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An intense laser or charged particle pulse propagating through matter excites

light-speed refractive index structures in its wake via Kerr effect, ionization,

or displacement of electrons from background ions. Examples include plasma

wakes used to accelerate charged particles and self-guided filaments used for

atmospheric analysis and micromachining. Such applications constrain the

shape, size and evolution of the index structure, yet often these are known in

detail only through intensive computer simulations based on estimated initial

conditions. Here we develop and demonstrate three methods for visualizing

evolving light-speed structures directly in the laboratory in a single shot : (1)

frequency-domain streak camera, (2) frequency-domain tomography, and (3)

multi-object-plane phase-contrast imaging. All three methods are based on an-

alyzing phase perturbations that an evolving object imprints on one or more

probe laser pulses that cross its path obliquely. The methods are tailored to
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different propagation lengths, material densities, and dimensionality of imag-

ing. Using these techniques, evolving laser-driven filaments in glass and air

and plasma wakes in helium gas driven by laser pulses up to petawatt peak

power are visualized in one shot, revealing underlying nonlinear laser-plasma

interaction physics that is compared in detail to computer simulations.
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Chapter 1

Introduction

The laser, first demonstrated by Maiman in 1960 [54], continues to trans-

form our world. The intense brightness of laser light enables new types of

light-matter interactions, and along with them, new applications. For exam-

ple, tightly focused laser light cuts, welds and ablates metals and dielectrics,

technologies now broadly used in industry [32]. When intense laser pulses

propagate through transparent media, their strong electric fields drive elec-

trons nonlinearly, creating nonlinear optical effects such as self-phase modula-

tion, self-focusing, frequency up/down conversion, and parametric amplifica-

tion that are enumerated in contemporary nonlinear optics textbooks[7], and

used routinely in fiber optic communications and laboratory research in many

scientific fields.

In the late 1980s, the development of chirped pulse amplification (CPA)

paved the way for generating laser light of unprecedented intensity [78]. The

CPA technique reduces the intensity of a seed laser pulse of given energy or flu-

ence by intentionally broadening its temporal profile before amplification using

dispersive optics. This so-called “chirped” pulse can then be amplified by 6

to 12 orders of magnitude, and compressed into an ultra-short, ultra-intense

1



laser pulse, without damaging the amplification system. Contemporary CPA

laser technology reliably delivers femtosecond laser pulses with hundreds of

terawatts [1 terawatt (TW) = 1012 watts (W)] peak power — equivalent to

the average power of the world-wide electrical grid — a capability now com-

mercialized and implemented in universities and research institutes around the

world. Major labs in the United States, Europe, and Asia have built, or are

constructing, lasers that generate pulses of petawatt peak power [1 petawatt

(PW) = 1015 W), with focal peak intensity up to 1021 W/cm2, sufficient to

drive highly relativistic electron motion and open up a new area of relativistic

nonlinear optics [61]. Laser-matter interactions at such intensity promise to

provide tabletop particle accelerators and coherent x-ray sources for the next

generation. The study of ultra-intense laser-matter interaction, and the devel-

opment of diagnostic tools to visualize and characterize those interactions, are

thus new and of great current interest to forefront science and technology.

1.1 Nonlinear laser pulse propagation in transparent di-
electrics and gases

Nonlinear propagation of femtosecond laser pulses in transparent media such

as dielectrics and gases has been extensively studied since self-channeling, or

filament propagation, of a laser pulse through air was observed in the mid-

1990s [8]. In filament propagation, a laser pulse self-guides at high intensity

over multiple Rayleigh ranges because its nonlinear Kerr lens dynamically bal-

ances its lateral spread via diffraction and plasma defocusing [23]. Meanwhile,
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self-phase modulation broadens the laser spectral bandwidth, sometimes as

widely as the entire visible spectrum [2], while plasma is generated via photo-

ionization [39]. This unique combination of processes enables applications such

as white light detection and ranging (LIDAR), atmospheric chemical analysis,

lightening protection, and dielectric micro-machining [13], highlighting the im-

portance of observing and understanding the underlying nonlinear dynamics.

Nonlinear filament propagation of femtosecond laser pulses can be mod-

eled by a wave equation — the so-called nonlinear Schrödinger equation (NLSE)

— derived from Maxwell’s equations with the assumptions that the field E =

<[E exp(ik0z− iω0t)] of the laser pulse (i) is linearly polarized, (ii) propagates

paraxially, and (iii) has a scalar envelope E that varies slowly [13]:

∂E

∂z
=

iT̂−1

2k0

∇2
⊥E −

ik′′

2

∂2E

∂τ 2
+NKerr +Nplasma +NPI

NKerr = ik0n2T̂

[
(1− fR)|E|2 + fR

∫ τ

−∞
R(τ − τ ′)|E(τ ′)|dτ ′

]
E

Nplasma = − ik0

2n2
0ρc

T̂−1ρE − σ

2
ρE

NPI = −WPIEg
2|E|2

E. (1.1)

The first line is the NLSE, while the remaining lines define the last three terms

on its right-hand side. The time variable is τ = t− z/vg, so the wave equation

is written in the co-moving frame of the laser pulse. The first and second

terms on the right-hand side of the wave equation denote, respectively, linear

diffraction in the transverse plane and group velocity dispersion (GVD) in the

longitudinal direction. The nonlinear Kerr term NKerr, defined in the second
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equation, includes an instantaneous and a time-delayed component, the latter

related to activation of low energy transitions between molecular ro-vibrational

states. The plasma term Nplasma, defined in the third equation, describes

defocusing and absorption of the laser pulse by the plasma that it generates

at high-intensity. The last term NPI , defined in the fourth equation, describes

loss of laser energy by photo-ionization. The operator T̂ = 1 + (i/ω0)(∂/∂τ)

is an adjustment to the slow-variation assumption that acts on the diffraction

term to account for time-space focusing, and on the Kerr term to account for

self-steepening.

Generation and recombination of plasma is described by a second equa-

tion that is coupled to the NLSE (1.1). If the peak intensity of the femtosecond

laser pulse exceeds ∼ 1013 W/cm2, it generates plasma efficiently via photo-

ionization and collisional avalanche ionization:

∂ρ

∂τ
= WPI(|E|2) +

σ

Eg
ρ|E|2 − ρ

τrec
. (1.2)

Here WPI represents the photo-ionization rate, which can be obtained from the

formulation of Keldysh [39] and Perelmov, Popov and Terent’ev (PPT) [63],

which generalized two different photo-ionization mechanisms: multi-photon

ionization at lower laser intensity and tunneling ionization at higher intensity.

Another mechanism is avalanche ionization, the rate of which is proportional

to the existing plasma density ρ, as shown in the second term of Eq. (1.2).

Recombination is described by a plasma life time τrec in the third term.

Couairon et al. [13] have reviewed the mechanisms of laser filamenta-
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tion. In gases, filaments form in two stages: (i) the pure Kerr compression

stage in which the laser pulse keeps self-focusing till it reaches the ionization

threshold of the medium, and (ii) the balancing stage in which the intense

part of the pulse loses energy through photo-ionization, clamping its peak in-

tensity near 1013 W/cm2, while the trailing part of the pulse balances between

self-focusing and plasma defocusing. In solids, collapse of the self-focusing

laser pulse is generally arrested by longitudinal pulse splitting, although de-

tails vary depending on initial conditions. For pulses focused into the Kerr

medium with beam radius w0 ∼ 20 to 30 µm with peak power above the crit-

ical power for self-focusing, photo-ionization and plasma defocusing are the

main mechanisms that drive pulse splitting [87]. For more loosely focused in-

cident laser pulses (w0 ≥ 100 µm) near the critical power, the large dispersion

of solids compared to gases becomes important. The first pure Kerr compres-

sion stage is gradual and slow, so accumulated dispersion due to GVD splits

the pulse and arrests beam collapse before significant ionization and plasma

generation [68]. At the opposite extreme of a tightly focused incident laser

(w0 ≤ 5 µm), the incident intensity is already so large that plasma density

can reach 1020 cm−3 [79]. In this case, avalanche ionization is as important

as photo-ionization, and the medium is altered permanently, as occurs e.g. in

laser micro-machining, due to the lower damage threshold of solids compared

to gases.

The established filamentation mechanism in gases summarized above

was recently challenged, based on new measurements of high-order Kerr effect
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(HOKE) indices in nitrogen, oxygen, and argon [52]. In HOKE, the lowest

order Kerr index n2I is augmented by high-order terms of the form n4I
2 +

n6I
3+n8I

4+· · · , which measurements suggested could be opposite in sign, and

comparable in magnitude, to n2I in some gases. The proposed new mechanism

suggested that instead of plasma generation, the saturation of the lowest-order

nonlinear Kerr index by HOKE terms was responsible for the arrest of beam

collapse [4]. The significance of HOKE in gases is still under investigation,

whereas this effect in condensed matter, e.g. glass, has not been discussed,

although a measurement of n4 in fused silica has been reported [20]. This issue

will be discussed further in Chapter 5.

The complex dynamics of laser pulse filamentation described above

provide the subject of study for our development of several single-shot visu-

alization techniques: the frequency-domain streak camera (FDSC, Chapter

3), frequency-domain tomography (FDT, Chapter 5), and multi-object-plane

phase-contrast imaging (MOP-PCI, Chapter 6). The FDSC provides a time

sequence of projections of the growing filament. FDT combines several FDSC

projections to reconstruct a complete single-shot “movie” of the filament’s

refractive index dynamics, albeit over a short (∼ mm) propagation length.

MOP-PCI visualizes the filament structure and dynamics over meter-scale

propagation lengths.
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1.2 Laser-plasma electron acceleration

Ultrafast, ultra-intense laser pulses propagating with terawatt or petawatt

peak power in underdense plasma can capture and accelerate electrons to

MeV or GeV energy, promising a new generation of compact, inexpensive

accelerators [47]. Compared to conventional linear GeV electron accelerators,

which accelerate electrons using fields of ∼ 100 kV/cm relayed over kilome-

ters via cryo-cooled metal accelerating structures, laser wake field accelerators

(LWFAs) sustain accelerating fields of ∼ 1 GeV/cm, implying that electrons

could be accelerated up to tens of GeV on a table-top. As a result, GeV elec-

tron beams and bright coherent x-ray radiation could become affordable to

university-based labs for a broad range of research in biology, medicine, and

materials science.

Tajima and Dawson [82] proposed the LWFA concept in 1979. Esarey

et al. [21] recently reviewed the history and principles of LWFA. Early exper-

imental demonstrations of laser-plasma acceleration were based on beat-wave

acceleration, in which two laser beam with frequencies ω1 and ω2 such that

ω1 − ω2 = ωp (the plasma oscillation frequency), usually provided by two

lines of a CO2 laser, excited and resonantly drove a plasma beat wave at ωp

that captured and accelerated plasma electrons [11, 41]. After the invention of

solid-state CPA laser systems, single intense laser pulses proved to be more ef-

ficient, and widely available, drivers of plasma waves for electron acceleration.

Early CPA drivers, however, produced pulses that were significantly longer

than the plasma wavelength in plasmas for which the peak power exceeded
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the critical power (Pc = 17(ω/ωp)
2 GW) for relativistic self-guiding, a nec-

essary condition for efficient electron capture and acceleration. Under these

conditions, the pulse generated a plasma wave by a Raman forward scatter-

ing (RFS) instability [60]: i.e. the initially excited plasma wave modulated

the drive pulse, causing it to evolve into a train of shorter pulses, each of

duration ∼ ω−1
p . These pulses then resonantly (and more strongly) drove the

plasma wave, which in turn more strongly modulated the drive pulse ampli-

tude, etc. In the frequency domain, this modulated pulse developed Stokes

and anti-Stokes sidebands separated from the original center frequency by ωp.

The modulated pulse interacting with the plasma was thus similar to the beat-

wave accelerator, except that the sidebands developed during the interaction

rather than being input from the laser. In the self-modulated LWFA, the

plasma wave grew quickly, until it trapped electrons, and accelerated them to

multi-MeV energy [15]. The electron energy spectrum, however, resembled a

Boltzmann distribution with most electrons at low energy (∼ 1 MeV), and

only an exponential tail extending up to the maximum energy (typically tens

of MeV). These accelerators were thus useful only for niche applications, such

as nuclear activation of short-lived isotopes [46], that did not require narrow

energy spread. Le Blanc et al. measured the growth and decay dynamics of

the self-modulation instability directly by Thomson-scattering a time-delayed

probe pulse from the plasma wave over multiple shots [45]. This experiment

demonstrated that the plasma wave amplitude grew via the RFS instability

[60] and decayed within ∼ 1 ps because of beam loading [91]. It was one of the
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first experiments to detect laser-driven plasma waves directly via the modula-

tion they imposed on probe pulses, and thereby to elucidate underlying LWFA

physics. It is therefore an important precursor of the work presented in this

dissertation.

Further advances in CPA technology enabled generation of shorter,

more powerful laser pulses. It thus became possible to excited plasma wakes

with laser pulses of duration close to ω−1
p that were powerful enough to self-

guide [55]. This development culminated in 2004, when three groups simul-

taneously and independently demonstrated that LWFA could produce nearly

monoenergetic electron spectra [22, 28, 56]. In these experiments, ultrashort

laser pulses drove plasma waves resonantly (laser pulse duration equal to the

plasma wavelength). The ponderomotive force of the laser pulse ejected elec-

trons strongly in all directions from its envelope, creating the so-called “blow-

out” or “bubble” regime. Simulations [66], and shortly afterward experiments,

demonstrated that in the bubble regime electrons could be accelerated to 60

to 170 MeV with a nearly monoenergetic spectrum. This feature is critical

for most applications of relativistic electron beams. In 2006, a pre-formed

capillary waveguide was applied to guide laser propagation, thereby increasing

acceleration length beyond what relativistic self-guiding allowed. As a result,

1 GeV electrons with ∼ 5% energy spread were obtained from laser wake field

accelerators for the first time [48]. Recently, our group generated 2 GeV quasi-

monoenergetic electron beams by driving the laser wake field accelerator with

a petawatt laser [89]. Chapter 7 discusses this last experiment in more detail.
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The mechanisms of electron injection and acceleration in the blow-out

regime, and efforts to optimize and scale them, are ongoing subjects of fore-

front theoretical and simulation research [53, 66]. Unlike the self-modulated

LWFA, the blow-out regime allows an approximately “non-evolving” laser spa-

tiotemporal profile to drive a highly nonlinear plasma wave in which electrons

are ejected completely from an approximately spherical volume, leaving a pos-

itively charged bubble trailing the laser pulse. Ambient plasma electrons can

inject spontaneously, or with prompting by an auxiliary laser pulse [22], into

the rear of the bubble. They then accelerate in the strong longitudinal electri-

cal field inside the cavity to MeV or GeV level over a distance that is limited by

pump depletion and/or by de-phasing between the accelerating electrons prop-

agating at ∼ c and the bubble propagating at the drive pulse group velocity. A

unique advantage of this bubble regime is the existence of an efficient injection

termination mechanism, which prevents electrons from injected constantly into

the bubble and forming a low-energy tail in the spectrum. Nevertheless, the

dynamics of injection and the early stages of acceleration remain one of the

most elusive aspects of the physics of plasma acceleration in the bubble regime.

At low plasma density (ne ∼ 1017 cm−3) required for GeV acceleration, injec-

tion into static bubbles becomes inefficient unless the bubble is exceptionally

large. Kalmykov et al. have proposed through simulations that in this regime

self-focusing and defocusing of the drive laser pulse in the plasma, and the re-

sulting elongation and contraction of the bubble, can effectively turn injection

on and off [38]. The possibility of observing this elongation and contraction
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dynamics of the plasma bubble directly in the laboratory, as an aide to under-

standing and controlling electron injection, is one of the important motivations

behind the work of this dissertation.

Laser wake field accelerators are potential tabletop femtosecond hard

x-ray sources [12]. X-ray production requires transverse modulation of the

electron trajectories. There are three ways of doing this. First, the transverse

electric field of the plasma bubble provides a restoring force for transverse os-

cillations of electrons that are injected off-axis, even while they are accelerating

in the bubble’s longitudinal field. This so-called “betatron” motion produces

bright, directional keV x-ray synchrotron radiation [72]. Second, accelerated

free electrons emerging from the accelerator can be transversely modulated by

a counter-propagating laser field, yielding gamma ray radiation of hundreds

of keV photon energy [81]. Finally, coupling of a LWFA electron beam into a

conventional magnetic undulator has produced efficient synchrotron radiation

at visible [73] or soft x-ray [25] wavelengths. Further optimization and scaling

of LWFA beams may enable tabletop x-ray free electron lasers [62] that could

rival the Linac Coherent Light Source (LCLS) or the Free-Electron Laser at

Hamburg (FLASH) in peak brightness. The possibility of such transforma-

tive advances in experimental science further motivates our development of

visualization techniques that support the needed optimization and scaling of

LWFAs.
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1.3 Ultrafast refractive index structures in laser-matter
interactions

The processes of laser filamentation and laser wakefield acceleration discussed

in the previous sections (1.1) and (1.2) create complex, evolving refractive in-

dex structures of micron size and femtosecond time scale that co-propagate at

light speed with the laser. They present a daunting, new challenge to labo-

ratory visualization. We will show that visualization of such index structures

and their evolution reveals key underlying physics of these processes. Design-

ing and interpreting any visualization method requires an understanding of

the physical origin of the refractive index modulation.

For laser filament propagation in gases or condensed media, the non-

linear refractive index ∆n = n2I is a significant contribution to the index

shift. The near-instantaneous electronic component of the nonlinear index di-

rectly characterizes the laser pulse amplitude or intensity profile. However,

as we shall see in Chapter 6, the nonlinear refractive index can also have a

time-delayed component if the laser pulse propagates in molecular gases with

rotational degrees of freedom. The possible importance of high-order Kerr

effect (HOKE) can be tested by measuring laser-induced refractive index vari-

ations. The relativistic nonlinear index that ultra-intense laser pulses produce

in fully-ionized plasma can provide a unique way of measuring their intensity

during nonlinear propagation.

Plasma generated during laser-matter interaction also contributes a
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negative index shift η given by

η =

√
1−

ω2
p

ω2
=

√
1− ne

nc
(1.3)

where ωp =
√

4πe2ne/me is the plasma frequency and nc = meω
2
p/(4πe

2) is the

critical density — i.e. the density at which ωp = ω. Plasma generation plays

a key role in arresting the collapse of self-focusing pulses in both condensed

media (Chapter 5) and gases (Chapter 6). Thus the direct detection of plasma

generation plays a key role in characterizing self-guided filament formation. In

laser wakefields, the complex plasma density profile created by ionization and

nonlinear plasma wave excitation can be reconstructed from measurements of

the transient refractive index. At ultra-high light intensity (∼ 1018 W/cm2),

the index given by Eq. (1.3) is modified by the relativistic effect

η =

√
1− ne

ncγ
, (1.4)

where γ =
√

1 + a2
0/2 is the relativistic Lorentz factor, and a0 = 0.85

√
I[1018 W/cm2]λ2[µm]

is the normalized vector potential. The measured index structure not only pro-

vides a detailed and unprecedented diagnosis of plasma density, but also indi-

rectly derives the longitudinal and transverse electrical fields inside the bubble,

helping determine the optimal operation regime for electron acceleration and

x-ray generation.
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Chapter 2

Prior optical techniques for visualizing

light-speed index structures

The transient refractive index structures studied in this work travel with a

driving laser pulse at its group velocity vg = ∂ω/∂k along the z-direction.

Thus the longitudinal profile of the index structures can be described with

a local time variable ζ = t − z/vg. Incorporating transverse coordinates x

and y, a full four-dimensional (4D) history of the index structure profile can

therefore be expressed mathematically as ∆n(ζ, x, y, z). The typical scale of ζ

variations is femtoseconds; the typical scale of x, y variations is microns; the

propagation distance z ranges from ∼ 1 mm to several meters for experiments

reported in this dissertation.

The central topic here is optical visualization of the complete evolv-

ing optical index structure ∆n(ζ, x, y, z) in a single shot. Prior to the work

of this dissertation, however, some techniques had already been developed to

visualize such light-speed index structures partially. In fact, three previous

Ph.D. dissertations from our group have been devoted to this task: Craig

Siders (1996), Nicholas Matlis (2006) and Peng Dong (2010). In this chapter,

we review the relevant prior art developed by our group as well as outside
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researchers, and point out the limitations of previous visualization techniques.

Section 2.1 discusses frequency-domain interferometry (FDI), used by Siders

to measure laser-driven plasma wakes. FDI usually measures the ζ structure of

the object only, averaging over x, y and z. However, it requires multiple shots

to measure ζ structure, and thus relies on repeatability of the object’s struc-

ture, to build up an image. Section 2.2 discusses frequency-domain holography

(FDH), used by Matlis to visualize laser-driven quasi-linear plasma wakes, and

(with modifications) by Dong to measure highly nonlinear laser wakes in the

bubble regime. FDH records an ζ-x slice of the object’s structure in a single

shot, but averages over z variations. Section 2.3 discusses transverse probe

techniques developed by outside researchers to measure z evolution of light-

speed objects. However, these methods require multiple shots, and average

over the object’s transverse (x, y) structure. Subsequent chapters will then

describe three techniques developed in this work to visualize the z-variation

of a light-speed object in a single shot, while simultaneously recording one or

more dimensions of its ζ-x-y structure with high fidelity. We call these new

techniques the frequency domain streak camera (FDSC, Chapter 3), frequency

domain tomography (FDT, Chapter 4), and multi-object-plane phase-contrast

imaging (MOP-PCI, Chapter 5).

2.1 Frequency–Domain Interferometry

Frequency-Domain Interferometry (FDI), also known as Fourier-domain in-

terferometry or spectral interferometry, is a linear technique to measure the
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phase and amplitude of an unknown optical electrical field E(ζ) by interfer-

ing it with a well-characterized reference pulse in a spectrometer [30, 83]. In

this technique (Fig. 2.1), the ultrashort probe pulse is altered in phase and

amplitude as a result of co-propagating with a light-speed index structure at

a specific time delay ζ, which is controlled by adjusting the delay between

the probe and the pump pulse that produces the structure. Compared to the

twin reference pulse propagating ahead of the pump, the probe pulse acquires

an extra phase shift ∆(x, y, ζ) due to its interaction with the index structure.

After being filtered (e.g. spectrally) from the co-propagating pump pulse, the

probe and reference, separated in time by T0, are sent to a spectrometer.

Interaction 
region 

pump 

probe reference 

Imaging 
lens 

time delay ζ 

CCD 

spectrometer 

grating 

chirped probe & reference pulses 

T0 

Figure 2.1: Schematic diagram of frequency-domain interferometry.

Unlike conventional (e.g. Young’s double-slit) interferometry, in which

two beams impinge simultaneously at different incident angles onto a detec-

tor, FDI utilizes a spectrometer to collect co-propagating pulses arriving at

different times. The interference pattern then forms at a charge-couple device
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(CCD) camera in the spectrometer’s detection plane after a grating spectrally

disperses the probe and reference pulses. Even though these pulses are tem-

porally separated as they enter the spectrometer, they overlap and interfere

at the spectrometer’s detection plane. This happens because the dispersive

grating separates frequency component of the pulses at different angles. Thus

a single pixel detects only a small fraction of the dispersed angular range, and

thus nearly monochromatic light, which is “infinite” in duration. Consequently

probe and reference pulses overlap temporally, and interfere, at the detector.

Stated mathematically, the spectrometer Fourier transforms the refer-

ence pulse E(ζ) to Ẽ(ω), and the delayed probe E(ζ + T0 + ∆(x, ζ)), with

object-induced phase shift ∆(x, ζ), to Ẽ(ω) exp (−iω(T0 + ∆)). Here x repre-

sents transverse distance along the direction of the spectrometer’s slit, which

selects a line of constant y = y0 from the incoming light. The spectrometer’s

CCD thus records a signal

I(ω) =
∣∣∣Ẽ(ω) + Ẽ(ω)e−iωT0

∣∣∣2 = 2
∣∣∣Ẽ(ω)

∣∣∣2 [1 + cos (ω(T0 + ∆(x, ζ)))] . (2.1)

The cosine term is responsible for a set of frequency-domain fringes recorded

on the CCD camera. In the absence of an object (i.e. ∆(x, ζ) = 0), straight

parallel fringes are observed. In the presence of ∆(x, ζ), the fringes distort

along x, and shift in frequency compared to the straight unperturbed fringes.

Thus the phase shift experienced by the probe can be extracted by measuring

the fringe shifts in the frequency domain, analogous to conventional interfer-

ometry. To measure x-dependent fringe distortion, and thus a transverse (x)

17



profile of the object at time delay ζ, accurately, the probe and reference pulses

must be imaged from the exit plane of the interaction region to the entrance

slit of the spectrometer (see the imaging lens in Fig. 2.1), which selects a line

of constant y = y0 in the imaged reference-probe x-y profile. The spectrome-

ter’s internal optics then images the slit to the detector. Many applications of

FDI, however, did not use such relay imaging, or used imaging optics of insuffi-

cient quality to resolve transverse variations of index objects created by pump

pulses focused tightly to micrometer-scale transverse size. In these cases, FDI

yields only a transverse-space-averaged phase shift ∆(ζ). To measure ∆(ζ) as

a function of time delay ζ, frequency-domain interferograms must be recorded

over multiple shots with different pump-probe delays.

In the 1990s, FDI was widely used to measure femtosecond dynamics

of various laser-matter interactions [17, 30, 83]. One example is the first direct

observation of a laser-driven plasma wake by Siders et al. [75]. By varying

pump-probe delay at fixed helium gas density or helium gas density at fixed

delay over multiple shots, phase shift oscillations ∆(ζ) consistent with plasma

wake excitation were observed. The oscillation period was consistent with the

corresponding plasma density. Moreover, this experiment demonstrated a large

electron density modulation (δne/ne ∼ 1) and a corresponding longitudinal

accelerating field up to 10 GV/m. However, transverse structure of the plasma

wave was not resolved.
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2.2 Frequency–Domain Holography

FDI measures the index shift at the specific ζ position with which the fully

compressed ultrashort probe pulse overlaps. Frequency-Domain Holography

(FDH) uses the same pump-probe geometry as FDI, except that the probe

pulse is broadened, or chirped, to cover a wide range of ζ positions at once

(Fig. 2.2), enabling measurement of an object’s ζ structure in a single shot. In

2000, Le Blanc et al. measured the temporal profile of the nonlinear refractive

index of a laser pulse in glass and of an ionization front in air in a single

shot by spectrally interfering a chirped probe with an un-chirped reference

[5]. However, the frequency domain hologram showed low interference fringe

contrast due to different chirp phase between the probe and the reference.

Improved fringe contrast was achieved by equivalently chirping the probe and

reference [29].

Interaction 
region 

pump 

probe reference 

Imaging 
lens 

CCD 

spectrometer 

grating 

chirped probe & reference pulses 

T0 

Figure 2.2: Schematic diagram of frequency-domain holography. Here the
probe pulse is chirped and temporally broadened to overlap the entire refrac-
tive index longitudinal profile.
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The amplitude and phase of the field of a laser pulse can be expressed

either in the time E(ζ) exp iΦ(ζ) or frequency Ẽ(ω) exp iφ(ω) domain; the

descriptions are connected through Fourier transformation. FDH obtains fre-

quency domain phase shift φ(ω), and needs to convert it to temporal phase

shift Φ(ζ) to recover the index structure’s longitudinal profile. Kim et al.

suggested two methods of conversion: direct frequency-to-time mapping and

full Fourier transformation [40]. Direct mapping uses the fact that red spec-

tral components travel ahead of blue components in a normally chirped pulse;

thus phase shifts induced on red components occur at earlier time delay ζ.

Assuming only linear GVD, the frequency-to-time mapping relation is

Φ(t) = φ(ω(t)) = φ

(
ω0 +

t

2β2[1 + β−2
2 ∆ω−4]

)
. (2.2)

where β2 is GVD as defined in Chapter 1 and ∆ω is the bandwidth. Tokunaga

et al. [84] showed that the temporal resolution of direct frequency-to-time

mapping is

tres = ∆ω−1
√

1 + 2β2
2∆ω4, (2.3)

implying that excessive chirp degrades temporal resolution.

Most contemporary applications of FDH adopt full Fourier transfor-

mation to extract Φ(ζ) from measured φ(ω). Matlis reviewed this proce-

dure in detail in his Ph.D. dissertation [58]. Unlike direct mapping, tem-

poral resolution in Fourier transform mode is unaffected by chirp, once it is

reliably measured. Temporal resolution is determined only by probe band-

width. As an example, consider a Gaussian pulse in the frequency domain
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Ẽ0(ω) = exp
[
− (ω2/∆ω)

2
+ iβ2ω

2
]
. Its temporal profile is

E0(ζ) =

∫ ∞
−∞

Ẽ0(ω) exp (−iωζ)dω =

(
π

1/∆ω2 − iβ2

)1/2

exp

[
ζ2

4(1/∆ω2 − iβ2)

]
,

(2.4)

which is also Gaussian. For simplicity, we define coherence time tc ≡ 1/∆ω

and dispersion time tb ≡
√
β2, and introduce a Gaussian-shaped index shift

in the time domain Φ(ζ) = δ exp (−ζ2/t20) where δ � 1. The disturbed probe

becomes E(ζ) = E0(ζ) exp iΦ(ζ), and its Fourier transform is

Ẽ(ω) = Ẽ0(ω) + iδ

[
1 +

4(t2c − it2b)
t20

]−1/2

exp

[
− ω2

(t2c − it2b)−1 + 4t−2
0

]
. (2.5)

The phase shift in the frequency domain is thus

φ(ω) = arg

(
Ẽ(ω)

Ẽ0(ω)

)
≈ arg

[
exp

(
Ẽ(ω)− Ẽ0(ω)

Ẽ0(ω)

)]
(2.6)

= δ

[(
1 +

4t2c
t20

)2

+

(
4t2b
t20

)2
]−1/4

exp

(
4Aω2/t20
A2 +B2

)
cos

(
4Bω2/t20
A2 +B2

− ψ
)

where

A =

(
t2c

t4c + t4b
+

4

t20

)
t2c

t4c + t4b
− t4b

(t4c + t4b)
2
, (2.7)

B =
4t2b/t

2
0

t4c + t4b
+

2t2ct
2
b

(t4c + t4b)
2
, (2.8)

ψ =
1

2
arctan

(
t2b

t2c + t20/4

)
. (2.9)

The result (2.6) – (2.9) shows that the Gaussian-shaped perturbation in the

time-domain becomes a Gaussian multiplied by an oscillatory term in the

frequency domain. If A > 0, φ(ω) diverges as |ω| → ∞. In this case, Φ(ζ)
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cannot be reconstructed. Thus the condition A < 0 defines the temporal

resolution of FDH using full Fourier transformation:

tres = min (t0) = 2tc

√
t4b + t4c
t4b − t4c

. (2.10)

For ordinary chirped pulse, tb � tc is easily satisfied. The resolution limit

is then of order tc, implying that the temporal resolution of FDH is only

determined by the bandwidth of the probe laser pulse.

We can also re-visit the resolution limit of the direct frequency-to-

time mapping approach in light of Eqs. (2.6) – (2.9). In Eq. (2.6), the

Gaussian component showed that the width of the frequency domain phase

shift φ(ω) is t0
√

(A2 +B2)/A/2, thus the linear mapping relation maintains

if A and B are independent on t0. This requires that t20 � t2c + t4b/t
2
c , or

t0 � (1/∆ω)
√

1 + β2
2∆ω4, similar to Eq. (2.3). If t0 ≈ tres breaks this limit

and chirp is applied (i.e. tb � tc), the oscillation term is proportional to

cos(ω2t2b) and strongly modulate the probe spectral profile with a period of

t−1
b � ∆ω, as discussed in reference [40].

FDH has been applied widely to laser–matter interactions, such as laser

filamentation in air [88] and laser wake field acceleration [57]. The LWFA

experiment not only recovered the longitudinal temporal profile of the plasma

wake in a single shot, but also recovered its transverse profile by carefully

imaging the exit plane of the interaction region to the incident slit of the

spectrometer [57]. The reconstructed time-domain phase shift is related to
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the quasi-static wakefield index structure by

φ(ζ, x) =
2π

λpr

∫ L

0

∆n(ζ, x, yslit, z)dz ≈
2πL

λpr
〈∆n(ζ, x, yslit, z)〉z . (2.11)

Eq. (2.11) represents a 2D snapshot of the plasma wakefield since refractive

index profile is equivalent to an electron density profile. The added transverse

dimension enabled the observation of relativistically curved plasma wavefronts

in the plasma wake. The wavefronts curve because that electron effective

mass on axis increases relativistically due to strong electron quiver motion.

Consequently plasma frequency decreases compared to off-axis areas based

on Eq. 1.4. Such wavefront curvature had never previously been observed

in the laboratory. This observation demonstrated the physical significance of

measuring index profiles ∆n(ζ, x) in the laboratory.

However, FDH cannot resolve z-variation of the index structure be-

cause the collinear pump–probe geometry (Fig. 2.2) averages the phase shift

imprinted on the probe profile at different z positions. Matlis et al. ob-

tained physically insightful FDH snapshots of laser-driven wakes in a weakly

nonlinear regime of laser-plasma interaction in which the plasma structure

evolved minimally during its transit through interaction region [57]. Later,

Peng Dong et al. applied FDH to the highly nonlinear “bubble” regime of

laser-plasma acceleration, in which the bubble shape varied significantly dur-

ing its light speed propagation through the interaction region [18]. This work

reconstructed optical signatures of the bubble in both the amplitude and phase

of the co-propagating probe pulse. Moreover, FDH proved a sensitive probe of
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the presence of a bubble and of its shape near the end of the interaction region.

However, FDH could not observe bubble formation and dynamics that plays

a critical role in modern laser wakefield accelerators. In Chapters 4 and 7, we

will present results of new optical visualization methods that reveal bubble

formation and dynamics in a single shot, and correlate them quantitatively

with computer simulations and electron beam properties.

2.3 Transverse probing techniques

Besides FDI and FDH, which can be classified into a big family of spectral in-

terferometry techniques, another class of established techniques for visualizing

light-speed index objects uses an ultrashort probe that crosses the interac-

tion regime at approximately right angles, which we call “transverse probing”

techniques. In these techniques, a probe propagating along the y-direction can

take a snapshot of the index structure’s longitudinal ζ-profile and transverse

x-profile in one shot at a specific z-position when the probe crosses the interac-

tion region, much as we would take a snapshot of a horse galloping by in front

of us. Thus transverse probing capture a “moment” of the object’s history

at a specific z. The transverse probe can then resolve the index structure’s

evolution along z in multiple shots by varying the arriving time of the probe.

This is analogous to taking a snapshot of the horse at a slightly different phase

of its gallop cycle each time it circles the race track, in order to build up a

motion picture.

One example of transverse probing of a light-speed object is visual-
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ization of a laser wakefield and its accelerated electron beam by Buck et al.

[9]. To visualize the plasma wake of period ≤ 100 fs, a 6 fs long probe pulse

crossed its path at right angles; density maxima in the plasma wake then re-

fracted the probe, producing a shadowgraph in the far field that accurately

registered the plasma period. In addition, accelerating electrons within the

wake were detected by observing their magnetic fields pervading surrounding

plasma via Faraday rotation of the transverse probe. Faraday rotation was

used (instead of shadowgraphy) to observe these highly relativistic electrons

because they contribute very little to the refractive index due to their high

relativistic masses. A similar multi-shot transverse probing technique, albeit

with longer pulses, was used for visualizing the propagation of a laser filament

in air [1]. Here the authors used a standard in-line holography method in

which the object plane of the imaging system was shifted from shot to shot.

The phase shift of the probe wave front was then calculated from its measured

far-field diffraction pattern with standard phase-retrieval algorithms.

Although they resolve z-variation, existing transverse probing tech-

niques have intrinsic limitations for single-shot imaging. First of all, the z-

dependent information is related to the arrival time of the probe, which has to

be adjusted from shot to shot. Thus (like FDI) these techniques are not viable

for visualizing non-repetitive or stochastic events typical of highly nonlinear

interactions, propagation in turbulent media, or interactions driven by sources

with low repetition rate, unstable pointing or other shot-to-shot fluctuations.

Secondly, the resolution of each transverse ‘snapshot” is limited by probe tran-
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sit time across the object. Thus the transverse size of the index structure must

be less than longitudinal structures of interest (e.g. a plasma wavelength), typ-

ically micrometers, and vulnerably ultrashort, un-chirped probe pulses must

be used. Finally, transverse probing technique is practically limited to ≤ 1 cm

propagation distance. Beyond this distance, extremely large aperture optics

and detectors are required, making the cost of optical diagnosis prohibitive.
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Chapter 3

Frequency–Domain Streak Camera

This chapter presents the first, and simplest, of three new techniques devel-

oped in this dissertation work for visualizing evolving light-speed objects in a

single shot. The so-called Frequency-Domain Streak Camera (FDSC) borrows

from Frequency-Domain Holography (FDH) the use of a temporally-stretched,

chirped probe pulse and spectral interferometry phase recovery methods, as

described in the previous chapter. FDSC differs from FDH in using a probe

pulse that propagates at a small oblique angle to the object’s path, instead

of co-propagating with the object. As a result, the object imprints a “phase

streak” on the probe pulse profile that is recovered by spectral interferometry

methods, and yields a temporal sequence of the object’s projections. Section

3.1 presents the theory of FDSC, including the relationship between labora-

tory probe angle and effective projection angle, and an analysis of z-resolution.

Section 3.2 then presents a simple laboratory demonstration of FDSC, in which

the phase streak of a ∼ 100 fs, megawatt-peak-power laser pulse propagating

for ∼ 10 ps through a glass Kerr medium several millimeters thick is recovered

and analyzed in the light of prior knowledge of nonlinear pulse propagation

in Kerr media. Chapter 4 will then present a more challenging laboratory

application of FDSC to laser wakefield acceleration in the bubble regime.
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3.1 The oblique-angle pump-probe geometry

As described in the previous chapter, FDI [30] and FDH [5] average over the

evolution of a light-speed index structure because they use a collinear pump–

probe geometry (see Fig. 3.1a). To overcome this limit, the FDSC uses an

“oblique angle” pump–probe geometry, as shown in Fig. 3.1b. As in FDH, a

temporally-advanced chirped reference pulse co-propagates ahead of the probe,

without experiencing the pump-induced index alteration.

zob 

xob xpr 

zpr φ 

Figure 3.1: Schematic probe-reference (P-R) pulse configurations for a.
frequency-domain holography (FDH) and b. frequency-domain streak cam-
era (FDSC) at probing angles θ < 90◦.
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3.1.1 Frequency–domain streak cameras (FDSC): a time sequence
of the index structure’s projections

In the FDSC, as the probe-reference (P-R) pair propagates at laboratory angle

θ to the pump (see Fig. 3.1b), the pump-generated object imprints a phase

shift “streak” that records information about the object’s z-evolution. The

axis of the streak makes an angle φ — hereafter the “projection” angle —

with the pump propagation direction. For example, in the geometry of Fig.

3.1b, as the P-R pair crosses the pump path at θ ∼ 30◦, the object sweeps along

a streak axis that makes angle φ ∼ 100◦ with the propagation direction of the

pump and its index structure ∆n(ζob, xob, yob, zob). The quantitative relation

between θ and φ depends on the velocities vob and vpr of object and probe, as

will be discussed later. If we imagine a single arbitrary line-out perpendicular

to the streak axis, the phase shift that accumulates along this line as the

index structure passes through it is proportional to the object’s projection

ψ(ζob) ∝
∫

∆n(ζob, xob, y0, zob)dξob, where dξob denotes an infinitesimal path

element along the streak axis. In general, ξob is a linear combination of xob

and zob. Here the transverse position y0 is selected by the spectrometer slit,

and the propagation distance zob is determined by where the transverse line-

out is taken. In a single-shot measurement of the phase streak, a series of such

transverse line-outs can be taken at different positions along the streak axis,

corresponding to different propagation positions zob, thus providing a time

(or zob) sequence of the index structure’s projections. By varying θ, or using

additional probes propagating at different θ, projections of the index structure
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from different directions are obtained. Configurations (such as Fig. 3.1b)

for which φ ∼ 90◦ yield a sequence of transverse projections of the object’s

longitudinal profile — i.e. ψ(ζob) ∝
∫

∆n(ζob, xob, y0, zob)dxob. Conversely,

configurations for which φ ∼ 0◦ yield a sequence of longitudinal projections of

the object’s transverse profile — i.e. ψ(xob) ∝
∫

∆n(ζob, xob, y0, z0)dζob.

Formally, the phase streak ψ(θ)(ζpr, xpr, ypr) that an evolving pump-

generated object ∆n(ζob, xob, yob, zob) imprints on a probe pulse of center wave-

length λpr that it crosses at laboratory angle θ can be expressed as an integral

ψ(θ)(ζpr, xpr, ypr) =
2π

λpr

∫ L

0

∆n(θ)(ζob, xob, yob, zob)dzpr, (3.1)

where the index object ∆n is expressed in the coordinates of the probe (pr) co-

moving frame. In writing Eq. (3.1), we have assumed that the effective propa-

gation length Leff over which any region of the probe profile overlaps the object

is shorter than a probe diffraction length L
(pr)
diff = π(∆x2

ob + ∆y2
ob)/λprn(λpr),

which is valid for the experiments presented in this and the next two chap-

ters. Here ∆xob,∆yob are the object’s transverse radii, and Leff is less than

the medium length L because the object drifts across the probe as they prop-

agate at different angles and/or velocities. In this limit, a point of the probe

pulse accumulates phase shift only when a linear chord of the object sweeps

through it. Eq. (3.1) is a 4D generalization of the Radon transform widely

used in conventional tomography [34]. If the path length L is long enough

that diffraction is important, then Eq. (3.1) could be replaced with a Fresnel

diffraction integral. Alternatively, the phase streak can be imaged from mul-
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tiple object planes along the streak axis that are separated by a distance less

than L
(pr)
diff . This last approach will be discussed in Chapter 6.

To use Eq. (3.1), ∆n(ζob, xob, yob, zob) must be transformed from the

coordinates of its own co-moving frame to those of the probe frame. The

first step is to define stationary lab frame coordinates (t, x′i, y
′
i, z
′
i), where i =

(ob, pr) and the z′i axis is parallel to the propagation direction of the object

or probe pulse. For pulses propagating in the x–z plane, these coordinates are

related by: z′ob = z′pr cos θ + x′pr sin θ and x′ob = −z′pr sin θ + x′pr cos θ. We then

apply canonical transformations (ζi, xi, yi, zi) = (t − z′i/vi, x
′
i, y
′
i, z
′
i) between

lab and pump/probe co-moving frames, where vi is the velocity of the object

or probe pulse, to obtain
vobζob = vprζpr cos θ − xpr sin θ + (vob − vpr cos θ) t
xob = vprζpr sin θ + xpr cos θ − vprt sin θ
yob = ypr,

(3.2)

and the inverse relations
vprζpr = vobζob cos θ + xob sin θ + (vpr − vob cos θ) t
xpr = −vobζob sin θ + xob cos θ + vobt sin θ
ypr = yob.

(3.3)

Eq. (3.3) immediately replaces the arguments of the integrand in Eq. (3.1)

which becomes:

ψ(θ)(ζpr, xpr, ypr) = 2π
λpr

vpr
vob

∫ L
0

∆n [(vpr/vob)ζpr cos θ − xpr sin θ/vob

−(1− vpr cos θ/vob)(zob/vob), vprζpr sin θ + xpr cos θ − (vpr/vob)zob sin θ,

ypr, zob] dzob. (3.4)

The phase streak (3.4) represents a projection of the index object in 4D space

(ζob, xob, yob, zob) onto the 3D probe profile space (ζpr, xpr, ypr).
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3.1.2 Lab probe angle and effective projection angle

For stationary objects, the projection view angle is simply the laboratory angle

θ at which probe light intersects the object. In the FDSC, the projection angle

φ(θ) (defined in the previous sub-section and in Fig. 3.1b) differs from, but

depends on, θ. To derive the relation between φ and θ, define the starting point

of the streak axis as the common origin of ζpr − xpr and ζob − xob coordinate

systems at t = 0. The former origin moves to (vobζob, xob) in the latter system

at t > 0, thereby defining the streak axis. Once the phase-modulated probe

propagates into free space, where it is detected, these coordinates become

(cζob, xob), yielding

φ = arg[cζob + ixob], (3.5)

which becomes

φ = arg [(vob − vpr cos θ) + i(vprvob/c) sin θ] , (3.6)

upon substituting Eqs. (3.2) with ζpr = 0 and xpr = 0. Here the argument

in brackets is a complex number of the form x + iy corresponding to angle

φ = tan−1(y/x) with the real axis. Fig. 3.2 plots θ vs. φ for two different pairs

of (vpr, vob) values. Both examples illustrate an important general feature of

FDSC: a relatively narrow range of θ, which is convenient for laboratory set-

up, can yield a broad range of φ, which is important for visualizing an object’s

evolving shape comprehensively. In Chapter 5, we shall see that this feature

is important for assembling multiple projections tomographically to generate

a single-shot “movie” of an evolving light-speed object. For vob = 0.68c and
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vpr = 0.66c, typical of the experiment with an 800 nm pump and 400 nm

probe in glass discussed later in this chapter, Eq. (3.6) yields projection angle

range −70◦ < φ < 70◦ for −12◦ < θ < 12◦ (see Fig. 3.2, blue curve). For

vob ≈
√

1− n/nc = 0.99c (see Eq. (1.4)) and vpr ≈ c, typical of the LWFA

experiment with plasma density ne ∼ 3.5× 1019 cm−3 described in Chapter 4,

a larger projection range −90◦ < φ < 90◦ can be obtained with −6◦ < θ < 6◦

(see Fig. 3.2, red curve). Moreover, the comparison between the glass and

LWFA cases showed that FDSC experiments with vob < vpr can cover a broader

range of projection angles than that with vob > vpr.
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Figure 3.2: Projection angle φ vs. probe angle θ. Blue. FDSC with 800 nm
pump and 400 nm probe in fused silica, i.e. vpr = 0.66c and vob = 0.68c. Red.
FDSC with 800 nm pump and 400 nm probe in 3.5× 1019 cm−3 plasma where
electrons are effectively accelerated, i.e. vpr = c and vob = 0.99c.

Eq. 3.6 shows how the special projection angles φ ∼ 0 or π and φ ∼ π/2

discussed in Sec. 3.1.1 are obtained. A phase streak with φ = 0 is obtained
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with θ = 0 (co-propagating object and probe) and vob > vpr (equivalently,

φ = π corresponds to θ = 0, vob < vpr). Streaks at φ ∼ 0 (or π) are valuable

because they reveal evolution of the transverse (xob) profile of the object as

it drifts longitudinally along the probe profile. In contrast to FDH where

velocity walk-off between co-propagating object and probe is a disadvantage

because it blurs the image, in the FDSC (and later in FDT, see Chapter 5)

it becomes an advantage because it creates a phase streak at φ = 0 that is

formally equivalent to streaks created by angular walk-off. Streaks at φ ∼ π/2

reveal evolution of the longitudinal (ζ) profile of the object as it drifts sideways

across the probe profile.

3.1.3 z-resolution of frequency–domain streak cameras

FDSC is capable of fully resolving objects that satisfy the paraxial approxi-

mation – i.e. the drive pulse and its index object evolve slowly over distances

zob of the order of the object’s dimensions. However, more rapid zob evolution

is observed with limited resolution. This z-resolution depends on the length of

the phase streak relative to the object’s dimensions. FDSC can resolve ∼ N

stages of the object’s zob evolution, where N is the number of separated ob-

jects of dimensions (∆ζob,∆xob) that can be lined up along the streak axis.

Similar to the derivation of projection angles, the starting and end points of

the streak axis have coordinates (0, 0) and (cζpr, xpr), respectively, in ζpr− xpr

coordinates. The components of the streak length vector are thus c∆ζpr = cζpr
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and ∆xpr = xpr, yielding

∆ζpr = L(1/vob − cos θ/vpr),

∆xpr = L sin θ (3.7)

upon substituting Eqs. (3.3) with ζob = 0 and xob = 0 for a medium of

length L = vobt. The length of a phase streak at probe angle θ is then√
c2(∆ζpr)2 + (∆xpr)2. Thus transverse profile evolution, measured using small

θ probes, is best resolved when ∆ζpr � ∆ζob. Since ∆ζpr ∝ |vpr−vob| at small

θ, using pump and probe pulses with a large velocity mismatch optimizes

transverse zob resolution. Longitudinal profile evolution, measured using large

θ probes, is best resolved when ∆xpr � ∆xob. Since ∆xpr ∝ sin θ, using

probes near θ(φ ≈ π/2) optimizes longitudinal zob resolution. As a numerical

example relevant to the experiments described in the next section, for which

vob = 0.68c, vpr = 0.66c, ∆ζob = 100 fs, ∆xob = 50µm and θmax = θ(φ =

70◦) = 14◦ the zob-resolution is δz
(t)
ob ∼ vobvpr∆ζob/|vob − vpr| = 670 µm and

δz
(l)
ob ∼ ∆xob/ sin θmax = 210 µm for transverse (t) and longitudinal (l) profile

evolution, respectively.

3.2 Example: FDSC of nonlinear refractive index dur-
ing megawatt laser propagation in glass

As a proof of concept, we demonstrated the FDSC technique by con-

ducting an experiment to visualize the nonlinear propagation of a femtosecond

laser pulse in glass [49]. The evolving refractive index structure is created by
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focusing a pump pulse (wavelength λpu = 800 nm, bandwidth ∆λ = 30 nm

FWHM, energy 0.15 - 6 µJ) of 600 fs duration inside a fused silica plate of thick-

ness L = 3 mm. The pump induces refractive index η(r, ζ, z) = n2I(r, ζ, z),

where n2 ∼ 3×10−16cm2/W is the nonlinear index of glass [69], and I(r, ζ, z) is

the pump intensity profile. Thus η(r, ζ, z) evolves as the pump pulse diffracts,

self-focuses, etc. Two linearly chirped, 1 ps, second harmonic (λpr = 400 nm)

pulse pairs P1-R1 and P2-R2 probed η(r, ζ, z) simultaneously at θ = 0◦ (FDH)

and 14◦ (FDSC), respectively. At 14◦, the streak sweeps nearly transversely

across the probe profile.

The two P-R pairs, each with separation ∆tPR = 3.3 ps, were imaged

from the sample exit plane (z = L) to the entrance slit of a single spectrometer.

The first pair (P1-R1) was imaged with magnification 12 in order to resolve

the micron-size nonlinear index envelope of the pump pulse. The second pair

(P2-R2) was imaged with magnification 2.3 to fit the entire millimeter-long

streak on the detector. A 50/50 beam splitter behind the imaging lenses

combined P1-R1 and P2-R2 into parallel beams that were imaged to spatially

offset locations along the slit, the length of which limited us to two probe-

reference pairs. Hereafter we refer to the procedure of imaging two (or more)

P-R pairs to different image locations along the slit of a single spectrometer as

“spatial multiplexing”. Multiplexing is important because spectrometers are

expensive; thus it is desirable to process all data with one spectrometer.

Figure 3.3 shows reconstructed images from the spatially multiplexed

FDH (top row) and FDSC (2nd row) probes, and the spectrum (3rd row)
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Figure 3.3: Spatially multiplexed frequency-domain streak camera (FDSC).
Phase shifts on: 0◦ probe (top row), showing ∆φpr(r, ζ) integrated over z, as
conventional frequency-domain holography (FDH); 14◦ probe (middle row),
showing streaks. r⊥ denotes transverse position of the probe pulse at the in-
teraction region. Bottom row: transmitted pump spectrum and spatial profile
(inset), for initial pump intensity (left to right) I = 0.04, 0.47, 0.93, and 1.47
TW/cm2.

and spatial profile (3rd row inset) of the pump at z = L, as initial peak I

of the pump (focused here to spot radius w0 ∼ 20 µm at z = 0) increased

from 0.04 (left) to 1.5 (right) TW/cm2. In the upper end of this intensity

range, n2IL > λpu, so pump propagation becomes nonlinear. The FDH images

show ∆φpr(r, ζ, L) integrated over z. Indirect signs of evolution are evident.

For example at larger I, ∆φpr exceeds 2π near r⊥ = 0 (creating complicated

phase wrapping artifacts), indicating that self-focusing occurred. Moreover,
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the longitudinal extent (∼1 ps) of the index “bubble” exceeds the pump pulse

duration (∼600 fs) measured from a transverse line-out of the FDSC streak.

This is explained by group velocity walk-off between 800 nm pump and 400 nm

probe, which elongates the ∆φpr profile into a longitudinal phase streak even

in the FDH line. These complications in interpreting FDH data underscore

the importance of FDSC.

Figure 3.4: Measured ∆φpr line-outs along streak axis as shown in Fig. 3.3,
showing evolution of peak index shift.

The FDSC images (Fig.3.3, middle row) show phase streaks that in-

crease in amplitude with I. Line-outs along the streak axis, plotted in Fig.3.4,

reveal I-dependent evolution of the axial phase shift. To help interpret this
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Figure 3.5: Calculated pump intensity evolution I(z) from NLSE, which is
proportional to ∆φpr line-outs.

evolution, we modeled propagation of Gaussian pump pulses using the Non-

linear Schrödinger Equation (NLSE, see Eq. (1.1)), including multi-photon

absorption (MPA) and plasma formation [26]. Fig. 3.5 shows the calculated

peak I(z) for various initial I. For I = 0.04 TW/cm2, nonlinearities are neg-

ligible, I(z) decreases monotonically by linear diffraction over Rayleigh range

zR = πn0w
2
0/λpu ≈ L, and the transmitted pump spectrum is barely perturbed

from the incident spectrum (Fig. 3.3, 3rd row, left). For I = 0.47 TW/cm2,

peak pump power (3 MW) reaches critical power Pcr = π(0.61)2λ2
pu/8n0n2 =

2.15 MW, and the pump propagates with nearly constant intensity as self-
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focusing and diffraction balance with MPA still weak. Simultaneously, the

pump spectrum broadens to ∆λ ∼ 50 nm (Fig. 3.3, 3rd row, 2nd panel), a

signature of self-phase modulation. As I increases further (I = 0.70 to 1.47

TW/cm2), NLSE calculations show: (i) pump self-focusing moves the point of

maximum I closer and closer to the glass entrance (see Fig. 3.5); (ii) the sub-

sequent monotonic decrease of I is caused primarily by direct MPA; (iii) the

pump converges to a nearly I-independent transverse profile (FWHM 16 µm)

that agrees well with measured exit profiles (Fig. 3.3, 3rd row, insets of last

two panels). Meanwhile the pump spectrum further broadens (Fig. 3.3, 3rd

row, last 2 panels). The transverse FWHM of FDH phase profiles (Fig. 3.3, top

row) agree well with exit pump profiles and NLSE calculations (their apparent

broadening with increasing I results from increased visibility of the wings as

total ∆φpr increases). Self-focusing accounts for large ∆φpr near the center of

the FDH images at high I. The example illustrates how combining FDH and

FDSC improves accuracy of interpretation.

In summary, here FDSC and FDH were combined to observe evolu-

tion and longitudinally-averaged structure of a microscopic light-speed object

in one shot. This prototype experiment demonstrated the feasibility of vi-

sualizing the evolution of laser-induced index structure for a broad range of

transparent media. For example, LWFAs driven by terawatt laser pulses in

∼ 1019 cm−3 plasma over several millimeters exhibit interesting plasma struc-

ture dynamics. FDSC is promising for observing the generation and evolution

of plasma “bubbles” that accelerate electrons to relativistic energy. Details
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will be discussed in Chapter 4.

Another research track beyond FDSC is to apply multiple probe laser

pulses simultaneously at different angles. Time sequences of projections of the

index structure at different θ, φ can potentially be converted into a “movie”

using a tomographic reconstruction algorithms, leading to full spatiotemporal

visualization of the index structure at different propagation distance z. How-

ever, the technical implementation is challenging since multiple probes have to

be generated, then detected with a single spectrometer in a single shot. In ad-

dition, conventional tomography reconstruction algorithms must be modified

and generalized to reconstruct a movie” of a light-velocity index object from

a group of phase streaks. Detailed solutions to these issues led us to develop

a technique called frequency-domain tomography (FDT) [51], which will be

discussed in Chapter 5.
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Chapter 4

Single-shot visualization of evolving laser

wakefields by frequency domain streak camera

As discussed in Sec. 1.2, the development of laser wakefield acceler-

ators (LWFAs) has led to tabletop sources of collimated, femtosecond dura-

tion, quasi-monoenergetic electron bunches up to GeV energy that can gen-

erate bright coherent x-rays for applications in biology, materials science and

medicine. The small size and luminal velocity of LWFAs, however, makes ob-

servation and control of their evolving structure — the main determinant of

LWFA performance [38] — exceptionally challenging. Consequently, LWFA

science has relied on intensive computer simulations with estimated initial

conditions for visualizing the dynamic microstructure of laser-driven plasma

waves. Nevertheless direct laboratory visualization is essential when initial

conditions are imprecisely known, as they usually are. This is particularly

true for the highest-performing LWFAs, which operate in the strongly non-

linear “bubble” regime, that favors efficient injection of surrounding plasma

electrons and quasi-monoenergetic acceleration. As mentioned in previous

chapters, Matlis et al. used frequency-domain holography (FDH) to record

snapshots of laser wakes in a quasi-linear regime, in which the plasma wave

evolved negligibly [57]. FDH snapshots in the nonlinear bubble regime yielded

42



so-called “optical bullets” in the reconstructed probe amplitude profile that

were related to bubble formation, and effectively characterized its size and

shape near the end of the interaction region. However, they averaged over key

bubble dynamics that underlie LWFA physics [18]. Dynamic nonlinear wakes

have been visualized only by probing them transversely at different time de-

lays over multiple shots [9]. However, this method requires extremely short (6

fs) probe pulses, and is impractical for LWFA experiments with longer pulses,

shot-to-shot variations, or low repetition rates.

In this chapter, we describe single-shot diagnosis of evolving laser-

driven plasma bubbles using an optical frequency-domain streak camera (FDSC),

the principle and prototype demonstration of which was discussed in the pre-

vious chapter. In Section 4.1, a terawatt-laser-driven wakefield accelerator

yielding ∼ 100 MeV monoenergetic electrons, and the set-up of the FDSC for

LWFA diagnosis, are described. In Section 4.2, FDSC observations of bub-

ble dynamics for various experimental conditions are presented. They reveal

bubble formation, propagation and lengthening that is correlated with elec-

tron acceleration. In Section 4.3, we compare the bubble dynamics measured

by FDSC with the results of first-principles particle-in-cell (PIC) simulations.

The results show that the point at which a bubble forms, and the distance it

propagates before coalescing with later plasma wave “buckets”, depend sensi-

tively on ne, and in turn dictate electron energy and beam quality.
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4.1 Experimental setup and results

4.1.1 Terawatt-laser-driven wakefield accelerator
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Figure 4.1: Schematic experimental setup of frequency-domain streak camera
(FDSC) for laser wake field accelerators. The inset plot is a typical frequency-
domain hologram taken from the CCD camera detector of the spectrometer.

The experimental setup for the LWFA and FDSC is shown in Fig. 4.1.

To generate plasma wakes, 800 nm, ∼ 30 fs, ∼ 0.8 J linearly polarized laser

pulses from a 30 TW chirped-pulse amplification (CPA) Ti: sapphire laser

system manufactured by Thales Laser were focused by an off-axis parabolic

mirror with f -number 12 to spot radius is ∼ 10 µm and normalized laser vector

potential a0 = eA/mec
2 ≈ 1.5 at the entrance of a supersonic helium gas jet

of thickness L = 3 mm. A transverse interferometer (not shown) determined

the laser-ionized plasma density profile n̄e(r, z) on each shot, averaged over
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plasma oscillations. The density profile was reconstructed from the phase

shift using Abel-inversion, assuming that the laser ionized plasma channel is

cylindrically symmetric. A magnetic electron spectrometer downstream from

the gas jet (also not shown) measured the electron energy spectrum. Energy-

dispersed electrons were detected by imaging the fluorescence they induced on

a scintillating (KODAK Lanex) screen onto a charge coupled device (CCD)

camera. When the plasma density was optimized at 2.0 × 1019 cm−3, quasi-

monoenergetic electron beams with ∼ 100 MeV energy, ∼ 100 pC charge, and

only 4 mrad divergence were generated.

The experimental conditions for electron acceleration were scanned over

a broad range of parameters including plasma density, focal spot position, and

pump laser pulse duration in order to optimize the electron beam quality glob-

ally [85]. Pump pulse duration was adjusted by varying the grating separation

of the compressor of our CPA system and measured by a single-shot autocorre-

lator. Optimal electron beam quality is achieved with the shortest achievable

pump duration (∼ 30 fs) for two reasons: (i) plasma “bubbles” are excited

most efficiently at maximum intensity, which is achieved with the shortest

pulse duration; (ii) at n̄e ∼ 1019 cm−3, the plasma period
√
πme/nee2 ∼ 35

fs, so pump pulses compressed to ∼ 30 fs excite laser wakefields resonantly.

Another significant control parameter for electron quality is the position of

the pump laser focal plane. Though the vacuum Rayleigh range of the pump

pulse (2πw2
0/λ ≈ 0.8 mm) is much smaller than the 3-mm gas jet length, the

pump pulse self-focuses in the plasma, enhancing its intensity until it blows
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out a “bubble”. The bubble then acts as a waveguide that maintains pump

laser pulse intensity over roughly the last half of the whole 3-mm propagation

distance, thus optimizing electron acceleration. This process works best when

the pump is focused at the gas jet entrance.

Accelerated electron energy and beam quality also depend strongly on

the ambient plasma density n̄e, but the mechanism underlying this depen-

dence is subtle, and requires the FDSC results and analysis of this chapter

for its full explication. Plasma density is adjusted by changing the backing

pressure of the helium gas jet from 60 psi to 80 psi, corresponding to plasma

density from 1.3 × 1019 cm−3 to 2.2 × 1019 cm−3, as measured by transverse

interferometry. As discussed in reference [85], for the pump laser conditions

described above, accelerated electrons are observed only within this narrow

density range. Optimal monoenergetic electron beams centered at 100 MeV

are achieved at n̄e = 2.0±0.1×1019 cm−3. At lower or higher densities, at best

electrons with a broad energy spread (40 MeV – 70 MeV) are observed, and at

worst no electrons are produced. In addition, electron beam quality — beam

divergence, pointing stability, reproducibility — degrades significantly at those

sub-optimal plasma density regimes. The underlying physics, as revealed by

FDSC results, is discussed further below.

4.1.2 The probe pulse for frequency-domain streak camera

To record phase streaks, a chirped (GDD≈ 2.7 × 103 fs2) collimated

probe-reference (P-R) pulse pair (center wavelength λpr = 400 nm, bandwidth
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∆λpr ∼ 10 nm, duration ∼ 500 fs, beam radius 1 mm) split from the drive

pulse, then frequency-doubled to facilitate discrimination of probe light from

scattered, frequency-broadened pump light [67], propagated at oblique angle

θ = 8.6◦ across the pump laser path through the gas jet (Fig. 4.1). The refer-

ence preceded by ∼ 2 ps, and the probe overlapped, the pump and its immedi-

ate wake. The P-R bandwidth and resolves longitudinal phase structure ∆ζ as

small as 30 fs. Chirping is accomplished entirely by the P-R transit through

the vacuum chamber window and the dichroic mirror combining probe and

pump beams, without an extra intentional dispersive medium, and the ∼ 500

fs probe duration illuminates the ionization front in the leading edge of the

pump and multiple periods of its plasma wake. The transverse beam size (∼ 1

mm) is chosen to image the whole 3-mm propagation distance. The lab angle

θ = 8.6◦ was chosen to achieve projection angle φ ≈ 90◦ (see Eq. (3.6)), so that

the plasma structures drifted across the probe profile at right angles to their

propagation direction. The streak thus became a time sequence of transverse

projections of the evolving longitudinal profiles of the plasma structures, the

optimum geometry for observing bubble formation and lengthening. To record

the phase streak, the P-R pair was imaged from the gas jet exit to the spec-

trometer entrance slit. Interference of the reference with the phase-modulated

probe inside the spectrometer yielded a frequency-domain hologram, shown

in Fig. 4.1, which a charge-coupled device (CCD) camera recorded. Fourier

transformation of the hologram [57] reconstructed the probe phase shift map

ψ(tpr, xpr), where tpr denotes time delay in the probe co-moving frame, xpr
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transverse position in the probe profile. Since max(ψ) usually exceed 2π, a 2D

phase unwrapping procedure based on the weighted minimum norm algorithm

[31] was applied.

z = 0 z = 1.5 mm z = 3 mm 

vpr 
vob 

laser pulse 

θ 

plasma channel 
plasma bubble 

ψp ψp 

ψbubble 

Figure 4.2: Schematic diagram of phase shift generation by laser plasma struc-
tures.

Figure 4.2 illustrates the process of phase streak formation on the probe

spatiotemporal profile, induced by both plasma channel and laser wakefields.

At the entrance of the gas jet (z = 0, left panel of Fig. 4.2), the pump laser

pulse ionizes the helium gas and leaves a dchannel ∼ 200 µm thick photo-

ionized plasma channel trailing the pump laser pulse. The plasma channel

sweeps through the pump profile and contributes phase shift at the order

of ψp ' (2π/λpr)(n̄e/4nc)(dchannel/ sin θ) = 15 rad, where probe wavelength

λpr = 0.4 µm, critical density for 400 nm probe nc = 7.0 × 1021 cm−3, and

plasma density n̄e ∼ 2×1019 cm−3. Small amplitude linear wakefield is exited,

but contributes negligible phase shift measurement in the probe. As the laser

pulse propagates inside the gas jet (e.g. z = 1.5 mm, middle panel of Fig. 4.2),

the pump pulse experience nonlinear relativistic self-focusing and plasma wave
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induced self-focusing, thus the laser plasma acceleration enters the nonlinear

“bubble” regime that laser field is enhanced to a0 ∼ 10. The plasma bubble

with a dynamic width of db ≈ λp
√
a0/π ∼ 10 starts to contribute to probe

phase shift ψbubble ' (2π/λpr)(n̄e/4nc)(db/ sin θ) ≈ 1 rad. Unlike ψp that is

from plasma refractive index smaller than 1, ψbubble comes from positively

charged helium-ion filled blew-out bubble area with refractive index 1, thus

it has an opposite sign to ψp. The net observable effect of these two phase

shift components in FDSC measurements is an index dip representing ψbubble

sitting on top of ionization front induced ψp, as shown in Fig. 4.2 right panel.

The projection angle φ is derived and introduced in Eq. (3.6). Here the

probe pulse velocity is c and the pump-induced plasma structures propagating

at vpu = 0.99c, equal to pump pulse group velocity in n̄e ∼ 1019 cm−3 plasma,

the projection angle is φ = arg [(vpu − vpr cos θ) + i (vpuvpr/c) sin θ] ≈ 89.5◦ —

i.e. at right angle— to the pump propagation direction. Thus phase “streaks”

represent a time sequence of the laser wakefields’ transversely accumulated

projections. For laser wakefield in the nonlinear “bubble” regime, the bub-

ble is stretched longitudinally for electron self-injection [38]. After sufficient

electrons are injected, the beam loading effect [91] leads to the coalescence of

the first and second buckets of plasma waves. Thus the oblique probe angle

at θ = 8.6◦ provides an optimum geometry to observe bubble formation and

dynamics behind the pump pulse.
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4.2 Analysis of plasma “bubble” induced phase streaks

Measured phase streaks are shown in Fig. 4.3. At low plasma density

(1.3× 1019 cm−3, left panel), only the plasma channel contributed phase shift

component is observed because the low amplitude plasma wakes in the linear

regime contributes negligible phase shift. However at high density (2.0 ×

1019 cm−3, right panel), the plasma “bubble” induced phase shift ψbubble is

observed since high plasma density enhances self-focusing of the pump laser

pulse to a high intensity for nonlinear bubble excitation. Here the transverse

size of the phase shift profile is around 450 µm, consistent with the transversely

shifted distance of the plasma channel L sin θ = 448 µm. The phase streaks

show a significantly tilted edge because of the pump-probe group velocity

walk-off and the oblique probe angle. As the pump induced index structure

propagates at speed vpu, its temporal position in the probe spatiotemporal

profile moves backward as a function of propagation distance

dtpr

dz
=

1

vpu

− cos θ

vpr

. (4.1)

Meanwhile, the transverse motion direction within the probe profile is defined

by dxpu/dz = sin θ, the slope of the phase streak edge dtpu/dxpu can be deter-

mined, which is critical to trace the trajectrory of the pump pulse.

To determine the pump pulse trajectory, the initial position of the

pump laser should be determined by the shape of the ionization channel in-

duced phase shift profile. The tip point “A” in Fig. 4.3 left panel is featured

with the earliest tpr time delay, implying the initial position of the pump laser
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center along xpr direction since the highest pump intensity in the center ion-

izes plasma at the earliest time. Meanwhile, the second tip point “B” (Fig. 4.3

left panel) denotes the initial longitudinal position of pump pulse center as-

suming that the pump pulse front is not tilted. Thus combining the initial

position of pulse pulse together with its moving direction based on calculated

dtpu/dxpu, the pump pulse trajectories are determined for different plasma

densities. Moreover, the phase shift dips are always just behind the driving

pump pulse.

x 
(µ

m
)

t (fs)
−200−100 0 100 200

−400

−200

0

200

400

t (fs)
−200−100 0 100 200

4

8

12

ionization front

bubble phase dipentrance

exit

A

B

Figure 4.3: Reconstructed phase streak imprinted on the probe spatiotemporal
profile (tpr–xpr). The phase shift shown in the left panel has only the plasma
channel component ψp at plasma density 1.3 × 1019 cm−3, whereas the right
panel shows a bubble induced phase dip at plasma density 2.0× 1019 cm−3.
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4.2.1 Plasma wakefield “bubble” evolution history under different
density

Transverse line-outs of phase streak in Fig. 4.3 crossing the pump trajec-

tories are taken to illustrate the bubble evolution history at different propaga-

tion distances. Thus the dip area, or ψbubble, at different propagation distance

z are highlighted by taking line-outs from ψ [t, x = (z − z0) sin θ] where z0 is

the corresponding propagation distance for a line-out of the phase streak at

x = 0. In Fig. 4.4, phase shift line-outs at z = 1 to 3 mm with 0.25 mm in-

crement are taken (numbers on line-outs denote propagation distance z value

in unit of millimeter) at density 1.3 × 1019 cm−3 (a), 1.7 × 1019 cm−3 (b),

2.0× 1019 cm−3 (c), and 2.2× 1019 cm−3 (d). For all cases, no dip is shown at

z < 1 mm where the pump pulse slowly self-focused before efficient excitation

of bubble. However when z > 1 mm, phase streaks at different plasma density

(Fig. 4.4a-d) show different evolution dynamics regarding the dip.

Bubble induced phase shift dips are negligible for low plasma density

at n̄e ∼ 1.3 × 1019 cm−3 (Fig. 4.4a). The pump laser pulse enters the gas

jet with initial a0 ≈ 1.5 that is only able to drive laser wakefields in the

linear regime. The density perturbation δne in the linear wakefield regime

is small compare to the ambient plasma density n̄e, and contributes little

phase shift imprinted onto the probe. The pump laser pulse also experiences

relativistic self-focusing while propagating in plasma. However, the transverse

refractive index difference linearly depends on the ambient plasma density,

thus the distance of pump self-focusing is well beyond the length of gas jet
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Figure 4.4: Angular-resolved electron spectrum and probe phase streak line-
outs at propagation distances from z = 1 to 3 mm with 0.25 mm increment
different plasma density: (a) 1.3 × 1019 cm−3; (b) 1.7 × 1019 cm−3; (c)
2.0 × 1019 cm−3; (d) 2.2 × 1019 cm−3. Numbers on each curve denotes the
propagation distance z value in unit of millimeter. Dashed lines show the
trajectory of the center of the pump pulse.
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and no plasma bubble is formed. Correspondingly, no electron is trapped or

accelerated in the linear wakefields.

An increase of plasma density to n̄e ∼ 1.7× 1019 cm−3 enhances pump

laser self-focusing as well as the laser intensity from a0 = 1.5 to ∼ 10, enabling

excitation of laser wakefields in the nonlinear bubble regime before leaving

the gas jet (Fig. 4.4b). The phase dips start to emerge at z = 2.5 mm,

where the bubble formation happens. From z = 2.5 to 3 mm, electrons are

constantly injected into the bubble and get accelerated by the longitudinal

electrical field. The maximum acceleration length is around 0.5 mm, smaller

than the dephasing length Ld = (2λ3
p

√
a0)/(3πλ2) ≈ 0.6 mm [53], yielding

broad-band electron beams peaked at ∼ 70 MeV.

Optimal electron acceleration is achieved at plasma density n̄e ∼ 2.0×

1019 cm−3 (Fig. 4.4c). In this case, pump laser self-focusing becomes even

stronger than the previous case and plasma bubble formation starts at z ∼

2.0 mm. After propagation for the dephasing length Ld ≈ 0.5 mm, early

injected fast electrons enter the front half of the bubble and de-accelerate, while

lately injected slow electrons keep accelerating and catch up. This process

happening after z = 2.5 mm is called phase space rotation [92] that directly

compresses the electron distribution in momentum space and results in mono-

energetic electron bunches peaked at the optimal energy ∼ 100 MeV, as shown

in Fig. 4.4c top row. Moreover, for z ≥ 2.5 mm in Fig. 4.4c, the phase dips

suddenly shift backwards to larger time delay t. As discussed later, this is

a signature of bubble coalescence and longitudinal merging induced by beam
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loading.

Finally the plasma density is further increased to 2.2× 1019 cm−3 and

degraded electron quality is obtained (Fig. 4.4d). A FDSC measured phase dip

forms at around z = 1.3 mm, implying bubble formation, electron injection

and acceleration. When the laser propagates to z = 1.75 mm, the shifted

phase dip is directly correlated to bubble coalescence and beam loading at

this position. Thus after z ∼ 2 mm, electrons propagate in a merged bubble

which is not able to efficiently provide acceleration field, and show low energy

and broad spectrum consistent with independently measured result (Fig. 4.4d,

top row).

4.2.2 Evolution z-resolution and longitudinal t-resolution

FDSC measured phase streaks ψ(t, z) represent the projection of the

bubble longitudinal profiles at different propagation z-positions, thus the lim-

its of resolving fast evolution events (i.e. evolution z-resolution δz) and

fine longitudinal structures (i.e. longitudinal t-resolution δt) should be de-

termined. For the evolution z-resolution, the two phase shift components

from plasma bubble and laser wakefields are different. The plasma channel

dchannel ∼ 200 µm is thick, so the ∆x ∼ 500 µm long phase streak can resolve

Nchannel = ∆x/dchannel ≤ 3 frames of the evolution history, or δzchannel =

L/Nchannel ≥ 1 mm. However, the thickness of plasma bubble is smaller

than 20 µm, thus the number of independently resolvable evolution events is

Nbubble = ∆x/dbubble > 25 and the z-resolution is δzbubble = L/Nbubble < 0.12
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mm. Given the experimental parameters, FDSC is sufficient to resolve dy-

namics of plasma bubble evolution during a propagation distance beyond 0.12

mm, and in Fig. 4.4, phase shift curves representing longitudinal profiles of

the plasma bubble are lined-out every 0.25 mm which is 2δzbubble.

The other limit δt of resolving fine structures on the femtosecond lon-

gitudinal profile is denoted as longitudinal t-resolution, which is governed

mainly by the probe bandwidth [40]. In our experiment, the bandwidth of

probe ∆λpr ∼ 10 nm determined the optimal longitudinal resolution δt ∼

0.44λ2/c∆λpr ≈ 30 fs, which is comparable to the plasma wave period 2π/ωp ≈

30 fs given the plasma density. It may be insufficient to resolve the fine longi-

tudinal structures within a single plasma wave bucket whose, for example the

high density, thin sheath layer between nonlinear plasma bubbles. However,

the phase dips in Fig. 4.4 clearly reveal dynamics of bubble formation and

coalescence, though they represent actual probe phase shift convolved with a

30-fs wide blurring function. The solution to further improve the longitudinal

t-resolution is to broaden the probe pulse bandwidth to, for example, 100 nm

based on super-continuum generation in gases or hollow fibers [40]. In this

case, the longitudinal resolution is expected to be improved to as accurate

as sub-10 fs. Meanwhile, the probe signal should be separated from pump

induced plasma emission and scattering.
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4.3 Simulations of laser wakefield excitation and elec-
tron acceleration

To verify the evolution dynamics of FDSC measured plasma bubble, a

30 fs Gaussian pump laser pulse with a0 = 1.2 and w0 = 10 µm propagating

in plasma with different density is simulated using 3D particle-in-cell code

VLPL [65]. Similar to measured optimal electron beam and corresponding

FDSC phase shift at a specific plasma density, simulations also found a optimal

density at n̄e = 1.5 × 1019 cm−3 that plasma bubble experienced dynamic

evolution from z = 1.6 to 2.4 mm (Fig. 4.5a-c), and a quasi-mono-energetic

electron spectral peak centered at 100 MeV was obtained (Fig. 4.5d). At

z = 1.6 mm, plasma bubble was formed and excited by relativistically self-

focused pump pulse since entering the gas jet (Fig. 4.5a), consistent with slight

phase shift dips, < 0.5 rad, at z = 1.50 and 1.75 mm in Fig. 4.4c. Electrons

are injected into and accelerated by the bubble at z = 2.0 mm (Fig. 4.5b),

corresponding to phase shift dips 50–70 fs wide and > 1 rad deep at z = 2.0 to

2.5 mm (Fig. 4.4c). Electrons keep accelerated and gain energy until z = 2.4

mm where the first two plasma bubbles merge into a long blow-out channel

(Fig. 4.5c). This beam loading induced coalescence of plasma bubble can be

correlated to 100 fs wide and 2 rad deep phase shift dips in Fig. 4.4c and d

after z ∼ 2.5 cm. Slight dephasing of electrons and the plasma wakefields de-

accelerates fast electrons injected earlier and further accelerates slow electrons

injected later, yielding mono-energetic electron bunches as shown in Fig. 4.5d.

Simulations at density (n̄e = 1.0 × 1019 cm−3) lower than optimal
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Figure 4.5: 3D particle-in-cell VLPL simulations of laser wakefield acceleration
with optimal n̄e = 1.5 × 1019 cm−3. (a-c) Plasma density profiles at z = 1.6
mm (a), 2.0 mm (b) and 2.4 mm (c), representing bubble formation, electron
acceleration, and bubble coalescence respectively. (d) Calculated electron
spectrum centered at 100 MeV.

showed, despite excitation of some quasi-linear plasma waves, no bubble for-

mation, electron injection or acceleration, consistent with measurements at

n̄e = 1.3×1019 cm−3 (Fig. 4.4a). For a suboptimal density n̄e = 1.3×1019 cm−3

corresponding to n̄e = 1.5 × 1019 cm−3 in experiments, low energy, continu-

ous spectrum electrons are observed in simulations. Basically, the acceleration

process is limited by the gas jet length at this density, denoting an insufficient

acceleration regime. For density (n̄e = 2.0× 1019 cm−3) higher than the opti-

mum, simulations showed bubble formation and electron injection at z ≥ 1.5
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mm. Thus electrons accelerated up to the dephasing limit by z ≈ 2.0 mm.

Subsequent dephasing and beam loading induced bubble coalescence limited

maximum electron energy to ∼ 40 MeV, consistent with measurements for

n̄e = 2.2× 1019 cm−3 (Fig. 4.4d). Thus simulations at various n̄e closely mir-

rored observed bubble dynamic trends, except for a somewhat lower value of

the optimal n̄e. This discrepancy can be attributed to the higher quality and

more effective self-focusing, of the simulated focused drive pulse, and highlights

the need for laboratory visualization to supplement simulations.
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Figure 4.6: Calculated probe phase shift induced by plasma bubble in 3D PIC
simulations (red solid, n̄e = 2.0×1019 cm−3), convolved with probe longitudinal
temporal resolution δt = 50 fs (blue solid), 19 fs (blue dash), and 5.3 fs (blue
dot). (a) Phase shift induced by good-shaped bubble at z ∼ 2.0 mm. (b)
Merged bubble induced phase shift at z ∼ 2.5 mm.

To correlate simulated plasma density profiles ne(t, x, y, z) directly to

FDSC phase shifts, we calculated the phase shift ψ(t, z) at selected z that the

plasma refractive index profile η(t, x, y, z) induced on the probe. Here t denotes

time behind the center of the pump, and x, y transverse coordinates, in the
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pump co-moving frame. η(t, x, y, z) is sliced at a specific y = y0, the central

slice of the index object selected by the spectrometer slit, and is integrated over

x, describing the drift of the index object across the probe profile transversely

to the pump propagation direction. The red curves in Fig. 4.6 show line-outs

of phase shift profiles ψ(t, z) at z = 2.0 mm (a) and z = 2.5 mm (b) calculated

for a probe of unlimited bandwidth, and thus arbitrary time resolution (δt = 0)

in the pump co-moving frame, at density n̄e = 2.0 × 1019 cm−3. In practice,

finite ∆λpr limits temporal resolution to δt. This limit was taken into account

by convolving ψ(t, z) with a Gaussian function with FWHM δt = 50, 20,

5 fs, yielding the blue curves respectively. For δt = 50 fs (solid blue lines

in Fig. 4.6a), considerable longitudinal structure is lost because the duration

2π/ωp ≈ 30 fs of a single plasma period is less than δt at z = 2.0 mm (Fig. 4.6a,

blue solid curves). Nevertheless the resulting 60 fs wide, 1 rad deep phase

profile agrees well with the measured profile at z ≈ 2.0 mm for these conditions.

The dashed blue curve shows that some of the lost longitudinal structure

could be recovered with a wider bandwidth probe equivalent to δt = 19 fs.

At z = 2.5 mm (Fig. 4.6b), merging of adjacent buckets yields a broader

phase profile without sharp boundaries that even the 10 nm bandwidth probe

resolves well. The phase dip of duration 90 fs, depth 2 rad (Fig. 4.6, solid blue

curve) reproduces the broadening and deepening observed for z ≥ 2.5 mm. In

this case, a broader bandwidth probe offers little improvement in longitudinal

resolution (Fig. 4.6, dashed blue curve). Thus 3D PIC simulations corroborate

the z-varying shape of the phase dip observed in the critical region 2 ≥ z ≥
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2.5 mm (see Fig. 4.4c, d) where the fully formed bubble finishes accelerating

electrons, then merges with the second bucket due to beam loading. A perfect

probe with δt = 5 fs potentially can resolve extremely fine structures of bubbles

as accurate as transverse techniques [9], however this requires sophisticated

upgrade of the laser system.
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Figure 4.7: 3D PIC simulations of probe phase shift induced by laser wakefields
at density: (a) 1.0× 1019 cm−3; (b) 1.3× 1019 cm−3; (c) 1.5× 1019 cm−3; (d)
2.0 × 1019 cm−3. Actual phase shift profiles (red) are convolved with probe
longitudinal temporal resolution δt = 30 fs (blue), illustrating the longitudinal
time-resolution limit of the probe.

At different plasma density, simulated probe phase shift ψ(t, z) is con-

volved with a δt = 30 fs wide (FWHM) Gaussian function, as shown in Fig. 4.7,
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to be directly compared with Fig. 4.4. In the low density (n̄e = 1.0×1019 cm−3)

case in Fig. 4.7a, convolved line-outs show no phase dips since only low-

amplitude linear plasma wave was excited through the 3 mm propagation

distance. For higher density (n̄e = 1.3 × 1019 cm−3, Fig. 4.7b), phase dips

became visible until z = 2 to 2.5 mm, where nonlinear bubble regime was

reached. At the optimal density (n̄e = 1.5 × 1019 cm−3, Fig. 4.7c), bubble

formation happened at z ∼ 2.0 mm, consistent with Fig. 4.4c. In the over-

acceleration regime (n̄e = 2.0× 1019 cm−3, Fig. 4.7d), fully developed bubble

was observed at z = 1.5 mm and bubble coalescence happened after z = 2

mm to de-accelerate electrons. Moreover, the sudden longitudinal or temporal

shift of phase dip minima (e.g. z ∼ 2.25 mm (c) and z ∼ 1.75 mm for (d) in

both Fig. 4.4 and Fig. 4.7 consistently) presents a signature of multi-bubble

merging into a single one.

In conclusion, frequency-domain streak camera has been successfully

applied to visualize plasma bubble evolution in a single shot. Using this

technique, major stages of bubble evolution — formation, stable propagation,

broadening and coalescence — over a 10 ps interval with < 0.5 ps resolution

are determined. Optimum accelerated electron energy (100 MeV) and point-

ing stability was observed for plasma density at which a bubble fully formed

at dephasing length Ld before the gas jet exit. 3D PIC simulations reproduced

the FDSC and electron acceleration results, and correlated them with under-

lying physics: relativistic self-focusing, electron injection into a fully formed

bubble, dephasing, and bubble coalescence due to beam loading.
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Chapter 5

Frequency–Domain Tomography

The previous two chapters demonstrated how the frequency–domain streak

camera (FDSC) uses phase modulations imprinted on a single probe crossing

the path of an evolving light-velocity object at angle θ to record a single-

shot time sequence of the object’s projections at viewing angle φ(θ), which

is related to θ by Eq. (3.6). This chapter generalizes FDSC by employing

multiple probes at different angles simultaneously [] to generate a single-shot

“movie” — i.e. a time sequence of snapshots, each a 2-dimensional (2-D)

slice of the object’s complete instantaneous spatiotemporal structure. Recon-

structing a movie from phase streaks imprinted on multiple probes requires

the methods of computerized tomography (CT). In conventional CT imaging

of static objects, light or x-ray beams transmit through the object at differ-

ent angles, encoding a projection of the object via absorption or phase shift

onto each beam. Tomographic reconstruction algorithms then reconstruct the

three-dimensional original object (or a 2-D slice) from these two-dimensional

projections [34]. Here we employ a generalized version of these same tomo-

graphic reconstruction algorithms to reconstruct a 3-D movie (two spatiotem-

poral dimensions plus evolution) from several 2-D phase streaks. We call this

method “Frequency–Domain Tomography” (FDT).
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As in FDH, FDSC and conventional CT, we assume in this chapter that

the phase-modulated region of each probe does not diffract significantly within

the interaction region, but rather accumulates in the manner of geometric op-

tics. This assumption sets an upper limit L < Ldiff ≈ π(∆x2 + ∆y2)/λpr on

propagation distance L, where ∆x and ∆y are the transverse dimensions of the

index structure, and λpr is the probe wavelength. Typically for micrometer-size

objects probed at visible wavelengths, the FDT method is viable for propa-

gation lengths up to several millimeters. For longer propagation lengths, it

becomes necessary to image the probes to the detector from multiple object

planes within the interaction region. Such multi-object plane imaging tech-

niques are the subject of the next chapter.

5.1 Theory of Frequency–Domain Tomography

Here we briefly review the principles of conventional tomography for static

objects before introducing tomography for ultrafast evolving, light-speed ob-

jects. To simplify the discussion, we consider the probing and reconstruction

of a 2-D slice f(x, y) of a static object at fixed z. To reconstruct the 3-D

structure f(x, y, z), the procedures described here are repeated at different

z. One projection is formed by parallel light beams propagating through the

object along a direction at angle θ to the x axis, as shown in Fig. 5.1. The

projection variable along this direction is u = x cos θ + y sin θ; the variable

along the orthogonal axis is v = −x sin θ + y cos θ. Thus the projection is

p(v, θ) =
∫
f(u cos θ−v sin θ, u sin θ+v cos θ)du. The Fourier transform of the
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Figure 5.1: Conventional tomography for static objects in space domain (left)
and Fourier domain (right).

projection is

P (k, θ) =
1

2π

∫
p(v, θ)e−ikvdv

=
1

2π

∫
f(u cos θ − v sin θ, u sin θ + v cos θ)e−ikvdudv

=
1

2π

∫
f(x, y)e−ik(−x sin θ+y cos θ)dxdy

= 2πF (−k sin θ, k cos θ). (5.1)

Thus the 1D projection in the Fourier domain equals the line-out of the 2D

object’s Fourier transform along the direction at angle π/2 + θ to the kx axis.

This is the Fourier slice theorem [34]. If multiple probes are applied, the

entire 2D profile of the object in the Fourier domain is known. Thus the object

can be reconstructed in the space domain.
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5.1.1 Tomography for light-speed objects

Frequency–domain tomography uses a generalized version of the Fourier

slice theorem. Eq. (3.4) gives the 3D projection ψ(θ)(ζpr, xpr, ypr) of a 4D light-

speed object ∆n(ζ, x, y, z) from a probe that crossed its path at lab angle θ.

The Fourier transform of a 2D (constant y = ypr) section of this projection is

Ψ(θ)(k1, k2) =
1

(2π)2

∫
ψ(θ)(ζpr, xpr)e

−ik1vprζpr−ik2xprdζprdxpr

=
v2

pr

2πλprvob

∫
∆n(ζob, xob, zob)e−ik1vprζpre−ik2xprdζobdxobdzob

=
4π2v2

pr

λprvob

∆ñ

[
k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ, k1

(
cos θ − vpr

vob

)
+ k2 sin θ

]
=

4π2vpr

λprvob

∆ñ

[
kζ , kx, kζ

(
1− vpr

vob

cos θ

)
+
vpr

vob

kx sin θ

]
, (5.2)

where the coordinates (ζpr, xpr) and (ζob, xob) are related by the transfor-

mations (3.2) and (3.3). Thus the 2D Fourier transform of a phase streak

ψ(θ)(ζpr, xpr) represents the Fourier transform of the original object’s evolution

history in the plane kz = kζ

(
1− vpr

vob
cos θ

)
+ vpr

vob
kx sin θ in (kζ , kx, kz) space

(Fig. 5.2a). This is a generalized version of the Fourier Slice theorem for light-

speed object tomography. The direction of the norm vector of this plane can

be described by the azimuthal angle

φ = arctan

(
vpr sin θ

vob − vpr cos θ

)
(5.3)

and the polar angle

α = arctan

√
1 +

(
vpr

vob

)2

− 2

(
vpr

vob

)
cos θ. (5.4)
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Figure 5.2: Principle of tomography for light–speed object. (a) The plane in
which the transformed phase streak of a single probe at θ cuts the Fourier
space of the object. The normal to the plane makes angle α with the kz axis;
its projection on the (kx, kζ) plane makes angle φ with the kζ axis. (b) Cones
containing the region of the Fourier space which can be sampled by the probe.

The azimuthal angle φ defines the projection direction of the object from

the probe at lab angle θ, and is the same as the projection angle φ de-

rived in Eq. 3.6. Consider an evolving object with characteristic size δr

in this projection direction. The extent of ∆ñ in (kζ , kx, kz) space along

this direction is ∼ 2π/δr, so the maximum kz that can be sampled is ∼

2π/δr tanα = 2π/δr

√
1 +

(
vpr
vob

)2

− 2
(
vpr
vob

)
cos θ. This limited kz bandwidth

implies a maximum resolution of fast evolution along the propagation (z)

direction of δz = δr

√
1 +

(
vpr
vob

)2

− 2
(
vpr
vob

)
cos θ, which, not surprisingly, is

equivalent to z resolution obtained in Eq. 3.7.

Additional probes at different lab angles θ correspond to planes cutting

the object’s Fourier space like the one shown in Fig. 5.2, but at different polar
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angles α(θ). Thus multiple probes applied simultaneously at densely-sampled

angles define a sub-space in the 3D Fourier domain (kζ , kx, kz) equivalent to

rotating a single plane around the kz axis by changing its polar angle α(θ)

continuously. The result is a pair of cones as shown in Fig. 5.2b. The sub-space

that can be sampled by oblique angle probes is the region between the pair of

cones. The points, or (kζ , kx, kz) values, inside the cones are never sampled for

any probe angle θ. Thus unlike conventional tomography for which information

for complete reconstruction can be obtained in principle, tomography for light-

speed objects is inherently limited in its sampling range. It is thus an inverse

problem with limited data, so complete reconstruction of the original object

from multiple probes is impossible. Nevertheless, with the help of additional a

priori information, reconstruction errors can be minimized, analogous to the

limit–angle theorem for conventional tomography of static objects [34].

An index object that varies slowly with z is an example of one that

can be reconstructed faithfully by FDT. Most of its Fourier components are

confined near the kζ–kx plane, so no significant information is lost by the

inability to sample the volume inside the cones in Fig. 5.2. In this case, as

the index object passes through a plane transverse to the phase streak axis

(corresponding to a specific propagation distance z), it evolves negligibly. Thus

its projection and tomographic reconstruction in that portion of the streak

are similar to those of a stationary object probed by conventional CT. Movie

frames of the object’s slowly-evolving spatiotemporal profile are then obtained

by recording a sequence of projections at planes separated by the object’s
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dimension along each of several phase streak axes at different lab angles.

5.1.2 Filtered back-projection (FBP) reconstruction

Filtered back–projection (FBP) is a fundamental technique for tomo-

graphic reconstruction. It can be applied straightforwardly to reconstruct

movies of slow-varying objects. In this case, the original slowly-varying 2D

object f(x, y) is reconstructed using Eq. (5.1):

f(x, y) =

∫ ∫
f(kx, ky)dxdy

=

∫ ∫
f(−k sin θ, k cos θ)|k|dkdθ

=
1

2π

∫ ∫
P (k, θ)|k|dkdθ, (5.5)

where P (k, θ) is defined in Eq. (5.1). FBP reconstruction involves three steps:

(i) Fourier transformation of the projections, (ii) application of a filter |k| on

the transformed projections, and (iii) back-projection of the original object.

Once projections of phase streaks at different angles are lined-out at a spe-

cific propagation distance z, FBP yields the spatiotemporal index profile at z.

However, if the slow-variation approximation is not strictly satisfied, a more

general algorithm based on the generalized projection shown in Fig. 5.2 should

be developed.

5.1.3 Algebraic reconstruction technique (ART)

Although filtered back-projection (FBP) method provides a conceptu-

ally simple reconstruction algorithm that is directly related to the Fourier Slice
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theorem, we have found that an alternative approach known in tomography

literature as the algebraic reconstruction technique (ART) [33] is more practi-

cal for FDT. ART is an iterative algorithm in which one guesses the object’s

shape at each step, compares with measured projections, then modifies the

guess until residuals are minimized. It thus resembles iterative techniques

such as frequency-resolved optical gating (FROG) that are widely used to re-

construct the spatiotemporal profile of an ultrashort optical pulse. ART has

two advantages over FBP for our application. First, for practical FDT, the

number of probes is limited to ∼ 15 by the probe generation and detection

methods (discussed below) and by crowding of imaging optics, especially for

single-shot imaging. Thus the projection angle cannot be sampled as densely

as in conventional tomography of stationary objects, where beam sources and

detectors rotate around the target. ART avoids “streak artifacts” typical of

FBP reconstructions from sparsely sampled angular projections. Second, ART

can conveniently incorporate prior information about the object (e.g. the sign

of the refractive index change, the spatiotemporal profile of the drive pulse)

in each iteration, whereas this is difficult for FBP. Thus ART deals more ef-

fectively with the limited-data inverse problem nature of FDT.

ART discretizes Eq. (3.4) by mapping the evolving 3D index structure

∆n(ζob, xob, zob) for fixed ypr onto a 3D grid in (ζob, xob, zob) space. Each pixel

value ψi of a 2D phase streak in (ζpr, xpr) space was obtained by applying a

linear projection operator P to the 3D tomographic movie ∆nj in (ζob, xob, zob)
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space,

ψi =
∑
j

Pij∆nj, (5.6)

where i spans indices of all pixels of 2D phase streaks at all angles and j

labels all points of the index structure. Following the standard ART procedure

[33, 34], we solved Eq. (5.6) iteratively by setting initial solution ∆n
(0)
j = 0,

then updating the solution to fit the measured phase streak ψi. Thus in the

kth iteration, the solution is

∆n
(k)
j = ∆n

(k−1)
j + λ

∑
i

ψi −
∑

m Pim∆n
(k−1)
m∑

m P
2
im

Pij. (5.7)

Here λ is the relaxation parameter for ART iterations, which we set to 0.1 to

boost the convergence rate of the iteration. Additional prior information is

usually incorporated in each step. For example, if the index structure ∆nj is

excited by a laser pulse propagating in a positive Kerr medium (or plasma), the

restriction ∆nj ≥ 0 (or ∆nj ≤ 0) is enforced by directly setting ∆nj = 0 for all

calculated ∆nj < 0 (or ∆nj > 0) in Eq. (5.7). This guarantees that physical

constraints are maintained during the reconstruction. No prior assumptions

are made, however, about the symmetry of the evolving object, in contrast

to e.g. Abel inversions that assume cylindrical symmetry. When the 2D

projections ψ(θ)(z
(loc)
pr , xpr, y0) contained 2π jumps, a 2D phase unwrapping

pre-processing procedure was applied to the measured phase ψi through the

weighted minimum norm algorithm [31].

Computerized implementation of the ART algorithm for FDT requires

careful evaluation of the size of the P matrix. Assume the pixel number of the
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3D evolving object is Nmovie = Nζ×Nx×Nz, and the measured phase streaks at

Nang different angles, each with Npix pixels, have total projection data number

Nproj = Nang ×Npix. The size of the matrix P should then be Nmovie ×Nproj,

which takes up to 700G Bytes memory if all matrix elements are saved in

double-precision floating numbers. This is too large to be handled by current

computers. However, as a huge, sparse matrix, non-zero elements of P can be

stored more efficiently. First of all, the rows of the matrix corresponding to

zero-valued pixels of 2D phase streaks can be directly set to zero, and only

the remaining rows calculated. The total effective projection data number is

thereby reduced by an order of magnitude, i.e. N ′proj = 10−1Nproj. In addition,

for a single projection with fixed angle θ and probe coordinate (ζpr, xpr), the

integral path is linear. Thus the non-zero elements in each row of matrix P

is no larger than Nζ + Nx + Nz, rather than Nζ × Nx × Nz. These at most

Nζ +Nx +Nz non-zero elements in each row of P can be found by calculating

the crossing points between the projection integral path and the walls of non-

zero voxels. Thus the effective movie voxel number is N ′movie = Nζ +Nx +Nz ≈

10−4Nmovie. Taking advantage of these efficiencies, my C++ code “FDT3D”

constructed the matrix P by only storing non-zero elements whose number is

no larger than N ′movie×N ′proj ∼ 50M Bytes (see Appendix B). This size can be

easily handled by an ordinary personal computer with Windows 7 operation

system and Microsoft VC++ integrated development environment (IDE).
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5.1.4 FDT reconstruction quality

FDT reconstruction quality depends on the number and distribution

of probes, and is quantified via the normalized root mean squared (RMS)

deviation d (or “error”) of a reconstruction ∆n(ζ, x, z) from the evolving object

∆n0(ζ, x, z). We define d by generalizing its conventional 2D expression [34, 37]

to 3D:

d =

√∑
ζ,x,z

[∆n(ζ, x, z)−∆n0(ζ, x, z)]2 /
∑
ζ,x,z

[∆n(ζ, x, z)−∆n̄0]2. (5.8)

The ζ, x sums run over intra-frame pixels, the z sums over frames, and ∆n̄0

is the object’s average index. The actual object ∆n0(ζ, x, z) is, of course,

not directly accessible in a real tomographic reconstruction. Direct compar-

ison of the reconstructed object with physical simulations and independent

measurements are thus important for validating FDT reconstructions. In ad-

dition, d can be determined for a given probe configuration by simulating the

reconstruction of a “phantom” object that is known exactly.

5.2 Phantom simulations

We tested the ART-based FDT reconstruction code by carrying out a

set of “phantom” simulations, a common method of evaluating computerized

tomography codes [34]. Fig. 5.3a shows selected 2D (xob vs. ζob) snapshots

of an artificial phantom index object at seven different propagation distances

zob (listed along the top) ranging from entrance (zob = 0) to exit (zob = 3

mm) of the medium. The horizontal temporal scale of each snapshot de-
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notes ζob, with the object’s leading edge to the left. The phantom does not

evolve by a real physical process, although some of its general features (e.g.

propagation length, xob and ζob dimensions, evolution speed) were chosen to

resemble those that occur in experiments described in the next section. The

phantom’s detailed features were chosen to illustrate resolution limits, and to

evaluate reconstruction artifacts, more effectively than a real physical process.

Specifically, the object starts as a hollow rectangle with thin boundaries of

widths ∆ζ0 = 10 fs (left and right) and ∆x0 = 5 µm (top and bottom), as

shown by dotted curves in Fig. 5.4b and c, respectively. Such a thin rect-

angle separately and stringently tests transverse and longitudinal resolution

limits. As it propagates at vob = 0.68c, chosen to equal pump group veloc-

ity in experiments discussed in the next section, the rectangle narrows along

xob over 0 < zob < 1.5 mm, thus mimicking self-focusing observed in those

experiments. During a short transition period (zob ∼ 1.5 ± 0.2 mm), a “dot”

of Gaussian profile appears to the lower right of the rectangle, quickly grows

to ∆nmax and falls to 0.2∆nmax (Fig. 5.4a, dotted curve), mimicking the time

scale of plasma generation and partial recombination in the experiments. Since

the dot grows within an interval (∼ 100 fs) comparable to the object’s dura-

tion ∆ζob, it tests inter-frame resolution. By breaking axial symmetry, it also

tests the algorithm’s ability to reconstruct objects without prior assumptions

about symmetry. The narrowed rectangle then expands longitudinally over

1.5 mm < zob < 3 mm, mimicking group-velocity stretching of a laser pulse.

Fig. 5.3b-d shows tomographic reconstructions of the phantom from
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Figure 5.3: FDT Phantom simulations. (a) 2D snapshots (ζob vs. xob) of
evolving “phantom” object at seven selected positions zob after entering a
medium as it propagates with velocity vob = 0.68c. Remaining rows show
tomographic reconstructions of the phantom object for three probe configura-
tions: (b) 19 probes at projection angles −90◦ < φ < 90◦ with 10◦ separation,
vpr = 0.70c (configuration I); (c) 18 probes at −90◦ < φ < 80◦ with 10◦

separation, vpr = 0.681c (configuration II); (d) 5 probes at −70◦ < φ < 70◦

with 35◦ separation, vpr = 0.66c (configuration III). The color bar shows the
dimensionless refractive index change of original and reconstructed objects.

3 probe configurations I through III. Fig. 5.4a-c compares selected line-outs

of the reconstructed images, with those of the object (dotted curves), while

Fig. 5.4d plots RMS errors vs. iteration number. In all cases, the probe band-

width and imaging optics fully resolved the object’s intra-frame (ζob,xob) fea-

tures. Variations among reconstructions I–III thus arose solely from different

probe number, angular distribution and velocity as follows: (I) 19 probes each

with vpr = 0.70c distributed equally over projection angles −90◦ < φ < 90◦;
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(II) 18 probes each with vpr = 0.681c distributed equally over −90◦ < φ < 80◦;

(III) 5 probes each with vpr = 0.66c distributed equally over −70◦ < φ < 70◦.

As expected, configurations I, II with 18-19 probes yielded sharper frame im-

ages of the slowly evolving rectangle (Fig. 5.3b,c) and sharper line-outs of its

edges (blue and red curves, respectively, in Fig. 5.4b,c), than 5-probe config-

uration III, which yielded more blurred images with reconstruction artifacts

(Fig. 5.3d) and less distinct edge line-outs (dashed green curves, Fig. 5.4b,c).

Reconstructions I and II also converged more rapidly toward smaller steady-

state RMS error than configuration III (Fig. 5.4d). Thus large probe number

is one factor that promotes high-fidelity reconstruction of slowly evolving ob-

jects. On the other hand, all three configurations resolved the rectangle’s slow

narrowing and lengthening equally well (see Fig. 5.3b-d).

Reconstructions of the “dot” reveal more subtle comparisons. Configu-

ration I, having the widest φ range and largest |vpr−vob| = 0.02c, best resolved

the dot’s ultrafast evolution (Fig. 5.4a, blue curve), consistent with the dis-

cussion of FDT resolution in Sec. 3.1.3. Configuration III, having the same

|vpr − vob| and similar φ range, resolved this feature nearly as well (Fig. 5.4a,

dashed green curve), despite only 5 probes. Configuration II, in contrast,

failed completely to resolve it (Fig. 5.4a, red curve), a consequence of its small

|vpr − vob| = 0.001c. Nevertheless, configuration II yielded sharper images of

the rectangle (Fig. 5.3c) and smaller RMS error (Fig. 5.4d) than configuration

I, despite one less probe. Evidently reduced blurring of slowly evolving objects

is a compensating advantage of small |vpr − vob|. Thus in choosing |vpr − vob|
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Figure 5.4: Analysis of phantom simulations. (a) Peak ∆n of the Gaussian
“dot” vs. evolution time zob, demonstrating inter-frame resolution; (b)-(c)
line-outs at zob = 1.5 mm of the rectangle along ζob (b) and xob (c), demon-
strating intra-frame resolution. Curves in (a)-(c) refer to phantom simulations
in Fig. 5.3: original object (black dotted curve) and reconstructions with 19
(red dashed curve), 18 (blue solid curve) and 5 (green dash-dot curve) probes.
(d) Normalized root mean square error of the same 3 tomographic reconstruc-
tions vs. iteration number.

an FDT system designer must compromise between resolving inter-frame evo-

lution and minimizing intra-frame RMS error.

5.3 Experimental FDT setup

As a laboratory demonstration of FDT, we visualized nonlinear prop-

agation of a laser pulse in fused silica. The evolving index structure is a 3D
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slice ∆n(ζob, xob, zob) of the nonlinear refractive index profile of a pump pulse

(duration τpu = 100 fs, wavelength λpu = 800 nm, energy 0.4 ≤ Epu ≤ 0.7 µJ)

focused with f -number ∼ 30 to radius w0 = 25 µm (peak incident inten-

sity 0.4 ≤ I0 ≤ 0.7 TW cm−2) near the entrance of a Kerr medium: a

fused silica plate of linear index n0(λpu) = 1.45 and lowest-order Kerr co-

efficient n2 ≈ 2 × 10−16 cm2W−1. Incident power exceeded the critical power

Pcr = 3.7λ2
pu/8πn0n2 ≈ 3.2 MW for self-focusing by a factor of 1.2 to 2.2. Our

plate thickness L = 3 mm satisfied the weak diffraction criterion Leff < L
(pr)
diff

discussed in connection with Eq. (3.1). At our highest Epu, we observe a 3D

slice of dynamics preceding self-guided filament formation [14, 87].

The primary technical challenge in implementing FDT in the laboratory

is to avoid runaway complexity and cost in generating, formatting and detect-

ing a multi-probe pulse array. Conventional multi-probe experiments require

an array of beam splitters to divide probes from pump, and a multi-mirror

hyper-Michelson interferometer to format the probe train [76]. Such setups

are challenging to align and sensitive to vibrations. Moreover, recording the

phase streaks by conventional FDH methods requires a separate spectrometer

with charge-coupled device (CCD) detector for each probe.

We addressed this challenge with the setup in Fig. 5.5. Only two “probe

generating” pulses (800 nm, 30 fs, 30 µJ) were split directly from the pump.

These crossed simultaneously at a small adjustable angle (α ∼ 5 mrad) in a

3-layer structure consisting of a β-barium borate (BBO) crystal sandwiched

between two HZF4 glass plates. Cascaded four-wave-mixing in the first HZF4
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Figure 5.5: Schematic set-up for single-shot FDT of evolving laser-generated
structures. (a) Experimental setup for probe generation and delivery to the
imaging spectrometer. (b) Frequency-domain hologram, or interference pat-
ten, of five probe and reference pulse detected by the CCD camera of the
spectrometer. (c) Fourier transformation of the frequency-domain hologram
yields a reciprocal hologram, in which peaks P1 thru P5 encode the phase mod-
ulations of the 5 probes. Phase streaks in Fig. 5.6 are recovered by windowing
and inverse Fourier transforming these 5 peaks.
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plate (5 mm thick, n
(HZF4)
2 ∼ 10−15 cm2W−1) created a fan of up to eight

800 nm daughter pulses. The number depended on probe generator intensity,

and was limited by the onset of self-focusing and self-phase modulation. The

BBO crystal (Type I, 500 µm thick) then frequency-doubled each beam, and

created an additional probe midway between each fundamental pair by sum-

frequency generation, producing a fan of up to fifteen 400 nm probes separated

from each other by angle α/2. The second HZF4 plate (15 mm thick) chirped

them to 600 fs duration. Any desired subset of the array was easily selected

by blocking unwanted probes. Here, for reasons discussed further below, we

selected 5 probes at θ = 0.1◦, 1.4◦, −1.2◦, −7.6◦ and 9.5◦ inside the fused

silica, corresponding to projection angles φ = 1.0◦, 27◦, −25◦, −65◦ and 68◦,

respectively, for vob = 0.68c and vpr = 0.66c.

Spatio-temporal overlap of multiple probes was achieved automatically

by imaging the first HZF4 glass plate to the sample with lens L1 (f = 20 cm,

3 cm diameter). The pump-generated object swept across, and imprinted a

phase streak on, each probe. To probe at angles θ beyond the aperture of L1,

mirrors can re-direct selected probes from the fan along independent delivery

lines to the sample. This was done for our two largest angle probes P4, P5. As

shown in Fig. 5.5, a chirped 400 nm reference pulse, also split from the pump,

co-propagated with it, advanced temporally by T ∼ 2–4 ps.

Lens L2 (f = 15 cm, f -number 5.6) imaged reference and phase-

modulated probes from the sample exit face to the slit of a single imaging

spectrometer, which selected a line-out of constant y0, thus limiting the final
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reconstructed objects to 3D slices ∆n(ζob, xob, y0, zob) of the full 4D object

∆n(ζob, xob, yob, zob). Lens L2 also ensured simultaneous, spatially-overlapped

delivery of all probes within its aperture. Reference and probes interfered

inside the spectrometer, projecting a grid-like frequency-domain intensity pat-

tern or hologram I(ω, x) (Fig. 5.5b) onto the CCD. This hologram stored the

phase modulations of all probes in one shot, analogous to coherent multi-

plexing methods in holographic data storage [35]. To analyze phase shift in

each probe, a 2D Fourier transform of I(ω, x) yielded a reciprocal 2D holo-

gram Ĩ(T, θ′i) (Fig. 5.5c), in which each reference-probe interference pattern

appeared as an isolated peak (P1 thru P5) at a position determined by probe

angle θ′i and time-delay T . Peaks P4,5 appear at a different T than other peaks

because P4 and P5 have their own references (not shown). Each phase streak

was reconstructed by windowing and inverse Fourier-transforming a specific

peak Pi, as in FDH.

The peaks Pi in the reciprocal hologram must be well separated to

avoid cross-talk. Generally, the maximum number N of probes is limited by

this peak separation, which is related in turn to the angular separation ∆θ

between probes. In the experiment, ∆θ was limited to the probe divergence

angle ∆θmin = λpr/∆xob, or ∼ 10 mrad for our system. On the other hand,

the spectrometer CCD pixel size xpix ∼ 40 µm limited the maximum probe-

reference angular separation to θmax = Mλpr/xpix ∼ 200 mrad, where M ∼ 20

is the magnification of lens L2. Thus ideally our system supports Nmax =

θmax/∆θmin ∼ 20. In practice, θmax is limited to ∼ 100 mrad (and Nmax
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to ∼ 10) by the physical aperture and spherical aberration of lenses L1 and

L2. We chose ∆θ conservatively at ∼ 2∆θmin to thoroughly eliminate cross-

talk, yielding five probes. Although this 5-probe system adequately resolved

the main self-focusing dynamics, a substantial increase in probe number and

image quality is available by investing in large aperture, aberration-corrected

lenses and a larger, more finely-pixelated CCD.
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Figure 5.6: Phase streaks induced by the evolving index profile. Epu = 0.7µJ,
and projection angles are φ = 1.0◦, 27◦, −25◦ (top row), and −65◦ and 68◦

(bottom). Vertical (horizontal) scales denote transverse (longitudinal) position
of the pump-induced phase streak within the temporally stretched probe pulse
profile. The left-most end of each streak corresponds to the entrance of the
medium; ζpr = xpr = 0 is approximately the mid-point of the pump pulse
propagation through the Kerr medium. The spectrometer slit was centered on
the images that L2 projected at the spectrometer entrance. Color bars give
phase shift in rad.

Figure 5.6 shows 5 phase streaks for Epu = 0.7 µJ. Small φ streaks

(top row) highlight evolution of the object’s transverse (xob) profile. Oscil-
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lations in transverse radius ∆xob and peak index change ∆nmax, indicating

dynamic balance between self-focusing and defocusing, were evident in the

last ∼1/3 of these streaks. Streaks near φ ∼ 70◦ (bottom row) highlight evo-

lution of its longitudinal (ζob) profile, which remained nearly constant due to

the low dispersion of fused silica. To visualize evolution of the object’s full

∆n(ζob, xob, y0, zob) profile, we tomographically reconstructed a movie from all

five streaks using the ART algorithm [33, 34, 59].

5.4 Single-shot tomographic movies

5.4.1 Laser pulse self-focusing and plasma ionization

Figure 5.7a shows movie frames, or 2D snapshots, of the nonlinear

index profile ∆n(ζob, xob) at 5 selected propagation distances zob after en-

tering (zob = 0), and before exiting (zob = 3 mm), the Kerr medium, for

Epu from 0.4 µJ (top row) to 0.7 µJ (bottom row). The inter-frame spacing

(∆zob = 500 µm) approximates the inter-frame resolution limit for trans-

verse profile variations and twice this limit for longitudinal variations. The

main feature in each frame is a positive ∆n(ζob, xob) profile of transverse

1/e2 radius 13 < ∆xob < 25 µm and longitudinal duration ∼ 100 fs, that

is attributable mainly to the instantaneous lowest-order nonlinear Kerr re-

sponse n2Ipu of fused silica to the pump pulse. Diffraction, characterized by

length L
(pu)
diff = π(∆xob)2/λpun0(λpu), and self-focusing, characterized by focal

length Lnl = λpu/2πn0n2Ipu [68], respectively, govern most transverse pump

dynamics. The reconstruction resolves them as long as L
(pu)
diff > 500µm (i.e.
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Figure 5.7: Single-shot tomographic movies of the evolving index profile. (a)
Selected 2D snapshots ∆n(ζob, xob) of the pump nonlinear index profile at 5
different propagation positions zob indicated at top, and pump energies indi-
cated at left. The color bar shows the dimensionless refractive index change.
(b) Spectra of the transmitted pump pulses. The spectrum in the top row is
nearly identical to the incident spectrum. (c) Near field images of the trans-
mitted pump spatial profiles, with a resolution of ∼ 20 µm.

∆xob > 14µm) and Lnl > 500µm (i.e. Ipu < 1 TW cm−2). Self-focusing be-

yond these limits can introduce dynamics faster than the inter-frame resolu-

tion, as well as additional nonlinearities such as plasma generation [44, 64, 88]

and higher-order Kerr effect [3, 4, 20]. Dispersion, characterized by length

Ldis = τ 2
pu/β2 = 277 mm, governs evolution of the longitudinal profile [68].

Since Ldis � L, the pulse and its n2Ipu profile propagate with negligible change

in duration.

The reconstructed movies in Fig. 5.7a depict various propagation regimes.
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Figure 5.8: NLSE-simulated movies of the evolving index profile. (a) Selected
2D snapshots ∆n(ζob, xob) of the pump nonlinear index profile from NLSE
simulations for the same 4 pump energies and same 5 propagation times as
shown in Fig. 5.7a. The color bar indicates the dimensionless refractive index
change. (b) Spectra of the transmitted pump pulses from NLSE simulations,
for direct comparison with measured spectra shown in Fig. 5.7b. (c) Solid
curves: NLSE-simulated pump transverse spatial profiles at ζob = 0 near the
exit plane (zob = 2.5 mm) for pump energy from 0.4 to 0.6 µJ, and at zob = 1.5
mm for 0.7 µJ. Dashed curves: corresponding line-outs of FDT-reconstructed
pump spatial profile from Fig. 5.7a for direct comparison.

For Epu = 0.4 µJ (top row), ∆xob and index shift ∆n(ζob = 0, xob = 0) at the

center of the profile remained nearly constant over 3 mm propagation distance,

indicating that diffraction and self-focusing were balanced. For Epu = 0.5 µJ

(2nd row), ∆xob contracted slightly, while ∆n(0, 0) increased slightly (Ipu in-

creased from 0.5 to 0.6 TW cm−2), indicating that self-focusing slightly dom-

inated. In these cases, the exit pump spectrum (Fig. 5.7b, top 2 rows) and

spatial profile (Fig. 5.7c, top 2 rows) retained nearly their incident shapes (not
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shown), and transverse dynamics were fully resolved. At Epu = 0.6 µJ, the

pulse self-focused strongly and monotonically to ∆xob ≈ 15 µm and Ipu > 1.5

TW cm−2, indicating that self-focusing dynamics slightly exceeded the inter-

frame resolution limit near the end of the medium. New structure developed in

the output spectrum (Fig. 5.7b, 3rd row), a consequence of self-phase modula-

tion, and in the spatial profile, which split into 3 lobes (Fig. 5.7c, 3rd row). The

last movie frame shows the uppermost of these lobes separating from the cen-

tral profile at zob = 2.5 mm, thus capturing the onset of multi-filamentation.

The other lobe lies outside the image plane.

At Epu = 0.7 µJ, similar structure developed in the exit spectrum and

beam profile (Fig. 5.7b,c, 4th row). In this case, however, the pulse self-focused

to ∆xob ≈ 15 µm (Ipu > 1.5 TW cm−2) within zob = 1.5 mm (Fig. 5.7a, 4th

row) instead of zob = 3 mm, after which further collapse was arrested and

sub-structure developed in the index profiles. One such sub-structure is the

split-off of the upper spatial lobe, now evident at zob = 2.0 mm. The dominant

new feature, appearing at zob = 2.5 mm, is a steep-walled index “hole” near

the center of the ∆n profile. No such “hole” was observed in the exit beam

profile (Fig. 5.7c, 4th row). Thus it is the result of a negative index change that

locally cancels the positive nonlinear index change n2Ipu. This feature appears

within a single frame and thus, like the “dot” in the phantom simulations of

Fig. 5.3, tests the inter-frame resolution of the tomographic reconstruction.
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Figure 5.9: Comparison of FDT data with NLSE simulations. (a) Recon-
structed radius ∆xob and (b) index shift ∆n(ζob = 0, xob = 0) at the center
of Kerr profiles ∆n(ζob, xob, zob) from Fig. 5.7a vs. propagation position zob.
Data points are for various Epu: red squares, 0.4 µJ; green circles, 0.5 µJ; blue
diamonds, 0.6 µJ; black triangles, 0.7 µJ. For Epu = 0.7 µJ and zob > 1.6
mm, ∆xob is not well defined because of the complex Kerr profile shape, and
thus is not plotted. Solid curves are from NLSE calculations taking only n2Ipu

into account; the dotted portion of these curves indicates the region after
multiple filaments formed. Dashed curves include 4th-order Kerr effect with
n4 = −3.3× 10−28 cm4W−2 [20]. (c) Results of z-scan measurements of Kerr
lensing by the fused silica plate, as illustrated in inset. Solid blue curve is
calculated radius based on lowest-order Kerr lensing, dashed curve includes n4

as above. (d) Lineout (solid blue curve) of ∆n vs. xob at ζob = 0, zob = 2.6
mm, showing index hole near center of the Kerr profile, compared to calculated
radial distribution of plasma density (dashed curve) at zob = 2.6 mm due to
6-photon ionization. Dotted blue curve shows suppression of the Kerr profile
from 4th-order Kerr effect using n4 as above.
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5.4.2 Comparison of FDT reconstruction with NLSE simulations

To help understand the results in Fig. 5.7, we calculated propagation

of the pump using a nonlinear Schrödinger equation (NLSE) [14, 87] that in-

cluded diffraction, group-velocity dispersion, self-steepening, electronic and

Raman-induced Kerr self-focusing, multi-photon and tunneling ionization [39],

electron-hole recombination, and plasma defocusing, as discussed in Sec. 1.1.

Input pulses were modeled as Gaussians that retained cylindrically symmetry

as they propagated [14, 87]. The calculations thus do not capture asymmet-

ric multi-filamentation observed in some FDT images, but adequately model

propagation up to the formation of such filaments. Pump pulse propagation

was simulated using the model in Ref. [14], in which a NLSE and a coupled

electron-hole plasma generation-recombination equation were solved numeri-

cally.

∂A

∂z
=

i

2k0n
T−1∇2

⊥A−
iβ2

2

∂2A

∂ζ2
+NNL (5.9)

∂ρ

∂ζ
= WPI(|A|2) +

σ|A|2

Eg
ρ− ρ

τr
. (5.10)

In the NLSE, the first and second terms are responsible for transverse diffrac-

tion and longitudinal dispersion respectively, and the third nonlinear term

NNL = ik0n2T [(1− fR)|A|2 + fRR(ζ)⊗ |A(ζ)|2]A − σ
2
(1 + iω0tc)T

−1(ρA) −
WPI(|A|2)Eg

2|A|2 A denotes instantaneous Kerr effect, delayed Raman-induced Kerr

effect, plasma absorption/defocusing, and photo-ionization loss of the laser

wave. We also performed some simulations that included a fourth-order Kerr

term n4I
2
pu term, as discussed in the next section. The operator T = 1 +
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(i/ω0)∂/∂ζ leads to self-steepening and space-time coupling. The plasma

generation-recombination equation has taken photo-ionization, avalanche ion-

ization, and recombination into account, while the photo-ionization termWPI(|A|2)

is based on Keldysh’s formulation generalizing both multi-photon and tun-

neling ionization mechanisms [39]. To compare simulation results with ex-

perimental data, transverse (longitudinal) imaging resolution ∆xres ∼ 5 µm

(∆z
(loc)
res /vob ∼ 70 fs) were taken into account by convolving the simulated

index profile with a Gaussian function with transverse (longitudinal) dimen-

sion ∆xres (∆z
(loc)
res /vob). Simulation parameters were either from our direct

measurements (e.g. n2 = 2 × 10−16 W · cm−2 from z-scan measurements)

or most recent references for each parameter: n4 = −3.3 × 10−28 W · cm−2

[20]; n0 = 1.45, group velocity dispersion β2 = 36.1 fs2mm−1, silica band-gap

Eg = 9 eV, and constants τd = 32 fs,τs = 12 fs, fR = 0.18 for the Raman

response function R(ζ) = τs(τ
−2
s + τ−2

d ) exp(−ζ/τd) sin(ζ/τs) [14]; plasma col-

lision time τc = 1.7 fs and plasma recombination time τr = 170 fs [80].

Figure 5.8a shows multi-frame movies of the evolving ∆n(ζob, xob, zob)

from NLSE simulations neglecting HOKE, for direct comparison with FDT

reconstructions in Fig. 5.7a. Simulated and reconstructed movies agree with

high fidelity despite the lack of any adjustable parameters. To quantify this

agreement, Table 5.1 lists RMS deviations d between the FDT reconstruc-

tions in Fig. 5.7a and the NLSE simulations in Fig. 5.8a. For most frames

of Fig. 5.7a, d ≤ 0.5, even smaller than for the 18-19 probe configurations of

the phantom simulation (see Fig. 5.4d). This reflects the high fidelity of these
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Figure 5.10: Direct comparison of measured and calculated longitudinal pulse
profiles. (a) FDT reconstruction (solid line) and NLSE simulation (dashed
line) of the longitudinal profile. (b) Autocorrelation trace calculated from
FDT-reconstructed longitudinal profile (solid line) and direct measurement
(dash line). Except for the direct autocorrelation measurement, the curves are
lined out from Fig. 5.7 and 5.8 with zob = 1.5 mm, xob = 0, Epu = 0.6 µJ.

reconstructions, as well as the absence of sharp-edged structures that were

inserted into the phantom simulations to test stringently for reconstruction

artifacts. We observe d > 0.5 in two places. First, frames that encompass the

entrance (tob < 2.5 ps, zob < 0.5 cm) or exit (tob > 12.2 ps, zob > 2.5 mm) of

the medium (not shown in Fig. 5.7a) yield larger d because of “edge artifacts”

attributable to the sharp index discontinuity. When edge frames are omitted,

we observe d < 0.5 for 0.4 ≤ Epu ≤ 0.6µJ (compare 1st and 2nd rows of Ta-

ble 5.1). Second, in the last two frames for Epu = 0.7µJ, we observe d > 0.5.

This is in part because the “real” pulse develops multiple filaments (Fig. 5.7c,

bottom) that cylindrically-symmetric NLSE simulations fail to capture, even

though FDT reconstructions capture a slice of them. Thus here a shortcoming
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tob range zob range Epu = 0.4µJ 0.5µJ 0.6µJ 0.7µJ
0− 14.7 ps 0− 3 mm 0.63 0.65 0.66 0.99

2.5− 12.2 ps 0.5− 2.5 mm 0.37 0.49 0.50 0.95
2.5− 7.4 ps 0.3− 1.5 mm 0.37 0.49 0.50 0.46

Table 5.1: RMS deviations of FDT reconstructions from NLSE simulations.

of the NLSE simulation, not the FDT reconstruction, contributes to larger d.

The small index “hole” that appears at zob = 2.5 mm also contributes because

it challenges FDT resolution in all 3 variables (ζob, xob, zob), and deviates in

shape from the narrower (in xob), longer (in ζob) negative-index plasma fila-

ment that appears in the corresponding NLSE simulation frame. Excluding

these final two frames, d < 0.5 even for Epu = 0.7µJ (3rd row of Table 5.1);

including them, d exceeds that of the phantom 5-probe configuration III (see

Fig. 5.4d) by only ∼ 25%. Despite locally enhanced d, the reconstruction cap-

tures the essential physical feature (a transient plasma filament), albeit with

distorted shape. Thus direct comparison of Fig. 5.7a and Fig. 5.8a and RMS

error analysis show that the reconstructions are not significantly corrupted by

artifacts.

Figs. 5.8b,c, Fig. 5.9 and Fig. 5.10 highlight several specific areas of

quantitative agreement. First, regarding transverse profiles, Fig. 5.9 com-

pares (a) ∆xob(zob) (FWHM) and (b) ∆n(0, 0, zob) from reconstructions (data

points) with NLSE-simulated values (solid curves). For Epu = 0.4, 0.5 µJ,

they agree well for all zob; for Epu = 0.6, 0.7 µJ, they agree up to the on-

set of multi-filamentation, beyond which solid calculated curves are drawn

dotted. Fig. 5.8c directly compares the complete simulated (solid curves)
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and reconstructed (dashed) transverse index profiles near the exit plane (for

Epu = 0.4, 0.5, 0.6 µJ) or at the onset of multi-filamentation (0.7 µJ), further

illustrating the close agreement. Second, both simulated (Fig. 5.8a) and re-

constructed (Fig. 5.7a) longitudinal profiles evolve negligibly (Fig. 5.10a), and

agree with independent autocorrelation measurements (Fig. 5.10b) of incident

and transmitted pulse duration, as expected for L � Ldis. Although longitu-

dinal breakup of the pulse temporal envelope (“pulse splitting”) triggered by

material dispersion [43, 68] or ionization [79, 87] has been observed in previ-

ous fs pulse filamentation experiments and simulations, and is an important

mechanism in arresting self-focusing collapse [13], our NLSE simulations pre-

dict that pulse splitting would occur only for zob > 0.3 cm (for Epu = 0.7 µJ),

beyond our sample length. Previous observations of fs pulse splitting in glass

used higher power pulses [87] or longer propagation lengths [68] than our ex-

periment. Third, simulated (Fig. 5.8b) and measured (Fig. 5.7b) output

pump spectra show similar trends as Epu increases. Specifically, the simula-

tions reproduce the development of an asymmetric double-peaked spectrum for

Epu ≥ 0.6 µJ, caused by self-phase modulation. The asymmetry in the peaks

is attributable to slight self-steepening, which otherwise plays a minor role

since our sample length L is much less than the characteristic self-steepening

length Lss = cτpu/n2Ipu ≈ 15 cm [7] for our conditions.

Beyond the point at which 0.6, 0.7 µJ pumps lost cylindrical symme-

try, the calculations, though no longer in quantitative agreement with the

data, nevertheless mirror qualitative trends in the FDT images. For example,

92



for Epu = 0.7 µJ and zob > 2.0 mm, the calculated ∆n(0, 0, zob) increases

sharply to ∼ 0.00065 before dropping equally sharply (Fig. 5.9b, black dot-

ted curve) due to formation of an electron-hole plasma, which contributes a

compensating negative index change. The measured ∆n(0, 0, zob) increases

to a lower maximum, then also drops (Fig. 5.9b, black data points). Here

the calculated ∆n evolves more quickly than the inter-frame resolution; thus

(like the “dot” in the phantom simulations) the reconstruction “rounds off”

the temporal or zob dynamics, partly explaining the discrepancy. Absence of

multi-filamentation in the calculation also contributes to the discrepancy. The

FDT images themselves provide additional insight. In this region, the steep-

walled index “hole” appeared (see Fig. 5.7a, bottom right frame), inducing

de-focusing and presumably pulse splitting in a longer medium [43, 68, 79, 87].

This hole had ∼ 10 µm diameter, significantly narrower than the n2Ipu en-

velope (see Fig. 5.9d, solid curve). Such a narrow hole is consistent with the

onset of multi-photon ionization, the mechanism that accounts for the drop

in ∆n(0, 0, zob) in our NLSE simulation. Six photons are needed to create an

electron-hole pair in fused silica, so plasma generation rate scales as I6. Thus

plasma concentrates in the center of the self-focused profile (Fig. 5.9d, dashed

curve), and appears suddenly as I increases, consistent with the FDT images.

5.4.3 High-order nonlinear refractive index and electron-hole plasma
ionization in laser–glass interactions

The relative importance of plasma defocusing [44, 64, 88] and negative

electronic Kerr effect [3, 4, 20] in arresting the collapse of self-focusing pulses
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has been debated extensively in connection with nonlinear pulse propagation

in gaseous media. Although there has been comparatively little discussion of

this issue for condensed media, a measured value n4 = −3.3× 10−28 cm4W−2

of the 4th-order Kerr coefficient of fused silica has been reported [20]. In

view of this measurement, and the importance of nonlinear pulse propaga-

tion in fused silica in optical fiber communication and micro-machining, we

considered the possibility that 4th-order Kerr effect might contribute to, or

even dominate, the arrest of self-focusing under our conditions. There were

three findings. First, our NLSE calculations that included 4th-order Kerr ef-

fect using the previously reported n4 deviated significantly from all FDT data,

even before the onset of multi-filamentation, as shown by the dashed curves

in Fig. 5.9a,b. This n4 actually induced self-defocusing under our conditions,

contrary to observation. RMS deviation d between the NLSE calculations and

the reconstructions (Fig. 5.7a) also grew to > 0.8, even in regions free of edge

artifacts and for Epu ≤ 0.6µJ, much larger than values in Table 1. Second, as

an independent check of |n4/n2|, we conducted standard z-scan measurements

of our silica plate’s nonlinear index [74]. Results, exemplified by Fig. 5.9c

(circles), fit well to a nonlinear lens determined solely by n2Ipu (solid curve).

Our FDT and z-scan results both place an upper limit of 10−29cm4W−2 on

|n4|. Third, we found that a negative 4th-order Kerr effect, even of limited

value, broadly suppressed the positive n2Ipu profile, rather than producing the

observed narrow index hole that appeared at tob = 12.2 ps (zob = 2.5 mm)

for Epu = 0.7 µJ (see Fig. 5.7a, 4th row, last panel). This is because it scales
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as I2
pu instead of I6

pu, like plasma generation. Thus our results do not support

an important role of a 4th-order Kerr effect. However, they do not rule out

the possibility that a negative electronic Kerr effect of higher than 4th order

contributes to forming this index hole.

In summary, FDT generalizes FDSC by applying multiple probe simul-

taneously, thus visualizing the evolving spatiotemporal profile of a light-speed

index structure in a single shot for the first time. Compact methods to gener-

ate and detect these multiple probes were developed, making FDT only slightly

more complicated than a standard pump-probe experiment. Conventional to-

mographic reconstruction algorithms were generalized and adapted to FDT.

With improvements in probe bandwidth and imaging resolution, FDT could

image laser wakefield accelerators. In particular, the FDSC data of Chapter

4 could be converted to tomographic movies of the complete plasma bubble

profile by applying additional wide bandwidth probes at different angles.
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Chapter 6

Multi-object-plane imaging over long

interaction distance

The visualization methods discussed in preceding chapters are all based

on the assumption that the depth of view of the imaging system that relays

phase-modulated probe(s) from interaction region to detector exceeds the in-

teraction length. This assumption enables simplifications such as Eq. (3.1)

in relating measured phase shifts back to the index structure, but limits the

interaction length to a few millimeters for object sizes (∼ 10µm) typical of

intense laser-matter interaction experiments. This limit nevertheless covers a

broad range of applications, including ultrafast laser material processing, laser-

plasma proton/ion acceleration and electron acceleration up to ∼ 100 MeV,

and fast ignition. However, recent applications require much longer interac-

tions. For example, femtosecond laser pulses form multi-meter-long self-guided

filaments in air, which can be used for remote sensing [13]. Laser wake field

acceleration with low plasma density (1017 cm−3) yields multi-GeV electrons

by elongating the acceleration distance to around 10 cm [89]. Electron-bunch-

driven plasma wakefield accelerators use interaction length up to ∼ 1 m [6, 36].

Such applications require a new approach to visualizing the structure and evo-

lution of light-speed index objects over meter-scale interaction lengths.
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6.1 Probe diffraction and the Rytov approximation

For arbitrary interaction length, a probe field E propagating in a non-

dispersive medium with transient index perturbation ∆n satisfies the equation

∂E

∂z
=

i

2n0k
∇2
⊥E + ik∆nE (6.1)

where k = 2π/λpr denotes the probe wave vector and n0 is the refractive index

of the unperturbed medium at the central wavelength of the probe. The first

term on the right side describes diffraction of probe light, the second term

the modulation of the probe profile by the index perturbation ∆n. The first

term becomes significant only when the propagation distance L exceeds the

diffraction length L
(pr)
dif = π

√
∆x2 + ∆y2/λpr, where ∆x and ∆y represent

the index structure size along transverse dimensions x and y. For L < Ldif ,

only the second term is important. The solution of Eq. (6.1) is then simply

E(z) = E(0) exp
(
ik
∫

∆ndz
)
, which immediately yields the simplified integral

relations Eq. (2.11) for FDH or Eq. (3.1) for FDSC/FDT between accumulated

probe phase shift and index profile ∆n. Thus, in this limit, the probe is

modified purely by phase accumulation, with no amplitude modulation.

For L ≥ L
(pr)
dif , Fresnel diffraction, described by the first term on the

right side of Eq. (6.1), becomes significant, and both phase and amplitude

profiles of the probe are modulated during its interaction with the index ob-

ject. We can then write the probe field as E = E0 expψ, where E0 is the

unperturbed probe satisfying ∂zE0 = (i/2n0k)∇2
⊥E0, exp Re(ψ) describes its

amplitude modulation, and exp Im(ψ) its phase modulation. Substituting this
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field in Eq. (6.1), and assuming the probe beam is much wider than the index

object, we get

∂ψ

∂z
=

i

2n0k

[
∇2
⊥ψ + (∇⊥ψ)2]+ ik∆n, (6.2)

with a nonlinear term. In order to linearize the reconstruction process, we use

the Rytov approximation [16]

(∇⊥ψ)2 � 2n0k
2∆n, (6.3)

i.e. phase and amplitude modulation vary slowly over transverse distances of

the order of λpr. Eqn. 6.3 describes interaction of probe and object over an

effective distance L′ for which a specific probe point overlaps with the index

structure. For collinear pump and probe, L′ ≈ L. Since ψ increases with L′,

a sufficiently long L could then enhance ψ beyond the Rytov limit. However,

for pump and probe pulses whose paths intersect at small oblique angle θ,

L′ ≈
√

∆x2 + ∆y2/θ can be considerably smaller than L, so Eqn. 6.3 is more

easily satisfied. Thus by using a small pump-probe intersection angle θ, the

evolution of an index structures over a long distance can be reconstructed

linearly.

6.2 Multi-object-plane imaging (MOPI)

In this section, we describe an experiment that images an evolving

light-speed index object over propagation distance L >> Ldif in a single shot.

The object is the Kerr and plasma index profiles of an intense fs laser pulse as

it forms a self-guided filament in air. The physics superficially resembles that
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of a fs pulse propagating through glass, as described in the previous chapter.

However, there are important differences in the details: the propagation dis-

tance is ∼ 10 cm instead of 3 mm, the pump pulse is several mJ instead of

< 1µJ, the plasma lifetime is several ps instead of < 1 ps, and the Kerr index

contains a delayed molecular rotational component as well as an instantaneous

electronic component. To deal with probe diffraction, the modulated probe

is imaged to each of several detectors from multiple object planes within the

10 cm interaction region, rather than just a single object plane at the exit of

the medium as in FDH and FDT. Hence we call this approach multi-object

plane imaging (MOPI). The concept can be compared to high-speed sports

photography, which must be done with wide aperture optics for efficient ex-

posure within brief shutter opening times, at the expense of a small depth of

field. To achieve large depth of field, the sports photographer’s MOPI solution

would be to use multiple high-speed cameras, each one focused at a different

object plane separated from that of its neighbor camera by a depth of field.

Through computer processing, a composite photograph that is in focus over a

large depth of field can then be assembled.

6.2.1 Experimental setup

In the experiment, a pump laser pulse (duration 70 to 140 fs, center

wavelength 800 nm, energy 1 − 3 mJ) is focused to beam waist w0 ∼ 63 µm

in air, where it induces a Kerr index profile and a plasma channel of < 1%

atmospheric density in its wake. A collimated and fully compressed probe pulse
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(∼ 14 µJ, 70 to 140 fs duration) split from the pump crosses the interaction

region at angle θ ∼ 1◦ with waist ∼ 3 mm (see Fig. 6.1). In contrast to FDH,

FDSC and FDT methods described in previous chapters, the probe pulse is

NOT temporally stretched by chirping to illuminate the object’s entire length.

Instead, the compressed probe illuminates only a 70 to 140 fs longitudinal slice

of the pump-generated structure at a specified time delay t behind the pump

over a 10 cm path. Thus a single probe images the evolution of the transverse

profile of a selected longitudinal slice of the object. To image the entire length

of the object in one shot, additional probes with different delays t must be

used. Alternatively, for stable filaments, t can be changed on different shots

to build up a composite image. Here we demonstrate the latter approach, but

there is no fundamental difficulty in implementing the former.
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Figure 6.1: Schematic diagram of Multi-object-plane imaging setup. Here
nonlinear phase contrast imaging is applied to resolve small phase shift induced
by tenuous plasma in air.

The illuminated slice sweeps transversely across the probe profile with

velocity v⊥ = c sin θ ≈ cθ, thereby mapping its index profile at propagation

distance z onto transverse position x on the probe profile via the relation

x = zθ (Fig. 6.2). Only index structures at z = x/ sin θ modulate the probe
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at x; thus in principle index structures at z 6= x/ sin θ do not affect the probe,

provided θ is large enough.

c c cosθ 

c sinθ 

z = 0 

z = L/2 

z = L (a) (b) (c) 

Figure 6.2: Schematic diagram of small oblique angle probe. Relative positions
of pump induced index structure (red) and probe pulse (blue) at different
propagation distance: (a) z = 0; (b) z = L/2; (c) z = L.

After the interaction, copies of the phase-modulated probe created by

beam splitters are imaged through a 4f system (f1 = 50 cm, f2 = 75 cm) from

multiple object planes (MOPs) at zi (i = 1, 2, 3, · · · ) along the pump path

to corresponding image planes, where charge-coupled device (CCD) cameras

recorded “bow-tie” shaped images (Fig. 6.3), in which the waists corresponds

to object planes that are exactly imaged, the wider wings to nearby out-of-

focus regions. These bow-tie images are, in essence, phase streaks as discussed

in the previous three chapters, with three important differences. First, only

one plane (corresponding to the waist) is in focus for each detector. A phase

retrieval algorithm, discussed in the next section, must be applied to recover

a complete in-focus composite streak from images projected from different

object planes. Second, the phase modulation has been converted to ampli-

tude modulation using a nonlinear phase contrast imaging (PCI) technique,

discussed in Sec. 6.3. The amplitude modulation is recorded directly on the
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CCDs without the use of a spectrometer or interferometry. This approach

was chosen here because the present experiment, as well as target applications

to multi-GeV plasma accelerators, involve tenuous (ne ∼ 1017 cm−3) plasmas

that yield correspondingly small phase shifts. PCI can resolve phase shifts

as small as ∼ 10 mrad, beyond the resolving capability of interferometry by

one order of magnitude. Moreover, for large phase shifts, amplitude modu-

lation increases monotonically with phase shift, avoiding 2π phase wrapping

problems that arise in interferometry and two-dimensional holography. Third,

the streaks record a time sequence of the transverse profiles of just a single

longitudinal slice of the object, rather than projections of the entire object as

in FDSC and FDT.

6.2.2 Phase retrieval from multi-object-plane images

The probe pulse crossing the interaction region accumulates phase shift

φ(ζ, y, z) = (2π/λpr sin θ)
∫

∆n(ζ, x, y, z)dx at specific propagation position z,

and induces diffraction pattern at x = z sin θ only, requiring a minimum probe

angle θmin. To resolve two evolution events separated by a propagation distance

of ∆z, ∆x ≈ θ∆z should exceed the transverse size σx of both the index object

and of the Fresnel diffraction pattern due to the propagation along ∆z. For ex-

ample, an index object propagating at z1 perturbs the probe profile at x1 = θz1

by introducing amplitude modulation δE(z1) = δ exp {−[(x− x1)2 + y2]/w2
0}.
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Figure 6.3: Multi-object-plane imaging raw data. Intensity modulation of a
probe at delay t = 1.7 ps behind a 3 mJ pump imaged from object planes at
zi = 3, 5, 7, and 9 cm, as captured by four CCD cameras. Color scales indicate
probe relative intensity modulation.

Thus the field after propagation to z2 = z1 + L is

δE(z2) = IFFT

{
FFT [δE (z1)] exp

[
−iλL

4π
(k2
x + k2

y)

]}
=

δ

1 + iλL/πw2
0

exp

{
−(1− iλL/πw2

0) [(x− x1)2 + y2]

w2
0 [1 + (λL/πw2

0)2]

}
. (6.4)

Thus the maximum transverse size of the diffraction pattern is w0

√
1 + (λL/πw2

0)2.

It should be considerably smaller than the actual transverse shift L sin θ along

the x direction, in order to resolve evolution of the index structure. For any

propagation length, this criteria sets a limit L sin θ � λL/πw0. Thus the
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probe angle must satisfy

θ � θmin =
λ

πw0

. (6.5)

In the experiment, λ = 800 nm, σ ∼ 100 µm, so Eq. (6.5) yields θmin ∼ 0.14◦.

Thus the chosen θ ≈ 1◦ satisfies the condition for the minimum probe angle.

A corollary of Eq. (6.5) is the quasi-1D diffraction of the index structure

along the y-direction within the probe transverse profile, which is responsible

for the flared parts of the “bow-tie” profiles in Fig. 6.3. From a naive applica-

tion of the Huygens-Fresnel principle, the diffracted wave from an object con-

fined in both x and y dimensions spreads out in both x and y directions. Thus

it might appear at first sight that the bow-tie flare at a given x2 would include

contributions from diffracted waves originating from z positions correspond-

ing to neighboring x1 6= x2. However, the criterion (6.5) dictates that such

diffracted waves cannot catch up with the transverse movement of the index ob-

ject itself when θ > θmin. Even if the object were to propagate to L′, so that the

diffraction pattern of phase perturbation at x1 reached x2, the disturbed field

is δE2 ∼ (πw2
0δ/λL

′) exp(−π2w2
0(x2 − x1)2/λ2L′2) exp(−π2w2

0y
2/λ2L′2). Even

though the first exponential function may not vanish if L′ � (x2 − x1)/ sin θ,

the contribution of diffraction pattern from z1 is a flat background with a

broad width ∆y ∼ λL′/πw0 � w0 along the y-direction and amplitude (i.e.

δL′−1), which is negligible. Thus the diffraction pattern at x2 is only con-

tributed locally by the index structure at z2, like a beam diffracted by a string

whose cross-section is the same as the index structure’s transverse profile at
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x2 or z2. The equation governing probe propagation and diffraction

∂E

∂z
=
iλ

4π
∇2
⊥E +

2πi

λ
∆n(z)E (6.6)

thus reduces to a quasi-1D version at specific x:

∂E

∂z
=
iλ

4π

∂2E

∂y2
+

2πi

λ
∆n(z)δ

(
z − x

θ

)
E. (6.7)

This quasi-1D simplification decouples phase shift reconstruction at different

x transverse positions, enabling one-dimensional reconstruction of the phase

shift φ line-by-line at different x using the Gerchberg-Saxton algorithm [24].

Back-projection 
to z0 for phase φi 

Average 
phase 
shift 

over φi 

Forward-projection 
to z0 for amplitude Ai 

Replace Ai 
with 

measured 
amplitude 

modulations 

Measured 
intensity 

modulations 

Reconstructed 
phase 

Figure 6.4: Schematic diagram of iteration procedure in the Gerchberg-Saxton
algorithm.

The Gerchberg-Saxton algorithm for retrieving phase shift from am-

plitude modulation on multiple object planes zi is illustrated in Fig. 6.4. In
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experiments, probe amplitudes with modulations at different propagation po-

sitions zi are measured without phase shift information. In order to calculate

ψ(y, z) at z, all these phase profiles are set to zero at the beginning, and the

complete probe fields with amplitude and phase propagates from zi to z based

on Eq. 6.7, yielding electric field Ei(y, z) at z from different zi. Then the mean

value Ē(y, z) = (1/N)
∑

i Ei(y, z) is set as the electric field at z where N is the

number of cameras, or the number of object planes. The mean field Ē(y, z)

then back-propagates to each zi position with electric field Ei(y, zi). Finally

the amplitude |Ei(y, zi)| is replaced by the measured probe amplitude mod-

ulation Ai(y). Thus the loop is closed in one step of the iterations. In each

iteration step, the error of reconstruction ε is calculated through

ε =

√∑
i

[|Ei(y, zi)| − Ai(y)]2. (6.8)

Typically after 200 to 300 iterations, the error ε converges to zero and the phase

shift imprinted on the probe can be obtained from ψ(y, z) = arg
[
Ēi(y, z)

]
.
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Figure 6.5: Reconstructed phase shift of plasma channel from multi-object-
plane amplitude modulation. The color scale denotes the original phase shift.

As an example, Fig. 6.5 shows the reconstructed phase track of a probe

that propagated 1.7 ps behind the pump pulse by analyzing amplitude mod-
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ulations captured by four CCD cameras shown in Fig. 6.3. With this de-

lay, pump-induced plasma was entirely responsible for probe phase shift. In-

deed this image matched a plasma fluorescence image recorded from the side.

If we assume the plasma filament is cylindrically symmetric, Abel inversion

analysis yields electron density ne ≈ 1016 cm−3 (0.03% atmospheric density).

The high signal-to-noise ratio (∼ 20) implies that plasma density fluctuations

∆ne < 1015 cm−3 could be imaged in a single shot. This high sensitivity orig-

inates partly from our conversion of phase to intensity modulations, without

the need to resolve fringe shifts . Moreover, compared to transverse probe

techniques [1, 9, 70], the small probe angle lengthens overlap time of probe

and object, magnifying the phase shift induced by tenuous plasma structures.

6.3 Nonlinear phase contrast imaging and schlieren for
high sensitivity and robustness

To image tenuous plasma or other faint refractive index structures, a

phase contrast imaging (PCI) procedure can be applied [93]. In conventional

PCI of a small phase shift (φ < 0.4 rad) [90], a tiny quarter wave phase

plate is placed on the focal spot of the first imaging lens 1 in Fig. 6.1. The

probe field carrying phase shift exp(iφ) ≈ 1 + iφ can be conceptually divided

into an intense unperturbed part (corresponding to the factor 1) that focuses

tightly onto the wave plate, and thus experiences a π/2 phase shift, and a weak

diffracted part (corresponding to the factor iφ) that does not focus tightly, and

thus bypasses the wave plate. As a result, the measured probe has intensity
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|i+ iφ|2 ≈ 1+2φ, i.e. phase is mapped linearly to intensity modulation, which

can be measured with high sensitivity. However, for probe pulses derived from

large laser systems such as ours, the pointing direction of the probe beam is

not stable enough to reliably hit the tiny phase shifter, which is as small as

the focal spot size.
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Figure 6.6: Calibration of nonlinear phase shift and absorption in the nonlinear
Kerr medium using close (left) and open (right) aperture z-scan measurements.
The Kerr medium is a 1-mm thick fused silica glass at the focal plane of the
4-f imaging system shown in Fig. 6.1.

To implement robust PCI, we used a nonlinear Kerr effect by placing

a 1mm fused silica plate at the Fourier plane of the 4f imaging system, where

it preferentially induced Kerr phase shift ψ0 and nonlinear absorption α on

the portion of the probe light that was unperturbed by the object, and thus

focused tightly in the plate. The value of ψ0 and α can be directly measured

through closed- or open-aperture z-scan [74] as shown in Fig. 6.6. These mea-

surements yielded ψ0 = 2.7 rad and α = 0.57 for the unperturbed probe.
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After collimation by lens 2, the actual probe phase shift on the image plane

becomes ψ, as discussed further below. The unperturbed probe part α exp (iψ)

interferes with the signal part iφ, yielding a modulated intensity profile

I ∝ 1 +
2 sinψ

α
φ (6.9)

There are two advantages to this nonlinear implementation of phase contrast

imaging: (1) nonlinear absorption accompanies phase shift, thereby improving

sensitivity, as in dark field schlieren imaging; (2) by avoiding the conventional

use of a micron-size phase shifting plate or needle tip absorber to induce ψ0

and/or α, nonlinear optical processes increase the robustness of the system to

probe beam-pointing instability. The nonlinear phase shift ψ and nonlinear

absorption α can be adjusted by varying the probe energy, thus the probe

intensity modulation is a function of the probe energy.

The relation between ψ0 and ψ is derived by assuming that the probe

has a Gaussian transverse profile E0 ∼ exp [− (x2
0 + y2

0) /w2
0]. Thus at the focal

plane of the 4f imaging system, the field is E1 ∼ exp [−k2
0w

2
0 (x2

1 + y2
1) /4f 2

1 ] by

Fourier transformation. At the fused silica plate, probe-intensity-dependent

phase shift is induced with Gaussian shape. The transmitted field is then

E ′1 ∼ exp

[
−k

2
0w

2
0 (x2

1 + y2
1)

4f 2
1

]
exp

{
iψ0 exp

[
−k

2
0w

2
0 (x2

1 + y2
1)

2f 2
1

]}
=

∞∑
m=0

(iψ0)m

m!
exp

[
−(2m+ 1)k2

0w
2
0 (x2

1 + y2
1)

4f 2
1

]
. (6.10)

Here the Taylor expansion of exponential function, i.e. ex =
∑∞

m=0 x
m/m!, is
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applied. The field at the image plane is another Fourier transform of E ′1:

E2 ∼
∞∑
m=0

(iψ0)m

m!(2m+ 1)
exp

[
− f 2

1 /f
2
2

2m+ 1

x2
2 + y2

2

w2
0

]
. (6.11)

Generally the probe beam size is large enough that the area disturbed by the

pump induced index structure shows no significant intensity variations, i.e.

x2, y2 � w0 in the interesting signal area. So this almost constant field is

E2(x2 = 0, y2 = 0) =
∑∞

m=0(iψ0)m/m!(2m + 1), and the phase shift at the

image plane induced by the nonlinear Kerr effect in the glass plate is

ψ = arg

[
∞∑
m=0

(iψ0)m

(2m+ 1)m!

]
. (6.12)

As an simple, empirical estimate of ψ from z-scan measured ψ0, we assume

ψ0 � 1 so that high order terms in Eq. (6.12) are terminated and the sum is

reduced to 1 + iψ0/3 ≈ exp (iψ0/3). So we have a simple relation ψ = ψ0/3.

Even for ψ0 ∼ 1 or larger than 1, this relation still holds because the series in

Eq. (6.12) converges even faster than an exponential function. For example,

in the experiment, the measured ψ0 at the focal plane is 2.7 rad, and the phase

shift on the image plane is 0.83 rad, roughly one-third of ψ0.

6.4 Multi-object-plane phase-contrast imaging of laser
filaments in air

Figure 6.5 illustrates a plasma channel 1.7 ps after the driving pulse.

This plasma lives for tens of picoseconds before recombining. To observe the

key laser-air interaction dynamics that lead to formation of long self-guided
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filaments, the pump-probe delay should be varied in the vicinity of pump-probe

temporal overlap.
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Figure 6.7: Four single-shot measurements of the z-evolution of the transverse
index profile behind a 3 mJ pump focused in air, with probe at indicated
time delays: (a) pump leading edge, where a positive electronic Kerr effect
dominates; (b) pump trailing edge, where a negative plasma contribution is
superposed on the electronic Kerr profile; (c) a molecular rotation time behind
the pump, where the plasma contributions is superposed on a weaker delayed
Kerr profile; (d) further behind the pump, where only plasma contributes.
Color scales give probe phase shift in rad.

Fig. 6.7 presents four single-shot multi-object-plane phase contrast imag-

ing (MOP-PCI) measurements of the continuous probe phase shift profiles

∆φpr(z, y) at delays t = (a) −33 fs, (b) 100 fs, (c) 233 fs and (d) 500 fs be-

hind the peak of a 3 mJ, 140 fs pump pulse focused in air. For the data in

Fig. 6.7(a), the probe overlapped the leading edge of the pump pulse, which
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self-focused as it propagated. The phase shift originated mainly from the

instantaneous electronic Kerr effect, yielding a positive phase-shift that in-

creased monotonically in amplitude up to z ∼ 8 cm, after which it weakened

due to nonlinear absorption and ionization. For the shot in Fig. 6.7(b), the

probe overlapped the trailing edge of the pump. Here the positive electronic

Kerr contribution was still present, but plasma that grew in density in the

trailing edge of the pump burned a deep, narrow negative index “hole” into

the center of the wider positive transverse phase profiles over the interval

2 < z < 9 cm. The plasma channel is relatively narrow because only the in-

tense central part of the pump can effectively ionize the air, and such channel

defocused the pump like a negative lens. Moreover diffraction of the pump

trailing edge from the plasma filament widened and transversely modulated

the background positive Kerr profile compared to the data in (a). For the shot

in Fig. 6.7(c), the probe trailed approximately one molecular rotation time

behind the pump. Here the instantaneous Kerr effect was no longer present,

but a delayed molecular-rotation Kerr effect created a weak, broad positive

index profile, still superposed on the narrow axial index hole of the long-lived

plasma. At later delays (Fig. 6.7(d)), only the negative plasma contribution

is present. The Kerr/plasma dynamics illustrated in Fig. 6.7 has been exten-

sively studied in the context of laser filament formation in air (see e.g. Ref.

[13, 88] and references therein). The new contribution here is to visualize the z-

evolution of the associated index profile at each t over the entire propagation

length in a single shot with good signal-to-noise ratio. If necessary, multi-

112



Figure 6.8: Probe phase shift at z = 7.5 cm versus pump-probe time delay on
axis (a) y = 0 or off axis (b) y = 100 µm. Different probe polarizations are
applied. Red: Epu//Epr; blue: Epu ⊥ Epr

object-plane phase contrast imaging can be multiplexed straightforwardly to

visualize evolution at several t in one shot, rather than in separate shots as in

Fig. 6.7(a)-(d), by propagating several probes with different t along separate

small-θ paths through the interaction region, then imaging each to different

areas of the CCDs or to separate CCD arrays.

By taking multiple shots with different pump–probe delays t, the evo-

lution of the index structure φ(ζ, y, z) ∝
∫

∆n(ζ, x, y, z)dx was obtained.

Fig. 6.8 showed the temporal profile of the index structure at z = 7.5 cm,

both on axis (y = 0, a) and off-axis (y = 100 µm, b). Meanwhile the

probe polarization was also adjusted to either parallel (red) or perpendicular

(blue) to the linearly polarized pump. Nonlinear refractive index and plasma

generation contribute to the probe phase shift. The former has an instanta-

neous electronic component φinst and a delayed molecular rotation component
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φrot. For co-polarized pump and probe (red), positive instantaneous (t = 0)

and positive time-delayed (t ∼ 300 fs) Kerr index shift is resolved because

φ‖ = φinst +φrot. For crossed-polarized pump and probe (blue), the phase shift

equals φ⊥ = φinst/3 − φrot/2 because of the nonlinear susceptibility tensor’s

isotropic property of nitrogen or oxygen in air. Thus negative time-delayed

(t ∼ 300 fs) phase shift in blue curves is observed (Fig. 6.8). Comparing

Fig. 6.8a and b, phase shift on axis after t > 500 fs showed a stable nega-

tive value ∼ −0.15 rad, however the off-axis phase shift relaxes to zero. This

is because the plasma channel ionized by the pump laser pulse can only be

generated near the optical axis.

6.4.1 Multi-object-plane imaging resolution

In each shot in Fig. 6.7, the reconstructed phase at a specific longi-

tudinal delay t shows the history of the index structure’s transverse profile

φ(y, z) = (2π/λ sin θ)
∫

∆n(t, x, y, z)dx, with resolution limits on measuring

fine structures along longitudinal t-direction and transverse y-direction. The

longitudinal t-resolution is determined by the probe pulse duration since the

probe selects the specific slice of the index structure along longitudinal t-

direction and its duration determines the accuracy. On the other hand, the

transverse y-resolution depends on the numerical aperture, or f -number, of

the imaging lenses, as for other imaging techniques.

Multi-object-plane imaging also resolves the evolving index structure

at different propagation distance z. Limits to resolving events within a short
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distance ∆z constitutes the z-resolution. The z-resolution is determined by the

transverse size of the object along x and by diffraction from nearby structures.

A point at x of the probe profile overlaps with an object of transverse size σ

for time σ/cθ, during which the object propagates ∆z ∼ σ/θ. Thus the phase

shift at x averages the object’s evolution over ∆z, defining one contribution to

z-resolution. In addition, light diffracted from x±σ or beyond can contribute

to the phase at x. However, if the probe angle is larger than the minimum

θmin, the diffraction contribution on z-resolution becomes negligible.

6.5 Tilted probe pulse front for pump–probe walk-off
compensation

A subtlety of single-t MOPI data such as Fig. 6.7 is that the component

of the object’s velocity along the probe propagation direction is v‖ = c cos θ,

slightly smaller than the probe speed c. Thus as the probe propagates from

z = 0 to L, the index structure gradually lags behind, accumulating time delay

walk-off ∆t = L(1 − cos θ)/c ≈ Lθ2/2c. To maintain well-defined delay t, ∆t

should be smaller than probe duration τpr, thus setting an upper limit of the

probe angle

θ < θmax = (2cτpr/L)1/2 . (6.13)

For τprobe ∼ 100 fs and L ∼ 10 cm, θmax ∼ 1.4◦. Thus t remained well-defined

for the data in Fig. 6.7.

However, in experiments requiring longer L, shorter τpr, or larger θ (e.g.

to improve z-resolution or to reduce pump scatter into the probe line), time
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Figure 6.9: Schematic diagram of probe pulse tilting for pump-probe walk-off
compensation. (a) Pump-probe walk-off for probe angle larger than θmin. (b)
Walk-off compensation through tilting the pulse front of the probe.

delay walk-off could limit MOPI measurements. In such cases, time delay

walk-off can be compensated straightforwardly by tilting the intensity front

of the probe pulse by angle θ/2, as shown in Fig. 6.9. A specified delay t

of the object then remains perfectly overlapped with the same longitudinal

position of the probe intensity profile throughout the propagation length. As

a numerical example, a probe tilted by a prism with angular dispersion 0.05

rad/µm enables probe angle as large as θ = 4.6◦ ∼ 3θmin without walk-off.

Moreover, angular dispersion of the probe is negligible as long as L remains

much smaller than a critical length Lc = πc2τ 2
pr/λ tan2(θ/2) ≈ 9 m.

The critical length Lc is limited by the spatiotemporal broadening of the

probe after the angular dispersive optics such as prism and grating. Consider a

Gaussian pulse E(x, t) = E0 exp (−x2/σ2 − t2/τ 2) with its frequency domain

expression as Ẽ(x, ω) = (E0τ/2
√
π) exp (−x2/σ2 − ω2τ 2/4). The dispersive

optics introduces extra phase kωx(∂ωα), where ∂ωα is the angular dispersion
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of the optics. After propagation for L in free space, the probe pulse finally

becomes

E(x, t) = E0τσ
4

∫
exp

[
−
(
kx − k ∂α∂ωω

)
σ2

4
− ω2τ2

4
− ik2xL

2k

]
eikxxe−iωtdkxdω

= E0 exp
[
− x2

σ2+2L/k

]
exp

{
−
[
τ 2 + 2k2σ2L(∂ωα)2

kσ2+2L

]−1 [
t− k2σ2∂ωαx

2L+kσ2

]2
}
.(6.14)

Thus Eq. (6.14) demonstrates that the probe pulse is tilted by an angle

tan γ = ω∂ωα(1 + 2L/kσ2)−1 ≈ ω∂ωα = λ∂λα, and the dispersion of the

prism or grating can be chosen to fit the probe angle to achieve γ = θ/2.

Meanwhile, the probe experiences significant pulse broadening as the propa-

gation L increases from τ to
√
τ 2 + 2kL(∂ωα)2(1 + 2L/kσ2)−1. In order to

reduce the pulse broadening and maintain longitudinal t-resolution, the condi-

tion that τ 2 � 2kL(∂ωα)2 should be satisfied, setting the critical propagation

distance

L� Lc =
πc2τ 2

λ tan2(θ/2)
(6.15)

To illustrate walk-off compensation, we repeated the experiment with

normal and tilted probe pulses of 70 fs duration and θ = 2.5◦, which exceeded

θmax = 1.2◦ for L = 10 cm. Fig. 6.10a shows results at selected t for a normal

probe. A probe whose peak (ti = 0) overlapped the pump-induced index object

initially at z ≈ 0 outran the object within 2 cm, yielding a phase streak only 2

cm long (Fig. 6.10a, top panel). For larger initial delays (ti = 66 and 133 fs),

the probe outran the object at progressively larger z, yielding progressively

longer streaks (lower 2 panels). In all of these cases, the probe overlapped

the object at a drifting delay t = ti − z/c cos θ. Fig. 6.10b shows results for
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Figure 6.10: (a) Single-shot phase profiles with different pump-probe delays,
showing effect of object-probe walk-off; (b) as in (a), but with optimally tilted
probe, showing walk-off compensation, and color scales in (a-b) gives probe
phase in rad.

an optimally tilted probe. In this case, all phase streaks were ∼ 10 cm long,

because the tilted probe overlapped the object at constant t = ti throughout

the interaction.

In summary, multi-object-plane imaging measures the evolution of the

transverse profile of light-speed index structures with high sensitivity over

≥ 10 cm path lengths at a specific time delay behind the drive pulse in a

single shot. This method is uniquely suited to visualizing structures with

low index contrast propagating over long paths with significant shot-to-shot

variations or low repetition rate. It can be generalized to full 4D single-shot

visualization by using multiple probes.
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Chapter 7

Petawatt laser driven wakefield acceleration

and its optical diagnosis

In Chapter 4, plasma wake structures were imaged in a laser wake field

accelerator (LWFA), driven by ∼ 40 TW laser pulses, that produced ∼ 100

MeV electron beams. Multi-TW laser pulses have accelerated electrons to

as high as ∼ 1 GeV within a ∼ 1 cm long preformed plasma channel [48].

Such electron beams were used to generate coherent x-ray beams [42]. These

experiments were restricted to plasma electron densities ne > 1018 cm−3 at

which terawatt laser pulses could resonantly excite a wake and inject plasma

electrons into it. However, the maximum electron energy is inherently limited

to ∼ 1 GeV within this density regime by dephasing between accelerating

electrons and the plasma wakefield, and by depletion of the laser pulse.

Our group recently demonstrated a multi-GeV laser plasma accelerator

[89]. From computer simulations, general requirements for multi-GeV LWFAs

are well known. First, the LWFA should operate in a “blowout” regime. Both

numerical modeling [53] and experimental diagnostics [18] have shown that

bubble formation is essential for producing collimated, quasi-monoenergetic

electron beams. Second, plasma density must be reduced to ne < 1018 cm−3
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to increase dephasing length LD and pump-depletion length LPD to multiple

centimeters, factors that more than compensate for the slightly weaker acceler-

ating field Ez ∝
√
ne at lower density. Third, laser peak power P must be kept

well above the critical power Pcr = 17ω2
0/ω

2
P GW for relativistic self focusing.

Here ω0 is the laser frequency and ωcr ∝
√
ne is the plasma frequency. This

enables the drive pulse to self focus and self compress during its initial non-

linear interaction with the plasma, increasing its intensity to a level at which

blowout occurs, and helps it to self-guide over multiple Rayleigh lengths once

acceleration begins, thereby exploiting the increased acceleration length set by

LD and LPD. For ne in the low 1017 cm−3 range, the power must therefore

approach 1015 W, or 1 petawatt (PW), a capability that is just emerging from

recent advances in laser technology [27].

7.1 Petawatt laser driven plasma accelerators for elec-
tron and x-ray generation

Using the Texas Petawatt Laser at peak power of 1.1 PW [27], our laser

wakefield acceleration experiments demonstrated quasi-monoenergetic electron

beam with peak energy up to 2 GeV and maximum energy up to 2.3 GeV.

Our results also showed that the highest electron energy (2 GeV) was achieved

in a narrow range of plasma density (4 to 6×1017 cm−3). It is shown that

self-injection and multi-GeV acceleration occur despite a irregular transverse

laser profile outside the focal volume for long interaction length. In addition,

the highly collimated electron beam with sub-milliradian (FWHM) divergence
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angle and unprecedented pointing stability, justifying the application of the

quasi-monoenergetic multi-GeV electron sources for collider and coherent light

source [89].

7.1.1 Generation and measurements of 2 GeV electrons

Figure 7.1 shows a schematic layout of the experiments. Linearly po-

larized pulses from the Texas Petawatt Laser (duration τ ∼ 150 fs, wavelength

λ = 1.057 µm, energy Elaser ≤ 150 J)[27] were focused with f -number (f#) 47

into the 1.5 mm radius entrance aperture of a 9-cm-long gas cell, which was

pulse-filled with 1 to 8 Torr helium (He) of 99.99% purity. Transversely scat-

tered pump light was imaged through a side window in the cell. Accelerated

electrons emerged through a 3-mm radius exit aperture and were deflected

in a plane perpendicular to the laser polarization by a magnetic field from

a permanent dipole magnet. This field is profiled with 1% accuracy using a

Hall probe, and the effective field was used in calculating electron trajectories.

A high-sensitivity image plate (hereafter IPHS) detected undeflected betatron

X-rays and energy-dispersed electrons of energy E > 0.5 GeV at the end of

an evacuated tube, 2.46m downstream from the magnet. A high-resolution

image place (IPHR), a phosphor (LANEX) screen and a plastic scintillator fur-

ther reinforce the detection of GeV electrons. Between magnet and detectors,

electrons and X-rays passed through two arrays of thin, precisely positioned

tungsten-wire fiducials, which cast identifying shadows on the detectors. These

shadows determined the electron energy at 2 GeV with 5% uncertainty at the
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Figure 7.1: Schematic diagram of PW laser-driven wakefield accelerator. The
green area were in a vacuum chamber at 10−6 Torr. The linearly polarized PW
laser pulse enters the interaction region from left. Inside the gas cell, He plasma
was generated and accelerated electrons to 2 GeV which were detected by
the magnetic spectrometer with two arrays of 127 µm diameter tungsten-wire
fiducials 1.256 and 1.764 m after the gas cell exit. Surrounding panels include:
(a) transversely scattered light imaged to a CCD camera; (b) trajectories of 2
GeV electrons relative to the fiducial arrays; (c-f) unprocessed data showing
electrons up to 2.3 GeV and fiducial shadows using scintillator (c), LANEX
(d), IPHS (e) and IPHR; g He pressure versus time with an acoustic shock
wave; h a typical laser focal spot.
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Figure 7.2: Electron spectra and betatron X-ray profiles for three shots (a–
c)from the accelerator. Column 1: low energy electrons (< 350 MeV) recorded
by another image plate (IPLE). Column 2: GeV electron spectra recorded on
IPHS. Column 3: zoom-in of high-energy tails. Column 4: vertically integrated
electron energy spectra around each high-energy peak. Column 5: betatron
X-ray angular distribution recorded on IPHS.

2σ level.

Figure 7.2 presents GeV electron spectra (column 1 to 4) and corre-

sponding betatron X-ray angular distributions (column 5) in three separate

shots (a–c). Table 7.1 shows numerical properties of and experimental con-

ditions for each shot. Peak electron energy at 2 GeV is observed for shots a

and b, and the high energy tail in shot a can reach 2.3 GeV. Mono-energetic

behavior is convincing that the energy spread (FWHM) of the electron energy

peak is below 7% for all these three shots. The electron beams also exhibit
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Shot Ee (GeV) ∆E/Ee θe (mrad) Qtot (pC) ne (1017cm−3) Elaser (J) τ (fs)

a 2.0± 0.1 6% 0.6± 0.1 540± 60 4.8± 0.1 100± 5 160± 10

b 1.8± 0.1 5% 0.5± 0.1 400± 50 3.4± 0.1 120± 5 150± 10

c 0.95± 0.1 7% 0.5± 0.1 100± 20 2.1± 0.1 129± 5 160± 10

Table 7.1: Properties of and experimental conditions for producing GeV elec-
tron beams

highly collimated behavior with a maximum diverging angle no larger than

0.6 mrad. The accelerated electrons are self-injected into the plasma wakefield

without any external injection mechanisms, however, the injection process is

so efficient that up to 500 pC total charge was observed, with > 10% of them

aggregated around the mono-energetic peak. A large amount of electrons ac-

celerated and trapped in a plasma bubble with transverse field is critical for

betatron X-ray generation.

7.1.2 Betatron X-ray generation

Fig. 7.2 column 5 shows the angular distribution of betatron X-rays

which were emitted from accelerated electrons wiggling within the evacuated

plasma bubble. The electrons experience betatron oscillation at frequency

ωβ = ωp/
√

2γ because of the transverse electric field within the bubble. Here

γ is the increasing Lorentz factor of the accelerated electrons; for 2 GeV elec-

trons, γ = 4000. Meanwhile, the measured diverging angle of the X-ray beam

is around 2.5 mrad, corresponding to the strength parameter K = γθβ ≈ 10.

Since K significantly exceeds 1, the transverse motion of electrons is in the

large K wiggler regime rather than the small K undulator limit. In this

124



case, a broad spectrum of the X-ray beam with a critical photon energy

Ecrit = 3~Kγ2ωβ should be observed. Coarse betatron X-ray spectra were ob-

tained by measuring X-ray transmission through aluminum and copper masks

with stepped thickness of 2 mm, 1 mm, 0.5 mm, and 0.25 mm. Only X-ray

photons beyond a specific threshold energy can transmit through a given thick-

ness of material. Thus stepped masks of Al/Cu can resolve the X-ray spectrum

with low resolution. Typical X-ray spectra were peaked at 25 ± 10 keV and

with a high energy tail extending beyond 70 keV [89]. The total X-ray photon

number ranged from 108 to 109, compared to previous 106 to 108 photons using

a 200 MeV laser wakefield accelerator [42]. Moreover, compared to > 100 keV

x-rays emitted by 700 MeV electrons [10] where the betatron amplitude was

resonantly enhanced by the rear of the laser pulse, the X-ray observed here

appeared not to be resonantly enhanced.

7.2 Multi-object-plane imaging of petawatt-laser-driven
plasma wakes

In this section we present initial results of multi-object-plane imaging of

the interaction of petawatt laser pulses with tenuous plasma under conditions

that produced 2 GeV electrons. Because only limited time and equipment

were available, only a low-resolution MOPI setup was used. Improved MOPI

is an ongoing priority of our group’s petawatt-laser-driven LWFA experiments.
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7.2.1 Relativistic self-focusing and merging of laser hot-spots

Multi-GeV electron acceleration in tenuous plasma (1017 cm−3) requires

acceleration length as long as ∼ 10 cm. Thus obtaining and maintaining a

focused laser transverse profile over such long distance is critical. The ir-

regular transverse profile of focused Texas PW pulses, which sometimes con-

tain multiple hot-spots, complicates this self-focusing and self-guiding process.

Single-shot optical diagnosis of the plasma bubble structure created by such

complicated pulses is a critical part of understanding current limitations to

accelerator performance, and improving its performance in the future. The

laser beam self-focuses relativistically in photo-ionized plasma, enabling laser

intensity I0 > 2×1019 W/cm2 to be achieved. As a result, the vector potential

of the laser pulse reaches a = 0.85
√
λ2(µm)I0(1018 W/cm2) > 4, sufficient to

generate plasma wakefield in the nonlinear bubble regime. For irregular inci-

dent laser pulse profiles, neighboring hot-spots can merge together to a single

high-intensity laser spot for wakefield excitation [19].

A simulation of non-axisymmetric laser wave propagating relativisti-

cally in the plasma was conducted based on the nonlinear Schrödinger equation

(NLSE)

2ik
∂a

∂z
+∇2

⊥a+ 4k2
p

(
1−

1 + k−2
p ∇2

⊥γ

γ

)
= 0 (7.1)

where k and kp are the laser and plasma wave number, respectively. Three

assumptions underlie Eq. (7.1): (i) the laser pulse profile evolves slowly —

i.e. k∂z � ∂2
z ; (ii) longitudinal profiles of the laser pulse and plasma wave are

not taken into account; thus the laser ponderomotive force on each electron
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Figure 7.3: NLSE simulation illustrating topological changes of a relativis-
tically self-focusing laser pulse. The color bars indicate the squared laser
strength parameter a2. The laser pulse evolves according to the NLSE in a
plasma of density ne = 5× 1017 cm−3, through propagation distance at z = 0
(a), 1.5 cm (b), 2.0 cm (c), 2.5 cm (d), 3.0 cm (e), and 3.5 cm (f).

is balanced by the field induced by plasma charge separation; (iii) the laser is

focused by the relativistic effect and free electron redistribution.

Fig. 7.3 showed propagation dynamics of a laser pulse with multiple

hotspots, represented by initial azimuthally varying super-Gaussian envelopes

of the form a = a0 exp [− (r⊥/w0)n]×[1 + α (r⊥/w0)m cos (mφ)] where m and n

are integers and α a fraction between 0 and 1. Here we have m = 9, n = 6, α =

0.25, a0 = 0.58 and w0 = 275 µm, and the plasma density is ne = 5×1017 cm−3.

At the beginning of the propagation process (z < 2 cm), hot-spots self-focus

separately, and then start to merge to a central spot and a ring outside at

z = 3 cm. After z = 3.5 cm, laser energy is fed from the ring to the central
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spot, and normalized peak intensity increases to |a|2 ≈ 2.5 for plasma wave

excitation. This simplified calculation roughly illustrate the dynamics of laser

propagation in plasma, i.e. self-focusing and hot-spot coalescence for the first

2 ∼ 3 cm of the propagation distance until intensity reaches values sufficient

to excite a plasma bubble needed for electron capture and acceleration.

7.2.2 Preliminary multi-object-plane imaging results
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Figure 7.4: Multi-object-plane imaging probe intensity modulation. Three
probes images the gas cell at z = 0.9 cm (a), 1.8 cm (b), 2.9 cm (c), respec-
tively.

Multi-object-plane imaging discussed in Chapter 6 was applied to mea-

sure plasma wakefield-induced refractive index perturbation driven by the

Texas PW laser. Three CCD cameras were used to image the interaction region

at distances z = 0.9, 1.8, and 2.9 cm from the gas cell entrance. Fig. 7.4shows

probe intensity profile modulations of the probe resulting from its plasma-

induced phase shift. The ∼ 100 µm wide plasma wakefield is surrounded by

a plasma channel about one millimeter wide. Apart from their contrasting
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widths, however, the phase shifts induced by wake or plasma channel are not

inherently distinguishable. In fact, the total phase shift induced by the chan-

nel was so large that phase-contrast enhancement of imaging sensitivity proved

unnecessary. Phase-to-amplitude conversion was accomplished by exploiting

the existing finite aperture of the optical imaging system.

Figure 7.5: Reconstructed plasma wakefield induced probe phase shift in three
different shots, showing spatial profile (x⊥) of wakefields at different propaga-
tion distance (z).

Fig. 7.5 showed reconstructed probe phase shift from probe intensity

modulations for three shots. In all three shots, phase shift induced by 1 mm

plasma channel is present, with transverse range from x⊥ ≈ −800 to 400 µm
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and over the whole propagation distance. However, for z > 3 cm, a ∼ 100 µm

wide phase shift structure forms in the center of the plasma channel, which is

believed to be introduced by plasma bubble formation after the laser propa-

gates to z ∼ 3 cm. This is consistent with the NLSE simulation of the petawatt

laser pulse propagating in plasma, which showed that the laser self-focuses near

the beginning of the plasma, reaching intensity required for bubble formation

after z > 3 cm. This is also supported by the optical side-scattering images

shown in Fig. 7.1. The side-scattering signal only exists within z < 3 cm for

all these three shots, and disappears after that region. For z > 3 cm, the laser

pulse is guided inside the plasma bubble without free electrons inside, thus

the scattering of the laser pulse is extremely low. However, for z < 3 cm, the

laser pulse overlaps with free electrons and enables significant scattering. The

correlation between multi-object-plane imaging and side scattering imaging

results further confirm the bubble formation for electron acceleration.

In summary, petawatt-laser-driven wakefield accelerators represents a

major new development in plasma acceleration. It features “long” pulse laser

(∼ 100 fs) propagating in tenuous plasma (∼ 1017 cm−3), and achieves multi-

GeV electron acceleration and coherent keV X-ray generation. Compared to

multi-terawatt-laser-driven wakefield accelerators, the petawatt-driven devices

take advantage of elongated dephasing length and depletion length, at the ex-

pense of slightly reduced acceleration field because of the low plasma density.

To quantitatively visualize the light-speed acceleration structures in petawatt

laser wakefield acceleration, our multi-object-plane imaging (MOPI) technique
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should replace frequency-domain interferometry, since it successfully meets the

challenges that multi-centimeter interaction length raises to the imaging depth

of field. Here we were only able to complete a preliminary MOPI observation

of bubble formation. Future improved MOPI experiments should resolve the

transverse profile evolution, and the spatiotemporal profile of the plasma bub-

bles in each single shot, once the experimental conditions are further improved.

For example, the probe pulse can be fully compressed, controlled with reduced

time-jitter, and tilted with the pulse front for longitudinal pump-probe com-

pensation. In addition, advanced method for pump-probe synchronization

method can also be adopted to define the accurate time T0 within ∼ 100 fs.
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Chapter 8

Conclusion and Outlook

In summary, three single-shot optical techniques for visualizing the

evolving structure of light-speed index objects have been developed: frequency-

domain streak camera (FDSC), frequency-domain tomography (FDT), and

multi-object-plane imaging (MOPI). For each of these techniques, prototype

experiments or applications in laser wakefield acceleration were demonstrated.

These techniques provide experimental physicists a visualization capability

that heretofore has been available only through intensive particle-in-cell (PIC)

simulations based on estimated initial conditions. These techniques bring the

evolving structure of laser wakefields and other light-speed structures into di-

rect, immediate experimental view for the first time, and provide a basis for

optimizing and scaling them.

As shown in Table 8.1, these techniques visualize evolving (z-dependent)

refractive index structures n(ζ, x, y, z) in a single shot. The FDSC provides

a time sequence of the index structure’s projections at a specific projection

angle φ(θ). By choosing the probe angle θ over a small range in the lab frame,

the projection angle φ can vary from 0 to ∼ 90◦, revealing the evolution his-

tory of the transverse or longitudinal profiles, respectively. In Chapter 4, we
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showed that an FDSC revealing the evolving longitudinal profile of laser-driven

plasma bubbles provided key physical insights into the causes of both optimal

and sub-optimal electron acceleration. Frequency-domain tomography (FDT),

a multi-probe generalization of FDSC, applies probes at different angles simul-

taneously to reconstruct a time sequence of the index structure’s spatiotem-

poral profile – i.e. a movie. Movie frames generated by FDT in a single shot

were compared directly with frames generated by a computer simulation that

required many hours, yet agreed with high fidelity on most essential details.

To visualize evolution over long propagation distances, where probe diffraction

limits the performance of FDSC or FDT, MOPI extended the depth of field

by imaging from multiple object planes simultaneously and adopting a small

probe oblique angle geometry. Nonlinear phase contrast imaging was applied

to improve imaging sensitivity to tenuous, low-contrast index structures.

Techniques Equation Probe number Interaction distance
FDSC

∫
n(ζ, x, yslit, z)dx single probe short

FDT n(ζ, x, yslit, z) multi-probe short
MOPI

∫
n(ζ0, x, y, z)dy single probe long

Table 8.1: Comparison among single-shot visualization techniques: frequency-
domain streak camera (FDSC), frequency-domain tomography (FDT), multi-
object-plane imaging (MOPI)

It is interesting to discuss these different techniques in the language of

degrees of freedom, in order to explore the possibility of accomplishing true

single-shot 4-dimensional visualization of evolving index structures n(ζob, xob, yob, zob).

In all these techniques, the profile of the probe field phase shifts is measured at
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a detector: the transverse profile ψ(xpr, ypr) in MOPI, or the spatiotemporal

profile ψ(ζpr, xpr) in FDSC or FDT. It is impossible to image the complete

profile ψ(ζpr, xpr, ypr) with a single detector in a single shot because any op-

tical detector integrates the signal over its shutter time, which lasts up to

nanoseconds. On the other hand, evolutional, or zob-dependent, information

of the index structure is encoded within the probe profile’s transverse or lon-

gitudinal dimension, through oblique angle geometry or pump-probe group

delay respectively. Thus a general rule for all single-shot optical visualization

techniques is that a single probe in a single shot can only provide the evolving

light speed object’s information with two degrees of freedom, one along its

evolutional dimension zob and the other along a specific view of its spatiotem-

poral profiles, no matter what trick is used. For example, a single probe in

FDSC or FDT provides a 2D phase streak. Line-outs across the streak axis

provide the object’s projection at the specific projection angle φ and those

along the streak represent the evolution history. In the case of MOPI, the

object’s evolution dynamics are mapped onto one probe transverse dimension,

and the object’s transverse profiles is directly imprinted onto the other probe

transverse dimension.

The challenge of visualizing 4-D evolution of the index structure amounts

to recovering the two missing degrees of freedom. For all visualization tech-

niques listed in Table 8.1, one degree of freedom is lost due to the relative

motion between pump and probe (a form of integration, or blurring), whereas

the other is lost due to a slicing procedure. For FDSC, the index structure’s
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projection provides an image along the projection view angle, but blurs the

spatiotemporal profile (ζob–xob) along the perpendicular direction. The sliced

dimension along yob originates from the spectrometer slit. FDT provides our

prototypical example of successful recovery of a missing degrees of freedom,

specifically the blurred dimension. By applying multiple probes in a single

shot together with tomographic reconstruction, the integrated or blurred di-

mension is resolved. However, the “sliced” dimension along yob can be resolved

only by using multiple spectrometers with the entrance slit of each aligned

with a different yob. In the oblique angle MOPI case, a single probe resolved

the evolution (z) history of the transverse profile along x, leaving the trans-

verse dimension y integrated and the longitudinal dimension ζ sliced by the

limited probe duration. The y-transverse dimension can be resolved by ap-

plying probes at different azimuthal angles and the longitudinal ζ-dependent

information by varying the pump-probe time delay over multiple shots (as

demonstrated in Chapter 5), or by using multiple probes at different delays in

a single shot.

All optical visualization techniques can be categorized as pump-probe

schemes for refractive index measurement, which in plasma is closely related

to spatial distribution of free electrons. Future work might explore the bire-

fringence of plasma in a relativistic intense laser field [86], much as measure-

ments of birefringence in gaseous nonlinear Kerr medium helps distinguish

electronic and molecule rotation components of the nonlinear refractive in-

dex [88]. Plasma refractive index in strong laser fields is not only a function
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of plasma density, but also depends on the free electrons’ relativistic quiver-

ing energy. Measurement of birefringence from the latter component provides

electron quivering energy (or “temperature”) distribution, in the light-speed

pump co-moving frame. Moreover, because of momentum conservation along

the transverse direction, the laser vector potential a0 equals the transverse

electron momentum p⊥ that a0 = p⊥. Thus electron quivering “temperature”

map can be directly related to the spatiotemporal profile of laser pulse at

relativistic laser intensity (i.e. > 1018 W/cm2). Visualization of relativistic-

intensity laser pulse evolution is potentially able to reveal underlying physics

in relativistic nonlinear optics and intense laser plasma interactions. Currently

no techniques exist for directly measuring relativistic laser intensities, or the

associated plasma birefringence that it induces.

Visualization of laser wakefield accelerators is not limited to optical

methods, especially visible pump-probe schemes. The boundaries of plasma

bubbles in modern laser plasma accelerators are sometimes formed of free elec-

trons beyond the critical density, and thus reflecting long-wavelength probe

photons and leaving the sharp sheath layer undetectable. Refractive index or

plasma density measurements yield only indirect information about the accel-

eration field. To probe electromagnetic fields directly in laser plasma physics,

particle probes instead of laser pulses can be another option. As an example,

protons accelerated by an intense laser pulse were used to probe the target nor-

mal sheath acceleration (TNSA) mechanism in laser proton accelerators [71].

Similarly, electrons from laser wakefield accelerators can also be used to probe
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laser plasma structures. Such electrons have unique advantages over protons:

narrower energy spectrum, better beam collimation, much larger charge-mass

ratio, sensitivity to weak fields or thin plasma features. Moreover, the time

duration of the electron bunch is typically less than 10 fs, providing a superior

source for time-resolved studies of intense laser plasma physics.
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Appendix A

Laser systems for experiments

Experiments in this dissertation involve single-shot optical visualization of

refractive index structures triggered by lasers at different energy scales, ranging

from microjoule to ∼ 100 joules per pulse. For laser filamentation propagation

in solids or gases, the Kerr-induced self-focusing requires laser peak power of

the order of several times the critical power Pcr = λ2/4πn0n2, which is 2.4

GW for air and 1.6 MW for silica glass. Thus if 100 fs laser is propagating

in the air (Chapter 6) or glass (Chapter 3 and 5), the pulse energy is of the

order of millijoule or microjoule respectively. For laser-plasma acceleration

experiments, the laser power should exceed the relativistic critical power of

plasma Pcr ≈ 17(ω/ωp)2 GW. Thus the laser pulse energy varies based on the

plasma density. Laser-plasma accelerators at 1019 cm−3 density that produce

∼ 100 MeV electron beams requires multi-terawatt laser power and ∼ 1 J

level of laser energy, whereas laser-plasma accelerators at 1017 cm−3 density

for multi-GeV electrons needs petawatt laser with ∼ 100 J energy per pulse.

Here the laser systems for these experiments are reviewed.

The UT3 Ti:Sapphire laser is a commercial system (Alpha 10/XS) from

Thales Lasers. The basic specifications of the system are shown in Table A.1.
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Oscillator + Stretcher 

9-Pass Amplifier 

Prism Compressor  

Stage I Femtopower Frontend 

XPW Pulse Cleaner 
1 kHz, < 1mJ 
800 nm, 30 fs 

1 kHz, ~15 μJ 
Grating Stretcher 

Energy Booster 

Pre-Amplifier 

Main-Amplifier 

Grating Compressor 

Stage II 
CPA 

10 Hz, ~0.2 mJ, 
400 ps 

~40 mJ 

~1.3 J 

~0.8 J, 30 fs Continuum 

532 nm, 200 mJ 

Saga 1 

Saga 2 

Saga 3 

~4 J 

Figure A.1: Schematic diagram of the UT3 Alpha 10/XS 45 TW laser system.

The whole system consists of two stages of chirped pulse amplification (CPA)

(Fig. A.1). The first stage is a compact laser system from Femtolasers with

one kilohertz output of 30 fs laser pulses centered at 800 nm. The maximum

output pulse energy is 1 mJ. However in practice it is attenuated to 0.2 mJ

using a half-wave plate and polarizer in order to avoid optical damage in

the cross-polarization wave (XPW) generator for pulse cleaning. The cleaned

pulses are chirped to 400 ps in the grating stretcher and amplified to 0.2 mJ

in the booster, then they are sent to amplifiers. The pre-amplifier is pumped

by a small portion (∼ 200 mJ) of the SAGA 1 laser. Seed light travels five

passes through a Ti:Sapphire crystal to be amplified to 40 mJ. The main
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Repetition rate 10 Hz
Peak power ≥ 45 TW

Energy per pulse 1.2 J
Pulse duration ≤ 30 fs

Wavelength ∼ 800 nm

Table A.1: Output specifications of Alpha 10/XS 45 TW

amplifier has three passes and is pumped by four pump lasers, thus the seed

beam is amplified to 1.3 J per pulse. After the grating compressor, the pulse

is compressed back to 30 fs, and pulse energy is around 800 mJ.

Using this system, laser energy of widely different orders of magnitude is

obtainable by coupling the beam out at different stages. For glass filamentation

experiments, the kilohertz output of the front end is directly used to provide

microjoule level laser pulses. To study laser filamentation in air, the output

from the pre-amplifier is compressed by a separately built grating compressor,

yielding ∼ 20 mJ, 40 fs laser pulses. Laser plasma acceleration experiments

were conducted with full laser power.
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Appendix B

The Frequency-Domain Tomography

reconstruction algorithm and codes

The frequency-domain tomography (FDT) reconstruction code is named FDT3D,

and runs on a personal computer with Windows 7 operating system and Mi-

crosoft Visual Studio 2010 software. The code is written in C++, and defines

three classes — Voxel, Phantom, and FDSC — which describe the index

structure at specific (ζob, xob, zob), the whole index structure ∆n(ζob, xob, zob),

and phase streak ψ(ζpr, xpr), respectively. The algorithm is based on Algebraic

Reconstruction Technique (ART) [34].

First of all, the general head file fdt3d.h is defined, and there is a

declaration of standard libraries. Two global constants are defined, PI rep-

resenting π = 3.141592654 · · · and Wpr representing probe laser wavelength

which is 0.4 micrometer. Classes (i.e. Voxel, Phantom, and FDSC) and

functions (GenFDSC, LoadFDSC, SimpleART, TrickART) are claimed.

1 #pragma once

3 #inc lude ”Phantom . h”
#inc lude ”FDSC. h”

5 #inc lude ”Voxel . h”

7 #inc lude <iostream>
#inc lude <sstream>

9 #inc lude <cmath>
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#inc lude <fstream>
11 #inc lude <s t r i ng>

#inc lude <vector>
13 #inc lude <c s t d l i b>

#inc lude <ctime>
15

#d e f i n e PI 3.14159265358979323846264338327950288419716939937510
17 #d e f i n e Wpr 0 .4

// #d e f i n e MAX RAND
19

void GenFDSC(Phantom &obj , s td : : vector<FDSC> &proj , s td : : vector<
double> &a l i s t , s td : : vector<double> &d p l i s t , s td : : vector<double>
&d q l i s t , double Np, double Nq) ;

21 void LoadFDSC(Phantom &so lu t i on , std : : vector<FDSC> &proj , s td : :
s t r i n g fname ) ;

void SimpleART(Phantom &obj , s td : : vector<FDSC> &pro j ) ;
23 void TrickART(Phantom &obj , Phantom &stand , std : : vector<FDSC> &

proj , s td : : vector<double> bt , double zedge ) ;

The class Voxel defines a specific spatiotemporal point of the index

evolution history ∆n(ζ, x, z). The position and index value of the point is

stored in each object of class Voxel.

1 #pragma once

3 class Voxel
{

5 public :
Voxel (void ) {}

7 Voxel ( int x , int y , int z , double v ) {}
˜Voxel (void ) {}

9 double GetVal (void ) {return va l ;}
int GetXi (void ) {return x i ;}

11 int GetYi (void ) {return y i ;}
int GetZi (void ) {return z i ;}

13 void SetXi ( int x ) { x i=x ;}
void SetYi ( int y ) { y i=y ;}

15 void SetZ i ( int z ) { z i=z ;}
void SetVal (double v ) { va l=v ;}

17 private :
int xi , yi , z i ;
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19 double va l ;
} ;

The object of the class Phantom represents the whole 3D index struc-

ture evolution history ∆n(ζ, x, z). It gets access to each voxel, i.e. reading and

writing. Here two construction functions are defined. The one with 6 input

parameters set all voxel index values to zero, and is typically applied to store

the reconstructed solution in both phantom simulation or actual data process-

ing. The other one with 7 parameters is used for the phantom simulation only,

i.e. the phantom object is constructed using this construction function and

stored in one object of the class Phantom.

#pragma once
2

#inc lude <vector>
4 #inc lude <cmath>

#inc lude <iostream>
6 #inc lude ”Voxel . h”

8 class Phantom
{

10 public :
Phantom(void ) ;

12 Phantom( int nx , int ny , int nz , double xs i z e , double ys i z e ,
double z s i z e ) ;

Phantom : : Phantom( int nx , int ny , int nz , double xs i z e , double
ys i z e , double z s i z e , double va l ) ;

14 //Phantom(Phantom &o r i ) ;
˜Phantom(void ) ;

16 double GetVoxel ( int xi , int yi , int z i ) ;
double GetVoxel ( Voxel vox ) ;

18 void SetVoxel ( int xi , int yi , int z i , double va l ) ;
void SetVoxel ( Voxel Voxel ) ;

20 int GetXSize (void ) {return Nx;}
int GetYSize (void ) {return Ny;}

22 int GetZSize (void ) {return Nz ;}
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double GetXdSize (void ) {return dx ;}
24 double GetYdSize (void ) {return dy ;}

double GetZdSize (void ) {return dz ;}
26 private :

int Nx, Ny, Nz ;
28 double dx , dy , dz ;

std : : vector<Voxel> vox ;
30 } ;

32 //==========================================================

34 #inc lude ”Phantom . h”

36 Phantom : : Phantom(void ) :Nx(0 ) ,Ny(0) , dx ( 0 . 0 ) , dy ( 0 . 0 )
{

38 }

40 Phantom : : Phantom( int nx , int ny , int nz , double xs i z e , double
ys i z e , double z s i z e ) :Nx( nx ) ,Ny( ny ) ,Nz( nz ) , dx ( x s i z e ) , dy ( y s i z e ) ,
dz ( z s i z e )

{
42 int i , j , k ;

double va l (0 ) ;
44 double Xr( dx∗Nx) , Yr( dy∗Ny) , Zr ( dz∗Nz) ;

for ( k=−Nz ; k<Nz ; ++k )
46 {

double z = dz∗k ;
48 for ( j=−Ny; j<Ny; ++j )

{
50 for ( i=−Nx; i<Nx; ++i )

{
52 double x = dx∗ i ;

double y = dy∗ j ;
54 // o r i g i n a l phantom ob j e c t be f o r e March 18 , 2013

// double va l = exp(−exp(−(y/Yr/ y s c a l +0.2) /0 . 05 )−
pow ( ( y/Yr/ y s c a l +0.1) / 0 . 3 , 2 ) ) ∗exp(−exp(−(x/Xr/
x s c a l +0.3) /0 . 05 )−pow ( ( x/Xr/ x s c a l +0.1) / 0 . 4 , 2 ) ) ;

56

// Further t e s t o f s e l e c t e d phantom pattern , March
21 , 2013

58 double xdim , ydim , jump ;
i f ( z/Zr>0)

60 {
xdim = z/Zr+1;

62 ydim = 1 ;

145



}
64 else

{
66 xdim = 1 ;

ydim = −z/Zr+1;
68 }

jump = exp(−pow(30∗ z/Zr , 2 ) ) +0.2/(1+exp(−100∗z/Zr ) )
;

70 va l = exp(−pow(5∗ ( y/Yr+0.2) /ydim , 1 8 ) ) ∗exp(−pow(5∗ (
x/Xr+0.2) /xdim , 1 8 ) )−exp(−pow (5∗1 . 2∗ ( y/Yr+0.2) /
ydim , 1 8 ) ) ∗exp(−pow (5∗1 . 2∗ ( x/Xr+0.2) /xdim , 1 8 ) ) ;

va l = va l+jump∗exp(−pow(7∗ ( y/Yr−0.45) ,2 ) ) ∗exp(−pow
(7∗ ( x/Xr−0.45) ,2 ) ) ;

72

vox . push back ( Voxel ( i , j , k , va l ) ) ;
74 }

}
76 }
}

78

Phantom : : Phantom( int nx , int ny , int nz , double xs i z e , double
ys i z e , double z s i z e , double va l ) :Nx( nx ) ,Ny( ny ) ,Nz( nz ) , dx ( x s i z e
) , dy ( y s i z e ) , dz ( z s i z e )

80 {
for ( int k=−Nz ; k<Nz ; ++k )

82 for ( int j=−Ny; j<Ny; ++j )
for ( int i=−Nx; i<Nx; ++i )

84 vox . push back ( Voxel ( i , j , k , va l ) ) ;
}

86

Phantom : : ˜ Phantom(void )
88 {
}

90

double Phantom : : GetVoxel ( int xi , int yi , int z i )
92 {

i f ( yi>=Ny | | yi<−Ny | | xi>=Nx | | xi<−Nx | | z i<−Nz | | z i>=Nz)
94 return 0 ;

else
96 return vox [ ( z i+Nz) ∗4∗Nx∗Ny+( y i+Ny) ∗2∗Nx+( x i+Nx) ] . GetVal ( ) ;
}

98

double Phantom : : GetVoxel ( Voxel vox )
100 {

int x i = vox . GetXi ( ) ;
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102 int y i = vox . GetYi ( ) ;
int z i = vox . GetZi ( ) ;

104 return GetVoxel ( xi , yi , z i ) ;
}

106

void Phantom : : SetVoxel ( int xi , int yi , int z i , double va l )
108 {

i f ( yi>=Ny | | yi<−Ny | | xi>=Nx | | xi<−Nx | | z i<−Nz | | z i>=Nz) ;
110 else

{
112 vox [ ( z i+Nz) ∗4∗Nx∗Ny+( y i+Ny) ∗2∗Nx+( x i+Nx) ] . SetXi ( x i ) ;

vox [ ( z i+Nz) ∗4∗Nx∗Ny+( y i+Ny) ∗2∗Nx+( x i+Nx) ] . SetYi ( y i ) ;
114 vox [ ( z i+Nz) ∗4∗Nx∗Ny+( y i+Ny) ∗2∗Nx+( x i+Nx) ] . SetZ i ( z i ) ;

vox [ ( z i+Nz) ∗4∗Nx∗Ny+( y i+Ny) ∗2∗Nx+( x i+Nx) ] . SetVal ( va l ) ;
116 }
}

118

void Phantom : : SetVoxel ( Voxel voxe l )
120 {

int x i = voxe l . GetXi ( ) ;
122 int y i = voxe l . GetYi ( ) ;

int z i = voxe l . GetZi ( ) ;
124 double va l = voxe l . GetVal ( ) ;

SetVoxel ( xi , yi , z i , va l ) ;
126 }

The class FDSC basically describes the phase shift at a specific point

(ζpr, xpr) in the probe phase streak. The position, phase shift, and the probe

angle are stored, and accessible through member functions. The pump and

probe laser group velocities are normalized to light speed and stored as bob val

and bpr val respectively. The variable list is generated dynamically and in-

cludes all voxels through which the projection trajectory crosses.

#pragma once
2

#inc lude <cmath>
4 #inc lude <vector>

#inc lude <fstream>
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6 #inc lude <iostream>
#inc lude ”Phantom . h”

8

class FDSC
10 {

public :
12 FDSC(void ) ;

FDSC(double ang , double p , double q , Phantom &obj ) ;
//

Construct ion func t i on f o r Phantom s imu la t i on
14 FDSC(double ang , double p , double q , double val , Phantom &

s o l u t i o n ) ;
// Construct ion func t i on f o r ac tua l data p r o c e s s i n g

˜FDSC(void ) ;
16 double GetVal ( ) {return va l ;}

double GetP ( ) {return p ;}
18 double GetQ ( ) {return q ;}

double GetAng ( ) {return ang ;}
20 std : : vector<Voxel> GetList ( ) {return l i s t ;}

stat ic double bpr va l (void ) {return bpr ;}
22 stat ic double bob val (void ) {return bob ;}

private :
24 double ang ; // Angle between pump and probe

double p , q ; // Each p i x e l number in a FDSC
26 int Nx, Ny, Nz ; // voxe l number along three

dimensions o f the o r i g i n a l movie
double dx , dy , dz ; // s i z e o f each voxe l

28 double va l ; // phase s h i f t va lue o f FDSC
std : : vector<Voxel> l i s t ; // voxe l l i s t a long the FDSC

i n t e g r a l l i n e
30 stat ic double bpr ; // probe group v e l o c i t y

stat ic double bob ; // pump group v e l o c i t y , or ob j e c t
v e l o c i t y

32 } ;

34 //=============================================================
#inc lude ”FDSC. h”

36 #inc lude ” fdt3d . h”

38 double FDSC : : bob = 0 . 6 8 0 6 ;
double FDSC : : bpr = 0 . 6 6 1 6 ;

40

FDSC : : FDSC(void )
42 {
}
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44

46 FDSC : : FDSC(double ang , double p , double q , Phantom &obj ) : ang ( ang ) ,p (p
) , q ( q )

// c o n s t r u c t i v e func t i on f o r s imu la t i on data , assumptions :
48 // 1 . At time 0 , the c e n t e r s o f probe frame and ob j e c t frame

over lap
{

50 Nx = obj . GetXSize ( ) ;
Ny = obj . GetYSize ( ) ;

52 Nz = obj . GetZSize ( ) ;
dx = obj . GetXdSize ( ) ;

54 dy = obj . GetYdSize ( ) ;
dz = obj . GetZdSize ( ) ;

56 va l = 0 ;
double cv ( cos ( ang ) ) , sv ( s i n ( ang ) ) , tv ( tan ( ang ) ) ;

58 double x1 , x2 , y1 , y2 , z1 , z2 ;
int f l ap x , f l a p y ;

60 double r = bpr/bob ;
// Determine the c r o s s i n g po in t s between the p r o j e c t i o n

t r a j e c t o r y and the whole evo lu t i on box , time s c a l e O(1) ,
space s c a l e O(1)

62 // The d e f i n i t i o n o f x1 , y1 , x2 , y2 are d i f f e r e n t from l a t e r ,
here j u s t mean z p o s i t i o n s .

i f ( r ∗cv<1)
64 {

x1 = (p∗cv+q∗ sv−Nx∗dx ) /(1− r ∗cv ) ;
66 x2 = (p∗cv+q∗ sv+Nx∗dx ) /(1− r ∗cv ) ;

f l a p x = −1;
68 }

else i f ( r ∗cv>1)
70 {

x1 = (p∗cv+q∗ sv+Nx∗dx ) /(1− r ∗cv ) ;
72 x2 = (p∗cv+q∗ sv−Nx∗dx ) /(1− r ∗cv ) ;

f l a p x = 1 ;
74 }

else
76 {

x1 = −Nz∗dz ;
78 x2 = Nz∗dz ;

f l a p x = 0 ;
80 }

i f ( sv>0)
82 {

y1 = (−p∗ sv+q∗cv−Ny∗dy ) / r / sv ;
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84 y2 = (−p∗ sv+q∗cv+Ny∗dy ) / r / sv ;
f l a p y = −1;

86 }
else i f ( sv<0)

88 {
y1 = (−p∗ sv+q∗cv+Ny∗dy ) / r / sv ;

90 y2 = (−p∗ sv+q∗cv−Ny∗dy ) / r / sv ;
f l a p y = 1 ;

92 }
else

94 {
y1 = −Nz∗dz ;

96 y2 = Nz∗dz ;
f l a p y = 0 ;

98 }
z1 = std : : max(−Nz∗dz , std : : max( x1 , y1 ) ) ;

100 z2 = std : : min (Nz∗dz , std : : min ( x2 , y2 ) ) ;
x1 = p∗cv+q∗ sv−(1−r ∗cv ) ∗ z1 ;

102 x2 = p∗cv+q∗ sv−(1−r ∗cv ) ∗ z2 ;
y1 = −p∗ sv+q∗cv−r ∗ sv∗ z1 ;

104 y2 = −p∗ sv+q∗cv−r ∗ sv∗ z2 ;

106 // Determine the c r o s s po in t s on each wall , time s c a l e O(N) ,
space s c a l e O(N)

std : : vector<int> xwal l ;
108 std : : vector<int> ywal l ;

s td : : vector<int> zwa l l ;
110 for ( int z i = f l o o r ( z1/dz ) +1; z i<=f l o o r ( z2/dz ) ; ++z i )

zwa l l . push back ( z i ) ;
112 i f ( f l a p x ==1)

for ( int x i = f l o o r ( x1/dx ) +1; xi<=f l o o r ( x2/dx ) ; ++xi )
114 xwal l . push back ( x i ) ;

else i f ( f l a p x==−1)
116 for ( int x i = f l o o r ( x1/dx ) ; xi>f l o o r ( x2/dx ) ; −−x i )

xwal l . push back ( x i ) ;
118 else ;

i f ( f l a p y ==1)
120 for ( int y i = f l o o r ( y1/dy ) +1; yi<=f l o o r ( y2/dy ) ; ++yi )

ywal l . push back ( y i ) ;
122 else i f ( f l a p y==−1)

for ( int y i = f l o o r ( y1/dy ) ; yi>f l o o r ( y2/dy ) ; −−y i )
124 ywal l . push back ( y i ) ;

else ;
126

// Combine a l l c r o s s po in t s on three wal l s , g ene ra t ing the
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p r o j e c t i o n l i s t , time s c a l e O(N) , space s c a l e O(N)
128 double t =0;

int xin (0 ) , y in (0 ) , z in (0 ) ;
130 double tx = xwal l . empty ( ) ? 1 . 1 : ( xwal l [ 0 ] ∗ dx−x1 ) /( x2−x1 ) ;

double ty = ywal l . empty ( ) ? 1 . 1 : ( ywal l [ 0 ] ∗ dy−y1 ) /( y2−y1 ) ;
132 double tz = zwa l l . empty ( ) ? 1 . 1 : ( zwa l l [ 0 ] ∗ dz−z1 ) /( z2−z1 ) ;

int xp = f l o o r ( x1/dx ) ;
134 int yp = f l o o r ( y1/dy ) ;

int zp = f l o o r ( z1/dz ) ;
136 while ( xin<xwal l . s i z e ( ) | | yin<ywal l . s i z e ( ) | | zin<zwa l l . s i z e

( ) )
{

138 double tmp = t ;
t = tx ;

140 int index = 1 ;
i f ( ty<t )

142 {
index = 2 ;

144 t = ty ;
}

146 i f ( tz<t )
{

148 index = 3 ;
t = tz ;

150 }
// double s e c t = ( t−tmp) ∗ s q r t ( ( x2−x1 ) ∗( x2−x1 )+(y2−y1 ) ∗( y2−

y1 )+(z2−z1 ) ∗( z2−z1 ) ) ;
152 double s e c t = ( t−tmp) ∗( z2−z1 ) ;

l i s t . push back ( Voxel (xp , yp , zp , s e c t ) ) ;
154 va l += 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ∗ s e c t ∗ obj .

GetVoxel (xp , yp , zp ) ;
switch ( index )

156 {
case 1 :

158 xp = f l a p x==1?xwal l [ x in ] : xwal l [ x in ]−1;
++xin ;

160 tx = ( xin==xwal l . s i z e ( ) ) ? 1 . 1 : ( xwal l [ x in ]∗ dx−x1 ) /( x2−x1
) ;

break ;
162 case 2 :

yp = f l a p y==1?ywal l [ y in ] : ywal l [ y in ]−1;
164 ++yin ;

ty = ( yin==ywal l . s i z e ( ) ) ? 1 . 1 : ( ywal l [ y in ]∗ dy−y1 ) /( y2−y1
) ;

166 break ;
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case 3 :
168 zp = zwa l l [ z in ] ;

++z in ;
170 tz = ( z in==zwa l l . s i z e ( ) ) ? 1 . 1 : ( zwa l l [ z in ]∗ dz−z1 ) /( z2−z1

) ;
break ;

172 default :
s td : : runt ime e r ro r ( ” Error in gene ra t ing index o f pump

wal l . . . \ n” ) ;
174 }

}
176 // double s e c t = (1− t ) ∗ s q r t ( ( x2−x1 ) ∗( x2−x1 )+(y2−y1 ) ∗( y2−y1 )+(

z2−z1 ) ∗( z2−z1 ) ) ;
double s e c t = (1− t ) ∗( z2−z1 ) ;

178 l i s t . push back ( Voxel (xp , yp , zp , s e c t ) ) ;
va l += 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ∗ s e c t ∗ obj .

GetVoxel (xp , yp , zp ) ;
180 }

182 FDSC : : FDSC(double ang , double p , double q , double val , Phantom &
s o l u t i o n ) : ang ( ang ) ,p(p) , q ( q ) , va l ( va l )

// c o n s t r u c t i v e func t i on f o r s imu la t i on data , assumptions :
184 // 1 . At time 0 , the c e n t e r s o f probe frame and ob j e c t frame

over lap
{

186 Nx = s o l u t i o n . GetXSize ( ) ;
Ny = s o l u t i o n . GetYSize ( ) ;

188 Nz = s o l u t i o n . GetZSize ( ) ;
dx = s o l u t i o n . GetXdSize ( ) ;

190 dy = s o l u t i o n . GetYdSize ( ) ;
dz = s o l u t i o n . GetZdSize ( ) ;

192 double cv ( cos ( ang ) ) , sv ( s i n ( ang ) ) , tv ( tan ( ang ) ) ;
double x1 , x2 , y1 , y2 , z1 , z2 ;

194 int f l ap x , f l a p y ;
double r = bpr/bob ;

196 // Determine the c r o s s i n g po in t s between the p r o j e c t i o n
t r a j e c t o r y and the whole evo lu t i on box , time s c a l e O(1) ,
space s c a l e O(1)

// The d e f i n i t i o n o f x1 , y1 , x2 , y2 are d i f f e r e n t from l a t e r ,
here j u s t mean z p o s i t i o n s .

198 i f ( r ∗cv<1)
{

200 x1 = (p∗cv+q∗ sv−Nx∗dx ) /(1− r ∗cv ) ;
x2 = (p∗cv+q∗ sv+Nx∗dx ) /(1− r ∗cv ) ;

202 f l a p x = −1;
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}
204 else i f ( r ∗cv>1)

{
206 x1 = (p∗cv+q∗ sv+Nx∗dx ) /(1− r ∗cv ) ;

x2 = (p∗cv+q∗ sv−Nx∗dx ) /(1− r ∗cv ) ;
208 f l a p x = 1 ;

}
210 else

{
212 x1 = −Nz∗dz ;

x2 = Nz∗dz ;
214 f l a p x = 0 ;

}
216 i f ( sv>0)

{
218 y1 = (−p∗ sv+q∗cv−Ny∗dy ) / r / sv ;

y2 = (−p∗ sv+q∗cv+Ny∗dy ) / r / sv ;
220 f l a p y = −1;

}
222 else i f ( sv<0)

{
224 y1 = (−p∗ sv+q∗cv+Ny∗dy ) / r / sv ;

y2 = (−p∗ sv+q∗cv−Ny∗dy ) / r / sv ;
226 f l a p y = 1 ;

}
228 else

{
230 y1 = −Nz∗dz ;

y2 = Nz∗dz ;
232 f l a p y = 0 ;

}
234 z1 = std : : max(−Nz∗dz , std : : max( x1 , y1 ) ) ;

z2 = std : : min (Nz∗dz , std : : min ( x2 , y2 ) ) ;
236 x1 = p∗cv+q∗ sv−(1−r ∗cv ) ∗ z1 ;

x2 = p∗cv+q∗ sv−(1−r ∗cv ) ∗ z2 ;
238 y1 = −p∗ sv+q∗cv−r ∗ sv∗ z1 ;

y2 = −p∗ sv+q∗cv−r ∗ sv∗ z2 ;
240

// Determine the c r o s s po in t s on each wall , time s c a l e O(N) ,
space s c a l e O(N)

242 std : : vector<int> xwal l ;
s td : : vector<int> ywal l ;

244 std : : vector<int> zwa l l ;
for ( int z i = f l o o r ( z1/dz ) +1; z i<=f l o o r ( z2/dz ) ; ++z i )

246 zwa l l . push back ( z i ) ;
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i f ( f l a p x ==1)
248 for ( int x i = f l o o r ( x1/dx ) +1; xi<=f l o o r ( x2/dx ) ; ++xi )

xwal l . push back ( x i ) ;
250 else i f ( f l a p x==−1)

for ( int x i = f l o o r ( x1/dx ) ; xi>f l o o r ( x2/dx ) ; −−x i )
252 xwal l . push back ( x i ) ;

else ;
254 i f ( f l a p y ==1)

for ( int y i = f l o o r ( y1/dy ) +1; yi<=f l o o r ( y2/dy ) ; ++yi )
256 ywal l . push back ( y i ) ;

else i f ( f l a p y==−1)
258 for ( int y i = f l o o r ( y1/dy ) ; yi>f l o o r ( y2/dy ) ; −−y i )

ywal l . push back ( y i ) ;
260 else ;

262 // Combine a l l c r o s s po in t s on three wal l s , g ene ra t ing the
p r o j e c t i o n l i s t , time s c a l e O(N) , space s c a l e O(N)

double t =0;
264 int xin (0 ) , y in (0 ) , z in (0 ) ;

double tx = xwal l . empty ( ) ? 1 . 1 : ( xwal l [ 0 ] ∗ dx−x1 ) /( x2−x1 ) ;
266 double ty = ywal l . empty ( ) ? 1 . 1 : ( ywal l [ 0 ] ∗ dy−y1 ) /( y2−y1 ) ;

double tz = zwa l l . empty ( ) ? 1 . 1 : ( zwa l l [ 0 ] ∗ dz−z1 ) /( z2−z1 ) ;
268 int xp = f l o o r ( x1/dx ) ;

int yp = f l o o r ( y1/dy ) ;
270 int zp = f l o o r ( z1/dz ) ;

while ( xin<xwal l . s i z e ( ) | | yin<ywal l . s i z e ( ) | | zin<zwa l l . s i z e
( ) )

272 {
double tmp = t ;

274 t = tx ;
int index = 1 ;

276 i f ( ty<t )
{

278 index = 2 ;
t = ty ;

280 }
i f ( tz<t )

282 {
index = 3 ;

284 t = tz ;
}

286 // double s e c t = ( t−tmp) ∗ s q r t ( ( x2−x1 ) ∗( x2−x1 )+(y2−y1 ) ∗( y2−
y1 )+(z2−z1 ) ∗( z2−z1 ) ) ;

double s e c t = ( t−tmp) ∗( z2−z1 ) ;
288 l i s t . push back ( Voxel (xp , yp , zp , s e c t ) ) ;
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switch ( index )
290 {

case 1 :
292 xp = f l a p x==1?xwal l [ x in ] : xwal l [ x in ]−1;

++xin ;
294 tx = ( xin==xwal l . s i z e ( ) ) ? 1 . 1 : ( xwal l [ x in ]∗ dx−x1 ) /( x2−x1

) ;
break ;

296 case 2 :
yp = f l a p y==1?ywal l [ y in ] : ywal l [ y in ]−1;

298 ++yin ;
ty = ( yin==ywal l . s i z e ( ) ) ? 1 . 1 : ( ywal l [ y in ]∗ dy−y1 ) /( y2−y1

) ;
300 break ;

case 3 :
302 zp = zwa l l [ z in ] ;

++z in ;
304 tz = ( z in==zwa l l . s i z e ( ) ) ? 1 . 1 : ( zwa l l [ z in ]∗ dz−z1 ) /( z2−z1

) ;
break ;

306 default :
s td : : runt ime e r ro r ( ” Error in gene ra t ing index o f pump

wal l . . . \ n” ) ;
308 }

}
310 // double s e c t = (1− t ) ∗ s q r t ( ( x2−x1 ) ∗( x2−x1 )+(y2−y1 ) ∗( y2−y1 )+(z2

−z1 ) ∗( z2−z1 ) ) ;
double s e c t = (1− t ) ∗( z2−z1 ) ;

312 l i s t . push back ( Voxel (xp , yp , zp , s e c t ) ) ;
}

314

FDSC: : ˜FDSC(void )
316 {
}

The FDSC data is generated in the file GenFDSC.cpp, including

two functions GenFDSC and LoadFDSC. The former is used to calculate

phase streaks based on artificially assumed index structures in the phantom

simulation, whereas the latter directly loads phase shift data from experiments.
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Phase streak data is stored in an array of FDSC objects.

1 #inc lude ” fdt3d . h”

3 template<typename T> int sgn (T va l )
{

5 i f ( val>0)
return 1 ;

7 else i f ( val<0)
return −1;

9 else
return 0 ;

11 }

13 void GenFDSC(Phantom &obj , s td : : vector<FDSC> &proj , s td : : vector<
double> &a l i s t , s td : : vector<double> &d p l i s t , s td : : vector<double>
&d q l i s t , double Np, double Nq)

{
15 double r = FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;

double Xr = obj . GetXdSize ( ) ∗ obj . GetXSize ( ) ;
17 double Yr = obj . GetYdSize ( ) ∗ obj . GetYSize ( ) ;

double Zr = obj . GetZdSize ( ) ∗ obj . GetZSize ( ) ;
19 for ( int i a =0; ia<a l i s t . s i z e ( ) ; ++i a )

{
21 double dp = d p l i s t [ i a ] ;

double dq = d q l i s t [ i a ] ;
23 double ang = a l i s t [ i a ] ;

double cv = cos ( ang ) ;
25 double sv = s i n ( ang ) ;

std : : cout<<” Generating FDSC at ang le ”<<ang∗180/PI<<”
degree . . . \ n” ;

27 for ( int q i=−Nq; qi<Nq; ++qi )
{

29 for ( int pi=−Np; pi<Np; ++pi )
{

31 double p = dp∗ pi ;
double q = dq∗ q i ;

33 double x1 = p∗cv+q∗ sv+(1−r ∗cv ) ∗Zr ;
double y1 = −p∗ sv+q∗cv+r ∗ sv∗Zr ;

35 double x2 = p∗cv+q∗ sv−(1−r ∗cv ) ∗Zr ;
double y2 = −p∗ sv+q∗cv−r ∗ sv∗Zr ;

37 double corner1 = sgn ( ( x2−x1 )∗(−Yr−y1 )−(y2−y1 )∗(−Xr
−x1 ) ) ;

double corner2 = sgn ( ( x2−x1 )∗(−Yr−y1 )−(y2−y1 ) ∗(Xr−
x1 ) ) ;
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39 double corner3 = sgn ( ( x2−x1 ) ∗(Yr−y1 )−(y2−y1 )∗(−Xr−
x1 ) ) ;

double corner4 = sgn ( ( x2−x1 ) ∗(Yr−y1 )−(y2−y1 ) ∗(Xr−
x1 ) ) ;

41 i f ( abs ( corner1+corner2+corner3+corner4 )==4)
continue ;

43 else i f ( ( ( x1>Xr) && ( x2>Xr) ) | | ( ( x1<−Xr) && ( x2
<−Xr) ) | | ( ( y1>Yr) && ( y2>Yr) ) | | ( ( y1<−Yr) &&

( y2<−Yr) ) )
continue ;

45 else
pro j . push back (FDSC( ang , p i ∗dp , q i ∗dq , obj ) ) ;

47 }
}

49 }
}

51

void LoadFDSC(Phantom &so lu t i on , std : : vector<FDSC> &proj , s td : :
s t r i n g fname )

53 {
std : : i f s t r e a m i f i l e ( fname ) ;

55 std : : s t r i n g l i n e ;
double ang , p , q , va l ;

57 double r = FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;
double Xr = s o l u t i o n . GetXdSize ( ) ∗ s o l u t i o n . GetXSize ( ) ;

59 double Yr = s o l u t i o n . GetYdSize ( ) ∗ s o l u t i o n . GetYSize ( ) ;
double Zr = s o l u t i o n . GetZdSize ( ) ∗ s o l u t i o n . GetZSize ( ) ;

61 while ( std : : g e t l i n e ( i f i l e , l i n e ) )
{

63 std : : i s t r i n g s t r e a m i s t r ( l i n e ) ;
i s t r >> ang ;

65 double cv = cos ( ang ) ;
double sv = s i n ( ang ) ;

67 i s t r >> p ;
// p = p∗0 .3∗FDSC : : bpr va l ( ) ;

69 i s t r >> q ;
i s t r >> va l ;

71 double x1 = p∗cv+q∗ sv+(1−r ∗cv ) ∗Zr ;
double y1 = −p∗ sv+q∗cv+r ∗ sv∗Zr ;

73 double x2 = p∗cv+q∗ sv−(1−r ∗cv ) ∗Zr ;
double y2 = −p∗ sv+q∗cv−r ∗ sv∗Zr ;

75 double corner1 = sgn ( ( x2−x1 )∗(−Yr−y1 )−(y2−y1 )∗(−Xr−x1 ) ) ;
double corner2 = sgn ( ( x2−x1 )∗(−Yr−y1 )−(y2−y1 ) ∗(Xr−x1 ) ) ;

77 double corner3 = sgn ( ( x2−x1 ) ∗(Yr−y1 )−(y2−y1 )∗(−Xr−x1 ) ) ;
double corner4 = sgn ( ( x2−x1 ) ∗(Yr−y1 )−(y2−y1 ) ∗(Xr−x1 ) ) ;
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79 i f ( abs ( corner1+corner2+corner3+corner4 )==4)
continue ;

81 else i f ( ( ( x1>Xr) && ( x2>Xr) ) | | ( ( x1<−Xr) && ( x2<−Xr) ) | |
( ( y1>Yr) && ( y2>Yr) ) | | ( ( y1<−Yr) && ( y2<−Yr) ) )
continue ;

83 else
pro j . push back (FDSC( ang , p , q , val , s o l u t i o n ) ) ;

85 }
}

The ART reconstruction is based on the algorithm introduced in the

reference [34]. Here two functions are defined in the same file ART.cpp, they

are SimpleART and TrickART. The former one describes the basic ART

algorithm and iteration procedure, however typically it cannot guarantee a

good reconstruction quality. Thus the TrickART function is developed to

incorporate the selective smoothing procedure and some prior constraints on

the solution.

1 #inc lude ” fdt3d . h”

3 // D e f i n i t i o n o f r e c o n s t r u c t i o n parameters
const double r e l a x p a r a = 0 . 1 ; // r e l a x parameter f o r

a l l ART r o u t i n e s
5 const int Max Iter = 20 ; // maximum number o f

i t e r a t i o n s
const double meas para = 2 ; // For Add1ART,

c o n t r o l the weight o f measured data compared to 1 f o r p r i o r
data

7 const double t o l p a r a = 0 . 0 5 ; // For Add2ART,
t o l e r e n c e o f the measured p r o j e c t i o n

9 //====================================================
/∗

11 Function d e s c r i p t i o n

13 void SimpleART(Phantom &obj , s td : : vector<FDSC> &pro j ) ;
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15 1 . Input :
obj −−− r e f e r e n c e o f r e con s t ruc t ed object , i n i t i a l l y

s e t as a three dimension zero matrix
17 pro j −−− r e f e r e n c e o f measured or generated p r o j e c t i o n

data in the form o f vec to r

19 2 . Output : r e cont ruc ted ob j e c t .

21 3 . Contro lab le parameters :
r e l a x p a r a −−− r e l a x a t i o n parameter , ranging from −1

to 1 , p o s i t i v e smal l number i s p r e f e r e d
23 Max Iter −−− maximum i t e r a t i o n number requ i red ,

around 10 i s enough .

25 4 . Algorithm :
x ( k+1) = x ( k ) + rp ( k ) ∗( y ( i )−<r ( i ) , x ( k )>)/<r ( i ) , r ( i )>ˆ2∗ r ( i

)
27

5 . Reference :
29 H. Garbor ’ s book Chap 11
∗/

31 //====================================================
void SimpleART(Phantom &obj , s td : : vector<FDSC> &pro j )

33 {
std : : cout<<”SimpleART i s running . . . \ n” ;

35 int i t e r (0 ) ;
while ( i t e r<Max Iter )

37 {
std : : cout<<” Simple ART running at ”<< i t e r+1<<” i t e r a t i o n

. . . \ n” ;
39 for ( int iFDSC=0; iFDSC<pro j . s i z e ( ) ; ++iFDSC)

{
41 double z1 (0 ) , z2 (0 ) ;

s td : : vector<Voxel> c r o s s = pro j [ iFDSC ] . GetList ( ) ;
43 for ( int ivox =0; ivox<c r o s s . s i z e ( ) ; ++ivox )

{
45 z1 += obj . GetVoxel ( c r o s s [ ivox ] . GetXi ( ) , c r o s s [ ivox

] . GetYi ( ) , c r o s s [ ivox ] . GetZi ( ) ) ∗ c r o s s [ ivox ] .
GetVal ( ) ;

z2 += pow( c r o s s [ ivox ] . GetVal ( ) , 2 ) ;
47 }

z1 ∗= 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;
49 z2 ∗= 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;

double c o e f = r e l a x p a r a ∗( p ro j [ iFDSC ] . GetVal ( )−z1 ) /z2 ;
51 for ( int ivox =0; ivox<c r o s s . s i z e ( ) ; ++ivox )
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{
53 double va l = c r o s s [ ivox ] . GetVal ( ) ∗ c o e f+obj .

GetVoxel ( c r o s s [ ivox ] . GetXi ( ) , c r o s s [ ivox ] . GetYi
( ) , c r o s s [ ivox ] . GetZi ( ) ) ;

obj . SetVoxel ( c r o s s [ ivox ] . GetXi ( ) , c r o s s [ ivox ] . GetYi
( ) , c r o s s [ ivox ] . GetZi ( ) , va l ) ;

55 }
}

57 ++i t e r ;
}

59 }
// End SimpleART

61

//===================================================
63 /∗

Function d e s c r i p t i o n
65

void TrickART(Phantom &obj , s td : : vector<FDSC> &proj , s td : : vector<
double> bt )

67

1 . Input :
69 obj −−− r e f e r e n c e o f r e con s t ruc t ed object , i n i t i a l l y

s e t as a three dimension zero matrix
pro j −−− r e f e r e n c e o f measured or generated p r o j e c t i o n

data in the form o f vec to r
71 bt −−− smooth parameter f o r 3D smoothing

73 2 . Output : r e cont ruc ted ob j e c t .

75 3 . Contro lab le parameters :
r e l a x p a r a −−− r e l a x a t i o n parameter , ranging from −1

to 1 , p o s i t i v e smal l number i s p r e f e r e d
77 Max Iter −−− maximum i t e r a t i o n number requ i red ,

around 10 i s enough .
bt1 −−− weight o f c e n t r a l p i x e l in the

smoothing procedure
79 bt2 −−− weight o f the edge ne ighbours in the

smoothing procedure
bt3 −−− weight o f the po int ne ighbours in the

smoothing procedure
81

4 . Algorithm :
83 I t e r a t i o n step :

x ( k+1) = x ( k ) + rp ( k ) ∗( y ( i )−<r ( i ) , x ( k )>)/<r ( i ) , r ( i )
>ˆ2∗ r ( i )
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85 Smoothing step :
x ( i , j ) = bt1∗x ( i , j ) + 0.25∗ bt2 ∗ [ x ( i , j +1)+x ( i , j−1)+x ( i

−1, j )+x ( i +1, j ) ] + 0.25∗ bt3 ∗ [ x ( i +1, j +1)+x ( i +1, j−1)+
x ( i −1, j +1)+x ( i −1, j−1) ]

87 ∗/
//=========================================================

89 void TrickART(Phantom &obj , Phantom &stand , std : : vector<FDSC> &
proj , s td : : vector<double> bt , double zedge )

{
91 std : : cout<<”TrickART i s running . . . \ n” ;

int i t e r (0 ) ;
93 std : : vector<double> r e s i d u e ( Max Iter ) ;

s td : : o f s tream r e s f i l e ( ” r e s i d u e . txt ” ) ;
95 while ( i t e r<Max Iter )

{
97 std : : cout<<”TrickART running at ”<< i t e r+1<<” i t e r a t i o n . . . \

n” ;
for ( int iFDSC=0; iFDSC<pro j . s i z e ( ) ; ++iFDSC)

99 {
double z1 (0 ) , z2 (0 ) ;

101 std : : vector<Voxel> c r o s s = pro j [ iFDSC ] . GetList ( ) ;
for ( int ivox =0; ivox<c r o s s . s i z e ( ) ; ++ivox )

103 {
z1 += obj . GetVoxel ( c r o s s [ ivox ] . GetXi ( ) , c r o s s [ ivox

] . GetYi ( ) , c r o s s [ ivox ] . GetZi ( ) ) ∗ c r o s s [ ivox ] .
GetVal ( ) ;

105 z2 += pow( c r o s s [ ivox ] . GetVal ( ) , 2 ) ;
}

107 z1 ∗= 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;
z2 ∗= 2∗PI/Wpr∗FDSC : : bpr va l ( ) /FDSC : : bob val ( ) ;

109 double c o e f = r e l a x p a r a ∗( p ro j [ iFDSC ] . GetVal ( )−z1 ) /z2 ;
for ( int ivox =0; ivox<c r o s s . s i z e ( ) ; ++ivox )

111 {
int x i = c r o s s [ ivox ] . GetXi ( ) ;

113 int y i = c r o s s [ ivox ] . GetYi ( ) ;
int z i = c r o s s [ ivox ] . GetZi ( ) ;

115 double va l = c r o s s [ ivox ] . GetVal ( ) ∗ c o e f+obj .
GetVoxel ( xi , yi , z i ) ;

// Applying s e l e c t i v e smoothing to the ob j e c t
117 va l = bt [ 0 ] ∗ va l+bt [ 1 ] / 6 ∗ ( obj . GetVoxel ( xi −1, yi , z i )+

obj . GetVoxel ( x i +1, yi , z i )+obj . GetVoxel ( xi , yi −1,
z i )+obj . GetVoxel ( xi , y i +1, z i )+obj . GetVoxel ( xi ,
yi , z i −1)+obj . GetVoxel ( xi , yi , z i +1) )

+bt [ 2 ] / 1 2 ∗ ( obj . GetVoxel ( xi −1, yi −1, z i )+obj .
GetVoxel ( xi −1, y i +1, z i )+obj . GetVoxel ( x i +1,
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yi −1, z i )+obj . GetVoxel ( x i +1, y i +1, z i )+obj .
GetVoxel ( xi −1, yi , z i −1)+obj . GetVoxel ( xi −1,
yi , z i +1)

119 +obj . GetVoxel ( x i +1, yi , z i −1)+obj . GetVoxel ( x i
+1, yi , z i +1)+obj . GetVoxel ( xi , yi −1, z i −1)+
obj . GetVoxel ( xi , yi −1, z i +1)+obj . GetVoxel (
xi , y i +1, z i −1)+obj . GetVoxel ( xi , y i +1, z i +1) )

+bt [ 3 ] / 8 ∗ ( obj . GetVoxel ( xi −1, yi −1, z i −1)+obj .
GetVoxel ( x i +1, yi −1, z i −1)+obj . GetVoxel ( xi
−1, y i +1, z i −1)+obj . GetVoxel ( x i +1, y i +1, z i
−1)+obj . GetVoxel ( xi −1, yi −1, z i +1)

121 +obj . GetVoxel ( x i +1, yi −1, z i +1)+obj . GetVoxel ( xi
−1, y i +1, z i +1)+obj . GetVoxel ( x i +1, y i +1, z i +1)
) ;

// Applying p o s i t i v e va lue to the ob j e c t
123 // i f ( val<0)

// va l = 0 ;
125 // Applying the g l a s s edge p r i o r in fo rmat ion

i f ( abs ( z i ∗ obj . GetZdSize ( )+x i ∗ obj . GetXdSize ( ) )>
zedge )

127 va l = 0 ;
obj . SetVoxel ( xi , yi , z i , va l ) ;

129 }
}

131 r e s i d u e [ i t e r ] = 0 ;
for ( int i x=−obj . GetXSize ( ) ; ix<obj . GetXSize ( ) ; ++ix )

133 for ( int i y=−obj . GetYSize ( ) ; iy<obj . GetYSize ( ) ; ++iy )
for ( int i z=−obj . GetZSize ( ) ; i z<obj . GetZSize ( ) ; ++

i z )
135 r e s i d u e [ i t e r ] += pow ( ( obj . GetVoxel ( ix , iy , i z )−

stand . GetVoxel ( ix , iy , i z ) ) , 2 ) ;
r e s i d u e [ i t e r ] = s q r t ( r e s i d u e [ i t e r ]/8/ obj . GetXSize ( ) / obj .

GetYSize ( ) / obj . GetZSize ( ) ) ;
137 r e s f i l e <<i t e r<< ’ \ t ’<<r e s i d u e [ i t e r ]<<std : : endl ;

++i t e r ;
139 }

r e s f i l e . c l o s e ( ) ;
141 }

// End TrickART

As an example, here is the main function loading phase streak data
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from a “.txt” file “simuFDSC FF.txt”, reconstructing the index structure evo-

lution history, and writing the results into file “recon simuFDSC FF.txt”.

1 #inc lude ” fdt3d . h”

3 int main (void )
{

5 srand ( time (NULL) ) ;
const double zedge (150 0 . 0 ) ;

7 const int Nx(32) ,Ny(32) ,Nz(128) ;
const double dx (30 . 0/Nx) , dy (50 . 0/Ny) , dz (1550 .0/Nz) ;

9 std : : cout<<” Generating phantom data . . . \ n” ;
// Phantom obj (Nx, Ny, Nz , dx , dy , dz ) ;

11 Phantom s o l u t i o n (Nx, Ny, Nz , dx , dy , dz , 0 . 0 ) ;
// Output o f the o r i g i n a l ob j e c t

13 std : : cout<<” Generating FDSC at mul t ip l e probing ang l e s . . . \ n” ;
std : : vector<FDSC> pro j ;

15

LoadFDSC( so lu t i on , proj , ”simuFDSC FF . txt ” ) ;
17 // GenFDSC( obj , proj , a l i s t , d p l i s t , d q l i s t , 128 , 128 ) ;

19 // ART r e c o n t r u c t i o n

21 std : : vector<double> bt (4 ) ;
bt [ 0 ] = 0 . 9 6 ;

23 bt [ 1 ] = 0 . 0 2 ;
bt [ 2 ] = 0 . 0 1 ;

25 bt [ 3 ] = 1−bt [0]− bt [1]− bt [ 2 ] ;
TrickART( so lu t i on , s o lu t i on , proj , bt , zedge ) ;

27 std : : cout<<” Exporting r e cons t ruc t ed ob j e c t to recon . txt ”<<std
: : endl ;

s td : : o f s tream o f i l e 1 ( ”recon simuFDSC FF . txt ” ) ;
29 for ( int i z =1; i z<=2∗Nz ; ++i z )

for ( int i y =1; iy<=2∗Ny; ++iy )
31 for ( int i x =1; ix<=2∗Nx; ++ix )

o f i l e 1 <<ix<< ’ \ t ’<<iy<< ’ \ t ’<<i z<< ’ \ t ’<<s o l u t i o n .
GetVoxel ( ix−1−Nx, iy−1−Ny, iz−1−Nz)<<std : : endl ;

33 o f i l e 1 . c l o s e ( ) ;

35 return 0 ;
}
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Appendix C

Publications by the author while at University

of Texas

1. Zhengyan Li, R. Zgadzaj, X. Wang, Y. Y. Chang, and M. C. Downer,

“Single-shot tomographic movies of evolving light-velocity objects,” Na-

ture Communications 5, 3085 (2014).

2. Zhengyan Li, C.-H. Pai, Y. Y. Chang and M. C. Downer, “Single-shot

imaging of evolving light-velocity objects by multi-object-plane phase-

contrast imaging,” Optics Letters 38, 5157–5160 (2013).

3. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Hender-

son, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G.

Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M.

Donovan, V. Khudik, G. Shvets, T. Ditmire and M. C. Downer, “Quasi-

monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nature

Communications 4, 1988 (2013).

4. Z. Li, R. Zgadzaj, X. Wang, S. Reed and M. C. Downer, “Frequency-

domain streak camera for ultrafast imaging of evolving light-velocity

objects,” Optics Letters 35, 4087–4089 (2010).
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5. P. Dong, S. A. Reed, S. A. Yi, S. Y. Kalmykov, Z. Li, G. Shvets, M.

C. Downer, N. H. Matlis, W. P. Leemans, C. McGuffey, S. S. Bulanov,

V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, T. Mat-

suoka, A. G. R. Thomas and V. Yanovsky, “Holographic visualization of

laser wakefields,” New J. Phys. 12, 045016 (2010).

6. Zhengyan Li, Hai-En Tsai, Xi Zhang, Chih-Hao Pai, R. Zgadzaj, X.

Wang, V. Khudik, G. Shvets, M. C. Downer, “Single-shot visualization of

evolving laser wakefields using an all-optical streak camera,” submitted

to Phys. Rev. Lett.
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[4] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher,

B. Lavorel, and J.-P. Wolf. Higher-order kerr terms allow ionization-free

filamentation in gases. Phys. Rev. Lett., 104:103903, Mar 2010.

[5] S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C.

Downer. Single-shot measurement of temporal phase shifts by frequency-

domain holography. Opt. Lett., 25(10):764–766, May 2000.

[6] I. Blumenfeld, C. E. Clayton, F. J. Decker, M. J. Hogan, C. Huang,

R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K. A.

Marsh, W. B. Mori, P. Muggli, E. Oz, R. H. Siemann, D. Walz, and

166



M. Zhou. Energy doubling of 42 GeV electrons in a metre-scale plasma

wakefield accelerator. Nature, 445(7129):741–744, February 2007.

[7] R. W. Boyd. Nonlinear Optics. Academic Press, 2008.

[8] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou. Self-

channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett.,

20(1):73–75, Jan 1995.

[9] Alexander Buck, Maria Nicolai, Karl Schmid, Chris M. S. Sears, Alexan-

der Savert, Julia M. Mikhailova, Ferenc Krausz, Malte C. Kaluza, and

Laszlo Veisz. Real-time observation of laser-driven electron acceleration.

Nat Phys, 7(7):543–548, July 2011.

[10] Silvia Cipiccia, Mohammad R. Islam, Bernhard Ersfeld, Richard P. Shanks,

Enrico Brunetti, Gregory Vieux, Xue Yang, Riju C. Issac, Samuel M.

Wiggins, Gregor H. Welsh, Maria-Pia Anania, Dzmitry Maneuski, Rachel

Montgomery, Gary Smith, Matthias Hoek, David J. Hamilton, Nuno R. C.

Lemos, Dan Symes, Pattathil P. Rajeev, Val O. Shea, Joao M. Dias, and

Dino A. Jaroszynski. Gamma-rays from harmonically resonant betatron

oscillations in a plasma wake. Nature Physics, advance online publica-

tion, September 2011.

[11] C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter. Relativistic

plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett.,

54:2343–2346, May 1985.

167



[12] S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse,

A. Beck, and E. Lefebvre. Femtosecond x rays from laser-plasma accel-

erators. Rev. Mod. Phys., 85:1–48, Jan 2013.

[13] A. Couairon and A. Mysyrowicz. Femtosecond filamentation in transpar-

ent media. Physics Reports, 441(2-4):47 – 189, 2007.

[14] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz. Fil-

amentation and damage in fused silica induced by tightly focused fem-

tosecond laser pulses. Phys. Rev. B, 71:125435, Mar 2005.

[15] C. A. Coverdale, C. B. Darrow, C. D. Decker, W. B. Mori, K-C. Tzeng,

K. A. Marsh, C. E. Clayton, and C. Joshi. Propagation of intense sub-

picosecond laser pulses through underdense plasmas. Phys. Rev. Lett.,

74:4659–4662, Jun 1995.

[16] AJ Devaney. Inverse-scattering theory within the rytov approximation.

Optics letters, 6(8):374–376, 1981.

[17] JM Dias, L Oliveira e Silva, and JT Mendonça. Photon acceleration

versus frequency-domain interferometry for laser wakefield diagnostics.

Physical Review Special Topics-Accelerators and Beams, 1(3):031301, 1998.

[18] Peng Dong, S. A. Reed, S. A. Yi, S. Kalmykov, G. Shvets, M. C. Downer,

N. H. Matlis, W. P. Leemans, C. McGuffey, S. S. Bulanov, V. Chvykov,

G. Kalintchenko, K. Krushelnick, A. Maksimchuk, T. Matsuoka, A. G. R.

168



Thomas, and V. Yanovsky. Formation of optical bullets in laser-driven

plasma bubble accelerators. Phys. Rev. Lett., 104:134801, Mar 2010.

[19] Quan-Li Dong, Zheng-Ming Sheng, and Jie Zhang. Self-focusing and

merging of two copropagating laser beams in underdense plasma. Phys.

Rev. E, 66:027402, Aug 2002.

[20] Katrin Ekvall, Cecilia Lundevall, and Peter van der Meulen. Studies

of the fifth-order nonlinear susceptibility of ultraviolet-grade fused silica.

Opt. Lett., 26(12):896–898, Jun 2001.

[21] E. Esarey, C. B. Schroeder, and W. P. Leemans. Physics of laser-driven

plasma-based electron accelerators. Rev. Mod. Phys., 81:1229–1285, Aug

2009.

[22] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P.

Rousseau, F. Burgy, and V. Malka. A laserplasma accelerator producing

monoenergetic electron beams. Nature, 431(7008):541–544, September

2004.

[23] Gadi Fibich, Yonatan Sivan, Yosi Ehrlich, Einat Louzon, Moshe Fraenkel,

Shmuel Eisenmann, Yiftach Katzir, and Arie Zigler. Control of the col-

lapse distance in atmospheric propagation. Opt. Express, 14(12):4946–

4957, Jun 2006.

[24] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt.,

21(15):2758–2769, Aug 1982.

169



[25] Matthias Fuchs, Raphael Weingartner, Antonia Popp, Zsuzsanna Major,

Stefan Becker, Jens Osterhoff, Isabella Cortrie, Benno Zeitler, Rainer

Horlein, George D. Tsakiris, Ulrich Schramm, Tom P. Rowlands-Rees,

Simon M. Hooker, Dietrich Habs, Ferenc Krausz, Stefan Karsch, and Flo-
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