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Chapter 1

Introduction

As the content of this work is entirely and decidedly non-Archimedean,

let us fix a prime p, that we might refer to things as p-adic (p is assumed

odd in the results of §3.3-4 to avoid any distasteful interaction with the co-

homology of Gal(C/R), but otherwise is arbitrary). Our results are divided

into two parts which are logically independent from one another, although, as

we explain below, in pursuing an analytic analogue of the algebraic results of

Chapter 3, we were naturally led to the results of Chapter 5.

The first half of this thesis is devoted to generalizing results of Greenerg-

Vatsal ([9]) on the behavior of algebraic Iwasawa invariants of p-ordinary

modular forms under congruence to general weight and character, and to

Zp-extensions of number fields other than Q. To a p-ordinary cuspidal new-

form f , a number field F , and a Zp-extension F∞ of F with Galois group

Γ = Gal(F∞/F ), we can attach a module Sel(F∞, f) (the Selmer group) over

the completed group algebra Λ of Γ with coefficients in a finite extension of

Zp containing the Hecke eigenvalues of f (see the beginning of §2.1 for the

definition of Λ). This is a discrete topological Λ-module whose Pontryagin

dual X(F∞, f) is finitely generated. The Iwasawa invariants of f are struc-

tural invariants of the module X(F∞, f) (the definition of Iwasawa invariants
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in general is given in Definition 2.3.2). The Selmer group Sel(F∞, f) is defined

in terms of a choice of lattice in the p-adic Galois representation attached to

f . By a congruence between p-ordinary newforms we mean an isomorphism

between their residual Galois representations. It is not clear a priori from the

definition that the p-torsion of the Selmer group Sel(F∞, f) only depends on

the residual Galois representation attached to f . Thus it is not immediately

clear what relationships (if any) one can deduce between the Selmer groups

(as Λ-modules) of congruent newforms. However, using Greenberg-Vatsal’s

method of non-primitive Selmer groups (defined precisely in §3.3.3), which

are obtained by relaxing the local conditions at primes of F∞ not lying over

p in the definition of Sel(F∞, f), one obtains a module whose p-torsion is de-

termined by the residual Galois representation attached to f . Therefore, to

compare Iwasawa invariants of congruent modular forms, one approach is to

first compare their non-primitive Selmer groups (which will in fact have iso-

morphic p-torsion), and then to compare the non-primitive Selmer groups to

the usual Selmer groups. This is the approach that we follow in Chapter 3. Our

main result on Iwasawa invariants (proved under various technical hypotheses)

is Theorem 3.4.1. It is a formula expressing the difference in λ-invariants of

congruent forms as a sum of λ-invariants of local cohomology groups at primes

dividing the product of the tame levels of the forms (the prime-to-p parts of

their levels). In principle, if one knows the λ-invariant of one form, the formula

can be used to compute the λ-invariant of a congruent form.

Along the way to proving Theorem 3.4.1, we prove several other results
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on Selmer groups of p-ordinary newforms over fairly general Zp-extensions

that are of independent interest. In particular, we carefully study the struc-

ture of local cohomology groups at finite primes that split in the Zp-extension

(something which never happens for cyclotomic Zp-extensions) and prove the

surjectivity of a global-to-local map in Galois cohomology (Proposition 3.3.7).

We follow an argument originally due to Greenberg, using our study of local

cohomology groups to identify the condition one must impose to obtain sur-

jectivity even in the presence of split primes (which have the effect of making

the target of the global-to-local map larger). We also give hypotheses under

which the non-primitive Selmer group can be proved to have no non-zero Λ-

submodules of finite index. This type of result is useful in traditional Iwasawa

theory as Λ-modules are generally studied up to pseudo-isomorphism, meaning

up to morphisms with finite kernel and cokernel.

The main result of the second half of this thesis, Theorem 5.3.1, is a

purely local p-adic representation-theoretic result for GL2 over a p-adic field L

that reduces to [4, Proposition 2.5] when L = Qp. The theorem states that, un-

der a “non-critical slope” hypothesis, together with a unitarity hypothesis on

a central character, continuous linear GL2(L)-equivariant maps from certain

locally algebraic parabolically induced representations into unitary Banach

space representations of GL2(L) extend uniquely to a larger locally analytic

parabolically induced representation containing the locally algebraic represen-

tation. A result along these lines was proved by Breuil in [2], but it only

address injections into unitary Banach space representations (and the locally
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algebraic parabolic inductions under consideration are not always irreducible,

so not all non-zero maps out of them need be injective). Moreover, we follow

Emerton’s approach, which is more representation-theoretic.

The strategy of proof of Theorem 5.3.1 is to reduce to a similar (classi-

cal, non-equivariant) result, due in its original form to Amice-Vélu and Vishik,

regarding what Emerton calls tempered linear maps out of the space of locally

analytic functions on OL into Banach spaces (see Definition 5.2.1 for the defi-

nition of a tempered linear map). This reduction is carried out by restricting

functions in parabolically induced representations of GL2(L) to the copy of

OL given by upper unipotent matrices with integral upper right entry, and

relating equivariance of linear maps with respect to a certain submonoid of

GL2(L) to the temperedness condition (see Lemma 5.4.4). We also make use

of a description of the locally convex topology on the space of locally Qp-

analytic functions (see §4.1 for local convexity and §5.2 for the specific space

in question) which seems implicit in some of the literature, but for which we

know of no published proof. The description depends on the fact that two

topologies of compact type are either equal or incomparable (see Definition

4.2.2 for the notion of a compact type space over a p-adic field).

Although, as alluded to above, Theorem 5.3.1, and indeed all the results

of Chapter 5, are logically independent from the results of Chapter 3, our mo-

tivation for proving it came from a desire to eventually generalize Emerton’s

representation-theoretic construction of the p-adic L-functions of p-stabilized

newforms of non-critical slope in [4, §4]. The case L = Qp of Theorem 5.3.1
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plays a crucial role in this construction, in which the theorem is applied with

the completed cohomology of modular curves playing the role of the target

unitary Banach representation of GL2(Qp). One goal of such a generalization

would be to have an adequate framework in which to prove analytic analogues

of the results on algebraic Iwasawa invariants in Chapter 3. This is something

we hope to do in the future. Irrespective of this specific motivation, Theorem

5.3.1 is also of intrinsic interest in the field of p-adic representations of p-adic

groups, which can reasonably be viewed as a manifestation of non-commutative

Iwasawa theory (as evidenced by the title of Schneider-Teitelbaum’s first paper

on the subject [15]).

Preliminary facts and definitions from Iwasawa theory and p-adic func-

tional analysis and representation theory are recorded in Chapters 2 and 4,

respectively. In the arguments of Chapter 3 we make frequent use of standard

local and global duality theorems in Galois cohomology. A convenient refer-

ence for these theorems in their classical form is [11, VII.2-3, VIII.6], while

[12, Appendix A, §3] includes the Iwasawa-theoretic “limit” version of the

Poitou-Tate exact sequence used in the proof of Proposition 3.3.7.
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Chapter 2

Preliminaries on Iwasawa Theory

2.1 The Iwasawa Algebra

Let Γ be a profinite group and O the ring of integers in a finite extension

E of Qp with uniformizer $. The Iwasawa algebra of Γ with coefficients in O,

O[[Γ]], is defined to be

lim←−
N

O[Γ/N ],

where the inverse limit is taken over the set of all open normal subgroups

N of Γ, directed by reverse inclusion, and for an inclusion N ⊆ N ′ of open

normal subgroups of Γ, the transition map ResN,N ′ : O[Γ/N ] → O[Γ/N ′]

is the O-algebra map induced by the natural homomorphism Γ/N → Γ/N ′.

Since each quotient Γ/N is finite, the group ring O[Γ/N ] is a finite free O-

module, and hence is profinite in the$-adic topology (which is just the product

topology upon identifying O[Γ/N ] with the direct sum of copies of O indexed

by Γ/N). Endowing each O[Γ/N ] with its $-adic topology and O[[Γ]] with the

resulting inverse limit topology, O[[Γ]] therefore becomes a profinite topological

O-algebra. The natural O-algebra map O[G] ↪→ O[[Γ]] is injective with dense

image (injectivity holds because the open normal subgroups of Γ form a base

of opens around the identity, whereas density of the image follows from the
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definition of the topology on O[[Γ]]). In particular G can be regarded as a

closed subgroup of the group of units of O[[Γ]].

Traditional (commutative) Iwasawa theory is primarily concerned with

the case in which Γ is topologically isomorphic to the additive group Zp (i.e.

Γ is abelian pro-p and is free of rank one as a Zp-module). As this is the only

case relevant for our results, we assume for the remainder of the chapter that

Γ ' Zp as topological groups. Choosing an isomorphism Γ ' Zp amounts to

the choice of a topological generator γ ∈ Γ, which is nothing but a choice of

Zp-basis. In practice, there will be no canonical choice of basis, and a choice

of γ is not regarded as part of the structure of Γ. Such a choice is however

essential for understanding the structure of the ring O[[Γ]], as is made clear

by the following standard result.

Proposition 2.1.1. Given a topological generator γ for Γ, there is a unique

isomorphism of topological O-algebras O[[Γ]] ' O[[T ]] sending γ to 1 + T

(the target is regarded as a topological ring via its max-adic topology, i.e., its

($,T )-adic topology).

Proof. [11, Proposition 5.3.5].

Corollary 2.1.2. The ring O[[Γ]] is a 2-dimensional regular Noetherian local

ring with unique maximal ideal (γ − 1, $) and residue field O/$ (here γ is

any topological generator for Γ). The inverse limit topology on O[[Γ]] coincides

with its max-adic topology.
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Proposition 2.1.1 reduces the study of O[[Γ]] to that of the formal power

series ring O[[T ]], whose structure is well-known. Recall that a monic polyno-

mial

f(T ) = T n + an−1T
n−1 + · · ·+ a1T + a0 ∈ O[T ]

is said to be distinguished if ai ∈ $O for 0 ≤ i ≤ n− 1.

Theorem 2.1.3. If F =
∑

n≥0 anT
n ∈ O[[T ]] is non-zero then there is a

non-negative integer µ, a unit power series u ∈ O[[T ]], and a distinguished

polynomial f ∈ O[T ] such that F = $µuf . The integer µ, the unit power

series u, and the distinguished polynomial f are uniquely determined by F .

Proof. [11, Theorem 5.3.4].

Definition 2.1.1. In the notation of Theorem 2.1.3, the integer µ is called

the µ-invariant of F and the degree deg(f) is called the λ-invariant of F . We

will denote these invariants by µ(F ) and λ(F ), respectively.

Corollary 2.1.4. The prime ideals of height 1 in O[[T ]] are (without repeti-

tion) the principal ideals generated by an irreducible distinguished polynomial

f ∈ O[T ] together with the principal ideal generated by ($). For any dis-

tinguished polynomial f ∈ O[T ] (not necessarily irreducible), O[[T ]]/(f) is a

finite free O-module of rank deg(f).

The next two propositions give somewhat more intrinsic characteriza-

tions of the µ- and λ-invariants of a non-zero F ∈ O[[T ]]. Note that because

O[[T ]] is regular, it is a unique factorization domain (although invoking the

8



implication “regular implies factorial” is overkill, as the factoriality of O[[T ]]

follows fairly easily from Theorem 2.1.3).

Proposition 2.1.5. The µ-invariant of a non-zero F ∈ O[[T ]] is the multi-

plicity of the irreducible $ in the unique factorization of F into irreducibles

in O[[T ]].

Proof. Write F = $µ(F )uf as in Theorem 2.1.3. If f = f e11 · · · f err is the

factorization of f into monic irreducibles in O[T ], then it is easy to see that

each fi is distinguished. By Corollary 2.1.4, the fi are irreducible in O[[T ]]

and no fi is associate to $. Thus F = u$µ(F )f e11 · · · f err is the factorization

of F into irreducibles in O[[T ]], and µ(F ) is precisely the multiplicity of $ in

this factorization.

Proposition 2.1.6. The λ-invariant of a non-zero F ∈ O[[T ]] is the O-rank

of the finite free O-module O[[T ]]/($−µ(F )F ).

Proof. Write F = $µ(F )uf as in the proof of Theorem 2.1.3, so that$−µ(F )F =

uf , and since u ∈ O[[T ]×, ($−µ(F )F ) = (uf) = (f). Using the definition of

λ(F ) together with the second assertion of Corollary 2.1.4, we find that

λ(F ) = deg(f) = rankO

(
O[[T ]]/(f)

)
= rankO

(
O[[T ]]/($−µ(F )F )

)
.

Note that Proposition 2.1.5 shows that if F ∈ O[[T ]] is non-zero,

then µ($−µ(F )F ) = 0, and therefore Proposition 2.1.6 implies that λ(F ) =
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λ($−µ(F )F ). Moreover, the characterizations of µ(F ) and λ(F ) provided by

the preceding two propositions make it apparent that for any O-algebra auto-

morphism ϕ of O[[T ]], µ(F ) = µ(ϕ(F )) and λ(F ) = λ(ϕ(F )).

Definition 2.1.2. For F ∈ O[[Γ]] non-zero, we define the µ-invariant µ(F ) of

F to be the multiplicity of$ in the factorization of F into irreducibles in O[[Γ]],

and we define the λ-invariant λ(F ) of F to be the O-rank of O[[T ]]/($−µ(F )F )

(that this rank is finite follows by applying an isomorphism O[[Γ]] ' O[[T ]]

and invoking Corollary 2.1.4).

Corollary 2.1.7. If γ is a choice of topological generator for Γ inducing the

O-algebra isomorphism ϕ : O[[Γ]] ' O[[T ]] as in Proposition 2.1.1, then for

any non-zero F ∈ O[[Γ]], µ(F ) = µ(ϕ(F )) and λ(F ) = λ(ϕ(F )).

Proof. Since ϕ is an O-algebra isomorphism, it induces an isomorphism$O[[Γ]] '

$O[[T ]]. Writing F = $µ(F )F1 with F1 /∈ $O[[Γ]], we therefore have ϕ(F ) =

$µ(F )ϕ(F1) with ϕ(F1) /∈ $O[[T ]], so µ(F ) = µ(ϕ(F )) by Proposition 2.1.5.

Thus ϕ induces an O-algebra isomorphism

O[[Γ]]/($−µ(F )F ) ' O[[T ]]/($−µ(ϕ(F ))ϕ(F )),

so that λ(F ) = λ(ϕ(F )) by Proposition 2.1.6.

2.2 Iwasawa Modules

We retain the notation of the previous section, and for convenience

we adopt the standard practice of denoting the ring O[[Γ]] by Λ. Since Λ
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is a compact topological O-algebra, one would expect that in studying Λ-

modules the topology would play a significant role; to some extent this is

true. Certainly we are interested in topological Λ-modules (abelian topological

groups X with a Λ-module structure for which the action map Λ × X → X

is continuous). However, because Λ is a complete Noetherian local ring with

finite residue field, the topological aspect of studying Λ-modules turns out to

be essentially trivial. More precisely, the modules of interest either naturally

carry the discrete topology, or are finitely generated over Λ (in the abstract

sense), in which case the max-adic topology is the only (Hausdorff) topology

compatible with the Λ-module structure.

Proposition 2.2.1. Let R be a (commutative) complete Noetherian local ring

with maximal ideal m and finite residue field. If X is a Hausdorff topological

R-module which is finitely generated as an abstract R-module, then the topology

on X is the m-adic topology (which is compact). Conversely, for any abstract

finitely generated R-module X, the m-adic topology on X makes X into a com-

pact Hausdorff topological R-module. Any R-module homomorphism between

finitely generated R-modules is continuous for the m-adic topology on source

and target.

Proof. First note that, because R/m is finite, induction shows that the dis-

crete quotients R/mn are finite for all n ≥ 1. In particular, since the natural

ring map R → lim←−nR/m
n is a topological isomorphism (where the source

is endowed with the m-adic topology and the target with the inverse limit

11



topology), R is compact. Now consider the submodules mnX of X. Each is

finitely generated, since X is a finitely generated R-module and R is Noethe-

rian. Therefore, each of these submodules is a continuous homomorphic image

of some direct sum of finitely many copies of R, and hence is compact (here we

use that X is a topological R-module). Since X is Hausdorff, each mnX is then

closed in X. On the other hand, the Hausdorff quotient X/mnX is a finitely

generated R/mn-module, and hence is set-theoretically finite. It follows that

mnX is open in X for all n ≥ 1. Therefore the given topology of X is finer

than the m-adic topology, so the identity map X → X0, where X0 denotes X

endowed with its m-adic topology, is continuous. But the source of this map

is compact (being finitely generated over R) and the target is Hausdorff by

the Krull intersection theorem, so this continuous bijection must in fact be a

homeomorphism, and the topologies coincide.

The converse is standard and holds with R replaced by any ring and m

replaced by any ideal (without finiteness hypotheses).

The upshot of Proposition 2.2.1 is that, by equipping a finitely gener-

ated (abstract) Λ-module with its max-adic topology, we obtain a fully faith-

ful embedding of the category of finitely generated (abstract) Λ-modules into

the category of compact Hausdorff topological Λ-modules with continuous Λ-

module homomorphisms. We will therefore always implicitly endow a finitely

generated Λ-module with its max-adic topology. We will have no cause to

consider compact Λ-modules that aren’t finitely generated.

The other class of Λ-modules that we will consider are discrete Λ-
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modules, by which we mean discrete abelian groups with the structure of a

topological Λ-modules. The continuity of the action Λ×X → X for a discrete

group X admits a concrete algebraic characterization.

Lemma 2.2.2. Let X be a discrete abelian group with a Λ-module structure.

Then the action map Λ × X → X is continuous if and only if every x ∈ X

is annihilated by some power of the maximal ideal of Λ. In particular, the

induced O-module structure on X makes it into a torsion O-module.

Proof. Assume X is a discrete Λ-module and fix x ∈ X. The map λ 7→ λx :

Λ→ X is then a continuous Λ-module homomorphism, so, since X is discrete,

its kernel is an open ideal of Λ, and therefore contains some power of the

maximal ideal of Λ. Thus some power of this ideal annihilates x. Conversely,

assume that each x ∈ X is annihilated by some power of the maximal ideal. If

((λi, xi)) is a convergent net in Λ×X with limit (λ, x), then for sufficiently large

i, xi = x (since X is discrete). Thus, for sufficiently large i, xi is annihilated

by some (fixed, independent of i) power of the maximal ideal of Λ. For i, j

sufficiently large, λi − λj lies in this power of the maximal ideal, so we have,

for such i, j, λixi = λjxj. Thus the net (λixi) is eventually constant, and

hence convergent in X. So we win. The last assertion follows because $ is an

element of the maximal ideal of Λ.

The following proposition characterizes discrete Λ-modules in terms of

their O-module structure and the action of the group Γ (this is how discrete

13



Λ-modules arise in practice, not with an a priori Λ-module structure, but with

an O[Γ]-module structure satisfying some continuity conditions).

Proposition 2.2.3. Let X be a torsion O-module with a smooth, O-linear ac-

tion of Γ. Then there is a unique Λ-module structure on X which is continuous

for the discrete topology on X and extends the given O[Γ]-module structure.

Proof. If Y is any Hausdorff topological Λ-module, then the Λ-module struc-

ture on Y is uniquely determined by the O[Γ]-module structure, because the

image of the embedding O[Γ] ↪→ Λ is dense. So we just need to show the exis-

tence of a Λ-module structure on X as in the statement of the proposition. The

open subgroups of Γ are precisely the subgroups Γp
n

for n ≥ 0. By the assumed

smoothness of the action of Γ on X, we have X =
⋃
n≥0Xn, where Xn = XΓp

n

.

As Γ acts O-linearly on X and Γ is abelian, each Xn is an O[Γ]-submodule

of X whose O[Γ]-module action factors through the quotient O[Γ/Γp
n
]. Be-

cause all these structures are induced by a single O[Γ]-module structure on

X, the inclusion Xn ↪→ Xn+1 is an O[Γ/Γp
n+1

]-module homomorphism, where

the source Xn is regarded as an O[Γ/Γp
n+1

]-module via the restriction map

O[Γ/Γp
n+1

] → O[Γ/Γp
n
]. Therefore, using the projections Λ → O[Γ/Γp

n
] for

n ≥ 0, we see that the inductive limit X =
⋃
n≥0Xn is naturally a Λ-module.

It remains to verify continuity of the Λ-action on X for the discrete

topology. By Lemma 2.2.2, it suffices to show that each element of X is an-

nihilated by a power of the maximal ideal of Λ. To this end, fix x ∈ X, say

x ∈ Xn, n ≥ 0. By construction, the action of Λ on Xn, and in particular
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on x, is through its quotient O[Γ/Γp
n
]. Moreover, if m ≥ 0 is chosen so that

$mx = 0 (this is the only point in the proof where we use the hypothesis that

X is torsion over O), then we see that the O[Γ]-submodule of Xn generated

by x is annihilated by $m, so that the action of Λ on this submodule, and

in particular on x, must factor through the discrete quotient (O/$m)[Γ/Γp
n
].

But this means precisely that some power of the maximal ideal of Λ kills x.

Since Λ is a complete local ring, any finitely generated Λ-module is

max-adically complete, and in particular is profinite in its max-adic topology.

Therefore, a discrete Λ-module can be finitely generated if and only if it is set-

theoretically finite. So in some sense discrete and finitely generated Λ-modules

are very different kinds of objects. However, they are related by Pontryagin

duality, as we now explain.

Definition 2.2.1. If X is a profinite or a discrete torsion O-module, then the

Pontryagin dual of X is X̂ = HomO,cts(X,E/O), equipped with the compact

open topology.

As usual, Pontryagin duality interchanges discrete torsion O-modules

with profinite ones, and vice versa, and one has the double duality isomorphism

for such O-modules. We are interested in the Pontryagin dual functor applied

to Λ-modules, although we will only need to apply it to discrete Λ-modules.

To wit, let X be a discrete Λ-module. Then X is a discrete torsion O-module

by Lemma 2.2.2, so we can form its Pontryagin dual X̂, a profinite O-module.

Since Λ is commutative, X̂ becomes a Λ-module if we define (λf)(x) = f(λx)

15



for each λ ∈ Λ, f ∈ X̂, and x ∈ X. However, to be consistent with the

literature (at least those rare parts of the literature that say anything at all

about the Λ-module structure on X̂), we will always twist this action of Λ on

X̂ by the automorphism induced by γ 7→ γ−1 : Γ → Γ, so that the induced

action of γ ∈ Γ on f ∈ X̂ is given by (γf)(x) = f(γ−1x). Since we are twisting

by an automorphism of Λ, this convention does not affect structural properties

of X̂ as a Λ-module such as whether or not it is finitely generated or torsion.

We won’t worry about continuity of this action because we will only ever apply

the construction to discrete Λ-modules satisfying the condition in the following

definition (in which case issues of topology for the Λ-module X̂ become trivial

by Proposition 2.2.1).

Definition 2.2.2. A discrete Λ-module X is said to be cofinitely generated if

X̂ is a finitely generated Λ-module, and cotorsion if X̂ is a torsion Λ-module.

Thus, by linguistic decree, Pontryagin duality yields a functor from

cofinitely generated (resp. cotorsion) Λ-modules to finitely generated (resp.

torsion) Λ-modules. The majority of the Λ-modules with which we deal di-

rectly will be cofinitely generated (as opposed to finitely generated), but it is

(unsurprisingly) the finitely generated Λ-modules for which there is a satisfac-

tory structure theory.
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2.3 The Structure Theorem for Finitely Generated Iwa-
sawa Modules

We retain the notation of the previous two sections. Although the ring

Λ is not a principal ideal domain (it has Krull dimension 2), there is a structure

theory for finitely generated Λ-modules which is almost identical to the theory

for finitely generated modules over a principal ideal domain. The catch is that

the theory only describes modules up to pseudo-isomorphism, which roughly

means up to (set-theoretically) finite submodules.

Definition 2.3.1. A Λ-module homomorphism f : X → Y between finitely

generated Λ-modules is said to be a pseudo-isomorphism, in which case X and

Y are pseudo-isomorphic, if ker(f) and coker(f) are finite.

Beware that, despite the terminology, pseudo-isomorphism does not de-

fine an equivalence relation on the class of all finitely generated Λ-modules;

it fails to be symmetric in general. If however one restricts to the class of

finitely generated torsion Λ-modules, then pseudo-isomorphism does define a

symmetric (and hence an equivalence) relation. We will have no need of this

fact (which begs the question as to why we’re mentioning it at all).

Recall that if R is a principal ideal domain and X is a finitely gener-

ated R-module, then the so-called elementary divisor version of the structure

theorem for X asserts the existence of an R-module isomorphism between X

and an R-module of the form Rr ⊕
∑s

i=1R/(p
ei
i ), where r, s ≥ 0 are integers,

the pi are not necessarily distinct prime elements, and the ei are positive inte-

gers. Moreover the integer r and the list of ideals (pe11 ), . . . , (pett ) are uniquely
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determined by X (the latter up to reordering). The same statement holds for

a finitely generated Λ-module, with the only difference being that one must

replace “isomorphism” with “pseudo-isomorphism.”

Theorem 2.3.1. Let X be a finitely generated Λ-module. Then there exists a

pseudo-isomorphism

X → Λr ⊕
s∑
i=1

Λ/peii ,

where r, s ≥ 0 are integers, the pi are not necessarily distinct height 1 prime

ideals of Λ, and the ei are positive integers. Moreover, the integer r and the list

of ideals pe11 , . . . , p
es
s are uniquely determined by X (the latter up to reordering).

Proof. [11, Theorem 5.1.10].

The integer r in Theorem 2.3.1 is the rank of X in the usual sense, i.e.,

the dimension of Frac(Λ)⊗ΛX over Frac(Λ), where Frac(Λ) is the field of frac-

tions of Λ. This can be seen immediately by tensoring a pseudo-isomorphism

as in the statement of the theorem with Frac(Λ), which will yield an isomor-

phism (since Frac(Λ) is a flat Λ-module and tensoring with it kills the finite

kernel and cokernel). Thus X is Λ-torsion if and only if r = 0. It can also be

shown in general that, restricting a pseudo-isomorphism as in Theorem 2.3.1

to the Λ-torsion submodule of X, one obtains a pseudo-isomorphism between

the Λ-torsion submodules of the source and target, so the ideals peii are in fact

determined by the Λ-torsion submodule of X. They are precisely the height 1

prime ideals in the support of X.
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Using the classification of height 1 primes in the ring O[[T ]] ' Λ pro-

vided by Corollary 2.1.4, we can refine the information about X contained

in Theorem 2.3.1 somewhat. Namely, the height 1 primes of Λ fall into two

classes: residue characteristic p and residue characteristic zero. Of course ($)

is the unique prime of residue characteristic p, and a residue characteristic

zero prime correspond under the choice of an isomorphism Λ ' O[[T ]] to some

uniquely determined distinguished polynomial in O[T ], but this polynomial is

not independent of the choice of topological generator used to define such an

isomorphism. At any rate, we can write the pseudo-isomorphism of Theorem

2.3.1 as

X → Λr ⊕
s∑
i=1

Λ/peii ⊕
t∑

j=1

Λ/($fj), (2.1)

where now the pi are height 1 primes of characteristic zero, t ≥ 0 is an integer,

and the fj are (uniquely determined) positive integers. It is via this expression

that we define the Iwasawa invariants of a finitely generated Λ-module X.

Definition 2.3.2. Let X be a finitely generated Λ-module, and choose a

pseudo-isomorphism as in Equation (2.1). The µ-invariant µ(X) of X is the

non-negative integer
∑t

j=1 fj. The λ-invariant λ(X) of X is the non-negative

integer
∑s

i=1 ei deg(pi), where deg(pi) = rankO(Λ/pi).

Our remarks following Theorem 2.3.1 show that the µ- and λ-invariants

of X coincide with those of its Λ-torsion submodule. It can also be shown

that the restriction of a pseudo-isomorphism as in Equation (2.1) to the O-

torsion submodule of X yields a pseudo-isomorphism between the O-torsion

19



submodules of the source and target. In particular the µ-invariant of X only

depends on the O-torsion submodule of X.

Proposition 2.3.2. Let X be a finitely generated torsion Λ-module. Then

µ(X) = 0 if and only if the O-torsion submodule of X is finite, if and only if

X is a finitely generated O-module.

Proof. For any integer m ≥ 1, the quotient Λ/($m) is infinite (it’s isomorphic

to a power series ring in one variable over O/$m). Thus, by our remarks above,

the $-power torsion submodule of X is infinite if and only if no summands of

the form Λ/($m) appear in the target of a pseudo-isomorphism as in Equation

(2.1), which happens if and only if µ(X) = 0. Assuming this is the case, then

because we have assumed that X is Λ-torsion, it is pseudo-isomorphic to a

direct sum of quotients Λ/pe with p a height 1 prime of characteristic zero and

e a positive integer. These quotients are finitely generated O-modules, so it

follows that X is as well.

Proposition 2.3.3. If X is a discrete cofinitely generated Λ-module, then X

is Λ-cotorsion with µ(X̂) = 0 if and only if X[$] is finite.

Proof. Basic properties of the Pontryagin duality functor show that the Pon-

tryagin dual of X[$] is X̂/$X̂. If this group is finite, then the topological

version of Nakayama’s lemma ([1, §3 Corollary]) implies that X̂ is a finitely

generated O-module. This implies first that X̂ must be a torsion Λ-module

(since a Λ-module with positive rank cannot be a finitely generated O-module),

20



and then by Proposition 2.3.2 that µ(X̂) = 0. Conversely, assume that X is

a cotorsion Λ-module with µ(X̂) = 0. Then by Proposition 2.3.2, X̂ is a

finitely generated O-module, so in particular X̂/$X̂ is a finite-dimensional

O/$-vector space. By Pontryagin duality, X[$] is finite.

We now wish to connect the λ-invariant defined in Definition 2.3.2

with the λ-invariants defined in Definitions 2.1.1 and 2.1.2. Concretely, if we

choose generators pi for the pi, and a topological generator γ for Γ, yielding an

isomorphism ϕ : Λ ' O[[T ]], then there are unique distinguished polynomials

fi ∈ O[T ] which generate the ϕ(pi), and we have, in the notation of Definitions

2.1.1 and 2.1.2,

λ(X) =
s∑
i=1

eiλ(pi) =
s∑
i=1

eiλ(fi) =
s∑
i=1

ei deg(fi) =
s∑
i=1

deg(f eii ).

Definition 2.3.3. In the notation above, the characteristic polynomial of X

with respect to the topological generator γ is $µ(X)
∏

i f
ei
i ∈ O[T ] (this is

really only defined up to a unit, since $ is only defined up to a unit, but we

will ignore this fact). The monic part of the characteristic polynomial of X

with respect to γ is $−µ(X) times the characteristic polynomial of X.

Unlike the µ- and λ-invariants of X, the characteristic polynomial of

X requires and depends on a choice of topological generator γ for Γ. Its

degree, however, does not, as that is simply the λ-invariant of X. Similarly

the $-adic valuation of its leading coefficient is the µ-invariant of X, which

is independent of the choice of topological generator γ. Note that, regardless
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of whether or not the µ-invariant of X is zero, Theorem 2.3.1 implies that

XE = X⊗O E is a finite-dimensional E-vector space, and that, upon choosing

γ, and then regarding XE as an O[[T ]]-module via the induced isomorphism

Λ ' O[[T ]], the monic part of the characteristic polynomial of X with respect

to E is precisely the characteristic polynomial of the endomorphism given by

the action of T on XE (hence the terminology).

Via Pontryagin duality, we extend the definitions of µ- and λ-invariants

to discrete, cofinitely generated Λ-modules.

Definition 2.3.4. Let X be a discrete, cofinitely generated Λ-module. We

define the µ-invariant µ(X) (resp. the λ-invariant λ(X)) of X to be the the

µ-invariant µ(X̂) (resp. the λ-invariant λ(X̂)) of X̂.
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Chapter 3

Algebraic λ-invariants of Modular Forms

3.1 Introduction and Notation

In this chapter, p is assumed to be odd except in §3.2, where p can be

arbitrary. Consider a number field F , and a Zp-extension F∞ of F , setting

Γ = Gal(F∞/F ). We impose the following two conditions on the set Σp of

primes of F dividing p:

p-(i) for each prime p ∈ Σp, the ramification index e(p/p) of p in F/Q is less

than p− 1;

p-(ii) no prime p ∈ Σp splits completely in F∞.

Let f be a normalized p-ordinary newform of weight greater than or equal to

2 with Hecke eigenvalues in the ring of integers O of a finite extension E of Qp

with uniformizer $ and residue field F. The algebraic λ- and µ-invariants of

f , λ(f) and µ(f), are non-negative integers defined in terms of the structure

of the Selmer group for f over F∞ as a module over the completed group ring

O[[Γ]] (see §3.3.1 below for the definition of the Selmer group and its Iwasawa

invariants). If ρ̄f is the semisimple residual Galois representation attached

to f , which has coefficients in the residue field F, then we can also attach
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a residual Selmer group to f inside the Galois cohomology of ρ̄f |GF (§3.3.3).

While the residual Selmer group cannot be directly related to the $-torsion

of the Selmer group for f in general, such a relationship can be established for

certain non-primitive analogues of these Selmer groups, obtained by omitting

the local conditions at the primes of F in a finite set Σ0 not containing any

primes above ∞ or p. Namely, if Σ0 contains the primes dividing the tame

level of f and ρ̄|GF is absolutely irreducible, then the residual Σ0-non-primitive

Selmer group for f exactly recovers the $-torsion of the Σ0-non-primitive

Selmer group for f . If in addition ρ̄|GF is ramified at the primes of F dividing

p, it can be shown that the residual Selmer group for f depends only on the

residual Galois representation ρ̄f |GF (see Proposition 3.3.5 and the remark

following its proof). Assuming a cotorsion hypothesis and the vanishing of

the µ-invariant of f , as well as some additional technical hypotheses, this

allows us to express the λ-invariant of f in terms of the λ-invariants of a

non-primitive residual Selmer group and the local cohomology of the p-adic

Galois representation attached to f at primes dividing the tame level of f . We

can then compare the λ-invariants of two p-ordinary newforms whose residual

Galois representations are isomorphic (Theorem 3.4.1).

Similar results in the case of F = Q (where there is only one Zp-

extension of F ) have been proved in [9], [8], and [6]. Our approach follows

that of the former two references, in which the $-torsion of a non-primitive

Selmer group is related to a residual Selmer group. A key step in the argument

is a surjectivity statement for a global-to-local map in Galois cohomology
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(Proposition 3.3.7) which should be of independent interest as it allows finite

primes that split in the Zp-extension under consideration.

We now introduce notation which will be used throughout this chapter.

Fix embeddings ιp : Q ↪→ Qp and ι∞ : Q ↪→ C. When we speak of primes

of an algebraic extension of Q, we always mean finite primes unless explicitly

noted otherwise. If L is an algebraic extension of a number field F in Q and η

is a prime of L, then we write Lη for the direct limit of the fields L′η, where L′ is

a finite subextension of L/F and L′η denotes its completion at the prime below

η (this is not the same as the completion of L at η unless Lη has finite degree

over Qp). We also write Iη for the inertia group of GLη . If f =
∑

n≥1 anq
n is a

normalized newform of some weight, level, and character, we regard the Hecke

eigenvalues an and the character values as elements of Qp via ιp ◦ ι−1
∞ . We

always work with arithmetic Frobenius automorphisms, which we denote by

Frob`, Frobv, etc., and denote by ε : GQ → Z×p the p-adic cyclotomic character

(as well as its restriction to various subgroups of GQ).

3.2 Generalities on Limits of Λ-Modules and Twisting

3.2.1 Limits of Λ-Modules

In this subsection we establish some results about direct limits of certain

discrete Λ-modules. The results are basic and almost certainly well-known, but

we felt it would be useful to have the details written down, as related matters

seem to have led to confusion in the literature.

Let Γ be a free pro-p group of rank one, O the ring of integers in
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a finite extension of E of Qp with uniformizer $, and Λ = O[[Γ]]. Recall

that the Pontryagin dual of a Λ-module X is denoted by X̂. We will make

frequent use of µ- and λ-invariants (Definition 2.3.2). For n ≥ 0, let Gn =

Γ/Γp
n
, and for m ≥ 1, let Λn,m = (O/$mO)[Gn] and Λn = O[Gn]. These are

finitely generated Λ-modules. For fixed m, the Λn,m form an inverse system

and a directed system of Λ-modules. The transition maps for the inverse

system are the natural restriction maps Resn,m : Λn+1,m → Λn,m induced by

Resn,m(g′) = g′|Gn for g′ ∈ Gn+1, where g′|Gn denotes the canonical image of g′

inGn. The transition maps for the directed system are the natural corestriction

maps Corn,m : Λn,m → Λn+1,m induced by Corn,m(g) =
∑

g′∈Gn+1,Resn,m(g′)=g g
′.

Similarly the modules Λn form an inverse system and a directed system via

restriction maps Resn : Λn+1 → Λn and corestriction maps Corn : Λn → Λn+1.

Of course, Λ = lim←−n Λn by definition.

Our first result concerns the self-duality of Λn,m.

Proposition 3.2.1. For n ≥ 0,m ≥ 1, there are canonical Λ-module iso-

morphisms ϕn,m : Λ̂n,m → Λn,m under which R̂esn,m = Corn,m and Ĉorn,m =

Resn,m. More precisely, Corn,m ◦ϕn,m = ϕn+1,m ◦ R̂esn,m and Resn,m ◦ϕn+1,m =

ϕn,m ◦ Ĉorn,m.

Proof. The assertion is that there are isomorphisms ϕn,m making the diagrams

Λ̂n,m
R̂esn,m//

ϕn,m

��

Λ̂n+1,m

ϕn+1,m

��
Λn,m Corn,m

// Λn+1,m
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and

Λ̂n+1,m
Ĉorn,m //

ϕn+1,m

��

Λ̂n,m

ϕn,m

��
Λn+1,mResn,m

// Λn,m

commute. We have Λ̂n,m = HomO(Λn,m, E/O). Since $m kills Λn,m, this is

the same as

HomO/$mO(Λn,m, $
−mO/O) ' HomO/$mO(Λn,m,O/$

m) ' Λn,m,

where the first isomorphism comes from [$m] : $−mO/O → O/$mO and

the last isomorphism sends χ : Λn,m → O/$mO to
∑

g∈Gn χ(g)g. We define

ϕn,m to be the composite of these isomorphisms. So, explicitly, ϕn,m sends

χ : Λn,m → E/O to
∑

g∈Gn [$m](χ(g))g. It is clear that ϕn,m is an O-module

isomorphism, and we have, for h ∈ Gn,

ϕn,m(hχ) =
∑
g∈Gn

[$m]((hχ)(g))g

=
∑
g∈Gn

[$m](χ(h−1g))g

= h

( ∑
g∈Gn

[$m](χ(g))g

)
= hϕn,m(χ).

Thus the map is Gn-equivariant, and therefore is a Λ-module isomorphism.

Now for the diagrams, beginning with the first. Going horizontally then

vertically sends χ ∈ Λ̂n,m to
∑

g′∈Gn+1
[$m](χ(Resn,m(g′)))g′. Going vertically
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first sends χ to
∑

g∈Gn [$m](χ(g))g, and then applying Corn,m gives

∑
g∈Gn

[$m](χ(g)) Corn,m(g) =
∑
g∈Gn

[$m](χ(g))

( ∑
g′∈Gn+1,Resn,m(g′)=g

g′

)
∑
g∈Gn

( ∑
g′∈Gn+1,Resn,m(g′)=g

[$m](χ(Resn,m(g′)))g′

)
=

∑
g′∈Gn+1

[$m](χ(Resn,m(g′)))g′.

Thus the first diagram commutes.

For the second diagram, given χ ∈ Λ̂n+1,m and going horizontally, we

get χ ◦ Corn,m, and then going vertically gives∑
g∈Gn

[$m](χ(Corn,m(g)))g.

Going vertically first gives
∑

g′∈Gn+1
[$m](χ(g′))g′, and then taking Resn,m, we

obtain ∑
g∈Gn

( ∑
g′∈Gn+1,Resn,m(g′)=g

[$m](χ(g′))

)
g.

The definition of Corn,m gives

Corn,m(g) =
∑

g′∈Gn+1,Resn,m(g′)=g

g′,

so [$m](χ(Corn,m(g))) =
∑

g′∈Gn+1,Resn,m(g′)=g[$
m](χ(g′)), which finishes the

proof.

Corollary 3.2.2. If Sm = lim−→n
Λn,m, with the limit taken with respect to

the corestriction maps, then there is a canonical isomorphism of Λ-modules

Ŝm ' (O/$mO)[[Γ]] ' Λ/$mΛ. In particular, Sm is a cofinitely generated,

cotorsion Λ-module with λ-invariant zero and µ-invariant m.

28



Proof. As Sm is a discrete Λ-module, by generalities with Pontryagin duality,

Ŝm is canonically isomorphic as a Λ-module to lim←−n Λ̂n,m, with the limit taken

with respect to the maps Ĉorn,m. By Proposition 3.2.1, this can be identified

with the inverse limit of the Λn,m taken with respect to the restriction maps,

i.e., with (O/$mO)[[Γ]]. The second isomorphism is the inverse of the isomor-

phism given by passage to the quotient of the natural map Λ→ (O/$mO)[[Γ]]

(the kernel of the latter surjection is $mΛ).

Now, instead of taking limits over n ≥ 0, we want to take limits over

m ≥ 1. We will consider the discrete Λ-modules Sn = lim−→m
(O/$m)[Gn], where

the transition maps [$]n,m : Λn,m → Λn,m+1 are induced by the injective O-

module maps [$] : O/$mO → O/$m+1O (multiplication by $).

Proposition 3.2.3. Under the isomorphisms ϕn,m : Λ̂n,m ' Λn,m, [̂$]n,m =

θn,m, where θn,m : Λn,m+1 → Λn,m is induced by the natural O-module map

βm : O/$m+1O → O/$mO. More precisely, θn,m ◦ ϕn,m+1 = ϕn,m ◦ [̂$]n,m.

Proof. The assertion is that the diagram

Λ̂n,m+1

̂[$]n,m //

ϕn,m+1

��

Λ̂n,m

ϕn,m

��
Λn,m+1 θn,m

// Λn,m

commutes. Beginning with χ ∈ Λ̂n,m+1, going along the top horizontal map

gives χ◦[$]n,m, and then traveling vertically gives
∑

g∈Gn [$m](χ([$]n,m(g)))g.
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Going the other way gives
∑

g∈Gn βm([$m+1](χ(g)))g. To see that these coin-

cide, fix g ∈ Gn, and let r ∈ $−m−1O represent χ(g) ∈ $−m−1O/O. Then

χ([$]n,m(g)) = χ(($+$m+1O)g) = $r+$−mO/O, so [$m](χ([$]n,m(g))) =

$m+1r+$mO; since [$m+1](χ(g)) = $m+1r+$m+1O, this is exactly βm([$m+1](χ(g))).

Thus the diagram commutes.

Corollary 3.2.4. There is a canonical Λ-module isomorphism Ŝn ' O[Gn].

Proof. By Proposition 3.2.3, Ŝn ' lim←−m Λn,m, with the limit taken with respect

to the maps given on coefficients by βm : O/$m+1O → O/$mO. These can be

identified with the natural maps O[Gn]/($m+1) → O[Gn]/($m), and taking

the inverse limit of this system of modules gives O[Gn] because O[Gn] is a

finite, hence $-adically complete, O-module.

Finally, we want to identify the discrete Λ-module S = lim−→n
Sn, where

the transition maps are ψn = lim−→m
Corn,m : lim−→m

Λn,m → lim−→m
Λn+1,m. This

makes sense because the corestriction maps commute with the transition maps

defining Sn and Sn+1.

Corollary 3.2.5. There is a canonical Λ-module isomorphism Ŝ ' Λ.

Proof. We have Ŝ ' lim←−n Ŝn, where the limit is taken with respect to the

maps ψ̂n. Under the isomorphism Ŝn ' lim←−m Λn,m coming from Pontryagin

duality and Proposition 3.2.1, the transition maps ψ̂n = ̂lim−→m
Corn,m for the

modules Ŝn become lim←−m Resn,m (again by Proposition 3.2.1). That is, the
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diagram

Ŝn+1

'
��

ψ̂n // Ŝn

'
��

lim←−m Λn+1,m lim←−m
Resn,m

// lim←−m Λn,m

commutes. As alluded to in the proof of Corollary 3.2.4, the inverse system

consisting of the modules lim←−m Λn,m and the transition maps lim←−m Resn,m can

be identified with the inverse system consisting of the modules O[Gn] and the

transition maps Resn : O[Gn+1] → O[Gn]. Thus Ŝ can be identified with

lim←−n O[Gn] = Λ.

Corollary 3.2.6. Let X be a cofinitely generated O-module, X ' (E/O)r ⊕∑t
i=1 O/$miO. Then there is a Λ-module isomorphism lim−→n

X ⊗O O[Gn] '

Λ̂r ⊕
∑t

i=1
̂Λ/$miΛ, where the limit in the source is taken with respect to the

maps idX ⊗Corn and Λ acts on the right tensor factor of each X ⊗O O[Gn].

In particular, lim−→n
X ⊗O O[Gn] is a cofinitely generated Λ-module with corank

corankO(X), λ-invariant zero, and µ-invariant
∑t

i=1mi.

Proof. For each n ≥ 0, we have a canonical isomorphism of Λ-modules

(
(E/O)r ⊕

t∑
i=1

O/$miO
)
⊗O O[Gn] ' (E/O ⊗O O[Gn])r ⊕

t∑
i=1

Λn,mi .

These isomorphisms are compatible with the natural transition maps on both

source and target as n varies (all coming from corestriction), and since direct

limits commute with ⊗O and finite direct sums, in the limit over n we obtain

(lim−→
n

E/O ⊗ O[Gn])r ⊕
t∑
i=1

lim−→
n

(Λn,mi).
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For the factor on the right, Proposition 3.2.2 shows that the limit is
∑t

i=1
̂Λ/$miΛ.

For the left factor, we have, for each n,

E/O ⊗ O[Gn] ' lim−→
m

Λn,m = Sn

As n varies, the transition maps for the modules E/O ⊗O [Gn], coming from

corestriction, become the transition maps ψn : Sn → Sn+1 used to define the

module S of Corollary 3.2.5. That corollary shows that, upon taking the

limit, we obtain Λ̂.

3.2.2 Twisting of Λ-Modules and Characteristic Polynomials

In this subsection we explain the effect of twisting by a character on the

characteristic polynomial of a torsion Λ-module (Definition 2.3.3) with respect

to a fixed topological generator of Γ. We retain the notation of the previous

appendix. Let q = p if p is odd and q = 4 is p = 2, and let κ : Γ→ 1 + qZp be

a continuous character. Since the source and target of κ are isomorphic to Zp,

κ is either trivial or injective, and in the latter case, it induces an isomorphism

of Γ onto its image.

Once we fix a topological generator γ of Γ and identify Λ with O[[T ]]

via γ 7→ 1+T , we can associate to κ a continuous O-algebra endomorphism ϕκ

of Λ, determined uniquely by the requirement that ϕκ(T ) = κ(γ)(1 + T )− 1.

This is valid because κ(γ) is a principal unit, and thus κ(γ)(1 + T ) − 1 lies

in the unique maximal ideal of Λ. The map ϕκ is an automorphism because

ψ = ϕκ−1 satisfies (ψ ◦ ϕ)(T ) = T = (ϕ ◦ ψ)(T ), and the only continuous

O-algebra endomorphism of Λ fixing T is the identity.
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Now, if X is any Λ-module, we define a new Λ-module X(κ) whose

underlying O-module is X, but with Λ-action twisted by ϕκ, i.e., we define

λ · x = ϕκ(λ)x for λ ∈ Λ and x ∈ X. Since ϕκ is an automorphism of Λ, it is

clear that X is finitely generated (respectively torsion) if and only if X(κ) is.

In particular, if X is finitely generated and torsion, then so is X(κ). Recall

from Definition 2.3.3 and the discussion following it that the characteristic

polynomial of a finitely generated torsion Λ-module X with respect to γ is

equal to $µ(X) times the characteristic polynomial of the endomorphism T

acting on the finite-dimensional E-vector space X ⊗O E, where µ(X) is the

µ-invariant of X (if X⊗OE is zero, i.e., if X = X[$∞], then the characteristic

polynomial is, by convention, just $µ(X)). We wish to describe the effect that

twisting by κ has on the characteristic polynomial, i.e., to give a formula for the

characteristic polynomial for X(κ) in terms of the characteristic polynomial of

X. We will assume vanishing of the µ-invariant as this is the only case needed

for our application.

Proposition 3.2.7. Let F (t) ∈ O[t] be the characteristic polynomial of X,

and assume µ(X) = 0. Then µ(X(κ)) = 0 and the characteristic polynomial

of X(κ) is

κ(γ)deg(F )F (κ(γ)−1(1 + t)− 1).

Proof. The vanishing of µ(X) is equivalent to finiteness of X[$∞]. Since X

and X(κ) have the same underlying O-module, it follows that µ(X(κ)) = 0 as

well. If X⊗OE = 0, then X(κ)⊗OE = 0, and both characteristic polynomials
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are equal to 1, which is consistent with the formula in the statement of the

proposition. Assume then that X⊗OE 6= 0 and let x1, . . . , xd ∈ X be elements

whose images in X/X[$∞] form an O-basis (so d = rankO(X) = deg(F )).

Then x1 ⊗ 1, . . . , xd ⊗ 1 ∈ X ⊗O E form a E-basis, and because µ(X) = 0, if

[T ] is the matrix for the endomorphism T of X⊗OE with respect to the chosen

basis, then F (t) = det(It − [T ]). Since X(κ) ⊗O E has the same underlying

E-vector space as X ⊗O E, the xi ⊗ 1 constitute of a E-basis for this space as

well. By definition, the action of T on X(κ)⊗O E coincides with the action of

κ(γ)(1+T )−1 on X⊗OE. In other words, if [κ(γ)(1+T )−1] is the matrix for

the endomorphism κ(γ)(1+T )−1 acting on X⊗OE with respect to the chosen

basis, then the characteristic polynomial of X(κ) is det(It− [κ(γ)(1+T )−1]).

We have

It− [κ(γ)(1 + T )− 1] = It− κ(γ)I − κ(γ)[T ] + I

= I(t− κ(γ) + 1)− κ(γ)[T ]

= κ(γ)(I(κ(γ)−1t− 1 + κ(γ)−1)− [T ])

= κ(γ)(I(κ(γ)−1(1 + t)− 1)− [T ]).

Thus the characteristic polynomial of X(κ) is

det(κ(γ)(I(κ(γ)−1(1 + t)− 1)− [T ])) = κ(γ)dF (κ(γ)−1(1 + t)− 1),

as claimed.

Continuing to assume that X is finitely generated and torsion, but not

necessarily with µ-invariant zero, one can prove using the structure theorem
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for such Λ-modules (Theorem 2.3.1) that XΓn (the module of Γn-coinvariants

of X) is finite if and only if F (t) has no zeros in E of the form ζ − 1, where

ζ is a pn-th root of unity. This observation implies that almost all twists

of X by integral powers of κ (assuming κ is non-trivial) have finitely many

Γn-coinvariants for all n ≥ 0.

Proposition 3.2.8. Assume κ is non-trivial. Then for all but finitely many

i ∈ Z, X(κi)Γn is finite for all n ≥ 0.

Proof. To begin, it follows from the structure theorem for finitely generated

Λ-modules that for all i and n ≥ 0, X(κi)Γn is finite if and only if the group

(X(κi)/X(κi)[$∞])Γn is finite. We may therefore assume that µ(X) = 0 (so

µ(X(κi)) = 0 for all i). Denoting as before the characteristic polynomial of X

by F , let Fi(t) = κ(γ)i deg(F )F (κ(γ)−i(1 + t) − 1). By Proposition 3.2.7, this

is the characteristic polynomial of X(κi). Suppose that i, j ∈ Z are distinct

integers for which there exist n,m ≥ 0 with X(κi)Γn and X(κj)Γm infinite.

Then there are ζ ∈ µpn(E) and ζ ′ ∈ µpm(E) such that Fi(ζ−1) = 0 = Fj(ζ
′−1).

This means that κ(γ)−iζ−1 and κ(γ)−jζ ′−1 are roots of F . If these roots are

the same, then κ(γ)−iζ = κ(γ)−jζ ′, whence κ(γ)j−i = ζ−1ζ ′. The right-hand

side of this last equation is visibly a root of unity, but the left-hand side is

an element of 1 + qZp, which is torsion-free. Thus κ(γ)j−i = 1, which forces

i = j (because κ is non-trivial), contrary to assumption. So the roots of F

are distinct. It follows that we may define an injective map from the set of

integers i ∈ Z for which X(κi)Γn is not finite for some n to the set of roots of

F , which is finite as F 6= 0. The former set is therefore finite as well.
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3.3 Selmer Groups

We assume for the remainder of this chapter that p is odd. Let F

be a number field and F∞ a Zp-extension of F satisfying conditions p-(i)

and p-(ii) from §3.1. Throughout this section, we fix a normalized newform

f =
∑

n≥1 anq
n of weight k ≥ 2, level N , and character χ. We assume that

the Fourier coefficients of f lie in O, the ring of integers in a fixed finite ex-

tension E of Qp with uniformizer $ and residue field F (it is known that the

values of χ also lie in O). Let ρf : GQ → GL2(E) be the p-adic Galois rep-

resentation associated to f ; ρf is unramified outside pN , and is characterized

up to Qp-isomorphism by the condition that for a rational prime ` - pN , the

characteristic polynomial of ρf (Frob`) is X2 − a`X + χ(`)`k−1. We denote by

ρ̄f : GQ → GL2(F) the semisimple residual representation associated to f ,

and make the following assumptions:

(ord) f is p-ordinary in the sense that ap is a p-adic unit, and

(ram) ρ̄f |GF is absolutely irreducible and ramified at each p ∈ Σp.

The notion of ordinarity in (ord) actually depends on the choice of embedding

used to regard the Fourier coefficients of f as p-adic numbers (but as we have

fixed such an embedding, this will not matter for us). The second part of

(ram) will hold if p is unramified in F , k 6≡ 1 (mod p−1), and χ is unramified

at p. This follows from the local structure of ρf at p, which is given at the

beginning of the following subsection (the restriction of ρf to a decomposition

group at p is potentially ordinary in the sense of Greenberg).
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3.3.1 p-adic Selmer Groups

Let V be a 2-dimensional E-vector space with GQ-action via ρf , and

fix a GQ-stable O-lattice T in V , setting A = V/T . Thus A is a cofree

O-module of corank 2 on which GQ acts by ρf , and its Cartier dual A∗ =

HomO(A, (E/O)(1)) is a free O-module of rank 2. Since we have assumed

ρ̄f |GF to be absolutely irreducible, the lattice T is unique up to O-scaling,

and the residual representation ρ̄f |GF is given by the action of GF on A[$] '

T/$T .

Our assumption (ord) that f is p-ordinary implies that for each prime

p ∈ Σp, there is a GFp-stable line Vp ⊆ V such that the GFp-action on Vp is

given by the product of εk−1χ and an unramified character, and the GFp-action

on V/Vp is unramified [6, §4.1]. For p ∈ Σp, we set Ap = im(Vp → A), so that

Ap and A/Ap are both O-cofree of corank 1, and the action of GFp on A/Ap is

unramified.

For a prime P of F∞ lying over p ∈ Σp, we define the ordinary sub-

module H1
ord(F∞,P, A) of H1(F∞,P, A) to be

ker(H1(F∞,P, A)→ H1(IP, A/AP)),

where AP is defined to be Ap (and so only depends on p). Following [7], we

then define the Selmer group Sel(F∞, A) for f over F∞ as the kernel of the

global-to-local restriction map

H1(F∞, A)→
∏
η-p

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

,
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where η (respectively P) runs over the primes of F∞ not dividing (respectively

dividing) p. Note that, since we have assumed p is odd, the local cohomology

groups for the Archimedean primes of F vanish, so we may, and do, ignore

them.

In [7], in addition to the Selmer group for ordinary p-adic Galois repre-

sentations, Greenberg also defined the (a priori smaller) strict Selmer group,

requiring cocycles to be trivial away from p instead of unramified (but keeping

the same local conditions at primes dividing p). We can define the strict Selmer

group for f in the analogous way (replacing inertia groups with decomposition

groups at the primes not dividing p). For a prime η of F∞ lying over v /∈ Σp,

if v does not split completely in F∞, then GF∞,η/Iη has pro-order prime to

p, and as a result, the restriction homomorphism H1(F∞,η, A)→ H1(Iη, A) is

injective. Thus, for such a prime η, the strict local condition coincides with

the unramified local condition. Therefore the Selmer group for f over F∞

equals the strict Selmer group when no prime of F splits completely in F∞

(e.g. when F∞ is the cyclotomic Zp-extension of F ), but these groups may

differ otherwise. We will not have cause to consider the strict Selmer group,

and will be content with the following result, which shows that the local con-

ditions for the two groups can only differ at primes of F∞ lying above a prime

of F dividing the prime-to-p part of N (the level of our modular form f). The

proof was explained to us by Matthew Emerton.

Proposition 3.3.1. If v - pN is a prime of F , then

ker(H1(Fv, A)→ H1(Iv, A)) = 0.
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Thus, if v splits in F∞, then for any prime η of F∞ lying over v, the strict

local condition and the unramified local condition at η coincide. In particular,

if every prime of F dividing the level of f is finitely decomposed in F∞, then

the Selmer group and the strict Selmer group coincide.

Proof. The O-corank of H1
ur(Fv, A) = ker(H1(Fv, A)→ H1(Iv, A)) is the same

as the O-corank of H0(Fv, A). Moreover, since v - pN , A is an unramified

GFv -module, so H1
ur(Fv, A) = A/(Frobv−1)A is O-divisible and H0(Fv, A) =

AFrobv=1. Now, if ` is the rational prime of Q lying below v, then the eigen-

values of Frob` on V are Weil numbers of weight (k − 1)/2. Since k ≥ 2, we

see that, in particular, these eigenvalues are not roots of unity. The eigenval-

ues of Frobv on V are powers of the eigenvalues of Frob` since ρf (Frobv) is

conjugate to a power of ρf (Frob`). Thus 1 is not an eigenvalue of Frobv on

V , so V Frobv=1 = 0. It follows that AFrobv=1 has O-corank zero. The same is

then true of H1
ur(Fv, A), which is therefore O-divisible and finite, and hence

trivial, proving the first statement. In light of the discussion preceding the

proposition, it follows that the only primes w of F∞ where the local conditions

for the Selmer group and the strict Selmer group can differ are those lying over

a prime v of F that divides the prime-to-p part of N and splits in F∞. So, if

there are no such primes, then the Selmer group and the strict Selmer group

must coincide.

Let Λ = O[[Γ]] be the Iwasawa algebra of Γ with coefficients in O

(see the beginning of §2.1 for the precise definition of this ring). The Galois

39



group GF acts (via conjugation) on the O-module H1(F∞, A) with GF∞ acting

trivially, and this action allows us to regard the global cohomology group

as a discrete Λ-module via Proposition 2.2.3 (that the hypotheses of that

Proposition are satisfied follows from the canonical isomorphism H1(F∞, A) =

lim−→n
H1(Fn, A)). The Selmer group Sel(F∞, A) is a Γ-stable, O-submodule of

H1(F∞, A), so it too can be regarded as a discrete Λ-module. Moreover, if Σ

is a finite set of primes of F containing the Archimedean primes, the primes

in Σp, and the primes where A is ramified, then we have an exact sequence

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)→
∏

η|v∈Σ−Σp

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

.

(3.1)

According to [7, Proposition 3], H1(FΣ/F∞, A) is a cofinitely generated Λ-

module in the sense of Definition 2.2.2, so the sequence (3.1) implies that

Sel(F∞, A) is cofinitely generated as well, i.e., its O-module Pontryagin dual

̂Sel(F∞, A) = HomO(Sel(F∞, A), E/O) is a finitely generated Λ-module. We

define the Λ-corank (respectively the µ-, λ-invariant) of Sel(F∞, A) to be the

Λ-rank (respectively the µ-, λ-invariant) of its Pontryagin dual (the µ- and

λ-invariants of a general cofinitely generated Λ-module are defined in Defi-

nition 2.3.4). This terminology will be applied to any cofinitely generated

Λ-module appearing below. We write µ(f) and λ(f) for the Iwasawa invari-

ants of Sel(F∞, A), and also refer to them as the Iwasawa invariants of f (over

F∞).

Because we will use the condition on the set Σ in the exact sequence

(3.1) repeatedly, we formalize it in a definition.
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Definition 3.3.1. A finite set Σ of primes of F will be said to be sufficiently

large for A provided Σ contains the Archimedean primes, the primes above p,

and any primes where A is ramified.

Most of our results will make use of the following hypothesis:

Sel(F∞, A) is cotorsion over Λ. (tor)

When f corresponds to an elliptic curve over Q with good, ordinary reduction

at the primes of Σp and F∞ is the cyclotomic Zp-extension of F , (tor) was

conjectured by Mazur in [10]. For F = Q, this follows from work of Kato and

Rohrlich. In the anticyclotomic setting, with p ≥ 5, (tor) has been proved by

Pollack and Weston ([13, Theorem 1.3]) for newforms of weight 2 and trivial

character, under some technical hypotheses on ρ̄f and the factorization of the

level of f in F . Greenberg also has general conjectures about ordinary Selmer

groups being cotorsion, most of which remain open.

In order to obtain more refined information about the structure of

Sel(F∞, A), we need to give alternative descriptions of the local conditions

that define it. This is carried out in the next subsection.

3.3.2 The Λ-module Structure of Local Cohomology Groups

We retain the notation and hypotheses of the previous subsection. For

a prime v - p of F , we define

Hv = Hv(F∞, A) = lim−→
n

∏
w∈Σn,v

H1(Fn,w, A)

H1
ur(Fn,w, A)

,
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where Σn,v is the set of primes of Fn lying over v and the limit is taken with

respect to the restriction maps in Galois cohomology. For a prime p of Σp, we

define

Hp = Hp(F∞, A) =
∏

P∈Σ∞,p

H1(F∞,P, A)

H1
ord(F∞,P, A)

,

where Σ∞,p is the finite set of primes of F∞ lying over p (recall that we have

assumed in the introduction (hypothesis p-(ii)) that all such p are finitely

decomposed in F∞). Note that these O-modules are in fact discrete Λ-modules

(again by Proposition 2.2.3).

Proposition 3.3.2. For any finite set Σ of primes of F which is sufficiently

large for A (Definition 3.3.1), the sequence of Λ-modules

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

is exact.

Proof. Any cohomology class κ ∈ H1(F∞, A) arises as the restriction of a co-

homology class κn ∈ H1(Fn, A) for some n ≥ 0. If η is a prime of F∞ lying over

v /∈ Σp, and w ∈ Σn,v, then the restriction map H1(Fn,w, A)/H1
ur(Fn,w, A) →

H1(F∞,η, A)/H1
ur(F∞,η, A) is injective because F∞,η/Fn,w is unramified. The

commutative diagram

H1(F∞, A) // H
1(F∞,η, A)

H1
ur(F∞,η, A)

H1(Fn, A)

OO

// H
1(Fn,w, A)

H1
ur(Fn,w, A)

OO
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of restriction maps then shows that κ is unramified at η if and only if κn is

unramified at w. This shows that the kernel of

H1(F∞, A)→
∏
η|v

H1(F∞,η, A)/H1
ur(F∞,η, A)

coincides with the kernel of H1(F∞, A) → Hv (the latter map sends κ to the

natural image of κn in Hv). In view of the definition of Hp for p ∈ Σp, we

conclude that Sel(F∞, A) is exactly the kernel in question.

We’ve introduced the modules Hv when v /∈ Σp to deal with the possi-

bility that v splits in F∞. For such a v, the product of the local cohomology

groups over all primes of F∞ lying over v does not have good properties as a

Λ-module (it’s too big). The Λ-module structure of Hv, on the other hand,

can be understood, even when v is split in F∞. When v is finitely decomposed

in F∞, Hv is just a product of local cohomology groups, and the structure of

these groups has been determined by Greenberg.

Proposition 3.3.3. For a prime v /∈ Σp of F , let Σ∞,v denote the set of

primes of F∞ lying above v.

(i). For a prime v /∈ Σp that is finitely decomposed in F∞, we have

Hv '
∏

η∈Σ∞,v

H1(F∞,η, A)

as Λ-modules, and Hv is a cofinitely generated, cotorsion Λ-module with

µ-invariant zero and λ-invariant∑
η∈Σ∞,v

corankO(H1(F∞,η, A)).
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(ii). For a prime p ∈ Σp, Hp is a cofinitely generated Λ-module with Λ-corank

[Fp : Qp] and µ-invariant zero.

Proof. The isomorphism for v /∈ Σp holds because the number of primes in Σn,v

is constant for n sufficiently large (equal to the cardinality of Σ∞,v), because

directed colimits commute with finite products, and because H1
ur(F∞,η, A) = 0

for η ∈ Σ∞,v. The assertions about the Λ-module structure of the products

of local cohomology groups are then given by Proposition 1 (for p ∈ Σp) and

Proposition 2 (for v /∈ Σp) of [7].

Now consider a prime v /∈ Σp that splits in F∞. Then we have an

isomorphism Fv ' F∞,η for any prime η of F∞ lying over v, giving H1(Fv, A) '

H1(F∞, A). The finiteness of H1(Fv, A[$]) shows that H1(Fv, A)[$] is finite,

hence that H1(Fv, A) is a cofinitely generated O-module (this is similar to

Proposition 2.3.3). In particular H1(Fv, A)/H1
ur(Fv, A) is a cofinitely generated

O-module, and by the local Euler characteristic formula, we have

corankO(H1(Fv, A)/H1
ur(Fv, A)) = rankO(H0(Fv, A

∗)). (3.2)

(A∗ is the Cartier dual of A; see §3.1.) The O-module structure of the quotient

H1(Fv, A)/H1
ur(Fv, A) completely determines the Λ-module structure of Hv.

Proposition 3.3.4. Let v /∈ Σp be a prime of F that splits in F∞, and choose

an isomorphism of O-modules

H1(Fv, A)/H1
ur(Fv, A) ' (E/O)r ⊕

t∑
i=1

O/$miO
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for some r ≥ 0 and mi ≥ 0. Then we have

Hv ' Λ̂r ⊕
t∑
i=1

̂Λ/$miΛ (3.3)

as Λ-modules, so Hv is a cofinitely generated Λ-module with Λ-corank equal to

rankO(H0(Fv, A
∗)), µ-invariant

∑t
i=1 mi, and λ-invariant zero.

Proof. By definition, Hv = lim−→n

∏
w∈Σn,v

H1(Fn,w, A)/H1
ur(Fn,w, A), with the

limit taken with respect to the restriction maps. Because v splits in F∞, a

choice of prime wn of Fn lying over v gives rise to an O[Gn]-isomorphism

∏
w∈Σn,v

H1(Fn,w, A)/H1
ur(Fn,w, A) ' (H1(Fv, A)/H1

ur(Fv, A))⊗O O[Gn].

Choosing the primes wn compatibly for n ≥ 0, these isomorphisms turn

the transition maps defining Hv into the maps coming from corestriction

on the right tensor factor. Thus we have a Λ-module isomorphism Hv '

lim−→n
(H1(Fv, A)/H1

ur(Fv, A)) ⊗O O[Gn], and the putative isomorphism (3.3)

follows from Proposition 3.2.6. The Iwasawa invariants of Hv can be read off

from this isomorphism, and the equality

corankΛ(Hv) = rankO(H0(Fv, A
∗))

follows from the isomorphism and Equation 3.2.

3.3.3 Non-Primitive Selmer Groups

In this subsection, following Greenberg-Vatsal [9], we introduce non-

primitive Selmer groups. A non-primitive Selmer group is defined by omitting
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some of the local conditions at primes of F∞ not dividing ∞ or p. If we omit

enough local conditions, the $-torsion of the resulting non-primitive Selmer

group for f can be identified with the corresponding non-primitive residual

Selmer group. To be precise, let Σ0 be a finite set of primes of F not containing

any Archimedean primes or any primes of Σp. The Σ0-non-primitive Selmer

group SelΣ0(F∞, A) is then defined as the kernel of the map

H1(F∞, A)→
∏

η|v/∈Σ0,v-p

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

.

As there is generally no risk of confusion about Σ0 we will sometimes refer to

SelΣ0(F∞, A) simply as the non-primitive Selmer group. If Σ is a finite set of

primes of F which is sufficiently large for A (Definition 3.3.1) and also contains

Σ0, then we have exact sequences of Λ-modules

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σ0

Hv

and

0→ Sel(F∞, A)→ SelΣ0(F∞, A)→
∏
v∈Σ0

Hv.

We will show in §3.3.4 that under appropriate hypotheses, these exact se-

quences are exact on the right as well.

We now define a non-primitive Selmer group SelΣ0(F∞, A[$]) for the

residual representation A[$], in a manner analogous to the non-primitive

Selmer group for A. Its definition is designed to recover the $-torsion of

SelΣ0(F∞, A). For a prime P of F∞ lying over p, define

H1
ord(F∞,P, A[$]) = ker(H1(F∞,P, A[$])→ H1(IP, A[$]/AP[$])).
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Then SelΣ0(F∞, A[$]) is the kernel of the map

H1(F∞, A[$])→
∏

η|v/∈Σ0,v-p

H1(F∞,η, A[$])

H1
ur(F∞,η, A[$])

×
∏
P|p

H1(F∞,P, A[$])

H1
ord(F∞,P, A[$])

.

The next proposition will involve the space A[$]Ip of Ip-coinvariants of

A[$]. This is the largest F[GFp ]-quotient of A[$] on which Ip acts trivially

(recall that F = O/$ is the residue field of O). More explicitly, it is the

quotient of A[$] by the F[GFp ]-submodule generated by elements of the form

ga − a for g ∈ Ip and a ∈ A[$]. It is in the proof of this proposition that

we use the second part of assumption (ram) from the beginning of §3.3, that

A[$] is ramified at each prime p ∈ Σp.

Proposition 3.3.5. If p ∈ Σp, then A[$]/Ap[$] = (A[$])Ip.

Proof. Since A[$]/Ap[$] = (A/Ap)[$] is an unramified F[GFp ]-module, we

have a surjective map (A[$])Ip → A[$]/Ap[$]. It follows that A[$]Ip is at

least 1-dimensional over F. Because A[$] is ramified at p by assumption

(ram) from the beginning of §3.3, (A[$])Ip cannot be 2-dimensional. Thus the

surjection (A[$])Ip → A[$]/Ap[$] is an equality.

Remark 3.3.1. Proposition 3.3.5 shows that the local conditions defining the

module SelΣ0(F∞, A[$]) only depend on A[$] as a GF -module (when a priori

they depend on A as a GF -module because the definition of the subspace

Ap[$] ⊆ A[$] for a prime p | p makes reference to the GF -module structure of

A). This is clear at the primes not dividing p, where the local condition is the
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unramified one, and Proposition 3.3.5 shows that at a prime P lying above

p ∈ Σp, the local condition is the kernel of the map

H1(F∞,P, A)→ H1(IP, (A[$])Ip)

induced by the quotient map A[$] → (A[$])Ip and restriction to IP. The

definition of the quotient (A[$])Ip is given entirely in terms of the GF -action

on A[$] (even just the GFp-action). This observation is crucial to our method

because it shows that, if we have two modular forms satisfying the appropriate

hypotheses whose residual representations are isomorphic as GF -modules, then

the corresponding residual Selmer groups are isomorphic.

Proposition 3.3.6. If Σ0 contains all the primes of F dividing the tame level

of f , then the natural map H1(F∞, A[$]) → H1(F∞, A) induces an isomor-

phism of O-modules

SelΣ0(F∞, A[$]) ' SelΣ0(F∞, A)[$].

Proof. We have a commutative diagram

H1(F∞, A) //
∏

η|v/∈Σ0,v 6=pH
1(Iη, A)×

∏
P|pH

1(IP, A/AP)

H1(F∞, A[$])

OO

//
∏

η|v/∈Σ0,v-pH
1(Iη, A[$])×

∏
P|pH

1(IP, A[$]/AP[$])

OO

with the vertical maps coming from the inclusionsA[$] ↪→ A andA[$]/Ap[$] =

(A/Ap)[$] ↪→ A/Ap, and the horizontal maps coming from restriction. Note

that the kernel of the top (respectively bottom) horizontal map is SelΣ0(F∞, A)
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(respectively SelΣ0(F∞, A[$])). Since A[$] is an irreducible F[GF ]-module (by

the first part of assumption (ram) from the beginning of §3.3), H0(F,A[$]) =

0, which implies that H0(F∞, A[$]) = 0 as F∞/F is pro-p. Thus the kernel of

H1(F∞, A[$])→ H1(F∞, A), which is a quotient of H0(F∞, A), is zero. So the

left-hand vertical map is injective. Its image is H1(F∞, A)[$]. The commuta-

tivity of the diagram shows that this vertical map takes SelΣ0(F∞, A[$]) into

SelΣ0(F∞, A)[$]. To see that the image is precisely SelΣ0(F∞, A)[$], it there-

fore suffices to prove that the right-hand vertical arrow is injective. We do this

by considering each factor map on the right. First consider a prime η of F∞

which divides v /∈ Σ0, v - p. Since η does not divide the level of f (as v /∈ Σ0),

A is unramified at η, and the kernel of the map H1(Iη, A[$]) → H1(Iη, A)

is AIη/$AIη = A/$A = 0 (A is a divisible O-module). Similarly, if P is a

prime of F∞ dividing p, then, since A/AP is unramified at P, the kernel of the

map H1(IP, A[$]/AP[$])→ H1(IP, A/AP) is (A/AP)/$(A/AP) = 0, because

A/AP is divisible.

Combining Proposition 3.3.6 with Remark 3.3.1, we conclude that for

Σ0 containing the primes dividing the tame level of f , the module SelΣ0(F∞, A)[$]

only depends on A[$] as an F[GF ]-module.

3.3.4 Global-to-Local Maps

In this subsection, we establish the surjectivity of a global-to-local map

of Galois cohomology (under appropriate hypotheses) which allows us to com-

pare the Iwasawa invariants of the non-primitive and the primitive Selmer
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groups of f .

Recall that we have an exact sequence of Λ-modules

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)
γ−→

∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp (3.4)

for Σ sufficiently large for A (Definition 3.3.1). By [7, Proposition 3],

corankΛ(H1(FΣ/F∞, A)) ≥
∑
v real

d−v (V ) + 2r2,

where the first sum is over the real primes of F , d−v (V ) is the dimension of the

−1-eigenspace for a complex conjugation above v acting on V , and r2 is the

number of complex primes of F . Because ρf is odd, that is, the determinant

of ρf of any complex conjugation is −1, d−v (V ) = 1 for any any real prime v,

as otherwise the determinant of ρf of a complex conjugation would be 1. So,

letting r1 denote the number of real primes of F , the inequality above becomes

corankΛ(H1(FΣ/F∞, A)) ≥ r1 + 2r2 = [F : Q].

The Λ-coranks of the factors comprising the target of the map γ of (3.4) are

determined by the corresponding primes:

(nsplit) if v /∈ Σp is finitely decomposed in F∞, then Hv is Λ-cotorsion

(split) f v /∈ Σp is split in F∞, then corankΛ(Hv) = rankO(H0(Fv, A
∗))

(pnsplit) if p ∈ Σp, then corankΛ(Hp) = [Fp : Qp]
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Assertions (nsplit) and (pnsplit) are restatements of parts of Proposition 3.3.3,

while (split) is a restatement of part of Proposition 3.3.4. It follows that the

target of the map γ has Λ-corank at least

∑
p∈Σp

[Fp : Qp] = [F : Q],

and if H0(Fv, A
∗) is finite for each prime v ∈ Σ that splits in F∞, this is exactly

the Λ-corank of the target of γ.

In proving the following proposition, several variants of which have

appeared in the literature, we follow the proof of [20, Proposition 1.8]. It will

be clear that the second hypothesis in the statement of Proposition 3.3.7 is

used to ensure that the argument still goes through when finite primes split in

F∞. We will use the observation that irreducibility of the F[GF ]-module A[$]

(assumed as part of (ram) at the beginning of §3.3) implies that

H0(F∞, A
∗ ⊗O E/O) = 0.

Indeed, the $-torsion of H0(F,A∗ ⊗O E/O) is the space of GF -invariants of

the Tate twist of the Cartier dual of A[$], HomF(A[$],O(1)/$O(1)), which

is zero since A[$] and O(1)/$O(1) are irreducible of different F-dimension.

Thus there are no GF∞-invariants either, since Gal(F∞/F ) is pro-p.

Proposition 3.3.7. Let Σ be a finite set of primes of F which is sufficiently

large for A (Definition 3.3.1). Assume that

(i). hypothesis (tor) (introduced at the end of §3.3.1) holds, and
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(ii). for each prime v ∈ Σ that splits in F∞, H0(Fv, A
∗) = 0.

Then the sequence

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)
γ−→

∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp → 0

is exact.

Proof. We need to prove that γ is surjective, i.e. that coker(γ) = 0. We will do

this by considering similar global-to-local maps at the finite levels Fn of F∞ and

passing to the limit. To ensure that the kernels and cokernels of the finite level

global-to-local maps are finite and trivial, respectively, we will twist the Galois

module structures under consideration by a character. Let κ : Γ ' 1 + pZp be

an isomorphism of topological groups, which we also regard as a character of

GF and of Gal(FΣ/F ). If S is a discrete O-module with a continuous O-linear

Gal(FΣ/F )-action, then St will denote S ⊗O O(κt) for t ∈ Z. This is also a

discrete O-module with a continuous O-linear Gal(FΣ/F )-action, and if S is

a discrete Λ-module, St is as well (with Λ acting on both tensor factors). We

have S ' St as O[Gal(FΣ/F∞)]-modules, and if S is a discrete Λ-module, St

is isomorphic to the Pontryagin dual of Ŝ(κ−t) (see the paragraph preceding

Proposition 3.2.7 for the definition of this last Λ-module).

For each t ∈ Z, we define a Selmer group Sel(F∞, At) for At as the

kernel of the map

H1(FΣ/F∞, At)
γt−→

∏
v∈Σ−Σp

Hv(F∞, At)×
∏
p∈Σp

Hp(F∞, At),
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where the factors of the target are defined analogously to those defined at the

beginning of §3.3.4 for A, setting At,p = (Ap)t for p ∈ Σp. With this definition,

Sel(F∞, At) ' Sel(F∞, A)t as Λ-modules, and because A ' At as Gal(FΣ/F∞)-

modules, we have coker(γ) ' coker(γt) as Λ-modules. It therefore suffices to

prove that coker(γt) vanishes for some t ∈ Z.

We will prove vanishing of some coker(γt) by working with Selmer

groups over Fn for n ≥ 0 and taking a limit. For t ∈ Z, n ≥ 0, and a

prime p of Fn dividing p0 ∈ Σp, we set

H1
ord(Fn,p, At) = ker(H1(Fn,p, At)→ H1(Fn,p, At/At,p)),

where At,p = At,p0 . Note that this is stronger than the analogous ordinary local

condition over F∞ as we are using decomposition groups instead of inertia

groups. Because we are using decomposition groups, we can apply Poitou-

Tate global duality to each finite level Selmer group Sel(Fn, At), defined as the

kernel of the map

H1(FΣ/Fn, At)
γn,t−−→

∏
w|v∈Σ,v-p

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

.

Upon taking the direct limit of the maps γn,t over n ≥ 0, we get maps γ∞,t

with source H1(FΣ/F∞, At), such that coker(γt) is a Λ-module quotient of

coker(γ∞,t) (it is a quotient because we used decomposition groups to define

the local conditions at the primes dividing p for the finite level Selmer groups).

We will prove that for an appropriate choice of t, the O-modules coker(γn,t)

are trivial for all n ≥ 0. The desired result will follow from this.
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We will impose several conditions on the integers t under consideration.

Because Sel(F∞, A) is Λ-cotorsion, Proposition 3.2.8 implies that for all but

finitely many t, Sel(F∞, At)
Γn ' Sel(F∞, A)Γn

t will be finite for all n ≥ 0.

Similarly, because A(F∞) is Λ-cotorsion and A(F∞)t = At(F∞), for all but

finitely many t, H0(Fn, At) = At(F∞)Γn will be finite for all n ≥ 0. We assume

from now on that t satisfies these conditions, which imply the following one:

(a) ker(γn,t) = Sel(Fn, At) is finite for all n ≥ 0.

To see this, observe that the restriction map H1(Fn, At) → H1(F∞, At) takes

ker(γn,t) into Sel(F∞, At)
Γn , which we have assumed finite. The kernel of

the restriction map is H1(F∞/Fn, At(F∞)), which has the same O-corank as

H0(Fn, At), also assumed finite. So, indeed, ker(γn,t) is finite for all n ≥ 0.

We now wish to impose three additional conditions on t:

(b) for n ≥ 0 and w ∈ Σn,v with v - p, H0(Fn,w, A
∗
t ) is finite,

(c) for n ≥ 0 and p | p0 ∈ Σp, H
0(Fn,p, At/At,p) and H0(Fn,p, (At/At,p)

∗) are

finite, and

(d) for n ≥ 0 and p | p0 ∈ Σp, H
0(Fn,p, (At,p)

∗) is finite.

All three of these conditions will hold for all but finitely many t. For (c) and

(d), this follows from Proposition 3.2.8 applied to the Iwasawa algebra of the

image of GFp0
in Γ, which is non-trivial as we have assumed (p-(ii) of §3.1)

that no prime dividing p splits in F∞ in p (we are using that the modules
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of coinvariants and invariants of a Λ-module that is finitely generated over O

have the same O-rank). Note that the conditions involving finiteness of the

local invariants at each level of the Cartier dual modules are equivalent to

the vanishing of the local invariants, since the Cartier dual modules are finite

free over O. That condition (b) holds for all but finitely many t follows from

Proposition 3.2.8 as before, except when v is a prime that splits in F∞, in

which case H0(Fn,w, A
∗
t ) can be identified with H0(Fv, A

∗), which vanishes by

hypothesis (we cannot argue that H0(Fv, A
∗) has to vanish for such v as before

because the image of GFv in Γ is trivial).

For n ≥ 0 and w | v ∈ Σ v /∈ Σp, Tate local duality and the local Euler

characteristic formula give

corankO

(
H1(Fn,w, At)

H1
ur(Fn,w, At)

)
= rankO(H0(Fn,w, A

∗
t )) = 0, (3.5)

the last equality coming from condition (b). Similarly, (c) implies that the

module H1(Fn,p, At/At,p) has O-corank equal to [Fn,p : Qp] for n ≥ 0 and p | p.

Condition (d) then implies that

corankO

(
H1(Fn,p, At)

H1
ord(Fn,p, At)

)
= [Fn,p : Qp] (3.6)

for all n ≥ 0 and all such p as well.

A modification of the Poitou-Tate exact sequence gives the exact se-
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quence

0→ Sel(Fn, At)→ H1(FΣ/Fn, At)

γn,t−−→
∏

w|v∈Σ,v-p

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

→ H1,n → H2,n → 0,

where H1,n is dual to a submodule of H1(FΣ/Fn, A
∗
t ) and H2,n is a submodule

of H2(FΣ/Fn, At). The global Euler characteristic formula shows that

corankO(H1(FΣ/Fn, At)) = pn[F : Q] + corankO(H2(FΣ/Fn, At)). (3.7)

Equations (3.5) and (3.6) give, for all n ≥ 0,

corankO

( ∏
w|v∈Σ,v-p

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

)
= corankO

(∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

)
=
∑
p|p

[Fn,p : Qp]

=
∑
p0∈Σp

∑
p|p0

[Fn,p : Fp0 ][Fp0 : Qp]

=
∑
p0∈Σp

[Fp0 : Qp]

(∑
p|p0

[Fn,p : Fp0 ]

)
=
∑
p0∈Σp

[Fp0 : Qp]p
n = pn[F : Q].

Therefore, since Sel(Fn, At) is finite for all n ≥ 0 by (a), the exact sequence

above and Equation (3.7) imply that

corankO(H1(FΣ/Fn, At)) = [F : Q]pn

and

corankO(H2(FΣ/Fn, At)) = 0.
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In particular, coker(γn,t) and H2,n are finite, and hence so is H1,n. Moreover,

the order of coker(γn,t) is bounded above by that of H1,n, which, being finite,

is dual to a submodule of H1(FΣ/Fn, A
∗
t )[$

∞]. The O-torsion submodule of

H1(FΣ/Fn, A
∗
t ) is a quotient ofH0(Fn, A

∗
t⊗E/O), which in turn is a submodule

of

H0(F∞, A
∗
t ⊗O E/O) = H0(F∞, A

∗ ⊗O E/O).

But the latter group is trivial by the remarks preceding the proposition. Thus

coker(γn,t) = 0 for all n ≥ 0.

Corollary 3.3.8. Let Σ be a finite set of primes of F that is sufficiently large

for A (Definition 3.3.1). Assume that

(i). hypothesis (tor) (introduced at the end of §3.3.1) holds, and

(ii). for each prime v ∈ Σ that splits in F∞, H0(Fv, A
∗) = 0.

If Σ0 is a subset of Σ not containing any Archimedean primes or any primes

above p, then SelΣ0(F∞, A) is Λ-cotorsion and the sequences

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σ0−Σp

Hv ×
∏
p∈Σp

Hp → 0

and

0→ Sel(F∞, A)→ SelΣ0(F∞, A)→
∏
v∈Σ0

Hv → 0

are exact.
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Proof. The first sequence is exact by definition, except at the right, where it is

exact by Proposition 3.3.7. The second sequence is also exact by definition ex-

cept for the surjectivity of the final map. The hypotheses together with Propo-

sitions 3.3.3 and 3.3.4 imply that the target of that map is Λ-cotorsion. Thus

the fact that Sel(F∞, A) is cotorsion implies the same for SelΣ0(F∞, A). Finally,

since SelΣ0(F∞, A) is exactly the inverse image of
∏

v∈Σ0
Hv in H1(FΣ/F∞, A),

exactness of the second sequence on the right follows from that of the first.

Remark 3.3.2. The most interesting case of the preceding proposition is when

Σ consists of Σ0, together with the infinite primes and the primes above p.

3.3.5 Divisibility of the Non-Primitive Selmer group

The main result in this subsection is that, under the hypotheses of

Proposition 3.3.7, the Σ0-non-primitive Selmer group, for Σ0 containing the

primes dividing the tame level of f , has no proper Λ-submodules of finite

index. First we deduce the corresponding result for H1(FΣ/F∞, A), where Σ

is sufficiently large for A.

Corollary 3.3.9. Let Σ be a finite set of primes of F which is sufficiently

large for A (Definition 3.3.1). Assume that

(i). hypothesis (tor) (introduced at the end of §3.3.1) holds, and

(ii). for each prime v ∈ Σ that splits in F∞, H0(Fv, A
∗) = 0.

Then the Λ-corank of H1(FΣ/F∞, A)) is [F : Q], and H1(FΣ/F∞, A) has no

proper Λ-submodules of finite index.
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Proof. By Proposition 3.3.7 and the hypothesis that Sel(F∞, A) is cotorsion,

we have

corankΛ(H1(FΣ/F∞, A)) = corankΛ

( ∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

)
.

The discussion at the beginning of §3.3.4 ((nsplit), (split), and (pnsplit)) shows

that, in the presence of our hypothesis (ii),

corankΛ

( ∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

)
= corankΛ

( ∏
p∈Σp

Hp

)
=
∑
p∈Σp

[Fp : Qp] = [F : Q].

This proves the first assertion. Now we invoke Propositions 3, 4, and 5 of [7].

Proposition 3 implies that H2(FΣ/F∞, A) is Λ-cotorsion, while Proposition

4 implies that H2(FΣ/F∞, A) is Λ-cofree. Thus H2(FΣ/F∞, A) = 0, and now

Proposition 5 implies that H1(FΣ/F∞, A) has no proper Λ-submodules of finite

index.

The next lemma will allow us to deduce the desired property of the non-

primitive Selmer group from the corresponding property of H1(FΣ/F∞, A).

Lemma 3.3.10. Let Y be a finitely generated Λ-module, Z a free Λ-submodule.

If Y contains no non-zero, finite Λ-submodules, then the same is true for Y/Z.

Proof. See the proof of Lemma 2.6 of [9].

Lemma 3.3.11. Let 0 → X ′ → X → X ′′ → 0 be a short exact sequence of

finitely generated Λ-modules with X free over Λ and X ′′ finitely generated and

free over O. Then X ′ is free over Λ.
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Proof. A finitely generated Λ-module is free if and only if its module of in-

variants vanishes and its module of coinvariants is O-free ([11, Proposition

5.3.19 (ii)]). Thus it suffices to show that (X ′)Γ = 0 and that X ′Γ is O-free.

Applying the snake lemma to the endomorphism of the short exact sequence

0 → X ′ → X → X ′′ → 0 given by multiplication by g − 1, where g ∈ Γ is a

topological generator, we get an exact sequence

0→ (X ′)Γ → XΓ → (X ′′)Γ → X ′Γ → XΓ → X ′′Γ → 0. (3.8)

Since X is Λ-free, XΓ = 0, and it follows that (X ′)Γ = 0. Taking Y =

im(X ′Γ → XΓ), we deduce from (3.8) and the vanishing of XΓ the exact se-

quence

0→ (X ′′)Γ → X ′Γ → Y → 0. (3.9)

Because X ′′ (respectively XΓ) is finitely generated and O-free, so is its sub-

module (X ′′)Γ (respectively Y ). Thus the sequence of O-modules (3.9) splits,

and we find that X ′Γ is O-free, being isomorphic to a direct sum of O-free

modules.

In the proof of the next proposition, we closely follow the argument for

Proposition 2.5 of [9].

Proposition 3.3.12. Let Σ0 be a finite set of primes of F not containing any

Archimedean primes or any primes of Σp. Assume that

(i). Σ0 contains the primes dividing the tame level of f ,
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(ii). hypothesis (tor) (introduced at the end of §3.3.1) holds, and

(iii). for each prime v ∈ Σ0 that splits in F∞, H0(Fv, A
∗) = 0.

Then SelΣ0(F∞, A) has no proper Λ-submodules of finite index.

Proof. Let Σ be the union of Σ0, Σp, and the set of Archimedean primes. Then

Σ is sufficiently large for A and the hypotheses of Proposition 3.3.8 hold, so

we have an exact sequence of Λ-modules

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏
p∈Σp

Hp → 0.

Since H1(FΣ/F∞, A) has no proper Λ-submodules of finite index by Corol-

lary 3.3.9, if we can prove that
∏

p∈Σp
Hp is Λ-cofree, the result will fol-

low from Lemma 3.3.10, with Y = ̂H1(FΣ/F∞, A), Z =
∏

p∈Σp
Ĥp, and

Y/Z ' ̂SelΣ0(F∞, f). Following the proof of Proposition 2.5 of [9], we will

prove that for each p ∈ Σp,

Hp =
∏
P|p

H1(F∞,P, A)/H1
ord(F∞,P, A)

is Λ-cofree.

Fix p ∈ Σp and let D = A/Ap. We first prove that H1(Fp, D) is O-

cofree. The cohomology sequence associated to the multiplication-by-$ map

on D yields an injection

H1(Fp, D)/$H1(Fp, D) ↪→ H2(Fp, D[$]). (3.10)
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The target of (3.10) is Cartier dual (as a finite p-group) toH0(Fp,Hom(D[$], µp)).

If ϕ : D[$]→ µp were a non-zero, hence surjective GFp-equivariant homomor-

phism, then because D[$] is unramified at p, µp would be unramified at p

as well. But our hypothesis p-(i) of §3.1 that e(p/p) < p − 1 shows that µp

is a ramified GFp-module. So the module of GFp-invariants of Hom(D[$], µp)

must vanish, and thus H2(Fp, D[$]) = 0. By (3.10), H1(Fp, D) is O-divisible.

Since it is cofinitely generated as an O-module, it is then O-cofree. By the

local Euler characteristic formula, we have

corankO(H1(Fp, D)) = [Fp : Qp] + corankO(H0(Fp, D)) + corankO(H2(Fp, D))

= [Fp : Qp] + corankO(H0(Fp, D)),

where the last equality holds because the vanishing of H2(Fp, D[$]) implies

that of H2(Fp, D) (the $-torsion of the latter is a homomorphic image of the

former).

Now fix a prime P of F∞ lying over p, let Γp ⊆ Γ be the decomposition

group for p (which is non-trivial because p does not split in F∞), and let

Λp = O[[Γp]] be the Iwaswawa algebra of Γp. Because Γp has cohomological

dimension 1, we have an inflation-restriction sequence

0→ H1(F∞,P/Fp, D
GF∞,P)→ H1(Fp, D)→ H1(F∞,P, D)Γp → 0.

The O-corank ofH1(F∞,P/Fp, D
GF∞,P) is the same as the O-corank ofH0(Fp, D),

and from this it follows that H1(F∞,P, D)Γp is O-cofree of corank [Fp : Qp].

By Proposition 1 of [7], the Λp-corank of H1(F∞,P, D) is also [Fp : Qp]. An
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application of Nakayama’s lemma now shows that H1(F∞,P, D) is Λp-cofree of

corank [Fp : Qp].

As GF∞,P has p-cohomological dimension 1, the map H1(F∞,P, A) →

H1(F∞,P, D) is surjective. We therefore have

HP = H1(F∞,P, A)/H1
ord(F∞,P, A) ' im(H1(F∞,P, D)→ H1(IP, D)).

Since D is unramified at p, the kernel of the restriction map to IP is equal

to H1(GF∞,P/IP, D). If p is unramified in F∞, then GF∞,P/IP has pro-order

prime to p, so the restriction map is injective, that is,

H1(GF∞,P/IP, D) = 0,

from which it follows that

HP ' H1(F∞,P, D),

so HP is Λp-cofree because H1(F∞,P, D) is. If instead p is ramified in F∞, then

GF∞,P/IP is isomorphic to Ẑ, and so H1(GF∞,P/IP, D) is a quotient of D, hence

O-cofree. Thus we have an exact sequence of finitely generated Λp-modules

0→ ĤP → ̂H1(F∞,P, D)→ ̂H1(GF∞,P/IP, D)→ 0

satisfying the hypotheses of Lemma 3.3.11, which therefore implies that HP is

Λp-cofree. Thus, in either case, HP is Λp-cofree.

Finally we explain why Hp is cofree over Λ. The choice of a prime P

above p gives rise to an isomorphism of Λ-modules Hp ' HP ⊗Λp Λ. Since we

have proved that HP is Λp-cofree, we conclude that Hp is Λ-cofree.
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Remark 3.3.3. The proof of Proposition 3.3.12 is the only place where we make

use of hypothesis p-(i) from §3.1.

Corollary 3.3.13. Let Σ0 be a finite set of primes of F not containing any

Archimedean primes or any primes of Σp. Assume that

(i). Σ0 contains the primes dividing the tame level of f ,

(ii). hypothesis (tor) (introduced at the end of §3.3.1) holds, and

(iii). for each prime v ∈ Σ0 that splits in F∞, H0(Fv, A
∗) = 0.

Then the µ-invariant of SelΣ0(F∞, A) vanishes if and only if SelΣ0(F∞, A[$])

is finite, in which case SelΣ0(F∞, A) is O-divisible with

λ(SelΣ0(F∞, A)) = dimF(SelΣ0(F∞, A[$])).

Proof. By Proposition 3.3.6, SelΣ0(F∞, A[$]) ' SelΣ0(F∞, A)[$] as O-modules.

Proposition 2.3.3 now implies that the finiteness of the residual Selmer group

is equivalent to the vanishing of the µ-invariant of SelΣ0(F∞, A), and that when

this happens, SelΣ0(F∞, A) is a cofinitely generated O-module. By Proposition

3.3.12, the O-torsion submodule of the Pontryagin dual of SelΣ0(F∞, A) must

then vanish (being finite). Thus SelΣ0(F∞, A) is O-cofree of corank equal to

its λ-invariant, which now visibly coincides with

dimF(SelΣ0(F∞, A)[$]) = dimF(SelΣ0(F∞, A[$])).
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3.4 Algebraic λ-invariants

In this section we prove our main result on the behavior of λ-invariants

under congruences. We retain the notation from §3.3. Let f1, f2 be p-ordinary

newforms of weight greater than or equal to 2 (not necessarily the same

weight), and tame levels N1 and N2, and assume that the Hecke eigenvalues

of f1 and f2 are contained in E. We assume moreover that the 2-dimensional

Galois representations associated to f1 and f2 satisfy hypothesis (ram) stated

at the beginning of §3.3 i.e., that the residual Galois representations are ab-

solutely irreducible representations of GF and ramified at each prime p ∈ Σp.

Choose GQ-stable lattices T1, T2 in the associated Galois representations of

f1, f2 and let A1, A2 be the resulting discrete O-torsion GF -modules. Let

Sel(F∞, A1) and Sel(F∞, A2) denote the Selmer groups for f1 and f2 over

F∞ as defined in §3.3.1 with the corresponding Iwasawa invariants denoted

µ(f1), λ(f1) and µ(f2), λ(f2).

Let Σ0 be the set of primes of F dividing N = N1N2, and let Σ consist

of the primes in Σ0 together with the primes of F dividing ∞ or p. We may

write NOF = (NOF )f (NOF )s, where (NOF )f is divisible only by primes that

are finitely decomposed in F∞ and (NOF )s is divisible only by primes that

split in F∞. For a prime v /∈ Σp (respectively p ∈ Σp), denote by Hv,i (respec-

tively Hp,i) the analogue for Ai of the Λ-module Hv (respectively Hp) defined

in the beginning of §3.3.2. By Proposition 3.3.3 (i), if v | (NOF )f , Hv,i is a

cotorsion Λ-module; let λv,i be its λ-invariant (which is simply its O-corank

since it has µ-invariant zero). Finally, let the λ-invariant of SelΣ0(F∞, Ai) be
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denoted by λ(Σ0, fi) for i = 1, 2.

Theorem 3.4.1. For i = 1, 2, assume that Hv,i = 0 if v | (NOF )s. Sup-

pose A1[$] ' A2[$] as F[GF ]-modules. Then Sel(F∞, A1) is Λ-cotorsion with

µ(f1) = 0 if and only if Sel(F∞, A2) is Λ-cotorsion with µ(f2) = 0. In this

case, we have

λ(f1)− λ(f2) =
∑

v|(NOF )f

λv,2 − λv,1.

Proof. First note that the hypothesis on the vanishing of the modules Hv,i

for v | (NOF )s implies that H0(Fv, A
∗
i ) = 0 for i = 1, 2 and v | (NOF )s

(because the O-rank of H0(Fv, A
∗
i ) is the Λ-corank of Hv,i, by Proposition

3.3.4). Suppose that Sel(F∞, A1) is Λ-cotorsion with µ(f1) = 0. Then the

hypotheses of Corollary 3.3.8 are satisfied for A1 with our choices of Σ0 and

Σ, and we therefore have an exact sequence of Λ-modules

0→ Sel(F∞, A1)→ SelΣ0(F∞, A1)→
∏

v|(NOF )f

Hv,1 → 0, (3.11)

taking into account the assumption that Hv,1 = 0 for v | (NOF )s. The target

of the surjective map in (3.11) is Λ-cotorsion with µ-invariant zero by Propo-

sitions 3.3.3, and as we have assumed the same for Sel(F∞, A1), we conclude

that SelΣ0(F∞, A1) is also Λ-cotorsion with µ-invariant zero. Corollary 3.3.13

now implies that SelΣ0(F∞, A1) is O-divisible with SelΣ0(F∞, A1[$]) finite of

F-dimension equal to the λ-invariant λ(Σ0, f1) of SelΣ0(F∞, A1).

By the remark following the proof of Proposition 3.3.6, the non-primitive

residual Selmer groups SelΣ0(F∞, A1[$]) and SelΣ0(F∞, A2[$]) are determined

66



up to Λ-module isomorphism by the F[GF ]-module structures of A1[$] and

A2[$], respectively. Since we have assumed that these F[GF ]-modules are

isomorphic, it therefore follows that we have Λ-module isomorphisms

SelΣ0(F∞, A1)[$] ' SelΣ0(F∞, A1[$]) ' SelΣ0(F∞, A2[$]) ' SelΣ0(F∞, A2)[$],

(3.12)

where the first and last isomorphisms come from Proposition 3.3.6. In partic-

ular, because SelΣ0(F∞, A1[$]) is finite, the same is true of SelΣ0(F∞, A2)[$].

This implies that SelΣ0(F∞, A2) is Λ-cotorsion with µ-invariant equal to 0 by

Proposition 2.3.3, and since Sel(F∞, A2) ⊆ SelΣ0(F∞, A2), the same is true of

Sel(F∞, A2). The hypotheses of Corollary 3.3.8 are therefore satisfied for A2,

so we have an exact sequence of cotorsion Λ-modules

0→ Sel(F∞, A2)→ SelΣ0(F∞, A2)→
∏

v|(NOF )f

Hv,2 → 0. (3.13)

The additivity of λ-invariants in short exact sequences of cotorsion Λ-modules

applied to the sequences (3.11) and (3.13) gives

λ(f1) +
∑

v|(NOF )f

λv,1 = λ(Σ0, f1) (3.14)

and

λ(f2) +
∑

v|(NOF )f

λv,2 = λ(Σ0, f2). (3.15)

The isomorphism 3.12 together with Corollary 3.3.13 gives λ(Σ0, f1) = λ(Σ0, f2).

Thus the right-hand sides of (3.14) and (3.15) are equal, so upon equating the

left-hand sides and rearranging, we obtain

λ(f1)− λ(f2) =
∑

v|(NOF )f

λv,2 − λv,1,
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as desired.

This theorem is similar to [6, Theorem 4.3.3, 4.3.4] and [20, Theorem

3.1, 3.2], which apply in the cases F = Q and F∞ a cyclotomic Zp-extension,

respectively, and is a direct generalization of [8, p. 237] from the case F = Q

(the results in [6] and [20] are stated in a somewhat different form from ours,

using the framework of Hida families and Galois deformations, respectively).

Note also that the hypothesis on the vanishing of the modules Hv,1 and Hv,2

for v | (NOF )s holds vacuously if all primes of F dividing N are finitely

decomposed in F∞. This is perhaps the case of most interest.
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Chapter 4

Preliminaries on p-adic Representations of

p-adic Groups

4.1 Locally Convex Spaces Over p-adic Fields

An excellent source for the material mentioned in this section (and lots

more) is Schneider’s book Nonarchimedean Functional Analysis ([16]). The

prime p is now again allowed to be arbitrary (for the remainder of the thesis).

Let E be a finite extension of Qp with ring of integers O. As in classical

functional analysis over an Archimedean local field, a topological vector space

over E is an E-vector space V equipped with a topology for which addition

and scalar multiplication are continuous (a vector topology for short). Banach

spaces over non-Archimedean fields such as E tend to admit pathologies which

do not exist in the Archimedean case. For this reason it is important in

non-Archimedean functional analysis (which is the foundation of Schneider-

Teitelbaum’s theory of continuous representations of p-adic groups on E-vector

spaces) to consider general locally convex spaces from the beginning.

Definition 4.1.1. A subset of an E-vector space V is said to be convex if it

is an additive coset (i.e. an additive translate) of an O-submodule of V . A

lattice in V is an O-submodule that spans V over E.
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So a convex subset of an E-vector space has the form v + A for A an

O-submodule of V , and for any v′ ∈ v+A, v′+A = v+A (these are cosets!). In

particular, a convex subset of V contains 0 if and only if it is an O-submodule

of V . An O-submodule A of V is a lattice if and only if the canonical E-linear

map A⊗O E → V is surjective (in which case it is an isomorphism, since the

map is always injective). A more concrete way to characterize this surjectivity

is the via following condition: A is a lattice in V if and only if for each v ∈ V

there is a non-zero α ∈ E such that αv ∈ A.

Definition 4.1.2. A topological vector space V over E is said to be locally

convex if there is a base of open neighborhoods of 0 in V consisting of convex

sets (i.e. O-submodules); we then refer to V as a locally convex space over E,

or as a locally convex E-vector space.

Lemma 4.1.1. If V is a topological vector space over E and A ⊆ V is an

open O-submodule, then A is a lattice in V .

Proof. Fix v ∈ V and consider the E-linear map α 7→ αv : E → V . It

is continuous, so the inverse image of the open O-submodule A of V is an

open neighborhood of 0 in E. As the topology of E is non-discrete, this

neighborhood must contain some α 6= 0, and then αv ∈ A by construction.

By the remarks following Definition 4.1.1, we conclude that A is a lattice in

V .

According to Lemma 4.1.1, when working with locally convex spaces, it

is no loss of generality to restrict attention to open lattices, and in particular
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a locally convex space has a base of opens around 0 consisting of lattices

(of course a non-open O-submodule of a locally convex space need not be a

lattice). Clearly a vector topology on an E-vector space is uniquely determined

by specifying a base of opens around 0, so one can also formulate the definition

of local convexity in terms of E-vector spaces admitting a family of lattices

satisfying some conditions which ensure that they are a base of opens around 0

for a (necessarily unique) locally convex (vector) topology on V . Analogously

to the case of Archimedean functional analysis, locally convex topologies may

also be defined via (non-Archimedean) semi-norms, and in fact a topological

vector space over E is locally convex if and only if its topology can be defined

(in a precise sense) by a family of non-Archimedean semi-norms. The main

point is that the “balls centered at 0” defined by a semi-norm are lattices; for

details see [16, Propositions 4.3, 4.4].

Definition 4.1.3. If V and W are locally convex spaces over E, then L(V,W )

denotes the space of continuous E-linear maps V → W .

There are many locally convex topologies one can impose on the space

L(V,W ) for V,W locally convex (see [16, §6]), but for our work we will not

need to consider them.

Definition 4.1.4. Let V be a locally convex space over E. A net (vi) in V

is said to be Cauchy if for all open lattices A ⊆ V there exists i0 so that if

i, j ≥ i0, vi − vj ∈ A. The space V is complete if every Cauchy net converges.
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When the topology of a Hausdorff locally convex space V can be defined

by a countable set of semi-norms (equivalently, when V is first-countable), to

check completeness it is enough to check that every Cauchy sequence converges

([16, Remark 7.2]).

The simplest (at least in terms of defining the topology) examples of

locally convex spaces are those whose topology can be defined by a single

(non-Archimedean) norm (a positive-definite semi-norm).

Definition 4.1.5. An E-Banach space is a complete locally convex space V

over E whose topology can be defined by a single (non-Archimedean) norm.

It is customary in non-Archimedean functional analysis to not regard

a norm as part of the data of a Banach space. We only assume that a norm

defining the topology exists. Of course, in practice, one must often choose a

norm.

Definition 4.1.6. If V and W are E-Banach spaces, then a linear map f :

V → W is said to be bounded if there exist norms ‖·‖V and ‖·‖W on V and W

defining their topologies and a constant C ≥ 0 such that ‖f(v)‖W ≤ C‖v‖V

for all v ∈ V .

That the notion of boundedness for a linear map between E-Banach

spaces is independent of the choice of norms on the source and target is a

consequence of the following proposition.

Proposition 4.1.2. If V and W are E-Banach spaces, then an E-linear map

f : V → W is continuous if and only if it is bounded.
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Proof. [16, Proposition 3.1].

Every E-vector space V can be made into a locally convex space by

declaring every lattice to be open, and the resulting topology is clearly the

unique finest locally convex topology on V .

Proposition 4.1.3. If V is an E-vector space, then the finest locally con-

vex topology on V is Hausdorff, and for any locally convex space W over

E, L(V,W ) = HomE(V,W ). If V is finite-dimensional, the finest locally

convex topology on V is the unique Hausdorff locally convex topology on V ,

and coincides with the topology obtained by choosing an E-linear isomorphism

V ' Edim(V ) and pulling back the product topology on Edim(V ).

Proof. [16, Proposition 4.13, §5.C].

The basic algebraic constructions in linear algebra applied to locally

convex spaces over E yield locally convex spaces. For example, any subspace

of a locally convex space is locally convex in the subspace topology, and any

quotient of a locally convex space is locally convex in the quotient topology.

Initial topologies (in particular product topologies) work as expected, without

change from the topological case, but one has to be slightly careful with general

final topologies.

Definition 4.1.7. If V is an E-vector space and (Vi) is a family of locally

convex spaces equipped with E-linear maps fi : Vi → V , then the locally convex

final topology on V defined by the fi is the finest locally convex topology on
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V with respect to which all fi are continuous. Explicitly, a lattice A ⊆ V is

open in the locally convex final topology if and only if f−1
i (A) is open in Vi

for all i.

Proposition 4.1.4. In the notation of Definition 4.1.7, an E-linear map f :

V → W from V to a locally convex space W over E is continuous if and only

if f ◦ fi : Vi → W is continuous for all i.

Proof. [16, Lemma 5.1 (i)].

The locally convex final topology is in general strictly coarser than the

final topology on V defined by the maps fi (where we regard the Vi just as

topological spaces, forgetting all E-linear structures). The most important

specific instance of the locally convex final topology is the locally convex in-

ductive limit.

Definition 4.1.8. Let (Vi) be an inductive system of locally convex spaces

over E and let V = lim−→i
Vi be the inductive limit in the category of E-vector

spaces. The locally convex final topology on V defined by the canonical E-

linear maps fi : Vi → V is called the locally convex inductive limit topology,

and V is called the locally convex inductive limit of the Vi.

4.2 Locally Analytic Groups and Their p-adic Repre-
sentations

Let L be a finite extension of Qp. The notion of a locally L-analytic

manifold as defined in [17, §8 Definition] perfectly mirrors that of a complex
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manifold. Such an object is a Hausdorff topological space endowed with a

maximal locally analytic atlas, where functions on open subsets of Ln with

values in an L-Banach space V are locally analytic if they are locally given

by convergent power series with coefficients in V . The formal similarity in the

definitions belies the fact that while locally analytic and analytic functions on

connected open subsets of Cn are the same, they are definitely not the same on

open (not connected!) subsets of Ln. This distinction, leading to the failure of

many basic principles in complex analysis to translate to the non-Archimedean

setting, served as partial motivation for Tate’s introduction of rigid analytic

spaces, which rectifies the situation by replacing topological spaces with (a

mild) Grothendieck topology.

A locally L-analytic group is of course a locally L-analytic manifold

G which is simultaneously an abstract group whose multiplication and in-

version maps are locally analytic. The most important source of examples

for us are the groups of L-valued points of affine L-group schemes of finite

type, as well as certain closed subgroups of such groups. In the early 2000’s,

Schneider-Teitelbaum initiated the study of continuous representations of lo-

cally L-analytic groups on locally convex spaces over E, introducing various

classes of representations in the papers [14], [15], and [18]. Here, by a con-

tinuous representation of G on a locally convex space V , we mean an action

of G on V by E-linear automorphisms for which the action map G× V → V

is continuous. For us, the relevant classes of representations are the locally

algebraic representations, the locally analytic representations, and the Banach
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space representations.

Let G be a locally L-analytic group. Historically, the first class of con-

tinuous representations Schneider and Teitelbaum studied (in [15]) were the

Banach space representations.

Definition 4.2.1. An E-Banach space representation, or just an E-Banach

representation ofG, is an E-Banach space V equipped with a continuous action

G× V → V of G by continuous E-linear automorphisms. The representation

V is said to be unitary if V admits a norm defining its topology which is

invariant under the action of G.

The paper [15] makes apparent the sense in which the theory of p-adic

representations of locally L-analytic groups may naturally be viewed as a gen-

eralization of Iwasawa theory (in the non-commutative direction). Namely,

when G is compact, Schneider and Teitelbaum prove that to give a continuous

representation of G on an E-Banach space V is the same as endowing V with a

separately continuous action E[[G]]× V → V , where E[[G]] := O[[G]]⊗O E is

the Iwasawa algebra of G with p inverted (see the beginning of §1.1). Schneider

and Teitelbaum go on to introduce a finiteness condition on E-Banach repre-

sentations V of G which they call admissibility, proving the following theorem

([15, Theorem 3.5]).

Theorem 4.2.1. The functor V 7→ V ′ taking an E-Banach representation

of G to its dual is an equivalence of categories between the category of ad-

missible E-Banach representations of G and the category finitely generated

E[[G]]-modules.
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We will not need the notion of admissibility, so we omit the definition

(although, in light of the theorem, one could take it to mean that the dual

space, which is naturally an E[[G]]-module, is finitely generated).

The next class of representations ofG introduced by Schneider-Teitelbaum

(in [18]) is the class of locally analytic representations. To give the definition,

we should assume that L is endowed with a Qp-algebra embedding into E (this

allows one to make sense of locally L-analytic functions on locally L-analytic

manifolds valued in locally convex spaces over E). First we need a functional-

analytic definition, originally given in [18, §1] (see [16, §16 Definition] for the

definition of a compact map between locally convex E-vector spaces).

Definition 4.2.2. A locally convex space V over E is said to be of compact

type if V is the locally convex inductive limit of a sequence (Vn) of E-Banach

spaces with injective, compact transition maps.

Definition 4.2.3. A continuous representation of G on a locally convex space

V over E is said to be locally L-analytic if V is of compact type and for each

v ∈ V , the orbit map g 7→ gv : G→ V is locally L-analytic.

When no confusion will arise (e.g. if L is fixed in the discussion), one

speaks just of locally analytic representations ofG, instead of locally L-analytic

representations.

As for E-Banach representations of G, Schneider and Teitelbaum equip

the functor V 7→ V ′ (continuous linear dual) with the structure of a functor

from locally analytic representations of G over E to the category of modules
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over a certain algebra of locally analytic distributions on G (a generalization of

the generic fiber of an Iwasawa algebra), and prove in [18] that, in the compact

case, one obtains a fully faithful embedding of categories from so-called strongly

admissible locally analytic representations of G to finitely generated modules

over this distribution algebra.

The final class of representations introduced by Schneider-Teitelbaum

that we will use is the class of locally algebraic representations. For this notion

to make sense, we must assume that G is the group of L-points of a connected

reductive group G over L, and continue to assume that L is endowed with an

embedding into E. We use Definition 4.2.6 of [3].

Definition 4.2.4. Let W be an irreducible finite-dimensional algebraic rep-

resentation of G×L E over E. A vector v in an E-linear representation V of

G is said to be locally W -algebraic if there is an open subgroup H of G, an

integer n ≥ 1, and an E-linear, H-equivariant homomorphism W n → V with

image containing v.

Note that, if W is the trivial representation of G×L E over E, then a

locally W -algebraic vector is nothing more than a smooth vector (in the usual

sense, meaning a vector fixed by a compact open subgroup of G).

Definition 4.2.5. A vector v in an E-linear representation V of G is said

to be locally algebraic if it is locally W -algebraic for some irreducible finite-

dimensional algebraic representation W of G×LE over E. The representation

V is said to be locally algebraic if every vector in V is locally algebraic.
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In light of the remark following Definition 4.2.4, a locally W -algebraic

representation of G over E for W the trivial representation is the same thing as

a smooth representation of G over E. Note that, unlike Banach and locally an-

alytic representations, the definition of a locally algebraic representation makes

no reference to topology. However, endowing a locally algebraic representation

V of G with its finest locally convex topology, V becomes a locally analytic

analytic representation of G over E (see the discussion following Definition

4.2.1 in [3]). In particular, the category of locally analytic representations of

G on E-vector spaces of compact type contains as a full subcategory the cate-

gory of smooth representations of G over E. It turns out that if G is split over

E, then an irreducible locally algebraic representation V of G has the form

U ⊗EW , where U is an irreducible smooth representation of G over E and W

is an irreducible finite-dimensional algebraic representation of G×LE over E.

Conversely, any such tensor product is an irreducible locally algebraic repre-

sentation of G. This is the content of [3, Proposition 4.2.8]. Therefore one can

reasonably think of locally algebraic representations of G as twists of smooth

representations by algebraic representations. Using that locally algebraic rep-

resentations of G are naturally locally analytic, one can define admissibility

of such a representation by using the definition of admissibility for locally an-

alytic representations. Then the admissible locally algebraic representations

are essentially tensor products of admissible smooth representations (in the

classical sense) with algebraic representations, at least when G ×L E is split

and the representation is irreducible (see [3, Proposition 6.3.10]).
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We would be remiss not to at least mention some of the relationships

between the kinds of representations of G introduced above. We’ve already

remarked that smooth representations are locally algebraic, and that locally

algebraic representations may naturally be viewed as locally analytic represen-

tations. In the other direction, if V is an admissible locally analytic representa-

tion of G, then by [3, Proposition 6.3.6], the subspace Vlalg of locally algebraic

vectors in V is a closed, G-stable subspace (and hence is an admissible locally

algebraic representation of G). For admissible Banach space representations,

there is the functor “pass to the locally analytic vectors,” where a vector is

locally analytic if the associated orbit map is locally analytic. This functor,

described in great detail and generality in [3, §3.5], lands in the category of

admissible locally analytic representations ([3, Proposition 6.2.4]), and when

L = Qp, is exact by results in [19]. Moreover, the space of locally analytic vec-

tors (and indeed any locally analytic representation of G) has a derived action

of the Lie algebra g of G, and on passing to the subspace of vectors annihilated

by g, one obtains exactly the space of smooth vectors ([3, Corollary 4.1.7]).

4.3 The Topology on Locally Analytic Functions

As in the previous section, L is a finite extension of Qp, and again

we assume it is equipped with a Qp-algebra embedding L ↪→ E. Let M be

a locally L-analytic manifold which is strictly paracompact ; this means that

every open covering of M can be refined by a covering consisting of pairwise

disjoint open sets (all locally L-analytic groups are strictly paracompact). In
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particular M is paracompact, and in fact the converse is true by a theorem of

Schneider ([17, Proposition 8.7]). As for any locally L-analytic manifold, we

have the E-vector space C la(M,E) of locally analytic E-valued functions on

M . This space consists of all functions f : M → E which are locally given

(in coordinates) by convergent power series with coefficients in E. Following

[17, §10], we want to describe the locally convex topology on C la(M,E). By a

chart for M , we mean a member (U,ϕ, n) of its locally analytic atlas, meaning

that U is an open subset of M , and ϕ is a homeomorphism of U onto an open

subset of Ln.

Definition 4.3.1. An analytic partition of M is an open covering M =
⋃
i Ui

into pairwise disjoint open subsets which are domains of charts for M whose

images are closed affinoid polydisks (meaning that the polydisk admits a radius

which is in the divisible subgroup of R×>0 generated by the group of absolute

values of L×).

Because M is strictly paracompact, any open covering of M by chart

domains can be refined by an analytic partition.

The next definition is taken verbatim from [17, §10].

Definition 4.3.2. A index for M is a family of pairs I = {(ci, εi)}i∈I , where

each ci = (Ui, ϕi, ni) is a chart for M whose image is an affinoid polydisk in

Lni of radius εi, and the Ui form an analytic partition of M .

To each index I = {(ci, εi)}i∈I , we will associate a subspace FI ⊆

C la(M,E). First, for i ∈ I, we denote by O(Bni
≤εi) the ring of rigid ana-
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lytic functions on the affinoid polydisk Bni
≤ni over E centered at 0 of radius

εi; this is the ring of formal power series in ni variables over E which con-

verge on the closed polydisk centered at 0 of radius εi in E
ni

, where E is a

choice of algebraic closure of E. By choosing a point of ϕi(Ui) (a center of

the polydisk ϕi(Ui)), we may restrict rigid analytic functions on the polydisk

centered at 0 to ϕi(Ui), and following this by pre-composition with ϕi yields

an injection O(Bni
≤εi) → C la(Ui, E). Extension by zero gives us an injection

C la(Ui, E) ↪→ C la(M,E), and by composing with the previous map, we obtain

an injection O(Bni
≤εi) → C la(M,E), the image of which is denoted F(ci,εi).

By [17, Corollary 5.5], the image of this map is independent of the choice of

center point in ϕi(Ui), as is the norm on F(ci,εi) obtained by pushing forward

the canonical norm on the E-Banach algebra O(Bni
≤εi). Thus F(ci,εi) has a

natural structure of E-Banach space. Since
∏

i∈I C la(Ui, E) = C la(M,E) for

any analytic partition M =
⋃
i∈I Ui of M , the product FI :=

∏
i∈I F(ci,εi) is

canonically a subspace of C la(M,E). We give the subspace FI the locally

convex topology coming from its structure as a product of Banach spaces.

In [17, §10], a refinement relation is introduced on the set of indices for

M . It is shown that the set of indices is directed by the relation of reverse

refinement, that FJ ⊆ FI if I refines J , and that this inclusion is con-

tinuous for the topologies on the source and target. Moreover, C la(M,E) is

the union of the subspaces FI (taken over all indices I ) essentially by the

definition of a locally analytic function.

Definition 4.3.3. The topology on C la(M,E) is the locally convex induc-
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tive limit topology (Definition 4.1.8) obtained from the E-linear identification

C la(M,E) = lim−→I
FI , the inductive limit being taken over all indices I for

M .

This topology is of most interest for us in the case that M is compact.

In this case, the underlying index set I of an index I must be finite, so each

FI is in fact a Banach space, and C la(M,E) is an inductive limit of Banach

spaces. As a result, the following proposition is plausible.

Proposition 4.3.1. If M is compact, then C la(M,E) is of compact type (Def-

inition 4.2.2).

Proof. [3, Proposition 2.1.28].
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Chapter 5

Parabolically Induced and Unitary Banach

Representations of p-adic GL2

5.1 Introduction and Notation

In this chapter, we generalize a result of Emerton [4, Proposition 2.5] on

continuous homomorphisms from certain locally analytic parabolically induced

representations of GL2(L) into unitary Banach space representations. Here L is

a finite extension of Qp, and all representations are over some sufficiently large

p-adic field E. For certain locally algebraic characters χ of T , the subgroup of

diagonal matrices in GL2(L), we define the locally algebraic and locally Qp-

analytic parabolic inductions I(χ) and I la(χ) of χ, viewed as a character of

B, the subgroup of lower triangular matrices in GL2(L). These are admissible

locally Qp-analytic representations of GL2(L), and there is a canonical closed

embedding I(χ) ↪→ I la(χ), allowing us to view I(χ) as a locally algebraic

subrepresentation of I la(χ). Let U be a unitary Banach space representation

of GL2(L) and assume that χ|Z(GL2(L)) is unitary (see Definition 4.2.1 for the

definition of unitarity). Our main result (Theorem 5.3.1) states that, under a

“non-critical slope” hypothesis on χ, any continuous GL2(L)-equivariant lin-

ear map I(χ)→ U extends uniquely to a continuous GL2(L)-equivariant linear

map I la(χ) → U . At least when I(χ) is irreducible, this result is equivalent
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to the assertion that I(χ) and I la(χ) have the same universal unitary com-

pletion (in the sense of [4, Definition 1.1]). Emerton proved this result for

L = Qp. Breuil has proved a similar result [2, Theorem 7.1] covering injective

linear maps out of locally J-analytic parabolically induced representations of

GL2(L), for subsets J ⊆ HomQp−Alg(L,E) (J = ∅ corresponds to I(χ), while

J = HomQp−Alg(E,L) corresponds to I la(χ)). We closely follow Emerton’s

method of proof, which is different from Breuil’s, although we do make use of

a generalization of a classical result of Amice-Vélu and Vishik, Lemma 5.2.4

below, proved by Breuil in [2, Lemma 6.1].

We introduce our notation in detail below, mostly retaining that of [4].

In §5.2 we describe the locally convex space C la(OL, E) of E-valued locally

Qp-analytic functions on OL using the set of embeddings HomQp−Alg(L,E)

(which is assumed to have [L : Qp] elements). Although a description of this

space along these lines has been used (somewhat implicitly) in other places

(e.g. [2]), as far as we know, there is no published proof that it coincides (set-

theoretically and topologically) with the standard description of this space

given in §4.3, so we provide a detailed proof of the equivalence. We define

the parabolic inductions I(χ) and I la(χ) in §5.3, and state the main result,

which is proved (following Emerton’s proof in [4, §3]) in §5.4. The argument

is primarily representation-theoretic and functional-analytic, and most of the

work is dedicated to reducing the statement of Theorem 5.3.1 to Lemma 5.2.4

by reinterpreting the condition of temperedness (Definition 5.2.1) in terms of

equivariance with respect to the action of a submonoid B+ of B, the group
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of upper triangular matrices in GL2(L) (this reinterpretation is provided by

Lemma 5.4.4).

We deviate slightly from previous notation due to our use of two finite

extensions of Qp and their respective rings of integers. Namely, let L and E

be finite extensions of Qp with respective rings of integers OL an OE, and

denote by $L a choice of uniformizer for OL. Set r = [L : Qp], and assume

that HomQp−Alg(E,L) has r distinct elements that we order for convenience:

σ1, . . . , σr (nothing we do will depend on the choice of ordering, and it is only

made to ease notation). The field E will serve as the coefficient field of our

representations.

We normalize the discrete valuation of E, ord = ordE, by ordE(p) =

e(L/Qp) (the ramification index of L over Qp) and use the absolute value

| · | = | · |E defined by |α| = q− ord(α), where q is the cardinality of the residue

field of L. If we use the same normalizations for the discrete valuation and

absolute value on L, then L is endowed with its canonical absolute value, i.e.,

the one giving $L absolute value q−1, and each σi is an isometry. We will

therefore denote the discrete valuation on either E or L simply by ord, and

the absolute value by | · |.

We denote by G the group GL2(L), viewed as the group of Qp-points

of the reductive group G = ResL/Qp(GL2/L). Thus we regard GL2(L) as a

locally Qp-analytic group, and by “locally analytic,” we will always mean “lo-

cally Qp-analytic.” We apply the same convention to all other groups that we

consider. We let B and B denote the groups of Qp-points of the upper trian-
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gular and lower triangular, respectively, Borel subgroups of G, N and N the

groups of Qp-points of their unipotent radicals, and T the group of Qp-points

of the diagonal torus in G. Setting G0 = GL2(OL), we define, for each integer

s ≥ 0,

G0(s) =

{(
a b
c d

)
∈ G0 : c ≡ 0 (mod $s

LOL)

}
.

These are compact open subgroups of G admitting an Iwahori decomposition

with respect to B and B, meaning that if T0 = T ∩ G0, N0 = N ∩ G0, and

N(s) = N∩G0(s), then the natural multiplication map N0T0N(s)→ G0(s) is a

bijection for s ≥ 1 (note that N0 = N∩G0(s) and T0 = T ∩G0(s) for all s ≥ 0).

If T+ = {t ∈ T : tN0t
−1 ⊆ N0}, then T+ is a submonoid of T containing T0,

and for each t ∈ T+ and each integer s ≥ 1, t−1N(s)t ⊆ N(s). Explicitly, T+

consists of all matrices
(
a 0
0 d

)
∈ T with ad−1 ∈ OL. One can verify then that

for s ≥ 1, G+(s) = N0T
+N(s) is a submonoid of G containing G0(s). We

write B+ for G+(1) ∩ B = N0T
+ (the equality holds because N ∩ B = {1},

and shows we could replace 1 in the definition of B+ by any integer s ≥ 1

without changing the result); this is a submonoid of B which (by inspection)

generates B as a group. Each of these subgroups (respectively submonoids)

of G will be regarded as a subgroup (respectively submonoid) of the group of

E-points of G×Qp E =
∏r

i=1 GL2/L×σiE via the continuous inclusion(
a b
c d

)
7→
((

σi(a) σi(b)
σi(c) σi(d)

))
1≤i≤r

.

We will generally identify N0 with OL via the locally analytic isomorphism(
1 z
0 1

)
7→ z.
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Elements of Zr
≥0 will be denoted by underlined Latin letters, e.g. m =

(m1, . . . ,mr), and we set |m| =
∑r

i=1mi. For each integer n ≥ 0, we write An

for the affinoid E-algebra of formal power series

F = F (X1, . . . , Xr) =
∑

m∈Zr≥0

amX
m1
1 · · ·Xmr

r ∈ E[[X1, . . . , Xr]]

satisfying lim|m|→∞ |am|q−n|m| = 0. This is an E-Banach algebra with the

multiplicative Gauss norm ‖ · ‖n given by ‖F‖n = maxm |am|q−n|m|. When

n = 0, we will write A (respectively ‖ · ‖A ) instead of A0 (respectively ‖ · ‖0).

If k ∈ Zr
≥0, then we will denote by A k the finite-dimensional (hence closed)

subspace of A consisting of all polynomials in E[X1, . . . , Xr] whose degree in

Xi is at most ki for 1 ≤ i ≤ r (note that in fact A k is a closed subspace of

An for all n ≥ 0). We will refer to A k as the space of polynomials in A “of

degree at most k.”

If H is a locally Qp-analytic group, C la(H,E) denotes the locally con-

vex space of locally analytic E-valued functions on H (see [17, §10] for a

detailed description of the locally convex topology on this space, and §2 be-

low for an alternative description in the case H = OL) and C sm(H,E) de-

notes the space of smooth (i.e. locally constant) E-valued functions on H.

For an open subset U of H, 1U denotes the characteristic function of U (so

1U ∈ C sm(H,E) ⊆ C la(H,E)). The isomorphism N0 ' OL yields a topologi-

cal isomorphism C la(N0, E) ' C la(OL, E).

If V and W are locally convex spaces over E (see Definition 4.1.2),

L(V,W ) denotes the space of continuous E-linear maps from V to W as in
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Definition 4.1.3. If moreover each of V,W is endowed with an action of a topo-

logical monoid H by E-linear (topological) automorphisms, then LH(V,W )

denotes the subspace of L(V,W ) consisting of continuous H-equivariant E-

linear maps. We will not need to consider any locally convex topologies on the

space L(V,W ), so an isomorphism between spaces of continuous linear maps

is simply an isomorphism of E-vector spaces. An E-Banach space representa-

tion U of H is unitary if the topology of U can be defined by a norm that is

invariant under H (unitarity was defined in Definition 4.2.1 for locally analytic

groups, but the same definition applies for any monoid). Thus an E-valued

character of H is unitary if and only if it takes values in O×E .

5.2 The Locally Convex Space C la(OL, E) and Tempered
Linear Maps

In accordance with our convention regarding locally analytic structures

mentioned in §5.1, we regard the locally L-analytic group OL as a locally Qp-

analytic group by restriction of scalars. Explicitly, if we choose a Zp-basis for

OL, then the induced Zp-linear isomorphism OL ' Zr
p is a global chart for the

locally Qp-analytic structure on OL. By definition, a function f : OL → E

is locally analytic if, upon choosing an isomorphism OL ' Zr
p, the resulting

function Zr
p → E admits a power expansion (in r variables, with coefficients in

E) in a sufficiently small ball around each point of Zr
p. Thus, given a choice of

coordinates OL ' Zr
p, elements of the affinoid algebras An give rise to locally

analytic functions on OL. In fact it is somewhat more intrinsic (but equivalent)
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to consider functions which are locally given by convergent power series in the

embeddings σi : E ↪→ L, as we now explain.

If w ∈ OL and n ≥ 0, then because each σi : E ↪→ L is an isometry

for our choice of absolute values on E and L, an element F ∈ An gives rise to

a continuous function Fn,w : w + $n
LOL → E defined by Fn,w(z) = F (σ1(z −

w), . . . , σr(z − w)) (we will abuse notation by sometimes writing the right-

hand side of this definition as F (z − w), and will use the same notation to

denote the function on OL obtained by extending Fn,w by zero). It turns out

that the E-valued locally analytic functions on OL are precisely the functions

OL → E which locally arise from this construction in the sense of the following

proposition.

Proposition 5.2.1. A function f : OL → E is locally analytic if and only if

for each w ∈ OL there exists an integer n ≥ 0 and a series F ∈ An such that

f |w+$nLOL = Fn,w.

Proof. Let {z1, . . . , zr} be a Zp-basis for OL and let π : OL ' Zr
p be the Zp-

linear isomorphism defined by this choice of basis. Then π is an isomorphism

of locally analytic groups. For 1 ≤ i ≤ r let πi : OL → Zp be the Zp-linear

map given by πi(zj) = δij, so that π(z) = (π1(z), . . . , πr(z)) for each z ∈ OL.

The πi form an E-basis for the space M = HomZp−Mod(OL, E), and we have

σj =
r∑
i=1

σj(zi)πi.

90



for 1 ≤ j ≤ r. As the σi also form an E-basis for M , we can write

πj =
r∑
i=1

βijσi

for some βij ∈ E, 1 ≤ i, j ≤ r. The n× n matrices (βij) and (σj(zi)) are then

mutually inverse in GLr(E), and (σj(zi)) has coefficients in OE (though it need

not have unit determinant, i.e., (βij) might not have integral coefficients).

Define polynomials gj =
∑r

i=1 σj(zi)Xi and hj =
∑r

i=1 βijXi in E[X1, . . . , Xr]

for 1 ≤ j ≤ r, noting that

gj(π1(z), . . . , πr(z)) = σj(z) (5.1)

and

hj(σ1(z), . . . , σr(z)) = πj(z) (5.2)

for all z ∈ OL and 1 ≤ j ≤ r. Suppose f : OL → E is locally-analytic and fix

w ∈ OL. We may then choose an integer k ≥ 0 and a power series F0 ∈ Ak

such that

(f ◦ π−1)(x1, . . . , xr) = F0(x1 − π1(w), . . . , xr − πr(w))

for each (x1, . . . , xr) ∈ Zr
p with maxi |xi − πi(w)| ≤ q−k. Now choose an

integer n ≥ 0 large enough to ensure that ‖hj‖n = q−n maxi |βij| is less than

or equal to q−k for 1 ≤ j ≤ r (the coefficients βij have valuation depending on

the ramification of L over E). There is then a unique continuous E-algebra

homomorphism Ak → An satisfying Xj 7→ hj for 1 ≤ j ≤ r, and this E-

algebra homomorphism is compatible with evaluation of series in An on points
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of the closed ball around 0 in Er of radius q−n. (This is the universal property

of Tate algebras, and details can be found in [17, Proposition 5.4]. Implicit in

the statement about evaluation on points is that each hj maps the closed ball

of radius q−n around 0 in Er into the closed ball of radius q−k around 0 in

E.) Let F be the image of F0 under this homomorphism (so we think of F as

F0(h1, . . . , hr)). Given z ∈ w+$n
LOL, we have |σi(z−w)| ≤ q−n for 1 ≤ i ≤ r.

Using the aforementioned compatibility of F0 7→ F with evaluation on points,

we find that

F (σ1(z − w), . . . , σr(z − w)) = F0(hi(σ1(z − w), . . . , σr(z − w)))

= F0(π1(z − w), . . . , πr(z − w))

= F0(π1(z)− π1(w), . . . , πr(z)− πr(w))

= (f ◦ π−1)(π1(z), . . . , πr(z)) = f(z),

where, in going from the first to the second line, we have used Equation (5.2),

and in the final equality, we have used the parenthetical remark above explain-

ing why |πi(z)−πi(w)| ≤ q−k for 1 ≤ i ≤ r. Thus f has the desired local form.

The converse is similar. Because the gj have integral coefficients, ‖gj‖n ≤

q−n for 1 ≤ j ≤ r, and we have a unique continuous E-algebra homomorphism

An → An satisfying Xj 7→ gj for 1 ≤ j ≤ r. This map is compatible with

evaluation on points as before, and we may use it (together with Equation

(5.1)) to prove that a function satisfying the condition in the statement of the

proposition is locally analytic by converting a local power series expansion in

the σi to a local power series expansion in the πi.
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Remark 5.2.1. It is actually not necessary to check the condition in Proposition

5.2.1 at every w ∈ OL. In fact, the condition in the proposition is equivalent

to the condition that there exists an integer n ≥ 0 such that for each w in a

set of coset representatives for $n
LOL in OL, there exists F ∈ An such that

f |w+$nLOL = Fn,w. This follows from [17, Corollary 5.5], which shows that, for

any w′ ∈ w + $n
LOL, the function Fn,w for F ∈ An coincides with F ′n,w′ for

some F ′ ∈ An (and one even necessarily has ‖F‖n = ‖F ′‖n.)

We now describe the locally convex topology on C la(OL, E) in terms

of the description of this vector space provided by Proposition 5.2.1. For

each n ≥ 0, let Tn be a set of coset representatives in OL for $n
LOL, and let

ιn :
∏

w∈Tn An → C la(OL, E) be given by sending a tuple (Fw)w∈Tn of q−n-

convergent power series to the function OL → E that is given on the ball

w +$n
LOL by z 7→ Fw(σ1(z − w), . . . , σr(z − w)) (that this function is in fact

locally analytic follows from Proposition 5.2.1 coupled with Remark 5.2.1).

A Zariski density argument shows that ιn is injective, and both the image

Fn(OL, E) of ιn and the norm induced on Fn(OL, E) from the maximum

of the Gauss norms on each factor of the source of ιn are independent of

the choice of Tn (again by Remark 5.2.1). Thus Fn(OL, E) is canonically

an E-Banach space. We have Fn(OL, E) ⊆ Fn+1(OL, E) for each n ≥ 0,

a continuous inclusion, and Remark 5.2.1 shows that the natural E-linear

injection lim−→n
Fn(OL, E)→ C la(OL, E) is an isomorphism of E-vector spaces.

We may therefore endow C la(OL, E) with the locally convex inductive limit

topology coming from this isomorphism and the Banach space structure on
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each Fn(OL, E). Thus if U is a locally convex space over E, a linear map

C la(OL, E) → U is continuous if and only if the restriction of the map to

Fn(OL, E) is continuous for every n ≥ 0.

Proposition 5.2.2. The locally convex topology just defined on C la(OL, E)

coincides with the locally convex topology of Definition 4.3.3.

Proof. Let π : OL ' Zr
p be as in the proof of Proposition 5.2.1 and let

e = e(L/Qp) be the ramification index of L over Qp. Recall that, with

our normalizations, |p| = q−e. Thus, if n ≥ 0, π induces a locally analytic

isomorphism $ne
L OL = pnOL ' pnZr

p between the balls around 0 of radius

|$ne
L | = |pn| = q−ne in OL and Zr

p (where we use the norm ‖x‖ = maxi |xi|

on Zr
p). In particular, if Tne is a set of coset representatives for $ne

L OL in OL,

then π(Tne) is a set of coset representatives for pnZr
p in Zr

p. We have a diagram

∏
w∈Tne Ane

��

ιne //Fne(OL, E)

⊆
��∏

w∈Tne Ane
// C la(OL, E)π

where the left-hand vertical map is given in each factor by Xi 7→ gi for

1 ≤ i ≤ r (in the notation of the proof of Proposition 5.2.1), the bottom hori-

zontal map sends a tuple of q−ne-convergent power series (Fw)w∈Tne to the func-

tion given on w+$ne
L OL by z 7→ F (π1(z−w), . . . , πr(z−w)), and C la(OL, E)π

denotes the E-vector space C la(OL, E) endowed with the topology of described

in §4.3. The commutativity of the diagram holds by the definition of the gi.

The map ιne is a topological isomorphism by the definition of Fne(OL, E), the
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continuity of the left-hand vertical map is built into its construction, and the

bottom horizontal map is continuous by the definition of the topology on the

target. Thus the right-hand vertical inclusion Fne(OL, E) ⊆ C la(OL, E)π is

continuous, from which it follows that Fn(OL, E) ⊆ C la(OL, E)π is continu-

ous for all n ≥ 0. Therefore the identity map C la(OL, E) → C la(OL, E)π is

continuous. But the source is of compact type (by a straightforward gener-

alization of the argument in [16, §16]), while the target is of compact type

by Theorem 4.3.1; as bijective continuous linear maps between spaces of com-

pact type are necessarily topological isomorphisms ([3, Theorem 1.1.17]), the

topologies coincide.

Let k ∈ Zr
≥0. The image under ιn of the finite-dimensional subspace∏

w∈Tn A k ⊆
∏

w∈Tn An will be denoted F k
n (OL, E). The inductive limit

lim−→n
F k
n (OL, E) inside C la(OL, E) is the subspace C lp≤k(OL, E) of “locally

polynomial functions of degree at most k.” Since finite-dimensional locally

convex spaces over E are necessarily equipped with their finest locally con-

vex topologies, the locally convex inductive limit topology on C lp≤k(OL, E) =

lim−→n
F k
n (OL, E) is its finest locally convex topology. Thus if U is a locally

convex space over E, any linear map C lp≤k(OL, E) → U is continuous. The

inclusion C lp≤k(OL, E) ⊆ C la(OL, E) is then a homeomorphism onto its im-

age, which is closed in C la(OL, E).

We now wish to state a result of Breuil generalizing classical work of

Amice-Vélu and Vishik, but must first introduce a slight variation on the con-

struction of functions via convergent power series. We have already shown how
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a series F ∈ A gives rise to an analytic function on OL by (roughly) substitut-

ing the embeddings σi for the variablesXi (recall that A = A0). By composing

with certain continuous homomorphisms A → An, we can essentially use A to

produce the locally analytic functions arising from all the An. Namely, if w ∈

OL and n ≥ 0, we will denote by F ((z−w)/$n
L) the locally analytic function on

OL that is given on w+$n
LOL by z 7→ F (σ1((z−w)/$n

L), . . . , σr((z−w)/$n
L)),

and is extended by zero to the rest of OL. Note that this construction can

also be described as the composite of the map F 7→ Fn,w : An → C la(OL, E)

with the continuous E-algebra homomorphism A → An given by sending Xi

to σi($L)−nXi for 1 ≤ i ≤ r. The resulting linear map A → C la(OL, E) is

continuous by the definition of the locally convex topology on the target.

Let U be an E-Banach space and let ‖ · ‖U denote a choice of norm on

U inducing its topology. The following definition is independent of this choice

in the sense that if the condition in the definition holds for one norm for U , it

holds for any other (with a possibly different constant). The definition is an

immediate translation of [4, Definition 3.12] from the case L = Qp.

Definition 5.2.1. Let α ∈ E×. An element ϕ ∈ L(C la(OL, E), U) (respec-

tively ϕ ∈ L(C lp≤k(OL, E), U)) is said to be α-tempered if there is a constant

C > 0 such that for each F ∈ A (respectively F ∈ A k), w ∈ OL, and n ∈ Z≥0,

we have ∥∥∥∥ϕ(F(z − w$n
L

))∥∥∥∥
U

≤ C|α|−n‖F‖A . (5.3)

We denote by L(C la(OL, E), U)α (respectively L(C lp≤k(OL, E), U)α) the sub-

space of L(C la(OL, E), U) (respectively of L(C lp≤k(OL, E), U)) consisting of
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α-tempered maps.

The following lemma equates the condition given in Definition 5.2.1,

which is more suited for our argument, with the condition used in [2].

Lemma 5.2.3. Let α ∈ E× and let c = ord(α). An element ϕ ∈ L(C la(OL, E), U)

(respectively ϕ ∈ L(C lp≤k(OL, E), U)) is α-tempered if and only if there is a

constant C > 0 such that for each w ∈ OL, n ∈ Z≥0, and m ∈ Zr
≥0 (respectively

m ∈ Zr
≥0 with mi ≤ ki for 1 ≤ i ≤ r), we have∥∥∥∥ϕ(1w+$nLOL(z)

r∏
i=1

σi(z − w)mi
)∥∥∥∥

U

≤ Cq−n(|m|−c). (5.4)

Proof. Suppose ϕ ∈ L(C la(OL, E), U) is α-tempered in the sense of Definition

5.2.1 and let C be a constant so that Equation (5.3) holds. Given w ∈ OL,

n ≥ 0, and m ∈ Zr
≥0, consider the element F =

∏r
i=1X

mi
i of A , noting that

‖F‖A = 1. We have, by definition,

F

(
z − w
$n
L

)
= 1w+$nLOL(z)

r∏
i=1

σi

(
z − w
$n
L

)mi
=

r∏
i=1

σi($L)−nmi1w+$nLOL(z)
r∏
i=1

σi(z − w)mi .

Therefore, because ϕ is α-tempered,∥∥∥∥ϕ(1w+$nLOL(z)
r∏
i=1

σi(z − w)mi
)∥∥∥∥

U

=

∥∥∥∥ϕ( r∏
i=1

σi($L)nmiF

(
z − w
$n
L

))∥∥∥∥
U

=
r∏
i=1

|$L|nmi
∥∥∥∥ϕ(F(z − w$n

L

))∥∥∥∥
U

≤
r∏
i=1

q−nmiC|α|−n‖F‖A

= Cq−n|m|qnc = Cq−n(|m|−c).
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Thus (5.4) holds for ϕ. The same proof applies to an α-tempered ϕ ∈

L(C lp≤k(OL, E), U), except that we only take m ∈ Zr
≥0 with mi ≤ ki for

1 ≤ i ≤ r.

Now assume conversely that Equation (5.4) holds for ϕ and all relevant

data, with constant C. Running the computation above in reverse with F as

before and noting that ‖
∏r

i=1 σi($L)nmiF‖A = q−n|m|, we find that

‖ϕ(F ((z − w)/$n
L))‖U ≤ C|α|−n‖F‖A .

The strong triangle inequality then implies the desired inequality for F ∈ A

that is a linear combination of monomials as above. The inequality then

holds for a general F ∈ A because the polynomials in A are dense, and the

association F 7→ F ((z − w)/$n
L) : A → C la(OL, E) is continuous. The case

of ϕ ∈ L(C lp≤k(OL, E), U) follows from the same argument (except that the

final step involving density of the polynomials in A is not necessary).

We now state Breuil’s generalization to arbitrary L of the result of

Amice-Vélu and Vishik (whose result was stated for L = Qp).

Lemma 5.2.4. If ord(α) < ki + 1 for 1 ≤ i ≤ r, then the restriction map

L(C la(OL, E), U)→ L(C lp≤k(OL, E), U)

induces an isomorphism

L(C la(OL, E), U)α ' L(C lp≤k(OL, E), U)α.
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Proof. This is a special case of [2, Lemma 6.1] (taking J = ∅, so that J ′ =

HomQp−Alg(L,E) in that reference), taking into account the fact that the con-

dition on linear maps imposed there is equivalent to the condition in Definition

5.2.1 by Lemma 5.2.3.

5.3 Locally Algebraic and Locally Analytic Parabolic
Inductions

Fix k ∈ Zr
≥0. Recall the definitions of locally analytic and locally alge-

braic representations of G, given respectively in Definition 4.2.3 and Definition

4.2.5. We are interested in locally analytic representations of G induced from

locally algebraic characters of T (regarded as characters of B via the projec-

tion B → T ). More precisely, we consider characters of the form χ = θψk,

where θ : T → E× has the form(
a 0
0 d

)
7→ θ1(a)θ2(d)

for smooth characters θ1, θ2 : L× → E×, and ψk : T → E× denotes the

character (
a 0
0 d

)
7→

r∏
i=1

σi(d)−ki .

If Vk is the irreducible algebraic representation
⊗r

i=1 Symki
E (E2) of GE, and

Wk denotes its contragredient, then ψk is the restriction to T of the highest

weight of Wk (relative to the upper triangular Borel subgroup of GE).

For χ as above, we define the locally algebraic parabolic induction

I(χ) = Wk⊗E IndG
B

(θ)sm, where the right tensor factor is the smooth parabolic
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induction of θ. Letting G act on Wk via the inclusion G ↪→ GE(E) and on

IndG
B

(θ)sm via the right regular representation on C sm(G,E), I(χ) becomes

a Wk-locally algebraic representation of G in the sense of [3, Proposition-

Definition 4.2.6]. We also define I la(χ) = IndG
B

(χ), the locally analytic parabolic

induction of χ [4, Example C], which consists of all functions f ∈ C la(G,E)

satisfying f(bg) = χ(b)f(g) for each b ∈ B and g ∈ G. Letting G act on I la(χ)

via the right regular representation on the locally convex space C la(G,E), and

endowing I la(χ) with the induced topology, I la(χ) becomes a strongly admis-

sible locally analytic representation of G [4, Proposition 1.21].

We may view I(χ) as a closed subrepresentation of I la(χ) in the follow-

ing way. Let O(GE) denote the affine coordinate ring of GE, and let C alg(G,E)

denote the image of the restriction map O(GE) ↪→ C la(G,E) (the restriction

map is injective because G ⊆ GE(E) is Zariski dense in GE(E)). This is

the space of algebraic E-valued functions on G. With e1,i, e2,i the standard

elements in the i-th tensor factor of Vk, e2 = ⊗ri=1e
ki
2,i is a highest weight vec-

tor in Vk relative to the lower triangular Borel subgroup of GE, and the map

Wk → O(GE) given by w 7→ (g 7→ w(g−1e2)) is a GE(E)-equivariant E-linear

injection which, when composed with the isomorphism O(GE) ' C alg(G,E),

allows us to view Wk as a subrepresentation of C alg(G,E). Tensoring the in-

jection Wk ↪→ C alg(G,E) with the inclusion IndG
B

(θ)sm ⊆ C sm(G,E) yields

an injection I(χ) ↪→ C alg(G,E) ⊗E C sm(G,E), and following this with the

map C alg(G,E) ⊗E C sm(G,E) → C la(G,E) given by multiplication of alge-

braic functions and smooth functions gives I(χ) ↪→ C la(G,E). Writing down
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the map Wk ↪→ C alg(G,E) explicitly (using the definition given above and

the action of g ∈ G on e2) one finds that the image of I(χ) in C la(G,E) is

contained in I la(χ). Thus I(χ) is canonically a G-stable subspace of I la(χ).

Moreover, I(χ) is closed in I la(χ), and its subspace topology coincides with its

finest locally convex topology (with respect to which it is an admissible locally

Wk-algebraic representation of G by [3, Proposition 6.3.10]).

We may now state our main result. The proof will be given in §5.4.

Theorem 5.3.1. Assume that

(i). ord(θ1($L)) < ki + 1 for 1 ≤ i ≤ r, and that

(ii). χ|Z(G) is unitary.

Then for any unitary E-Banach space representation U of G, the restriction

map

LG(I la(χ), U)→ LG(I(χ), U) (5.5)

is an isomorphism.

When L = Qp, this is essentially Proposition 2.5 of [4]. A version of this

result (for general L) is also proved as Theorem 7.1 of [2]. Breuil’s result applies

to more general locally J-analytic parabolic inductions, where J is a subset of

HomQp−Alg(L,E), but he restricts attention to injective linear maps. (See [2,

p. 10] for the definition of the locally J-analytic induction; locally algebraic

induction corresponds to J = ∅, while locally analytic induction corresponds
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to J = HomQp−Alg(L,E)). We follow Emerton’s argument from [4, §3], which

is somewhat more representation-theoretic than Breuil’s (although we do make

crucial use [2, Lemma 6.1], stated as Lemma 5.2.4 in the previous section, in

place of Emerton’s appeal to the classical result of Amice-Vélu and Vishik).

5.4 Proof of Theorem 5.3.1

In this section we prove Theorem 5.3.1. We therefore assume that

ord(θ1($L)) < ki + 1 for 1 ≤ i ≤ r and that χ|Z(G), the central character of

I la(χ), is unitary. It will be clear in the argument where these hypotheses are

invoked. Our proof closely follows that of Emerton in [4, §3]. The key input

to make Emerton’s argument go through in the general case is provided by the

description of C la(OL, E) from §5.2 and the accompanying Lemma 5.2.4 (which

takes the place of the result of Amice-Vélu and Vishik used by Emerton).

If V is one of I la(χ), I(χ), denote by V (N0) the closed subspace of

functions in V whose support lies in BN0. This is a G+(1)-invariant closed

subspace of I la(χ). The following result is proved for L = Qp in [4, Lemma

3.1], but the argument given there applies to an arbitrary finite extension L

of Qp.

Lemma 5.4.1. For any E-Banach space representation U of G, the restriction

maps

LG(I la(χ), U)→ LG+(s)(I
la(χ)(N0), U)

and

LG(I(χ), U)→ LG+(s)(I(χ)(N0), U)
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are isomorphisms for all integers s ≥ 1.

Thus, for an E-Banach space representation U of G and each s ≥ 1,

there is a commutative diagram of restriction maps

LG(I la(χ), U)

��

// LG(I(χ), U)

��
LG+(s)(I

la(χ)(N0), U) // LG+(s)(I(χ)(N0), U)

where the vertical maps are isomorphisms. To prove Theorem 5.3.1, which

is the assertion that the top horizontal restriction map is an isomorphism, it

therefore suffices to prove that the bottom horizontal arrow is an isomorphism

for some s ≥ 1. We ultimately reduce this to Lemma 5.2.4. By [5, Lemma

2.3.3], restricting functions in I la(χ) to N0 yields a topological isomorphism

I la(χ)(N0) ' C la(N0, U), and composing this with the topological isomorphism

C la(N0, E) ' C la(OL, E) (see the discussion of function spaces in §5.1), we

obtain an isomorphism

I la(χ)(N0) ' C la(OL, E). (5.6)

Restricting (5.6) to I(χ)(N0), and using the explicit description of the embed-

ding I(χ) ↪→ I la(χ) of §5.3, we obtain an induced isomorphism

I(χ)(N0) ' C lp≤k(OL, E). (5.7)

Since I la(χ)(N0) is a G+(1)-stable subspace of I la(χ), using the isomorphism

(5.6), we can transfer the action of G+(1) on I la(χ)(N0) to an action of G+(1)
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on C la(OL, E). A computation shows that if f ∈ C la(OL, E) and g =
(
a b
c d

)
∈

G+(1), then we have, for any z ∈ OL,

(gf)(z) =


0 if

b+ dz

a+ cz
/∈ OL(∏r

i=1 σi

(
a+ cz

det(g)

)ki)
θ1(a+ cz)θ2

(
det(g)

a+ cz

)
f

(
b+ dz

a+ cz

)
if
b+ dz

a+ cz
∈ OL.

(5.8)

As I(χ)(N0) is aG+(1)-stable subspace of I la(χ)(N0), in light of (5.7), C lp≤k(OL, E)

is a G+(1)-stable subspace of C la(OL, E) for the action defined in (5.8).

We also need to define an action of G0(1) on A , which we now explain.

Let g =
(
a b
c d

)
∈ G0(1). By the definition of G0(1) ⊆ GL2(OL), each of a, b, c, d

is in OL and c ∈ $LOL, so a, d ∈ O×L . Thus, for 1 ≤ i ≤ r, the series

σi(b) + σi(d)Xi

σi(a) + σi(c)Xi

=
σi(b) + σi(d)Xi

σi(a)

1

1−
(
− σi(c)

σi(a)
Xi

)
=
σi(b) + σi(d)Xi

σi(a)

∞∑
m=0

(−1)m
(
σi(c)

σi(a)

)m
Xm
i

is an element of A of norm 1. Therefore, there is a unique continuous E-

algebra endomorphism νg : A → A with νg(Xi) = (σi(b) + σi(d)Xi)/(σi(a) +

σi(c)Xi) for 1 ≤ i ≤ r, and the operator norm of νg is at most 1. A (slightly

messy but straightforward) computation shows that νg1g2 = νg1 ◦ νg2 , and it

follows that in fact each νg is an isometry of A . We now define the G0(1)-

action on A by

g(F (X1, . . . , Xr)) =

( r∏
i=1

σi

(
a+ cz

det(g)

)ki)
θ2(det(g))ηg(F (X1, . . . , Xr)). (5.9)

Because the factor multiplying ηg(F (X1, . . . , Xr)) in (5.9) is of Gauss norm

1 (since det(g) ∈ O×L , θ2(det(g)) ∈ O×E ), this G0(1)-action on A is unitary.
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Moreover, the factor ensures that A k is a G0(1)-stable subspace of A for this

action.

Comparing the formulas above, we find that, if g ∈ G0(1) ⊆ G+(1),

F ∈ A , and z ∈ OL, then

g(F (z)) =
θ1(a+ cz)

θ2(a+ cz)
((gF )(z)), (5.10)

where on the left-hand side g acts on C la(OL, E) via (5.8), and on the right-

hand side g acts on A via (5.9) (recall that for F ∈ A , the notation F (z)

means the function z 7→ F (σ1(z), . . . , σr(z)) on OL, and note that if g ∈ G0(1),

then (b+ dz)/(a+ cz) ∈ OL for any z ∈ OL).

We now follow Emerton in relating the actions just defined to the no-

tion of an α-tempered linear map (Definition 5.2.1), where α = θ1($L). In

preparation, we introduce the subset B′ of B defined by

B′ =

{(
$n
L −w

0 1

)
: n ∈ Z≥0, w ∈ OL

}
.

This is a submonoid of B+ = N0T
+ (see §5.1 for the notation) since we can

write, for any n ≥ 0 and w ∈ OL,(
$n
L −w

0 1

)
=

(
1 −w
0 1

)(
$n
L 0

0 1

)
.

Lemma 5.4.2. Any element b ∈ B+ may be written as zb′t with z ∈ Z(G),

b′ ∈ B′, and t ∈ T0.

Proof. As b ∈ B+ = N0T
+, we may write

b =

(
1 w
0 1

)(
a 0
0 d

)
=

(
a wd
0 d

)
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with w ∈ OL and ad−1 ∈ OL. Then

b =

(
d 0
0 d

)(
$

ord(a)−ord(d)
L w

0 1

)(
ad−1$

ord(d)−ord(a)
L 0

0 1

)
is a decomposition of b of the form zb′t ∈ Z(G)B′T0.

Lemma 5.4.3. Let C denote either C la(OL, E) or C lp≤k(OL, E), with AC

denoting A in the former case and A k in the latter case. If U is an E-

Banach space and ϕ ∈ L(C , U), then ϕ is θ1($L)-tempered if and only if there

exists a positive constant C such that ‖ϕ(b(F (z)))‖U ≤ C‖F‖A for all F ∈ AC

and b ∈ B+ (where ‖ · ‖U is any choice of norm on U defining its topology).

Proof. Given F ∈ AC , equation (5.8) gives(
$n
L −w

0 1

)
F (z) = θ1($L)nF ((z − w)/$n

L).

It then follows from Definition 5.2.1 that ϕ is θ1($L)-tempered if and only

if there is a constant C > 0 such that ‖ϕ(b′(F (z)))‖U ≤ C‖F‖A for all

F ∈ AC and b′ ∈ B′. If the condition in the statement of the lemma

holds, then certainly this condition holds, since B′ ⊆ B+. Conversely, suppose

‖ϕ(b′(F (z)))‖U ≤ C‖F‖A for all F ∈ AC and b′ ∈ B′, and let b ∈ B+. In

accordance with Lemma 5.4.2, we may write b = z′b′t with z′ ∈ Z(G), b′ ∈ B′,

and t =
(
a 0
0 d

)
with a, d ∈ O×L . Noting that the action of Z(G) ⊆ G+(1) on

C la(OL, E) is given by the character χ (because this is the character by which
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Z(G) acts on I la(χ)(N0)), which is assumed unitary, we have

‖ϕ(b(F (z)))‖U = ‖ϕ(z′b′t(F (z)))‖U

= ‖χ(z′)ϕ(b′t(F (z)))‖U

=

∥∥∥∥χ(z′)
θ1(a)

θ2(a)
ϕ(b′((tF )(z)))

∥∥∥∥
U

= ‖ϕ(b′((tF )(z)))‖U ≤ C‖tF‖A = ‖F‖A .

(We have used (5.10) in going from the second to the third line and the uni-

tarity of the action of G0(1) on A in the final equality.) Thus the condition

in the statement of the lemma holds.

Remark 5.4.1. The preceding proof is the only point where the unitarity of

the central character χ|Z(G) is used.

Lemma 5.4.4. In the notation of Lemma 5.4.3, if U admits a unitary action

of B+, then LB+(C , U) ⊆ L(C , U)θ1($L).

Proof. Let ‖ ·‖U be a B+-invariant norm on U and let ϕ ∈ LB+(C , U). By the

definition of the topology on C la(OL, E) (see the discussion following Remark

5.2.1) and the continuity of ϕ, the restriction of ϕ to the image of the map

F 7→ F (z) : AC → C la(OL, E) is bounded, i.e., there is a constant C > 0 such

that ‖ϕ(F (z))‖U ≤ C‖F‖A for all F ∈ AC . Therefore, if b ∈ B+ and F ∈ AC ,

we have

‖ϕ(b(F (z)))‖U = ‖bϕ(F (z))‖U = ‖ϕ(F (z))‖U ≤ C‖F‖A ,
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where the first equality follows from the assumed B+-equivariance of ϕ and

the second follows from the B+-invariance of ‖ · ‖U . Thus the condition in

Lemma 5.4.3 holds, so ϕ is θ1($L)-tempered.

We may now complete the proof of Theorem 3.1. Thus we assume that

U is a unitary E-Banach space representation of G with ‖ · ‖U a G-invariant

norm. Recall that our goal was to show that, for some integer s ≥ 1, the

restriction map

LG+(s)(I
la(χ)(N0), U)→ LG+(s)(I(χ)(N0), U)

is an isomorphism. Using the G+(1)-equivariant isomorphisms (5.6) and (5.7),

it is equivalent to prove that

LG+(s)(C
la(OL, E), U)→ LG+(s)(C

lp≤k(OL, E), U) (5.11)

is an isomorphism for some s ≥ 1. We will show that it is enough to take

s equal to the conductor exponent of the restrictions of θ1, θ2 to O×L , i.e., we

assume that θ1, θ2 are trivial when restricted to 1 + $s
LOL. There is some

such s because the θi are smooth. Now, by Lemma 5.4.4 (and the fact that

B+ ≤ G+(s), so that G+(s)-equivariant maps are also B+-equivariant), we

have

LG+(s)(C
la(OL, E), U) ⊆ L(C la(OL, E), U)θ1($L) (5.12)

and

LG+(s)(C
lp≤k(OL, E), U) ⊆ L(C lp≤k(OL, E), U)θ1($L). (5.13)
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As we are assuming that ord(θ1($L)) < ki + 1 for all i, Lemma 5.2.4 implies

that the restriction map

L(C la(OL, E), U)θ1($L) → L(C lp≤k(OL, E), U)θ1($L) (5.14)

is an isomorphism. Thus, in light of the inclusions (5.12) and (5.13), and the

injectivity of (5.14), we conclude that (5.11) is injective.

To prove the surjectivity of (5.11), fix ϕ0 ∈ LG+(s)(C
lp≤k(OL, E), U).

Because of the inclusion (5.13) and the surjectivity of (5.14), there is an el-

ement ϕ ∈ L(C la(OL, E), U) that is θ1($L)-tempered and restricts to ϕ0 on

C lp≤k(OL, E). It remains to prove that ϕ is G+(s)-equivariant. To do this, we

consider, for a fixed g ∈ G+(s), the continuous linear map

ϕ′ : f 7→ g−1ϕ(gf) : C la(OL, E)→ U .

Since ϕ0 is G+(s)-equivariant, the restriction of ϕ′ to C lp≤k(OL, E) coincides

with that of ϕ, so if ϕ′ can be shown to be tempered, the injectivity of (5.14)

will give ϕ′ = ϕ, proving the desired equivariance.

We will show that ϕ′ satisfies the condition in Lemma 5.4.4. Because

ϕ is θ1($L)-tempered, ϕ satisfies this condition, i.e., there is a constant C > 0

such that ‖ϕ(b(F (z)))‖U ≤ C‖F‖A for all b ∈ B+ and F ∈ A . If b ∈ B+,

then gb ∈ G+(s) = B+N(s), so we may write gb = b1n̄ for some b1 ∈ B+ and

n̄ =
(

1 0
w 1

)
∈ N(s) (so w ∈ $s

LOL). Then, using the G-invariance of ‖ · ‖U ,

Equation (5.10), the assumption that θ1 and θ2 are trivial on 1 + $s
LOL, and
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the N(s)-invariance of ‖ · ‖A , we find that

‖ϕ′(b(F (z)))‖U = ‖g−1ϕ(gb(F (z)))‖U

= ‖ϕ(b1n̄(F (z)))‖U

=

∥∥∥∥θ1(1 + wz)

θ2(1 + wz)
ϕ(b1((n̄F )(z)))

∥∥∥∥
U

= ‖ϕ(b1((n̄F )(z)))‖U ≤ C‖n̄F‖A = C‖F‖A

for any F ∈ A . Thus, by Lemma 5.4.4, ϕ′ is tempered, as desired.
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