

Copyright

by

Pradeep Radhakrishnan

2014

The Dissertation Committee for Pradeep Radhakrishnan Certifies that this is the
approved version of the following dissertation:

Automated Design of Planar Mechanisms

Committee:

Ashish Deshpande, Supervisor

Matthew I. Campbell, Co-Supervisor

Richard H. Crawford

S.V. Sreenivasan

Risto Miikkulainen

Automated Design of Planar Mechanisms

by

Pradeep Radhakrishnan, B.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2014

Dedication

To my family members

 v

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Matthew I.

Campbell for his support, guidance and encouragement throughout this dissertation. I

also would like to thank Dr. Ashish Deshpande, who not only agreed to fill-in for Dr.

Campbell after his move to Oregon State University but also provided critical advice

towards my goal during this time. I am also thankful to Dr. Richard H. Crawford, Dr.

S.V.Sreenivasan and Dr.Risto Miikkulainen for agreeing to be a part of my dissertation

committee and for providing valuable feedback during my defense.

During this time, I was a teaching assistant to Dr. Campbell, Dr. Don Berry and

Dr. Michael Cullinan, who collectively provided a great experience and also supported

me during critical phases by cutting me some slack from my teaching assignments. In

addition, all my lab mates at the Automated Design Lab and the Manufacturing and

Design Lab, other faculty and administrative staff in the department were of immense

help during my doctoral program.

Finally, this dissertation came through because of the prayers and support of my

family members. My friends in Austin were also of great help.

 vi

Automated Design of Planar Mechanisms

Pradeep Radhakrishnan, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Ashish Deshpande, Matthew I. Campbell

The challenges in automating the design of planar mechanisms are tremendous

especially in areas related to computational representation, kinematic analysis and

synthesis of planar mechanisms. The challenge in computational representation relates to

the development of a comprehensive methodology to completely define and manipulate

the topologies of planar mechanisms while in kinematic analysis, the challenge is

primarily in the development of generalized analysis routines to analyze different

mechanism topologies. Combining the aforementioned challenges along with appropriate

optimization algorithms to synthesize planar mechanisms for different user-defined

applications presents the final challenge in the automated design of planar mechanisms.

The methods presented in the literature demonstrate synthesis of standard four-bar and

six-bar mechanisms with revolute and prismatic joints. But a detailed review of these

methods point to the fact that they are not scalable when the topologies and the

parameters of n-bar mechanisms are required to be simultaneously synthesized. Through

this research, a comprehensive and scalable methodology for synthesizing different

mechanism topologies and their parameters simultaneously is presented that overcomes

the limitations in different challenge areas in the following ways. In representation, a

graph-grammar based scheme for planar mechanisms is developed to completely describe

the topology of a mechanism. Grammar rules are developed in conjunction with this

 vii

representation scheme to generate different mechanism topologies in a tree-search

process. In analysis, a generic kinematic analysis routine is developed to automatically

analyze one-degree of freedom mechanisms consisting of revolute and prismatic joints.

Two implementations of kinematic analysis have been included. The first implementation

involves the use of graphical methods for position and velocity analyses and the equation

method for acceleration analysis for mechanisms with a four-bar loop. The second

implementation involves the use of an optimization-based method that has been

developed to handle position kinematics of indeterminate mechanisms while the velocity

and acceleration analyses of such mechanisms are carried out by formulating appropriate

linear equations. The representation and analysis schemes are integrated to parametrically

synthesize different mechanism topologies using a hybrid implementation of Particle

Swarm Optimization and Nelder-Mead simplex algorithm. The hybrid implementation is

able to produce better results for the problems found in the literature using a four-bar

mechanism with revolute joints as well as through other higher order mechanisms from

the design space. The implementation has also been tested on three new challenge

problems with satisfactory results subject to computational constraints. The difficulties in

the search have been studied that indicates the reasons for the lack of solution

repeatability. This dissertation concludes with a discussion of the results and future

directions.

 viii

Table of Contents

List of Tables ... xi	

List of Figures .. xiv	

Chapter 1: Introduction ..1	

1.1	
 Statement of Research ..2	

1.2	
 Organization of dissertation ...3	

Chapter 2: Related Work ...4	

2.1	
 Knowledge Representation ..4	

2.2	
 Kinematic Analysis ..6	

2.3	
 Optimization ..8	

2.4	
 Conclusion ...10	

Chapter 3: Methodology ..11	

3.1	
 Benchmark Problems solved in this research14	

3.2	
 Challenge Problems solved in this research ...16	

3.3	
 Conclusion ...21	

Chapter 4: Representation ..22	

4.1	
 Need for Better Representation ..22	

4.2	
 Basic Representation ..23	

4.3	
 Grammar Rules ..28	

4.3.1	
 Grammar Rule Formulation and Identification28	

4.4	
 Enumeration of Topologies ..43	

4.5	
 Discussion ..45	

4.5.1	
 Isomorphism and Confluence ...45	

4.6	
 Conclusion ...48	

Chapter 5: Kinematic Analysis ..49	

5.1	
 Introduction ..50	

5.2	
 Kinematic Analysis of Planar Mechanisms with four-bar loops52	

 ix

5.2.1 Velocity Formulation ..53	

5.2.2 Acceleration Formulation ...57	

5.2.3 Position Formulation ...58	

5.2.4 Results of Implementation ..60	

5.3	
 Position Analysis for Indeterminate mechanisms65	

5.3.1 Length-error minimization method ...66	

5.3.2 Illustrative Example ..69	

5.3.3 Objective Function Formulation and Derivatives70	

5.3.4 Perturbation Vector and Golden-Section Search72	

5.3.5 Optimization Initialization and Restart74	

5.3.6 Results ...75	

5.3.6.1 Finite Position Problem ..75	

5.3.6.2 Stephenson II Example ...75	

5.3.6.3 Single-flier Example ...77	

5.3.6.4 Time of Computation ..79	

5.3.6.5 Initial Position Problem ..80	

5.3.6.6 Other Mechanisms ..84	

5.3.7 Discussion ...84	

5.4	
 Conclusion ...88	

Chapter 6: Optimization ...89	

6.1	
 Process flow for automated design of Planar Mechanisms90	

6.2	
 Problem Formulation ...92	

6.3	
 Algorithm Development ..100	

6.3.1	
 Review of Benchmark problems ...101	

6.3.2	
 Algorithms Tested ...101	

6.3.3	
 Tests with Nelder-Mead Simplex Algorithm102	

6.3.4	
 Particle Swarm Optimization ..108	

6.4	
 Conclusion ...112	

Chapter 7: Results ..113	

7.1	
 Results to Benchmark problems ..114	

 x

7.2	
 Solutions to Challenge Problems ...149	

7.2.1	
 Challenge Problem #1 ...149	

7.2.2	
 Challenge Problem #2 ...153	

7.2.3	
 Challenge Problem #3 ...157	

7.3	
 Conclusion ...167	

Chapter 8: Discussion ..168	

8.1	
 Algorithms and Search Space ..168	

8.1.1	
 Constraints and Problem Definitions ..168	

8.1.2	
 Search Space ...172	

8.1.3	
 Desired Path ..179	

8.1.4	
 Algorithm Selection ..179	

8.2	
 Discussion on the Results for Benchmark Problems182	

8.3	
 Challenge Problems ...184	

8.4	
 Computation Time ...186	

8.5	
 Conclusion ...188	

Chapter 9: Summary and Future Work ...189	

9.1	
 Contributions ...190	

9.2	
 Future Work ...191	

9.2.1	
 Representation ...191	

9.2.2	
 Kinematic Analysis ...191	

9.2.3	
 Search and Optimization ...191	

Appendix A: Additional Finite Position Problems ..193	

Appendix B: Additional Initial Position Problems ..200	

References ..204	

Vita… ...209	

 xi

List of Tables

Table 3-1: Benchmark problems for path synthesis ... 15	

Table 3-2: Coordinates of the pivot “P” from Figure 3-3. .. 18	

Table 3-3: Coordinates of different joints in terms of absolute reference 19	

Table 3-4: Coordinates of the “Longhorn” ... 20	

Table 4-1: Details of the graph-grammar representation used in a four-bar mechanism

with revolute joints ... 27	

Table 4-2: Rule to connect the input pivot with a link ... 30	

Table 4-3: Rule to add a link to an existing pivot ... 31	

Table 4-4: Rule to convert a binary link to a ternary link ... 32	

Table 4-5: Rule to connect two pivots with a link .. 33	

Table 4-6: Rule to identify a four-bar input loop within a mechanism 34	

Table 4-7: Rule to replace revolute joints with sliding joints ... 34	

Table 4-8: Rule to add a sliding joint to a pivot ... 35	

Table 4-9: Rule to connect a pivot to the ground with a link ... 35	

Table 4-10: Summary of the functions of each rule in rule-set #1 36	

Table 4-11: Rules in rule set #2 .. 37	

Table 4-12: Rules in rule set #3 .. 40	

Table 4-13: Rules in rule set #4 .. 41	

Table 4-14: List of topologies generated till level 11 in the search process 43	

Table 4-15: Types of four-bar mechanisms enumerated till level 11 44	

Table 5-1: Comparison of angular velocities of links of a double-butterfly linkage using

different methods .. 65	

Table 5-2: Pivot positions of the Stephenson II mechanism shown in Figure 5-7 70	

Table 5-3 Lengths of different links in Stephenson II mechanism 70	

Table 5-4: The second derivative of Dij can be expressed by the following analytical

expressions .. 72	

 xii

Table 5-5: Pivot positions of the Stephenson II mechanism for the finite position problem

... 76	

Table 5-6: Pivot positions of the Single-flier mechanism shown in Figure 5-10 for the

finite position problem .. 77	

Table 5-7: Speed of computation for 0.1° angle increment of the input link 80	

Table 5-8: Pivot parameters of the Stephenson II mechanism shown in Figure 5-12 81	

Table 5-9: Pivot parameters of the Stephenson II mechanism shown in Figure 5-13 82	

Table 5-10: Pivot parameters of the Single-flier mechanism shown in Figure 5-14 83	

Table 5-11: Pivot parameters of the Single-flier mechanism shown in Figure 5-15 83	

Table 6-1: Optimization Parameters ... 112	

Table 7-1: Results to Problem #1 ... 114	

Table 7-2: Results to Problem #2 ... 119	

Table 7-3: Results to Problem #3 ... 125	

Table 7-4: Results to Problem #4 ... 130	

Table 7-5: Results to Problem #5 ... 135	

Table 7-6: Results to Problem #6 ... 139	

Table 7-7: Results to Problem #7 ... 143	

Table 7-8: Results to Problem #8 ... 144	

Table 7-9: Results to Problem #9 ... 146	

Table 7-10: Results to Problem #10 ... 147	

Table 7-11 Summary of results on benchmark problems ... 148	

Table 7-12: Results to challenge problem #1 ... 150	

Table 7-13: Results to challenge problem #1 using a different scale 151	

Table 7-14 Results to challenge problem #2 ... 154	

Table 7-15 Results to challenge problem #2 ... 156	

Table 7-16 Results to challenge problem #3 ... 157	

Table 7-17 Results to challenge problem #3 ... 161	

Table 7-18 Results to challenge problem #3 ... 163	

Table 7-19 Results to challenge problem #3 ... 165	

 xiii

Table 8-1 Number of solutions generated for three different benchmark problems at level

7 in the tree-search .. 173	

Table 8-2 Time of computation for three benchmark problems 187	

Table A-1: Pivot positions of the double butterfly linkage (Figure A-1) for the finite

position problem ... 193	

Table A-2: Pivot positions of the double butterfly linkage (Figure A-3) for the finite

position problem ... 195	

Table A-3: Positions of pivots at angle increments of 0.1 ° with SG as input 197	

Table A-4 Pivot positions of the ten-bar mechanism for the finite position problem 198	

Table A-5: Positions of pivots (A, B, C, D, E, F, G, and H) at angle increments of 1° . 199	

Table B-1: Pivot parameters of the double butterfly linkage shown in Figure B-1 200	

Table B-2: Pivot parameters of the double butterfly linkage shown in Figure B-2 201	

Table B-3: Pivot parameters of the ten-bar mechanism shown in Figure B-3 202	

Table B-4: Pivot parameters of the ten-bar mechanism shown in Figure B-4 203	

 xiv

List of Figures

Figure 3-1: (a) Phase I: Generalizing Knowledge Representation and Kinematic Analysis

(b) Phase II: Type Synthesis and Dimensional Synthesis and Test Problems 12	

Figure 3-2: Overall flow depicting the automated design of planar mechanisms 14	

Figure 3-3: Challenge problem #1: Conveyor Mechanism from Norton [3] 17	

Figure 3-4: A snapshot of the coconut crab .. 19	

Figure 3-5: Logo of the University of Texas at Austin (also called “Longhorn”) 20	

Figure 4-1: An illustration of a four bar mechanism .. 24	

Figure 4-2: Graph-grammar representation of the four-bar mechanism shown in Figure 4-

1... 25	

Figure 4-3: Graph-grammar representation for a slider-crank mechanism 27	

Figure 4-4: An illustration of the tree-search process using seed and grammar rules 29	

Figure 4-5: The starting seed graph used in the tree-search process 29	

Figure 4-6 A mechanism with 1-degree of freedom when calculated using Gruebler’s

equation but consists of a truss as indicated by the hashed representation 39	

Figure 4-7: Flow chart to illustrate the rule application process 42	

Figure 4-8 An instance of a four-bar mechanism with two different output locations that

produce different output curves .. 47	

Figure 5-1: Flow chart for the kinematic analysis of mechanisms with four-bar loops ... 53	

Figure 5-2: Kinematic properties of a four-bar mechanism .. 61	

Figure 5-3: Position kinematics of a four-bar mechanism .. 62	

Figure 5-4: Variations in position values between results of Working Model and this

implementation ... 63	

Figure 5-5: Variation in velocity values between Working Model and the instant center

method in this implementation .. 63	

Figure 5-6: Flow chart for the optimization-based position kinematics method 68	

Figure 5-7 Stephenson II mechanism example ... 69	

 xv

Figure 5-8: An example of how Golden Section line search is used. In case (a), the

perturbation (between xnew and xold) is sufficient, but in some cases as in (b) the

predicted perturbation may lead to a worse solution (f(xnew)>f(xold). By

recursively finding the golden sections, a local minimum can quickly be found. 74	

Figure 5-9: Path traversed by the four pivots (B,C,D and E) of the Stephenson II

mechanism in Figure 5-7 .. 76	

Figure 5-10: Single-flier mechanism [35]... 77	

Figure 5-11: Path traversed by pivots B,C,D,E,F,G,H in the Single-flier mechanism of

Figure 5-10 .. 78	

Figure 5-12: Initial position problem solution #1 for Stephenson II mechanism 81	

Figure 5-13: Initial position problem solution #2 for a Stephenson II mechanism 82	

Figure 5-14: Initial position problem solution #1 for a Single-flier mechanism 82	

Figure 5-15: Initial position problem solution #2 for a Single-flier mechanism 83	

Figure 5-16: Different configurations of a double butterfly linkage generated using our

algorithm ... 86	

Figure 5-17: Percentage of unique configurations generated out of 200 solutions 87	

Figure 6-1 A link at two positions tracing a curve .. 95	

Figure 6-2: Valid intermediate positions between position 1 and position 2 96	

Figure 6-3: Segmentation of the curve for challenge problem #3 from Figure 3-5. Each

red oval highlights a different section of the curve ... 100	

Figure 6-4: A four-bar mechanism screenshot from http://purl.org/pmks/sim 103	

Figure 6-5: Results of the Nelder-Mead algorithm starting from vector X for problem in

Figure 6-4 .. 105	

Figure 6-6: Comparison between the Original Nelder-Mead and the Adaptive Nelder-

Mead methods ... 106	

Figure 6-7: Effective of including Golden Section method as part of Nelder-Mead

simplex algorithm ... 107	

Figure 6-8: The trend in the objective function value using Particle Swarm Optimization

... 109	

 xvi

Figure 6-9: Results of the hybrid algorithm combining Particle Swarm Optimization and

Adaptive Nelder-Mead algorithm with Golden Section ... 110	

Figure 7-1: Snapshot of the HTML page displaying the results of optimization 113	

Figure 7-2 Modified challenge problem #1 (URL: http://goo.gl/65svrI) 153	

Figure 8-1: Four-bar mechanism used to explain “input spacing” constraint 169	

Figure 8-2: Results of applying optimization algorithm to random neighborhood points

... 171	

Figure 8-3: Objective function values for different neighborhood positions for the four-

bar in Figure 6-4.. 174	

Figure 8-4: Objective function values along a unit vector around the original solution 175	

Figure 8-5: Objective function values along a unit vector around the original solution 176	

Figure 8-6: Objective function values obtained using Nelder-Mead optimization for a

neighborhood point ... 177	

Figure 8-7: Objective function values trend between stagnation point in Figure 8-6 and

the original solution and beyond ... 178	

Figure 8-8 Performance of the hybrid algorithm on benchmark problem #1 181	

Figure 8-9 Performance of the Nelder-Mead simplex algorithm on benchmark problem

#1... 182	

Figure A-1: Double butterfly linkage [36] .. 193	

Figure A-2: Path traversed by the pivots (B, C, D, E, F, G) of the double butterfly linkage

in Figure A-1 ... 194	

Figure A-3: Double-butterfly linkage – example II [32] .. 195	

Figure A-4: Path traversed by pivots (A, B, C, D, F, G) with RE as input 196	

Figure A-5: Ten-bar mechanism [77] ... 198	

Figure B-1: Initial position problem solution #1 for a double butterfly linkage 200	

Figure B-2: Initial position problem solution #2 for a double butterfly linkage 201	

Figure B-3: Initial position problem solution #1 for a ten-bar mechanism 202	

Figure B-4: Initial position problem solution #2 for a ten-bar mechanism 203	

1

Chapter 1: Introduction

 The process of designing a planar mechanism can be broadly categorized into

two stages. The first stage is identifying the type of application where the mechanism

may trace a path (e.g.: conveyor mechanism), describe a motion (e.g.: opening and

closing of a convertible roof-top in an automobile) or follow a function (e.g.: cam-

follower mechanism for valve-opening in an engine). The second stage is synthesizing a

mechanism to satisfy those design specifications. The preferred approach is to select a

reference mechanism from handbooks such as [1] or textbooks such as [2–4]. The

selection may also be augmented by the designer’s experience in the related field. The

selected concept is then modeled in a CAD package such as SolidWorks [5] Motion,

Working Model [6], ADAMS [7], SAM [8] or WATT [9] and manually iterated to attain

the solution. Packages such as SAM have built-in optimization routines based on gradient

and evolutionary algorithms that can search the space for better solutions given the

bounding box constraints for links and joints. This process of designing is time-

consuming despite the existence of various mechanism atlases and references in

handbooks as the magnitude of manual activity is high. The lengthy process discourages

the designer from exploring many potential alternatives and leaves the user with only one

or utmost two design concepts.

The vast amount of knowledge available in textbooks and handbooks can be

harnessed into a database for mechanism concepts that can be used to automatically (i.e.,

computationally) generate planar mechanisms. Though there has been research on

creating such repositories, there has not been much research into developing design rules

that can be used to automatically synthesize planar mechanisms. Also, most of the

research on automated synthesis has been restricted to solving four-bar and six-bar

mechanisms for certain path tracing problems. With the exception of WATT, which can

generate four-bar and six-bar mechanisms with revolute joints, there is no tool available

currently that can simultaneously generate planar mechanism concepts and optimize them

2

for any user-defined application. The reasons for the non-availability of a complete tool

for planar mechanism design may be attributed to the absence of a standardized

repository of design rules, a generic kinematic analysis tool and generic and powerful

optimization algorithms that can be employed for synthesis. This research seeks to fill

these vacancies.

1.1 STATEMENT OF RESEARCH

 A generalized methodology for automatically synthesizing planar
mechanisms is developed by incorporating

a. a simplified and comprehensive knowledge representation scheme,

b. a generic kinematic analysis tool that can analyze any single-degree of
freedom mechanism, and

c. generative search and optimization algorithms to simultaneously
synthesize topology and parameters

such that multiple valid one-degree of freedom mechanisms are generated
for any problem.

The objective of this research is to demonstrate the ability to computationally generate

planar mechanism designs and optimize those mechanisms to satisfy user specifications.

The planar mechanisms considered in this research are composed of revolute (R), and

prismatic (P) joints. Through a simplified but comprehensive knowledge representation

scheme, design rules are developed in this research that describe the design space of valid

one-degree of freedom planar mechanisms. These designs are optimized using different

algorithms to determine their compatibility for user specifications, the data for which is

obtained from an integrated kinematic analysis routine. Those mechanisms that conform

to specifications are presented to the user. The key element in this research is to develop

a generic methodology for automated design of planar mechanisms. Making a process

generic not only elevates the design complexity but also helps in understanding the

3

limitations of such processes and tools and their applicability to actual design practice. In

addition, we feel that this approach will result in designs being generated rapidly to

complement the manual approach that a designer normally adopts. The major topics of

research in this dissertation are representation of knowledge using graph-grammar

methodology, generalization of kinematic analysis and integration and development of

algorithms for search and optimization of single and multiple design objectives.

1.2 ORGANIZATION OF DISSERTATION

The dissertation is organized as follows. Chapter 2 will present a brief review of

the related work. This will be followed by an illustration of the plan of work and the

problems that will be tackled in Chapter 3. The graph grammar based representation

scheme developed for planar mechanisms and the grammar rules used in the generation

process are presented in Chapter 4. The generated mechanisms are kinematically

analyzed and Chapter 5 presents our generalized implementation of geometrical methods

for position and velocity analyses and analytical equation method for acceleration

analysis for determinate mechanisms. In the same chapter, an optimization based method

for position analysis of indeterminate mechanisms is presented. Chapter 6 will present

details on the optimization algorithm used in this research as well as the overall

implementation pseudo code. The results obtained using our implementation is presented

in Chapter 7 followed by a discussion on the same in Chapter 8. Concluding remarks will

be presented in Chapter 9 where future activities are included.

4

Chapter 2: Related Work

The related work on the three aspects of automated design namely knowledge

representation, kinematic analysis and optimization will be presented in the same order in

this chapter.

2.1 KNOWLEDGE REPRESENTATION

The synthesis of planar mechanisms was aided largely due to the formal structure

proposed by Freudenstein and Maki [10], who classified different kinematic entities

based on structure and function that also included graph representation of different

kinematic structures. Their work popularized the application of graph theory in this

domain and hence, this section will focus only on work related to graph theory. This idea

was further developed by Tsai (as explained in his book in [11] published as a collection

of his work) and others as the graph based Systematic method where the nodes in a graph

represent the links in the mechanism and the edges (arcs) represent the type of joint

existing between the two links. This representation is very popular among researchers in

the automated type synthesis of planar mechanisms. The graph representation is then

transformed to an adjacency matrix formulation for computational purposes. A few

papers that use the systematic method for enumerating planar mechanisms are listed in

[12–14]. Mruthyunjaya’s review paper on kinematic structures [15] also provides a

detailed overview of the other papers that make use of this technique. The graph

representation was further developed by Sohn and Freudenstein [16] where they used

dual graphs to represent planar mechanisms for automated generation of one-, two- and

three-degree of freedom mechanisms. In all these works, the focus has primarily been on

representing planar mechanisms consisting of revolute joints, though there have research

such as [12], [17] that have attempted to incorporate prismatic joint types. The graph

representation based on the systematic method deals only with structural outline and does

5

not contain any information regarding input and ground links, which are usually

bookmarked during later stages in design.

The graph representation is then used to generate the planar mechanisms that are

part of the space of valid designs. Though there are several techniques available in the

literature, only a few commonly used methods will be detailed here. Mayourian and

Freudenstein [18] employed the restrictions in graph representation and actual design to

generate a set of mechanisms (2D and 3D) with up to six links, that can serve as the basis

for conceptualizing mechanisms and automating their synthesis for different applications.

Another technique to identify the space of mechanisms is through number synthesis. In

this technique, the Gruebler’s Criterion is used, which determines the degree of freedom

(M) of a planar mechanism through the equation M=3(n-1)-2*f1-f2, where n denotes the

number of links, f1 is the number of one-degree of freedom joints and f2 is the number of

two-degree of freedom joints. Depending on the required degree of freedom, the values

of n, f1 and f2 can be varied to locate a mechanism. Once the number of links and joints

are obtained, the assembly configuration of the mechanisms is determined and there may

be multiple possibilities for the same configuration. In order to enumerate all possible

configurations, exhaustive search techniques are employed. Some of these configurations

are available in textbooks ([3,4]) and also in publications such as [15,19] where the

number of unique one-degree of freedom mechanisms with revolute joints possible for

mechanisms up to 14-links are listed. Enumerating mechanisms with more than one-

degree of freedom is complex and is therefore not widely reported in the literature and

hence not considered in this dissertation.

There are also techniques based on the addition of Assur group members (as

illustrated in [20,21]) to generate multi-link planar mechanisms, where different

structural elements are attached to a base mechanism in such a way that the degree of

freedom of the planar mechanism remains unaffected. This technique is also employed

only on planar mechanisms with revolute joints to generate mechanisms with one-, two-,

and three-degrees of freedom. In all the techniques mentioned above, there are

6

possibilities for the presence of structurally equivalent candidates (isomorphic) and there

are techniques illustrated within those publications as to how isomorphism is detected

and such candidates eliminated. Another technique for generating planar mechanisms

with fewer isomorphic candidates is presented by Rao in [22,23].

2.2 KINEMATIC ANALYSIS

Automated synthesis of planar mechanisms requires a reliable kinematic analysis

tool, which may be based on graphical techniques or the analytical loop equation solution

procedure as illustrated in various texts on kinematics. Some of the research projects on

automated synthesis such as [24–26] base their analysis on the analytical loop equation

method and Newton-Raphson solution technique [27]. There are other projects that

propose reduction of complex mechanisms into Assur groups and then use the analytical

loop equation technique for obtaining solutions. A careful examination of the different

research projects shows that the focus is limited to standard four- or six-bar mechanisms

with revolute joints and 1-degree of freedom since kinematic solutions are already

available for such mechanisms. One of the reasons for not exploring mechanisms with

more number of links (like eight or ten-bars) and joints such as prismatic and pin-in-slot

is due to the absence of analysis tools that can handle generic topologies in a reliable

manner. Though there are commercial tools such as ADAMS, Working Model, etc.

available, they do not include any application-programming interface (API) that can be

used in conjunction with the graph representation so that as the topologies are generated,

they can be automatically analyzed in order to achieve automation in actual sense.

In addition to the non-existence of a generic tool for kinematic analysis, the

graphical and analytical techniques available in the literature have certain limitations in

their solution procedure. The graphical techniques such as the instantaneous center of

rotation method for velocity (based on Kennedy-Aronholdt theorem [2]) and the dyadic

decomposition technique for position analyses require a four-bar loop (or a dyadic

configuration) for determining solutions. Due to this requirement, mechanisms such as

7

the double butterfly linkage [28], also known as an indeterminate mechanism, cannot be

analyzed using the graphical technique. The mechanism also cannot be analyzed by

applying the Newton-Raphson method to the analytical loop equations since that method

does not generate reliable solutions for mechanisms with higher-order loops as there are

higher numbers of unknowns in as many non-linear equations. This constraint in existing

techniques is rarely highlighted in standard textbooks on kinematics [29]. In order to

solve such mechanisms, Sreenivasan and Waldron [29] and Sommese et al. [30] provide

numerical solutions for the loop equations using the polynomial continuation method

(more details about polynomial continuation in Morgan [31]). There is an alternative

method suggested by Wampler [32] which is, in turn, based on the method suggested by

Nielson and Roth [33] where the Dixon determinant [34] is used but differs in the

implementation. The difference in the approach of Wampler [32] and Nielson and Roth

[33] is that equations are formulated directly in the complex plane in the Wampler

approach as against the sine and cosine formulation in the Nielson and Roth approach.

There are also methods based on elimination techniques for solving analytical position

loop equations of planar mechanisms.

On the graphical methods for position analysis, there is a geometric iterative

method [35] that claims to offer an alternate approach to solving the position problem.

This method begins with the orientation of the input link, followed by a random

positioning of one of the links connected to the input link, following which dyadic

decomposition of the remaining links is carried out based on a set of rules listed in the

article. Once all the pivots are assigned, correction (iterative process) is initiated and

continued till the appropriate convergence is achieved. On the graphical velocity analysis,

Foster and Pennock [36] suggest a graphical method to solve for two arbitrary secondary

instant centers in a double butterfly linkage, which allows for determining other instant

centers using the Kennedy-Aronholdt theorem. This method is based on an iterative

technique described by Klein [28]. There are also other techniques for kinematic analysis

proposed by Gea et al. [37] and Chen et al. [38] that are based on the minimum potential

8

energy and constraint superposition principles respectively. There is also another

optimization-based technique proposed by Porta et al. [39] for linkage analysis. Though

these new methods are available for solving the position and instant centers, there are no

formal generalized implementations of these techniques available, thus making it difficult

to analyze the reliability of these methods or their applicability for a wider class of

problems.

2.3 OPTIMIZATION

Optimization has been used for many decades for dimensional synthesis of planar

mechanisms. To effectively use optimization, there are several inputs required. The

inputs define the problem type (i.e., path, motion or function) and the related design

specifications such as the topology of the mechanism (four-bar or six-bar), the location of

inputs and ground, the output joint or link, the overall size of the mechanism (bounding

box) and so on. In addition, an objective function is formulated based on the input design

specifications, which is minimized by the algorithm. Cossalter et al. [25] provide a brief

review of the related work in this area (such as the least squares approach, penalty

functions, selective precision synthesis and stochastic formulations) in addition to their

work on using a quasi-Newton non-derivative optimization approach for synthesizing

planar mechanisms. In the paper, the authors explain the formulation of an objective

function, which is based on the sum of the squares of distance between the desired and

actual points, and the use of a weighted scheme to distinguish between path, function and

motion problems. The authors demonstrate their method and its efficiency for different

problems using four and six-bar mechanisms. Alizade et al. [40]were one of the first to

demonstrate the use of penalty functions along with inequality constraints for optimizing

function-generating four-bar mechanisms. Sancibrian et al. [41] proposed an alternate

formulation of the objective function consisting of kinematic, synthesis and assembly

constraints that aids in analytically taking the derivative for use in a search algorithm.

9

The authors demonstrate their formulation using four- and six-bar mechanisms

(Stephenson-III and Watt II) for path, motion and function type mechanisms synthesis.

There has also been a lot of research employing evolutionary algorithms for the

synthesis of planar mechanisms. Cabrera et al. [24] proposed a genetic algorithm based

synthesis of planar mechanisms where in benchmark path problems are synthesized using

different planar mechanisms consisting of revolute joints. In another work Cabrera [42]

proposed a multi-objective framework using a new algorithm whose basis is genetic

algorithm and demonstrated the algorithm’s effectiveness in the design of robotic hand

grippers consisting of revolute and prismatic joints. Sedlaczek et al. [17] too

demonstrated the synthesis of 1-degree of freedom planar mechanisms with revolute and

prismatic joints for path-time problems using a genetic algorithm formulation. The

authors presented a comprehensive structure that also included knowledge representation

and kinematic analysis and were able to generate solutions in times varying from 17

minutes to 23 hours using genetic algorithms. While the previous works were based off

genetic algorithm, Archarya and Mandal [43] estimated the performance of different

evolutionary algorithms namely genetic algorithms, Particle Swarm Optimization and

differential evolution for synthesis of planar mechanisms. Basing their evaluation

criterion on the least error between desired and actual paths, the authors found that

differential evolution algorithm produces the best result among the algorithms tested.

Some of the other works on the synthesis of planar mechanisms are listed in [44–49].

While most papers adopt similar objective function formulations and problems,

the major constraints as mentioned by Cossalter et al. [25] are related to kinematic

analysis and the actual mechanical assembly of those mechanisms. Also, the methods

developed thus far are not generic to any kind of synthesis problem [41] as the same

benchmark problems or simpler mechanisms have only been evaluated in most cases.

10

2.4 CONCLUSION

The review of literature proves that there is still significant room for improvement

in all the areas that can be used to create a totally automated conceptual design tool for

planar mechanisms.

11

Chapter 3: Methodology

The methodology followed in this dissertation is summarized in Figure 3-1 where

the limitations and challenges in current literature will be explored further in two phases.

The first phase ((a) in Figure 3-1) focuses on the development of a comprehensive

representation scheme as well as the generalization of kinematic analysis routines. Under

representation, a rich graph-grammar based scheme will be presented using which

building block rules will also be developed that can be used to generate planar

mechanisms. The goals in knowledge representation are: 1. Develop a generic planar

mechanism representation scheme that can be used to represent different joints and link

types within the same scheme 2. Use the scheme to generate the largest set of valid

designs, in this case 1-degree of freedom planar mechanisms with the least number of

invalid designs using minimum number of rules. At this juncture, revolute (R), prismatic

(P) and pin-in-slot (R-P) type joints will be considered with the possible extension to gear

representations. The kinematic analysis routine involves development of generalized

analysis schemes based on the methods available in the literature. In addition, alternate

methods for solving kinematics of indeterminate mechanisms will be explored. The goal

here is to create a generic and robust kinematic analysis tool that is also computationally

efficient to be used in the automated conceptual design of planar mechanisms.

12

Figure 3-1: (a) Phase I: Generalizing Knowledge Representation and Kinematic Analysis
(b) Phase II: Type Synthesis and Dimensional Synthesis and Test Problems

The second phase ((b) in Figure 3-1) will focus on type and dimensional

syntheses. During this phase, the grammar rules developed in the first phase are

combined to generate different planar mechanisms with an exhaustive tree-search

algorithm. The focus is to test whether the grammar rules are able to generate all the one-

degree of freedom mechanisms as reported in the literature [15,19] for revolute joints. In

addition, the set of valid planar mechanisms consisting of prismatic and pin-in-slot joints

is also enumerated. These mechanisms will then be synthesized for different problems in

the literature (referred to as benchmark problems in this report) using appropriate

optimization algorithms during which the kinematic analysis routines developed in the

first phase will be used to guide the optimization process. Four bar mechanisms with

revolute joints will be synthesized to solve the benchmark problems (listed in Table 3-1).

In addition, the design space will be explored to solve benchmark problems with higher

order mechanisms. Once the benchmark problems have been solved and the capability of

our implementation proved, three additional challenge problems are tested using our

approach for further evaluation and discussion. The second phase amalgamates our

13

research in knowledge representation, kinematic analysis and search and optimization

into a complete tool.

The ultimate goal is to develop an automated design tool that follows the flow

chart presented in Figure 3-2. As shown in the figure, the design tool requires

specification of the problem in terms of either the path to be traced or the motion to be

followed. After this, using grammar rules, the set of all possible mechanisms are

generated (based on (a) in Figure 3-1). From this input (also called the design space),

each mechanism is synthesized for obtaining the specifications set by the user using

appropriate optimization algorithms. At this stage, the goal is to synthesize as many

mechanisms as possible that can satisfy the requirements set by the user. The mechanisms

presented to the user may be different variations of the same mechanism as in different

link lengths in a four-bar mechanism or completely different mechanism topologies such

as a four-bar mechanism with sliding members and a six-bar mechanism with revolute

and prismatic joints. This research is carried out using GraphSynth software [50]

developed by Campbell [51].

14

Figure 3-2: Overall flow depicting the automated design of planar mechanisms

3.1 BENCHMARK PROBLEMS SOLVED IN THIS RESEARCH

The benchmark problems used to test our implementation are listed in Table 3-1

where each problem is described in terms of the coordinates of the path traced by the

mechanism. Two types of problems are considered namely path and path-time where the

path is dependent on the input crank angle. The table also lists the source of each problem

along with the least error obtained in the literature for that problem (Note that the least

error is not necessarily obtained in the original paper). The error displayed in the

rightmost column is defined in terms of the sum of squares of the distances between the

synthesized set of coordinates and the original defined by the user unless otherwise noted

(in parenthesis for a couple of problems).

15

Table 3-1: Benchmark problems for path synthesis

Problem Description Source Least Error

(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20,
45)

Cabrera et
al. [52,53] 0.0002

(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.92
8), (0.60307, 12.736), (0.60307, 7.2638), (5, 3.0718)
, (11.736, 2.1215), (17.66, 4.8577), (20, 10)

Cabrera et
al. [52,53] 0.0047

(-24, 40), (-30, 41), (-34, 40), (-38, 36), (-36, 30), (-
28, 29), (-21, 31), (-17, 32), (-8, 34), (3, 37), (10,
41), (17, 41), (26, 39), (28, 33), (29, 26), (26, 23),
(17, 23), (11, 24), (6, 27), (0, 31)

Hongying et
al. [54]

0.906 (average
distance error)

(-27,1), (-21.857, -3.214), (-16.7, -7.428), (-6.428, -
15.857), (-1.285, -20.071), (3.857, -24.285), (9, -
28.5), (15, -29.9), (20, -30), (27.2, -25), (29.2, -20),
(28, -10), (22.7, 2), (15, 10.6), (5, 16.5), (-10, 19.6),
(-22, 17), (-28, 11), (-29, 5)

Hongying et
al. [54]

0.4154 (average
distance error)

(5, 0), (4.9240, 0.8682), (4.6985, 1.7101), (4.3301, 2
.500), (3.8302, 3.2139), (3.2129, 3.8302), (2.5, 4.33
01), (1.7101, 4.6985), (0.8682, 4.9240), (0, 5), (-
0.8682, 4.9240), (-1.7101, 4.6985), (-2.5, 4.3301)

Matekar and
Gogate [55] 0.0154

Path:
(0, 0), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.
5106), (18.09, 5.877), (20, 0)
Time: (π / 6, π / 3, π / 2, 2 π / 3, 5 π / 6, π)

Acharyya
and Mandal

[56]
1.2162

Path:
(0.5, 1.1), (0.4, 1.1), (0.3, 1.1), (0.2, 1.0), (0.1, 0.9), (
0.005, 0.75), (0.02, 0.6), (0.0, 0.5), (0.0, 0.4), (0.03,
0.3), (0.1, 0.25), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4), (0.
4, 0.5), (0.5, 0.7), (0.6, 0.9), (0.6, 1.0)
Time (in °):
(0, 21, 42, 63, 84, 105, 126, 147, 168,
189, 210, 231, 252, 273, 294, 315, 336, 357)

Kunjur and
Krishnamoo

rthy [57]
0.0196

x(t)=3 cos(t), y(t)=2 sin(t), t is time
Sedlaczek et

al. [17]

0.1298

x(t)=-cos(t)*(0.5+cos(t)), y(t)=- sin(t)(0.5_cos(t)), t
is time 8.055 E-5

16

Table 3-1 continued.

Problem Description Source Least Error

x(t)=0.5*(2*sin(t)-sin(2t)), y(t)=0.5
*(2*cos(t)+cos(2t)), t is time

Sedlaczek et
al. [17] 1.139

3.2 CHALLENGE PROBLEMS SOLVED IN THIS RESEARCH

Once the benchmark problems have been solved and alternate mechanisms

explored for those applications, the final step is to extend the algorithms to solve three

challenge problems. These problems are representative of the complexity in an actual

design setting and will test the algorithms and implementations that have been devised

for benchmark problems. The first problem (shown in Figure 3-3) from [3] is a path

synthesis problem that is part of a conveyor system. As shown in the figure, the

mechanism used for this problem is a four-bar mechanism (O2APBO4) to which an Assur

group (consisting of links 5,6,7,8) is connected. The specifications for the problem such

as the bounding box for housing the mechanism and the path details are given in Table 3-

2. The four-bar mechanism in the figure below is one of the expected outcomes while

alternate mechanisms will also be explored from the design space of valid mechanisms.

17

Figure 3-3: Challenge problem #1: Conveyor Mechanism from Norton [3]

18

Table 3-2: Coordinates of the pivot “P” from Figure 3-3.

S.
No. X Y S. No. X Y

1 4.0223 -0.479 19 2.0598 0.0328
2 3.9031 -0.7466 20 2.0655 0.0692
3 3.6805 -1.0186 21 2.0898 0.0887
4 3.3864 -1.2353 22 2.1357 0.0942
5 3.0816 -1.3577 23 2.2051 0.0892
6 2.8189 -1.3853 24 2.2985 0.078
7 2.6197 -1.3409 25 2.4151 0.0646
8 2.48 -1.2495 26 2.5526 0.0527
9 2.3858 -1.1295 27 2.7078 0.0451
10 2.3219 -0.993 28 2.8767 0.0432
11 2.2763 -0.8486 29 3.0545 0.0469
12 2.2402 -0.7022 30 3.2362 0.0541
13 2.2079 -0.5591 31 3.4164 0.0603
14 2.1766 -0.4234 32 3.5896 0.0586
15 2.1454 -0.2991 33 3.7491 0.0391
16 2.1153 -0.1893 34 3.8867 -0.0108
17 2.0887 -0.0965 35 3.9906 -0.106
18 2.0689 -0.0222 36 4.0436 -0.2603

Bounding Box: (Max Width: 15, Max Height: 15)

The second challenge problem is a bio-mimicking problem where the motion of a

coconut crab’s legs ((reference video is given in [58]) is replicated using a planar

mechanism that traces the trajectories of different joints. A snapshot of the coconut crab

is shown in Figure 3-4 where the joints considered for mimicking are highlighted in the

figure using arrows in red. The trajectories traced by the joints of the rear leg of the

coconut crab are listed in Table 3-3. This problem unlike traditional path and path-time

problems requires identification of mechanisms where the joints are lined up as in the

coconut crab in order to exactly the mimic the particular leg in the animal.

19

Figure 3-4: A snapshot of the coconut crab

Table 3-3: Coordinates of different joints in terms of absolute reference

Joint 1 Joint 2 Joint 3 Joint 4
X Y

155.25 -77.25
151.5 -84
139.5 -86.25
127.5 -88.5
138 -85.5

X Y
156 -89.25

153.75 -94.5
140.25 -95.25
131.25 -98.25
138.75 -95.25

X Y
155.25 -97.5
157.5 -102
140.25 -103.5

132 -105.75
141.75 -104.25

X Y
149.25 -100.5

153 -109.5
132.75 -106.5
124.5 -110.25
134.25 -108.75

The third problem is to develop a mechanism to trace the trajectory shown in

Figure 3-5, which is the logo of the University of Texas at Austin. The coordinates for the

curve are listed in Table 3-4. This trajectory is complex and may be traced by either a

single mechanism or using multiple planar mechanisms. The trajectories in challenge

problems 2 and 3 are examples of problems where multi-objective optimization scenarios

are explored. These example problems demonstrate the level of complexity that can be

handled through algorithms in an automated design scenario and the eventual goal is to

prove that a tool for automated synthesis of planar mechanisms is capable of generating

useful design suggestions.

20

Figure 3-5: Logo of the University of Texas at Austin (also called “Longhorn”)

Table 3-4: Coordinates of the “Longhorn”

S. No. X Y S. No. X Y
1 10 10 21 523 152
2 55 10 22 483 169
3 121 24 23 437 157
4 194 68 24 435 178
5 275 90 25 399 258
6 310 81 26 406 309
7 311 82 27 402 330
8 338 76 28 380 352
9 360 76 29 343 355
10 386 82 30 311 330
11 404 81 31 313 309
12 435 90 32 318 258
13 510 68 33 283 178
14 571 24 34 285 157
15 637 10 35 240 169
16 701 10 36 195 152
17 701 30 37 234 124
18 617 42 38 172 96
19 554 96 39 110 42
20 493 124 40 10 30

Bounding Box: (Max Width: 750, Max Height: 750)

21

3.3 CONCLUSION

A detailed research plan is presented in this chapter that focuses on creating a

graph-grammar based representation and rules system, developing a generic kinematic

analysis tool and implementing an optimization algorithm that aids in the generation of

different mechanism designs. The benchmark problems and the challenge problems that

are used to test the proposed implementation are also listed.

22

Chapter 4: Representation

Computational tools to automatically synthesize planar mechanisms are explored

as a way to overcome the difficulties and complexities of creating mechanisms manually.

A powerful yet simple approach is to employ the concept of generative grammars. The

review presented in Chapter 2 presents the limitations in existing representation schemes.

The graph-based approach presented here builds on the traditional approaches but

implements a novel representation scheme. The method represents links and pivots using

nodes and the relationship between them using arcs. Labels and variables are used so that

the graphs can be used for generation and evaluation of planar mechanisms. The

presented scheme is generic and is able to represent different joints and link types. Based

on this representation, grammar rules are developed so that topologies can be generated

on the fly using a tree-search process starting from an initial seed graph. This chapter

presents a detailed overview of the representation scheme and the grammar rules used in

the overall search process. The next section 4.1 will explain need for a better

representation scheme followed by section 4.2 where details on the graph-grammar based

representation for planar mechanisms are presented. The grammar rules that are used to

generate different planar mechanisms are explained in section 4.3, which will be followed

by the generation of mechanism topologies using a search process in section 4.4. Section

4.5 will discuss the limitations and issues such as isomorphism and confluence followed

by concluding remarks in section 4.6.

4.1 NEED FOR BETTER REPRESENTATION

Graph based schemes have been popular in representing planar mechanisms for

synthesis and enumeration of topologies. The traditional graph based schemes, as

explained in the related work (refer Chapter 2, section 2.1), are extensive but do not

consist of all relevant information such as information on grounded joints, inputs, the

output joint, etc. that completely describes a mechanism. Instead, they require tedious

23

bookmarking during runtime. The lack of a succinct but rich representation scheme is one

of the reasons that research in the automated design of planar mechanisms is restricted to

a few topologies such as four-bar and six-bar mechanisms. This is without considering

the limitations in kinematic analysis.

The graph-grammar approach on the other hand helps in formulating a more

generalized scheme through the use of descriptive labels that is currently unavailable in

the existing approaches. This representation along with grammar rules help in

formulating a generative design scheme that is akin to the natural design process than

what is possible in the traditional graph approaches. That is, in traditional graph based

formulations, the designer or the user would not be able to relate to the designs being

generated since they do not contain any information such as grounded links and the type

of joints until the post processing stage while in the approach presented here, the

grammar completely defines the topology at every stage in the topology generation

process. Not only this, the ability to present a descriptive graph will be of great advantage

to the design community rather than a just a node-edge representation. In addition, a

comprehensive information-rich representation scheme helps in the formulating better

design automation approaches as will be shown in this dissertation. The representation

scheme presented here has been developed through the use of GraphSynth [50], which is

a graph-grammar manipulation tool developed by Prof. Matthew I Campbell.

4.2 BASIC REPRESENTATION

Two different representation schemes and grammar rules have been developed

during this dissertation. The initial representation scheme and set of grammar rules are

detailed in [59]. Though the underlying principle behind the representation scheme

presented here remains the same, there are several changes in the grammar (referred to as

labels) usage in order to increase the degree of generalization. Also, since a few

constraints in kinematic analysis (will be explained in Chapter 5) and parallel

computation were encountered, the grammar rules have certain changes from the first set

24

illustrated in [59]. Hence, only the latest version of the representation scheme and

grammar rules will be described in this chapter.

The improved representation scheme developed is illustrated by means of an

example four-bar mechanism shown in Figure 4-1. The graph-grammar representation for

this four-bar mechanism is shown in Figure 4-2.

Figure 4-1: An illustration of a four bar mechanism

25

Figure 4-2: Graph-grammar representation of the four-bar mechanism shown in Figure 4-
1

As shown in Figure 4-2 and comparing that to Figure 4-1, links and pivots are

represented using nodes. The nodes are identified by small black dots in Figure 4-2. Arcs

connect pivot and link nodes to create the mechanism. Every node is identified by a name

but in the figure above the node names are not shown and only the labels are shown.

Node names are used only as placeholders whereas labels are indicative of the function of

the node. In Figure 4-2, there are different labels (listed in Table 4-1) associated with

every node. On a closer observation of the graph and labels, it can be seen that the node

with “ground” and “link” labels is used to represent the ground link or the global frame

(refer Figure 4-1) in the planar mechanism. There are two pivots attached to the ground

link. This information (as to which pivots are attached to the ground) can be ascertained

using “pivot” and “ground” labels. The pivot on the left side of the graph has a label

called “input” that indicates that the input is connected at this joint location. The

“revolute” label is used to indicate the presence of revolute joints (R) at the concerned

pivot nodes. You may notice that this graph has only revolute joints due to the presence

of “revolute” label at each of the “pivot” nodes (also corresponds to Figure 4-1). The

26

“input” pivot is connected to another pivot with labels “gp,ic,linked,pivot,revolute”

through a link with labels “gp,link”. This joint corresponds to the joint between the input

link and the coupler link in Figure 4-1. The node with “link” label is used to represent a

link and additional labels such “gp” are used to indicate that there is grounded pivot at

one of the ends of that link. This information is useful during the formulation of grammar

rules. For instance, labels such as “gp” and “ic” are part of both link and pivot nodes. If

they are part of the link node, then there is a grounded joint or an input or both connected

to one end of that concerned link. The same meaning carries over if these labels are part

of a pivot node (“gp” is short form for grounded pivot and “ic” for input connected). Note

that the “link” nodes contain labels such as “gp” and “ic” while the arcs that connect such

nodes contain the “gp” label.

The node with labels “gp,ic,linked,pivot,revolute” is connected to another pivot

node with labels “linked,gp,pivot,revolute” through a link node with label “link”. This

corresponds to the joint between the coupler link and the follower link in Figure 4-1. The

label “linked” is used to indicate whether a particular pivot is connected to another link or

not. The labels “gp”, “linked” and “ic” are used to formulate better grammar rules and

reduce the search space so that a concise set of mechanism topologies are produced. An

arc with label “pivotarc” connects the pivots. This is helpful during kinematic analysis to

calculate the distance between two pivots. The arrowhead on each arc is used to reduce

the list of applicable options during the generation process in order to reduce confluent

recognition options in GraphSynth. Table 4-1 below gives a summary of the list of the

labels used to define a generic four-bar mechanism. This list is applicable for all

mechanisms that have joints with similar characteristics.

27

Table 4-1: Details of the graph-grammar representation used in a four-bar mechanism
with revolute joints

Link / Pivot
 (ref Figure 4-2)

Grammar Representation
(Node/Arc) Labels Used

Ground Link Node ground,link

Input Link
Node gp,link, ic
Arcs gp

Coupler Link Node link

Follower Link
Node gp,link
Arcs gp,link

Input Joint Node pivot,revolute,input,linked,ground
Joint between Input
and Coupler links

Node pivot,revolute,linked,gp,ic

Joint between Coupler
and Input Links Node pivot,revolute,linked,gp

Ground Joint (between
Follower and Ground

links)
Node pivot,revolute,linked,ground

Arcs between Pivots Arcs pivotarc

Figure 4-3: Graph-grammar representation for a slider-crank mechanism

28

Figure 4-3 (shown above) presents the graph-grammar representation for a slider

crank mechanism. It can be seen from the figure that the representation is similar to that

of the four-bar shown in Figure 4-2 except that there are changes in two pivot nodes and

one link node. The pivot node that is connected to the ground link (with labels “ground”

and “link” on the right side) has the label “slider” instead of “revolute” and the

corresponding follower link has an additional label “sc” indicating the presence of

“slider” at one of its end. The pivot between the coupler and the follower link also has an

additional label “sc” indicating that the presence of a slider at the other end of the link

with label “sc”. In this representation scheme, the input is set to a revolute joint since the

kinematic analysis is robust for such mechanisms. But it is also possible to have the input

to be a sliding joint (P). The sliding angle is represented using the “variable” feature for

nodes in the GraphSynth tool. More details about the software are available in [51]. The

representation scheme described here can be expanded to include other elements such as

gears and cams, thereby generating a diverse set of topologies within the same

framework.

4.3 GRAMMAR RULES

Using the representation scheme, grammar rules are developed to generate

different mechanism topologies. The rules have been developed by reviewing earlier

iterations [59] and through experiences in other graph-grammar based research. A

building block methodology is adopted in formulation of these rules where new

mechanisms are created by adding links and pivots to existing graphs (topologies). This

aspect will be evident explanation of rules in the following sections.

4.3.1 Grammar Rule Formulation and Identification

Grammar rules are integral to the design generation process and GraphSynth is

used to develop and test these rules. A typical search process that will be followed in this

dissertation is shown in Figure 4-4, where the process begins with a seed graph and

29

grammar rules will be successively applied to create candidate graphs or just called

“candidates” at every level. This step corresponds to the “Design Space Generation”

module in Figure 3-2. The “candidates” at every level in the tree are potentially different

mechanism topologies. Though there are topologies with higher degrees of freedom in

the search tree, only one-degree of freedom are extracted for synthesis purposes. The

secondary candidates in turn form seeds at the respective levels to generate candidates

further down in the tree. Due to this process flow, the seed is an important parameter

since it influences the character of the rules being formulated and also the degree of

generalization for the entire process. The seed used in this work is shown is Figure 4-5.

Figure 4-4: An illustration of the tree-search process using seed and grammar rules

Figure 4-5: The starting seed graph used in the tree-search process

30

The above figure shows that the seed has two nodes; one is a ground link defined

by labels “ground, link” and the other is a revolute joint and an input defined by labels

“input pivot revolute, ground”. This indicates that the process begins with the knowledge

of the type of input and the reference frame. The position of the joints and links are

adjusted during optimization and are not controlled during the topology generation

process.

Using this seed as the base, all the grammar rules are formulated. The graph-

grammar rules are organized into different sets based on their functions and there are four

different grammar rules used in this research. The first grammar rule set consists of eight

rules. The grammar rules pertaining to the first rule set are shown below in various tables

(Tables 4-2 to 4-9). Shown in Table 4-2 is a rule that attaches a link to the pivot node in

the input seed. The rule recognizes that the seed graph does not contain any global label

(in this case “1”) and after applying the rule assigns a label of “1” to the seed graph. This

rule is applied only once as there is a negating label entry “1” under rule properties that

prevents this rule being used again on a candidate graph that has the said label. The node

on the left side of the rule consists of a “Negate Labels” entry for the label called

“linked”. This means that if the seed consists of a node with the label called “linked”,

then the rule is not recognized on that graph. This is done to prevent attaching a link to

that pivot if it is already connected to another link. Though there can be several links

connected at any pivot, for the sake of simplicity and correctness of rules, we are

restricting that number to just two links at every joint.

Table 4-2: Rule to connect the input pivot with a link

Left Hand side of rule Right Hand side of rule

31

Table 4-2 continued.

Negate Labels: linked
Rule Properties:
L Negating Labels: 1, 2
R Labels: 1

The second rule in this set is shown in Table 4-3. Here, the rule is attaching a link

and a pivot to another pivot node that does not contain any of the “Negate Labels”

specified in the table. That is, if the particular node in consideration consists of any of

those labels under “Negate Labels” (Note: the labels in graph indicate the minimum

number of labels that should be part of the node), then that node will not be recognized.

After the rule is applied, the new pivot that is created does not contain the label “linked”,

indicating the availability of that pivot for further manipulation by rules. At the same

time, the original pivot where the link is attached has attained the “linked” label. Also,

this rule works only on those graphs that contain label “1”.

Table 4-3: Rule to add a link to an existing pivot

Left Hand side of rule Right Hand side of rule

Negate Labels: linked, input,
ground, slider, sc

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1

32

The third rule is shown below in Table 4-4 that creates a ternary link from a

binary link. In this study, we are limiting the type of links to binary and ternary, though it

is very easy to develop grammar-rules to create other link types such as quaternary and

pentagonal links.

Table 4-4: Rule to convert a binary link to a ternary link

Left Hand side of rule Right Hand side of rule

Negate Labels on pivot nodes: slider
Negate Labels on link node: ground,
addplate, sc

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1

The rule shown in Table 4-5 adds a “link” node between two “pivot” nodes that

are already part of different links and do not contain “linked” label on the “pivot” nodes.

This way two unconnected pivots are joined by a link. Also note that there should not be

any prior connection between these two “pivot” nodes in consideration. Though the

“linked” label specified under “Negate Labels” for this rule should take care of that

situation, the other labels on the node as well as the label that “Must NOT Exist” on the

arc are provided just as a safety net. Table 4-6 displays a rule that identifies the presence

of a four-bar loop around the input pivot. This rule is required to add sliding joints to the

mechanism. The reason for this is that the generalized kinematic analysis for

33

indeterminate mechanisms with sliding members has not been developed (will be

explained further in Chapter 5) and hence the restriction in adding sliding members to

those mechanisms with input four-bar loop. Also, for simplicity sake, the sliding

members are restricted to align alongside the frame (i.e., grounded sliding members).

This rule assigns a “fourbar” label to the overall graph (and not to the concerned node).

Table 4-5: Rule to connect two pivots with a link

Left Hand side of rule Right Hand side of rule

Negate Labels on “link” nodes: ground
Negate Labels on “pivot” nodes: linked,
slider, sc, notcon
“Must NOT Exist” on arc with label
“pivotarc”

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1

Table 4-7 shows a rule that replaces the grounded revolute joint in a four-bar

mechanism with a sliding member (prismatic “P” joint). Note the associated label

changes at the pivot and link nodes. The seventh rule adds two links that represent a

sliding member and is shown in Table 4-8. Table 4-9 adds a grounded revolute joint to a

pivot that does not contain “linked” label.

34

Table 4-6: Rule to identify a four-bar input loop within a mechanism

Left Hand side of rule Right Hand side of rule

Rule Properties:
L Labels: 1
L Negating Labels: 2, fourbar
R Labels: 1, fourbar

Table 4-7: Rule to replace revolute joints with sliding joints

Left Hand side of rule Right Hand side of rule

Rule Properties:
L Labels: 1, fourbar
L Negating Labels: 2
R Labels: 1, fourbar

35

Table 4-8: Rule to add a sliding joint to a pivot

Left Hand side of rule Right Hand side of rule

Negate Labels on “pivot” node:
input, ground, sc, slider, linked
“Must NOT Exist” on arc between
the “ground, link” node and
“pivot” node

Rule Properties:
L Labels: 1, fourbar
L Negating Labels: 2
R Labels: 1, fourbar

Table 4-9: Rule to connect a pivot to the ground with a link

Left Hand side of rule Right Hand side of rule

36

Table 4-9 continued.

Negate Labels on “pivot” node:
linked, ground, gp, ic, notokay
Negate Label on “ground,link”
node: ic, gp

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1

The eight rules belonging to the first rule set can be summarized as shown in Table 4-10
below.

Table 4-10: Summary of the functions of each rule in rule-set #1

Rule No Function

1 Add a link to the input joint

2 Add a link and a pivot to another joint

3 Create a ternary link from a binary link

4 Connect two pivots

5 Identify a four-bar input loop

6 Replace revolute joint with a sliding joint

7 Add a sliding member to a pivot

8 Connect a ground pivot through a link with another joint

Though all the grammar rules have been extensively tested, there were some mechanism

topologies that consisted of a truss structure resulting in a 0-degree of freedom. In order

to avoid generating a mechanism with a truss, another set of rules was created to detect

such cases, remove those invalid connections in the graph and then add a “notokay” label

as in rule 1 in Table 4-11 or “notcon” label as in rules 2, 3 and 4 in Table 4-11 to the

concerned nodes so that when the first rule set is reapplied, topologies with trusses are

37

not regenerated. There are four rules that form part of the second rule set and are shown

below in Table 4-11.

Table 4-11: Rules in rule set #2

Rule
No Left Hand side of rule Right Hand side of rule

1

2

3

38

Table 4-11 continued.

Rule
No Left Hand side of rule Right Hand side of rule

4

Despite the second rule set, there is a class of topologies that returns a one-degree

of freedom based on Greubler’s equation despite the presence of a truss as shown in

Figure 4-6. The figure returns a degree of freedom equal to 1 due to the fact there is a

ternary link connected at joint H while the rest of the structure is a truss. This is not

detected by rule set 2 since link (D-F) is connected only at the last stage in the generation

process after which this topology is retrieved for further synthesis. Therefore, the strategy

adopted to avoid this candidate or similar candidates being generated is to detect the

presence of a link where one or more joints are not connected. That is, if the Gruebler’s

criterion returns a value of 1 but the graph consists of a binary link with a pivot without

“linked” label or a ternary link with two pivots that do not contain the “linked” label, then

the situation similar to Figure 4-6 is encountered and the concerned candidate graph is

removed from further consideration. This ensures that only valid one-degree of freedom

joints are presented for further synthesis.

39

Figure 4-6 A mechanism with 1-degree of freedom when calculated using Gruebler’s
equation but consists of a truss as indicated by the hashed representation

The third rule set shown in Table 4-12 assigns an “output” label to one of the “pivot”

nodes. This label is used to inform the optimization routine that this pivot is required to

trace the desired path specified by the user. “output” labels are not assigned to joints that

are grounded or to those joints part of the “input” binary link node. There are two rules

here, the first rule assigns “output” label to a node representing a revolute joint and the

second rule assigns “output” label to the sliding joint. The associated properties are listed

under each rule in Table 4-12.

40

Table 4-12: Rules in rule set #3

Rule
No Left Hand side of the rule Right Hand side of the rule

1

Negate Labels on “link” node: ground,
ic
Negate Labels on “pivot” node: input,
ground, slider, ic, sc

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1,2

2

Negate Labels on “slider” node: input,
sc, avoid

Rule Properties:
L Labels: 1
L Negating Labels: 2
R Labels: 1,2

Note the “avoid” label in rule number 2 in the above table. This label is assigned during

runtime in the optimization routine whenever the desired path to be traced by the

mechanism is not a straight line. This is done to avoid unnecessary computations such as

trying use a grounded slider to trace an elliptical curve, which is not feasible.

There is another set of rules that will be used in conjunction with rule sets #1 to

#3 to solve challenge problems #2 and #3. This rule set is used to solve single input –

multiple output (SIMO) scenarios. Two rules are part of rule set #4 and are shown below

in Table 4-13. The first rule adds additional labels such as “output1”, “output2” and

“output3” to different pivots and the second rule assigns the same labels but to two

different ternary links.

41

Table 4-13: Rules in rule set #4

Rule
No

Left Hand side of the rule Right Hand side of the rule

1

Negate Labels on “pivot” nodes: output,
ground, ic, slider

Rule Properties:
L Labels: 1,2
L Negating Labels: 3
R Labels: 1,2,3

2

Negate Labels on “pivot,revolute” node:
ic, ground, input, sc, slider, output1,
output2, output3
Negate Labels on “link” node: ground

Rule Properties:
L Labels: 1,2
L Negating Labels: 3
R Labels: 1,2,3

42

The four rule sets (#1 to #4) are organized as per the flow chart given below in Figure 4-

7. The flow chart depicts a typical tree-search scenario and the overall rule application

process by which all possible one-degree of freedom planar mechanisms are generated at

every level in the tree. The final list of candidates is passed onto the optimization routine

where the candidates are parametrically optimized depending on the requirements of the

user.

Figure 4-7: Flow chart to illustrate the rule application process

In the flow chart, the degree of freedom is calculated using Gruebler’s criterion [2]. In the

next section, the type of topologies generated for different levels in the search tree will be

presented.

43

4.4 ENUMERATION OF TOPOLOGIES

During the grammar rule formulation process, all mechanism topologies that are

described in textbooks and other literature for revolute and prismatic joints have been

manually generated. This process helped in testing the rules as well as fine-tuning them.

The developed grammar rules are used to generate all possible topologies through an

exhaustive generation process. The enumeration was carried out using a program written

in C#. Although the algorithm is very similar to the flow chart described in Figure 4-7,

there are a few additional functions used in order to be computationally efficient and

generate the maximum amount of mechanism topologies. Those functions serve two

purposes. The first function is used to remove isomorphic candidates from the search

process and the second is used to remove confluent rule options during the generation

process. Though the number of confluent options (same rule is recognized at the same

location – just the direction is different) has been minimized due to the use of directed

arcs (arcs with arrowheads used in different), we still wanted to ensure that duplicate

candidates are not generated and computational resources wasted. Moreover, since we are

using the open-source mono for C# client, we are unable to completely take advantage of

C#’s built-in parallelization routines. Due to this, the memory was maxed out and we had

to restrict the generation process to level 11. The list of topologies generated till this level

is presented below in Table 4-14. Detailed information about the different types of four-

bar mechanisms generated is given as a sample in Table 4-15. This clearly shows the

presence of isomorphic candidates and possibly confluent options during the rule

recognition process.

Table 4-14: List of topologies generated till level 11 in the search process

No of Links No of Pivots Total Candidates Generated
4 4 50
6 7 497
8 10 360
10 13 2

44

Table 4-15: Types of four-bar mechanisms enumerated till level 11

No of
Ground

No of
Links

No of
Pivots

No of Ternary
Links

Prismatic Joints
Present Count

2 4 4

0
No 1
Yes 1

1
No 6
Yes 4

2
No 14
Yes 9

3
No 9
Yes 6

A typical topology is described in the following manner “2-4-4-2-revolute-no

prismatic”. This should be read as: “2 ground pivots-4 links-4 joints-2 potential ternary

links-revolute joints-and not prismatic joints”. You may notice that we have a

nomenclature stated as “potential ternary links”. This is used to indicate that there are

links containing three pivots but all the pivots may not be connected to other links. But as

the curve produced by any point on those links will be different, we feel it is important to

identify the presence of such links. Additionally, the graph names of ternary links may

also be presented when listing the generated topologies. This gives an idea to the user

about the topology before even looking at the appropriate candidate graph. The results

presented in Chapter 7 will present the mechanism topologies in a similar manner.

There are a total of 909 valid candidates and a total of 4846 candidates when

“output” label is assigned to the generated graphs using rule set 3. The number of

candidates with links 10 and more is generated further down the tree, at levels 12 and

greater and due to the insufficient capability in handling large stack of data using the

open-source mono for c# implementation, we are unable to present data on the types of

links that are generated at those levels. But on a survey of the four and six bar

mechanisms, we have been able to confirm the validity of rules through a manual review

of the topologies generated in this process.

45

The numbers of mechanisms listed in Table 4-14 clearly point the need for a

rigorous isomorphism detection methodology since duplicate candidates can be prevented

from being optimized. But this aspect has not been considered in this dissertation, as our

primary goal is to implement a repeatable algorithm for automatically synthesizing the

topologies and their parameters.

4.5 DISCUSSION

The grammar rules explained in the earlier sections are able to capture maximum

information about the topology, including information about joints and links. There are a

total of 16 rules in four different rule sets. Though we are able to generate different

mechanisms, our rules are limited to generating binary and ternary links and permit only

two links to be connected at any joint. Also, the prismatic joints are restricted to slide

alongside the frame and are connected to a mechanism with four-bar input loop since we

do not yet have a generalized routine for solving indeterminate mechanisms with

prismatic joints (P). These constraints were primarily added to adequately manage

computational resources when the complete program is executed i.e., when the search

process is coupled with optimization and kinematic analysis, the resources required are

enormous and the current implementations of the software (aka our programming as well

as mono for C#) is not robust for multi-threaded multi-core processing. Despite these

constraints, it is possible to extend this representation scheme to include different joint

types in planar mechanisms with the availability of better tools.

4.5.1 Isomorphism and Confluence

Since our research deals with a methodology to represent mechanisms using

graph grammars for synthesis purposes, isomorphism and confluence are important issues

to be addressed. Isomorphism refers to the structural equivalence of topologies and

researchers have developed different methods to identify and deal with isomorphic

solutions as stated in the review by Mruthyunjaya[15]. While a particular degree of

46

freedom system is desired by the user-designer, there are usually constraints on

kinematics that are not considered in isomorphism. Since our goal is synthesis where

topologies generated by a search process will be evaluated, one could take isomorphism

into advantage to reduce computation. This has been done in our topology enumeration

code as well as the overall synthesis code, where a first-level isomorphism check has

been introduced. This code basically checks if two mechanism configurations are

basically the same by comparing a few parameters of the topology. The parameters

considered are: number of ground pivots, number of links, number of joints, number of

ternary links and the names of the nodes representing ternary links and positions. This

helps in segregating some of the isomorphic candidates but not all of them. Through this

first-level basic check, we have a slight reduction in the usage of computational

resources. Though the best solution is to develop rules that reduce the occurrence of

structurally equivalent topologies, it is not always possible to compose rules that do not

generate any isomorphic candidate. This is because when the focus is on developing

fewer rules to generate maximum candidates, there is a higher chance for producing

isomorphic candidates and invalid solutions (as described in section 4-2). Thus, the 16

rules developed result in distinct topologies but with isomorphic variations. Also, the rich

set of labels that are associated with every node and arc used in this research produce an

information rich graph but at the same time make the detection of isomorphically

equivalent candidates tougher. But then without labels, it is not possible to associate the

parameters that uniquely define a mechanism topology, as is the case in other related

research that make use of the systematic method. The topological variations, as shown in

Figure 4-8 where the topology is the same but the desired output pivot’s locations are

different (using rule set 3), are also achieved using our rules since those mechanisms are

characteristically different (can be seen by the curves generated by the respective pivots).

47

Figure 4-8 An instance of a four-bar mechanism with two different output locations that
produce different output curves

From Table 4-14, the total number of valid solutions (before assigning output

locations to each candidate) is 1936, while the actual number of solutions without

isomorphic candidates and confluent options is 909. The first order isomorphic

candidates and confluent option identification code has helped in removing about 47% of

such candidates and helped in gaining significant computational resource as a result.

Also (refer to Figure 4-4), it is important to note that search trees may

unavoidably include repeat states. This indicates that there may be multiple paths to the

same configuration. This is an issue in graph rewriting systems known as confluence,

wherein identical topologies at different locations in the tree can be traced to a common

parent. This has been significantly reduced through a first-order confluent options check

during the rule-application process but still we can see from the results displayed in Table

4-14 that there are duplicate candidates in the results (for instance, 50 four-bar

mechanisms). Due to the generic nature of rules, it is not possible to completely remove

all duplicate candidates through a first-order check since these topologies are generated at

48

completely different levels. In order to completely eliminate such candidates, detailed

isomorphic and confluent check routines have to be incorporated.

4.6 CONCLUSION

A comprehensive representation scheme has been developed along with grammar

rules to generate all possible topologies of one-degree of freedom planar mechanisms in a

generic manner. Enumerating candidates using an exhaustive search process has tested

the grammar rules for completeness. The implementation of first-order checks for

isomorphism and confluence option reduction has helped in reducing computation though

it is has been shown to not completely remove the occurrence of duplicate candidates.

The generated candidates combined with kinematic analysis (Chapter 5) will be used to

synthesize concept designs for various benchmark problems using an optimization

algorithm that will be explained in Chapter 6 whose results will then be presented in

Chapter 7.

49

Chapter 5: Kinematic Analysis

The topologies generated using grammar rules are parametrically optimized

(explained in the next chapter) to user requirements. Typically the requirement is

specified in terms of (x, y) coordinates of the path traversed by a joint in the mechanism

or as an array of angles followed by a link depicting a particular motion. In order to

ascertain these details during optimization, kinematic analysis is used to evaluate the

position, velocity and acceleration of different joints and links in the planar mechanisms.

This is an important part of the system proposed in Figure 3-2. Restricting the simulation

to kinematics helps to quickly generate designs in kinematic outline form rather than

exhaustively evaluating each mechanism for their dynamic characteristics too. There are

several commercial programs available for kinematic analysis of planar mechanisms such

as Working Model [6], ADAMS [7] and SAM [8], but these programs do not have an

API (application programming interface) that would help in simulating the results of our

optimization implementation. There are also no robust and generic open-source kinematic

analysis tools available for this purpose. Hence, considerable time and effort have been

devoted to developing a generic kinematic analysis tool for planar mechanisms that can

be used in an automated setting.

This chapter details the development of this generic kinematic analysis tool for

planar mechanisms. Section 5.1 explores the need for a generic tool for kinematic

analysis. This is followed by the implementation procedures and results for planar

mechanisms with one-degree of freedom consisting of four-bar loops in section 5.2.

Section 5.3 highlights the method developed for solving positions of indeterminate one-

degree of freedom mechanisms where the existing methods in literature are not applicable

and the alternate solution methods are not scalable to a generic level.

50

5.1 INTRODUCTION

In order to computationally synthesize planar mechanisms, it is important to

automatically define the boundary conditions and adjust the necessary parameters to

evaluate the kinematics of the mechanism in consideration. This is in sharp contrast with

the existing software available for kinematic analysis that requires the user to manually

input the mechanism for analysis. Furthermore, such commercial tools analyze

mechanisms through dynamics-based physics engine that can be erroneous in comparison

to pure kinematic analysis. While the inclusion of dynamics information has benefits, it

challenges the mechanism designer to fully specify all features and speeds in order to test

whether a concept traces a desired path or motion.

As mentioned in the beginning of this chapter and in the literature review, there

are no open source kinematic analysis tools available that can be integrated with a design

generation tool as envisioned in this dissertation. One of the reasons is the absence of a

method, which not only solves the kinematics reliably but also is applicable to

generalized n-bar mechanisms. This has led the automated-synthesis projects in this area

to be limited to fixed topologies such as a four-bar mechanism or a six-bar mechanism

with revolute joints [48,52,60] and occasionally prismatic joints [17] as there are standard

formulations in existing textbooks [2–4] to solve such topologies. As a result, only

variations in the link lengths are produced and no alternate mechanisms are suggested.

Designing planar mechanisms is a challenging activity, where mechanisms consisting of

multiple links and different joint types have to be synthesized. Automating this task is

beneficial but lack of kinematic analysis solvers that can be used to automatically analyze

generic mechanism designs has hindered its progress.

The methods to determine the position kinematics of planar mechanisms are

classified into two categories in the literature namely graphical and analytical. The

graphical method is the dyadic decomposition method while the analytical method

involves solving trigonometric loop equations. In the next section (Section 5.2), the

generalization of kinematic analysis is presented for mechanisms with four-bar loops.

51

The generalized algorithm includes the instantaneous center of rotation method for

velocity analysis, vector polygon approach for acceleration analysis and the dyadic

decomposition method for position analysis of planar mechanisms. The graphical

methods have an algorithmic nature and can be easily generalized. The presented

implementation also includes the methods developed by Foster and Pennock [36] and

Hernandez et al. [61] for determining the instant centers and positions respectively of the

double-butterfly linkage. The implementation takes advantage of object-oriented

programming and the graph representation of planar mechanisms into building a

generalized kinematic solver that can operate on any single-degree of freedom system

with at least one four-bar loop along with the double-butterfly linkage. Another

advantage of the program is its ability to evaluate mechanisms consisting of R, P and R-P

joints.

But this implementation is not applicable to multi-loop indeterminate mechanisms

such as Stephenson II mechanism [3] and the double-butterfly linkage [28] since it is not

possible to obtain the decomposition necessary to compute subsequent positions of pivots

in the mechanism. Although there are geometric methods for double-butterfly linkages in

the implementation, their performance is not reliable and hence alternate methods had to

be explored to compute the positions of indeterminate mechanisms. The analytical loop

equation method is a possible alternative on the other hand that involves formulating loop

equations in terms of sine and cosine of the angles of the different links in the

mechanism. The resulting equations are non-linear and there are solution forms available

for simple four to six-bar mechanisms in the literature. But for a mechanism like the

double-butterfly linkage, whose loop equation formulation results in six equations with

six unknowns, there are no standard solution forms available and the existing numerical

methods (in packages such as MATLAB) often fail to obtain any meaningful solutions.

The lack of kinematic methods for solving such mechanisms has possibly impeded the

use of such planar mechanisms in practical applications. Section 5.3 explains the

optimization-based approach that has been developed for solving the position kinematics

52

of single-degree of freedom planar mechanisms by minimizing error of link lengths. The

method is tested on indeterminate single-degree of freedom mechanisms consisting of

revolute joints, where it is shown that precise results can be obtained with excellent

computational efficiency. The capability of the method in solving both initial and finite

position problems is also demonstrated, where it is also shown that the method and

implementation are generic to any n-bar mechanism with revolute joints.

5.2 KINEMATIC ANALYSIS OF PLANAR MECHANISMS WITH FOUR-BAR LOOPS

The kinematic analysis routine requires the location information (coordinates) of

the pivots at the initial point in time (time t=0). The evaluation function outputs the

kinematic properties (namely position, velocity and acceleration) of all pivots.

Assumptions made include a constant input angular velocity and single input-single

output system while formulating the problem. The programming is carried out in C#.

Since our implementation is integrated with the representation explained in the previous

chapter, the following section is explained using the example of a four-bar mechanism

(Figure 4-1 and Figure 4-2). While describing the algorithm, a brief overview of the

kinematic method is provided followed by the generalization algorithm. The focus is on

evaluating determinate n-bar one-degree of freedom systems with R, P and R-P joints.

As shown in Figure 5-1, the analysis proceeds with velocity computation followed by

acceleration and then position. This order is not a necessary condition as the position and

velocity computations are independent for mechanisms with four-bar loops due to the

implementation of graphical methods.

53

Figure 5-1: Flow chart for the kinematic analysis of mechanisms with four-bar loops

5.2.1 Velocity Formulation

Velocity is determined using the graphical instant center method, which involves

comparing the instant centers between every link and every other link, which can be

classified as primary and secondary. The instant centers are determined using the

Kennedy-Aronholdt theorem [3]. This theorem states that the primary instant centers are

those defined between connected links and are located at shared pivots. Each secondary

instant center is located at the intersection of two lines (the end points of each line being

instant centers), which can be determined using the circle-diagram method. The instant

center technique is chosen for velocity determination since it exhibits an algorithmic

logic that can be easily programmed, can be generalized to any topology and is

completely analytical.

Computationally, the basis of solving the instant center method is to create a list

of objects of type 𝜙, for each pair of links;

𝜙 = {𝑥,𝑦,𝜔, 𝑙𝑖𝑛𝑘! , 𝑙𝑖𝑛𝑘! ,𝑝𝑖𝑣𝑜𝑡}

54

where (x, y) is the location of an instant center; 𝜔 is the relative angular velocity between

the links and pivot is the common pivot to the links if it is a primary instant center. The

linki, linkj and pivot reference particular nodes in graph representation. Consider an

instance of 𝜙 (referring to Figure 4-1 and Figure 4-2) where linki is the leftmost link node

with labels “link,gp,ic” and linkj is the topmost link node with labels “link”. Since these

two links are connected at the joint with labels “pivot,ic,gp,revolute,linked”, this joint

information (consisting of information such as the node name, (x, y) position, etc.) is

assigned to the pivot variable in 𝜙. For the entire mechanism, corresponding to each

unique instant center, there are 𝜙′𝑠 defined that follows the condition p*(p-1)/2, where p

is the number of pivots (“pivot” nodes in graph terms) in the mechanism. The

information on primary instant centers is available from the topology of the mechanism

since they are located at pivots common to two links. During the first pass of the velocity

program, these primary instant centers are determined first and the corresponding entries

in 𝜙 are filled. Following this, secondary instant-centers are obtained using an

innovative programming logic that replicates the circle-diagram approach. The secondary

instant centers are obtained by the intersection of the lines containing primary instant

centers. The algorithm below indicates the method to determine primary and secondary

instant centers. (Note: In the algorithm below, PIS indicates an R-P joint (pin-in-slot) and

Slider indicates a prismatic (P) joint and pivot in general refers to a revolute (R) joint).

𝑆𝑒𝑡 𝜙 = 𝑥,𝑦,𝜔, 𝑙𝑖𝑛𝑘! , 𝑙𝑖𝑛𝑘! ,𝑝𝑖𝑣𝑜𝑡 for each N
N=p*(p-1)/2; p=number of pivots; N=number of instant centers
//Primary instant centers are located on Pivots and are recorded in 𝜙
Start Do
 Let i=𝑙𝑖𝑛𝑘! 𝑎𝑛𝑑 𝑗 = 𝑙𝑖𝑛𝑘!
 If 𝑙𝑖𝑛𝑘! 𝑜𝑟 𝑙𝑖𝑛𝑘!𝑎𝑟𝑒 𝑛𝑜𝑡 𝑃𝐼𝑆 𝑜𝑟 𝑆𝑙𝑖𝑑𝑒𝑟
 Create two new instances of 𝜙 -> 𝜙1,𝜙2
 𝜙1 = CALL InstantCenters connected to i

 𝜙2 =CALL InstantCenters connected to j
 Create Matrix K (2x2) for Circle Diagram Path

 Obtain New Secondary Instant Center
 //For Double-butterfly Linkage

55

 Obtain Two Secondary Instant Centers [6]
 Else //separate for PIS and Slider
 𝜙1 = CALL InstantCenters connected to i

 𝜙2 =CALL InstantCenters connected to j
 Create Matrix K (2x2) for Circle Diagram Path

 Obtain New Secondary Instant Center
 End Loop after N instances of 𝜙 𝑎𝑟𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑

 // To Obtain 𝜙1 and 𝜙2
Function InstantCenters
Start For Each 𝜙
 If 𝜙 𝑥,𝑦 is not NULL and i=𝑙𝑖𝑛𝑘! 𝑎𝑛𝑑 𝑗 = 𝑙𝑖𝑛𝑘!
 Add 𝜙 𝑡𝑜 𝜙1
End Loop
End

// To Determine Circle Diagram Path
Function Circle Diagram Path
Start For Each 𝜙1
 If 𝜙1(𝑙𝑖𝑛𝑘!) ==i -> Add to B
 Else Add to B
End Loop
Start For Each 𝜙2
 If B== 𝜙2(𝑙𝑖𝑛𝑘!) OR B== 𝜙2(𝑙𝑖𝑛𝑘!)
 Then Add B to Matrix K
 End If
End Loop
End

//To Determine Secondary Instant Center
//Matrix K is of the form [a b;c d]
//where a, b, c, d are (x,y) of known Instant centers
//Intersection of Line a-d and b-c will result in the New Secondary Instant Center

During the execution of the overall do-while loop, there could be situations when

the required two equation paths in the circle diagram approach are not obtained. So the

do-while loop would continue to the next instant center and revisit missing instant centers

during subsequent cycles of the loop. The use of the do-while-loop makes the process

generic since, until all instant centers are determined, the process repeats. If, during one

56

complete pass, new instant centers are not determined, the program exits, and this could

be due to an infeasible topology (indeterminate mechanism). These built-in checks are

some of the unique features of the generalization methodology presented in this chapter.

There are a few special cases built-in for prismatic and pin-in-slot joints since the method

of determining instant centers vary for such elements. These are incorporated in such a

way that the generic architecture of the program is unaffected. Once all instant centers are

obtained, the computation of angular and linear velocities is carried out using the

standard procedure explained below for one of the links and pivots. For the coupler link

(considered as link 3) in Figure 4-1 (in Figure 4-2, this corresponds to the node with only

“link” label),

ω! =

!! ×(!!!!!!!!!)
(!!!!!!!!!)

 rad/s

V! = ω! ×(I!!! – I) unit/s

where ω! denotes angular velocity of the link and V! denotes the linear velocity of the

pivot between input and coupler links (in Figure 4-1). “I” in the V! equation above

represents the instant center located at that joint between input and coupler links. Given a

known input angular velocity, other angular and linear velocities can be easily

determined once the instant centers are obtained. The velocity module also computes slip

velocities and Coriolis component if they exist in the particular topology. The algorithm

also includes the method demonstrated by Foster and Pennock [36] to determine two

secondary instant centers of a double-butterfly linkage. The inclusion of this method

enables solving velocities of the indeterminate double-butterfly linkage mechanism,

which is an eight-bar one-degree of freedom mechanism.

57

5.2.2 Acceleration Formulation

 Angular and linear accelerations are computed by forming the appropriate

acceleration equations as listed below for the four-bar mechanism in Figure 4-1 and

Figure 4-2.

a! = a! + 2 v!×ω! + r!/!× ω!×ω! + a!"#$!! + ∝!×r!/!
a! = a! + 2 v!×ω! + r!/!× ω!×ω! + a!"#$!! + ∝!×r!/!
a! = a! + 2 v!×ω! + r!/!× ω!×ω! + a!"#$!! + ∝!×r!/!
a! = a! + 2 v!×ω! + r!/!× ω!×ω! + a!"#$!! + ∝!×r!/!

where a refers to the absolute acceleration; 2 𝑣×𝜔 corresponds to the Coriolis

acceleration; 𝑟× 𝜔 ×𝜔 is the radial acceleration and α×r corresponds to the tangential

acceleration. Subscripts A, B, C and D refer to the four links of the four-bar mechanism

(ground, input, coupler and follower). The acceleration equation is linear and the

unknown acceleration terms can be obtained by solving these simultaneous equations

using the form Cx=b, where x is the list of unknowns, C is the coefficient matrix and b is

the list of constants. While solving the linear equations is trivial, the challenge lies in

automatically creating C and b for an arbitrary n-bar mechanism for each time step. In

order to formulate these simultaneous equations, an object ψ is generated for each

acceleration equation (each row of C and b),

𝜓 = 𝑑𝑖𝑟,𝑛𝑜𝑑𝑒! ,𝑛𝑜𝑑𝑒! ,∝,𝜔, 𝑟𝑎𝑑𝐴, 𝑟𝑎𝑑𝑉,𝐴,𝑉

where dir refers to the x or y acceleration component, nodex and nodey refer to the pivots

or links relative to absolute and relative accelerations, ∝ is the angular acceleration, 𝜔 is

the angular velocity obtained from the velocity program, radA is the radial acceleration,

radV is the radial velocity, A is the absolute acceleration and V is the absolute velocity.

Initially, there is an instance of ψ created for acceleration along x and y directions, which

results in eight unique ψ’s for the four-bar mechanism corresponding to eight equations.

As the equations are formed, terms such as ω! are eliminated since it refers to the angular

velocity of ground link, which is zero. This automatic equation reduction ensures that we

58

have the same number of equations as unknowns. The number of equations that are

eventually solved depends on the topology of the mechanism. For example, the

acceleration equations for the four-bar mechanism used in the illustration reduce to

solving six unknowns in six equations. This would be different for a six-bar mechanism

or a double-butterfly linkage since those mechanisms consist of more number of links

and pivots. The equations are solved using a matrix inversion technique. Cramer’s rule is

not practical in this case, since the method is extremely inefficient for matrices with order

six or more when solved on a typical desktop computer. Likewise, the Gauss-Elimination

and Gauss Seidel techniques require dominant diagonals, which are not guaranteed in this

automated method for generic topologies. Therefore, the LU Decomposition technique is

chosen wherein the existing matrix is subject to a reordering to ensure non-zero

diagonals. The inversion technique gives appreciable results with errors on the order of

10-9. The algorithm for generalizing the acceleration program is given below.

Start For
 Form Acceleration Equation for Each Pivot in x & y directions

𝜓 = 𝑑𝑖𝑟,𝑛𝑜𝑑𝑒! ,𝑛𝑜𝑑𝑒! ,∝,𝜔, 𝑟𝑎𝑑𝐴, 𝑟𝑎𝑑𝑉,𝐴,𝑉
 //Important to be unidirectional to prevent repetition
 Get dir
 nodex, nodey, 𝜔, 𝑟𝑎𝑑𝑉 𝑎𝑛𝑑 𝑉
End Loop
Form Ax=b
//x=Column Matrix of Unknown Acceleration terms
//A=Coefficient Matrix; b=Column of Known Values
Eliminate Ground link data and Reduce Order
x=A-1b

5.2.3 Position Formulation

After velocity and acceleration analyses, position kinematics can be determined

by employing a Taylor’s series expansion or by using the graphical decomposition

method. The pivot positions are obtained geometrically through dyadic decomposition.

During this process, it is possible for a pivot to be in one of two positions (also referred to

59

as a solution branch in literature). The choice between the two is made based on previous

position information as well as from the results of the numerical approximation (where

position is approximated from velocity and acceleration information using Newton’s

laws). Due to limitations in the dyadic decomposition technique, mechanisms such as the

double-butterfly linkage cannot be analyzed [29]. In order to overcome this disadvantage,

the geometric iterative technique proposed by Hernandez et al. [61] has been included to

handle such situations. The following algorithm gives the overall methodology for

determining position.

Set Counter to 1
Develop Adjacency Matrix for Distance between Pivots
Set time-steps
Rotate Input Link by ϴ
Assign NULL values to all other pivots’ (x,y) except ground
Start Do
If No PIS or Slider Connection
 If Four Bar Loop Present
 Start from Two Known Positions
 Link Lengths as Radii
 Intersect Two Circles
 Compare with NewtonMethod & PrePos
 New Pivot Position is Obtained
 Else
 Geometric Iterative Technique
Else
 PIS or Slider Program //Circle-Line intersection
End Loop until Pivots have (x,y)

As one may notice in this implementation, pin-in-slots and prismatic joints require

separate computation (like circle-line intersection), which is adapted into the program

structure to increase the generality. The geometric iterative method is also programmed

into this algorithm to operate on mechanisms that cannot be solved using dyadic

decomposition. The algorithm checks if existing methods are applicable before

computing velocities and position using the new method. The position module is also

generic since the do-while loop operates in the same way as explained during instant

60

center determination and continues until all pivots are assigned new positions. The

position module is also programmed to determine in-feasibilities (such as the limitation

preventing the input from rotating a full 360°) in the mechanism. At the same time, the

direction of the input crank can be reversed to determine the maximum travel in the

opposite direction. In this way, rocker type mechanisms can also be analyzed and

therefore the method is not restricted to solving only those mechanisms where the input

crank can be rotated by 360°.

Once the kinematic properties are determined, the path generated by a path or the

motion of a link is compared with the original problem specified by the user. This process

is cast as an objective function, which is optimized to synthesize appropriate designs.

5.2.4 Results of Implementation

 This generalized implementation of kinematics of planar mechanisms with the

different joint types is validated using mechanisms available in standard textbook

references. The mechanisms (such as a four-bar, a quick return and a six-bar) are

manually created following the graph approach explained in Chapter 4 and the pivots are

assigned coordinate locations as specified in various textbook references. The simulation

is carried out for different time steps for 360° rotation of the input crank and the output

(position, velocity and acceleration) of the links and pivots are obtained in a text (.txt)

file. Figure 5-2 shows the kinematics of a four-bar mechanism (shown in the center)

obtained using this tool for 500 time-steps. The plot on the top-left corner shows the

acceleration profile of pivot D while the one on the bottom-left displays the predicted

velocity of pivot C located on the ternary coupler link. Similarly, the plot on the top-right

shows the path traced by the pivot B on the input link, which is a circle, while the one on

the bottom-right predicts the profile traced by the coupler point C. The position, velocity

and acceleration profiles obtained for the mechanism in the figure have been verified

using the analytical loop equations for a four-bar mechanism.

61

Figure 5-2: Kinematic properties of a four-bar mechanism

 Similarly, the position kinematics of a quick-return mechanism is shown in Figure

5-3, where the positions of points C, D and E are traced for 500 time-steps. These results

are verified using the procedure given in the textbook references as well as through

commercial packages such as Working Model and SAM. The quick-return mechanism

example demonstrates the capability of this tool in analyzing a mechanism with R, P and

R-P joints. The examples shown here, though simple, demonstrate the tool’s ability to

analyze different topologies (different links and joints) within the same generic structure.

Through a constant input angular velocity assumption, the accuracy of the

implementation has been verified. It may also be pointed to the reader that significant

numerical errors in Working Model affect the output values, which is eliminated in this

B
A

C

D

E

(mm/s^2)

(mm/s)

(mm)

(mm)

(mm)

(mm)

62

implementation and thereby results in an accurate prediction of position, velocity and

acceleration.

Figure 5-3: Position kinematics of a four-bar mechanism

 Figure 5-4 shows the deviation in the position (defined as a ratio between the

original value and the actual value obtained) of different links in a Watt-II mechanism

between Working Model and our implementation. Similarly Figure 5-5 shows the

variation in the input angular velocity (460 rad/s) of a four-bar mechanism in Working

Model. Since this implementation is based purely on the kinematic methods shown

above, it is not prone to the errors experienced in Working Model, which is really solving

63

the dynamics of the mechanism (forces as well as position, velocity and acceleration).

This accuracy is essential for synthesizing different planar mechanisms.

Figure 5-4: Variations in position values between results of Working Model and this
implementation

Figure 5-5: Variation in velocity values between Working Model and the instant center
method in this implementation

64

 The new methods integrated in this implementation, namely the instant center

method for the double-butterfly linkage and the geometric iterative method for position

analysis have also been tested. Table 5-1 displays the differences in angular velocity

between the analytical solution demonstrated by Wampler [32] and the graphical instant

center method [36] of all link velocities in a double-butterfly linkage at an instant in time.

In this method, the result of the analytical method (from [32]) is taken as the reference

and compared with solutions from the graphical method and the Working Model

simulation in terms of percentage deviation from the reference value. It could be seen

from Table 5-1 that the link velocities of the double-butterfly linkage (described in [36])

obtained using the graphical method and Working Model have an error of up to 10% and

8% respectively when compared to the analytical method [32]. The reason for the

difference in velocities obtained using the graphical instant center method for double

butterfly linkage is not known despite having tested the original instant center method

extensively on mechanisms from standard textbook references. One possible way to

overcome this deviation would be to derive a method based on the curvilinear locus

assumption of the secondary instant center as against the rectilinear locus assumption in

the new method. The error in the results of Working Model could be attributed to the

numerical approximation within Working Model’s simulation engine. The geometric

iterative method fails for the above double butterfly linkage since the method handles

finite position problems better than initial position problems. Only through such

generalized implementation as in this paper, we are able to truly assess their capability

and utility in automated design synthesis. Due to their inconsistencies, the graphical

methods for double-butterfly linkage have not been included in our final implementation.

65

Table 5-1: Comparison of angular velocities of links of a double-butterfly linkage using
different methods

Despite analytical loop equations resulting in accurate solutions and being

applicable to any class of mechanisms, there are no generalized implementations for

solving these non-linear equations on an n-bar scale. Therefore, this generalized

implementation will greatly advance the field of automated synthesis of planar

mechanisms that has so far been limited to mechanisms with fewer links and joints

(mainly revolute joints).

The next section will describe the new optimization based technique for solving

the position kinematics of indeterminate mechanisms. Once the position kinematics is

determined, the velocity and acceleration can be ascertained using existing linear loop

equations.

5.3 POSITION ANALYSIS FOR INDETERMINATE MECHANISMS

 There have been several methods developed by researchers to solve the

kinematics of indeterminate mechanisms such as the double butterfly linkage and their

details are available in section 2.2. The new methods show promise but there are neither

generalized implementations available for [29,32,33] nor are these methods [35,37–39]

simple to implement and computationally efficient. Generalization, reliability and

computational efficiency are important goals in our efforts to automatically synthesize

(mm)

66

planar mechanisms and this has led to the development of an optimization-based

approach for solving position kinematics of indeterminate mechanisms.

In the optimization-based approach developed here, the lengths of different links

in the mechanism are cast into an objective function, where the mean squared difference

between the actual and the desired lengths is minimized. This formulation can be easily

solved using Newton’s method since the first and the second derivatives are analytically

obtained. This method shows great promise and is also easy to implement and generalize

as discussed further in this section. The length-error minimization method is described in

detailed in sections 5.3.1 to 5.3.5 followed by its applicability for different types of

indeterminate mechanisms in Section 5.3.6. Section 5.3.7 will highlight the benefits of

this approach followed by concluding remarks.

5.3.1 Length-error minimization method

The optimization-based length-error minimization approach is based on a second

order (i.e., gradient and Hessian method) method commonly referred as Newton’s

method. The overall process is illustrated using the flowchart in Figure 5-6. A

walkthrough of the flowchart will be followed by a detailed explanation using an

example of the Stephenson II mechanism. The algorithm begins with the specification of

the known pivot positions (ground and input) and unknowns in the mechanism by the

user, which is followed by the formulation of the objective function. The objective

function is a length-error minimization function where the gradient (∇𝑓) and the Hessian

(H) are analytically computed. There are two kinds of start vectors used; one for the finite

position problem where the pivot positions at time t are used to obtain the positions at

time t+1 and the other being random pivot positions for the initial position problem

where information regarding lengths of all links are available. The Newton method

commences with the calculation of the perturbation vector, δ, which is a product of the

inverse of H and ∇𝑓 of the objective function (which is described below). This vector is

then passed onto an optional golden section routine, which is employed to determine if

67

the perturbation is too large. If it is, then the golden section method reduces the

perturbation magnitude to prevent instabilities. From this perturbation, a new candidate

state x!"# is determined and its objective function is calculated. The new direction

vector is subtracted from the start vector, x!"# and the value of the objective function with

these new positions is calculated. If the specified convergence criterion is met, then the

values within x!"# define new positions for the pivots. If that criterion is not met, the

cycle repeats. There may be cases where the maximum number of iterations is exceeded

in which case, the mechanism cannot be assembled in the given configuration while

solving the finite position problem. If the maximum number of iterations is exceeded

while solving the initial position problem, a different randomized start vector will be used

and the process continued. This algorithm will now be explained in detail using the

Stephenson II mechanism shown in Figure 5-7.

68

Figure 5-6: Flow chart for the optimization-based position kinematics method

69

5.3.2 Illustrative Example

Figure 5-7 Stephenson II mechanism example

The process begins with the specification of the known and the unknown

positions of pivots in terms of their coordinates (x, y). For the finite and the initial

position problems, the ground pivots and the input crank are the known elements in the

mechanism. Additionally, the finite position problem specifies information on the

positions of the remaining pivots at a previous time step. At this time, lengths of different

links in the mechanism are determined. Since the methodology is being developed for

rigid bodies, there should be no change in the lengths of links at any instant. The

coordinates of the pivots for the Stephenson II mechanism shown below are listed in

Table 5-2 and the lengths between all pairs of pivots connected by known binary or

ternary links are listed in Table 5-3. The pivots whose positions are known throughout

the process are O, R and A. The other pivots namely B, C, D and E have their positions

known at time t and the algorithm is used to determine their subsequent positions. The

initial coordinates for pivots B, C, D and E will be considered as the starting vector for

the finite position problem. As the input link OA is rotated, the corresponding positions

of the pivots B, C, D and E will change. For the initial position problem, the user is

required to specify the grounds and the input as before along with the lengths of various

links. The initial starting vector is randomly chosen in this case.

70

Table 5-2: Pivot positions of the Stephenson II mechanism shown in Figure 5-7

Pivot Coordinate
O (0.18, -6.65)
R (10.1390, -5.9360)
A (0.0, -2.751)
B (1.3970,0.2370)
C (2.7960, -2.6260)
D (8.1040,1.3580)
E (5.5810,0.0)

Table 5-3 Lengths of different links in Stephenson II mechanism

Link Length
(indicated using variable names)

OA L1 = 3.903
OR L2 = 10.1641
AB L3 = 3.2984
AC L4 = 2.7987
BD L5 = 6.800
BC L6 = 3.1865
CE L7 = 3.8278
DE L8 = 2.8653
ER L9 = 7.4841
DR L10 = 7.5726

5.3.3 Objective Function Formulation and Derivatives

The next step in the process is to formulate the objective function, which is a

length-error minimization function of 2n variables, where n is the number of unknown

joints (collectively referred to as 𝐱). In the test case, n is 4 and there are 8 variables to

solve (xB, yB, xC, yC, xD, yD, xE, yE). The ground pivots O and R and the pivot A connected

to the input link are the known parameters and not part of the optimization. The terms in

the objective function correspond to the lengths of links where one or more pivots of the

71

link, lk, may be unknown. The number of unknown lengths is denoted by m. In the test

case, m is equal to 8 (AB, AC, BD, BC, CE, DE, ER, and DR). Therefore, the objective

function is the sum of the squared-difference in the actual length, lk, and the distance

between candidate points:

min 𝑓 𝐱 = 𝑓

𝑥!
𝑦!
𝑥!
⋮
𝑦!

= 𝑙! − 𝑥! − 𝑥!
!+ 𝑦! − 𝑦!

!
!

!!!

!

= 𝐷!"

!

!!!

For simplicity of notation in the remaining derivation, each squared term is

indicated as Dij. As an unconstrained optimization problem, this equation alone could lead

to acceptable results. While using optimization to solve a system of equations seems

imprudent (as opposed to any non-linear equation solving approaches such as root-

finding), the squaring of the entire term in Dij leads to a well-behaved, smooth and locally

convex objective problem. Furthermore, the expression is readily and analytically

differentiable which drastically improves our ability to employ optimization. Methods to

solve uni-modal non-linear objective function spaces are strongly dependent on the

quality of the search direction that can be obtained. As mentioned earlier, a pure

Newton’s method can be employed without requiring a numerical approximation of the

first (∇𝑓) and second derivatives (H).

For each term, Dij, in the objective function, the partial derivative with respect to

xi can be expressed as:

!!!"
!!!

= 2(𝑥! − 𝑥!) 1− !!

!!!!!
!! !!!!!

!

This derivative with respect to xj yields the same result- only negative and similar

equation holds for yi, and yj as well:

!!!"
!!!

= 2(𝑦! − 𝑦!) 1− !!

!!!!!
!! !!!!!

!

72

Obviously the derivative is zero with respect to all other variables in the objective

function, f. With this analytical result, the gradient can be exactly calculated for all values

of f nearly as quickly as finding the value of f. Using only the gradient information in

optimization to determine search direction leads to the well-known Steepest-Descent

method, which is rarely the most efficient optimization method. Fortunately, the second

derivative is also determined analytically, thus eliminating the need to employ quasi-

Newton methods. The second derivative is the Hessian matrix and is indicated by H. The

analytical equations for the terms are summarized in Table 5-4.

Table 5-4: The second derivative of Dij can be expressed by the following analytical
expressions

 In the case of the Stephenson II mechanism, the gradient has 8 elements each

comprised of two or three terms. For instance, the lengths AC, BC and CE are related to

joint C and thus the gradient has three terms from the three relevant Dij expressions. The

second derivative is an 8-by-8 symmetric matrix.

5.3.4 Perturbation Vector and Golden-Section Search

As indicated by the Newton method, the gradient and Hessian are used to

determine the perturbation vector, d.

𝐻× 𝛿 = ∇𝑓

The new value for the variable, x!"# is found from

𝜕!𝐷!"
𝜕𝑥!

! = 2 !1 −
𝑙!
𝑠!"
!+

2∆𝑥𝑙!
𝑠!"
!

𝜕!𝐷!"
𝜕𝑦!

! = 2 !1 −
𝑙!
𝑠!"
! +

2∆𝑦𝑙!
𝑠!"
!

𝜕!𝐷!"
𝜕𝑥!𝑥!

= −2 !1 −
𝑙!
𝑠!"
!−

2∆𝑥𝑙!
𝑠!"
!

𝜕!𝐷!"
𝜕𝑦!𝑦!

= −2 !1 −
𝑙!
𝑠!"
! −

2∆𝑦𝑙!
𝑠!"
!

𝜕!𝐷!"
𝜕𝑥!𝑦!

=
2∆𝑥∆𝑦𝑙!
𝑠!"
!

𝜕!𝐷!"
𝜕𝑥!𝑦!

= −
2∆𝑥∆𝑦𝑙!
𝑠!"
!

where 𝑠!" = !!𝑥! − 𝑥!!
!
+!𝑦! − 𝑦!!

!;

 ∆𝑥 = !𝑥! − 𝑥!!; ∆𝑦 = !𝑦! − 𝑦!!

73

 x!"# = x!"# − 𝛿

This is iteratively determined until a value of x is found where 𝑓 x is insignificantly

close to zero (a value of 10-9 is used in the experiments shown here). The “Converged”

box on the flowchart in Figure 5-6 indicates this condition. In fact, other convergence

criteria are also provided in order to prevent cases of divergence (e.g. if a maximum

number of iterations is exceeded) or stagnation (e.g. no continual reduction in the value

of f).

An additional step that is part of the optimization approach is the Golden Section

line search. This is used to reduce the step taken by the perturbation vector, 𝛿. Given that

quick changes can exist in the objective function space, we are concerned that blindly

accepting the move might inadvertently lead to a worse solution as is shown in Figure 5-

8. Therefore, if the perturbation vector leads to better solutions than that at the former

position (f(𝑥!"#) < f(𝑥!"#)) and of the two intermediate positions 𝑥! and 𝑥!, then the

change is accepted. If it is not better, than the iterative Golden Section algorithm

commences to find the local minimum. This routine adds robustness to this method.

74

Figure 5-8: An example of how Golden Section line search is used. In case (a), the
perturbation (between 𝑥!"# and 𝑥!"#) is sufficient, but in some cases as in
(b) the predicted perturbation may lead to a worse solution (f(𝑥!"#)>f(𝑥!"#).
By recursively finding the golden sections, a local minimum can quickly be
found.

5.3.5 Optimization Initialization and Restart

The output of this process is an optimal vector, 𝑥∗, which is comprised of the

individual x and y positions of all unknown pivots in the mechanism. This entire process

is then repeated for each position of the input crank (discretized by a specified angle;

usually 0.1° or 1°). The start vector for the finite position problem is the last calculated

position (for the last input angle). Given that the change in the input angle is small, the

optimization rarely needs more than two or three iterations to find the subsequent

positions with a high degree of accuracy. This is validated in our experiments shown in

section 5.3.6. As mentioned above, the approach can also be used to solve initial position

problems. In this case, the starting vector, x, is randomly defined with values in the range

of the lengths provided. This only occasionally leads to a candidate solution without an

acceptably low value of f. The approach then continues to try new random starting

vectors until an acceptable value is found.

(a) (b)

f

𝒙!!⃑ 𝒐𝒍𝒅 𝒙!!⃑ 𝟏 𝒙!!⃑ 𝒏𝒆𝒘

𝒙!!⃑ 𝟐

𝒙!!⃑

f

𝒙!!⃑ 𝒐𝒍𝒅 𝒙!!⃑ 𝟏 𝒙!!⃑ 𝒏𝒆𝒘

𝒙!!⃑ 𝟐

𝒙!!⃑

𝒙!⃑ 𝟑 𝒙!⃑ 𝟒

𝒙!!⃑ 𝟓 𝒙!!⃑ 𝟔

75

5.3.6 Results

The algorithm explained in the previous subsection has been tested on several

one-degree of freedom mechanisms. These mechanisms have been subject to both finite

and initial position testing. The algorithm for these experiments is coded using Visual C#

and makes use of the Object Oriented Optimization Toolbox [62] that is available as an

open-source tool. The planar mechanism code also consists of a generic routine to

determine the gradient and the Hessian of objective functions of any given mechanism

consisting of revolute joints.

5.3.6.1 Finite Position Problem

The solution to the finite position problem is a multitude of positions that results

in an overall path for each of the pivots in the mechanism. The various paths plotted in

the respective figures are of those pivots not connected to ground or the input crank. The

algorithm is tested by stepping the input link by 0.1° and 1° increments for each of the

five mechanisms. This section lists the results from the Stephenson II example shown

above as an illustrative example and an eight-bar mechanism known as the Single-flier

mechanism. Appendix A then shows similar results for two double-butterfly mechanisms

(eight-bar mechanism) and a ten-bar mechanism.

5.3.6.2 Stephenson II Example

The Stephenson II mechanism shown in Figure 5-6 is used to illustrate the

solution to the finite position problem using our algorithm. OA is the input link and O

and R are the ground pivots of this mechanism. The coordinates of the pivots are listed in

Table 5-5. The results of the algorithm on the Stephenson II mechanism are shown in

Figure 5-9, where the paths traversed by pivots B, C, D and E are displayed.

76

Table 5-5: Pivot positions of the Stephenson II mechanism for the finite position problem

Pivot Coordinate
O (0.1800, -6.6500)(input CW)
R (10.1390, -5.9360)
A (0.0000, -2.7510)
B (1.3970, 0.2370)
C (2.7960, -2.6260)
D (8.1040, 1.3580)
E (5.5810, 0.0000)

Figure 5-9: Path traversed by the four pivots (B,C,D and E) of the Stephenson II
mechanism in Figure 5-7

77

5.3.6.3 Single-flier Example

Figure 5-10 shows the model of a Single-flier mechanism (an eight-bar, single

degree of freedom system) whose pivot positions are listed in Table 5-6. Link OAH is the

input link on this mechanism. The paths traversed by different pivots are plotted in Figure

5-11. Through this plot, it is clear that the input link rotates a full 360°.

Figure 5-10: Single-flier mechanism [35]

Table 5-6: Pivot positions of the Single-flier mechanism shown in Figure 5-10 for the
finite position problem

Pivot Coordinate
O (-1.5000, -8000) (input CW)
I (3.0010, -8.9020)
A (-3.6550, -6.3460)
B (-4.4950, -3.4660)
C (-2.7350, -3.9830)
D (-0.4680, -3.5960)
E (0.3030, -1.7010)
F (0.2590, -5.1160)
G (2.7400, -4.9990)
H (-2.0790, -6.1230)

78

Figure 5-11: Path traversed by pivots B,C,D,E,F,G,H in the Single-flier mechanism of
Figure 5-10

In order to estimate the accuracy of our method, we computed the percentage

error in link lengths by comparing with actual lengths as done in axial strain (e.g. Dl / l).

For the single-flier mechanism, of the sixteen lengths, fourteen are compared with the

output from the algorithm using different angle increments such as 0.1°, 1° and 3°. Two

lengths namely that of the input link (OA) and the ground link (OI) are not considered

since they are not subject to the optimization. For an angle increment of 0.1°, the

79

algorithm results in a variation of 10-9 to 10-5 compared to the 10-4 obtained using 1° and

3° angle increments. The difference is more pronounced when the mechanism is close to

a toggle position. At such locations, there are two minima in the objective function space

that are close together, which could affect how the optimization progresses. An example

of 10-4 of strain is a 10cm bar that is stretched by 10µm. It is also noteworthy that there is

no error accumulating in our technique since during each step the optimization must meet

the criteria for each known position of the input crank.

Upon observing how the optimization process progresses, we find that the

solution is obtained in just a few iterations. For instance, for 0.1° increment, the method

requires only two objective function evaluations at every position, while four and five

iterations are required respectively for angle increments of 1° and 3°. Due to the fairly

few objective-function evaluations required, this method is able to compute solutions

very quickly. The number of objective function evaluations for different angle increments

is evaluated for a convergence criterion of 10-9.

5.3.6.4 Time of Computation

The length-error minimization method was tested on these different mechanisms

using a Visual C# program executed on a laptop computer with a 2.1 GHz processor and

4GB RAM. The computational efficiency is measured in terms of the clock time from

start to finish. This time value is measured programmatically to achieve high accuracy

(i.e. using the stopwatch class in Visual C#). It is surprising that the total time is highest

for the simplest of the four mechanisms. We conjecture that this is a result of the tight

interplay between the links of Stephenson II mechanism that form a four-bar. The

optimization is forced to solve a highly coupled problem, which requires more iterations

than when solving more variables that are less coupled. Table 5-7 lists computational

times for different mechanisms for the finite position problem using two angle

increments, 0.1° and 1°. The angle indicated in parentheses against each mechanism in

the table is the maximum permissible angle of rotation of the input crank measured from

80

the initial position. This is important because the total time will be less for mechanisms

where the input crank is incapable of rotating a full 360°. It is clear from the table that the

method produces accurate results quickly, with the first position being computed in less

than 0.2s and entire mechanism (up to the permissible angle of rotation of the input

crank) in about 15s or less.

Table 5-7: Speed of computation for 0.1° angle increment of the input link

Mechanism

0.1° 1°

Time for first
Position (sec.)

Total Time
(sec.)

Time for first
Position

(sec.)

Total Time
(sec.)

Stephenson II (360°) 0.075 15.593 0.071 1.82
Single Flier 8 bar
(360°) 0.069 1.973 0.198 0.579

Double-butterfly
1(75°) 0.13 3.02 0.068 3.012

Ten Bar (9.3°) 0.204 0.424 0.095 0.142

5.3.6.5 Initial Position Problem

The results of the algorithm on initial position problems are given in this

subsection. As explained previously, the initial position problems require computing the

joint coordinate data given different link lengths, thereby generating the assembly. The

program terminates when the algorithm finds a single configuration using the same error-

limits used in the finite position problem (i.e., 10-9). It is important to realize that there

may be multiple equally correct solutions. In the following results, two distinct solutions

are displayed along with their pivot positions. Each of these solutions is obtained through

the process illustrated in the flowchart given in Figure 5-6, which includes multiple

restarts of the optimization – each with different random start vectors. The results for a

Stephenson II mechanism are shown in Figure 5-12 and Figure 5-13 whose parameters

are listed in Table 5-8 and Table 5-9 respectively. Similarly, the solutions for a single-

81

flier mechanism are shown in Figure 5-14 and Figure 5-15 and their respective pivot

parameters are listed in Table 5-10 and Table 5-11.

Figure 5-12: Initial position problem solution #1 for Stephenson II mechanism

Table 5-8: Pivot parameters of the Stephenson II mechanism shown in Figure 5-12

Pivot Coordinates
O (0.0000, -6.6500)
R (10.1390, -5.9360)
A (0.0000, -2.7510)
B (1.7732, -0.5856)
C (3.2230, -3.4196)
D (5.5586, -0.0172)
E (8.0765, 1.3503)

82

Figure 5-13: Initial position problem solution #2 for a Stephenson II mechanism

Table 5-9: Pivot parameters of the Stephenson II mechanism shown in Figure 5-13

Pivot Coordinates
O (0.0000, -6.6500)
R (10.1390, -5.9360)
A (0.0000, -2.7510)
B (0.9833, -0.1228)
C (-2.2032, -0.2832)
D (3.1517, -3.2718)
E (4.5847, -0.7875)

Figure 5-14: Initial position problem solution #1 for a Single-flier mechanism

83

Table 5-10: Pivot parameters of the Single-flier mechanism shown in Figure 5-14

Pivot Coordinates
O (-1.5000, -8000)
I (3.0010, -8.9020)
A (3.6550, -6.3460)
B (-2.9589, -3.4035)
C (-2.3330, -5.1366)
D (-0.5629, -3.6164)
E (-4.6219, -8.2149)
F (0.2386, -5.1102)
G (-06114, -7.4352)
H (-2.0927, -6.1534)

Figure 5-15: Initial position problem solution #2 for a Single-flier mechanism

Table 5-11: Pivot parameters of the Single-flier mechanism shown in Figure 5-15

Pivot Coordinate
O (-1.5000, -8000)
I (3.0010, -8.9020)
A (3.6550, -6.3460)
B (-6.5056, -7.2841)
C (-4.6950, -6.9849)
D (-3.3384, -8.8421)
E (-2.9522, -3.6080)

84

Table 5-11 continued.

Pivot Coordinate
F (-1.6661, -8.6349)
G (-0.1890, -6.6381)
H (-2.0789, -6.1229)

5.3.6.6 Other Mechanisms

The other mechanisms that have been tested under the finite and initial position

analysis methods include the double butterfly linkage and the ten-bar linkage whose

results can be found in Appendix B.

5.3.7 Discussion

The length-error minimization method presented here is based on an objective,

which is a function of x- and y-coordinates of a planar mechanism. This is an alternative

formulation to the simultaneous non-linear loop equations presented in other works

where angles are solved instead of coordinates. Furthermore, an optimization approach is

used to solve this function since it is well suited and easy to solve by optimization. This is

because the objective function is nearly convex (given the profusion of quadratic terms)

and the gradient and the Hessian can be obtained analytically – all of which are rare and

fortuitous in engineering optimization. In addition, the use of the golden section method

when the perturbation vector suggested by Newton’s method is flawed adds robustness

and speed to the process. It is interesting to note that this method makes use of twice the

number of variables in the objective function in comparison to other methods in the

literature. This is because this formulation uses link lengths that are specified using x and

y coordinates, while other formulations use trigonometric loop equations solving only for

a single angle for each unknown position.

This algorithm was also compared with the results for the double-butterfly linkage

example given in Porta et al. [39]. This paper was selected since the authors have stated

85

that their results are in agreement with other methods based on polynomial continuation.

This comparison is for the initial position problem, where given the link lengths and

coordinates of the known pivots, all possible configurations of the mechanism are

generated. The implementation presented here was configured to generate 200 different

mechanisms in as many trials where different random starting values for the unknown

links are provided at the onset of the optimization. Upon analyzing those resulting

configurations, the length-error minimization method was able to generate 16 unique

configurations (as shown in Figure 5-16) out of which four are in agreement1 with those

presented in [39]. A histogram over the 200 trials is shown in Figure 5-17. Each of the

200 trials completes in an average of 0.258 seconds with an error of 10-9. Though a direct

comparison of the time for computation is not appropriate considering differences in the

computation hardware as well as the convergence criterion used, the results from the

reference are still presented to give a perspective of the new method’s ability. The

reference paper gives a figure of 0.3s and 8s respectively for the box-approximations

approach and the continuation approach to generate the required number of solutions.

Supposing the method in the reference paper produces all six solutions in about 0.3s, that

method is computationally efficient compared to our algorithm and the polynomial

continuation method. Also if their convergence criterion is increased to the levels used in

this algorithm, one may expect that method’s performance to be slower than what has

been presented. The timing produced by our algorithm for the finite position problem is

also less than 0.2s for every angular orientation of the input crank (as noted in Table 5-6).

This shows the capability of this algorithm and has been equal to or better than results

obtained using commercial programs.

1 It must be pointed to the reader that in Figure 3 in [39], the figures and the corresponding angular data
below are not in direct agreement and care should be taken before utilizing the data.

86

Figure 5-16: Different configurations of a double butterfly linkage generated using our
algorithm

87

Figure 5-17: Percentage of unique configurations generated out of 200 solutions

It may seem counterintuitive that this approach generates accurate results in

comparison to those methods that solve for angles since more variables must be solved.

The simplistic objective function and the additional variables give this approach

robustness as has been demonstrated in our results. In addition, this method is also able to

generate these results fairly quickly. The method solves two types of problems; finite

position and initial position and is able to generate the position kinematics of different

mechanisms such as the Stephenson II, Single-flier, double-butterfly (in Appendix A and

Appendix B) and the ten-bar linkage (in Appendix A and Appendix B) without any

additional case-by-case tweaking. The method has also been tested on simple

mechanisms like a four-bar (results not shown), which demonstrates the universality of

this method.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

%	
 Generated	

Solution	
 Type	

88

5.4 CONCLUSION

This chapter clearly explains the development of the kinematic analysis routines

applicable for one-degree of freedom mechanisms with both four-bar loops and

indeterminate mechanisms with revolute joints. The implementation described has been

tested against commercial software as well as results from kinematics literature and found

to be accurate. The implementation is able to generate solutions quickly. This is a very

important characteristic since during optimization we do not want results delayed owing

to a slow output kinematic analysis tool. This kinematic analysis implementation is also

available as an open-source code at http://pmksim.codeplex.com and is hosted online at

http://purl.org/pmks/ through Prof. Matthew I Campbell’s efforts who has not only

incorporated the two implementations, but has also worked on graphics and some

advanced implementations for joints such as the R-P joints.

As part of future activities, the extension of the implementations and algorithm to

solve mechanisms with different joint types such as prismatic (P) and revolute-prismatic

(R-P or pin-in-slot) joints and also non-dyadic components such as gears and cams are

being considered. The initial position problem also produces accurate results but

additional work is required to generate all possible configurations for a given position.

The method shows promise for initial position problems, but it may be of interest to add

constraints on the feasibility of assembling such mechanisms. Finally, the availability of a

tool, such as the one described here, would benefit the mechanisms community, and will

be shown in the next chapter as to how this tool is helpful in automatically synthesize

planar mechanisms for solving path and motion problems.

89

Chapter 6: Optimization

Dimensional synthesis of planar mechanisms has been carried out using graphical

and analytical methods stated in textbook references for simpler path generation

problems. As the problems increase in complexity, the graphical method does not work

and the analytical equation method requires solving complex non-linear equations and is

tedious. In light of these difficulties and due to the increased computational capabilities

currently, numerical optimization techniques have been employed to explore the search

space to dimensionally synthesize mechanisms. The gradient-based numerical

optimization methods involve computation of gradients that are easier to obtain in

simpler problems but computationally expensive for complex problems [57] and have

resulted in poor solutions based on the experiments conducted during the course of this

dissertation. Researchers have used several global (or direct) optimization algorithms

over several years to synthesize four-bar and six-bar planar mechanisms for different path

problems. The most common algorithms used in recent times are of evolutionary nature

namely Genetic algorithms [63], Differential evolution [64] or Particle Swarm

Optimization [65] or a variation of these methods primarily due to the notion that these

methods do not require in depth information about the search space [53]. Also, the

literature has several instances (see section on related work) of using a single planar

mechanism like a four-bar mechanism with revolute joints for synthesis purposes. The

aim here is to use our grammar rules and kinematic analysis to generate the topology and

simultaneously synthesize the parameters of several different planar mechanisms for the

same application. That is, a path-tracing problem can be solved using different

mechanisms such as a four-bar mechanism or a six-bar mechanism also.

The chapter is organized as follows. Section 6.1 will briefly highlight the overall

process flow that will be used to generate and synthesize planar mechanisms. This will be

followed by section 6.2 on objective function formulation for different problems along

with the associated constraints. Section 6.3 will describe our algorithm selection

90

methodology that will test the benchmark problems as well as the challenge problems,

whose results are given in Chapter 7. Finally, concluding remarks will be presented in

section 6.4.

6.1 PROCESS FLOW FOR AUTOMATED DESIGN OF PLANAR MECHANISMS

The pseudo code for the overall process flow (refer Figure 3-2) followed in this

dissertation is given below.

Input: Problem Definition
IF Problem is PATH or PATH with TIME,
 Obtain PATH characteristics
 SET Optimization parameters
 ADJUST TIME Parameters if necessary
END IF
For Search Level 1 to N
 Do
 Generate all possible 1-DoF mechanisms
 While (options>0)
 Function: Optimize All 1-DoF using Optimization ToolBox
 Generate possible locations for “output” label
 Add Kinematic Analysis, Objectives to Optimization ToolBox
 Optimize
 Return Results to Main Loop
 End Optimization Function
 Store RESULTS
End For-Loop
Output: RESULTS for Levels till N

While Chapters 4 and 5 focused on design space generation and kinematic analysis

respectively, this chapter is where all that work will be combined to generate meaningful

solutions for different user specifications. The first step in the process as shown in the

pseudo code above is to describe the problem. The problem can be either to trace a

trajectory or describe a motion. In the case of tracing a trajectory, a joint in the

mechanism is required to trace the desired trajectory. The joint can either be part of a

91

binary link or a ternary link. The benchmark problems have mostly used four-bar

mechanisms with a ternary coupler link or in rare cases six-bar mechanisms with sliding

members. The trajectory to be traced is usually specified in the form of Cartesian

coordinates (x, y) that has to be traced by the concerned joint. The trajectory can also be

time bound where the path is related to the angle of rotation of the input link. To describe

a motion type mechanism, the angles followed by a link are specified.

For simplicity sake, let us consider a path-tracing problem going forward to

explain the entire process. The desired path is at first analyzed to check whether “slider”

nodes can be assigned the “output” label (refer Chapter 4 for related discussion). During

this time, some optimization parameters will be set at this time and their details will be

discussed in section 6.4. The next stage is the search process where the candidates are

generated by combining different rules. One-degree of freedom planar mechanisms are

segregated at every level in the search tree (refer Figure 4-7) and then passed onto the

optimization routine where the actual parametric synthesis of mechanisms takes place.

Within this optimization routine, the first step is to generate candidate graphs with

“output” labels appended to the “pivot” nodes. Following this, random (x, y) coordinates

are set for each pivot in the topology. This is different from literature where the

formulation is in terms of loop equations and hence the lengths and angles are the initial

specifications. The Optimization Toolbox [62] used here can incorporate custom

objective functions that can be calculated based on the results of kinematic analysis for

each perturbation of the design vector within the optimization algorithm. After

optimization, the results are stored and the original candidate graph is passed to the main

loop to generate other candidates at further levels in the search tree.

 Depending on the number of levels traversed in the search-tree, the list of possible

solutions (graphs that are parametrically synthesized) is collected and presented to the

user on a webpage (shown in Chapter 7 Figure 7-1). Those solutions, where the error

between set of points that describe the desired path and the ones synthesized by the

algorithm, is close to 0 (or near optimal) is ideal since that represents the mechanisms’

92

ability to exactly (or nearly) satisfy the requirements of the user. The main purpose in this

dissertation is to explore the design space and parametrically synthesize different

topologies to solve a particular problem. Another focus area in this dissertation is also to

develop an algorithm that can ensure a higher rate of obtaining near optimal solution as

our experience in implementing different algorithms has shown that guaranteeing near-

optimal solutions is a challenging task. Though our algorithm is able to generate more

near-optimal solutions, a study of the search space (in Chapter 8) will reveal potential

reasons for not being able to guarantee solutions for this class of problems.

6.2 PROBLEM FORMULATION

The path synthesis problem is formulated as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜑(𝑋)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔! 𝑋 ≤ 0, 𝑖 = 0,1,…𝑛

where 𝜑(𝑋) is the objective or error function, whose ideal value is close to 0.0 and 𝑔! 𝑋

refers to the different constraints ranging from none to 𝑛 that are used to define the search

space. The objective function that is commonly used in the literature is the sum of the

squares of the distances between the points denoting the desired path and the points

synthesized by the algorithm. There are also instances in the literature (refer Table 3-1)

where the average distance error is used and very rarely do we find root mean square

distance formulation being used. In our case, we have used the sum of the distances and

the equation is given below,

𝜑 𝑋 = (𝑋!" − 𝑋!")! + (𝑋!" − 𝑋!")!
!

!!!

where 𝑋! is the actual value obtained from optimization and 𝑋! is the point

corresponding to the desired path. Note that the (x, y) coordinates of the joint node with

93

“output” label is converted into a vector X and this vector is input to the optimization

toolbox. So in effect

𝑋 = 𝑥!,𝑦!, 𝑥!,𝑦!⋯𝑦!

where 0,1,…n denote the points on the desired path at different time intervals.

There are several constraints used in the literature where the ranges for various

link lengths, maximum angle of rotation of the input crank, etc. are set. While these are

valid design constraints especially the length since we do not want to have a very small or

very large link length, we are not clear from a review of the literature as to how these

constraints have been determined for most of the problems. Also, it may not be possible

at the conceptual stage to arrive at these minute details. It should be noted that since the

dimensional synthesis in the literature is usually limited to four-bar mechanisms, it is

easy to specify constraints for link lengths. But if the topology is varied where there are

several links and sliding joints, setting precise bounds for each of the links and sliding

members becomes a tedious process and is not desirable or possible at the conceptual

design level. Also, Grashof’s criterion is valid for a four-bar mechanism (as specified in

the literature) but not for higher order mechanisms. Due to this, the following two generic

constraints are used,

𝑔! 𝑋 :𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥 − 𝑀𝑎𝑥 𝑊𝑖𝑑𝑡ℎ,𝑀𝑎𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 < 0

𝑔! 𝑋 : 𝑆𝑝𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑖𝑣𝑜𝑡𝑠 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑖𝑣𝑜𝑡 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 < 0

The first constraint sets a bounding box that will completely house the

mechanism. The values for this constraint are determined based on the maximum and

minimum bounds of the coordinates that describe the desired path. The logic used for

setting the bounds is given below:

94

𝑀𝑎𝑥 𝑊𝑖𝑑𝑡ℎ,𝑀𝑎𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 =
10,10 0 < 𝑋 < 10

150,150 10 < 𝑋 < 100
750,750 100 < 𝑋 < 500

The first two bounds are based on the different benchmark problems evaluated (described

in Table 3-1 and further in Section 6.4) using our method and are based on the absolute

values of vector X. The third bound is based on two challenge problems that will be

discussed in section 6.5. It should be noted that the bounds can be varied and the resulting

solutions will be different.

The second constraint sets a minimum distance between any two-grounded pivots

of the mechanism. The reason for introducing this constraint is to prevent the tendency of

the algorithm to gravitate towards a minimum where the grounded pivots are on top of

each other (explained in Chapter 8). The use of these two generic constraints mounts a

significant challenge in trying to arrive at an optimization algorithm that can be used to

solve different kinds of problems. If these constraints are violated, a squared exterior

penalty (𝑝!) term is added to the objective function. Therefore the modified objective

function can be stated as

𝜑 𝑋 = (𝑋!" − 𝑋!")! + (𝑋!" − 𝑋!")!
!

!!!

+ 𝑝!, 𝑖𝑓 𝑔! 𝑋 > 0

The objective function remains the same for path and path-time problems. In this

work, as we are interested in evaluating several mechanisms simultaneously, the results

from the kinematic analysis have to be quick and at the same time accurate. The time for

geometric computations involved in kinematic analysis increases if the angle increments

of the input crank are very small say 1°. Therefore, we decided to evaluate mechanisms at

10° increments of the input crank. But this would mean loss of information, especially if

the kinematic analysis predicts that the mechanism is a poor candidate for the problem

whereas in reality, the mechanism is tracing the path at positions other than the 10°

95

increments of the input. For example, consider a link that moves from position 1 to

position 2 in Figure 6-1.

Figure 6-1 A link at two positions tracing a curve

Assume that the angular deviation between the two positions is 10°. The data (position,

velocity and acceleration) is only available for those two points. If the desired path has a

location that corresponds to one of the intermediate positions as shown in Figure 6-2,

then we will not be able to detect the presence of those valid positions by using higher

angle increments during kinematic analysis.

Position	
 1

Position	
 2

96

Figure 6-2: Valid intermediate positions between position 1 and position 2

In order to prevent this situation, we have incorporated a numerical approximation

based on the Wilson-Theta Method [66] to estimate the kinematics at intermediate

positions (i.e., between Position 1 and Position 2 shown in Figure 6-2). This numerical

approximation technique is able to fairly accurately predict values for positions,

velocities and accelerations since the kinematic input to this method are predicted using

analytical techniques (as described in Chapter 5). Its accuracy increases based on the

granularity in the approximation i.e., a coarse subdivision (say 10 subdivisions) between

the two positions may result in a poor approximate compared to a fine subdivision (say

100 or 1000 subdivisions). In this dissertation, we have considered 100 subdivisions

between two positions since the results are obtained fairly quickly and accurately at that

level of granularity between two positions. The same procedure is used in the case of

path-time problems, where the positions related to intermediate times (between times at

Position 1 and Position 2) are obtained. The pseudo-code below gives an overview of the

Position	
 1

Position	
 2

Intermediate	
 Positions

97

objective function calculation for a path problem based on the results from kinematic

analysis. The same has been extended to problems that are based on path and time

formulation.

Input: X(x,y)=Kinematic Analysis Results of “output” pivot, Y(x,y)=Desired Path
FOR every Y,
 Minimum Distance =0
 FOR every X
 Distance = Distance between X and Y
 If Distance < Minimum Distance
 Minimum Distance = Distance
 END FOR Loop

 IF Minimum Distance > 0.4
 Use Wilson-Theta Method to evaluate intermediate positions
 For both PATH and PATH-TIME problems
 Compute Distances and Minimum Distances
 END IF
END FOR Loop

A careful observation of the pseudo code will highlight the fact that the order of the path

to be traced is not enforced to be in the exact same order as the specification. This is done

in order to generate those mechanisms that trace different sections of the same curve at

different instances. This will be evident in the results that are presented in the next

chapter.

One simplification that has been included in our formulation is the assignment of

one (x, y) point from the desired set to the “pivot” node with “output” label. Since this

pivot has to trace the desired path, we felt it was prudent to carry out this assignment

thereby reducing the dimensionality of the problem by 2. Therefore, as soon as the

“output” label is generated, this joint is assigned a default (x, y) from the desired Path. In

path-time problems, where it is possible that the input angle required might not start at 0°,

in those cases, the time vector is adjusted to start from 0°, without loss of any generality.

Also, it may be pointed to the reader that the “output” label is assigned to sliding joints

98

only if the path has straight-line characteristics. That is, if the angle between consecutive

points in the desired path is the same, then we can conclude that such paths can be traced

using a slider. This way, unnecessary computation is avoided. There are also a few

convergence criteria set into the optimization toolbox such as the maximum number of

iterations and delta convergence (to exit as a result of sustained stagnation). Further

details about these convergence parameters will be specified in section 6.3.

All the benchmark problems as well as the Challenge problem #1 can be subject

to the above objective function. Challenge problems #2 and #3 require modification in

the objective function calculation. In challenge problem #2 (ref Figure 3-4 and Table 3-

4), the objective is to determine the right combination of linkages that can produce the

motion of the coconut crab. To do so, we have adopted two approaches. The first is to

purely consider the problem as a single-input multi-output path synthesis problem.

During the generation process, rule #1 from the rule set #4 (ref Chapter 4 for related

discussion) is applied on the concerned 1-degree of freedom mechanism graph after the

assignment of “output” label. This way, the mechanism will have four “pivot” joints with

one of the following labels: “output”, “output1”, “output2” and “output3”. Each of these

joints will trace one of the four paths specified in the problem. This means there are four

objective functions that are simultaneously solved and a multi-objective formulation

given below will be used to estimate the resulting error,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤!𝜑!(𝑋)
!

!!!

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔! 𝑋 ≤ 0, 𝑖 = 0,1,…𝑛

where 𝜑! 𝑋 is the objective function corresponding to the ith desired path corresponding

to each joint and 𝑤! is the weight assigned to that objective. The constraints 𝑔! 𝑋 are the

same as the benchmark problems. Equal weights are assigned to the objective functions.

The second approach is to use rule #2 instead of rule #1 from rule set 4. The idea in using

that rule is that in addition to path synthesis, the two ternary links will resemble the joint

99

connection in the coconut crab (ref Figure 3-4), so that a better bio mimicking is

achieved. Even for this case, the multi-objective formulation shown above is only used.

Challenge problem #3 is interesting due to its varied curves. The presence of

several inflection points indicate that no single joint in a mechanism will be able to

produce that curve. Therefore, one approach is to use the single-input multi-output

scenario that was carried out in challenge problem #2, whereby rule #1 from rule set #4 is

used. The second approach adopted involves a multiple mechanism approach, where

different output pivots will trace different segments of the curve. In both these

approaches, the desired path is split into several segments (as shown in Figure 6-3) at

extreme inflection points and then each curve is independently optimized. The reader

may also notice that the curve in Figure 6-3 is one half of the overall curve in Figure 3-5.

Due to the symmetric nature of the original curve, the mechanisms generated for the

curve shown in Figure 6-3 can be used to replicate the entire curve as shown in Figure 3-

5. If the overall curve (Figure 3-5) is considered and is split into several segments, then

the topological and parametric synthesis results will be different than what is presented in

this results chapter.

100

Figure 6-3: Segmentation of the curve for challenge problem #3 from Figure 3-5. Each
red oval highlights a different section of the curve

Challenge problem #3 becomes a multi-objective problem with the exception that the

four individual objectives are each single-input single-output cases. The results for the

benchmark problems as well as the challenge problems are presented in Chapter 7.

6.3 ALGORITHM DEVELOPMENT

A brief overview of the benchmark problems will be provided followed by

investigations into the algorithms that are ideal for solving these mechanisms.

0"

100"

200"

300"

400"

500"

600"

700"

800"

0" 100" 200" 300" 400" 500" 600" 700" 800"

Series1"

0"

100"

200"

300"

400"

500"

600"

700"

800"

0" 100" 200" 300" 400" 500" 600" 700" 800"

Series1"

0"

100"

200"

300"

400"

500"

600"

700"

800"

0" 100" 200" 300" 400" 500" 600" 700" 800"

Series1"

0"

100"

200"

300"

400"

500"

600"

700"

800"

0" 100" 200" 300" 400" 500" 600" 700" 800"

Series1"

101

6.3.1 Review of Benchmark problems

Since parametric synthesis of planar mechanisms has been carried out for several

years, there are a few problems, which have been subjected to synthesis using different

algorithms by different researchers, classified as benchmark problems. The benchmark

problems are predominantly path problems or path-time problems where the path is

dependent on the angle of the input crank. The different problems are listed in Table 3-1

along with the best results for those problems. Further details of these problems are

available in the respective references.

The solution for most benchmark problems is a four-bar mechanism with a

ternary coupler link, with the pivot on the ternary coupler link traversing the path with or

without the prescribed timing. The only exception to this is the work presented by

Sedlaczek et al. [17] who have obtained results such a four-bar slider crank mechanism

and two six-bar mechanisms with sliding members through a generative process in a

genetic algorithm formulation. The objective function commonly used is the sum of the

squares of the distances between the point traced by the mechanism and the desired point.

The objective function is usually appended by a penalizing factor for violation of

different constraints such as the nature of the input crank, Grashof’s criterion and lengths

of different links. Also, most of the benchmark problems have used some form of

evolutionary algorithm for dimensional synthesis. The results obtained are impressive

and essential to be replicated before proceeding to solving the challenge problems. This

will give a good indication about the robustness of the algorithms being used on the

challenge problems. It will also be an interesting study to present a list of alternate

mechanisms to these benchmark problems taking advantage of our rule-based generative

process.

6.3.2 Algorithms Tested

Based on the literature, different algorithms were tested on a few benchmark

problems to check their suitability and to check if ever the solutions presented in the

102

literature are repeatable. The algorithms that were tested include Genetic Algorithm [63],

Simulated Annealing [67], Hill Climbing [68], Nelder-Mead simplex [69], Particle

Swarm Optimization [65], Multi-swarm optimization [70] and Pattern Search [71]. The

implementations for Genetic Algorithm, Simulated Annealing, Hill Climbing and Nelder-

Mead simplex were already part of the optimization toolbox and it was decided to use the

same. Other algorithms have been coded into the toolbox using pseudo codes available in

http://msdn.microsoft.com. The reason for studying different algorithms is to come up

with a single formulation that has a high probability of finding solutions to any given

problem. In our tests with Genetic Algorithm, Simulated Annealing, Hill Climbing,

Multi-swarm and Pattern search optimizations, we were unable to obtain any good results

(i.e., a near optimal solution or a trend towards the goal) for a variety of path problems.

Moreover, there are no details in the literature specifying any limitations in the

algorithms (apart from limitations that arise from stochastic formulations) that explains

our inability to use the same algorithm (in most cases Genetic Algorithm) to attain

similarly good results. Hence, it was decided to explore alternate algorithms and in the

process, we were able to obtain better results with the Nelder-Mead simplex algorithm

although it is widely perceived to be ideal for unconstrained problems. Nelder-Mead

simplex algorithm is part of the class of global (or direct) optimization algorithms that are

used to obtain a global minimum. Similarly, our studies with Particle Swarm optimization

showed that the algorithm when integrated Nelder-Mead is able to generate consistently

better results compared to techniques illustrated in the literature. Therefore, the next

subsections will describe our tests on these algorithms and eventual usage and results.

6.3.3 Tests with Nelder-Mead Simplex Algorithm

Nelder-Mead simplex algorithm is a global optimization algorithm [69,72] that

works best for unconstrained optimization problems with fewer dimensions though it has

been shown (in [73]) in recent times to be scalable to problems with several dimensions.

In order to test the algorithm, we took a four-bar mechanism with a known solution and

103

tried to obtain the same using this algorithm. Consider the four-bar mechanism with the

curves traced by different pivots (B, C and E) shown in Figure 6-4 below.

Figure 6-4: A four-bar mechanism screenshot from http://purl.org/pmks/sim

The input joint is located at A(21,3) and the other joints are located at B(25,16),

C(12,24), D(2,7) and E(15,5). The coordinates of point E are extracted for every 30° as

the input rotates a full 360° to be the desired path for the optimization problem. The

bounding box is defined by a maximum width of 50 units and a maximum height of 50

units while the input ground has to be located at a minimum of 1 unit from other

grounded joints. The goal is to test whether the Nelder-Mead algorithm is able to

reproduce the original solution or synthesize a different near-optimal solution.

Since the algorithm requires a starting vector, the approach followed here is to

generate a set of random vectors based on a design of experiments method called Latin

Hyper Cube sampling [74]. A maximum and minimum value for each element in the

vector will be specified so that the eventual vector generated through the Latin Hyper

Cube sampling will fall within the specified range. This range is usually based on the

A

B

C

D

E

104

maximum and minimum values of the points that define the desired path and varies

depending on the nature of this path. Generating many vectors based on this range will

ensure sufficient exploration of the design space. These random vectors are kinematically

analyzed and the objective function is evaluated for each case and ordered from the

lowest to the highest objective function value. The vector that produces the lowest

objective function is used as the starting vector for the Nelder-Mead simplex algorithm.

A pseudo code for the process described is given below.

Obtain MAX and MIN number from the Desired PATH
MAX = MAX + a; MIN=MIN +a //𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ∈ ℝ 𝑎𝑛𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑃𝐴𝑇𝐻
Set Required Number (N) based on Desired PATH
VECTOR= Latin Hyper Cube Sampling (N, Max, Min)
FOR EACH VECTOR
 Perform Kinematic Analysis
 Compare with the Objective Function
 Add to Sort List //sorted based on the least objective function
END FOR EACH Loop
Return the Best Vector from the Sort List

A random vector that was arrived using the above procedure for the problem in Figure 6-

4 is

X = { 6.29054, 12.8167, 21.48074, 22.26838,

10.51004, 6.79688, 18.21766, 7.69704 }

While testing the algorithm, we set the maximum number of iterations to 100. The result

is shown in Figure 6-5 below, where it can be seen that there is very limited change in the

objective function value. The objective function value starts at a little above 49 and then

only marginally reduces to 48.80. This contradicts our earlier assertion that this method

worked better than other techniques in the literature. This behavior will be explained in

Chapter 8.

105

Figure 6-5: Results of the Nelder-Mead algorithm starting from vector X for problem in
Figure 6-4

A similar trend is observed when many different random vectors were used.

While investigating the knobs (𝜒,𝜓,𝜌,𝜎) of the algorithm that are used to generate the

different simplex shapes through reflection, expansion, contraction, etc. , the work in [73]

suggested using alternate values for these knobs. Those values are based on the

dimension of the problem and are given below:

𝜒 = 1+ 2/𝑛

𝜓 = 0.75−
1

2 ∗ 𝑛

𝜌 = 1,

𝜎 = 1−
1
𝑛

where n is the problem dimension. In the case of a four-bar mechanism, the dimension

(n) is 8 (4 pivots and each pivot is represented by (x, y)). Therefore, the knobs translate to

(1.25,0.6875,1,0.88) respectively when n = 8 for our example. Using the modified knobs,

48.65	

48.7	

48.75	

48.8	

48.85	

48.9	

48.95	

49	

49.05	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	

Objective	

Function	
 Value	

Trials	

106

the algorithm, now referred to as the Adaptive Nelder-Mead algorithm, predicts a slight

improvement as shown in Figure 6-6 below.

Figure 6-6: Comparison between the Original Nelder-Mead and the Adaptive Nelder-
Mead methods

You may notice from the above figure that though there is a slight improvement between

the two methods, the overall goal is not attained. While investigating ways to improve the

performance, it was decided to do a line-search around the Nelder-Mead solution in order

to jump over any local minima. Therefore, a line-search technique namely the Golden

Section [75] is appended to improve the coordinates of the Nelder-Mead simplex. The

Golden Section algorithm is already part of the Optimization toolbox and the only input

45	

45.5	

46	

46.5	

47	

47.5	

48	

48.5	

49	

49.5	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	

Objective	

Function	
 Value	

Trials	

Original	
 Nelder	
 Mead	

Adaptive	
 Nelder	
 Mead	

	
 	
 -­‐	

	

	
 	
 	
 	
 -­‐	

107

required is the step-size. The Golden Section routine is applied to the resulting vector of a

Nelder-Mead simplex iteration so that core process is not affected by the line-search

technique. This in turn has the effect of restarting the Nelder-Mead process each time.

The results of appending Golden section routine to the two types of Nelder-Mead

algorithm are shown in Figure 6-7 below. It can be seen from the figure that the Golden

Section routine is improving both the formulations but is more pronounced in the

Adaptive Nelder-Mead formulation.

Figure 6-7: Effective of including Golden Section method as part of Nelder-Mead
simplex algorithm

This trend was witnessed in several iterations using different values and we can fairly

conclude that appending Golden Section to the Adaptive Nelder-Mead algorithm is

0	

10	

20	

30	

40	

50	

60	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	

Objective	
 	

Function	
 	

Value	

Trials	

Original	
 Nelder-­‐Mead	

Adaptive	
 Nelder-­‐Mead	

Adaptive	
 Nelder-­‐Mead	
 with	
 Golden	
 Section	

Original	
 Nelder-­‐Mead	
 with	
 Golden	
 Section	

108

definitely beneficial. But these improvements are not sufficient in getting to the goal and

hence another algorithm namely the Particle Swarm Optimization was tested.

6.3.4 Particle Swarm Optimization

The two main parameters governing Particle Swarm Optimization are the number

of particles and maximum and minimum values for the parameters. The number of

particles required is based on the desired path specified by the user and is given below

𝑛 =
5, 0 < 𝑚𝑎𝑥,𝑚𝑖𝑛 < 10
25, 10 < 𝑚𝑎𝑥,𝑚𝑖𝑛 < 50
50, 𝑚𝑎𝑥,𝑚𝑖𝑛 > 50

where max, min are the maximum and minimum coordinate values in absolute terms in

the desired path. This formulation ensures balance between exploration and exploitation

of the search space. These values have been arrived after several testing. The algorithm

also requires initializing the particles. For this purpose, we decided to assign the vector

that was selected based on the Latin Hyper Cube Sampling technique to be the position of

one particle. That particle’s velocity along with other particles’ positions and velocities

are randomly assigned within the algorithm. This approach was arrived after several trials

and has been able to produce consistent results.

The algorithm is tested on the problem shown in Figure 6-4 using the same

starting vector used in the Nelder-Mead algorithm and one result trend is displayed in

Figure 6-8 below. The number of iterations is limited to 100 in these trials.

109

Figure 6-8: The trend in the objective function value using Particle Swarm Optimization

You may see from the above figure, that the algorithm is able to produce an

objective function value that is significantly better than what was produced using the

Adaptive Nelder-Mead Algorithm with Golden Section routine. But still the algorithm is

unable to produce a near-optimal value. In this scenario, it was decided to combine the

two algorithms with the understanding the results from the Particle Swarm Optimization

will be improved by the Adaptive Nelder-Mead algorithm so that near-optimal solutions

can be obtained. The result of this hybrid approach for the sample problem is shown

below in Figure 6-9, where the first 100 iterations correspond to the Particle Swarm

Optimization and the remaining 100 iterations correspond to the improvement using the

Adaptive Nelder-Mead algorithm with Golden Section routine. The reason for limited

correction using Nelder-Mead may be due to the fact that the vector that resulted from

Particle Swarm Optimization is already at a local minima and the second algorithm is

unable to improve much further from there.

0	

10	

20	

30	

40	

50	

60	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	
 81	
 86	
 91	
 96	

Objective	

Function	
 Value	

Trials	

Particle	
 Swarm	

110

Figure 6-9: Results of the hybrid algorithm combining Particle Swarm Optimization and
Adaptive Nelder-Mead algorithm with Golden Section

You may notice that the random vector and the random particles are unable to

synthesize the desired curve. It should be pointed out to the reader that this output will be

different for different random starting vectors X. Though the hybrid approach is unable to

attain good results for the sample problem presented here, these are still better than the

results that we were getting using other algorithms stated in the literature. Repeated trials

were also conducted using all the algorithms mentioned on the benchmark problems and

the percentage of better results was higher in this hybrid method compared to the rest and

that is the reason for selecting this hybrid implementation over other algorithms. This

will be evident in our results in Chapter 7. Further experiments in Chapter 8 will

0	

10	

20	

30	

40	

50	

60	

1	
 9	
 17
	

25
	

33
	

41
	

49
	

57
	

65
	

73
	

81
	

89
	

97
	

10
5	

11
3	

12
1	

12
9	

13
7	

14
5	

15
3	

16
1	

16
9	

17
7	

18
5	

19
3	

Objective	

Function	
 Values	

Trials	

111

highlight the limitations in the search space, which will also explain the behavior of

different algorithms in the way they do for this class of problems.

The overall pseudo-code for the Automated Design of Planar Mechanisms is

shown below.

Input: Problem Definition
IF Problem is PATH or PATH with TIME,
 Obtain PATH characteristics
 SET Optimization parameters (number of particles,n, maxWidth, maxHeight, (max,min)
from PATH)
 ADJUST TIME Parameters if necessary
END IF
For Search Level 1 to N
 Do
 Generate all possible 1-DoF mechanisms
 While (options>0)
 Function: Optimize All 1-DoF using Optimization ToolBox
 Generate possible locations for “output” label
 Assign (x,y) from the desired path to the “output” pivot //remove this from
optimization
 Add Kinematic Analysis, Objectives to Optimization ToolBox
 Generate random Numbers based on Latin HyperCube Sampling
 Sort based on the Objective Function Value
 Using the Top 2 Vectors
 Optimize

X = Function(Particle Swarm (750 Iterations))
X1 = Function(Nelder-Mead (100 Iterations), X)
Store X1 to Results

 Return Results to Main Loop
 End Optimization Function
 Store RESULTS
End For-Loop
Output: RESULTS for Levels till N

You may notice that we have assigned 750 iterations for the Particle Swarm

Optimization and 100 iterations for the Nelder-Mead algorithm. This setting was based

on the improvements in the objective function value that these algorithms were able to

produce over several trials. Some of the other parameters that are provided to the

112

optimization toolbox are listed in Table 6-1. These parameters have also been arrived

after several trials and also with an intention to optimally use the available computational

resources so that the results are generated quickly but at the same time include sufficient

exploitation by the algorithms.

Table 6-1: Optimization Parameters

Maximum No of Iterations 750 (PSO), 100 (NM)

Maximum Age 750

Maximum Age Convergence 0.01

Delta X Convergence 0.001

To Known Best Function Convergence 0.01

Squared Exterior Penalty 10

The results are automatically organized into a HTML page that lists the configuration, the

objective function value as well as a link to the actual mechanism viewable online at

http://purl.org/pmks/sim.

6.4 CONCLUSION

The chapter describes the formulation of objective functions for different

benchmark problems as well as the challenge problems. A hybrid implementation has

been introduced by combining Particle Swarm Optimization and Nelder-Mead simplex

with Golden Section line-search and basic experiments detailing their trend is shown. The

different constraints are explained and so are the pseudo codes for various sections of this

implementation.

113

Chapter 7: Results

The results of optimization to the benchmark problems and the challenge

problems are presented in this chapter. Section 7.1 will present the solutions obtained

using our method to the benchmark problems. Two sets of solutions will be presented.

The first set will include the results of optimizing a four-bar mechanism for the

benchmark problems and the second set will include a few alternate mechanisms for the

same benchmark problems that have been generated using our technique. The solutions to

the challenge problems will be presented in section 7.2.

The synthesis results are automatically listed on a webpage. A screenshot of such

a page is shown below in Figure 7-1, where MechSynth refers to Mechanical Synthesis.

The page displays the configuration, objective function value and a link to the online

implementation PMKS (http://purl.org/pmks/sim) where all the parameters of the

mechanism can be obtained and the user can see the mechanism in operation.

Figure 7-1: Snapshot of the HTML page displaying the results of optimization

For conciseness, we will present screenshots of the generated mechanism along

with its characteristics such as the paths traversed by each joint (in certain cases only the

path of interest is shown for clarity) in green along with the desired path in gray.

Depending on the orientation of the mechanism, axis lines from the online

implementation will be visible. There are instances where the mechanisms have a

114

challenging scale. For those cases, a comparison plot between the desired and the actual

path obtained is presented. You may also notice that the number of solutions listed vary

between problems. This is primarily due to computational limitations and the nature of

the search space and will be further explained in the next chapter.

7.1 RESULTS TO BENCHMARK PROBLEMS

The following list of tables (Table 7-1 to Table 7-10) will present the solutions

generated by our technique to the different benchmark problems. The desired path for the

benchmark problem will be displayed followed by the synthesis results and a listing of

the errors obtained in comparison to the literature. The objective function will be

specified in terms of the sum of the squares of distances so as to compare with the

literature.

Table 7-1: Results to Problem #1

Problem 1:
(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)
Results: Four Bar Mechanism

115

Table 7-1 continued.

URL: http://goo.gl/dAaUZi
Objective function value: 0.02| 0.00007 (as per sum of the squares of distances)
Best results from literature: 0.0002 | 0.0178

Actual	
 Path	
 (in	
 green)

Desired	
 Path	
 (in	
 gray)

Output	
 Pivot

116

Table 7-1 continued.

URL: http://goo.gl/jNzlrp
Objective function value: 0.1| 0.00018 (as per sum of the squares of distances)
Best results from literature: 0.0002 | 0.0178
Results Combining search and optimization given below:

Actual	
 Path	
 (in	
 green)

Desired	
 Path	
 (in	
 gray)

Output	
 Pivot

117

Table 7-1 continued.

URL: http://goo.gl/xCeGzy Objective function value: 0.051 | 0.0005

(as per sum of the squares of distances) Configuration: 2-4-4-2 -revolute-no
prismatic

Output	
 Pivot

118

Table 7-1 continued.

URL: http://goo.gl/vtNR8x Objective function value: 0
Configuration: 3-6-7-2 -revolute-no
prismatic

Output	
 Pivot

119

Table 7-1 continued.

URL: http://goo.gl/nGj9Je Objective function value: 0
Configuration: 3-6-7-2-revolute-
prismatic

Table 7-2: Results to Problem #2

Problem 2:
(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.928), (0.60307, 12.736), (0.60307,
7.2638), (5, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20, 10)
Results: Four Bar Mechanism

Output	
 Pivot

120

Table 7-2 continued.

URL: http://goo.gl/yWSLcI
Objective function value: 0.11 | 0.0013 (as per sum of the squares of distances)
Best results from literature: 0.0047 | 1.9523

Output	
 Pivot

121

Table 7-2 continued.

URL: http://goo.gl/vv7LQH
Objective function value: 0.46 | 0.02 (as per sum of the squares of distances)
Best results from literature: 0.0047 | 1.9523
Results Combining search and optimization given below:

Output	
 Pivot

122

Table 7-2 continued.

URL: http://goo.gl/j3MTdp Objective function value:

0.19 | 0.0038 (as per sum
of the squares of
distances)

Configuration: 2-4-4-2- revolute-no prismatic

Output	
 Pivot

123

Table 7-2 continued.

URL: http://goo.gl/zXEPrG Objective function value:

0.87 | 0.08 (as per sum of the
squares of distances)

Configuration: 2-4-4-2-revolute-no prismatic

Output	
 Pivot

124

Table 7-2 continued.

URL: http://goo.gl/NkpcBW Objective function value: 0.17 |

0.003 (as per sum of the
squares of distances)

Configuration: 3-6-7-2-revolute-prismatic

Output	
 Pivot

125

Table 7-2 continued.

URL: http://goo.gl/FL3erL Objective function value: 0.07 |

0.0005 (as per sum of the squares
of distances)

Configuration: 2-4-4-2-revolute-prismatic

Table 7-3: Results to Problem #3

Problem 3:
(-24, 40), (-30, 41), (-34, 40), (-38, 36), (-36, 30), (-28, 29), (-21, 31), (-17, 32), (-8,
34), (3, 37), (10, 41), (17, 41), (26, 39), (28, 33), (29, 26), (26, 23), (17, 23), (11, 24),
(6, 27), (0, 31)
Result: Four-bar Mechanism

Output	
 Pivot

126

Table 7-3 continued.

URL: http://goo.gl/h4d6NT
Objective function value: 12.23 | 0.63 (average distance error)
Best result from literature: 0.98

Output	
 Pivot

127

Table 7-3 continued.

URL: http://goo.gl/PfHySZ
Objective function value: 10.40 | 0.52 (average distance error)
Best result from literature: 0.98
Results Combining search and optimization given below:

Output	
 Pivot

128

Table 7-3 continued.

URL: http://goo.gl/OHkz3f Objective function value:

12.96 | 0.648 (average
distance error)

Configuration: 2-4-4-2-revolute-no prismatic

Output	
 Pivot

129

Table 7-3 continued.

URL: http://goo.gl/zqoCy6 Objective function value:

16.56 | 0.83 (average
distance error)

Configuration: 2-4-4-1-revolute-prismatic

Output	
 Pivot

130

Table 7-3 continued.

URL: http://goo.gl/WxOqhN Objective function value:

14.00 | 0.7 (average distance
error)

Configuration: 3-6-7-2-revolute-prismatic

Table 7-4: Results to Problem #4

Problem 4:
(-27,1), (-21.857, -3.214), (-16.7, -7.428), (-6.428, -15.857), (-1.285, -20.071),
(3.857, -24.285), (9, -28.5), (15, -29.9), (20, -30), (27.2, -25), (29.2, -20), (28, -10),
(22.7,2), (15,10.6), (5,16.5), (-10,19.6), (-22,17), (-28,11), (-29,5)
Result: Four-bar Mechanism

Output	
 Pivot

131

Table 7-4 continued.

URL: http://goo.gl/pObY62
Objective function value: 3.0 | 0.15 (average distance error)
Best result from literature: 0.4154

Output	
 Pivot

132

Table 7-4 continued.

URL: http://goo.gl/dwmFEa
Objective function value: 3.78 | 0.19 (average distance error)
Best result from literature: 0.4154
Results Combining search and optimization given below:

Output	
 Pivot

133

Table 7-4 continued.

URL: http://goo.gl/axXi9r Objective function value:

5.99 | 0.30 (average
distance error)

Configuration: 2-4-4-2-revolute-no prismatic

Output	
 Pivot

134

Table 7-4 continued.

URL: http://goo.gl/LHc2J5 Objective function value:

21.33 | 1.07(average
distance error)

Configuration: 2-4-4-2-revolute-no prismatic

Output	
 Pivot

135

Table 7-4 continued.

URL: http://goo.gl/Tzx6du Objective function value: 4.23

| 0.21 (average distance error) Configuration: 3-6-7-1-revolute-prismatic

Table 7-5: Results to Problem #5

Problem 5:
(5, 0), (4.9240, 0.8682), (4.6985, 1.7101), (4.3301, 2.500), (3.8302, 3.2139), (3.2129,
 3.8302), (2.5, 4.3301), (1.7101, 4.6985), (0.8682, 4.9240), (0, 5), (-
0.8682, 4.9240), (-1.7101, 4.6985), (-2.5, 4.3301)
Result: Four-bar Mechanism

Output	
 Pivot

136

Table 7-5 continued.

URL: http://goo.gl/LKK4Wj
Objective function value: 0.09 | 0.0007 (as per sum of the squares of distances)
Best result from literature: 0.0154

Output	
 Pivot

137

Table 7-5 continued.

URL: http://goo.gl/Wsa5XN
Objective function value: 0.27 | 0.006 (as per sum of the squares of distances)
Best result from literature: 0.0154
Results Combining search and optimization given below:

Output	
 Pivot

138

Table 7-5 continued.

URL: http://goo.gl/PJOsdD Objective function value:

0.02 | 3E-5 (as per sum of
the squares of distances)

Configuration: 3-6-7-1-revolute-no prismatic

Output	
 Pivot

139

Table 7-5 continued.

URL: http://goo.gl/TIxRXw Objective function value: 0.142 | 0.002

(as per sum of the squares of distances) Configuration: 3-6-7-1-revolute-no
prismatic

Table 7-6: Results to Problem #6

Problem 6:
(0, 0), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.5106), (18.09, 5.877), (20, 0)
Time: (π/ 6, π / 3, π / 2, 2 * π / 3, 5 * π / 6, π)
Result: Four-bar Mechanism

140

Table 7-6 continued.

URL: http://goo.gl/FjPnh9
Objective function value: 1.184 | 0.25 (as per sum of the squares of distances)
Best results from literature: 1.2162 | 5.5207
Results Combining search and optimization given below:

Output	
 Pivot

141

Table 7-6 continued.

URL: http://goo.gl/95cUuf Objective function value: 1.23 |

0.26 (as per sum of the squares
of distances)

Configuration: 2-4-4-1-revolute-no prismatic

Output	
 Pivot

142

Table 7-6 continued.

URL: http://goo.gl/RFd5ie Objective function value: 0.09 |
0.001 (as per sum of the
squares of distances)

Configuration: 3-6-7-2-revolute-prismatic

Output	
 Pivot

143

Table 7-6 continued.

URL: http://goo.gl/qvPYUJ Objective function value: 0.87 |

0.13 (as per sum of the squares
of distances)

Configuration: 2-4-4-2-revolute-prismatic

Table 7-7: Results to Problem #7

Problem 7:
(0.5, 1.1), (0.4, 1.1), (0.3, 1.1), (0.2, 1.0), (0.1, 0.9), (0.005, 0.75), (0.02, 0.6), (0.0, 0.
5), (0.0, 0.4), (0.03, 0.3), (0.1, 0.25), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.5,
0.7), (0.6, 0.9), (0.6, 1.0)

Time: (0,21 * π / 180, 42 * π / 180, 63 * π / 180, 84 * π / 180, 105 * π / 180, 126 * π
/ 180, 147 * π / 180, 168 * π / 180, 189* π / 180, 210* π / 180, 231* π / 180, 252* π
/ 180, 273* π / 180, 294* π / 180, 315* π / 180, 336* π / 180, 357 * π / 180)
Result: Four-bar mechanism

Output	
 Pivot

144

Table 7-7 continued.

URL: http://goo.gl/FliZXK
Objective function value: 0.36| 0.008 (as per sum of the squares of distances)
Best results from literature: 0.0196 | 0.043
Results Combining search and optimization given below:
Configuration: 2-4-4-1-revolute-no prismatic | URL: http://goo.gl/SLvuQk
Objective function value: 0.64 | 0.024 (as per sum of the squares of distances)

Configuration: 3-6-7-1-revolute-no prismatic | URL: http://goo.gl/lgQdKK
Objective function value: 0.69 | 0.028 (as per sum of the squares of distances)

Table 7-8: Results to Problem #8

Problem 8:
x(t)=3 cos(t), y(t)=2 sin(t), where t is time
Result: Four-bar Mechanism (the benchmark is solved using a four-bar slider crank
mechanism while the result shown below is using a four-bar mechanism with
revolute joints)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

-­‐0.2	
 0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	
 1.4	

y	

x	

Original	
 Curve	

Optimization	
 (0.008)	

145

Table 7-8 continued.

URL: http://goo.gl/niDoV9 | http://goo.gl/e8MkY6
Objective function value: 1.38 | 0.17 (as per sum of the squares of distances)
Best results from literature: 0.1298
Results Combining search and optimization given below:

Configuration: 2-4-4-2-revolute-no prismatic | URL: http://goo.gl/cAE5ZW
Objective function value: 1.41| 0.17 (as per sum of the squares of distances)

Configuration: 2-4-4-1-revolute-no prismatic | URL: http://goo.gl/nO8Lmx
Objective function value: 1.61| 0.23 (as per sum of the squares of distances)

Configuration: 3-6-7-1-revolute-no prismatic | URL: http://goo.gl/xuk1tq
Objective function value: 2.64 | 0.61 (as per sum of the squares of distances)

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

-­‐4	
 -­‐2	
 0	
 2	
 4	

y	

x	

Original	
 Curve	

Optimization	
 (0.17)	

Optimization	
 (0.18)	

146

Table 7-9: Results to Problem #9

Problem 9:
x(t)=-cos(t)*(0.5+cos(t)), y(t)=- sin(t)(0.5_cos(t)), t is time
Result: Four-bar Mechanism (the benchmark is solved using a six-bar mechanism
while the result shown below is using a four-bar mechanism with revolute joints)

URL: http://goo.gl/hfcCqc | http://goo.gl/KGVJav
Objective function value: 0.02 | 0.0035 (as per sum of the squares of distances)
Best result from literature: 8E-5
Results Combining search and optimization given below:
Configuration: 3-6-7-1-revolute-no prismatic | URL: http://goo.gl/VP28pW
Objective function value: 1.37 | 0.16 (as per sum of the squares of distances)

Configuration: 3-6-7-2-revolute-prismatic | URL: http://goo.gl/cq9r4Z
Objective function value: 2.04 | 0.36 (as per sum of the squares of distances)

Configuration: 3-6-7-1-revolute-prismatic | URL: http://goo.gl/tFrRq6
Objective function value: 2.28 | 0.45 (as per sum of the squares of distances)

-­‐1	

-­‐0.8	

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

-­‐1.8	
 -­‐1.3	
 -­‐0.8	
 -­‐0.3	
 0.2	

y	

x	

Original	
 Value	

Optimization	

(0.0035)	

Optimization	

(0.29)	

147

Table 7-10: Results to Problem #10

Problem 10:
x(t)=0.5*(2*sin(t)-sin(2t)), y(t)=0.5 *(2*cos(t)+cos(2t)), t is time
Result: Four-bar Mechanism (the benchmark is solved using a six-bar mechanism
while the result shown below is using a four-bar mechanism with revolute joints)

URL: http://goo.gl/9Mlfxm | http://goo.gl/F2qsjK
Objective function value: 1.17| 0.12 (as per sum of the squares of distances)
Best result from literature: 1.139
Results Combining search and optimization given below:
Configuration: 3-6-7-1-revolute-prismatic | URL: http://goo.gl/7EIlmM
Objective function value: 2.08 | 0.38 (as per sum of the squares of distances)

Configuration: 2-6-7-2-revolute-prismatic | URL: http://goo.gl/o8uXtp
Objective function value: 0.81 | 0.06 (as per sum of the squares of distances)

Configuration: 2-4-4-1-revolute-no prismatic | URL: http://goo.gl/NuD40d
Objective function value: 0.95 | 0.08 (as per sum of the squares of distances)

-­‐1.5	

-­‐1	

-­‐0.5	

0	

0.5	

1	

1.5	

2	

-­‐1.5	
 -­‐1	
 -­‐0.5	
 0	
 0.5	
 1	
 1.5	
 2	

y	

x	

Original	
 Curve	

Optimization	
 (0.12)	

Optimization	
 (0.12)	

148

A summary of our results to the benchmark problems is listed in Table 7-11.

Table 7-11 Summary of results on benchmark problems

Problem
Best Result from

Literature (Objective
Function Value)

Result from this hybrid
Implementation for a four-

bar mechanism

Result for Other
Mechanisms from

Design Space
1 0.0002 0.00007 0
2 0.0047 0.0013 0.0005
3 0.98 0.52 0.7
4 0.4154 0.15 0.21
5 0.0154 0.0007 3E-5
6 1.2162 0.26 0.001
7 0.0196 0.008 2E-5
8 0.1298 0.17 0.61
9 8E-5 0.0035 0.16
10 1.139 0.12 0.06

As shown in Table 7-11, the hybrid implementation is able to generate better results

using a four-bar mechanism as well as higher order mechanisms (the best results for

which are displayed in the last column on the right) for most of the problems except

problem #8 and #9, which we feel is due to scaling issues in the problem (described in

Chapter 8). It should be pointed out to the reader that the same algorithm was used on all

problems with automatic parameter setting based on the desired path. Also shown in

Table 7-1 to Table 7-10 are snapshots of results from the design space when the topology

and parameters are synthesized simultaneously for each problem. The results include

four-bar and six-bar mechanisms with revolute and prismatic joints. Higher order

mechanisms are not shown due to computational time constraints with the facilities using

which all these computations were carried out. In some mechanisms where the

dimensions are very small compared to other problems, you may notice that even though

the resulting objective function is a very low value (close to zero), the generated curve

does not exactly match the requirements set by the user. This is one of the topics of

149

discussion in the next chapter where if the method is not scale sensitive, erroneous results

can be obtained and does not bode well in the long-term usage of such methods in design.

7.2 SOLUTIONS TO CHALLENGE PROBLEMS

7.2.1 Challenge Problem #1

The solutions to challenge problem 1 (refer Chapter 3 for data) are presented in

Table 7-12 below. The first solution is obtained using a four-bar mechanism consisting of

only revolute joints in the actual scale specified in the problem description. The

remaining two solutions are obtained for the curve whose scale is increased by a factor of

10. The best solutions for the second case are obtained using 6 bar mechanisms with both

revolute and prismatic joints and are shown in Table 7-13.

150

Table 7-12: Results to challenge problem #1

URL: http://goo.gl/1tnC4l
Objective function value: 2.80
Configuration: 2-4-4-1-revolute-no prismatic

Output	
 Pivot

151

Table 7-13: Results to challenge problem #1 using a different scale

URL: http://goo.gl/1W7wwX
Objective function value: 11.79 | 4.05 (as per sum of the squares of distances)
Configuration: 3-6-7-2 -revolute-prismatic

Output	
 Pivot

152

Table 7-13 continued.

URL: http://goo.gl/0sm9O7
Objective function value: 10.94 | 3.49 (as per sum of the squares of distances)
Configuration: 3-6-7-2-revolute-prismatic

From the above results, a four-bar mechanism is not predicted for the scale variant of the

problem in Table 7-13. You may also notice that the solutions obtained are not quite

close to the required goal. One possible reason is that the number of data points on the

desired path is much higher than other problems. This increases the computational time

for calculating the objective function value since 36 different coordinates have to be

checked for each iteration of the algorithm within which there are several more function

evaluations carried out. Since the computational resource available to us does not permit

longer computational times, we are unable to check for better results using higher order

systems or for that matter even using four-bar mechanism. Also, the mechanism is

constrained to follow the path exactly due to the presence of more data points and this

increases the complexity of the search process. But since the original application is part

Output	
 Pivot

153

of a conveyor (refer Chapter 3), the important section in that path is the straight-line

section. Suppose the desired path is changed to a straight-line as against the original, the

result produced is given below in Figure 7-2. This shows that it is possible to obtain

different results that may be better just by virtue of changing the desired path.

Figure 7-2 Modified challenge problem #1 (URL: http://goo.gl/65svrI)

7.2.2 Challenge Problem #2

As mentioned in the previous chapter, this challenge problem has been

approached as a path-tracing single-input multi-output problem. The results presented

here are only for the case 1 wherein rule #1 from rule set #4 is applied to generate the

appropriate candidate (refer to Chapter 4 for discussion). Table 7-14 and Table 7-15

present two results for this case. Table 7-14 also displays the path traced by the four

joints in the actual biological animal.

Output	
 Pivot

154

Table 7-14 Results to challenge problem #2

155

Table 7-14 continued.

Desired Curve:

URL: http://goo.gl/jzZlz5
Objective function value: 6.46

-­‐200	

-­‐180	

-­‐160	

-­‐140	

-­‐120	

-­‐100	

-­‐80	

-­‐60	

-­‐40	

-­‐20	

0	

0	
 50	
 100	
 150	
 200	

y	

x	

Joint	
 1	
 Curve	

Joint	
 2	
 Curve	

Joint	
 3	
 Curve	

Joint	
 4	
 Curve	

156

Table 7-15 Results to challenge problem #2

URL: http://goo.gl/U4q7Ja
Objective function value: 7.38

As you may see from the results and comparing those that with the desired path, we can

find that from a pure position synthesis point of view (leaving aside computational

constraints), we are able to obtain an average objective function value of around 7. It

should be noted that the given positions are absolute values from the reference image of

157

the coconut crab (refer to Chapter 3). But in reality, it is important to obtain relative

positions of the joints so that a more meaningful result can be obtained.

The results after applying rule #2 from rule set #4 have not been displayed since the

computational time required for the particular mechanism using our approach exceeded

the permissible limits of the facilities at our end.

7.2.3 Challenge Problem #3

The results to the challenge problem #3 are shown in the tables below. This

problem requires tracing the logo of the University of Texas at Austin. Table 7-16 shows

the result for the single-input multi-output scenario. Each figure shows the section of the

curve traced by a particular pivot (also highlighted by showing on the desired curve).

Table 7-16 Results to challenge problem #3

158

Table 7-16 continued.

159

Table 7-16 continued.

URL: http://goo.gl/D0E2Jb
Configuration: 2-4-4-3-revolute-no prismatic
Objective function value: 79.09 (sum of distances)

From the above result, it can be seen that there are certain segments of the overall

curve that are traced better than the rest. Only a four-bar mechanism is shown in this

result as due to computational time limitations, we were unable to produce results with a

six or higher-bar mechanisms that may have been a better synthesis candidate. Also,

during optimization, only the node with “output” label (ref Chapter 4) is assigned a point

from the desired path and is not subject to optimization while the positions of nodes with

labels namely “output1”, “output2” and “output3” are determined by the optimization.

Assigning a point for these graph nodes may significantly improve the result obtained in

such single-input multi-output mechanisms since the number of variables being

optimized is significantly reduced. It can also be seen from the result in Table 7-16 that

since there are certain sections of the curve that have fewer points, the generated

mechanism is able to match a few points but not able to produce the exact curve. This

160

highlights the need for an optimum number of points in the desired path such that the

trend shown in the desired path can be obtain during synthesis.

The other approach adopted here is the scenario where different mechanisms trace

different sections of the curve. Due to restrictions in the time of computation available to

us, we were unable to completely automate this process. Instead, we synthesized

mechanisms for individual curves separately and manually selected different mechanisms

to produce the following results. This way, we are able to show that the technique is

promising and alternate ways to improve the usage of computational resources can be

explored to produce better results. The following tables (Table 7-17, Table 7-18 and

Table 7-19) display the results using this approach. The links for the mechanisms that

trace different sections of the curve are presented. The dotted line is the desired curve and

the mechanisms are able to cover most sections of the desired curve. All the mechanisms

obtained are four-bar mechanisms with revolute joints. Though a few six bar mechanisms

were also obtained, they were not selected since their error was higher than what was

obtained using a four-bar mechanism.

161

Table 7-17 Results to challenge problem #3

Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4
URL:
http://goo.gl/iJcvr
V

URL:
http://goo.gl/r03ry
2

URL:
http://goo.gl/XQGJs
N

URL:
http://goo.gl/ojvY
nE

-­‐200	

-­‐100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

y	

x	

Mechanism	
 No:1	

Desired	
 Curve	

Mechanism	
 No:2	

Mechanism	
 No:3	

Mechanism	
 No:	
 4	

162

Table 7-17 continued.

Overall Result:

Desired Result:

Objective Function Value: 5.76

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 200	
 400	
 600	
 800	

y	

x	

Mechanism	
 No:1	

Mechanism	
 No:2	

Mechanism	
 No:3	

Mechanism	
 No:4	

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 200	
 400	
 600	
 800	

y	

x	

Desired	
 Curve	

163

Table 7-18 Results to challenge problem #3

Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4
URL:
http://goo.gl/c4rsV
Q

URL:
http://goo.gl/pasFt
E

URL:
http://goo.gl/I5EII
E

URL:
http://goo.gl/NoH7
Xl

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	

y	

x	

Mechanism	
 No:1	

Desired	
 Curve	

Mechanism	
 No:2	

Mechanism	
 No:	
 3	

Mechanism	
 No:4	

164

Table 7-18 continued.

Objective Function Value: 8.55

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 200	
 400	
 600	
 800	

y	

x	

Mechanism	
 No:1	

Mechanism	
 No:2	

Mechanism	
 No:3	

Mechanism	
 No:4	

165

Table 7-19 Results to challenge problem #3

Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4
URL:
http://goo.gl/CQZ3
y0

URL:
http://goo.gl/xBVR
W3

URL:
http://goo.gl/k7is
ZF

URL:
http://goo.gl/WoX
Y82

-­‐100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

-­‐100	
 100	
 300	
 500	
 700	
 900	

y	

x	

Mechanism	
 No:1	

Desired	
 Curve	

Mechanism	
 No:2	

Mechanism	
 No:3	

Mechanism	
 No:4	

166

Table 7-19 continued.

Overall Result:

Objective Function Value: 8.86

You may notice from the three results that by using multiple mechanisms, we are

able to produce a result that is very close to the desired curve. Our view is that if the

number of points that describe the desired path is increased, better results may be

obtained but this is subject to increased computational expense. It should be also pointed

out to the reader that we have employed the technique of increasing the number of points

on the desired path for the second section of the curve in the above results for this

challenge problem. If the constraints are changed, for instance, that the mechanisms

should not interfere with one another, then the synthesized result will be totally different.

All these different possibilities are discussed in the next chapter.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 200	
 400	
 600	
 800	

y	

x	

Mechanism	
 No:1	

Mechanism	
 No:2	

Mechanism	
 No:3	

Mechanism	
 No:4	

167

7.3 CONCLUSION

The results obtained using our method for the benchmark problems are better than

the existing results from the literature for most of the problems. In addition, alternate

mechanisms for those benchmark problems that were generated by combining tree-search

and optimization are also presented. Three challenge problems have been attempted and

their results are shared. With better computational resources and employing better coding

schemes to take advantage of parallelization, the algorithm may yield better results.

168

Chapter 8: Discussion

In this chapter, we will discuss the results presented in the previous chapter.

Section 8.1 will focus on the insights gathered during algorithm development and during

various experiments performed to understand the search space. Section 8.2 will discuss

the results of the benchmark problems, which will be followed by comments on the

challenge problems in section 8.3. Computation time has been a major constraint in this

research and section 8.4 will discuss some of the activities carried out in that area.

Conclusions will be presented in section 8.5.

8.1 ALGORITHMS AND SEARCH SPACE

The results to the benchmark problems that are presented in this dissertation are

better than those in the literature for most problems. But towards the end of this section,

we will describe how these results are not guaranteed all the time. This is a function of

the different constraints and the size and shape of the search space. In order to understand

how different parameters affect the solutions obtained, several experiments were

performed on various aspects of the problem and the details are presented in the

subsections below.

8.1.1 Constraints and Problem Definitions

First let us consider the constraints used during the dimensional synthesis of

planar mechanisms. In the literature, several constraints are used such as Grashof’s

criterion and length constraints between different pivots in the four-bar mechanism.

Through these constraints, the size of the search space is significantly reduced although it

is not necessarily easier to navigate. In our implementation, we are using a bounding box

constraint where the links may take up any length but the complete position kinematics of

the mechanism should lie within a specified region. In addition, we also specify the

maximum and minimum limits for each joint position in the mechanism to enable us to

169

generate the starting vector using the Latin Hypercube Sampling technique. But once the

best starting vector has been determined, the particles in Particle Swarm Optimization (or

vertices of the simplex of Nelder-Mead simplex algorithm) will take up other positions

during the course of swarm movement yielding better solutions to a problem. For

instance, the initial set of particles are generated within an initial box, but due to the

swarm movement, the final solution is enclosed within a second box while still satisfying

the bounding box constraint. If one of the particles is assigned a position that exceeds the

bounding box, then the particle is reinitialized and the process is continued.

So it is possible that the initial maximum and minimum bounds that were

assigned before generating the starting vector is no longer enforced during optimization.

The only parameter that is enforced is the mechanism’s bounding box. This allows our

search space to not be reduced unlike what is enforced through constraints in other

methods. Additionally this relaxation could also be beneficial in enabling to better

synthesize the mechanisms. This is like formulating a less constrained problem to an over

constrained problem. In addition to the bounding box constraint, we are using another

constraint to space the “input” grounded pivot at a slight distance away from the other

grounded pivots. We will explain the reason for this constraint using the example given

below in Figure 8-1 whose URL is http://goo.gl/nvYxYF.

Figure 8-1: Four-bar mechanism used to explain “input spacing” constraint

170

This is a four-bar mechanism where input pivot is aligned with the two axes at

(0,0) and the other grounded pivot is at (10,0). The ternary coupler pivot that traces the

circle is at (6,6), the joint between the coupler and the input is at (0,5) and finally the

joint between the coupler and follower is at (10,5). The arbitrary circular path generated

by pivots (6,6) will serve as the optional goal and the set of random neighbors are

generated around this known vector and used as the starting vector in our search process.

An example of the neighborhood position will be (-1,0) instead of (0,0); (11,0) instead of

(10,0) while keeping the other positions the same. One would imagine that since the

vector is only slightly perturbed from the actual solution, the optimization would easily

find the original mechanism as the solution. Therefore, 28 random neighborhood

positions differing by no more than 2 units in all positions were generated to check if the

optimization algorithm is able to produce the original result. Out of the 28 starting

vectors, only 11 starting vectors produced objective function values of less than 0.5 (i.e.,

with a value of 0.5 sum of distances from the desired circle). The results are shown

below in the Figure 8-2 (the coupler point (6,6) is not included) and none of the results

(each result is termed as a series) ever produce the same original joint positions. This is

possible considering the nature of the desired curve and that there are infinite solution

possibilities. But what is intriguing is the location of the grounded pivots that are shown

using a dotted circle in the same figure. Most of the mechanisms have their grounded

joints very close to each other. This led us to introduce the “input spacing” criterion so

that the grounds are spaced apart.

171

Figure 8-2: Results of applying optimization algorithm to random neighborhood points

The input spacing is also an inequality constraint and for test purposes we have

been using values of 1 or 2 units between ground joints. This could be increased for

problems with large dimensional scales. The results for the benchmark problems as well

as the challenge problems do not have grounded joints close to one-another primarily due

to this constraint. It is also clear from this discussion we are obtaining near-optimal

solutions for only 40% of the trials. This trend was spotted while running separate

instances of Nelder-Mead algorithm and Particle Swarm Optimization as well as on the

hybrid implementation presented in this dissertation. This will be dealt further in section

8.1.2.

-­‐20	

-­‐10	

0	

10	

20	

30	

40	

50	

-­‐20	
 -­‐10	
 0	
 10	
 20	
 30	
 40	
 50	

y	

x	

Series2	

Series3	

Series4	

Series5	

Series6	

Series7	

Series8	

Series9	

Series10	

Series11	

Series12	

172

An important aspect in our technique is the removal of the “output” labeled pivot

from optimization consideration. This not only reduces the number of dimensions in the

problem but also significantly speeds up the computation. The thinking behind this was

that since the desired path has to follow all the points anyway, we might as well assign

one of those points to the output location. Like the moving bounding box, this reduction

alleviates difficulties in the search without reducing the generality of the resulting

solutions. In terms of other constraints such as the bounding box specification, the norms

adopted in Chapter 6 are valid for a generic class of problems.

8.1.2 Search Space

In the previous subsection, it was mentioned that the lack of additional constraints

makes the search space huge. Also, in the experiment carried out in the previous

subsection (related to Figure 8-2), only about 40% of the starting vectors resulted in a

near-optimal solution. This may be due to the presence of discontinuities and/or local

minima in the search space. This is also validated by a review of the solutions obtained

for three benchmark problems (#1, #2 and #3) at the seventh level in the search tree as

shown in Table 8-1. As can be seen from the table, of the 24 candidates evaluated, the

optimization is able to produce near optimal solution on all the candidates only for the

first benchmark problem (sample results in Table 7-1) whereas the second benchmark

problem (sample results in Table 7-2) has none and the third (sample results in Table 7-3)

has only one solution. These results are at one instant in time and at a different instant,

entirely different results may be predicted. To understand this variability, more studies on

the search space are conducted.

173

Table 8-1 Number of solutions generated for three different benchmark problems at level
7 in the tree-search

	

Benchmark	
 	
 Benchmark	
 	
 Benchmark	
 	

	

Problem	
 1	
 Problem	
 2	
 Problem	
 3	

No	
 of	
 Solutions	
 24	
 24	
 24	

Near	
 Optimal	

Solutions	
 /	

Better	
 than	

Existing	
 Results	

24	
 0	
 1	

To better understand the complexities of the space, consider the example used in

Figure 6-4, where an arbitrary four bar mechanism consisting of revolute joints and a

ternary coupler link is shown. The input joint is located at A(21,3) and the other joints are

B(25,16), C(12,24), D(2,7) and E(15,5). The curve produced by E is set as the goal and

the maximum width and height of the bounding box are each set at 50. A set of 25

random neighborhood positions is generated around the original solution for the pivots A,

B, C and D. The pivot E is not part of the optimization since the output is always

assigned a coordinate (x, y) from the desired path. Due to this, the number of variables in

the problem is eight (each (x, y) position correspond to 2 variables). The objective

function with respect to each of these random neighborhood positions is calculated and

shown in Figure 8-3 below.

174

Figure 8-3: Objective function values for different neighborhood positions for the four-
bar in Figure 6-4

The above figure (Figure 8-3) shows the objective function values for different random

neighborhood positions of the pivots (A, B, C and D). For example, a slight perturbation

of point A from (21,3) to (20,3) produces an objective function value of 48 i.e., the sum

of the distances between the points traced by the curve using random position and the set

of points describing the original curve is 48.

Let us now walk along the unit vector starting from this new position to the

original position and beyond and see how the objective function values are changing.

This trend is shown in Figure 8-4 below.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	
 5	
 10	
 15	
 20	
 25	
 30	

Objective	
 	

Function	

Value	

Trials	

175

Figure 8-4: Objective function values along a unit vector around the original solution

The plot may be considered to be equivalent to slicing the 8 dimensional space

(since there are 4 pivot positions that are optimized and each position is defined by (x, y))

and observing the trend that lies within. It can be seen that the objective function

undergoes a drastic drop and as it proceeds towards the actual solution, there is a slight

increasing trend in the objective function value (noticed around -10 from the origin 0).

The drastic drop is because the Grashof’s criterion was not satisfied at the initial position.

While moving away from the original solution along the same vector (between trials 100

and 200), we do not find any pronounced inflections in the objective function value. But

contrast this with Figure 8-5 below, which is from a different neighborhood position and

it can be seen that the region on the right has several inflection points that could affect the

algorithms’ performance and result in a poor solution with a high objective function

value.

0	

10	

20	

30	

40	

50	

60	

-­‐100	
 -­‐80	
 -­‐60	
 -­‐40	
 -­‐20	
 0	
 20	
 40	
 60	
 80	
 100	

Objective	

Function	

Value	

Region	
 towards	
 the	
 goal	
 	
 	
 	
 	
 |	
 Region	
 away	
 from	
 the	
 goal	

176

Figure 8-5: Objective function values along a unit vector around the original solution

Now, we will use an optimization algorithm such as Nelder-Mead simplex

algorithm to illustrate how this algorithm is able to navigate the search space using the

first neighborhood point where A is (20,3). The starting vector is therefore

(20,3,25,16,12,24,2,7). For about 100 iterations, the trend produced using Nelder-Mead

Algorithm is shown in Figure 8-6 and the vector produced after these iterations is

(21.12,3,25.01,16.02,12.02,24.10,2.07,7.06). Though the starting objective function value

is 48 as observed in the trend shown in Figure 8-4, we are not including the starting value

in our plot in Figure 8-6 so as to present a clearer trend in the objective function value

produced during optimization.

0	

10	

20	

30	

40	

50	

60	

70	

80	

-­‐100	
 -­‐80	
 -­‐60	
 -­‐40	
 -­‐20	
 0	
 20	
 40	
 60	
 80	
 100	

Objective	

Function	

Value	

Region	
 towards	
 the	
 goal	
 	
 	
 	
 	
 |	
 Region	
 away	
 from	
 the	
 goal	

	

177

Figure 8-6: Objective function values obtained using Nelder-Mead optimization for a
neighborhood point

The algorithm is able to produce a low objective function value but is stagnant around

0.2. Let us examine this space by moving along a unit vector generated based on the

output from the algorithm to the actual position. That trend is shown in the figure below.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Objective	
 	

Function	

Value	

Iterations	

178

Figure 8-7: Objective function values trend between stagnation point in Figure 8-6 and
the original solution and beyond

The trend in Figure 8-7 clearly shows the presence of several points of inflection. Due to

these points, the Nelder-Mead operations on the simplex are resulting in poor values

around the existing region as indicated by the oval on the figure and this probably

explains the stagnation in the objective function value produced in Figure 8-6. This trend

is witnessed in several other examples too. Due to the search space being so different in

different regions; one region exhibits an almost linear trend (as in Figure 8-4 and Figure

8-5) while in another region (around the region closer to solution), we find the presence

of many points of inflection. This example is representative of the search space for a

typical problem in the area of planar mechanisms. As shown in the results from Chapter

7, there are a few problems where the solutions are obtained easily (examples like

benchmark problem #1) while in others (such as benchmark problem #3), there are not

many solutions generated. This is shown in Table 8-1. The investigations on the nature of

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

-­‐20	
 0	
 20	
 40	
 60	
 80	
 100	

Objective	

Function	
 Value	

Trials	

179

the search space reveals that since the space is so different, it is not possible to guarantee

solutions each time. In addition to the search space, the nature of the desired path also

affects the algorithm output.

8.1.3 Desired Path

The desired Path is usually specified in terms of (x, y) coordinates. The number of

points on the desired path affects the performance of the algorithm and the search space.

If the number of points specified is too low, then the generated solution does not trace the

path but just passes through those points. This can be seen in the solutions to challenge

problem #2 and the second segment in challenge problem #3, where the number of points

specified are too low for any solution to exactly follow the path. That is why, after

initially synthesizing that segment in challenge problem #2 with four points, it was

decided to increase the number of points that describe the second longhorn curve without

loss of generality. This explains the reason for better results obtained during the multiple

mechanism approach for the same curve. But, if too many points describe the desired

path, the computational effort to compute the objective function increases in addition to

algorithmic complexities in determining a near optimal solution. So finding the optimum

number of points on the desired path is required for good performance of the algorithm.

A potential method that can be used if a large number of points are specified (say 100)

would involve trimming the desired path using the Ramer-Douglas-Peucker

approximation technique [76] and then use the vector resulting from the optimization of

the approximate path to be used while synthesizing the actual path without trimming.

This concept of finding an approximate solution quickly and then refining the same may

be computationally efficient.

8.1.4 Algorithm Selection

In the implementation presented, a hybrid approach involving Particle Swarm

Optimization and Nelder-Mead simplex algorithm is adopted. This combination was

180

arrived after several tests. Figure 8-8 presents the improvement effected by the Nelder-

Mead simplex algorithm in 100 iterations for the solution produced by Particle Swarm

Optimization (after 750 iterations) for benchmark problem #1. But for the same problem,

Figure 8-9 shows that the Nelder-Mead algorithm is also able to determine near-optimal

solutions on two out of the three trials. In both these methods, there is a stochastic

element involved. In the Particle Swarm Optimization, the assignment of positions and

velocities of particles is random while in the Nelder-Mead algorithm the starting vector is

randomly generated. So the varying nature of the performance is naturally expected. You

may also notice from Figure 8-8 that if the solution from Particle Swarm Optimization is

already at a minimum (Trial 2), then the Nelder-Mead algorithm does not produce any

improvement.

181

Figure 8-8 Performance of the hybrid algorithm on benchmark problem #1

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	

Objective	
 	

Function	

Value	

Iterations	

Trial	
 1	

Trial	
 2	

Trial	
 3	

Trial	
 4	

182

Figure 8-9 Performance of the Nelder-Mead simplex algorithm on benchmark problem
#1

This simple trial proves that it is not possible to accurately predict the

performance of any optimization method. Based on several experiments that were carried

out on different problems, the hybrid algorithm generated more near optimal solutions

(based on results in Chapter 7) and hence it was decided to adopt the same.

8.2 DISCUSSION ON THE RESULTS FOR BENCHMARK PROBLEMS

Our implementation is able to produce better results than the literature. At the

same time, using our integrated search and optimization scheme, we are able to generate

alternatives to the four-bar mechanism to solve the benchmark problems. The results in

Chapter 7 show that our algorithm is able to synthesize mechanisms with revolute and

prismatic joints. At the same time, the results also highlight the fact that the implemented

method does not produce near-optimal solutions or solutions better than the literature on

all mechanism topologies that are considered for synthesis. This corresponds to the

discussion in the previous section that guaranteeing a near-optimal solution every time is

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	

Objective	
 	

Function	

Value	

Iterations	

Trial	
 1	

Trial	
 2	

Trial	
 3	

183

not practical. At the same time, since several candidates are evaluated at the same time,

the percentage of feasible candidates is higher in this approach. Since information is scare

about the percentage of feasible candidates for other methods in the literature, no

comparison with literature is made in this regard

The reader will also notice from the results that there are certain cases where the

objective function value predicted are very low but when the actual curve is plotted, there

is a marked difference between the actual and the desired curve. For instance, let us

consider the benchmark problem #7. Though we have been able to produce good results,

there are instances, such as the case shown below in Figure 8-10, where the curve is not

traced correctly but still a low objective function value was obtained.

Figure 8-10: Different output curves but still resulting in a low objective function value

This indicates that the method is sensitive to scaling issues. Both the path as well

as the resulting mechanism is in a dimensionally smaller unit scale compared to some of

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

-­‐0.1	
 0.1	
 0.3	
 0.5	
 0.7	
 0.9	
 1.1	
 1.3	

y	

x	

Original	
 Curve	

Case	
 1	

Case	
 2	

184

the other problems. Such scale sensitive problems require modifications to the objective

function calculation procedure such that these problems are handled better. One possible

modification that can be done is to further reduce the convergence criteria for such scale

sensitive problems. That way, partially synthesized mechanisms can be avoided from

being shown as potential solutions. The other possible option is to adopt the process of

exactly matching the points in the desired path, i.e., avoid using the Wilson-Theta

approach. This might result in increased computational time. So there is a tradeoff

between the input angle increments for analytical solutions versus computational time.

Currently, the increments for the input crank are 10° coupled with the Wilson-Theta

method for interpolating intermediate positions. This approach has been successful in

solving most of the problems but there are instances as pointed out in Figure 8-8. Issues

related to scale sensitivity have to been taken up further such that the applicability of this

generic method is not affected if a user decides to employ our tool to create mechanisms

at the milli- or micro-scales.

8.3 CHALLENGE PROBLEMS

Since this implementation has been able to generate good results for the

benchmark problems, the generality of the implementation has also been tested using

different challenge problems. The first challenge problem is a path-tracing problem. The

result generated is encouraging considering the fact that our implementation has been

tested on two different scales with a high number of points describing the desired path. A

total of three results are presented and it can be seen that the path followed by all three

mechanisms are very similar to each other despite having totally different configurations.

Such information can be useful in understanding the limits of mechanisms and the kind of

curves that can be generated by them. Studies have been conducted on four-bar

mechanisms that predict a sixth-order curve, while the same cannot be said about high

order mechanisms. This information can be also used to create a learning system that can

understand which linkage combinations can produce a particular section of a curve. For

185

instance, in this challenge problem, there is a straight-line section followed by an angular

section (as part of the conveyer system). Through a learning system, we could modify

the linkage on the fly by either adding or removing links based on the kinds of motion

being generated. Currently the system generates a topology and then uses an optimization

algorithm to synthesize that topology’s parameters. Instead, if the linkages are built on

the fly based on a learning system, then that would lead this research area in a new

direction.

The second challenge problem has only a few points that are part of each joint’s

desired path. This path problem is solved as a single-input multi-output problem. The

results for the first case (where the multiple outputs are randomly assigned) show that

precise tracing has not been achieved. This is because of the low number of points in the

desired path that causes the synthesis program to generate a mechanism that traces a

circular path that lies over the desired path. The second case (where two ternary links are

used to represent the four joints that make up the rear leg of the coconut crab) could not

be completed due to the computational time limits at our facility. Better results can be

obtained by synthesizing one mechanism at a time rather than all the possible candidates

at a particular level on the search tree.

 The third challenge problem has also been solved using two methods – the first

being single-input multi-output case and the second being the multiple mechanism

approach. In both cases, the given desired curve has been sub-divided into four since we

do not have any information currently or confidence that a single joint in a planar

mechanism can trace the complete curve as it is. Hence we selected this approach. It can

be seen that the single-input multi-output case does not generate good results. This is

primarily due to the fact that only four-bar mechanisms are used. Higher order

mechanisms are not generated at the time of writing this dissertation primarily due to

computational time constraints. The second approach of using multiple planar

mechanisms to solve is able to better trace different sections of the curve as shown in the

results. The idea of using multiple mechanisms enables amalgamation of different paths

186

traced by each mechanism to produce the composite curve. In the results, individual

curves were determined separately and manually selected to attain the composite curve.

This could be easily automated but again could not be done due to computational time

constraints. One aspect in using multiple mechanisms that can be explored is how to

generate these multiple mechanisms without intersecting with other mechanisms as well

as avoiding a grounded pivot on one of the other curves. This could be specified as

additional constraints similar to the “input spacing” constraint. The other aspect is to

determine how to create subsections of a complex curve such as the one in challenge

problem #3. Currently, this was manually done using a simple first-order check of the

inflection points in the curve. But a consistent methodology is required to expand this

approach to other problems.

8.4 COMPUTATION TIME

One aspect in our research that has not been mentioned is the time of

computation. While synthesizing a standalone four-bar mechanism, quoting the

computational time (as in the literature) can provide an indication of the ability of a

particular implementation. But in this dissertation, in addition to generating good quality

results using four-bar mechanisms, we have been keen on exploring other planar

mechanism designs that have rarely been carried out in the literature. In doing so, only an

overall assessment of time is possible. For instance, Table 8-2 shows the average time of

computation for three different benchmark problems at level #7 in the search tree. This

indicates that the optimization algorithm spends an average of 25 minutes in trying to

parametrically synthesize a mechanism topology. The table also shows that the time of

computation is a function of the desired path as well as the number of valid mechanisms

being synthesized. For instance, since more solutions are being synthesized for

benchmark problem #1, the time for each candidate is much higher than the other two

problems.

187

Table 8-2 Time of computation for three benchmark problems

	

Benchmark	
 	
 Benchmark	
 	
 Benchmark	
 	

	

Problem	
 1	
 Problem	
 2	
 Problem	
 3	

No	
 of	
 Solutions	
 24	
 24	
 24	

Near	
 Optimal	

Solutions	
 /	

Better	
 than	

Existing	
 Results	

24	
 0	
 1	

Time	
 (in	
 min)	
 741	
 635	
 465	

Time	
 (in	
 min)	
 /	

solution	
 30.88	
 26.46	
 19.38	

Average	
 Time	

(min)	
 25.57	

The above table gives an indication of the total time required to synthesize

different mechanisms using this technique. Moreover, based on several tests, we

concluded that the Particle Swarm Optimization could be allowed to run a maximum of

750 iterations for every potential candidate followed by 100 iterations on the Nelder-

Mead algorithm. Additionally, multi-output problems require a much higher time frame

to arrive at a solution.

This necessitates incorporating alternative strategies and better memory

management and programming to ensure quicker results. One such improvement is to

compute the positions for large angle increments of the input link by taking advantage of

the Wilson-Theta method. In this dissertation, we have used 10° increments of the input

link. This way, the objective functions calculations are much faster than when smaller

time increments are used for input rotation. The Wilson-Theta approach has been

thoroughly tested and we can confirm that there is only a minimal loss of information in

using large increments for input angle. The other is to reduce the number of duplicate

candidates that are generated by the grammar rules. Finally, it is important to ensure code

parallelization to take advantage of the multi-core CPUs that are currently available.

188

8.5 CONCLUSION

This chapter highlights some of the limitations as well as the complexities in the

search that affect the results being generated for this class of problems. The motivations

behind certain solution strategies are also highlighted in this chapter.

189

Chapter 9: Summary and Future Work

A methodology for automating the design of planar mechanisms is presented in

this dissertation. Three major aspects of this research are presented in detail. The first

aspect is the graph-grammar based representation scheme used to represent different

elements of planar mechanisms. Using this representation scheme, grammar rules are

formulated that are used to generate different mechanisms in an exhaustive tree search

process The representation scheme as well as the rules formulated is generic due to the

small set of rules required to generate all revolute and prismatic joints. Due to the small

set of rules, there are duplicate candidates generated. Though this increases the

computational resources required while evaluating candidates at every level in the tree,

such rules also provide an indication to the designer or a general user about different

ways of building a particular mechanism. The second aspect presented in this study is the

kinematic analysis required to automatically evaluate a planar 1-degree of freedom

mechanism. Graphical methods to evaluate position and velocity and analytical

acceleration equation solving method have been formulated in a generic way that can

evaluate any mechanism on the fly during the search process. In addition, since generic

implementations of advanced methods to solve indeterminate mechanisms are not

publicly available, an optimization-based method has been developed to solve the

position kinematics of mechanisms with revolute joints. The kinematic analysis

developed is also publicly available as an open-source code.

The third and final aspect in this research is the optimization of the generated

mechanisms to solve user-defined path problems. Here, after evaluating several different

algorithms, a hybrid implementation of Particle-Swarm Optimization and Nelder-Mead

optimization has been developed to automate the shape of mechanisms. This hybrid

implementation is able to produce better results on most of the benchmark problems

without requiring any change in the core algorithm used. The use of the design generator

has helped in producing mechanisms (topologies) other than a four-bar mechanism to

190

solve the different benchmark problems. The hybrid method has also been tested on three

challenge problems. Due to the nature of the challenge problems, three different scenarios

have been tested in this research namely single input single output, single input multi

output and multiple mechanism approach. A discussion on the search space and the

constraints for this class of problems are presented where different aspects that influence

the results are investigated to understand the difficulties in consistently yielding

solutions.

9.1 CONTRIBUTIONS

The overall design automation scheme has been successfully demonstrated

through this dissertation. The following are some of the major contributions of this

research to the design and mechanism community.

1) Developed a generic graph-grammar based representation and rules system for planar

mechanisms consisting of different joints

2) Developed a generic kinematic analysis tool based on graphical and analytical

methods for determinate 1-degree of freedom planar mechanisms

3) Developed an optimization based approach to accurately determine the position

kinematics of planar indeterminate mechanisms consisting of revolute joints

4) Implemented a modification for Nelder-Mead algorithm to improve its performance

for constrained problem class such as planar mechanism synthesis

5) Developed a hybrid implementation of Particle-Swarm Optimization and Nelder-

Mead algorithm that is able to produce better results on most of the benchmark

problems using four-bar mechanisms

6) Synthesized higher-order mechanisms for benchmark problems by combining

grammar rules to generate the mechanisms and evaluating them using the developed

algorithm

7) Provided insights into the search space that explains the lack of repeatability and the

lower probabilities of algorithms finding the best or near-optimal solutions

191

8) Demonstrated that a generic tool for automated conceptual design of planar

mechanisms can be developed

9.2 FUTURE WORK

In terms of advancing this work, the following are the activities that are being

planned.

9.2.1 Representation

Grammar rules for R-P joints are planned so that planar mechanisms consisting of

R, P and R-P joints can be created in addition to the current capability of generating

mechanisms with just R and P joints. The representation will also be expanded to

integrate machine elements like gears, which also will help advance the multiple

mechanism approach where by mechanisms generated using our technique can be

combined with appropriate gearing automatically to create a more complete device

9.2.2 Kinematic Analysis

The current optimization based method for indeterminate mechanisms will be

improved to solve such mechanisms with sliding members. Through this implementation,

we can ease the restriction in rules that prismatic joints can only be connected to those

mechanisms consisting of an input four-bar loop. Incorporating computations for geared

mechanisms as well as robust implementations for R-P joints will be part of future work

in the area of kinematic analysis.

9.2.3 Search and Optimization

Improved techniques to detect duplicate mechanisms generated during the search

techniques will be incorporated into our system since as shown in this dissertation that

the first order isomorphism detection is unable to eliminate duplicate candidates. The

other aspect in this research is to test our implementation on other types of problems such

as links following a particular motion, mechanisms where there are a combination

192

requirement i.e., follow a particular path for certain orientations of the input crank and

then a particular link will follow a particular motion. Research will also be conducted on

the changes that affect the curves generated as a result of adding a link or removing one.

This information would be useful to create rules that are adaptive to the optimization

process compared to the process demonstrated here where a topology is completely

generated before the algorithms synthesize different parameters of that topology.

193

Appendix A: Additional Finite Position Problems

Figure A-1 shows the model of a double-butterfly linkage, whose pivot positions

are listed in Table A-1. OA is the input link of this mechanism. The results of the

algorithm are available in Figure A-2. It may be noted that the maximum permissible

travel of this input link is 75° beyond which the mechanism encounters a toggle position

and the mechanism takes the topology of another kinematically equivalent branch.

Figure A-1: Double butterfly linkage [36]

Table A-1: Pivot positions of the double butterfly linkage (Figure A-1) for the finite
position problem

Pivot Coordinate
O (-5.0000, 0.0000) (input CW)
R (-2.5000, 2.5000)
S (0.0000, 0.0000)
A (-9.2400, 4.2400)
B (-5.9000,9.3000)

194

Table A-1 continued.

Pivot Coordinate
C (-4.5000,6.5000)
D (-5.0000,4000)
E (0.0000,4.000)
F (-0.1340,8.7170)
G (5.2680,10,7820)

Figure A-2: Path traversed by the pivots (B, C, D, E, F, G) of the double butterfly linkage
in Figure A-1

Figure A-3 shows the model of another double-butterfly linkage whose pivot

parameters are listed in Table A-2. The ground pivots for this mechanism are A, R and S.

195

This example has been tested with different input links such as RD, RE and SG. The

results of the algorithm with RE as input are shown in Figure A-4. The maximum angle

traversed in this configuration is approximately 230°. Since the results with RD as input

link is similar that with RE as input, they are not listed here. The results with SG as input

are listed in Table A-3 in angle increments of 0.1°. As the maximum angle traversed in

this configuration is only 2.9°, no graph is plotted for this case.

Figure A-3: Double-butterfly linkage – example II [32]

Table A-2: Pivot positions of the double butterfly linkage (Figure A-3) for the finite
position problem

Pivot Coordinate
O (0.0000, 0.0000)
S (13.0000, 0.0000)
A (4.1276, 11.2684)
B (10.4289, 14.2544)
C (6.4193, 9.7727)
D (5.9286, 2.8454)
E (4.4152, 3.8987)

196

Table A-2 continued.

Pivot Coordinate
F (6.8309, 12.5685)
G (8.1434, 9.8698)
R (7.4000, 4.2000)

Inputs: R; S (CW)

Figure A-4: Path traversed by pivots (A, B, C, D, F, G) with RE as input

197

Table A-3: Positions of pivots at angle increments of 0.1 ° with SG as input

Figure A-5 shows the model of a ten-bar mechanism, whose pivot positions are

displayed in Table A-4 where O, Q, R and S are the ground pivots and SI is the input

link. The results of the algorithm are displayed in Table A-5. The maximum angle

traversed by the input link in this configuration is 9°. This is another example

demonstrating the capability of the method in solving different types of planar

mechanisms.

198

Figure A-5: Ten-bar mechanism [77]

Table A-4 Pivot positions of the ten-bar mechanism for the finite position problem

Pivot Coordinate
O (-1.2500, -6.4000)
S (12.3020, -3.7960)
A (-1.1860, -4.6000)
B (0.7330, 1.3560)
C (2.6280, -1.7200)
D (0.7010, -4.4430)
E (3.8870, -3.8080)
F (8.5290, -1.6950)
G (5.7100, -0.8030)
H (10.1200, -2.5930)
I (12.2380, 1.1040)
R (8.9500, -4.0900)
Q (6.1750, -4.7290)

Input Link: SI (CW)

199

Table A-5: Positions of pivots (A, B, C, D, E, F, G, and H) at angle increments of 1°

x y x y x y x	
 y x y x y x y x y
0 10.12 -­‐2.59 5.71 -­‐0.80 0.70 -­‐4.44 3.89 -­‐3.81 8.53 -­‐1.69 2.63 -­‐1.72 0.73 1.36 -­‐1.19 -­‐4.60
1 9.99 -­‐2.48 5.70 -­‐0.43 0.92 -­‐4.37 4.06 -­‐3.54 8.94 -­‐2.07 3.10 -­‐1.24 0.66 1.42 -­‐0.95 -­‐4.62
2 10.03 -­‐2.48 5.77 -­‐0.35 1.06 -­‐4.37 4.18 -­‐3.49 9.14 -­‐2.29 3.38 -­‐1.01 0.70 1.41 -­‐0.71 -­‐4.68
3 10.06 -­‐2.47 5.83 -­‐0.27 1.22 -­‐4.40 4.32 -­‐3.45 9.35 -­‐2.56 3.72 -­‐0.78 0.83 1.39 -­‐0.78 -­‐4.66
4 10.09 -­‐2.46 5.90 -­‐0.20 1.43 -­‐4.48 4.50 -­‐3.42 9.58 -­‐2.95 4.21 -­‐0.52 1.09 1.31 -­‐0.70 -­‐4.69
5 10.13 -­‐2.47 5.98 -­‐0.15 1.81 -­‐4.73 4.79 -­‐3.46 9.88 -­‐3.73 5.17 -­‐0.19 1.78 1.07 -­‐0.57 -­‐4.73
6 10.21 -­‐2.49 6.05 -­‐0.18 1.83 -­‐4.72 4.81 -­‐3.46 9.90 -­‐3.76 5.20 -­‐0.18 1.81 1.07 -­‐0.57 -­‐4.73
7 10.27 -­‐2.51 6.13 -­‐0.19 1.86 -­‐4.72 4.83 -­‐3.45 9.91 -­‐3.78 5.23 -­‐0.18 1.83 1.07 -­‐0.56 -­‐4.73
8 10.32 -­‐2.53 6.20 -­‐0.19 1.91 -­‐4.71 4.86 -­‐3.42 9.92 -­‐3.81 5.27 -­‐0.17 1.87 1.07 -­‐0.55 -­‐4.72

9 10.37 -­‐2.54 6.27 -­‐0.18 1.96 -­‐4.71 4.88 -­‐3.39 9.93 -­‐3.85 5.31 -­‐0.16 1.90 1.06 -­‐0.54 -­‐4.72

Pivot	
 B Pivot	
 AAngle Pivot	
 H Pivot	
 G Pivot	
 D Pivot	
 E Pivot	
 F Pivot	
 C

200

Appendix B: Additional Initial Position Problems

The results of the initial position problem for a double-butterfly linkage and a ten-

bar linkage are presented in this section. The length parameters for the double-butterfly

linkage are taken from the mechanism shown in Figure A-1 and the two solutions for this

linkage are shown in Figure B-1 and Figure B-2 along with their pivot coordinates in

Table B-1 and Table B-2 respectively. Similarly Figure B-3 and Figure B-4 are the two

solutions for a ten-bar linkage (length parameters are taken from mechanism shown in

Figure A-5) whose pivot coordinates are displayed in Table B-3 and Table B-4

respectively.

Figure B-1: Initial position problem solution #1 for a double butterfly linkage

Table B-1: Pivot parameters of the double butterfly linkage shown in Figure B-1

Pivot Coordinate
O (0.0000, 0.0000)
S (13.0000, 0.000)
A (11.5948, 3.0345)
B (7.2705, -2.4634)
C (12.4648, 0.4835)

201

Table B-1 continued.

Pivot Coordinate
D (5.9286, 2.8454)
E (4.4192, 3.9521)
F (4.1993, -5.0235)
G (2.3147, -2.6617)
R (7.4000, 4.2000)

Figure B-2: Initial position problem solution #2 for a double butterfly linkage

Table B-2: Pivot parameters of the double butterfly linkage shown in Figure B-2

Pivot Coordinate
O (0.0000, 0.0000)

 S (13.0000, 0.0000)
A (3.3367, 11.5273)
B (7.9666, 6.3132)
C (2.5420, 8.9086)
D (5.9286, 2.8454)
E (6.8546, 1.2503)
F (7.3409, 10.2372)
G (10.3111, 10.6664)
R (7.4000, 4.2000)

202

Figure B-3: Initial position problem solution #1 for a ten-bar mechanism

Table B-3: Pivot parameters of the ten-bar mechanism shown in Figure B-3

Pivot Coordinate
O (-1.2500, -6.4000)
S (12.3020, -3.7960)
A (-2.4556, -5.0559)
B (3.7091, -6.1585)
C (1.8439, -3.0581)
D (-0.3168, -1.9833)
E (2.7503, -3.0671)
F (7.4314, -1.0742)
G (5.8366, -1.3178)
H (10.3632, -2.7609)
I (12.2380, 1.1040)
R (8.9500, -4.0900)
Q (6.1750, -4.7290)

203

Figure B-4: Initial position problem solution #2 for a ten-bar mechanism

Table B-4: Pivot parameters of the ten-bar mechanism shown in Figure B-4

Pivot Coordinate
O (-1.2500, -6.4000)
S (12.3020, -3.7960)
A (-1.3395, -4.6011)
B (4.9148, -4.7995)
C (2.2797, -7.27128)
D (10.6262, -3.79518)
E (8.9997, -0.9829)
F (3.9378, -1.6078)
G (5.5679, -0.2241)
H (9.8043, -2.3931)
I (12.2380, 1.1040)
R (8.9500, -4.0900)
Q (6.1750, -4.7290)

204

References

[1] Sclater, N., and Chironis, N. P., 2001, Mechanisms and mechanical devices
sourcebook, McGraw-Hill.

[2] Waldron, K. J., and Kinzel, G. L., 2004, Kinematics, dynamics, and design of
machinery, Wiley.

[3] Norton, R. L., 2004, Design of machinery, McGraw-Hill Professional.
[4] Erdman, A. G., and Sandor, G. N., 1997, Mechanism design, Prentice-Hall.
[5] “3D CAD Design Software SolidWorks” [Online]. Available:

http://www.solidworks.com/. [Accessed: 22-Dec-2012].
[6] “Working Model 2D - Home,” http://www.design-SimulationcomWM2Dindexphp

[Online]. Available: http://www.design-simulation.com/WM2D/index.php.
[Accessed: 25-Aug-2009].

[7] “Adams - Overview,” http://www.mscsoftware.com/products/adams.cfm [Online].
Available: http://www.mscsoftware.com/products/adams.cfm. [Accessed: 25-Aug-
2009].

[8] “ARTAS - Engineering Software” [Online]. Available: http://www.artas.nl/.
[Accessed: 25-Aug-2009].

[9] “WATT Mechanism Suite,” http://www.heron-Technol. [Online]. Available:
http://www.heron-technologies.com/watt/. [Accessed: 25-Aug-2009].

[10] Freudenstein, F., and Maki, E. R., 1979, “The creation of mechanisms according to
kinematic structure and function,” Environ. Plan. B Plan. Des., 6(4), pp. 375–391.

[11] Tsai, L.-W., 2001, Mechanism design, CRC Press.
[12] Pucheta, M. A., and Cardona, A., “Type synthesis of planar linkage mechanisms

with rotoidal and prismatic joints,” Mecánica Comput., 26, pp. 2703–2730.
[13] Lu, Y., and Leinonen, T., 2005, “Type synthesis of unified planar-spatial

mechanisms by systematic linkage and topology matrix-graph technique,” Mech.
Mach. Theory, 40(10), pp. 1145–1163.

[14] Ding, H., Huang, P., Zi, B., and Kecskeméthy, A., 2012, “Automatic synthesis of
kinematic structures of mechanisms and robots especially for those with complex
structures,” Appl. Math. Model., 36(12), pp. 6122–6131.

[15] Mruthyunjaya, T. S., 2003, “Kinematic structure of mechanisms revisited,” Mech.
Mach. Theory, 38(4), pp. 279–320.

[16] Sohn, W. J., and Freudenstein, F., 1986, “An Application of Dual Graphs to the
Automatic Generation of the Kinematic Structures of Mechanisms,” J. Mech.
Transm. Autom. Des., 108(3), pp. 392–398.

[17] Sedlaczek, K., Gaugele, T., and Eberhard, P., 2005, “Topology optimized synthesis
of planar kinematic rigid body mechanisms,” Multibody Dyn.

[18] Mayourian, M., and Freudenstein, F., 1984, “The Development of an Atlas of the
Kinematic Structures of Mechanisms,” J. Mech. Transm. Autom. Des., 106(4), pp.
458–461.

205

[19] Butcher, E. A., and Hartman, C., 2005, “Efficient enumeration and hierarchical
classification of planar simple-jointed kinematic chains: Application to 12- and 14-
bar single degree-of-freedom chains,” Mech. Mach. Theory, 40(9), pp. 1030–1050.

[20] Noriega, A., Cadenas, M., and Fernández, R., 2013, “Position Problem in Assur’s
Groups with Revolute Pairs,” New Trends in Mechanism and Machine Science, F.
Viadero, and M. Ceccarelli, eds., Springer Netherlands, pp. 141–148.

[21] Shai, O., 2010, “Topological Synthesis of All 2D Mechanisms Through Assur
Graphs,” ASME Conf. Proc., 2010(44106), pp. 1727–1738.

[22] Rao, A. ., 1997, “Hamming number technique—I. Further applications,” Mech.
Mach. Theory, 32(4), pp. 477–488.

[23] Rao, A. ., 1997, “Hamming number technique—II. Generation of planar kinematic
chains,” Mech. Mach. Theory, 32(4), pp. 489–499.

[24] Cabrera, J. A., Simon, A., and Prado, M., 2002, “Optimal synthesis of mechanisms
with genetic algorithms,” Mech. Mach. Theory, 37(10), pp. 1165–1177.

[25] Cossalter, V., Doria, A., Pasini, M., and Scattolo, C., 1992, “A simple numerical
approach for optimum synthesis of a class of planar mechanisms,” Mech. Mach.
Theory, 27(3), pp. 357–366.

[26] Liu, Y., and McPhee, J., 2007, “Automated Kinematic Synthesis of Planar
Mechanisms with Revolute Joints,” Mech. Based Des. Struct. Mach., 35(4), pp.
405–445.

[27] Kreyszig, T., 1995, Advanced Engineering Mathematics: With Mathematics
Manual, John Wiley & Sons Canada, Limited.

[28] Klein, A. W., 1917, Kinematics of machinery: a text-book on mechanisms and their
properties, with many practical applications for engineers and for students in
technical schools, McGraw-Hill.

[29] Waldron, K. J., and Sreenivasan, S. V., 1996, “A Study of the Solvability of the
Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double
Butterfly Linkage,” J. Mech. Des., 118(3), p. 390.

[30] Sommese, A. J., Wampler, C. W., and (II.), C. W. W., 2005, The numerical
solution of systems of polynomials arising in engineering and science, World
Scientific.

[31] Morgan, A., 2009, Solving Polynominal Systems Using Continuation for
Engineering and Scientific Problems, SIAM.

[32] Wampler, C. W., 2001, “Solving the Kinematics of Planar Mechanisms by Dixon
Determinant and a Complex-Plane Formulation,” J. Mech. Des., 123(3), p. 382.

[33] Nielsen, J., and Roth, B., 1999, “Solving the Input/Output Problem for Planar
Mechanisms,” J. Mech. Des., 121(2), pp. 206–211.

[34] Dixon, A. L., 1909, “The Eliminant of Three Quantics in two Independent
Variables:(Second Paper.),” Proc. Lond. Math. Soc., 2(1), p. 473.

[35] Hernández, A., and Petuya, V., 2004, “Position analysis of planar mechanisms with
R-pairs using a geometrical-iterative method,” Mech. Mach. Theory, 39(2), pp.
133–152.

206

[36] Foster, D. E., and Pennock, G. R., 2003, “A Graphical Method to Find the
Secondary Instantaneous Centers of Zero Velocity for the Double Butterfly
Linkage,” J. Mech. Des., 125(2), p. 268.

[37] Gea, H. C., and Kwon, J., 2005, “Topological Synthesis for Linkage Mechanism
Design Using the Minimum Potential Energy Principle,” Volume 2: 31st Design
Automation Conference, Parts A and B, Long Beach, California, USA, pp. 931–937.

[38] Chen, W.-J., Chang, C.-J., and Gea, H. C., 2008, “Topology and Dimensional
Synthesis of Linkage Mechanism Based on the Constrained Superposition Method,”
Volume 1: 34th Design Automation Conference, Parts A and B, Brooklyn, New
York, USA, pp. 789–797.

[39] Porta, J. M., Ros, L., Creemers, T., and Thomas, F., 2007, “Box Approximations of
Planar Linkage Configuration Spaces,” J. Mech. Des., 129(4), pp. 397–405.

[40] Alizade, R. I., Novruzbekov, I. G., and Sandor, G. N., 1975, “Optimization of four-
bar function generating mechanisms using penalty functions with inequality and
equality constraints,” Mech. Mach. Theory, 10(4), pp. 327–336.

[41] Sancibrian, R., García, P., Viadero, F., and Fernández, A., 2006, “A general
procedure based on exact gradient determination in dimensional synthesis of planar
mechanisms,” Mech. Mach. Theory, 41(2), pp. 212–229.

[42] Cabrera, J. A., Nadal, F., Mu\ noz, J. P., and Simon, A., 2007, “Multiobjective
constrained optimal synthesis of planar mechanisms using a new evolutionary
algorithm,” Mech. Mach. Theory, 42(7), pp. 791–806.

[43] Acharyya, S. K., and Mandal, M., 2009, “Performance of EAs for four-bar linkage
synthesis,” Mech. Mach. Theory, 44(9), pp. 1784–1794.

[44] Liu, Y., and McPhee, J., 2005, “Automated Type Synthesis of Planar Mechanisms
Using Numeric Optimization With Genetic Algorithms,” J. Mech. Des., 127(5), pp.
910–916.

[45] Roston, G. P., and Sturges, R. H., “Genetic algorithm synthesis of four-bar
mechanisms,” Ann Arbor, 1001, p. 48105.

[46] Nariman-Zadeh, N., Felezi, M., Jamali, A., and Ganji, M., 2009, “Pareto optimal
synthesis of four-bar mechanisms for path generation,” Mech. Mach. Theory, 44(1),
pp. 180–191.

[47] Marcelin, J. L., 2004, “A metamodel using neural networks and genetic algorithms
for an integrated optimal design of mechanisms,” Int. J. Adv. Manuf. Technol.,
24(9), pp. 708–714.

[48] Smaili, A. A., Diab, N. A., and Atallah, N. A., 2005, “Optimum Synthesis of
Mechanisms Using Tabu-Gradient Search Algorithm,” J. Mech. Des., 127(5), p.
917.

[49] Sancibrian, R., Viadero, F., García, P., and Fernández, A., 2004, “Gradient-based
optimization of path synthesis problems in planar mechanisms,” Mech. Mach.
Theory, 39(8), pp. 839–856.

207

[50] “GraphSynth,” CodePlex [Online]. Available:
https://graphsynth.codeplex.com/Wikipage?ProjectName=graphsynth. [Accessed:
13-Apr-2014].

[51] Campbell, M., “A Graph Grammar Methodology for Generative Systems” [Online].
Available: http://repositories.lib.utexas.edu/handle/2152/6258. [Accessed: 30-Oct-
2009].

[52] Cabrera, J. A., Simon, A., and Prado, M., 2002, “Optimal synthesis of mechanisms
with genetic algorithms,” Mech. Mach. Theory, 37(10), pp. 1165–1177.

[53] Cabrera, J. A., Ortiz, A., Nadal, F., and Castillo, J. J., 2011, “An evolutionary
algorithm for path synthesis of mechanisms,” Mech. Mach. Theory, 46(2), pp. 127–
141.

[54] Hongying, Y., Dewei, T., and Zhixing, W., 2007, “Study on a new computer path
synthesis method of a four-bar linkage,” Mech. Mach. Theory, 42(4), pp. 383–392.

[55] Matekar, S. B., and Gogate, G. R., 2012, “Optimum synthesis of path generating
four-bar mechanisms using differential evolution and a modified error function,”
Mech. Mach. Theory, 52, pp. 158–179.

[56] Acharyya, S. K., and Mandal, M., 2009, “Performance of EAs for four-bar linkage
synthesis,” Mech. Mach. Theory, 44(9), pp. 1784–1794.

[57] Kunjur, A., and Krishnamurty, S., 1997, “Genetic algorithms in mechanism
synthesis,” J. Appl. Mech. Robot., 4(2), pp. 18–24.

[58] 2010, Giant Robber crab on Christmas Island [Online]. Available:
http://www.youtube.com/watch?v=yqPBVBskD-M&feature=youtube_gdata_player/
.

[59] Radhakrishnan, P., and Campbell, M., I., 2010, “A graph grammar scheme for
generating and evaluating planar mechanisms,” Des. Comput. Cogn. DCC’10, pp.
663–679.

[60] Diab, N., and Smaili, A., 2008, “Optimum exact/approximate point synthesis of
planar mechanisms,” Mech. Mach. Theory, 43(12), pp. 1610–1624.

[61] Hernández, A., Petuya, V., and Amezua, E., 2001, “A method for the solution of
the forward position problems of planar mechanisms with prismatic and revolute
joints,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 216(4), pp. 395–407.

[62] “Object-Oriented Optimization Toolbox (OOOT)” [Online]. Available:
http://ooot.codeplex.com/. [Accessed: 05-Sep-2012].

[63] Goldberg, D. E., and others, 1989, Genetic algorithms in search, optimization, and
machine learning, Addison-wesley Reading Menlo Park.

[64] Storn, R., and Price, K., 1997, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim., 11(4),
pp. 341–359.

[65] Kennedy, J., Eberhart, R., and others, 1995, “Particle swarm optimization,”
Proceedings of IEEE international conference on neural networks, Perth, Australia,
pp. 1942–1948.

208

[66] Dukkipati, R. V., 2009, MATLAB for Mechanical Engineers, New Age Science,
Limited.

[67] Kirkpatrick, S., 1984, “Optimization by simulated annealing: Quantitative studies,”
J. Stat. Phys., 34(5-6), pp. 975–986.

[68] Gent, I. P., and Walsh, T., 1993, “Towards an understanding of hill-climbing
procedures for SAT,” AAAI, Citeseer, pp. 28–33.

[69] Nelder, J. A., and Mead, R., 1965, “A simplex method for function minimization,”
Comput. J., 7(4), pp. 308–313.

[70] Blackwell, T., and Branke, J., 2004, “Multi-swarm optimization in dynamic
environments,” Applications of Evolutionary Computing, Springer, pp. 489–500.

[71] Torczon, V., 1997, “On the Convergence of Pattern Search Algorithms,” SIAM J.
Optim., 7(1), pp. 1–25.

[72] Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., 1998, “Convergence
Properties of the Nelder--Mead Simplex Method in Low Dimensions,” SIAM J.
Optim., 9(1), pp. 112–147.

[73] Gao, F., and Han, L., 2012, “Implementing the Nelder-Mead simplex algorithm
with adaptive parameters,” Comput. Optim. Appl., 51(1), pp. 259–277.

[74] McKay, M. D., Beckman, R. J., and Conover, W. J., 1979, “Comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code,” Technometrics, 21(2), pp. 239–245.

[75] Venkataraman, P., 2009, Applied Optimization with MATLAB Programming, John
Wiley & Sons.

[76] Hershberger, J. E., and Snoeyink, J., 1992, Speeding up the Douglas-Peucker line-
simplification algorithm, University of British Columbia, Department of Computer
Science.

[77] Foster, D. E., and Pennock, G. R., 2005, “Graphical Methods to Locate the
Secondary Instant Centers of Single-Degree-of-Freedom Indeterminate Linkages,”
J. Mech. Des., 127(2), p. 249.

209

Vita

Pradeep Radhakrishnan was born in Coimbatore, India. He obtained his Bachelor

of Engineering in Mechanical Engineering from PSG College of Technology in 2006. He

worked at M/s. TVS Motor Company in production engineering. In January 2008, he

enrolled at the University of Texas at Austin for his Ph.D. in Mechanical Engineering in

the area of manufacturing and design where Dr. Matthew I. Campbell supervised him.

His interests are in design automation and optimization.

Email: rkprad@yahoo.com

This dissertation was typed by Pradeep Radhakrishnan.

