
 

 

 

 

 

 

 

 

 

Copyright 

by 

Lokendra Jain 

2014 

 

 

  



The Dissertation Committee for Lokendra Jain Certifies that this is the approved 

version of the following dissertation: 

 

 

 Global Upscaling of Secondary and Tertiary Displacements 

 

 

 

 

 

Committee: 

 

Larry W Lake, Supervisor 

Kamy Sepehrnoori 

Steven Bryant 

Sanjay Srinivasan 

Todd Arbogast 



Global Upscaling of Secondary and Tertiary Displacements 

 

 

by 

Lokendra Jain, B.Tech; M.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2014 

  



 

 

 

 

 

 

 

 

 

 

“Imagination is more important than knowledge” 

 

-Albert Einstein. 

 

 



 v 

Acknowledgements 

 

I would like to express my gratitude to Dr. Larry W Lake for his invaluable 

guidance and support. Working under his supervision was a learning experience which 

made me think critically. I am thankful to get into Dr. Lake‟s reservoir of insights in the 

subject matter and hope to learn from it in the future as well. I learned to look at the 

bigger picture while solving technical problems with him.  He has helped me directly and 

indirectly in my academic research, professional and personal development. I am 

thankful for his continued support during the difficult phases of my research. 

I am also thankful to Dr. Steven Bryant, Dr. Sanjay Srinivasan, Dr. Kamy 

Sephernoori and Dr. Todd Arbogast for their support while I was writing this dissertation. 

I would like to thank Mike Shook and Morteza Sayarpour for their timely help with my 

research. I would like to thank Dr. Roger Terzian and Ms. Joanna Castillo for their help 

with the computers and the software packages. I would also like to thank Ms. Frankie 

Hart and Ms. Heather Felauer for helping me in administrative matters. 

Most importantly, I am thankful to Dr. Lake and Dr. Bryant because they taught 

me to talk slowly while communicating though it is still a work in progress.  

I would like to extend my special thanks to my friends Ashwin, Rouzbeh, Fei, 

Ola, Gurpreet, Femi and Behzad for helping me understand concepts through thoughtful 

discussions and providing me with moral support when it was needed. I would like to 

thank my friends Mayank, Ankesh, Sayantan, Ashwin, Gurpreet, Hari and Chris for 

keeping my spirits up during the difficult times. 

 I would like to attribute this success to my parents and my sister in India. I would 

like to thank my mother Suman, for all the hard work and faith she had in me when I 



 vi 

started my PhD. This would not have been possible without their continuous support and 

unconditional love. 

I also thank my only love, my wife Purva, for her unwavering support and belief 

in me during the most difficult time of my research work. She provided me with a pillar 

of support and I hope could do the same for her. 

I am grateful to our sponsors Chevron, ADNOC and CCP3 at The University of 

Texas at Austin for making this work possible. 



 vii 

Global Upscaling of Secondary and Tertiary Displacements 
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Supervisor:  Larry W Lake 

 

Fluids injected during secondary and tertiary floods often leave parts of the 

reservoir unswept mostly because of large heterogeneity and mobility ratio. Several 

applications require an analytical scheme that could predict production with as few 

parameters possible. We develop such an analytical model of volumetric sweep that aims 

to apply an extension of Koval‟s theory where flow is assumed to be segregated under 

vertical equilibrium conditions for secondary and tertiary displacements. The unified 

theory for vertical equilibrium (viscous and dispersive) is also derived as a precursor to 

model development.  

The original Koval factor is applicable for upscaling secondary miscible floods. 

The new analytical model for secondary and tertiary floods is applied to provide quick 

estimates of oil recovery of miscible as well as immiscible displacements, which is then 

calibrated against field data. The model parameters, Koval factor, sweep efficiency and 

pore volume, estimated after history matching could be used to make reservoir 

management decisions.   The model is very simple; history matching can be done in a 

spreadsheet.   

Single-front, gravity-free, displacements can be modeled using Koval factors. 

Two-front, gravity-free, displacements can also be modeled using Koval-type factors for 

both the fronts. These Koval-type factors, coupled with laboratory scale relative 
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permeabilities, allows for scaling the displacement to a larger reservoir system. The new 

method incorporates by-passed pore volume as a parameter, a difference between this 

work and that of Molleai, along with Koval factors and local front velocities. For two 

front displacements, it also accounts for the interaction between the fronts which honors 

correct mass conservation, another difference with the work of Molleai. The results from 

new models for secondary and tertiary displacements were verified by comparing them 

against numerical simulations. The application was also demonstrated on actual field 

examples. 

Current techniques for reservoir surveillance rely on numerical models. The 

parameters on which these numerical models depend on are very large in number, 

introducing large uncertainty. This technique provides a way to predict performance 

without the use of computationally expensive fine scale simulation models, which could 

be used for reservoir management while reducing the uncertainty. 
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CHAPTER 1 

Introduction 

Oil recovery efficiency in the primary phase of production life of any field is 

limited. Thus to improve oil recovery, a variety of supplemental techniques have been 

used. Water flooding generally governs the secondary phase of field production life and 

recovery techniques like gas flooding (miscible) and chemical flooding govern the 

tertiary phase. Other recovery techniques like steam flooding are also used to increase 

production from heavy oil fields. 

1.1  PROBLEM DESCRIPTION 

In waterflooding, injected water pushes the resident oil out of the reservoir. The 

water is immiscible with the reservoir oil and for many cases water is more mobile than 

the oil. Reservoir heterogeneity and large water mobility cause water to sweep the 

reservoir non-uniformly. Polymer floods are meant to increase the reservoir sweep 

because they reduce the water mobility.  

In miscible flooding, injected solvent forms a single phase with the resident oil 

and thus helps push out otherwise trapped oil. The solvent generally is made of light 

hydrocarbons like liquidified petroleum gas and intermediates (C2-C6). The primary 

purpose of solvent flooding is to increase microscopic displacement efficiency but the 

non-uniform flow of solvent in the reservoir causes low sweep efficiency. Solvent fingers 

and channels in the reservoir often because of the low viscosity and leaves parts of the 

reservoir unswept.  

The degree of solvent miscibility in the oil also governs the displacement 

efficiency. Under the conditions (pressure, temperature and compositions) when total 

miscibility is achievable, the displacement is called first-contact miscible. Displacements 
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where miscibility is developed (condensing drive or vaporizing drive) are called multi-

contact miscible floods. In multi-contact miscible floods the continuous component 

transfer between solvent and oil establishes a transition zone. In this transition zone all 

the compositions are contiguously miscible. The minimum pressure at the reservoir 

temperature when the multi-contact miscibility develops is called minimum miscibility 

pressure. 

Numerical simulation is used to model mass, momentum and energy transport at 

coarse scales. Numerical simulation is a way to extend experimental results to large 

scales. Numerical models are also required to predict and optimize the oil recoveries by 

understanding flow behavior in the reservoirs. Predicting the oil recovery in waterfloods, 

polymer floods and miscible floods requires accurate representative coarse scale flow 

models. The accurate coarse scale models should be built on the basis of correct 

understanding of parameters affecting transport processes at a fine scale. The objective of 

reservoir simulation is to infer the behavior of hydrocarbon bearing petroleum systems 

using numerical models. Reservoir simulation not only models the hydrodynamics of 

flow in the reservoir but also accounts for injection, production wells along with the 

surface controls that dictate the flow. 

The principle of reservoir simulation is to numerically solve the governing 

transport differential equations at the specified scale. The governing equations are solved 

for the variables like pressure, saturations and component concentrations by discretizing 

them in space and time. The numerical techniques allow for representation of the original 

differential equations in the form of set of algebraic equations to express fundamental 

laws of mass, energy and momentum conservation.  

Waterfloods and polymer floods can be simulated using black-oil simulators. First 

contact, multi-contact and near miscible floods in hydrocarbon bearing zones need to be 
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simulated using compositional simulators because oil and gas are mixtures of a number 

of components. In such displacements, viscous fingering and channeling leads to change 

in oil and solvent saturations as well as pressures at a scale smaller than the grid scale. 

These displacements are also adverse mobility ratio floods that leave bypassed 

hydrocarbon zones. Past simulation efforts directed towards solving the equations that 

govern miscible floods have met with limited success. The major obstacle faced by the 

simulation models is the mixing cell effect. This significantly dampens the flow 

instabilities that are induced because of unfavorable mobility ratio and heterogeneities. 

Thus the predicted recovery from such models is greater than the actual oil recovery. 

Effective modeling of viscous instabilities and channeling would need models at 

centimeter or millimeter scale. A fine scale model can represent the details of adverse 

mobility ratio floods.  

The representation of reservoir systems with fine scale reservoir models and 

running dynamic simulations on them places prohibitive demands on computational 

resources. Thus coarse scale reservoir models are built for flow simulations. The fine 

scale or coarse scale simulation models still have substantial uncertainty associated with 

them because of large number of input parameters. The input parameters for the 

simulation models are not known apriori and slight change in the parameters changes the 

simulation output. 

It is a challenge to develop simple upscaled models that predict the reservoir 

performance using only a few input parameters and represent all the variables that affect 

flow in the reservoir. The variables include reservoir heterogeneity, mobility ratios, 

volumetric sweep, phase behavior for miscible floods and initial and final saturations in 

the swept regions. Various upscaled models have been developed for performance 

prediction of secondary and tertiary floods as discussed in chapter 2. It is challenging to 
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develop such models that also honor fine scale physics and account for heterogeneity and 

mobility ratio effects at reservoir scale.  

1.2  RESEARCH OBJECTIVES: 

Hypothesis: 

If the field scale heterogeneity in reservoirs can be defined using a single 

parameter then it can be coupled with the information obtained from fine scale physics 

such as mobility ratio and local velocities for various flow processes in the reservoirs 

(immiscible and miscible) to predict average performance at field scale.  

The main idea of this work is to construct an upscaled scheme for waterfloods and 

tertiary floods (miscible gas and polymer floods) that can address the important issues 

such as: 

 Assess if the effects of heterogeneity and mobility ratio can be decoupled on the 

convective flow.  

 Develop an upscaling technique that accurately represents the flow behavior from 

fine scale onto field scale models. 

 Decouple the effects of convective mixing (sweep) from dispersive mixing on 

sweep efficiency (displacement and volumetric). 

 Develop fast analytical models that predict field scale volumetric sweep 

efficiency and allows for estimating lost pore volume (fraction of total pore 

volume that always stays unswept) explicitly. 

 Prove analytically the conditions for existence of vertical equilibrium under the 

presence of viscous and dispersive flow in heterogeneous reservoirs. 
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1.3 DISSERTATION OUTLINE: 

 Chapter 2 of the dissertation has a commentary on the historical work done on 

various models developed to predict oil recovery for waterfloods, polymer floods 

and miscible WAG floods. 

 Chapter 3 of the dissertation shows the analytical derivation of conditions for 

total transverse equilibrium. The proof was done because the models developed 

in the dissertation are based on transverse equilibrium assumption. 

 Chapter 4 of the dissertation shows the formulation of a model for upscaling of 

tertiary miscible floods which are two front displacements. 

 Chapter 5 of the dissertation shows the development, verification and field 

application of the models for predicting oil recovery for secondary and tertiary 

floods. 

 Chapter 6 of the dissertation finally concludes the research presented in 

dissertation. Few recommendations for future work are also presented in the 

chapter.    
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OM GANESHAYE NAMAH 

CHAPTER 2 

Literature review 

Increasing oil prices and concerns about meeting energy demands have led to 

renewed focus on enhanced oil recovery (EOR). 7 million b/d of additional capacity 

would be needed by the year 2040 just in the US (Figure 1-1). EOR can help recover a 

significant portion of the remaining oil in discovered reservoirs. Advancements in 

technology have made the application of EOR economically attractive. 

          

     

Figure 1-1. US oil production supply and consumption forecast (EIA, 2012).  

In the United States, since 1986 6.4 billion barrels of oil has been recovered 

through various EOR technologies (Figure 1-2). Two EOR techniques, thermal recovery 
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using steam injection and CO2 miscible oil recovery are the most widely used because of 

their economic feasibility.  

  

Figure 1-2. US EOR production since 1986 (OGJ biennial survey, 2012).  

In this chapter, a brief description of the various recovery stages for an oil field is 

provided first.  

The main objective of the dissertation is to develop upscaling models for 

predicting oil recovery in secondary and tertiary recovery stages. Second, upscaling is 

defined briefly followed by an overview of upscaling techniques for secondary floods 

(waterflood) and tertiary floods (polymer, WAG) that have been developed over the 

years. The upscaling models developed in the dissertation are based on vertical 

equilibrium (VE) assumption so the concept of VE is described finally.  

2.1  RECOVERY STAGES 

There are typically three recovery stages in the operating life of an oil field. The 

three recovery stages are briefly described below. 
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2.1.1  Primary recovery 

The primary recovery from an oil reservoir is through one or more recovery 

mechanisms listed below (Walsh and Lake, 2003): 

a) Water drive 

b) Gas cap drive 

c) Solution gas drive 

d) Expansion drive 

e) Gravity drainage 

Recovery during this phase stops when the reservoir energy to expel the 

hydrocarbon is depleted or the economic limit is reached. The range of oil recovery from 

primary phase is between 5 to 15% (Dake, 1978). 

 2.1.2  Secondary recovery 

The stage following primary recovery is called secondary recovery. The reservoir 

is supplied with the required energy for pressure support to produce more oil by injecting 

fluids such as brine or gas during secondary recovery. Recovery during this phase stops 

when the injected fluids recycle at an uneconomical rate. The current research focuses on 

developing upscaling method for waterfloods. 

2.1.3  Tertiary recovery 

The stage following secondary recovery is called tertiary recovery. The oil 

recovery is increased by either increasing the volumetric and/or displacement sweep 

efficiencies during the tertiary injection phase. When a fluid not normally present in the 

reservoir is injected in the reservoir to increase oil recovery the corresponding process is 

classified as an EOR process. There are mainly three types of EOR processes in tertiary 

recovery phase as shown in Table 1. 
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Gas flooding Chemical flooding Thermal recovery 

CO2/Nitrogen/flue gases/ 

hydrocarbon enriched gas 

Polymer/ 

Alkali-

Surfactant/Alkali-

Surfactant-Polymer 

Steam/ 

Cyclic steam stimulation/ 

Hot water/ 

Downhole steam generation/ 

In-situ combustion 

Table 1-1. Summary of various existing EOR processes. 

The EOR processes listed above (Table 1-1) target the oil either trapped by 

capillary forces in pores connected to small throats or the bypassed oil in unswept parts 

of the reservoir from secondary recovery stage.  

2.1.3.1  Trapped oil  

The amount of trapped oil is inversely proportional to the capillary number even 

though the relationship is strictly monotonic as shown in Figure 2-3. The capillary 

number  ( CDN ) (Lake, 1989) which is the ratio of viscous force to capillary forces, 

controls the amount of oil being trapped.  

CD

u
N




                                                                                                             

(2.1)   

where   is the interfacial tension between flowing phases,  is the viscosity of 

displacing fluid and u is the superficial injection velocity. The capillary number increases 

when injection velocity and viscosity increase and/or the interfacial tension decreases. 

The increase in capillary number required to cross the critical value to mobilize the 

trapped oil is a few order of magnitudes (Figure 2-3); thus increasing the injection 

velocity or viscosity is impractical compared to decreasing the interfacial tension.    
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Figure 2-3. Schematic capillary desaturation curves (Lake, 1989) 

2.1.3.2  Bypassed oil 

The amount of bypassed oil depends on field heterogeneity and mobility ratio. 

Mobility ratio is defined as the ratio of injected fluid mobility to displaced fluid mobility. 

Since the field heterogeneity cannot be changed, mobility ratio reduction allows the 

injected fluid to move to previously unswept reservoir volume and recover more oil. 

2.2  OIL RECOVERY PREDICTION 

Oil recovery prediction for different recovery stages discussed above is important 

for economic analysis. For primary recovery, a special class of numerical simulators 

called tank models can be used to predict oil recovery (Walsh and Lake, 2003). As more 

data is gathered with production, for secondary and tertiary recovery stages, tools like 

reservoir simulators are used to predict oil recovery. The reservoir simulation models at a 

fine scale are computationally taxing, so such models are upscaled to provide reasonable 
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estimates of oil recovery quickly. The upscaling for secondary and tertiary floods is 

described below in detail. 

2.3  UPSCALING OF SECONDARY AND TERTIARY DISPLACEMENTS 

Upscaling in reservoir simulation is a process where a detail-oriented model, 

called a fine scale model, is replaced by a representative model with equivalent properties 

that gives same predictions (Christie, 2001). Upscaling is a problem that is best addressed 

as depending on the production mechanism and the level of physical detail required to be 

accommodated to make predictons. Upscaling thus can be classified in terms of the type 

of parameters being upscaled (single or multi-phase flow parameter upscaling) 

(Durlofsky, 2003). Single-phase flow upscaling produces effective permeabilities for 

coarse scale models whereas two phase flow requires upscaling of capillary pressure as 

well as relative permeability parameters (Barker and Thibeau, 1997).  

The second type of classification is related to the way the upscaled parameters are 

calculated. Upscaled parameters to replace the fine scale model can be calculated locally 

or globally. Locally the parameters are calculated by targeting the corresponding region 

from the fine scaled model. In global upscaling technique, the entire fine scale model is 

simulated to calculate coarse scale parameters with the assumption that these calculated 

parameters will be representative of all the similar flow scenarios (Durlofsky and 

Behrens, 1996).  

Several researchers (Koval, 1963, Patton, 1969; Paul, 1982 and 1984; Lake, 1978; 

Sayarpour, 2008; Shook, 2009, Mollaei, 2011) have developed fast global upscaling 

models to predict waterflood and EOR flood performances. Upscaled models are 

developed analytically by incorporating the impact of various parameters such as 

reservoir heterogeneity, mobility ratios, reservoir mixing, etc., for each displacement 
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process. The globally upscaled models are much faster and need fewer input parameters 

compared to the numerical simulation models. The globally upscaled models also provide 

quick quantitative estimates of recovery efficiency and production rates for economic 

evaluation and decision making.     

2.3.1  Waterflood upscaling 

Water injection in an oil reservoir is primarily performed to increase the oil 

production rate and ultimate oil recovery. The oil is recovered through “voidage 

replacement” – injection of water to increase the reservoir pressure and maintain it at a 

level below the fracture pressure of the reservoir (Craig, 1971). The oil is displaced from 

the pores by water, but recovery efficiency for waterfloods depends mainly on oil to 

water mobility ratio and rock heterogeneity.  

Models to predict waterflood performance at different scales have been developed 

by several authors. The first analytical model to predict waterflood performance was 

developed by Buckley-Leverett (1942) using frontal advance theory for homogeneous 

one dimensional linear porous media.  

Stiles (1949) developed an upscaled model to predict waterflood performance by 

using permeability variation and the vertical productive capacity distribution. The model 

was mainly developed to predict flood performance in depleted or nearly depleted oil 

fields at the reservoir scale. Dykstra and Parsons (1950) also developed a model to 

predict waterflood performance for a reservoir with vertically non-communicating layers. 

They identified mobility ratio, initial oil saturation and degree of permeability variation 

as the parameters influencing effluent history at reservoir scale. Craig (1955) performed a 

series of pattern waterfloods in the laboratory to study oil recovery performance. The 

model floods were scaled to reproduce field performance and a method was developed 
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for applying mobility ratio concept to estimate areal and vertical sweep efficiency at 

reservoir scale.  

Albertoni (2003) developed a model called the “Capacitance-Resistance model” 

that just uses the injection/production data for performance evaluation at the reservoir 

scale for waterfloods. Mollaei (2011) also developed a reservoir scale model to predict 

waterflood performance. The relationship between flow capacity and storage capacity as 

identified by (Koval, 1963 and Lake, 1989) forms the basis for Mollaei‟s model. The 

model also uses injection/production data for evaluation of flood performance. Shook et 

al. (2009) also used the relationship between the flow capacity and storage capacity to 

evaluate the reservoir performance by analyzing tracer data. 

2.3.2  Chemical flood upscaling   

Chemical EOR is used to increase oil recovery either by injecting polymer 

(mobility control to increase volumetric sweep efficiency) or surface active agents such 

as surfactants (increase capillary number to decrease the residual oil saturation). The 

various chemical EOR methods as listed in Table 1 are polymer, surfactant-polymer (SP) 

and alkaline-surfactant-polymer (ASP) flooding. 

2.3.2.1  Polymer flooding 

Fingering and channeling for unfavourable mobility ratio waterfloods in 

heterogeneous reservoirs leads to small volumetric sweep efficiency. Sorbie, 1991 noted 

that channeling is prominent in waterfloods with mobility ratio greater than five.  

Polymers are injected to decrease mobility ratios and increase volumetric sweep. 

Polymers are effective in highly heterogeneous reservoirs and high water-oil mobility 

ratio displacements. Polymer injection also delays the breakthrough while increasing 

sweep efficiency which also helps make the process economical. The injected polymer 
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also helps recover oil from previously water swept zones by forming an oil bank (Patton, 

1971) thus helping recover more oil. In some cases polymer might also help in reducing 

the residual oil saturation if increase in water viscosity is sufficient to increase the 

capillary number above the critical capillary number (Chen et al., 2011). 

2.3.2.2  Surfactant-Polymer floods   

Low tension flooding that involves injection of surface-active agents (surfactants) 

to lower the interfacial tension between water and oil phases and recover the trapped oil 

is called surfactant-polymer (SP) flooding (Lake , 1989). Polymer is also injected with 

the surfactant to increase displacement sweep (ED) and volumetric sweep (EV). Thus SP 

floods are expected to perform better than polymer floods. The SP flood is a multi-step 

process.  

2.3.2.3  Alkaline-Surfactant Polymer Floods 

The alkaline-surfactant-polymer (ASP) flood is very similar to surfactant-polymer 

(SP) flood. The main difference between ASP and SP floods is injection of alkaline in 

ASP floods along with surfactant and polymer to generate in-situ surfactant. The alkali 

reacts with the organic acids present in resident crude oil to produce surfactant.   

2.3.2.4  Upscaling methods 

The upscaling methods at global scale for chemical floods are fewer in number 

compared to waterfloods because of higher level of complexity associated with chemical 

floods.  

Jones et al. (1984) developed a model for predicting oil rate versus time for 

polymer floods by combining a two-dimensional cross-sectional model using vertical 

equilibrium with areal sweep correlations and injectivity functions. The model is very 

fast compared to numerical simulation and is suitable for quick economic analysis. Paul 



 15 

et al. (1982) developed a model for evaluating performance of surfactant-polymer floods. 

The model correlates the factors impacting oil recovery to reservoir and flow properties 

such as permeability, depth of the reservoir, well spacing, heterogeneity (Dykstra-Parsons 

coefficient), crossflow, clay fraction and relative permeability. The effluent history is 

estimated from fractional flow theory, augmented with an effective mobility ratio to 

represent heterogeneity. Giordano (1987) developed a model to determine field scale 

performance as a function of field scale capillary number and Dykstra-Parsons coefficient 

for micellar/polymer floods. 

Mollaei (2011) developed a model to capture the initial increase in oil cut that 

reaches a peak value and falls off thereafter for tertiary chemical floods. The model is 

based on the theory developed by Koval (1963) that captures the effects of heterogeneity 

and mobility ratio on the chemical flood performance. The model assumes that flow is 

segregated into different regions as observed from fractional flow theory for tertiary 

chemical floods.  

2.3.3  Gas (solvent) flood upscaling 

Solvent flooding is an EOR technique that recovers oil through vaporization, 

extraction, solubilization, condensation or dissolution. Sometimes viscosity reduction, oil 

swelling and solution gas drive also helps in oil recovery but the primary mechanism 

must be miscibility (Lake, 1989). Various fluids such as condensed petroleum gas, 

natural gas, carbon dioxide, air, nitrogen, flue gas and others are used to attain miscibility 

with the oil. The miscibility between the injected solvent with oil reduces the interfacial 

tension and helps recover more oil.  

The volumetric sweep for a miscible gas flood depends on mobility ratio, gravity 

number, dispersive mixing (transverse and longitudinal) and heterogeneity (Doa, 2005).  
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CO2 and hydrocarbon gases suffer from low volumetric sweep efficiency because of their 

high mobility. Miscible gases have been injected alternately with water to control the 

mobility ratio and improve the volumetric sweep efficiency successfully in the fields.  

Walsh and Lake, 1988 studied miscible flooding in the presence of mobile water 

saturation. Their work is limited to one-dimensional displacements of oil by solvent 

without dispersion. Their work also applies to multi-contact miscible floods a well as first 

contact miscible floods because the displacements are assumed to be free of dispersion 

(Helfferich, 1981 and Hirasaki, 1981). The three component problem (solvent, water and 

oil) is solved using method of characterstics, which is discussed later in the chapter.  

  For gas flooding, the upscaled coarse grid simulators must characterize changes 

in phase behavior, changes in oil and gas compositions as the displacement progresses. 

Field data and scaled down lab experiments suggest that the miscible floods are unstable 

(Haberman, 1960). Unstable floods lead to fingering and intrinsic heterogeneity at large 

scale accentuates the problem further by causing channeling. Most proposals to simulate 

first-contact miscible floods effectively suggest empirical models to represent viscous 

fingering and channeling. One such proposal was made by Koval (1963) in which a 

factor (K) was introduced to represent the combined effect of longitudinal dispersion and 

mobility ratio on oil recovery.  

1

(1 )
1

sF
S

KS






                                                                                                   (2.2) 

where, SF  is the average cross-sectional fractional flow of solvent, S is the average cross-

sectional saturation of the solvent. Koval‟s theory is based on the premise that both 

dispersion and channeling are a result of heterogeneity, and it is difficult to decouple one 

from the other. In a strongly heterogeneous system, SF  is large even when the average 

cross-sectional saturation of the solvent (S) is small. Dougherty (1963) constructed a flow 
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model akin to Koval‟s approach accounting for mixing. Dougherty‟s (1963) model uses 

four empirical parameters to define mixing between oil and the solvent caused by 

dispersion. He also proposed the use of heterogeneity factor defined by Koval (1963) to 

define fingering. Paul et al., 1984 developed a model that modified one-dimensional 

fractional flow theory to account for the effects of viscous fingering, reservoir 

heterogeneity and gravity segregation and combine it with areal sweep calculations for 

performance evaluation for miscible CO2 floods. 

Work done in the early 70‟s by Lantz (1970) and Todd and Longstaff (1972) used 

modified two and three phase immiscible simulators to simulate miscible floods. Lantz 

(1970) defined a method which required modification of relative permeability and 

capillary pressures to be special functions of saturation. The proper choice of these 

functions rendered the partial differential equations governing immiscible displacement 

completely analogous to miscible displacement. 

Todd and Longstaff (1972) developed a method to modify existing three phase 

simulators to model miscible flood performance. They observed that the effect of 

dispersion on fluid properties can be effectively represented by an empirical model. The 

use of the empirical fluid model suggested by Lee and Claridge (1968) to calculate the 

effective viscosities and densities of oil and gas because of partial mixing made the 

mathematical solution to the problem very easy. 

1 w w

oe o m                                                                                                       (2.3) 

1 w w

ge g m                                                                                                      (2.4) 

where, oe and ge are effective oil and gas viscosities respectively, o and g are the oil 

and gas viscosities without any mixing respectively, m  is the mixture viscosity and w is 

the mixing parameter which determines the amount of mixing and governs prediction 
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power of the model.  The mixture viscosity was determined by assuming ideal mixing 

and applying quarter power mixing rule. 

Fayers (1988) described unstable displacement by suggesting the use of a 

fingering relationship  

fa bC                                                                                                          (2.5) 

where,  is the fraction of cross-section occupied by fingers, Cf is the solvent saturation 

in the fingers, a is the initial finger width and (a+b) is the fraction of the cross section 

occupied by fingers when Cf = 1. In a 2-D system Equation 2.5 relates the fraction of 

cross section invaded by the finger to the initial width by using an empirical parameter . 

The fraction invaded by the fingers is used to define the upscaled mobilities for solvent 

and oil. Fayers and Newley (1988) also suggested a way to empirically extend this model 

to 2-D and 3-D flow systems by defining the average upscaled mobilities in the direction 

of finger propagation and in the direction transverse to it.  The mobility functions depend 

upon the invaded fraction of the finger as their previous model suggested for 1-D 

displacement. The advantage of the approach suggested by Fayer and Newely (1988) was 

that it suggested a way to model miscible floods in multiple dimensions. Even though this 

was an advantage, the limitation of the model by Fayer and Newely was that the 

parameter could not be easily correlated to any of the physical properties of the 

reservoir.  

Mollaei (2011) also proposed the use of a model based on Koval‟s approach for 

miscible floods. The model for miscible floods is similar to the model proposed for 

chemical floods because tertiary solvent floods also form an oil bank thus leading to two 

travelling fronts in the reservoir (Walsh and Lake, 1988). The detailed description of 

Mollaei‟s model is provided in chapter 4 because it is the starting point of this research 

work. 
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The models described above are all suitable for first contact miscible floods. But 

none of the models above are suitable for multi-contact miscible floods i.e. the models 

are not equipped to handle the impact of phase behavior on mixing and vice versa.  Todd 

and Chase (1979) suggested a model that used Todd and Longstaff model to account for 

viscous fingering under multi-contact miscible conditions. Ypma and Gardner (1984) 

demonstrated the importance of accounting for the interaction between phase behavior 

and fingering for multiple contact miscible floods. In 1-D systems viscous fingering has 

been observed to cause initial rapid growth of mixing zone which stabilizes at longer 

times. Young (1990) tried to solve this problem by using 1-D C-D equation and using 

dispersivity as a function of the gradient of viscosity ratio. This leads to larger 

dispersivities for floods with adverse mobility ratios. Crump (1988) suggested use of 

modified T-L model to account for phase behavior in multi-contact miscible floods. By 

using mixing parameter model dependent on mobility ratio and heterogeneity. Barker and 

Fayers (1994) proposed a new technique to upscale multi-contact miscible floods by 

introducing parameters which related flow rate of individual component at the boundary 

to the average mole fraction of the component in the desired upscaled volume. This 

averaging scheme requires rigorous fine scale simulations to get reliable correlating 

parameters for upscaling multi-contact miscible floods.  

Nghiem and Agarwal (1989) proposed a two region model that suggested division 

of each grid block into two regions: a region with mixing between oil and solvent and a 

bypassed region. They suggested use of a transfer function allowing for mass transfer 

between these two regions. Their mass transfer model was based on two empirical 

parameters that are not effectively correlated to fine scale properties. Fayers et al. (1992) 

also proposed a similar approach of dividing each grid block into two regions and 

allowing mass transfer between the regions. These models in particular use empirical 
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parameters for modeling that are not easily relatable to fine scale parameters that govern 

the physics of the flow. Huh et al. (2006) also proposed the use of two region model for 

upscaling of miscible floods. They used percolation theory (Kirkpatrik, 1973) and 

effective medium theory for an uncorrelated medium to define mobilities of fluids in the 

two regions. The channeling depends on the heterogeneity structure of the field and for 

statistically correlated geological fields the mobility model developed by Huh et al. 

(2006) becomes empirical in nature. 

2.4  COHERENCE THEORY 

The multi-component material balance equations developed in this dissertation 

are posed as hyperbolic equations with Riemann boundary conditions. Hyperbolic partial 

differential equations mathematically are n order partial differential equation that has a 

well-posed intial value problem for the first n-1 derivatives (Evans, 1998). For such 

problems Helfferich and Klein, 1970, Pope et al., 1978 and Walsh and Lake, 1988 show 

that the multicomponent wave is “coherent”. Coherence dictates that all the components 

(dependent variables) travel with the same velocity at any point in space and time.  

Consider a system with N components that is defined as: 

0i iC F

t x

 
 

 
       i = 1 to N                                                                                           (2.6) 

1 2 3( , , ,........ )i i NF f C C C C                                                                                              (2.7) 

where, Ci is the concentration of i
th

 component and Fi is the flux term for i
th

 component 

and is a function of all the other component concentrations (equation 2.7). For such a 

system it can be proven using the method of characteristics (MOC) that at any given 

point in space and time (Helfferich, 1981) all concentrations have the same velocity, 

31 2

1 2 3

........ N

N

dF dFdF dF

dC dC dC dC
                                                                                  (2.8) 
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where,  is the velocity of the concentration waves. Equation 2.8 also shows that the 

number of waves equal the number of dependent variables (number of components).  

Method of characteristics is a technique to solve hyperbolic partial differential 

equations. The method reduces the partial differential equations to a system of ordinary 

differential equations (Courant and Hilbert, 1962). The system of equations developed in 

chapter 4 present as a two component MOC problem. The method identifies the solution 

of the problem as two waves that travel in the system. These waves can be used to 

construct the flow profile for tertiary floods and used to generate recovery curves.   

2.5  VERTICAL EQUILIBRIUM 

The models developed in the dissertation are based on the vertical equilibrium 

assumption so we describe it in some detail here. The concept of vertical equilibrium can 

be easily explained using heat flow analogy in a metal plate (Coats, 1971). The metal 

plate with its thickness very small compared to its areal dimensions during heat flow can 

be assumed to have uniform temperature vertically. The uniform temperature vertically 

signifies thermal equilibrium but it not equivalent to zero heat flow vertically. The metal 

plate reaches thermal equilibrium vertically instantaneously with finite heat flow in the 

vertical direction.  

The analogy can be extended to mass flow in thin reservoirs with large areal 

dimensions. For flow in such reservoirs the flow potential vertically can be assumed to be 

uniform. The uniform flow potential vertically signifies equilibrium but is not equivalent 

to zero flow vertically and any perturbation in the vertical direction diffuses and 

equilibrium fluid distribution is achieved instantaneously. Coats (1971), Yokoyama and 

Lake (1981), Zapata and Lake (1981), Yortsos (1991) and Shook et al. (1992) showed 

that VE applies in reservoirs where the vertical perturbations dissipate faster than the rate 
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of flow in areal direction for immiscible two-phase flow. Mathematically they showed 

that the vertical equilibrium applies in the reservoirs with large LR  for immiscible 

displacement which is defined as, 

V
L

H

kL
R

H k
                                                                                                      (2.9) 

where, L is the reservoir length, H is the reservoir thickness, kV is the vertical 

permeability and kH is the horizontal permeability. Zapata and Lake (1981) showed that 

under the VE assumption viscous cross-flow is maximum and, in a stratified reservoir, 

the mixing zone develops between the fastest and slowest front for displacements with 

mobility ratio higher than one. The development of mixing zone causes the vertical 

sweep to be higher than the corresponding segregated case. Oil displacement in a 

stratified reservoir (2-D) can be modelled using 1-D equations under the VE assumption 

(Coats, 1971). Thus, vertical equilibrium not only impacts the way flow process is 

modelled, it also impacts the oil recovery from a reservoir. 

 For miscible flow, the theory of equilibrium in the vertical direction was first 

used by Taylor (1953, 1954) for flow in a pipe. He showed that for a long pipe with small 

diameter the concentration variation vertically dissipates quickly and will manifest itself 

as a longitudinal diffusion. The flow in the two dimensional pipeline than can be solved 

as a one-dimensional flow with equivalent longitudinal diffusion. Lake and Hirasaki 

(1981) and Yortsos (1991) using the similar analyses for flow in stratified porous media, 

showed that transverse velocity profile in the reservoir along with the transverse 

dispersion can be represented by an equivalent longitudinal dispersion when, TDN is large 

2

T
TD

L
N

H


                                                                                                        (2.10) 

where, L is the reservoir length, H is reservoir thickness and T  is the transverse 

dispersivity.  
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VE conditions for immiscible and miscible displacements have been derived 

analytically separately as discussed above. For displacements such as miscible water 

alternating gas flooding where viscous and dispersive forces impact the flow together, the 

analytical conditions required for total vertical equilibrium have not been derived. In this 

dissertation since models for miscible WAG floods are discussed, the unified vertical 

equilibrium theory is also developed. 
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M GANESHAYE NAMAH 

CHAPTER 3 

Unified Analysis of Transverse Flow Equilibrium 

The description of flow during displacements in a reservoir that is long and 

narrow can be often simplified when flow is almost parallel. Various approximations 

have been identified by different researchers for such flow processes. The assumption of 

vertical equilibrium (VE) is typically one of them (Figure 3-1).  

Depending on the fluid properties, the various approaches can be classified into 

two categories: one in which fluids are immiscible and flow is dominated by viscous, 

capillary and gravity forces, and another in which fluids are miscible and flow is also 

dominated by dispersive forces. 

 

Figure 3-1. Schematic of a reservoir with heterogeneity for vertical equilibrium                              

(Yortsos,1995) 

The first category has been studied by several authors including Coats et al. 

(1971), Yokoyama and Lake (1981), Zapata and Lake (1981), Pande and Orr (1989), 

Lake et al (1990) and most recently by Yortsos (1995). A physical description of this 

category of vertical equilibrium can be found in Lake (1989). The term vertical in vertical 
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equilibrium (VE) denotes the direction along the transverse coordinate. In the first 

category, most of the authors primarily capture the effects of interaction of heterogeneity 

with viscous forces while limiting the impact of gravity and capillary forces (Figure 3-2). 

The applicability of the dimensionless parameter RL=L/H(kV/kH)
1/2

 to characterize 

condition for vertical equilibrium has been verified by various authors numerically and 

has been analytically proven by Yortsos (1994) using asymptotic expansions. RL has to 

take sufficiently large values for VE to be applicable.  

The addition of gravity along with the viscous forces is an extension to VE where 

immiscible phases are assumed to be completely segregated. Dietz (1953) studied such 

segregated flow first followed by Le Fur et al. (1963), Beckers (1965), Fayers and 

Muggeridge (1990) and most recently by Shook et al. (1992) and Yortsos (1995).  

 

Figure 3-2. Effects of only viscous forces on displacements, viscous fingering (Yortsos, 

1995) 

The second category emphasizes the effects of dispersive forces for miscible 

flows in a porous media. The original contributions in this direction were made by Taylor 

(1953) and Aris (1956) in connection with flow of a dispersive tracer in a tube. Lake and 

Hirasaki (1981) worked on tracer dispersion in stratified media and identified that the 

dimensionless number NTD=LαT/H
2
 must be large enough for the stratified media to act as 
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a single layer. Various phenomenological viscous fingering models, such as Koval 

(1963), Todd and Longstaff (1972) and Fayers (1984) follow along the same lines.  

While the two categories of flow seem to derive from analogous conditions, no 

effort has been taken to treat them in a unified fashion. Most of the EOR processes have 

miscible and immiscible fluids flowing simultaneously in the heterogeneous reservoirs, 

thus necessitating a unified vertical equilibrium theory. The objective of this chapter is to 

provide a unified approach based on rigorous two variable power series expansion of the 

flow equations in systems where VE is expected to apply. This includes anisotropic and 

heterogeneous reservoirs which are long and narrow with large kv/kH ratios and large 

transverse dispersivity (αT). The analysis is also aimed at analytically identifying the VE 

conditions for multi-component systems without the incompressibility assumption. First, 

the general material balance equations are laid out for each flowing component in two-

phase multi-component flow system. The variables in the equations are expressed in 

terms of power series to identify vertical equillibrium conditions. The effects of gravity 

and capillarity are accounted for later to capture the impact on cross-flow terms. 

3.1  VERTICAL EQUILIBRIUM ANALYSIS 

Consider a constant rate displacement with two flowing phases and multiple 

components in a two- dimensional reservoir of thickness H and length L. For simplicity, 

the reservoir has no dip. An anisotropic, heterogeneous reservoir, with different 

permeabilities and component dispersitivities in the principle directions that are taken to 

coincide with the „horizontal‟ (x) and the „vertical‟ (y) directions, respectively, is taken 

for the analysis. 

( , );    ( , );     ( , )
H V

K KH H V VK k X Y K k X Y X Y                                          (3.1) 

, , , ,( , );     ( , )L j L L j T j T T jX Y X Y                                                             (3.2) 
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where, KH and KV denote the two permeabilities, which can be further normalized by their 

arithmetic mean values kH and kV, respectively. The spatial dependence is thus on the 

normalized permeabilities кi > 0, (i = H, V) which are dimensionless and such 

that        
 

 
, when the x-dependence is neglected. αL,j and αT,j denote the two 

directional dispersivities for phase j (j = 1,2), which can be further normalized by their 

mean values     and    , respectively. The spatial dependence is thus on the normalized 

dispersitivities        and       , (j = 1, 2) which are dimensionless and subscript L 

refers to the longitudinal direction and T refers to the transverse direction.   denotes the 

porosity, that is normalized by the arithmetic mean value  . The spatial dependence is 

thus on the normalized porosity ⱷ > 0, which is also dimensionless. We also normalize 

„horizontal‟ and „vertical‟ scales, X and Y, by the reservoir length (L) and height (H), 

respectively: 

;     y ,D D

x y
x

L H
                                                                                           (3.3) 

and scale all the velocities by the total injection flux q, time by L  /q, and the fluid 

pressure by Lq  
 /kH. If Sj denotes the saturation of phase j and wi,j denotes the mass 

fraction of component i in phase j, the strong form of dimensionless mass balance for a 

component i becomes 

     1 21 ,1 2 ,2 , , c( , )( ) 0;    i=1 to ND D i i Di x Di y
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d d L d
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           (3.4) 
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where,   
  is the density of phase j at a reference pressure and phase composition,   

  is 

the viscosity of phase 2 at a reference pressure and phase composition. PjD is the 

dimensionless pressure of phase j. λj is the mobility of phase j.  

The further substitution
'

, ,Di y Di y

L
N N

H
  in equation 3.4 yields, 
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Substituting for velocities in Equations 3.6 and 3.7 yields, 
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It follows from equation 3.15 that the relevant dimensionless groups are   
  and 

NTD, defined as 
2
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The dimensionless parameter   
  is precisely the parameter used in justifying 

viscous crossflow (Zapata and Lake, 1981; Lake, 1989) whereas NTD is the dimensionless 

parameter used in justifying dispersive crossflow (Lake and Hirasaki, 1981). Equation 

3.15 also suggests that the solutions to all the dependent variables in equation 3.19 are 

function of   
  and NTD at any given position and time. 
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Thus to obtain the appropriate transverse equilibrium (TE) model, we expand all 

the dependent parameters shown in equation 3.19 in a regular power series expansion 

using   
  and NTD as the variables, 
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w w

R N R R N N
                                                      (3.27) 

Zapata and Lake, 1981 proved that viscous crossflow is maximum when   
    for 

immiscible floods with no dispersive mixing. Lake and Hirasaki, 1981 showed that 

dispersive crossflow is maximum when       for miscible floods with no viscous 

mixing. The aim of the chapter is to understand the behavior of viscous and dispersive 

crossflow in the reservoirs in the limits when   
   and       together. So 

substituting equations 3.20 to 3.27 in equations 3.12 to 3.17 and taking limits of   
  

 and       yields the following leading order terms, 

     '

1 21,0 ,1,0 2,0 ,2,0 , ,0 , ,0( , )( ) 0;    i=1 to D D i i Di x Di y c

D D D

d d d
x y S w S w N N N
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     

(3.28) 
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                                                                                            (3.29) 

1 ,0 2 ,0

1 2, ,0 ,1,0 1 2 ,2,0 2 2

1 ,0 ,1,0

1 ,1 1 2

2 ,0 ,2,0

2 ,2 2 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

H H

H

H

D Do o
K KDi x i D D i D D

D D

D ioL
KL D D D D

D D

D ioL
KL D D D D

D D

P P
N w x y w x y

x x

P w
x y x y

L x x

P w
x y x y

L x x





     


  


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                    (3.30) 
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    
      

    
                                                                                                                                  

(3.31) 

1 ,0 ,1,0 2 ,0 ,2,0

1 2,1 1 2 ,2 2 2( , ) ( , ) ( , ) ( , ) 0
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K KT D D D D T D D D D
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P w P w
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x y x y
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   
 

   

                                                                                                                                  (3.32) 

1,0 2,0 1S S                                                                                                                (3.33) 

,1,0

c

,2,0

;      i=1 to N
i

i

i

w
k

w
                                                                                               (3.34) 
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Equation 3.31 governs the way pressure varies in the transverse direction. 

Equation 3.31 when written for all Nc components yields the following system of 

equations in matrix form, 

1,1,0 1,2,0

1 ,02,1,0 2,2,0 1
1 1

2

2

2 ,0 2
2 2

2

,1,0 ,2,0

   

   

.          .
( , ) 0

.          .

.          .

   

V

c c

D H

o

Do
K D D

D H

o

D

N N

w w

Pw w gk H

y Lq
x y

P gk H

y Lq

w w


 





 



 
 

            
    
   

    
  

                                   (3.35) 

Equation 3.34 when written for all Nc components yields the following system of 

equations in matrix form, 

1,1,0 1,2,0 1

2,1,0 2,2,0 2

,1,0 ,2,0

   

.   . .

.   . .

.   . .

cC C
NN N

w w k

w w k

kw w

     
     
     
     
     
     
     
     
         

                                                                      (3.36) 

Equation 3.36 shows that the two vectors in the component concentration matrix in 

equation 3.35 are independent of each other. Linear independence of vectors [wi,1,0] and 

[wi,2,0] (Eq. 3.36) results in new conclusions derived from equation 3.35, 

 

1 ,0 2 ,01 2

2 2

0;     0
D DH H

o o

D D

P Pgk H gk H

y Lq y Lq

 

 

 
   

 
                                                         (3.37) 

Using relationship specified in equation 3.34, equation 3.32 can be written as 

 

1 ,0 2 ,0 ,2,0

1 2,1 1 2 ,2 2 2( , ) ( , ) ( , ) ( , ) 0
H H

D D io o
K KT D D D D i T D D D D

D D D

P P w
x y x y k x y x y

x x y
      

   
  

   
 

                                                                                                                                  (3.38)                   
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Thus, 

,2,0 ,1,0
0;     0;       i=1 to Nc

i i

D D

w w

y y

 
 

 
                                                                        (3.39) 

Equation 3.37 says that the phase pressure varies as a function of phase density in 

the transverse direction, whereas Equation 3.39 dictates wi,1,0= wi,1,0(xD,tD) and wi,2,0= 

wi,2,0(xD,tD), i.e., the component concentrations are independent of the transverse 

coordinate. Equations 3.37 and 3.39 are the fundamental assumptions of transverse 

equilibrium (viscous and dispersive), rigorously derived here in the limit   
  

  and      . Numerical evidence suggests that TE is satisfied quite well when RL > 

10, and NTD > 5 (Lake, 1991 and Lake and Hirasaki, 1981). This is consistent with our 

power series expansions (equations 3.20 to 3.27), where the next order enters at O(1/NTD) 

and O(1/  
  . The dispersive crossflow error from the next order term O(1/NTD) in 

equations 3.20 to 3.27 is of the order of 20% (when NTD=5). The viscous crossflow error 

from the next order term O(1/  
   in equations 3.20 to 3.27 is of the order of 1% (when 

RL=10). The total error that is the sum of dispersive and viscous terms is of the order of 

21%.  If the dimensionless number NTD > 10 and RL=10, the error reduces to the order of 

11%. The rigorous analytical identification of the parameters   
  and     as the relevant 

variables for the validity of TE represents the first result of this dissertation. 

Unless otherwise noted, subscript 0 shall be omitted in the further analysis for 

convenience. The next step is to write the continuity equation 

 

  '

1 21 2 , , ,0

1 1

( , )( ) 0
N N

D D Di x Di y

i iD D D

d d d
x y S S N N

dt dx dy
  

 

   
      

   
                          (3.40) 

, , 1 1 2 2

1
D D

N

D x Di x x x

i

N N u u 


                                                                                   (3.41) 

' ' ' '

, , 1 1 2 2

1
D D

N

D y Di y y y

i

N N u u 


                                                                                  (3.42) 
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The dispersive flux in the above equations is also defined as mass flux of any 

species relative to mass average velocity, thus the dispersive flux terms add to zero 

(Lake, 1989). The total velocity in longitudinal and transverse directions are given by 

 

1 2
1 2 2 2( , ) ( , )

H HD

o oD D
K Ktx D D D D

D D

P P
u x y x y

x x
   

 
  

 
                                                    (3.43) 

' 2 1 2 2 2
1 2 2 2

2 2

( , ) ( , )
V VD

o oD H D H
K Kty L D D D Do o

D D

P gK H P gK H
u R x y x y

y Lq y Lq

 
   

 

      
        

      
  

(3.44) 

Capillary pressure, Pc is defined as the difference in phase pressures  

2 1cP P P                                                                                                                   (3.45) 

Dimensionless capillary pressure is defined as 

2 1
2 1

2 2 2

H c H H
cD D Do o o

k P k P k P
P P P

L q L q L q  
                                                                          (3.46) 

The dimensionless capillary pressure can also be expressed in terms of a J-function 

representation 

1

( , )
( )

( , )
H

D D
c

KH D D

x y
P J S

k x y


                                                                                         (3.47) 

Substituting Pc from Eq. (47) to Eq. (46) yields 

1 1 2 1

2 2

( , ) ( , )
( ) ( )

( , ) ( , )
H H

HH D D D D
cD D Do o

K KH D D D D

kk x y x y
P J S J S P P

L q k x y L q x y

  

 
                     (3.48) 

where, ϒ is the interfacial tension. Interfacial tension is assumed to be constant over the 

range of variation in pressure and compositions. Substituting for P2D in Equations 3.43 

and 3.44 can be used to solve for phase pressure gradients in x and y coordinates 

1 2
1

2

( , )
( )

( , ) ( , )

D

H H

txD D D
CDo

K KD D D t t D D D

uP x y
N J S
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 

  

  
        

                                      (3.49) 



 34 

'
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k k gH
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L q L q

  

 


                                                                     (3.51) 

where, NCD is the dimensionless capillary number and Ng is the dimensionless gravity 

number. Using the pressure gradients for flux terms (Equations 3.41 and 3.42) in 

continuity equation 3.40 yields 

1 1 2 2 1 2 2 1 2
, 1

( ) ( , ) ( , )
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( , )

H
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o
K D D D D

D x tx CD
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 
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   (3.52) 
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(3.53) 

The pressure gradients are also eliminated from the component flux equations 

3.14 and 3.15 
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                                                                                                                                  (3.54) 

where, L
LDN

L


                                                                                                         (3.55) 

NLD is the dimensionless number that controls dispersive flow. It is also the inverse of 

Peclet number.      
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(3.56) 

Subsequently, substituting Equation 3.41 into 3.40 and then integrating from 0 to yD 

yields the transverse flux     
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(3.57) 

where no-flow boundary conditions at yD=0, 1 were used.  Substitution of      
  from 

equation 3.57 into flux term      
  of equation 3.56 yields the final form of the material 

balance equation for component i, 
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(3.58) 

Before we proceed, let us recall the conditions for the validity of the transverse 

equilibrium TE. It was derived in the limit RL>>1 and NTD>>1. In order for gravity and 

capillarity to be absent from equation 3.58, the strong constraints below are needed 
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  The conditions in equation 3.59 can also be represented in terms of the original reservoir 

variables as 
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where the capillary number NCD defined is the same as by Yokoyama and Lake, (1981). 

Under the conditions in equation 3.59, equation 3.58 is transformed into a form where 

transverse equilibrium emphasizes viscous as well as dispersive crossflow because of 

heterogeneity.  
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If the densities of the two phases are almost constant i.e. the pressure and 

component concentration variation do not affect the density too much 
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Under the above assumption, the pressure gradient in the x direction could be 

eliminated   
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                                                              (3.64) 

Substitution of the total velocity     
 from equation 3.64 to equation 3.62 yields 

the final result 
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This equation represents the second result of this chapter. It is a second order PDE 

in two spatial dimensions (x, y), that contains saturation and component concentration as 

dependent variables. More importantly, equation 3.62 contains a viscous crossflow term 

(fifth term on the LS) and dispersive crossflow term (sixth term on the LS), both of which 

arise from transverse equilibrium in absence of gravity and capillarity.  
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In this chapter, a formal approach was used to derive rigorously the conditions for 

Transverse Equilibrium. The identification of RL and NTD as the key parameters for power 

series expansion was a key to the analysis. The analysis conforms to previously known 

numerical results and, for the first time, rigorously establishes the validity for two phase 

multicomponent compressible miscible flow in the limit of large RL
2
 and NTD. The 

conditions developed depend on the geometry of the porous media as well as the static 

petrophysical properties.  

The conditions for TE should ideally lead to a reduction in dimensionality of the 

problem but the inter-dependence of viscous and dispersive flow prevents us from 

attaining that result.  Heterogeneity of the reservoir is also accounted for in the analysis. 

The relative strength of viscous to other forces (gravity and capillary) dictates the flow 

regime in the reservoir.  
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Capillary and gravity are both not dominant. 

Maximum crossflow caused  by viscous and 

dispersive forces 

Table 3-1. Summary of the conditions under which different forces contribute to 

transverse flow in a reservoir. 
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The typical values of reservoir properties are: length L = 1000 ft, thickness H = 

30, kv/kh = 0.1, longitudinal dispersivity αL = 0.032 ft and transverse dispersivity αT = 

0.0032 ft. The relevant dimensionless parameter for such reservoir are RL
2
 =110, NTD = 

0.0035 and NLD = 0.000035. For typical reservoirs the state of total transverse equilibrium 

is not achieved because NTD stays smaller than one. The gravity number must be smaller 

than Ng = 0.01 for gravity to be negligible. This condition is not fulfilled very often and 

gravity plays a significant role in displacements. The capillary number must be smaller 

than NCD = 0.01 for capillaity to be negligible. This condition is fulfilled sometimes 

depending on the interfacial tension between the two phases.     
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CHAPTER 4 

Upscaling of Miscible Floods: An Extension to Koval’s Method 

Solvents, such as carbon dioxide, are shown to be cause unstable displacement of 

oil (Perrine, 1961) in theory and (Blackwell, 1959) experimentally. Field data and scaled 

down lab experiments also suggest that such floods are unstable (Haberman, 1960).  

These instabilities in the displacement leaves some parts of the reservoir unswept, causes 

early breakthrough of solvent and reduced oil cut. Unstable floods lead to fingering and 

intrinsic heterogeneity at large scale exacerbates the problem further by causing 

channeling.  

The problem of solvent fingering is also accentuated by channeling, longitudinal 

dispersion, viscosity and gravity differences (Perrine, 1961). Longitudinal dispersion in a 

porous media is caused by mechanical spreading because of random grain scale 

inhomogeneities. Viscosity differences lead to faster growth of the fingers as solvent tries 

to follow the path of least resistance. Gravity differences causes solvent to override and 

leads to fast growth of the ensuing tongues. Miller 1966 showed that gravity can cause 

segregation of injected miscible gas and water. It was also showed by Miller, 1966 that 

the oil bank that forms ahead of an over-riding miscible fluid is forced down below 

solvent tongue and moves slowly towards producing well. The oil bank is slowly 

recovered immiscibly at a very slow rate by injected water along with the gas. Thus a 

significant amount of oil displaced by miscible fluid is left unswept in the reservoir. The 

effect of gravity can be significant for floods with low gravity number but incorporating 

gravity complicates the model formulation. For this reason model and results reported 

herein are for matched density fluids. 
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Much research effort has been spent on ways to accurately predict the 

performance of unstable miscible displacements in heterogeneous media. Most proposals 

to simulate miscible floods effectively suggest empirical models to represent viscous 

fingering and channeling.  

Dougherty (1963) constructed a flow model akin to Koval‟s approach accounting 

for mixing. Some work was done in the 70‟s by Lantz (1970) and Todd and Longstaff (T-

L) (1972) to use existing two and three phase immiscible simulators and modify them to 

simulate miscible floods.  Fayers (1988) described unstable displacements by suggesting 

the use of a fingering function. 

fa bC   
                                                                                                      (4.1) 

where,  is the fraction of cross-section occupied by fingers, Cf is the solvent saturation 

in the fingers, a is the initial finger width and (a+b) is the fraction of the cross section 

occupied by fingers when Cf = 1. Fayers and Newley (1988) also empirically extended 

this model to 3-D flow systems. Todd and Chase (1979) suggested a model based on the 

T-L model to account for viscous fingering under multi-contact miscible conditions.  

Crump (1988) applied a modified T-L model using mobility ratio dependent mixing 

model along with Koval heterogeneity factor Hk determined from unit mobility ratio 

displacements.  Nghiem and Agarwal (1989), Fayers et al. (1992) and Huh et al. (2006) 

proposed use of two region models for upscaling of miscible floods. The modeling of 

viscous instabilities and channeling requires models at centimeter or millimeter scale 

(Gardner and Ypma, 1984). All the above models, requiring numerical simulation, and 

are time consuming.  

The scale of reservoirs compared to the scale of the instabilities established a need 

for an upscaling scheme that could predict production with as few parameters as possible.  

Therefore, using fast and accurate analytical techniques, which represent the underlying 
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physical phenomena is important. One of the earliest models for this purpose was 

developed by Koval (1963). 

Koval introduced a factor (K) to represent the effects of fingering and channeling 

combined on oil recovery by a miscible solvent.  

1

(1 )
1

sF
S

KS





                                                                                                  (4.2) 

where, Fs is the fractional flow of solvent, S is the saturation of the solvent along the 

cross-section. Koval‟s theory is based on the premise that both dispersion and channeling 

are a result of heterogeneity and it is difficult to decouple one from the other. Patton 

(1971) presented a predictive model for polymer floods, Paul et al. developed a model to 

predict surfactant-polymer floods in 1982 and a similar model for CO2 flood evaluation 

in 1984.  Genrich (1987) studied the effects of heterogeneity on WAG performance and 

developed a steady-state, analytical model to predict production. Molleai (2011) 

developed a more rigorous model based on the Koval method for displacements. His 

model accounts for the two fronts at global scale by defining separate Koval factors for 

both. The models developed so far either do not work for two front displacements or do 

not account for the interactions between them at large scale for heterogeneous fields.  

The contributions of this work are (a) to formally and rigorously introduce the 

mobility ratio correction term in the Koval theory, and (b) to decouple the local and 

global problem while accounting for interaction between the two fronts at reservoir scale. 

The local problem is the pixel scale problem solved using fractional flow theory and 

global problem represents the effects of large scale heterogeneity at window scale. The 

definition of the scales and the nature of local and the global problem are discussed 

below in detail. 
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4.1  ASSUMPTIONS  

Before going further, we define a few terms related to upscaling. The pixel scale 

(Li, 1995) is the scale below which no information is assumed to be available. In context 

of the chapter, the pixel scale is the fractional flow scale (fine scale) or the information 

that we obtain from core scale (relative permeabilities). The window scale is the scale 

beyond which no information is evident. In the context of the chapter, the window scale 

is the reservoir or interwell scale. 

The section itemizes the set of simplifying assumptions and their impact on the 

study. 

1. Just for model development and verification, we restrict ourselves to a 2-D linear 

and isothermal reservoir. Multidimensional flow does not rule out viscous 

instabilities. The isothermal assumption simplifies the problem because only mass 

conservation equations must be solved. 

2. For miscible floods, pressure, temperature and solvent compositions influence 

miscibility development. For WAG floods where miscibility develops, the pixel 

scale problem is then governed by the fractional flow theory (Walsh and Lake, 

1988). 

3. The rock and fluid properties are assumed to be independent of pressure. This 

assumption is valid for most of the cases we deal in the paper. Polymer and ASP 

floods with two fronts at the pixel scale pose no controversy related to this 

assumption. Miscible floods with gas as a solvent on the other hand do, because 

gases are compressible. Fractional flow theory was developed for incompressible 

fluids and it governs flow physics in our models at the pixel scale. For gases like 

CO2 which are fairly incompressible at high pressures, this assumption is 
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reasonable. In cases where the pressure gradients developed during flow are small 

the assumptions holds. 

4. Spreading because of capillary forces for immiscible fluids is negligible. 

Spreading caused by dispersion of components in miscible fluids is negligible 

(high Peclet numbers). In other words the mixing zone developed is very small 

compared to the window scale. This reduces mass conservation equations to first-

order hyperbolic equations and the method of characteristics can be used to solve 

them and gain useful insights. 

5. Initial conditions assume uniform oil and water saturation in the whole reservoir. 

Different initial saturation distributions give different flow conditions at the pixel 

scale and add a layer of complexity. 

6. We assume that we have at most three components, oil, water and a displacing 

agent (solvents, surfactant solutions or polymer solutions), in the reservoir at any 

time. There is at most two phases in the system, an aqueous phase that contains 

water and an oleic phase that contains solvent and oil.  Insight from pixel scale 

fractional flow theory for floods that form two fronts suggests segregated regions 

of flow. 

7. Effects of gravity were ignored in the reservoir which is taken to be in vertical 

equilibrium throughout. This assumption is essential to the model development. 

8. The reservoir scale problem depends on pixel scale (local scale) problem. The 

local scale problem is largely piston like for miscible WAG floods (Walsh and 

Lake, 1988) as shown in Figure 4-1. 

The assumptions 1 to 8 give a set of hyperbolic mass conservation equations that 

can be solved using the method of characteristics so that coherent wave theory applies 

(Hilbert and Courant, 1962; Lake, 1989).   
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4.2  THEORETICAL DEVELOPMENT 

The Buckley-Leverett method (1942) is a very useful tool to predict oil recovery 

for immiscible oil and gas displacements. It was based on simplifying assumptions but 

gave insights that were consistent with the physical observations. The Koval (1963) 

theory for miscible floods helped predict oil recovery while accounting for heterogeneity 

and adverse mobility ratio.  

Walsh and Lake (1988) also made simplifying assumptions and built on 

extensions to the Buckley-Leverett theory to predict oil recovery for first-contact 

miscible water-alternating-gas (SWAG) floods under varying injection and initial 

conditions for homogeneous systems. 

The two important relationships were developed in the above theories. 

The frontal advance formula,  

iD

D i

Fdx

dt C





                                                                                                          (4.3) 

And the fractional flow equation, 

k( ' ,H , )i iF f C s MR
                                                                                         (4.4) 

where Fi stands for fractional flow of the component i, Ci’s are the concentrations of all 

the components from i = 1 to N in the reservoir, Hk stands for heterogeneity factor and 

MR is the mobility ratio. The frontal advance formula in other words is the velocity at 

which that component travels in the system. Coherence or simple wave theory stipulates 

that all the components present in the reservoir travel with the same wave velocity. We 

also develop similar relationships for upscaled systems where the fractional flow 

equation would depend on pixel scale information as well as window scale information. 
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Figure 4-1. Fractional flow curves for a first-contact miscible SWAG flood showing the 

formation of an oil bank (B) with two fronts separating it from the initial (I) 

and injection (J) condition  

4.3  GOVERNING EQUATIONS 

Subject to the assumptions listed above, the cross-sectionally averaged 

conservation equations yield a set of hyperbolic equations that are to be solved using the 

methods of characteristics (referred to as MOC from now on in the chapter): 

Water mass balance yields: 
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Solvent mass balance yields: 
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where J is the region in the reservoir being occupied by solvent, B is the region where oil 

banks and I is the region with initial reservoir conditions.  f1,J, f1,B and f1,I is the water 

fractional flow in regions J, B and I respectively, at the pixel scale. S1,J, S1,B and S1,I are 

the water saturation in regions J, B and I respectively, at the pixel scale. S2RM is the 

residual oil to miscible floods. The residual oil to miscible floods could result from local 

heterogeneity in permeable medium or dispersion and its interaction with phase behavior 

(Gardner et al., 1981). This information is derived from pixel scale fractional flow theory 

as shown in Fig. 4-1. Subscripts 1, 2 and 3 refer to brine, oil and solvent respectively in 

the paper. At the window scale shown in Fig. 4-4b, f1,J, f1,B, f1,I, S1,J, S1,B, S1,I and S2RM are 

assumed to be constant. This assumption is valid because of the formation of three 

distinct flow regions at pixel scale (Fig. 4-1). 

CJ is the fraction of total cross-section swept by the injected fluid, CB is the 

fraction of the total cross-section swept by the oil bank and CI is the fraction of total 

cross-section occupied by initial oil at any given position and time as shown in Figure 4-

4b. FJ is the fraction of total flow in the region defined by CJ, FB is the fraction of total 

flow in the region defined by CB, and FI is the fraction of total flow in the region defined 

by CI as shown in Figure 4-4.  Eqs. 4-9 and 4-10 are simplified and compact forms of 

Eqs. 4-5 and 4-6 respectively and their detailed derivation is shown in Appendix A.  
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where vf,OB is the pixel scale velocity at the front of the oil bank and vb,OB is the pixel scale 

velocity at the back of the oil bank as shown in Figure 4-1. The independent variables in 

Eq. 4-5 and Eq. 4-6 are dimensionless time and position: 

  

t
D


u dt
0

t



L
,   x

D


dx
0

x



L                                                                                     (4.13) 

The dimensionless time (tD) defined above is the cumulative fluid injected per 

unit pore volume and the dimensionless position (xD) is distance away from injection well 

divided by the distance between the injector and the producer (L). The velocity of the 

flowing fluids in the reservoir is invariable with position on account of constant cross 

sectional area as well as incompressibility of the fluids, but it can change with time. The 

detailed derivation of the mass conservation equations is in Appendix A. 

 

Figure 4-2. a) Layer arrangement in the order of increasing interstitial velocity from top 

to bottom. The heterogeneous system represented by a uniformly layered 

system (infinite autocorrelation length in the x-direction). b) Dimensionless 

representation of the same layered system based on definitions below.  

Now consider a layered reservoir with infinite correlation length in the flow 

direction (x direction) and correlation length in the direction perpendicular to bulk flow 

(z direction) is limited by layer thickness. The layers are arranged in the order of their 

interstitial velocities (rn) i.e the layer with largest interstitial velocity is at the bottom and 
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that with the least interstitial velocity at the top (Figure 4-2a). The interstitial velocity (rn) 

is defined as: 

 


k
nr

n
n


                                                                                                            (4.14) 

The dimensionless representation (Figure 4-2b) of the layered media shown in 

Figure 4-2a is needed for general solutions. The dimensionless variables are as follows: 

 

                                 (4.15) 

 

 

where øi is the porosity of i
th

 layer and H is the total thickness of the reservoir, C is the 

dimensionless thickness or cumulative storage capacity up to any height (h). We also 

define the cumulative flow capacity (F) contained in layers upto height (h) as: 

 

(4.16) 

 

 

where ki is the permeability of i
th

 layer. F, the cumulative flow capacity, can also be 

thought of as fraction of total flow in single phase unit mobility ratio flow regime through 

region C. The cumulative flow capacity (F) and cumulative storage capacity (C) relate to 

each other based on Koval theory (Figure 4-3).  
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where Hk is defined as the heterogeneity factor. 
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Figure 4-3. Static F-C curves relating flow capacity to storage capacity for different 

heterogeneity factors. The greater the heterogeneity, the more flow capacity 

in smaller fraction of the pore volume.  

One main contribution of this work is the use of relationship in Eq. 4-17 to reduce 

the degrees of freedom of this problem from N (number of layers) to one thereby 

reducing the dimensionality of the problem from 2-D to 1-D in space. The important 

thing in Eq. 4-17 is that the effects of mobility ratio are not included so far in the 

relationship, the F-C curves are, thus far, statistical representations of heterogeneity or 

normalized distribution functions.  Although Koval added mobility contract effects 

heuristically, in this work we do so more rigorously.  And we do it for more general 

cases. 

The layered reservoir in Figure 4-2 is being flooded with the solvent through a 

vertical injector located at x = 0. The vertical production well is at x = L. Both wells are 

completed across all layers. Figure 4-4 illustrates the schematic representation of solvent 

and oil bank distribution in such reservoir after injection. 
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Figure 4-4 a) Schematic showing dimensionless representation of a layered medium. b) 

Schematic representation of the formation of oil bank and solvent flow in a 

layered medium. Injected solvent wave travels fastest in the bottommost 

layer with the highest interstitial velocity and slowest at the top with 

smallest interstitial velocity.  

The fractional flow relationships at the window scale (FJ, FI) for such a 

displacement used in governing Eqs. 4-5 and 4-6 are in Eqs. 4-18 and 4-19.  FJ and FI are 

related to CJ, CB and CI as (Appendix B):  
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Conservation Eqs. 4-9 and 4-10 are solved for CJ and CI using the relationships 

defined in Eqs. 4-18 and 4-19. FJ and FI depend on reservoir heterogeneity factor (Hk), 

mobility ratio (MRb) at the back of the oil bank and mobility ratio (MRf) at the front of the 

oil bank. The reservoir heterogeneity factor is a window scale parameter whereas 

mobility ratios are pixel scale parameters that depend on saturation distributions in the 

regions (J, B and I). These relationships have been explicitly derived and illustrated in 

Appendix B.  
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The effects of mixing because of solvent dispersion into the oil changes the 

mobility ratio at the solvent front. As listed in the assumptions, for high Peclet numbers, 

there is no mixing between oil and solvent at the solvent front. Thus, note that the solvent 

viscosity used in calculating the total mobility ratio at the back of the oil bank (MRb) does 

not assume quarter power mixing rule as was used by Koval (1963) to account for the 

mixing effects. Molleai (2011) also defined the window scale fractional flow functions FJ 

and FI based on Koval theory as shown in Eqs. 4-20 and 4-21.  
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Eqs. 4-20 and 4-21 suggest that the window scale fractional flow in region J only 

depends on CJ and in region I only depends on CI. This suggests that the two fronts in 

such displacements (Figure 4-4) at window scale travel independent of each other. 

Fractional flow theory (Walsh and Lake, 1988) shows that the fronts interact at the pixel 

scale. Since these fronts interact at the pixel scale, they should interact at window scale 

too. Another significant contribution of this work is that it accounts for the interactions 

between these fronts at window scale (Eqs. 4-18 and 4-19). 

4.4  INITIAL AND BOUNDARY CONDITIONS 

The initial condition (tD=0), referred to by script I, is uniform water saturation S1,I 

based on assumption 5. Initially, there is no solvent in the reservoir. The injected 

condition at (xD = 0) is a two-phase mixture of solvent and water for miscible WAG 

floods and the injection condition is specified by the water-solvent fractional flow f1,J. 
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We assume that water and solvent are injected simultaneously though small deviations 

between simultaneous and alternating solvent-water injection have been suggested by Dai 

and Orr (1987).  

4.5  METHOD OF SOLUTION  

The Method of Characteristics or MOC solves for the velocities with which CJ 

and CI travel based on simple wave theory at all points in the system. This velocity (σ) is 

derived as: 

 

, b,
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I J D
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v v

dC dC t
                                                                          (4.22) 

The derivatives in Eq. (4-22) are total derivatives and coherence or simple wave 

theory suggests a relation CI = CI(CJ) found by expanding the derivatives in Eq. 4-22 and 

writing them in matrix form yields: 
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Solving Eq. (4-23) for the eigenvalues, σ
+
 and σ
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Both the eigenvalues are presumed to be real and σ
+
 > σ

-
. These eigenvalues are 

only functions of CI and CJ.  The eigenvalues also relate CI and CJ as: 
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The interpretation of Eq. 4-24 suggests that each point (CI, CJ) has two travel 

velocities and the relationship between CI and CJ depends on the chosen velocity. In a 

physical system, each point (CI, CJ) only travels with one velocity. Using appropriate end 

points and Lax‟s condition, 1) CJ = 1 and CI = 0 on the upstream end and CJ = 0 and CI = 

1 on the downstream end as shown in Fig. 4-5 and 4-4, 2) The velocity (σ) should 

increase downstream; the correct physical solution is obtained. 

After the physical solution is identified, the correct velocity (σ) of each point (CI, 

CJ) is known. The oilcut and cumulative oil produced are calculated using the correct 

velocity from the physical solution. Each point (CI, CJ)
*
 breaks through at xD=1 when, 
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The fraction of total flow in region J and I at xD =1 and *
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* * *( ) 1 ( ) ( )B D J D I DF t F t F t                                                                                             (4.29) 

The oil cut equation then is: 

* * *

1, 1,( ) (1 ) ( ) (1 ) ( )D B B D I I DOilcut t f F t f F t                                                                   (4.30) 
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Since solvent only flows in region J, solvent cut equation then is: 

* *

1, ( ) (1 ) ( )D J J DSolvent cut t f F t                                                                                   (4.31) 

The recovery efficiency (NPD) is: 
*

*

0

( ) ( )
Dt

PD D D DN t Oilcut t dt                                                                                             (4.32) 

 

Figure 4-5. Schematic showing the physical end points. Upstream of the oil bank, the 

entire cross-section is flooded by injected solvent and CJ =1. Downstream of 

oil bank, the entire cross section is at initial condition and CI = 1.  

The mathematical solution for the problem can be represented graphically on a 

ternary diagram, which greatly simplifies interpretation of the displacement. Figure 4-6 

illustrates the application of the method of solving Eqs. 4-9 and 4-10 for a tertiary first-

contact water alternating gas miscible flood. The input parameters required for solving 

system of Eqs. 4-9 to 4-12, 4-18 and 4-19 for example application are given in Table 4-

1a. 

 

 

 

 

 

 

CJ=1 
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Initial 

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.62 0.7 2.3 

a)                                                                   b) 

Table 4-1. a) Initial and injection conditions b) Calculated parameters from pixel scale 

fractional flow theory (Walsh and Lake, 1988) based on initial and injection 

conditions given in a). 

 

 

 

 

 

  
Parameters derived from pixel 

scale fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

2 1.52 0.76 0.49 0.6 0 
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Figure 4-6. Ternary diagram showing all the points mathematically satisfying the system 

of conservation equations as slow σ- and fast σ+ paths. The correct physical 

solution plotted in red is the path originating from CJ = 1, i.e left bottom 

corner on the triangle and ending at CI = 1. The paths transition from slow to 

fast at the red point shown on the plot.  Path based on Mollaei solution is 

plotted in black. Each point on the path travels with a specific velocity (σ). 

The results are shown in Fig. 4-7, which is similar to Walsh and Lake diagrams (Walsh 

and Lake, 1988). Although there are many possibilities, the Fig. 4-7 results are 

qualitatively similar to field-scale solvent flood behavior (a) peak oil cuts is in the 10-

20% range, (b) the peak oil cut coincides with solvent breakthrough, and (c) prolonged 

simultaneous production of solvent and oil (Haberman, 1960). 

 

Peak oil cut 

Simultaneous  

oil and solvent 

production 
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Figure 4-7.  a) Pixel scale fractional flow curve for the application with WR=2.3. b) 

Physical path from Figure 4-6 converted to flow profile in the reservoir. 

Each point on the path travels with a velocity (σ) which is used to plot the 

profile. The profile is converted to effluent history that shows oil cut as well 

as solvent cut. c) Oil bank breaks through at tD=0.36 and solvent breaks 

through after the oil bank break through. Peak oil cut coincides with solvent 

breakthrough. d) Recovery of 0.3 i.e total remaining oil is recovered at 

injected pore volumes of 4. 

4.6  COMPARISON BETWEEN THE NEW MODEL WITH MOLLAEI’S MODEL 

The results from the model are compared to model developed by Mollaei, 2011. 

Eqs. 4-20 and 4-21 based on his model are used to generate the flow profile and effluent 

history results for the application case discussed above. Comparison of results with the 

new model is illustrated by two examples shown from Fig. 4-8 through Fig. 4-11. 
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Initial 

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.62 0.7 2.3 

a)                                                                   b) 

Table 4-2. a) Initial and injection conditions b) Calculated parameters from pixel scale 

fractional flow theory (Walsh and Lake, 1988) based on initial and injection 

conditions given in a). 

4.6.1  Case 1, (Hk=1.1) 

 
 

Figure 4-8. Ternary diagram (Case 1) showing the correct physical solution plotted in red 

is the path originating from CJ = 1, i.e left bottom corner on the triangle and 

ending at CI = 1. The paths transition from slow to fast at CB = 1.  Path 

based on Mollaei solution is plotted in black. Each point on the path travels 

with a specific velocity (σ) 

 

Heterogeneity 

factor,  Hk   

Parameters derived from pixel 

scale fractional flow theory 

Cases 
MRb MRf S1B f1B S2RM 

1 2 3 

1.1 5 20 1.52 0.76 0.49 0.6 0 
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                                  a)                                                                   b) 

Figure 4-9. a) Profiles match perfectly for case 1 between new model and Mollaei model. 

b) The effluent history match between the new model and Mollaei model is 

perfect for case 1. 

The pixel scale and window scale parameters for case 1 are given in Table 4-2. 

Heterogeneity factor (Hk) for case 1 has a value of 1.1 that is very small and the 

representative reservoir is essentially homogeneous. Figure 4-8 and 4-9a show the wave 

profile in the reservoir. The wave profiles obtained from the new model and Mollaei 

model match perfectly and lead to perfect match for effluent history from the two models. 

Figure 4-8 and 4-9a suggest that regions J, B and I do not coexist together at any location 

between xD = 0 and xD = 1 and the new model reduces to Mollaei model because the 

interactions between two fronts at the window scale are insignificant. The solvent front 

travels as a spreading wave despite small heterogeneity because the mobility ratio at the 

chemical bank is greater than unity (MRb = 1.52). The oil bank front travels as a shock at 

window scale because the mobility ratio is smaller than unity (MRf = 0.76).   
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4.6.2  Case 2, (Hk=5) 

 

Figure 4-10. Ternary diagram (case 2) showing the correct physical solution plotted in 

red is the path originating from CJ = 1, i.e left bottom corner on the triangle 

and ending at CI = 1. The paths transition from slow to fast at the red point 

shown on the plot.  Path based on Mollaei solution is plotted in black. Each 

point on the path travels with a specific velocity (σ) 
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. 

 

 

a)                                                                    b) 

Figure 4-11. a) Profiles mismatch when all three regions J, B and I coexist. b) The 

mismatch in the profile doesn‟t affect the solvent and oil bank breakthrough 

in current case. Oil cut peak from Mollaei‟s model is predicted to be smaller 

than the new model (case 2). 

4.6.3  Case 3, (Hk=20) 

 

Figure 4-12. Ternary diagram (case 3) showing the correct physical solution plotted in 

red is the path originating from CJ = 1, i.e left bottom corner on the triangle 

and ending at CI = 1. The paths transition from slow to fast at the red point 

shown on the plot.  Path based on Mollaei solution is plotted in black. Each 

point on the path travels with a specific velocity (σ). 
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a)                                                                       b) 

Figure 4-13. a) Profiles mismatch when all three regions J, B and I coexist. b) The 

mismatch in the profile doesn‟t affect the solvent and oil bank breakthrough 

in current case. Oil cut peak from Mollaei‟s model is predicted to be smaller 

than the new model (case 3). 

The pixel and window scale parameters for cases 2 and 3 are also given in Table 

4-2. Regions J, B and I coexist for cases 2 and 3 as shown in ternary diagrams (Figure 4-

10 and 12). When regions J, B and I coexist the coupled hyperbolic mass balance 

equations in the new model dictate that the two fronts cannot travel independent of each 

other. That Mollaei, 2011 does not account for the coupling of the mass balance 

equations leads to mismatch in solvent and oil bank wave profiles (Fig. 4-8 and 4-10) and 

results in erroneous oil cut prediction as shown in Figures 4-11b and 4-13b. The oil cut 

from Mollaei‟s model is estimated at a lower value compared to the new model for the 

cases with Hk greater than unity (Fig. 4-11b and 4-13b).   

Layered reservoirs used in cases 2 and 3 are more heterogeneous than the 

reservoir used in case 1. It can be seen that as heterogeneity increases from case 1 to 3, 

solutions from Mollaei‟s model increasingly deviate from the new model. Mollaei‟s 

model is accurate when the mobility ratios of the two fronts and heterogeneity of the 

reservoirs is small. Smaller heterogeneity as well as mobility ratios for solvent and oil 
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bank reduces the coupling between the mass balance equations and that makes Mollaei‟s 

model accurate. The degree of coupling between the mass balance equations increases as 

the heterogeneity of the reservoirs increase and that makes Mollaei‟s model inaccurate.   

4.7  RESULTS AND VERIFICATION 

Ternary plot in Figure 4-6 is the culmination of the mathematical development of 

the model; the rest of this section deals with the New model verification and application. 

Pixel scale information varies from case to case, being derived from fractional flow 

theory (Walsh and Lake, 1988). Miscible waves at the pixel scale are indifferent but at 

the window scale could be spreading waves because of heterogeneity. These are to be 

demonstrated in the examples. 

We present several cases with varying heterogeneity and different injection and 

initial conditions. The main challenge of this work is to show all the diverse solutions 

without obfuscating complexity. The results in this section would be presented as 

illustrated in Fig. 4-7 (Walsh diagram) for various cases.  

In this section, the results from the model will be verified against numerical 

simulation. The heterogeneity defined by Hk in the model (simulation model must use 

discrete layers) is required to be used to generate permeability field for the simulation. 

This ensures consistent heterogeneity for the model and simulation. If permeability field 

for the simulations is assumed to be log-normal then variance (vln) for such fields is 

directly related to Dykstra-Parsons coefficient (VDP) and heterogeneity factor (Hk). These 

relationships are defined as (Paul et al., 1982 and Lake, 1989): 

 

ln
1 exp( )
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                                                                                           (4.29) 
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The porosity and thickness for all the layers in the simulations are constant. The 

porosity and thickness could be treated as varying from layer to layer but this introduces 

a layer of complexity without any additional benefits.  

To make verification straightforward, simulations were run first with a set of pixel 

scale parameters as input. The same parameters were then used in the model to calculate 

effluent histories for comparison. All the cases represented in this section are for 

heterogeneity factor Hk of 5 or equivalent VDP of 0.59. At reservoir conditions the water 

(μ1) and oil viscosities (μ2) are 0.71 and 0.18 cp, respectively, and the solvent viscosity 

(μ3) is 0.12 cp. These viscosities are used to calculate the pixel-scale fractional flow 

curves (Fig. 4-14).    

 

 

Figure 4-14. Pixel scale fractional flow curves for the verification cases.  
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The fact that the two fractional flow curves are close to each other does not affect 

the verification because the pixel scale conditions in the regions J, B and I are well 

defined as shown in the individual cases below. 

4.7.1 Continuous solvent injection 

Figure 4-16 shows results for a tertiary displacement case using continuous 

solvent injection and f1J = 0. The initial and injection conditions are in Table 4-3 as are 

the mobility ratios at the back and front of the oil bank. The method to calculate the 

mobility ratios at the back and front of the oil bank is shown in Appendix-B. The 

appropriate saturation at the pixel scale for the oil bank is derived from method proposed 

by Walsh and Lake, 1988. Continuous tertiary miscible solvent injection causes two 

immiscible spreading waves at the pixel scale (Walsh and Lake, 1988). First spreading 

immiscible wave forms ahead of miscible wave as shown on water-oil fractional flow 

curve between points B and C in Fig. 4-15. Second small immiscible wave forms behind 

miscible wave as shown on water-solvent fractional flow curve between points J and A in 

Fig. 4-15. These immiscible spreading waves suggest varying saturations in the injection 

region (J) and oil bank region (B). Since the immiscible spreading wave in injection 

region (J) travels slowly compared to the miscible wave the saturation in region (J) can 

be assumed to be constant. On the other hand, immiscible spreading wave in the oil bank 

region has small variation in the saturations and thus an average constant value is chosen. 

This is necessary for the mass conservation equations at the window scale, which are 

derived assuming that there are three distinct regions of flow (J, B and I) with constant 

pixel scale saturations in each. 
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Figure 4-15. Two immiscible spreading waves form at the pixel scale for continuous 

solvent injection case. 

 

Initial 

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.26 0.01 2.3 

a)                                                                   b) 

Table 4-3. a) Initial and injection conditions for continuous solvent injection b) 

Calculated parameters from pixel scale fractional flow theory (Walsh and 

Lake, 1988) based on initial and injection conditions given in a). 

Figure 4-16b shows the flow profile of solvent and oil bank in the reservoir. The 

solvent wave given by CJ travels very fast and breaks through almost as soon as oil 

production starts (Fig. 4-16c) because of the high mobility ratio at the back of the oil 

bank. Large oil cut (about 10%) is also seen in the effluent history as soon as production 

  
Parameters derived from pixel 

scale fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

5 3.90 1.71 0.43 0.2 0 

J 

I 

A 

B 

C 
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starts but oil cut wanes after that significantly. This is because of the large amount of 

solvent production. High solvent production (Fig. 4-13c) is caused by the propensity of 

high mobility fluids following the path of least resistance. In turn recovering all the 

remaining oil from the reservoir takes many pore volumes of solvent which could render 

the process uneconomic (Fig. 4-16d).  

The effluent history in Fig. 4-16c and 4-16d also show very good comparison 

between the solution obtained from the model versus numerical solution.   

 

Figure 4-16. a) Pixel scale fractional flow conditions shown for continuous solvent 

injection. b) Flow profile for continuous tertiary solvent flood. The solvent 

wave travels very fast because of high solvent mobility. c) Oil bank and 

solvent breakthrough right at the start and oil cut falls off after that. Solvent 

cut jumps to a very high value of 0.8 to 0.9 very early. The model solution 

compares well with the numerical simulation. d) High solvent cut in the later 

part of production causes 16 injected pore volumes for complete oil 

recovery. 



 70 

4.7.2  Simultaneous Water- Solvent injection  

Water injection along with the solvent (SWAG) is a preferred practice as a means 

to lower adverse mobility ratio between the solvent and the oil. Pure solvent injection is a 

highly adverse mobility ratio flood but simultaneous water-solvent injection improves the 

mobility ratio and thus in turn increases sweep. We define a term called WAG ratio (WR) 

here: 

1

11

J
R

J

f
W

f


                                                                                                        (4.31) 

4.7.2.1  Low WAG ratio case 

In this case, the WAG ratio is 0.42. The mobility ratio improvement is obtained 

by injecting a small fraction of water with the solvent stream. This is evident if the 

mobility ratio values are compared for the current case (Table 4-4) vs continuous solvent 

injection case (Table 4-3). The mobility ratio at the back of the bank is not very adverse 

on account of the high solvent viscosity (0.12 cp) at reservoir conditions in this particular 

case. The injected pore volumes of solvent required to recover all the oil in the current 

case is 3.8 (Fig. 4-17d) compared to 16 for the continuous solvent injection case (Fig. 4-

16d). This shows the direct impact of improving the mobility ratio even when the 

heterogeneity of the reservoir (Hk = 5) is same for the current case as well as the 

continuous solvent injection case. The comparison between simulation and the model is 

fairly good in this case. Small fluctuations in the solution from the numerical simulation 

are attributed to numerical instabilities in the solution. 
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Parameters derived from pixel 

scale fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

5 1.05 1.51 0.47 0.23 0 

 

                                a)                                                         b) 

Table 4-4. a) Initial and injection conditions for a flood with WR=0.42 b) Calculated 

parameters from pixel scale fractional flow theory (Walsh and Lake, 1988) 

based on initial and injection conditions given in a). 

 

Figure 4-17. a) Pixel scale fractional flow conditions shown for WR=0.42. b)  Flow 

profile for tertiary small WAG solvent flood. The solvent wave travels 

slowly because of lowered mobility at the back of the oil bank. c) The oil 

bank breaks through at the start with high oil cut and then falls off. The 

delayed solvent breakthrough results in a larger peak oil cut. d) Ultimate oil 

recovery is faster compared to continuous solvent injection addition of water 

and improved mobility ratio. Numerical fluctuations lead to inexact match 

between model and simulation. 

Initial  

condition 
Injection condition 

 S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.51 0.3 0.42 
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4.7.2.2 Intermediate WAG ratio case 

In this case WR is unity. Increasing the WAG ratio compared to previous case of 

WR = 0.42 delays solvent breakthrough. This maybe an economic advantage because 

recycling of the injected solvent is delayed. Limitation of increasing the WAG ratio is 

evident when total pore volumes injected is compared for recovering all the oil. Current 

case requires 4.8 pore volumes of total injection (Fig. 4-18) compared to previous case of 

low WAG ratio case which required 3.8 pore volumes of total injection (Fig. 4-17).  

The solution obtained from numerical simulation compares well with the model 

solution.  

 

Initial 

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.56 0.5 1.0 

a)                                                                   b) 

Table 4-5. a) Initial and injection conditions for a flood with WR=1.0 b) Calculated 

parameters from pixel scale fractional flow theory (Walsh and Lake, 1988) 

based on initial and injection conditions given in a). 

  
Parameters derived from pixel 

scale fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

5 1.06 1.11 0.53 0.47 0 
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Figure 4-18. a) Pixel scale fractional flow conditions shown for WR=1. b) Flow profile 

for tertiary intermediate WAG solvent flood. The solvent wave travels 

slowly because of the smaller mobility at the back of the oil bank. c) Oil 

bank breaks through at the start with large oil cut of 26% and then falls off. 

The solvent breakthrough is delayed resulting in a higher peak oil cut value. 

The peak oil cut coincides with solvent breakthrough. d) Ultimate recovery 

takes about 4.8 injected pore volumes which is larger than for low WAG 

ratio case.  

4.7.2.3  High WAG ratio case 

The WAG ratio (WR) in this case is 2.7. Large WAG ratios are also detrimental to 

recovery because ultimate recovery takes a long time (Fig. 4-19). This effect is because 

the pixel scale velocity of the front and the back of the oil bank is reduced greatly (Walsh 

and Lake, 1988). Reduction in pixel scale velocity also leads to later breakthrough of the 

solvent so the optimal WAG ratio is an important aspect of the WAG flood design 

(Walsh and Lake, 1988). As WAG ratios increase, the peak oil cut also decreases (Fig. 4-

21) because of an increase in total recovery time and waning of the oil cut tail. The model 

captures the simulated effluent history very well for this case too. 
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In all the cases shown above, the oil cut from numerical solution slightly lags the 

simulation solution. This slight discrepancy is because the miscible flood effects of 

gravity were not eliminated completely in the simulation. 

 

 
Parameters derived from pixel scale 

fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

5 1.06 0.91 0.58 0.71 0 

 

                             a)                                                                      b) 

Table 4-6. a) Initial and injection conditions for a flood with WR=2.7 b) Calculated 

parameters from pixel scale fractional flow theory (Walsh and Lake, 1988) 

based on initial and injection conditions given in a). 

 

 

Initial  

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.6 0.73 2.7 
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Figure 4-19. a) Pixel scale fractional flow information for WR=2.7. b) Flow profile for 

tertiary high WAG ratio solvent flood. The solvent wave travels very slowly 

because of small total mobility at the back of the oil bank. c) Oil bank 

breaks through after some delay and solvent breakthrough is delayed further. 

The peak oil cut coincides with the solvent breakthrough. Oil cut falls off 

after solvent breaks through. d) The ultimate recovery takes a lot longer in 

this case compared to previous WAG cases because of smaller front 

velocities at pixel scale.  

4.8  OPTIMAL WAG RATIO 

Walsh and Lake (1988) define an optimal WAG ratio as the injection condition 

when fractional flow of oil is the highest with quick oil recovery. Ghanbarnezhad and 

Lake, 2010 also proved that the optimal WAG ratio from Walsh and Lake, 1988 for a 

homogeneous reservoir is also the same for a layered reservoir.  
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Figure 4-20. Pixel scale fractional flow curves showing the optimal injection WAG ratio 

WR=0.38.  

For a tertiary displacements, the optimal WR is given by the point of intersection 

of miscible wave line (vb,OB) with the water solvent fractional flow curve when it is drawn 

as a tangent to water oil fractional flow curve (Walsh and Lake, 1988). Based on the 

construction shown in Fig. 4-20 the optimal WR = 0.39. Figure 4-21 shows a plot of peak 

oil cut as well as total pore volumes injected for ultimate recovery for all the tertiary 

flood cases discussed above. 

Optimal f1,J = 0.27 

vw 

vf,OB 

vb,OB 

J 

I 
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Figure 4-21. The optimal WAG ratio from the above plot falls close to WR of 0.4. At this 

WAG ratio, peak oil cut is the highest and recovery time is the lowest. 

The optimal WR of 0.4 is almost equal to the optimal WAG ratio of 0.39 suggested 

by pixel scale fractional flow theory. The slight mismatch is because of the frequency of 

points on the Fig. 4-21. Thus pixel scale analysis is very robust when it comes to deciding 

for optimal WAG ratio for large scale reservoirs.  

4.9  SECONDARY FLOOD: HIGH WAG RATIO CASE 

This case demonstrates a high WAG ratio (WR=2.7), secondary flood. Initial 

condition in this case differs from all the previous tertiary flood cases. The initial oil 

saturation is at residual water saturation of 7%. In all the tertiary flood cases the profile 

waves for CI and CJ were spreading. Changing the initial condition at the pixel scale 

changes the nature of wave profile completely (Fig. 4-22).  

 

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 0.5 1 1.5 2 2.5 3 

P
e

ak
 o

il 
cu

t 

To
ta

l P
V

 in
je

ct
e

d
 f

o
r 

u
lt

im
at

e
 r

e
co

ve
ry

 

WAG ratio, WR 

Series1 

Series2 

Optimal WAG ratio 

Peak oil cut 

Total PV injected 



 78 

Initial 

condition 
Injection condition 

S1I f1I S1J f1J 
WAG ratio 

(WR) 

0.7 1.0 0.07 0.0 2.7 

a)                                                                   b) 

Table 4-7. a) Initial and injection conditions for a secondary flood with WR=2.7 b) 

Calculated parameters from pixel scale fractional flow theory (Walsh and 

Lake, 1988) based on initial and injection conditions given in a). 

This case shows a combination of spreading as well as shock waves (Fig. 4-19). 

The mathematical solution is depicted in Fig. 4-19. It shows two velocities for one (CI, 

CJ) point. Lax‟s condition dictates an increase in velocities downstream. Thus a shock 

formation is the only way a physical solution could be obtained. The shock velocity is 

determined by applying mass balance for either of the components i.e. solvent, oil or 

water. 

Applying material balance across the shock for solvent, the shock velocity is 

given by: 

3 3

3 3

J J J J

J J J J

f F f F

S C S C



 

 




                                                                                       (4.32) 

Physical flow profile (Fig. 4-23b) is obtained by placing the shock for the current 

problem. The effluent history, calculated after obtaining the physical flow profile, is 

compared to the solution obtained by numerical solution. Numerical simulation shows a 

dispersed front across the shock obtained from the model. The results match each other 

very well in this case too. 

  
Parameters derived from pixel 

scale fractional flow theory 

Hk MRb MRf S1B f1B S2RM 

5 1.06 0.1 0.58 0.71 0 
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Figure 4-22. Flow profile between the boundary points show multiple velocities for one 

(CJ, CI) point. This is unphysical. This is because of very small mobility 

ratio of 0.1 at the front of the oil bank for this case. A correct profile is 

obtained by placing a shock and determining the shock velocity. This is a 

result of a change in pixel scale initial condition. 
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Figure 4-23. a) Flow profile for secondary high WAG ratio WR=2.7 solvent flood. b) The 

solvent wave is spreading and travels very slowly because of low total 

mobility at the back of the oil bank. The oil bank travels as a shock because 

the mobility ratio ahead of the oil bank is very small. c) The oil cut profile 

shows an initial plateau and falls off when solvent breaksthrough. The 

ultimate recovery takes much longer in this case because of smaller front 

velocities at pixel scale. d) The recovery efficiency is high on account of 

secondary miscible displacement. The results match the simulation very 

well. 

4.10  OTHER APPLICATIONS 

The upscaling method outlined in this paper for miscible floods based on certain 

assumptions is derived by first principles. The pixel scale flow is governed by fractional 

flow theory for WAG floods, which suggests formation of three distinct regions of flow 

(Figure 4-1). Similar situation at the pixel scale is also observed for polymer as well as 

alkali surfactant polymer floods. Thus the method derived in this paper can be directly 

extended to such floods.   
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4.11  CONCLUSIONS 

This work is primarily an exposition of a new method to predict miscible floods 

performance at field scale (window scale) using pixel scale fractional flow data which is 

one of the examples of two front displacements. The pixel scale information for upscaling 

depends on fractional flow theory; therefore, specific conclusions vary from case to case. 

The method described in the paper can be applied to a large variety of fractional flow 

curves attainable in practice coupled with heterogeneity. It will yield trends between 

reservoir performance and properties. The new model, when applied to predict and 

compare reservoir performance, will yield information about reservoir heterogeneity and 

mobility ratios. This information will yield quantitative reservoir sweep. This model thus 

can be used as a screening tool for predicting effectiveness of miscible floods. 

This analyses when oil and solvent are miscible with each other without 

dispersion yield following novel contributions: 

1) General method of characteristics honors all the pixel scale information obtained 

from fractional flow theory. It works for arbitrary fractional flow curves, WAG 

ratios and initial conditions. 

2) The upscaling method couples reservoir heterogeneity with pixel scale 

information. 

3) The method accounts for the interactions between the two fronts which form for 

tertiary and secondary miscible WAG displacements. This interaction thus far has 

not been accounted for at window scale. 
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OM Ganeshaye Namah 

CHAPTER 5 

Lost Pore Volume: Secondary and Tertiary Floods 

Primary recovery in oil fields is followed by secondary and tertiary recovery. 

Fluids, such as brine and gas, when injected push the remaining oil out of the reservoir 

during secondary recovery. Secondary recovery is followed by tertiary recovery phase 

where fluids, such as miscible gases (CO2) and polymers are injected to increase the 

recovery efficiency. Fluids, such as brine and gas, finger and channel through the 

reservoir often because of their high mobility and reservoir heterogeneity that leaves parts 

of the reservoir unswept. Fluids like polymer solutions are often injected in the reservoir 

to decrease their mobility in turn displacing the oil from previously unswept parts of the 

reservoir. Even in such favorable displacements, reservoir heterogeneity leads to less than 

perfect ultimate sweep efficiency. 

Secondary and tertiary floods are further classified as immiscible and miscible 

floods. Secondary immiscible displacement, such as waterfloods have been studied by 

Buckley-Leverett (1942) at pixel scale (fine scale) and at field scale using streamline 

simulation. Such displacements are characterized by saturation moving as spreading and 

shock waves, capillary pressure being neglected. The spreading wave part of the 

displacement travels slowly in comparison to the shock wave. Such displacements at the 

window scale (reservoir scale) can be treated as segregated flow with two regions. 

Region J is where injected water and Region I is where the resident oil flows (Figure 5-

1). Such flow can be modeled (Mollaei, 2011) at the reservoir scale by extending Koval‟s 

theory (1963). Secondary miscible displacements, such as gas floods have been studied 
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by Koval (1963) at the window scale. Koval (1963) model also assumes segregation 

between the two miscible components (oil and miscible solvent (gas)).  

 

 

Figure 5-1. Schematic showing window scale flow behavior for secondary floods such as 

water and gas floods. Segregated flow is represented as a single front in the 

reservoir separating region J from I. 

Tertiary displacements, such as polymer floods and water alternating gas floods 

(WAG) have been studied by several researchers at the pixel scale. A WAG flood at pixel 

scale is characterized by a combination of shock and spreading waves depending on 

water to gas ratios (Walsh and Lake, 1988). Polymer floods at the pixel scale are also 

characterized by a combination of shock and spreading waves (Patton et al., 1971). Such 

displacements at the window scale are treated as segregated flow with three regions 

(Figure 5-2). Region J is where injected solvent and water flows, Region B is where 

banked up oil and water flows while Region I is where water flows with remaining oil to 

secondary floods.  

 

 

 

Injection Production (Region J) 
Injected water 

+ 
Residual Oil 

(Region I) 
Resident oil 

+ 
Connate water 
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Figure 5-2. Schematic showing window scale flow behavior for tertiary floods such as 

miscible WAG, polymer, surfactant and ASP floods. Segregated flow is 

represented as two fronts in the reservoir separating Region B from Regions 

J and I. 

While viscous fingering and channeling because of unfavorable mobility and 

heterogeneity during the two displacement phases (secondary and tertiary) in a field life 

can be upscaled by assuming flow to be segregated into different regions. None of the 

models so far try to incorporate the pore volume, which always stays unswept during 

displacement processes again because of unfavorable mobility ratio and heterogeneity. 

We call the unswept fraction of the total pore volume as lost pore volume (LPV). 

Inversely, this is also directly related to the ultimate volumetric sweep efficiency. 

Number of secondary and tertiary flood simulations performed during the research work 

shows existence of lost pore volume (LPV). This chapter deals with the formulation and 

real world applicability and use of the upscaling method under the segregated flow 

assumption that also incorporates the ultimate sweep efficiency as an additional 

parameter for both secondary and tertiary displacements. 

5.1  MODEL DEVELOPMENT FOR SECONDARY DISPLACEMENTS   

Secondary floods, such as waterfloods are single front displacements. Figure 5-3 

shows the fluid distribution along with the front travelling at the pixel scale for such 

Injection Production 

(Region J) 
Injected solvent 

+ 
Water 

(Region B) 
Oil bank 

+ 
Water 

(Region I) 
Residual  

Oil to  
secondary  

flood 
+ 

Water 
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floods (Buckley-Leverett, 1942). The model integrates the local scale information 

(Mobility ratio (M) and local front velocity (v∆S)) along with the heterogeneity factor 

(HK) from window scale. 

5.1.1  Assumptions 

1. The model would be developed on a 2D layered reservoir (Figure 5-3 and 5-5) 

with infinite correlation length in flow direction (X), which would be later 

extended in its application to realistic reservoirs. 

2.  Vertical equilibrium applies throughout thus allowing for maximum cross flow in 

transverse direction (Y) The assumption is same as the one used in previous 

chapter. 

3. The fluids are assumed to be incompressible (Such an assumption is reasonable 

for oil-water and CO2-oil systems). The rock is also assumed to be 

incompressible. In cases where the pressure gradients during flow are small the 

assumption is most accurate. 

4. The reservoir is isothermal thus eliminating the need to solve energy balance 

equation in conjunction with mass balance equation. 

5. Gravity effects are neglected in the formulation along with the spreading caused 

by capillary pressure. 

6. For adverse mobility ratio floods, the injected fluids (water) move into high 

permeability regions leaving the areas with highest resistance to flow unswept. 

7. The spreading wave portion on the pixel scale fractional flow curve (Figure 5-3, 

shown in red) travels much slower than the shock, thus the assumption of flow 

being segregated within the flood holds. 
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Figure 5-3. Fluid distribution in the two regions based on pixel scale fractional flow 

theory for water floods (Buckley-Leverett, 1942).  The average water 

saturation in region J is S1J and water saturation in region I is S1i. The local 

front velocity is vΔS. 

Now consider a layered reservoir with infinite correlation length in the flow 

direction (x direction) and the correlation length in the direction perpendicular to bulk 

flow (z direction) is limited by layer thickness. The layers are arranged in the order of 

their interstitial velocities (rn) i.e the layer with largest interstitial velocity is at the bottom 

and that with the least interstitial velocity is at the top (Figure 5-2a). The interstitial 

velocity (rn) is defined as: 


k
nr

n
n


                                                                                                              (5.1) 

Region J Region I 
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The dimensionless representation in terms of storage capacity(C) in Figure 5-4b is 

same as previous chapter. Storage capacity (C) is related to the thickness as 

1 0

1 0

,  discrete or C ,continuous

hn

i i

i

N H

i i

i

dhh

C

h dh



 





 
 

 

                                                 (5.2) 

where i  is the porosity and hi is the thickness of the i
th

 layer and H is the total 

thickness of the reservoir, C is the dimensionless thickness or cumulative storage 

capacity up to any height (h). We also define the cumulative flow capacity (F) contained 

in layers upto height (h) as: 

1 0

1 0

,  discrete or F ,continuous
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N H
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kdhk h
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k h kdh




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 

 

                                                 (5.3) 

where ki is the permeability of the i
th

 layer. F, the cumulative flow capacity, can 

also be thought of as fraction of total flow in single phase unit mobility ratio flow regime 

through region C. The cumulative flow capacity (F) and cumulative storage capacity (C) 

relate to each other based on Koval theory (Figure 5-4).  
1

(1 )
1

k

F
C

H C






                                                                                                   (5.4) 

where Hk is defined as the heterogeneity factor. 
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Figure 5-4. Static F-C curves relating flow capacity to storage capacity for different 

heterogeneity factors. The greater the heterogeneity, the more flow capacity 

in smaller fraction of the pore volume.  

 

Figure 5-5. Representation of a layered reservoir (a) dimensional and (b) dimensionless 

for model development. The layers are arranged in the order of decreasing 

interstitial velocity from bottom to top. The heterogeneous system 

represented by a uniformly layered system (infinite autocorrelation length in 

the x-direction). 
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Figure 5-6. Schematic representation of single front displacement in a layered reservoir 

(dimensionless) (Figure 5-4) with a fraction of reservoir never swept (lost 

pore volume)  

Figure 5-6 represents two distinct regions with different fluid flow configurations. 

Injected brine flows in Region J and resident oil flows along with the connate water in 

Region I. Oil saturation in the unswept region does not change. The pixel scale (local or 

fine scale) water saturation (S1J and S1I) and water fractional flow (f1J and f1I) values in 

regions (J and I) are marked on fractional flow curve in Figure 5-3. 

Subject to above assumptions, the cross-sectionally averaged water conservation 

equation yields a hyperbolic equation  

   1 1 1 1 0J J
J I J I

F C
q f f S S

X t


 
   

 
                                                             (5.5) 

where q is the total injection rate,   is the average porosity of the reservoir, FJ is the 

fraction of the total flow in the flooded region (J) and CJ is the fraction of the flooded 

region (J). The dimensionless variables are  

D;      tD

X qt
x

L L
                                                                                                        (5.6) 

where, L is the distance between the injection and production faces. The local front 

velocity (Figure 5-3) from fractional flow theory is  

1 1
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S

J I

f f
v

S S






                                                                                                               (5.7) 
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Using the above definitions yields the dimensionless form of the water material 

balance equation is 

0J J
s

D D

F C
v

x t


 
 

 
                                                                                                           (5.8) 

Equation 5.8 is a hyperbolic mass conservation equation and could be solved 

using the method of characteristics if  

( )J JF f C                                                                                                                     (5.9) 

By definition 

tJ
J

tJ tI

u
F

u u



                                                                                                                (5.10) 

where, utJ and utI are the total flowrates per unit width of the reservoir in regions J and I 

respectively. Darcy‟s law is applied to define these flowrates in terms of pressure 

gradient and fluid mobility. 
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where k is the absolute permeability at the given point. The total fluid mobility in each 

region is defined as 

1, 2,

1 2

,      Total fluid mobility in Region J
r J r J

J

k k


 
                                                   (5.13) 

1,I 2,I

1 2

,      Total fluid mobility in Region I
r r

I

k k


 
                                                     (5.14) 

Based on assumptions (2) and (5) listed above, the pressure gradient along the 

whole cross-section would be the same 

0
P

y x

  
 
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                                                                                                                 (5.15) 

Thus the total fractional flow in region J, (FJ) would then be 



 91 

0 0

0 0

J J

J J I J J I

J J

h h

J J

tJ
J h h h h h h

tJ tI

J I J I

h h

k dh kdh
u

F
u u

k dh k dh kdh kdh

 

   

 
  


 

 

   

                                      (5.16) 

Equation 5.16 has two terms in the denominator compared to three for two front 

WAG displacements as derived in previous chapter. The total fluid mobilities in each 

region are constant because local saturations within each region are invariant. Thus the 

heterogeneity representative of the window scale is decoupled from the pixel scale 

mobility ratios. The individual integrals in the equation 5.16 are related to the cumulative 

flow capacity based on equations 5.2, 5.3 and 5.4: 
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The relationships in equation 5.17 and 5.18 are a result of relating flow capacity 

with storage capacity using heterogeneity factor (Hk). The relationship is described in 

detail in the previous chapter. Figure 5-6 depicts the ultimate volumetric sweep efficiency 

to be a, and the remaining fraction as the lost pore volume, then 

J IC C a                                                                                                                     (5.19) 

Substitution of equation 5.19 reduces equation 5.18 to 
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                      (5.20) 

Substituting equations 5.17 and 5.20 into equation 5.16 would give: 
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                                                        (5.21) 

Equation 5.21 is simplified to the following: 
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                                                                                    (5.22) 

Simplification in equation 5.22 is accurate under the following condition: 
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The condition in equation 5.23 holds for the range of heterogeneity factors and 

ultimate sweep efficiency values. The following two conditions justify the use of 

condition in equation 5.23, 

1.  When HK is small, the ultimate volumetric sweep would be high i.e. close to 

unity and assumption holds 
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2. When HK is high, the ultimate volumetric sweep would be small but the 

assumption still holds. 
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where, M is the mobility ratio. The product of heterogeneity factor (HK) and effective 

mobility ratio (M) by definition is called Koval factor (K). 

kK H M                                                                                                                      (5.27) 

The final form for FJ in equation 5.22 using equation 5.27 is 
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Equation 5.28 shows that the new model is a two parameter model that depends 

on Koval factor (K) and ultimate volumetric sweep efficiency (a). The model developed 

by Mollaei (2011) in comparison is a single parameter model that depends on Koval 

factor (K) alone (Equation 5.29).  
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                                                                                                  (5.29) 

With the relationship established between FJ and CJ in equation 5.28 the water 

material balance shown in equation 5.8 can be solved using the method of characteristics 
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The physical solution to the material balance equation depends on the appropriate 

end points i.e. CJ = a on the upstream and CJ = 0 on the downstream (Figure 5-6). The 

velocity for each CJ can be calculated from equation 5.30. The interpretation of equation 

5.30 between the appropriate end points suggests that the velocity increases from 

upstream to downstream thus satisfying Lax‟s condition. Since the velocity of each CJ is 

known FJ is calculated at xD=1 for different times.  
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The oil cut equation then is: 

                                                                          (5.33) 
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The recovery efficiency (NPD) is: 

                      
  

 
                                                                                    (5.34) 

The mathematical solution for the secondary flood with a single front 

displacement problem can be represented graphically. Such an example is shown in 

Figure 5-7. The input parameters required for solving the problem for the example 

application are given in Table 5-1a. 

 

 

a)                                                                b) 

Table 5-1. a) Initial and injection conditions b) Calculated parameters from pixel scale 

fractional flow theory (Buckley-Leverret, 1942) based on the initial and 

injection conditions given in a). 

 

 

 

 

 

 

 

 

 

 

 

 

Initial 

condition 

Injection 

condition 

  S1I f1I S1J f1J 

0.3 0.0 0.7 1.0 

 
Parameters derived from pixel scale 

fractional flow theory 

Hk M v∆S a 

2 5 5.2 1.0 
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Figure 5-7. a) Pixel scale fractional flow curve for the application b) Physical flow profile 

in the reservoir. Each point on the path travels with a velocity that is used to 

calculate effluent history. c) Effluent history shows oil and water cut. Water 

breaks through at tD = 0.02 after which the oil cut drops from unity to small 

values as the flood progresses. d) Recovery of 0.2 i.e total movable oil is 

recovered at the injected pore volume of 1.9. 

Mollaei (2011) model would also give the same result for the example application 

as the new model. The similar solution is a result of assuming ultimate volumetric sweep 

efficiency to be perfect at unity. At unit ultimate volumetric sweep the new model 

reduces to Mollaei‟s (2011) model. The limitation of the new model in the current state is 
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that it cannot be used in a predictive mode because the ultimate volumetric sweep for a 

reservoir is not known a priori. The heterogeneity factor for an oil reservoir is also an 

unknown until some displacement data (tracer data etc.) are collected. The questions then 

are twofold, 1) How can the new model be extended to realistic reservoirs and 2) How 

can the hypothesis behind the models be verified? The following section answers these 

questions. 

5.2  MODEL EXTENSION AND VERIFICATION FOR TRUE RESERVOIRS 

The model has been developed using a 2-D layered reservoir. We hypothesize that 

the model can still be extended to 3-D reservoir with varying degrees of heterogeneity.  

We also hypothesize that 

1. The lost pore volume for closed patterns (Line drive, 5-spot) would decrease with 

time because the volumetric sweep eventually reaches the value of one. It is 

assumed that when oil cut reaches a plateau at small values, the time required to 

sweep the remaining unswept zones would be very large. Thus the sweep 

efficiency calculated at small oil cut can be assumed to be ultimate volumetric 

sweep. 

2. The effects of the reservoir heterogeneity i.e. correlation structure of the 

permeability field corresponding to the flow direction on reservoir performance 

would be captured by Koval factor (K). 

3. The effects of the well alignment in the reservoir (Line drive pattern, 5-spot 

pattern etc.) on reservoir performance would be captured by Koval factor and the 

ultimate volumetric sweep efficiency. 

4. Each layer in a 2-D model can be thought of as a streamline in an equivalent 3-D 

model and the Koval factor allows for the flow to be distributed to each 
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streamline based on heterogeneity and mobility ratio. The local change in 

saturation along each streamline is captured by the parameter v∆S, which is the 

local velocity derived from fractional flow theory.  

5. The streamline profile for two phase flow varies with time. For 2-D layered 

reservoirs when each layer is treated equivalent to a streamline in a 3-D reservoir. 

For a layered reservoir the streamline profile does not vary with time, so in a 3-D 

reservoir the Koval factor indicates the average behavior over entire production 

life.        

5.2.1  Verification steps 

The outlined hypotheses are verified against various numerical simulations 

capturing different degrees of heterogeneity, well alignment and mobility ratios. 

1. Design numerical simulation experiments with permeability field correlated in the 

x, y and z directions. Table 5-2 shows the different combinations of dimensionless 

correlation length combinations. Dimensionless correlation length is defined as 

the ratio of range of the permeability field and well spacing. The permeability 

field is generated using software called FFTSIM which is a stochastic generator 

developed by Dr. James W Jennings (Jennings et al., 2000).  

 Autocorrelation lengths in different directions 

Serial No. Lx Ly Lz 

1 0 0 0 

2 0.5 0 0 

3 1 0 0 

4 5 0 0 

5 10 0 0 
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Table 5-2. continued 

6 0 0.5 0 

7 0 1 0 

8 0 5 0 

9 0 10 0 

10 0.5 0.5 0 

11 0.5 1 0 

12 0.5 5 0 

13 0.5 10 0 

14 1 0.5 0 

15 1 1 0 

16 1 5 0 

17 1 10 0 

18 5 0.5 0 

19 5 1 0 

20 5 5 0 

21 5 10 0 

22 10 0.5 0 

23 10 1 0 

24 10 5 0 

25 10 10 0 

Table 5-2. Different combinations of autocorrelation correlation lengths in x, y and z 

direction for generation of permeability fields 
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2. The well spacing is chosen to be 1000 ft which is of the same order as often used 

in oil fields. The grid blocks are chosen to be at a fine scale for accurate 

estimation of ultimate volumetric sweep efficiency and saturation changes of the 

swept region. 

3. The two most common well patterns (Line drive with L/D ratio of 1 and quarter 

five-spot) were chosen for the numerical simulation experiments. These two 

patterns allow the effects of flow geometry to be studied and verify if the Koval 

factor captures the effects of geometry on flow. 

4. The end point mobility ratios are chosen to vary from 1 to 5. The mobility ratios 

are varied to capture the effects of local saturation changes through the pixel scale 

velocity parameter (v∆S). 

5. All simulations have the same initial irreducible water saturation. The water 

injection is initiated at the beginning at a constant rate. Water and oil in the 

simulation are incompressible and the effects of capillary spreading and gravity 

are neglected. All the simulations are stopped when the water cut reaches a value 

of 99%. At a high water cut of 99%, the volumetric sweep efficiency does not 

change any further. 

6. The results are used at the end of simulation to calculate the ultimate volumetric 

sweep efficiency. The water saturation map is exported out of the simulator 

(CMG-IMEX). All the grid blocks with change in saturation values from the 

initial (upto three significant digits) are scanned.  The pore volume associated 

with those grid blocks is calculated and called the ultimate swept pore volume. 

  

                                
  
                                                     (5.35) 
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                 (5.37) 

 

                                                                                          (5.38) 

 

where, Ns is the number of swept grid blocks and Nt is the total number of grid 

blocks and PVi is the pore volume of the i
th

 grid block. The average water 

saturation in the swept pore volume is also calculated 

 

                              
  

       
  
   

    
  
   

                                          (5.39) 

7. The production data from the simulations is also an output for further analysis. 

The production data (Cumulative oil produced, water cut and total fluid 

production rate) is equivalent to what is available for analysis in oil fields. The 

new model is now applied on the production data for history matching.   The oil 

cut is calculated from equations 5.32 and 5.33. The parameters for the history 

matching are shown in equation 5.40 for oil cut calculation, 

1
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                                                                                                         (5.41) 

The history matching for water flood (single front displacement) can be 

performed in an excel sheet. The error is calculated at each time step and the total 

error is minimized to calculate optimized set of history matched parameters 

shown in equation 5.42. 
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where, N is the total time steps and βj is the weight parameter for the j
th

 timestep. 

For all the history matches performed in this dissertation, βj = 1 for all j‟s.  

8. The parameter v∆S from fractional flow theory can be written as 
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where, f1i is the local fractional flow of water and S1i is the local water saturation 

at t = 0 and 1S is the average water saturation from Welge construction.  
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                                                                                                  (5.44) 

The results for average water saturation and ultimate volumetric sweep efficiency 

are compared between simulation and the history match from the new model. The unit 

slope line on the cross plots for the three parameters will verify the hypotheses made 

earlier in the section.  The next section shows the results from the model verification 

analysis on all the numerical simulations. 
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Figure 5-8. Pixel scale fractional flow curves for the verification cases. The fractional 

flow curves shift towards the left (water more mobile) with increasing 

mobility ratios.  

5.3  RESULTS FOR WATER FLOODS 

The main challenge of this work is to show all the solutions for varying degree of 

heterogeneity, mobility ratios and well patterns. The heterogeneity and saturation maps 

would be shown for only a few cases to explain the results. In this section, the 

applicability of the new model would be tested against numerical simulation.  

At reservoir conditions the water viscosity is 1 cp and the oil viscosity varies from 

1 to 5 cp. These viscosities were used to calculate the five pixel scale fractional flow 

curves (Figure 5-8). All the simulation parameters are defined below in Table 5-3. 
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 Well pattern 

 Line drive Quarter five spot 

Grid Size, Nx x Ny x Nz 64 x 64 x 16 128 x 128 x 16 

Grid Dimensions, Dx x Dy x Dz (ft) 15.625 x 15.625 x 6.25 11.05 x 11.05 x 6.25 

Porosity,   0.3 0.3 

Average Permeability (x-direction), 

kx (md) 
100 100 

Average Permeability (y-direction), 

ky (md) 
100 100 

kz/kx ratio 1 1 

Total Pore Volume, Vp, ft
3
 30000000 29544894 

Initial Reservoir Pressure, Pi , psi 4800 4800 

Initial Water Saturation, S1i 0 0 

Injection rate, q (RB/day) 700 700 

Production Well, BHP, psi 4000 4000 

Table 5-3. Simulation parameters for line drive pattern and quarter five spot pattern 

The total number of simulations based on the all the combinations of all the 

heterogeneous fields, mobility ratios and well patterns is 250.  

5.3.1  Line Drive pattern 

The first history matched case (Figure 5-9) is shown for a reservoir with high 

autocorrelation lengths in the flow direction (x-direction). The large correlation length in 

the flow direction along with no correlation in two other transverse directions mimics a 

reservoir with long channel like geologic features (Figure 5-10). The history match result 

(Table 5-5) shows a large Koval factor (K) indicating the presence of high permeability 

channels causing early break through.  
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a)                                                                              b) 

Figure 5-9. History match between simulation and model for the cumulative oil produced 

in a) and oil cut in b) show good matches. The oil cut in b) falls sharply 

from the beginning with start of injection.  

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-4. Permeability field correlation lengths for the history matched case in Figure 5-

9  

The history matched ultimate volumetric sweep and average water saturation from 

the model also match the values estimated from the simulation. The pixel scale fractional 

flow theory suggests that the average water saturation in the swept region should be equal 

to (          . The average water saturation in the swept region is smaller than 0.6, 

which is the value calculated from fractional flow theory because of slow spreading of 

water into previously unswept areas (Figure 5-11).   
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End 

point 

mobility 

ratio 

Koval 

factor, 

K 

Ultimate 

sweep 

efficiency, 

a(model) 

Ultimate 

sweep 

efficiency, 

a(simulation) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(model) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(simulation) 

Average 

water 

saturation 

from 

fractional 

flow 

theory 

(1-SoF) 

5 18.91 0.78 0.79 0.56 0.55 0.6 

Table 5-5. History matched parameters for the case shown in Figure 5-9. The comparison 

between the simulation and model is also shown for ultimate sweep 

efficiency and average water saturation. 

 

Figure 5-10. The permeability distribution in the x-y plane with large scale correlation 

features in the x-direction (channels). 
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Figure 5-11.  Water saturation distribution in the reservoir in an x-y plane at the end of 

simulation. The water saturation becomes progressively smaller (as shown 

by the two red ellipses) in grid blocks away from the line joining the injector 

and the producer. This spreading of water is caused by heterogeneity. 

The second history matched case (Figure 5-12) is for a reservoir with high 

autocorrelation lengths in y-direction. The small correlation length in the flow direction 

along with large correlation in the other transverse direction (y) mimics a reservoir with 

long channel like geologic features (Figure 5-13) perpendicular to the principle flow 

direction.  The history match results (Table 5-7) with small Koval factor (K) confirms the 

presence of geologic features that help spread water uniformly across the total pore 

volume and decelerates the water breakthrough. The history matched ultimate volumetric 

sweep and average water saturation from the model also match the values estimated from 
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the simulation. The pixel scale fractional flow theory suggests that the average water 

saturation in the swept region should be equal to (1-SoF). The average water saturation in 

the swept region is higher than 0.6, which is the value calculated from fractional flow 

theory. It is due to the uniform spreading of water into the whole pore volume (Figure 

12). 

 

 

 
a)                                                                             b) 

Figure 5-12. History match between simulation and model for the cumulative oil 

produced in a) and oil cut in b) show reasonably good matches. The oil cut 

in b) stays at a plateau in the beginning and falls sharply from the time 

breakthrough happens.  

Autocorrelation length 

Lx Ly Lz 

0 10 0 

Table 5-6. Permeability field correlation lengths for the history matched case in Figure 5-

12  

End 

point 

mobility 

ratio 

Koval 

factor, 

K 

Ultimate 

sweep 

efficiency, 

a(model) 

Ultimate 

sweep 

efficiency, 

a(simulation) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(model) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(simulation) 

Average 

water 

saturation 

from 

fractional 

flow 

theory 

(1-SoF) 

5 1.96 1.0 1.0 0.71 0.76 0.6 

Table 5-7. History matched parameters for the case shown in Figure 5-12. The 

comparison between the simulation and model is also shown for ultimate 

sweep efficiency and average water saturation. 
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Figure 5-13. The permeability distribution in the x-y plane with large scale correlation 

features in the y-direction (channels). 
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Figure 5-14. Water saturation distribution in the reservoir in an x-y plane at the end of 

simulation (tD = 4.96). The water saturation is uniformly high across the 

total pore volume because of uniform spreading due to heterogeneity 

structure. 

 

 

 

 

 

 

 

 



 110 

5.3.2  Quarter five-spot 

 

 

 

 

 

 

 

a)                                                              b) 

Figure 5-15. History match between simulation and model for the cumulative oil 

produced in a) and oil cut in b) show good matches. The oil cut in b) falls 

sharply from the beginning with start of injection.  

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-8. Permeability field correlation lengths for the history matched case in Figure 5-

15  

End 

point 

mobility 

ratio 

Koval 

factor, 

K 

Ultimate 

sweep 

efficiency, 

a(model) 

Ultimate 

sweep 

efficiency, 

a(simulation) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(model) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(simulation) 

Average 

water 

saturation 

from 

fractional 

flow 

theory 

(1-SoF) 

5 16.18 0.76 0.78 0.58 0.57 0.6 

Table 5-9. History matched parameters for the case shown in Figure 5-15. The 

comparison between the simulation and model is also shown for ultimate 

sweep efficiency and average water saturation. 
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Figure 5-16. The permeability distribution in the x-y plane with large scale correlation 

features in the x-direction (channels). 
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Figure 5-17. Water saturation distribution in the reservoir in an x-y plane at the end of 

simulation. The water saturation gets progressively smaller (as shown by the 

two red ellipses) in grid blocks away from the line joining the injector and 

the producer. This spreading of water is caused by heterogeneity. 

The third history matched case for a quarter five-spot pattern (Figure 5-15) is 

shown for a reservoir with large autocorrelation length in flow direction (x-direction). 

The large correlation length in the flow direction along with no correlation in two other 

transverse directions mimics a reservoir with long channel like geologic features (Figure 

5-16). Such The history match result in Table 5-9 showing large Koval factor (K) also 

confirms the presence of geological features with high permeability that would act as 

preferred conduit of flow for water and accelerate the water breakthrough. The history 

matched ultimate volumetric sweep and average water saturation from the model also 
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match the values estimated from the simulation. The pixel scale fractional flow theory 

suggests that the average water saturation in the swept region should be equal to (1-SoF). 

The average water saturation in the swept region is smaller than 0.6, which is the value 

calculated from fractional flow theory because of the slow spreading of water into 

previously unswept areas (Figure 5-17).   

The difference between a line drive pattern and a five spot pattern is captured in 

Koval factors. The Koval factor for line drive pattern (K = 19) is larger than for the five 

spot pattern (K=16). The higher Koval factor for linear drive pattern means early water 

breakthrough in comparison to the quarter five spot pattern because breakthrough time is 

inversely proportional to the Koval factor. The total pore volumes for the two patterns is 

nearly equal so interwell distance for quarter five spot pattern is larger compared to line 

drive pattern. Thus, the fastest water stream would travel quicker to reach production 

well in the line drive pattern.   

 

 

 

 

 

 

 

 
a)                                                                             b) 

Figure 5-18. History match between simulation and model for the cumulative oil 

produced in a) and oil cut in b) show reasonably good matches. The oil cut 

in b) stays at a plateau in the beginning and falls sharply after breakthrough.  
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Autocorrelation length 

Lx Ly Lz 

0 10 0 

Table 5-10. Permeability field correlation lengths for the history matched case in Figure 

5-18 

End 

point 

mobility 

ratio 

Koval 

factor, 

K 

Ultimate 

sweep 

efficiency, 

a(model) 

Ultimate 

sweep 

efficiency, 

a(simulation) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(model) 

Average 

water 

saturation 

in the 

swept 

region, 

S1(simulation) 

Average 

water 

saturation 

from 

fractional 

flow 

theory 

(1-SoF) 

5 1.9 1.0 1.0 0.71 0.77 0.6 

Table 5-11. History matched parameters for the case shown in Figure 5-18. The 

comparison between the simulation and model is also shown for ultimate 

sweep efficiency and average water saturation. 

The fourth history matched case (Figure 5-18) is shown for a quarter five spot 

pattern reservoir with high dimensionless correlation lengths in y-direction. The history 

match result in Table 5-11 such as small Koval factor (K) verifies the fact that the 

injected water spreads perpendicular to principle flow direction (x). The history matched 

ultimate volumetric sweep and average water saturation from the model also match the 

values estimated from the simulation. The average water saturation in the swept region is 

higher than 0.6, which is the value calculated from fractional flow theory because of the 

uniform spreading of water into the whole pore volume (Figure 5-20). 
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Figure 5-19. The permeability distribution in the x-y plane with large scale correlation 

features in the y-direction (channels). 
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Figure 5-20. Water saturation distribution in the reservoir in an x-y plane at the end of 

simulation (tD = 4.96). The water saturation is uniformly high across the 

total pore volume because of uniform spreading because of heterogeneity 

structure. 
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a)                                                                                            b) 

Figure 5-21. a) Ultimate volumetric sweep from the model compares very well with the 

simulation. b) Average water saturation in the swept regions from model 

also compares very well against the simulation. The results for all the 

verification cases from line drive and quarter five spot are shown here. 

 

Figure 5-22. Ultimate volumetric sweep efficiency decreases as the Koval factor 

increases. The results for all the verification cases for line drive and quarter 

five spot pattern are plotted here. 

The results for confined line drive and quarter five-spot patterns show that the 

new model with ultimate volumetric sweep is simple and effective for heterogeneous 
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fields with varying mobility ratios. The comparison between simulation and history 

matched model parameters is in Figure 5-21. The ultimate volumetric sweep as well as 

average water saturation in the swept region matches well between simulation and the 

model. The ultimate volumetric sweep in all the cases never falls below 0.75 because the 

patterns used in the simulations are confined and the highest mobility ratio is 5. The 

ultimate volumetric sweep also decreases with an increase in Koval factor because it is an 

indicator of heterogeneity and mobility ratio (Figure 5-22). The relationship between the 

Koval factor and the ultimate volumetric sweep is also non-linear. 

Thus we demonstrate that the Koval factor based approach combines the effects 

of vertical and areal sweep into one parameter called the ultimate volumetric sweep (a). 

The displacement sweep from relative permeability measurements is also retained in the 

model in the parameter called local scale fractional flow velocity (vΔs). The complexity 

associated with the displacement sweep is reduced by treating the displacements as piston 

like locally. The average water saturation predicted from the model in the swept regions 

for the simulation cases is close to the real value because the new model accounts for the 

effects of lost pore volume separately. The key upgrade from the new Koval based model 

is replacement of a thickness with storage capacity and inclusion of the unswept pore 

volume. 

5.4  MODEL DEVELOPMENT FOR TERTIARY TWO FRONT DISPLACEMENTS 

Tertiary displacements, such as miscible water alternating gas (WAG) floods, 

polymer floods and ASP floods are examples of two front displacements. The theory for 

predicting oil recovery for isothermal two front displacements based on Koval‟s approach 

was developed by Mollaei (2011). Mollaei‟s (2011) model accounted for the 

heterogeneity as well as mobility ratio for both the fronts but not the interactions between 
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the two fronts at reservoir scale. The interactions between the two fronts are accounted 

for in the new model developed in the previous chapter for WAG floods. The effects of 

heterogeneity and mobility ratio were also included in the model. The concept of lost 

pore volume would now be integrated into the model.  

5.4.1  Assumptions 

1. The model would be developed on a 2D layered reservoir with infinite correlation 

length in flow direction (x) which would be later extended in its application to 

realistic reservoirs. 

2.  Vertical equilibrium applies throughout thus allowing for maximum cross flow in 

transverse direction (y). 

3. The fluids are assumed to be incompressible (Such an assumption is reasonable 

for CO2-oil-water systems). Rock is also assumed to be incompressible. In cases 

where the pressure gradients during flow are small the assumption holds. 

4. The reservoir is considered to be isothermal thus eliminating the need to solve 

energy balance equation in conjunction with mass balance equation. 

5. Gravity effects are neglected in the formulation along with the spreading caused 

by capillary pressure. 

6. For adverse mobility ratio floods, injected fluids (water or gas) move into high 

permeability regions leaving the areas with highest resistance to flow unswept. 

For tertiary gas floods with low WAG ratios (i.e. high gas content) and high 

mobility ratios the ultimate volumetric sweep is lower compared to polymer 

floods with good mobility control. 
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Figure 5-23. Schematic representation of two front displacement into a layered reservoir 

(dimensionless) with a fraction of reservoir never swept (Lost pore volume) 

Figure 5-23 represents three distinct regions with different fluid flow 

configurations. Injected solvent flows in region J along with water and the residual oil, 

oil and water flows in region B, and residual oil to secondary flood and water flows in 

region I. The pixel scale (local or fine scale) water saturation (S1J, S1B and S1I) and water 

fractional flow (f1J, f1B and f1I) values correspond to regions (J, B and I) marked on 

fractional flow curves (Walsh and Lake, 1988) in Figure 5-24.  
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a)                                                                                  b) 

Figure 5-24. a) Pixel scale fractional flow schematic for miscible WAG flood. b) Pixel 

scale flow schematic for polymer floods. Regions J, B and I are marked on 

both the fractional flow curves. 

Subject to above assumptions, the cross-sectionally averaged mass conservations 

for two front displacements such as WAG and polymer floods yield a set of 

dimensionless hyperbolic equations (derived in Appendix-A). 
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The pixel scale velocities are defined for different floods as: 
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Polymer floods 
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where, CJ is the fraction of total cross-section swept by injected fluid, CB is the 

fraction of total cross-section swept by oil bank and CI is the fraction of total cross-

section occupied by initial oil at any given position and time as shown in Figure 5-23. FJ 

is the fraction of total flow in the region defined by CJ, FB is the fraction of total flow in 

the region defined by CB, and FI is the fraction of total flow in the region defined by CI as 

shown in Figure 5-23. 

Subscripts 1, 2 and 3 refer to brine, oil and solvent, respectively. At the window 

scale shown in Fig. 4b, f1,J, f1,B, f1,I, S1,J, S1,B and S1,I are assumed to be constant. This 

assumption is valid because of the formation of three distinct flow regions at pixel scale 

(Figure 5-23). SORM is the residual oil to miscible floods (because dispersion and phase 

behavior) and SOF is the residual oil to polymer flood. vf,OB is the pixel scale velocity at 

the front of the oil bank and vb,OB is the pixel scale velocity at the back of the oil bank as 

shown in Figure 5-23. 

The equations 5.45 and 5.46 could be solved if the relationships in equation 5.51 

could be defined 

, ,, (C C C )J I J B IF F f                                                                                        (5.51) 

The similar relationships were derived in the previous chapter for a layered 

reservoir without incorporating the concept of lost pore volume. If the fraction (a) of the 

total pore volume is assumed to define the ultimate volumetric sweep efficiency (Figure 

5-22) then 

J B IC C C a                                                                                                 (5.52) 
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The relationships for a layered reservoir in equation 5.51 with lost pore volume 

incorporated are derived in Appendix-B. The fractional flow relationships at window 

scale used in governing equations 5.45 and 5.46 are 
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 The above relationships are further simplified by eliminating heterogeneity factor and 

mobility ratios because 

1. The heterogeneity factor for a reservoir is a function of parameters such as, 

correlation structure of permeability field, well patterns and well spacing. Thus 

determination of heterogeneity factor which is an unknown is very difficult. 

2. The mobility ratios for the two fronts are difficult to determine as the mixing of 

fluids in the reservoir because heterogeneity is also difficult to establish. 

The simplified relationship for FJ and FI are 
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Mollaei‟s (2011) model defines FJ and FI as 
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where, Kb is the pseudo Koval factor for the chemical bank and Kf is the pseudo Koval 

factor for oil bank. The new model is a three parameter (Equations 5.55 and 5.56) as 

compared to Mollaei‟s model which is a two parameter model (Equations 5.57 and 5.58). 

The new simplified model still accounts for the interactions between the two fronts 

because coupling between material balance equations 5.45 and 5.46 is preserved whereas 

in Mollaei‟s model the two fronts are treated as independent.  The set of material balance 

equations 5.45 and 5.46 can be solved using method of characteristics or MOC and the 

velocities for each (CJ, CI) can be calculated based on simple wave theory. 

, b,
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I J
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v v
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                                                                                              (5.59) 

The solution method is exactly the same to that outlined in previous chapter. The 

limitation of the new model in the current state is that it cannot be used in a predictive 

mode because the ultimate volumetric sweep for a reservoir is not known a priori. The 

heterogeneity factor for an oil reservoir is also an unknown until some displacement data 

(tracer data etc.) is collected. The question then is how can the model be extended to real 

heterogeneous reservoirs? 

5.5  MODEL EXTENSION AND VERIFICATION FOR TRUE RESERVOIRS 

The model has been developed using a 2-D layered reservoir. We hypothesize that 

the model can still be extended to 3-D reservoir with varying degrees of heterogeneity.  

We also hypothesize that 
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1. The effects of reservoir heterogeneity i.e. autocorrelation structure of the 

permeability field corresponding to the flow direction on reservoir performance 

along with the mobility ratios would be captured by Koval factor (Kb and Kf). 

2. The lost pore volume for closed patterns (Line drive, 5-spot) would decrease with 

time because the volumetric sweep eventually reaches the value of one. It is 

assumed that when oil cut reaches a plateau at small values, the time required to 

sweep the remaining unswept zones would be very large. Thus the sweep 

efficiency calculated at small oil cut can be assumed to be ultimate volumetric 

sweep. 

3. The effects of the well alignment in the reservoir (Line drive pattern, five-spot 

pattern etc.) on reservoir performance would be captured by Koval factors and the 

ultimate volumetric sweep efficiency. 

4. Each layer in a 2-D model can be thought of as a streamline in an equivalent 3-D 

model and Koval factor allows for the flow to be distributed to each streamline 

based on heterogeneity and mobility ratio. The local change in saturation along 

each streamline is captured by the parameters vb,OB and vf,OB, which are the local 

front velocities derived from fractional flow theory (Walsh and Lake, 1988). 

5. The streamline profile for two phase flow varies with time. For 2-D layered 

reservoirs when each layer is treated equivalent to a streamline in a 3-D reservoir. 

For a layered reservoir the streamline profile does not vary with time, so in a 3-D 

reservoir the Koval factor indicates the average behavior over entire production 

life.  
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5.5.1  Verification 

The outlined hypotheses are verified against various numerical simulations 

capturing different degrees of heterogeneity, well alignment and mobility ratios for WAG 

and polymer floods. 

1. Design numerical simulation experiments with permeability field correlated in x, 

y and z direction. Table 5-2 shows the different combinations of dimensionless 

correlation length combinations. Permeability field is generated using a software 

called FFTSIM which is a stochastic generator developed by Dr. James W 

Jennings (Jennings et al., 2000).  

2. The well spacing is chosen to be 1000 ft which is of the same order as often used 

in the oil fields.  The grid blocks are chosen to be at a fine scale for the accurate 

estimation of ultimate volumetric sweep efficiency and saturation changes of the 

swept region. 

3. The two most common well patterns (Line drive with L/D ratio of 1 and quarter 

five-spot) were chosen for the numerical simulation experiments. These two 

patterns allow the effects of flow geometry to be studied and verify if the Koval 

factor captures the effects of geometry on flow. 

4. All the simulations have the same initial irreducible water saturation. The tertiary 

displacement follows secondary displacement. Thus, the water injection is 

followed by tertiary gas flood or polymer flood. Water and oil in the simulation 

are incompressible and the effects of capillary spreading and gravity are 

neglected. WAG flood or polymer injection is initiated when the secondary phase 

water cut reaches 95% for all the simulations. The gas in all the simulations is 

CO2, miscible with the oil. WAG and polymer injection cause an increase in oil 

cut in production stream. The oil cut increases and falls down after reaching a 
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peak value. It is a characteristic of tertiary WAG and polymer floods. All the 

simulations are stopped when oil cut drops to 1% during both types of tertiary 

displacements. At such low oil cut of 1%, the volumetric sweep efficiency does 

not change any further. 

5. The results are used at the end of simulation to calculate the ultimate volumetric 

sweep efficiency to tertiary WAG and polymer floods. The gas saturation and 

polymer concentration maps are exported out of the simulator (CMG-GEM). All 

the grid blocks with any change in gas saturation or polymer concentration values 

from the initial are scanned. The pore volume associated with those grid blocks is 

calculated. It is called the swept pore volume for tertiary flood. 
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                                                                                               (5.63) 

where, Ntr is the number of swept grid blocks for tertiary flood and Nt is the total 

number of grid blocks and PVi is the pore volume of i
th

 grid block. 

6. The production data from the simulations is also an output for further analysis. 

The production data (Cumulative oil produced, oil cut and total fluid production 

rate) is equivalent to what is available for analysis in oil fields. The new model is 

now applied on the production data for history matching.   The parameters for the 

history matching are shown in equation 5.64 
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The history matching for two-front displacements is difficult because the model 

requires solution to a system of hyperbolic material balance equations. An 

automatic history matching program was developed for tertiary floods. The error 

is calculated at each time step and the total error is minimized to calculate 

optimized set of history matched parameters shown in equation 5.66 
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where, N is the total number of time steps and βj is the weight parameter for the j
th

 

timestep. For all the history matches performed in this dissertation, βj = 1 for all 

j‟s. The automatic history matching program algorithm is described in detail in 

Appendix C. 

7. The average water saturation in the flooded region for polymer flood can be 

calculated from 
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where,  1S is the average water saturation after polymer flood. Equation 5.67 can 

be solved for 1S   

1
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S
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                                                                                                          (5.68) 

The results for ultimate volumetric sweep efficiency and total pore volume are 

compared between simulation and the history match from the new model for both the 

floods. The next section shows the results from the model verification analysis on all the 

numerical simulations. 
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5.6  RESULTS 

The main challenge of this work is to show all the solutions for varying degree of 

heterogeneity, mobility ratios and well patterns. In this section, the verified of the new 

model would be tested against numerical simulations for polymer and WAG floods. 

5.6.1  Polymer floods 

 

 

Figure 5-25. Pixel scale fractional flow curves for tertiary polymer flood. 

Oil viscosity at reservoir conditions is 5 cp for all the simulated cases. The 

secondary flood water viscosity is 1 cp. The tertiary flood water viscosity is 10 cp 

(polymer injection). These viscosities were used to calculate the pixel scale fractional 

flow curves (Figure 5-25). The other simulation parameters are defined in Table 5-3. 

5.6.1.1  Line drive pattern  

The first case for a tertiary polymer flood history match is shown in Figure 5-26b. 

The water flood stops when the oil cut reaches 0.05 (water cut, f1,I = 0.95) with 2.2 PV of 
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total injection. The average water saturation in the flooded region at the end of water 

flood estimated from the new model for secondary flood is 0.56. Thus the initial 

condition before the polymer injection starts is f1,I = 0.95 and S1,I = 0.56. The oil bank 

forms in the reservoir because of polymer injection. Oil cut starts to increase and reaches 

a peak value of 0.18 after the oil bank breaks through. The oil cut then decreases as the 

injected polymer starts to recycle. The polymer injection is stopped after 2.8 PV of fluid 

is injected (Figure 5-26b).  

 

 

 

 

 

 

 

                      a)Waterflood                                                     b)Polymer flood 

Figure 5-26. Polymer flood (tertiary displacement) often follows water flood (secondary 

displacement). a) Water flood history match is shown using the new model 

for secondary floods. b) Oil cut history match between simulation and 

model is good. The oil cut initially increases with polymer injection. The oil 

cut reaches a peak value and falls off thereafter.  

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-12. Permeability field correlation lengths for the history matched case in Figure 

5-26. 
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Water 

flood 

Koval 

factor 
K 18.91 

Polymer 

flood 

Chemical 

bank 

Koval factor 

Kb 3.65 

Oil bank 

Koval factor 
Kf 5.48 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.78 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.85 

a 

(simulation) 
0.79 

a 

(simulation) 
0.86 

Average 

water 

saturation 

in 

swept area 

S1avg 

(model) 
0.56 

Average 

water 

saturation in 

polymer 

swept 

area 

S1avg 

(model) 
0.91 

S1avg 

(simulation) 
0.55 

S1avg 

(simulation) 
0.89 

Table 5-13. History match parameters for water flood and tertiary polymer flood for line 

drive pattern in Figure 5-26. 

 
a) Waterflood                                           b) Polymer flood 

Figure 5-27. a) Water saturation map at the end of waterflooding and beginning of 

polymer injection (Water cut, 95%). b) Water saturation map at the end of 

polymer injection phase (Water cut, 95%) for line drive pattern. 
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5.6.1.2  Quarter 5 spot  

The second case for tertiary polymer flood is in Figure 5-28b. The water flood 

stops when the oil cut reaches 0.05 at tD = 2.2 PV of injection. The average water 

saturation in the flooded region at the end of water flood estimated from the model for 

secondary floods is 0.56. Thus the initial condition before the polymer injection starts is 

f1,I = 0.95 and S1,I = 0.56. The oil bank forms in the reservoir due to polymer injection. 

Oil cut starts to increase and reaches a peak value of 0.18 after the oil bank breaks 

through. The oil cut then decreases as the injected polymer starts to recycle. The polymer 

injection is stopped after 2.7 PV of fluid is injected (Figure 5-28b).   

 

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-14. Permeability field autocorrelation lengths for the history matched case in 

Figure 5-28. 
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a) Waterflood                                                                     b) Polymer flood 

Figure 5-28. Polymer flood (tertiary displacement) following water flood (secondary 

displacement). a) Water flood history match is shown using the new model 

for secondary floods. b) Oil cut history match between simulation and 

model is good. The oil cut initially increases with polymer injection. The oil 

cut reaches a peak value and falls off thereafter.  

Water 

flood 

Koval 

factor 
K 16.18 

Polymer 

flood 

Polymer 

bank 

Koval factor 

Kb 3.65 

Oil bank 

Koval factor 
Kf 

 

5.93 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.76 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.83 

a 

(simulation) 
0.78 

a 

(simulation) 
0.85 

Average 

water 

saturation 

in 

swept area 

S1avg 

(model) 
0.56 

Average 

water 

saturation in 

polymer 

swept 

area 

S1avg 

(model) 
0.91 

S1avg 

(simulation) 
0.58 

S1avg 

(simulation) 
0.92 

Table 5-15. History match parameters for water flood and tertiary polymer flood for 

quarter five-spot pattern in Figure 5-28. 
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a) Waterflood                                        b) Polymer flood 

Figure 5-29. a) Water saturation map at the end of water flooding and beginning of 

polymer injection (Water cut, 95%). b) Water saturation map at the end of 

polymer injection phase (Water cut, 95%) for quarter five-spot pattern. 

The end point mobility ratio decreases to 0.5 for polymer flood from 5 for water 

flood. The purpose of polymer flood is to increase the sweep efficiency by lowering the 

mobility ratio. The ultimate volumetric sweep efficiency increases by 7% for both the 

cases shown above (Table 5-13 and 5-15) when the injection shifts from water to 

polymer. The average water saturation in the zones flooded with polymer also increases 

by 35% from water flood for both the cases (Table 5-13 and 5-15). The increase in water 

saturation during polymer floods is also suggested by the pixel scale fractional flow 

theory for polymer floods (Figure 5-24). The Koval factors for polymer flood drop 

significantly compared to water flood (Table 5-13 and 5-15) because of decrease in the 

mobility ratio. 
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a) Line drive pattern                                              b) Quarter five-spot pattern 

Figure 5-30. Koval factors for both the polymer bank and oil bank decrease as ultimate 

volumetric sweep increases for a) Line drive pattern and b) Quarter five-spot 

pattern. Koval factors for oil bank are also higher compared to polymer bank 

for both the patterns. 

 

 

 

 

 

 

 
 

a) Line drive pattern                                                 b) Quarter five-spot pattern 

Figure 5-31. Koval factors for polymer bank and oil bank increase monotonically with 

increasing water flood Koval factors for a) Line drive pattern and b) Quarter 

five-spot pattern. Koval factors obtained during polymer floods are also well 

correlated with the water flood Koval factors for both patterns. 
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a) Line drive pattern                                                      b) Quarter five-spot pattern 

Figure 5-32. Ultimate volumetric sweep from the new model compares well with the 

simulation for polymer floods for a) Line drive pattern and b) Quarter five-

spot pattern. 

Higher ultimate volumetric sweep efficiency indicates more uniform displacement 

of oil in the drainage volume without fluid channeling. Favorable (low) mobility ratios 

and/or small heterogeneity are the main reasons for good volumetric sweep. Koval 

factors are direct measures of mobility ratio and heterogeneity so smaller values must 

indicate higher volumetric sweep (Figure 5-30). The inverse relationship between the 

Koval factor and volumetric sweep holds for both line drive and quarter five-spot pattern 

(Figure 5-30).  

Under the following conditions, a relationship is expected between water flood 

Koval factors and polymer flood Koval factors: 

 For all the simulation cases shown above, water viscosity changes from 1 cp for 

water flood phase to 10 cp for polymer flood phase while oil viscosity remains 

constant at 5 cp. 
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 Field heterogeneity is a static property and thus is invariable with time. 

Figure 5-31 illustrates a good correlation between waterflood Koval factors and 

both the polymer flood Koval factors (polymer bank and oil bank). For the same change 

in water mobility, an increasing trend between water flood Koval factors and polymer 

flood Koval factors represent increasing heterogeneity. 

The ultimate volumetric sweep obtained from the model matches well with the 

values estimated from the simulation grid at the end of polymer flood (Figure 5-32). 

5.6.2  Miscible gas flood 

 

Figure 5-33.Pixel scale fractional flow curves for tertiary SWAG flood. 

At reservoir conditions the oil viscosity is 3.5 cp for all the simulated cases. The 

secondary flood water viscosity is 0.7 cp. The tertiary flood gas viscosity is 0.2 cp. These 

viscosities were used to calculate the pixel scale fractional flow curves (Figure 5-33). All 

the simulations were performed at a fixed WAG ratio of 2.03. The other simulation 

parameters are defined in Table 5-3. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.2 0.4 0.6 0.8 1 

f 1
 

S1 

Water-Oil 

Water-Gas 

J 

B 

I 



 138 

5.6.2.1  Line drive pattern  

The first case for a tertiary SWAG flood history match is in Figure 5-34b. The 

waterflood stops when the oil cut reaches 0.05 with 2.2 PV of total injection. The average 

water saturation in the flooded region at the end of waterflood estimated from the model 

for secondary flood is 0.56. Thus the initial condition before the SWAG injection starts is 

f1,I = 0.95 and S1,I = 0.56. The oil bank forms in the reservoir because of miscible gas 

injection. Oil cut increases to a peak value of 0.21 after the oil bank breaks through. The 

oil cut then decreases quickly as the injected gas starts to be produced. The SWAG 

injection stops after 1.5 PV of fluid is injected (Figure 5-34b).  

 

 

 

 

 

 

 

 

                       a)Waterflood                                                             b) SWAG flood 

Figure 5-34. SWAG/CO2 flood (tertiary displacement) follows water flood (secondary 

displacement). a) Water flood history match is shown using the new model 

for secondary floods. b) Oil cut history match between simulation and 

model is good. The oil cut initially increases with gas injection. The oil cut 

reaches a peak value and falls off thereafter.  

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-16. Permeability field autocorrelation lengths for the history matched case in 

Figure 5-34. 
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Water 

flood 

Koval 

factor 
K 18.01 

SWAG/ 

CO2 

flood 

Solvent 

bank 

Koval factor 

Kb 17.2 

Oil bank 

Koval factor 
Kf 21.0 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.78 

Ultimate 

volumetric 

sweep 

efficiency 

A 

(model) 
0.41 

a 

(simulation) 
0.79 

A 

(simulation) 
0.42 

Average 

water 

saturation 

in 

swept area 

S1avg 

(model) 
0.56 

Average 

water 

saturation in 

solvent 

swept 

area 

S1avg 

(model) 
0.75 

S1avg 

(simulation) 
0.55 

S1avg 

(simulation) 
0.73 

Table 5-17.History match parameters for water flood and tertiary SWAG flood. 

 
a) Waterflood                                                               b) SWAG flood 

Figure 5-35. a) Water saturation map at the end of water flooding and beginning of 

SWAG injection (Water cut, 95%) b) Gas saturation map at the end of 

SWAG injection phase (Water cut, 95%) for line drive case. 

5.6.2.2  Quarter five-spot  

The second case for tertiary SWAG flood is shown in Figure 5-36b. The water 

flood stops when the oil cut reaches 0.05 with 2.2 PV of total injection. The average 
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water saturation in the flooded region at the end of water flood is 0.56. Thus the initial 

condition before the SWAG injection starts is assumed to be f1,I = 0.95 and S1,I = 0.56. 

The oil bank forms in the reservoir because of gas/CO2 injection. Oil cut starts to increase 

and reaches a peak value of 0.22 after the oil bank breaks through. The oil cut then 

decreases as the injected gas starts to recycle. The gas injection is stopped after 1.5 PV of 

fluid is injected (Figure 5-36b). 

Autocorrelation length 

Lx Ly Lz 

10 0 0 

Table 5-18. Permeability field autocorrelation lengths for the history matched case in 

Figure 5-36. 

 

 

 

 

 

 

 

 
a) Waterflood                                                                 b) SWAG flood 

Figure 5-36. SWAG/CO2 flood (tertiary displacement) follows water flood (secondary 

displacement). a) Water flood history match is shown using the new model 

for secondary floods. b) Oil cut history match between simulation and 

model is good. The oil cut initially increases with gas injection. The oil cut 

reaches a peak value and falls off thereafter.  
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a) Waterflood                                                        b) SWAG flood 

Figure 5-37. a) Water saturation map at the end of water flooding and beginning of 

SWAG injection (Water cut, 95%). b) Gas saturation map at the end of 

SWAG injection phase (Water cut, 95%) for quarter five-spot case. 

Water 

flood 

Koval 

factor 
K 15.43 

SWAG/ 

CO2 

flood 

Solvent 

bank 

Koval factor 

Kb 18.2 

Oil bank 

Koval factor 
Kf 25.4 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.76 

Ultimate 

volumetric 

sweep 

efficiency 

a 

(model) 
0.38 

a 

(simulation) 
0.78 

a 

(simulation) 
0.40 

Average 

water 

saturation 

in 

swept area 

S1avg 

(model) 
0.56 

Average 

water 

saturation in 

solvent 

swept 

area 

S1avg 

(model) 
0.77 

S1avg 

(simulation) 
0.58 

S1avg 

(simulation) 
0.74 

Table 5-19. History match parameters for water flood and tertiary SWAG flood. 

The end point mobility ratio increases to 17.5 for the solvent flood from 5 for 

water flood. The purpose of the gas/solvent flood is to increase the displacement 
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efficiency by inducing miscibility and reducing the solvent/oil interfacial tension. The 

ultimate volumetric sweep efficiency decreases by 35% for line drive case (Table 5-17) 

and by 37% for quarter five spot case (Table 5-19) from waterflood phase. The decrease 

in sweep efficiency results from solvent channeling through high permeability streaks 

(Figure 5-34b and 5-36b).  The average gas saturation in the zones flooded with solvent is 

75% which is approximately equal to 77% as estimated from fractional flow theory (Fig. 

5-33). The average gas saturation in the flooded region is small because the injection 

WAG ratio is 2.03. The pixel scale fractional flow theory for miscible gas floods at WAG 

ratio of 2.03 also suggests small gas saturation in the flooded region (Figure 5-33). The 

Koval factors for gas flood increases significantly compared to water flood (Table 5-17 

and 5-19) because of increase in the mobility ratio. 

 

 

 

 

 

 
 

a) Line drive pattern                                          b)  Quarter five-spot pattern 

Figure 5-38. Koval factors for both the solvent bank and oil bank decrease as ultimate 

volumetric sweep increases for a) Line drive pattern and b) Quarter five-spot 

pattern. Koval factors for oil bank are also higher compared to solvent bank 

for both the patterns. 

 

 

 



 143 

 

 

. 

 

 

 

 

 

 
a) Line drive pattern                                                 b) Quarter five-spot pattern 

Figure 5-39. Koval factors for solvent bank and oil bank increase monotonically with 

increasing water flood Koval factors for a) Line drive pattern and b) Quarter 

five-spot pattern. Koval factors obtained during solvent floods are also well 

correlated with the water flood Koval factors for both patterns. 

 

 

 

 

 

 
a)  

a) Line drive pattern                                                b) Quarter five-spot pattern 

Figure 5-40. Ultimate volumetric sweep from the model compares very well with the 

simulation for miscible SWAG floods for a) Line drive pattern and b) 

Quarter five-spot pattern. 
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Small ultimate volumetric sweep efficiency indicates non-uniform displacement 

of the drainage volume because of fluid channeling. Unfavorable (high) mobility ratio is 

the main reason for poor ultimate volumetric sweep. Koval factors are direct measures of 

mobility ratio and heterogeneity so high values must indicate small volumetric sweep 

(Figure 5-38). The inverse relationship between the Koval factor and volumetric sweep 

holds for both line drive and quarter five-spot pattern (Figure 5-38).  

Figure 5-39 illustrates a good correlation between water flood Koval factors and 

both the solvent flood Koval factors (solvent bank and oil bank). For the same change in 

water mobility, increasing trend between water flood Koval factors and polymer flood 

Koval factors represent increasing heterogeneity. The ultimate volumetric sweep obtained 

from the model matches well with the values estimated from the simulation grid at the 

end of solvent flood (Figure 5-40). 

5.7  MODEL VALIDATION     

The terms verification and validation differ in their meanings when it concerns 

new mathematical models. Verification is concerned with whether the model is error-free 

and well-engineered while validation is concerned with the real world applicability of the 

proposed mathematical model. Also, verification is the process of determining that a 

model implementation accurately represents the developer‟s conceptual description of the 

model and the solution to the model (AIAA, 1998). Validation, in context of the current 

work, is the process of determining the degree to which the proposed model is an 

accurate representation of the real world from the perspective of the intended uses of the 

model (AIAA, 1998). This definition of validation is to be distinguished from the use of 

the term in the scientific method sense of testing a prediction of a scientific model against 

experimentally obtained data. 
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A good scientific model satisfies two conditions: it describes a large class of 

observations by using only a few arbitrary parameters and it must be able to make 

definite predictions of future observations (Popper, 1935). The validity of the models 

developed in this research in the scientific sense is limited because they cannot be used to 

predict the performance of secondary and tertiary displacements. The intended use of the 

models developed in this chapter is to understand the efficiency of the secondary and 

tertiary displacements for real field cases. History matching the field data provides a set 

of parameters that can be used to understand the effectiveness of the displacements. The 

basic steps for history matching the field results are outlined briefly followed by few 

examples for each of the process.  

5.7.1 Model Validation steps 

The data is gathered for field waterflood, polymer floods and gas floods. The 

collected data is history matched with the model. Following are each of the validation 

steps outlined in detail. 

5.7.1.1 Field data 

Field data for water floods shown later was obtained through personal 

communication. Field data for polymer floods and WAG floods is collected through 

published resources and personal communication. Field data includes oil cut and/or 

cumulative oil recovery at reservoir conditions as well as total production rates and 

injection rates of the wells. This includes 15 single well waterfloods, 6 field polymer 

floods and 4 field solvent floods. It also includes 5 single well waterfloods which are 

followed by solvent floods for a Colorado oil field called Rangley. The number of field 

data used for model validation for each EOR process reflects the limited availability of 

the data for such analysis. 
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5.7.1.2  Field data preparation 

In each case the reported production effluent history (oil cut or cumulative oil 

recovery) were used for history matching. The field effluent history before being fed to 

the model is converted to reservoir conditions. Phase behavior data such as fluid 

formation volume factors are required to convert data to the reservoir conditions. The 

models for waterflooding and polymer/solvent floods are different as detailed in earlier 

section on model development so the incremental results of EOR/waterflooding phases 

are required even when the reported results are continuous from primary to tertiary. So 

for cumulative oil recovered, the incremental must be extracted for each EOR stage. Oil 

cut data is at a point in time and not averaged over a given duration like cumulative oil 

recovered so only the initial oil cut at the start of each EOR phase is required. 

The models for water/polymer/solvent flooding uses dimensionless time so the 

time scale on the field data is required to be converted to dimensionless using Equation 

5.69: 

0

( )

t

pro

D

P

q t dt

t
V




                                                                                                 (5.69) 

where qpro(t) is the total production rate of all fluids at time t and VP is the average pore 

volume associated with the drainage area. The total production rate is used for history 

matching because the model is applied at each production well and individual 

contributions from each injector towards production from each production well are hard 

to determine. Capacitance Resistance model has the capability to obtain the contribution 

of each injector towards each production well (Morteza, 2008).  The only other 

information that is required at the start of each production phase (water/polymer or 

solvent flood) for history matching is: 

 S1i: The initial water saturation in the swept region at the start of each phase 
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 f1i: The initial water cut at the start of each phase 

The total production rate from the field is known but the associated drainage pore 

volume is an unknown so it is one of the history match parameters. The number of input 

parameters required is very basic and few in number compared to history matching with 

numerical simulation. 

5.7.2  Water flooding history matching 

The water flood history matching model and procedure is explained in detail in 

the previous chapter. The water flood history match procedure is simpler compared to 

other EOR processes because the water flood has two saturation regions compared to 

three for polymer and solvent floods. The matching parameters as stated in the 

verification section for waterflooding are the Koval factor (K), the local water front 

velocity (vΔs) and the ultimate volumetric sweep efficiency (a). The water flood 

performance depends on the Koval factor (heterogeneity and mobility ratio), the local 

water front velocity (local change in saturation representative of the displacement sweep) 

and ultimate volumetric sweep. The total pore volume is also an unknown and treated as 

a history match parameter. History match is performed on oil cut for water floods, 

1
( ) ( ; , , , )

D
o D D s px

f t f t K v a V
                                                                         (5.70) 

 
2

model field
1

 ( ) ( ) ( , , , )
j j

N

j o D o D s p

j

Total error f t f t f K v a V 



                      (5.71) 

The solver in Microsoft excel was used to vary the history match parameters and 

obtain a good history match by minimizing the total error in equation 5.71. The history 

matching is a constrained optimization problem because the history match parameters 

have upper or lower limits based on physical arguments. The Koval factor as well as local 

front velocity cannot be less than unity whereas ultimate volumetric sweep efficiency has 
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to be between zero and one. The ultimate volumetric sweep efficiency reaches the limit in 

one when the flood performs really well and sweep is uniform.  

Figure 5-41 and 5-42 are examples of the water flood history matches for an 

actual reservoir and a single well in that reservoir. 

 

 

 

Figure 5-41. Water flood history match for the whole reservoir (Sand-C4) 
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Figure 5-42. Water flood history match for a single well (Well 1) in the reservoir (Sand-

C4) 

The water flood history match for the whole reservoir Sand-C4 is shown in Figure 

5-41. The actual oil cut data from the field has a lot of noise which results from various 

field operating conditions. The history match oil cut is smooth and matches the average 

behavior of oil cut from the field. The waterflood history match for a single well in 

reservoir sand C-4 is shown in Figure 5-42. The actual oil cut from the field for a single 

well also contains some noise (fluctuations) in the data, which could be attributed to 

changes in the well operating conditions. The average history match for the cumulative 

oil produced is very good. The total pore volume that of the whole reservoir sand is 

approximately 70 MMRB which is 7 times compared to the pore volume associated with 

the single well (10 MMRB) shown in Table 5-20. 

    

 

 

 

 

 

 

 

a) Mollaei’s model                                                                  b) New model                                                                          

Figure 5-43. Waterflood history match comparison between (a) Mollaei‟s and (b) the new 

model for cumulative oil produced for Well 1 (Sand C4). 
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The history match from the new model is much better compared to Mollaei‟s 

model as shown in Figure 5-43. The better history match from the new model could be 

attributed to the number of fitting parameters mathematically. The number of history 

match parameters for the new model is four compared to three for the Mollaei‟s model. 

The other physical reason for a better history match could be the differentiation between 

the unswept and swept zones in the new model. 

 

Reservoir 

Name 

 Koval factor, K Local 

front 

velocity,  

vΔS 

Ultimate 

volumetric 

sweep, a 

Total pore 

volume 

Vp, 

(MMB) 

New  

model 

Mollaei 

model 

Sand C-4 

Whole 

reservoir 
6.48 7.13 2.50 0.67 70.00 

Well 1 2.84 3.00 2.12 0.82 10.18 

Well 2 2.45 5.48 2.34 0.99 6.37 

Well 3 1.81 2.54 2.49 0.93 9.91 

Well 4 7.92 8.37 2.27 0.50 12.18 

Well 5 10.07 3.50 2.78 0.40 4.46 

Well 6 12.68 4.75 2.42 0.63 5.11 

Well 7 1.001 12.98 2.71 1.00 2.00 

Sand C-5 

Whole 

reservoir 
3.36 3.74 2.53 0.91 69.92 

Well 1 1.97 1.46 2.38 0.79 9.58 

Well 2 4.75 2.82 2.11 0.99 0.95 

Sand C-6 

Whole 

reservoir 
6.45 4.00 2.46 0.83 85.00 

Well 1 10.98 6.87 2.31 0.37 17.82 

Well 2 2.03 1.50 2.65 0.75 5.12 

Sand C-7 

Whole 

reservoir 
4.59 4.58 2.82 0.99 137.00 

Well 1 2.35 2.70 2.54 0.88 20.73 

Well 2 3.84 5.00 2.69 0.78 42.50 

Table 5-20. Summary of history matched parameters for all field waterflooding cases 
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Table 5-20 summarizes waterflooding history match parameters for different 

reservoirs and the single wells in those reservoirs. Table 5-20 also summarizes the Koval 

factors obtained by Mollaei (2011) for the same water flood history matches. The 

obtained Koval factors and ultimate volumetric sweep efficiencies for the field history 

match are in between maximum and minimum of the same single well parameters for 

reservoir C-4 and C-5. The Koval factors and ultimate volumetric sweep for C-4 sand 

largely form two groups. Wells 1, 2 and 3 have small Koval factors wells 4, 5, 6 and 7 

have large Koval factors. The variability can be speculated to be related to the geological 

factors such as permeability anisotropy, well spacing, etc. The Koval factors and ultimate 

volumetric sweep for the sands C-6 and C-7 are not equal to the average values from the 

wells. The estimated total pore volume associate with the individual wells also does not 

sum to the estimated total reservoir pore volume for all four reservoirs. The total 

production from sands C-4, C-5, C6 and C-7 also exceeds the cumulative production 

from individual wells for each reservoir (Table 5-21). This mismatch must be attributed 

to existence of more production wells in the reservoir than reported in Table 5-20 and 5-

21. 
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Reservoir Name 

 Cumulative oil 

produced, 

MRB 

Total pore 

volume, 

Vp, (MMRB) 

Sand C-4 

Well 1 3296.48 10.18 

Well 2 2442.55 6.37 

Well 3 3713.55 9.91 

Well 4 1905.04 12.18 

Well 5 697.18 4.46 

Well 6 790.70 5.11 

Well 7 621.70 2.00 

Well Total 13467.20 50.21 

Whole reservoir 15011.43 70.00 

Sand C-5 

Well 1 2806.26 9.58 

Well 2 380.05 0.95 

Well Total 3186.31 10.53 

Whole reservoir 20399.47 69.92 

Sand C-6 

Well 1 1548.35 17.82 

Well 2 1448.17 5.12 

Well Total 2996.52 22.94 

Whole reservoir 21987.87 85.00 

Sand C-7 

 

Well 1 5850.15 20.73 

Well 2 12352.08 42.50 

Well Total 18202.23 63.23 

Whole reservoir 67496.46 137.00 

Table 5-21. Summary and comparison of the cumulative oil produced and total pore 

volume for each well and the whole reservoir. 



 153 

 

 Figure 5-44. Field and single well ultimate volumetric sweep decreases with increasing 

Koval factors. 

Figure 5-44 demonstrates the relationship between the ultimate volumetric sweep 

and the Koval factors for the four reservoirs analyzed above. The ultimate volumetric 

sweep decreases with an increase in Koval factors (representative of heterogeneity and 

mobility ratio) as expected.   
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Figure 5-45.  The Koval factors from new model show an increasing trend with the Koval 

factors obtained from Mollaei model. 

 

Figure 5-46. Koval factor comparison between the new model and Mollaei‟s model 
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The comparison between the Koval factors from the new model with Mollaei‟s 

model shows an increasing trend (Figure 5-45). The Koval factors obtained from the new 

model are different than from the Mollaei‟s model because the new model is a two 

parameter model versus one parameter Mollaei model (Figure 5-45 and 5-46).  

5.7.3  EOR history matching 

The tertiary flood, two-front displacement models have been validated against 

two of isothermal EOR processes: polymer and solvent (gas) flooding. In the next few 

sections, validation examples for polymer and solvent history matching are shown. 

5.7.3.1  Polymer floods 

In chemical EOR polymer is injected for mobility ratio control between 

displacing and displaced fluids to bring about improved oil recovery and increase in 

volumetric sweep (Lake, 1989). The production history data (cumulative oil produced, oil 

cut and total production rate) of six pilot and field polymer floods is used for history 

matching of the model.  

The history matching procedure for polymer floods is different than 

waterflooding. The polymer flood model has six history matching parameters, two 

additional to waterflooding because of existence of two displacing fronts: Polymer bank 

Koval factor (Kb), oil bank Koval factor (Kf), polymer bank local front velocity (vb,OB), oil 

bank local front velocity (vf,OB), ultimate volumetric sweep (a) and total pore volume (Vp) 

are adjusted to achieve a good history match. 

Each history matching parameter represents some reservoir and/or process 

characteristics. Similar to waterflooding, the Koval factors describe the effect of 

heterogeneity and mobility ratio on performance curves (oil cut, cumulative recovery). 

Factors such as polymer adsorption and degradation and salinity can also influence the oil 
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recovery. They mainly affect the viscosity and relative permeability of the injected 

polymer solution that are accounted for in the mobility ratio and local front velocities.  

The six variables (Kb,Kf,vb,OB,vf,OB,a,Vp) are adjusted in the automatic history 

matching algorithm (explained in Appendix C) to match pilot and field oil cut.  

b, ,1
( : , , , , , )

D
o D b f OB f OB px

f f t K K v v a V

                                                                       (5.73) 

The regression is performed to minimize the total error and achieve a good match 

between actual and predicted results. 

 
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j

Total error f t f t f K K v v a V


  
           (5.74) 

The Daqing pilot polymer floods history match is discussed below. The remaining five 

field polymer history matches are in Appendix D. 

Daqing field pilot PO 

 

Figure 5-47. Location of polymer flood pilots and wells for the Daqing field. (Wang et 

al., 1993). 
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The Daqing field comprises of the Putaohua and Saertu sandstone formations. The 

average net thickness of the field ranges from 7 to 38 ft with the average thickness at 20 

ft. The average oil viscosity in the reservoir is 9.5 cp. The field was discovered in 1959. 

Water injection in both the layers began in June of 1960. The adverse mobility ratio for 

water floods led to polymer demonstration projects to improve oil recovery. The pilot one 

(PO) polymer flood was initiated in 1990 and ended in 1992. The pilot resulted in 

decrease in water cut by 16% and increase in oil recovery by 14% of OOIP 

demonstrating the effectiveness of the polymer flood. Figure 5-47 shows the five spot 

pattern layout for the polymer pilot (PO).  The excellent history match is shown in Figure 

5-48. 

 

 

Figure 5-48. Polymer flooding history match of Daqing PO pilot. The pilot data is from 

Wang et al. 1993.  
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Daqing 

PO 
Chateaurenard Marmul 

North 

Burbank 

Sleepy 

Hollow 
Courtenay 

Polymer 

bank 

Koval 

factor, 

Kb 

New 

model 
2.50 1.80 1.80 3.15 3.27 5.28 

Mollaei 

Model 
1.85 4.53 3.53 2.29 2.87 4.60 

Oil bank 

Koval 

factor, 

Kf 

New 

model 
3.88 3.51 2.88 13.09 16.37 9.8 

Mollaei 

model 
1.75 1.08 1.03 5.01 2.10 2.07 

Local 

front 

velocity, 

vb,OB 

New 

model 
1.10 1.43 1.55 1.12 1.16 1.19 

Local 

front 

velocity, 

vf,OB 

New 

model 
2.98 2.72 2.95 3.86 2.40 3.13 

Ultimate 

volumetric 

sweep, 

a 

New 

model 
0.55 0.65 0.66 0.54 0.51 0.50 

Total pore 

volume, 

Vp 

(MMRB) 

New 

model 
3.10 0.87 4.99 23.00 70.00 16.93 

Table 5-22. Summary of all polymer history match parameters. 

The results of all the polymer history matches from the new model are 

summarized in Table 5-22. The estimated total pore volumes vary from 1 to 70 million 

reservoir barrels depending on the size of the pilot area. The ultimate volumetric sweep 

efficiencies vary from 0.5 to 0.7 for the pilots which are reasonable field estimates for the 

pilots. The ultimate volumetric sweep decreases with increasing Koval factors for the 

polymer bank as well as oil bank (Figure 5-49). 
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Figure 5-49. Ultimate volumetric sweep efficiency decreases with increase in Koval 

factors for polymer and oil bank. 
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Figure 5-50. Polymer and oil bank Koval factors from a) new model and b) Mollaei‟s 

model. The polymer bank Koval factors from the new model are smaller 

than the oil bank Koval factors.  

Polymers are injected to decrease the mobility ratio. Smaller mobility ratios at the 
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factors. The polymer bank Koval factors from the new model are smaller than the 

polymer bank Koval factors (Figure 5-50a) which is vice versa for Mollaei‟s model 

(Figure 5-50b). The limitation posed by Mollaei‟s model in capturing the physical impact 

of reduction in mobility ratio on polymer bank Koval factors is resolved in the new 

model.    

 

 

 

 

 

 

 

                                            
a) Solution 1                                                                            b) Solution 2 

Figure 5-51. Non-unique solutions from Mollaei‟s model demonstrated using Sleepy 

Hollow pilot data. 

 
Mollaei’s model 

New model 
Solution 1 (a) Solution 2 (b) 

Polymer bank Koval 

factor, Kb 
3.77 7.59 3.27 

Oil bank Koval factor, Kf 2.51 7.62 16.37 

Local front velocity, vb 1.27 1.27 1.16 

Local front velocity vf 3.32 12.22 2.40 

Total pore volume, Vp 

(MMB) 
55.30 108.80 70.00 

Ultimate volumetric 

sweep, a 
- - 0.51 

Table 5-23. Non-unique history matched parameters from Mollaei‟s model for Sleepy 

Hollow pilot shown in Figure 5-42. 
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Non-uniqueness is also a limitation with Mollaei‟s model. Figure 5-51 

demonstrates the two history matched solutions for Sleepy Hollow polymer pilot. The 

two fronts for polymer floods in Mollaei‟s model are treated independently of each other 

thus resulting in non-unique solutions. The total pore volume estimates between 

Mollaei‟s solution 1 and solution 2 differ by a factor of 2 (Table 5-23). The Koval factors 

are very different for the two solutions along with the local front velocities. The non-

uniqueness thus is a detriment if reservoir management decisions are to be made.  

5.7.4  Solvent gas/WAG flood 

Miscible water alternate gas (WAG) floods have been successfully implemented 

in the oil fields as an EOR technique. Miscible gas helps reduce the interfacial tension 

thereby decreasing the residual oil. The purpose of WAG injection is to increase sweep 

by reducing the effective mobility ratio between the injected gas and formation oil, which 

is a problem for miscible gas floods with early breakthrough and poor sweep 

(Mathiassen, 2003; Lake, 2008). 

Several field cases for WAG floods are used for history matching of the model. 

The history matching procedure is the same as for polymer floods with the same number 

of matching parameters. The local scale front velocities are different for WAG floods 

(Walsh and Lake, 1989) compared to polymer floods (defined in the model development 

section for tertiary floods). Results of few published CO2/WAG projects were history 

matched.    

Slaughter WAG pilot 

The Slaughter estate unit is located in Hockley County in the Permian basin of 

west Texas. The pilot area of the field contains continuous dense and permeable layers. 

The dense streaks also contain skeletal wackestones that are heterogeneous with various 
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amounts of silt and organic material. The skeletal material has been replaced by anhydrite 

which results in lower peameability. The reservoir is approximately 4900 ft deep with net 

pay of 75 ft. The average formation permeability and porosity are 6.4 md and 0.12 

respectively. The reservoir temperature is 105 F with average oil viscosity at 2 cp. Water 

injection in the pilot area with double five-spot pattern started in 1972. Water 

breakthrough occurred in six months after injection began and water cut increased to 80% 

in twelve months after water breakthrough. The water flood oil rate decline was very 

steep. The CO2 WAG was started in 1976 in the pilot area with WAG ratio of 1:1 on a 

reservoir barrel basis. The tertiary oil production was first observed more than a year 

after solvent gas injection. The lengthy response time is because of thorough water 

flooding of the pilot. Tertiary incremental oil recovery was estimated to be 15% of OOIP. 

The history match between the field oil cut and model oil cut is good (Figure 5-52).   

  

 

Figure 5-52. CO2 WAG flood history match for Slaughter pilot (Rowe et al., 1982). 
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Rangely Field 

The Rangely Weber Sand Unit is located in Rio Blanco County, Colorado. The 

field was discovered in 1933. The Rangely Weber formation consists of a series of 

interbedded eolian sandstones and fluvial siltstones at a depth between 5500 and 6500 ft. 

The average net thickness of the reservoir is 189 ft. The average porosity and 

permeability of the net sands is 0.12 and 8 md, respectively. The field started primary 

production in 1950 with primary drive mechanisms being fluid expansion and 

hydrocarbon gas reinjection for pressure maintenance. The peripheral water injection 

began in 1958 with field wide pattern water flood not starting until 1969. CO2 injection 

started in 1986 at which time water cut from secondary recovery reached 95%.  

 

Figure 5-53. Waterflood and CO2/WAG flood history matches for Well 1 in Rangely 

field. 
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  Slaughter Twofreds 
Lost 

Soldier 

Rangely 

Well 

1 

Well  

2 

Well 

3 

Well 

4 

Koval 

factor, 

K 

Water 

flood 
- - - 5.0 11.68 48.90 8.21 

Solvent 

bank 

Koval 

factor, 

Kb 

New 

model 

(WAG) 

3.50 7.25 18.59 2.56 5.1 8.45 13.61 

Mollaei 

Model 

(WAG) 

6.89 63.26 37.93 - - - - 

Oil bank 

Koval 

factor, 

Kf 

New 

model 

(WAG) 

5.25 14.59 51.07 5.79 10.1 19 27 

Mollaei 

Model 

(WAG) 

3.04 5.56 6.05 - - - - 

Local 

front 

velocity , 

v∆s 

Water 

flood 
- - - 5.5 2.28 2.08 5.0 

Local 

front 

velocity, 

vb,OB 

New 

model 

(WAG) 

1.88 1.7 1.33 1.34 1.34 1.14 1.15 

Local 

front 

velocity, 

vf,OB 

New 

model 

(WAG) 

3.8 3.34 4.64 2.64 1.65 2.67 2.39 

Ultimate 

volumetric 

sweep, 

a 

Water 

flood 
- - - 0.95 0.91 0.63 0.7 

WAG 0.85 0.45 0.32 0.60 0.65 0.35 0.38 

Total pore 

volume, 

Vp 

(MMRB) 

Water 

flood 
- - - 5.5 4.0 6.0 5.0 

WAG 1.25 33.7 299 5.26 4.09 5.8 5.1 

Table 5-24. Summary of field/pilot/well history match parameters for CO2/WAG floods. 
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Figure 5-53 shows the good history match for Well 1 in Rangely field. The 

waterflood oil cut drops drastically in the beginning to 0.2. Oil cut than shows an increase 

up to 0.3 followed by a gradual decrease (Figure 5-53). The trend is observed in the other 

three well history matches (Appendix D). The initial drop in oil cut may be attributed to 

some near wellbore problems during waterflooding. The history match for WAG flood 

shows a good match between the model and the field data. The ultimate volumetric 

sweep decreases by 35% when injection shifts from waterflood to WAG flood (Table 5-

24). The total pore volume associated with Well 1 estimated from waterflood history 

match (5.5 MMRB) is very close to the value estimated from WAG flood history match 

(5.26 MMRB). The other history matches are shown in Appendix D.  

 

 

Figure 5-54. Field Koval factors for solvent bank and oil bank decrease with increasing 

ultimate volumetric sweep.  

The results of all the WAG history matches from the new model are summarized 

in Table 5-23. The estimated total pore volumes vary from 1 to 5 million reservoir barrels 

0 

10 

20 

30 

40 

50 

60 

0.2 0.4 0.6 0.8 1 

K
o

va
l f

ac
to

rs
 

Ultimate volumetric sweep, a 

Solvent bank 

Oil bank 



 166 

depending on the size of the pilot area. The ultimate volumetric sweep efficiencies vary 

from 0.3 to 0.8 for the pilots which are reasonable field estimates for the pilots. The 

ultimate volumetric sweep decreases with increasing Koval factors for the solvent bank 

as well as oil bank (Figure 5-54). 

5.8  SUMMARY 

This work is primarily an exposition of a new method to upscale secondary and 

tertiary floods. The pixel scale information for upscaling depends on fractional flow 

theory therefore specific conclusions vary from case to case. The new models when 

applied to predict and compare reservoir performance will yield information about 

reservoir heterogeneity, mobility ratios, displacement sweep and ultimate volumetric 

sweep efficiency.  

This analyses for secondary and tertiary floods leads to following novel 

contributions: 

1) The new waterflood model when applied to field data yields information about 

average local displacement sweep, and ultimate volumetric sweep. 

2) The method couples window scale reservoir heterogeneity with pixel scale 

information i.e local saturation changes. 

3) The new tertiary flood model accounts for the interactions between the two fronts 

and can capture non-monotonous oil cut trend observed in the fields for tertiary 

floods. This interaction has never been accounted for at window scale. 

4) The models are developed for secondary and tertiary displacements and can be 

used to make reservoir management decisions (displacement sweep and ultimate 

volumetric sweep efficiency).  
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OM GANESHAYE NAMAH 

CHAPTER 6 

Conclusions and Future Work 

6.1  CONCLUSIONS 

6.1.1  Upscaling of miscible floods 

The first objective of this research was to develop an upscaled model for tertiary 

miscible (WAG) flood performance evaluation. For tertiary WAG floods, the effects of 

long-range features such as channels or viscous fingering are captured through a 

heterogeneity factor and mobility ratios in the model. The effect of dispersion or short 

range heterogeneity on displacement is captured by the parameter called residual oil to 

miscible floods (S2RM). The local change in saturation as predicted by local fractional 

flow theory is captured through the local front velocities in the model.  

Few important contributions of the new model are: 

 The upscaled model couples field scale heterogeneity with the mobility ratio and 

also honors the fine-scaled (local) information derived from fractional flow theory 

to predict reservoir effluent history.  

 The new model, even though based on Koval‟s theory, captures the non-

monotonic oil cut response at production wells because of oil bank formation for 

tertiary WAG floods. 

 The fractional flow theory shows that the velocities of the two fronts depend on 

each other. This coupling between the two fronts is preserved at the reservoir 

scale in the new model. This coupling was neglected in the work by previous 

researchers. 
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 The effect of the coupling between the two fronts on effluent history is 

predominant in the reservoirs with large heterogeneity and large mobility ratios.   

 The solvent bank front for small WAG ratio cases (high mobility ratio) moves fast 

and catches the oil bank front. It leads to instantaneous solvent breakthrough 

along with an immediate increase in oil cut. The solvent bank was never observed 

to overtake the oil bank for high heterogeneity and high mobility ratio cases. 

6.1.2  Lost pore volume: Secondary and tertiary floods 

The second objective of the research was to develop a fast and analytical upscaled 

model for secondary (waterflood) and tertiary (WAG and polymer) floods history 

matching and provide quantitative estimates of ultimate volumetric sweep. The upscaled 

models based on Koval‟s theory account for the effects of heterogeneity and mobility 

ratio on viscous instabilities that develop during secondary and tertiary floods. The new 

models also honor the impact of local saturation changes during waterfloods, polymer 

and WAG floods on recovery.  

The secondary model for waterfloods depends on one Koval factor (K). The 

tertiary models for polymer and WAG floods depend on two Koval factors defined for 

two fronts (Kb and Kf).  

Few important contributions of the new models are: 

 Koval factors capture the effects of flow geometry or well ptterns on effluent 

history as demonstrated with line-drive and quarter five-spot patterns. 

 The average oil saturations observed in the fields/pilots are larger than observed 

in the laboratory experiments. This observation suggests an existence of lost pore 

volume that would be inaccessible to the injected fluids. The swept and unswept 

parts of the reservoir were treated separately in the models. It also allowed for 
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integration of fine scale physics applicable for the flooded parts into the models 

for accurate history matching. 

 The models for secondary and tertiary floods were able to successfully match 

field and numerical simulation results. The ultimate volumetric sweep estimated 

for tertiary polymer floods was higher than the ultimate waterflood volumetric 

sweep for all the simulation cases.  Similarly, for WAG floods the ultimate 

volumetric sweep was estimated to be smaller than the waterflood ultimate 

volumetric sweep. The impact of mobility ratio on sweep was captured in the 

model.  

 Ultimate volumetric sweep for waterfloods as well as tertiary polymer and WAG 

floods increases with decreasing Koval factors. Small Koval factors represent 

small heterogeneity and mobility ratio thus indicating uniform sweep. 

 Koval factors obtained for waterfloods and tertiary floods (WAG and polymer 

floods) are directly proportional to each other for the same change in mobility 

ratios for all simulation cases. Polymer flood Koval factors were observed to be 

smaller than waterflood Koval factors on account of decrease in mobility ratio. 

WAG flood Koval factors were observed to be high compared to waterflood 

Koval factors on account of increase in mobility ratio.  

6.1.3  Unified vertical equilibrium analysis 

The models were developed under the vertical equilibrium assumption. The 

analytical proof of conditions required for total vertical equilibrium (viscous and 

dispersive) was derived for a two-dimensional, two phase, multicomponent compressible 

flow without neglecting gravity, the following conclusions were drawn: 
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 The dimensionless numbers RL and NTD must be larger than one for flow to 

achieve total equilibrium (viscous and dispersive) in transverse direction.  

 The viscous and dispersive fluxs are additive so for total transverse equilibrium 

the potential gradient and concentration gradient must both be zero in vertical 

(transverse) direction. 

  For gravity effects and capillary effects to be negligible, the gravity number (Ng) 

must be smaller than the inverse of 2

LR and the capillary number (NCD) must be 

smaller than the inverse of both 2

LR  and NTD. These are stronger constraints than 

gravity number and capillary number being much smaller than unity as was 

previously known. 

6.2  FUTURE WORK 

 The model developed in this research can be extended to other displacements in 

porous media. The fractional flow theory (Noh et al., 2007) for CO2 displacing 

brine suggests the formation of two travelling fronts in the porous media at the 

fine scale. The injected CO2 creates a drying front (caused by mass transfer 

between CO2 phase and aqueous phase) at the back and a Buckley-Levrett front 

ahead of it. The fine scale problem as posed above is similar to the tertiary two 

front displacements (WAG and polymer floods) studied in the research. The fine 

scale model can be applied to heterogeneous reservoirs and can be used to 

determine the time-weighted storage capacity for CO2 storage in heterogeneous 

reservoirs similar to Jain and Bryant‟s, 2010 work on the subject for 

homogeneous reservoirs. 

 The Koval factors obtained from the secondary flood model are correlated with 

the tertiary flood Koval factors as shown in chapter 5. The model can be extended 
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to generate a correlation surface to predict tertiary Koval factors for a given 

change in mobility ratio for polymer and WAG floods. The correlation between 

Koval factors between secondary and tertiary floods can be used to predict the 

tertiary flood performance. Koval factors are also inversely proportional to 

ultimate volumetric sweep. A correlation for the change in sweep efficiency can 

also be developed for changes in Koval factors between secondary and tertiary 

floods. 

 The models developed are for isothermal displacements. The model can be 

extended to thermal floods (steam floods) by combining the heat loss models to 

predict performance. 
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Appendix A 

A.1  DERIVATION OF MASS CONSERVATION EQUATIONS 

Figure 4.5 shows the schematic of the fluid distribution in a layered reservoir at 

any given time.                                                              

We write the mass conservation equations averaged across the cross section 

shown in Figure 4-4b. The system shown in Figure 4-4 is 2-D but vertical equilibrium 

assumption allows for reduction in dimensionality of the equations to 1-D. 

A water mass balance yields: 

1, 1, 1, 1, 1, 1, 0J JB I B I
J B I J B I

D D D D D D

F CF F C C
f f f S S S

X X X t t t

    
     

     
                  (A.1) 

A solvent mass balance yields: 

1, 1, 2(1 ) (1 ) 0J J
J J RM

D D

F C
f S S

X t

 
    

 
                                                            (A.2) 

Other governing equations are: 

1J B IF F F                                                                                                   (A.3) 

1J B IC C C                                                                                                  (A.4) 

where f1,J, f1,B and f1,I is the brine fractional flow in Region J, B and I respectively at the 

pixel scale. S1,J, S1,B and S1,I is the brine saturation in Region J, B and I, respectively, at 

the pixel scale. S2RM is the residual oil to miscible floods in Region J. The parameters f1,J, 

f1,B, f1,I, S1,J, S1,B, S1,I and S2RM  are constants from Walsh and Lake, 1988 and are derived 

from fractional flow theory as shown in Figure 4-1. Subscripts 1, 2 and 3 refer to brine, 

oil and solvent, respectively. 

FJ is the fraction of total flow in the region containing CJ, FB is the fraction of 

total flow in the region containing CB, and FI is the fraction of total flow in the region 

defined by CI as shown in Figure A.1.  

,  and ( , , ,  and Mobility Ratio)J B I J B I kF F F f C C C H
                                     (A.5) 
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The detailed derivation of these terms are in Appendix B.  

There are two degrees of freedom for the above defined system of equations at 

any given point in space and time. Thus the number of differential equations required to 

represent the system must be two. We combine equations A.1 to A.5 and derive a set of 

hyperbolic equations that are to be solved using the method of characteristics.   

Substitute for FB and CB from equations A.3 and A.4 respectively into equation 

A.1. 

1, 1, 1, 1, 1, 1, 1, 1,( ) ( ) ( ) ( ) 0J JI I
J B I B J B I B

D D D D

F CF C
f f f f S S S S

X X t t

  
       

   
                 (A.6) 

Rearranging equation A.6 gives, 

1, 1, 1, 1,

1, 1, 1, 1,

1, 1, 1, 1,

( ) ( )
( ) ( ) 0

( ) ( )

J B I BJ J I I
J B I B

J B D D I B D D

f f f fF C F C
S S S S

S S X t S S X t

       
        

           

        (A.7) 

Rearranging equation A.2 gives, 

1,

1, 2

1, 2

(1 )
(1 ) 0

(1 )

J J J
J RM

J RM D D

f F C
S S

S S X t

   
    

     
                                                        (A.8) 

The above equations can be simplified further by going back to the information 

available from the pixel scale. At the pixel scale, the fronts ahead and at the back of the 

oil bank have distinct velocities as shown in Figure 4-1. These pixel scale front velocities 

are defined as: 

1, 1,

,

1, 1,

,  Velocity at the front of the oil bank
I B

f OB

I B

f f
v

S S





                                    (A.9) 

1, 1, 1,

,

1, 1, 1, 2

1
,  Velocity at the back of the oil bank

1

J B J

b OB

J B J RM

f f f
v

S S S S

 
 

  
        (A.10) 

Using equations A.9 and A.10, a simplified version of equations A.7 and A.8 is 

written as: 

1, 1, , 1, 1, ,( ) ( ) 0J J I I
J B b OB I B f OB

D D D D

F C F C
S S v S S v

X t X t

      
        

      
               (A.11) 
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1, 2 ,(1 ) 0J J
J RM b OB

D D

F C
S S v

X t

  
    

  
                                                            (A.12) 

Eq. A.12 is further reduced to: 

, 0J J
b OB

D D

F C
v

X t

 
 

 
                                                                                        (A.13) 

Substituting A.13 in the R.H.S of equation A.11 would give, 

1, 1, ,( ) 0I I
I B f OB

D D

F C
S S v

X t

  
   

  
                                                                  (A.14) 

Eq. A.14 yields:   

, 0I I
f OB

D D

F C
v

X t

 
 

 
                                                                                        (A.15) 

Equations A.12 and A.14 shows an explicit coupling of pixel scale information 

(vb,OB and vf,OB) with the reservoir scale information (FJ, FI, CJ and CI). The material 

balance for the upscaled system thus honors the information obtained at the pixel scale.  
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Appendix B 

B.1  DEFINING FRACTIONAL FLOW IN EACH REGION (J, B AND I) 

Table B.1 shows the fluid distribution along with the relative permeability 

information based on pixel scale information from fractional flow theory (Walsh and 

Lake, 1988). 

Region Oil saturation 

Oil 

relative 

permeability 

Water 

saturation 

Water 

relative 

permeability 

Solvent 

saturation 

Solvent 

relative 

permeability 

J S2,J 0 S1,J kr1,J S3,J kr3,J 

B S2,B kr2,B S1,B kr1,B S3,B 0 

I S2,I kr2,I S1,I kr1,I S3,I 0 

Table B.1. Saturation distribution in the three regions defined by fractional flow theory. 

where subscript 1 refers to water, 2 refers to oil and 3 refers to solvent. Using Darcy‟s 

law, we can write the total fluid velocity in the three regions (J,B and I) at a point as:  

1, 3,

,

1 3

,        velocity in region J
r J r J

J x

k k dP
u k

dx 

 
   

 
                                       (B.1) 

1, 2,

,

1 2

,        velocity in region B
r B r B

B x

k k dP
u k

dx 

 
   

 
                                      (B.2) 

1, 2,

,

1 2

,          velocity in region I
r I r I

I x

k k dP
u k

dx 

 
   

 
                                       (B.3) 

where k is the absolute permeability at the given point and x denotes the flow direction. 

Integrating these velocities along the cross section shown in Figure 4.5 will give the total 

flowrates per unit width of the reservoir for each region. 
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where, hJ is the height of region J flooded with solvent, hB is the height of region B 

occupied by oil bank and hI is the height of region I occupied with resident oil and water.  

The total flowrate per unit width (superficial velocity) is given by: 

t J B IU U U U  
                                                                                             (B.7) 

Let‟s define total fluid mobility in each region as: 
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,      Total fluid mobility in Region I
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                                     (B.10) 

Assuming vertical equilibrium in the absence of gravity segregation, the pressure 

gradient along the cross section would be the same (Lake, 1989).  

0
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y x
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Thus the total fractional flow in Region J, (FJ) would then be given by: 
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(B.12) 

The total fluid mobilities in each region are constant because saturations within 

the regions are invariable. Thus, the heterogeneity representative of the window scale is 

decoupled from the pixel scale mobility ratios unlike the original Koval model (1963). 

The individual integrals in the equation B.12 are related to the cumulative flow capacity 

as defined as follows (Chapter 4, equation 4.17): 
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Substituting equations B.13 to B.15 in equation B.12 would give: 
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Similarly, the total fractional flow in Region B (FB) and Region I (FI) would be 

given by: 

 
1 ( 1)

1 ( 1)( )

B
B

J k JI
k J B J B I

B B k

C
F

H C
H C C C C C

H

 

 


      

         
     

                      (B.17) 

 
1 ( 1)( )

1 ( 1) 1 ( 1)

I
I

J k J B kB
k J B I

I k J I k J

C
F

H C C H
H C C C

H C H C

 

 


        

       
                       (B.18) 

and, 

1J B IF F F                                                                                                 (B.19) 
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The mobility ratio at the front of the oil bank is given by: 
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The mobility ratio at the back of the oil bank is given by: 

J
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Using the mobility ratio definition, we rewrite equations B.16 to B.18 as follows: 
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Appendix C 

AUTOMATIC HISTORY MATCHING ALGORITHM 

The tertiary displacements model defined in Chapter 5 is a six parameter model. 

The standard optimization algorithms available in Microsoft excel or MATLAB such as 

simplex and reduced gradient methods cannot be used for this problem. The problem 

involves a set of differential equations that cannot be solved to obtain a closed form 

analytical solution. The optimization problem is also non-linear.  

The set of equations to be solved for the optimization are 
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J B IC C C a                                                                                                  (C.5) 
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Equations C.6 and C.7 are solved for f1,B (Equation C.7) in terms of all the 

input/history matched parameters for miscible WAG floods.  
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Polymer floods 
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Equations C.9 and C.10 are solved for f1,B (Equation C.11) in terms of all the 

input/history matched parameters for polymer floods.  
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The boundary conditions are 

( 0, )       and      ( 0, ) 0J D D I D DC x t a C x t                                                  (C.12) 

The initial conditions are 

( , 0)        and        ( , 0) 0I D D J D DC x t a C x t                                               (C.13) 

The equations can be solved using the method of characteristics (MOC), but the 

MOC poses the following problems for automatic history matching: 

1. Equations C.1 and C.2 pose as a two component MOC problem. The solution to 

such a problem is shown in Chapter 4 on a ternary plot Figure 5-6. The physical 

solution must be identified manually on the ternary plot because of the 

discontinuity in the solution where the slow path meets the fast path. Identifying 

the discontinuity manually is the first problem for automatic history matching.  

The insights obtained from MOC have been discussed in Chapter 4. 

2. If the solution to the above problem is a shock then the shock placement depends 

on a discrete material balance across the shock while satisfying the Lax‟s 

conditions. Thus using MOC shock poses another problem for automatic history 

matching because shock placement has to be done manually. 
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Thus, the differential equations are solved numerically using finite differences. 

Equations C.1 and C.2 are further simplified for application of finite difference numerical 

solution. 
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The above set of equations is solved using explicit scheme  
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where, n refers to the n
th

 time step from the beginning (n=0) and i refers to the spatial 

location of the i
th

 gridblock from the injection face. The total number of gridblocks in x 

the direction is Ngird. The FJ and FI at n+1 timestep are 
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The oil cut at n+1 timestep is 
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The history matching algorithm has been adapted from Coats and Dempsy, (1970) 

work on the subject. Their work lies on the premise of developing a linear error surface 

for oil cut at each timestep.  

Algorithm steps 

1.) Set an upper and lower bound for each of the six history match parameter. 

b, ,1
( ) ( , , , , , )

D
o D b f OB f OBx

f t f K K v v a Vp

                                                         (C.23) 

2.) Assume a uniform distribution for each parameter between the lower and upper 

bound. 

3.) Prepare Nset number of sets with each set comprising of all the six history match 

parameter chosen randomly from the distributions. The number Nset for all the 

history matches was chosen to be 100 because it provided reasonable oil cut 

history matches. The total number of sets chosen can be varied depending upon 

the quality of the history match. 
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 set of parameters from Nset                        (C.24) 

4.) Calculate the oil cut for each of the Nset at all given times.  

5.) Calculate the error between the calculated oil cut and the field oil cut for each of 

the Nset‟s at all the given times. 

,model ,, ( ) ( )n n n

l o D o true Derror e f t f t                                                                      (C.25) 

where, n refers to the time step and l refers to the parameter set used for oil cut 

calculation. 
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6.) Fit the linear function defining the error at each timestep. 
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where, 

1

2

3

4

5

6

7

n

n

n

n n

n

n

n

b

b

b

B b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                        (C.28) 

7.) Perform linear regression at each timestep to generate the error surface 
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The coefficients for the error surface at each time step are calculated using 

equation (C.30). 

8.) Repeat steps 5 to 8 for each time.  

9.) Obtain the optimum history match parameters by minimizing the total error 
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where, I is the total number of time steps. The optimal parameter set yoptimal is 

obtained after minimizing the error over all the time steps. 
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Appendix D 

WATERFLOOD HISTORY MATCHES 

Reservoir Sand C4 

 

 

 

 

 

 

 

Figure D.1. Waterflood history match for a single well (Well 2) in the reservoir (Sand- 

C4) 

 

 

 

 

 

 

 

Figure D.2. Waterflood history match for a single well (Well 3) in the reservoir (Sand-

C4). 
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Figure D.3. Waterflood history match for a single well (Well 4) in the reservoir (Sand-

C4). 

 

 

 

 

 

 

Figure D.4. Waterflood history match for a single well (Well 5) in the reservoir (Sand-

C4). 
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Figure D.5. Water lood history match for a single well (Well 6) in the reservoir (Sand-

C4). 

 

 

 

 

 

 

 

Figure D.6. Waterflood history match for a single well (Well 7) in the reservoir (Sand-

C4). The oil cut never starts to decline after the plateau for this well so the 

parameters estimated from history matching are unreliable. 
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Reservoir Sand C5 

 

 

 

 

 

 

 

Figure D.7. Waterflood history match for the whole reservoir sand C5. 

 

 

 

 

 

 

 

Figure D.8. Waterflood history match for a single well (Well 1) in the reservoir (Sand 

C5). 
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Figure D.9. Waterflood history match for a single well (Well 2) in the reservoir (Sand 

C5). 

Reservoir Sand C6 

 

 

 

 

 

 

 

Figure D.10. Waterflood history match for the whole reservoir sand C6. 
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Figure D.11. Waterflood history match for a single well (Well 1) in the reservoir (Sand 

C6). 

 

 

 

 

 

 

 

Figure D.12. Waterflood history match for a single well (Well 2) in the reservoir (Sand 

C6). 
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Reservoir Sand C7 

 

 

 

 

 

 

 

Figure D.13. Waterflood history match for the whole reservoir sand C7. 

 

 

 

 

 

 

 

Figure D.14. Waterflood history match for a single well (Well 1) in the reservoir (Sand 

C7). 
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Figure D.15. Waterflood history match for a single well (Well 2) in the reservoir (Sand 

C7). 

POLYMER FLOOD HISTORY MATCHES 

Chateaurenard field pilot     

Chateaurenard field is part of the Neocomian (Lower Cretaceous) oil reservoirs 

located in the southern part of the Paris Basin (France). The reservoir sand is 

unconsolidated with clay at 2 to 15%. The average total reservoir thickness of the 

reservoir is 15 ft with a porosity of 30%. The average permeability of the reservoir sand 

is high at 1000 md on account of channel type sedimentation and unconsolidated sands. 

The oil viscosity is 40 cp at reservoir temperature of 86 F. The field was discovered in 

1958. The field started producing in 1960. The initial drive mechanism was edge water 

drive but low dip along with adverse mobility ratio caused early water production. The 

polymer injection in the first pilot began in 1977. Until 1979 the water cut was at 90% 

but after that the water cut dropped by 20% in the pilot area. The improvement in 

mobility ratio had a significant impact on the oil recovery. The results of the pilot with 

the history match are shown in Figure D.16. 
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Figure D.16. Polymer flooding history match of Chateaurenard polymer flood (Takaqi et 

al., 1992) 

Marmul field pilot 

Marmul field is located in the southern part of Oman. The field was discovered in 

1956 but only stated production in 1980. The geologic formation called Al Khlata is 

composed of sequence of glacial deposits and contains over 60% of the total oil in place. 

Al Khlata formation is a very high peameability reservoir (1-20 Darcy) with oil viscosity 

of 80 cp. The unfavorable water-oil mobility ratio (M=45) was recognized as the reason 

for the polymer flood pilot performance. The aim was to improve oil recovery by 

improving volumetric sweep efficiency in the pilot area. The polymer injection was 

preceded by a water preflush for five months. Oil cut declined steadily during the water 

preflush. Polymer injection followed the water preflush for 12 months during which time 

the oil cut increased significantly (by 30%).  The pilot history match for Marmul field is 

shown in Figure D.17. 
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Figure D.17. Polymer flooding history match of Marmul polymer flood. (Koning et al., 

1988) 

North Burbank unit pilot 

The North Burbank Unit is located in Osage county, Oklahoma. The Burbank 

sandstone formation is of fluvial origin, with river channels superimposed on each other. 

The field was discovered in 1920 and production started in 1923. The net formation 

thickness in the field varies from 37 to 50 ft. The average permeability in the field is 500 

md with porosity varying between 11 to 32%.  The waterflood in the unit started in 1949. 

The waterflood history suggests that water is channeling through the fractures and high 

permeability zones. Polymer flood is expected to improve vertical and areal 

conformance. The water cut in the high permeability zones went down from 60 to 50%. 

The fractured areas shows early polymer breakthrough as was seen with water. The 

polymer pilot history match is shown in Figure D.18.   
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Figure D.18.Polymer flooding history match of North Burbank polymer flood. (Zornes et 

al., 1986) 

Sleepy Hollow pilot 

The Sleepy Hollow Reagan unit is located in Nebraska. The field was discovered 

in 1960 and started production in 1962. The average reservoir net thickness is 11.3 ft. The 

average porosity of the reservoir is 24% with the permeability of 2.5 Darcy. The oil in the 

formation is stratified in two zones. The upper oil zone has viscosity of 24 cp and the 

lower zone heavy oil viscosity can vary from 72 cp to 10000 cp. Peripheral water 

injection in the field began in 1966. Water injection in the interior part of the field started 

in 1983. Polymer injection started in 1985. The water cut in the polymer injection area 

decreased from 33% to 16%. The field polymer pilot history match is shown Figure D.1 

9. 
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Figure D.19. Polymer flooding history match of Sleepy Hollow polymer 

flood.(Christopher et al., 1988) 

Courtenay field 

Courtenay field is a hydro-dynamically isolated compartment of Chateanurenard 

field. The Courtenay reservoir lies at the depth of 2000 ft. The net average reservoir 

thickness is 11 ft. The reservoir sands are unconsolidated and the average permeability is 

2 Darcys. The oil is paraffinic with the viscosity at 40 cp. The production from the field 

began in 1965. The primary recovery was from edge water drive. Water flooding was not 

considered for the field due to adverse mobility ratio, close well spacing and high 

permeability channels. Early water breakthrough was expected so polymer flood was 

considered as an alternative. The full field polymer injection started in 1989. The edge 

water drive has resulted in high water cut in the production wells. Polymer injection has 

improved oil recovery as water cuts decreased from 92 % to 50 %. The Courtenay field 

history match is shown in Figure D.20.  

 

0 

2000 

4000 

6000 

8000 

10000 

12000 

0 0.2 0.4 0.6 0.8 1 1.2 

C
u

m
u

la
ti

ve
 o

il,
 M

R
B

 

Pore volumes produced, tD 

Actual 

Estimated 



 197 

 

 

Figure D.20. Polymer flooding history match of Courtenay polymer flood. (Putz et al., 

1994) 

MISCIBLE WAG/CO2 HISTORY MATCHES 

Twofreds WAG project 

The Twofreds field is located in Loving, Reeves and Ward counties of west 

Texas. The reservoir sand is very well sorted and fine grained with light cementation. The 

sand is moderately homogeneous. The average depth of the formation is 4800 ft. The 

average formation permeability and porosity is 27.7 md and 0.20 respectively. The 

formation temperature is 104 F with oil gravity of 36 API. Primary recovery from the 

field commenced in 1957. The water flood in the field started in 1963 and continued for 

ten years until Twofreds became a field scale CO2 injection project. The recovery 

attributed to water flood is 4% of OOIP thus an inadequate response to secondary flood 

was observed. The tertiary flood incremental oil recovery is estimated at 10% of OOIP. 

The Twofreds field history match is shown in Figure D.21.  
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Figure D.21. CO2 WAG flood history match for Twofreds pilot (Flanders et al., 1993). 

Lost Soldier pilot 

The Lost Soldier Field was discovered in 1916 and is located in south central 

Wyoming. The average depth of the Tensleep sandstone is 5000 ft. Tensleep is an eolian 

sandstone with an average net thickness of 210 ft. The average porosity and permeability 

of the net pay is 0.1 and 31 md, respectively. The reservoir oil has the stock tank gravity 

of 35 API. Primary production started in early 1940‟s with fluid expansion, water influx 

and gravity drainage as the main driving forces. The peripheral water injection began in 

1962 and pattern water flood was initiated in 1976. The wells are laid out in north to 

south line drive pattern. CO2/WAG injection started from 1989, prior to which reservoir 

was producing 2500 bopd at 97% watercut. Within a year, oil production exceeded 

10,000 bopd. The tertiary oil recovery through 1995 reached over 10% of OOIP. The 

Lost Soldier field history match is shown in Figure D.22.  
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Figure D.22. CO2 WAG flood history match for Lost Soldier pilot (Brokmeyer et al., 

1996). 

Rangely Field 

 

Figure D.23. Waterflood and CO2/WAG flood history matches for Well 2 in Rangely 

field. 
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Figure D.24. Waterflood and CO2/WAG flood history matches for Well 3 in Rangely 

field. 

 

Figure D.25. Waterflood and CO2/WAG flood history matches for Well 4 in Rangely 

field. 

 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.5 1 1.5 2 2.5 

O
il 

cu
t 

 

Pore volumes produced, tD 

Well oil-cut 

Matched oil-cut WAG Water 

Actual 
 

Estimated 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.5 1 1.5 2 

O
il 

cu
t 

 

Pore volumes produced, tD 

Well oil-cut 

Matched oil-cut 
Water flood WAG 

Actual 
 

Estimated 



 201 

Nomenclature 

a = Ultimate volumetric sweep, fraction 

C = Storage capacity, fraction 

CJ = Total fraction of cross-section swept by injectant, fraction 

CB = Total fraction of cross-section swept by oil bank, fraction 

CI = Total fraction of cross-section occupied by initial oil, fraction 

F = Flow capacity, fraction 

SF  = Average cross-sectional fractional for solvent flow, fraction 

FJ = Total fractional flow contained in the injected fluid region, fraction 

FB = Total fractional flow contained in the oil bank region, fraction 

FI = Total fractional flow contained in the initial oil region, fraction 

fj,J = Local fractional flow of phase j in the injected fluid region, fraction 

fj,B = Local fractional flow of phase j in the oil bank region, fraction 

fj,I = Local fractional flow of phase j in initial oil region, fraction 

h = Layer thickness, ft 

H = Reservoir thickness, ft 

Hk = Heterogeneity factor 

K = Koval factor for secondary floods (gas and watefloods) 

Kb = Koval factor for the tertiary bank front 

Kf = Koval factor for the oil bank front 

kH = Average horizontal permeability, md 

kv = Average vertical permeability, md 

,rj Jk  = Relative permeability of phase j in injected fluid region 

,rj Bk  = Relative permeability of phase j in oil bank region 
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,rj Ik  = Relative permeability of phase j in initial region 

L = Reservoir length, ft 

MR = Mobility ratio 

CN = Total number of components 

CDN = Dimensionless capillary number 

,Di xN = Dimensionless flux of component i in the x direction 

,yDiN = Dimensionless flux of component i in the y direction 

Ng = Gravity number 

LDN = Dimensionless longitudinal dispersion number 

TDN = Dimensionless transverse dispersion number 

 Pc = Capillary pressure, psi 

jDP  = Dimensionless pressure of phase j 

cDP  = Dimensionless capillary pressure 

q = Total injection flux, ft/day 

r = Interstitial velocity, ft/day 

LR  = Dimensionless parameter that controls viscous cross-flow 

S = Saturation, fraction 

Sj,J = Local saturation of phase j in the injected fluid region, fraction 

Sj,B = Local saturation of phase j in the oil bank region, fraction 

Sj,I = Local saturation of phase j in the initial oil region, fraction 

S2RM = Residual oil to miscible floods, fraction 

SOF = Residual oil to polymer floods, fraction 

tD = Dimensionless time 

u = Superficial injection velocity, ft/day 

Djxu  = Dimensionless flux of phase j in x direction 
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Djyu  = Dimensionless flux of phase j in y direction 

vf,OB = Local fractional flow velocity of the oil bank front 

vb,OB = Local fractional flow velocity of the tertiary bank front 

Sv  = Local fractional flow velocity for secondary floods 

Vp = Total pore volume, Barrels 

w = mass fraction 

xD = Dimensionless spatial location in x-direction 

yD = Dimensionless spatial location in y-direction 

 

Greek symbols 

  = Viscosity of displacing fluid, cp 

2

o  = Viscosity of phase 2 at standard conditions, cp 

  = Interfacial tension between flowing phases, lb/ft 

  = Fraction of cross-section occupied by solvent finger 

T  = Transverse dispersivity, ft 

L  = Longitudinal dispersivity, ft 

  = Density, lb/ft
3
 

  = Dimensionless density 

  = Fluid mobility 

  = Porosity, fraction 

 

Subscripts 

oe = Effective oil (viscosity) 

og = Effective gas (viscosity) 
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o = Oil (viscosity) 

g = Gas (viscosity) 

m = mixture (viscosity) 

n = Layer 

i = Component 

j = phase 

1 = Brine 

2 = Oil 

3 = Solvent 

 J = Injected fluid region 

B = Oil bank region 

I = Initial fluid region 
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