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Geologic sequestration of CO2 in deep saline aquifers has been studied 

extensively over the past two decades as a viable method of reducing anthropological 

carbon emissions. The monitoring and prediction of the movement of injected CO2 is 

important for assessing containment of the gas within the storage volume, and taking 

corrective measures if required. Given the uncertainty in geologic architecture of the 

storage aquifers, it is reasonable to depict our prior knowledge of the project area using a 

vast suite of aquifer models. Simulating such a large number of models using traditional 

numerical flow simulators to evaluate uncertainty is computationally expensive. A novel 

stochastic workflow for characterizing the plume migration, based on a model selection 

algorithm developed by Mantilla in 2011, has been implemented. The approach includes 

four main steps: (1) assessing the connectivity/dynamic characteristics of a large prior 

ensemble of models using proxies; (2) model clustering using the principle component 

analysis or multidimensional scaling coupled with the k-mean clustering approach; (3) 

model selection using the Bayes' rule on the reduced model space, and (4) model 

expansion using an ensemble pattern-based matching scheme. 



 vii 

In this dissertation, two proxies have been developed based on particle tracking in 

order to assess the flow connectivity of models in the initial set. The proxies serve as fast 

approximations of finite-difference flow simulation models, and are meant to provide 

rapid estimations of connectivity of the aquifer models. Modifications have also been 

implemented within the model selection workflow to accommodate the particular 

problem of application to a carbon sequestration project. 

The applicability of the proxies is tested both on synthetic models and real field 

case studies. It is demonstrated that the first proxy captures areal migration to a 

reasonable extent, while failing to adequately capture vertical buoyancy-driven flow of 

CO2. This limitation of the proxy is addressed in the second proxy, and its applicability is 

demonstrated not only in capturing horizontal migration but also in buoyancy-driven 

flow. Both proxies are tested both as standalone approximations of numerical simulation 

and within the larger model selection framework. 
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Chapter 1 : Introduction 

Anthropogenic climate change caused by emission of greenhouse gases has been 

of increasing concern over the past few decades. The capture and removal of CO2 (the 

most abundant greenhouse gas after water vapor) at large-scale primarily from coal-fired 

power plants is one of the many methods being considered and tested to mitigate the 

climate-change effects of greenhouse gas emissions. The process consists of three major 

steps (http://www.epa.gov/climatechange/ccs/index.html): capture from industrial 

sources, transport to disposal sites, and injection into subsurface formations primarily 

saline aquifers. The injected CO2 is retained in the subsurface due to a combination of 

physical processes: trapping under cap rock or other structural traps, dissolution in 

formation brine, capillary trapping and mineralization (Kumar et.al 2005, IPCC special 

report 2005). Over the course of a sequestration project, it is necessary to be able to 

monitor and predict the movement of the injected CO2 plume, so as to ensure the 

containment of the CO2 within the storage volume. Currently, this is primarily achieved 

using time-lapse seismic monitoring and/or satellite measurements of surface deflection. 

Both these processes, however, only give us a snapshot of the current position of the 

plume and hence need to be integrated with a prediction scheme to enable proper 

monitoring of the plume. 

 

1.1.  PROBLEM DESCRIPTION 

To make the process of monitoring of subsurface CO2 plume migration robust, 

there is need for integration of data from remote sensing methods to accurately find the 

current location of the plume and a history-matching / prediction framework which can 

be sequentially updated using the remote sensing data. This would reduce the frequency 

http://www.epa.gov/climatechange/ccs/index.html


 2 

of expensive monitoring techniques and make the process of monitoring more efficient, 

especially during closure and post-closure stages of the project. 

The objective of history-matching is to create a static model of the reservoir 

which, when evaluated using a forward model, will yield response similar to observed 

data. However, the data which form part of reservoir models (reservoir structure, 

petrophysical properties, geologic description, fluid properties etc.) are subject to a lot of 

uncertainty, and hence the particular static model which satisfies the history-matching 

objective is not unique. There is also no linear relation between the static properties (like 

permeability distribution) and the dynamic response of the reservoir, making the problem 

of calibrating static properties to dynamic data non-trivial. This is thus a non-linear, 

inversion problem, with multiple non-unique solutions, which also implies that 

predictions made using these models will also have an associated uncertainty. Further 

complications during this inversion process arise due to the existence of static geologic 

properties at multiple scales, with the dynamic response being a combination of the effect 

at each scale of heterogeneity. One of the methods to model this uncertainty taking into 

consideration, the multiscale nature of reservoir heterogeneity, is through the use of 

multiple, multiscale models. History matching then becomes a process of calibrating 

static reservoir properties, in multiple models and at multiple scales, to dynamic 

information. This process becomes more challenging in the case of CO2 sequestration due 

to the scarcity of data (dynamic data is only available at injection wells and there are no 

producers) and due to the much larger time scale of sequestration projects compared to 

oil and gas field operations. 

Uncertainty assessment is possible using a large suite of reservoir models, 

however, the use of a large suite of models introduces an additional level of complexity 

to the problem: the need for an efficient method of assessment of the models without a 



 3 

high computational overhead. Hence, there is need to develop alternative forward models 

that can provide quick assessment of reservoir connectivity at a fraction of the 

computation cost of numerical simulators. 

 

1.2.  RESEARCH OBJECTIVES 

The primary objective of this dissertation is to implement a fast proxy within the 

model-selection framework introduced by Mantilla (2011), in order to assess the 

uncertainty in predicting the plume migration path during CO2 sequestration.. This 

requires the adaptation of the model selection workflow to meet the requirements of a 

carbon sequestration project. It is hypothesized that efficient forward models can be 

developed for simulating the flow of CO2 in an aquifer at a fraction of the computational 

cost of a numerical simulator, and can be implemented within the model selection 

framework to predict future plume migration. The larger objective is divided into the 

following parts:  

 Development of fast-transfer functions: The dominant physical processes at 

play during CO2 migration need to be incorporated into a fast transfer function to 

approximate the migration of CO2 in the aquifer. In this dissertation, it is 

hypothesized that a fast transfer function based on random walker particle 

tracking processes can be developed to accurately represent the physics of plume 

displacement. Such proxies are currently used in solute transport problems 

(Tompson and Gelhar 1990, Quinodoz and Valocchi, 1993). This would allow 

rapid screening of a large number of reservoir models that might be representative 

of the prior uncertainty. 
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 Validation of fast-transfer functions within model selection framework: The 

developed fast transfer functions will need to be integrated within a model 

selection algorithm and tested on synthetic and real field cases to ensure the 

validity of the development.  

 Development of a software suite to implement the algorithm: There are a large 

number of sub-processes that constitute the model selection algorithm. These will 

need to be implemented in a robust software module such that it can be used by a 

lay user. This will make the current work more accessible and enable easy 

implementation to real field cases. 

 

1.3.  DISSERTATION OUTLINE 

The rest of this dissertation will describe the model selection algorithm and the 

development of two particle-tracking proxies for rapid evaluation of reservoir 

connectivity. Chapter 2 will discuss the existing body of work pertaining to monitoring of 

geologic carbon sequestration processes, as well as established methods of history 

matching pertaining to multiple models and the use of fast-transfer proxies for numerical 

simulation prevalent in the energy industry. Chapter 3 will briefly describe the model 

selection algorithm as applied to the case of carbon sequestration. Chapter 4 will describe 

the development of the first of two particle-tracking proxies for use within the model 

selection algorithm. Test cases, both synthetic and real field examples, will also be 

presented. In Chapter 5, we will layout the development of the second particle tracking 

proxy, together with test cases. It will also show the application of the new proxy to 

overcome some challenges faced by the old proxy. Chapter 6 will outline the 

development of the software module for easy implementation of the entire work, with 
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additional information available in the appendix. Chapter 7 will describe some additional 

applications of the model selection algorithm to some specific problems encountered 

during sequestration. The final chapter will discuss the primary findings of this work and 

make recommendations for future work. 
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Chapter 2 : Literature Review 

In the context of geologic carbon sequestration, it is of primary importance to 

both operators and regulators to be able to ensure containment of the injected CO2 within 

the storage volume. Achieving this purpose requires a two-step process: monitoring the 

current location of the CO2 plume and predicting the future migration of the plume. In 

this chapter, we will explore some of the current monitoring techniques available to 

operators to track the migration of the injected CO2. Since we have implemented a 

method for making probabilistic predictions of plume migration using a set of reservoir 

models reflecting the observed injection data, we will also discuss come existing methods 

of history-matching. Finally, given that the major focus of our work was the development 

of proxies to estimate reservoir connectivity, we will discuss some other proxies for rapid 

estimation of fluid migration. 

 

2.1. MONITORING CO2 PLUME MIGRATION 

The process of monitoring the migration of injected CO2 generally involves a 

combination of different detection and prediction mechanisms. This combination of 

technologies would allow operators to take remedial steps if they detect the possibility of 

anomalous migratory behavior of the plume. Benson et.al. (2004) described such an 

approach to monitoring by dividing the implementation into four phases: pre-injection, 

injection, post-injection and closure. The pre-operational stage is composed of 

characterization and assessment of the storage volume and the development of the site by 

deploying necessary infrastructure and facilities, and drilling of injection wells 

(Implementation of Directive 2009/31/EC on the Geological Storage of Carbon Dioxide: 

Guidance Document 1, European Commission). Operations phase is when the operator 
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starts injection of CO2 into the ground. The closure phase starts when the operator has 

either met the pre-determined storage requirements for the site, or has decided to stop 

injection. Post-closure phase starts after the operator has ensured all required closure 

monitoring, plugging and abandonment of wells and handing over of responsibility to a 

competent authority. At each of these stages, there can be multiple monitoring 

requirements based on the objective of the operator and the needs for the site.. The details 

of this approach are described below and shown in Table 2.1. 

1. Pre-injection Monitoring: These operations could include exploratory subsurface 

measurements like 3D seismic and gravity surveys, well level surveys like log data 

acquisition, pressure tests in existing wells, analyzing injection data from previous 

wells, as well as further drilling and injection tests if feasible. These data can then be 

used for detailed characterization of the storage volume, and also making decisions 

about future feasibility and requirements for remote monitoring techniques. 

2. Injection Monitoring: during this phase, the subsurface measurements like seismic 

and gravity would be continued, and there would be new rate and pressure data from 

injection and monitoring wells. There is also possibility of remote satellite 

measurements of ground deformation (Goldstein et.al. 1993, Onuma and Ohkawa 

2009) to possibly estimate the movement of the CO2 plume. These data can be used to 

test the models from the pre-operational phase and update them appropriately. These 

updated models can then be used to make predictions of future migration and 

compared to additional field data over time. This combination of monitoring and 

modeling approaches would gradually reduce the monitoring requirement over time 

as the aquifer models become more and more robust. 

3. Closure and post-closure monitoring: the activities during both these phases would be 

similar, with seismic/gravity surveys at reduced intervals. If there are monitoring 
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wells present, it would also be possible to get pressure data to match to model 

predictions. Unless there is a drastic offset between monitoring results and model 

predictions, the monitoring surveys would be only be required at very infrequent 

intervals during these stages.  

 

 Monitoring methods Aquifer modeling 

Pre-operational 

monitoring 

 

Well logs; Wellhead 

pressure/rate; Seismic survey; 

Formation pressures; 

electromagnetic/gravity survey 

Creation of models for the 

aquifer using prior 

information, if available, 

and current surveys 

Operational 

monitoring 

 

Wellhead pressure/rate; 

Microseismicity; Seismic 

surveys; Gravity survey 

Aquifer models created in 

the previous stage simulated 

and compared with the data 

recorded at this stage, to 

validate and/or update 

models 

Closure monitoring 

 

Seismic survey; Gravity survey; 

Electromagnetic survey 

Simulated seismic response 

based on predictions 

compared to field seismic 

surveys to ensure 

confinement; simulations 

can also be used for risk 

assessment 

Table 2.1. Monitoring stages of a sequestration project (adapted from Benson et.al. 2004) 

 

2.2. HISTORY MATCHING: AN OVERVIEW 

In order for the aquifer modeling during the various phases of operation to be 

continuously updated using the available data, it is necessary to implement efficient 

schemes for data assimilation and uncertainty quantification. Because dynamic injection 

and monitoring data is likely to be readily available, integration of such data within a 
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history-matching framework is necessary. The history matched process can be followed 

by prediction of future migration of CO2 and comparison to monitoring surveys. In this 

section, we take a brief look at different history-matching workflows that have been 

proposed in the literature and can be used for this purpose. 

History matching, in its most basic form, can be described as the process of 

creating representations (models) of the subsurface region under study such that forward 

modeling results of these representations are a close match to observed data. The 

underlying assumption in this process is that if the modeled results match the observed 

data, the model is deemed a close approximation to the actual subsurface reservoir and 

can thus be used to reliably predict future performance [see for example, Review of 

Inverse methods (Zhou et.al. 2013), Manual history matching (Wallen et.al 1968, Mann 

and Johnson 1970, Coats et.al. 1970), Gradient-based methods (Lee et al 1986, Zhang et 

al 2003), Simulated annealing (Deutsch and Journel, 1994), Gradual deformation (Hu 

2000, Le Ravalec 2002)]. The problem with this assumption, however, is that there could 

be multiple models that meet this criterion, thus making the result of history-matching 

non-unique. Further, given this non-uniqueness of the solution, it would be erroneous to 

make predictions about the future performance using any one of the models. One possible 

solution to this process is to adopt methods for multi-model history matching whereby 

multiple 'matched' models are created, thus honoring the non-uniqueness of the entire 

process. At the same time, predictions made by multiple models can be used as 

probability estimates of future performance. There has been extensive work on this 

problem, with various methods suggested for generating an ensemble of history-matched 

models conditioned to static and dynamic data. In this section, we will look at some of 

these methods that have become popular in recent years. 
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2.2.1.  Ensemble Kalman Filter 

The ensemble Kalman filter (EnKF), developed by Evensen in 1994, is a variation 

of the Kalman filter (Kalman, 1960). It is a closed-loop update process for the state 

variables of a system, by progressive integration of data. In EnKF, the step variables of 

the system could be both dynamic data like pressure, saturation, gas-oil ratio etc., and 

static data like permeability and porosity. EnKF sequentially runs a forecast step using a 

forward model that solves the subsurface flow equations, and then an update step where 

the state variables at the end of the forecast are updated guided by the mismatch between 

the predicted and observed well responses. The steps involved in EnKF can be 

summarized as follows (Nævdal, 2003): 

1. Create an initial ensemble of models 

2. Run forward full-physics simulation to the first update step when observations 

are available. 

3. Create a correlation matrix that relates the state variables to the corresponding 

simulated responses. 

4. Compute the mismatch between the simulated responses and the actual well 

observations. 

5. Update the state vector guided by this mismatch. 

6. Run the models forward using the updated state vector, to the next time step 

when observations are available 

7. Repeat steps 3-5  

The updated reservoir parameters such as porosity and permeability as well as 

dynamic parameters such as pressures, saturations and well responses obtained by 
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running the flow simulation at the end of each forecast step make up the state vector     
 

, 

where k is the time step and i is the model number, the superscript f indicates that this 

value has been calculated forward in time. The simulated well responses that have to be 

compared to the observations are extracted from the state vector by: 

       (2.1) 

Here H is a matrix with identity values only corresponding to the well response values. It 

has been demonstrated that the observed variables need to be  considered as a random 

variable, otherwise subsequent updates while preserving the mean will underestimate the 

variance (Burgers et.al., 1998). Hence, a random noise is added to the observation vector: 

              
  (2.2) 

where     
  is a random noise drawn from a multinormal distribution with zero mean and 

covariance Rk. The forecast state vector     
 

 is then updated using the equation: 
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The term Kk is known as the Kalman gain and is given by the relation: 
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and   
  is the ensemble mean. The operation   

 
   extracts the covariance between the 

state values permeability, porosity, saturations etc. and the well responses. In other 

words, the Kalman gain functions like the Hessian within a reservoir simulator.  
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The sequential update of EnKF makes it an attractive option for model updating 

as new data becomes available. The implementation also makes it possible to generate 

probability distribution of model predictions because an ensemble of updated values is 

available at the end of the procedure. However, EnKF is predicated on the relationship 

between the state variables being adequately represented using a covariance function. 

This only holds true as long as the multivariate distribution describing the state values is 

strongly Gaussian in nature and the relationship between state variables and observed 

data (given by H in equation (2.4)) is linear. Zafari (2007) showed that EnKF is unable to 

represent the posterior probability distribution in cases where the data was bi-model. 

Even in cases when the state vector is not Gaussian, Emerick (2012) showed that the use 

of efficient sampling techniques like MCMC (Markov Chain Monte Carlo) can be 

combined with EnKF to enable proper sampling of the posterior distribution of reservoir 

parameters. However, the iterative nature of MCMC makes the model updating 

procedure computationally expensive. Zhou et.al. (2011) showed that using a 

transformation of non-Gaussian state variables to a Gaussian distribution and 

subsequently performing EnKF and finally back transforming the variables to the non-

Gaussian space preserves the non-Gaussian nature of the initial state throughout the 

update process. There has also been a lot of work done using methods like truncated-

Gaussian and Gaussian mixture models to circumvent the inability of EnKF to model 

non-Gaussian fields like facies distributions, channels etc. (Lantuéjoul 2002, Liu and 

Oliver 2005). 

A further problem with EnKF lies in the fact that the update step only considers 

the mismatch between observed and predicted responses forward in time i.e. getting a 

good match to observed data at any stage has no guarantee that the matches for previous 

time steps will be preserved. This can cause a loss of geologic information over multiple 
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updates, and the final model set might be geologically inconsistent with the initial data 

(Mantilla 2007). 

Finally, with the evolution of EnKF, additional reservoir parameters such as fluid 

contacts, fault transmissibilities and NTG ratio have also been added to the state vector. 

This can cause reduction in the updating of some parameters. Indeed, Chen (2010) and 

Wang (2010) have both pointed out that if there are variables like fluid contacts in the 

state vectors, it might be better to restart the simulation from the initial time after 

occasional updates, since updated contacts are not reflected by phase saturation updates. 

 

2.2.2.  Neighborhood Algorithm 

The Neighborhood Algorithm (NA) was developed by Sambridge in 1999 for 

solving inverse problems in geophysics. It is a stochastic sampling algorithm that finds an 

ensemble of models by non-linear interpolation in the parameter space, and guided 

sampling of well-fitting regions of the parameter space. Non-linear interpolation is 

achieved by dividing the entire parameter space into Voronoi cells (Voronoi 1908, details 

in Okabe et.al., 2000). The division of the parameter space using this method is always 

unique, space filling and inversely proportional to the number of points (Sambridge 

1999). 

The algorithm quantifies uncertainty using two basic phases: search and appraisal. 

In the search phase, the initial model set is run forward using a simulator, and a misfit 

function with observed data is created for each member of the ensemble. The nr models 

with the lowest misfit are chosen out of the entire ns models, and a new set of ns models 

are created using a Gibbs sampler in the nr Voronoi cells. Selective sampling of good 

regions is achieved by using information about all previous models, thus overcoming the 
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convergence problem in stochastic sampling. The process is repeated until it reaches a 

pre-defined number of iterations. The ratio of ns/nr defines the trade-off between 

exploring the parameter space and finding better matched models. For ns/nr value of 1, 

the algorithm explores the entirety of the parameter space; as the value of this ratio 

increases, there is increased emphasis on finding better matched models at the cost of 

exploration. 

The NA algorithm by itself does not provide an estimate of prediction probability, 

hence a separate calculation is conducted to find the posterior probabilities in the 

appraisal phase, using Bayes’ rule (the NA-Bayes algorithm):  

 (      )  
[ (      ) ( )]

  (      ) ( )  
 

(2.8) 

Here,       is the history data, and m is the model response. The calculation uses the 

volume of the Voronoi cells and the value of the model misfit (assumed constant for each 

Voronoi cell) to define the likelihood function,  (      ). According to Subbey (2003), 

this approach offers an advantage over traditional methods of uncertainty analysis by 

allowing the use of non-Gaussian distributions. The denominator (called the normalizing 

term), however, is not easy to calculate. A solution lies in the use of Markov Chain 

Monte Carlo (MCMC) formulation to sample from the posterior distribution without the 

need to exactly calculate the Bayes term (Christie 2002). 

 

2.2.3.  Particle Swarm Optimization 

Particle swarm optimization (PSO) is an example of using swarm intelligence for 

exploring the parameter space of a problem. It is inspired by the interaction of natural 

animal populations, where the individual actions of the swarm members are integrated 
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with the sharing of information between members, leading to powerful problem-solving 

techniques using ‘collective intelligence’. This nature is seen in the behavior of ants in an 

anthill (itself the basis of another similar algorithm called Ant Colony Optimization 

[Dorigo 1992]) and in flocks of birds. 

PSO was developed by Kennedy and Ebarhart in 1995 as a population-based 

stochastic optimization algorithm, and has been widely used to solve a variety of 

problems (Kennedy and Eberhart 1995; Eberhart and Shi 2001). In this algorithm, 

multiple particles explore the parameter space, with the movement of each particle 

guided by a combination of the memory of good locations that it sampled and the swarm 

memory of good locations. The position of a particular particle in parameter space 

represents a possible solution to the optimization problem. 

The steps of the algorithm can be summarized as follows (Mohamed et.al. 2010): 

1. Define a random selection of particles in parameter space, together with a 

random initialization of particle velocities. Run each particle through a 

simulator. 

2. Calculate the fitness function for each particle. This will dictate the quality of 

the location in the parameter space. 

3. Update the position of pbest, the best location for the particle with the current 

value. This gets updated every time the particle encounters a location with a 

better fit to observed data. 

4. Calculate the global best position using the pbest information across the entire 

swarm. This is designated by gbest, and updated similarly to pbest. 

5. Update the velocity of the particle using the equation: 

  
       

         (          
 )         (     

    
 ) (2.9) 
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Here, the velocity term is composed of three components. The first term is 

called the inertia term and it reflects the tendency of the particle to keep 

moving in the same direction as before. The second term is called the memory 

term and defines the tendency of the particle to move towards its own best 

location. The third social term, defines the tendency of the particle to move 

towards the best position of the entire swarm. This is shown in the vector 

diagram in Figure 2.1. The velocity of the particle is updated as the vector 

sum of the current velocity (inertia term), the vector representing the tendency 

of the particle to move towards its own best location (memory term) and a 

vector representing the tendency of the particle to move towards the best 

location found by the entire swarm (social term). 
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Figure 2.1. Schematic of Particle Swarm Optimization (adapted from Christie 

et.al., 2010. SPE 135264) 

6. Update the position of the particle using the equation: 

  
      

    
    (2.10) 

7. Repeat steps 2 to 6 until the required number of iterations is reached. 

 

Similar to the NA algorithm, the PSO does not have an explicit posterior 

probability calculation, and hence needs additional computation to quantify the 

probability envelope for predictions. 

 

2.2.4.  Genetic Algorithm 

Genetic algorithm (GA) belongs to a general class of computational methods that 

are derived from natural selection and genetics. It operates on the principles of population 
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genetics and natural rules for propagation of the fittest members of the species. It starts 

with a population of models, with a given gene structure (the parameter set for each 

model) and selects the ‘fittest’ members of the ensemble; these fittest members are then 

subject to modification of their genetic material (evolution) in order to generate new 

members of the species. 

The process is initiated by coding the parameters of the model into an array called 

the chromosome, composed of parameters (genes) to define each model. The parameters 

are static properties like permeability and porosity, recorded at certain pilot points. For 

example, if the models are defined by permeability at 100 pilot points, the chromosome 

for each model will be composed of 100 values of permeability, and the individual 

permeability values will be the genes. In early applications of GAs, the genes were 

always coded in binary and later mapped to some real values (Sen et.al. 1995); however, 

modern applications have been designed to directly code real values into the gene 

structure (Oliveira 1997, Romero 2000).  

 The initial population then evolves through the processes of reproduction, 

crossover and mutation. Reproduction is the process of copying the genetic material into 

the next generation, the probability of which is defined by its goodness-of-fit to the 

observed data. In its most basic form, the probability of selection for reproduction is 

given by (Goldberg 1989):  

  ( )   ( ) ∑  ( )

      

 (2.11) 

where  ( ) is the goodness-of-fit measure for model ‘m’  

The crossover operation, also known as the ‘recombination operator’, combines different 

genetic material by choosing the well-performing genes from different chromosomes. 
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Using the permeability example from above, the crossover operation will chose the 

particular permeabilities at pilot points that showed a high degree of fit to observed data. 

Thus, the process tries to create a new member that retains the best properties of the 

previous generation. The process of mutation introduces new genetic material into the 

population, driven by a mutation probability. Using the permeability example once again, 

the process will change the permeability values at the pilot points to drive models 

towards a better fit. Various kinds of mutation operators, like jump and creep, have been 

implemented. The process again can be of two types: uniform and non-uniform. Uniform 

mutations alter genetic material randomly within a range of possible values, which could 

cause the mutations to move away from good solutions. Wardlaw (1999) implemented a 

modified method of uniform mutations which mutated a specific gene only by a specific 

amount, positive or negative. In non-uniform mutations, the degree of mutations are 

reduced as the run progresses, thus allowing small adjustments and fine-tuning in later 

generations.  

The GA algorithm produces a population of best-fit models to the observed data. 

The process, however, does not have internal measures for measuring posterior 

probabilities, and thus need post-operational analysis for estimating such probabilities. 

 

2.2.5.  Summary 

In this section, we discussed four existing methods for multi-model history 

matching and uncertainty estimation: Ensemble Kalman Filter (EnKF), Neighborhood 

Algorithm (NA), Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs).  

EnKF provides a method for sequential integration of data in model ensembles, 

but suffers from high computation costs when modified to apply to non-Gaussian 

distributions. In its basic form, it is limited to Bayesian linear models, though a lot of 
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additional research has looked at non-Bayesian applications with highly non-linear 

relations between state vectors and observations.  

Both NA and PSO are based on exploration of the parameter space to find 

multiple minima. The drawback of both methods is the need for computation of the 

forward model for a large number of parameter selections, which makes it expensive. 

However, this problem can be addressed by implementing in parallel computer 

architectures. Despite that, it can be expensive to generate multiple models using these 

methods in order to assess the residual uncertainty.  

The initial formulation of PSO also suffered from problems like velocities being 

too high which caused particles to venture outside the parameter space (fixed by velocity 

clamping [Eberhart and Shi 2001]), inadequate tradeoff between exploration and 

exploitation (fixed by using appropriate inertia weights [Birge 2003, Trele 2003]), and 

domain boundary problems. 

The primary drawback of GAs, or any of the population based approaches, is their 

slow rate of convergence. This can be alleviated to an extent by reduction in the 

dimensionality of each chromosome by lumping together of parameters (Schulze-Riegert 

et.al. 2003), or be accelerating using a gradient-based search method. 

 

2.3.  PROXY FORMULATION AS AN ALTERNATIVE TO FLOW SIMULATORS 

The algorithms outlined in the previous section almost always suffer from one 

common drawback: the significant computational cost of running flow simulations on 

large sets of models. Aside from the application of parallelization schemes, it is possible 

to address this problem by replacing the flow simulator with an inexpensive 

approximation or proxy that allows us to rapidly evaluate flow responses. In this section, 



 21 

we will look at some existing methods of proxy formulations that have been implemented 

in the industry. 

 

2.3.1.  Streamline Simulation 

The process of modeling fluid flow using streamtubes can be traced back to the 

work of Muskat (1933), when he described the theoretical analysis of water-flooding 

networks. The earlier applications were mostly limited to the use of streamtubes. 

Streamtube simulation does not suffer from numerical dispersion as do finite difference 

simulations. It is readily applicable to cases with slowly changing velocity fields (like 

waterfloods). However, initially this approach was oapplied only in two-dimensions, and 

extension to three dimensions was non-trivial. Lake et.al (1981) were able to devise a 

modification of the streamtubes method by combining areal streamtubes with cross-

sectional finite difference based methods, that enabled application of streamtubes to a 

number of cases - waterflood prediction (Emmanuel et.al. 1997) and miscible flood 

predictions (Mathews et.al. 1989). Steamline simulations are an adaptation of these early 

streamtube methods, without the need for explicit calculation of tube geometries. The key 

concept here is to reformulate the transport equation in time-of-flight coordinates, which 

decouples the flow from the transport and enables solving one-dimensional transport 

equations along streamlines, as detailed below. 

The key steps in a streamline simulation can be stated as follows (Dutta-Gupta 

and King 1995, Crane and Blunt 1999, Kharghoria 2004): 

1. Compute the pressure field and hence the velocity field using standard finite 

difference formulations of flow equations in a reservoir. 
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2. Using the computed velocity field, trace streamlines. The components of the 

velocity field can be used to find the entry and exit points of each streamline 

moving across a grid block. An important underlying assumption here is that 

the velocity is linearly varying from the entry to the exit face. 

3. Once all the streamlines have been traced, compute the travel time along a 

streamline or the time-of-flight. This is given by the equation: 

 ( )  ∫
  

  ( )  

   (2.12) 

Where    is the travel time along the streamline   and v(x) is the interstitial 

velocity. 

4. The transport equations (saturations, concentrations) are converted to time-of-

flight coordinates using the operator identity (Datta-Gupta and King 1995): 

 ( )    
 

  
 (2.13) 

For example, consider the Buckley-Leverett equation: 

 
   

  
  ⃗    (  )    (2.14) 

Then, using the relation in equation (2.13), we can rewrite equation (2.14) as: 

   

  
 

  (  ) 

  
   (2.15) 

The transport quantities (Sw in the above case) are calculated and propagated 

along each streamline, and then finally mapped onto the underlying grid. 

5. Occasionally, the pressure and velocity solutions need to be recomputed to 

account for changes in the fields over time. 
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Streamline simulations have proved to be a powerful tool for evaluating fluid 

migration in reservoirs and have been extensively used for the purpose of uncertainty 

quantification (Alpak et.al. 2009, Park et.al. 2012). Even though the initial formulations 

were restricted to velocity-dominated incompressible flow, the process has been extended 

to account for compressibility (Datta-Gupta et.al. 2001), dissolution (Thiele et.al. 1997), 

dispersion (Obi and Blunt 2006), relative permeability hysteresis (Qi et.al. 2007) and 

other additional physical processes. 

However, there is still considerable difficulty in solving for the pressure and 

velocity fields using IMPES methods, which limits the accuracy of the process for 

smaller time steps. Further, the inherent assumption that the flow is along a streamline is 

violated in cases like transverse diffusion, well rate alterations etc. In such cases, it 

becomes necessary to use methods like multiple timesteps and timestep operator splitting, 

which makes the process numerically expensive. There have also not been many field 

scale applications of streamline simulators for compositional cases. 

 

2.3.2.  Artificial Neural Networks 

Artificial neural networks (ANNs) are based on the concept of natural neural 

networks as seen in the central nervous system of living creatures. In the oil and gas 

industry, ANNs have been used to solve a wide variety of problems, like fluid property 

analysis (Hegeman et.al. 2009), relative permeability analysis (Guler et.al. 2003), 

prediction of PVT properties (Gharbi and Elsharkawy, 1999) and prediction of well 

responses (Boomer 1995). It is this last application which is of primary importance in 

history-matching and uncertainty analysis. 
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There are three main components of an ANN: the input, the hidden nodes and the 

output nodes. The input node consists of the vector of prior information. The hidden 

nodes are the intermediate nodes which are connected to the input nodes by connection 

and weighting applied to the connections. The outputs from the hidden nodes are mapped 

to the output nodes and there is flexibility to configure that mapping and weight functions 

also. A basic single-layer ANN is shown in Figure 2.2. 

 

Figure 2.2. Layout of an artificial neural network, showing the input nodes, hidden nodes 

and output nodes (from Laboratoire d'Automatique et d' Informatique 

Industrielle de Lille, http://sic.ici.ro/sic1999_2/art03.html) 

The primary steps involved in an ANN simulation are: designing, training and 

prediction. The designing stage is when the structure of the neural network is defined. 

The training stage is the critical step in ANNs, which is when the learning algorithm for 

the process is defined. These can be of two kinds: supervised and unsupervised. 

Unsupervised learning is used primarily for pattern recognition, where it learns the 

pattern of the input data and learns to reflect that pattern in the output data. Supervised 

learning, on the other hand, compares the values at the output nodes to actual observed 

http://sic.ici.ro/sic1999_2/art03.html
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data, and modifies the internal weighting (the connections between input and hidden 

nodes) such that the mismatch between output and prediction is minimized. 

Though neural networks can capture the highly non-linear relationship between 

static variables and dynamic output from a reservoir, it still has some significant 

drawbacks. The process of training the neural net, in itself, is a laborious task that 

requires many executions of the full-physics flow simulator on a large set of training 

models. Furthermore, integration of new data into the model would require retraining of 

the neural net, at an additional computation cost. The biggest drawback, however, is that 

the mapping between the input and the output obtained by a neural network is purely 

statistical with limited understanding of the physics linking the input and output 

parameters. In spite of these drawbacks, ANNs are powerful and are becoming 

increasingly popular in the petroleum industry. 

 

2.3.3.  Particle Tracking 

The modeling of fluid transport in porous media has evolved into a robust 

numerical framework, accounting for all relevant physics. The biggest drawback of such 

a system, however, lies in the computational cost of solving the finite difference 

equations for pressure, saturations and concentrations. Additionally, there is numerical 

dispersion and instability in the form of artificial oscillations associated with these 

solvers, necessitating smaller time steps and finer grid resolutions, further adding to 

computation times. Particle-tracking based methods have been tested for a variety of such 

cases as a useful alternative to full physics numerical solvers. 

There are two primary approaches for using particle tracking to simulate fluid 

flow in porous media: continuous time random walker (CTRW) and random walker 
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particle tracking (RWPT). Both approaches rely on representing the physics of fluid flow 

using random particles that move through the grid using certain rules. RWPT moves the 

random particles using the velocity field obtained by solving the flow equations, and then 

adds an uncertainty term to capture dispersion. On the other hand, CTRW (introduced by 

Montroll and Weiss, 1964) combines both advection and dispersion into a single master 

equation, as shown below (Berkowitz et.al. 2000):  

 (   )  ∑∫  (         ) (     )   
 

 

 (2.16) 

Here, R(s,t) is the probability for a random walker particle to arrive at location s in time t, 

and  (   ) is the probability of transition of a particle between two locations separated 

by s-s’ over a time interval t-t’. Equation (2.16) combines advective, dispersive and 

diffusive effects into a single equation. 

 In our work in later chapters, we will use the RWPT formulation to guide our 

modeling of CO2 migration through an aquifer. The basis of using RWPT to model fluid 

transport in porous media is based on the analogy between the random walker equation 

and the Fokker-Planck equation (Kinzelbach 1987). In the following section ,we look at 

the mathematical formulation of the scheme. 

Mathematical formulation of RWPT 

The basic advection-diffusion transport equation can be stated as: 

  

  
   (  )    (   ) (2.17) 

where D is the dispersion tensor, u is the velocity term and c is the concentration term. 

This is a second-order PDE, which can be solved using standard finite-difference or finite 

element methods. To overcome the problem of numerical instability and dispersion, the 

Peclet and Courant number have to be sufficiently small (Huyakorn et.al. 1983).  
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RWPT simulates solute transport by partitioning the solute mass into a large 

number of representative particles. The evolution in time of a particle is driven by a drift 

term that relates to the advective movement and a superposed Brownian motion 

responsible for dispersion. The displacement of a particle is written in its traditional form 

given by the following integration scheme (Gardiner, 1990): 

  (    )    ( )   (    )    (    )   ( )√   (2.18) 

where Δt is time step, Xp(t) is the position of a particle at time t, A is a drift vector, B is 

the displacement matrix, and ξ(t) is a vector of independent, normally distributed random 

variables with mean 0 and variance 1. 

To establish a parallel between equation 2.18 and equation 2.17, equivalence is 

established between the displacement scheme in a random walk and the Fokker-Planck 

equation and then between the Fokker-Planck and transport equations. The Fokker-

Planck equation describes the evolution of the probability density function of a particle 

under the influence of a stochastic process (like diffusion). It has been demonstrated (Ito 

1951) that the probability of finding a particle within a given interval at a given time t 

[f(Xp, t)], obtained from Equation (2.18) satisfies the Fokker–Planck equation for large 

particle numbers and a very small step (Kinzelbach 1987). This equation describes the 

motion of the particle density distribution f and is given by: 

  

  
   (  )     (  ) (2.19) 

Where: 

   (  )  ∑∑
     

      
 

 

   

 

   

 (2.20) 

and n is the number of dimensions. 
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Both advection-dispersion and Fokker-Planck equations are similar to each other 

in that they contain an advection and a diffusion term. To establish a better parallel 

between the two equations, equation (2.17) can be modified as follows: 

  

  
   (  )    (    )     (  ) (2.21) 

Using u
*
= u +    , the equation can be transformed into an equivalent Fokker-

Planck equation: 

  

  
   (   )     (  ) (2.22) 

Substituting the drift vector A in equation (2.17) with the modified velocity 

vector, the RWPT scheme is obtained: 

  (    )    ( )  [ (    )     (    )]    (    )   ( )√   (2.23) 

Where the displacement matrix B is related to the dispersion tensor as: 2D = B
.
B

T 

The particle tracking system conserves mass exactly (since the random particles 

are not lost or destroyed). Further, it can be applied to a gridless system if needed, since 

the basic mathematical formulation does not contain any grid-based formulation. There is 

also no numerical dispersion associated with the walkers.  

RWPT approaches to simulate fluid flow in the subsurface have been especially 

popular in hydrology and environmental engineering (Kinzelbach 1988, van Dop 1985, 

Li et.al. 2011), though there has been limited application in the oil and gas industry [for 

example, John et.al. (2010) used a particle tracking approach to study dispersive mixing 

in field scale miscible displacements]. Later in this dissertation, we will outline the use of 

particle tracking algorithms for use in geologic carbon sequestration, which can be 

extended to flow in oil and gas reservoirs. 
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2.3.4.  Summary 

In this section, we looked at a few proxy models that can be used in place of a 

full-physics simulator during multi-model history matching. Streamline simulators are the 

most popular among these approaches and have been widely tested on a large number of 

synthetic and field cases. Though their implementation initially was limited to 

incompressible, single phase, two-dimensional flow problems, continued evolution has 

seen additional physics like multiphase, multicomponent flow with compressibility being 

accounted for by these simulators. Artificial neural networks have recently seen an 

increased interest, mostly due to the “black-box” approach of the implementation; 

however, that has also been one of their biggest drawbacks. They suffer from not being 

able to capture the actual physics linking the non-linear relationship between static data 

and dynamic responses. The application of particle tracking methods to model solute 

transport has been particularly popular in hydrodynamic studies due to their 

computational advantage over full-physics simulators; however, their use has been quite 

limited in the oil and gas industry. In subsequent chapters, we will show implementation 

of the random walker particle tracking to model fluid flow during CO2 sequestration and 

demonstrate its use in a model selection process for assimilating dynamic data. 
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Chapter 3 : Model Selection Algorithm 

The uncertainty in reservoir architecture, geology and distribution of rock types 

and their associated petrophysical properties make it necessary to not just develop a 

single model but rather multiple models, each conditioned to all the available data. 

Performing grid-node updates to reservoir parameters in order to minimize the mismatch 

between the observed and predicted response and subsequently repeating that process in 

order to develop multiple reservoir models, can be extremely time consuming. In lieu of 

this iterative updating process, it is useful to interpret the process of history-matching as 

an effort to find the most suitable candidates for the reservoir under study based on the 

observed responses, that is history-matching becomes an exercise in selecting best-fit 

models for the reservoir. At the end of the model selection process the objective is not to 

get the single best-fit model, but a cluster of models that share the reservoir 

characteristics important to match the history and that permit assessment of the residual 

uncertainty after the data assimilation process. In this chapter, we outline a model 

selection process based on this idea of multi-model history matching, conditioned to data 

from multiple field sources. 

 

3.1. MODEL SELECTION ALGORITHM: AN OVERVIEW 

Traditionally, geostatistical approaches have sought to calculate the conditional 

probability P(A|B) where A is a simulation event at the grid-block level (e.g. 

permeability, porosity etc.) and B is static geologic data. In the event dynamic data (such 

as production or injection history information) is available to model the reservoir, the 

goal is to construct the conditional distribution P(A|B,C) and subsequently sample several 

models from that distribution. In contrast to this grid-based approach, in our model-
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selection approach, the event A is an entire model. Thus, P(A|B) is the conditional 

probability of a model given prior geological information. The objective of the model 

selection process is to estimate the posterior probability P(A|B,C) where C is the given 

field data (like bottom-hole pressure / rate at wells), i.e. the probability of a model given 

both static geologic data and dynamic well data. This posterior probability is represented 

by all the models in the final set of models derived at the end of the model selection 

process that share a common characteristic. 

The first step is to represent the prior uncertainty about reservoir geology and 

architecture using an initial set of models. In order to adequately capture the prior 

uncertainty, it is important to make this initial model set as wide as possible, considering 

all possible interpretations for the reservoir. The next  step in the algorithm is to assess 

the flow connectivity of the models. Differences between the models are computed in 

terms of the connectivity metrics. The difference/distance between pairs of models are 

then subject to multivariate analysis techniques such as principal component analysis or 

Multi-Dimensional Scaling (MDS). These analysis techniques are used to project the 

models on an n-dimensional space as a cloud of points, with each point representing one 

model. The n-dimensions refers to the minimum dimensionality required to capture most 

of the variability (variance) exhibited by the flow characteristics of the prior models. This 

cloud is then divided into distinct groups or clusters, such that models grouped together 

show connectivity characteristics that are similar to each other and different from that of 

models in other groups. Once the models have been clustered, representative models are 

picked from each cluster and run through a full-physics numerical simulator. The 

responses from the simulator are compared to the response observed in the field in order 

to find the model cluster closest to the observed field data. This process of projection, 

clustering and simulation to find the best cluster is then repeated on the best-fit cluster of 
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models from the previous step. The process is terminated when the model clustering does 

not improve the posterior probability of the clusters or the clusters become equiprobable. 

The entire process is shown in Figure 3.1and described in detail in the following sections. 

 

Figure 3.1. Schematic of the model selection algorithm (Bhowmik 2010) 
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3.2. INITIAL SET OF MODELS 

The initial set of models is intended to represent the uncertainty in reservoir 

architecture, geology and rock type distribution of the subsurface entity under study. To 

illustrate this concept of prior uncertainty, consider a fluvial channel system as shown in 

Figure 3.2. The larger channel system consists of two primary channel types: 

distributaries and estuaries (Allen and Chambers 1998). These channels are stacked 

within the system, the type of stacking dependent on the sediment load at depositional 

times. There is uncertainty associated with this stacking and distribution of the individual 

channels. Further, there is a lot of uncertainty of the distribution of sand and mud within 

the individual distributaries or estuaries. Thus, to represent these uncertainties, we would 

 

Figure 3.2. Seismic section at the top of a carboniferous reservoir in central Africa, 

showing the outline of a channel system (Wright 2007) 



 34 

need to account for various possible layouts of the individual channels within the system, 

and also various distributions of sand and muds within the channels. Thus, our initial 

model set will have to be large enough to account for the combined uncertainty at 

different scales of the reservoir. The initial set of models have  to reflect our judgment 

about what scales of heterogeneity effect the specific fluid flow processes  that we are 

considering.  

 

 

Figure 3.3. Hierarchy of channel deposits, showing individual channels distributed within 

the system and the facies distributions within each channel (adapted from 

Abreu et.al., 2003) 

3.3. EVALUATION OF CONNECTIVITY OF RESERVOIR MODELS 

Once the required reservoir models have been created, they have to be analyzed in 

order to assess their flow connectivity. This can be achieved by using a numerical 

simulator or by using a fast-transfer function that approximates the flow characteristics 

captured by a numerical simulator. Given that the initial suite of models may be large, the 
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use of fast techniques to assess the flow connectivity of the models is preferable. For our 

work, we developed two particle-tracking proxies, which we will describe in greater 

details in later chapters. It has to be emphasized that our goal in this step is to rapidly 

assess the connectivity of initial suite of models so that we can begin dividing the models 

into groups that exhibit similar characteristics.  

The results from the simulator or the proxy are recorded at certain locations 

within the models and the response at these locations is used to characterize the flow 

connectivity of the models. The choice of proxy/flow response monitoring locations 

becomes crucial and techniques for deciding the locations are discussed later in Chapter 7 

of this dissertation.    

 

3.4 . ANALYSIS OF CONNECTIVITY MEASUREMENTS FOR MODEL CLUSTERING 

The monitoring locations can be used to record responses from the numerical 

simulator or fast-transfer function. The set of responses for each model defines a set of 

metrics that describe the connectivity of that model. To illustrate this point, consider two 

models as shown in Figure 3.4. 

Model 1 

 

Model 2 

 

Figure 3.4. Two models with permeability features in opposite directions. An injection 

well is shown in black at the center of the grid. There are 4 measurement 

locations (numbered 1 through 4) in white around the injector. 
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The two grids have high-permeability features running in different directions, 

with an injection well at or close to one such feature. The fluid injected into the well will 

move predominantly in a NW-SE direction in the model on the left and in a NE-SW 

direction in the model on the west. In this case, if we were to record saturations at the 

measurement locations at certain intervals of time, we would see higher saturations in 

locations 1 and 4 in model 1, and location 2 in model 2. Denoting a high saturation value 

as 1 and a low one as 0, we can construct a corresponding binary array for the responses. 

This is shown below: 

Locations Model 1 Model 2  Model 1 Model 2 

1 High Low 

→ 

1 0 

2 Low High 0 1 

3 High Low 1 0 

4 Low Low 0 0 

 

 

Figure 3.5. The models above represented on a three-dimensional space, using responses 

from locations 1, 2 and 3 
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The combination of lows and highs (restated as 0s for lows and 1s for highs) are 

representative of the particular model. If this process is executed for all models in a 

model set for ‘m’ locations at ‘t’ different time intervals, we will then have m t number 

of metrics to describe each model. Using these metrics, we can then represent every 

model in a multi-dimensional space. To continue the example above, we can decide to 

represent the two models on a three-dimensional space, whose axes are given by the 

response (low/high) at locations 1, 2 and 3. This is shown in Figure 3.5. 

This example also demonstrates another important idea: In spite of having 4 

measurement locations, the difference between the models can be assessed using the 

response at using the only three of the monitoring locations, because there is no 

difference in the responses at location 4 between the two models. Thus, even if we have 

m t metrics for each model, we can represent the models by a much smaller set of 

metrics, making further computations on the dataset less expensive.  

Another assumption that goes into creating the scatter plot in Figure 3.5 is that the 

variables are orthogonal to each other. In order for this assumption to be true, the 

responses at locations 1, 2 and 3 have to be independent of each other. However, the 

saturations at those three locations are most likely not independent of each other; in 

model 1, for example, the saturation at locations 1 and 3 will definitely be higher than at 

location 2 but the actual amount of saturation recorded at 1 and 2 are related to each other 

due to the same underlying permeability feature being responsible for carrying fluid to 

these locations from the injector. Thus, before any representation of the model on the 

basis of the connectivity metrics, we need to create a truly orthogonal basis on which we 

can project the models. 
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3.4.1.  Projection of Models on an Orthogonal Set of Axes 

We used principal component analysis of the connectivity metrics in order to find 

the leading principal component directions on which to project the models. This approach 

allows us to not only infer an orthogonal basis for our model set, but also highlights the 

directions along which maximum variability among the models is observed. Because 

PCA is a dimensionality reduction technique, it enables the differences between the 

models to be projected to a lower dimensional space. This is best demonstrated using an 

example. Suppose we have 1000 models, each represented by 3 metrics, for example 

saturation at 3 snapshots in time; the metrics are not orthogonal to each other since the 

saturation at a given time is not independent of saturations in the earlier times. Principal 

component analysis allows us to represent the models on an orthogonal space, as shown 

 

Figure 3.6. (a) Representation of models onto an orthogonal three-dimensional space, 

identified by principal component analysis, (b) Projection of models on X2-

X3 plane, (c) Projection of models on the X1-X2 plane, (d)  Projection of 

models on X1-X3 plane. 
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in Figure 3.6. Continuing the example, suppose the saturations at the three times is 

represented by X1, X2 and X3. If we project the models onto the three two-dimensional 

planes defined by the X1-X2, X2-X3 and X3-X1 axes, we can see different patterns in 

the projections. Projection onto the X1-X2 plane (Figure 3.6 c)  reveals no information 

about the models, the X2-X3 projection (Figure 3.6 b) shows a degree of grouping among 

all the models while the X1-X3 projection (Figure 3.6 d) clearly shows the clustering 

characteristics of the models. Principal component analysis allows us to identify this set 

of axes which enables us to best resolve differences between the models. In this case, it is 

identifying the saturation at the first and last time snapshots. 

For the purpose of our analysis, suppose we have m metrics defined for each of 

the N models available. These can be defined by the matrix M given below: 

 

  [

         

   
         

] (3.1) 

Each column of the matrix defines the m responses recorded for a given model. 

Thus, matrix M has m rows and N columns. In order to find the principal component 

axes, we first convert each row of M to a zero-mean vector by subtracting from each 

value along a vector the mean of that row. This creates the matrix M0 given as: 

 

   [

           

   
           

] (3.2) 

where            
 

 
∑     
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Now, the covariance matrix is created for the recorded metrics as an m m matrix, 

showing the covariance between all possible pairs of the metrics. This is given by the 

matrix C below: 

 

  [

         

   
         

]  
    

 

   
 (3.3) 

In order to find the principal component directions, we compute the eigenvalues 

and corresponding eigenvectors for the matrix C. The eigenvectors corresponding to the 

leading eigenvalues define the principal component directions for the given matrix M 

(from eq. 3.1). We can decide on how many principal components we want to use to 

adequately represent all models by computing the variance contribution of each principal 

component as a fraction of the eigenvalue for that component divided by the sum of all 

eigenvalues. The original matrix M can then be projected down to this reduced 

orthogonal set of axes to represent the models. 

 

3.4.2.  Clustering of Projected Models 

After the models have been projected to an orthogonal set of axes that highlight 

the difference between the models based on the measurement locations, we can group the 

models using a clustering algorithm. We chose the K-means cluster analysis algorithm 

due to its ease of implementation. 

K-means is a centroid-based clustering method, where the clusters are defined by 

a central node that might not be a part of the original dataset. The k-cluster centers are 

determined such that the sum of squares of distances between data points and its centroid 
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is minimized. This automatically results in the maximum distance between the clusters.  

The algorithm can be stated as follows: 

1. Assign k random cluster centroids 

2. Based on the distance of each point from the k centroids, assign each point to 

one of the k-clusters. 

3. Re-compute the cluster centroids depending on the cluster assignments. 

4. Repeat steps 2 and 3. 

5. Terminate process when the centroids do not move upon computation of new 

centroids in step 3. 

The process suffers from some drawbacks: the number of clusters has to be pre-

defined and the optimization algorithm for determining the cluster centroids may 

converge to a local minimum. In order to address the problem of convergence to a local 

minimum, the process needs to be repeated a number of times with different starting 

centroids in order to find the optimum clustering. The problem of defining the number of 

clusters is a more complicated question to handle.  

We implemented a method of associating the results of clustering with a measure 

of the effectiveness of clustering, given as the ratio of sum of square distances of each 

data point from its cluster centroid to the sum of square distances between cluster 

centroids: 

   ∑ ∑    
  

    
      

 
   ∑ ∑    

  
    
   

 
   ⁄  (3.4) 

    effectiveness of clustering with k clusters, m: models in a particular cluster 
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Since the objective of the clustering is to maximize the distance between clusters 

while reducing the spread within each cluster, we can say that lower values of   indicate 

better clustering. This measure can then be used to plot   against k. The value of   will 

decrease with increasing number of clusters, and in the limit when number of clusters 

equals the number of data points, it will reach zero. The objective of the plot is to find the 

point in the curve after which there is a marked change in slope. That point gives an 

indication of the optimum number of clusters. To illustrate, 4 distinct clusters of points 

were divided into 2 to 10 clusters, and their corresponding effectiveness of clustering 

plotted against the number of clusters (Figure 3.7). The figure clearly shows that the 

curve almost flattens out after point 4, indicating that the ideal number of clusters is 4 in 

this case. 

 

 

 

(a) 

 

 (b) 

Figure 3.7. (a) Actual data points used for the demonstration. There are clearly 4 clusters 

of points in this case. (b) Plot of effectiveness of clustering vs Number of 

clusters clearly shows a kink at 4, which is the correct number of clusters. 
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3.5. BAYESIAN UPDATING AND CLUSTER SELECTION 

Once the models have been divided into clusters, they need to be evaluated using 

a full-physics numerical simulator so that their responses can be compared to actual field 

data. For this purpose, we first need to find one representative model for each cluster, and 

evaluate that model using a full-physics reservoir flow simulator. Since the basis of 

clustering was the assumption that there were certain common connectivity 

characteristics among all models within a cluster, the representative model needs to be 

chosen such that it can reflect the common feature(s). 

 

3.5.1.  Representative Model for Cluster 

The representative model for each cluster of reservoir models has to encompass 

the different geological features of all the models within the cluster. A weighted 

averaging process is used for this purpose, where the weight given to a model is inversely 

proportional to the distance of the model from the cluster centroid. This serves to 

highlight the features that are common to most of the models while averaging out the 

features which are present only in some models but not common to the cluster. However, 

this average model will not reflect key statistics such as the histogram of heterogeneity 

features for the reservoir under study. So, a histogram transformation of the average 

model to the target histogram for the region (same as the histogram of any of the starting 

models) is subsequently carried out, which creates the representative model. 
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In order to transform the histogram, we created the CDF of the average model and 

the CDF of our target histogram. For transforming any value in the average model, we 

computed the quantile of that value from the original CDF, and then found the value 

corresponding to that same quantile in the target CDF. This was the histogram-

transformed value of the average model. This process is shown in Figure 3.8. These 

representative models (one for each cluster) are then run through a full flow simulator in 

order to compare them to the field history. 

 

3.5.2.  Bayesian Update of Cluster Probability 

The simulated responses can be compared to field data in order to estimate how 

close a particular cluster of models is to the ‘real’ reservoir. The comparison is done at a 

well level, in terms of rates / bottom-hole pressures at wells (injectors / producers). 

Though the comparison may be done qualitatively by comparing the simulated and field 

responses visually, it is more robust to compute the comparison in quantitative terms. For 

 

Figure 3.8. Example of histogram transformation. The figure on the left is the 

distribution of the average model, and the figure on the right is the target 

distribution 
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this purpose, a Bayesian calculation of posterior probability is implemented adapted from 

the work of Mantilla (2010).  

To demonstrate the process, assume we have N models divided into k clusters. In 

the absence of any other sources of information before the model selection process is 

implemented, all N models can be considered equiprobable. Hence, the prior probability 

of cluster m,  (  ( )) can be stated as follows: 

 

 (  ( ))  
                             

                      
 (3.5) 

Using Bayes’ rule, the posterior probability of each cluster, conditioned to well 

response can be computed knowing the likelihood function  (     | 
 ( )): 

 (  ( )|     )  
 (     |  ( ))

 (     )
  (  ( )) (3.6) 

The likelihood function can be calculated from full-physics flow simulations on 

the representative model for each cluster. If the representative model with simulated 

response farthest from the observed data be m, and the simulated response of the variable 

of interest be represented by    , then given an observed response RFref , the deviation 

of the simulated response from the observed response can be given as  

  
  |         |

 
 (3.7) 

or if the response is a series in time, the deviation can be computed as: 

  
  [         ] [         ] (3.8) 
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Assuming a Gaussian distribution for the mismatch between simulated and 

observed values, with the observed data RFref as mean and   
  as variance, we can 

compute probability envelopes around the observed response. Then, the likelihood 

 (     | 
 ( )) can be calculated according to the position of the simulated response 

within the probability envelope. Because the simulated response may not follow any one 

of the calculated probability contours, we assign the contour corresponding to the 

maximum deviation of the simulated response as the likelihood value. This is 

demonstrated in Figure 3.9. In this example, the probability of the dashed blue line is 

0.65. 

The denominator in eq. 3.6  (     )  is the prior probability of the response RFref 

and can be calculated from the law of total probability as: 

 

Figure 3.9. Demonstration of probability envelopes around observed response. The 

probability of a particular cluster is inferred from the envelope it lies in. 
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  (  ( )) (3.9) 

3.6. STOPPING CRITERION 

The model selection algorithm is an iterative process, where the clustering and 

Bayesian updating is repeated using the best-fit models from the previous iteration. Each 

iteration process thus successively refines the process of model cluster selection, 

narrowing it to smaller sets of models. The process thus requires a criterion for stopping 

the iterations. This can be based on the number of models remaining in the cluster or on 

the updated probability of clusters.  

Since the process iteratively narrows in on a smaller set of models, there arises the 

possibility that the number of models might be reduced to an extent that it would not be 

possible to represent the residual uncertainty to any reasonable degree. Thus, a lower 

limit on the number of models available during any given iteration can serve as a 

stopping criterion for the process. Alternatively, when successive iterations reach a stage 

where the Bayesian updating either yields equiprobable clusters or does not yield any 

improvement on the prior probability, it would be reasonable to say that the process can 

be terminated and we have reached the maximum refinement in models possible for the 

given conditioning data. If additional data were to become available at a later stage, either 

for longer periods of time or from a different source, the model selection process can be 

continued using this refined set of models. 

 

3.7. CONCLUSIONS 

The model selection process provides an efficient way of addressing the 

uncertainties that are an integral part of any modeling / simulation process. It 

acknowledges that the reservoir model has large prior uncertainty associated with it that 
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might pertain to the reservoir structure, rock properties, distributions of various rock 

types, facies distribution within different rock types and even fluid properties. Given this 

significant prior uncertainty, the process of history matching amounts to implementing an 

efficient method to iteratively arrive at a smaller set of best-fit models that honor the 

characteristics observed in the dynamic field data. The residual uncertainty in the 

reservoir model can be assessed using the final set of models obtained by applying the 

model selection process.  

One of the most important steps in the model selection process is the connectivity 

analysis of the initial model suite. This can be accomplished using conventional 

numerical simulators; however, given that the initial set of model might number several 

hundreds or even thousands of models, numerical simulation of such a large model set 

can become extremely computationally expensive. The computation cost can be 

significantly reduced if we are able to design a fast-transfer function that captures the 

essential physics of the process of fluid flow in the reservoir while being computationally 

efficient. This is especially feasible because the process of connectivity analysis does not 

need to be an exact replication of a numerical simulator; rather, it needs to be a quick 

assessment of how the geologic description of the model influences fluid flow and how 

models differ from each other in that respect.  In the rest of this dissertation, we will 

discuss the development of two such fast-transfer functions, which enable us to capture 

the essential characteristics of fluid flow at a fraction of the computational cost of a 

numerical simulator.
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Chapter 4 : Particle tracking proxy – I 

As mentioned in the previous chapter, the efficient execution of the model 

selection process depends primarily on the method used for analyzing the connectivity 

characteristics of the initial model set. Full physics flow and transport simulators are 

computationally time consuming, and dramatically increase the implementation time of 

the entire model selection algorithm. In this chapter, we discuss the first of two fast-

transfer functions we developed to approximately estimate the differences between prior 

reservoir models in terms of the movement of fluid within the reservoir.  

 

4.1.  RANDOM WALKER PROXY: AN INTRODUCTION 

The random walker proxy described here is based on the Random Walker Particle 

Tracking described in chapter 2. The fluid flow through a reservoir is represented as an 

assemblage of random particles moving through a simulation grid. Multiple particles are 

introduced at an injection location and their movements are tracked through the grid over 

time. The movement of the particles from any grid location to any of the neighboring 

locations is dependent only on the current location of the particle. The actual movement 

of the particle is driven by a transition probability distribution, which depicts the 

inclination of a particle to make a transition to a neighboring grid block. This transition 

probability is loosely based on the RWPT equation defined in chapter 2: 

  (    )    ( )   (    )     (    )    (    )   ( )√   (4.1) 

where Δt is time step, Xp(t) is the position of a particle at time t, u is the velocity of the 

particle, D is the dispersion tensor, B is the displacement matrix given as   ⁄ (   ), and 

ξ(t) is a vector of independent, normally distributed random variables with mean 0 and 
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variance 1. Similar to this equation, our formulation of the transition probability also 

consists of a dispersion term and an advection term, in the following form:  

    ( ( )   (    ))     ( )  ( )              (     ) (4.2) 

where A is the current location of the particle, B is the target location of the particle, 

     is the difference in particle count between locations A and B,          is the 

average permeability between A and B and       is the static pressure differences 

between A and B. The        term mirrors the dispersion term in equation 5.1, and the 

            (     ) term is equivalent to the velocity term. These terms are 

described in more detail below: 

a. Difference in particle count: Since the particles in this case are meant to represent 

the physical fluid flowing through the reservoir, the particle count is analogous to 

a concentration term. The higher the difference in particle count (or in terms of 

the actual fluid, the concentration gradient) between the current and target grid 

blocks, higher the probability of transitioning to that grid block.  

b. Permeability term: The average permeability is taken as the harmonic average 

between the current and target grid blocks. Higher values of the average 

permeability translate to higher transmissibility between the grids, and thus a 

higher transition probability. 

c. Pressure differences: The static pressure reflects the structure of the grid, and 

contributes to the movement of the particle between grid blocks that are not at the 

same vertical depth. The pressure is calculated from an initialization step of a 

numerical simulator. 

Apart from the terms in the transition probability function, we implemented some 

additional constraints on the particle movements. 



 51 

 Since the particles in this case are meant to be representative of the actual fluid, there 

is a volumetric limitation on the maximum accommodation space of every grid block. 

This limitation, related to its porosity, has been implemented as follows: 

If the injection rate be q m3/day, and represented by an injection rate of N 

particles/day, then the volume representation ratio (number of particles used to 

represent a unit volume of fluid at reservoir conditions) is given as   ⁄ . The 

maximum accommodation      is then calculated as: 

 

     
    

  ⁄
 (4.3) 

Hence the particle movements are limited by a maximum particle count for every grid 

block. If the target grid block has already reached its maximum particle count, there 

can be no transition to the target grid block and the transition probability is zero. 

 To account for the compressibility of the fluid, together with the probability of 

transitions to the neighboring grid blocks, we have also defined a probability of non-

transition out of the current grid block. This has been defined as a function of the 

difference between number of particles in the current grid block and the maximum 

accommodation space of that grid block. Particle count closer to      accounts for 

higher values of probability of non-transition, and this value decreases as the particle 

count becomes smaller. 

 There is also a lower limit on the number of particles that a particular grid block can 

accommodate, related to the critical saturation as follows: 

 

     
    

  ⁄
        (4.4) 
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When the number of particles in a given grid block is less than or equal to     , all 

transition probabilities out of that grid block are equal to zero, and the probability of 

non-transition out of the grid block is 1. 

It can be seen that we do not have a √   term as in equation 5.1; however, since 

our formulation introduces uncertainty at both the dispersion level and the advection 

level, we do not need the additional of uncertainty term as the classical formulation. 

This function is evaluated for every neighboring grid block (4 in the case of a 

two-dimensional grid, or 6 in the case of a three-dimensional grid).  The movement of 

particles driven by transition probability is demonstrated in Figure 4.1. Suppose the 

current location of a particle is the central grid block, from where it can move to any of 

the six neighboring grid blocks. The transition probability is calculated for movement to 

each of the six grid blocks, together with a calculation of the probability of the particle 

 

(a) 

 

 

(b) 

Figure 4.1. (a) Neighboring grid blocks for current position of particle, given by the blue 

block. (b) Transition probability distribution calculated from P0, P1 … P6 and 

sampled using Monte Carlo sampling. P0 is the probability of the particle not 

moving out if the block. In this case, sampling yields 0.8 which corresponds 

to grid block 3. Hence, the particle moves to grid block 3, shown in (a). 
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remaining in the same block. These are plotted as a cumulative probability distribution 

for transition probabilities, as shown in Figure 4.1(b). This distribution is then sampled 

using Monte-Carlo sampling. In the example presented below, the sampled value was 0.8, 

which corresponds to the particle moving to grid block 3. 

For every particle introduced into the grid, it is followed through the grid until it 

reaches a location where either the current particle count is less than       or the 

transition probability sampling chosen does not move the particle from the current 

location. The movement can be considered a cascade, where the injected particle moves 

into a neighboring grid block and displaces a particle from there in a cascading effect, 

which is stopped only when a particle moving into a grid block that does not displace a 

particle out of that block. This process is repeated for all particles injected at that time 

step. At the end of the step, the particles are counted in every grid block which serves as 

an analogue for saturation or concentration. Then, an analogue for pressure is calculated 

from the particle distribution in the grid. This analogue is a function of distance from 

occupied grid locations and the particle count at these locations. It is represented by the 

following equation: 

 

       |
 
 ∑(     

  ) 

 

                           (4.5) 

where     number of particles at location j,      distance between locations i and j. 

The inverse square distance term in the above equation comes from the solution 

of the diffusivity equation, given as: 

   
   

    
  (

   

      
) (4.6) 

 



 54 

The    term implies that higher the particle count (and hence fluid content) of a particular 

grid block, larger is the contribution of that location to the pressure analog. 

After the initial injection step, there are two different implementations possible 

for moving particles in subsequent steps. The first is to inject another set of particles at 

the injection location again and track its movement through the grid, and add the new 

particle count to the existing particle count. However, such an approach would not reflect 

the fluid flow in the reservoir, because it is not just the injected fluid that moves in the 

reservoir but rather all available mobile fluid. An alternate strategy for moving particles 

in subsequent steps had to be implemented.  

We consider all locations which have non-zero particle count. Because we are 

considering movement of mobile fluid only, we only consider locations that have particle 

counts greater than     . We first move particles from these locations, and then to mimic 

the continued injection into the grid, we also move new particles from the injection 

location. These new particle counts are added to existing particle counts and the process 

is repeated for subsequent fluid injection steps. 

The random walker proxy described can thus create maps of particle count and 

pressure analog for each time step. In order to reduce computation and storage cost, we 

only record these maps at certain specific time steps. The particle count and pressure 

analog recorded at certain locations in the grid at these time steps can be used to represent 

each model for further operations, as described in section 3.4. The steps of the proxy are 

summarized in Figure 4.2, and the code is included in Appendix A. 
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Figure 4.2. Flowchart of the connectivity proxy. This is the implementation for a single 

time step and the whole process will be repeated for multiple time steps. 

4.2.  COMPARISON OF PROXY RESPONSE TO NUMERICAL SIMULATIONS 

The objective of the proxy is to analyze the connectivity of the reservoir model 

and its impact on the migration of CO2 by correctly modeling the movement of fluid 
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within the reservoir. Hence, in order to test the validity of the proxy model, it was 

compared to the numerical simulation of some synthetic and field models. The 

comparison was performed on the basis of CO2 saturations in the geologic models. 

 

4.2.1.  Comparison to synthetic models 

The simplest model for comparison with numerical simulation was a horizontal 

layer-cake model consisting of some high permeability channels in a low permeability 

matrix. The high permeability contrast was used to ensure that the fluid flow was along 

crisp paths, which would make the visual comparison easier. The model used for this 

purpose was a 201 x 201 x 10 model, with injection at layer 5. The high permeability 

pathways had a permeability of 300 mD while the low permeability matrix was 0.1 mD. 

The model is shown in Figure 4.3. 

 

 

Figure 4.3. Synthetic model used to compare areal migration of CO2 in the numerical 

simulation model and using a proxy. Model has dimensions 201 x 201 x 10. 

The red channels are 300 mD and the white matrix is 0.1 mD. Fluid injection 

is at the center of the grid, in layer 5. 
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The simulated and proxy results are shown in Figure 4.4. The numerical 

simulation shows migration of the fluid primarily along the high permeability pathways, 

a behavior that was mirrored in the proxy implementation. However, there was also some 

movement of particles outside the clearly defined channel system, as seen from the blue 

regions on Figure 4.4 (b). The movement of fluid outside the channel (not seen in the 

numerical simulation) can be attributed to the       term representing the 

compressibility effect, which seems to be getting an inordinately high weight compared 

to the viscous terms (              ) 

 

 

 (a) 

 

(b) 

Figure 4.4. (a) Simulation result on model from Figure 4.3, showing the saturation of 

CO2 after 3 years of injection. (b) Result of proxy run for the same model.  

The next synthetic model used for comparison of proxy result to numerical 

simulation sought to test the interplay of two competing forces during fluid movement: 

viscous forces and gravity. For this purpose, the model used had some well-defined 

channels while the entire reservoir slopes in one direction. The channels run in the NW-

SE direction, while the reservoir structure slopes up towards the east. The model is shown 

in Figure 4.5. 
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Figure 4.5. Model used for testing proxy behavior in the presence of competing forces: 

viscous and gravity. The red channels are high permeability (1000 mD), while 

the blue regions are low permeability (1 mD). 

The simulated results and proxy results are similar in that they are both able to 

pick up the preferential movement of the injected fluid along the channel. However, the 

proxy result seems to be much less influenced by the gravity term than the numerical 

simulation, as evidenced by the preferential spread of the CO2 in the up-dip direction. 

This indicates that, for a given case, it might be necessary to do some sensitivity studies 

on the proxy in order calibrate the proxy to capture the relative effects of the viscous and 

gravity forces adequately. The results are shown in Figure 4.6. 

 

CO2 saturation based on proxy 

 

CO2 saturation based on flow simulation 

Figure 4.6. Results of running numerical simulation and the proxy on the model in Figure 

4.5. The black dot represents the injection location. 



 59 

The results shown above demonstrate that the proxy seems adequate to capture 

the predominant movement of injected fluid along preferential flow paths. However, we 

still need to compare results for a case that represents a real field model. 

 

4.2.2.  Comparison to real field model 

The In Salah project in central Algeria is a complex of gas fields that have been 

supplying natural gas to markets in southern Europe for almost a decade. The Krechba 

field is part of this project. This is a carboniferous formation at a depth of 1800 m (5905 

ft.) below the surface. The formation contains a gas cap overlying a water leg. The 

natural gas in the gas cap contains about 10% CO2, and cannot be sold without reducing 

the CO2 concentration to less than 0.3% (Wright 2007). Rather than venting the CO2 

stripped out of the produced gas, it is being re-injected into the water leg of the formation 

using 3 horizontal wells. This is the production and injection scenario that we simulated 

using a compositional numerical simulator (CMG-GEM
©

), and then compared that 

response to what we get using the random walker proxy. 

The reservoir model is a non-orthogonal corner point grid, created using the 

surface contour map for the top surface of the carboniferous interval (Figure 4.7 (a)). This 

model was populated with porosity values obtained by sampling from a map of reservoir 

quality (Figure 4.7 (b)). A porosity-permeability relationship (          ) was 

inferred from core data (BP internal communication) and was used to convert the 

porosity model to a permeability model. 
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(a)  (b)  

Figure 4.7. (a) Surface contour map at the top of the carboniferous formation, used to 

create the structure of the simulation grid (Davis et.al. 2001), (b) Reservoir 

quality map (Wright 2007), used to create maps of porosity. This porosity 

map was converted to a permeability map using a porosity-permeability 

relation 

For the purpose of comparison, an injection location was defined coinciding with 

a real injection well in the Krechba formation. CO2 was injected into the well for 5 years, 

and the simulated saturation at the top layer of the formation at the end of 5 years was 

compared to the proxy response. The results are shown in Figure 4.8. Once again, the 

proxy was able to capture the predominant migration behavior of the injected fluid.  

(a)  (b)  

Figure 4.8. Comparison of CO2 plume as inferred from (a) random-walk based proxy, 

and (b) numerical flow simulation. 
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While the comparison of the proxy to numerical simulation results is important 

for testing its validity, the real test for the proxy lies in its larger goal: that of being able 

to characterize the connectivity of models within the framework of the model selection 

process described in Chapter 3. As such, it is instructive to discuss the implementation of 

the entire model selection workflow using the proxy described in section 4.2. In the next 

section, we will demonstrate the use to the proxy to refine a set of models for the In Salah 

field. 

 

4.3.  IMPLEMENTATION OF PROXY WITHIN MODEL-SELECTION FRAMEWORK 

As we described previously, the produced gas at the In Salah field contains about 

10% CO2, which is stripped out of the produced gas and re-injected into the aquifer 

underlying the gas-cap using three horizontal wells. An abandoned well location close to 

one the injectors (KB-502) showed traces of CO2 at the wellhead, attributed to the 

injected CO2. Tracer tests run on the three injectors showed that the gas was in fact 

coming from well KB-502, along a much faster migration path than had been previously 

anticipated (Ringrose et.al. 2009). This was hypothesized to be caused by a high 

permeability pathway close to the injector, causing rapid migration away from the natural 

up-dip direction. By applying the model selection process with the particle tracking 

proxy, we show that the injection well pressures, recorded before the CO2 broke through 

at the abandoned well, still contained enough information to have enabled the inference 

of this high-permeability channel. 
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4.3.1.  Initial set of models 

The initial model set consisted of 400 models for the In Salah field that capture 

the initial uncertainty about the reservoir, they were constructed based only on well 

information available at the start of the project. Thus, the models were created using the 

background permeability as described in section 4.2.2, and then overlain by high 

permeability streaks. These streaks represented the high permeability pathway attributed 

to the rapid CO2 migration, and were appropriate to use in the initial model set since there 

was evidence in drilling records of the presence of a NW-SE trending fracture network in 

the formation (Iding and Ringrose 2009). However, in the absence of direct information 

about the presence of a high permeability pathway close to any of the injectors, the 

streaks were created completely unconditioned to any hard data. A sample of models 

from the initial set is shown in Figure 4.9. 

 

 
 

 

 Figure 4.9. Sample reservoir models showing different high permeability streak 

direction 
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4.3.2.  Connectivity analysis of models using proxy 

All members of the initial model set were analyzed using the particle tracking 

proxy. For the purpose of discriminating between models, various statistics were 

recorded at four locations close to the injection well KB-502. These locations do not 

represent any real well locations within the grid; rather, they were meant to adequately 

capture flow behavior that would help distinguish models from one another. Since we 

knew that we were looking for features close to KB-502, the locations were chosen to be 

around that particular well (Figure 4.10). In a real field case, we might not have this 

information about where prominent features might be, and it would be necessary to have 

a more generalized method to pick such locations for measuring proxy response. We will 

describe such a method later in chapter 7. For this application, we will demonstrate the 

method based on the 4 locations described above. 

The statistics recorded at the monitoring locations were meant to capture the flow 

behavior of the models, driven by the predominant permeability features. Specifically, 

 

Figure 4.10. Locations chosen for recording proxy statistics. These locations are around 

the injection well of interest in this particular problem 
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they need to capture how rapidly the injected fluid migrated in a particular direction. The 

particular statistics recorded at each monitoring location were as follows: 

 The particle count at the location, recorded at 4 different times during the 

injection period. This would reflect how rapidly the fluid is migrating in a 

particular direction 

 An average value for the pressure analog. This reflects the average fluid 

distribution around the location. 

 Time when maximum value of the pressure is reached at a monitoring 

location. This quantity is again related to the rapidity of fluid movement in a 

particular direction. 

These statistics were recorded for each of the 4 locations, and then used to 

discriminate between the models as discussed below. 

 

4.3.3.  Model clustering 

Eigen decomposition of the covariance matrix of the model statistics was 

performed, and the models were projected onto the orthogonal set of axes described by 

the leading eigenvectors. Efficiency of clustering     (details in section 3.4.2) was 

computed for different number of clusters for the projected models. The analysis revealed 

(Figure 4.11) that the ideal number of clusters in this case was 7. Hence, the models were 

divided into 7 clusters and representative models were found for each cluster. The 

clustering and the associated representative models are shown in Figure 4.12. The scatter 

plot shows how the representative models from different clusters of models highlight 

high permeability streaks in different parts of the reservoir. 
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Figure 4.12. Clustering of models for In Salah, with the representative model shown for 

each cluster. 

 

Figure 4.11. Plot of    versus number of clusters for In Salah. 
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The representative models were run through a numerical simulator (CMG-GEM) 

and the pressure response at well KB-502 was used to compute the likelihood function 

for the Bayesian calculation discussed in Section 3.5.2. Since the objective of the entire 

process is to test if the data available before the breakthrough of CO2 in the abandoned 

well contains information about the presence of high permeability channels close to KB-

502, the injection data used for the model selection process is terminated at close to 600 

days (approximate time of breakthrough). The rest of the available data is used to test the 

validity of the final set of models. The process of clustering and model selection was 

repeated for two iterations, to get a final set of 10 best-fit models. The results are 

discussed in the next section. 

 

4.3.4.  Results of the model selection process for the In Salah case 

To test the validity of the entire workflow, the models in the final best matched 

cluster were each run through the flow simulator, and the results compared to the field 

data. The simulated results showed a good match not only to the conditioning part of the 

data (0 – 600 days) but also matched the prediction part (600 – 1600 days) of the 

injection data to a reasonable extent. The results are shown in Figure 4.13.  
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Figure 4.13. Comparison of bottom-hole pressure for KB-502 to field data. There is a 

reasonable match both to the history that was used for conditioning the 

model selection and the part of the injection data that was left out. 

It would be further instructive to look at the individual models in the final cluster 

to examine their common characteristics. Some of these models are shown in Figure 4.14. 

Visual examination of all these models shows that they all exhibit a high-permeability 

feature between well KB-502 and the abandoned well location (KB-5 on the maps). The 

 

Figure 4.14. Sample of models from the final best-matched cluster of models. High 

permeability features are clearly visible in the vicinity of KB-502 in all 

models. 
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common characteristic of these models can be highlighted by calculating the ensemble 

average of the models in the selected cluster. Following the computing of this average, 

the models were transformed so that they all reflect the histogram of permeability 

inferred from the well data. This average transformed model is shown in Figure 4.15. The  

models in the final set predominantly contain a high permeability feature close to KB-502 

leading towards the abandoned well location. All other features in other parts of the 

reservoir are highly variable from one model to the next and so the ensemble average 

map does not highlight them. This indicates that while the available injection data can 

inform the process of finding prominent features close to the injector, it is not adequate to 

highlight such features in more remote parts of the model. 

The model-selection process shows that the current version of proxy is adequate 

for representing the predominant migration patterns in reservoirs and thus capturing the 

difference in connectivity between models within the model-selection framework. 

However, the small thickness of the formation in this case (20 m) compared to the areal 

extent of the aquifer meant that the primary migration was areal, driven largely by 

 

Figure 4.15. Ensemble average of all models in the final cluster. High permeability 

feature near KB-502 is clearly highlighted (circled). 
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permeability. Given the buoyancy of CO2, it can be expected that vertical migration of 

injected fluid would be a dominant mechanism in thicker formations. In the following 

section, we explore the ability of the proxy in cases where vertical buoyancy-driven flow 

is dominant. 

 

4.4.  REPRESENTING GRAVITY-DRIVEN FLOW USING THE PROXY 

As mentioned earlier, the particle tracking proxy captures the structure of the 

reservoir using the initial pressure distribution in the model. This initialization pressure 

drives the movement of the injected CO2 in the vertical direction (thus becoming a 

surrogate for buoyancy effects). We tested whether this current formulation for the proxy 

was adequate for representing gravity effects.  

 

4.4.1.  Application of proxy to synthetic models with strong buoyancy effects 

The first synthetic model used for testing the validity of gravity driven flow was 

the same model as used in section 4.2.1 and in Figure 4.3. The model in this case 

consisted of 10 layers, and the CO2 was injected in layer 5. So, there was some vertical 

movement of the injected CO2. The result is shown in Figure 4.16, and compared to CO2 

saturation results from numerical simulation. 

 

 

Fluid saturation from proxy 

 

Fluid saturation from numerical simulation 

Figure 4.16. Cross-section through the reservoir at the injection location, showing the 

fluid saturation and the effect of buoyancy. 
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 The results show that the proxy, while capturing the essential vertical trend in 

fluid flow, shows a lot more spread in the horizontal plane along that path. This seems to 

indicate that proxy needs to be calibrated so that the trade-off between the gravity and 

viscous effects is adequately captured.  

To test this further, we simulated fluid flow in a two-dimensional grid with fluid 

movement driven only by gravity in the vertical direction. The model is a 101 x 1 x 100 

model, with injection in the bottom-most layer. The model has uniform permeability, 

except for some very low permeability layers (Figure 4.17). 

 

Figure 4.17. Permeability distribution in the second synthetic model used to test the 

proxy in case of gravity-dominated flow. The blue layers are shale baffles 

(0.1 mD) and the background is sand (500 mD). 

The injected fluid is expected to move primarily in the vertical direction until it 

reaches one of the permeability baffles, and then it should move horizontally along the 

baffle until it is able to move vertically again. This behavior is clearly seen in Figure 

4.18, which shows the saturation distribution from numerical simulation.  
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Figure 4.18. CO2 saturation from numerical simulation on the grid in Figure 4.17 

 

(a) 

 

(b) 

 

(c) 

Figure 4.19. Proxy results for model in Figure 4.17, showing the particle count 

(analogous to saturation) distribution in the model. (a) Original proxy, (b) 

Proxy with gravity term given extra weight, (c) Proxy with weighted gravity 

term and low permeability baffles that are assigned to be impermeable. 
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The proxy was run on the same permeability model. However, in this case, the 

proxy showed primarily areal migration with a little vertical movement (Figure 4.19(a)). 

When the transition probability in the vertical direction was arbitrarily weighted more 

than the transition probabilities in the horizontal direction, the vertical movement was 

captured a little better (Figure 4.19(b)); however, there was still significant migration of 

CO2 into the low permeability baffles and so, the combination of horizontal movement 

below the shale baffles and subsequent vertical movement is poorly represented. Indeed, 

the only way to get close to the simulated response was to make the low permeability 

baffles impermeable (i.e. permeability equal to zero md), and simultaneously use a high 

weighting factor for the vertical movement (Figure 4.19(c)). 

The results indicate that in order to use the proxy for such cases, calibration 

would have to be performed for each case before the proxy is implemented. The decision 

as to what cutoff value would make the low permeability layers impermeable would also 

need to be investigated. 

 

4.4.2.  Field case for testing the proxy when gravity effects are significant 

While the synthetic models clearly showed that the proxy lacked the ability to 

adequately capture gravity-driven flow, we still needed to find out how it would perform 

in a real field case when there is both significant vertical migration and areal spreading of 

the CO2 plume. For this purpose, we used the Utsira formation from the Sleipner field in 

the North Sea (Figure 4.20). 



 73 

 

Figure 4.20. Location of the Utsira formation, off the coast of Norway (Arts et.al. 2008) 

Description of the Utsira sand 

Utsira is a late-Miocene / early-Pliocene formation, overlain by clay-rich 

sediments of the Nordland group and underlain by shaly sediments of the Hordaland 

formation. Utsira itself consists of a shaly top package, and a predominantly sandy 

bottom part. It is this lower part that is termed the Utsira sand. The sand is extremely 

permeable (permeability lies between 1 to 3 D), made up of overlapping fan-lobes and 

separated by thin mudstone drapes (Arts et.al. 2008). These mudstone layers are typically 

1 to 1.5 m in thickness (Zweigel et.al. 2004) and extensive (Figure 4.21); however, they 

are not completely sealing due to the presence of ‘holes’ of erosive or deformational 

origin. 
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Figure 4.21. Simulation model for Utsira, showing the shale layers 

CO2 injected into the Utsira sand is sourced from the natural gas produced at 

Sleipner West field. The project was initialed in 1996, with injection rates of about 1 MT 

every year, using a single horizontal well injecting 200 m below the reservoir top 

(Chadwick et.al. 2012). The CO2 rises almost vertically until it reaches one of the shale 

layers, then it migrates along the bottom of these layers till it reaches one of the sand 

‘holes’ in the shale and then migrates upwards again. This has caused stratified CO2 

layers below the shales. Time-lapse seismic data shows the accumulation of the CO2 

plume below these shale layers as ‘bright, sub-horizontal reflections’, growing with time. 

This is shown in Figure 4.22. 

 



 75 

 

Figure 4.22. Time-lapse seismic data showing the evolution of the CO2 plume over time 

and the accumulations below shale baffles (from Arts et.al. 2008). 

It is clear that the distribution of the sand holes plays a major role in the 

movement of the injected CO2. The locations of these holes are uncertain, so the 

objective of the work was to calculate probabilistic estimates of the location of these 

holes based on the results of the model selection approach conditioned to available 

injection data.  

Unlike the injection data at In Salah, the bottom hole pressure at the injector was 

fairly constant in this case, since the sand is fairly uniform and of high permeability. The 

shale baffles only influence the vertical migration of the CO2 plume and as such have 

very little effect on the injection pressure. Instead, the extent of the CO2 plume as 

inferred from the time-lapse seismic data, at certain horizons in the reservoir interval was 

used for the model selection procedure. We will describe the application of the model 

selection procedure for this case in greater detail in a later chapter. At this stage, we will 

present some results for CO2 distribution in the reservoir using the proxy in order to 
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investigate whether it is adequate for capturing the vertical migration of the injected CO2 

properly. 

Results for CO2 plume migration using the proxy and comparison to numerical 

simulation 

Numerical simulation of the Utsira sand was implemented using a compositional 

simulator (ECLIPSE-E300
©

). The model was represented by 64 x 118 x 241 grid blocks, 

with injection in layer 182. The grid was a non-orthogonal corner-point grid. Injection 

was initiated in 1996, and continued through 2011 (when the last data was available from 

Statoil), after which the injected CO2 was just allowed to migrate through the grid. The 

results of the simulation are shown in Figure 4.23. 

 

    
 January 2000 January 2005 January 2011 

Figure 4.23. Simulated result of the migration of injected CO2 in Utsira, showing CO2 

saturation at different snapshots in time, using E300 simulator. The z-axis 

has been exaggerated. 

The simulation closely captures the characteristics of CO2 migration seen in the 

time-lapse seismic (Figure 4.22). There is clear stratification of the CO2 below the shale 

baffles. Our aim is to capture this behavior of the CO2 in the proxy. The results are shown 

below. 
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From the discussion in the previous part (Section 4.4.1) it was quite clear that the 

proxy would not work effectively without assigning additional importance to the vertical 

migration term in the transition probabilities. Using this weighting approach, the vertical 

migration of CO2 and subsequent spread under the shale was captured to a limited extent; 

however, as shown in Figure 4.24, even though there was some vertical movement of the 

CO2 until the first shale baffle was encountered, the subsequent migration along a 

stratified flow paths is not adequately captured. Instead the plume is more diffused in the 

horizontal direction (darker blue in Figure 4.24 (b) Top view). This clearly shows that in 

 

 

 

 

 

 

 

Side view 

  

Top view 

(a) (b) 
 

Figure 4.24. Comparison of proxy results (showing particle counts) with flow simulation 

results (showing CO2 saturation) for Utsira. (a)  Results obtained by flow 

simulation, (b) Proxy result. 
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the presence of competing forces (gravity, buoyancy and viscous forces) the proxy 

becomes incapable of accurately representing the migration. It might be possible to 

overcome this drawback by adequately weighting the contribution of the various forces 

properly in the transition probability calculation (section 4.4.1 on page 69), but that 

would require a calibration exercise for every case that is evaluated by the proxy. 

 

4.5.  CONCLUSIONS 

The random-walker based proxy provides a good approximation of fluid flow in 

the aquifer. The transition probability driving the flow of the fluid, primarily dependent 

on the heterogeneity and the initialization pressure, is adequate to capture large-scale 

viscosity-driven migration patterns. The use of this random walker within the model 

selection process gives it the necessary ability to differentiate between models based on 

their flow characteristics, at an extremely low computation cost compared to a full-

physics numerical simulator. 

However, the proxy suffers from some drawbacks when we implement it for 

several cases with varying driving forces such as gravity for CO2 migration. The 

transition probability described in equation 4.2 reflects the local advection term, since it 

only looks at properties in the immediate neighborhood of the current location of the 

particle. As a result, though the areal migration is captured reasonably well, it still shows 

significant spreading of CO2 away from the expected migration path, as seen in Figure 

4.4. When strong buoyancy effects are prevalent, the proxy in its base form cannot 

adequately capture the gravity effects (Figure 4.19(a)). Adjustment to the transition 

probability by weighting the initial hydrostatic pressure more, and by artificially lowering 

the permeability of the shale baffles alleviates the problem to an extent. However, even 
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then, the proxy fails to capture the fluid migration adequately, as seen in the case for 

Sleipner. It should also be noted that multiphase flow effects described by relative 

permeability, variations in injection pressures and fluid density is not taken into account 

at all in this present formulation of the proxy.  

Given the inability of the proxy to capture buoyancy-driven flow adequately, and 

the other factors described above, we felt it necessary at this stage to develop a new 

formulation for the proxy that would address these problems, and allow us to explore the 

model selection algorithm for the Sleipner case. This new proxy will be discussed in the 

next chapter. 
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Chapter 5 : Development of a New Particle Tracking Proxy 

The particle tracking proxy described in the previous chapter worked quite well 

for capturing the areal migration of the injected CO2, as demonstrated by the application 

to the In Salah project. The regional distribution of CO2 modeled by the proxy compares 

well against that obtained using a full-physics flow simulation and the proxy responses 

are adequate for measuring dissimilarities between reservoir models within the model 

selection framework. However, it failed to adequately capture migration in cases where 

the CO2 flow was primarily buoyancy-driven, as evidenced by its implementation to the 

Utsira case. Further, it does not capture all the physics associated with CO2 migration. In 

this chapter, we will discuss the development and application of a new tracer-like particle 

tracking proxy that addresses the drawbacks of the previous formulation of the proxy. We 

will also show the applicability of the new proxy formulation to both real field cases 

discussed in the previous chapter - In Salah and Utsira. 

 

5.1.  NEW FORMULATION OF PARTICLE TRACKING PROXY 

The new proxy we developed is based on the approximation of tracer movement 

within the aquifer. The proxy still consists of moving particles through the aquifer, 

subject to certain rules dictated by static petrophysical properties and dynamic fluid 

properties. However, unlike the proxy outlined in the previous chapter, the particles are 

no longer representative of the fluid itself; rather, the particles are assumed to be mass-

less, non-reactive tracers moving with the injected CO2, subject to the same physics as 

the fluid itself. The entire migration period is divided into smaller intervals, and the 

pressures and saturations are assumed constant within each of these intervals (Figure 5.1). 

Particles are moved within these intervals under the influence of this pressure field, 
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conditioned to the static permeability distribution. The movements of the particles are 

kept independent of each other, and driven by a transition probability described in a later 

section. We keep track of all locations visited by each particle, and at the end of each 

interval, this gives us an estimate of the probability that a particular location within the 

domain will be visited by the injected CO2, given a particular permeability distribution. 

The process of moving the particles is detailed below. 

5.1.1.  Revised particle tracking algorithm 

The new formulation of the particle tracking is best described using an example. 

Consider a 5x4 grid (Figure 5.2), where 4 particles are injected at the top-left corner of 

the grid and allowed to migrate through the grid. The path followed by each particle is 

shown by the lines of different colors, and is the path followed by each particle is 

considered to be independent of the other paths. Each particle is allowed to undergo a 

predetermined number of (seven for this demonstration) displacement steps of equal 

length and we keep track of every grid block visited by each particle. 

 

Figure 5.1. Schematic of pressure and saturation updates with time in the proxy 
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Figure 5.2.  Movement of 4 particles through a 5 x 4 grid, as a demonstration of the new 

proxy formulation 

After all the particles have been moved for a particular time interval, the number 

of particles that visited each grid block is counted, which can then be represented as a 

probability that a particular grid block will encounter the injected fluid (Figure 5.3 (a)). 

For example, grid block [X=3, Y=2] is crossed by the blue and brown paths; thus 2 of the 

4 moving particles visit this location, and hence the probability of this grid block 

encountering the injected fluid is 0.5. This method is thus used to create a probability 

map at the end of each time interval, as is shown in Figure 5.3 (b). 
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(a) (b) 

Figure 5.3. (a) Counting the number of particles crossing particular grid blocks, (b) 

Converting the particle counts to measures of probability. 

Suppose a net volume Vinj has been injected into the grid. The fractional flow 

curve is used to get an estimate of the average saturation behind the CO2-water front. We 

assume that the average saturation in a grid cell with probability exceeding a threshold is 

the same as this value from the fractional flow curve. Suppose this saturation is given by 

Savg. Then, the number of occupied grid blocks can be given as: 

          
    

       
 (5.1) 

where Vb is the bulk volume of a grid block,   is its porosity and      is the average 

saturation described previously. Now, starting from the highest value in the probability 

map (which will be 1), we define a cutoff value of probability, then count the number of 

grid blocks with probability value greater than or equal to the cutoff (given by        . 

The cutoff is progressively decreased until         is equal to (or nearly equal to) 
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           All grid blocks with probability less than or equal to this cutoff is then 

assigned the saturation Savg.  

 

5.1.2.  Redefined transition probability 

The previous formulation of the RWPT relies on a transition probability – defined 

as the probability of a random particle to move from its current location to any of the 

neighboring grid locations. The transition probability controls the movement of the 

particles through the grid. In the previous implementation of the proxy, the transition 

probability is a function of the difference in particle count, average permeability and 

initialization pressure (or depth) gradient between the current location of the particle and 

the candidate location, and was formulated as: 

                 
           (5.2) 

Here, Ptransition is the transition probability, Kavg is the average permeability and 

ΔPi is the initial hydrostatic pressure difference between the grid locations. This 

formulation has been successfully demonstrated to enable model discrimination in the 

case of the Krechba formation in the In Salah gas field in central Algeria. 

However, the above formulation shows a high degree of particle movement out of 

the primary migration pathway, due to the local nature of the transition probability 

function. Further, application of this formulation to the Sleipner CO2 project was initially 

not as successful. In this case, it became evident that the effect of gravity was not 

properly captured by the specified transition probability (Equation (5.2)). We initially 

attempted to fix this problem by calibrating the proxy definition to numerical simulations 

and attaching more weight to the ΔPi term. However, the calibration procedure defeats 

the objective of having a fast transfer-function model that can quickly screen the suite of 
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reservoir models and identify the similarity and dissimilarity between the models. It was 

therefore necessary to develop a more robust formulation of the random walker that 

would capture not just the effects of gravity and permeability, but all the physics relevant 

to the migration and trapping of CO2 in the aquifer.  

In order to better represent all the processes that contribute to the migration and 

trapping of CO2 in the aquifer, we revisited the classical formulation of the random 

walker, as defined in Section 2.3.3 and mentioned in the previous chapter: 

  (    )    ( )  [ (    )     (    )]    (    )  ( )√   (5.3) 

The important thing to note in this equation is that the randomness in the motion 

of the particle is imparted by the ξ term associated with B, which itself is associated with 

the dispersion tensor. Thus, the motion of particles using this equation largely depends on 

the solution of the velocity field and the randomness in motion is a function of the 

dispersion around this velocity field.  

The important thing we learn from this classical formulation is that the transition 

probability has two parts associated with it:  a diffusion term and an advection term. 

However, as opposed to the classical formulation of the random walker that needed the 

computation of the entire velocity field for every time step, we decided to calculate the 

velocity at every step as a random variable associated with the particular particle. Thus, 

in our formulation of the random walk, there is randomness in particle motion not just at 

the scale of dispersion but also due to uncertain velocities..  

The new formulation of the transition probability we now started working with is 

calculated from the velocity (equivalent to a combination of the  (    ) term and 

    (    ) term in equation 5.3) for the particular transition and normalized to get the 

probability, as follows: 



 86 
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(5.4) 

This equation shows that the transition probability is defined by the normalized 

velocity. The velocity is estimated using a calculation of the Buckley-Leverett velocity 

obtained from the fractional flow equation, and a macroscopic velocity term, as described 

in the subsequent sub-sections. It can be stated that this formulation is more similar to the 

master equation formulation for CTRW (Continuous time random walk) mentioned in 

chapter 2 than the RWPT formulation. 

The use of deterministic velocity values to define a transition probability is made 

possible by invoking the condition of stationarity. The transition probability from a 

current block to the neighboring grid blocks could rigorously calculated if the flow 

simulation results of a large ensemble of models was available. Alternatively, we can 

invoke the assumption of stationary velocity in one single model, and calculate the 

transition probability by looking at all transitions between two nodes with the same 

separation and orientation as nodes i and j. However, even that would be expensive and 

so the calculation above assumes that the velocities required in Equation 5.4 have 

sampled all such transitions during their history and hence can be used to calculate the 

transition probability. 

Fractional Flow Equation 

Consider the displacement of a non-wetting phase by a wetting phase in a 

formation dipping at an angle α to the horizontal. The fraction of the wetting phase in the 

total mobile fluid is given by the following equation: 
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 (5.5) 

Here, kr is the relative permeability, µ is the viscosity, Pc is the capillary pressure and ρ is 

the density. This equation can be used to create a plot of saturation against fractional 

flow. In the absence of capillary pressure, a closed form solution of the mass 

conservation equation for one-dimensional, two-phase immiscible displacement yields 

the specific velocity of a front of constant saturation. Using this solution, a tangent drawn 

from the point of initial saturation to this curve defines the saturation of the displacing 

front, and the slope of this tangent is the velocity of the displacing front. The slopes of 

tangents drawn on the curve at saturations higher than the front saturation define the 

velocity of those saturations (Buckley and Leverett 1942): 

    
   
   

 (5.6) 

This is shown in Figure 5.4(a). The distribution of saturation with distance from the 

injection location is shown in Figure 5.4(b). This definition of the Buckley-Leverett 

velocity is incorporated in our new formulation of the transition probability (Eqn (5.4) 

and Eqn (5.8)). 
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Fractional flow for CO2 injection in aquifers 

The fractional flow theory provides a method for computing the velocity term in 

the transition probability while incorporating the effects of gravity, capillary pressures 

and relative permeability. However, using the complete formulation of the fractional flow 

equation makes the random walker computationally expensive and hence a simplified 

formulation of the fractional flow equation was used, which ignores the capillary pressure 

and gravity terms: 

   
 

  
    

   

  

   

 (5.7) 

The methods outlined thus far have accounted for diffusion and relative 

permeability. However, we still have not accounted for absolute permeability, buoyancy 

and compressibility. Furthermore, during the implementation of this improved version of 

the transition probability it was observed that the new proxy was computationally 

expensive. One reason for the increased computational expense is that in this new 

formulation, the walker does not have an estimate for the general direction of movement, 

  

(a) (b) 

Figure 5.4. (a) Front velocity from fractional flow curve, (b) Saturation profile with 

distance. 
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and so quite a few transitions of the walker would be towards the injector instead of 

moving away from the injection location. This motivates the addition of a macroscopic 

velocity that would define the general direction of movement – away from injection 

locations, along higher permeability pathways – which could then be combined with the 

Buckley-Leverett velocity derived from the fractional flow curve. 

                (5.8) 

Next, we recognized that the particle also needed move out further from the 

injection location over successive time intervals. This is reasonable because the particle 

would be first moving through near well regions, where the CO2 saturation is higher, 

which implies higher velocity through this region. Once it reached the outer edge of the 

fully saturated zone and moves into the two-phase brine-CO2 region, its velocity would 

drop off. Once it reaches the uninvaded zone, it should have a low velocity (but not zero).  

To mimic this spatial variation in velocity, we used the fractional flow 

term    described above. The fractional flow value    could serve as a direct indicator of 

the ‘degree’ to which we needed to speed up a particle moving through the two-phase 

region. We define the local particle velocity as: 

         
      (    ) (5.9) 

For example, if the    value is 1.0 in a grid-block 100% saturated with CO2, a 

particle moving through this grid block would be twice-as-fast as when moving through a 

grid-block not previously invaded by CO2 (and thus with a saturation of 0.0). 

To further speed up execution, we decide not just to move particles out of the 

injection location but rather out of all locations that had some cutoff value of saturation. 

This was reasonable since fluid movement does not stop after fluid has moved out of the 
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injector; indeed, fluid keeps moving over time as long as it has a potential gradient 

driving it. 

 

Estimation of macroscopic velocity 

The estimation of macroscopic velocity could be made using the pressure 

distribution in the aquifer, and then solving for Darcy velocity across each face of the 

grid block. The pressure distribution in the aquifer can be easily computed using a single-

phase pressure solution using the following system of equations: 

         (5.10) 

Here, T is the transmissibility matrix, P
n+1

 is the pressure at a new time step, and B is the 

forcing function defined by well rates and pressure at the previous time step.  

This pressure solution depends on the absolute permeability in the reservoir and 

the well rates, and will define a general direction of flow away from injection locations, 

towards producing locations (if any) and along higher permeability paths (if present). The 

Darcy velocity can also account for the gravity term. 

  
   

 
(
  

  
     ) (5.11) 

or 

  
[Δ  Δ gΔ ]    

    
𝐿

 (5.12) 

This formulation of the transition probability explicitly accounts for density 

difference, absolute permeability, fluid viscosity and grid block depths (and thus the 

gross features of the storage structure). The continuous point source in a three-

dimensional domain (Raghavan 1993) was used to compute the pressure drop P was: 
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For an isotropic formation, this can be simplified to: 
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) (5.16) 

where  

  √(    )  (    )  (    )  (5.17) 

This expression for    incorporated into the transition probability allows us to 

account for injection rates, fluid viscosities, total compressibility and time. We initially 

defined r as a radial distance from the injector; however, this was modified later to 

account for the length of the path followed by the particle from the injector. Suppose a 

particle were to follow a highly tortuous path from the injector to its current location. 

Then, even if the final distance of the particle from the injector is not very large, it can be 

expected that the pressure drop that the particle experienced moving along the highly 

tortuous path would be much larger than the radial pressure drop from the injector. 

Hence, it made sense to consider the total path length in this calculation of the    term. 

Using the same idea, the average permeability was also considered along the path taken 

by the particle to reach the current location. This approach also addresses one of the 
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problems noted about the previous proxy formulation: that of taking only local values 

into consideration for the calculation of transition probabilities. 

Thus, summarizing the steps outlined above, the transition probability is defined 

by the following equations:  
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It should be pointed out that this formulation contains all the physics of particle 

movement within a single equation, which makes it more similar to the master equation 

formulation of the Continuous Time Random Walk. At the same time, the movement of 

particles on a gridded system makes the implementation closer to the Random Walker 

Particle Tracking. The major point of departure from the classical random walker 

formulations is that it introduces uncertainty both at the advection and diffusion level, 

while the RWPT relies on a deterministic solution of the advection velocity with 

uncertainty reflected only at the diffusion scale.  
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Particle migration and step size 

This modified implementation of the proxy was tested on a single synthetic model 

to compare it to flow simulations. The model is shown in Figure 5.5 (a). The random 

particles moved a fixed number of steps during each time interval. While this proxy was 

able to capture the influence of heterogeneity on migration quite efficiently, and without 

spreading out of the flow path as seen with the proxy formulation in the previous chapter, 

the size of the swept volume as a function of time is still a bit inaccurate when compared 

to the flow simulator response. As seen in Figure 5.5 (b) and Figure 5.5 (c), even though 

the proxy tracked the channel quite effectively, it underestimated the spread of the fluid 

along the channel towards the north-west and overestimated the fluid movement close to 

the injector. 

It is important for the proxy to not just capture the movement of fluid along 

permeability pathways, but also how this migration occurs in time. The fluid would have 

higher velocities and thus move farther in higher permeability zones than in lower 

permeabilities, and thus, if the step sizes (distance the particle moves when going from 

one grid block to the next) of the particles were equal, over a fixed time interval, particles 

   

Figure 5.5. Comparison of proxy response with simulator, initial formulation with FIXED 

NUMBER of steps. (a) Permeability distribution, with injection location in 

black, (b) Proxy Response, and (c) Simulator response. 
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should travel variable number of steps depending on the velocity of the particle.  

To make the number of steps variable, the velocity in Equation (5.19) was used to 

find the ‘transition time’ from one grid block to the next. Using the time intervals shown 

in Figure 5.1, the particle was allowed to move as long as: 

                                  ∑
    

         

    (5.24) 

where      is the distance between grid block i and j and    is the time interval 

 We recognized that this calculation of cumulative transition time would not be 

exact, so a window of 10% of the interval length was used such that a particle was 

allowed to make transitions up to ±10% of the total interval length: 

                      (5.25) 

5.1.3.  Summary of New Formulation of Proxy 

The steps described above for moving the particles and for calculating the new 

transition probability can be summarized by the flowchart given below: 
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Figure 5.6. Flowchart of new formulation for proxy 

 

5.2. VALIDATION OF NEW PROXY FOR CAPTURING AREAL MIGRATION 

This new implementation of the proxy was first validated for cases where the 

migration of the injected CO2 was primarily areal with only a little vertical migration at 

the beginning of injection. Validation was performed for two different models: the first a 
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synthetic model, similar to the one used in Section 4.2.1, and the second a model for In 

Salah, discussed in section 4.2.2. These validation cases will be discussed in this section. 

  

5.2.1.  Synthetic model for validation of proxy 

The model consists of 201 x 201 x 10 grid blocks, with injection in the fifth layer. 

Even though there is some scope for vertical migration of injected CO2, most of the fluid 

movement is along the top of the reservoir (below the impermeable cap rock) where it is 

largely driven by the high-permeability channels seen in Figure 5.7. The fluid properties 

and other relevant data for the simulations are the same as presented in Section 4.2.1. 

 

Figure 5.7. Permeability model used for validation of new proxy formulation. This is the 

same model as was used for validation in section 4.2.1 for the old proxy.  
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 The areal migration was captured quite effectively by the tracer-based proxy as 

seen in Figure 5.8. The migration pattern obtained using the particle tracking proxy 

resemble the results of the numerical flow simulation using CMG-GEM
©

 quite closely. 

There is little spreading of the injected fluid out of the high permeability pathways. This 

is a clear improvement over the earlier proxy that indicated significant migration of fluid 

away from the high permeability pathways (as seen in the comparison shown in Figure 

5.8). Further, the temporal aspect of the migration, as discussed in section 5.1.2 is also 

successfully captured by the tracer-based RWPT. This is clearly seen in Figure 5.9, where 

the areal migration pattern is compared at three different snapshots in time. 

 

 
  

(a) (b) (c) 

Figure 5.8. Migration of injected fluid captured by (a) New proxy formulation, (b) 

Numerical simulation, (c) Old proxy formulation 
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Time = 200 days 

  
Time = 400 days 

 
 

Time = 1000 days 

Proxy Response Simulator Response 

Figure 5.9. Comparison of proxy and simulator response. The migration of CO2 over time 

is captured accurately by the new proxy. 
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The last part of the comparison looks at the vertical distribution of CO2 close to 

the injection location, small as it is. The new formulation for the proxy was able to 

capture the buoyant flow much more effectively than the old proxy. This is clearly seen 

in Figure 5.10, where cross-sections through the injection location for both cases (new 

and old proxy formulations) are compared to numerical simulation results. The new 

formulation is clearly able to capture the vertical movement much more efficiently, 

without the need for any arbitrary weights. The diffuse nature of the vertical movement in 

the case of the fluid-based RWPT once again highlights the inability of the old proxy to 

properly weigh the viscous and gravity forces against each other.  

5.2.2.  Field model for validation of tracer-based proxy:  In Salah 

The In Salah model described previously was tested using the tracer-based proxy 

and compared to results from numerical simulation. The model chosen for the purpose 

was based on the In Salah structure, but without the initial fluid distribution seen in 

section 4.2.2; rather, the model only had brine in-place with CO2 injection through a well 

coincidental with KB-502. The purpose of the exercise was to demonstrate that the new 

proxy formulation is able to capture the major areal migration pathways, in the presence 

of competing forces due to permeability features and the reservoir structure. The model is 

displayed in Figure 5.11. 

   

New Proxy Response Simulator Result Old Proxy Response 

Figure 5.10. Cross-section of fluid saturation at the injection location for buoyancy-

driven flow for the new and old formulation of the proxy, compared to 

numerical simulation results. 
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Depth from surface to top of grid (m) Permeability (mD) 

Figure 5.11. Model used for testing the tracer-based proxy on a real field case (In Salah). 

Using this input model and the same injection location, the new proxy 

formulation was tested. The result is shown in Figure 5.12. It is clear that the proxy is 

able to capture migration along the prominent heterogeneity feature responsible for the 

movement of the injected CO2. Further, there is preliminary indication that it is able to 

adequately capture the interplay of gravity (reflected by the structure of the reservoir in 

this case) and permeability, so that fluid movement is along the high permeability and 

towards the top of the structure. There is some spurious particle incursion outside the 

region indicated by the numerical flow simulation. This is because of the stochastic 

nature of the particle tracking algorithm. There is however, enough similarity between the 

two results to make the proxy a viable fast alternative to the numerical simulator. 
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Figure 5.12. Comparison of results from numerical simulation and proxy, showing the 

saturation in the grid at certain snapshots in time. 
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5.2.3. Model Selection applied to In Salah 

As a final test of the effectiveness of the model selection process, we 

implemented the model selection process in its entirety using the new proxy on a set of 

models for In Salah. The initial model set consisted of only a hundred models, which 

were conditioned to the injection pressure at KB-502. Similar to the implementation in 

the previous chapter, the initial model set consisted of a low background permeability 

(between 10 mD and 300 mD, as reported at In Salah) overlain by high permeability 

streaks to represent the fracture network, as shown in Figure 5.13. To make the 

demonstration robust, the streaks were aligned in different directions. It should also be 

noted that the streaks were not conditioned to data and were not forced to occur in the 

vicinity of the well under study. 

 

Figure 5.13. Sample of models from the initial set for In Salah. The high permeability 

streaks are shown in light blue. 

The models were taken through a single iteration of the model selection process 

and the best-fit models at the end were analyzed. The models consistently showed a high 

permeability feature near the problem well, KB-502 (Figure 5.14 (a)). This effect across 

all models in the best-fit cluster becomes more apparent when we find the average model 
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for that cluster. As can be seen in Figure 5.14 (b), the average model shows a high 

permeability pathway between well KB-5-2 and the abandoned well location. 

  

(a) (b) 

Figure 5.14. Final best-fit models for In Salah. (a) Sample of models from best-fit cluster 

of models, (b) Average of all models in final cluster 

 

5.3. VALIDATION OF NEW PROXY FOR CAPTURING VERTICAL MIGRATION OF CO2 

In the previous section, we found that the new proxy formulation captures the 

areal migration of CO2 adequately and is also able to capture the gravity-driven flow of 

CO2, for example in the In Salah (Figure 5.12) case. However, we still needed to properly 

test the ability of the proxy to accurately represent flow in the vertical direction due to 

gravity effects. For this purpose, we used synthetic and field models, similar to the ones 

used for testing the old proxy in section 4.4.2. 
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5.3.1.  Validation of tracer-based proxy using synthetic model 

The synthetic model used to test the validity of the tracer-based proxy for 

capturing gravity-driven flow is similar to the model used in Section 4.4.1, shown in 

Figure 5.15. This same model was analyzed using the new proxy formulation and the 

results compared to numerical simulation, as shown in Figure 5.16.  

It can clearly be seen that the new proxy performs better than the previous version 

of the proxy presented in earlier Chapters. It is able to capture the migration of the CO2 

both vertically due to buoyancy and along the bottom of the baffles, mirroring the 

migration seen in the numerical simulator. It should further be noted that this response 

did not require any artificial weighting of terms or alteration of low permeabilities to 0 

mD, as in the previous case (refer to section 4.4.1). Furthermore, the proxy is able to 

represent the timing of the migration process accurately.  

  
(a) (b) 

Figure 5.15. (a) Simulation model used for testing vertical migration of CO2, (b) 

Saturation of CO2 obtained by flow simulation showing the expected 

movement of the injected CO2 
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Figure 5.16. Comparison of tracer-based proxy to flow simulation, showing the ability of 

the proxy to capture vertical buoyancy-dominated CO2 migration. 

Given that the primary motivation behind development of the proxy was the rapid 

evaluation of reservoir connectivity, it is instructive to look at the computation time of 

the proxy. The computation time is a little over 2 seconds, which is comparable to the 

146 seconds of computation time of the simulator. At this stage, it is important to test the 

performance of the proxy on a full field model that had a combination of all the effects 

studied in isolation in the preceding sections. Hence, we used the Sleipner model to test 

our new proxy formulation. 
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5.3.2.  Validation of the new proxy formulation using the Sleipner model 

The Utsira formation in the Sleipner field has been described in details in chapter 

4. In this section, we analyze the model for the Utsira formation and test it against 

numerical simulation results to validate the applicability of the new proxy for full field 

models with multiple fluid flow mechanisms. The model mimics the Utsira reservoir, and 

is composed of 100 x 100 x 50 grid blocks. It uses the same structure as the top of the 

Utsira formation; however, the subsequent 49 layers of the model were generated using a 

uniform thickness for each layer. Similar to the stochastic shale layers in the original 

Utsira case, the synthetic model contained shale baffles in four layers with stochastically 

distributed sand ‘holes’ representing the erosional surfaces (Figure 5.17). The CO2 was 

injected into the bottom-most layer and allowed to migrate upwards under the influence 

of gravity. The upwards movement would be occasionally interrupted by the shale 

baffles, whereby the CO2 would follow the structure of the layer and spread laterally until 

it reaches a sand ‘hole’, at which point the upwards migration would resume. This 

behavior has been observed in Figure 4.21. The same model was analyzed using the new 

 

Figure 5.17. Model used for testing an Utsira-like synthetic case. Shown here are 4 shale 

layers (permeability 0.1 mD) containing stochastic sand ‘holes’. The rest of 

the model (total 50 layers) has a permeability of 2 D. 
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proxy (results in Figure 5.18), and the results from both cases are compared in Figure 

5.19. 

The result from the proxy shows that the fluid movement in the vertical direction 

is being captured, as is the interruption to flow by the shale baffles and subsequent 

movement laterally. The comparison with the simulation clearly shows that the proxy is 

 

Figure 5.18. Proxy result showing migration of CO2 captured both vertically and areally 

under shale baffles 

 
 

Numerical simulation New proxy 

Figure 5.19. Comparison of numerical simulation with the new proxy, for case with 

strong influence of gravity. 
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able to capture the vertical migration of the CO2 plume similar to the simulation results. It 

should be further noted that this response captured by the proxy was generated in less 

than 3 minutes of CPU time, as opposed to the simulation which required a runtime of 

16.5 hours, running on 6 computer cores in parallel. This processing time is 

proportionally faster than the cases shown in Section 5.2.2; the increase in efficiency 

compared to the numerical simulation is expected in this case since the fraction of the 

reservoir volume sampled by the proxy is smaller in this case. The proxy thus clearly has 

a computational advantage over the simulator, especially when our objective is to use the 

proxy response to discriminate between models. 

We next verify the applicability of the proxy to the full model selection process 

for the Sleipner model.  

 

5.3.3.  Model selection using tracer-based proxy for Sleipner 

The model selection process was implemented on an initial set of 150 models. 

The base case model shown in the previous section was used as a representation of the 

‘real’ field model. This model was simulated for a period of 3 years of injection, and the 

model selection process was conditioned on the bottom-hole pressure data at intervals of 

100 days. All the models in the initial set contained shale baffles with sand holes in the 

same four layers as the ‘real’ field model. The only uncertainty was in the distribution of 

the sand holes in the shale layers. The depth of the shale layers are quite well defined 

using well logs and correlated across the Sleipner field. The initial set of models therefore 

considers the uncertainty in the spatial extent of the shale layers. 
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 The sand holes were generated using sequential indicator simulation as short 

scale features. The generation of the sand-hole model was not only independent from one 

model to another, but even between the four shale layers in each model. This is justified 

by the fact that the sand holes are erosional surfaces laid down by different geologic 

occurrences and bear little correlation to each other. A sample of these initial models is 

shown in Figure 5.20. These initial models were analyzed using the new particle-tracking 

proxy. The final model set and its simulated response was studied to test the entire model 

selection process and by extension, the validity of the proxy.  

 

 

 

Figure 5.20. Sample of models in the initial model set for Utsira. The sand is shown in 

red and the shale in cyan. 
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 In order to understand the major features highlighted by the final model set, we 

computed an average permeability model for the best-fit cluster of models and compared 

it to the original base model. Since the only uncertainty was in the distribution of the sand 

holes within the shale layers, our comparison was limited to these layers. Further, given 

that the time of injection was limited to 3 years, by which time the CO2 had only just 

reached the second shale layer, we limited our analysis to the bottom two shale layers. 

When we compare the distribution of sand holes in the bottom-most shale layer 

for the average of the best-fit models, we notice that it is able to capture the distribution 

of shales just above the well location (Figure 5.21). This is a reasonable outcome of the 

process, since the migration of the fluid and its effect on bottom-hole pressure is largely 

limited to the zone right above the perforation. The comparison shows that the average 

model reflects the presence of a sand hole located just above the perforation, oriented in 

  

Real model, base case Average model from best-fit models 

Figure 5.21. Comparison of real sand holes distribution and sand holes in average of best-

fit models, at bottom-most shale layer. 
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the SE-NW direction. It also captures the presence of sand holes to the south and west of 

the injection location. 

When we repeat this comparison for the next higher shale layer, we notice that the 

ability of the model selection process to accurately represent the location of sand holes 

has decreased (Figure 5.22). The best-fit models captured the presence and orientation of 

sand holes around the injection location, but create a number of spurious features. This is 

once again expected, since the injected CO2 had not reached the second shale layer within 

the time period specified, and so the ability of the injection well pressure to be influenced 

by the second shale layer is rather limited. 

  

Real model, base case Average model from best-fit models 

Figure 5.22. Comparison of real sand holes distribution and sand holes in average of best-

fit models, for the second shale layer from the bottom. 
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5.4. CONCLUSIONS 

In this chapter, we detailed the development of a new particle-tracking proxy that 

mimics the flow of non-reactive tracers moving with the reservoir fluid. This proxy 

moves thousands of particles within user-defined time intervals driven by potential 

differences between neighboring grid blocks. It then calculates probability maps of how 

likely each grid block is of being contacted by the migrating fluid within the given 

interval of time. At the end of each time interval, the pressure and saturation fields are 

updated and the process is repeated. The proxy is quite effective for representing 

viscosity driven flow, gravity, fluctuations in injection rates, reservoir structure and two-

phase flow. 

We tested the proxy using different models to show its validity for different 

scenarios. The proxy response for synthetic models was compared to full-physics 

numerical simulations, and was shown to be effective in capturing both areal migration 

and vertical gravity-driven migration in reservoirs. It was also tested on real field models 

(In Salah and Sleipner) where there is a combination of areal and vertical migration 

taking place, and was shown to yield responses close to numerical simulations. 

Additionally, the proxy run times were almost 40 times less than for comparable 

numerical simulations, making it an ideal computational tool for quickly discriminating 

differences between various reservoir models. 

As a final test of the effectiveness of the proxy, we demonstrated the ability of the 

proxy to be used as a part of the model selection process in order to enable the evaluation 

of model connectivity. The model selection process was run in its entirety using the 

tracer-based proxy for Sleipner, and was shown to be efficient for accurately modeling 

the location of sand holes in the shale layers in that field. It was also tested on a set of 
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initial models for the In Salah field, and is demonstrated to be effective for representing 

the spatial location of high permeability pathway between wells quite effectively. 
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Chapter 6 : Development of a software module for Model Selection 

In the previous chapters, we have outlined a model selection process and detailed 

the development and validation of two particle-tracking proxies. The various parts of the 

model selection algorithm have, until now, been implemented as separate pieces of code. 

This requires a lot of work on the part of the user to move the results from one step of the 

workflow to the next step. It is therefore necessary to integrate all the parts of the 

algorithm into integrated software, which can be used by an end-user without explicit 

intervention at every step. For this purpose, we decided to implement the particle-

tracking workflow as a plugin within the existing geostatistical software, SGeMS. In this 

chapter, we detail the development of this plugin, and outline steps required to use it. 

 

6.1. SGEMS: STANFORD GEOSTATISTICAL MODELING SOFTWARE 

The Stanford Geostatistical Modeling Software (SGeMS) is an open source 

software module for geostatistical applications, developed at Stanford University. It 

allows the use of various established estimation algorithms (kriging, co-kriging, indicator 

kriging) and simulation algorithms (sequential Gaussian / indicator simulation etc.), as 

well as various utilities to create, manipulate and post-process reservoir models. It also 

has an accompanying visualization module that allows users to look at models in two- or 

three-dimensions, and extract information along horizontal and vertical slices. Since the 

code is open-source, it is free to manipulate existing modules or even create new modules 

in order to implement additional workflows not available in the current distribution. The 

ability to implement standard modules to create geologic consistent models, the existence 

of the visualization module, and the flexibility to write additional modules within the 
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existing code, made this the ideal software to implement our workflow as a plugin within 

SGeMS. In this section, we will briefly describe the user-interface for the software. 

The main window for SGeMS is shown in Figure 6.1. It consists of three main 

parts: the algorithm panel, the data panel and the visualization panel. The algorithms 

panel contains all the geostatistical software under two main headings: estimation and 

simulation. There is a third heading called Utilities, which contains various smaller 

programs for post-processing and manipulation of models within the program. The 

‘objects’ panel shows a list of all data that have either been loaded into the program or 

 

Figure 6.1. SGeMS user interface, showing the three main panels: algorithms, objects and 

visualization 
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output by the implementation of algorithms within the program. Two types of data can be 

read by the program: Cartesian grids which contain data for every grid block in a model, 

or point sets which contain data at specific coordinates. Multiple realizations of a 

particular variable can exist within a single object as shown in Figure 6.1 where Object 1 

has 10 realizations. The visualization panel displays any selected realization within an 

object, and also allows actions like panning, zooming etc. of the image. 

The model selection program was implemented as a separate heading in the 

‘Algorithms’ panel. 

 

6.2. MODEL SELECTION PLUGIN: AN OVERVIEW 

 

Figure 6.2. Algorithms panel, showing the model selection algorithm tab 

The model selection algorithm was implemented as a separate heading in the 

algorithms panel (Figure 6.2). Once this option is selected, it brings up the input window 

for the model selection process, where the user needs to provide all the parameters and 

data used to the process. The main tab in the model selection input panel contains drop-

down menus to select the particular permeability and porosity objects to be used, together 

with details about the connectivity proxy and reservoir flow simulator to be used. The 

various input options are listed below, and referenced in Figure 6.3: 

[1]. Permeability object: contains all the models in the initial model set 
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[2]. Porosity object: similar to permeability object 

[3]. Proxy selection: drop-down menu to select the particular proxy to be used 

[4]. Working folder: this is where all the results are stored 

[5]. History file: this is the dynamic conditioning data used by the process 

[6]. Simulator location: the physical address to the executable of the reservoir 

flow simulator to be used. Our current implementation uses CMG-GEM 

simulator. 

[7]. Simulator file name: name of the simulation data deck. It is assumed to 

reside in the working folder. 

[8]. RESULTS (CMG) location: location of the RESULTS GRAPH
©

 program in 

CMG that reads the output file for the simulation in order to compare to the 

conditioning data. 

 

 

Figure 6.3. Main input panel for the Model Selection algorithm 
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Once the random walker proxy is selected, the user has to enter information 

pertaining to the proxy in the ‘Random Walker’ tab. This window is shown below 

(Figure 6.4), and is described in the following list: 

 

Figure 6.4. Random Walker tab, where the user needs to input data needed for the proxy 
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[1]. Unit system to be used for data: the code allows for using either field units 

or SI units. 

[2]. Results grid: the object where the final best-fit models are saved 

[3]. Injector location: the x, y and z coordinates of the injection location 

[4]. Depth of grid blocks: an object containing a single realization of depths to 

each grid block for the uppermost layer of the models. It is assumed that the 

structure of the grid is same for all initial models 

[5]. Initial pressure: object containing the initial static pressure for the entire 

grid. This can be generated from the initialization step of a numerical 

simulator. This is also assumed to be the same across all models, so the 

object contains a single realization. 

[6]. Monitor grid: a point set containing the locations where the proxy 

measurements are recorded for further analysis and grouping 

[7]. Relative permeability data: Corey-type relative permeability model is 

implemented currently. Thus, this panel needs values for the Corey 

exponents, the end-point relative permeabilities and the residual saturations. 

[8]. Fluid properties: values for fluid viscosities, densities and total 

compressibility. Care should be taken to keep the units consistent with the 

unit system defined at the top. 

[9] – [13]. Here, the user defines the step sizing and particle count parameters for 

the run. The proxy will be run for ‘Total injection days’ [9], and pressure and 

saturation updates will occur after every ‘update interval’ [11], while the proxy 

measurements will be noted every ‘reporting interval’ [10]. The injection rate [13] 

is specified either in m
3
/s or ft

3
/day. 

 



 120 

Once all the data has been specified, the user runs the program using the ‘Run 

Algorithm’ button at the bottom of the algorithms panel. The results of the proxy at 

specified time intervals are stored in the object called ‘RW_results’, and the best-fit 

models are saved within the user-specified ‘Results’ object (item [2] in Figure 6.4). The 

user can then perform further post-processing of the best-fit models using existing 

algorithms within SGeMS, or export the models to text files. 

 

6.3. DETAILS OF PLUGIN DEVELOPMENT 

SGeMS is implemented in C++ as an object-oriented code, with all geostatistical, 

data analysis and visualization operations encoded as classes. In order to create a plugin 

for SGeMS, we need two elements: a shared library (.dll file) that contains the algorithm 

and a graphical interface through which parameters are read into the program. The 

graphical interface is created as an *.ui file, using either a text editor or Qt Designer. The 

details of creating the interface are beyond the scope of this work. In this section, we will 

describe the creation of the shared library and its basic components. 

 

6.3.1.  Creating the shared library 

In order to create the SGeMS shared library, we first need to define a class 

derived from the Geostat_algo class, and within it create three virtual functions initialize, 

execute and name. This is shown for the model selection algorithm in Figure 6.5. 
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Figure 6.5. Declaration of the ModelSelection class, derived from GeoStat_algo, and the 

virtual functions 

The initialize function initializes the various input variables needed for the 

particular algorithm by reading it in from the user interface. The execute function 

contains the code for execution of the algorithm, and the name function returns the name 

of the algorithm. The final step is to define a static function called create_new_interface 

within the new class. This creates a new instance of the plugin object. In our case, this 

function was defined as shown below: 

Named_interface* ModelSelection::create_new_interface( std::string& ) { 

  return new ModelSelection; 

} 

This code is then compiled to create the library file. 

 

6.3.2.  The execute function for the Model Selection algorithm 

The execute function contains the details of implementation of the model 

selection algorithm. As such, it contains the following basic building blocks: the data 

entry module, the particle-tracking proxy, the module for principal components analysis 

and model clustering, and a module to run simulations on the best model of each cluster, 
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compare the simulated result with field data and calculate posterior probabilities. Figure 

6.6 shows how the different modules fit into the model selection workflow.  

 These modules are all implemented as independent functions in a separate file 

and included into the SGeMS code as an external library. The details of the execute 

function are provided in Appendix B. 

 

 

 

Figure 6.6. Modules (grey boxes) required for the implementation of the model selection 

algorithm within the SGeMS framework 
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6.4. CONCLUSIONS 

In this chapter, we have outlined the development of the model selection 

algorithm as a plugin to the geostatistical software suite, SGeMS. The plugin is 

implemented using a derived class called ‘ModelSelection’, which includes three main 

functions: initialize, execute and name. The various modules needed for the model 

selection process are implemented as functions and then included in the main code as 

external libraries. The plugin seeks to harness the existing capabilities of the software in 

order to generate the initial set of models. Alternatively, a set of models generated 

externally by the user can also be imported and then the plugin can be used to implement 

the model selection process on these models. This approach also enables the user to 

visualize data very efficiently using internal SGeMS routines, and also post-processes the 

final best-fit models to quality check and to generate posterior uncertainty maps and 

statistics. This chapter, in conjunction with Appendix A, should provide the information 

necessary to make future changes to this code.  



 124 

Chapter 7 : Some Applications of the Model Selection Algorithm 

In this chapter, we will explore some possible applications of the model selection 

process, applied to problems encountered during geologic carbon sequestration. In 

previous chapters, we have already demonstrated the use of the model selection workflow 

incorporating the particle-tracking proxy for the delineation of best-fit aquifer models 

conditioned to observed field response. The cases demonstrated in this chapter 

incorporate further modifications to the model selection algorithm. We will look at ways 

to generalize the location of proxy measurement locations to better inform the model 

selection process. We will demonstrate the use of the model selection process to 

investigate the presence of leaks in the aquifer, to assess the impact of mineralization on 

the injection well response. We also investigate issues such as the impact of location of 

injection and montoring wells and their role in determining the limits of applicability of 

the model selection process. 

 

7.1  OPTIMIZING THE CONFIGURATION OF PROXY MEASUREMENT SITES 

In previous examples of the model selection process, we have predefined proxy 

measurement sites at the corners of a square around the injector (as in the case of In Salah 

in Chapter 4) or at fixed locations in regions of interest (e.g. just below the shale layers at 

Utsira in chapter 6). Since the statistics of random walkers recorded at proxy 

measurement sites are a representation of the connectivity characteristics of the models, it 

might be hypothesized that the location of these sites is critical to the entire model 

selection process. For example, if we situated our measurement sites in In Salah far from 

the region of interest, as shown in Figure 7.1, the connectivity in the region between KB-

502 and the abandoned well would have very little bearing on proxy response at those 
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sites. Under these circumstances, the models represented by these proxy measurements 

would show little or no grouping to enable distinction on the basis of connectivity. The 

user might then be misled to think that the data available to him/her is not adequate for 

the model selection process, where in fact the problem lies with the choice of proxy 

measurement sites. As such, it might be better to have a carefully considered algorithm 

for choosing these sites rather than leaving it completely to the discretion of the user. 

             

Figure 7.1. Location of proxy measurement sites far from the region of interest will not 

inform the model selection process.  

In the next section, we demonstrate a method to determine the optimum 

monitoring locations. 

 

7.1.1.  PCA to find optimum measurement sites 

The connectivity analysis yields various statistics (e.g. particle count, pressure 

analog) at every grid node within a model. These are akin to the grid pressure, saturation 
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and specified concentration values obtained using a full-physics simulation. Locations 

along a particular similar feature are expected to show similar particle statistics as 

compared to locations outside the feature or locations on other connected features within 

the reservoir. Because our objective is to detect differences between reservoir models, it 

is preferable to locate the monitoring locations sufficiently far apart so that they pick up 

differences over a larger extent of the reservoir. For this purpose, it is necessary that the 

monitoring locations be located such that they are spaced across several features (and not 

all clustered within a single feature). Thus, a strategy for locating the measurement 

location could be to seek locations that show maximum variability in response across all 

the available models, indicating limits to the size and shape of connected features. For 

this purpose, a single response (e.g. particle count at a particular time or average particle 

count over the entire run) is measured at all grid locations across all models. The 

covariance between the proxy responses at any two grid locations was calculated across 

all models, and a principal component analysis was then performed on the covariance 

matrix. The first principal component direction was identified, which consisted of a 

weighted linear combination of the response at all grid locations (the eigenvector values 

corresponding to the first eigenvalue are the weights or loadings). The locations are 

sorted according to their weights, and the locations within a fixed cutoff  of the maximum 

weight are retained. The locations, which have significant weight in the first principal 

axis, represent the locations that exhibit maximum variability across all models with 

respect to measured responses; they would be optimal for capturing the variability off 

spatial connectivity observed within the suite of models. This is shown in Figure 7.2. 
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Figure 7.2. Demonstration of process for finding optimum locations. Only the top N% 

locations on the right are retained. In the demonstration case below, this 

percentage is 10% 

As a demonstration of the process, this method of finding measurement locations 

was performed on a set of 100 models with features in orientations ranging from 0
O
 to 

90
O
 azimuth. The initial model set, and the final measurement locations inferred for this 

set of models are shown in Figure 7.3.  

 

 (a) 

 

(b) 

Figure 7.3. (a) Two different kinds of prior models. 50 realizations of each type of 

models, were used for the initial model set, (b) Regions identified by 

performing Principal component Analysis using statistics of particles 

recorded within each grid block.   These locations for the proxy monitoring 

location will help identify   regions exhibiting maximum variability across 

all 100 models.  
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Once the locations with maximum variability have been determined, the next step 

was to find a method for choosing sites amongst these locations where the proxy-

measurement sites could be located, since there is a lot of redundancy between 

information provided by points that are located close to each other. Two methods have 

been devised for this purpose: 

1. Choosing arbitrary points within the location clusters: The first method chooses 

certain points within the clusters of locations given by Figure 7.3 (b) as the proxy 

monitoring sites. The plausible proxy monitoring locations can be seen as being divisible 

into 4 different clusters out of which one location was chosen at the centroid of the 

clusters and two other locations were selected within each cluster that are maximally 

separated from each other and the centroid. These locations approximately reflected the 

directions of major features in the model set. Sites chosen in this manner have been 

shown in Figure 7.4. One problem with this method, as seen in the two points circled in 

red, is that there might be redundancy due to the chosen points being too close to each 

other. 

 

 

Figure 7.4. Arbitrary choice of points as proxy monitoring locations. Three points 

(shown as black circles) were chosen within each cluster. 
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2. Choosing locations using repeated PCA: This second approach extends the method of 

finding locations using principal components analysis (PCA) to multiple iterations. For 

subsequent iterations, only grid locations selected from the previous step were used. The 

process was terminated when the number of locations does not change with further 

iterations. The grid locations for the same set of 100 models after the final PCA iteration 

are shown in Figure 7.5. 

The points shown as blue filled circles were chosen as proxy-measurement sites 

following this process. These points are chosen to reduce redundancy between points 

(because the principal components are orthogonal to each other) as can be seen by 

comparing the location in Figure 7.5 with those in Figure 7.4 that contained some points 

very close to each other. 

To demonstrate the applicability of this process of identifying proxy monitoring 

locations, we revisited the In Salah case. In our original approach (Chapters 4 and 5), we 

had placed 4 measurement sites at the corners of a square centered on the injector KB-

502, since we knew that we were looking for a feature of interest around that injector. 

 

Figure 7.5. Locations identified for proxy monitoring after repeated PCA.  
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Here, we recalculated the location of the measurement sites using the repeated PCA 

approach shown above. These new locations are shown in Figure 7.6.  

Using these new measurement locations, the model selection algorithm was 

applied and carried forward for two iterations, with seven clusters of models chosen after 

each iteration. The results are shown in Figure 7.7 (a), (b). Only data from the first 700 

days are used in the model selection.  When these results are compared to the results from 

our previous paper (Figure 7.7 (c), (d)) – when the proxy measurement locations were 

located at the corners of a square template around KB-502 – we can clearly see that the 

new method is comparable to the previous method; the advantage of the method lies in its 

applicability to more general cases, when we do not have any prior information about 

where dominant features are located. Figure 7.8 shows the cluster average of the best-

matched models obtained using both approaches for locating proxy-measurement 

  

(a) (b) 

Figure 7.6. (a)  Proxy response measurement locations in previous work (Chapter 4 and 

Chapter 5). (b) Layout of proxy measurement locations using the new PCA-

based method, displayed on a structure map.  

Proxy 

response 

measurement 

locations
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locations. A high permeability feature between the wells KB-502 and KB-5 can be seen 

on the average across all models, from both methods. 

 

Figure 7.7. (a), (b) Cluster response at the end of the first two iterations of the model 

selection process, respectively, with proxy monitoring locations chosen by 

the repeated PCA method. (c), (d) Cluster response after the first two 

iterations of the model selection process, with proxy monitoring locations 

arranged in the form of a square around KB-502. The results are 

comparable, highlighting the ability of the current method to find proxy 

measurement locations regardless of prior knowledge about the 

heterogeneous characteristics of the target reservoir. 

 

(a) (b)

(c) (d)
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7.2  MINERALIZATION DURING CO2 MIGRATION IN THE AQUIFER 

During the operation of a sequestration project, there are 4 dominant mechanisms 

that contribute to the capture of the injected CO2. These mechanisms are: structural 

trapping of supercritical or gaseous CO2, dissolution of CO2 in brine, residual phase 

trapping due to relative permeability hysteresis, and mineralization. In this work, we will 

simulate the mineralization process as a bulk permeability modifier and explore the 

feasibility of using model selection process to detect location of permeability alterations 

due to mineralization during a sequestration project. The basic assumption in the cases 

described below is that the mineral composition of the rock is invariant, and the 

mineralization process is operational wherever the rock comes in contact with the 

injected CO2. 

 

 

Figure 7.8 Average permeability of all models in best-match cluster from (a) 

measurement locations in a square, and (b) Measurement locations from 

PCA. Both show a high-permeability feature (circled) connecting KB-502 

and KB-5. 

(a) (b)
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7.2.1.  Background 

Mineralization is the process of reaction and precipitation when subsurface fluids 

interact with minerals in the rock. In the case of CO2 sequestration in chemically active 

rocks, the CO2 dissolved in brine forms a weak acid that interacts with the clay minerals 

in the rock leading to the formation of carbonates. The injected CO2 is thus permanently 

stored in the form of mineral carbonates. Johnson et.al. (2004) identified four distinct 

mechanisms of mineralization that exist in saline aquifers: cementation of Dawsonite 

[NaAlCO3(OH)2] that occurs throughout the extent of the CO2 plume, calcite-based 

carbonate precipitation along the lateral and upper margins of the plume, and 

mechanisms that take place within interbedded shales (like in Utsira) or the cap rock. 

When the injected CO2 comes in contact with the formation brine, it forms a hydrated 

oxide, which then reacts with water to form a weak acid. This is shown by the reaction: 

           (  )      
     

This reaction takes place within the entire volume of the plume. The weak carbonic acid 

reduces the pH and promotes the dissolution and precipitation of Dawsonite and calcite-

group carbonates by the following reactions: 

  𝐿              
            (  )           

       (  )               where M is Fe, Mg and Ca 

Both these processes cause precipitation of minerals in pore bodies and throats and 

reduce porosity and permeability. Increasing pressure increases the dissolution of CO2 

and reduces the pH of the solution (Park et.al. 2003), which in turn enhances the 

dissolution of the minerals. The efficiency of this trapping mechanism is determined by 

the mineral composition of the formation rocks. Increased trapping occurs with increased 

concentration of carbonate forming elements like Fe, Mg, Ca, Na and Al (Johnson et.al. 

2004). 
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 As pointed out above, the combination of dissolution and precipitation causes 

local reduction in porosity and permeability. In this work, we modeled mineralization as 

a bulk permeability reduction factor effective only in regions where the CO2 

concentration is high enough to cause significant reactions. 

 

7.2.2.  Model setup for mineralization 

In order to assess the impact of permeability alteration due to mineralization on 

the migration of the CO2 plume, we implemented a model in CMG-GEM, shown in 

Figure 7.9. 

 

The total injection period for this model, which was 20 years (2001 to 2021), was 

divided into 4 parts (2001 – 2006, 2006 – 2011, 2011 – 2016, and 2016 – 2021). At the 

end of each injection period, the saturation of CO2 throughout the entire model was 

recorded, and the permeability was reduced by a factor of 2 for all grid blocks which had 

CO2 above a cutoff saturation. For example, Figure 7.11(a) shows the saturation map of 

CO2 at the end of the first 5 years (2001 – 2006) for the base model, and Figure 7.11 (b) 

 

Figure 7.9. Base case model for demonstrating the effect of mineralization on CO2 plume 

migration, showing the permeability distribution of the model. 
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shows the difference between the permeability used for the first 5 years and the 

permeability used to run the simulation for the next 5 years. It shows the permeability 

change introduced into the model due to mineralization, assumed to occur uniformly over 

the entire CO2 saturated zone.  

 

Figure 7.10. Plot of injection pressures for the mineralization case. The base case is run 

with no permeability changes (blue line). The red line shows the injection 

pressure when permeability change is made in 2006. 

  
            (a)           (b) 

Figure 7.11. (a) Map of CO2 saturation after 5 years of injection, showing the regions 

above a cutoff of 40% saturation, (b) Map of difference between 

permeability of base model (Figure 7.9) and model used to simulate the next 

5 years. 
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This process was repeated for each time interval, and the simulation for the next 

time interval was then restarted from the end time of the previous interval. As a 

demonstration, the injection pressure from the base case and a case with permeability 

change only in 2006 is shown in Figure 7.10. The plot shows that accounting for 

mineralization causes a drop in permeability, which reduces the injectivity and at 

constant injection rates, increases the injection pressure. This indicates that with multiple 

changes in permeability, we should expect injection pressure increase at the end of every 

interval. It would be better to implement a method whereby continuous permeability 

updates are made such that the change in injection pressure is not so drastic; however, for 

the purpose of demonstration, the current implementation with 4 permeability changes 

was assumed. 

 

Figure 7.12. Bottom-hole pressure at the injection well, for the base case with no 

permeability alteration (blue line) and the mineralization case when 

permeability is altered in 2006, 2011 and 2016. 
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Using the method shown above, simulations were run for the entire time period of 

20 years, with permeability alterations and simulation restarts at 2006, 2011 and 2016. 

The injection well was constrained by a constant injection rate and the injection pressures 

were noted. The results are shown in Figure 7.12. As previously stated, the injection 

pressure increases at every permeability reduction; the amount of pressure increase 

gradually decreases as the degree of injectivity reduction in previously altered zones 

reduces with each successive alteration. 

 

7.2.3.  Model selection with mineralization 

The objective is to demonstrate how the model selection algorithm yields a 

different model set if mineralization is accounted for, as opposed to a case where there is 

no permeability alteration due to mineralization. For this purpose, we created a synthetic 

model containing some high permeability sinusoidal channels and a single injector 

completed inside one such channel. The injection period was divided into 3 intervals, 

similar to those in the test case above. The well was assumed to be rate constrained and a 

fluctuating injection rate schedule was used. The bottom-hole pressure of the injector was 

designated to be the dynamic data to be used for the model selection algorithm. The 

synthetic model and the injection pressure for the reference model are shown in Figure 

7.13. This injection pressure profile takes into account the permeability reduction after 

each of the 3 time intervals. 
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(a) (b) 

Figure 7.13. (a) The initial permeability map of the reference model, (b) Reference 

injection pressure profile that was used within the model selection process. 

To demonstrate the applicability of the model selection process to this case, the 

algorithm was run on a suite of 100 models. The models all contain high permeability 

sinusoidal channels in a low permeability matrix; however, the positions of the channels 

are not constrained by any data and hence exhibit large variability from one model to the 

next. Some of these starting models are shown in Figure 7.14. Note that some models 

have injection location close to channel boundaries, while some are located far away 

from channels in the low permeability zone. The model set was run for two separate 

 

Figure 7.14. Some sample models from the initial model set. The red channels are 1000 

mD while the cyan background is normally distributed around 10 mD. The 

black circle represents the position of the injector. 
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cases: one in which permeability is altered at the end of each injection interval similar to 

the test case discussed before (section 7.3.2), and another in which there was no 

permeability alteration. 

 

7.2.4.  Results 

There is considerable difference in the spread of injected CO2 with and without 

permeability alteration, as can be seen in Figure 7.15. The reduction in permeability 

blocks off high-permeability regions early in the injection process, and causes the plume 

to seek out alternative migration pathways. 

 

Figure 7.15. Difference in CO2 saturation due to mineralization. High permeability 

pathways are blocked off and the plume seeks out alternative migration 

pathways 

When there is no permeability alteration, the clusters after using dynamic data for 

different time durations are fairly close to one another, as shown in Figure 7.16. The 

proximity of the clusters to each other is expected because the underlying permeability 
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model does not change and the additional duration of the injection data only informs 

more details within the existing permeability models.  

 

Figure 7.16. Clustering at the end of second and third time interval, in the case where no 

permeability alterations were assumed within the model selection process. 

The reference injection data used to select the models is affected by the 

mineralization process. 

For the case with permeability alteration, the models were first run to the end of 

the first time interval, then based on the saturation at the end of this time interval, the 

permeabilities were altered and then run to the end of the second interval, and so on. The 

process thus followed the same procedure as was used to generate the reference history 

for the model selection process, described previously. At the end of each time interval, 

best-fit models were selected conditioned to the partial injection history up to that point 

in time. The best-fit models were then projected onto the principal component space, and 

compared with projections of the best-fit models selected from the case without 

permeability alteration. For this the covariance between each pair of models in the final 

set of models was computed and then subject to PCA. This is shown in Figure 7.17. 

There are different numbers of points of each color at different instants in time because 
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the final selected cluster at the end of model selection may have different numbers of 

models. 

 

(a) End of second time interval 

 

 

(b) End of third time interval 

Figure 7.17. Best-fit models with / without mineralization projected onto an orthogonal 

space. (a) At the end of the 2
nd

 interval, and (b) At the end of the 3
rd

 interval. 



 142 

Figure 7.17 clearly shows the gradual divergence of the two cases with time. In 

the case which accounts for mineralization, the continued injection of CO2 causes the 

region of altered permeability to spread farther away from the injector, and thus exhibit 

marked difference in the characteristics of the selected model as we proceed in time. In 

Figure 7.17(a), the two clusters are separated but are still relatively close to each other; 

each cluster is also much tighter than those in Figure 7.17(b), when the model clusters 

have moved further apart from each other as permeability over large regions of the 

reservoir change due to mineralization. We can thus conclude that if mineralization is not 

taken into account within the model selection process, in the case that it is suspected that 

mineralization has a significant influence in the injection response, the models chosen by 

the model selection process will slowly diverge away from the ‘real’ model. In fact, if the 

permeability alteration were done much more frequently (smaller intervals of time), we 

would expect that this divergence would be more dramatic and take place much more 

quickly.   

 

Figure 7.18. Injection well pressures compared to the “real” data for the synthetic model. 



 143 

Figure 7.18 shows the match to the observed injection pressure data using the 

final selection of models for both cases. The model selection process does successfully 

find a group of best-fit models in both cases (with and without mineralization). But the 

“best-fit” is a rather poor match to the data in the case where the effect of mineralization 

has not been taken into consideration while performing model selection. In contrast, the 

group of models found in the case that includes mineralization (green curve) tracks the 

actual response well. Thus, comparing simulated response to field response during the 

model selection process would serve as a useful indicator of the possibility that there 

might be some phenomenon (in this case, mineralization) that is not being accounted for 

in our models.  

 

7.3  LEAK INDICATION BY USING THE MODEL SELECTION ALGORITHM 

 

Figure 7.19. Leakage pathways for formation brine and CO2 (from Birkholzer et. al., 

2009) 
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 The presence of a leak in the caprock would allow the formation brines and/or 

the injected CO2 to leave the storage volume and migrate upwards to shallower 

formations (Figure 7.19). The leakage of formation brines could lead to contamination of 

shallower fresh water formations, and greater discharge into rivers and lakes. The 

problem is further worsened by the leakage of CO2, which could be due to a an existing 

flow conduit (like an existing wellbore or through a transmitting fault / fracture), by 

reactivation of a closed fracture in the caprock (for example, through a transmitting fault 

or a fracture) or due to capillary leakage (when the phase pressure in the CO2 exceeds the 

capillary entry pressure of the caprock). The effectiveness of long-term sequestration of 

CO2 can be compromised by such leakage. 

In this section, we first study CO2 leakage through pre-existing open pathways 

using a commercial simulator (CMG-GEM
©

), and then provide a demonstration and 

discussion of the effect of leaks on the model selection process. 

 

7.3.1.  Simulation of CO2 leakage and its effects on injection well pressure 

The simulation model used for this study was based on the structure of the In 

Salah field in Algeria. The area was discretized using a 50x50x3 grid, with a leak 

simulated using a producing well (Well-P) at the crest of the structure and an injection 

well (Well-1) downdip from this location (Figure 7.20). The injection well introduced 

close to 1.3 million metric tons of CO2 every year into the formation. The injection lasted 

200 years, and then the CO2 was allowed to migrate for another 300 years. The type of 

leakage, existing or reopened high permeability pathway, was implemented using 

different constraints at the production well. 
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For the case of leakage through a high permeability pathway, the only constraint 

placed on the production well was a maximum fluid rate constraint. This imposes the 

condition that the amount of fluid (brine and CO2 combined) is limited by the flow 

capacity of the leakage pathway. As the CO2 injection is started, it displaces the in-place 

brine, which is moved away from the injection well. The pressure signature of the 

injection is, however, felt over a much larger area than the area covered by the CO2 

plume, and this causes an initial leakage of formation brine through the leakage pathway. 

Once the CO2 plume reaches the leakage site, the efflux of brine drops off sharply and the 

primary fluid leaving the storage volume is CO2.  

The concept of the brine leaking out of the reservoir due to the pressure increase 

induced by the injected CO2 has been discussed in other works. Birkholzer et.al. (2009) 

discuss this issue during a study of the effects of the pressure footprint of injected CO2. 

They stated that pressure increase and brine displacement could cause both lateral and 

vertical migration of formation brine out of the storage volume into shallower aquifers or 

 

Figure 7.20. Layout of model used for leak simulation 
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surface water accumulations. Further, they state that upward brine migration and pressure 

communication could occur through high permeability pathways like faults or abandoned 

boreholes. Zhou et.al. (2008) showed that storage reservoirs with imperfect seals may 

allow for enough displaced brine leaking out of the formation, while still having 

sufficient sealing capacity to trap supercritical CO2. 

The leakage of formation brine before any CO2 even reaches the leakage site 

exhibits a distinct signature at the injection well. This is shown in Figure 7.21, where the 

difference in bottom-hole pressure at the injection well is plotted over time, between two 

cases without and without a leak. There is a distinct difference in response between the 

cases, which decreases significantly when the CO2 finally reaches the leak site. 

 

Figure 7.21. Difference between cases with/without leak. Plot shows BHP difference (in 

psi) at the injector in red, and mole fraction of CO2 in the leaked fluid in 

blue 

Based on the results above, we have come to the conclusion that the leak would 

have an observable effect on the bottom-hole pressure at the injector if there is substantial 

efflux of brine from the storage volume that is manifested in the form of substantial 
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pressure perturbation caused by CO2 injection. Once the CO2 reaches the leak site, the 

effect of pressure signature at the injection well will diminish, and therefore not affect the 

model selection process as much. 

 

7.3.2.  Demonstration of influence of leak on model selection 

In this part of our work, we seek to demonstrate that during model selection, 

failure to account for the presence of a leak could yield a completely different model set 

than would be created if the leak is accounted for, assuming the field data comes from a 

storage aquifer which does contain a leak. We will further show that the model set 

created by not taking the leak into account shows an injection profile that is clearly 

indicative of the fact that there are additional constraints we need to account for in our 

initial model set to get a better match to the field data. This would provide a way of 

getting some indication of the possibility of a leak using model selection conditioned 

only to injection/monitoring well pressure histories. 

Synthetic Model to represent Real Field Data 

For the purposes of this demonstration, we created an artificial aquifer model, in 

order to derive a ‘real’ dataset to condition our model selection process. The synthetic 

model consists of an anticlinal structure, with a CO2 injection well in the flank of the 

anticline and a leak (represented by a producing well) at the crest of the structure, similar 

in structure to the model in the previous section. A high permeability pathway extends 

from near the injector to close to the leakage location (Figure 7.22). 
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(a) (b) 

Figure 7.22. (a) Depth to top of layer (in m), showing the structure of the synthetic 

model, (b) Permeability of synthetic model (in mD) 

Model Selection Process Implementation 

 The initial model set is made up of 700 models, 100 each created using high 

permeability features in 6 different directions, and 100 models with no high-permeability 

feature at all. This initial model set was run using two different types of aquifer models: 

model set A accounting for the leak and, model set B without accounting for the leak. 

The framework of this process is outlined in Figure 7.23. The model selection was run for 

two successive iterations for both sets, and the final model set for both cases were 

examined. 
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7.3.3.  Results and Discussions 

To show the effect of the leak on model selection, we compared the injection 

pressure profiles from the best-matched cluster to the ‘real’ field data for both cases, with 

and without the leak. The first indication of the presence of a leak is the difference in 

pressure of the final model set compared with the ‘field data’, as shown in Figure 7.24. 

The pressure profile for the representative model of the best-matched cluster, when the 

leak is not accounted for, differs from the ‘real’ data by a greater amount than when the 

leak is accounted for. This clearly indicates that in order for the model selection process 

to reflect accurate results, it is necessary that the procedure and the proxy incorporate the 

effect of the presence of a leak. 

 

Figure 7.23. Workflow for model selection showing how the two cases with and without 

leak is incorporated 
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Figure 7.24. Injection pressure response comparison for best matched cluster, before and 

after accounting for the leak 

It is even more instructive to look at the models that make up the final clusters for 

both cases. Since the initial set is made up of models that exhibit permeability pathways 

(streaks) in 6 different directions, it is reasonable that the final model set would also 

contain models that exhibit permeability pathways in different directions. However, in 

both cases, model selection is able to pick models that show streaks starting near the 

injector and reject all models that do not have streaks close to the injector. Indeed, in 

spite of having 100 models with no streaks at all, the model selection was able to pick 

only those models that did have streaks close to the injector. 

To understand the effect of including the leak in the model selection process, we 

constructed a probability map of the existence of high permeability pathways at different 
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locations in the final model sets. This is shown in Figure 7.25. The ‘reference’ field 

model consisted of a streak starting close to the injector, moving updip towards the leak 

location. When the leak is not accounted for during model selection (case B), the 

probability map shows a high probability of the existence of streaks close to the injector; 

however, this streaks is in a different direction from that in the ‘reference’ model, moving 

along the strike of the anticline. If the leak is accounted for in the model selection process 

(case A in Figure 7.23), the probability map again shows a high-permeability streak close 

to the injector; but unlike the previous case, this streak is in the updip direction towards 

the injector, thus reflecting better the geologic setting of the ‘reference’ model. 

   
(a) (b) (c) 

Figure 7.25. Probability map for high permeability streaks, derived from final model set 

(a) Leak accounted for during model selection, (b) Leak NOT accounted for 

during model selection. Compare with the ‘reference’ field permeability (c) 

The difference in final model sets is also assessed through the projections of the 

final models on the principal component axes of the proxy-derived statistics. The 

statistics derived from the proxy run on all the initial models was used to project the 

models onto an orthogonal set of axes determined by principal component analysis. 
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These projections are shown in Figure 7.26. It is clear that the model sets created with 

and without accounting for the leak are completely different with very little overlap. 

 

Figure 7.26. A projection of final model sets, with and without leaks, clearly shows the 

separation of the two cases. 

The discussion above clearly demonstrates that the presence of a leak can be 

reflected in the injection well pressures, and hence can affect the final set of models 

obtained by the model selection process. 

 

7.4  INFLUENCE OF LOCATION OF CONDITIONING WELLS ON MODEL SELECTION 

During the course of the model selection process, we have always implicitly 

assumed that the injection data used to condition the entire process was adequate to 

inform the process of delineating prominent features within the final model set. However, 

it can be stated that not all injection data used for the conditioning process has the same 

influence on the model selection process; the proximity of the injection location with 
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respect to prominent features driving the fluid migration should have a direct bearing on 

the ability of the model selection process to highlight that particular feature. In this 

section, we investigate this hypothesis in greater detail. 

 

7.4.1.  Synthetic model to study the effect of injector location on the model selection 

process 

To investigate the effect of proximity of injector location to prominent reservoir 

features on the performance of the model selection process, we used a synthetic model 

containing a prominent sinusoidal high-permeability channel feature embedded in a low 

permeability over-bank deposit, and three injectors located at different proximities to the 

channel location.  The model is shown in Figure 7.27. The distinctly different locations of 

the injectors with respect to the channel allowed us to use the bottom-hole pressure data 

from each of these three wells independently and test the aforementioned hypothesis. 

 

Figure 7.27. Schematic of base case model used to study the effect of proximity of 

injector to prominent features on the model selection process 
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The given model was run forward for 50 years with the wells constrained by 

fluctuating injection rates, and the injection pressure from all three wells was noted and 

used later to condition the model selection process. The injection pressure histories for 

the three wells are shown in Figure 7.28. 

7.4.2.  Model selection process conditioned to each individual pressure history 

The initial model set created for this model selection process was composed of 

high permeability sinusoidal pathways embedded in a low permeability matrix, similar to 

the base case. However, the location of these high permeability pathways was created 

unconditioned to any data, so the actual locations of the sinusoidal features are not 

restricted to any particular location or region within the grid. Some of these models are 

shown in Figure 7.29, which highlights the completely random nature of the location of 

the high permeability pathways. 

 

Figure 7.28. Injection pressure history for all three injectors. These histories were used 

individually in the model selection process. 



 155 

 

Figure 7.29. Sample of models from the initial model set (out of a total of 120 models), 

showing the random distribution of the high-permeability channels (in red). 

Three distinct cases were run with the particle-tracking proxy, with the same 

model set but different injection location corresponding to each of the injectors in the 

base case. The conditioning data for each case was the bottom-hole pressure for that 

particular injector. So, for example, if the location of the injector for the proxy 

corresponded to the well ‘INJECTOR-1’, then the conditioning data would be the 

bottom-hole pressure for ‘INJECTOR-1’.  This yielded three different final best-fit model 

sets, each of which were studied to see what prominent features, if any, were present 

across all (or a majority) of the models. 
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When the injection location used was ‘INJECTOR-2’, which was located inside 

the channel, the model selection process was able to pick up a dominant high 

permeability feature close to the actual base case. The dominant feature was inferred by 

finding the mean of the models in the final model set, as seen in Figure 7.30. 

 

  

Average model from best-fit models ‘Real’ model 

Figure 7.30. Comparison of average model from best-fit cluster, conditioned to 

INJECTOR-2, shows that it can delineate the feature of interest to a 

reasonable degree 

  
Average model from best-fit models ‘Real’ model 

Figure 7.31. Comparison of the average of best-fit models, conditioned to INJECTOR-1, 

shows that it does not delineate the feature as sharply as in previous case 

(Figure 7.30) 



 157 

When, however, the conditioning well was ‘INJECTOR-1’ which lay just outside 

the channel, the degree of detail visible in the ensemble average was greatly reduced 

(Figure 7.32). In fact, the average of the best-fit models showed that there were some 

prominent features indicated in several regions of the reservoir; however, these features 

were not as crisp as in the previous case, and there were a number of spurious features 

that were not present in the original model. Another way to look at the dominant feature 

is to look at values in the average model that lie in the top 90-percentile of the 

distribution of that model. This model representation is shown in Figure 7.32(b), and 

highlights the prominent features outlined by the best-fit models more clearly. The 

average model contains values between 10 mD and 230 mD, but in this case the 90-

percentile cutoff means that only locations with values greater than 140 mD (from the 

distribution of values in the average model, Figure 7.32(a)) are shown. As can be clearly 

seen, it delineates the feature close to INJECTOR-1 and INJECTOR-2 to a degree, but 

the result also contains a lot of ‘spurious’ features in more distant parts of the reservoir. 

 

 

                 (a) (b) 

Figure 7.32. (a) Distribution of values in average model, (b) Prominent features in 

average model highlighted by taking out all values below the 90
th

 percentile 
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This effect becomes even more prominent when the conditioning well used is 

‘INJECTOR-3’, which lies far away from the feature of interest. The features highlighted 

are not even in the vicinity of the actual sinusoidal feature (Figure 7.33). In fact, the 

common features in the final selected cluster are not that prominent when the selection is 

performed using the data for ‘INJECTOR-3’. This is demonstrated by showing the 

average models from cases with ‘INJECTOR-3’ and ‘INJECTOR-2’ on the same scale, 

as seen in Figure 7.34.  

 

Figure 7.34. Comparison of average model, with conditioning well inside and outside the 

channel feature. 

  

Average model for best matched cluster 
Prominent features highlighted by taking out all 

values less than the 90th percentile 

Figure 7.33. Average model of best-matched cluster, when the conditioning data is from 

INJECTOR-3, far away from the prominent sinusoidal feature. 
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It might be argued that the bottom-hole pressure response of a given injector is 

not only a function of the permeability features in its proximity, but also the injection 

behavior of other wells in the vicinity. This hold true for the effect of INJECTOR-1 on 

INJECTOR-3. However, as seen in Figure 7.35, the well INJECTOR-2 does not have a 

very prominent effect on INJECTOR-1, and INJECTOR-3 is almost unaffected by the 

other two injectors. As such, the results from INJECTOR-1 and INJECTOR-3 

 

 

Figure 7.35. Inter-well pressure effects of the three injectors 
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conditioned model selection hold good even if the inter-well effects are taken into 

account. 

It is also instructive to compare the response of the representative models of the 

identified clusters to the conditioning well response, as seen in Figure 7.36. In this case, it 

is clear that the models themselves have very few features that differentiate the pressure 

responses of each cluster from one another. Furthermore, the posterior probability of the 

clusters (using the Bayesian updating equation 3.5) was calculated to be 20.9%, 23.2%, 

27.9% and 27.9%, which clearly indicates that the data is inadequate to inform the model 

selection process as the contrast in the posterior probabilities is not that significant. A 

similar calculation performed for the case when the injector was inside the channel 

(Figure 7.37), showed the updated probability of the two clusters in that case to be 27.2% 

and 72.7%, which clearly points to cluster 2 as the more probable cluster of models in 

that case. 

 

Figure 7.36. Comparison of response of representative model of individual clusters to 

reference data, when model selection is conditioned to INJECTOR-3 
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Figure 7.37. Probability cluster for calculating the posterior updated probability of the 

model clusters, when the conditioning well is far from the channel. 

This calculation of posterior probabilities can thus clearly show when the 

conditioning data is inadequate to inform the model selection process, and thus serves as 

an efficient stopping mechanism for the algorithm. 

We showed how the model selection process is not an indiscriminate workflow 

that can be used in all cases. We demonstrated that the process will fail to yield any 

robust result in cases when the conditioning data is not available close to any prominent 

features. However, at the same time, the calculation of posterior probabilities for each 

cluster can clearly show when the conditioning data is inadequate, and hence can provide 

an effective criterion for terminating the process.  
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7.5  CONCLUSIONS 

In this chapter, we have explored the application of the model selection algorithm 

and the proxy, and demonstrated its use in a wide variety of applications. First, we 

showed an efficient technique to locate the proxy monitoring locations such that the 

differences between the models in a flow connectivity context can be emphasized. Next, 

we showed how the model selection process can be used as an indicator of active 

mineralization within the aquifer during CO2 sequestration, leading to a continuous 

process of permeability and porosity alteration. Third, we showed the application of 

model selection as an indicator for a leak within the storage volume. While the algorithm 

cannot, at this stage, yield estimates of location of the leak, it can very well point to the 

presence of one. Finally, we showed how the model selection process is not an 

indiscriminate workflow that can be used in all cases. We demonstrated that the process 

will fail to yield any robust result in cases when the conditioning data is not available 

close to any prominent features. However, at the same time, the calculation of posterior 

probabilities for each cluster can clearly show when the conditioning data is inadequate, 

and hence can provide an effective criterion for terminating the process.  
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Chapter 8 : Conclusions and Recommendations for Future Work 

8.1. CONCLUSIONS 

Probabilistic assessment of plume migration during geologic carbon sequestration 

requires the use of multiple models to reflect the initial uncertainty in aquifer geologic 

parameters. The assessment of these models needs efficient forward models that can 

overcome the computational cost of numerical simulators. In Chapter 1, it was 

hypothesized that efficient forward models can be developed for simulating the flow of 

CO2 in an aquifer at a fraction of the computational cost of a numerical simulator, and 

can be implemented within the model selection framework to predict future plume 

migration, and the following objectives were envisioned for addressing the problem: 

1. Development of fast-transfer functions 

2. Validation of fast-transfer functions within model selection framework 

3. Development of a software suite to implement the algorithm 

Before these objectives could be addressed, the model selection workflow needed 

to be modified for the carbon sequestration case, and this was shown in Chapter 3. While 

initial implementations of the workflow relied on user-defined monitoring locations to 

record proxy measurements for model grouping, a method was also developed for using 

the variability across models to pick optimum locations for recording the measurements. 

A way of calculating the optimum number of model groups was also developed, together 

with a scheme for computing a representative aquifer model for each model cluster. 

Finally, computation of posterior probabilities of model clusters using Bayes’ rule was 

facilitated by the use of probability envelopes around the observed data. 

The first and second objectives were addressed in Chapters 4 and 5. Chapter 4 

detailed the development of a proxy based on random walker particle tracking. The proxy 
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was shown to be capable of capturing viscosity-driven CO2 migration in the aquifer by 

comparing it with numerical flow simulations, both for synthetic cases and a real field 

case (In Salah field in Algeria). It was also tested within the model selection framework, 

and shown to be effective in delineating best-fit models for the aquifer conditioned to 

injection well pressures. However, the first proxy was not adequate for capturing 

migration in cases when buoyancy-driven flow was dominant, as demonstrated for a 

synthetic two-dimensional vertical model. and a real field case (Sleipner field in the 

North Sea). The problem can be alleviated to an extent by weighting the vertical 

migration component in the transition probabilities higher; however, this is a calibration 

exercise rather than an actual physical reflection of fluid transport. Even with a higher 

weight assigned to the vertical migration component, the proxy fails to adequately 

capture the migration, as shown in the case of the Sleipner field. Further, multiphase flow 

effects described by relative permeability, variations in injection pressures and fluid 

density are not taken into account at all in this present formulation of the proxy.  

Chapter 5 detailed the development of a new proxy to overcome the limitations of 

the first proxy. The proxy mimicked the flow of non-reactive tracers with injected fluid. 

While it retained the effect of permeability and reservoir structure like in the previous 

proxy, it additionally incorporated the effects of gravity, relative permeability and 

fluctuations in injection rates. It was shown to be still efficient in capturing viscosity-

driven migration, while also being able to capture migration in buoyancy-dominated 

cases. The new proxy was also tested within the model selection framework for both the 

Sleipner and In Salah cases. It was able to capture the location of a high-permeability 

pathway between problem wells in In Salah, and was shown to be efficient in capturing 

the location of sand holes in shale layers in Sleipner. 
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The final objective of developing a software suite for implementing the various 

parts of the model selection algorithm was detailed in chapter 6. This was coded in C++ 

and implemented within the geostatistical software SGeMS. The details of the code are 

available in Chapter 6 and Appendix A. The software module was tested on both the field 

cases in Chapter 5. Further, it was implemented on some additional applications of the 

model selection process in Chapter 7, like the effects of cap-rock leak on the model 

selection process, the limitations of injection data for delineating best-fit models 

depending on the location of the conditioning wells, and the possibility of using the 

algorithm to indicate the presence of mineralization in the aquifer. 

 

8.2. RECOMMENDATIONS FOR FUTURE WORK 

Based on the work implemented in this dissertation, the following 

recommendations are made to improve and extend the model selection process: 

 Regeneration of models: The current implementation of the model selection 

process terminates the process either when the posterior probabilities of model 

clusters become uniform, or when the number of models is deemed 

improbable. The second termination rule, however, is a limitation to the model 

selection workflow rather than a concrete statement. If a method can be 

devised for regenerating new models at the end of each iteration (Figure 8.1), 

the termination condition will then be limited only to equiprobable posterior 

probabilities. Further, if the model regeneration is based on characteristic 

features in the best-fit cluster, the new models will be able to emphasize the 

dominant features while also adding new features to the models. This would 

make the model selection an iterative process of incorporating heterogeneity 
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features within the model set, and might progressively lead to tighter clusters 

with reduced spread in prediction.  

 

Figure 8.1. Modified model selection algorithm with model regeneration 

 Incorporating additional physics into the proxy: The proxy formulation 

has been updated to incorporate various physics into the transition 

probability calculation; however, it is still missing a capillary pressure 

term and a CO2-brine dissolution term. Both of these effects might be 

incorporated into the proxy using the fractional-flow theory. Capillary 

pressure is included in the fractional flow formulation as shown in 

Equation 5.5: 
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This expression for the fractional flow value can be used in the (  

  ) term in equation 5.9. However, since a closed form solution with 

capillary pressure does not exist for the Buckley-Leverett equation, this 

should not be used in the specific velocity term in equation 5.9. 

 This can be combined with the fractional flow method developed 

by Noh et.al. (2007) for modeling CO2 injection in aquifers, which also 

addresses the effects of dissolution of CO2 in aquifer brine. The authors 

described two displacing fronts created within the aquifer: a pure CO2 

front displacing two-phase CO2-brine mixture (the drying front), and the 

two-phase front displacing pure in-place aquifer brine (the saturating 

front). This is shown in Figure 8.2. 

The velocities of the two-fronts are given as slopes of tangents to the 

fractional flow curve from points expressed as functions of CO2 

 

Figure 8.2. CO2-phase saturation profile in an aquifer (from Noh 

et.al. 2007). 
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dissolution in brine, as is shown in Figure 8.3. The coordinates of points I 

and J are functions of the partitioning of the CO2 component between the 

aqueous and gas phases. 

 

Figure 8.3.  Front velocities from fractional-flow curve (from Noh et.al. 2007). 

 Improvements to posterior probability calculation: The posterior 

probability calculation is based on creating probability envelopes around 

the observed data. Further, the distribution of the envelopes is assumed to 

be Gaussian. To make the process more general, there is need to develop a 

process of stepping away from the Gaussian assumption. Also, the 

conditioning data used for the model selection process is based on a single 

variable. There is need to incorporate data from multiple sources such that 

the process can be conditioned to a wider set of data and probably yield a 

richer posterior model set.  
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Appendix A: Code for old random walker 

#include <iostream.h> 

#include <iomanip.h> 
#include <fstream.h> 

#include <stdlib.h> 

#include <stdio.h> 
#include <math.h> 

#include <time.h> 

#include <conio.h> 
#include <string.h> 

#include <windows.h> 

 
char Parfile[80],Prfile[250],Sfile[250],cs_pr1[250],cs_pr2[250],sat_time[250]; 

double Kmax[200],Pmax,pr_max[100],sat_max[100],sat_min[100]; 

double perm[200][200][200][2],Press[200][200][2],Pr[200],sat[200][200][2],mon_pr[10000][200],mon_sat[10000][200]; 
int 

NTotal,Tsteps,dx,dy,dz,NX,NY,NZ,Nsource,sx,sy,sz,mx,my,mz,NInitial,models,Pcount[200][200][2],Preport[200][200][200][2],Tco

unt[150][150][5],flag4,flag5,flag6,flag7,flag8; 
void ReadParameter(void); 

double pr_dist(int,int,int,int); 

const int MIN=5,MAX=50; 
 

void main(void) 

{ 
 int i,j,k,l,p,rndm,report=10,total=0,t=0; 

 int *rep = new int[report]; 

 long start,stop; 
 double cdf,pdf,pr_val; 

 int tt=0; 

 
 ReadParameter(); 

 cout<<"\nNumber of particles injected every time step:  "; 

 cin>>NTotal; 
 cout<<"\nNumber of steps to be taken:  "; 

 cin>>Tsteps; 

 start=time(0); 
 ofstream monitor_pr1(cs_pr1); 

 ofstream monitor_pr2(cs_pr2); 

 ofstream monitor_sat(sat_time); 
 ofstream satn(Sfile); 

 ofstream pres(Prfile); 

 ofstream chk("check.dat"); 
 remove("Echeck.xls"); 

 const int a=1,b=1; 

 double add=1.0,subt=0.5,c=10; 
 

 // ***************** creating the permeability field *****************  

 for ( i=1;i<=NX;i++) 
 { 

  for ( j=1;j<=NY;j++) 

  { 
   for ( k=1;k<=NZ;k++) 

   { 
    for (l=1;l<=models;l++) 

    { 

     perm[l][i][j][k]=perm[l][i][j][k]/Kmax[l]; 
    } 

   } 

  } 
 } 

 

 



 170 

 

 // **************** starting the walk ********************  
 for (l=1;l<=models;l++) 

 { 

  int Npart=0; 
//  pres<<"\nModel "<<l<<"\n"; 

 

 
  for (i=1;i<=NZ;i++) 

   { 

   for (j=1;j<=NY;j++) 
    { 

    for (k=1;k<=NX;k++) 

     { 
     Pcount[k][j][i]=0; 

     } 

    } 
   } 

 

 
 for (int t1=1;t1<=Tsteps;t1++) 

 { 

  int count=0; 
  //cout<<"\n********************\n"<<t1<<"\n********************\n"; 

 

  for (int np1=1;np1<=NTotal;np1++) 
  { 

   int zzz=1; 
   Npart++; 

    i=sx; j=sy; k=sz; 

    Pcount[i][j][k]+=1;  

 

    do 

    { 
    for (p=1; p<=5; p++) 

     {Pr[p]=0;} 

 
 

 

     if (i>1 && i<NX && j>1 && j<NY && Pcount[i][j][k]>=MIN) 
      { 

      Pr[2]=(a*((Pcount[i][j][k]-Pcount[i-1][j][k])/Npart)+b*pow(perm[l][i-

1][j][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i-1][j][k]/MAX); 
      Pr[3]=(a*((Pcount[i][j][k]-

Pcount[i+1][j][k])/Npart)+b*pow(perm[l][i+1][j][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i+1][j][k]/MAX); 

      Pr[4]=(a*((Pcount[i][j][k]-Pcount[i][j-1][k])/Npart)+b*pow(perm[l][i][j-
1][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i][j-1][k]/MAX); 

         Pr[5]=(a*((Pcount[i][j][k]-

Pcount[i][j+1][k])/Npart)+b*pow(perm[l][i][j+1][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i][j+1][k]/MAX); 
      Pr[1]=(a*(Pcount[i][j][k]/Npart)+b*perm[l][i][j][k])*exp(-Pcount[i][j][k]/MAX); 

     } 

     else 
     { 

      Pr[5]=0; Pr[2]=0; Pr[3]=0; Pr[4]=0; Pr[1]=1; 

     } 
 

      

     if (i>1 && i<NX && j>1 && j<NY && Pcount[i][j][k]>=MAX) 
     { 

      Pr[2]=(a*((Pcount[i][j][k]-Pcount[i-1][j][k])/Npart)+b*pow(perm[l][i-1][j][k]*perm[l][i][j][k],0.5)); 

      Pr[3]=(a*((Pcount[i][j][k]-
Pcount[i+1][j][k])/Npart)+b*pow(perm[l][i+1][j][k]*perm[l][i][j][k],0.5)); 

      Pr[4]=(a*((Pcount[i][j][k]-Pcount[i][j-1][k])/Npart)+b*pow(perm[l][i][j-1][k]*perm[l][i][j][k],0.5)); 

         Pr[5]=(a*((Pcount[i][j][k]-Pcount[i][j+1][k])/Npart)+b*pow(perm[l][i][j+1][k]*perm[l][i][j][k],0.5)); 

      Pr[1]=0; 
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     } 
 

    double sum=0; 

 
    for (p=1; p<=5; p++) 

     {sum+=Pr[p];} 

    if (sum>0) 
    { 

     //if (t1%50==0) {cout<<t1<<" "<<Pr[1]/sum<<" "<<Pr[2]/sum<<" "<<Pr[3]/sum<<"

 "<<Pr[4]/sum<<" "<<Pr[5]/sum<<"\n";} 
     rndm=rand()%100; 

     cdf=0; 

     //cout<<rndm<<"\n"; 
     for (p=1; p<=5; p++) 

     { 

      pdf=Pr[p]/sum; 
      cdf=cdf+pdf; 

      //cout<<cdf<<" "; 

      if (rndm<cdf*100) {break;} 
     } 

     //cout<<"\n"; 

 
 

     switch (p) 

     { 
      case 2:  

       dx=i-1; dy=j; dz=k; 
       break; 

      case 3:  

       dx=i+1; dy=j; dz=k; 

       break; 

      case 4:  

       dx=i; dy=j-1; dz=k; 
       break; 

      case 5:  

       dx=i; dy=j+1; dz=k; 
       break; 

      case 1: 

       dx=i; dy=j; dz=k;  
       break; 

     } 

    } 
 

    Pcount[dx][dy][dz]+=1; 

    Pcount[i][j][k]-=1; 
    if (dx==i && dy==j && dz==k) 

    { 

     zzz=0; 
    } 

    else 

    { 
     i=dx; j=dy; k=dz; zzz=1; 

    } 

    }while(zzz==1);// ********** end of while loop ************ 
   

   

  }// ******* end of 1 timestep ************ 
 

  for (i=1;i<=NZ;i++) 

   { 
     for (j=1;j<=NY;j++) 

      { 

       for (k=1;k<=NX;k++) 

      { 
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        Preport[l][k][j][i]=Pcount[k][j][i];         

      } 
        } 

   } 

 
  mon_sat[t1][l]=Preport[l][mx][my][mz]; 

  if (mon_sat[t1][l]>mon_sat[t1-1][l] && t1>1) sat_max[l]=mon_sat[t1][l]; 

  if (mon_sat[t1][l]<mon_sat[t1-1][l] && t1>1) sat_min[l]=mon_sat[t1][l]; 
  mon_pr[t1][l]=pr_dist(mz,my,mx,l); 

  if (mon_pr[t1][l]>mon_pr[t1-1][l] && t1>1) pr_max[l]=mon_pr[t1][l]; 

 
    } // end of all time steps // 

 

     
 }// ******************** end of all models ************************ 

 

 pres<<"Pressure Profile\n"<<models+3<<"\nX\nY\nZ\n"; 
 satn<<"Saturation\n"<<models+3<<"\nX\nY\nZ\n"; 

 for (int fff=0;fff<models;fff++) 

 { 
  satn<<"model "<<fff+1<<"\n"; 

  pres<<"model "<<fff+1<<"\n"; 

 } 
 

   for (i=1;i<=NZ;i++) 

    { 
    for (j=1;j<=NY;j++) 

     { 
     for (k=1;k<=NX;k++) 

     { 

      satn<<k<<" "<<j<<" "<<i<<" "; 

      pres<<k<<" "<<j<<" "<<i<<" "; 

      for (int l=1;l<=models;l++) 

      { 
       satn<<Preport[l][k][j][i]<<" "; 

       pr_val=pr_dist(i,j,k,l); 

       pres<<pr_val<<" "; 
      } 

      satn<<"\n"; 

      pres<<"\n"; 
     } 

    } 

    
    } 

 

     
 

    for (j=1;j<=models;j++) 

    { 
     chk<<"Model "<<j<<"\n"; 

     flag4=0, flag5=0; flag6=0; flag7=0; flag8=0; 

     monitor_sat<<"Model "<<j<<" "; 
     for (i=1;i<=Tsteps;i++) 

     { 

      if (mon_sat[i][j]>=5 && flag6==0) 
       { 

       flag6=1; 

       monitor_sat<<i<<"\n"; 
       } 

      if (mon_sat[i][j]>=1 && flag7==0) 

      { 
       flag7=1; 

       monitor_sat<<i<<" "; 

      } 

      if (mon_sat[i][j]>=10 && flag8==0) 
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      { 

       flag8=1; 
       monitor_sat<<i<<" "; 

      } 

      if (mon_pr[i][j]/pr_max[j]>0.4 && flag4==0) 
      { 

       monitor_pr1<<i<<" "; 

       flag4=1; 
      } 

 

      if (mon_pr[i][j]/pr_max[j]>0.8 && flag5==0) 
      { 

       monitor_pr2<<i<<" "; 

       flag5=1; 
      } 

      chk<<i<<" "<<mon_sat[i][j]<<"\n"; 

     } 
     monitor_pr1<<"\n"; 

     monitor_pr2<<"\n"; 

    } 
 

 

    monitor_pr1.close(); 
 monitor_pr2.close(); 

 monitor_sat.close(); 

 satn.close(); 
 pres.close(); 

 monitor_sat.close(); 
 chk.close(); 

 

 stop=time(0); 

 cout<<"\nTime taken:  "<<stop-start<<" secs\n"; 

 delete []rep; 

 Beep (2750,500); 
 

 

} // ********************* END OF MAIN ******************** 
 

void ReadParameter(void) 

{ 
 int i,j,k; 

 char Pfile[80]; 

 cout<<"Name of parameter file:  "; 
 cin.getline(Parfile,80); 

 ifstream data(Parfile); 

 data>>NX; 
 data>>NY; 

 data>>NZ; 

 //data>>Nsource; 
 cout<<"Size:  "<<NX<<" "<<NY<<" "<<NZ<<" \n"; 

  data>>sx; 

  data>>sy; 
  data>>sz; 

  cout<<"\nSource:  "<<sx<<" "<<sy<<" "<<sz<<"\n"; 

 
  data>>mx; 

  data>>my; 

  data>>mz; 
  cout<<"\nMonitor:  "<<mx<<" "<<my<<" "<<mz<<"\n"; 

 

 cout<<"\nPermeability file name:  "; 
 data.getline(Pfile,25); 

 cout<<Pfile<<"\n"; 

 ifstream permblty(Pfile); 

 permblty>>models; 
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 for (i=1;i<=NZ;i++) 

 { 
  for ( j=1;j<=NY;j++) 

  { 

   for ( k=1;k<=NX;k++) 
   { 

    for (int l=1;l<=models;l++) 

    { 
    permblty>>perm[l][k][j][i]; 

    if (Kmax[l]<perm[l][k][j][i]) 

     Kmax[l]=perm[l][k][j][i]; 
    } 

   } 

  } 
 } 

 

 cout<<"\n\nData Reading completed."; 
 cout<<"\nPressure file:  "; 

 data.getline(Prfile,125); 

 cout<<Prfile<<"\n"; 
 cout<<"\nSaturation file:  "; 

 data.getline(Sfile,125); 

 cout<<Sfile<<"\n"; 
 cout<<"\nPressure Monitoring files:\n"; 

 cout<<"Low:  "; 

 data.getline(cs_pr1,125); 
 cout<<cs_pr1<<"\n"; 

 data.getline(cs_pr2,125); 
 cout<<"High:  "<<cs_pr2<<"\n"; 

 cout<<"\nFile for satn data:  "; 

 data.getline(sat_time,125); 

 cout<<sat_time<<"\n\n"; 

 permblty.close(); 

 data.close(); 
 

} 

 
double pr_dist(int z, int y, int x, int mod) 

{ 

 double press=0,d; 
 int c=0; 

 const double a=1,b=10,l=1; 

 for (int i=1;i<=NX;i++) 
 { 

  for (int j=1;j<=NY;j++) 

  { 
   for (int k=1;k<=NZ;k++) 

   { 

    d=pow((x-i)*(x-i)+(y-j)*(y-j)+(z-k)*(z-k),0.5)/l; 
    if (d!=0 && Preport[mod][i][j][k]!=0) 

    { 

      press+=a*Preport[mod][i][j][k]/MAX*(exp(b/d)); 
      c++; 

    } 

   } 
  } 

 } 

 press=press/c; 
 return(press); 

 

} 
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Appendix B: SGeMS Plugin 

B.1. BUILDING THE PLUGIN 

We will now detail the development of the library file for the SGeMS plugin, 

which is integrated with the larger SGeMS code. The entire code can be retrieved from 

the GitHub repository at https://github.com/ar2tech/ar2tech-SGeMS-public. The codes 

that were developed for the plugin will need to be compiled with the original SGeMS 

code in order to use the plugin. 

B.1.1.  The initialize function 

An example of part of the initialize function is given in Figure B.1. The function 

is passed two arguments: list of all parameters input by the user, and an object to handle 

errors. The parameter names read by the initialize function depend on their particular 

description in the .ui file. For example, as seen in Figure B.2, the widget for selecting the 

 

Figure B.1. Example of the initialize function 

 

Figure B.2. Qt Designer layout, showing the name assigned to the permeability widget 

https://github.com/ar2tech/ar2tech-SGeMS-public
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permeability models is called ‘perm_grid’, so variable perm_grid_name is assigned the 

value in that specific box using the statement: 

std::string perm_grid_name = parameters->value( "perm_grid.value" ); 

A similar approach will be taken for populating all variables in the initialize function. 

B.1.2.  The execute function 

As mentioned in chapter 6, the execute function controls the workflow for 

implementing the model selection algorithm, invoking the different modules needed for 

the process and enabling proper data transfer from one part of the workflow to the next. 

The modules are defined as functions defined in a separate script file called RW.cpp. In 

this section, we detail the development of the various modules within the algorithm. 

Particle-tracking proxy 

The particle tracking proxy is the same proxy as was implemented in chapter 5. 

Thus it needs variables like model size, grid dimensions, fluid and rock properties, and 

depth and initial pressure values of the reservoir. The input tab for these properties has 

been described in section 6.2 and Figure 6.4.  

In order to run the proxy over all models, the code needs the ability to cycle 

through the list of permeabilities and porosities that were specified in the input tab. For 

this purpose, it needs a count for the total number of models, which is achieved using the 

following snippet of code within the initialize function: 
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The variable perm_grid_ is a pointer to the permeability object and represents the 

grid the algorithm will be applied to, defined in the class ModelSelection. This pointer is 

used to find the size of the object, and hence the number of models in the object as shown 

above. It is also used to iterate through the list of models in the ‘permeability’ object, as 

shown below: 

 

In the above example, a list iterator is being created for the list of names in the 

permeability object called perm_name_iter. This iterator is then used to populate a 

pointer called tmp_perm_prop, which points to the variable listed as a specific name for 

the permeability object. All operations with a particular model of permeability will be 

done on the pointer tmp_perm_prop. Then, the program can move on to the next model in 

the permeability object by incrementing the list iterator for the permeability names, 

perm_name_iter. 

The next step is to know how to use the pointer tmp_perm_prop to extract values 

of the property at specific grid locations for the model. For this purpose, we would use a 

code as follows: 
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In the above example, we extract the dimensions of the grid from the perm_grid_ pointer 

itself, and then use that to iterate through tmp_perm_prop to get individual values of the 

variable using the function get_value(int). 

 The last piece of information we need is to know how to write values calculated 

by our program back into the GUI, under a newly created object. For this purpose, we can 

use a snippet of code as follows: 
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In this code, we first create a new object called “Random_walk_results” in lines 1-2. 

Then, we define a Grid_contiuous_property pointer called tmp_rw_prop to write values 

to the object in lines 4-5. Finally, we write the values of the output (in this case called 

saturations) using the function set_value() on line 14.  

The information presented above is adequate to enable us to get values from the 

user interface and execute the proxy.  

PCA and Model Grouping 

The results of the proxy noted at user-specified locations are used for principal 

components analysis and subsequent clustering, as detailed in chapter 3. Here, we show 

parts of the code where that workflow is implemented. 

The computation of the principal component axes and projection of the models 

onto those axes are accomplished using a function projections(): 

 

This function takes as input the statistics derived from the proxy (original), a pre-

allocated array to store the projections of the models onto principal component space 

(projected), the total number of models (num_of_en) and the total number of parameters 

for each model (parms). The code can be seen in later in this Appendix. 

The projections of the models are then divided into clusters and the model closest 

to each cluster centroid is found. 
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The function cluster() is used for this purpose: it finds the ideal number of clusters for the 

current case and saves that value in num_clus and it assigns cluster identifier numbers to 

each model in the array clustered. Finally, the function find_centroids() finds the cluster 

centroids for the allocated clusters and saves them in the array centroids (line 4), which is 

then used in the function find_best_models() to find the model in each cluster closest to 

the centroid and save its identifying number in the variable rep_models (line 6). These 

functions are also given in full in the next section of this Appendix. 

Numerical simulation and Bayesian updating 

The final step in a model selection iteration is to evaluate the representative model 

for each cluster using a full physics flow simulation, comparing the simulation results to 

observed data and computing posterior probabilities using Bayes’ rule. For this purpose, 

our code needs to be able to do the following: run simulations for each representative 

model, read the simulated result for the simulation run, and once all models have been 

run, compute the posterior probabilities. 

In order to run the numerical simulation, in our current implementation we have 

used CMG-GEM; however, it is possible to use any other simulator by making simple 

changes to the code. The variables that need changing for each run are the permeability 

and porosity distributions, and this is made possible by incorporating them in the 

simulation data deck as external files using the INCLUDE command in CMG. Thus, the 

code was required to write out permeability and porosity files before initiating a 

particular run. The simulator was run using the command prompt version of CMG, using 

the following code: 
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In this code snippet, the permeability and porosity files are being written to the 

same folder where the simulation data deck lies (the working folder) using lines 1 – 9. 

The simulator is then run using line 16, which invokes the windows command processor 

to execute the following simulation command: 

 

Here, sim_loc refers to the location of the simulator on the particular computer 

(specified previously by the user in the GUI), and sim_file refers to the simulation data 

deck, which should exist within the working folder and is also specified by the user in the 

GUI. 

Once the particular representative model has been run, the REPORT.exe program 

in CMG extracts the necessary simulated data for the conditioning wells from the 

simulation output, using line 23. This invokes the command processor to execute the 

following: 
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Here, the REPORT program uses the file Report.rwd in the working folder to 

evaluate the output of the simulation and save the results in Report.rwo. The structure of 

the Report.rwd file is as follows: 

 

Here, the program reads the output from the BASE_CASE file, the particular 

output being the bottom-hole pressure for the well called INJECTOR-3 at times 100, 200, 

300, 400 and 500 days. The results are read into an array called simulation_results 

using a read_report function. 

 

Once all the simulations have been run, the final step is the calculation of the 

posterior probabilities and finding the cluster with the highest updated probability. This is 

achieved using the following code: 

 

Here, the function calc_probability (details later in this Appendix) calculates 

the updated probability for all the clusters, using the simulated_results and the 

history data. Then, lines 4 – 13 are used to create a vector of vectors to store the values 
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of the updated probabilities and sort them in the order of decreasing probability. Finally, 

in line 15, the index of the cluster with the highest probability is stored as the variable 

best_cluster_id.  

Saving the results 

Once the model selection process is terminated, either due to equiprobable final 

clusters or a limit on the number of iterations, the best-fit models need to be written out to 

the GUI. For this purpose, the user creates an empty object within the GUI before the 

start of the program, and this object is then populated using the models in the best-fit 

cluster, using the following code: 

 
The process uses internal commands available in SGeMS for copying parameters 

from one object into another. The code on line 16 achieves this by running the following 

SGeMS script: 

 

Where ‘A’ is the object from which the property ‘A_1’ is being copied into the 

object ‘B’, and the new property is being called ‘B_1’.   
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B.2. CODES FOR PLUGIN  

In this section, we layout the codes that are needed for compiling SGeMS with the 

model selection plugin.  

ModelSelection.cpp : Primary code for defining the initialize and execute functions 
 
/* ----------------------------------------------------------------------------- 
** Copyright (c) 2012 Advanced Resources and Risk Technology, LLC 

** All rights reserved. 

** 

** This file is part of Advanced Resources and Risk Technology, LLC (AR2TECH)  

** version of the open source software sgems.  It is a derivative work by  

** AR2TECH (THE LICENSOR) based on the x-free license granted in the original  
** version of the software (see notice below) and now sublicensed such that it  

** cannot be distributed or modified without the explicit and written permission  

** of AR2TECH. 
** 

** Only AR2TECH can modify, alter or revoke the licensing terms for this  

** file/software. 
** 

** This file cannot be modified or distributed without the explicit and written  

** consent of AR2TECH. 
** 

** Contact Dr. Alex Boucher (aboucher@ar2tech.com) for any questions regarding 

** the licensing of this file/software 
** 

** The open-source version of sgems can be downloaded at  

** sourceforge.net/projects/sgems. 
** ----------------------------------------------------------------------------*/ 

 

 
 

/********************************************************************** 

** Author: Nicolas Remy 
** Copyright (C) 2002-2004 The Board of Trustees of the Leland Stanford Junior 

**   University 
** All rights reserved. 

** 

** This file is part of the "geostat" module of the Geostatistical Earth 
** Modeling Software (GEMS) 

** 

** This file may be distributed and/or modified under the terms of the  
** license defined by the Stanford Center for Reservoir Forecasting and  

** appearing in the file LICENSE.XFREE included in the packaging of this file. 

** 
** This file may be distributed and/or modified under the terms of the 

** GNU General Public License version 2 as published by the Free Software 

** Foundation and appearing in the file LICENSE.GPL included in the 
** packaging of this file. 

** 

** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE 
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 

** 

** See http://www.gnu.org/copyleft/gpl.html for GPL licensing information. 
** 

** Contact the Stanford Center for Reservoir Forecasting, Stanford University 

** if any conditions of this licensing are not clear to you. 
** 

**********************************************************************/ 
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#include <grid/rgrid.h> 
#include <utils/gstl_plugins.h> 

#include <utils/string_manipulation.h> 

#include <grid/grid_property.h> 
#include <utils/gstl_messages.h> 

#include <utils/manager.h> 

#include "ModelSelection.h" 
#include "matrix_def.h" 

 

int ModelSelection::execute( GsTL_project* proj )  { 
 switch(selected_algorithm) 

 { 

//  case SCA: 
//   run_SCA(proj); 

//   break; 

  case RANDOM_WALKER: 
   run_RW(proj); 

   break; 

  case MODEL_EXPANSION: 
   break; 

 } 

 return 0; 
} 

 

bool ModelSelection::initialize( const Parameters_handler* parameters, 
   Error_messages_handler* errors ) { 

 
 #pragma region Get parameters 

 std::string perm_grid_name = parameters->value( "perm_grid.value" ); 

 errors->report( perm_grid_name.empty(), "perm_grid", "No grid selected" ); 

 if( perm_grid_name.empty() ) return false; 

 

 std::string poro_grid_name = parameters->value( "poro_grid.value" ); 
 errors->report( poro_grid_name.empty(), "poro_grid", "No grid selected" ); 

 if( poro_grid_name.empty() ) return false; 

 
 

 std::string algorithm_name = parameters->value( "algorithm_type.value" ); 

 errors->report( algorithm_name.empty(), "algorithm_type", "No grid selected" ); 
 if( algorithm_name.empty() ) return false; 

 

 perm_grid_ = dynamic_cast<RGrid*>( Root::instance()->interface(  
       gridModels_manager + "/" + perm_grid_name).raw_ptr() ); 

 poro_grid_ = dynamic_cast<RGrid*>( Root::instance()->interface(  

       gridModels_manager + "/" + poro_grid_name).raw_ptr() ); 
 

 perm_name_list = perm_grid_->property_list(); 

 poro_name_list = poro_grid_->property_list(); 
  

 num_of_en = perm_name_list.size(); 

 
 if(String_Op::contains( algorithm_name, "Scaled Connectivity Analysis", false )) 

  selected_algorithm = SCA; 

 else if(String_Op::contains( algorithm_name, "Random Walker", false )) 
  selected_algorithm = RANDOM_WALKER; 

 else if(String_Op::contains( algorithm_name, "Model Expansion", false )) 

  selected_algorithm = MODEL_EXPANSION; 
 else 

  return false; 

 
 //simulation file 

 sim_file_name = parameters->value( "sim_file_name.value" ); 

 errors->report( sim_file_name.empty(), "sim_file_name", "Missing simulation file name" ); 

 if( sim_file_name.empty() ) return false; 
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 //simulator location 
 simulator_location = parameters->value( "simulator_location.value" ); 

 errors->report( simulator_location.empty(), "simulator_location", "Missing simulator location" ); 

 if( simulator_location.empty() ) return false; 
 

 //CMG RESULTS location 

 results_location = parameters->value( "results_location.value" ); 
 errors->report( results_location.empty(), "results_location", "Missing results location" ); 

 if( results_location.empty() ) return false; 

 
 //history file 

 std::string history_file_name = parameters->value( "history_file_name.value" ); 

 errors->report( history_file_name.empty(), "history_file_name", "Missing history file name" ); 
 if( history_file_name.empty() ) return false; 

 

 fstream fp_hist; 
 fp_hist.open(history_file_name.c_str(), ios::in); 

 fp_hist>>nrows_hist>>ncols_hist; 

 history_data =  Allocate2D<double>(nrows_hist, ncols_hist); 
 for (int i=0; i<nrows_hist; i++) 

 { 

  for (int j=0; j<ncols_hist; j++) 
   fp_hist>>history_data[i][j]; 

 } 

 fp_hist.close(); 
 

 // working folder for simulations 
 simulation_folder = parameters->value( "simulation_folder.value" ); 

 errors->report( simulation_folder.empty(), "simulation_folder", "No folder for simulation selected" ); 

 if( simulation_folder.empty() ) return false; 

 

 switch(selected_algorithm) 

 { 
//  case SCA: 

//   if(!Initialize_SCA(parameters, errors)) 

//    return false; 
  case RANDOM_WALKER: 

   if(!Initialize_RW(parameters, errors)) 

    return false; 
  case MODEL_EXPANSION: 

   if(!Initialize_ME(parameters, errors)) 

    return false; 
 } 

 #pragma endregion 

 
 if( !errors->empty() ) { 

  return false; 

 } 
 

 this->extract_parameters(parameters); 

 return true; 
} 
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RW.cpp : Classes and associated /lfunctions / variables are decleared in RW.h 
 

// Header files <> 
#include "matrix_def.h" 
#include <time.h> 
#include <grid/point_set.h> 
#include "RW.h" 
#include "ModelSelection.h" 
#include "cluster_to_simulation.h" 
 
template <typename T> 
double percentile(Grid_continuous_property *tmp_perm_prop, int NX, int NY, int NZ, double 
target_p, T cutoff) 
{ 
 // finds the target_p-th percentile among all data in the 3D array dArray which is above the 
cutoff // 
 vector<double> a; 
 int counter = 0; 
 for (int i=0; i<NX; i++) 
 { 
  for (int j=0; j<NY; j++) 
  { 
  for (int k=0; k<NZ; k++) 
  { 
   if (tmp_perm_prop->get_value(counter)>0) 
   { 
   a.push_back(tmp_perm_prop->get_value(counter)*9.869e-16); 
   } 
   counter++;     
  } 
  } 
 } 
 fstream fp; 
 fp.open("in_percentile.txt",ios::out); 
 fp<<"In percentile\n"; 
 sort(a.begin(),a.end()); 
 int length = a.size(); 
 fp<<length<<endl; 
 int b = length*(target_p/100.0); 
 fp<<b<<" "<<a[b-1]<<endl; 
 fp.close(); 
  
 double return_val; 
 if (b>0) 
  return_val = a[b-1]; 
 else 
  return_val = a[0]; 
 a.clear(); a.shrink_to_fit(); 
 
 return return_val; 
} 
 
 
bool ModelSelection::Initialize_RW( const Parameters_handler* parameters, Error_messages_handler* 
errors ) 
{ 
 fstream fp; 
 fp.open("check_read.txt",ios::out | ios::app); 
  
 num_injectors = 1; 
 inj_locs = Allocate2D<int>(num_injectors,3); 
 inj_locs[0][0] = String_Op::to_number<int>( parameters->value( "NX.value" ) ); 
 errors->report( inj_locs[0][0] <= 0, "NX", "Invalid injector location" ); 
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 if( inj_locs[0][0] <= 0 ) return false; 
 
 inj_locs[0][1] = String_Op::to_number<int>( parameters->value( "NY.value" ) ); 
 errors->report( inj_locs[0][1] <= 0, "NY", "Invalid injector location" ); 
 if( inj_locs[0][1] <= 0 ) return false; 
 
 inj_locs[0][2] = String_Op::to_number<int>( parameters->value( "NZ.value" ) ); 
 errors->report( inj_locs[0][2] <= 0, "NZ", "Invalid injector location" ); 
 if( inj_locs[0][2] <= 0 ) return false; 
 
  
 fp<<"Injectors: "<<inj_locs[0][0]<<" "<<inj_locs[0][1]<<" "<<inj_locs[0][2]<<endl; 
 fp.close(); 
 
 std::string depth_grid_name = parameters->value( "depth_grid.value" ); 
 errors->report( depth_grid_name.empty(), "depth_grid", "No grid selected" ); 
 if( depth_grid_name.empty() ) return false; 
 
 depth_grid_ = dynamic_cast<RGrid*>( Root::instance()->interface(gridModels_manager + "/" + 
depth_grid_name).raw_ptr() ); 
  
 fp.open("check_read.txt",ios::app); 
 fp<<"Depth grid name: "<<depth_grid_name<<endl; 
 fp.close(); 
 
 std::string ini_pr_grid_name = parameters->value( "ini_pr_grid.value" ); 
 errors->report( ini_pr_grid_name.empty(), "ini_pr_grid", "No grid selected" ); 
 if( ini_pr_grid_name.empty() ) return false; 
 
 fp.open("check_read.txt",ios::app); 
 fp<<"Pressure grid name: "<<ini_pr_grid_name<<endl; 
 fp.close(); 
 
 ini_pr_ = dynamic_cast<RGrid*>( Root::instance()->interface(gridModels_manager + "/" + 
ini_pr_grid_name).raw_ptr() ); 
 
 
 depth_grid_list = depth_grid_->property_list(); 
 ini_pr_list = ini_pr_->property_list(); 
 
 rel_perm_table = Allocate2D<double>(1000,3); 
 calc_rel_perms(rel_perm_table,parameters,errors); 
 
 read_fluid_properties(parameters,errors, brine_den_rw, co2_den_rw, brine_visc_rw, co2_visc_rw, 
ct_rw); 
 
 fw_table = Allocate2D<double>(1000,2); 
 calc_fw_table( rel_perm_table, fw_table, co2_visc_rw, brine_visc_rw ); 
 
 read_run_time_data(parameters,errors, total_days, inj_rate, delta_T, reporting_interval, 
particles_per_time); 
 
 std::string unit_system = parameters->value( "unit_system.value" ); 
 errors->report( unit_system.empty(), "unit_system", "No UNIT SYSTEM selected" ); 
 if( unit_system.empty() ) return false; 
 
 if(String_Op::contains( unit_system, "FIELD", false )) 
  selected_units = FIELD; 
 else if(String_Op::contains( unit_system, "SI", false )) 
  selected_units = SI; 
 else 
  return false; 
 
 std::string RW_grid_name = parameters->value( "RW_grid.value" ); 
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 errors->report( RW_grid_name.empty(), "RW_grid", "No grid selected" ); 
 if( RW_grid_name.empty() ) return false; 
 
 RW_grid_ = dynamic_cast<RGrid*>( Root::instance()->interface(gridModels_manager + "/" + 
RW_grid_name).raw_ptr() ); 
 
/* simulation_folder = parameters->value( "simulation_folder.value" ); 
 errors->report( simulation_folder.empty(), "simulation_folder", "No folder for simulation 
selected" ); 
 if( simulation_folder.empty() ) return false; 
*/ 
 // read in the monitoring locations 
 std::string Monitor_file_name = parameters->value( "monitoring_locs_2.value" ); 
 errors->report( Monitor_file_name.empty(), "monitoring_locs_2", "Invalid monitoring locations" 
); 
 if( Monitor_file_name.empty() ) return false; 
 
 Point_set* grid_mon_ = dynamic_cast<Point_set*>(  Root::instance()-
>interface(gridModels_manager + "/" + Monitor_file_name).raw_ptr() ); 
 
 const std::vector<Point_set::location_type>& locs = grid_mon_->point_locations(); 
 std::vector<Point_set::location_type>::const_iterator vec_it = locs.begin(); 
 num_monitors = locs.size(); 
 monitor_locs = Allocate2D<int>(num_monitors,3); 
 fp<<"Number of monitors: "<<num_monitors<<endl; 
 for(int i=0; i<num_monitors; i++)  
 { 
  monitor_locs[i][0] = (int) vec_it->x();  
  monitor_locs[i][1] = (int) vec_it->y();  
  monitor_locs[i][2] = (int) vec_it->z();  
  vec_it++; 
 } 
/* 
 //history file 
 std::string history_file_name = parameters->value( "history_file_name.value" ); 
 errors->report( history_file_name.empty(), "history_file_name", "Missing history file name" ); 
 if( history_file_name.empty() ) return false; 
 
 fstream fp_hist; 
 fp_hist.open(history_file_name.c_str(), ios::in); 
 fp_hist>>nrows_hist>>ncols_hist; 
 history_data =  Allocate2D<double>(nrows_hist, ncols_hist); 
 for (int i=0; i<nrows_hist; i++) 
 { 
  for (int j=0; j<ncols_hist; j++) 
  fp_hist>>history_data[i][j]; 
 } 
 fp_hist.close(); 
 
 //simulation file 
 sim_file_name = parameters->value( "sim_file_name.value" ); 
 errors->report( sim_file_name.empty(), "sim_file_name", "Missing simulation file name" ); 
 if( sim_file_name.empty() ) return false; 
 
 //simulator location 
 simulator_location = parameters->value( "simulator_location.value" ); 
 errors->report( simulator_location.empty(), "simulator_location", "Missing simulator location" 
); 
 if( simulator_location.empty() ) return false; 
 
 //CMG RESULTS location 
 results_location = parameters->value( "results_location.value" ); 
 errors->report( results_location.empty(), "results_location", "Missing results location" ); 
 if( results_location.empty() ) return false; 
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*/ 
 fp.open("check_read.txt",ios::app); 
 fp<<"Done reading all locations etc.\n"; 
 fp.close(); 
  
 return true; 
} 
 
int ModelSelection::run_RW(GsTL_project* proj)  
{ 
 model_data static_data; 
  
 NX = perm_grid_->nx(); 
 NY = perm_grid_->ny(); 
 NZ = perm_grid_->nz(); 
 
 stats = Allocate2D<double>(num_of_en,(int) num_monitors*total_days/reporting_interval); 
  
 
 dx = perm_grid_->geometry()->cell_dims().x(); 
 dy = perm_grid_->geometry()->cell_dims().y(); 
 dz = perm_grid_->geometry()->cell_dims().z(); 
  
 list<string>::iterator perm_name_iter = perm_name_list.begin(); 
 list<string>::iterator poro_name_iter = poro_name_list.begin(); 
 list<string>::iterator depth_name_iter = depth_grid_list.begin(); 
 list<string>::iterator ini_pr_name_iter = ini_pr_list.begin(); 
 
 Grid_continuous_property *tmp_perm_prop; 
 Grid_continuous_property *tmp_poro_prop; 
 Grid_continuous_property *tmp_depth_prop; 
 Grid_continuous_property *tmp_ini_pr_prop; 
 
 #pragma region Allocate data to struct 
 static_data.NX = NX; 
 static_data.NY = NY; 
 static_data.NZ = NZ; 
 static_data.dx = dx; 
 static_data.dy = dy; 
 static_data.dz = dz; 
 static_data.simulation_folder = simulation_folder; 
 
 static_data.brine_den_rw  = brine_den_rw; 
 static_data.brine_visc_rw = brine_visc_rw; 
 static_data.co2_den_rw = co2_den_rw; 
 static_data.co2_visc_rw = co2_visc_rw; 
 static_data.ct_rw = ct_rw; 
 
 static_data.num_injectors = num_injectors; 
 static_data.num_monitors = num_monitors; 
 static_data.nrows_hist = nrows_hist; 
 static_data.ncols_hist = ncols_hist; 
 static_data.inj_locs = inj_locs; 
 static_data.monitor_locs = monitor_locs; 
 static_data.particles_per_time = particles_per_time; 
 
 static_data.fw_table = fw_table; 
 static_data.history_data = history_data; 
 
 static_data.total_days = total_days; 
 static_data.inj_rate = inj_rate; 
 static_data.delta_T = delta_T; 
 static_data.reporting_interval = reporting_interval; 
 switch(selected_units) 



 191 

 { 
  case SI: 
   static_data.selected_units = 1; 
   break; 
  case FIELD: 
   static_data.selected_units = 2; 
   break; 
 } 
  
 #pragma endregion 
 
 string cmd("NewCartesianGrid"); 
 string cmd_parameters; 
 Error_messages_handler copy_error_msg; 
 cmd_parameters = "Random_walk_results::"  + static_cast<ostringstream*>( &(ostringstream() << 
NX) )->str() + "::" 
  + static_cast<ostringstream*>( &(ostringstream() << NY) )->str() + "::" 
  + static_cast<ostringstream*>( &(ostringstream() << NZ) )->str() + "::" 
  + static_cast<ostringstream*>( &(ostringstream() << dx) )->str() + "::" 
  + static_cast<ostringstream*>( &(ostringstream() << dy) )->str() + "::" 
  + static_cast<ostringstream*>( &(ostringstream() << dz) )->str() + "::0::0::0::0.00"; 
 
 bool copy_ok = proj->execute(cmd, cmd_parameters, &copy_error_msg); 
 
 // Create grid to write current RW results // 
 string opt_grid_name = "Random_walk_results"; 
 opt_grid_ = dynamic_cast<RGrid*>( Root::instance()->interface(gridModels_manager + "/" + 
opt_grid_name).raw_ptr() ); 
 
  
 SmartPtr<Progress_notifier> progress_notifier = utils::create_notifier( "Running Random 
Walker", num_of_en, 1); 
 for (int model=0; model<num_of_en; model++) 
 { 
  tmp_perm_prop = perm_grid_->select_property(*perm_name_iter); 
  tmp_poro_prop = poro_grid_->select_property(*poro_name_iter); 
  tmp_depth_prop = depth_grid_->select_property(*depth_name_iter); 
  tmp_ini_pr_prop = ini_pr_->select_property(*ini_pr_name_iter); 
  progress_notifier->message() << "Working on realization " << model+1 << " of "<< num_of_en 
<< gstlIO::end; 
  if( !progress_notifier->notify() ) return 1; 
  if (restart_flag==0) then run random walker else dont. Similarly for creating object 
Random_walk_results above. 
  random_walker(model, tmp_perm_prop, tmp_poro_prop, tmp_depth_prop, tmp_ini_pr_prop, 
static_data, opt_grid_, stats); 
  if ((model+1)%60==0) 
  { 
   cmd = "SaveProject"; 
   cmd_parameters = simulation_folder + "//temp_results"; 
   bool copy_ok = proj->execute(cmd, cmd_parameters, &copy_error_msg); 
  } 
 
  perm_name_iter++; poro_name_iter++; 
 } 
 
 fstream fp2; 
 char stats_file[1000]; 
 strcpy(stats_file, simulation_folder.c_str()); 
 strcat(stats_file, "\\stats_clean.txt"); 
 fp2.open(stats_file,ios::out); 
 for (int i=0; i<total_days/reporting_interval*num_monitors; i++) 
 { 
  for (int j=0; j<num_of_en; j++) 
   fp2<<stats[j][i]<<" "; 
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  fp2<<endl; 
 } 
 fp2.close(); 
 
  
 #pragma region clustering to simulation 
  
 char resultRW[100], history[100], Pfile[100]; 
 int num_grids, num_models, parms, Nx, Ny, Nz, num_iter; 
 int *clusterid, *rep_models; 
 double **original, **cov, **perms, **observed, **zmean, **evecs, **projected, **average, 
**rep, errs[4], **centroids, **simulated_results; 
 int check=0, num_clus, most_probable,run_num,i,j; 
 double prob_value, dif; 
 time_t start,end; 
// Reading the stats file. This contains statistics for each model at the monitoring locations 
 
 fstream fp_check; 
 fp_check.open(stats_file,ios::in); 
 int count_parms = 0; 
 double temp_fp_check; 
 while (!fp_check.eof()) 
 { 
  for (int j=0; j<num_of_en; j++) 
   fp_check>>temp_fp_check; 
  count_parms++; 
 } 
 fp_check.close(); 
 parms = count_parms; 
 original = Allocate2D<double>(num_of_en,parms); 
 
 fstream fp; 
 fp.open(stats_file,ios::in); 
 for (int i=0; i<parms; i++) 
 { 
  for (int j=0; j<num_of_en; j++) 
   fp>>original[j][i]; 
 } 
 fp.close(); 
 
// Projection and all 
 projected = Allocate2D<double>(num_of_en,3); 
 projections(original, projected, num_of_en, parms); 
 
// Clustering 
 clusterid = new int[num_of_en]; 
 int get_clus; 
 cin>>get_clus; 
 num_clus = cluster(num_of_en, projected, clusterid);  
 centroids = Allocate2D<double>(num_clus,3); 
 find_centroids(num_of_en, num_clus, centroids, clusterid, projected); 
 rep_models = new int[num_clus];   
 find_best_models(num_of_en,num_clus, clusterid, centroids, projected, rep_models); 
 
// Write clustering data to output files 
 fstream fp_cluster_data; 
 char cluster_op[1000]; 
 strcpy(cluster_op, simulation_folder.c_str()); 
 strcat(cluster_op, "\\cluster_data.txt"); 
 fp_cluster_data.open(cluster_op, ios::out); 
 fp_cluster_data<<"Projections: \n"; 
 for (i=0; i<num_of_en; i++) 
 { 
  for (int j=0; j<3; j++) 
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   fp_cluster_data<<projected[i][j]<<"\t"; 
  fp_cluster_data<<endl; 
 } 
  
 fp_cluster_data<<"\nCluster IDs: \n"; 
 for (i=0; i<num_of_en; i++) 
  fp_cluster_data<<clusterid[i]<<endl; 
 
 fp_cluster_data<<"\nCentroids: \n"; 
 for (i=0; i<num_clus; i++) 
 { 
  for (int j=0; j<3; j++) 
   fp_cluster_data<<centroids[i][j]<<"\t"; 
  fp_cluster_data<<endl; 
 } 
 fp_cluster_data.close(); 
 
 
 
 simulated_results = Allocate2D<double>(static_data.nrows_hist, num_clus); 
// Run CMG 
 int frequency = 1; 
 for (int i=0; i<num_clus; i++) 
 { 
  std::list<string>::iterator perm_name_iter = perm_name_list.begin(); 
  std::list<string>::iterator poro_name_iter = poro_name_list.begin(); 
  Grid_continuous_property *tmp_perm_prop; 
  Grid_continuous_property *tmp_poro_prop; 
  for (int j=0; j<rep_models[i]; j++) 
  { 
   perm_name_iter++; 
   poro_name_iter++; 
  } 
  tmp_perm_prop = perm_grid_->select_property(*perm_name_iter); 
  tmp_poro_prop = poro_grid_->select_property(*poro_name_iter); 
 
  // write to simulation folder 
  char fname[1000], fname_perm[1000], fname_por[1000]; 
  strcpy(fname,simulation_folder.c_str()); 
  strcpy(fname_perm, fname); 
  strcpy(fname_por, fname); 
  strcat(fname_perm, "/perm.txt"); 
  strcat(fname_por, "/por.txt"); 
 
  FILE *fp_perm, *fp_por;  
  fp_perm = fopen(fname_perm, "w"); 
  fp_por = fopen(fname_por, "w"); 
  for (int j=0; j<NX*NY*NZ; j++) 
  { 
   fprintf(fp_perm,"%.2f\n", tmp_perm_prop->get_value(j)); 
   fprintf(fp_por,"%.2f\n",tmp_poro_prop->get_value(j)); 
  } 
  fclose(fp_perm); fclose(fp_por); 
 
  // Run CMG 
 
  string simulation_command = "\"" + simulator_location; 
  simulation_command = simulation_command + "\\gm201110.exe\" -parasol 6 -f " +  
simulation_folder + "\\" + sim_file_name; 
  simulation_command = simulation_command + " -wd " + simulation_folder; 
  system(simulation_command.c_str()); 
 
  string results_command = "\"" + results_location; 
  results_command = results_command + "\\report.exe\" /f "; 
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  results_command = results_command + simulation_folder + "\\Report.rwd /o "; 
  results_command = results_command + simulation_folder + "\\Report.rwo"; 
  char aa[10]; 
  system(results_command.c_str()); 
  cout<<results_command<<endl; 
  cin>>aa; 
   
 
  read_report(i, simulated_results, nrows_hist,simulation_folder + "\\Report.rwo"); 
 
 
 } 
 
// Write simulated results to file 
 fstream fp_sim; 
 fp_sim.open(simulation_folder + "\\simulated_results.txt", ios::out); 
 for (int i=0; i<nrows_hist; i++) 
 { 
  for (int j=0; j<num_clus; j++) 
  { 
   fp_sim<<simulated_results[i][j]<<" "; 
  } 
  fp_sim<<endl; 
 } 
 fp_sim.close(); 
 
// Find highest probability cluster 
 vector<double> class_probabilities(num_clus); 
 class_probabilities = calc_probability(simulated_results, history_data, nrows_hist, num_clus); 
 
 vector < vector<double> > link_probs_clusterid (num_clus); 
 vector<double>::iterator it; 
 int count_clus = 0; 
 for (it = class_probabilities.begin(); it!= class_probabilities.end(); it++) 
 { 
  link_probs_clusterid[count_clus].push_back(count_clus); 
  link_probs_clusterid[count_clus].push_back(*it); 
  count_clus++; 
 } 
 sort(link_probs_clusterid.begin(), link_probs_clusterid.end(), [](const std::vector< double >& 
a, const std::vector< double >& b){ return a[1] > b[1]; } ); 
 
 int best_cluster_id = link_probs_clusterid[0][0]; 
 
// Write results to an OBJECT 
 for (int i=0; i<num_of_en; i++) 
 { 
  if (clusterid[i]==best_cluster_id) 
  { 
   string cmd("CopyProperty"); 
   string cmd_parameters; 
   Error_messages_handler copy_error_msg; 
   std::list<string>::iterator perm_name_iter = perm_name_list.begin(); 
 
   for (int j=0; j<i; j++) 
   { 
    perm_name_iter++; 
   } 
 
   cmd_parameters = perm_grid_->name() + "::" + *perm_name_iter + "::" + RW_grid_-
>name() + "::" + *perm_name_iter + "::0::0"; 
   bool copy_ok = proj->execute(cmd, cmd_parameters, &copy_error_msg); 
 
  } 



 195 

 } 
  
 free(clusterid); 
 Free2D<double>(projected); 
  
 
  
#pragma endregion  
  
 return 0; 
} 
 
bool read_run_time_data(const Parameters_handler* parameters, Error_messages_handler* errors, 
double &total_days, double &inj_rate, double &delta_T, double &reporting_interval, int 
&particles_per_time) 
{ 
 total_days = String_Op::to_number<double>( parameters->value( "total_days.value" ) ); 
 errors->report( total_days <= 0, "total_days", "Invalid total run time" ); 
 if( total_days <= 0 ) return false; 
 
 inj_rate = String_Op::to_number<double>( parameters->value( "inj_rate.value" ) ); 
 errors->report( inj_rate <= 0, "inj_rate", "Invalid injection rate" ); 
 if( inj_rate <= 0 ) return false; 
 
 delta_T = String_Op::to_number<double>( parameters->value( "delta_T.value" ) ); 
 errors->report( delta_T <= 0, "delta_T", "Invalid update interval" ); 
 if( delta_T <= 0 ) return false; 
 
 reporting_interval = String_Op::to_number<double>( parameters->value( 
"reporting_interval.value" ) ); 
 errors->report( reporting_interval <= 0, "reporting_interval", "Invalid reporting interval" ); 
 if( reporting_interval <= 0 ) return false; 
 
 particles_per_time = String_Op::to_number<double>( parameters->value( 
"particles_per_time.value" ) ); 
 errors->report( particles_per_time <= 0, "particles_per_time", "Invalid number of particles 
per day" ); 
 if( particles_per_time <= 0 ) return false; 
 
 return true; 
 
} 
 
void calc_fw_table( double **rel_perm_table, double **fw_table, double co2_visc_rw, double 
brine_visc_rw ) 
{ 
 double krg, krw, sat; 
 for (int s=0; s<1000; s++) 
 { 
  sat = s/1000.0; 
  krg = rel_perm_table[s][0]; 
  krw = rel_perm_table[s][1]; 
  fw_table[s][0] = sat; 
  fw_table[s][1] = 1/(1+krw*co2_visc_rw/krg/brine_visc_rw); 
 } 
} 
 
bool calc_rel_perms(double **rel_perm_table, const Parameters_handler* parameters, 
Error_messages_handler* errors) 
{ 
 double end_pts[2], expn[2], Sr[2]; 
 double sat, kr; 
 end_pts[0] = String_Op::to_number<double>( parameters->value( "krg0.value" ) ); 
 errors->report( end_pts[0] <= 0, "krg0", "Invalid end point rel-perm for gas" ); 



 196 

 if( end_pts[0] <= 0 ) return false; 
 
 end_pts[1] = String_Op::to_number<double>( parameters->value( "krw0.value" ) ); 
 errors->report( end_pts[1] <= 0, "krw0", "Invalid end point rel-perm for brine" ); 
 if( end_pts[1] <= 0 ) return false; 
 
 expn[0] = String_Op::to_number<double>( parameters->value( "n1.value" ) ); 
 errors->report( expn[0] <= 0, "n1", "Invalid exponent for gas" ); 
 if( expn[0] <= 0 ) return false; 
 
 expn[1] = String_Op::to_number<double>( parameters->value( "n2.value" ) ); 
 errors->report( expn[1] <= 0, "n2", "Invalid exponent for brine" ); 
 if( expn[1] <= 0 ) return false; 
 
 Sr[0] = String_Op::to_number<double>( parameters->value( "Sgr.value" ) ); 
 errors->report( Sr[0] <= 0, "Sgr", "Invalid residual gas saturation" ); 
 if( Sr[0] <= 0 ) return false; 
 
 Sr[1] = String_Op::to_number<double>( parameters->value( "Swr.value" ) ); 
 errors->report( Sr[1] <= 0, "Swr", "Invalid residual gas saturation" ); 
 if( Sr[1] <= 0 ) return false; 
 
 for (int s=0;s<1000;s++) 
 { 
  sat = s/1000.0; 
  rel_perm_table[s][0] = sat; 
  if (sat<Sr[1]) 
   kr=0; 
  else 
  { 
   if (sat>1-Sr[0]) 
    kr = end_pts[1]; 
   else 
    kr = end_pts[1] * pow((sat-Sr[1])/(1-Sr[1]-Sr[0]),expn[1]); 
  } 
  rel_perm_table[s][1] = kr; 
 } 
 
 for (int s=0;s<1000;s++) 
 { 
  sat = 1 - s/1000.0; 
  if (sat<Sr[0]) 
   kr=0; 
  else 
  { 
   if (sat>1-Sr[1]) 
    kr = end_pts[0]; 
   else 
    kr = end_pts[0] * pow((sat-Sr[0])/(1-Sr[1]-Sr[0]),expn[0]); 
  } 
  rel_perm_table[s][2] = kr; 
 } 
 
 return true; 
} 
 
bool read_fluid_properties(const Parameters_handler* parameters, Error_messages_handler* errors, 
double &brine_den_rw, double &co2_den_rw, double &brine_visc_rw, double &co2_visc_rw, double 
&ct_rw ) 
{ 
 brine_den_rw = String_Op::to_number<double>( parameters->value( "brine_den_rw.value" ) ); 
 errors->report( brine_den_rw <= 0, "brine_den_rw", "Invalid brine density" ); 
 if( brine_den_rw <= 0 ) return false; 
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 co2_den_rw = String_Op::to_number<double>( parameters->value( "co2_den_rw.value" ) ); 
 errors->report( co2_den_rw <= 0, "co2_den_rw", "Invalid CO2 density" ); 
 if( co2_den_rw <= 0 ) return false; 
 
 brine_visc_rw = String_Op::to_number<double>( parameters->value( "brine_visc_rw.value" ) ); 
 errors->report( brine_visc_rw <= 0, "brine_visc_rw", "Invalid brine viscosity" ); 
 if( brine_visc_rw <= 0 ) return false; 
 
 co2_visc_rw = String_Op::to_number<double>( parameters->value( "co2_visc_rw.value" ) ); 
 errors->report( co2_visc_rw <= 0, "co2_visc_rw", "Invalid CO2 viscosity" ); 
 if( co2_visc_rw <= 0 ) return false; 
 
 ct_rw = String_Op::to_number<double>( parameters->value( "ct_rw.value" ) ); 
 errors->report( ct_rw <= 0, "ct_rw", "Invalid total compressibility" ); 
 if( ct_rw <= 0 ) return false; 
 
 return true; 
 
} 
 
 
void random_walker(int model, Grid_continuous_property *tmp_perm_prop, Grid_continuous_property* 
tmp_poro_prop, Grid_continuous_property *tmp_depth_prop, Grid_continuous_property 
*tmp_ini_pr_prop, model_data &static_data, RGrid* opt_grid_, double **stats) 
{ 
 // Get static data // 
 ofstream fp; 
 char check_file[1000]; 
 strcpy(check_file, static_data.simulation_folder.c_str()); 
 strcat(check_file, "\\running_check.txt"); 
 fstream fp2; 
 fp2.open("file_name.txt",ios::out); 
 fp2<<check_file<<" "<<static_data.simulation_folder<<endl; 
 fp2.close(); 
 fp.open(check_file, ios::out|ios::trunc); 
 double ***perm, ***por, ***depth, ***pr_0; 
 perm = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ); 
 por = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ); 
 depth = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ); 
 pr_0 = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ); 
 fp<<"Allocated static arrays\n"; 
 int counter = 0; 
 for (int i=0; i<static_data.NZ; i++) 
 { 
  for (int j=0; j<static_data.NY; j++) 
  {    
   for (int k=0; k<static_data.NX; k++) 
   { 
    perm[k][j][i] = tmp_perm_prop->get_value(counter); 
    por[k][j][i] = tmp_poro_prop->get_value(counter); 
    pr_0[k][j][i] = tmp_ini_pr_prop->get_value(counter); 
    counter++; 
   } 
  } 
 } 
 fp<<"Done reading perm, por and pr_0\n"; 
 
 counter = 0; 
 for (int i=0; i<static_data.NY; i++) 
 { 
  for (int j=0; j<static_data.NX; j++) 
  { 
   depth[j][i][0] = tmp_depth_prop->get_value(counter); 
   for (int k=1; k<static_data.NZ; k++) 
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    depth[j][i][k] = depth[j][i][0] + k*static_data.dz; 
   counter++; 
  } 
 } 
 fp<<"Depth: "<<depth[static_data.NX-1][static_data.NY-1][0]<<endl; 
 fp<<"Done reading static values\n"; 
 // CHECK UNITS AND CONVERT TO SI, IF NECESSARY 
 if (static_data.selected_units==2) 
 { 
  if (model==0) 
  { 
   static_data.dx /= 3.28084; static_data.dy /= 3.28084; 
   static_data.brine_den_rw *= 16.018; 
   static_data.co2_den_rw *= 16.018; 
   static_data.brine_visc_rw *= 0.001; 
   static_data.co2_visc_rw *= 0.001; 
   static_data.ct_rw /= 6894.7573; 
   static_data.inj_rate *= 3.2774e-7; 
  } 
  matrix_mult<double>(perm, static_data.NX, static_data.NY, static_data.NZ, 9.869e-16); 
  matrix_mult<double>(depth, static_data.NX, static_data.NY, static_data.NZ, 1/3.28084); 
  matrix_mult<double>(pr_0, static_data.NX, static_data.NY, static_data.NZ, 6894.75); 
   
 } 
 fp<<perm[static_data.NX-1][static_data.NY-1][0]<<" "<<depth[static_data.NX-1][static_data.NY-
1][0]<<" "<<pr_0[static_data.NX-1][static_data.NY-1][0]<<endl; 
 fp<<"Done converting to SI\n"; 
 
 // ********** Initialize random walker arrays ********** 
 const double pi = 3.14159265359; 
 double sum_del_T = 0, ***saturations, ***probability_map; 
 double perm_along_path, curr_time, dist_from_injector, avg_perm, avg_satn, potential_diff, 
v_BL, incr_time; 
 int moveable_particles, num_transitions, MC_sample; 
  
 saturations = Allocate3D<double>(static_data.NX, static_data.NY, static_data.NZ); 
 initialize3D<double>(saturations,static_data.NX, static_data.NY, static_data.NZ, 0.0); 
 probability_map = Allocate3D<double>(static_data.NX, static_data.NY, static_data.NZ); 
 
 clock_t start;  
 
 int ***carbon_count, ***temp_array, ***check_passed; 
 carbon_count = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ); 
 temp_array = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ); 
 check_passed = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ); 
 
 vector<double> v_macro (6,0.0); 
 vector<double> Tr (6,0.0); 
 
 int reporting_counter = 0; 
 
 const int num_jumps = 20; 
 double cutoff_percentile = 0.5; 
 double time_factor = scouts(model, perm, saturations, pr_0, depth, num_jumps, static_data, 
cutoff_percentile); 
 fp<<"Time factor: "<<time_factor<<endl; 
 while (sum_del_T<static_data.total_days) 
 { 
    
  initialize3D<int>(carbon_count,static_data.NX, static_data.NY, static_data.NZ,0); 
  vector< vector<int> > occupied_locs; 
   
  if (sum_del_T!=0) 
  { 
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   find_cutoff(saturations,static_data.NX, static_data.NY, 
static_data.NZ,occupied_locs,0.0); 
   if (occupied_locs.size()<=1) 
   { 
    cutoff_percentile += 0.1; 
    time_factor = scouts(model, perm, saturations, pr_0, depth, num_jumps, 
static_data, cutoff_percentile); 
    sum_del_T = 0; 
    fp<<"\nTime factor rewrite: "<<time_factor<<endl; 
    initialize3D<int>(carbon_count,static_data.NX, static_data.NY, static_data.NZ,0); 
    occupied_locs.clear(); occupied_locs.shrink_to_fit(); 
    vector< vector<int> > occupied_locs; 
   } 
  } 
 
  for (int location = 0; location<static_data.num_injectors; location++) 
  { 
   vector<int> temp_locs(3); 
   temp_locs[0] = static_data.inj_locs[location][0]-1; 
   temp_locs[1] = static_data.inj_locs[location][1]-1; 
   temp_locs[2] = static_data.inj_locs[location][2]-1; 
   occupied_locs.push_back(temp_locs); 
  } 
  int total_moving_particles = 0; 
  fp<<"Total locations: "<<occupied_locs.size()<<endl; 
  for (int location = 0; location<int(occupied_locs.size()); location++) 
  { 
    
   start = clock(); 
   int curr_x = occupied_locs[location][0], curr_y = occupied_locs[location][1], curr_z 
= occupied_locs[location][2]; 
   if (sum_del_T==0) 
    moveable_particles = static_data.particles_per_time; 
   else 
    moveable_particles = static_data.particles_per_time/10; 
   total_moving_particles += moveable_particles; 
 
   for (int particle = 0; particle<moveable_particles; particle++) 
   { 
    fp<<"Location "<<location<<" particle "<<particle<<endl; 
    initialize3D<int>(temp_array, static_data.NX, static_data.NY, static_data.NZ, 0); 
    initialize3D<int>(check_passed, static_data.NX, static_data.NY, static_data.NZ, 
0); 
 
    num_transitions = 1; 
    perm_along_path = 0; 
    curr_time = 0; 
 
    vector<double> perm_list; 
    int x,y,z; 
     
    while (curr_time < static_data.delta_T) 
    { 
     if (curr_time==0) 
     { 
      x = curr_x; y = curr_y; z = curr_z; 
     } 
     fp<<x<<","<<y<<","<<z<<" -> "; 
     temp_array[x][y][z] = 1; 
     check_passed[x][y][z] = 1; 
     perm_list.push_back(perm[x][y][z]); 
     dist_from_injector = perm_list.size()*static_data.dx; 
     if (perm_list.size()==1) 
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      perm_along_path = 
percentile(tmp_perm_prop,static_data.NX,static_data.NY,static_data.NZ,100,0); 
     else 
     { 
      if (check_passed[x][y][z]!=1) 
       perm_along_path = num_transitions/((num_transitions-
1)/perm_along_path + 1/perm[x][y][z]); 
     } 
 
     #pragma region **************** TRANSITION PROBABILITIES *****************//* 
     double del_P; 
 
     for (int i=0; i<6; i++) 
     { 
      v_macro[i] = 0.0; 
      Tr[i] = 0.0; 
     } 
     // (+)X 
      
     if (x!=static_data.NX-1 && static_data.NX!=1 && check_passed[x+1][y][z]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x+1][y][z]) + static_data.inj_rate * 
static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-1/(dist_from_injector + 
static_data.dx)); 
      avg_perm = 
2*perm[x][y][z]*perm[x+1][y][z]/(perm[x][y][z]+perm[x+1][y][z]); 
      avg_satn = (saturations[x][y][z]+saturations[x+1][y][z])/2; 
      potential_diff = del_P + (static_data.brine_den_rw - 
static_data.co2_den_rw) *9.8* (depth[x][y][z]-depth[x+1][y][z]); 
      v_macro[0] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dx); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 
       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[0] = v_macro[0]; 
      v_macro[0] = v_macro[0]*(1+v_BL); 
      if 
(static_data.dx/v_macro[0]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[0] = 0; 
     } 
      
     // (-)X 
      
     if (x!=0 && static_data.NX!=1 && check_passed[x-1][y][z]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x-1][y][z]) + 
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dx)); 
      avg_perm = 2*perm[x][y][z]*perm[x-1][y][z]/(perm[x][y][z]+perm[x-
1][y][z]); 
      avg_satn = (saturations[x][y][z]+saturations[x-1][y][z])/2; 
      potential_diff = del_P + (static_data.brine_den_rw - 
static_data.co2_den_rw) * 9.8 * (depth[x][y][z]-depth[x-1][y][z]); 
      v_macro[1] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dx); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 



 201 

       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[1] = v_macro[1]; 
      v_macro[1] = v_macro[1]*(1+v_BL); 
      if 
(static_data.dx/v_macro[1]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[1] = 0; 
     } 
 
     // (+)Y 
      
     if (y!=static_data.NY-1 && static_data.NY!=1 && check_passed[x][y+1][z]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x][y+1][z]) + static_data.inj_rate * 
static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dy)); 
      avg_perm = 
2*perm[x][y][z]*perm[x][y+1][z]/(perm[x][y][z]+perm[x][y+1][z]); 
      avg_satn = (saturations[x][y][z]+saturations[x][y+1][z])/2; 
      potential_diff = del_P + (static_data.brine_den_rw - 
static_data.co2_den_rw) * 9.8 * (depth[x][y][z]-depth[x][y+1][z]); 
      v_macro[2] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dy); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 
       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[2] = v_macro[2]; 
      v_macro[2] = v_macro[2]*(1+v_BL); 
      if 
(static_data.dy/v_macro[2]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[2] = 0; 
     } 
 
     // (-)Y 
      
     if (y!=0 && static_data.NY!=1  && check_passed[x][y-1][z]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x][y-1][z]) + 
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dy)); 
      avg_perm = 2*perm[x][y][z]*perm[x][y-1][z]/(perm[x][y][z]+perm[x][y-
1][z]); 
      avg_satn = (saturations[x][y][z]+saturations[x][y-1][z])/2; 
      potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*(depth[x][y][z]-depth[x][y-1][z]); 
      v_macro[3] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dy); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 
       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[3] = v_macro[3]; 
      v_macro[3] = v_macro[3]*(1+v_BL); 
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      if 
(static_data.dy/v_macro[3]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[3] = 0; 
     } 
 
     // (+)Z 
      
     if (z!=static_data.NZ-1 && static_data.NZ!=1 && check_passed[x][y][z+1]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x][y][z+1]) + 
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+abs(depth[x][y][z]-depth[x][y][z+1]))); 
      avg_perm = 
2*perm[x][y][z]*perm[x][y][z+1]/(perm[x][y][z]+perm[x][y][z+1]); 
      avg_satn = (saturations[x][y][z]+saturations[x][y][z+1])/2; 
      potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*abs(depth[x][y][z]-depth[x][y][z+1]); 
      v_macro[4] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/(depth[x][y][z]-depth[x][y][z+1])); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 
       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[4] = v_macro[4]; 
      v_macro[4] = v_macro[4]*(1+v_BL); 
      if 
(static_data.dz/v_macro[4]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[4] = 0; 
     } 
 
     // (-)Z 
      
     if (z!=0 && static_data.NZ!=1&& check_passed[x][y][z-1]!=1) 
     { 
      del_P = abs(pr_0[x][y][z]-pr_0[x][y][z-1]) + 
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+abs(depth[x][y][z]-depth[x][y][z-1]))); 
      avg_perm = 2*perm[x][y][z]*perm[x][y][z-1]/(perm[x][y][z]+perm[x][y][z-
1]); 
      avg_satn = (saturations[x][y][z]+saturations[x][y][z-1])/2; 
      potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*abs(depth[x][y][z]-depth[x][y][z-1]); 
      v_macro[5] = 
(potential_diff*avg_perm/static_data.co2_visc_rw/(depth[x][y][z]-depth[x][y][z-1])); 
      if (avg_satn<=0) 
       v_BL = 0; 
      else 
      { 
       int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1); 
       v_BL = static_data.fw_table[index][1]; 
      } 
      Tr[5] = v_macro[5]; 
      v_macro[5] = v_macro[5]*(1+v_BL); 
      if 
(static_data.dz/v_macro[5]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time)) 
       Tr[5] = 0; 
     } 
     #pragma endregion 
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     double sum_Tr = 0; 
      
     for (int i = 0; i<6; i++) 
     { 
       
      if (Tr[i]<0) 
       Tr[i] = 0.0; 
      sum_Tr += Tr[i]; 
      if (v_macro[i]<0) 
       v_macro[i] = 0.0; 
     } 
 
     if (sum_Tr==0) 
      break; 
     else // Transition probability distribution sampling 
     { 
      for (int i=0; i<6; i++) 
      { 
       Tr[i] /= sum_Tr; 
      } 
      MC_sample = monte_carlo_sampling(Tr); 
 
      switch(MC_sample) 
      { 
      case 1: 
       x=x+1; 
       incr_time = static_data.dx/v_macro[0]; 
       break; 
      case 2: 
       x=x-1; 
       incr_time = static_data.dx/v_macro[1]; 
       break; 
      case 3: 
       y=y+1; 
       incr_time = static_data.dy/v_macro[2]; 
       break; 
      case 4: 
       y=y-1; 
       incr_time = static_data.dy/v_macro[3]; 
       break; 
      case 5: 
       z=z+1; 
       incr_time = abs(depth[x][y][z-1]-depth[x][y][z])/v_macro[4]; 
       break; 
      case 6: 
       z=z-1; 
       incr_time = abs(depth[x][y][z+1]-depth[x][y][z])/v_macro[5]; 
       break; 
      } 
     } 
 
      
     if (check_passed[x][y][z]!=1) 
     { 
      num_transitions += 1; 
      curr_time += incr_time/(24*3600)/time_factor; 
     } 
      
    }// end of while (curr_time<delta_T) 
    fp<<endl; 
    perm_list.clear(); perm_list.shrink_to_fit(); 
    for (int i=0; i<static_data.NX; i++) 
    { 
     for (int j=0; j<static_data.NY; j++) 
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     { 
      for (int k=0; k<static_data.NZ; k++) 
      { 
       carbon_count[i][j][k] += temp_array[i][j][k]; 
      } 
     } 
    } 
     
 
   }// end of -> for (int particle = 0; particle<moveable_particles; particle++) 
    
 
  }// end of -> for (int location = 0; location<occupied_locs.size(); location++) 
  fp<<"\nEnd of movements! Total moving particles: "<<total_moving_particles<<endl; 
  occupied_locs.clear(); occupied_locs.shrink_to_fit(); 
 
  initialize3D<double>(probability_map,static_data.NX, static_data.NY, static_data.NZ, 0.0); 
  for (int i=0; i<static_data.NX; i++) 
  { 
   for (int j=0; j<static_data.NY; j++) 
   { 
    for (int k=0; k<static_data.NZ; k++) 
    { 
     probability_map[i][j][k] = 
carbon_count[i][j][k]/double(total_moving_particles); 
    } 
   } 
  } 
 
  fp<<"\nGoing into probability_to_saturations... "; 
  probability_to_satn(saturations, probability_map, 0.5, static_data, time_factor); 
  fp<<"and back!\n"; 
  double sum_PV = 0; 
  int non_zero_counter = 0; 
  for (int i=0; i<static_data.NX; i++) 
  { 
   for (int j=0; j<static_data.NY; j++) 
   { 
    for (int k=0; k<static_data.NZ; k++) 
    { 
     if (saturations[i][j][k]>0) 
     { 
      non_zero_counter++; 
      sum_PV += saturations[i][j][k] * static_data.dx * static_data.dy * 
static_data.dz * por[i][j][k]; 
     } 
    } 
   } 
  } 
   
  //reporting_counter += (sum_PV/static_data.inj_rate)/(24*3600); 
  //sum_del_T += static_data.delta_T; 
  //sum_del_T += sum_PV/static_data.inj_rate/24/3600; 
   
   
   
  /*if ( reporting_counter > static_data.delta_T) 
  {*/ 
  sum_del_T += static_data.delta_T;  reporting_counter = 0; 
  if (int(sum_del_T) % int(static_data.reporting_interval) == 0) 
  { 
   Grid_continuous_property *tmp_rw_prop; 
   if (non_zero_counter>1) 
   { 
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    tmp_rw_prop = opt_grid_->add_property("RW_result_Time_" + 
static_cast<ostringstream*>( &(ostringstream() << sum_del_T) )->str() + "_" + tmp_perm_prop-
>name()); 
    int counter = 0; 
    int row_num = sum_del_T/static_data.reporting_interval - 1; 
    for (int i=0; i<static_data.NZ; i++) 
    { 
     for (int j=0; j<static_data.NY; j++) 
     { 
      for (int k=0; k<static_data.NX; k++) 
      { 
       tmp_rw_prop->set_value(saturations[k][j][i], counter); 
       counter++; 
      } 
     } 
    } 
    fp<<"Writing stats...\n"; 
    for (int counter2 = 0; counter2<static_data.num_monitors; counter2++) 
    { 
     int x_ = static_data.monitor_locs[counter2][0]; int y_ = 
static_data.monitor_locs[counter2][1]; int z_ = static_data.monitor_locs[counter2][2]; 
     stats[model][row_num * static_data.num_monitors + counter2] = 
probability_map[x_-1][y_-1][z_-1];// + (rand()%100)/100000.0; 
 
    } 
   } 
  } 
//  } 
 
 }// end of while (sum_del_T<=total_days) 
 fp.close(); 
 Tr.clear(); Tr.shrink_to_fit(); 
 v_macro.clear(); v_macro.shrink_to_fit(); 
 Free3D<int>(carbon_count); 
 Free3D<int>(temp_array); 
 Free3D<int>(check_passed); 
 Free3D<double>(saturations); 
 Free3D<double>(por); 
 Free3D<double>(perm); 
 Free3D<double>(depth); 
 Free3D<double>(probability_map); 
 Free3D<double>(pr_0); 
} 
 
int get_index_rw(int i, int j, int k, int NX, int NY) 
{ 
 if (k>=0) 
  return ( i + NX*j + NX*NY*k ); 
 else 
  return ( i + NX*j ); 
} 
 
 
double scouts(int model, double ***perm, double ***saturations, double ***pr_0, double ***depth, 
const int MAX_JUMPS, model_data &static_data, double cutoff_percentile) 
{ 
// Function to find the median ‘time’ out of MAX_JUMPS transition made by the walker.  
} 
 
 
int monte_carlo_sampling(vector<double>a) 
{ 
// Function for Monte-Carlo sampling 
} 
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void probability_to_satn(double ***satn, double ***prob, double S, model_data static_data, double 
time_factor) 
{ 
// Function to convert from probability map to saturation map 
} 
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Cluster_to_simulation.cpp: This contains the codes for various operations during the 

model selection, like projections to principal component axes, clustering, and calculation 

of posterior probabilities. 

 
// Header files <> 
#include "matrix_def.h" 
#include "cluster_to_simulation.h" 
 
void zeromean(int count, int parms, double **original, double **zmean) 
{ 
 int i,j; 
 cout<<"\nInside zeromean\n"; 
 for (i=0;i<parms;i++) 
 { 
  double sum=0; 
  for (j=0;j<count;j++) 
  { 
   sum+=original[j][i]; 
  } 
  sum/=count; 
  for (j=0;j<count;j++) 
   zmean[j][i]=original[j][i]-sum; 
 } 
 
} 
 
void covmat(int count, double **cov, int parms, double **zmean) 
{ 
 int i,j,k; 
 
 for (i=0;i<parms;i++) 
 { 
  for (j=0;j<parms;j++) 
  { 
   cov[i][j]=0; 
   for (k=0;k<count;k++) 
    cov[i][j]+=zmean[k][i]*zmean[k][j]; 
   cov[i][j]/=count; 
  } 
 } 
} 
 
void svd(int nmods, int parms, double **cov, double **evecs) 
{ 
 cout<<"\nInside SVD\n"; 
    int k,l,m,n,count=0; 
 m=parms; n=parms; 
 Vec_DP w(n); 
 Mat_DP a(m,n),u(m,n),v(n,n); 
 for (k=0;k<m;k++) 
 { 
  for (l=0;l<n;l++) 
  { 
   a[k][l]=cov[k][l]; 
   u[k][l]=a[k][l]; 
  } 
 } 
 // Done reading inside SVD 
 NR::svdcmp(u,w,v); 
 for (k=0;k<m;k++) 
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 { 
  for (l=0;l<3;l++) 
   evecs[k][l]=u[k][l]; 
 } 
 //Done with SVD 
} 
 
 
void NR::svdcmp(Mat_IO_DP &a, Vec_O_DP &w, Mat_O_DP &v) 
{ 
 bool flag; 
 int i,its,j,jj,k,l,nm; 
 DP anorm,c,f,g,h,s,scale,x,y,z; 
 
 int m=a.nrows(); 
 int n=a.ncols(); 
 Vec_DP rv1(n); 
 g=scale=anorm=0.0; 
 for (i=0;i<n;i++) 
 { 
  l=i+2; 
  rv1[i]=scale*g; 
  g=s=scale=0.0; 
  if (i < m)  
  { 
   for (k=i;k<m;k++) scale += fabs(a[k][i]); 
   if (scale != 0.0) { 
    for (k=i;k<m;k++) { 
     a[k][i] /= scale; 
     s += a[k][i]*a[k][i]; 
    } 
    f=a[i][i]; 
    g = -SIGN(sqrt(s),f); 
    h=f*g-s; 
    a[i][i]=f-g; 
    for (j=l-1;j<n;j++) { 
     for (s=0.0,k=i;k<m;k++) s += a[k][i]*a[k][j]; 
     f=s/h; 
     for (k=i;k<m;k++) a[k][j] += f*a[k][i]; 
    } 
    for (k=i;k<m;k++) a[k][i] *= scale; 
   } 
  } 
  w[i]=scale *g; 
  g=s=scale=0.0; 
  if (i+1 <= m && i+1 != n) { 
   for (k=l-1;k<n;k++) scale += fabs(a[i][k]); 
   if (scale != 0.0) { 
    for (k=l-1;k<n;k++) { 
     a[i][k] /= scale; 
     s += a[i][k]*a[i][k]; 
    } 
    f=a[i][l-1]; 
    g = -SIGN(sqrt(s),f); 
    h=f*g-s; 
    a[i][l-1]=f-g; 
    for (k=l-1;k<n;k++) rv1[k]=a[i][k]/h; 
    for (j=l-1;j<m;j++) { 
     for (s=0.0,k=l-1;k<n;k++) s += a[j][k]*a[i][k]; 
     for (k=l-1;k<n;k++) a[j][k] += s*rv1[k]; 
    } 
    for (k=l-1;k<n;k++) a[i][k] *= scale; 
   } 
  } 
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  anorm=MAX(anorm,(fabs(w[i])+fabs(rv1[i]))); 
 } 
 for (i=n-1;i>=0;i--) { 
  if (i < n-1) { 
   if (g != 0.0) { 
    for (j=l;j<n;j++) 
     v[j][i]=(a[i][j]/a[i][l])/g; 
    for (j=l;j<n;j++) { 
     for (s=0.0,k=l;k<n;k++) s += a[i][k]*v[k][j]; 
     for (k=l;k<n;k++) v[k][j] += s*v[k][i]; 
    } 
   } 
   for (j=l;j<n;j++) v[i][j]=v[j][i]=0.0; 
  } 
  v[i][i]=1.0; 
  g=rv1[i]; 
  l=i; 
 } 
 for (i=MIN(m,n)-1;i>=0;i--) { 
  l=i+1; 
  g=w[i]; 
  for (j=l;j<n;j++) a[i][j]=0.0; 
  if (g != 0.0) { 
   g=1.0/g; 
   for (j=l;j<n;j++) { 
    for (s=0.0,k=l;k<m;k++) s += a[k][i]*a[k][j]; 
    f=(s/a[i][i])*g; 
    for (k=i;k<m;k++) a[k][j] += f*a[k][i]; 
   } 
   for (j=i;j<m;j++) a[j][i] *= g; 
  } else for (j=i;j<m;j++) a[j][i]=0.0; 
  ++a[i][i]; 
 } 
 for (k=n-1;k>=0;k--) { 
  for (its=0;its<30;its++) { 
   flag=true; 
   for (l=k;l>=0;l--) { 
    nm=l-1; 
    if (fabs(rv1[l])+anorm == anorm) { 
     flag=false; 
     break; 
    } 
    if (fabs(w[nm])+anorm == anorm) break; 
   } 
   if (flag) { 
    c=0.0; 
    s=1.0; 
    for (i=l;i<k+1;i++) { 
     f=s*rv1[i]; 
     rv1[i]=c*rv1[i]; 
     if (fabs(f)+anorm == anorm) break; 
     g=w[i]; 
     h=pythag(f,g); 
     w[i]=h; 
     h=1.0/h; 
     c=g*h; 
     s = -f*h; 
     for (j=0;j<m;j++) { 
      y=a[j][nm]; 
      z=a[j][i]; 
      a[j][nm]=y*c+z*s; 
      a[j][i]=z*c-y*s; 
     } 
    } 
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   } 
   z=w[k]; 
   if (l == k) { 
    if (z < 0.0) { 
     w[k] = -z; 
     for (j=0;j<n;j++) v[j][k] = -v[j][k]; 
    } 
    break; 
   } 
   if (its == 29) nrerror("no convergence in 30 svdcmp iterations"); 
   x=w[l]; 
   nm=k-1; 
   y=w[nm]; 
   g=rv1[nm]; 
   h=rv1[k]; 
   f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y); 
   g=pythag(f,1.0); 
   f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x; 
   c=s=1.0; 
   for (j=l;j<=nm;j++) { 
    i=j+1; 
    g=rv1[i]; 
    y=w[i]; 
    h=s*g; 
    g=c*g; 
    z=pythag(f,h); 
    rv1[j]=z; 
    c=f/z; 
    s=h/z; 
    f=x*c+g*s; 
    g=g*c-x*s; 
    h=y*s; 
    y *= c; 
    for (jj=0;jj<n;jj++) { 
     x=v[jj][j]; 
     z=v[jj][i]; 
     v[jj][j]=x*c+z*s; 
     v[jj][i]=z*c-x*s; 
    } 
    z=pythag(f,h); 
    w[j]=z; 
    if (z) { 
     z=1.0/z; 
     c=f*z; 
     s=h*z; 
    } 
    f=c*g+s*y; 
    x=c*y-s*g; 
    for (jj=0;jj<m;jj++) { 
     y=a[jj][j]; 
     z=a[jj][i]; 
     a[jj][j]=y*c+z*s; 
     a[jj][i]=z*c-y*s; 
    } 
   } 
   rv1[l]=0.0; 
   rv1[k]=f; 
   w[k]=x; 
  } 
 } 
} 
 
DP NR::pythag(const DP a, const DP b) 
{ 
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 DP absa,absb; 
 
 absa=fabs(a); 
 absb=fabs(b); 
 if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa)); 
 else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb))); 
} 
 
void proj(int count, double **projected, int parms, double **original, double **evecs) 
{ 
 int i,j,k; 
 cout<<"\nCreated projection memory allocation\n"; 
 for (i=0;i<count;i++) 
 { 
  for (j=0;j<3;j++) 
  { 
   projected[i][j]=0; 
   for (k=0;k<parms;k++) 
    projected[i][j]+=original[i][k]*evecs[k][j]; 
  } 
 } 
 
 cout<<"\nDone projecting\n"; 
} 
 
int cluster(int count, double **projected,int *clusterid) 
{ 
 int i,j,k; 
 int num_clus, **mask, ifound, *dtemp; 
 int nrows = count, ncols = 3; 
 double *wt, **d, error, errs[3]; 
 wt = (double*) malloc(count*sizeof(double)); 
 d = Allocate2D<double>(count,3);  
 mask  = Allocate2D<int>(count,3);  
  
 for (j=0;j<count;j++) 
 { 
  for (i=0;i<3;i++) 
  { 
   d[j][i]=projected[j][i]; 
   mask[j][i]=1; 
  } 
  wt[j]=1.0; 
 } 
  
 num_clus=4; 
 kcluster(num_clus,nrows,ncols,d,mask,wt,0,20,'a','e',clusterid, &error, &ifound); 
 
 // Done clustering 
 free(mask); 
 free(wt); 
 free(d); 
 return(num_clus); 
} 
 
void find_centroids(int count, int num_clus, double **cdata, int *clusterid, double **projected) 
{ 
 int i,j,k; 
 int **mask, ifound; 
 int nrows = count, ncols = 3; 
 double *wt, **d, error, errs[3]; 
 wt = (double*) malloc(count*sizeof(double)); 
 d = Allocate2D<double>(count,3);  
 mask  = Allocate2D<int>(count,3);  
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 for (j=0;j<count;j++) 
 { 
  for (i=0;i<3;i++) 
  { 
   d[j][i]=projected[j][i]; 
   mask[j][i]=1; 
  } 
  wt[j]=1.0; 
 } 
 int **cmask; 
 cmask = Allocate2D<int>(num_clus,3); 
 int success = getclustercentroids(num_clus, nrows, ncols, d, mask, clusterid, cdata, cmask, 0, 
'a'); 
 free(mask); 
 free(wt); 
 free(d); 
 Free2D<int>(cmask); 
} 
void read_report(int clus_num, double **rep, int t_steps, string report_file) 
{ 
 int i; 
 fstream opt1; 
 char temp[10000], fname[1000]; 
 strcpy(fname,report_file.c_str()); 
 double temp2; 
 opt1.open(fname,ios::in); 
 if (opt1.is_open()) 
 { 
  for (i=0;i<10;i++) 
   opt1.getline(temp,10000); 
 
  for (i=0;i<t_steps;i++) 
  { 
   opt1>>temp2; 
   opt1>>rep[i][clus_num]; 
  } 
  opt1.close(); 
 } 
} 
 
double erf(double val) 
{ 
 double x; 
 if (val<=.15) 
  x = 1.12838*val; 
 if (val>.15 && val<=1.5) 
  x = -.0198+val*(1.2911-.4262*val); 
 if (val>1.5 && val<=2) 
  x = .8814+.0584*val; 
 if (val>2) 
  x = 1; 
 return(x); 
} 
 
void find_best_models(int count, int num_clus, int *clusterid, double **centroids, double 
**projected, int *rep_models) 
{ 
 int i,j; 
 
 fstream fp; 
 fp.open("cluster_bests.txt",ios::out); 
  
 // FIND MODEL CLOSEST TO CLUSTER CENTROID 
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 for (i=0;i<num_clus;i++) 
 { 
  fp<<"Cluster "<<i+1<<endl; 
  vector< vector<int> > distances; 
  for (j=0; j<count; j++) 
  {    
   if (clusterid[j]==i) 
   { 
    vector <int> c(2); 
    c[0] = j; 
    c[1] = std::abs(centroids[i][0]-projected[j][0]) + std::abs(centroids[i][1]-
projected[j][1]) + std::abs(centroids[i][2]-projected[j][2]); 
    distances.push_back(c); 
   } 
  } 
  sort(distances.begin(), distances.end(), [](const std::vector< int >& a, const 
std::vector< int >& b){ return a[1] < b[1]; } ); 
   
  fp<<distances[0][0]<<" "<<distances[1][0]<<" "<<distances[2][0]<<endl; 
  rep_models[i] = distances[0][0]; 
 
 } 
} 
 
vector <double> calc_probability(double **rep, double **observed, int t_steps, int num_clus) 
{ 
 int i, j, k; 
 double **prob, **dev, *stdev; 
 // CALCULATION OF CLUSTER PROBABILITY 
 dev = Allocate2D<double>(t_steps, num_clus); 
 prob = Allocate2D<double>(t_steps, num_clus); 
 
 stdev = (double*) malloc(t_steps*sizeof(double)); 
 
 for (j=0;j<t_steps;j++) 
 { 
  for (k=0;k<num_clus;k++) 
   dev[j][k]=fabs(rep[j][k]-observed[j][1]); 
  double  max = dev[j][0]; 
  for (k=1;k<num_clus;k++) 
  { 
   if (dev[j][k]>max) 
    max=dev[j][k]; 
  } 
  stdev[j] = max; 
 } 
 
 double x; 
 
 for (j=0;j<t_steps;j++) 
 { 
  for (k=0;k<num_clus;k++) 
  { 
   x=((1-dev[j][k]/stdev[j])-0.5)/(sqrt(2*.25)); 
   prob[j][k]=0.5*(1+erf(x)); 
  } 
 } 
 
 vector<double> min_(num_clus); 
 
 for (j=0; j<num_clus; j++) 
 { 
  min_[j] = prob[0][j]; 
  for (k=1; k<t_steps; k++) 



 214 

  { 
   if (prob[k][j]<min_[j]) 
    min_[j] = prob[k][j]; 
  } 
 } 
 
 Free2D<double>(dev); free(stdev); Free2D<double>(prob); 
 
 return min_; 
} 
 
void projections(double **stats, double **projections, int nrows, int ncolumns) 
{ 
 double mean, stdev, **v, *w; 
 
 for (int i=0; i<ncolumns; i++) 
 { 
  mean = 0; stdev = 0; 
  for (int j=0; j<nrows; j++) 
   mean+= stats[j][i]; 
  mean = mean/nrows; 
  for (int j=0; j<nrows; j++) 
  { 
   stats[j][i] = stats[j][i]-mean; 
   stdev+= pow(stats[j][i],2); 
  } 
  stdev = std::pow(stdev/nrows,0.5);   
  for (int j=0; j<nrows; j++) 
   stats[j][i] = stats[j][i]/stdev; 
 } 
 v = Allocate2D<double>(ncolumns,ncolumns); 
 w = new double[ncolumns]; 
 int result = pca(nrows, ncolumns, stats, v, w); 
 for (int i=0; i<3; i++) 
 { 
  for (int j=0; j<nrows; j++) 
   projections[j][i] = stats[j][i]; 
 } 
} 

Codes for PCA and Clustering 

Aside from the above codes, the model selection plugin used codes from external 

developers for clustering, principal component analysis and related operations. These 

were developed as open-source codes at the Laboratory of DNA Information Analysis, at 

the University of Tokyo and are available for download at: 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm  

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
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Nomenclature 

sk State vector in EnKF 

dk Observation vector in EnKF 

    
  Random noise drawn from a multinormal distribution with zero mean and 

covariance Rk in EnKF 

    
 

 Forecast vector in EnKF 

   Kalman gain in EnKF 

  
 
 Model error covariance matrix in EnKF 

  
    Velocity of particle i at time k+1 in PSO 

  
  Position of particle i at time k in PSO 

        Best position of particle i in PSO 

     
  Best position of entire swarm in PSO 

 ( ) Travel time along streamline 

D Dispersion tensor 

B Displacement matrix in RWPT, related to the dispersion tensor   
 

 
     

     Harmonic average permeability 

 (  ( )      ) Probability of cluster 'm' given conditioning data RFref 

RF
m
 Simulated response of cluster ‘m’ 

RFref Observed response 

u Velocity 

Xp(t) Position of random particle at time ‘t’ 

   Difference in particle count 
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   Efficiency of clustering 

  
  Deviation of simulated response from observed response 

        Pressure analog from random walker proxy 

   Difference in pressure 

   Bulk volume 

  Porosity 

      Critical saturation 

     Injected volume of fluid 

     Average saturation 

 ( ) Normal distribution of mean 0 and variance 1 

   Capillary pressure 

     Relative permeability of non-wetting phase 

    Relative permeability of wetting phase 

   Viscosity of wetting phase 

    Viscosity of non-wetting phase 

   Density difference 

  Angle with horizontal 

    Buckley-Leverett velocity 

       Darcy velocity 

   Fractional flow value 
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