Formulas

in Quantifier-Free Linear Real Arithmetic (QF LRA) are Boolean combinations of

atoms of the form s ./ t for linear terms s and t and ./∈ {=,<,>,6,>}. The the-

ory solver decides whether or not there is an assignment of the variables into the

reals R that makes all of the input assertions true. In (2.1), the first 3 constraints

can be satisfied by the assignment [y→ −1], [z→ 0] and [x→ 5]. Including the

fourth constraint, y > −1, makes the system unsatisfiable.

49



The theory of reals TR used in SMT solvers is a straightforward extension of

the theory of real closed fields [65, Section 2.2]. The signature ΣR for the theory

of the reals starts with the core function symbols 〈0, 1,+, ·,<〉. These function

symbols are interpreted by the real closed field axioms, but as TR is complete

(Section 2.1.1), it will be enough for our purposes to assume these symbols have

their standard interpretation over the real numbers. Instead of addressing the

full language of the theory, the work of this thesis focuses on decision proce-

dures for a subset of this language, quantifier-free linear arithmetic.

The simplex algorithm introduced by Dutertre and de Moura in [46] for use

in the DPLL(T) framework is the core reasoning module for linear arithmetic

in nearly every state-of-the-art Satisfiability Modulo Theories (SMT) solver. The

algorithm—which we will call SIMPLEXFORSMT—searches for either a satisfy-

ing model or a conflict. This algorithm has many attractive properties within

the context of DPLL(T). Implementations are naturally incremental. The con-

flicts generated by the decision procedure are minimal. The search tends to

be efficient on representative benchmarks for both satisfiable and unsatisfiable

queries. It is relatively easy to create an initial implementation. SMT solvers

that have implemented this algorithm include Barcelogic [18], CVC4 [7], Math-

SAT [27], OpenSMT [23], SMTInterpol [26], Yices [48], Yices 2 [45], and Z3 [38].

This chapter describes many aspects of implementing the SIMPLEXFORSMT

algorithm that have not been discussed in the published literature. Many of

these aspects are commonly known among the restricted community of imple-

menters of this algorithm, but have so far remained unpublished. Section 2.1

contains background, the preprocessing required for the algorithm, the core in-

variants of the algorithm and an abstract description of the algorithm. This
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discussion is intended to be an introduction for those unfamiliar with the al-

gorithm. The second half of this chapter (Section 2.2) elaborates on various

aspects of the algorithm and discusses how to efficiently implement a theory

solver for linear arithmetic. Each aspect of the abstract algorithm is refined and

expanded in its own section and will rely on an understanding of the first sec-

tion. This second half describes an improved method for detecting conflicts ear-

lier and more efficiently over all candidates. This improved detection method

leads to an amortized constant amount of additional work. A new algorithm

for strengthening the detected conflicts is presented. Additionally, this chap-

ter gives a minor contribution by describing how to split disequalities in a lazy

fashion and compute models with disequalities. By way of example, a number

of implementation details of CVC4’s theory solver for QF LRA are given.

2.1 Abstract Description

The SIMPLEXFORSMT algorithm is a decision procedure for the satisfiability

of conjunctions of literals in the QF LRA logic. This section describes the algo-

rithm beginning with a formal description of QF LRA in 2.1.1, then continuing

with preprocessing in 2.1.2, invariant and subroutines in 2.1.3, and concluding

with the simplex algorithm in 2.1.4.

2.1.1 Quantifier-Free Linear Real Arithmetic

The set of variables X will be a set containing only variable symbols belong-

ing to the theory, those labeled with the sort Real, {x1 : Real, x2 : Real, . . . , xn :
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Real} where each xi is uniquely indexed by an integer i the range 1 to n.1 The

signature of the theory of reals ΣR is classically 〈0, 1,+, ·,<〉. For notational com-

pactness, the signature is also extended to include all rational constants. Linear

terms are the minimal inductive set generated from X and the rational constants

by the function symbols + and · where · is restricted so that in each application

either s or t is a rational constant in s · t. For convenience, the signature is ex-

tended with additional comparison operations 6, >, and > and division / (with

linear terms including division by non-zero rational constants). The atoms of

QF LRA are of the form

(./ s t) for ./∈ {=,<,>,6,>}

and linear terms s and t. The semantics of the functions in ΣR is fixed by the real

closed field axioms [65]. The atoms of this logic can always be rewritten to atoms

of the form
∑
xj∈X cjxj ./ d, where cj,d are rational constants, ./∈ {=,6,>}. The

input problem may contain both Boolean variables and if-then-else terms over

linear terms; however, both of these are either handled by the SAT solver or are

removed during preprocessing and rewriting. Neither appear in the assertions

sent to the theory solver.

While this chapter focuses on quantifier-free linear real arithmetic, algo-

rithms for the full theory of real arithmetic including both non-linear arithmetic

and quantifiers exist. Tarski showed that the theory of real closed fields admits

quantifier elimination and is decidable [106]. Collins’ Cylindrical Algebraic De-

composition method improved Tarski’s non-elementary quantifier elimination

1 X will be extended dynamically throughout the algorithm. Thus is it is conceptually treated
as a countable enumerable set with only the first n elements enumerated at any given time.
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procedure to doubly exponential in the number of quantifier alternations [31].

Jovanović and de Moura recently gave an effective method for quantifier-free

non-linear real arithmetic based on a combination of the Model-Constructing

Calculus [40] and partial Cylindrical Algebraic Decomposition [70].

2.1.2 Preprocessing

There are many well known equivalent ways of formulating linear systems.

(See [56, Chapter 7].) We will use one that optimizes the efficient addition and

removal of constraints during DPLL(T) search. As a preprocessing pass over an

input formula φ, inequalities with at least 2 variables are transformed by intro-

ducing a fresh real variable xi for each unique left hand side
∑
cjxj appearing

in φ. We call the fresh variable xi an auxiliary variable. The structural variables

are those that appear in the original input formula φ. To denote that a variable

xi is auxiliary, we write that i ∈ Aux where Aux is the set of all auxiliary vari-

ables. As each auxiliary variable xi is fresh, it is equisatisfiable to restrict that xi

is always equal to
∑
ci,jxj. An interpretationM that satisfies φ can be extended

to an interpretationM ′ that satisfies both φ and the new equalities,

M |=R φ =⇒ M ′ |=R φ∧
∧
i∈Aux

xi =
∑

ci,jxj

whereM ′ =M
[
xi → Eval

(
M,
∑

ci,jxj

)∣∣∣i ∈ Aux
]

And clearly, if M ′ is any interpretation that satisfies φ∧
∧
xi =

∑
ci,jxj, then

it satisfies φ. Let φ ′ be the result of replacing in φ each appearance of
∑
ci,jxj

with auxiliary variable xi. Then, if M is an interpretation that satisfies φ and
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∧
xi =

∑
ci,jxj, thenM also satisfies φ ′ and vice versa.

M |=R φ∧
∧
i∈Aux

xi =
∑

ci,jxj ⇐⇒ M |=R φ
′ ∧

∧
i∈Aux

xi =
∑

ci,jxj.

The formulas φ and φ ′ are equivalent modulo TR and
∧
xi =

∑
ci,jxj.

We maintain a copy of the sum terms that define each auxiliary variable. This

is implicitly encoded in an n×nmatrix A where the i’th row (Ai) represents the

equality xi =
∑
ci,jxj. For the auxiliary variable xi, the coefficient of Ai,i is −1

and the coefficient for j 6= i is Ai,j = ci,j from the defining sum. This implicitly

makes Ai,k = 0 for xk not appearing in the equality and the row Aj = 0 for

j 6∈ Aux.

Assume for now that all of the equalities in φ ′ are rewritten using

x = d ⇐⇒ (x 6 d∧ x > d) .

(See Section 2.2.1 for handling strict inequalities.) By applying these simple

transformations, the input formula φ has been transformed into a formula

ψ ≡ φ ′′ ∧
∧
i∈Aux

xi =
∑

ci,jxj (2.2)

such thatφ andψ are equisatisfiable andφ ′′ contains only inequalities 6,> over

a single variables. Then, by invoking the SMT solver on ψ, all of the constraints

sent to the theory solver are either special equalities defining an auxiliary vari-

able xi =
∑
ci,jxj or an inequality over a single variable. Let us also assume that

all of the inequalities sent to the theory are non-strict i.e. x 6 y but not x > 0.

(See Section 2.2.1 for handling strict inequalities.) The set of assertions, A, sent
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to the theory solver is then always equivalent to

∧
i∈Aux

xi =
∑

ci,jxj ∧
∧
xj > dj ∧

∧
xk 6 dk

where
∧
xj > dj and

∧
xk 6 dk are finite conjunctions of lower and upper

bounds on variables. At most one lower and at most one upper bound needs to

be kept per variable, as by transitivity, the strongest bound on variable x entails

the others.
c 6 d

x 6 c |=R x 6 d

c > d

x > c |=R x > d

Propagation of this form is sometimes called unate propagation [47]. We further

use l(x) and u(x) to denote the strongest lower and upper bounds on a specific

variable x. If x has no lower (upper) bound, then l(x) = −∞ (u(x) = +∞). By

removing weaker bounds and implicitly allowing extended comparisons2, we

can write the input to the theory solver as a conjunction of equalities defining

auxiliary variables and a single upper and lower bound for every variable:

∧
i∈Aux

xi =
∑

Ai,j xj ∧
∧
xi∈X

l(xi) 6 xi 6 u(xi). (2.3)

The theory solver searches for an assignment a : X 7→ R that satisfies the con-

straints in (2.3).

As shorthand, we will adopt linear algebra notation and conventions to

denote elements of X, l, u, a and A and their relationships. The set of vari-

ables X can be viewed as the n-dimensional column vector of variable symbols

〈x1, . . . , xn〉. For all i ∈ [1,n], we often write li as a synonym for l(xi). Similarly,
2 For all x ∈ R it is the case that −∞ < x < +∞.
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ui = u(xi) and ai = a(xi). For each i ∈ Aux, the constraint xi =
∑

Ai,j xj that

defines xi can be represented as the dot-product of row i in A and the vector

of the variables, Ai ·X = 0. Combining these row constraints together for all

auxiliary variables, we can compactly write

AX = 0 as shorthand for
∧
i∈Aux

xi =
∑

Ai,j xj

The assertions sent to the theory solver can be written as

AX = 0 ∧ l 6 X 6 u, (2.4)

and a satisfying assignment amust satisfy Aa = 0 and l 6 a 6 u.3

2.1.3 Invariants and Subroutines

The set of constraints AX = 0 over the implicit matrix A is implemented by

a concrete data structure, the tableau T . The matrix T is an n×nmatrix in tableau

form. We will refer to the entry in row i and column j of T as Ti,j, and use Ti to

denote the i-th row of T . The variables X are partitioned into basic variables

and non-basic variables. The indices of the basic and non-basic variables are

the sets B and N. A matrix is in tableau form if for each column i such that

i ∈ B, we have Tk,i = 0 for all k 6= i and Ti,i = −1, and for j ∈ N, the row Tj

all zeroes. Each nonzero row Ti of T represents a constraint xi =
∑
j∈N Ti,jxj.

The basic variables are initially exactly the auxiliary variables with T = A. One

3 The dot product Ai ·X is in the polynomial ring R[x1, . . . , xn], i.e. it is still a symbolic
expression, while Ai ·a is a real number. Similarly, l 6 X 6 u are symbolic comparisons while
l 6 a 6 u are [extended-]numerical comparisons.
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1: procedure UPDATE(j,∆)
2: aj ← aj +∆
3: for all i such that Ti,j 6= 0 do
4: ai ← ai + Ti,j∆

Figure 2.1: Update changes aj by ∆ for j ∈ N.

may intuitively think of the basic variables in the tableau as the “solved for”

variables in Gaussian elimination.4

The simplex solver in SIMPLEXFORSMT makes a series of changes to an

initial assignment a and the tableau T until the constraints are satisfied or de-

termined to be unsatisfiable. Throughout this search, five main invariants are

maintained.

(I1) l 6 u: The upper and lower bounds of each variable are consistent, i.e. for

all xi ∈ X, li 6 ui.

(I2) lj 6 aj 6 uj for all j ∈ N: The assignment to each non-basic variable is

within its bounds.

(I3) Ta = 0: The assignment a satisfies the linear equalities in the tableau T .

(I4) Ti =
∑
yj Aj for some y ∈ Rn: Every row in T is equal to a sum of rows in

A scaled by some real values yj.

(I5) The matrix T is in tableau form.

The procedures in this subsection update a, T , l and u while maintaining (I1)-

(I5).

The invariant (I3) states that the assignment satisfies the tableau T can be

compactly written as Ta = 0. To initially satisfy this invariant, one can set

4 This is slightly incorrect. See section 2.2.7 for more on the tableau.
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aj ← 0 for all xj ∈ X. Consider trying to update the assignment of a single non-

basic variable xj by an amount ∆. A simple way to update aj while maintaining

(I3) is to also update the assignments of all of the basic variables xi that depend

on xj, i.e. where Ti,j 6= 0. If a is the current assignment, then the following holds

on xi’s row.

ai = Ti,jaj +
∑
k 6∈{i,j}

Ti,kak (2.5)

If a ′ is the next assignment with a ′j = aj + ∆ and if all of the other non-basic

variables are unchanged (a ′k = ak), then in order for (I3) to hold, the next as-

signment of xi must satisfy:

a ′i = Ti,ja
′
j +
∑
k 6∈{i,j}

Ti,ka
′
k = Ti,k∆+ Ti,jaj +

∑
k 6∈{i,j}

Ti,kak

= Ti,j∆+ ai [by (2.5)].

This new assignment a ′ then satisfies (I3). Figure 2.1 gives an algorithm UP-

DATE that updates the assignment of a non-basic variable in this fashion. If the

invariant (I2) that non-basic variables are within bounds is initially true, then

lj 6 aj 6 uj remains true if changing the assignment of xj by ∆ remains in

bounds,

lj 6 aj +∆ 6 uj.

Changes to the tableau T are introduced via pivoting. An abstract algorithm

for pivoting is given in Figure 2.2. The essence of pivoting is to look at the row

of a basic variable xi and a non-basic variable xj on row i (where Ti,j 6= 0), solve

row i for xj and to use this “new equality” to substitute out xj on other rows.

After pivoting, xj becomes basic and xi becomes non-basic. Solving row i for xj
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Require: Ti,j 6= 0, i 6= j
1: procedure PIVOT(i, j)
2: Tj ← Tj −

1
Ti,j
Ti

3: for all k such that Tk,j 6= 0 ∧ k 6= j do
4: Tk ← Tk + Tk,jTj

5: B← B \ {i}∪ {j}, N← N \ {j}∪ {i}

Figure 2.2: An abstracted pivot of xi and xj (Ti,j 6= 0).

is equivalent to multiplying it by − 1
Ti,j

.

xi = Ti,jxj +
∑
k 6∈{i,j}

Ti,kxk =⇒ xj =
1
Ti,j
xi +

∑
k 6∈{i,j}

−
Ti,k
Ti,j
xk

Substitution of xj with the right hand side on another row m is done by simple

row addition. The new row Tj is multiplied by Tm,j and added to Tm to cancel

out the xj term.

Tj : Tm,j( −xj + 1
Ti,j
xi +

∑
−
Ti,k
Ti,j
xk ) = 0

Tm : + −xm +Tm,jxj +
∑

Tm,kxk = 0

T ′m : −xm +
Tm,j
Ti,j
xi +

∑ (
−
Tm,jTi,k
Ti,j

+ Tm,k

)
xk = 0

Applying these operations across all rows (except Tj) generates a new matrix T ′.

The new T ′ is in tableau form with xj being basic, xi being non-basic and other

variables remaining basic or non-basic as they were. The new T ′ maintains (I4)

as only scaled row additions are used to generate new rows. As the assignment

a is in the null space of the previous tableau (Ta = 0), amust also satisfy T ′a = 0

and (I3) holds.

The main operation of simplex is to swap a basic variable xi that currently

does not satisfy its bounds, either ai > ui or ai < li, with a non-basic variable
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Require: (I3), (I2), Ti,j 6= 0, i 6= j, and li 6 ai +∆ 6 ui
Ensure: (I3), (I2)

1: procedure PIVOTANDUPDATE(i, j,∆)
2: PIVOT(i, j)
3: UPDATE(i,∆)

Figure 2.3: A composed pivot and update operation.

Require: (I1), (I3) and (I2)
Ensure: (I1), (I3) and (I2)

1: procedure ASSERTUPPER(xi 6 c)
2: if c < li then
3: return (Conflict {xi 6 c, xi > li})
4: else if c < ui then
5: ui ← c

6: if ai > c∧ i ∈ N then
7: UPDATE(i,ui − ai) // Set ai to ui

Figure 2.4: Pseudocode for asserting an upper bound.

xj on xi’s row. This operation can be done by composing a pivot between xi

and xj, PIVOT(i, j), and an update to the newly non-basic xi by an amount ∆,

UPDATE(i,∆). As (I2) is violated between these two calls, we make the com-

position of these two explicit by a procedure PIVOTANDUPDATE (Fig. 2.3), and

require that PIVOTANDUPDATE reestablishes both invariants. This is possible

whenever li 6 ai +∆ 6 ui.

The previous procedures have so far not manipulated the bounds in l and

u. The algorithms in Figures 2.4 and 2.5 are used for changing l and u while

maintaining (I1)-(I2).

As discussed in Section 1.4, the SAT solver will make propositional assign-

ments to the atoms of the theory, i.e. it assigns (xi 6 c) to true. This is then

sent to the theory solver. Assuming that the preprocessing described in Section

2.1.2 was run, the incoming literal will either be an upper bound (x 6 c) or a
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Require: (I1), (I2) and (I3)
Ensure: (I1), (I2) and (I3)

1: procedure ASSERTLOWER(xi > c)
2: if c > ui then
3: return (Conflict {xi > c, xi 6 ui})
4: else if c > li then
5: li ← c

6: if ai < c∧ i ∈ N then
7: UPDATE(i, li − ai) // Set ai to li

Figure 2.5: Pseudocode for asserting a lower bound

lower bound (x > c) on a variable. When a new upper bound xi 6 c comes

in, the procedure ASSERTUPPER is called to incrementally update ui. (A simi-

lar procedure ASSERTLOWER handles the constraints xi > c.) To ensure (I1) is

maintained, ASSERTUPPER first checks if c < li. If it is, then the two constraints

li 6 xi and xi 6 c are unsatisfiable, and this is reported as a conflict, and the

procedure exits. Otherwise, if c > ui, the bound xi 6 c holds whenever xi 6 ui,

and xi 6 c can be ignored. In the final case where li 6 c < ui, c is the stronger

upper bound and ui is updated to c. The procedure then checks if ai > c when

xi is non-basic. If it is, the assignment of xi is updated to be equal to the new up-

per bound (UPDATE(i,ui−ai)). This ensures that (I2) still holds. The analogous

ASSERTLOWER is the same up to the direction of the comparisons.

The invariants (I1)-(I3) smoothly interact with SAT-context-level pushes and

pops. The lower and upper bounds on variables come in as a dynamic stream of

new assertions A. The values of li and ui are always updated to be the strongest

values in the current sat-context. This means that they can be implemented as

SAT-context-level maps (where the value pointed to automatically backtracks

to its value before the push). To distinguish between these datastructures pre or

post SAT-context-level-pop, we will denote these as lpre−pop and lpost−pop, etc.
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1: procedure ABSSIMPLEXFORSMTCHECK
2: loop
3: if (Conflict C) ∈ outputStream then
4: return (Conflict C)
5: else if E = ∅ then
6: return (Sat a)
7: else
8: σ← SIMPLEXFORSMTSELECT()
9: if σ is an update 〈i,∆, j〉 then

10: PIVOTANDUPDATE(xi, xj,∆)

Figure 2.6: An abstract version of the main loop of the SIMPLEXFORSMT check
procedure.

Initially, no bounds are asserted and l(xi) = −∞ ( u(xi) = +∞). Notice

that the bound being popped back to is always weaker than the bound being

popped back from,

lpost−pop(xi) 6 lpre−pop(xi) and upre−pop(xi) 6 upost−pop(xi).

Suppose that T and a are left unchanged by context-level pushes and pops. The

above inequalities then ensure that the main invariants are maintained on pops.

Lemma 2.1. If (I1)-(I5) hold pre-SAT-context-level-pop for lpre−pop, upre−pop, a and

T , then (I1)-(I5) hold post-SAT-context-level-pop for lpost−pop, upost−pop, a and T .

SAT-context-level pushes trivially maintain (I1)–(I5) as T , a, l, and u remain

unchanged.

2.1.4 An Abstract Theory Check

We now give the algorithm for the SIMPLEXFORSMT decision procedure in

Fig. 2.6. After the preprocessing described in Section 2.1.2, the algorithm de-
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cides the satisfiability of assertions to the theory solver of the form:

TX = 0 ∧ l 6 X 6 u.

The algorithm will either find an assignment a that simultaneously satisfies all

of the assertions or a minimal subset of the constraints l 6 X 6 u, and TX = 0

that is unsatisfiable.

The algorithm focuses on variables that do not currently satisfy their bounds.

We say that xi is an error variable if a violates one of the bounds on xi, and we

denote by E the set of indices of error variables, E = {i|ai > ui} ∪ {i|ai < li}.

Because the assignment satisfies the rows of the tableau (I3), the assignment is

satisfying whenever the set of error variables is empty (E = ∅). The invariant

that non-basic variables are within bounds (I2) ensures that the error variables

are basic, E ⊆ B. Every round of SIMPLEXFORSMT does the following:

1. It checks for a conflict (Conflict C) on the output stream. If there is one,

it returns the conflict (Conflict C). (How conflict generation is done is

described later in the section.)

2. If there is no conflict, check if E is empty. If so, the current assignment

satisfies the input assertions and (Sat a) is returned.

3. If the assignment is not satisfying, the subroutine in Fig. 2.7 selects a PIV-

OTANDUPDATE operation to perform.

4. The proposed PIVOTANDUPDATE operation is performed (if no conflict

has been found).

The main loop in Fig. 2.6 repeats until either a conflict or a satisfying assignment

63



Require: E 6= ∅
1: procedure SELECT
2: select i from E // for the basic variable xi either ai > ui or ai < li
3: if ai > ui then
4: entering←

{
j
∣∣Ti,j < 0,aj < uj

}
∪ {k|Ti,k > 0,ak > lk}

5: ∆← ui − ai
6: else // ai < li
7: entering←

{
j
∣∣Ti,j < 0,aj > lj

}
∪ {k|Ti,k > 0,ak < uk}

8: ∆← li − ai
9: if entering 6= ∅ then

10: select j from entering

11: return 〈i,∆, j〉
12: else
13: if ai > ui then
14: C← UpperConflict(xi)
15: else
16: C← LowerConflict(xi)
17: (Conflict C)→ outputStream

18: return NoOp

Figure 2.7: An abstract pivot and update selection routine.

is found. The burden of the algorithm lies in the selection subroutine given in

Fig. 2.7. The routine first selects some basic variable xi using the non-empty set

of indices in E. Either xi’s assignment exceeds its upper bound (ai > ui) or it

violates its lower bound (ai < li). As these two cases are symmetric, we will fo-

cus just on the ai > ui case. The algorithm looks at the row of xi for a non-basic

variable xj such that xj is on the row Ti (Ti,j 6= 0). The assignment to xi must be

decreased in order for the assignment to satisfy ai 6 ui. If the coefficient for xj

is positive, Ti,j > 0, then decreasing the assignment to xj decreases ai. Similarly

if Ti,j < 0, increasing xj decreases ai. To make progress towards a model where

ai 6 ui, we have to be able to find an assignment where the assignment of

one of these non-basic variables either increases or decreases in the appropriate
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direction. The notion of progress SIMPLEXFORSMT uses is quite weak–it can

always make progress as long as xi is not provably at a minimum using its row.

Suppose that for all xj with Ti,j < 0 (and j 6= i), we have aj = uj, and for all xk

with Ti,j > 0, we have ak = lk, then

xi =
∑

Ti,j<0,i6=j
Ti,jxj +

∑
Ti,k>0

Ti,kxk / TX = 0

>
∑

Ti,j<0,i 6=j
Ti,juj +

∑
Ti,k>0

Ti,klk / relax xj to uj and xk to lk

=
∑

Ti,j<0,i6=j
Ti,jaj +

∑
Ti,k>0

Ti,kak / uj = aj and lk = ak

= ai / Ta = 0

(2.6)

Thus we can infer that the variable xi must be greater than or equal to its current

assignment, xi > ai. This newly inferred lower bound is in conflict with the

upper bound of xi as ai > ui. We thus have the following conflict:

ai > ui, ui > xi and xi > ai.

The set of constraints

{
xj 6 uj

∣∣Ti,j < 0
}
∪ {xk > lk|Ti,k > 0}∪ Ti ·X = 0

is inconsistent and each constraint is entailed by the input assertions. This con-

flict can be seen as taking the equality TiX = 0, and replacing all variables xj

such that Ti,j < 0 with their upper bounds uj (including xi) and all xk with lk

and inferring the inconsistency 0 > ui − ai > 0. These constraints cannot yet

be reported as a conflict. The equality Ti · X = 0 is entailed by AX = 0, but
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Ti ·X = 0 is not guaranteed to be an input assertion to the theory. In DPLL(T),

reported conflicts must be in terms of assertions the SAT solver knows about in

order to force the SAT solver to backtrack. The [non-minimal] theory-conflict,

UpperConflict(xi), is reported:5

¬
{
xj 6 uj

∣∣Ti,j < 0
}
∪ {xk > lk|Ti,k > 0}∪AX = 0

This conflict is reported on the output stream ((Conflict UpperConflict(xi)) →

outputStream). In this case, assume for consistency that the SIMPLEXFORSMT-

SELECT returns a no-op candidate for PIVOTANDUPDATE. The main loop of

Simplex detects the conflict and then stops on the next round. Now if xi is not

already at a minimum using the previous rule, then there is some xj such that

Ti,j < 0 and aj < uj, or an xk such that Ti,k > 0 that ak > lk. SIMPLEXFORSMT

then selects such a non-basic variable xj (xk) and tries to use this to fix ai in one

update and pivot operation by pivoting xi with xj and updating the assignment

of xi to be equal to its upper bound ui,

PIVOTANDUPDATE(i,∆, j) with ∆ = ui − ai.

The procedure ABSSIMPLEXFORSMTCHECK is sent the candidate triple 〈i,∆, j〉.

The case where ai < li is exactly the same as the previous case [up to a few

sign flips]. The variable xi can be proven to be at a maximum if for all xj with

Ti,j > 0, we have aj = uj, and for all xk with Ti,k < 0 (and k 6= i), we have ak = lk.

5 This explanation is non-minimal as not all of AX = 0 may be needed. Minimal theory valid
conflicts are discussed in Section 2.2.9.
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If this is the case, we have the following conflict (defined as LowerConflict(xi))

{
xj 6 uj

∣∣Ti,j > 0
}
∪ {xk > lk|Ti,k < 0}∪AX = 0.

If this does not hold, a candidate xj can be selected, and the pivot and update

operation pivots xi with xj and updates the assignment of xi to the violated

lower bound.

SIMPLEXFORSMT is sound as it only terminates with correct answers: either

(Sat a) or (Conflict C). If the algorithm is terminating, it is also complete. The

algorithm becomes terminating by imposing an additional simple variable se-

lection criterion. Assume an arbitrary total order on the variables of X, ≺. The

additional criteria on Fig. 2.7 is to select xi to be the least variable according to

≺ in E on line 2. Also xj is selected to be the least variable in S according to ≺

on line 10. The original tech report [47] gives a proof of termination. This style

of using a variable ordering to ensure termination is generally known as Bland’s

rule, and is a common way of constructing terminating variants of simplex al-

gorithms [19, 56, 98].

2.2 Refining the Abstract Algorithm

The previous section gave an abstract view of the SIMPLEXFORSMT algo-

rithm. This section refines and develops the concepts in 2.1 into what is needed

for a high quality implementation of SIMPLEXFORSMT. We will weaken pre-

vious assumptions, elaborate data structures and flesh out additional features.

Small original contributions are discussed and will be labeled as such in the

relevant subsections.
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2.2.1 Delta Arithmetic

A major advantage of the problem formalization given in Sec. 2.1 is that it

can be extended to allow for handling strict and non-strict inequalities in a uni-

form manner without increasing the number of rows or variables. Inequalities

(both strict and non-strict) are conceptually expanded to include an implicit,

positive, infinitesimal, global variable δ. The strict inequality x < d is satisfied

iff there exists some δ > 0 such that x+ δ 6 d or x 6 d− δ. Similarly, x > d

iff x > d + δ for some δ > 0. The right-hand-side of inequalities can be rep-

resented as a non-strict inequality between x and d + e · δ where d and e are

real numbers. As δ is implicit, this is stored as a pair of real numbers 〈d, e〉.

The following transformations suffices to handle all of the admissible candidate

right-hand sides:

x 6 d 7→ x 6 d+ 0 · δ 7→ x 6 〈d, 0〉

x < d 7→ x 6 d+ f · δ 7→ x 6 〈d, f〉

x > d 7→ x > d+ 0 · δ 7→ x > 〈d, 0〉

x > d 7→ x > d+ g · δ 7→ x > 〈d,g〉

x = d 7→ x = d+ 0 · δ 7→ x = 〈d, 0〉

x 6= d 7→ x 6= d+ 0 · δ 7→ x 6= 〈d, 0〉

(2.7)

where f < 0, g > 0, and e is either 0, f or g. In the implementation, the values for

f and g are −1 and 1 during this transformation (i.e. e ∈ {−1, 0, 1}). However,

the proofs focus on the sign of e instead of its value.

Given a subfield F of R, we define the delta extension of F as the set of pairs

〈d, e〉 ∈ F2 interpreted as d+ eδ and denote the set of values as δF. The delta
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extension of F is a finite dimension vector space over F. The δF values may be

added or subtracted from each other and scaled by F values. For generality, the

proofs in this subsection will be over δR while in the implementation, the only

delta extension will be δQ (delta-rationals).

2.2.1.1 Delta-Extension Comparisons

The implicit variable δ is intended to act as an infinitesimal. Specifically, it

can be set to an arbitrarily small positive R value. This requires care in defining

a comparison operation. For example, we expect the following chain to hold:

4 < 4 + δ < 5 − δ < 5. More formally, we define <δ on δF such that for all

sufficiently small real numbers the ordering is consistent with the < order on

the reals:

d1 + e1 · δ <δ d2 + e2 · δ ≡ (∃α > 0. ∀β ∈ (0,α). d1 + e1 ·β < d2 + e2 ·β) .

This order is equivalent to using lexicographic ordering <lex over pairs of F2.

Before proving this, note that the admissible ordering 4 < 4 + δ < 5 − δ < 5

example matches

〈4, 0〉 <lex 〈4, 1〉 <lex 〈5,−1〉 <lex 〈5, 0〉 .

Lemma 2.2. If 〈d1, e1〉 <lex 〈d2, e2〉, then d1 + e1 · δ <δ d2 + e2 · δ.

Proof. Suppose 〈d1, e1〉 <lex 〈d1, e2〉. Then either d1 < d2 or d1 = d2 ∧ e1 < e2.

• If d1 = d2 and e1 < e2, then d1 + e1 ·β < d2 + e2 ·β holds for β > 0.

• Suppose d1 < d2 holds. Either e1 > e2 or e1 6 e2 must hold.
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– If e1 6 e2, then d1 + e1 ·β < d2 + e2 ·β holds for all β > 0.

– Suppose e1 > e2. Let α = d2−d1
e1−e2

. As d2 > d1 and e1 > e2, α > 0. Let β

be any value in the open interval (0,α).

0 < β <
d2 − d1

e1 − e2

Thus β (e1 − e2) < d2 − d1, and we can see by rewriting that d1 + e1 ·

β < d2 + e2 ·β holds.

Then for all of the cases above, there is some value of α (either α = d2−d1
e1−e2

or

α = 1), such that d1 + e1 · δ <δ d2 + e2 · δ holds.

Lemma 2.3. If d1 + e1 · δ <δ d2 + e2 · δ, then 〈d1, e1〉 <lex 〈d2, e2〉.

Proof. Let α be a positive real value such that d1 + e1 · β < d2 + e2 · β for all

β ∈ (0,α). We first rewrite this to d1 − d2 < (e2 − e1)β.

• Suppose e1 > e2. As β > 0, 0 > (e2 − e1)β > d1 − d2. Thus d1 < d2.

• Suppose e1 < e2. Let ξ be any value in (0, (e2 − e1)α). Then β = ξ
e2−e1

is in

the range (0,α), and d1 −d2 < ξmust hold. As this holds for all candidate

values of ξ,

d1 − d2 6 inf {ξ ∈ R|0 < ξ < (e2 − e1)α} = 0

Hence, d1 6 d2 and e1 < e2.

So in both cases 〈d1, e1〉 <lex 〈d2, e2〉.

Corollary 2.4. d1 + e1 · δ <δ d2 + e2 · δ iff 〈d1, e2〉 <lex 〈d2, e2〉
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By the properties of lexicographic orders over total orders, comparison over

δF, <δ, must be total. The order then extends to the relations =δ, 6δ, >δ and

>δ. For brevity, we drop the subscript δ in comparisons when distinguishing

between R and δR is irrelevant to the discussion.

δF can then be treated as a vector space over Fwith a total ordering between

elements. Using this insight, the key datastructures a, l and u are all internally

δ extensions with the natural extensions to ±∞. Let R+ denote the set of non-

negative real numbers, and R− denote the set of non-positive real numbers.

a : X 7→ R×R

l : X 7→ (R×R+)∪ {−∞}

u : X 7→ (R×R−)∪ {+∞}

(2.8)

All of the algorithms in Section 2.1 use a, l and u in ways that are compatible

with vector spaces over Q, and the main properties, invariants, and termination

properties remain fundamentally unchanged.

TX =δ 0, Ta =δ 0, l 6δ a 6δ u, etc.

Thus δR allows for the algorithm to handle strict and non-strict inequalities

uniformly. Switching to δR assignments introduces a slight discrepancy in that

a is no longer a TR interpretation. Subsection 2.2.1.4 describes computing a

value for α which subsection 2.2.11 will use to select a value for β such that

substituting β for δ everywhere in the assignment a with this value yields a

satisfying TR interpretationM.
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2.2.1.2 Satisfaction in Delta Extensions

Next, we describe the relationship between the standard notion of real sat-

isfaction and satisfaction of delta-extended comparisons over linear terms by

delta-extended assignments.

Let p be an atom of the form t ./ dwith ./∈ {6,<,=, 6=,>,>} where t is a lin-

ear term and d is a rational constant. The literal can be mapped to an admissible

delta-extended atom of the form:

q ≡ t ./δ d+ eδ =


t >δ d+ eδ ./ is > and e > 0

t 6δ d+ eδ ./ is < and e < 0

t ./δ d+ 0δ otherwise

The conversion from p to some q formalizes the delta-arithmetic encoding of a

single literal. A delta-extended assignment aδ maps every real variable to a pair

of real values 〈d, e〉 ∈ R2 which represents d+ eδ. The extended assignment aδ

is extended to evaluating arbitrary linear terms in the following fashion:

• A variable x is evaluated as Eval(aδ, x) = aδ(x).

• A rational constant c is evaluated as Eval(aδ, c) = 〈c, 0〉.

• The sum s+ t is evaluated as Eval(aδ, s+ t) = Eval(aδ, s) + Eval(aδ, t).

• The multiplication by constants c · t is evaluated as Eval(aδ, c · t) = 〈cd, ce〉

where 〈cd, ce〉 = Eval(aδ, t).

The special case to capture multiplication by a constant c · t corresponds to treat-

ing δR as a vector space. An extended assignment aδ satisfies q whenever the
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delta extended comparisons hold over the pairs of real numbers. This is de-

noted aδ |=δR q [with considerable abuse of notation]. We extend this notation

of satisfaction to finite conjunctions of such q atoms and entailment
∧
qi |=δR q

in the natural way.6

Let Maδ,β denote the real interpretation M generated by assigning to each

real variable xi the value d+ eβ where aδ(xi) = 〈d, e〉, i.e. replace the variable

with the extended assignment and replace δwith the real constant β. Let q be a

delta-encoding of a literal p with the right-hand side 〈dq, eq〉.

Lemma 2.5. If an extended assignment aδ |=δR q, then there exists an α > 0 such that

for all β ∈ (0,α) the following holdsMaδ,β |=R p.

Proof. Suppose aδ |=δR q. The form of q is t ./δ dq+ eqδ. Suppose that the value

of the left-hand side t evaluates to dt + etδ under aδ in delta-arithmetic, so that

dt + etδ ./δ dq + eqδ. As the trichotomy property holds for <δ. the constants

dt + etδ and dq + eqδ are related by either <δ, =δ or >δ.

• If dt + etδ >δ dq + eqδ holds, then either dt > dq or dt = dq and et > eq.

The symbol ./δ is either >δ or 6=δ, and the relational symbol in p (./) is

either >, >, or 6=. As ./ is not <, eq > 0.

– Suppose et < eq. Both eq − et > 0 and dt − dq > 0 hold. Let α =

dt−dq
eq−et

> 0. Then, for allβ ∈ (0,α), dt−dq > (eq−et)β. So, dt+etβ >

dq + eqβ > dq, andMaδ,β |=R p holds.

– See the appendix A.2.1 for the et > eq case.

• See the appendix A.2.1 for the <δ and =δ cases.

6 This is not generalized further as it is not closed under negation.
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In all of these cases,Maδ,β |=R pmust hold for all β ∈ (0,α) for some α > 0.

Next we generalize Lemma 2.5 from literals to conjunctions of literals. Let

the sequence of literals p1, . . . ,pn generate a sequence of delta extended rela-

tions q1, . . . ,qn.

Lemma 2.6. Let qi be any admissible delta-encoding of the literal pi. If aδ |=δR

∧
qi,

then there exists an α > 0 such that for all β ∈ (0,α) thatMaδ,β |=R

∧
pi.

Proof. This follows directly from Lemma 2.5. Suppose aδ |=δR
∧
qi. Then

aδ |=δR qi. So there exists some αi > 0 such that for all β ∈ (0,αi), Maδ,β |=R pi

holds. Let α = minαi. Then for all β ∈ (0,α),Maδ,β |=R

∧
pi holds.

The naive converse of Lemma 2.5 would claim that if there exists an α > 0

such that for all β ∈ (0,α) that Maδ,β |=R p holds, then aδ |=δR q. (Lemma 2.6

would be similar.) This claim does not hold due to a discontinuity introduced

by selecting e. Suppose that p is x + y > 5 and q is the admissible encoding

x+ y > 〈5, 1〉. Let aδ be an extended assignment such that

aδ(x) =

〈
6,

1
2

〉
and aδ(y) =

〈
−1,−

1
4

〉
.

The evaluation of x+ y is
〈
5, 1

4

〉
. As 5 + 1

4β > 5 for all β > 0, Maδ,β |= p. How-

ever, aδ does not satisfy q as
〈
5, 1

4

〉
is less than 〈5, 1〉. To fix this, we can instead

show that there exists a satisfying extended assignment aζδ that multiplies the δ

coefficients of the variables by a constant ζ > 1. To fix the counter-example, sup-

pose ζ = 4, the assignment aζδ maps x to 〈6, 2〉 and y to 〈−1,−1〉. This extended

assignment satisfies q and the other criteria. The formalization and proofs for

the converses of Lemmas 2.5 and 2.6 are in the appendix in section A.2.2.
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Lemma 2.7. Suppose M |=R p. Let q be a delta-encoding of the literal p and the

assignment aδ map all variables xi in p to
〈
xMi , 0

〉
. Then aδ |=δR q.

Proof. See Appendix A.2.3 for a straightforward proof.

Section 2.24 gives an algorithm to compute α directly from an assignment aδ

satisfying some
∧
qi to generate a class of satisfying interpretationsMaδ,β.

2.2.1.3 Delta-Extension Entailment

Let q be any delta-extended literal corresponding to a TR literal p. Specifi-

cally q has the form t ./δ d+ eδ where ./δ is either >δ, 6δ, =δ, or 6=δ, e > 0 only

if ./δ is >δ and e < 0 only if ./δ is 6δ.

Lemma 2.8. If
∧
qi |=δR q, then

∧
pi |=R p where qi is an admissible delta-encoding

of the literal pi.

Proof. Assume that
∧
qi |=δR q. This means that for all assignments aδ, if

aδ |=δR

∧
qi holds, then aδ |=δR q holds. Let M be any interpretation satis-

fying
∧
pi. Let aδ be an assignment that maps xi to

〈
xMi , 0

〉
. Then aδ |=δR qi for

each qi. Thus aδ |=δR q. Structurally, q ≡ t ./δ d+ eδ. The evaluation of t byM

is tM. Thus the evaluation of t under aδ is
〈
tM, 0

〉
. For all cases, we know that

tM + 0δ ./δ d+ eδ holds.

• Suppose that e < 0. Then ./δ must be 6δ and p has the form t < d. Because

q is satisfied by aδ, we have tM + 0δ 6δ d+ eδ. To satisfy this tM 6 d and

tM 6= d as e < 0. Thus tM < d andM |=R p.

• See Appendix A.2.4 for a proof that includes the e = 0 and e < 0 cases.
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(The reverse direction of the previous lemma appears in Appendix A.2.4.)

The core entailment rules for polynomials over the reals continue to apply

to the δ extension. We claim that the following entailment rules hold [without

proof] for polynomials s, t, u, and v:

t =δ s |=δR αt =δ αs

(d ./δ e)∧ (t =δ s) |=δR t+ d ./δ s+ e

t >δ s |=δR αt >δ αs for α ∈ R+

t ./δ s |=δR t+ d ./δ s+ d

(2.9)

2.2.1.4 Order-Preserving Ranges

An issue with using δ-extended arithmetic is that the assignment aδ is not

directly a TR interpretation. When we later construct models, this will involve

selecting a value β to get Maδ,β. Suppose that the theory satisfies the assertion

x 6= y by the assignment ax = 4 + δ, and ay = 5 − δ. If the value of β is selected

to be 1
2 , then Maδ,β does not satisfy x 6= y. The values of β we want are those

such that no pair of δR values d+ eδ and d ′ + e ′δ involved in constructing the

satisfying model that are disequal (d+ eδ 6=δ d ′ + e ′δ) become equal once δ is

replaced by the valueβ. This becomes important once the procedure is extended

to handle disequalities in Section 2.2.10.

A range (0,α) is order-preserving over a setQ of δR if for allβ ∈ (0,α) if d+eδ

and µ+ νδ are inQ and d+ eδ <δ µ+ νδ, then d+ eβ < µ+ νβ. Intuitively, the

order between the two is preserved by β.

We give an algorithm to compute α such that (0,α) is order-preserving over

a finite set Q. (This is a minor contribution to the existing literature.) The algo-
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rithm begins by sorting Q in increasing order according to <δQ to get an enu-

meration d1 + e1δ, . . . ,dK + eKδ with K = |Q|. We append an extra element

dK+1 + eK+1δwith dK+1 = dK + 1 and eK+1 = eK − 1.7

d1 + e1β <δ d2 + e2β <δ · · · <δ dK + eKβ <δ dK+1 + eK+1β (2.10)

We take the differences between (di+1 + ei+1δ) − (di + eiδ) to get a series of K

values d ′1 + e
′
1δ, . . . ,d ′K + e

′
Kδ. All of these differences are positive, d ′i + e

′
iδ >δ

0 + 0δ. We will now show that we only have to examine the pairs where d ′i > 0

and e ′i < 0. For each value either d ′i > 0 or d ′i = 0 and e ′i > 0.

• Suppose d ′i = 0 and e ′i > 0. As di+1 + ei+1δ >δ di + eiδ, we must have

di+1 = di and ei+1 > ei. Then for all β > 0, the inequality holds after

replacement.

• Suppose d ′i > 0 and e ′i > 0. Thus ei+1 > ei. So for all β > 0, the inequality

di+1 + ei+1β > di + eiβ holds.

Let Υ =
{
−
d ′i
e ′i

∣∣∣d ′i > 0, e ′i < 0
}

. Note that each value −
d ′i
e ′i

in Υ must be strictly

greater than 0. We now select a value of α to be the minimum value in Υ.

Lemma 2.9. The range (0,α) is order-preserving over Q.

Proof. The set Υ is non-empty as d ′K = dK+1 − dK = 1 and e ′K = eK+1 − eK = −1.

By our definition of α:

α = min−
d ′i
e ′i

for all d ′i > 0 and e ′i < 0.

7 Adding the element dK+1 + eK+1 is simply to reduce the number of case splits in the con-
struction. Having it covers the K = 0 and K = 1 cases and ensures the set Υ is non-empty.
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Let β ∈ (0,α). We now show that di+1 + ei+1β > di + eiβ for i ranging from 1

to K. As was shown during the discussion of the algorithm, if it is not the case

that d ′i > 0 and e ′i < 0, then the order di+1 + ei+1δ >δ di + eiδ is preserved for

all β > 0. The interesting case is when d ′i > 0 and e ′i < 0, or di+1 > di and

ei+1 < ei. Then −
d ′i
e ′i

> α > β > 0. We know that −ei is positive so multiplying

both sides of −
d ′i
e ′i
> β by −ei yields d ′i > −e ′iβ. Replacing d ′i and e ′i by the

differences di+1 −di and ei+1 − ei and rewriting the inequality gives the desired

claim for all adjacent pairs, di + eiβ < di+1 + ei+1β. We have now shown that

the order of all adjacent pairs inQ are preserved by the range (0,α). Then using

(2.10), we can conclude that:

d1 + e1β < d2 + e2β < · · · < dK + eKβ < dK+1 + eK+1β.

2.2.2 Inference by Farkas’ Lemma

Inference in Simplex solvers is traditionally formalized in terms of some

variant of Farkas’ lemma [50]. A traditional variant of Farkas’ lemma equates

the existence of a satisfying solution with the non-existence of a negative con-

stant being the result of a positive sum of inequalities on rows.

Lemma 2.10 (Farkas’ lemma). Let B be a matrix and let b be a vector. Then the

system of linear inequalities Bx 6 b has a solution for x if and only if for every vector

y such that y > 0 and yᵀB = 0, yᵀb > 0.

Proof. See [98, Section 7.3] for a discussion of the proof.
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This section gives a variant of Farkas’ lemma that suffices for all of the us-

ages of this theorem in this thesis. This variant explicitly bridges the gap be-

tween symbolic logical formulas and the numeric properties of these formulas.

It also follows the formulation of the constraints into the tableau and bounds

on variables. And it allows for strict inequalities via delta-encodings, variables

without bounds, and having both lower and upper bounds present.

Intuitively, we are going to take any linear combination of the input rows

yᵀ (AX = 0) to derive an entailed equality z ·X = 0 where zᵀ = yᵀ A. A subset

of the variables that appear in the row (zk 6= 0) are selectively relaxed to either

their upper or lower bounds to derive an entailed inequality on the remaining

variables.

This section uses extended arithmetic where ±∞ are treated as constants.

The constant +∞ is treated as short hand for there does not exist a finite bound.

As such c ·+∞ = +∞ for c > 0, and c ·+∞ = −∞ for c < 0, c−∞ = −∞, etc.

(We are careful to ensure that∞−∞ and 0 · ±∞ are never encountered.)

Let AX = 0 be a system of n linear equalities over the variables X. The up-

per and lower bounds for variables u and l are treated as vectors over (R ×

R− ∪ {+∞})n and (R×R+ ∪ {−∞})n respectively. The vectors L and U are n-

dimensional vectors of QF LRA literals that point-wise rewrite using (2.7) over

X into the constraints l 6 X 6 u. When li is finite, li 6δ xi is an admissible

encoding of Li and similarly, xi 6δ ui is an admissible encoding of Ui. When

li = −∞, then Li = true i.e. there is no lower bound for xi. (Similarly, ui = +∞
iff Ui = true.) The vectors L and U are designed to correspond to the assertions

to the theory solver entailing the strongest upper and lower bounds on an in-

dividual variable. For example, if the tightest asserted bounds on x and y are
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x 6 5 and y > 2 (and y > 2 is selected to be encoded as y > 2 + δ), then the

vectors Li, li, Ui and ui are:

Li li Ui ui

x true −∞ x 6 5 〈5, 0〉

y y > 2 〈2, 1〉 true +∞
We now formalize the various components of deriving the inequalities. Let y

be any n-dimensional row vector over R. Let z = yA i.e. z is the result of a linear

combination of the rows of A. The constraint z ·X = 0 is entailed by a subset of

the constraints in AX = 0. The minimal set of equalities that participate in the

entailment is denoted RR.

RR = {Ak ·X = 0 | yk 6= 0,Ak 6= 0}

Rδ = {Ak ·X =δ 0 | yk 6= 0,Ak 6= 0}

The set Rδ is the same set of equalities, but over delta-extended arithmetic.

The subset of indices of variables to be replaced by their lower bounds will

be denoted L, and those replaced by their upper bounds will be denoted U.

We require that L ⊆ {i|zi > 0} and U ⊆
{
j|zj < 0

}
. The set of indices that are

non-zero but will not be replaced by a bound are denoted F.

F = {k|zk 6= 0} \ (L∪U)

Let A ′δ be the set of delta constraints actively involved in Rδ, L and U:

A ′δ = Rδ ∪ {xi >δ li|i ∈ L}∪
{
xj 6δ uj|j ∈ U

}
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and A ′R be the real analog of these assertions

A ′R = RR ∪ {Li|i ∈ L}∪
{
Uj|j ∈ U

}
.

Let γ =
∑
i∈L zili +

∑
j∈U zjuj. We now show that: −

∑
k∈F zkxk >δ γ.

Lemma 2.11. In extended arithmetic, either γ is −∞, or γ is d+ eδ with e > 0 and

for all i ∈ L and all j ∈ U, li and ui are finite.

Proof. By definition, γ is
∑
i∈L zili+

∑
j∈U zjuj with all zi > 0 and zj < 0. If there

are any non-finite terms li or uj, zili = −∞ and zjuj = −∞ and the inner sum

is −∞ in extended arithmetic.

If all of the terms li or uj are finite, then each li = di + eiδ with ei > 0

and uj = d ′j + e
′
jδ with e ′j 6 0. Each ziei > 0 and zje ′j > 0, thus

∑
i∈L ziei +∑

j∈U zje
′
j > 0. Finally, γmust then be of the form

γ =

∑
i∈L

zidi +
∑
j∈U

zjd
′
j

+

∑
i∈L

ziei +
∑
j∈U

zje
′
j

 δ.

The following lemma generalizes all of inference that the theory solver does.

Before showing the lemma, it is worth noting that the author has chosen to

always frame inference in terms of minimization. This combined with other

conventions create a number of extra negation symbols. Hence, −
∑
k∈F zkxk >δ

γ appears instead of
∑
k∈F zkxk 6δ −γ in the following lemma.

Lemma 2.12. A ′δ |=δR −
∑
k∈F zkxk >δ γ if γ is finite.
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Proof. Suppose γ is d + eδ in extended delta arithmetic. As γ is finite, for all

i ∈ L, Li has the form di + eiδ with ei > 0, and for all j ∈ U, Uj has the form

d ′j + e
′
jδwith e ′j 6 0. Let aδ be any delta assignment of A ′δ.

aδ |=δR
∧
yk 6=0

(Ak ·X =δ 0)∧
∧
i∈L

(xi >δ di + eiδ)∧
∧
j∈U

(
xj 6δ d

′
j + e

′
jδ
)

(2.11)

Each individual constraint (Ak · X =δ 0, xi >δ di + eiδ and xj 6δ d ′j + e
′
jδ)

holds in aδ. This interpretation then also satisfies any linear combination of the

Ak ·X =δ 0 constraints, in particular,

aδ |=δR yA ·X =δ 0 and − z ·X =δ 0.

This symbolic equality can be broken into

∑
i∈L

−zixi +
∑
j∈U

−zjxj +
∑
k∈F

−zkxk =δ 0

The inequalities xi >δ di+ eiδ for all i ∈ L entail that aδ |=δR zixi >δ zidi+ zieiδ

as zi > 0, or zixi − zidi − zieiδ >δ 0 + 0δ. Similarly, for each j ∈ U, aδ |=δR

zjxj − zjd
′
j − zje

′
jδ >δ 0 + 0δ. Then aδ must also satisfy the inequality

∑
i∈L

zi(−xi + xi − di − eiδ) +
∑
j∈U

zj(−xj + xj − d
′
j − e

′
jδ) −

∑
k∈F

zkxk >δ 0 + 0δ

After combining like terms this becomes,

aδ |=δR −
∑
k∈F

zkxk >δ
∑
i∈L

(zidi + zieiδ) +
∑
j∈U

(
zjd
′
j + zje

′
jδ
)

82



By the definition of γ,

γ = d+ eδ =

∑
i∈L

zidi +
∑
j∈U

zjd
′
j

+

∑
i∈L

ziei +
∑
j∈U

zje
′
j

 δ.

The δ arithmetic internal to the theory solver can be efficiently transformed

back into proofs over TR terms to communicate with the THEORYENGINE.

Corollary 2.13. Suppose γ = d+ eδ. Either

• e = 0 and A ′R |=R −
∑
k∈F zkxk > d, or

• e > 0 and A ′R |=R −
∑
k∈F zkxk > d.

Proof. This immediately falls out as a combination of Lemmas 2.12 and 2.8.

The following corollary connects the lemma back to the satisfiability of the

input constraints. Intuitively, if replacing all of the variables by their bounds

yields a γ such that 0 > γ and γ > 0, then a contradiction has been derived and

the input assertions are unsatisfiable.

Corollary 2.14. If F = ∅ and γ = d+ eδ >δ 0 + 0δ, then A ′R |=R false.

Proof. If F is empty, then L is equal to {i|zi > 0} and U is equal to
{
j|zj < 0

}
(rather than strict subsets). In this case, all of the variables on the left-hand side

of Lemma 2.12 are being canceled so the resulting left-hand side is 0 + 0δ. Thus

A ′R |=R 0 + 0δ >δ γwhich is inconsistent as d+ eδ >δ 0 + 0δ.

The vector y, the constraints that formA, and L and U can be converted back

into the input to the traditional Farkas’ lemma. With some conceptual abuse, the
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sums of inequalities Farkas’ lemma is performing

∑
yj

(∑
cjxj > dj

)
with yj > 0

provide a simple uniform format for witnessing the correctness of the derived

entailment to external proof checking tools, e.g. LFSC [91]. The main uses of

such witnesses in SMT is the derivation of interpolants (which are outside of

the scope of this thesis) [28]. See Section A.2.5 in the Appendix for more on the

construction of such witnesses.

It should now be sufficiently clear that for QF LRA there is no conceptual cost

in implicitly converting between δ arithmetic and real arithmetic for the pur-

poses of deducing entailed bounds. For brevity, we begin to write entailments

without using δ-arithmetic. Such inequalities are never intended to leave the

theory solver; however, it is clear that they inform what can leave the theory

solver. (x >δ d+ δ is treated as x > d in external interactions.)

In following sections of this chapter, Lemma 2.12 is mostly applied when

variables in L and U are assigned to be equal to their bounds. In this case, the

sum of the remaining variables are minimized by their current assignment.

Corollary 2.15. Let a be any n-dimensional vector of pairs of R such thatAa = 0 and

for all i ∈ L and j ∈ U it is the case that ai = li and aj = uj. Then

A ′δ |=δR −
∑
k∈F

zkxk >δ −
∑
k∈F

zkak

Proof. As each ai = li and aj = lj for i ∈ L and j ∈ U, these are all finite. From
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the previous lemma, A ′δ |=δR −
∑
k∈F zkxk >δ γ. By the definition of gamma,

γ =
∑
i∈L

zili +
∑
j∈U

zjuj =
∑
i∈L

ziai +
∑
j∈U

zjaj

Then as Aa = 0 and yAa = 0,

∑
i∈L

ziai +
∑
j∈U

zjaj +
∑
k∈F

zkak = 0

and −
∑
k∈F zkak = γ.

2.2.3 Dynamically Adding Variables

We previously assumed a global preprocessing that transforms the input φ

into φ ′′ ∧ AX = 0 (Section 2.2). This reduced φ ′′ to a formula containing only

single variable inequalities under the assumption AX = 0 held. This simplifies

adding auxiliary variables and setting up the tableau T , but it is problematic as

it does not allow for new atoms or variables to be added on-the-fly.

CVC4’s arithmetic theory solver allows for variables to be added on demand.

A unique variable id is assigned to nodes of linear sums over variables and is im-

plemented as an unsigned machine word. Within the theory solver, variables

are treated as their identifiers. This enables efficient array based implementa-

tions of maps using identifiers as keys. This also introduces a linguistic gap

between the internals of the simplex decision procedure which knows about

variable ids, but cannot communicate about assertions on the stack in order to

interact with the THEORYENGINE. The theory solver bridges this gap, and is
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made responsible for coordinating with the outside world.8

To bridge this gap, Nodes for linear terms (see Sec. 1.5.10) will be assigned

to variable ids. This is implemented using bidirectional maps from nodes to ids,

NodeToId : Nodes 7→ X, and ids to nodes, orig : X 7→ Nodes. When a structural

variable (a Node) x is seen in an assertion for the first time, x is given a variable

id ι through a bi-directional pair of maps, NodeToId(x) ← ι and orig(ι) ← x.

The variable ι cannot yet have a relationship to any other variable so it is safe to

give it an arbitrary initial assignment, a(ι) ← 0, to assign it the trivial bounds

l(ι) ← −∞ and u(ι) ← +∞, and to make the variable non-basic (ι ∈ N) and

mark ι as structural.

For auxiliary variables, we will be interested in normalized linear terms t

without constant offsets, t ≡
∑N
i=1 cixi whereN > 2 (otherwise the constraint is

on a single structural variable), the variable nodes in the sum are strictly sorted,

x1 ≺ x2 ≺ . . . ≺ xN, and the coefficients (ci) are non-zero. (The rewriter is

used to ensure that these conditions are met.) When a node for a linear term t

of this form is seen in an assertion for the first time, we check that all struc-

tural variables xi have been setup as before, and t is given a variable id κ.

(NodeToId(t) ← κ and orig(κ) ← t.) Let ιi be the variable id for the i’th struc-

tural variable, ιi = NodeToId(xi). The row Tκ is conceptually added at this

point to the implicit matrix of original constraints A by extending the matrix

with the row −1 · κ+
∑
ciιi. An initial assignment is computed for κ using t

and the current assignments to xi, a(κ) ←
∑N
i=1 cia(ιi). Since some structural

variables may have become basic since their introduction, the row added to T

8 Linguistic gaps may appear initially unappealing, but these help promote good coding
conventions for theory solvers with complex decision procedures. These require the theory
solver to be an interface layer between the decision procedures and the SAT solver. This helps
avoid bugs due to subtle re-entrant interactions between the SAT solver and the theory solver.
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then removes these variables using their current rows,

−1 · κ+
N∑
i=1

ciιi +
∑
ιi∈B

ciTi.

The variable κ can be given the trivial bounds lκ ← −∞ and uκ ← +∞. Finally,

κ is marked as auxiliary and added to the set B. Note this satisfies the main

invariants (I1)-(I5).

The set X and the dimensions of A and T can easily be expanded on de-

mand.9 Removing variables is much more challenging because it is difficult to

track when it is safe to do.

Auxiliary Variables are Internal Note that in this construction no actual vari-

able (in the SMT sense) has been created. Nothing in the SMT solver except

the theory solver has to be aware of the existence of κ (or xκ). To enforce this,

no Node for xκ is ever created in CVC4, and the theory solver cannot use xκ in

conflicts or lemmas.

2.2.4 Constraints

The set A of assertions coming from the THEORYENGINE contains the con-

ditions that the theory solver must check to see if they are satisfied. This is

different from the set of literals that the theory has deduced that are entailed by

A. Suppose that the theory had the assertions x− y 6 −5 and y− z 6 5. The

9 As orig(xi) = xi + Ai X holds on any row i, either A or orig can be used to generate the
other.
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following is then a valid deduction:

x− y 6 −5 ∧ y− z 6 5 |=R x− z 6 0 (2.12)

The theory could send the clause ¬(x− y 6 −5)∨¬(y− z 6 5)∨ (x− z 6 0) to

the SAT solver as it is a valid theory lemma. However, if x− z 6 0 is not in the

original input, adding such lemmas may lead to non-termination of the SMT

solver. Contrariwise, if something x− z 6 0 entails has been preregistered as

being in the original input, say x− z 6 1, then propagating x− z 6 1 (with the

explanation {x− y 6 −5,y− z 6 5}) to the SAT solver is likely to be beneficial.

To better support having internally known constraints and tracking proofs,

it is useful to distinguish between assertions and constraints that are known

to be entailed by the assertions. The arithmetic solver adds an intermediate

layer called constraints. A constraint is fundamentally a variable id x (Section

2.2.3), a relation symbol ./∈ {=, 6=,6,>}, and a δQ value for the right-hand side

v (Section 2.2.1). Each constraint that has been proven to be entailed has an

attached explanation. The explanation is sat-context dependent, and it will only

be set once per sat-context. We write e ` c to denote that the constraint c has its

proof index set to an explanation e, and 0 c to denote that c has no explanation.

An explanation e is either a list of constraints that entail this constraint or is a flag

that states that the constraint is equivalent to a constraint on the assertion trail.10

If the explanation consists of just an assertion Ai in A, the index of the assertion

(i) is stored as well in a partial function a-index(c). The value of a-index(c) is set

to i once the first pi is asserted to the theory that is equivalent to c. A constraint

10 This is a rudimentary form of sequents over conjunctions.
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cwithout an assertion index is denoted a-index(c) = ⊥.

pi
REWRITER−−−−−−→ t ./δ v xκ = NodeToId(t) 0 c : xκ ./δ v

e : pi ` c
(2.13)

If the explanation is a list of constraints, these constraints must entail the node

and must have their own explanations at the time of setting the explanation for

c.
{c1, c2, . . . , ck} |=R c e1 ` c1, . . . , ek ` ck 0 c

〈c1, c2, . . . , ck〉 ` c
(2.14)

These explanations form a simple proof tree over ` where all of the leaves are

constraints that are rewritten assertions. (The 0 c conditions above ensure that

the explanation is only set once.) When a constraint c is propagated externally as

a literal p, it can re-enter the theory solver as an assertion pN. Thus a constraint

c can have both an explanation in terms of a set of literals and at the same time

c can have an associated assertion index, a-index(c) 6= ⊥.

Only constraints that are associated with an assertion index are appropriate

for conflicts. The constraints datastructure makes it simple to convert a set of

constraints with any explanation ({e ` c}) into a set of constraints with set as-

sertion indices. The following inference rule performs a restricted form of res-

olution that replaces a constraint c that is entailed by a sequence of constraints

〈c1, . . . , ck〉 by their explanations. (See section 1.3 for a description of resolution.)

c∧C 〈c1, . . . , ck〉 ` c a-index(c) = ⊥

C∧
∧

{c1, c2, . . . ck}
REGRESS2ASSERTIONS

(2.15)
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Exhaustively applying (2.15) produces a set of constraints that can be directly

converted into a set of assertions,
{
pa-index(ci)

}
. This calculation may imple-

mented efficiently via depth-first-search.

If the constraint has been marked as having been preregistered, it is associ-

ated with it a single preregistration literal. For ease of implementation, when-

ever a constraint c is added so is its negation ¬c. The assertion index, the

explanation and the preregistration literal are all sat-context dependent. As

a matter of implementation the uniqueness of constraints can be enforced by

a global constraint manager. This manager implements REGRESS2ASSERTIONS,

backtracks explanations, maintains a hash map from nodes for literals to the

corresponding constraint, and garbage collects constraints.

2.2.5 Handling Assertions

Assertions are fed into the arithmetic theory solver as a sat-context depen-

dent stack, A. The assertion pi at position i on the stack is a literal of the form,

s ./ t where ./∈ {6=,=,<,>,6,>} and s and t are linear terms. If a constraint c

is already in the constraint manager for the literal pi, then pi is already set up.

(This is implemented via hashtable look ups.) Otherwise, pi is associated with

a constraint by the theory solver. The rewriter for the theory of arithmetic com-

putes a sum-of-monomials normal form over terms. For a QF LRA linear term t

(without ites), abstractly this is

t
REWRITER−−−−−−→ c0 +

N∑
i=1

cixi
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where: N > 2, the variable nodes in the sum are strictly sorted, x1 ≺ x2 ≺

. . . ≺ xN, and the coefficients are non-zero c1, . . . , cN (though c0 may be 0). To

rewrite the literal s ./ t, first the term s − t is rewritten to get a term of the

form c0 +
∑N
i=1 cixi. The constant c0 is then moved to the right-hand side to get∑N

i=1 cixi ./ −c0. To ensure that all linearly independent sums are normalized

to the same left-hand side, the relation is multiplied by 1
c1

. (This potentially

changes the direction of the inequality symbols <,>,6, and >.) The relation is

then converted to delta rationals by changing the strict relation symbols <,>

into either 6δ or >δ and the right-hand side −c0
c1

into a δQ using conversions in

Equation 2.7. Let d = −c0
c1

. The final result is a literal,

pi
REWRITER−−−−−−→

k∑
i=1

ci
c1
xi ./

′
δ 〈d, e〉 .

Returning to the example in 2.1, suppose the sequence of assertions was

A =

〈
−

1
5
x− y > 0, x = 5 + z, z− y > 1, y > −1

〉
. (2.16)

Assuming x ≺ y ≺ z, the sequence of rewritten constraints would be

x+ 5y 6δ 〈0, 0〉 , x− z =δ 〈5, 0〉 , y− z 6δ 〈−1, 0〉 , y >δ 〈−1, 1〉 . (2.17)

After this transformation, two left-hand sides are linearly independent iff

they are syntactically distinct. The new left-hand side t ′ is checked for having

a variable id ι (and is set up if it does not have one). The constraint manager is

then consulted for whether the constraint for ι ./ ′δ d+ eδ already exists. If one

does not exist, c is created. To avoid doing this process every time pi comes in,
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the end-to-end result is then cached by the constraint manager to avoid future

work: LitToConstraint(s ./ t)← c. Processing the constraints in 2.17 introduces

3 new auxiliary terms s1, s2, and s3 defined by:

s1 = x+ 5y, s2 = x− z, s3 = y− z

where these equalities are implicitly stored in the rows As1 , As2 and As3 , and the

four constraints

c1 : s1 6 〈0, 0〉 , c2 : s2 = 〈5, 0〉 , c3 : s3 6 〈−1, 0〉 , c4 : y > 〈−1, 1〉 .

We have so far assumed that no assertion is rewritten to the Boolean con-

stants true or false. This can happen in examples such as

x+ y = y+ x
REWRITER−−−−−−→ true.

The literals that rewrite to true can be ignored while the literals that rewrite to

false such as, 0 < 0, are trivial conflicts.

Assertions are pulled off of the stack A in increasing order using GETASSER-

TIONSOFFSTACK in Figure 2.8. The position of the last processed assertion in

the stack is saved in the variable processedPos. The variable processedPos is

sat-context dependent and initially 0. This avoids having to bring in new asser-

tions more than once within a sat-context. We additionally track whether or not

all A0 through AprocessedPos are known to be satisfied by the assignment a in the

flag rrstatus (the real relaxation status). If there is any new assertion, the state

of the real relaxation is conservatively set to unknown. The function ASSER-
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procedure GETASSERTIONSOFFSTACK
while processedPos < |A| and no conflicts are on the output stream do

rrstatus← Unknown
i← processedPos

processedPos← processedPos+ 1;
if pi

REWRITER−−−−−−→ false then
add (Conflict pi) to the output stream

else if pi
REWRITER−−−−−−→

∑
cixi ./δ v then

c← TOCONSTRAINT(
∑
cixi ./δ v)

if a-index(c) = ⊥ then
a-index(c)← i

if 0 c then
pi ` c
if (e ` ¬c) then// ¬c has an explanation e

output (Conflict REGRESS2ASSERTIONS({c,¬c}))
if no conflicts are on the output stream then

ASSERTIONCASES (c)

Figure 2.8: Incrementally processing assertions.

TIONCASES dispatches a constraint c to either ASSERTLOWER, ASSERTUPPER,

ASSERTEQUALITY, or ASSERTDISEQUALITY based on ./ ′. (ASSERTEQUALITY

and ASSERTDISEQUALITY are discussed in section 2.2.10.)
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2.2.6 Variable Status

Each variable is assigned a status describing the relationship between the

variable and its bounds.

Status(x) =



ABOVE UB a(x) > u(x) > l(x)

AT UB u(x) = a(x) > l(x)

BETWEEN u(x) > a(x) > l(x)

FIXED u(x) = a(x) = l(x)

AT LB u(x) > a(x) = l(x)

BELOW LB u(x) > l(x) > a(x)

This value must be recomputed whenever either a(x), u(x), or l(x) is updated.

This includes modifying their values during an update operation, an ASSERT

procedure, or backtracking the bounds. The cost of computing this status can

be amortized into these operations and is a small constant overhead.11 As there

are only 6 possible states, these can be effectively implemented as an enumera-

tion attached to each variable. This provides an efficient mechanism for avoid-

ing repeated exact precision inequality comparisons. Variable statuses can be

grouped to capture additional properties such as the assignment of a variable

equals its upper bound (2.18), the assignment of a variable is strictly less than

its upper bound (2.19), or the variable being in the error set (2.20). It also pro-

vides an efficient mechanism for knowing when these properties change from

11 Backtracking bounds is the only operation that changes its complexity class. It goes from
constant time to a linear-time operation. A straightforward amortized analysis can charge this
operation against the worst-case complexity, O(n), of the ASSERT procedure that set the bound.
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one state to another.

a(x) = u(x) ⇐⇒ Status(xk) ∈ {AT UB, FIXED} (2.18)

a(x) < u(x) ⇐⇒ Status(xk) ∈ {BETWEEN, AT LB, BELOW LB} (2.19)

x ∈ E ⇐⇒ Status(xk) ∈ {ABOVE UB, BELOW LB} (2.20)

2.2.7 Tableau

The tableau T is implemented using a sparse matrix representation. The

sparse format only stores non-zero coefficients. All missing entries are implic-

itly zero. Each coefficient is a rational Ti,j in a structure labeled with both an

identifier for the row and the column variable. Each entry is a member of two

doubly linked lists. The lists correspond to the non-zero entries in the row Ti

and the column for the variable xj, (Tᵀ)j. (Note that these lists are not sorted.

The elements may appear in any order.) The entry has both forward and back-

ward pointers for both column and row traversal. The head pointers into these

lists are two arrays of size n: one for the beginnings of columns and one for the

beginnings of rows. Iterating over rows and columns can be done in time pro-

portional to the number of non-zero entries. We denote the number of non-zero

entries of n-dimensional vector v as ‖v‖s. (‖·‖s uses s to emphasize that it is a

“size.”) The following are constant time operations: maintaining the size (num-

ber of non-zero entries) of each row and column (‖Ti‖s and
∥∥∥(Tᵀ)j∥∥∥

s
), adding an

entry Ti,j if Ti,j is known to be currently be 0, and setting an entry Ti,j to 0 by

unlinking it (given a pointer to the entry).
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1: procedure ROWADDITION(k, i,α, SC)
2: tmp.clear() // tmp is a dense partial map with O(n)-entries
3: tmp.add(

{
j 7→ Tk,j

∣∣Tk,j 6= 0
}

) // map each j to Tk,j (via pointers) in tmp
4: for all j s.t. Ti,j 6= 0 do
5: t← if (j is a key in tmp) then tmp[j] else 0
6: t ′ ← t+αTi,j
7: if sgn(t ′) 6= sgn(t) then
8: SC (k, j, sgn(t), sgn(t ′))
9: if t = 0 then

10: create entry for Tk,j ← t ′ in linked lists Tk and (Tᵀ)j
11: else if t ′ = 0 then
12: unlink entry Tk,j from linked lists Tk and (Tᵀ)j
13: else
14: update entry Tk,j ← t ′

Figure 2.9: Compute αTi + Tk and store the result in Tk. Reports the changes in
sign to SC. O(‖Ti‖s + ‖Tk‖s)

2.2.7.1 Row Addition

Implementing the tableau T in this fashion has the effect of making row ad-

dition efficient. Row addition adds to row k the row i scaled by a constant

α, Tk ← Tk + αTi. This is the core matrix operation used. Row addition may

be done in time O(‖Tk‖s + ‖Ti‖s) by using a temporary dense map. The algo-

rithm is given in Fig. 2.9. One of the rows is loaded into the dense map and

then row addition proceeds as normally.12 In section 2.2.8, it will be helpful to

know when an entry changes its sign. The procedure SC(i, j, sgn(t), sgn(t ′)) is a

call back procedure for reporting that the value of the sign function on sgn(Ti,j)

changed from sgn(t) to sgn(t ′). For now, SC can be assumed to be a no-op.

(See Fig. 2.11 for the actual implementation of SC.) Figure 2.10 adapts the pivot

operation to also report sign changes on SC.

12 A slightly more involved version of ROWADDITION can load the row being added from
into the temporary map. While not asymptotically more efficient, then Ti only has to be loaded
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Require: Ti,j 6= 0, i 6= j
1: procedure PIVOT-SC(i, j, SC)
2: ROWADDITION

(
j, i,− 1

Ti,j
, SC
)

// Create row j s.t. Tj,j = −1
3: for all k such that Tk,j 6= 0 ∧ k 6= j do // iterate over (Tᵀ)j
4: ROWADDITION

(
k, j, Tk,j, SC

)
5: (B,N)← (B∪ {j} \ {i} ,N ∪ {i} \ {j})

Figure 2.10: Pivot xi and xj and report sign changes to SC.

2.2.7.2 Linear Combinations

Each row Ti in T is in the row span of the constraints that defined the auxiliary

variables (Ti ·X = 0). A row Ti is in the row-span of A if it is the sum of rows in

A scaled by a vector of constants, y,

Ti =
∑

yj Aj .

This immediately follows from the construction of T and its modification by

pivoting which is implemented using scaled row addition (Fig. 2.10). This is

often equivalently written using matrix multiplication as yA where y is an n-

dimensional row vector. The coefficients on the auxiliary variables will be able

to tell us exactly the linear combination of the initial rows to form Ti. Any row

Ti ·X = 0 can be broken down into

∑
j 6∈Aux

Ti,jxj +
∑
s∈Aux

Ti,sxs = 0

Each auxiliary variable xs is defined by a row As of the form −xs+
∑

As,j xj = 0

where each xj is structural. As each −xs only initially appears on its own row,

once per PIVOT.
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Ti ·X must be the sum of these initial constraints.

Lemma 2.16. For any row in T with index i, Ti = yA where y is an n-dimensional

row vector, ys = −Ti,s when xs is auxiliary and y is 0 everywhere else.

Proof. This property is clearly true for A and initially T = A. We now show that

this property is preserved by induction on scaled row addition. Let T ′j = Tj+αTi

for some α ∈ R. Then by the inductive hypothesis there are z and z ′ such that

Tj = zA and Ti = z ′A.

T ′j = Tj +αTi = zA+αz ′A = (z+αz ′)A

Let y = z+ αz ′. So T ′j = yA. For all entries where xk is a structural variable,

yk = 0 as zk = z ′k = 0. For all entries where xs is a auxiliary variable, the

new coefficient for xs, T ′j,s, is equal to Tj,s + αTi,s. By the inductive hypothesis,

zs = −Tj,s and z ′s = −Ti,s, so ys = −(Tj,s +αTi,s).

Let Ri be the set of constraints for the auxiliary variables that appear on Ti,

Ri = {As ·X = 0|s ∈ Aux, Ti,s 6= 0} . (2.21)

Corollary 2.17. Ri |=R Ti ·X = 0.

Corollary 2.18. If Ti is non-zero, then there exists some auxiliary variable xs such that

the coefficient of xs is not zero and the length of the row is at least 2.

Proof. Let y be the vector from Lemma 2.16, i.e. Ti = yA and if ys 6= 0, then

ys = −Ti,s and xs is auxiliary. Suppose Ti is non-zero. Then y is non-zero and

ys = −Ti,s 6= 0 for some auxiliary variable xs. Suppose for contradiction that the
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length of Ti is less than 2. Therefore the only entry on Ti is Ti,s. By construction

As, contains an entry for least one structural variable, As,j 6= 0. As Ti,j = 0 6=

ys As,j, there must be some other yk 6= 0. But then Ti,k is non-zero, and the length

of Ti is at least 2.

2.2.7.3 Complexity

This section will show that the memory required to store the assignment a

and the tableau T is polynomial in the size of the input. The complexity of a

pivot is strongly polynomial. The core requirements for being strongly polyno-

mial are that the number of arithmetic operations is bounded by the number of

numeric constants in the input and that the intermediate numbers do not grow

too fast. The number of arithmetic operations per pivot is naively O(n2). More

challenging to see is that the number of bits required to represent each coeffi-

cient in T is polynomially bounded by the number of bits required to represent

A.

Tableau form can be thought of as the result of Gaussian elimination for a

particular variable order. An alternative view of a pivot is to take a matrix T

that is reduced by Gaussian elimination under a variable order, and to change

the variable order and reduce the matrix by Gaussian elimination under this

new variable order. Schrijver gives a proof of the polynomial space bound of the

size of rational coefficients by Gaussian elimination [98, Theorem 3.3]. (See this

proof for a complete definition of the complexity bounds discussed in this sec-

tion.) We show that each matrix T which is the result of a sequence of pivoting

operation is identical to the result of some Gaussian elimination (up-to permu-

tation). Hence all of the arithmetic operations remain strongly polynomial. The
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following lemma connects the tableau form of T to the Gaussian elimination of

some permutation of A.

Lemma 2.19. There exists a permutation matrix ρ such that applying Gaussian elimi-

nation to ρA ρ results in a matrix G such that G = −ρTρ.

Proof. See Lemma A.5 in the appendix for a proof.

Theorem 2.20. The size of T and a is polynomial in the size ofΦA whereΦA is the set

of all atoms in the input formula φ and lemmas sent to the SAT solver.

Proof. See Lemma A.6 in the appendix for a proof.

Remarks Many authors prefer a representation of T such that its dimensions

are m × (m +N) where m is the number of auxiliary variables and N is the

number of structural variables. This tighter representation places more empha-

sis on relative dimensions of T . However, due to the use of the sparse matrix

data structures, the size of the matrix is dictated by the number of non-zero co-

efficients and so rows of 0s add negligible overhead. By having the tableau T be

n×n, a layer of indirection is avoided. (We also make use of square matrices in

Chapter 3.)

2.2.8 Active Bounds and Row Based Inference

This section describes a novel method for efficiently detecting conflicts and

propagations on the rows of the tableau. This is enabled by tracking variable

statuses and aggregating these values across the rows and columns in T .

For a vector v in Rn, let Lact(v) and Uact(v) be the sets of indices of variables

whose lower bounds and upper bounds respectively are active in constraining
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the minimization of
∑
vkak: A bound is active if the assignment is equal to the

bound.
Uact(v) = {k|vk < 0, Status(xk) ∈ {AT UB, FIXED}}

Lact(v) = {k|vk > 0, Status(xk) ∈ {AT LB, FIXED}}
(2.22)

Note that for efficiency vk can be treated as its sign function, sgn(vk).

We use the statuses to track how close a row in T is to being either mini-

mized or maximized. Minimizing the row Ti corresponds to finding a feasible

assignment that minimizes the value of
∑
Ti,kak. This is not yet particularly

interesting as the minimum value must be 0 (Ta = 0); however, it will become

interesting once one or more variables are excluded from the sum. To accom-

plish this, we track the cardinality of the four sets

Uact(+Ti), Lact(+Ti), Uact(−Ti) and Lact(−Ti)

for each basic variable, i ∈ B. Let em be the unit vector for index m i.e. a

vector that is 0 everywhere except at index m where it is 1. Let maski,m be an n

dimensional vector that is row i excluding Ti,m:

maski,m = Ti − Ti,mem.

Then given m, sgn(Ti,j), σ = ±1, |Lact(σTi)|, and |Uact(σTi)|, we can compute in
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O(1)-time the cardinalities |Lact(σmaski,m)| and |Uact(σmaski,m)| using

|Lact(σmaski,m)| = |Lact(σTi − σTi,mem)|

= |Lact(σTi)|−


1 −σ sgn(Ti,m) > 0,am = lm

0 otherwise.

The computation for Uact(σmaski,m) is similar. Intuitively, these cardinalities

are the active variable counts for the upper and lower bounds excluding exactly

the variable m from minimizing the sum, σTi · a. The constant σ simply selects

either maximization or minimization. The following mechanism then provides

an efficient means for propagation and conflicts when all variables excluding

xm on Ti have the appropriate bound.

Let L(v) be a set of constraints corresponding to the lower bounds for the

indices in Lact(v), and U(v) be the corresponding set for u and Uact(v). Note

that

L(σmaski,m) = {xk >δ lk|k ∈ Lact(σmaski,m)}

U(σmaski,m) = {xk 6δ uk|k ∈ Uact(σmaski,m)}

Lemma 2.21. Suppose Ti,m 6= 0, |Lact(σmaski,m)|+ |Uact(σmaski,m)|+ 1 = ‖Ti‖s,

and (I3) and (I4) hold. Then the following must also hold:

L(σmaski,m)∪ U(σmaski,m)∪Ri |=δR −σTi,mxm >δ −σTi,mam
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Proof. This directly follows from applying Corollary 2.15 for z being σTi and

the sets L and U being Lact(σmaski,m) and Uact(σmaski,m) respectively. (See

Lemma 2.16 for a description of computing the vector y.)

Lemma 2.21 states that if all variables appearing on the row Ti (excluding xm)

are assigned to their upper or lower bounds, then xm is currently minimized

and xm > am [or maximized and xm 6 am].

We incrementally track the cardinality of the 4 sets Lact(±Ti) and Uact(±Ti)

for all i ∈ B. Let hσ,i denote the cardinality of Lact(σTi) for σ = ±1, and gσ,i de-

note the cardinality of Uact(σTi) for all i ∈ B. The summary of all 4 cardinalities

is below:

h+1,i =
∣∣{Ti,j > 0,a(xj) = l(xj)

}∣∣
h−1,i =

∣∣{Ti,j < 0,a(xj) = l(xj)
}∣∣

g+1,i =
∣∣{Ti,j < 0,a(xj) = u(xj)

}∣∣
g−1,i =

∣∣{Ti,j > 0,a(xj) = u(xj)
}∣∣

Note that if Ti,j 6= 0, then xj participates against either the count h+1,i or h−1,i.

To track these cardinalities incrementally, we add callback functions that are

called whenever the sign of Ti,j changes or Status(xj) for Ti,j 6= 0 changes. The

procedure SGNCHANGE in Fig. 2.11 takes as input variable ids i and j, the

previous sign of Ti,j, s and its current sign s ′ and adjusts h±1,i and g±1,i. Fig.

2.13 gives a version of the update procedure in Fig. 2.1 that calls SGNCHANGE.

The procedure STATUSCHANGE in Fig. 2.12 takes as input the entry for the

coefficient Ti,j, the previous status of xj, status and the current status status ′
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1: procedure SGNCHANGE(i, j,σ,σ ′)
2: ru ← if Status(xj) ∈ {AT UB, FIXED} then 1 else 0
3: rl ← if Status(xj) ∈ {AT LB, FIXED} then 1 else 0
4: if σ 6= 0 then
5: hσ,i ← hσ,i − rl
6: gσ,i ← gσ,i − ru

7: if σ ′ 6= 0 then
8: hσ ′,i ← hσ ′,i + rl
9: gσ ′,i ← gσ ′,i + ru

Figure 2.11: Update the bound count when the sign of Ti,j changes from σ to σ ′

Require: Ti,j 6= 0
1: procedure STATUSCHANGE(Ti,j, st, st ′)
2: σ← sgn(Ti,j)
3: hσ,i ← hσ,i − (if st ∈ {AT LB, FIXED} then 1 else 0)
4: gσ,i ← gσ,i − (if st ∈ {AT UB, FIXED} then 1 else 0)
5: hσ,i ← hσ,i + (if st ′ ∈ {AT LB, FIXED} then 1 else 0)
6: gσ,i ← gσ,i + (if st ′ ∈ {AT UB, FIXED} then 1 else 0)

Figure 2.12: Update the bound count of a row when the status of a variable
changes.

and adjusts |Lact(±Ti)| and |Uact(±Ti)| accordingly.

2.2.9 Conflicts

We will build upon the bookkeeping scheme presented in the previous sec-

tion to identify conflicts on rows in constant time.

Chapter 3 discusses a variant of simplex that minimizes the sum of infeasi-

bilities. We borrow from this chapter the notion of the direction of violation for

a variable. When a variable’s current assignment exceeds its upper bound, the

value of the variable must be smaller in all feasible assignments (if one exists),

i.e. +1 · xi must be minimized to find a feasible assignment. Similarly −1 · xi

must be minimized when a variable’s current assignment is below its lower
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Require: δ 6= 0, xj ∈ N

1: procedure UPDATE-STATUSCHANGE(j, δ, STATUSCHANGE)
2: aj ← aj + δ
3: for all i such that Ti,j do
4: pre← Status(xi)
5: ai ← ai + Ti,jδ
6: post← Statusi
7: STATUSCHANGE (Ti,j, pre, post)

Figure 2.13: An update procedure with STATUSCHANGE.

bound. If a variable is between its bounds, its assignment may not have to

change, and for conformity, 0 · xi can be trivially minimized. This coefficient is

formalized as the direction of violation.

λi =


+1 ai > ui

−1 ai < li

0 otherwise

We will revisit λi in Section 3.2. Whenever λi 6= 0, xi must be basic by the

invariant (I2), and it must also not be equal to its bounds so the active sets on

the row Ti are the same as on maski,i. Due to the fact that if λi 6= 0, these basic

variable xi cannot be equal to its bound, we can conclude that:

Lact (λi maski,i) = Lact(λiTi)

Uact (λi maski,i) = Uact(λiTi)

L (λi maski,i) = L(λiTi)

U (λi maski,i) = U(λiTi)
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If λi = 0, the above sets are empty (as λiTi is the all 0 vector). Let VC(k) be the

violated constraint forcing the minimization of λkxk.

VC(k) =


c : xk 6 uk ak > uk

c : xk > lk ak < lk

undefined otherwise

Using these notions of violated constraints, invariants (I3) and (I4), and Lemma

2.21, we can devise a constant time check if row i contains a conflict.

Lemma 2.22. Suppose λi = ±1, hλi,i + gλi,i + 1 = ‖Ti‖s, (I3) and (I4) hold. Then

L(λiTi)∪ U(λiTi)∪Ri |=R ¬VC(i)

Proof. Assume that λi 6= 0 and hλi,i + gλi,i + 1 = ‖Ti‖s hold as well as the in-

variants (I3) and (I4). The variable xi must be basic and the coefficient of xi

on its row must be Ti,i = −1. The union of Lact(λiTi) and Uact(λiTi) must not

be empty. Then by Lemma 2.21 (with σ = λi), the constraints in L(λi maski,i),

U(λi maski,i) and Ri entail that

−λiTi,ixi >δ −λiTi,iai =⇒ λixi >δ λiai (as Ti,i = −1).

Suppose that λi = −1. Then xi 6δ ai is entailed, ai <δ li, and the negation of

VC(i) is equivalent to xi <δ li. Hence, ¬VC(i) is entailed as well. The proof for

λi = +1 is analogous.

Remark. The inference rules used by LowerConflict(xi) and UpperConflict(xi)
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1: procedure CHECKBASICVARIABLESFORCONFLICTS(B ⊆ B)
2: for all i ∈ B do
3: if λi 6= 0 then
4: if hλi,i + gλi,i + 1 = ‖Ti‖s then
5: 〈S, ci〉 ← STRENGTHEN(L(λiTi)∪ U(λiTi)∪ {VC(i)})
6: S ` ¬ci

7: {VC(i),¬ci}
REGRESS2ASSERTIONS∗−−−−−−−−−−−−−−−−−→ A ′

8: add to output stream (Conflict A ′)

Figure 2.14: A simple procedure for checking whether some basic variable in a
list is in conflict.

in the abstract decision procedure in section 2.1.4 are subsumed by 2.22.

Any list of basic variable indices B can then be checked for conflicts in time

O(|B|). See Figure 2.14 for a sketch of an algorithm to accomplish this.

Lemma 2.23. The conflict L(λiTi)∪ U(λiTi)∪Ri ∪ {VC(i)} is minimal.

Proof. We now show that for all constraints in the conflict there exists an assign-

ment that satisfies all but that constraint. Let∆ = ui−ai if ai > ui or∆ = li−ai

otherwise. For any j such that Ti,j 6= 0, we will define an assignment a(j). Let

a(i) = a. For any non-basic variable j on the Ti, let a(j) be the assignment result-

ing from performing the pivot and update operation PIVOTANDUPDATE(i,∆, j).

Each a(j) satisfies Ta(j) = 0 and the bounds for every variable in the conflict ex-

cept the one for xj. Thus all bounds on variables must be in the conflict.

Each equality in Ri corresponds to the defining equality of an auxiliary vari-

able xs. By setting the value of a(s) to the bound on xs in the conflict, we get a

new assignment. This new assignment satisfies all of the equalities in Ri except

the one corresponding to xs and all of the bounds.

The conflicts coming from Lemma 2.22 always use the strongest available
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constraints on the variables in the set of assertions,

L(λiTi)∪ U(λiTi)∪Ri ∪ {VC(i)}

This is not desirable. Consider the sequence of assertions:

x1 < x2, x1 6 x2, x2 < x3, x2 6 x3, . . . , xN−1 < xN, xN−1 6 xN, xN 6 x1, xN < x1

In problems with many variable equality atoms x = y, atoms such as x 6 y

and x > y arise. (See Section 2.2.10.)13 The conflict generated by Lemma 2.22

corresponds to the conflict

C1 = {x1 < x2, x2 < x3, . . . , xN−1 < xN, xN < x1}

instead of the stronger set of constraints C2 with only a single strict inequality

C2 = {x1 < x2, x2 6 x3, . . . , xN−1 6 xN, xN 6 x1} .

Both of the lemmas ¬C1 and ¬C2 would force the theory solver to backtrack but

¬C2 is more restrictive for future search. Let U = {xi < xi+1 =⇒ xi 6 xi+1} or

the set of unate implications.

U∪ {¬C2} |= ¬C1 but U∪ {¬C1} does not entail ¬C2. (2.23)

Note the use of first-order entailment |= in 2.23. Essentially, there is additional

13 Due to unate propagation (Section2.2.14), both the strict and non-strict inequalities x 6 c
and x < c are often asserted.
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surplus in the transition from Lemma 2.21 to Lemma 2.22 that we have not yet

used advantageously. This subsection defines a novel method for heuristically

using this surplus.

Let the initial surplus of the conflict surplus be either ai−ui or li−ai. There

are many candidate choices for how to strengthen the conflict. CVC4 uses a

greedy algorithm to weaken the bounds on the variables participating in the

conflict to find conflicts with a smaller surplus. The algorithm iterates over the

constraints in L(λiTi) ∪ U(λiTi). For each constraint c : xj > d in the set L(λiTi),

let c ′ be the next strictly weaker [asserted] bound on xj, i.e. c ′ : xj > d ′ and

d > d ′. If surplus >
∣∣∣d−d ′Ti,j

∣∣∣, c is relaxed to c ′ in the conflict and surplus is

correspondingly updated (surplus ← surplus−
∣∣∣d−d ′Ti,j

∣∣∣). This continues until

c cannot be relaxed any further. The algorithm then attempts to greedily relax

the constraints on the next variable. We call the resulting set of constraints the

strengthening of L(λiTi) ∪ U(λiTi) ∪ {VC(i)}. We denote the strengthening of a

conflict as ci ∪ Swhere ci is the resulting constraint on VC(i) and S contains the

remaining constraints. The negation ¬ci can be deduced to follow from the rest

of the constraints in the explanation S and Ri. (The constraint for ci may also be

strengthened while there is additional surplus.)

This set of constraints is not yet a valid conflict as it contains purely internal

xs auxiliary variables. These can conceptually be removed by replacing each xs

variable using the equalities in Ri ( −xs +
∑N
i=1 xi = 0). After substitution by

the equalities in Ri and rewriting, the result would be a valid theory lemma.

Note though that all of these constraints in S have been asserted to the theory.

These are equivalent to the assertions at the assertion indexes for the constraint.

By (I1), the explanation for ¬ci is not set, and S ` ¬ci may be set. Then repeat-
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1: procedure SPLITDISEQUALITIES
2: for all c : xj 6= d+ 0δ ∈ D do
3: if aj 6= d and c is not split then
4: t← xj + Aj // Cancel xj from the row
5: output lemma (t = d ⇐⇒ (t 6 d∧ t > d)) to the SAT solver
6: // this is equivalent to t 6= d ⇐⇒ (t > d∨ t < d)
7: mark c as split

Figure 2.15: Lazy splitting for disequalities.

edly applying REGRESS2ASSERTION (2.15) to {¬ci, VC(i)} results in a subset of the

assertions ( A ′),

{ci, VC(i)}
REGRESS2ASSERTIONS∗−−−−−−−−−−−−−−−−−→ A ′

This set of assertions is a theory valid conflict, |=R ¬A ′.

2.2.10 Adding Disequalities Relations

The previous section removed all atoms of the form t = d by rewriting these

to t 6 d∧ t > d for a linear term t. Clearly, asserting equalities via a procedure

ASSERTEQUALITY can be handled for a variable x as a synonym for running

ASSERTUPPER(x 6 d) and ASSERTLOWER(x > d) internally.14 The reason these

are removed in the abstract presentation (Section 2.1) is to avoid handling nega-

tions of such atoms, x 6= d. Disequalities are unique in that these are the first

non-convex constraints we have encountered. While there exist algorithms for

handling disequalities natively [97], these tend to have unclear advantages over

simpler techniques.

CVC4 handles disequalities by lazily introducing the previous rewrite using

splitting-on-demand lemmas (Fig. 2.15). As disequality constraints come in, the

14The coefficient for δ is 0 in the δQ.
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ASSERTDISEQUALITY(c : t 6= d) procedure merely adds c to a context dependent

list of disequalities, D. On full effort checks, all of the disequality constraints

that are not satisfied by the current assignment, a, are split by sending lemmas

to the SAT solver. If no splits are issued and the SAT solver is at full effort, each

constraint t 6= d in D is satisfied by a as either previously split lemmas satisfy

either t < d or t > d, or the aNodeToId(t) 6= d.15

2.2.11 Computing Models with Disequalities

To compute models with disequalities, we use the algorithm for selecting an

order-preserving range (0,α ′) given in Section 2.2.1.4. Let Q be the set of δR

constants for all of the bounds, the disequalities, and the variable assignments.

Q = {ai}∪ {li|li > −∞}∪ {ui|ui < +∞}∪ {d|c : x 6= d ∈ D}

Compute α ′ as described in Section 2.2.1.4. Then by Lemma 2.9 and β ∈ (0,α ′)

preserves the order of the elements inQ. The interpretationMaδ,β then satisfies

the input assertions.16

Lemma 2.24. If Ta =δ 0, l 6δ a 6δ u, and a |=δR D, then

Maδ,β |=R AX = 0 ∧ l 6 X 6 u∧D.

Proof. As β preserves the orders between all of the elements of Q, the satisfac-

tion of each of the individual constraints is satisfied translates from the δR level
15 This is subtly incompatible with CVC4’s theory sharing and lemma generation infrastruc-

ture. See Section A.1.2 in the appendix.
16 The original technical report [47] gives a constructive algorithm O(n) time algorithm for

selecting β to satisfy constraints of the form l 6 X 6 u.
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to the reals.

Remarks. In Maδ,β, no variables that are disequal according to a become equal.

This also makes this selection method appropriate for model construction with

theory combination.

2.2.12 Termination with Heuristic Variable Selection

Each round of Simplex selects a basic variable xi to leave B by pivoting it

with a non-basic variable xj that enters B. To ensure termination of SIMPLEX-

FORSMT, it suffices to select for the leaving variable the minimum i ∈ E and for

the entering variable the minimum j ∈ entering (lines 4, 7 and 10 in Figure 2.7).

This is one of the many variants of Bland’s rule for constructing a terminating

simplex implementation.

Lemma 2.25. Any execution of SIMPLEXFORSMT reaches only a finite number of

distinct a.

Proof. Each variable is either basic or non-basic. There are
(
n
|B|

)
candidate sets of

selecting the basic variables. Each non-basic variable xj is assigned to either a

bound (lj or uj), or to the assignment it initially had upon starting this Simplex

search. The assignment to the basic variables is determined by the non-basic

variables.

Corollary 2.26. SIMPLEXFORSMT does not terminate iff there exists a cycle in the

pairs of the set of basic variables and the assignment 〈B,a〉.

As is shown in the proof of termination of SIMPLEXFORSMT [47, Theorem

1], Bland’s rule ensures that the pairs 〈B,a〉 do not cycle. Any variable selection
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rule that eventually converges to Bland’s rule must also terminate. All of these

heuristics can be described as selecting according to two total orders ≺entering

and≺leaving that are adapted after each selection and eventually converge to≺.

Figure 2.16 gives an refined version of DUALSELECT. This version additionally

assumes ∀xi ∈ E : leavingi 6= ∅.

Lemma 2.27. The procedure SIMPLEXFORSMT terminates if≺entering and≺leaving

eventually converge to ≺.

We now define the set of entering variables using the definition of the active

constraints. The entering variables will be those without an active constraint on

a row i. Recall the definition of F from Section 2.2.2, F = {k|zk 6= 0} \ (L ∪ U).

We generalize this in terms of the active variables Lact(v)∪Uact(v).

Fact(v) = {k|vk 6= 0} \ (Lact(v)∪Uact(v))

We will call the set Fact(λi maski,i) the inactive non-basic variables for the row

i. These will be the candidate entering variables for the row i. It then follows

from Lemma 2.22, that

Fact(λi maski,i) 6= ∅ ⇐⇒ hλi,i + gλi,i + 1 < ‖Ti‖s .

The heuristic commonly used in implementations of SIMPLEXFORSMT for

selecting the entering variable is to select the xj with minimum column length

| (Tᵀ)j | with ties broken by ≺. This heuristic works quite well in practice but

is not guaranteed to terminate. A simple means of ensuring termination is

to count the number of heuristic selections and switch to Bland’s rule once
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Require: E 6= ∅, ∀i ∈ E .hλi,i + gλi,i + 1 < ‖Ti‖s
1: procedure DUALSELECT-HEURISTICORDERS
2: select i from E to minimize ≺leaving

3: select j from Fact(λi maski,i) to minimize ≺entering

4: δ← if (ai > ui) then (ui − ai) else (li − ai)
5: return 〈i, δ, j〉

Figure 2.16: A pivot and update selection routine with heuristic variable orders.

this passes a finite cap. This is roughly what is described in MathSat [60] and

OpenSMT [22]. Another variant is to track how many times the variable xi has

left the basis in an execution of Simplex. If this count goes over a threshold for

any variable, the procedure switches to Bland’s rule. This strategy is used by

default in Yices, Yices 2, and Z3 [39]. CVC4’s heuristic is to to track how many

times the variable xi has left the basis in an execution of Simplex and if this

count is over a threshold select the entering variable to be the least variable in

Fact(λi maski,i). The intention of this rule is to try to eliminate the small cycles

that appear using this heuristic, but without fully switching to Bland’s rule.

The most common way of selecting the leaving variable is to select the min-

imum i in E to leave. Griggio describes in his thesis a heuristic for selecting

the leaving variable in E that violates its bound the most [60]. After a finite

number of rounds, the heuristic switched to Bland’s rule. CVC4 and MathSAT5

implement this heuristic.

2.2.13 Theory Solver

The techniques given throughout this section can now be combined to form

a decision procedure for QF LRA. Figure 2.18 gives a version of PIVOTANDUP-

DATE that appropriately reports the changes of the signs of coefficients and sta-
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1: procedure SIMPLEXFORSMTCHECK
2: CHECKBASICVARIABLESFORCONFLICTS (E)
3: loop
4: if (Conflict C) ∈ outputStream then
5: return Conflict
6: else if E = ∅ then
7: return (Sat a)
8: else
9: 〈i, δ, j〉 ← DUALSELECT-HEURISTICORDERS()

10: PIVOTANDUPDATE-SC (i, j, δ, STATUSCHANGE, SGNCHANGE)
11: CHECKBASICVARIABLESFORCONFLICTS ({k|Tk,i 6= 0}∩ E)

Figure 2.17: A refined version of the main loop of the SIMPLEXFORSMT check
procedure.

1: procedure PIVOTANDUPDATE-SC(i, j, δ, STATUSCHANGE, SGNCHANGE)
2: PIVOT-SC (i, j, SGNCHANGE)
3: UPDATE-STATUSCHANGE (i, δ, STATUSCHANGE)

Figure 2.18: Pivot and update with sign and status changes.

tuses. Figure 2.17 builds a new version of the main simplex loop using the new

pivot and update procedure and the procedure in Fig. 2.16 for selecting the

entering and leaving variables. It additionally detects with amortized constant

time overhead row conflicts over all rows.

Lemma 2.28. LetΦ be the set of atoms in the input formula φ and Ψ be the set of arith-

1: procedure T-CHECK(effort)
2: GETASSERTIONSOFFSTACK ()
3: if rrstatus = Unknown ∧ (Conflict C) 6∈ outputStream then
4: SIMPLEXFORSMT
5: if (Conflict C) 6∈ outputStream then
6: rrstatus← Sat
7: if rrstatus = Sat and effort is full effort then
8: SPLITDISEQUALITIES ()

Figure 2.19: Complete SIMPLEXFORSMT theory check procedure.
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metic atoms in lemmas generated by other modules in CVC4. Then SIMPLEXFORSMT

generates O(|Φ|+ |Ψ|) new atoms by splitting equalities, and the SMT solver termi-

nates if Ψ is finite and the other modules terminate.

Theorem 2.29. The SMT solver is a sound and complete decision procedure for QF LRA

using this theory solver.

Proof. If T-CHECK (full effort) returns no conflicts or lemmas, then the assign-

ment a satisfies Ta =δ 0, l 6δ a 6δ u, and a |=δR D. Then by Lemma 2.24, there

exists a TR satisfying interpretation Ma,β ′ . Thus if the SMT solver terminates

with Sat the input formula is satisfiable.

If the the SMT solver terminates with Unsat, then as all of the theory lem-

mas are emitted to the output stream during T-CHECK are TR-valid, the input

formula is unsatisfiable. The SMT solver terminates using this theory solver for

QF LRA as the theory solver introduces only a finite number of splits.

2.2.14 Propagation

A theory solver may propagate to the SAT solver that the current set of as-

sertions A entails a literal p known to both the SAT solver and the theory solver.

A |=R p

The SAT solver may then assign the literal to a fixed value in the current sat-

context-level. As this has the potential to cut down an exponential amount of

search by the SAT solver, designing propagation schemes that balance doing

an incremental amount of work with successfully deducing entailed literals are

essential for designing theory solvers. The SAT solver lets the theory solver
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know the set of literals that are candidates for propagation via a preregistration

call (see Sec. 1.5.6). The theory solver must be able to later explain any of the

propagations it has made in scope of the current sat-context-level.

A complete propagation rule detects all possible propagations. Linear program-

ming (Sec. 3.1) may be used as a complete propagation rule by maximizing and

minimizing all variables at every round; however, this is expensive. Propaga-

tion in CVC4’s TR theory solver focuses on two simple but incomplete rules:

unate propagation and row propagation.

Unate propagation is the simple rule:

d,d ′ ∈ R d 6 d ′

x 6 d |=R x 6 d
′

d,d ′ ∈ R d > d ′

x > d |=R x > d
′

This form of propagation is done in O(1) time via the datastructures in the

global constraint manager. (See Sec. 2.2.4 for more on constraints.) The con-

straints for all variables are stored in a map sorted by their right-hand-side (the

d values above). Once a constraint c has been asserted, a pointer to the next

weakest constraint is either a forward or a back pointer in the tree. If this next

element c ′ has no explanation, then c may be set as its explanation and c ′ may

be propagated if it has been preregistered. This process continues until it finds

some weaker c ′′ with an explanation. CVC4 additionally has a mode for ea-

gerly instantiating all unate implications as lemmas before solving begins. This

results in adding a linear number of binary clauses.

Row propagation uses the same tools as conflict generation. Given a row Ti,

row propagation attempts to learn either an upper or a lower bound on a single

variable xj. We again use σ = ±1 to control whether an upper or lower bound
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is being learned. Row propagation uses σTi to select L and U to exclude exactly

j where Ti,j 6= 0 (F = {j}). Lemma 2.12 can be applied to learn the inequality

−σTi,jxj >δ γ in extended arithmetic. When γ is finite, this can entail any weaker

bound in the system via unate propagation. (If γ is infinite, the inequality is

trivially true.) When −σTi,j is positive, the learned bound is a lower bound, and

when −σTi,j is negative, the learned bound is an upper bound. As there are

O(n2) possible choices of i, j, and σ and each attempt takes roughly O(n) time,

the challenge is to judiciously attempt only interesting selections and filter out

selections that cannot succeed.

The rest of this subsection examines a heuristic method for filtering these

cases. (Readers are encouraged to review Lemma 2.12 and Section 2.2.8 before

continuing.) During solving we additionally track the set of variables xi such

that the procedure ASSERTIONCASES(xi ./ d) has asserted a bound on it since

the last round of row propagation. Call this set S. (S may be over-approximate

so it does not have to be backtracked.) Using the same tools used to track the

number of active variables on each row (hσ,i and gσ,i), we additionally track

how many variables on each row have any bound at all. We call these four

quantities Hσ,i and Gσ,i. For consistency, row propagation is only run when-

ever all A0 through AprocessedPos are known to be satisfied by the assignment

a, i.e. rrstatus = Sat (see Sec. 2.2.5). Row propagation begins iterating over

the columns of all j ∈ S to collect a set of row indices R. Then for all i ∈ R and

σ = ±1, row propagation first checks if Hσ,i + Gσ,i + 1 > ‖Ti‖s. If not, propaga-

tion is not possible using this row. If Hσ,i + Gσ,i + 1 = ‖Ti‖s, there is a unique

variable j on the row that does not have a bound (modulo σ). This is the only

variable propagation possible on this row and σ. Otherwise, every variable has
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a bound (modulo σ) and is a candidate for propagation. We consider these two

cases separately.

Suppose there is a unique j such that it does not have a relevant bound for

the row σTi. Let σj = − sgn(Ti,j)σ for all j on Ti. The set F = {j} is the only

variable left from L and U. This selection defines the value of γ. The following

steps are used to try to propagate on such a j.

• Any entailed propagation is satisfied by the current satisfying assignment

a. So if ai is equal to its current relevant bound, then no new bound may

be learned. O(1).

• Check if there exists a bound in the constraint database that is strictly

weaker than aj for xj. Supposing σj = 1, this is a constraint c : xj > d

and ai > d. O(logn).

• Compute γ. All other variable have bounds so γmust be finite. By Lemma

2.12, −σTi,jxj >δ γwith the explanation for c is A ′δ. O(n).

• Check if there exists a constraint in the constraint manager such that it is

entailed by −σTi,jxj >δ γ. Let c be the strongest such entailed constraint.

Supposing σj = 1, c is a constraint c : xj > d and γ
−σTi,j

> d. O(logn).

• If c is not already the lower or upper bound for xj, then propagate c and

set its explanation. O(n).17

When Hσ,i + Gσ,i = ‖Ti‖s, all variables are candidate for propagation on row

σTi. We first compute ∆ = γ for when F = ∅, i.e. L ∪ U =
{
j|Ti,j 6= 0

}
. As

17 Setting the explanation is O(n); however, as this only applies to successful propagations,
this is not considered burdensome.
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propagation is only applied when the system is consistent, ∆ <δ 0. The quantity

of ∆ allows for the efficient computation of the value for γ for every candidate

F = {j}, call this γj.

γj = ∆−


σTi,jlj σj = 1

σTi,juj σj = −1

We can then attempt each candidate j as was done for the unique case, but using

the γj values. We therefore pay theO(n) cost to compute the γ values only once

per row instead of the naive O(n2) for the row for computing the γ values.
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Chapter 3

Simplex with Sum of Infeasibilities

for SMT

This chapter gives a new theory solver for quantifier-free linear real arith-

metic. This theory solver is built around the SIMPLEXFORSMT algorithm given

by Dutertre and de Moura [47]. (See Chapter 2.) That algorithm works by per-

forming a sequence of local optimization operations that select which pivoting

operations to perform and relies on specific pivoting heuristics to search for a

satisfying model or a conflict. Many pivot choices are possible and these choices

can dramatically change the search for a solution. The heuristic pivot selection

scheme that many SMT solvers use (Section 2.2.12) is based on local criteria

and is potentially subject to cycling: it may return to the same basis state in-

finitely often. Solvers employ tactics to detect cycling, and slowly edge towards

pivot-selection rules that guarantee termination, such as Bland’s Rule [56, 98].

Unfortunately, Bland’s rule may converge very slowly and is not effective on

hard problems that require many pivots.
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While the algorithm is generally efficient in practice on verification prob-

lems, its local pivoting heuristics can lead to slow convergence towards either

a satisfying assignment or a conflict. In contrast to more traditional Simplex

algorithms, SIMPLEXFORSMT does not perform global optimization. Dantzig

originally developed the Simplex method in the late 1940s to solve logistical

problems for the US Air Force by formulating the logistical problems as opti-

mization problems [55]. The standard Simplex algorithm finds a solution that

is “best” according to some criteria. This is made mathematically explicit by

adding a linear objective function f that is to be minimized (or equivalently max-

imized). The linear constraints combined with a linear objective are called Linear

Programs (LPs), and systems that solve them are called LP solvers. Throughout

execution of the Simplex algorithm, the value of f never increases. As long as

f strictly decreases, no cycling is possible. Thus, specialized techniques to pre-

vent cycling are only required to break out of sequences of degenerate pivots,

that is, pivots that do not change f. Procedures can then be designed around

two different modes: a heuristic mode that is efficient in practice, and a mode

for escaping cycling. The search may then be strongly biased towards looking

for choices that decrease the value of the optimization function. This has the

consequence of making every round more expensive by doing additional anal-

ysis, but potentially reducing the number of Simplex rounds before converging

to a solution. Before SIMPLEXFORSMT, earlier simplex-based approaches for

SMT used repeated optimization (via an algorithm like PRIMAL in Section 3.1)

as constraints arrived [5, 43, 97].

This chapter proposes an adaptation of the sum-of-infeasibilities method

from the Simplex literature in the context of SMT [19, 56]. We call this method
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1: procedure PRIMAL(f)
2: while Fact(τf) 6= ∅ do
3: 〈i, j, δ〉 ← PRIMALSELECT()
4: UPDATE(j, δ)
5: if i 6= j then
6: PIVOT(i, j)
7: return a(f)

Figure 3.1: PRIMAL(f) with a generic selection routine.

SOISIMPLEX. Minimizing the sum-of-infeasibilities provides a witness func-

tion similar to f which accomplishes several things at once: it helps guide the

search towards both models and conflicts; it prevents cycling; and it can be

used to determine when to safely re-enable aggressive heuristics without losing

termination. In other aspects, SOISIMPLEX is similar to the SIMPLEXFORSMT

algorithm, providing similar features and having similar performance on many

problems. However, its performance is noticeably better on certain problem

instances that require many pivots.

The material of this chapter has previously been published in [73]. This

chapter assumes familiarity with the abstract description of SIMPLEXFORSMT

in Section 2.1 and selectively refers to some of the more advanced refinements

discussed in Section 2.2. The rest of this chapter is organized as follows. Section

3.1 describes a naive traditional primal simplex optimization routine. Section

3.2 then describes the sum-of-infeasibilities algorithm. Empirical results and a

detailed comparison to SIMPLEXFORSMT are given in Section 3.4.
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1: procedure PRIMALSELECT
2: S← ∅
3: for all j ∈ Fact(τf) do
4: S← S∪ 〈j,k〉, where 〈|δB(j,k)|,k〉 is minimal
5: select 〈j,k〉 ∈ Sminimizing

〈
−| sgn(δB(j,k))Tf,j|, j

〉
by <lex

6: return 〈j, δB(j,k),k〉

Figure 3.2: PRIMALSELECT with a terminating variant of Dantzig’s rule.

3.1 Naive Primal Simplex

The classic problem in linear optimization is to find an assignment a that sat-

isfies the linear equalities Ta = 0 and the bounds l 6 a 6 u, and that minimizes

a linear function f =
∑
xk∈X ckxk. The problem can be solved with the PRIMAL

Simplex algorithm shown in Figure 3.1. It is typical to assume that the algo-

rithm is given an initial feasible assignment as input a ′ such that both Ta ′ = 0

and l 6 a ′ 6 u are initially satisfied. This problem is often known as the Linear

Programming problem.

The optimization function f is treated as a special additional variable

xf =
∑
xk∈X

ckxk. (3.1)

We treat xf as a synonym for the variable with index 0 (x0). We add a row and

column for f to the matrix A which defines the auxiliary variables (Sec. 2.1.2).

For clarity, we denote the coefficients on f’s row as Af,j = cj, for 1 6 j 6 n,

Ai,f = 0 for 1 6 i 6 n, and Tf,f = −1. To add the equality (3.1) as a row to T while

maintaining tableau form, each basic variable xk with ck is canceled out of the

Tf by adding ckTk to (3.1) until all of the coefficients of basic variables are zero

(as was done in Sec. 2.2.3). We can then treat xf as an auxiliary, basic variable
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with no bounds. (Note that to instead maximize fwith the same machinery, we

simply minimize its negation −f.)

Every round of PRIMAL begins by checking whether or not f is currently

at its minimum. This is done by looking at the assignments to each nonbasic

variable on f’s row. The value of xj that minimizes f–call this vj–is uj if Tf,j is

negative and lj if Tf,j is positive (ignoring other constraints). If aj = vj for each

nonbasic variable xj on f’s row (where Tf,j 6= 0), then the current value of f, af,

must be the minimum because we can prove xf > af as follows:1

xf =
∑
τf,j>0

Tf,jxj +
∑
τf,k<0

Tf,kxk

>
∑
τf,j>0

Tf,jlj +
∑
τf,k

Tf,kuk =
∑
τf,j>0

Tf,jaj +
∑
τf,k<0

Tf,kak = af.
(3.2)

The search can then terminate. Otherwise, there is some xj on f’s row s.t. aj 6= vj,

and it is unclear whether af is at a minimum. By trying to change aj for these

xj, we can at the same time hunt for an assignment that decreases af and search

for a proof of optimality.

It is convenient in the subsequent discussion to use the matrix τ obtained

from the T such that non-basic variables have coefficient 1 on their rows and the

rows for the basic variables only have coefficients for the non-basic variables.

This leads to τ being defined as T + I (where I is the identity matrix). Note that

on the diagonal, τi,i = 0 for i ∈ B and τj,j = 1 for j ∈ N (off the diagonal,

τi,j = Ti,j). We refer to the i’th row of τ as τi and to the entry in row i and

column j of τ as τi,j.2

1 This is an application of Corollary 2.15.
2 The row vectors τi and maski,i (defined in Sec.2.2.8) are equal by construction.
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The τ matrix simplifies several notions including defining the variables that

restrict the minimization of f. Borrowing the notion of active variables from Sec-

tion 2.2.12, the non-basic variables against their bounds are active. The indices

of the inactive variables on f’s row whose assignments do not restrict the min-

imization of f are Fact(τf). Recall from Sections 2.2.8 and 2.2.12 the definition

of Lact, Uact and Fact. The indices in Lact(v) and Lact(v) are those where the

lower and upper bounds are active given the signs of the vector v.

Lact(v) = {k|vk > 0,ak = lk}

Uact(v) = {k|vk < 0,ak = uk}

Fact(v) =
{
j|vj 6= 0

}
\ (Lact(v)∪Uact(v))

The indices in Fact(v) are those variables that are not active given v. Thus, f is

at its minimum when Fact(τf) = ∅. Alternatively, f is at a minimum when Uact

and Lact include all of the non-basic variables on the row,

|Uact(τf)|+ |Lact(τf)|+ 1 = ‖Tf‖s .

We can then see that the inequality derived for constraining the minimization

of (3.2) is also an instance of Lemma 2.21.

To decrease the value of af, we choose some xj s.t. j ∈ Fact(τf) and determine

an appropriate δ for UPDATE(j, δ). (We discuss the strategy for picking xj later

in this section.) The direction in which we attempt to move aj is determined by

Tf,j: if Tf,j < 0, then we want δ > 0 and if Tf,j > 0, then we want δ 6 0. Since

the UPDATE operation must maintain the invariant l 6 a 6 u, the value of δ is
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constrained by the bounds on xj:3

lj 6 aj + δ 6 uj.

Also, for every basic variable xi that depends on xj, the value ai must stay

within bounds: li 6 ai + Ti,j · δ 6 ui. These cases can be unified using τ:

for all k, lk 6 ak + τk,jδ 6 uk.

PRIMAL always considers UPDATE(j, δ) operations that are maximal: the

value of δ is selected so that at least one variable’s assignment is pushed against

its bound (any larger change would violate the bound). For each k, the candi-

date value for δ is the one that sets xk equal to one of its bounds (which bound is

determined by the sign of δ and the sign of τk,j). We call these candidate values

for δ the break points of xj. Formally, let δU(j,k,α) be the amount xj must change

in order to make xk equal to α after an UPDATE:

δU(j,k,α) =
α− ak
τk,j

, and (3.3)

δB(j,k) =


δU(j,k, lk) Tf,j · τk,j > 0

δU(j,k,uk) Tf,j · τk,j < 0

undefined otherwise

(3.4)

The break points for xj are all defined values of δB(j,k).

3 This departs from classical presentations of primal simplex which assume the initial assign-
ment a ′ assigns all non-basic variables to either their upper or lower bounds. This removes the
need to consider this case.
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In PRIMAL, for each j, we simply select k to minimize |δB(j,k)| (ties can be

broken by picking the minimum k). The operation UPDATE(j, δB(j,k)) then

maintains the invariant that no variable violates its bound. Additionally, the

assignment to xk is guaranteed to be pressed up against its bound. When j 6= k,

xk is a basic variable, so we can allow for (potential) future progress by pivoting

xk out of the basis and replacing it with xj, PIVOT(j,k).4,5 The strategy of min-

imizing |δB(j,k)| to select the xk to leave the basis is a leaving rule. By always

selecting updates like this, PRIMAL ensures that a(f) monotonically decreases.

We have just described a rule for selecting xk given xj, but we need the cor-

responding entering rule for selecting xj. A simple way to ensure termination

is to select the smallest index j in Fact(τf). This is the Primal variant of Bland’s

rule. A better heuristic is to select xj so as to maximize the value of |Tf,j|. This is

often called Dantzig’s rule. Dantzig’s rule tends to be dominated in practice by

more sophisticated rules, such as steepest-edge or devex, but these are out of the

scope of this discussion [53,56,63,98]. The algorithm PRIMAL(f) in Figure 3.1 is a

minimization routine that repeatedly selects an update and pivot until Fact(τf)

is empty and then returns the minimum value found for f. For the purposes of

this thesis, we ignore unbounded problems, i.e. problems where af can take on

arbitrarily low values [19, 56, 98]. (To handle this case, change the while loop

condition additionally to stop once af is set to −∞ assuming the intermediate

operations support extended arithmetic.) The selection procedure uses a termi-

nating variant of Dantzig’s rule (it follows Dantzig’s rule as long as δB(j,k) is

nonzero, otherwise it follows Bland’s rule). Note that when δB(j,k) 6= 0, the

4 Note the change of the order of PIVOT and UPDATE from Chapter 2.
5 The j = k case handles the possibility of updating xj to one of its bounds. Tracing through

the definitions, we see that for j ∈ N, τj,j = 1, δU(j, j,α) = α− aj, and δB(j, j) is either lj − aj,
uj − aj or undefined.
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value of f strictly decreases, which makes it impossible to return to any previ-

ous state (as all previous states had larger values of f). Thus, the presence of a

minimization function makes it easier to rule out cycles (the source of nonter-

minating runs). Termination only needs to be addressed for cases when f gets

stuck and stops decreasing.

3.2 Sum of Infeasibility

The primal simplex algorithm of the previous section finds an assignment

that optimizes a linear function f given an initial feasible assignment a ′. This

is known as a Phase II simplex algorithm. A Phase I simplex algorithm either

finds a feasible assignment to the input problem, Ta = 0 and l 6 a 6 u, or con-

cludes that none exists. Broadly speaking, SIMPLEXFORSMT in Chapter 2 may

be viewed as an example of a Phase I simplex algorithm. (It may be more correct

to call SIMPLEXFORSMT and SOISIMPLEX “simplex-like algorithms” as the ob-

jective function changes every round.) A Phase I pass may also be done using

the primal simplex algorithm on a transformed version of the input problem.

This transformed problem is straightforward to initially satisfy, and its optimal

assignments can be transformed into feasible assignments iff the initial problem

is feasible [21, Section 8.4].

The SIMPLEXFORSMT routine focuses on searching for an assignment a that

satisfies l 6 a 6 u. The set of error variables, E, are the variables that violate
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one of their bounds. Let Vi denote the amount by which xi violates its bound:

Vi =


ai − ui ai > ui

li − ai ai < li

0 otherwise

(3.5)

The violation function is formally a function over variables, V(xi), but is gener-

ally written as the vector that is the point-wise application of the function over

X, i.e. Vi = V(xi). By construction, Vi is nonnegative and piecewise linear, and

xi satisfies its bounds iff Vi = 0. Finding a satisfying assignment requires re-

ducing each Vi to 0. The coefficient of ai in Vi is formalized as the direction of

violation λi. Locally, minimizing Vi is equivalent to minimizing λixi where λi is

−1 if ai > ui, 1 if ai < li, and 0 otherwise.

λi =


+1 ai > ui

−1 ai < li

0 otherwise

(3.6)

Further, let VC(k) be the constraint restricting the minimization of λkxk.

VC(k) =


c : xk 6 uk ai > ui

c : xk > lk ai < li

undefined otherwise

(3.7)

Due to the invariant in SIMPLEXFORSMT that Ta = 0, whenever E = ∅ the

130



assignment a was feasible. By the invariant that all non-basic variables are in

bounds, E is a subset of the basic variable indices B. Every round of SIMPLEX-

FORSMT can be seen as minimizing the function λiτi ·X. For every basic vari-

able xi in error, i ∈ E, the non-basic variables on its row (the variables with

non-zero coefficients) can be partitioned into either non-basic flexible variables

of row i that enable the function λixi to decrease,

Fact(λiτi)

or those with constraints that are assigned to their corresponding bounds. The

constraints for these non-basic variables are

Lact(λiτi) and Uact(λiτi)

Remark. If σ 6= 0 and i ∈ B, then |Fact(στi)|+ |Lact(στi)|+ |Uact(στi)|+1 = ‖Ti‖s.

Using the function V, we can construct the sum-of-infeasibilities function. For

a given assignment, the sum of infeasibilities is given by:

V(X) =
∑
xi∈X

Vi (3.8)

For a given assignment, V(X) is a real value. Let VX denote the result of re-

placing ai by xi in the definition of V. The evaluation of the polynomial VX(xi)

by a given assignment a is equal to Vi, i.e. a ◦ VX(xi) = Vi. Similarly VX(X)

is a polynomial over X for a given assignment a such that a ◦ VX(X) = V(X).

Thus there are now three equivalent conditions for the assignment a satisfying

l 6 a 6 u: E = ∅, V(X) is the value 0, VX(X) is the polynomial 0. Also, let VBi
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1: procedure SOICHECK
2: while ∃j ∈ N ∩ E do
3: UPDATE(j,−λj ·Vj)
4: CHECKBASICVARIABLESFORCONFLICTS (E)
5: while Fact(τf) 6= ∅∧ Conflict 6∈ outputStream do
6: 〈i, δ, j〉 ← SOISELECT()
7: PIVOTANDUPDATE(i, δ, j)
8: CHECKBASICVARIABLESFORCONFLICTS ({k|Tk,i 6= 0}∩ E)
9: if Conflict ∈ outputStream then

10: return Conflict
11: else if E = ∅ then
12: return (Sat a)
13: else
14: SoiQE()→ outputStream (Sec. 3.3.5)
15: return Conflict

Figure 3.3: Check procedure for SOISIMPLEX.

denote the violated bound on xi: either li, ui or undefined. So whenever Vi 6= 0,

then Vi = λi(ai − VBi).

3.3 Sum of Infeasibilities Simplex

In this section, we introduce a Simplex-based theory solver for QF LRA which

we call SOISIMPLEX. The function minimized is the sum of infeasibilities of

all of the variables, V(X). Minimizing the sum of infeasibilities is a standard

technique for finding an initially feasible assignment for linear programs [19,

56].

We assume the same setup as in the previous section: we start with a fixed

(modulo pivoting) tableau and a satisfying assignment a. The SAT solver asserts

a set of literals that determine the upper and lower bounds for the variables.

The theory solver must provide a check routine that either reports satisfiable
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1: procedure SOISELECT
2: S← ∅
3: for j ∈ Fact(τf) do
4: leaving← ∅
5: for all k such that k = j∨ Tk,j 6= 0 do
6: leaving← leaving∪ {〈δU(j,k, lk),k〉}
7: leaving← leaving∪ {〈δU(j,k,uk),k〉}
8: select 〈δ,k〉 ∈ leaving to minimize 〈∆V(j, δ), |δ|,k〉
9: S← S∪ 〈j, δ,k〉

10: select 〈j, δ,k〉 ∈ Sminimizing
〈
sgn(∆V(j, δ)) · |Tf,j|, j

〉
11: return 〈j, δ,k〉

Figure 3.4: Selection rules for SOISIMPLEX.

(with a satisfying assignment) or unsatisfiable (with a conflict). The main loop

for SOISIMPLEX uses essentially the same machinery to minimize VX(X) as was

used in PRIMAL for minimizing a linear function f. However, there are a number

of complications caused by the fact that VX(X) is only piecewise linear instead

of linear. The majority of this section is devoted to handling these challenges.

Because we cannot represent the optimization function VX(X) directly in the

tableau, we use a linearized approximation. First note that that

V(X) =
∑
xi∈X

Vi =
∑
xi∈X

λi · (ai − VBi).

In some neighborhood of ai, the value of λi ·VBi will be constant. Discarding

this term and replacing ai with xi results in the polynomial f(X) =
∑
xi∈X λi · xi.

Note that the function still depends on the current assignment (which deter-

mines λi), but for a given assignment, the function is linear. Using the rows in

the tableau T , we can substitute for the basic variables and rearrange the sums
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to get:

f =
∑
j∈N

∑
xi∈X

λiτi,j

 · xj.
We use this polynomial in roughly the same way we used f in PRIMAL: it is

the 0th variable and it is always basic. To compute the tableau row for f, we

simply compute coefficients for each nonbasic variable xj by adding, for each

row i, the entry in column j multiplied by the directional multiplier λi. The

computed coefficients depend on λi and thus have to be updated every time

the assignment changes. This can be implemented efficiently by instrumenting

UPDATE to detect when λi changes to λ ′i for some i. When this happens, we

update f’s row (Tf) as follows: Tf ← Tf + (λ ′i − λi) · τi.

The check procedure for SOISIMPLEX is given in Fig. 3.3. It iterates while:

no row contains a conflict (Conflict 6∈ outputStream), and there is an inactive

non-basic variable on f’s row (Fact(τf) 6= ∅). If some conflict has been reported,

then SIMPLEXFORSMTCHECK safely terminates with the discovered conflict[s].

If Fact(τf) and E are empty, the current assignment is satisfying. Otherwise,

E 6= ∅, Fact(τf) = ∅, and f is at a minimum. Section 3.3.5 discusses extracting a

conflict in the latter situation.

As in the PRIMAL algorithm, the selection procedure in Figure 3.4 iterates

over all j ∈ Fact(τf). The leaving rule considers xj as well as every basic variable

xk where Tk,j is nonzero. We consider two possible updates (break points) for

each such variable: one which sets it to its upper bound and one which sets

it to its lower bound. Unlike PRIMAL, we consider updates for which some

new basic variable could become violated. However, we still ensure that global

progress is made. We denote by ∆V(j, δ) the amount that V(X) would change if
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we were to change the current assignment by executing UPDATE(j, δ). From all

of the possible leaving variables and updates, we then select the pair for which

∆V(j, δ) is minimal (equivalently, the pair that reduces the value of V(X) the

most). Section 3.3.1 describes how to efficiently compute the values for ∆V(j, δ).

We also show in that section that for each xj, there is always a choice of 〈δ,k〉

such that ∆V(j, δ) 6 0. This ensures that V(X) monotonically decreases. Tie

breaking for the leaving rule is done by selecting the minimum value of |δ| and

then the minimum variable index k. The motivation for the former is discussed

in subsection 3.3.2.

The entering rule selects between candidate triples 〈j, δ,k〉 for j ∈ Fact(τf).

Any triple for which ∆V(j, δ) is negative ensures that SOISIMPLEX is making

progress. This allows for SOISIMPLEX to treat V(X) in a manner analogous to

af in PRIMAL. Following our modified Dantzig’s rule, we select the entering

variable with the largest coefficient so long as it decreases V(X) with ties being

broken by selecting the variable with the smaller index.

T : f = −2 · x2 + x3
x1 = 2 · x2 − x3

3 6 x1 6 7
x2 6 3

1 6 x3

  

0 δ

Vi
o(

V 
)

a(x1) = 1
a(x2) = 1
a(x3) = 1

Figure 3.5: Simple example showing V(X) after UPDATE(x2, δ).

Example We show how SOISIMPLEX works using the simple example shown

in Fig. 3.5. With the given assignment, the bound x1 > 3 is violated, and V(X) =

2. The variable x2 is flexible, and we examine it for updates. The break points

for x2 are at δ ∈ {1, 2, 3}, and correspond to changes to x2 that respectively set
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x1 to its lower bound, x2 to its upper bound, and x1 to its upper bound. Figure

3.5 shows how the value of V(X) changes if x2 is updated by δ. For δ ∈ {1, 2},

∆V(2, δ) = −2 and V(X) will become 0. Because of the tie-break on |δ|, the pair

〈δ.k〉 = 〈1, 1〉 is selected, and then the triple 〈2, 1, 1〉 is returned. After the call to

UPDATE, the algorithm terminates with a satisfying solution.

3.3.1 Computing ∆V(j, δ)

To implement line 22 of SOISELECT, we must compute the values of ∆V(j, δ)

for every break point δ. We use the fact that the polynomial VX is linear between

break points and that the slopes of these linear segments can be computed. Let

∆ be a increasing sorted list of the positive δ values in leaving, and let δ0 = 0:

0 = δ0 < δ1 < . . .. Let κi be the set of values of k that are paired with δi in

leaving. We proceed as follows. We know that ∆V(j, 0) = 0 and that the slope

m0 as δ increases from 0 is Tf,j. Now, we can compute:

∆V(j, δi) = ∆V(j, δi−1) + mi−1 · (δi − δi−1).

Furthermore, we know that at δi, each variable xk (for k ∈ κi) transitions to

satisfying its bound or violating its bound, meaning that λk will change at δi to

some λ ′k. This change can be used to compute the slope mi for the next segment:

mi = mi−1 +
∑
k∈κi

(λ ′k − λk) · τk,j.

Continuing this walk over increasing values of δ computes ∆V(j, δ) for all δ > 0.

Another analogous pass can be done to compute the ∆V(j, δ) values for nega-
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tive δ values. A number of nice properties follow from the above computation,

including the following lemma:

Lemma 3.1. For each j ∈ Fact(τf), there is some pair 〈δ,k〉 ∈ leaving such that

∆V(j, δ) 6 0.

Proof. If δ = 0 is a break point, then ∆V(j, 0) 6 0. Now assume 0 is not a break

point. The xj’s considered are on f’s row so Tf,j 6= 0. If Tf,j > 0, there must exist

some λi · τi,j > 0. So there exists a negatively-valued break point, δU(j, i, VB(i)).

Let δ be the negative break point closest to 0. We know that ∆V(j, δ) = 0 + Tf,j ·

δ < 0. Similarly, if Tf,j < 0, then ∆V(j, δ) < 0 for the minimal positive δ.

The proof further suggests that it is sufficient to consider either just the negative

or just the positive values of δ (depending on the value of Tf,j) without affecting

correctness.

3.3.2 Termination

The termination of SOISIMPLEX is again based on the termination of Bland’s

rule. Suppose that SOISIMPLEX does not terminate. There are only a finite

number of possible assignments that can be considered as the number of vari-

ables is finite, and every change to the assignment assigns a variable xj to either

u(xj) or l(xj). Because the value of V(X) is determined by the assignment and

monotonically decreases, any nonterminating execution must have an infinite

tail during which V(X) is unchanged and the update selected, 〈j, δ,k〉 is such

that ∆V(j, δ) = 0. As was shown in the proof of Lemma 3.1, if the minimal

∆V(j, δ) found is 0, then δ = 0 must be a break point. The leaving rule enforces
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that the δ selected minimizes the tuple 〈∆V(j, δ), |δ|,k〉. So in the tail of a nonter-

minating execution∆V(j, δ) = 0 and δ = 0 at every step. Thus after this point, no

variable is changing in assignment and no variable changes its relationship to

its bounds. Every leaving and entering variable is then selected based on pick-

ing the minimum index. The argument that PRIMAL cannot cycle under Bland’s

rule can then be directly applied. We refer readers interested in the proof of the

termination of Bland’s rule to [56, 98].

3.3.3 Heuristics and V(X)

Instead of examining all j ∈ Fact(τf) for the best candidate, we can instead

just look at heuristically many candidates. The search can stop once a candidate

has been found that makes progress (i.e. ∆V(j, δ) < 0). Further, there is more

freedom in selection heuristics than we have shown here. In particular, one can

use any heuristic desired until no progress has been made for a while. CVC4’s

implementation for example uses a heuristic that prefers shorter columns until

progress stalls and then uses Bland’s rule.

3.3.4 Fast calculation of conflicts at break points

During the calculation of break points, it is possible to determine if pivoting

xj with xi would result in a row conflict on xj’s new row in O(1) time by using

the g±1,i and h±1,i values. This is because the sign of Ti,j is known during the

calculation of the break points for xj as well as whether or not xj would become

an error variable after this candidate pivot. Such selections are always preferred.

CVC4’s selection also heuristically prefers the set E to be as small as possible.
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3.3.5 Conflicts with Multiple Rows

If the sum of infeasibilities function is provably at a minimum and no single

row produces a conflict, but the assignment is not yet feasible, we can still detect

a conflict and derive an explanation. When the non-basic variables on f’s row

are assigned to their upper or lower bounds (depending on the sign of their

coefficient), we can conclude that f is minimized by the current assignment.6

This is entailed by the non-basic variables on f’s row being at their upper or

lower bounds and the equalities in the tableau:

TX = 0 ∧
∧
τf,j>0

xj > lj ∧
∧
τf,k<0

xk 6 uk |=R f > af (3.9)

Replacing f by its definition, we get that
∑
i∈E λixi > af. We subtract from both

sides of the inequality
∑
i∈E λi VBi to get:

∑
i∈E

λi(xi − VBi) > af −
∑
i∈E

λi VBi =
∑
i∈E

λi(ai − VBi). (3.10)

Note that in (3.10) the left hand side is now exactly VX(X) and the right-hand

side is exactly V(X). We are in the case that the assignment is not feasible so the

sum of infeasibilities function V(X) > 0. We can now conclude the following

entailment:

TX = 0 ∧
∧
τf,j>0

xj > lj ∧
∧
τf,k<0

xk 6 uk |=R

∑
i∈E

λixi >
∑
i∈E

λi VBi (3.11)

6 The is the condition Fact(τf) = ∅ on line 5 in Figure 3.3).
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For each of the violated bounds, we know that λixi 6 λi VBi is equivalent to

either xi > li or xi 6 ui. Thus the sum of all of these constraints imply that∑
i∈E λixi 6

∑
i∈E λi VBi. This is in conflict with the entailment in (3.11). This

allows us to extract the following conflict:

∧
τf,j>0

xj > lj ∧
∧
τf,k<0

xk 6 uk ∧
∧
i∈E

λixi 6 λi VBi∧TX = 0 (3.12)

(Lemma 3.2 (given later in this Section) formalizes these conflicts.)

Explanations constructed like this may not be minimal. Consider taking any

infeasible system like the one above TX = 0, l 6 X 6 u, and the assignment

minimizes f (formally, τf). Using (3.12), we get some conflict C. Construct a

duplicate problem and assignment T ′X ′ = 0, l ′ 6 X ′ 6 u ′ where all of the

variables are primed. We know that this duplicate problem also has a conflict

C ′. Combine these two disjoint problems into a single problem:

[T ; T ′][X;X ′] = 0, l 6 X 6 u, l ′ 6 X ′ 6 u ′.

The combined assignment [a;a ′] minimizes the sum-of-infeasibilities for the

combined system V(X ∪ X ′). (Each assignment minimizes its part of the dis-

joint subproblems.) The conflict extracted using (3.12) is going to be exactly

the union of the two conflicts C ∪ C ′; however, either C or C ′ would be better

conflicts for the combined problem.

One could use the QuickXplain conflict minimization algorithm [71,72] start-

ing from the conflict (3.12) to find a minimal conflict. This adaptive algorithm

adds and removes constraints and performs additional consistency checks to
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derive minimal conflicts. Using the variant of QuickXplain in [72], minimiz-

ing the conflict may require up to 2k · log |E |
k + 2k additional consistency checks

(where k is the number of basic variables in the minimal conflict). Each of these

consistency checks corresponds to a new Simplex invocation.

The paper [73] mentions an adaptation of the QuickXplain algorithm for

[heuristically] minimizing the conflict without additional Simplex search. The

algorithm we present more closely follows the variant of QuickXplain from [71].

Intuitively, we are going to try to find a subset of the error variables E such that

the sum of the infeasibilities of just this set of variables is minimized by the cur-

rent assignment. If we can find such a set, we can extract a conflict following

(3.12).

We generalize f to work over arbitrary sets of basic variables. Given a subset

S of B, we denote by fS the row vector that is the sum of the [effective] rows for

the indices in Smultiplied by their violation direction.7

fS =
∑
i∈S
λiτi and fS ·X =

∑
j∈N

(∑
i∈S
λi · Ti,j

)
· xj.

We note that fE = f and whenever fS is minimized, the preconditions to gener-

ating a conflict using 3.12 apply. (fS is minimized when Fact(f
S) = ∅.)

The algorithm in Figure 3.6 is essentially the same abstract algorithm as

QuickXplain from [71] with a new conflict detection scheme. The procedure

takes as input two sets of basic variable indices S1 and S2 such that we know

a conflict like (3.12) is known to exist in their union S1 ∪ S2. (Formally, the

conditions for the conflict are that Vi > 0 for all i ∈ S1 ∪ S2, S1,S2 ⊆ B, and
7 Note that fS is simply a row vector. It is not added to the tableau as fwas.
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Require: Fact(f
S1∪S2) = ∅ and ∀i ∈ S1 ∪ S2. Vi > 0

1: procedure SOIQUICKXPLAIN(S1,S2)
2: if S1 6= ∅ then
3: X← S1
4: else
5: select an arbitrary i inS2
6: X← {i} // ensure X is not trivially empty
7: Let fX ←

∑
i∈X λiτi

8: while Fact(f
X) 6= ∅ do

9: select some j such that fXj 6= 0 and sgn(fXj ) 6= sgn(fS1∪S2
j )

10: select some i ∈ S2 \X such that sgn(λiTi,j) = − sgn(fXj ).
11: ilast ← i, fX ← fX + λiτi, X← X∪ {i}
12: if X = S1 then
13: return X
14: else
15: R← C∪ {ilast}
16: enumerate the elements of X \ R as i1, . . . ik
17: X1 ←

{
i1, . . . , ibk/2c

}
, X2 ←

{
ibk/2c+1, . . . , ik

}
18: if X2 6= ∅ then
19: R2 ← SOIQUICKXPLAIN(R∪X1,X2)
20: R← R∪ (R2 \X1)

21: if X1 6= ∅ then
22: R← SOIQUICKXPLAIN(R,X1)

return R

Figure 3.6: A heuristic conflict minimization algorithm for sum of infeasibility
conflicts based on QuickXplain.

142



Fact(f
S1∪S2) = ∅.) The set of indices S1 are treated as fixed. The procedure at-

tempts to find a minimal subset of indices X such that S1 ⊆ X ⊆ S1 ∪ S2, and

Lemma 3.2 applies to X. On the initial call, S1 is empty and S2 = E. The algo-

rithm begins with X = C and constructs the row vector fX. The algorithm then

keeps adding a new index i from S2 to X until it is known that a conflict can be

extracted from fX. (We discuss selecting i in the next paragraph.) This process

is guaranteed to terminate as fS1∪S2 is a candidate solution, and X converges

to S1 ∪ S2. Hopefully, X is a strict subset of S1 ∪ S2 and not all of the elements

of S2 have been added, but this is not guaranteed. With the knowledge that a

conflict can be generated from X, we attempt to build a subset R of X such that

Fact(f
R) = ∅ holds. At this point, the last index added (ilast) and S1 are heuris-

tically assumed to be required (R ← S1 ∪ {ilast}). The algorithm then partitions

the elements of X that are not in R in half as X1 and X2. The algorithm attempts

to recursively minimize X2 assuming R ∪ X1. The indices from X2 included in

the returned result are added to R. The algorithm then attempts to minimize X1

assuming that the indices in R are included in the sum. The algorithm finally

returns the indices in R and those selected from X1.

Lines 8-11 in Figure 3.6 describe how row indices are selected to be added

to X. The vector fX is the sum of rows vectors λi · τi for each i ∈ X. The loop

keeps running while a conflict cannot be constructed for X i.e. while Fact(f
X)

is non-empty. Because all of the non-basic xjs are at their bounds on the row

fS1∪S2 , the only way Fact(f
X) can be non-empty is that fX and fS1∪S2 disagree on

the sign of some non-basic variable xj.

sgn(fXj ) 6= sgn(fS1∪S2
j )
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The coefficient of this xj must either cancel to zero or flip signs by adding more

elements from S2 into X. Thus there must be some i ∈ S2 that has not yet been

added to X such that sgn(λiTi,j) = − sgn(fXj ). We add such an i toX and continue

the loop until a conflict is found. This cancellation rule is main insight of this

algorithm.

We now formalize the correctness of such sum-of-infeasibility conflict gen-

eration. For all i ∈ B, let yi be the row vector s.t. Ti = yi A. (See Lemma 2.16

for more details on extracting yi.) Let zS =
∑
i∈S λiyi A for a subset S of B. The

k’th element of zS is denoted zSk. The vector zS differs from fS because zS also

includes non-zero coefficients for basic variables.

fS = zS +
∑
i∈S
λiei

The analogs of the sets L, U and R from Section 2.2.8 for a fixed set S are defined

as:

LS =
{
xk > lk

∣∣∣zSk > 0
}

,

US =
{
xk 6 uk

∣∣∣zSk < 0
}

, and

RS =
{

Ak ·X = 0
∣∣∣zSk 6= 0,k ∈ Aux

}
.

Lemma 3.2. If Vi > 0 for all i ∈ S, and Fact(f
S) = ∅, then LS ∪US ∪RS |=δR false.

Proof. The selection of the sets LS and US over zS create a value γ for the sum of

upper and lower bounds over zS. (See Section 2.2.2 for details.)

γ =
∑
i∈L

zili +
∑
j∈U

zjuj
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By case analysis, we can show that γ =
∑
i∈S Vi. Thus γ > 0. Corollary 2.14 is

then immediately applicable to zS, LS, US, RS and γ. (The proof also works for

comparisons over δR.) See the Appendix Section A.2.7 for a proof that traces

these connections more explicitly.

The constraints that correspond to LS ∪ US ∪RS can then be returned as a TR-

conflict (as was done in Section 2.2.9). It is also possible to apply the con-

flict strengthening technique from Section 2.2.9 to the resulting conflict where∑
i∈S Vi is the initial surplus. This has not yet been implemented in CVC4.

A possible alternative algorithm to SOIQUICKXPLAIN is to try all subsets

of E. While the worst case performance is exponential
(
|E |
k

)
, combining this

with the cancellation rule used in the SOIQUICKXPLAIN (lines 8-11) makes this

much more efficient in practice. For k = 2, this turns out to yield an efficient

incomplete procedure for finding minimal conflicts.

Lemma 3.3. If |S| = 2 and Fact(f
S) = ∅ and Fact(f

{i}) 6= ∅ for all i ∈ S, then

LS ∪ US ∪RS is a minimal conflict.

Proof. We give a sketch of the proof. Let i and j be an enumeration of S. Let k be

an element in Fact(f
{i}). As k 6∈ Fact(f

S), Ti,k = −Tj,k. Update the assignment to

move the surplus of ai onto ak. Now all of the literals except for the bound on xj

have been satisfied. Starting from this new assignment an argument similar as

the one in the proof of Lemma 2.23 shows that relaxing any of these constraints

results in a satisfiable set of constraints.
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3.4 Experimental Results

In this section, we compare CVC4 against itself using two different sets of

options.8 The first set of options uses the default solver, an implementation of

SIMPLEXFORSMT (which is a bit better than the version that won the QF UFLRA

division—which includes QF LRA—of SMT-COMP 2012 [24]). The second set of

options enables a new implementation of SOISIMPLEX. The two configurations

of CVC4 are run with most other heuristics disabled so that the comparison is an

accurate reflection of the performance of the two algorithms as described in this

paper.9 The comparison is done on the QF LRA benchmarks from the SMT-LIB

library [12] as well as a new family of benchmarks from biological modeling,

latendresse [76]. The latendresse family of benchmarks is a set of problems

that originated from an analysis of biochemical reactions using the flux-balance

analysis method.10 The miplib and latendresse families are of particular in-

terest as they contain the only timeouts in these experiments. These problems

are characterized by relatively little propositional structure, and a large and rela-

tively dense input tableau. All of the experiments were conducted on a 2.66GHz

Core2 Quad running Debian 7.0 with a time limit of 1000 seconds. Every exam-

ple stays below a memory limit of 2GB. Overall, SOISIMPLEX solves 636 while

SIMPLEXFORSMT solves only 629. Interestingly, SOISIMPLEX is slightly slower

on the SMT-LIB benchmarks (see Fig. 3.7), and even solves one fewer bench-

mark (the satisfiable miplib benchmark fixnet-7000.smt2), but solves all of
8 Experiments were run using the submission to SMT-EVAL 2013: CVC4 version 1.2, avail-

able at github.com/CVC4/CVC4/tree/smteval2013.
9 Both solvers are run with --new-prop --no-restrict-pivots. SOISIMPLEX is run with

the additional flag --use-soi. The --no-restrict-pivots flag disables stopping simplex after
K pivots at non-leaf SIMPLEXFORSMTCHECK calls (K = 200 by default).

10 When the experiment was originally run in 2013, the latendresse benchmarks were not a
part of SMT-LIB. They have since been accepted for inclusion into SMT-LIB’s QF LRA family.
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Figure 3.7: Log-scaled running times (sec.) for experiment 1 on the QF LRA

benchmarks from SMT-LIB.

the latendresse benchmarks while SIMPLEXFORSMT times out on 8 of them.

To understand these results better, we recorded how many pivots were done

(for both algorithms) during each call to the respective check routines for bench-

marks that both algorithms are able to solve. For the SMT-LIB benchmarks, al-

most all queries sent to the theory solver are “easy” for the simplex solvers

(both SIMPLEXFORSMT and SOISIMPLEX). Table 3.1 shows, for given numbers

of pivots (or ranges of numbers of pivots), the number of calls to check whose

pivot count is in that range. These numbers are expressed as:
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Range 0 1 [2, 10] [11, 100] [101, 1000] [1000, 2238] total
D(n) 32832k 645k 896k 174k 2362 7 34551k∑
D(n) 0 645k 3677k 3628k 479k 10k 8440k
V(n) 30475k 924k 1008k 130k 655 0 32539k∑
V(n) 0 924k 3900k 2366k 126k 0 7317k

Table 3.1: Number of pivots per call to check for experiment 1. (See the text for
a description of D(n) and V(n)). k is an abbreviation for 1000.

• D(n) is the number of calls to SIMPLEXFORSMTCHECK with n pivots in

the experiment.

•
∑
D(n) is the total number of pivots performed by the D(n) calls.

• V(n) is the number of calls to SOICHECK with n pivots.

•
∑
V(n) is the total number of pivots performed by the SOICHECK with n

pivots.

The maximum number of pivots for any single call to check is 2238. The number

of pivots is generally very low and on average, SOISIMPLEX uses fewer pivots

than SIMPLEXFORSMT.

The 8 timeouts by SIMPLEXFORSMT on latendresse have a very differ-

ent signature. Each of them times out in the middle of a very long SIMPLEX-

FORSMTCHECK call performing thousands of pivots. On average, the inter-

rupted SIMPLEXFORSMTCHECK routines had performed 18263 pivots and had

been running 937s [/1000s]. This first experiment confirms our expectation that

SOISIMPLEX is effective at reducing the number of pivots required to solve chal-

lenging instances.
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3.4.1 Take Aways

The author believes these experiments demonstrate both the strength and

weakness of SIMPLEXFORSMT’s local optimization criteria. It is good at keep-

ing the amount of work small in the context of a DPLL(T) style search. The

local optimization criteria requires little analysis and is quite an efficient heuris-

tic for many SMT problems; however, its global convergence is questionable on

large and hard examples. SOISIMPLEX adds a global optimization criterion and

appears to be more robust for large and hard examples, but this comes with the

cost of additional analysis during pivot selection.

Future work will explore how to heuristically take advantage of the best

characteristics of both algorithms.
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Chapter 4

Extending Simplex to Integer and

Integer Real Arithmetic

Chapters 2 and 3 describe decision procedures for solving QF LRA using vari-

ants of the Simplex algorithm. This chapter discusses established techniques

for extending these theory solvers to additionally handle the theories of inte-

ger arithmetic and integer real arithmetic. Quantifier-Free Linear Integer Arith-

metic (QF LIA) may be intuitively thought of as QF LRA where all of the variables

are restricted to take on integer values. For example, if x and y are variables

with the sort Real, the literals

2 < 2y+ 2x, 1 > 2y− 2x, 4x− 2 6 y (4.1)

are satisfied by the assignment
[
x→ 0,y→ 1

2

]
. If instead x and y had the sort

Int, this assignment does not satisfy the literals as y is not assigned to a value

in Z. As we will show later, this example is unsatisfiable if x and y are restricted

to take integer values.
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Integer arithmetic over the symbols 〈0, 1,+, ·,<〉 is often referred to as el-

ementary arithmetic. We follow SMT terminology and call this the theory of

integers TZ. The restriction that variables only take on integer values makes the

decision problem for TZ significantly more challenging than TR. This is gen-

erally true for fragments with and without quantifiers. Kurt Gödel famously

showed in 1931 that if T is a consistent theory and T ′ is a recursively enumer-

able subtheory of T that is capable of expressing a limited subset of the axioms

of elementary arithmetic, then for any deduction system there must exist a sen-

tence φ such that φ ∈ T cannot be deduced from T ′ [57].1 This implies that any

such theory T is undecidable. This is quite different than the situation for the

theory TR which admits quantifier elimination and is thus complete and decid-

able. Gödel’s result ensures that elementary arithmetic is undecidable. Further,

Matiyasevich showed that Hilbert’s 10th problem, the satisfiability of quantifier-

free non-linear integer arithmetic is undecidable [82]. Luckily, the logic of linear

integer arithmetic admits quantifier elimination and is thus complete and decid-

able [49,64]. Most efforts of the SMT community have focused on linear integer

arithmetic, and in particular the QF LIA logic.

The common scheme for building a theory solver for QF LIA builds upon a

Simplex based theory solver for QF LRA. The literals for QF LIA are subjected to

additional simplifications to strengthen the constraint (Section 4.3). The Simplex

solver determines if the constraints A are unsatisfiable in TR. If the input con-

straints A evaluate to true under the TR assignment a, and a happens to assign

all of the variables to Z values, then a is also a TZ assignment (Section 4.4). If

a is not an integer assignment, techniques such as cutting planes (Section 4.4.2)

1 See [49] for more details.
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and branching (Section 4.4.1) are used to successively refine the assignment.

4.1 Quantifier-Free Linear Integer Arithmetic

In integer arithmetic, the set of variables X contains only variable symbols

labeled with the sort Int, {x1 : Int, x2 : Int, . . . , xn : Int}. Like ΣR, the core

signature ΣZ is 〈0, 1,+, ·,<〉; however, the functions of ΣZ are over the sort Int

instead of Real. The definition is extended to include all integer constants, and

the comparison operations 〈>,6,>〉. Linear terms for integers are defined in

a similar manner to the real case. For the linear terms s and t, the atoms of

Quantifier-free Linear Integer Arithmetic (QF LIA) are of the form s ./ t where

./∈ {=,<,>,6,>}.

This thesis follows the SMT-LIB semantics of the theory of integer TZ. The

SMT-LIB v2.0 standard defines TZ using a standard model where Int is mapped

into Z, the function symbol + is mapped to the mathematical function + over

the integers, etc. [107]. This assumes the existence of the standard model.

The linear fragment may alternatively be axiomatized by Presburger arith-

metic [49]. Presburger arithmetic admits quantifier elimination and is thus com-

plete and decidable [34]. Fischer and Rabin showed that deciding satisfiability

of linear integer arithmetic has a strict 22cn non-deterministic-time lower bound

(for some c > 0) where n is the size of the formula [52]. Oppen gave a 222cn

deterministic time upper bound (for some c > 0) for the same problem [92].

Christos Papadimitriou gave a proof that if there exists a solution to an Inte-

ger Programming problem then there exists a solution a such that each compo-

nent of a is 6 n(mq)2m+1 where n is the number of variables, m is the number
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of rows, and q is the absolute value of the largest integer appearing in the in-

put problem [93]. The number of bits required to represent such a solution is

polynomial in the number of input bits of the problem. (This result assumes

the variables are restricted to be natural numbers.) This result extends to show

QF LIA is in the complexity class NP. In principle, QF LIA solvers can be made

complete by precomputing bounds for all of the variables using this method.

Due to the size of these bounds and the complexity of integrating this technique

within the context of DPLL(T), this has not yet been attempted in the literature.

4.2 Quantifier-Free Linear Integer Real Arithmetic

Linear integer arithmetic is extended to linear integer real arithmetic. We

denote the quantifier-free fragment as QF LIRA. Some complications are intro-

duced into this language by the requirements of many-sorted logic. The vari-

ables of QF LIRA are partitioned into a set of variables of sort Int and a set of

variables of sort Real. The signature ΣZR has two copies of the standard sym-

bols 〈0, 1,+, ·,<〉. One copy of these standard symbols operates over terms of

sort Real and another operates over terms of sort Int. The signature ΣZR also

contains conversion functions to and from Int and Real: ToInt and ToReal.

The conversion function ToReal maps a term of the sort Int to the sort Real,

and ToInt maps Real to Int. The function ToReal is in a sense trivial as it is

required to just transform an integer value into the same integer value in the

domain. The reverse conversion function ToInt maps a real value to the great-

est integer value less than or equal to the real value (the floor function). For

compactness the signature is extended by the integer constants (with integer
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sort), and rational constants (with the real sort). The definition of linear terms

follows that of linear real arithmetic and linear integer arithmetic.

The theory of integer real arithmetic TZR is defined using a standard model.

Entailment and satisfaction in this theory is written as |=ZR. Weispfenning gave

an algorithm for quantifier elimination of linear integer real arithmetic [110].2

Thus this logic is complete. We can again safely restrict our interest to the natu-

ral domains of R for Real and Z for Int.

4.3 Normalization and Simplification

Normalization for linear terms in QF LIRA and QF LIA is roughly the same

as QF LRA with two significant extensions. QF LIA is handled as a subcase of

QF LIRA. The first extension is to normalize with two sort symbols Int and Real.

The second is strengthening inequalities using the knowledge that variables are

integer.

Alternations of sort symbols present a challenge to rewriting. As it is simpler

to deal with only terms of one sort, the normalization of QF LIRA terms begins

by rewriting all of the terms of sort Int into terms of the sort Real. The one

exception is that an integer variable x can appear directly under the function

ToReal in the form (ToReal x). The first step in this transformation is to remove

(ToInt t) for a term t : Real by replacing the (ToInt t) term by a new skolem

variable x : Int, and restricting x by:

(ToReal x) 6 t∧ t < (ToReal x) + 1.

2 The proof requires the ToInt function to be a part of the language. Weispfenning also
defines Int to be a subsort of Real.
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Applications of integer comparison functions (=Int, <Int, etc.) are converted to

their real sort equivalents by wrapping the right and left-hand sides by ToReal,

e.g. s =Int t becomes (ToReal s) =Real (ToReal t). The function ToReal is now

distributed across sums and multiplication by constants:

(ToReal(+Int s t))
REWRITER−−−−−−→ (+Real (ToReal s) (ToReal t)).

The integer constants wrapped by ToReal are converted to the corresponding

rational constant. Exhaustive application of these rules results in a formula

where the only terms with sort Int are integer variables wrapped by ToReal.

After this point, we simply write xi instead of (ToReal xi) for the appearance

of an integer variable. As a simplification, we additionally assume that the in-

dices for all integer variables are larger than indices for all real variables, e.g.

if x : Real and y : Int, then x ≺ y. After normalizing the sorts, normaliza-

tion for linear terms then proceeds the same way to produce terms of the form

c0 +
∑N
i=1 cixi for rational constants c0, c1, . . . , cN.

Normalization for atoms in QF LIRA proceeds roughly in the same fashion

as the real case. Atoms of the form (./ s t) for ./∈ {=,6,<,>,>} are handled

by first rewriting the term s − t to the form c0 +
∑
cixi. This is converted to∑

cixi ./ −c0. If the left-hand side is empty (contains no variables), the com-

parison 0 ./ −c0 is evaluated to either true or false. Assuming the left-hand

side contains at least one variable and at least one variable has sort Real, the

normalization proceeds as it did for QF LRA.3 If all of the variables in
∑
cixi are

integer, then additional simplification may be done to strengthen the literals.

3 This check may be done in O(1) time by looking at the first variable as all real variables
precede integers variables.
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For example, the atom 2y− 2x 6 1 from (4.1) may be rewritten to first 1
2 >

y− x. If x : Int and y : Int, the left hand side may be strengthened to
⌊1

2

⌋
= 0.

By perform such simplifications, the constraints in (4.1) can be normalized to

x+ y > 1, x− y > 0, 4x− y 6 2. (4.2)

Because of tightening these constraints, the previous assignment
[
x→ 0,y→ 1

2

]
no longer satisfies the first constraint (interpreting x and y as real variables). The

assignment
[
x→ 1

2 ,y→ 1
2

]
does satisfy these tighter constraints, but again does

not assign both x and y to integer values.

Formally, normalization for an integer linear relation
∑N

1 cixi ./ d begins by

multiplying by the least common multiple of the denominators in the rational

constants d, c1, . . . , cN to get integer values d ′, c ′1, . . . , c ′N. Strict inequalities are

transformed to non-strict inequalities by adding or subtracting one to the right-

hand side.

∑
c ′ixi < d

′ REWRITER−−−−−−→
∑

c ′ixi 6 d
′ − 1∑

c ′ixi > d
′ REWRITER−−−−−−→

∑
c ′ixi > d

′ + 1

The atoms for inequalities involving only integer variables must therefore use

./∈ {=,6,>}. Let d ′′ be this new right-hand side. Next, normalization computes

the greatest common denominator g of c ′1, . . . , c ′N. If g is not a divisor of d ′′

(g - d ′′), then the relation can be tightened based on ./.

• If ./ is “=”, then this is rewritten to false as it is equivalent to a sum of

integer terms being equal to a non-integer rational d ′′.
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• If ./ is “6”, then the atom is rewritten to
∑ c ′i

g xi 6
⌊
d ′′

g

⌋
.

• If ./ is “>”, then the atom is rewritten to
∑ c ′i

g xi >
⌈
d ′′

g

⌉
.

If g is a divisor of d ′′, then the left and right-hand sides of the atom are simply

divided by g. To maximize sharing, the constraint is multiplied by the sign

of the leading left hand coefficient (potentially reversing inequalities). And to

further increase sharing for inequalities, if the right hand side is odd, the relation

is rewritten so that the right-hand side is even.

∑
cixi 6 d and 2 - d REWRITER−−−−−−→ ¬

(∑
cixi > d+ 1

)
∑

cixi > d and 2 - d REWRITER−−−−−−→ ¬
(∑

cixi 6 d− 1
)

Preprocessing for theory solvers directly follows QF LRA (Section 2.1.2). Aux-

iliary variable introduction follows the scheme discussed in 2.2.3.4 When a

negated inequality on an integer variable comes into the theory solver, it will

be of the form ¬(xi 6 z) or ¬(xi > z) (where z is an integer constant) These

literals are equivalent to xi > z and xi < z. These strict inequalities are sent

to the ASSERTLOWER or ASSERTUPPER procedures which are extended to addi-

tionally tighten the inequalities to xi > z+ 1 or xi 6 z− 1. This simplification

ensures that the upper and lower bounds of all integer variables are always in-

teger values.

4If all of the variables in the sum
∑
cixi are integer, the auxiliary variable may also be

marked as an integer variable.
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4.4 Theory Solvers for QF LIRA

We describe a theory solver based on the simplex theory solvers discussed

in Chapters 2 and 3. We again assume that an assignment amaps each xi ∈ X to

a R value.5 An assignment a satisfies an atom
∑
cixi ./ dwhenever

∑
ciai ./ d

holds, and ai is in the set Z for all variables such that xi : Int. We assume that

the indices of the variables in X are partitioned into a set of indices XR for real

variables and a set of indices XZ for integer variables. The real relaxation of a

formulaΦ is obtained by replacing each integer variable x in the formula with a

fresh real variable xRelax whenever x appears. The real relaxation of a formulaΦ

will be denotedΦRelax. An assignment is integer-compatible if for each x ∈ XZ the

assignment for a(xRelax) ∈ Z. If a formula’s real relaxation is satisfied by some

assignment, we say it is real-feasible (or just feasible). With some redundancy,

a formula is integer-feasible if it is satisfiable (and integer-infeasible otherwise).

Instead of introducing the xRelax variables, the theory solver simply uses x. It

ignores sort mismatches internally.

4.4.1 Branching

The current best implementations of theory solvers for mixed linear integer

and real arithmetic use a sound but incomplete procedure that layers integer

reasoning on top of a simplex-based theory solver for linear real arithmetic [61].

Given a set of assertion literals A, the simplex-based theory solver is first used to

solve ARelax. The result of the procedure is either a conflict set or an assignment

a (when A is real-feasible). In the first case, no additional work is necessary as

5 Internally, the variables are still assigned δR values.
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a conflict set for ARelax is also a conflict set for A. In the second case, the assign-

ment a is examined to see whether it is integer-compatible. If not, more work is

needed to refine the assignment. A technique known as branching generates the

lemma that any term of integer sort is either below the floor of α ∈ R or above

the ceiling of α.

t : Int α ∈ R

t 6 bαc∨ t > dαe
BRANCH

(4.3)

A simple branching technique to refine an integer-incompatible assignment is

to select a variable xi ∈ XZ whose assignment is non-integer, and then to branch

xi on the value ai. The SAT solver will ensure that one of the two new bounds

on xi is asserted before reinvoking the theory solver. The assignment of xi must

change in order to satisfy this stronger linear relaxation.

CVC4 implements two branching modes. The dominant branching heuris-

tic CVC4 employs is the Cuts From Proofs technique [44]. When successful, this

algorithm generates a plane
∑K
j=1 cjxj = c0 such that c0, c1, . . . , cK ∈ Z, the great-

est common divisor (gcd) g of c1, . . . , ck does not divide c0, and x1 : Int, . . . xk :

Int. Thus
∑
cjxj = c0 is unsatisfiable in TZ. The theory solver can then add the

branch:6
K∑
j=1

cjxj 6 c0 ∨

K∑
j=1

cjxj > c0.

The rewriting techniques for integer inequalities given earlier (Section 4.3) must

6 There are proposals to turn the planes generated during Cuts From Proofs into cuts [67,
personal communication].
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be able to strengthen both branches:

K∑
j=1

cj

g
xj 6

⌊
c0

g

⌋
∨

K∑
j=1

cj

g
xj >

⌈
c0

g

⌉
.

The implementation of these branches closely follows [61] with heuristics to

control the growth of intermediate numerical values. If this fails to produce

a branch, the solver falls back on a naive round-robin scheme to determine

branches on structural variables. Additionally, the solver periodically inter-

leaves round-robin branching instead of always using branches from the Cuts

From Proofs module.

Successful Example Returning to the example from (4.1) and (4.2), the solver

can branch on either x or y with the assignment
[
x→ 1

2 ,y→ 1
2

]
. Suppose that

the solver adds the branch x 6 0 ∨ x > 1. The linear relaxation of both of these

cases is unsatisfiable, and hence the original formula is unsatisfiable.

x+ y > 1, x− y > 0, 4x− y 6 2, x 6 0 |=R false (4.4)

x+ y > 1, x− y > 0, 4x− y 6 2, x > 1 |=R false (4.5)

A similar analysis on the branch y 6 0 ∨ y > 1 would also show that the input

is unsatisfiable. Given the conflict clauses for (4.4) and (4.5) and x 6 0 ∨ x > 1,

it is possible to learn a clause that does not contain either x 6 0 or x > 1 by

resolution (Sec. 1.4).

¬(x+ y > 1)∨¬(x− y > 0)∨¬(4x− y 6 2)
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Diverging Example While branches are quite simple to implement and can

often work in finding solutions, naive use of this heuristic often triggers an in-

finite sequence of branches. For example, branching is capable of diverging on

the following inequality.

− 20x0 + 2x1 + 3x2 > 1 (4.6)

Suppose we start with the initial assignment where all variables are assigned

0. The 0th iteration of simplex assigns x0 to − 1
20 and terminates. Suppose the

branch x0 > 0 is then chosen. In response to the branch literal, simplex assigns

x0 to 0 and x1 to 1
2 in the 1st iteration, and x1 is eligible for branching. If the

up branch continues to be chosen, the sequence of assignment in the equation

below are selected and the solver never terminates.

Iteration a0 a1 a2

0 − 1
20 0 0

1 0 1
2 0

2 1
20 1 0

3 1 21
2 0

4 21
20 11 0

...
...

...
...

2k+ 1 k 10k+ 1
2 0

2k+ 2 k+ 1
20 10k+ 1 0

If infinite sequences of branches such as this are not ruled out, then the solver

may not terminate. As most SMT solvers do not rule out such cycles, they are
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not, strictly speaking, decision procedures.

4.4.2 Cutting Planes

Branching attempts to refine integer-incompatible solutions by splitting the

search space into two pieces and exploring each piece separately. A complemen-

tary technique known as cutting planes attempts to remove integer-incompatible

solutions without introducing case splits [88, 98]. Consider a set of assertions

A. A cutting plane is a plane through the solution space of the real relaxation

of A that cuts off some of the integer-incompatible assignments. More precisely,∑
cixi = d is a cutting plane for A and h ≡

∑
cixi 6 d is a cut iff the following

conditions hold: (i) every assignment satisfying A also satisfies h; and (ii) at least

one assignment satisfying the real relaxation of A also satisfies ¬h.7 Condition

(ii) may be formally stated as:

A |=ZR h and ARelax 6|=R hRelax.

The inequality h can be safely added to A without changing any of the (integer-

compatible) satisfying assignments. Note that a cut is always entailed by the

integer-tightening of A and never entailed by the real relaxation of A. Cuts can

be implemented using theory lemmas, by sending the lemma A⇒ h to the SAT

solver. Previous work has looked at using Gomory and Mixed Gomory cuts in

SMT solvers [47].

Gomory showed that a combination of cuts and solving linear systems with

a simplex solver is a complete technique for guiding the solver [58,59] However,

7 Often, an additional requirement is that h is not satisfied by the current assignment a. We
will not require this here.
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because of the resulting complexity of the derived cuts, cuts in practice tend to

be generated judiciously and in combination with other techniques. CVC4’s

arithmetic solver currently has very limited support for Mixed Gomory Cuts

and an implementation of Mixed Knapsack and complemented-Mixed Integer

Rounding cuts [47, 79]. It does not have its own heuristics for generating cuts

and is only enabled when guided by the techniques in Chapter 5.

4.4.3 Gomory Cuts

To give the reader a feel for the algorithms involved in cutting planes, we

give a brief introduction to Mixed Gomory Cuts. This introduction follows [47].

Suppose that the basic variable xi is an integer variable, the assignment to xi is

not integer compatible (ai 6∈ Z), and all of the non-basic variables on the row are

equal to either their lower or upper bounds. The i’th row of the tableau ensures

xi is equal to a sum of the non-basic variables (Ti ·X = 0). The assignment to xi is

determined by the assignment to the non-basic variables on the row (Ti · a = 0).

Let us partition the indices of the non-basic variables on the row into those equal

to their upper bounds or those equal to their lower bounds.

J =
{
j|j 6= i, Ti,j 6= 0,aj = lj

}
K = {k|k 6= i, Ti,k 6= 0,ak = uk}

(For simplicity, assume J ∩ K = ∅.) We denote the fractional part of ai as f0

(f0 = ai− baic). Below in (4.7), we have taken the difference of the two equalities
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xi =
∑
j∈N Ti,jxjand ai =

∑
j∈N Ti,jaj.

xi − ai =
∑
j∈N

Ti,j(xj − aj) (4.7)

xi − baic = f0 +
∑
j∈J
Ti,j(xj − lj) +

∑
k∈K

Ti,k(xk − uk) (4.8)

In (4.8), this difference has been rewritten using J, K and f0. As xi − baic is

entailed to take on integer values, the right-hand side of (4.8) must also have to

take on integer values. We next split J and K based on the sign of Ti,j.

J+ =
{
j|j 6= i, Ti,j > 0,aj = lj

}
J− =

{
j|j 6= i, Ti,j < 0,aj = lj

}
K+ = {k|k 6= i, Ti,k > 0,ak = uk} K− = {k|k 6= i, Ti,k < 0,ak = uk}

The Gomory cut for this row will be

∑
j∈J+

Ti,j

1 − f0
(xj − lj) −

∑
j∈J−

Ti,j

f0
(xj − lj)

−
∑
k∈K+

Ti,k
f0

(xk − uk) +
∑
k∈K−

Ti,k
1 − f0

(xk − uk) > 1. (4.9)

Lemma 4.1. The inequality (4.9) is entailed in TZR assuming xi ∈ XZ, a(xi) 6∈ Z

and {κ|Ti,κ 6= 0} = {i}∪ J∪K.

Proof. We can determine the signs of all of the terms in (4.8).

j ∈ J+ =⇒ Ti,j(xj − lj) > 0 j ∈ J− =⇒ Ti,j(xj − lj) 6 0

k ∈ K+ =⇒ Ti,j(xj − uj) 6 0 k ∈ K− =⇒ Ti,j(xj − uj) > 0
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This means that we can immediately derive the following two inequalities:

−
∑
j∈J−

Ti,j

f0
(xj − lj) −

∑
k∈K+

Ti,k
f0

(xk − uk) > 0 (4.10)

∑
j∈J+

Ti,j

1 − f0
(xj − lj) +

∑
k∈K−

Ti,k
1 − f0

(xk − uk) > 0 (4.11)

Consider the sum:

∑
j∈J
Ti,j(xj − lj) +

∑
k∈K

Ti,k(xk − uk). (4.12)

Note that f0 + (4.12) is the right hand side of (4.8) and must be integer. To show

that (4.9) is entailed, we case split on whether (4.12) > 0 or (4.12) 6 0. In both

cases, we use the fact that f0 +(4.12) is integer to strengthen either the inequality

(4.11) or the inequality (4.10).

• Suppose that
∑
j∈J Ti,j(xj − lj) +

∑
k∈K Ti,k(xk − uk) > 0. Add f0 to both

sides of the inequality to get f0 +
∑
j∈J Ti,j(xj− lj)+

∑
k∈K Ti,k(xk−uk) > f0.

As the left hand side must be an integer, we can round the right hand side

f0 to the closest integer (df0e = 1).

f0 +
∑
j∈J
Ti,j(xj − lj) +

∑
k∈K

Ti,k(xk − uk) > 1

We drop from the left hand side all of the negative terms (j ∈ J− and

k ∈ K+), and subtract f0 from both sides of the inequality:

∑
j∈J+

Ti,j(xj − lj) +
∑
k∈K−

Ti,k(xk − uk) > 1 − f0.
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Dividing by 1 − f0 (which is > 0) yields:

∑
j∈J+

Ti,j

1 − f0
(xj − lj) +

∑
k∈K−

Ti,k
1 − f0

(xk − uk) > 1. (4.13)

Adding (4.13) and (4.10) yields (4.9).

• Suppose that
∑
j∈J Ti,j(xj− lj)+

∑
k∈K Ti,k(xk−uk) 6 0. We again add f0 to

both sides of the inequality. The resulting left-hand side will be an integer,

and we can take the floor of the right hand side to get:

f0 +
∑
j∈J
Ti,j(xj − lj) +

∑
k∈K

Ti,k(xk − uk) 6 bf0c .

We then add −f0 to both sides. As bf0c = 0, the resulting right-hand side is

−f0. Next, we divide by −f0, and drop the negative terms in the left hand

side (now j ∈ J+ and k ∈ K−) to get:

−
∑
j∈J−

Ti,j

f0
(xj − lj) +

∑
k∈K+

Ti,k
f0

(xk − uk) > 1 (4.14)

Adding (4.14) to (4.11) yields (4.9).

The literals that were used in the derivation of the cuts are

1. the row is equal to 0 (Ti ·X = 0),8

2. xi is an integer variable (xi ∈ XZ),

3. lj 6 xj for all j ∈ J, and

8 See Cor.2.17 for the literals that explain Ti ·X = 0.
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(0,0)

a

x

y

s
1
 ≥ 1

s
2
 ≥ 0

s
3
 ≥ -2

Figure 4.1: Geometric view of example (4.15). The intersection of the three half
planes forms real-feasible space with the point a (the assignment) being a vertex
of the space. The integer points of x and y are superimposed.

4. xk 6 uk for all k ∈ K.

The derivation we have gone through has only assumed that xi is integer. It

has not assumed that the non-basic variables are integer variables. The inequal-

ity in (4.9) is a Mixed Gomory cut. Because we are not taking advantage of some

non-basic variables potentially being integer variables, the cut in (4.9) is not the

strongest possible Mixed Gomory cut.9 After deriving a cut it is usual to replace

auxiliary variables with their definitions, and to rewrite the derived inequality

using the normalization techniques given in Section 4.3.

Example To compute the Gomory cuts of the example (4.1), we need to know

the state of the simplex solver at the time it reports that the assignment is real

9 See [47] for a derivation of a stronger cutting plane.
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feasible. For the example, three auxiliary variables are added.

s1 = x+ y s1 > 1

s2 = x− y s2 > 0

s3 = 4x− y s3 > 2

Beginning from the assignment of all variables to 0, one execution of simplex

for these constraints is to first perform PIVOT(y, s1) and update s1 to 1, and then

to PIVOT(x, s2) and update s2 to 0. This results in an assignment:

ax = ay =
1
2

,as1 = 1,as2 = 0,as3 =
3
2

with the non-basic variables being s1 and s2. Figure 4.1 visually shows this

example. The real-feasible assignment a is a vertex at the intersection of the two

half planes x+ y > 1 and x− y > 0. The tableau at this point is

T =

s1 s2 s3 x y

1/2 −1/2 −1

1/2 1/2 −1

3/2 5/2 −1

(4.15)

The non-basic variables s1 and s2 are equal to their lower bounds. Without

going through the derivation, a Gomory cut can be derived from the second

row in (4.15), and the facts that s1 > 1 and s2 > 0. The cut is

1
2

1 − 1
2
(s1 − 1) +

1
2

1 − 1
2
(s2 − 0) > 1 or s1 + s2 > 2.
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After removing auxiliary variables and simplification, this is equivalent to x >

1. After adding x > 1 as a constraint, the real relaxation is infeasible. Cuts

may also be derived on the first and third rows. After simplification, the cut for

the first row is coincidentally x > 1, and for the third row is 4x− y > 2.10 To

understand why the first row also derives x > 1, note that y is not minimized

by the assignment awhile x and s3 are minimized.

4.4.4 Mixed Integer Programming Solvers

The primal Simplex algorithm (Section 3.1) finds an assignment a that min-

imizes a linear function f =
∑
xk∈X ckxk that satisfies a set of linear equalities

Ta = 0 and the bounds l 6 a 6 u. The algorithm is seeded by an initial fea-

sible assignment. If an initial feasible assignment is not provided, it is possible

to employ techniques like those discussed in Chapters 2 and 3 to find an initial

feasible assignment or to conclude that none exists. LP solvers based on simplex

are often organized into two solving phases: Phase I finds an initial assignment,

and Phase II finds an optimal assignment if Phase I finds an initial solution. It is

also possible for the solver to conclude that the system has no finite minimum,

i.e. it can take on any arbitrarily small R value.11 Thus LP solvers usually return

one of three results: the input problem is infeasible, an optimum assignment to

f, or that the function f is unbounded.

The Integer Programming (IP) problem additionally restricts the set of candi-

date assignments of all variables to values over Z. The Mixed Integer Program-

10 Deriving a cut on row three requires s3 to be labeled with Int during construction.
11 In the formulation in Sec. 3.1, this occurs whenever a non-basic variable xi is being exam-

ined and all of the break points are −∞ or +∞ Essentially, no bound for xi’s column restricts
changing the value of xi to decrease f. The code in 3.1 may easily be modified to handle this
case.
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ming (MIP) problem generalizes both the LP problem and IP problem by restrict-

ing only a subset of the structural variables to take integer values. We will only

consider one popular architecture for MIP solvers, branch-and-cut MIP solvers.

Branch-and-cut MIP solvers use roughly the same set of tools for solving opti-

mization problems as theory solvers use for feasibility. A branch-and-cut exe-

cution is organized as a tree of related problems. Initially, the tree is the initial

problem. If the real relaxation of the root problem is infeasible, then the prob-

lem has no solutions. If the problem is feasible, an optimal assignment of the

real relaxation is found.12 If that solution is integer compatible, then the solver

returns it as the optimum value. If it is not integer compatible, then the solver

may heuristically derive cuts. Generally, the derived cuts attempt to cut off the

current integer incompatible assignment. The LP solver is then reinvoked to

see if this new system is feasible, and if so, an optimal assignment is found, etc.

This repeats until the solver is unable [or more likely heuristically unwilling] to

generate new cuts. The solver then branches on an integer [structural] variable

xi whose current assignment is non-integer. This creates two subproblems: one

in which x 6 baic and one in which x > daie. The MIP solver then recursively

solves both problem instances. If both are feasible, then the optimal answer of

the current node is the larger of the two children. If one branch is infeasible then

the optimal answer of the other child is the optimal of the parent. The third case

is that both branches are infeasible and the current node is infeasible.

It is not necessary to fully optimize all branches. We discuss a style of early

pruning that is often referred in the literature as branch-and-bound. The solver

keeps around the best integer compatible assignment found so far, aBest. The

12 We are going to ignore unbounded IP and MIP problems in this discussion. Interested
readers may consult [84].
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value of f for this assignment provides an upper bound on the global minimum

value f can take. Once a node finds an optimal solution aBr to the real relaxation,

the value of f under this assignment is compared to the value of f on aBest. If it

is greater than or equal the best found so far, the branch is pruned as no integer

compatible assignments can be less than aBr. The assignment aBest is updated

whenever a branch that has not been pruned finds an optimal assignment that is

integer compatible. As a convention, MIP solvers use the optimization function

f = 0 to solve pure feasibility queries. This is a so called “bingo” mode as once

any integer compatible solution is found, the solver can stop examining all other

branches. If the solver is able to prune all branches without finding any integer

compatible assignment, aBest will not have been set in the course of execution

and the solver concludes that the root node is infeasible.

171



Chapter 5

Leveraging Linear Programming

Solvers

Because of their historical use in verification and theorem proving, SMT

solvers typically use exact precision numeric representations internally in order

to ensure that their calculations are correct and do not compromise the sound-

ness of the overall system. For many typical SMT problems with significant

Boolean structure (such as the majority found in the SMT-LIB benchmark li-

brary), this approach is sufficient, as the required theory reasoning is not too

complex and the numbers involved in the internal calculations tend to stay rel-

atively small. Moreover, such problems require tens or hundreds of thousands

of calls to the theory solver. Thus, the theory solver’s abilities to incorporate

new constraints quickly, to rapidly detect inconsistencies, to propagate entailed

literals, and to backtrack efficiently are far more important for overall efficiency

than is the speed of the internal numerical calculations. However, there do exist

problems for which this is not the case. If the internal simplex solver receives

172



constraints that lead to large and dense linear systems, then using exact pre-

cision for the calculations required for the simplex search can overwhelm the

solver.

Simplex-based linear programming (LP) solvers differ from SMT solvers in

several important ways, including the following: (i) LP solvers solve only con-

junctions of constraints - they cannot handle arbitrary Boolean combinations; (ii)

LP solvers focus on both feasibility and optimization rather than just feasibility;

(iii) LP solvers (generally) use floating point rather than exact precision arith-

metic internally; and (iv) the product of many decades of research, modern LP

solvers incorporate highly sophisticated techniques, making them very efficient

in practice. The techniques used in LP solvers have been extended to the prob-

lem of optimizing constraints where all or some of the variables are required to

be integers (Integer Programming (IP) and Mixed Integer Programming (MIP)).

On challenging simplex instances, LP and MIP solvers are considerably more

efficient than the techniques used inside of SMT solvers. However, LP and MIP

solvers are not optimized for rapid incremental calls which make them inef-

ficient as theory solvers for many SMT applications. In addition, their use of

floating point means that occasionally they will return a result that is not log-

ically sound. In this chapter, we show how LP and MIP solvers can be effi-

ciently and soundly incorporated into a modern SMT solver. Our work builds

on similar previous efforts but is the first to succeed in obtaining a significant

improvement over state-of-the-art SMT solvers.

The rest of this chapter assumes familiarity with the core concepts and data-

structures of Simplex discussed in Section 2.1 and MIP branch-and-cut solvers

discussed in Chapter 4. (It also selectively refers to discussion in Section 2.2.)
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Section 5.1 discusses our approach for integrating an LP solver in a theory solver

for linear real arithmetic, and section 5.2 shows how to extend this strategy to

use an MIP solver in a theory solver for linear integer arithmetic. Section 5.3

reports and discusses experimental results as well the history of CVC4 in the

SMT-COMP. This chapter concludes with a discussion of future work in Section

5.4. The content of this chapter is to appear in FMCAD’14 [74].

5.1 Leveraging LP Solvers

The first contribution of this chapter is a method for leveraging the strengths

of both SMT and LP solvers to construct an efficient and robust theory solver

for linear real arithmetic. This idea has been explored before. Early work by Yu

and Malik [111] reports results on using an LP solver as a theory solver for SMT,

but the issue of potentially incorrect results from the LP solver is not addressed.

Faure et al. [51] integrate several LP solvers into the Barcelogic SMT solver [18].

They use an exact solver to lazily check the results from the LP solver to ensure

soundness. Finally, in recent work by de Oliveira and Monniaux [42], extensive

experiments are done using an LP solver within OpenSMT [23]. In this work,

the LP solver is called first and the results are used to “seed” the search in the

exact solver. Thus most of the search is done by the LP solver, while the exact

solver still ensures correctness.

In each of these studies, experimental results on SMT-LIB benchmarks show

that existing SMT solvers outperform the experimental solvers modified to use

LP solvers, even if the LP solver results are not checked for correctness. The

main reason for this is that for these benchmarks (and the applications they rep-
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1: procedure BALANCEDSOLVE
2: c← EXACTSOLVE(kEX)
3: if c is Sat or Unsat then return c

4: Construct T̃ , l̃, ũ from T , l,u
5:

〈
c̃, ã, B̃

〉
← LPSOLVE(kLP, T̃ , l̃, ũ)

6: if c̃ is Sat or Unsat then
7: a ′ ← IMPORTASSIGNMENT(ã)

8: c← EXACTRESEED(a ′, B̃)
9: if c is Sat or Unsat then return c

10: return EXACTSOLVE(kFI)

Figure 5.1: The BALANCEDSOLVE procedure for linear real arithmetic.

resent), solving requires many related calls to the theory solver, each of which

is relatively simple. The algorithms used in SMT solvers are optimized for this

case and thus perform better, even though they use exact arithmetic which in

general is much slower than floating point arithmetic. A solution to this prob-

lem advocated in [51] is to build a floating-point LP solver optimized for many,

simple, related calls.

Here, we present an alternative approach. The idea is to take the two existing

algorithms as they are and use each one only in cases where it is likely to do

well. We thus use an exact solver optimized for fast incremental checks as the

primary theory solver. However, we also instrument this solver so that it can

detect when it is starting to have difficulty, and in these cases we have it call the

LP solver.

5.1.1 The BALANCEDSOLVE Algorithm

The overall approach is given by the algorithm BALANCEDSOLVE shown in

Figure 5.1. First, an efficient incremental exact solver EXACTSOLVE is called
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with a heuristic cap on the number of pivots it may perform, kEX. We assume

that EXACTSOLVE returns a status c (Sat, Unsat, or Unknown). If the exact

solver returns Sat or Unsat, we are done and return the result. Otherwise, the

heuristic cap was exceeded. In this case, the LP solver is called. We must convert

the simplex problem described by T , l, and u to an analogous problem for the

LP solver. We denote the LP analogs of the exact data by using the ∼ annotation.

They are constructed (following [42]) as follows. For each auxiliary variable xs,

the equality AX = 0 (xs =
∑

As,j xj), is added to T̃ as

s̃ =
∑

float(As,j) · x̃j,

where the conversion function float maps a rational to the nearest float. For each

variable x̃, the bounds l̃(x) and ũ(x) are constructed from the δQ, l(x) and u(x)

by approximating δ as a small constant ε. For example, if l(x) = 〈c,d〉, then l̃(x)

becomes float(c+ ε · d).

The LP solver is invoked with its own pivot limit kLP. If the LP solver termi-

nates with Sat or Unsat, we retrieve the assignment ã as well as the final set of

basic variables B̃ from the LP solver. The LP assignment ã is converted into a

rational assignment a ′ by the IMPORTASSIGNMENT routine (described below).

The EXACTRESEED procedure takes B̃ and a ′ and tries to verify the result of

the LP solver using the exact solver. If this fails (or if the LP solver reaches its

heuristic limit), the exact precision solver is run with a final limit kFI. To ensure

soundness, kFI should be +∞ for full effort calls to BALANCEDSOLVE i.e. calls

made when there are no more decisions that can be made by the SAT engine in

DPLL(T), but it can be heuristically less for non-final calls (Section 1.5.4).
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We recall from Section 2.1 the core architecture of the Simplex search. Sim-

plex solvers modify the assignment a and pivot the tableau T until a optimal

assignment is found. An optimal assignment in a Phase II Simplex (optimiza-

tion) search is a feasible assignment such that the assignment is provably at a

maximum. For a Phase I or feasibility search, the optimal assignment is either

any feasible assignment or an assignment and a tableau such that under the

current assignment a variable (or set of variables) is optimal and its bound thus

cannot be satisfied. The pieces of state that matter for deducing the optimal-

ity are the variable assignment a and the tableau T ; however, the set of basic

variable indices B induces a tableau (see Section 2.2.7).

5.1.2 Importing Assignments from the LP Solver

An important contribution to effectively using floating point solutions is the

IMPORTASSIGNMENT procedure shown in Figure 5.2. A naive approach for

converting a floating point assignment into a rational assignment would be to

convert each floating point number to its exact rational equivalent. This has a

number of drawbacks. The floating point numbers effectively contain a small

amount of noise in the lower bits. This noise means that the most precise ratio-

nal for this floating point is quite complicated when compared to the value of

the calculation if it had been done in full precision.

As the assignment must satisfy Ta = 0 once it has been brought into the

exact precision model, small amounts of noise make this unlikely to be satisfied.

This may be partially fixed by changing the assignments to just the non-basic

variables and letting these determine the assignment of the basic variables. This

also requires care as Simplex tries to move towards (and between) points that
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are on the outside of the polytope of feasible solutions. If the assignment of a

basic variable xi is pushed to one of its bounds (say ui), then small amounts of

noise may cause the basic variable to violate its bound,
∑
cjaj = ai ≈ ui.

Intuitively, the IMPORTASSIGNMENT procedure attempts to assign each vari-

able to a value that is close to the one given by the LP solver, but biased towards

values that are easy to represent, partly because that makes them easier to cal-

culate with, but also partly because the discarded portion often corresponds

exactly to an accumulation of rounding error. For each variable x in the assign-

ment, IMPORTASSIGNMENT first approximates ãi as a rational using a technique

based on continued fraction expansion called Diophantine approximation [88].

This technique finds the closest rational value with a denominator less than

some fixed constant integer D. Next, we check to see if this value is within ε

of the last known assignment for xi in the exact solver. If so, the last known

assignment is used. Next, if i ∈ XZ and the value is within ε of an integer z

(bre denotes the nearest integer to r), then z is used (note that this step only ap-

plies for mixed integer problems–see Section 5.2). Finally, IMPORTASSIGNMENT

examines the value with respect to li and ui. If the value violates one of these

bounds or is within ε of a bound, then the bound is used instead.

5.1.3 Verifying the Output of the LP Solver

The EXACTRESEED routine, described in Fig. 5.3, attempts to duplicate the

results from the LP solver within the exact solver. First the procedure updates

the exact solver assignment by calling UPDATE on each non-basic variable. Next

it computes the set, ∆, of variable indices for variables that are non-basic in the

exact solver but were marked as basic by the LP solver. We loop until as many
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1: procedure IMPORTASSIGNMENT(ã)
2: for all xi ∈ X do
3: r← DIOAPPROX(ãi,D)
4: if |r− ai| 6 ε then r← ai

5: if i ∈ XZ and |r− bre| < ε then r← bre
6: if r > ui or |r− ui| 6 ε then r← ui
7: else if r < li or |r− li| 6 ε then r← li

8: a ′i ← r

9: return a ′

Figure 5.2: The IMPORTASSIGNMENT procedure.

variables in ∆ as possible have been pivoted to become basic. At the beginning

of each iteration, we visit all the rows of T to check for conflicts. (See Section

2.2.9 for a discussion of how to do this efficiently.) While checking for conflicts,

we can also quickly detect whether any basic variable violates its upper or lower

bound. If not, we have a satisfying assignment and can stop early. If neither

check applies, we search for a pair of variables xi and xj such that i is in ∆

meaning xi is non-basic but should be basic, and Ti,j 6= 0 and j 6∈ B̃ meaning

that xj is basic but should be non-basic. If we can find such a pair, we pivot i

and j and update the assignment of xi to a ′i. Because of approximations made

by the LP solver or by IMPORTASSIGNMENT, EXACTRESEED may fail to detect

a satisfying assignment or a conflict in which case it returns Unknown. The

EXACTRESEED procedure can be seen as using rounds of the simplex algorithm

in [46] to achieve the same effect as FORCEDPIVOT in [42, 85].

An alternative to verifying the LP solution would be to use an exact external

LP solver (e.g. [3, 33, 89]). However, the use of an exact external solver (as well

as an attempt to implement their rather sophisticated techniques) is beyond the
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1: procedure EXACTRESEED(a ′, B̃)
2: for all j ∈ N do
3: UPDATE(j,a ′j − aj)

4: ∆← N ∩ B̃
5: while ∆ 6= ∅ do
6: if T contains a row conflict then
7: return Unsat
8: else if all variables satisfy their bounds then
9: return Sat

10: if ∃ i j. i ∈ ∆∧ j 6∈ B̃ ∧ Ti,j 6= 0 then
11: PIVOT(i, j)
12: UPDATE(i,a ′i)
13: ∆← ∆ \ {i}

14: else return Unknown
15: return Unknown

Figure 5.3: The EXACTRESEED procedure.

scope of this work.1 Our goal, rather, is to make a first effort at an efficient inte-

gration of inexact floating-point solvers within SMT search. Integrating an exact

external solver would be an interesting direction for future work. We discuss

this idea in more detail in the future work section (Section 5.4).

Example To illustrate its importance, we consider an example where IMPOR-

TASSIGNMENT makes a difference to EXACTRESEED. The example comes from

the SMT-LIB QF LRA problem, pp08a-4000.smt2 in the miplib family. We exam-

ine a single row on which the variable tmp68 is basic.

tmp68 =500 · pb x229+ 500 · pb x230+ 500 · pb x231+

500 · pb x232+ 300 · pb x233+ 300 · pb x234

1 The EXACTRESEED does bear a strong resemblance to how these solvers restart the exact
precision solver; however, it is unclear what the exact method of restarting the exact precision
solvers these methods use which makes comparisons challenging.
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(The variables pb x* are introduced as pseudo-Boolean variables for the Boolean

variables x*.) The approximate assignment ã(xi) coming from the GLPK LP

solver is given below for these variables as well an approximate decimal value:

xi ã(xi) ≈ ã(xi)

tmp68 2127816788229727/5026338869834 423.33333333333337

pb x229 272945431961849/3275345183542189 0.08333333333333331

pb x230 1/4 0.25

pb x231 2573485501354571/15440913008127429 0.16666666666666666

pb x232 857828500451524/5146971002709143 0.16666666666666669

pb x233 1/10 0.1

pb x234 1/5 0.2

These values do not satisfy the row by

3903637542271439/49388984424485044665355279878 ≈ 7.9e− 14.

This is between 2−43 and 2−44. Due to problems like this, the EXACTRESEED

routine does not succeed if ã is used directly. Using a ′, the assignment from

IMPORTASSIGNMENT, the EXACTRESEED routine does succeed a real-feasible
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assignment a. Below is the assignment a ′ for the variables on the row for tmp68.

xi a ′(xi)

tmp68 1270/3

pb x229 1/12

pb x230 1/4

pb x231 1/6

pb x232 1/6

pb x233 1/10

pb x234 1/5

.

5.2 Using MIP Solvers to Improve Theory Solvers

for Mixed Linear Integer and Real Arithmetic

In this section, we show how to extend the technique from the previous sec-

tion to mixed linear integer and real arithmetic. Figure 5.4 shows the algorithm

INTEGERSOLVE which illustrates our approach. First, the real relaxation of the

problem is solved using the BALANCEDSOLVE algorithm described above. If

the real relaxation is unsatisfiable, then we are done. Otherwise, we construct

an MIP instance and call an MIP solver (again with a heuristic pivot limit kMIP)

to search for an integer-compatible solution. When Unsat is returned, we also

retrieve a proof tree t̃, which is a record of the steps taken by the MIP solver

to determine that the problem is integer-infeasible. The procedure attempts to

verify the tree by replaying its proof in the exact solver using the REPLAY pro-

cedure described below. Otherwise, if Sat is returned, we attempt to verify the

assignment as before. If the verification fails, we again call EXACTSOLVE to en-
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1: procedure INTEGERSOLVE
2: c← BALANCEDSOLVE()
3: if c is Unsat then return c

4: Construct T̃ , l̃, ũ from T , l,u
5:

〈
c̃, ã, B̃, t̃

〉
← MIPSOLVE(kMIP, T̃ , l̃, ũ)

6: if c̃ is Unsat then c← REPLAY(̃t)
7: else if c̃ is Sat then
8: a ′ ← IMPORTASSIGNMENT(ã)

9: c← EXACTRESEED(a ′, B̃)
10: if c is Unknown then
11: c← EXACTSOLVE(+∞)

12: if c is Unsat or (c is Sat and a is integer-compatible) then
13: return c

14: else
15: Generate a branching theory lemma using (4.3)
16: return Unknown

Figure 5.4: The INTEGERSOLVE procedure for linear integer arithmetic.

sure that we have a solution to the real relaxation before continuing. In the case

that we are unable to verify that the problem is Unsat or do not find an integer-

compatible assignment, we force a branch by generating a theory lemma of the

form (4.3) and return: xi 6 baic∨ xi > daie.

5.2.1 MIP Proof Trees

We briefly described the major steps of a branch-and-cut MIP solver in Sec-

tion 4.4.4. The reasoning of the MIP solver does internally to conclude that an

input problem is infeasible (branches, cuts, and the current real-relaxation is in-

feasible) can be thought of as forming a proof tree. We now show how proof trees

extracted from the MIP solver can be replayed using the exact solver. For the

rest of the section, letM be an MIP instance consisting of an LP problem P of the

form TX = 0 ∧ l 6 X 6 u. Let P̃ be the approximate version of P obtained by
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Propagate
ẽ ⊆ CN ∪ P̃ h̃ is an inequality constraint ẽ |=

T̃
h̃

N1 := N ·
〈
h̃, ẽ
〉

Close
P̃ ∪CN |=

T̃
false

N1 := N · ⊥

Branch
ã satisfies P̃∧CN xi ∈ XZ ãi = α α /∈ Z

N1 := N · 〈xi 6 bαc ,∅〉 ‖ N2 := N · 〈xi > dαe ,∅〉

Figure 5.5: Derivation rules. N is the parent node, N1 and N2 its child nodes.
The symbol · denotes sequence concatenation.

converting all the rational constants in P to their corresponding floating point

constants.

The process that an branch-and-bound MIP solver goes through before con-

cluding that P̃ is integer-infeasible can be described at an abstract level as a

search tree. The root node represents the initial problem P̃ and each non-root

node is derived from its parent by adding a constraint to the problem, either a

cut or a branch. The leaves of the tree represent real-infeasible problems.

Formally, we define a tree nodeN as a sequence of pairs
〈
h̃, ẽ
〉

, where h̃ is an

inequality constraint (a half-plane) and ẽ is an explanation, a (possibly empty)

finite set, each element of which is either some h̃ ′ where
〈
h̃ ′, ẽ ′

〉
appears earlier

inN or is a constraint from the initial problem P̃. We denote by CN the set of all

constraints added along the path from the root node to N.

CN =
{
h̃ |
〈
h̃, ẽ
〉
∈ N
}

The root node of a proof tree is the empty sequence. Each non-root node is

the result of applying to its parent node one of the derivation rules in Figure 5.5.

The Propagate rule is used to record when the MIP solver adds a cut. The cut
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must be entailed by some subset of constraints in the current MIP problem. The

cut and its explanation are recorded in the child sequence. We write ẽ |=
T̃
h̃ to

denote a currently untrusted claim that e |=ZR h. The Branch rule is used to

record when the MIP solver does a case split on an integer variable. This can

happen when the MIP solver has a solution ã to the real relaxation of the current

problem that is not integer-compatible. The MIP solver may choose an integer

variable xi that has been assigned a real value α and enforce the constraint

xi 6 bαc∨ xi > dαe .

The rule has two children, each of which records in its sequence one of the two

branch cases (with an empty explanation). A node N is a leaf when the MIP

solver concludes that the problem P̃ ∪CN is (real)-infeasible.

Ideally, a proof tree would allow us to prove that the original problem P is

integer-infeasible. However, because of the approximate representation used by

the MIP solver, this is not always the case. As a consequence, our theory solver

uses the proof tree just as a guide for its own internal attempt to prove that

P is integer-infeasible. This process is captured at a high level by the REPLAY

function.

5.2.2 Replaying MIP Proof Trees

The REPLAY function is shown in Figure 5.6. It takes an initially empty se-

quence η and a proof tree t, and traverses the tree with the goal of computing

and returning a conflict, a subset of the constraints in the original LP problem

P that are integer-infeasible. When the top call of REPLAY returns the empty
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1: procedure REPLAY(η, t)
2: Cη ← {h| 〈h, e〉 ∈ η}
3: if t is a is a leaf node N then
4: // t is an application of Close
5: Construct T , l, u from PRelax ∪CηRelax
6: c← BALANCEDSOLVE()
7: if c is Unsat then
8: // BALANCEDSOLVE found a conflict
9: Let ψRelax ⊆ PRelax ∪CηRelax be a conflict

10: return REGRESS(ψ,H)
11: else
12: return ∅
13: if the root of t has only one child c then
14: // t is an application of Propagate (a cut)
15: t ′ ← subtree of t rooted at c
16: 〈h, e〉 ← IMPORTCONSTRAINT(last(c))
17: if e ⊆ Cη ∪ P and e |=ZR h then
18: return REPLAY(η · 〈h, e〉 , t ′)
19: else
20: return REPLAY(η, t ′)
21: if the root of t has two children c1 and c2 then
22: // t is an application of Branch
23: for i = 1, 2 do
24: ti ← subtree of t rooted at ci
25: 〈hi,∅〉 ← last(ci)
26: Ki ← REPLAY(η · 〈hi,∅〉 , ti)
27: K← REPLAYCONFLICT(K1, h1,K2, h2)
28: return REGRESS(K,H)

Figure 5.6: The REPLAY procedure.
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1: procedure REPLAYCONFLICT(K1, h1,K2, h2)
2: if h1 ∈ K1 and h2 ∈ K2 then
3: // the conflicts K1 and K2 use the branches literals h1 and h2
4: return K1 ∪K2 \ {h1, h2} (perform resolution with K1, K2 and h1 ∨ h2)
5: else if h1 6∈ K1 and h2 ∈ K2 then
6: return K1// either K1 is a conflict not containing h1 or K1 = ∅
7: else if h1 ∈ K1 and h2 6∈ K2 then
8: return K2
9: else

10: return ∅ // no conflict was found

Figure 5.7: The REPLAYCONFLICT procedure.

set it means the replay has failed.2 As REPLAY traverses the tree, it constructs

a sequence η which is analogous to the sequences in the tree nodes, except that

it contains only those constraints that the internal exact solver has successfully

replayed and so may only be a subset of those in the tree node.3

If t is a leaf node, then P̃ ∪ CN should be integer-infeasible. We check the

exact analog, P ∪ Cη. If unsuccessful, we fail, returning ∅; otherwise, we re-

turn a conflict. To compute the conflict, we make use of an auxiliary function,

REGRESS, which is not shown. REGRESS takes a conflict K and a sequence η

of constraint-explanation pairs and recursively replaces any constraint in K by

its explanation. The net effect is to ensure a conflict which is a subset of the

constraints in P.

If the root of t has a single child, this child must have been derived using the

Propagate rule. The last element of the sequence in the child node represents the

new cut and its explanation. We convert the cut and its explanation to their exact

2For the purposes of its use in Figure 5.4 which is at a higher level of abstraction, a return
value of the empty set should be considered Unknown, and any other return value should be
considered Unsat.

3 Once e |=ZR h is concluded, the pair 〈h, e〉 is added to the current sub-tree. This is imple-
mented using the constraints datastructure described in Section 2.2.4. This provides an imple-
mentation for regressing the derived conflicts into clauses.
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analogs and then verify that we can derive the cut h from the exact constraints

in e. These steps are explained in more detail in Section 5.2.3. If the cut can

be verified, it and its explanation are included in the parameter η passed to the

next recursive call to REPLAY. If not, the recursive call is made without h in the

hopes that it is not needed to derive a conflict.

The final case is when the root of t has two children, indicating that the

Branch rule was applied. Because branch constraints only use integers, import-

ing them cannot fail. We are always able to represent them exactly. Thus, we

simply call REPLAY recursively on each of the two sub-trees, passing one of the

branch conditions to each sub-tree.

We construct a conflict from the two conflicts returned by both of the sub-

trees (K1 and K2) using the REPLAYCONFLICT procedure (Figure 5.7). If both

conflicts use their branch literals h1 and h2, then h1 and h2 are removed by per-

forming resolution (1.4) with K1, K2 and h1 ∨ h2. If the sub-tree for K1 succeeded

without using h1, thenK1 is a conflict for the current tree. (TheK2 case is similar.)

Otherwise, the procedure fails to find a conflict for this tree and ∅ is returned.

Note that the case where only one branch is needed enables backtracking while

the conflict Ki does not use the current branch literal. This is essentially non-

chronological backtracking [101].

Multiple Conflicts The implementations of Simplex given in Chapters 2 and 3

are capable of finding multiple conflicts in a single call. As we do not have any

intuition into which conflicts are likely to lead to the proof of the infeasibility

of root node, we try to make use of all of the conflicts. It is straightforward

to extend REPLAY to return sets of conflicts per tree instead of a single conflict
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per tree. The procedure REPLAYCONFLICT then becomes two rounds of the

Davis-Putnam procedure to remove h1 and h2 (Section 1.3). The Davis-Putnam

procedure can potentially create an exponential number of clauses. To control

the blowup in the number resulting clauses, CVC4 heuristically employs a full

round of subsumption checking. A clause C is subsumed by a clause C ′ if C ⊂

C ′. While subsumption checking is potentially expensive, this seems to pay for

itself very quickly in practice. In the case that subsumption checking alone does

not curtail the blowup, the solver is free to keep only some of the conflicts.4

5.2.3 Verifying Cuts During Replay

Lines 14 and 15 of REPLAY require converting
〈
h̃, ẽ
〉

to an exact analog, 〈h, e〉,

and then verifying that h can be derived from e. We have implemented support

for both Mixed-Gomory cuts and a variant of Mixed Integer Rounding cuts [79,

80, 88], but here we will only explain how reconstruction works for a special

case of Gomory cutting planes (Section 4.4.3).

The MIP solver can add a Gomory cutting plane h̃ when the following con-

ditions hold:

(i) there is a row in T̃ where xi is basic (xi =
∑
T̃i,j · xj);

(ii) all of the non-basic variables on the row are assigned to either their upper

or lower bound;

(iii) a subset of the variables on the row, that must include the basic variable

xi, are integer variables; and

4 Subsumption checking was the much more successful of these two heuristics. Examples
that previously ran out of memory began returning a maximum of 8 conflicts per sub-tree. The
heuristic to discard conflicts was never triggered in the experiments in Section 5.3.
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(iv) the assignment of xi is non-integer (ãi 6∈ Z).

The premises (i)-(iv) make up the explanation ẽ. (See [47] for the derivation of

this cut and a Gomory cutting plane rule that does not use additional assump-

tions.) For simplicity of presentation, we additionally assume all of the variables

are integer and all the coefficients T̃i,j are positive (T̃i,j > 0) and assigned to their

upper bounds, (ãj = ũj). The assignment to xi is then determined by the upper

bounds of the non-basic variables, ãi =
∑
T̃i,jũj. The cut h̃ for these constraints

is then5 ∑ T̃i,j

ãi − bãic
(
ũj − xj

)
> 1.

Given
〈
h̃, ẽ
〉

and the knowledge that the Gomory cutting plane procedure

was used, we can attempt to derive a trusted cut and explanation 〈h, e〉 as fol-

lows. For the cut to be reconstructed, for every bound xj 6 ũ(xj) ∈ ẽ there must

be a corresponding bound xj 6 u(xj) in the exact system. (Note: xj 6 u(xj) can

be in either P or Cη.) Next we attempt to reconstruct the row

xi =
∑

T̃i,jxj

in exact precision as a row vector z. The coefficient for the basic variable in z is -1

(zi = −1). Nonbasic variables’ coefficients are estimated from the approximate

variables, zj = DIOAPPROX(T̃i,j,D). If after approximation, the sign of zj does

not match the sign of T̃i,j, this cut cannot be reproduced. (Crucially, this includes

the equals to 0 case.) The equalities TX = 0 entail
∑
zkxk = 0 iff z is in the row

span of T . This entailment can be checked by replacing auxiliary variables with

5 This is using a stronger Gomory rule than the one proven in Section 4.4.3. See [47] for the
derivation of this cut.
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their original definitions, (Ak ·X = 0), to get:

zi · xi +
∑

xj is structural

zjxj +
∑

xk is auxiliary

(zkxk + zk Ak ·X) .

The cut is rejected if any of the coefficients do not cancel to zero. The row vector

z and the bounds uj are used to generate f0 =
∑
zjuj, which can be thought of

as a potential assignment to xi. The cut cannot be reproduced if b ∈ Z. If the

value of f0 is non-integer, the Gomory cut h:

h :
∑ zj

f0 − bf0c
(uj − xj) > 1

has been reproduced in exact precision. The explanation e for the half plane h

includes the upper bounds xj 6 uj, and the equations Ak ·X = 0 for the auxiliary

variables (with zk 6= 0).

Alternatively, z can be generated by Gaussian elimination starting from the

equalities A ·X = 0. Let Γ be the set of auxiliary variables appearing on T̃i.

Γ =
{
j
∣∣∣T̃i,j 6= 0, j ∈ Aux

}

First, we generate a sub-matrix of A using the rows Aj for all j inΓ . Next we

solve for the tableau form of these rows where xi is basic and xj is non-basic for

all j 6= i and j ∈ Γ . (This orientation of basic and non-basic variables may not be

possible.) If successful, we will have regenerated the row T̃i in exact precision

as z. The implementation in CVC4 uses this Gaussian elimination method as a

backup to the “guess and check” method of generating z.
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5.3 Experiments

All of the algorithms in this paper have been implemented in the CVC4 SMT

solver [7].6 In this section, we report the results of experiments using these

implementations.

5.3.1 Implementation Details and Heuristics

There are two different simplex implementations in CVC4, one that follows

the well-known simplex adapted for SMT described in [46, 47], and one based

on sum-of-infeasibilities as described in [73]. The experiments were run using

the latter method for the EXACTSOLVE procedure with a pivot cap of kEX =

200 in Fig. 5.1 (with kFI = 200 for non-final calls). Values of other parameters

used in our experiments are D = 226; ε = 10−9; kLP = 10000; and kMIP =

200000. For both the LP and MIP solvers, we use the floating-point simplex

solver in GLPK version 4.52 [78], instrumented to communicate the additional

information needed by CVC4 in order to verify assignments, conflicts, and proof

trees.7

To avoid branching loops in GLPK, GLPK is halted if it branches 100 times

on any one variable. To keep the size of the numeric constants manageable, we

reject any cut containing a coefficient nd where log2(|n|) + log2(|d|) > 512. Fur-

ther, we have a heuristic that dynamically disables the GLPK solver if it claims

the problem is real-feasible and then integer-infeasible without generating any

branches or cuts, a strange situation that happens with the convert benchmarks

6 Experiments were run using a branch of CVC4 available at github.com/timothy-king/
CVC4/CVC4 (commit 2550b6d).

7 Source for this modified version of GLPK is available at github.com/timothy-king/

glpk-cut-log (commit a35b8e).
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(see discussion below for details). GLPK is also dynamically disabled if CVC4’s

bignum package throws an exception while trying to import a floating point

number. CVC4 has a heuristic that automatically detects and re-encodes bench-

marks in the QF LRA family miplib (which are derived from benchmarks in [2]) in

something closer to their original form.8

5.3.2 Empirical Results

The experiments were conducted on the StarExec platform [104] with a CPU

time limit of 1500 seconds and a memory limit of 8GB. We performed a compar-

ison of our implementation with other SMT solvers over the full sets of QF LRA

and QF LIA benchmarks from the SMT-LIB library (the “March 7 2013” version

on StarExec), as well as the latendresse QF LRA benchmarks from [73].

Table 5.1 gives the results for both QF LRA and QF LIA. The first segment of

Table 5.1 summarizes the results over all of the problems in the categories. The

QF LIA benchmarks are additionally divided into the conjunctive subset and the

non-conjunctive subset. The conjunctive subset consists of all families, all of

whose benchmarks are a simple conjunction of constraints.9

The primary experimental comparison is between a configuration of CVC4

running just its internal solvers (“CVC”) against a configuration with the tech-

niques of this paper enabled (“CVC4+MIP”). Across all benchmarks, we also

compare against similar state-of-the-art SMT solvers: mathsat5 (smtcomp12 ver-

8We did compare other solvers on the miplib problems after this re-encoding and the results
were similar to those reported in Table 5.1: the re-encoding does not seem to help other solvers
much.

9The conjunctive families are dillig, miplib2003, prime-cone, slacks, CAV 2009, cut lemmas,
pidgeons, and pb2010. For comparison purposes, we also translated them into the SMT-
LIBv1.0 and MPS formats. The translations are available at http://cs.nyu.edu/~taking/

conjunctive_integers.tbz.
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sion) [27], z3 (v4.3.1) [38], and yices2 (v2.2.0) [45]. We include a comparison

against the version of AltErgo [16] used in [17] on just the QF LIA benchmarks.

For the conjunctive subset, we also give results for several solvers that support

only conjunctive benchmarks: cutsat (CADE11) [69], SCIP (scip-3.0.0-ex+spx) [1,

33], and glpk (4.52) [78]. This version of SCIP handles MIP problems in exact

precision.

To focus on the effects of the techniques proposed in this chapter, we also

report only the results on benchmarks for which CVC4+MIP invokes GLPK at

least once. In Table 5.1, the second segment contains the results for the QF LRA

benchmarks, the results for the non-conjunctive QF LIA benchmarks are in the

third segment. and the fourth segment contains the results for the conjunctive

QF LIA benchmarks. For these results, the second column of numbers indicates

how many benchmarks in the family are included in the results. (See http:

//cs.nyu.edu/~taking/fmcad14_selections for a list of selected benchmarks.)

To better understand how successful the verification and replaying algo-

rithms for integers described in Section 5.2 are, we analyzed all of the QF LIA

instances which were solved by CVC4+MIP and for which MIPSOLVE was in-

voked at least once, and collected the following statistics: the number of times

MIPSOLVE was called, the number of attempts and successes at verifying Sat

results from MIPSOLVE, and the number of attempts and successes at replaying

Unsat results from MIPSOLVE. The results are shown in Table 5.2.

5.3.3 Discussion

On QF LRA benchmarks, CVC4+MIP solves all of the problem instances that

the already competitive CVC4 does plus 9 additional problems (solving more
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than any other solver), all from the challenging miplib family. After preprocess-

ing, these benchmarks are represented internally as mixed linear real and in-

teger problems, so the INTEGERSOLVE procedure is used. CVC4+MIP solves

the opt1217--{27,37,57}.smt2 benchmarks in about 1s each and is the only

solver to solve these benchmarks. These and a handful of other miplib problems

are real-infeasible and are solved very quickly by BALANCEDSOLVE. INTEGER-

SOLVE is able to verify that several other miplib benchmarks are Sat. It was not

able to successfully solve the most difficult problems which are real-feasible but

integer-infeasible.

CVC4+MIP is also quite competitive on the QF LIA problem instances. Par-

ticularly dramatic is the improvement of CVC4+MIP over CVC4 on the (related)

families dillig, slacks, and CAV 2009 benchmarks. These benchmarks are small, ran-

domly generated, conjunctive problems that are mostly satisfiable [44, 69]. It

appears from Table 5.2 that CVC4+MIP does well on these families due to a

high proportion of successes when IMPORTASSIGNMENT and EXACTRESEED

are used to verify Sat instances. Excluding the convert family, GLPK returned

Sat 1203 times, and in 1057 cases, we were able to verify this with the exact

solver. Given the challenges of implementing branching and cutting within

SMT solvers, this suggests that the technique of soundly verifying results from

an external solver offers a new powerful tool in designing QF LIA solvers. The

empirical results on the REPLAY procedure, while not as dramatic, are also

promising. Excluding the convert benchmarks, REPLAY was successful on 425

out of 652 invocations and did particularly well on (relatively) easy benchmarks

e.g. calypto and prime-cone.

CVC4+MIP is competitive with the dedicated conjunctive solvers we in-
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cluded. Of course, its performance is limited by that of GLPK (Interestingly,

CVC4+MIP outperforms GLPK on these benchmarks.) This seems to be be-

cause the tableau presented by CVC4 to GLPK (particularly for the slacks bench-

marks) is often better for GLPK than the initial one. Though most of the im-

provement of CVC4+MIP over CVC4 is on conjunctive benchmarks, this seems

to be an artifact of the benchmarks.

The convert family is interesting in that almost every proof reported by GLPK

on these benchmarks fails to replay. These benchmarks encode fixed-width

bitvector problems using QF LIA. The encoding of the bitvector select operator

creates integer equalities between variables with coefficients of massively dif-

ferent scales. Consider the following example:

convert-jpg2gif-query-1471.smt:

(= z231_31_0_ (+ z231_1_0_ (* 4 z231_31_2_)))

This encodes that a the variable z231 31 0 which represents a 32-bit bitvector is

equal to its upper 30 bits, represented by z231 31 2 , concatenated onto its lower

2 bits, represented by z231 1 0 .

The reason these benchmarks fail has to do with an internal heuristic in

GLPK. To ensure numerical stability, GLPK increases each bound by some

amount ε, where ε is proportional to the size of the bound. Because of the

dramatic differences of scale in the coefficients in the convert family, GLPK in-

creases some bounds by a large amount and others by a small amount. As a

result, GLPK frequently makes incorrect conclusions (both feasible and infea-

sible) about subproblems from this family. These benchmarks thus present a

challenge for the techniques given in section 5.2 and are a good subject for fu-

ture research.
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5.4 Future Work

The results of this chapter suggest several lines of future research for in-

tegrating Simplex floating point simplex solvers in the context of SMT. The

work of this chapter establishes a beneficial integration of an MIP solver into

an SMT solver. The work has been strongly biased towards not interfering with

the search of the MIP solver and only adding new logging features to the MIP

solver.

Optimization Modulo Theories This work has integrated both a LP solver

and a MIP solver within an SMT solver for feasibility checking. A potential

advantage of this is that the SMT solver can take advantage of the other fea-

tures of the LP and MIP solver. The theory solver can now use these as sub-

routines for performing Optimization Modulo Theories [100]. The rough outline

of an Optimization Modulo Theories solver is very similar to the branch-and-

bound strategy in Section 4.4.4. The solver is given an additional user command

(minimize t) where t is a term in an totally ordered domain. (For simplicity,

assume > is the order.) The solver first finds some satisfying interpretation M

that evaluates t to the value tM. An outer loop records the value of tM and adds

the assertion (
assert

(
< t tM

))
to force a new model with a better assignment to be found. An immediate im-

provement is to first find an initial model for the current SAT solver assignment

and to next call either the LP solver or MIP solver to optimize t [77, 100].10

10 The simple loop is a bit too naive to terminate if t : Real or t : Int.

197



Safely Generated Cuts and Conflicts The papers [32, 89] describe generating

exact precision cuts and conflicts starting from floating point representations.

This is done by using an exact representation of the AX = 0 constraints mixed

with directional rounding of floating point numbers. Showing that the real-

relaxation is infeasible is naturally expressible as an instance of Farkas’ lemma

(Section 2.2.2). Roughly speaking, one can compute the instance of Farkas’

lemma using directional rounding in each floating point computation to yield

some γ̃ that is entailed to be 0 > γ̃, but is actually γ̃ > 0. This allows a conflict

to be extracted. If done soundly, the derived contradiction can then be used by

the SMT solver. Implementing these techniques appears to require a new imple-

mentation for every cutting plane technique and application of Farkas’ lemma

in the implementation. These results could then be used during the REPLAY

procedure if they are stored on leaves of the MIP proof trees.

Arbitrary Precision Floating-Point LP Solvers The state-of-the-art exact pre-

cision LP and MIP solvers additionally implement LP solvers on top of fixed

precision floating point numbers [3,33]. (Fixed precision means roughly that the

floating point numbers can have k bits of representation for any k > N.) When

the fixed precision floating point solver gives a result, this result is checked in

an exact precision solver (much in the same way EXACTRESEED does). If the

fixed precision solver does not give a correct result, the precision of the solver

is increased, and the floating point solver is invoked again. This process is re-

peated until an exact precision result is obtained. This may be a way around the

tolerance problems discovered by the convert benchmarks.
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Exact Precision LP Solvers One line of research would be to directly use an

out-of-the-box exact precision LP or MIP solver to avoid implementing the ad-

vanced techniques they contain. The work in [33] describes a tool called Exact

MIP which is implemented in SCIP. However, due to its license, this program

is unappealing for integration with CVC4. The tool QsOpt ex described in [3]

may be appropriate for future experiments. The GLPK framework our tool cur-

rently supports does have a an exact precision LP solver, GLP EXACT. However,

this currently takes its input in floating point form. While this can be overcome,

it needs to be noted that GLPK’s exact precision LP solver cannot be used as the

underlying LP solver to GLPK’s MIP solver.

Tight Integration of REPLAY This integration of the theory solver and the

MIP solver in REPLAY is intentionally quite loose. The interaction with the

MIP solver is through callbacks and requests for information to log the proof

trees. An alternative to this is to implement REPLAY using a tight integration

of the MIP solver and abstract steps that REPLAY is taking. These abstract steps

may be thought of as an abstract calculus, much in the same vein as Abstract

DPLL [90] or the Model Constructing Calculus [40]. The decisions of this cal-

culus are the branches, the Propagate rule adds entailed facts, and resolution

is used for backtracking.11 Instead of allowing the MIP procedure to proceed

as normal, it would be forced to call back into the theory solver to check the

correctness of real-infeasibility claims and cuts. This would allow for a large

number of techniques from SMT solving to be implemented on top of the MIP

solver. When claimed cuts fail to be validated, the theory solver can force the

11 What would distinguish this calculus is this addition of all of the operations potentially
being unsuccessful.
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cut to be dropped.12 When real-infeasibility claims fall through, the SMT solver

knows that it is in an Unknown state and can start backtracking the solver

to a state where a proof on Unsat may still be derived. Further, the theory

solver could cache lemmas between branches and use these to implement BCP

to strengthen the MIP solvers state and reduce redundant search. The theory

solver can also implement non-chronological backtracking so that sub-trees un-

necessary to proving infeasibility are not explored. Note that such a level of

control has replaced all aspects of the MIP solver’s branch-and-cut loop. The

only major exception is the selection of branches. A side benefit is that tight

integration like this could potentially cut down memory usage by only storing

a single path of the MIP tree instead of the full tree. (This is somewhat at odds

with the lemma caching+BCP suggestion.) Memory usage has not yet been a

problem in practice.

Strict Inequality Encoding One of the many lessons of the failure on the con-

vert family is that the current encoding for strict inequalities is likely to be too

naive. The encoding transforms x 6δ d+ eδ into x 6 d+ eε where ε is a small

fixed constant. In the implementation, ε is 10−9. (Note that this affects only

bounds on real variables as bounds on integer variables are always rounded to

integer values (Section 4.3).) This is an appealing heuristic as it is both simple

and it matches the selection of a small enough value of β in Section 2.2.11. As

part of these experiments, we discovered the role of the tolerances in the inter-

mediate calculations. Changing the bound by a small, fixed amount ε is likely

to be within tolerance for most variables and unlikely to change the choices of

12 Alternatively, the theory solver is the one generating the cuts so that they are correct by
construction. The theory solver would then give approximate versions to the MIP solver.
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whether or not a variable is strictly above or at its bound. One possible way to

fix this problem is to scale the bounds of each variable independently to take

tolerance for that bound into account. Another possibility is to encode δ as an

explicit variable. The LP solver would be run with the constraint that δ > 0. If

the LP solver found that the real-relaxation was feasible, but the assignment to

δwas not> 0, the LP solver would be asked to optimize δ. If the LP solver finds

the optimal feasible answer13 as δ = 0, the LP solver should be in a state such

that the row for the optimization function δ =
∑
j∈N cixj can prove that δ 6 0 via

an instantiation of Farkas’ lemma. By recreating this state in the theory solver,

we can attempt to prove the conflict.

13 Many LP solvers can be parameterized to stop once the optimization function is over a
constant threshold. In this case, the solver can stop once δ > C for some small C.
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Sat Unsat
set # sel. MIPSOLVE calls attempts successes attempts successes

QF LIA 1393 3873 2559 1058 652 425
convert 208 2130 1356 1 178 3
bofill-scheduling 254 254 245 245 0 0
CIRC 11 85 6 5 79 77
calypto 37 375 77 23 293 278
wisa 1 1 1 1 0 0
dillig 189 228 225 185 3 2
miplib2003 4 10 3 3 5 4
prime-cone 37 37 19 19 18 18
slacks 166 195 168 162 3 3
CAV 2009 424 469 459 414 8 7
cut lemmas 62 89 0 0 65 33

Table 5.2: Success rate of reproducing results of MIPSOLVE.
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Chapter 6

Conclusions

The design and implementation of theory solvers critically affect the over-

all efficiency of SMT tools. As SMT solvers grow in prominence in automated

formal methods so too does the importance of designing efficient theory solvers

for theories of interest.

This thesis has presented techniques to improve state-of-the-art implemen-

tations of theory solvers for three of the core logics of SMT: quantifier-free linear

integer and real arithmetics and their combination. This work builds upon the

Simplex for SMT algorithm for QF LRA, as well as known techniques to extend

the QF LRA theory solver to support the QF LIA and QF LIRA logics. This thesis

gives an in-depth description of a theory solver implementing the Simplex for

SMT algorithm. We propose two significant improvements to the core algorithm

through better conflict detection and conflict strengthening and describe well

known [but not well documented] techniques for implementing theory propa-

gation and handling the internal arithmetic used by the algorithm. We also give

experimental evidence showing that one of the key strengths of this decision
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procedure is keeping the number of pivots low for most check calls.

A weakness of the Simplex for SMT architecture is that its localized reason-

ing, while efficient for a large class of problems, can fail to quickly converge to a

solution on classes of challenging benchmarks. To improve upon the robustness

of the SMT solver, we have proposed an alternative Simplex based decision pro-

cedure that minimizes the sum of infeasibilities function. We give evidence that

this new algorithm is competitive with the Simplex for SMT and is more robust

on challenging problem instances.

To accelerate the exact precision theory solver, we present techniques for

leveraging the results of linear programming and mixed integer programming

solvers. Additionally, we show strongly positive results for using such solvers

for certain families of challenging problems without compromising correctness

of the SMT solver. Previous efforts to leverage such solvers in the context of

SMT concluded that such solvers are inappropriate for the context of SMT.

The experimental results show that the combination of the novel techniques

presented here enable CVC4 to solve the most available QF LRA and QF LIA SMT-

LIB benchmarks of any SMT solver for these logics in a reasonable amount of

time.

To conclude, the contributions in this thesis have improved the state of the

art in developing linear arithmetic solvers for SMT. These are three of the core

logics in SMT solving and have some of the most mature implementations. The

development of improved implementations and new algorithms for these log-

ics has practical importance to automated formal methods. Hopefully, this re-

search can point the way towards future breakthroughs in decision procedures

for these theories.
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Appendix A

Discussion and Proofs of

Miscellaneous Theorems

A.1 Discussion

A.1.1 Variables vs. Uninterpreted Constants

This thesis does not distinguish between the phrases variable and uninter-

preted constant. New users of SMT solvers often find it confusing that all “vari-

ables” (in a formal sense) are bound either in quantifiers or macros. All “vari-

ables” (in an informal sense) are declared as uninterpreted constant symbols. A

“variable” (in an informal sense) x of sort Real is added as a new 0-ary function

symbol x of sort Real to Σ. This approach cleans up formally defining unin-

terpreted functions and model construction of theory combinations. However,

this has the disadvantage of formally adding expansions of models of the the-

ory into the discussion. For uninterpreted constants, every satisfying expansion

is isomorphic to a satisfying interpretations. For the purposes of this thesis, this
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layer of indirection imparts little wisdom.

A.1.2 Splitting Disequalities

Instead of the lemma t = d ⇐⇒ (t 6 d∧ t > d), CVC4 discharges t 6

d∨ t > d for splitting disequalities. The original lemma results in three clauses,

t = d =⇒ t 6 d, t = d =⇒ t > d, (t 6 d∧ t > d) =⇒ t = d

The third clause is what is not yet satisfied in the trichotomy axiom,

¬(t 6 d)∨¬(t > d)∨ t = d.

The counter intuitive choice of preferring t 6 d∨ t > d to trichotomy is that

this allows for two relaxations in the SAT solver and the combination frame-

work: the CVC4 arithmetic theory solver does not have to be guaranteed that

it is informed about all equalities over the type Real, and the SAT solver does

not need to assign all SAT literals. Discharging the tricotomy lemma would

lead to a soundness error. This is because t = d may already be asserted to an-

other theory (say uninterpreted functions) while theory combination generated

an assertion t+ x 6= x+d that while semantically equivalent is not syntactically

identical to ¬(t = d), and hence it can be sent to arithmetic and t = d can be

asserted to the theory engine at the same time. The SAT solver can report all

clauses as being satisfied without re-invoking arithmetic. On the other hand, in

the current combination framework the arithmetic must be notified of a choice

that satisfies t 6 d∨ t > d. Properly supporting disequalities in such a frame-
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work then also requires the solver to internally perform the following inference

internally for soundness:

t 6 d t 6= d

t < d

STRICT

(A.1)

We leave it to the reader to perform the necessary changes to ASSERTUPPER,

ASSERTLOWER, and ASSERTDISEQUALITY to support this efficiently.

A.2 Proofs of Miscellaneous Theorems

A.2.1 From Delta Satisfaction to Densely Satisfied Regions

Revisiting Lemma (2.5). If an extended assignment aδ |=δR q, then there exists an

α > 0 such that for all β ∈ (0,α) the following holdsMaδ,β |=R p.

Proof. Suppose aδ |=δR q. The form of q is t ./δ dq+ eqδ. Suppose that the value

of the left-hand side t evaluates to dt + etδ under aδ in delta-arithmetic, so that

dt + etδ ./δ dq + eqδ. As the trichotomy property holds for <δ. the constants

dt + etδ and dq + eqδ are related by either <δ, =δ or >δ. We show in these three

cases that there ∃α > 0 s.t. ∀β ∈ (0,α) thatMaδ,β |=R p holds.

• Suppose dt+ etδ >δ dq+ eqδ holds. Either dq > dt or dt = dq and et > eq

holds. The symbol ./δ is either >δ or 6=δ, and the relational symbol in p

(./) is either >, >, or 6=. As ./ is not <, eq > 0.

– Suppose et < eq. Both eq − et > 0 and dt − dq > 0 hold. Let α =
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dt−dq
eq−et

> 0. Then, for all β ∈ (0,α),

β <
dt − dq
eq − et

=⇒ (eq − et)β < dt − dq.

So, dt + etβ > dq + eqβ, andMaδ,β |=R p holds.

– Suppose et > eq. Then under the assumption that dt + etδ >δ dq +

eqδ holds, dq > dt must hold. Let α be any positive real number.

Then, for all β ∈ (0,α),

(eq − et)β 6 0 < dq − dt.

So, dt + etβ > dq + eqβ, andMaδ,β |=R p holds.

In both cases, ∃α > 0.∀β ∈ (0,α) such thatMaδ,β |=R p.

• Suppose dt + etδ <δ dq + eqδ holds. (This case is symmetric analogous

to the previous one.) Either dq < dt or dt = dq and et < eq holds. The

symbol ./δ is either 6δ or 6=δ, and the relational symbol in p (./) is either

6, <, or 6=. As ./ is not >, eq 6 0.

– Suppose et > eq. Both eq − et < 0 and dt − dq < 0 hold. Let α =

dt−dq
eq−et

> 0. Then, for all β ∈ (0,α),

β <
dt − dq
eq − et

=⇒ (eq − et)β > dt − dq.

So, dt + etβ < dq + eqβ, andMaδ,β |=R p holds.

– Suppose et 6 eq. Then under the assumption that dt + etδ <δ dq +

eqδ holds, dq < dt must hold. Let α be any positive real number.
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Then, for all β ∈ (0,α),

(eq − et)β > 0 > dq − dt.

So, dt + etβ < dq + eqβ, andMaδ,β |=R p holds.

In both cases, ∃α > 0.∀β ∈ (0,α) such thatMaδ,β |=R p.

• Suppose dt + etδ =δ dq + eqδ holds. Both dq = dt and et = eq hold. The

symbol ./δ is either >δ, 6δ or =δ, and the relational symbol in p (./) is

either 6, <, >, > or =. Let α be any positive real number. We now show

that for all β ∈ (0,α) thatMaδ,β |=R p holds.

– Suppose eq = 0. Then ./ is either 6, > or =. Therefore

dt + etβ = dq + eqβ = dq,

andMaδ,β |=R t ./ d holds.

– Suppose eq > 0. Then ./ is >. Therefore

dt + etβ = dq + eqβ > dq,

andMaδ,β |=R t > d holds.

– Suppose eq < 0. Then ./ is <. Therefore

dt + etβ = dq + eqβ < dq,

andMaδ,β |=R t < d holds.
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In all cases,Maδ,β |=R p. So there ∃α > 0.∀β ∈ (0,α) such thatMaδ,β |=R p.

A.2.2 From Densely Satisfied Regions to Delta Satisfaction

This section contains formalization and proofs for the reverse directions of

Lemmas 2.5 and 2.6. For an extended assignment aδ and a real value ζ, we

denote by aζδ the assignment that scales all of the delta-coefficients in aδ by ζ.

If aδ(x) = 〈d, e〉, then aζδ(x) = 〈d, ζe〉. We say that t is an offset free linear term if

contains no sub-term (t ′ + t ′′) such that t ′ or t ′′ is a rational constant symbol.

Claim. Let t be an offset free linear term. If the evaluation of t under aδ is 〈d, e〉,

then the evaluation of t under aζδ is 〈d, ζe〉.

Lemma A.1. Let p have the form t ./ d where t is an offset-free linear term and q be

any admissible encoding of p. If there exists an α > 0 such that for all β ∈ (0,α) the

following holdsMaδ,β |=R p, then there exists a real value η > 1 such that for all ζ > η

that aζδ |=δR q.

Proof. Suppose there exists a delta-extended assignment aδ and there exists α >

0 such that for all β ∈ (0,α), Maδ,β |=R p where p has the form t ./ d. The

encoding q is any admissible conversion of p with the form t ./δ dq + eqδ. Let

dt + etδ be the evaluation of t under aδ.

Given et and eq, we define η in two cases.

η =


1 et = 0 ∨

eq
et

6 1

eq
et

et 6= 0 ∧
eq
et
> 1
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Thus η > 1.

Let ζ be any real value greater than or equal to η. Under aζδ, the evaluation

of t is 〈dt, ζet〉. Thus for each β ∈ (0,α), the evaluation of t is dt + etζβ.

Our goal is show that dt + etζδ ./δ dq + eqδmust hold in all cases.

• Suppose ./ is > or >. Then q has the form t >δ dq + eqδ and eq > 0.

We know p is satisfied for some β ∈ (0,α) such that dt + etβ > dq. By

transitivity, dt + etζβ > dq.

We first show that dt > dq.

– Suppose for contradiction that dq > dt. Thus,

etζβ > dq − dt > 0

As etζβ > 0 and β > 0, it must be the case that etζ > 0. Thus

β > dq−dt
etζ

> 0.

Let β ′ be any real value in the non-empty range
(

0, min
(
α, dq−dtetζ

))
.

Thus β ′ < dq−dt
etζ

and β ′ ∈ (0,α). By the initial assumption,Ma,β ′ |=R

p is satisfied. Thus dt + etβ ′ > dq. By transitivity, dt + etζβ ′ > dq.

Rewriting this we get that β ′ > dq−dt
etζ

. This is a contradiction.

Thus dt > dq.

We now show that 〈dt, ζet〉 >lex 〈dq, eq〉 holds in all cases.

– Suppose dt > dq holds. Then 〈dt, ζet〉 >lex 〈dq, eq〉 holds.

– Suppose dt = dq and ./ is >. Then dt+ etβ > dq holds. Thus etζ > 0.

As 0 = dq, 〈dt, ζet〉 >lex 〈dq, eq〉 holds.
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– Suppose dt = dq and ./ is >. Then dt + etβ > dq holds as well as

dt + etζβ > dq. Thus etζβ > 0 and et > 0 (ζ > 1 and β > 0). Either

η = 1 or η > 1.

∗ If η = 1, then either et = 0 or eq
et

6 1. As et > 0, then eq
et

6 1.

Thus eq 6 et. This can be rewritten as etη > eq. By transitivity,

etζ > eq. Thus 〈dt, ζet〉 >lex 〈dq, eq〉 holds.

∗ If η > 1, then et 6= 0 and eq
et
> 1. As eq > 0, et > 0. Thus ηet = eq.

By transitivity, ζet = eq. 〈dt, ζet〉 >lex 〈dq, eq〉 holds.

〈dt, ζet〉 >lex 〈dq, eq〉 holds. In all of the above cases,

dt + ζetδ >δ dq + eqδ

holds, and aζδ |=δR q.

• Suppose ./ is < or 6. Then q has the form t >δ dq + eqδ and eq 6 0.

We know p is satisfied for some β ∈ (0,α) such that dt + etβ 6 dq. By

transitivity, dt + etζβ 6 dq (ζ > 1).

We first show that dt 6 dq.

– Suppose for contradiction that dq < dt. Thus,

etζβ > dq − dt > 0

As etζβ < 0 and β > 0, it must be the case that etζ < 0. Because

dq − dt < 0, β > dq−dt
etζ

> 0 must hold.

Let β ′ be any real value in the non-empty range
(

0, min
(
α, dq−dtetζ

))
.
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Thus β ′ < dq−dt
etζ

and β ′ ∈ (0,α). By the initial assumption,Ma,β ′ |=R

p is satisfied. Thus dt + etβ ′ 6 dq. By transitivity, dt + etζβ ′ 6 dq.

Rewriting this we get that β ′ > dq−dt
etζ

. This is a contradiction.

We now show that 〈dt, ζet〉 6lex 〈dq, eq〉 holds in all cases.

– Suppose dt < dq holds. Then 〈dt, ζet〉 <lex 〈dq, eq〉 holds.

– Suppose dt = dq and ./ is 6. Then dt+ etβ 6 dq holds. Thus etζ 6 0.

As 0 = dq, 〈dt, ζet〉 <lex 〈dq, eq〉 holds.

– Suppose dt = dq and ./ is >. Then dt + etβ < dq holds as well as

dt + etζβ < dq. Thus etζβ < 0 and et < 0 (ζ > 1 and β > 0). Either

η = 1 or η > 1.

∗ If η = 1, then either et = 0 or eq
et

6 1. As et < 0, then eq
et

6 1

and eq > et. This can be rewritten as etη 6 eq. By transitivity,

etζ 6 eq. Thus 〈dt, ζet〉 6lex 〈dq, eq〉 holds.

∗ If η > 1, then et 6= 0 and eq
et
> 1. Thus ηet = eq. By transitivity,

ζet 6 eq. 〈dt, ζet〉 6lex 〈dq, eq〉 holds.

〈dt, ζet〉 6lex 〈dq, eq〉 holds. In all of the above cases,

dt + ζetδ 6δ dq + eqδ

holds, and aζδ |=δR q.

• Suppose ./ is =. Then q has the form t =δ dq + eqδ and eq = 0. We know

p is satisfied for two distinct β,β ′ ∈ (0,α) such that

dt + etβ = dq ∧ dt + etβ
′ = dq.
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From this we can deduce that et must be 0, and dt = dq. Then for any

value of ζ, the evaluation of t is invariant (〈dq, 0〉). Thus aζδ |=δR q for any

ζ.

• Suppose ./ is 6=. Then q has the form t 6=δ dq + eqδ and eq = 0. Either

dt = dq or not.

– Suppose dt = dq. Then for some β ∈ (0,α), dt + etβ 6= dq. Thus as

etβ 6= 0, et 6= 0. Then for any non-zero ζ, ζet 6= 0 and

〈dt, ζet〉 6= 〈dq, 0〉

– Suppose dt 6= dq. Then for any ζ, ζet 6= 0 it is the case that

〈dt, ζet〉 6= 〈dq, 0〉

Therefore aζδ |=δR q in both cases for ζ 6= 0.

Thus aζδ |=δR q for some ζ > 1.

Next we generalize from literals to conjunctions of literals. Let the sequence

of literals p1, . . . ,pn generate the delta extended relations q1, . . . ,qn and each ai

is of the form ti ./i di where ti is an offset-free linear term.

Lemma A.2. If there exists an α > 0 such that for all β ∈ (0,α) the following holds

Maδ,β |=R

∧
i pi, then there exists a real value η > 1 such that for all ζ > η that

aζδ |=δR
∧
i qi.

Proof. This follows directly from Lemma A.1. Suppose for some aδ there exists

an α > 0 such that for all β ∈ (0,α), Maδ,β |=R

∧
pi. Then Maδ,β |=R pi. By
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the previous lemma, there exists a real value ηi > 1 such that for any ζ > ηi

that aζδ |=δR qi. Let η = maxηi and so η > 1. Then for all ζ > η, aζδ |=δR qi

holds.

A.2.3 Translating R Assignments to δR Assignments

Revisiting Lemma (2.7). SupposeM |=R p. Let q be a delta-encoding of the literal p

and the assignment aδ map all variables xi in p to
〈
xMi , 0

〉
. Then aδ |=δR q where is

the delta-encoding of a literal p.

Proof. Suppose that M |=R p and aδ is an assignment described as above. The

literal p has the form t ./ d. The evaluation of t under aδ is tM + 0δwhere tM is

the evaluation of t underM. Then tM ./ d asM is satisfying.

• If ./ is either >, 6, =, or 6=, then q has the form t ./δ d+ 0δ. Then as tM ./ d

holds, tM + 0δ ./δ d+ 0δ.

• If ./ is >, then q has the form t ./δ d+ eδ where e > 0. Then as tM > d

then tM + 0δ >δ d+ dδ.

• If ./ is <, then q has the form t ./δ d+ eδ where e < 0. Then as tM < d

then tM + 0δ <δ d+ eδ.

Thus in all cases aδ |=δR q holds.

A.2.4 Delta Entailment

Revisiting Lemma (Lemma 2.8 Revisited). If
∧
qi |=δR q, then

∧
pi |=R p where

qi is an admissible delta-encoding of the literal pi.
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Proof. Assume that
∧
qi |=δR q. This means that for all assignments aδ, if

aδ |=δR
∧
qi holds, then aδ |=δR q holds. Let M be any interpretation satis-

fying
∧
pi. Let aδ be an assignment that maps xi to

〈
xMi , 0

〉
. Then aδ |=δR qi for

each qi. Thus aδ |=δR q. Structurally, q ≡ t ./δ d+ eδ. The evaluation of t byM

is tM. Thus the evaluation of t under aδ is
〈
tM, 0

〉
. For all cases, we know that

tM + 0δ ./δ d+ eδ holds.

• Suppose that e < 0. Then ./δ must be 6δ and p has the form t < d. Because

q is satisfied by aδ, we have tM + 0δ 6δ d+ eδ. To satisfy this tM 6 d and

tM 6= d as e < 0. Thus tM < d andM |=R p.

• Suppose that e = 0. Then either ./δ is =δ, 6=δ, >δ, or 6δ. Because q is

satisfied by aδ, we must have tM + 0δ ./δ d+ 0δ. To satisfy this, tM ./ d.

ThusM |=R p.

• Suppose that e > 0. Then ./δ must be >δ and p has the form t > d. Because

q is satisfied by aδ, we have tM + 0δ >δ d+ eδ. To satisfy this tM > d and

tM 6= d as e > 0. Thus tM > d andM |=R p.

The reverse direction of the previous lemma.

Lemma A.3. Let each qi and q is an admissible delta-encoding of the literals pi and p

which have the form t ./ d where ti is an offset-free linear term. If
∧
pi |=R p, then for

every aδ |=δR
∧
qi there exists an η > 1 such that for all ζ > η that aζδ |=δR q.

Proof. Suppose that
∧
pi |=R p.

Let aδ be an extended assignment that satisfies
∧
qi. Then by Lemma 2.6

there exists an α > 0 such that for all β ∈ (0,α) that Maδ,β |=R

∧
pi. Thus
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Maδ,β |=R p as
∧
pi entails p. Thus there exists an α > 0 such that for all

β ∈ (0,α) that Maδ,β |=R p. Then by Lemma A.1 there exists a real value η > 1

such that for all ζ > η that aζδ |=δR q.

A.2.5 Externally Checkable Proof Witnesses

The vector y, the constraints that form A, and L and U can be converted

to a more traditional witness of the entailment of the inequality in the form

of Farkas’ lemma. The main use of such proofs in SMT is the derivation of

interpolants (which are outside of the scope of this thesis) [28]. Such witnesses

may be sent to an external proof checking tools (such as LFSC [91]).

Let B be the 4n×nmatrix derived by converting the constraintsAX = 0 and

l 6 X 6 u into only less than or equal to inequalities, and b be the correspond-

ing right-hand-side.

B =



−A

A

I

−I


b =



0

0

l

−u


BX > b

We can then construct a 4n-dimensional R row vector y ′ from y, z and L and U,

that witnesses the correctness of the entailment of −
∑
k∈F zkxk > γ. For all i in
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the range [1,n] we define the kn+ i component of y ′ as k ranges from 0 to 3:

y ′0n+i =


yi yi > 0

0 yi 6 0

y ′1n+i =


−yi yi < 0

0 yi > 0

y ′2n+i =


zi i ∈ L

0 i 6∈ L

y ′3n+i =


−zi i ∈ U

0 i 6∈ U

We leave the correctness of this construction to the reader. These objects may

be made more compact by removing the rows where y ′j is 0. See [28] for an

extensive treatment of such proof witnesses for interpolants.

A.2.6 Tableau

The proof for Lemma 2.19 relies on a well known property of linear algebra.

Let the n× n matrix M be a finite product of elementary operations E1, . . . ,Ek,

let A be an n×nmatrix, and X and B be n-dimensional column vectors.

Lemma A.4. Then AX = B iffMAX =MB [4, Proposition 1.2.10].

Let π be the permutation over X such that all basic variables are ordered

before all non-basic variables. Let ρ be the permutation matrix for π. Let G be

the result of applying Gaussian elimination to ρA ρ. Let F be the composition
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of the elementary row operations performed by Gaussian elimination reducing

ρA ρ to G.

Lemma A.5. G = −ρTρ.

Proof. Let C = −ρTρ or the negative row and column permutation of T by π,

−Tπ(i),π(j). Let d be the dimensions of A (d = |B|). Let H be the composition

of the elementary row operations performed by pivoting from A throughout

execution to construct T .

C = −ρHA ρ G = FρA ρ

By the tableau normal form for T and the row echelon form for Gaussian elimi-

nation, C and G can be decomposed into the matrices

C =

I X

0 0

 G =

I Y

0 0


where X and Y are (n−d)× (n−d) matrices. The matrices C andG are equal iff

X and Y are equal. Suppose for contradiction that C and G are not equal. Then

they must be not equal at some row i and column j such that i is in the range 1

to d, and j is in the range d+ 1 to n. Thus π−1(j) ∈ N and π−1(i) ∈ B. Let α,β

be an n-dimensional vectors such that

αµ =


1 µ = p−1(j)

−Cp(µ),j µ ∈ B

0 ⊥

βν =


1 ν = j

−Cν,j ν ∈ [1,d]

0 ⊥

220



The intuition behind the construction of α is that exactly 1 non-basic variable,

π−1(j), has been set to an assignment of 1 with the rest of the non-basic variables

set to 0. The basic variables are then computed from this. By construction, β =

ρα. Thus −ρHAβ = 0 while FρAβ cannot be 0 on row i. By A.4, the solutions

of AX = 0 must be preserved by right multiplication of elementary operations.

Thus both Aβ = 0 and Aβ 6= 0. This is a contradiction and C = G.

Theorem A.6. The size of T and a is polynomial in the size ofΦA whereΦA is the set

of all atoms in the input formula φ and lemmas sent to the SAT solver.

Proof. The complexity of A is polynomial in the size ofΦA by construction. The

complexity of T polynomial in the size of A by Lemma 2.19. The complexity of

aj for j ∈ N is determined by S as it is either equal to 0 or was set to some bound

when it was set so it is equal to some delta rational for some encoding of a literal

of an atom inΦA. (It is not necessarily equal to l or u as bounds may be popped.

We are implicitly assuming here that the selected d values for strict inequalities

for l and u have polynomial complexity.) By combining the complexity of aj for

j ∈ N and T , the assignment of basic variables must to be polynomial as well if

the invariant (I3) holds.

A.2.7 Direct Proof of Sum-of-Infeasibility Conflicts

For all i ∈ B, let yi be the row vector s.t. Ti = yi A. Lemma 2.16 gives

details on extracting yi. Let zS be the row vector
∑
i∈S λiyi A for a subset S

of E. The k’th element of zS is denoted zSk. Let LS =
{
k|zSk > 0

}
and US ={

k|zSk < 0
}

. Let LS =
{
xk >δ lk|k ∈ LS

}
, US =

{
xk 6δ uk|k ∈ US

}
, and RS ={

Ak ·X =δ 0|zSk 6= 0, Ak 6= 0
}

.
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Lemma A.7. If Vi > 0 for all i ∈ S, and Fact(f
S) = ∅, then LS ∪ US ∪RS |=δR 0 >δ∑

i∈S Vi.

Proof. The goal of the proof is to show that that Cor. 2.14 is applicable with

γ =
∑
i∈S Vi. The row zS is essentially the sum of infeasibilities row.

zS =
∑
i∈S
λiyi A =

∑
i∈S
λiTi

=
∑
i∈S
λi(τi − ei) =

∑
i∈S
λiτi +

∑
i∈S
λiei

= fS −
∑
i∈S
λiei

The constraints in RS ensure that zSX = 0. By Fact(f
S) = ∅, then

Lact(f
S)∪Uact(fS) =

{
k|fSk 6= 0,k ∈ N

}
.

Thus for all k ∈ LS ∩N, then ak = lk and for all k ∈ US ∩N, then ak = uk. As

each i ∈ S ⊆ E is basic, it’s coefficient (-1) cannot cancel with any other row and

zSi = −λi. So for all i ∈ LS ∩B, then λi = −1, zSi > 0, ai < li and Vi = li − ai.

For all i ∈ US ∩B, then λi = +1, ak > uk and Vi = ai − ui.

By definition the value of γ for LS and US is

γ =
∑

j∈LS∩N

fSj lj +
∑

k∈US∩N

fSkuk +
∑

i∈Ls∩B
li +

∑
i∈Us∩B

−ui.

The value of zE · a = 0 by the invariants on the tableau. Note that −λiai = ai =
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li − Vi and −λiai = −ai = −ui − Vi.

0 = fS · a−
∑
i∈S
λiai

=
∑

j∈LS∩N

fSj lj +
∑

k∈US∩N

fSkuk +
∑

i∈Ls∩B
li − Vi+

∑
i∈Us∩B

−ui − Vi

∑
i∈E

Vi = γ

As V(X) =
∑
i∈E Vi >δ 0, Cor. 2.14 is directly applicable.
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[67] JOVANOVIĆ, D. personal communication, 2013.
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