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Although exotic objects like supermassive black holes (SMBHs) and dark

matter halos do not emit or interact with light, we can still detect them across the

vastness of space. By observing the gravitational dance of objects we can see, as-

tronomers are able to infer the mass of the invisible objects they orbit. This has

led to the discovery that nearly every massive galaxy hosts a SMBH at its center,

and has confirmed that every galaxy is embedded in an extended halo of dark mat-

ter. However, the practice of inferring mass from the motions of bright kinematics

tracers has many complications, not the least of which is that we seldom observe

more than the line-of-sight component of the instantaneous velocity of a star. Con-

sequently, astronomers must build dynamical models of the galaxies they wish to

study. These models often rely on overly restrictive assumptions, or are crippled by

degeneracies amongst their parameters and lack predictive power.
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In this thesis, I introduce a significant advancement into the field of dynam-

ical modeling. My modeling technique is based on the powerful principle of orbit

superposition, also known as Schwarzschild Modeling. This technique is robust

to many of the degeneracies associated with dynamical modeling, and has enjoyed

much success in measuring the SMBHs and dark matter halos of large elliptical or

bulge-dominated galaxies. I use it in Chapter 2 to accurately measure the SMBH

in the Sombrero Galaxy (NGC 4594) and to constrain its dark matter halo. Un-

fortunately, when measuring dark matter halos with Schwarzschild Modeling, the

modeler is required to adopt a parameterization for the dark matter density profile

ρDM(r). Often this is precisely the quantity one wishes to measure. To avoid this

reliance on a priori parameterizations, I introduce a technique that calculates ρDM(r)

non-parametrically. Armed with this powerful new technique, I set out to measure

the distribution of dark matter in the halos of some of the smallest galaxies in the

Universe.

These dwarf spheroidal galaxies (dSphs) orbit the Milky Way as satellites,

and their dark matter content has been studied extensively. However, the models

used to probe their halos have been simplistic and required overly restrictive as-

sumptions. As a result, robust conclusions about their dark matter content have

remained elusive. Into this controversial and active area of study, I bring Non-

Parametric Schwarzschild Modeling. The results I find offer the most robust and

detailed measurements of the dark matter profiles in the dSphs to date.

I begin my study with the first application of standard Schwarzschild Mod-

eling to any dSph galaxy by using it in Chapter 3 on Fornax. This chapter details the
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process of re-tooling Schwarzschild Modeling for the purpose of measuring these

small galaxies. In Chapter 4, I introduce the fully non-parametric technique, and

apply it to Draco as proof of concept. Chapter 5 presents the main results of this

thesis. Here I apply Non-Parametric Schwarzschild Modeling to Draco, Carina,

Fornax, Sculptor, and Sextans. By relaxing the assumption of a parameterization

for ρDM(r), I find a variety of profile types in these five galaxies—some of which

are consistent with past observations, others consistent with predictions from sim-

ulations, and still others were completely unanticipated. Finally, in Chapter 6 I

describe the modeling of these galaxies in more detail. I demonstrate the accuracy

of Non-Parametric Schwarzschild Modeling by recovering a known ρDM(r) from

artificial simulated data. I also expound upon the modeling results by presenting

the detailed orbit structure of the five dSphs. Lastly, I compare my results to hydro-

dynamical simulations to explore the link between dark matter profile type and the

baryon content of the dSphs.
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Chapter 1

Introduction

Light, seeking light, doth light of light beguile;
So ere you find where light in darkness lies,

Your light grows dark by losing of your eyes.

Shakespeare - “Love’s Labour’s Lost”

In most fields of science, experiments can be designed, variables controlled

for, and, in general, the objects under study can be manipulated directly. When one

wishes to study a star, a galaxy, or even the Universe itself, this strategy is clearly

impossible. Instead, the astronomer’s toolbox contains only the light emitted by

distant sources and a profound understanding of the laws of the natural Universe.

If this is challenging enough when one’s objects actually emit light, it might

seem impossible to study the mysteries of black holes and dark matter which, by

definition, do not emit light for us to study. Instead, we divine these objects’ pres-

ence by detecting their influence on bodies that do emit light. The key to this entire

process lies in understanding the gravitational influence that black holes and dark

matter exert on stars or gas in galaxies. Indeed, the entirety of this thesis is devoted

to studying the motions of stars to infer the presence of unseeen mass, a process

known as dynamical modeling.
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1.1 Dark Matter and Galaxies

Galaxies like our Milky Way are vast collections of stars, gas, and dust

bound together by the force of gravity. They range in size from the smallest dwarfs

with luminosities L ∼ 300L⊙ up to the giant elliptical galaxies found in the cen-

ters of galaxy clusters with L ∼ 1012 L⊙. A convenient way to organize the diverse

zoo of galaxy types is to divide them into two classes based on their shape: flat-

tened disky systems or puffed-up spheroidal systems. The fundamental difference

between these classes is the method by which they support themselves against grav-

itational collapse. Flattened, or disk, galaxies are supported by the ordered motions

of their stars on roughly circular orbits. Stars in ellipsoidal-shaped galaxies, on

the other hand, orbit with more complicated patterns. In general, these systems are

supported against gravity through the random motions of their stars. I focus on the

latter class of galaxies in this thesis, as the methods required to model them are

often more complex.

For most galaxies, a significant fraction of their mass is in the form of dark

matter—a substance that neither emits light, nor interacts with it. Despite its ethe-

real nature, astronomers have determined that dark matter constitutes roughly 83%

of the total matter densty of the universe (Komatsu et al., 2011). Shortly after the

Big Bang, this dark matter was well-mixed with normal matter. Then, as the grav-

itational forces from matter overwhelmed the initial expansion of the universe on

small scales, galaxies began to form. Hot gas that was accreted by these first galax-

ies was able to cool and lose energy—a freedom not allowed of the dissipationless

dark matter particles. As a result, baryons migrated closer to the centers of these
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new galaxies, leaving a triaxial halo of dark matter extending to much larger radii.

Inside this halo, the gas eventually cooled enough to form stars.

With modern computing power, it is relatively easy to simulate the forma-

tion of these dark matter halos. Since the dark matter particles are dissipationless,

they can only exchange energy through gravitational forces. Furthermore, since

dark matter is the dominant component of mass in the universe, one only needs to

simulate its behavior to learn much about the formation of structure. Such sim-

ulations look remarkably similar to our universe on large scales. This is seen as

some of the strongest evidence for the Cold Dark Matter (CDM) theory of struc-

ture formation (Viel et al., 2008; Reid et al., 2010; Komatsu et al., 2011). In CDM,

dark matter is cold (i.e. has little free-streaming velocity), dissipationless, and non-

interactive. This description of dark matter has become a standard ingredient in any

theory describing the formation of galaxies in the universe.

An interesting side effect came from these large-scale simulations. It was

observed that each dark matter halo, regardless of when it first formed, how massive

it was, or what kind of environment it was in, had a density distribution that could

be parameterized by a single two-parameter function: the Navarro-Frenk-White

(NFW) profile (Navarro et al., 1996b):

ρNFW(r) =
ρsr

3
s

r(r2
+ r2

s )
. (1.1)

Inside the scale radius rs, ρNFW decreases with logarithmic slopeα = d logρ/d logr =

−1, there is a transition region near r ∼ rs, and finally ρNFW falls off as α = −3 for
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r ≫ rs. This “Universal Density Profile” describes any bound system of dark matter

from the smallest dwarf galaxy, to the largest galaxy cluster. The profile is called

“cuspy” since ρDM increases as r → 0. The discovery of this feature set off nearly

two decades of observational studies comparing modeled dark matter profiles in

real galaxies to the NFW profile.

Since the Navarro-Frenk-White papers, modern simulations with higher res-

olution have found the Einasto profile a better fit to the simulated halos (Navarro

et al., 2004; Merritt et al., 2005; Gao et al., 2008; Springel et al., 2008; Navarro

et al., 2010). Unlike the NFW profile, the inner portion of the Einasto profile does

not have a constant slope of α = −1, but instead α varies with radius according to

a power law α(r) ∝ rn. These profiles are still cuspy, although they can have shal-

lower cusps than the NFW α = −1 cusp (Stadel et al., 2009). Nevertheless, over a

short radial range, these two families of functions look very similar. The differences

are so small (see Figure 1.1) that observational results are still compared with the

NFW profile, despite the formal preference for Einasto profiles over NFW profiles.

1.1.1 The Influence of Baryons on the Universal Density Profile

The portrait that CDM paints of galaxy formation in our universe is one

that is painted with a broad brush. The large scale features are accurately captured,

but when one examines the finer details, the portrait no longer represents reality.

This is because CDM simulations lack an important component of the universe’s

content—baryons. In other words, these simulations do not form stars, and galaxies

are described only as objects that live within dark matter halos. While this gets the
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Figure 1.1 Comparison between an NFW profile and an Einasto profile. The inner
portion of the NFW profile has a power-law slope of -1. The Einasto profile has a
slope which varies as a power law. However, over a limited radial range the two
profiles look quite similar.
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large scale structure of the universe right, it neglects the details of individual galaxy

formation. Any discussion of the dark matter density profile of real galaxies must

be taken in that context.

So what kind of effect can baryons have on dark matter particles? They do

not interact directly, so they experience no collisional forces. However, baryons are

able to gain and lose energy in ways unavailable to the non-interacting dark matter.

Therefore, their mass distribution is allowed to change through non-gravitational

interactions. If this change is significant, and the local gravitational potential is

dominated by the baryons, then the dark matter particles will be gravitationally

influenced by the redistribution of baryons. Such processes are referred to as feed-

back, since they are generally second order effects.

The centers of galaxies are particularly vulnerable to feedback, as dissipa-

tive baryons outnumber their dark matter counterparts at small radii. Indeed, the

process of growing a galaxy inside a dark matter halo is known to exert a compres-

sive force on the halo, resulting in an increase in central dark matter densty. When

changes to the halo are slow, this process is called adiabatic compression (Blumen-

thal et al., 1986). Other baryonic processes can cause a decrease in central density,

and the shape of the dark matter profile is the result of the battle between these

competing effects.

1.2 Observational Results

One of the most interesting aspects of CDM, and the primary topic of this

thesis, is the prediction of the Universal Density Profile and the search to observe
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this profile in nearby galaxies. To observe ρDM(r) in a real galaxy, one must con-

struct a model of that galaxy’s gravitational potential. Such dynamical models use

kinematics, either of stars or gas, to trace the potential and derive ρDM(r). Instead of

finding the cuspy NFW profile, early results studying low-mass disk galaxies found

dark matter profiles that had flat, uniform-density central cores (Burkert, 1995; Per-

sic et al., 1996; de Blok et al., 2001; Blais-Ouellette et al., 2001; Simon et al., 2005).

This became known as the core/cusp debate (de Blok, 2010), and has motivated

many studies to create dynamical models of nearby galaxies.

1.2.1 The Challenges of Dynamical Modeling

The principle of using the motions of stars (dynamics) to infer the gravi-

tational presence of dark matter or a black hole is straightforward. Simply find a

galaxy and look for stars moving suspiciously fast. These stars are likely moving

fast because something is exerting a gravitational force on them. The more matter

there is (of any kind) the stronger this force will be, and the faster it will cause the

galaxy’s stars to orbit. If the combined mass of everything we can see in the galaxy

(stars, gas, planets, dust, etc.) is not enough to explain the mass inferred by the

gravity measured, then this suggests the remaining mass is dark matter.

In practice, this procedure is complicated by a number of things. Since the

distances involved in measuring a galaxy are so immense, it takes millions of years

for stars to move enough for us to observe them. Thus, a galaxy today will look

the same tomorrow, and we are rarely able to gain any time-dependent information.

Instead, we measure the instantaneous velocities of stars using spectroscopy. Un-
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fortunately, this limits our knowledge of the stars’ velocities to only the component

that falls along the line of sight; their transverse motions in the plane of the sky are

completely unknown.

To deal with this challenge, we construct dynamical models of varying de-

grees of sophistication, depending on the problem at hand. For flat disk galaxies,

one can usually assume the stars are on circular orbits and the modeling is simpli-

fied. In spheroidal galaxies, stars make more complicated orbits and this increases

the complexity of the models needed to describe them. Often these models group

stars located near each other and we describe their velocities in a statistical sense.

We define the mean velocity V of these stars, and the velocity dispersion σ repre-

sents the degree with with these stars’ velocities differ. Both of these quantities are

intrinsically three-dimensional, but we only observe their components that lie along

the line of sight. This lack of information sets a basic limit on the level of accuracy

with which we can measure the mass of a galaxy and how it is distributed. More

sophisticated models can guess at these unknown components of V and σ, using

knowledge of the physics of galaxy dynamics, but this lack of information sets a

fundamental limit to their accuracy.

1.2.1.1 The Jeans Degeneracy

The Jeans Equations offer a first look into how the velocities of stars encode

information about the mass profile of a galaxy. In spherical symmetry, the Jeans

Equation can be written:
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M(r) =
V 2r

G
−

σ2
r r

G

(

∂ lnν
∂ lnr

+

∂ lnσ2
r

∂ lnr
+ 2β(r)

)

, (1.2)

where ν(r) is the three-dimensional stellar light profile, G is Newton’s gravitational

constant, and β(r) is called the anisotropy term. It represents the degree to which

stars’ orbits are radially or tangentially biased. This quantity is defined as β ≡

1 −σ2
t /σ

2
r , where σt is the tangential component of the three-dimensional velocity

dispersion tensor
↔
σ , and similarly σr is the radial component. Since we only ever

have knowledge of the line-of-sight component of
↔
σ , β is very difficult to constrain

directly. Since β contributes to Equation 1.2 at the same level as the actual dynamics

of the galaxy, this makes Jeans-based models highly sensitive to the anisotropy.

The “Achilles Heel” of Jeans models is the anisotropy; it is nearly impos-

sible to constrain β(r) from measurements of the line-of-sight components of V

and σ alone. Consequently, some Jeans models attempt to simplify things and as-

sume isotropy. However, Evans et al. (2009) show the assumption of isotropy forces

spherical Jeans Models to recover constant-density profiles, and therefore biases re-

sults. The other approach is to parameterize β(r) and run many models varying the

parameters. This approach has two flaws: (1) nature is always better at finding ways

to vary β(r) than modelers are at parameterizing it, and (2) this approach marginal-

izes over our lack of knowledge of β(r), therefore absorbing the uncertainty on β(r)

into the final mass profile M(r). This leads to a strong degeneracy between mass

and anisotropy, known as the Jeans Degeneracy.

To illustrate this, Wolf et al. (2010) plot the modeled mass profile for the

Carina galaxy using the same set of kinematics but varying assumptions about the
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Figure 1.2 From Wolf et al. (2010), showing the strong dependence of M(r) on
anisotropy. The same kinematics are used for each model, but the anisotropy is
allowed to vary between models. Left: anisotropy β is assumed to be constant with
radius. Right: anisotropy is allowed to vary with radius according to an adopted
parameterization for β(r). The 68% and 95% confidence intervals are shown in
color.

anisotropy. Figure 1.2 shows that variations in anisotropy preclude the level of

precision needed to make meaningful measurements of ρDM(r).

1.2.1.2 Schwarzschild Modeling

The Jeans Degeneracy is a fundamental limitation on the accuracy of dy-

namical models when simplifying assumptions are unrealistic (e.g. circular orbits,

isotropy). There is simply not enough information in the projected velocity disper-

sion σp to break the degeneracy between mass and anisotropy. Fortunately, there is

other information one can exploit to gain leverage over the anisotropy.

Instead of only using a group of stars’ mean velocity V and projected dis-
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persion σp, one can use the full distribution of the stars’ line-of-sight velocities.

These line-of-sight velocity distributions (LOSVDs) are centered about V with a

width proportional to σp. Critically, their shapes contain information about the

types of orbits the observed stars make (van der Marel & Franx, 1993). For exam-

ple, stars on primarily radial orbits produce triangular-shaped LOSVDs, and stars

on tangentially-biased orbits make LOSVDs that are flat-topped. By fitting to the

full shape of the LOSVD, models can constrain the types of orbits the stars are

on, and from that they gain information about the anisotropy and break the Jeans

degeneracy.

Schwarzschild’s orbit-superposition technique (Schwarzschild, 1979) is well-

suited to exploit this advantage. Schwarzschild modeling, described in detail in

later chapters, works by creating a library of all allowed stellar orbits for a modeled

galaxy. These orbits are then weighted according to how well they can be combined

to fit the observed LOSVDs of the galaxy being modeled.

Schwarzschild modeling has a long history of success measuring the super-

massive black holes at the centers of large galaxies (van der Marel et al., 1998; Geb-

hardt et al., 2000a, 2003). For a thorough review of its history regarding black hole

mass measurements, see Kormendy & Ho (2013). Relatively recently, it has been

adapted to measuring dark matter profiles (Thomas et al., 2007b, 2009; Schulze &

Gebhardt, 2011; Murphy et al., 2011) in large galaxies. In Chapter 3, I apply this

powerful modeling tool for the first time to a dwarf galaxy with resolved stellar

kinematics.
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1.2.1.3 Assumptions about the Density Profile

Despite its many advantages over other forms of modeling, Schwarzschild

models used to measure dark matter profiles have one glaring weakness. They

require the modeler to adopt a parameterization for the density profile—precisely

the thing they wish to measure. To mitigate this circular logic, a typical strategy

is to adopt, for example, a cored profile as well as a cuspy profile. One then runs

models with each parameterization, searching for each profile’s best fitting model.

The best fitting parameterization is the one with the overall lowest value of χ2.

This strategy at least avoids begging the question; however, it is certainly not

the most efficient way to measure ρDM(r). One must search for the χ2 minimum for

each parameterization to be tested. Even worse, this approach is obviously limited

to finding only the types of profiles one asks it to find. Again, a common theme

of this thesis is that nature is better at making distributions than we are at guessing

parameterizations. Following this logic, I reason that it is better to ask “What is

ρDM(r)?” than to ask “Does model x fit the data better than model y?”.

In Chapter 4, I introduce a powerful improvement to Schwarzschild model-

ing that implements a procedure to calculate ρDM(r) directly, without assuming any

parameterization. In later chapters, I apply the Non-parametric Schwarzschild tech-

nique to an interesting class of dwarf galaxies to construct the most general models

of them to date. With these models, I find a variety of interesting density profiles

including classical NFW-like cusps, observed constant-density cores, and profiles

with shapes not observed before.
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1.3 The Milky Way’s Dwarf Spheroidals

I focus the majority of work in this thesis studying the dwarf spheroidal

galaxies (dSphs) that orbit our Milky Way as satellites. They are some of the faintest

galaxies ever observed, representing the extreme low end of the galaxy luminosity

function. They are ellipsoidal in shape, supported against gravity by the random

motions of their stars. This makes dynamical modeling significantly more chal-

lenging, as σ ≫ V in Equation 1.2, and it opens the can of worms that is the Jeans

Degeneracy. Consequently, the dSphs require a proper treatment of the velocity

anisotropy for accurate measurements of ρDM(r).

Although the dSphs are important objects and have been studied extensively,

the models used to measure their dark matter content have been limited to Jeans-

based studies. As such, modelers have had to make the simplifying assumption of

isotropy (Gilmore et al., 2007; Walker et al., 2007), or have been forced to marginal-

ize over their ignorance of the anisotropy (Walker et al., 2009a; Wolf et al., 2010).

Either approach is clearly less than desirable; there is low-hanging fruit here.

Perhaps one reason why Schwarzschild modeling has not been used exten-

sively to study the dSphs is due to how kinematic data are collected for dSphs. Since

the dSphs are relatively nearby, we can resolve individual stars even using ground-

based observations. Unlike in more distant galaxies, single stars can be targeted

with spectroscopy and their individual radial velocities can be obtained. For Jeans

modelers and those using V and σ to describe their kinematics, calculation of these

quantities amounts to taking statistical moments of the observed velocities. Since

Schwarzschild modeling is based on fitting to the full distribution of velocities, the
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analysis involves reconstructing the LOSVD from samples of discrete velocities.

This process is known as density estimation, and statistical techniques exist to solve

this problem (see Chapters 3 and 4). Building LOSVDs in this manner is funda-

mentally different from the way they are typically measured in larger, more distant

galaxies where one must deconvolve the LOSVD from a spectrum of the integrated

light of many thousands or millions of stars along the line of sight. Nevertheless,

once LOSVDs are constructed for the dSphs, the application of Schwarzschild’s

technique is straightforward.

1.3.1 The Perfect Dark Matter Laboratories

The dSphs offer a number of attractive advantages when one wishes to study

dark matter and galaxy formation. From a dynamical modeling perspective, they

offer clean measurements of their dark matter density profiles. With mass-to-light

ratios M/L ∼> 10−100 (Mateo, 1998; Simon & Geha, 2007), the stars can be largely

ignored and treated as massless tracer particles in a potential defined by the dark

matter halo. This simplifies the modeling significantly, and makes the dSphs ideal

laboratories for studying dark matter.

Although the dominance of dark matter in the dSphs is helpful in modeling

them, it raises an interesting question. How did the dSphs lose the majority of their

baryons? Adopting the Cosmological Principle, we assume they were born with

the same ratio of baryons to dark matter that all galaxies once had. Clearly some

transformative event happened in their distant past that caused some dSphs to lose

upwards of 99% of their baryon content.
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A closer look at the star formation histories of the dSphs offers some insight

into their past. Many show periods of extended bursty star formation, like that seen

in dwarf irregular galaxies (Mateo 1998; Kormendy & Bender 2012 and references

therein). However, no dSph has had any star formation in the last 108 years (Tolstoy

et al., 2009; de Boer et al., 2012a), and many have had no star formation for much

longer (Mateo, 1998; de Boer et al., 2012b). This, plus the lack of any detection of

HI gas (Mateo, 1998), paints a picture of quenched star formation brought about by

the sudden removal of gas.

The shallow potential wells of the dSphs make mass loss a plausible mech-

anism. However, to explain their large present day values of M/L we need the mass

loss to be preferrentially baryonic. A natural source of this feedback can be found

in outflows driven by supernovae. These can easily drive winds of 10,000 km s−1.

If the coupling of this energy to the galaxy’s gas is even moderately efficient, then

it will exceed the escape velocity and leave the system. A burst of star forma-

tion will translate to a burst of supernovae, so one can imagine a series of episodic

supernova-driven winds clearing the interstellar medium of its gas reservoir.

Even though the winds from supernova have no direct effect on the dark

matter, the gravitational perturbation caused by the immediate removal of gas can

cause dark matter particles near the galaxy’s center to gain energy. This results in

a net decrease in the central dark matter density, and it is particularly strong if the

central density has been enhanced by prior adiabatic compression. In effect, the

baryons cool and fall to the center of the potential, dragging in dark matter with

them. Then, they are instantaneously removed from the central region and the halo
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rebounds outward (Dekel & Silk, 1986; Navarro et al., 1996a; Binney et al., 2001).

Recent hydrodynamical simulations, which promise a more faithful treatment of

baryonic processes such as cooling, star formation, and supernovae feedback, have

found that this feedback mechanism can be particularly effective in transforming

the cuspy NFW profile into a core under the right circumstances (Governato et al.

2012; Pontzen & Governato 2014; see Figure 1.3). Additionally, they find that the

mechanism does not need to expel gas from the galaxy. Rather, they show that the

gas must only leave the central region of the galaxy on timescales shorter than the

dynamical time. If these modest conditions are acheived, then dark matter particles

can irreversably gain energy and migrate outwards reducing a once cuspy profile to

a core (Pontzen & Governato, 2012).

So it appears that measuring the dark matter profiles of the dSphs is useful

for two reasons. First, their profile shapes are still hotly debated in the context

of the core/cusp debate. Dynamical models that are robust to uncertainties in the

anisotropy have the potential to put this debate to rest. Second, and perhaps more

importantly, such measurements serve as observational constraints for a general

theory outlining the interplay between dark matter and baryons. In Chapter 6, I

place the dSphs on Figure 1.3 to test if supernova feedback can explain the variety

of dark matter profiles I measure.

A third reason the dSphs are important is that they represent the smallest

galaxies we can ever hope to study in detail with dynamical models. They are the

final frontier for tests of CDM, and can teach us if galaxy formation changes in

the low-mass regime. In fact, there is evidence that a change does occur at low
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Figure 1.3 From Pontzen & Governato (2014) plotting dark matter density profile
slope α (measured at r = 500 pc) versus stellar mass in simulated galaxies and
observed HI-rich dwarf galaxies. The authors claim that more star formation results
in more episodic supernova feedback, which lowers the density of the inner dark
matter halo.
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masses. The classic “Missing Satellites Problem” reveals that CDM simulations

containing only dark matter vastly over-predict the number of low-mass subhalos

that orbit the Milky Way (Moore et al., 1999; Klypin et al., 1999). To resolve this

dispute, it is widely believed that there is a minimum mass that must be acheived

before a galaxy forms inside a dark matter halo. Since we cannot observe empty

halos, the Missing Satellites Problem may be a statement about the efficiency of

star formation in low-mass halos.

It is relatively easy to believe that these would-be galaxies failed because

their tiny potential wells were incapable of holding onto enough cold gas to form

stars. Energetic phenomena such as supernovae outflows (Navarro et al., 1996a;

Governato et al., 2012; Pontzen & Governato, 2014), the re-ionization of the uni-

verse (Bullock et al., 2000; Bovill & Ricotti, 2009), or ram-pressure stripping (Ar-

raki et al., 2014) can easily impart sufficient energy for a small galaxy’s gas supply

to escape before it is able to cool and form stars. However, it has been recently

claimed that some of these missing satellites are, in fact, more massive galaxies

(Boylan-Kolchin et al., 2012). This constitutes a bigger problem for CDM, as it is

unclear how massive subhalos could fail to form stars. However, the devil may be

in the details of how baryons are able to interact with dark matter (Zolotov et al.,

2012; Brooks et al., 2013). I return to this discussion in Chapter 6, armed with

robust mass profiles for the five dSphs.
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Chapter 2

Orbit-Based Dynamical Models of the Sombrero

Galaxy (NGC 4594)1

Astronomy, that micography of heaven, is the most magnificent of the sciences...
Astronomy has its clear side and its luminous side; on its clear side it is tinctured
with algebra, on its luminous side with poetry.

Victor Hugo - Post-scriptum de ma vie

We present axisymmetric, orbit-based models to study the central black

hole, stellar mass-to-light ratio, and dark matter halo of NGC 4594 (M104, the

Sombrero Galaxy). For stellar kinematics, we use published high-resolution kine-

matics of the central region taken with the Hubble Space Telescope, newly obtained

Gemini long-slit spectra of the major axis, and integral field kinematics from the

SAURON instrument. At large radii, we use globular cluster kinematics to trace the

mass profile and apply extra leverage to recovering the dark matter halo parameters.

We find a black hole of mass M•= (6.6± 0.4)× 108 M⊙, and determine the stellar

M/LI = 3.4± 0.05 (uncertainties are the 68% confidence band marginalized over

the other parameters). Our best fit dark matter halo is a cored logarithmic model

with asymptotic circular speed Vc = 376±12 km s −1 and core radius rc = 4.7±0.6

1Published in Jardel, J. R., Gebhardt, K., Shen, J., Fisher, D., Kormendy, J., Kinzler, J., Lauer, T. R.,
Richstone, D., and Gültekin, K., 2011, ApJ, 739, 21. Reprinted with permission from the American
Astronomical Society.
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kpc. The fraction of dark to total mass contained within the half-light radius is

0.52. Taking the bulge and disk components into account in our calculation of σe

puts NGC 4594 squarely on the M-σ relation. We also determine that NGC 4594

lies directly on the M-L relation.
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2.1 Introduction

Most galaxies are thought to host supermassive black holes (SMBHs) at

their centers. The masses of these SMBHs have been observed to correlate with

several properties of their host elliptical galaxies and of the classical bulge com-

ponents of their host disk galaxies. For example, M• correlates with galaxy/bulge

mass (Dressler, 1989; Magorrian et al., 1998; Laor, 2001; McLure & Dunlop, 2002;

Marconi & Hunt, 2003; Häring & Rix, 2004), luminosity (the M-L relation) (Ko-

rmendy, 1993; Kormendy & Richstone, 1995; Kormendy & Gebhardt, 2001; Gül-

tekin et al., 2009b), velocity dispersion (the M-σ relation) (Ferrarese & Merritt,

2000; Gebhardt et al., 2000a; Tremaine et al., 2002; Gültekin et al., 2009b), and

globular cluster content (Burkert & Tremaine, 2010; Harris & Harris, 2011). These

and other, similar correlations suggest that galaxy formation and black hole growth

are fundamentally linked. To better understand this interplay, accurate black hole

masses are needed.

One challenge that limits the accuracy is the determination of the host galaxy’s

inclination. Projection effects are difficult to model and cause loss of information,

leading to systematic uncertainties. Therefore, SMBHs in galaxies whose inclina-

tion is confidently known have the best chance of being accurately and robustly

measured. Another issue that limits the accuracy is the effect a dark matter halo has

on the determination of SMBH mass. Gebhardt & Thomas (2009) show that orbit-

based models can underestimate black hole mass when dark matter is not considered

in the modeling, however Schulze & Gebhardt (2011) find the effect is small when

the black hole’s sphere of influence is well-resolved.
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NGC 4594 (M104, or the Sombrero Galaxy) is a nearly edge-on Sa type spi-

ral with a prominent stellar disk and large, classical bulge (Kormendy & Kennicutt,

2004). The shape of this disk indicates that it (and thus the entire galaxy) is in-

clined at an angle very close to 90◦. Throughout this paper we assume a distance to

NGC 4594 of 9.8 Mpc, calculated from surface brightness fluctuations (Tonry et al.,

2001). Unless otherwise stated, all distance-dependent quantities are scaled to this

value. Tonry et al. (2001) use a value of H0 = 74 km s−1 Mpc−1 in their distance

determinations, however we compare our M• and LV to Gültekin et al. (2009b) who

adopt H0 = 70 in their work. We therefore scale the Gültekin et al. (2009b) distances

down by 6%. Black hole mass scales as M•∝ D and luminosity as LV ∝ D−2; these

quantities are adjusted accordingly.

NGC 4594 was one of the first galaxies in which a black hole was detected,

and it has a long history of study. Kormendy(1988, hereafter K88) first found evi-

dence for a massive black hole of M•= 5.4+11.8
−3.7 ×108 M⊙ using only ground-based

observations. With isotropic Jeans models, Emsellem et al. (1994b) measured a

black hole of mass M•= (5.4 ± 0.5) × 108 M⊙. Later, Kormendy et al. (1996,

hereafter K96) used high-resolution kinematics from the Faint Object Spectrograph

(FOS) on the Hubble Space Telescope (HST)—the same data set we include—to

measure log M• = 8.8± 0.5M⊙. This corresponds to a mass of 5.8+12.4
−4.0 × 108 M⊙.

With isotropic models, Magorrian et al. (1998) obtained a value of M•= 6.9+0.2
−0.1×108

M⊙. These values for M• all lie towards the high mass end of the M-σ and M-L re-

lations. Massive SMBH measurements are frequently being revised, and we expect

the confidently known inclination of NGC 4594 to lead to one of the more secure
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measurements of a high mass SMBH.

We present new Gemini spectroscopy of the major axis, as well as SAURON

integral field kinematics covering the central region of the galaxy. We also use

high-resolution HST/FOS kinematics of the nucleus and kinematics derived from

globular clusters at large radii. We combine these kinematic datasets with HST and

ground-based photometry to run axisymmetric orbit-based models. These models

allow us to measure the black hole mass, stellar mass-to-light ratio, and dark matter

halo of NGC 4594. In addition, we also recover information about the internal orbit

structure of the galaxy.

2.2 Data Reduction and Analysis

Dynamical modeling requires as input the three-dimensional luminosity den-

sity distribution ν(r), as well as the line-of-sight velocity distribution (LOSVD) at

many locations in the galaxy. We use HST and ground-based images for the pho-

tometry. Our kinematics include high-resolution HST/FOS spectra, long-slit spectra

from GNIRS on Gemini, SAURON integral field kinematics, and individual veloc-

ities of globular clusters (GCs). We discuss each in turn.

2.2.1 Photometry

In order to cover a large enough dynamical range to have leverage on both

the central SMBH and dark halo, we use surface brightness profiles from HST and

ground-based images. The stellar disk of NGC 4594 dominates at intermediate radii

on the major axis causing the isophotes in this region to be substantially flattened.
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This abrupt change in ellipticity introduces an additional challenge to the deprojec-

tion. Our standard technique is to assume that the surfaces of constant luminosity

density ν are coaxial, similar spheroids (Gebhardt et al., 1996). Clearly the pres-

ence of a disk invalidates this assumption, so we decompose the surface brightness

into bulge and disk components, deprojecting each separately so that our assump-

tion holds for each component. Afterwards, we re-combine the deprojected profile

of each component νbulge +νdisk and input the total ν(r) into our modeling program.

The bulge-disk decomposition fits directly to a projected image. We con-

struct a model disk by considering a Sersic (1968) profile:

µ(R) = µ0exp[−(R/R0)1/n] (2.1)

where µ0 is the surface brightness at R = R0 and n is the Sérsic index. For n = 1, the

profile is an exponential. For inclinations other than 90◦, the projection of our disk

model is an ellipse. By specifying the inclination of the disk i, the axial ratio b/a

of the ellipse is given by b/a = cos i for a thin disk.

We construct many disk models by varying µ0, R0, i, and n (keeping n close

to 1). Each model is then subtracted from the image until the residual brightness

distribution has elliptical isophotes. The remaining light is assigned to the bulge

component. A 1D major axis bulge profile is produced by averaging the bulge light

in elliptical, annular isophotes. Hence, we are left with an analytic disk model and

a non-parametric bulge model. We identify the best bulge and disk models as those

that minimize the rms residuals of the model-subtracted image.
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Table 2.1 Summary of Disk Parameters Fit

Disk µ0 (mag arcsec−2) R0 (arcsec) n i

Outer 1 18.8 66.8 1.0 80
Outer 2 16.7 40.1 1.0 80
Nuclear 20.4 4.1 1.1 83

In addition to the obvious main disk, NGC 4594 hosts a well-studied nuclear

disk (Burkhead 1986, K88, K96) at small radii. We fit the nuclear disk in the HST

image and the main disk in the ground-based image. Because we fit directly to

the images, dust lanes and object masking become important. We keep a bad pixel

list which instructs our code to ignore trouble spots. Dust lanes are selected by

eye, while SExtractor (Bertin & Arnouts, 1996) is used to identify foreground stars,

background galaxies, and globular clusters.

2.2.1.1 HST Image

To probe the nuclear region, we use a PSF-deconvolved HST Wide Field

Planetary Camera 2 (WFPC2) image (GO-5512; PI: Faber). This image is presented

in K96 and provides an excellent view of the central region of the galaxy. Centered

on the PC1 camera, the image is taken in the F547M filter, and has a scale of

0.′′0455 pixel−1 of the central 34′′×34′′ of the galaxy. The PSF deconvolution uses

the Lucy-Richardson algorithm (Richardson, 1972; Lucy, 1974) for 40 iterations

and is well-tested on WFPC2 images (Lauer et al., 1998). The best fit parameters

from the bulge-disk decomposition are listed in Table 2.1.

NGC 4594 is also thought to have weak LINER emission (Bendo et al.,

2006) and there is a point source in the HST image. Furthermore, heavy dust ab-
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sorption also makes the determination of the central bulge surface brightness profile

difficult for R ∼< 0.′′17. To deal with these issues, we extrapolate the bulge surface

brightness µbulge(R) inwards to R = 0.′′02 with a constant slope fit to the region near

R = 0.′′17. Figure 2.1 shows the result of this extrapolation, as well as the other

components fit in the ground-based image.

2.2.1.2 Ground-Based Image

We obtained a wide-field, I-band image from the Prime Focus Camera on

the McDonald 0.8 m telescope. This instrument provides a large unvignetted field

of view (45×45 arcmin2 ) and a single CCD detector. Therefore, we can more

robustly carry out sky-subtraction and accurately constrain the faint isophotes. The

image is corrected for bias, flat field, and illumination using standard routines in

IRAF.

In our fit to the ground-based image, we ignore the central 20′′ due to over-

exposure and contamination from the nuclear disk. We attempt fits in the region

20′′
−900′′ with only one stellar disk given by Equation (2.1), however these produce

unacceptable residuals. Instead of modifying Equation (2.1), we add a second disk

(in addition to the nuclear disk fit only in the HST image). This approach is similar

to the Multi-Gaussian Expansion technique used to model the light distribution of

bulges and ellipticals (Emsellem et al., 1994a). A summary of all components fit is

given in Table 2.1 and plotted in Figure 2.1.
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Figure 2.1 Radial plot of all resulting components from our bulge-disk decomposi-
tion along the major axis. Dotted lines are the disk profiles with parameters from
Table 2.1. The solid black line is the total surface brightness (bulge + disks). Solid
colored lines are the bulge profiles, the red line is the result from fits to the HST im-
age, and the blue line is from the ground-based image. Diamonds indicate the raw
HST bulge profile before we apply our dust correction and point-source removal.
The gap between the HST and ground-based bulge profiles is interpolated over be-
fore deprojection. Plotted in green is the globular cluster surface brightness profile,
arbitrarily scaled to match the stellar surface brightness at its innermost point.
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2.2.1.3 Globular Cluster Profile

Globular clusters (GCs) are essentially bright test particles that allow us to

probe the potential at radii where the stellar light is faint. They have been used in

orbit-based models of other galaxies (Gebhardt & Thomas, 2009; Shen & Gebhardt,

2010; Murphy et al., 2011). To include them in our models, we use the GC number

density profile (Rhode & Zepf, 2004) as an analog to the stellar density. The number

density profile is converted to a surface brightness profile by arbitrarily adjusting the

zero point to match the stellar profile in log space.

The green line in Figure 2.1 shows that the slope of the GC surface bright-

ness profile is different from that of the stars. We run models using both the mea-

sured luminosity density distribution of the GCs and assuming that of the stars. We

find significant preference for the measured GC profile.

2.2.1.4 Bulge Profile

Our bulge-disk decomposition returns a non-parametric form of the bulge

profile. It is not necessary to have a parameterized bulge profile for our dynamical

models, however we fit a Sérsic profile to ground-based bulge model using Equation

(2.1). The bulge is well-fit by a Sérsic function, with the rms residuals equal to

0.08 mag arcsec−2. We measure µ0 = 13.5 mag arcsec−2,R0 = 0.′′1, and n = 3.7.

We can convert the central surface brightness µ0 and radius R0 parameters

to the more familiar “effective” parameters µe and Re. The effective radius Re is

given by Re = (bn)nR0 and the effective surface brightness µe = µ0 + 2.5log(e)bn

(Mackey & Gilmore, 2003). The factor bn depends on n; an expansion for bn can
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be found in Mackey & Gilmore (2003). Applying these conversions, we obtain

µe = 21.3 mag arcsec−2 and Re = 156.2′′.

We obtain a simpler estimate for the half-light radius of the bulge from in-

tegration of the surface brightness profile; no fitting functions are required. We

estimate Re = 117′′±12′′. The integrated magnitudes are calculated for component

x by Lx = 2π
∫

Ix(r)r dr. This does not take into account the ellipticity of each com-

ponent, so we scale the luminosity by Ltrue
x ≈ (1 − ǫx)Lx where ǫx is the ellipticity of

each component, assumed to be constant with radius. The bulge profile is known

to become rapidly circular for r ∼> 100′′ (Burkhead, 1986) so our procedure almost

certainly underestimates Mbulge and B/T . These numbers are computed as a sanity

check only, and do not affect the dynamical models.

The absolute integrated magnitudes are Mdisk = −21.4 and Mbulge = −22.5 in

F814W, corrected for Galactic extinction along the line of sight (Schlegel et al.,

1998). Using the HST calibration package SYNPHOT (described in detail be-

low), we convert these F814W magnitudes to V -band Vega magnitudes. We ob-

tain MV,bulge = −22.1 and MV,disk = −21.0. These structural parameters lie exactly on

the fundamental plane for bulges and ellipticals as presented in Kormendy et al.

(2009). Our integrated magnitudes translate to a bulge-to-total ratio B/T = 0.73

with the nuclear disk contributing 1% of the total light. This value of B/T is lower

than previous measurements—Kormendy et al. (2011) report B/T = 0.925±0.013.

Our B/T , however, is in good agreement with a recent measurement by Gadotti &

Sánchez-Janssen (2012, model BD). Regardless of the value of B/T , our dynamical

models are unaffected, because we add all the bulge and disk light together again
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after the deprojection.

We do not explore the possibility of fitting an exponential stellar halo in ad-

dition to a bulge and disk as Gadotti & Sánchez-Janssen (2012) do. Our bulge-disk

decomposition produces a non-parametric bulge profile which could in principle be

a combination of a Sérsic bulge plus exponential halo. However, this resulting pro-

file is well-fit by a Sérsic function with n significantly larger than 1. We therefore

do not agree with the claim made by Gadotti & Sánchez-Janssen (2012) that the

bulge of NGC 4594 is actually an exponential stellar halo.

2.2.1.5 Deprojection

We combine the HST and ground-based bulge profiles by zero-pointing both

to F814W. We calculate the F547M photometric zero point for the HST image from

the SYNPHOT package in IRAF. Spectral template fitting (Section 2.2.2.1) shows

that in the central region of the galaxy ∼> 85% of the light comes from K6III stars.

We therefore convert the F547M zero point to F814W with SYNPHOT using the

Bruzual Atlas2 template for a K6III star.

Before deprojection, we extrapolate the one-dimensional profiles µ(R) with

a constant slope to R = 1800′′. The three disk profiles are then combined and de-

projected via Abel inversion in the manner described in Gebhardt et al. (1996). We

assume an inclination of i = 90◦. The inclinations of the combined disk components

imply an ellipticity of e = 0.83. Our composite bulge profile is deprojected in a

2http://www.stsci.edu/hst/observatory/cdbs/bz77.html
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Figure 2.2 Example Gemini spectrum. Top: observed galaxy spectrum (black) and
best-fit LOSVD-convolved template star (red). Dotted lines indicate regions of the
spectrum ignored in the fit. Bottom: spectrum of the template star. The velocity
dispersion of the LOSVD in this fit is σ = 190±12km s−1

similar fashion, assuming a constant ellipticity of 0.25 (Burkhead, 1986). We then

add νdisk(r,θ) + νbulge(r,θ) to obtain the total luminosity density distribution ν(r,θ)

input to our models.

The globular cluster luminosity density profile is obtained via a similar de-

projection, but with the additional assumption of spherical symmetry. The normal-

ization of the GC light profile is irrelevant, as our models fit only to the slope of the
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profile.

2.2.2 Kinematics

Kinematics for NGC 4594 come from four sources. The first uses near-IR

data from Gemini/GNIRS long-slit observations along the major axis. These data

were taken under good seeing conditions (around 0.′′5) and has high S/N. The

second set comes from the Faint Object Spectrograph (FOS) on HST using the

square aperture of 0.′′21× 0.′′21 and is published in K96. The third set of data is

from the SAURON instrument (Emsellem et al., 2004). The SAURON data for

NGC 4594 have not been published previously. Individual velocities from globular

clusters are our fourth source of kinematics. These data are published in Bridges

et al. (2007). We describe each dataset in detail.

2.2.2.1 Gemini Kinematics

We use GNIRS (Elias et al., 2006) on the Gemini South Telescope to mea-

sure near-IR spectra of NGC 4594. The data were taken on 17 January, 2005. We

placed the 150′′×0.′′30 slit along the major axis with the galaxy nucleus centered

within the slit. We use a spatial pixel size of 0.′′15. With the 32l l/mm grating in

3rd order, we obtain a wavelength coverage of 19800–26200 Å at 6.4 Å per pixel.

Using sky lines, we measure a resolving power around 1700 or an instrumental

dispersion of 75 km s−1. The total on-target exposure is 24 minutes, taken in 12,

2-minute individual exposures. Sky frames of equal exposure are taken throughout.

From both setup images and images of telluric standards, we measure a
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FWHM in the spatial direction of 0.′′5, assuming a Gaussian distribution. We use

this PSF for the dynamical models.

We use a custom pipeline to reduce the GNIRS data; however, it produces

very similar results to the Gemini GNIRS reduction package. The pipeline includes

dark subtraction, wavelength calibration for the individual exposures, sky subtrac-

tion, registration and summing.

There is adequate signal to extract kinematics out to a radius of 45′′. Figure

2.2 shows an example spectrum, where we plot the data in black and the template

convolved with the best-fit line-of-sight velocity distribution (LOSVD). The veloc-

ity templates come from the GNIRS spectral library (Winge et al., 2009), where we

select stars with a range of types from G dwarf to late giant. The kinematic extrac-

tion program performs a simultaneous fit to the LOSVD and relative weights of the

templates. This procedure is described in Gebhardt et al. (2000a) and Pinkney et al.

(2003). We present these data in the form of Gauss-Hermite moments in Table 2.2.

Figure 3.2 shows the kinematics derived from our analysis of the Gemini

spectra. Between 1′′ and 5′′, V rises and σ drops. This is the result of the nuclear

disk which becomes important at this radial range K88. Beyond 10′′, we see similar

behavior in V and σ, it is caused by the main stellar disk.

2.2.2.2 HST/FOS Kinematics

K96 present HST/FOS kinematics of the nuclear region of NGC 4594. The

FOS has a 0.′′21×0.′′21 aperture. There are three pointings with accurately known

positions for NGC 4594 (GO-5512; PI: Faber). The dynamical models include the
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exact placement and aperture size for the FOS pointing K96, and use the HST PSF

(Gebhardt et al., 2000a).

2.2.2.3 SAURON Kinematics

We also include SAURON integral field kinematics The SAURON data are

from a single pointing exposing on the central region, taken in the low resolution

setting of the instrument (Bacon et al., 2001). In addition to V and σ, the SAURON

data also include the higher order Gauss-Hermite moments h3 and h4. Details of

the data reduction and analysis can be found in Bacon et al. (2001); Emsellem et al.

(2004).

Our modeling code fits to the entire LOSVD rather than its moments, so

we reconstruct LOSVDs from the Gauss-Hermite moments. We create 100 Monte

Carlo realizations of a non-parametric LOSVD from the uncertainties in the Gauss-

Hermite parameters of each SAURON bin (Gebhardt & Thomas, 2009). The 1433

reconstructed SAURON LOSVDs are spatially sampled more finely than our mod-

eling bins. We therefore average the SAURON data to match our binning by weight-

ing according to the uncertainties in the LOSVDs.

We re-construct Gauss-Hermite moments from the combined LOSVDs from

the SAURON data for plotting purposes only. Figure 3.2 shows these moments near

the major and minor axes. The major axis V for the SAURON data is significantly

lower than that measured for the Gemini data. The reason for this is that SAURON

data are binned to match the gridding of our model bins. Near the major axis, the

bins range in polar angle from θ = 0 − 11◦. These bins are described by a single
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Table 2.2 Gemini Kinematics

R arcsec V km s−1
∆V km s−1 σ km s−1

∆σ km s−1 h3 ∆h3 h4 ∆h4

0.00 19 14 253 16 -0.087 0.033 0.023 0.046
0.15 -36 11 257 12 -0.008 0.042 -0.016 0.038
0.30 -75 12 249 8 -0.053 0.048 -0.017 0.037
0.52 -112 11 234 8 0.020 0.037 -0.047 0.035
0.82 -144 12 221 9 0.060 0.038 -0.051 0.032
1.20 -172 9 202 9 0.065 0.039 0.003 0.031
1.73 -190 8 185 9 0.107 0.031 0.018 0.031
2.40 -208 7 184 9 0.089 0.032 0.024 0.031
3.30 -232 8 175 9 0.140 0.029 0.044 0.027
4.57 -236 9 171 7 0.173 0.032 0.023 0.027
6.45 -235 7 178 9 0.165 0.033 0.058 0.025
8.77 -189 11 203 11 0.028 0.039 -0.007 0.036

11.40 -171 10 192 10 0.071 0.033 -0.009 0.033
14.32 -187 16 185 15 0.227 0.042 0.102 0.060
17.70 -201 13 229 16 -0.023 0.042 0.020 0.050
22.20 -228 12 198 14 0.125 0.040 0.052 0.047
28.58 -235 11 194 14 0.122 0.042 0.036 0.051
36.08 -285 6 141 10 0.046 0.041 0.032 0.034
44.40 -277 7 149 9 0.094 0.042 0.101 0.039
-0.15 45 12 240 15 -0.026 0.034 0.002 0.041
-0.30 112 11 243 15 -0.052 0.036 -0.016 0.038
-0.52 130 10 224 15 -0.080 0.043 0.014 0.037
-0.82 162 8 212 10 -0.068 0.049 0.019 0.030
-1.20 176 7 206 11 -0.066 0.047 0.065 0.031
-1.73 205 7 190 12 -0.087 0.043 0.022 0.037
-2.40 226 7 173 12 -0.101 0.037 0.053 0.039
-3.30 244 9 187 11 -0.113 0.039 0.037 0.037
-4.65 246 8 184 12 -0.130 0.035 0.025 0.040
-6.15 237 9 220 14 -0.133 0.042 0.094 0.035
-8.40 221 9 211 13 -0.191 0.051 0.079 0.036

-10.95 162 9 209 14 -0.093 0.048 0.028 0.043
-14.25 178 9 198 14 -0.092 0.059 0.046 0.042
-19.20 204 10 198 17 -0.166 0.060 0.094 0.048
-24.52 207 11 193 17 -0.045 0.057 0.029 0.052
-29.33 241 11 182 16 -0.149 0.054 0.092 0.050
-36.15 271 11 180 12 -0.084 0.046 0.053 0.042
-45.15 274 10 141 9 -0.053 0.041 -0.029 0.028
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LOSVD constructed by averaging individual LOSVDs which sample the region

at smaller spatial scales. Thus, the average LOSVD contains contributions from

LOSVDs as much as θ = 11◦ above the major axis.

2.2.2.4 Globular Cluster Kinematics

At large radii, we use individual globular cluster velocities published in

Bridges et al. (2007) to derive LOSVDs. The data contain positions and radial

velocities for 108 globular clusters in NGC 4594. We discard the innermost 14

GCs as there are too few GCs inside R ∼< 130′′ to reconstruct an LOSVD in the in-

ner parts of the galaxy. Assuming axisymmetry, the positions of the GCs are folded

about the minor and major axes. In order to preserve rotation, we flip the sign of the

velocity for all GCs that are folded about the minor axis. The GCs are then divided

into annular bins extending from θ = 0◦ to 90◦ at radii of 131′′, 214′′, 350′′, 574′′,

and 941′′ with roughly 20 GCs per bin.

Within each spatial bin, we calculate the LOSVD from the discrete GC ve-

locities by using an adaptive kernel density estimate adapted from Silverman (1986)

and explained in Gebhardt et al. (1996). Each LOSVD contains 15 velocity bins.

The velocity bins are highly correlated for the GCs, and there are likely only a few

degrees of freedom per LOSVD. The 1-σ uncertainties in the LOSVDs are esti-

mated through bootstrap resamplings of the data (Gebhardt et al., 1996; Gebhardt

& Thomas, 2009).

We compute Gauss-Hermite moments from the GC LOSVDs—again for

plotting purposes only—and show these in Figure 3.2. Uncertainties are calculated
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by fitting moments to each resampling of the LOSVD during the bootstrap. The

GC kinematics resemble the minor axis stellar kinematics in many of the panels.

For example, their dispersions appear to be an extrapolation of the minor axis ve-

locity dispersions. There is slight rotation (small h3) and possible evidence of radial

anisotropy (positive h4).

2.3 Dynamical Models

The dynamical models rely on the orbit superposition technique first devel-

oped by Schwarzschild (1979). We assume axisymmetry and match the luminosity

density profile and kinematics of the galaxy to those reconstructed from an orbit

library. The library is populated with orbits carefully chosen to sample E, Lz, and

the third, non-classical integral I3.

The code used in this paper is described in Gebhardt et al. (2000a, 2003),

Thomas et al. (2004, 2005), and Siopis et al. (2009). Similar axisymmetric codes are

presented in Rix et al. (1997), van der Marel et al. (1998), Cretton et al. (1999), and

Valluri et al. (2004). Van den Bosch et al. (2008) present a fully triaxial Schwarzs-

child code. The basic outline of our code is as follows: (i.) convert the luminosity

density distribution ν(r) into the stellar density ρ(r) via an assumed stellar mass-

to-light ratio M/LI . (ii.) Add to this density the contribution from a black hole of

mass M• and a dark matter halo with density profile ρDM(r). (iii.) Calculate the

potential Φ associated with this density distribution and integrate a large number of

orbits (typically ∼ 20,000) over many dynamical times. (iv.) Assign a weight wi to

each orbit and determine the wi values by minimizing the χ2 difference between the
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Figure 2.3 Gauss-Hermite moments for NGC 4594 from various sources. Black di-
amonds with error bars are from Gemini long-slit observations along the major axis.
Red diamonds are from SAURON data near the major axis. Light blue triangles are
SAURON data near the minor axis. Green crosses are the 3 HST data points, and
dark blue squares are from the globular clusters. Solid lines are the result of our
best fit model.
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observed kinematics and luminosity density of the galaxy and those resulting from

the PSF-convolved orbit library, subject also to the constraint of maximum entropy.

We maximize the entropy-like quantity Ŝ ≡ S −αχ2 where S is the Boltz-

mann entropy and α controls the relative weight of S or χ2. For small values of α,

reproducing the observed kinematics becomes unimportant, and the models act to

only maximize entropy. As α increases, maximizing entropy becomes less impor-

tant, and more weight is given to matching the observations. In practice, we start

with a small value of α and gradually increase it until χ2 asymptotes. The interested

reader may see Siopis et al. (2009) or Shen & Gebhardt (2010) for more details.

Our model grid consists of 19 radial and 5 azimuthal bins covering a radial

range of 0.′′03 to 1800′′spaced logarithmically. Additionally, we use 15 velocity

bins to describe our LOSVDs. We incorporate the effects of seeing by convolving

the light distribution for each orbit with a model PSF before comparing with data

(Gebhardt et al., 2000a). We approximate the PSF as Gaussian with a FWHM

of either 0.′′94, 0.′′5 or 0.′′09 depending on whether the data are from SAURON,

Gemini, or HST observations respectively. The convolution extends to a radius of

10×FWHM.

We run over 8,500 models with different values of the model parameters

M/LI , M•, and ρDM. We use ∆χ2 statistics to determine the best fit parameter

values and their uncertainties. Models whose values of χ2 are within ∆χ2 = 1 of

the minimum for a given model parameter (marginalized over the others) define the

1-σ or 68% confidence band of that parameter.

39



2.3.1 Model Assumptions

Our fiducial density profile is a combination of stellar mass, dark matter,

and a central SMBH:

ρ(r,θ) =
M

L
ν(r,θ) +ρDM(r,θ) + M•δ(r) (2.2)

where M/LI is the stellar mass-to-light ratio, assumed constant with radius and δ(r)

is the Dirac delta function. The angle θ is the angle above the major axis. While

ρDM can in principle be a function of θ, we do not consider flattened models. We

assume a spherically symmetric, logarithmic halo of the form:

ρDM(r) =
V 2

c

4πG

3r2
c + r2

(r2
c + r2)2

(2.3)

This profile is cored for radii r ∼< rc and produces a flat rotation curve with circular

speed Vc for r ≫ rc. It has two free parameters, rc and Vc, which are varied in

the fitting process. Including M/LI and M•, this brings the total number of model

parameters to four.

Recently, Gebhardt & Thomas (2009) have shown that the inclusion of a

dark matter halo can significantly affect modeled BH masses. To test for this, we

run a smaller suite of models without a dark halo.
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Figure 2.4 χ2 as a function of the four modeled parameters—M/LI , M•, Vc, and
rc. Every dot represents a single model. The solid line is a smoothed fit to the
minimum, which represents the marginalized values.
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2.4 Results

Our best-fit values for the four model parameters are M/LI = 3.4±0.05 M⊙

L⊙
,

M•= (6.6±0.4)×108 M⊙, Vc = 376±12 km s −1, and rc = 4.7±0.6 kpc. Figure 2.4

shows the χ2 minima around each of the model parameters. Each dot represents

a single model and the solid curve is a smoothed fit to the minimum. The points

of the solid curve at ∆χ2 = 1 above the minimum determine the 1-σ confidence

limits on the parameters. All four model parameters have well-behaved χ2 curves

with sharp, well-defined minima. This allows robust determination of the model

parameters with small 1-σ uncertainties.

The uncertainties we present are derived strictly from ∆χ2 statistics. The 1-

σ error bars on quoted parameters correspond to models within ∆χ2 = 1 of the mini-

mum value. Systematic effects are likely to contribute in addition to this quoted un-

certainty. While in general for other galaxies one of the biggest sources of system-

atic uncertainty is inclination, for NGC 4594 inclination uncertainties are unimpor-

tant. Other sources of uncertainty may include effects due to non-axisymmetries,

but these are likely small or zero since only the most massive ellipticals are thought

to be significantly triaxial (Binney, 1978; Kormendy & Illingworth, 1982; Trem-

blay & Merritt, 1996). For more on systematic uncertainties, the reader is referred

to Gebhardt et al. (2003) and Gültekin et al. (2009a,b).

Figure 2.5 shows correlations among the four model parameters. Plotted

are the different projections of the four dimensional parameter space; every small

dot corresponds to a model run. Red dots are models that lie within ∆χ2 = 4 of

the minimum, and large black dots are within ∆χ2 = 1. There appears to be a
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slight correlation between M/LI and M•—much less severe than in M87 (Gebhardt

& Thomas, 2009). Not surprisingly, the high resolution of our HST kinematics is

able to break the degeneracy between M• and M/LI . We discuss this further below.

The dark halo parameters do not show any obvious correlation, indicating the GC

and stellar kinematics were able to break the degeneracy usually observed between

these two parameters.

Our best fit model has (unreduced) χ2 = 582.6. It is non-trivial to calculate

the number of degrees of freedom νDOF . Roughly, νDOF = NLOSVD ×Nbin, however

there are complicated correlations between velocity bins (Gebhardt et al., 2003).

With this crude estimate for νDOF , our best fit model has reduced χ2
ν = 0.6.

We compare the modeled value of our stellar mass-to-light ratio with that

obtained from evolutionary population synthesis models (Maraston, 1998, 2005).

We adopt values of 10 Gyr and 0.1 for the stellar age and metallicity of NGC 4594

(Sánchez-Blázquez et al., 2006) and use these to derive the predicted I-band M/LI

from the Maraston models. For a Salpeter IMF with stellar masses drawn from

the range 0.1 − 100M⊙, this analysis yields M/LI= 3.99. If instead the stars obey

a Kroupa IMF drawn from the same range, then M/LI= 2.58. We multiply these

by a factor of 1.096 corresponding to AI = 0.099 to correct for Galactic extinction

along the line of sight (Schlegel et al., 1998) to obtain M/LI= 2.83 and M/LI= 4.37.

Our dynamically-derived stellar M/LI= 3.4± 0.05 falls nicely between these two

values.

In Figure 2.6, we plot the total mass-to-light ratio as a function of radius for

our best fit model with 1-σ uncertainties (gray region). The red cross-hatched re-
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Figure 2.5 Correlation plots among the 4 parameters. Each dot represents a single
model. Red dots are within the 95% confidence band and large black dots are within
the 68% confidence band for an individual parameter
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Figure 2.6 Local dynamical mass-to-light ratio for the best fit model. The gray band
indicates the 68% confidence band, as determined from the limits placed on the 4
model parameters. The red cross-hatched region indicates the extinction corrected
stellar M/LI derived from population synthesis models.

gion represents the range in stellar M/LI from stellar population models described

above. Total M/LI rises near the center of the galaxy due to the contribution of the

supermassive black hole. As we go out in radius, the stars become more important

to the total mass over roughly the range 5′′ to 50′′. Here the total M/LI approaches

both our dynamically determined M/LI and the range derived from stellar popu-

lation models. Past 50′′ M/LI once again rises due to the importance of the dark

halo.
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Figure 2.7 Mass enclosed within spherical shells for our best fit model and 68%
confidence region. The red line is the stellar mass profile while the black line and
surrounding confidence region represent the total mass (black hole + stars + DM).
The dashed line is our best-fit dark matter halo. Green indicates the mass profile
derived in Kormendy & Westpfahl (1989) from gas rotation.

Figure 4.10 plots the enclosed mass of each component as well as the total

mass of the galaxy. At our innermost bin, the total mass is almost two orders of

magnitude greater than the stellar mass, meaning we are probing the black hole’s

sphere of influence quite well. The green line plotted is the mass profile Kormendy

& Westpfahl (1989) derive from their gas rotation curve. It agrees well with the

total mass distribution derived here.
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2.4.1 Models without Dark Matter

We run 189 models with no dark halo. In these models, we exclude the glob-

ular cluster data and use only the stellar kinematics. Correspondingly, the number

of degrees of freedom impacting the unreduced χ2 are proportionately fewer. We

measure a black hole mass of M•= (6.6± 0.3)× 108 M⊙ and stellar mass-to-light

ratio of M/LI = 3.7± 0.05. The minimum unreduced χ2 = 628, proving models

without a dark halo are a worse fit.

We do not see the dramatic change that Gebhardt & Thomas (2009) see in

M87 where the inclusion of a DM halo causes their determination of M• to double.

Instead, our results mirror those of Shen & Gebhardt (2010) in NGC 4649 where the

inclusion of a DM halo does not significantly change the modeled M•. The likely

explanation for this behavior is the inclusion of high resolution HST kinematics in

both NGC 4649 and NGC 4594. Schulze & Gebhardt (2011) find the same effect

for a larger sample of galaxies. Whenever the data have high enough resolution

to resolve the black hole’s radius of influence Rinf ∼ GM•/σ
2, dark matter has no

significant effect on the determination of M•. For NGC 4594 we measure Rinf ≃

57 pc ≃ 1.′′2. We use HST/FOS kinematics whose central pointing has a PSF of

0.′′09 ≃ 0.08Rinf. Additionally, the light profile of NGC 4594 is more centrally

concentrated than that of M87. These factors combine to allow a more accurate

determination of M•, removing the freedom that the models have to trade mass

between M• and M/LI . This is evidenced by the lack of correlation among M• and

M/LI in Figure 2.5.
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2.4.2 Orbit Structure

Having already determined the orbital weights that provide the best fit to the

data, we reconstruct the internal unprojected moments of the distribution function.

We perform this analysis on our best fit model and the models that define the 68%

confidence region (over all combinations of the four model parameters), yielding

internal moments at each grid cell.

We define the tangential velocity dispersion to be σt ≡
√

1
2(σ2

φ +σ2
θ) where

σφ is actually the second moment, containing contributions from both streaming

and random motion in the φ direction. Figure 2.8 shows the radial run of the ratio

σr/σt . The second moment of the DF is tangentially biased where the disk is im-

portant (gray region) as expected but mostly is isotropic elsewhere. The red region

plots σr/σt for stars near the minor axis, showing almost perfect isotropy. The green

region indicates that at large radii, globular cluster kinematics show significant ra-

dial anisotropy. We discuss the implications of this in Section 2.5.2 below.

2.5 Discussion

2.5.1 Black Hole-Bulge Correlations

We discuss the position of NGC 4594 on the M-σ and M-L relations, as

defined by Gültekin et al. (2009b, hereafter G09) and compare our values of the

correlation parameters to previous measurements. We calculate the effective veloc-

ity dispersion σe similar to G09.
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Figure 2.8 Radial run of the ratio of the radial to tangential components of the
velocity dispersion tensor. Shaded ares represent 68% confidence regions, with
gray indicating stars near the major axis, red meaning stars near the minor axis, and
green representing GCs averaged over all angles.

49



σ2
e ≡

∫ Re

Rinf
(V 2(R) +σ2(R))I(R)dR
∫ Re

Rinf
I(R)dR

(2.4)

where V (R) is the rotational velocity and I(R) is the surface brightness profile. This

makes σe essentially the surface-brightness-weighted second moment. Instead of

integrating from the center of the galaxy (R = 0) as G09 did, we integrate from

R > Rinf to ensure that we do not bias σe with the high dispersion near the black

hole. Our outermost kinematic data point is at R = 45′′, thus we have a gap in

kinematic coverage between 45′′ < R < Re = 114′′. The velocity dispersion near the

end of our long-slit data is dropping sharply, however V may still contribute to the

integral for R > 45′′. To investigate this, we use the gas rotation curve presented

in Kormendy & Westpfahl (1989) which extends well beyond Re. Truncating the

integral at R = 45′′ gives σe = 292 km s−1 while using the extended rotation curve

yields σe = 297 km s−1.

The problem with this definition of σe is that it includes a contribution from

the rotation of the disk. It has been shown that black hole mass does not correlate

with disk properties (Kormendy et al., 2011) so this is not ideal. However, to com-

pare with G09 we must be consistent in our calculation of σe. We therefore quote

this value of σe when we compare to the M-σ relation determined by G09. As we

expect black hole mass to track bulge quantities, disk contribution to σe is likely to

add a source of intrinsic scatter to spiral galaxies in the M-σ relation. In fact, spiral

galaxies are observed to have larger scatter about M-σ than ellipticals of similar σe.

We also discuss some possible alternatives to σe where we attempt to remove
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the disk contribution. One option is to remove V 2(R) from Equation (2.4) altogether.

Bulges are known to rotate, however, (Kormendy & Illingworth, 1982) and this will

likely underestimate σe. This crude calculation gives σe = 200 km s−1.

Another option is to assume some degree of bulge rotation a priori. If we

assume NGC 4594 rotates isotropically (Kormendy & Illingworth, 1982), then its

flattening determines its position on the V/σ−ǫ diagram (Binney, 1978). Kormendy

(1982) shows that the relation

V

σ
≈

√

ǫ

1 − ǫ
(2.5)

approximates the isotropic rotator line to roughly 1% accuracy. We use our value of

the bulge ellipticity ǫ = 0.25 in Equation (2.5) and assume this value of V/σ applies

globally to the entire bulge. We then use our measured dispersion profile σ(R) to

determine the bulge velocity Vbulge(R). Using these quantities, we determine σe =

230 km s−1. We compare this to the kinematics listed in Kormendy & Illingworth

(1982). These data include long-slit spectra taken at a position angle parallel to the

major axis, but 30′′, 40′′, and 50′′ above it. From these data, it is apparent that the

bulge σ off the major axis is roughly constant at ∼ 220 km s−1. The rotation velocity

rises from 0 to 100 km s−1 at large radii. We estimate the luminosity-weighted mean

V ∼ 50 km s−1. Adding this in quadrature to the constant bulge σ = 220 km s−1

gives σe ≈ 226 km s−1. This estimate does not contain any rotation from the disk,

and is consistent with our determination of σe = 230 km s−1 obtained by assuming a

constant V/σ.
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Figure 2.9 Position of NGC 4594 on the G09 M-σ and M-L relations. The plot of M-
σ (left) shows the three ways we calculate σe as well as the value from G09 (black
triangle). In order of increasing σe we plot σe with no rotation (red diamond), σe

assuming a value of V/σ (green square) and σe as in G09 (blue asterisk). For the M-
L relation (right) we plot the G09 value (black triangle) along with our measurement
(green square).
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Figure 2.10 Fraction MDM/(M⋆ + MDM) of enclosed mass that is dark matter as a
function of radius.
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Our black hole mass M•= (6.6± 0.4)× 108 M⊙ agrees nicely with that of

G09 which uses the K88 value. In fact, when corrected for their various distance

determinations, most values of M• in the literature agree quite well (K88, Emsellem

et al. 1994b, K96, Magorrian et al. 1998) despite the many modeling techniques

and datasets used. This is likely due to the high degree of isotropy as evidenced

in Figure 2.8, deduced from the V/σ − ǫ diagram (Kormendy & Illingworth, 1982),

and noted in K88.

Figure 2.9 plots the position of NGC 4594 on the G09 M-σ and M-L re-

lations. We plot each determination of σe in the left-hand panel. Straightforward

application of Equation (2.5) leads to a value of σe that falls directly on the G09

M-σ line (blue asterisk). Next closest is the method of calculating σe by assuming

a value of V/σ (green square). This point lies 0.44 dex above the G09 line, how-

ever this is still within the estimated scatter. The calculation of σe that ignored all

rotation is, not surprisingly, farthest from the G09 line. Calculation of the relevant

quantities for comparison with the M-L relation is straightforward, and we plot our

value of M• and LV (green square) along with that from G09 in the right-hand panel.

2.5.2 Globular Clusters

As demonstrated in section 2.4.2, we find significant radial anisotropy in

the globular clusters. It is interesting that the stellar kinematics at smaller radii

do not show this feature. This difference in orbital properties combined with the

difference in their light profiles might suggest the GCs and stars are two distinct

populations of tracer particles. This could also indicate the two populations have
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different formation scenarios.

Unfortunately, there is no radius in the galaxy where we have simultaneous

coverage of both stellar and GC kinematics. Thus, we are unable to test whether the

stellar orbits become more radial in the ∼ 50′′ between where the stellar kinematics

run out and the GCs begin. However, since the light profiles of both populations are

significantly different (Figure 2.1) there is no reason to assume they should share

similar orbit properties.

Figure 2.8 shows the globular clusters in NGC 4594 are radially anisotropic

(σr/σt > 1) over roughly the radial range 100-1000′′ (approximately 1-10 Re). Pre-

vious studies of the GC systems of galaxies have found their velocity ellipsoids to

be isotropic (Côté et al., 2001, 2003). However, these studies used spherical Jeans

modeling instead of the more general axisymmetric Schwarzschild code we use.

Rhode & Zepf (2004) determine with high confidence that the color distri-

bution of the GC system in NGC 4594 is bimodal. This may indicate different sub-

populations of GCs with different orbital properties that formed at different epochs

in the galaxy’s history. In our analysis, we make no distinction between red and

blue subpopulations. We use the light profile and kinematics of all available GCs,

regardless of color. However, since we use different sources for our kinematics and

photometry data, there is the possibility that each source draws from a different GC

subpopulation.
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2.5.3 Dark Halo

The parameters Vc and rc of our model dark halo imply a central dark matter

density of ρc = 0.35± 0.1M⊙ pc−3 Using an improved Jeans modeling technique,

Tempel & Tenjes (2006) model NGC 4594 and find a dark matter halo with central

density ρc = 0.033M⊙ pc−3, ten times lower than our value. They, however, measure

a larger stellar M/LIV = 7.1±1.4 in the bulge.

We plot the fraction of enclosed mass that is dark matter as a function of

half-light radius Re in Figure 2.10. At 1 Re there is already a roughly 50-50 mix of

stars and DM. Inside of Re the dark matter still contributes a non-negligible fraction

to the total mass content.

In a study measuring dark matter properties in 1.7× 105 local (z < 0.33)

early-type galaxies from the Sloan Digital Sky Survey, Grillo (2010) find a correla-

tion between the fraction of dark matter within Re and the logarithmic value of Re.

With our measured value of Re, this correlation predicts a dark matter fraction at Re

of 0.68. Our value of 0.52 is smaller, but still within their 68% confidence limit.

Thomas et al. (2009) derive scaling relations for halo parameters based on

observations of early-type galaxies in the Coma cluster. These relations are con-

structed for similar galaxies using the same halo parameterization and modeling

code used in this paper. This makes comparison to our parameters straightforward.

We compare to the observed relations between halo parameters rc, Vc, and ρc and to-

tal blue luminosity LB. Our value of Vc falls directly on the Vc-LB relation, however

our measured rc is smaller by roughly an order of magnitude. Since ρc ∝V 2
c /r2

c , the

56



discrepancy in rc causes our measurement of ρc to be high when compared to the

Thomas et al. (2009) ρc-LB relation. Scatter in this relation is large, however, and

the environment of NGC 4594 is different from that of the Coma galaxies.

Kormendy & Freeman (2004, 2011) also derive scaling laws for similar pa-

rameters in galaxies of later Hubble type (Sc-Im). We measure a much higher

density and much smaller core radius than the Kormendy & Freeman (2004, 2011)

relations imply at the LB of NGC 4594. We interpret this as the result of severe

compression of the halo by the gravity of the baryons (Blumenthal et al., 1986).

Such an effect is expected in early-type galaxies with massive bulges.

We thank Eric Emsellem for providing reduced SAURON data and helpful

comments. This work would not be feasible without the excellent resources of the

Texas Advanced Computing Center (TACC). KG acknowledges support from NSF-

0908639. DR is grateful for hospitality and support from the Institute for Advanced

Study in the form of a Corning Glass Works Foundation Fellowship.
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Chapter 3

The Dark Matter Density Profile of the Fornax

Dwarf1

It cannot be seen, cannot be felt,
Cannot be heard, cannot be smelt.
It lies behind stars and under hills,

And empty holes it fills.

J.R.R. Tolkien - “The Hobbit”

We construct axisymmetric Schwarzschild models to measure the mass pro-

file of the local group dwarf galaxy Fornax. These models require no assumptions

to be made about the orbital anisotropy of the stars, as is the case for commonly

used Jeans models. We test a variety of parameterizations of dark matter density

profiles and find cored models with uniform density ρc = (1.6±0.1)×10−2 M⊙ pc−3

fit significantly better than the cuspy halos predicted by cold dark matter simu-

lations. We also construct models with an intermediate-mass black hole, but are

unable to make a detection. We place a 1-σ upper limit on the mass of a potential

intermediate-mass black hole at M•≤ 3.2×104 M⊙.

1Published in Jardel, J. R., & Gebhardt, K., 2012, ApJ, 746, 89. Reprinted with permission from the
American Astronomical Society.
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3.1 Introduction

Low-mass galaxies provide a unique testing ground for predictions of the

cold dark matter (CDM) paradigm for structure formation, since they generally

have a lower fraction of baryons than massive galaxies. These galaxies allow for

a more direct measurement of the underlying dark matter potential, as the com-

plicated effects of baryons on the dark matter are less pronounced. A particularly

testable prediction of CDM is that all galaxies share a universal dark matter density

profile, characterized by a cuspy inner power law ρ ∝ r−α where α = 1 (Navarro

et al. 1996b, hereafter NFW). Many authors have investigated low-mass spirals and

found, in contrast to the predictions of CDM, dark matter density profiles with a

flat inner core of slope α = 0 (Burkert, 1995; Persic et al., 1996; de Blok et al.,

2001; Blais-Ouellette et al., 2001; Simon et al., 2005). This has launched the de-

bate known as the core/cusp controversy.

A number of other studies have investigated the mass content of dwarf

spheroidal galaxies (dSphs). Gilmore et al. (2007) give a comprehensive review

of recent attempts to constrain the inner slope of their dark matter profiles with

Jeans modeling (Jeans 1919; Binney & Tremaine 1987, chapter 4). When signifi-

cant, cored profiles are preferred for all dSphs modeled (Gilmore et al. 2007, and

references therein).

These results, however, are subject to a major caveat of Jeans modeling; it

is complicated by the effect of stellar velocity anisotropy. Models fit to the line-of-

sight component of the velocity dispersion, but anisotropy can severely affect the

modeling of enclosed mass. Therefore, additional assumptions must be made. The
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studies presented in Gilmore et al. (2007) assume spherical symmetry and isotropy.

Evans et al. (2009) show that a weakness of Jeans modeling is that given these

assumptions combined with the cored light profiles observed in dSphs, the Jeans

equations do not allow solutions with anything other than a cored dark matter pro-

file.

Walker et al. (2009b) construct more sophisticated models and attempt to

parameterize and fit for the anisotropy. As a result, preference for cored profiles

becomes model-dependent. They therefore are unable to put significant constraints

on the slope of the dark matter profile. This highlights the main problem with Jeans

modeling—it is highly dependent on the assumptions made.

Distribution function models can be made more general than Jeans models,

and progress has been made applying them to a number of dSph systems (Kleyna

et al., 2002; Wu, 2007; Amorisco & Evans, 2011b). Nevertheless these models still

make strong assumptions such as spherical symmetry or isotropy, and models that

do fit for anisotropy do so without using the information about the stellar orbits

contained in the line-of-sight velocity distributions (LOSVDs).

We employ a fundamentally different modeling technique, known as orbit-

based (or Schwarzschild) modeling, that allows us to use this information to self-

consistently calculate both the enclosed mass and orbital anisotropy. Schwarzschild

modeling is a mature industry, but one that has seldom been applied to the study of

dSph galaxies (see Valluri et al. 2005).

In addition to being well-suited for measuring dark matter profiles, Schwarzs-
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child modeling has often been used to search for black holes at the centers of galax-

ies. Another unresolved issue relevant to the study of dSphs is whether they host an

intermediate-mass black hole (IMBH). In a hierarchical merging scenario, smaller

galaxies are thought to be the building blocks of larger galaxies. It is thought that all

massive galaxies host a supermassive black hole (SMBH) at their center, therefore

it is logical to believe that their building blocks host smaller IMBHs. Evidence for

these IMBHs is scarce, however, and dynamical detections are even scarcer. The

closest and lowest mass example of a dynamical measurement is an upper limit on

the local group dSph NGC 205 of M•≤ 2.2×104 M⊙ (Valluri et al., 2005). Black

holes in this mass range can provide constraints on theories of black hole growth

and formation. The two most prominent competing theories of nuclear black hole

formation are direct collapse of primordial gas (Umemura et al., 1993; Eisenstein

& Loeb, 1995; Begelman et al., 2006) or accretion onto and mergers of seed black

holes resulting from the collapse of the first stars (Volonteri & Perna, 2005).

In this paper we present axisymmetric, three-integral Schwarzschild models

in an effort to determine the inner slope of the dark matter density profile as well

as the orbit structure of the Fornax dSph. We also investigate the possibility of a

central IMBH. We assume a distance of 135 kpc to Fornax (Bersier, 2000).

3.2 Data

To construct dynamical models, we require a stellar light profile as well as

stellar kinematics in the form of LOSVDs. We use published data for both the

photometry and kinematics, and describe the steps taken to convert this data into
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useful input for our models.

3.2.1 Stellar Density

To determine the stellar density, we use a number density profile from Cole-

man et al. (2005) extending to 4590′′. We linearly extrapolate the profile out to

6000′′—a physical radius of 3.9 kpc at our assumed distance. We also extrapolate

the profile inwards at constant density from 90′′ to 1′′.

To convert to a more familiar surface brightness profile we apply an arbitrary

zero-point shift in log space, adjusting this number so that the integrated profile

returns a luminosity consistent with the value listed in Mateo (1998). Adopting an

ellipticity of e = 0.3 (Mateo, 1998), we deproject under the assumption that surfaces

of constant luminosity are coaxial spheroids (Gebhardt et al., 1996), and for an

assumed inclination of i = 90◦.

3.2.2 Stellar Kinematics

We derive LOSVDs from individual stellar velocities published in Walker

et al. (2009a). The data contain heliocentric radial velocities and uncertainties with

a membership probability for 2,633 Fornax stars. Most of these are single-epoch

observations, however some are multi-epoch. Stars that have more than one obser-

vation are averaged, weighted by their uncertainties. After making a cut in member-

ship probability at 90%, we are left with 2,244 stars. Although a significant number

of stars observed may be in binary or multiple systems, simulations have shown that

such systems are unlikely to affect measured dispersions (Hargreaves et al., 1996;

62



0

2×10−3

4×10−3

6×10−3
a) χ 2

LOG=2.6

χ 2
NFW=9.5

0

2×10−3

4×10−3b) χ 2
LOG=2.8

χ 2
NFW=10.8

−40 −20 0 20 40

0

2×10−3

4×10−3
c) χ 2

LOG=0.5

χ 2
NFW=1.9

−20 0 20 40

0

2×10−3

d) χ 2
LOG=0.7

χ 2
NFW=2.8

V (km/s)

Figure 3.1 Line-of-sight velocity distributions of four bins. Open circles with error
bars are the data. Over-plotted are the model values for the best-fitting cored model
(red) and NFW model (blue). Bins are located at: (a) R = 297′′, θ = 18◦ (b) R = 550′′,
θ = 18◦ (c) R = 1008′′, θ = 45◦ (d) R = 2484′′, θ = 45◦. Quoted χ2 values are un-
reduced.
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Olszewski et al., 1996; Mateo, 1998).

We adopt a position angle PA = 41◦ (Walker et al., 2006). We assume sym-

metry with respect to both the major and minor axes and fold the data along each

axis. To preserve any possible rotation, we switch the sign of the velocity whenever

a star is flipped about the minor axis.

The transverse motion of Fornax contributes a non-negligible line-of-sight

velocity to stars, particularly those at large galactocentric radius. Using the equa-

tions in Appendix A of Walker et al. (2008), we correct for this effect. We adopt

values for the proper motion of (µα,µδ) = (47.6,−36.0) mas century−1 (Piatek et al.,

2007) and assume the heliocentric radial velocity of Fornax is 53.3 km s−1 (Piatek

et al., 2002).

We divide our meridional grid into 20 radial bins, equally spaced in approx-

imately log r from 1′′to 5000′′. There are 5 angular bins spaced equally in sin θ over

90◦ from the major to the minor axis (Gebhardt et al., 2000a; Siopis et al., 2009).

From the positions of the folded stellar velocity data, we determine the best bin-

ning scheme so that each grid cell contains at least 25 stars from which to recover

the LOSVD. Our first bin with enough stars to meet this criterion is centered at 47′′,

and the last bin is centered at 2500′′. We therefore have two-dimensional kinematics

coverage over the radial range 47′′-2500′′(30pc - 1.6 kpc). At small radii the num-

ber density of stars with velocity measurements is low, thus our central LOSVDs

have higher uncertainty compared to those at larger radii.
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Table 3.1. Best-Fit Model Parameters

DM Profile χ2 M
LV

c rs (kpc) ρc (M⊙pc−3) M•(M⊙) Nmodel

NFW 239.8 1.3± 0.6 4.1± 0.26 11.7± 1.4 — — 3124
Log 162.6 1.5± 0.5 — — 1.6± 0.1× 10−2 — 4319
Log 162.6 1.6± 0.2 — — 1.6± 0.1× 10−2 ≤ 3.2× 104 3423

Note. — Best-fit parameters for NFW, and cored logarithmic dark matter halos. χ2 is un-reduced, the
number of degrees of freedom are the same for each model. Model parameters and 1-σ uncertainties are
quoted. Nmodel lists the number of models run for the corresponding parameterization.
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Within each grid cell, we calculate the LOSVD from discrete stellar veloc-

ities by using an adaptive kernel density estimate adapted from Silverman (1986)

and explained in Gebhardt et al. (1996). We estimate the 1 −σ uncertainties in the

LOSVDs through bootstrap resamplings of the data (Gebhardt et al., 1996; Geb-

hardt & Thomas, 2009). The bootstrap generates a new sample from the data itself

by randomly picking N data points, where N is the total number of stars in a given

bin, allowing the same point to be chosen more than once. We then estimate the

LOSVD from that realization and repeat the procedure 300 times. The 68% confi-

dence band on the LOSVDs corresponds to the 68% range of the realizations. We

compare the velocity dispersion as measured by the LOSVDs with the biweight

scale (i.e., a robust estimate of the standard deviation, see Beers et al. 1990) of the

individual velocities and note good agreement.

Figure 4.3 plots the LOSVDs of four bins. Rather than parameterizing

these LOSVDs with Gauss-Hermite moments, our models instead fit directly to

the LOSVDs to constrain the kinematics of the galaxy. However, we do fit Gauss-

Hermite moments for plotting purposes only. These data are presented in Figure 3.2

for stars that have been grouped into bins near the major axis (blue) and minor axis

(red). Near the center of the galaxy the density of stars with kinematics is sparse, so

we therefore group stars into annular bins covering all angles (green). We estimate

the 1-σ uncertainties of the Gauss-Hermite moments by fitting to each of the 300

realizations calculated during the bootstrap discussed above. The error bars plotted

contain 68% of the 300 realizations.
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3.3 Dynamical Models

The modeling code we use is described in detail in Gebhardt et al. (2003),

Thomas et al. (2004, 2005), and Siopis et al. (2009) and is based on the technique

of orbit superposition (Schwarzschild, 1979). Similar axisymmetric codes are de-

scribed in Rix et al. (1997); van der Marel et al. (1998); Cretton et al. (1999); Valluri

et al. (2004) while van den Bosch et al. (2008) present a fully triaxial Schwarzschild

code. Our code begins by choosing a trial potential that is a combination of the stel-

lar density, dark matter density, and possibly a central black hole. We then launch

∼ 15,000 orbits carefully chosen to uniformly sample the isolating integrals of mo-

tion. In an axisymmetric potential, orbits are restricted by three isolating integrals

of motion, E, Lz, and the non-classical “third integral” I3. As it is not possible to

calculate I3 a priori, we use a carefully designed scheme to systematically sample

I3 for each pair of E and Lz (Thomas et al., 2004; Siopis et al., 2009). Orbits are

integrated for many dynamical times, and each orbit is given a weight wi. We find

the combination of wi that best reproduces the observed LOSVDs and light profile

via a χ2 minimization subject to the constraint of maximum entropy (Siopis et al.,

2009).

We run models by varying 3 parameters—the stellar M/LI and two param-

eters specifying the dark matter density profile. Some models are also run with a

central black hole whose mass is varied in addition to the other 3 model parame-

ters. Each model is assigned a value of χ2 and we identify the best-fitting model

as that with the lowest χ2. We determine the 68% confidence range on parameters

by identifying the portion of their marginalized χ2 curves that lie within ∆χ2 = 1 of
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the overall minimum.

3.3.1 Model Assumptions

Our trial potential is determined by solving Poisson’s equation for an as-

sumed trial density distribution. On our two-dimensional polar grid, this takes the

form:

ρ(r,θ) =
M

L
ν(r,θ) +ρDM(r) (3.1)

where M/L is the stellar mass-to-light ratio, assumed constant with radius, and

ν(r,θ) is the unprojected luminosity density. The assumed dark matter profile ρDM(r)

is discussed below. For simplicity, we assume Fornax is edge-on in all our models.

3.3.2 Dark Matter Density Profiles

We parameterize the dark matter halo density with a number of spherical

density profiles. We use NFW halos:

ρDM(r) =
200

3
A(c)ρcrit

(r/rs)(1 + r/rs)2
(3.2)

where

A(c) =
c3

ln(1 + c) − c/(1 + c)

and ρcrit is the present critical density for a closed universe. The two parameters we

fit for are the concentration c and scale radius rs. We also use halos derived from

the logarithmic potential:
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ρDM(r) =
V 2

c

4πG

3r2
c + r2

(r2
c + r2)2

(3.3)

These models feature a flat central core of density ρc = 3V 2
c /4πGr2

c for r ∼< rc and

an r−2 profile for r > rc. We fit for Vc and rc, the asymptotic circular speed at r = ∞

and core radius respectively. We run over 10,000 models with only three distinct

parameterizations: NFW halos, and logarithmic models with and without an IMBH.

3.4 Results

We find significant evidence for cored logarithmic dark matter density pro-

files. These models are preferred at the ∆χ2 = 77 level when compared to models

with an NFW halo, a highly significant result. Perhaps more convincingly, the val-

ues for the concentration preferred by our models are around c = 4. Only relatively

recently formed structures like galaxy clusters are expected to have concentrations

this low (NFW).

Table 3.1 summarizes the results of our models, while Figures 4.3 and 3.2

illustrate the preference for cored models over models with an NFW halo in fitting

to the kinematics. We stress again that LOSVDs like those plotted in Figure 4.3 are

the kinematic constraint, and not the Gauss-Hermite moments of Figure 3.2.

While we fit for Vc and rc in the cored models, these parameters are strongly

degenerate. Our model grid extends to 3.3 kpc, thus any model with rc > 3.3 kpc has

a uniform density ρc = 3V 2
c /4πGr2

c over the entire range of our model. Furthermore,

we have no velocity information from stars past R ≥ 1.6 kpc and therefore cannot
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Figure 3.3 χ2 curves for all parameterizations of the mass profile. NFW halos (blue)
are parameterized by concentration c and scale radius rs. Logarithmic halos with
an IMBH (green) and without (red) are specified by Vc and rc. We also plot core
density ρc = 3V 2

c /4πGr2
c as it is the controlling parameter over the radial range of

our models. We fit for stellar M/LI in all models (upper left panel). NFW models
have much higher χ2 and are scaled down by 75 to fit on the same axis. Black
hole mass for logarithmic halos with an IMBH (green) is plotted in the upper right
panel. Note the apparent minimum in rc for logarithmic halos with an IMBH is due
to incomplete parameter sampling.
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constrain the kinematics in the outer parts of the galaxy. Thus, for models with

rc ∼> 1.6 kpc, ρc is now the only parameter that differentiates between models. As ρc

is dependent on both Vc and rc, the latter two parameters are completely degenerate.

Figure 3.3 illustrates this effect. Plotted are the χ2 curves for each model

parameter. Lines of the same color indicate a common parameterization of the

mass profile (e.g. cored + IMBH). While the χ2 for both Vc and rc asymptotes to

large values, ρc is tightly constrained. Note that the behavior of rc for logarithmic

profiles with an IMBH (green line) is a result of incomplete parameter sampling.

With a more densely-sampled parameter space, the χ2 curve for rc for cored models

with an IMBH would likely asymptote to large rc in a similar fashion as models

without an IMBH (red curve).

The addition of a central black hole to the mass profile does not make a

noticeable difference to the overall χ2 for most values of M•. We therefore place a

1-σ upper limit on M• ≤ 3.2×104 M⊙.

We plot the mass profile for our best-fit model in Figure 3.4 (solid black

line with surrounding 68% confidence region). This is a cored logarithmic dark

matter profile without a central black hole. The mass profile of our best-fit dark

halo is plotted as the dashed line, and the stellar mass profile is plotted in red.

The contribution of dark matter to the total mass increases with radius as the local

dynamical mass-to-light ratio rises from approximately ∼ 2 to greater than 100 in

the outermost bin of our model.
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Figure 3.4 Total enclosed mass for our best-fit model (black line with surrounding
confidence region). Red line is the enclosed stellar mass. Dashed line is our best-fit
dark matter halo.

3.4.1 Orbit Structure

We construct a distribution function for the galaxy from the set of orbital

weights wi resulting from the χ2 minimization of our best-fit model. To explore the

orbit structure, we determine the internal (unprojected) moments of the distribution

function in spherical coordinates. Streaming motions in the r and θθθ directions are

assumed to be zero. In this coordinate system, cross-terms of the velocity dispersion

tensor are zero.

Figure 6.5 plots the anisotropy in the diagonal components of the dispersion

tensor. While some panels show an average value near unity, there are regions in

73



every panel where the ratio plotted is different from one. Additionally, we define

the tangential velocity dispersion σt ≡
√

1
2(〈v2

φ〉+σ2
θ) where 〈v2

φ〉 is the second mo-

ment 〈v2
φ〉 = σ2

φ +V 2
φ , and V 2

φ is the mean rotation velocity. With this definition, we

plot the ratio σr/σt in the bottom panels of Figure 6.5 to investigate whether orbits

are radially or tangentially biased. From these plots it is clear that the common

assumptions of Jeans modeling—constant or zero anisotropy—are unrealistic. We

find that at most radii in the galaxy, orbits are radially biased. The uncertainty in

the anisotropy is largest at small radii, as evidenced by the size of the 68% confi-

dence regions in Figure 6.5. This is likely due to the sparsity of kinematics in the

inner part of the galaxy (there are limits to how closely target fibers can be spaced

in multi-fiber spectroscopy).

In a recent paper, Kazantzidis et al. (2011) simulated the effects of tidal

stirring on a number of dSph progenitors around a Milky Way sized halo. They

found radial anisotropy in all of the final remnants, and our models are consistent

with these findings.

3.5 Discussion

3.5.1 Cores and Cusps

Our analysis shows that for the Fornax dwarf an NFW dark matter halo with

inner slope α = 1 is rejected with high confidence. We have kinematics from 30 pc-

1.6 kpc, and over this range the models prefer an α = 0 uniform density core with

ρc = 1.6× 10−2 M⊙ pc−3. We do not attempt to fit for models with an intermediate

value of the slope 0 ≤ α ≤ 1. Further investigation is necessary before we can
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conclude that the best fitting dark matter profile is the logarithmic model. The steep

α = 1 cusp of the NFW profile is, however, robustly ruled out.

The models, in general, seem to prefer less mass in the areas over which we

have kinematic constraints. In NFW models, the concentration c sets the normal-

ization (or y-intercept) of the density profile. Because c cannot be lowered below

an astrophysically reasonable limit, NFW models enclose more mass than cored

models. This difference is reflected in the χ2 difference between cored and NFW

models, as the kinematics are best fit by models with less mass. Figure 3.2 hints at

this as the best fit NFW model (dashed line) typically has higher values for σ than

either the data or best-fitting cored model (solid line).

Several groups have approached the core/cusp issue in dSphs by taking ad-

vantage of the fact that some dSphs host multiple populations of tracer stars that

are chemically and dynamically distinct. By fitting models to each component, the

underlying dark matter profile can be modeled more accurately. Amorisco & Evans

(2011a) fit two-component distribution function models to Sculptor, while Walker

& Peñarrubia (2011) apply a convenient mass estimator (discussed below) to each

stellar component in Sculptor and Fornax. It is believed that this mass estimator is

unaffected by orbital anisotropy, thus their method yields a robust determination of

the dynamical mass at two locations in the galaxy—allowing for the slope of the

dark matter profile to be measured. Each of these studies finds models with a cored

dark matter halo preferable to the predicted cuspy NFW profile.

It must be noted, however, that we are not observing the pristine initial dark

matter distribution in this galaxy. Rather, it has likely been modified by complex
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baryonic processes over the lifetime of the galaxy. These processes may include:

adiabatic compression (Blumenthal et al., 1986), halo rebounding following bary-

onic mass loss from supernovae (Navarro et al., 1996a), or possibly dynamical fric-

tion acting on clumps of baryons (El-Zant et al. 2001; but see also Jardel & Sell-

wood 2009). Although we chose this galaxy because these effects were likely to be

small, they are nevertheless not well understood and our result must be taken in that

context.

3.5.2 Central IMBH

We are unable to place a significant constraint on the mass of a central

IMBH. Figure 3.3 (upper right) shows the marginalized χ2 curve against IMBH

mass for cored dark matter density profiles. The curve asymptotes to low values

of IMBH, thus we are only capable of placing an upper limit on the mass of any

potential IMBH. Furthermore, our best-fit cored model with and without an IMBH

have the same χ2. We therefore impose a 1-σ upper limit on M• ≤ 3.2×104 M⊙. It

is unfortunate that we are not able to place a lower limit on M• because measure-

ments of black holes in the range M•∼< 104 M⊙ place direct constraints on SMBH

formation mechanisms. Our models, however, do robustly rule out a black hole of

larger mass.

In massive galaxies it is thought that the radius of influence, Rinf ∼ GM•/σ
2

must be resolved in order to detect and precisely measure a black hole (Gebhardt

et al., 2003; Kormendy, 2004; Ferrarese & Ford, 2005; Gültekin et al., 2009b).

Using our upper limit on M• we can calculate the maximum radius of influence of
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a potential black hole. Estimating the central velocity dispersion at σ ∼ 10 km s−1

gives an upper limit for Rinf ∼< 14 pc. Our kinematics start at R = 26 pc, so it is not

surprising that the minimum black hole mass we were able to detect has Rinf close

to 26 pc. To detect smaller black holes, we require kinematics of stars closer to the

center of the galaxy.

We are able to detect the dynamical influence of a black hole with a similar

mass as Valluri et al. (2005) detect in NGC 205, however with kinematics of much

lower resolution. Our innermost model bin is centered around 30 pc whereas they

use high-resolution kinematics from the Hubble Space Telescope to resolve spatial

scales less than 1 pc. The advantage we have is that the central velocity dispersion

is much smaller in Fornax, which makes Rinf larger for fixed M•. NGC 205 is also

more than five times as distant as Fornax.

3.5.3 Mass Estimators

Several authors have come up with convenient estimators of total mass

within a given radius for local group dSphs. Strigari et al. (2008a) use the mass

enclosed within 300 pc while Walker et al. (2009b) and Wolf et al. (2010) find

a similar expression for the mass contained within the projected half-light radius.

These estimators bear striking resemblance to a result obtained by Cappellari et al.

(2006) derived from integral field kinematics of massive elliptical galaxies, and they

all hint at an easy way to determine dynamical masses without expensive modeling.

They are believed to be insensitive to velocity anisotropy based on the derivation in

Wolf et al. (2010), and we compare their estimates to our models as a check on this.
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For the mass contained within 300 pc we measure M300 = 3.5+0.77
−0.11 ×106M⊙,

roughly a factor of three smaller than Strigari et al. (2008a) who measure M300 =

1.14+0.09
−0.12 ×107M⊙ using Jeans models with parameterized anisotropy.

The Cappellari et al. (2006), Walker et al. (2009b), and Wolf et al. (2010)

mass estimators are all of the form

M(Re) = k〈σ2
LOS〉Re (3.4)

with the difference between them reflected in their value of the constant k. In

order to more fairly compare between these estimators and our models, we use

the values for the luminosity-weighted line-of-sight velocity dispersion 〈σ2
LOS〉 =

11.3+1.0
−1.8 km s−1 and projected half-light radius Re = 689pc that we calculate from

the data used in our models.

Our best-fitting model has M(Re) = 3.9+0.46
−0.11 × 107 M⊙ enclosed within the

projected half-light radius. Interestingly, each mass estimator predicts a value for

M(Re) significantly greater than what our models measure. With each group’s value

for k and our kinematics, the mass estimates are: M(Re) ≈ 5.1+1.0
−1.5×107 M⊙ (Walker

et al., 2009b), M(Re) ≈ 8.1+1.6
−2.4 ×107 M⊙ (Wolf et al., 2010), and M(Re) ≈ 1.0+0.3

−0.2 ×

108 M⊙ (Cappellari et al., 2006).

The evidence that mass estimators are anisotropy-independent comes largely

from comparison to spherical Jeans models (except Cappellari et al. 2006). The

weakness of these models is that the anisotropy must be parameterized and is re-

stricted to be a function of radius only. Our models are not subject to these con-

79



straints since the anisotropy is calculated non-parametrically and is free to vary with

position angle. We suggest that the best way to prove the accuracy of mass estima-

tors is to compare with models that can self-consistently calculate both mass and

anisotropy for realistic potentials.

For bright elliptical galaxies, Cappellari et al. (2006) and Thomas et al.

(2011) have done just that. In these cases, the mass estimates are checked against

masses derived from axisymmetric Schwarzschild modeling and good agreement

is found. Ours is the first study to perform a similar test with dSphs, and there is

no reason to assume that success with bright ellipticals guarantees accuracy in the

dSph regime.

3.5.4 Tidal Effects

The principle of orbit superposition, and hence our entire modeling pro-

cedure, relies on the assumption that the galaxy is bound and in a steady state.

The amount of tidal stripping in Fornax due to the effect of its orbit through the

Milky Way’s halo is not well-known. For reasonable values of Fornax total mass

m, Milky Way mass M, and Galactocentric radius R0, the tidal radius of Fornax

is rt ∼ (m/3M)1/3R0 ∼ 13.5 kpc. This estimate of rt is sufficiently larger than our

model grid that we would not expect tidal effects to be important over the radial

range of our models. If Fornax is on an eccentric orbit about the Milky Way, how-

ever, the above equation for rt is not valid and estimation of the tidal radius is not

as straightforward. Fortunately, studies investigating its transverse motion suggest

the orbit of Fornax is roughly circular (Piatek et al., 2007; Walker et al., 2008).
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Chapter 4

Measuring Dark Matter Profiles Non-Parametrically

in Dwarf Spheroidals: An Application to Draco1

“I see nobody on the road” said Alice.
“I only wish I had such eyes,” the King remarked in a fretful tone.

“To be able to see Nobody! And at that distance too!
Why, it’s as much as I can do to see real people, by this light.”

Lewis Carroll - Through the Looking-Glass

We introduce a novel implementation of orbit-based (or Schwarzschild)

modeling that allows dark matter density profiles to be calculated non-parametrically

in nearby galaxies. Our models require no assumptions to be made about veloc-

ity anisotropy or the dark matter profile. The technique can be applied to any

dispersion-supported stellar system, and we demonstrate its use by studying the

Local Group dwarf spheroidal (dSph) galaxy Draco. We use existing kinematic

data at larger radii and also present 12 new radial velocities within the central 13 pc

obtained with the VIRUS-W integral field spectrograph on the 2.7m telescope at

McDonald Observatory. Our non-parametric Schwarzschild models find strong ev-

idence that the dark matter profile in Draco is cuspy for 20 ≤ r ≤ 700 pc. The

profile for r ≥ 20 pc is well-fit by a power law with slope α = −1.0±0.2, consistent

1Published in Jardel, J., R., Gebhardt, K., Fabricius, M., Drory, N., Williams, M., J., 2013, ApJ, 763,
91. Reprinted with permission from the American Astronomical Society.
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with predictions from Cold Dark Matter (CDM) simulations. Our models confirm

that, despite its low baryon content relative to other dSphs, Draco lives in a massive

halo.
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4.1 Introduction

Understanding how dark matter is distributed in low-mass galaxies is central

to the study of galaxy formation in the cold dark matter (CDM) paradigm. The

first CDM simulations predicted that all dark matter halos share a universal density

profile with a cuspy inner slope of α ≡ d lnρDM/d lnr = −1 (Navarro et al. 1996b,

hereafter NFW). When observers began studying low-mass galaxies, however, they

mostly found halos with a uniform density α = 0 core (Burkert, 1995; Persic et al.,

1996; Borriello & Salucci, 2001; de Blok et al., 2001; Blais-Ouellette et al., 2001;

Simon et al., 2005). This disagreement between theorists and observers over the

form of ρDM(r) became known as the core/cusp debate.

Since the debate began, the number of profile parameterizations used to

describe low-mass galaxies by both theorists and observers has only increased. Ob-

servers champion empirical fits such as the Burkert profile (Burkert, 1995; Salucci

& Burkert, 2000), cored isothermal models (Persic et al., 1996) or simply generic

broken power laws (Koch et al., 2007; Strigari et al., 2008b; Walker et al., 2009b).

Theorists have also introduced new fits to their simulated halos with varying, al-

though still cuspy, inner slopes (Navarro et al., 2004; Stadel et al., 2009; Navarro

et al., 2010). Modeling a galaxy with each of these parameterizations would not

only be time consuming, but also biased if the true profile is unlike any of them. It

is therefore preferable to use non-parametric methods to determine ρDM(r).

Van den Bosch et al. (2006) first experimented with non-parametric orbit-

based models by allowing the mass-to-light ratio M/L to vary with radius in the

globular cluster M15. We introduce a similar modeling technique that uses axisym-
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metric Schwarzschild modeling, combined with knowledge of the full line-of-sight

velocity distribution (LOSVD) of stars, to break the well-known degeneracy be-

tween mass and orbital anisotropy. We demonstrate the capability of these models

by applying them to the Local Group dwarf spheroidal (dSph) galaxy Draco. Draco

is part of an interesting class of objects that are some of the most dark matter-

dominated galaxies discovered. This makes differentiating between dark and lumi-

nous mass in dSphs easier as the baryons have less of an effect on the total density

profile than they do in larger galaxies. Recently, using improved data and modeling

techniques, Adams et al. (2012) found a cuspy dark matter profile in the low-mass

galaxy NGC 2796 where previous studies found a core. Studies like these motivate

us to investigate the dSphs with more sophisticated models.

Our models represent a significant improvement over previous work on

dSphs as most studies use spherical Jeans models (Gilmore et al., 2007; Walker

et al., 2009b; Wolf et al., 2010) which require the modeler to make assumptions

about the nature and degree of the anisotropy. These assumptions vary in com-

plexity from simply assuming isotropy, which can bias the estimate of α (Evans

et al., 2009), to parameterizing the anisotropy as a general function of radius (Stri-

gari et al., 2008b; Wolf et al., 2010). Models that allow for more freedom in the

anisotropy typically fall victim to the mass-anisotropy degeneracy and cannot ro-

bustly determine the inner slope of ρDM(r) (Walker et al., 2009b). We hope to make

a robust determination of the inner slope in Draco with a suite of more general

non-parametric Schwarzschild models.
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4.2 Non-parametric Schwarzschild Models

At the heart of our non-parametric technique is the orbit-based modeling

code developed by Gebhardt et al. (2000b, 2003), updated by Thomas et al. (2004,

2005), and described in detail in Siopis et al. (2009). All orbit-based codes are based

on the principle of orbit superposition first introduced by Schwarzschild (1979).

Similar axisymmetric codes are used by Rix et al. (1997),van der Marel et al.

(1998), Cretton et al. (1999), and Valluri et al. (2004) while van den Bosch et al.

(2008) present a fully triaxial modeling code. The current Schwarzschild models

that allow for dark matter do so by requiring the modeler to assume a parameteriza-

tion for the dark matter density profile ρDM(r). Unfortunately, this parameterization

is often exactly what we wish to determine. Current methods get around the circu-

lar logic of this dilemma by running models with different parameterizations and

comparing their relative goodness-of-fit with a χ2 test. Non-parametric modeling

sidesteps the issue entirely, and lets the parameterization of ρDM(r) be output from

the models, rather than input as a guess.

The principle of orbit superposition works by choosing from a library of all

possible stellar orbits only those orbits that best reproduce the observed kinematics

of the galaxy being modeled. If we know the mass density profile of the galaxy,

and hence the potential, we can compute the appropriate orbit library. However,

since we do not know the potential of the galaxy, we must construct a number of

models with slightly different mass distributions and compare the goodness-of-fit

of the resulting allowed orbits. The radial profile of the total (dark + stellar) mass

density in a galaxy can be written as:
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ρ(r) =
M∗

L
×ν(r) +ρDM(r) (4.1)

where M∗/L is the mass-to-light ratio of the stars, ν(r) is the stellar luminosity den-

sity profile, and ρDM(r) is the dark matter density profile. In principle we know

M∗/L, which can vary as a function of radius, from stellar population models. We

also know ν(r) from the de-projection of the observed surface brightness profile.

Our task is to construct orbit libraries for varying ρ(r) and match the allowed or-

bits to kinematics in the form of LOSVDs—the distribution of projected velocities

observed. Some orbit libraries will contain orbits that do a good job at fitting the

observed LOSVDs and others will not. The best-fitting model identifies the best-

fitting ρ(r). Once we know this, we can invert Equation (4.1) to solve for ρDM(r).

The trick is to vary ρ(r) in a systematic way. This is the principal difference be-

tween our new approach and standard Schwarzschild modeling which tries to vary

ρ(r) by varying the parameters that define an assumed dark matter profile.

To compute the orbit library for each model, we first calculate the potential.

We assume axisymmetry and make use of the stellar ellipticity to define the den-

sity at angle θ in our meridional grid. The dark matter halo is assumed to have the

same ellipticity as the stars. We solve Poisson’s equation for the potential associ-

ated with this density distribution by decomposing ρ(r,θ) into spherical harmonics

(Siopis et al., 2009). With the potential known, we launch 20,000-30,000 orbits and

integrate their motion for roughly 100 crossing times, storing position and velocity

information at each timestep.
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Orbits in axisymmetric potentials respect three isolating integrals of motion:

energy E, the z-component of angular momentum Lz, and the non-classical third

integral I3. By specifying all three of these quantities together, an orbit is uniquely

defined. Unfortunately, there is no analytical form for I3 and it is generally not

known a priori. We therefore rely on the sampling scheme of Thomas et al. (2004)

to construct an orbit library which uniformly samples E, Lz, and I3 and thereby

contains all possible orbits for a given potential.

Each orbit in the library is given a weight wi, and a set of wi are chosen so

the observed kinematics are appropriately reproduced by the orbits which have been

weighted, averaged, and projected. Quantitatively, we observe NLOSVD LOSVDs

in the galaxy at various positions. Each LOSVD contains Nvel velocity bins with

uncertainties, so the number of observables the models must match to is given by

the product NLOSVD ×Nvel. The goodness-of-fit of a model is judged by

χ2 =
NLOSVD
∑

i=1

Nvel
∑

j=1

(

ℓobs
i j − ℓmod

i j

σi j

)2

(4.2)

where ℓobs
i j and ℓmod

i j are the jth velocity bin of the ith LOSVD from the observations

and model respectively, and σi j is the uncertainty in ℓobs
i j .

Given the freedom to choose from upwards of 10,000 orbital weights to

match only NLOSVD ×Nvel ∼ 100 observables, a standard χ2 minimization routine

can populate the distribution function in any number of ways that introduce un-

wanted noise. To avoid distribution functions that are noisy or unrealistic, however

still consistent with the observables, we employ a maximum entropy smoothing
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technique developed by Richstone & Tremaine (1988) and described in Siopis et al.

(2009). Instead of minimizing χ2, we maximize the objective function

Ŝ = −

Norb
∑

i=1

wi log
(

wi

∆Ωi

)

−αSχ
2 (4.3)

where Norb is the number of orbits in the library, and ∆Ωi is the phase-space vol-

ume of the ith orbit. See Siopis et al. (2009) for a technical description of how we

calculate phase-space volumes and maximize Ŝ.

The first term in Equation (4.3) is an entropy-like quantity and the second

term is χ2 from Equation (6.1). The parameter αS controls which term influences Ŝ.

For small αS, orbital weights are chosen to produce a smooth distribution function

at the expense of reproducing the data. For large αS, the data are well-fit by the

model (χ2 is small), but the resulting distribution function is likely not smooth. We

determine the appropriate αS for each model using the scheme described in Siopis

et al. (2009). We start with αS = 0 and incrementally increase it until changes to

χ2 between successive iterations are small. Thus, the maximum entropy constraint

serves to initialize the search for the minimum when αS = 0. By slowly increasing

αS, we drive down the importance of entropy to the fit until it no longer matters.

4.2.1 Varying ρ(r) Between Models

The major innovation of our new modeling technique is how we choose the

density profile ρ(r) of each model. Current methods assume ρDM(r) and calculate

ρ(r) from Equation (4.1), however this requires knowledge of the appropriate pa-
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Figure 4.1 VIRUS-W IFU overlaid on top of an HST image from Ségall et al.
(2007). Red circles highlight fibers containing stars used in the determination of
the central LOSVD. Note the HST PSF is significantly smaller than the typical
2′′seeing at McDonald Observatory.
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rameterization for ρDM(r). We use a fundamentally different strategy and divide

ρ(r) into Nbin discrete points whose value ρ at radius ri is labeled ρi. The Nbin points

are spaced evenly in log r and connected by straight line segments. Each trial den-

sity profile is now defined by the ρi at each of the Nbin bins. We run many models

adjusting the values of the ρi so as to sample all possible density profiles. This

strategy requires no assumptions to be made about the shape of ρ(r) or ρDM(r), but

it is computationally intensive for large Nbin.

The choice of Nbin is a compromise between accuracy in reproducing ρ(r)

and computational resources. Large values of Nbin can make parameter space im-

possibly large, while small values can be overly restrictive on ρ(r). We have ex-

perimented with Nbin= 5, 7, and 10. The added freedom with Nbin=7 or 10 was not

found to be worth the increase to the dimensionality of parameter space. We have

also tried connecting the ρi with splines, but found the additional freedom produced

unrealistic density profiles. Concern over the smoothness of ρ(r) may be mitigated

by the fact that ρ(r) only matters to our models in that it determines the potential.

As the potential is the integral of ρ(r), this introduces additional smoothness.

We extrapolate the density at the outermost point as a power law with slope

α∞. The only parameters in the model are the ρi themselves and the extrapolation

slope α∞. The models also have the flexibility to add a central black hole of mass

M• to the galaxy for future studies.
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4.2.2 Separating dark from stellar mass

Once the best-fitting ρ(r) is found, the task remains still to recover the un-

derlying dark matter density profile. This involves finding some other constraint

on the stellar mass-to-light ratio. We can often determine M∗/L from simple stellar

population (SSP) models. The required input for SSP models varies greatly, and

different methods are appropriate depending on the galaxy modeled. For example,

if spectra are available, stellar population synthesis models or Lick indices can be

used. Lacking spectra, one can use the relations between broad-band colors and

M∗/L (Bell & de Jong, 2001). In nearby dSph galaxies where individual stars are

resolved, color-magnitude diagrams can be constructed to fit for age and metallicity

with isochrones. We can also evaluate the radial variation of M∗/L as well without

much additional effort. Spectral or photometric data need only be spatially binned

with the same procedure repeated at each bin. Once M∗/L is calculated, stellar

density is simply the product of the (possibly radially varying) M∗/L×ν(r).

4.3 Application to Draco

We apply our new non-parametric Schwarzschild modeling technique to

study the nearby Draco dSph. Draco is a satellite galaxy of the Milky Way or-

biting at a distance from the sun of only 71 kpc (Odenkirchen et al., 2001). At

this distance individual stars are resolved even with ground-based observatories.

Consequently, the data we use are radial velocities of individual stars. Radial ve-

locities are available for 158 stars in Draco, and we present radial velocities from

new observations of an additional 12 stars near the center of Draco.
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We choose Draco because it is the most dark matter-dominated of the “clas-

sical” (pre-SDSS) dSphs. We can therefore differentiate between dark and lumi-

nous mass more easily since the baryons contribute less to the total density profile

than they do in larger galaxies. Consequently, we can absorb larger uncertainties in

M∗/L. The primary science goal of this work, and a future study of all dSphs, is

to determine the functional form of the dark matter profile in dSphs and compare

results to theoretical predictions by CDM.

4.3.1 Data

4.3.1.1 Kinematics

We use a combination of published radial velocities and new observations

for kinematics in Draco. Data exist at larger radii for 158 stars (Kleyna et al.,

2002), but we wish to explore the central region of Draco in order to have the best

constraint on the inner slope of ρDM(r).

To accomplish this, we observe the center of Draco with the VIRUS-W

integral field unit (IFU) spectrograph (Fabricius et al., 2008) on the 2.7m Harlan

J. Smith telescope at McDonald Observatory . This instrument allows for a high

density of stars to be observed simultaneously, but with the drawback that fibers are

not positionable. There are 267 fibers that cover the 105′′×55′′ field of view with

a 1/3 fill factor. We observed the spectral region covering 4900Å to 5500Å with a

resolving power R ∼ 9000.

The observations took place over the first half of 5 nights from 2011 August

1-5 in excellent conditions. Seeing was typically 2′′or better, which is smaller than
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Figure 4.2 Color-magnitude diagram of stars near the center of Draco. Colored
asterisks are stars we observe, coded according to their offset from Draco’s systemic
velocity Vsys. Red stars have |V − Vsys| < 30 km s−1, blue stars have |V − Vsys| >
50 km s−1, and the green star has a radial velocity between 30 and 50 km s−1of Vsys.
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the 3.′′2 diameter fibers. The standard battery of bias, Hg-Ne arc lamp, and twilight

calibration frames were taken at the start of each night. We use an early implemen-

tation of the Cure data reduction software. Cure is being developed as the pipeline

for the Hobby-Eberly Dark Energy Experiment (HETDEX) (Hill et al., 2006). We

briefly describe steps taken to reduce the VIRUS-W data. A detailed description of

Cure is beyond the scope of this paper.

We perform standard CCD processing steps, using the fitstools package (de-

scribed in Gössl & Riffeser 2002), to create master bias, twilight flat, and arc lamp

images for each night. We use twilight flats in combination with arc lamp images to

determine the distortion solution–a two-dimensional map which translates the (x,y)

position of a pixel on the CCD to a fiber number and wavelength.

Our science frames consist of 15-minute integrations of a single pointing of

the central part of the galaxy. Prior to observing, we determined the optimal position

of the IFU by examining Hubble Space Telescope (HST) photometry of the central

region (Ségall et al., 2007). With accurate fiber and star positions, we determined a

pointing that maximizes the number of bright stars on fibers (see Figure 4.1). There

are 57 science frames with this pointing, totaling roughly 14 hours of integration.

We apply each night’s distortion solution to the science frames yielding rec-

tified, wavelength-calibrated frames. We then collapse and median-combine these

science frames along with the twilight flat frames. Each night’s stacked science

frame is divided by the appropriate master flat for that night.

Since the majority of the 267 fibers in the IFU are on empty sky, we are able
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Figure 4.3 LOSVD generated from the discrete velocities of 29 stars

to calculate an accurate sky model directly from each science frame. We compute

this sky model for each fiber on the chip using a moving-window average of 20

nearby fibers. We subtract the sky model from each frame, and the resulting sky-

subtracted frames for each night are median-combined.

We extract 1-D spectra from 17 fibers containing stars. Star 2 in our sample

is used as a velocity standard since it is the brightest member star with known radial

velocity from Armandroff et al. (1995). We cross-correlate the other 16 spectra

to star 2 using the IRAF task FXCORR. By cross-correlating to the spectrum of a

star with known heliocentric radial velocity in Draco, we automatically remove the

contribution from Earth-Sun motion. We perform the cross-correlation analysis on

the combined image, and in doing so introduce a small bias due to the change in the
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Table 4.1. Radial Velocities Obtained with VIRUS-W

Star RA Dec Vhelio km s−1
∆Vhelio km s−1 RTD

1 17h20m14s.76 +57◦54′32.′′40 -288.1 2.57 4.76
2 17h20m07s.49 +57◦54′32.′′04 -299.11 1.891 ...
3 17h20m06s.12 +57◦54′32.′′40 -293.1 3.99 8.75
4 17h20m14s.11 +57◦54′23.′′04 -310.9 3.35 6.01
5 17h20m12s.10 +57◦54′13.′′68 -270.6 3.37 7.47
6 17h20m16s.78 +57◦54′59.′′76 -276.2 1.91 12.98
7 17h20m08s.14 +57◦55′00.′′12 -258.4 3.89 7.87
8 17h20m16s.44 +57◦54′55.′′08 -293.2 6.05 8.01
9 17h20m07s.80 +57◦54′55.′′44 -307.6 4.51 10.92
10 17h20m09s.48 +57◦54′50.′′76 -277.7 3.61 8.02
11 17h20m19s.10 +57◦54′46.′′08 -292.2 3.23 10.94
12 17h20m17s.11 +57◦54′46.′′08 -277.8 2.17 14.39

1From Armandroff et al. (1995)

Note. — Heliocentric radial velocities for the 12 member stars observed with
VIRUS-W at the center of Draco

heliocentric velocity correction over the course of the observing run. However, the

magnitude of this change is only 0.1 km s−1, much smaller than our uncertainties.

We list the heliocentric radial velocities and Tonry-Davis RT D values deter-

mined for the 12 stars we report as members in Table 4.1. The Tonry-Davis value

indicates the relative strength of the primary peak in the cross-correlation function

to the average (Tonry & Davis, 1979). The right ascension and declination given

for each star in Table 4.1 indicate the position of the center of the VIRUS-W fiber

containing that star.
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To determine membership for the 17 stars, we use the photometry of Ségall

et al. (2007) to produce a color-magnitude diagram (CMD). Figure 4.2 presents

the resulting CMD, where the colored symbols indicate observed stars. We also

group the stars according to their offset from Draco’s systemic velocity, which we

assume is Vsys = −293 km s−1 (Armandroff et al., 1995). Stars with radial velocity

offsets greater than 50 km s−1 are classified as non-members, while stars with offsets

less than 30 km s−1 are categorized as members. The one star with radial velocity

V −Vsys = 32.6±3.9 km s−1(green symbol in Figure 4.2) is classified as a possible

member. Possible and non-members are discarded from further analysis, leaving

12 member stars. Note that blind sigma-clipping retains these same 12 stars as

members.

We have individual radial velocities for stars at positions around the galaxy,

but our models want the full distribution of radial velocities at each position (the

LOSVDs). We group the individual velocities into spatial bins and determine the

LOSVD at each bin via an adaptive kernel density estimator (Silverman, 1986;

Gebhardt et al., 1996). In velocity space, this procedure replaces each of the N

discrete observations with a kernel of width h and height proportional to N−1h−1. We

use the Epanechnikov kernel (an inverted parabola) and sum the contribution from

each discrete velocity to obtain a non-parametric representation of the LOSVD. The

1σ uncertainties on the LOSVDs are calculated through bootstrap resamplings of

the data (i.e. sampling with replacement from the N velocity measurements, see

Gebhardt et al. 1996; Jardel & Gebhardt 2012). In Figure 4.3 we show an example

LOSVD.
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Figure 4.4 Gauss-Hermite moments fit to the 8 LOSVDs generated from 170 radial
velocities. The solid line is the result of our best-fit model.

We combine the new VIRUS-W data with 158 additional radial velocities

from the literature (Kleyna et al., 2002). We divide these 170 radial velocities into 8

radial bins of roughly 20 stars each. LOSVDs are calculated for each of these bins,

yielding kinematics coverage over the radial range 25′′–1500′′ (8 pc–500 pc). We

fit Gauss-Hermite moments to the 8 LOSVDs and plot the kinematics in Figure 6.2.

This is only done for comparison purposes as the models fit directly to the LOSVDs.

We compare the velocity dispersion as determined from the Gauss-Hermite fit with

the standard deviation of the individual velocities (using the biweight scale; see

Beers et al. 1990) in order to determine the best value for the smoothing width h.

The issue of foreground contamination frequently comes up in the study of

dSphs using individual radial velocities. There is always the possibility that some
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fraction of the observed stars are members of the Milky Way. These stars would be

velocity outliers and therefore artificially increase the measured velocity dispersion

or, in our case, the width of the LOSVD. Fortunately, the foreground Milky Way

stars are well-separated in velocity space from the Kleyna et al. (2002) sample.

Contaminants are also unlikely to have colors and magnitudes that place them on

the red giant branch of Draco’s color-magnitude diagram. Łokas et al. (2005) use

these two constraints to estimate that there are of order 1-2 Milky Way contaminants

in the entire Kleyna et al. (2002) data set.

4.3.1.2 Photometry

Our models are required to not only match the observed LOSVDs but also

the three-dimensional luminosity density profile ν(r). The first step in obtaining

ν(r) is to measure the two-dimensional surface brightness profile. We use the pho-

tometry of Ségall et al. (2007) who publish a number density profile of stars in

Draco. This profile covers the radial range from 15′′- 2400′′. We extrapolate the

profile as a power law out to R = 6000′′ by fitting a constant slope to the profile

in logarithmic space. To convert the number density profile to an effective surface

brightness profile, we apply an arbitrary zeropoint shift in log space until the lu-

minosity obtained by integrating the surface brightness profile is consistent with

the observed luminosity (Mateo, 1998). We plot this surface brightness profile in

Figure 6.1.

We deproject the surface brightness profile according to the procedure de-

tailed in Gebhardt et al. (1996). We assume surfaces of constant luminosity density
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ν are coaxial spheroids and perform an Abel inversion. For Draco we adopt an ellip-

ticity of e = 0.3 (Odenkirchen et al., 2001). We assume an inclination of i = 90◦ for

simplicity. Inclination is typically one of the more difficult quantities to constrain

(Thomas et al., 2007b). In addition to simplifying our models, assuming i = 90◦

provides the advantage that the deprojection is unique. For a detailed discussion of

how uncertainties in viewing angle and geometry propagate through our models see

Thomas et al. (2007a).

The resulting luminosity density profile we calculate has an average loga-

rithmic slope 〈d lnν/d lnr〉 = −0.4 inside 50 pc. In Figure 6.1 we plot ν(r) and also

illustrate the positions of our kinematics data.

4.3.2 Models

Our non-parametric models of Draco use Nbin=5 radial bins spaced equally

in logr from 15′′to 2000′′. We initialize our search for the minimum with a brute

force method, constructing a coarse grid in Nbin+1 dimensions from which we cal-

culate all possible permutations of the Nbin parameters and the extrapolated slope

α∞. Additionally, we require the density profile of each model to be monotonically

decreasing or constant. This is a natural constraint, and it significantly lowers the

number of models needed to sample parameter space.

Once the models defining the coarse grid are evaluated, we employ an iter-

ative sampling scheme to focus in on and define the minimum in better detail. This

method takes all the models with χ2 within χ2
lim of the minimum χ2

min as starting

points. For each starting point, a fractional step of size δi is taken above and below
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Figure 4.5 Surface brightness profile Σ(r) (dashed) and deprojected luminosity den-
sity profile ν(r) (solid) used in our models. Horizontal lines near the x-axis indicate
the radial position of our kinematics bins. Numbers refer to the number of radial
velocities used per bin. Note the central location of the new VIRUS-W data (inner-
most bin) in comparison to existing data.
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the initial value, one at a time, for all the density bins. If there is no change to

χ2
min, then δi is decreased. This procedure is repeated until δi is less than a specified

threshold. Additional models are also run as needed to fill in regions of parameter

space that appear interesting.

We do not attempt to fit for α∞ as we clearly do not have kinematics in that

radial range to constrain the mass. Instead, we treat α∞ as a nuisance parameter and

marginalize over it in our analysis. We restrict the value of the extrapolated slope

to α∞ ∈ {−2,−3,−4} and every ρ(r) we sample has been run with each of these

values. These slopes are representative of the isothermal, NFW, and Hernquist

(1990) density profiles.

Since Draco orbits within the dark matter halo of the Milky Way, it is prob-

able that is has been tidally stripped at large radii. To account for this, the density

is truncated at the tidal radius rt defined by

rt ∼
( m

3M

)1/3
D. (4.4)

For reasonable values of the Milky Way’s mass M, Draco’s mass m, and the Galac-

tocentric radius of Draco’s orbit D (assumed circular), Equation 4.4 gives an ap-

proximate tidal radius rt ≈ 3 kpc. We therefore truncate ρ(r) at this radius. We also

assume the dark halo in Draco has the same flattening as the stars and therefore

leave qDM fixed at 0.7. In the future we plan to investigate models with varying

qDM, however that is not the focus of this paper.
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4.4 Results

The χ2 curves for all the ρi are plotted in Figure 4.6. Each dot represents a

single model, and the red curve is a smoothed fit to the minimum. We obtain the

red curve through a smoothing process that is similar to a boxcar average, except

that we take the biweight of the 7 lowest χ2 values within the boxcar. This method

is therefore less sensitive to outliers than a traditional boxcar average. When deter-

mining a smoothed fit to the minimum, one is tempted to use only the points with

the lowest χ2. However, numerical noise causes models to scatter to both higher

and lower χ2 in some bins. This is difficult to see by eye because scatter to higher

values of χ2 causes the models to blend in with the black points in Figure 4.6 while

scatter to lower χ2 makes models appear to stand out. The sliding biweight robustly

picks out the center of this distribution

The red curve plots χ2(ρi) for each radial bin, and therefore gives an indica-

tion of the model-preferred density at radius ri. We estimate the 1σ uncertainties on

each of the ρi by determining the portion of each parameter’s χ2 curve, marginalized

over all other parameters, that lies within ∆χ2 = 1 of the overall minimum. Figure

4.6 shows this limit as a horizontal line whose intersection with the red curve in-

dicates the 1σ range of the density at bin i. In all further analysis we identify the

midpoint of this range as the best-fitting value and report uncertainties as symmetric

about this value.

In two cases, bins 4 and 5, there are secondary minima that extend almost

to the ∆χ2 = 1 line but not quite. It is likely that with perfect coverage of param-

eter space the area between these minima would be filled in. However, available
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Figure 4.6 χ2 curves for all of the ρi parameters. Each black dot represents a sin-
gle model (combination of ρ1,ρ2, . . .ρ5) and the red curve is a smoothed fit to the
minimum. The red curve in any panel therefore is the χ2 curve marginalized over
the other density points. The unit of density is M⊙ pc−3. In panels 4 and 5, the blue
curve is a parabola in logρ that we use to interpolate between two local minima.
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computational resources limit the extend to which we can sample parameter space.

In order to be more conservative in our analysis we fit a quadratic in logρ to these

minima, centered roughly on the midpoint between them (blue curves in Figure

4.6).

The best-fitting model has unreduced χ2
min = 9.1, and the number of observ-

ables our models fit to is ν = NLOSVD ×Nvel = 8× 15 = 120. If we were to naively

calculate a reduced χ2, we would estimate χ2
ν = 0.08. This low value of χ2

ν results

from an overestimation of the number of independent degrees of freedom ν. The

adaptive kernel density estimator we use to compute the LOSVDs introduces cor-

relations among neighboring velocity bins, therefore reducing the number of truly

independent degrees of freedom.

To account for this, we consider the Gauss-Hermite parameterizations of

our best-fitting model (solid line in Figure 6.2) and input LOSVDs (points with er-

ror bars in Figure 6.2). This model has χ2
νGH

= 0.33 where νGH is 4 Gauss-Hermite

parameters × 8 LOSVDs= 32. This χ2
νGH

is still less than 1, however it is more con-

sistent with previous studies (Gebhardt et al., 2003) and may be due to correlations

among the Gauss-Hermite parameters (e.g. Houghton et al. 2006). We use χ2
νGH

to

calculate the appropriate scaling to apply to our models which use the LOSVDs in

determining χ2. We scale all un-reduced χ2 values by the factor χ2
νGH

/χ2
ν = 4.3

4.4.1 Obtaining M∗/L

We have so far identified the best-fitting total density profile. In order to

study the dark matter profile we must subtract the stellar density profile ρ∗(r). This

106



involves finding an independent constraint on the stellar mass-to-light ratio M∗/L.

Using stars within the central 5′ of Draco, we construct a g′
− i′ color-magnitude

diagram (CMD) from the photometry of Ségall et al. (2007). We fit isochrones

(Marigo et al., 2008) to the CMD, corrected for Galactic extinction (Schlegel et al.,

1998), so that we may determine the age and metallicity of the stellar population.

Figure 4.7 shows the CMD with our best isochrone fit. The red giant branch

is well-defined, and we obtain a sensible fit with age tage = 12.7 Gyr and metallicity

[Fe/H] = −1.4. Using the SSP models from Maraston (2005) we are able to convert

tage and [Fe/H] to a V-band stellar mass-to-light ratio M∗/LV = 2.9±0.6. Uncertain-

ties in M∗/LV represent the spread in SSP predictions when different initial mass

functions are assumed in the models.

4.4.2 The Dark Matter Profile

With M∗/LV determined from stellar population models, we can subtract

ρ∗(r) from the best-fitting total density profile obtained during the modeling pro-

cedure. We plot the resulting dark matter profile in Figure 4.8. The red band

is the 68% confidence band for each density point, marginalized over the others,

and the gray band shows the 68% confidence band of all the parameters jointly (at

∆χ2 = 7.04).

From Figure 4.8, it seems plausible that ρDM(r) can be fit by a power law

of the form logρDM = α logr +β with the exception of perhaps the innermost data

point. The slope of this fit α can be directly compared to both theoretical predictions

and observations of similar dSphs. The innermost point, however, is puzzling. Its
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Figure 4.7 Color-magnitude diagram of stars within the central 5′of Draco. From
left to right, we plot isochrones of (tage×109yr, [Fe/H]) = (11.5,−1.6), (12.5,−1.4),
and (13.5,−1.3). The solid red line is the (12.5,−1.4) isochrone we use when deter-
mining M∗/LV .
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Figure 4.8 Best-fitting dark matter density profile in Draco. The red shaded region
represents the point-wise 68% confidence band for ρDM(r) (∆χ2 = 1), with the solid
black line derived from forcing symmetric logarithmic errors. The gray shaded
region is the 68% confidence band on ρDM(r) considering all parameters jointly
(∆χ2 = 7.04). We plot the innermost point (excluded from all futher analysis) an
an error bar with the same color scheme. The solid blue line is the best power law
fit to the profile, and the dashed line shows an r−1 NFW-like profile. We plot the
best-fitting NFW halo from a small grid of parametric models as the dashed green
line. Vertical lines along the x-axis indicate the radial range of our kinematic data.

109



value indicates a large central density and a departure from the power-law nature of

the outer profile. Further puzzling is that its point-wise uncertainty (plotted as a red

error bar) indicates strong constraint despite the fact that we have no kinematic data

in this region of the galaxy. We speculate that, in the absence of such data, models

are able to arbitrarily increase the central density. Since the volume of this inner

bin is small, the total amount of mass added is negligible. With no kinematics in

this region, models can easily absorb this mass without affecting χ2. We therefore

exclude the innermost point in all further analysis.

The resulting power law fit to the outer four points is shown in blue in Figure

4.8. We characterize the uncertainty in this fit by constructing 1,000 Monte Carlo

realizations with noise added to the density profile. We draw each point i randomly

from a Gaussian distribution with mean logρi and dispersion given by the width of

the 1σ confidence band at point i in Figure 4.8. We repeat the fit for each realization,

and determine the 1σ uncertainties on α from the 68% span of this distribution.

This procedure yields α = −1.0± 0.2. None of the 1,000 realizations has a slope

α> −0.45 strongly indicating that the galaxy is not cored for r ∼> 20 pc.

4.4.3 Orbit Structure

Once we have determined the best-fitting model, we can calculate the in-

ternal (unprojected) moments of the distribution function at each of the bins in our

meridional grid. Of interest is the anisotropy in the velocity dispersion tensor, which

we quantify with the ratio σr/σt—the ratio of radial to tangential anisotropy in the

galaxy. We define the tangential anisotropy σt as
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σt ≡

√

1
2

(σ2
θ +σ2

φ + v2
φ) (4.5)

in spherical polar coordinates where vφ is the rotational velocity. Streaming mo-

tions in the r and θ directions are assumed to be zero. We plot σr/σt in Figure 6.5.

Since the LOSVDs we use in Draco contain contributions from stars at all angles

θ, we average σr and all quantities in Equation (4.5) when calculating σr/σt . Con-

sequently, we lose the ability to evaluate anisotropy as a function of θ. This can be

avoided if better kinematics coverage is available, either through more stars with

radial velocities in dSphs or two-dimensional integral-field spectroscopy in more

distant galaxies. Fortunately most other large dSphs in the Local Group have many

more radial velocities publicly available.

We plot σr/σt in Figure 6.5 over the radial range that our LOSVDs sample.

We determine the uncertainties in σr/σt by the maximum/minimum values of σr/σt

for models within ∆χ2 = 7.04 of χ2
min (1σ for Nbin+1 degrees of freedom).We find

evidence for radial anisotropy at all radii, consistent with the “tidal stirring” theory

describing the origin of the Milky Way dSphs (Łokas et al., 2010; Kazantzidis et al.,

2011). Uncertainties are large on σr/σt , likely due to the small number of radial

velocities available as kinematic constraint. To constrain the anisotropy better, more

radial velocities are needed.
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Figure 4.9 Ratio of the radial to tangential components of the velocity dispersion.
Values of σr/σt different from unity indicate anisotropy. The black line is our best-
fitting model.
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4.5 Discussion

4.5.1 Improvement over Parametric Methods

Since we eventually fit our non-parametric dark matter profile with a power

law, one can ask why we do not initially use a power law-parameterized profile.

This would seem advantageous, especially given the large parameter space required

by non-parametric methods. This reasoning, however, relies on the assumption that

we know the profile is a power law a priori. The point of this study is to relax this

assumption and see what type of profile comes out of the modeling, rather than

impose unjustified interpretation on the problem. It happens that Draco hosts a

nearly power law density profile, but by not assuming this a priori we allow more

general models to be explored. As a rough check that our models have converged

to a global minimum, we run a small grid of parametric models with an NFW dark

matter density profile. The best-fitting of these models is plotted in green in Figure

4.8.

4.5.2 Interpreting the Dark Matter Profile

It is important to note that we only constrain the dark matter density profile

over little more than a decade in radius from 20 − 700 pc. One could easily imagine

our power law fit changing from α = −1 to a core (α = 0) inside of r ∼ 20 pc.

Likewise, the slope may also change at larger radii than r ∼ 700 pc without our

knowledge. The NFW density profile has an outer slope α = −3 for r ≫ rs, but

our profile does not change slope within our model grid. This could indicate that

rs ≫ 700 pc, but without knowledge of the outer slope we cannot say with certainty
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that the profile is NFW-like.

Recent cosmological N-body simulations have been found to produce den-

sity profiles shallower than the traditional α = −1 cusps (Stadel et al., 2009; Navarro

et al., 2010). Many authors suggest that dark matter profiles are best parameterized

by the Einasto profile (Navarro et al., 2004; Merritt et al., 2005; Gao et al., 2008;

Navarro et al., 2010) where the slope varies with radius according to a power law

α(r) ∝ rn. These profiles can have shallower cusps than NFW, but do not have

constant slopes over a large range in radius. Our non-parametric density profile is

well-fit by a single power law from 20 ∼< r ∼< 700 pc, but, again, this is a fairly

narrow range in radius. Our models cannot rule out an Einasto-like change in slope

outside this radial range. More kinematics are needed to characterize the density

profile at large and small radii.

When calculating the potential, we allow the outer slope of ρ(r) to vary

between 2 ≤ α∞ ≤ 4 for r > 700 pc, but, unsurprisingly, we are unable to constrain

α∞. Tidal effects may also alter the shape of ρDM(r) since Draco is orbiting within

the dark matter halo of the Milky Way. The tidal radius calculated from Equation

(4.4) is sufficiently large that tides are unlikely to affect the stellar component, but

ρDM(r) at large radii could be affected. If this is the case, ρDM(r) would decline

more steeply than expected and the total mass enclosed would be smaller than what

we calculate.

The cuspy α = −1 dark matter profile we find in Draco stands in contrast

to many other observational studies of dSphs that find α = 0 cores (Gilmore et al.,

2007; Walker & Peñarrubia, 2011; Jardel & Gebhardt, 2012). The effects of baryons
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are still not well-understood, and could potentially drive α to different values on

a galaxy-by-galaxy basis. These effects are the sum of at least two competing

processes. Adiabatic compression (Blumenthal et al., 1986) draws in dark matter

boosting the central ρDM and driving α to more negative values. On the other hand,

feedback from star formation and supernovae can cause strong outflows (Navarro

et al., 1996a; Binney et al., 2001) which can in turn remove dark matter from the

centers of galaxies, reshaping cuspy profiles into α = 0 cores.

In a recent paper, Governato et al. (2012) use high resolution cosmological

N-body simulations with a fully hydrodynamical treatment of baryons to test these

two competing effects in low-mass dwarf galaxies. They find that the cuspiness of

the dark matter halo is directly related to the amount of star formation activity in

the galaxy. This is expressed as a correlation between α and stellar mass M∗. Their

interpretation is that galaxies that form more stars (larger M∗) have more super-

novae and a greater potential to turn a cuspy dark matter profile into a core. Using

their least-squares fit to the M∗-α correlation, they predict α≈ −1.3 (at 500 pc) for

Draco’s stellar mass. This is in approximate agreement with our measured value of

α = −1.

Perhaps owing to the lack of stellar velocities available in Draco compared

to other dSphs, there are not many studies investigating its dark matter profile

through dynamical models. A rough comparison can be made with Łokas et al.

(2005) who fit profiles with an inner slope of α = −1 and an outer exponential cutoff

at large radii. They find a total mass-to-light ratio that varies with radius between

100 ∼> Mtot/LV ∼> 1000 in the inner ∼ 700 pc. These values are comparable to the
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total mass-to-light ratio we calculate in the inner ∼ 300 pc. However, unlike Łokas

et al. (2005) we do not impose an exponential cutoff in ρDM(r) at large radii. Our

calculated Mtot/LV therefore rises sharply at large radii where the stellar luminosity

profile is decreasing much faster than ρDM(r).

Importantly, Mtot/LV ≫M∗/LV = 2.9±0.6 (the stellar mass-to-light ratio we

derive from SSP models) at all radii. This means we can confidently state that Draco

is dark matter-dominated at all radii, allowing us to easily absorb errors in M∗/LV

from SSP models. In other words, when determining ρDM(r) from Equation (1) the

uncertainty in ρ(r) dominates the uncertainty in stellar density since the product

M∗/L×ν(r) is much smaller than ρ(r). This is one of the reasons we choose to test

this non-parametric technique on Draco first. In the future we plan to extend this

analysis to the remaining Local Group dSphs, which are also thought to be dark

matter-dominated everywhere.

4.5.3 Draco’s Mass

We plot the enclosed mass profile of our models in Figure 4.10. The shaded

region is the 1σ confidence band derived from the extreme values of M(r) for

all models within ∆χ2 = 5.84 of the minimum (1σ for Nbin= 5 free parameters,

marginalizing over α∞). The vertical ticks on the x-axis represent the radial ex-

tent of our kinematics coverage. From this plot it is apparent that, despite its low

luminosity and stellar mass, Draco lives in a dark matter halo that is surprisingly

massive.

An interesting comparison can be made with the brightest dSph Fornax,
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Figure 4.10 (Top): Enclosed Mass profile of our best-fitting model (black line) and
1σ confidence region. The green point is the Wolf et al. (2010) mass estimator.
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coverage.
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roughly two orders of magnitude higher in luminosity. If we compare the mass en-

closed within a common physical radius of 300 pc, we find that for Draco M300 ≡

M(r = 300 pc) = 3.8+0.84
−0.29 × 107 M⊙, and Jardel & Gebhardt (2012) measure M300 =

3.5+0.77
−0.11 ×106 M⊙ for Fornax. Of course, Fornax is much more extended than Draco

so it is sensible to also compare the mass enclosed within the deprojected half-

light radius of each galaxy’s stellar component. For Draco we measure M1/2 ≡

M(r = re) = 1.6+0.6
−0.2 × 107 M⊙, and in Fornax Jardel & Gebhardt (2012) measure

M1/2 = 5.8+1.0
−0.2 ×107 M⊙. We would prefer to compare the total mass of each galaxy,

but there are no kinematic tracers far enough out in the halo that the density pro-

file declines sharply enough to keep mass finite for any dSph. Consequently, we

cannot constrain the total mass observationally and we must rely on comparions to

simulations (Section 5.4).

We also use our dynamical models to compare our measurement of M1/2

with the convenient mass estimator proposed by Wolf et al. (2010) (see Walker et al.

2009b and Cappellari et al. 2006 for similar formulae). This formula relates M1/2

to the directly observable luminosity-weighted line-of-sight velocity dispersion <

σ2
LOS > and projected half-light radius Re. The Wolf et al. (2010) mass estimator is

written as:

M1/2 ≈ 4G−1Re < σ2
LOS > (4.6)

and Wolf et al. (2010) give a theoretical argument for why the effect of anisotropy

is minimized near re for a variety of stellar systems in spherical symmetry.
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For a more fair comparison of Equation (4.6) to our models we calculate

M1/2 from our data set, not the value listed in Wolf et al. (2010). We use < σ2
LOS >=

11.3± 1.6 km s−1, calculated directly from our data in Figure 6.2, as well as Re =

158.1 pc and re = 205.2 pc which we derive from the photometry in Figure 6.1. This

calculation yields an estimated M1/2 = (1.9±0.5)×107 M⊙, in excellent agreement

with the mass calculated from our models. We plot the estimated M1/2 as the green

point in Figure 4.10.

4.5.4 Comparing Draco to CDM Simulations

We can also gain insight into the properties of Draco’s dark matter halo

by examining the circular speed profile Vc(r) plotted in the lower panel of Figure

4.10 . The green point plotted is V1/2 =
√

GM1/2/r1/2 = 20.0± 2.6 km s−1using

our value of the Wolf et al. (2010) mass estimator. In a recent paper, Boylan-

Kolchin et al. (2012) match the observed V1/2 of Local Group dSphs to subhalos

around a Milky Way-like halo in the Aquarius Simulation (Springel et al., 2008) to

derive constraints on each dSph’s maximum circular speed Vmax—a quantity directly

related to the total halo mass. Boylan-Kolchin et al. (2012) find that this estimate of

Vmax is usually 20 − 30 km s−1 smaller than the Vmax they obtain through abundance

matching. These results lead them to conclude that the Local Group dSphs are

dynamically inconsistent with the types of halos they are predicted to inhabit from

abundance matching.

We are in a position to investigate this claim directly in Draco. We do not

need to match our V1/2 to simulations in order to gain knowledge of Vc(r); we cal-
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culate the latter directly, and not just at the half-light radius. Interestingly, much of

our circular speed profile lies above the Vmax = 20.5+4.8
−3.9 predicted by Boylan-Kolchin

et al. (2012). At r = 500 pc, the radius where we run out of kinematic tracers and

can therefore no longer robustly constrain the mass, we find Vc = 34.6+3.5
−8.2 km s−1.

We can take the lower bound of Vc here as lower limit on Vmax ≥ 26.4. The scaling

relations between total mass and Vmax for subhalos (Springel et al., 2008) imply a

lower limit on Draco’s total mass of M ≥ 1.0×109 M⊙.

Ours is not the first study to suggest that Draco lives in a halo with such

a large mass. Peñarrubia et al. (2008) demonstrate that a family of NFW halos

with varying Vmax and rmax are consistent with the stellar kinematics of any King

model embedded in an NFW halo. They break this degeneracy by invoking the

correlation between Vmax and rmax found in CDM simulations (e.g. Bullock et al.

2001). Their study suggests that Draco is the most massive of the Milky Way dSphs

with Vmax ≈ 35 km s−1.

The comparison between Draco and Fornax is interesting as the two galaxies

are separated by almost two orders of magnitude in luminosity but may have similar

masses. Since Draco’s inner halo is nicely fit by the NFW density profile (Figure

4.8), we can rely on simulations to extrapolate a total mass M ≥ 1.0 × 109 M⊙.

However, multiple independent studies using different methods suggest that Fornax

does not live in an NFW halo (Goerdt et al., 2006; Walker & Peñarrubia, 2011;

Jardel & Gebhardt, 2012), and we therefore should not use the NFW formalism to

predict a total mass from its Vmax. Still, the similarity in the galaxies’ values of M1/2

and M300 suggests that the simplest abundance matching models, which require
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a one-to-one mapping between luminosity and total mass, may not appropriately

describe the dSphs. If Draco and Fornax do indeed have similar masses, despite

vastly different baryonic properties, then there must be substantial stochasticity in

the galaxy formation process at the dSph mass scale. Even without comparing to

Fornax, it is clear that Draco’s baryonic properties do not map in the expected way

to its halo mass.
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Chapter 5

Variations in a Universal Dark Matter Profile for

Dwarf Spheroidals1

As full and bright as I am
This light is not my own and

A million light reflections pass over me.

Its source is bright and endless
She resuscitates the hopeless

Without her, we are lifeless satellites drifting

Maynard James Keenan - “Reflection”

Using a newly-developed modeling technique, we present orbit-based dy-

namical models of the Carina, Draco, Fornax, Sculptor, and Sextans dwarf spheroidal

(dSph) galaxies. These models calculate the dark matter profiles non-parametrically

without requiring any assumptions to be made about their profile shapes. By lifting

this restriction we discover a host of dark matter profiles in the dSphs that are dif-

ferent from the typical profiles suggested by both theorists and observers. However,

when we scale these profiles appropriately and plot them on a common axis they

appear to follow an approximate r−1 power law with considerable scatter.

1Published in Jardel J., R., & Gebhardt, K., 2013, ApJL, 775, 30. Reprinted with permission from
the American Astronomical Society.
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5.1 Introduction

It is a well known fact that cosmological simulations containing only col-

lisionless dark matter produce halos that share a universal density profile ρDM(r)

(Navarro et al., 1996b; Springel et al., 2008; Navarro et al., 2010). At first, this

universal profile was characterized by the double power-law Navarro-Frenk-White

(NFW) profile (Navarro et al., 1996b) with (negative) inner logarithmic slope α = 1.

Modern dark matter-only simulations with increasingly better resolution seem to

produce profiles that, in analogy to the Sérsic function (Sersic, 1968), transition

smoothly from α = 3 in the outer regions to α ∼ 1 near the center (Merritt et al.,

2005; Gao et al., 2008; Navarro et al., 2010). The exact form of ρDM(r) is still de-

bated by theorists, but most agree that the inner slope is nonzero. Such profiles are

called “cuspy” since ρDM increases as r → 0. In contrast, observers modeling low-

mass galaxies with stellar and gas dynamics often find α = 0 “cores” in the inner

profiles (Burkert, 1995; Persic et al., 1996; Borriello & Salucci, 2001; de Blok et al.,

2001; Simon et al., 2005). This disagreement between theory and observations has

become known as the core/cusp debate.

We must remember, however, that real galaxies are the products of their

unique formation histories, and complex baryonic processes can re-shape dark mat-

ter profiles in different ways. Whether originating from adiabatic compression (Blu-

menthal et al., 1986), supernovae winds (Navarro et al., 1996a), or ram-pressure

stripping (Arraki et al., 2012), baryonic feedback has been shown to affect the dark

matter profiles of galaxies by perturbing their baryons in a highly non-linear way.

Since these processes differ on a galaxy-by-galaxy basis, one should not expect to
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observe a universal dark matter profile at z = 0. Furthermore, given the number of

different ways baryonic feedback can occur, we should not expect it to produce only

cored or NFW-like profiles.

Unfortunately, it is difficult to explore the possible range of profile shapes

since to construct a dynamical model one generally needs to adopt a parameteriza-

tion for ρDM(r). This is not ideal as one is forced to assume the very thing they are

hoping to measure. Clearly methods that can measure ρDM(r) non-parametrically

are advantageous. Non-parametric determination of the dark matter profile avoids

biasing results by assuming an incorrect parameterization and it also allows more

general profile types to be discovered.

To test the universal profile assumption, we apply the technique of non-

parametric Schwarzschild modeling to determine ρDM(r) in five of the brightest

dwarf spheroidal (dSph) galaxies that orbit the Milky Way as satellites. These

galaxies have excellent kinematics available (Walker et al., 2009a) and have been

demonstrated to be good targets for this type of modeling (Jardel et al., 2013). The

dSphs as a population are some of the most dark matter-dominated galaxies ever

observed (Mateo, 1998; Simon & Geha, 2007) and as such are unique test sites for

theories of galaxy formation at low mass scales.

Past studies using Jeans models have had difficulty robustly measuring ρDM(r)

in the dSphs (Walker et al., 2009b) largely due to the degeneracy between mass

and velocity anisotropy inherent to these models. In addition to being fully non-

parametric, our models break the degeneracy between mass and velocity anisotropy

the same way traditional Schwarzschild models accomplish this (Gebhardt et al.,
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2000a; Rix et al., 1997; van der Marel et al., 1998; Valluri et al., 2004; van den

Bosch et al., 2008). In this letter we apply the most general models to a widely-

studied group of galaxies in order to measure their dark mater density profiles and

test the universal profile hypothesis.

5.2 Data

Our models use the publicly available kinematics data from Walker et al.

(2009a) for Carina, Fornax, Sculptor and Sextans. These data are individual ra-

dial velocities for member stars with repeat observations weighted and averaged.

Walker et al. (2009a) assign each star a membership probability P based on its po-

sition, velocity, and a proxy for its metallicity. Our analysis only includes stars

for which P > 0.95. Whenever a galaxy has high-quality Hubble Space Telescope

measurements of its proper motion available (Carina and Fornax; Piatek et al. 2003,

2007) we correct for the effects of perspective rotation following Appendix A of

Walker et al. (2008).

As described in Jardel & Gebhardt (2012), stars are placed on a meridional

grid according to their positions and folded over the major and minor axes. To

preserve any possible rotation, we switch the sign of the velocity whenever a star is

flipped about the minor axis. We then group the stars into spatial bins by dividing

the grid into a series of annular bins containing roughly 50-70 stars per bin. Fornax

and Sculptor have a larger number of stars with measured velocities, and to exploit

this we subdivide the annular bins into two to three angular bins in analogy to

spokes on a wheel. Table 5.1 presents a summary of the data we use for the dSphs.
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For each spatial bin of stars, we reconstruct the full line-of-sight velocity

distribution (LOSVD) from the discrete radial velocities observed. This procedure

uses an adaptive kernel density estimator (Silverman, 1986) and is described in

more detail in Jardel et al. (2013). Uncertainties in the LOSVDs are determined

through bootstrap resamplings of the data. We divide each LOSVD into 15 velocity

bins which serve as the observational constraint for our models.

Also necessary for the models is the galaxy’s three-dimensional luminosity

density profile ν(r). To obtain this, we start with the projected number density

profile of stars Σ∗(R). For Carina and Sculptor we take Σ∗(R) from Walcher et al.

(2003), opting to use their fitted King profile for Carina and the actual profile for

Sculptor with no fit performed. We also use a King profile to describe Σ∗(R) in

Sextans, with the parameters taken from Irwin & Hatzidimitriou (1995). In Fornax

we use the full profile reported in Coleman et al. (2005). We then convert Σ∗(R) to a

surface brightness profile µ(R) by adding an arbitrary zero-point shift, in log space,

and adjusting the shift until the integrated µ(R) returns a luminosity consistent with

the value listed in Mateo (1998).

Next we deproject µ(R) via Abel inversion through the manner described in

Gebhardt et al. (1996). For simplicity in the deprojection and subsequent modeling,

we assume that each galaxy is viewed edge-on. For a thorough discussion on how

uncertainties in viewing angle and geometry propagate through our models we refer

the reader to Thomas et al. (2007a). Our models are axisymmetric, so we use the

stellar ellipticity to determine ν away from the major axis.
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Table 5.1. Properties of the Dwarf Spheroidals

Galaxy Distance (kpc) Nstars NLOSVD Ellipticity Rtrunc (kpc)

Carina 104a 702 f 14 0.33e 4.2
Draco 71b 170gh 8 0.29e 3.1
Fornax 136a 2409 f 36 0.30e 13.5
Sculptor 85c 1266 f 24 0.32e 5.1
Sextans 85d 388 f 8 0.35e 5.1

Note. — Summary of the data we use for our study of the dSphs. We list
the distances to the dSphs we have assumed, the number of member stars
with radial velocity measurements Nstars, and the number of LOSVDs these
measurements are divided into NLOSVD. We assume the the dark matter
halo has the same ellipticity as the value listed for the stellar component.
We also list the truncation radius Rtrunc used in our analysis. References:
aTammann et al. (2008), bOdenkirchen et al. (2001), cPietrzyński et al.
(2008), dLee et al. (2009), eIrwin & Hatzidimitriou (1995), f Walker et al.
(2009a), gKleyna et al. (2002), hJardel et al. (2013).
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5.3 Models

The non-parametric modeling technique we use is described in full detail in

Jardel et al. (2013). It is based on the Schwarzschild modeling code of Gebhardt

et al. (2000a) updated by Thomas et al. (2004, 2005) and described in Siopis et al.

(2009). We have tested our models by using kinematics generated from a Draco-

sized mock dSph embedded in a larger dark matter halo with either a cored or

NFW-like cuspy profile. In both cases we are able to accurately recover the density

profile from which the mock kinematics were drawn.

The fundamental principle behind Schwarzschild modeling, that of orbit su-

perposition, was first introduced by Schwarzschild (1979). The Schwarzschild code

that is the backbone of our non-parametric technique has been thoroughly tested

using artificial data. It has been shown to accurately recover the mass profile and

orbit structure of simple isotropic rotators (Thomas et al., 2005), N-body merger

remnants (Thomas et al., 2007a), and a mock galaxy containing a supermassive

black hole (Siopis et al., 2009). The general Schwarzschild technique has also been

tested with artificial data representing the binned individual velocities typically used

as input for studying the dSphs (Breddels et al., 2013).

This method works by assuming a trial potential for the galaxy under study

and determining all stellar orbits that are possible in that potential. Our orbit sam-

pling scheme is described in detail in Thomas et al. (2004). The orbits are then

assigned weights according to how well they match the LOSVDs and a χ2 value is

determined, subject to a constraint of maximum entropy (Siopis et al., 2009). If χ2

is low, the orbits are a good fit to the kinematics and the trial potential is considered
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to be a good estimate for the real potential. If χ2 is large, the trial potential does not

support orbits that can match the kinematics and a new potential is generated. Each

model is required to match ν(r) as well to machine precision.

We construct the many trial potentials by solving Poisson’s equation for a

specified total density profile ρ(r) along the major axis. We assume the total mass

distribution has the same ellipticity as the stellar component and use this adopted

ellipticity to define ρ(r,θ) away from the major axis.

Rather than paramaterizing ρ(r) with an unknown function and sampling

its parameters, we take an altogether different approach (detailed in Jardel et al.

2013). To describe ρ(r) we divide the profile into 5 radial points ri, equally spaced

in logr. A trial ρ(r) is then represented by the density ρi at each point. In this way,

the ρi themselves are the parameters that we adjust when picking trial potentials.

To sample this parameter space, we employ a similar iterative refinement scheme

as discussed in Jardel et al. (2013). We also impose the same constraint that each

profile must be non-increasing as a function of radius.

Since the dSphs orbit within the Milky Way’s halo, the possibility exists that

they are being, or have been, tidally stripped. In constructing our trial potential,

we account for this by leaving the slope of ρ(r) outside of our model grid a free

parameter α∞. Each model profile ρ(r) is run with α∞ ∈ {2,3,4}. In this way,

we treat α∞ as a nuisance parameter and marginalize over it for the rest of our

discussion. We also truncate the dSphs at the radius Rtrunc defined by the Jacobi

radius given the mass of the dSph, its Galactocentric distance, and the mass of the

Milky Way (assumed to be MMW = 3× 1012 M⊙ and represented by an isothermal
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sphere). We list values for Rtrunc in Table 5.1.

5.3.1 Stellar Density

After running a large number of models for each galaxy, we have a non-

parametric measurement of the total density profile ρ(r). In order to obtain the

dark matter density profile we must subtract the stellar density ρ∗(r). This requires

knowledge of the stellar mass-to-light ratio M∗/LV since ρ∗(r) = M∗/LV ×ν(r), as-

suming that variations in M/LI with radius are unimportant.

To estimate M/LI we use photometrically derived determinations of each

galaxy’s stellar age tage and metallicity [Fe/H] (Lianou et al., 2011). The simple

stellar population models of Maraston (2005) then yield an estimate on M/LI given

these two quantities and the assumption of either a Salpeter or Kroupa initial mass

function (IMF). We characterize the uncertainty in ρ∗(r) by the spread in values

of M/LI that result from a choice in IMF and the uncertainties in tage and [Fe/H].

For our analysis of ρDM(r), we add in quadrature the uncertainties on ρ(r) from the

models with those on ρ∗ due to M/LI .

In all but one of the dSphs (Fornax), ρ(r) ≫ ρ∗(r) making the determination

of ρ∗(r) relatively unimportant. In Fornax, however, the relatively large uncertain-

ties on ρ∗(r) make ρ(r) − ρ∗(r) a negative quantity in some cases. This is clearly

unphysical as it represents a negative dark matter density. To better study Fornax

and other relatively baryon-dominated galaxies, a more accurate determination of

M/LI is required.
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5.3.2 χ2 Analysis

We evaluate the goodness of fit of each model with χ2 as calculated by

χ2 =
NLOSVD
∑

i=1

Nvel=15
∑

j=1

(

ℓobs
i j − ℓmod

i j

σi j

)2

, (5.1)

where the sums are computed over the Nvel = 15 velocity bins for all of the LOSVDs

in each galaxy. The ℓi j correspond to the value in the jth velocity bin of the ith

LOSVD. The uncertainty in ℓobs
i j is σi j.

We identify the best-fitting model as that which has the lowest value of the

(unreduced) χ2 =χ2
min. A naïve calculation of the reduced χ2

ν =χ2
min/(Nvel×NLOSVD)

often yields values much less than unity due to correlation between velocity bins

caused by our kernel density estimator. We instead test for the overall goodness of

fit of our best model by computing χ2
ν,GH : the reduced χ2 with respect to a Gauss-

Hermite parameterization of our best-fitting LOSVDs. We find χ2
ν,GH ranges from

0.3 − 0.9 for the four dSphs modeled here. These values are consistent with past

results (Gebhardt et al., 2003; Gebhardt & Thomas, 2009; Jardel et al., 2013) and

have been demonstrated to lead to accurate recovery of the mass profiles of mock

galaxies (Thomas et al., 2005). We therefore scale our model-computed unreduced

χ2 values by a factor equal to χ2
ν/χ

2
ν,GH in order to bring our reduced χ2

ν nearer to

χ2
ν,GH .

We present our dark matter profiles at two different levels of confidence.

When specifying the dark matter density at a single point, we marginalize over

all other parameters using the sliding boxcar technique described in Jardel et al.
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(2013) to interpolate χ2. The 1σ confidence interval thus corresponds to a limit of

∆χ2 = 1 (for one degree of freedom) above χ2
min. When referring to the joint 1σ

confidence interval of the entire profile, we instead include limits derived from all

models within ∆χ2 = 5.84 of χ2
min (for 5 degrees of freedom).

5.4 Results

We present the non-parametrically determined dark matter profiles in Figure

5.1. In addition to the new results for Carina, Fornax, Sculptor, and Sextans, we

include the result from Jardel et al. (2013) for Draco. Each panel in Figure 5.1

contains a dashed line with ρDM ∝ r−1 to show the generic shape of the NFW profile.

The points with error bars in Figure 5.1 are the marginalized dark matter density

determined from ∆χ2 = 1 at the ri where the total density is being varied from

model to model. The gray points labeled with X’s are located interior to the radial

range over which stellar kinematics are available. We denote this range for each

galaxy with vertical tick marks on the x-axis. The joint confidence band (shaded

region) interpolates between the ri by taking the maximum and minimum value for

ρDM at each radius for every model within ∆χ2 = 5.84 of χ2
min.

Given the freedom to choose a dark matter profile of any shape, it is im-

mediately apparent that our models have chosen a variety of shapes for the dSphs.

Draco appears the most similar to the NFW profile while Sculptor most closely re-

sembles a broken powerlaw that becomes shallower towards its center. The other

galaxies host profiles that resemble neither cores nor cusps: Carina’s profile appears

flat where we have kinematics but then displays a possible up-bending inside of this
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Figure 5.1 Dark matter density profiles for each dSph modeled as well as Draco
from Jardel et al. (2013). Points with error bars show the ∆χ2 = 1 uncertainties in
the ρi. These points are gray X’s when they lie interior to the our kinematics and
black dots otherwise. Vertical black tick marks on the x-axes show the radial extent
of this range. The gray shaded regions show the joint confidence range of the entire
profile at the level of ∆χ2 = 5.84 and interpolated between the ρi. Each panel plots
a generic r−1 NFW-like profile as a dashed line. In Fornax we also plot the stellar
density profile ρ∗(r) with 1σ uncertainties in red.
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region. Sextans has a steeper slope than the NFW profile until its outermost point

where it suddenly becomes flat. These sharp differences among dSph dark matter

profiles demonstrate the variety of profile shapes in the Local Group.

Unfortunately, due to a lack of central stellar velocities in the Walker et al.

(2009a) data, the central profiles of the dSphs we model become increasingly un-

certain there. This is evidenced by the larger error bars on our gray points in Figure

5.1 where we have no kinematics coverage. However, we do have some constraint

from projection effects and radial orbits in our models that have apocenters at radii

where we do have data.

5.4.1 Fornax

Fornax is an especially difficult case for non-parametric modeling because,

compared to the other dSphs, it is relatively baryon-dominated. Our imprecise de-

termination of M/LI in Fornax causes ρ∗(r) to be greater than the total modeled

density at some radii, making ρDM(r) negative. In our analysis of Fornax, we do not

plot the radial range over which this occurs as it is unphysical. Instead in Figure 5.1

we over-plot the stellar density in red to illustrate why the subtraction is difficult in

Fornax. In all other panels ρ∗(r) ≪ ρDM(r) and is not plotted.

There is strong evidence from multiple studies using independent methods

that suggests Fornax has a dark matter profile that is not cuspy like the NFW profile.

(Goerdt et al., 2006; Walker & Peñarrubia, 2011; Jardel & Gebhardt, 2012). Each of

these studies only contrasts between cored and cuspy profiles or uses a single slope

to characterize the profile. It is therefore interesting to explore the non-parametric
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result we obtain. Even though we cannot determine ρDM where the stellar density

is greater than the total density, we can still place an upper limit on ρDM such that

it must not be greater than ρ∗ or the red band in Figure 5.1. Given this constraint,

we can see that the outer profile of Fornax is flat, while the inner portion rises more

steeply than r−1. Past dynamical studies of Fornax only compared generic cored

and NFW profiles and did not test this up-bending profile, therefore it is difficult to

compare to their results.

5.4.2 A Common Halo?

Despite the differences in the individual profiles of the dSphs, when we plot

them on the same axes they appear to follow a combined r−1 profile with scatter.

We plot this combined profile in Figure 5.2 with each galaxy’s profile as a separate

color. The uncertainties on the points are the ∆χ2 = 1 uncertainties from Figure

5.1. We have scaled each galaxy’s profile relative to an arbitrary r−1 profile. In this

way the shape of each profile is preserved and only the height has been adjusted to

reduce the scatter. We fit a line to the logρDM profiles and determine that the slope

α = 1.2± 0.5. We also restrict our fit to only points in the profile where we have

kinematics (dotted line in Figure 5.2) and find a similar slope of α = 0.9±0.5.

We conclude from Figure 5.2 that the average dark matter profile in the

dSphs is similar to an r−1 profile. However, when we model each galaxy individu-

ally, we find a variety of profiles that are different from the mean r−1 profile. Our

interpretation of this observation is that variations in their individual formation his-

tories cause galaxies to scatter from the average profile. Only when multiple galax-
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Figure 5.2 Combined dark matter density profiles of all the dSphs plotted on the
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tainties on these points are the ∆χ2 = 1 uncertainties from Figure 5.1. We plot the
derived best-fit line with slope α = 1.2± 0.5 as a dashed line as well as the NFW
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ies are averaged together does it become clear they follow a combined r−1 profile.

This single power-law profile compares well with the predicted NFW profile in the

inner portion of the plot. However, at larger radii (∼> 1 kpc in dwarf galaxies) the

NFW profile becomes steeper than r−1 (Springel et al., 2008). More data are needed

at both large and small radii to further explore this.

K.G. acknowledges support from NSF-0908639. This work would not be

possible without the state-of-the-art supercomputing facilities at the Texas Ad-

vanced Computing Center (TACC). We also thank Matt Walker and the MMFS
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Chapter 6

Non-parametric Schwarzschild Models of the Milky

Way’s Dwarf Spheroidal Satellites1

When I heard the learn’d astronomer;
When the proofs, the figures, were ranged in columns before me;

When I was shown the charts and the diagrams,
to add, divide, and measure them;

When I, sitting, heard the astronomer,
where he lectured with much applause in the lecture-room,

How soon, unaccountable, I became tired and sick;
Till rising and gliding out, I wander’d off by myself,

In the mystical moist night-air, and from time to time,
Look’d up in perfect silence at the stars.

Walt Whitman - “When I Heard the Learn’d Astronomer”

We present the results of orbit-based (or Schwarzschild) dynamical mod-

els for five of the Milky Way’s bright dwarf spheroidal (dSph) satellites: Carina,

Draco, Fornax, Sculptor, and Sextans. Previous work reported on their dark mat-

ter density profiles, here we present other results from the modeling and compare

our findings to expectations from recent cosmological and hydrodynamical simu-

lations. Our models find mild radial anisotropy in all five of the dSphs, consistent

with predictions from the “tidal stirring” formation scenario. We also find that

dSphs with larger stellar masses have more cored dark matter profiles, albeit with

1This chapter has been submitted to the Astrophysical Journal wth J.R. Jardel as first author. It
appears here with permission from the American Astronomical Society.
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large scatter. This trend is observed in recent hydrodynamical simulations that form

late-type field dwarfs. Finally, we compare the circular speed profiles from our full

dynamical models to those of simulated subhalos orbiting a Milky Way-like halo in

the Aquarius simulation. We find that Draco is consistent with some of the halos

previously thought to be “too big to fail”. However, many simulated halos are still

denser than the remaining dSphs.
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6.1 Introduction

On the largest scales, the ΛCDM model for structure formation has enjoyed

remarkable success in describing the universe we live in. Constraints from large-

scale clustering of galaxies (Reid et al., 2010), the Lyman-α forest (Viel et al.,

2008), and the cosmic microwave background (Komatsu et al., 2011) all suggest

that dark matter is cold (i.e. massive and slow-moving) and contributes to the

growth of structure in a bottom-up or hierarchical fashion. On these large scales,

galaxy formation is accurately described by ΛCDM.

The current frontier in our knowledge of galaxy formation is at the low-

mass level. Here we find disagreement between theory and observations in a variety

of interesting cases. For example, observers measure dark matter profiles in dwarf

galaxies (Burkert, 1995; Persic et al., 1996; de Blok et al., 2001; Simon et al., 2005)

that differ from the theoretical predictions of ΛCDM simulations (Navarro et al.

1996b, hereafter NFW; Springel et al. 2008; Navarro et al. 2010). Studies have

also found the population of observed dwarf galaxies orbiting the Milky Way to be

both too small in number (Klypin et al., 1999; Moore et al., 1999) and dynamically

different from simulations (Boylan-Kolchin et al., 2012).

The Milky Way’s dwarf spheroidal (dSph) satellite galaxies are excellent

objects to study in order to push our theoretical understanding to its low-mass limit.

These nearby galaxies are the smallest that we can ever hope to study in detail with

dynamical models. As such, they contain the most information that can be used to

test ΛCDM in its low-mass limit.
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Extracting this information with dynamics is not without its challenges,

however. The dSphs, unlike other low-mass galaxies, are supported against gravity

by the random motions of their stars instead of ordered rotation. Dynamical mod-

els can be constructed using the projected velocity dispersion profile σ(R) and the

Jeans equations of stellar dynamics. However, σ(R) is, in general, anisotropic and

the amount of anisotropy strongly influences the mass inferred from Jeans-based

dynamical models. Furthermore, since we often only observe the component of

a star’s velocity that lies along our line of sight, the anisotropy is usually uncon-

strained in Jeans models. This leads authors to either make the simplifying assump-

tion of isotropy (Gilmore et al., 2007; Walker et al., 2007) or to marginalize over

their ignorance of the anisotropy (Walker et al., 2009a; Wolf et al., 2010). In the

first case, models suffer from a bias introduced by an overly restrictive assump-

tion (see Evans et al. 2009), and in the second case the degeneracy between mass

and anisotropy precludes the level of precision required for detailed comparison to

many theoretical predictions (Walker et al., 2009a; Wolf et al., 2010).

These issues have led several authors to abandon Jeans models in favor of

the more general Schwarzschild (or orbit-based) dynamical models (Jardel & Geb-

hardt, 2012; Breddels et al., 2013). Instead of only fitting to σ(R), these models fit

to the entire line-of-sight velocity distribution (LOSVD). This allows the velocity

anisotropy of a galaxy to be computed since stars on radial or tangential orbits leave

signatures of this behavior in the shape of the LOSVD. Once the anisotropy is com-

puted, Schwarzschild models have a more powerful lever with which to constrain

the mass distribution.
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Recently, Jardel et al. (2013) introduced a method to use Schwarzschild

modeling to calculate the mass profiles of dSphs, and also larger galaxies, non-

parametrically. This technique does not require the modeler to assume a functional

form for the dark matter profile (which is often exactly what they mean to measure).

In this paper we extend the analysis performed by Jardel & Gebhardt (2013) on the

Carina, Fornax, Sculptor, and Sextans dSphs. In addition to obtaining information

about the masses and dark matter content of the dSphs, we also report the types

of orbits their stars populate. This orbit structure, calculated by Schwarzschild

models while fitting to the LOSVDs, can offer additional hints about a galaxy’s

formation history (Lynden-Bell, 1967; van Albada, 1982; Hoffman et al., 2010)

and the orbit structure of the dSphs is relatively unexplored territory (although see

Jardel & Gebhardt 2012; Jardel et al. 2013; Breddels et al. 2013).

We also demonstrate the accuracy of the non-parametric technique through

tests of a mock galaxy constructed with a known density distribution. We show

that our modeling procedure accurately recovers this distribution from the derived

kinematics.

6.2 Data

Our models require both photometry and kinematics to constrain the orbits

of stars and the potentials in which they orbit. The data we use are described in

Jardel & Gebhardt (2013) and the methods are outlined with more detail in Jardel

et al. (2013). For clarity, we briefly discuss the data here. The interested reader is

referred to the above papers for more detail.
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6.2.1 Photometry

Our photometric analysis begins with the (projected) number density profile

of stars Σ∗(R). We list the sources of Σ∗(R) in Jardel & Gebhardt (2013). To convert

Σ∗(R) into the more useful surface brightness profile µ(R), we apply an arbitrary

zeropoint shift to Σ∗(R) in log space and adjust this value until the integrated lumi-

nosity of the new µ(R) is equal to the value listed for each dSph in Mateo (1998).

Next, we deproject each profile via Abel inversion to obtain the three-dimensional

luminosity density profile (Gebhardt et al., 1996). For simplicity, and so that the

deprojection is unique, we assume each galaxy is viewed edge-on. Our models

assume axisymmetric geometry, and to obtain the density profile at position an-

gles other than the major axis, we use the ellipticity adopted in Jardel & Gebhardt

(2013). We plot the luminosity density profiles ν(R) for each galaxy in Figure 6.1.

6.2.2 Kinematics

The kinematics we use are individual radial velocities published in Walker

et al. (2009b) with repeat measurements averaged. Using the membership proba-

bility P that Walker et al. (2009b) assign to each star, we discard velocities with

P < 0.95. We correct for perspective rotation in the galaxies where high-quality

Hubble Space Telescope measurements of proper motion are available (Carina and

Fornax; Piatek et al. 2003, 2007). We then place the stars on a meridional grid

folded about the major and minor axes. To preserve any possible rotation, we switch

the sign of a star’s velocity if it is flipped over the minor axis.

We group the resulting velocities into radial bins and construct the full
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LOSVD through the kernel density estimation procedure detailed in Jardel et al.

(2013). The number of stars per bin ranges between 50 and 70. In Fornax and

Sculptor, there are a substantial amount of radial velocities available. We there-

fore group stars into bins at a number of different position angles in addition to the

standard radial binning.

Although the LOSVDs themselves are the primary input to the Schwarzs-

child models, we fit Gauss-Hermite moments to the non-parametric LOSVDs for

illustrative purposes. We plot these moments in Figure 6.2.

6.3 Models

We use the non-parametric Schwarzschild modeling procedure introduced

in Jardel et al. (2013). Based on the principle of orbit superposition (Schwarzschild,

1979), these models aim to construct a representative sample of the allowed stellar

orbits in a galaxy. In doing so, they are constrained to match this population of

orbits to the LOSVDs as well as the three-dimensional stellar light profile.

The orbit-based modeling technique begins by assuming a trial potential for

the galaxy one wishes to model. This is done by assuming a density distribution

ρ(r,θ), assuming axisymmetry, and solving Poisson’s equation for associated po-

tential. The flattening of the dark matter halo is presently tied to the value of the

stellar ellipticity in each dSph, although it may in principle be different. Given the

test potential, the task is now to populate an orbit library containing a represen-

tative sample of the allowed orbits in this potential. This is possible because all

orbits in an axisymmetric potential respect three isolating integrals of motion: their
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Figure 6.2 Gauss-Hermite moments fit to a) Carina, b) Fornax, c) Sculptor, and d)
Sextans. Galaxies that have kinematics at multiple position angles show bins near
the major axis in blue and those near the minor axis in red. The solid lines are the
best fitting model for each galaxy.
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total energy E, the z-component of their angular momentum Lz, and a third integral

I3 for which there exists to scheme to analytically calculate it a priori (Binney &

Tremaine, 2008). Populating the orbit library is done by sampling these three inte-

grals of motion over their range of possible values according to the scheme outlined

in Thomas et al. (2004). A typical orbit library contains roughly 30,000 orbits.

Once the orbit library is constructed, each orbit is launched in the trial po-

tential and followed for many crossing times. The orbit’s position and velocity as a

function of time are calculated numerically (Siopis et al., 2009) and stored for later

comparison. Once the orbit integration has finished, the models assign a weight

to each orbit and optimize the weights such that they best reproduce the observed

LOSVDs and stellar luminosity profile. We use a χ2 minimization technique, sub-

ject to a maximum entropy constraint (Siopis et al., 2009), to determine how well

the orbit library is able to match the kinematics of the galaxy. If χ2 is low, then the

trial potential is a good fit. For large values of χ2, the trial potential cannot host the

types of orbits that would match the observed LOSVDs and a new trial potential is

chosen. A typical model for a galaxy will be the best-fitting result of ∼ 15,000 trial

potentials.

6.3.1 Non-parametric models

The above discussion on Schwarzschild modeling is generic to every orbit-

based code (Rix et al., 1997; van der Marel et al., 1998; Cretton et al., 1999; Geb-

hardt et al., 2000a; Valluri et al., 2004; van den Bosch et al., 2008). Going beyond

standard Schwarzschild modeling, we have developed a technique to determine the
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mass profile of the galaxy without having to assume anything about the distribution

of dark matter. This is implemented in the way we select the trial potentials. Rather

than adopting a parameterization for the halo density profile and sampling those

parameters to choose trial potentials, we instead divide the total density profile ρ(r)

into Nbin radial points where we evaluate the density ρi at these points. In this way,

the ρi themselves are the parameters whose values we sample in order to select new

trial potentials.

We use Nbin= 5 locations in the profiles, positioned at equal logarithmic in-

tervals, and connect the ρi with straight line segments. The only restriction we

place on the form of ρ(r) is that it must be non-increasing with radius. To sample

the ρi we use the procedure outlined in Jardel et al. (2013) where we initially use a

brute force search of roughly ∼ 4000 models on a course grid. We then narrow our

search using an iterative refinement scheme. Once a large number of models are

run near the locations of the suspected minima without further improvements to χ2,

we terminate the parameter search.

In addition to the ρi, we describe ρ(r) with one extra parameter α∞—the

power-law extrapolated slope, with ρ∝ r−α∞ outside of our model grid. Following

previous work (Jardel et al., 2013) we run models with α∞ ∈ {2,3,4} for each trial

density profile (combination of the ρi). In our subsequent analysis we marginalize

over α∞, since it is unconstrained, and treat it as a nuisance parameter. We also

truncate the density distribution at the Jacobi radius defined by the dSph mass,

Milky Way mass, and Galactocentric distance of each dSph. These truncation radii

are listed in Table 1 of Jardel & Gebhardt (2013) and are all much larger than the
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radial extent of our model grid. This lends support to the claim that tidal effects in

the dSphs are not presently important.

6.3.2 χ2 Analysis

In fitting to the LOSVDs, our models calculate χ2 as:

χ2 =
NLOSVD
∑

i=1

Nvel=15
∑

j=1

(

ℓobs
i j − ℓmod

i j

σi j

)2

. (6.1)

Each LOSVD is broken into Nvel = 15 bins in velocity space. The value of the ith

LOSVD at velocity bin j is given by ℓobs
i j and ℓmod

i j for the observed and model-

predicted LOSVDs respectively. The 1σ uncertainty in ℓobs
i j is σi j . The ℓmod

i j are

the result of finding the values of the weights for each orbit in the library and χ2

specifies how good a fit is obtained for a given trial potential. We compare between

models (trial potentials) by the difference in χ2 between a given model and the

model with minimum χ2
min. For five degrees of freedom (the five ρi) all models

within ∆χ2 = 5.84 above χ2
min are considered to be within 1σ.

We use the unreduced χ2 to discriminate between models since it is often

difficult to calculate the number of degrees of freedom in the LOSVDs. In calcu-

lating the observed LOSVDs, our kernel density estimator often introduces corre-

lations among neighboring velocity bins. One can estimate the overall goodness-

of-fit, and therefore convergence in our parameter sampling technique, by examin-

ing the model fits to the Gauss-Hermite moments of the kinematics in Figure 6.2.

However, we stress that our models calculate χ2 with respect to the LOSVDs as in
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Equation (1).

6.3.3 Tests of the Models

The Schwarzschild modeling code that is the backbone of our non-parametric

procedure has been thoroughly tested with artificial data. These tests show that the

procedure is capable of accurately recovering the mass profile and orbit structure of

simple cases like an isotropic rotator (Thomas et al., 2005) as well as more complex

N-body merger remnants (Thomas et al., 2007a). The models are also able to detect

and accurately measure a supermassive black hole at the center of a mock galaxy

(Siopis et al., 2009). Here we demonstrate the accuracy of our non-parametric mod-

els through similar tests.

We wish to test whether our non-parametric models can accurately recover

the density profiles of two known test cases. We choose the density profile of the

logarithmic potential, with its inner core that transitions to an outer r−2 profile, as

well as a single power-law profile with a slope of r−1 meant to mimic the inner

portion of the NFW profile. These profiles are examples of the types of dark matter

profiles found in dwarf galaxies. For the stellar component, we choose to embed

the three-dimensional stellar light profile of Draco (Jardel et al., 2013) into these

halos. The resulting mass profile is dominated at all radii by the dark matter, as is

the case in the dSphs. For simplicity, we assume spherical symmetry.

Once the potential and stellar light distribution have been established, we

use the Jeans Anisotropic Multi-Gaussian Expansion (JAM) models of Cappellari

(2008) to determine the kinematics that these choices would produce. Under the
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simplifying requirements that the test models have no rotation and isotropic ve-

locity ellipsoids, we obtain the projected velocity dispersion profiles σ(R) for each

test case. These profiles cover a range in radius similar to the dSphs we model in

this paper. At each of the 17 locations where σ(R) has been evaluated, we con-

struct an LOSVD from the velocity dispersion under the assumption that the higher

Gauss-Hermite moments h3 and h4, as well as the rotational velocity V , are zero.

In our construction of the LOSVDs, we add noise to the velocity dispersion at the

20% level—a level consistent with the observational uncertainties of the dSphs we

model.

The LOSVDs for both test cases are then used as input to the non-parametric

Schwarzschild models just as they would be for a typical dSph. We use the same

parameter sampling technique described in Jardel et al. (2013) to search for the χ2

minimum. We present the best-fitting density profiles that are recovered in Figure

6.3. We are able to accurately and precisely recover the density profiles in both test

cases, indicating these models are well suited for this type of work.

6.4 Results

We present the detailed results of our modeling of Carina, Fornax, Sculptor,

and Sextans in this section. Earlier papers reported the derived dark matter density

profiles (Jardel et al., 2013; Jardel & Gebhardt, 2013). In this paper we focus on

other aspects of the modeling such as the derived circular speed profiles Vc(r) and

the orbital anisotropy.
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Figure 6.4 Total enclosed mass as a function of radius for Carina, Fornax, Sculptor,
and Sextans. The 1σ uncertainties derived from ∆χ2 = 5.84 are shown as the gray
shaded region. The best fitting model is plotted as a solid line. We also plot the
mass derived from the Wolf et al. (2010) mass estimator with its uncertainty as the
black point with error bars.
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6.4.1 Masses

We plot the total enclosed mass as a function of radius in Figure 6.4. The

shaded region indicates the 1σ uncertainties derived from ∆χ2 = 5.84 as described

above. In each panel, the uncertainties are largest near the center of the galaxy

where kinematics are sparse. This is also seen in the dark matter density profiles

derived in Jardel & Gebhardt (2013) and motivates the need for more radial veloci-

ties in their centers.

We also compare our enclosed mass measurements with the convenient

mass estimator suggested by Wolf et al. (2010) (see also Walker et al. 2009a; Cap-

pellari et al. 2006). In Wolf et al. (2010), the authors present an analytical argument

that near the three-dimensional half-light radius re, the enclosed mass in a galaxy

is relatively insensitive to velocity anisotropy. This provides a convenient way to

robustly measure the mass at one location in a galaxy without running expensive dy-

namical models. Much recent work is based on dynamical masses obtained in this

manner (Walker & Peñarrubia, 2011; Boylan-Kolchin et al., 2012), and although

Wolf et al. (2010) provide an analytical justification for why the anisotropy is mini-

mized near re, this justification assumes spherical symmetry as well as a simplified

anisotropy profile.

Here we test the accuracy of this mass estimator against the full mass pro-

files from our non-parametric dynamical models. According to Wolf et al. (2010),

the mass enclosed at the three-dimensional half-light radius takes the form:
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M1/2 ≈ 4G−1Re < σ2
LOS >, (6.2)

where Re is the projected half-light radius, and < σLOS > is the luminosity-averaged

velocity dispersion along the line of sight. We calculate these quantities directly

from the kinematic and photometric data that we input to the model. We plot the

derived values for the M1/2 estimator as points with error bars in Figure 6.4. In

all of the galaxies except Sculptor, our model-derived mass at the half-light radius

lies within the error bars on M1/2. We see this as evidence that M1/2 is an accurate

estimator of the enclosed mass at re, even in axisymmetric galaxies with non-ideal

anisotropy profiles.

6.4.2 Orbital Anisotropy

Aside from constraining the mass distribution in these galaxies, our models

also calculate the velocity anisotropy from the best-fitting orbit structure. This extra

bit of information can potentially encode additional clues about the formation of the

dSphs.

It is widely believed that the dSphs were once disky galaxies (Kormendy

et al. 2009; Kormendy & Bender 2012 and references therein) that were transformed

into their spheroidal shape through environmental processes. One such process,

known as “tidal stirring”, causes the circular orbits of the proto-dSphs to be heated

and randomized by repeated passage through the Milky Way’s dark matter halo.

This causes an increase in V/σ and results in the transformation of a disk galaxy

into a spheroidal. Simulations of this scenario tend to produce dSphs with an excess
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of stars on radial orbits (Łokas et al., 2010; Kazantzidis et al., 2011), perhaps owing

to the presence of a tidally-induced bar (Łokas et al., 2010).

Here we are able to directly test this prediction by calculating the anisotropy

observed in the dSphs. We parameterize this with the ratio of the radial to tangential

components of the velocity dispersion tensor in spherical polar coordinates:

σr

σt

=
σr

√

1
2(σ2

θ +σ2
φ + v2

φ)
. (6.3)

Streaming motions in the r and θ directions are assumed to be zero. We compute

σr/σt as a function of radius where our kinematics data lie. Whenever σr/σt > 1,

this indicates regions of the galaxy with radial anisotropy.

We plot the run of σr/σt with radius in each of the four galaxies in Fig-

ure 6.5. Each dSph shows a mild tendency towards radial anisotropy at all radii,

and most also show a positive gradient of increasing σr/σt with radius. The radial

anisotropy we observe lends support to the tidal stirring scenario for the dSphs.

However, we caution that there are likely many plausible mechanisms that could

introduce radial anisotropy to orbit structure of the dSphs.

Ours are not the only measurements of anisotropy in dSphs, however. Using

spherical Schwarzschild models that fit to the moments of the LOSVDs, Breddels

et al. (2013) find mildly tangential anisotropy in all of the dSphs. This difference

could be due to differences in assumptions about geometry, or perhaps a differ-

ence in the two groups’ modeled best-fitting density profiles. Note, however, that

qualitatively the measurements of the total mass enclosed within r = 1 kpc agree.
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Figure 6.5 Orbital anisotropy in the four dSphs. We plot the ratio of the radial to
tangential components of the velocity dispersion, defined in Equation (3). Most of
the dSphs exhibit mild radial anisotropy.
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6.5 Comparison to Simulations

In this section we further explore the dark matter halos of the dSphs. In

Jardel & Gebhardt (2013), we plot the dark matter profiles of five bright dSphs

determined with our new non-parametric Schwarzschild technique. We found a

variety of differing profile shapes in the dSphs. However, when scaled to a common

height we found the combined profile of all five dSphs appeared similar to the inner

part of the NFW profile. Here, we follow up on those observations and compare

our results to cosmological simulations.

6.5.1 Why is there variation in the dSph profiles?

One interesting explanation for the variety of dark matter profiles ties the

halo’s profile slope to the number of stars that managed to form in the galaxy. Us-

ing cosmological N-body simulations complete with a hydrodynamical treatment

of baryons, Governato et al. (2012) simulate the formation of a number of isolated

dwarf galaxies. They find a trend of decreasing dark matter profile slope (becoming

more cored) when their simulated dwarf galaxies have larger stellar mass. Recently,

Pontzen & Governato (2014) have expanded on these simulations and provided a

detailed framework explaining this process (Pontzen & Governato, 2012). They

attribute the trend to the fact that when more stars form, this leads to more super-

novae, which can cause a greater reduction in central dark matter density (Navarro

et al., 1996a). At the extreme low-mass end, however, the force of adiabatic com-

pression (Blumenthal et al., 1986) overwhelms the meager energy from supernovae

and cause an increase in dark matter density, leading to profiles steeper than the
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NFW cusp.

In Figure 6.6 we plot the dSphs overlaid on the simulated dwarfs from

Pontzen & Governato (2014). In general, the dSphs appear to follow the same

trend as the simulations, although with larger scatter. However, it must be noted

that there would be little correlation if the data point corresponding to Fornax was

removed. Figure 6.6 also shows the result of Jardel & Gebhardt (2013), that the

mean slope of the dSphs dark matter profiles is near α = −1, since the average of all

the blue crosses in Figure 6.6 is close to -1. The Pontzen & Governato (2014) work

provides a mechanism to explain the variety of profile shapes observed (Jardel &

Gebhardt, 2013).

6.5.2 Are the dSphs “Too Big to Fail”?

In addition to the classic Missing Satellites Problem, where ΛCDM simu-

lations produce vastly more low-mass satellites than observed (Moore et al., 1999;

Klypin et al., 1999), the Milky Way’s satellites have recently been found to dif-

fer dynamically from those produced in large-scale ΛCDM simulations (Boylan-

Kolchin et al., 2012). Comparing the satellites of a Milky Way-sized halo in the

Aquarius Simulations (Springel et al., 2008) to observations of the Milky Way’s

own dSphs reveals that many more simulated halos have higher circular speeds than

any dSph. Boylan-Kolchin et al. (2012) make this determination without running

dynamical models, but by using the Wolf et al. (2010) mass estimator to calculate

the circular speed Vc at the half light radius for each dSph. Here we extend this

work to include the full circular speed profiles of the dSphs measured from dynam-
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ical models.

Nevertheless, it is instructive to make the same comparisons as Boylan-

Kolchin et al. (2012) to dark matter-only simulations, but now with the full cir-

cular speed profiles determined by sophisticated dynamical models. In Figure

6.7 we plot the 1σ confidence intervals on the circular speed profiles Vc(r) for

Carina, Draco, Fornax, Sculptor, and Sextans. Overlaid in gray are the circular

speed profiles from satellites around the Aquarius Simulation’s E halo (virial mass

Mvir = 1.4× 1012 M⊙). Magellanic Cloud-sized halos have been removed by the

technique described in Boylan-Kolchin et al. (2012). We also plot our derived val-

ues for Vc(r = r1/2) from the Wolf et al. (2010) estimator as similar colored points

with error bars.

Boylan-Kolchin et al. (2012) interpret the low Vc(r = r1/2) of the dSphs when

compared to Vc(r) of the simulations to mean that ΛCDM over-predicts the number

of massive dwarf galaxies. This is because it is difficult to imagine these massive

halos exist in the Local Group but never formed enough stars for us to observe them

as dSphs. One alternative to this interpretation is that feedback from supernovae

alters the dark matter content of real dwarf galaxies, and should therefore reduce Vc

in the gray curves in Figure 6.7. Zolotov et al. (2012) show this effect can be large

enough to reconcile the problem. Ram-pressure stripping can also remove baryons

and alter the halo density. Arraki et al. (2014) show that this effect, when simulated

in a realistic tidal field, leads to massive tidal stripping which can significantly lower

Vc enough to match observations. These types of feedback can also expel all the gas

from the lowest-mass halos and keep them from ever forming stars, thereby solving

161



0.1 0.3 0.6 1.0

r kpc

10

20

30

40

50

V
c
 k
m
/
s

Carina
Draco
Fornax
Sculptor
Sextans
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plotted with their 1σ uncertainties as filled curves. Also plotted is Vc(r = r1/2) mea-
sured from M1/2 as points with colored error bars. We plot the Vc profiles of subhalos
orbiting the E halo in the Aquarius simulation as gray curves. Only shown are sub-
halos with maximum circular speed Vmax > 10 km s−1 and maximum circular speed
at infall Vmax > 30 km s−1. The E halo has a virial mass of Mvir = 1.4×1012 M⊙.
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the classical missing satellites problem (Brooks et al., 2013).

Another way to relieve the tension between the simulated halos and the

Boylan-Kolchin et al. (2012) measurements of the dSphs’ Vc(r = r1/2) is to change

the mass of the Milky Way. Recent work suggests that the number of massive

satellites around a Milky Way-sized halo is a stochastic quantity with a large dis-

persion, and the Milky Way’s dSph population may not be as large an outlier as

previously thought (Purcell & Zentner, 2012; Wang et al., 2012; Vera-Ciro et al.,

2013). However, similar results found in the M31 system (Tollerud et al., 2014)

make this option less attractive.

Figure 6.7 shows that at least some of the halos deemed “massive failures”

by Boylan-Kolchin et al. (2012) are consistent with being Draco analogs in the

Milky Way’s satellite system. However, there are still many more simulated ha-

los with greater circular speeds than the remaining four dSphs. It remains an open

question whether tension can be relieved through baryonic feedback or by assum-

ing a smaller mass for the Milky Way. If we instead use Draco as an example of

agreement between ΛCDM and observations, then this sets an upper limit to the

amount of feedback that could have occurred. Otherwise Draco’s Vc curve would

be far below the simulated curves in Figure 6.7.

This work would not be possible without the supercomputing power pro-

vided by the Texas Advanced Computing Center (TACC). We thank Fabio Gov-

ernato and Andrew Pontzen for providing data from their hydrodynamical simula-
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tions. We are also grateful to Mike Boylan-Kolchin and the Aquarius collaboration

for providing access to their data.
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