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This dissertation uses theoretical and empirical tools to answer applied questions of

design with an emphasis on issues relating to safety and crime. The first essay incorporates

safety in implementation theory and studies when and how safe mechanisms can be designed

to obtain socially desirable outcomes. I provide general conditions under which a social

choice rule can be implemented using safe mechanisms. The second essay is an empirical

study of how criminals respond to changing profitability of crime, a question that informs

the policy debate on the most effective crime fighting methods. I find that the price elasticity

of theft is about 1 in the short term and increases to about 1.2 over a seven-month hori-

zon, suggesting that policies that directly affect crime profitability, such as policies that shut

down black markets or those that reduce demand for illegal goods, can be relatively effective.

The third essay shows that any standard implementation problem can be formulated as a

question about the existence of a graph that solves a graph coloring problem, establishing

a connection between implementation theory and graph theory. More generally, an imple-

mentation problem can be viewed as a constraint satisfaction problem, and I propose an

algorithm to design simple mechanisms to solve arbitrary implementation problems.
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Chapter 1

Safety in Mechanism Design and Implementation

Theory

Chapter Summary

A mechanism is unsafe if a small number of agents deviating unexpectedly can make

the mechanism deliver an outcome regarded as bad by a large number of other agents. Under

Nash behavior, the direct approach of designing mechanisms with only safe Nash equilibria

is impossible in many environments. A weaker approach (double implementation in Nash

and safe equilibria) making just some Nash equilibria safe is enough to guarantee safety of

players in equilibrium with mild behavioral assumptions. In general, to be safe, a mechanism

must restrict the set of outcomes that agents can achieve by deviating, introducing a tradeoff

between safety and individual autonomy. Also, requiring a mechanism to have safe equilibria

implement F may require that other equilibria deliver outcomes that are socially undesirable.

1.1 Introduction

We introduce a notion of safety as robustness of agents’ welfare to unexpected de-

viations by others. Such robustness is crucial in the current global environment, where

malicious intentions, seemingly irrational behavior, mistakes, accidents, or miscommunica-

tion can all lead to disasters. Without safety constraints, a mechanism leaves participants

exposed to arbitrarily harmful outcomes resulting from unexpected deviations by others –

arguably unacceptable, especially as mechanism design extends its reach to more applied
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settings. Despite the considerable importance of safety, it has received very little attention

in the mechanism design and implementation theory literature.

The canonical mechanism for Nash implementation Maskin (1999) lacks any safety

properties. In an example in section 1.2.2, we will see that, in general, at any Nash equilib-

rium (NE) of Maskin’s mechanism, a single player can impose the most undesirable outcome

on all others by deviating. The lack of safety in Maskin’s mechanism applies to many mech-

anisms in the literature.

Our precise understanding of safety, and exactly what aspects of robustness make a

mechanism “safe”, have important implications for the analysis and interpretation of this

paper’s results. We highlight two important aspects.

First, we aim to protect players from deviators, regardless of the incentives to deviate.

A mechanism can sometimes count on players being self interested for safety of others. For

example, many city roads do not have safeguards against drivers driving on the wrong side

of the road because doing so would harm those drivers. In such settings our definition of

safety may be too strong. However, there are many situations where a designer may wish

to assure safety regardless of the incentives associated with deviating: to protect against

actions of players intending to harm others without regard to their own utility, irrational

behavior, mistakes, accidents, miscommunication; or in situations where deviations can be

very costly as in high speed freeways or flying a passenger jet where one person can hurt

many more. In any of those cases we insist on more regulations because incentives against

deviating cannot be counted on to provide safety, making it necessary to adopt an idea of

safety that focuses instead on the potential impact of deviations. This is precisely what our

notion of safety allows us to do.

Second, we consider safety of players from unexpected deviations. We let players be

entirely unprepared for deviations from equilibrium by others; players may wish to behave
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differently if they suspected the existence of deviators, as is plausible in many realistic en-

vironments. This is in contrast to Eliaz (2002), where all players know that deviations from

equilibrium may occur, and all have accurate and identical beliefs about the maximum num-

ber of players who may deviate. Players may be prepared for deviations in some problems,

and it is interesting to consider robust mechanisms that work well in such settings, as in

Eliaz (2002); however, our approach applies to situations where players are unprepared for

deviations. For example, a kidney exchange designer may wish to make agents safe from un-

expected behavior by others (e.g. intentionally transmitting deadly viruses) without relying

on agents’ expectations of such behavior. We also note that, in reality, mechanisms are often

stopped and operations are halted if it is suspected that malicious agents who may harm

others are present. Additionally, assuming best-responding players is cognitively demanding

in the presence of deviators who may deviate in arbitrary ways. Our approach places the

bulk of the safety burden on the designer, who aims to protect unprepared players from

unexpected, harmful actions by others.

Combining these aspects results in a robust, intuitive notion of safety that can be

applied to examine the safety properties in virtually any setting. We define a (d̄, v̄)-safe

message profile to be one at which a deviation by any d̄ players (the deviators) can result

in at most v̄ victims among the non-deviators. We apply our safety concept to the standard

implementation problem by defining a victim to be a player who attains an outcome within

that player’s least favorite K outcomes, where K is set by the designer.

One implication of the deviations being unexpected is that we do not count on the

players to protect themselves in any way – they do not expect deviations from equilibrium.

So, we must assume that they play a Nash equilibrium (or any other equilibrium notion of

choice) without any regard for safety. In this paper we focus on safety in conjunction with

the Nash equilibrium as a solution concept.

We show that the most direct approach of requiring all Nash equilibria to be safe is
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impossible in many environments. We define strong (d̄, v̄)-safe implementation to be Nash

implementation with the added restriction that all Nash equilibria at any preference profile

are (d̄, v̄)-safe. Strong (d̄, v̄)-safe implementation is an attractive form of safe implementation:

every desirable social outcome is obtainable via a Nash equilibrium of the mechanism, and

every Nash equilibrium is (d̄, v̄)-safe and leads to a desirable social outcome. Behavioral

assumptions on the players are weak because simply playing a Nash equilibrium assures

safety. We show that, in the most basic environment, strong safe implementation imposes

unnatural restrictions on preferences that are unlikely to hold in many cases.

Is all hope lost? No. The assumption that all Nash equilibria are safe is overly

restrictive and it is not needed. If only some Nash equilibria are safe, and if the designer can

incentivize players away from the unsafe Nash equilibria, then safety is guaranteed. This is

the motivation behind our use of double implementation in safe and Nash equilibria, which

we build up to by first considering a weak notion of safe implementation.

We consider next a weaker form of implementation, called (d̄, v̄)-safe implementation,

requiring the following two properties at any preference profile: all desirable outcomes can

be obtained via Nash equilibria that are safe, and all Nash equilibria that are safe lead to

desirable outcomes. We call a Nash equilibrium that is also safe a (d̄, v̄)-safe equilibrium.

(d̄, v̄)-Safe implementation is equivalent to (full) implementation in (d̄, v̄)-safe equilibria;

it has the drawback that unsafe Nash equilibria may exist and may lead to undesirable

outcomes. However, safe implementation forms the basis for implementing social choice rules

in a safe way, and it is of theoretical importance for several reasons. First, it can inform us

about the existence of social choice rules that are Nash, but not safe, implementable, and

safe, but not Nash, implementable. This is important for understanding the trade-offs of

safety. Second, by satisfying the minimum requirements that are needed for implementing

social choice rules in a safe way, it can be used as a step towards more desirable forms

of implementation. We give conditions that are necessary for safe implementation, and
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sufficient with mild preference restrictions.

Finally, we consider double implementation in both (d̄, v̄)-safe and Nash equilibria.

Double implementation in this case is equivalent to safe implementation with the added

requirement that all Nash equilibria (including unsafe ones) lead to desirable outcomes.

Thus, it lies between strong safe implementation and safe implementation in restrictiveness:

it allows for some unsafe Nash equilibria, but it constrains all of them to lead to desirable

outcomes. We allow for simple transfers when considering double implementation. We give

conditions that are both necessary and sufficient for double implementation when n > 2,

d̄ < n/2, and the designer does not have access to precise cardinal preference information.

Besides being of interest in its own right, double implementation guarantees that players will

always be safe in equilibrium with very mild behavioral assumptions that are unrelated to

safety.

We discuss the interplay between safety and freedom. We distinguish between neg-

ative freedom: freedom from harm, and positive freedom: freedom to obtain a different

outcome. We measure positive freedom by how many outcomes a player can obtain via a

potential deviation at equilibrium. We show that, in general, every player will have no more

positive freedom in a safe mechanism than in one that disregards safety. We also show that

positive freedom becomes more restricted as mechanisms become safer.

We show that, in general, there is a trade-off between safety and efficiency. There

are situations where the designer must choose between Nash implementation and safe im-

plementation, and where both are not possible together (double implementation fails). In

those problems, if the designer chooses safe implementation, then it must come at the cost

of Nash equilibria that lead to outcomes outside the social choice rule. To the extent that

social choice rules attempt to select efficient outcomes, undesirable outcomes that are not in

the social choice rule will be inefficient.

We prove a “no guarantees” result showing that, in a wide range of environments,
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absolute safety (d̄ = n−1 and v̄ = 0) leads to non-existence of Nash equilibria, making Nash

implementation with guarantees impossible. Throughout the paper, we use as an example

the design of a hiring mechanism in which candidates have multidimensional quality and we

contrast a safe mechanism with one that ignores safety.

The following subsection reviews the related literature, and the rest of the paper

is organized as follows. Section 1.2 motivates the need for safety using an example and

introduces our notion of safety. Section 1.3 presents our main results and section 1.4 discusses

the relationship between safety, freedom, and efficiency, and presents the “no-guarantees”

result. Section 1.5 expands on the details of our results and presents the mechanisms used in

implementation. Section 1.6 illustrates the benefits of using safe mechanisms in a setting of

hiring with multidimensional quality, and discusses safety in the context of Condorcet social

choice functions. Section 1.7 discusses our safety concept and notions of implementation in

more detail. Section 1.8 discusses further work and concludes.

1.1.1 Related Literature

Conceptually, there are two strands of robust implementation theory closely related

to this paper. However, the robust implementation literature almost exclusively focuses on

robustness of the outcome of the mechanisms, whereas we focus on robustness of players’

welfare: (1) Eliaz (2002) defines robustness as the inability of a deviating minority to affect

the outcome of the game used in implementation; in our approach, mechanisms do not have

to be robust in this sense; rather, deviators can change the outcome of the mechanism, but we

want to avoid them causing “disasters” for others. As previously mentioned, another essential

feature distinguishing this paper from Eliaz (2002) is our focus on unexpected deviations.

(2) Bergemann and Morris (2005) define robustness as insensitivity of the outcome of the

mechanism to informational assumptions such as common knowledge, thus, they focus on a

different concept of robustness and on the outcome of the mechanism.
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This paper is the first in the implementation literature to consider robustness of

players’ welfare as opposed to robustness of outcomes. The distinction is important, because

different robustness requirements lead to different sets of implementable social choice rules.

In many applications (e.g. public good problems), the actual outcome of the mechanism is

only of secondary importance to the designer and may only matter due to its indirect effect

on the welfare of the players. It is then desirable to design mechanisms that have some

robustness properties with respect to the welfare of the players directly.

In the game theory and computer science literature, some equilibrium concepts con-

sider various forms of robustness to deviations as part of the solution concept. Halpern (2008)

defines a k-resilient Nash equilibrium to be a Nash equilibrium where coalitions of up to k

players do not gain by deviating. This is related to the literature on strong Nash equilibria

and coalition proof Nash equilibria. Aumann (1960) defines a strong Nash equilibrium (NE)

to be a message profile where there are no multilateral profitable deviations. In Aumann’s

definition, the deviations need not be resistant to further multilateral deviations. Bernheim

et al. (1987) argue that Aumann’s definition is too strong. They define a coalition-proof NE

to be a message profile where there are no multilateral profitable deviations that are also

resistant to further deviations by “subcoalitions”. This is weaker than Aumann’s definition

because the set of deviations to be considered is smaller. These solution concepts focus only

on incentives to deviate, whereas we focus on consequences of deviations from equilibrium.

Some equilibrium concepts that do discuss consequences of deviations from equilib-

rium do so from a similarity motivation: the idea that players should behave similarly

in similar situations. Such refinements include trembling hand perfect equilibrium (Selten

(1975)) and essential equilibrium (Wu and Jiang (1962)). The trembling hand perfect and

essential equilibria require the existence of a NE close to the original one if the messages of

the players and the payoffs, respectively, are perturbed slightly. The similarity motivation for

refinements focuses on the effect of deviations from a NE on the behavior of the players, but
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does not explicitly address the impact of deviations by some on utilities of others. Another

notion of equilibrium in the literature that attempts to capture some of the effect of play-

ers on each other is risk dominance (Harsanyi and Selten (1988)). Risk dominance selects

equilibria based on the willingness of rational players to deviate if they take the riskiness of

different equilibria into account. It is based on the idea that players best-respond to beliefs

about deviations by others, whereas we consider situations in which players are unprepared

for deviations from equilibrium.

Game theoretic equilibrium concepts are ultimately concerned with prediction, but

our objective is different: it is to consider when and how it is possible to design mechanisms

with desirable robustness properties. The differing objectives imply that desirable aspects

of robustness, and the motivations for studying them, may also differ, but this paper’s focus

on robustness to deviations from equilibrium is generally supported by similar concerns in

game theory.

Robustness from arbitrary deviations by some players is an idea with a long history

in computer science, where deviators are often referred to as “Byzantine” or “faulty.” For

example, Halpern (2008) discusses a robustness property called t-immunity, where a profile

is t-immune if no player who does not deviate is worse off if up to t players deviate in

an arbitrary way. This robustness property is very similar to the more general robustness

concept we consider in this paper1, and its use in computer science supports our view that

such robustness is important to consider in applications.

1Note that t-immunity sets v̄ = 0 and uses a “relative” notion of victimization; see our discussion about
relative notions of victimization in section 1.7.
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1.2 Motivating Example and a Notion of Safety

This section motivates the need for safety in mechanisms and presents our safety

concept.

1.2.1 Preliminaries

We first introduce some notation that will be used throughout the paper. Let A =

{a1, . . . , ax} be the set of outcomes and I = {1, . . . , n} be the set of players. Each individual

i ∈ I has a preference relation Ri over the set of outcomes, A. The collection of preference

relations for all individuals is called a preference profile and is denoted by R ≡ (R1, . . . , Rn).

Associated with each preference relation Ri is a strict preference relation Pi. The set of all

permissible preference profiles is denoted by R and we let Ri be the set of all permissible

preference relations for a specific player i ∈ I. A mechanism is a pair (M, g), where M =

×i∈IMi is the product of message spaces for each player and g : M → A is an outcome

function. A typical element of Mi is a message for player i ∈ I, denoted by mi, and a

collection of such messages is called a message profile and denoted by m = (m1, . . . ,mn).

For B ⊆ I, let MB := ×i∈BMi and let (m′B,m−B) denote a message profile in M with players

in B reporting m′B ∈ MB and those in I\B reporting m−B ∈ MI\B. For q ∈ {1, . . . , n}, let

Iq be the set of all subsets of I of size q.

A mechanism (M, g), together with a preference profile R defines a normal form

game. A social choice rule (SCR) or a social choice correspondence (SCC) is a function

F : R → 2A\{∅}. When F is single valued, i.e. F : R → A\{∅}, it is called a social choice

function (SCF). A solution concept is a prediction specifying the message profiles, called

equilibria, we expect players to play in a game. If S is a solution concept and Γ = (M, g)

is a mechanism, we denote the set of all equilibrium profiles under preference profile R by

SΓ(R) ⊆M . The set of outcomes associated with SΓ(R) is denoted by g(SΓ(R)). A SCR (or

SCF) is implementable in a solution concept, S, if there exists a mechanism Γ = (M, g) such
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that g(SΓ(R)) = F (R) for all R ∈ R. We use NE to denote the use of Nash equilibrium as

a solution concept.

1.2.2 Motivating Example: Hiring with Multidimensional Quality

Consider a board of directors with n ≥ 4 members, I = {1, . . . , n}, where each

member j ∈ I has a different background, bj ∈ {b1, . . . , bn}. The board is deciding on hiring

a CEO from among x candidates, A = {c1, . . . , cx}. Candidates have skill levels sci drawn

from a continuous, atomless, distribution with support on [0,m], and potentially different

backgrounds, bci ∈ {b
1, . . . , bn}, i ∈ I. We assume that there is at least one candidate with

each of the backgrounds.

The members’ preferences are as follows: each member j ∈ {1, . . . , n} prefers more

skilled candidates, but gives a “bonus” premium pj to candidates with a matching back-

ground. Hence, a member j sorts the candidates according to a score for each candidate ci

given by sci + pj1{bci = bj}.

We assume that there are no ties in the skill levels of the candidates or the scores

given to the candidates by any member so that all preferences of the members are strict.

The desirable social choice function (SCF), F , selects the candidate with the highest

skill level. Hence, any mechanism that implements F must always select the highest skilled

candidate.2 Consider Maskin’s mechanism (Maskin (1999)). The SCF satisfies no veto power

and Maskin monotonicity. In this mechanism each member’s message space is A ×R × N,

2It must then be possible to deduce which candidate is the highest skilled from a given preference profile
of the members. In this environment, a candidate ci is more skilled than candidate cj if and only if at least
n − 1 members rank candidate ci higher than candidate cj : if ci is more skilled than candidate cj then
all members, except possibly for the member with the same background as cj , will rank ci higher than cj ;
similarly, if at least n− 1 members rank a candidate ci higher than a candidate cj , then it must be that ci
is more skilled than cj . Hence, if the preference profile were known then a SCF can not only deduce the
highest skilled candidate, but can also rank the candidates according to skill.
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where R is the set of possible preference profiles. Let (ai, Ri, zi) denote a message reported

by member i ∈ I. Given a message profile, m = (m1, . . . ,mn), the mechanism selects the

outcome g(m) as follows:

Rule 1 If m is such that all members agree on a report, say (a,R, z), and if a ∈ F (R) then

g(m) = a.

Rule 2 Suppose all members agree on (a,R, z) with a ∈ F (R), except for one member i

who reports (ai, Ri, zi) 6= (a,R, z). If ai is weakly less preferred to a for member i

under Ri then g(m) = ai; otherwise, g(m) = a.

Rule 3 In all other cases, let g(m) = aq
∗

for q∗ = max{q ∈ I : zq = maxj z
j}.

This mechanism has virtually no safety properties: there are always n − 1 members

who can each get the mechanism to select the least skilled candidate by deviating alone from

any Nash equilibrium. There are always n−1 members who can each deviate from any Nash

equilibrium under Rules 2 or 3 and enforce, via Rule 3, any outcome. Suppose R is the true

preference profile and (a,R′, z) is a NE under Rule 1. By implementation a is the highest

skilled candidate under R and R′ (if it is not the highest skilled under R′ then it would not

be in F (R′) and (a,R′, z) would not fall under Rule 1). Thus, the least skilled candidate

is less preferred than a by at least n − 1 members under R′. Rule 2 allows any member to

deviate and get any outcome that is less preferred for that member under the preferences

reported by others. Hence, at least n − 1 members can each deviate to Rule 2 and force

the mechanism to select the least skilled candidate. Therefore, it takes only one member

reporting the least skilled candidate for the mechanism to pick the least skilled candidate

instead of the highest skilled!

In practice such a failure can arise for many reasons: a member may intentionally try

to harm others; a member may misjudge the least skilled candidate to be the highest skilled;
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the least skilled candidate may be able to deceive one member into thinking they are highly

skilled; or simply due to a mistake or a failure in communication in reporting the messages.

The lack of safety illustrated in this example is worrisome. In Maskin’s mechanism

and many others in the literature, it is generally true that a deviation by one agent, for any

reason, can lead to unrestricted damage to others.

1.2.3 A Notion of Victimization

Safety can be viewed as limited risk, or limited exposure to harm. We must then

define what it means for a player to be harmed. In much of the mechanism design and

implementation literature, a player is mainly concerned about how the final outcome of the

mechanism ranks in that player’s preferences relative to other outcomes in some finite set.3

Thus, we can say that a player is a victim if the final outcome of the mechanism ranks too

low relative to other outcomes in that player’s preferences. Formally, a player is a victim

if the outcome of the mechanism is among the K least preferred outcomes for that player,

where K ∈ {1, . . . , x− 1} is a threshold chosen by the designer. This leads to the following

definition.

Definition 1.2.1. Given a preference profile R and an outcome a ∈ A, player i is a victim

if

|{b ∈ A : aRib}| ≤ K (1.1)

If (1.1) holds we also say that a is among the K least preferred outcomes for player i

under R. Thus, given a preference profile and an outcome we can always determine whether

a player is a victim or not.4 Definition 1.2.1 has subtle implications for cases where players

are indifferent between some outcomes, as the following example illustrates.

3We can easily accommodate infinite sets of outcomes as we explain in section 1.7.1.
4We note the inherent binary nature of the concept of a victim: a player is either a victim or not a victim.

At first glance, it may seem like this limits the applicability of our safety definition in situations where a
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Example 1. Suppose A = {a1, a2, a3}, K = 2, and there are 3 players with the following

preferences:

R1 R2 R3

a2 a1, a2 a1, a2, a3

a3 a3

a1

Then, the set of least preferred K outcomes for player 1 is {a1, a3}, for player 2 is

{a3}, and for player 3 is ∅. Hence, players who are indifferent between some outcomes will,

in general, have smaller sets of outcomes that lead to their labeling as victims; players who

are indifferent between all outcomes cannot be victimized.

Note: throughout the paper we suppress the dependence on the damage threshold,

K, to simplify the notation. However, K is used to define a victim (definition 1.2.1), so any

discussion of safety implicitly assumes a given K ∈ {1, . . . , x − 1}. Thus, changing the K

affects the safety conditions. For example, the v̄-safe outcome property, a necessary condition

we formally define in section 1.3.2.1, simply states that any outcome in the social choice rule

victimizes at most v̄ players at the preference profile where it is chosen; if K is increased

then a given outcome will victimize (weakly) more players, and, thus, a social choice rule

that satisfied the v̄-safe outcome property may fail to satisfy it after K is increased. To make

the conditions explicitly depend on K, a “victim” can simply be replaced by “a player who

obtains an outcome within the least K preferred for that player.”

1.2.4 A General Notion of Safety

If safety is freedom from exposure to harm (i.e. freedom from risk), players must be

limited in their ability to victimize others. It will thus be helpful to define a function that

designer cares about the level of damage players are exposed to. However, this can be accommodated by
letting the definition of a victim depend on the level of damage and examining the safety properties at
different damage thresholds. We allow for this possibility in our definition of a victim.
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quantifies the ability of players to victimize others. We do this using the following definition

of a victims function:

Definition 1.2.2. Given a game, (M, g,R), the victims function at message profile m ∈M

is a function Vm : {1, . . . , n− 1} → {0, . . . , n− 1} defined by

Vm
(
d̄
)

= max
B∈Id̄


 max
m
′
B∈MB


∑

i∈I\B

1 {i is a victim}






The victims function specifies the maximum number of victims that d̄ players, which

we refer to as deviators, can create by potentially deviating from the profile under consider-

ation. Using our definition of a victim, we can write the victims function as,

Vm
(
d̄
)

= max
B∈Id̄


 max
m
′
B∈MB


∑

i∈I\B

1
{
|{b ∈ A : g(m′B,m−B)Rib}| ≤ K

}





We can now define safety in terms of the victims function.

Definition 1.2.3. Given a game, (M, g,R), a message profile, m ∈ M , is (d̄, v̄)-safe if

Vm(d̄) ≤ v̄.

A profile is (d̄, v̄)-safe if no group, B ⊆ I, of d̄ players can obtain an outcome (by

potentially deviating from m) that leads to more than v̄ victims in I\B under R. Different

combinations of d̄ and v̄ can lead to different safety levels that may be of interest depending

on the context. Intuitively, a profile is safe if players are limited in their ability to victimize

others, leading to a formal definition of safety as freedom from exposure to harm.

Note that if v̄ ≥ n−d̄ then the safety requirement imposes no restrictions. Throughout

the rest of the paper, unless specified otherwise, v̄ will always assumed to be strictly less

than n− d̄. Also, unless indicated otherwise, referring to a message profile simply as “safe”
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implies that it is (d̄, v̄)-safe where d̄ ∈ {1, . . . , n − 1} and v̄ ∈ {0, . . . , n − 2} are set by the

designer.

It is easy to see why definition 1.2.3, using definition 1.2.1 of a victim, leads to

desirable safety properties in an implementation framework. If a message profile is (d̄, v̄)-

safe, with victimization defined using definition 1.2.1, then no group of d̄ players can deviate

and cause more than v̄ of the rest to get an outcome that ranks too low (among the least

K favorite) in their preferences. Thus, groups of deviators cannot significantly hurt others,

ruling out “disasters” and limiting how much players can reduce others’ welfare. By choosing

d̄, v̄, and K, the designer has great flexibility and control over the desired level of safety.

Definition 1.2.3 is extremely general. Using variations on the definition of a victim, we can

use definition 1.2.3 to examine the safety properties of virtually any game. Section 1.7.1

discusses this point, and our notions of safety and victimization, in more detail.

1.3 Main Results

1.3.1 Strong Safe Implementation

We first consider a strong form of safe implementation where we require the imple-

menting mechanism to have the following properties: all Nash equilibria lead to desirable

outcomes, all desirable outcomes can be obtained via Nash equilibria, and all Nash equilibria

are safe. In this section we show that, in the most basic environment, strong safe implemen-

tation is restrictive, but in section 1.3.3 we relax some assumptions about the environment

and show that safety in equilibrium can be achieved from a weaker notion of implementation

under mild behavioral assumptions unrelated to safety.

Definition 1.3.1 (Strong (d̄, v̄)-Safe Implementation). A social choice rule is strongly

(d̄, v̄)-safe implementable if a mechanism Γ = (M, g) exists such that for any preference

profile R ∈ R, g(NEΓ(R)) = F (R) and all profiles in NEΓ(R) are (d̄, v̄)-safe.
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Strong safe implementation is simply Nash implementation with the added constraint

that all Nash equilibria of the mechanism at any preference profile are safe.

Strong safe implementation is desirable because it implies that players will be safe

as long as they play a Nash equilibrium. Unfortunately, the following Theorem shows that

strong safe implementation implies either very strong restrictions on the implementable social

choice rule or strong and unnatural restrictions on preferences that are unlikely to hold except

in very specific environments. The proof for the theorem is in the appendix.

Theorem 1.3.1. Let F be a social choice rule that is strongly (d̄, v̄)-safe implementable and

let R be the set of admissible preference profiles. Suppose a ∈ F (R) for some R ∈ R. Then

at least one of the following conditions is true:

1. a ∈ F (R′) for all R′ ∈ R.

2. If a /∈ F (R′) for some R′ ∈ R, then there exists a pair (i, b) ∈ I × A such that:

• aRib.

• bP ′ia.

• There is no preference profile where a weakly rises in every player’s preferences

relative to R and b victimizes more than v̄ players in I\{i}.

To see the intuition of Theorem 1.3.1, suppose a ∈ F (R). Nash implementation

implies the existence of a mechanism with a Nash equilibrium m with outcome a. Now,

consider what some player can obtain by deviating from m; either: (1) no player can obtain

any outcome other than a, or (2) some player can obtain some outcome other than a by

deviating. In the first case, m must be a Nash equilibrium at every other preference profile,

and implementation would necessitate that a ∈ F (R′) for all R′ ∈ R. In the second case

(suppose player i can obtain outcome b by deviating from m), at every preference profile
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where a weakly rises in the preferences of the players m must be a Nash equilibrium; requiring

that all Nash equilibria be safe must then imply that no outcome obtainable by any player

through a deviation from m (e.g. b) victimizes more than v̄ of the others at the profile where

a weakly rises in all players’ rankings.

Condition (1) of Theorem 1.3.1 says that a, a desirable social outcome at some prefer-

ence profile, must be a chosen at all other preference profiles; this is a very strong condition

on the social choice rule. If condition (1) is true for all outcomes in the range of F then F

is a trivial social choice rule: it is constant and does not depend on the preference profile.

Condition (2) of Theorem 1.3.1 is also restrictive, because it implies that relative

preference movements of one outcome impose restrictions on other outcomes. It says that if

a is not picked at some other preference profile, R′, then there must be an outcome that is

weakly less preferred by some player i atR, strictly more preferred by player i atR′, and never

victimizes too many players at any preference profile where a rises in everyone’s rankings;

this must hold for every profile that does not contain a as an outcome. This is a strict and

unnatural requirement on the preferences. For any outcome a and player i, it is unlikely that

a designer would a priori have information that some outcome (that is sometimes weakly

less preferred to a by player i and sometimes strictly more preferred) is never too low in the

rankings of other players whenever a rises in everyone’s rankings. Corollary 1.3.2 establishes

that no social choice rule is strong safe implementable if the set of preferences is sufficiently

rich, and the following paragraph explains precisely which combination of preferences make

strong safe implementation impossible.

Corollary 1.3.2. Suppose the set of preference profiles, R, includes all possible strict prefer-

ences. Then no social choice rule is strongly safe implementable.

The assumption that R includes all possible strict preferences can be relaxed and the

corollary would still hold. Intuitively, suppose a ∈ F (R) for some R ∈ R. If there is just

one preference profile that violates condition (2) of Theorem 1.3.1 then condition (1) holds
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and a must be chosen at all preference profiles. If condition (1) of Theorem 1.3.1 holds and

a victimizes more than v̄ players at some preference profile, strong safe implementation will

fail because a is always chosen. Thus, the corollary holds as long as there are preferences

where condition (2) of Theorem 1.3.1 is violated for some outcome, and as long as that

outcome can potentially victimize many players.5

Note that corollary 1.3.2 holds for any arbitrary nontrivial combination of d̄, v̄, and

K, so it is true even with the weakest safety requirements.

1.3.2 Safe Implementation

In this section we discuss a weaker notion of implementation, which we call (d̄, v̄)-safe

implementation. We provide necessary conditions of (d̄, v̄)-safe implementation and show

that they are also sufficient with mild preference restrictions when d̄ < n− 1.

For (d̄, v̄)-safe implementation, we require the following two properties at any pref-

erence profile: all desirable outcomes can be obtained via Nash equilibria that are safe, and

all Nash equilibria that are safe lead to desirable outcomes. This is equivalent to implemen-

tation in a solution concept that we refer to as a (d̄, v̄)-safe equilibrium ((d̄, v̄)-SE or simply

SE):

Definition 1.3.2 ((d̄, v̄)-Safe Equilibrium). A (d̄, v̄)-safe equilibrium is a message profile

m ∈M that is both a Nash equilibrium and (d̄, v̄)-safe.

Definition 1.3.3 ((d̄, v̄)-Safe Implementation). A social choice rule is (d̄, v̄)-safe imple-

mentable if a mechanism Γ = (M, g) exists such that for any preference profile R ∈ R,

g(SEΓ(R)) = F (R).

5A less general version of corollary 1.3.2 for social choice functions follows directly from the Muller and
Satterthwaite (1977) Theorem, which states that, under some conditions, Maskin monotonic social choice
functions are dictatorial. Theorem 1.3.1 allows for more generality in corollary 1.3.2 and makes clear how
the assumption that R includes all possible strict preferences can be relaxed.

18



Safe implementation assures the designer that any outcome in the social choice rule

can be obtained via a safe equilibrium of the mechanism. It is also logically consistent in

the sense that if we expect players to play a Nash equilibrium that is also safe (i.e. a safe

equilibrium), then all safe equilibria should lead to outcomes in the social choice rule at

any preference profile. Thus, it achieves a minimal degree of safety and forms the basis for

implementing social choice rules in a safe way.6

1.3.2.1 Necessary Conditions

This subsection shows that three conditions: v̄-safe outcome, (d̄, v̄)-safe monotonicity,

and (d̄, v̄, n)-similarity are necessary for implementation in (d̄, v̄)-safe equilibria. The first

two are necessary conditions on social choice rules; the third is a necessary condition on the

set of preference profiles when d̄ ≥ n
2
. We start first with the v̄-safe outcome property, which

intuitively follows from the (d̄, v̄)-SE definition.

Definition 1.3.4 (v̄-Safe Outcome Property). If a ∈ F (R) then at most v̄ players have

a as one of the least K favorite outcomes under R.

It is easy to see why the v̄-safe outcome property is necessary for implementation: if

implementation holds and it is not satisfied then there must be a (d̄, v̄)-SE of the implement-

ing mechanism at which there are more than v̄ victims, directly contradicting the definition

of (d̄, v̄)-SE.

An implicit implication of the v̄-safe outcome property is that the objectives of the

designer (the social choice rule) must be consistent with choosing an outcome that is not too

low in the rankings of many players. This is not restrictive in most of mechanism design,

6In this paper, we do not simply assume that players coordinate on a safe equilibrium. However, to the
extent that a safe equilibrium may be an appropriate prediction in some environments (e.g. as in Halpern
(2008)’s t-immunity), implementation in safe equilibria may be interesting in its own right.
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which generally aims to combine individual preferences to reach a collective decision in some

welfare maximizing way.

The v̄-safe outcome property is similar to the “no worst alternative” property intro-

duced by Cabrales and Serrano (2011). Cabrales and Serrano say that a SCC satisfies the

no worst alternative property if, for all players, any outcome chosen in any preference profile

is strictly preferred to some other outcome. If v̄ = 0, K = 1, and each player has a single

worst alternative then the v̄-safe outcome property is equivalent to the no worst alternative

property.

The next property, (d̄, v̄)-safe monotonicity, is a generalization of Maskin monotonic-

ity (Maskin (1999)). (d̄, v̄)-Safe monotonicity changes depending on d̄ with different general

conditions for the case of d̄ = 1 than other cases; the intuition is that, at a (d̄, v̄)-SE, uni-

lateral deviations must satisfy incentive (Nash) and safety constraints, whereas multilateral

deviations need to satisfy safety constraints only.

Definition 1.3.5 ((d̄, v̄)-Safe Monotonicity Property). For any two profiles R, R′ sup-

pose a ∈ F (R) and the following two conditions hold:

1. For all i ∈ I, if aRiy and y victimizes at most v̄ players in the set I\{i} under R, then

aR′iy and y victimizes at most v̄ players in the set I\{i} under R′.

2. If d̄ ≥ 2 then for all groups B ⊆ I of size n− d̄, if x ∈ A victimizes at most v̄ players

in B under R, then x victimizes at most v̄ players in B under R′.

then a ∈ F (R′)

The first condition of the (d̄, v̄)-safe monotonicity property states that for any player,

i, if an element in A is weakly less preferred to a under R and causes at most v̄ victims in

the set of all players excluding i, then the same holds true for that element under R′. The
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second condition states that for any group B of size n− d̄, if an element victimizes at most v̄

players in B under R then that element victimizes at most v̄ players in B under R′. Section

1.5.1 discusses safe monotonicity in more details and clarifies its relationship with Maskin

monotonicity.

The following Theorem shows that both the v̄-safe outcome property and (d̄, v̄)-safe

monotonicity are necessary for implementation in (d̄, v̄)-safe equilibria.

Theorem 1.3.3. Suppose F is implementable in (d̄, v̄)-safe equilibrium. Then F satisfies the

v̄-safe outcome property and the (d̄, v̄)-safe monotonicity property.

It is, again, easy to see why (d̄, v̄)-safe monotonicity is necessary. Suppose F is (d̄, v̄)-

safe implementable and a ∈ F (R) then there must be a (d̄, v̄)-SE, call it m, at R with a as

the outcome. If both conditions of (d̄, v̄)-safe monotonicity are satisfied going from R to R′

then m is a (d̄, v̄)-SE at R′ as well. Hence, a ∈ F (R′). A formal proof is provided in the

appendix.

Finally, we define a notion of similarity among the elements in a set of preference

profiles that will be necessary for safe implementation only when d̄ ≥ n
2
.

Definition 1.3.6 ((d̄, v̄, n)-Similarity). Given d̄, v̄, and n, let q =
⌊

n
n−d̄

⌋
be the integer

quotient from dividing n by n− d̄ (and ignoring the remainder). A set of preference profiles

R is (d̄, v̄, n)-similar if whenever {(g1, R1), . . . , (gq, Rq)}, where gi ⊆ I and Ri ∈ R, are any

q pairs such that |gi| ≥ n− d̄ and gi ∩ gj = ∅ for any i, j ∈ {1, . . . , q}, then there is at least

one outcome in A that causes v̄ or less players in gi to be victims under Ri regardless of

i ∈ {1, . . . , q}.

If a set of preference profiles, R, is (d̄, v̄, n)-similar then the preference profiles in R

are not too different from each other. Specifically, if the players are partitioned in a way to

maximize the number of groups of size n − d̄ and each of those groups reported a different
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preference profile from a (d̄, v̄, n)-similar set, then we can find an element that victimizes

at most v̄ players in each group under the profile reported by that group. The (d̄, v̄, n)-

similarity condition is a somewhat restrictive constraint on preferences, but the following

Theorem establishes its necessity when d̄ ≥ n
2
; it is not necessary for safe implementation

when d̄ < n
2
. The proof for the Theorem is in the appendix.

Theorem 1.3.4. Suppose F is implementable in (d̄, v̄)-safe equilibrium with n players on a

set of preference profiles R and suppose that d̄ ≥ n
2
. Then R is (d̄, v̄, n)-similar.

(d̄, v̄, n)-Similarity is necessary when d̄ ≥ n
2

because for (d̄, v̄)-safe implementation,

any group of size n − d̄ or larger must be able to protect its members, except at most v̄ of

them, from being victims. If d̄ ≥ n
2

then the deviators can act as if they were a group of n− d̄
or more “rational” players. The designer in this case would have no way of knowing which

group of players to protect, so the designer must make sure that all groups of size n− d̄ or

greater are protected (in the (d̄, v̄) sense). If the set of preference profiles is (d̄, v̄, n)-similar

then the designer can assure the safety of any group of size at least n− d̄.

1.3.2.2 Sufficient Conditions

In this subsection we provide preference restrictions that, along with the necessary

conditions presented previously, are sufficient for implementation in (d̄, v̄)-safe equilibria

when d̄ < n− 1.

Definition 1.3.7 ((d̄, v̄)-Exposure). A preference profile R ∈ R satisfies (d̄, v̄)-exposure if

for any subset of players B ⊆ I of size n− d̄, the set of outcomes in A that cause more than

v̄ players in B to be victims is nonempty.

(d̄, v̄)-Exposure rules out profiles where some groups of d̄ players cannot victimize

more than v̄ of the other players even if the d̄ deviators were allowed to pick any outcome

in A. These are profiles where the question of safety is vacuous for some groups: profiles
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where some groups of n− d̄ or more players are “invincible” in the sense that no outcome in

A can victimize more than v̄ in those groups (e.g. profiles where all players are indifferent

between all outcomes). In economic environments, where any group of d̄ deviators can choose

to deprive all the rest from all economic goods and split the goods among themselves, the

(d̄, v̄)-exposure condition is not restrictive.

The following Theorem establishes that the v̄-safe outcome and the (d̄, v̄)-safe mono-

tonicity properties are sufficient for (d̄, v̄)-safe implementation under the appropriate prefer-

ence restrictions that depend on d̄.

Theorem 1.3.5. Suppose F satisfies the v̄-safe outcome property and the (d̄, v̄)-safe mono-

tonicity property, admissible preference profiles satisfy (d̄, v̄)-exposure, and n > 2. If d̄ < n
2
,

or if n
2
≤ d̄ < n− 1 and the set of preference profiles is (d̄, v̄, n)-similar, then F is (d̄, v̄)-safe

implementable.

The proof for Theorem 1.3.5 is constructive and is provided in detail in the appendix.

Section 1.5.2 describes the mechanism used for implementation and outlines the steps of the

proof.

1.3.3 Double Implementation

By itself, safe implementation does not guarantee that all Nash equilibria will lead

to desirable social outcomes, because it places no restrictions on unsafe Nash equilibria.

In this section we explore double implementation in both safe and Nash equilibria. We

will show that double implementation guarantees safety in equilibrium with mild behavioral

assumptions.

Definition 1.3.8 (Double Implementation in (d̄, v̄)-Safe and Nash Equilibria). A

social choice rule is double implementable in (d̄, v̄)-safe and Nash equilibria (or simply double

implementable) if a mechanism Γ = (M, g) exists such that for any preference profile R ∈ R,

g(SEΓ(R)) = F (R) and g(NEΓ(R)) = F (R).
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Double implementation requires both Nash and safe implementation: it requires that

all Nash equilibria lead to outcomes in the social choice rule, and all outcomes in the social

choice rule be obtainable via a safe equilibrium. Because safe equilibria, when they exist,

are always a subset of the set of Nash equilibria, Nash implementation already implies that

all safe equilibria lead to outcomes in the social choice rule. Imposing safe implementation

additionally requires that any outcome in the social choice rule be obtainable via a safe

equilibrium of the implementing mechanism.

First, we introduce a necessary monotonicity condition on social choice rules that

must hold for double implementation when transfers are not allowed.

Definition 1.3.9 (v̄-Safe-Nash Monotonicity). For any two profiles R and R′, suppose

a ∈ F (R) and the following condition holds: for all i ∈ I, if aRib and b victimizes at most v̄

players in the set I\i under R then aR′ib. Then a ∈ F (R′).

Theorem 1.3.6. Suppose F is double implementable in (d̄, v̄)-safe and Nash equilibria. Then

F is v̄-safe-Nash monotonic.

To see why v̄-safe-Nash monotonicity is necessary, suppose F is double implementable

and a ∈ F (R). There must be a (d̄, v̄)-SE, call it m, at R with a as the outcome. If v̄-safe-

Nash monotonicity holds going from R to R′ then m is a Nash equilibrium at R′ as well.

Nash implementation then implies that a ∈ F (R′).

v̄-Safe-Nash monotonicity is more restrictive than Maskin and (d̄, v̄)-safe monotonic-

ity, and it implies both.7 However, we show next that if side payments are allowed and

7To see this, we can write v̄-safe-Nash monotonicity as follows: if a ∈ F (R) but a /∈ F (R′), then for
some i ∈ I and some b ∈ A, aRib and b victimizes at most v̄ players in the set I\i under R, but bP ′ia. This
directly implies the contrapositive of (d̄, v̄)-safe monotonicity (see section 1.5.1), showing that (d̄, v̄)-safe
monotonicity holds. It also implies that if a ∈ F (R) but a /∈ F (R′) then at least one player had a preference
reversal between a and a weakly lower ranked outcome at R going from R to R′, showing that Maskin
monotonicity holds.
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the v̄-safe outcome property holds, then v̄-safe-Nash monotonicity is sufficient for double

implementation in safe and Nash equilibria when d̄ < n/2.8

In the rest of this section we allow the designer to specify a vector of transfers t(m) =

(t1, . . . , tn) ∈ Rn for each m ∈M in mechanism (M, g). We use the convention that transfers

are paid to the players, so if ti is negative then player i pays |ti|. We impose no assumptions

except that there exists a large enough transfer L ∈ R so that any player would prefer to

avoid paying L (having transfer −L as opposed to 0), and would prefer a transfer of L instead

of 0, regardless of the outcome or the preference profile.

For the following, we extend preferences to be defined over sets of outcomes and

transfers A×R. If (a, 0)Ri(b, 0) then player i weakly ranks outcome a above b at preference

profile R; we often drop the transfers if they are 0 to simplify notation. We assume positive

transfers are valued positively by players at all preference profiles.

Before we proceed, we discuss some slight modifications that are needed in environ-

ments with transfers. First, to avoid trivially eliminating victims by compensating them for

bad outcomes, we constrain our mechanisms throughout to have no transfers in equilibrium.

Second, our definition of a victim requires a slight modification, because the notion of the

least K preferred outcomes may not be well defined when negative transfers are allowed.

We define a victim to be a player who obtains an outcome within their least K preferred

outcomes among the outcomes in A without consideration for transfers or who has a negative

transfer (or both). This definition also accounts for players attempting to cause harm by

imposing negative transfers on others.

The following Theorem establishes that the v̄-safe outcome and the v̄-safe-Nash mono-

tonicity properties are sufficient for double implementation when mechanisms with transfers

8v̄-safe-Nash monotonicity is, in general, not necessary for double implementation when mechanisms
utilizing transfers are allowed, unless the designer does not have precise cardinal information, as we explain
section 1.3.3.1.
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are allowed. In section 1.3.3.1 we show that they are necessary and sufficient in the absence

of precise cardinal information.

Theorem 1.3.7. Suppose n > 2, d̄ < n
2
, and F satisfies v̄-safe-Nash monotonicity and the

v̄-safe outcome property. Then F is double implementable in (d̄, v̄)-safe equilibria and Nash

equilibria using a mechanism with transfers.

The proof for Theorem 1.3.7 is constructive and is provided in the appendix. We

use the same mechanism used for safe implementation (described in section 1.5.2), but we

additionally impose a particular transfer structure, which we describe in section 1.5.3.

The following corollary shows that double implementation ensures safety in equilib-

rium with mild assumptions on behavior unrelated to safety.

Corollary 1.3.8. Suppose F is double implementable in Nash and safe equilibria using the

mechanism described in the proof of Theorem 1.3.7. Then the following is true:

1. Any unsafe Nash equilibrium is untruthful (all players report a false preference profile).

2. For any unsafe Nash equilibrium there exists a truthful, safe equilibrium that yields

the same outcome as the unsafe Nash equilibrium.

Thus, in the mechanisms we use, players gain nothing by playing an unsafe Nash

equilibrium over a safe one, and they all must lie to play an unsafe Nash equilibrium. An

important implication is that mild assumptions on collective honesty of players, or assump-

tions on truthful equilibria being focal when untruthful equilibria are payoff-equivalent, are

enough to ensure that players are always safe in equilibrium.

1.3.3.1 Necessary and Sufficient Conditions

We have shown that v̄-safe-Nash monotonicity is necessary for double implementation

in the absence of transfers, but is it necessary when transfers are allowed? In this section we
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show that if the designer does not have access to precise cardinal preference information then

v̄-safe-Nash monotonicity remains necessary, even if mechanisms with transfers are allowed.

This will lead to necessary and sufficient conditions for double implementation.

Definition 1.3.10. Suppose (a, 0)Ri(b, 0) and (a, 0)R′i(b, 0). A designer has precise cardinal

information about preferences for player i and outcomes {a, b} at preference profiles {R,R′}
if transfers t1, t2 ∈ R can be determined so that (a, t1)Ri(b, t2) and (b, t2)P ′i (a, t1), or if it can

be determined that such transfers do not exist.

Access to precise cardinal information implies a designer can determine if it is possible

to set transfers that maintain a player’s ranking of two outcomes at one preference profile,

but reverse that ranking at another preference profile. Intuitively, this implies the designer

knows how much more a player prefers one outcome to another at each of the two preference

profiles.

Theorem 1.3.9. Suppose F does not satisfy v̄-safe-Nash monotonicity, but F is double im-

plementable in (d̄, v̄)-safe and Nash equilibria. Then the designer has precise cardinal infor-

mation about preferences for some (i, a, b, R,R′) ∈ I × A × A × R × R, where a 6= b and

R 6= R′.

The intuition for Theorem 1.3.9 is as follows. If double implementation is possible

and v̄-safe-Nash monotonicity fails, then, in the absence of transfers, there is an outcome in

the social choice rule at some preference profile where every safe equilibrium yielding that

outcome of the mechanism is also a Nash equilibrium at another preference profile where

that outcome is not in the social choice rule. To make double implementation possible, the

designer must then use transfers and give at least one player a profitable deviation from the

undesirable Nash equilibria at one preference profile while maintaining their safe equilibrium

properties at another preference profile. This implies knowledge of cardinal information

about preferences as defined in definition 1.3.10.
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Theorem 1.3.9 implies that v̄-safe-Nash monotonicity is necessary for double imple-

mentation if the designer does not have precise cardinal information about preferences – as is

true in most common environments. Therefore, when precise cardinal preference information

is not available, mechanisms with transfers are allowed, n > 2, and d̄ < n/2, v̄-safe-Nash

monotonicity and the v̄-safe outcome property are both necessary and sufficient for double

implementation.9

1.4 Safety Trade-offs and Other Results

1.4.1 Freedom: the Price of Safety

Freedom can be classified into negative freedom: freedom from harm, and positive

freedom: freedom of players to obtain different outcomes in equilibrium. In Lemma 1.4.1

(section 1.4.3) we will see that safety requires the players to have certain negative freedoms;

this section shows that safety restricts players’ positive freedom. In general, every player

will have no more positive freedom in a safe mechanism than in a mechanism that disregards

safety. In addition, positive freedom becomes more restricted as mechanisms become safer.

Let the positive freedom of a player be parametrized by the number of options avail-

able to that player in equilibrium (i.e. the outcome selected at equilibrium and all outcomes

the player can obtain by deviating). A player with more options in equilibrium has more pos-

itive freedom. Let Oi(m) be the set of options available to some player i at message profile m

and let Li(a,R) ≡ {b ∈ A : aRib} be the lower contour set of player i at outcome a when the

preference profile is R (i.e. it is the set of all outcomes that are not strictly preferred by player

i to a under Ri). Suppose the preference profile is R and a is chosen by the social choice rule

at R. At any Nash equilibrium m that implements a of any mechanism, it must be true that

9The necessity of the v̄-safe outcome property follows directly from the definitions, regardless of whether
transfers are allowed or not, given our constraint that no transfers exist in equilibrium and our notion of
victimization.
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Oi(m) ⊆ Li(a,Ri); that is, the set of options available to any player does not contain any

outcome more preferred than the one selected in equilibrium. Any safe equilibrium, m′, is a

Nash equilibrium and has the property that no player can victimize more than v̄ players of

the rest by deviating. Thus, letting Gi(R) be the set of outcomes that do not victimize more

than v̄ players in the set I\i under R, it must be true that Oi(m
′) ⊆ Li(a,Ri)∩Gi(R). This

shows that if mechanisms are designed to maximize the positive freedom of players subject

to the desired constraints regarding incentives and/or safety then |Oi(m
′)| ≤ |Oi(m)| and a

player has no more positive freedom at a safe equilibrium than at a Nash equilibrium.

Now suppose we generalize the definition of positive freedom to groups of players.

Let OB(m) be the set of options available to a group of players B through a multilateral

deviation from m (including the outcome when m is played). Nash implementation imposes

no restrictions on OB(m), but at a safe equilibrium players in B must not be able to vic-

timize more than v̄ of the rest if |B| ≤ d̄. Hence, as d̄ increases, mechanisms that (d̄, v̄)-safe

implement social choice rules will be more restrictive in terms of the sets of options avail-

able to groups of players. Furthermore, as v̄ decreases and mechanisms become more safe,

guaranteeing the victimization of less players, the set of outcomes that must be ruled out

through deviations from equilibrium increases. This restricts the positive freedoms of all the

players.

Using the notation in this section, the Appendix illustrates the connection between

(d̄, v̄)-safe monotonicity and the set of options available to a player i at equilibrium m, Oi(m).

1.4.2 Safety vs. Efficiency

In some situations, the designer will face a choice between safe implementation and

Nash implementation, and both will not be possible simultaneously. The advantage of safe

implementation is that it guarantees that some Nash equilibria will be safe, and, more

importantly, that every desirable outcome can be obtained by a safe Nash equilibrium. The
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drawback is that it imposes no restrictions on unsafe Nash equilibria, meaning that they may

lead to undesirable outcomes outside of the social choice rule. Social choice rules are often

chosen in a way to maximize overall welfare, so, to the extent that this is true, outcomes

outside the social choice rule will be inefficient.

To illustrate this in our hiring example, in section 1.6 we show that double imple-

mentation in safe and Nash equilibria is indeed possible if the designer has some information

about candidates’ relative skill. If the designer does not have this information, double im-

plementation is impossible and the designer must make a choice between safe and Nash

implementation. If the designer chooses safe implementation, then there must exist Nash

equilibria that select a less skilled candidate than the highest skilled. This trade-off between

safety and efficiency extends more generally in situations where the designer must choose

between safe and Nash implementation.

1.4.3 No Guarantees

An interesting case of safe implementation not covered in Theorems 1.3.5 or 1.3.7 is

that of d̄ = n − 1, and v̄ = 0. If a social choice function is implementable in a (n − 1, 0)-

SE then the designer can guarantee each agent an outcome other than the agent’s least

favorite K ones. Many institutions and laws attempt to guarantee players a minimum level

of payoff if they follow particular messages, regardless of what other players do. This section

illustrates the difficulty with (n− 1, 0)-safe implementation in a wide range of environments

when transfers cannot be used.

The following lemma provides a necessary condition on mechanisms that implement

social choice functions in a (n− 1, 0)-SE.

Lemma 1.4.1. Suppose the set of preference profiles contains all strict preferences over A.

Any mechanism, (M, g), that implements a social choice function in a (n − 1, 0)-safe equi-

librium must be such that ∀i ∈ I and for all K-size subsets D ⊆ A, ∃mDi ∈ Mi such that
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g(mDi, m−i) /∈ D, ∀m−i ∈M−i.10

The lemma states that any mechanism used in (n − 1, 0)-safe implementation must

give every player possible messages that allow him to rule out any K outcomes in A from

being implemented regardless of the messages of the other players. The proof of the lemma

is in the appendix, but the intuition is simple. If a mechanism does not allow some player

to rule out some K elements in A, then there will be a profile of preferences where those

outcomes are the least preferred for that player but the other n−1 players have messages that

force the mechanism to select one of those outcomes, violating the conditions of (n−1, 0)-SE.

The following theorem uses the previous lemma to establish an impossibility result

for implementation of social choice functions in (n − 1, 0)-SE when preferences include all

strict preference profiles.

Theorem 1.4.2. Suppose n ≥ 2 and the set of preference profiles, R, contains all strict

preferences over A. If x ≤ nK +K
⌊
n
2

⌋
then no social choice function is implementable in a

(n− 1, 0)-safe equilibrium.

Note that the number of outcomes can be more than nK so the theorem does not

rely on the fact that ruling out the least favorite K outcomes for each player could exhaust

all the possibilities. Remarkably, this is true regardless of K ∈ {1, . . . , x − 1}; the theorem

does not count on K being large enough. Thus, the planner cannot make guarantees even

in cases where K = 1, the weakest guarantee possible.

What is most interesting about Theorem 1.4.2 is that it holds not precisely because

a designer cannot make safety guarantees, but because of an interplay between guarantees

and freedom that causes non-existence of Nash equilibria. Indeed, a designer can design a

mechanism that keeps players safe even if x > nK: simply allow them messages that rule

10This lemma can be easily extended to groups of players in general (d̄, v̄)-safe implementation.
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out their least favorite K outcomes and pick an outcome that is not ruled out. However,

the theorem shows that if x ≤ nK + K
⌊
n
2

⌋
then such a mechanism will, in general, have

no Nash equilibria because the power given to any player (to rule out any K outcomes) is

too great that players may be able to use it to deviate and obtain better outcomes. The

following example makes the intuition clear.

Example 2. Suppose a committee, I = {Member 1, Member 2, Member 3, Member 4}, of

n = 4 members is deciding on hiring a candidate from among x = 6 candidates: A =

{a1, . . . , a6}. Let K = 1. In this case x ≤ nK +K
⌊
n
2

⌋
and we know by Theorem 1.4.2 that

no social choice function is implementable in a (n− 1, 0)-SE. Even though there are more

candidates than members, no mechanism can guarantee each member a candidate better

than his least favorite. To see this clearly, let the preference profile, R, be as follows:

Member 1 Member 2 Member 3 Member 4
a2 a1 a1 a1

a3 a3 a2 a2

a4 a4 a4 a3

a6 a6 a5 a5

a1 a2 a3 a4

a5 a5 a6 a6

The choices under the solid line are those that victimize the members. Any potentially

implementable social choice function in a (n − 1, 0)-SE must never pick a5 or a6 under R.

So, consider the case when F (R) = a1. To see that no mechanism can have a (n− 1, 0)-SE

in which the outcome is a1, let the message profile m = (m1,m2,m3,m4) be a (n− 1, 0)-SE

candidate. m2 must rule out a5 otherwise we could find m′−2 such that a5 is forced as the

outcome by three members at (m′1,m2,m
′
3,m

′
4) and m would not be a (n−1, 0)-SE. Since m2

ensures that a5 will not be selected, Member 1 would rather deviate and choose a message

that ensures that a1 is not selected in order to get one of a2, a3, a4, or a6. We know that

such a message exists by Lemma 1.4.1, so (m1,m2,m3,m4) is not an equilibrium because

Member 1 has a profitable deviation.
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The same intuition extends to cases where F (R) ∈ {a2, a3, a4}. Using similar logic,

Member i ∈ {2, 3, 4} would have a profitable deviation from any (n− 1, 0)-SE if F (R) = ai,

leading to a contradiction.

Despite the proof of Theorem 1.4.2 relying on richness of the preference space, the

problem with non-existence of Nash equilibria does not disappear in environments with more

restricted preferences. The essence of the problem is that each player will have “free” veto

power over any l ≤ K outcomes if l of that player’s least favorite outcomes are also among

the K least favorite of some others. Thus, if a player does not like the outcome chosen,

they will (under very weak preference conditions) be able to veto it. Even if K = 1, the

weakest safety guarantee possible, weak preference restrictions will imply that in general

many players can veto outcomes they don’t like. This can easily become problematic when

attempting to implement desirable social choice functions.

Note also that the assumption of all strict preferences being admissible can be relaxed.

Lemma 1.4.1 and Theorem 1.4.2 only need that the planner does not ex-ante know which

outcomes are among the least favorite 2K for each player. This can be seen from example

2; the first 4 rows of the preferences can be arbitrarily modified and the example would still

hold.

1.5 Discussion of Results

1.5.1 Safe Monotonicity

To understand (d̄, v̄)-safe monotonicity better, we can express it differently. For any

two profiles R, R′ suppose a ∈ F (R) but a 6∈ F (R′). Then F is (d̄, v̄)-safe monotonic if one

of the following conditions hold:

1. For some i ∈ I and y ∈ A, aRiy and y victimizes at most v̄ players in the set I\{i}
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under R, but either yP ′ia or y victimizes more than v̄ players in the set I\{i} under

R′.

2. d̄ ≥ 2 and there is some group B ⊆ I of size n − d̄ and some x ∈ A such that x

victimizes at most v̄ players in B under R but victimizes more than v̄ players in B

under R′.

It is useful to compare (d̄, v̄)-safe monotonicity with Maskin monotonicity. Maskin

monotonicity says that if an outcome is chosen at a particular profile and this outcome is

not chosen in another profile then some player must have had a preference reversal where

this outcome fell relative to another between the two profiles.

(d̄, v̄)-Safe monotonicity is equivalent to Maskin monotonicity when d̄ = 1 and v̄ =

n− d̄. In this case the second condition in (d̄, v̄)-safe monotonicity never plays a role and it

is impossible for a player to victimize more than v̄ of the rest so the first condition reduces to

simple preference reversals, which is the essence of Maskin monotonicity. For more general

combinations of d̄ and v̄, Maskin monotonicity does not imply (d̄, v̄)-safe monotonicity and

(d̄, v̄)-safe monotonicity does not imply Maskin monotonicity, but both have a nonempty

intersection. The following examples illustrate these facts.

Example 3. Let A = {a, b, c} and K = d̄ = v̄ = 1 and consider a social choice function

given by F (R) = a and F (R′) = c, where R and R′ are given by

R1 R2 R3 R′1 R′2 R′3
a a b c c a, b, c
b b a a a
c c c b b

F satisfies Maskin monotonicity trivially because players 1 and 2 have preference

reversals between the chosen outcome and a less preferred one across profiles in both direc-

tions.

34



Next, we check (d̄, v̄)-safe monotonicity. Note that because d̄ = 1, the second condi-

tion of (d̄, v̄)-safe monotonicity does not play a role. Also, since K = 1, a player is victimized

by some outcome if that outcome is the least preferred for that player. Because a ∈ F (R),

condition (1) of (d̄, v̄)-safe monotonicity holds (going from R to R′) if for each player i, the

set of outcomes weakly less preferred to a that victimize at most v̄ = 1 players in I\{i}

weakly grows going from R to R′. We check this next:

• For player 1 at R, the set of outcomes weakly less preferred to a that victimize at most

one of the players in the set {2, 3} is {a, b}. At R′ that set is {a, b}.

• For player 2 at R, the set of outcomes weakly less preferred to a that victimize at most

one of the players in the set {1, 3} is {a, b}. At R′ that set is {a, b}.

• For player 3 at R, the set of outcomes weakly less preferred to a that victimize at most

one of the players in the set {1, 2} is {a}. At R′ that set is {a, c}.

Thus, condition (1) of (d̄, v̄)-safe monotonicity holds going from profile R to R′. However,

a /∈ F (R′), so (d̄, v̄)-safe monotonicity is not satisfied and F is not (1,1)-safe implementable

with K = 1. Hence, Maskin monotonicity does not imply (d̄, v̄)-safe monotonicity.

Note: if F (R′) is modified to be {a, c}, then (d̄, v̄)-safe monotonicity is satisfied, show-

ing that Maskin monotonicity and (d̄, v̄)-safe monotonicity have a nonempty intersection.

Example 4. Let A = {a, b, c} and K = d̄ = v̄ = 1 and consider a social choice function

given by F (R) = a and F (R′) = c, where R and R′ are given by

R1 R2 R3 R′1 R′2 R′3
a a b a, c a, c a, c
b b a b b b
c c c
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Maskin monotonicity is not satisfied: a weakly rises in all players’ ranking going from

R to R′, but a /∈ F (R′). However, (d̄, v̄)-safe monotonicity is trivially satisfied: for player 1

at R, the set of outcomes weakly less preferred to a that victimize at most one of the players

in the set {2, 3} is {a, b}. At R′ that set is {a, c}. Because {a, b} * {a, c}, condition (1)

of (d̄, v̄)-safe monotonicity fails going from R to R′. Going from R′ to R, a is weakly less

preferred to c and victimizes no players at R′, but it is strictly more preferred to c by all

players at R. Thus, condition (1) also fails going from R′ to R and (d̄, v̄)-safe monotonicity

holds trivially. This shows that (d̄, v̄)-safe monotonicity does not imply Maskin monotonicity.

1.5.2 Safe Implementation Mechanism

We describe here the mechanism used to prove Theorem 1.3.5 and outline the steps

of the proof. The same mechanism is also used in the proof of Theorem 1.3.7, but we add

additional transfers to each of the rules; we discuss those transfers in section 1.5.3. The

mechanism depends on whether d̄ < n
2

or n
2
≤ d̄ < n − 1. We describe first the mechanism

for the case of d̄ < n
2
. Each player reports an outcome in A, a preference profile from R, and

an integer in {1, . . . , n}. Hence, the message space for each player is A×R×{1, . . . , n}, and

a message for player i is denoted by (ai, Ri, zi). The outcome function, g(·), is determined

as a function of the message profile, m, as follows:

Rule 1 If m is such that all players agree on a report, say (a,R, z), and if a ∈ F (R) then

g(m) = a.

Rule 2 Suppose all players agree on (a,R, z) with a ∈ F (R), except for one player i who

reports (ai, Ri, zi) 6= (a,R, z). If ai is weakly less preferred than a for player i under

R and if ai does not victimize more than v̄ players in the set I\{i} under R then

g(m) = ai; otherwise, g(m) = a.
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Rule 3 Suppose d̄ ≥ 2 and all players agree on (a,R, z), except for a set of players B who

submit different reports and 1 < |B| ≤ d̄. Let B′ be the set of players in B who

report an outcome that does not victimize more than v̄ players in I\B. If B′ is not

empty, then sort the players in B′ from lowest to highest according their index, rename

player i ∈ B′ by the new sorted order qi ∈ {1, . . . , |B′|}, and let g(m) = aq
∗
i , where

q∗i = 1 + ((
∑

i∈B′ z
i) mod |B′|) is the q∗i ’th player in B′; otherwise g(m) = a.

Rule 4 In all other cases, g(m) = aj for j = 1 + ((
∑

i∈I z
i) mod n).

Rule 1 allows players to get any outcome in F if they all agree on the report submitted.

Rule 2 allows a player to deviate from a consensus and receive any outcome if that outcome

is weakly less preferred for that player and if that outcome does not victimize more than v̄

of the others under the profile reported by the other players. Rule 3 allows a set of players of

size at most d̄ to deviate and receive any outcome as long as that outcome does not victimize

more than v̄ of the other players under the profile reported by the others. Finally, Rule 4 is

a modulo game allowing any player to get any outcome they desire.

The proof must show that any outcome in F can be obtained as the outcome from

a (d̄, v̄)-SE of the mechanism above and any (d̄, v̄)-SE of the mechanism maps into F . The

first part is simple; suppose R is the true preference profile and suppose a ∈ F (R). The

profile m given by mi = (a,R, 1) is a (d̄, v̄)-SE of the mechanism under Rule 1 that leads to

g(m) = a. To see that m is a (d̄, v̄)-SE, note that no player has an incentive to deviate due

to Rule 2, and no set of players of size at most d̄ can victimize more than v̄ of the rest due

to Rules 2 and 3. Hence, any outcome in F can be obtained as the outcome from a (d̄, v̄)-SE

of the mechanism.

An observation crucial to completing the second part of the proof is that no (d̄, v̄)-SE

of the mechanism above can exist under Rules 2, 3, or 4. This is because under these rules

there is always a set of players of size d̄ that can, via Rule 4, obtain any outcome in A.
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By assumption, the preference profile satisfies (d̄, v̄)-exposure so there is some outcome in

A that victimizes more than v̄ players in each set of players of size n − d̄. This implies

that a set of d̄ players can victimize more than v̄ of the rest, violating the definition of a

(d̄, v̄)-SE. Hence, the only (d̄, v̄)-safe equilibria of the mechanism are under Rule 1. Now,

for any (d̄, v̄)-SE (mi = (a′, R′, z′)) under Rule 1, Rules 2 and 3 imply that the conditions of

(d̄, v̄)-safe monotonicity are satisfied for R, which shows that a′ ∈ F (R).

If n
2
≤ d̄ < n− 1 the proof remains unchanged except that the set of possible profiles

is assumed to be (d̄, v̄, n)-similar and rule 3 of the mechanism is modified to be:

Rule 3 A group of players is called a consensus group if all the players in that group agree

on a report and no player outside the group agrees with the players in the group.

Suppose rule 2 does not apply and suppose there are p consensus groups, each of size

n− d̄ or more players.

• Case 1. If there is only one consensus group, call it B1, then let g(m) = aq for

q = max{j ∈ I\B1} if no element in the set {aj : j ∈ I\B1} victimizes more

than v̄ players in set B1 under the profile reported by players in B1; otherwise set

g(m) = ā1, where ā1 is the outcome reported by players in B1.

• Case 2. If there are multiple consensus groups then pick an outcome that does not

victimize more than v̄ players in any of the consensus groups under the profiles

reported by the players in the groups. Such an outcome exists because of the

assumption that the set of preference profiles is (d̄, v̄, n)-similar.

The function of the first case in the modified rule 3 is to allow a group of d̄ deviators

from rule 1 to achieve any outcome they desire as long as that outcome does not victimize

more than v̄ players of the rest. This is needed to allow the (d̄, v̄)-safe monotonicity con-

dition to work. The second case is for profiles where it is impossible for the designer to
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distinguish between the deviators and the non-deviators. We use the assumption that the

set of preference profiles is (d̄, v̄, n)-similar to allow the designer to pick an outcome that

does not victimize more than v̄ players in any consensus group of size n− d̄ or more.

1.5.3 Double Implementation Mechanism

The mechanism we use in the proof of Theorem 1.3.7 is the same as the one used for

safe implementation, except that we also add the following transfer scheme modification:

Transfer Scheme 1

Rule 1 All transfers are zero under rule 1.

Rule 2 Suppose all players agree on (a,R, z) with a ∈ F (R), except for one player i who

reports (a′, R′, z′) 6= (a,R, z). If R′ 6= R and z′ 6= z then all transfers are zero; otherwise

player i is fined L.

Rule 3 Under this rule d̄ ≥ 2 and all players agree on (a,R, z), except a set of players B

who submit different reports and 1 < |B| ≤ d̄. Impose a fine L on all players in B

unless the following is true: |B| = 2, call them players i and j, with player i reporting

(a′, R′, z′) and player j reporting (a′′, R′′, z′′), with R′ 6= R, z′ 6= z, R′′ = R, and

z′′ = z′, then impose a transfer L from player i to player j.

Rule 4 Each player reporting some z ∈ {2, . . . , n} obtains a transfer L from each player

reporting z − 1, and any player reporting z = 1 obtains a transfer L from any player

reporting z = n.

The proof of Theorem 1.3.7 (see the appendix) shows that no Nash equilibria exist

under rules 2,3, or 4 of the mechanism described in section 1.5.2 when Transfer Scheme 1

is imposed. For example, consider rule 2. Player i can choose whether to be fined or not
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without affecting the outcome. If a Nash equilibrium exists under rule 2 then no players will

be fined, but in that case the transfer scheme allows a “whistleblower” to reveal the unsafe

situation by deviating to rule 3 and obtaining a transfer of size L from player i. Thus, no

Nash equilibria exist under rule 2. The proof also shows that no Nash equilibria exist under

rules 3 or 4.

1.6 Example: Hiring with Multi-Dimensional Quality

For the motivating example in section 1.2.2, consider safety with d̄ = v̄ = K = 1.

With the environment described for the problem, the least skilled candidate will be the least

preferred for at least n−1 members. Hence, protecting members from deviations by any one

(d̄ = 1) that cause them to get their least favorite outcome (K = 1) and allowing at most 1

member to be victimized (v̄ = 1) results in protection from the least skilled candidate being

selected through a one-member deviation.

We first show that the assumptions of Theorem 1.3.5 are satisfied.

Suppose F (R) = a so that a is the candidate with the highest skill. Because there

are at least 4 candidates in 4 different backgrounds and members rank candidates with

backgrounds other than their own based on skill only, no member will have a as their least

favorite outcome. Hence, the v̄-safe outcome property is satisfied.

To show that (d̄, v̄)-safe monotonicity holds, assume F (R) = a, the first condition of

(d̄, v̄)-safe monotonicity holds11 moving from R to R′, but (to show a contradiction) suppose

F (R′) = b 6= a. Because v̄ = 1, the first condition of (d̄, v̄)-safe monotonicity implies that

any candidate that is not the least skilled at R and is weakly less preferred than a by some

member must remain weakly less preferred than a by that member at R′ and also not be the

least skilled at R′. Two implications follow. First, a is not the least skilled at R′. Second, it

11Only the first condition applies because d̄ = 1.
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must be that b was the least skilled at R, otherwise it could have only fallen relative to a in

ranking at R′ and a would be ranked higher than b by at least n− 1 members at R′ causing

b to not be chosen at R′. Because b is chosen at R′, it must be more preferred than a by

at least n− 1 members. At R′, the least skilled candidate is a candidate other than b or a,

call it c. As mentioned earlier, the least skilled candidate will be the least preferred by at

least n− 1 members. Because a was the highest skilled at R, there must exist a member to

whom c was less preferred than a at R and not the least preferred (because b is the lowest

skilled candidate at R), but c becomes the least preferred at R′, victimizing at least n − 1

members. This violates the monotonicity condition leading to a contradiction.

Finally, we show that any preference profile arising from the environment described

will satisfy (d̄, v̄)-exposure. For any subset of members B of size n − 1, the lowest skilled

candidate must be ranked lowest by at least n − 2 members in B. Because n ≥ 4, the

lowest skilled candidate victimizes at least 2 members in any group of size n− 1, satisfying

(d̄, v̄)-exposure.

Because all the conditions of Theorem 1.3.5 are satisfied, we can directly use the

mechanism given in the proof to (d̄, v̄)-safe implement F . (d̄, v̄)-safe implementation of F

does not rule out the existence of undesirable Nash equilibria, but it implies that the highest

skilled candidate can always be selected as an outcome from a safe profile, where deviations

due to bad intentions, mistakes, or errors of judgment cannot cause disasters like selecting

the lowest skilled candidate.

In this example, v̄-safe-Nash monotonicity fails to hold, so double implementation is

impossible12 (this is true even if transfers are allowed, because we do not have precise cardi-

12To see this, consider two profiles R and R′ with the property that candidate a is highest skilled at R,
candidate b is the least skilled at R, and at R′ all candidate skills remain the same, except that candidate
b’s skill becomes higher than all other candidates. Thus, F (R) = a and F (R′) = b. However, for any player
i, any candidate that is less preferred than a at R and victimizes at most 1 player in I\{i} is less preferred
than a for player i at R′ because candidate skills do not change except for candidate b that victimizes at
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nal preference information). However, double implementation is possible with a preference

restriction.

Suppose we restrict the preferences as follows. If R,R′ ∈ R and a and b are the highest

and lowest skilled candidates at R, respectively, then either: (1) b is not the highest skilled at

R′ or (2) a is not the second highest skilled at R′. One way to justify such restriction is that

the designer has some knowledge about relative ranking of candidates’ skill levels – enough to

rule out two candidates being the highest two skilled if one being the highest and one being

the lowest skilled is also a possibility. This assumption would be restrictive if it had to always

hold for double implementation, but it does not and the reason it is necessary in this example

is because the social choice function we consider is a Condorcet social choice function. In

section 1.6.1 we explain the restrictiveness of double implementation with Condorcet social

choice functions more generally; the preference restrictions here precisely rule out preference

profiles that cause a failure of double implementation as described in Theorem 1.6.1.13 If

we allow such a restriction on preferences then v̄-safe-Nash monotonicity is satisfied14, and

double implementation is possible using the mechanism in the proof of Theorem 1.3.7.

Double implementation in safe and Nash equilibria implies that safe implementation

holds, and no unsafe Nash equilibria result in undesirable candidates. If, in addition, we

are willing to assume that truthful equilibria, that are payoff-equivalent to untruthful ones,

least 3 players. Thus, v̄-safe-Nash monotonicity fails, because a /∈ F (R′).
13Note that the preference restrictions in Theorem 1.3.1 for strong safe implementation with Nash behavior

and no transfers must hold regardless of the form of the social choice function. In this example, even with
the preference restriction we assume, strong safe implementation with Nash behavior and no transfers is
impossible.

14To see this, consider two profiles R and R′ with F (R) = a. Suppose the least skilled candidate at R is
b. For each member, the set of outcomes weakly less preferred to a at R that victimize at most v̄ = 1 of the
other members is simply A\{b}. Suppose condition (1) of the preference restriction holds. By assumption,
b is not the highest skilled at R′, and if a weakly rises in the ranking of each player among the set A\{b}
going from R to R′, then a remains the highest skilled at R′ and F (R′) = a. If condition (2) holds then
there was a preference reversal for some player between a and some outcome in A\{b} going from R to R′,
so v̄-safe-Nash monotonicity imposes no restrictions and holds trivially.
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are focal then players will always be safe in equilibrium and the mechanism in the proof of

Theorem 1.3.7 achieves the same objectives of strong safe implementation.

1.6.1 Double Implementation of Condorcet Social Choice Functions

Several papers discussed the possibility of Nash implementing social choice rules that

select Condorcet winners. Maskin (1999) shows that Nash implementation is possible when

Condorcet winners exist at every preference profile; Healy and Peress (2013) show that

Maskin monotonicity fails if preference profiles with no Condorcet winner are allowed. In

this section we show that social choice rules that select a strict Condorcet winner, whenever

it exists, cannot, in general, be double implemented in Nash and safe equilibria without pref-

erence restrictions, even if all admissible preference profiles have a strict Condorcet winner.

Definition 1.6.1 (Condorcet Social Choice Function). F is a Condorcet social choice

function if F (R) = a whenever |{i ∈ I : aPib}| > |{i ∈ I : bPia}| for all b ∈ A.

We say that a is a Condorcet winner if |{i ∈ I : aPib}| > |{i ∈ I : bPia}| for all b ∈ A.

Theorem 1.6.1. Suppose F is a Condorcet social choice function and there are two preference

profiles profiles R,R′ ∈ R and outcomes a, b ∈ A such that:

1. a is a Condorcet winner at R.

2. b victimizes at least v̄ + 2 players at R.

3. b is a Condorcet winner at R′.

4. For all i ∈ I and c ∈ A, if aRic and c victimizes at most v̄ players in I\{i} at R then

aR′ic.

Then F is not double implementable in (d̄, v̄)-safe and Nash equilibria.
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The intuition of the proof is simple. If a is a Condorcet winner at R then safe

implementation implies the existence of a safe equilibrium with outcome a. From this safe

equilibrium, no player can obtain outcomes that victimize more than v̄ of the others. If one

of those outcomes, say b, becomes the Condorcet winner at R′ and the ranking of a relative

to other outcomes is maintained, then a safe equilibrium with outcome a at R must be a

Nash equilibrium at R′. But a is not chosen at R′, because b is a strict Condorcet winner at

R′, leading to a contradiction.

Thus, achieving safety with Condorcet social choice functions requires preference

restrictions. In environments where such restrictions are plausible double implementation in

(d̄, v̄)-safe and Nash equilibria may be possible, in which case strong safe implementation is

also possible with mild behavioral assumptions, as in our hiring example.

1.7 Discussion

Safety can be incorporated in mechanism design in various ways. This section dis-

cusses some important aspects of our safety concept and our notions of implementation.

1.7.1 Discussion of the Safety Concept

Our notion of safety is intuitive, it simply imposes restrictions on how much players

can harm others. To make our definition more realistic and flexible, we allow for groups of

players to attempt to cause harm and for some players to be victimized. In our notion of

victimization, we also allow for different thresholds of safety by letting the designer choose

the relative position in a player’s ranking that defines a victim.

Our safety concept, as stated in definition 1.2.3, is very general. It applies to virtually

any implementation or mechanism design problem. To illustrate this point in an auction

setting, suppose we define a victim as “a player with the highest private value who pays some
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amount of money but loses an auction due to irrational behavior by other players”. Using

this definition, it is easy to see that an auction with a reserve price is “safer” than one with

an entry fee. Even though both auctions may be theoretically equivalent in some cases, an

irrational player in an auction with an entry fee can submit high bids and win the auction

causing the player who should have won to lose and pay the entry fee, whereas an irrational

player in a reserve price auction cannot victimize others. For another example, a “victim”

in a sponsored online ad auction could be a firm who is forced to pay above $K amount by

fraud; with such a definition we can examine the safety properties of equilibria of different

mechanisms, for instance, a cost-per-action mechanism may be safer than a cost-per-click

mechanism where a competitor can attempt click-fraud.

Ordinality and finiteness

We stress that, although our definition of a victim relied on the finiteness of the set

of outcomes, it extends naturally to infinite sets of outcomes: we can simply consider the

Kth quantile instead of the least K preferred outcomes when defining a victim. Doing so

would extend our results naturally to problems with an infinite set of outcomes.

Our definition of a victim uses ordinal preference information, making no use of

cardinal information about the preferences of the players. This assumption may be violated

in some settings of interest in mechanism design. However, many important subfields of

mechanism design, such as voting and matching, rely on ordinal preferences (even though

cardinal preferences may exist). To address safety in such settings, it is necessary to adopt a

notion of safety that naturally accommodates ordinal preferences on finite sets of outcomes.

Our notion of safety can also be used as a basis for safety criteria in more general

settings. For example, if utility functions are introduced, definition 1.2.3 can remain un-

changed with the main change being in definition 1.2.1 of a victim; a victim can be defined
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to be a player who obtains an outcome leading to a utility level below a certain threshold.

The utility threshold will, in general, be different for every player and be dependent on the

precise utility function.

Finally, we note that it is common for policy makers to assess a mechanism’s success

(or failure) using ordinal welfare criteria very similar to the one used in this paper. One

common criterion is the rank distribution, or how many players get their top choice, how

many get their second choice, . . ., and how many get their last choice. Some examples

are the San Francisco Unified School District, Teach for America, and Harvard Business

School (Featherstone (2011)). Our safety criterion, along with our definition of a victim, is

equivalent to using the rank distribution as a welfare measure–precisely what often occurs

in many practical problems.

Thus, our safety criterion and notion of victimization address a large and important

body of problems that are most naturally studied using ordinal welfare criteria. Our safety

notion also opens new avenues for further research by providing a basis for developments of

safety criteria in other settings.

Relative vs. Absolute Notions of Victimization

With our notion of safety, victims may be present at a “safe” message profile. An

alternate definition can specify v̄ to be the maximum number of victims from a deviation rel-

ative to the number of victims in equilibrium. Such a definition can easily be accommodated

by simply changing the notion of victimization, but we do not use it precisely because we do

not want many victims to be present at a “safe” message profile. To illustrate the drawbacks

of a relative notion of victimization, consider two message profiles: m has no victims, and

a deviation from m can lead to at most two victims, but m′ has numerous victims, and a

deviation from m′ can lead to at most one more victim; a relative notion of safety may well
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consider m′ to be “safer” than m, but our notion of safety would classify m′ to be no safer

than m. Also, a relative notion of safety can allow a designer to make mechanisms seem

more “safe” by simply letting the number of victims be high at all profiles, thus guaranteeing

that profiles are not too bad, relatively.

Another possibility is to define a victim to be a player who does worse off (more

generally: by a certain amount) from the equilibrium payoff, as in the t-immunity solution

concept (Halpern (2008)). Again, a change in our notion of victimization can accommodate

this definition, but this definition has some drawbacks. First, it does not allow for a clear

statement of safety in terms of payoffs unless we know the payoffs of players at equilibrium,

and mechanisms generally have multiple equilibria with different payoffs. Thus, a “safe”

mechanism with this notion of safety may very well classify a payoff vector for agents to

be less desirable than another vector of strictly lower payoffs, simply because the former

may be relatively further from one equilibrium than the latter is from another equilibrium.

Second, this notion of victimization may also artificially lead low-payoff equilibria to seem

more safe. To illustrate some of the difficulties with this definition, consider a matching

mechanism with two equilibria: one where all players get their top preferred outcome, but

where a deviation can cause at most one non-deviator to get their second highest preferred

outcome, and another equilibrium where all players get their least preferred outcome. A

notion of victimization that focuses on payoffs of players relative to their equilibrium payoffs

may consider the first equilibrium unsafe, but the second safe. In contrast, our notion of

victimization would classify the second equilibrium to be no safer than the first.

1.7.2 Safe Implementation Discussion

Is safe implementation easier than Nash implementation?

There is a common notion in the literature (e.g. Jackson (2001)) that a stronger (i.e.
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more refined) solution concept allows more social choice rules to be implemented, and thus

makes the implementation problem “easier”. This notion may be true in some cases, but not

in general. Particularly, it is not true in the case of implementation in (d̄, v̄)-safe equilibrium,

a more refined solution concept than Nash equilibrium.

This can easily be seen using the simple social choice function in Example 3 in section

1.5.1. As the example shows, the social choice function satisfies Maskin monotonicity. It

also satisfies no veto power and n ≥ 3, so it is Nash implementable by Theorem 3 in Maskin

(1999). However, the example shows that it does not satisfy (d̄, v̄)-safe monotonicity, a

necessary condition for (d̄, v̄)-safe implementation. Thus, a solution concept that is a Nash

refinement does not necessarily allow more social choice rules to be implemented.

Existence of (d̄, v̄)-Safe Implementable and Double Implementable Social Choice Rules

Theorem 1.4.2 is reminiscent of the Gibbard-Satterthwaite Theorem (Gibbard (1973)

and Satterthwaite (1975)), which says that, under some conditions, a social choice function

is strategy-proof if and only if it is dictatorial. Dictatorial social choice functions cannot

be safe with a rich preference space (one player can always get any outcome they prefer),

and strategy-proofness implies players have no incentive to deviate from reporting their true

preferences. Theorem 1.4.2 says something similar: if a social choice function is safe (not

dictatorial), then players will, in some preference profiles, have an incentive to deviate at

any safe message profile of any implementing mechanism.

Though seemingly related, the Gibbard-Satterthwaite Theorem differs from Theorem

1.4.2 in important ways; the most important of these is perhaps the space of mechanisms

each of the theorems operates on.15 Theorem 1.4.2 says that no mechanism can implement

15The results also concern different solution concepts: Gibbard-Satterthwaite Theorem is based on domi-
nant messages, but the solution concept in Theorem 1.4.2 is fundamentally based on Nash equilibrium.
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a social choice function with safety guarantees in the space of all mechanisms (a very large

space!). On the other hand, the Gibbard-Satterthwaite Theorem is only concerned with one

particular mechanism: one where players report their preferences and the outcome is the

social choice function at the reported preferences.

If dictatorial social choice functions are not safe with rich preference spaces, should

we worry that the Gibbard-Satterthwaite Theorem implies non-existence of (d̄, v̄)-safe im-

plementable social choice rules? No; again, the Gibbard-Satterthwaite Theorem considers

implementation using only one mechanism (truth-telling) and there may be other mecha-

nisms that make implementation possible.

The necessary and sufficient conditions in Theorem 1.3.5 are not too restrictive. Sim-

ple social choice rules exist that are (d̄, v̄)-safe implementable, such as the one in example 4:

the example shows that (d̄, v̄)-safe monotonicity holds trivially; the v̄-safe outcome property

holds (a victimizes no players at R and c victimizes no players at R′); and (d̄, v̄)-exposure

is satisfied (c victimizes all members in any group of two players at R and b victimizes all

members in any group of two players at R′). Because n = 3 and d̄ < n
2
, Theorem 1.3.5

implies that the social choice function in this example is (d̄, v̄)-safe implementable, show-

ing the existence of simple (d̄, v̄)-safe implementable social choice rules. Also, the SCF in

the hiring example of section 1.2.2 may or may not be dictatorial depending on the bonus

premiums members assign candidates in their fields, but section 1.6 shows that this SCF

is (d̄, v̄)-safe implementable regardless of the bonus premiums of the members. For double

implementation in safe and Nash equilibria, section 1.6 shows that the SCF in our hiring

example is double implementable with the appropriate preference restrictions, showing that

natural social choice rules exist that are double implementable in safe and Nash equilibria.
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1.8 Further Research and Conclusions

1.8.1 Further Research

Our victimization concept (definition 1.2.1) allowed us to apply our safety notion to

the standard implementation problem, but, as mentioned before, our safety concept (defini-

tion 1.2.3) is much more general and can apply to virtually any mechanism design problem.

A systematic study of safety (using definition 1.2.3) in various applications of mechanism

design, perhaps with flexible context-dependent definitions of victimization, would be very

useful in understanding safety more broadly. It would be interesting to examine and poten-

tially improve the safety properties of common mechanisms in various applications, such as

auctions, matching, voting, and market design.

In reality, society is often concerned with multiple safety objectives simultaneously,

such as protection from irrational and dangerous individuals and larger, more organized

groups deciding to harm others (e.g. with discriminatory policies). Our notion of safety

imposes just one restriction on the victims function: Vm(d̄) ≤ v̄, where m is the equilibrium

profile.16 This can be extended in various ways: more restrictions at multiple points of the

victims function can reflect more complicated safety requirements; the victims function at

non-equilibrium profiles may also be restricted to improve robustness; and finally, multiple

definitions of victimization (e.g. multiple K’s or fundamentally different definitions of vic-

timizations) can be used, leading to multiple victims functions, each with its own set of d̄’s

and v̄’s.

Furthermore, in reality we may not always be able to eliminate disasters, but we can

potentially make them unlikely. Adopting a probabilistic approach to safety would be a

fruitful area for future research. Our victims function is concerned only with the worst case

scenario at a given d̄, but a probabilistic approach can examine the whole distribution of the

16If v̄ < n− d̄ then Vm(d̄) ≤ v̄ also implies that V (β) ≤ v̄ for any β < d̄.
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number of victims.

Several papers in the implementation theory literature explored solution concepts

other than Nash equilibrium and different forms of implementation. For example, Abreu and

Matsushima (1992) show that virtual implementation in iteratively undominated messages is

easier to achieve, and that it can be done with simpler mechanisms. In this paper we studied

safety in conjunction with the Nash equilibrium as a solution concept, and we used standard

notions of implementation. The solution concept is not merely a decision under the designer’s

control, but should instead be an accurate prediction of players’ behavior. Predictions may

depend on the set of players, and on the context of the implementation problem, so studying

the constraints implied by safety in conjunction with an arbitrary solution concept would be

an interesting question for future research. Also, considering other notions of implementation

(e.g. virtual implementation) and the extent to which using simple mechanisms limits safety

are interesting possibilities for future research.

1.8.2 Conclusions

For system designers and policy makers safety is of utmost importance. Despite this

fact, many mechanisms in the implementation theory and mechanism design literature have

no safety properties: for most mechanisms in the literature, an unexpected deviation by just

one player can cause widespread disasters. Introducing safety requirements can change the

set of implementable social choice rules, so it is important to address safety rigorously and

examine the constraints implied by safety.

This paper bridges the gap between safety and the mechanism design and implementa-

tion theory literature. We introduced safety as robustness of the welfare levels of the players

to actions of others, and we characterized social choice rules that can be implemented in a

safe way. We introduced three notions of safe implementation: (1) strong (d̄, v̄)-safe imple-

mentation is Nash implementation with mechanisms where all Nash equilibria are (d̄, v̄)-safe;
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(2) (d̄, v̄)-safe implementation, which is a weaker notion of implementation that allows for

some undesirable Nash equilibria; and (3) Double implementation in (d̄, v̄)-safe and Nash

equilibria, which maintains safe implementation and ensures that all Nash equilibria lead to

desirable outcomes. We provided necessary conditions for (d̄, v̄)-safe implementation, and

we showed that they are sufficient under some conditions on preferences. We also provided

conditions that are both necessary and sufficient for double implementation when transfers

are allowed.

Although strong safe implementation, the most direct approach to designing safe

mechanisms, is impossible in many environments, double implementation ensures safety

with mild behavioral assumptions unrelated to safety. We proved a “no guarantees” result

showing the impossibility of implementation in (n − 1, 0)-safe equilibria in a wide range of

environments. Finally, we discussed the connection between safety, freedom, and efficiency

showing that, in general, safety restricts players’ positive freedom and reduces efficiency.

52



Chapter 2

Criminals’ Response to Changing Crime Profitability

Chapter Summary

How do criminals respond to changes in profitability of crime? This is an important

question, relevant for understanding the effectiveness of various crime fighting policies, such

as reducing demand for illegal goods, disrupting black markets, and any policy that makes

crime more costly by eliminating cheaper avenues for criminals. The crime literature has not

sufficiently addressed this question, partly because it is difficult to find a reliable measure

of crime’s profitability. Using confidential data on cargo theft, we match historical prices of

various goods with their thefts to find the price elasticity of theft. Conditioning on good,

state, and time fixed effects, we estimate the price elasticity of theft to be about 1.002 in the

short run and 1.192 over a seven-month horizon. We show how the main empirical results

can arise in a simple model of crime with strategic interactions.

2.1 Introduction

Crime is an important costly social phenomenon. The U.S. spends more than $260

billion on the justice system annually, $80 billion of which are spent on corrections (Ky-

ckelhahn and Martin (2013)). Other, less quantifiable costs of crime include damages to

victims and their families; costs to society through spending on security; economic activity

disruptions; and a large incarcerated population (1 in every 104 Americans (Glaze (2011)))

that cannot work or support their, often at-risk, families.
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With a desire to reduce crime, the crime literature has focused on how different

factors affect crime levels. Becker (1968) identified three factors influencing a rational agent’s

decision to commit crime: (1) expected gain from committing crime (what we call crime

profitability), (2) expected punishment, and (3) the agent’s outside option. Each of the

three factors suggests a different set of policies that differ widely in their mode of operation,

costs, and potential to reduce crime. Understanding which of the policies is the most effective

given their costs hinges on an important question: how do criminals respond to incentives

related to each of the three factors? Two of the three main factors involved in the crime

decision, punishment and outside options, have been extensively studied in relation to crime.

The literature on how criminals respond to changes in the gain from committing crime,

perhaps the factor driving crime levels most directly, is surprisingly small, possibly due to

data limitations.

In this paper we study how criminals respond to changes in profitability of crime.

We use confidential data on cargo theft from FreightWatch International, an international

logistics security firm. The data is unique in that it records the precise nature of the cargo

stolen, allowing us to examine the relationship between prices of specific goods (e.g. apples,

copper, etc...) and their thefts. By matching prices of goods to their thefts, we estimate

the price elasticity of theft to be about 1.002 in the short run and 1.192 over a seven-

month horizon. We examine substitution of criminals between goods, and we find no strong

evidence of a substitution effect. We analyze the heterogeneity in the price elasticity of thefts

across goods and across locations. We characterize the most responsive (to prices) locations

for theft of some major goods in the data, and we present a simple model explaining the

heterogeneity in responsiveness by spatial heterogeneity in connections to black markets.

Finally, we show how the main empirical results can be explained in a simple model of crime

with strategic interactions between owners and (potential) thieves.

This paper is organized as follows. Section 2.2 reviews the related literature. Section
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2.3 discusses the data and presents descriptive statistics. Section 2.4 presents the main

results. Section 2.5 discusses heterogeneity of the results by good and by location. Section

2.6 presents a simple theoretical model of crime with strategic interactions that can explain

the main results. Section 2.7 concludes and discusses further work.

2.2 Related Literature

As we mentioned previously, Becker (1968) identified three main factors involved in

the decision to commit crime: expected gain from committing crime, expected punishment,

outside options. We discuss the literature related to the three main factors next.

Punishment and Policing

Since the work of Becker (1968), a large literature tried to test and quantify the main

relationships in the economic model of crime with particular emphasis on how policing and

punishment affect crime levels. Though the literature has a long history, it has had various

persistent difficulties. Until recently, good data on crime was lacking, so much of the litera-

ture used aggregate crime data. General problems include endogeneity of policing/deterrence

policies, differentiating between deterrence and incapacitation, and simultaneity. Cameron

(1988) reviews the early literature. Levitt (1998) shows that the majority of the observed

negative relationship between arrests and property crime is due to a deterrence effect. Using

monthly observations on crime in New York City for nearly 30 years, Corman and Mocan

(2000) find strong evidence supporting deterrence.

More recent literature uses exogenous variation or quasi-experiments to estimate the

effect of punishment and policing on crime. Di Tella and Schargrodsky (2004) find a large,

but very localized, deterrent effect of observable police on crime using an exogenous shock

to allocation of police after a terrorist attack. Bar-Ilan and Sacerdote (2004) use a series of
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experiments changing traffic fines in Israel and San Francisco and estimate a large negative

effect of fine increases on red light running. Lee and McCrary (2009) exploit the discontinuity

in U.S. sanctions at age 18 and find a small decline in the log-odds of offending at age 18.

Drago et al. (2009) use a unique exogenous change in expected punishment at the individual

level due to a clemency Bill in Italy and estimate that increasing the expected sentence by

50 percent reduces recidivism rates by about 35 percent in 7 months.

McCormick and Tollison (1984) follow a unique approach; they utilize a quasi exper-

iment in the Atlantic Coast Conference (ACC) basketball tournament and find a significant

negative effect of the number of referees on the number of fouls called, but Hutchinson and

Yates (2007) find that the results of McCormick and Tollison (1984) are driven entirely by

data error. Following McCormick and Tollison (1984), Levitt (2002) and Heckelman and

Yates (2003) estimate the effect of referees on infractions in the National Hockey League

(NHL) exploiting a randomization of the number of referees in the 1998-2000 seasons. Levitt

(2002) finds inconclusive evidence from the experiment in the 1998-1999 season, and Heckel-

man and Yates (2003) find that increasing the number of referees did not significantly reduce

infractions in the 1999-2000 season.

Outside Options

Raphael and Winter-Ebmer (2001) and Donohue and Levitt (2001) find that unem-

ployment has a significant effect on property crime. For the declining crime trend in the

90’s, Levitt (2004) argues it was not because of the strong economy, demographics, police

strategies, gun laws, concealed weapon laws, or the death penalties; instead the decline was

affected mainly by the number of police, prison population, decline of the crack epidemic, and

legalization of abortion. Freeman (1999) shows that unemployment is not an overwhelming

determinant of crime, even though it is related, and that more inequality is associated with
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more crime. Zhang (1997) finds that welfare payments reduce crime and Foley (2011) finds

that the timing of welfare payments affects criminal activity.

Rewards from Crime

The literature on how crime levels respond to changing rewards from crime is small.

To our knowledge, only two papers examine the effect of prices on thefts. Reilly and Witt

(2008) show that declining real prices of audio-visual goods contributed to the decline in

burglaries in the UK. Identification in that case is complicated by the fact that prices of

audio-visual goods have been declining steadily over time with no interesting variation.

Sidebottom et al. (2011) show that prices of copper are correlated with copper cable theft

in the UK. Both papers focus on the UK, the results do not necessarily generalize to the US

because the punishment systems are different so criminals may respond differently to price

incentives.

2.3 Data and Descriptive Statistics

Transit of goods effectively through the supply chain is crucial for the functioning of

the economy as a whole. Cargo theft is a major threat for supply chains. Cargo trucks often

carry goods worth hundreds of thousands or millions of dollars. Criminals often operate in

specialized theft gangs to steal cargo trucks and sell the stolen goods.

We use confidential data from FreightWatch International, an international logistics

security provider. FreightWatch offers security services for cargo in transportation via var-

ious methods, such as real-time covert electronic tracking. Most of the thefts in the data

are not from FreightWatch clients, but rather from external sources like security councils

and law enforcement agencies. Security councils are organizations comprised of industry

professionals, law enforcement and government agencies, cargo insurers, carriers, and risk
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management professionals. They formed because of the high value nature of cargo thefts and

the effectiveness of information sharing in mitigating the losses. When cargo is stolen, mem-

bers of a security coalition can report it, leading to quick dissemination of information via

“theft alerts” to all members of the coalition, and increasing the likelihood of a safe recovery

of the cargo. Of the thefts in the data with a known external source of the information,

79.6% are from security councils, 17.6% are from law enforcement agencies, and 2.8% are

from news sources.1

The data contains information on 5865 cargo theft incidents in the U.S. and Canada

spanning more than 7 years from January 2006 to June 2013. Information about each theft

can be classified into three main categories: date, location, and theft information; we explain

each in more detail next.

Date Information

Entries record the date on which the theft happened and a small percentage contain

time of day information. About 11% of the data contain a date range instead of one date;

the date range is typically a few days. For analysis of monthly counts, entries with ranges

spanning more than one month will be dropped. Figure 2.1 shows the total monthly counts

of cargo theft from January 2006 to December 2012 and a cubic function of time as a trend.

FreightWatch started recording data in January of 2006, which may partially explain the

initially low theft volume.

1Source information was only recorded for most thefts starting in January 2013.
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Figure 2.1: Total Monthly Cargo Theft Counts

Location Information

Entries contain city and state where the theft occurred. About 28% of the thefts also

record an address. Figure 2.2 shows the cities where cargo thefts occurred.
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Figure 2.2: Cargo Theft Cities

The following table lists the top 10 states where cargo thefts were recorded.

State Thefts % of Total

CA 1495 25.5%
FL 807 13.8%
TX 687 11.7%
NJ 441 7.52%
GA 412 7.02%
IL 269 4.59%
TN 214 3.65%
PA 158 2.69%
IN 103 1.76%
NC 90 1.53%

Top 10 4676 79.7%

Table 2.1: Cargo Thefts by State
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Additionally, about 50% of the theft records contain a description of the location of

the theft, indicating whether the theft occurred at secured parking, unsecured parking, a

truck stop, a warehouse, etc...

Theft Information

The type of cargo that was stolen is recorded for each theft. Cargo type is recorded

in two fields: the first records the type of cargo in one of 14 major types of goods (e.g.

electronics, food/drinks, etc...), and the second field records a more specific description of

the cargo. To make this information available for analysis, I assigned codes for each of the

goods occurring frequently and hand-coded each theft. More than one hundred different

goods were identified and coded in the data. Appendix B.1 contains a list of all the goods

that were coded.

About 58% of the records contain the dollar value of the stolen goods. This value

ranges from $160 to $76 million; the mean value is $354,650 and the median is $100,000.

The total for the records containing the value is more than $1.2 billion. Figure 2.3 shows

the empirical cdf of the value of the stolen goods. We note the apparent lack of truncation

in the value associated with a reported theft.
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Figure 2.3: Stolen Value Empirical CDF

Finally, the data also contains information about how the theft occurred (e.g. theft

of trailer, facility burglary, deceptive pickup, hijacking, etc...).

Other Data Sources, Price-Good Matching, and Deletions

Price data was obtained from the Bureau of Labor Statistics (BLS) Consumer Price

Indexes (CPI) and Producer Price Indexes (PPI); except for section 2.4.1 all prices were

deflated by the average CPI for all items (series ID CUUR0000SA0). Data on monthly high-

way miles traveled in each state was collected from various issues of the Federal Highway

Administration (FHWA) monthly Traffic Volume Trends reports, Table 5. Data on rank-

ings of U.S. ports by container traffic for 2009 was obtained from the U.S. Census Bureau,

Statistical Abstract of the United States: 2012.

To check the robustness of our results, we needed data on shipments for various goods.

Because domestic shipments are mostly composed of domestic production and imports, in

some cases we use data on production and/or imports to approximate domestic shipments.
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We collected monthly data on U.S. shipments of steel from various press releases of the Amer-

ican Iron and Steel Institute (AISI), and imports of steel were obtained from the U.S. Census

Bureau International Trade Data; domestic and import shipments were summed to get total

steel shipments. The U.S. Census Bureau’s Manufacturer’s Shipments, Inventories, and Or-

ders (M3) Survey was used to obtain value of shipments for aluminum and tobacco (obtained

from the Federal Reserve Bank of St. Louis (FRED), series AANMVS and A12BVS); the

value series were then divided by the price series from the BLS to obtain shipments. For

beer, we used monthly data on production and imports from the Beer Institute (Brewer’s

Almanac and the Beer Institute Industry Update), which were added together to get ship-

ments. United States Department of Agriculture (USDA) data shows that U.S. imports of

meat and poultry are a small percentage (less than 10, and much less for pork and poultry)

of domestic consumption, so shipment data for beef, pork, and poultry was approximated

by monthly U.S. production data from the USDA Economic Research Service. Shipments

of apples, bananas, oranges, tomatoes, and potatoes were collected from various issues of

the USDA Agricultural Marketing Service’s Fresh Fruit and Vegetable Shipments reports,

which include domestic shipments and imports; shipments of bananas were approximated by

imports, as imports account for more than 99% of the U.S. banana consumption.

Price data from the BLS was obtained for 41 goods that were present in the data.

Prices were then matched with the appropriate goods as described in appendix B.2. Appen-

dices B.1 and B.2 contain lists of the good codes, BLS price series IDs, and the matchings

between the price series and good codes.

We aggregated thefts by good at a monthly frequency; thefts with a date range

spanning two or more months were not counted. For the empirical analysis, we used thefts

occurring only up to December 2012, because information about thefts from some external

sources can take several months to be recorded. Finally, two thefts were not assigned codes

because the type of cargo stolen was missing. After the deletions, there were 2,435 unique
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incidents in which at least one good stolen was among the 41 goods we obtained price data

for from the BLS. In addition, we eliminated thefts with unknown locations and thefts that

happened in Canada for regressions utilizing state-level data, resulting in 2,319 thefts that

were used in analyses utilizing location information.

2.4 Main Results

2.4.1 Nonparametric Evidence

This section shows nonparametric graphical evidence that prices are correlated with

thefts. We also use a simple correlation placebo test to show that the positive correlation

between thefts and prices is significantly higher than what would be expected if goods and

prices were randomly matched.

The following plots show smoothed thefts and prices over time for six goods: copper,

steel, all metals, food and drinks, fuel, and appliances. The dash-dot (blue) lines are prices

measured along the left axis and the solid (red) lines are thefts measured along the right

axis. Time is on the horizontal axis with the vertical dashed (blue) lines separating the

years. Prices are nominal CPI prices from the BLS measured relative to 1982-84 dollars with

1982-84 dollars = 100.
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Figure 2.4: Copper Thefts
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Figure 2.5: Steel Thefts
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Figure 2.6: Metal Thefts
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Figure 2.7: Food and Beverages Thefts
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Figure 2.8: Fuel Thefts
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Figure 2.9: Appliances Thefts
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The positive correlation between prices and thefts, possibly with some lag, is clear

from the figures. The average correlation between prices and thefts for the 41 goods used in

the empirical analysis is 0.15363. We ran a correlation placebo test by randomly matching

prices to goods within the 41 original pairs and calculating the average correlation across the

41 shuffled pairs. Figure 2.4.1 shows the histogram of the average correlation for one million

such shuffles. The p-value of the actual average correlation between goods and prices is

about 0.008. Thus, the observed positive correlation between prices and goods is not simply

due to other factors such as aggregate time trends.
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Figure 2.10: Correlation Placebo Test

2.4.2 Panel Data Estimates

By aggregating thefts to a monthly level and matching the appropriate goods to their

monthly prices for 41 goods (see appendix B.2) we construct a panel of thefts and prices
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over time. We first use OLS to obtain preliminary estimates of the price elasticity of theft.

Some goods did not have any thefts in some months, making obtaining an elasticity estimate

by a log-log regression infeasible. Therefore, we report instead the semielasticity (change in

thefts from a 1% increase in prices) as a percentage of the average monthly number of thefts.

This quantity can actually be interpreted as an elasticity and can be directly obtained from

the regression in (2.1).2

We run the following fixed effect regression for K ∈ {0, . . . , 6}:

yit = α0 +

j=K∑

j=0

γj ȳ logPi,t−j + ci + dt + εit (2.1)

Where yit is the number of thefts of good i in month t, ȳ is the average number of thefts

across goods and months, Pit is the price of good i in month t, ci is a good fixed effect, dt is a

month fixed effect, and εit is the error term. As mentioned previously, the γj coefficients can

be interpreted as elasticities. Table 2.2 shows the joint price coefficient (the sum of the price

coefficients:
∑j=K

j=0 γj) from the regression in (2.1) for K ∈ {0, 6}. The joint price coefficient

for 0 ≤ K ≤ 6 is increasing in magnitude and significance.

2To see this, consider the model: E(y|x) = βE(y) log x, y ≥ 0, x > 0, E(y) > 0. ∂E(y|x)/∂x = βE(y)/x.
So β = (∂E(y|x)/E(y))(x/∂x), which holds for every x and particularly at x∗ such that E(y|x∗) = E(y).
To see that such x∗ exists, define f(x) := E(y|x) and assume that x has compact support [a, b] and that
f is continuous and monotonic, as is the case in most regression models. Under the assumptions, f(a) ≤
E(f(x)) ≤ f(b) and the Intermediate Value Theorem implies the existence of x∗ with f(x∗) = E(f(x)). The
Law of Iterated Expectations then implies E(y|x∗) = E(E(y|x)) = E(y). At x = x∗, β = ∂ logE(y|x)/∂ log x,
the elasticity of E(y|x) with respect to x.

Under the assumption of constant elasticity, knowing the elasticity at x = x∗, or β, is sufficient. Intuitively,
β is the increase in E(y|x) resulting from a 1% increase in x, as a percentage of E(y); it is δ/ȳ where δ is
the coefficient from the regression based on the model E(y|x) = δ log x and δ/100 is the semielasticity.
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VARIABLES K = 0 K = 6

Joint Price 0.424 1.201**
(0.529) (0.571)

Observations 3,444 3,198
R-squared 0.097 0.081

Number of goods 41 41

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.2: OLS; Good and Time Level

The “Joint Price” row of Table 2.2 shows the cumulative effect of the price and its

lags on thefts. The price elasticity of theft ranges from 0.424 in the short run to 1.201 over

a 7-month horizon.

With positive count data that take on small values, OLS regression models have

several shortcomings. Count data necessarily violates the normality assumption on the

errors in OLS and covariates can usually take on plausible values that result in negative

predictions. For count data that take on large values the discreteness of the data can often

be approximated by a continuous model, but this is not so for count data with small values

and a significant number of zeros, as in our case. Therefore, we use the Poisson fixed effects

(FEP) model pioneered by Hausman et al. (1984). As Wooldridge (2002) notes, the FEP

estimator has very strong robustness properties; the only assumption required for consistency

is that the conditional mean, E[yit|xit, ci] is correctly specified (where xit are regressors), so

no assumptions are made on the distribution of yit given (xit, ci), and it allows for arbitrary

dependence between yit and yir, t 6= r. This model is of the form:
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E[yit|xit, ci, dt] = exp

(
α0 +

j=K∑

j=0

γj logPi,t−j + ci + dt

)
(2.2)

VARIABLES K = 0 K = 6

Joint Price 1.024*** 1.118***
(0.211) (0.231)

Observations 3,444 3,198

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.3: FEP; Good and Time Level

The price elasticity of theft in row “Joint Price” of Table 2.3 is much more stable,

and significant, than in the OLS regression.

2.4.2.1 State Level Estimates

Because the location of every theft is recorded, we can aggregate the thefts for each

state and obtain panel data estimates at the good×state×time level. This allows us to

additionally control for state fixed effects.

One difficulty with obtaining estimates at the state level is the heterogeneity in size,

location, and highway miles of different states. State fixed effects are helpful, but to mitigate

such problems further we normalize thefts using monthly data on number of highway miles

traveled in each state from the Federal Highway Administration.

We run the following FEP regression:

E[yist|xist, ci, fs, dt] = exp

(
α0 +

j=K∑

j=0

γj logPi,t−j + ci + fs + dt

)
(2.3)
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Where yist is 105×thefts of good i in state s in month t divided by miles traveled in

state s in month t in millions. Multiplying by 105 leads to a mean value across all states,

goods, and time periods with the same order of magnitude as in the previous regressions,

but it does not affect the elasticity estimates. The results from regression (2.3) are in Table

2.4.

VARIABLES K = 0 K = 6

Joint Price 1.002*** 1.192***
(0.207) (0.266)

Observations 175,644 163,098

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.4: FEP; Good, State, and Time Level

We regard the elasticity estimates in Table 2.4 as the most accurate because speci-

fication (2.3) utilizes state level data and uses a model that naturally accommodates count

data. The price elasticity of theft ranges from about 1.002 in the short term to 1.192 over a

seven-month horizon.

2.4.3 A Robustness Check for Price Endogeneity

Prices in all the above regressions may be endogenous. To see this, consider the

following simple supply and demand diagram:
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Figure 2.11: Demand Shift

Starting from point A, a demand shift may cause a movement to point B raising

both prices and quantity supplied. If thefts are random (not targeted) and the price of some

good changes because of a demand shift as in Figure 2.11 then thefts of that good may

increase, not because thieves are stealing that good more, but simply because there are more

shipments of that good on the road. Therefore, normalizing thefts by shipments may result

in very different time series plots, and accounting for shipments may reduce, or eliminate,

the effect of prices on thefts.

We obtained shipment data from various sources, sometimes approximate (see section

2.3), for twelve goods: aluminum, steel, beer, tobacco, beef, pork, poultry, apples, bananas,

oranges, tomatoes, and potatoes. Because shipment data is in various different units (e.g.

pounds for food and gallons for beer), we normalize the shipments for each good to have

mean 1 by dividing by the average monthly shipments for that good. We then account for

shipments in two ways: in one we divide monthly thefts by normalized monthly shipments,

which we refer to as the shipments normalization; and for the purpose of the regressions

we also account for shipments by adding shipments as a control without changing the theft

dependent variable. The panels in Figures 2.12 and 2.13 show thefts and their normalized
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versions for some of the goods we could obtain shipment data on.
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Figure 2.12: Theft and Normalized Theft for Steel and Aluminum
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Figure 2.13: Theft and Normalized Theft for Beer and Tobacco

Figures 2.12 and 2.13 show that normalizing thefts by monthly shipments does not

change the time pattern. This suggests that the nonparametric evidence for a correlation

between prices and thefts presented in section 2.4.1 would continue to hold when thefts are

normalized by shipments.
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To examine the effect of accounting for shipments on the regression results, we limited

the original 41-good panel data set to the twelve goods with available shipment data, and we

ran specifications (2.1) and (2.2) for K ∈ {0, 6} for those goods with and without accounting

for shipments. The results are in Table 2.5.

K = 0 K = 6
Joint Price

OLS

Without Shipments
0.612 0.786

(1.018) (1.453)

Shipments Normalization
1.112* 1.391
(0.553) (0.952)

Shipments Control
1.001 1.247

(0.897) (1.218)

FEP

Without Shipments
0.0200 -0.0952
(0.858) (1.012)

Shipments Normalization
0.543 0.490

(0.631) (0.863)

Shipments Control
0.582 0.557

(0.688) (0.961)

Observations 1,008 936
Number of goods 12 12

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.5: Accounting for Shipments

Comparing the joint price coefficients in Table 2.5 before and after accounting for

shipments, for any of the models, we can see that the price effect does not disappear or even

diminish; it actually becomes stronger! This suggests price movements along the demand

curve, illustrated in Figure 2.14 by a movement from point A to point B, as opposed to
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prices being mostly driven by demand shifts.
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Figure 2.14: Movement Along the Demand Curve

2.5 Good-Specific and Spatial Heterogeneity

2.5.1 Heterogeneity by Good

There is likely to be a large amount of heterogeneity in how prices affect thefts across

goods. The available consumer and commodity price data for some goods like metals may

approximate black market prices much better than other goods like electronics. Electronics

prices can vary greatly within a single product group (e.g. cellphones), and while average

prices may be declining over time, thieves may be stealing the latest high value technology.

Additionally, some goods may be exported for sale in a foreign country after being stolen

making international prices and demand conditions more important than domestic prices.

To estimate the good-specific effect of prices on thefts, we use a Poisson quasi-

maximum likelihood approach and analyze each good separately. The Poisson quasi-maximum

likelihood estimator (QMLE) is a popular method for analyzing count data.3 It has strong

3Grogger (1990) is one example where the Poisson QMLE was applied to time series of crime data.
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robustness properties (Wooldridge (1997)): it is consistent under the assumption that E(y|x)

is correctly specified to be any function of x and the parameters, so the distribution of yi

given xi does not have to be Poisson; consistency does not require any assumptions (subject

to regularity conditions) on the variance of yi given xi, in particular, the Poisson assumption

that the variance is equal to the mean can be relaxed; and consistency holds under arbitrary

serial correlation in the observations (subject to regularity conditions). The consistency of

the Poisson QMLE with arbitrary serial correlation in the observations is desirable in our

application because we apply the Poisson QMLE to time series data. We use the fully ro-

bust asymptotic variance matrix (Wooldridge (2002)), which leads to standard errors that

are valid under any conditional variance assumption.

To facilitate comparisons across goods we chose to run the same regression for each

of the goods. For each of the goods we use the Poisson QMLE based on the following model:

E[yit|xit] = exp
(
α0 + γi logPi,t + βixit

)
(2.4)

Where xit includes terms for a cubic time trend. This specification was chosen by

checking the Akaike Information Criterion (AIC) for models with various combinations of

lagged thefts, lagged prices, and time polynomials of various orders. The AIC calculations

were based on the sum of the AIC from the regressions across all goods.

Grogger (1990) applied the Poisson QMLE to time series homicide data to study the deterrent effect of
capital punishment.
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Pet Food -15.36 (10.66) Beer -10.10 (7.812)
Apples 19.47* (11.81) Spirits -0.596 (8.310)

Baby Food -3.271 (14.38) Wine 2.335 (10.86)
Bananas 2.806 (6.235) Iron and steel 3.574*** (0.965)

Beef and veal 1.521 (11.29) Copper base scrap 2.680*** (0.943)
Bread 86.80* (48.41) Aluminum base scrap 1.559 (0.978)

Butter -4.583 (6.532) Men’s apparel 19.72 (14.19)
Candy and chewing gum -3.372 (8.393) Women’s apparel -5.617 (4.767)

Breakfast cereal -4.789 (14.93) Infants’ and toddlers’ apparel -12.73 (23.23)
Poultry -1.901 (11.96) Footwear -0.793 (5.185)

Coffee -1.356 (4.637) Tobacco and smoking products 8.754*** (2.841)
Dairy -8.599 (6.949) Personal care products -1.541 (4.335)

Fish and seafood -0.655 (7.038) Fuel oil and other fuels 6.747*** (2.292)
Juices and nonalcoholic drinks -10.12 (9.264) Tires -2.868 (4.416)
Oranges, including tangerines -2.226 (3.302) Furniture and bedding 10.57* (6.168)

Pork -6.735 (9.518) Appliances 6.371 (5.089)
Potatoes -9.417 (8.968) Tools, hardware, and outdoor -1.743 (7.953)

Tomatoes 0.352 (4.531) Televisions -7.072** (2.765)
Carbonated drinks -1.294 (12.84) Audio equipment 3.590 (9.655)

Sugar and artificial sweeteners 3.924 (17.99) Computers and accessories -2.018 (3.564)
Toys -9.332 (15.21)

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.6: Good Specific Regressions

Table 2.6 reports the log-price coefficient from the regression for each of the goods.

The large heterogeneity across goods is immediately clear. We mentioned several real-life

factors that may cause heterogeneity in the price-elasticity of theft across goods, but there

are also more technical ones.

Because the variation in the regressions of this section is only at the time level,

sufficient movement in prices over time is crucial in obtaining reliable estimates. Goods

with little time variation in the price are likely to produce more volatile, and less reliable,

estimates. Figure 2.15 shows a scatter plot of the coefficient estimates vs. the index of

dispersion (variance divided by the mean) of the price series.
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Figure 2.15: γi vs. Price Index of Dispersion

Also, there is likely to be more volatility in the estimates for goods with few thefts

over the 84 month period, because the precise timing of the thefts for those goods can

greatly affect the estimates. This can be seen in Figure 2.16, which shows a scatter plot of

the coefficient estimates for each of the 41 goods vs. the total number of thefts over the time

horizon.
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Figure 2.16: γi vs. Total Number of Thefts

Thus, goods with a higher price index of dispersion and a higher total number of

thefts are likely to produce more accurate estimates. Figure 2.17 shows the kernel density

estimate of the price elasticity of theft for the 5 goods with the highest number of total

thefts among the 10 goods with the highest price index of dispersion. We call those goods

the “informative subset” because the variation in their prices (measured by the index of

dispersion) is more informative about the price elasticity of theft, and because the relatively

high total number of thefts makes the estimates less volatile.4

4The informative subset goods are iron and steel, copper, aluminum, computers, and televisions.
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Figure 2.17: Kernel Density of γi Estimates

2.5.2 Theft Substitution Across Goods

Knowing how much criminals substitute across goods depending on relative prices is

important from a policy perspective. The elasticities found previously may overestimate the

efficacy of a policy that reduces the effective black market price. A 1% decrease in the price

of a good may cause a reduction in thefts of that particular good, but if criminals substitute

across goods based on their relative price then the decrease in overall crime may be less.

Thus, it is interesting to know how thefts of good i are affected by the price of good j. In

this section we focus on substitution between metals.

Metals make a suitable good group to analyze substitution for several reasons. Unlike

goods like electronics, metals cannot be easily tracked and they are more homogeneous, so

they can be sold domestically or exported. Metals are easy to sell as scrap and can be sold
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virtually anywhere with potentially less market frictions than other goods. Prices for metals

are fairly spatially homogeneous and are very easy to find (e.g. prices are continually updated

at metal scrap yards based on market conditions). Finally, metal prices are more volatile

than other goods and metal cargo thefts are common in our data, which make analysis of

metal thefts more informative.

We use the QMLE model in section 2.5.1 (equation 2.4). Table 2.7 lists the own and

cross price elasticities for the three metals analyzed in the data. The entry in row i and

column j is the coefficient on the price of the column j good from a regression of thefts of

good i on the price of good i, the price of good j (if i 6= j), and other controls as in equation

2.4.

Steel Copper Aluminum

Steel 3.574*** -0.579 -1.003
(0.965) (0.709) (1.106)

Copper 0.667 2.680*** 2.226
(1.221) (0.943) (1.508)

Aluminum 1.155 1.288 1.559
(2.580) (2.994) (0.978)

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.7: Substitution Across Metals

The elements on the diagonal in Table 2.7 have the expected sign. The results suggest

that there is no strong evidence for a substitution effect between metals. It is also likely that

this extends to other goods, because cross-price elasticity estimates for metals are likely to

be higher and more significant than other goods for the same reasons that make metals a

suitable group to study substitution.
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2.5.3 Heterogeneity by Location

Location plays an important role in theft decisions; supply of goods, black market

demand, and transportation costs (possibly to another country) can vary greatly by location.

In this section we explore the relationship between location, prices, and thefts.

Figures 2.18 through 2.23 show differences across locations in the quantity and types

of goods stolen. We place a circle on each city where a theft occurred and scale the circles

according to the number of thefts in a particular city. Except for Figure 2.18, all circles are

scaled linearly and are comparable across goods.

All Goods (log scale)

Figure 2.18: Location of Thefts of All Goods
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Electronics

Figure 2.19: Electronics Theft Locations
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Food/Drinks

Figure 2.20: Food and Drinks Theft Locations
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Clothing and Shoes

Figure 2.21: Clothing and Shoes Theft Locations
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Cell Phones

Figure 2.22: Cellphone Theft Locations
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Steel

Figure 2.23: Steel Theft Locations

It is apparent in Figures 2.18 through 2.23 that some spatial patterns in thefts ex-

ist. Those patterns may be due to many factors, such as heterogeneity in market demand

conditions, transportation costs to black markets, transportation patterns of different goods,

crime levels, etc... It is difficult to isolate specific causes for the spatial patterns in levels of

theft with the data available. However, by examining the changes in thefts of a particular

good when the price of that good increases, we may be able to identify likely locations where

specialized thieves (or gangs) operate.

First, we note that some cargo thefts are targeted and some are random. When tar-

geting a specific good, cargo thieves have been known to “case” a location, gather intelligence

and information on shipping routes, and follow trucks for hundreds of miles if needed, until

the driver stops, and steal the cargo; random thefts are also common, making “bait trailers”
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that are left unattended a common method by which police catch cargo thieves.5

We assume that if no thieves exist in location s with connections to brokers/fences

specializing in good i then thefts of good i in location s are largely not targeted and are

instead a random function of other factors of location s such as overall levels of crime,

frequency of shipments carrying good i in location s, etc... On the other hand, if a gang

in location s has connections to easily sell a shipment of good i on the black market then

they are more likely to target that good when its price increases. This leads to the following

model:

Model:

Tis = I(cis, pi) +R(s, θis).

Where Tis is the number of thefts of good i in location s; cis is the number of thieves

with connections to dispose of good i in location s; pi is the price of good i; I is the amount

of targeted (intentional) thefts; and R is the amount of random or non-targeted thefts of

good i in location s, which is a function of a random term, θis. We assume the following:

∂R

∂pi
= 0,

∂2I

∂cis∂pi
> 0

The second assumption implies that a location with more connections to dispose of

a particular good will see a higher rise in thefts of that good when its price increases than

another location with less connections. The assumption that ∂R/∂pi = 0 implies:

dTis
dpi

=
∂I(cis, pi)

∂pi

5Interviews with cargo theft ring insiders (Keteyian (2010)) reveal that “brokers” who sell the stolen
goods to buyers are a crucial part of a cargo theft ring. Burges (2012) notes that brokers often place “steal
order” with thieves to obtain specific goods. Brokers and fences are of special importance in cargo theft
gangs because of the large quantities of product involved in a single cargo theft. Non-targeted thefts are
also common; discussing the variety of goods stolen, a cargo thief notes in an interview that “a truck full of
yogurt is a truck, and somebody is going to pay for it.”
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Given this model, we can identify the relative value of cis for a particular good in

different states from comparing dTis/dpi for that good across states. Intuitively, if the price

of a good increases and thefts of that good in state s1 do not change, but thefts in state

s2 respond much more readily to prices, then state s2 is more likely than state s1 to be

the location of gangs with the connections and means to dispose of that good, even though

state s1 may have higher levels of theft of the good (which may occur because of random

state-specific factors).

Rather than obtaining good-specific estimates of the elasticity for each state, which

would lead to volatile estimates due to infrequent thefts, we instead get an average for

each state by estimating a state-specific version of regression (2.2). We only estimate the

regression for states with over 50 thefts. Table 2.8 reports the ranking of the most responsive

five states.

Rank State Price Elasticity of Theft

1 Florida 1.977*** (0.516)
2 Texas 1.696*** (0.362)
3 Illinois 1.346*** (0.474)
4 California 0.724*** (0.121)
5 Tennessee 0.335 (0.601)

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.8: Most Responsive States

2.5.4 Heterogeneity by Proximity to Ports

Ports are a major transportation point for cargo, and behavior of criminals operating

at or close to ports may differ from those operating elsewhere. In this section we separately

consider thefts occurring close to a major U.S. port. Figure 2.24 shows the location and
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relative size of the largest twenty U.S. ports ranked by cargo traffic.6

Largest 20 U.S. Ports by Container Traffic

Figure 2.24: Largest Twenty U.S. Ports by Container Traffic

The center of each circle in Figure 2.24 represents a port and the circle’s size repre-

sents the amount of trade at that port by cargo traffic. Appendix B.4 lists more detailed

information on each port.

We construct a separate panel at the good×county×time level for thefts happening

within one of the counties overlapping or adjacent to one of the top 10 ports. Table 2.9

reports the results from the FEP specification analogous to equation 2.4 (the dependent

6The largest twenty ports include two in Alaska and Hawaii that are not shown on the map. Two ports
in Puerto Rico and Louisiana were excluded: data on highway miles traveled in Puerto Rico is missing so it
was excluded to make the elasticity estimates from this section consistently comparable to those in previous
sections; port of New Orleans was excluded to avoid bias due to the damage from hurricane Katrina.
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variable is number of thefts and we condition on good, port region, and time fixed effects)

for thefts occurring close to one of the largest twenty U.S. ports.

VARIABLES K = 0 K = 6

Joint Price 1.285*** 1.314***
(0.247) (0.224)

Observations 175,644 163,098

Robust standard errors clustered
at the good level in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2.9: Elasticities for Thefts Around Major Ports

2.6 Theoretical Analysis

The model proposed by Becker (1968) has intuitive implications, but it does not take

strategic interactions into account. Strategic interactions are prevalent in cargo security and

play a central role in crime: owners often secure their belongings depending on their value,

and private and public security often depends on the crime rates. The question we address

in this section is: can the empirical results be explained in a model of crime with strategic

interactions?

In this section we show that accounting for strategic interactions can easily reverse

the results of the basic model, a point made previously by Tsebelis (1990), and propose

extensions that explain the empirical results. We first discuss the basic model and the

comparative statics it implies. We then describe a simple model with strategic interactions,

and finally we show how observed empirical patterns can arise out of a model with strategic

interactions. The strategic interactions model we use is a version of the “inspection game”,

which has been applied to crime previously (e.g. in Tsebelis (1990)).
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2.6.1 The Basic Model

An agent has outside option r ∼ F , where F is a strictly increasing cdf with pdf

f . The agent faces a decision to steal a good of price p or get the outside option r. The

probability of getting caught (security) is s, and the individual loses the stolen good and

pays a fine y if caught.

The agent will choose to steal the good if the outside option is less than the expected

value of stealing. That is,

r ≤ (1− s)p− sy

Thus, the expected ex-ante probability of a theft is

T = F ((1− s)p− sy) (2.5)

This simple model has intuitive comparative statics: increasing punishment and the

outside option reduces the theft probability, and increasing the price of the good increases

the theft probability. We can derive the following comparative static from equation (2.5):

dT

dp
= (1− s)f((1− s)p− sy) > 0 (2.6)

Thus, an increase in price increases the theft probability because it increases the gains from

stealing.

In reality, security often depends on the value of the item in consideration and fines

depend on the severity of the crime. Taking those two factors into account, equation (2.6)

becomes,
dT

dp
= f((1− s)p− sy)

(
1− s− pds

dp
− y ds

dp
− sdy

dp

)
(2.7)

and it is not clear what the sign of dT/dp is. If prices increase but security and penalties do

not increase fast enough to offset the increase in gain from stealing, then thefts can increase;

on the other hand, if penalties and security increase too fast when prices are higher then
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an increase in prices may actually reduce thefts. This shows that incorporating strategic

interactions is crucial for a complete understanding of crime.

2.6.2 Strategic Interactions

Many models can incorporate strategic interactions. Here we propose a simple one

and we discuss extensions that explain the observed empirical facts.

Suppose the owner of a good with price p can choose to either secure the good at

cost c or not secure it. If the good is secured then any attempt at stealing it fails and if it

is not secured then any attempt at stealing it succeeds. An agent decides whether to steal

the good or not as before. The agent and the owner play the following complete information

game:

Secure Not Secure
Steal −y,−c p,−p

Not Steal r,−c r, 0

Where we assume that −y < r < p and 0 < c < p. Let α be the probability that the

agent plays “Steal” and β be the probability that the owner chooses “Secure”. Note that

the probability of capture, what we called “s” earlier, is now β, determined endogenously

as the outcome of an equilibrium. The above game has a unique Nash equilibrium (α∗, β∗)

given by,

(α∗, β∗) =

(
c

p
,
p− r
p+ y

)
(2.8)

In contrast to the basic model with no strategic interactions, the equilibrium in (2.8)

predicts that an increase in price does not increase, but rather decreases, crime (α∗) and leads

instead to an increase in security (β∗). This is consistent with findings that inexpensive items,

such as candy (McNees et al. (1980) and Carter (1995)), are often shoplifted. Because the
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fixed price of security (e.g a lock or a camera) becomes relatively cheaper as an item’s price

increases, retailers often secure more expensive items much more heavily than cheaper ones.

It is thus plausible that a price increase may reduce thefts, as captured by this model.

Empirically, we observe that prices (at least in cargo theft crimes) are positively re-

lated to thefts. Can a model of crime with strategic interactions lead to predictions consistent

with the data? We propose some extensions in which the simple model we described can

lead to results consistent with the data.

Incomplete Information

Suppose the owner does not know the outside option of the agent, r, but instead

knows that r ∼ F , where F is a strictly increasing cdf with pdf f . In equilibrium, if the

owner chooses to secure the good with probability β, the agent will choose to steal the good

if the outside option is less than the expected value of stealing, or r ≤ (1− β)p− βy. Thus,

the probability the agent chooses “Steal” is F ((1 − β)p − βy). The owner will choose an

equilibrium strategy, β∗, to maximize his expected utility:

β∗ = max
β∈[0,1]

{−βc− p(1− β)F ((1− β)p− βy)} (2.9)

Let T denote the ex-ante expected probability of theft. The equilibrium comparative

statics, particularly dT/dp, depend on the parameters of the problem. To see this, let F be

a uniform distribution with support on [−y, r] for some r > p. Equation (2.9) becomes:

β∗ = max
β∈[0,1]

{
−βc− p(1− β)

(1− β)p− βy + y

r + y

}
(2.10)

The solution to (2.9) in this case is:
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β∗ = max

{
2p2 + 2py − c(r + y)

2p2 + 2py
, 0

}
(2.11)

Equation (2.11) characterizes the equilibrium strategy of the owner, the probability of

securing the good. The agent follows a bang-bang strategy of comparing his outside option

with the expected value from stealing, given β∗, and chooses “Not Steal” if his outside option

is above the expected value from stealing and “Steal” otherwise. Thus, the ex-ante expected

probability of theft is

T =
(1− β∗)p− β∗y + y

r + y
(2.12)

dT/dp depends on the parameters of the problem and is not always negative as with

the complete information case. To illustrate, let c = 1, y = 2, and r = 8. Figure 2.25 shows

the equilibrium strategy of the owner, β∗, and the expected ex-ante probability of theft, T .

As the price increases dT/dp changes from being positive to negative.
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Figure 2.25: Incomplete Information Equilibrium

This illustrates the deeper theoretical fact that introducing incomplete information

to a complete information game can reverse the equilibrium comparative statics.

Imperfect Security

Security decisions in the cargo transportation industry are much more fluid than the

sharp binary decision we have in our simple model. Security can range anywhere from hiring

a reputable shipping company and employees with a clean background check to watching

the cargo real-time via covert electronic tracking. Similarly, cargo thieves are not always

captured when goods are secured and can be extremely sophisticated – they can gather

intelligence, conduct surveillance, hire insiders, and use GPS jammers – especially when the

cargo can be worth millions of dollars.
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We consider a setting in which security is imperfect, so that a theft can succeed with

probability θ despite the good being secured.7 This leads to the following model:

Secure Not Secure
Steal −y(1− θ) + θp,−c− θp p,−p

Not Steal r,−c r, 0

The equilibrium structure in this game depends on the parameters. If −y(1−θ)+θp <

r and c+ θp < p then there is a mixed Nash equilibrium given by:

(α∗, β∗) =

(
c

(1− θ)p
,

p− r
(1− θ)(p+ y)

)

In this equilibrium the probability of a theft, α∗, is decreasing in p. However, if

an increase in p is large enough then “Steal” becomes a strictly dominant strategy for the

agent and α∗ = 1. Also, if p < c/(1 − θ) then “Not Secure” is a dominant strategy and,

again, α∗ = 1. Thus, the equilibrium behavior, and particularly the probability of stealing,

is non-monotonic in p, as in the case with incomplete information.

2.7 Conclusions and Further Work

The results in this paper highlight the importance of potential rewards from crime

in determining crime levels. Using confidential data on cargo theft, we estimate the price

elasticity of theft to be about 1.002 in the short run and 1.192 over a seven-month horizon. By

analyzing the heterogeneity in the price elasticity of theft across goods and across locations,

we characterize the most responsive locations, and we present a simple model explaining

the heterogeneity in responsiveness by spatial heterogeneity in connections to black markets.

7In reality θ is not exogenous, because it can be influenced by the owner securing the good more heavily.
However, this can be countered by thieves using more sophisticated means to steal the good.
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We find no evidence of a large and significant substitution effect across goods. We present a

simple model of crime with strategic interactions to explain the main empirical results.

The elasticity we find for the response of crime levels with respect to the gain from

committing crime is large relative to other elasticities in the literature (e.g. those related

to punishment and policing). To the extent that our results generalize to other crimes,

they suggest that crime fighting policies that act through the direct channel of reducing

the potential gain from committing a successful crime (e.g. policies that shut down black

markets or reduce demand for illegal goods) may be more effective than policies that attempt

to reduce crime through punishment and policing. This is especially likely given that costs

of incarceration and increased policing can be very substantial. Examining the relative

effectiveness of the policies in a setting that allows for such an analysis could have important

policy implications.
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Chapter 3

A Graph Theoretic Characterization of

Implementation Theory Problems

Chapter Summary

We show that any implementation problem can be formulated as a question about

the existence of a graph that solves a (nonstandard) graph coloring problem. We apply this

fact by proposing a simple backtracking algorithm with forward checking to find the simplest

(in an arbitrary notion of simplicity) mechanisms, if they exist, to solve any implementation

problem in an arbitrary solution concept.

3.1 Introduction

The simple, yet fundamental, insight of this paper is that any mechanism with a

countable message space can be represented as a weighted, colored graph. This connection to

graph theory opens the door for using graph theoretic methods, which have been extensively

studied and developed, to answer questions in mechanism design and implementation theory.

Algorithms for coloring graphs can be used to design mechanisms; complexity results from

graph theory, which are relatively well established, can be used to understand the complexity

properties of implementation and mechanism design problems; and graph theoretic methods

can be used to prove and illuminate results in mechanism design and implementation theory.

In a seminal paper, Maskin (1999) presented general results for Nash implementation.
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Several papers have studied if more social choice rules can be implemented with reasonable

modifications to the solution concept (e.g. Palfrey and Srivastava (1991)). Other papers

consider implementation under additional behavioral assumptions (e.g. Eliaz (2002) and

Dutta and Sen (2012)). Different assumptions about the solution concept, and restrictions

on the mechanisms used, can lead to vastly different results regarding which social choice

rules can be implemented. Thus, establishing general results that are not specific to just

one solution concept in a unifying framework is crucial in addressing design problems with

nonstandard solution concepts and in making mechanism design apply more generally.

We show that any implementation problem, in an arbitrary solution concept, can be

reformulated as a problem about the existence of a graph with a specific coloring, estab-

lishing a connection between implementation theory and graph theory. Taking an applied

approach, we illustrate one of the applications of this connection by proposing an algorithm,

based on the backtracking with forward checking algorithm for solving Constraint Satis-

faction Problems, to design simple mechanisms to solve an implementation problem in an

arbitrary solution concept. Specifically, we let δ be an arbitrary simplicity criterion based

on a mechanism’s strategy space, and for any implementation problem with an arbitrary

solution concept and any simplicity criterion threshold, we propose an algorithm to: (1)

determine whether a mechanism δ-simpler than the given threshold exists that solves the

implementation problem, and (2) determine the δ-simplest such mechanism. Despite the

generality of our exposition, the algorithms we propose can be easily applied to construct

mechanisms in small problems. By allowing for an arbitrary solution concept, our results can

be used to construct mechanisms (or rule out the existence of simple ones) for complicated

solution concepts, which the literature may not address and for which no implementation

results are known.

Our results also illuminate and generalize some results in implementation theory. For

example, we present an intuitive “no-conflict” condition on the constraints implied by an
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implementation problem that is necessary for implementation. The no-conflict condition is

independent of the solution concept, but we show that it is equivalent to Maskin monotonicity

when the solution concept is Nash equilibrium. In a general implementation problem, the no-

conflict condition can be viewed as the equivalent monotonicity condition for that particular

problem and it offers a first check for whether the problem can be implemented or not.

Our approach makes it clear that graph coloring problems, or constraint satisfaction

problems more generally, underlie much of implementation theory. Vohra (2011) shows how

many mechanism design problems can be formulated as linear programming problems. For

the most part, Vohra (2011) focuses on environments with incomplete information and where

the revelation principle applies. In contrast, we focus on implementation theory problems,

where the revelation principle does not apply. This makes the problem considerably more

difficult, because (assuming a mechanism exists that solves a particular problem) without

the revelation principle the message space of the mechanism is unknown and the outcome at

each message profile reported is also unknown. The problems we show are most related to

implementation theory, graph coloring and constraint satisfaction problems, are both com-

putationaly hard and cannot be solved by efficient linear programming methods in general.

This paper is organized as follows. Section 3.2 describes the basic implementation

problem. Section 3.3 establishes the connection to graph theory and presents the main

results. Section 3.4 discusses constraint satisfaction problems, of which graph coloring prob-

lems are a special case. Section 3.5 presents algorithms to solve arbitrary implementation

problems using simple mechanisms. Section 3.6 discusses special cases (e.g. Nash implemen-

tation) and provides examples. Section 3.7 concludes and discusses further work.

3.2 The Standard Implementation Problem

Let A be a set of outcomes and I = {1, . . . , n} be the set of players. Each individual

i ∈ I has a preference relation Ri over the set of outcomes, A. The collection of preference
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relations for all individuals is called a preference profile and is denoted by R ≡ (R1, . . . , Rn).

Associated with each preference relation Ri is a strict preference relation Pi. The set of all

permissible preference profiles is denoted by R and we let Ri be the set of all permissible

preference relations for a specific player i ∈ I . The preferences of each player i ∈ I are

representable by a utility function, ui : A×Ri → R. A social choice correspondence (SCC)

or a social choice rule (SCR) is a function F : R → 2A\{∅}. When F is single valued, i.e.

F : R → A\{∅}, it is called a social choice function (SCF). A mechanism is a pair (M, g),

where M = M1×· · ·×Mn is the product of message (or strategy) spaces for each player and

g : M → A is an outcome function. A typical element of Mi is a message for player i ∈ I,

denoted by mi, and a collection of such messages is called a message profile and denoted

by m = (m1, . . . ,mn). A mechanism (M, g), together with a preference profile R defines a

normal form game. A solution concept is a prediction specifying the message profiles, called

equilibria, we expect players to play in a game. If S is a solution concept and Γ = (M, g)

is a mechanism, we denote the set of all equilibrium profiles under preference profile R by

S(Γ, R) ∈M . The set of outcomes associated with S(Γ, R) is denoted by g(S(Γ, R)). A SCC

(or SCF) is implementable in a solution concept, S, if there exists a mechanism Γ = (M, g)

such that g(S(Γ, R)) = F (R) for all R ∈ R.

We assume that renaming the strategies in a mechanism does not affect the set of

equilibria: suppose Γ = (M, g) and Γ′ = (M ′, g′) are two mechanisms with the property that

a bijection hi : Mi → M ′
i exists such that g(m1, . . . ,mn) = g′(h1(m1), . . . , hn(mn)); then

for each preference profile R ∈ R, (m1, . . . ,mn) ∈ M is an equilibrium in Γ if and only if

(h1(m1), . . . , hn(mn)) ∈M ′ is an equilibrium in Γ′.

We say that a collection (I, A,R, F, S) of a set of players, outcomes, preference pro-

files, a social choice rule, and a solution concept form an implementation problem. We say

that a mechanism, Γ = (M, g), solves the implementation problem if g(S(Γ, R)) = F (R) for

each R ∈ R.
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3.3 The Connection to Graph Theory

A graph is a pair of sets G = (V,E) with E ⊆ [V ]2, where [V ]2 denotes all subsets of V

of size 2; we refer to V as the set of vertices and E as the set of edges. We will also refer to A

as the set of outcomes or colors interchangeably. A graph coloring is a function: C : V → A.

We will sometimes use C(G) to denote the coloring associated with graph G, and C(B) to

denote the set of all colors of a subset of vertices B ⊆ V . For any colorings C1, . . . , Ck, we

define their union to be a function C
⋃

: V → 2A\{∅} such that C
⋃

(v) =
⋃k
i=1C

i(v) for any

vertex v, and their intersection to be function C
⋂

: V → 2A such that C
⋂

(v) =
⋂k
i=1 C

i(v).

We call any function with domain V and range 2A a multi-coloring. Unions and intersections

of multi-colorings are defined analogously.

The solution to any implementation problem is a mechanism, we first show that

any mechanism has a graph representation. For any mechanism, Γ = (M, g), the graph

representation of Γ is a colored weighted graph, G = (V,E), with the following properties:

V = M ; the color of a vertex m is g(m); and for any two vertices m,m′ ∈ V if mi 6= m′i and

mj = m′j for all j 6= i then m and m′ are connected with an edge of weight i.
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Figure 3.1: Example Mechanisms and Their Graph Representations

Figure 3.1 shows some mechanisms and their graph representations. Mechanisms

M1 and M2 have two players and M3 has three players; sij denotes strategy j for player

i. The graph preserves the essential structure of the mechanism: the color of each vertex

corresponds to an outcome at a strategy profile and edges of weight i indicate outcomes

player i can obtain by deviating.

Any mechanism has a corresponding graph representation, but not every graph is

the graph representation of a mechanism. We denote the set of all graphs that are graph

representations of some mechanism by G. Note that, up to a renaming of players’ messages,

any G ∈ G has a unique associated mechanism. If (M, g) is a mechanism associated with

graph G = (G, V ) ∈ G, then we denote by h the bijection h : V → M . Note also that
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g(h(v)) = C(v).

Given a graph, G ∈ G, we denote by C(a|G,S,R) the set of all colorings of graph

G such that there is an equilibrium of the corresponding mechanism with outcome a under

solution concept S and preference profile R. The structure of C(a|G,S,R) depends on the

solution concept. For example, if the solution concept is Nash equilibrium then a coloring

C of graph G = (V,E) is contained in C(a|G,S,R) if there exists a vertex v ∈ V with color

a such that, for all i ∈ I, any vertex v′ connected to v by an edge of weight i has color in

Li(a,R), where Li(a,R) = {b ∈ A : aRib} (i.e. player i does not have a profitable deviation

from the message corresponding to vertex v).

As we mentioned previously, a mechanism Γ = (M, g) solves an implementation

problem if and only if g(S(Γ, R)) = F (R) for all R ∈ R. This condition is equivalent to a

set of coloring constraints on the graph representation of Γ, which we formalize next.

Definition 3.3.1 (Existence Constraints). Let (I, A,R, F, S) be an implementation prob-

lem and G be a graph in G with coloring C(G). The following are the existence constraints

on G associated with the implementation problem: for each R ∈ R and for each a ∈ F (R),

C(G) ∈ C(a|G,S,R).

Definition 3.3.2 (Nonexistence Constraints). Let (I, A,R, F, S) be an implementation

problem and G be a graph in G with coloring C(G). The following are the nonexistence

constraints on G associated with the implementation problem: for each R ∈ R and for each

a /∈ F (R), C(G) /∈ C(a|G,S,R).

The following Theorem is the main result of the paper. It establishes that any imple-

mentation problem can be reformulated as a question about the existence of a graph that

solves a graph coloring problem.

Theorem 3.3.1. Suppose (I, A,R, F, S) is any implementation problem. Then there exists a

mechanism that solves the implementation problem if and only if there exists a graph in G
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satisfying the existence and nonexistence coloring constraints associated with the implemen-

tation problem.

Proof. Let (I, A,R, F, S) be an implementation problem, and let (M, g) be a mechanism

that solves the implementation problem with graph representation G = (V,E). If a ∈
F (R), then implementation implies the existence of an equilibrium of the game induced by

the mechanism and the preference profile R with outcome a. Thus, C(G) ∈ C(a|G,S,R).

Similarly, if a /∈ F (R) then implementation implies that there is no equilibirum of (M, g) at

R with outcome a, showing that C(G) /∈ C(a|G,S,R).

Next, suppose G ∈ G satisfies the existence and nonexistence constraints implied by

implementation problem (I, A,R, F, S); let Γ = (M, g) be the mechanism corresponding

to G. Then, for any a ∈ F (R), (M, g) has an equilibrium with outcome a under solution

concept S at R; also, for any a /∈ F (R), (M, g) has no equilibrium with outcome a under

solution concept S at R. This shows that g(S(Γ, R)) = F (R) for any R and the (M, g) solves

the implementation problem.

Theorem 3.3.1 implies that to decide whether an implementation problem has a so-

lution or not it is enough to answer the question of whether a graph G ∈ G exists satisfying

the existence and nonexistence coloring constraints.

Definition 3.3.3 (No-Conflict Condition). Let (I, A,R, F, S) be an implementation

problem. There exists G ∈ G such that, for all (a,R, a′, R′) ∈ A×R×A×R with a ∈ F (R)

and a′ /∈ F (R′), C(a|G,S,R) * C(a′|G,S,R′).

Note: we allow for the possibilities that a = a′ and R = R′ in the no-conflict condition.

The no-conflict condition simply says that the nonexistence constraints do not rule out a

set of colorings, one of which is stipulated to be used to color the graph by the existence

constraints. This condition is obviously necessary for implementation. It can give us an

easy first check on whether an implementation problem can never have a solution, and we
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show later that it is equivalent to Maskin monotonicity when the solution concept is Nash

equilibrium.

Multi Implementation

In some instances it is interesting to implement social choice rules in more than

one solution concept (e.g. with double implementation). In this case the existence and

nonexistence constraints for the multi implementation problem are simply the combined

constraints from each of the solution concepts. Theorem 3.3.1, and the rest of the paper,

then proceed naturally with the combined coloring constraints.

3.4 Constraint Satisfaction Problems

Given a graph, determining whether there is a feasible coloring for the graph that

solves a set of coloring constraints can be expressed as a Constraint Satisfaction Problem

(CSP) (A review of constraint satisfaction problems can be found in Brailsford et al. (1999)).

Given a set of variables and a finite domain for each variable, a (finite domain) CSP is the

problem of assigning a value to each variable from its domain so that a set of constraints is

satisfied. CSPs are common in Artificial Intelligence as many problems, and in particular

graph coloring problems, can be represented as CSPs. We discuss next two classical examples

of CSPs.

The n-Queens Problem

In chess, a queen is a piece that can move any number of squares vertically, horizon-

tally, and diagonally. The n-Queens problem is to find a placement of n queens on a n× n

chess board so that no two queens attack each other (i.e. no two queens are on the same row,
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column, or diagonal). Figure 3.2 shows a solution to the 8-Queens problem on a standard

8× 8 chess board.

Figure 3.2: A Solution to the 8-Queens Problem

The n-Queens problem can be formulated as a CSP as follows. Because each queen

must be on a different row, we know that there will be exactly one queen on each row;

thus the set of variables can be {c1, . . . , cn}, the column number of each of the queens. The

domain of each variable can be {1, . . . , n}, and the constraints are that no pair of variables

has the same value (queens cannot be in the same column) or the same diagonal line.

(Standard) Graph Coloring Problems

Given a graph, the standard graph coloring problem is to find a coloring of the vertices

such that no two adjacent vertices share the same color. This problem and its extensions

have many applications, which led to their being studied extensively. For example, consider

a problem of scheduling final exams in a university in the least amount of time so that no

two classes have finals at the same time if a student is enrolled in both classes. Representing

this problem as a graph coloring problem, each class can be represented as a vertex with

edges connecting classes that have students in common. A “color” for each vertex can then
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represent a time for the final. A coloring of the resulting graph with no adjacent vertices

sharing the same color is then a feasible solution to the scheduling problem; a coloring that

uses the minimum number of colors is an optimal solution.

Algorithms for Solving CSPs

A simple algorithm for solving CSPs that is often considerably faster than a brute-

force approach of checking all the combinations of possible variable assignments is the back-

tracking algorithm. Backtracking searches in a tree of variable assignments by sequentially

assigning variables an allowable value, and continually checking the constraints. If a con-

straint fails then the algorithm repeatedly assigns different values to the current variable;

if none of the values work then the algorithm backtracks to the previous variable and tries

a different value. Backtracking is faster than a brute-force approach because once a partial

variable assignment is discovered to violate the constraints all the variable assignments with

the same partial variable assignment are eliminated from consideration.

Backtracking algorithms only check the satisfaction of the constraints based on the

current variable assignment and the previous variables, but they do not look ahead to future

variables. A forward checking algorithm, introduced by Haralick and Elliott (1980), keeps

track of allowable values for future variables and backtracks if a partial variable assignment

leads to an empty set of allowable values for a future variable.

3.5 Application: Solving Arbitrary Implementation Problems with
Simple Mechanisms

Given any implementation problem, Theorem 3.3.1 allows us to focus on the graph

coloring problem for finding a solution. Given a graph in G, determining whether it satisfies

the existence and nonexistence coloring constraints is simply a non-standard graph coloring
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problem. In this section we propose an algorithm, which uses backtracking with forward

checking, to determine whether a graph in G satisfies the coloring constraints or not. The

algorithm also gives us such coloring when it exists. We nest this algorithm in another that

iteratively checks graphs in G starting with the simplest possible ones to give us the simplest

mechanisms that solve the implementation problem, if they exist.

Because of the generality of the problems we consider, the algorithms in this section

cannot be used in general to determine that a given implementation problem has no solution.

However, for an arbitrary simplicity criterion and an arbitrary simplicity threshold, the

algorithms we propose can tell us whether an implementation problem can be solved using

a mechanism simpler than the threshold or not. In less general problems (e.g. with a fixed

solution concept), it is sometimes possible to determine necessary and sufficient conditions for

an implementation problem to have a solution, and algorithms for checking those conditions

may be used.

In the basic algorithm, we assign the vertices an arbitrary order and sequentially

color them to make sure the existence constraints are satisfied. One complication is that

the existence constraints may be infeasible with a particular vertex ordering, but feasible

with another. Thus, (initially) all possible orderings must be checked, but in the process

of doing so we locally “explore” and eliminate all orderings that are discovered to be bad,

making the process more efficient. We also forward check by keeping track of the allowable

colors of all vertices and backtrack when a vertex has an empty set of allowable colors. In less

general problems with a specific solution concept the algorithms can potentially be simplified

considerably.

Let F (R) = {a : a ∈ F (R), R ∈ R} be the set of unique outcomes in the range of F .

F (R) is the set of equilibrium outcomes that must exist in the mechanism. We assume that

F (R) > 1, otherwise the implementation problem is trivial.

For any implementation problem, (I, A,R, F, S), the first algorithm, Algorithm A1,
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determines if a given graph G = (V,E) ∈ G with |V | ≥ 2 can be colored in a way to satisfy

the existence and nonexistence constraints of the implementation problem.

Throughout the algorithm, we refer to a vertex’s set of allowable colors. Define

Cv(a|G,S,R) to be the set of all colorings of graph G such that the message corresponding

to vertex v in the corresponding mechanism is an equilibrium with outcome a under solution

concept S and preference profile R. Suppose at any point in the algorithm we have assigned

colors c1, . . . , ck ∈ A to vertices v1, . . . , vk ∈ V in steps 2, 3, or 4; then the set of allowable

colors for vertex v is the set of colors assigned to v (possibly ∅) by the multi-coloring
⋂k
i=1 C

⋃
vi

(ci|G,S,R), where C
⋃
vi

(ci|G,S,R) is the union of all colorings in Cvi(ci|G,S,R) . The

set of allowable colors for a vertex v is simply the set of colors for v that are consistent with

vertices (v1, . . . , vk) being equilibria with colors (c1, . . . , ck).

Algorithm A1

Given An implementation problem (I, A,R, F, S), and a graph G = (V,E) ∈ G with |V | ≥

2. We remove any coloring of G, if present.

Initialization If |F (R)| > |V | then the graph cannot satisfy the existence constraints and

the algorithm ends. Label the vertices {v1, . . . , v|V |}. Let Q = {(a,R) : a ∈ F (R), R ∈

R} and label the elements in Q as {q1, . . . , qd}, where d = |Q|. For each i ∈ {1, . . . , d},

let qi = (ci, Ri). Let Π be the set of all d-tuples such that each π = (π1, . . . , πd) ∈ Π

has the following properties: (1) π1 = 1; (2) πi ∈ {1, . . . , |V |}; and (3) πi 6= πj if ci 6= cj

for all i, j ∈ {1, . . . , d} with i 6= j.

Step 1 Color vertex v1 with c1. If there is any color ci, i ∈ {2, . . . , d}, such that no vertex

in V has ci as an allowable color then G does not satisfy the existence constraints and

the algorithm ends.
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Step 2 If Π is empty then the graph does not satisfy the constraints and the algorithm

ends. Otherwise, pick a π ∈ Π.

Step 3 Do this step for each 1 < k ≤ d. Subtract from Π all π′ with the following properties:

(1) (π′1, . . . , π
′
k−1) = (π1, . . . , πk−1), and (2) ck is not an allowable color for vπ

′
k ; if the

current π is subtracted then go back to step 2, otherwise color vπk with ck. If any

vertex in V has an empty set of allowable colors then subtract the current π from Π,

along with all π′ such that (π′1, . . . , π
′
k) = (π1, . . . , πk), and go back to step 2.

Step 4 The graph now satisfies the existence constraints, but there are some vertices with

unassigned colors, each of which has a nonempty set of allowable colors. Use back-

tracking with forward checking again to check if a feasible coloring exists:

• Enumerate all the unassigned vertices in an arbitrary order.

• Sequentially color the vertices with a color from the allowable set of colors for

each vertex, reducing the allowable set of colors for all the unassigned vertices

based on the nonexistence constraints. After each vertex is colored, backtrack to

the previously colored vertex and use a different color if any unassigned vertex

has an empty set of colors.

• Use the first coloring that satisfies the nonexistence constraints; if none exist then

subtract the current π from Π and go back to step 2.

The next algorithm, Algorithm A2, searches for the simplest graphs in G that can be

colored using Algorithm A1. “Simplicity” can be defined in many ways, and we allow for

fairly general choices using the following definition of a simplicity criterion.

Definition 3.5.1 (Simplicity Criterion). A simplicity criterion is a function δ : Nn → R,

such that for any z ∈ R the set {b ∈ Nn : δ(b) ≤ z} is bounded. We say that b ∈ Nn is

δ-simpler than b′ ∈ Nn if δ(b) < δ(b′).
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The simplicity of mechanism (M, g) will be measured by δ(|M1|, . . . , |Mn|). Algorithm

A2 will find the simplest mechanisms (up to an arbitrary threshold z ∈ R) that implement a

social choice rule, which allows for great flexibility. For example, to find a mechanism with

the smallest strategy space in terms of the sum of players’ strategies define δ(b) =
∑n

i=1 bi,

b = (b1, . . . , bn) ∈ Nn; to find a mechanism with the smallest number of strategy profiles

define δ(b) =
∏n

i=1 bi; and to find a mechanism that minimizes (one measure of) strategic

interactions let δ(b) =
∑n

i=1 1{bi > 1}. These examples, and many others, can be combined

to yield more complicated notions of simplicity: for example, to find the mechanism with

the smallest number of strategy profiles, giving preference to less strategic mechanisms at

ties, define δ(b) =
∏n

i=1 bi + (1/(n+ 1)) ∗
∑n

i=1 1{bi > 1}.

Algorithm A2

Given: an implementation problem (I, A,R, F, S), and z ∈ R.

Step 1 Let B be the set of vectors in b = (b1, . . . , bn) ∈ Nn such that
∑n

i=1 bi > n,
∏n

i=1 bi ≥
|F (R)|, and δ(b) ≤ z. If B is empty then the algorithm ends: the implementation

problem has no solution using a mechanism with a simplicity criterion value up to z.

Create an enumeration of the elements in B as (b1, b2, b3, . . .) such that δ(bi) ≤ δ(bj)

whenever i < j.

Step 2 Starting at k = 1, for bk ∈ B, let G ∈ G be a graph representation of a mechanism

with (|M1|, . . . , |Mn|) = (bk1, . . . , b
k
n). Apply Algorithm A1 to graph G; if Algorithm

A1 finds a coloring of G that satisfies the existence and nonexistence constraints, then

the δ-simplest mechanism that solves the implementation problem is the mechanism

corresponding to G with the coloring assigned in Algorithm A1. If Algorithm A1 does

not find a coloring for G that satisfies the constraints, increase k by 1 and repeat this

step, unless k = |B|, in which case the algorithm ends: the implementation problem

has no solution using a mechanism with a simplicity criterion value up to z.
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3.6 Examples and Special Cases

3.6.1 Nash Implementation

To simplify the notation in this subsection, we let
i
v denote the set of all vertices

connected to vertex v by an edge with a weight i.

Example 5. Let A = {a, b, c} and and consider a social choice function given by F (R) = b

and F (R′) = c, where R and R′ are given by

R1 R2 R′1 R′2
a c b c
b b c a
c a a b

Any mechanism that implements F must have a NE with outcome b at R and a NE

with outcome c at R′; it must also have no NE at R with outcomes a or c and no NE at R′

with outcomes a or b. The existence and nonexistence constrains state these constraints in

terms of the mechanism.

Let G = (V,E) be a graph in R. Note that for any (v, q) ∈ V × A, the set of all

colorings that are consistent with v being an equilibrium with outcome q at R, Cv(q|G,S,R),

is simply the set of all colorings with C(v) = q and C(
i
v) in the set of weakly less preferred

outcomes for player i. We now state the existence and non-existence constraints.

Existence Constraints

• ∃v ∈ V with: C(v) = b, C(
1
v) ∈ {b, c}, and C(

2
v) ∈ {b, a}

• ∃v ∈ V with: C(v) = c and C(
1
v) ∈ {c, a}

Nonexistence Constraints
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• @v ∈ V with: C(v) = a and C(
2
v) ∈ {a}

• @v ∈ V with: C(v) = c and C(
1
v) ∈ {c}

• @v ∈ V with: C(v) = b and C(
2
v) ∈ {b}

• @v ∈ V with: C(v) = a, C(
1
v) ∈ {a}, and C(

2
v) ∈ {a, b}

We can use the algorithms from the previous section to find the δ-simplest mechanism

to implement the above social choice rule. We define simplicity by the number of strategy

profiles in the mechanism, so δ(b) =
∏n

i=1 bi for b = (b1, . . . , bn) ∈ Nn. The algorithms yield

the following two mechanisms, depending on the enumeration chosen in step 4 of Algorithm

A1:

Mech. 1

b a
b c

Mech. 2

b a
c c

Each of these mechanisms implement F in Nash equilibria, and they are the small-

est (in terms of the number of strategy profiles) mechanisms that do so. In contrast, the

canonical mechanism for Nash implementation (Maskin’s mechanism) has twelve strategies

for each player when the strategy space is reduced by using a modulo game.

We next show that Maskin monotonicity is equivalent to the no-conflict condition

when the solution concept is Nash equilibrium.

Theorem 3.6.1. If Nash equilibrium is the solution concept then Maskin monotonicity holds

in an implementation problem (I, A,R, F, S) if and only if the no-conflict condition holds.

Proof. First, suppose the no-conflict condition fails: for every G ∈ G, there exists a ∈ F (R)

and a′ /∈ F (R′) such that C(a|G,S,R) ⊆ C(a′|G,S,R′). I will show that Maskin monotonicity
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also fails, that is: there exists (a,R,R′) ∈ A×R×R with a ∈ F (R), a /∈ F (R′), but where

for all (i, b) ∈ I×A it is true that aR′ib whenever aRib. Thus, I will show that a is chosen at

R and not R′, but no player has a preference reversal between a and a weakly less preferred

outcome going from R to R′.

Let G be any graph in G. C(a|G,S,R) is the set of all colorings such that a vertex v

with color a exists and where any vertex v′ connected to v with weight i has a color in Li(a,R)

(i.e. C(
i
v) ⊆ Li(a,R) for all i ∈ I), where Li(a,R) ≡ {b ∈ A : aRib}. By assumption, there

exists a ∈ F (R) and a′ /∈ F (R′) such that C(a|G,S,R) ⊆ C(a′|G,S,R′). Suppose a 6= a′;

then the coloring where all vertices are colored a is in C(a|G,S,R) but not in C(a′|G,S,R′)

showing that C(a|G,S,R) * C(a′|G,S,R′) and violating the assumption that the no-conflict

condition fails. Thus, a = a′. Again, by assumption, there exists a ∈ F (R) and a /∈ F (R′)

(with R 6= R′) such that C(a|G,S,R) ⊆ C(a|G,S,R′). Suppose some player has a preference

reversal between a and a weakly less preferred outcome going from R to R′; that is, there

exists (i, b) ∈ I×A with aRib, but bP ′ia. Then a graph with two vertices with colors a and b

connected with an edge of weight i has coloring in C(a|G,S,R) (the vertex with color a is a

Nash equilibrium in the corresponding mechanism), but its coloring is not in C(a|G,S,R′),

leading to a contradiction. Thus, no player has a preference reversal between a and a weakly

less preferred outcome going from R to R′ and Maskin monotonicity fails.

Next, suppose that Maskin monotonicity fails. I will show that the no-conflict con-

dition also fails. By failure of Maskin monotonicity, there is some a ∈ F (R) and a weakly

rises in each player’s preferences going from R to R′, but a /∈ F (R′). Let G be any graph in

G. Because a ∈ F (R), the existence constraints imply that there is a vertex v with color a

and where C(
i
v) ⊆ Li(a,R) for all i ∈ I (the set of all colorings satisfying this property is

C(a|G,S,R)). Because a /∈ F (R′), the nonexistence constraints imply that there is no vertex

v with color a and where C(
i
v) ⊆ Li(a,R

′) for all i ∈ I. However, Li(a,R) ⊆ Li(a,R
′) for all

i ∈ I, which implies that C(a|G,S,R) ⊆ C(a|G,S,R′), and the no-conflict condition fails.
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3.7 Conclusions and Further Work

This paper shows that any implementation problem can be formulated as a ques-

tion about the existence of a graph that solves a graph coloring problem. We presented

a necessary no-conflict condition for implementation, and, focusing on the special case of

Nash implementation, we have shown that it is equivalent to Maskin monotonicity when

the solution concept is Nash equilibrium. We also presented general algorithms that can

solve arbitrary implementation problems using simple mechanisms (in an arbitrary notion

of simplicity) when they exist.

Understanding the computational complexity of general implementation problems is

important from a practical point of view. We have shown that coloring a graph so that its

corresponding mechanism solves an implementation problem is a special case of a constraint

satisfaction problem. In general, constraint satisfaction problems are NP-complete. Because

computational complexity of graph coloring, and constraint satisfaction problems more gen-

erally, has been extensively studied, the connection we make to graph theory is an important

step in understanding the general complexity of solving implementation problems and the

possibility of obtaining different complexity results based on the environment.

Besides Maskin monotonicity, it is likely that the no-conflict condition is also equiva-

lent to other monotonicity conditions in the literature when the appropriate solution concept

is used. More generally, the graphical approach we use opens the door for applications of

graph theoretic, combinatorial, and geometric results in implementation theory. Such appli-

cations would lead to a better understanding of existing results in implementation theory and

potentially establish powerful general results that are independent of any solution concept.
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Appendix A

Chapter 1 Appendix

Proof of Theorem 1.3.1

Let (M, g) be a mechanism that strongly (d̄, v̄)-safe implements F . To prove this

theorem, we will show that if condition (1) does not hold, then condition (2) holds. Suppose

a ∈ F (R) and condition (1) doesn’t hold so that ∃R′ with a /∈ F (R′). Because F is strongly

(d̄, v̄)-safe implementable, there is a Nash equilibrium at R, say m, such that g(m) = a.

Because a /∈ F (R′), m cannot be a NE at R′. Hence, at least one player, say player i, has a

profitable deviation from m to obtain some other outcome, say b, at R′ and thus, bP ′ia. At

R, player i must weakly prefer a to b, otherwise obtaining b would be profitable for player i

at R and m would not be a NE at R. Hence, aRib. Now consider another profile, R
′′
, where

a rises in all players’ ranks relative to R. m must then be a NE at R
′′
. Because every NE is

(d̄, v̄)-safe and because player i can obtain b by deviating from m, b cannot victimize more

than v̄ players in I\{i} at R
′′
. Hence, condition (2) holds.

Proof of Corollary 1.3.2

To show a contradiction, suppose (M, g) is a mechanism that strongly (d̄, v̄)-safe

implements F on R and R contains all possible strict preferences. Let a ∈ F (R) for some

R ∈ R. We will first show that condition (1) of Theorem 1.3.1 holds by showing that

condition (2) of that theorem does not hold. Suppose a /∈ F (R′) for some R′ ∈ R. Because

the set of admissible preference profiles contain all possible preference profiles, for every pair

of player and outcome (i, b) ∈ I×A, there is a preference profile where a weakly rises in every
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player’s preferences relative to R and b is the least preferred by all players, violating condition

(2). Hence, condition (1) holds and, because a was arbitrary, F is a constant social choice

rule. Consider a profile, R∗ ∈ R, where a is strictly the least preferred outcome by all players.

By condition (1) of Theorem 1.3.1, a ∈ F (R∗). By strong (d̄, v̄)-safe implementability, there

is a NE at R∗, say m∗, such that g(m∗) = a. However, a victimizes all players so m∗ cannot

be safe, leading to a contradiction.

Proof of Theorem 1.3.3

The necessity of the v̄-safe outcome property is trivial as it follows directly from the

(d̄, v̄)-SE definition. To show the necessity of (d̄, v̄)-safe monotonicity, suppose that F is

implementable in (d̄, v̄)-safe equilibrium by mechanism (M, g) and suppose that R and R′

are two preference profiles such that a ∈ F (R) and conditions (1) and (2) of the (d̄, v̄)-safe

monotonicity property hold. By implementability, there must be a (d̄, v̄)-safe equilibrium

m ∈ M at R such that g(m) = a. For any i ∈ I let Oi(m) ⊆ A be the set of outcomes that

player i can obtain by a (potential) deviation from m. Because m is a (d̄, v̄)-safe equilibrium

it must be that for any y ∈ Oi(m), aRiy and y victimizes at most v̄ of the players in set

I\{i} under R. By condition (1) of (d̄, v̄)-safe monotonicity, this must also hold under R′.

Additionally, (in the case of d̄ ≥ 2), for any subset of players B ⊆ I of size d̄, let OB(m) be

the attainable set by players in B from m. Because m is a (d̄, v̄)-safe equilibrium, it must be

that every element in OB(m) victimizes at most v̄ of the players in I\B under R. Condition

(2) of (d̄, v̄)-safe monotonicity implies that the same holds for R′. Hence, we have shown

that, under R′, the profile m is such that no player can gain by deviating and no group

of d̄ ≥ 1 players can victimize more than v̄ of the others by deviating. Therefore, m is a

(d̄, v̄)-safe equilibrium at R′ and a ∈ F (R′).
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Proof of Theorem 1.3.4

Suppose that F is implementable in (d̄, v̄)-safe equilibrium by mechanism Γ = (M, g)

and suppose that d̄ ≥ n
2
. Let R be the set of preference profiles and for each Rj ∈ R and

gj ⊆ I let H(gj, Rj) ⊆ A be the set of outcomes that cause v̄ or less victims in gj under profile

Rj. Suppose, by way of contradiction, that the set of preference profiles, R, violates the

(d̄, v̄, n)-similarity property. Then, there exists a set {(g1, R1), . . . , (gq, Rq)} with q =
⌊

n
n−d̄

⌋
,

|gi| ≥ n − d̄, and gi ∩ gk = ∅, i, k ∈ {1, . . . , q}, and where each outcome in A causes more

than v̄ victims in gj at Rj for some j ∈ {1, . . . , q}; that is to say,
⋂
j∈{1,2,...,q}H(gj, Rj) is

empty. For each j ∈ {1, . . . , q} let SEΓ(Rj) be the set of (d̄, v̄)-SE of Γ under Rj. Suppose

m is any profile where n− d̄ or more players gj follow the messages in some m′ ∈ SEΓ(Rj).

Then players in I\gj, a set of d̄ or less players, cannot victimize more than v̄ players in

gj. Thus, g(m) ∈ H(gj, Rj) by the fact that m′ is a (d̄, v̄)-SE at Rj. By the definition

of q and because d̄ ≥ n
2
, there exists a profile, m∗, and q different groups of players of

size at least n − d̄, call them {g1, . . . , gq}, such that for each j ∈ {1, . . . , q}, m∗
g
j = m′

g
j

for some m′ ∈ SEΓ(Rj). Hence, it must be that g(m∗) ∈
⋂
j∈{1,...,q}H(gj, Rj). However,

⋂
j∈{1,2,...,q}H(gj, Rj) is empty by assumption, leading to a contradiction.

Proof of Theorem 1.3.5

Suppose first that d̄ < n
2

and the conditions of the Theorem are satisfied. Let Γ =

(×i∈IMi, g) be the implementing mechanism, where the message space for each player i ∈ I

is Mi = A × R∗ × {1, . . . , n} and R∗ is the set of preference profiles. A typical message is

mi = (ai, Ri, zi). The outcome function, g, is determined as follows:

Rule 1 If (ai, Ri, zi) = (a,R, z) for all i ∈ I and a ∈ F (R) then g(m) = a.

Rule 2 Suppose there exists i such that (aj, Rj, zj) = (a,R, z) for all j 6= i, a ∈ F (R), and

(ai, Ri, zi) 6= (a,R, z). Then g(m) = ai if aRia
i and if ai does not victimize more than
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v̄ players in the set I\{i} under R; otherwise, g(m) = a.

Rule 3 Suppose d̄ ≥ 2 and there exists a set of players B ⊆ I with 1 < |B| ≤ d̄ such that

(aj, Rj, zj) = (a,R, z) for all j /∈ B, a ∈ F (R), and (ai, Ri, zi) 6= (a,R, z) for all i ∈ B.

Let B′ be the set of players in B who report an outcome that does not victimize more

than v̄ players in I\B under R. If B′ is not empty, then sort the players in B′ from

lowest to highest according their index, rename player i ∈ B′ by the new sorted order

qi ∈ {1, . . . , |B′|}, and let g(m) = aq
∗
i , where q∗i = 1 + ((

∑
i∈B′ z

i) mod |B′|) is the

q∗i ’th player in B′; otherwise g(m) = a.

Rule 4 In all other cases, g(m) = aj for j = 1 + ((
∑

i∈I z
i) mod n).

Let R be the true preference profile and suppose a ∈ F (R). We first show that there exists a

safe equilibrium m of the mechanism Γ such that g(m) = a. Let m be given by mi = (a,R, 1).

By rule 2, any unilateral deviation from m cannot result in a more preferred outcome under

R for the deviator, so m is a Nash equilibrium. Also under rule 2, a unilateral deviation from

m by an arbitrary player i cannot cause more than v̄ players in I\{i} to be victimized under

R. A multilateral deviation from m by an arbitrary set B of d̄ or less players falls under rule

3, which guarantees that the outcome implemented will not victimize more than v̄ players in

I\B under R. Finally, a does not victimize more than v̄ players under R because F satisfies

the v̄-safe outcome property. Hence, m is a (d̄, v̄)-safe equilibrium.

Next, I show that if m is a (d̄, v̄)-SE of Γ then g(m) ∈ F (R). Because of the assump-

tion that R satisfies (d̄, v̄)-exposure, no (d̄, v̄)-SE of Γ can fall under rules 2-4. If there were

a (d̄, v̄)-SE under rules 2-4 it would be possible for a group, B, of d̄ players to attain any

outcome in A via rule 4.1 By assumption, R satisfies (d̄, v̄)-exposure so the set of outcomes

1Rule 4 is reached when there are more than d̄ different messages reported by the players. Note that it
is enough for a message to differ only on the R dimension in order to be counted “different”.
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that cause more than v̄ players in I\B to be victims is nonempty. This implies that a group

of d̄ players can victimize more than v̄ of the rest, violating the definition of the (d̄, v̄)-SE.

Hence, the only (d̄, v̄)-safe equilibria of Γ fall under rule 1.

Suppose m is a (d̄, v̄)-SE under rule 1 such that mi = (a′, R′, z′) for all i ∈ I. For

an arbitrary player i, let Oi(m) ⊆ A be the set composed of a′ and all the outcomes that

player i can obtain by deviating from m. By rule 2 and the v̄-safe outcome property, if

y ∈ Oi(m) then a′R′iy and y must not victimize more than v̄ players in I\{i} under R′.

However, because m is a (d̄, v̄)-SE under the true preference profile, R, it must be that a′Riy

and y cannot victimize more than v̄ players in I\{i} under R. Additionally, rule 2 implies

that Oi(m) contains all the outcomes that are both weakly less preferred to a′ under R′ by

player i and victimize at most v̄ of the players in I\{i} under R′. Hence, the first condition

of (d̄, v̄)-safe monotonicity is satisfied.

Suppose d̄ ≥ 2. Then for an arbitrary set of players, B, of size d̄, let OB(m) be

set composed of a′ and all the outcomes that players in B can obtain by a (potentially

multilateral) deviation from m. By rules 2 and 3 and the v̄-safe outcome property, if y ∈

OB(m) then y victimizes at most v̄ players in I\B under R′. However, m is a (d̄, v̄)-SE

under R, so it must be that y victimizes at most v̄ players in I\B under R. Because OB(m)

contains, via rules 2 and 3, all elements that victimize at most v̄ players in I\B under R′,

the second condition of (d̄, v̄)-safe monotonicity is satisfied.

By (d̄, v̄)-safe monotonicity, a′ ∈ F (R), concluding the proof for the case of d̄ < n
2
.

If n
2
≤ d̄ < n− 1 the proof remains unchanged except that the set of possible profiles,

R∗, is assumed to be (d̄, v̄, n)-similar and rule 3 of Γ is modified to be:

Rule 3 Suppose rule 2 does not apply and suppose there are p consensus groups, B1, . . . , Bp ⊆

I, each of size n− d̄ or more players with everyone in B1 reporting (ā1, R̄1, z̄1), everyone

in B2 reporting (ā2, R̄2, z̄2), . . . , and everyone in Bp reporting (āp, R̄p, z̄p). Suppose
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also that (ā1, R̄1, z̄1) 6= (ā2, R̄2, z̄2) 6= . . . 6= (āp, R̄p, z̄p), and if i is a player not in any

of the consensus groups then (ai, Ri, zi) 6= (āh, R̄h, z̄h) for h ∈ {1, . . . , p}.

• Case of p = 1. Set g(m) = aq for q = max{j ∈ I\B1} if no element in the

set {aj : j ∈ I\B1} victimizes more than v̄ players in set B1 under profile R̄1;

otherwise g(m) = ā1.

• Case of p > 1. Set g(m) = b for some b that does not victimize more than v̄

players in Bj under R̄j for all j ∈ {1, . . . , p}. Such a b exists because of the

assumption that R∗ is (d̄, v̄, n)-similar.

Note that because n
2
≤ d̄ < n − 1, no (d̄, v̄)-SE can fall under the modified rule 3. It is

always true that d̄ players can deviate from the modified rule 3 and reach rule 4. Also note

that, through case p = 1 of the modified rule 3, a set of deviators from rule 1 can attain all

outcomes that do not victimize more than v̄ players of the rest. This is needed to satisfy

(d̄, v̄)-safe monotonicity.

Proof of Theorem 1.3.6

Suppose F is implementable in both (d̄, v̄)-safe and Nash equilibria. If a ∈ F (R) and

safe implementation holds, then there is a safe equilibrium, call it m, at R with g(m) = a.

If player i can deviate from m and obtain outcome b then aRib and b victimizes at most

v̄ players in I\{i}, because m is a safe equilibrium. If all such outcomes are weakly less

preferred than a for player i under preference profile R′, and if this holds for all players (as

v̄-safe-Nash monotonicity states), then m is a Nash equilibrium at R′ and a ∈ F (R′) by Nash

implementation.
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Proof of Theorem 1.3.7

Consider the mechanism used in the proof of Theorem 1.3.5 with the following transfer

scheme:

Transfer Scheme 1

Rule 1 All transfers are zero under rule 1.

Rule 2 Suppose all players agree on (a,R, z) with a ∈ F (R), except for one player i who

reports (a′, R′, z′) 6= (a,R, z). If R′ 6= R and z′ 6= z then all transfers are zero; otherwise

ti = −L and tj = 0 for j 6= i.

Rule 3 Under this rule d̄ ≥ 2 and all players agree on (a,R, z), except a set of players B

who submit different reports and 1 < |B| ≤ d̄. Set the transfer of all players in B to

−L and all others to zero unless the following is true: |B| = 2, call them players i and

j, with player i reporting (a′, R′, z′) and player j reporting (a′′, R′′, z′′), with R′ 6= R,

z′ 6= z, R′′ = R, and z′′ = z′, then set ti = −L, tj = L, and all other transfers to zero.

Rule 4 Set ti = −L
∑

j 6=i 1{z
j = 1 + (zi mod n)}+ L

∑
j 6=i 1{z

i = 1 + (zj mod n)}.

We will prove that the mechanism used in Theorem 1.3.5, along with the transfers in

Transfer Scheme 1, double implement F . Let R be the true preference profile and suppose

a ∈ F (R).

First note that, following the same argument in the proof of Theorem 1.3.5, the

message profile where all players report (a,R, 1) is a (d̄, v̄)-safe equilibrium with outcome a.

Thus, all outcomes in F can be obtained via a (d̄, v̄)-safe equilibrium (i.e. a Nash equilibrium)

of the mechanism with transfers.

Second, we show that if m is a Nash equilibrium of the mechanism with transfers

then g(m) ∈ F (R) (this also implies that all (d̄, v̄)-safe equilibria lead to outcomes in F (R)).
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Suppose m is a Nash equilibrium under rule 1 with every player reporting (a′, R′, z′).

For an arbitrary player i, let Oi(m) ⊆ A be the set composed of a′ and all the outcomes

that player i can obtain by deviating from m. By rule 2 and the v̄-safe outcome property,

if b ∈ Oi(m) then a′R′ib and b does not victimize more than v̄ players in I\{i} under R′.

However, because m is a Nash equilibrium under the true preference profile R, and because

player i can obtain any outcome in Oi(m) without getting fined (by reporting a different

preference profile and integer than other players), it must be that a′Rib. Additionally, rule 2

implies that Oi(m) contains all the outcomes that are both weakly less preferred to a′ under

R′ by player i and victimize at most v̄ of the players in I\{i} under R′. Hence, a′ ∈ F (R)

by (d̄, v̄)-safe-Nash monotonicity.

Next, we show that no Nash equilibria exist under rules 2,3, and 4. Suppose m is

a Nash equilibrium under rule 2 with player i reporting (a′, R′, z′) and all others reporting

(a,R, z). Player i cannot be fined at a Nash equilibrium under rule 2, because he can report

R′ 6= R and z′ 6= z and avoid the fine without affecting the outcome chosen. Thus, it must

be true that R′ 6= R and z′ 6= z. However, any other player can deviate and report (a,R, z′)

and obtain a transfer L from player i, via rule 3, and this deviation will be profitable,

contradicting m being a Nash equilibrium.

Suppose m is a Nash equilibrium under rule 3 with all players agreeing on (a,R, z),

except a set of players B with different reports. At least one player in B has transfer −L,

and any such player has an incentive to deviate to (a,R, z) and avoid the fine, contradicting

m being a Nash equilibrium.

Finally, suppose m is a Nash equilibrium under rule 4. For the rest of the proof we

assume modular n arithmetic, so that if z = n then z + 1 = 1, z + 2 = 2, etc... There

must be an integer that no player is reporting, otherwise each integer in {1, . . . , n} is being

reported by exactly one player and all players would have an incentive to deviate (e.g. the

player reporting integer n can deviate to reporting n − 1 and have transfer L instead of
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0). Let z∗ be the smallest element in {1, . . . , n} such that no player reports z∗ and at least

one player reports z∗ − 1. Because no player reports z∗, it must be that no player has a

negative transfer, otherwise a player with negative transfer can deviate to reporting z∗ − 1

and pay no fine. Because the transfers among the agents are zero-sum, each agent’s transfer

is zero. At least 2 players must be reporting z∗ + 1, otherwise at least one player (possibly

one reporting z∗ + 1) would have an incentive to deviate and report z∗ to obtain a positive

transfer. Because players reporting z∗ + 1 have zero net transfers, and because no players

report z∗, it must be that no players report z∗ + 2. Following the same argument, at least

two players report z∗ + 3 and no players report z∗ + 4, at least two players report z∗ + 5

and no players report z∗ + 6, etc... Such reporting behavior is only possible if exactly two

players are reporting each of z∗ + 1, z∗ + 3, z∗ + 4, etc... But then a player reporting z∗ + 3

has an incentive to deviate and report z∗ + 2, obtaining a transfer of L. This leads to a

contradiction and m cannot be a Nash equilibrium.

Proof of Corollary 1.3.8

Suppose the preference profile is R. In the proof of Theorem 1.3.7, we showed the

following: for any outcome a ∈ F (R), there exists a safe equilibrium, m, with g(m) = a;

for any Nash equilibrium under rule 1 where all players report (a′, R′, z′), a′ ∈ F (R); and

that there are no Nash equilibria under rules 2, 3, or 4. Thus, any unsafe Nash equilibrium

must fall under rule 1, where all players agree on a report. If the preference profile being

reported by all players is R under rule 1, then the message profile is safe by the design of the

mechanism (in the same way that we showed the profile where each player reports (a,R, 1)

is safe in the proof of Theorem 1.3.5). Hence, it must be that all players report a false

preference profile at any unsafe Nash equilibrium.

Suppose m is an unsafe Nash equilibrium. Double implementation implies that

g(m) ∈ F (R). Thus, the (truthful) profile where each player reports (g(m), R, 1) falls under
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rule 1, is safe by the design of the mechanism, and yields the same outcome as m.

Proof of Theorem 1.3.9

Suppose F is double implementable in (d̄, v̄)-safe and Nash equilibria, but v̄-safe-Nash

monotonicity fails. Thus, there are two preference profiles R and R′ with: a ∈ F (R), and,

for all i ∈ I, aRib and b victimizes at most v̄ players in I\{i} implies aR′ib, but a /∈ F (R′).

There must be a safe equilibrium at R with outcome a, call it m. a /∈ F (R′) by assumption,

so m cannot be a Nash equilibrium at R′, otherwise g(m) = a must be in F (R′) by Nash

implementation. Thus, some player, call it i, has a profitable deviation from m to another

profile, call it m′, at R′. The outcome at m′ must be different than a, otherwise the transfer

required to induce a deviation from m to m′ at R′ would also induce the same deviation at

R and m would not be a Nash equilibrium at R; let the outcome at m′ be b. Because m is

a safe equilibrium at R, aRib and b victimizes at most v̄ players in i\{i} at R, and – by our

assumption about the failure of v̄-safe-Nash monotonicity between R and R′ – aR′ib; thus,

(a, 0)Ri(b, 0) and (a, 0)R′i(b, 0). However, player i must have an incentive to deviate to m′

at R′, and this is only possible if the designer can set transfers t(m), t(m′) ∈ R such that:

(1) (a, t(m))Ri(b, t(m
′)), because m is a Nash equilibrium at R; and (2) (b, t(m′))Pi(a, t(m)),

because player i has an incentive to deviate from m to m′ at R′. To set such transfers, or

determine that none exist, is only possible if the designer has precise cardinal information

about preferences for player i and outcomes {a, b} at preference profiles {R,R′} as defined

in definition 1.3.10.

Proof of Lemma 1.4.1

For the purpose of deriving a contradiction assume that there exists a mechanism,

(×i∈IMi, g), that implements a social choice function f in a (n − 1, 0)-SE and that for

some i, ∃D ⊆ A such that |D| = K and ∀mi ∈ Mi ∃m−i ∈ M−i with g(mi,m−i) ∈ D.
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Since implementation must hold for every possible preference profile, consider the preference

profile where D is player i’s least favorite K outcomes. This profile is one of the possible ones

because the set of preference profiles contains all strict preferences. Let m be a (n − 1, 0)-

SE. By assumption, ∃m′−i ∈ M−i such that g(mi,m
′
−i) ∈ D violating the definition of a

(n− 1, 0)-SE.

Proof of Theorem 1.4.2

Suppose x ≤ nK +K
⌊
n
2

⌋
and let f be any SCF.

Case 1: x ≤ nK. Let R ∈ R be the preference profile where the least preferred K

elements for player 1 are elements a1, ..., aK , the least preferred for player 2 are aK+1, ..., a2K ,

etc... Since x ≤ nK then at some point each element in A will be among the least preferred

K ones for some i ∈ I. Hence, any element picked by f in this case will result in at least 1

victim and f is not implementable in a (n− 1, 0)-SE.

Case 2:2 nK < x ≤ nK+K
⌊
n
2

⌋
. By Lemma 1.4.1, any mechanism, (×i∈IMi, g), that

implements a social choice function in this case must allow every player to rule out their

least favorite K outcomes. Furthermore, in a (n − 1, 0)-SE every player must be following

a message that rules out their least favorite K outcomes because if not then ∃m−i ∈ M−i
so that the outcome is among the K least favorite for player i violating the definition of a

(n− 1, 0)-SE. Let R ∈ R be any preference profile with the following properties:

• The second least favorite K outcomes for player i are {a(i−1)K+1, . . . , aiK} ∀i ∈ I.

• The least favorite K outcomes for players 1 and 2 are {anK+1, . . . , anK+K}, for players

3 and 4 are {anK+K+1, . . . , anK+2K}, etc..., until ax is among the least favorite K

outcomes for some player, call it player j, then sequentially use {a1, . . . , aK−1} to fill

2See example 2
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the rest of the K least favorite outcomes for player j. The least favorite K outcomes

for players j + 1, . . . , n are the same as player j’s.

Hence, R, is as follows:

R1 R2 R3 R4 . . . Rj Rj+1 . . . Rn
...

...
...

...
...

...
...

...
...

a1 aK+1 a2K+1 a3K+1 . . . a(j−1)K+1 ajK+1 . . . a(n−1)K+1
...

...
...

...
...

...
...

...
...

aK a2K a3K a4K . . . ajK a(j+1)K . . . anK
anK+1 anK+1 anK+K+1 anK+K+1 . . . anK+cK+1 anK+cK+1 . . . anK+cK+1

...
...

...
...

...
...

...
...

...
...

...
...

...
... ax ax . . . ax

...
...

...
...

... a1 a1

... a1
...

...
...

...
...

...
...

...
...

anK+K anK+K anK+2K anK+2K . . . ay ay . . . ay

where c is the integer quotient from dividing j−1 by 2 (and ignoring the remainder),

and y ∈ {1, . . . , K − 1}. The set of outcomes below the dashed line are the least favorite K

outcomes for each player.

Since we know that every player must pick a message that rules out their least favorite

K outcomes, then any outcome picked by the social choice function will be in {a1, . . . , anK}.

Hence, at any equilibrium (m1, ...,mn) of the game induced by the mechanism under R, the

outcome is the among {a(i−1)K+1, . . . , aiK} for some player i. However, since the least favorite

K outcomes of player i are being ruled out by at least one other player (x ≤ nK +K
⌊
n
2

⌋
),

player i has an incentive to deviate from this equilibrium and rule out {a(i−1)K+1, . . . , aiK}

in order to get a choice that is more preferred for player i under Ri. By Lemma 1.4.1 we

know that player i has a message that rules out {a(i−1)K+1, . . . , aiK}. Hence, (m1, ...,mn) is

not a (n− 1, 0)-SE because it is not a Nash equilibrium.
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Proof of Theorem 1.6.1

Suppose, by way of contradiction, that the conditions of the Theorem hold but F is

double implementable in (d̄, v̄)-safe and Nash equilibria. F (R) = a, because a is a Condorcet

winner at R. Thus, there exists a (d̄, v̄)-safe equilibrium, say m, with g(m) = a. No player

can obtain b by deviating from m, because b victimizes at least v̄ + 2 players at R and m is

a (d̄, v̄)-safe equilibrium at R. Condition 4 of the theorem implies that any outcome that a

player can obtain by deviating from m is weakly less preferred than a for that player under

R′, so m is a Nash equilibrium at R′. Thus, g(m) = a ∈ F (R′) by the assumption that F

is implementable in Nash equilibria, but F (R′) = b because b is a Condorcet winner at R′,

leading to a contradiction.

Discussion of Section 1.4.1

Suppose first that d̄ = 1, the preference profile is R and consider a mechanism that

(d̄, v̄)- safe implements a SCR F . A message profile, m, of the mechanism is a (d̄, v̄)-safe

equilibrium if and only if Oi(m) ⊆ Li(a,Ri) ∩ Gi(R) for all i, where a is the outcome

at m. It follows that if at another preference profile, R′, we have Li(a,Ri) ∩ Gi(R) ⊆

Li(a,R
′
i) ∩Gi(R

′) then it must be true that Oi(m) ⊆ Li(a,R
′
i) ∩Gi(R

′), m is a (d̄, v̄)-SE at

R′, and a ∈ F (R′). This is precisely the statement of (d̄, v̄)-safe monotonicity when d̄ = 1.

Figure A.1 illustrates what must happen for each player between preference profiles R and

R′ for (d̄, v̄)-safe monotonicity to impose the restriction that a ∈ F (R′).

132



Li

(
a,R

′)

Li (a,R) Gi (R)

A

Gi

(
R

′)

Figure A.1: Condition (1) of (d̄, v̄)-Safe Monotonicity

The figure shows that the intersections of the sets Li(a, ·) and Gi(·) must (weakly)

increase moving from R to R′. Note, as the figure illustrates, the lack of restrictions on

the relationship between the lower contour sets Li(a,R) and Li(a,R
′); this contrasts with

Maskin monotonicity where the only restriction is on the inclusion of Li(a,R) in Li(a,R
′)

Figure A.1 also illustrates why (d̄, v̄)-safe monotonicity does not imply Maskin mono-

tonicity and vise versa: Li(a,R) ∩ Gi(R) ⊆ Li(a,R
′) ∩ Gi(R

′) (condition (1) of (d̄, v̄)-

safe monotonicity) does not imply Li(a,R) ⊆ Li(a,R
′) (the Maskin monotonicity condi-

tion). Similarly, if Li(a,R) ⊆ Li(a,R
′) were true it would not imply Li(a,R) ∩ Gi(R) ⊆

Li(a,R
′) ∩Gi(R

′). However, it is certainly true that both conditions may hold at the same

time.

When d̄ ≥ 2 then a second condition must be added to the definition of (d̄, v̄)-safe

monotonicity to take into account the possible presence of more than one deviator. However,

the first condition, which is described above and illustrated in Figure A.1, must hold for

(d̄, v̄)-safe monotonicity to impose a restriction on the SCR regardless of d̄.
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Appendix B

Chapter 2 Appendix

B.1 Goods and Codes Assigned

The following is a list of goods that were assigned codes. Some thefts were assigned

more than one code. This occurs if more than one good was stolen in one incident, or if a

good can be classified under two or more categories (e.g. sneakers get a code for athletic

clothing and a code for shoes). Goods were assigned the most specific code possible. For

example, shrimp was assigned the code for shrimp, not seafood. If a good was classified

under a broad category (e.g. Miscellaneous), but a code for it exists in another category, it

was often assigned the code from the other category as well as the recorded broad category

code. For example, if the two fields describing a theft were: ”Miscellaneous” and ”Dog food”,

the codes assigned were 1200 and 802.

134



Alcohol 100 Clothing/Shoes 400 Food/Drinks 800 Home/Garden 900
Beer 101 Athletic 401 Almonds 801 Air Conditioners/HVAC 901

Spirits 102 Boots/Shoes 402 Animal Food 802 Air Freshners 902
Wine 103 Children’s clothing 403 Apple 803 Appliances 903

Fabric 404 Avocado 804 Bedding 904
Auto/Parts 200 Handbags/Purses 405 Baby Food 805 Carpets/Rugs 905

Antifreeze 201 Jackets/Coats 406 Banana 806 Cleaning 906
Batteries 202 Jeans 407 Beans 807 Consumer Goods 907

Fuel 203 Women’s clothing 408 Beef 808 Detergent 908
Oil 204 Men’s clothing 409 Beverages 809 Furniture 909

Tires 205 Bread 810 Lawn Mowers/Weed Eaters 910
Wheels/rims 206 Consumer Care 500 Butter 811 Lighting 911

Cologne/Perfume 501 Candy/gum 812 Mattresses 912
Building/Industrial 300 Cosmetics 502 Cereal 813 Power Tools/Tools 913

Air Conditioners/HVAC 301 Soap/Body Wash 503 Cheese 814 Refrigerators 914
Aluminum 302 Toilet Paper 504 Chicken 815 Soap 915

Brass 303 Toothpaste 505 Chocolate 816 Toilet Paper 916
Copper 304 Shampoo 506 Coffee 817 Vacuums 917

Diesel/Fuel 305 Cooking Oil 818 Washers/Dryers 918
Lumber/wood 306 Cosmetics/Personal Care 600 Dairy 819 Wood 919

Metal 307 Cologne/Perfume 601 Energy Drinks 820 Paint 920
Plastics 308 Cosmetics 602 Fish 821
Shingles 309 Soap/Body Wash 603 Fruit 822 Jewelry/Accessories 1000

Steel 310 Shampoo 604 Juice 823
Tools 311 Lemon/Citrus 824 Miscellaneous 1200

Titanium 312 Metals 1100 Lettuce 825 ATVs 1201
Zinc 313 Aluminum 1101 Lobster 826 Bicycles 1202
Lead 314 Brass 1102 Meat 827 Paper/Paper Products 1203
Paint 315 Bronze 1103 Milk 828 Toys 1204

Cobalt 1104 Nuts 829
Electronics 700 Copper 1105 Orange 830 Pharmaceuticals 1300

Air Conditioners/HVAC 701 Lead 1106 Pork 831 Baby formula 1301
Audio 702 Nickel 1107 Potatoes 832 Gloves 1302

Batteries 703 Steel 1108 Produce 833 Equipment (not inc gloves) 1303
Cameras/Camcorders 704 Titanium 1109 Rice 834 OTC (not inc vitamins) 1304

Cell Phones and accessories 705 Tin 1110 Seafood 835 Rx 1305
Computer accessories/parts 706 Shrimp 836 Vitamins 1306

Computer Boards 707 Soda 837
Computer Monitors 708 Sport Drinks 838 Tobacco 1400

Computers 709 Sugar 839 Cigarettes 1401
Copiers/Scanners/Printers/Cartridges 710 Tea 840 Cigars 1402

Gaming Consoles 711 Tomato 841
Hard Drives 712 Tuna 842

Laptops/tablets 713 Turkey 843
Memory 714 Water 844

Microprocessors 715 Vegetables 845
TVs 716 Poultry 846

B.2 Price Series and Data Matches

We were able to make 41 matches between price series from the BLS and goods in

the data. The following is a list of the matches made. For each good, a theft was counted if

it had any of the “Matching Data Codes” associated with it.
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Good ID BLS Price Series Name BLS Price Series ID Matching Data Codes
1 Pet Food CUUR0000SS61031 802
2 Apples CUUR0000SEFK01 803
3 Baby Food CUUR0000SEFT05 805 1301
4 Bananas CUUR0000SEFK02 806
5 Beef and veal CUUR0000SEFC 808
6 Bread CUUR0000SEFB01 810
7 Butter CUUR0000SS10011 811
8 Candy and chewing gum CUUR0000SEFR02 812
9 Breakfast cereal CUUR0000SEFA02 813

10 Poultry CUUR0000SEFF 815 843 846
11 Coffee CUUR0000SEFP01 817
12 Dairy and related products CUUR0000SEFJ 819 814 828
13 Fish and seafood CUUR0000SEFG 821 826 835 836 842
14 Juices and nonalcoholic drinks CUUR0000SEFN 823 838
15 Oranges, including tangerines CUUR0000SS11031 830
16 Pork CUUR0000SEFD 831
17 Potatoes CUUR0000SEFL01 832
18 Tomatoes CUUR0000SEFL03 841
19 Carbonated drinks CUUR0000SEFN01 837
20 Sugar and artificial sweeteners CUUR0000SEFR01 839

21 Beer, ale, and other malt beverages at home CUUR0000SEFW01 101
22 Distilled spirits at home CUUR0000SEFW02 102
23 Wine at home CUUR0000SEFW03 103

24 Iron and steel WPU101 310 1108
25 Copper base scrap WPU102301 304 1105
26 Aluminum base scrap WPU102302 302 1101

27 Men’s apparel CUUR0000SEAA 409
28 Women’s apparel CUUR0000SEAC 408
29 Infants’ and toddlers’ apparel CUUR0000SEAF 403
30 Footwear CUUR0000SEAE 402

31 Tobacco and smoking products CUUR0000SEGA 1400 1401 1402

32 Personal care products CUUR0000SEGB 500 - 604

33 Fuel oil and other fuels CUUR0000SEHE 203 305
34 Tires CUUR0000SETC01 205

35 Furniture and bedding CUUR0000SEHJ 909 904
36 Appliances CUUR0000SEHK 903 914 918
37 Tools, hardware, outdoor equipment and supplies CUUR0000SEHM 913 910 311

38 Televisions CUUR0000SERA01 716
39 Audio equipment CUUR0000SERA05 702
40 Personal computers and peripheral equipment CUUR0000SEEE01 706 708 709 713

41 Toys CUUR0000SERE01 1204

The following is a list of other matches for major product categories that were made

throughout the paper (e.g. in plots or in good-specific regressions).
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BLS Price Series Name BLS Price Series ID Matching Data Codes

Metals and metal products WPU10 1100 - 1110 302 303 304 307 310 312 313 314
Food and beverages CUUR0000SAF 800 - 846

Apparel CUUR0000SAA 400 - 409
Alcoholic beverages CUUR0000SAF116 100 - 103

B.3 Theft Maps

Auto Parts

Figure B.1: Map of Auto Parts Thefts
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Building and Industrial

Figure B.2: Map of Building and Industrial Thefts
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Shingles

Figure B.3: Map of Shingles Thefts
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Consumer Care

Figure B.4: Map of Consumer Care Products Thefts
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Metals

Figure B.5: Map of Metals Thefts
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Aluminum

Figure B.6: Map of Aluminum Thefts
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Copper

Figure B.7: Map of Copper Thefts
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Pharmaceuticals

Figure B.8: Map of Pharmaceuticals Thefts
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B.4 Ports Information

Port/waterway name Rank Total Trade (TEUS)

Los Angeles, CA 1 4919.2
Long Beach, CA 2 4063.8

New York (NY and NJ) 3 3761.3
Savannah, GA 4 1898.7
Oakland, CA 5 1542.9

Norfolk Harbor, VA 6 1413.2
Houston, TX 7 1262.8
Seattle, WA 8 1219.3

Tacoma, WA 9 1150.7
Charleston, SC 10 941.1

Honolulu, HI 12 686.2
Jacksonville, FL 13 631.4

Miami, FL 14 622.6
Port Everglades, FL 15 531.5

Baltimore, MD 16 453.1
Anchorage, AK 17 254

Wilmington, NC 19 184.3
Wilmington, DE 20 164

Portland, OR 21 162.1
Boston, MA 22 158.8

Table B.1: Largest Twenty U.S. Ports (excluding PR and LA)
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Appendix C

Chapter 3 Appendix

Mechanism Design vs. Implementation Theory

The difference between mechanism design and implementation theory is easily illus-

trated in our environment: implementation theory requires both the existence and nonex-

istence constraints to be satisfied, whereas mechanism design requires only the existence

constraints to hold. Mechanism design can be much easier to achieve than implementation,

and in this section we illustrate this graphically for a class of solution concepts that include

Nash equilibrium.

Solution concepts often impose restrictions on what players can achieve by deviating

from a particular message profile. We let d̄ denote the maximum number of deviations that

a solution concept imposes restrictions on. For example, Nash equilibrium specifies that no

one player can have a profitable unilateral deviation, so d̄ = 1 for Nash equilibrium. In

this section we restrict our attention to a class of solution concepts we call simple first-order

solution concepts.

Definition C.0.1 (Simple First-Order Solution Concept). Given an implementation

problem, S is a simple first-order solution concept if:

1. There is a positive integer d̄ and, for each R ∈ R and any message profile m in any

mechanism, S can determine whether m is an equilibrium at R or not based on the

outcome at m and the outcomes obtainable by deviations of up to d̄ players.
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2. For any (a,R) ∈ A×R, if m is any message profile with outcome a in any mechanism,

then we can always assign outcomes to message profiles that are deviations from m by

up to d̄ players to make m an equilibrium under S at R.

Nash equilibrium is a simple first-order solution concept: it satisfies (1) with d̄ = 1

and satisfies (2) by making assigning all unilateral deviations from m the same outcome as

m. In the rest of this section we show that, with enough players, mechanism design is always

possible in any simple first-order solution concept.

To illustrate, first consider an implementation problem with n = 2 in a solution

concept with d̄ = 1 (e.g. Nash equilibrium). Suppose the range of F contains at least

two distinct outcomes (true of any non-trivial social choice rule), a and b. The existence

constraints imply the existence of two message profiles, with outcomes a and b, and where

unilateral deviations satisfy certain coloring constraints. We illustrate this in the following

figure.

Figure C.1: Implementation with n = 2 and d̄ = 1

The two circles represent the two equilibrium message profiles, and the lines represent

the constraints on unilateral deviations at each equilibrium. Note that, no matter where the
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equilibria are placed in a mechanism, the lines emanating from the two equilibria must

intersect. At each intersection point, the designer must find an outcome that satisfies the

constraints arising from each of the equilibria simultaneously. This may or may not be

possible, depending on the problem. However, consider the same setup with three players

(n = 3):

Figure C.2: Implementation with n = 3 and d̄ = 1

Figure C.2 shows how the equilibria can be placed so that no intersections happen.

With n = 3 and d̄ = 1 it is always possible to find a mechanism that satisfies the existence

constraints. This can be generalized, as the following theorem shows.

Theorem C.0.1. Suppose S is any simple first-order solution concept completely characterized

by restrictions on deviations by up to d̄ players. Then mechanism design is always possible

for any social choice rule if n ≥ 2d̄+ 1.

Proof. We need to show that, under the conditions of the theorem, a mechanism always

exists that satisfies the existence constraints. Consider a mechanism that, for each a ∈ F (R),

gives to each player i a message m
(a,R)
i such that: (1) g(m(a,R)) = a, and (2) outcomes at

deviations by up to d̄ players from m(a,R) are consistent with m(a,R) being an equilibrium
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with outcome a at R. This is always possible for simple first-order solution concepts, as long

as the constraints imposed on deviations at one equilibrium do not conflict with constraints

imposed on deviations from another equilibrium. This is always true when n ≥ 2d̄ + 1. To

see this, consider two outcomes, a and b, such that a ∈ F (R) and b ∈ F (R′). A deviation by

up to d̄ players from m(a,R) must have a strict majority of the players following the strategy

in m(a,R), because n ≥ 2d̄+ 1. Thus, such a deviation is never also a deviation from m(b,R
′
),

where a strict majority of players follow the strategy in m(b,R
′
). Therefore, the existence

constraints are satisfied and mechanism design is achieved.
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