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The scattering and attenuation caused by fish schools has been extensively

studied for applications in fisheries management and naval sonar. The literature con-

tains extensive in situ measurements of scattering by fish schools, however significant

uncertainties exist with respect to characterizing the size, quantity, and distribution

of fish within the schools, that confounds accurate measurement-model comparison.

Hence there is a need for application of measurement techniques that can more pre-

cisely characterize the acoustic properties of fish schools and the variations intrinsic to

live subjects in continual motion. To begin to address this deficiency, measurements

of the sound speed through collections of live fish were conducted in a laboratory

setting. The species chosen for measurement were zebrafish (Danio rerio). The

sound speed was investigated using a resonator technique which yielded inferences

of the phase speed within the fish school though measurements of the resonances

of a one-dimensional waveguide. The waveguide was calibrated to compensate for

finite wall impedance and for finite reflections from the ends of the waveguide. Fish
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densities were investigated ranging from 8.6 to 1.7 fish lengths per mean free path.

Measurements agree well with a predictive model that is based on shell-free spherical

bubbles, which indicates that the phase speed is not significantly affected by the fish

flesh or swimbladder morphology for the species studied. The variation in phase

speed due to individual fish motion within the model school was measured to be up

to ±5.6%. This indicates that precise knowledge of the fish position is required to

achieve greater model accuracy.

To compliment the phase speed measurements, the attenuation through a

cloud of encapsulated bubbles was evaluated through insertion loss measurements.

Multiple arrangements of balloons of radius 4.68 cm were used to surround a projec-

tor. The insertion loss measurements indicated an amplification of around 10 dB at

frequencies below the individual balloon resonance frequency and an insertion loss of

around 40 dB above the individual balloon resonance frequency. Analytical modeling

of the bubble collection predicted both the amplification and loss effect, but failed

to accurately predict the level of amplification and insertion loss.

Effective medium models and full scattering models (requiring knowledge of

bubble size and position) were evaluated for a model fish school. The two models

agree for forward scattering for all frequencies except those immediately around the

individual bubble resonance frequency. Back scattered results agree at low frequen-

cies, however as soon as the wavelength becomes smaller than four mean free paths

between fish the models diverge. Ramifications of these findings and potential future

research directions are discussed.
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Chapter 1

Introduction

The acoustics of fish schools has been studied since the Second World War.

Initial interest was in understanding the origin of the phantom bottom of the sea

floor known as the Deep Scattering Layer (DSL), which moved from great depth

during the day to shallow depths during the night. It was quickly realized that

this scattering layer was caused by biological organisms, however there was still

great debate over the precise scatterer. Theories emerged relating the scattering to

plankton, euphausiids, or squid[1], however the frequency response of the scattering

hinted that small air bubbles played a role. While early investigations assumed that

very few fish in the sea had swimbladders, later studies[2, 3, 4] showed that a majority

of fish at the same depths as the DSL had swimbladders[1]. Ever since, there has

been strong interest in understanding how sound propagates through, scatters from,

and is attenuated by fish schools.

The purpose of this study is to perform laboratory measurements of the bulk

acoustic properties of fish schools. Many models have been proposed in recent

years [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for determining the acoustic properties

of fish schools, however most are based on in situ measurements, where the number

of noise sources and variables cause considerable uncertainty. Also, many measure-
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ments of fish attenuation and scattering made in situ lack detailed information about

fish size and spacing, which are important factors in deriving a model. The labo-

ratory measurements reported here involve interpreting the change in the resonance

frequencies of one-dimensional resonators or in other words, a one-dimensional finite

length waveguide. The resonances of this system are affected by the contents of the

waveguide, from which the bulk properties of the medium can be calculated through

appropriate models.

The fish of primary interest are the schooling fish in the ocean that live

near the surface, or in the water column, but not on the bottom of the ocean.

These are known as pelagic fish. The vast majority of pelagic fish are teleostei,

which is a classification of ray-finned fish. These fish can also be divided into three

subcategories: a) fish with a swimbladder that is connected to the digestive tract,

physostomes; b) fish with a swimbladder that is sealed from the digestive tract,

physoclists; and c) fish with either no swimbladder, or with a swimbladder that has

evolved into a fat storage vessel.

Physostomes and physoclists are believed to be the primary scatterers in-

volved in DSL since the presence of a swim bladder contributes 90% to 95% to the

back-scattering cross-section of individual fish[16]. A physostome is a fish with pneu-

matic duct between its digestive system and its swim bladder, this allows the fish

to modify its swim bladder volume while near the surface where tiny bubbles are

present in the water. Physostomes typically do not have a means to modify the mass

of air in the swim bladder while at depth. A physoclist is a fish whose only means of

swim bladder regulation is a gland that secretes air into its swim bladder from the

2



blood stream. Physoclists modify the mass of air in its swim bladder at depth, and

therefore the volume and pressure of the swim bladder is no longer solely a function

of its size at the surface and depth. Additionally fish have the ability to control

tension of the swim bladder, which affects prediction of the swim bladder resonance

frequency.

1.1 Motivation

There are two primary motivations for having a better understanding of sound

propagation and scattering associated with fish schools. The first is improved de-

temination of fish species and quantity via scattering measurements performed for

fisheris management in the ocean. The second is in order to reduce the likelihood

of sonar system false alarms due to scattering from fish schools, which is of interest

for defense and security applications. In this second case, the signal that is reflected

from the fish school is generally known as bio-clutter. Increased understanding of

measurements and models of fish school scattering and propagation will have positive

impacts on both fisheries management and defense applications.

1.1.1 Fishery Acoustics

Many fishery acoustics tools and techniques do not fully exploit frequency-

domain information because narrow-band resonant transducers are more widely avail-

able than broadband transducers, and instead rely on back-scattering cross-section

measurements from individual fish (σbs, indivitual) in order to approximate the scatter-

ing from entire schools of fish (σbs, school). One of the simplest assumptions made is
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that the fish scatterers act incoherently, that is to say that the scattering scales as:

σbs, school = N∑
i=1

σbs, individual, (1.1)

where the scattering cross-section, σ, represents the ratio of the intensity of the

scattered wave to the incident acoustic intensity on the scatterer, and back-scattering

refers specifically to that ratio as observed from the direction of the source [17]. In

reality, many of the scatterers are in phase and the resonance frequency of individual

fish can be modified by the presence of other fish.

While models can be made to simulate the response from specific configura-

tions of fish schools, for schools of a practical size this method becomes infeasible

because it is difficult to obtain fish distribution information and the calculations

generally involve the inversion of an N ×N matrix, where N is the number of fish in

the school. For these reasons there is interest in finding an effective medium theory

that can accurately describe the physics of acoustic propagation through fish schools

in absence of precise knowledge of the relative position of every fish in the school.

If the sound propagation through fish schools can be better understood, it will be

easier to determine the properties and quantity of fish in ocean environments. This

will be useful in both active fish finding and monitoring of populations in order to

prevent over fishing.

1.1.2 Bio-Clutter

The second motivation is to reduce the number of false threats identified due

to bio-clutter. Many times fish schools and marine mammals have a large enough
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scattering strength to distract from real threats and make potential threats hard to

identify. This can range from the scale of mines, to divers, to even submarines. In

addition, a fish school can often appear as a single large threat. Better classification of

fish school reflections will aid in the design of sonar and signal processing systems that

can differentiate between a fish school and other targets. The measurements reported

here validate acoustic models for fish schools and facilitate better understanding of

the sound speed and attenuation through schools of fish, which will lead to better

classification.

1.2 Fishery Acoustics Background

1.2.1 General Background

The acoustic properties of fish are usually represented by either a spectrum

or a probability density function (PDF) of the scattered target strength (TS), which

is defined as,

TS = 10 log10 ( σbs,x

4πR2
ref

) , (1.2)

where σbs is the back-scattering cross section, and Rref is generally 1 meter. For

small spherical bubbles σbs can be written in the form [18]:

σbs = 4πR2
0(ω0/ω − 1)2 + δ2 , (1.3)

where R0 is the equilibrium radius, ω0 is the resonance frequency, ω is the excitation

frequency, and δ is the dimensionless frequency-dependent damping coefficient. Both
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the resonance frequency and the damping coefficient are quantities that are important

for the classification of fish schools. Since many authors have defined the term

damping coefficient differently, here is an aside to link the damping coefficient to

the well defined, and universally accepted quality factor for a mass-spring-damper

system, Q. Consider the dynamic system characterized by:

mẍ + bẋ +mω2
0x = 0, (1.4)

where m is a mass, b is a damping tem, and ω0 is the resonance frequency. The

damping coefficient δ for this system is related to b and Q and at resonance by the

relations:

δ = 1

Q
= b

m
√
ω2
0 − ( b

2m)2 . (1.5)

Many studies approximate scattering from swimbladder fish as scattering from

an air bubble. Often the swimbladder is simplified as a spherical bubble, while in

reality swimbladders have complex geometries which may include two linked cham-

bers. This geometrical simplification has been shown to have minimal effect on the

resonance frequency of the bubbles. For extreme distortions in shape, increasing

the aspect ratio up to 20, the monopole resonance frequency of a bubble of equal

volume increases by less than a factor of 1.5 [19, 20], however the quality factor, Q,

is reduced to aprroximately 30% of the value for an undistorted bubble [20]. Since

for airbladder studies additional damping components are typically added, it is un-
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clear how much additional damping is due to the fish body and how much is due to

complex bubble geometry.

The following discussion on the background and development of fisheries

acoustics is broken into three sub-sections, Fish school models, Experimental in-

vestigations, and Fish behavior. These sub-sections provide the basis on which we

can compare the present approach and measurements. The field of fisheries acoustics

has been active since the 1970s and for the most part has developed in isolation from

the more general field of bubble acoustics. While the development of the field of

bubble acoustics has a significant amount of crossover, it will be discussed in detail

in Chapter 3. Beyond the difficulty of validating fish school scattering models due

to the inability to directly record the size, species, and locations of schools in situ,

it should also be noted that there is extreme variability in experimental estimation

of fish populations due to [21]:

Fish schools avoiding the survey vessel

Acoustic shadowing as a result of non-linearity in back scattered echo energy

Daily horizontal migration

The strong directivity of scattering from fish and their movements relative to

the vessel

The blind areas when fish are located close to the surface or the bottom

It is also interesting to note that even up to the 1950s there was confusion

as to what caused the layer of scattering that is known as the deep scattering layer
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(DSL). Many had hypothesized that the DSL was due to bubbles, but there was

a strong belief that fish in the ocean lacked sufficient size swim-bladders and were

dismissed as a cause of the DSL. Marshall cleared up this confusion in his 1951 review

article on the subject [1].

1.2.2 Fish School Models

In an early formulation [22] of his fish school scattering model, Love was able

to predict measured scattering strengths in several frequency bands within a few

dB. He refined this model and published a thorough derivation of it three year later

which is commonly known as Love’s 1978 model, or simply Love’s model [5].

Devin’s [23] equation of motion for the monopole resonance of spherical bub-

bles was modified to account for the behavioral differences between pure bubbles and

swim bladders, then a the scattering from an assumed fish school grid was calculated.

The positions of the fish in the grid were varied with a normal offset distribution

from the grid and ensemble averaged. The model has been shown to agree well with

experimental measurements obtained from collections of model swim bladders [24].

Very similar expressions for the scattering from fish schools were proposed in

1964 by Andreeva [6] and in 1967 by Weston [7], the differences of which deal with

the significance of the elasticity of the fish flesh on determining the resonance fre-

quency. Both treat fish as a lumped-element system consisting of inertial and elastic

components. Despite noting that the swim-bladder is similar to a prolate spheroid

both dismiss the effect this has on the resonance frequency and use the Minneart

frequency to determine the resonance of the swim bladder (with the exception of
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Andreeva adding a term for the elasticity of the fish flesh). Neither note the effect

that a change in bubble shape has on damping, though both note that additional

damping is present that is not accounted for by the models.

In 1981 Love [8] proposed a model for estimating the target strength of dis-

tribution of fish schools. This model claims to take into account both multiple

scattering and attenuation through the school. This model, however, is for estimat-

ing the target strength of a fish school for a known distribution of fish given the size,

shape, and density of the school along with the scattering properties of an individual

fish species.

While many models involve an assumption of a spherical swim-bladder, there

have been several attempts to account for the non-spherical geometry. Clay [9]

proposed models for straight and bent cylinders surrounded by a liquid that had

an increased sound speed and density relative to water which represented the swim

bladder and fish body respectively. The model also incorporated empirical viscous

losses. These models were compared to experimental measurements by Love [25] and

by Holiday [2] and showed good agreement. Clay concluded that a spherical bubble

was a poor approximation for some fish swim-bladders.

Clay and Heist [10] proposed a two-parameter model for the scattering from

individual fish. The model comprises an array of concentrated scatterers to represent

the swimbladder and a distributed array of scatterers to represent other components

such as the fish flesh and the skeletal structure. The total backscattering strength,

σbs is the sum of these two arrays and the ratio of the concentrated to distributed

scatterer strength is defined as γ. The two parameters, σbs and γ, are determined
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by fitting the echo PDF to the Rician PDF given as:

wR(e) = 2e(1 + γ)
σbs

exp(−(1 + γ)e2 + γσbs
σbs

) I0(x)x ≡ 2e[γ(1 + γ)](1/2)
σ
(1/2)
bs

, (1.6)

where I0 is the modified Bessel function. When γ is zero, Equation (1.6) reduces

to a Rayleigh PDF. This situation implies that the concentrated component (the

swim bladder) is insignificant. The other extreme, when γ ≫ 1, implies that the

concentrated component dominates, and the PDF simplifies to a normal distribution.

In the same paper, Clay and Heist also provide the results of experimental scattering

measurements made of caged fish. They determined that both the backscattering

cross section and the fluctuation parameter, γ, depend on the length of the fish

relative a wavelength L/λ, the anatomy of the fish, and the fish behavior. They

make a point that fish schools are not static, that any model should be able to

simulate the “aliveness” of free swimming animals, and that this dynamic property

of a fish school is captured in the probability density function of the backscatter.

A numerical model was proposed by Clay and Horne in 1994 [11] which broke

fish down into cylinder-like sections based on x-rays of fish. The results were com-

pared to experimental measurements, but not to prior fish scattering models. The

discussion of the comparison is limited to high frequencies where the fish length is

larger than the wavelength of ensonification.

In 1996 Feuillade, Nero, and Love [12] proposed a low-frequency scattering

model that included all orders of multiple scattering. This model involved coupling
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the scattering equations for each fish in a school with N fish and coupling the equa-

tions in an N × N matrix with accounted for the scattered field from every fish

affecting the field of every other fish. By assuming that the fish distribution followed

an approximately body-centered cubic configuration and averaging the result over

many ensembles were the fish were randomly moved around their cubic positions,

the target strength as a function of frequency was determined. This resulted in an

expected lowering of the resonance frequency and a peak level close to or lower than

that produced by the assumption of incoherent scattering.

Another issue relevant to accurately measuring fish school densities is an effect

called shadowing. Shadowing occurs when volume scattering measurements are made

(as is the case with fish schools). Since energy is reflected or absorbed by the initial

layers of fish, in dense schools the remaining fish do not receive the same incident

energy as the initially ensonified fish. This reduces the amount of scattered energy

that is detected since the fish further within the school are in the acoustic shadow

of other fish. As a consequence any estimate of the number of fish is going to be

low. Foote [13] proposed a method that involved assuming a horizontally stratified

water column to correct single-ping vertical-distribution measurements. Recently,

work has been done to estimate the effect of the shadowing effect on reflections from

dense fish schools in a more general manner. Zhao and Ona [14] propose a linear

model for the estimation of the ratio of the extinction cross section to the acoustic

cross-section.

In 2013 Baik [15] reported an error in the original Love paper regarding the

scattering cross section at resonance, though this correction is small for many physical
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applications, when the ratio of the outer diameter to the inner diameter of the fish

body is small and the swim bladder is small. While this correction is small for large

fish in the ocean, it can be significant for small fish and other marine creatures such

as gas-bearing zooplankton.

1.2.3 Experimental Investigations

In situ ocean studies are subject to many additional experimental variables

such as ocean ambient noise, the presence of a thermocline, and uncertainty in fish

spacing and fish school composition. In 1972, Holliday [2] conducted surveys of

the scattering from schools of commercially important marine fish using explosive

acoustic sources. After a school was found and the acoustic signature measured,

a sample of the targets were captured in order to determine the species and size

distributions. Results were reported in terms of the signal transfer function and

then compared to model equations by Adreeva [6] and Weston [7]. Also in 1972

Scrimger, Turner, and Heyd [26] collected scattering measurements from a fish school

while collecting background reference volume scattering data for the Saanich Inlet

in British Columbia. They noted that the closely packed fish school (less then a

fish length spacing) had a relatively flat response between 1 and 9 kHz and had a

backscattering strength of approximately −47±3 dB.

In 1979 Blaxter, Denton, and Gray [3] studied how swim bladders in herring

deform as pressure increases and discovered that the ends of the swim bladder gener-

ally remain fixed while the cross-section changes. In the same year Løvik and Hovem

experimentally studied the resonance frequency of swim-bladders [4] of various fish
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as a function of depth and fish length. They found that while the resonance fre-

quency generally increases with depth, there is also a strong dependence on the fish

adjusting to the depth, which can take between 12 to 24 hours. Adaptation to deeper

water requires the production of gas and takes significantly longer than adaptation

to shallower water, which requires the expulsion of gas. The same trend is noticed

for the quality factor of the resonance, Q, and bladders smaller than required for

equilibrium tend to have a higher Q and those with larger bladders had a lower Q.

They also discovered a strong trend that the fish swim-bladder resonance exhibited

an inverse relationship with fish length according to:

f0 = 120

L
, (1.7)

where f0 is the swimbladder resonance frequency in Hertz and L is the fish length in

meters. Also in 1979, Deuser et al. [27] at the University of Texas provided results

that indicated that using an adaptive classification technique could significantly im-

prove the ability to discriminate echos from fish and competing objects or distinguish

general fish shoal densities.

Foote [16] experimentally verified that the swimbladder was in fact the pri-

mary scattering mechanism by comparing scattering from fish with and without

swimbladders which were otherwise similar. The study shows that swimbladders

account for approximately 90% to 95% of the scattered signal.

In 1983 Foote [28] conducted a series of experiments which supported the

idea that fish school response was linear with respect to individual fish and that the

echo-integration energy approach was sound for populations up to 40 fish, though
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seven years later he published [13] that acoustic shadowing can be problematic.

Another issue with the concept of echo-integration is that the fish school

response is convolved with the transducer response. In 1983 Clay [29] devised a

method for deconvolving the fish scattering PDF from the ocho PDF for a single

transducer sonar. While reasonable results are shown with respect to experiments,

the method is susceptible to noise and can result in negative PDF values.

In 1984 Blaxter and Batty conducted a comprehensive study on the inflation

and deflation of the physotome species of herring. They found that herring only

replenish their swim bladder through the gulping of air at the surface, and found

relationships between swim bladder volume and fish length and fish mass for fish

ranging from 3 to 33 cm in length. They also noted that while oxygen appears to be

absorbed into the blood stream over time, nitrogen takes 80 times longer to absorb

into the blood.

In 1985 Foote [30] reported on a joint experimental/numerical study, where

the were acoustically measured for back-scatter, flash frozen, and then sliced so

that the swimbladder morphometry could be recorded. The back-scatter was then

modeled for individual fish by representing them entirely by the swimbladder, which

was equated to an ideal pressure release surface. His model was unique in that it used

a very detailed representation of the swim bladder organ rather than approximating

it with a simple shape. The agreement between experimental and numerical results

showed that within a certain frequency limit a swimbladdered fish is little more

than an ideal pressure-release surface and that high frequency scattering can be

determined solely by the swimbladder morphometry.
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In 1992 Furusawa, Ishii, and Miyanohana [31] conducted measurements of the

extinction cross section of several species of fish. They concluded that the extinction

cross section varies as 2/3 of the fish weight, and that there is a slight tend toward

increasing extinction cross section as a function of frequency.

Love’s 1993 paper on volume scattering [32] shows that while the general

interest is to use acoustic data to extract fishery information, the converse case is

also of interest. Using experimental volume reverberation data and fisery data from

the same time period the study sought to determine if volume reverberation in an

area can be predicted from fishery data. After making educated adjustments to the

fishery data a good agreement was found between the acoustic theory for fishes and

the measured volume reverberation levels.

Several studies found good agreement between, low frequency sound scattering

in deep water at depth[33] and near the surface [34] and trawl data of Pacific hake [35]

and Love’s 1978 model [5].

In 1999 Orest Diachok [36] reported on experimental measurements of schools

of sardines. The study noted that detected resonance frequencies of the fish school

were in good agreement with theoretical computations. More notably that the col-

lective resonance frequencies associated with sardines in schools were approximately

60% of the resonance frequency of dispersed shoals, and that the observation is con-

sistent with a theoretical equation for the resonance frequency of the fundamental

mode of a cloud of bubbles.

A 2003 paper by Love, Thompson, and Nero [37] showed that volume rever-
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beration changed over time and in different ways for deep, slope, and shelf waters,

depending upon the type of fish present.

In 2004, Nero, Thompson, and Jech [38] performed in situ acoustic estimates

of the swim bladder volume using the response of a 1.5-5 kHz broadband sonar

system and Love’s original 1978 model [5] in conjunction with a correction factor for

the resonance frequency by Weston [7]. Using this information they determined that

Atlantic herring at a depth between 160 and 190 meters had swim bladder volumes

estimated to be between 1.3 and 1.6 ml, which using Boyle’s Law:

P0V0 = PzVz, (1.8)

would relate to uncompressed swim-bladder volumes V0 between 22 – 32 ml at the sea

surface, and estimated that a neutrally buoyant herring would have a swim bladder

volume of approximately 5 ml.

Since numerous uncertainties arise when comparing measurements and mod-

els of scattering from real fish schools in situ, Nero et al. measured the scattering

from arrays of artificial fish swimbladders [24]. Measurements at sea were conducted

on an array of plastic bubbles with a known number, size, and spacing, then explo-

sive sources were used to obtain broadband target strength measurements. Due to

variability in the size, position, and shape of the bubbles iterative simulations needed

in order to get the model to approximately match the data.

In 2010 Gong et al. [39] reported on an extensive acoustic measurements of

shoaling Atlantic herring conducted in 2006. Based on simultaneous length data
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captured during the survey and by calculating a best fit for the swimbladder di-

mensions, good agreement was achieved with Love’s model. Acoustic population

estimates agree with simultaneous fish finder and trawl surveys.

You give motivation for the need for this work in terms of better fish popula-

tion estimates, and reduced false alarms in sonar, etc.

1.2.4 Fish Behavior

An important aspect of fish behavior that plays into fishery acoustics is how

the fish’s swimbladder changes as a function of depth and what it’s role is as an

organ. The very interested reader is referred to Jones Marshall’s [40] 60+ page

review paper on the subject. The swimbladder is known to serve a hydrostatic

function, contributing to the buoyancy of the fish in order to lessen the energy it

takes to swim at a given depth. It also serves in some fish as a respitory organ,

since oxygen the the swimbladder is readily absorbed into the blood stream. There

has even been recent evidence [37] that some fish use oxygen stored in their swim

bladder to survive in anoxic waters. Finally it can function as both a sound producer

and a sound receiver as some fish have bones connecting the swim bladder to the

inner ear, and it is believed that fish can detect high frequencies through the non-

linear radiation force on the swimbladder. According to Nero et al [38], herring may

inflate their swimbladder with approximately 30% excess buoyancy at the surface in

order to achieve the volume at observed depth, since herring can not inflate their

swimbladder from their blood stream.

Next is the behavior known as schooling and shoaling. To avoid confusion
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the definitions from Pitcher’s Behavious of Teleost Fishes [41] are employed. A

shoal is defined as a group of fish that remain together for social reasons. Shoaling

fish are considered a social grouping and this term does not imply either structure

or function. Groups of fish with synchronized movement and polarized swimming

are termed schools. Schooling fish are a subset of shoals that exhibit a structure

and synchronization in how they swim. Fish are believed to live in shoals for two

reasons; predators and food [41] and that while we may talk about a shoal as a

uniform entity, there are often subgroups with different configurations on smaller

scales than the entire shoal [34]. It also merits noting that the unit of the school,

which is primarily for defense against predators, makes fish much easier to detect

and catch in large amounts by humans.

Another aspect of fish behavior is diurnal variability [21, 42]. It is well known

that most pelagic fish migrate to further depths around dawn and travel in dense

schools, whereas at dusk they rise to shallower depths and disperse. Fish gain ad-

vantages against predators by tightly schooling during the day and descending to

depths, whereas at dusk fish tend to rise and spread into loose shoals for feeding [41].

At any time that the shoal feels threatened it can quickly reorganize into a tight

school.

An interesting side discussion that usually appears when discussing fishery

acoustics, is whether the fish can hear the active signals that are used for detection.

If so, then it is possible that fish could change their behavior due to the signal of

the test being performed. In a 1997 article in Nature, Mann, Lu, and Popper [43]

dispute the traditional view that telost fishes cannot detect sounds higher than 2 or
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3 kHz. More recent research indicates that swim-bladdered fish generally have two

regions of hearing sensitivity. In the case of American shad these appeared to be

0.2-0.8 kHz and 25-130 kHz.

1.2.5 Acoustic Waveguides and Effective Medium Properties

The resonator technique used in this study grew out of research related to

water-filled impedance tubes [44] which was used to conduct measurements of the

phase speed and attenuation in bubbly liquids [45]. While the impedance tube tech-

nique achieved better agreement with models that previous measurements of phase

speed and attenuation [45, 46], the present technique is better at extracting effec-

tive medium properties due to the build up of a resonant field within the effective

medium. The resonator technique has been employed to measure the sound speed

in fluid-like kaolinite sediment [47], liquids with freely rising bubbles [48], methane

hydrate seeps [49], several varieties of seagrass [50, 51, 52], and encapsulated bub-

bles [53, 54].

1.3 Justification for Using Live Animals

The fish used in this study were zebrafish (Danio rerio). Goldfish (Carassius

auratus) were originally supposed to be tested as well, however they were not used

for considerations mentioned below. While these are not the fish that are of common

interest in the ocean, they represent a major class of fish which have been studied

in depth, namely swim bladdered fish. The two types of swim bladders previously

discussed distinguish fish as either physostomes or physoclists. Both goldfish and ze-
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brafish are physostomes. The physiology and acoustics of these fish are representative

of many fish studied in the ocean and of general interest.

Swimbladders in zebrafish have been studied in detail and help the fish main-

tain both balance and neutral buoyancy at desired depths. An image of a zebrafish

swimbladder is shown in Figure 1.1. The anterior chamber is believed to be used

for audition and is connected to the inner ear through the Weberian ossicles. The

posterior chamber is connected to the anterior chamber via the ductus communicans

and to the esophagus via a pneumatic duct. The swimbladder was calculated to

occupy 5.1 ± 1.4% of the whole-body volume and to have a gauge pressure of 7–8

mmHg [55]. The center of mass and buoyancy were observed to be approximately at

the joining point of the two chambers.

Goldfish have a similar biology, except it has been noted that the anterior

chamber has a firmer lining and as such changes minimally in volume [56]. The

posterior chamber is more compliant and has the ability to collapse. Goldfish are

also different because they have lipids in the posterior chamber that allow for gas

exchange between the blood and the swimbladder, allowing them to change the

swimbladder volume at depth. This also means that goldfish can change the mass of

the air in the swimbladder during testing, which is why they have not been used. A

schematic of a goldfish swimbladder is shown in Figure 1.2

Although balloons are freely rising bubbles can be used as models for fish, the

effect of the fish flesh and the motion of the fish can not be satisfactorily represented

by these physical substitutes. In order to advance the measurements of sound speed

in fish schools live fish are necessary.

20



Figure 1.1: Photographs of a zebrafish swimbladder by Robertson et al [55]. Anterior
chamber (AC) and posterior chamber (PC) along with volumes and linear dimensions
used to approximate the total volume. The scale bar represents 1 mm. Figure
adapted from Robertson et al [55].
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Figure 1.2: Schematic diagram of a goldfish swim bladder [56]. Figure adapted from
Ref. [56]

There is still significant room for reducing the uncertainties in fishery surveys

and sonar threat detection despite the extensive research conducted with respect to

fish school acoustics. The present study works toward reducing these uncertainties

through well-controlled laboratory measurements of sound propagation in model and

real fish populations. The new method validated here can be extended to verify

acoustic parameters for a wide variety of fish and provide data that will allow for

comparisons with in situ measurements that were not possible before.

1.4 Dissertation Overview

This work is to extends the resonator technique to be able to be applied to

live fish. This is in order to provide laboratory scale measurements of the effec-

tive acoustical properties of fish schools. The end product is a verified method for
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measuring effective medium properties of schooling fish in the laboratory that can

inform future fish school models. Measurements of phase speed for varying school

densities of Danio rerio is presented. In addition tests were performed to validate

the attenuation caused by the presence of fish.

The following chapters have been arranged in order to provide the background

for understanding and interpreting the measurements made and analytical compar-

isons used. This begins with an introduction to the resonator technique in chapter

2. Starting with the basic definition of resonance, the method for extracting phase

speed is discussed, along with considerations relating to deviations in the end condi-

tions and the elastic waveguide effect. Then the theory is tied together with example

dispersive sound speed profiles to show how phase speed is extracted.

Chapter 3 includes an overview of the many effective medium models avail-

able. They are introduced by starting with effective medium theory at the low-

frequency quasi-static limit. Then the classic dispersion relation and the associated

resonance and damping terms are discussed. Once the basic theory is discussed, sev-

eral proposed multiple scattering corrections are presented and compared. Finally

the chapter ends with a discussion of elasticity and shelled bubble effective medium

theory.

Two series of experimental evaluations of sound propagation through shelled

bubbles are presented in Chapter 4. The first set of tests correspond to resonator

measurements of encapsulated balloons. The shell thickness and balloon volume

were measured independently and the Church and Church-Kargl models were used

to back out the shear modulus of the elastic shell.
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Chapter 5 brings the study of effective medium theory full circle by explor-

ing the scattered field from an effective medium. This starts with a look at the

scattering coefficient of a single bubble, then scattering from a fluid sphere and a

fluid sphere with effective medium properties. The results comparing an effective

medium sphere to a full scattering model of discrete bubble position are presented

with both the forward-scattering, back scattering, and directivity of scattering at

various frequencies.

The experimental measurements of sound speed through populations of Danio

rerio is presented in Chapter 6. Here the relevant parameters for fish acoustics are

discussed. In addition the data obtained through micro-computed x-ray tomography

imaging scans (CT scans) of fish is presented. The modifications to the standard

resonator apparatus required for live fish testing are described, and the phase speed

results are presented.

Finally, Chapter 7 provides a summary of the results. The results for each

section of the study are looked at as a collection and concluding remarks are made

of the study. Lastly, potential future work and applications are suggested for the

research.

24



Chapter 2

The Resonator Method and Validation

2.1 Introduction

This study employs a resonator technique in order to determine the sound

speed and attenuation through various effective media of encapsulated bubbles. The

current technique has been used successfully to determine the effective acoustic prop-

erties of freely rising bubbles [48], methane hydrates [57, 49], seagrass [50], fluid-like

gas-bearing sediments [47], and encapsulated bubbles [53]. This method relies on

the fact that the effective acoustic properties of a material are directly related to the

resonances of a tube filled with the material.

The classical modes in open-open pipes with rigid walls are well known. The

method for determining sound speed in this study is based upon these resonances.

The phase speed, cphase, of the medium in the resonator tube (see Figure 2.9) is

determined by utilizing:

cphase = λf, (2.1)

where the wavelength, λ is:

λ = 2L/m, (2.2)
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f is the resonance frequency, the resonance mode ism, and the length of the resonator

is L.

Ideally the end conditions would be pressure release and the side walls would

be rigid, which would lead to the relationship λ = 2L/m. Unfortunately neither of

these conditions are valid in the present experimental apparatus. With respect to the

upper condition of the tube (an air-water interface) the pressure release assumption

is reasonable; however, an unbaffled piston radiation impedance is used to account

for energy radiating from the system. Generally closed-cell foam is used at the lower

boundary to provide an approximately pressure release condition when performing

tests with water alone as the fill material, however when encapsulated bubbles are

added the specific acoustic impedance of the material in the resonator is much closer

to that of closed-cell foam and the lower boundary condition deviates significantly

from the expected pressure-release condition. However, this boundary can effectively

be treated as a three-medium problem and accurately modeled as is done here,

described below.

In order to compensate for the finite impedance of the lower boundary, a

corrected wavelength is determined by adjusting the mode number. This is done by

determining the non-dimensional location of the last node, x̄ = x/L, in the tube and

finding the adjusted mode number madj:

madj = m
x̄
. (2.3)

Then an appropriate phase speed can be determined by using the wavelength
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indicated by the adjusted mode:

cphase = λf = 2L/madj. (2.4)

Another departure from ideal conditions comes from the finite impedance

of the tube walls. Since the acoustic impedance of the walls is often of the same

order as the media contained in the resonator there is a large amount of coupling

between the two. Several analytical models exist to determine how these fields couple,

however for this work we used the model of Del Grosso [58] as implemented by Lafleur

& Shields [59]. This provides an estimate of how the phase speeds in the elastic

waveguide relate to those in free space. Through measuring the frequency at which

each mode or resonance occurs, and then compensating for the elastic waveguide

effect in order get the equivent free field values, we can accurately determine the

frequency dependent sound speed of the contents of the resonator. The elastic wave

guide correction procedure is described in Section 2.4.

2.2 Standard Definitions of Resonance Frequency and Modes

At this point it becomes very important to clarify what is meant by resonance

and modes. Typically resonance is related to the frequency f , angular frequency

ω = 2πf , the sound speed in the medium c, the wavenumber of the system k = ω/c,
the wavelength λ = c/f , the mode number n ∈ N, and either a critical dimension of

the system or in this case the length of the tube L. Below are some definitions of

resonance and normal modes. It is apparent from these definitions that a resonant
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system often needs an application-tailored definition in order to avoid ambiguity.

After introducing the basic system being studied we will present our particularized

definitions of resonance and normal modes.

Kinsler, Frey, Coppens, & Sanders [60]: “The resonance frequencies of any

mechanical system are defined in general as those frequencies for which the

input mechanical reactance goes to zero.” p. 48

Pierce [61]: “Resonance arises when the successive echoes reinforce the pressure

on a piston face.” p. 116

Blackstock [62]: “Resonance here means that the pressure amplitude becomes

unbounded. If small losses are present, the amplitude at resonance is very high

but bounded.” p.136

Temkin [63]: “The energy becomes infinitely large for those values of k that satisfy

the condition kL = nπ. That is resonance, for then the frequency of the piston

ω = kc is equal to one of the characteristic frequencies for longitudinal waves

in the tube.” p. 134

Here are some definitions of normal modes:

Kinsler, Frey, Coppens, & Sanders [60]: “Application of the boundary condi-

tions has limited the viable solutions of the wave equation to a series of discrete

functions. These functions are called eigenfunctions or normal modes.” p.53
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Pierce [61]: “Such natural constant-frequency disturbances are referred to as modes

and only occur for certain discrete frequencies termed natural frequencies.”

p.119

Beranek[64]: “The condition where the frequency equals nc/2L so that a very

large sound pressure builds up in the tube is called a resonance condition or a

normal mode of vibration of the air space in the tube.” p.286

Temkin [63]: “The frequencies of oscillation of the nth mode being, in this case,

ωn = nπc/L. These modes and frequencies of oscillation are characteristic of

the system. They are therefore called the characteristic modes (or eigenmodes)

and the characteristic frequencies (or eigenfrequencies) of the system.” p.99

2.3 Resonance Tubes

2.3.1 The Ideal Resonance Tube

The discussion of this method begins with an ideal tube resonator with rigid

walls and pressure release end conditions that is filled with a non-dispersive fluid.

Figure 2.1 shows the ideal mode shapes that are present in such a resonator. Ac-

cording to Temkin [63], at resonance:

knL = nπ. (2.5)
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Figure 2.1: First three modes of an ideal open-open tube

Or alternitively,

(2.6)

λn = 2L

n
, (2.7)

fn = nc
2L
, (2.8)

c = 2Lfn
n

. (2.9)

For the purpose of this study, we define resonance as occurring when equa-

tion (2.10) is satisfied,

cphase = 2Lf

n
. (2.10)

Hence, when the phase speed of the system at a given frequency is equivalent 2L/n
times that frequency, the nth mode of resonance occurs. A graphical illustration of
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Figure 2.2: Location of resonances in an ideal system

Equation (2.10) is shown in Fig. 2.2 with both linear and logarithmic axes. Similarly,

we associate the normal modes of the system with the spatial standing wave pattern

in the tube each time the nth resonance occurs. For a system with a constant sound

speed, this occurs once for each mode. As is shown in Section 2.6, when the fluid

inside the waveguide has sufficient dispersion, the nth mode can occur at more than

one frequency.

2.4 Elastic Waveguides

Up to this point we have considered a waveguide with rigid walls. In reality

the walls have an acoustic impedance that is of the same order as medium being

studied. As a result the walls do not act as if they are rigid; instead they couple with

the acoustic field in the water. The response of the coupled system can be computed

by relating the boundary conditions between the solid and fluid media. Multiple
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forward models exist and in this study we are using an expression derived by Del

Grosso [58]. This expression gives the phase speed in the coupled system as a function

of the sound speed in the absence of the waveguide c0, the density of the liquid ρl,

frequency f , the inner and outer radius of the tube b and d, the compressional

and transverse sound speeds in the tube cc and cs, and the density of the tube wall

material ρw. The equations for the model can be found in Appendix B. The first four

symmetric modes of a water-filled aluminum pipe with material properties listed in

Table 2.1 were calculated by finding the solutions to Equation (B.7) and are shown in

Figure 2.3a. Unlike a rigid waveguide, two modes can exist down to zero frequency;

however for this study resonances are only present due to the (0,0) mode because

the primary energy of the (0,1) mode is in the wall, and the kb range study is below

the cut-off for higher modes.

While the relationship can not be easily inverted, it is possible to solve the

forward problem for all possible values of input free medium sound speed and then

(since at a given frequency the free medium sound speed and the waveguide sound

speed have an injective relationship) create an interpolation matrix that allows the

desired sound speed (in the waveguide or in free space) to be determined. The

mapping between free medium sound speeds and waveguide sound speeds is shown

in Fig.2.3(b) where the color represents the free medium sound speed and the ordinate

represents the corresponding waveguide sound speed. The primary limitations of this

model is the fact that it is lossless and as such does not account for how attenuation

is affected by the presence of the waveguide. The model also predicts that there is

a maximum phase speed for the system and any phase speeds in the medium are
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Figure 2.3: Dispersion relation for symmetric longitudinal modes calculated using
expressions in Ref. [59] and included here in Appendix B. (a) Symmetric modes in
an elastic waveguide. (b) Mapping between free medium and the (0,0) mode of the
waveguide. The amplitude [m/s] represents the sound speed in a free field while the
y-axis represents the sound speed in the waveguide.

reduced to this maximum value.

The correction is implemented here by computing a numerical correction func-

tion to predict the waveguide sound speed, cwg:

cwg = Ffree2wg(cfree, f), (2.11)

for a given the free medium sound speed cfree, and the frequency f . The function

to compute the free medium sound speed from the waveguide sound speed was also

determined:

cfree = Fwg2free(cwg, f). (2.12)
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Both these relations were computed by solving Equation (B.7) over the range

of expected free medium sound speeds and frequencies in order to create a refer-

ence data-set specific to the physical parameters for the apparatus used here. The

functions then use a three point triangular interpolation scheme on that data set in

order to determine the waveguide sound speed for a given free medium sound speed

and frequency. Since the relationship between cfree and cwg is injective at any given

frequency, the same data set can be used for the inverse operation.

It is important to note that in an elastic waveguide the energy is not neces-

sarily evenly distributed between the wall and the liquid, and that the waves are no

longer purely planar. Lafleur & Shields [59] provide plots of the shape, amplitude,

and phase of both the longitudinal and transverse motion in an aluminum waveg-

uide for both the (0,0) and (0,1) modes. In their example the longitudinal motion of

the (0,0) mode is within 1.5% of having uniform motion. Although there is a small

radial component, the lowest mode is sufficiently plane to allow application of the

equations of plane wave acoustics and the resonance frequency are associated with

the phase speed in the usual manner. It is also noted that a significant fraction of

the wave power is in the wall for the (0,1) mode. This is one of the reasons that the

(0,1) mode is not expected in the measurements.

2.5 A Simple Analytical Model for the System

For the forward model of the system, it is assumed that propagation can be

treated as consisting of only plane waves with a given phase speed and attenuation

that only vary along the length of the resonator. The experimental system is excited
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Figure 2.4: Resonator geometry

with a piston in the waveguide. The simplest analytical model has excitation coming

from a plane wave parallel to one end of the resonator pinc. The system is then

treated like plane wave propagation through several layers, with a reflected wave

prelf at one end of the resonator, left p−m and right p+m traveling waves in each layer

m, and ultimately a transmitted wave ptrans at the other end of the system. For the

aluminum resonator, it was determined that the field in the resonator was coupled

to the concrete floor despite a closed cell foam layer at the bottom, so both a layer

of closed cell foam and radiation into the concrete floor are included. The model is

shown in Figure 2.4.

For a water-filled resonator, the sound speed of water in the elastic waveguide

is calculated as described in Section 2.4. Aside from radiation from the ends, other

possible loss mechanisms are viscous-thermal wall damping and and viscous prop-

agation losses. The attenuation coefficient for viscous-thermal damping in a tube

is [62, 63]:

αw = 1

ac0

√
ωµ

2ρ
(1 + γ − 1√

Pr
) , (2.13)
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where c0, ρ, µ, Pr, and γ are the sound speed, density, viscosity, Prandtl number,

and ratio of specific heats of water, respectively, and a is the radius of the tube. The

attenuation due to viscous propagation is [62, 63]:

αv = Ṽ µω2

2ρc30
, (2.14)

where Ṽ is the viscosity number and is approximately 4.42 for fresh water at room

temperature. These attenuation for the narrowest resonator used in this study are

shown in Figure 2.6 are secondary compared to the radiation loss from the ends of

the tube, are less than 0.03 dB/m for the parameters in this study, and have been ne-

glected in the models. An example of the pressure distribution in the tube calculated

by the model is shown in Figure 2.5 and the derivation of the model is presented in

Appendix C. Note the half-wavelength resonance in the foam at approximately 2500

Hz and that the nodes start from the origin (top) of the resonator.

2.6 The Inclusion of Highly Dispersive Effective Media and
the Presence of Multiple Eigenfrequencies Per Mode

When acoustic waves propagate along a waveguide, the phase speed can vary

as a function of frequency. The effect of waves of different frequencies traveling at

different phase speeds is know as dispersion [60]. In distinction from the dispersion

caused by the presence of a waveguide, acoustic waves in free space can also expe-

rience dispersion due to intrinsic properties of the medium. For the purpose of this

study, the latter dispersion is defined as intrinsic dispersion, which is now added as

the next level of complexity. In order to prevent confusion with the elastic waveg-
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Figure 2.5: Analytical model of the spectra inside a water-filled aluminum waveguide.

uide effect and the non-ideal boundary conditions the walls are still considered to be

infinitely rigid and both ends of the resonator terminate into half spaces of air.

Although effective medium models are discussed in Chapter 3, in this section

we will be using the model by Commander & Prosperetti [46] for bubbly liquids in

order to simulate a medium of increasingly large dispersion. The model is discussed

in detail in Section 3.3.3. Figure 2.7 shows how the increasing VF affects the sound

speed profile and the spectrum within a 1-D resonator. Air bubbles of a constant

radius (2 cm) are gradually added to a water-filled resonator, which results in an

increase in the volume fraction of air (VF). At this point the bubble size is chosen

so that the bubble resonance is below the first natural resonance of the system.

This is accomplished in the resonator model by inputting the complex sound speed
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Figure 2.6: Attenuation due to motion at the wall of a tube and viscous propagation
for the narrowest resonator.

calculated from the model presented by Commander and Prosperetti [46] into the

resonator model which is discussed in Section 3.3.3 and in Appendix C. As was

indicated in Section 2.1, the phase speed at resonance is described by Equation (2.1),

and therefore this equation being satisfied (this happens at the intersection of the

lines marked by stars in Figure 2.7) resonance occurs. At very low VFs the phase

speed curve develops a bump. As this bump grows it eventually intersects the phase

speed lines for the first resonance at an additional point, in this case when VF =

1.1×10−5. Above this VF each resonance begins to occur at three distinct frequencies,

the middle of which sees such excessive damping that it is not visible in the spectrum.

The appearance of individual modes occuring at multiple requencies was ini-

tially very surprising, however experimental scans of the hydrophone along the length

of the resonator show that above the bubble resonance the fundamental modes do

appear again. These measurements can be found in Section 2.8.
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2.7 The Full Forward Model

Finally we can calculate a full forward prediction of the pressure field inside

a resonator tube with the elastic waveguide effect and the dispersion due to the

presence of bubbles. The first step is determining the effective medium properties

from a model to get sound speed ceff,free, and attenuation αeff,free. Then the sound

speed is compensated for by using the correction function Ffree2wg(ceff,free, f). From

this we can calculate a complex wavenumber in the waveguide:

k̃eff,wg = ω

Ffree2wg(ceff,free, f) − iαeff,free, (2.15)

and a complex sound speed:

c̃eff,wg = ω

k̃eff,wg

, (2.16)

which is then used as the effective medium sound speed in the resonator model.

2.8 Validation of Resonator Method Theory

2.8.1 Multiple Eigenfrequencies for Individual Eigenmodes

Many acoustic systems exhibit dispersion and some can possess order-of-

magnitude sound speed changes or more. The present research came about through

investigating the acoustics of fish schools. Fish are often modeled as bubbles with

viscoelastic shells. We use the acoustic resonator technique to determine the speed of

sound through effective media. During this process the modes of the resonator need

to be identified in order to relate the modal frequency to the phase speed. Figure 2.8
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shows an experimental spectrum from a water-filled resonator with elastic-shelled

air bubbles. Typically we had regarded the first few modes to be the fundamental

lowest-order modes of the system (1, 2, 3, . . . ), followed by a region of high attenu-

ation where no resonances are present. Above the high attenuation region there are

higher-order modes, which require more information to properly identify. It is also

useful to classify modes as either below or above the bubble resonance frequency,

which occurs in the high attenuation region. In this paper mode shapes that posses

multiple eigenfrequencies, found by scanning a hydrophone along the length of the

resonator, are discussed.

2.8.2 Experimental Apparatus and Test Conditions

A picture of the experimental apparatus along with a schematic diagram are

shown in Fig. 2.9. An aluminum pipe with the properties in Table 2.1 was filled with

degassed water. The compressional cc, and shear cs, sound speeds of the wall material

were determined by taking precise measurements of the dimensions, temperature,

and sound speed in the water-filled resonator, then the values were optimized in

order to obtain the best match with the elastic waveguide model (see Appendix B).

These values are in agreement with tabulated values for aluminum, as expected. A

Labworks shaker was used to drive a 3.81-cm-radius piston positioned 3 cm below

the air-water interface, which excited the acoustic field inside the resonator with a

linear chirp produced by an NI PCI 4461 card with two outputs and two inputs and

amplified by a Crown power amplifier. For all measurements in this study except the

lake tests the response was measured by scanning a Reson model TC4013 hydrophone
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L 1.985 m
cc 6420 m/s
cs 3205 m/s
ρ 2700 kg/m3

b 0.1015 m
d 0.1085 m

Table 2.1: Material properties of the aluminum resonator.

along the length of the tube. A Brüel and Kjær Nexus was used for pre-amplification

and signal conditioning after which the signal was recorded by the NI PCI 4461.

The source signal was determined to have a flat frequency response. A baseline

measurement was taken and then six evenly spaced latex balloons were inserted,

each with a radius of 1.26 cm, yielding a volume fraction of air 8.2476×10−4. At each
position the response was averaged 8 times and then the power spectral density was

calculated in order to create a map of energy as a function of frequency and space.

2.8.3 Comparison of Measurements and Model

Figure 2.10 shows a comparison between the experimental measurements and

the results from the resonator model using fluid sound speeds calculated from the

effective medium theory discussed in Section 3.3.3, and compensating for elastic

waveguide effects. Only the upper three-quarters of the resonator tube could be

scanned. The dashed line in the upper plot of Fig. 2.10 indicates the extent of

the measurements. It is clear that there is a discrepancy between the amount of

attenuation in the bubble resonance region between model and experiment. The dark

blue region near 600 Hz is larger in the model (upper) plot than in the measured

(lower) plot. This can be attributed to the fact that the compensation for waveguide
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effects only takes into account how the sound speed is affected and not how the

attenuation is affected. Despite the differences in attenuation the location and mode

shapes outside the high attenuation area match well.

Now the phase speed is extracted from the spectrum using Equation (2.4).

Using the standing wave pattern provided from scanning the hydrophone it is easy

to identify the mode associated with each resonance frequency. Figure 2.11 displays

mode determinations for the experimental spectrum first shown in Fig.2.8. There

is one extra resonance present labeled “S”, which was identified as the resonance of

the piston structure by changing the length of the rod connecting the piston to the

shaker, and noticing that only this resonance changed frequency.

The phase speeds that result from this mapping are shown in Fig. 2.12 along

with effective medium theory (C&P see Section 3.3.3) which has been adjusted to

reflect the presence of the waveguide. Figure 2.13 shows the same plot when the data

are corrected to represent free field propagation. The elastic wave guide parameters

from Table 2.1 were used along with 8 bubbles with a radius of 0.0076 m. The air-

water interface was 0.213 m below the top of the tube, yielding a VF of air 2.55×10−4.
The air was taken to have a sound speed of 343 m/s and a density of 1.21 kg/m3. The

water was taken to have a sound speed of 1487.9 m/s and a density of 998 kg/m3.

2.8.4 Resonances and Wall Motion

The elastic waveguide modeling presented so far is for axisymmetric modes.

Additional modes of the flexural and torsional type can also exist and could poten-

tially interfere with the sound speed inference algorithm previously described. To
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explore this possibility laser doppler vibrometer (LDV) measurements were obtained

from the wall of an water-filled 18-inch-long glass resonator while simultaneous acous-

tic measurements were made in the water. Twenty-three positions along the length

of the tube were recorded with the LVD and for each longitudinal position five rota-

tional positions were measured for a total of 115 measurements. A ensemble average

of 16 sweeps from a single position in the water column, and of the wall motion at all

the measurement positions are shown in Figure 2.14. Stars represent the dominant

plane wave acoustic modes, whereas the square boxes represent other modes that

appear in both the the water and the wall motion. The mode shapes of the acoustic

plane wave modes labeled A are shown in Figure 2.15 and other modes labeled O

are then shown in Figure 2.16.

The acoustic modes appear very clearly in the wall motion, quantitatively

verifying part of the elastic waveguide model. The very first acoustic mode (Mode

1, Fig. 2.15) appears to be coupled to a bending mode in the wall, though this does

not appear to have any impact of the sound speed of that mode.
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Figure 2.8: Spectrum with resonance peaks

Figure 2.9: Photo (left) and schematic diagram (right) of the experimental apparatus

45



Frequency [Hz]

 x
/L

  
[m

/m
]

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1 −40

−30

−20

−10

0

 x
/L

  
[m

/m
]

 

 0

0.2

0.4

0.6

0.8

1 −40

−30

−20

−10

0

Mode = 1 2 3 4 1 2 3 4

Mode = 1 2 34 1 2 3 4

Figure 2.10: Comparison between a resonator model (top) with the fluid properties
determined by Equations (3.33) and (3.34) and an experiment of the acoustic field
in a resonator (bottom).
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Figure 2.11: The resonance peaks are circled and the numbers correspond to the
mode number. Hence peaks with the same number share an eigenmode shape, yet
have distinct eigenfrequencies.
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Figure 2.12: Experimental data with C&P model (adjusted to include waveguide
effect).
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Figure 2.13: Experimental data (adjusted to remove the waveguide effect) with
model.
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Figure 2.15: Wall displacement of first 8 plane wave acoustic (A) modes.
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Figure 2.16: Relative wall displacement of first 8 other (O) modes
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Chapter 3

Effective Medium Theory for Bubbly Liquids

3.1 Historical Overview

Up to this point effective medium theory has been mentioned quite a bit,

but not formally defined. In the sense of this dissertation, effective medium theory

is the representation of a complex heterogeneous system as a single homogeneous

acoustic medium with an effective frequency dependent sound speed and a single fre-

quency dependent attenuation. In the remainder of this chapter, effective medium

models will be discussed ranging from quasi-static models which do not have any

frequency dependence, to a variety of dynamic models which address multiple scat-

tering effects. The study of effective media is often a branch of acoustics where exotic

physcial properties such negative stiffnesses or mass are cited. The application to

bubbly liquids is on the less exotic side. There is little consensus within the field

as to which corrections for multiple scattering are appropriate due to the absence

of measurements with sufficient accuracy and uncertainty to validate models. Some

of the models discussed are for general mixtures and suspensions (Mallock-Wood

and Temkin), however the majority are specifically for the case of gas bubbles in a

homogeneous liquid.

The oldest paper concerning the propagation of sound through bubbly liquids
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is Mallock’s paper “The Damping by Frothy Liquids” published in 1910[65]. The

paper begins with the problem statement “The fact that a tumbler containing a

frothy liquid gives a dull sound when struck is familiar to every one, but I cannot

find that any explanation of the rapid damping of the vibrations, which is indicated

by the character of the sound, has been published.” He goes on to propose that in

bubbly liquids, the variations in pressure act entirely on the bubbles and that “the

velocity of transmission of a wave in mixed fluid, such as a liquid containing bubbles,

is the same as it would be in a homogeneous fluid of the same density and mean

elasticity.” The equations that result from this assumption are stated later on in

section 3.2. He then goes on to calculate the work done due to viscous motion of

the water caused by the vibrating bubble wall.

Mallock’s work was reviewed and expanded upon in Wood’s A Textbook of

Sound [66] 20 years later. While the first edition of the textbook cited Mallock’s

work, subsequent (and more widely available) editions dropped the reference, causing

many to falsely attribute the original derivation to Wood. Neither Mallock or Wood

appear to define what elasticity should be used, though many have assumed that the

isentropic elasticity, defined by E = ρc2, was intended. Although Mallock’s argument

of mean elasticity and density was made a priori, in 1933 Herzfeld [67] published

a derivation of the sound speed in a suspension of small particles based on first

principles and proved the concept of using mean elasticity and density for small

spherical suspension of solids or fluids at quasi-static frequencies.

While the quasi-static nature of sound was being discussed, others were trying

to solve the mystery of how bubbles resonated. In his 1919 lecture series “The World
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of Sound” Sir William Henry Bragg [68] mentions an experiment by Sir Richard

Paget where pieces of shot were dropped into still water. As with water drops an air

cavity formed behind the shot. Sir Paget claimed to make measurements of these

cavities and determined that upon making models of the cavities in plasticine the

note produced by blowing across the top of the cavity was practically the same tone

is produced as that of the bubble. Sir William Henry Bragg later noted in a personal

correspondence to Minnaert [69] that Sir Paget’s work was never published elsewhere.

If anything is to be taken from this, it is that there was definitely awareness of bubbles

having pitch and attempts to determine them prior to 1919.

The dynamics of a single bubble and its resonance frequency were revealed in

1933 by Minnaert [69] in his seminal paper On Musical Air-Bubbles and the Sounds

of Running Water. Minnaert compares the potential energy in the bubble and the

kinetic energy in the fluid, in essence reducing the system to a simple mass-spring

analogy. He begins by noting that “by letting air escape in bubbles from the orifice of

a tube immersed in water; each bubble gives a sound of very definite pitch.” His paper

includes experimental evidence that proves the relationship between bubble volume

and pitch, the influence of the density of the liquid, and even makes a qualitative

note that the bubble pitch reduces near the surface due to a lessening of the mass

loading of the bubble. This expression for the resonance frequency of bubbles due to

small acoustic perturbations holds to this day for sufficiently large bubbles, in which

surface tension can be neglected, and aside from a small correction to account for

themal effects added to the model in the 1980s, is accurate to within a few percent.

Minneart’s equation for the resonance frequency, f0, of a single bubble is:
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f0 = 1

2πa

√
3ηp0
ρ

, (3.1)

where a is the radius of the bubble, η is the polytropic index of the gas in the bubble,

p0 is the static pressure at the bubble, and ρ is the density of the liquid.

The next advance in the determination of the sound speed in suspensions

came in 1943, when Kennard [70] and Spitzer [71] appear to have independently

published dispersion relations for the sound speed in bubbly liquids while working

on WWII-related research. Both derivations arrive that what is now known as the

classic dispersion relation for bubbly liquids:

1

c2
= 1

c20
+ 4π

ω2 ∫ n(r)rdr
(ω2

0

ω2 − 1) + iδ , (3.2)

where c0 is the sound speed of the host liquid, ω is the angular frequency, ω0 = 2πf0,
n is the number density of bubbles, and δ is the damping coefficient that was first

mentioned in Section 1.2.

Kennard phrases the problem differently than Spitzer and instead of arriving

at the form in equation 3.2, he arrives at a coupled set of equations which are similar

to those later derived by Temkin [72, 73] and do not account for a polydisperse

arrangement of bubbles. Kennard’s equations do, however, simplify to the classic

dispersion relation. The only attenuation Kennard includes in his derivation is due

to acoustic re-radiation. Spitzer, on the other hand, mentions damping due to re-

radiation, viscosity, and thermal effects. An expression for re-radiation damping is

included, however he states that viscous damping can be ignored for bubbles greater
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than 3 × 10−6 m in radius and presents a theoretical determination of the damping

costant, δ. While Spitzer’s derivation includes theoretical expressions for all three

forms of damping he states that theoretical determination of δ is not to be trusted

as it did not agree with the available experimental evidence.

A more general theory of the scattering of waves from a generic scatterer

was published in 1945 by Foldy [74]. The seminal part of the paper deals with

approaching multiple scattering from a wave propagation approach as opposed to

the geometric optics limit. This is used to calculate the conditional averages of the

the wave function, the average value of the square of its absolute value, and the

average flux carried by the wave; however, it is often cited because the relation for

an effective-medium wavenumber, which results as a consequence of the derivation.

This relationship is:

k2(r⃗) = k20 + 2πg(r⃗), (3.3)

where r⃗ is a position vector, k(r⃗) is the effective medium wavenumber, k0 is the

wavenumber in the host medium, and g(r⃗) is the scattering coefficient of scatterers

integrated over their probability distribution. It is shown later that this is equivalent

to (3.2).

Two additional technical reports based on WWII research from 1944 exist,

are authored by Foldy, and specifically refer to the propagation of sound through

bubbles, which extended Spitzer’s work. It included distributions of bubbles and

applied distributional averages to the bubbles in a bubble clouds. Both Foldy’s
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and Spitzer’s work were summarized in Wildt’s chapter on the “Acoustic theory of

bubbles” in the book Physics of Sound in the Sea [75], where the classic dispersion

relation was presented, but no description of the damping term included.

Between 1947 and 1957 the classical relation remained unchanged, and many

authors proposed different damping terms [76, 77, 78, 79, 80, 81], apparently without

knowledge of the earlier work mentioned above. Several experiments were conducted

that provided a basis for comparison of the models [82, 83, 84]. The first compre-

hensive review of the bubbly liquid propagation theory came in 1959 with Devin’s

review [23].

Development of bubbly liquid theory was slower in the 60s than the 50s.

Hsieh and Plesset [85, 86] published a paper on sound propagation in bubbly liquids,

focusing particularly on heat conduction, and determined that attenuation due to

heat conduction is very small. Crespo [87] worked on a synthesis of bubbly liquid

theory and shock theory, showing that significant errors occur if the relative motion

of gas bubbles was not included. Zabolotskaya and Soluyan [88] made a significant

advancement in the non-linear theory of bubbly liquids by presenting a coupled ex-

pression for sound speed and the non-linear equations of motion for bubbles, allowing

them to calculate the amplification of non-linear harmonics due to sound propaga-

tion through bubbly liquids. Near the end of the 1960s interest picked up again, with

publications by Wijngaarden [89], Batchelor [90], and McWilliam and Duggins [91],

all of whom failed to discover or cite the more complete work of Devin [23], and

failed to cite the fundamental work of Spitzer [71], Kennard [70], and Foldy [74].

The beginning of the 1970s saw a large advancement in Devin’s theory though

56



a letter to the editor of JASA by Anthony Eller [92], who extended Devin’s theory

of damping at resonance to all frequencies. This extension was clarified by Fair-

bank [93], in regards to the various definitions of the damping constants. Wijn-

gaarden’s 1972 review paper [94] did a better job at referencing the older literature,

including citations of Foldy [74], Spitzer [71], and even Mallock’s 1910 paper [65],

though Mallock’s mixture law was attributed to Wood’s textbook [66]. Chapman and

Plesset [95] and Prosperetti [96, 97] advanced the theory of a radius and frequency

dependent polytropic index. Keiffer [98] focused on the low-frequency sound speed in

mixtures of water and steam, Drumheller and Bedford [99, 100] worked on extending

effective medium theory to general immiscible fluid mixtures, and Hsieh [101] and

Marston [102] published a papers discussing possible second resonance frequencies

for vapor bubbles.

The 1980s saw continued interest in tracking down the proper damping mech-

anisms and their associated amplitudes [103, 104, 105, 106, 107, 108, 109], nonlin-

earity [110, 111, 112], and multiple scattering [113, 114]. Commander and Pros-

peretti [46] published a complete set of equations for the sound speed and attenu-

ation through bubbly liquids, and Temkin [115] published a review of the bubbly

liquid research up to 1989.

From the 1990s on the critical question has been, how to correct for multiple

scattering. From this debate has come a large amount of theoretical [116, 117, 12,

118, 119, 120, 121] and experimental [122, 123, 124, 47] literature. Some of the

most commonly cited corrections for multiple scattering are described in Section

3.4. In addition Temkin [125, 72, 126, 73] published a unified theory for suspension
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acoustics which applies to bubbly liquids and is unique from the classic bubbly liquid

dispersion relation. Another important note is that up until 2003 there had been

a dearth of experimental measurements of sound speed or attenuation at bubble

resonance because of the excessive attenuation. In 2003 measurements were made in

a liquid filled resonator [44] that indicated that multiple scattering corrections were

not necessary, even up to volume fractions of air as high as 10−3. Studies involving

higher void fractions at bubble resonance have not been published and the bubble

concentration at which multiple scattering is important is not well known.

3.2 Acoustics at the Quasi-Static Limit

The discussion of effective media starts at the low-frequency or quasi-static

limit. The important assumption here is that the system always stays in equilib-

rium. Two models are presented that account for plane wave propagation through

an infinite medium with a given volume fraction (VF) of air χ:

χpart = Vpart

Vwhole

, (3.4)

where Vpart is the volume of the component under consideration and Vwhole is the en-

tire volume. If the subscript is omitted then the part under consideration is assumed

to be the gas in the bubble.

Each model involves sound propagation in a bubbly liquid. Sound propagation

is considered to be plane and wavelengths of the propagating sound λ, are larger than

the bubble radius a.
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3.2.1 Mallock-Wood Law for Sound Speed

Mallock’s 1910 expression for sound speed in a heterogeneous mixture [65] was

popularized in Wood’s 1930 textbook of sound [66], is often attributed to Wood [127,

72] and is often cited as Wood’s law; however, in deference to the earlier publication

we refer to this derivation as the Mallock-Wood law. Mallock observes “It may

be remarked that the velocity of transmission of a wave in mixed fluid, such as a

liquid containing bubbles, is the same as it would be in a homogeneous fluid of the

same density and mean elasticity.” While the validity the a priori assumption that

elasticities can be assumed to average has been challenged [72], more fundamental

derivations [127, 67] have proven the point. If we consider the elasticity Em, and the

density ρm (m = 1 or air, m = 2 for water), where the total volume fraction (volume

of part / total volume) of air is known, we can arrive at the effective values through

Equations (3.5a) and (3.5b). Then the elasticity, density, and sound speed are:

ρeff = ρ1χ + (1 − χ)ρ2, (3.5a)

1

Eeff

= χ

E1

+ (1 − χ)
E2

, (3.5b)

ceff =
√

Eeff

ρeff
. (3.5c)

Figure 3.1 show’s a recreation of the sound speed plot from Mallock’s 1910

paper, which has three different linear sections of its abscissa. In comparison, the

second plot has a linear abscissa of χ and is in mks units. The Mallock-Wood law

has seen success in various experiments [77, 78, 128]. One criticism of Mallock’s
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Figure 3.1: Recreation of Mallock’s plot for the sound speed in a bubbly liquid for
a given ratio of water to air with three different linear scales in the abscissa (left)
and the modern convention of plotting the relation with the volume fraction of air χ
(right).

low-frequency expression is that it only applies to isothermal conditions [72]. This

has been countered by the argument [45] Wood [66] published a value of elasticity

neither adiabatic nor isothermal, but somewhere in between, likely obtained by in-

ference from measurements, and hence quite similar to what modern theory predicts

for about millimeter-sized bubbles. This could be viewed as a mean low-frequency

elasticity that is between the adiabatic and isothermal range.
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Temkin’s Low and High Frequency Models for Suspension Acoustics

Temkin [72, 129] derived an expression for near-zero and finite frequency

sound propagation in suspensions using a first principles approach. The method

starts with the definition of a homogeneous medium’s adiabatic compressibility, Ks:

Ks = − 1

δτ

d(δτ)
dp

, (3.6)

where δτ is a volume element and dp is the external pressure that deformes the

element. The subscript s indicates an isentropic process. Once Ks is known, the

isentropic sound speed can be determined:

c2s = 1

ρ0Ks

, (3.7)

where ρ0 is the density of the medium.

While the homogenous definition can not generally be applied to suspensions,

in can be applied at the low frequency limit where equilibrium exists within the

medium. The zero-frequency-limit expression for sound speed, cs(0), in aerosols,

bubbly liquids, emulsions, and hydrosols is:

c2sf
c2s(0) =

1 − φv

1 − φm

[γf(1 − φv) + γpφvNs] − (γf − 1)(1 − φv + φvβp/βf)2
1 + φm(cpp/cpf − 1) . (3.8)

where φv is the particle volume concentration, φm = (ρp/ρf)φv/(1 − φv) is the mass

concentration of the particulate, Ns = (ρfc2sf)/(ρpc2sp) is the ratio of particle to fluid
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isentropic compressibilities, cs the isentropic sound speeds, γ the specific heats ratio,

β the coefficient of thermal expansion, and cp the specific heat at constant pressure

for the fluid (additional subscript f) and the particles (p). Temkin also presents a

high-frequency limit known as the frozen-equilibrium speed (cs(∞)):
c2sf

c2s(∞) =
(1 − φv)2
1 − φm

. (3.9)

This indicates a high-frequency limit where the particles are at rest. Note for

very small volume fractions of air in water this is very close to the sound speed in

water.

3.2.2 Quasi-Static Limit Summary

Using the models in this section we have our two frequency limits defined. The

low frequency limit is valid below the resonance frequency and the high frequency

limit is approached from some frequency above the resonance frequency. These

models are shown in Figure 3.2. A region of high dispersion is necessary to connect

the two limits.

3.3 Sound Propagation in Bubbly Liquids: Literature High-
lights

3.3.1 Foldy’s Multiple Scattering of Waves

Leslie L. Foldy took the problem of a medium filled with a random distribution

of scatterers and evaluated it using statistical methods [74]. The solutions from this

seminal paper are repeated here for clarity. The probability distribution that a
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Figure 3.2: Quasi-static sound speeds limits for χ = 0.033 and a = 1.26 cm.

scatterer is located in a volume element and has a scattering strength, s, is

P = (1/N)Nn(r1, s1)n(r2, s2)⋯n(rN , sN), (3.10)

where N is the number of scatterers, n(r, s)ds is the average number of scatterers

per unit volume with strength between s and s + ds, and for the entire volume, V ,

∬
V

n(r, s)dsdr = N. (3.11)

The scalar wave function, ψ(r), can be represented as the sum of the incident

wave function, ψ0(r), and the sum of the field from all of the scatterers
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ψ(r) = ψ0(r) +∑
j

gjψ
j(rj)E(r, rj), (3.12)

where gj is the scattering coefficient for the jth scatterer, E(r, r′) = exp(−ik0∣r −
r′∣)/∣r − r′∣, and the scattered field from the jth scatterer is defined implicetly as

ψj(rj) = ψ0(rj) + ∑
j′(≠j)

g′jψ
j′(r′j)E(r, r′j). (3.13)

Equations (3.12) and (3.13) can be solved as a set of linear algebraic equations,

however this becomes infeasible for a very large value of N and it requires complete

knowledge of the position and strength of every scatterer. In order to make the

solution more useful for a statistical distribution of scatterers, Foldy set out to solve

wave equations in order to determine the values of ⟨∣ψ(r)∣⟩ and ⟨∣ψ(r)∣2⟩, where the

angular brackets signify an average.

After making the assumption that the summation of all but the current scat-

terer on the right hand of Equation (3.13) can be replaced with a summation over

all of the scatterers without significant error if N is large, and applying the physical

operator (∇2+k20) to the average of Equation (3.13), applying the Liouville-Nuemann

method of successive substitutions, and defining G(r) = ∫ g(s,ω)n(r, s)ds, the fol-

lowing iterative solution is found

⟨ψ(r)⟩ = ∞∑
m=0

ψm(r), (3.14)

where
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ψm(r) = ∫
V
G(r′)ψm−1(r′)E(r, r′)dr′ (m ≠ 0). (3.15)

Through similar arguments the mean square value can be found to be

⟨∣ψ(r)∣2⟩ = ∣⟨ψ(r)⟩∣2 + ∫
V
H(r′)⟨∣ψ(r′)∣2⟩L(r, r; r′)fr′, (3.16)

L(r, r0; r′) = ∞∑
p=0

Lp(r, r0; r′), (3.17)

Lp(r, r0; r′) = 1

4π∬V
[{G(r′′)[∇′′′2 + k∗2(r′′′)] +G∗(r′′′)[∇′′2 + k2(r′′)]}
×Lp−1(r′′, r′′′; r′)]K(r, r′′) ×K∗(r0, r′′′)dr′′dr′′′, (3.18)

L0(r, r0; r′) =K(r, r′)K∗(r0, r′), (3.19)

and K(r, r′) is a Green’s function.

Most importantly Foldy derived a phase speed for waves traveling though the

ensemble of scatteres, Equation (3.20), as a function of the scatter-free sound speed

c0, the angular frequency ω, and the integral over the scattering strength and size

probability density of the scatterers, Equation (3.3). By dividing by frequency we

get an expression for the complex sound speed of the medium ˜ceff :

1

˜ceff
2 = 1

c20
+ 4πG

ω2
, (3.20)
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G(r) = ∫ g(s,ω)n(r, s)ds. (3.21)

For a mono-disperse size distribution of scatterers with a number density of

n, these simplify to:

1

˜ceff
2 = 1

c20
+ 4πng

ω2
. (3.22)

The scattering coefficient, g, can be found in both the 1946 Navy volume

Physics of Sound in the Sea [75] and in Clay and Medwin’s book Acoustical Oceanog-

raphy [130] to be:

g = a

(ω2

0

ω2 − 1) + iδ . (3.23)

Substituting this into the original integral of Equation (3.21) and then into

Equation (3.20) yeilds a phase speed entirely in terms of the bubble radius, resonance

frequency, and damping:

1

˜ceff
2 = 1

c20
+ 4π

ω2 ∫ n(r)rdr
(ω2

0

ω2 − 1) + iδ . (3.24)

3.3.2 The Classic Dispersion Relation for Bubbly Liquids Without Damp-
ing

A useful exercise is to first look at the sound speed and attenuation predicted

if the damping term is neglected, δ = 0, which leaves us with:

66



1

˜ceff
2 = 1

c20
+ 4π

ω2 ∫ n(r)rdr
(ω2

0

ω2 − 1) , (3.25)

which can also be found in Zabolotskaya’s 1967 paper [88]. Without damping, the

sound speed becomes entirely imaginary, and the limits of this region can be found

to be [ω0, ω0

√(1 + 4πc2
0
na

ω2

0

)] by setting c = 0. This indicates a stop band where no

propagation is possible. The phase speed and attenuation plots for this model can

be seen in Figure 3.3. The frequency-wavenumber plots are shown in Figure 3.4 are

useful because the slope of the line at any point gives the group velocity and the

slope between any point and the origin gives the phase velocity. At the beginning of

the stop band the phase and group velocity trend to zero, while at the end of the stop

band the group velocity is zero and the phase velocity is infinite. No real material is

lossless, so this behavior is a mathematical abstraction and does not occur in nature.

3.3.3 Complete Model for Bubbles Without a Shell

The model used in this study for bubbles without a shell is by Kerry Com-

mander and Andrea Prosperetti [46] and provides the phase speed and attenuation

through a bubbly liquid in terms of the bubble number density n, bubble size a, and

material properties of the gas and fluid.

The model introduced by Commander and Prosperetti [46], hereafter refered

to as the C&P model, is a synthesis of all the prior work mentioned in Section 3.1 and

predicts the net phase speed and absorption from bubbly media. This is accomplished

through linearization of bubble equations of motion. The final expression for the

complex sound speed through the bubbly-liquid is equivalent to the classic dispersion
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Figure 3.3: Sound speeds and attenuations for χ = 0.033 and a = 1.26 cm for dynamic
models C&P, C&P without damping (No δ), and Temkin.
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relation, Equation 3.2, however uses a different definition for damping coefficient than

that defined in Equation 1.5. Because of this difference in definition the complete set

of equations are reproduced here using the previously specified definition for damping

coefficient. Verification of some effective medium models are included in Appendix F.

The important definitions for the C&P model are for the damping coefficient

δ, and the resonance frequency ω0. The damping coefficient contains terms for three

damping mechanisms, viscous damping, thermal damping, and acoustic re-radiation

damping:

δ = µl

ρa2ω²
viscous

+ 4µth

ρa2ω²
thermal

+ aω

c0°
acoustic

, (3.26)

where c0 is the bubble free liquid sound speed, µl is the viscosity of the liquid, ρ is

the density of the liquid, µth is the thermal viscosity defined below. The thermal

viscosity [108] µth, effective polytropic index γeff , are both defined in terms of Φ:

µth = pstatI{Φ}
4ω

, (3.27)

γeff = R{Φ}
3

, (3.28)

Φ = 3γ

1 − 3(γ − 1)iX[(i/X)1/2 coth(i/X)1/2 − 1] , (3.29)
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where I{Φ} and R{Φ} signify the imaginary and real parts of Φ respectively, and

the following definitions for X, and the static pressure inside the bubble pstat have

been used.

X = D

ωa2
, (3.30)

pstat = p∞ + 2σst
a
, (3.31)

where D is the thermal diffusivity of the gas inside the bubble, P∞ is what the

pressure outside the bubble would be if there were no acoustic excitations, and σst is

the surface tension of the gas-water interface. We have now defined enough terms in

order to produce an expression for the resonance frequency of the bubble ω0 = 2πf0,
which the reader should note is very similar to the Minneart frequency, Equation

(3.1), except for the use of an effective polytropic index and compensation for the

increased pressure due to surface tension at the gas-water interface:

ω2
0 = 1

a

√
3γeffpstat − 2σst/a

ρ
. (3.32)

Finally the the real phase velocity in the bubbly liquid cph and the attenuation

coefficient α can be calculated from the complex sound speed c̃ through:

cph = (R{1
c̃
})−1 , (3.33)
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α = 20 log10(e)ω (I{1c̃})
−1

, (3.34)

where α is in units of dB per meter.

One of the potential limitations of the C&P model is that it only includes

multiple scattering within the field to first order. When scatterers are close to each

other the multiple-scattering process causes a shift in the resonance frequency and the

damping of the system. The field can no longer accurately be treated as an effective

medium of non-interacting bubbles, but must be treated as a collective of mutually

interacting scatterers[116]. The phase speed, attenuation and frequency-wavenumber

plot for this model can be seen in Figure 3.3. It is worth noting that the attenuation

for a broad range of frequencies above the bubble resonance frequency is almost

equivalent to that provided by the no damping case. The frequency-wavenumber

plot reveals a region of negative group velocity in the stop band predicted by the

model without damping.

3.3.4 Temkin’s Suspension Acoustics Model

Temkin’s suspension acoustics model is a general formulation that applies

for any dilute suspension of constant-mass particles that translate or pulsate in the

presence of an external pressure field. It takes the quasi-static model for the com-

pressibility of suspensions that was already discussed in Section 3.2 and adds dynamic

compressibility terms for the particles’ translational velocity, temperature, and pres-

sure. It assumes that each mechanism that affects the dynamic compressibility acts

independently:
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Ks(ω)
Ks(0) − 1 = [Ks(ω)

Ks(0) − 1]1 + [
Ks(ω)
Ks(0) ]2 + . . . (3.35)

Upon specializing the equation (3.35) for monocromatic waves, the compress-

ibilities are noted as being complex, Ks(ω) → K̃s(ω), where the tilde is represen-

tative of a complex value. The complex compressibility can then be defined as

K̃s(ω) = [ρ0c̃s2(ω)]−1, where c̃s(ω) is a complex sound speed. The imaginary compo-

nent of the complex sound speed is either due to attenuation or a reactive motion of

the medium. This complex sound speed is better interpreted in terms of a complex

wavenumber, which has the relationship:

k̃ = ω

c̃s(ω) = ω

cs(ω) + iα, (3.36)

where α(ω) is the amplitude-attenuation coefficient, and cs(ω) is real and represents

the phase velocity. After incorporating the complex wavenumber into the expression

for complex compressibility, we arrive at equations (3.37) and (3.38).

c2s(0)
c2s(ω) − ᾱ2 = 1 +R [Ks(ω)

Ks(0) − 1]1 +R [
Ks(ω)
Ks(0) − 1]2 + . . . (3.37)

2ᾱ
cs(0)
cs(ω) = ∣I{Ks(ω)

Ks(0) ∣1 + ∣
I{Ks(ω)
Ks(0) ∣2 + . . . (3.38)

Temkin then focuses on two mechanisms that modify the dynamic compress-

ibility, the translation and pulsation of the particles. These in turn can be solved

for in terms of three complex and frequency dependent terms, V , for the ratio of the
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particle velocity to the fluid velocity, T , for the ratio of the averages of temperature

fluctuations in the particle to the fluid, and Π, for the ratio of the average pressure

fluctuation in the particle to the fluid. Solving Equations (3.37) and (3.38) in terms

of these complex ratios yeilds:

c2sf(0)
c2s(ω) − α̂2 = c2sf

c2s(0) = φv (1 + φv

δ
){1

δ
[R{V } − 1]

+ (γf − 1)( ρp0cpp
ρf0cpf

− βp
βf
) [R{T} − 1]}

+φv (1 + φv

δ
)(γpNs − (γf − 1)βp

βf
)

×[R{Π} − 1], (3.39)

and

2â
c2sf(0)
c2s(ω) =φv (1 + φv

δ
)

×{1
δ
∣I{V } − 1∣ ∣(γf − 1)( ρp0cpp

ρf0cpf
− βp
βf
)I{T}

+ (γpNs − (γf − 1) βp

betaf
)I{Π}∣} , (3.40)

where V , T , and Π, are expressed in terms of constituent properties and frequency

in Temkin’s manuscripts[72, 73].
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3.4 Multiple Scattering

There have been many proposals for corrections to the classic dispersion re-

lation for bubbly liquids in order to account for higher-order interactions between

the bubbles, also known as multiple scattering. All of corrections discussed in this

section except for Kargl [119] focus on higher-order corrections to the Foldy effec-

tive medium wavenumber Equation (3.3), through a modification of the scattering

coefficient for the bubble g, Equation (3.23).

3.4.1 Shielding in Bubble Clouds

Feuillade [12] re-derived the expression for the effective medium sound speed

through bubbly liquids and found an additional field attenuation (or “sheilding”)

term that resulted in the scattering coefficient:

g(Feuillade) = a

(ω2

0

ω2 − 1) + iδ − 4πn ∫ ∞0 re−i
˜keffrdr

, (3.41)

which is now dependent on the number density of bubbles n, and the complex effective

medium wavenumber k̃eff. The classic sound speed equation becomes implicit and

needs to be solved iteratively.

3.4.2 Implicit Expansion of Scattering Coefficient

Henyey [118] focused on an expansion of the scattering coefficient and deter-

mined that when the next higher-order term is included, the result is:
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g(Henyey) = g + 4πing(g(Henyey))2
k̃eff + k0 , (3.42)

which can be simplified to,

1

g(Henyey)

= 1

g
− i(k̃eff − k0), (3.43)

which can then be substituted into Foldy’s effective sound speed relation, Equation

(3.20), to arrive at a cubic expression for the complex effective medium wave number

or sound speed. Only one root of this equation will produce a valid wavenumber that

possesses a positive real and complex component.

3.4.3 Explicit Expansion of Scattering Coefficient

Ye & Ding [117] also focused on expansions of the scattering function and

arrived at a scattering function:

g(Ye & Ding) = g (1 + 2πg2

k0
) . (3.44)

This is the only formulation that results in an explicit equation for the scat-

tering coefficient, though at high bubble concentrations this expression results in a

negative phase velocity and a dip in attenuation not seen in any other model, or

experiment.
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3.4.4 Effective Medium Radiation

Kargl’s [119] multiple scattering correction is based on the a priori assump-

tion that since sound is radiating into the effective medium, the acoustic re-radiation

damping should use the effective medium wavenumber. The adjusted damping coef-

ficient is:

δ(Kargl) = µl

ρa2ω²
viscous

+ 4µth

ρa2ω²
thermal

+ k̃effa±
acoustic

. (3.45)

As with many of the other multiple scattering corrections the expression for

sound speed and attenuation is not explicit and must be solved iteratively.

3.4.5 Comparison

The phase speeds and attenuations predicted by the various multiple scatter-

ing models are shown in Figure 3.5. The spread in values is quite wide even for a

value of χ that has experimentally been shown to have minimal multiple scattering

effects [44]. The frequency-wavenumber plot reveals that the EM radiation correc-

tion is very close to the phase speed without damping shown in Figure 3.3. The wide

spread of the values attests to the fact that there is little consensus as to what role

multiple scattering plays and when it is of consequence. The frequency-wavenumber

plot of the multiple scattering models is shown in Figure 3.6. The large negative re-

gion of group velocity is visible along with the fact that the EM radiation correction

displays a near infinite group velocity for a wide range of frequencies.
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Figure 3.5: Sound speeds and attenuations for χ = 0.033 and a = 1.26 cm for multiple
scattering models.
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3.5 Elastic Shells

While stationary free bubbles would be an mathematically convenient model

for fish, bubbles will rise due to buoyancy and larger bubbles are not stable, but will

break into smaller bubbles. Since measurements with knowledge of precise bubble

size and position are useful, often encapsulated bubbles are used. Unfortunately

this adds an additional level of complexity to the system. This section describes the

modeling that accounts for the addition of an elastic shell.

3.5.1 General Elasticity Relations

It can be difficult to find published values for the shear modulus (G) and

shear viscosity of even commonly-available shell material. The Young’s modulus is

defined as:

E = σ
ǫ
, (3.46)

where σ is a longitudinal stress and ǫ is a longitudinal strain, and is more readily

available. The Young’s modulus is related to the shear modulus and Poisson’s ratio

ν through:

G = E

2(1 + ν) ≈ E3 . (3.47)

which can be simplified by assuming the shell material is incompressible (ν = 0.5).
Existing dynamic measurements for the longitudinal storage and loss modulus

(effectively a dynamic and complex Young’s Modulus) are expressed in the form:
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E = E′ + iE′′, (3.48)

where the real part (E′) is the dynamic Young’s modulus and the imaginary part

(E′′) is called the loss modulus.

If equation (3.48) is compared to the lumped element expression for the stress

due to a viscosity (µ), and spherical loading is assumed, it can be seen that the stress

and effective viscosity are:

σ = µdǫ
dt
, (3.49)

µ = E′′
ω
. (3.50)

Therefore the shear modulus and shear viscosity are defined in terms of the

longitudinal storage and loss modulus as shown:

G = E′
3

& µ = E′′
3ω

. (3.51)

3.5.2 Church

Church [131] derived a model for the effective medium properties of a col-

lection of encapsulated bubbles in a fluid. For the Church model, the radius of the

bubble a and surface tension σst, becomes the radius and surface tension of the gas-

shell interface (a1, σst1), and the shell-liquid interface (a2, σst2) and contains three
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additional parameters compared to the C&P model, the shear modulus Gs, viscosity

µs, and density ρs, of the shell material. The new damping coefficient has an ad-

ditional term for the viscous damping due to the shell material, and the terms for

the viscous damping in the liquid, the thermal damping, and acoustic re-radiation

damping all contain modifications due to the presence of the shell:

δ = 4a1µl

a32ρsℵω´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
viscous liquid

+ 4Vsµs

a32a
2
1ρsℵω´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

viscous shell

+ 4µth

a21ℵω²
thermal

+ ωa2

c0(1 + ωa2/c0)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acoustic

, (3.52)

where the term Vs, and ℵ are defined by:

Vs = a32 − a31, (3.53)

ℵ = 1 + ρ − ρs
ρs

a1

a2
. (3.54)

The resonance frequency as predicted by the Church model is:

ω0 = 1

a1

¿ÁÁÁÀ3γeffpstat − 2σ1

a1
− 2σ2a

3

1

a4
2

+ 4VsGs

a3
2

(1 +Z (1 + 3a3
1

a3
2

))
ρℵ , (3.55)

where

Z = a32
4VsGs

(2σ1
a1
+ 2σ2
a2
) . (3.56)
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3.5.3 Church-Kargl

The Church-Kargl model simply applies the assumption that the effective

medium wavenumber should be used for the acoustic re-radiation damping to the

Church model, resulting in a damping coefficient of:

δ = 4a1µl

a32ρsℵω´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
viscous liquid

+ 4Vsµs

a32a
2
1ρsℵω´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

viscous shell

+ 4µth

a21ℵω²
thermal

+ k̃effa2(1 + k̃effa2)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acoustic

. (3.57)

3.6 How Many Scatterers are Necessary in Order to Have
an Effective Medium?

Relatively little has been published on exactly how many scatterers are re-

quired for effective medium theory (EMT) to be valid. In order to have a quantitative

metric we will define the mean free paths per wavelength as:

Υ = λn1/3, (3.58)

where λ is the wavelength, and n is the number density of scatterers. The assump-

tions of EMT are very similar to continuum mechanics, where it is generally assumed

that distances are large compared with the distance between molecules. The EMT

analogy would be that wavelengths are large compared to the distance between scat-

terers. The experimental evidence presented later in this document, however seems

to indicate that materials can act as effective media at wavelengths that are as small

as twice the distance between scatterers. One reason for this could be that sound
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speeds are generally reduced in bubbly liquids, and while the physical wavelength

measured may be small compared to a wavelength, the wavelengths of the scatterer-

free liquid would be much larger.
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Chapter 4

Balloons and the Effect of Elastic Shells on

Bubbles

4.1 Motivation

This chapter is dedicated to determining whether effective medium theory

can be applied to clouds of elastic shelled bubbles. While typically fish are viewed as

bubbles with a viscous shell and the elasticity of the fish flesh is generally considered

negligible, balloons serve as a very stable proxy for fish. Balloons provide stable

bubbles of almost any size and configuration, which allows much more latitude for

experimental study than using live fish or bubbles without a shell. The last chapter

ended with reviews of the Church [131] and Church-Kargl [119, 54] models, which

will be utilized in this chapter.

The first experimental study in this chapter involved resonator measurements

with precise knowledge of balloon shell thickness and volume. The pressure field in

the resonator in the presence of the balloons was recorded and the resonances were

used to extract phase speeds as described in Section 2.3. The system was then mod-

eled using effective medium theory, and compared to the experimental results. After

determining the wall thickness of the inflated balloon the only remaining sensitive

parameter was the shear modulus, Gs of the balloon rubber. The shear modulus was
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used as a fitting parameter to determine consistence between the models, and which

model can fit the data best.

The second experimental study was aimed at determining the validity of using

effective medium theory to predict attenuation through bubble clouds. Arrays of

balloons were lowered into at ARL’s Lake Travis Test Facility (LTTS), a source was

placed in the middle of the cloud, and the acoustic transfer function was recorded at

several locations away from the balloon array. Comparing the pressure power spectra

with and without the balloon array present allowed the computation of insertion loss,

IL, which was compared to the predictions of several analytical models, including

effective medium theory.

4.2 One-Dimensional Waveguide Resonator Measurements
of Balloons

4.2.1 Experimental Apparatus

A 1.98-m-long aluminum pipe was oriented vertically to create the 1-D res-

onator. The bottom of the tube was capped with a latex membrane and a block of

closed-cell foam was used to approximate a pressure release condition and support

the pipe. The inner radius was 0.1015 m and the outer radius was 0.1085 m. A Lab-

works ET-216HF shaker attached to a 3.81-cm-diameter piston was used to excite

the tube. The shaker rested on a layer of closed-cell foam which in turn rested on the

top rim of the aluminum pipe. A Reson TC4013 hydrophone was held in place by a

water-filled stainless steel sheath connected to a scanning apparatus. This scanning

apparatus allowed the hydrophone to be scanned along the length of the tube in
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order to map the modes. A schematic of the apparatus is presented in Figure 2.9

and a table of the material properties of the waveguide used in the analysis are in

Table 2.1 and Appendix G.

4.2.2 Additional Experimental Details

Balloons of various radii a, and wall thicknesses t, were tested. Table 4.1 lists

the different cases. For each day of measurement the temperature T was recorded

for the resonator and the water sound speed was calculated using the standard for-

mulation by Chen and Miller [132] which is also shown Table 4.1. The thicknesses of

the balloon walls were determined by two methods. The first method involved using

a specific gravity flask to determine both the volume and the density of the shell

material, which was then assumed to be uniformly distributed around a sphere. The

second method involved drawing a circle on the inflated balloons, measuring the di-

ameter, then measuring the area of the circle and thickness of the material when the

balloon was deflated. The area of the circle when the balloon was inflated, Ar, can

be found using Equation (4.1) whereas the area of the circle when the balloon was

deflated, A0, was determined by flattening the circle and measuring the diameter.

Ar = 2πr(r −√r2 − a2c), (4.1)

where r is the radius of the balloon, ac is the radius of the circle on the balloon’s

surface. The reference thickness for the inflated balloon, tr, can be determined from

these measurements using [133]:
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Table 4.1: Experimental conditions

test case a [cm] t [cm] N T [○C] c0 [m/s]
0 - - 0 27.2 1502.6
1 1.26 0.018 6 27.2 1502.6
2 1.26 0.018 24 27.2 1502.6
3 2.0 0.016 6 30.4 1510.2
4 2.0 0.008 6 30.4 1510.2
5 3.0 0.0036 6 21.9 1488.2
6 3.0 0.0018 6 21.9 1488.2

tr = t0A0

Ar

. (4.2)

The water in the tube was degassed before taking measurements, either

through applying a vacuum to the resonator, or heating and then cooling the appara-

tus. Then balloons were tethered with a monofilament line, evenly spaced, anchored

to the bottom of the tube with a pulley mechanism, and allowed to sit in the degassed

water until the acoustic measurements appeared to be clear of the influence of tiny

bubbles. A periodic chirp signal from 1 to 2000 Hz was sent to the shaker device

eight times for each position and the response was recorded by the hydrophone. The

hydrophone was scanned from above the free surface at the top of the tube to the

bottom of the tube using a stepper motor with 102 measurements evenly spaced

1.91 cm apart. After the data was acquired, the ensemble average of the power spec-

tral density was calculated from seven chirps at each location. The data acquisition

used here is the same as described in Section 2.8.2.
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4.2.3 Results

Both of the propagation models shown here require three additional parame-

ters compared to models for a shell-less bubbly liquid; these are the thickness, t, the

shear viscosity of the shell, µs, and the shear modulus of the shell Gs. The thickness

was determined using the area ratio method above. The shear viscosity has little

effect on the results in the range of interest and was assumed to be 5 Pa⋅s and the

rubber density was measured by means of a specific gravity flask to be 930 kg/m3.

The shear modulus for natural latex rubber can range anywhere from 1.5 to 4.8

MPa in the frequency range studied [134], and likely varies much more than that.

The shear modulus is also nonlinearly dependent on static tension, so the modulus

changes as the balloon is inflated. The effect that this uncertainty (1.5 to 4.8 MPa)

can have on the predictions of the Church and the Church-Kargl models is shown in

Figure 4.1. The prediction of the Commander & Prosperetti model [46] for shell-free

bubbles is included to illustrate the effect of the shell.

Figure 4.2 shows the depth-averaged spectra, the resulting measured phase

speed, and the predictions of three models for sound propagation through bubbly

liquids. For the the two elastic shell models, Gs was determined by a least-mean-

square fit between all the phase speed measurements below the bubble resonance

and the model predictions. The least mean square error, ⟨R2⟩, is indicated in each

figure along with the shear modulus, Gs. For the phase speeds below and near

the bubble resonance the mean square error indicated that use of the Church-Kargl

model leads to a better fit for 5 of the 6 experimental cases. These measurements

were conducted in the Aluminum resonator and all of the physical properties utilized
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Figure 4.1: Uncertainty due to imprecise knowledge of the shear modulus shown using
case 4. The range of values for phase speed produced by the Church-Kargl model
(a), and by the Church model (b). Models of Commander & Prosperetti ( ),
Church ( ), and Church-Kargl ( ), in all cases modified to include the elastic
waveguide effect.
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in this experiment (unless otherwise noted) are listed in Appendix G.

The effect of the non-ideal bottom boundary condition is visible in Figure 4.4.

For both Figure 4.3 and 4.4 an additional mode is present which appears to be

approximately a quarter wavelength. This mode can not be used to determine a

phase speed however, since there is no zero available to correct the mode number.
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Figure 4.2: Spectra (left column) and resulting measured phase speeds (right col-
umn). The circles on the spectra indicate the peaks used to calculate phase speeds,
which are shown with the symbol ☆. Models Shown are Commander & Pros-
peretti ( ), Church ( ), and Church-Kargl ( ). Also included are the shear
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Figure 4.3: Analytical model (top) and experimental data (bottom) of case 0 using
the C&P model. Amplitude colorbars are on a dB scale.

93



Frequency [Hz]

 x
/L

  
[m

/m
]

 

 

0 50 100 150 200 250 300 350

0

0.5

1 −40

−30

−20

−10

0

 x
/L

  
[m

/m
]

 

 0

0.5

1 −40

−30

−20

−10

0
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4.3 Lake Tests of Attenuation Through Bubble Clouds

4.3.1 Experimental Apparatus

A series of experiments were conducted at Lake Travis to measure the attenu-

ation of sound through a cloud of balloons, to determine the amount of insertion loss

due to placing the bubble cloud around a source, and provide base measurements to

compare with effective medium theory. A steel unistrut cage 1.22 meters wide, and

1.30 meters long and deep was fitted with a nylon netting grid to allow balloons to be

attached and is shown in Figure 4.5. The source was a Navy J-13, which is a moving

coil loudspeaker designed to operate between 30 and 3000 Hz at depths up to 20 me-

ters. During all tests the source was located at a depth of 1.11 m from the surface,

which was also coincident with the center of the cage that held the bubble cloud. The

directivity of the J-13 is approximately omnidirectional, within 5 dB up to 2500 Hz.

Measurements of the acoustic pressure in the water column were recorded at 2 meter

intervals of depth from 2 meters to 18 meters, at a horizontal distance of 11.7 meters

from the center of the bubble cloud. Linear chirps from 30 Hz to 2 kHz produced

by the J-13 were recorded by HTI-90-U hydrophones. The source signal output and

data capture were performed by a DT9837B Data Translation [135] unit. The water

depth at the source position was 19.6 m and the depth at the receiver position was

19.1 m. For the lake test all signal generation and data acquisition was performed

by a DT9837B data translation transfer function unit. Each bubble cloud consisted

of 14 Qualatex [136] balloons inflated to a radius of 4.68 cm at the surface. Three

balloon configurations were used and the locations of the balloons were recorded,

the arrangements of which are shown in Figure 4.6 and the exact balloon positions
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Figure 4.5: Photo of unistrut cage and nylon netting used to attach balloons.

are noted in Appendix G. Using the dimensions of the cage as the total volume, the

volume fraction of air at the depth of 1.11 meters was 0.26%.

The three configurations shown in Figure 4.6 will be referenced as Random,

Quasi-Face Centered Cubic (Quasi-FCC), and Dense. This is because the Random

configuration is the most evenly spread out configuration, Quasi-FCC is very close

to being Face Centered Cubic, and the dense configuration is biased toward having

more balloons toward the center.

The magnitude of the depth averaged frequency response function (FRF) is

shown in Figure 4.7 along with the FRF for each configuration, the reference level,
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Figure 4.6: Positions of balloons for the three configurations discussed. The names
of the configurations as referenced in the text are, Random, Quasi-FCC, and Dense,
from left to right respectively.

and the background noise at each receiver position. The calculations for the FRF as

the cross-spectral density of the hydrophone and source divided by the power spectral

density of the source is discussed in Appendix A. One interesting observation is that

the deeper receiver positions for cases with balloons present show higher amplitudes

than the receiver positions near the surface around 60 Hz.

4.3.2 Analysis

At each depth, the insertion loss, IL, was calculated by computing the ratio

of the FRFs before and after the balloons were put in place, and then the result was

depth averaged and converted to dB. This calculation is shown in equation:

IL = 10 log10 19
9∑

m=1

Href(f)
Hbubs, m(f) , (4.3)

where Href(f) is the FRF without balloons in the water and Hbubs, m(f) is FRF at
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the mth depth at a total of nine depths. Using the known balloon radius at the

surface, the hydrostatic pressure on the balloons and the depth adjusted radius were

calculated for the mean depth of the bubble cloud, Eq. (1.8). Using these parameters

three analytical tools were used to generate predictions of the depth-averaged IL, for

comparison with the measurements. The first and more computationally intensive

tool involved solving the coupled system of differential equations for the scattered

field of the bubbles. This solution will be referred to as the full-scattering solution

(FS) and is discussed in Appendix D. The second tool involves utilizing the attenua-

tion per meter predicted by the Church model and multiplying it by the distance the

acoustic wave travels through the bubble cloud from the source to the receiver, and

is referred to as effective-medium theory (EMT). The EMT relations for free bubbles

and bubbles with shells are described in detail in Sections 3.3.3 and 3.5.2 respectively.

The third tool is to couple EMT with an analytical model for the acoustic reflections

within the bubble cloud and is referred to as reflection EMT or REMT.

In order to derive the REMT solution, the bubble cloud was assumed to

be represented by a sphere of the same volume, volume fraction of air, and mean

bubble radius as the experimental configurations, with radius rcloud. At the center

of the effective medium sphere is another small sphere which will be defined to

have a velocity source condition, namely the radial component of velocity at the

source radius rsource will be u(r)(t; rsource) = u0ej(ωt). All propagation is assumed to

be spherical, inward and outward traveling waves are assumed in the interior of the

sphere, and a transmitted outgoing traveling wave is present outside the bubble cloud

with the properties of clear water. This system of equations is then solved for the
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amplitude of the transmitted wave as a function of frequency. IL was then calculated

in the same manner as it was for the experimental data. The derivation of this model

is discussed in Appendix E.

4.3.3 Results

The measured IL can be seen in Figure 4.8. There are several noteworthy

features of the data set. First, it is important to note that although the maximum

measured IL was about 30 dB, in reality, the transmitted signal was lost in the noise

floor, this means that the maximum IL might actually be higher. In other words, the

maximum attenuation achieved by the bubble cloud may have reduced the transmit

signal to a level below the noise floor, hence obscuring the maximum amount of

insertion loss. The resonance frequency of the balloons tested should be around 76

Hz, according to a prediction based on the shell free bubble of equivalent volume.

Below this frequency there is a significant negative peak, or amplification, in the

IL. This amplification is believed to be due to acoustic reflections within the bubble

cloud.

The model predictions can be seen in Figure 4.9. The sub-resonant amplifi-

cation is predicted by the full-scattering model, however the amplitude is lower than

in the experimental results. The maximum level of IL is within 1 dB for the Random

case, however in the other two cases the IL is approximately 13 dB greater in the

full-scattering model. This difference could be due to the noise floor issue previously

discussed, but is significantly less than the difference between the experimental mea-

surements and the Church model, which over predicts the measurements by as much
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as 48 dB.

Figure 4.10 compares each experimental configuration with each analytical

tool. FS stands for the full scattering model, which is the most computationally

intensive and requires knowledge of the bubble geometry, but best captures the IL

profile. EMT is the loss predicted by effective medium theory over the effective radius

of the bubble cloud, this method captures the location of the IL peak, but does not

predict and sub-resonant amplification. REMT accounts for reverberation within the

bubble cloud and actually comes closer to predicting the amplification peak than the

full scattering theory, however difference from the full-scattering theory prediction is

partly due to the fact that both EMT and REMT assume a spherical bubble cloud.

4.4 Summary and Conclusions

This chapter involved the comparison of experiments involving sound prop-

agation though balloons with effective medium theory. Church and Church-Kargl

were compared measured pressure power spectra in a 1D aluminum resonator. The

shear modulus was used as a fitting parameter for both models. The Church-Kargl

generally provided a better fit and achieved an optimal fit an lower values of shear

modulus.

Measurements of sound propagation through balloons was conducted at Lake

Travis. Full-scattering modeling matched the experimental insertion loss extremely

well, however using an effective medium model which took into account the acoustic

reflections within the bubble cloud also provided reasonable agreement and predicted

the amplification region observed at frequencies lower than the individual balloon
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for all three balloon configurations.
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resonance.

An important observation from both experiments is that the effective medium

theories universally over-predict the attenuation above the individual bubble reso-

nance frequency with respect to the experimental measurements.
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Chapter 5

Scattering from an Effective Medium

5.1 Introduction

As useful as effective medium theories are to transform a system with many

degrees of freedom into one with far fewer parameters, another leap needs to be

made in order to make this information useful. In the ocean it is rare to directly

observe phase speed and attenuation tests though an object. It is far more common to

observe the scattering from an object. Thus in order to be ultimately useful, effective

medium theory has to be applied in such a way to produce a useful prediction of

the characteristic scattering from a target. In this chapter we will take the typical

approach from underwater acoustics of indicating the scattering amplitude, SA, from

an object in terms of its angle-dependent differential scattering cross-section, σ(θ, φ)
defined by:

SA(θ, φ) = 10 log10 [σ(θ, φ)] , (5.1)

σ = r2Iscat(r, θ, φ)10αr/10
Iinc

, (5.2)

where r is the distance from the scatterer to the receiver, Iscat(r, θ, φ) is the intensity
of the scattered signal at the receiver, the term 10αr/10 accounts for attenuation
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between the scatterer and receiver, and Iinc is the intensity incident on the scatterer.

σ(θ, φ) has units of m2 and is equivalent to the backscattering cross-section when

θ and φ are π and 0, respectively [17], at that θ = π SA is equivalent to the target

strength, TS.

5.2 Scattering from a Single Bubble

The differential scattering cross-section for an air bubble is:

σ = ∣g∣2 = RRRRRRRRRRRR
a

(ω2

0

ω2 − 1) + iδ
RRRRRRRRRRRR
2

, (5.3)

where the scattering coefficient for an air bubble given by Eq. (3.23) is used.

For free bubbles the expressions for resonance frequency, ω0, and damping, δ,

are taken from Commander and Prosperetti [46], and for encapsulated bubbles the

scattering coefficient and associated terms from the Church model [131] are used, see

Section 3.5.2.

5.3 Scattering from a Fluid Sphere

The functional model for scattering from a fluid sphere is derived in An-

derson’s classic 1950 paper on the subject [137]. The boundary conditions on the

sphere’s surface are matched to a plane wave incident field in terms of spherical

harmonics. The solution in terms of a complex, angle dependent, scattering coeffi-

cient after applying a large kr approximation for the Hankel function (In order to

eliminate distance dependence) is:
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ganderson(θ) = pscat(r, θ)re−i(ωt−kr)
pincident

= i
k

∞∑
m=0

Pm(cos(θ))(2m + 1)Dm, (5.4)

where Pm(cos(θ)) are the Legendre polynomials and Dm contains spherical Bessel

functions jm, spherical Hankel functions hm, and their derivatives j′m, h
′
m, and is:

Dm = j′m(k1a)jm(ka) − ghjm(k1a)j′m(ka)
j′m(k1a)hm(ka) − hgjm(k1a)h′m(k1) , (5.5)

where g = ρ1/ρ, h = c1/c, k1 = k/h, the subscript 1 indicates properties of the sphere

and absence of subscript refers to properties of the fluid surrounding the sphere.

5.4 Comparison of Scattering from an Effective Medium and
Bubble Cloud

In this section two of the analysis techniques previously discussed in Sec-

tion 4.3.2 will be employed for various bubble distributions. The first will be the FS

model (discussed in Appendix D) for free bubbles and the second will be a combina-

tion of the C&P effective medium model and Anderson’s scattering model, and will

be referred to as FS and A-EM respectively. Figure 5.1 compares the geometry of

these two models. In the FS model a random distribution of bubbles with a given

bubble size distribution and volume fraction of air is chosen. That same bubble

size distribution and volume fraction is used to calculate the effective medium sound

speed from the Commander and Prosperetti model [46], which is then used as the

fluid sphere’s properties in Anderson’s model.
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Figure 5.1: Geometries for scattering from (a) a sphere of randomly placed scatterers
and for (b) a sphere of effective medium.

Recently Raveau and Feuillade compared these two approaches and made two

assertions [138]. The first is that generally these approaches show good agreement

in the forward scattering direction, but not in the back scattering direction. The

second was that the models agree at low frequencies, but diverge when the wave-

length λ is smaller than four times the average spacing s between scatterers. The

reason that forward-scattering agrees better than back-scattering stems from the

phase dependence of reflection, which is shown diagrammatically in Figure 5.2.

Figure 5.3 and 5.4 show the comparison of these models in a mono-disperse

spherical cloud of radius 1 m with 100 bubbles while varying the bubble radius.

The randomization was accomplished by generating a random radius and angles

in spherical coordinates so that there is in equal likelihood that the bubble will be

contained at any element of volume. Then the bubble position was checked to ensure

none of them are within 3 radii of another bubble. Bubble locations not meeting
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this criteria are removed and new locations are generated. This continues until a

complete set of 100 randomized bubble locations is achieved. The Matlab code to

used for the random distribution is in Section A.3.

Each plot is an is marked with a vertical dashed line at the frequency where the

wavelength is equal to 4 mean free paths (Υ = λ/s = 4). Both forward-scattering and

back-scattering for the FS and A-EM models agree well below Υ = 4, usually within

a dB below the individual bubble resonance frequency f0 and within 5 dB near f0.

Above the Υ = 4 criteria the back-scattering of A-EM diverges quickly from the FS

solution and us under-predicted by more than 20 dB. The forward-scattering on the

other hand is generally in agreement between the models to the high frequency limit

and only differs significantly around f0. As the size of the bubble radius a decreases

f0 increases and consequently the mean free paths at resonance Υ0 decreases. As Υ0

decreases the polar pattern for the FS solution becomes less symmetric, whereas the

A-EM is based on an assumption of symmetry.

In order to get an idea of how much variation occurs due to fish movement,

Figure 5.5 displays the result of 100 independent realizations of 100 random bubble

positions and the mean value. An actual school the fish generally maintain a regular

spacing and are not distributed in a purely random fashion, however this provides

the range of variation. It is clear that the distribution is different for FS and BS.

Figure 5.6 shows the FS and BS histogram probability density functions (PDFs)

at four frequencies, each with 20 bins divided across the result range. It is clear

from the PDFs that there is much less variability in the forward scattering, and that

the distribution of the back-scattering SA is not normal for frequencies higher than
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Figure 5.2: This simple ray diagram illustrates why back-scattering is much more
sensitive to the positioning of the individual scatters, since the phase of each scatterer
plays a larger role. This figure is adapted from Feuillade and Raveau [139].

the individual bubble resonance. This appears to be because the nulls can change

significantly, leading to a large likelihood the SA will be near the mean, but a definite

chance that the value could be 60 dB lower.

The directivity of one case at several frequencies is shown in Figure 5.7. Here

the ensemble average of the SA is taken from the 100 realizations shown in Figures

5.5 and 5.6. In these plots, the trend that the two methods agree below the individual

bubble resonance frequency and toward forward scattering are apparent. While

Figures 5.3 and 5.4 show that the scattering from one realization of the FS model

is not symmetric, Figure 5.7 shows that the average value of many realizations is

symmetric.

This can be repeated for the balloon configurations studied in Section 4.3. The

results for each bubble configuration is shown in Figure 5.8. The FS model shows
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Figure 5.3: The FS scattering amplitude (0○) and BS scattering amplitude (180○)
for various values of 10.6 < Υ0 < 15.9 and the directivity of the SA at the individual
bubble resonance frequency, where a is the radius of the mono-disperse bubbles. The
vertical dashed line represents a value of λ/s = 4.
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Figure 5.4: The FS scattering amplitude (0○) and BS scattering amplitude (180○)
for various values of 2.65 < Υ0 < 7.3 and the directivity of the SA at the individual
bubble resonance frequency, where a is the radius of the mono-disperse bubbles. The
vertical dashed line represents a value of λ/s = 4.
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Figure 5.5: The FS scattering amplitude (0○) and BS scattering amplitude (180○)
with 100 randomized arrangements of 100 mono-disperse bubbles with a radii a =
0.006 m and Υ0 = 7.93 within a sphere of radius 1 m at atmospheric pressure. The
four verticle lines indicated the frequencies at which the PDFs are shown in Figure
5.6, and are 1/2f0, f0, 2f0, and 4f0.
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that the collective mode resonates at a higher frequency than A-EM predicts. This is

to be expected since the geometry of cage was a cube, while A-EM as implemented

here assumes a sphere. The Random case and the Dense case mach most closely

with A-EM. Since the number of bubbles and bubble sizes are the same for each

configuration the A-EM plots are identical. The dip in the back scattering above

the individual bubble resonance frequency is predicted by both the FS and A-EM

Models.

For the test conditions presented in Chapter 6, the ratio Υ0 = λ0/s ranges from
6.0 to 8.5, which implies according to Raveau and Feuillade’s hypothesis, effective

medium scattering should be valid for these densities.
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Figure 5.8: The FS scattering amplitude (0○) and BS scattering amplitude (180○) for
bubble configurations from Section 4.3.
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Chapter 6

Speed of Sound within Model Schools of Danio

Rerios

This chapter presents measurements of the sound speed through schools of fish

using the resonator method. The method of analysis is the same as for the balloons

discussed in Section 4.2. While insight into effective medium theory is possible

by using balloons and freely rising bubbles, the ultimate interest is in determining

the bio-acoustic relevant factors for fish schools. While information regarding the

scattering of fish schools can be made at sea, the interest here is the application

and development of a laboratory measurement of the acoustic properties of fish.

Laboratory measurements allow for increased knowledge of important parameters

such as fish species, size, orientation, and biology, that aren’t accessible in the field.

6.1 Determination of Bio-Acoustic Parameters

In order to extract important biological data, micro-computed x-ray tomog-

raphy imaging scans (CT scans) were performed on multiple batches of Danio rerio

after testing. The intention was to determine the volume of the swim bladder and

fish flesh. Although not utilized in this study, the skeletal structure was also resolved.

A small subset (12 of 48) of the fish in the acoustic study were scanned, and for each
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Swim bladder volume [m3] Fish body volume [m3] Length [m]
1.27031 × 10−8 2.30939 × 10−7 -
1.32834 × 10−8 2.16233 × 10−7 -
1.41937 × 10−8 3.0026 × 10−7 0.0305
1.19829 × 10−8 2.21701 × 10−7 0.0325
1.9803 × 10−8 3.50581 × 10−7 0.0338
1.5259 × 10−8 3.58723 × 10−7 0.0321
1.88127 × 10−8 4.31611 × 10−7 0.0371
1.05275 × 10−8 1.95627 × 10−7 0.0298
2.47594 × 10−8 4.14205 × 10−7 0.0322
4.32598 × 10−9 2.26313 × 10−7 0.0361
1.62929 × 10−8 3.06988 × 10−7 0.0295
9.50288 × 10−8 2.66979 × 10−7 0.0333

Table 6.1: Swim bladder and fish volume (determined from CT scan imagery) and
measured length for a subset of the fish used in acoustic tests.

fish the length, volume of swim bladder, and total body volume were cataloged. The

CT scan was performed at low energy (60kV) and the reconstructed images had a

voxel size of 31 micrometers. The swim bladder feature was extracted by threshold-

ing the image to provide a clear distinction between the fish flesh and the air filled

swim bladder. Example slices from the results of a CT scan are shown in Figure 6.1.

The average swim bladder volume was 1.429 × 10−8 m3 and the standard deviation

was 5.09 × 10−9 m3 (35.6%). The individual results are presented in Table 6.1.

6.2 Experimental Method

The experimental apparatus for use with live fish was significantly more com-

plex than for the balloon measurements and followed the approved IACUC protocol

AUP-2010-00176 (shown in Appendix I). The first complicating factor was to pro-
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Figure 6.1: Slices taken from a CT scan of one of the fist tested. Blue is the swim
bladder, red is the skeletal structure, and light gray is the fish flesh.

vide oxygenated water to the fish during testing. This is significantly different from

the protocol for testing inanimate objects, which calls for the use of degassed water

in order to remove any tiny bubbles that might affect the test results. In order to

provide a continuous flow of oxygenated water a small tube was inserted through

the foam layer at the bottom of the tube, and an overflow catchment was added to

the top of the tube. The tube was filled with degassed water prior to testing and

then oxygenated water was pumped into the bottom of the tube. The water flowed

over the rim at the top of the tube into the catchment, where it entered a tube

that returned it to the reservoir. The reservoir was a conventional fish tank with an

aerating filter. A schematic of this process is represented in Figure 6.2 and a photo

of the resonator and reservoir is shown in Figure 6.3.

The second complication comes from the fact that Danio rerios are a schooling

species of fish. When their tendency for schooling is combined with the unfamiliar
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Figure 6.2: Schematic of resonator oxygenation. The reservoir in the text is not
shown.
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Figure 6.3: Photo of resonator apparatus with catchment and fish reservoir.
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environment of a vertical tube the fish quickly form a tight school at the very bottom

of the tube, which results in an inhomogeneous sound speed within the tube, and

causes failure of the resonator method. A means to separate and evenly distribute

the fish had to be devised. The dividers used to do this presented the additional risks

of modifying the acoustic field, and providing extra surfaces on which small bubbles

could be trapped or could form. The goal of the design was to minimize these

complications. The final design involved creating cylinders out of thin plastic sheets

and affixing them with either epoxy or electrical tape so that their outer radius was

just smaller than the inner radius of the glass tube. A fine mesh was then attached

to the top of the cylinder with hot glue and two monofilament lines were attached

to the sides in order to suspend the dividers in the tube. The bottom divider was

attached to a lead weight. One of these dividers in place within a resonator with a

fish is shown in Figure 6.4. Spectra were taken for the water-filled tube with and

without the resonator dividers and are shown in Figure 6.5. The presence of the

cages damped the resonances slightly and reduced the resonance frequency of some

peaks a minor amount; however, no significant difference was noted. The average

relative error between sound speeds measured with and without dividers is 1.3%.

The estimated sound speed error ǫc due to uncertainty in the water column length

ǫL and the finite frequency resolution ǫf was estimated with the expression:

± ǫc = ±2(Lǫf + fǫL + ǫfǫL)/meff , (6.1)

where meff is the effective mode number. Equation (6.1) is not plotted because it is

below 1% for all cases.
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Danio rerio

meshcured glue tape

plastic cylinder

Figure 6.4: Picture of resonator divider. The cured glue and the remains of dried
water drops may look like bubbles in this photograph, but the degassed water initially
used inside the tube effectively removed any unwanted air bubbles from the system.
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Glass properties Short resonator Long resonator
cc = 5584.4 m/s L = 0.6121 m L = 1.5270 m
cs = 3376.1 m/s b = 0.0265 m b = 0.0309 m
ρ = 2199.4 kg/m3 d = 0.0347 m d = 0.0400 m

Table 6.2: Material properties of the borosilicate glass resonators

Four rounds of fish testing were conducted. The first three rounds used a

resonator with the properties of the short resonator shown in Table 6.2, while the

last round of testing used a larger resonator with the same glass properties and

the dimensions stated in Table 6.2. The shear and compressional sound speed used

for the glass tube wall material were determined by calibration using experimental

measurements of a water-filled glass resonator. The sound speeds were adjusted until

a best fit from the L&S disperion relation was found. The inner b and outer d radii

were calculated from multiple measurements of the inner and outer diameters.

6.3 Determination of Fish Equivalent Bubble Volume

While it is possible that the resonance frequency of an individual fish is higher

due to the fish flesh or tension in the muscles surrounding the swim bladder, in this

study this simplification is made that the resonance frequency of a fish is that of a

spherical bubble with the equivalent volume as the swim bladder. In the bubble size

range studied, Minnaert’s resonance frequency [69] is a reasonable approximation.

Because there are no known studies of the functional relationship between the

length of a Danio rerio and the volume of the swimbladder, it is assumed that the

linear dimensions of an adult swimbladder are proportional to the length of the fish.
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Based on this assumption and the volumes and lengths measured of the set of fish

that were CT scanned, the empirical relationship of Equation (6.2) is used based on

a least mean-square errors fit.

V = (7.2722 × 10−5L)3. (6.2)

The mono-disperse bubble size used in the model for Figure 6.9 was deter-

mined by applying Equation (6.2) to the average of the lengths presented in Table 6.3.

Figure 6.6 shows that this functional relationship has a weak correlation. There are

a myriad of reasons that there is little evidence of a functional relationship between

swim bladder volume and fish length. Firstly it was not possible to conduct the

CT scans immediately after testing had occurred. In all cases after euthanization

the fish were refrigerated and delivered to the CT facility the next morning. This is

due to the limited time windows for testing and the fact that the CT scan facility

was geographically separate from the site where the resonator tests were conducted.

Even if direct transportation had been used the CT scan facility would have closed

for the evening. Another reason for the lack of correlation is due to the fact that fish

can voluntarily inflate and deflate their swim bladder. There was not time to let the

fish sit for a long time and re-equilibriate between testing and euthanasia. Despite

this weak fit this relationship is still used because it was not possible to get swim-

bladder volume measurements for all of the fish, while it was possible to measure

their length. Gong et al. [39] analyzed weight and length of Atlantic herring and

found a that the weight of herring varies as the length to the power of 3.35. There

was also considerable scatter in their data, which is included here as Figure 6.7.
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Figure 6.6: Fish length and swim bladder volume.

Gong et al. [39] also mention that the swim bladder volume is typically proportional

to weight in order for fish to maintain neutral buoyancy. How constant of proportion

varies with different collections of fish. The mass of the fish were not measured in

this study.

6.4 Sound Speed as a Function of School Density

The four rounds of fish testing took place on the 14th of December, 2011,

the 19th of December, 2012, the 8th of August, 2013, and the 17th of December,

2013. The first round of testing occurred without dividers and consequently the

majority of the fish resided at the bottom of the tube with a few fish occasionally

swimming toward top of the resonator for short periods of time. The second round

of testing involved testing two types of dividers. Both types of dividers turned out
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Figure 6.7: Figure from Gong et al. [39] showing the experimentally determined
Atlantic herring length-weight relationship.
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to capture stray bubbles extremely easily and the extra damping for excess bubbles

masked the measurements. From these trials, several lessons were learned about the

divider design which were incorporated into the third round of testing. The third

round was successful, aside from the fact that only one resonator mode was present

below the individual fish resonance frequency. This motivated the move to a much

larger tube for the last round of testing. Even with the dividers, getting an even

distribution of fish in the resonator proved difficult. Danio rerios are very active and

do not appreciate being in an enclosed space. As such the fish constantly try to swim

around the edge of the dividers and sometimes they succeeded. The fish also wiggle

as much as possible when being deployed into or recovered from the apparatus, which

prompted the use of netting all around the resonator for the inevitable cases where

a fish launched itself out of the resonator or to the ground when being handled.

The results of the third round of testing are shown in Figure 6.8. The number

of clear resonance modes visible below the individual fish resonance frequency ranges

between 1 and 3 and the number of fish lengths per mean free path ranged from 3.3

to 1.7. For some reason the fish were very calm during this test and the approximate

fish positions throughout each test are included as a subset schematic in each graph.

The bubble size subsequently used to model this case was based on the equivalent

spherical radius of the average swim bladder volume as determined by CT scans of

the fish. Three of the CT scans showed a vertical division within both chambers of

the swim bladder. If this occurred the total swim bladder volume was used. The

bubble size distribution for Figure 6.8 is considered mono-disperse with an equivalent

spherical volume to the average swim bladder volume from the CT scans. The
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0.0128 0.0132 0.0113 0.0111 0.0100
0.0105 0.0109 0.0119 0.0122 0.0118
0.0108 0.0104 0.0098

Table 6.3: Lengths of the fish in the fourth round of testing in meters.

effective medium model for free bubbles (see Equations (3.33) and (3.34)) was used

for comparison with model parameters states in Appendix G.

The sound speed dispersion plot for the fourth round of fish test is shown in

Figure 6.9. The fish in these tests were much more active and consequently were

at different positions throughout the test. The fish densities for these cases ranged

from 8.6 to 6.1 fish lengths per mean free path. Since there were no CT scans for this

experiment and the fish size was significantly smaller than the prior test, the swim

bladder size and effective radius was extrapolated as discussed in Section 6.3. The

lengths of the fish used in the fourth round of fish testing are presented in Table 6.3.

The average length was used to determine the swim bladder volume.

The movement of individual fish can affect the effective sound speed inside the

tube. Each case was sampled for a number of 1 second time segments. The number

of time segments for each case are [33, 33, 38, 232, 51, 104], respectively for [0, 0, 5,

8, 11, 14] fish in the tube, respectively. The eight fish case was let run for more than

twice the length of any other case and shows much greater variation. This suggests

that future tests require a much larger measurement period. Figures 6.10 and 6.11

show the resonator measurements for each case as function of time. Each dot in the

figure represents the peak of a resonance in that time segment as it is being tracked

across time. The motion of the fish changes the effective medium properties, which
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Figure 6.8: Fish school sound speed measurement in 0.6121 m resonator. The figure
at the lower right of each graph indicates the approximate position of the fish when
the measurement was taken. The free bubble effective medium model (C&P) was
used and is plotted for comparison.
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Figure 6.9: Fish school sound speed calculation in 1.5270 m resonator.
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causes variation in the resonance frequencies. The shift in the resonance frequencies

was used to estimate the variation in sound speed due to the fish. This variation is

shown in Figure 6.12 for the eight fish case. This case was chosen because it was

the only experiment of sufficient length to capture large variations. The measured

phase speed has been normalized by the mean value. The first mode has the least

variation, which is expected since any fish movement would be smaller relative to a

wavelength. The largest difference was ±5.6% variation from the mean value.
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(b) Water filled tube with cages and oxygenated water flowing, but no fish.
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Figure 6.10: Variation in resonances due to fish movement during the test. The
spectrum for the first time segment indicates the peaks that are tracked and the
color scale (left), The spectrum as a function of time shows how the tracked peaks
change (right).
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(a) Water filled tube with eight fish.
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(b) Water filled tube with eleven fish.
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(c) Water filled tube with fourteen fish.

Figure 6.11: Variation in resonances due to fish movement during the test. The
spectrum for the first time segment indicates the peaks that are tracked and the
color scale (left), The spectrum as a function of time shows how the tracked peaks
change (right).
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Figure 6.12: The changes in phase speed as a function of time for the eight fish case.
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Chapter 7

Summary and Future Work

The purpose of this work was to increase the understanding of the acoustic

response of fish. Fish are an important biological scatterer and the primary contrib-

utor to the deep scattering layer. Improved knowledge of the acoustic response of

fish will allow more accurate classification of the abundance, type, and size of fish

when performing acoustic surveys, which would be an invaluable advance for the

field of fishery acoustics. These advances would also aid in the classification of po-

tential threats for defense applications and specifically the reduction in false threat

detection due to the presence of fish for active sonar applications.

Despite years of study there is still an inherent uncertainty in available mea-

surement datasets that is hard to quantify and these measurements have been un-

able to validate existing competing predictive models. In order to begin to address

this deficiency, laboratory measurements of sound speed and attenuation have been

conducted. The advantage of laboratory measurements lies in the ability to have

precise control of the parameters, such as bubble size, bubble position, and number

of bubbles. Laboratory measurements also allow better estimates of the uncertainties

present.

Sound speed measurements of elastic-shelled bubbles and model fish schools
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composed of real but artificially contained fish were conducted using a resonator tech-

nique. Testing of elastic-shelled balloons allowed investigation of the mode shapes

present in the resonator and validation of the technique. Corrections were needed to

account for the elastic waveguide effect of the resonator, which allowed sound speeds

for free space to be calculated from the measured phase speed. The elastic waveguide

corrections also allowed for waveguide sound speeds to be calculated from free field

models in order to predict the acoustic field in the resonator. Spatial scans allowed

characterization of the modal shapes at each resonance.

Two unanticipated phenomena were observed. When the sound speed through

encapsulated bubbles that exhibited strong positive and negative dispersion was be-

ing measured, particular standing wave patterns were found both above and be-

low the individual bubble resonance frequency, indicating that the first few acous-

tic modes (half-wavelength, two half-wavelengths, three half-wavelengths) occurred

twice at different frequencies simultaneously. Secondly, at low frequencies the foam

layer that had previously provided a reasonable approximation of a pressure release

boundary was coupling to the system, causing the nodes to shift away from the

boundary resulting in an over-estimation of the phase speed. The cause for the cou-

pling was the reduced acoustic impedance of the bubbly liquid. Compensation for

this was achieved by noting the location of the last node of each mode and adjusting

the phase speed calculation accordingly. The measurements of elastic-shelled bubbles

also revealed that the rubber shell material stiffened as the inflation was increased,

a result that while anticipated does not have an accurate predictive model.

Acoustic resonator sound speed measurements of fish were conducted and
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agreed unexpectedly well with the effective medium model for air-bubbles with no

shell, which indicted that the fish flesh and swimbladder morphology for the species

tested (Danio rerio) had little effect on the sound speed. The size of the bubbles

for the model was determined through analysis of micro-computed x-ray tomogra-

phy imaging scans (CT scans) of the fish used in the acoustic tests. Fish motion

during the tests had a significant impact on the sound speed measurements, causing

variations up to ±5.6% in one case. One can imagine both beneficial and detrimental

effects of this acoustic variation. If the level of variation correlates with species, this

effect could be exploited for classification purposes. Alternatively, variation could

potentially confound abundance estimates. More work is required to fully understand

the impact of the observed sound speed variation.

Insertion loss measurements of a model school composed of elastic-shelled

bubbles was performed at UT Austin’s Lake Travis Testing Station. This allowed

precise knowledge of the bubble locations relative to the source and receiver. The

measurements were compared to a full scattering model, which took into account the

positions of each bubble and considered all orders of scattering between the bubbles,

and an effective medium model that treated the bubble cloud as a uniform sphere

with effective medium properties. Both models predicted the observed amplification

effect below the individual bubble resonance frequency and the high insertion loss

observed above that frequency, however effective medium theory over predicted the

insertion loss by up to 45 dB whereas the full scattering model was within a few

dB for one bubble position arrangement and 15 dB for the other two. Both models

under-predicted the amount of amplification observed.
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The work is brought full circle by investigating the predicted scattering from

an effective medium. Here effective medium theory was compared to the full scatter-

ing solution. The results indicated that the effective medium theory only provides

accurate back-scattering estimates if the wavelength of ensonification is greater than

four times the mean spacing between fish, which verifies the findings of Raveau and

Feuillade [138]. Forward-scattering measurements on the other hand provide accu-

rate predictions for all frequencies except for those immediately around the individual

fish resonance frequency or a collective resonance of the fish school.

The techniques reported here were successful in achieving the primary goal

by providing experimental measurements with sufficient knowledge of the measure-

ment uncertainty to quantify the amount of variation in sound speed and provide

validation and comparison of predictive models. Repeating these measurements for

various species of interest and expansion to include multiple scattering measure-

ments of model fish schools composed of both real and artificially contained fish can

be performed to provide even further insight into the acoustic response of fish. Other

beneficial extensions of this work involve measuring the sound speed of model schools

over longer time periods in order to determine if there is a quantifiable effect from

the fish acclimating to the apparatus.
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Appendix A

Statistical and Spectral Methods and Matlab

Code

This appendix is provided in order to establish the statistical and spectral

conventions used in this study. It will refer to the analysis of two time series of

data with an input output relationship, x(t) and y(t), respectively. This section also

contains content that is designed as a primer in the application of spectral analysis

for the Austin Acoustical Society of America student chapter.

A.1 Statistics

There are a few fundamental statistical definitions that need to be presented

before discussing spectral methods.

Mean

The definition of the arithmetic mean x̄ for a signal of duration T is:

x̄ = 1

T
∫ T

0
x(t)dt. (A.1)

When cast in terms of a discrete series of N values xn, it becomes:
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x̄ = 1

N

N∑
n=1

(xn). (A.2)

Variance

The variance of a signal is the average of the squared difference between the

instantaneous amplitude and the mean amplitude. For physical systems is often

related to the signal power. For a continuous signal of duration T it is defined as:

Var(x) = 1

T
∫ T

0
[x(t) − x̄]2 dt. (A.3)

When cast in terms of a discrete series of N values xn, it becomes:

Var(x) = 1

N

N∑
n=1

[(xn − x̄)2]. (A.4)

A.2 Spectral Methods

Fast Fourier Transform (FFT)

The Fourier transform is an analytical tool that transforms time domain sig-

nals into the frequency domain, and is defined as:

X(ω) = ∫ ∞

−∞
x(t)e−jωt dt, (A.5)

where ω = 2πf is angular frequency. It is impossible to capture a signal for all time,

so for discrete signal of finite time the discrete Fourier transform is used:
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Xk = N∑
n=1

(xne−j2πk(n−1)/N), (A.6)

where in this equation k is an element of the integer set, and due to the periodicity

of the discrete Fourier transform is generally evaluated on the range [−N/2,N/2−1]
if N is even and [−(N − 1)/2, (N − 1)/2] of N is odd.

The FFT is an efficient numerical implementation of the discrete Fourier

transform and its inverse and is most efficient when N = 2N, where N is a natural

number. The FFT is properly implemented in Matlab by multiplying the function

fft by the sampling interval dt:

N = 8; % Number of samples [#]
dt = 0.1; % Sampling interval [s]
T = dt * N; % Total sampling time [s]
df = 1/(dt * N); % Frequency interval [Hz]
x = randn(N,1); % Random values
X = fft(x) * dt; % FFT of random values.

Power Spectral Density (PSD)

The PSD is used to describe the distribution of a time signal’s variance over

the frequency domain and is sometimes also called the autospectra or autospectral

density function. It should not be confused with the energy spectral density which has

an amplitude that will increase with measurement duration. The PSD is also usually

described in terms of an ensemble average. Assume that the total measurement of

x(t) with a duration Tr is stationary (A function whose joint probability distribution

does not vary with time. This is a requirement for using the the Fourier Transform)
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and has a zero mean (x̄ = 0). This record is divided into nd contiguous segments

which each have a duration T . The two-sided PSD is defined as:

Sxx(f) = 1

ndT

nd∑
n=1

[X∗n(f)Xn(f)], (A.7)

where Xn(f) is the FFT of the segment xn(t) and ∗ indicates a complex conjugate.

One of the convenient features of the properly scaled PSD is that its integral is equal

to the variance of the original signal due to Parseval’s theorem. The PSD can be

calculated in Matlab and Parseval’s theorem verified as:

N = 8; % Number of samples [#]
dt = 0.1; % Sampling interval [s]
T = dt * N; % Total sampling time [s]
df = 1/(dt * N); % Frequency interval [Hz]
x = randn(N,1); % Random values
X = fft(x) * dt; % FFT of random values.

Sxx = conj(X). * X/T; % PSD

Var = sum(conj(x). * (x))/N; % Variance calculated from the time signal

VarPSD = sum(Sxx * df); % Variance calculated from the PSD

RatioCheck = VarPSD/Var; % This value should always be 1

Cross-Spectral Density (CSD)

The CSD is very similar to the PSD but deals with the relationship of the

power between both signal x(t) and signal y(t). It is implemented in this study

using:

145



Sxy(f) = 1

ndT

nd∑
n=1

[X∗n(f)Yn(f)]. (A.8)

Frequency Response Function (FRF)

The FRF is also some times referred to as a transfer function, though the

FRF specifically refers to the ratio of a CSD to a PSD, whereas the transfer function

is often simply the ratio of the Fourier transforms of two signals. The FRF is:

H(f) = Sxy(f)
Sxx(f) . (A.9)

Coherence

The coherence is a good metric for whether the energy in an output signal is

linearly related to the input signal. It is defined as:

γ2c = S∗xySxy

SxxSyy

, (A.10)

where Syy is the PSD for signal y(x).
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A.3 Random Distribution Matlab Code

a bub = 0.006; % radius of bubbles [m]
r1 = 1; % radius of bubble cloud [m]
NumBub = 100;

x bub = zeros(NumBub,3);
for ii = 1:NumBub

k = 0;
while k == 0;

count = 0;
% random point in spherical coordinates
r = (rand)ˆ(1/2) * r1;
theta pop = rand * 2* pi;
phi = acos(2 * rand −1);

% convert to cartesian coordinates
x bub(ii,1) = r * cos(theta pop) * sin(phi);
x bub(ii,2) = r * sin(theta pop) * sin(phi);
x bub(ii,3) = r * cos(phi);

% check if new bubble is within 3 radii of other bubbles
d = sqrt((x bub(1:(ii −1),1) −x bub(ii,1)).ˆ2 + ...

(x bub(1:(ii −1),2) −x bub(ii,2)).ˆ2 + ...
(x bub(1:(ii −1),3) −x bub(ii,3)).ˆ2);

if any(d <3* a bub)
count = count + 1;
if count == 1000

error( 'unable to find random position after 1000 ...
attempts' )

end
else

k = 1;
end

end
end
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Appendix B

Elastic Waveguide Correction

The model used to describe sound propagation in a cylindrical elastic waveg-

uide was originally derived by Del Grosso [58] and later put into a more intuitive

form by Lafleur & Sheilds [59]. This model applies to an elastic cylinder of inner

radius b and outer radius d made of a material with a compressional sound speed

of cc, a shear sound speed of cs, and density ρw. The liquid that fills the resonator

is assumed to have a sound speed c0, and density ρl. The phase speed for the mth

axisymmetric mode of the entire waveguide system is defined as c0m. The geometry

of the system is shown in Figure B.1.

Del Grosso assumed a coupled system with axisymmetric waves in both the

elastic shell and the liquid. The axial SL
z (r, z; t) and radial SL

r (r, z; t) components of

Figure B.1: Adapted from Lafleur & Sheilds [59]. Coordinate system used to define
propagation in a liquid filled elastic tube.
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particle displacement in the liquid are defined as:

SL
z (r, z; t) = iφ0q0mJ0(rX0m/b)ei(q0mz−ωt), (B.1a)

SL
r (r, z; t) = −(φ0X0m/b)J1(rX0m/b)ei(q0mz−ωt), (B.1b)

and the axial SW
z (r, z; t) and radial SW

r (r, z; t) components of particle displacement

in the wall are defined as:

SW
z (r, z; t) = {iq0m[AJ0(rPm) +BY0(rPm)]

+ Tm[CJ0(rTm) +DY0(rTm)]}ei(q0mz−ωt), (B.2a)

SW
r (r, z; t) = {−Pm[AJ1(rPm) +BY1(rPm)]

+ −iq0m[CJ1(rTm) +DY1(rTm)]}ei(q0mz−ωt), (B.2b)

where various wavenumbers in the system are defined as:

X0m = b√k21 − q20m, Pm =√k2l − q20m, Tm =√k2t − q20m,
q0m = ω/c0m, kc = ω/cc, ks = ω/cs, k1 = ω/c0.

and Jn and Yn are the nth order Bessel functions of the first and second kind respec-

tively.

The constants φ0, A, B, C, and D are obtained from the boundary conditions.

Del Grosso [58] shows that the latter four satisfy the following equations:

A(EmJ0(dPm) + Pm

d
J1(dPm)) +B (EmY0(dPm) + Pm

d
Y1(dPm))
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+C (−iq0mTmJ0(dTm) + iq0m
d
J1(dTm))

+D (−iq0mTmY0(dTm) + iq0m
d
Y1(dTm)) = 0, (B.3)

and

A [iq0mPmJ1(dPm)] +B [iq0mPmY1(dPm)]
+C [−EmJ1(dTm)] +D [−EmY1(dTm)] = 0, (B.4)

and

A [iq0mPmJ1(bPm)] +B [iq0mPmY1(bPm)]
+C [−EmJ1(bTm)] +D [−EmY1(bTm)] = 0, (B.5)

and

A(EmJ0(bPm) + 1 +Qmb

b
PmJ1(bPm))

+B (EmY0(bPm) + 1 +Qmb

b
Y1(bPm))

+C (−iq0mTmJ0(bTm) + iq0m
d
(1 +Qmb)J1(bTm))

+D (−iq0mTmY0(bTm) + iq0m
d
(1 +Qmb)Y1(bTm)) = 0, (B.6)

where the following definitions have been used,

Em = q20m − k2s/2, Qm = ρlω2bJ0(X0m)
2ρwc2sX0mJ1(X0m) ,

and where ρw and ρl are the densities of the tube wall and the liquid, respectively.

Nonzero values for the four constants, A, B, C, and D are found by requir-

ing the determinant of their coefficients to vanish, which results in a characteristic

equation relating q0m to ω,

1 + [L11(Pm)L00(Tm)] (π2q20mbdP
2
mT

2
m

8E2
m

) + [L11(Tm)L00(Pm)] (π2bdE2
m

8q20m
)
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+[L10(Pm)L01(Tm) +L01(Pm)L10(Tm)] (π2bdPmTm

8
)

+[bL11(Pm)L10(Tm) + d(1 +Qmb)L11(Pm)L01(Tm)] (π2P 2
mTm

8Em

−
π2P 2

mq
2
0mTm

8E2
m

)
+[bL11(Tm)L10(Pm) + d(1 +Qmb)L11(Tm)L01(Pm)] (π2PmEm

8q20m
−
π2Pm

8
)

+ [(1 +Qmb)L11(Tm)L11(Pm)] (π2P 2
m

8q20m
+
π2P 2

mq
2
0m

8E2
m

−
π2P 2

m

4Em

) = 0, (B.7)

where Lmn(ξ) = Jm(dξ)Yn(bξ) − Jn(bξ)Ym(dξ).
Values of c0m that satisfy Equation (B.7) result in propagating modes. In

practice c0m is varied until Equation (B.7) is satisfied in order to determine the

phase speed in the system.

151



Appendix C

Resonator Model Derivation

This is an appendix detailing the derivation of the analytical resonator model

used in this study. This model predicts the acoustic field in of an N-layers fluid

medium excited by a plane acoustic wave normal to the layers. A diagram of the

model theory is presented in Figure C.1. There is a reflected wave from the inci-

dent wave hitting the first layer, a forward and backward traveling wave in each

intermediate layer, and the last layer is assumed to be an acoustic half-space. The

originating half space has a sound speed c0 and density ρ0 and each subsequent layer

has a sound speed cn and density ρn for the remaining N layers. Each layer also has

an associated wavenumber kn = ω/cn. The waves in the first half space and last half

space are taken to be:

x
0

pinc

prefl

p+
1

p−1

p+
2

p−2

p+
3

p−3 p−
N−2

p+

N−2
p+

N−1

p−
N−1

ptransc0, ρ0 c1, ρ1

l1

c2, ρ2

l2

c3, ρ3

l3

cN−2, ρN−2

lN−2

cN−1, ρN−1

lN−1

cN , ρN

Figure C.1: Naming convention for N -layered resonator model
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pinc = ej(ωt−k0x), (C.1)

and

prefl = Rej(ωt+k0x). (C.2)

The remaining expressions for layers 1 through N − 1 are:

p+n = A+nej(ωt−knx), (C.3)

p−n = A−nej(ωt+knx), (C.4)

and for layer N ,

ptrans = Tej(ωt−knx). (C.5)

At the first boundary, continuity of pressure and particle velocity yield:

1 +R = A+1 +A−1 , (C.6a)

1

Z0

−
R

Z0

= A+1
Z1

−
A−1
Z1

, (C.6b)

where Zn = cnρn is the acoustic impedance of each layer. The boundary conditions

for the interfaces between layer 1 through N − 1 result in:
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A+ne
−jknln +A−ne

jknln = A+n+1 +A−n+1, (C.7a)

A+ne
−jknln

Zn

−
A−ne

jknln

Zn

= A+n+1
Zn+1

−
A−n+1
Zn+1

, (C.7b)

and the relations for the final boundary are:

A+N−1e
−jkN−1lN−1 +A−N−1e

jkN−1lN−1 = T, (C.8a)

A+N−1e
−jkN−1lN−1

ZN−1

−
A−N−1e

jkN−1lN−1

ZN−1

= T

ZN

. (C.8b)

Equations C.6, C.7, and C.8 can be arranged into matrix equations:

[ 1 1
1
Z0
−

1
Z0

] [1
R
] = [ 1 1

1
Z1
−

1
Z1

] [A+1
A−1
] , (C.9a)

[e−jknln ejknln

e−jknln

Zn
−

ejknln

Zn

] [A+n
A−n
] = [ 1 1

1
Zn+1

−
1

Zn+1

] [A+n+1
A−n+1
] , (C.9b)

[e−jkN−1lN−1 ejkN−1lN−1
e−jkN−1lN−1

ZN−1
−

ejkN−1lN−1

ZN−1

] [A+N−1
A−N−1

] = [ 11
ZN

]T. (C.9c)

The system can then be reduced to:

[1
R
] = I (N−1∏

n=1

Mn)FT, (C.10)

where,
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I = [ 1 1
1
Z0
−

1
Z0

]−1 [ 1 1
1
Z1
−

1
Z1

] (C.11a)

Mn = [e−jknln ejknln

e−jknln

Zn
−

ejknln

Zn

]−1 [ 1 1
1

Zn+1
−

1
Zn+1

] (C.11b)

F = [e−jkN−1lN−1 ejkN−1lN−1
e−jkN−1lN−1

ZN−1
−

ejkN−1lN−1

ZN−1

]−1 [ 11
ZN

] . (C.11c)

Equation C.10 can be solved for T and R, then Equations C.9c and C.9b can

be used to find each A+n and A−n.
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Appendix D

Full Scattering Model

This appendix details the solution of the full scattering problem as described

at the beginning of Foldy’s 1945 paper [74]. This model assumes that each scatterer

is affected by the incident field and the scattered field from every other scatterer.

Each scatterer experiences a velocity potential ψi consisting of the incident field and

the radiated field from every other scatterer, where i represents the ith scatterer. The

velocity potential that drives each scatterer can then be represented as:

ψi = ψ0(r⃗i) +∑
h≠i

ghψh

exp(−jk0∣r⃗i − r⃗h∣)∣r⃗i − r⃗h∣ , (D.1)

where ψ0(r⃗) is the incident field at the position in space r⃗, r⃗i is the location of the

ith scatterer, k0 is the wavenumber in the host medium, and gi is the scattering

coefficient for the ith scatterer as presented in Equation 3.23. For N scatterers with

equivalent scattering coefficients g, this can be represented in matrix form as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

⋮

ψN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(r⃗1)
ψ0(r⃗2)
⋮

ψ0(r⃗N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ g

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 E(r⃗1, r⃗2) ⋯ E(r⃗1, r⃗N)
E(r⃗2, r⃗1) 0 ⋯ E(r⃗2, r⃗N)
⋮ ⋱ ⋮

E(r⃗N , r⃗1) ⋯ E(r⃗N , ⃗rN−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

⋮

ψN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (D.2)
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where E(r⃗1, r⃗2) accounts for the finite phase and amplitude difference from the acous-

tic wave traveling between the ithand hth scatterer, and is defined as:

E(r⃗i, r⃗h) = exp(−jk0∣r⃗i − r⃗h∣)∣r⃗i − r⃗h∣ . (D.3)

This system of equations can be rearranged in order to solve explicit for ψi:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(r⃗1)
ψ0(r⃗2)
⋮

ψ0(r⃗N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −E(r⃗1, r⃗2) ⋯ −E(r⃗1, r⃗N)
−E(r⃗2, r⃗1) 1 ⋯ −E(r⃗2, r⃗N)

⋮ ⋱ ⋮

−E(r⃗N , r⃗1) ⋯ −E(r⃗N , ⃗rN−1) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

⋮

ψN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (D.4)

Once ψi is known, the total field ψtotal(r⃗) at the location r⃗ can be determined

by the sum of the incident field and the scattered field:

ψtotal = ψ0(r⃗) + g [E(r⃗1, r⃗) E(r⃗2, r⃗) ⋯ E(r⃗N , r⃗)]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

⋮

ψN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (D.5)

Here is the code used to implement this model:

function [p tot, p 0] = FSBubble(fVec,c,rho,sigma,a bub,p bub,x bub, ...
x rec,varargin)

% This code solves the full −scattering problem for an known ...
configuration

% of bubbles by jointly solving for the interacting scattere d ...
fields of

% each bubble. By default the source is spherical and at the or igin.
%
% [p tot, p 0] = ...

FSBubble(c,fVec,rho,sigma,x bub,a bub,x rec,p bub,options)
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%
% Outputs:
% p tot − The resultant pressure field froms source and ...

scatterers [Pa]
% p 0 − The source pressure signal [Pa]
%
% Inputs:
% fVec − Frequency vector [Hz]
% c − Speed of sound in liquid absent of scatterers [m/s]
% rho − Density of liquid absent of scatterers [kg/mˆ3]
% sigma − Bubble surface tension [N/m]
% a bub − Radius of bubbles (mono −disperse population) [m]
% p bub − Static pressure at bubbles [Pa]
% x bub − Locations of bubbles in cartesian coordinates,
% eg. [x(:,1); x(:,2); x(:,3)] = [x; y; z] [m; m;m]
% x rec − Locations of receivers in cartesian coordinates [m; ...

m; m]
%
% Options:
%
% 'Church'
% Utilizes the scattering coefficient for a bubble with an el astic ...

shell
% from Church's 1995 effective medium model.
% FSBubble(c,fVec,rho,sigma,x bub,a bub,x rec,p bub,...
% 'Church',t,Gs,mus,rhos,sigma2))
%
% Additional Inputs:
% t − Shell thickness [m]
% Gs − Shear modulus of the shell [Pa]
% mus − Shell viscosity [N s/mˆ2]
% rhos − Density of shell [kg/mˆ3]
% simga2 − Suface tension between shell and liquid [N/m]
%
% 'PlaneWave'
% Uses a plane wave as a source as opposed to a spherical source at the
% origin.
% FSBubble(c,fVec,rho,sigma,x bub,a bub,x rec,p bub,...
% 'PlaneWave',sVec))
%
% Additional Inputs:
% sVec − Cartesian vector determining the direction of the source.
% eg. vector normal to planes of constant phase [m]
%
% Record of revisions:
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% Date Programmer Description of change
% ==== ========== =====================
% 13−Mar−2014 Craig N. Dolder Initial programming
%
% Features to add:
% Polydisperse bubble parameters.
% Images from ideal reflection (surface)
%
% Citations:
%
% L. L. Foldy, Physical Rev., 67 (3), 107 −119 (1945)
% A. Prosperetti, J. Acoust. Soc. Am. 61, 17 −27 (1977)
% K. Commander, A. Prosperetti, J. Acoust. Soc. Am. 85, 732 −746 (1989)
% C. Church, J. Acoust. Soc. Am. 97, 1510 −1521 (1995)

arg = 9;
while arg ≤ nargin

if strcmp(varargin {arg −8}, 'Church' )
t = varargin {arg+1 −8};
Gs = varargin {arg+2 −8};
mus = varargin {arg+3 −8};
rhos = varargin {arg+4 −8};
sigma2 = varargin {arg+5 −8};
arg = arg+6;

elseif strcmp(varargin {arg −8}, 'PlaneWave' )
sVec = varargin {arg+1 −8};
arg = arg+2;

else
error( 'Unknown input' )

end
end

gamma = 1.4; % Ratio of specific heat in air
mul = 0.001; % Liquid visocity in Pa s
D=2e−5; % Thermal diffusivity of air in mˆ2/s
omega = 2* pi * fVec;
k = omega./c;

% Number of bubbles
[N, ¬] = size(x bub);

% Number of receivers
[M, ¬] = size(x rec);

% Initialize variables
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p 0 = zeros(M,length(fVec),1);
p tot = zeros(M,length(fVec),1);
%% Solve problem for each frequency
for ii = 1:length(fVec)

% Damping of a bubble at frequency ii
chi = D./(omega(ii). * a bub.ˆ2); % Variable in phi
phi = (3. * gamma)./(1 −3. * (gamma−1). * 1i. * chi. * ...

((1i./chi).ˆ0.5 . * coth((1i./chi).ˆ0.5) − 1));
p stat = p bub + 2 * sigma./a bub;
kappa = real(phi)/3; %effective polytropic index
muth = 0.25. * p stat. * imag(phi)./omega(ii);

% If there is no shell use parameters from C&P
if exist( 't' , 'var' ) == 0

% Thermal viscosity from Propseretti, Crum, Commannder ...
JASA(1989)

omega 0 = ((1./(rho * a bub.ˆ2)). * ...
(3 * kappa. * p stat −2* sigma./a bub)).ˆ(1/2);

b vis = 4 * mul./(rho * a bub.ˆ2. * omega(ii));
b th = 4 * muth./(rho * a bub.ˆ2. * omega(ii));
b rad = a bub. * omega(ii)./c;
b = b vis + b th + b rad;

% Scattering coefficient of individual bubbles
g = a bub./(((omega 0./omega(ii)).ˆ2 − 1) − 1i * b);

else % If there is a sheel use parameters for Church
aleph = 1 + ((rho −rhos)./rhos). * a bub./(a bub+t); % Church ...

Eq. 18a
Vs = (a bub+t).ˆ3 − a bub.ˆ3; % Church after Eq. 12
Z = (2. * sigma./a bub+2. * sigma2./(a bub+t)). * ...

((a bub+t).ˆ3./Vs). * (4. * Gs).ˆ( −1);

omega 0 = (1./(rhos. * a bub.ˆ2. * aleph). * ...
(3 * kappa. * p stat −2* sigma./a bub −...
2* sigma2. * a bub.ˆ3./(a bub+t).ˆ4 + ...
4. * Vs. * Gs./(a bub+t).ˆ3. * ...
(1+Z. * (1+3. * a bub.ˆ3./(a bub+t).ˆ3)))).ˆ(1/2);

b visL = 4 * a bub.ˆ3. * mul./(a bub+t).ˆ3. * ...
(rhos. * a bub.ˆ2. * aleph. * omega(ii)).ˆ( −1);

b visS = 4 * Vs. * mus./(a bub+t).ˆ3 . * ...
(rhos. * a bub.ˆ2. * aleph. * omega(ii)).ˆ( −1);

b th = 4 * (muth). * (rhos. * a bub.ˆ2. * aleph. * omega(ii)).ˆ( −1);
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b rad = omega(ii). * (a bub+t)./(c). * ...
(1+(omega(ii). * (a bub+t)./c).ˆ2).ˆ( −1);

b = b visL + b visS + b th + b rad;

g = a bub./(((omega 0./omega(ii)).ˆ2 − 1) − 1i * b);
end

%% Phase Matrix
% Matrix of the distance from each bubble to every other bubbl e
dMat(:,:,1) = x bub(:,1) * ones(1,N) − ones(N,1) * x bub(:,1).';
dMat(:,:,2) = x bub(:,2) * ones(1,N) − ones(N,1) * x bub(:,2).';
dMat(:,:,3) = x bub(:,3) * ones(1,N) − ones(N,1) * x bub(:,3).';
rMat = sqrt(dMat(:,:,1).ˆ2+dMat(:,:,2).ˆ2+dMat(:,:,3) .ˆ2);

PhaseMat = exp(1i * k(ii) * rMat)./rMat;

% Ensure that the diagonal elements are zero
PhaseMat(PhaseMat==Inf) = 0;

% If point source, compute incomming field for every bubble . ..
position

if exist( 'sVec' , 'var' ) == 0
r 0 = sqrt(x bub(:,1).ˆ2+x bub(:,2).ˆ2+x bub(:,3).ˆ2);
p i = exp(1i * k(ii) * r 0)./r 0;

% If plane source, compute incomming field for every bubble . ..
position

else
% Ensure source vector is a unit vector;
sVec = sVec/sqrt(sVec(1).ˆ2+sVec(2).ˆ2+sVec(3).ˆ2);
% Compute distance from plane of constant phase at origin,
% which is the dot product of the vectors.
r 0 = x bub(:,1) * sVec(1) + x bub(:,2) * sVec(2) + ...

x bub(:,3) * sVec(3);
% Then the source signal is simply the phase difference.
p i = exp(1i * k(ii) * r 0);

end

% Identity matrix minus the scattering coeffeicient, phase and
% amplitude difference
ScatMat = eye(N) − diag(g) * PhaseMat;

A = diag(g) * (ScatMat \p i).';

% Compute the scattered field at the receiver position
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d rec(:,:,1) = x bub(:,1) * ones(1,M) −ones(N,1) * x rec(:,1).';
d rec(:,:,2) = x bub(:,2) * ones(1,M) −ones(N,1) * x rec(:,2).';
d rec(:,:,3) = x bub(:,3) * ones(1,M) −ones(N,1) * x rec(:,3).';
r rec = sqrt(d rec(:,:,1).ˆ2+d rec(:,:,2).ˆ2+d rec(:,:,3).ˆ2);
Phase rec = exp(1i * k(ii) * r rec)./r rec;

% If point source, compute source field at each receiver
if exist( 'sVec' , 'var' ) == 0

r srec = sqrt(x rec(:,1).ˆ2+x rec(:,2).ˆ2+x rec(:,3).ˆ2);
p 0(:,ii) = exp(1i * k(ii) * r srec)./r srec;

% If plane source, compute source field at each receiver
else

% Compute distance from plane of constant phase at origin,
% which is the dot product of the vectors.
r srec = ...

x rec(:,1) * sVec(1)+x rec(:,2) * sVec(2)+x rec(:,3) * sVec(3);
% Then the source signal is simply the phase difference.
p 0(:,ii) = exp(1i * k(ii) * r srec);

end

% Scattered field from each of the bubbles at the receiver pos ition
p rec = diag(A) * Phase rec;
% Total field is the sum of the source field and the scattered . ..

field
p tot(:,ii) = p 0(:,ii) + sum(p rec).';

end
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Appendix E

Reflection Effective Medium Theory Model

This model consists of a sphere of effective medium with sound speed c1 and

density ρ1 with a small source at the center with a transmitted wave traveling away

from the effective medium into a space with sound speed c2 and density ρ2, as shown

in Figure E.1. The source is assumed to have a radius as and the effective medium

sphere a radius of a1. All waves are assumed to be spherically symmetric. Three

waves are considered, the outgoing pout and incoming pin waves between the source

and the outer radius of the effective medium and a transmitted wave ptr:

pout = Aa1
r
ej(ωt−k1(r−a1)), (E.1a)

pin = Ba1
r
ej(ωt+k1(r−a1)), (E.1b)

ptr = Ca1
r
ej(ωt−k2(r−a1)). (E.1c)

where k1 = ω/c1 and k2 = ω/c2. The acoustical impedance seen by an outgoing

spherical acoustic wave is:

Zout = ρ0c0 jkr

1 + jkr
, (E.2)

and for an incoming spherical waves is:
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a1

as

u0 ejωt

c1, ρ1

c2, ρ2

ptr

pin

pout

Figure E.1: Geometry for the reflection effective medium theory model

Zin = ρ0c0 jkr

1 − jkr
. (E.3)

There are three boundary conditions that have to be met.

1. Continuity of pressure at r1: pout + pin = ptr∣r=a1
2. Continuity of particle velocity at r1: uout + uin = utr∣r=a1
3. Continuity of particle velocity at as: uout + uin = u0ejωt∣r=a1

After applying the impedance relations these the boundary conditions produce

the relations:

A +B = C, (E.4a)

A( 1 + jk1a1
jk1a1ρ1c1

) +B ( 1 − jk1a

jk1a1ρ1c1
) = C ( 1 + jk2a1

jk2a1ρ2c2
) , (E.4b)

A
1 + jk1as
jk1asρ1c1

a1

as
e−jk1(as−a1) +B

1 − jk1as
jk1asρ1c1

a1

as
ejk1(as−a1) = u0 (E.4c)
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After defining B/A = R and C/A = T , Equations E.4a and E.4b can be solved

to yeild:

R = (1 −Z1/Z2) − jα1(1 − ρ1/ρ2)(1 +Z1/Z2) + jα1(1 − ρ1/ρ2) , (E.5)

where Z1 = ρ1c1, Z2 = ρ2c2, and α1 = 1/k1a1. T is then:

T = 1 + (1 −Z1/Z2) − jα1(1 − ρ1/rho2)(1 +Z1/Z2) + jα1(1 − ρ1/rho2) . (E.6)

Now Equation E.4c can be used to solve for A, yielding:

A = jk1a2sZ1u0

a1
((1 + jk1as)e−jk1(as−a1) +R(1 − jk1as)ejk1(as−a1))−1 . (E.7)

The transmitted field can not be expressed as:

ptr = AT a1
r
ej(ωt−k2(r−a1)), (E.8)

and can be compared to what the field would be if no effective medium sphere were

present:

pNo EM = u0Z2
(jk2a2s)(a1(1 + jk2as)) e

(−jk2(r−as))

r
. (E.9)
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Appendix F

Code Verifications

F.1 Complete Model for Bubbles Without a Shell

This section compares curves generated with the code used in this work to

Commander and Prosperetti’s model for a bubble without a shell, Ref. [46]. Fig-

ures F.1 and F.2 are for a mono-disperse collection of air bubbles in water with a

volume fraction of air χ = 0.000377 and a radius of a = 0.000994 m.
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Figure F.1: Left: Adapted from Figure 8 of Commander and Prosperetti [46]. Right:
Curves generated with same input parameters.
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Figure F.2: Left: Adapted from Figure 1 of Commander and Prosperetti [46]. Right:
Curves generated with same input parameters.
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F.2 Model for bubbles with an elastic shell

This section compares curves generated with the code used in this work to

the shelled bubble model by Church [131]. Because Church’s sound speed and atten-

uation curves are generated from an experimental bubble distribution, an attempt

was made to duplicate these plots by pulling points from Figure 12 of Church [131].

The results shown in Figures F.4 and F.5.
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Figure F.3: Left: Adapted from Figure 12 of Church [131], distribution of bubble
sizes. Right: PDF generated from plot on left.
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Figure F.4: Left: Adapted from Figure 13 of Church [131]. Right: Curves generated
with same input parameters.
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Figure F.5: Left: Adapted from Figure 19 of Church [131]. Right: Curves generated
with same input parameters.
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F.3 Multiple Scattering with Bubble Shielding

This section compares curves generated with the code used in this work to

Feuillade’s paper on multiply interacting bubbles [12].
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Figure F.6: Left: Adapted from Figure 6 of Feuillade [12]. Right: Curves generated
with same input parameters.
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Figure F.7: Left: Adapted from Figure 6 of Feuillade [12]. Right: Curves generated
with same input parameters.

172



Appendix G

Physical Constants and Balloon Positions

G.1 Physical Constants

Physical constants needed in this dissertation are tabulated here.

Length of resonator L 1.985 m
Compressional sound speed in wall cc 6420 m/s
Shear sound speed in wall cs 3205 m/s
Density of wall ρ 2700 kg/m3

Inner radius b 0.1015 m
Outer radius d 0.1085 m
Length of foam layer l 0.145 m

Table G.1: Material properties of the aluminum resonator.
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Sound speed in water c1 1481 m/s
Density of water ρw 998.2 kg/m3

Sound speed in air ca 343 m/s
Density of air ρa 1.210 kg/m3

Sound speed in foam cf 717 m/s
Density of foam ρf 29 kg/m3

Sound speed in concrete cc 3100 m/s
Density of concrete ρc 2600 kg/m3

Atmospheric pressure p0 101325 Pa
Dynamic viscosity of water µ 1.002 × 10−3 Pa s

Table G.2: Physical properties
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x [m] y [m] z [m]
0.92964 0 0.254
0.19812 0 1.03124
0.70104 0.3048 1.04648
1.2192 0.41656 0.31496
1.0668 0.81788 0.35306
1.2192 0.9906 0.9017
0.41148 0.99695 0.23622
0.9144 1.30175 0.2413
0.28956 1.30175 0.98298
0 0.8763 0.19304
0.1778 0.76962 0.8128
0 0.41402 0.80518
1.03124 0.80264 0.04572
0.14732 0.54356 0.04572

Table G.3: Balloon positions for “Random” configuration.

G.2 Balloon Positions

Balloon Positions for work presented in Chapter 4 are presented here.
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x [m] y [m] z [m]
1.1684 0 1.19888
0.5842 0 0.56134
0.0508 0.0508 0.08636
1.2192 1.2065 1.13538
1.2192 0.6858 0.66802
1.2192 0.04318 0.0508
0.04572 1.30175 1.19888
0.64262 1.30175 0.58674
1.1684 1.24968 0.0762
0 0.16256 1.03632
0 0.70104 0.4445
0 1.2446 0.04572
0.56642 0.68326 0
0.6096 0.65024 1.22682

Table G.4: Balloon positions for “Quasi-FCC” configuration.

x [m] y [m] z [m]
0.6096 0.3048 0.94742
0.5842 0 0.56134
1.17348 0.0508 0.0762
1.2192 1.2065 1.13538
1.2192 0.6858 0.66802
1.0668 0.63754 0.3937
0.66294 1.30175 0.59436
0.6223 0.99695 0.9652
0 1.2446 0.04572
0 0.16256 1.03632
0 0.70104 0.4445
0.1778 0.70104 0.22098
0.56642 0.68326 0
0.6096 0.65024 1.22682

Table G.5: Balloon positions for “Dense” configuration.

176



Appendix H

Sound Propagation in Bubbly Liquids Publication

Timeline

T - Theoretical Papers | E - Experimental Papers | R - Review Papers

1910, Dec - Mallock - The Damping by Frothy Liquids [65] (T)

1930, xxx - Wood - A Textbook of Sound [66] (T)

1930, May - Herzfeld - Propagation of Sound in Suspensions [67] (T)

1933, xxx - Minnaert - On Musical Air-Bubbles and the Sounds of Running Water [69] (E

T)

1943, Sep - Kennard - Radial Motion of Water Surrounding a Sphere or Gas in Relation to

Pressure Waves [70] (T)

1943, xxx - Spitzer - Acoustic Properties of Gas Bubbles in a Liquid [71] (T)

1945, Feb - Foldy - The Multiple Scattering of Waves [74] (T)

1946, xxx - Wildt Ed. - Acoustic Theory of Air Bubbles - Physics of Sound in the Sea [75]

(T)

1947, May - Cartensen and Foldy - Propagation of Sound Through a Liquid Containing

Bubbles [76] (E)
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1947, Nov - Urick - A Sound Velocity Method for Determining the Compressibility of Finely

Divided Substances [77] (E)

1949, Mar - Urick and Ament - The Propagation of Sound in Composite Media [78] (T)

1953, xxx - Meyer und Skudrzyk - Uber die akustishen eigensschaften von gasblasenschleiern

in wasser [79] (T)

1953, xxx - Exner and Hampe - Experimental Determination of the Damping of Pulsating

Air Bubbles in Water [80] (E)

1954, May - Chambré - Speed of a Plane Wave in a Gross Mixture [127] (T)

1954, xxx - Strasberg - Concerning the Article by M,L. Exner and W. Hampe [81] (T)

1955, May - Fox, Curley, and Larson - Phase Velocity and Absorption Measurements in

Water Containing Air Bubbles [82] (E)

1957, Sep - Silberman - Sound Velocity and Attenuation in Bubbly Mixtures Measured in

Standing Wave Tubes [83] (E)

1957, xxx - Macpherson - The Effect of Gas Bubbles on Sound Propagation in Water [84]

(E)

1959, Dec - Devin Jr. - Survey of Thermal, Radiation, and Viscous Damping of Pulsating

Air Bubbles in Water [23] (R)

1961, Aug - Hsieh and Plesset - On the Propagation of Sound in a Liquid Containing Gas

Bubbles [85] (T)

1961, Nov - Hsieh and Plesset - Theory of the Acoustics Absorption by a Gas Bubble in a

Liquid [86] (T)
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1969, Nov - Crespo - Sound and Shock Waves in Liquids Containing Bubbles [87] (T)

1967, Dec - Zabolotskaya and Soluyan - A Possible Approach to the Amplification of Sound

Waves [88] (T)

1968, xxx - Wijngaarden - On the equations of motion for mixtures of liquid and gas bub-

bles [89] (T)

1969, xxx - Batchelor - Compression Waves in a Suspension of Gas Bubbles in Liquid [90]

(T)

1969, Sep - McWilliam and Duggins- Speed of sound in bubbly liquids [91] (T)

1970, Feb - Eller - Damping Constants of Pulsating Bubbles [92] (T)

1972, Sep - Chapman and Plesset - Thermal Effects in the Free Oscillations of Gas Bub-

bles [95] (T)

1972, xxx - Wijngaarden - One-dimensional flow of liquids conatining small gas bubbles [94]

(R)

1973, Mar - Zabolotskaya and Soluyan - Emission of Harmonic and Combination-Frequency

Waves by Air Bubbles [140] (T)

1975, Sep - Fairbank Jr. - Damping constants for nonresonant bubbles [93] (T)

1977, Jan - Properetti - Application of the subharmonic threshold to the measurement of

the damping of oscillating gas bubbles [96] (T)

1977, Jan - Properetti - Thermal effects and damping mechanisms in the forces radial oscil-

lations of gas bubbles in liquids [97] (T)
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1977, Jul - Kieffer - Sound Speed in Liquid-Gas Mixtures: Water-Air and Water-Steam [98]

(T)

1977, xxx - Clay and Medwin - Acoustical Oceanography [141] (R)

1978, Mar - SA. Bedford and D. S. Drumheller - A variational Theory of Immiscible Fluid

Mixtures [99] (T)

1979, Jul - Drumheller and Bedford - A theory of bubbly liquids [100] (T)

1979, Nov - Hsieh - On Oscillation of Vapor Bubbles [101] (T)

1979, Nov - Marston - Evaporation-condensation resonance frequency of oscillating vapor

bubbles [102] (T)

1980, Aug - Keller and Miksis - Bubble oscillations of large amplitude [110] (T)

1981, Feb - Gaunaurd and Überall - Resonance theory of bubbly liquids [103] (T)

1981, xxx - Fanelli, Prosperetti, and Reali - Radial Oscillations of Gas-Vapour Bubbles in

Liquids. Part I: Mathematical Formulation [104] (T)

1981, xxx - Fanelli, Prosperetti, and Reali - Radial Oscillations of Gas-Vapour Bubbles in

Liquids. Part II: Numerical Examples [105] (T)

1982, xxx - Drumheller, Kipp, and Bedford - Transient wave propagation in bubbly liq-

uids [106] (T)

1982, Jun - Bruno and Novarini - Coherence and multiple scattering effects on acoustic

backscattering from linear arrays of gas-filled bubbles [113] (T)

1983, Jan - Crum - The Polytropic Exponent of Gas Contained within Air Bubbles Pulsating

in a Liquid [107] (E)
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1984, Mar - Prosperetti - Bubble phenomena in sound fields: part one [108] (R)

1985, xxx - Caflisch, Miksis, Papanicolaou, and Ting - Effective equations for wave propaga-

tion in bubbly liquids[109] (T)

1987, Sep - Omta - Oscillations of a cloud of bubbles of small and not so small amplitude [114]

(T)

1988, xxx - Nigmatulin, Khabeev, and Hai - Waves in liquids with vapour bubbles [111] (T)

1989, Feb - Commander and Prosperetti - Linear pressure waves in bubbly liquids: Compar-

ison between theory and experiment[46] (R)

1989, Apr - Temkin - Sound Propagation in Bubbly Liquids. A Review [115] (R)

1989, Dec - Miksis and Ting - Effects of bubbly layers on wave propagations [112] (T)

1991, xxx - Sangani - A pairwise interaction theory for determining the linear acoustic

properties of dilute bubbly liquids [142] (T)

1994, Jun - Nicholas, Roy, Crum, Og̃uz, and Prosperetti - Sound emissions by a laboratory

bubble cloud [122] (E)

1995, Aug - Feuillade - Scattering from collective modes of air bubbles in water and the

physical mechanism of superresonances [116] (T)

1995, Sep - Ye and Ding - Acoustic dispersion and attenuation relations in bubbly mix-

ture [117] (T)

1995, Mar - Cheyne, Stebbings, and Roy - Phase velocity measurements in bubbly liquids

using a fiber optic laser interferometer [123] (E)
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1996, Jun - Feuillade - The attenuation and dispersion of sound in water containing multiply

interacting air bubbles [143] (T)

1999, Feb - Temkin - Radial pulsations of a fluid sphere in a sound wave [125] (T)

1999, Apr - Henyey - Corrections to Foldy’s effective medium theory for propagation in

bubble couds and other collections of very small scatterers [118] (T)

2000, Jul - Temkin - Attenuation and dispersion of sound in dilute suspensions of spherical

particles [72] (T)

2001, Mar - Temkin - Corrigendum: Radial pulsations of a fluid sphere in a sound wave [126]

(T)

2002, Jan - Kargl - Effective medium approach to linear acoustics in bubbly liquids [119] (T)

2002, Feb - Temkin - Erratum: Attenuation and dispersion of sound in dilute suspensions of

spherical particles [73] (T)

2002, Apr - Feuillade - Comment on ”‘Corrections to Foldy’s effective medium theory for

propagation in bubble couds and other collections of very small scatterers”’ [120] (T)

2002, Apr - Henyey - Reply to “Comment on ‘Corrections to Foldy’s effective medium theory

for propagation in bubble clouds and other collections of very small scatterers’ ” [121] (T)

2002, Oct - Leighton et al - The effect of reverberation on the damping of bubbles [124] (T

E)

2005, Jun - Wilson - Low-frequency dispersion in bubbly liquids [45] (T)

2008, Oct - Wilson and Roy - An audible demonstration of the speed of sound in bubbly

liquids [47] (E)
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2009, Nov - Ainslie and Leighton - Near resonant bubble acoustic cross-section corrections,

including examples... [18] (R)

2011, Nov - Ainslie and Leighton - Review of scattering and extinction cross-sections, damp-

ing factors, and resonance frequencies of a spherical gas bubble [144] (R)
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Appendix I

IACUC Protocol Animal Use Policy
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