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ABSTRACT  

Petrophysical Modeling and Simulation Study of 

Geological CO2 Sequestration 

Publication No.________ 

Xianhui Kong, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisors: Mojdeh Delshad, Mary F. Wheeler 

 

Global warming and greenhouse gas (GHG) emissions have recently become the 

significant focus of engineering research. The geological sequestration of greenhouse 

gases such as carbon dioxide (CO2) is one approach that has been proposed to reduce the 

greenhouse gas emissions and slow down global warming. Geological sequestration 

involves the injection of produced CO2 into subsurface formations and trapping the gas 

through many geological mechanisms, such as structural trapping, capillary trapping, 

dissolution, and mineralization. While some progress in our understanding of fluid flow 

in porous media has been made, many petrophysical phenomena, such as multi-phase 

flow, capillarity, geochemical reactions, geomechanical effect, etc., that occur during 

geological CO2 sequestration remain inadequately studied and pose a challenge for 

continued study. It is critical to continue to research on these important issues.  

Numerical simulators are essential tools to develop a better understanding of the 

geologic characteristics of brine reservoirs and to build support for future CO2 storage 

projects. Modeling CO2 injection requires the implementation of multiphase flow model 

and an Equation of State (EOS) module to compute the dissolution of CO2 in brine and 
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vice versa. In this study, we used the Integrated Parallel Accurate Reservoir Simulator 

(IPARS) developed at the Center for Subsurface Modeling at The University of Texas at 

Austin to model the injection process and storage of CO2 in saline aquifers. We 

developed and implemented new petrophysical models in IPARS, and applied these 

models to study the process of CO2 sequestration. 

The research presented in this dissertation is divided into three parts.  

The first part of the dissertation discusses petrophysical and computational 

models for the mechanical, geological, petrophysical phenomena occurring during CO2 

injection and sequestration. The effectiveness of CO2 storage in saline aquifers is 

governed by the interplay of capillary, viscous, and buoyancy forces. Recent 

experimental data reveals the impact of pressure, temperature, and salinity on interfacial 

tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability 

and capillary pressure on IFT is also clearly evident in published experimental results. 

Improved understanding of the mechanisms that control the migration and trapping of 

CO2 in the subsurface is crucial to design future storage projects for long-term, safe 

containment. We have developed numerical models for CO2 trapping and migration in 

aquifers, including a compositional flow model, a relative permeability model, a capillary 

model, an interfacial tension model, and others. The heterogeneities in porosity and 

permeability are also coupled to the petrophysical models. We have developed and 

implemented a general relative permeability model that combines the effects of pressure 

gradient, buoyancy, and capillary pressure in a compositional and parallel simulator. The 

significance of IFT variations on CO2 migration and trapping is assessed. The variation of 

residual saturation is modeled based on interfacial tension and trapping number, and a 

hysteretic trapping model is also presented.  



viii 

 

The second part of this dissertation is a model validation and sensitivity study 

using coreflood simulation data derived from laboratory study. The motivation of this 

study is to gain confidence in the results of the numerical simulator by validating the 

models and the numerical accuracies using laboratory and field pilot scale results. 

Published steady state, core-scale CO2/brine displacement results were selected as a 

reference basis for our numerical study. High-resolution compositional simulations of 

brine displacement with supercritical CO2 are presented using IPARS. A three-

dimensional (3D) numerical model of the Berea sandstone core was constructed using 

heterogeneous permeability and porosity distributions based on geostatistical data. The 

measured capillary pressure curve was scaled using the Leverett J-function to include 

local heterogeneity in the sub-core scale. Simulation results indicate that accurate 

representation of capillary pressure at sub-core scales is critical. Water drying and the 

shift in relative permeability had a significant impact on the final CO2 distribution along 

the core. This study provided insights into the role of heterogeneity in the final CO2 

distribution, where a slight variation in porosity gives rise to a large variation in the CO2 

saturation distribution. 

The third part of this study is a simulation study using IPARS for Cranfield pilot 

CO2 sequestration field test, conducted by the Bureau of Economic Geology (BEG) at 

The University of Texas at Austin. In this CO2 sequestration project, a total of 

approximately 2.5 million tons supercritical CO2 was injected into a deep saline aquifer 

about ~10000 ft deep over 2 years, beginning December 1
st
 2009. In this chapter, we use 

the simulation capabilities of IPARS to numerically model the CO2 injection process in 

Cranfield. We conducted a corresponding history-matching study and got good 

agreement with field observation. Extensive sensitivity studies were also conducted for 
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CO2 trapping, fluid phase behavior, relative permeability, wettability, gravity and 

buoyancy, and capillary effects on sequestration. Simulation results are consistent with 

the observed CO2 breakthrough time at the first observation well. Numerical results are 

also consistent with bottomhole injection flowing pressure for the first 350 days before 

the rate increase. The abnormal pressure response with rate increase on day 350 indicates 

possible geomechanical issues, which can be represented in simulation using an induced 

fracture near the injection well. The recorded injection well bottomhole pressure data 

were successfully matched after modeling the fracture in the simulation model. Results 

also illustrate the importance of using accurate trapping models to predict CO2 

immobilization behavior. The impact of CO2/brine relative permeability curves and 

trapping model on bottom-hole injection pressure is also demonstrated. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Global warming is posing a severe threat to the global climate and is being 

addressed by more and more researchers all over the world (Allen 2009; Jones, 1999). 

Increases in average global air and sea temperatures, rising sea levels, and widespread 

snow and ice melting are observed as evidences of global warming (Figure 1.1). Reports 

show that the global warming was being caused by increasing greenhouse gas (GHG) 

concentration in atmosphere due to increasing greenhouse gas emission from human 

activities (IPCC Fourth Assessment Report: Climate Change 2007). Greenhouse gas 

emissions have increased significantly in recent years (Figure 1.2), along with an increase 

of energy consumption. CO2 emissions from year 1750 to 2000 are shown in Figure 1.3, 

which shows CO2 emission from different sources, including fossil-fuels, cement 

production, etc. Among the many kinds of greenhouse gas, such as methane, water vapor, 

nitrous oxide, etc., carbon dioxide contributes the most to GHG emissions, accounting for 

up to 77% of all GHG emissions (Figure 1.4). Carbon dioxide (CO2) has been identified 

as the largest driver of increasing greenhouse gas emission. Reducing GHG emissions 

and sequestration of produced CO2 have become an urgent global issue that is currently 

being addressed by increasingly numerous governments and research institutes around 

the globe (United Nations Framework Convention on Climate Change (UNFCCC); 

Kyoto Protocol).  
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Figure 1.1 Observed changes in (a) global average surface temperature; (b) global 

average sea level from tide gauge (blue) and satellite (red) data and (c) Northern 

Hemisphere snow cover for March-April. (IPCC Fourth Assessment Report: Climate 

Change 2007) 
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Figure 1.2 Sources of global CO2 emissions, 1970–2004 (only direct emissions by 

sector). Source: Adapted from Olivier et al., 2005 

 

Figure 1.3 CO2 emissions from year 1750 to year 2000 (Marland et al., 2003)  
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Figure 1.4 Global anthropogenic greenhouse gas emissions in 2004. Source: Adapted 

from Olivier et al., 2005 

Many methods proposed to reduce GHG emissions are currently under research 

and in development, including geological sequestration, agricultural carbon removal, bio-

energy with carbon storage (BECS), mineral carbonation, deep ocean basalt storage, etc. 

For geological sequestration, produced CO2 is injected into an underground reservoir or 

aquifer, and trapped through geological difference mechanisms. Agricultural carbon 

removal uses the carbon cycle as employed by existing crops to permanently sequester 

carbon within the soil. BECS includes biomass in power stations and boilers that use 

carbon capture and storage. The mineral carbonation process involves reacting carbon 

dioxide with abundantly available metal oxides. Carbon dioxide sequestration in basalt 

involves the injection of CO2 into deep-sea formations. When CO2 is sequestered in 

basalt, it first mixes with seawater, and then reacts with the basalt, forming stable 
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carbonate minerals. The effectiveness of these sequestration methods needs to be thurther 

evaluated and tested.  

Geological CO2 sequestration by injecting produced CO2 to underground 

reservoir or aquifer formations is an effective method for reducing CO2 emission. Several 

kinds of formation can serve as the sequestration candidates for CO2 geological 

sequestration, such as the deep saline aquifer, oil/gas reservoir. CO2 can be injected into 

oil-/gas-producing reservoirs to enhance oil/gas recovery or sequestered in depleted 

reservoirs (Godec et al., 2011). CO2 can also be used for coal-bed methane production, 

serving as storage and enhancing production. Depleted oil/gas reservoirs can also be a 

good candidate for geological CO2 storage with a large volume of storage space. These 

fields usually have good geological seals to prevent gas leakage through the formation 

cap and many existing infrastructures for CO2 injection. CO2 sequestration in deep saline 

aquifers is another option for sequestration (Benson and Cole, 2008). It is considered the 

most plausible method. Deep saline aquifers are attractive for long-term CO2 storage 

because of the large volume and the widespread availability of those saline aquifers. 

Large bodies of water would provide great capacity for CO2 sequestration because 

injected CO2 can dissolve into the brine and be trapped in the pore spaces. Saline aquifers 

are also widely distributed that makes transportation and site selection more flexible.  

CO2 sequestration in deep saline aquifer remains a challenging research topic, due 

to many reservoir conditions, such as high pressure, high temperature, high salinity, etc. 

Saline aquifers usually have large volume, and the sequestration process is long term, 

which also adds to the complexity of this study. CO2 would be in a supercritical state 

(31.0 
o
C 7.38 MPa, 87.7 F and 1070.7 psi) for deep formations at a depth of 

approximately 800 m or greater. Supercritical CO2 phase behavior has not been fully 
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studied. The CO2-brine two-phase flow model coupling with the geochemical and 

petrophysical processes poses a research challenge.  

Numerical simulation is an increasingly popular way to investigate physical 

processes, and numerical simulators coupled with accurate physical models are tools for 

carbon sequestration studies. Several simulators for CO2 sequestration, including 

TOUGH+CO2, CMG-GEM, CHEARS, etc. have been developed by researchers in 

several institutes. An in-house simulator named the Integrated Parallel Accurate 

Reservoir Simulator (IPARS) has been developed by the Center for Subsurface Modeling 

at The University of Texas at Austin. The simulator IPARS is capable of performing 

multiphase, multi-physics, parallel reservoir simulation. There are many simulation 

modules in the simulator IPARS, such as black oil, hydro, TrChem, and compositional 

models. In addition, the IPARS simulator has been further developed to model the CO2 

sequestration process, by the addition of relevant petrophysical modules.  

Understanding injected CO2 redistribution behavior is critical for project success 

and long-term storage safety. Detailed studies are required to achieve these goals. CO2 

migration and potential leakage are important issues that we need to investigate before 

the project actually starts. After injection into the saline aquifer, CO2 will migrate under 

the mechanism of capillary forces and buoyancy forces. Buoyancy forces will drive the 

CO2 upward, due to the density difference between CO2 and water. If there is a fracture 

or a high permeability channel in the seal, CO2 might escape from the injection site and 

travel to other places through these paths. In some conditions, CO2 could eventually 

reach the surface atmosphere. For CO2 sequestration in oil and gas reservoirs with 

abandoned wells, CO2 could leak out of a poorly sealed well. Leakage could happen 

quickly in a case with small well spacing, leading to project failure and wasted time and 
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money. During the CO2 migration, pressure and temperature may change significantly, 

resulting in large changes in CO2 properties, including density, viscosity, wettability, etc. 

In order to accurately predict storage potential and reduce the risk of the failure of CO2 

sequestration, it is necessary to research the behavior and movement of the injected CO2 

during injection and post-injection periods, including the moving front of the plume and 

the distribution of CO2 in different forms, referred to as CO2 inventory.  

Rock-fluid properties modeling are critical for simulation studies of geological 

CO2 sequestration. Rock-fluid property modeling includes most factors that affect flow, 

such as relative permeability, capillary pressure, wettability, interfacial tension (IFT), etc. 

These factors influence the behavior of the CO2 plume in different ways during different 

regimes. During the CO2 injection period, the viscous force is dominant for CO2 

migration. The trapping number and capillary desaturation curve will play a role for the 

evaluation of CO2/water residual saturation, which in turn will affect the flow behavior. 

After CO2 injection, CO2 will migrate or be trapped by the interplay of capillary and 

buoyancy forces. If the buoyancy force is not large enough to overcome the capillary 

force, CO2 will be trapped in its original place. This is secured sequestration. Otherwise, 

CO2 will migrate upward and reach the top seal of the aquifer. During this process, a 

fraction of CO2 will dissolve into brine and the rest will be left behind and trapped in the 

pore space by the brine. Hysteresis effects will come into play when imbibing water 

displaces injected CO2. Hysteresis effects refer to the phenomena that both relative 

permeability curves and capillary pressure curves follow different paths during drainage 

and imbibition processes. Hysteresis effects can impact the flow in many aspects, 

especially in trapping CO2, thus it is critical to model this phenomenon with the proper 

hysteresis model for simulation. 
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Due to challenges posed by the large-scale reservoir model and the difficulties of 

making accurate long-term prediction for the sequestration process, as well as the 

complexities of the process, such as phase behavior, hysteresis, heterogeneity, the 

potential geological leakage, etc., it is important to carry out critical research studies in 

this area. Because it is impossible to use the analytical solution to describe the real field 

problem of sequestration process, numerical simulations and pilot tests are effective ways 

to study CO2 sequestration. By appropriate petrophysical modeling of the CO2 

sequestration process and incorporating accurate rock-fluid properties and fluid phase 

behavior models, reservoir simulation studies can provide insight into the sequestration 

process. This understanding is the ultimate goal of this research. 

1.2 Literature Review 

Many research works have been conducted on geological CO2 sequestration. 

Simulation studies were carried out to determine the potential volume of CO2 that can be 

stored in reservoir formations. Bachu (2000, 2002) described the steps that should be 

followed when selecting a potential sequestration site. Formation capacity, leakage and 

safety issues are discussed in the paper (Bachu, 2002; Bachu and Adams, 2003). 

Formation evaluations are also carried out by many studies (Hovorka et al. 2001; Bachu, 

2000; House et al., 2003), including Frio formation in the Texas Gulf Coast, a North Sea 

formation, the Sleipner project in the North Sea (Bickle et al. 2007), and the Weyburn 

field in Canada (Wilson et al., 2004). Studies were conducted to estimate the impact of 

the sequestration project. Zhou et al. (2008) put forward a method for quick assessment 

of CO2 storage capacity for closed and semi-closed formations. The reservoir pressure 

building up and storage efficiency factors are closely studied to estimate the formation 
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capacity. Doughty and Pruess (2003, 2004) did simulation studies for CO2 sequestration 

in saline aquifers with the TOUGH2 simulator (Pruess et al. 1999; Doughty and Pruess, 

2003), including the phase behavior modeling of water, NaCl, and CO2. A simulation 

study of the pilot sequestration test was performed using the reservoir model of the 

Umbrella Point field and a Middle Frio well log (Doughty and Pruess, 2003). These 

research efforts deepened our understanding of sequestration. 

One important issue related to geological CO2 sequestration is the risk of leakage, 

such as leakage through faults and fractures, abandoned wells and open boundaries. The 

injected carbon dioxide has a density less than that of the aquifer brine, so it will migrate 

upward due to gravity-driven flow. Two ways CO2 leakage can happen: 1) leakage may 

occur if there is a fault or open boundary in the formation. Especially if the cap rock has a 

dip angle, the free carbon dioxide phase will likely travel along the cap rock and; 2) if 

enough CO2 is accumulated below the cap rock that overcomes the entry capillary 

pressure, CO2 could penetrate the cap rock and get to upper layers (Saripalli and McGrail, 

2002). Saripalli and McGrail (2002) found ~20 m thickness of CO2 will cause leakage 

into caprock with 2    crevices. Pruess (2008) studied the leakage rate and found CO2 

leakage rate is significant only for shallow burial, where three phases (aquifer, liquid 

CO2, and gaseous CO2) are present. The deeper CO2 is injected, the more barriers are 

presented for stopping leakage. Birkholzer (2008) did a sensitivity study on the large-

scale impact of CO2 storage in stratified systems. They devised an aquifer model from 

surface to a deep aquifer at 1000 m depth, and studied CO2 injection and migration from 

the bottom layer. Their study shows the pressure response could be observed at a distance 

of more than 100 km away from the injection zone. The important discovery about this 

study is that CO2 leakage to surface through multiple sequences of shale layers is 
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extremely unlikely. Hence, it is important to pick a favorable sequestration site with 

multiple shale layers.  

During the CO2 injection and storage process, many petrophysical and chemical 

phenomena may occur, such as multiphase flow, dissolution, and mineralization. The 

three major forms of CO2 existing in geological formation are dissolved in formation 

water, trapped in pore space, and free/mobile phase. The mechanisms preventing CO2 

migration back to the surface include: 1) solubility trapping, where CO2 is dissolved into 

the formation brine; 2) hydrodynamic trapping, where the carbon dioxide remains as a 

mobile phase but is prevented from moving upward by the impermeable formation cap 

rock; 3) capillary trapping, where CO2 is trapped by the pore structure and exists as a 

residual gas phase; and 4) mineral trapping, where mineral precipitation results from 

reactions among rock minerals and CO2. Each mechanism plays an important role in 

different periods of the sequestration. Bachu et al. (1994) studied hydrodynamic and 

mineral trapping of CO2 in aquifers. Their study indicates that mineral trapping through 

the precipitation of carbonates could be one mechanism for long-term CO2 sequestration. 

The research results show that mineral trapping is a very slow process, and a relatively 

small amount of CO2 is trapped by this mechanism over short periods of time. 

There are several methods for calculating CO2 solubility in brine, including 

equations of state (EOS), Henry's law, and the activity coefficient model. 

Thermodynamic phase behavior of CO2-H2O systems has been extensively studied 

(Gallagher et al. 1992), because of its importance for many areas. Spycher and Pruess 

(2005) studied CO2 solubility in brine at 12-100 
o
C and up to 600 bar, which extended the 

correlation presented by Spycher and Pruess (2003) to include the effect of salts in brine. 

They used the activity coefficient model from Duan and Sun (2003) for solubility 
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calculations. The activity formulation by Duan and Sun (2003) and Duan et al. (2006) is 

favorable because it was fitted over a wide P-T range, with temperatures ranging from 

273 K to 533 K, pressures from 0 to 2000 bar, and iron strengths from 0 to 4.3 m. Their 

model matches experimental measurements well (Takenouchi and Kennedy, 1965). The 

Peng-Robinson equation of state (PREOS) (Peng and Robinson, 1976) is an effective 

way to model CO2 solubility in brine. Ziabakhsh-Ganji and Kooi (2012) improved 

PREOS to calculate thermodynamic equilibrium of CO2-brine mixtures containing 

impurities. PREOS gives an accurate estimation of the solubility (Valtz et al., 2004; 

Ziabakhsh-Ganjiand Kooi 2012). For our study, PREOS is used for CO2-brine phase 

behavior modeling in compositional IPARS. Many other methods are proposed for 

modeling CO2 solubility (Portier and Rochelle, 2005; Diamond and Akinfiev, 2003), 

which are mostly modified empirical correlations based on Henry's law. However, 

Henry‟s law has the limitation of application only to gas low solubility case (<0.03 mole 

fraction). Supercritical CO2 densities were measured and recorded by Span and Wagner 

(1996) and also reported by Cabaço et al. (2010) and Bahadori et al. (2009). Ouyang 

(2011) put forward a new model for CO2 density, which matched experimental results 

well (Bahadori et al. 2009).  

 

Figure 1.5 Predicted mutual solubility of CO2 and H2O (Spycher and Pruess 2005) 
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Figure 1.6 Evolution of the density of carbon dioxide with pressure at 307 K (▲), 309 K 

(○), 313 K (×) and 323 K (♦). The critical point (CP) is presented (  ),    is 467.6 

kg/m
−3

. (Cabaço et al., 2010) 

 

Figure 1.7 Density of carbon dioxide with temperature (Bahadori, 2009) 
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Figure 1.8 Density of carbon dioxide with 

temperature at different pressures (Bachu, 

2003; 2008) 

Figure 1.9 Density of carbon dioxide vs. 

depth with different geothermal gradient 

temperatures (Bachu, 2003; 2008) 

The relative permeability model is critical for simulation studies of CO2 injection 

and migration. Laboratory special core analysis (SCAL) could provide the relative 

permeability and capillary pressure curves for the reservoir rock. However, literature 

review shows limited experimental data are available for CO2-brine systems (Bennion 

and Bachu, 2005, 2006a,b, 2007, 2008, 2010; Perrin et al. 2009). Bennion and Bachu 

(2005, 2006a,b) measured drainage and imbibition relative permeability curves and 

capillary pressure curves for different rock types, including sandstone and carbonate. 

Perrin et al. (2009) did experimental study on the impact of core-scale relative 

permeability on CO2-brine displacements, using steady state measurement. The impact of 

heterogeneity was shown in the study. Their study found different flow rates will result in 

different fluid saturation distributions in the core. This might be due to different trapping 

and relative permeabilities at different Bond and capillary numbers.  

Hysteresis is widely observed in laboratory coreflood studies (Bennion and 

Bachu, 2006b, 2010), which refers to the dependence of relative permeability and 
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capillary pressure curves on saturation and saturation history. Many studies have been 

conducted on hysteresis modeling (Altundas et al. 2011; Carlson 1981; Delshad et al. 

2003; Doughty, 2007; Flett et al. 2004; Jerauld, 1990, 1997; Juanes et al. 2006; Land, 

1968, 1971; Spiteri et al. 2008). Land (1968, 1971) pioneered the hysteresis modeling 

research by putting forward a method to calculate the trapping of non-wetting phase from 

initial saturation and Land's coefficient, which was the basis of many empirical models 

(Carlson, 1981; Killough 1976). Jerauld and Salter (1990) put forward a hysteresis model 

for character curves model based on pore-level modeling (Jerauld, 1990) and later Jerauld 

(1997) put forward a general three-phase hysteresis model. Lenhard and Parker (1987) 

developed a k-S model in two-phase and three-phase flow in porous media. The trapped 

amount of non-wetting phase is determined by interpolating the current non-wetting 

phase to maximum non-wetting phase residual saturation. Delshad et al. (2003) 

developed a hysteresis model for the mixed-wet reservoirs, which was validated by both 

simulation and experimentally in coreflood and sandpack experiments. Flett et al. (2004) 

used Land's model for calculating trapping and modeled the impact of trapping on 

relative permeability and capillary pressure curves using a modified Brooks-Corey 

equation and modified free gas saturation. Doughty (2007) developed a hysteresis model 

for multiple scanning curves and multiple turning points in TOUGH2. The simulation 

work showed hysteresis modeling is required for correct modeling of CO2 sequestration 

processes (Doughty 2007). Spiteri et al. (2008) developed a new trapping model by 

curve-fitting using a quadratic relationship between the trapped non-wetting phase 

saturation and initial non-wetting phase saturation. Their model has two fitting 

parameters, and fits well for different contact angle scenarios after tuning for the proper 

parameters. Altundas et al. (2011) developed a self-consistent hysteresis relative 
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permeability and capillary pressure model, which is also based on Land's model for 

trapped non-wetting phase saturation. Their model is principally similar to that of Flett et 

al. (2004), except for the treatment of capillary pressure. A scaling factor was used for 

the capillary hysteresis, in which imbibition scanning curves are scaled from drainage 

capillary pressure curves (Altundas et al., 2011).  

Many studies have shown the interplay of viscous, capillary, and gravitational 

forces on CO2 migration and trapping. Cinar et al. (2009) performed a quasi-2D 

experimental study of CO2 injection to saline formations and verified the potential pore-

scale instability of flow with unfavorable viscous and buoyancy condition (Bond number 

~10
-3

 and capillary number ~10
-4

). Løvoll et al. (2004) conducted a pore scale study of 

the three forces competition in a random, heterogeneous 2D case, which showed a 

transition from capillary fingering behavior to a viscous fingering behavior. The 

thresholds of instability from experimental observation, simulation study, and analytical 

prediction using percolation theory agree well with each other (Løvoll et al,. 2004). 

Alkan et al. (2010) studied the combined effects of capillary pressure, salinity, and in situ 

thermodynamic conditions on CO2-brine-rock interactions with 2D simulations in 

TOUGH2/ECO2N. Their study suggests CO2 solubility will help CO2 injectivity, and 

high capillary force will give a more uniform CO2 plume, which enhances CO2 

dissolution and salting out (salt precipitation) (Alkan et al., 2010). Ide et al. (2007) did a 

simulation study of the impact of viscous, capillary and gravitational forces on CO2 

trapping. Their study shows a great decrease in trapped CO2 when Bond number 

increases and an increase in trapping when capillary pressure is high and aquifer is 

inclined. A scheme alternating water and gas is tested, which could enhance trapping (Ide 

et al., 2007).  
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Published laboratory results show the impact of IFT on relative permeability and 

capillary pressure (Bennion and Bachu, 2006). Many studies (Bachu and Bennion, 

2009a,b; Hebach et al., 2002; Bennion and Bachu, 2008; Yang and Gu, 2004) have 

shown that IFT varies at different in situ reservoir conditions, such as pressure, 

temperature, and salinity. Reducing residual saturation by reducing IFT is a proposed 

method widely used in chemical enhanced oil recovery (EOR). Reducing IFT will 

decrease the capillary forces, which will in turn reduce the trapped amount of phase 

saturation. Hence it is critical to model the impact of IFT variation on trapping during 

sequestration projects. Pope et al. (2000) developed a comprehensive trapping model for 

gas condensate reservoirs, which defined the trapping number as the sum of the capillary 

number and the Bond number. The trapping model correlated IFT to residual saturation 

through capillary desaturation curves, with varied residuals at different trapping numbers. 

The characteristic curves are modeled based on the trapping model (Pope et al., 2000). 

For capillary number and Bond number calculations, IFT modeling is important, while 

there are limited data available for supercritical CO2 and brine. Several IFT correlations 

for supercritical CO2-brine systems have been developed. The Macleod-Sugden 

correlation (Macleod, 1923; Sugden, 1924) is one of most widely used IFT models for 

reservoir fluids, which includes the density and mole fraction of each component in the 

IFT model. The advantage of the Macleod-Sugden correlation is that it considers more 

petrophysical properties than other models. Chalbaud developed an IFT model based on 

the CO2-brine phase density difference (Chalbaud et al., 2006). The IFT curve will have a 

plateau when the density difference between the gas and water phases is less than 0.6 

    , while the IFT will increase with a slope greater than 4              , when 

the density difference is greater than 0.6      (Chalbaud et al., 2006, 2010). Bennion 
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and Bachu (2008) modeled IFT as a function of pressure, temperature, salinity, and CO2 

mole fractions. The IFT will increase with increasing temperature and salinity, and 

decrease with increasing pressure (Bennion and Bachu, 2008; Bachu and Bennion, 

2009a,b). Because capillary trapping is critical for long-term CO2 sequestration, it is 

necessary to model the IFT effect carefully. Four IFT models were implemented in 

IPARS based on the above publications.  

The wettability of reservoir rock may be affected with CO2 injection, which will 

impact fluid contact angle and displacement characteristics. Wettability will also affect 

relative permeability and capillary pressure (Heiba, 1983). Blunt (1997) has developed a 

pore-scale model for wettability alternation. Chiquet et al. (2005) measured the change of 

advancing and receding contact angles during CO2 injection for shale. In the study, the 

contact angle could vary from ~60 to ~160 degrees depending on salinity and displacing 

direction. For seals with entry capillary pressures that are not high enough, the change in 

entry capillary pressure from contact angle could result in CO2 leakage. Cinar et al. 

(2007) studied the effect of IFT and wettability variation on three-phase relative 

permeability using experiments, which showed that oil-/gas-phase relative permeability 

increased with decreased IFT, while the water phase was less affected. Chalbaud et al. 

(2007) measured drainage Kr and Pc for a carbonate core under different wettability 

conditions. The capillary pressure decreases from strong water wet (WW) to intermediate 

wet (IW). The relative permeability of the wetting phase of strongly water wet is lower 

than the intermediate case (Chalbaud et al., 2007). Zhu et al. (2011) investigated 

reservoir rock wettability alternation by the CO2-brine-rock interactions, which show 

contact angle varied with temperature and pressure. 
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Accurate prediction of CO2 migration is impossible without accurate viscosity 

calculation for CO2. Over the years, numerous viscosity models have been developed for 

reservoir fluids at different pressure/temperature conditions (Jossi et al., 1961; Lohrenz, 

et al., 1964; Oakes and White, 1987; Lansangan et al., 1993; Yener et al., 1997; Tuan et 

al., 1999). Many measurements were made for supercritical CO2 and water (Vesovic et 

al., 1990; Fenghour et al., 1998; Kestin et al., 1984). Several viscosity models were 

developed for reservoir fluids including CO2. The Lohrenz-Bray-Clark (LBC) method is 

the most widely used viscosity model for reservoir fluids over a wide range of pressure 

and temperatures (Lohrenz et al., 1964). The method correlates viscosity to the reduced 

phase density, using a method developed by Jossi et al. (1961) for pure components. The 

LBC correlation accounts for physical factors when modeling viscosity and it has proven 

its effectiveness as an industry-wide standard. Lansangan et al. (1993) completed a 

comprehensive literature review and put forward an improved viscosity model based on 

the LBC method. LBC correlation is also implemented in IPARS and used in this study. 

 

Figure 1.10 Viscosity of carbon dioxide with density at different temperatures. (Vesovic 

et al., 1990) 



19 

 

Sequestration of CO2 in aquifers is impacted by many factors, such as phase 

behavior, dissolution, fluid viscosity, relative permeability, wettability, and geochemical 

reactions, among others. The injected CO2 can be trapped through many different 

mechanisms. However, these phenomena are not fully understood, and they require 

further study. The long-term impact of CO2 sequestration in underground reservoirs is 

another issue that deserves full consideration. 

1.3 Dissertation Layout 

The chapters of this dissertation are presented as follows. Chapter 2 gives an 

overview and description of the IPARS simulator, including its current implementations 

and capabilities. The black oil and compositional models in IPARS are also addressed. 

Chapter 3 describes the phase behavior and petrophysical modeling enhancements for the 

CO2 module in IPARS. Most enhancements were implemented in compositional 

IPARSv3.1, focusing on modeling relative permeability, capillary pressure, IFT, etc. The 

implementation and motivation behind these models are discussed in detail, providing a 

comprehensively detailed picture of the CO2 module in IPARS. 

Chapters 4 and 5 provide validations and tests of the newly implemented models. 

In Chapter 4, validation tests are presented with a newly developed coreflood model. A 

coreflood simulation history-matching experimental result is discussed, including a new 

method for generating heterogeneous core data. Chapter 5 describes large-scale, parallel 

simulation and sensitivity simulation studies for CO2 sequestration. Large reservoir 

models are created and studied, including a stacked geological model. Extensive 

sensitivity tests are presented for testing the newly implemented petrophysical models.  
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Chapter 6 discusses the Cranfield CO2 sequestration pilot test, a field CO2 

sequestration case simulation with IPARS. A simulation model based on the Cranfield 

pilot test is configured in IPARS, by importing the field geological, petrophysical, and 

well data. History matching studies were done and reasonable accuracies were achieved 

for the early period of injection. Sensitivity tests were conducted to study the impact of 

different petrophysical model for CO2 injection and migration in the field case.  

Chapter 7 provides a summary and conclusions for this research, and points out 

several potential research areas. Appendices describe additional works that were 

conducted, including the implementation of different solvers in the UTCHEM simulator, 

compositional phase behavior, new keywords for the IPARS simulator, examples of input 

files for CO2 sequestration models on IPARS, and some benchmark tests for IPARS.  
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CHAPTER 2: IPARS Review 

This chapter gives an overview of the functionalities and different modules in 

IPARS. In this chapter, the compositional module in IPARSv3.1 for three-phase water, 

oil, and gas flow is discussed in detail. Formulations and computational modeling are 

presented.  

2.1 IPARS Overview 

The Integrated Parallel Accurate Reservoir Simulator (IPARS) is an in-house 

parallel reservoir simulator developed by the Center for Subsurface Modeling at The 

University of Texas at Austin. IPARS provides an expandable framework and a growing 

number of physical models suitable for research studies and practical applications (Lu, et 

al., 2002) in multiphase and multiphysics reservoir simulation. The simulator is based on 

Linux and is developed using FORTRAN and C programing language. It can run on both 

single processor computer and parallel clusters, with parallelization accomplished with 

the Message Passing Interface (MPI) and OpenMP. It can solve numerical problems on 

the order of millions of elements using up to thousands of processors. IPARS can also 

model fluid flow in porous media on both core and field scales (Delshad et al., 2010, 

2011, 2013; Kong et al., 2013a,b; Lu et al., 2007; Tavakoli et al., 2012; Thomas et al., 

2008). 
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Figure 2.1 A schematic of IPARS models 

2.1.1 FLUID MODELING 

There are numerous physical models in IPARS (Gai et al., 2003; Yuan et al., 

2010), including a black oil model, a hydro model, a compositional model, a thermal 

model, transport chemistry, geomechanics, etc. Some models may be coupled in multiple 

ways (in some cases more than 50) to better study the targeted problem, such as 

compositional and thermal, etc.  

2.1.2 GRIDDING AND DISCRETIZATION 

The simulator employs advanced techniques for discretization and gridding, 

including mixed finite element, discontinuous Galerkin method, finite volume method, 

non-matching grid, and local grid refinement with enhanced velocity method (Pencheva 

et al., 2003, 2008; Wheeler et al., 1999, 2002). Iterative coupling numerical schemes and 

implicit/explicit time-stepping are also available in IPARS. 
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Figure 2.2 IPARS gridding and reservoir modeling 

Discretization techniques available are 

 Cell-centered finite difference (black oil, oil/water, air/water models) 

 Discontinuous Galerkin (two-phase IMPES model) 

 Galerkin FEM (poroelastic model) 

 Multipoint flux MFE (single phase implicit model/two phase iterative 

coupled with fractures) 

 Mortar finite element 

2.1.3 SOLVERS 

Solving the Jacobian matrix equation of the discretized governing equations is the 

most costly part of reservoir simulation, in terms of CPU usage, and it is critical to have 

efficient solvers for this task. There are multiple preconditioners and non-linear solvers 
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implemented in IPARS, such as BCGS, AMG, and GMRES. IPARS has a growing 

number of solvers for different problems (Stueben et al., 2007), and it allows for user 

input to optimize preconditioner and solver selection according to the specific conditions 

of a given problem.  

2.1.4 POST-PROCESSING AND VISUALIZATION 

One important issue with reservoir simulation is the analysis of simulation results 

both during and after model execution. During simulation, IPARS will output data both 

visually on screen and on a hard drive. Users can process data with appropriate 

formatting to plot history curves and 3D map visualizations. IPARS provides many 

software packages for post-processing and results visualization, as well. IPARS currently 

supports visualization software packages Tecplot and Paraview by outputting simulation 

results in the appropriate format onto a computer hard drive. Visualization with these 

software packages is easily accomplished.  

2.2 IPARS Compositional Model 

The compositional model in IPARSv3.1 can handle three-phase (aqueous, non-

aqueous liquid and non-aqueous vapor) fluid flow problems using compositional 

formulations with both aqueous and non-aqueous components (Thomas et al., 2012; 

Wang et al., 1999). The aqueous component is only in the water phase and is not 

included in the two phase flash calculation. Only the non-aqueous components from user 

input are included in the two-phase flash calculation, which forms the non-aqueous 

phases. The Peng-Robinson equation of state (PREOS) (Peng and Robinson, 1976) with 

volumetric shift parameters and binary interaction parameters (BIP) is used to calculate 
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fluid densities and phase composition    
 . Phase viscosities are calculated using the 

Lohrenz-Bray-Clark correlation, which will be discussed in detail in section 2.2.4. 

 

 

Figure 2.3 Compositional modules in IPARSv3.1 

2.2.1 EQUATIONS FOR COMPOSITIONAL FLUID FLOW 

For compositional flow, the primary unknown is the component mass in each 

location. Conservation of mass is the governing law for compositional flow. For a flow 

system, there can be    phases and    components. For each component   , a partial 

differential equation can be constructed based on continuum and mass conservation.  

Partial differential equations representing component mass balances are:  

 

  
[    ]   ∑      

    ⃗⃗                   . (2.1) 

The velocity of phase   is given by 
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 ⃗⃗    
 ⃗⃗ ⃗⃗    

   
( ⃗⃗       ⃗⃗  )           .   (2.2) 

Phase pressures are defined by  

        .     (2.3) 

in which,     is the capillary pressure and   is the reference phase pressure (  is phase 

label). The same reference phase pressure is used for flow, well, and flash calculations. In 

IPARS CO2 sequestration simulation, the default reference phase is the water phase, so 

we choose water phase pressure as reference pressure for this study.  

The saturation constraint is applied as: 

∑      .       (2.4) 

Porosity is a function of rock compressibility    and pressure and is calculated by 

    [    (      )],     (2.5) 

in which    and    are measured parameters that vary with rock type and location. 

     is the reference pressure at measurement condition. In each time step, it is updated 

immdediately after the pressure matrix equation is solved.  

2.2.2 EQUATIONS FOR MOLAR VOLUMES AND SATURATIONS 

The molar volume and saturation of each phase is a function of pressure and 

temperature.The molar volume for the aqueous phase has the form 

     
   

  
  [          ],    (2.6) 
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where   
   

 is the water molar volume at the surface and   
  is the formation volume 

factor at pressure P
o
 and reservoir temperature. Here    is water compressibility 

constant. The parameters   ,   , and   
  are constants.  

The molar volumes (       ) of the non-aqueous phases ( = 2, 3) are given 

by 

         ,     (2.7) 

where    is the Z-factor for phase  , R is idea gas constant, T is temperature, P is 

pressure.  

The molar volume of each hydrocarbon phase is determined from flash 

calculation and phase equilibrium. Fugacity of each phase can be calculated from Z-

factors. The fugacity of each component in vapor phase is equal to liquid phase fugacity,  

   
     

        (2.8) 

Phase equilibrium at constant temperature and pressure also requires that the 

Gibbs free energy be a minimum. A detailed description of the flash calculation and 

phase behavior modeling can be found in Appendix A. 

The saturations are then calculated from the mass and molar volume, as follows: 

             (2.9) 

          ∑    
  
        (2.10) 

      ∑    
  
    ,     (2.11) 

where   is the vapor fraction,    is water molar density,    is molar density of non-

aqueous liquid phase  ,    is molar density of non-aqueous vapor phase,    is 
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saturation of non-aqueous liquid phase,    is saturation of non-aqueous vapor,    is 

water concentration per unit pore volume,     is concentration of component    per 

unit pore volume.  

We solve the mass conservation equation for the compositional concentration of 

each component. Then saturation is calculated from the mass and phase molar volumes. 

The saturations calculated above may not exactly sum to one due to the numerical 

volume convergence error. To minimize the error, a saturation constraint of the 

summation equal to one is employed  

∑      .      (2.12) 

2.2.3 WELL MODEL 

Accuracy in well modeling is crucial in reservoir simulations. In engineering 

projects, wells are the only means of producing an oil field and otherwise influencing 

reservoir performance. In reservoir simulation, well/reservoir interaction relates bottom-

hole conditions in the wellbore to conditions in grid elements that the wellbore 

penetrates. A proper well model should be adapted to accurately represent the 

interactions between the well and the reservoir. IPARS uses the well-known Peaceman 

well model (Peaceman, 1983) for coupling the well and the reservoir in simulation.  

If we assume radial flow around the well, and the pressure is    at radius   , and 

    at wellbore   , the radial flow around the well can be described by  

   
      

 

  

  
|
    

 .    (2.13) 

The well rate can be calculated using integration by parts, as follows: 
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   (
  
  

)
(      ).    (2.14) 

Here Q is the well rate at the reservoir condition, K is permeability, h is the length of the 

well that is open to flow,    is the well radius, re is an equivalent well radius,   is fluid 

viscosity,     is the well flowing bottomhole pressure, and    is the pressure in a well 

grid element.  

The well index can be defined as 

   
    

   (
  
  

)
       (2.15) 

The well rate is calculated readily as 

    (      ).      (2.16) 

The Peaceman model is defined as  

       
{       

                        }
   

                        
    (2.17) 

for anisotropic permeability    and   .  

For the special case with homogeneous isotropic permeability in     directions     

   , the equivalent well radius is  

       [           ]   .     (2.18) 

In the IPARS formulation, the well rate of each fluid phase in each perforated 

well element is calculated using the pressure condition in each location. Production rates 

are defined to be negative in the simulator. 
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The basic flow equation for a given fluid phase   in a well grid element   is given 

by 

     
          

    
             .    (2.19) 

where iL  is length of the open wellbore penetrating element i, iK  is permeability, 

i,fk  is relative permeability of phase f in element i, i,f  is viscosity of phase f in 

element i, and i,WBP  is corresponding wellbore fluid pressure in element i. The 

dimensionless geometry factor    is calculated as  

      [  (
    

    
)    ] .    (2.20) 

where 
iS  is skin factor in element i (IPARS allows skin input for each element). 

Total well rate is given by the summation of the flow rate in each perforation, as 

follows: 

   ∑      .      (2.21) 

The formulations above define the complete well-reservoir coupling method in 

IPARS. Given a proper well constraint, these well equations together with the reservoir 

flow equations can be solved simultaneously by Newtonian iteration using either implicit 

or semi-implicit methods. The well rate or well bottomhole pressure could be specified 

for each well as its constraint. For production wells, there is one degree of freedom that 

the user can specify. For injection wells, the number of degrees of freedom is equal to the 

number of phases injected. For example, the user can specify production/injection well 

bottomhole pressure, total rate, or phase rates in IPARS. 
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2.2.4 VISCOSITY MODEL 

IPARS uses the Lohrenz-Bray-Clark correlation to calculate viscosities of each 

phase based on its composition (Lohrenz et al., 1964). Critical pressure Pc, critical 

temperature Tc, molecule weight M, and critical Z factor Zc of each component are 

needed for calculation.  

For the pure component phase, viscosity    is calculated as  

* 5 0.9434.0 10 /RT  
 
for r 1.50T  ,

   (2.22)
 

 
5/8* 517.78 10 4.58 1.67 /RT   

 
for r 1.50T  ,

   (2.23)
 

in which, the viscosity parameter   of pure phase is 

)/(44.5 3/26/1

cc PMT   ,    (2.24) 

and    is the reduced temperature as 

r

c

T
T

T
       (2.25) 

The SI units are used in the above equations. 

For low pressure mixture, mixture viscosity     
  is calculated as 

 










n

j

jj

n

j

jj

mix

Mx

x

1

2/1

1

*

*



  ,     (2.26) 

in which, xj is the mole fraction of component j.    is the molecular weight and    is 

the viscosity of component j.  
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For high pressure mixture, mixture viscosity parameter is calculated from pseudo 

properties, 

 )/(44.5 3/2

,

2/16/1

, mixcmixmixcmix PMT  ,    (2.27) 

in which 
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Here,           are critical properties of component,                    are pseudo 

properties of mixture.  

The mixture reduced molar density (  ) is calculated from mixture density  , as 

follow 

mixc

r

,


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       (2.31) 
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    (2.32) 

here           is the critical molar volume of component j.  
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The high pressure fluid viscosity   is calculated by applying the Jossi-Stiel-

Thodos correlation as (Jossi et al., 1962), 

 
1/4

* 4

2 3 4

10 0.1023 0.023364

0.058533 0.40758 0.0093324

mix mix r

r r r

   

  

    
 

  

 for 0.18r 
 (2.33)

 

 * 42.05 10mix mix r       for 0.18r 
  (2.34)

 

2.3 CO2 Module in IPARS 

Simulator IPARS is capable to perform reservoir simulation study for CO2 

sequestration in saline aquifers (Class et al., 2009). The simulation results were 

successfully benchmarked to other simulators (Class et al., 2009). Further developments 

were conducted based on benchmarked model of the simulator IPARS. Recently, a 

module for CO2 sequestration was implemented (Delshad et al., 2009, 2010, 2011, 2013; 

Kong et al., 2013a,b) that includes petrophysical modeling for CO2-brine systems. 

Integrated modeling of capillary, viscous, and gravitational forces on CO2 sequestration 

is studied. The hysteresis effect on relative permeability and capillary pressure is also 

modeled using Land's equation (Land, 1968). The CO2-water mutual dissolution is 

calculated using the Peng-Robinson equation of state (Peng and Robinson, 1976).  

The CO2 module in IPARSv3.1 is based on non-isothermal compositional EOS 

coupled with geochemical reactions (Thomas, 2009; Delshad et al., 2009). An iteratively 

coupled, implicit-pressure, explicit-concentrations scheme is applied to solve the flow 

and concentration equations, which is then sequentially coupled to a time-split method 

for solving both the temperature energy balance and the explicit ODE numerical 

integration method for chemical reactions. The Peng-Robinson cubic equation of state 
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(PREOS) is used for phase equilibrium calculation of the binary system of CO2 and 

water. The phase equilibrium varies as a function of pressure and temperature and a flash 

algorithm is used to determine the mole fractions of CO2 and water in two equilibrium 

phases.  

 

 

Figure 2.4 CO2 petrophysical modules in compositional IPARSv3.1  

We made numerous improvements to IPARSv3.1 for fluid property calculations 

of CO2 and brine flow. We first implemented a new aqueous phase component to model 

the brine salinity expressed as total dissolved solids (TDS). The EOS variables of binary 

interaction coefficients and volume shift parameters were then modified according to the 

salt concentration in the water phase and temperature using published correlations 
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(Kumar, 2004; Kumar et al., 2005). These correlations proved to give more accurate CO2 

solubility in brine and phase density.  

Several correlations for interfacial tension between water and supercritical CO2 

were then implemented that account for pressure, temperature, and brine salinity. Once 

the interfacial tension is calculated, the next step is to determine the dimensionless 

trapping number. The residual saturations of CO2 and water are then calculated, based on 

the trapping number. The endpoints are scaled, as well, with the change in the residual 

saturations. Relative permeability and capillary pressure curves are subsequently scaled 

as a function of trapping number because of the reduction in the residual phase 

saturations.  

The CO2 module in IPARSv3.1 handles the switch of flow direction between 

drainage (reduction in water saturation) and imbibition (increase in water saturation) by 

modeling the hysteresis effect for capillary pressure and relative permeability. We define 

CO2 displacing brine as the drainage process, and water invading the pore space as the 

imbibition process. With the hysteresis model, the saturation path is different for drainage 

and for imbibition. There will be trapping of CO2 in the pore space as a non-wetting 

phase during the imbibition process. The hysteresis trapping model is using Land‟s 

equation (Land, 1968) as a basis, which calculates the trapped amount of non-wetting 

phase as a function of saturation and saturation history. 

Other functionalities of the CO2 module include coupling with the other existing 

modules, such as the thermal module, Trchem module, and improved gridding for 

reservoir geometry. This newly developed CO2 module is an effective tool for CO2 

sequestration studies.  

 

  



36 

 

CHAPTER 3: Phase Behavior and Physical Property Enhancements 

This chapter discusses petrophysical model enhancements to IPARS. In section 

3.1, CO2-water phase behavior is discussed. In section 3.2, the interfacial tension (IFT) 

modeling of CO2-water is presented, including four IFT models. In Section 3.3, the 

concept of trapping number is introduced and explained in detail. In addition, a trapping 

model is developed based on trapping number. In Section 3.4, the impact of trapping 

number on relative permeability and capillary pressure is discussed. In Section 3.5, the 

hysteresis model is discussed. Hysteresis modeling is very important, because it is 

impossible to accurately predict CO2 trapping without properly modeling the effect of 

saturation direction and history.  

3.1 CO2 Phase Behavior 

For CO2 sequestration in saline aquifers, CO2 and water will undergo complex 

petrophysical and geochemical processes. Thermodynamic phase behavior will affect the 

CO2 trapping in different ways, including dissolution, capillary trapping, mineralization, 

etc. Accurate modeling of fluid phase behavior is essential for planning sequestration 

projects and making predictions. The phase behavior model is necessary to describe the 

CO2-brine interactions, mutual solubility, and other fluid properties.  

Carbon dioxide is in a gaseous phase under atmospheric and surface conditions. 

The CO2 density is ~1.98      , which is about 1.5 times heavier than that of air under 

standard conditions. However, for CO2 sequestration, as CO2 being injected to 

underground formations under high pressure, it could be in a liquid phase, or supercritical 

fluid. Phase P-T diagram is used to describe the phase behavior of CO2 with pressure and 

temperature. There are also triple and critical points for pure CO2 on the P-T diagram. 
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The triple point of a substance refers to the specific temperature and pressure at which all 

three phases can exist together at equilibrium. The critical point on a P-T diagram is used 

to describe the point of pressure and temperature above which fluid will be a supercritical 

fluid. For a supercritical fluid, there is not a clear distinction between liquid and vapor 

phases, which means that the phase difference disappears at this P-T point. A 

supercritical fluid will have density properties like liquid and viscosity properties like 

gas. For supercritical CO2 in deep aquifers, CO2 will exist as a phase separated from 

water. Hence there are two fluid phases for the system of interest. 

 

Figure 3.1 Carbon dioxide phase diagram (Bachu, 2008)  

During the CO2 migration after injection, it is possible for CO2 to undergo a large 

pressure variation, which will greatly affect its phase behavior. If CO2 migrates to a depth 

with a pressure/temperature condition lower than the critical point (Figure 3.1), CO2 can 

change from a supercritical fluid to either a liquid phase or a gaseous phase, which will 

impact the fluid properties. Equation of State (EOS) and flash calculation are used to 

model the phase equilibrium for all kinds of fluid mixtures at given pressures and 
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temperatures. For EOS, such as Peng-Robinson EOS in IPARS, several inputs are needed 

for each component, including critical pressure, critical temperature, etc. The general 

properties for carbon dioxide and water are listed in Table 3.1. Some of the input 

parameters, such as critical pressure and temperature are measured values for each 

component, while some parameters are tuning parameters, such as volume shift 

parameters and binary interaction parameters. For compositional simulation with EOS, 

these tuning parameters need to be finely tuned to match the measured fluid properties, 

such as observed mixture composition and density, for the in situ pressure and 

temperature conditions. The input values of parachor are needed for the IFT calculation 

with the MacLeod-Sugden correlation. 

Table 3.1 General properties for carbon dioxide and water (Ozah et al., 2005) 

 Carbon dioxide Water 

Critical Pressure (atm)  72.809 217.755 

Critical Temperature (K) 304.128   647.094 

Critical Vol. (m
3
/k-mole) 0.094   0.056 

Molecular Wt. (g/g-mole) 44.010   18.015 

Acentric Factor 0.224   0.344 

Parachor 78 52 

In the IPARS compositional simulator, there are a maximum of three fluid phases 

(water, oil, and gas). The phase equilibrium and flash calculations are only performed for 

the oil and gas phases. The water phase is excluded from the flash calculation. In order to 

allow CO2 to interact and dissolve into the water phase, we need to modify the simulator 

to model the oil phase in the simulator as a fluid phase with water properties. By making 
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this replacement, the H2O/CO2 system is treated as „hydrocarbon‟ components in the oil 

phase. The properties of the 'oil' phase containing H2O and CO2 are given by a flash 

calculation using the equation of state (EOS). The volume shift parameters (VSP) are 

used to obtain an accurate phase density by correcting the molar volumes of each 

component in the mixture. Binary interaction coefficients (BIC) are used in the flash 

calculations to obtain the composition of both the liquid and vapor phases. These 

parameters will be used as finely tuned inputs for the simulation to account for the 

reservoir condition. Kumar (2004) developed correlations of VSP and BIC to account for 

the effect of temperature and salinity. The parameter   is the temperature in Fahrenheit 

and   is the salinity in ppm of      in the reservoir. 

The volume shift of CO2 is a constant value: 0.024668. However, for H2O, 

4 7

2 0.179 (2.2222 10 ( 113)) 4.9867 10H OVSP T S         , (3.1) 

A correlation was developed by Kumar (2004) for the H2O-CO2 binary interaction 

coefficient as a function of temperature and salinity: 

4 7

2 2BIC 0.093625 (4.861 10 ( 113)) (2.29 10 )H O CO T S 

          ,  (3.2) 

where 
2 2H O COBIC 

is the binary interaction coefficient for the H2O-CO2 pair. 

The solubility of CO2 in brine decreases as salinity increase, and it increases as 

pressure increases. After phase equilibrium calculation, the CO2 phase viscosity is then 

calculated using the Lohrenz-Bray-Clark method (Lohrenz et al., 1964) in IPARS, as 

discussed in Chapter 2.  
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3.2 Interfacial Tension Correlations 

The interfacial tension (IFT) is critical for CO2 trapping in pore space of reservoir 

rocks, because it will affect the capillary forces, which will in turn determine the capillary 

trapping and efficiency of phase displacement. The capillary pressure is reduced by 

lowering IFT between wetting and non-wetting phases, which will reduce trapping of 

CO2 as the residual gas saturation in pore spaces. Many studies (Hebach, et al., 2002; 

Yang and Gu, 2004; Bennion and Bachu, 2008a) have shown that IFT for a CO2-brine 

system is a function of  reservoir conditions, such as pressure, temperature, water 

salinity, and dissolved amount of CO2 in brine. Reducing the residual oil saturation by 

reducing the IFT is one primary mechanism of chemical EOR and miscible CO2 EOR in 

practice. For CO2 sequestration processes, IFT will vary with in situ conditions and the 

injection process. The IFT will increase with increasing temperature and salinity, and 

decrease with increasing pressure. This IFT variation will affect the capillary forces and 

in turn affect trapping of CO2 as residual saturation. Because the capillary trapping is 

critical for long-term CO2 storage, it is necessary to model the IFT effect properly. We 

implemented a total of four IFT models in IPARS based on previous publications and 

correlations developed by Bennion, Macleod-Sugden, and Chalbaud.  

3.2.1 IFT AS A FUNCTION OF PRESSURE, TEMPERATURE, SALINITY  

Extensive measurements of CO2-water interfacial tension under supercritical 

conditions have been conducted (Bennion and Bachu, 2008a; Bachu and Bennion, 

2009a). Based on their findings, an IFT correlation based on pressure, temperature, and 

salinity was developed:  

                                                        , (3.3) 
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where   is the interfacial tension between CO2 and brine in     ,   is pressure in 

       ,   is temperature in 
o , and   is brine salinity in wt% in aqueous solution. 

The comparison of the measured data with the correlation is given in Figure 3.2. 

 

Figure 3.2 IFT vs. Pressure, model fit of Bennion's correlation for different temperatures. 

Salinity has a major effect on CO2-water properties, and it can be measured in the 

laboratory:  

 
2

100%
mass NaCl

S
mass NaCl mass H O

 


.  (3.4) 

High salinity not only reduces CO2 dissolution in brine, but also reduces the interfacial 

tension. For most deep saline aquifers, the salinity is above 100,000 ppm, so it is quite 

necessary to model the impact of salinity on IFT. The interfacial tension of CO2-H2O will 

decrease with pressure and increase with temperature and salinity, as shown in Figure 3.2 

and Figure 3.3. There is significant increase in IFT when salinity is increased from 0 to 

334,008 ppm at the temperature of 60
 o . 
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Figure 3.3 Interfacial tension vs. pressure; Bennion's model fit for different salinities and 

       

3.2.2 IFT CORRELATION BASED ON CO2 CONCENTRATION IN BRINE 

An IFT correlation developed (Bennion and Bachu, 2008a; Bachu and Bennion, 

2009a) based on CO2 concentration        in brine was also implemented in IPARS: 

2 3

0 1 2 2 2 3 2= a +a ( ) a ( ) +a ( )CO CO COX X X  ,   (3.5) 

where       is the mole fraction of CO2 in brine at standard condition, 

       per  
  a ue us p ase.  

The model parameters for Bennion's correlation are listed in Table 3.2, under 

different salinity conditions. IFT is inversely proportional to the CO2 concentration in 

brine (Figure 3.4). 
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Table 3.2 Fitting parameters for Bennion's IFT correlation based on CO2 mole fraction. 

Salinity (ppm)  a0  a1  a2  a3  

Fresh water  85.243  -4.172  0.1295  -0.002  

144,308  80.417  -3.9456  0.0484  0.0008  

334,008  70.532  0.3524  -0.4591  0.0165  

 

Figure 3.4 Measured IFT vs. CO2 solubility in fresh water (Bennion and Bachu, 2008) 

3.2.3 MACLEOD-SUGDEN CORRELATION  

The MacLeod-Sugden correlation (MacLeod, 1923; Sugden, 1924) is the most 

widely used correlation in the petroleum industry because of its wide compatibility and a 

full set of parachor tables for different fluids:  

4

1

( )
Nc

l v
i i i

i l v

x y
M M

 
 



 
  
 
 ,      (3.6) 

where  

  = interfacial tension (dyne/cm),  

   = parachor of component  ,  
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   = mole fraction of component i in liquid phase, 

   = mole fraction of component i in vapor phase, 

   = liquid phase density, 

   = vapor phase density, 

lM = molecule weight of the liquid phase, 

vM = molecule weight of the vapor phase. 

This correlation takes into account the phase compositions, as well as density and 

molecular weight. Hence it is closely related to in situ conditions and petrophysical 

properties. The parachor for CO2 is 82, and for water it is 52 (Schechter and Guo, 1998). 

3.2.4 IFT MODEL BASED ON PHASE DENSITY DIFFERENCE  

We implemented an IFT model based on the phase density difference between 

CO2 and water (Chalbaud, 2006):   

   = +plateau NaCl r

w

x T
M

 
  
 




    ,   (3.7) 

where       is the concentration of salt in brine (      ,   is constant parachor 

number for CO2,    is molecular weight of CO2,    is the density difference 

(      ,    is the dimensionless reduced temperature of CO2 (       ). Other 

fitting parameters         are listed in Table 3.3.  

Table 3.3 Fitting parameters for Chalbaud's correlation (Chalbaud, 2006). 

  1.2550   82 


 4.7180    (     ) 44.01 

  1.0243          (    ) 26 

This model is directly based on fluid density and not directly related to the in situ 

pressure, temperature, and dissolution (Figure 3.6). The IFT curve will have a plateau 
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when the density difference between the gas and water phases is less than 0.6 g/ml. The 

IFT will increase with a slope greater than 4 
m  m

g ml
  when the density difference is greater 

than 0.6 g/ml.  

 

Figure 3.5 Model fit of interfacial tension of water-CO2 with density difference 

(Chalbaud, 2006).  

3.2.5 SUMMARY OF INTERFACIAL TENSION MODELS 

The interfacial tension models discussed above are based on different physics and 

perform well at their respective applicable range. After comparison of the four IFT 

models, this study found that the Bennion‟s IFT correlation based on pressure, 

temperature, and salinity gives the best prediction of IFT over a wide range of reservoir 

conditions. The other three correlations have limitations of relying on accuracy of the 

phase behavior and flash calculations, and do not account forthe direct impact of 

pressure, temperature, and salinity. The Bennion‟s IFT correlation based on CO2 mole 

fraction in water requires an accurate calculation of CO2 dissolution in water. The model 

only applies to a limited number of salinity conditions with different sets of fitting 

parameters. The MacLeod-Sugden correlation relies on phase composition, and also does 

not account for the impact of salinity on IFT. Chalbaud‟s correlation includes the impact 
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of salinity and density on interfacial tension. However it requires an accurate calculation 

of phase density calculation from EOS model and flash calculation.  

3.3 Trapping Model  

3.3.1 TRAPPING NUMBER 

Brownell and Katz (1947) recognized that the residual phase saturations should be 

a function of the ratio of viscous forces to capillary forces, and they defined this ratio as 

capillary number. The residual saturations of each phase can be determined as a function 

of the capillary number and can be calculated using capillary desaturation curve from 

laboratory measurements. Many definitions of the capillary number have been published. 

One of the common definitions of capillary number which is convenient for coreflood 

study is as follows: 

   
  

 
 .     (3.8) 

where   is the viscosity,   is volumetric Darcy velocity,   is the IFT. 

Based on Darcy's law of flow without gravity in porous media, 

   
  

 
 
    

 
  ,    (3.9) 

where A is flow area,   is permeability, and      is the pressure gradient. 

The capillary number can also be calculated as 

   
 ⃗⃗ ⃗⃗  ⃗⃗  

 
 .     (3.10) 

where           is the potential,   is the potential gradient,  ⃗⃗ ⃗⃗  is 

permeability tensor.  

After CO2 injection, the buoyancy force from the density difference will cause 

CO2 migration. In this process, gravitational force plays a larger role than viscous force. 

In order to quantify the significance of gravitational forces, a dimensionless Bond 
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number is used, which refers to the ratio between gravitational force and capillary force 

in the form of interfacial tension. (Here subscript l stands for water phase, 2 for CO2 

phase). Bond number is defined as 

   
 ⃗⃗ ⃗⃗          ⃗⃗  

 
 .     (3.11)  

Jin (1995) and Pope et al. (2000) generalized the capillary number by including 

the effect of gravity and derived a trapping number (   ). The trapping number is the 

sum of capillary number and Bond number. The trapping number for phase 1 displaced 

by phase 2 is defined as follows: 

 2 2 1

1T

K g D

N

 



      
 ,   (3.12) 

where           is the pressure potential,   is the potential gradient,   is the 

density,   is gravity constant,   is the depth. 

3.3.2 CAPILLARY DESATURATION CURVES 

The capillary desaturation curve is used to describe the trend of residual saturation 

with capillary number (Figure 3.6). The capillary number represents how hard the 

displacing phase is being pushed into the pore which is initially occupied by in situ 

phases. For the CO2 injection process, the viscosity force is much higher than the 

capillary forces that will push CO2 into the small pore spaces. The amount of residual 

saturation for each phase will be reduced at high viscous forces, which implies that the 

higher the capillary number is, the lower residual saturation will be reached.  
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Figure 3.6 Schematic capillary desaturation curves, residual saturation vs. capillary 

number (Lake, 1989)  

The shape of the desaturation curve is determined by several factors, including 

wettability, heterogeneity, and pore size distribution. While the residual saturation of the 

non-wetting phase typically starts to decrease at a low capillary number, the wetting 

phase saturation usually does not start to decline until a capillary number much higher 

than that for the non-wetting phase is reached. For rock types with less heterogeneity and 

relatively uniform pore throat radius, the slope of decline will be sharper than 

heterogeneous rock. Sandstone is a relatively homogeneous rock that has a sharp slope of 

saturation drop when the capillary number exceeds the critical value. Carbonate rock is 

normally quite heterogeneous and has a wide pore size distribution, so its desaturation 

curve will show a slope that spans quite a wide range of capillary numbers. 

The trapping number is a sum of the capillary number and the gravitational Bond 

number. The residual saturation is modeled as a function of trapping number as follow:  

Capillary number (Nc) 
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min ,
1 ( ) l

low high
high lr lr

lr l lr

l Tl

S S
S S S

T N


 
  

     (3.13) 

where   is the phase label, subscript 1 is liquid, and subscript 2 is CO2. The parameters 

   and    are trapping model parameters obtained by fitting the residual saturation data 

for phase  .    
    

 and    
    correspond to the residual saturation at high trapping 

number (typically zero residual saturation) and low trapping number, respectively. Figure 

3.7 shows an example calculation for residual saturations versus trapping number. 

  

Figure 3.7 Example capillary desaturation curves for CO2-brine, residual saturations vs. 

trapping number  

3.3.3 RELATIVE PERMEABILITY MODEL AS FUNCTION OF TRAPPING NUMBER 

Since the residual saturation for CO2-brine is modeled with trapping number, the 

trapping number will have a big impact on the relative permeability and capillary 

pressure curves (Figure 3.8). The relative permeability curve can be characterized by the 

endpoint relative permeability     
 , residual saturation     , and relative permeability 

exponent   :  
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 (

      

  ∑     
)
  

   .   (3.14) 

The relative permeability of each phase can be correlated to trapping number in a 

very predictable way. When trapping number increases (or interfacial tension decreases), 

the residual saturation will decrease, and the relative permeability will increase for the 

same saturation. If the relative permeability curves at high and low trapping numbers are 

defined, the relative permeability curves at other trapping numbers can be interpolated 

from the given two. The same idea can be applied to calculate the relative permeability 

endpoint and exponent based on the trapping number and shifted residual saturation.  

 

Figure 3.8 Prototype relative permeability curves for low and high trapping numbers 

(Green: water; Red: CO2). 

The following correlation is used to shift the endpoint relative permeability    
  

for water (w) and CO2 (g) as a function of the residual saturation of the conjugate phase:  

  0 0 0 0
low

low high lowwr wr
rg rg rg rglow high

wr wr

S S
k k k k

S S


  


,

   (3.15) 

  0 0 0 0

low

gr grlow high low

rw rw rw rwlow high

gr gr

S S
k k k k

S S


  


 ,   (3.16) 
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where the superscript     stands for low trapping number (high residual saturation), and  

the superscript      stands for high trapping number (low residual saturation). 

The exponent of relative permeability curves    is also modified to reflect the 

change in the residual saturation: 

  
low

low low highwr wr
g g g glow high

wr wr

S S

S S
   


  


,

    (3.17) 

  
low

gr grlow low high

w w w wlow high

gr gr

S S

S S
   


  


.

 .   (3.18) 

Figure 3.9 and Figure 3.10 show the example calculations for relative 

permeability endpoints and exponents as functions of trapping numbers.  

  

Figure 3.9 Endpoint relative permeability vs. trapping number. 
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Figure 3.10 Relative permeability exponent vs. trapping number. 

The next step is to calculate the relative permeability of each phase as a function 

of saturation. We assumed a Corey-type relative permeability function where endpoint, 

exponent, and residual saturations are functions of trapping number.  

        
 (

      

         
)
  

,    (3.19) 

       
      

̅̅̅̅   
  

,    (3.20) 

where    is the water saturation,   
̅̅̅̅  

      

         
 is the normalized water saturation, 

and     is residual water saturation,     is residual gas phase saturation.  

Examples showing results of CO2-brine relative permeability at low and high 

trapping numbers are given in Figure 3.11 and Figure 3.12, which show the impact of the 

trapping number on relative permeability. The residual saturation of both phases will be 

reduced, and the relative permeability curves will shift upward when the trapping number 

increases.  
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Figure 3.11 Relative permeability curves at low trapping number of 10
-8

. 

 

Figure 3.12 Relative permeability curves at high trapping number 10
-2

 

3.3.4 MODEL VALIDATION TO LABORATORY DATA 

We compared the model with three relative permeability data sets provided by 

Bennion and Bachu (2006b). Bennion and Bachu (2006b) measured relative permeability 

and capillary pressure of CO2 and brine in coreflood under different pressure conditions. 

The relative permeability curves were measured for a sample of sandstone rock at a 
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temperature of 43 
o
C and in situ salinity of 27,096 ppm. The core length was 3.73 cm 

with a diameter of 3.77 cm (Table 3.4).  

Table 3.4 Core data used for relative permeability and capillary pressure measurements 

(Bennion and Bachu, 2006b). 

Core sample lithology Sandstone 

Sample depth, m 1626 

Overburden pressure, kPa 11,000 

In situ temperature, oC 43 

In situ salinity, ppm 27,096 

Core length, cm 3.73 

Core diameter, cm 3.77 

Cross sectional area, cm2 11.16 

Injection rate, cm3/hr 10 

Porosity, fraction 0.153 

Three sets of relative permeability curves are measured by Bennion and Bachu 

(2006b), with each case standing for low, medium-ranged, and high trapping number 

conditions. The three test cases outlined below correspond to different trapping numbers 

for the CO2-Brine system. Measured relative permeability curves are presented in Figure 

3.13. 

1) IFT =          ,            (200 psig), low trapping number 

2) IFT =          ,            (1000 psig), medium trapping number 

3) IFT =          ,                (2900 psig), high trapping number 

We curve-fitted the measured relative permeability curves with a Corey function 

as  

  l

Skk rlrl




0 , l = w, g    (3.21) 
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where 
1

l lr
l

wr gr

S S
S

S S




 
 is the normalized saturation.  

The fitting parameters to measurement are listed in Table 3.5. 

Table 3.5 Parameters for Corey-type model match to the measured relative permeability 

data at different pressure and IFT condition by Bennion and Bachu (2006b). 

P 

(kPa) 

IFT 

(mN/m) 
Sgr Swr 

o

gk  o

wk  g w 

1378 56.2 0.225 0.379 0.298 0.405 1.90 3.80 

6,890 33.2 0.107 0.271 0.456 0.861 1.50 1.30 

20,000 19.8 0.102 0.197 0.527 0.905 1.10 1.10 

We applied our new trapping number model to curve-fit the experimental results. 

The endpoint values corresponding to the high and low pressure values were chosen for 

the high and low model parameters in Equations 3.13-3.16. The experimental data 

(Figure 3.13) demonstrate a shift in relative permeability curves with different pressure or 

trapping number.  

 



56 

 

 

Figure 3.13 Relative permeability curves at different pressures (data from Bennion and 

Bachu, 2006b). 

In order to validate our model using laboratory data, we assumed the relative 

permeability curves at high and low pressure represented the high and low trapping 

numbers.  

First we curve fit the two sets of relative permeability curves using parameters in 

Table 3.5. These two sets of curves were used as our model inputs for high and low 

trapping numbers. Results are shown in Figure 3.14. 
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Figure 3.14 Curve-fit of relative permeability at low and high trapping number conditions 

(points are data from Bennion and Bachu, 2006b and lines are calculated). 

The relative permeability curves at intermediate range trapping number were 

calculated using the trapping model (Figure 3.15). Results show good agreement between 

calculated relative permeability and lab measurements (Table 3.5).  
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Figure 3.15 Comparison of model calculation (dash line) and laboratory data (points) of 

relative permeability curves at intermediate trapping number, solid lines are 

input relative permeability curves at high and low trapping number 

3.4 Hysteresis Model 

Unlike previous relative permeability models which model the relative 

permeability as a function of phase saturation only, the hysteresis model relates the 

relative permeability to the saturation and its history. Hysteresis refers to the 

phenomenon that capillary pressure and relative permeability take different paths during 

drainage and imbibition process. Drainage is the process of the non-wetting phase CO2 

displacing the wetting phase water, while imbibition is the process of the wetting phase 

water displacing non-wetting phase CO2 in pore spaces. The hysteresis effect is critical 

for CO2 sequestration, because it is the main mechanism for capillary trapping. The 

capillary trapping phenomenon in an imaginary pore space during drainage and 
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imbibition is shown in Figure 3.16. During the injection period, CO2 and water undergo 

the drainage process. CO2 is a continuous phase and physically there is no trapping of 

CO2 (     ). The trapped gas saturation (   ) is zero in Figure 3.16. After CO2 

injection, CO2 phase will become discontinuous in certain pore spaces. Part of CO2 (   ) 

will be trapped by capillary forces during the imbibition process (Figure 3.16).  

 

 

Figure 3.16 Non-wetting phase gas trapping (Sgt) in pore space during imbibition process. 

Figure 3.17 provides the schematic of capillary pressure for several water 

saturation directions. For CO2 injection into an aquifer with 100% water saturation, the 

capillary pressure curve will initially follow the main drainage curve. During the drainage 

process, there is no trapping of non-wetting phase CO2. Water saturation will decrease 

until it reaches the reversal point A, which is when the imbibition process begins. In the 

imbibition process, the capillary pressure will follow the dashed line from point A. The 

spontaneous imbibition process will stop at zero capillary pressure because there is not 

capillary pressure to imbibe the brine into the pore. If water imbibition reaches zero 

capillary pressure, the maximum trapped CO2 (      ), corresponding to the reversal 
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Water 
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point A, will be achieved. If point A is on the main imbibition curve and imbibition 

reaches to zero   , the maximum CO2 residual saturation (       ) can be achieved. For 

an imbibition process started at point A and saturation at point B, the trapped amount of 

CO2 (   ) needs to be calculated by interpolation between zero trapping and         . We 

will discuss the procedures in following sections.  

 

 

Figure 3.17 Sketch of hysteresis capillary pressure path.  

The definitions of variables in Figure 3.17 are given as below: 

   : Residual water saturation; 

   : Residual gas saturation; 

      : Water saturation at reversal point 

     : Normalized water saturation at reversal point A;  

Reversal point 
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       : Maximum trapping gas saturation in hysteresis, equal to    ;  

      : Trapped gas saturation at zero   , corresponds to reversal point (A or C in 

Figure 3.17).  

   : Trapped amount gas at current imbibition  ̅  (not normalized) 

      : Maximum gas saturation for main drainage (1-     

3.4.1 LAND’S HYSTERESIS TRAPPING MODEL 

Land's model (Land, 1968) is implemented for hysteresis modeling in IPARS. 

This model correlates the maximum trapped non-wetting phase saturation as a function of 

initial non-wetting phase saturation. Based on this model, when flow changes from 

drainage to imbibition direction, the maximum residual gas saturation corresponding to 

the reversal point is  

 min

min

1

1 C(1 )

w
gtrap

w

S
S

S




 
, (3.22) 

where        is the trapped non-wetting phase saturation (normalized) at     , 

corresponding to water saturation at reversal point,      .       is the normalized (or 

effective) wetting phase saturation at the reversal point (point A in Figure 3.17),  

,

min
1

w inv wr

w

wr

S S
S

S





， .     (3.23) 

  is the Land's coefficient, calculated as follows 

 ,max ,max

1 1
C

gt gS S
 

  .   (3.24) 

For example, if                           , then   equals to 3.68. The 

maximum trapped non-wetting phase saturation could then be calculated using Land's 

model as a function of initial non-wetting phase saturation (Figure 3.18).  
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Figure 3.18 Maximum trapped non-wetting phase saturation vs. initial non-wetting phase 

saturation (Land's model) 

The normalized water saturation 
wS is used to determine the saturation direction,  

1

w wr
w

wr

S S
S

S





 .    (3.25) 

For each time step, if 
wS  in each gridblock (Point B in Figure 3.17) is increasing 

(greater than      ), it is an imbibition process and        remain the same as reversal 

point. Otherwise, if 
wS is decreasing,       will be set to be current

wS . For an 

imbibition process, the trapped gas saturation (   ) can be calculated (Lenhard and 

Oostrom, 1998):  

min

min1

w w
gt gtrap

gtrap w

S S
S S

S S




 
.    (3.26) 
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For the example with          ,          , if reversal point locates at the 

residual water saturation,           , and         , the trapped gas saturation 

during water imbibition would be as indicated in Figure 3.19. 

 

Figure 3.19 Trapped non-wetting phase saturation vs. wetting phase saturation during 

imbibition process starting at        , based on Lenhard‟s interpolation 

We can see from Figure 3.19 that the trapped amount of non-wetting phase 

saturation will increase linearly with increase of the wetting phase saturation based on a 

Lenhard‟s interpolation. The calculated     is the trapped amount of non-wetting phase 

saturation. 

3.4.2 HYSTERETIC RELATIVE PERMEABILITY 

Once we calculate the trapped non-wetting phase saturation in the pore space, the 

next step is to calculate the relative permeability and capillary pressure with the 

consideration of saturation direction using the apparent wetting phase saturation. The 

apparent wetting phase saturation is calculated as ( wS  less than or equal to 1): 

 
w w gtS S S  . (3.27) 
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The apparent water saturation represents a water saturation that contains a 

discontinuous gas 'bubble' in it. The relative permeability and capillary pressure can be 

calculated based on wS  and 
gtS . The current model uses a Brooks-Corey relative 

permeability model (Brooks and Corey, 1964).  

For the drainage direction 
gtS  equals to zero and wS  equals 

wS . The endpoint 

relative permeability for water is 1: 

w

rw wk S


       (3.28) 

 0 1
g

rg rg wk k S


 
     (3.29) 

For an imbibition direction, the apparent water saturation is used for relative 

permeability: 

 
0 w

rw rw wk k S



      (3.30) 

 
 0 1

g

rg rg wk k S


 
     (3.31) 

Examples of hysteretic relative permeability curves are shown in Figure 3.20. 

During the drainage, trapped gas saturation is 0, and water residual saturation,     

     . During the imbibition process, gas residual saturation is           . 

 

Figure 3.20 Drainage and imbibition relative permeability curves for CO2-brine 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e 
P

er
m

ea
b
il

it
y
 

Gas saturation 

Krw_dr

Krg_dr

Krg_im

Krw_im



65 

 

3.4.3 HYSTERETIC CAPILLARY PRESSURE 

Capillary pressure hysteresis, referring to the different paths the capillary pressure 

curve takes during drainage and imbibition processes, is critical for CO2 trapping. For 

two-phase flow, the capillary pressure path is depicted in Figure 3.17. An example 

hysteresis capillary path from drainage to imbibition processes is shown in Figure 3.21. 

During the drainage process, capillary pressure is 

 
1

,C
drainageentry

c orey c wP P S



 .    (3.32) 

For the imbibition process, capillary pressure is modeled as, 

 

1/

,

min

1

1

imb

inv w
c imb c

w

S
P P

S



 
  

  

, (3.33) 

where inv

cP is the capillary pressure at the saturation reversal point. 

 

Figure 3.21 Hysteretic capillary pressure for drainage and imbibition process 

We can see from example in Figure 3.21 that the imbibition capillary curve starts 

from reversal point       , and then decreases to zero capillary pressure at    

     . Hence (            is the maximum trapped amount of CO2 saturation 

corresponding to the reversal point          .  
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3.5 Leverett J-function for Capillary Pressure 

The capillary pressure in reservoir rock is affected by many factors, including the 

interfacial tension (IFT), the contact angle, and the heterogeneous permeability and 

porosity in the reservoir. The capillary pressure curve for the same kind of rock with 

similar pore structure could be modeled with a dimensionless function as the Leverett J-

function (Leverett 1941):  
0.5

( )
cos

c
w

P K
J S

  

 
  

 
,    (3.34) 

Here    is the capillary pressure,   is the permeability,   is porosity,   is the 

interfacial tension, and   is the phase contact angle,    is a dimensionless curve for a 

given rock with similar pore structure.  

We scale capillary pressure    based on Leverett J-function to include 

heterogeneity and fluid/rock properties. Reference values including interfacial tension, 

contact angle, permeability and porosity are needed as input parameters. The capillary 

pressure can then be calculated as: 

 

0.50.5

,ref

cos

cos
c c

ref ref ref

K
P P

K

  

  

    
          

,   (3.35) 

where subscript     stands for the capillary pressure curve and other petrophysical 

properties measured for the reference rock.  
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Figure 3.22 Capillary scaling based on heterogeneous rock with different permeability 

By scaling capillary pressure based on the Leverett J-function, we can see from 

Figure 3.22 that the capillary pressure curve is shifted upward or downward for low and 

high permeability values in each gridblock. When the permeability is low in a gridblock, 

the capillary pressure curve will be high.  

The effect of interfacial tension was accounted for by scaling the capillary 

pressure such that the capillary pressure is reduced as the interfacial tension decreases.  

Bennion and Bachu (2006b) measured capillary pressure for different CO2-water 

IFT conditions, which shows downward shifting of capillary pressure curves with 

decreasing IFT (Figure 3.23). 
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Figure 3.23 Measured capillary pressure curves at different IFT (i.e.trapping number 

condition) (Bennion and Bachu, 2006b). 
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CHAPTER 4: Model Validation with Coreflood Simulation 

Numerical simulation and laboratory corefloods are effective methods for fluid 

displacement study in porous media. Numerical simulation of laboratory experiments of 

CO2 injection into brine saturated cores with high resolution CT images of porosity and 

CO2 saturation provide a deepened understanding of the impact of small-scale 

heterogeneity on flow and transport of CO2. Validation of numerical simulators with 

controlled laboratory experiments and pilot-scale field projects provides confidence in the 

prediction capability of numerical models for future storage projects. Numerical 

simulators must include accurate physical property models in order to capture small-scale 

effects. 

The coreflood simulation case presented in this study is based on the published 

paper by Krause et al., 2011. The goal of this study was to test the rock-fluid model 

enhancement in IPARS, validate the core permeability and porosity relationship, and 

history-match the coreflood results. We set up a simulation case in IPARS using a core 

model similar to the experiment, with the same initial pressure and temperature 

conditions as in the original experiment. Since we do not have the actual permeability 

and porosity data, we had to generate the permeability and poristy distributions using the 

geostatistical program FFTSIM (Jennings et al., 2000) in the absence of measured 

porosity and permeability data. We honored reported average permeability and porosity 

by Krause et al. (2011), but the distributions of permeability and porosity are different 

from the coreflood experiment. The IPARS simulation results are compared favorably 

with experimental results. 
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4.1 Review of Published Experimental and Numerical Results  

Krause et al. (2011) conducted a study of CO2-brine coreflood at elevated 

pressure and temperature using a Berea sandstone core. Supercritical CO2 was injected at 

a constant rate into a 100% brine saturated core until no more water was produced. The 

final CO2 saturation distributions as well as porosity were measured with an X-ray CT 

scanner with a resolution of                         . The average porosity 

and permeability of the core were 0.185 and 84.7 md. The laboratory and simulation 

parameters are listed in Table 4.1. 

Table 4.1 Core properties and coreflood conditions (Krause et al., 2011). 

T      50 CO2 dissolution (mass fraction) 0.04873 

P (MPa) 12.41 CO2 density (     ) 608.38 

XNaCl  (ppm) 6500 CO2 viscosity (cp) 0.06 

Average porosity, fraction 0.185 Brine density (     ) 993.33 

Average permeability (  ) 84.7 Interfacial tension (   ) 0.0285 

Core length (cm) 20.32 Injection rate (      ) 3 

Core diameter (cm)
 *

 5.08 Total injection pore volume  13 

Residual water saturation 0.2 Final average gas saturation  0.5026 
*: We believe the core diameter should be about 4.38 cm based on the image size and data in 

Krause et al. (2011) paper. 

The porosity based on an X-ray CT scan is shown in Figure 4.1. The saturation 

distribution is shown in Figure 4.2. A high saturation contrast and non-uniform 

distribution of the CO2 saturation is clearly shown in the middle slice of the core (Figure 

4.3). The measured histogram of CO2 saturation shows a normal distribution with CO2 

saturation spanning the whole range from 0 to 1 (Figure 4.4). This indicates that the water 

saturation is reduced to almost zero in certain locations of the core. 
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Figure 4.1 Measured porosity (grid size of 

                        ) 

(Krause et al., 2011)  

 

Figure 4.2 Measured CO2 saturation (grid 

size of                          ) 

(Krause et al., 2011) 

 

 

Figure 4.3 Measured CO2 saturation in the 

middle slice (Krause et al. 2011) 

 

Figure 4.4 Measured CO2 saturation 

histogram (Krause et al. 2011) 

 

Krause et al. (2011) used TOUGH2-MP simulator with the ECO2N module 

(Pruess, 2005) to history-match the coreflood experiment. Permeability was calculated 

using several permeability-porosity correlations. The measured relative permeability and 

capillary pressure curves used in their simulations are shown in Figure 4.5 and Figure 

4.6. There were a total of 67 slices along the core length with 936 cells in each slice. The 

grid size used in the simulations by Krause et al. (2011) was                  
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     . The core inlet was maintained at a constant CO2 injection rate (3 ml/min) and the 

outlet was at a constant pressure (12.41 MPa). About 13.2 pore volumes (PVs) of CO2 

were injected until there was 100% CO2 in the effluent. 

  

Figure 4.5 Measured relative permeability 

curves (Krause et al. 2011) and curve fit using 

Eq. 4.1 and 4.2 

  

Figure 4.6 Measured capillary pressure curve 

(Krause et al. 2011) and curve fit using Eq. 4.3 

Krause et al. (2011) compared their simulation results with experimental 

observations. A comparison of the experimental and simulation saturation distributions in 

the middle slice (Figure 4.3 vs. Figure 4.7) shows that the saturation profile is similar 

though the simulated saturation lacks the large contrast as that shown in the measured 

saturation. The CO2 saturation histogram in Figure 4.4 compared to Figure 4.8 shows 

large differences between the experiment and the best simulation model. The saturation 

histogram of the simulation results (Figure 4.8) is much narrower compared to that 

measured and lacks high CO2 saturation values greater than 0.75. 
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Figure 4.7 Simulated CO2 saturation 

in middle slice (Krause et al. 2011) 

Figure 4.8 Simulated CO2 saturation histogram 

(Krause et al. 2011) 

 

4.2 Coreflood Simulation with IPARS 

4.2.1 CORE MODEL BASED ON HETEROGENEOUS PERMEABILITY AND POROSITY 

We constructed a 3D simulation model using the same core properties used by 

Krause et al. (2011). We modeled the coreusing Cartesian grid, because IPARS does not 

currently support the cylindrical grid stystem. The number of grids is 32 32 32 in x, y, 

and z directions with a total of 32768 gridblocks (Figure 4.9). The grid sizes in our model 

is about                          in x, y, and z directions, compared to the CT 

scan resolution of                         . The numerical grid resolution 

was selected to ensure accurate results and fast CPU times for many simulations required 

to history match lab results and perform sensitivity studies. 
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Figure 4.9 IPARS simulation grid using 32 32 32 cells  

The simulated fluid properties of density, viscosity, and CO2 dissolution were 

similar to the measured data (Table 4.1) after the EOS parameters were tuned. The 

pressure and temperature in the simulation model are the same as the experimental 

condition with an initial pressure of 12.41 MPa and an initial temperature of 50 
o
C. The 

calculated solubility of CO2 in brine was about 0.013 mole fraction, which is consistent 

with the measured value. Wells are used to model the inflow and outlet boundary 

conditions of constant injection rate and constant pressure, respectively. The inlet well 

injects supercritical CO2 (saturated with brine) at a constant rate of 3     in with a 

constant producer at 12.41 MPa at the other end of the core. The injection continues until 

100% CO2 is produced at the outlet.  

Relative permeability and capillary pressure curves presented by Krause et al. 

(2011) were used. The process of CO2 injection into a brine-saturated core is a drainage 

process for which drainage relative permeability and capillary pressure curves should be 

used. We matched the relative permeability and capillary pressure curves using the 

Brooks-Corey function (Brooks and Corey, 1964), as follows:  
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   ̅     (4.1) 

       
     ̅  

  
 (4.2) 

             ̅  
  

 

   , (4.3) 

where 
1

w wr
w

wr gr

S S
S

S S




 
 is the normalized water saturation,     is the residual water 

saturation,     is the residual CO2 saturation. Table 4.2 gives the model parameters. 

Figure 4.5 and Figure 4.6 show the fitted curves to laboratory data. 

Table 4.2 Drainage relative permeability and capillary pressure model parameters 

Brine endpoint relative permeability    
  1 

CO2 endpoint relative permeability    
  0.60 

Brine relative permeability exponent,    3.8 

CO2 relative permeability exponent,    1.75 

Entry capillary pressure,                5.63  

Capillary pressure exponent,     0.7 

4.2.2 POROSITY-PERMEABILITY CORRELATION 

Several porosity-permeability correlations, such as Carman-Kozeny, have been 

developed to compute permeability based on measured porosity (Kozeny, 1927; Carman, 

1937). Several published data (Collins and Jordan, 1961; Jensen et al., 1987) show that 

the porosity follows a normal distribution, whereas permeability follows a log-normal 

distribution. The distributions of the porosity and permeability could be described by the 

mean and standard deviation (    ) of a normal distribution. The standard deviation can 

be described by the Dykstra–Parsons variation coefficient       (Dykstra and Parsons 

1950) as 
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                    .     (4.4) 

The Dykstra-Parsons coefficient of permeability variation is commonly used to 

describe the reservoir heterogeneity. A homogeneous reservoir has a permeability 

variation that approaches zero while an extremely heterogeneous reservoir would have a 

permeability variation approaching one. The same concept is adopted to describe 

heterogeneity of the core.  

                   ,     (4.5) 

where      is permeability with >50% of cumulative probability and       is 

permeability with >84.1% of cumulative probability, which is one standard deviation 

from the mean.  

The 3D model was constructed with permeability and porosity generated using 

FFTSIM software based on geostatistics (Jennings et al., 2000). The model input 

parameters are the correlation length, natural log of mean permeability, and Dykstra-

Parsons coefficient (VDP). The output is a set of normally distributed values for each grid. 

Table 4.3 gives the input parameters.  

Table 4.3 FFTSIM input parameters  

NX, NY, NZ               0.185 

Seed number 9        0.1 

    0.8           (md) 4.4 

     1.61        1.7 

Dimensionless 

correlation length 

in x, y, z directions  
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The porosity is first generated using the average porosity reported from the 

laboratory, standard deviation, and a normal distribution of Zi,j,k. Figure 4.10 gives the 

histogram of porosity distribution. 

 , , , , ,i j k avg std i j kZ   
   

 (4.6)
 

 

 

Figure 4.10 Generated porosity with normal distribution
 

 

The permeability distribution is then generated using the measured average 

permeability and the standard deviation as 

, , , , ,ln( ) ln( )i j k avg std K i j kk k Z  .
   

(4.7) 

 

 

Figure 4.11 Log normal distribution of permeability       ) 
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The permeability histogram follows a log-normal distribution (Figure 4.11). The 

input mean porosity and permeability and standard deviations were adjusted until 

measured values reported by Krause et al. (2011) were obtained. Figure 4.12 gives the 

porosity distribution with an average of 0.185. The average permeability is 84.7 md. 

 

 

Figure 4.12 Porosity distribution in the core model 

 

 

Figure 4.13 Porosity in middle slice (#16) 

 

Figure 4.14 Permeability in middle slice (#16)  

 

The porosity and permeability were correlated as shown in the middle slice (#16) 

of the core (Figure 4.13 and Figure 4.14). The slice-averaged porosity and permeability 

along the core length have a strong correlation, as shown in Figure 4.15. Slice #16 was 
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chosen in order to be consistent with the plotting location used by the original experiment 

(Krause et al., 2011). 

 

Figure 4.15 Correlated permeability and porosity along the core 

Different approaches were studied for the mean values of porosity and 

permeability when generating the geostatistical distribution. The arithmetic mean for 

porosity and geometric mean for core permeability gave closer results of average 

saturation and pressure drop when compared to the measurements. 

 

4.2.3 CAPILLARY PRESSURE MODEL 

Capillary forces play a critical role in CO2 trapping and migration. For CO2-brine 

systems, the brine phase is the wetting phase and CO2 is the non-wetting phase that could 

be trapped in the pore spaces. For a core initially saturated with brine, enough pressure 

differentials are needed to push CO2 into the core and displace the water using CO2 (i.e. 

entry capillary pressure). The capillary pressure is affected by many factors, such as the 

interfacial tension (IFT), the contact angle, and the permeability and porosity. A 

dimensionless J-function for rocks with similar pore structure was developed to model 

Z (ft) 
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the capillary pressure based on the fluid interfacial tension and rock properties (Leverett 

1941), as follows,  

 
( )

( )
cos

 c w
w

P S k
J S

  
 . (4.8) 

The capillary pressure model in IPARS includes the use of Leverett J-function 

scaling where the capillary pressure in each grid is adjusted based on the permeability, 

porosity, and interfacial tension, as follows: 

 

0.50.5

,ref

cos
= ( ) cos

cos
c w c

ref ref ref

k
P J S P

K k

   
 

  

  
    

   
,  (4.9) 

here the subscript ref represents a measured porosity of 0.185 and a permeability of 84.7 

md. Figure 4.16 gives an example of capillary pressure curves for different permeability 

values.  

 

 

Figure 4.16 Capillary pressure curves for different permeability values with J-function 
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4.3 IPARS Coreflood Simulation Results 

We performed simulations using different permeability and porosity distributions. 

We studied the effect of capillary pressure, permeability/porosity heterogeneities, and 

residual water saturation on CO2 distributions. Case studies were designed to study the 

impact of different petrophysical models on simulation results (Table 4.4). The core with 

the same porosity and permeability distributions is used for all these simulation cases. 

Table 4.4 Coreflood simulation cases. 

Case # Description Residual water sat. (   )    scaling 

1 History match simulation 0.0 Yes 

2 Sensitivity to Swr and    

scaling 

0.2 No  

3 Sensitivity to           with 

different     

0.0, 0.1, 0.2 Yes 

Case 1 represents a history match simulation with the Leverett J-function 

capillary pressure scaling using Eq. 4.9 and a zero residual brine saturation      . In 

Case 2 the impact of capillary pressure scaling on CO2 saturation distribution was 

investigated. Here no scaling for capillary pressure was used and     = 0.2 was assumed. 

In Case 3 the sensitivity to residual brine saturation was studied. The final CO2 saturation 

distributions and histograms, and average saturations are compared and discussed below. 

4.3.1 CASE 1: HISTORY MATCH SIMULATION 

We studied the range of CO2 saturations from the experimental results (Figure 

4.4) and found the presence of CO2 saturations higher than 0.95. This is inconsistent with 

the measured residual water saturation of 0.2 from the drainage capillary pressure and 

relative permeability curves. Therefore, we assumed a residual water saturation of zero 
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and included the J-function for capillary pressure scaling. The simulated CO2 saturation 

profile is given in Figure 4.17.  

 

 

Figure 4.17 Final CO2 saturation simulated 

using IPARS (grid size of         

                 ) 

 

Figure 4.18 CT-scan measured final CO2 

saturation (Krause et al. 2011) 

The simulated CO2 saturation corresponding to the middle slice of the core in 

Figure 4.19 shows the impact of heterogeneity on the saturation profile. Simulation 

results are quite similar to those measured (Figure 4.20), with features of locally high and 

low CO2 saturation contrast. 

 
Figure 4.19 IPARS simulation results of 

CO2 saturation in middle slice (#16) 

 
Figure 4.20 CT-scan measured CO2 saturation 

in middle slice (Krause et al., 2011) 

The final CO2 saturation histogram calculated based on grid values is plotted in 

Figure 4.21 with a distribution similar to the normal distribution exhibited by 
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experimental data (Figure 4.22). There are very low and very high CO2 saturations 

consistent with laboratory observations. The final average CO2 saturation is about 0.52, 

and this is also consistent with the reported value. 

 
Figure 4.21 IPARS simulation result of 

CO2 saturation histogram for Case 1 

 
Figure 4.22 Experimental histogram of CO2 

saturation (Krause et al., 2011) 

The slice-averaged calculated saturation and porosity along the core is shown in 

Figure 4.23, where a clear correlation between saturation and porosity is observed for 

Case 1. A similar trend was observed in another coreflood experiment by Perrin and 

Benson (2010), shown in Figure 4.24.  

 

 

Figure 4.23 Simulation results of slice-

averaged CO2 saturation and porosity 

along the core for Case 1 

 

Figure 4.24 Measured slice-averaged 

saturation along the core (Perrin and 

Benson, 2010) 
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4.3.2 CASE 2: SENSITIVITY TO CAPILLARY PRESSURE SCALING  

For simulation Case 2, we excluded the J-function scaling for the capillary 

pressure and assumed a constant residual water saturation of 0.2. The same porosity and 

permeability distributions as the Case 1 are used. The simulation result of the CO2 

saturation profile is quite uniform (Figure 4.25) and lacks the saturation contrast 

characteristics observed in the experiment (Figure 4.26).  

 

 

Figure 4.25 Final CO2 saturation for 

simulation Case 2 

 

Figure 4.26 Measured CO2 saturation 

(Krause et al., 2011) 

The CO2 saturation histograms are compared in Figure 4.27 and Figure 4.28, 

which shows a large difference in CO2 saturation distribution between the two. The 

saturation distribution is not correlated to the heterogeneity when only one capillary 

pressure curve is used, and it is not scaled according to permeability and porosity 

variations. 
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Figure 4.27 CO2 saturation histogram 

from simulation Case 2 

 

Figure 4.28 Experimental histogram of CO2 

saturation (Krause et al., 2011) 

 

4.3.3 CASE 3: SENSITIVITY TO RESIDUAL BRINE SATURATION  

There are some uncertainties associated with residual water saturation after many 

pore volumes of CO2 injection. The measured drainage capillary pressure and relative 

permeability curves indicated a residual water saturation of 0.2 (Figure 4.5), which seems 

to be inconsistent with the results presented in the measured CO2 saturation histogram 

(Figure 4.4). 

In order to relax the assumption we made in Case 1 that the residual water 

saturation was below the value measured during the drainage relative permability 

experiment due to drying or other pore scale effects, we conducted sensitivity simulations 

using different values of     . We repeated the simulations with                 . We 

also scaled relative permeability and capillary pressure curves in accordance with 

changes in residual water saturation (Figure 4.29 and Figure 4.30). The capillary pressure 

scaling based on the J-function was also included.  
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Figure 4.29 Relative permeability curves 

for                  

 

Figure 4.30 Capillary pressure curves for 

                 
 

The simulated CO2 saturation distribution is shown in Figure 4.31, where less 

variation is observed as compared to the laboratory results (Figure 4.32). 

 

 

Figure 4.31 CO2 saturation results using 

IPARS for Case 3 with          

 

Figure 4.32 CT-scan measured CO2 

saturation (Krause et al. 2011) 

 

The simulated CO2 saturation in the middle slice is shown in Figure 4.33, Figure 

4.34, and Figure 4.35 for Case 3, and it is compared to the laboratory observations in 

Figure 4.36. The CO2 saturation is lower than experimental values (Figure 4.36) when the 

residual water saturation is non-zero. The average CO2 saturation for the whole core is 

also less than the measured value of 0.5026. 
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Figure 4.33 CO2 saturation profile for 

Case 3 with        . 

 

Figure 4.34 CO2 saturation profile for Case 

3 with          

  

 

Figure 4.35 CO2 saturation profile in the 

middle slice for Case 3 with         

 

Figure 4.36 Experimental CO2 saturation 

profile in middle slice (Krause et al., 2011) 

The histograms are compared in Figure 4.37, Figure 4.38, and Figure 4.39, where 

the distribution for the lower half of the saturation is similar to experimental results 

(Figure 4.40), but saturation values higher than 0.7 are missing. This demonstrates the 

significance of residual water saturation modeling for coreflood simulation results. The 
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lack of high CO2 saturation in the coreflood simulation with high     implies that it 

    may have a non-uniform distribution in the core. 

 

 

Figure 4.37 Case 3 CO2 saturation 

histogram using         

 

Figure 4.38 Case 3 CO2 saturation 

histogram using         

 

Figure 4.39 Simulation histogram of CO2 

saturation for Case 3 with         

 

Figure 4.40 Experimental histogram of 

CO2 saturation (Krause et al., 2011) 

 

4.4 Summary  

In this study, a high resolution CO2-brine coreflood simulation was conducted on 

the advanced, in-house reservoir simulator IPARS, using a core model with a fine 

resolution of 1.27 mm×1.27 mm× 6.35 mm. We developed a new coreflood simulation 
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model based on geostatistical data and a compositional fluid flow framework. Core 

permeability and porosity distributions were constructed based on geostatistical data and 

FFTSIM software package, maintaining correlated trends between permeability and 

porosity. Capillary pressure was scaled in every grid cell based on the Leverett J-

function, coupling the heterogeneous permeability and porosity. Our coreflood simulation 

result agreed well with published, experimental results. Published laboratory observations 

were successfully reproduced and history-matched. The similar normal distribution of the 

CO2 saturation histogram and the correlated trend between saturation and porosity were 

observed. A sensitivity study of the residual water saturation modeling revealed the 

uncertainty in coreflood typical curves modeling, which indicated a constant non-zero 

residual saturation might not be necessary for coreflood simulations. Simulation results 

demonstrated that the accurate representation of capillary pressure at small scales was 

critical in order for simulations to capture coreflood characteristics. The core model and 

the simulation study both revealed the significance of subcore scale heterogeneity on 

final CO2 saturation distribution. A numerical coreflood model was successfully 

validated against experiments. This coreflood modeling and simulation study will be 

valuable for future study of the many complex processes involved in this topic. 

Some highlights and findings are listed, as follows: 

 Krause et al. (2011) made an attempt to history match their coreflood using the 

CT scan images of porosity and generating permeability distributions using 

several Leverett J-function models and an extension of Calhoun permeability 

equation. Although they obtained a good history match for average saturation, the 

images of final saturation map and calculated saturation histogram were still 

different from the measured data. We decided to use a different approach to 
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history match the same coreflood using log normal permeability and normal 

porosity distributions. The arithmetic mean for porosity and geometric mean for 

permeability gave comparable results to the experiment including pressure drop 

across the core. 

 We used Brooks-Corey model to fit measured relative permeability and capillary 

pressure curves and then scaled the capillary pressure using the J-function based 

on geostatistically generated porosity and permeability distributions. 

 Scaling of capillary pressure using J-function and heterogeneity was critical to 

capture sub-core flow characteristics. Simulated results gave large local variations 

in CO2 saturation similar to measured CT images. 

 The measured final CO2 saturation gave saturations greater than 0.8, indicating 

that the residual water saturation was lower than the measured value of 0.2 

obtained from the relative permeability and capillary pressure experiments. 

Therefore, we considered residual brine saturation in addition to permeability and 

porosity distributions as history match parameters. We used constant residual 

brine saturation in these simulations where the value of zero gave the best match 

of the measured saturation histogram. We demonstrated the sensitivity of 

simulation results to residual brine saturation. We believe that the residual brine 

saturation needs to be correlated to porosity distributions in order to capture 

subcore heterogeneity and fluid displacement. 
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CHAPTER 5: CO2 Sequestration Simulation with IPARS 

Many different CO2 sequestration scenarios are set up and simulated with IPARS. 

The impacts of different petrophysical models on CO2 sequestration are studied. 

5.1 Stacked Geological Model 

A stacked reservoir model with multiple geological layers is configured in IPARS, with 

approximately 4 million grid cells. The goal of this test case is to study the migration of 

CO2 in multiple aquifers and seals. The capability of IPARS is tested with a 4 million 

grid model running in parallel using as many 128 processors. 

  

Figure 5.1 Reservoir model configured for the stack aquifer CO2 sequestration 

simulation, the four injection wells are completed only in aquifer layer 1 

In this stacked geological model, there are four shale layers and three aquifer 

layers stacked in such a way that one seal i.e. impermeable shale rock lies above each 

aquifer (Figure 5.1). The three aquifers have the same thickness of 656 ft, and the seal 
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layers thickness are 328 ft. The total thickness of the model is 3280 ft, with the topmost 

aquifer corner at 2624 ft. Four injection wells are located in the center of the reservoir, 

and wells are separated by 560 ft from each other. The four injection wells are completed 

in the aquifer layer 1, with a perforation length of 100 ft in the lower part. The model 

parameters are given in Table 5.1.  

Table 5.1 Model parameters for the stacked aquifer simulation 

Aquifer size, L, W, H (ft) 12800 × 12800 × 3280  

Mesh (X,Y,Z) 128× 256×128 

Grid size (ft)            

Reservoir dip (degree) 0  

Top corner depth (ft) 2624 

Aquifer temperature 
 o

F 110  

Initial pressure (psi) 2300 at 5248 ft 

Horizontal permeability (md) Aquifer: 96, Shale: 0.18 

Kv/Kh ratio 0.1 

Porosity Aquifer: 0.20; Cap rock: 0.05 

Well position 
Four wells in the center of aquifer 1; 

depth 5248~5348 ft, spacing 560 ft 

Vertical well completion 

length ( ft) 
100  

Initial water saturation 1 

Injection rate for each well 

(MSCFD) 
6000  

Injection period 5 years injection, 5 years shut-in 

The relative permeability and capillary pressure curves are from acquired 

literature (Bennion and Bachu, 2006a,b).  
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Figure 5.2 Relative permeability curves 

for shale and sandstone aquifer (Bennion 

and Bachu, 2006a,b)  

Figure 5.3 Capillary pressure curves for 

shale and sandstone aquifer (Bennion and 

Bachu, 2006a,b) 

Table 5.2 Rock properties for aquifer and seal are from (Bennion and Bachu, 2006a) 

 
Aquifer sandstone 

Cardium #1
 

Shale cap 

rock Calmar
 

Porosity 0.2 0.05 

Average permeability (md) 96 0.18 

Residual water saturation,       0.197 0.638 

Residual CO2 saturation,     0.102 0.256 

Endpoint water relative permeability,    
   0.905 0.282 

Endpoint CO2 relative permeability,    
   0.526 0.1875 

Exponent for water drainage relative 

permeability,             
1.3 1.3 

Exponent for CO2 drainage relative 

permeability,             
1.7 2.5 

Exponent for water imbibition  relative 

permeability,           
1.2 4 

Exponent for CO2 imbibition relative 

permeability,           
1.2 2.2 

Entry capillary pressure (psi) 10 1200 

We can see from Figure 5.2 that shale rock has a very low gas relative 

permeability (endpoint of 0.1875) and high residual water saturation (0.638). The 
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capillary pressure in Figure 5.3 shows that shale rock has an entry capillary pressure 

(1200 psi) that is much higher than the sandstone aquifer rock. This could prevent CO2 

entry to the seal. 

The permeability field for shale layers and aquifer sandstone layers are generated 

using geostatistical tool FFTSIM (Jennings et al., 2000), using the average permeability 

for shale and sandstone listed in Table 5.2. Each of the four shale layers has       

    grids. Each of the sandstone aquifer layers has            grids. We used the 

same permeability distribution for all three shale layers. We used same permeability 

distribution for the upper aquifer sandstone layers 2 and 3. The permeability field in 

lowest aquifer layer 1 is scaled as 5 times to permeability in aquifer layers 2 and 3, for 

each of the            grids. The permeability for the whole model, including the 

shale and aquifer sandstone, is shown in Figure 5.4. Aquifer rock has higher permeability 

than seal rock.  

 

  
Figure 5.4 Horizontal permeability (md) 

for the stacked model 

Figure 5.5 Permeability (md) distribution in 

the injection layer  

The permeability field in the horizontal plane at injection depth is shown in 

Figure 5.5. Permeability in cross-section of the whole model is shown in Figure 5.6. We 

can clearly see the change of rock type and permeability distribution from aquifer to seal. 
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Figure 5.6 Reservoir permeability (md) at vertical slice for all layers 

A base case simulation of 5 years of CO2 injection followed by 5 years shut in for 

redistribution was conducted. The CO2 saturation profile is plotted in the cross-section of 

the injection well.  

   

Figure 5.7 CO2 saturation at the end of 5 years injection for the stacked reservoir case.  

The gas saturation distribution after 10 years (5 years after shut in) is given in 

Figure 5.8. We can see from Figure 5.7 that at the end of 5 years injection period, most of 

the CO2 is in near well region and very little CO2 would have reached the cap rock shale 

layer 1. At 10 years, more and more CO2 would have migrated upwards and accumulated 

under the first shale layer (Figure 5.8).  We can also notice that there is no sign of CO2 

migration/leakage beyond the first cap rock. This shows that the shale cap rock would act 

as an effective stopping barrier for CO2 migration due to its high entry capillary pressure 

on the order of 1000 psi and its low permeability.  
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Figure 5.8 CO2 saturation at the end of 10 years for a stacked reservoir case 

5.2 Effect of Interfacial Tension and Capillary Pressure  

It is widely observed that IFT, contact angle, and heterogeneous permeability and 

porosity will affect both the capillary pressure and the residual saturations. A 

dimensionless function, the Leverett J-function, was developed to couple all these factors 

for the capillary pressure calculation, by defining a dimensionless Leverett J-function 

curve for the rock type with similar structure. Given a typical Leverett J-function curve, 

the capillary pressure curve for a rock of similar pore structure can be calculated for a 

given condition of wettability, fluid pair properties, and heterogeneity. 

The Leverett J-function is implemented to model capillary pressure for different 

rock and fluid properties in IPARS as  

( )
( )

cos

c w
w

P S k
J S

  
  ,    (5.1) 

where   is the contact angle.  

The capillary pressure for each grid block is calculated based on the in situ 

conditions of          and the reference capillary pressure curve from the J-function.  

5.2.1 IMPACT OF CAPILLARY PRESSURE SCALING BASED ON J-FUNCTION 

The simulation model is configured with an inverted five-spot injection scenario, 

with one constant-rate CO2 injector at the center and four constant-pressure producers in 

the four corners of the aquifer. The reservoir is                       with a grid size 
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of                 . The injection well is open through the entire thickness of the 

aquifer. CO2 injection continues for 365 days at a constant rate of 500 MSCFD, and then 

the well is shut-in for another 730 days as a redistribution phase.  

 

Figure 5.9 Reservoir model for the Leverett J-function test case (red: injector; green: 

boundary well) 

The reservoir model exhibits both heterogeneous porosity and permeability. The 

permeability and porosity are generated using FFTSIM program with average 

permeability of about 300 md and average porosity of about 0.2.  

 

Figure 5.10 Heterogeneous porosity for J-

function test case 

 

Figure 5.11 Heterogeneous permeability for 

J-function test case 

A set of drainage relative permeability and capillary pressure curves for water wet 

rock is used for the J-function test case. For the drainage process, the residual gas 
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saturation is zero. The model parameters for the rock-fluid    and    curves are listed 

in Table 5.3. 

Table 5.3 Input parameters for the J-function test case 

Entry capillary pressure,            (psi) 3.2 

Capillary pressure curve exponent,     0.7 

Water relative permeability curve exponent,    7.5 

CO2 relative permeability curve exponent,    2.7 

 ndp int water re ative per              
  1 

Endpoint CO2 relative permeability,    
   0.1 

Residual water saturation,      0.2 

Residual CO2 saturation       0.0 

CO2 saturation profiles are shown both at the end of 1 year of injection and at the 

end of 3 years of injection. We can see from the gas saturation at 1 year and at 3 years 

that modeling capillary pressure based on the Leverett J-function makes a large 

difference in CO2 migration and saturation. The saturation profile is more uniform for the 

case without the impact of heterogeneity on capillary pressure (Figure 5.12-Figure 5.15). 

 

Figure 5.12 CO2 saturation at 1 year 

without the Leverett J-function  

 

Figure 5.13 CO2 saturation at 1 year with 

the Leverett J-function  
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Figure 5.14 CO2 saturation at 3 years 

without Leverett J-function  

 

Figure 5.15 CO2 saturation at 3 years with 

the Leverett J-function  

We can see from gas saturations in cross-section at 1 year and 3 years that 

heterogeneity plays a much greater role for CO2 migration when the Leverett J-function 

model is included (Figure 5.16 and Figure 5.17). CO2 migration preference to a high 

permeability channel is more significant than the case without the J-function.  

 

Figure 5.16 Gas saturation in cross-section 

after 1 year of injection with J-function. 

 

Figure 5.17 Gas saturation in cross-section 

after 3 years of injection with J-function  

5.2.2 IMPACT OF CONTACT ANGLE, IFT, AND WETTABILITY ON CO2 MIGRATION 

Wettability refers to the preference of solid surface to be in contact with one fluid 

rather than another. The balance of forces in the solid and fluid phases with results in a 

contact angle  , between the fluids and solid surface. Wettability will affect the 

displacement characteristics of CO2 and water. When the wettability is altered, the 

contact angle will change (Figure 5.18) as much as     degrees. The capillary pressure 

curve will also be affected by the change in the contact angle (Figure 5.19). Hence 
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modeling contact angle is very important for accurate modeling of capillary pressure and 

CO2-water flow  

 

Figure 5.18 Variation in contact angle change at different pressure and temperature (Zhu 

et al., 2011) 

 

Figure 5.19 Impact of contact angle (Red:     , Purple:      ) on capillary 

pressure curve (Chalbaud et al., 2007) 

The basic relationship between capillary pressure, interfacial tension, and pore 

throat radius is given by Young-Laplace equation (Young, 1805) as follows: 
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 ,     (5.2) 

where r is the pore throat radius,   is the interfacial tension,   is the contact angle.  

The Leverett J-function is implemented for capillary pressure, as follows:  

( )
( )

cos

c w
w

P S k
J S

  


.     (5.3) 

The simulation model is constructed with an inverted five-spot injection pattern, 

with one constant-rate CO2 injector at the center and four constant-pressure producers in 

the four corners of the aquifer in order to maintain constant boundary pressure (Figure 

5.20). The reservoir is homogeneous to avoid the impact of heterogeneity on CO2 plume 

distribution. We also assume that the interfacial tension is constant throughout the 

reservoir. The injection well is open in the lower half of the aquifer. CO2 injection 

continues for 50 days with a constant rate of 200 MSCFD, and then it stops for 50 days 

(Table 5.4).  

 

Figure 5.20 Model grid for contact angle tests 
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Table 5.4 Reservoir model for wettability test case simulation 

Number of grid blocks          

Grid size (ft)            
Porosity 0.2 

Permeability (md) 100  

Injection well rate (MSCFD) 200  

Well pattern Inverted five spot 

Injection scheme Inject 50 days, shut-in 50 days 

 

 

Figure 5.21 Drainage capillary pressure and relative permeability for wettability 

simulation case 

 

5.2.2.1 Water Wet Case  

Four sensitivity tests are used to study the impact of contact angle on CO2 

injection and migration (Table 5.5). We assume that contact angle only impacts capillary 

pressure. We assumed a constant initial contact angle and also assumed that the injection 

of CO2 does not impact the wettability/contact angle in these simulation test cases. 

Another simplifying assumption is that we used the same relative permeability curves 

regardless of the rock wettability. This simplification is not true in most conditions, but it 

is used for simple test for the impact of the contact angle on the capillary pressure. The 

first case is the base case with no modification of the capillary pressure by contact angle. 

For the base case, water is the wetting phase, CO2 is the non-wetting phase, and the 
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contact angle is 0 degrees. For Case 2, the contact angle is 30 degrees, which means that 

the reservoir is strongly water wet. For Case 3, the contact angle 60 degrees, which 

means that the reservoir rock is mixed wet. For Case 4, the contact angle is 90 degree, the 

rock is neutrally wet, and the capillary pressure is zero.  

  

Figure 5.22 Capillary pressure with different contact angles 

Table 5.5 Sensitivity test cases for contact angle 

Case Contact angle (degree) Wettability 

1 - Base case/Water wet 

2 30 Water wet 

3 60 Mixed wet 

4 90 Neural wet 

Gas saturation simulation results at 50 days for rock with contact angles from 0 to 

90 degrees are shown in Figure 5.23. From the plots in Figure 5.23, we can see that at the 

end of injection, for the water wet rock, CO2 saturation near the injection location is 

lower than the saturation with mixed wet rock. CO2 plume front is more diffused when 

the contact angle is small. 
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a b 

c d 

Figure 5.23 CO2 saturation at 50 days in cross-section of injection well, contact angle a) 0 

b) 30 c) 60 d) 90 degrees 

From the gas saturation profiles in Figure 5.24, we can see the impact of contact 

angle on CO2 migration after injection stops. As contact angle increases from 0 to 90 

degrees, the rock becomes increasingly mixed wet. When the rock is strongly water wet, 

the injected CO2 migrates upward due to buoyancy force. As the rock becomes more 

mixed wet, CO2 saturation near the injection well remains high after 50 days, implying 

that CO2 stays closer to the injection zone. 
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a b 

c d 

Figure 5.24 CO2 saturation at 100 days in cross-section of injection well, contact angle a) 

0 b) 30 c) 60 d) 90 degrees 

5.2.2.2 Test Case with CO2 Water Contact Angle Greater than 90 Degree  

For testing of numerical model, we set up a case with a contact angle greater than 

90
0
for CO2-water system. Capillary pressure curves using different contact angles of 0, 

90, 120, and 180 degrees are shown in Figures 5.25 and 5.26.  

 

Figure 5.25 Capillary pressure for water and CO2 system with contact angle of 0 and 180 
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Figure 5.26 Capillary pressure for contact angle of 120 and 180 degrees 

Simulation cases are set up to compare the effect of using contact angles of 120 

and 180 degrees on CO2 distribution. Gas saturations at 50 days and 100 days are plotted. 

Capillary pressure in the reservoir is also compared. We can see from Figure 5.27 and 

Figure 5.28 the CO2 saturation near the injection location is high at the injection period 

for the case with contact angle of 120
0
. 

a b 

Figure 5.27 CO2 saturation at 50 days for contact angle a) 120 
0
 b) 180 
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a b 

Figure 5.28 Capillary pressure (in psi) for contact angle a) 120
0
; b) 180

0
  at the end of 

injection period 

We can see that the capillary pressure is lower for a contact angle of 120 
0
than it 

is for a contact angle of 180
0
. The absolute value of capillary pressure around the well is 

low, where the CO2 saturation is high. We can see from Figure 5.29 that, after 50 days 

redistribution, there are minimal differences in CO2 saturation for different contact angles 

for this numerical case with homogeneous permeability. 

a b 

Figure 5.29 CO2 saturation at 100 days contact angle a) 120
0
; b) 180 

0
 

Based on this sensitivity test, we can make the following comments: 

 The capillary pressure will decrease as the contact angle decreases from 0 to 

90
0
. This reduction in capillary pressure will help CO2 to displace water and 

the CO2 saturation will be high near the injection well. 

 For contact angles of 120
0
 and 180

0
, CO2 saturation near the well (Figure 

5.27) will be low compared to that for the water wet case (Figure 5.23)  
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 When the contact angle varies from 90 to 180
0
, the CO2 saturation near the 

well will decrease. The capillary pressure will help with a higher spatial 

distribution of CO2 away from the wells during shut-in period. 

5.3 Simulations with the Trapping Model  

CO2 injection and trapping processes are largely dominated by the interplay of 

viscous, capillary, and gravitational forces. The residual trapping of CO2 by capillary 

forces is critical for CO2 trapping, which can trap gas as residual and disconnected fluid 

phase in the pore spaces. However, due to heterogeneity and the injection schedule, the 

residual saturation could vary in both space and time. An accurate model for the variation 

of CO2/water residual saturation is needed to account for the interplay of these three 

forces. Hence a trapping model is developed to model the change of residual saturation 

with in situ conditions. We set up two simulation studies to validate the trapping model. 

The first study is to show the range of trapping numbers encountered in the aquifer in a 

typical CO2 storage operation. The second case is a sensitivity test with and without the 

trapping models in a 3D reservoir model. 

5.3.1 CASE 1 TO STUDY RELATIVE PERMEABILITY AS A FUNCTION OF TRAPPING 

NUMBER 

A homogeneous reservoir model with closed boundary was used to study the 

trapping number in a reservoir. The initial reservoir pressure is 2700 psi. The reservoir 

model size is                         . One CO2 injection well is located at the 

center of the aquifer, injecting CO2 from the bottom of the aquifer with a constant 

pressure of 2900 psi. The grid number is         in three directions. The grid size 

near the well location is                    , and the grid size in the outer region is 
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                     . The CO2 saturation during the injection period is shown below 

in Figure 5.30 and in a vertical cross section through the center well in Figure 5.31.  

 

 

Figure 5.30 Reservoir model for one-year CO2 injection test  

The CO2 plume moves radially in this homogeneous reservoir model with 

injection from the center. Thegas saturation and pressure are high near the injection well 

at the bottom of the aquifer (Figure 5.31 and Figure 5.32). 

 

Figure 5.31 Gas saturation in well cross-section during the injection period at 1 year 

 

Figure 5.32 Pressure profile (in psi) at 1 year in well cross-section 
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The interfacial tension and trapping number are shown in Figure 5.33 and Figure 

5.34. The IFT is reduced with increasing pressure and CO2 injection. Figure 5.34 shows 

trapping number changing with distance to the injection well, ranging from        to 

      . The highest trapping number of about 2.8x10
-7

 is observed near the injection 

well as shown in Figure 5.34.  

 

 

Figure 5.33 Calculated IFT (in     ) distribution at 1 year in well cross-section 

 

 

Figure 5.34 Calculated trapping number at 1 year 

5.3.2 COMPARISON OF CASES WITH AND WITHOUT TRAPPING MODEL 

A comparison case study was conducted to study the effect of a trapping model on 

relative permeability during CO2 injection and redistribution. The grid size is        

           , and the number of grids is         in X, Y, and Z directions. There 

are two wells in the model including one constant-rate CO2 injection well in the center 
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and a constant pressure producer in the corner of the box model to maintain the reservoir 

pressure. The CO2 injection continues to 50 days with a rate of 200 MSCFD, and 

injection is followed by 450 days of shut-in to allow CO2 to redistribute. The producer on 

boundary is at constant pressure for the purpose of pressure maintenance. 

The model grid is shown in the following figure: 

 

 

Figure 5.35 Reservoir model (red: injector, green: producer) 

When the trapping model is included in the study, the relative permeability for 

water and gas phases is calculated using Equation 5.1 and Equation 5.2. Relative 

permeability model parameters are listed in Table 5.6. For high trapping numbers the 

phase residual saturations are low and the relative permeability exponents are also low. 

The endpoint relative permeabilities are high at high trapping number, because the 

residual saturations are reduced. 

       
   ̅

  
      (5.4) 

       
       ̅ 

  
 ,    (5.5) 

in which   ̅  
       

         
 , is the normalized water saturation. 

The     and     are calculated as a function of trapping number and are used 

for calculating the relative permeability. 

12800 ft 
3280 ft 
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Table 5.6 Relative permeability model parameters as a function of trapping number 

Trapping 

number 
           

     
        

1x10
-7

 0 0 1 1 1.2 1.1 

1x10
-9

 0.102 0.197 0.526 1 1.7 1.3 

The relative permeabilities at high and low trapping numbers of i.e.        

and        are shown in Figure 5.36.  

 

Figure 5.36 Relative permeability curves for trapping numbers of (red:       , blue: 

      , green:       ) 

Three cases were set up to study the effect of the trapping model on CO2 

migration and trapping. For these cases we didn‟t include hysteresis. 

 Case 1: without trapping model with      .  

 Case 2: Without trapping model with          .  

 Case 3: With trapping model and maximum          . 

The gas saturations after 50 days of injection and end of the 500 day simulation 

are compared to study the impact of trapping model on CO2 migration and trapping. 
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Figure 5.37, Figure 5.38, and Figure 5.39 indicate that the gas saturation profiles 

are very similar with and the change in relative permeability as a function of trapping 

number has very minimal effect for this numerical example during the injection period.  

 

 

Figure 5.37 Gas saturation at the end of 50 day injection without trapping model and 

      (Case 1) 

 

Figure 5.38 Gas saturation at the end of 50 day injection without trapping model and 

          (Case 2) 
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Figure 5.39 Gas saturation at the end of 50 day injection with trapping model and 

maximum           (Case 3) 

Gas saturation profiles in a vertical cross-section through the injection well also 

show similar distributions in Figure 5.40, Figure 5.41, and Figure 5.42. During the 

injection period, the trapping number is high. There is almost no residual trapping of 

CO2, and the relative permeability curves for the case with and without trapping model 

are similar. Therefore CO2 saturation profiles are similar during high trapping number 

injection period. 

 

 

Figure 5.40 Gas saturation at the end of 50 day injection without trapping model and 

      (Case 1) 
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Figure 5.41 Gas saturation at the end of 50 days injection without trapping model and 

          (Case 2) 

 

 

Figure 5.42 Gas saturation at the end of 50 days injection with trapping model and 

maximum           (Case 3) 

For the case with zero residual gas saturation and without modeling the trapping 

model, there is no trapping of CO2 phase throughout the injection and shut-in periods. 

Most of the injected CO2 migrates upward after injection stops. We can see from Figure 

5.43 that if we set zero residual gas saturation there will be no trapping of CO2. If we set 

constant residual gas saturation (Figure 5.44), a large amount of CO2 will be trapped near 

its injected location. Neither case accurately reflects in situ conditions. 
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Figure 5.43 Gas saturation at 500 days without a trapping model and with         

(Case 1) 

 

Figure 5.44 Gas saturation at 500 days without a trapping model and with           

(Case 2) 

 

 

Figure 5.45 Gas saturation at 500 days with a trapping model and with maximum 

          (Case 3) 
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For the case with the trapping model based on trapping number, the CO2 could be 

trapped under low trapping number and low viscous gradient flow conditions. During the 

injection period, the viscous gradient is high, so the trapping number is also high. A high 

trapping number will reduce the residual saturation of both phases, resulting in less CO2 

trapping. We can see from the gas saturation profile in Figure 5.45 that when the trapping 

model is included some part of CO2 will be trapped in the location where it was originally 

injected, though not as much as in Case 2 with constant residual saturation (Figure 5.44).  

When the trapping model is included, the relative permeability curve will be 

shifted upward for high trapping numbers. The CO2 could migrate to a larger region due 

to its higher relative permeability and less CO2 could be trapped than in the case with a 

constant residual saturation. We can see that the CO2 plume migrates further in Case 3 

(Figure 5.45) than in Case 2 (Figure 5.44), which also suggests less trapped CO2. 

5.4 Test Study for Hysteresis Model in IPARS 

5.4.1 1D HYSTERESIS MODEL  

1D test case with a total of 10 grid cells was set up to validate the hysteresis 

model implementation in IPARS. 
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Figure 5.46 Schematic of hysteresis behavior in capillary pressure curve. 

As shown in in Figure 5.46, the capillary pressure has different paths from 

drainage to imbibition as a function of water saturation. During the CO2 injection period, 

water saturation decreases and capillary pressure follows the primary/main drainage path. 

Subsequent to injection and during the redistribution period, water can redistribute along 

the imbibition path. The water saturation,   , increases, while the reversal point,      , 

and maximum trapped gas saturation,       , remain the same during the imbibition. 

The water saturation in one grid block was tracked as injection began on day 1 

and then stopped after 50 days, with a total simulation time of 100 days (Figure 5.47). 

For the CO2/water system, we assumed that water was the wetting phase and CO2 was the 

non-wetting phase. The gridblock underwent a drainage process during the initial 50 

days, with       and        equal to each other (Figure 5.48). On day 50, the 

injection well was shut-in, water began to displace CO2 during the imbibition process, 

Reversal point 
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       began to increase, while       remained at the lowest normalized water 

saturation that the grid had reached (Figure 5.48). Finally, the water displaced CO2 until 

the residual saturation of CO2 was reached or capillary pressure prevented one phase 

from displacing the other (Figure 5.48). 

 

 

Figure 5.47 Water saturation in grid cell #10 during drainage and imbibition process 

  

Figure 5.48 Normalized water saturation in gridblock #10 and minimum water saturation 

at the reversal point. 
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Figure 5.49 Trapped CO2 saturation in injection well gridblock #10 with the 

hysteresis model vs. time. 

 

  

Figure 5.50 Hysteretic relative 

permeability for wetting phase (Krw) and 

non-wetting phase (Krg) in grid #10. 

Figure 5.51 Hysteretic capillary pressure 

during drainage and imbibition in injection 

well grid #10. 

Results clearly show the effect of hysteresis within one gridblock. During the CO2 

injection period and on the main drainage path, there is no trapping of non-wetting phase 

where water saturation monotonically decreases (Figure 5.49). After injection, imbibition 

of wetting phase water causes the trapping of CO2 phase (Figure 5.49). As more water 
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enters a given pore in the rock, more non-wetting phase is trapped. During this process, 

the relative permeability and capillary pressure both follow a path that is different from 

the drainage cycle (Figure 5.50, Figure 5.51).  

5.4.2 3D HYSTERESIS TEST 

A test case of CO2 injection into a saline aquifer is set up to study the impact of 

hysteresis on flow and retention of CO2. The grid size is                   , with 

number of gridblocks of         in X, Y, and Z directions respectively. There are 

two wells in the model, including one constant-rate CO2 injection well in the center of the 

model and a constant pressure producer in the corner of the model to maintain the 

pressure. CO2 injection continues for 50 days with a rate of 200 MSCFD, and it is 

followed by 450 days of shut-in to allow the CO2 to redistribute.  

Table 5.7 Model parameters for hysteresis model test case 

Grid number         

Grid size (ft)         

Permeability (md) 100 

Porosity 0.2 

Injection well rate (MSCFD) 200 

Production well bottomhole pressure (psi) 1800 

Well perforation entire thickness 

Time (days) 
50 days injection, 450 days 

shut-in 

The model grid and well locations are shown in Figure 5.52: 
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Figure 5.52 Reservoir model for the hysteresis model test case  

The properties of Cardium sandstone was used for rock-fluid properties of the 

aquifer (Bennion and Bachu, 2006), including relative permeability and capillary pressure 

(Figure 5.53 and Figure 5.54). The Corey-type relative permeability equation is used to 

curve-fit the measured data of Cardium sandstone (Table 5.8).  

 

Figure 5.53 Drainage and imbibition relative permeability curves for the hysteresis test 

model. 
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Figure 5.54 Drainage and imbibition capillary pressure curves for the test of hysteresis 

model. 

Table 5.8 Model-fitting parameters for drainage relative permeability of Cardium 

sandstone (Bennion and Bachu, 2006) 

Drainage Imbibition 

Entry capillary pressure,          

(psi) 11.6 

Entry capillary pressure,          

(psi) NA 

   curve exponent,              1.33    curve exponent,         5.32 

Endpoint water relative 

permeability,    
  1.0 

Endpoint water relative 

permeability,    
  1.0 

Endpoint CO2 relative 

permeability,    
  0.526 

Endpoint CO2 relative 

permeability,    
  0.526 

CO2 relative permeability 

exponent,    1.7 

CO2 relative permeability 

exponent,    1.7 

Water relative permeability 

exponent,    1.3 

Water relative permeability 

exponent    1.3 

Residual water saturation,     0.197 Residual water saturation,     0.197 

Residual CO2 saturation,     0 Residual CO2 saturation,     0.102 

Several reservoir simulation tests are performed to investigate the impact of 

capillary pressure and relative permeability hysteresis on the distribution of CO2 plume 

(Table 5.9).  
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Table 5.9 Test cases for hysteresis study. 

 Relative permeability model  Capillary pressure model 

Case 1 No hysteresis Zero    

Case 2 With hysteresis Zero    

Case 3 No hysteresis No hysteresis:                            

Case 4 With hysteresis 
With hysteresis:                   

                                 

Case 1 is the base case without hysteresis for relative permeability and without 

capillary pressure effects. Case 2 is similar to Case 1 but includes the hysteresis for 

relative permeability. Case 3 is similar to Case 1 but includes capillary pressure. The 

drainage relative permeability and capillary pressure curves are used for the injection and 

shut-in period. Case 4 uses hysteresis for both relative permeability and capillary 

pressure.  

5.4.2.1 Cases 1 and 2  

Gas saturation profiles at 50 days and 500 days are compared to study the impact 

of relative permeability hysteresis on the fate and transport of injected CO2. During the 

CO2 injection drainage cycle, we use the drainage relative permeability curves. After CO2 

injection well shut-in, the imbibition process occurs, and hysteresis has a measurable 

effect. 

CO2 saturation in a cross-section through the injection well is plotted and 

compared for Case 1 and Case 2 with zero capillary pressure. We can see from both 

Figure 5.55 and Figure 5.56 that the saturation profile at the injection end is the same for 

the two cases since drainage relative permeability is used in both cases during the 

injection period  
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Figure 5.55 Case 1 without hysteresis: gas 

saturation in a vertical cross-section at 50 

days, end of injection. 

 

Figure 5.56 Case 2 with hysteresis: gas 

saturation in a vertical cross-section at 50 

days, end of injection. 

 

 

Figure 5.57 Case 1 without hysteresis: gas 

saturation in a vertical cross-section at 

500 days (zero   ). 

 

Figure 5.58 Case 2 with hysteresis: gas 

saturation in a vertical cross-section at 500 

days (zero   ). 

The CO2 saturation after a 450 day period of redistribution for Case 1 and Case 2 

is shown in Figure 5.57 and Figure 5.58, which shows a similar distribution. Note that we 

used hysteresis for the relative permeability in Case 2. This similarity between Case 1 

and Case 2 demonstrated that hysteresis behavior for relative permeability but excluding 

capillary pressure fail to capture the flow characteristics. One observation we can make is 

that the saturation profiles in both cases show sharp front between the gas plume and the 

water phase, which is due to the zero capillary pressure we assumed here. For both cases 

without capillary pressure, we observe that there is no trapping of injected CO2 near the 

injection well and most CO2 is accumulated below the first layer with high gas saturation. 
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This indicates the importance of modeling capillary pressure when simulating CO2 

sequestration.  

5.4.2.2 Case 3 

Case 3 uses the table lookup for capillary pressure and relative permeability 

without hysteresis. Everything else is identical to Case 1. CO2 saturation profiles at 50 

days and at 500 days are plotted.  

We can see from Figure 5.59 that at the end of injection, CO2 spans a wide area, 

and the CO2 plume front is continuous from high gas saturation to water zone. The gas 

saturation at 500 days with capillary pressure is shown in Figure 5.60, which shows a 

much wider area of distribution of CO2 when compared to the zero capillary pressure 

case in Figure 5.57. This is because, when CO2 is migrating upward due to buoyancy 

forces, more and more CO2 enters the grid cell in the top layer and the capillary pressure 

increases. Eventually, the high capillary pressure prevents more CO2 from entering the 

pore. This keeps a relatively low saturation of CO2 and CO2 is forced to migrate 

horizontally. Figure 5.60 shows that CO2 migrates upward to the top layer of aquifer and 

towards the boundary producer because there is no hysteresis to trap it near the injection 

well. CO2 is forced to distribute horizontally when the plume accumulates below the top 

seal.  

 

 

Figure 5.59 Case 3 CO2 saturation in cross section at the end of 50 days of injection 
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Figure 5.60 Case 3 CO2 saturation in cross section at the end of 500 days  

The calculated capillary pressures at the end of injection and redistribution are 

shown in Figure 5.61 and Figure 5.62, with a high capillary pressure of about 22.9 psi 

near the injection well and a low capillary pressure of about 11 psi away from the well. 

This is consistent with both the saturation profile and the input capillary pressure table, 

which indicates that higher gas saturation corresponds to higher capillary pressure.  

 

 

Figure 5.61 Case 3 capillary pressure at the end 50 day injection. 

 

Figure 5.62 Case 3 capillary pressure at the end of 500 day simulation 

Trapped CO2 saturation is zero consistent with the imposed residual CO2 

saturation of zero (Figure 5.63).  
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Figure 5.63 CO2 inventory for free gas, trapped gas, and dissolved gas for Case 3 using 

      without the hysteresis model  

5.4.2.3 Case 4 

We have seen the effect of including capillary pressure on CO2 migration. Next 

we will study the effect of relative permeability and capillary pressure hysteresis on CO2 

distribution. The capillary pressures and relative permeability curves for the drainage and 

imbibition cycles are different as shown in Figure 5.64. 

For the drainage process, Case 4 uses the same drainage capillary pressure and 

relative permeability curves as Case 3. For the imbibition cycle, Case 4 uses the 

imbibition capillary pressure and relative permeability curves that are calculated based on 

trapped CO2 saturation. The capillary pressure for the imbibition uses the exponent of 

        . The maximum trapped gas saturation is assumed to be 0.102.  
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Figure 5.64 Hysteretic relative permeability in Case 4 

The CO2 saturation profiles are plotted at end of 50 day injection and at end of 

500 day simulation. Figure 5.65 and Figure 5.66 indicate that case 4 with hysteresis and 

case 3 without hysteresis give the same CO2 saturation profile at the end of 50 days of 

injection. This is because Case 4 used the same drainage relative permeability and 

capillary pressure as Case 3 in the injection period. However, the final gas saturation at 

500 days differs significantly when the hysteresis effect is modeled (Figure 5.67 and 

Figure 5.68). This difference is because after injection stops, there will be residual CO2 

trapping due to hysteresis in Case 4 with hysteresis model. In Case 4 with hysteresis 

(Figure 5.67), the saturation profile at 500 days shows that a large amount of CO2 is 

trapped in regions near the well, due to hysteresis capillary trapping that occurs in the 

imbibition process.  
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Figure 5.65 Case 4 with hysteresis, CO2 

saturation at the end of 50 day injection 

 

Figure 5.66 Case 3 without hysteresis, CO2 

saturation at the end of 50 day injection 

 

 

Figure 5.67 Case 4 with hysteresis, CO2 

saturation at the end of 500 days 

 

Figure 5.68 Case 3 without hysteresis, 

CO2 saturation at the end of 500 days  

The CO2 inventory is shown in Figure 5.69. CO2 inventory is defined as the 

amount of CO2 as mobile, dissolved, and residual trapped during the sequestration 

process at different time. We observe that during the injection period there is only a small 

amount of CO2 that is trapped and that the fractions of free and dissolved amounts are 

constant. This could be because it is a drainage process, and no significant imbibition is 

happening. The CO2 migration is dominated by viscous forces. After shut-in, both 

trapped and dissolved CO2 increase greatly as time progresses. This could be due to the 

gravity-driven upward migration of CO2 and the water imbibition. As CO2 migrates 

upward, it will contact unsaturated water, and some CO2 will be dissolved. As CO2 is 

driven out of the pore space during the imbibition of water, some CO2 volume will be left 

behind and trapped by the water. These displaced CO2 will enter new pore spaces and 
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leave a portion of CO2 trapped in the invaded pores. Hence the more poresCO2 contacts, 

the more CO2 will be trapped. 

 

Figure 5.69 CO2 fractional inventory as free, trapped, and dissolved gas for Case 4 with 

hysteresis, and with               

5.5 Summary 

We tested the sensitivity of CO2 injection and redistribution to different 

petrophysical models. The new models of interfacial tension, a trapping model, a 

hysteresis model, and capillary pressure scaling are tested. These models are efficiently 

coupled in the parallel simulator, which could utilize the high performance computing 

capability with efficient CPU times. Simulation results indicate the importance of these 

models when simulating CO2 sequestration process as highlighted below. 

 A stacked sandstone aquifer with shale seals demonstrated that the shale layer 

could effectively act as a sealing barrier to impede the migration of CO2 migration 

upward to shallower zones, because of the high entry capillary pressure of the 

shale.  
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 We tested sensitivity of CO2 migration to rock-fluid properties of interfacial 

tension and contact angle using capillary pressure model based on Leverett J-

function. Results showed that the gas migration was highly sensitive to the 

heterogeneity, IFT, and wettability. The contact angle close to 90 degrees will 

help CO2 displacing water from the rock pores. The CO2 saturation is also high 

for contact angle of 90 
0
.  

 We studied the impact of interfacial tension, viscous force, and gravity force on 

CO2 trapping and migration using a trapping model. The trapping number is the 

highest near the injection well where CO2 is trapped near injection well.  

 We tested the impact of hysteresis on CO2 trapping and migration, using the 

newly developed hysteresis model in IPARS. During drainage there is zero 

trapping of non-wetting phase and during imbibition process, more and more CO2 

saturation is trapped. 3D test results also show indicated increasing residual 

trapping and deceasing mobile CO2 as a function of time when hysteresis model is 

used.  

 The application and validation of these models in field cases are presented in 

Chapter 6 using Cranfield pilot CO2 sequestration field demonstration.  
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CHAPTER 6: Cranfield CO2 Sequestration Pilot Test 

6.1 Cranfield Pilot CO2 Sequestration Project 

The Cranfield formation is a depleted oil reservoir in Natchez, Mississippi, that 

was recently chosen as the site of the field-scale CO2 sequestration demonstration project. 

The project is supported by SECARB, with primary sponsorship provided by DOE/NETL 

& SSEB and secondary sponsorship provided by the Texas Bureau of Economic 

Geology, Denbury Resources, Advanced Resources International (ARI), Electric Power 

Research Institute (EPRI), and the University of Alabama. The project aims to develop 

the technical background necessary for validating and deploying carbon sequestration 

technologies in the field, as well as building confidence in the capacity of underground 

formations for holding large volumes of CO2. A total of 2.5 MT CO2 injected through 

DOE Project Phase 2 (1 MT/Yr) and Phase 3 (1.5 MT/Yr), started in December 1
st
 2009. 

Observations and monitoring data are available, including pressure and temperature 

through injection and observation wells.  

The Cranfield oil field was discovered in 1943, and production continued to 1966 

(Mississippi Oil and Gas Board, 1966). An enhanced oil recovery CO2 flood was initiated 

in 2008 in upper part of the field. After many years of shut-in and no activities after 

depletion, the reservoir condition has reverted to its initial condition due to strong bottom 

water influx. The initial conditions are a reservoir pressure of 4560 psi and a temperature 

of 257 
o
F. The geological setting of the Cranfield reservoir is a dome with a sealing fault 

on the north-east side (Figure 6.1). The pilot injection site of CO2 sequestration is located 

at a depth of approximately 9,950 ft, with a sandstone reservoir thickness of about 80 ft. 
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The reservoir has a 110 ft top seal and a 90 ft base seal of impermeable shale rocks. The 

formation brine has a salinity of ~150,000 ppm total dissolved solids (TDS).  

 

Figure 6.1 Contour map (10 ft elevation interval) of the top of the Lower Tuscaloosa 

formation (Lu et al. 2012a).  

CO2 is injected in the downward dip of the water leg in the detailed area of study 

(DAS). The DAS has three wells, one injection well (CFU 31-F1) and two observation 

wells (CFU 31-F2 and CFU 31-F3) (Figure 6.2). The two observation wells (CFU 31-F2 

and CFU 31-F3) are to the east of the injection well. The spacing from F1 to F2 is ~227 

feet (69 m) and from F1 to F3 it is ~367 ft (111 m). The three wells are completed in the 

lower Tuscaloosa water leg.  
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Figure 6.2 Three wells in vertical cross-section of the DAS area (Bryant, 2010) 

The injected CO2 was supplied from Jackson Dome natural CO2 reservoir by 

Denbury Resources, Inc. CO2 is injected through a BEG injection well (CFU 31-F1). The 

CO2 injection rate was initially approximately 4500 MSCFD (1 MSCFD = std ft
3
/d), but 

it was ramped up to about 9000 MSCFD (Figure 6.3). A total of approximately 2.5 

million tons of CO2 was injected in the period beginning on December 1
st
 2009 and 

continuing through the present. However, for the purpose of this work, injection is 

assumed to have ended on January 7
th

, 2011. 
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Figure 6.3 Injection well CFU 31-F1 BHP and injection rate with time (start at day 193, 

Dec. 1, 2009).  

An initial rate was approximately 4500 MSCFD, followed by a period with a 

doubled injection rate of 9000 MSCFD and ending with a period marked by high 

injection rate of 13000 MSCFD (Figure 6.3). After the high injection rate period, the rate 

was quite fluctuating.  

6.2 Cranfield Simulation Model 

Here we discuss the modeling approach in IPARS, taking into consideration some 

advanced physical and numerical features and their impact both on injection pressure and 

on the fate of CO2 several years after the injection has stopped. Table 6.1 gives the details 

of the numerical model in IPARS. Several geological models with different numbers of 

cells have been constructed to model the Cranfield demonstration test. The simulation 
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results were compared with field measured CO2 breakthrough time, bottomhole injection 

pressure, and temperature. 

Table 6.1 Reservoir properties for the Cranfield test 

Reservoir size (ft)                 

Number of gridblocks              

Aquifer thickness (ft) 80 

Top seal thickness (ft) 110 

Bottom seal thickness (ft) 90 

Aquifer depth (ft) 9950 

Aquifer temperature (
o
F) 257 

Rock compressibility (psi
-1 

) 5.0×10-6 

Initial saturation 100% water saturation 

Initial pressure (psi) 4650 

Salinity (TDS) (ppm) 150,000 

Boundary conditions Open boundary on 3 sides 

 

The fluid PVT phase behavior parameters are in Table 6.2. The Peng-Robinson 

equation of state is used for calculating phase equilibrium for CO2/brine at the reservoir 

pressure of 4650 psi and temperature of 257 
o
F. Geochemical reactions and subsequent 

CO2 mineral trapping are not included due tominimal reactivity of Cranfield sandstone 

rock (Lu et al. 2012a.b).  

 

 

 

 



138 

 

Table 6.2 PVT data for compositional simulation of the Cranfield case. 

P = 32 MPa, T =398.15 K (125 
o
C) CO2 Brine 

Critical temperature (K) 304.13 647.09 

Critical pressure (MPa) 7.38 22.06 

Compressibility factor 0.2550 0.200 

Acentric factor  0.2240 0.2440 

Molecular weight (g/g-mol) 44.01 18.01 

Volume-shift parameter -0.2000 0.2960 

Binary interaction coefficient 0.0900 0.0900 

Density (kg/m
3
) 576.72 1033.29 

Viscosity (cp) 0.044 0.44 

CO2 mole fraction in brine 0.013 -- 

The reservoir consists of a sandstone aquifer, with a top seal and base rock shale. 

The relative permeability and capillary pressure curves for sandstone and shale are given 

in Figure 6.4 and Figure 6.5. The shale rock has a very high capillary pressure (>200 psi) 

and aquifer sandstone has a low capillary pressure (0.2~1 psi). Simulation shows there is 

very little penetration of CO2 into the top seal and the base layer, therefore, we removed 

the top and bottom shale layers from the reservoir model, keeping only the sandstone 

aquifer layers.  
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Figure 6.4 CO2-brine relative permeability and capillary-pressure curves for sandstone 

aquifer (Hosseini et al., 2012). Blue curve: brine relative permeability; red curve: CO2 

relative permeability; green curve: capillary pressure. 

 

Figure 6.5 CO2-brine relative permeability and capillary-pressure curves for over- and 

underlying shale rocks (Hosseini et al., 2012). Very low relative permeabilities (blue: 

CO2; red: brine) used for shale. Capillary pressure (green curve) is high for shale rock. 
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There are a total of five injection wells in the field (Figure 6.6), with one CO2 

injection well in the DAS area studied by BEG, and four CO2 EOR injection wells in the 

region far from the DAS. In the the simulation model, the four EOR injection wells only 

inject CO2 assuming no oil is present (i.e. 100% water saturated aquifer). Seven constant-

pressure boundary wells are located in the three sides of the model to mimic the open 

boundary condition for pressure maintenance. Four boundary wells on the right-hand side 

are completed in the bottom layer only (Figure 6.6). The numerical model includes one 

110 ft thick layer on the top and one 90 ft layer at the bottom to represent the shale base 

and cap rocks. The aquifer is sandwiched in the middle with 20 layers. The depth contour 

is also shown in the top view in Figure 6.7. 

 

 

Figure 6.6 Aquifer depth and well 

locations . 

 

Figure 6.7 Depth from top view. 

The well rate in IPARS is converted from field data (Figure 6.8). 
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Figure 6.8 CO2 injection rate schedule for well CFU 31F1. 

 

6.2.1 GRID UPSCALING  

The original geological model has 18 million grid cells (          ). Grid cells 

have a size of                  in length, width, and thickness. The top and bottom 

layers are impermeable shale rocks. We upscaled the grid using 25 ft, 50 ft, 100 ft, and 

200 ft in the x and y directions while keeping the vertical grid resolution of 4 ft (Table 

6.3). Simulation models are set up based on upscaled grid resolutions and field injection 

schedule. The simulation included CO2 injection for 3 years and is followed by shut-in 

for 7 years to allow CO2 to redistribute. Final saturation profiles at 3 and 10 years are 

compared to study the impact of grid size on simulation results.  
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Table 6.3 Number of grid cells and grid sizes for upscaled cases 

Grid number Grid number in X-Y-Z direction Grid size (ft) 

41,360                             

165,440                             

661,760                             

2,647,040                             

The upscaled permeability and porosity fields are shown in Figure 6.9 and Figure 

6.10. 

a)  b)  

c)  

 

Figure 6.9 Upscaled Cranfield permeability field in Y direction, a) 200 ft; b) 100 ft; c) 50 

ft. 
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a)  b)  

c)  

 

Figure 6.10 Upscaled Cranfield porosity field in Y direction, a) 200 ft; b) 100 ft; c) 50 ft. 

We observe that the upscaled permeability and porosity of the 100 ft and 50 ft 

grid cases give quite similar distributions while the coarse grid of 200 ft gives poorest 

representation of the field. 

Simulation results are provided in the following figures. 
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Figure 6.11 CO2 saturation at the end of 3 years 

of injection with a grid size of 200 ft. 

 

Figure 6.12 CO2 saturation at the end 

of 3 years of injection with a grid size 

of 100 ft. 

We observe that the coarse grid of 200 ft in Figure 6.11 gives a poor prediction of 

the CO2 plume when compared with the finer grid cases. 

 

Figure 6.13 CO2 saturation at the end of 3 

years of injection with a grid size of 50 ft. 

 

Figure 6.14 CO2 saturation at the end of 3 

years of injection with a grid size of 25 ft. 

There is an improvement in the saturation results between grid sizes 100 ft and 50 

ft. Further refinement of the grid to 25 ft does not provide significant improvement in 

saturation results. Therefore, we selected the grid size of                  for history 

match and sensitivity simulations.  
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a)  b)  

c)  d)  

Figure 6.15 CO2 saturation after 10 years with grid size, a) 200 ft; b) 100 ft; c) 50 ft; d) 

25 ft. 

We observe that the injected CO2 spreads laterally and vertically over a large area, 

due to upward migration and formation dip. We next studied the sensitivity to 

petrophysical properties and the impact on CO2 migration.  

6.2.2 ISOTHERMAL SENSITIVITY SIMULATIONS 

Multiple Cranfield simulations were conducted considering sensitivity to 

petrophysical properties including interfacial tension, the trapping model, and hysteresis 

in capillary pressure.  

These simulations use the grid size of                 ,  

Four simulation cases are  

1) No hysteresis and no capillary pressure scaling  
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2) Hysteresis with capillary pressure scaling  

3) Relative permeability as a function of trapping number and capillary pressure 

scaling 

4) Different rock types 

6.2.2.1 Base Case with                  Grid  

Base case results are shown in Figure 6.16 and Figure 6.17. We observe the 

migration of CO2 at the end of injection and after shut-inthe well.  

 

 

Figure 6.16 Base case CO2 saturation at 3 

years. 

 

Figure 6.17 Base case CO2 saturation at 

10 years. 

The gas saturation in the cross-section of injection well is shown in the following 

figures. The 2D X-Z views of gas saturation across the injection well at 3 and 10 years 

show gas migration upward after shut-in (Figure 6.18 and Figure 6.19). 
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Figure 6.18 Base case CO2 saturation in 

injection well cross-section at 3 years. 

 

Figure 6.19 Base case CO2 saturation in 

injection well cross-section at 10 years. 

The CO2 inventory is shown in Figure 6.20. There is trapping of CO2 from the 

beginning of injection (we assumed a constant residual CO2 saturation). The dissolved 

CO2 volume increases after shut-in, which means that CO2 is contacting more and more 

unsaturated water.  

 

Figure 6.20 CO2 inventory as fraction of total injection, without hysteresis model 
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6.2.2.2 Effect of Hysteresis on CO2 Saturation with Pc Scaling, Case 2 

Case 2 includes the hysteresis effect where during the injection period there is no 

gas trapping, and in the shut-in period, CO2 trapping occurs. The maximum trapped gas 

saturation is as assumed to be 0.2, while the trapped gas saturation is calculated in each 

grid cell based on historical maximum gas saturation.  

  

Figure 6.21 Drainage and imbibition relative permeability curves for CO2-brine. 

CO2 saturation profiles at 3 years and at 10 years with hysteresis are shown in 

Figure 6.22 and Figure 6.23. We can see CO2 migrates upward to aquifer top surface after 

7 years‟ shut-in. The CO2 saturation on cross section of well shows, when hysteresis 

modeling is included, part of CO2 is trapped near the bottom during shut-in period 

(Figure 6.24 and Figure 6.25). After CO2 redistribution for 7 years, CO2 is trapped as the 

residual phase in rock pores during imbibition cycle. 
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Figure 6.22 CO2 saturation at 3 years, 

with hysteresis. 

 

Figure 6.23 CO2 saturation at 10 years, 

with hysteresis. 

 

Figure 6.24 A cross section of CO2 

saturation at 3 years, with hysteresis. 

 

Figure 6.25 A cross section of CO2 

saturation slice at 10 years, with 

hysteresis. 

The CO2 inventory as fraction of total injection is given in Figure 6.276 for the 

simulation with the hysteresis model. There is almost no redisual trapping of CO2 during 

the injection period, and after injection stopped at 595 days, the residual trapping of CO2 

increases with time.  
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Figure 6.26 CO2 inventory as fraction of total injection with hysteresis model (       

     

The mobile CO2 fraction with different residual saturation models is shown in 

Figure 6.27, which shows the mobile CO2 fraction decreases after injection stops. We can 

see hysteresis model with different maximum residual saturation has a great impact on 

the prediction of the mobile CO2 fraction over time. 
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Figure 6.27 Simulated mobile CO2 as a fraction of total injection for different residual 

CO2 saturations 

6.2.2.3 Effect of Relative Permeability Model and Trapping Number on CO2 

Saturation, Case 3 

Case 3 includes the relative permeability model as a function of interfacial tension 

and trapping number where residual gas saturation is calculated as a function of trapping 

number. The maximum residual gas saturation at a low trapping number is 0.05, which is 

equal to that of the base case.  
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Figure 6.28 Brine/CO2 drainage relative permeability curves for low (1x10
-8

), 

intermediate (1x10
-7

), and high (1x10
-6

) trapping numbers. 

Simulation results of gas saturation with trapping model are shown in Figure 6.29 

and Figure 6.30. 

 

Figure 6.29 CO2 saturation at 3 years, 

with the trapping model. 

 

Figure 6.30 CO2 saturation at 10 years, 

with the trapping model. 
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The saturation profile is similar to the base case at the end of 3 years compared in 

Figure 6.31 and Figure 6.32 While the final distribution shows that much less gas is 

trapped (Figure 6.32), due to the reduction in residual saturation and consequent change 

in relative permeabilities. When the residual saturation is reduced due the high the 

trapping number, the relative permeability will increase accordingly (Figure 6.28). The 

high relative permeability will give a high mobility for gas to migrate upward and to 

further distances from the well. 

 

Figure 6.31 CO2 saturation in the 

injection well cross-section at 3 years 

with the trapping model. 

 

Figure 6.32 CO2 saturation in the 

injection well cross-section at 10 years, 

with the trapping model. 

The trapped amount of CO2 is compared to hysteresis model in Figure 6.33, 

which shows less CO2 is trapped after injection. 
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Figure 6.33 Trapped amount of CO2 with trapping model and hysteresis model. 

6.2.2.4 Effect of Rock Type on CO2 Migration  

We tested the impact of different rock relative permeabilities and capillary 

pressures on sequestration in the Cranfield formation. The laboratory results using 

Cardium sandstone from Bennion and Bachu (2006a) is used (Figure 6.34 and Figure 

6.35). Simulation is conducted without hysteresis and without the trapping model. The 

injection well is rate controlled well with same injection schedule as the base case. 
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Figure 6.34 Relative permeability of 

Cardium #1 sandstone from Bennion and 

Bachu (2006a). 

 

Figure 6.35 Capillary pressure of Cardium 

#1 sandstone from Bennion and Bachu 

(2006a). 

Simulation results show that the gas saturation is much higher in the reservoir 

with a new rock type compared to the base case. Gas saturations at 3 and 10 years are 

shown in Figure 6.36 and Figure 6.37, which shows the significant difference from the 

base case (Figure 6.16 and Figure 6.17). The saturation distributions in Figure 6.36 and 

Figure 6.37 show sharp front with high CO2 saturations compared to Figures 6.31.and 

6.32. This difference in saturation profiles shows the significance of rock type and 

relative permeability on CO2 migration. 

 

Figure 6.36 CO2 saturation at 3 years 

with no hysteresis. 

 

Figure 6.37 CO2 saturation at 10 years 

with no hysteresis. 
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Gas saturation in the cross-section of the injection well is shown in the following 

figures.  

 

Figure 6.38 A cross section of CO2 

saturation at 3 years with no hysteresis. 

 

Figure 6.39 A cross section of CO2 

saturation at 10 years without hysteresis. 

Simulation results show that CO2 displacing water is greatly enhanced and 

resulted in very high gas saturation near the rate controlled injection well. The high gas 

saturation near the well could be due to increase of gas and water mobility ratio by the 

high gas relative permeability. Less CO2 is migrated upward to the top layer below the 

caprock with the new rock type, thus it is critical to have an accurate characterization for 

the site and with appropriate relative permeability and capillary pressure curves. 

6.2.3 HISTORY MATCHING WITH NEAR WELLBORE FRACTURE MODELING 

We conducted a detailed simulation study of Cranfield test in order to history-

match the field observation data that includes injection well BHP and CO2 breakthrough 

time in the observation wells. The Cranfield base case with a grid size of             

     is used for the history-match simulations. The same well array and injection 

schedule as the field test is used. The injection started on day 193 (Dec. 1
st
, 2009) of the 

simulation. 
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The BHP of the BEG injection well CFU 31-F1 is compared to field data (Figure 

6.40). The simulation results match field data reasonably well in early period from day 

193 to day 350.  

 

Figure 6.40 IPARS simulation results of CFU 31-F1 well BHP and field data. 

From the results of injection well BHP in Figure 6.40, we observe that there is a 

mismatch after day 350, when the BHP exceeds 5900 psi. There are several possible 

reasons for this mismatch. One reason for this could be fracturing of the formation rock 

and well due to the high pressure. Another reason could be the increase in relative 

permeability due to high injection rate and increase in trapping number. There are also 

geological uncertainties.  

We made an attempt to explore the possibility that injectivity induced fracture 

explain the pressure insensitivity to the injection rate observed in the field. The vertical 

fracture is represented using grids with high permeability and porosity. Several 

simulations were conducted to test the sensitivity of BHP to the fracture length and 

permeability. The effect of a fracture on the injection well BHP is studied, with a fracture 
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existing from the beginning and with a fracture occurring when the pressure exceeds the 

fracture pressure.  

We compared simulations including the fracture from the beginning to the base 

case simulation results and to the field data (Figure 6.41). The fracture has a length of 

250 ft, with permeability of 10 Darcy. We observe that fracture will reduce injection well 

BHP, by about 200 psi beyond 350 d injection.  

 

Figure 6.41 Simulation results with and without fracture throughout the whole simulation 

period compared to the field data. 

We modified the way a fracture is represented by introducing high permeability 

gridblocks only when the injection well pressure exceeds the assumed fracturing pressure 

of 5900 psi. The injection pressure will continue to increase during the three injection 

rate increases until 350 days. After day 350, the BHP will increase sharply and the 

fracture is introduced when BHP exceeds 5900 psi. The value (5900 psi) is chosen to be 

the fracturing gradient criteria because the field data shows a maximum bottomhole 

pressure of about 5900 psi.  
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The simulation and the field bottom-hole pressure data were similar when high 

permeability cells near well are introduced to mimic the fracture. A vertical fracture with 

a length of 250 ft from the well and permeability of 10 Darcy was introduced in the 

model only after the high injection rate period, beginning at 350 days. The simulation 

results match the field data reasonably well (Figure 6.41). However, the simulation still 

cannot match the field data after day 480, and this requires further investigation.  

The simulated CO2 breakthrough time in the first observation well is at day 207, 

which is about 14 days after injection starts (Figure 6.42). This is very close to the field 

observation of 15 days (Hosseini et al., 2012).  

 

 

Figure 6.42 CO2 saturation in the first observation well, CFU 31-F2.  

6.2.4 THERMAL SIMULATION 

IPARS has a thermal module that is coupled with the compositional transport 

flow module. The temperature in the reservoir is coupled using a time-split scheme where 

the temperature is solved in each flow time step. Temperature equation model includes 

Time (days) 
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convection, conduction of heat through each phase, and injector or producer heat sources. 

The governing equation is 

      

  
   (∑          )            ,   (6.1) 

where    is the internal energy,   is the temperature,    is the density of phase  ,    

is the phase velocity,     is isobaric phase heat capacity, and    is the heat source. 

Note that phase   also includes the solid rock phase.  

The Cranfield pilot CO2 sequestration project injects cool CO2 into a hot 

formation. For the injection well, the recorded bottom-hole temperature difference before 

and after CO2 injection is about 44 
o
C (Hosseini et al., 2012). At the time of simulation, 

the temperature gauges in observation wells F2 and F3 were malfunctioning (Doughty 

and Freifeld, 2012). As a result, direct comparison to field observation is not possible.  

We constructed non-isothermal Cranfield simulations to study the impact and 

significance of thermal effects on the CO2 sequestration under typical, deep saline aquifer 

conditions. Initial formation temperature of 257 F (125 
o
C) was assumed and supercritical 

CO2 with a temperature of 100 F (37.8 
o
C) was injected in well CFU31-F1. The 

temperature in the well and the temperature profile in near well region are monitored as 

injection continues. The model grid size is                    . The thermal properties 

are as follows: 

 

 

 

 

 



161 

 

Table 6.4 Rock-fluid thermal properties  

Rock isochoric specific heat capacity (Btu/lb-F) 0.17913 

Brine phase heat capacity (Btu/lb-F) 17.8176 

CO2 heat capacity (Btu/lb-F) 14.8915 

Rock heat conductivity (Btu/ft-Day-F) 48.5343 

Brine phase heat conductivity (Btu/ft-Day-F) 10.8856 

CO2 heat conductivity (Btu/ft-Day-F) 0.2203 

Simulation results of CO2 saturation and temperature profiles at the end of 

injection and at 1200 days are studied (Figure 6.43 Figure 6.46). We observe that CO 

migration during and after the injection period covers a large area of the reservoir, while 

the temperature profile shows a much smaller impacted region than the saturation profile.  

 
Figure 6.43 CO2 saturation in the cross- 

section of injection well F1 at the end of 

injection at 600 days 

 
Figure 6.44 Reservoir temperature profile 

in the cross -section of injection well F1 at 

the end of injection at 600 days 
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Figure 6.45 CO2 saturation in the cross- 

section of injection well F1 at simulation 

end at 1200 days 

 
Figure 6.46 Reservoir temperature profile 

in the cross-section of injection well F1 at 

simulation end at 1200 days  

 

The temperature history in the wells is also monitored before and after CO2 

injection (Figure 6.47). 

 

Figure 6.47 Calculated temperature variation in injection and observation wells  

The temperature in the injection well CFU 31-F1 drops greatly with the injection 

of cool supercritical CO2. The effect of cooler CO2 was observed in well CFU 31-F2 but 
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not with very noticeable drop in temperature. The second observation well CFU 31-F3 

showed almost no temperature variation. 

 

6.3 Summary 

Extensive reservoir modeling and simulation tests were conducted for the 

Cranfield CO2 sequestration project, using field data from BEG. The field well rate and 

bottomhole pressure were imported into the IPARS simulation model. Upscaling and grid 

resolution tests were first conducted based on the finest field data resolution. The impact 

of different petrophysical models, such as trapping, IFT, and hysteresis models, were 

studied. A history matching study was conducted to match the observed injection well 

BHP and CO2 breakthrough time in the observation wells. Bottom-hole pressure of 

injection well 31F1 was closely matched during the early injection period, while the high 

injection period showed a mismatch. This study indicates the possible geomechanical 

issues related to high rate injection period. There were also uncertainties in geological 

data, such as permeability/porosity distribution, measured relative permeability and 

capillary pressure for its reservoir rocks.  
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CHAPTER 7: Summary and Future Works 

In this chapter, the major findings of this work are summarized and conclusions 

are presented. Future work is recommended based on current research progress.  

7.1 Summary and Conclusions 

This study was set out to explore the petrophysical and computational issues 

related to geological CO2 sequestration in saline aquifers, and to develop a modeling tool 

embedded in the existing in-house Integrated Parallel Accurate Reservoir Simulator 

(IPARS). Geological sequestration is the process of injecting captured CO2 to 

underground reservoir and trapping it through many complex geological, chemical, and 

hydrologic trapping mechanisms. CO2 sequestration in saline aquifers has proven to have 

great potential because of wide distribution, large volume, and safety of the storage sites. 

Successful sequestration requires proper design of the sequestration plan to ensure the 

large-scale and long-term storage security. However, the geological uncertainties and 

complex petrophysical phenomena pose a great challenge in this research area. Numerical 

simulators are essential tools to develop a better understanding of the geologic 

characteristics of saline aquifers and to build support for future CO2 storage projects. In 

this study, we developed the research reservoir simulator (IPARS) to study the CO2 

sequestration in saline aquifers. We developed new petrophysical models related to the 

process of CO2 storage in saline aquifers, validated the results against laboratory 

coreflood, and history matched the observed results of field CO2 injection demonstration. 

The accomplishments and results of research are summarized.  

 Adapted IPARS to CO2 storage: 
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• Used compositional simulation framework for CO2 sequestration in 

aquifers. 

• Modified the Peng-Robinson equation of state (PR-EOS) to calculate CO2 

solubility in water and phase densities. 

• Implemented correlations to model equation of state fluid parameters as a 

function of brine salinity. 

• Enhanced input/output modules to compute and post-process CO2 

sequestration simulation results (listed in Appendix B).  

 Enhancement in Petrophysical Properties: Geological sequestrated CO2 is 

trapped in underground reservoirs through four main mechanisms, including 

structural trapping, residual trapping, dissolution, and mineral trapping. The 

effectiveness of CO2 storage in saline aquifers is governed by the interplay of 

capillary, viscous, and gravitational forces. Petrophysical properties, such as 

wettability, residual saturation, relative permeability and capillary pressure, 

etc., are critical for CO2 migration and trapping under these forces. Variation 

of these properties under different in situ condition is also clearly evident in 

published experimental results. A key issue is to develop the integrated 

petrophysical models to characterize the sequestration processes, such as the 

variation of residual saturation vs IFT, the dependence of CO2-brine relative 

permeability on trapping number, and variation of capillary pressure with 

heterogeneity and contact angle. A trapping model based on trapping number 

was developed to characterize the dependence of residual saturation and 

relative permeability on the three forces. A hysteresis model of relative 

permeability and capillary pressure was developed and implemented in 
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IPARS. Capillary pressure varies for different reservoir rock permeability and 

porosity, wettability, and interfacial tension. 

• Interfacial tension  

Interfacial tension model has to be consistent with the published 

laboratory data for supercritical CO2/brine. Three published IFT 

correlations were implemented to calculate CO2/brine interfacial tension 

accounting for pressure, temperature, dissolution, density, and salinity. 

• Trapping number 

Capillary number is the ratio of viscous force to capillary force, while 

Bond number is the ratio of gravity force to capillary force. Trapping 

number (sum of capillary and Bond numbers) quantifies the interplay of 

capillary, viscous, and gravity forces. The trapping number model was 

implemented in IPARS where CO2 residual trapping is calculated based on 

the trapping number. 

• Trapping number dependent relative permeability 

We have developed and implemented a relative permeability model 

coupled with trapping model. This model captures the change in residual 

saturations and subsequent shift in relative permeabilities.  

• Trapped CO2 due to hysteresis  

A hysteresis model based on Land's correlation is implemented to account 

for history-dependent trapped CO2 saturation. . 

• Saturation path dependent relative permeability and capillary 

pressure  
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Hysteretic relative permeability and capillary pressure models were 

developed and implemented in IPARS.  

• Capillary pressure model based on Leverett J-function 

The capillary pressure model is developed to couple the variation of IFT, 

contact angle, and reservoir heterogeneity.  

• Wettability model 

Wettability can be quantified by contact angle between water, CO2, and 

rock surface. We coupled the variation of contact angle in capillary 

pressure function. 

 Sensitivity Tests using Enhanced Petrophysical Models: Extensive sensitivity 

tests were conducted in this study, which validated the models and showed the 

significance of petrophysical modeling on CO2 sequestration and deepened our 

understanding to CO2 sequestration process. 

• Stacked aquifer simulation shows the capability of shale cap rock as a 

sealing barrier for CO2 migration upward. 

• Sensitivity simulation using capillary pressure model shows impact of 

wettability, IFT, and heterogeneity on CO2 migration.  

• Sensitivity simulation using relative permeability based on trapping 

number shows the impact of interplay of capillary, viscous, and gravity 

forces on CO2 trapping and migration.  

• The saturation path dependent relative permeability and capillary pressure 

are tested using 1D and 3D test case incorporating Land‟s trapping model, 

which shows the complexity of hysteresis during drainage and imbibition 

processes.  
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 Validation using Coreflood Results: The motivation of the coreflood simulation 

study was to gain confidence in the results of the numerical simulator by 

validating the models and the numerical accuracies using laboratory results. 

Published steady state, core-scale supercritical CO2/brine displacement results 

were selected as a reference basis for our numerical study. This study provided 

insights into the role of heterogeneity in the final CO2 distribution in reservoir 

rocks, where a slight variation in porosity gives rise to a large variation in the CO2 

saturation distribution. A summary of results is as follow, 

• Geostatistically generated log normal permeability and normal porosity 

distributions gave a reasonable history match of the steady-state CO2/brine 

coreflood results published by Krause et al. (2011). 

• Scaling of capillary pressure using Leverett J-function was critical to 

capture sub-core scale flow characteristics. Simulated results showed 

significant contrast locally in CO2 saturation, similar to what was observed 

in the CT-scan laboratory results. 

• We incorporated the measured drainage relative permeability and capillary 

pressure provided by Krause et al. (2011). However, there are still 

uncertainties in in situ capillary pressure and relative permeability for this 

coreflood. We demonstrated the sensitivity to residual water saturation. 

The measured final CO2 saturation gave saturations greater than 0.8, 

indicating that residual water saturation was lower than the measured and 

reported value of 0.2. 

• Several techniques were considered for generating the porosity and 

permeability distributions in order to match measured average 
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permeability and porosity. The results indicated that the arithmetic mean 

for porosity and the geometric mean for permeability matched the 

experimental results better than other averaging methods. Specifically, the 

pressure drop was very sensitive to the choice of permeability averaging 

method (arithmetic/geometric/harmonic). 

 History Match Cranfield Field Demonstration: Cranfield CO2 sequestration 

project is a pilot test conducted by the Bureau of Economic Geology (BEG) at 

The University of Texas at Austin. A total of approximately 2.5 million tons 

supercritical CO2 was injected into a saline aquifer about ~10000 ft deep at a rate 

of 1 million tons per year for over 2 years. Reservoir simulation model was set up 

in IPARS by importing field geology data, rock-fluid property data, and well data, 

aiming to test and demonstrate the capability of IPARS simulator in field scale 

study. Extensive sensitivity studies were conducted for grid upscaling, fluid phase 

behavior, trapping, relative permeability, wettability, gravity and buoyancy, and 

thermal effects on sequestration. Results also illustrated the importance of using 

accurate trapping models to predict CO2 immobilization behavior. The impact of 

CO2/brine relative permeability curves and trapping model on bottom-hole 

injection pressure was also demonstrated. A few additional observations and 

conclusions are outlined as follows. 

• This work successfully demonstrated the capability of IPARS to model the 

field scale Cranfield CO2 injection test in a complex geological setting.  

• We upscaled interfacial tension using a dimensionless trapping number. The 

effects of contact angle, interfacial tension, and reservoir heterogeneity were 

included in both the relative permeability and the capillary pressure functions. 
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The simulated bottomhole injection pressure results exhibit a strong 

sensitivity to the trapping model and relative permeability curves.  

• Hysteresis model provided an accurate calculation of CO2 inventory as 

residual trapped, dissolved, and structural trapped amount over time. The 

impact of hysteresis on CO2 trapping and migration is clearly shown through 

the saturation profile near injection well.  

• Numerical results are consistent with bottomhole injection flowing pressure 

for the first 350 days prior to the rate increase to 13,000 MSCFD, and 

injection well pressure after 350 days were successfully history matched by 

introducing a high permeability vertical plane across the whole thickness of 

injection well perforation to mimic injection induced fracture.  

• Simulation study indicated that CO2 breakthrough time at the first observation 

well was about 14 days, which was consistent with the observed data. 

• Future CO2 field demonstrations require additional laboratory measurements 

of relative permeability and capillary pressure under different pressures and 

several saturation paths in reservoir cores at reservoir temperature and 

formation brine salinity. 

Finally, this study presents an integrated modeling and comprehensive study of 

complex petrophysical phenomena involved in geological CO2 sequestration using 

compositional framework in the parallel simulator IPARS. Petrophysical model, 

numerical scheme, and parallel computation worked together provide a scientific tool for 

future applications in this field. Some conclusions of this work are as follows: 

• Small scale heterogeneities have great impact on CO2 saturation distribution  
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• Leverett J-function scaling of capillary pressure was needed in order to history 

match coreflood results 

• Our simulation results identified local variations of residual water saturation 

consistent with measured saturation histogram 

• Relative permeability and capillary pressure relationships greatly impact near well 

pressure response and need to be measured for CO2 and brine under reservoir 

conditions to reduce uncertainties 

• Cranfield simulations and the sensitivity studies indicated near well 

geomechanical effects are involved to explain the observed BHP behavior 

 

7.2 Future Works 

Future works can include the following: 

1. Due to the large scale and long period of sequestration, an efficient and 

powerful reservoir simulator that is capable of running parallel simulations is 

needed. New solvers, such as HYPRE, can be implemented in IPARS to speed 

up the simulations. 

2. Continued enhancements to the CO2 property module in IPARS are necessary 

for more accurate modeling of field conditions, such as contact angle and 

residual saturation variation due to CO2 injection. 

3. Geochemical modeling of reactions and mineralization induced by CO2 

injection in the saline aquifer is one topic that could warrant future research. 
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4. CO2 sequestration in saline aquifer involves thermodynamic process and 

cooling effects of injecting cool CO2 into hot reservoirs. Thermal simulation 

study is one area for future studies.  

5. Geomechanical issues such as fracturing and pressure build up induced by 

CO2 injection need to be further studied.  

6. The potential for foam assisted CO2 storage to mitigate gas leakage and 

buoyancy driven flow through reducing CO2 mobility with foam needs further 

investigation.  
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APPENDIX A: COMPOSITIONAL MODEL 

In IPARS compositional simulation of CO2 sequestration, CO2 is dissolved into 

the water phase. In order to simulate this process, compositional modeling is needed. In 

practical application, the water phase is treated as a "hydrocarbon" component that gas 

could exist in it. The PVT properties of the brine and CO2 are given by flash calculation 

using equation of state (EOS). The most common equations of state are the cubic 

equation of state similar to van der Waals equation (van der Waals, 1910), with different 

modeling parameters, such as Peng-Robinson EOS, etc. For a two phase mixture system, 

the composition of each phase could be determined by flash calculation based on phase 

equilibrium. 

A.1 Phase Equilibrium  

The ratio between mole fractions of component   in the vapor and liquid phases 

is called the equilibrium ratio or the K-factor, 

   
  

  
      A-1 

In which,    is mole fraction of component   in vapor phase,    is mole fraction 

of component   in liquid phase. 

Phase equilibrium requires  

  
    

        A-2 

Note that   
      

  ,   
      

  , we have  

   
  

 

  
        A-3 
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Hence the equilibrium criteria would be, 

  (  
 )       

                A-4 

In which   
    

  are fugacity coefficients that can be calculated from EOS. 

A.2 Rachford-Rice Equations for Vapor Fraction 

For two phase mixture system with over all mole fraction    for component  , we 

have  

             A-5 

∑     
  
        A-6 

∑     
  
       A-7 

   
  

  
       A-8 

Assume vapor phase molar fraction   , then we have 

                     A-9 

Substituting    and transforming the equation, we will have 

   
  

          
    A-10 

   
    

          
    A-11 

For the phase composition,  

∑          
  
     A-12 

The Rachford-Rice equation for determining vapor fraction    would be 
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∑
        

          
       A-13 

The flash calculation will be performed in a trial and error way to calculate the 

vapor fraction   . Rachford-Rice equation is used because it is easier to converge than 

phase compositional equations.  

Let   equals residual of Rachford-Rice equation,  

    
         

       
 

      
    A-14 

Iteration continues until convergence criteria is met or    no longer changes. 

A.3 Peng-Robinson Equation of State 

The Peng-Robinson equation of state (PR-EOS) used in IPARS can be described 

as follow: 

 
( )

( ) ( )

RT a T
P

v b v v b b v b
 

   
     A-15 

It could also be written as 

 3 2 2 2 3(1 ) ( 3 2 ) ( ) 0Z B Z A B B Z AB B B           A-16 

In which  

 2 2

aP bP vP
A B Z

R T RT RT
  ， ，      A-17 

And for pure component,  

               A-18 
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     (   (  √
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   A-19 

                               A-20 

At the critical point we have, 

   
           

 

  
    A-21 

   
          

  
     A-22 

At temperatures other than critical the two parameters are treated differently, 

which has been clearly indicated by Dingyu-Peng and Robinson‟s paper A New Two-

Constant Equation of State (1968). 

For liquid/vapor mixture phase  , there are mixing rules, 

   ∑ ∑                  A-23 

   ∑            A-24 

     √                 A-25 

                   A-26 

      (    (  √
 

  
 ))

 

    A-27 

                              
    A-28 

In which    is the acentric parameter for each component from user input.  



177 

 

The binary interaction parameter (   ) plays the critical role for fitting the 

experimental data using the cubit equation of state. BIP should be input between each 

pair of components that attend the flash calculation. 

The cubit equation can be solved for three roots of   , which will be used for 

next calculation of component fugacity in each phase. If all three roots are real, then the 

maximum and minimum values are used for vapor and liquid phases. Otherwise, single 

real root will be used. 

The fugacity coefficients for liquid and vapor phases are calculated as,  

   
 
 

2
1 2

ln 1 ln( ) ln
2 2 1 2

j ij

ji i
i

x a
Z Bb A b

Z Z B
b a bB Z B



  
  
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where B Pb RT  ,   22)()(1 TRTaTaPA jcicicjcicjc  ,             .  

Then convergence criteria is checked with 

  (  
 )       

               A-30 

If not converged,    will be updated for next iteration,  

  
      

   
 

  
      A-31 
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APPENDIX B: IPARS COMPOSITIONAL INPUT 

B.1 IPARS Compositional Input  

CO2 Sequestration in aquifer case input (Chapter 5.3.2 - 3D test with trapping 

model). 
 
TITLE(1)=” TEST CASE “ 
TITLE(2)=”Scenario 1blk” 
 
DESCRIPTION()= 
“GRID BLOCKS : 4x25x25 (down, lateral, lateral) = 2500 GRID ELEMENTS” 
 
BLOCKMODEL(1 )=”COMPOSITIONAL_MODEL” 
 
TIMEEND = 200.1 
 
$------------------------------------------------------------------------$ 
$ I/O AND SOLVER OPTIONS 
$------------------------------------------------------------------------$ 
$ DEBUGS  
$ DEBUGM 
$ OUTLEVEL = 2 
$ BUGKEY(6) 
$ BUGKEY(10) 
 
$ NEWTON OPTIONS 
MAXNEWT = 100 
MAXFLITS = 100 
 
$ BCGS LINEAR SOLVER OPTIONS 
$PRECOND = 3 
$MGLEV = 0 
$MAXMGIT = 1 
$LINTOL = 1.0E-05 
$MISCLINTOL = 1.0E-16 
 
$ GMRES LINEAR SOLVER OPTIONS 
$LSOL_TOL = 1.0E-06 
$LSOL_ITMAX = 5000 
$GMRES_PREC = 16 $ AMG with LSOR. 
$N_GS_STEP = 5 
 
$------------------------------------------------------------------------$ 
$ PRINTOUTS 
$------------------------------------------------------------------------$ 
 $OUT_MOLDW = TRUE 
 $OUT_MOLD = TRUE 
 $OUT_VISCW = TRUE 
 $OUT_VISC = TRUE 
 $OUT_CO2MOL = TRUE 
 OUT_CO2DIST = TRUE 
 OUT_TEMPR= TRUE 
 XDARCYFLUX = TRUE 
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 OUT_MASSD = TRUE 
 OUT_OMOLF = TRUE 
 OUT_VISC = TRUE 
 
 OUT_CO2LEAK = TRUE 
  ICO2OUT = 1 
  JCO2OUT = 1 
  KCO2OUT = 10 
  NCO2OUT = 1 
 $XTSEOSBIN = TRUE 
 
$------------------------------------------------------------------------$ 
$ FAULT BLOCK AND MESH DATA 
$------------------------------------------------------------------------$ 
$FACEBLOCKS(,1) = 1 2 
$FACEXYZ(,1) = 0. 0. 0., 0. 0. 0. 
 
BLOCKNAME(1) = “BLOCK1” 
DOWN(,1) = 1.0 0 0.00 
NX(1) = 1  NY(1) = 1  NZ(1) = 64 
DX(,1) = 40.  
DY(,1) = 20 DZ(,1) = 5  
 
$ Set the top corner of the reservoir 
XYZ111(,1) = 4091. 0. 0. 
 
$DEPTHMOD Block 
$ EXTERNAL NBLK,X,Y,Z,DEP 
$ DEP=DEP+0.002*(Z-125.0)*(Z-125.0) 
$EndBlock 
$DEPTHG1(1,1,1 TO 10 )= 4010 4021 4032 4043 4054 4065 4076 4087 4098 4099 
 
$------------------------------------------------------------------------$ 
$ RESERVOIR DATA 
$------------------------------------------------------------------------$ 
$ POROSITY 
CR1() = 5.E-6 
POROSITY1(,,) = .20 
 
$ PERMEABILITIES 
XPERM1(,,) = 100.  
YPERM1(,,) = 100.  
ZPERM1(,,) = 100.  
 
 PERMOUT 
  VIS_SCL = 4 
  VIS_FNAME = “TEST2D_K” 
  VISFLAG = 2 
  VIS_SCL_NAMES(1) = “TCOFX” 
  VIS_SCL_NAMES(2) = “TCOFY” 
  VIS_SCL_NAMES(3) = “DEPTHG” 
  VIS_SCL_NAMES(4) = “PORO” 
 
$------------------------------------------------------------------------$ 
$ COMPONENT PROPERTIES 
$------------------------------------------------------------------------$ 
$ WATER PROPERTIES 
WATERP = 0.0 
WATFVF = 1.0 
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WATVIS = .7 
WATCMP = 3.3E-6 
STDENW = 62.4 
 
$ COMP NAMES 
NHCOMP = 2 
COMP(1) = “CO2” COMP(2) = “BRINE” 
LTCOMP = 1 
ICINPH(,1) = 1 0 0 
ICINPH(,2) = 0 1 1 
ICINPH(,3) = 0 1 0 
XMOL_DIFF(,,) = 0.0 
XMOL_DIFF(,2,2 TO 3) = 0.5580 
 
$$ COMPNT. CRIT. PROPERTIES 
 
$ CRITICAL TEMPERATURES 
TCRIT(1 TO 2) = 547.5600 1120.2300 
 
$ CRITICAL PRESSURES 
PCRIT(1 TO 2) = 1070.3785 3540.8836 
 
$ CRITICAL VOLUMES 
ZCRIT(1 TO 2) = 0.30234 0.22983 
 
$ ACENTRIC FACTORS 
ACENT(1 TO 2) = 0.2240  0.2440 
 
$ MOL WEIGHTS 
MOLWT(1 TO 2) = 44.0100 18.0125 
 
$ PARACHOR 
PARACHOR(1 TO 2) = 49.00 52.00 
 
$ VOLUMETRIC SHIFT 
VSHIFT(1 TO 2) = -0.19  0.0650 
$VSHIFT(1 TO 2) = 0.0247  0.0950 
 
$ ISOBARIC SPECIFIC HEATS 
HCCP(1 TO 2) = 14.8915 17.8176 $ for CO2, take mean of liq. & gas sp. Heats. 
 
$ BINARY INTERACTION COEFFICIENTS 
BINACT(1,2) = -0.0852 
BINACT(2,1) = -0.0852 
 
$------------------------------------------------------------------------$ 
$THERMAL OPIONS 
$------------------------------------------------------------------------$ 
$XTHERMAL = TRUE 
$N_THERM_STEPS = 4 
$XNOTHERMCOND = TRUE 
$XTHERMSOLVE = TRUE 
$XTHLINSOL = 2 
$$$XTHLINSOL = 1 
$$$XNOFLXLMTR = TRUE 
$XFLXLMTRTYPE = 3 
$$XFLXLMTR = 1.0 
$XFLXLMTR = 0.75 
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$=== PHASE THERMAL CONDUCTIVITIES 
$PHTCOND(1,1 TO 3) = 48.5343 
$PHTCOND(2,1 TO 3) = 8.1714  
$PHTCOND(3,1 TO 3) = 10.8856 
$PHTCOND(4,1 TO 3) = 0.2203 
 
$ ROCK ISOCHORIC SPECIFIC HEAT CAPACITY 
ROCKCV = 0.17913 
 
$------------------------------------------------------------------------$ 
$ ROCK FLUID PROP 
$------------------------------------------------------------------------$ 
NXROCKS = 1 
ROCK1( ,,) = 1 
$ == MODEL ROCK TYPE 3-PHASE RELATIVE PERM  
MODREL(1) = 1 
 
$== SGRES BASED ON IFT EFFECT 
$IFTSATRES = TRUE 
 
$======== IFT RELATIVE PERMEABILITY 
$ IFTRLPRM = TRUE 
$AQPHSWTCH = TRUE 
SGLOW = 0.225 
SGHIGH = 0.1 
SWLOW=.379 
SWHIGH=0.15 
KGLOW=.298 
KGHIGH = 0.6 
KWLOW=0.405 
KWHIGH=1.0 
EGLOW = 1.9 
EGHIGH =1.0 
EWLOW = 3.8 
EWHIGH =1.5 
TGL=97000000 
TWL=4400000 
TAUG=1.05 
TAUW=1.05 
IFT0 = 30.0 
SALIN= 0.0 
 
$XJLFUNPC = TRUE $ J-LEVERETT FUNCTION CAPILLARY PRESSURE 
 
$== HYSTERESIS OPTIONS 
$HYSTERESIS = TRUE 
$AQPHSWTCH = TRUE 
 
$== HYSTERESIS PARAMETERS 
$ ENTRYPRES(1) = .000 
 ENTRYPRES(1) = 1.1607 
 SWRES(1) = 0.0 
 SORES(1) = 0.197 
 SGRES(1) = 0.203 
LAMBDA(1) = 1.33 
 LAMBDAW(1) = 1.3 
 LAMBDANW(1) = 1.7 
 KRNW0(1) = 0.5260 
 KRW0(1) = 0.8 
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 REFPERM(1) =100.0 
 REFPORO(1) =00.2 
 
$ ENTRYPRES(2) = 1200.0 
$ SWRES(2) = 0.2 
$ SORES(2) = 0.638 
$ SGRES(2) = 0.256 
$ LAMBDA(2) = 4.2 
$ LAMBDAW(2) = 2.2 
$ LAMBDANW(2) = 2.3 
 $KRNW0(2) = 0.1875 
 $KRW0(2) = 0.1875 
 $REFPERM(2) =100.0 
 $REFPORO(2) =00.2 
 
 
KWSW(1) Block   $ WATER RELATIVE PERMEABILITY VS Sw – ROCK TYPES 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data   
0.4    0.0 
0.425    7.84E-006 
0.45    0.00012461 
0.475    0.000628309 
0.5    0.001980118 
0.525    0.004823603 
0.55    0.009984184 
0.575    0.018468725 
0.6    0.031465201 
0.625    0.050342427 
0.65    0.076649807 
0.675    0.112117131 
0.7    0.158654383 
0.725    0.218351571 
0.75    0.29347857 
0.775    0.386484981 
0.8    0.5 
EndBlock 
 
KOSW(1) Block   $ OIL RELATIVE PERMEABILITY VS Sw – ROCK TYPES 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data   

0.4    0.65 
0.425    0.568995356 
0.45    0.489718618 
0.475    0.413763848 
0.5    0.342457622 
0.525    0.276876451 
0.55    0.217852251 
0.575    0.16597515 
0.6    0.121595238 
0.625    0.084823784 
0.65    0.05553414 
0.675    0.033362457 
0.7    0.017708256 
0.725    0.007734915 
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0.75    0.002370084 
0.775    0.000306038 
0.8    0 

EndBlock 
 
KOSG(1) Block   $ OIL RELATIVE PERMEABILITY VS Sg – ROCK TYPES 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data   
0.000  1.0000 
0.05  0.9198208722 
0.1  0.8412241145 
0.15  0.7642877993 
0.2  0.6891000746 
0.25  0.6157614012 
0.3  0.544387534 
0.35  0.4751135908 
0.4  0.408099771 
0.5  0.2816729928 
0.6  0.167345732 
0.7   0.0692720728 
0.8   0.0006984373 
0.803  0 
0.9  0 
1.000  0.000 
EndBlock 
 
KGSG(1) Block   $ GAS RELATIVE PERMEABILITY VS Sg – ROCK TYPES 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data  
0.000  0.0000 
0.203  0.0 
0.25  0.0723547974 
0.3  0.0986450847 
0.35  0.1281991048 
0.4  0.1608686075 
0.5  0.2350814304 
0.6  0.3204988259 
0.7  0.4165201203 
0.8  0.5226636477 
0.803  0.526 
0.9  0.526 
1.000  0.526 
EndBlock 
 
PCOW(1) Block    $ WATER-OIL CAPILLARY PRESSURE – ROCK TYPE 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data   

0.4000  10.07   
0.4667   4.90   
0.5556   1.80   
0.6444   0.50  
0.7000   0.05   
0.7333   0.01   
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0.8222   0.0   
0.9111   0.0   
1.0    0.0   

EndBlock 
 
PCGO(1) Block    $ GAS-OIL CAPILLARY PRESSURE – ROCK TYPE 1 
 Interpolation Linear 
 Extrapolation Constant 
 
Data  
0.197  9.2880208251 
0.2   6.8145629807 
0.3   4.36252194585 
0.4   3.17910604195 
0.5  2.48716157848 
0.6  2.03518845089 
0.65  1.86365840626 
0.7  1.71776267142 
0.75  1.59222198103 
0.8   1.48310541037 
0.85  1.38742714309 
0.9   1.30287948121 
0.95  1.22765133119 
1    1.160301904 
EndBlock 
 
$------------------------------------------------------------------------$ 
$ WELLS 
$------------------------------------------------------------------------$ 
 
NUMWELL=2 
 
WELLNAME(1) = “INJECTION WELL rate CONST” 
$KINDWELL(1) = 0  
KINDWELL(1) = 4  
WELLBLOCK(,1) = 1 
PLIMITC(1) = 4500. 
$WDEPTH(1) = 8425. 
WELLTOP(1 TO 3,1,1) =   4091. 5. 319.5 
WELLBOTTOM(1 TO 3,1,1) = 4130. 5. 319.5 
WELLPQ(1) Block 
 Interpolation Step 
 Extrapolation Constant 
 Data 0.  150.0 
EndBlock 
 
WELLNAME(2) = “PRODCTION WELL pres CONST” 
KINDWELL(2) = 31 
$KINDWELL(2) = 0 
WELLBLOCK(,2) = 1 
PLIMITC(2) = 4500. 
$WDEPTH(2) = 8425. 
WELLTOP(1 TO 3,1,2) =   4091.  05.  04.  
WELLBOTTOM(1 TO 3,1,2) = 4130.  05.  04.  
WELLPQ(2) Block 
 Interpolation Step 
 Extrapolation Constant 
 Data 0.  1800. 
EndBlock 
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$ WELL OUTPUT 
 
WELLOUTKEY = 3 WELLFILE = “TEST_H_I.WEL” WELLFCUM = “TEST_H_I.CUM” 
$WELLOUTKEY = 0 WELLFILE = “TEST_H_I.WEL” WELLFCUM = “TEST_H_I.CUM” 
 
$ WELL OUTPUT FLAGS 
 $WOUTFLG(1 TO 2) = FALSE 
 
$ NON-AQUEOUS COMPONENT WELL OUTPUT FLAGS 
 $WELXOUT(1,1 TO 2) 
 $WXELOUT(1,2) = 7 
 
  $ INJECTION COMPOSITION 
  COMPINJ(,1) = 0.0 1.0 ,0.0 
  INJCOMP() = 1 
  TINJ(1 TO 2) = 90.0 
 
  $ SEPARATOR ASSIGNMENT FOR WELLS 
  IWSEP() = 1 
 
$------------------------------------------------------------------------$ 
$ INITIAL CONDITIONS 
$------------------------------------------------------------------------$ 
$ SURFACE CONDITIONS  
TSURF = 60.0 PSURF = 14.7 
 
$PORPRES1() = 14.7  $ default EQ PRES1 
SWINIT1() = 0.00 
PRES1(,,) = 1800 
CONC1(,,,1) = 0.00 
CONC1(,,,2) = 1.00 
REFPRES = 2  $ DEFAULT 2  
 
$ INITIAL TEMPERATURES 
TEMPR1(,,) = 110. 
 
$ SEPARATORS 
PSEP(,1) = 14.7 
TSEP(,1) = 60. 
 
$ SEPARATOR ASSIGNMENT FOR IN-PLACE CALCULATIONS 
SEPSURF = 1 
 
EndInitial 
 
$------------------------------------------------------------------------$ 
$ TRANSIENT DATA INPUT BLOCKS 
$------------------------------------------------------------------------$ 
 
BeginTime  0.0 
  DELTIM = 1.0 
  DTIMMUL = 1.1  
  TIMOUT = 0.1 
  DTIMMIN = .005 
  DTIMMAX = 10.0 
  DTIMOUT = 2. 
  DSMAX = 0.1 
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  $ testing visualization 
  VISOUT = .10 
  DVISOUT = 5. 
  VIS_SCL = 8 
  VIS_SCL_NAMES(1) = “PRES” 
  VIS_SCL_NAMES(2) = “PCOW” 
  VIS_SCL_NAMES(3) = “PCGO” 
  VIS_SCL_NAMES(4) = “SWAT” 
  VIS_SCL_NAMES(5) = “SOIL” 
  VIS_SCL_NAMES(6) = “SGAS” 
  VIS_SCL_NAMES(7) = “CO2” 
  VIS_SCL_NAMES(8) = “TEMP” 
  VIS_FNAME = “TEST1D_O_Pc” 
  VISFLAG = 2 
EndTime 
 
BeginTime  20.05 
  DTIMOUT = 5 
  DVISOUT = 5 
EndTime 
 
BeginTime 220.0 
  DTIMOUT = 20 
  DVISOUT = 20 
  DTIMMAX = .20 
EndTime 

B.2 New Keywords for New Models in IPARS 

List of keywords and example values of modeling residual saturation as a function of 

trapping number when IFTSATRES = TRUE.  
$== SGRES BASED ON IFT EFFECT 
IFTSATRES = TRUE  $ Flag to calculate residual based on IFT and trapping number 
TGL=97000000  $ Fitting parameter     for gas residual with trapping number model 
TWL=4400000  $ Fitting parameter     for water residual with trapping number model 
TAUG=1.05  $ Fitting parameter    for gas residual  
TAUW=1.05  $ Fitting parameter    for water residual 
IFT0 = 30.0  $ Reference IFT for reference rock (mN/m) 
SALIN= 0.0  $ Reservoir fluid salinity for IFT calculation (ppm) 

List of keywords and example values for relative permeability curves for low and high 

trapping numbers when IFTRLPRM = TRUE.  
 

$======== IFT RELATIVE PERMEABILITY 
IFTRLPRM = TRUE  $ flag to calculate Kr based on trapping number 
AQPHSWTCH = TRUE $ flag to use oil phase as “water” property  
SGLOW = 0.225  $ gas residual saturation at low trapping number  
SGHIGH = 0.1  $ gas residual saturation at high trapping number 
SWLOW=.379  $ water residual saturation at low trapping number 
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SWHIGH=0.15  $ water residual saturation at high trapping number 
KGLOW=.298  $ gas endpoint Krg at low trapping number 
KGHIGH = 0.6  $ gas endpoint Krg at high trapping number 
KWLOW=0.405  $ water endpoint Krw at low trapping number 
KWHIGH=1.0  $ water endpoint Krw at low trapping number 
EGLOW = 1.9  $ gas relative perm Corey exponent at low trapping number 
EGHIGH =1.0  $ gas relative perm Corey exponent at high trapping number 
EWLOW = 3.8  $ water relative perm Corey exponent at low trapping number 
EWHIGH =1.5  $ watre relative perm Corey exponnent at high trapping number 

List of keywords and example values for capillary pressure curves scaling using Leverett 

J-function for permeability, porosity and interfacial tension when XJLFUNPC = TRUE.  
 

 XJLFUNPC = TRUE  $ flag forJ-LEVERRET FUNCTION CAPILLARY PRESSURE 
 REFPERM() =100.0 $ reference permeability (md) for reference rock  
 REFPORO() = 0.2  $ reference porosity for reference rock 
 IFT0 = 30   $ reference fluid IFT (mN/m) for reference rock 

List of keywords and example values for hysteresis in relative permeability and capillary 

pressure curves based on Land‟s trapping function. Inputs include maximum residual 

saturation for each phase, endpoint relative permeability, entry capillary pressure, and 

Brooks-Corey exponents for each rock type. 
 

$== HYSTERESIS OPTIONS 
HYSTERESIS = TRUE  $ flag for hysteresis model of Kr Pc and Sgt 
AQPHSWTCH = TRUE $ flag for treat oil phase as water 
$== HYSTERESIS PARAMETERS 
 ENTRYPRES(1) = 1.1607 $ entry capillary pressure for drainage (psi) 
 SWRES(1) = 0.0  $ maximum residual water saturation  
 SORES(1) = 0.197  $ maximum residual oil saturation 
 SGRES(1) = 0.203  $ maximum residual gas saturation 
 LAMBDA(1) = 1.33  $ Corey type drainage Pc exponent  
 LAMBDAW(1) = 1.3 $ Corey type drainage water Krw exponent 
 LAMBDANW(1) = 1.7 $ Corey type drainage non-wetting phase gas Krg exponent 
 KRNW0(1) = 0.5260 $ Corey type imbibition water Krw endpoint  
 KRW0(1) = 0.8  $ Corey type imbibition non-wetting gas Krg endpoint 
$ ENTRYPRES(2) = 1200.0 $ Corey type entry Pc for rock type 2 
$ SWRES(2) = 0.2 
$ SORES(2) = 0.638 
$ SGRES(2) = 0.256 
$ LAMBDA(2) = 4.2 
$ LAMBDAW(2) = 2.2 
$ LAMBDANW(2) = 2.3 
$ KRNW0(2) = 0.1875  
$ KRW0(2) = 0.1875 
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APPENDIX C: SAMG and HYPRE SOLVERS for UTCHEM 

C.1 UTCHEM Review 

UTCHEM is a 3D, multicomponent, multiphase, and compositional chemical 

flood reservoir simulator developed at the University of Texas at Austin. This simulator 

provides a scientific and engineering basis for modeling the enhanced oil recovery 

through continued development and application of compositional model. The simulator 

was originally developed by Pope and Nelson in 1978 for simulating the enhanced oil 

recovery with surfactant and polymer processes. Currently a group of researchers led by 

Dr. Delshad are actively developing and enhancing this simulator. Here I implemented 

two new solvers (SAMG and HYPRE) to UTCHEM. The detailed implementation 

procedure is presented here. 

C.1.1 UTCHEM FORMULATIONS 

In this simulator, the flow and mass-transport equations are solved for any 

number of user-specified chemical components (water, organic contaminants, surfactant, 

alcohols, polymer, chloride, calcium, other electrolytes, microbiological species, electron 

acceptors, etc.). These components can form up to four fluid phases (gas, water, oil, and 

microemulsion) and any number of solid minerals depending on the overall composition. 

The continuity of mass for component   in association with Darcy‟s lay is as follow, 

 

  
         ⃗⃗  [∑   (    ⃗    ⃗⃗   )]    

  

       C-1 

In which,   is porosity,    is the volume of component   per unit pore volume, 

   is the component density,    is the Darcy velocity for phase        is the diffusion 

flux in Fickian form, and    is the sum of the reaction and point source/sink rate. 
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The flow equation is spatially discretized on Cartesian grid using finite volume 

method to maintain mass conservation. Upstream scheme is used for calculating transport 

properties between connected grids. The pressure equation is developed by summing up 

the mass balance equation over all components, as follow. 

      

  
  ⃗⃗  ( ⃗⃗ ⃗⃗      ⃗⃗   )    ⃗⃗  ∑  ⃗⃗ ⃗⃗      ⃗⃗  

  

   

  ⃗⃗  ∑  ⃗⃗ ⃗⃗      ⃗⃗      

  

   

∑  

   

   

 

C-2 

In which,      is phase relative mobility with the correction of fluid 

compressibility,      is total relative mobility over all phases   .  

     
   

  
∑      

   

         C-3 

 ⃗⃗ ⃗⃗  is the permeability tensor.     is the volume weighted sum of rock matrix 

   and component compressibility   
 .  

      ∑   
   

   

        C-4 

The simulator uses implicit pressure explicit concentration/saturation 

(IMPEC/IMPES) formulation to solve the flow and transport during time evolution. At 

each time step, pressure equation is solved using Jacobi conjugate gradient (JCG) method 

is then followed by a back substitution into the explicit mass conservation equation for 

each component. The concentration of each component is solved using updated pressure 

and transport equation in the form of Darcy‟s Law. Then saturation is solved using 

concentration and molar density of each component.  
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C.1.2 UTCHEM DISCRETIZATION  

The pressure equation can be discretized on each grid cell using finite difference 

method, 

∑    (     )
  
            C-5 

In which     is the transmissibility between grid cell   and  .  

There are a maximum of 6 adjacent grid cells for each grid cell   in a Cartesian 

grid system. The transmissibility    is denoted AN, AS, AW, AE, AU, AN, and AA for 

the grid cells around grid cell i and grid cell i itself. These seven coefficients together 

form the stiffness matrix [ ]  which is banded and sparse matrix. 

 AN  

AW Grid i, AE 

 AS  

The accumulation term is denoted B,  

[ ]  [ 
        

  
   ]     C-6 

Together we can get the matrix equation for pressure solve, as follows 

[ ][ ]  [ ]      C-7 

This matrix equation can be solved with different solves, such as JCG solver.  

Once pressure is solved for current time step, the saturation/concentration of 

component   in grid        could be evaluated explicitly using,  

       
    [(       

   )        
  ]      C-8 
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       C-9 
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         C-11 

For the simulation process, the pressure solve is the most CPU cost part, while 

saturation/concentration solve is less CPU intensive. Hence it is necessary to use fast and 

efficient solvers and numerical scheme for matrix equation. I implemented two advanced 

solvers, SAMG and HYPRE, into the UTCHEM simulator. These solvers with their 

tuned preconditioners could solve large scale sparse matrix efficiently and robustly. For 

both of the two solvers, sparse matrix needs to be converted to compressed row storage 

(CRS) arrays and passed to the solver. I developed the special subroutine to perform the 

converting and transforming of matrix.  

C.2 Implementation of SAMG and HYPRE Solvers 

C.2.1 COMPRESSED ROW STORAGE (CRS) 

Compressed row storage (CRS) is a technique in computational programming 

used to store large, sparse matrices using as little memory as possible. The idea of this 

technique is that rather than saving the whole matrix, we only save the non-zero entries in 

the sparse matrix to the memory, because only those non-zero entries will be contributing 

to the matrix equation system. The way for saving the entries is specially engineered to 

maximize efficiency and minimize memory cost. Finally, the whole matrix equation will 

be converted to three 1D arrays that each of the arrays contains the information of 

position of non-zero entry, value of non-zero entry, and accumulation term.  

For example, consider a non-symmetry matrix A,  
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After converting to CRS structure, it will be as follow, 

The number of non-zero elements in each row is recorded in a 1D array as 

follows, 

Row 1 3 5 8 … 

The number of non-zero elements is calculated from the 1D array above, as 

follows 

                        C-12 

The values of non-zero elements and their positions in each row are recorded 

using two 1D arrays, as follows.  

Value 1 5 4 -1 2 1 3 … 

Column 1 3 2 3 1 2 3 … 

The new arrays created from the original sparse matrix can be passed to the solver 

and be solved iteratively. The SAMG and HYPRE solver then could be called to execute 

the solving of the matrix equation.  

C.2.2 SAMG  

SAMG (Algebraic Multigrid Methods for Systems) is a library of subroutines 

developed by the Fraunhofer Institute for Algorithms and Scientific Computing (FhG-

SCAI) for highly efficient solution of large linear equations with sparse matrix (by K. 

Stüben, FhG-SCAI). It is a library of subroutines based on algebraic multigrid (AMG) 

approach, used for the highly efficient solution of large linear systems of equations with 

sparse matrices.  
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The SAMG solver package is developed in FORTRAN 90, and can be called in 

different development environment and computation platform. From user‟s point of view, 

it is “plug-in” solver, which means it has convenient socket for user to pass the matrix 

and run the solver. The solver also comes with a bunch of preconditioners which user 

could choose by specifying different input parameters. 

The typical way to call the SAMG solver is as follow, 
subroutine samg(nnu,nna,nsys, & 

ia,ja,a,f,u,iu,ndiu,ip,ndip,matrix,iscale, & 

res_in,res_out,ncyc_done,ierr, & 

nsolve,ifirst,eps,ncyc,iswtch, & 

a_cmplx,g_cmplx,p_cmplx,w_avrge, & 

chktol,idump,iout). 

The detailed information for the input parameters is available in SAMG user 

manual.  

In UTCHEM it is coded as follow, 
CALL SAMG(NNU,NNA1,NSYS,IA(1:NNU+1),JA(1:NNA1),AIJ(1:NNA1),BV(1:NNU 
   &  ),P(1:NBL,1),IU,NDIU,IP,NDIP,MATRIX,ISCALE,RES_IN,RES_OUT, 
   &  NCYC_DONE,IERR,NSOLVE,IFIRSTK,EPS,NCYC,ISWTCH,A_CMPLX, 
   &  G_CMPLX,P_CMPLX,W_AVRGE,CHKTOL, 
   &  IDUMP,IOUT) 

The arrays IA, JA, AIJ, BV, P are the Jacobi matrix in compressed row storage 

format. The solved pressure is storage in array P, and is used for solving saturation. 

C.2.3 HYPRE 

HYPRE is a library of high performance preconditioners and solvers for solving 

large, sparse linear systems of equations on massively parallel computers (By Lawrence 

Livermore National Laboratory). It was developed at the Center for Applied Scientific 

Computing (CASC) at Lawrence Livermore National Laboratory. It is developed in 

C/C++ language, with great flexibility to be used in many developing environments and 

platforms, such as FORTRAN on LINUX. The main features of the library includes 

scalable preconditioners, a suit of iterative methods, user defined interfaces, etc.  

http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
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The HYPRE solver is implemented in UTCHEM, by converting the UTCHEM 

matrix equation to CRS structure and calling HYPRE subroutines following special 

procedure. In order to do these, we need to handle calling subroutine between FORTRAN 

and C/C++. HYPRE objects can usually be declared as in the table because           

usually corresponds to the length of a pointer. However, there may be some machines 

where this is not the case (although we are not aware of any at this time). On such 

machines, the FORTRAN type for a HYPRE object should be an integer of the 

appropriate length. Here is an example of defining/calling same subroutine in FORTRAN 

and C. 

This simple example illustrates the above information: 

C prototype: 
int HYPRE_IJMatrixSetValues(HYPRE_IJMatrix matrix, int nrows, int 

*ncols, const int *rows, const int *cols, const double  

*values); 

The corresponding FORTRAN code for calling this routine is as follows: 
integer*8 matrix, 

integer nrows, ncols(MAX_NCOLS) 

integer rows(MAX_ROWS), cols(MAX_COLS) 

double precision values(MAX_COLS) 

integer ierr 

call HYPRE_IJMatrixSetValues(matrix, nrows, ncols, rows,  

& cols, values, ierr) 

The implementation in UTCHEM is as follow, 
call HYPRE_IJMatrixCreate(comm, 1, NNU,1, NNU, ij_matrix,ierr) 

call HYPRE_IJMatrixSetObjectType(ij_matrix, HYPRE_PARCSR,ierr) 

call HYPRE_IJMatrixInitialize(ij_matrix,ierr) 

C    /* set matrix coefficients */ 

call HYPRE_IJMatrixSetValues(ij_matrix,NNU,ncols,rows,JA,AIJ,ierr) 

call HYPRE_IJMatrixAssemble(ij_matrix,ierr) 

C   Get parcsr matrix object 

   call HYPRE_IJMatrixGetObject(ij_matrix, parcsr_A, ierr) 

 

c   Create the rhs and solution 

   call HYPRE_IJVectorCreate(comm, 1, NNU, b, ierr ) 

   call HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR, ierr) 

   call HYPRE_IJVectorInitialize(b, ierr) 

 

   call HYPRE_IJVectorCreate(comm, 1, NNU, x, ierr ) 
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   call HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR, ierr) 

   call HYPRE_IJVectorInitialize(x, ierr) 

   call HYPRE_IJVectorSetValues(b, NNU, rows, BV(1:NBL), ierr ) 

   call HYPRE_IJVectorSetValues(x, NNU, rows, P(1:NBL,1), ierr) 

 

   call HYPRE_IJVectorAssemble( b, ierr) 

   call HYPRE_IJVectorAssemble( x, ierr) 

 

c get the x and b objects 

 

   call HYPRE_IJVectorGetObject( b, par_b, ierr) 

   call HYPRE_IJVectorGetObject( x, par_x, ierr) 

 

c   Choose a solver and solve the system 

 

     call HYPRE_BoomerAMGCreate(amg_solver, hypre_ierr) 

c    print solve info + parameters 

     call HYPRE_BoomerAMGSetPrintLevel(amg_solver, 0, hypre_ierr) 

c    Falgout coarsening 

     call HYPRE_BoomerAMGSetCoarsenType(amg_solver, 6, hypre_ierr) 

c    G-S/Jacobi hybrid relaxation 

     call HYPRE_BoomerAMGSetRelaxType(amg_solver, 3, hypre_ierr) 

c    Sweeeps on each level 

 call HYPRE_BoomerAMGSetNumSweeps(amg_solver, 1, hypre_ierr) 

c    maximum number of levels 

     call HYPRE_BoomerAMGSetMaxLevels(amg_solver, 20, hypre_ierr) 

c    do iteration! The default is 20. 

     Call HYPRE_BoomerAMGSetMaxIter(amg_solver, 30, ierr) 

c    conv. Tolerance 

     call HYPRE_BoomerAMGSetTol(amg_solver, TOL, hypre_ierr) 

 

call HYPRE_BoomerAMGSetup(amg_solver,parcsr_A,par_b,par_x,ierr) 

call HYPRE_BoomerAMGSolve(amg_solver,parcsr_A,par_b,par_x,ierr) 

call HYPRE_IJVectorGetValues(x, NNU, rows, P(1:NBL,1), ierr) 

 

c    Destroy solver 

     call HYPRE_BoomerAMGDestroy( amg_solver, ierr ) 

     call HYPRE_IJMatrixDestroy(ij_matrix,ierr) 

     call HYPRE_IJVectorDestroy(b, ierr) 

     call HYPRE_IJVectorDestroy(x, ierr) 

C.3 Speed-up Tests 

Several waterflood and chemical flood cases with different number of gridblocks 

were tested to compare the efficiency of the solvers. Results are given in Table 1 and 

Figure 3. The CPU time for the all solvers has a linear correlation with the number of grid 

blocks. The SAMG and HYPRE solvers have comparable efficiency and both solvers 
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reduced the CPU greatly. The CPU time costs are linear to the number of grid numbers 

for all three solvers.  

 

Table C.1 CPU time for the JCG and SAMG solver 

No. of Grid           JCG(s) SAMG(s) HYPRE (s) 

6050         1366 587 612.7 

60500          11033 4631 4683.6 

200000            31404 12866 14170 

 

 

Figure C.1 CPU time for three solvers: JCG, SAMG, and HYPRE 

The speed up of each solver is shown below, which shows that the JCG solver 

takes about 2.3 times CPU time compared to both SAMG and HYPRE solvers. 

Table C.2 CPU time cost ratio of JCG solver over SAMG and HYPRE 

Grid numbers          JCG(s) SAMG(s) HYPRE (s) 

6050         1 2.32709 2.229476 
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60500          1 2.38242 2.355667 

200000            1 2.44085 2.216221 

The amount of CPU time took by SAMG and HYPRE solvers are compared to 

JCG solver, which shows both solvers saved about 55% CPU time compared to JCG 

solver. 

Table C.3 CPU time cost ratio of each solver to JCG solver 

Grid numbers          JCG(s) SAMG(s) HYPRE (s) 

6050         1 0.42972 0.448536 

60500          1 0.41974 0.424508 

200000            1 0.40969 0.451219 

Finally, we carried out a chemical flooding test case with            

gridblocks. The simulation time is 1500 days. The CPU time, saturation and pressure at 

the injection block by the end of simulation are recorded for each solver. 

Table C.4 CPU times,      in injection block  

Solver CPU time (min) Final Water Saturation Final Pressure (psi) 

JCG 5352 0.998510990832429 2418.54843416218 

SAMG 1960 0.998510990832420 2418.54846674235 

HYPRE 2030 0.998510990832410 2418.54846674205 

 

From above tests, we can see the JCG solver uses about 2.4 times more CPU time 

compared to SAMG and HYPRE solvers. By comparing the water saturation and 

pressure in the injection block at the end of simulation, we can see both solvers give 

almost identical saturation and pressure results with the same precision. 
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APPENDIX D: IPARS and CMG Isothermal Benchmark 

D.1 Governing Equations for Energy Balance 

Geological sequestration of CO2 in underground reservoir is the process of 

injecting and trapping CO2 within aquifers. Due to the thermal gradient and low critical 

temperature of CO2, many times, the injected CO2 will have a lower temperature than the 

reservoir, in which thermal phenomenon would play a role. The heat in the reservoir can 

be transmitted through conduction, convection, and radiation. When there is little fluid 

flow in reservoir, the heat conduction dominates the heat transfer. For high flow rates 

case, fluid flow driven heat convection could be more significant than conduction.  

Thermal governing equations, 

 
( )T

p T H

M T
C u T T q

t
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

 
  
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The total mass for internal energy,  

 (1 )T s vs vM C S C  


   
 

   
 
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The heat source/sink,  

 
H p srcq C q T 



      D-3 

where =src injT T at injection well location, otherwise it is reservoir temperature, is the 

thermal phase, vC  is isochoric specific heat at a constant volume, 
pC  is the isobaric 

specific heat capacity at a constant pressure, T is the overall thermal conductivity of the 

reservoir. 

The mean thermal capacity of rocks was about 2.460 MJ-m
-3

-K
-1

 (800~1000 

J/Kg-K), found by Waples and Waples (2004) (1 MJ/m-3K-1 = 48.31 Btu/ft
3
-F; 1 

BTU/lb-F = 4.184E3 J/Kg-K). Rock heat capacity would be 0.7737 btu/lb-F, assuming 
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the rock density as 2.4 g/cm
3
. Water has a heat capacity of 4.1813 J/g-K, which is about 

1.0 btu/lb-F, and rock has about 0.8350 J/g-K, which is about 0.200 btu/lb-F.  

The transport properties of CO2are studied by Vescovic et. al (1989). The thermal 

conductivity of CO2 as a function of density at different temperatures is as follows (1 

w/m-k = 0.5778 Btu/hr-ft-F),  

 

Figure D.1 CO2 thermal conductivity vs. density at different temperature (Vescovic et al., 

1989) 

D.2 Analytical Solution for Buckley-Leverett Flow 

For 1D CO2 injection to aquifer initially saturated reservoir, the flow is partially 

miscible and slightly compressible, which is dominated by convection flow. This process, 

although not exactly satisfy the assumption of Buckley-Leverett flow problem (Buckley 

and Leverett, 1942), could still modeled by the B-L flow equation when we assume the 

dissolution and compressibility are small enough to make no big impact on flow pattern.  

One dimension B-L flow equation without gravity effect is as follow, 

   
    

  

   

  
      D-4 
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      D-5 

The fraction flow of gas phase displacing water phase would be  

   
  

     
       D-6 

If we assume           ,  

   
 

  
 

 

       D-7 

In which   
   

  

  

   
 is the mobility ratio of displacing phase to connate phase. 

The continuity equation for gas phase is 

  
   

  
 

   

  
        D-8 

This can be written as 
   

   
 

   

   
        D-9 

In which       ,          . 

The continuity equation could be further transformed to get the final formulation 

of Buckley-Leverett equation,  
   

   
 

   

   

   

   
        D-10 

This equation shows a propagation of saturation shock with a shock speed of 

       .  

For the test case we assume linear relative permeability (             

    and zero capillary pressure.  

The 1D reservoir model parameters are shown in Table D.1.  
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Table D.1 Reservoir model for benchmark case in IPARS and CMG-GEM 

Grid number        

Grid size (ft)         

Porosity 0.2 

Permeability (md) 100 

Reservoir pressure (psi) 1800 

CO2 injection well rate (MSCFD) 150 

Producer BHP (psi) 1800 

Inject fluid temperature (F) 90 

Reservoir temperature (F) 110 

Water density (         62.0 

CO2 density (        40.0 

Water viscosity (cp) 0.39 

CO2 viscosity (cp) 0.052 

Simulation time (days) 200 

 

The gas fractional flow vs. saturation plot is as follows, 
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Figure D.2 Fractional flow and saturation speed vs. saturation 

We can see this saturation shock is diverging shock that saturation front moves 

faster than trailing end. We can plot saturation against distance by multiplying 

dimensionless time    by saturation speed.  

 

Figure D.3 Saturation profile against dimensionless distance for Buckley-Leverett flow at 

different injected pore volume 
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D.3 IPARS and CMG Isothermal Benchmark 

We studied the CO2 migration and temperature propagation in the process of 

injecting cool supercritical CO2 into high temperature aquifer. The 1D reservoir has one 

constant rate CO2 injector in one end and one constant pressure producer in the other end. 

 

Figure D.4 Simulation pressure drop in IPARS and CMG at 200 days 

IPARS simulation results of saturation with different grid refinements are 

compared with analytical solution, 
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Figure D.5 Comparison of analytical solution and IPARS simulation results of saturation 

at 200 days with different level of grid refinement  

We can see IPARS results of saturation have good match with both CMG and 

analytical solution based on Buckley-Leverett flow equation. The pressure results in 

IPARS have a difference of ~2 psi compared to CMG, which is also very small and might 

be due to different definition of reference depth for the bottom-hole pressure.  

 

D.3.3 NON-ISOTHERMAL TEST WITH IPARS AND CMG 

We set up a case with thermal effect due to injection of CO2 with temperature 

different from initial reservoir temperature. Supercritical cool CO2 with temperature 90 

o
F is injected into the reservoir with initial temperature of 110 

o
F. Reservoir model 

parameters are shown in Table D.2. 
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Table D.2 Non-isothermal benchmark case thermal properties  

CO2 enthalpy at 110 F (Btu/lb) 98.25 

CO2 isobaric heat capacity (Btu/lbm-F) 32.00 

H2O enthalpy at 110 F (Btu/lb) 251.00 

H2O isobaric heat capacity (Btu/lbm-F) 60.00 

Rock thermal conductivity (Btu/ft-day-F) 48.5343 

Water phase thermal conductivity (Btu/ft-day-F) 8.1714  

Oil phase thermal conductivity (Btu/ft-day-F) 10.8856 

Gas phase thermal conductivity (Btu/ft-day-F) 0.2203 

Simulation results of non-isothermal case show good match for saturation. 

 

Figure D.6 Non-isothermal simulation results of saturation in IPARS and CMG at 200 

days 
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Figure D.7 Non-isothermal simulation results of pressure in IPARS and CMG at 200 days 

 

Figure D.8 Non-isothermal simulation results of temperature in IPARS and CMG at 200 

days 

The saturation and pressure shows good match for non-isothermal case in CMG 

and IPARS.  
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The temperature front is less sharp with heat conduction in IPARS (Figure D.8). 

CMG-GEM by default includes heat conduction. IPARS simulation results of 

temperature with heat conduction option shows a good comparison with CMG results. 
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NOMENCLATURE  

  
  = Water formation volume factor (RB/STB) 

C = Land‟s coefficient (dimensionless) 

   = Isobaric phase heat capacity (Btu/lbm-F) 

  = Rock compressibility (     ) 

  = Water compressibility (     ) 

  = Depth (ft) 

   
  = Fugacity of component ic in phase (  vapor,  : liquid) 

iG  = dimensionless well grid geometric factor 

  = Well opening thickness (ft) 

         superscript = parameter at high and low trapping numbers 

      = Leverett J-function (dimensionless) 

iK  = Permeability of element i normal to the wellbore 

  = Permeability (md) 

 ⃗⃗ ⃗⃗  = Permeability tensor (md) 

    = Permeability at >50% of cumulative probability (md) 

      = Permeability at >84.1% of cumulative probability (md) 

     = Permeability for reference rock (md) 

      = Permeability in x, y direction (md) 

l

ic

v

icic xxK  is the K-value for component ic 

   = the K-value for component i 

i,fk  = Relative permeability of phase f in element i 

   
  = Endpoint relative permeability for phase   

   
  = CO2 endpoint relative permeability (dimensionless) 
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     = CO2 relative permeability (dimensionless) 

   
  = Water endpoint relative permeability (dimensionless) 

     = Water relative permeability (dimensionless) 

 = Relative permeability for phase   

iL  = Length of the open wellbore penetrating element i 

lM  = The molecule weight of the liquid phase, 

vM  = The molecule weight of the vapor phase. 

   = Molecule weight (     ) 

ic icN x S

 


 is the concentration of component ic per unit pore volume 

   = The capillary number 

   = Bond number 

   = Number of phases 

    = The trapping number for phase    

   = Water concentration 

   = Capillary pressure,     

   = Surface pressure,     

    = Phase   capillary pressure     

         = Entry capillary pressure,     

       = Capillary pressure for reference rock,     

  
    = capillary pressure at reversal point for imbibition process (   ) 

   = Flow pressure at equivalent radius, usually equals well grid element pressure 

   = Phase   pressure 

i,WBP  = Wellbore pressure at the center of the open interval in element i 

BHP  = Bottomhole pressure 

rk
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i,fP  = Pressure of phase f at the center of grid element i 

i,fQ  = The reservoir-volume rate of flow of a phase f from the wellbore to grid 

element i. Production rate is therefore negative 

fQ  = The total reservoir-volume rate of flow of a phase f from the wellbore to 

the reservoir. 

   = The heat source (Btu/day) 

 = Molar rate of component ic per unit reservoir volume 

  = Universal gas constant, 10.732460 psia-ft
3
/
o
R-lbM 

r = Pore throat radius (ft) 

   = Equivalent well radius (ft) 

   = Well radius (ft) 

,e ir  = Equivalent radius of the grid element i center 

,w ir  = Well radius in the grid element i center 

  = Salinity in ppm 

  ,    = Liquid and vapor phase saturation (dimensionless) 

    = Residual saturation of phase   (1: water, 2: CO2) (dimensionless) 

    = Residual water saturation (dimensionless) 

  ̅ = Normalized water saturation (dimensionless) 

 ̅̅  = Apparent water saturation (dimensionless) 

       = Maximum gas saturation for main drainage (1-     

    = Residual gas saturation; 

    = Trapped amount gas at current imbibition  ̅  (not normalized) 

        = Maximum trapping gas saturation in hysteresis, equal to    ;  

       = Trapped gas saturation at zero   , corresponds to reversal point 

icq
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       = Water saturation at reversal point 

      = Normalized water saturation at reversal point A   

    = Residual water saturation; 

   
       

    
 = Residual saturation for phase   at low and high trapping number 

iS  = Skin factor in element I (dimensionless) 

   = Phase   saturation 

  = Temperature 

   = Critical temperature of pure phase (Kelvin or Rankin) 

   = Trapping model parameter from curve fitting 

   = Reduced temperature, ratio to critical    in Kelvin or Rankin 

   = Flux of phase   

   = Internal energy 

  = Darcy velocity (ft/day) 

    = Dykstra–Parsons variation coefficient (dimensionless) 

    = Critical molar volume of component j 

   = Well index (stb/psi-day) 

     = CO2 concentration in brine (       

 = Mole fraction of component ic in phase 

   = Mole fraction of component j 

      = The concentration of salt (      , for Chalbaud 2006 correlation 

       = Normal distribution from FFTSIM software (dimensionless) 

Z  = Z-factor of phase 

   = Component acentric factor 

  = Constant parachor number for CO2 interfacial tension by Chalbaud, 2006 



icx
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 = Density gradient of phase 

  = Contact angle, degree 

               = Drainage and imbibition capillary pressure exponent 

   = Relative permeability exponent for phase   (dimensionless) 

   = Gas relative permeability exponent (dimensionless) 

   = Water relative permeability exponent (dimensionless) 

    = Capillary pressure exponent (dimensionless) 

 = Viscosity of phase cp) 

  = Viscosity of pure phase (cp) 

i,f  = Viscosity of phase f in element i (cp) 

    
 = Viscosity of mixture phase (cp) 

       = Pseudo critical density for mixture mole per volume) 

   = Reduced molar density of phase mole per volume) 

   = Molar density of phase  mole per volume) 

  = Interfacial tension (    ) 

         = Input interfacial tension for Chalbaud empirical correlation (   ) 

     = Standard deviation of a normal distribution (dimensionless) 

    = Interfacial tension for reference rock (   ) 

 ic  = Fugacity coefficient of component ic in phase , Pxf icicic

   

  = Porosity (dimensionless) 

   = Reference porosity at measured condition      (dimensionless) 

     = Porosity for reference rock (dimensionless) 

   = parachor of the component   

       = Pure phase and mixture viscosity parameter 




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   = Trapping model parameters from curve fitting 

  = Vapor fraction, the fraction of total non-aqueous moles in the vapor phase. 

   = Liquid phase molar volume (Volume/mol) 

   = Vapor phase molar volume (Volume/mol) 

   = Water molar volume (Volume/mol) 

  
   

 = Water molar volume at reference condition (Volume/mol) 

   = Component acentric parameter input 

  = Potential         

   = The parachor of the component    
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