

Copyright

by

Sayantan Bhowmik

2014

The Dissertation Committee for Sayantan Bhowmik Certifies that this is

the approved version of the following dissertation:

PARTICLE TRACKING PROXIES FOR PREDICTION OF CO2

PLUME MIGRATION WITHIN A MODEL SELECTION

FRAMEWORK

Committee:

Sanjay Srinivasan, Supervisor

Steven L. Bryant, Co-Supervisor

Larry W. Lake

Matthew Balhoff

Seyyed A. Hosseini

PARTICLE TRACKING PROXIES FOR PREDICTION OF CO2

PLUME MIGRATION WITHIN A MODEL SELECTION

FRAMEWORK

by

Sayantan Bhowmik, B.Tech.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2014

 iv

Acknowledgements

I would like to express my sincerest gratitude to Dr. Sanjay Srinivasan for

supervising my work these past 6 years. He has been a wonderful mentor, guide and

friend, and instilled in me the desire to be an excellent researcher and a sincere person.

His advice and patience in introducing me to the world of geostatistics has been

invaluable, and has helped me work through complicated problems very easily. The

discussions I have had with him have always encouraged me to look at problems from

different points of view and oftentimes from a completely unexpected direction. Without

his constant support and encouragement, this journey would have been an especially

arduous one.

I would also like to express my thanks to my co-supervisor, Dr. Steven Bryant,

whose constant reminder to look at the big picture encouraged me to often take a step

back and examine how every aspect of my work aligned with the larger problem I was

trying to address. The discussions with Dr. Srinivasan and Dr. Bryant were some of the

most stimulating exchange of ideas I have had at the university. I would also like to

express my gratitude to my committee members, Dr. Larry Lake, Dr. Matthew Balhoff

and Dr. Seyyed Hosseini, whose support and encouragement allowed me to make rapid

progress on my dissertation.

Special thanks are also due to Jin Lee for all her help over the duration of this

work, and to Roger Terzian and Joanna Castillo, for their help in matters related to all the

software that have been used in my research.

Finally, I would like to thank my research colleagues and friends, who have made

graduate life so much easier with their friendship and support: Ankesh, Arti, Azor,

 v

Brandon, Cesar, Deji, DJ, Donovon, Harpreet, Henry, Hoonyoung, James, John, Juliana,

Krupa, Kwangjin, Mayuri, Morteza, Namdi, Nitish, Selin, Travis and Youngkim.

I am grateful to the sponsors of Geologic CO2 Storage Industrial Associates

Project at The University of Texas at Austin: BP, Chevron, ConocoPhillips, ExxonMobil,

Foundation CMG, Halliburton/Landmark Graphics, Luminant, Shell, Statoil and USGS,

for making this work possible

This material is partially based on work supported by the Department of Energy

under Award Number DE-DE-FE0004962.

 vi

PARTICLE TRACKING PROXIES FOR PREDICTION OF CO2

PLUME MIGRATION WITHIN A MODEL SELECTION

FRAMEWORK

Sayantan Bhowmik, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Sanjay Srinivasan

Co-supervisor: Steven Bryant

Geologic sequestration of CO2 in deep saline aquifers has been studied

extensively over the past two decades as a viable method of reducing anthropological

carbon emissions. The monitoring and prediction of the movement of injected CO2 is

important for assessing containment of the gas within the storage volume, and taking

corrective measures if required. Given the uncertainty in geologic architecture of the

storage aquifers, it is reasonable to depict our prior knowledge of the project area using a

vast suite of aquifer models. Simulating such a large number of models using traditional

numerical flow simulators to evaluate uncertainty is computationally expensive. A novel

stochastic workflow for characterizing the plume migration, based on a model selection

algorithm developed by Mantilla in 2011, has been implemented. The approach includes

four main steps: (1) assessing the connectivity/dynamic characteristics of a large prior

ensemble of models using proxies; (2) model clustering using the principle component

analysis or multidimensional scaling coupled with the k-mean clustering approach; (3)

model selection using the Bayes' rule on the reduced model space, and (4) model

expansion using an ensemble pattern-based matching scheme.

 vii

In this dissertation, two proxies have been developed based on particle tracking in

order to assess the flow connectivity of models in the initial set. The proxies serve as fast

approximations of finite-difference flow simulation models, and are meant to provide

rapid estimations of connectivity of the aquifer models. Modifications have also been

implemented within the model selection workflow to accommodate the particular

problem of application to a carbon sequestration project.

The applicability of the proxies is tested both on synthetic models and real field

case studies. It is demonstrated that the first proxy captures areal migration to a

reasonable extent, while failing to adequately capture vertical buoyancy-driven flow of

CO2. This limitation of the proxy is addressed in the second proxy, and its applicability is

demonstrated not only in capturing horizontal migration but also in buoyancy-driven

flow. Both proxies are tested both as standalone approximations of numerical simulation

and within the larger model selection framework.

 viii

Table of Contents

List of Tables ... xiii

List of Figures .. xiv

Chapter 1 : Introduction ...1

1.1 . Problem Description ..1

1.2 . Research Objectives ...3

1.3 . Dissertation Outline ...4

Chapter 2 : Literature Review ..6

2.1 . Monitoring CO2 plume migration ..6

2.2 . History matching: an overview ..8

2.2.1. Ensemble Kalman Filter ..10

2.2.2. Neighborhood Algorithm ...13

2.2.3. Particle Swarm Optimization ...14

2.2.4. Genetic Algorithm ...17

2.2.5. Summary ..19

2.3 . Proxy formulation as an alternative to Flow Simulators20

2.3.1. Streamline Simulation ..21

2.3.2. Artificial Neural Networks ..23

2.3.3. Particle Tracking ..25

Mathematical formulation of RWPT ..26

2.3.4. Summary ..29

Chapter 3 : Model Selection Algorithm ...30

3.1 . Model Selection Algorithm: An Overview ..30

3.2 . Initial Set of Models...33

3.3 . Evaluation of connectivity of reservoir models34

3.4 . Analysis of Connectivity Measurements for Model Clustering35

3.4.1. Projection of Models on an Orthogonal Set of Axes38

3.4.2. Clustering of Projected Models ...40

 ix

3.5 . Bayesian updating and cluster selection ..43

3.5.1. Representative Model for Cluster ..43

3.5.2. Bayesian Update of Cluster Probability44

3.6 . Stopping Criterion ..47

3.7 . Conclusions ..47

Chapter 4 : Particle tracking proxy – I ...49

4.1 . Random Walker Proxy: An Introduction ...49

4.2 . Comparison of Proxy Response to Numerical Simulations55

4.2.1. Comparison to synthetic models ..56

4.2.2. Comparison to real field model..59

4.3 . Implementation of proxy within model-selection framework61

4.3.1. Initial set of models ..62

4.3.2. Connectivity analysis of models using proxy63

4.3.3. Model clustering ..64

4.3.4. Results of the model selection process for the In Salah case66

4.4 . Representing gravity-driven flow using the proxy69

4.4.1. Application of proxy to synthetic models with strong buoyancy

effects ..69

4.4.2. Field case for testing the proxy when gravity effects are significant

...72

Description of the Utsira sand ...73

Results for CO2 plume migration using the proxy and comparison to

numerical simulation ..76

4.5 . Conclusions ..78

Chapter 5 : Development of a New Particle Tracking Proxy80

5.1 . New Formulation of Particle Tracking Proxy80

5.1.1. Revised particle tracking algorithm ...81

5.1.2. Redefined transition probability ..84

Fractional Flow Equation ..86

Fractional flow for CO2 injection in aquifers88

Estimation of macroscopic velocity ..90

 x

Particle migration and step size ..93

5.1.3. Summary of New Formulation of Proxy94

5.2 . Validation of New Proxy for Capturing Areal Migration95

5.2.1. Synthetic model for validation of proxy96

5.2.2. Field model for validation of tracer-based proxy: In Salah99

5.2.3. Model Selection applied to In Salah ..102

5.3 . Validation of New Proxy for Capturing Vertical Migration OF CO2 103

5.3.1. Validation of tracer-based proxy using synthetic model104

5.3.2. Validation of the new proxy formulation using the Sleipner model

...106

5.3.3. Model selection using tracer-based proxy for Sleipner108

5.4 . Conclusions ..112

Chapter 6 : Development of a software module for Model Selection114

6.1 . SGeMS: Stanford Geostatistical Modeling Software114

6.2 . Model Selection Plugin: An overview ...116

6.3 . Details of plugin development ...120

6.3.1. Creating the shared library ...120

6.3.2. The execute function for the Model Selection algorithm.........121

6.4 . Conclusions ..123

Chapter 7 : Some Applications of the Model Selection Algorithm124

7.1 Optimizing the configuration of proxy measurement sites124

7.1.1. PCA to find optimum measurement sites125

7.2 Mineralization during CO2 migration in the aquifer132

7.2.1. Background ..133

7.2.2. Model setup for mineralization ..134

7.2.3. Model selection with mineralization ..137

7.2.4. Results ..139

7.3 Leak indication by using the model selection algorithm143

7.3.1. Simulation of CO2 leakage and its effects on injection well pressure

...144

 xi

7.3.2. Demonstration of influence of leak on model selection147

Synthetic Model to represent Real Field Data147

Model Selection Process Implementation148

7.3.3. Results and Discussions ...149

7.4 Influence of location of conditioning wells on Model Selection152

7.4.1. Synthetic model to study the effect of injector location on the model

selection process ...153

7.4.2. Model selection process conditioned to each individual pressure

history ...154

7.5 Conclusions ...162

Chapter 8 : Conclusions and Recommendations for Future Work163

8.1 . Conclusions ..163

8.2 . Recommendations for Future Work...165

Appendix A: Code for old random walker ..169

Appendix B: SGeMS Plugin ..175

B.1. Building the plugin ..175

B.1.1. The initialize function ..175

B.1.2. The execute function ..176

Particle-tracking proxy..176

PCA and Model Grouping ..179

Numerical simulation and Bayesian updating180

Saving the results ..183

B.2. Codes for Plugin ..184

RW.cpp : Classes and associated /lfunctions / variables are decleared

in RW.h ..187

Cluster_to_simulation.cpp: This contains the codes for various

operations during the model selection, like projections to

principal component axes, clustering, and calculation of

posterior probabilities. ...207

Codes for PCA and Clustering ..214

 xii

Nomenclature ...215

References ..217

 xiii

List of Tables

Table 2.1. Monitoring stages of a sequestration project (adapted from Benson et.al.

2004) ...8

 xiv

List of Figures

Figure 2.1. Schematic of Particle Swarm Optimization (adapted from Christie et.al.,

2010. SPE 135264) ...17

Figure 2.2. Layout of an artificial neural network, showing the input nodes, hidden

nodes and output nodes (from Laboratoire d'Automatique et d'

Informatique Industrielle de Lille, http://sic.ici.ro/sic1999_2/art03.html)

...24

Figure 3.1. Schematic of the model selection algorithm (Bhowmik 2010)32

Figure 3.2. Seismic section at the top of a carboniferous reservoir in central Africa,

showing the outline of a channel system (Wright 2007)33

Figure 3.3. Hierarchy of channel deposits, showing individual channels distributed

within the system and the facies distributions within each channel

(adapted from Abreu et.al., 2003) ...34

Figure 3.4. Two models with permeability features in opposite directions. An

injection well is shown in black at the center of the grid. There are 4

measurement locations (numbered 1 through 4) in white around the

injector. ...35

Figure 3.5. The models above represented on a three-dimensional space, using

responses from locations 1, 2 and 3 ..36

Figure 3.6. (a) Representation of models onto an orthogonal three-dimensional space,

identified by principal component analysis, (b) Projection of models on

X2-X3 plane, (c) Projection of models on the X1-X2 plane, (d)

Projection of models on X1-X3 plane. ...38

 xv

Figure 3.7. (a) Actual data points used for the demonstration. There are clearly 4

clusters of points in this case. (b) Plot of effectiveness of clustering vs

Number of clusters clearly shows a kink at 4, which is the correct

number of clusters. ..42

Figure 3.8. Example of histogram transformation. The figure on the left is the

distribution of the average model, and the figure on the right is the target

distribution ..44

Figure 3.9. Demonstration of probability envelopes around observed response. The

probability of a particular cluster is inferred from the envelope it lies in.

...46

Figure 4.1. (a) Neighboring grid blocks for current position of particle, given by the

blue block. (b) Transition probability distribution calculated from P0, P1

… P6 and sampled using Monte Carlo sampling. P0 is the probability of

the particle not moving out if the block. In this case, sampling yields 0.8

which corresponds to grid block 3. Hence, the particle moves to grid

block 3, shown in (a). ..52

Figure 4.2. Flowchart of the connectivity proxy. This is the implementation for a

single time step and the whole process will be repeated for multiple time

steps...55

Figure 4.3. Synthetic model used to compare areal migration of CO2 in the numerical

simulation model and using a proxy. Model has dimensions 201 x 201 x

10. The red channels are 300 mD and the white matrix is 0.1 mD. Fluid

injection is at the center of the grid, in layer 5.56

 xvi

Figure 4.4. (a) Simulation result on model from Figure 4.3, showing the saturation of

CO2 after 3 years of injection. (b) Result of proxy run for the same

model...57

Figure 4.5. Model used for testing proxy behavior in the presence of competing

forces: viscous and gravity. The red channels are high permeability

(1000 mD), while the blue regions are low permeability (1 mD).58

Figure 4.6. Results of running numerical simulation and the proxy on the model in

Figure 4.5. The black dot represents the injection location.58

Figure 4.7. (a) Surface contour map at the top of the carboniferous formation, used to

create the structure of the simulation grid (Davis et.al. 2001), (b)

Reservoir quality map (Wright 2007), used to create maps of porosity.

This porosity map was converted to a permeability map using a porosity-

permeability relation ...60

Figure 4.8. Comparison of CO2 plume as inferred from (a) random-walk based proxy,

and (b) numerical flow simulation. ...60

Figure 4.9. Sample reservoir models showing different high permeability streak

direction ..62

Figure 4.10. Locations chosen for recording proxy statistics. These locations are

around the injection well of interest in this particular problem63

Figure 4.11. Plot of versus number of clusters for In Salah.65

Figure 4.12. Clustering of models for In Salah, with the representative model shown

for each cluster. ...65

Figure 4.13. Comparison of bottom-hole pressure for KB-502 to field data. There is a

reasonable match both to the history that was used for conditioning the

model selection and the part of the injection data that was left out. .67

 xvii

Figure 4.14. Sample of models from the final best-matched cluster of models. High

permeability features are clearly visible in the vicinity of KB-502 in all

models. ..67

Figure 4.15. Ensemble average of all models in the final cluster. High permeability

feature near KB-502 is clearly highlighted (circled).68

Figure 4.16. Cross-section through the reservoir at the injection location, showing the

fluid saturation and the effect of buoyancy.69

Figure 4.17. Permeability distribution in the second synthetic model used to test the

proxy in case of gravity-dominated flow. The blue layers are shale

baffles (0.1 mD) and the background is sand (500 mD).70

Figure 4.18. CO2 saturation from numerical simulation on the grid in Figure 4.1771

Figure 4.19. Proxy results for model in Figure 4.17, showing the particle count

(analogous to saturation) distribution in the model. (a) Original proxy,

(b) Proxy with gravity term given extra weight, (c) Proxy with weighted

gravity term and low permeability baffles that are assigned to be

impermeable. ...71

Figure 4.20. Location of the Utsira formation, off the coast of Norway (Arts et.al.

2008) ...73

Figure 4.21. Simulation model for Utsira, showing the shale layers74

Figure 4.22. Time-lapse seismic data showing the evolution of the CO2 plume over

time and the accumulations below shale baffles (from Arts et.al. 2008).

...75

Figure 4.23. Simulated result of the migration of injected CO2 in Utsira, showing CO2

saturation at different snapshots in time, using E300 simulator. The z-

axis has been exaggerated. ..76

 xviii

Figure 4.24. Comparison of proxy results (showing particle counts) with flow

simulation results (showing CO2 saturation) for Utsira. (a) Results

obtained by flow simulation, (b) Proxy result.77

Figure 5.1. Schematic of pressure and saturation updates with time in the proxy 81

Figure 5.2. Movement of 4 particles through a 5 x 4 grid, as a demonstration of the

new proxy formulation ..82

Figure 5.3. (a) Counting the number of particles crossing particular grid blocks, (b)

Converting the particle counts to measures of probability.83

Figure 5.4. (a) Front velocity from fractional flow curve, (b) Saturation profile with

distance. ..88

Figure 5.5. Comparison of proxy response with simulator, initial formulation with

FIXED NUMBER of steps. (a) Permeability distribution, with injection

location in black, (b) Proxy Response, and (c) Simulator response. 93

Figure 5.6. Flowchart of new formulation for proxy ...95

Figure 5.7. Permeability model used for validation of new proxy formulation. This is

the same model as was used for validation in section 4.2.1 for the old

proxy. ..96

Figure 5.8. Migration of injected fluid captured by (a) New proxy formulation, (b)

Numerical simulation, (c) Old proxy formulation97

Figure 5.9. Comparison of proxy and simulator response. The migration of CO2 over

time is captured accurately by the new proxy.98

Figure 5.10. Cross-section of fluid saturation at the injection location for buoyancy-

driven flow for the new and old formulation of the proxy, compared to

numerical simulation results. ..99

 xix

Figure 5.11. Model used for testing the tracer-based proxy on a real field case (In

Salah). ...100

Figure 5.12. Comparison of results from numerical simulation and proxy, showing the

saturation in the grid at certain snapshots in time.101

Figure 5.13. Sample of models from the initial set for In Salah. The high permeability

streaks are shown in light blue. ...102

Figure 5.14. Final best-fit models for In Salah. (a) Sample of models from best-fit

cluster of models, (b) Average of all models in final cluster103

Figure 5.15. (a) Simulation model used for testing vertical migration of CO2, (b)

Saturation of CO2 obtained by flow simulation showing the expected

movement of the injected CO2 ..104

Figure 5.16. Comparison of tracer-based proxy to flow simulation, showing the

ability of the proxy to capture vertical buoyancy-dominated CO2

migration. ..105

Figure 5.17. Model used for testing an Utsira-like synthetic case. Shown here are 4

shale layers (permeability 0.1 mD) containing stochastic sand ‘holes’.

The rest of the model (total 50 layers) has a permeability of 2 D. .106

Figure 5.18. Proxy result showing migration of CO2 captured both vertically and

areally under shale baffles ..107

Figure 5.19. Comparison of numerical simulation with the new proxy, for case with

strong influence of gravity. ...107

Figure 5.20. Sample of models in the initial model set for Utsira. The sand is shown

in red and the shale in cyan. ..109

Figure 5.21. Comparison of real sand holes distribution and sand holes in average of

best-fit models, at bottom-most shale layer.110

 xx

Figure 5.22. Comparison of real sand holes distribution and sand holes in average of

best-fit models, for the second shale layer from the bottom.111

Figure 6.1. SGeMS user interface, showing the three main panels: algorithms, objects

and visualization ...115

Figure 6.2. Algorithms panel, showing the model selection algorithm tab116

Figure 6.3. Main input panel for the Model Selection algorithm117

Figure 6.4. Random Walker tab, where the user needs to input data needed for the

proxy ...118

Figure 6.5. Declaration of the ModelSelection class, derived from GeoStat_algo, and

the virtual functions ..121

Figure 6.6. Modules (grey boxes) required for the implementation of the model

selection algorithm within the SGeMS framework122

Figure 7.1. Location of proxy measurement sites far from the region of interest will

not inform the model selection process. ...125

Figure 7.2. Demonstration of process for finding optimum locations. Only the top N%

locations on the right are retained. In the demonstration case below, this

percentage is 10% ...127

Figure 7.3. (a) Two different kinds of prior models. 50 realizations of each type of

models, were used for the initial model set, (b) Regions identified by

performing Principal component Analysis using statistics of particles

recorded within each grid block. These locations for the proxy

monitoring location will help identify regions exhibiting maximum

variability across all 100 models...127

Figure 7.4. Arbitrary choice of points as proxy monitoring locations. Three points

(shown as black circles) were chosen within each cluster.128

 xxi

Figure 7.5. Locations identified for proxy monitoring after repeated PCA.........129

Figure 7.6. (a) Proxy response measurement locations in previous work (Chapter 4

and Chapter 5). (b) Layout of proxy measurement locations using the

new PCA-based method, displayed on a structure map.130

Figure 7.7. (a), (b) Cluster response at the end of the first two iterations of the model

selection process, respectively, with proxy monitoring locations chosen

by the repeated PCA method. (c), (d) Cluster response after the first two

iterations of the model selection process, with proxy monitoring

locations arranged in the form of a square around KB-502. The results

are comparable, highlighting the ability of the current method to find

proxy measurement locations regardless of prior knowledge about the

heterogeneous characteristics of the target reservoir.131

Figure 7.8 Average permeability of all models in best-match cluster from (a)

measurement locations in a square, and (b) Measurement locations from

PCA. Both show a high-permeability feature (circled) connecting KB-

502 and KB-5. ...132

Figure 7.9. Base case model for demonstrating the effect of mineralization on CO2

plume migration, showing the permeability distribution of the model.134

Figure 7.10. Plot of injection pressures for the mineralization case. The base case is

run with no permeability changes (blue line). The red line shows the

injection pressure when permeability change is made in 2006.......135

Figure 7.11. (a) Map of CO2 saturation after 5 years of injection, showing the regions

above a cutoff of 40% saturation, (b) Map of difference between

permeability of base model (Figure 7.9) and model used to simulate the

next 5 years. ..135

 xxii

Figure 7.12. Bottom-hole pressure at the injection well, for the base case with no

permeability alteration (blue line) and the mineralization case when

permeability is altered in 2006, 2011 and 2016.136

Figure 7.13. (a) The initial permeability map of the reference model, (b) Reference

injection pressure profile that was used within the model selection

process...138

Figure 7.14. Some sample models from the initial model set. The red channels are

1000 mD while the cyan background is normally distributed around 10

mD. The black circle represents the position of the injector.138

Figure 7.15. Difference in CO2 saturation due to mineralization. High permeability

pathways are blocked off and the plume seeks out alternative migration

pathways ...139

Figure 7.16. Clustering at the end of second and third time interval, in the case where

no permeability alterations were assumed within the model selection

process. The reference injection data used to select the models is

affected by the mineralization process. ...140

Figure 7.17. Best-fit models with / without mineralization projected onto an

orthogonal space. (a) At the end of the 2
nd

 interval, and (b) At the end of

the 3
rd

 interval. ..141

Figure 7.18. Injection well pressures compared to the “real” data for the synthetic

model...142

Figure 7.19. Leakage pathways for formation brine and CO2 (from Birkholzer et. al.,

2009) ...143

Figure 7.20. Layout of model used for leak simulation145

 xxiii

Figure 7.21. Difference between cases with/without leak. Plot shows BHP difference

(in psi) at the injector in red, and mole fraction of CO2 in the leaked

fluid in blue ...146

Figure 7.22. (a) Depth to top of layer (in m), showing the structure of the synthetic

model, (b) Permeability of synthetic model (in mD)148

Figure 7.23. Workflow for model selection showing how the two cases with and

without leak is incorporated ..149

Figure 7.24. Injection pressure response comparison for best matched cluster, before

and after accounting for the leak ...150

Figure 7.25. Probability map for high permeability streaks, derived from final model

set (a) Leak accounted for during model selection, (b) Leak NOT

accounted for during model selection. Compare with the ‘reference’

field permeability (c)...151

Figure 7.26. A projection of final model sets, with and without leaks, clearly shows

the separation of the two cases..152

Figure 7.27. Schematic of base case model used to study the effect of proximity of

injector to prominent features on the model selection process153

Figure 7.28. Injection pressure history for all three injectors. These histories were

used individually in the model selection process.154

Figure 7.29. Sample of models from the initial model set (out of a total of 120

models), showing the random distribution of the high-permeability

channels (in red). ...155

Figure 7.30. Comparison of average model from best-fit cluster, conditioned to

INJECTOR-2, shows that it can delineate the feature of interest to a

reasonable degree ..156

 xxiv

Figure 7.31. Comparison of the average of best-fit models, conditioned to

INJECTOR-1, shows that it does not delineate the feature as sharply as

in previous case (Figure 7.30) ...156

Figure 7.32. (a) Distribution of values in average model, (b) Prominent features in

average model highlighted by taking out all values below the 90
th

percentile ...157

Figure 7.33. Average model of best-matched cluster, when the conditioning data is

from INJECTOR-3, far away from the prominent sinusoidal feature.158

Figure 7.34. Comparison of average model, with conditioning well inside and outside

the channel feature. ...158

Figure 7.35. Inter-well pressure effects of the three injectors159

Figure 7.36. Comparison of response of representative model of individual clusters to

reference data, when model selection is conditioned to INJECTOR-3160

Figure 7.37. Probability cluster for calculating the posterior updated probability of the

model clusters, when the conditioning well is far from the channel.161

Figure 8.1. Modified model selection algorithm with model regeneration166

Figure 8.2. CO2-phase saturation profile in an aquifer (from Noh et.al. 2007). ..167

Figure 8.3. Front velocities from fractional-flow curve (from Noh et.al. 2007).168

Figure B.1. Example of the initialize function ...175

Figure B.2. Qt Designer layout, showing the name assigned to the permeability

widget ..175

 1

Chapter 1 : Introduction

Anthropogenic climate change caused by emission of greenhouse gases has been

of increasing concern over the past few decades. The capture and removal of CO2 (the

most abundant greenhouse gas after water vapor) at large-scale primarily from coal-fired

power plants is one of the many methods being considered and tested to mitigate the

climate-change effects of greenhouse gas emissions. The process consists of three major

steps (http://www.epa.gov/climatechange/ccs/index.html): capture from industrial

sources, transport to disposal sites, and injection into subsurface formations primarily

saline aquifers. The injected CO2 is retained in the subsurface due to a combination of

physical processes: trapping under cap rock or other structural traps, dissolution in

formation brine, capillary trapping and mineralization (Kumar et.al 2005, IPCC special

report 2005). Over the course of a sequestration project, it is necessary to be able to

monitor and predict the movement of the injected CO2 plume, so as to ensure the

containment of the CO2 within the storage volume. Currently, this is primarily achieved

using time-lapse seismic monitoring and/or satellite measurements of surface deflection.

Both these processes, however, only give us a snapshot of the current position of the

plume and hence need to be integrated with a prediction scheme to enable proper

monitoring of the plume.

1.1. PROBLEM DESCRIPTION

To make the process of monitoring of subsurface CO2 plume migration robust,

there is need for integration of data from remote sensing methods to accurately find the

current location of the plume and a history-matching / prediction framework which can

be sequentially updated using the remote sensing data. This would reduce the frequency

http://www.epa.gov/climatechange/ccs/index.html

 2

of expensive monitoring techniques and make the process of monitoring more efficient,

especially during closure and post-closure stages of the project.

The objective of history-matching is to create a static model of the reservoir

which, when evaluated using a forward model, will yield response similar to observed

data. However, the data which form part of reservoir models (reservoir structure,

petrophysical properties, geologic description, fluid properties etc.) are subject to a lot of

uncertainty, and hence the particular static model which satisfies the history-matching

objective is not unique. There is also no linear relation between the static properties (like

permeability distribution) and the dynamic response of the reservoir, making the problem

of calibrating static properties to dynamic data non-trivial. This is thus a non-linear,

inversion problem, with multiple non-unique solutions, which also implies that

predictions made using these models will also have an associated uncertainty. Further

complications during this inversion process arise due to the existence of static geologic

properties at multiple scales, with the dynamic response being a combination of the effect

at each scale of heterogeneity. One of the methods to model this uncertainty taking into

consideration, the multiscale nature of reservoir heterogeneity, is through the use of

multiple, multiscale models. History matching then becomes a process of calibrating

static reservoir properties, in multiple models and at multiple scales, to dynamic

information. This process becomes more challenging in the case of CO2 sequestration due

to the scarcity of data (dynamic data is only available at injection wells and there are no

producers) and due to the much larger time scale of sequestration projects compared to

oil and gas field operations.

Uncertainty assessment is possible using a large suite of reservoir models,

however, the use of a large suite of models introduces an additional level of complexity

to the problem: the need for an efficient method of assessment of the models without a

 3

high computational overhead. Hence, there is need to develop alternative forward models

that can provide quick assessment of reservoir connectivity at a fraction of the

computation cost of numerical simulators.

1.2. RESEARCH OBJECTIVES

The primary objective of this dissertation is to implement a fast proxy within the

model-selection framework introduced by Mantilla (2011), in order to assess the

uncertainty in predicting the plume migration path during CO2 sequestration.. This

requires the adaptation of the model selection workflow to meet the requirements of a

carbon sequestration project. It is hypothesized that efficient forward models can be

developed for simulating the flow of CO2 in an aquifer at a fraction of the computational

cost of a numerical simulator, and can be implemented within the model selection

framework to predict future plume migration. The larger objective is divided into the

following parts:

 Development of fast-transfer functions: The dominant physical processes at

play during CO2 migration need to be incorporated into a fast transfer function to

approximate the migration of CO2 in the aquifer. In this dissertation, it is

hypothesized that a fast transfer function based on random walker particle

tracking processes can be developed to accurately represent the physics of plume

displacement. Such proxies are currently used in solute transport problems

(Tompson and Gelhar 1990, Quinodoz and Valocchi, 1993). This would allow

rapid screening of a large number of reservoir models that might be representative

of the prior uncertainty.

 4

 Validation of fast-transfer functions within model selection framework: The

developed fast transfer functions will need to be integrated within a model

selection algorithm and tested on synthetic and real field cases to ensure the

validity of the development.

 Development of a software suite to implement the algorithm: There are a large

number of sub-processes that constitute the model selection algorithm. These will

need to be implemented in a robust software module such that it can be used by a

lay user. This will make the current work more accessible and enable easy

implementation to real field cases.

1.3. DISSERTATION OUTLINE

The rest of this dissertation will describe the model selection algorithm and the

development of two particle-tracking proxies for rapid evaluation of reservoir

connectivity. Chapter 2 will discuss the existing body of work pertaining to monitoring of

geologic carbon sequestration processes, as well as established methods of history

matching pertaining to multiple models and the use of fast-transfer proxies for numerical

simulation prevalent in the energy industry. Chapter 3 will briefly describe the model

selection algorithm as applied to the case of carbon sequestration. Chapter 4 will describe

the development of the first of two particle-tracking proxies for use within the model

selection algorithm. Test cases, both synthetic and real field examples, will also be

presented. In Chapter 5, we will layout the development of the second particle tracking

proxy, together with test cases. It will also show the application of the new proxy to

overcome some challenges faced by the old proxy. Chapter 6 will outline the

development of the software module for easy implementation of the entire work, with

 5

additional information available in the appendix. Chapter 7 will describe some additional

applications of the model selection algorithm to some specific problems encountered

during sequestration. The final chapter will discuss the primary findings of this work and

make recommendations for future work.

 6

Chapter 2 : Literature Review

In the context of geologic carbon sequestration, it is of primary importance to

both operators and regulators to be able to ensure containment of the injected CO2 within

the storage volume. Achieving this purpose requires a two-step process: monitoring the

current location of the CO2 plume and predicting the future migration of the plume. In

this chapter, we will explore some of the current monitoring techniques available to

operators to track the migration of the injected CO2. Since we have implemented a

method for making probabilistic predictions of plume migration using a set of reservoir

models reflecting the observed injection data, we will also discuss come existing methods

of history-matching. Finally, given that the major focus of our work was the development

of proxies to estimate reservoir connectivity, we will discuss some other proxies for rapid

estimation of fluid migration.

2.1. MONITORING CO2 PLUME MIGRATION

The process of monitoring the migration of injected CO2 generally involves a

combination of different detection and prediction mechanisms. This combination of

technologies would allow operators to take remedial steps if they detect the possibility of

anomalous migratory behavior of the plume. Benson et.al. (2004) described such an

approach to monitoring by dividing the implementation into four phases: pre-injection,

injection, post-injection and closure. The pre-operational stage is composed of

characterization and assessment of the storage volume and the development of the site by

deploying necessary infrastructure and facilities, and drilling of injection wells

(Implementation of Directive 2009/31/EC on the Geological Storage of Carbon Dioxide:

Guidance Document 1, European Commission). Operations phase is when the operator

 7

starts injection of CO2 into the ground. The closure phase starts when the operator has

either met the pre-determined storage requirements for the site, or has decided to stop

injection. Post-closure phase starts after the operator has ensured all required closure

monitoring, plugging and abandonment of wells and handing over of responsibility to a

competent authority. At each of these stages, there can be multiple monitoring

requirements based on the objective of the operator and the needs for the site.. The details

of this approach are described below and shown in Table 2.1.

1. Pre-injection Monitoring: These operations could include exploratory subsurface

measurements like 3D seismic and gravity surveys, well level surveys like log data

acquisition, pressure tests in existing wells, analyzing injection data from previous

wells, as well as further drilling and injection tests if feasible. These data can then be

used for detailed characterization of the storage volume, and also making decisions

about future feasibility and requirements for remote monitoring techniques.

2. Injection Monitoring: during this phase, the subsurface measurements like seismic

and gravity would be continued, and there would be new rate and pressure data from

injection and monitoring wells. There is also possibility of remote satellite

measurements of ground deformation (Goldstein et.al. 1993, Onuma and Ohkawa

2009) to possibly estimate the movement of the CO2 plume. These data can be used to

test the models from the pre-operational phase and update them appropriately. These

updated models can then be used to make predictions of future migration and

compared to additional field data over time. This combination of monitoring and

modeling approaches would gradually reduce the monitoring requirement over time

as the aquifer models become more and more robust.

3. Closure and post-closure monitoring: the activities during both these phases would be

similar, with seismic/gravity surveys at reduced intervals. If there are monitoring

 8

wells present, it would also be possible to get pressure data to match to model

predictions. Unless there is a drastic offset between monitoring results and model

predictions, the monitoring surveys would be only be required at very infrequent

intervals during these stages.

 Monitoring methods Aquifer modeling

Pre-operational

monitoring

Well logs; Wellhead

pressure/rate; Seismic survey;

Formation pressures;

electromagnetic/gravity survey

Creation of models for the

aquifer using prior

information, if available,

and current surveys

Operational

monitoring

Wellhead pressure/rate;

Microseismicity; Seismic

surveys; Gravity survey

Aquifer models created in

the previous stage simulated

and compared with the data

recorded at this stage, to

validate and/or update

models

Closure monitoring

Seismic survey; Gravity survey;

Electromagnetic survey

Simulated seismic response

based on predictions

compared to field seismic

surveys to ensure

confinement; simulations

can also be used for risk

assessment

Table 2.1. Monitoring stages of a sequestration project (adapted from Benson et.al. 2004)

2.2. HISTORY MATCHING: AN OVERVIEW

In order for the aquifer modeling during the various phases of operation to be

continuously updated using the available data, it is necessary to implement efficient

schemes for data assimilation and uncertainty quantification. Because dynamic injection

and monitoring data is likely to be readily available, integration of such data within a

 9

history-matching framework is necessary. The history matched process can be followed

by prediction of future migration of CO2 and comparison to monitoring surveys. In this

section, we take a brief look at different history-matching workflows that have been

proposed in the literature and can be used for this purpose.

History matching, in its most basic form, can be described as the process of

creating representations (models) of the subsurface region under study such that forward

modeling results of these representations are a close match to observed data. The

underlying assumption in this process is that if the modeled results match the observed

data, the model is deemed a close approximation to the actual subsurface reservoir and

can thus be used to reliably predict future performance [see for example, Review of

Inverse methods (Zhou et.al. 2013), Manual history matching (Wallen et.al 1968, Mann

and Johnson 1970, Coats et.al. 1970), Gradient-based methods (Lee et al 1986, Zhang et

al 2003), Simulated annealing (Deutsch and Journel, 1994), Gradual deformation (Hu

2000, Le Ravalec 2002)]. The problem with this assumption, however, is that there could

be multiple models that meet this criterion, thus making the result of history-matching

non-unique. Further, given this non-uniqueness of the solution, it would be erroneous to

make predictions about the future performance using any one of the models. One possible

solution to this process is to adopt methods for multi-model history matching whereby

multiple 'matched' models are created, thus honoring the non-uniqueness of the entire

process. At the same time, predictions made by multiple models can be used as

probability estimates of future performance. There has been extensive work on this

problem, with various methods suggested for generating an ensemble of history-matched

models conditioned to static and dynamic data. In this section, we will look at some of

these methods that have become popular in recent years.

 10

2.2.1. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF), developed by Evensen in 1994, is a variation

of the Kalman filter (Kalman, 1960). It is a closed-loop update process for the state

variables of a system, by progressive integration of data. In EnKF, the step variables of

the system could be both dynamic data like pressure, saturation, gas-oil ratio etc., and

static data like permeability and porosity. EnKF sequentially runs a forecast step using a

forward model that solves the subsurface flow equations, and then an update step where

the state variables at the end of the forecast are updated guided by the mismatch between

the predicted and observed well responses. The steps involved in EnKF can be

summarized as follows (Nævdal, 2003):

1. Create an initial ensemble of models

2. Run forward full-physics simulation to the first update step when observations

are available.

3. Create a correlation matrix that relates the state variables to the corresponding

simulated responses.

4. Compute the mismatch between the simulated responses and the actual well

observations.

5. Update the state vector guided by this mismatch.

6. Run the models forward using the updated state vector, to the next time step

when observations are available

7. Repeat steps 3-5

The updated reservoir parameters such as porosity and permeability as well as

dynamic parameters such as pressures, saturations and well responses obtained by

 11

running the flow simulation at the end of each forecast step make up the state vector

,

where k is the time step and i is the model number, the superscript f indicates that this

value has been calculated forward in time. The simulated well responses that have to be

compared to the observations are extracted from the state vector by:

 (2.1)

Here H is a matrix with identity values only corresponding to the well response values. It

has been demonstrated that the observed variables need to be considered as a random

variable, otherwise subsequent updates while preserving the mean will underestimate the

variance (Burgers et.al., 1998). Hence, a random noise is added to the observation vector:

 (2.2)

where
 is a random noise drawn from a multinormal distribution with zero mean and

covariance Rk. The forecast state vector

 is then updated using the equation:

 (

) (2.3)

The term Kk is known as the Kalman gain and is given by the relation:

 (

)

(2.4)

Here,

 is the model error covariance matrix given by the following equations:

(

)

(2.5)

√
[(

) (

)]

(2.6)

∑

(2.7)

and
 is the ensemble mean. The operation

 extracts the covariance between the

state values permeability, porosity, saturations etc. and the well responses. In other

words, the Kalman gain functions like the Hessian within a reservoir simulator.

 12

The sequential update of EnKF makes it an attractive option for model updating

as new data becomes available. The implementation also makes it possible to generate

probability distribution of model predictions because an ensemble of updated values is

available at the end of the procedure. However, EnKF is predicated on the relationship

between the state variables being adequately represented using a covariance function.

This only holds true as long as the multivariate distribution describing the state values is

strongly Gaussian in nature and the relationship between state variables and observed

data (given by H in equation (2.4)) is linear. Zafari (2007) showed that EnKF is unable to

represent the posterior probability distribution in cases where the data was bi-model.

Even in cases when the state vector is not Gaussian, Emerick (2012) showed that the use

of efficient sampling techniques like MCMC (Markov Chain Monte Carlo) can be

combined with EnKF to enable proper sampling of the posterior distribution of reservoir

parameters. However, the iterative nature of MCMC makes the model updating

procedure computationally expensive. Zhou et.al. (2011) showed that using a

transformation of non-Gaussian state variables to a Gaussian distribution and

subsequently performing EnKF and finally back transforming the variables to the non-

Gaussian space preserves the non-Gaussian nature of the initial state throughout the

update process. There has also been a lot of work done using methods like truncated-

Gaussian and Gaussian mixture models to circumvent the inability of EnKF to model

non-Gaussian fields like facies distributions, channels etc. (Lantuéjoul 2002, Liu and

Oliver 2005).

A further problem with EnKF lies in the fact that the update step only considers

the mismatch between observed and predicted responses forward in time i.e. getting a

good match to observed data at any stage has no guarantee that the matches for previous

time steps will be preserved. This can cause a loss of geologic information over multiple

 13

updates, and the final model set might be geologically inconsistent with the initial data

(Mantilla 2007).

Finally, with the evolution of EnKF, additional reservoir parameters such as fluid

contacts, fault transmissibilities and NTG ratio have also been added to the state vector.

This can cause reduction in the updating of some parameters. Indeed, Chen (2010) and

Wang (2010) have both pointed out that if there are variables like fluid contacts in the

state vectors, it might be better to restart the simulation from the initial time after

occasional updates, since updated contacts are not reflected by phase saturation updates.

2.2.2. Neighborhood Algorithm

The Neighborhood Algorithm (NA) was developed by Sambridge in 1999 for

solving inverse problems in geophysics. It is a stochastic sampling algorithm that finds an

ensemble of models by non-linear interpolation in the parameter space, and guided

sampling of well-fitting regions of the parameter space. Non-linear interpolation is

achieved by dividing the entire parameter space into Voronoi cells (Voronoi 1908, details

in Okabe et.al., 2000). The division of the parameter space using this method is always

unique, space filling and inversely proportional to the number of points (Sambridge

1999).

The algorithm quantifies uncertainty using two basic phases: search and appraisal.

In the search phase, the initial model set is run forward using a simulator, and a misfit

function with observed data is created for each member of the ensemble. The nr models

with the lowest misfit are chosen out of the entire ns models, and a new set of ns models

are created using a Gibbs sampler in the nr Voronoi cells. Selective sampling of good

regions is achieved by using information about all previous models, thus overcoming the

 14

convergence problem in stochastic sampling. The process is repeated until it reaches a

pre-defined number of iterations. The ratio of ns/nr defines the trade-off between

exploring the parameter space and finding better matched models. For ns/nr value of 1,

the algorithm explores the entirety of the parameter space; as the value of this ratio

increases, there is increased emphasis on finding better matched models at the cost of

exploration.

The NA algorithm by itself does not provide an estimate of prediction probability,

hence a separate calculation is conducted to find the posterior probabilities in the

appraisal phase, using Bayes’ rule (the NA-Bayes algorithm):

 ()
[() ()]

 () ()

(2.8)

Here, is the history data, and m is the model response. The calculation uses the

volume of the Voronoi cells and the value of the model misfit (assumed constant for each

Voronoi cell) to define the likelihood function, (). According to Subbey (2003),

this approach offers an advantage over traditional methods of uncertainty analysis by

allowing the use of non-Gaussian distributions. The denominator (called the normalizing

term), however, is not easy to calculate. A solution lies in the use of Markov Chain

Monte Carlo (MCMC) formulation to sample from the posterior distribution without the

need to exactly calculate the Bayes term (Christie 2002).

2.2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) is an example of using swarm intelligence for

exploring the parameter space of a problem. It is inspired by the interaction of natural

animal populations, where the individual actions of the swarm members are integrated

 15

with the sharing of information between members, leading to powerful problem-solving

techniques using ‘collective intelligence’. This nature is seen in the behavior of ants in an

anthill (itself the basis of another similar algorithm called Ant Colony Optimization

[Dorigo 1992]) and in flocks of birds.

PSO was developed by Kennedy and Ebarhart in 1995 as a population-based

stochastic optimization algorithm, and has been widely used to solve a variety of

problems (Kennedy and Eberhart 1995; Eberhart and Shi 2001). In this algorithm,

multiple particles explore the parameter space, with the movement of each particle

guided by a combination of the memory of good locations that it sampled and the swarm

memory of good locations. The position of a particular particle in parameter space

represents a possible solution to the optimization problem.

The steps of the algorithm can be summarized as follows (Mohamed et.al. 2010):

1. Define a random selection of particles in parameter space, together with a

random initialization of particle velocities. Run each particle through a

simulator.

2. Calculate the fitness function for each particle. This will dictate the quality of

the location in the parameter space.

3. Update the position of pbest, the best location for the particle with the current

value. This gets updated every time the particle encounters a location with a

better fit to observed data.

4. Calculate the global best position using the pbest information across the entire

swarm. This is designated by gbest, and updated similarly to pbest.

5. Update the velocity of the particle using the equation:

 (
) (

) (2.9)

 16

Here, the velocity term is composed of three components. The first term is

called the inertia term and it reflects the tendency of the particle to keep

moving in the same direction as before. The second term is called the memory

term and defines the tendency of the particle to move towards its own best

location. The third social term, defines the tendency of the particle to move

towards the best position of the entire swarm. This is shown in the vector

diagram in Figure 2.1. The velocity of the particle is updated as the vector

sum of the current velocity (inertia term), the vector representing the tendency

of the particle to move towards its own best location (memory term) and a

vector representing the tendency of the particle to move towards the best

location found by the entire swarm (social term).

 17

Figure 2.1. Schematic of Particle Swarm Optimization (adapted from Christie

et.al., 2010. SPE 135264)

6. Update the position of the particle using the equation:

 (2.10)

7. Repeat steps 2 to 6 until the required number of iterations is reached.

Similar to the NA algorithm, the PSO does not have an explicit posterior

probability calculation, and hence needs additional computation to quantify the

probability envelope for predictions.

2.2.4. Genetic Algorithm

Genetic algorithm (GA) belongs to a general class of computational methods that

are derived from natural selection and genetics. It operates on the principles of population

 18

genetics and natural rules for propagation of the fittest members of the species. It starts

with a population of models, with a given gene structure (the parameter set for each

model) and selects the ‘fittest’ members of the ensemble; these fittest members are then

subject to modification of their genetic material (evolution) in order to generate new

members of the species.

The process is initiated by coding the parameters of the model into an array called

the chromosome, composed of parameters (genes) to define each model. The parameters

are static properties like permeability and porosity, recorded at certain pilot points. For

example, if the models are defined by permeability at 100 pilot points, the chromosome

for each model will be composed of 100 values of permeability, and the individual

permeability values will be the genes. In early applications of GAs, the genes were

always coded in binary and later mapped to some real values (Sen et.al. 1995); however,

modern applications have been designed to directly code real values into the gene

structure (Oliveira 1997, Romero 2000).

 The initial population then evolves through the processes of reproduction,

crossover and mutation. Reproduction is the process of copying the genetic material into

the next generation, the probability of which is defined by its goodness-of-fit to the

observed data. In its most basic form, the probability of selection for reproduction is

given by (Goldberg 1989):

 () () ∑ ()

 (2.11)

where () is the goodness-of-fit measure for model ‘m’

The crossover operation, also known as the ‘recombination operator’, combines different

genetic material by choosing the well-performing genes from different chromosomes.

 19

Using the permeability example from above, the crossover operation will chose the

particular permeabilities at pilot points that showed a high degree of fit to observed data.

Thus, the process tries to create a new member that retains the best properties of the

previous generation. The process of mutation introduces new genetic material into the

population, driven by a mutation probability. Using the permeability example once again,

the process will change the permeability values at the pilot points to drive models

towards a better fit. Various kinds of mutation operators, like jump and creep, have been

implemented. The process again can be of two types: uniform and non-uniform. Uniform

mutations alter genetic material randomly within a range of possible values, which could

cause the mutations to move away from good solutions. Wardlaw (1999) implemented a

modified method of uniform mutations which mutated a specific gene only by a specific

amount, positive or negative. In non-uniform mutations, the degree of mutations are

reduced as the run progresses, thus allowing small adjustments and fine-tuning in later

generations.

The GA algorithm produces a population of best-fit models to the observed data.

The process, however, does not have internal measures for measuring posterior

probabilities, and thus need post-operational analysis for estimating such probabilities.

2.2.5. Summary

In this section, we discussed four existing methods for multi-model history

matching and uncertainty estimation: Ensemble Kalman Filter (EnKF), Neighborhood

Algorithm (NA), Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs).

EnKF provides a method for sequential integration of data in model ensembles,

but suffers from high computation costs when modified to apply to non-Gaussian

distributions. In its basic form, it is limited to Bayesian linear models, though a lot of

 20

additional research has looked at non-Bayesian applications with highly non-linear

relations between state vectors and observations.

Both NA and PSO are based on exploration of the parameter space to find

multiple minima. The drawback of both methods is the need for computation of the

forward model for a large number of parameter selections, which makes it expensive.

However, this problem can be addressed by implementing in parallel computer

architectures. Despite that, it can be expensive to generate multiple models using these

methods in order to assess the residual uncertainty.

The initial formulation of PSO also suffered from problems like velocities being

too high which caused particles to venture outside the parameter space (fixed by velocity

clamping [Eberhart and Shi 2001]), inadequate tradeoff between exploration and

exploitation (fixed by using appropriate inertia weights [Birge 2003, Trele 2003]), and

domain boundary problems.

The primary drawback of GAs, or any of the population based approaches, is their

slow rate of convergence. This can be alleviated to an extent by reduction in the

dimensionality of each chromosome by lumping together of parameters (Schulze-Riegert

et.al. 2003), or be accelerating using a gradient-based search method.

2.3. PROXY FORMULATION AS AN ALTERNATIVE TO FLOW SIMULATORS

The algorithms outlined in the previous section almost always suffer from one

common drawback: the significant computational cost of running flow simulations on

large sets of models. Aside from the application of parallelization schemes, it is possible

to address this problem by replacing the flow simulator with an inexpensive

approximation or proxy that allows us to rapidly evaluate flow responses. In this section,

 21

we will look at some existing methods of proxy formulations that have been implemented

in the industry.

2.3.1. Streamline Simulation

The process of modeling fluid flow using streamtubes can be traced back to the

work of Muskat (1933), when he described the theoretical analysis of water-flooding

networks. The earlier applications were mostly limited to the use of streamtubes.

Streamtube simulation does not suffer from numerical dispersion as do finite difference

simulations. It is readily applicable to cases with slowly changing velocity fields (like

waterfloods). However, initially this approach was oapplied only in two-dimensions, and

extension to three dimensions was non-trivial. Lake et.al (1981) were able to devise a

modification of the streamtubes method by combining areal streamtubes with cross-

sectional finite difference based methods, that enabled application of streamtubes to a

number of cases - waterflood prediction (Emmanuel et.al. 1997) and miscible flood

predictions (Mathews et.al. 1989). Steamline simulations are an adaptation of these early

streamtube methods, without the need for explicit calculation of tube geometries. The key

concept here is to reformulate the transport equation in time-of-flight coordinates, which

decouples the flow from the transport and enables solving one-dimensional transport

equations along streamlines, as detailed below.

The key steps in a streamline simulation can be stated as follows (Dutta-Gupta

and King 1995, Crane and Blunt 1999, Kharghoria 2004):

1. Compute the pressure field and hence the velocity field using standard finite

difference formulations of flow equations in a reservoir.

 22

2. Using the computed velocity field, trace streamlines. The components of the

velocity field can be used to find the entry and exit points of each streamline

moving across a grid block. An important underlying assumption here is that

the velocity is linearly varying from the entry to the exit face.

3. Once all the streamlines have been traced, compute the travel time along a

streamline or the time-of-flight. This is given by the equation:

 () ∫

 ()

 (2.12)

Where is the travel time along the streamline and v(x) is the interstitial

velocity.

4. The transport equations (saturations, concentrations) are converted to time-of-

flight coordinates using the operator identity (Datta-Gupta and King 1995):

 ()

 (2.13)

For example, consider the Buckley-Leverett equation:

 ⃗ () (2.14)

Then, using the relation in equation (2.13), we can rewrite equation (2.14) as:

 ()

 (2.15)

The transport quantities (Sw in the above case) are calculated and propagated

along each streamline, and then finally mapped onto the underlying grid.

5. Occasionally, the pressure and velocity solutions need to be recomputed to

account for changes in the fields over time.

 23

Streamline simulations have proved to be a powerful tool for evaluating fluid

migration in reservoirs and have been extensively used for the purpose of uncertainty

quantification (Alpak et.al. 2009, Park et.al. 2012). Even though the initial formulations

were restricted to velocity-dominated incompressible flow, the process has been extended

to account for compressibility (Datta-Gupta et.al. 2001), dissolution (Thiele et.al. 1997),

dispersion (Obi and Blunt 2006), relative permeability hysteresis (Qi et.al. 2007) and

other additional physical processes.

However, there is still considerable difficulty in solving for the pressure and

velocity fields using IMPES methods, which limits the accuracy of the process for

smaller time steps. Further, the inherent assumption that the flow is along a streamline is

violated in cases like transverse diffusion, well rate alterations etc. In such cases, it

becomes necessary to use methods like multiple timesteps and timestep operator splitting,

which makes the process numerically expensive. There have also not been many field

scale applications of streamline simulators for compositional cases.

2.3.2. Artificial Neural Networks

Artificial neural networks (ANNs) are based on the concept of natural neural

networks as seen in the central nervous system of living creatures. In the oil and gas

industry, ANNs have been used to solve a wide variety of problems, like fluid property

analysis (Hegeman et.al. 2009), relative permeability analysis (Guler et.al. 2003),

prediction of PVT properties (Gharbi and Elsharkawy, 1999) and prediction of well

responses (Boomer 1995). It is this last application which is of primary importance in

history-matching and uncertainty analysis.

 24

There are three main components of an ANN: the input, the hidden nodes and the

output nodes. The input node consists of the vector of prior information. The hidden

nodes are the intermediate nodes which are connected to the input nodes by connection

and weighting applied to the connections. The outputs from the hidden nodes are mapped

to the output nodes and there is flexibility to configure that mapping and weight functions

also. A basic single-layer ANN is shown in Figure 2.2.

Figure 2.2. Layout of an artificial neural network, showing the input nodes, hidden nodes

and output nodes (from Laboratoire d'Automatique et d' Informatique

Industrielle de Lille, http://sic.ici.ro/sic1999_2/art03.html)

The primary steps involved in an ANN simulation are: designing, training and

prediction. The designing stage is when the structure of the neural network is defined.

The training stage is the critical step in ANNs, which is when the learning algorithm for

the process is defined. These can be of two kinds: supervised and unsupervised.

Unsupervised learning is used primarily for pattern recognition, where it learns the

pattern of the input data and learns to reflect that pattern in the output data. Supervised

learning, on the other hand, compares the values at the output nodes to actual observed

http://sic.ici.ro/sic1999_2/art03.html

 25

data, and modifies the internal weighting (the connections between input and hidden

nodes) such that the mismatch between output and prediction is minimized.

Though neural networks can capture the highly non-linear relationship between

static variables and dynamic output from a reservoir, it still has some significant

drawbacks. The process of training the neural net, in itself, is a laborious task that

requires many executions of the full-physics flow simulator on a large set of training

models. Furthermore, integration of new data into the model would require retraining of

the neural net, at an additional computation cost. The biggest drawback, however, is that

the mapping between the input and the output obtained by a neural network is purely

statistical with limited understanding of the physics linking the input and output

parameters. In spite of these drawbacks, ANNs are powerful and are becoming

increasingly popular in the petroleum industry.

2.3.3. Particle Tracking

The modeling of fluid transport in porous media has evolved into a robust

numerical framework, accounting for all relevant physics. The biggest drawback of such

a system, however, lies in the computational cost of solving the finite difference

equations for pressure, saturations and concentrations. Additionally, there is numerical

dispersion and instability in the form of artificial oscillations associated with these

solvers, necessitating smaller time steps and finer grid resolutions, further adding to

computation times. Particle-tracking based methods have been tested for a variety of such

cases as a useful alternative to full physics numerical solvers.

There are two primary approaches for using particle tracking to simulate fluid

flow in porous media: continuous time random walker (CTRW) and random walker

 26

particle tracking (RWPT). Both approaches rely on representing the physics of fluid flow

using random particles that move through the grid using certain rules. RWPT moves the

random particles using the velocity field obtained by solving the flow equations, and then

adds an uncertainty term to capture dispersion. On the other hand, CTRW (introduced by

Montroll and Weiss, 1964) combines both advection and dispersion into a single master

equation, as shown below (Berkowitz et.al. 2000):

 () ∑∫ () ()

 (2.16)

Here, R(s,t) is the probability for a random walker particle to arrive at location s in time t,

and () is the probability of transition of a particle between two locations separated

by s-s’ over a time interval t-t’. Equation (2.16) combines advective, dispersive and

diffusive effects into a single equation.

 In our work in later chapters, we will use the RWPT formulation to guide our

modeling of CO2 migration through an aquifer. The basis of using RWPT to model fluid

transport in porous media is based on the analogy between the random walker equation

and the Fokker-Planck equation (Kinzelbach 1987). In the following section ,we look at

the mathematical formulation of the scheme.

Mathematical formulation of RWPT

The basic advection-diffusion transport equation can be stated as:

 () () (2.17)

where D is the dispersion tensor, u is the velocity term and c is the concentration term.

This is a second-order PDE, which can be solved using standard finite-difference or finite

element methods. To overcome the problem of numerical instability and dispersion, the

Peclet and Courant number have to be sufficiently small (Huyakorn et.al. 1983).

 27

RWPT simulates solute transport by partitioning the solute mass into a large

number of representative particles. The evolution in time of a particle is driven by a drift

term that relates to the advective movement and a superposed Brownian motion

responsible for dispersion. The displacement of a particle is written in its traditional form

given by the following integration scheme (Gardiner, 1990):

 () () () () ()√ (2.18)

where Δt is time step, Xp(t) is the position of a particle at time t, A is a drift vector, B is

the displacement matrix, and ξ(t) is a vector of independent, normally distributed random

variables with mean 0 and variance 1.

To establish a parallel between equation 2.18 and equation 2.17, equivalence is

established between the displacement scheme in a random walk and the Fokker-Planck

equation and then between the Fokker-Planck and transport equations. The Fokker-

Planck equation describes the evolution of the probability density function of a particle

under the influence of a stochastic process (like diffusion). It has been demonstrated (Ito

1951) that the probability of finding a particle within a given interval at a given time t

[f(Xp, t)], obtained from Equation (2.18) satisfies the Fokker–Planck equation for large

particle numbers and a very small step (Kinzelbach 1987). This equation describes the

motion of the particle density distribution f and is given by:

 () () (2.19)

Where:

 () ∑∑

 (2.20)

and n is the number of dimensions.

 28

Both advection-dispersion and Fokker-Planck equations are similar to each other

in that they contain an advection and a diffusion term. To establish a better parallel

between the two equations, equation (2.17) can be modified as follows:

 () () () (2.21)

Using u
*
= u + , the equation can be transformed into an equivalent Fokker-

Planck equation:

 () () (2.22)

Substituting the drift vector A in equation (2.17) with the modified velocity

vector, the RWPT scheme is obtained:

 () () [() ()] () ()√ (2.23)

Where the displacement matrix B is related to the dispersion tensor as: 2D = B
.
B

T

The particle tracking system conserves mass exactly (since the random particles

are not lost or destroyed). Further, it can be applied to a gridless system if needed, since

the basic mathematical formulation does not contain any grid-based formulation. There is

also no numerical dispersion associated with the walkers.

RWPT approaches to simulate fluid flow in the subsurface have been especially

popular in hydrology and environmental engineering (Kinzelbach 1988, van Dop 1985,

Li et.al. 2011), though there has been limited application in the oil and gas industry [for

example, John et.al. (2010) used a particle tracking approach to study dispersive mixing

in field scale miscible displacements]. Later in this dissertation, we will outline the use of

particle tracking algorithms for use in geologic carbon sequestration, which can be

extended to flow in oil and gas reservoirs.

 29

2.3.4. Summary

In this section, we looked at a few proxy models that can be used in place of a

full-physics simulator during multi-model history matching. Streamline simulators are the

most popular among these approaches and have been widely tested on a large number of

synthetic and field cases. Though their implementation initially was limited to

incompressible, single phase, two-dimensional flow problems, continued evolution has

seen additional physics like multiphase, multicomponent flow with compressibility being

accounted for by these simulators. Artificial neural networks have recently seen an

increased interest, mostly due to the “black-box” approach of the implementation;

however, that has also been one of their biggest drawbacks. They suffer from not being

able to capture the actual physics linking the non-linear relationship between static data

and dynamic responses. The application of particle tracking methods to model solute

transport has been particularly popular in hydrodynamic studies due to their

computational advantage over full-physics simulators; however, their use has been quite

limited in the oil and gas industry. In subsequent chapters, we will show implementation

of the random walker particle tracking to model fluid flow during CO2 sequestration and

demonstrate its use in a model selection process for assimilating dynamic data.

 30

Chapter 3 : Model Selection Algorithm

The uncertainty in reservoir architecture, geology and distribution of rock types

and their associated petrophysical properties make it necessary to not just develop a

single model but rather multiple models, each conditioned to all the available data.

Performing grid-node updates to reservoir parameters in order to minimize the mismatch

between the observed and predicted response and subsequently repeating that process in

order to develop multiple reservoir models, can be extremely time consuming. In lieu of

this iterative updating process, it is useful to interpret the process of history-matching as

an effort to find the most suitable candidates for the reservoir under study based on the

observed responses, that is history-matching becomes an exercise in selecting best-fit

models for the reservoir. At the end of the model selection process the objective is not to

get the single best-fit model, but a cluster of models that share the reservoir

characteristics important to match the history and that permit assessment of the residual

uncertainty after the data assimilation process. In this chapter, we outline a model

selection process based on this idea of multi-model history matching, conditioned to data

from multiple field sources.

3.1. MODEL SELECTION ALGORITHM: AN OVERVIEW

Traditionally, geostatistical approaches have sought to calculate the conditional

probability P(A|B) where A is a simulation event at the grid-block level (e.g.

permeability, porosity etc.) and B is static geologic data. In the event dynamic data (such

as production or injection history information) is available to model the reservoir, the

goal is to construct the conditional distribution P(A|B,C) and subsequently sample several

models from that distribution. In contrast to this grid-based approach, in our model-

 31

selection approach, the event A is an entire model. Thus, P(A|B) is the conditional

probability of a model given prior geological information. The objective of the model

selection process is to estimate the posterior probability P(A|B,C) where C is the given

field data (like bottom-hole pressure / rate at wells), i.e. the probability of a model given

both static geologic data and dynamic well data. This posterior probability is represented

by all the models in the final set of models derived at the end of the model selection

process that share a common characteristic.

The first step is to represent the prior uncertainty about reservoir geology and

architecture using an initial set of models. In order to adequately capture the prior

uncertainty, it is important to make this initial model set as wide as possible, considering

all possible interpretations for the reservoir. The next step in the algorithm is to assess

the flow connectivity of the models. Differences between the models are computed in

terms of the connectivity metrics. The difference/distance between pairs of models are

then subject to multivariate analysis techniques such as principal component analysis or

Multi-Dimensional Scaling (MDS). These analysis techniques are used to project the

models on an n-dimensional space as a cloud of points, with each point representing one

model. The n-dimensions refers to the minimum dimensionality required to capture most

of the variability (variance) exhibited by the flow characteristics of the prior models. This

cloud is then divided into distinct groups or clusters, such that models grouped together

show connectivity characteristics that are similar to each other and different from that of

models in other groups. Once the models have been clustered, representative models are

picked from each cluster and run through a full-physics numerical simulator. The

responses from the simulator are compared to the response observed in the field in order

to find the model cluster closest to the observed field data. This process of projection,

clustering and simulation to find the best cluster is then repeated on the best-fit cluster of

 32

models from the previous step. The process is terminated when the model clustering does

not improve the posterior probability of the clusters or the clusters become equiprobable.

The entire process is shown in Figure 3.1and described in detail in the following sections.

Figure 3.1. Schematic of the model selection algorithm (Bhowmik 2010)

 33

3.2. INITIAL SET OF MODELS

The initial set of models is intended to represent the uncertainty in reservoir

architecture, geology and rock type distribution of the subsurface entity under study. To

illustrate this concept of prior uncertainty, consider a fluvial channel system as shown in

Figure 3.2. The larger channel system consists of two primary channel types:

distributaries and estuaries (Allen and Chambers 1998). These channels are stacked

within the system, the type of stacking dependent on the sediment load at depositional

times. There is uncertainty associated with this stacking and distribution of the individual

channels. Further, there is a lot of uncertainty of the distribution of sand and mud within

the individual distributaries or estuaries. Thus, to represent these uncertainties, we would

Figure 3.2. Seismic section at the top of a carboniferous reservoir in central Africa,

showing the outline of a channel system (Wright 2007)

 34

need to account for various possible layouts of the individual channels within the system,

and also various distributions of sand and muds within the channels. Thus, our initial

model set will have to be large enough to account for the combined uncertainty at

different scales of the reservoir. The initial set of models have to reflect our judgment

about what scales of heterogeneity effect the specific fluid flow processes that we are

considering.

Figure 3.3. Hierarchy of channel deposits, showing individual channels distributed within

the system and the facies distributions within each channel (adapted from

Abreu et.al., 2003)

3.3. EVALUATION OF CONNECTIVITY OF RESERVOIR MODELS

Once the required reservoir models have been created, they have to be analyzed in

order to assess their flow connectivity. This can be achieved by using a numerical

simulator or by using a fast-transfer function that approximates the flow characteristics

captured by a numerical simulator. Given that the initial suite of models may be large, the

 35

use of fast techniques to assess the flow connectivity of the models is preferable. For our

work, we developed two particle-tracking proxies, which we will describe in greater

details in later chapters. It has to be emphasized that our goal in this step is to rapidly

assess the connectivity of initial suite of models so that we can begin dividing the models

into groups that exhibit similar characteristics.

The results from the simulator or the proxy are recorded at certain locations

within the models and the response at these locations is used to characterize the flow

connectivity of the models. The choice of proxy/flow response monitoring locations

becomes crucial and techniques for deciding the locations are discussed later in Chapter 7

of this dissertation.

3.4 . ANALYSIS OF CONNECTIVITY MEASUREMENTS FOR MODEL CLUSTERING

The monitoring locations can be used to record responses from the numerical

simulator or fast-transfer function. The set of responses for each model defines a set of

metrics that describe the connectivity of that model. To illustrate this point, consider two

models as shown in Figure 3.4.

Model 1

Model 2

Figure 3.4. Two models with permeability features in opposite directions. An injection

well is shown in black at the center of the grid. There are 4 measurement

locations (numbered 1 through 4) in white around the injector.

 36

The two grids have high-permeability features running in different directions,

with an injection well at or close to one such feature. The fluid injected into the well will

move predominantly in a NW-SE direction in the model on the left and in a NE-SW

direction in the model on the west. In this case, if we were to record saturations at the

measurement locations at certain intervals of time, we would see higher saturations in

locations 1 and 4 in model 1, and location 2 in model 2. Denoting a high saturation value

as 1 and a low one as 0, we can construct a corresponding binary array for the responses.

This is shown below:

Locations Model 1 Model 2 Model 1 Model 2

1 High Low

→

1 0

2 Low High 0 1

3 High Low 1 0

4 Low Low 0 0

Figure 3.5. The models above represented on a three-dimensional space, using responses

from locations 1, 2 and 3

 37

The combination of lows and highs (restated as 0s for lows and 1s for highs) are

representative of the particular model. If this process is executed for all models in a

model set for ‘m’ locations at ‘t’ different time intervals, we will then have m t number

of metrics to describe each model. Using these metrics, we can then represent every

model in a multi-dimensional space. To continue the example above, we can decide to

represent the two models on a three-dimensional space, whose axes are given by the

response (low/high) at locations 1, 2 and 3. This is shown in Figure 3.5.

This example also demonstrates another important idea: In spite of having 4

measurement locations, the difference between the models can be assessed using the

response at using the only three of the monitoring locations, because there is no

difference in the responses at location 4 between the two models. Thus, even if we have

m t metrics for each model, we can represent the models by a much smaller set of

metrics, making further computations on the dataset less expensive.

Another assumption that goes into creating the scatter plot in Figure 3.5 is that the

variables are orthogonal to each other. In order for this assumption to be true, the

responses at locations 1, 2 and 3 have to be independent of each other. However, the

saturations at those three locations are most likely not independent of each other; in

model 1, for example, the saturation at locations 1 and 3 will definitely be higher than at

location 2 but the actual amount of saturation recorded at 1 and 2 are related to each other

due to the same underlying permeability feature being responsible for carrying fluid to

these locations from the injector. Thus, before any representation of the model on the

basis of the connectivity metrics, we need to create a truly orthogonal basis on which we

can project the models.

 38

3.4.1. Projection of Models on an Orthogonal Set of Axes

We used principal component analysis of the connectivity metrics in order to find

the leading principal component directions on which to project the models. This approach

allows us to not only infer an orthogonal basis for our model set, but also highlights the

directions along which maximum variability among the models is observed. Because

PCA is a dimensionality reduction technique, it enables the differences between the

models to be projected to a lower dimensional space. This is best demonstrated using an

example. Suppose we have 1000 models, each represented by 3 metrics, for example

saturation at 3 snapshots in time; the metrics are not orthogonal to each other since the

saturation at a given time is not independent of saturations in the earlier times. Principal

component analysis allows us to represent the models on an orthogonal space, as shown

Figure 3.6. (a) Representation of models onto an orthogonal three-dimensional space,

identified by principal component analysis, (b) Projection of models on X2-

X3 plane, (c) Projection of models on the X1-X2 plane, (d) Projection of

models on X1-X3 plane.

 39

in Figure 3.6. Continuing the example, suppose the saturations at the three times is

represented by X1, X2 and X3. If we project the models onto the three two-dimensional

planes defined by the X1-X2, X2-X3 and X3-X1 axes, we can see different patterns in

the projections. Projection onto the X1-X2 plane (Figure 3.6 c) reveals no information

about the models, the X2-X3 projection (Figure 3.6 b) shows a degree of grouping among

all the models while the X1-X3 projection (Figure 3.6 d) clearly shows the clustering

characteristics of the models. Principal component analysis allows us to identify this set

of axes which enables us to best resolve differences between the models. In this case, it is

identifying the saturation at the first and last time snapshots.

For the purpose of our analysis, suppose we have m metrics defined for each of

the N models available. These can be defined by the matrix M given below:

 [

] (3.1)

Each column of the matrix defines the m responses recorded for a given model.

Thus, matrix M has m rows and N columns. In order to find the principal component

axes, we first convert each row of M to a zero-mean vector by subtracting from each

value along a vector the mean of that row. This creates the matrix M0 given as:

 [

] (3.2)

where

∑

 40

Now, the covariance matrix is created for the recorded metrics as an m m matrix,

showing the covariance between all possible pairs of the metrics. This is given by the

matrix C below:

 [

]

 (3.3)

In order to find the principal component directions, we compute the eigenvalues

and corresponding eigenvectors for the matrix C. The eigenvectors corresponding to the

leading eigenvalues define the principal component directions for the given matrix M

(from eq. 3.1). We can decide on how many principal components we want to use to

adequately represent all models by computing the variance contribution of each principal

component as a fraction of the eigenvalue for that component divided by the sum of all

eigenvalues. The original matrix M can then be projected down to this reduced

orthogonal set of axes to represent the models.

3.4.2. Clustering of Projected Models

After the models have been projected to an orthogonal set of axes that highlight

the difference between the models based on the measurement locations, we can group the

models using a clustering algorithm. We chose the K-means cluster analysis algorithm

due to its ease of implementation.

K-means is a centroid-based clustering method, where the clusters are defined by

a central node that might not be a part of the original dataset. The k-cluster centers are

determined such that the sum of squares of distances between data points and its centroid

 41

is minimized. This automatically results in the maximum distance between the clusters.

The algorithm can be stated as follows:

1. Assign k random cluster centroids

2. Based on the distance of each point from the k centroids, assign each point to

one of the k-clusters.

3. Re-compute the cluster centroids depending on the cluster assignments.

4. Repeat steps 2 and 3.

5. Terminate process when the centroids do not move upon computation of new

centroids in step 3.

The process suffers from some drawbacks: the number of clusters has to be pre-

defined and the optimization algorithm for determining the cluster centroids may

converge to a local minimum. In order to address the problem of convergence to a local

minimum, the process needs to be repeated a number of times with different starting

centroids in order to find the optimum clustering. The problem of defining the number of

clusters is a more complicated question to handle.

We implemented a method of associating the results of clustering with a measure

of the effectiveness of clustering, given as the ratio of sum of square distances of each

data point from its cluster centroid to the sum of square distances between cluster

centroids:

 ∑ ∑

 ∑ ∑

 ⁄ (3.4)

 effectiveness of clustering with k clusters, m: models in a particular cluster

 42

Since the objective of the clustering is to maximize the distance between clusters

while reducing the spread within each cluster, we can say that lower values of indicate

better clustering. This measure can then be used to plot against k. The value of will

decrease with increasing number of clusters, and in the limit when number of clusters

equals the number of data points, it will reach zero. The objective of the plot is to find the

point in the curve after which there is a marked change in slope. That point gives an

indication of the optimum number of clusters. To illustrate, 4 distinct clusters of points

were divided into 2 to 10 clusters, and their corresponding effectiveness of clustering

plotted against the number of clusters (Figure 3.7). The figure clearly shows that the

curve almost flattens out after point 4, indicating that the ideal number of clusters is 4 in

this case.

(a)

 (b)

Figure 3.7. (a) Actual data points used for the demonstration. There are clearly 4 clusters

of points in this case. (b) Plot of effectiveness of clustering vs Number of

clusters clearly shows a kink at 4, which is the correct number of clusters.

 43

3.5. BAYESIAN UPDATING AND CLUSTER SELECTION

Once the models have been divided into clusters, they need to be evaluated using

a full-physics numerical simulator so that their responses can be compared to actual field

data. For this purpose, we first need to find one representative model for each cluster, and

evaluate that model using a full-physics reservoir flow simulator. Since the basis of

clustering was the assumption that there were certain common connectivity

characteristics among all models within a cluster, the representative model needs to be

chosen such that it can reflect the common feature(s).

3.5.1. Representative Model for Cluster

The representative model for each cluster of reservoir models has to encompass

the different geological features of all the models within the cluster. A weighted

averaging process is used for this purpose, where the weight given to a model is inversely

proportional to the distance of the model from the cluster centroid. This serves to

highlight the features that are common to most of the models while averaging out the

features which are present only in some models but not common to the cluster. However,

this average model will not reflect key statistics such as the histogram of heterogeneity

features for the reservoir under study. So, a histogram transformation of the average

model to the target histogram for the region (same as the histogram of any of the starting

models) is subsequently carried out, which creates the representative model.

 44

In order to transform the histogram, we created the CDF of the average model and

the CDF of our target histogram. For transforming any value in the average model, we

computed the quantile of that value from the original CDF, and then found the value

corresponding to that same quantile in the target CDF. This was the histogram-

transformed value of the average model. This process is shown in Figure 3.8. These

representative models (one for each cluster) are then run through a full flow simulator in

order to compare them to the field history.

3.5.2. Bayesian Update of Cluster Probability

The simulated responses can be compared to field data in order to estimate how

close a particular cluster of models is to the ‘real’ reservoir. The comparison is done at a

well level, in terms of rates / bottom-hole pressures at wells (injectors / producers).

Though the comparison may be done qualitatively by comparing the simulated and field

responses visually, it is more robust to compute the comparison in quantitative terms. For

Figure 3.8. Example of histogram transformation. The figure on the left is the

distribution of the average model, and the figure on the right is the target

distribution

 45

this purpose, a Bayesian calculation of posterior probability is implemented adapted from

the work of Mantilla (2010).

To demonstrate the process, assume we have N models divided into k clusters. In

the absence of any other sources of information before the model selection process is

implemented, all N models can be considered equiprobable. Hence, the prior probability

of cluster m, (()) can be stated as follows:

 (())

 (3.5)

Using Bayes’ rule, the posterior probability of each cluster, conditioned to well

response can be computed knowing the likelihood function (|
 ()):

 (()|)
 (| ())

 ()
 (()) (3.6)

The likelihood function can be calculated from full-physics flow simulations on

the representative model for each cluster. If the representative model with simulated

response farthest from the observed data be m, and the simulated response of the variable

of interest be represented by , then given an observed response RFref , the deviation

of the simulated response from the observed response can be given as

 | |

 (3.7)

or if the response is a series in time, the deviation can be computed as:

 [] [] (3.8)

 46

Assuming a Gaussian distribution for the mismatch between simulated and

observed values, with the observed data RFref as mean and
 as variance, we can

compute probability envelopes around the observed response. Then, the likelihood

 (|
 ()) can be calculated according to the position of the simulated response

within the probability envelope. Because the simulated response may not follow any one

of the calculated probability contours, we assign the contour corresponding to the

maximum deviation of the simulated response as the likelihood value. This is

demonstrated in Figure 3.9. In this example, the probability of the dashed blue line is

0.65.

The denominator in eq. 3.6 () is the prior probability of the response RFref

and can be calculated from the law of total probability as:

Figure 3.9. Demonstration of probability envelopes around observed response. The

probability of a particular cluster is inferred from the envelope it lies in.

 47

 () ∑ (
 ())

 (()) (3.9)

3.6. STOPPING CRITERION

The model selection algorithm is an iterative process, where the clustering and

Bayesian updating is repeated using the best-fit models from the previous iteration. Each

iteration process thus successively refines the process of model cluster selection,

narrowing it to smaller sets of models. The process thus requires a criterion for stopping

the iterations. This can be based on the number of models remaining in the cluster or on

the updated probability of clusters.

Since the process iteratively narrows in on a smaller set of models, there arises the

possibility that the number of models might be reduced to an extent that it would not be

possible to represent the residual uncertainty to any reasonable degree. Thus, a lower

limit on the number of models available during any given iteration can serve as a

stopping criterion for the process. Alternatively, when successive iterations reach a stage

where the Bayesian updating either yields equiprobable clusters or does not yield any

improvement on the prior probability, it would be reasonable to say that the process can

be terminated and we have reached the maximum refinement in models possible for the

given conditioning data. If additional data were to become available at a later stage, either

for longer periods of time or from a different source, the model selection process can be

continued using this refined set of models.

3.7. CONCLUSIONS

The model selection process provides an efficient way of addressing the

uncertainties that are an integral part of any modeling / simulation process. It

acknowledges that the reservoir model has large prior uncertainty associated with it that

 48

might pertain to the reservoir structure, rock properties, distributions of various rock

types, facies distribution within different rock types and even fluid properties. Given this

significant prior uncertainty, the process of history matching amounts to implementing an

efficient method to iteratively arrive at a smaller set of best-fit models that honor the

characteristics observed in the dynamic field data. The residual uncertainty in the

reservoir model can be assessed using the final set of models obtained by applying the

model selection process.

One of the most important steps in the model selection process is the connectivity

analysis of the initial model suite. This can be accomplished using conventional

numerical simulators; however, given that the initial set of model might number several

hundreds or even thousands of models, numerical simulation of such a large model set

can become extremely computationally expensive. The computation cost can be

significantly reduced if we are able to design a fast-transfer function that captures the

essential physics of the process of fluid flow in the reservoir while being computationally

efficient. This is especially feasible because the process of connectivity analysis does not

need to be an exact replication of a numerical simulator; rather, it needs to be a quick

assessment of how the geologic description of the model influences fluid flow and how

models differ from each other in that respect. In the rest of this dissertation, we will

discuss the development of two such fast-transfer functions, which enable us to capture

the essential characteristics of fluid flow at a fraction of the computational cost of a

numerical simulator.

 49

Chapter 4 : Particle tracking proxy – I

As mentioned in the previous chapter, the efficient execution of the model

selection process depends primarily on the method used for analyzing the connectivity

characteristics of the initial model set. Full physics flow and transport simulators are

computationally time consuming, and dramatically increase the implementation time of

the entire model selection algorithm. In this chapter, we discuss the first of two fast-

transfer functions we developed to approximately estimate the differences between prior

reservoir models in terms of the movement of fluid within the reservoir.

4.1. RANDOM WALKER PROXY: AN INTRODUCTION

The random walker proxy described here is based on the Random Walker Particle

Tracking described in chapter 2. The fluid flow through a reservoir is represented as an

assemblage of random particles moving through a simulation grid. Multiple particles are

introduced at an injection location and their movements are tracked through the grid over

time. The movement of the particles from any grid location to any of the neighboring

locations is dependent only on the current location of the particle. The actual movement

of the particle is driven by a transition probability distribution, which depicts the

inclination of a particle to make a transition to a neighboring grid block. This transition

probability is loosely based on the RWPT equation defined in chapter 2:

 () () () () () ()√ (4.1)

where Δt is time step, Xp(t) is the position of a particle at time t, u is the velocity of the

particle, D is the dispersion tensor, B is the displacement matrix given as ⁄ (), and

ξ(t) is a vector of independent, normally distributed random variables with mean 0 and

 50

variance 1. Similar to this equation, our formulation of the transition probability also

consists of a dispersion term and an advection term, in the following form:

 (() ()) () () () (4.2)

where A is the current location of the particle, B is the target location of the particle,

 is the difference in particle count between locations A and B, is the

average permeability between A and B and is the static pressure differences

between A and B. The term mirrors the dispersion term in equation 5.1, and the

 () term is equivalent to the velocity term. These terms are

described in more detail below:

a. Difference in particle count: Since the particles in this case are meant to represent

the physical fluid flowing through the reservoir, the particle count is analogous to

a concentration term. The higher the difference in particle count (or in terms of

the actual fluid, the concentration gradient) between the current and target grid

blocks, higher the probability of transitioning to that grid block.

b. Permeability term: The average permeability is taken as the harmonic average

between the current and target grid blocks. Higher values of the average

permeability translate to higher transmissibility between the grids, and thus a

higher transition probability.

c. Pressure differences: The static pressure reflects the structure of the grid, and

contributes to the movement of the particle between grid blocks that are not at the

same vertical depth. The pressure is calculated from an initialization step of a

numerical simulator.

Apart from the terms in the transition probability function, we implemented some

additional constraints on the particle movements.

 51

 Since the particles in this case are meant to be representative of the actual fluid, there

is a volumetric limitation on the maximum accommodation space of every grid block.

This limitation, related to its porosity, has been implemented as follows:

If the injection rate be q m3/day, and represented by an injection rate of N

particles/day, then the volume representation ratio (number of particles used to

represent a unit volume of fluid at reservoir conditions) is given as ⁄ . The

maximum accommodation is then calculated as:

 ⁄
 (4.3)

Hence the particle movements are limited by a maximum particle count for every grid

block. If the target grid block has already reached its maximum particle count, there

can be no transition to the target grid block and the transition probability is zero.

 To account for the compressibility of the fluid, together with the probability of

transitions to the neighboring grid blocks, we have also defined a probability of non-

transition out of the current grid block. This has been defined as a function of the

difference between number of particles in the current grid block and the maximum

accommodation space of that grid block. Particle count closer to accounts for

higher values of probability of non-transition, and this value decreases as the particle

count becomes smaller.

 There is also a lower limit on the number of particles that a particular grid block can

accommodate, related to the critical saturation as follows:

 ⁄
 (4.4)

 52

When the number of particles in a given grid block is less than or equal to , all

transition probabilities out of that grid block are equal to zero, and the probability of

non-transition out of the grid block is 1.

It can be seen that we do not have a √ term as in equation 5.1; however, since

our formulation introduces uncertainty at both the dispersion level and the advection

level, we do not need the additional of uncertainty term as the classical formulation.

This function is evaluated for every neighboring grid block (4 in the case of a

two-dimensional grid, or 6 in the case of a three-dimensional grid). The movement of

particles driven by transition probability is demonstrated in Figure 4.1. Suppose the

current location of a particle is the central grid block, from where it can move to any of

the six neighboring grid blocks. The transition probability is calculated for movement to

each of the six grid blocks, together with a calculation of the probability of the particle

(a)

(b)

Figure 4.1. (a) Neighboring grid blocks for current position of particle, given by the blue

block. (b) Transition probability distribution calculated from P0, P1 … P6 and

sampled using Monte Carlo sampling. P0 is the probability of the particle not

moving out if the block. In this case, sampling yields 0.8 which corresponds

to grid block 3. Hence, the particle moves to grid block 3, shown in (a).

 53

remaining in the same block. These are plotted as a cumulative probability distribution

for transition probabilities, as shown in Figure 4.1(b). This distribution is then sampled

using Monte-Carlo sampling. In the example presented below, the sampled value was 0.8,

which corresponds to the particle moving to grid block 3.

For every particle introduced into the grid, it is followed through the grid until it

reaches a location where either the current particle count is less than or the

transition probability sampling chosen does not move the particle from the current

location. The movement can be considered a cascade, where the injected particle moves

into a neighboring grid block and displaces a particle from there in a cascading effect,

which is stopped only when a particle moving into a grid block that does not displace a

particle out of that block. This process is repeated for all particles injected at that time

step. At the end of the step, the particles are counted in every grid block which serves as

an analogue for saturation or concentration. Then, an analogue for pressure is calculated

from the particle distribution in the grid. This analogue is a function of distance from

occupied grid locations and the particle count at these locations. It is represented by the

following equation:

 |

 ∑(

)

 (4.5)

where number of particles at location j, distance between locations i and j.

The inverse square distance term in the above equation comes from the solution

of the diffusivity equation, given as:

 (

) (4.6)

 54

The term implies that higher the particle count (and hence fluid content) of a particular

grid block, larger is the contribution of that location to the pressure analog.

After the initial injection step, there are two different implementations possible

for moving particles in subsequent steps. The first is to inject another set of particles at

the injection location again and track its movement through the grid, and add the new

particle count to the existing particle count. However, such an approach would not reflect

the fluid flow in the reservoir, because it is not just the injected fluid that moves in the

reservoir but rather all available mobile fluid. An alternate strategy for moving particles

in subsequent steps had to be implemented.

We consider all locations which have non-zero particle count. Because we are

considering movement of mobile fluid only, we only consider locations that have particle

counts greater than . We first move particles from these locations, and then to mimic

the continued injection into the grid, we also move new particles from the injection

location. These new particle counts are added to existing particle counts and the process

is repeated for subsequent fluid injection steps.

The random walker proxy described can thus create maps of particle count and

pressure analog for each time step. In order to reduce computation and storage cost, we

only record these maps at certain specific time steps. The particle count and pressure

analog recorded at certain locations in the grid at these time steps can be used to represent

each model for further operations, as described in section 3.4. The steps of the proxy are

summarized in Figure 4.2, and the code is included in Appendix A.

 55

Figure 4.2. Flowchart of the connectivity proxy. This is the implementation for a single

time step and the whole process will be repeated for multiple time steps.

4.2. COMPARISON OF PROXY RESPONSE TO NUMERICAL SIMULATIONS

The objective of the proxy is to analyze the connectivity of the reservoir model

and its impact on the migration of CO2 by correctly modeling the movement of fluid

 56

within the reservoir. Hence, in order to test the validity of the proxy model, it was

compared to the numerical simulation of some synthetic and field models. The

comparison was performed on the basis of CO2 saturations in the geologic models.

4.2.1. Comparison to synthetic models

The simplest model for comparison with numerical simulation was a horizontal

layer-cake model consisting of some high permeability channels in a low permeability

matrix. The high permeability contrast was used to ensure that the fluid flow was along

crisp paths, which would make the visual comparison easier. The model used for this

purpose was a 201 x 201 x 10 model, with injection at layer 5. The high permeability

pathways had a permeability of 300 mD while the low permeability matrix was 0.1 mD.

The model is shown in Figure 4.3.

Figure 4.3. Synthetic model used to compare areal migration of CO2 in the numerical

simulation model and using a proxy. Model has dimensions 201 x 201 x 10.

The red channels are 300 mD and the white matrix is 0.1 mD. Fluid injection

is at the center of the grid, in layer 5.

 57

The simulated and proxy results are shown in Figure 4.4. The numerical

simulation shows migration of the fluid primarily along the high permeability pathways,

a behavior that was mirrored in the proxy implementation. However, there was also some

movement of particles outside the clearly defined channel system, as seen from the blue

regions on Figure 4.4 (b). The movement of fluid outside the channel (not seen in the

numerical simulation) can be attributed to the term representing the

compressibility effect, which seems to be getting an inordinately high weight compared

to the viscous terms ()

 (a)

(b)

Figure 4.4. (a) Simulation result on model from Figure 4.3, showing the saturation of

CO2 after 3 years of injection. (b) Result of proxy run for the same model.

The next synthetic model used for comparison of proxy result to numerical

simulation sought to test the interplay of two competing forces during fluid movement:

viscous forces and gravity. For this purpose, the model used had some well-defined

channels while the entire reservoir slopes in one direction. The channels run in the NW-

SE direction, while the reservoir structure slopes up towards the east. The model is shown

in Figure 4.5.

 58

Figure 4.5. Model used for testing proxy behavior in the presence of competing forces:

viscous and gravity. The red channels are high permeability (1000 mD), while

the blue regions are low permeability (1 mD).

The simulated results and proxy results are similar in that they are both able to

pick up the preferential movement of the injected fluid along the channel. However, the

proxy result seems to be much less influenced by the gravity term than the numerical

simulation, as evidenced by the preferential spread of the CO2 in the up-dip direction.

This indicates that, for a given case, it might be necessary to do some sensitivity studies

on the proxy in order calibrate the proxy to capture the relative effects of the viscous and

gravity forces adequately. The results are shown in Figure 4.6.

CO2 saturation based on proxy

CO2 saturation based on flow simulation

Figure 4.6. Results of running numerical simulation and the proxy on the model in Figure

4.5. The black dot represents the injection location.

 59

The results shown above demonstrate that the proxy seems adequate to capture

the predominant movement of injected fluid along preferential flow paths. However, we

still need to compare results for a case that represents a real field model.

4.2.2. Comparison to real field model

The In Salah project in central Algeria is a complex of gas fields that have been

supplying natural gas to markets in southern Europe for almost a decade. The Krechba

field is part of this project. This is a carboniferous formation at a depth of 1800 m (5905

ft.) below the surface. The formation contains a gas cap overlying a water leg. The

natural gas in the gas cap contains about 10% CO2, and cannot be sold without reducing

the CO2 concentration to less than 0.3% (Wright 2007). Rather than venting the CO2

stripped out of the produced gas, it is being re-injected into the water leg of the formation

using 3 horizontal wells. This is the production and injection scenario that we simulated

using a compositional numerical simulator (CMG-GEM
©

), and then compared that

response to what we get using the random walker proxy.

The reservoir model is a non-orthogonal corner point grid, created using the

surface contour map for the top surface of the carboniferous interval (Figure 4.7 (a)). This

model was populated with porosity values obtained by sampling from a map of reservoir

quality (Figure 4.7 (b)). A porosity-permeability relationship () was

inferred from core data (BP internal communication) and was used to convert the

porosity model to a permeability model.

 60

(a) (b)

Figure 4.7. (a) Surface contour map at the top of the carboniferous formation, used to

create the structure of the simulation grid (Davis et.al. 2001), (b) Reservoir

quality map (Wright 2007), used to create maps of porosity. This porosity

map was converted to a permeability map using a porosity-permeability

relation

For the purpose of comparison, an injection location was defined coinciding with

a real injection well in the Krechba formation. CO2 was injected into the well for 5 years,

and the simulated saturation at the top layer of the formation at the end of 5 years was

compared to the proxy response. The results are shown in Figure 4.8. Once again, the

proxy was able to capture the predominant migration behavior of the injected fluid.

(a) (b)

Figure 4.8. Comparison of CO2 plume as inferred from (a) random-walk based proxy,

and (b) numerical flow simulation.

 61

While the comparison of the proxy to numerical simulation results is important

for testing its validity, the real test for the proxy lies in its larger goal: that of being able

to characterize the connectivity of models within the framework of the model selection

process described in Chapter 3. As such, it is instructive to discuss the implementation of

the entire model selection workflow using the proxy described in section 4.2. In the next

section, we will demonstrate the use to the proxy to refine a set of models for the In Salah

field.

4.3. IMPLEMENTATION OF PROXY WITHIN MODEL-SELECTION FRAMEWORK

As we described previously, the produced gas at the In Salah field contains about

10% CO2, which is stripped out of the produced gas and re-injected into the aquifer

underlying the gas-cap using three horizontal wells. An abandoned well location close to

one the injectors (KB-502) showed traces of CO2 at the wellhead, attributed to the

injected CO2. Tracer tests run on the three injectors showed that the gas was in fact

coming from well KB-502, along a much faster migration path than had been previously

anticipated (Ringrose et.al. 2009). This was hypothesized to be caused by a high

permeability pathway close to the injector, causing rapid migration away from the natural

up-dip direction. By applying the model selection process with the particle tracking

proxy, we show that the injection well pressures, recorded before the CO2 broke through

at the abandoned well, still contained enough information to have enabled the inference

of this high-permeability channel.

 62

4.3.1. Initial set of models

The initial model set consisted of 400 models for the In Salah field that capture

the initial uncertainty about the reservoir, they were constructed based only on well

information available at the start of the project. Thus, the models were created using the

background permeability as described in section 4.2.2, and then overlain by high

permeability streaks. These streaks represented the high permeability pathway attributed

to the rapid CO2 migration, and were appropriate to use in the initial model set since there

was evidence in drilling records of the presence of a NW-SE trending fracture network in

the formation (Iding and Ringrose 2009). However, in the absence of direct information

about the presence of a high permeability pathway close to any of the injectors, the

streaks were created completely unconditioned to any hard data. A sample of models

from the initial set is shown in Figure 4.9.

 Figure 4.9. Sample reservoir models showing different high permeability streak

direction

 63

4.3.2. Connectivity analysis of models using proxy

All members of the initial model set were analyzed using the particle tracking

proxy. For the purpose of discriminating between models, various statistics were

recorded at four locations close to the injection well KB-502. These locations do not

represent any real well locations within the grid; rather, they were meant to adequately

capture flow behavior that would help distinguish models from one another. Since we

knew that we were looking for features close to KB-502, the locations were chosen to be

around that particular well (Figure 4.10). In a real field case, we might not have this

information about where prominent features might be, and it would be necessary to have

a more generalized method to pick such locations for measuring proxy response. We will

describe such a method later in chapter 7. For this application, we will demonstrate the

method based on the 4 locations described above.

The statistics recorded at the monitoring locations were meant to capture the flow

behavior of the models, driven by the predominant permeability features. Specifically,

Figure 4.10. Locations chosen for recording proxy statistics. These locations are around

the injection well of interest in this particular problem

 64

they need to capture how rapidly the injected fluid migrated in a particular direction. The

particular statistics recorded at each monitoring location were as follows:

 The particle count at the location, recorded at 4 different times during the

injection period. This would reflect how rapidly the fluid is migrating in a

particular direction

 An average value for the pressure analog. This reflects the average fluid

distribution around the location.

 Time when maximum value of the pressure is reached at a monitoring

location. This quantity is again related to the rapidity of fluid movement in a

particular direction.

These statistics were recorded for each of the 4 locations, and then used to

discriminate between the models as discussed below.

4.3.3. Model clustering

Eigen decomposition of the covariance matrix of the model statistics was

performed, and the models were projected onto the orthogonal set of axes described by

the leading eigenvectors. Efficiency of clustering (details in section 3.4.2) was

computed for different number of clusters for the projected models. The analysis revealed

(Figure 4.11) that the ideal number of clusters in this case was 7. Hence, the models were

divided into 7 clusters and representative models were found for each cluster. The

clustering and the associated representative models are shown in Figure 4.12. The scatter

plot shows how the representative models from different clusters of models highlight

high permeability streaks in different parts of the reservoir.

 65

Figure 4.12. Clustering of models for In Salah, with the representative model shown for

each cluster.

Figure 4.11. Plot of versus number of clusters for In Salah.

 66

The representative models were run through a numerical simulator (CMG-GEM)

and the pressure response at well KB-502 was used to compute the likelihood function

for the Bayesian calculation discussed in Section 3.5.2. Since the objective of the entire

process is to test if the data available before the breakthrough of CO2 in the abandoned

well contains information about the presence of high permeability channels close to KB-

502, the injection data used for the model selection process is terminated at close to 600

days (approximate time of breakthrough). The rest of the available data is used to test the

validity of the final set of models. The process of clustering and model selection was

repeated for two iterations, to get a final set of 10 best-fit models. The results are

discussed in the next section.

4.3.4. Results of the model selection process for the In Salah case

To test the validity of the entire workflow, the models in the final best matched

cluster were each run through the flow simulator, and the results compared to the field

data. The simulated results showed a good match not only to the conditioning part of the

data (0 – 600 days) but also matched the prediction part (600 – 1600 days) of the

injection data to a reasonable extent. The results are shown in Figure 4.13.

 67

Figure 4.13. Comparison of bottom-hole pressure for KB-502 to field data. There is a

reasonable match both to the history that was used for conditioning the

model selection and the part of the injection data that was left out.

It would be further instructive to look at the individual models in the final cluster

to examine their common characteristics. Some of these models are shown in Figure 4.14.

Visual examination of all these models shows that they all exhibit a high-permeability

feature between well KB-502 and the abandoned well location (KB-5 on the maps). The

Figure 4.14. Sample of models from the final best-matched cluster of models. High

permeability features are clearly visible in the vicinity of KB-502 in all

models.

 68

common characteristic of these models can be highlighted by calculating the ensemble

average of the models in the selected cluster. Following the computing of this average,

the models were transformed so that they all reflect the histogram of permeability

inferred from the well data. This average transformed model is shown in Figure 4.15. The

models in the final set predominantly contain a high permeability feature close to KB-502

leading towards the abandoned well location. All other features in other parts of the

reservoir are highly variable from one model to the next and so the ensemble average

map does not highlight them. This indicates that while the available injection data can

inform the process of finding prominent features close to the injector, it is not adequate to

highlight such features in more remote parts of the model.

The model-selection process shows that the current version of proxy is adequate

for representing the predominant migration patterns in reservoirs and thus capturing the

difference in connectivity between models within the model-selection framework.

However, the small thickness of the formation in this case (20 m) compared to the areal

extent of the aquifer meant that the primary migration was areal, driven largely by

Figure 4.15. Ensemble average of all models in the final cluster. High permeability

feature near KB-502 is clearly highlighted (circled).

 69

permeability. Given the buoyancy of CO2, it can be expected that vertical migration of

injected fluid would be a dominant mechanism in thicker formations. In the following

section, we explore the ability of the proxy in cases where vertical buoyancy-driven flow

is dominant.

4.4. REPRESENTING GRAVITY-DRIVEN FLOW USING THE PROXY

As mentioned earlier, the particle tracking proxy captures the structure of the

reservoir using the initial pressure distribution in the model. This initialization pressure

drives the movement of the injected CO2 in the vertical direction (thus becoming a

surrogate for buoyancy effects). We tested whether this current formulation for the proxy

was adequate for representing gravity effects.

4.4.1. Application of proxy to synthetic models with strong buoyancy effects

The first synthetic model used for testing the validity of gravity driven flow was

the same model as used in section 4.2.1 and in Figure 4.3. The model in this case

consisted of 10 layers, and the CO2 was injected in layer 5. So, there was some vertical

movement of the injected CO2. The result is shown in Figure 4.16, and compared to CO2

saturation results from numerical simulation.

Fluid saturation from proxy

Fluid saturation from numerical simulation

Figure 4.16. Cross-section through the reservoir at the injection location, showing the

fluid saturation and the effect of buoyancy.

 70

 The results show that the proxy, while capturing the essential vertical trend in

fluid flow, shows a lot more spread in the horizontal plane along that path. This seems to

indicate that proxy needs to be calibrated so that the trade-off between the gravity and

viscous effects is adequately captured.

To test this further, we simulated fluid flow in a two-dimensional grid with fluid

movement driven only by gravity in the vertical direction. The model is a 101 x 1 x 100

model, with injection in the bottom-most layer. The model has uniform permeability,

except for some very low permeability layers (Figure 4.17).

Figure 4.17. Permeability distribution in the second synthetic model used to test the

proxy in case of gravity-dominated flow. The blue layers are shale baffles

(0.1 mD) and the background is sand (500 mD).

The injected fluid is expected to move primarily in the vertical direction until it

reaches one of the permeability baffles, and then it should move horizontally along the

baffle until it is able to move vertically again. This behavior is clearly seen in Figure

4.18, which shows the saturation distribution from numerical simulation.

 71

Figure 4.18. CO2 saturation from numerical simulation on the grid in Figure 4.17

(a)

(b)

(c)

Figure 4.19. Proxy results for model in Figure 4.17, showing the particle count

(analogous to saturation) distribution in the model. (a) Original proxy, (b)

Proxy with gravity term given extra weight, (c) Proxy with weighted gravity

term and low permeability baffles that are assigned to be impermeable.

 72

The proxy was run on the same permeability model. However, in this case, the

proxy showed primarily areal migration with a little vertical movement (Figure 4.19(a)).

When the transition probability in the vertical direction was arbitrarily weighted more

than the transition probabilities in the horizontal direction, the vertical movement was

captured a little better (Figure 4.19(b)); however, there was still significant migration of

CO2 into the low permeability baffles and so, the combination of horizontal movement

below the shale baffles and subsequent vertical movement is poorly represented. Indeed,

the only way to get close to the simulated response was to make the low permeability

baffles impermeable (i.e. permeability equal to zero md), and simultaneously use a high

weighting factor for the vertical movement (Figure 4.19(c)).

The results indicate that in order to use the proxy for such cases, calibration

would have to be performed for each case before the proxy is implemented. The decision

as to what cutoff value would make the low permeability layers impermeable would also

need to be investigated.

4.4.2. Field case for testing the proxy when gravity effects are significant

While the synthetic models clearly showed that the proxy lacked the ability to

adequately capture gravity-driven flow, we still needed to find out how it would perform

in a real field case when there is both significant vertical migration and areal spreading of

the CO2 plume. For this purpose, we used the Utsira formation from the Sleipner field in

the North Sea (Figure 4.20).

 73

Figure 4.20. Location of the Utsira formation, off the coast of Norway (Arts et.al. 2008)

Description of the Utsira sand

Utsira is a late-Miocene / early-Pliocene formation, overlain by clay-rich

sediments of the Nordland group and underlain by shaly sediments of the Hordaland

formation. Utsira itself consists of a shaly top package, and a predominantly sandy

bottom part. It is this lower part that is termed the Utsira sand. The sand is extremely

permeable (permeability lies between 1 to 3 D), made up of overlapping fan-lobes and

separated by thin mudstone drapes (Arts et.al. 2008). These mudstone layers are typically

1 to 1.5 m in thickness (Zweigel et.al. 2004) and extensive (Figure 4.21); however, they

are not completely sealing due to the presence of ‘holes’ of erosive or deformational

origin.

 74

Figure 4.21. Simulation model for Utsira, showing the shale layers

CO2 injected into the Utsira sand is sourced from the natural gas produced at

Sleipner West field. The project was initialed in 1996, with injection rates of about 1 MT

every year, using a single horizontal well injecting 200 m below the reservoir top

(Chadwick et.al. 2012). The CO2 rises almost vertically until it reaches one of the shale

layers, then it migrates along the bottom of these layers till it reaches one of the sand

‘holes’ in the shale and then migrates upwards again. This has caused stratified CO2

layers below the shales. Time-lapse seismic data shows the accumulation of the CO2

plume below these shale layers as ‘bright, sub-horizontal reflections’, growing with time.

This is shown in Figure 4.22.

 75

Figure 4.22. Time-lapse seismic data showing the evolution of the CO2 plume over time

and the accumulations below shale baffles (from Arts et.al. 2008).

It is clear that the distribution of the sand holes plays a major role in the

movement of the injected CO2. The locations of these holes are uncertain, so the

objective of the work was to calculate probabilistic estimates of the location of these

holes based on the results of the model selection approach conditioned to available

injection data.

Unlike the injection data at In Salah, the bottom hole pressure at the injector was

fairly constant in this case, since the sand is fairly uniform and of high permeability. The

shale baffles only influence the vertical migration of the CO2 plume and as such have

very little effect on the injection pressure. Instead, the extent of the CO2 plume as

inferred from the time-lapse seismic data, at certain horizons in the reservoir interval was

used for the model selection procedure. We will describe the application of the model

selection procedure for this case in greater detail in a later chapter. At this stage, we will

present some results for CO2 distribution in the reservoir using the proxy in order to

 76

investigate whether it is adequate for capturing the vertical migration of the injected CO2

properly.

Results for CO2 plume migration using the proxy and comparison to numerical

simulation

Numerical simulation of the Utsira sand was implemented using a compositional

simulator (ECLIPSE-E300
©

). The model was represented by 64 x 118 x 241 grid blocks,

with injection in layer 182. The grid was a non-orthogonal corner-point grid. Injection

was initiated in 1996, and continued through 2011 (when the last data was available from

Statoil), after which the injected CO2 was just allowed to migrate through the grid. The

results of the simulation are shown in Figure 4.23.

 January 2000 January 2005 January 2011

Figure 4.23. Simulated result of the migration of injected CO2 in Utsira, showing CO2

saturation at different snapshots in time, using E300 simulator. The z-axis

has been exaggerated.

The simulation closely captures the characteristics of CO2 migration seen in the

time-lapse seismic (Figure 4.22). There is clear stratification of the CO2 below the shale

baffles. Our aim is to capture this behavior of the CO2 in the proxy. The results are shown

below.

 77

From the discussion in the previous part (Section 4.4.1) it was quite clear that the

proxy would not work effectively without assigning additional importance to the vertical

migration term in the transition probabilities. Using this weighting approach, the vertical

migration of CO2 and subsequent spread under the shale was captured to a limited extent;

however, as shown in Figure 4.24, even though there was some vertical movement of the

CO2 until the first shale baffle was encountered, the subsequent migration along a

stratified flow paths is not adequately captured. Instead the plume is more diffused in the

horizontal direction (darker blue in Figure 4.24 (b) Top view). This clearly shows that in

Side view

Top view

(a) (b)

Figure 4.24. Comparison of proxy results (showing particle counts) with flow simulation

results (showing CO2 saturation) for Utsira. (a) Results obtained by flow

simulation, (b) Proxy result.

 78

the presence of competing forces (gravity, buoyancy and viscous forces) the proxy

becomes incapable of accurately representing the migration. It might be possible to

overcome this drawback by adequately weighting the contribution of the various forces

properly in the transition probability calculation (section 4.4.1 on page 69), but that

would require a calibration exercise for every case that is evaluated by the proxy.

4.5. CONCLUSIONS

The random-walker based proxy provides a good approximation of fluid flow in

the aquifer. The transition probability driving the flow of the fluid, primarily dependent

on the heterogeneity and the initialization pressure, is adequate to capture large-scale

viscosity-driven migration patterns. The use of this random walker within the model

selection process gives it the necessary ability to differentiate between models based on

their flow characteristics, at an extremely low computation cost compared to a full-

physics numerical simulator.

However, the proxy suffers from some drawbacks when we implement it for

several cases with varying driving forces such as gravity for CO2 migration. The

transition probability described in equation 4.2 reflects the local advection term, since it

only looks at properties in the immediate neighborhood of the current location of the

particle. As a result, though the areal migration is captured reasonably well, it still shows

significant spreading of CO2 away from the expected migration path, as seen in Figure

4.4. When strong buoyancy effects are prevalent, the proxy in its base form cannot

adequately capture the gravity effects (Figure 4.19(a)). Adjustment to the transition

probability by weighting the initial hydrostatic pressure more, and by artificially lowering

the permeability of the shale baffles alleviates the problem to an extent. However, even

 79

then, the proxy fails to capture the fluid migration adequately, as seen in the case for

Sleipner. It should also be noted that multiphase flow effects described by relative

permeability, variations in injection pressures and fluid density is not taken into account

at all in this present formulation of the proxy.

Given the inability of the proxy to capture buoyancy-driven flow adequately, and

the other factors described above, we felt it necessary at this stage to develop a new

formulation for the proxy that would address these problems, and allow us to explore the

model selection algorithm for the Sleipner case. This new proxy will be discussed in the

next chapter.

 80

Chapter 5 : Development of a New Particle Tracking Proxy

The particle tracking proxy described in the previous chapter worked quite well

for capturing the areal migration of the injected CO2, as demonstrated by the application

to the In Salah project. The regional distribution of CO2 modeled by the proxy compares

well against that obtained using a full-physics flow simulation and the proxy responses

are adequate for measuring dissimilarities between reservoir models within the model

selection framework. However, it failed to adequately capture migration in cases where

the CO2 flow was primarily buoyancy-driven, as evidenced by its implementation to the

Utsira case. Further, it does not capture all the physics associated with CO2 migration. In

this chapter, we will discuss the development and application of a new tracer-like particle

tracking proxy that addresses the drawbacks of the previous formulation of the proxy. We

will also show the applicability of the new proxy formulation to both real field cases

discussed in the previous chapter - In Salah and Utsira.

5.1. NEW FORMULATION OF PARTICLE TRACKING PROXY

The new proxy we developed is based on the approximation of tracer movement

within the aquifer. The proxy still consists of moving particles through the aquifer,

subject to certain rules dictated by static petrophysical properties and dynamic fluid

properties. However, unlike the proxy outlined in the previous chapter, the particles are

no longer representative of the fluid itself; rather, the particles are assumed to be mass-

less, non-reactive tracers moving with the injected CO2, subject to the same physics as

the fluid itself. The entire migration period is divided into smaller intervals, and the

pressures and saturations are assumed constant within each of these intervals (Figure 5.1).

Particles are moved within these intervals under the influence of this pressure field,

 81

conditioned to the static permeability distribution. The movements of the particles are

kept independent of each other, and driven by a transition probability described in a later

section. We keep track of all locations visited by each particle, and at the end of each

interval, this gives us an estimate of the probability that a particular location within the

domain will be visited by the injected CO2, given a particular permeability distribution.

The process of moving the particles is detailed below.

5.1.1. Revised particle tracking algorithm

The new formulation of the particle tracking is best described using an example.

Consider a 5x4 grid (Figure 5.2), where 4 particles are injected at the top-left corner of

the grid and allowed to migrate through the grid. The path followed by each particle is

shown by the lines of different colors, and is the path followed by each particle is

considered to be independent of the other paths. Each particle is allowed to undergo a

predetermined number of (seven for this demonstration) displacement steps of equal

length and we keep track of every grid block visited by each particle.

Figure 5.1. Schematic of pressure and saturation updates with time in the proxy

 82

Figure 5.2. Movement of 4 particles through a 5 x 4 grid, as a demonstration of the new

proxy formulation

After all the particles have been moved for a particular time interval, the number

of particles that visited each grid block is counted, which can then be represented as a

probability that a particular grid block will encounter the injected fluid (Figure 5.3 (a)).

For example, grid block [X=3, Y=2] is crossed by the blue and brown paths; thus 2 of the

4 moving particles visit this location, and hence the probability of this grid block

encountering the injected fluid is 0.5. This method is thus used to create a probability

map at the end of each time interval, as is shown in Figure 5.3 (b).

 83

(a) (b)

Figure 5.3. (a) Counting the number of particles crossing particular grid blocks, (b)

Converting the particle counts to measures of probability.

Suppose a net volume Vinj has been injected into the grid. The fractional flow

curve is used to get an estimate of the average saturation behind the CO2-water front. We

assume that the average saturation in a grid cell with probability exceeding a threshold is

the same as this value from the fractional flow curve. Suppose this saturation is given by

Savg. Then, the number of occupied grid blocks can be given as:

 (5.1)

where Vb is the bulk volume of a grid block, is its porosity and is the average

saturation described previously. Now, starting from the highest value in the probability

map (which will be 1), we define a cutoff value of probability, then count the number of

grid blocks with probability value greater than or equal to the cutoff (given by .

The cutoff is progressively decreased until is equal to (or nearly equal to)

 84

 All grid blocks with probability less than or equal to this cutoff is then

assigned the saturation Savg.

5.1.2. Redefined transition probability

The previous formulation of the RWPT relies on a transition probability – defined

as the probability of a random particle to move from its current location to any of the

neighboring grid locations. The transition probability controls the movement of the

particles through the grid. In the previous implementation of the proxy, the transition

probability is a function of the difference in particle count, average permeability and

initialization pressure (or depth) gradient between the current location of the particle and

the candidate location, and was formulated as:

 (5.2)

Here, Ptransition is the transition probability, Kavg is the average permeability and

ΔPi is the initial hydrostatic pressure difference between the grid locations. This

formulation has been successfully demonstrated to enable model discrimination in the

case of the Krechba formation in the In Salah gas field in central Algeria.

However, the above formulation shows a high degree of particle movement out of

the primary migration pathway, due to the local nature of the transition probability

function. Further, application of this formulation to the Sleipner CO2 project was initially

not as successful. In this case, it became evident that the effect of gravity was not

properly captured by the specified transition probability (Equation (5.2)). We initially

attempted to fix this problem by calibrating the proxy definition to numerical simulations

and attaching more weight to the ΔPi term. However, the calibration procedure defeats

the objective of having a fast transfer-function model that can quickly screen the suite of

 85

reservoir models and identify the similarity and dissimilarity between the models. It was

therefore necessary to develop a more robust formulation of the random walker that

would capture not just the effects of gravity and permeability, but all the physics relevant

to the migration and trapping of CO2 in the aquifer.

In order to better represent all the processes that contribute to the migration and

trapping of CO2 in the aquifer, we revisited the classical formulation of the random

walker, as defined in Section 2.3.3 and mentioned in the previous chapter:

 () () [() ()] () ()√ (5.3)

The important thing to note in this equation is that the randomness in the motion

of the particle is imparted by the ξ term associated with B, which itself is associated with

the dispersion tensor. Thus, the motion of particles using this equation largely depends on

the solution of the velocity field and the randomness in motion is a function of the

dispersion around this velocity field.

The important thing we learn from this classical formulation is that the transition

probability has two parts associated with it: a diffusion term and an advection term.

However, as opposed to the classical formulation of the random walker that needed the

computation of the entire velocity field for every time step, we decided to calculate the

velocity at every step as a random variable associated with the particular particle. Thus,

in our formulation of the random walk, there is randomness in particle motion not just at

the scale of dispersion but also due to uncertain velocities..

The new formulation of the transition probability we now started working with is

calculated from the velocity (equivalent to a combination of the () term and

 () term in equation 5.3) for the particular transition and normalized to get the

probability, as follows:

 86

∑ ()

(5.4)

This equation shows that the transition probability is defined by the normalized

velocity. The velocity is estimated using a calculation of the Buckley-Leverett velocity

obtained from the fractional flow equation, and a macroscopic velocity term, as described

in the subsequent sub-sections. It can be stated that this formulation is more similar to the

master equation formulation for CTRW (Continuous time random walk) mentioned in

chapter 2 than the RWPT formulation.

The use of deterministic velocity values to define a transition probability is made

possible by invoking the condition of stationarity. The transition probability from a

current block to the neighboring grid blocks could rigorously calculated if the flow

simulation results of a large ensemble of models was available. Alternatively, we can

invoke the assumption of stationary velocity in one single model, and calculate the

transition probability by looking at all transitions between two nodes with the same

separation and orientation as nodes i and j. However, even that would be expensive and

so the calculation above assumes that the velocities required in Equation 5.4 have

sampled all such transitions during their history and hence can be used to calculate the

transition probability.

Fractional Flow Equation

Consider the displacement of a non-wetting phase by a wetting phase in a

formation dipping at an angle α to the horizontal. The fraction of the wetting phase in the

total mobile fluid is given by the following equation:

 87

 (

(

)

 (5.5)

Here, kr is the relative permeability, µ is the viscosity, Pc is the capillary pressure and ρ is

the density. This equation can be used to create a plot of saturation against fractional

flow. In the absence of capillary pressure, a closed form solution of the mass

conservation equation for one-dimensional, two-phase immiscible displacement yields

the specific velocity of a front of constant saturation. Using this solution, a tangent drawn

from the point of initial saturation to this curve defines the saturation of the displacing

front, and the slope of this tangent is the velocity of the displacing front. The slopes of

tangents drawn on the curve at saturations higher than the front saturation define the

velocity of those saturations (Buckley and Leverett 1942):

 (5.6)

This is shown in Figure 5.4(a). The distribution of saturation with distance from the

injection location is shown in Figure 5.4(b). This definition of the Buckley-Leverett

velocity is incorporated in our new formulation of the transition probability (Eqn (5.4)

and Eqn (5.8)).

 88

Fractional flow for CO2 injection in aquifers

The fractional flow theory provides a method for computing the velocity term in

the transition probability while incorporating the effects of gravity, capillary pressures

and relative permeability. However, using the complete formulation of the fractional flow

equation makes the random walker computationally expensive and hence a simplified

formulation of the fractional flow equation was used, which ignores the capillary pressure

and gravity terms:

 (5.7)

The methods outlined thus far have accounted for diffusion and relative

permeability. However, we still have not accounted for absolute permeability, buoyancy

and compressibility. Furthermore, during the implementation of this improved version of

the transition probability it was observed that the new proxy was computationally

expensive. One reason for the increased computational expense is that in this new

formulation, the walker does not have an estimate for the general direction of movement,

(a) (b)

Figure 5.4. (a) Front velocity from fractional flow curve, (b) Saturation profile with

distance.

 89

and so quite a few transitions of the walker would be towards the injector instead of

moving away from the injection location. This motivates the addition of a macroscopic

velocity that would define the general direction of movement – away from injection

locations, along higher permeability pathways – which could then be combined with the

Buckley-Leverett velocity derived from the fractional flow curve.

 (5.8)

Next, we recognized that the particle also needed move out further from the

injection location over successive time intervals. This is reasonable because the particle

would be first moving through near well regions, where the CO2 saturation is higher,

which implies higher velocity through this region. Once it reached the outer edge of the

fully saturated zone and moves into the two-phase brine-CO2 region, its velocity would

drop off. Once it reaches the uninvaded zone, it should have a low velocity (but not zero).

To mimic this spatial variation in velocity, we used the fractional flow

term described above. The fractional flow value could serve as a direct indicator of

the ‘degree’ to which we needed to speed up a particle moving through the two-phase

region. We define the local particle velocity as:

 () (5.9)

For example, if the value is 1.0 in a grid-block 100% saturated with CO2, a

particle moving through this grid block would be twice-as-fast as when moving through a

grid-block not previously invaded by CO2 (and thus with a saturation of 0.0).

To further speed up execution, we decide not just to move particles out of the

injection location but rather out of all locations that had some cutoff value of saturation.

This was reasonable since fluid movement does not stop after fluid has moved out of the

 90

injector; indeed, fluid keeps moving over time as long as it has a potential gradient

driving it.

Estimation of macroscopic velocity

The estimation of macroscopic velocity could be made using the pressure

distribution in the aquifer, and then solving for Darcy velocity across each face of the

grid block. The pressure distribution in the aquifer can be easily computed using a single-

phase pressure solution using the following system of equations:

 (5.10)

Here, T is the transmissibility matrix, P
n+1

 is the pressure at a new time step, and B is the

forcing function defined by well rates and pressure at the previous time step.

This pressure solution depends on the absolute permeability in the reservoir and

the well rates, and will define a general direction of flow away from injection locations,

towards producing locations (if any) and along higher permeability paths (if present). The

Darcy velocity can also account for the gravity term.

(

) (5.11)

or

[Δ Δ gΔ]

𝐿

 (5.12)

This formulation of the transition probability explicitly accounts for density

difference, absolute permeability, fluid viscosity and grid block depths (and thus the

gross features of the storage structure). The continuous point source in a three-

dimensional domain (Raghavan 1993) was used to compute the pressure drop P was:

 91

 ()
 ⁄

 √ 𝐿
 (

 √
)

(5.13)

where

𝐿
[
()

 ⁄

()

 ⁄

()

 ⁄
]

(5.14)

 𝐿
 (5.15)

For an isotropic formation, this can be simplified to:

 (√

) (5.16)

where

 √() () () (5.17)

This expression for incorporated into the transition probability allows us to

account for injection rates, fluid viscosities, total compressibility and time. We initially

defined r as a radial distance from the injector; however, this was modified later to

account for the length of the path followed by the particle from the injector. Suppose a

particle were to follow a highly tortuous path from the injector to its current location.

Then, even if the final distance of the particle from the injector is not very large, it can be

expected that the pressure drop that the particle experienced moving along the highly

tortuous path would be much larger than the radial pressure drop from the injector.

Hence, it made sense to consider the total path length in this calculation of the term.

Using the same idea, the average permeability was also considered along the path taken

by the particle to reach the current location. This approach also addresses one of the

 92

problems noted about the previous proxy formulation: that of taking only local values

into consideration for the calculation of transition probabilities.

Thus, summarizing the steps outlined above, the transition probability is defined

by the following equations:

∑

(5.18)

where

 () (5.19)

 (5.20)

 (5.21)

[Δ Δ gΔ]

𝐿

 (5.22)

 (√

) (5.23)

It should be pointed out that this formulation contains all the physics of particle

movement within a single equation, which makes it more similar to the master equation

formulation of the Continuous Time Random Walk. At the same time, the movement of

particles on a gridded system makes the implementation closer to the Random Walker

Particle Tracking. The major point of departure from the classical random walker

formulations is that it introduces uncertainty both at the advection and diffusion level,

while the RWPT relies on a deterministic solution of the advection velocity with

uncertainty reflected only at the diffusion scale.

 93

Particle migration and step size

This modified implementation of the proxy was tested on a single synthetic model

to compare it to flow simulations. The model is shown in Figure 5.5 (a). The random

particles moved a fixed number of steps during each time interval. While this proxy was

able to capture the influence of heterogeneity on migration quite efficiently, and without

spreading out of the flow path as seen with the proxy formulation in the previous chapter,

the size of the swept volume as a function of time is still a bit inaccurate when compared

to the flow simulator response. As seen in Figure 5.5 (b) and Figure 5.5 (c), even though

the proxy tracked the channel quite effectively, it underestimated the spread of the fluid

along the channel towards the north-west and overestimated the fluid movement close to

the injector.

It is important for the proxy to not just capture the movement of fluid along

permeability pathways, but also how this migration occurs in time. The fluid would have

higher velocities and thus move farther in higher permeability zones than in lower

permeabilities, and thus, if the step sizes (distance the particle moves when going from

one grid block to the next) of the particles were equal, over a fixed time interval, particles

Figure 5.5. Comparison of proxy response with simulator, initial formulation with FIXED

NUMBER of steps. (a) Permeability distribution, with injection location in

black, (b) Proxy Response, and (c) Simulator response.

 94

should travel variable number of steps depending on the velocity of the particle.

To make the number of steps variable, the velocity in Equation (5.19) was used to

find the ‘transition time’ from one grid block to the next. Using the time intervals shown

in Figure 5.1, the particle was allowed to move as long as:

 ∑

 (5.24)

where is the distance between grid block i and j and is the time interval

 We recognized that this calculation of cumulative transition time would not be

exact, so a window of 10% of the interval length was used such that a particle was

allowed to make transitions up to ±10% of the total interval length:

 (5.25)

5.1.3. Summary of New Formulation of Proxy

The steps described above for moving the particles and for calculating the new

transition probability can be summarized by the flowchart given below:

 95

Figure 5.6. Flowchart of new formulation for proxy

5.2. VALIDATION OF NEW PROXY FOR CAPTURING AREAL MIGRATION

This new implementation of the proxy was first validated for cases where the

migration of the injected CO2 was primarily areal with only a little vertical migration at

the beginning of injection. Validation was performed for two different models: the first a

 96

synthetic model, similar to the one used in Section 4.2.1, and the second a model for In

Salah, discussed in section 4.2.2. These validation cases will be discussed in this section.

5.2.1. Synthetic model for validation of proxy

The model consists of 201 x 201 x 10 grid blocks, with injection in the fifth layer.

Even though there is some scope for vertical migration of injected CO2, most of the fluid

movement is along the top of the reservoir (below the impermeable cap rock) where it is

largely driven by the high-permeability channels seen in Figure 5.7. The fluid properties

and other relevant data for the simulations are the same as presented in Section 4.2.1.

Figure 5.7. Permeability model used for validation of new proxy formulation. This is the

same model as was used for validation in section 4.2.1 for the old proxy.

 97

 The areal migration was captured quite effectively by the tracer-based proxy as

seen in Figure 5.8. The migration pattern obtained using the particle tracking proxy

resemble the results of the numerical flow simulation using CMG-GEM
©

 quite closely.

There is little spreading of the injected fluid out of the high permeability pathways. This

is a clear improvement over the earlier proxy that indicated significant migration of fluid

away from the high permeability pathways (as seen in the comparison shown in Figure

5.8). Further, the temporal aspect of the migration, as discussed in section 5.1.2 is also

successfully captured by the tracer-based RWPT. This is clearly seen in Figure 5.9, where

the areal migration pattern is compared at three different snapshots in time.

(a) (b) (c)

Figure 5.8. Migration of injected fluid captured by (a) New proxy formulation, (b)

Numerical simulation, (c) Old proxy formulation

 98

Time = 200 days

Time = 400 days

Time = 1000 days

Proxy Response Simulator Response

Figure 5.9. Comparison of proxy and simulator response. The migration of CO2 over time

is captured accurately by the new proxy.

 99

The last part of the comparison looks at the vertical distribution of CO2 close to

the injection location, small as it is. The new formulation for the proxy was able to

capture the buoyant flow much more effectively than the old proxy. This is clearly seen

in Figure 5.10, where cross-sections through the injection location for both cases (new

and old proxy formulations) are compared to numerical simulation results. The new

formulation is clearly able to capture the vertical movement much more efficiently,

without the need for any arbitrary weights. The diffuse nature of the vertical movement in

the case of the fluid-based RWPT once again highlights the inability of the old proxy to

properly weigh the viscous and gravity forces against each other.

5.2.2. Field model for validation of tracer-based proxy: In Salah

The In Salah model described previously was tested using the tracer-based proxy

and compared to results from numerical simulation. The model chosen for the purpose

was based on the In Salah structure, but without the initial fluid distribution seen in

section 4.2.2; rather, the model only had brine in-place with CO2 injection through a well

coincidental with KB-502. The purpose of the exercise was to demonstrate that the new

proxy formulation is able to capture the major areal migration pathways, in the presence

of competing forces due to permeability features and the reservoir structure. The model is

displayed in Figure 5.11.

New Proxy Response Simulator Result Old Proxy Response

Figure 5.10. Cross-section of fluid saturation at the injection location for buoyancy-

driven flow for the new and old formulation of the proxy, compared to

numerical simulation results.

 100

Depth from surface to top of grid (m) Permeability (mD)

Figure 5.11. Model used for testing the tracer-based proxy on a real field case (In Salah).

Using this input model and the same injection location, the new proxy

formulation was tested. The result is shown in Figure 5.12. It is clear that the proxy is

able to capture migration along the prominent heterogeneity feature responsible for the

movement of the injected CO2. Further, there is preliminary indication that it is able to

adequately capture the interplay of gravity (reflected by the structure of the reservoir in

this case) and permeability, so that fluid movement is along the high permeability and

towards the top of the structure. There is some spurious particle incursion outside the

region indicated by the numerical flow simulation. This is because of the stochastic

nature of the particle tracking algorithm. There is however, enough similarity between the

two results to make the proxy a viable fast alternative to the numerical simulator.

 101

Time

Time

Time

Saturation from numerical

simulation

New proxy results showing

saturation map

Figure 5.12. Comparison of results from numerical simulation and proxy, showing the

saturation in the grid at certain snapshots in time.

 102

5.2.3. Model Selection applied to In Salah

As a final test of the effectiveness of the model selection process, we

implemented the model selection process in its entirety using the new proxy on a set of

models for In Salah. The initial model set consisted of only a hundred models, which

were conditioned to the injection pressure at KB-502. Similar to the implementation in

the previous chapter, the initial model set consisted of a low background permeability

(between 10 mD and 300 mD, as reported at In Salah) overlain by high permeability

streaks to represent the fracture network, as shown in Figure 5.13. To make the

demonstration robust, the streaks were aligned in different directions. It should also be

noted that the streaks were not conditioned to data and were not forced to occur in the

vicinity of the well under study.

Figure 5.13. Sample of models from the initial set for In Salah. The high permeability

streaks are shown in light blue.

The models were taken through a single iteration of the model selection process

and the best-fit models at the end were analyzed. The models consistently showed a high

permeability feature near the problem well, KB-502 (Figure 5.14 (a)). This effect across

all models in the best-fit cluster becomes more apparent when we find the average model

 103

for that cluster. As can be seen in Figure 5.14 (b), the average model shows a high

permeability pathway between well KB-5-2 and the abandoned well location.

(a) (b)

Figure 5.14. Final best-fit models for In Salah. (a) Sample of models from best-fit cluster

of models, (b) Average of all models in final cluster

5.3. VALIDATION OF NEW PROXY FOR CAPTURING VERTICAL MIGRATION OF CO2

In the previous section, we found that the new proxy formulation captures the

areal migration of CO2 adequately and is also able to capture the gravity-driven flow of

CO2, for example in the In Salah (Figure 5.12) case. However, we still needed to properly

test the ability of the proxy to accurately represent flow in the vertical direction due to

gravity effects. For this purpose, we used synthetic and field models, similar to the ones

used for testing the old proxy in section 4.4.2.

 104

5.3.1. Validation of tracer-based proxy using synthetic model

The synthetic model used to test the validity of the tracer-based proxy for

capturing gravity-driven flow is similar to the model used in Section 4.4.1, shown in

Figure 5.15. This same model was analyzed using the new proxy formulation and the

results compared to numerical simulation, as shown in Figure 5.16.

It can clearly be seen that the new proxy performs better than the previous version

of the proxy presented in earlier Chapters. It is able to capture the migration of the CO2

both vertically due to buoyancy and along the bottom of the baffles, mirroring the

migration seen in the numerical simulator. It should further be noted that this response

did not require any artificial weighting of terms or alteration of low permeabilities to 0

mD, as in the previous case (refer to section 4.4.1). Furthermore, the proxy is able to

represent the timing of the migration process accurately.

(a) (b)

Figure 5.15. (a) Simulation model used for testing vertical migration of CO2, (b)

Saturation of CO2 obtained by flow simulation showing the expected

movement of the injected CO2

 105

800 days

2000 days

Proxy results Numerical simulation results

Figure 5.16. Comparison of tracer-based proxy to flow simulation, showing the ability of

the proxy to capture vertical buoyancy-dominated CO2 migration.

Given that the primary motivation behind development of the proxy was the rapid

evaluation of reservoir connectivity, it is instructive to look at the computation time of

the proxy. The computation time is a little over 2 seconds, which is comparable to the

146 seconds of computation time of the simulator. At this stage, it is important to test the

performance of the proxy on a full field model that had a combination of all the effects

studied in isolation in the preceding sections. Hence, we used the Sleipner model to test

our new proxy formulation.

 106

5.3.2. Validation of the new proxy formulation using the Sleipner model

The Utsira formation in the Sleipner field has been described in details in chapter

4. In this section, we analyze the model for the Utsira formation and test it against

numerical simulation results to validate the applicability of the new proxy for full field

models with multiple fluid flow mechanisms. The model mimics the Utsira reservoir, and

is composed of 100 x 100 x 50 grid blocks. It uses the same structure as the top of the

Utsira formation; however, the subsequent 49 layers of the model were generated using a

uniform thickness for each layer. Similar to the stochastic shale layers in the original

Utsira case, the synthetic model contained shale baffles in four layers with stochastically

distributed sand ‘holes’ representing the erosional surfaces (Figure 5.17). The CO2 was

injected into the bottom-most layer and allowed to migrate upwards under the influence

of gravity. The upwards movement would be occasionally interrupted by the shale

baffles, whereby the CO2 would follow the structure of the layer and spread laterally until

it reaches a sand ‘hole’, at which point the upwards migration would resume. This

behavior has been observed in Figure 4.21. The same model was analyzed using the new

Figure 5.17. Model used for testing an Utsira-like synthetic case. Shown here are 4 shale

layers (permeability 0.1 mD) containing stochastic sand ‘holes’. The rest of

the model (total 50 layers) has a permeability of 2 D.

 107

proxy (results in Figure 5.18), and the results from both cases are compared in Figure

5.19.

The result from the proxy shows that the fluid movement in the vertical direction

is being captured, as is the interruption to flow by the shale baffles and subsequent

movement laterally. The comparison with the simulation clearly shows that the proxy is

Figure 5.18. Proxy result showing migration of CO2 captured both vertically and areally

under shale baffles

Numerical simulation New proxy

Figure 5.19. Comparison of numerical simulation with the new proxy, for case with

strong influence of gravity.

 108

able to capture the vertical migration of the CO2 plume similar to the simulation results. It

should be further noted that this response captured by the proxy was generated in less

than 3 minutes of CPU time, as opposed to the simulation which required a runtime of

16.5 hours, running on 6 computer cores in parallel. This processing time is

proportionally faster than the cases shown in Section 5.2.2; the increase in efficiency

compared to the numerical simulation is expected in this case since the fraction of the

reservoir volume sampled by the proxy is smaller in this case. The proxy thus clearly has

a computational advantage over the simulator, especially when our objective is to use the

proxy response to discriminate between models.

We next verify the applicability of the proxy to the full model selection process

for the Sleipner model.

5.3.3. Model selection using tracer-based proxy for Sleipner

The model selection process was implemented on an initial set of 150 models.

The base case model shown in the previous section was used as a representation of the

‘real’ field model. This model was simulated for a period of 3 years of injection, and the

model selection process was conditioned on the bottom-hole pressure data at intervals of

100 days. All the models in the initial set contained shale baffles with sand holes in the

same four layers as the ‘real’ field model. The only uncertainty was in the distribution of

the sand holes in the shale layers. The depth of the shale layers are quite well defined

using well logs and correlated across the Sleipner field. The initial set of models therefore

considers the uncertainty in the spatial extent of the shale layers.

 109

 The sand holes were generated using sequential indicator simulation as short

scale features. The generation of the sand-hole model was not only independent from one

model to another, but even between the four shale layers in each model. This is justified

by the fact that the sand holes are erosional surfaces laid down by different geologic

occurrences and bear little correlation to each other. A sample of these initial models is

shown in Figure 5.20. These initial models were analyzed using the new particle-tracking

proxy. The final model set and its simulated response was studied to test the entire model

selection process and by extension, the validity of the proxy.

Figure 5.20. Sample of models in the initial model set for Utsira. The sand is shown in

red and the shale in cyan.

 110

 In order to understand the major features highlighted by the final model set, we

computed an average permeability model for the best-fit cluster of models and compared

it to the original base model. Since the only uncertainty was in the distribution of the sand

holes within the shale layers, our comparison was limited to these layers. Further, given

that the time of injection was limited to 3 years, by which time the CO2 had only just

reached the second shale layer, we limited our analysis to the bottom two shale layers.

When we compare the distribution of sand holes in the bottom-most shale layer

for the average of the best-fit models, we notice that it is able to capture the distribution

of shales just above the well location (Figure 5.21). This is a reasonable outcome of the

process, since the migration of the fluid and its effect on bottom-hole pressure is largely

limited to the zone right above the perforation. The comparison shows that the average

model reflects the presence of a sand hole located just above the perforation, oriented in

Real model, base case Average model from best-fit models

Figure 5.21. Comparison of real sand holes distribution and sand holes in average of best-

fit models, at bottom-most shale layer.

 111

the SE-NW direction. It also captures the presence of sand holes to the south and west of

the injection location.

When we repeat this comparison for the next higher shale layer, we notice that the

ability of the model selection process to accurately represent the location of sand holes

has decreased (Figure 5.22). The best-fit models captured the presence and orientation of

sand holes around the injection location, but create a number of spurious features. This is

once again expected, since the injected CO2 had not reached the second shale layer within

the time period specified, and so the ability of the injection well pressure to be influenced

by the second shale layer is rather limited.

Real model, base case Average model from best-fit models

Figure 5.22. Comparison of real sand holes distribution and sand holes in average of best-

fit models, for the second shale layer from the bottom.

 112

5.4. CONCLUSIONS

In this chapter, we detailed the development of a new particle-tracking proxy that

mimics the flow of non-reactive tracers moving with the reservoir fluid. This proxy

moves thousands of particles within user-defined time intervals driven by potential

differences between neighboring grid blocks. It then calculates probability maps of how

likely each grid block is of being contacted by the migrating fluid within the given

interval of time. At the end of each time interval, the pressure and saturation fields are

updated and the process is repeated. The proxy is quite effective for representing

viscosity driven flow, gravity, fluctuations in injection rates, reservoir structure and two-

phase flow.

We tested the proxy using different models to show its validity for different

scenarios. The proxy response for synthetic models was compared to full-physics

numerical simulations, and was shown to be effective in capturing both areal migration

and vertical gravity-driven migration in reservoirs. It was also tested on real field models

(In Salah and Sleipner) where there is a combination of areal and vertical migration

taking place, and was shown to yield responses close to numerical simulations.

Additionally, the proxy run times were almost 40 times less than for comparable

numerical simulations, making it an ideal computational tool for quickly discriminating

differences between various reservoir models.

As a final test of the effectiveness of the proxy, we demonstrated the ability of the

proxy to be used as a part of the model selection process in order to enable the evaluation

of model connectivity. The model selection process was run in its entirety using the

tracer-based proxy for Sleipner, and was shown to be efficient for accurately modeling

the location of sand holes in the shale layers in that field. It was also tested on a set of

 113

initial models for the In Salah field, and is demonstrated to be effective for representing

the spatial location of high permeability pathway between wells quite effectively.

 114

Chapter 6 : Development of a software module for Model Selection

In the previous chapters, we have outlined a model selection process and detailed

the development and validation of two particle-tracking proxies. The various parts of the

model selection algorithm have, until now, been implemented as separate pieces of code.

This requires a lot of work on the part of the user to move the results from one step of the

workflow to the next step. It is therefore necessary to integrate all the parts of the

algorithm into integrated software, which can be used by an end-user without explicit

intervention at every step. For this purpose, we decided to implement the particle-

tracking workflow as a plugin within the existing geostatistical software, SGeMS. In this

chapter, we detail the development of this plugin, and outline steps required to use it.

6.1. SGEMS: STANFORD GEOSTATISTICAL MODELING SOFTWARE

The Stanford Geostatistical Modeling Software (SGeMS) is an open source

software module for geostatistical applications, developed at Stanford University. It

allows the use of various established estimation algorithms (kriging, co-kriging, indicator

kriging) and simulation algorithms (sequential Gaussian / indicator simulation etc.), as

well as various utilities to create, manipulate and post-process reservoir models. It also

has an accompanying visualization module that allows users to look at models in two- or

three-dimensions, and extract information along horizontal and vertical slices. Since the

code is open-source, it is free to manipulate existing modules or even create new modules

in order to implement additional workflows not available in the current distribution. The

ability to implement standard modules to create geologic consistent models, the existence

of the visualization module, and the flexibility to write additional modules within the

 115

existing code, made this the ideal software to implement our workflow as a plugin within

SGeMS. In this section, we will briefly describe the user-interface for the software.

The main window for SGeMS is shown in Figure 6.1. It consists of three main

parts: the algorithm panel, the data panel and the visualization panel. The algorithms

panel contains all the geostatistical software under two main headings: estimation and

simulation. There is a third heading called Utilities, which contains various smaller

programs for post-processing and manipulation of models within the program. The

‘objects’ panel shows a list of all data that have either been loaded into the program or

Figure 6.1. SGeMS user interface, showing the three main panels: algorithms, objects and

visualization

 116

output by the implementation of algorithms within the program. Two types of data can be

read by the program: Cartesian grids which contain data for every grid block in a model,

or point sets which contain data at specific coordinates. Multiple realizations of a

particular variable can exist within a single object as shown in Figure 6.1 where Object 1

has 10 realizations. The visualization panel displays any selected realization within an

object, and also allows actions like panning, zooming etc. of the image.

The model selection program was implemented as a separate heading in the

‘Algorithms’ panel.

6.2. MODEL SELECTION PLUGIN: AN OVERVIEW

Figure 6.2. Algorithms panel, showing the model selection algorithm tab

The model selection algorithm was implemented as a separate heading in the

algorithms panel (Figure 6.2). Once this option is selected, it brings up the input window

for the model selection process, where the user needs to provide all the parameters and

data used to the process. The main tab in the model selection input panel contains drop-

down menus to select the particular permeability and porosity objects to be used, together

with details about the connectivity proxy and reservoir flow simulator to be used. The

various input options are listed below, and referenced in Figure 6.3:

[1]. Permeability object: contains all the models in the initial model set

 117

[2]. Porosity object: similar to permeability object

[3]. Proxy selection: drop-down menu to select the particular proxy to be used

[4]. Working folder: this is where all the results are stored

[5]. History file: this is the dynamic conditioning data used by the process

[6]. Simulator location: the physical address to the executable of the reservoir

flow simulator to be used. Our current implementation uses CMG-GEM

simulator.

[7]. Simulator file name: name of the simulation data deck. It is assumed to

reside in the working folder.

[8]. RESULTS (CMG) location: location of the RESULTS GRAPH
©

 program in

CMG that reads the output file for the simulation in order to compare to the

conditioning data.

Figure 6.3. Main input panel for the Model Selection algorithm

 118

Once the random walker proxy is selected, the user has to enter information

pertaining to the proxy in the ‘Random Walker’ tab. This window is shown below

(Figure 6.4), and is described in the following list:

Figure 6.4. Random Walker tab, where the user needs to input data needed for the proxy

 119

[1]. Unit system to be used for data: the code allows for using either field units

or SI units.

[2]. Results grid: the object where the final best-fit models are saved

[3]. Injector location: the x, y and z coordinates of the injection location

[4]. Depth of grid blocks: an object containing a single realization of depths to

each grid block for the uppermost layer of the models. It is assumed that the

structure of the grid is same for all initial models

[5]. Initial pressure: object containing the initial static pressure for the entire

grid. This can be generated from the initialization step of a numerical

simulator. This is also assumed to be the same across all models, so the

object contains a single realization.

[6]. Monitor grid: a point set containing the locations where the proxy

measurements are recorded for further analysis and grouping

[7]. Relative permeability data: Corey-type relative permeability model is

implemented currently. Thus, this panel needs values for the Corey

exponents, the end-point relative permeabilities and the residual saturations.

[8]. Fluid properties: values for fluid viscosities, densities and total

compressibility. Care should be taken to keep the units consistent with the

unit system defined at the top.

[9] – [13]. Here, the user defines the step sizing and particle count parameters for

the run. The proxy will be run for ‘Total injection days’ [9], and pressure and

saturation updates will occur after every ‘update interval’ [11], while the proxy

measurements will be noted every ‘reporting interval’ [10]. The injection rate [13]

is specified either in m
3
/s or ft

3
/day.

 120

Once all the data has been specified, the user runs the program using the ‘Run

Algorithm’ button at the bottom of the algorithms panel. The results of the proxy at

specified time intervals are stored in the object called ‘RW_results’, and the best-fit

models are saved within the user-specified ‘Results’ object (item [2] in Figure 6.4). The

user can then perform further post-processing of the best-fit models using existing

algorithms within SGeMS, or export the models to text files.

6.3. DETAILS OF PLUGIN DEVELOPMENT

SGeMS is implemented in C++ as an object-oriented code, with all geostatistical,

data analysis and visualization operations encoded as classes. In order to create a plugin

for SGeMS, we need two elements: a shared library (.dll file) that contains the algorithm

and a graphical interface through which parameters are read into the program. The

graphical interface is created as an *.ui file, using either a text editor or Qt Designer. The

details of creating the interface are beyond the scope of this work. In this section, we will

describe the creation of the shared library and its basic components.

6.3.1. Creating the shared library

In order to create the SGeMS shared library, we first need to define a class

derived from the Geostat_algo class, and within it create three virtual functions initialize,

execute and name. This is shown for the model selection algorithm in Figure 6.5.

 121

Figure 6.5. Declaration of the ModelSelection class, derived from GeoStat_algo, and the

virtual functions

The initialize function initializes the various input variables needed for the

particular algorithm by reading it in from the user interface. The execute function

contains the code for execution of the algorithm, and the name function returns the name

of the algorithm. The final step is to define a static function called create_new_interface

within the new class. This creates a new instance of the plugin object. In our case, this

function was defined as shown below:

Named_interface* ModelSelection::create_new_interface(std::string&) {

 return new ModelSelection;

}

This code is then compiled to create the library file.

6.3.2. The execute function for the Model Selection algorithm

The execute function contains the details of implementation of the model

selection algorithm. As such, it contains the following basic building blocks: the data

entry module, the particle-tracking proxy, the module for principal components analysis

and model clustering, and a module to run simulations on the best model of each cluster,

 122

compare the simulated result with field data and calculate posterior probabilities. Figure

6.6 shows how the different modules fit into the model selection workflow.

 These modules are all implemented as independent functions in a separate file

and included into the SGeMS code as an external library. The details of the execute

function are provided in Appendix B.

Figure 6.6. Modules (grey boxes) required for the implementation of the model selection

algorithm within the SGeMS framework

 123

6.4. CONCLUSIONS

In this chapter, we have outlined the development of the model selection

algorithm as a plugin to the geostatistical software suite, SGeMS. The plugin is

implemented using a derived class called ‘ModelSelection’, which includes three main

functions: initialize, execute and name. The various modules needed for the model

selection process are implemented as functions and then included in the main code as

external libraries. The plugin seeks to harness the existing capabilities of the software in

order to generate the initial set of models. Alternatively, a set of models generated

externally by the user can also be imported and then the plugin can be used to implement

the model selection process on these models. This approach also enables the user to

visualize data very efficiently using internal SGeMS routines, and also post-processes the

final best-fit models to quality check and to generate posterior uncertainty maps and

statistics. This chapter, in conjunction with Appendix A, should provide the information

necessary to make future changes to this code.

 124

Chapter 7 : Some Applications of the Model Selection Algorithm

In this chapter, we will explore some possible applications of the model selection

process, applied to problems encountered during geologic carbon sequestration. In

previous chapters, we have already demonstrated the use of the model selection workflow

incorporating the particle-tracking proxy for the delineation of best-fit aquifer models

conditioned to observed field response. The cases demonstrated in this chapter

incorporate further modifications to the model selection algorithm. We will look at ways

to generalize the location of proxy measurement locations to better inform the model

selection process. We will demonstrate the use of the model selection process to

investigate the presence of leaks in the aquifer, to assess the impact of mineralization on

the injection well response. We also investigate issues such as the impact of location of

injection and montoring wells and their role in determining the limits of applicability of

the model selection process.

7.1 OPTIMIZING THE CONFIGURATION OF PROXY MEASUREMENT SITES

In previous examples of the model selection process, we have predefined proxy

measurement sites at the corners of a square around the injector (as in the case of In Salah

in Chapter 4) or at fixed locations in regions of interest (e.g. just below the shale layers at

Utsira in chapter 6). Since the statistics of random walkers recorded at proxy

measurement sites are a representation of the connectivity characteristics of the models, it

might be hypothesized that the location of these sites is critical to the entire model

selection process. For example, if we situated our measurement sites in In Salah far from

the region of interest, as shown in Figure 7.1, the connectivity in the region between KB-

502 and the abandoned well would have very little bearing on proxy response at those

 125

sites. Under these circumstances, the models represented by these proxy measurements

would show little or no grouping to enable distinction on the basis of connectivity. The

user might then be misled to think that the data available to him/her is not adequate for

the model selection process, where in fact the problem lies with the choice of proxy

measurement sites. As such, it might be better to have a carefully considered algorithm

for choosing these sites rather than leaving it completely to the discretion of the user.

Figure 7.1. Location of proxy measurement sites far from the region of interest will not

inform the model selection process.

In the next section, we demonstrate a method to determine the optimum

monitoring locations.

7.1.1. PCA to find optimum measurement sites

The connectivity analysis yields various statistics (e.g. particle count, pressure

analog) at every grid node within a model. These are akin to the grid pressure, saturation

 126

and specified concentration values obtained using a full-physics simulation. Locations

along a particular similar feature are expected to show similar particle statistics as

compared to locations outside the feature or locations on other connected features within

the reservoir. Because our objective is to detect differences between reservoir models, it

is preferable to locate the monitoring locations sufficiently far apart so that they pick up

differences over a larger extent of the reservoir. For this purpose, it is necessary that the

monitoring locations be located such that they are spaced across several features (and not

all clustered within a single feature). Thus, a strategy for locating the measurement

location could be to seek locations that show maximum variability in response across all

the available models, indicating limits to the size and shape of connected features. For

this purpose, a single response (e.g. particle count at a particular time or average particle

count over the entire run) is measured at all grid locations across all models. The

covariance between the proxy responses at any two grid locations was calculated across

all models, and a principal component analysis was then performed on the covariance

matrix. The first principal component direction was identified, which consisted of a

weighted linear combination of the response at all grid locations (the eigenvector values

corresponding to the first eigenvalue are the weights or loadings). The locations are

sorted according to their weights, and the locations within a fixed cutoff of the maximum

weight are retained. The locations, which have significant weight in the first principal

axis, represent the locations that exhibit maximum variability across all models with

respect to measured responses; they would be optimal for capturing the variability off

spatial connectivity observed within the suite of models. This is shown in Figure 7.2.

 127

Figure 7.2. Demonstration of process for finding optimum locations. Only the top N%

locations on the right are retained. In the demonstration case below, this

percentage is 10%

As a demonstration of the process, this method of finding measurement locations

was performed on a set of 100 models with features in orientations ranging from 0
O
 to

90
O
 azimuth. The initial model set, and the final measurement locations inferred for this

set of models are shown in Figure 7.3.

 (a)

(b)

Figure 7.3. (a) Two different kinds of prior models. 50 realizations of each type of

models, were used for the initial model set, (b) Regions identified by

performing Principal component Analysis using statistics of particles

recorded within each grid block. These locations for the proxy monitoring

location will help identify regions exhibiting maximum variability across

all 100 models.

 128

Once the locations with maximum variability have been determined, the next step

was to find a method for choosing sites amongst these locations where the proxy-

measurement sites could be located, since there is a lot of redundancy between

information provided by points that are located close to each other. Two methods have

been devised for this purpose:

1. Choosing arbitrary points within the location clusters: The first method chooses

certain points within the clusters of locations given by Figure 7.3 (b) as the proxy

monitoring sites. The plausible proxy monitoring locations can be seen as being divisible

into 4 different clusters out of which one location was chosen at the centroid of the

clusters and two other locations were selected within each cluster that are maximally

separated from each other and the centroid. These locations approximately reflected the

directions of major features in the model set. Sites chosen in this manner have been

shown in Figure 7.4. One problem with this method, as seen in the two points circled in

red, is that there might be redundancy due to the chosen points being too close to each

other.

Figure 7.4. Arbitrary choice of points as proxy monitoring locations. Three points

(shown as black circles) were chosen within each cluster.

 129

2. Choosing locations using repeated PCA: This second approach extends the method of

finding locations using principal components analysis (PCA) to multiple iterations. For

subsequent iterations, only grid locations selected from the previous step were used. The

process was terminated when the number of locations does not change with further

iterations. The grid locations for the same set of 100 models after the final PCA iteration

are shown in Figure 7.5.

The points shown as blue filled circles were chosen as proxy-measurement sites

following this process. These points are chosen to reduce redundancy between points

(because the principal components are orthogonal to each other) as can be seen by

comparing the location in Figure 7.5 with those in Figure 7.4 that contained some points

very close to each other.

To demonstrate the applicability of this process of identifying proxy monitoring

locations, we revisited the In Salah case. In our original approach (Chapters 4 and 5), we

had placed 4 measurement sites at the corners of a square centered on the injector KB-

502, since we knew that we were looking for a feature of interest around that injector.

Figure 7.5. Locations identified for proxy monitoring after repeated PCA.

 130

Here, we recalculated the location of the measurement sites using the repeated PCA

approach shown above. These new locations are shown in Figure 7.6.

Using these new measurement locations, the model selection algorithm was

applied and carried forward for two iterations, with seven clusters of models chosen after

each iteration. The results are shown in Figure 7.7 (a), (b). Only data from the first 700

days are used in the model selection. When these results are compared to the results from

our previous paper (Figure 7.7 (c), (d)) – when the proxy measurement locations were

located at the corners of a square template around KB-502 – we can clearly see that the

new method is comparable to the previous method; the advantage of the method lies in its

applicability to more general cases, when we do not have any prior information about

where dominant features are located. Figure 7.8 shows the cluster average of the best-

matched models obtained using both approaches for locating proxy-measurement

(a) (b)

Figure 7.6. (a) Proxy response measurement locations in previous work (Chapter 4 and

Chapter 5). (b) Layout of proxy measurement locations using the new PCA-

based method, displayed on a structure map.

Proxy

response

measurement

locations

 131

locations. A high permeability feature between the wells KB-502 and KB-5 can be seen

on the average across all models, from both methods.

Figure 7.7. (a), (b) Cluster response at the end of the first two iterations of the model

selection process, respectively, with proxy monitoring locations chosen by

the repeated PCA method. (c), (d) Cluster response after the first two

iterations of the model selection process, with proxy monitoring locations

arranged in the form of a square around KB-502. The results are

comparable, highlighting the ability of the current method to find proxy

measurement locations regardless of prior knowledge about the

heterogeneous characteristics of the target reservoir.

(a) (b)

(c) (d)

 132

7.2 MINERALIZATION DURING CO2 MIGRATION IN THE AQUIFER

During the operation of a sequestration project, there are 4 dominant mechanisms

that contribute to the capture of the injected CO2. These mechanisms are: structural

trapping of supercritical or gaseous CO2, dissolution of CO2 in brine, residual phase

trapping due to relative permeability hysteresis, and mineralization. In this work, we will

simulate the mineralization process as a bulk permeability modifier and explore the

feasibility of using model selection process to detect location of permeability alterations

due to mineralization during a sequestration project. The basic assumption in the cases

described below is that the mineral composition of the rock is invariant, and the

mineralization process is operational wherever the rock comes in contact with the

injected CO2.

Figure 7.8 Average permeability of all models in best-match cluster from (a)

measurement locations in a square, and (b) Measurement locations from

PCA. Both show a high-permeability feature (circled) connecting KB-502

and KB-5.

(a) (b)

 133

7.2.1. Background

Mineralization is the process of reaction and precipitation when subsurface fluids

interact with minerals in the rock. In the case of CO2 sequestration in chemically active

rocks, the CO2 dissolved in brine forms a weak acid that interacts with the clay minerals

in the rock leading to the formation of carbonates. The injected CO2 is thus permanently

stored in the form of mineral carbonates. Johnson et.al. (2004) identified four distinct

mechanisms of mineralization that exist in saline aquifers: cementation of Dawsonite

[NaAlCO3(OH)2] that occurs throughout the extent of the CO2 plume, calcite-based

carbonate precipitation along the lateral and upper margins of the plume, and

mechanisms that take place within interbedded shales (like in Utsira) or the cap rock.

When the injected CO2 comes in contact with the formation brine, it forms a hydrated

oxide, which then reacts with water to form a weak acid. This is shown by the reaction:

 ()

This reaction takes place within the entire volume of the plume. The weak carbonic acid

reduces the pH and promotes the dissolution and precipitation of Dawsonite and calcite-

group carbonates by the following reactions:

 𝐿
 ()

 () where M is Fe, Mg and Ca

Both these processes cause precipitation of minerals in pore bodies and throats and

reduce porosity and permeability. Increasing pressure increases the dissolution of CO2

and reduces the pH of the solution (Park et.al. 2003), which in turn enhances the

dissolution of the minerals. The efficiency of this trapping mechanism is determined by

the mineral composition of the formation rocks. Increased trapping occurs with increased

concentration of carbonate forming elements like Fe, Mg, Ca, Na and Al (Johnson et.al.

2004).

 134

 As pointed out above, the combination of dissolution and precipitation causes

local reduction in porosity and permeability. In this work, we modeled mineralization as

a bulk permeability reduction factor effective only in regions where the CO2

concentration is high enough to cause significant reactions.

7.2.2. Model setup for mineralization

In order to assess the impact of permeability alteration due to mineralization on

the migration of the CO2 plume, we implemented a model in CMG-GEM, shown in

Figure 7.9.

The total injection period for this model, which was 20 years (2001 to 2021), was

divided into 4 parts (2001 – 2006, 2006 – 2011, 2011 – 2016, and 2016 – 2021). At the

end of each injection period, the saturation of CO2 throughout the entire model was

recorded, and the permeability was reduced by a factor of 2 for all grid blocks which had

CO2 above a cutoff saturation. For example, Figure 7.11(a) shows the saturation map of

CO2 at the end of the first 5 years (2001 – 2006) for the base model, and Figure 7.11 (b)

Figure 7.9. Base case model for demonstrating the effect of mineralization on CO2 plume

migration, showing the permeability distribution of the model.

 135

shows the difference between the permeability used for the first 5 years and the

permeability used to run the simulation for the next 5 years. It shows the permeability

change introduced into the model due to mineralization, assumed to occur uniformly over

the entire CO2 saturated zone.

Figure 7.10. Plot of injection pressures for the mineralization case. The base case is run

with no permeability changes (blue line). The red line shows the injection

pressure when permeability change is made in 2006.

 (a) (b)

Figure 7.11. (a) Map of CO2 saturation after 5 years of injection, showing the regions

above a cutoff of 40% saturation, (b) Map of difference between

permeability of base model (Figure 7.9) and model used to simulate the next

5 years.

 136

This process was repeated for each time interval, and the simulation for the next

time interval was then restarted from the end time of the previous interval. As a

demonstration, the injection pressure from the base case and a case with permeability

change only in 2006 is shown in Figure 7.10. The plot shows that accounting for

mineralization causes a drop in permeability, which reduces the injectivity and at

constant injection rates, increases the injection pressure. This indicates that with multiple

changes in permeability, we should expect injection pressure increase at the end of every

interval. It would be better to implement a method whereby continuous permeability

updates are made such that the change in injection pressure is not so drastic; however, for

the purpose of demonstration, the current implementation with 4 permeability changes

was assumed.

Figure 7.12. Bottom-hole pressure at the injection well, for the base case with no

permeability alteration (blue line) and the mineralization case when

permeability is altered in 2006, 2011 and 2016.

 137

Using the method shown above, simulations were run for the entire time period of

20 years, with permeability alterations and simulation restarts at 2006, 2011 and 2016.

The injection well was constrained by a constant injection rate and the injection pressures

were noted. The results are shown in Figure 7.12. As previously stated, the injection

pressure increases at every permeability reduction; the amount of pressure increase

gradually decreases as the degree of injectivity reduction in previously altered zones

reduces with each successive alteration.

7.2.3. Model selection with mineralization

The objective is to demonstrate how the model selection algorithm yields a

different model set if mineralization is accounted for, as opposed to a case where there is

no permeability alteration due to mineralization. For this purpose, we created a synthetic

model containing some high permeability sinusoidal channels and a single injector

completed inside one such channel. The injection period was divided into 3 intervals,

similar to those in the test case above. The well was assumed to be rate constrained and a

fluctuating injection rate schedule was used. The bottom-hole pressure of the injector was

designated to be the dynamic data to be used for the model selection algorithm. The

synthetic model and the injection pressure for the reference model are shown in Figure

7.13. This injection pressure profile takes into account the permeability reduction after

each of the 3 time intervals.

 138

(a) (b)

Figure 7.13. (a) The initial permeability map of the reference model, (b) Reference

injection pressure profile that was used within the model selection process.

To demonstrate the applicability of the model selection process to this case, the

algorithm was run on a suite of 100 models. The models all contain high permeability

sinusoidal channels in a low permeability matrix; however, the positions of the channels

are not constrained by any data and hence exhibit large variability from one model to the

next. Some of these starting models are shown in Figure 7.14. Note that some models

have injection location close to channel boundaries, while some are located far away

from channels in the low permeability zone. The model set was run for two separate

Figure 7.14. Some sample models from the initial model set. The red channels are 1000

mD while the cyan background is normally distributed around 10 mD. The

black circle represents the position of the injector.

 139

cases: one in which permeability is altered at the end of each injection interval similar to

the test case discussed before (section 7.3.2), and another in which there was no

permeability alteration.

7.2.4. Results

There is considerable difference in the spread of injected CO2 with and without

permeability alteration, as can be seen in Figure 7.15. The reduction in permeability

blocks off high-permeability regions early in the injection process, and causes the plume

to seek out alternative migration pathways.

Figure 7.15. Difference in CO2 saturation due to mineralization. High permeability

pathways are blocked off and the plume seeks out alternative migration

pathways

When there is no permeability alteration, the clusters after using dynamic data for

different time durations are fairly close to one another, as shown in Figure 7.16. The

proximity of the clusters to each other is expected because the underlying permeability

 140

model does not change and the additional duration of the injection data only informs

more details within the existing permeability models.

Figure 7.16. Clustering at the end of second and third time interval, in the case where no

permeability alterations were assumed within the model selection process.

The reference injection data used to select the models is affected by the

mineralization process.

For the case with permeability alteration, the models were first run to the end of

the first time interval, then based on the saturation at the end of this time interval, the

permeabilities were altered and then run to the end of the second interval, and so on. The

process thus followed the same procedure as was used to generate the reference history

for the model selection process, described previously. At the end of each time interval,

best-fit models were selected conditioned to the partial injection history up to that point

in time. The best-fit models were then projected onto the principal component space, and

compared with projections of the best-fit models selected from the case without

permeability alteration. For this the covariance between each pair of models in the final

set of models was computed and then subject to PCA. This is shown in Figure 7.17.

There are different numbers of points of each color at different instants in time because

 141

the final selected cluster at the end of model selection may have different numbers of

models.

(a) End of second time interval

(b) End of third time interval

Figure 7.17. Best-fit models with / without mineralization projected onto an orthogonal

space. (a) At the end of the 2
nd

 interval, and (b) At the end of the 3
rd

 interval.

 142

Figure 7.17 clearly shows the gradual divergence of the two cases with time. In

the case which accounts for mineralization, the continued injection of CO2 causes the

region of altered permeability to spread farther away from the injector, and thus exhibit

marked difference in the characteristics of the selected model as we proceed in time. In

Figure 7.17(a), the two clusters are separated but are still relatively close to each other;

each cluster is also much tighter than those in Figure 7.17(b), when the model clusters

have moved further apart from each other as permeability over large regions of the

reservoir change due to mineralization. We can thus conclude that if mineralization is not

taken into account within the model selection process, in the case that it is suspected that

mineralization has a significant influence in the injection response, the models chosen by

the model selection process will slowly diverge away from the ‘real’ model. In fact, if the

permeability alteration were done much more frequently (smaller intervals of time), we

would expect that this divergence would be more dramatic and take place much more

quickly.

Figure 7.18. Injection well pressures compared to the “real” data for the synthetic model.

 143

Figure 7.18 shows the match to the observed injection pressure data using the

final selection of models for both cases. The model selection process does successfully

find a group of best-fit models in both cases (with and without mineralization). But the

“best-fit” is a rather poor match to the data in the case where the effect of mineralization

has not been taken into consideration while performing model selection. In contrast, the

group of models found in the case that includes mineralization (green curve) tracks the

actual response well. Thus, comparing simulated response to field response during the

model selection process would serve as a useful indicator of the possibility that there

might be some phenomenon (in this case, mineralization) that is not being accounted for

in our models.

7.3 LEAK INDICATION BY USING THE MODEL SELECTION ALGORITHM

Figure 7.19. Leakage pathways for formation brine and CO2 (from Birkholzer et. al.,

2009)

 144

 The presence of a leak in the caprock would allow the formation brines and/or

the injected CO2 to leave the storage volume and migrate upwards to shallower

formations (Figure 7.19). The leakage of formation brines could lead to contamination of

shallower fresh water formations, and greater discharge into rivers and lakes. The

problem is further worsened by the leakage of CO2, which could be due to a an existing

flow conduit (like an existing wellbore or through a transmitting fault / fracture), by

reactivation of a closed fracture in the caprock (for example, through a transmitting fault

or a fracture) or due to capillary leakage (when the phase pressure in the CO2 exceeds the

capillary entry pressure of the caprock). The effectiveness of long-term sequestration of

CO2 can be compromised by such leakage.

In this section, we first study CO2 leakage through pre-existing open pathways

using a commercial simulator (CMG-GEM
©

), and then provide a demonstration and

discussion of the effect of leaks on the model selection process.

7.3.1. Simulation of CO2 leakage and its effects on injection well pressure

The simulation model used for this study was based on the structure of the In

Salah field in Algeria. The area was discretized using a 50x50x3 grid, with a leak

simulated using a producing well (Well-P) at the crest of the structure and an injection

well (Well-1) downdip from this location (Figure 7.20). The injection well introduced

close to 1.3 million metric tons of CO2 every year into the formation. The injection lasted

200 years, and then the CO2 was allowed to migrate for another 300 years. The type of

leakage, existing or reopened high permeability pathway, was implemented using

different constraints at the production well.

 145

For the case of leakage through a high permeability pathway, the only constraint

placed on the production well was a maximum fluid rate constraint. This imposes the

condition that the amount of fluid (brine and CO2 combined) is limited by the flow

capacity of the leakage pathway. As the CO2 injection is started, it displaces the in-place

brine, which is moved away from the injection well. The pressure signature of the

injection is, however, felt over a much larger area than the area covered by the CO2

plume, and this causes an initial leakage of formation brine through the leakage pathway.

Once the CO2 plume reaches the leakage site, the efflux of brine drops off sharply and the

primary fluid leaving the storage volume is CO2.

The concept of the brine leaking out of the reservoir due to the pressure increase

induced by the injected CO2 has been discussed in other works. Birkholzer et.al. (2009)

discuss this issue during a study of the effects of the pressure footprint of injected CO2.

They stated that pressure increase and brine displacement could cause both lateral and

vertical migration of formation brine out of the storage volume into shallower aquifers or

Figure 7.20. Layout of model used for leak simulation

 146

surface water accumulations. Further, they state that upward brine migration and pressure

communication could occur through high permeability pathways like faults or abandoned

boreholes. Zhou et.al. (2008) showed that storage reservoirs with imperfect seals may

allow for enough displaced brine leaking out of the formation, while still having

sufficient sealing capacity to trap supercritical CO2.

The leakage of formation brine before any CO2 even reaches the leakage site

exhibits a distinct signature at the injection well. This is shown in Figure 7.21, where the

difference in bottom-hole pressure at the injection well is plotted over time, between two

cases without and without a leak. There is a distinct difference in response between the

cases, which decreases significantly when the CO2 finally reaches the leak site.

Figure 7.21. Difference between cases with/without leak. Plot shows BHP difference (in

psi) at the injector in red, and mole fraction of CO2 in the leaked fluid in

blue

Based on the results above, we have come to the conclusion that the leak would

have an observable effect on the bottom-hole pressure at the injector if there is substantial

efflux of brine from the storage volume that is manifested in the form of substantial

 147

pressure perturbation caused by CO2 injection. Once the CO2 reaches the leak site, the

effect of pressure signature at the injection well will diminish, and therefore not affect the

model selection process as much.

7.3.2. Demonstration of influence of leak on model selection

In this part of our work, we seek to demonstrate that during model selection,

failure to account for the presence of a leak could yield a completely different model set

than would be created if the leak is accounted for, assuming the field data comes from a

storage aquifer which does contain a leak. We will further show that the model set

created by not taking the leak into account shows an injection profile that is clearly

indicative of the fact that there are additional constraints we need to account for in our

initial model set to get a better match to the field data. This would provide a way of

getting some indication of the possibility of a leak using model selection conditioned

only to injection/monitoring well pressure histories.

Synthetic Model to represent Real Field Data

For the purposes of this demonstration, we created an artificial aquifer model, in

order to derive a ‘real’ dataset to condition our model selection process. The synthetic

model consists of an anticlinal structure, with a CO2 injection well in the flank of the

anticline and a leak (represented by a producing well) at the crest of the structure, similar

in structure to the model in the previous section. A high permeability pathway extends

from near the injector to close to the leakage location (Figure 7.22).

 148

(a) (b)

Figure 7.22. (a) Depth to top of layer (in m), showing the structure of the synthetic

model, (b) Permeability of synthetic model (in mD)

Model Selection Process Implementation

 The initial model set is made up of 700 models, 100 each created using high

permeability features in 6 different directions, and 100 models with no high-permeability

feature at all. This initial model set was run using two different types of aquifer models:

model set A accounting for the leak and, model set B without accounting for the leak.

The framework of this process is outlined in Figure 7.23. The model selection was run for

two successive iterations for both sets, and the final model set for both cases were

examined.

 149

7.3.3. Results and Discussions

To show the effect of the leak on model selection, we compared the injection

pressure profiles from the best-matched cluster to the ‘real’ field data for both cases, with

and without the leak. The first indication of the presence of a leak is the difference in

pressure of the final model set compared with the ‘field data’, as shown in Figure 7.24.

The pressure profile for the representative model of the best-matched cluster, when the

leak is not accounted for, differs from the ‘real’ data by a greater amount than when the

leak is accounted for. This clearly indicates that in order for the model selection process

to reflect accurate results, it is necessary that the procedure and the proxy incorporate the

effect of the presence of a leak.

Figure 7.23. Workflow for model selection showing how the two cases with and without

leak is incorporated

 150

Figure 7.24. Injection pressure response comparison for best matched cluster, before and

after accounting for the leak

It is even more instructive to look at the models that make up the final clusters for

both cases. Since the initial set is made up of models that exhibit permeability pathways

(streaks) in 6 different directions, it is reasonable that the final model set would also

contain models that exhibit permeability pathways in different directions. However, in

both cases, model selection is able to pick models that show streaks starting near the

injector and reject all models that do not have streaks close to the injector. Indeed, in

spite of having 100 models with no streaks at all, the model selection was able to pick

only those models that did have streaks close to the injector.

To understand the effect of including the leak in the model selection process, we

constructed a probability map of the existence of high permeability pathways at different

 151

locations in the final model sets. This is shown in Figure 7.25. The ‘reference’ field

model consisted of a streak starting close to the injector, moving updip towards the leak

location. When the leak is not accounted for during model selection (case B), the

probability map shows a high probability of the existence of streaks close to the injector;

however, this streaks is in a different direction from that in the ‘reference’ model, moving

along the strike of the anticline. If the leak is accounted for in the model selection process

(case A in Figure 7.23), the probability map again shows a high-permeability streak close

to the injector; but unlike the previous case, this streak is in the updip direction towards

the injector, thus reflecting better the geologic setting of the ‘reference’ model.

(a) (b) (c)

Figure 7.25. Probability map for high permeability streaks, derived from final model set

(a) Leak accounted for during model selection, (b) Leak NOT accounted for

during model selection. Compare with the ‘reference’ field permeability (c)

The difference in final model sets is also assessed through the projections of the

final models on the principal component axes of the proxy-derived statistics. The

statistics derived from the proxy run on all the initial models was used to project the

models onto an orthogonal set of axes determined by principal component analysis.

 152

These projections are shown in Figure 7.26. It is clear that the model sets created with

and without accounting for the leak are completely different with very little overlap.

Figure 7.26. A projection of final model sets, with and without leaks, clearly shows the

separation of the two cases.

The discussion above clearly demonstrates that the presence of a leak can be

reflected in the injection well pressures, and hence can affect the final set of models

obtained by the model selection process.

7.4 INFLUENCE OF LOCATION OF CONDITIONING WELLS ON MODEL SELECTION

During the course of the model selection process, we have always implicitly

assumed that the injection data used to condition the entire process was adequate to

inform the process of delineating prominent features within the final model set. However,

it can be stated that not all injection data used for the conditioning process has the same

influence on the model selection process; the proximity of the injection location with

 153

respect to prominent features driving the fluid migration should have a direct bearing on

the ability of the model selection process to highlight that particular feature. In this

section, we investigate this hypothesis in greater detail.

7.4.1. Synthetic model to study the effect of injector location on the model selection

process

To investigate the effect of proximity of injector location to prominent reservoir

features on the performance of the model selection process, we used a synthetic model

containing a prominent sinusoidal high-permeability channel feature embedded in a low

permeability over-bank deposit, and three injectors located at different proximities to the

channel location. The model is shown in Figure 7.27. The distinctly different locations of

the injectors with respect to the channel allowed us to use the bottom-hole pressure data

from each of these three wells independently and test the aforementioned hypothesis.

Figure 7.27. Schematic of base case model used to study the effect of proximity of

injector to prominent features on the model selection process

 154

The given model was run forward for 50 years with the wells constrained by

fluctuating injection rates, and the injection pressure from all three wells was noted and

used later to condition the model selection process. The injection pressure histories for

the three wells are shown in Figure 7.28.

7.4.2. Model selection process conditioned to each individual pressure history

The initial model set created for this model selection process was composed of

high permeability sinusoidal pathways embedded in a low permeability matrix, similar to

the base case. However, the location of these high permeability pathways was created

unconditioned to any data, so the actual locations of the sinusoidal features are not

restricted to any particular location or region within the grid. Some of these models are

shown in Figure 7.29, which highlights the completely random nature of the location of

the high permeability pathways.

Figure 7.28. Injection pressure history for all three injectors. These histories were used

individually in the model selection process.

 155

Figure 7.29. Sample of models from the initial model set (out of a total of 120 models),

showing the random distribution of the high-permeability channels (in red).

Three distinct cases were run with the particle-tracking proxy, with the same

model set but different injection location corresponding to each of the injectors in the

base case. The conditioning data for each case was the bottom-hole pressure for that

particular injector. So, for example, if the location of the injector for the proxy

corresponded to the well ‘INJECTOR-1’, then the conditioning data would be the

bottom-hole pressure for ‘INJECTOR-1’. This yielded three different final best-fit model

sets, each of which were studied to see what prominent features, if any, were present

across all (or a majority) of the models.

 156

When the injection location used was ‘INJECTOR-2’, which was located inside

the channel, the model selection process was able to pick up a dominant high

permeability feature close to the actual base case. The dominant feature was inferred by

finding the mean of the models in the final model set, as seen in Figure 7.30.

Average model from best-fit models ‘Real’ model

Figure 7.30. Comparison of average model from best-fit cluster, conditioned to

INJECTOR-2, shows that it can delineate the feature of interest to a

reasonable degree

Average model from best-fit models ‘Real’ model

Figure 7.31. Comparison of the average of best-fit models, conditioned to INJECTOR-1,

shows that it does not delineate the feature as sharply as in previous case

(Figure 7.30)

 157

When, however, the conditioning well was ‘INJECTOR-1’ which lay just outside

the channel, the degree of detail visible in the ensemble average was greatly reduced

(Figure 7.32). In fact, the average of the best-fit models showed that there were some

prominent features indicated in several regions of the reservoir; however, these features

were not as crisp as in the previous case, and there were a number of spurious features

that were not present in the original model. Another way to look at the dominant feature

is to look at values in the average model that lie in the top 90-percentile of the

distribution of that model. This model representation is shown in Figure 7.32(b), and

highlights the prominent features outlined by the best-fit models more clearly. The

average model contains values between 10 mD and 230 mD, but in this case the 90-

percentile cutoff means that only locations with values greater than 140 mD (from the

distribution of values in the average model, Figure 7.32(a)) are shown. As can be clearly

seen, it delineates the feature close to INJECTOR-1 and INJECTOR-2 to a degree, but

the result also contains a lot of ‘spurious’ features in more distant parts of the reservoir.

 (a) (b)

Figure 7.32. (a) Distribution of values in average model, (b) Prominent features in

average model highlighted by taking out all values below the 90
th

 percentile

 158

This effect becomes even more prominent when the conditioning well used is

‘INJECTOR-3’, which lies far away from the feature of interest. The features highlighted

are not even in the vicinity of the actual sinusoidal feature (Figure 7.33). In fact, the

common features in the final selected cluster are not that prominent when the selection is

performed using the data for ‘INJECTOR-3’. This is demonstrated by showing the

average models from cases with ‘INJECTOR-3’ and ‘INJECTOR-2’ on the same scale,

as seen in Figure 7.34.

Figure 7.34. Comparison of average model, with conditioning well inside and outside the

channel feature.

Average model for best matched cluster
Prominent features highlighted by taking out all

values less than the 90th percentile

Figure 7.33. Average model of best-matched cluster, when the conditioning data is from

INJECTOR-3, far away from the prominent sinusoidal feature.

 159

It might be argued that the bottom-hole pressure response of a given injector is

not only a function of the permeability features in its proximity, but also the injection

behavior of other wells in the vicinity. This hold true for the effect of INJECTOR-1 on

INJECTOR-3. However, as seen in Figure 7.35, the well INJECTOR-2 does not have a

very prominent effect on INJECTOR-1, and INJECTOR-3 is almost unaffected by the

other two injectors. As such, the results from INJECTOR-1 and INJECTOR-3

Figure 7.35. Inter-well pressure effects of the three injectors

 160

conditioned model selection hold good even if the inter-well effects are taken into

account.

It is also instructive to compare the response of the representative models of the

identified clusters to the conditioning well response, as seen in Figure 7.36. In this case, it

is clear that the models themselves have very few features that differentiate the pressure

responses of each cluster from one another. Furthermore, the posterior probability of the

clusters (using the Bayesian updating equation 3.5) was calculated to be 20.9%, 23.2%,

27.9% and 27.9%, which clearly indicates that the data is inadequate to inform the model

selection process as the contrast in the posterior probabilities is not that significant. A

similar calculation performed for the case when the injector was inside the channel

(Figure 7.37), showed the updated probability of the two clusters in that case to be 27.2%

and 72.7%, which clearly points to cluster 2 as the more probable cluster of models in

that case.

Figure 7.36. Comparison of response of representative model of individual clusters to

reference data, when model selection is conditioned to INJECTOR-3

 161

Figure 7.37. Probability cluster for calculating the posterior updated probability of the

model clusters, when the conditioning well is far from the channel.

This calculation of posterior probabilities can thus clearly show when the

conditioning data is inadequate to inform the model selection process, and thus serves as

an efficient stopping mechanism for the algorithm.

We showed how the model selection process is not an indiscriminate workflow

that can be used in all cases. We demonstrated that the process will fail to yield any

robust result in cases when the conditioning data is not available close to any prominent

features. However, at the same time, the calculation of posterior probabilities for each

cluster can clearly show when the conditioning data is inadequate, and hence can provide

an effective criterion for terminating the process.

 162

7.5 CONCLUSIONS

In this chapter, we have explored the application of the model selection algorithm

and the proxy, and demonstrated its use in a wide variety of applications. First, we

showed an efficient technique to locate the proxy monitoring locations such that the

differences between the models in a flow connectivity context can be emphasized. Next,

we showed how the model selection process can be used as an indicator of active

mineralization within the aquifer during CO2 sequestration, leading to a continuous

process of permeability and porosity alteration. Third, we showed the application of

model selection as an indicator for a leak within the storage volume. While the algorithm

cannot, at this stage, yield estimates of location of the leak, it can very well point to the

presence of one. Finally, we showed how the model selection process is not an

indiscriminate workflow that can be used in all cases. We demonstrated that the process

will fail to yield any robust result in cases when the conditioning data is not available

close to any prominent features. However, at the same time, the calculation of posterior

probabilities for each cluster can clearly show when the conditioning data is inadequate,

and hence can provide an effective criterion for terminating the process.

 163

Chapter 8 : Conclusions and Recommendations for Future Work

8.1. CONCLUSIONS

Probabilistic assessment of plume migration during geologic carbon sequestration

requires the use of multiple models to reflect the initial uncertainty in aquifer geologic

parameters. The assessment of these models needs efficient forward models that can

overcome the computational cost of numerical simulators. In Chapter 1, it was

hypothesized that efficient forward models can be developed for simulating the flow of

CO2 in an aquifer at a fraction of the computational cost of a numerical simulator, and

can be implemented within the model selection framework to predict future plume

migration, and the following objectives were envisioned for addressing the problem:

1. Development of fast-transfer functions

2. Validation of fast-transfer functions within model selection framework

3. Development of a software suite to implement the algorithm

Before these objectives could be addressed, the model selection workflow needed

to be modified for the carbon sequestration case, and this was shown in Chapter 3. While

initial implementations of the workflow relied on user-defined monitoring locations to

record proxy measurements for model grouping, a method was also developed for using

the variability across models to pick optimum locations for recording the measurements.

A way of calculating the optimum number of model groups was also developed, together

with a scheme for computing a representative aquifer model for each model cluster.

Finally, computation of posterior probabilities of model clusters using Bayes’ rule was

facilitated by the use of probability envelopes around the observed data.

The first and second objectives were addressed in Chapters 4 and 5. Chapter 4

detailed the development of a proxy based on random walker particle tracking. The proxy

 164

was shown to be capable of capturing viscosity-driven CO2 migration in the aquifer by

comparing it with numerical flow simulations, both for synthetic cases and a real field

case (In Salah field in Algeria). It was also tested within the model selection framework,

and shown to be effective in delineating best-fit models for the aquifer conditioned to

injection well pressures. However, the first proxy was not adequate for capturing

migration in cases when buoyancy-driven flow was dominant, as demonstrated for a

synthetic two-dimensional vertical model. and a real field case (Sleipner field in the

North Sea). The problem can be alleviated to an extent by weighting the vertical

migration component in the transition probabilities higher; however, this is a calibration

exercise rather than an actual physical reflection of fluid transport. Even with a higher

weight assigned to the vertical migration component, the proxy fails to adequately

capture the migration, as shown in the case of the Sleipner field. Further, multiphase flow

effects described by relative permeability, variations in injection pressures and fluid

density are not taken into account at all in this present formulation of the proxy.

Chapter 5 detailed the development of a new proxy to overcome the limitations of

the first proxy. The proxy mimicked the flow of non-reactive tracers with injected fluid.

While it retained the effect of permeability and reservoir structure like in the previous

proxy, it additionally incorporated the effects of gravity, relative permeability and

fluctuations in injection rates. It was shown to be still efficient in capturing viscosity-

driven migration, while also being able to capture migration in buoyancy-dominated

cases. The new proxy was also tested within the model selection framework for both the

Sleipner and In Salah cases. It was able to capture the location of a high-permeability

pathway between problem wells in In Salah, and was shown to be efficient in capturing

the location of sand holes in shale layers in Sleipner.

 165

The final objective of developing a software suite for implementing the various

parts of the model selection algorithm was detailed in chapter 6. This was coded in C++

and implemented within the geostatistical software SGeMS. The details of the code are

available in Chapter 6 and Appendix A. The software module was tested on both the field

cases in Chapter 5. Further, it was implemented on some additional applications of the

model selection process in Chapter 7, like the effects of cap-rock leak on the model

selection process, the limitations of injection data for delineating best-fit models

depending on the location of the conditioning wells, and the possibility of using the

algorithm to indicate the presence of mineralization in the aquifer.

8.2. RECOMMENDATIONS FOR FUTURE WORK

Based on the work implemented in this dissertation, the following

recommendations are made to improve and extend the model selection process:

 Regeneration of models: The current implementation of the model selection

process terminates the process either when the posterior probabilities of model

clusters become uniform, or when the number of models is deemed

improbable. The second termination rule, however, is a limitation to the model

selection workflow rather than a concrete statement. If a method can be

devised for regenerating new models at the end of each iteration (Figure 8.1),

the termination condition will then be limited only to equiprobable posterior

probabilities. Further, if the model regeneration is based on characteristic

features in the best-fit cluster, the new models will be able to emphasize the

dominant features while also adding new features to the models. This would

make the model selection an iterative process of incorporating heterogeneity

 166

features within the model set, and might progressively lead to tighter clusters

with reduced spread in prediction.

Figure 8.1. Modified model selection algorithm with model regeneration

 Incorporating additional physics into the proxy: The proxy formulation

has been updated to incorporate various physics into the transition

probability calculation; however, it is still missing a capillary pressure

term and a CO2-brine dissolution term. Both of these effects might be

incorporated into the proxy using the fractional-flow theory. Capillary

pressure is included in the fractional flow formulation as shown in

Equation 5.5:

 167

 (

(

)

 (5.5)

This expression for the fractional flow value can be used in the (

) term in equation 5.9. However, since a closed form solution with

capillary pressure does not exist for the Buckley-Leverett equation, this

should not be used in the specific velocity term in equation 5.9.

 This can be combined with the fractional flow method developed

by Noh et.al. (2007) for modeling CO2 injection in aquifers, which also

addresses the effects of dissolution of CO2 in aquifer brine. The authors

described two displacing fronts created within the aquifer: a pure CO2

front displacing two-phase CO2-brine mixture (the drying front), and the

two-phase front displacing pure in-place aquifer brine (the saturating

front). This is shown in Figure 8.2.

The velocities of the two-fronts are given as slopes of tangents to the

fractional flow curve from points expressed as functions of CO2

Figure 8.2. CO2-phase saturation profile in an aquifer (from Noh

et.al. 2007).

 168

dissolution in brine, as is shown in Figure 8.3. The coordinates of points I

and J are functions of the partitioning of the CO2 component between the

aqueous and gas phases.

Figure 8.3. Front velocities from fractional-flow curve (from Noh et.al. 2007).

 Improvements to posterior probability calculation: The posterior

probability calculation is based on creating probability envelopes around

the observed data. Further, the distribution of the envelopes is assumed to

be Gaussian. To make the process more general, there is need to develop a

process of stepping away from the Gaussian assumption. Also, the

conditioning data used for the model selection process is based on a single

variable. There is need to incorporate data from multiple sources such that

the process can be conditioned to a wider set of data and probably yield a

richer posterior model set.

 169

Appendix A: Code for old random walker

#include <iostream.h>

#include <iomanip.h>
#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>
#include <math.h>

#include <time.h>

#include <conio.h>
#include <string.h>

#include <windows.h>

char Parfile[80],Prfile[250],Sfile[250],cs_pr1[250],cs_pr2[250],sat_time[250];

double Kmax[200],Pmax,pr_max[100],sat_max[100],sat_min[100];

double perm[200][200][200][2],Press[200][200][2],Pr[200],sat[200][200][2],mon_pr[10000][200],mon_sat[10000][200];
int

NTotal,Tsteps,dx,dy,dz,NX,NY,NZ,Nsource,sx,sy,sz,mx,my,mz,NInitial,models,Pcount[200][200][2],Preport[200][200][200][2],Tco

unt[150][150][5],flag4,flag5,flag6,flag7,flag8;
void ReadParameter(void);

double pr_dist(int,int,int,int);

const int MIN=5,MAX=50;

void main(void)

{
 int i,j,k,l,p,rndm,report=10,total=0,t=0;

 int *rep = new int[report];

 long start,stop;
 double cdf,pdf,pr_val;

 int tt=0;

 ReadParameter();

 cout<<"\nNumber of particles injected every time step: ";

 cin>>NTotal;
 cout<<"\nNumber of steps to be taken: ";

 cin>>Tsteps;

 start=time(0);
 ofstream monitor_pr1(cs_pr1);

 ofstream monitor_pr2(cs_pr2);

 ofstream monitor_sat(sat_time);
 ofstream satn(Sfile);

 ofstream pres(Prfile);

 ofstream chk("check.dat");
 remove("Echeck.xls");

 const int a=1,b=1;

 double add=1.0,subt=0.5,c=10;

 // ***************** creating the permeability field *****************

 for (i=1;i<=NX;i++)
 {

 for (j=1;j<=NY;j++)

 {
 for (k=1;k<=NZ;k++)

 {
 for (l=1;l<=models;l++)

 {

 perm[l][i][j][k]=perm[l][i][j][k]/Kmax[l];
 }

 }

 }
 }

 170

 // **************** starting the walk ********************
 for (l=1;l<=models;l++)

 {

 int Npart=0;
// pres<<"\nModel "<<l<<"\n";

 for (i=1;i<=NZ;i++)

 {

 for (j=1;j<=NY;j++)
 {

 for (k=1;k<=NX;k++)

 {
 Pcount[k][j][i]=0;

 }

 }
 }

 for (int t1=1;t1<=Tsteps;t1++)

 {

 int count=0;
 //cout<<"\n********************\n"<<t1<<"\n********************\n";

 for (int np1=1;np1<=NTotal;np1++)
 {

 int zzz=1;
 Npart++;

 i=sx; j=sy; k=sz;

 Pcount[i][j][k]+=1;

 do

 {
 for (p=1; p<=5; p++)

 {Pr[p]=0;}

 if (i>1 && i<NX && j>1 && j<NY && Pcount[i][j][k]>=MIN)
 {

 Pr[2]=(a*((Pcount[i][j][k]-Pcount[i-1][j][k])/Npart)+b*pow(perm[l][i-

1][j][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i-1][j][k]/MAX);
 Pr[3]=(a*((Pcount[i][j][k]-

Pcount[i+1][j][k])/Npart)+b*pow(perm[l][i+1][j][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i+1][j][k]/MAX);

 Pr[4]=(a*((Pcount[i][j][k]-Pcount[i][j-1][k])/Npart)+b*pow(perm[l][i][j-
1][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i][j-1][k]/MAX);

 Pr[5]=(a*((Pcount[i][j][k]-

Pcount[i][j+1][k])/Npart)+b*pow(perm[l][i][j+1][k]*perm[l][i][j][k],0.5))*exp(-Pcount[i][j+1][k]/MAX);
 Pr[1]=(a*(Pcount[i][j][k]/Npart)+b*perm[l][i][j][k])*exp(-Pcount[i][j][k]/MAX);

 }

 else
 {

 Pr[5]=0; Pr[2]=0; Pr[3]=0; Pr[4]=0; Pr[1]=1;

 }

 if (i>1 && i<NX && j>1 && j<NY && Pcount[i][j][k]>=MAX)
 {

 Pr[2]=(a*((Pcount[i][j][k]-Pcount[i-1][j][k])/Npart)+b*pow(perm[l][i-1][j][k]*perm[l][i][j][k],0.5));

 Pr[3]=(a*((Pcount[i][j][k]-
Pcount[i+1][j][k])/Npart)+b*pow(perm[l][i+1][j][k]*perm[l][i][j][k],0.5));

 Pr[4]=(a*((Pcount[i][j][k]-Pcount[i][j-1][k])/Npart)+b*pow(perm[l][i][j-1][k]*perm[l][i][j][k],0.5));

 Pr[5]=(a*((Pcount[i][j][k]-Pcount[i][j+1][k])/Npart)+b*pow(perm[l][i][j+1][k]*perm[l][i][j][k],0.5));

 Pr[1]=0;

 171

 }

 double sum=0;

 for (p=1; p<=5; p++)

 {sum+=Pr[p];}

 if (sum>0)
 {

 //if (t1%50==0) {cout<<t1<<" "<<Pr[1]/sum<<" "<<Pr[2]/sum<<" "<<Pr[3]/sum<<"

 "<<Pr[4]/sum<<" "<<Pr[5]/sum<<"\n";}
 rndm=rand()%100;

 cdf=0;

 //cout<<rndm<<"\n";
 for (p=1; p<=5; p++)

 {

 pdf=Pr[p]/sum;
 cdf=cdf+pdf;

 //cout<<cdf<<" ";

 if (rndm<cdf*100) {break;}
 }

 //cout<<"\n";

 switch (p)

 {
 case 2:

 dx=i-1; dy=j; dz=k;
 break;

 case 3:

 dx=i+1; dy=j; dz=k;

 break;

 case 4:

 dx=i; dy=j-1; dz=k;
 break;

 case 5:

 dx=i; dy=j+1; dz=k;
 break;

 case 1:

 dx=i; dy=j; dz=k;
 break;

 }

 }

 Pcount[dx][dy][dz]+=1;

 Pcount[i][j][k]-=1;
 if (dx==i && dy==j && dz==k)

 {

 zzz=0;
 }

 else

 {
 i=dx; j=dy; k=dz; zzz=1;

 }

 }while(zzz==1);// ********** end of while loop ************

 }// ******* end of 1 timestep ************

 for (i=1;i<=NZ;i++)

 {
 for (j=1;j<=NY;j++)

 {

 for (k=1;k<=NX;k++)

 {

 172

 Preport[l][k][j][i]=Pcount[k][j][i];

 }
 }

 }

 mon_sat[t1][l]=Preport[l][mx][my][mz];

 if (mon_sat[t1][l]>mon_sat[t1-1][l] && t1>1) sat_max[l]=mon_sat[t1][l];

 if (mon_sat[t1][l]<mon_sat[t1-1][l] && t1>1) sat_min[l]=mon_sat[t1][l];
 mon_pr[t1][l]=pr_dist(mz,my,mx,l);

 if (mon_pr[t1][l]>mon_pr[t1-1][l] && t1>1) pr_max[l]=mon_pr[t1][l];

 } // end of all time steps //

 }// ******************** end of all models ************************

 pres<<"Pressure Profile\n"<<models+3<<"\nX\nY\nZ\n";
 satn<<"Saturation\n"<<models+3<<"\nX\nY\nZ\n";

 for (int fff=0;fff<models;fff++)

 {
 satn<<"model "<<fff+1<<"\n";

 pres<<"model "<<fff+1<<"\n";

 }

 for (i=1;i<=NZ;i++)

 {
 for (j=1;j<=NY;j++)

 {
 for (k=1;k<=NX;k++)

 {

 satn<<k<<" "<<j<<" "<<i<<" ";

 pres<<k<<" "<<j<<" "<<i<<" ";

 for (int l=1;l<=models;l++)

 {
 satn<<Preport[l][k][j][i]<<" ";

 pr_val=pr_dist(i,j,k,l);

 pres<<pr_val<<" ";
 }

 satn<<"\n";

 pres<<"\n";
 }

 }

 }

 for (j=1;j<=models;j++)

 {
 chk<<"Model "<<j<<"\n";

 flag4=0, flag5=0; flag6=0; flag7=0; flag8=0;

 monitor_sat<<"Model "<<j<<" ";
 for (i=1;i<=Tsteps;i++)

 {

 if (mon_sat[i][j]>=5 && flag6==0)
 {

 flag6=1;

 monitor_sat<<i<<"\n";
 }

 if (mon_sat[i][j]>=1 && flag7==0)

 {
 flag7=1;

 monitor_sat<<i<<" ";

 }

 if (mon_sat[i][j]>=10 && flag8==0)

 173

 {

 flag8=1;
 monitor_sat<<i<<" ";

 }

 if (mon_pr[i][j]/pr_max[j]>0.4 && flag4==0)
 {

 monitor_pr1<<i<<" ";

 flag4=1;
 }

 if (mon_pr[i][j]/pr_max[j]>0.8 && flag5==0)
 {

 monitor_pr2<<i<<" ";

 flag5=1;
 }

 chk<<i<<" "<<mon_sat[i][j]<<"\n";

 }
 monitor_pr1<<"\n";

 monitor_pr2<<"\n";

 }

 monitor_pr1.close();
 monitor_pr2.close();

 monitor_sat.close();

 satn.close();
 pres.close();

 monitor_sat.close();
 chk.close();

 stop=time(0);

 cout<<"\nTime taken: "<<stop-start<<" secs\n";

 delete []rep;

 Beep (2750,500);

} // ********************* END OF MAIN ********************

void ReadParameter(void)

{
 int i,j,k;

 char Pfile[80];

 cout<<"Name of parameter file: ";
 cin.getline(Parfile,80);

 ifstream data(Parfile);

 data>>NX;
 data>>NY;

 data>>NZ;

 //data>>Nsource;
 cout<<"Size: "<<NX<<" "<<NY<<" "<<NZ<<" \n";

 data>>sx;

 data>>sy;
 data>>sz;

 cout<<"\nSource: "<<sx<<" "<<sy<<" "<<sz<<"\n";

 data>>mx;

 data>>my;

 data>>mz;
 cout<<"\nMonitor: "<<mx<<" "<<my<<" "<<mz<<"\n";

 cout<<"\nPermeability file name: ";
 data.getline(Pfile,25);

 cout<<Pfile<<"\n";

 ifstream permblty(Pfile);

 permblty>>models;

 174

 for (i=1;i<=NZ;i++)

 {
 for (j=1;j<=NY;j++)

 {

 for (k=1;k<=NX;k++)
 {

 for (int l=1;l<=models;l++)

 {
 permblty>>perm[l][k][j][i];

 if (Kmax[l]<perm[l][k][j][i])

 Kmax[l]=perm[l][k][j][i];
 }

 }

 }
 }

 cout<<"\n\nData Reading completed.";
 cout<<"\nPressure file: ";

 data.getline(Prfile,125);

 cout<<Prfile<<"\n";
 cout<<"\nSaturation file: ";

 data.getline(Sfile,125);

 cout<<Sfile<<"\n";
 cout<<"\nPressure Monitoring files:\n";

 cout<<"Low: ";

 data.getline(cs_pr1,125);
 cout<<cs_pr1<<"\n";

 data.getline(cs_pr2,125);
 cout<<"High: "<<cs_pr2<<"\n";

 cout<<"\nFile for satn data: ";

 data.getline(sat_time,125);

 cout<<sat_time<<"\n\n";

 permblty.close();

 data.close();

}

double pr_dist(int z, int y, int x, int mod)

{

 double press=0,d;
 int c=0;

 const double a=1,b=10,l=1;

 for (int i=1;i<=NX;i++)
 {

 for (int j=1;j<=NY;j++)

 {
 for (int k=1;k<=NZ;k++)

 {

 d=pow((x-i)*(x-i)+(y-j)*(y-j)+(z-k)*(z-k),0.5)/l;
 if (d!=0 && Preport[mod][i][j][k]!=0)

 {

 press+=a*Preport[mod][i][j][k]/MAX*(exp(b/d));
 c++;

 }

 }
 }

 }

 press=press/c;
 return(press);

}

 175

Appendix B: SGeMS Plugin

B.1. BUILDING THE PLUGIN

We will now detail the development of the library file for the SGeMS plugin,

which is integrated with the larger SGeMS code. The entire code can be retrieved from

the GitHub repository at https://github.com/ar2tech/ar2tech-SGeMS-public. The codes

that were developed for the plugin will need to be compiled with the original SGeMS

code in order to use the plugin.

B.1.1. The initialize function

An example of part of the initialize function is given in Figure B.1. The function

is passed two arguments: list of all parameters input by the user, and an object to handle

errors. The parameter names read by the initialize function depend on their particular

description in the .ui file. For example, as seen in Figure B.2, the widget for selecting the

Figure B.1. Example of the initialize function

Figure B.2. Qt Designer layout, showing the name assigned to the permeability widget

https://github.com/ar2tech/ar2tech-SGeMS-public

 176

permeability models is called ‘perm_grid’, so variable perm_grid_name is assigned the

value in that specific box using the statement:

std::string perm_grid_name = parameters->value("perm_grid.value");

A similar approach will be taken for populating all variables in the initialize function.

B.1.2. The execute function

As mentioned in chapter 6, the execute function controls the workflow for

implementing the model selection algorithm, invoking the different modules needed for

the process and enabling proper data transfer from one part of the workflow to the next.

The modules are defined as functions defined in a separate script file called RW.cpp. In

this section, we detail the development of the various modules within the algorithm.

Particle-tracking proxy

The particle tracking proxy is the same proxy as was implemented in chapter 5.

Thus it needs variables like model size, grid dimensions, fluid and rock properties, and

depth and initial pressure values of the reservoir. The input tab for these properties has

been described in section 6.2 and Figure 6.4.

In order to run the proxy over all models, the code needs the ability to cycle

through the list of permeabilities and porosities that were specified in the input tab. For

this purpose, it needs a count for the total number of models, which is achieved using the

following snippet of code within the initialize function:

 177

The variable perm_grid_ is a pointer to the permeability object and represents the

grid the algorithm will be applied to, defined in the class ModelSelection. This pointer is

used to find the size of the object, and hence the number of models in the object as shown

above. It is also used to iterate through the list of models in the ‘permeability’ object, as

shown below:

In the above example, a list iterator is being created for the list of names in the

permeability object called perm_name_iter. This iterator is then used to populate a

pointer called tmp_perm_prop, which points to the variable listed as a specific name for

the permeability object. All operations with a particular model of permeability will be

done on the pointer tmp_perm_prop. Then, the program can move on to the next model in

the permeability object by incrementing the list iterator for the permeability names,

perm_name_iter.

The next step is to know how to use the pointer tmp_perm_prop to extract values

of the property at specific grid locations for the model. For this purpose, we would use a

code as follows:

 178

In the above example, we extract the dimensions of the grid from the perm_grid_ pointer

itself, and then use that to iterate through tmp_perm_prop to get individual values of the

variable using the function get_value(int).

 The last piece of information we need is to know how to write values calculated

by our program back into the GUI, under a newly created object. For this purpose, we can

use a snippet of code as follows:

 179

In this code, we first create a new object called “Random_walk_results” in lines 1-2.

Then, we define a Grid_contiuous_property pointer called tmp_rw_prop to write values

to the object in lines 4-5. Finally, we write the values of the output (in this case called

saturations) using the function set_value() on line 14.

The information presented above is adequate to enable us to get values from the

user interface and execute the proxy.

PCA and Model Grouping

The results of the proxy noted at user-specified locations are used for principal

components analysis and subsequent clustering, as detailed in chapter 3. Here, we show

parts of the code where that workflow is implemented.

The computation of the principal component axes and projection of the models

onto those axes are accomplished using a function projections():

This function takes as input the statistics derived from the proxy (original), a pre-

allocated array to store the projections of the models onto principal component space

(projected), the total number of models (num_of_en) and the total number of parameters

for each model (parms). The code can be seen in later in this Appendix.

The projections of the models are then divided into clusters and the model closest

to each cluster centroid is found.

 180

The function cluster() is used for this purpose: it finds the ideal number of clusters for the

current case and saves that value in num_clus and it assigns cluster identifier numbers to

each model in the array clustered. Finally, the function find_centroids() finds the cluster

centroids for the allocated clusters and saves them in the array centroids (line 4), which is

then used in the function find_best_models() to find the model in each cluster closest to

the centroid and save its identifying number in the variable rep_models (line 6). These

functions are also given in full in the next section of this Appendix.

Numerical simulation and Bayesian updating

The final step in a model selection iteration is to evaluate the representative model

for each cluster using a full physics flow simulation, comparing the simulation results to

observed data and computing posterior probabilities using Bayes’ rule. For this purpose,

our code needs to be able to do the following: run simulations for each representative

model, read the simulated result for the simulation run, and once all models have been

run, compute the posterior probabilities.

In order to run the numerical simulation, in our current implementation we have

used CMG-GEM; however, it is possible to use any other simulator by making simple

changes to the code. The variables that need changing for each run are the permeability

and porosity distributions, and this is made possible by incorporating them in the

simulation data deck as external files using the INCLUDE command in CMG. Thus, the

code was required to write out permeability and porosity files before initiating a

particular run. The simulator was run using the command prompt version of CMG, using

the following code:

 181

In this code snippet, the permeability and porosity files are being written to the

same folder where the simulation data deck lies (the working folder) using lines 1 – 9.

The simulator is then run using line 16, which invokes the windows command processor

to execute the following simulation command:

Here, sim_loc refers to the location of the simulator on the particular computer

(specified previously by the user in the GUI), and sim_file refers to the simulation data

deck, which should exist within the working folder and is also specified by the user in the

GUI.

Once the particular representative model has been run, the REPORT.exe program

in CMG extracts the necessary simulated data for the conditioning wells from the

simulation output, using line 23. This invokes the command processor to execute the

following:

 182

Here, the REPORT program uses the file Report.rwd in the working folder to

evaluate the output of the simulation and save the results in Report.rwo. The structure of

the Report.rwd file is as follows:

Here, the program reads the output from the BASE_CASE file, the particular

output being the bottom-hole pressure for the well called INJECTOR-3 at times 100, 200,

300, 400 and 500 days. The results are read into an array called simulation_results

using a read_report function.

Once all the simulations have been run, the final step is the calculation of the

posterior probabilities and finding the cluster with the highest updated probability. This is

achieved using the following code:

Here, the function calc_probability (details later in this Appendix) calculates

the updated probability for all the clusters, using the simulated_results and the

history data. Then, lines 4 – 13 are used to create a vector of vectors to store the values

 183

of the updated probabilities and sort them in the order of decreasing probability. Finally,

in line 15, the index of the cluster with the highest probability is stored as the variable

best_cluster_id.

Saving the results

Once the model selection process is terminated, either due to equiprobable final

clusters or a limit on the number of iterations, the best-fit models need to be written out to

the GUI. For this purpose, the user creates an empty object within the GUI before the

start of the program, and this object is then populated using the models in the best-fit

cluster, using the following code:

The process uses internal commands available in SGeMS for copying parameters

from one object into another. The code on line 16 achieves this by running the following

SGeMS script:

Where ‘A’ is the object from which the property ‘A_1’ is being copied into the

object ‘B’, and the new property is being called ‘B_1’.

 184

B.2. CODES FOR PLUGIN

In this section, we layout the codes that are needed for compiling SGeMS with the

model selection plugin.

ModelSelection.cpp : Primary code for defining the initialize and execute functions

/* ---
** Copyright (c) 2012 Advanced Resources and Risk Technology, LLC

** All rights reserved.

**

** This file is part of Advanced Resources and Risk Technology, LLC (AR2TECH)

** version of the open source software sgems. It is a derivative work by

** AR2TECH (THE LICENSOR) based on the x-free license granted in the original
** version of the software (see notice below) and now sublicensed such that it

** cannot be distributed or modified without the explicit and written permission

** of AR2TECH.
**

** Only AR2TECH can modify, alter or revoke the licensing terms for this

** file/software.
**

** This file cannot be modified or distributed without the explicit and written

** consent of AR2TECH.
**

** Contact Dr. Alex Boucher (aboucher@ar2tech.com) for any questions regarding

** the licensing of this file/software
**

** The open-source version of sgems can be downloaded at

** sourceforge.net/projects/sgems.
** --*/

/**

** Author: Nicolas Remy
** Copyright (C) 2002-2004 The Board of Trustees of the Leland Stanford Junior

** University
** All rights reserved.

**

** This file is part of the "geostat" module of the Geostatistical Earth
** Modeling Software (GEMS)

**

** This file may be distributed and/or modified under the terms of the
** license defined by the Stanford Center for Reservoir Forecasting and

** appearing in the file LICENSE.XFREE included in the packaging of this file.

**
** This file may be distributed and/or modified under the terms of the

** GNU General Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file.

**

** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

**

** See http://www.gnu.org/copyleft/gpl.html for GPL licensing information.
**

** Contact the Stanford Center for Reservoir Forecasting, Stanford University

** if any conditions of this licensing are not clear to you.
**

**/

 185

#include <grid/rgrid.h>
#include <utils/gstl_plugins.h>

#include <utils/string_manipulation.h>

#include <grid/grid_property.h>
#include <utils/gstl_messages.h>

#include <utils/manager.h>

#include "ModelSelection.h"
#include "matrix_def.h"

int ModelSelection::execute(GsTL_project* proj) {
 switch(selected_algorithm)

 {

// case SCA:
// run_SCA(proj);

// break;

 case RANDOM_WALKER:
 run_RW(proj);

 break;

 case MODEL_EXPANSION:
 break;

 }

 return 0;
}

bool ModelSelection::initialize(const Parameters_handler* parameters,
 Error_messages_handler* errors) {

 #pragma region Get parameters

 std::string perm_grid_name = parameters->value("perm_grid.value");

 errors->report(perm_grid_name.empty(), "perm_grid", "No grid selected");

 if(perm_grid_name.empty()) return false;

 std::string poro_grid_name = parameters->value("poro_grid.value");
 errors->report(poro_grid_name.empty(), "poro_grid", "No grid selected");

 if(poro_grid_name.empty()) return false;

 std::string algorithm_name = parameters->value("algorithm_type.value");

 errors->report(algorithm_name.empty(), "algorithm_type", "No grid selected");
 if(algorithm_name.empty()) return false;

 perm_grid_ = dynamic_cast<RGrid*>(Root::instance()->interface(
 gridModels_manager + "/" + perm_grid_name).raw_ptr());

 poro_grid_ = dynamic_cast<RGrid*>(Root::instance()->interface(

 gridModels_manager + "/" + poro_grid_name).raw_ptr());

 perm_name_list = perm_grid_->property_list();

 poro_name_list = poro_grid_->property_list();

 num_of_en = perm_name_list.size();

 if(String_Op::contains(algorithm_name, "Scaled Connectivity Analysis", false))

 selected_algorithm = SCA;

 else if(String_Op::contains(algorithm_name, "Random Walker", false))
 selected_algorithm = RANDOM_WALKER;

 else if(String_Op::contains(algorithm_name, "Model Expansion", false))

 selected_algorithm = MODEL_EXPANSION;
 else

 return false;

 //simulation file

 sim_file_name = parameters->value("sim_file_name.value");

 errors->report(sim_file_name.empty(), "sim_file_name", "Missing simulation file name");

 if(sim_file_name.empty()) return false;

 186

 //simulator location
 simulator_location = parameters->value("simulator_location.value");

 errors->report(simulator_location.empty(), "simulator_location", "Missing simulator location");

 if(simulator_location.empty()) return false;

 //CMG RESULTS location

 results_location = parameters->value("results_location.value");
 errors->report(results_location.empty(), "results_location", "Missing results location");

 if(results_location.empty()) return false;

 //history file

 std::string history_file_name = parameters->value("history_file_name.value");

 errors->report(history_file_name.empty(), "history_file_name", "Missing history file name");
 if(history_file_name.empty()) return false;

 fstream fp_hist;
 fp_hist.open(history_file_name.c_str(), ios::in);

 fp_hist>>nrows_hist>>ncols_hist;

 history_data = Allocate2D<double>(nrows_hist, ncols_hist);
 for (int i=0; i<nrows_hist; i++)

 {

 for (int j=0; j<ncols_hist; j++)
 fp_hist>>history_data[i][j];

 }

 fp_hist.close();

 // working folder for simulations
 simulation_folder = parameters->value("simulation_folder.value");

 errors->report(simulation_folder.empty(), "simulation_folder", "No folder for simulation selected");

 if(simulation_folder.empty()) return false;

 switch(selected_algorithm)

 {
// case SCA:

// if(!Initialize_SCA(parameters, errors))

// return false;
 case RANDOM_WALKER:

 if(!Initialize_RW(parameters, errors))

 return false;
 case MODEL_EXPANSION:

 if(!Initialize_ME(parameters, errors))

 return false;
 }

 #pragma endregion

 if(!errors->empty()) {

 return false;

 }

 this->extract_parameters(parameters);

 return true;
}

 187

RW.cpp : Classes and associated /lfunctions / variables are decleared in RW.h

// Header files <>
#include "matrix_def.h"
#include <time.h>
#include <grid/point_set.h>
#include "RW.h"
#include "ModelSelection.h"
#include "cluster_to_simulation.h"

template <typename T>
double percentile(Grid_continuous_property *tmp_perm_prop, int NX, int NY, int NZ, double
target_p, T cutoff)
{
 // finds the target_p-th percentile among all data in the 3D array dArray which is above the
cutoff //
 vector<double> a;
 int counter = 0;
 for (int i=0; i<NX; i++)
 {
 for (int j=0; j<NY; j++)
 {
 for (int k=0; k<NZ; k++)
 {
 if (tmp_perm_prop->get_value(counter)>0)
 {
 a.push_back(tmp_perm_prop->get_value(counter)*9.869e-16);
 }
 counter++;
 }
 }
 }
 fstream fp;
 fp.open("in_percentile.txt",ios::out);
 fp<<"In percentile\n";
 sort(a.begin(),a.end());
 int length = a.size();
 fp<<length<<endl;
 int b = length*(target_p/100.0);
 fp<<b<<" "<<a[b-1]<<endl;
 fp.close();

 double return_val;
 if (b>0)
 return_val = a[b-1];
 else
 return_val = a[0];
 a.clear(); a.shrink_to_fit();

 return return_val;
}

bool ModelSelection::Initialize_RW(const Parameters_handler* parameters, Error_messages_handler*
errors)
{
 fstream fp;
 fp.open("check_read.txt",ios::out | ios::app);

 num_injectors = 1;
 inj_locs = Allocate2D<int>(num_injectors,3);
 inj_locs[0][0] = String_Op::to_number<int>(parameters->value("NX.value"));
 errors->report(inj_locs[0][0] <= 0, "NX", "Invalid injector location");

 188

 if(inj_locs[0][0] <= 0) return false;

 inj_locs[0][1] = String_Op::to_number<int>(parameters->value("NY.value"));
 errors->report(inj_locs[0][1] <= 0, "NY", "Invalid injector location");
 if(inj_locs[0][1] <= 0) return false;

 inj_locs[0][2] = String_Op::to_number<int>(parameters->value("NZ.value"));
 errors->report(inj_locs[0][2] <= 0, "NZ", "Invalid injector location");
 if(inj_locs[0][2] <= 0) return false;

 fp<<"Injectors: "<<inj_locs[0][0]<<" "<<inj_locs[0][1]<<" "<<inj_locs[0][2]<<endl;
 fp.close();

 std::string depth_grid_name = parameters->value("depth_grid.value");
 errors->report(depth_grid_name.empty(), "depth_grid", "No grid selected");
 if(depth_grid_name.empty()) return false;

 depth_grid_ = dynamic_cast<RGrid*>(Root::instance()->interface(gridModels_manager + "/" +
depth_grid_name).raw_ptr());

 fp.open("check_read.txt",ios::app);
 fp<<"Depth grid name: "<<depth_grid_name<<endl;
 fp.close();

 std::string ini_pr_grid_name = parameters->value("ini_pr_grid.value");
 errors->report(ini_pr_grid_name.empty(), "ini_pr_grid", "No grid selected");
 if(ini_pr_grid_name.empty()) return false;

 fp.open("check_read.txt",ios::app);
 fp<<"Pressure grid name: "<<ini_pr_grid_name<<endl;
 fp.close();

 ini_pr_ = dynamic_cast<RGrid*>(Root::instance()->interface(gridModels_manager + "/" +
ini_pr_grid_name).raw_ptr());

 depth_grid_list = depth_grid_->property_list();
 ini_pr_list = ini_pr_->property_list();

 rel_perm_table = Allocate2D<double>(1000,3);
 calc_rel_perms(rel_perm_table,parameters,errors);

 read_fluid_properties(parameters,errors, brine_den_rw, co2_den_rw, brine_visc_rw, co2_visc_rw,
ct_rw);

 fw_table = Allocate2D<double>(1000,2);
 calc_fw_table(rel_perm_table, fw_table, co2_visc_rw, brine_visc_rw);

 read_run_time_data(parameters,errors, total_days, inj_rate, delta_T, reporting_interval,
particles_per_time);

 std::string unit_system = parameters->value("unit_system.value");
 errors->report(unit_system.empty(), "unit_system", "No UNIT SYSTEM selected");
 if(unit_system.empty()) return false;

 if(String_Op::contains(unit_system, "FIELD", false))
 selected_units = FIELD;
 else if(String_Op::contains(unit_system, "SI", false))
 selected_units = SI;
 else
 return false;

 std::string RW_grid_name = parameters->value("RW_grid.value");

 189

 errors->report(RW_grid_name.empty(), "RW_grid", "No grid selected");
 if(RW_grid_name.empty()) return false;

 RW_grid_ = dynamic_cast<RGrid*>(Root::instance()->interface(gridModels_manager + "/" +
RW_grid_name).raw_ptr());

/* simulation_folder = parameters->value("simulation_folder.value");
 errors->report(simulation_folder.empty(), "simulation_folder", "No folder for simulation
selected");
 if(simulation_folder.empty()) return false;
*/
 // read in the monitoring locations
 std::string Monitor_file_name = parameters->value("monitoring_locs_2.value");
 errors->report(Monitor_file_name.empty(), "monitoring_locs_2", "Invalid monitoring locations"
);
 if(Monitor_file_name.empty()) return false;

 Point_set* grid_mon_ = dynamic_cast<Point_set*>(Root::instance()-
>interface(gridModels_manager + "/" + Monitor_file_name).raw_ptr());

 const std::vector<Point_set::location_type>& locs = grid_mon_->point_locations();
 std::vector<Point_set::location_type>::const_iterator vec_it = locs.begin();
 num_monitors = locs.size();
 monitor_locs = Allocate2D<int>(num_monitors,3);
 fp<<"Number of monitors: "<<num_monitors<<endl;
 for(int i=0; i<num_monitors; i++)
 {
 monitor_locs[i][0] = (int) vec_it->x();
 monitor_locs[i][1] = (int) vec_it->y();
 monitor_locs[i][2] = (int) vec_it->z();
 vec_it++;
 }
/*
 //history file
 std::string history_file_name = parameters->value("history_file_name.value");
 errors->report(history_file_name.empty(), "history_file_name", "Missing history file name");
 if(history_file_name.empty()) return false;

 fstream fp_hist;
 fp_hist.open(history_file_name.c_str(), ios::in);
 fp_hist>>nrows_hist>>ncols_hist;
 history_data = Allocate2D<double>(nrows_hist, ncols_hist);
 for (int i=0; i<nrows_hist; i++)
 {
 for (int j=0; j<ncols_hist; j++)
 fp_hist>>history_data[i][j];
 }
 fp_hist.close();

 //simulation file
 sim_file_name = parameters->value("sim_file_name.value");
 errors->report(sim_file_name.empty(), "sim_file_name", "Missing simulation file name");
 if(sim_file_name.empty()) return false;

 //simulator location
 simulator_location = parameters->value("simulator_location.value");
 errors->report(simulator_location.empty(), "simulator_location", "Missing simulator location"
);
 if(simulator_location.empty()) return false;

 //CMG RESULTS location
 results_location = parameters->value("results_location.value");
 errors->report(results_location.empty(), "results_location", "Missing results location");
 if(results_location.empty()) return false;

 190

*/
 fp.open("check_read.txt",ios::app);
 fp<<"Done reading all locations etc.\n";
 fp.close();

 return true;
}

int ModelSelection::run_RW(GsTL_project* proj)
{
 model_data static_data;

 NX = perm_grid_->nx();
 NY = perm_grid_->ny();
 NZ = perm_grid_->nz();

 stats = Allocate2D<double>(num_of_en,(int) num_monitors*total_days/reporting_interval);

 dx = perm_grid_->geometry()->cell_dims().x();
 dy = perm_grid_->geometry()->cell_dims().y();
 dz = perm_grid_->geometry()->cell_dims().z();

 list<string>::iterator perm_name_iter = perm_name_list.begin();
 list<string>::iterator poro_name_iter = poro_name_list.begin();
 list<string>::iterator depth_name_iter = depth_grid_list.begin();
 list<string>::iterator ini_pr_name_iter = ini_pr_list.begin();

 Grid_continuous_property *tmp_perm_prop;
 Grid_continuous_property *tmp_poro_prop;
 Grid_continuous_property *tmp_depth_prop;
 Grid_continuous_property *tmp_ini_pr_prop;

 #pragma region Allocate data to struct
 static_data.NX = NX;
 static_data.NY = NY;
 static_data.NZ = NZ;
 static_data.dx = dx;
 static_data.dy = dy;
 static_data.dz = dz;
 static_data.simulation_folder = simulation_folder;

 static_data.brine_den_rw = brine_den_rw;
 static_data.brine_visc_rw = brine_visc_rw;
 static_data.co2_den_rw = co2_den_rw;
 static_data.co2_visc_rw = co2_visc_rw;
 static_data.ct_rw = ct_rw;

 static_data.num_injectors = num_injectors;
 static_data.num_monitors = num_monitors;
 static_data.nrows_hist = nrows_hist;
 static_data.ncols_hist = ncols_hist;
 static_data.inj_locs = inj_locs;
 static_data.monitor_locs = monitor_locs;
 static_data.particles_per_time = particles_per_time;

 static_data.fw_table = fw_table;
 static_data.history_data = history_data;

 static_data.total_days = total_days;
 static_data.inj_rate = inj_rate;
 static_data.delta_T = delta_T;
 static_data.reporting_interval = reporting_interval;
 switch(selected_units)

 191

 {
 case SI:
 static_data.selected_units = 1;
 break;
 case FIELD:
 static_data.selected_units = 2;
 break;
 }

 #pragma endregion

 string cmd("NewCartesianGrid");
 string cmd_parameters;
 Error_messages_handler copy_error_msg;
 cmd_parameters = "Random_walk_results::" + static_cast<ostringstream*>(&(ostringstream() <<
NX))->str() + "::"
 + static_cast<ostringstream*>(&(ostringstream() << NY))->str() + "::"
 + static_cast<ostringstream*>(&(ostringstream() << NZ))->str() + "::"
 + static_cast<ostringstream*>(&(ostringstream() << dx))->str() + "::"
 + static_cast<ostringstream*>(&(ostringstream() << dy))->str() + "::"
 + static_cast<ostringstream*>(&(ostringstream() << dz))->str() + "::0::0::0::0.00";

 bool copy_ok = proj->execute(cmd, cmd_parameters, ©_error_msg);

 // Create grid to write current RW results //
 string opt_grid_name = "Random_walk_results";
 opt_grid_ = dynamic_cast<RGrid*>(Root::instance()->interface(gridModels_manager + "/" +
opt_grid_name).raw_ptr());

 SmartPtr<Progress_notifier> progress_notifier = utils::create_notifier("Running Random
Walker", num_of_en, 1);
 for (int model=0; model<num_of_en; model++)
 {
 tmp_perm_prop = perm_grid_->select_property(*perm_name_iter);
 tmp_poro_prop = poro_grid_->select_property(*poro_name_iter);
 tmp_depth_prop = depth_grid_->select_property(*depth_name_iter);
 tmp_ini_pr_prop = ini_pr_->select_property(*ini_pr_name_iter);
 progress_notifier->message() << "Working on realization " << model+1 << " of "<< num_of_en
<< gstlIO::end;
 if(!progress_notifier->notify()) return 1;
 if (restart_flag==0) then run random walker else dont. Similarly for creating object
Random_walk_results above.
 random_walker(model, tmp_perm_prop, tmp_poro_prop, tmp_depth_prop, tmp_ini_pr_prop,
static_data, opt_grid_, stats);
 if ((model+1)%60==0)
 {
 cmd = "SaveProject";
 cmd_parameters = simulation_folder + "//temp_results";
 bool copy_ok = proj->execute(cmd, cmd_parameters, ©_error_msg);
 }

 perm_name_iter++; poro_name_iter++;
 }

 fstream fp2;
 char stats_file[1000];
 strcpy(stats_file, simulation_folder.c_str());
 strcat(stats_file, "\\stats_clean.txt");
 fp2.open(stats_file,ios::out);
 for (int i=0; i<total_days/reporting_interval*num_monitors; i++)
 {
 for (int j=0; j<num_of_en; j++)
 fp2<<stats[j][i]<<" ";

 192

 fp2<<endl;
 }
 fp2.close();

 #pragma region clustering to simulation

 char resultRW[100], history[100], Pfile[100];
 int num_grids, num_models, parms, Nx, Ny, Nz, num_iter;
 int *clusterid, *rep_models;
 double **original, **cov, **perms, **observed, **zmean, **evecs, **projected, **average,
**rep, errs[4], **centroids, **simulated_results;
 int check=0, num_clus, most_probable,run_num,i,j;
 double prob_value, dif;
 time_t start,end;
// Reading the stats file. This contains statistics for each model at the monitoring locations

 fstream fp_check;
 fp_check.open(stats_file,ios::in);
 int count_parms = 0;
 double temp_fp_check;
 while (!fp_check.eof())
 {
 for (int j=0; j<num_of_en; j++)
 fp_check>>temp_fp_check;
 count_parms++;
 }
 fp_check.close();
 parms = count_parms;
 original = Allocate2D<double>(num_of_en,parms);

 fstream fp;
 fp.open(stats_file,ios::in);
 for (int i=0; i<parms; i++)
 {
 for (int j=0; j<num_of_en; j++)
 fp>>original[j][i];
 }
 fp.close();

// Projection and all
 projected = Allocate2D<double>(num_of_en,3);
 projections(original, projected, num_of_en, parms);

// Clustering
 clusterid = new int[num_of_en];
 int get_clus;
 cin>>get_clus;
 num_clus = cluster(num_of_en, projected, clusterid);
 centroids = Allocate2D<double>(num_clus,3);
 find_centroids(num_of_en, num_clus, centroids, clusterid, projected);
 rep_models = new int[num_clus];
 find_best_models(num_of_en,num_clus, clusterid, centroids, projected, rep_models);

// Write clustering data to output files
 fstream fp_cluster_data;
 char cluster_op[1000];
 strcpy(cluster_op, simulation_folder.c_str());
 strcat(cluster_op, "\\cluster_data.txt");
 fp_cluster_data.open(cluster_op, ios::out);
 fp_cluster_data<<"Projections: \n";
 for (i=0; i<num_of_en; i++)
 {
 for (int j=0; j<3; j++)

 193

 fp_cluster_data<<projected[i][j]<<"\t";
 fp_cluster_data<<endl;
 }

 fp_cluster_data<<"\nCluster IDs: \n";
 for (i=0; i<num_of_en; i++)
 fp_cluster_data<<clusterid[i]<<endl;

 fp_cluster_data<<"\nCentroids: \n";
 for (i=0; i<num_clus; i++)
 {
 for (int j=0; j<3; j++)
 fp_cluster_data<<centroids[i][j]<<"\t";
 fp_cluster_data<<endl;
 }
 fp_cluster_data.close();

 simulated_results = Allocate2D<double>(static_data.nrows_hist, num_clus);
// Run CMG
 int frequency = 1;
 for (int i=0; i<num_clus; i++)
 {
 std::list<string>::iterator perm_name_iter = perm_name_list.begin();
 std::list<string>::iterator poro_name_iter = poro_name_list.begin();
 Grid_continuous_property *tmp_perm_prop;
 Grid_continuous_property *tmp_poro_prop;
 for (int j=0; j<rep_models[i]; j++)
 {
 perm_name_iter++;
 poro_name_iter++;
 }
 tmp_perm_prop = perm_grid_->select_property(*perm_name_iter);
 tmp_poro_prop = poro_grid_->select_property(*poro_name_iter);

 // write to simulation folder
 char fname[1000], fname_perm[1000], fname_por[1000];
 strcpy(fname,simulation_folder.c_str());
 strcpy(fname_perm, fname);
 strcpy(fname_por, fname);
 strcat(fname_perm, "/perm.txt");
 strcat(fname_por, "/por.txt");

 FILE *fp_perm, *fp_por;
 fp_perm = fopen(fname_perm, "w");
 fp_por = fopen(fname_por, "w");
 for (int j=0; j<NX*NY*NZ; j++)
 {
 fprintf(fp_perm,"%.2f\n", tmp_perm_prop->get_value(j));
 fprintf(fp_por,"%.2f\n",tmp_poro_prop->get_value(j));
 }
 fclose(fp_perm); fclose(fp_por);

 // Run CMG

 string simulation_command = "\"" + simulator_location;
 simulation_command = simulation_command + "\\gm201110.exe\" -parasol 6 -f " +
simulation_folder + "\\" + sim_file_name;
 simulation_command = simulation_command + " -wd " + simulation_folder;
 system(simulation_command.c_str());

 string results_command = "\"" + results_location;
 results_command = results_command + "\\report.exe\" /f ";

 194

 results_command = results_command + simulation_folder + "\\Report.rwd /o ";
 results_command = results_command + simulation_folder + "\\Report.rwo";
 char aa[10];
 system(results_command.c_str());
 cout<<results_command<<endl;
 cin>>aa;

 read_report(i, simulated_results, nrows_hist,simulation_folder + "\\Report.rwo");

 }

// Write simulated results to file
 fstream fp_sim;
 fp_sim.open(simulation_folder + "\\simulated_results.txt", ios::out);
 for (int i=0; i<nrows_hist; i++)
 {
 for (int j=0; j<num_clus; j++)
 {
 fp_sim<<simulated_results[i][j]<<" ";
 }
 fp_sim<<endl;
 }
 fp_sim.close();

// Find highest probability cluster
 vector<double> class_probabilities(num_clus);
 class_probabilities = calc_probability(simulated_results, history_data, nrows_hist, num_clus);

 vector < vector<double> > link_probs_clusterid (num_clus);
 vector<double>::iterator it;
 int count_clus = 0;
 for (it = class_probabilities.begin(); it!= class_probabilities.end(); it++)
 {
 link_probs_clusterid[count_clus].push_back(count_clus);
 link_probs_clusterid[count_clus].push_back(*it);
 count_clus++;
 }
 sort(link_probs_clusterid.begin(), link_probs_clusterid.end(), [](const std::vector< double >&
a, const std::vector< double >& b){ return a[1] > b[1]; });

 int best_cluster_id = link_probs_clusterid[0][0];

// Write results to an OBJECT
 for (int i=0; i<num_of_en; i++)
 {
 if (clusterid[i]==best_cluster_id)
 {
 string cmd("CopyProperty");
 string cmd_parameters;
 Error_messages_handler copy_error_msg;
 std::list<string>::iterator perm_name_iter = perm_name_list.begin();

 for (int j=0; j<i; j++)
 {
 perm_name_iter++;
 }

 cmd_parameters = perm_grid_->name() + "::" + *perm_name_iter + "::" + RW_grid_-
>name() + "::" + *perm_name_iter + "::0::0";
 bool copy_ok = proj->execute(cmd, cmd_parameters, ©_error_msg);

 }

 195

 }

 free(clusterid);
 Free2D<double>(projected);

#pragma endregion

 return 0;
}

bool read_run_time_data(const Parameters_handler* parameters, Error_messages_handler* errors,
double &total_days, double &inj_rate, double &delta_T, double &reporting_interval, int
&particles_per_time)
{
 total_days = String_Op::to_number<double>(parameters->value("total_days.value"));
 errors->report(total_days <= 0, "total_days", "Invalid total run time");
 if(total_days <= 0) return false;

 inj_rate = String_Op::to_number<double>(parameters->value("inj_rate.value"));
 errors->report(inj_rate <= 0, "inj_rate", "Invalid injection rate");
 if(inj_rate <= 0) return false;

 delta_T = String_Op::to_number<double>(parameters->value("delta_T.value"));
 errors->report(delta_T <= 0, "delta_T", "Invalid update interval");
 if(delta_T <= 0) return false;

 reporting_interval = String_Op::to_number<double>(parameters->value(
"reporting_interval.value"));
 errors->report(reporting_interval <= 0, "reporting_interval", "Invalid reporting interval");
 if(reporting_interval <= 0) return false;

 particles_per_time = String_Op::to_number<double>(parameters->value(
"particles_per_time.value"));
 errors->report(particles_per_time <= 0, "particles_per_time", "Invalid number of particles
per day");
 if(particles_per_time <= 0) return false;

 return true;

}

void calc_fw_table(double **rel_perm_table, double **fw_table, double co2_visc_rw, double
brine_visc_rw)
{
 double krg, krw, sat;
 for (int s=0; s<1000; s++)
 {
 sat = s/1000.0;
 krg = rel_perm_table[s][0];
 krw = rel_perm_table[s][1];
 fw_table[s][0] = sat;
 fw_table[s][1] = 1/(1+krw*co2_visc_rw/krg/brine_visc_rw);
 }
}

bool calc_rel_perms(double **rel_perm_table, const Parameters_handler* parameters,
Error_messages_handler* errors)
{
 double end_pts[2], expn[2], Sr[2];
 double sat, kr;
 end_pts[0] = String_Op::to_number<double>(parameters->value("krg0.value"));
 errors->report(end_pts[0] <= 0, "krg0", "Invalid end point rel-perm for gas");

 196

 if(end_pts[0] <= 0) return false;

 end_pts[1] = String_Op::to_number<double>(parameters->value("krw0.value"));
 errors->report(end_pts[1] <= 0, "krw0", "Invalid end point rel-perm for brine");
 if(end_pts[1] <= 0) return false;

 expn[0] = String_Op::to_number<double>(parameters->value("n1.value"));
 errors->report(expn[0] <= 0, "n1", "Invalid exponent for gas");
 if(expn[0] <= 0) return false;

 expn[1] = String_Op::to_number<double>(parameters->value("n2.value"));
 errors->report(expn[1] <= 0, "n2", "Invalid exponent for brine");
 if(expn[1] <= 0) return false;

 Sr[0] = String_Op::to_number<double>(parameters->value("Sgr.value"));
 errors->report(Sr[0] <= 0, "Sgr", "Invalid residual gas saturation");
 if(Sr[0] <= 0) return false;

 Sr[1] = String_Op::to_number<double>(parameters->value("Swr.value"));
 errors->report(Sr[1] <= 0, "Swr", "Invalid residual gas saturation");
 if(Sr[1] <= 0) return false;

 for (int s=0;s<1000;s++)
 {
 sat = s/1000.0;
 rel_perm_table[s][0] = sat;
 if (sat<Sr[1])
 kr=0;
 else
 {
 if (sat>1-Sr[0])
 kr = end_pts[1];
 else
 kr = end_pts[1] * pow((sat-Sr[1])/(1-Sr[1]-Sr[0]),expn[1]);
 }
 rel_perm_table[s][1] = kr;
 }

 for (int s=0;s<1000;s++)
 {
 sat = 1 - s/1000.0;
 if (sat<Sr[0])
 kr=0;
 else
 {
 if (sat>1-Sr[1])
 kr = end_pts[0];
 else
 kr = end_pts[0] * pow((sat-Sr[0])/(1-Sr[1]-Sr[0]),expn[0]);
 }
 rel_perm_table[s][2] = kr;
 }

 return true;
}

bool read_fluid_properties(const Parameters_handler* parameters, Error_messages_handler* errors,
double &brine_den_rw, double &co2_den_rw, double &brine_visc_rw, double &co2_visc_rw, double
&ct_rw)
{
 brine_den_rw = String_Op::to_number<double>(parameters->value("brine_den_rw.value"));
 errors->report(brine_den_rw <= 0, "brine_den_rw", "Invalid brine density");
 if(brine_den_rw <= 0) return false;

 197

 co2_den_rw = String_Op::to_number<double>(parameters->value("co2_den_rw.value"));
 errors->report(co2_den_rw <= 0, "co2_den_rw", "Invalid CO2 density");
 if(co2_den_rw <= 0) return false;

 brine_visc_rw = String_Op::to_number<double>(parameters->value("brine_visc_rw.value"));
 errors->report(brine_visc_rw <= 0, "brine_visc_rw", "Invalid brine viscosity");
 if(brine_visc_rw <= 0) return false;

 co2_visc_rw = String_Op::to_number<double>(parameters->value("co2_visc_rw.value"));
 errors->report(co2_visc_rw <= 0, "co2_visc_rw", "Invalid CO2 viscosity");
 if(co2_visc_rw <= 0) return false;

 ct_rw = String_Op::to_number<double>(parameters->value("ct_rw.value"));
 errors->report(ct_rw <= 0, "ct_rw", "Invalid total compressibility");
 if(ct_rw <= 0) return false;

 return true;

}

void random_walker(int model, Grid_continuous_property *tmp_perm_prop, Grid_continuous_property*
tmp_poro_prop, Grid_continuous_property *tmp_depth_prop, Grid_continuous_property
tmp_ini_pr_prop, model_data &static_data, RGrid opt_grid_, double **stats)
{
 // Get static data //
 ofstream fp;
 char check_file[1000];
 strcpy(check_file, static_data.simulation_folder.c_str());
 strcat(check_file, "\\running_check.txt");
 fstream fp2;
 fp2.open("file_name.txt",ios::out);
 fp2<<check_file<<" "<<static_data.simulation_folder<<endl;
 fp2.close();
 fp.open(check_file, ios::out|ios::trunc);
 double ***perm, ***por, ***depth, ***pr_0;
 perm = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ);
 por = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ);
 depth = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ);
 pr_0 = Allocate3D<double>(static_data.NX,static_data.NY,static_data.NZ);
 fp<<"Allocated static arrays\n";
 int counter = 0;
 for (int i=0; i<static_data.NZ; i++)
 {
 for (int j=0; j<static_data.NY; j++)
 {
 for (int k=0; k<static_data.NX; k++)
 {
 perm[k][j][i] = tmp_perm_prop->get_value(counter);
 por[k][j][i] = tmp_poro_prop->get_value(counter);
 pr_0[k][j][i] = tmp_ini_pr_prop->get_value(counter);
 counter++;
 }
 }
 }
 fp<<"Done reading perm, por and pr_0\n";

 counter = 0;
 for (int i=0; i<static_data.NY; i++)
 {
 for (int j=0; j<static_data.NX; j++)
 {
 depth[j][i][0] = tmp_depth_prop->get_value(counter);
 for (int k=1; k<static_data.NZ; k++)

 198

 depth[j][i][k] = depth[j][i][0] + k*static_data.dz;
 counter++;
 }
 }
 fp<<"Depth: "<<depth[static_data.NX-1][static_data.NY-1][0]<<endl;
 fp<<"Done reading static values\n";
 // CHECK UNITS AND CONVERT TO SI, IF NECESSARY
 if (static_data.selected_units==2)
 {
 if (model==0)
 {
 static_data.dx /= 3.28084; static_data.dy /= 3.28084;
 static_data.brine_den_rw *= 16.018;
 static_data.co2_den_rw *= 16.018;
 static_data.brine_visc_rw *= 0.001;
 static_data.co2_visc_rw *= 0.001;
 static_data.ct_rw /= 6894.7573;
 static_data.inj_rate *= 3.2774e-7;
 }
 matrix_mult<double>(perm, static_data.NX, static_data.NY, static_data.NZ, 9.869e-16);
 matrix_mult<double>(depth, static_data.NX, static_data.NY, static_data.NZ, 1/3.28084);
 matrix_mult<double>(pr_0, static_data.NX, static_data.NY, static_data.NZ, 6894.75);

 }
 fp<<perm[static_data.NX-1][static_data.NY-1][0]<<" "<<depth[static_data.NX-1][static_data.NY-
1][0]<<" "<<pr_0[static_data.NX-1][static_data.NY-1][0]<<endl;
 fp<<"Done converting to SI\n";

 // ********** Initialize random walker arrays **********
 const double pi = 3.14159265359;
 double sum_del_T = 0, ***saturations, ***probability_map;
 double perm_along_path, curr_time, dist_from_injector, avg_perm, avg_satn, potential_diff,
v_BL, incr_time;
 int moveable_particles, num_transitions, MC_sample;

 saturations = Allocate3D<double>(static_data.NX, static_data.NY, static_data.NZ);
 initialize3D<double>(saturations,static_data.NX, static_data.NY, static_data.NZ, 0.0);
 probability_map = Allocate3D<double>(static_data.NX, static_data.NY, static_data.NZ);

 clock_t start;

 int ***carbon_count, ***temp_array, ***check_passed;
 carbon_count = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ);
 temp_array = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ);
 check_passed = Allocate3D<int>(static_data.NX, static_data.NY, static_data.NZ);

 vector<double> v_macro (6,0.0);
 vector<double> Tr (6,0.0);

 int reporting_counter = 0;

 const int num_jumps = 20;
 double cutoff_percentile = 0.5;
 double time_factor = scouts(model, perm, saturations, pr_0, depth, num_jumps, static_data,
cutoff_percentile);
 fp<<"Time factor: "<<time_factor<<endl;
 while (sum_del_T<static_data.total_days)
 {

 initialize3D<int>(carbon_count,static_data.NX, static_data.NY, static_data.NZ,0);
 vector< vector<int> > occupied_locs;

 if (sum_del_T!=0)
 {

 199

 find_cutoff(saturations,static_data.NX, static_data.NY,
static_data.NZ,occupied_locs,0.0);
 if (occupied_locs.size()<=1)
 {
 cutoff_percentile += 0.1;
 time_factor = scouts(model, perm, saturations, pr_0, depth, num_jumps,
static_data, cutoff_percentile);
 sum_del_T = 0;
 fp<<"\nTime factor rewrite: "<<time_factor<<endl;
 initialize3D<int>(carbon_count,static_data.NX, static_data.NY, static_data.NZ,0);
 occupied_locs.clear(); occupied_locs.shrink_to_fit();
 vector< vector<int> > occupied_locs;
 }
 }

 for (int location = 0; location<static_data.num_injectors; location++)
 {
 vector<int> temp_locs(3);
 temp_locs[0] = static_data.inj_locs[location][0]-1;
 temp_locs[1] = static_data.inj_locs[location][1]-1;
 temp_locs[2] = static_data.inj_locs[location][2]-1;
 occupied_locs.push_back(temp_locs);
 }
 int total_moving_particles = 0;
 fp<<"Total locations: "<<occupied_locs.size()<<endl;
 for (int location = 0; location<int(occupied_locs.size()); location++)
 {

 start = clock();
 int curr_x = occupied_locs[location][0], curr_y = occupied_locs[location][1], curr_z
= occupied_locs[location][2];
 if (sum_del_T==0)
 moveable_particles = static_data.particles_per_time;
 else
 moveable_particles = static_data.particles_per_time/10;
 total_moving_particles += moveable_particles;

 for (int particle = 0; particle<moveable_particles; particle++)
 {
 fp<<"Location "<<location<<" particle "<<particle<<endl;
 initialize3D<int>(temp_array, static_data.NX, static_data.NY, static_data.NZ, 0);
 initialize3D<int>(check_passed, static_data.NX, static_data.NY, static_data.NZ,
0);

 num_transitions = 1;
 perm_along_path = 0;
 curr_time = 0;

 vector<double> perm_list;
 int x,y,z;

 while (curr_time < static_data.delta_T)
 {
 if (curr_time==0)
 {
 x = curr_x; y = curr_y; z = curr_z;
 }
 fp<<x<<","<<y<<","<<z<<" -> ";
 temp_array[x][y][z] = 1;
 check_passed[x][y][z] = 1;
 perm_list.push_back(perm[x][y][z]);
 dist_from_injector = perm_list.size()*static_data.dx;
 if (perm_list.size()==1)

 200

 perm_along_path =
percentile(tmp_perm_prop,static_data.NX,static_data.NY,static_data.NZ,100,0);
 else
 {
 if (check_passed[x][y][z]!=1)
 perm_along_path = num_transitions/((num_transitions-
1)/perm_along_path + 1/perm[x][y][z]);
 }

 #pragma region **************** TRANSITION PROBABILITIES *****************//*
 double del_P;

 for (int i=0; i<6; i++)
 {
 v_macro[i] = 0.0;
 Tr[i] = 0.0;
 }
 // (+)X

 if (x!=static_data.NX-1 && static_data.NX!=1 && check_passed[x+1][y][z]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x+1][y][z]) + static_data.inj_rate *
static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-1/(dist_from_injector +
static_data.dx));
 avg_perm =
2*perm[x][y][z]*perm[x+1][y][z]/(perm[x][y][z]+perm[x+1][y][z]);
 avg_satn = (saturations[x][y][z]+saturations[x+1][y][z])/2;
 potential_diff = del_P + (static_data.brine_den_rw -
static_data.co2_den_rw) *9.8* (depth[x][y][z]-depth[x+1][y][z]);
 v_macro[0] =
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dx);
 if (avg_satn<=0)
 v_BL = 0;
 else
 {
 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[0] = v_macro[0];
 v_macro[0] = v_macro[0]*(1+v_BL);
 if
(static_data.dx/v_macro[0]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[0] = 0;
 }

 // (-)X

 if (x!=0 && static_data.NX!=1 && check_passed[x-1][y][z]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x-1][y][z]) +
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dx));
 avg_perm = 2*perm[x][y][z]*perm[x-1][y][z]/(perm[x][y][z]+perm[x-
1][y][z]);
 avg_satn = (saturations[x][y][z]+saturations[x-1][y][z])/2;
 potential_diff = del_P + (static_data.brine_den_rw -
static_data.co2_den_rw) * 9.8 * (depth[x][y][z]-depth[x-1][y][z]);
 v_macro[1] =
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dx);
 if (avg_satn<=0)
 v_BL = 0;
 else
 {

 201

 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[1] = v_macro[1];
 v_macro[1] = v_macro[1]*(1+v_BL);
 if
(static_data.dx/v_macro[1]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[1] = 0;
 }

 // (+)Y

 if (y!=static_data.NY-1 && static_data.NY!=1 && check_passed[x][y+1][z]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x][y+1][z]) + static_data.inj_rate *
static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dy));
 avg_perm =
2*perm[x][y][z]*perm[x][y+1][z]/(perm[x][y][z]+perm[x][y+1][z]);
 avg_satn = (saturations[x][y][z]+saturations[x][y+1][z])/2;
 potential_diff = del_P + (static_data.brine_den_rw -
static_data.co2_den_rw) * 9.8 * (depth[x][y][z]-depth[x][y+1][z]);
 v_macro[2] =
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dy);
 if (avg_satn<=0)
 v_BL = 0;
 else
 {
 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[2] = v_macro[2];
 v_macro[2] = v_macro[2]*(1+v_BL);
 if
(static_data.dy/v_macro[2]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[2] = 0;
 }

 // (-)Y

 if (y!=0 && static_data.NY!=1 && check_passed[x][y-1][z]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x][y-1][z]) +
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+static_data.dy));
 avg_perm = 2*perm[x][y][z]*perm[x][y-1][z]/(perm[x][y][z]+perm[x][y-
1][z]);
 avg_satn = (saturations[x][y][z]+saturations[x][y-1][z])/2;
 potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*(depth[x][y][z]-depth[x][y-1][z]);
 v_macro[3] =
(potential_diff*avg_perm/static_data.co2_visc_rw/static_data.dy);
 if (avg_satn<=0)
 v_BL = 0;
 else
 {
 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[3] = v_macro[3];
 v_macro[3] = v_macro[3]*(1+v_BL);

 202

 if
(static_data.dy/v_macro[3]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[3] = 0;
 }

 // (+)Z

 if (z!=static_data.NZ-1 && static_data.NZ!=1 && check_passed[x][y][z+1]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x][y][z+1]) +
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+abs(depth[x][y][z]-depth[x][y][z+1])));
 avg_perm =
2*perm[x][y][z]*perm[x][y][z+1]/(perm[x][y][z]+perm[x][y][z+1]);
 avg_satn = (saturations[x][y][z]+saturations[x][y][z+1])/2;
 potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*abs(depth[x][y][z]-depth[x][y][z+1]);
 v_macro[4] =
(potential_diff*avg_perm/static_data.co2_visc_rw/(depth[x][y][z]-depth[x][y][z+1]));
 if (avg_satn<=0)
 v_BL = 0;
 else
 {
 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[4] = v_macro[4];
 v_macro[4] = v_macro[4]*(1+v_BL);
 if
(static_data.dz/v_macro[4]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[4] = 0;
 }

 // (-)Z

 if (z!=0 && static_data.NZ!=1&& check_passed[x][y][z-1]!=1)
 {
 del_P = abs(pr_0[x][y][z]-pr_0[x][y][z-1]) +
static_data.inj_rate*static_data.brine_visc_rw/(4*pi*perm_along_path)*(1/dist_from_injector-
1/(dist_from_injector+abs(depth[x][y][z]-depth[x][y][z-1])));
 avg_perm = 2*perm[x][y][z]*perm[x][y][z-1]/(perm[x][y][z]+perm[x][y][z-
1]);
 avg_satn = (saturations[x][y][z]+saturations[x][y][z-1])/2;
 potential_diff = del_P + (static_data.brine_den_rw-
static_data.co2_den_rw)*9.8*abs(depth[x][y][z]-depth[x][y][z-1]);
 v_macro[5] =
(potential_diff*avg_perm/static_data.co2_visc_rw/(depth[x][y][z]-depth[x][y][z-1]));
 if (avg_satn<=0)
 v_BL = 0;
 else
 {
 int index = ((floor(avg_satn*1000)-1)<0)?0:(floor(avg_satn*1000)-
1);
 v_BL = static_data.fw_table[index][1];
 }
 Tr[5] = v_macro[5];
 v_macro[5] = v_macro[5]*(1+v_BL);
 if
(static_data.dz/v_macro[5]/24/3600/time_factor>(static_data.delta_T*1.2 - curr_time))
 Tr[5] = 0;
 }
 #pragma endregion

 203

 double sum_Tr = 0;

 for (int i = 0; i<6; i++)
 {

 if (Tr[i]<0)
 Tr[i] = 0.0;
 sum_Tr += Tr[i];
 if (v_macro[i]<0)
 v_macro[i] = 0.0;
 }

 if (sum_Tr==0)
 break;
 else // Transition probability distribution sampling
 {
 for (int i=0; i<6; i++)
 {
 Tr[i] /= sum_Tr;
 }
 MC_sample = monte_carlo_sampling(Tr);

 switch(MC_sample)
 {
 case 1:
 x=x+1;
 incr_time = static_data.dx/v_macro[0];
 break;
 case 2:
 x=x-1;
 incr_time = static_data.dx/v_macro[1];
 break;
 case 3:
 y=y+1;
 incr_time = static_data.dy/v_macro[2];
 break;
 case 4:
 y=y-1;
 incr_time = static_data.dy/v_macro[3];
 break;
 case 5:
 z=z+1;
 incr_time = abs(depth[x][y][z-1]-depth[x][y][z])/v_macro[4];
 break;
 case 6:
 z=z-1;
 incr_time = abs(depth[x][y][z+1]-depth[x][y][z])/v_macro[5];
 break;
 }
 }

 if (check_passed[x][y][z]!=1)
 {
 num_transitions += 1;
 curr_time += incr_time/(24*3600)/time_factor;
 }

 }// end of while (curr_time<delta_T)
 fp<<endl;
 perm_list.clear(); perm_list.shrink_to_fit();
 for (int i=0; i<static_data.NX; i++)
 {
 for (int j=0; j<static_data.NY; j++)

 204

 {
 for (int k=0; k<static_data.NZ; k++)
 {
 carbon_count[i][j][k] += temp_array[i][j][k];
 }
 }
 }

 }// end of -> for (int particle = 0; particle<moveable_particles; particle++)

 }// end of -> for (int location = 0; location<occupied_locs.size(); location++)
 fp<<"\nEnd of movements! Total moving particles: "<<total_moving_particles<<endl;
 occupied_locs.clear(); occupied_locs.shrink_to_fit();

 initialize3D<double>(probability_map,static_data.NX, static_data.NY, static_data.NZ, 0.0);
 for (int i=0; i<static_data.NX; i++)
 {
 for (int j=0; j<static_data.NY; j++)
 {
 for (int k=0; k<static_data.NZ; k++)
 {
 probability_map[i][j][k] =
carbon_count[i][j][k]/double(total_moving_particles);
 }
 }
 }

 fp<<"\nGoing into probability_to_saturations... ";
 probability_to_satn(saturations, probability_map, 0.5, static_data, time_factor);
 fp<<"and back!\n";
 double sum_PV = 0;
 int non_zero_counter = 0;
 for (int i=0; i<static_data.NX; i++)
 {
 for (int j=0; j<static_data.NY; j++)
 {
 for (int k=0; k<static_data.NZ; k++)
 {
 if (saturations[i][j][k]>0)
 {
 non_zero_counter++;
 sum_PV += saturations[i][j][k] * static_data.dx * static_data.dy *
static_data.dz * por[i][j][k];
 }
 }
 }
 }

 //reporting_counter += (sum_PV/static_data.inj_rate)/(24*3600);
 //sum_del_T += static_data.delta_T;
 //sum_del_T += sum_PV/static_data.inj_rate/24/3600;

 /*if (reporting_counter > static_data.delta_T)
 {*/
 sum_del_T += static_data.delta_T; reporting_counter = 0;
 if (int(sum_del_T) % int(static_data.reporting_interval) == 0)
 {
 Grid_continuous_property *tmp_rw_prop;
 if (non_zero_counter>1)
 {

 205

 tmp_rw_prop = opt_grid_->add_property("RW_result_Time_" +
static_cast<ostringstream*>(&(ostringstream() << sum_del_T))->str() + "_" + tmp_perm_prop-
>name());
 int counter = 0;
 int row_num = sum_del_T/static_data.reporting_interval - 1;
 for (int i=0; i<static_data.NZ; i++)
 {
 for (int j=0; j<static_data.NY; j++)
 {
 for (int k=0; k<static_data.NX; k++)
 {
 tmp_rw_prop->set_value(saturations[k][j][i], counter);
 counter++;
 }
 }
 }
 fp<<"Writing stats...\n";
 for (int counter2 = 0; counter2<static_data.num_monitors; counter2++)
 {
 int x_ = static_data.monitor_locs[counter2][0]; int y_ =
static_data.monitor_locs[counter2][1]; int z_ = static_data.monitor_locs[counter2][2];
 stats[model][row_num * static_data.num_monitors + counter2] =
probability_map[x_-1][y_-1][z_-1];// + (rand()%100)/100000.0;

 }
 }
 }
// }

 }// end of while (sum_del_T<=total_days)
 fp.close();
 Tr.clear(); Tr.shrink_to_fit();
 v_macro.clear(); v_macro.shrink_to_fit();
 Free3D<int>(carbon_count);
 Free3D<int>(temp_array);
 Free3D<int>(check_passed);
 Free3D<double>(saturations);
 Free3D<double>(por);
 Free3D<double>(perm);
 Free3D<double>(depth);
 Free3D<double>(probability_map);
 Free3D<double>(pr_0);
}

int get_index_rw(int i, int j, int k, int NX, int NY)
{
 if (k>=0)
 return (i + NX*j + NX*NY*k);
 else
 return (i + NX*j);
}

double scouts(int model, double ***perm, double ***saturations, double ***pr_0, double ***depth,
const int MAX_JUMPS, model_data &static_data, double cutoff_percentile)
{
// Function to find the median ‘time’ out of MAX_JUMPS transition made by the walker.
}

int monte_carlo_sampling(vector<double>a)
{
// Function for Monte-Carlo sampling
}

 206

void probability_to_satn(double ***satn, double ***prob, double S, model_data static_data, double
time_factor)
{
// Function to convert from probability map to saturation map
}

 207

Cluster_to_simulation.cpp: This contains the codes for various operations during the

model selection, like projections to principal component axes, clustering, and calculation

of posterior probabilities.

// Header files <>
#include "matrix_def.h"
#include "cluster_to_simulation.h"

void zeromean(int count, int parms, double **original, double **zmean)
{
 int i,j;
 cout<<"\nInside zeromean\n";
 for (i=0;i<parms;i++)
 {
 double sum=0;
 for (j=0;j<count;j++)
 {
 sum+=original[j][i];
 }
 sum/=count;
 for (j=0;j<count;j++)
 zmean[j][i]=original[j][i]-sum;
 }

}

void covmat(int count, double **cov, int parms, double **zmean)
{
 int i,j,k;

 for (i=0;i<parms;i++)
 {
 for (j=0;j<parms;j++)
 {
 cov[i][j]=0;
 for (k=0;k<count;k++)
 cov[i][j]+=zmean[k][i]*zmean[k][j];
 cov[i][j]/=count;
 }
 }
}

void svd(int nmods, int parms, double **cov, double **evecs)
{
 cout<<"\nInside SVD\n";
 int k,l,m,n,count=0;
 m=parms; n=parms;
 Vec_DP w(n);
 Mat_DP a(m,n),u(m,n),v(n,n);
 for (k=0;k<m;k++)
 {
 for (l=0;l<n;l++)
 {
 a[k][l]=cov[k][l];
 u[k][l]=a[k][l];
 }
 }
 // Done reading inside SVD
 NR::svdcmp(u,w,v);
 for (k=0;k<m;k++)

 208

 {
 for (l=0;l<3;l++)
 evecs[k][l]=u[k][l];
 }
 //Done with SVD
}

void NR::svdcmp(Mat_IO_DP &a, Vec_O_DP &w, Mat_O_DP &v)
{
 bool flag;
 int i,its,j,jj,k,l,nm;
 DP anorm,c,f,g,h,s,scale,x,y,z;

 int m=a.nrows();
 int n=a.ncols();
 Vec_DP rv1(n);
 g=scale=anorm=0.0;
 for (i=0;i<n;i++)
 {
 l=i+2;
 rv1[i]=scale*g;
 g=s=scale=0.0;
 if (i < m)
 {
 for (k=i;k<m;k++) scale += fabs(a[k][i]);
 if (scale != 0.0) {
 for (k=i;k<m;k++) {
 a[k][i] /= scale;
 s += a[k][i]*a[k][i];
 }
 f=a[i][i];
 g = -SIGN(sqrt(s),f);
 h=f*g-s;
 a[i][i]=f-g;
 for (j=l-1;j<n;j++) {
 for (s=0.0,k=i;k<m;k++) s += a[k][i]*a[k][j];
 f=s/h;
 for (k=i;k<m;k++) a[k][j] += f*a[k][i];
 }
 for (k=i;k<m;k++) a[k][i] *= scale;
 }
 }
 w[i]=scale *g;
 g=s=scale=0.0;
 if (i+1 <= m && i+1 != n) {
 for (k=l-1;k<n;k++) scale += fabs(a[i][k]);
 if (scale != 0.0) {
 for (k=l-1;k<n;k++) {
 a[i][k] /= scale;
 s += a[i][k]*a[i][k];
 }
 f=a[i][l-1];
 g = -SIGN(sqrt(s),f);
 h=f*g-s;
 a[i][l-1]=f-g;
 for (k=l-1;k<n;k++) rv1[k]=a[i][k]/h;
 for (j=l-1;j<m;j++) {
 for (s=0.0,k=l-1;k<n;k++) s += a[j][k]*a[i][k];
 for (k=l-1;k<n;k++) a[j][k] += s*rv1[k];
 }
 for (k=l-1;k<n;k++) a[i][k] *= scale;
 }
 }

 209

 anorm=MAX(anorm,(fabs(w[i])+fabs(rv1[i])));
 }
 for (i=n-1;i>=0;i--) {
 if (i < n-1) {
 if (g != 0.0) {
 for (j=l;j<n;j++)
 v[j][i]=(a[i][j]/a[i][l])/g;
 for (j=l;j<n;j++) {
 for (s=0.0,k=l;k<n;k++) s += a[i][k]*v[k][j];
 for (k=l;k<n;k++) v[k][j] += s*v[k][i];
 }
 }
 for (j=l;j<n;j++) v[i][j]=v[j][i]=0.0;
 }
 v[i][i]=1.0;
 g=rv1[i];
 l=i;
 }
 for (i=MIN(m,n)-1;i>=0;i--) {
 l=i+1;
 g=w[i];
 for (j=l;j<n;j++) a[i][j]=0.0;
 if (g != 0.0) {
 g=1.0/g;
 for (j=l;j<n;j++) {
 for (s=0.0,k=l;k<m;k++) s += a[k][i]*a[k][j];
 f=(s/a[i][i])*g;
 for (k=i;k<m;k++) a[k][j] += f*a[k][i];
 }
 for (j=i;j<m;j++) a[j][i] *= g;
 } else for (j=i;j<m;j++) a[j][i]=0.0;
 ++a[i][i];
 }
 for (k=n-1;k>=0;k--) {
 for (its=0;its<30;its++) {
 flag=true;
 for (l=k;l>=0;l--) {
 nm=l-1;
 if (fabs(rv1[l])+anorm == anorm) {
 flag=false;
 break;
 }
 if (fabs(w[nm])+anorm == anorm) break;
 }
 if (flag) {
 c=0.0;
 s=1.0;
 for (i=l;i<k+1;i++) {
 f=s*rv1[i];
 rv1[i]=c*rv1[i];
 if (fabs(f)+anorm == anorm) break;
 g=w[i];
 h=pythag(f,g);
 w[i]=h;
 h=1.0/h;
 c=g*h;
 s = -f*h;
 for (j=0;j<m;j++) {
 y=a[j][nm];
 z=a[j][i];
 a[j][nm]=y*c+z*s;
 a[j][i]=z*c-y*s;
 }
 }

 210

 }
 z=w[k];
 if (l == k) {
 if (z < 0.0) {
 w[k] = -z;
 for (j=0;j<n;j++) v[j][k] = -v[j][k];
 }
 break;
 }
 if (its == 29) nrerror("no convergence in 30 svdcmp iterations");
 x=w[l];
 nm=k-1;
 y=w[nm];
 g=rv1[nm];
 h=rv1[k];
 f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
 g=pythag(f,1.0);
 f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
 c=s=1.0;
 for (j=l;j<=nm;j++) {
 i=j+1;
 g=rv1[i];
 y=w[i];
 h=s*g;
 g=c*g;
 z=pythag(f,h);
 rv1[j]=z;
 c=f/z;
 s=h/z;
 f=x*c+g*s;
 g=g*c-x*s;
 h=y*s;
 y *= c;
 for (jj=0;jj<n;jj++) {
 x=v[jj][j];
 z=v[jj][i];
 v[jj][j]=x*c+z*s;
 v[jj][i]=z*c-x*s;
 }
 z=pythag(f,h);
 w[j]=z;
 if (z) {
 z=1.0/z;
 c=f*z;
 s=h*z;
 }
 f=c*g+s*y;
 x=c*y-s*g;
 for (jj=0;jj<m;jj++) {
 y=a[jj][j];
 z=a[jj][i];
 a[jj][j]=y*c+z*s;
 a[jj][i]=z*c-y*s;
 }
 }
 rv1[l]=0.0;
 rv1[k]=f;
 w[k]=x;
 }
 }
}

DP NR::pythag(const DP a, const DP b)
{

 211

 DP absa,absb;

 absa=fabs(a);
 absb=fabs(b);
 if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
 else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}

void proj(int count, double **projected, int parms, double **original, double **evecs)
{
 int i,j,k;
 cout<<"\nCreated projection memory allocation\n";
 for (i=0;i<count;i++)
 {
 for (j=0;j<3;j++)
 {
 projected[i][j]=0;
 for (k=0;k<parms;k++)
 projected[i][j]+=original[i][k]*evecs[k][j];
 }
 }

 cout<<"\nDone projecting\n";
}

int cluster(int count, double **projected,int *clusterid)
{
 int i,j,k;
 int num_clus, **mask, ifound, *dtemp;
 int nrows = count, ncols = 3;
 double *wt, **d, error, errs[3];
 wt = (double*) malloc(count*sizeof(double));
 d = Allocate2D<double>(count,3);
 mask = Allocate2D<int>(count,3);

 for (j=0;j<count;j++)
 {
 for (i=0;i<3;i++)
 {
 d[j][i]=projected[j][i];
 mask[j][i]=1;
 }
 wt[j]=1.0;
 }

 num_clus=4;
 kcluster(num_clus,nrows,ncols,d,mask,wt,0,20,'a','e',clusterid, &error, &ifound);

 // Done clustering
 free(mask);
 free(wt);
 free(d);
 return(num_clus);
}

void find_centroids(int count, int num_clus, double **cdata, int *clusterid, double **projected)
{
 int i,j,k;
 int **mask, ifound;
 int nrows = count, ncols = 3;
 double *wt, **d, error, errs[3];
 wt = (double*) malloc(count*sizeof(double));
 d = Allocate2D<double>(count,3);
 mask = Allocate2D<int>(count,3);

 212

 for (j=0;j<count;j++)
 {
 for (i=0;i<3;i++)
 {
 d[j][i]=projected[j][i];
 mask[j][i]=1;
 }
 wt[j]=1.0;
 }
 int **cmask;
 cmask = Allocate2D<int>(num_clus,3);
 int success = getclustercentroids(num_clus, nrows, ncols, d, mask, clusterid, cdata, cmask, 0,
'a');
 free(mask);
 free(wt);
 free(d);
 Free2D<int>(cmask);
}
void read_report(int clus_num, double **rep, int t_steps, string report_file)
{
 int i;
 fstream opt1;
 char temp[10000], fname[1000];
 strcpy(fname,report_file.c_str());
 double temp2;
 opt1.open(fname,ios::in);
 if (opt1.is_open())
 {
 for (i=0;i<10;i++)
 opt1.getline(temp,10000);

 for (i=0;i<t_steps;i++)
 {
 opt1>>temp2;
 opt1>>rep[i][clus_num];
 }
 opt1.close();
 }
}

double erf(double val)
{
 double x;
 if (val<=.15)
 x = 1.12838*val;
 if (val>.15 && val<=1.5)
 x = -.0198+val*(1.2911-.4262*val);
 if (val>1.5 && val<=2)
 x = .8814+.0584*val;
 if (val>2)
 x = 1;
 return(x);
}

void find_best_models(int count, int num_clus, int *clusterid, double **centroids, double
**projected, int *rep_models)
{
 int i,j;

 fstream fp;
 fp.open("cluster_bests.txt",ios::out);

 // FIND MODEL CLOSEST TO CLUSTER CENTROID

 213

 for (i=0;i<num_clus;i++)
 {
 fp<<"Cluster "<<i+1<<endl;
 vector< vector<int> > distances;
 for (j=0; j<count; j++)
 {
 if (clusterid[j]==i)
 {
 vector <int> c(2);
 c[0] = j;
 c[1] = std::abs(centroids[i][0]-projected[j][0]) + std::abs(centroids[i][1]-
projected[j][1]) + std::abs(centroids[i][2]-projected[j][2]);
 distances.push_back(c);
 }
 }
 sort(distances.begin(), distances.end(), [](const std::vector< int >& a, const
std::vector< int >& b){ return a[1] < b[1]; });

 fp<<distances[0][0]<<" "<<distances[1][0]<<" "<<distances[2][0]<<endl;
 rep_models[i] = distances[0][0];

 }
}

vector <double> calc_probability(double **rep, double **observed, int t_steps, int num_clus)
{
 int i, j, k;
 double **prob, **dev, *stdev;
 // CALCULATION OF CLUSTER PROBABILITY
 dev = Allocate2D<double>(t_steps, num_clus);
 prob = Allocate2D<double>(t_steps, num_clus);

 stdev = (double*) malloc(t_steps*sizeof(double));

 for (j=0;j<t_steps;j++)
 {
 for (k=0;k<num_clus;k++)
 dev[j][k]=fabs(rep[j][k]-observed[j][1]);
 double max = dev[j][0];
 for (k=1;k<num_clus;k++)
 {
 if (dev[j][k]>max)
 max=dev[j][k];
 }
 stdev[j] = max;
 }

 double x;

 for (j=0;j<t_steps;j++)
 {
 for (k=0;k<num_clus;k++)
 {
 x=((1-dev[j][k]/stdev[j])-0.5)/(sqrt(2*.25));
 prob[j][k]=0.5*(1+erf(x));
 }
 }

 vector<double> min_(num_clus);

 for (j=0; j<num_clus; j++)
 {
 min_[j] = prob[0][j];
 for (k=1; k<t_steps; k++)

 214

 {
 if (prob[k][j]<min_[j])
 min_[j] = prob[k][j];
 }
 }

 Free2D<double>(dev); free(stdev); Free2D<double>(prob);

 return min_;
}

void projections(double **stats, double **projections, int nrows, int ncolumns)
{
 double mean, stdev, **v, *w;

 for (int i=0; i<ncolumns; i++)
 {
 mean = 0; stdev = 0;
 for (int j=0; j<nrows; j++)
 mean+= stats[j][i];
 mean = mean/nrows;
 for (int j=0; j<nrows; j++)
 {
 stats[j][i] = stats[j][i]-mean;
 stdev+= pow(stats[j][i],2);
 }
 stdev = std::pow(stdev/nrows,0.5);
 for (int j=0; j<nrows; j++)
 stats[j][i] = stats[j][i]/stdev;
 }
 v = Allocate2D<double>(ncolumns,ncolumns);
 w = new double[ncolumns];
 int result = pca(nrows, ncolumns, stats, v, w);
 for (int i=0; i<3; i++)
 {
 for (int j=0; j<nrows; j++)
 projections[j][i] = stats[j][i];
 }
}

Codes for PCA and Clustering

Aside from the above codes, the model selection plugin used codes from external

developers for clustering, principal component analysis and related operations. These

were developed as open-source codes at the Laboratory of DNA Information Analysis, at

the University of Tokyo and are available for download at:

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

 215

Nomenclature

sk State vector in EnKF

dk Observation vector in EnKF

 Random noise drawn from a multinormal distribution with zero mean and

covariance Rk in EnKF

 Forecast vector in EnKF

 Kalman gain in EnKF

 Model error covariance matrix in EnKF

 Velocity of particle i at time k+1 in PSO

 Position of particle i at time k in PSO

 Best position of particle i in PSO

 Best position of entire swarm in PSO

 () Travel time along streamline

D Dispersion tensor

B Displacement matrix in RWPT, related to the dispersion tensor

 Harmonic average permeability

 (()) Probability of cluster 'm' given conditioning data RFref

RF
m
 Simulated response of cluster ‘m’

RFref Observed response

u Velocity

Xp(t) Position of random particle at time ‘t’

 Difference in particle count

 216

 Efficiency of clustering

 Deviation of simulated response from observed response

 Pressure analog from random walker proxy

 Difference in pressure

 Bulk volume

 Porosity

 Critical saturation

 Injected volume of fluid

 Average saturation

 () Normal distribution of mean 0 and variance 1

 Capillary pressure

 Relative permeability of non-wetting phase

 Relative permeability of wetting phase

 Viscosity of wetting phase

 Viscosity of non-wetting phase

 Density difference

 Angle with horizontal

 Buckley-Leverett velocity

 Darcy velocity

 Fractional flow value

 217

References

Abdollahzadeh, A., Reynolds, A., Christie, M., Corne, D., Williams, G., & Davies, B.

(2013). Estimation of Distribution Algorithms Applied to History Matching, (May

2012), 21–23.

Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages

(LAPs): an important reservoir element in deep water sinuous channels. Marine and

Petroleum Geology. doi:10.1016/j.marpetgeo.2003.08.003

Allen, G., & Chambers, J. (1998). Sedimentation in the modern and Miocene Mahakam

Delta. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sedimentation+in

+the+modern+and+Miocene+Mahakam+Delta#0

Alpak, F. O., Barton, M. D., & Caers, J. (2009). A flow-based pattern recognition

algorithm for rapid quantification of geologic uncertainty. Computational

Geosciences, 14(4), 603–621. doi:10.1007/s10596-009-9175-5

Arnold, D., Demyanov, V., Tatum, D., Christie, M., Rojas, T., Geiger, S., & Corbett, P.

(2013). Hierarchical benchmark case study for history matching, uncertainty

quantification and reservoir characterization. Computers & Geosciences, 50, 4–15.

doi:10.1016/j.cageo.2012.09.011

Arts, R., Chadwick, A., Eiken, O., Thibeau, S., & Nooner, S. (2008). Ten years’

experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore

Norway. First Break, 26, 65–72.

 Birkholzer, J., Zhou, Q., & Tsang, C. (2009). Large-scale impact of CO2 storage in deep

saline aquifers: A sensitivity study on pressure response in stratified systems.

International Journal of Greenhouse Gas Control, 3(2), 181–194.

doi:10.1016/j.ijggc.2008.08.002

Boomer, R. J. (1996). Predicting production using a neural network (artificial intelligence

beats human intelligence). In Permian Basin oil & gas recovery conference (pp. 65–

74).

Buckley, S. E., & Leverett, M. C. (1942). Mechanism of fluid displacements in sand.

Transactions AIME, 146, 107–116.

Chadwick, R. A., Holloway, S., Kirby, G. A., Gregersen, U., & Johannessen, P. N.

(2001). The Utsira Sand, central North Sea -- an assessment of its potential for

 218

regional CO2 storage. In Fifth International Conference on Greenhouse Gas Control

Technologies, August 13-16 2000, Cairns, Australia (pp. 349–354).

Chadwick, R. A., Williams, G. A., Williams, J. D. O., & Noy, D. J. (2012). Measuring

pressure performance of a large saline aquifer during industrial-scale CO2 injection:

The Utsira Sand, Norwegian North Sea. International Journal of Greenhouse Gas

Control, 10, 374–388. doi:10.1016/j.ijggc.2012.06.022

Chen, Y., & Oliver, D. (2010). Ensemble-Based Closed-Loop Optimization Applied to

Brugge Field. SPE Reservoir Evaluation & Engineering, 13(1).

doi:10.2118/118926-PA

Coats, K. H., Dempsey, J. R., & Henderson, J. H. (1970). A New Technique for

Determining Reservoir Description from Field Performance Data. Society of

Petroleum Engineers Journal, 10(1). doi:10.2118/2344-PA

 Datta-Gupta, A., & Kulkarni, K. (2001). Streamlines, ray tracing and production

tomography: Generalization to compressible flow. Petroleum Geoscience, 7, 75–86.

Davis, N., Riddiford, F., Bishop, C., Taylor, B., & Froukhi, R. (2001). The In Salah Gas

Project , Central Algeria : Bringing an Eight Field Gas Development to Sanction. In

SPE Middle East Oil Show (Vol. 2). doi:10.2118/68180-MS

Efendiev, Y., Hou, T., & Luo, W. (2006). Preconditioning Markov Chain Monte Carlo

Simulations Using Coarse-Scale Models. SIAM Journal on Scientific Computing,

28(2), 776–803. doi:10.1137/050628568

Emerick, A., & Reynolds, A. (2012). Combining the Ensemble Kalman Filter With

Markov-Chain Monte Carlo for Improved History Matching and Uncertainty

Characterization. SPE Journal, 17(2). doi:10.2118/141336-PA

Gharbi, R., & Elsharkawy, A. (1999). Neural Network Model for Estimating the PVT

Properties of Middle East Crude Oils. SPE Reservoir Evaluation & Engineering,

2(3). doi:10.2118/56850-PA

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning (1st ed.). Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Goldstein, R. M., Engelhardt, H., Kamb, B., & Frolich, R. M. (1993). Satellite radar

interferometry for monitoring ice sheet motion: application to an Antarctic ice

stream. Science (New York, N.Y.), 262(5139), 1525–30.

doi:10.1126/science.262.5139.1525

 219

Guler, B., Ertekin, T., & Grader, A. (2003). An Artificial Neural Network Based Relative

Permeability Predictor. Journal of Canadian Petroleum Technology, 42(4).

doi:10.2118/03-04-02

Hegeman, P., Dong, C., Varotsis, N., & Gaganis, V. (2009). Application of Artificial

Neural Networks to Downhole Fluid Analysis. SPE Reservoir Evaluation &

Engineering, 12(1). doi:10.2118/123423-PA

Iding, M., & Ringrose, P. (2009). Evaluating the impact of fractures on the long-term

performance of the In Salah CO2 storage site. Energy Procedia, 1(1), 2021–2028.

doi:10.1016/j.egypro.2009.01.263

Ito, K. (1951). On stochastic differential equations (pp. 289–302). New York: American

Mathematical Society.

John, A., Lake, L., Bryant, S., & Jennings, J. (2010). Investigation of Mixing in Field-

Scale Miscible Displacements Using Particle-Tracking Simulations of Tracer Floods

With Flow Reversal. SPE Journal, 15(3). doi:10.2118/113429-PA

Johnson, J. W., Nitao, J. J., & Knauss, K. G. (2004). Reactive transport modelling of

CO2 storage in saline aquifers to elucidate fundamental processes, trapping

mechanisms and sequestration partitioning. Geological Society, London, Special

Publications. doi:10.1144/GSL.SP.2004.233.01.08

Kinzelbach, W. (1988). The Random Walk Method in Pollutant Transport Simulation. In

Groundwater Flow and Quality Monitoring (pp. 227–245). Springer Netherlands.

Kinzelbach, W. (1990). Simulation of pollutant transport in groundwater with the random

walk method. In Groundwater Monitoring and Management (pp. 265–279).

Dresden: International Association of Hydrological Sciences 1990.

Kumar, A., Noh, M., Ozah, R., Pope, G., Bryant, S., Sepehrnoori, K., & Lake, L. (2005).

Reservoir Simulation of CO2 Storage in Deep Saline Aquifers. SPE Journal, 10(3).

doi:10.2118/89343-PA

Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate

mass transfer in three-dimensional highly heterogeneous porous media. Advances in

Water Resources, 34(4), 478–489. doi:10.1016/j.advwatres.2011.01.001

Ma, X., Al-Harbi, M., Datta-Gupta, A., & Efendiev, Y. (2008). An efficient two-stage

sampling method for uncertainty quantification in history matching geological

models. SPE Journal, (August 2007), 24–27.

 220

Mann, L., & Johnson, G. (1970). Predicted Results of Numeric Grid Models Compared

with Actual Field Performance. Journal of Petroleum Technology, 22(11).

doi:10.2118/2572-PA

Mantilla, C. A., Nguyen, Q. P., & Srinivasan, S. (2008). Model Updating and Optimum

Control for Water Coning: an application of Ensemble Kalman Filter. In

Proceedings of International Petroleum Technology Conference. Kuala Lumpur,

Malaysia: International Petroleum Technology Conference.

Mantilla, C., & Srinivasan, S. (2011). Feedback Control of Polymer Flooding Process

Considering Geologic Uncertainty. In Proceedings of SPE Reservoir Simulation

Symposium. Society of Petroleum Engineers. doi:10.2118/141962-MS

Metz, B., Davidson, O., De Coninck, H. C., Loos, M., & Meyer, L. A. (2005). IPCC

special report on carbon dioxide capture and storage: Prepared by working group

III of the intergovernmental panel on climate change. Cambridge UK; New York

USA: Cambridge University Press.

Mohamed, L., Christie, M., & Demyanov, V. (2010a). Comparison of Stochastic

Sampling Algorithms for Uncertainty Quantification. SPE Journal, 15(1), 31–38.

doi:10.2118/119139-PA

Mohamed, L., Christie, M., & Demyanov, V. (2010b). Reservoir Model History

Matching With Particle Swarms: Variants Study. In Proceedings of SPE Oil and

Gas India Conference and Exhibition. Society of Petroleum Engineers.

doi:10.2118/129152-MS

Mohamed, L., Christie, M., Demyanov, V., Robert, E., & Kachuma, D. (2010).

Application of Particle Swarms for History Matching in the Brugge Reservoir. In

Proceedings of SPE Annual Technical Conference and Exhibition. Society of

Petroleum Engineers. doi:10.2118/135264-MS

Montroll, E. W., & Weiss, G. H. (1965). Random Walks on Lattices. II. Journal of

Mathematical Physics, 6(2), 167. doi:10.1063/1.1704269

Naevdal, G., Johnsen, L., Aanonsen, S., & Vefring, E. (2005). Reservoir Monitoring and

Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(1).

doi:10.2118/84372-PA

Noh, M., Lake, L., Bryant, S., & Araque-Martinez, A. (2007). Implications of Coupling

Fractional Flow and Geochemistry for CO2 Injection in Aquifers. SPE Reservoir

Evaluation & Engineering, 10(4). doi:10.2118/89341-PA

 221

Nordbotten, J. M., Celia, M. a., & Bachu, S. (2004). Analytical solutions for leakage rates

through abandoned wells. Water Resources Research, 40(4).

doi:10.1029/2003WR002997

Obi, E.-O. I., & Blunt, M. J. (2006). Streamline-based simulation of carbon dioxide

storage in a North Sea aquifer. Water Resources Research, 42(3).

doi:10.1029/2004WR003347

Okabe, A., Boots, B., Sugihara, K., & Shui, S. N. (2000). Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams (2nd ed.). New York: John Wiley & Sons,

Ltd.

Oliveira, R., & Loucks, D. P. (1997). Operating rules for multireservoir systems. Water

Resources Research, 33(4), 839–852. doi:10.1029/96WR03745

Oliver, D. S., & Chen, Y. (2010). Recent progress on reservoir history matching: a

review. Computational Geosciences, 15(1), 185–221. doi:10.1007/s10596-010-

9194-2

Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997). Markov chain Monte Carlo

methods for conditioning a permeability field to pressure data. Mathematical

Geology, 29(1), 61–91. doi:10.1007/BF02769620

Onuma, T., & Ohkawa, S. (2009). Detection of surface deformation related with CO2

injection by DInSAR at In Salah, Algeria. Energy Procedia, 1(1), 2177–2184.

doi:10.1016/j.egypro.2009.01.283

Park, A. H. A., Jadhav, R., & Fan, L. S. (2003). CO 2 mineral sequestration: Chemically

enhanced aqueous carbonation of serpentine. Canadian Journal of Chemical

Engineering, 81, 885–890. doi:10.1002/cjce.5450810373

Park, H., Scheidt, C., Fenwick, D., Boucher, A., & Caers, J. (2013). History matching

and uncertainty quantification of facies models with multiple geological

interpretations. Computational Geosciences, 17(4), 609–621. doi:10.1007/s10596-

013-9343-5

Quinodoz, H. A. M., & Valocchi, A. J. (1993). Stochastic analysis of the transport of

kinetically sorbing solutes in aquifers with randomly heterogeneous hydraulic

conductivity. Water Resources Research, 29(9), 3227–3240.

doi:10.1029/93WR01039

Raghavan, R. (1993). Well Test Analysis. (L. Lake, Ed.) (p. 558). Englewood Cliffs, N.J.:

Prentice Hall.

 222

Romero, C. E., Carter, J. N., Gringarten, A. C., & Zimmerman, R. W. (2000). A

Modified Genetic Algorithm for Reservoir Characterisation. In Proceedings of

International Oil and Gas Conference and Exhibition in China. Society of

Petroleum Engineers. doi:10.2118/64765-MS

Rushton, K., & Tomlinson, L. (1979). Possible mechanisms for leakage between aquifers

and rivers. Journal of Hydrology, 40, 49–65. Retrieved from

http://www.sciencedirect.com/science/article/pii/0022169479900878

Sambridge, M. (1999a). Geophysical inversion with a neighbourhood algorithm-I.

Searching a parameter space. Geophysical Journal International, 138(2), 479–494.

doi:10.1046/j.1365-246X.1999.00876.x

Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm-II.

Appraising the ensemble. Geophysical Journal International, 138(3), 727–746.

doi:10.1046/j.1365-246x.1999.00900.x

Sen, M. K., Datta-Gupta, A., Stoffa, P. L., Lake, L. W., & Pope, G. A. (1995). Stochastic

Reservoir Modeling Using Simulated Annealing and Genetic Algorithms. SPE

Formation Evaluation, 10(1). doi:10.2118/24754-PA

Stephen, K., Soldo, J., Macbeth, C., & Christie, M. (2005). Multiple Model Seismic and

Production History Matching: A Case Study. In Proceedings of SPE Europec/EAGE

Annual Conference (pp. 418–430). Society of Petroleum Engineers.

doi:10.2118/94173-MS

Subbey, S., Christie, M., & Sambridge, M. (2004). Prediction under uncertainty in

reservoir modeling. Journal of Petroleum Science and Engineering, 44(1-2), 143–

153. doi:10.1016/j.petrol.2004.02.011

Thiele, M., Batycky, R., & Blunt, M. (1997). A Streamline-Based 3D Field-Scale

Compositional Reservoir Simulator. In Proceedings of SPE Annual Technical

Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/38889-MS

Tompson, A. F. B., & Gelhar, L. W. (1990). Numerical simulation of solute transport in

three-dimensional, randomly heterogeneous porous media. Water Resources

Research, 26(10), 2541–2562. doi:10.1029/WR026i010p02541

Underschultz, J., Otto, C., & Bartlett, R. (2005). Formation fluids in faulted aquifers:

examples from the foothills of Western Canada and the North West Shelf of

Australia, (2), 247–260. doi:10.1306/1060768H23171

 223

Van Dop, H., Nieuwstadt, F. T. M., & Hunt, J. C. R. (1985). Random walk models for

particle displacements in inhomogeneous unsteady turbulent flows. Physics of

Fluids, 28(6), 1639. doi:10.1063/1.864956

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres

primitifs. Journal Für Die Reine Und Angewandte Mathematik (Crelle’s Journal),

1908(134), 198–287. doi:10.1515/crll.1908.134.198

Wallen, D. A., Raleigh, J. T., & Distefano, C. R. (1968). Mathematical Modeling in the

Coyanosa Field. In Proceedings of SPE Automation Symposium. Society of

Petroleum Engineers. doi:10.2118/2082-MS

Wang, Y., Li, G., & Reynolds, A. (2010). Estimation of Depths of Fluid Contacts by

History Matching Using Iterative Ensemble-Kalman Smoothers. SPE Journal,

15(2). doi:10.2118/119056-PA

Wardlaw, R., & Sharif, M. (1999). Evaluation of Genetic Algorithms for Optimal

Reservoir System Operation. Journal of Water Resources Planning and

Management, 125(1), 25–33. doi:10.1061/(ASCE)0733-9496(1999)125:1(25)

Witherspoon, P. A., Mueller, T. D., & Donovan, R. W. (1962). Evaluation of

Underground Gas-Storage Conditions in Aquifers Through Investigations of

Groundwater Hydrology. Journal of Petroleum Technology, 14(5). doi:10.2118/162-

PA

Wright, I. (2007). The In Salah Gas CO. In Proceedings of International Petroleum

Technology Conference (pp. 4–6). Society of Petroleum Engineers.

doi:10.2523/11326-MS

Zafari, M., & Reynolds, A. (2007). Assessing the Uncertainty in Reservoir Description

and Performance Predictions With the Ensemble Kalman Filter. SPE Journal, 12(3).

doi:10.2118/95750-PA

Zhang, Y., & Srinivasan, S. (2005). Markov chain Monte Carlo for modelling

permeability variations in reservoirs. Journal of Canadian Petroleum Technology,

44(3), 40–45.

Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An

approach to handling non-Gaussianity of parameters and state variables in ensemble

Kalman filtering. Advances in Water Resources, 34(7), 844–864.

doi:10.1016/j.advwatres.2011.04.014

 224

Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology:

Evolution and recent trends. Advances in Water Resources, 63, 22–37.

doi:10.1016/j.advwatres.2013.10.014

Zweigel, P., Arts, R., Lothe, A. E., & Lindeberg, E. B. G. (2004). Reservoir geology of

the Utsira Formation at the first industrial-scale underground CO2 storage site

(Sleipner area, North Sea). Geological Society, London, Special Publications,

233(1), 165–180. doi:10.1144/GSL.SP.2004.233.01.11

	List of Tables
	List of Figures
	Chapter 1 : Introduction
	1.1 . Problem Description
	1.2 . Research Objectives
	1.3 . Dissertation Outline

	Chapter 2 : Literature Review
	2.1 . Monitoring CO2 plume migration
	2.2 . History matching: an overview
	2.2.1. Ensemble Kalman Filter
	2.2.2. Neighborhood Algorithm
	2.2.3. Particle Swarm Optimization
	2.2.4. Genetic Algorithm
	2.2.5. Summary

	2.3 . Proxy formulation as an alternative to Flow Simulators
	2.3.1. Streamline Simulation
	2.3.2. Artificial Neural Networks
	2.3.3. Particle Tracking
	Mathematical formulation of RWPT

	2.3.4. Summary

	Chapter 3 : Model Selection Algorithm
	3.1 . Model Selection Algorithm: An Overview
	3.2 . Initial Set of Models
	3.3 . Evaluation of connectivity of reservoir models
	3.4 . Analysis of Connectivity Measurements for Model Clustering
	3.4.1. Projection of Models on an Orthogonal Set of Axes
	3.4.2. Clustering of Projected Models

	3.5 . Bayesian updating and cluster selection
	3.5.1. Representative Model for Cluster
	3.5.2. Bayesian Update of Cluster Probability

	3.6 . Stopping Criterion
	3.7 . Conclusions

	Chapter 4 : Particle tracking proxy – I
	4.1 . Random Walker Proxy: An Introduction
	4.2 . Comparison of Proxy Response to Numerical Simulations
	4.2.1. Comparison to synthetic models
	4.2.2. Comparison to real field model

	4.3 . Implementation of proxy within model-selection framework
	4.3.1. Initial set of models
	4.3.2. Connectivity analysis of models using proxy
	4.3.3. Model clustering
	4.3.4. Results of the model selection process for the In Salah case

	4.4 . Representing gravity-driven flow using the proxy
	4.4.1. Application of proxy to synthetic models with strong buoyancy effects
	4.4.2. Field case for testing the proxy when gravity effects are significant
	Description of the Utsira sand
	Results for CO2 plume migration using the proxy and comparison to numerical simulation

	4.5 . Conclusions

	Chapter 5 : Development of a New Particle Tracking Proxy
	5.1 . New Formulation of Particle Tracking Proxy
	5.1.1. Revised particle tracking algorithm
	5.1.2. Redefined transition probability
	Fractional Flow Equation
	Fractional flow for CO2 injection in aquifers
	Estimation of macroscopic velocity
	Particle migration and step size

	5.1.3. Summary of New Formulation of Proxy

	5.2 . Validation of New Proxy for Capturing Areal Migration
	5.2.1. Synthetic model for validation of proxy
	5.2.2. Field model for validation of tracer-based proxy: In Salah
	5.2.3. Model Selection applied to In Salah

	5.3 . Validation of New Proxy for Capturing Vertical Migration OF CO2
	5.3.1. Validation of tracer-based proxy using synthetic model
	5.3.2. Validation of the new proxy formulation using the Sleipner model
	5.3.3. Model selection using tracer-based proxy for Sleipner

	5.4 . Conclusions

	Chapter 6 : Development of a software module for Model Selection
	6.1 . SGeMS: Stanford Geostatistical Modeling Software
	6.2 . Model Selection Plugin: An overview
	6.3 . Details of plugin development
	6.3.1. Creating the shared library
	6.3.2. The execute function for the Model Selection algorithm

	6.4 . Conclusions

	Chapter 7 : Some Applications of the Model Selection Algorithm
	7.1 Optimizing the configuration of proxy measurement sites
	7.1.1. PCA to find optimum measurement sites

	7.2 Mineralization during CO2 migration in the aquifer
	7.2.1. Background
	7.2.2. Model setup for mineralization
	7.2.3. Model selection with mineralization
	7.2.4. Results

	7.3 Leak indication by using the model selection algorithm
	7.3.1. Simulation of CO2 leakage and its effects on injection well pressure
	7.3.2. Demonstration of influence of leak on model selection
	Synthetic Model to represent Real Field Data
	Model Selection Process Implementation

	7.3.3. Results and Discussions

	7.4 Influence of location of conditioning wells on Model Selection
	7.4.1. Synthetic model to study the effect of injector location on the model selection process
	7.4.2. Model selection process conditioned to each individual pressure history

	7.5 Conclusions

	Chapter 8 : Conclusions and Recommendations for Future Work
	8.1 . Conclusions
	8.2 . Recommendations for Future Work

	Appendix A: Code for old random walker
	Appendix B: SGeMS Plugin
	B.1. Building the plugin
	B.1.1. The initialize function
	B.1.2. The execute function
	Particle-tracking proxy
	PCA and Model Grouping
	Numerical simulation and Bayesian updating
	Saving the results

	B.2. Codes for Plugin
	RW.cpp : Classes and associated /lfunctions / variables are decleared in RW.h
	Cluster_to_simulation.cpp: This contains the codes for various operations during the model selection, like projections to principal component axes, clustering, and calculation of posterior probabilities.
	Codes for PCA and Clustering

	Nomenclature
	References

