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Chapter 1

Introduction

This thesis consists of four main parts:

(A) A variant of the Beurling-Selberg problem,

(B) An extremal problem for convex bodies,

(C) Uniform dilations in higher himensions, and

(D) Separated nets arising from linear toral flows.

The common theme between these works is the study and use of functions

which, in a precise sense, contain only low frequency waves. Such functions

are known as band-limited functions, or entire functions of exponential type.

In parts (A) and (B) we introduce new kinds of approximation problems and

report some first steps towards their resolution. Parts (C) and (D) are papers

in which well known constructions in trigonometric approximation are used

to obtain effective estimates in dynamical systems. (C) is joint work with Lê

Thái Hoàng, and (D) is joint work with Alan Haynes and Barak Weiss. These

parts are self contained and contain their own introductions.
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1.1 Selberg’s Functions and Modifications

In the 1970’s A. Selberg constructed two functions C(t) and c(t) with

the following properties

(i) C(t) and c(t) are integrable,

(ii) c(t) ≤ χ[a,b](t) ≤ C(t) for every t ∈ R,

(iii) Ĉ(ξ) = ĉ(ξ) = 0 if |ξ| > δ, and

(iv)

ˆ ∞
−∞

{
C(t)− χ[a,b](t)

}
dt =

ˆ ∞
−∞

{
χ[a,b](t)− c(t)

}
dt = δ−1.

He went on to show that the integrals appearing in (iv) are minimized among

all functions satisfying conditions (i)-(iii) if, and only if, δ(b− a) is an integer.

The case when δ(b − a) is not an integer has been carried out in recent work

of Friedrich Littmann [49].

Properties (i) and (iii) guarantee that C(z) is actually (almost everywhere)

the restriction to the real axis of an entire function. Indeed, by the Fourier

inversion formula, the function

z 7→
ˆ δ

−δ
Ĉ(ξ)e(zξ)dξ

is equal to C(t) for real t, where e(t) = e2πit. It follows from Morera’s theorem

and Fubini’s theorem that the above function is in fact entire. By an abuse of

notation, let C(z) denote the extension of C(t) to C.

Theorem 2.2. Suppose δ(b−a) < 1. Then C(z) is zero free in a ball of radius

(100δ)−1 centered at (b+ a)/2.
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In applications one may wish to take the parameter δ to be quite small,

or even to take it to zero. E. Bombieri has asked [private communication]

if given a fixed α in the upper half plane, how to construct an analgoue of

C(z) which in addition to (i)-(iii) above, also vanishes at α. In view of the

above theorem, if δ is sufficiently small, then the condition that C(α) = 0 is a

non-trivial one.

Problem 2.1. Let χ(t) denote the characteristic function of the interval [a, b],

δ > 0, and α ∈ C be in the upper half plane. Define

ρ(a, b;α, δ) = inf

ˆ ∞
−∞

F (t)dt− (b− a) (2.0.1)

where the infimum is taken over entire functions F : C→ C with the following

properties:

(i) F (t) is integrable on the real axis,

(ii) F (t) ≥ χ(t) for each real t,

(iii) F̂ (ξ) = 0 if |ξ| > δ, and

(iv) F (α) = 0.

Determine the value of ρ(a, b;α, δ) and if possible give a formula for an ex-

tremal.

This question forms the basis of our investigation in Chapter 1. We are

able to show

ρ(a, b;α, δ) ≈ δ−1 as δ →∞
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and

δ−2 � ρ(a, b;α, δ)� δ−3 as δ → 0

where the implied constants depend on a, b, and α. Our methods allow us to

explicitly produce such modifications of Selberg’s functions and to even create

majorants which vanish at any finite number of points off of the real axis. This

work is detailed in Chapter 1. 1 Our construction is based upon the following

extremal problem which we solve.

Theorem 2.4. Let δ > 0, α ∈ U , and β ∈ C. If F (z) is a real entire

function of exponential type at most 2πδ that is non-negative on the real axis

and F (α) = β, then

|β|K(α, α)− δRe(β)

K(α, α)2 − δ2
≤ 1

2

ˆ ∞
−∞

F (x)dx. (2.3.1)

where K(ω, z) is defined by (2.1.4). There is equality in (2.3.1) if and only if

F (z) = U(z)U∗(z) where

U(z) = λ1K(α, z) + λ2K(α, z),

and λ1 and λ2 can be given explicitly.

1.2 An Extremal Problem for Convex Bodies and the
Fourier Transform

A convex body K is a compact, convex, symmetric subset of RN with

non-empty interior. Convex bodies arise naturally as the unit balls of norms

1Littmann and Spanier have recently communicated to me that they have solved a similar
problem for the signum function, when α is purely imaginary.

4



on RN , and any convex body is the unit ball of some norm on RN . In this

paper we study an extremal problem at the interface of Fourier analysis and

the geometry of convex bodies. For an integrable function F (x) the Fourier

transform F̂ (ξ) is defined by

F̂ (ξ) =

ˆ
RN
e(−x · ξ)F (x)dx

where e(θ) = e2πiθ. We are interested in the following problem.

Problem 3.1. Given a convex body K define

η(K) = inf

ˆ
RN
F (x)dx (3.1.1)

where the infimum is taken over non-zero integrable functions F (x) which

satisfy

(i) F (x) ≥ 0 for each x ∈ RN ,

(ii) F (0) ≥ 1, and

(iii) F̂ (ξ) = 0 if ξ 6∈ K.

Determine the value of η(K).

It is easy to show that

1 ≤ volN(K)η(K) ≤ 2N (3.1.2)

where volN(K) is the Lebesgue measure on RN . The rightmost inequality is

obtained by considering the function

F (x) =

∣∣∣∣ 
1/2K

e(x · ξ)dξ

∣∣∣∣2 (3.1.2)
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and the left most inequality follows from some basic Fourier analysis.

To each convex body K there is an associated convex body K∗, called

the dual body or polar body of K, defined by

K∗ =
{
ξ ∈ RN : x · ξ ≤ 1 for each x ∈ K

}
. (3.1.3)

We will call K∗ the dual body of K. The following is the main result of chapter

3.

Theorem 3.1. Let K be a symmetric body and let η(K) be defined by (3.1.1).

Then

η(K)

volN(K∗)
≥ η(B)

volN(B)
=

2N

volN(B)2
(3.1.4)

where B is the unit ball of RN and K∗ is the dual body of K defined by (3.1.3).

An immediate consequence of Theorem 3.1 and (3.1.2) is the following classical

inequality of Santaló.

Corollary (Santaló’s inequality). Let K be a convex body in RN , K∗ be its

dual body. Then

volN(K)volN(K∗) ≤
(

volN(B)
)2

where B is the unit ball of RN .

Let F (x) satisfy conditions (i)-(iii) in Problem 3.1, let Λ be a unimodu-

lar lattice and Λ∗ be its dual lattice. Then by the Poisson summation formula2

2Poisson summation holds pointwise for F (x) because it is non-negative and the series
converges absolutely.
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we have

1 ≤
∑
u∈Λ∗

F (u) =
∑
v∈Λ

F̂ (v) ≤ F̂ (0)#interior(K) ∩ Λ

which implies η(K)−1 ≤ #interior(K) ∩ Λ. Combining this with (3.1.2) gives

the following form of Minkowski’s convex body theorem.

Corollary 3.1 (Minkowski’s convex body theorem). Let K be a convex body

in and Λ be a unimodular lattice in RN . Then

volN(K)

2N
≤ η(K)−1 ≤ #interior(K) ∩ Λ.

Indeed the admissible function (3.1.2) constructed to achieve the upper

bound 2N/volN(K) for η(K) is essentially the function used by Siegel [66] in

his proof of the convex body theorem. It would be interesting to know if there

is a convex body K for which η(K) < 2N/volN(K). If there is such a body,

then the above inequality is a strengthening of Minkowski’s theorem.

If Q = [−1, 1]N and Λ = ZN , then #interior(Q)∩Λ = 2−NvolN(K) = 1.

By Corollary 3.1 it follows that η(Q) = 1 = 2N/volN(Q) and in this case (3.1.2)

is just the suitably normalized Fejér kernel for RN . The solution to Problem

3.1 when K = B is more difficult and is the focus of Section 3.3. Although it

is not stated explicitly, the solution to Problem 3.1 in this case is implicit in

the work of Holt and Vaaler [39].

Lemma 3.1. Let B be the N−dimensional Euclidean unit ball. Then

η(B) =
2N

volN(B)
.
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We finally remark that if T is a non-singular linear transformation on

RN , then a simple change of variables shows that | det(T )|η(TK) = η(K).

From our previous remarks it follows that

η(K) =
2N

volN(K)

whenever K is an ellipsoid or a parallelotope. Similarly this show that the

inequality appearing in Theorem 3.1 is equality when K is an ellipsoid. In

view of these observations, Vaaler and I have formulated the following:

Conjecture 3.1. For any convex body K in RN ,

η(K) =
2N

volN(K)
. (3.1.5)

This conjecture, if true, would imply that every convex body has an

associated extremal function F (z) which factors as a square, i.e. there exist

entire functions U(z) and V (z) such that F (z) = U(z)U∗(z) + V (z) where
´
V (t)dt = 0. The failure of the conjecture would be striking and lead to

further questions: what is the mechanism which allows the mass to escape?. It

would also imply that for some K, one cannot find extremals for η(K) which

factor. We note that if K is a parallelotope, then it is easy to obtain such a

factorization using known interpolation formulas.

We also investigate the following problem (the reader may wish to set

ν = (N − 2)/2 upon the first reading which simplifies the expressions):

8



Problem 3.2. Let ν > −1, K be a convex body and S be the boundary of a

star body in RN , and define

µν(K,S) = inf

ˆ
RN
F (x)‖x‖2ν+2−Ndx (3.1.6)

where the infimum is taken over all integrable functions F : RN → R which

satisfy

(i) F (x) ≥ 0 for every x ∈ RN ,

(ii) F (x) ≥ 1 for every x ∈ S, and

(iii) F̂ (ξ) = 0 if ξ 6∈ K.

Determine the value of µν(K,S).

The quantity µν(π
−1B, ξSN−1) is related to H

(N)
ν (ξ, π−1) from the paper

[39] of Holt and Vaaler by

µν(π
−1B, ξSN−1) ≤ H(N)

ν (ξ, π−1) ≤ ωN−1uν(ξ, π
−1).

Lemma 3.2. Let δ, κ, ξ > 0, ν > −1, and B be the Euclidean unit ball. Then

µν(δB, ξS
N−1) = κ2ν+2µν(δκB, ξκ

−1SN−1) (3.1.7)

and

µν(π
−1B, ξSN−1) =

(
1

ωN−1uν(ξ, π−1)
+

∣∣∣∣Jν(ξ)Jν+1(ξ)

2ωN−1ξ2ν+1

∣∣∣∣)−1

(3.1.8)

where Jν(ξ) is the Bessel function and uν(ξ, π
−1) is defined by

uν(ξ, π
−1)−1 =

ξJν(ξ)
2 + ξJν+1(ξ)2 − (2ν + 1)Jν(ξ)Jν+1(ξ)

2ξ2ν+1
. (3.1.9)

9



We conjecture that µν(π
−1B, ξSN−1) ≤ H

(N)
ν (ξ, π−1). This has recently

been shown in the case ν = −1/2 by Littmann [49].

1.3 Notation

We let Z,Q,R,C denote the set of integers, rational numbers, real

numbers and complex numbers respectively. n,m,N,M typically represent

integers, x, y real numbers, and ω, z denote complex numbers. If N is a positive

integer we let x,y, ξ usually denote vectors in RN . We let U denote the open

upper half plane of C, i.e. U = {z ∈ C : Im(z) > 0} where Im(z) and Re(z)

denote the real and imaginary parts of z ∈ C. Br(x) =
{
y ∈ RN : |x− y| < r

}
denotes the open ball of radius r in RN . If A is a measurable subset of RN we

let |A| or volN(A) denote the Lebesgue measure of A. A function F : CN → C

is an entire function if it is entire in each coordinate separately. If F (z) is an

entire function, the complex conjugate F ∗(z) of F (z) defined by F ∗(z) = F (z)

is also an entire function.
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Chapter 2

A variant of the Beurling-Selberg Problem

The goal of this chapter is to gain some non-trivial solutions to the

following variant of the Beurling-Selberg problem:

Problem 2.1. Let χ(t) denote the characteristic function of the interval [a, b],

δ > 0, and α ∈ C be in the upper half plane. Define

ρ(a, b;α, δ) = inf

ˆ ∞
−∞

F (t)dt− (b− a) (2.0.1)

where the infimum is taken over entire functions F : C→ C with the following

properties:

(i) F (t) is integrable on the real axis,

(ii) F (t) ≥ χ(t) for each real t,

(iii) F̂ (ξ) = 0 if |ξ| > δ, and

(iv) F (α) = 0.

Determine the value of ρ(a, b;α, δ) and if possible give a formula for an ex-

tremal.

11



2.1 Background and Notation

In this chapter x, y will always be real numbers and z = x + iy will

be complex. Re(z) and Im(z) will denote the real and complex parts of z,

z the complex conjugate of z, if F (z) is an entire function then its complex

conjugate is given by F ∗(z) = F (z), U the open upper half plane of C, and

α will always be an element of U . If F : R → R is integrable, we define the

Fourier transform F̂ (ξ) of F (x) by

F̂ (ξ) =

ˆ ∞
−∞

e(−xξ)F (x)dx

where e(t) = e2πit. We extend the Fourier transform in the usual way to L2,

and when it is convenient we will use the alternate notation F (F )(ξ) to denote

the Fourier transform of F (x).

Suppose that F̂ (ξ) = 0 whenever |ξ| > δ for some δ > 0. Then F (x)

can be recovered from F̂ (ξ) by

F (x) =

ˆ δ

−δ
e(xξ)F̂ (ξ)dξ. (2.1.1)

for a.e. x ∈ R. Using this representation we can easily show that F (x) has an

analytic continuation to C as an entire function. Suppose γ is a simple closed

curve in C, then by Fubini’s theorem1

ˆ
γ

ˆ δ

−δ
e(zξ)F̂ (ξ)dξdz =

ˆ δ

−δ

ˆ
γ

e(zξ)dz F̂ (ξ)dξ = 0.

Since γ was arbitrary, it follows from Morera’s theorem that, except possibly

on a set of measure zero, F (x) has an extension to C as an entire function.

1F̂ (ξ) is continuous because we have assumed F (x) is integrable.
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By an abuse of notation, let F (z) denote this extension. It follows easily from

(2.1.1) that

|F (z)| �ε e
(2πδ+ε)|z| (2.1.2)

for each ε > 0. An entire function F (z) which satisfies the growth estimate

(2.1.2) is said to be of exponential type at most 2πδ. We have demonstrated

that any integrable function F (x) whose Fourier transform F̂ (ξ) is supported

in [−δ, δ] extends to an entire function of exponential type at most 2πδ. To

complete this picture we recall the following classical theorem of Paley and

Wiener [71].

Theorem 2.1 (Paley-Wiener). If F (z) is an entire function of exponential

type 2πδ that is square-integrable on the real axis, then F̂ (ξ) = 0 if |ξ| > δ.

Conversely, any function F (x) that is square-integrable on R and that satisfies

F̂ (ξ) = 0 if |ξ| > δ is a.e. equal to the restriction to the real axis of an entire

function of exponential type 2πδ.

Let

Hδ =
{
F ∈ L2(R) : F̂ (ξ) = 0 if |ξ| > δ/2

}
and identify elements of this space with their extensions to entire functions. Hδ

is a Hilbert space with respect to the L2 inner product 〈·, ·〉 with the property

that

|F (ω)| ≤ Cω‖F‖2

for every F ∈ Hδ and ω ∈ C. That is, point evaluation is continuous. It

follows from the Riesz representation theorem that evaluation at the point ω

13



is given by the inner product with an element of the space

F (ω) = 〈F,K(ω, ·)〉 (2.1.3)

for every F ∈ Hδ and ω ∈ C where

K(ω, z) =
sin πδ(z − ω)

π(z − ω)
. (2.1.4)

Throughout our investigation there are many instances where we require an

entire function F (z) to be real valued and non-negative on the real axis. We

conclude this section with the following factorization lemma for such functions

in Hδ.

Lemma 2.1. Suppose F (z) is not identically zero, real valued and non-negative

on the real axis, and that F (z) ∈ Hδ for some δ > 0. Then there exists an

entire function U(z) ∈ Hδ/2 such that U(z) is zero-free in U and F (z) =

U(z)U∗(z).

Proof. Let {ωn : n = 1, 2...} be the zeros of F (z), listed with appropriate mul-

tiplicity, in the upper half plane and let

BN(z) =
N∏
n=1

1− z/ωn
1− z/ωn

.

We define a sequence of entire functions FN(z) by FN(z) = BN(z)F (z). Each

of the functions FN(z) is in Hδ by the Paley-Wiener theorem. Since ‖F‖ =

‖FN‖ for each N , it follows that a subsequence of FN converges weakly to

some G(z) in Hδ. Since the space is a reproducing kernel space, it follows
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that FN(z) → G(z) pointwise for a subsequence. Since |BN(z)| ≥ 1 if z ∈ U

with equality when z is real, it follows that G(z) is zero free in U and that

|G(t)| = |F (t)| for real t. This shows that F (z)2 = F (z)F ∗(z) = G(z)G∗(z).

In particular the non-real zeros of G(z) occur with even multiplicity.

Since F (z) is real valued and non-negative on R, the zeros of G(z)

occur with even multiplicity and so there is an entire function U(z) for which

G(z) = U(z)2. Then F (z)2 = {U(z)U∗(z)}2 and since F (z) is real valued and

non-negative on R it follows that F (z) = U(z)U∗(z).

2.2 Selberg’s Functions - Not yet modified

Let χ(x) denote the characteristic function of the interval [−r, r] and

δ > 0. In the late 1970’s Selberg [63, 72] constructed two real entire functions

C(z) and c(z) of exponential type 2πδ which satisfy

c(x) ≤ χ(x) ≤ C(x) for each x ∈ R,

and ˆ ∞
−∞
{C(x)− χ(x)} dx =

ˆ ∞
−∞
{χ(x)− c(x)} dx = δ−1.

In this section we study the behavior of Selberg’s functions in a disc of radius

∼ δ−1. Our first result is about a zero-free region of C(z).

Theorem 2.2. Suppose 2rδ < 1. Then C(z) 6= 0 whenever |z| � δ−1.

It will follow from the proof below that the expression |z| � δ−1 can

be replaced by |z| ≤ (100δ)−1. In the proof of Theorem 2.2 we will invoke the

following propositions. The following can be found in [10, p. 83].
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Proposition 2.1. If f(z) is a real entire function of exponential type at most

2πδ that is bounded on the real axis, then

|f(x+ iy)| ≤ ‖f‖∞ cosh 2πδy (2.2.1)

for all real numbers x and y, where ‖f‖∞ = sup−∞<x<∞ |f(x)|.

Proposition 2.2. If F (z) is a real entire function of exponential type at most

2πδ that is integrable and nonnegative on the real axis, then for any p ≥ 1{ˆ ∞
−∞
|F (x)|pdx

}1/p

≤ δ1−1/p

ˆ ∞
−∞

F (x)dx. (2.2.2)

Proof. Indeed if F (z) satisfies the condition of the theorem, then by Proposi-

tions 2.1 there exists an entire function U(z) of exponential type at most πδ

such that F (z) = U(z)U∗(z). It is obvious that

ˆ ∞
−∞
|F (x)|pdx ≤ sup

−∞<t<∞
|F (t)|p−1

ˆ ∞
−∞

F (x)dx. (2.2.3)

And by the Cauchy-Schwarz inequality

sup
−∞<t<∞

|F (t)| = sup
−∞<t<∞

|U(t)|2 ≤ ‖U‖2
2K(t, t) = δ‖F‖1.

Proof of Theorem 2.2. Suppose C(ω) = 0. We will show that |ω| � δ−1.

By the mean value theorem and the fact that C(0) ≥ 1 we have

|C ′(bω)| = |C(ω)− C(0)|
|ω − 0|

≥ 1

|ω|
(2.2.4)
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for some 0 < b < 1. We provide an upper bound for |C ′(bω)| in the following

way. By writing ‖C‖∞ = limp→∞ ‖C‖p we find from Proposition 2.2 that

‖C‖∞ ≤ δ(2r + δ−1). Therefore Bernstein’s inequality and Lemma 2.1 yield

|C ′(rω)| ≤ 2πδ2 cosh(2πδIm(ω))(2r + δ−1). (2.2.5)

Combining (2.2.4) and (2.2.5) yields

1

2rδ + 1
≤ 2πδ|ω| cosh(2πδIm(ω))

But since 2rδ < 1 it follows that 1/2 ≤ 2πδ|ω| cosh(2πδIm(ω)). This clearly

implies that |ω| � δ−1.

It is therefore unnatural for extremal majorants of χ(t) to vanish in a

disc around the center of mass of χ(t).

We will now consider how well Selberg type functions, which have the

property that they vanishing at a prescribed point in the upper half plane,

can approximate χ(t). If δ is small enough, then we know this condition is

unnatural and Selberg’s function is not admissible. Recall ρ(a, b;α, δ) is the

quantity defined in Problem 2.1.

Theorem 2.3. ρ(a, b;α, δ)�a,b,α δ
−2 as δ → 0.

Proof. Assume that a = −b = r. Following the proof of Theorem 2.2 we find

that

1

|α|
≤ |fδ(α)− fδ(0)|

|α|
≤ 2πδ2 cosh(2πδIm(α)) {2r + ρ(δ)} . (2.2.6)
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But since cosh(2πδIm(α)) ∼ 1 when δ � 1 we have

δ−2 �α,r 1 + ρ(δ) (2.2.7)

when δ � 1.

In view of these results, another natural question is to ask of the local

behavior of C(α) as δ → 0.

Proposition 2.3. For each α ∈ U , |C(α)| − Re(C(α))�a,b,α δ as δ → 0.

Proof. By following the above proofs we have

|C(α)− C(0)| ≤ 2πδ2|α| cosh(2πδIm(α))
{
b− a+ δ−1

}
� δ. (2.2.8)

But upon writing |C(α) − C(0)| = {[Re(C(α))− C(0)]2 + [Im(C(α))]2}1/2
,

we find that |Re(C(α)) − C(0)| � δ. By the triangle inequality we have

|Im(C(α))| = |C(α) − Re(C(α))| � δ. Again by the triangle inequality we

have |C(α)| ≤ |Re(C(α))|+|Im(C(α))|. So |C(α)|−Re(C(α)) ≤ |Im(C(α))| �

δ.

2.3 Functions which Interpolate off the Real Axis

Theorem 2.4. Let δ > 0, α ∈ U , and β ∈ C. If F (z) is a real entire

function of exponential type at most 2πδ that is non-negative on the real axis

and F (α) = β, then

|β|K(α, α)− δRe(β)

K(α, α)2 − δ2
≤ 1

2

ˆ ∞
−∞

F (x)dx. (2.3.1)
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where K(ω, z) is defined by (2.1.4). There is equality in (2.3.1) if and only if

F (z) = U(z)U∗(z) where

U(z) = λ1K(α, z) + λ2K(α, z),

and λ1 and λ2 are given by

λ1 =
βK(α, α)− δ
K(α, α)2 − δ2

and λ2 =
K(α, α)− βδ
K(α, α)2 − δ2

. (2.3.2)

The proof of this theorem is based on the principal from Hilbert space:

Theorem 2.5. Let H be a complex vector space with inner product 〈·, ·〉, β ∈

C, u,v ∈ H be linearly independent, η = ‖u‖‖v‖, and ν = 〈u,v〉. If

〈h,u〉 〈h,v〉 = β (2.3.3)

then

‖h‖2 ≥ 2
|β|η − Re(βν)

η2 − |ν|2
. (2.3.4)

If h satisfies (2.3.3), then h achieves equality in (2.3.4) if and only if

ωh = λ1u + λ2v (2.3.5)

for some |ω| = 1, where

λ1 =
γβη − |ν|
η2 − |ν|2

and λ2 =
η − βν
η2 − |ν|2

.

and γ = ν/|ν|.
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Proof. By scaling considerations it suffices to prove the claim when |β| =

‖u‖ = ‖v‖ = 1 and ν = ν.

For any c1 and c2

‖h− (c1u + c2v)‖2 ≥ 0. (2.3.6)

Expanding this out gives

2Re
{
〈h, c1u + c2v〉

}
− ‖c1u + c2v‖2 ≤ ‖h‖2. (2.3.7)

Equality occurs in (2.3.7) if and only if h = c1u + c2v. We let h satisfy

〈h,u〉 〈h,v〉 = β and set

c1 =
β − ν
1− ν2

and

c2 =
1− βν
1− ν2

.

It can be checked that

‖c1u + c2v‖2 =
2− 2Re (β) ν

1− ν2
= 2Re(c2). (2.3.8)

Scaling h by a suitable constant of absolute value 1 we find that

〈h,u〉 = β/r and 〈h,v〉 = r

for some r > 0. Thus

2Re
{
〈h, c1u + c2v〉

}
= 2

{
Re(c1β)

r
+ Re(c2)r

}
Seeing that Re(c1β) = Re(c2), we have(

1

r
+ r − 1

)
2Re(c2) ≤ ‖h‖2. (2.3.9)

This completes the proof.
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Proof of Theorem 2.4. Suppose the integral of F (x) is finite. Then by Lemma

2.1 there is a function U(z) ∈ Hδ/2 such that F (z) = U(z)U∗(z). In view of

(2.1.3), the condition that F (α) = β can be rewritten as

〈U,u〉 〈U,v〉 = β

where u = K(α, z) and v = K(α, z). We notice that u and v are linearly

independent because the determinant of their inner-product matrix is given

by

K(α, α)2 − δ2 =
sinh 2πδIm(α)

2πIm(α)
− δ2 > 0.

The result now follows from Lemma 2.5.

It may be useful to have knowledge of the Fourier transform of the

extremal function F (z) coming from Corollary 2.4.

Theorem 2.6. Let K(ω, z) be given by (2.1.4), F denote the Fourier trans-

form, and

Gα,ω(t) = F
(
K(α, ·)K(ω, ·)

)
(t). (2.3.10)

Then

Gα,ω(t) = e−πit(ω+α) sin
{
π(ω − α)(δ − |t|)+

}
π(ω − α)

Let F (z) is the extremal function identified in Lemma 2.4, then

F
(
F
)
(t) = (|λ1|2+|λ2|2)Gα,α(t)+(λ1λ2e(−α)+λ1λ2e(−α))(δ−|t|)+, (2.3.11)

where λ1 and λ2 are given by (2.3.2), and (x)+ = max {0, x}.
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Proof. If a ≤ b and ξ ∈ C, Then
ˆ b

a

e2πisξds =
sin(πξ(b− a))

πξ
eπi(b+a)ξ.

Now if ξ ∈ C and δ > 0, then
ˆ ∞
−∞

e2πisξχ[−δ/2,δ/2](s)χ[−δ/2,δ/2](t− s)ds =
sin πξ(δ − |t|)+

πξ
eπitξ

This is seen by observing that

χ[−δ/2,δ/2](s)χ[−δ/2,δ/2](t− s) = χ[−δ/2,δ/2]∩[t−δ/2,t+δ/2](s)

Hence

ˆ ∞
−∞

e2πisξχ[−δ/2,δ/2](s)χ[−δ/2,δ/2](t− s)ds =



ˆ δ/2

t−δ/2
e2πisξds if t ≥ 0

ˆ t+δ/2

−δ/2
e2πisξds if t < 0

But when t ≥ 0
ˆ δ/2

t−δ/2
e2πisξds =

sinπξ(δ − t)
πξ

eπitξ

and when t < 0
ˆ t+δ/2

−δ/2
e2πisξds =

sin πξ(δ − |t|)
πξ

eπitξ.

Finally if |t| < δ, then
ˆ ∞
−∞

e−2πistKα(s)Kω(s)ds = e−2πiωt

ˆ ∞
−∞

e2πi(ω−α)sχ[−δ/2,δ/2](s)χ[−δ/2,δ/2](t− s)ds

= e−2πiωteπit(ω−α) sinπ(ω − α)(δ − |t|)
π(ω − α)

= e−πit(ω+α) sin π(ω − α)(δ − |t|)
π(ω − α)

.

The rest of the proof is straightforward.
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If we let F (z;α, β) be the unique function determined in Theorem 2.4,

then F (z;α, β) converges uniformly to zero on R rapidly when δ goes to infinity.

Notice that K(α, α) = δ and K(α, α) = sinh 2πδIm(α)/2πIm(α). Let

u(α, β, δ) = 2
|β|K(α, α)− δRe(β)

K(α, α)2 − δ2
. (2.3.12)

Proposition 2.4. Then for all real x

|F (x;α, β)| ≤ δu(α, β, δ). (2.3.13)

In particular,

|F (x;α, β)| �α,β δe
−2πIm(α)δ. (2.3.14)

Proof. By the Cauchy-Schwarz inequality we have

|F (x;α, β)| = |U(x;α, β)|2 ≤ δ‖U(·;α, β)‖2
2 = δu(α, β, δ).

But since K(α, α) = δ we have

u(α, β, δ) = Oα,β(K(α, α)−1) = Oα,β(e−2πIm(α)δ). (2.3.15)

2.4 Modifications of Selberg’s Functions

In this section we show how to modify Selberg’s functions so that they

vanish at a prescribed point in the upperhalf plane. Let δ > 0 and F (z;α, β)

be the extremal function described in Corollary 2.4. Notice that we have
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supressed the dependence of F (z;α, β) on δ.

Given N points α1, ..., αN ∈ U represented by α define

G−α(z) =
N∏
n=1

(1 + F (z/N ;αn/N,−1)) . (2.4.1)

It is easy to see that G−α(z) is an entire function of exponential type 2πδ such

that G−α(x) ≥ 1 on the real axis and G−α(αn) = 0 for each n = 1, ..., N . Now

observe that the following modification of Selberg’s majorant

Cα(z) = C(z)G−α(z) (2.4.2)

has exponential type 4πδ, Cα(x) ≥ C(x) for all real x, and Cα(αn) = 0 for

each n = 1, ..., N .

Proposition 2.5.

ˆ ∞
−∞

Cα(x)− χ(x)dx� δ−2N−1 as δ → 0,

and ˆ ∞
−∞

Cα(x)− χ(x)dx� δ−1 as δ →∞,

where the implied constants depends on a, b, and α.

Proof.

ˆ ∞
−∞

Cα(x)dx =

ˆ ∞
−∞

C(x)dx (2.4.3)

+
∑

i1<···<ik

ˆ ∞
−∞

C(x)F (x/N ;αi1/N,−1) · · ·F (x/N ;αik/N,−1)dx

≤ b− a+ δ−1 + ‖C‖∞
∑

i1<···<ik

k∏
`=1

‖F (x/N ;αi`/N,−1)‖k.
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Proposition 2.2 gives

‖F (x/N ;αi`/N,−1)‖k = N1/k‖F (x;αi` ,−1)‖k ≤ N1/k 2δ1−1/k

K(α`, α`)− δ

and

‖C‖∞ ≤ δ(b− a) + 1

which combined with (2.4.4) gives

ˆ ∞
−∞

Cα(x)dx ≤ b− a+ δ−1 +N(δ(b− a) + 1)
∑

i1<···<ik

2kδk−1

k∏
`=1

1

K(α`, α`)− δ
(2.4.4)

and by writing

K(α`, α`) = δ +
∞∑
n=2

(2πIm(α`))
2n−2

(2n− 2)!
δ2n−1

we find that
ˆ ∞
−∞

Cα(x)dx ≤ b− a+ δ−1 +Nδ−2N−1(δ(b− a) + 1)
N∏
n=1

4

min {1, 2πIm(αn)}
.

This plainly shows that
ˆ ∞
−∞

Cα(x)− χ(x)dx� δ−2N−1 as δ → 0

where the implied constant depends on a, b, and α. The last estimate holds

by combining (2.4.4) with the estimate K(α`, α`)� e2πIm(α`)δ for large δ.

2.5 Concluding Remarks (and generalizations)

2.5.1 Minimization in a de Branges space

In this section we show how Corollary 2.4 can be generalized so that

the minimization occurs in a fairly general de Branges space. A Hilbert space
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H which is nontrivial and whose elements are entire functions is called a de

Branges space if (i) F (z) ∈ H and ω is a non-real zero of F (z), then (z −

ω)F (z)/(z − ω) ∈ H and has the same norm as F (z), (ii) F (z) ∈ H implies

F ∗(z) ∈ H and has the same norm as F (z), and (iii) for every ω ∈ C, then

functional F 7→ F (ω) is continuous. It is a fundamental theorem of de Branges

[23] that to each space H one can find an entire function E(z) satisfying the

elementary inequality

|E(z)| < |E(z)| for each z ∈ U (2.5.1)

such that the Hilbert space whose elements come from H but whose inner

product is given by

〈F,G〉E =

ˆ ∞
−∞

F (t)G(t)
dt

|E(t)|2
,

with induced norm ‖ · ‖E, is isometric to H. Condition (iii) implies that a

de Branges space is a reproducing kernel Hilbert space. We will let KE(ω, z)

denote the corresponding reproducing kernel.

Conversely, given an entire function which satisfies (2.5.1), there exists

a de Branges space HE which consists of entire functions F (z) which satisfy

(i) ‖F‖E < ∞, and (ii) F (z)/E(z) and F ∗(z)/E(z) are of bounded type and

non-positive mean type in U . A function g(z) which is analytic in U is said

to be of bounded type in U if it can be expressed as the quotient of bounded

analytic functions in U . The mean type of a function g(z) of bounded type in

U is the number

ν(g) = lim sup
y→∞

y−1 log |g(iy)|
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if g(z) is not identically zero, and −∞ if g ≡ 0. We can now formulate a

generalization of Corollary 2.4 for de Branges spaces.

Corollary 2.1. Let α ∈ U , β ∈ C, and E(z) be an entire function that

satisfies (2.5.1) and that is of bounded type in U . Assume in addition that

KE(α, z) and KE(α, z) are linearly independent. If F (z) is an entire function

of exponential type at most 2τ(E) satisfying

1. F (x) ≥ 0 for real x, and

2. F (α) = β,

then

|β|KE(α, α)− Re(βKE(α, α))

KE(α, α)2 − |KE(α, α)|2
≤ 1

2

ˆ ∞
−∞

F (x)|E(x)|−2dx. (2.5.2)

Equality occurs in (2.5.2) if and only if F (z) = U(z)U∗(z), where

U(z) = λ1KE(α, z) + λ2KE(α, z). (2.5.3)

The coefficients λ1 and λ2 are given by

λ1 =
γβKE(α, α)− |KE(α, α)|
KE(α, α)2 − |KE(α, α)|2

and λ2 =
KE(α, α)− βKE(α, α)

KE(α, α)2 − |KE(α, α)|2
.

Where γ = KE(α, α)|KE(α, α)|−1.

Proof. If we can write F (z) = U(z)U∗(z) for some U(z) ∈ HE then the result

follows from Theorem 2.5 by taking u = KE(α, z) and v = KE(α, z). That

F (z) = U(z)U∗(z) for some U(z) ∈ HE follows exactly from the proof of

Theorem 15 of [39].
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The condition that KE(α, z) and KE(α, z) are linearly independent is

necessary because of examples such as E(z) = z + i. Notice that A(z) =

(1/2)(E(z) +E∗(z)) = z and B(z) = (i/2)(E(z)−E∗(z)) = −1. The function

K(ω, z) is given by

K(α, z) =
B(z)A(α)− A(z)B(α)

π(z − α)
=

z − α
π(z − α)

= π−1.

It follows that K(α, z) = K(β, z) for every α, β ∈ C. But E(z) has bounded

type and mean type 0 in U , and

|E(x− iy)| = |x+ i(1− y)| < |x+ i(1 + y)| = |E(x+ iy)|

when y > 0. In fact HE
∼= C as Hilbert spaces.

The condition that KE(α, z) and KE(α, z) are linearly independent is

superfluous for a large class of E(z), particularly if E(z) has positive mean

type then KE(α, z) and KE(α, z) are linearly independent for all α ∈ U .

Lemma 2.2. Let E(z) be an entire function that is of bounded type in U

and |E∗(z)| < |E(z)| for every z ∈ U . Then given α ∈ U , the functions

KE(α, z) and KE(α, z) are linearly independent in HE if either of the following

conditions hold:

1. E(z) has positive mean type, ν(E) > 0;

2. E(z) has more than one non-real zero.

Proof. We will begin by showing that it suffices to prove the lemma when

E(z) has no real zeros. Suppose E(z) has real zeros, then E(z) can be written
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as E(z) = E0(z)S(z) where S(z) = S∗(z) and E0(z) has no real zeros. But

since |E∗(z)| < |E(z)| for all z ∈ U it follows that S(z) has only real zeros

and that |E∗0(z)| < |E0(z)| for all z ∈ U . Following problem 44 from [23]

we find that F (z) 7→ F (z)S(z) is a linear isometry from HE0 onto HE. Now

we will show that if there does not exist a nonzero constant c ∈ C such that

F0(α) = cF0(α) for all F0 ∈ HE0 , then there does not exist a non-zero constant

c̃ ∈ C such that F (α) = c̃F (α) for all F ∈ HE. Suppose there does not exist

a non-zero constant c ∈ C such that F0(α) = cF (α) for all F0 ∈ HE0 . But

F (z) = F0(z)S(z) is in HE for every F0 ∈ HE0 . Suppose, by way of contra-

diction, that there was a non-zero constant c ∈ C such that F (α) = cF (α)

for every F ∈ HE. Then F0(α)S(α) = cF0(α)S(α) for every F0 ∈ HE0 . But

seeing that S(α) = S∗(α) 6= 0, the number c̃ = cS(α)/S(α) is non-zero, and

F0(α) = c̃F0(α) for all F0 ∈ H(E0), a contradiction. Therefore it suffices to

prove the lemma when E(z) has no real zeros.

(1) Suppose ν(E) = πδ > 0. Let us first deal with the case when E(z)

has no zeros. Then up to scaling E(z) = e−iπδz, by Nevanlinna’s factorization

or the product representation for Pólya class. The reproducing kernel for HE

is then given by

K(ω, z) =
sin πδ(z − ω)

π(z − ω)
. (2.5.4)

AndK(α, z) andK(α, z) are linearly independent inHE if and only ifK(α, α)2−

|K(α, α)|2 6= 0. But

K(α, α)2 − |K(α, α)|2 =

{
sinh 2πδIm(α)

2πIm(α)

}2

− δ2.
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So the condition thatK(α, α)2−|K(α, α)|2 6= 0 is equivalent to sinh 2πδIm(α) 6=

2πδIm(α), which is true when Im(α) > 0.

Now suppose that E(z) has one zero ω in the open lower half plane. Then up

to scaling E(z) = e−iπδz(z − ω). The function G(z) = 1 is then in HE since

ν(1/E) = 0 − ν(E) ≤ 0 and |t − ω|−2 is integrable. Similarly the function

H(z) = e−iπδz is in HE. Now suppose, by way of contradiction, that there is

a non-zero constant c ∈ C such that F (α) = cF (α) for all F ∈ HE. Then

c = 1 since 1 = G(α) = cG(α) = c. But |H(α)| 6= |H(α)| so it is impossible

for H(α) = H(α), a contradiction.

(2) Now we need not suppose that ν(E) > 0. Let us first treat the case

when E(z) has N > 1 zeros ω1, ..., ωN all of which are in the open lower half

plane. By a similar argument as above, the function G(z) = 1 is in HE. And

the function L(z) = z is also in HE since ν(z/E) = ν(z)−ν(E) = 0−ν(E) ≤ 0

and t2|t−ω1|−2 · · · |t−ωN |2 is integrable. Now suppose by way of contradiction

that there exists a non-zero constant c ∈ C such that F (α) = cF (α) for all

F ∈ HE. Then c = 1 since G ∈ HE, and L(α) = cL(α) implies α = α, a

contradiction.

Now suppose E(z) has infinitely many zeros ω1, ω2, ... in the lower half plane,

ordered in such a way that |ωk| ≤ |ωk+1|. The condition |E∗(z)| < |E(z)| for

all z ∈ U guarantees that E(z) 6≡ 0 and so |ωk| → ∞ as k → ∞. For each
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positive integer k let Fk(z) = E(z)(z − ωk)−1. Observe that ν(Fk/E) = 0 and

ν(F ∗k /E) = ν(E∗)−ν(E). But seeing that |E∗(iy)| < |E(iy)| for y > 0 we find

that ν(E∗) ≤ ν(E) from which it follows that ν(F ∗k /E) ≤ 0. It is now clear

that Fk(z) is in HE for all k.

Suppose, by way of contradiction, that there exists a non-zero constant

c ∈ C such that F (α) = cF (α) for all F (z) in HE. If E(α) 6= 0 we have

Fk(α) = E(α)(α− ωk)−1

= cE(α)(α− ωk)−1

= cFk(α)

which implies

c
E(α)

E(α)
=
α− ωk
α− ωk

.

Taking limits as k → ∞ gives |cE(α)| = |E(α)| which implies |c| > 1. But

seeing that F ∗k (z) is in HE we have F ∗k (α) = cF ∗k (α) = cFk(α) = ccF ∗k (α)

which implies |c| = 1, a contradiction.

Now suppose E(α) = 0 and recall that E(α) 6= 0. Then Fk(α) 6= 0

for sufficiently large k but Fk(α) = 0 for all k. Therefore there cannot exist a

non-zero constant c ∈ C such that Fk(α) = cFk(α) for all k.
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2.5.2 Trigonometric Polynomials

Let N ≥ 1 and PN ⊂ C[z] be the complex vector space of polynomials

of degree at most N . Define an inner product 〈·, ·〉 on PN by

〈p, q〉 =

ˆ
S1

p(θ)q(θ)dσ(θ) (2.5.5)

where S1 = {z ∈ C : |z| = 1} and σ is the Haar probability measure on S1.

Let ‖ · ‖ be the norm induced by 〈·, ·〉 and e(t) = e2πit.

Proposition 2.6. The polynomials 1, z, z2, ..., zN form an orthonormal basis

for PN and the space PN is complete with respect to ‖ · ‖.

Proof. These polynomials clearly span PN , so we only need to show that they

are orthonormal. Observe

〈zn, zm〉 =

ˆ
S1

θnθ
m
dσ(θ)

=

ˆ 1

0

e((n−m)t)dt

=

{
1 if n = m

0 if n 6= m.

Let p1, p2, ... is a Cauchy sequence in PN . Then there exist complex numbers

ak,n for k = 1, 2, ... and n = 0, 1, ..., N such that

pk(z) = ak,0 + ak,1z + · · ·+ ak,Nz
N .

Clearly ‖pk − p`‖2 =
N∑
n=0

|ak,n − ak,`|2 which implies a1,n, a2,n, ... is a Cauchy

sequence for each n = 1, ..., N . Completeness follows from the completeness

of C.
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Lemma 2.3. The space (PN , 〈·, ·〉) is a reproducing kernel Hilbert space with

reproducing kernel K : C× C→ C given by

K(ω, z) =
N∑
n=0

znωn. (2.5.6)

Furthermore, if α 6= 0, the functions z 7→ K(α, z) and z 7→ K(1/α, z) are

linearly independent if and only if α 6∈ S1.

Proof. The form of the reproducing kernel is a standard fact, but we note that

it doesn’t depend on the choice of orthonormal basis. We need only verify the

latter statement. The functions in question are linearly independent if and

only if

K(α, α)K(1/α, 1/α)− |K(1/α, α)|2 6= 0. (2.5.7)

But K(α, α) =
N∑
n=0

|α|n, K(α, 1/α) = N + 1 and K(1/α, 1/α) =
N∑
n=0

|α|−n. So

(2.5.7) can be rewritten as{
N∑
n=0

|α|n
}{

N∑
n=0

|α|−n
}
− (N + 1)2 6= 0. (2.5.8)

But by the arithmetic-geometric mean inequality we have

(N+1)−2

{
N∑
n=0

|α|n
}{

N∑
n=0

|α|−n
}
≥

{
N∏
n=0

|α|n
}1/(N+1){ N∏

m=0

|α|−m
}1/(N+1)

= 1

(2.5.9)

and equality holds if and only if |α|m = |α|n for n,m = 1, 2, ..., N which implies

|α| = 1.
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To state the next theorem, we will intoduce the notation [ω;M ] where

ω ∈ C and M ∈ Z+ by

[ω;M ] =
M∑
m=0

|ω|m. (2.5.10)

Corollary 2.2. Suppose α 6= 0, α 6∈ S1, β ∈ C, and N ≥ 1. If F (z) is a

Laurent polynomial of degree at most N ,

1. F (θ) ≥ 0 for θ ∈ S1, and

2. F (α) = β,

then

|β|[α;N ]1/2[α−1;N ]1/2 − (N + 1)Re(β)

[α;N ][α−1;N ]− (N + 1)2
≤ 1

2

ˆ
S1

F (θ)dσ(θ). (2.5.11)

Equality occurs above if and only if F (z) = p(z)p∗(z), where

p(z) = λ1K(α, z) + λ2K(1/α, z). (2.5.12)

The coefficients λ1 and λ2 can be explicitly computed in terms of K, α, β and

N .

Proof. Let p∗(z) = p(1/z). Then by Fejer’s theorem F (z) = p(z)p∗(z) for

some p ∈PN . The Corollary is proved upon appealing to Theorem 2.5 when

H = PN .
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2.5.3 Another Uncertainty type principle

Corollary 2.3. Let G be a locally compact Abelian group with Haar measure

µ and Ĝ be its unitary dual with measure ν. Select the measures in such a way

that makes the scaling constant in the Fourier inversion formula equal to 1. If

U is a Borel subset of G and V is a Borel subset of Ĝ, both of finite measure,

then let

ρ(U, V ) =

ˆ
U

ˆ
V

χ(g)dν(χ)dµ(g). (2.5.13)

Then given β ∈ C, if f ∈ L2(G, µ) satisfies

ˆ
U

f(g)dµ(g)

ˆ
V

f̂(χ)dν(χ) = β, (2.5.14)

then

1

2
‖f‖2

L2(G,µ) ≥
|β|µ(U)1/2ν(V )1/2 − Re

{
ρ(U, V )β

}
µ(U)ν(V )− |ρ(U, V )|2

. (2.5.15)

Proof. We wish to apply Theorem 2.5 when H = L2(G, µ). We let u = ∆U

and v = ∆̌V , where

∆A(a) =

{
1 if a ∈ A
0 otherwise.

The Fourier transform of ∆V is given by

∆̌V (g) =

ˆ
Ĝ

χ(g)∆V (χ)dν(χ)

=

ˆ
V

χ(g)dν(χ).
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Hence

〈
∆U , ∆̌V

〉
L2(G,µ)

=

ˆ
G

∆U(g)∆̌V (g)dµ(g)

=

ˆ
U

ˆ
V

χ(g)dν(χ)dµ(g)

= ρ(U, V ).

Now if 〈f,∆U〉
〈
f, ∆̌V

〉
= β, then there is a |ω| = 1 such that

〈ωf,∆U〉
〈
ωf̂ ,∆V

〉
= β.

And ‖ωf‖ = ‖f‖.
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Chapter 3

Extremal Problems for Convex Bodies and the

Fourier Transform

3.2 Preliminaries

To each convex body K we associate the dual norm (extended to CN)

by

‖z‖∗K = sup {|z · y| : y ∈ K} . (3.2.1)

This norm on RN is also called the support function of K. The dual norm will

be important to us in two ways. (1) For growth estimates for certain entire

functions, and (2) the following volume formula for K∗.

Proposition 3.1. Let K be a symmetric body and K∗ be its dual body. Then

volN(K∗) =
1

N

ˆ
SN−1

{
1

‖θ‖∗K

}N
dσ(θ) (3.2.2)

where dσ is the usual surface measure on the unit sphere SN−1 in RN .

Proof. For θ ∈ SN−1 let

ρ(θ) = sup {r > 0 : rθ ∈ K∗} .
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By writing the volume of K∗ in spherical coordinates we have

volN(K∗) =

ˆ
SN−1

ˆ ρ(θ)

0

rN−1drdσ(θ)

=
1

N

ˆ
SN−1

{ρ(θ)}N dσ(θ)

It is not difficult to check that ρ(θ) = 1/‖θ‖∗K , see [62, Theorem 1.7.6].

An integrable function F (x) will be called admissible if F (x) satisfies

conditions (i)-(iii) in Problem 3.1. F (x) will be called extremal if it is admis-

sible and its integral is equal to η(K). Suppose F (x) is an admissible function

for Problem 3.1. The function

z 7→
ˆ
K

e(z · ξ)F̂ (ξ)dξ (3.2.3)

is equal to F (x) for almost every x in RN and for each closed curve γ in C we

have for each ` = 1, ..., N

ˆ
γ

ˆ
K

e(z · ξ)F̂ (ξ)dξdz` =

ˆ
K

ˆ
γ

e(z · ξ)dz`F̂ (ξ)dξ = 0

where we have used Fubini’s theorem to interchange the order of integration.

Since the curve γ was arbitrary (3.2.3) defines an entire function by Morera’s

theorem. Consequentially, except for possibly on a set of measure zero, F (x) is

the restriction to RN of an entire function. We will always identify admissible

functions with their extensions to entire functions. The representation (3.2.3)

shows that admissible functions satisfy the following growth estimate in CN

|F (z)| �ε e
2π(1+ε)‖z‖∗K . (3.2.4)
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for each ε > 0. In the single variable case, entire functions which satisfy an

estimate of the same type as (3.2.4) are called entire functions of exponential

type. An entire function F (z) is said to be of exponential type 2πτ > 0 if

|F (z)| �ε e
2πτ(1+ε)|z|

for each ε > 0. The Paley-Wiener theorem gives two equivalent ways of looking

at entire functions of exponential type which are square-integrable on the real

axis.

3.3 Discussion and Proof that η(B) = 2N/volN(B)

As the title suggests, our main goal of this section is to prove

η(B) =
2N

volN(B)

where B is the Euclidean unit ball in RN . This result is implicit in the work

Holt and Vaaler [39]. And since the proof of this result does not require the

full force of the Holt-Vaaler machinery we will provide a self contained proof

here.

Suppose F (z) is an admissible function for this problem. By averaging

over SO(N) we find that

ˆ
RN
F (x)dx =

ˆ
RN

ˆ
SO(N)

F (gx)dµ(g)dx

where µ is the normalized Haar measure on SO(N), and that the function

x 7→
ˆ
SO(N)

F (gx)dµ(g)
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is admissible. In view of this observation we can safely limit our search to

extremal functions which are radial. We will see momentarily that the extremal

function we find can be factored as F (z) = U(z)U∗(z) where U(z) is square

integrable and radial on RN and Û(ξ) is supported in 1/2B. This allows us to

recast the extremal problem as a minimization problem in the Hilbert space

H =
{
U(x) ∈ L2(RN) : U(x) is continuous and supp(Û(ξ)) ⊂ 1/2B

}
.

H is a Hilbert space with respect to the L2-inner product 〈·, ·〉 with the prop-

erty that for every z ∈ CN and f ∈ H

f(z) = 〈f,K(z, ·)〉 (3.3.1)

where

K(ω, z) =

ˆ
1/2B

e
(
− (z− ω) · ξ

)
dξ. (3.3.2)

We identify the elements of H with their entire extensions to CN . Let H1

be the N = 1 case of H. Functions in H1 which are real-valued and non-

negative on the real axis enjoy a factorization akin to that for non-negative

trigonometric polynomials given by the Fejér-Riesz theorem . The following is

an extension of Lemma 2.1.

Proposition 3.2. Suppose F (z) ∈ H1 is real valued and non-negative on the

real axis and that F (z) is not identically zero. Then there exists an entire

function U(z) ∈ H1 such that U(z) is zero-free in U and F (z) = U(z)U∗(z).

If F (z) is also even, then F (z) admits the factorization

F (z) = z2kQ(z)V (z)V ∗(z)
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where k is the multiplicity of the possible zero at z = 0, Q(z) has only purely

imaginary zeros, and V (z) is even.

Proof. By Lemma 2.1 we have the factorization F (z) = U(z)U∗(z).

If F (z) is even write U(z) = zkp(z)R(z)R∗(−z) where R(z) contains

the zeros of U(z) which have strictly positive real part, p(z) contains only

purely imaginary zeros, and k is the multiplicity of the zero at 0. Let V (z) =

R(z)R(−z) and Q(z) = p(z)p∗(z).

We now introduce a notation for restrictions and extensions for dealing

with radial functions. If G(z) is a radial function, that is the restriction of

G(z) to RN is radial, we let g(z) denote its restriction to a line, say one of the

coordinate axes. Similarly if g(z) is an even entire function, we may extend

g(z) to a radial function G(z) on CN by

G(z) =
∞∑
`=0

g(2`)(0)

(2`)!

{
z2

1 + · · ·+ z2
N

}`
.

Let F (z) be an admissible function for our problem and assume that F (z) is

radial. Then the corresponding restriction f(z) is an even function in H1 that

is real-valued and non-negative on the real axis. Therefore f(z) admits the

representation

f(z) = q(z)v(z)v∗(z)

where q(z) and v(z) are even entire functions and q(z) has only purely imag-

inary zeros. We choose the functions in such a way that |v(0)|2 = q(0) = 1.
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Seeing that q(z) and v(z) are even, we extend them to CN to obtain the

following factorization for F (z)

F (z) = Q(z)V (z)V ∗(z).

The integral of F (x) now has the form
ˆ
RN
F (x)dx =

ˆ
RN
Q(x)|V (x)|2dx

But if F (x) is extremal, then q(z) is zero free. Suppose, by way of contradic-

tion, that q(z) has a zero at say iy for y > 0. Then

q(z) =

(
1 +

z2

y2

)
q̃(z)

for some even entire function q̃(z) such that q̃(0) = 1, and q̃(x) ≥ 0 for real x.

In particular, q̃(x) < q(x) for all non-zero real numbers x. This plainly shows

that the admissible function F̃ (z) = Q̃(z)V (z)V ∗(z) has smaller L1-norm than

F (z). Therefore we may assume

F (z) = V (z)V ∗(z)

where V (x) ∈ H. But by the Cauchy-Schwarz inequality and (3.3.1)

1 ≤ F (0) = |V (0)|2 ≤ K(0,0)‖V ‖2
2 = volN(1/2B)‖V ‖2

2 (3.3.3)

where equality occurs if and only if F (0) = 1 and V (z) is a scalar multiple of

K(0, z). But

‖V ‖2
2 =

ˆ
RN
F (x)dx.

Therefore

η(B) =
2N

volN(B)
.
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3.4 Proof of Theorem 3.1

Let F (x) be an admissible function for Problem 3.1. We may assume

that F (x) is even, because 1/2(F (x)+F (−x)) is admissible and it has the same

integral as F (x). For each θ ∈ SN−1 the function

z 7→ F (zθ)

is entire of exponential type at most 2π‖θ‖∗K by (3.2.4). Let F (z;θ) be the

radial extension of this function. Observe

ˆ
RN
F (x)dx =

ˆ
SN−1

ˆ ∞
0

F (rθ)|r|N−1drdσ(θ)

=
1

ωN−1

ˆ
SN−1

ˆ
RN
F (x;θ)dxdσ(θ)

≥
 

SN−1

η(‖θ‖∗KB)dσ(θ)

=
2N

volN(B)

 
SN−1

{
1

‖θ‖∗K

}N
dσ(θ) (3.4.1)

where ωN−1 is the surface area of SN−1, and we have used Lemma 3.1 in the

last line. But by Proposition 3.1

1

N

ˆ
SN−1

{
1

‖θ‖∗K

}N
dσ(θ) = volN(K∗)

Seeing that ωN−1 = NvolN(B) it follows that

volN(K∗)

volN(B)
=

 
SN−1

{
1

‖θ‖∗K

}N
dσ(θ). (3.4.2)

By substituting (3.4.2) into (3.4.1), we obtain the desired result.
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3.5 Discussion and Proof of Lemma 3.2

Throughout this section suppose a priori that F : RN → R is admissible

and extremal for Lemma 3.2. Let

Hν =
{
U(x) ∈ L2(RN ; ‖x‖2ν+2−Ndx) : Û(ξ) = 0 if ξ 6∈ (1/2π)B

}
.

By our previous discussion we may assume F is radial. Positivity and ex-

tremality give that there exists a radial entire function U(z) in Hν such that

|U(x)| ≥ 1 whenever x ∈ S and F (z) = U(z)U∗(z).

Now for each ν > −1 there is an entire function Eν(z), the de Branges structure

function, associated to a de Branges homogeneous space H (Eν) which has the

property that

cν

ˆ ∞
−∞
|f(t)|2|t|2ν+1dt =

ˆ ∞
−∞

∣∣∣∣ f(t)

Eν(t)

∣∣∣∣2 dt
for each f ∈ H (Eν) where cν = π2−2ν−1Γ(ν + 1)−2. It follows from the work

of Holt and Vaaler that z 7→ U(zθ) is in H (Eν) for any θ ∈ SN−1. We will

call such a selection U(z). Therefore

µν(B, ξS
N−1) =

ˆ
RN
F (x)‖x‖2ν+2−Ndx (3.5.1)

=
ωN−1

2

ˆ ∞
−∞
|U(t)|2|t|2ν+1dt (3.5.2)

=
ωN−1

2cν

ˆ ∞
−∞

∣∣∣∣ U(t)

Eν(t)

∣∣∣∣2 dt (3.5.3)

=
ωN−1

2cν
‖U‖2

Eν (3.5.4)
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where ‖·‖Eν is the de Branges space norm and we will let〈·, ·〉Eν is the associated

inner product. Evidently U(z) satisfies the following relations

| 〈U,Kν(−ξ, ·)〉Eν | ≥ 1 and | 〈U,Kν(ξ, ·)〉Eν | ≥ 1

where Kν(ω, z) is the reproducing kernel for H (Eν).

The crucial inequality giving extremality in the previous discussion is

the use of the Cauchy-Schwarz inequality in (3.3.3) in conjunction with the

reproducing property. In this section we will need the following 2 point version

of this inequality:

Lemma 3.3. Let (H, 〈·, ·〉) be a complex inner product space, and let h1,h2 ∈

H be linearly independent and satisfy

‖h1‖ = ‖h2‖ and 〈h1,h2〉 = 〈h2,h1〉 .

If h ∈ H satisfies

| 〈h,hi〉 | ≥ 1 for i = 1, 2,

then

1

‖h1‖‖h2‖+ | 〈h1,h2〉 |
≤ 1

2
‖h‖2.

We will use the following elementary proposition to establish this lemma:

Proposition 3.3. Suppose y1, y2 ∈ H are linearly independent and ‖y1‖ =

‖y2‖. Then

min
{
‖s1y1 + s2y2‖2 : |s1| ≥ 1, |s2| ≥ 1

}
= 2‖y1‖‖y2‖ − 2| 〈y1, y2〉 |. (3.5.5)
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Proof. We may assume without loss of generality that ‖y1‖ = ‖y2‖ = 1 and

that y1 and y2 are not orthogonal. Then

‖s1y1 + s2y2‖2 = |s1|2 + |s2|2 + 2ρRe(s1s2)

where ρ = 〈y1, y2〉. We may also assume s2 = 1 and write s1 = reiθ where

r ≥ 1.

‖s1y1 + s2y2‖2 = r2 + 2ρr cos θ + 1.

But r2 +2ρr cos θ+1 ≥ r2−2|ρ|r+1 so we choose θ such that cos θ = −sgn(ρ).

But the minimum of the function r 7→ r2− 2|ρ|r+ 1 occurs at r = |ρ| < 1 and

so we must take r = 1 and so

‖s1y1 + s2y2‖2 ≥ 2− 2| 〈y1, y2〉 |

and equality is achieved if s1 = −sgn(ρ) and s2 = 1.

Proof. (of Lemma 3.3) By a basic projection argument, we see that if h is

extremal, then there are complex numbers λ1 and λ2 such that

h = λ1h1 + λ2h2.

There are also complex numbers s1, s2 with |s1| ≥ 1 and |s2| ≥ 1 that satisfy

〈h,h1〉 = s1 〈h,h2〉 = s2.

Notice that the choices of λ1, λ2 and s1, s2 are in a one-to-one correspondence.

This is best seen by considering the following linear system.

s1 = 〈h,h1〉 = λ1 + λ2 〈h1,h2〉

s2 = 〈h,h2〉 = λ1 〈h1,h2〉+ λ2
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which we rewrite in matrix form(
s1

s2

)
=

(
1 ν
ν 1

)(
λ1

λ2

)
(3.5.6)

where ν = 〈h1,h2〉. The matrix G =

(
1 ν
ν 1

)
is the Gram matrix for h1

and h2, and since h1 and h2 are linearly independent it follows that G is

nonsingular. Therefore(
λ1

λ2

)
=

1

1− ν2

(
1 −ν
−ν 1

)(
s1

s2

)
. (3.5.7)

This now allows us to write h is terms of s1 and s2

h =
1

1− ν2

(
(s1 − s2ν)h1 + (s2 − νs1)h2

)
. (3.5.8)

We would now like to apply Proposition 3.3 to (3.5.8). We set y1 =

h1− νh2 and y2 = h2− νh1. But ν 6= 1 since ‖h1‖ = ‖h2‖ = 1 and h1 and h2

are linearly independent. So y1 and y2 are linearly independent and

‖y1‖2 = ‖y2‖2 = (1− ν)(1 + ν), 〈y1, y2〉 = ν(ν − 1)(ν + 1).

Therefore by Proposition 3.3 and (3.5.8) we have for ‖h1‖ = ‖h2‖ = 1

‖h‖2 =
2(1− ν)(1 + ν)− 2|ν(ν − 1)(ν + 1)|

(1− ν2)2
=

2(1− |ν|)
1− ν2

(3.5.9)

and by scaling we have for ‖h1‖ = ‖h2‖

‖h‖2 =
2

‖h1‖‖h2‖+ | 〈h1,h2〉 |
.
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Now the proof of Theorem 3.2 is nearly complete. We take h1 =

Kν(−ξ, z) and h2 = Kν(ξ, z) in the lemma to obtain

µν(π
−1B, ξSN−1) =

ωN−1

cν

{
‖Kν(ξ, ·)‖2

Eν + | 〈Kν(ξ, ·), Kν(−ξ, ·)〉 |
}−1

=
ωN−1

cν
{Kν(ξ, ξ) + |Kν(−ξ, ξ)|}−1

But

Kν(−ξ, ξ) =
Aν(−ξ)Bν(ξ)− Aν(ξ)Bν(−ξ)

2πξ

=
Aν(ξ)Bν(ξ)

πξ

=
Γ(ν + 1)2 (ξ/2)−2ν Jν(ξ)Jν+1(ξ)

πξ

=
Jν(ξ)Jν+1(ξ)

2cνξ2ν+1

where Aν(z) and Bν(z) are defined in Vaaler and Holt. But cνKν(ξ, ξ) =

uν(ξ, π
−1)−1 as defined in Vaaler and Holt by

uν(ξ, π
−1)−1 =

ξJν(ξ)
2 + ξJν+1(ξ)2 − (2ν + 1)Jν(ξ)Jν+1(ξ)

2ξ2ν+1
.

So

Kν(ξ, ξ) =
ξJν(ξ)

2 + ξJν+1(ξ)2 − (2ν + 1)Jν(ξ)Jν+1(ξ)

2cνξ2ν+1
.

This shows that

µν(π
−1B, ξSN−1) =

(
1

ωN−1uν(ξ, π−1)
+

∣∣∣∣Jν(ξ)Jν+1(ξ)

2ωN−1ξ2ν+1

∣∣∣∣)−1

.
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3.6 Concluding Remarks

Remark 3.1. Bourgain and Milman [12] have shown that there is an absolute

constant c > 0 such that cNvolN(B)2 ≤ volN(K)volN(K∗). This in conjunction

with (3.1.2) implies that

η(K) ≤ c−N
2NvolN(K∗)

(volN(B))2
.

Conversely, the existence of an absolute constant in the above inequality would

imply Bourgain and Milman’s reverse Santaló inequality above. In view of this

observation we pose the following problem which is equivalent to the reverse

Santaló inequality.

Problem 3.3. Show that there exists an absolute constant C > 0 such that

ˆ
RN

∣∣∣∣ 
K

e(x · ξ)dξ

∣∣∣∣2 dx ≤ CN volN(K∗)

(volN(B))2

using Fourier analysis.

It has been brought to my attention that Nazarov has shown this in

[56] using results at the intersection of Fourier analysis and several complex

variables. Our arguments and ideas are very similar to those of Nazaraov.

Remark 3.2. Problem 3.1 can be regarded as the simplest problem in a larger

program aimed at tackling the Beurling-Selberg problem in several variables

with fairly general Fourier support. Indeed this is the author’s motivation for

studying Problem 3.1.
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Remark 3.3. In the previous section, regarding the 2 point lemma. If H = PW

of type πδ, and t1, t2 are distinct real numbers, h1 = K(t1, z) and h2 =

K(t2, z), then ‖h1‖2 = ‖h2‖2 = δ and 〈h1,h2〉 = (π|t1 − t2|)−1 sin πδ|t1 − t2|.

In this case

∆ =
1

2

ˆ ∞
−∞

F (t)dt =

{
δ +

∣∣∣∣sinπδ|t1 − t2|π|t1 − t2|

∣∣∣∣}−1

(3.6.1)

where F (t) is the extremal majorant of type 2πδ of the characteristic function

of the points t1 and t2. If δ|t1 − t2| = L ∈ Z then ∆ =
|t1 − t2|

L

Remark 3.4. It is natural to recast Problem 3.1 for a more generic set in place

of K. For instance one could select K to be a set of positive and finite Lebesgue

measure, a compact set, a star body, etc. Regardless of the choice of set, we

remark that one may as well choose the set to be symmetric since F (x) being

real valued implies that F̂ (ξ) = 0 if and only if F̂ (−ξ) = 0, and so the support

of F̂ (ξ) for any real valued function F (x) is naturally symmetric.
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Chapter 4

Uniform Dilations in Higher Dimensions

This chapter is a joint paper written with Thái Hoàng Lê [42].

4.1 Introduction

Let T = R/Z. A subset X ⊂ T is called ε-dense in T if it intersects

every interval of length 2ε in T. A dilation of X is a set of the form nX =

{nx : x ∈ X} ⊂ T. The following theorem of Glasner [31] is the basis for our

investigation.

Theorem I (Glasner). Let X be an infinite subset of T and ε > 0, then there

exists a positive integer n such that the dilation nX is ε-dense in T.

Theorem I can be made effective in the sense that every sufficiently large

subset X has an ε-dense dilation of the form nX for some positive integer n,

and ‘sufficiently large’ can be quantified. The first result in this direction was

obtained by Berend and Peres in [9]. Given ε > 0, let k(ε) be the minimal

integer k such that for any set X ⊂ T of cardinality at least k, some dilation

nX is ε-dense in T. Berend and Peres showed that

c/ε2 ≤ k(ε) ≤ (c1/ε)
c2/ε (4.1.1)
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where c, c1, c2 are absolute constants.

The question of determining the correct order of magnitude of k(ε) was

further studied in depth by Alon and Peres [2], who gave the bound

k(ε)�δ

(
1

ε

)2+δ

(4.1.2)

for any δ > 0. This is almost best possible in view of (4.1.1). Actually, they

gave a more precise bound

k(ε)�
(

1

ε

)2+ 3
log log(1/ε)

. (4.1.3)

In [2], Alon and Peres provided two different approaches to this prob-

lem. On the one hand, the probabilistic approach gives more information

about the dilation, such as its discrepancy. On the other hand, the second

approach, using harmonic analysis, is particular suited when one is interested

in dilating the set X by a sequence of arithmetic nature, such as the primes

or the squares. They proved

Theorem II (Alon-Peres). (i) For any δ > 0, every set X in T of cardi-

nality

k �δ
1

ε2+δ
,

has an ε-dense dilation pX with p prime.

(ii) Let f be a polynomial of degree L > 1 with integer coefficients and let

δ > 0. Then any set X in T of cardinality

k �δ,f

(
1

ε

)2L+δ

,
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has an ε-dense dilation of the form f(n)X, for some n ∈ Z.

It is shown in [55] that in part (ii) of the above theorem there is an

ε-dense dilation of the form f(p)X where p is a prime number.

In this paper we investigate high dimensional analogues of Glasner’s

theorem and the above results of Alon and Peres using Alon-Peres’ harmonic

analysis approach. One problem that comes to mind is that of determining

the natural analogue of “dilating by n” in the one-dimensional case. Any

continuous endomorphism of T is represented this way, so we may regard

the dilation as the action by a continuous endomorphism. When considering

higher dimensional generalizations of the above theorems we need not restrict

ourselves from maps of a torus into itself. We will instead consider maps

between tori of possibly different dimension. A continuous homomorphism

between TN and TL is represented by left multiplication of an L × N matrix

with entries in Z. This will be our analogue of dilation. We say that a subset

of TL is ε-dense in TL if it intersects any box of side length 2ε.

Our first theorem is a high dimensional analogue of Glasner’s theorem.

Theorem 4.1. For any ε > 0 and any infinite subset X ⊂ TN there exists a

continuous homomorphism T : TN → TL such that TX is ε-dense in TL.

The proof of this result is similar to the proof of (4.1.2). Our main

investigation, however, is an analogue of the fact that if X ⊂ T is infinite,

then there is a dilation of the form f(n)X that is ε-dense, where f(x) is a non-

constant polynomial with integral coefficients. Let us introduce the set-up to
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this problem and lay out some of the complications that arise when moving to

high dimensions. In this paper, a subtorus of TN is defined to be a non-trivial

closed and connected Lie subgroup.

Let A(x) ∈ ML×N(Z[x]) be non-constant and let D be the positive

integer representing the largest of the degrees of the entries of A(x). Then

there are A0, ..., AD ∈ ML×N(Z) such that

A(x) = A0 + xA1 + · · ·+ xDAD = A0 + A∗(x)

where A∗(x) is the non-constant part of A(x). We wish to consider dilations

of subsets X ⊂ TN of the form A(n)X.

Simple examples show that, unlike Theorem 4.1, there are configura-

tions of A(x) and X for which A(n)X is never ε-dense in the full torus. Take,

for instance, A(n) =

(
n 0
0 n

)
and X to live in a proper subtorus, then A(n)X

is also in the same subtorus, for every n. Furthermore, if we take X to be in a

translate of a subtorus, then A(n)X is also in a translate of a subtorus (where

the translate depends of n). So the best one can hope for in this situation is

to achieve an ε-dense dilation in a translate of a subtorus. Before stating our

results, we give some examples to show that even this restriction is not always

achieved.

Example 4.1. If A(n) =

(
n 0
0 0

)
and X = {(0, x) : |x| ≤ 1/4}, then there is no

value of n such that A(n)X is 1/4-dense in a translate of a subtorus. Basically,

this is because the matrix A∗ is degenerate in a sense so that A(n)X doesn’t

“move X around.”
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Example 4.2. If A(n) =

(
n 0
0 n+ 1

)
and X = {(1/j, 1/j) : j = 1, 2, . . .},

then clearly A(n)X is not 1/4-dense in any translate of the diagonal. On the

other hand, one can show that for any n, for any subtorus HT of T2 that

is different from the diagonal, A(n)X is not ε-dense in any translate of T

(since the set of dot products of elements of A(n)X with (−1 1) has only

one accumulation point). The reason of such a failure can be attributed to the

lack of a compromise between the constant part and the non-constant part of

A.

Our main result says that the only obstructions to ε-dense dilations are

the ones described in Examples 4.1 and 4.2.

Theorem 4.2. Let A(x) ∈ ML×N(Z[x]). The following are equivalent:

1. For any infinite subset X ⊂ TN there exists a subtorus T = T (X,A) of

TL such that for any ε > 0 there exists an integer n such that A(n)X =

{A(n)x : x ∈ X} is ε-dense in a translate of T .

2. (a) The columns of A∗(x) are Q-linearly independent, and

(b) If there are v ∈ QL and w ∈ QN satisfying

v · Adw = 0 for each d = 1, ..., D, (4.1.4)

then v · A0w = 0.

Remarks 4.1.
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• Theorem 4.2 shows one how to construct matrices A(n) such that the

conclusion (1) holds. The condition (2a) tells us how to choose the non-

constant part A∗(n), and the condition (2b) tells us that the constant

part A0 has to behave accordingly.

• In the case N = L = 1, (2) is automatically satisfied if A is not constant,

which explains why in Theorem II (ii) we can take f to be any non-

constant polynomial.

• If we replace Q with C in (2b), then by Hilbert’s Nullstellensatz, it

would imply that A0 is a linear combination of A1, . . . , AD. It would be

interesting to construct examples of A satisfying (2b) without A0 being

a linear combination of A1, . . . , AD.

We also prove an effective form of this result. Define k(ε;L,N,A) to be

the largest integer k such that there exist k distinct points X = {x1, ...,xk} ⊂

TN such that A(n)X = {A(n)x1, ...,A(n)xk} is not ε-dense in any translate

of any subtorus for any n = 1, 2, 3, ....

Theorem 4.3. Let A(x) be of degree at most D and satisfy (2a) and (2b)

from Theorem 4.2. Then there are constants c1(N,L,D) and c2(N,L,D) such

that

k(ε;L,N,A)�N,L,D ‖A∗‖c1(N,L,D)
∞

(
1

ε

)c2(N,L,D)

. (4.1.5)

where ‖A∗‖∞ is the max of the heights1 of the entries of A∗.

1Recall that the height of a polynomial is the maximum of the absolute values of its
coefficients.
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Remark 4.1. Theorem 4.2 would be a mere consequence of Theorem 4.3, if

not for the fact that the subtorus T is independent of ε in the conclusion of

Theorem 4.2.

The exponents c1 and c2 can be given explicitly. We do not try to

find the best possible exponents, since these are not known even in the case

N = L = 1, though our values can certainly be improved. Finally, we remark

that it is straightforward to prove a version of Theorem 4.3 in the spirit of [55],

with bounds of the same quality, for dilations of the form A(p)X where p is

prime. Indeed, the proof would proceed exactly the same way, albeit with an

appropriate modification of Lemma 4.2. We leave the details to the interested

reader.

The paper is organized as follows. In Section 4.2 we gather some useful

facts that we need in our proofs, including Alon-Peres’ machinery. In Section

4.3 we prove Theorem 4.2, and in Section 4.4 we prove Theorem 4.3. In Section

4.5 we prove (a variant of) a quantitative version of Theorem 4.1. Finally, in

Section 4.6 we discuss some applications of our results.

Acknowledgements. We would like to thank Professor Noga Alon for a

discussion regarding Proposition 4.1 and Professor Jeffrey Vaaler for helpful

comments during our investigation and during the preparation of this paper.
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4.2 Notation and preliminaries

4.2.1 Notation

Throughout this paper, we will use Vinogradov’s symbols � and �.

For two quantities A,B, we write A � B, or B � A if there is a positive

constant c such that |A| ≤ cB. If the constant c depends on another quantity

t, then we indicate this dependence as A �t B. The numbers N,L,D are

fixed throughout this paper, so dependence on these quantities is implicitly

understood.

Given a vector v, we denote by ‖v‖∞ its usual sup norm. Given a

matrix A, let us denote by ‖A‖∞ the maximal of the absolute values of its

entries. Finally, for a matrix A(x) = A0 +xA1 + · · ·+xDAD whose entries are

a polynomials in x, we define ‖A‖∞ = max{‖Ad‖∞ : d = 0, 1, . . . , D}. While

we use the same symbol for slightly different objects, the use should be clear

from the context.

For x ∈ R, we denote by ‖x‖ the distance from x to the nearest integer.

For x = (x1, . . . , x`) ∈ R`, let ‖x‖ = maxi=1,...,` ‖xi‖. In other words, ‖x‖

denotes the distance from x to the nearest integer lattice point under ‖ · ‖∞.

Throughout the paper, we always identify a point in a torus T` with

its unique representative in [0, 1)`. This point of view is important, since it

enables us to define subtori in terms of equations.
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4.2.2 Preliminaries

Let {x1, ..., xk} be a set of k distinct numbers in T. Define

hm = # {(i, j) : 1 ≤ i, j ≤ k and m(xi − xj) ∈ Z} (4.2.1)

and Hm = h1 + · · · + hm. The quantities hi, Hm certainly depend on the

sequence {x1, ..., xk}, but we always specify the sequence we are working with.

The numbers hm and Hm appear in several of the arguments in [2] and they

will make an appearance in the proof of our main results. We will need the

following simple estimate:

Proposition 4.1. Hm ≤ km2.

Proof. Observe that for fixed i and m, there are at most m values of j such

that m(xi − xj) ∈ Z. Thus for fixed i, the number of couples (j,m) such that

m(xi−xj) ∈ Z is at most 1 + · · ·+M ≤M2. Summing this up over all i gives

the desired estimate.

Remark 4.2. Since we are not concerned with optimal exponents, this estimate

will suffice for our purposes, but we note that it is shown in [2] that the

(essentially sharp) bound Hm �γ (mk)1+γ holds for any γ > 0.

Corollary 4.1. If s2, s3, ... is a sequence of positive integers such that Sb =

s2 + · · ·+ sb ≤ Hb and Sb ≤ k2, then

∞∑
b=2

sbb
−1/D �D k2−1/(2D). (4.2.2)
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Proof. We follow the proof of a similar estimate in [2]. For b ≥
√
k use the

bound Sb ≤ k2 and if b <
√
k use Sb ≤ Hb � kb2 so we have by summation by

parts

∞∑
b=2

Sb

(
b−1/D − (b+ 1)−1/D

)
� k2k−1/(2D) + k

√
k∑

b=2

b2b−1/D−1.

But √
k∑

b=2

b1−1/D �D k1−1/(2D).

The following Lemma is a high dimensional analogue of an inequality

used in the several of the results in [2]. It may be regarded as a general

principle which connects the lack of ε-denseness to exponential sums.

Proposition 4.2. Let A(1), A(2), ... be a sequence of linear transformations

taking TN to T` and assume X = {x1, ...,xk} is a subset of TN of cardinality

k such that A(n)X is not ε-dense in T` for any n ∈ Z. Then for any ε > 0

there is an integer 0 ≤M �` ε
−1 such that

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em

(
A(r)(xi − xj)

)
(4.2.3)

where em(t) = exp(2πim · t).

Alon-Peres proved the one-dimensional version of Proposition 4.2 using

a classical result of Denjoy and Carleman, and obtained the same inequality

with M � (1/ε) log2(1/ε). Their method can be extended in a straightforward
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manner to higher dimensions. As pointed out to us by Vaaler, one could as well

use the machinery developed by Barton-Montgomery-Vaaler [8] to improve this

to M � 1/ε. We will follow the latter approach in our proof of Proposition 4.2

since it gives us a cleaner value for M , though this is inconsequential. Indeed,

even in the case N = L = 1, this improved value of M does not lead to any

improvement on Alon-Peres’ bound (4.1.3).

We first recall the following consequence of [8, Corollary 2]:

Lemma 4.1. Let 0 < ε ≤ 1/2. Let ξ1, . . . , ξk ∈ R` be such that ‖ξi‖ ≥ ε for

any i = 1, . . . , `. Then we have

k

3
≤

∑
m∈Z`

0<‖m‖∞≤[ `ε ]

∣∣∣∣∣
k∑
i=1

em(ξi)

∣∣∣∣∣
Proof of Lemma 4.2. For any r, since A(r)X is not ε-dense in T`, there exists

αr ∈ R` such that ‖αr −A(r)xi‖ ≥ ε for any i = 1, . . . , k. Let M =
[
`
ε

]
. By

Lemma 4.1, we have

k

3
≤

∑
m∈Z`

0<‖m‖∞≤M

∣∣∣∣∣
k∑
i=1

em(αr −A(r)xi)

∣∣∣∣∣
By Cauchy-Schwarz, we have

k2 �` M `
∑
m∈Z`

0<‖m‖∞≤M

∣∣∣∣∣
k∑
i=1

em(αr −A(r)xi)

∣∣∣∣∣
2

�`
1

ε`

∑
m∈Z`

0<‖m‖∞≤M

k∑
i=1

k∑
i=1

em(A(r)(xi − xj))
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This is true for any r so by taking the average of the right hand side over

1 ≤ r ≤ R, we have

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

1

R

R∑
r=1

em

(
A(r)(xi − xj)

)

Letting R→∞ we have the desired inequality.

We also recall the following classical estimate due to Hua [21, 57]:

Lemma 4.2 (Hua). Suppose f(x) = adx
d + · · · a1x + a0 ∈ Z[x] and q is a

positive integer such that gcd(a1, ..., ad, q) = 1. Then∣∣∣∣∣
q∑
r=1

e2πif(r)/q

∣∣∣∣∣�d q
1−1/d.

4.3 The infinite version

Of the two implications, the implication (1) ⇒ (2) is the more difficult

so let us begin by quickly proving the implication (2) ⇒ (1). We will need

the following lemma in the proof of the necessity of (2b). The assertion of the

lemma is that by taking the dot product with a vector v, an ε-dense subset of

a torus becomes an ε̃-dense set in T where ε̃ is comparable to ε, as long as v

is not orthogonal to the original torus.

Lemma 4.3. Let ε > 0, b ∈ RL, V a proper subspace of RL, v ∈ ZL,v 6∈ V ⊥,

and

X ⊂ S =
{
b + x + ZL : x ∈ V

}
⊂ TL.

If X is ε-dense in S, then {v · x + Z : x ∈ X} is L‖v‖∞ε-dense in T.
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Proof. Let t ∈ T. We want to find a x ∈ X such that v · x is contained in an

interval of length 2L‖v‖∞ε in T centered at t. That is we wish to show the

existence of an x ∈ X such that ‖v · x− t‖ ≤ L‖v‖∞ε.

Since v 6∈ V ⊥ we may write t = v ·α for some α ∈ V . And since X is ε-

dense in S there exists an x ∈ X∩S and a w ∈ ZL such that ‖x−α−w‖∞ ≤ ε.

But since v ·w ∈ Z we have

‖v · x− t‖ = ‖v · (x−α−w)‖ ≤ |v · (x−α−w)| ≤ L‖v‖∞ε.

Proof of necessity of (2a). Suppose, by way of contradiction, that the columns

of A∗(x) are not Q−linearly independent. Then there is a nonzero m ∈ QN

such that

A∗m = 0.

If

X = {m/j : j = 1, 2, ....} ,

then A(n)X = A0X = {xj = A0m/j : j = 1, 2, ....} which is not ε-dense in a

translate of a subtorus for any sufficiently small ε > 0.

Proof of necessity of (2b). Suppose that there are vectors v ∈ ZL and w ∈ ZN

such that

v · Adw = 0 for each d = 1, ..., D
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but v·A0w = t 6= 0. In particular v 6= 0 and w 6= 0. LetX = {w/j : j = 1, 2, ...} ⊂

TN . Note that X is an infinite set. It then follows that

v ·A(n)xj = t/j ↘ 0 for each n = 1, 2, ... (4.3.1)

Suppose for a contradiction that there is a translate of a subtorus S

in TL such that for any ε > 0, there exists n such that A(n)X is dense in a

translate of S. Suppose S is given by S =
{
b +α+ ZL : α ∈ V

}
where V

is a proper subspace of RL and b ∈ RL. Let ε > 0 be sufficiently small and

suppose there is a subset Y ⊂ X, an integer n such that A(n)Y is ε-dense in

S. We have two possibilities:

• If v ∈ V ⊥, then v ·A(n)y is a constant (namely v · b) for any y ∈ Y ,

which is not true in view of (4.3.1).

• If v 6∈ V ⊥, then by Lemma 4.3 we have v ·A(n)Y is L‖v‖∞ε-dense in T.

Again, in view of (4.3.1), this is impossible if ε > 0 is sufficiently small.

In the remainder of the paper we will say the rank (corank) of A(x) is

the rank of the Z-module generated by the rows (columns) of A(x). First we

describe briefly the ideas of the proof of the implication (2) ⇒ (1). Observe

that we can’t expect A(n)X to be ε-dense in the whole of TL since there may

be some linear dependencies between the rows of A. If A(n)X fails to be ε-

dense in the “natural” subtorus defined by these linear dependencies for every
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n, then we use Proposition 4.2 to conclude that X has structure, in the sense

that it has an infinite intersection with a translate of a subtorus of TN . This

enables us to perform induction on N . Let us now introduce some preparatory

lemmas.

Lemma 4.4. Let A(x) ∈ ML×N(Z[x]) satisfy condition (2b) from Theorem

4.2 and suppose A∗(x) is of rank `. Then there exist matrices T ∈ ML×`(Q),

B(x) ∈ M`×L(Z[x]) such that

(i) A(x) = TB(x),

(ii) B∗(x) has full rank, and

(iii) There is a positive integer q such that qT is integral and ‖qT‖∞ �`

‖A∗‖`∞.

Proof. Without loss of generality we may assume the first ` rows of A∗(x) are

Q-linearly independent. Then there is an L × ` matrix T with entries in Q

such that A∗ = TB∗ where B∗ = B∗(x) ∈ M`×N(Z[x]) is the block of the first

` rows of A∗(x). We claim that condition (b) guarantees that A0 = TB0 for

some `×N integral matrix B0. First we show ker (T t) ⊂ ker (At0).

Suppose v ∈ ker(T t). Then At
∗v = Bt

∗T
tv = 0, which implies v·A∗w =

0 for any w ∈ QN. But by condition (b) this implies that v ·A0w = 0 for each

w ∈ QN, which implies At0v = 0. That is, v ∈ ker(At0).

Therefore there exists B0 ∈ M`×N(Q) such that A0 = TB0. But the

uppermost ` × ` block of T is the identity. Thus B0 is none other than the
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uppermost `×N block of A0, and consequently B0 is integral. Upon putting

B = B∗ +B0, we have B is integral and A = TB.

Let A be the L × DN matrix given by A = [A1 · · ·AD] and B be the

`×DN matrix given by B = [B1 · · ·BD]. Since Ad = TBd for each d = 1, ..., D,

we have A = TB. B must have rank ` since B∗(x) does, so there is an invertible

`× ` minor B′ of B. Let A′ be the corresponding minor of A and observe we

have the equality A′(B′)−1 = T . Let q = detB′ 6= 0 and C = q−1(B′)−1 be

the adjugate of B′. We then have the inequality

‖qT‖∞ = ‖A′C‖∞ �` ‖A′‖∞‖C‖∞ �` ‖A∗‖`∞

as required. Clearly we may assume q to be positive.

Our crucial tool is the following consequence of Proposition 4.2. We

regard it as some sort of inverse result since it tells about the structure of X

if dilations of X fail to be ε-dense. In this respect our use of Proposition 4.2

is rather different from Alon-Peres. It is perhaps no surprise that our proof of

Proposition 4.3 involves Ramsey’s theorem.

Proposition 4.3. Suppose ε > 0, X is an infinite subset of TN , and B(x) ∈

M`×N(Z[x]) such that B∗(x) has full rank. If B(r)X is not ε-dense in T` for

any r ∈ Z, then there exists a point y0 ∈ X, an integer J , and nonzero w ∈ ZN

such that w · (y − y0) = J for infinitely many y ∈ X.

Note that the last equation is an equality in R rather than in T, by our

identification of points in TN with their representatives in [0, 1)N .
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Proof. We create a complete graph whose vertex set is X and whose edges

(x,y) are colored w ∈ ZN (0 < ‖w‖∞ ≤ M`‖B∗‖∞) if w · (x − y) ∈ Z and2

colored ω otherwise. By the infinite version of Ramsey’s theorem there exists

an infinite complete monochromatic subgraph whose vertex set is Y ⊂ X. We

now would like to show that this graph cannot be ω-colored.

Suppose, by way of contradiction, that the graph is ω−colored. For

any distinct x1, ...,xk in Y and R > 0 we have, by Proposition 4.2:

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em
(
B(r)(xi − xj)

)

=
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em

(
D∑
d=0

rdBd(xi − xj)

)

=
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm · (xi − xj)

)

�`
M `

ε`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm · (xi − xj)

)
(4.3.2)

where m is the lattice point which maximizes the last sum. Let d̃ be the

largest index such that Bt
d̃
m 6= 0. Then d̃ > 0 because Bt

∗(x) has Q-linearly

independent columns, which implies Bt
dm is not zero for some d = 1, . . . , D.

For any i 6= j, since (xi,xj) is ω-colored under our coloring and ‖Bt
d̃
m‖ ≤

M`‖B∗‖∞, we have

Bt
d̃
m · (xi − xj) 6= 0 (4.3.3)

2Observe we are allowing multiple colors per edge.
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Therefore, if i 6= j, the polynomial

Φij(r) = m ·B∗(r)(xi − xj) =
D∑
d=1

rdBt
dm · (xi − xj)

has degree d̃. By Weyl’s equidistribution theorem and Hua’s bound (Lemma

4.2), we have:

lim
R→∞

1

R

R∑
r=1

e (Φij(r)) =

{
0, if Φij has at least one irrational coefficient

�D b−1/d̃ ≤ b−1/D, if Φij(x) ∈ Q[x],

where in the second case b = b(i, j) is the least positive integer such that

b(m ·B∗(x)(xi − xj)) ∈ Z[x].

For each b > 1 we define

Sb =
{

(i, j) : 1 ≤ i, j ≤ k, b is the smallest positive integer

such that b(m ·B∗(x)(xi − xj)) ∈ Z[x]
}
.

Let sb = #Sb and Sb = s2 + · · · + sb. Let xi = Bt
d̃
m · xi for any i = 1, . . . , k,

then the xi are distinct in T in view of (4.3.3). We notice that if (i, j) ∈ Sb

then b(xi − xj) ∈ Z. Consequently, Sb ≤ Hb where Hb = h1 + · · ·+ hb and hm

is the quantity defined by (4.2.1) for the sequence x1, . . . , xk. We also have

the trivial bound Sb ≤ k2 for any b, since for each couple (i, j) we associate at

most one b. Therefore

k2 �l,D
M `

ε`

(
k +

∞∑
b=2

sbb
−1/D

)
Combining this with Corollary 4.1 we have

k2 �D,ε,` k
2−1/(2D) (4.3.4)
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which is a contradiction.

Therefore there is an infinite complete monochromatic subgraph whose

color is w for some w ∈ ZN and 0 < ‖w‖∞ ≤ M`‖B∗‖∞. More specifically

we find that there is an infinite subset Y ⊂ X such that w · (y − y′) ∈ Z

for any y,y′ ∈ Y . Now fix an element y0 ∈ Y . Upon noticing that the map

y 7→ w·(y−y0) has a finite image (since y,y0 ∈ [0, 1)N) and Y is infinite, there

exists an integer J such that w · (y − y0) = J for infinitely many y ∈ Y .

We are now in a position to finish the proof of Theorem 4.2.

Proof of sufficiency of (2a) and (2b). First we will provide a proof when N =

1 and then proceed by induction on N .

Let X ⊂ T be an infinite subset, 0 < ` ≤ L be the rank of A∗(x), and

B(x) and T be given by Lemma 4.4. We claim that for any ε > 0 there is an

integer n such that B(n)X is ε-dense in T`. Assume, by way of contradiction,

that there exists an ε0 > 0 such that B(n)X is not ε0-dense in T` for any n ∈ Z.

By Proposition 4.3 there exists an integer m 6= 0, a point y0 ∈ X, an integer J

such that m(y − y0) = J for infinitely many y ∈ X. This is clearly impossible

(recall that this is an equality in R). Therefore for every ε > 0 there exists

an integer n such that B(n)X is ε-dense in T`. Let T = Im(T )/ZL where

Im(T ) ⊂ RL is the image of T . Let q be given by Lemma 4.4. Then qT is

integral and well-defined when considered as a map from T` to T . Letting

X/q =
{
x/q : x ∈ [0, 1)N and x ∈ X

}
we find that A(n)X = (qT )B(n)(X/q).
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Therefore for any ε > 0 there exists an integer n such that A(n)X is ε-dense

in T .

Now we assume the theorem holds for each integer up to N −1. Again,

by Lemma 4.4 there exist an L×` matrix T with entries in Q, an `×N matrix

B = B(x) with entries in Z[x], a positive integer such that

A = TB

and the rows of B∗ are Q-linearly independent. Define

X/q =
{
x/q : x ∈ [0, 1)N and x ∈ X

}
.

and T = Im(T )/ZL, so that qT is integral and well-defined as a map from

TN−1 to T . We have two possibilities:

(i) Either for every ε > 0 there exists an integer n such that B(n)(X/q) is

ε-dense in T`. This implies that A(n)X = (qT )B(n)(X/q) is ε̃-dense in

T ⊂ TL, where ε̃� ε‖qT‖∞.

(ii) Or there exists an ε0 > 0 such that B(n)(X/q) is not ε0-dense in T` for

any n ∈ Z .

If we are in the first case, then we are done. We suppose (ii), and rename X/q

as X. Proposition 4.3 tells us that there is a nonzero w ∈ ZN and an infinite

subset Y ⊂ X such that y 7→ w ·y is constant on Y . We can assume w ·y = 0

for each y ∈ Y since this amounts to translating X by a fixed θ ∈ TN . Let
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the subtorus T of TN be defined by T =
{
t ∈ [0, 1)N : w · t = 0

}
. Then there

is an N × (N − 1) matrix H with full rank and integral entries such that

Im(H)/ZN = T (4.3.5)

Since the mapping t 7→ Ht + ZN ∈ T is surjective, there is an infinite subset

Z ⊂ TN−1 such that HZ = Y .

Let C(x) = A(x)H, then C is an `× (N−1) matrix. Let us verify that

C satisfies conditions (2a) and (2b). Suppose there is q ∈ QN−1 such that

C∗q = 0. Then A∗(x)Hq = 0. Since A satisfies (2a), it follows that Hq = 0.

Since H has a trivial kernel, this implies that q = 0 and C satisfies condition

(2a). To see that C satisfies condition (2b), let vectors v ∈ Q` and w ∈ QN−1

be such that v · C∗(x)w = 0 identically. Upon setting w̃ = Hw ∈ QN , we

find that v ·A∗(x)w̃ = 0 is the zero polynomial. Since A(x) satisfies condition

(2b), it follows that 0 = v · A0w̃ = v · A0Hw = v ·C(0)w.

Let us now invoke the inductive hypothesis for C. It follows that there

is a subtorus T such that for every ε > 0 there exists n such that C(n)Z is

ε-dense in a translate of T . But A(n)Y = C(n)Z, so we are done.

Remarks 4.2. It may not be clear from the proof why conditions (2a), (2b)

are the correct ones. At first sight, it would seem that the only conditions we

need in order to make the proof work are the weaker ones:

• T 6= 0, which is equivalent to A 6= 0.

• Ker(T t) ⊂ Ker(At0), which is equivalent to Ker(At
∗) ⊂ Ker(At0).
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But we want to maintain these requirements throughout our inductive pro-

cess. Recall that our matrix A is changed after each step, so keeping these

requirements at each step ultimately leads to conditions (2a) and (2b).

4.4 The finite version

In order to make the proof of Theorem 4.2 effective, we need to keep

track of all the quantities involved when we move from one dimension to the

next. The main obstacle in the proof of Theorem 4.3 is finding an effective

version of Proposition 4.3. One could use the finite version of Ramsey’s theo-

rem, but currently we don’t have a sensible bound for Ramsey numbers which

involve more than two colors. We can get past this, by noticing that the graph

we used in Proposition 4.3 is a very special graph. The following lemma is an

effective form of Proposition 4.3.

Proposition 4.4. Let B(x) ∈ M`×N(Z[x]) have full rank and let X = {x1, ...,xk} ⊂

TN be a set of k distinct points. If B(n)X is not ε-dense in T` for any

n = 1, 2, ... then there exists a subset Y ⊂ X, y0 ∈ X, w ∈ ZN , and J ∈ Z

such that

w · (y − y0) = J for each y ∈ Y , (4.4.1)

‖w‖∞ �`,N ‖B∗‖∞ε−1, and (4.4.2)

ε`+1k1/4D‖B∗‖−1
∞ �`,N,D |Y |. (4.4.3)

Note that again, (4.4.1) is an equality in R.
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Proof. By Proposition 4.2 we have a constant M �` ε
−1 such that

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

∑
x∈X

∑
y∈X

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=0

rdBt
dm · (x− y)

)
(4.4.4)

where e(t) = exp(2πit) and M �` ε
−2. By an abuse of notation, let m ∈ Z`

(with 0 < ‖m‖∞ ≤ M) be the lattice point which maximizes the first sum.

Then

k2 �`
M `

ε`

∑
x∈X

∑
y∈X

ω(x,y) (4.4.5)

where ω(x,y) is the weight given by

ω(x,y) =

∣∣∣∣∣ lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm(x− y)

)∣∣∣∣∣
Let d be the largest integer such that Bt

dm 6= 0, then d > 1 since B∗ has full

rank. We partition X into equivalence classes R1, ..., Rs, with |Ri| = ci, where

x ∼ y if Bt
dm · (x− y) ∈ Z.

Define

Φi,j(r) = m ·B∗(r)(xi − xj) =
D∑
d=1

rdBt
dm(x− y)

then Φ has degree d. We use Weyl’s equidistribution theorem and Hua’s bound

to obtain

ω(xi,xj) ≤


1 if x ∼ y

b−1/d if x 6∼ y and Φij(x) ∈ Q[x]

0 if Φij has at least one irrational coefficient.

(4.4.6)

where in the second case b = b(i, j) is the smallest positive integer such that

bΦij(x) ∈ Z[x].
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Let y1, ..., ys ∈ T be given by yi = Bt
dm · xi for some xi ∈ Ri. Then by

the way we define equivalence classes, y1, ..., ys are distinct in T. By substi-

tuting the bound (4.4.6) into (4.4.5), we have:

k2 �`

(
M

ε

)` s∑
i=1

s∑
j=1

∑
xi∈Ri

∑
xj∈Rj

ω(xi,xj)

≤
(
M

ε

)`
s∑
i=1

c2
i +

s∑
i=1

s∑
j=1

i 6=j

∑
xi∈Ri

∑
xj∈Rj

ω(xi,xj)


≤

(
M

ε

)`{ s∑
i=1

c2
i + c2

∞∑
b=2

sbb
−1/d

}

where

sb = #{(i, j) : 1 ≤ i, j ≤ s, b is the smallest positive integer

such that bΦij(x) ∈ Z[x]}

and c = max {c1, ..., cs}. Clearly the sequence sb satisfies the conditions of

Corollary 4.1. Upon writing c1 + · · ·+ cs = k and noticing s ≤ k, we have

k2 �D,`

(
1

ε

)` {
kc+ c2s2−1/(2D)

}
�D,` ε

−2`c2k2−1/(2D).

That is,

ε`k1/4D �`,D c.

Now let Y ′ be equal to one of the equivalence classes R1, ..., Rs whose cardi-

nality is c, and w = Bt
dm. Then w · (x−y) ∈ Z for each x,y ∈ Y ′. But seeing
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that |w · (x − y)| ≤ N‖w‖∞, we are guaranteed the existence of an integer

|J | ≤ N‖w‖∞ and y0 ∈ Y ′ such that w · (y − y0) = J for at least c/N‖w‖∞

elements y of Y ′. But

‖w‖∞ �N,` ‖B∗‖∞M �N,` ‖B∗‖∞ε−1

Combining this with the above we have the existence of a subset Y ⊂ Y ′ ⊂ X

such that

ε`+1k1/4D‖B∗‖−1
∞ �`,N,D |Y |

as desired.

We also need to estimate the entries of the matrix H introduced in

(4.3.5).

Lemma 4.5. Let w ∈ ZN be nonzero and w⊥ =
{
v ∈ RN : v ·w = 0

}
. There

exists an (N−1)×N integral matrix H whose image is w⊥ and ‖H‖∞ = ‖w‖∞.

Proof. Since w = (w1, ..., wN) is nonzero we may assume without loss of gen-

erality that wN 6= 0. Let

vj = wNej − wjeN .

where (e1, . . . , eN) is the standard basis of RN . Then vj ∈ w⊥ because

vj ·w = wNej ·w − wjeN ·w = 0.

Clearly v1, ...,vN−1 are linearly independent and therefore form a basis for

w⊥. Letting H be the N × (N − 1) matrix whose columns are v1, ...,vN−1

gives the result.
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We are now in a position to prove Theorem 4.3.

Proof of Theorem 4.3. Let us proceed by induction.

Base case: Let N = 1 and A(x) be an L × 1 matrix with entries in Z[x],

such that A∗(x) has rank `, degree at most D, and such that A(x) satisfies

conditions (2a) and (2b) of Theorem 4.2. Let X = {x1, ..., xk} be a set of

k distinct points in T such that there does not exist a subtorus T such that

A(n)X is not ε-dense in a translate of T for any n = 1, 2, . . ..

By Lemma 4.4, there exist an `×N matrix B(x) whose rows are rows

of A(x), an L × ` matrix T with entries in Q such that B∗(x) has full rank

and A(x) = TB(x). Furthermore, there is a positive integer q such that qT is

integral and ‖qT‖∞ �` ‖A∗‖`∞. Define

X/q = {x/q + Z : x ∈ [0, 1) and x ∈ X}

then X/q also has cardinality k, and (qT )B(n)(X/q) = A(n)X is not ε-dense

in any translate of T = Im(T )/ZL. This implies that B(n)(X/q) is not ε1 dense

in T` for any n = 1, 2, . . ., where ε1 �L ε/‖qT‖∞. Therefore by Proposition

4.4, there exists a subset Y ⊂ X/q, y0 ∈ T, integers J and w such that

w(y − y0) = J for each y ∈ Y, (4.4.7)

ε`+1
1 k1/4D‖B∗‖−1

∞ �L,D |Y |, (4.4.8)
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But (4.4.7) cannot happen for more than one value of y (recall that it’s an

equality in R), Combining this with (4.4.8), we have

k �L,D ‖B∗‖4D
∞

(
1

ε1

)4D(`+1)

≤ ‖B∗‖4D
∞

(
1

ε1

)4D(L+1)

(4.4.9)

Recall that ε1 �L ε/‖qT‖ �L ε‖A∗‖−`∞ ≥ ε‖A∗‖−L∞ . We also trivially have

‖B∗‖∞ ≤ ‖A∗‖∞ (since the rows of B are the rows of A by construction) so

k �L,D ‖A∗‖4D(L(L+1)+1)
∞

(
1

ε

)4D(L+1)

(4.4.10)

which shows that k(ε;L, 1,A) exists and can be bounded by the right hand

side.

Inductive step. Now we assume that for each C ∈ ML×n(Z[x]) having de-

gree D and that satisfies conditions (2a) and (2b) of Theorem 4.2, there exist

constants c1(n, L,D) and c2(n, L,D) such that

k(ε;L, n,C)�N,L,D ‖C∗‖c1(n,L,D)
∞

(
1

ε

)c2(n,L,D)

. (4.4.11)

for n = 1, 2, ..., N − 1.

Let A(x) ∈ ML×N(Z[x]) have degree at most D and satisfy conditions

(2a) and (2b) from Theorem 4.2. Suppose that X = {x1, ...,xk} is a set of

k distinct points in TN such that there does not exist a subtorus T of TL

such that A(n)X is ε-dense in a translate of T for any n = 1, 2, .... Suppose

A∗(x) has rank `. Again, let B(x) ∈ M`×N(Z[x]), T ∈ ML×`(Q) and q ∈ Z be

given by Proposition 4.4, and let X/q =
{
x/q : x ∈ [0, 1)N and x ∈ X

}
. As
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before we see that B(n)(X/q) cannot be ε1 � ε/‖qT‖−dense in TL for any

n = 1, 2, . . .. Therefore by Lemma 4.4 then there exists a subset Y ⊂ X/q,

y0 ∈ TN , J ∈ Z and a w ∈ ZN such that

w · (y − y0) = J for each y ∈ Y, (4.4.12)

ε`+1
1 k1/(4D)‖B∗‖−1

∞ �N,L,D |Y |, and (4.4.13)

0 < ‖w‖∞ �L,N ‖B∗‖∞ε−1
1 . (4.4.14)

Clearly Y lies in a translate of the torus T =
{
x + ZN : x ∈ [0, 1)N ,x ·w = 0

}
⊂

TN . By Lemma 4.5, there is a matrix H ∈ MN×(N−1)(Z) of rank N − 1 such

that the range of H is w⊥ and ‖H‖∞ = ‖w‖∞. H is surjective as a map from

TN−1 to T so there is a set Z of cardinality |Z| = |Y | points in TN−1 such

that HZ = Y . By the definition of the function k(ε;L,N,A), we have that

|Y | = |Z| ≤ k(ε1;L,N − 1,AH). (4.4.15)

Note that the degree of AH is at most D, so by the inductive hypothesis

and (4.4.13) we have

εL+1
1 k1/(4D)‖B∗‖−1

∞ �N,L,D ‖(AH)∗‖c1(N−1,L,D)
∞

(
1

ε1

)c2(N−1,L,D)

(4.4.16)

But

‖(AH)∗‖∞ �N,L ‖A∗‖∞‖H‖∞ = ‖A∗‖∞‖w‖∞ � ‖A∗‖∞ε−1
1

and ‖B∗‖∞ ≤ ‖A∗‖∞. Therefore,

k1/(4D) �N,L,D ‖A∗‖1+c1(N−1,L,D)
∞

(
1

ε1

)c1(N−1,L,D)+c2(N−1,L,D)+L+1
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Recalling that ε1 �N,L ε‖qT‖−1
∞ � ε‖A∗‖−L∞ , we have

k �N,L,D ‖A∗‖c1(N,L,D)
∞

(
1

ε

)c2(N,L,D)

(4.4.17)

where

c2(N,L,D) = 4D
(
c1(N − 1, L,D) + c2(N − 1, L,D) + L+ 1

)
and

c1(N,L,D) = Lc2(N,L,D) + 4D
(

1 + c1(N − 1, L,D)
)

This shows that k(ε;L,N,A) exists, and establishes a bound of the desired

form for k(ε;L, n,A).

Remark 4.3. As we noted in the introduction, we do not attempt to find the

optimal values of the exponents c1 and c2 and the values that we achieve can

be improved. We found in the base step that c1(1, L,D) = 4D(L(L + 1) + 1)

and c2(1, L,D) = 4D(L + 1). It is not difficult to show that c1(N,L,D) ≤

(CD)NLN+1 and c2(N,L,D) ≤ (CDL)N for N,D,L ≥ 1, and C is a positive

constant with C ≤ 20. It would be interesting to know the true order of

magnitude for the optimal exponents, even for fixed values of N,L, and D.

When N ≥ L and X = XN
m where Xm is the Farey sequence of order m = 2/ε,

no dilation nPX, where P is projection onto the first L components, contains

a point in the cube (0, ε)L. But #X = Ω(ε−2N) which implies that the optimal

choice for c2(N,L, 1) is at least 2N when N ≥ L. This is how the lower bound

for k is obtained in [9] when N = L = 1 and it is nearly sharp in this case.
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4.5 The High Dimensional Glasner Theorem

In this section we prove a stronger result than Theorem 4.1. The proof

of Theorem 4.1 follows along the same lines of the proof of [2, Proposition

6.1]. Without any extra effort effort, we can add the extra requirement that

the entries of T be relatively prime. This is reminiscent of Theorem II (i)

though perhaps any resemblance stops here. We have the following:

Theorem 4.4. For any ε > 0 and any subset X ⊂ TN of cardinality at least

k �L ε
−3LN there exists a matrix T ∈ ML×N(Z) with relatively prime entries

such that TX is ε-dense in TL.

We note that the exponents we obtain can be easily improved, but we

opt for cruder bounds for the sake of brevity.

Proof. Let ε > 0 and let X ⊂ TN have cardinality k and let Xj ⊂ T be

the projection of X onto the jth coordinate axis for j = 1, 2, ..., N . The

projection homomorphism Pj is represented by inner product with the vector

(0, ..., 1, ..., 0) where the 1 is in the jth entry. Clearly

k = #X ≤
N∏
j=1

#Xj. (4.5.1)

Consequently there is a projection Xi for which #Xi ≥ k1/N . Let Y be a subset

of X such that its projection on the ith coordinate Yi ⊂ T has cardinality at

least K = dk1/Ne. Now if we can find a primitive vector α ∈ ZL such that

αYi is ε-dense in TL we are done once setting T equal to the composition of
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Pi and the homomorphism induced by multiplication by α. We will show that

we can choose α to be of the following form

α = α(n) = (q1n, q2n+ 1, q3n, ..., qLn)

where we choose q` = (M + 1)`−1 for n ≥ 1 where M = [L/ε]. Note that α is

primitive since (n, q2n+ 1) = 1.

Suppose, by way of contradiction, that there is no n for which αY =

α(n)Y is ε-dense in TL. Then we have by Proposition 4.2

K2 �L
1

εL

∑
0<‖m‖∞≤M

m∈ZL

∑
x∈Yi

∑
y∈Yi

lim
R→∞

1

R

R∑
r=1

e
(
m ·α(r)(x− y)

)
. (4.5.2)

By abuse of notation, let m be the lattice point which maximizes the first

sum. Then

K2 �L
ML

εL

∑
x∈Yi

∑
y∈Yi

lim
R→∞

1

R

R∑
r=1

e
(
m ·α(r)(x− y)

)
.

But

lim
R→∞

1

R

R∑
r=1

e
(
m ·α(r)(x− y)

)
= lim

R→∞

1

R

R∑
r=1

e

(
r(x− y)

L∑
`=1

m`q`

)

=

1 if (x− y)
L∑
`=1

m`q` ∈ Z

0 otherwise.

Hence,

K2 �L ε
−2L#{(x, y) : x, y ∈ Yi, Q(x− y) ∈ Z}
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where Q =
L∑
`=1

m`q`. Our choices of q1, ..., qL guarantee that Q is non-zero.

The right hand side of the above inequality can be trivially be bounded (by

the same reasoning as in Proposition 4.1) by

ε−2LKQ� ε−2LKML � ε−3LK

Recalling K = dk1/Ne gives

k �L ε
−3LN .

4.6 Concluding Remarks

We conclude with a few remarks concerning our main results. For

example, it is obvious by Theorem 4.1 that if X ⊂ TN is an infinite subset

then the union ∪TTX over all T ∈ ML×N(Z) is dense in TL. Moreover, if X

is invariant under the action of ML×N(Z), then X is dense in TL. Similarly, a

simple compactness argument implies the following corollary Theorem 4.2.

Corollary 4.2. Let A(x) ∈ ML×N(Z[x]) satisfy conditions (2a) and (2b) of

Theorem 4.2. If X ⊂ TN is an infinite subset, then the closure of ∪nA(n)X

contains a translate of a subtorus T .

In particular, if X is infinite and X ⊂ A(n)X for each n, then the

closure of X contains a translate of a subtorus T .

It would be interesting to see what kind of generalizations can be

82



made of Theorem 4.1. That is, what conditions on an infinite topologi-

cal group G1 and a metric group G2 guarantee that for any infinite subset

X ⊂ G1, and ε > 0, there exists a continuous homomorphism ϕ : G1 → G2

such that ϕ(X) is ε-dense in G2? An interesting special case of this ques-

tion occurs when G1 is a compact (or locally compact) Abelian group and

G2 = U(1) = {z ∈ C : |z| = 1}, the problem is to find a unitary character ϕ

of G1 which distributes a prescribed set of points evenly throughout U(1).

One necessary condition on G1 is that for each ε > 0 there must exist

a characters ϕ for which ϕ(G1) is ε-dense in U(1). Even though this condition

is inherently necessary, it cannot be dismissed as a triviality. For instance, if

G1 = F∞2 with the metric d(x, y) =
∑∞

i=1
|xi−yi|

2i
, then the group of all (contin-

uous) characters of G1 is Fω
2 = {x = (x1, x2 . . .) : xi 6= 0 for finitely many i}

via x(y) = (−1)x·y for all x ∈ Fω
2 , y ∈ F∞2 (note that the dot product is well

defined). But the image of the whole of G1 under any x is the set {−1, 1} and

can’t be ε-dense.

As noted in the introduction, Alon and Peres are able to estimate the

discrepancy of dilations of the form nX using the probabilistic method (see

Theorem 1.2 from [2]). It would be interesting to see an analogous result in

higher dimensions.

Baker [6] has proven a quantitative lemma about dilations of the form

nX where X ⊂ TN , though his hypotheses and conclusion differ from our

results. His proof makes use of Lemma 4.1 as well.
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Chapter 5

Equivalence Relations on Separated Nets

Arising from Linear Toral Flows

5.1 Introduction

A separated net in Rd is a subset Y for which there are 0 < r < R such

that any two distinct points of Y are at least a distance r apart, and any ball

of radius R in Rd contains a point of Y . Separated nets are sometimes referred

to as Delone sets. The simplest example of a separated net is a lattice in Rd,

and it is natural to inquire to what extent a given separated net resembles a

lattice. To this end we define equivalence relations on separated nets: we say

that Y1, Y2 are bi-Lipschitz equivalent, or BL, if there is a bijection f : Y1 → Y2

which is bi-Lipschitz, i.e. for some C > 0,

1

C
‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ C‖x− y‖

for all x, y ∈ Y1; we say they are bounded displacement, or BD, if there is a

bijection f : Y1 → Y2 for which

sup
y∈Y
‖f(y)− y‖ <∞; (5.1.1)

finally, we say they are bounded displacement after dilation, or BDD, if there is

a λ > 0 such that Y1 and λY2 (the dilation of Y2 by a factor λ) are BD. Clearly
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BD implies BDD, and it is not hard to show that for separated nets, BDD

implies BL. Moreover it follows from the Hall marriage lemma (see Proposition

5.1) that all lattices are in the same BDD (hence BL) class, and in the same

BD class if they have the same covolume. A fundamental result in this context

was the discovery in 1998 (by Burago-Kleiner [13] and McMullen [50]) that

there are separated nets which are not BL to a lattice. In fact their arguments

showed that there are uncountably many BL-inequivalent separated nets.

A simple way to construct separated nets is via an Rd-action. Namely,

suppose X is a compact space, equipped with a continuous action of Rd. We

denote the action by Rd × X 3 (v, x) 7→ v.x ∈ X. Now given x ∈ X and a

subset S ⊂ X, we can define the ‘visit set’

Y = YS,x
def
= {v ∈ Rd : v.x ∈ S}. (5.1.2)

It is quite easy (see §5.2.2) to impose conditions on S guaranteeing that Y is

a separated net for all x. For example, this will hold if X is a k-dimensional

manifold, S is a Poincaré section (i.e., an embedded submanifold of dimension

k − d everywhere transverse to orbits) and the Rd-action is minimal (i.e. all

orbits are dense).

The net Y obviously depends on the dynamical system X chosen. We

will focus on what is perhaps the simplest nontrivial case, labelly when X =

Tk def
= Rk/Zk is the standard k-torus, and Rk acts linearly. That is, denoting

π : Rk → Tk the standard projection, and letting V ∼= Rd be a d-dimensional
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linear subspace of Rk, the action is given by

v.π(x) = π(v + x). (5.1.3)

In this context we will say that Y is a toral dynamics separated net, with as-

sociated dimensions (d, k). We will say that a section S ⊂ Tk is linear if it is

the image under π of a bounded subset of a (k − d)-dimensional plane trans-

verse to V . We remark that the toral dynamics separated nets are intimately

connected to the well-studied cut-and-project constructions of separated nets.

We briefly discuss this connection in §5.2.3, and refer the reader to [4, 5, 52, 65]

for more information.

Note that the separated net Y depends nontrivially on the choices of

the subspace V , the section S, and the orbit V.x. We will be interested in

typical toral dynamical nets; e.g. this might mean randomly choosing the

acting subspace V in the relevant Grassmannian variety, and/or the section

S in a finite dimensional set of shapes such as parallelotopes, etc. We remark

(see §5.2.2) that different choices of x do not have a significant effect on the

properties of Y .

The constructions of [13, 50] were rather indirect, and left open the

question of whether any of the nets constructed via toral dynamics is equivalent

(in the sense of either BL or BDD) to a lattice. In [14], Burago and Kleiner

addressed this issue, and showed that a typical toral dynamics separated net

with associated dimensions (2,3) is BL to a lattice. We analyze the situations

in arbitrary dimensions (d, k). Our first result shows that being BL to a lattice
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is quite common for toral dynamics nets:

Theorem 5.1. For a.e. d-dimensional subspace V ⊂ Rk, for any x ∈ Tk,

and any linear section S which is k − d dimensionally open and bounded, and

satisfies dimM ∂S < k − d, the corresponding separated net is BL to a lattice.

The assumptions on the section appearing in the statement are ex-

plained in §5.2.2. The notation dimM signifies the upper Minkowski dimen-

sion, a notion we recall in §5.4. It would be interesting to know whether there

is a toral dynamics separated net which is not BL to a lattice.

Our second result deals with the equivalence relation BDD. Here the

situation is more delicate, and we have the following:

Theorem 5.2. Consider toral dynamics nets with associated dimensions (d, k).

1. If (k + 1)/2 < d ≤ k, then for almost every V , any x ∈ Tk, and linear

section S which is k − d dimensionally open and bounded, and satisfies

dimM ∂S = k−d−1, the coresponding separated net is BDD to a lattice.

2. For any 2 ≤ d ≤ k, for almost every V , for any x ∈ Tk and any linear

section S which is a box with sides parallel to k − d of the coordinate

axes, the corresponding net is BDD to a lattice.

3. For almost every linear section S ⊂ B which is a parallelotope, there is

a residual set of subspaces V for which the corresponding net is not BDD

to a lattice.
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Our strategy of proof is inspired by [14, 25, 68]. We use work of Burago-

Kleiner [14] and Laczkovich [43] to relate the notions of BL and BDD to rates

of convergence of some ergodic averages for our toral Rd-action. This rate of

convergence is studied via harmonic analysis on Tk, and leads to the study

of Diophantine properties of the acting subspace V . The connection between

Diophantine properties of V and rates of convergence of ergodic averages on

Tk is standard and well-studied in the literature on discrepancy, see e.g. [28].

However none of the existing results in the literature supplied the estimates

we needed. Before stating our results in this direction, we introduce some

notation.

We will use boldface letters such as v,x to denote vectors in Rk, and

denote their inner product by v · x. Let V = span (v1, . . . ,vd) . For T > 0 we

set

BT
def
=
{∑

aivi : max
i
|ai| ≤ T

}
. (5.1.4)

The notation |A| denotes the Lebesgue measure of a measurable set A in Rk

or Tk. Given U ⊂ Tk, T ≥ 0 and x ∈ Rk we set

NT (U,x)
def
=

ˆ
BT

χU (π(x + t)) dt.

The reader should note that this notation suppresses the dependence ofNT (U,x)

on the choice of the subspace V as well as the basis v1, . . . ,vd. We will denote

by ‖m‖ the sup-norm of a vector m ∈ Rk, and say that v is Diophantine if

there are positive constants c, s such that

|m · v| ≥ c

‖m‖s
, for all nonzero m ∈ Zk. (5.1.5)
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We will say that V is Diophantine if it contains a Diophantine vector.

By an aligned box in Tk we mean the image, under π, of a set of the

form [a1, b1]× · · · × [ak, bk] (a box with sides parallel to the coordinate axes),

where bi − ai < 1 for all i (so that π is injective on the box).

Theorem 5.3. Suppose V is Diophantine. Then there are constants C and

δ > 0 such that for any x ∈ Rk, any T > 1, and any aligned box U ⊂ Tk,∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ CT d−δ. (5.1.6)

We remark that under a stronger Diophantine assumption, which still

holds for almost every subspace V , conclusion (5.1.6) can be strengthened,

replacing T d−δ with (log T )k+2d+δ. See Proposition 5.10.

Given a basis T = (t1, . . . , tk) of Rk, we denote

rT (m)
def
=

k∏
i=1

min

(
1,

1

|ti ·m|

)
, (5.1.7)

and say that v1, . . . ,vd are strongly Diophantine (with respect to T ) if for any

ε > 0 there is C > 0 such that for any M > 0,∑
m∈Zkr{0}
‖m‖≤M

rT (m)
d∏
i=1

1

|m · vi|
≤ CM ε. (5.1.8)

We say that U ⊂ Tk is a parallelotope aligned with T if there are positive

b1, . . . , bk, and x ∈ Rk, such that U = π(Ũ + x), where

Ũ
def
=

{
d∑
i=1

aiti : ∀i, ai ∈ [0, bi]

}
,

and π is injective on Ũ + x. Let e1, . . . , ek be the standard basis for Rk.
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Theorem 5.4. Suppose T = (v1, . . . ,vk) is a basis for Rk such that vi ∈

{e1, . . . , ek} for each i = d + 1, . . . , k, and v1, . . . ,vd is strongly Diophantine

with respect to T . Then for any δ > 0 there is C > 0 such that for all x ∈ Tk,

and any U which is a parallelotope aligned with T , with sidelengths bounded

above by η, we have ∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ C(1 + η)kT δ. (5.1.9)

As above, we will show in Proposition 5.10 that there is a stronger

Diophantine hypothesis, which still holds for almost every V , under which T δ

in (5.1.9) can be replaced by (log T )k+2d+δ.

Justifying the terminology, we will see in §5.7 that a subspace with a

strongly Diophantine basis is Diophantine. We will also see that almost every

choice of V (respectively T ) satisfies the Diophantine properties which are the

hypotheses of Theorem 5.3 (resp., Theorem 5.4). The conclusions of Theorems

5.1 and 5.2 hold for these choices.

Besides the cut-and-project method, another well-studied construction

of a separated net is the substitution system construction, and results analogous

to ours have appeared for separated nets arising via substitution systems in

recent work of Solomon [67, 68] and Aliste-Prieto, Coronel and Gambaudo [1].

Briefly, it was shown in these papers that all substitution system separated

nets are BL to lattices and many but not all are BDD to lattices. A particular

case of interest is the Penrose net obtained by placing one point in each tile
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of the Penrose aperiodic tiling of the plane. As shown by de Bruijn [24], the

Penrose net admits alternate descriptions via both the cut-and-project and

substitution system constructions. Using the latter approach, Solomon [68]

showed that that the Penrose net is BDD to a lattice.

5.1.1 Organization of the paper

In §5.2 we review basic material relating sections for minimal flows and

separated nets, and the relation to cut-and-project constructions. In §5.3 we

state the results of Burago-Kleiner and Laczkovich, and use these to connect

the properties of the separated net to quantitative equidistribution statements

for flows. In §5.4 we discuss Minkowski dimension and show how to approxi-

mate a section by aligned boxes if the Minkowski dimension of the boundary

is strictly smaller than d. The main result of §5.5 is Theorem 5.8, which

provides good approximations to the indicator function of parallelotopes in

Tk by trigonometric polynomials. We believe this result will be helpful for

other problems in Diophantine approximation and ergodic theory of linear

toral flows. In §5.6 we deduce an Erdős-Turán type inequality from Theorem

5.8 and apply it to prove Theorems 5.3 and 5.4. In §5.7 we adapt arguments

of W. Schmidt to show that our Diophantine conditions are satisfied almost

surely, and deduce Theorem 5.1 and parts (1) and (2) of Theorem 5.2 in §5.8.

In §5.9 we prove Theorem 5.2(3).
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5.2 Basics

5.2.1 Bounded displacement

We first recall the following well-known facts.

Proposition 5.1. Any two lattices of the same covolume are BD to each other,

and any two lattices are BDD to each other. Moreover, if Y ⊂ Rd is BDD to

a lattice, and T : Rd → Rd is a linear isomorphism, then T (Y ) is also BDD

to a lattice.

Proof. Suppose L1 and L2 are lattices of the same covolume λ, and define a

bipartite graph G whose vertices are the points of L1∪L2, and x1 ∈ L1, x2 ∈ L2

are joined by an edge if ‖x1−x2‖ ≤ r1+r2, where ri is the diameter of a compact

fundamental domain for Li. To verify the conditions of the Hall marriage

lemma [35], let D2 be a fundamental domain for L2, so that Rd =
⊔
y∈L2

y+D2,

and let A ⊂ L1 with N
def
= #A. Let F denote the set of points in Rd which are

within a distance r1 from points of A. Then F contains at least N copies of a

fundamental domain for L1 so has volume at least Nλ. Therefore F intersects

at least N of the sets {y+D2 : y ∈ L2}. By the definition of G, if F intersects

y + D2 then y is connected to an element of A by an edge. This implies that

the number of neighbors of A is at least N . By the marriage lemma there is a

perfect matching in G, which gives our required bijection.

If the covolumes of L1, L2 are not the same, first apply a homothety

to one of them to reduce to the previous case. Now suppose L is a lattice in

Rd and φ : Y → L is a bijection moving points a uniformly bounded amount,
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then T ◦ φ ◦ T−1 is a bijection T (Y ) → T (L) and it moves points a bounded

amount because T is Lipschitz. This proves the second assertion.

5.2.2 Sections and minimal actions

A standard technique for studying flows was introduced by Poincaré.

Suppose X is a manifold with a flow, i.e. an action of R. Given an embedded

submanifold S transverse to the orbits, we can study the return map to S

along orbits, and in this way reduce the study of the R-action to the study of

a Z-action. We will be interested in a similar construction for the case of an

Rd-action, d > 1. Namely, given a space X equipped with an Rd-action, we

say that S ⊂ X is a good section if there are bounded neighborhoods U1,U2 of

0 in Rd, such that for any x ∈ X:

(i) there is at most one u ∈ U1 such that u.x ∈ S.

(ii) there is at least one u ∈ U2 such that u.x ∈ S.

These conditions immediately imply that the set Y = YS,x of visit times

defined in (5.1.2) is a separated net; moreover the parameters r, R appearing

in the definition of a separated net may be taken to be the same for all x ∈ X,

since they depend only on U1,U2 respectively.

The action is called minimal if there are no proper invariant closed

subsets of X, or equivalently, if all orbits are dense. The following proposition

shows that good sections always exist for minimal actions on manifolds:
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Proposition 5.2. Suppose X is a compact k-dimensional manifold equipped

with a minimal Rd-action, and suppose S ⊂ X is the image of an open bounded

O ⊂ Rk−d under a smooth injective map which is everywhere transverse to the

orbits and extends to the closure of O. Then S is a good section.

Proof. Since S is transverse to orbits, for every x ∈ S there is a bounded

neighborhood U = Ux of identity in Rd so that for u ∈ Ur{0}, u.x /∈ S. Since

O is bounded, a compactness argument shows that U may be taken to be

independent of x, and we can take U1 so that U1−U1 = {x−y : x, y ∈ U1} ⊂ U ,

which immediately implies (i). Let

Ŝ def
= {u.s : u ∈ U, s ∈ S}.

Then Ŝ is open in X. By a standard fact from topological dynamics (see e.g.

[3]), the set of return times

{u ∈ Rd : u.x ∈ Ŝ}

is syndetic, i.e. there is a bounded set K such that for any w ∈ Rd, there is

k ∈ K with (w + k).x ∈ Ŝ. By minimality this implies that for any x ∈ X

there is k ∈ K such that k.x ∈ Ŝ. Taking U2 = K − U we obtain (ii).

If X is not minimal, there will be some x and S for which Y is not

syndetic. However good sections exist for any action:

Proposition 5.3. For any action of Rd on a compact manifold, there are good

sections.
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Proof. Fix a bounded symmetric neighborhood U of 0 in Rd. We can assume

that U is sufficiently small, so that for each x ∈ X there is an embedded

submanifold Sx of dimension k − d such that the map

U × Sx → X, (u, x) 7→ u.x

is a diffeomorphism onto a neighborhood Ox of x. By compactness we can

choose x1, . . . , xr so that the sets Oj = Oxj are a cover of X. By a small

perturbation we can ensure that the closures of the Sj = Sxj are disjoint. Let

S =
⋃
j Sj, then it is clear by construction that (ii) holds for U2 = U . Since

the Sj are disjoint, a compactness argument shows (i).

The following will be useful when we want to go from a section to a

smaller one.

Proposition 5.4. Suppose S is a section for an Rd action on a space X, x ∈

X, and S =
⊔r
i=1 Si is a partition into subsets. Suppose that for i = 1, . . . , r,

each Yi
def
= YSi,x is BD to a fixed lattice L. Then YS,x is BDD to a lattice.

Proof. Clearly YS,x =
⊔r

1 Yi, and by assumption, for each i there is a bijection

fi : Yi → L moving points a bounded distance. Let L̂ be a lattice containing

L as a subgroup of index r and let v1, . . . , vr be coset representatives for L̂/L.

Then

f(y) = fi(y) + vi for y ∈ Yi

is the required bijection between Y and L̂.
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Proposition 5.5. Suppose S1, B are two good sections for an Rd-action on a

space X. Let U1, U2, U ′1, U ′2 be the corresponding sets as in (i) and (ii), for S1

and B respectively, and assume that

U ′2 − U ′2 ⊂ U1. (5.2.1)

Then there is S2 ⊂ B, a good section for the action, such that for each x ∈ X,

the nets Yi = YSi,x as in (5.1.2) (i = 1, 2) are BD to each other.

Proof. For each x ∈ X, let ux ∈ U ′2 be such that ux.x ∈ B. Let S2
def
= {ux.x :

x ∈ S1}. First note that S2 is a good section: U ′′2
def
= U2 +{ux : x ∈ S1} satisfies

(ii) for S2. Since U ′1 satisfies (i) for B, it also satisfies (i) for S2.

Let Yi = YSi,x (i = 1, 2). It remains to show that the Yi are BD. For

each u ∈ Y1 we have z = u.x ∈ S1 so that F (u).x ∈ S2, where F (u) = u + uz

and uz ∈ U ′2. Clearly F moves all points a bounded distance, and maps Y1 to

Y2. We need to show that it is a bijection. If u′ ∈ Y2 then u′.x = s2 ∈ S2,

which implies that there is s1 ∈ S1 with s2 = us1 .s1. This implies that s1 =

(u′ − us1).x so that u′ − us1 ∈ Y1 satisfies F (u′ − us1) = u′ − us1 + us1 = u′.

Thus F is surjective. Now suppose u1, u2 ∈ Y1 such that

u1 + uz1 = F (u1) = F (u2) = u2 + uz2 ,

where zi = uix ∈ S1. Then by (5.2.1), u2− u1 = uz1 − uz2 ∈ U1, so by (i) with

x = s1, we conclude that u2 = u1.
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The nets YS,x depend on the choice of x and S. As Theorem 5.2 shows,

different choices of S will lead to very different separated nets. However, as the

following result shows, for much of our discussion the choice of x is immaterial.

Proposition 5.6. Suppose X is a minimal dynamical system and S is a good

section which is (k − d)-dimensionally open. If there is x0 ∈ X for which the

separated net YS,x0 is BD (resp. BDD, BL) to a lattice, then for every x ∈ X,

the net YS,x is also BD (resp. BDD, BL) to a lattice.

Proof. We will prove the statement for the case of the BD equivalence relation,

leaving the other cases to the reader.

Write Y0
def
= YS,x0 and Y

def
= YS,x. Let L ⊂ Rd be a lattice and let f :

Y0 → L be a bijection satisfying

K
def
= sup

y∈Y
‖y − f(y)‖ <∞.

Let Ω be a compact fundamental domain for the action of L on Rd, that is

for each z ∈ Rd there are unique ` = `(z) ∈ L, ω = ω(z) ∈ Ω with z = ` + ω.

Let x ∈ X and let un ∈ Rd such that un.x0 → x. Using the continuity of the

action on X, and the assumption that S is (k − d)-dimensionally open, it is

easy to see that the translated nets Y0 − un converge to Y in the following

sense. Let B(x, T ) denote the Euclidean open ball of radius T around x. For

any T > 0 for which there is no element of Y of norm T , and any ε > 0 there

is n0 such that for any n > n0, there is a bijection between B(0, T ) ∩ Y and

B(0, T ) ∩ (Y0 − un) moving points at most a distance ε.
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Now for each k we take n = n(k) large enough so that for each y ∈

B(0, k) ∩ Y , there is x = x(y) ∈ Y0 − un with ‖y − x‖ < 1. Define fk :

B(0, k) ∩ Y → L by

fk(y)
def
= f(x(y) + un)− `(un).

Then for each k ≥ k0 > 0, and each y ∈ B(0, k) ∩ Y ,

‖y − fk(y)‖ ≤ ‖y − x(y)‖+ ‖x(y) + un − f(x(y) + un)‖+ ‖un − `(un)‖

≤ 1 +K + diam(Ω);

that is, points in B(0, k0) ∩ Y are moved a uniformly bounded distance by

the maps fk, k ≥ k0. In particular the set of possible values of the maps

fk(y), k ≥ k0 is finite. Thus by a diagonalization procedure we may choose

a subset of the fk so that for each y ∈ Y , fk(y) is eventually constant. We

denote this constant by f̂(y). Now it is easy to check that f̂ is a bijection

satisfying (5.1.1).

We now specialize to linear actions on tori. It is known that a linear

action of a d-dimensional subspace V ⊂ Rk on Tk as in (5.1.3) is minimal if and

only if V is totally irrational, i.e., not contained in a proper Q-linear subspace

of Rk. Suppose V is totally irrational and of dimension d, so that the action

of V on Tk is minimal. Note that when using this action to define separated

nets via (5.1.2), one needs to fix an identification of V with Rd; however, in

light of Proposition 5.1, for the questions we will be considering, this choice

will be immaterial.
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Let W be a subspace of dimension k − d, such that Rk = V ⊕ W .

For any bounded open subset B′ in W , such that π|B̄′ is injective, B
def
= π(B′)

is a good section, in view of Proposition 5.2. We do not assume that W is

totally irrational, so that π need not be globally injective on W . We remind

the reader that such sections will be called linear sections.

When discussing sections, there is no loss of generality in considering

linear sections:

Corollary 5.1. Let V and W be as above, and assume W is totally irrational.

Then for any section S for the linear action of V on Tk, there is a linear section

S ′ ⊂ π(W ) such that for any x ∈ Tk, YS,x and YS′,x are BDD.

Proof. Since W also acts minimally, for any ε > 0, there is a sufficiently large

ball B′ ⊂ W such that B = π(B′) is ε-dense in Tk. That is, we can make

the neighborhood U2 appearing in (ii) as small as we wish. Thus, given any

section S for the action of V , we can make B′ large enough so that (5.2.1)

holds. So the claim follows from Proposition 5.5.

When we say that the section S is k − d dimensionally open, bounded,

is a parallelotope, etc., we mean that S = π(S ′) where S ′ ⊂ W has the corre-

sponding properties as a subset of W ∼= Rk−d.

5.2.3 Cut and project nets

Fix a direct sum decomposition Rk = V ⊕W into V ∼= Rd, W ∼= Rd−k.

Let πV : Rk → V and πW : Rk → W be the projections associated with this
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direct sum decomposition. Suppose L ⊂ Rk is a lattice, and K ⊂ W is a

non-empty bounded open set. The cut-and-project construction associated to

this data is

N = NL,K,V,W
def
= {x ∈ V : ∃y ∈ L, πV (y) = x, πW (y) ∈ K}.

The set N is always a separated net in V ∼= Rd, and under suitable assump-

tions, is aperiodic (e.g. is not a finite union of lattices). This is a particular

case of a family of more general constructions involving locally compact abelian

groups. We refer to [4, 5, 65] for more details.

Unsurprisingly, the construction above may be seen as a toral dynamics

separated net. Since we will not be using it, we leave the proof of the following

to the reader:

Proposition 5.7. Given L, Rk = V ⊕W and K ⊂ W as above, there is a

linear subspace V ′ ⊂ Rk, a section S ⊂ Tk, and x ∈ Tk, such that NL,K,V,W =

YS,x, where YS,x is as in (5.1.2) for the action (5.1.3).

5.3 Results of Burago-Kleiner and Laczkovich, and their
dynamical interpretation

Let Y be a separated net. The question of whether Y is BL or BDD

to a lattice is related to the number of points of Y in large sets in Rd. More

precisely, fix a positive number λ, which should be thought of as the asymptotic
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density of Y , and for E ⊂ Rd, define

discY (E, λ)
def
=
∣∣∣#Y ∩ E − λ|E|∣∣∣,

where |E| denotes the d-dimensional Lebesgue measure of E (‘disc’ stands for

discrepancy). If Y is a lattice, and E is sufficiently regular (e.g. a large ball),

then one has precise estimates showing that discY (E, λ) is small, relative to

the measure of E. In this section we present some results which show that for

arbitrary Y , bounds on discY (E, λ) are sufficient to ensure that Y is BL or

BDD to a lattice.

For each ρ ∈ N and λ > 0, let

DY (ρ, λ)
def
= sup

B

discY (B, λ)

λ|B|
,

where the supremum is taken over all cubes B ⊂ Rd of the form

B = [a1ρ, (a1 + 1)ρ]× · · · × [adρ, (ad + 1)ρ], with a1, . . . , ad ∈ Z.

Theorem 5.5 (Burago-Kleiner). If there is λ > 0 for which∑
ρ

DY (2ρ, λ) <∞ (5.3.1)

then Y is BL to a lattice.

Proof. The theorem was proved in case d = 2 in [14], and in [1] for general

d.

Using this we state a dynamical sufficient condition guaranteeing that

a dynamical separated net is BL to a lattice. We will denote the Lebesgue
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measure of B ⊂ Rd by |B| and write the Lebesgue measure element as dt. Let

v1, . . . ,vd be a basis of Rd and define BT via (5.1.4). Note that |BT | = CT d

for some C > 0. For W ⊂ X and x ∈ X, denote

NT (W,x)
def
=

ˆ
BT

χW (t.x) dt,

where χW is the indicator function of W . The asymptotic behavior of such

Birkhoff integrals as T → ∞ is a well-studied topic in ergodic theory. The

action of Rd on X is said to be uniquely ergodic if there is a measure µ on X

such that for any continuous function f on X, and any x ∈ X,∣∣∣∣ˆ
BT

f(t.x) dt− |BT |
ˆ
X

f dµ

∣∣∣∣ = o(|BT |).

We now show that a related quantitative estimate implies that certain dynam-

ical nets are BL to a lattice.

Corollary 5.2. Suppose Rd acts on X and S is a good section for the action.

Let U1 be a neighborhood of identity in Rd satisfying (i) of §5.2.2, and let

W
def
= {u.x : u ∈ U1, x ∈ S} ⊂ X. (5.3.2)

Suppose there are positive constants a, C, δ such that for all x ∈ X and T > 1,∣∣∣NT (W,x)− a|BT |
∣∣∣ < C T d−δ. (5.3.3)

Then for any x ∈ X, the net YS,x as in (5.1.2) is BL to a lattice.

Proof. Let x ∈ X, Y = YS,x and let B = x′+BT ⊂ Rd, i.e. B is a cube of side

length 2T , with sides parallel to the coordinate hyperplanes, and center at x′.
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We want to bound #Y ∩B in terms of NT (W,x′). Let r denote the diameter

of U1, and let b = |U1|. If y ∈ Y ∩ B then y.x ∈ S and hence (y + u).x ∈ W

for any u ∈ U1. This implies that

NT+r(W,x) ≥ (#Y ∩B) b.

Similarly, if χW (y.x) = 1 then there is y′ ∈ Y with ‖y′− y‖ ≤ r, which implies

that

NT−r(W,x) ≤ (#Y ∩B) b.

Applying (5.3.3) we find that

a

b
|BT−r| −

C

b
(T − r)d−δ ≤ #Y ∩B ≤ a

b
|BT+r|+

C

b
(T + r)d−δ.

So for any δ′ < δ there is T0 such that for T > T0, setting λ = a/b gives

discY (BT , λ) ≤ T d−δ
′
.

Since |BT | = cT d for some c > 0, we find that DY (T, λ) = O(T−δ
′
). From this

(5.3.1) follows.

We now turn to analogous results for the relation BDD. Our results in

this regard rely on work of Laczkovich. We first introduce some notation. For

a measurable B ⊂ Rd, we denote by |B| the Lebesgue measure of B, by ∂ B

the boundary of B, and by |∂ B|d−1 the (d − 1)-dimensional volume of ∂ B.

By a unit cube (respectively, dyadic cube) we mean a cube of the form

[a1, b1)× · · · × [ak, bk),
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where for i = 1, . . . , k we have ai ∈ Z and bi−ai = 1 (respectively, bi−ai = 2j

for a non-negative integer j independent of i).

Theorem 5.6 ([43], Theorem 1.1). For a separated net Y ⊂ Rd, and λ > 0,

the following are equivalent:

1. Y is BD to a lattice of covolume λ−1.

2. There is c > 0 such that for every finite union of unit cubes C ⊂ Rd,

discY (C, λ) ≤ c |∂ C|d−1.

3. There is c > 0 such that for any measurable A,

discY (A, λ) ≤ c
∣∣(∂ A)(1)

∣∣ ,
where (∂ A)(1) denotes the set of points at distance 1 from the boundary

of A.

When applying this result, another result of Laczkovich is very useful.

For sets C, Q1, . . . , Qn, we say that C ∈ S(Q1, . . . , Qn) if C can be presented

using Q1, . . . , Qn and the operations of disjoint union and set difference, with

each Qi appearing at most once. Then we have:

Theorem 5.7 ([43], Theorem 1.3). There is a constant κ, depending only on

d, such that if C is a finite union of unit cubes in Rd, then there are dyadic

cubes Q1, . . . , Qn, such that C ∈ S(Q1, . . . , Qn) and for each j,

# {i : Qi has sidelength 2j} ≤ κ
|∂ C|d−1

2j(d−1)
. (5.3.4)
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Corollary 5.3. Suppose Rd acts on X and S is a good section for the action.

Let U1 be a neighborhood of identity in Rd satisfying (i) of §5.2.2, and let W

be as in (5.3.2). Suppose there are positive constants a, C, δ such that for all

x ∈ X and T > 1, ∣∣∣NT (W,x)− a|BT |
∣∣∣ < C T d−1−δ. (5.3.5)

Then for any x ∈ X, the net YS,x as in (5.1.2) is BDD to a lattice.

Proof. Let b = |U1| and let λ = a/b. We verify condition (2) of Theorem 5.6.

Arguing as in the proof of Corollary 5.2, we deduce from (5.3.5) that there are

0 < δ′ < δ, T0 and C ′ such that for every cube Q of sidelength T ≥ T0 in Rd,

discY (Q, λ) ≤ C ′ T d−1−δ′ . (5.3.6)

By enlarging C ′ we can assume (5.3.6) holds for every T ≥ 1. Given a finite

union of unit cubes C, let Q1, . . . , Qn be as in Theorem 5.7. Then we have:

discY (C, λ) ≤
n∑
i=1

discY (Qi, λ)

(5.3.4),(5.3.6)

≤ C ′κ
∑
j

|∂ C|d−1

2j(d−1)
2j(d−1−δ′)

≤ C ′κ

1− 2−δ′
|∂C|d−1,

as required.
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5.4 Minkowski dimension and approximation

Let A ⊂ Rk be bounded and let r > 0. We denote by N(A, r) the

minimal number of balls of radius r needed to cover A, and

dimM A
def
= lim sup

r→0

logN(A, r)

− log r
.

Equivalently (see e.g. [30, Chap. 3]), for r > 0 let B be the collection of boxes

[a1, a1 + r] × · · · × [ak, ak + r] where the ai are integer multiples of r, and let

S(A, r) denote the number of elements of B which intersect A. Then

dimM A = lim sup
r→0

logS(A, r)

− log r
.

From Theorem 5.3 we derive:

Corollary 5.4. Let v1, . . . ,vd ∈ Rk be such that span (v1, . . . ,vd) is Diophan-

tine, and suppose U is a bounded closed set in Tk, such that dimM ∂U < k.

Then there are constants C and δ > 0 such that for any x ∈ Rk and any

T > 1, ∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ C T d−δ.

Proof (assuming Theorem 5.3). Let K be a positive integer and for each m ∈

Zk let

C(m) =

[
m1

K
,
m1 + 1

K

]
× · · · ×

[
mk

K
,
mk + 1

K

]
.

Define A1, A2 ⊂ Rk by

A1 =
⋃

m∈Zk
C(m)⊂U

C(m) and A2 =
⋃

m∈Zk
C(m)∩U 6=∅

C(m).
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Clearly NT (A1,x) ≤ NT (U,x) ≤ NT (A2,x), so that∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ max

i=1,2

∣∣∣NT (Ai,x)− |U ||BT |
∣∣∣. (5.4.1)

Now by the triangle inequality∣∣∣NT (A1,x)− |U ||BT |
∣∣∣ ≤ ∣∣∣NT (A1,x)− |A1||BT |

∣∣∣+ |BT |
∣∣∣|A1| − |U |

∣∣∣. (5.4.2)

The number of m ∈ Zk with C(m) ⊂ U is bounded above by a constant times

Mk, so applying Theorem 5.3 to each of the aligned boxes C(m) gives∣∣∣NT (A1,x)− |A1||BT |
∣∣∣ ≤ c1T

d−δ0Kk,

where c1 and δ0 are positive constants that are independent of K. Now our

hypothesis on the dimension of the boundary guarantees that there is an ε > 0

such that the number of m ∈ Zk for which C(m) intersects ∂U is bounded

above by a constant times Kk−ε. Each of these boxes has volume K−k and

thus we have that

|BT |
∣∣∣|A1| − |U |

∣∣∣ ≤ c2 |BT |
Kk−ε

Kk
≤ c3 T

dK−ε,

with 0 < c2 < c3 independent of K. Now we return to (5.4.2) and set K =

bT δ0/(k+ε)c to obtain the bound∣∣∣NT (A1,x)− |U ||BT |
∣∣∣ ≤ c1T

d−δ0Kk + c3T
dK−ε ≤ (c1 + c3)T d−δ0ε/(k+ε).

Setting C = c1 + c3, δ =
δ0ε

k + ε
and applying the same argument to A2 finishes

the proof via (5.4.1).
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We now give a similar argument for bounded displacement.

Corollary 5.5. Suppose d > (k + 1)/2 and T = (v1, . . . ,vk) is a basis of

Rk satisfying the conditions of Theorem 5.4. Let S be a good section lying in

a translate of span(vd+1, . . . ,vk), which is closed in this affine subspace, and

satisfies dimM ∂S = k− d− 1. Then we can choose U1 satisfying (i) of §5.2.2

so that, for the set W defined as in (5.3.2), there are constants C and δ > 0

such that for any x ∈ Rk and any T > 1,∣∣∣NT (W,x)− |W ||BT |
∣∣∣ ≤ C T d−1−δ.

Proof (assuming Theorem 5.4). Much of this proof is analogous to the previ-

ous one, so to simplify the exposition we omit some of the notational details.

We begin by covering the set S by (k− d)-dimensional boxes which are trans-

lates of aligned boxes in span(vd+1, . . . ,vk) of sidelength η = 1/K, K ≥ 1,.

As before we construct disjoint unions A1, A2 of such boxes with the property

that A1 ⊂ S ⊂ A2, and we have that∣∣∣NT (W,x)− |W ||BT |
∣∣∣ ≤ max

i=1,2

∣∣∣NT (A′i,x)− |W ||BT |
∣∣∣,

with

A′i
def
= {u.x : u ∈ U1, x ∈ Ai}.

We choose U1 to be any parallelotope in Rd which satisfies (i) of §5.2.2, and

which has sides parallel to v1, . . . ,vd. This is clearly possible since we can

always replace our original choice of this set by any sub-neighborhood of the

origin. With this choice of U1 our sets A′i are unions of parallelotopes aligned
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with T , with a uniform bound on their sidelengths. That is, parallelotopes to

which Theorem 5.4 applies. The number of parallelotopes in A′1 is bounded

above by a constant times Kk−d, so Theorem 5.4 tells us that for any δ0 > 0

there is a c1 > 0 (which is independent of K) for which∣∣∣NT (A′1,x)− |A′1||BT |
∣∣∣ ≤ c1T

δ0Kk−d.

Our hypothesis that dimM ∂S = k − d− 1 leads to the inequality

|BT |
∣∣∣|A′1| − |W |∣∣∣ ≤ c2 |BT |

Kk−d−1

Kk−d ≤
c3T

d

K
,

and using the triangle inequality as in (5.4.2) we have that∣∣∣NT (A′1,x)− |W ||BT |
∣∣∣ ≤ c1T

δ0Kk−d +
c3T

d

K
.

Now using the hypothesis that d > (k+ 1)/2, we may assume that δ0 has been

chosen small enough so that there is a δ > δ0 with (1+δ)(k−d) < (d−1−2δ).

Then setting K = bT 1+δc we have that∣∣∣NT (A′1,x)− |W ||BT |
∣∣∣ ≤ c4T

d−1−δ.

Since the same analysis holds for A′2, the proof is complete.

5.5 Trigonometric polynomials approximating aligned
parallelotopes

The proofs of Theorems 5.3 and 5.4 proceed with two major steps.

The first step to prove an Erdős-Turán type inequality for Birkhoff integrals,

and the second is to use Diophantine properties of the acting subspace to
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produce a further estimate on the error terms coming from the Erdős-Turán

type inequality. Our goal in this section is to build up the necessary machinery

to complete the first step.

Our approach to proving the Erdős-Turán type inequality requires ap-

proximations of the indicator function of an aligned parallelotope by trigono-

metric polynomials which majorize and minorize it. To obtain the quality of

estimates that we need, we require the trigonometric polynomials to be close

to the indicator function of the parallelotope in L1-norm and to have suitably

fast decay in their Fourier coefficients. The following theorem is the main

result of this section, the Fourier analysis notation will be explained shortly.

Theorem 5.8. Suppose that T = (t1, ..., tk) is a basis for Rk and that L is

the linear isomorphism mapping ei to ti. Suppose U ⊂ Rk is a parallelotope,

aligned with T , given by U = LB for a box

B =
k∏
`=1

[−b`, b`]

such that π|U is injective. Let χT
U : Tk → R denote the indicator function of

π(U). Then for each M ∈ N there are trigonometric polynomials ϕU(x) and

ψU(x) whose Fourier coefficients are supported in {m ∈ Zk : ‖Ltm‖ ≤ M},

where Lt denotes the transpose of L, and

ϕU(x) ≤ χT
U(x) ≤ ψU(x) (5.5.1)

for each x ∈ Tk. Moreover, there exists a constant C > 0, depending only on

k, such that

max
{
|U | − ϕ̂U(0), ψ̂U(0)− |U |

}
≤ Cbk−1| detL|

M
, (5.5.2)
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and the Fourier coefficients of ϕU(x) and ψU(x) satisfy

max
{
ϕ̂U(m), ψ̂U(m)

}
≤ k2k+1(1 + 2b)k| detL|rT (m) (5.5.3)

for all nonzero m ∈ Zk, where rT (m) is defined by (5.1.7) and b = max
`
{b`}.

We note that some form of this result is alluded to in [37, Proof of

Theorem 5.25], and since we could not find a suitable reference we will give

the full details here. There are, however, known constructions which han-

dle the case when U is rectangular [8, 22, 28, 36]. Our proof requires the well

known construction of Selberg regarding extremal approximations of the indi-

cator functions of intervals by integrable functions with compactly supported

Fourier transforms, which we will recall below. To move to several variables

we bootstrap from the single variable theory using another construction due to

Selberg, who never published his results. A similar construction can be found

in [22, 36].

Let e(x)
def
= exp(2πix). We will use the same notation for the Fourier

transform of a function F ∈ L1(RN) and for a function f : RN → R which is

periodic with respect to ZN . That is

F̂ (t)
def
=

ˆ
RN
F (x)e(−t · x) dx, t ∈ RN ; f̂(m)

def
=

ˆ
[0,1)N

f(θ)e(−m·θ) dθ, m ∈ ZN .

The reader should have no difficulty disambiguating these two uses.

If I ⊂ R is an interval, let χ(t) = χI(t) be its characteristic function.

The following lemma is due to Selberg.
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Lemma 5.5.1. For each positive integer M there exist integrable functions

CI , cI : R→ R such that

1. cI(t) ≤ χ(t) ≤ CI(t) for each t ∈ R;

2. ĈI(ξ) = ĉI(ξ) = 0 whenever |ξ| ≥M ,

3.

‖CI − χ‖L1(R) = ‖χ− cI‖L1(R) =
1

M
, and (5.5.4)

4.

max
{∣∣∣ĈI(ξ)∣∣∣ , |ĉI(ξ)|} ≤ min

{
1 + |I|, 2

|ξ|

}
.

for each ξ ∈ R.

Proof. We will only verify the estimates on the Fourier coefficients appearing

in (4) above. The other properties are well known and can be found in [72] or

in [64]. From (5.5.4) we have

sup
ξ∈R

∣∣∣ĈI(ξ)− χ̂(ξ)
∣∣∣ ≤ ‖CI − χ‖L1(R) =

1

M
.

In particular for any fixed ξ we have∣∣∣ĈI(ξ)∣∣∣ ≤ |χ̂(ξ)|+ 1

M
. (5.5.5)

For any 1 < |ξ| < M we have |χ̂(ξ)| = | sin(πξ|I|)/πξ| ≤ |πξ|−1, hence

|χ̂(ξ)|+ 1

M
< |πξ|−1 + |ξ|−1 <

2

|ξ|
,

112



therefore

|ĈI(ξ)| ≤
2

|ξ|
for 1 < |ξ| < M.

Recall that ĈI(ξ) = 0 if |ξ| ≥M so it remains to show |ĈI(ξ)| ≤ 1 + |I| when

|ξ| < 1. But by (5.5.5) we have

|ĈI(ξ)| ≤ sup
|ξ|<1

∣∣∣∣sin(πξ|I|)
πξ

∣∣∣∣+
1

M
≤ |I|+ 1.

This concludes the proof for ĈI , and the proof for ĉI is nearly identical.

5.5.1 Majorizing and minorizing a rectangle in Rk

From here on out we will use the notation Ci(x) = C[−bi,bi](x). For

any M ∈ N the indicator function χB of B ⊂ Rk is clearly majorized by the

function

GB(x)
def
=

k∏
j=1

Cj(xj). (5.5.6)

Minorizing χB requires a little more effort. For i = 1, 2, . . . , k define

LB(x; i)
def
= ci(xi)

k∏
j=1

j 6=i

Cj(xj),

and then set

gB(x)
def
= − (k − 1)GB(x) +

k∑
i=1

LB(x; i).

We claim that

gB(x) ≤ χB(x) for every x ∈ Rk. (5.5.7)
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To establish this we use the following elementary inequality, which can be

proved by induction on k:

For any β1 ≥ 1, . . . , βk ≥ 1,
k∑
i=1

k∏
j=1

j 6=i

βj ≤ 1 + (k − 1)
k∏
j=1

βj. (5.5.8)

To verify the inequality (5.5.7), first suppose that x 6∈ B. Then there

is an 1 ≤ i ≤ k with |xi| > bi. Since LB(x; i) ≤ 0 and LB(x; j) ≤ GB(x) for

all j 6= i, we have that

k∑
i=1

LB(x; j) ≤ (k − 1)GB(x),

which implies gB(x) ≤ 0. On the other hand if x ∈ B then we have that

cj(xj) ≤ 1 ≤ Cj(xj).

Then by (5.5.8) we have that

k∑
i=1

LB(x; i) ≤
k∑
i=1

k∏
j=1

j 6=i

Cj(xj) ≤ 1 + (k − 1)GB(x),

and this together with the definition of gB establishes (5.5.7).

5.5.2 Proof of Theorem 5.8

Define

GU(x)
def
= GB ◦ L−1(x) and FU(x)

def
= gB ◦ L−1(x).

The results of §5.5.1 show that

FU(x) ≤ χU(x) ≤ GU(x) for all x ∈ Rk.
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For the majorants and minorants of χT
U define

ϕU(x)
def
=
∑
m∈Zk

FU(x + m) and ψU(x)
def
=
∑
m∈Zk

GU(x + m).

These functions are Zk invariant, so we can view them as functions on Tk, and

since π|U is injective we have

ϕU(x) ≤ χT
U(x) ≤ ψU(x) for all x ∈ Tk. (5.5.9)

To determine the Fourier transform of GU and FU , observe that if f : Rk → C

is an integrable function then f ◦ L−1 is also integrable and

f̂ ◦ L−1(ξ) = | detL|f̂(Ltξ). (5.5.10)

Since ĜB(ξ) = 0 and ĝB(ξ) = 0 when ‖ξ‖ ≥ M , both F̂U and ĜU are sup-

ported on {ξ ∈ Rk : ‖Ltξ‖ ≤ M}. Thus, by the Poisson summation formula

and a classical theorem of Pólya and Plancherel [58], we have the following

pointwise identities

ψU(x) =
∑
m∈Zk

‖Ltm‖≤M

ĜU(m)e(m · x) (5.5.11)

and

ϕU(x) =
∑
m∈Zk

‖Ltm‖≤M

F̂U(m)e(m · x). (5.5.12)

We will need the following formulas for the Fourier coefficients of ψU and ϕU :

ψ̂U(m) = | detL|
k∏
i=1

Ĉi(ti ·m) (5.5.13)
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and

ϕ̂U(m) = | detL|

−(k − 1)
k∏
i=1

Ĉi(ti ·m) +
k∑
i=1

ĉi(ti ·m)
k∏
j=1

j 6=i

Ĉj(tj ·m)

 .

(5.5.14)

To see (5.5.13), first observe that ψ̂U(m) = ĜU(m) then by (5.5.10) and basic

properties of the Fourier transform we have that

ĜU(m) = ̂GB ◦ L−1(m) = | detL|ĜB(Ltm)

= | detL|
k∏
i=1

Ĉi(ti ·m).

The proof of (5.5.14) is similar. By (5.5.4) we see that

Ĉi(0) = 2bi +
1

M
and ĉi(0) = 2bi −

1

M
. (5.5.15)

Now by using (5.5.13) and (5.5.14), together with (5.5.15) we find that

ψ̂U(0) = | detL|
k∏
i=1

(
2bi +M−1

)
and

ϕ̂U(0) = | detL|

−(k − 1)
k∏
i=1

(2bi +M−1) +
k∑
j=1

(2bj −M−1)
k∏
i=1
i 6=j

(2bi +M−1)


= 2kb1 · · · bk| detL|+ | detL|O(bk−1/M).

The bounds (5.5.2) follow upon recalling that |U | = 2kb1 · · · bk| detL|. For the

other Fourier coefficients we use (4) from Lemma 5.5.1 to obtain the inequal-

ities

|ψ̂U(m)| = | detL|
k∏
i=1

∣∣∣Ĉi(ti ·m)
∣∣∣ ≤ 2k(1 + 2b)k| detL|

k∏
i=1

min

{
1,

1

|ti ·m|

}
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and

|ϕ̂M(m)| ≤ |detL|


∣∣∣∣∣(k − 1)

k∏
i=1

Ĉi(ti ·m)

∣∣∣∣∣+
k∑
j=1

∣∣∣∣∣∣∣∣ĉj(tj ·m)
k∏
i=1
i 6=j

Ĉi(ti ·m)

∣∣∣∣∣∣∣∣


≤ 2k(2k − 1)(1 + 2b)k| detL|
k∏
i=1

min

{
1,

1

|ti ·m|

}
.

Combining these estimates with (5.5.9), (5.5.11), and (5.5.12) finishes our

proof.

5.6 An Erdős-Turán type inequality for Birkhoff inte-
grals

From Theorem 5.8 we deduce:

Theorem 5.9. For any positive integer k ≥ 2 there is a constant C > 0

such that the following holds. Suppose that d < k is a positive integer and that

V ⊂ Rk is a subspace of dimension d spanned by {v1, . . . ,vd}. Let L̃ : Rk → Rk

be an affine isomorphism such that π is injective on the parallelotope U = L̃B

where B and b are as in Theorem 5.8. Let T denote the basis L(ei), i =

1, . . . , k, where L is the linear part of L̃. Then for any M ∈ N and x ∈ Rk we

have

∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ C(1 + 2b)k| detL|

 |BT |
M

+
∑

m∈Zkr{0}
‖Ltm‖≤M

rT (m)

∣∣∣∣ˆ
BT

e(m · s) ds

∣∣∣∣
 .

(5.6.1)
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Proof. If L̃(y) = L(y) + y0, we may replace x with x − y0 to assume that

L̃ = L, so that Theorem 5.8 applies. For M ≥ 1 we have from Theorem 5.8

χT
U(x)− |U | ≤ ψU(x)− |U | ≤ C ′bk−1| detL|

M
+

∑
m∈Zkr{0}
‖Ltm‖≤M

ψ̂U(m)e(m · x),

(5.6.2)

for some constant C ′ which depends only on k. By integrating both sides of

(5.6.2) over BT − x we find that

NT (U,x)− |U ||BT | ≤

∣∣∣∣∣∣∣∣∣
C ′bk−1| detL| |BT |

M
+

ˆ
BT

∑
m∈Zkr{0}
‖Ltm‖≤M

ψ̂U(m)e(m · s)ds

∣∣∣∣∣∣∣∣∣
≤ C ′bk−1| detL| |BT |

M
+

∑
m∈Zkr{0}
‖Ltm‖≤M

∣∣∣ψ̂U(m)
∣∣∣ · ∣∣∣∣ˆ

BT

e(m · s) ds

∣∣∣∣
(5.5.3)

≤ C(1 + 2b)k| detL|

 |BT |
M

+
∑

m∈Zkr{0}
‖Ltm‖≤M

rT (m) ·
∣∣∣∣ˆ
BT

e(m · s) ds

∣∣∣∣
 ,

where C
def
= max(C ′, k2k+2). For a lower bound on NT (U,x)− |U ||BT | we use

ϕU(x) ≤ χT
U(x) in a similar way.

Specializing to aligned boxes we obtain a generalization of the Erdős-

Turán inequality.

Corollary 5.6. Let the notation be as in Theorem 5.3. Suppose U ⊂ Rk is an

aligned box. Then there is a positive constant C (depending only on k) such
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that for any M ∈ N and x ∈ Rk we have that

∣∣∣NT (U,x)− |U ||BT |
∣∣∣ ≤ C

 |BT |
M

+
∑

m∈Zkr{0}
‖m‖≤M

r(m)

∣∣∣∣ˆ
BT

e(m · t) dt

∣∣∣∣
 ,

(5.6.3)

where

r(m)
def
=

k∏
i=1

min

(
1,

1

|mi|

)
. (5.6.4)

Proof. In this case L is the identity matrix, so that B = U and b ≤ 1/2.

We will need the following estimate for the integrals appearing on the

right-hand-side of (5.6.1):

Proposition 5.8. There is a constant C (depending only on d, k and the

choice of Lebesgue measure on V ) such that∣∣∣∣ˆ
BT

e(m · s) ds

∣∣∣∣ ≤ C
d∏
i=1

1

|m · vi|
. (5.6.5)

Proof. For a constant C1 depending on the choice of Lebesgue measure on V ,

we have: ∣∣∣∣ˆ
BT

e(m · s) ds

∣∣∣∣ = C1

d∏
i=1

∣∣∣∣ˆ T

−T
e((m · vi)si) dsi

∣∣∣∣
= C1

d∏
i=1

| sin(2π(m · vi)T )|
π|m · vi|

≤ C1

πd

d∏
i=1

1

|m · vi|
.
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Proof of Theorem 5.3. Let v be a Diophantine vector in the subspace spanned

by v1, . . . ,vd, and write v =
∑d

i=1 xivi. Fix c, s as in (5.1.5), and let s′ > s.

If m ∈ Zk satisfies

max
1≤i≤d

|m · vi| ≤ ‖m‖−s
′

then, for all but finitely many m,

|m · v| ≤

(
d∑
i=1

|xi|

)
‖m‖−s′ ≤ c‖m‖s.

Thus for some c1 > 0 we have

max
1≤i≤d

|m · vi| ≥ c1‖m‖−s
′

for all m ∈ Zk. (5.6.6)

We will apply Corollary 5.6 with

M = bT δc, where δ =
1

d+ s′ + 1
. (5.6.7)

Assume that the maximum in (5.6.6) is attained for i = 1. It follows

that for some c4, c3, c2 > 0,∣∣∣∣ˆ
BT

e(m · t) dt

∣∣∣∣ = c2

∣∣∣∣ˆ
[−T,T ]d

e
(
m ·

(∑
tivi

))
dt

∣∣∣∣
= c2

d∏
i=1

∣∣∣∣ˆ T

−T
e((m · vi)ti) dti

∣∣∣∣
≤ c2

| sin(2π(m · v1)T )|
π|m · v1|

(2T )d−1

≤ c3
T d−1

|m · v1|
(5.6.6),(5.6.7)

≤ c4 T
d−1+s′δ.
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Therefore

∑
0<‖m‖≤M

r(m)

∣∣∣∣ˆ
BT

e(m · t) dt

∣∣∣∣ ≤ c4 T
d−1+s′δ

∑
0<‖m‖≤M

r(m)

≤ c4M
d T d−1+s′δ

(5.6.7)

≤ c5 T
d−δ.

It is clear that the constants c5, δ do not depend on U or x. Thus the theorem

follows from Corollary 5.6.

Remark 5.1. The proof shows that if V is Diophantine with corresponding

constant s, then δ can be taken to be any number smaller than d+1
d+s+1

.

Proof of Theorem 5.4. For a fixed δ, let ε = δ/d and let C1, C2, C3 be the

constants C appearing in (5.1.8), (5.6.1) and (5.6.5) respectively. Let L :

Rk → Rk be the linear isomorphism mapping ei to vi, i = 1, . . . , k. Any U

which is a parallelotope aligned with T is of the form U = π ◦ L̃(B), where L̃

is an affine isomorphism whose linear part is L and B =
∏

[−bi, bi] .

Let ‖ · ‖2 be the Euclidean norm on Rk. If the largest side length of U is η,

then

η = 2 max
i
bi‖vi‖2.

In particular η ≥ 2bmin ‖vi‖2 where b = max bi. There is a constant λ, which

depends only on the v1, . . . ,vk, such that

{m ∈ Zk : ‖Ltm‖ ≤M} ⊂ {m ∈ Zk : ‖m‖ ≤ λM}.
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Applying Proposition 5.8, we find that for any M > 0, the right hand side of

(5.6.1) is bounded above by

C2| detL|(1 + η/min ‖vi‖2)k

 |BT |
M

+ C3

∑
m∈Zkr{0}
‖m‖≤λM

rT (m)
d∏
i=1

1

|m · vi|

 .

Now taking M =
⌊
T d
⌋
, and using our strongly Diophantine hypothesis, gives

the required bound, with

C = C1C2C3| detL|λδ/d max{1, 1/min ‖vi‖2}k.

5.7 Diophantine approximation to subspaces

The main result of this section shows that the Diophantine properties

stated in the introduction hold almost surely. More precisely, properties of

d-tuples of vectors in Rk hold almost everywhere with respect to Lebesgue

measure on ×d1 Rk ∼= Rkd, and properties of vector spaces hold almost every-

where with respect to the smooth measure class on the Grassmannian variety.

The fact that almost every vector is Diophantine is a standard exercise

using the Borel-Cantelli Lemma — or see [27] for a stronger statement. For the

extension to strongly Diophantine vectors, we employ some ideas of Schmidt

[61]:

Proposition 5.9. Almost every v1, . . . ,vd is strongly Diophantine with respect

to any basis T = (t1, . . . , tk) for Rk having the property that for each i ∈

{d+ 1, . . . , k}, there is a j for which ti is a multiple of ej.
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Proof. Fix ε > 0, let R1, . . . , Rd be cubes in Rk of sidelength 1, and for each

1 ≤ i ≤ d and m ∈ Zk r {0} let

IRi(m)
def
=

ˆ
Ri

dv

|m · v|(− log min(1/2, |m · v|))1+ε
.

We estimate this integral by using the change of variables u = u(v), where

ui = m · v, uj = vj for 1 ≤ j ≤ k, j 6= i.

The Jacobian determinant of this transformation is 1/mi. If we write R′i for

the image of Ri in the u coordinate system then it is clear that for j 6= i the

uj coordinates of two points in R′i cannot differ by more than 1. Using this

fact we have

IRi(m) ≤ 2

mi

ˆ 1/2

0

dui
ui| log ui|1+ε

+
1

mi(log 2)1+ε

ˆ 1/2+mi

1/2

dui
ui
≤ c1

log(mi)

mi

,

where c1 depends only on ε. Thus we have

∞∑
m1=1

· · ·
∞∑

md=1

IR1(m) · · · IRd(m)

(logm1)2+ε · · · (logmd)2+ε
≤ c2

with c2 depending on ε but not on m. On interchanging the orders of in-

tegration and summation this implies that for almost every (v1, . . . ,vd) ∈

R1 × · · · ×Rd,

S(v1, . . . ,vd)
def
=

∞∑
m1=1

· · ·
∞∑

md=1

d∏
i=1

1

|m · vi|(logmi)2+ε(− log min(1/2, |m · vi|))1+ε

(5.7.1)

is finite and independent of md+1,md+2, . . . ,mk ∈ Z. Since the location

of the cubes R1, . . . , Rd was arbitrary, S(v1, . . . ,vd) < ∞ for almost every
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(v1, . . . ,vd) ∈ (Rk)d. By grouping together the choices for md+1, . . . ,mk, we

obtain

∑
m∈Zk

0<m1,...,mk≤M

rT (m)
d∏
i=1

1

|m · vi|

≤ C(logM)k−d(logM)d(2+ε)P (M)S(v1, . . . ,vd), (5.7.2)

where

P (M) =
d∏
i=1

max
1≤m1,...,mk≤M

(− log min(1/2, |m · vi|))1+ε.

In the inequality in (5.7.2) we are using the fact that for each i ∈ {d+1, . . . , k},

the quantity ti ·m is always a fixed multiple of mj for some j.

By a standard application of the Borel-Cantelli Lemma, for almost

every v ∈ Rk there is a constant c = c(v) > 0 such that

|m · v| ≥ c

M2k
for all m ∈ Zk with 0 < ‖m‖ ≤M.

Thus for almost every v1, . . . ,vd and for any δ > 0 we have that (5.7.2) is

bounded above by a constant times (logM)k+2d+δ.

Finally we can estimate

∑
0<‖m‖≤M

rT (m)
d∏
i=1

1

|m · vi|

by partitioning the sum into 2k subsets of points m, according to which com-

ponents of m are 0. To each one of these subsets we may then apply the above

arguments to obtain the required bound.
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As a corollary of our proof, the conclusions of Theorems 5.3 and 5.4

can be considerably strengthened, as follows.

Proposition 5.10. For almost every v1, . . . ,vd, and any basis T as in Propo-

sition 5.9, for any δ > 0 there is c > 0 so that

∑
0<‖m‖≤M

rT (m)
d∏
i=1

1

|m · vi|
≤ c (logM)k+2d+δ. (5.7.3)

Under this condition, the error terms on the right hand sides of (5.1.6) and

(5.1.9) can be replaced by C(log T )k+2d+δ.

Proof. The bound (5.7.3) was already proved above. For the rest of the claim,

take M = T d and use (5.7.3) and Proposition 5.8 in Theorem 5.9.

To conclude this section we mention the following easy fact:

Proposition 5.11. If v1, . . . ,vd are strongly Diophantine then each vi is Dio-

phantine.

Proof. Suppose that v1, . . . ,vd are strongly Diophantine with respect to T =

(t1, . . . , tk), let s > k+ d− 1, and let i ∈ {1, . . . , d}. Suppose by contradiction

that there are infinitely many vectors m ∈ Zk so that |m · vi| < 1
‖m‖s . If m

is one such vector then setting M = ‖m‖ and using Cauchy-Schwarz we find,

for each j 6= i,

|m · vj| ≤M‖vj‖.
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Noting that rT (m) ≥
∏k

i=1
1

‖ti‖·‖m‖ gives

rT (m)
d∏
i=1

1

|m · vi|
≥M−k

(
k∏
i=1

1

‖ti‖

)(∏
j 6=i

1

M‖vj‖

)
‖m‖s ≥ CM s−k−d+1.

This holds along a sequence of M →∞. However for some ε > 0 this contra-

dicts (5.1.8).

5.8 Proofs of Theorem 5.1 and 5.2(1),(2)

Proof of Theorem 5.1. Let V be a Diophantine subspace, and let v1, . . . ,vd

be a basis for V . Let S be a linear section which is (k − d)-dimensionally

open and bounded, with dimM ∂S < k− d, let U1 be a closed ball around 0 in

V , satisfying (i) of §5.2.2, and define W via (5.3.2). Then W is bi-Lipschitz

equivalent to U × S and hence, by [30, Formulae 7.2 and 7.3], dimM ∂W < k.

Thus the Theorem follows from Corollaries 5.2 and 5.4.

Proof of Theorem 5.2(1). Let v1, . . . ,vd satisfy the conclusion of Proposition

5.9, and for i = d + 1, . . . , k, let vi ∈ {e1, . . . , ek} such that T = (v1, . . . ,vk)

is a basis of Rk. Also let V = span(v1, . . . ,vd). We need to show that for any

linear section S in a space L transverse to V , such that dim ∂ S = k − d− 1,

and any x ∈ Tk, the corresponding is BDD to a lattice. To this end we will

apply Corollaries 5.3 and 5.5 . Let B be a ball in L such that π is injective on

B, and sets U1 and U2 satisfying conditions (i) and (ii) of §5.2.2 for B′. Also

let L′
def
= span(vd+1, . . . ,vk), and let B′ be a ball in L′ such that π is injective

on B′. Then B′ is a good section, let U ′1,U ′2 be the corresponding sets as in

§5.2.2.
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Suppose first that B is small enough so that (5.2.1) holds. Then we

can assume with no loss of generality that S is contained in B′. This in turn

shows that the hypotheses of Corollaries 5.5 and 5.3 are satisfied, and Y is

BDD to a lattice.

Now suppose (5.2.1) does not hold. Then we can partition S into

smaller sets S(1), . . . ,S(r) with equal volume and dimM ∂S(i) = k− d− 1, such

that the corrresponding sets U (i)
1 satisfy (5.2.1). Now repeating the previous

argument separately to each S(i), we see that the corrresponding net is BD to

a fixed lattice L. Note that the lattice is the same because each Si has the

same volume. Now the result follows via Proposition 5.4.

Proof of Theorem 5.2(2). Suppose S is a box with sides parallel to the coor-

dinate axes; that is, there is J ⊂ {1, . . . , k}, |J | = k − d, such that S is the

projection under π of an aligned box in the space VJ
def
= span(ej : j ∈ J). As

above, we can use Proposition 5.4 to assume that π is injective on a subset

of VJ covering S. According to Proposition 5.9, for almost every choice of

v1, . . . ,vd, the space V = span(vi) is strongly Diophantine with respect to the

basis

T def
= {vi : i = 1, . . . , d} ∪ {ej : j ∈ J}.

As in the preceding proof, choose a neighborhood U1 of 0 in V satisfying

property (i) of §5.2.2 which is a box. Then the set W defined by (5.3.2) is a

parallelotope aligned with T . According to Theorem 5.4, (5.3.5) holds, and

we can apply Corollary 5.3.
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5.9 Irregularities of distribution

In this section we will fix 1 < d < k and let G denote the Grassmannian

variety of d-dimensional subspaces of Rk. We denote by G(Q) the subset of

rational subspaces. We will fix a totally irrational k− d dimensional subspace

W ⊂ Rk, and let S be the image under π of a subset of W which is open and

bounded. There is a dense Gδ subset of V ∈ G for which S is a good section for

the action of V on Tk; indeed, by the discussion of §5.2.2, this holds whenever

V and W are transverse to each other and V is totally irrational.

If Q ∈ G(Q) then any orbit Q.x is compact; further if Q is transverse

to W then Q.x ∩ S is a finite set for every x ∈ Tk. We say that S and Q are

not correlated if there are x1,x2 ∈ Tk such that

# (Q.x1 ∩ S) = #
(
Q.x1 ∩ S

)
6= # (Q.x2 ∩ S) = #

(
Q.x2 ∩ S

)
(5.9.1)

(here S denotes the closure of S). We say that S is typical if there is a dense

set of Q ∈ G for which S and Q are not correlated.

It is not hard to find typical S:

Proposition 5.12. Let r = k−d and let W be a totally irrational r-dimensional

subspace of Rk. Let w1, . . . ,wr be a basis for W and for a = (a1, . . . , ar) ∈

(0, 1)r,b = (b1, . . . , br) ∈ (0, 1)r let

P (a,b)
def
= π

({
r∑
1

tiwi : ti ∈ (ai, ai + bi)

})
.

Then the set of (a,b) for which P (a,b) is not correlated with any rational

subspace, and hence typical, is of full measure and residual in (0, 1)2r.
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Proof. It is enough to show that for a fixed Q, the set of a,b for which P (a,b)

is correlated with Q has zero measure and is a submanifold of dimension less

than 2r in [0, 1]2r. To see this, define two functions F, F on Tk, by

F (x)
def
= # (Q.x ∩ S) , F (x)

def
= #

(
Q.x ∩ S

)
.

We always have F (x) ≤ F (x), and F (x) = F (x) unless Q.x intersects the

boundary of S. So if (5.9.1) fails then F (x) always has the same value, for the

values of x for which Q.x ∩ ∂ S = ∅.

Note that the values of F, F are constant along orbits of Q. The space

of orbits for the Q-action is itself a compact torus Q′ of dimension r. Let

π′ : Tk → Q′ be the projection mapping a point to its orbit. The discussion in

the previous paragraph shows that the requirement that S andQ are correlated

is equivalent to the requirement that the interior of S projects onto a dense

open subset of Q′ with fibers of constant cardinality. Clearly this property is

destroyed if we vary S slightly in the direction orthogonal to Q. More precisely,

for any a and b, there is a small neighborhood U such that which the set of

a′,b′ in U for which (5.9.1) fails is a proper submanifold of zero measure. This

proves the claim.

By similar arguments one can show that almost every ball, ellipsoid,

etc., is typical.

Proposition 5.13. If S is a bounded open set whose boundary is of zero

measure (w.r.t. the Lebesgue measure on the subspace W ), and S is typical,
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then there is a dense Gδ subset of V for which, for every x ∈ Tk, the separated

net YS,x is not BDD to a lattice.

Proof. Let Q1, Q2, . . . be a list of rational subspaces in G(Q) such that S and

Qi are not correlated for each i, and {Qi} is a dense subset of G. For each i

let x
(i)
1 ,x

(i)
2 be two points in Tk for which (5.9.1) holds. Since the linear action

of subspaces on Tk is the restriction of the continuous natural Rk-action, for

any ε > 0 and any T > 0 we can find a neighborhood of Qi in G consisting

of subspaces V such that for any v ∈ V with ‖v‖ < T , and any x ∈ Tk, the

distance in Tk between v.x and v′.x is less than ε, where v′ is the orthogonal

projection of v onto Qi. We will fix below a sequence of bounded sets Mi ⊂ Qi

and denote by M
(V )
i the preimage, under orthogonal projection V → Qi, of

Mi. Using our assumption on S, by perturbing x
(i)
1 ,x

(i)
2 slightly we can assume

that q.x
(i)
1 and q.x

(i)
2 are not in ∂S when q ∈Mi. Since S is relatively open in

W , this implies that there is an open subset Vi of G containing Qi, such that

for every V ∈ Vi and for ` = 1, 2,

#
{
q ∈Mi : q.x

(i)
` ∈ S

}
= #

{
v ∈M (V )

i : v.x
(i)
` ∈ S

}
. (5.9.2)

Then

G∞
def
=
⋂
i0

⋃
i≥i0

Vi

is clearly a dense Gδ subset of G, and it remains to show that by a judicious

choice of the sequence Mi, we can ensure that for any totally irrational V ∈

G∞, for any x, and any positive λ, c, the separated net YS,x does not satisfy

condition (3) of Theorem 5.6.
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For any i let Ci be a parallelotope which is a fundamental domain for

the action of the lattice Qi ∩ Zk on Qi. Specifically we let

Ci
def
=

{
d∑
j=1

ajqj : ∀j, 0 ≤ aj < ‖qj‖

}
,

where q1, . . . ,qd are a basis of Qi ∩ Zk. We claim that there are positive

constants c1, c2, C (depending on i) and sets Mi which are finite unions of

translates of Ci, of arbitrarily large diameter, such that:

|Mi| ≥ c1 diam(Mi)
d; (5.9.3)

∣∣(∂Mi)
(1)
∣∣ ≤ C diam(Mi)

d−1 (5.9.4)

(where, as before, (∂Mi)
(1) is the set of points at distance 1 from ∂Mi). Indeed,

we simply take Mi to be dilations by an integer factor, of Ci around its center.

Then each Mi is homothetic to Ci and (5.9.3) and (5.9.4) follow. Now let Ni

be the number of copies of Ci in Mi. Then

#{q ∈Mi : q.x
(i)
` ∈ S} = Ni ·#{q ∈ Ci : q.x

(i)
` ∈ S} = Ni ·#

(
Q.x

(i)
` ∩ S

)
and

|Mi| = Ni · |Ci|,

which implies via (5.9.3) and (5.9.4) that for some constant c2,

|(∂Mi)
(1)| ≤ c2N

1−1/d
i .

If we set

c3
def
=

∣∣∣#(Q.x(i)
2 ∩ S

)
−#

(
Q.x

(i)
1 ∩ S

)∣∣∣
2

,
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then for any λ, there is ` ∈ {1, 2} such that for x′ = x
(i)
` we have

|#(Q.x′ ∩ S)− λ|Ci|| ≥ c3,

and hence

|#(Mi.x
′ ∩ S)− λ|Mi||
|(∂Mi)(1)|

≥ Ni |#(Qx′ ∩ S)− λ|Ci||
c2N

1−1/d
i

≥ c3

c2

N
1/d
i .

So by choosing Ni large enough we can ensure that for any λ, and x′ one of

the x
(i)
` , we have

|#(Mi.x
′ ∩ S)− λ|Mi|| ≥ i |(∂Mi)

(1)|. (5.9.5)

Now fixing λ and c we choose i > c and choose x′ as above depending on λ.

If V ∈ Vi is totally irrational then for any x ∈ Tk there is a sequence vn ∈ V

such that vn.x → x′. So we may replace x′ with x and Mi with vn + Mi for

sufficiently large n, and (5.9.5) will continue to hold. In light of (5.9.2), if

Y is the net corresponding to V, S and x, and E
def
= vn + Mi, then we have

shown discY (E, λ) > c|(∂E)(1)|, and we have a contradiction to condition (3)

of Theorem 5.6.

Proof of Theorem 5.2(3). Immediate from Propositions 5.12 and 5.13.
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[42] Michael Kelly and Thái Hoàng Lê. Uniform dilations in higher dimen-

sions. Journal of the London Mathematical Society, 88(3):925–940, 2013.

[43] Miklós Laczkovich. Uniformly spread discrete sets in Rd. J. London

Math. Soc. (2), 46(1):39–57, 1992.

[44] C. G. Lekkerkerker. Geometry of numbers. Bibliotheca Mathematica,

Vol. VIII. Wolters-Noordhoff Publishing, Groningen, 1969.

[45] Xian-Jin Li. On reproducing kernel Hilbert spaces of polynomials. Math.

Nachr., 185:115–148, 1997.

[46] Xian-Jin Li. A note on the weighted Hilbert’s inequality. Proc. Amer.

Math. Soc., 133(4):1165–1173 (electronic), 2005.

[47] Xian-Jin Li and Jeffrey D. Vaaler. Some trigonometric extremal func-
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[60] L. A. Santaló. An affine invariant for convex bodies of n-dimensional

space. Portugaliae Math., 8:155–161, 1949.

[61] Wolfgang M. Schmidt. Metrical theorems on fractional parts of se-

quences. Trans. Amer. Math. Soc., 110:493–518, 1964.

[62] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44

of Encyclopedia of Mathematics and its Applications. Cambridge Univer-

sity Press, Cambridge, 1993.

[63] Atle Selberg. Collected papers. Vol. II. Springer-Verlag, Berlin, 1991.

With a foreword by K. Chandrasekharan.

[64] Atle Selberg. Collected papers. Vol. II. Springer-Verlag, Berlin, 1991.

With a foreword by K. Chandrasekharan.

[65] Marjorie Senechal. Quasicrystals and geometry. Cambridge University

Press, Cambridge, 1995.

140



[66] Carl Ludwig Siegel. Lectures on the geometry of numbers. Springer-

Verlag, Berlin, 1989. Notes by B. Friedman, Rewritten by Komaravolu

Chandrasekharan with the assistance of Rudolf Suter, With a preface by

Chandrasekharan.

[67] Y. Solomon. A Simple Condition for Bounded Displacement. ArXiv

e-prints, November 2011.

[68] Yaar Solomon. Substitution tilings and separated nets with similarities

to the integer lattice. Israel J. Math., 181:445–460, 2011.

[69] E. M. Stein. Functions of exponential type. Ann. of Math. (2), 65:582–

592, 1957.

[70] Elias M. Stein. Singular integrals and differentiability properties of func-

tions. Princeton Mathematical Series, No. 30. Princeton University

Press, Princeton, N.J., 1970.

[71] Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on

Euclidean spaces. Princeton University Press, Princeton, N.J., 1971.

Princeton Mathematical Series, No. 32.

[72] Jeffrey D. Vaaler. Some extremal functions in Fourier analysis. Bull.

Amer. Math. Soc. (N.S.), 12(2):183–216, 1985.

[73] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge

University Press, Cambridge, England, 1944.

141



Index

Rd-actions, 89

Abstract, vi

Acknowledgments, v

Appendices, 141

associated dimensions, 91

BDD, 89

Bernstein’s inequality, 20

Beurling-Selberg problem, 55

bi-Lipschitz, 89

Bibliography, 150

BL, 89

bounded displacement after dilation,

89

bounded type, 29

Bourgain-Milman inequality, 54

Burago-Kleiner, 90

Cauchy-Schwarz inequality, 46

Convex body, 40

cut-and-project, 91

de Branges space, 28, 54

Dedication, iv

Diophantine subspace, 94

Diophantine vector, 94

dynamical system, 91

Fejér-Riesz theorem, 44

Grassmannian, 91

Hilbert space, 44

Laurent polynomial, 37

linear section, 91

Locally compact Abelian group, 4,

37

McMullen, 90

minimal action, 91

Minkowski dimension, 92

Minkowski’s convex body theorem,

40

Nevanlinna’s factorization, 32
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