
Copyright

by

Sooel Son

2014

The Dissertation Committee for Sooel Son
certifies that this is the approved version of the following dissertation:

Toward Better Server-side Web Security

Committee:

Vitaly Shmatikov, Supervisor

Kathryn S. McKinley, Supervisor

Don Batory

Miryung Kim

V.N. Venkatakrishnan

Toward Better Server-side Web Security

by

Sooel Son, B.S., M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Acknowledgments

I deeply appreciate Vitaly Shmatikov and Kathryn S. McKinley for

their invaluable advice and support. Without their encouragement and sup-

port, I cannot imagine myself writing this dissertation.

V.N. Venkatakrishnan has inspired our work and gave invaluable feed-

back for us to improve the last piece of this dissertation. I am deeply grateful

for help and personal support provided by Daehyeok Kim.

I thank my family for their love and personal support which they have

provided throughout my doctoral studies. I also appreciate my wife, Kayoung

Lee, for tolerating me. She not only motivated me to continue my research

but encouraged me with kind words and love.

iv

Toward Better Server-side Web Security

Publication No.

Sooel Son, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Vitaly Shmatikov
Kathryn S. McKinley

Server-side Web applications are constantly exposed to new threats as

new technologies emerge. For instance, forced browsing attacks exploit incom-

plete access-control enforcement to perform security-sensitive operations (such

as database writes without proper permission) by invoking unintended pro-

gram entry points. SQL command injection attacks (SQLCIA) have evolved

into NoSQL command injection attacks targeting the increasingly popular

NoSQL databases. They may expose internal data, bypass authentication or

violate security and privacy properties. Preventing such Web attacks demands

defensive programming techniques that require repetitive and error-prone man-

ual coding and auditing.

This dissertation presents three methods for improving the security of

server-side Web applications against forced browsing and SQL/NoSQL com-

mand injection attacks. The first method finds incomplete access-control en-

forcement. It statically identifies access-control logic that mediates security-

sensitive operations and finds missing access-control checks without an a priori

v

specification of an access-control policy. Second, we design, implement and

evaluate a static analysis and program transformation tool that finds access-

control errors of omission and produces candidate repairs. Our third method

dynamically identifies SQL/NoSQL command injection attacks. It computes

shadow values for tracking user-injected values and then parses a shadow value

along with the original database query in tandem with its shadow value to

identify whether user-injected parts serve as code.

Remediating Web vulnerabilities and blocking Web attacks are essen-

tial for improving Web application security. Automated security tools help

developers remediate Web vulnerabilities and block Web attacks while mini-

mizing error-prone human factors. This dissertation describes automated tools

implementing the proposed ideas and explores their applications to real-world

server-side Web applications. Automated security tools are effective for iden-

tifying server-side Web application security holes and a promising direction

toward better server-side Web security.

vi

Table of Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Web Threats . 1

1.2 Better Server-side Web Security 6

1.3 Contributions and Impact . 9

Chapter 2. Web Attacks 11

2.1 Server-side Web Applications 11

2.1.1 PHP and JSP . 13

2.1.2 NoSQL and MongoDB 14

2.2 Adversary Model . 15

2.3 Security Properties . 16

2.4 Access-control Policies . 17

2.5 Web Attack Classification . 20

2.5.1 Forced Browsing Attack 22

2.5.2 SQL Injection Attack 23

2.5.3 NoSQL Injection Attack 24

2.6 Related Work . 26

2.6.1 Static Detection and Remediation of Access-control Bugs 28

2.6.2 Dynamic Detection and Remediation of Access-control
Bugs . 31

2.6.3 Static Detection of Illegitimate Data Flows 32

vii

2.6.4 Dynamic Detection and Remediation of Illegitimate Data
Flows . 32

2.6.5 Static Detection of Application Logic Bugs 34

2.6.6 Dynamic Detection and Remediation of Application Logic
Bugs . 35

Chapter 3. Automatically Finding Missing Access-control Checks
in Web Applications 37

3.1 Access-control Logic in Web Applications 41

3.1.1 Translating Web Applications into Java 41

3.1.2 Application-specific Access-control Logic 42

3.2 Implementation . 45

3.2.1 Phase I: Finding Security-sensitive Operations, Dominat-
ing Calling Contexts, and Critical Variables 47

3.2.1.1 Security-sensitive Operations and Calling Contexts 48

3.2.1.2 Critical Branches and Critical Methods 51

3.2.1.3 Critical Variables 53

3.2.2 Phase II: Partitioning Into Roles 54

3.2.3 Phase III: Finding Security-critical Variables 60

3.2.4 Phase IV: Finding Missing Access-control Checks 61

3.3 Evaluation . 61

3.4 Conclusion . 69

Chapter 4. Repairing Access-Control Bugs in Web Applications 72

4.1 Specifying Access-control Policies 75

4.2 Implementation . 76

4.2.1 Computing Access-control Templates 76

4.2.1.1 Computing Access-control Slices 78

4.2.1.2 Extracting Access-control Templates 79

4.2.2 Finding and Repairing Access-control Vulnerabilities . . 81

4.2.2.1 Matching Templates 84

4.2.2.2 Finding Access-control Vulnerabilities 86

4.2.2.3 Applying The Template 86

4.2.2.4 Validating Repairs 92

viii

4.3 Limitations . 94

4.4 Evaluation . 98

4.5 Conclusion . 105

Chapter 5. Detecting Code Injection Attacks
on Web Applications 107

5.1 Motivation . 112

5.1.1 Pitfalls of Detecting SQL Injection Attacks 112

5.1.2 Syntax Mimicry Attacks 115

5.1.3 Defining code . 117

5.2 Implementation . 118

5.2.1 Character Remapping 121

5.2.2 Value Shadowing . 122

5.2.3 Detecting Injected Code 126

5.3 Limitations . 132

5.4 Evaluation . 133

5.5 Conclusion . 139

Chapter 6. Conclusion 140

Bibliography 142

Vita 152

ix

List of Tables

2.1 Web attack classification . 20

2.2 Related work classification . 27

3.1 Benchmarks and analysis characterization 62

3.2 Accuracy (θconsistency = .5). Note the reduction in false positives
due to role partitioning. 64

3.3 Sensitivity of actual vulnerabilities (vl) and false positives (fp)
to θasymm . 67

3.4 Sensitivity of actual vulnerabilities (vl) and false positives (fp)
to θseed . 67

3.5 Sensitivity of actual vulnerabilities (vl) and false positives (fp)
to θconsistency . 68

4.1 Matching statements without dependences 83

4.2 PHP benchmarks, analysis time in seconds, ACT characteriza-
tion, and repair characterization 99

5.1 Canonical code injection attacks and non-attacks misclassified
by prior methods. Underlined terms are user input. 111

5.2 Benchmark PHP applications. 134

x

List of Figures

1.1 The attack model of forced browsing and SQL/NoSQL com-
mand injection attacks. 6

2.1 An overview of server-side Web applications 12

2.2 Example of building a JSON type query 15

2.3 minibloggie: Access-control check 18

2.4 DNscript: Correct access-control check in AcceptBid.php and a
missing check in DelCb.php 19

2.5 SQL injection attack on minibill. 23

2.6 JSON injection vulnerability. 24

2.7 JavaScript injection vulnerability. 26

3.1 File structure of DNscript . 45

3.2 Architecture of RoleCast. 46

3.3 Example of partitioning contexts 58

3.4 Detected vulnerable files in DNscript 66

3.5 Example of a false positive in phpnews 1.3.0 71

4.1 Newsscript : Slice and access-control template 77

4.2 Computing an access-control template (ACT) 81

4.3 Matching access-control templates 84

4.4 Adapting ACT to a particular calling context 87

4.5 Repairing vulnerable code and validating the repair 88

4.6 Applying an access-control template 90

4.7 Matching statements and renaming variables 93

4.8 DNscript: Different access-control checks within the same user
role . 101

4.9 minibloggie: Attempted repair 102

4.10 GRBoard: Same ACT in different contexts 103

xi

4.11 YaPiG: Attempted repair . 104

5.1 JavaScript syntax mimicry attack. 115

5.2 SQL syntax mimicry attack on minibill. 116

5.3 SQL syntax mimicry attack on phpAddressBook. 117

5.4 Overview of Diglossia. 119

5.5 An example of value shadowing. 125

5.6 Performance overhead of Diglossia with the database cache
disabled. 135

5.7 Performance overhead of Diglossia with the database cache
enabled. 136

5.8 Performance overhead of dual parsing in Diglossia. 138

xii

Chapter 1

Introduction

1.1 Web Threats

Web applications continue to gain wide adoption. Over three-fourths

of the population in North America surfs the Internet [24]. Web applications,

such as e-commerce, blogging, and media software, typically consist of client-

side programs running in a Web browser as well as a server-side program that

(1) converts clients’ requests into queries to a backend database and (2) returns

HTML content after processing user input and retrieved database records.

Thus, server-side Web applications must work with input from potentially

untrusted Internet users. As Web applications become more prevalent, security

of server-side Web applications is becoming a major concern for many service

providers.

Unfortunately, Web applications have been targeted by many Web at-

tacks such as cross-site scripting (XSS), cross-site request forgery (CSRF),

forced browsing, server-side includes injection (SSI), SQL/NoSQL injection,

and execution after redirection (EAR) [8, 16, 20, 55, 56, 77]. Server-side Web

attacks are often devastating. For example, SQL injection attacks on retail

stores owned by TJX Companies compromised more than 45 million credit and

1

debit numbers in 2005–2007 [77]. In 2012, SQL injection attacks also exposed

450,000 Yahoo! passwords [56]. Furthermore, a hacker group who conducted

SQL injection attacks on several banks stole 160 million credit card numbers,

causing more than 200 million dollars in losses [55]. In 2010, a CSRF attack

that exploited a known vulnerability in an open-source Web application com-

promised Rackspace databases [16]. Client-side Web applications are also not

free from Web attacks. In 2010, Twitter was overrun with spam posts due

to client-side XSS attacks [59]. Thus, the presence of adversaries who exploit

Web application vulnerabilities is inarguable.

This dissertation focuses on server-side Web threats under a common

adversary model. We assume that the adversary is capable of (1) tampering

with user input values and (2) examining code of a victim Web application. Re-

cent research has confirmed such adversaries in the wild. Canali and Balzarotti

showed that a honeypot Web site that contains known SSI and SQL injection

vulnerabilities was attacked only 5 hours after its first deployment [8]. To pro-

tect sites from such adversaries, the Open Web Application Security Project

(OWASP) is equipping developers with defensive coding techniques [48]. How-

ever, WhiteHat security reported that an average industry Web site has 79

vulnerabilities with 231 exposure days on average [20]. These statistics show

that today’s Web security is fragile.

This dissertation focuses on removing the causes of two attack vectors:

forced browsing and SQL/NoSQL command injection. Forced browsing at-

tacks take advantage of incomplete access-control enforcement. For instance,

2

unauthorized users can execute privileged database operations by exploiting

an access-control vulnerability. This vulnerability is ranked as the fourth most

likely to appear in an average industry Web site [20]. Automatically finding

omitted or incorrect access-control logic is challenging. What complicates an

automated approach is the absence of either a universal standard pattern or

a predefined syntactic template for access-control logic in server-side Web ap-

plications. Each Web application implements its own particular logic.

Many researchers have examined the following options: take advantage

of explicit annotations that indicate access-control logic [7, 73], extract benign

access-control traces from dynamic program executions [12, 15, 19, 23, 81]

or exploit characteristic syntax [17, 31, 54, 64, 70]. However, large legacy

applications are often not accompanied by a specification. This motivates the

following question: how do we find access-control bugs when we do not know

what the access-control logic is?

Remediating identified access-control bugs is also challenging. Dynamic

remediation of access-control bugs by enforcing pre-defined security policies

only fixes the symptom, but does not repair the actual bugs present in Web

applications. Static repair of access-control bugs at the source-code level has

several challenges such as identifying the locations to update, conducting in-

terprocedural program transformation, and validating repaired code. No pre-

vious approach has attempted to automatically repair access-control bugs at

the source-code level.

SQL command injection is a notorious attack that occurs when un-

3

trusted user input is executed as code in an SQL query. Because successful

SQL command injection attacks result in executing arbitrary queries, the ad-

versary may steal, tamper with or remove sensitive data in backend databases.

NoSQL injection attacks are an emerging class of threats that aim to inject

code into a NoSQL database. NoSQL and SQL injection attacks share a com-

mon factor—a vulnerable server-side Web application allows an adversary to

inject malicious input which is interpreted by the database as code instead of

string or numeric constants. Since 2003, SQL injection has remained in the

top 10 list of CVE vulnerabilities [13]. Furthermore, the 2012 WhiteHat secu-

rity report states that SQL injection attacks are still the eighth most prevalent

attack type [20].

Both static detection and dynamic prevention of code injection attacks

are challenging. Static methods start by defining sanitization and sink meth-

ods. Sink methods refer to certain methods that output or send application-

generated values to other domains. Database methods that invoke SQL queries

and HTML output methods are classic sink methods. Sanitization methods

change or remove from untrusted input values the parts that may cause code

injection attacks. Many static detection methods focus on finding unsanitized

data flows from input to sensitive sinks [26, 34, 45, 66]. Since incorrectly

sanitized input can still cause an injection attack, soundness depends on how

precisely the sanitization logic is modeled. However, it is not trivial to precisely

model every operation that involves generating tainted data flows. The pro-

posed static methods conduct coarse-grained taint analyses to decide whether

4

an application-generated query is tainted or not [26, 34, 45, 66].

On the other hand, several dynamic methods identify which parts of

a generated query come from user input [22, 40, 45, 53, 80]. Identifying

tainted parts of a generated query at the character level requires sophisti-

cated and costly taint-tracking. Because of this, several studies have proposed

approaches that are agnostic to the precision of the taint-tracking algorithm.

Sekar et al. infer tainted parts by measuring the similarity between the gener-

ated query and user input [63]. Bandhakavi et al. perform mirror executions

to build a benign candidate query and compare it with the actual query [3].

However, all of these approaches are subject to false positives and negatives.

Furthermore, no prior work directly considers NoSQL.

Figure 1.1 illustrates the causes of SQL/NoSQL injection and forced

browsing attacks. Forced browsing attacks take advantage of control-flow vul-

nerabilities that allow the adversary to bypass access-control logic. SQL/NoSQL

injection attacks exploit data-flow vulnerabilities that cause illegitimate data

flows from user input to database operations. Identifying and repairing both

vulnerabilities by hand involves tedious auditing and coding that often brings

error-prone human factors. Furthermore, individual proficiency in implement-

ing secure Web applications varies with developers’ expertise as Web security

becomes complicated. These problems motivate the creation of automated

tools that can ease developers’ burden and improve the robustness of Web

applications. Automated bug-finding and attack-blocking tools are promising

ways to improve server-side Web security.

5

Figure 1.1: The attack model of forced browsing and SQL/NoSQL command
injection attacks.

1.2 Better Server-side Web Security

Forced browsing and SQL/NoSQL injection attacks stem from access-

control bugs and illegitimate data flows in server-side Web applications, re-

spectively. Client-side remediation of server-side application vulnerabilities is

infeasible because, by design, Internet clients cannot change server-side ap-

plication code. Blocking suspicious requests at the client side is also imprac-

tical because it is hard to manage and enforce client-side defenses for many

clients. This dissertation presents server-side security tools that directly reme-

diate access-control bugs and identify illegitimate data flows that cause forced

6

browsing and SQL/NoSQL injection attacks.

To identify access-control bugs, we present a static tool called Role-

Cast, which finds missing access-control checks without a priori knowledge of

which methods or variables implement access-control checks. Each Web appli-

cation implements access-control checks in a different, often idiosyncratic way.

Even within the application, access-control checks vary based on the users role,

e.g., regular users versus administrators. RoleCast infers such application-

and role-specific access-control checks by exploiting common software engi-

neering patterns —the code that implements distinct user role functionality

and its security logic typically resides in distinct methods and files. It then

finds missing access-control checks before security-sensitive operations within

a role. To infer roles, RoleCast partitions the set of file contexts (a coars-

ening of calling contexts) on which security-sensitive operations are control

dependent. For each role, RoleCast identifies critical variables that affect

the reachability of security-sensitive operations. It then applies role-specific

variable consistency analysis to find missing access-control checks. RoleCast

found 13 access-control bugs with 3 false positives in 11 real-world Web appli-

cations.

RoleCast only notifies developers of its findings. It makes no attempt

to repair source code. Unfortunately, fixing access-control bugs is a tedious

and repetitive task that involves replicating existing access-control policies.

To help developers fix these bugs, we designed and implemented FixMeUp, a

static program transformation tool that makes repairs at the source-code level.

7

FixMeUp starts by obtaining role-specific access-control policy examples from

manual or inferred annotations. From these annotations, FixMeUp then

computes an access-control template (ACT). Next, it replicates a template in

vulnerable contexts that implement incorrect access-control policies. Finally,

FixMeUp validates its repair and suggests the repaired code to developers.

In our experiments, FixMeUp correctly repaired 30 access-control bugs with

one warning in 10 Web applications.

The final Web threat that this dissertation addresses is code injection.

We present a dynamic SQL/NoSQL injection detection tool, Diglossia. A

SQL/NoSQL injection attack occurs when user input is interpreted as code

in a database query generated by a Web application. Diglossia dynamically

blocks database queries that contains user-injected code.

The challenges in detecting injected code are (1) recognizing code in

the generated query and (2) determining which parts of the query are tainted

by user input. To identify tainted characters, Diglossia dynamically maps

all application-generated characters to shadow characters that do not occur

in user input and computes shadow values for all input-dependent strings.

Any original characters in a shadow value are thus exactly the taint from user

input. To detect injected code in a generated query, Diglossia parses the

query in tandem with its shadow and checks that (1) the two parse trees are

syntactically isomorphic, and (2) all code in the shadow query is in shadow

characters and, therefore, originated from the application itself, as opposed to

user input. We evaluated Diglossia on 10 PHP Web applications. Diglos-

8

sia accurately detected 25 SQL and NoSQL injection attacks while avoiding

the false positives and false negatives of prior methods [3, 22, 45, 71, 80].

1.3 Contributions and Impact

The dissertation presents three novel ideas to remediate forced browsing

vulnerabilities and block SQL/NoSQL injection attacks. We believe that pro-

grammers, server administrators, and bug-finding tool developers can benefit

from our implementations as well as the ideas behind them.

For the first contribution, we demonstrate the effectiveness of Role-

Cast in finding access-control vulnerabilities, the root cause of forced brows-

ing attacks. RoleCast uses a heuristic algorithm that takes advantage of the

software engineering patterns to precisely infer application- and role-specific

access-control logic.

Furthermore, we demonstrate an automated static technique that gen-

erates candidate code to repair access-control vulnerabilities. Instead of insert-

ing one- or two-line patches, our FixMeUp tool aggressively creates interpro-

cedural repairs and suggests them to developers. To the best of our knowledge,

FixMeUp is the first program repair tool that reuses pre-existing statements

in the context that is being repaired. FixMeUp helps programmers improve

code productivity as well as enforce consistent role-specific access-control logic.

Because the repair algorithms are agnostic to the type of the vulnerabilities,

FixMeUp is also applicable for repairing other access-control vulnerabilities

such as cross-site request forgery [83].

9

The last technique, Diglossia, is based on new ideas for identifying

user-injected code and avoids the flaws of prior detection methods that use

syntactic structures and regular expression filters. Diglossia takes advantage

of dual parsing and value shadowing to determine whether user-injected string

values are interpreted as code in computed SQL/NoSQL queries. By using

dual parsing and value shadowing, we gain performance improvement and

better precision while avoiding the false positives and false negatives of prior

tools. Diglossia does not require any changes in either legacy applications

or database environment. It only requires installing a PHP plug-in.

Today’s Internet is a dangerous place, with serious and subtle Web at-

tacks that demand security expertise from defenders. Many developers need

help in identifying application bugs and evaluating the security of their ser-

vices as Web security becomes more complex and applications become larger.

We demonstrate the effectiveness of automated, tool-guided approaches for

remediating causes of Web attacks.

10

Chapter 2

Web Attacks

This chapter presents the background on server-side Web applications

and NoSQL databases, which are the major subjects of this thesis. It describes

an adversary model and presents two security properties that prevent server-

side Web application vulnerabilities. This chapter also explains access-control

policies in server-side Web applications and characterizes various major Web

attack vectors, including forced browsing and SQL/NoSQL injection attacks.

Finally, in Section 2.6, it describes and compares previous work that addressed

these vulnerabilities.

2.1 Server-side Web Applications

Web applications are classified by their deployment scenario as either

server-side or client-side applications. A Web browser runs client-side Web

applications fetched from Web servers. They are typically coded in JavaScript,

ActionScript or Java. Server-side Web applications run at Web servers. As

Figure 2.1 shows in detail, a script interpreter, a module of a Web server,

accepts clients’ input values delivered by HTTP requests as well as cookies,

and then invokes the user’s choice of Web application with the input values.

11

The invoked Web application transforms the input values into SQL/NoSQL

queries to perform backend-database operations and builds an HTML page,

which is returned to a client. Therefore, it is an intrinsic feature of server-

side Web applications to interact with untrusted user input values. Among

the many Web programming languages, our tools analyze Web applications

implemented in the PHP and JSP programming languages.

Figure 2.1: An overview of server-side Web applications

12

2.1.1 PHP and JSP

The PHP (PHP: Hypertext Preprocessor) scripting language is de-

signed for dynamically generating Web pages [51]. PHP is commonly used to

implement Web applications with user-generated content or content stored in

backend databases (as opposed to static HTML pages). A recent survey of 12

million domains found that 59% use PHP to generate HTML content [52].

PHP borrows syntax from Perl and C. In PHP programs, executable

statements responsible for generating content are mixed with XML and HTML

tags. PHP provides basic data types, a dynamic typing system, rich support

for string operations, some object-oriented features, and automatic memory

management with garbage collection. Instead of a module or class system,

PHP programs use a flat file structure with a designated main entry point.

Consequently, (1) a network user can directly invoke any PHP file by providing

its name as part of the URL, and (2) if the file contains executable code outside

of function definitions, this code will be executed. These two features of PHP

require defensive programming of each entry point and are a source of forced-

browsing attacks.

JSP (Java Server Pages) is a Java technology for dynamically gener-

ating HTML pages [29]. It adds scripting support to Java and mixes Java

statements with XML and HTML tags. Scripting features include libraries of

page templates and an expression language. JSP supports dynamic types, but

because it builds on Java, it has more object-oriented features than PHP. JSP

executes in a Java Virtual Machine (JVM).

13

2.1.2 NoSQL and MongoDB

NoSQL is a new, more flexible approach for large data stores, and

an alternative to relational DBMSs using Structured Query Language (SQL).

NoSQL stores data in key and value pairs, and their implementations target for

distribution and scalability [46]. Many NoSQL families including DynamoDB,

MongoDB, CouchDB, Cassandra and others are growing in popularity.

Both SQL and NoSQL database vendors provide server-side Web appli-

cation APIs for searching and managing stored data. Because the main objec-

tive of server-side Web applications is to dynamically generate Web pages by

retrieving persistent database data and user input, the interactions between

an application and a database are carried out through such APIs

We chose to analyze MongoDB NoSQL database to demonstrate the

effectiveness of Diglossia. MongoDB is an open-source document-oriented

NoSQL database [39]. MongoDB has been gaining wide adoption among cor-

porations, including Foursquare and Craigslist [38]. MongoDB provides an

API (MongoDB PHP driver) for a PHP application to interact with a Mon-

goDB database. MongoDB supports two query languages: JavaScript and

JSON. JavaScript is a dynamic weakly-typed scripting language heavily used

in many HTML Web pages. JSON is a data structure of consisting of one or

more key-value pairs [28]. The MongoDB PHP driver uses a string or array

type value in PHP to represent respectively a JavaScript or JSON query in

MongoDB.

14

mongodbadmin.php
1 <?
2 . . .
3 i f (! $document) {
4 $document = findMongoDbDocument ($ REQUEST[' search '] , $ REQUEST['db '] ,

$ REQUEST[' c o l l e c t i o n '] , true) ;
5 $customId = true ;
6 }
7 . . .
8 function findMongoDbDocument ($ id , $db , $ c o l l e c t i o n , $ forceCustomId = fa l se)
9 {

10 . . .
11 $ c o l l e c t i o n = $mongo−>selectDB ($db)−>s e l e c t C o l l e c t i o n ($ c o l l e c t i o n) ;
12 . . .
13 $document =$ c o l l e c t i o n−>f indOne (array (' i d ' => $ id)) ;
14 . . .
15 }
16 . . .
17 ?>

Figure 2.2: Example of building a JSON type query

Figure 2.2 shows a PHP code instance that sends a JSON query to

a MongoDB database. The code in line 13 of mongodbadmin.php builds an

array value where the key is “ id” and its corresponding value is user input

obtained by referencing $ REQUEST [‘search’]. The MongoDB PHP driver

then transforms the array value into a JSON query and sends it to a MongoDB.

2.2 Adversary Model

This section describes the adversary model that we assume throughout

this dissertation. We make the standard assumption that the adversary has

the following capabilities:

1. The adversary may examine server-side source code deployed at a victim

server. However, the adversary cannot modify such code.

15

2. The adversary may send a victim server forged HTTP requests. The

adversary can also entice or trick honest users into visiting a malicious

site and send—via a spam message, advertising and so on—a forged

HTTP request on the visitor’s behalf.

Both assumptions are realistic because many Web servers use open

source Web applications. Common behaviors for Internet surfers include click-

ing on advertisements and visiting untrusted Web pages. The adversary only

takes advantages of application bugs by tampering with input parameters.

The adversary does not have the capabilities to inspect logs or network data

of a victim server.

2.3 Security Properties

Security-aware developers generally seek to establish the following two

security properties:

1. Only authorized users should be able to access a security-sensitive oper-

ation.

2. Any untrusted input should not serve as executable code.

A security-sensitive operation is a privileged procedure that the author

of an application wants to protect from untrusted users. Security-sensitive

operations include updating database records, deleting disk files or letting a

Web server send emails. Therefore, server-side Web applications should vet

with correct access-control logic whether an incoming request leading to the

16

execution of sensitive operations has the proper privilege. The first security

property restricts reachable control flows for security-sensitive operations.

The violation of the second property directly leads to a code injection

attack that destroys the intended purpose of an application. To enforce the

second property, developers usually confine user input to serve as string and

numeric constants in database queries. A code injection attack occurs when

an adversary injects code into an application by exploiting incorrect confine-

ment of user input. Generally, code injection attacks can be characterized as

illegitimate data-flow attacks from user input to sensitive sink methods that

execute application-generated commands.

2.4 Access-control Policies

By design, server-side Web applications interact with untrusted users

and receive untrusted network inputs. Therefore, they must not perform

security-sensitive operations, unless users hold the proper permissions. This

mechanism is known as security mediation. In Web applications, security me-

diation is typically implemented by access-control policies.

In general, an access-control policy requires some checks prior to ex-

ecuting security-sensitive operations. These access-control checks vary with

applications and user roles even within the same application. For example,

an online store may have customers and administrators, while a blogging site

may have blog owners, publishers, and commenters. Thus, different calling

contexts associated with different user roles often require different checks.

17

Add.php
1 <? . . .
2 session start () ;
3 dbConnect () ;
4 i f (! v e r i f y u s e r ()) { // access−con t ro l check
5 header (” Locat ion : . / l o g i n . php”) ;
6 exit ;
7 }
8 . . . // secur i t y−s e n s i t i v e opera t ion
9 $ s q l = ”INSERT INTO blogdata SET u s e r i d =’ $ id ’ , s ub j e c t =’ $ sub j e c t ’ ,

message=’$message ’ , datet ime =’$datet ime ’ ” ;
10 $query = mysql query ($ s q l) ;
11 . . .
12 function v e r i f y u s e r () {
13
14 session start () ;
15 g l o b a l $user , $pwd ;
16 i f (i s set ($ SESSION [’ user ’]) && i s set ($ SESSION [’pwd ’])) {
17 $user = $ SESSION [’ user ’] ;
18 $pwd = $ SESSION [’pwd ’] ;
19 $ r e s u l t = mysql query (”SELECT user , password FROM blogusername

WHERE user =’ $user ’ AND BINARY password=’$pwd ’ ”) ;
20 i f (mysql num rows($ r e s u l t) == 1)
21 r e turn true ;
22 }
23 r e turn fa l se ;
24 }
25 ?>

Figure 2.3: minibloggie: Access-control check

Figures 2.3 and 2.4 show examples of application-specific access-control

checks in real-world PHP applications. Figure 2.3 shows a correct check (line 4)

in Add.php from minibloggie. Add.php invokes a dedicated verifyuser function

that queries the user database with the username and password. If verification

fails, the application returns the user to the login page. Figure 2.4 shows

a different access-control check (line 3) performed by AcceptBid.php in the

DNscript application. It reads the hash table containing the session state

and checks the member flag. Both access-control policies protect the same

operation—a mysql query call site that updates the backend database—but

with very different logic.

18

AcceptBid.php
1 <?
2 session start () ;
3 i f (! $ SESSION [’member ’]) { // access−con t ro l check f o r member
4 header (’ Locat ion : l o g i n . php ’) ;
5 exit ;
6 }
7 include ’ i n c / c o n f i g . php ’ ;
8 include ’ i n c /conn . php ’ ;
9 . . . // secur i t y−s e n s i t i v e opera t ion

10 $q5 = mysql query (”INSERT INTO c l o s e b i d (item name , s e l l e r name ,
bidder name , c l o s e p r i c e) ” . $ sq l 5) ;

11 . . .
12 ?>

DelCb.php
1 <? // No access−con t ro l check
2 include ’ i n c / c o n f i g . php ’ ;
3 include ’ i n c /conn . php ’ ;
4 // secur i t y−s e n s i t i v e opera t ion
5 $d e l e t e = mysql query (”DELETE FROM c l o s e b i d where item name = ’ ” .

$item name . ” ’ ”) ;
6 i f ($d e l e t e) {
7 mysq l c l o s e ($conn) ;
8 . . .
9 }

10 ?> Del.php for the “administrator” role
1 <?
2 session start () ;
3 i f ($ SESSION [’ admin ’] != 1) { // access−con t ro l check f o r admin i s t ra tor
4 header (’ Locat ion : l o g i n . php ’) ;
5 exit ;
6 }
7 include ’ i n c / c o n f i g . php ’ ;
8 include ’ i n c /conn . php ’ ;
9 . . . // secur i t y−s e n s i t i v e opera t ion

10 $ s q l = mysql query (”DELETE FROM d o m a i n l i s t WHERE dn name = ’ ” . $dn name . ” ’
”) ;

11 . . .
12 ?>

Figure 2.4: DNscript: Correct access-control check in AcceptBid.php and a
missing check in DelCb.php

The access-control checks are role-specific. For example, the DNscript

application has two roles. AcceptBid.php in Figure 2.4 shows the check (line

3) for the “regular user” role and Line 3 of Del.php shows the different check

for the “administrator” role.

19

2.5 Web Attack Classification

The Open Web Application Security Project (OWASP) is warning de-

velopers about various Web attacks, including cross-site scripting (XSS), cross-

site request forgery (CSRF), forced browsing, server-side include injection

(SSI), SQL/NoSQL code injection and execution after redirection (EAR) [48].

This section examines forced browsing and SQL/NoSQL injection attacks in

relation to other major Web attacks.

Application Type
Cause Server-side Client-side

A violation of se-
curity property #1
(Incorrect access-
control logic)

Forced browsing
Cross-site request forgery (CSRF)
Execution after redirection (EAR)

A violation of se-
curity property #2
(Illegitimate data
flows)

SQL/NoSQL command injection
Reflected cross-site script injection Client-side XSS
(XSS) (CXSS)
Server-side include injection (SSI)
HTTP response splitting

Application logic
error

Parameter tamper-
ing

Browser or plugin
exploits

Table 2.1: Web attack classification

Table 2.1 arranges Web attacks into groups based on the cause and

the target application type. The cause of forced browsing, CSRF and EAR

attacks lies in absent or incorrect access-control logic. However, they exploit

different bugs in access-control logic. Forced browsing attacks take advantage

of omitted or incorrect access-control logic. EAR harnesses a common mistake

20

when the programmer does not place a program termination call after a page

redirection call. A CSRF attack exploits the absence of checks to validate

origins of HTTP requests.

Reflected XSS, server-side includes injection (SSI), HTTP response

splitting and SQL/NoSQL injections attacks share the same cause, illegiti-

mate data flows, but target different method calls. The reflected XSS injects

malicious input into HTML output methods. The HTTP response splitting

attack injects forged HTTP headers into a header output method. The SSI

and SQL/NoSQL injections attacks inject code into file inclusion and database

operation functions, respectively.

Whereas reflected XSS causes a vulnerable server-side Web application

to generate a Web page with malicious payloads, client-side XSS attacks take

advantage of bugs in client-side JavaScript code. They inject forged script

code into eval, setT imeout, postMessage or client-side JavaScript code that

dynamically generates HTML Document Object Model(DOM) objects [62, 67].

Parameter-tampering attacks usually refer to a general attack that ex-

ploits a server-side application logic bug with forged input parameters. For

instance, Bisht et al. identify server-side application logic bugs that do not

validate input parameters, but perform validations in client-side JavaScript

code [5].

Among the Web attacks listed above, this dissertation focuses on forced

browsing and SQL/NoSQL injection attacks. The following sections describe

21

in detail the two attacks as well as examples of vulnerabilities.

2.5.1 Forced Browsing Attack

Web applications typically perform access-control checks to protect

security-sensitive operations. Thus, the absence of such checks directly leads

to successful forced browsing attacks that enable an adversary to gain unau-

thorized access to security-sensitive operations. It is a clear violation of the

first security property described in Section 2.3.

Since every file included in a PHP application can be used as an alter-

native entry, developers must replicate access-control logic on every path that

accesses security-sensitive operations. In particular, even if the code contained

in some file is intended to be called only from other files, it must still be pro-

grammed defensively because an attacker may invoke it directly via its URL.

Thus, access-control bugs are control-flow vulnerabilities. They enable an at-

tacker to execute a sensitive operation, which may or may not be accompanied

by illegitimate data injection.

Figure 2.4 shows an instance of code that is vulnerable to forced brows-

ing attacks. The check on $ SESSION at line 3 is present in AcceptBid.php,

but missing in DelCb.php. The access-control check protects the sensitive oper-

ation—a mysql query call site that updates the backend database. A malicious

user can directly invoke DelCb.php by supplying its URL to the Web server

and execute a DELETE query because DelCb.php is missing a check on the

$ SESSION variable.

22

Finding and repairing access-control vulnerabilities require manual,

repetitive audits of source code. In complex applications, the number of un-

intended entry points can be very large, which greatly complicates manual

inspection and motivates the need for automated analysis. As Section 2.4 de-

scribes, access-control logic has no standard pattern and differs even within the

same application. Therefore, enforcing a single access-control pattern across

the entire program may subvert the intended semantics.

login.php in minibill
1 <?
2 $Q = ”SELECT ∗ FROM use r s
3 WHERE emai l =‘{$ REQUEST[‘ emai l ’] } ’
4 AND password=‘{$ REQUEST[‘ password ’] } ’
5 LIMIT 1” ;
6 $ r e s = mysql query ($Q) ;
7 ?>

Attack URL
http://victimHost/login.php?email=any’; OR 1=1 –‘&password=any

Actual query
SELECT * FROM users WHERE email=‘any’ OR 1=1 - -‘’ AND password=‘any’ LIMIT 1

Figure 2.5: SQL injection attack on minibill.

2.5.2 SQL Injection Attack

SQL injection attack exploits incorrect or absent sanitization logic on

user input, which may lead to arbitrary code execution. For instance, Fig-

ure 2.5 shows a PHP code instance that retrieves database records matching

a given email and password. However, the application does not sanitize user

input obtained from $ REQUEST [‘email’] and $ REQUEST [‘password’].

This mistake allows the adversary to escape quotes that supposedly confine

23

user input to string literals. The injected “OR 1=1” string makes the resulting

query to become the tautology and the following “–” string comments out the

remaining query. Thus, the resulting query returns all stored records, which

is a violation of the second security property.

2.5.3 NoSQL Injection Attack

NoSQL databases are as vulnerable to code injection attacks as SQL

databases. For example, we found four PHP MongoDB-based applications in

GitHub with injection vulnerabilities (see Table 5.2).

mongodbadmin.php
1 <?
2 . . .
3 i f (! $document) {
4 $document = findMongoDbDocument ($ REQUEST[' search '] , $ REQUEST['db '] ,

$ REQUEST[' c o l l e c t i o n '] , true) ;
5 $customId = true ;
6 }
7 . . .
8 function findMongoDbDocument ($ id , $db , $ c o l l e c t i o n , $ forceCustomId = fa l se)
9 {

10 . . .
11 $ c o l l e c t i o n = $mongo−>selectDB ($db)−>s e l e c t C o l l e c t i o n ($ c o l l e c t i o n) ;
12 . . .
13 $document =$ c o l l e c t i o n−>f indOne (array (' i d ' => $ id)) ;
14 . . .
15 }
16 . . .
17 ?>

Attack URL

http://victimHost/mongodbadmin.php?search[$ne]=1&db=test&collection=test

Figure 2.6: JSON injection vulnerability.

Figure 2.6 shows a PHP application with a JSON injection vulnerabil-

ity. Line 13 of mongodbadmin.php in Figure 2.6 builds an array consisting of a

24

single key-value pair, where the key is “ id” and the value is equal to the user

input obtained from $ REQUEST [‘search’]. The Mongo API transforms this

array into a JSON query and sends it to MongoDB. The intention is to return

all database items whose id field is equal to the user-supplied value.

A malicious user, however, can set the search variable to be an array

value, array($ne => 1). In the resulting JSON query, line 13 of Figure 2.6

no longer compares id for equality with $id, but instead interprets the first

element of $id as a function, ($ne), the second element, (1), as the argument

to this function, and returns all database items whose id is not equal to 1. In

this case, user input is supposed to be a string constant, but instead symbols

$ne are interpreted as code in the query.

Figure 2.7 shows another vulnerable PHP application. Lines 3 to 18

build a query string from user input, Line 21 sends the resulting JavaScript

program to MongoDB. MongoDB evaluates this program on every key-value

pair in the database and returns the pairs on which the program evaluates

to “true”. The query is supposed to retrieve data whose privilege keys are

the same as userType. The malicious URL, however, tricks the application

into generating a tautology query that always returns “true”. Note that user-

injected symbols ;, return, }, and // are parsed into code in the JavaScript

query:

function q(){ var default user = ‘normal′;

var admin passwd = ‘guessme′;

var userType = 1; return true; }//....

25

vulfquery.php
1 <?
2 // Bui ld a JavaScr ip t func t i on query from user input
3 $query body = ”
4 f unc t i on q () {
5 var d e f a u l t u s e r = ‘ normal ’ ;
6 var admin passwd = ‘ guessme ’ ;
7 var userType = ” . $ GET [‘ user ’] . ” ;
8 var userPwd = ” . $ GET [‘ passwd ’] . ” ;
9 i f (userType == ‘ admin ’ && userPwd == admin passwd)

10 userType = ‘ admin ’ ;
11 e l s e
12 userType = ‘ normal ’ ;
13

14 i f (t h i s . s howpr i v i l e g e == userType)
15 r e turn true ;
16 e l s e
17 r e turn f a l s e ;
18 }” ;
19
20 // I n i t i a t e a func t i on query
21 $ r e s u l t = $ c o l l e c t i o n−>f i n d (array (‘ $where ’ => $query body)) ;
22 ?>

Attack URL

http://victimHost/vulfquery.php?user=1;return true;}//

Figure 2.7: JavaScript injection vulnerability.

2.6 Related Work

Researchers have suggested many ideas to prevent an adversary from

abusing Web application bugs. Against each Web threat described in Sec-

tion 2.5, Table 2.2 groups the proposed studies according to two criteria: (1)

client or server side where the defense is intended to be deployed and (2) the

analysis type. Static methods find or repair vulnerabilities before Web appli-

cations are deployed. Dynamic methods identify and then block Web attacks

at runtime. Hybrid methods use both static and dynamic information.

26

Server-sides Client-sides
Cause Web attacks Static Dynamic Hybrid Dynamic

Access-control
bugs

Forced browsing [2, 65, 73] [7, 15, 23] [21]
CSRF [21, 83] [4, 61]
EAR [17]

Illegitimate
data flows

Client-side XSS [62] [27, 37]
Reflected XSS [26, 34, 66] [45, 53, 63] [27, 37, 80]

SQL command injection [26, 34, 66, 78] [22, 45, 53, 63, 80]
SSI [63]

HTTP response splitting [34] [63]

Application
logic errors

Parameter tampering [5, 74]

Table 2.2: Related work classification

27

Table 2.2 positions our methods among related work. RoleCast and

FixMeUp are static methods for finding forced browsing vulnerabilities and

repairing such vulnerabilities, respectively. Diglossia is a dynamic frame-

work that protects a server-side Web application from SQL/NoSQL injection

attacks.

The following sections explain other related static and dynamic ap-

proaches. The advantages of static methods are two-fold. First, they find

vulnerabilities before application deployment. They also require no runtime

performance overhead. Unfortunately, static bug-finding tools often suffer

from false positives because they rely on over-approximations of dynamic pro-

gram behavior. Their expensive interprocedural analyses are also a hindrance

for wide deployment. However, static tools can find vulnerabilities with rea-

sonable false positives with intentional coarse approximations.

In general, dynamic methods are precise in identifying application at-

tacks due to their ability to track dynamic program behaviors. However, a

dynamic analysis also has challenges, such as incomplete code coverage and

runtime performance overhead.

2.6.1 Static Detection and Remediation of Access-control Bugs

Detection of access-control bugs requires a correct access-control policy

that specifies access-control checks and security-sensitive operations. Some

static detection methods require developers to specify access-control policies.

Because of difficulties in analyzing and specifying access-control policies in

28

large legacy applications, other methods infer policies by using software engi-

neering patterns or auxiliary information.

Using specified access-control policies. Several approaches employ access-

control specifications to identify forced-browsing vulnerabilities [2, 11, 73]. Sun

et al. require programmers to specify the variable states used at the intended

checks for each application role and then automatically find vulnerable execu-

tion paths with unchecked access to the role’s privileged pages [73]. Balzarotti

et al. propose a method for finding workflow violations caused by unintended

entry points [2]. They derive the intended access-control checks from user

specified variables. Both methods heavily rely on identifying link relations be-

tween pages by statically approximating HTML outcome with link graphs or

context free grammars. However, they are not robust because the difficulty of

resolving dynamic values in generating HTML outcome varies greatly between

applications. Chlipala finds security violations by statically verifying whether

the application’s behavior is consistent with a policy specified as a database

query [11]. However, his verification only works on Ur [10], a strictly typed

functional programming language, which is not directly applicable to legacy

Web applications.

No prior work conducts a source-level remediation on forced-browsing

vulnerabilities. By contrast, FixMeUp builds source-level patches that repair

access-control bugs. For automatic remediation of CSRF vulnerabilities, Zhou

et al. suggest a hybrid method that statically inserts token validation checks

and dynamically transforms an HTTP outcome page to initiate an HTTP

29

request along with CSRF tokens [83]. They identify valid locations for code

changes with annotated token validation checks and sensitive operations.

Static inference of access-control policy. Without a programmer-provided

specification, several static methods (1) infer the application’s access-control

policies and (2) find violations of such inferred policies. They define an access-

control policy as a mapping of security-sensitive operations to access-control

checks that must precede them. Tan et al. use interprocedural analysis to find

missing access-control checks in SELinux [75]. However, they only check the

presence of access-control checks, but overlook whether the preceding checks

must or may protect sensitive operations. Pistoia et al. [31, 54] and Sistla et

al. [64] propose techniques for finding missing security checks in Java library

code. Doupé et al. use a universal security policy—page redirection calls must

be followed by program termination calls—to find EAR vulnerabilities. These

papers assume that a certain policy must hold everywhere for events of a given

type.

As described in Section 2.5.1, access-control logic in Web applications

is more sophisticated than simple “this check must always precede that op-

eration” patterns. They are role- and context-sensitive, with different poli-

cies enforced on different execution paths. Simple pattern matching will not

find violations of such policies. RoleCast infers application and role-specific

access-control checks without specification by exploiting software engineering

conventions common in Web applications.

30

Inferring security policies using auxiliary information. Inference and

verification of security policies implemented by a given program often benefit

from auxiliary information and specifications. For example, Livshits et al. find

errors by mining software revision histories [33]. Srivastava et al. use indepen-

dent implementations of the same Java class library API to find discrepancies

in security policies between implementations [70].

2.6.2 Dynamic Detection and Remediation of Access-control Bugs

Several dynamic security analyses find security violations or enforce

a given security policy by tracking program execution. Hallé et al. dynam-

ically validate whether page navigation within a given application conforms

to the state machine specified by a programmer [23]. GuardRails, Nemesis

and RESIN require a developer to provide explicit access-control policies and

enforce them dynamically [7, 15, 81].

Alternatives to explicit specification include learning the state machine

by observing benign runs and then relying on anomaly detection to find vio-

lations [12], or using static analysis of the client code to create a conservative

model of legitimate request patterns and detecting deviations from these pat-

terns at runtime [21]. Violations caused by missing access-control checks are

an example of generic “execution omission” bugs. Zhang et al. presented a

general dynamic approach to detect such bugs [82].

For CSRF attacks, Barth et al. dynamically attach to all HTTP re-

quests origin headers that show what sites send HTTP requests [4]. Ryck et

31

al. dynamically tag each HTTP request with a browsing context state and

then check whether cross-origin requests should be rejected [61].

In addition to the usual challenges of dynamic analysis, such as incom-

plete coverage, once dynamic enforcement of access-control policies detects

a violation, it is limited in what it can do. Typically, the runtime enforce-

ment mechanism terminates the application. After all, when an access-control

check fails, the mechanism does not know what the programmer intended the

application to do.

2.6.3 Static Detection of Illegitimate Data Flows

Many researchers have proposed static methods for identifying illegiti-

mate data flows. They perform pointer and taint analyses to find unsanitized

data flows from user input to sensitive sinks [26, 34, 66]. These methods can

verify that a sanitization routine is always called on tainted inputs, but not

whether sanitization is performed correctly. Since incorrectly sanitized input

may still cause an injection attack, it is essential to precisely model the seman-

tics of string operations performing sanitization. Wassermann and Su model

string operations as transducers and check whether non-terminals in the query

are tainted by user input [78].

2.6.4 Dynamic Detection and Remediation of Illegitimate Data
Flows

Most dynamic detection methods aim to precisely track the source of

every byte and thus determine which parts of the application-generated code

32

come from tainted user input and which come from a trusted source [22, 45,

53, 80]. All of these tools use a simple, imprecise definition of “code” and

consequently suffer from false positives and false negatives when detecting

SQL injection attacks (see Table 5.1).

To avoid the expense of byte-level taint tracking, several dynamic meth-

ods modify and examine inputs and generated queries. For example, Su and

Wassermann wrap user input with meta-characters, propagate meta-characters

through string operations in the program, parse the resulting query, and verify

that if a meta-character appears in the parse tree, then it is in a terminal node

and has a parent non-terminal such that the meta-characters wrap the descen-

dant terminal nodes in their entirety [71]. This approach suffers from false

positives and false negatives because how to wrap input (e.g., the entire in-

put string, each word, and/or each numeric value) depends on the application

generating the query.

To infer the tainted parts of the query, Sekar proposes to measure

similarity between the query and user input [63], while Liu et al. compare the

query to previous queries generated from benign inputs [32]. In addition to

being unsound, these heuristics do not use a precise definition of code and

non-code and thus suffer from false positives and false negatives.

CANDID performs a shadow execution of the program on a benign

input “aaa. . . a”, compares the resulting query with the actual query, and

reports a code injection attack if the queries differ syntactically [3]. As Ray

and Ligatti point out, this analysis is insufficient to differentiate code from

33

non-code [58]. CANDID cannot tell which parts of the query came from user

input and which came from the application itself, and thus cannot detect

injected identifiers (where user input injects a bound variable name that occurs

elsewhere in the query), injected method invocations, and incorrect types of

literals—see examples in Section 5.1.2.

Randomization and complementary encoding. To prevent the injection

of SQL commands, SQLrand remaps SQL keywords to secret, hard-to-guess

values [6]. Applications must be modified to use the remapped keywords in

the generated queries, and database middleware must be modified to decrypt

them back to original keywords. The mapping must remain secret from all

users. This approach requires pervasive changes to applications and database

implementations and is thus difficult to deploy.

Mui et al. suggest using complementary encoding for user input [40].

The goal is to strictly separate the character set appearing in user input from

the character set used by the system internally. This approach cannot be

deployed without changing databases, Web browsers, and all other systems

dealing with user input. By contrast, Diglossia is a simple PHP extension

that does not require any modifications to applications or databases.

2.6.5 Static Detection of Application Logic Bugs

A popular bug-finding approach is to mine the program for patterns

and look for bugs as deviations or anomalies. This approach typically finds

frequently occurring local, intraprocedural patterns [18]. Sun et al. find appli-

34

cation logic bugs in E-commerce Web applications [74]. For a given application

along with annotations of which variables implement payment logic, they con-

duct a symbolic execution to model work flows among payment participants.

Then, they check with a static taint analysis whether payment invariants are

forgeable.

Several tools learn from a developer-provided fix and help apply similar

fixes elsewhere. They perform the same syntactic edit on two clones [42], or

suggest changes for API migration [1], or do not perform the edit [44]. Meng

et al. ask users where to apply the edit [35] or find locations to apply edits

automatically [36]. These approaches only apply local edits and none of them

consider the interprocedural edits that are required to repair access-control

logic. In the more limited domain of access-control bugs, FixMeUp automates

both finding the missing logic and applying the fix.

2.6.6 Dynamic Detection and Remediation of Application Logic
Bugs

Bisht et al. propose NoTamper, which finds omitted input validation

logic in server-side Web applications [5]. After identifying target input param-

eters that have client-side validation checks, they check whether benign and

tampered input parameters produce different server responses. If they produce

similar responses, NoTamper reports that server-side applications do not have

proper input validation logic.

BLUEPRINT and ConScript block XSS attacks by dynamically enforc-

35

ing given security policies in a client-side Web application instead of identi-

fying illegitimate data flows [27, 37]. However, both methods involve heavy

augmentation of server-side or client-side Web applications to specify security

policies.

Dynamic program repair fixes the symptom, but not the cause of the

error [9, 15, 23, 27, 37, 43, 60, 81]. For example, dynamic repair allocates a new

object on a null-pointer exception, or ignores out-of-bounds references instead

of terminating the program. The dynamic fixes, however, are not reflected in

the source code and require a special runtime.

36

Chapter 3

Automatically Finding Missing Access-control

Checks in Web Applications

This chapter introduces a robust method for finding missing access-

control checks in Web applications. The main challenge is that each applica-

tion—and even different roles within the same application, such as administra-

tors and regular users—implements checks in a different, often idiosyncratic

way, using different variables to determine whether the user is authorized to

perform a particular operation. Finding missing checks is easier if the pro-

grammer formally specifies the application’s security policy, e.g., via annota-

tions or data-flow assertions [15, 81], but the overwhelming majority of Web

applications today are not accompanied by specifications of their intended

authorization policies.

Previous techniques for finding missing access-control checks without

a programmer-provided policy take the syntactic definition of checks as in-

put. Therefore, they must know a priori the syntactic form of every check.

For example, Java programs perform security mediation by calling predefined

methods in the SecurityManager class from the Java libraries [31, 54, 64, 70].

This approach is suitable for verifying security mediation in library and system

37

code, for which there exists a standard protection paradigm, but it does not

work for finding missing authorization checks in applications because there is

no standard set of checks used by all applications or even within the same

application.

This chapter presents RoleCast, a static tool that finds omission

of access-control checks. Given a Web application, RoleCast automati-

cally infers (1) the set of user roles in this application and (2) the access-

control checks—specific to each role—that must be performed prior to execut-

ing security-sensitive operations such as database updates. RoleCast then

(3) finds missing access-control checks.

RoleCast does not rely on programmer annotations or an external

specification that indicates the application’s intended authorization policy, nor

does it assume a priori which methods or variables implement access-control

checks. RoleCast exploits common software engineering patterns in Web

applications. A typical Web application has only a small number of sources

for authorization information (e.g., session state, cookies, results of reading

the user database). Therefore, all authorization checks involve a conditional

branch on variables holding authorization information. Furthermore, individ-

ual Web pages function as program modules and each role within the appli-

cation is implemented by its own set of modules (i.e., pages). Because each

page is typically implemented by one or more program files in PHP and JSP

applications, the sets of files associated with different user roles are largely

disjoint.

38

Our static analysis that exploits the above properties has four phases.

Phase I performs flow- and context-sensitive interprocedural analysis to collect

calling contexts on which security-sensitive operations are control dependent.

For each context, RoleCast analyzes interprocedural control dependencies

to identify critical variables, i.e., variables that control reachability of security-

sensitive operations. It then uses branch asymmetry to eliminate conditional

statements that are unlikely to implement access-control checks because they

do not contain branches corresponding to abnormal exit in the event of a failed

check. This step alone is insufficient, however, because many critical variables

(e.g., those responsible for logging) are unrelated to security.

Phase II performs role inference. This step is the key analysis and is

critical because different roles within the same application often require dif-

ferent checks. For example, prior to removing an entry from the password

database, a photo-sharing application may check the session variable to verify

that the user performing the action is logged in with administrator privileges,

but this check is not needed for updating the content database with users’

photos. RoleCast infers application-specific roles by analyzing the modular

structure of the application. As mentioned above, in PHP and JSP applica-

tions this structure is represented by program files. Phase II partitions file

contexts that use critical variables into roles. A file context is simply a coars-

ened representation of a calling context. The partitioning algorithm arranges

file contexts into groups so as to minimize the number of files shared between

groups. We call each group a role.

39

Phase III of RoleCast determines, within a role, which critical vari-

ables are checked consistently and classifies this subset of the critical variables

as security-critical variables. Phase IV then reports potential vulnerabilities in

the following cases: (1) if a calling context reaches a security-sensitive opera-

tion without a check; or (2) if the role contains a single context and thus there

is no basis for consistency analysis; or (3) if a check is performed inconsistently

(in the majority, but not all calling contexts of the role).

Because our approach infers the Web application’s authorization logic

under the assumption that the application follows common code design pat-

terns, it may suffer from both false positives and false negatives. This im-

precision is inevitable because there is no standard, well-defined protection

paradigm for Web applications. Furthermore, no fixed set of operations is

syntactically recognizable as access-control checks (in contrast to prior ap-

proaches). Instead, RoleCast partitions the program into roles and infers,

for each role, the access-control checks and security-relevant program vari-

ables by recognizing how they are used consistently (or almost consistently)

within the role to control access to security-sensitive operations. When eval-

uated on 11 substantial, real-world PHP and JSP applications, RoleCast

discovered 13 previously unreported security vulnerabilities with only 3 false

positives, demonstrating its usefulness for practical security analysis of Web

applications.

RoleCast demonstrates that it is possible to accurately infer the se-

curity logic of Web applications at the level of individual user roles by static

40

analysis, without using any programmer annotations or formally specified poli-

cies, but relying instead on common software engineering patterns used by

application developers.

3.1 Access-control Logic in Web Applications

This section starts by explaining static analysis tools that we used

to implement RoleCast. It also describes the common design patterns for

application- and role-specific access control logic.

3.1.1 Translating Web Applications into Java

Translating scripting languages into Java is becoming a popular ap-

proach because it helps improve performance by taking advantage of mature

JVM compilers and garbage collectors. We exploit this practice by (1) con-

verting Web applications into Java class files, and (2) extending the Soot static

analysis framework for Java programs [68] with new algorithms for static se-

curity analysis of Web applications.

To translate JSP and PHP programs into Java class files we use, re-

spectively, the Tomcat Web server [76] and Quercus compiler [57]. Tomcat

produces well-formed Java; Quercus does not. PHP is a dynamically typed

language and the target of every callsite is potentially bound at runtime. In-

stead of analyzing calls in the PHP code, Quercus translates each PHP func-

tion into a Java class that contains a main method and methods that initialize

the global hash table and member variables. Every function call is translated

41

by Quercus into a reflective method call or a lookup in the hash table. This

process obscures the call graph.

Because our security analysis requires a precise call graph, we must

reverse-engineer this translation. We resolve the targets of indirect method

calls produced by Quercus using a flow- and context-insensitive intraprocedural

symbol propagation.

3.1.2 Application-specific Access-control Logic

Our security analysis targets interactive Web applications such as blogs,

e-commerce programs, and user content management systems. Interactive

applications of this type constitute the overwhelming majority of real-world

Web applications. Since the main purpose of these applications is to display,

manage, and/or update information stored in a backend database(s), access

control on database operations is critical to their integrity.

Security-sensitive operations. We consider all operations that may affect

the integrity of database to be security-sensitive operations. These include all

queries that insert, delete, or update the database. Web applications typically

use SQL to interact with the backend database. Therefore, RoleCast marks

INSERT, DELETE, and UPDATE mysql query statements in PHP code as

security-sensitive operations. Note that statically determining the type of a

SQL query in a given statement requires program analysis. RoleCast con-

servatively marks all statically unresolved SQL queries as sensitive. For JSP,

RoleCast marks java.sql.Statement.executeQuery and .executeUpdate calls ex-

42

ecuting INSERT, DELETE, or UPDATE SQL queries as security-sensitive

operations.

We deliberately do not include SELECT and SHOW queries which

retrieve information from the database in our definition of security-sensitive

operations. Many Web applications intend certain SELECT operations to

be reachable without any prior access-control checks. For example, during

authentication, a SELECT statement may retrieve a stored password from

the database in order to compare it with the password typed by the user.

Without a programmer-provided annotation or specification, it is not possible

to separate SELECT operations that need to be protected from those that may

be legitimately accessed without any checks. To avoid generating a prohibitive

number of false positives, we omit SELECT and SHOW operations from our

analysis of Web applications’ access-control logic.

Access control logic as a software design pattern. To identify application-

and role-specific access-control logic, we take advantage of the software engi-

neering patterns commonly used by the developers of Web applications. A

Web application typically produces multiple HTML pages and generates each

page by invoking code from several files. The following three observations

guide our analysis.

Our first observation about access-control logic is that when an access-

control check fails, the program quickly terminates or restarts. Intuitively,

when a user does not hold the appropriate permissions or his credentials do

43

not pass verification, the program exits quickly.

Our second observation about correct access-control logic is that every

path leading to a security-sensitive operation from any program entry point

must contain an access-control check. This observation alone, however, is not

sufficient to identify checks in application code because different paths may

involve different checks and different program variables.

Our third observation is that distinct application-specific roles usually

involve different program files. Since the main purpose of interactive Web ap-

plications is to manage user-specific content and to provide services to users,

users’ privileges and semantic roles determine the services that are available to

them. Therefore, the application’s file structure, which in a Web application

represents the module structure, reflects a clear distinction between roles de-

fined by the user’s privileges. For instance, blog applications typically include

administrator pages that modify content and register new user profiles. On

the other hand, regular blog users may only read other users’ content, add

comments, and update their own content. In theory, developers could struc-

ture their applications so that one file handles multiple user roles, but this is

not the case in real-world applications.

In the Web applications that we examined, individual program files

contained only code specific to a single user role. Figure 3.1 shows a rep-

resentative example with a simple page structure taken from the DNscript

application. DNscript supports two types of users: an administrator and a

regular user. All administrator code and pages are in one set of files, while all

44

Figure 3.1: File structure of DNscript

user code and pages are in a different set of files.

Our analysis exploits the observation that access-control checks within

each role are usually very similar. Inferring the roles requires automatic par-

titioning of contexts based on commonalities in their access-control logic.

3.2 Implementation

RoleCast has four analysis phases as Figure 3.2 demonstrates. Phase

I identifies critical variables that control whether security-sensitive operations

execute or not. Phase II partitions contexts into groups that approximate

application-specific user roles. For each role, Phase III computes the subset

of critical variables responsible for enforcing the access-control logic of that

role. Phase IV discovers missing access-control checks by verifying whether

the relevant variables are checked consistently within the role.

To identify critical variables, Phase I performs interprocedural, flow-

45

Figure 3.2: Architecture of RoleCast.

and context-sensitive control-dependence and data-flow analysis. It refines

the set of critical variables using branch asymmetry, based on the observa-

tion that failed authorization checks quickly lead to program exit. To infer

46

application roles, Phase II maps the set of methods responsible for checking

critical variables to program files and partitions them into groups, minimizing

the number of shared files between groups. This algorithm seeks to discover

the popular program structure in which developers put the code responsible

for different application roles into different files. This heuristic is the key new

component of our analysis and works well in practice.

Phase III considers each role and computes the subset of critical vari-

ables that are used consistently—that is, in a sufficiently large fraction of

contexts associated with this role—to control reachability of security-sensitive

operations in that role. The threshold is a parameter of the system. Phase

IV reports a potential vulnerability whenever it finds a security-sensitive op-

eration that can be reached without checking the security-critical variables

specific to the role. It also reports all roles that involve a single context and

thus preclude consistency analysis, but this case is relatively rare.

3.2.1 Phase I: Finding Security-sensitive Operations, Dominating
Calling Contexts, and Critical Variables

Our algorithm for identifying access-control logic takes advantage of

the following observations:

1. Any access-control check involves a branch statement on one or more

critical variables.

2. In the branch corresponding to the failed check, the program does not

47

reach the security-sensitive operation and exits abnormally. For example,

the program calls exit, calls die, or returns to the initial page.

3. The number of program statements in the branch from the check to

the abnormal exit is significantly smaller than the number of program

statements in the branch leading to the security-sensitive operation.

4. Correct access-control logic must consistently check a certain subset of

critical variables prior to executing security-sensitive operations.

This section describes our algorithms that, for each security-sensitive opera-

tion, statically compute the following: calling contexts, critical branches (i.e.,

conditional statements that determine whether or not the security-sensitive op-

eration executes), critical methods (i.e., methods that contain critical branches),

and critical variables (i.e., variables referenced by critical branches).

Our analysis is fairly coarse. It only computes which variables are

checked prior to security-sensitive operations, but not how they are checked.

Therefore, RoleCast will miss vulnerabilities caused by incorrectly imple-

mented (as opposed to entirely missing) checks on the right variables.

3.2.1.1 Security-sensitive Operations and Calling Contexts

Our analysis starts by identifying security-sensitive operations that

may affect the integrity of the database. A typical Web application specifies

database operations using a string parameter passed to a generic SQL query

48

statement. We identify all calls to mysql query in PHP and java.sql.Statement.-

executeQuery and java.sql.Statement.executeUpdate in JSP as candidates for

security-sensitive operations. The same call, however, may execute different

database operations depending on the value of its string parameter. There-

fore, we perform an imprecise context-sensitive data-flow analysis to resolve

the string arguments of database calls and eliminate all database operations

that do not modify the database (see Section 3.1.2) from our set of security-

sensitive operations.

RoleCast computes the set of all calling contexts for each security-

sensitive operation e. RoleCast identifies the methods that may directly

invoke e, then performs a backward depth-first pass from each such method

over the call graph. The analysis builds a tree of contexts whose root is

e and whose leaves are program entry points. For each calling context cc

corresponding to a call-chain path from e to a leaf, the (cc, e) pair is added

to the set of all calling contexts. This analysis records each invoked method

only once per calling context, even in the presence of cyclic contexts. This is

sufficient for determining whether or not an access-control check is present in

the context.

Next, RoleCast propagates the strings passed as parameters in each

calling context cc to the candidate operation e. The goal is to eliminate all

pairs (cc, e) where we can statically prove that e cannot be a security-sensitive

operation, i.e., none of the statically feasible database operations at e affect the

integrity of the database because they can only execute SELECT or SHOW

49

queries.

We find that many Web applications generate SQL queries by assigning

a seed string constant to a variable and then concatenating additional string

constants. The seed string usually identifies the type of the SQL query (UP-

DATE, SELECT, etc.). Therefore, RoleCast models string concatenation,

assignment of strings, and the behavior of string get() and set() methods. It

performs forward, interprocedural, context-sensitive constant propagation on

the string arguments for each calling context cc of operation e. RoleCast

does not model the value of strings returned by method calls not in the calling

context. If the string is passed as an argument to some method m /∈ cc, we

conservatively assume that the string is modified and RoleCast marks oper-

ation e as security-sensitive. Otherwise, the analysis propagates string values

of actual arguments to the formal parameters of methods.

If this analysis proves that e is a SELECT or SHOW query, then Role-

Cast removes the (cc, e) from the set of calling contexts. The “unresolved”

column in Table 3.1, explained in more detail in Section 3.3, shows that fewer

than 5% of query types are unresolved, while for at least 95% of all database

operations in our sample Web applications, RoleCast successfully resolves

whether or not they are sensitive, i.e., whether they can affect the integrity of

the database.

50

3.2.1.2 Critical Branches and Critical Methods

For each calling context and security-sensitive operation pair (cc, e),

RoleCast performs an interprocedural control-dependence analysis to find

the critical branches B(cc, e) performed in the critical methods CM(cc, e).

These branches determine whether or not e executes. A critical method con-

tains one or more critical branches on which e is interprocedurally control

dependent. Note that some critical methods are in cc and some are not. For

the reader’s convenience, we review the classical intraprocedural definition of

control dependence [14].

Definition 1. If G = (N,E) is a control-flow graph (CFG) and s, b ∈ N , b ; s

iff there exists at least one path reaching from b to s in G.

Definition 2. If G = (N,E) is a control-flow graph (CFG) and s, b ∈ N , s is

control dependent on b iff b ; s and s post-dominates all v 6= b on b ; s,

and s does not post-dominate b.

Definition 3. If G = (N,E) is a control-flow graph (CFG) and a, b ∈ N , a

post-dominates b iff every path in b ; end intersects a.

The set of branch statements on which e is control dependent is computed in

two steps.

1. RoleCast uses intraprocedural control dependence to identify branch

statements in methods from cc that control whether e executes or not.

For each method mi ∈ cc where mi calls mi+1, the algorithm finds branch

51

statements on which the callsite of mi+1 is control dependent and adds

them to B(cc, e).

2. RoleCast then considers the set of methods N such that the callsite

of ni ∈ N dominates some method m ∈ cc or ni is called unconditionally

from nj ∈ N . Because every method ni ∈ N is invoked before reaching

e, ni interprocedurally dominates e. For each ni ∈ N , RoleCast finds

branch statements on which the program-exit calls in ni (if any) are

control dependent and adds them to B(cc, e).

Next, RoleCast eliminates statements from B that do not match our

observation that failed access-control checks in Web applications terminate or

restart the program quickly. To find branch statements in which one branch

exits quickly while the other executes many more statements, RoleCast

calculates the asymmetric ratio for each b ∈ B as follows.

RoleCast counts the number of statements in, respectively, the short-

est path reaching program termination and the shortest path reaching e. Each

statement in a loop counts as one statement. The asymmetric ratio is the lat-

ter count divided by the former. The larger the value, the more asymmetric

the branches are. If the calculated asymmetric ratio for b is less than a thresh-

old θasymm, we remove b from B because b does not have a branch that causes

the program to exit quickly and thus is not likely to be security-critical. Our

experiments use 100 as the default θasymm threshold when the calculated ratio

for one or more branch statements is greater than 100; otherwise, we use the

52

median ratio of all branch statements. As Table 3.3 shows, the results are not

very sensitive to the default value. In our sample applications, applying the

default filter reduces the number of critical branches by 36% to 83% (54% on

average).

After this step, the set B(cc, e) contains critical branch statements.

We map B(cc, e) to the set of critical methods CM(cc, e) that contain one or

more branches from B(cc, e). Recall that some critical methods are in cc and

some are not. Critical methods are a superset of the methods responsible for

implementing the application’s security logic.

3.2.1.3 Critical Variables

Informally, a program variable is critical if its value determines whether

or not some security-sensitive operation is reached. All security-critical vari-

ables involved in the program’s security logic (e.g., variables holding user per-

missions, session state, etc.) are critical, but the reverse is not always true:

critical variables are a superset of security-critical variables. We derive the

set of critical variables from the variables referenced directly or indirectly by

the critical branches B(cc, e). Section 3.2.4 further refines the set of critical

variables into the set of security-critical variables.

Given B(cc, e), we compute the set of critical variables V (cc, e) where

v ∈ V iff ∃b ∈ B that references v directly or indirectly through an intrapro-

cedural data-flow chain. We use a simple reaching definitions algorithm to

compute indirect references within a method. We compute the backward in-

53

traprocedural data-flow slice of v for all v referenced by b. Thus if b references

v and v depends on u (e.g., v = foo(u)), we add v and u to V .

We found that intraprocedural analysis was sufficient for our applica-

tions, but more sophisticated and object-oriented applications may require

interprocedural slicing.

3.2.2 Phase II: Partitioning Into Roles

This section describes how RoleCast partitions applications into roles.

We use role partitioning to answer the question: “Which critical variables

should be checked before invoking a security-sensitive operation e in a given

calling context?”

Without role partitioning, critical variables are not very useful because

there are a lot of them and they are not always checked before every security-

sensitive operation. Reporting a vulnerability whenever some critical variable

is checked inconsistently results in many false positives (see Section 3.3). Role

partitioning exploits the observation made in Section 3.1.2 that Web applica-

tions are organized around distinct user roles (e.g., administrator and regular

user). We note that (1) applications place the code that generates pages for

different roles into different files, and, furthermore, (2) the files containing the

security logic for a given role are distinct from the files containing the security

logic for other roles. These observations motivate an approach that focuses

on finding sets of (cc, e) in which the critical methods CM(cc, e) use the same

files to enforce their security logic.

54

RoleCast starts by coarsening its program representation from meth-

ods and calling contexts to files. This analysis maps each set of critical methods

CM(cc, e) to a set we call the critical-file context CF . A file cf ∈ CF (cc, e) if

cf defines any method m ∈ CM(cc, e). We also define the file context F (cc, e).

A file f ∈ F (cc, e) if f defines any method m which interprocedurally domi-

nates e. F is a superset of CF—some files in F (cc, e) are critical and some are

not. We refer to the set of all file contexts F of all security-sensitive operations

in the program as F̂ and to the set of all critical-file contexts CF as ĈF .

Since we do not know a priori which file corresponds to which appli-

cation role, our algorithm generates candidate partitions of ĈF and picks the

one that minimizes the number of shared files between roles. The goal is to

group similar critical-file contexts into the same element of the partition. We

consider two critical-file contexts as similar if they share critical files. To gen-

erate a candidate partition, the algorithm chooses a “seed” critical file cf1

and puts all critical-file contexts from ĈF that reference cf1 into the same

group, chooses another critical file cf2 and puts the remaining critical-file con-

texts from ĈF that contain cf2 into another group, and so on. The resulting

partition depends on the order in which seed critical files are chosen. Our

algorithm explores all orders, but only considers frequently occurring critical

files. In practice, the number of such files is small, thus generating candidate

partitions based on all possible orderings of seed files is feasible.

To choose the best partition from the candidates, our algorithm evalu-

ates how well the candidates separate the more general file contexts F̂ . The

55

insight here is that since programmers organize the entire application by roles

(not just the parts responsible for the security logic), the correct partition of

security-related file contexts should also provide a good partition of all file

contexts. RoleCast thus prefers the partition in which the groups are most

self-contained, i.e., do not reference many files used by other groups.

More formally, RoleCast’s partitioning algorithm consists of the fol-

lowing five steps.

1. For each CM(cc, e), compute the critical-file context CF (cc, e) and file

context F (cc, e).

2. Eliminate critical files that are common to all CF (cc, e), i.e., if file f

belongs to the critical-file context cf for all cf ∈ ĈF , then remove f

from all contexts in ĈF . Since these files occur in every critical-file

context, they will not help differentiate roles.

3. Extract a set of seed files (SD) from ĈF . We put file f into SD if it

occurs in at least the θseed fraction of critical-file contexts cf ∈ ĈF . In

our experiments, we set θseed = 0.2. We use only relatively common

critical files as the seeds of the partitioning algorithm, which helps make

the following steps more efficient.

4. Generate all ordered permutations SDi. For each SDi, generate a par-

tition Pi = {G1, . . . Gk} of ĈF as follows. Let SDi = {f1, . . . fn}. Let

T̂F = ĈF and set k = 1. For i = 1 to n, let Ci ⊆ T̂F be the set of

56

all critical-file contexts from T̂F containing file fi. If Ci is not empty,

remove these contexts from T̂F , add them to group Gk, and increment

k.

5. Given candidate partitions, choose the one that minimizes the overlap

between files from different groups. Our algorithm evaluates each candi-

date {G1, . . . Gk} as follows. First, for each group of critical-file contexts

Gj, take the corresponding set of file contexts Fj. Then, for each pair

Fk, Fl where k 6= l, calculate the number of files they have in com-

mon: |Fk ∩ Fl|. The algorithm chooses the partition with the smallest∑
k<l |Fk ∩ Fl|.

Figure 3.3 gives an example of the partitioning process. At the top, we show

five initial file contexts and critical-file contexts produced by Step 1. Step 2

removes the files common to all critical-file contexts, common.php in this exam-

ple, producing three files, process.php, user.php and admin.php. Step 3 selects

these three files as the seed files, because they appear in 1/5, 3/5, and 2/5

of all critical-file contexts, respectively. There are 6 permutations of this set,

thus Step 4 produces 6 candidate partitions. In Figure 3.3, we compare two

of them: (admin.php, user.php, process.php) and (process.php, admin.php,

user.php). The corresponding candidates are P1 = {(A,C), (B,D,E)} and P2

= {(B), (A,C), (D,E)}. To decide which one best approximates user roles,

Step 5 computes the intersection of file contexts between every pair of groups

in each partition and selects the partition with the smallest intersection. In

57

Figure 3.3: Example of partitioning contexts

58

Algorithm 1: Partitioning file contexts into roles

P ← φ { initialize partition candidate set }
n← |SD| { get the size of SD }
for each SDi ∈ n permutation of SD dodTF ← dCF { initialize work list with all critical-file contexts }

k ← 1
for each fj ∈ SDi do
{ put all critical-file context that contain seed file fj into Gk }
for each CF ∈dTF do

if fj ∈ CF then
Gk ← Gk ∪ CFdTF ←dTF − {CF}

end if
end for
if Gk is not empty then

k ← k + 1 { increment the group index }
end if
if dTF is empty then

break { if work list is empty, then break }
end if

end for
Pi ← {G1 . . . Gk} { store the current groups into Pi }
DSi ← 0
{ compute the number of common files among all pairs in Gi }
for each pair (Ga, Gb)a<b from {G1 . . . Gk} do

Fa = the file contexts corresponding to critical-file contexts in Ga

Fb = the file contexts corresponding to critical-file contexts in Gb

DSi ← DSi + |Fa ∩ Fb|
end for
P ← P ∪ {Pi} { add the current partition to the candidate list }
for x = 1 to k do

Gx ← φ { reset groups for the next candidate SDi+1 }
end for

end for
Pick the best Pi ∈ P that has a minimum DSi

our example, since P1 has the fewest files (one) in the intersection, RoleCast

chooses it as the best partition.

The accuracy of the partitioning step depends on using good seed files.

We select files that contain critical variables and appear in many critical-

file contexts, based on our observation that Web applications use common

security logic in most contexts that belong to the same role. One concern

59

is that exploring all permutations of the seed-file set is exponential in the

number of seed files. The selection criteria for seed files are fairly stringent,

and therefore their actual number tends to be small. It never exceeded four

in our experiments. If the number of seed files grows large, the partitioning

algorithm could explore fewer options. For example, it could prioritize by how

often a seed file occurs in the file contexts.

3.2.3 Phase III: Finding Security-critical Variables

The groups in the partition computed by Phase II approximate se-

mantic user roles in the application. Phase III computes the security-critical

variables for each role: the subset of the critical variables that enforce the

role’s security logic.

We assume that the application correctly checks the security-critical

variables in at least some fraction of the critical-file contexts and use this

observation to separate security-critical variables from the rest of the critical

variables. Recall that there is a one-to-one mapping between each critical-

file context CF (cc, e) and the set of its critical variables V (cc, e). Given the

partition {G1, . . . , Gk} of ĈF , let Vi be the set of all critical variables from the

critical-file contexts in Gi. We initialize the set of security-critical variables

SVi = Vi. RoleCast then removes all variables v ∈ SVi that appear in fewer

than a θconsistent fraction of the critical-file contexts in Gi. We use θconsistent =

0.5 as our default. Table 3.5 shows that our results are not very sensitive to

this parameter. We define the remaining subset SVi to be the security-critical

60

variables for role i.

3.2.4 Phase IV: Finding Missing Access-control Checks

This phase reports vulnerabilities. Within each role, all contexts should

consistently check the same security-critical variables before performing a

security-sensitive operation e. Formally, given sv ∈ SVi, RoleCast exam-

ines every (cc, e) in the group of contexts corresponding to role i and verifies

whether sv ∈ V (cc, e) or not. If sv /∈ V (cc, e), RoleCast reports a potential

security vulnerability. To help developers, RoleCast also reports the file(s)

that contains the security-sensitive operation e for the vulnerable (cc, e).

RoleCast reports a potential security vulnerability in two additional

cases: (1) for each file that executes a security-sensitive operation and does not

check any critical variables whatsoever, and (2) for each singleton critical-file

context (i.e., a role with only one critical-file context). Because there is nothing

with which to compare this context, RoleCast cannot apply consistency

analysis and conservatively signals a potential vulnerability.

3.3 Evaluation

We evaluated RoleCast by applying it to a representative set of open-

source PHP and JSP applications. All experiments were performed on a Pen-

tium(R) 3GHZ with 2G of RAM. Table 3.1 shows the benchmarks, lines of

original source code, lines of Java source code produced by translation, and

analysis time. We have not tuned our analysis for performance.

61

DB operations (|contexts|) critical branches
Web applications LoC Java LoC analysis time candidates sensitive unresolved candidates asymm

minibloggie 1.1 2287 5395 47 sec 13 3 0 12 7
DNscript 3150 11186 47 sec 99 26 0 27 5
mybloggie 1.0.0 8874 26958 74 min 195 26 0 135 58
FreeWebShop 2.2.9 8613 28406 110 min 699 175 0 186 82
Wheatblog 1.1 4032 11959 2 min 111 30 0 31 20
phpnews 1.3.0 6037 13086 166 min 80 14 3 65 15
Blog199j 1.9.9 8627 18749 75 min 195 68 2 104 54
eBlog 1.7 13862 24361 410 min 677 261 0 136 17
kaibb 1.0.2 4542 21062 197 min 676 160 0 306 152
JsForum (JSP) 0.1 4242 4242 52 sec 60 32 0 6 1
JSPblog (JSP) 0.2 987 987 16 sec 6 3 0 0 0

Table 3.1: Benchmarks and analysis characterization

62

For example, we unnecessarily re-analyze every context, even if we have

analyzed a similar context before. Memorizing analysis results and other opti-

mizations are likely to reduce analysis time. The three columns in the middle

of the table show the number of contexts for all database operations (candi-

date security-sensitive operations), operations that can affect the integrity of

the database (security-sensitive operations), and database operations whose

type could not be resolved by our analysis. Comparing these three columns

shows that our string propagation is effective at resolving the type of database

operations and rarely has to assume an operation is security-sensitive because

it could not resolve the string argument determining its type. The last two

columns show the number of critical branch statements before and after elim-

inating statements that are not sufficiently asymmetric.

Table 3.2 shows the results of applying RoleCast to our benchmarks.

As described in Section 3.2.2, RoleCast partitions calling contexts con-

taining security-sensitive operations into groups approximating application-

specific user roles. For each role, RoleCast finds critical variables that are

checked in at least the θconsistency fraction of the contexts in this role. If such

a critical variable is not checked in one of the contexts, RoleCast reports

a potential vulnerability. RoleCast also reports a potential vulnerability

if a security-sensitive operation is reachable without any checks at all. We

examined each report by hand and classified it as a false positive or real vul-

nerability.

Note the importance of role partitioning in Table 3.2 for reducing the

63

false positives no
Web applications roles no roles auth. vuln.

minibloggie 1.1 0 0 0 1
DNscript 1 5 0 3
mybloggie 2.1.6 0 0 0 1
FreeWebShop 2.2.9 0 1 0 0
Wheatblog 1.1 1 0 1 0
phpnews 1.3.0 1 12 0 0
Blog199j 1.9.9 0 1 0 0
eBlog 1.7 0 4 2 0
kaibb 1.0.2 0 11 1 0
JsForum (JSP) 0.1 0 0 0 5
JSPblog (JSP) 0.2 0 0 0 3

totals 3 34 4 13

Table 3.2: Accuracy (θconsistency = .5). Note the reduction in false positives
due to role partitioning.

number of false positives. Without role partitioning, a conservative analy-

sis might assume that critical variables should be checked consistently in all

program contexts. All contexts associated with roles that do not require a

particular access-control check would then result in false positives.

The number of false positives after role-specific consistency analysis is

very small. There are several reasons for the remaining false positives. First, if

a role contains only one context, RoleCast cannot apply consistency analysis

and conservatively reports a potential vulnerability. Second, a Web applica-

tion may use a special set of critical variables only for a small fraction of

contexts (this case is rare). Consider Figure 3.5. Both the post2() method call

on Line 11 in index.php and the fullNews() method call on Line 4 in news.php

64

contain security-sensitive operations. A large fraction of calling contexts use

$auth variable to enforce access control (Line 10 in auth.php). On the other

hand, a small fraction of contexts leading to the sensitive database operation in

fullNews use only $Settings (Line 9 in news.php). Because RoleCast decides

that $auth is the variable responsible for security enforcement due to its con-

sistent presence in the contexts of security-sensitive operations, it decides that

the few contexts that only use $Settings are missing a proper access-control

check.

Table 3.2 distinguishes between two kinds of unauthorized database

operations. Some database updates may be relatively harmless, e.g., updating

counters. Nevertheless, if such an update is executed without an access-control

check, it still enables a malicious user to subvert the intended semantics of the

application. Therefore, we do not consider such updates as false positives

and count them in the 3rd column of Table 3.2, labeled “no auth.”. The 4th

column of Table 3.2, labeled “vuln.,” reports database updates that allow a

malicious user to store content into the database without an access-control

check. Because these vulnerabilities are both severe and remotely exploitable,

we notified the authors of all affected applications.

Figure 3.4 shows two files from DNscript that RoleCast reports as

vulnerable. Neither file contains any access-control checks, thus a malicious

user can alter the contents of the backend database by sending an HTTP

request with the name of either file as part of the URL. RoleCast reports

that the security-sensitive operations in DelCB.php and admin/AddCat2.php

65

admin/AddCat2.php

1 <?php
2 // No s e cu r i t y check . I t shou ld have been checked with $ SESSION [‘ admin ’]
3 include ’ i n c / c o n f i g . php ’ ;
4 include ’ i n c /conn . php ’ ;
5 $va lues = ’VALUES (” ’ . $ POST [’ cat name ’] . ’ ”) ’ ;
6 // Secur i ty−s e n s i t i v e opera t ion
7 $ i n s e r t = mysql query (”INSERT INTO gen cat (cat name) ” . $va lues) ;
8 i f ($ i n s e r t)
9 {

10 mysq l c l o s e ($conn) ;
11 . . .
12 }
13

14 ?>

DelCB.php

1 <?php
2 // No s e cu r i t y check . I t shou ld have been checked with $ SESSION [‘member ’]
3 include ’ i n c / c o n f i g . php ’ ;
4 include ’ i n c /conn . php ’ ;
5 // Secur i ty−s e n s i t i v e opera t ion
6 $d e l e t e = mysql query (”DELETE FROM c l o s e b i d where item name = ’ ” .

$item name . ” ’ ”) ;
7 i f ($d e l e t e)
8 {
9 mysq l c l o s e ($conn) ;

10 . . .
11 }
12 ?>

Figure 3.4: Detected vulnerable files in DNscript

should be protected by checking $ SESSION[‘member’] and $ SESSION[‘admin’],

respectively.

Our analysis uses three thresholds: the branch asymmetry threshold

θasymm, the commonality threshold for seed files θseed, and the consistency

threshold for security-critical variables θconsistency. Tables 3.3 through 3.5 show

that the analysis is not very sensitive to these values.

66

θasymm
25 50 100 150 200

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0
DNscript 3 1 3 1 3 1 3 1 3 1
mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0
FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0
Wheatblog 1.1 1 1 1 1 1 1 0 0 0 0
phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1
Blog199j 1.9.9 0 2 0 1 0 0 0 0 0 0
eBlog 1.7 2 0 2 0 2 0 2 0 1 0
kaibb 1.0.2 1 0 1 0 1 0 1 0 1 0
JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0
JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 3.3: Sensitivity of actual vulnerabilities (vl) and false positives (fp) to
θasymm

θseed
0.2 0.3 0.4 0.5 0.6

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0
DNscript 3 1 3 1 3 2 3 1 3 1
mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0
FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0
Wheatblog 1.1 1 1 1 1 1 1 1 1 1 1
phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1
Blog199j 1.9.9 0 0 0 0 0 0 0 0 0 0
eBlog 1.7 2 0 2 0 2 0 2 0 2 0
kaibb 1.0.2 1 0 1 0 1 0 1 0 1 11
JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0
JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 3.4: Sensitivity of actual vulnerabilities (vl) and false positives (fp) to
θseed

67

θconsistency
0.5 0.6 0.7 0.8 0.9

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0
DNscript 3 1 3 1 3 1 3 0 0 0
mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0
FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0
Wheatblog 1.1 1 1 1 1 1 1 1 1 1 1
phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1
Blog199j 1.9.9 0 0 0 0 0 0 0 0 0 0
eBlog 1.7 2 0 2 0 1 0 1 0 1 0
kaibb 1.0.2 1 0 1 0 1 0 1 0 1 0
JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0
JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 3.5: Sensitivity of actual vulnerabilities (vl) and false positives (fp) to
θconsistency

Table 3.3 shows the sensitivity of our results to the branch asymmetry

threshold θasymm as it varies between 25 and 200. The default value is 100.

With θasymm values smaller than 100, RoleCast analyzes more branches,

more critical methods, and more critical variables, but still finds the same

vulnerabilities, although with two more false positives when θasymm = 25.

Table 3.4 shows the sensitivity of our results to the value of the seed

threshold θseed used to generate role partitions. The default value is 0.2. For

kaibb, when θseed is too large, RoleCast may exclude seed files that actually

play an important role in partitioning the application into roles. Note that the

results for DNscript do not change monotonically with the value of θseed. When

θseed = .2 or .3, RoleCast finds three seed files. Two of them correspond to

actual user roles (administrator and regular user) and RoleCast produces

68

the correct partition. When θseed = .4, there are only two seed files, one of

which corresponds to the user role, while the other produces a spurious “role”

with a single context, resulting in a false positive. When θseed = .5 or .6,

RoleCast finds a single seed file, which corresponds to the administrator

role. The resulting partition has two groups—contexts that use the seed file

and contexts that do not use the seed file—which are exactly the same as in

the partition created when θseed = .2 or .3.

Table 3.5 shows how our results change as the θconsistency threshold

varies between 0.5 and 0.9. This threshold controls the fraction of critical-file

contexts in which a variable must appear in order to be considered security-

critical for the given role. The default value is 0.5. In two applications,

increasing the threshold decreases both the number of vulnerabilities detected

and the number of false positives (as expected). For most applications, there is

no difference because the root cause of many reported vulnerabilities is either

the absence of any checks prior to some security-sensitive operation, or roles

containing a single context.

In summary, the algorithm is not very sensitive to its three thresh-

olds, requires role analysis to reduce the false positive rate, and finds actual

vulnerabilities.

3.4 Conclusion

We designed and implemented RoleCast, a new tool for statically

finding missing security checks in the source code of Web applications with-

69

out an explicit policy specification. RoleCast exploits the standard software

engineering conventions used in server-side Web programming to (1) iden-

tify security-sensitive operations such as database updates, (2) automatically

partition all contexts in which such operations are executed into groups ap-

proximating application-specific user roles, (3) identify application- and role-

specific security checks by their semantic function in the application (namely,

these checks control reachability of security-sensitive operations and a failed

check results in quickly terminating or restarting the application), and (4) find

missing checks by consistency analysis of critical variables within each role.

When evaluated on a representative sample of open-source, relatively

large PHP and JSP applications, RoleCast discovered 13 previously unre-

ported vulnerabilities with only 3 false positives.

RoleCast only reports its findings and delegates responsibility of fix-

ing the found access-control vulnerabilities. However, fixing access-control vul-

nerabilities involves replicating existing access-control checks at many places,

which is repetitive and tedious. This motivates an automatic bug-repairing

approach that we address in the next chapter.

70

index.php

1 i f ($ GET [‘ ac t i on ’] == ‘ r e d i r e c t ’)
2 {
3 . . .
4 }
5 $ t i m e s t a r t = getMicrot ime () ;
6 define (‘PHPNews ’ , 1) ;
7 s e s s i o n s t a r t () ;
8 r e q u i r e (‘ auth . php ’) ;
9 . . .

10 // Secur i ty−s e n s i t i v e opera t ion i s in post2
11 post2 () ;

auth.php

1 session start () ;
2 . . .
3 $ r e s u l t = mysql query (’SELECT ∗ FROM ’ . $d b p r e f i x . ’ p o s t e r s WHERE username

= \ ’ ’ . $ i n u s e r . ’ \ ’ AND password = password (\ ’ ’ . $ in password . ’ \ ’) ’) ;
4 $dbQueries++;
5 i f (mysql numrows ($ r e s u l t) != 0)
6 {
7 $auth = true ;
8 . . .
9 // Secur i t y check us ing c r i t i c a l v a r i a b l e $auth

10 i f (! $auth) {
11 exit ;
12 }
13 }

news.php

1 include (’ s e t t i n g s . php ’) ;
2 . . .
3 else i f ($ GET [’ ac t i on ’] == ’ post ’)
4 fu l lNews () ;
5 . . .
6 function fu l lNews () {
7 . . .
8 // C r i t i c a l v a r i a b l e $Se t t i n g s
9 i f ($S e t t i n g s [’ enablecountv iews ’] == ’ 1 ’) {

10 $countviews = mysql query (”UPDATE ” . $d b p r e f i x . ”news SET views=views
+1 WHERE id =’” . $ GET [’ id ’] . ” ’ ”) ;

11 }
12 . . .
13 }

Figure 3.5: Example of a false positive in phpnews 1.3.0

71

Chapter 4

Repairing Access-Control Bugs in Web

Applications

Chapter 3 explored finding access-control bugs. However, repairing

them is a much harder problem and only recently has some progress been

made on semi-automated methods for software repair. Static repair techniques

can now fix violations of simple local patterns that need only one- or two-line

edits [25, 49], or find one- or two-line changes that pass unit tests [79], or

perform user-specified transformations within a single method [1, 35]. Because

server-side Web applications often implement access-control logic over multiple

methods, repairing them requires an interprocedural approach. None of the

prior work addresses interprocedural bugs. Another key issue for repairing

access-control bugs is that many, but not all of the statements implementing

the access-control logic are often already present in the vulnerable code. None

of the prior patch, transformation, refactoring, or repair algorithms check if

the statements are already present in the target code.

This chapter introduces a static interprocedural analysis and program

transformation tool called FixMeUp. FixMeUp finds violations of access-

control policies, produces candidate repairs, eliminates repairs that incorrectly

72

implement the policy, and suggests the remaining repairs to developers.

FixMeUp starts with annotations to the PHP source code marking

(1) access-control checks, (2) the protected sensitive operation, and (3) a tag

indicating the user role to which the policy applies (e.g., root, admin, or blog

poster). FixMeUp assumes that each high-level policy applies throughout

the indicated user role.

FixMeUp uses this specification to compute an access-control tem-

plate (ACT). FixMeUp starts with the conditional statement performing the

correct access-control check and computes all methods and statements in its

backward, interprocedural slice. Given this slice, FixMeUp builds an inter-

procedural, hierarchical representation of all statements in the check’s calling

context on which the check depends. The ACT serves as both a low-level

policy specification and a program transformation template.

To find missing access-control checks, FixMeUp looks at every calling

context in which a sensitive operation may be executed and verifies whether

the access-control logic present in this context matches the ACT for the cor-

responding role. Of course, FixMeUp cannot decide general semantic equiv-

alence of arbitrary code fragments. In practice, the access-control logic of

Web applications is usually very stylized and located close to the program

entry points. The resulting templates are loop-free, consist of relatively few

statements, and have simple control and data dependences (see Table 4.2).

FixMeUp generates candidate repairs by replicating the access-control

73

logic in program contexts where some or all of it is missing. If FixMeUp finds

a vulnerable context that permits execution of some sensitive operation with-

out an access-control check, it transforms the context using the access-control

template. This transformation finds and reuses statements already present in

the vulnerable code and only inserts the statements from the template that

are missing. The repair procedure uses and respects all control and data de-

pendences between statements.

To ensure that the reused statements do not change the meaning of the

inserted policy, FixMeUp computes a fresh template starting from the access-

control check and matches it against the original template. If the templates

do not match, FixMeUp issues a warning. If they match, FixMeUp provides

the transformed code to the developer as the suggested repair.

We evaluate FixMeUp on ten real-world Web applications varying in

size from 1,500 to 100,000+ lines of PHP code. FixMeUp found 38 access-

control bugs and correctly repaired 30 of them. In 7 cases, the inserted access-

control check was added to an existing, alternative check. In one case, our

repair validation procedure automatically detected an unwanted control de-

pendence and issued a warning. In 28 cases, FixMeUp detected that vul-

nerable code already contained one or more, but not all, of the statements

prescribed by the access-control template and adjusted the repair accordingly.

This result shows that detecting which parts of the access-control logic are

already present and correct is critical to repairing access-control vulnerabili-

ties. No prior program repair or transformation approach detects whether the

74

desired logic is already present in the program [1, 25, 35, 49, 79].

FixMeUp guarantees that the repaired code implements the same

access-control policy as the template, but it cannot guarantee that the re-

sulting program is “correct.” For example, FixMeUp may apply the policy

to a context where the developer did not intend to use it, or the repair may

introduce an unwanted dependence into the program (adding an access-control

check always changes the program’s control flow). Static analysis in FixMeUp

is neither sound, nor complete because it does not consider language features

such as dynamic class loading, some external side effects, or eval. The devel-

oper should examine the errors found by FixMeUp and the suggested repairs.

Using automated program analysis tools for verification and bug finding

is now a well-established approach that helps programmers discover errors

and improve code quality in large software systems. No prior tool, however,

can repair access-control errors of omission. FixMeUp is a new tool that

can help Web developers repair common access-control vulnerabilities in their

applications.

4.1 Specifying Access-control Policies

FixMeUp takes as input an explicitly specified or inferred access-

control policy. An access-control policy is a set of role-specific mappings

from program statements executing security-sensitive operations—such as SQL

queries and file operations—to one or more conditional statements that must

be executed prior to these operations. The developer marks the access-control

75

checks and the security-sensitive operations and assigns them a user-role tag.

This high-level specification informs FixMeUp that the marked check must be

performed before the marked operation in all calling contexts associated with

the indicated user role. In Figure 4.1, line 8 of admin.php shows an annotation

that marks the access-control check with the “admin” role tag. Lines 22 and

26 show the annotations for security-sensitive operations. FixMeUp does not

currently support disjunctive policies where operations may be protected by

either check A or check B.

Unlike GuardRails [7], FixMeUp does not require an external spec-

ification of all statements involved in access-control enforcement. Instead,

FixMeUp automatically computes access-control policies from the annota-

tions marking the checks and the protected operations.

4.2 Implementation

This section describes the implementation of FixMeUp. We imple-

mented all analyses in PHC, an open-source PHP compiler [50], and analyze

PHC-generated abstract syntax trees (AST). We started by adding standard

call graph, calling context, data dependence, and control dependence analyses

to PHC.

4.2.1 Computing Access-control Templates

FixMeUp takes as input an explicit mapping from sensitive operations

to correct access-control checks. FixMeUp then performs interprocedural

76

admin.php
1 <?
2 include (” c o n f i g u r a t i o n . php”) ; // s l i c e & ACT
3 include (” f u n c t i o n s . php”) ;
4 require (” lang / $ language . php”) ;
5 $ s e c u r i t y = ” yes ” ; // s l i c e & ACT
6 $ i n c l u d e s c r i p t = ” yes ” ;
7 i f ($ s e c u r i t y == ” yes ”) { // s l i c e & ACT
8 //@ACC(’ admin ’)
9 i f ((! i s set ($PHP AUTH USER)) // s l i c e & ACT

10 | | (! i s set ($PHP AUTH PW))
11 | | ($PHP AUTH USER != ’UT’)
12 | | ($PHP AUTH PW != ’UTCS ’)) {
13 header (’WWW−Authent icate : Bas ic realm=”newsadmin i s t rat ion ” ’) ; //

s l i c e & ACT
14 header (’HTTP/1 .0 401 Unauthorized ’) ; // s l i c e & ACT
15 echo ’<html><head><t i t l e >Access Denied !</ t i t l e ></head><body>

Author i zat ion Required .</body></html> ’ ; // s l i c e & ACT
16 exit ; // s l i c e & ACT
17 } } . . .
18 switch ($act i on) {
19 case ” check ” : check () ; break ;
20 case ”add” : //@SSO(’ admin ’)
21 add () ;
22 break ;
23 case ” d e l e t e ” : //@SSO(’ admin ’)
24 delete () ;
25 break ;
26 . . . } ?>

configuration.php
1 <?php . . .
2 $PHP AUTH PW = $ SERVER [’PHP AUTH PW ’] ; // s l i c e
3 $PHP AUTH USER = $ SERVER [’PHP AUTH USER ’] ; // s l i c e
4 . . . ?>

Access-control template for admin users
(m0 = admin . php (program entry) ,
S0 = {

include (” c o n f i g u r a t i o n . php”) ;
$ s e c u r i t y = ” yes ” ;
i f ($ s e c u r i t y == ” yes ”) {

i f ((! i s set ($PHP AUTH USER))
| | (! i s set ($PHP AUTH PW))
| | ($PHP AUTH USER != ’UT’)
| | ($PHP AUTH PW != ’UTCS ’)) {
header (’WWW−Authent icate : Bas ic realm=”newsadmin i s t rat ion ” ’) ;
header (’HTTP/1 .0 401 Unauthorized ’) ;
echo ’<html><head><t i t l e >Access Denied !</ t i t l e ></head><body>

Author i zat ion Required .</body></html> ’ ;
exit ; } })

Figure 4.1: Newsscript : Slice and access-control template

77

program slicing on the call graph and on the data- and control-dependence

graphs of each method to identify the program statements on which each

access-control check is data- or control-dependent. FixMeUp converts each

slice into a template, which serves as a low-level specification of the correct

policy logic and a blueprint for repair. Informally, the template contains all

statements in the check’s calling context that are relevant to the check: (1)

statements on which the check is data- or control-dependent, and (2) calls to

methods that return before the check is executed but contain some statements

on which the check is dependent.

4.2.1.1 Computing Access-control Slices

Given a conditional access-control check, FixMeUp picks an entry

which has the shortest call depth to check. FixMeUp iteratively computes

the transitive closure of the statements on which check is control- or data-

dependent. This analysis requires the call graph, control-flow graphs, in-

traprocedural aliases, and intraprocedural def-use chains. For each call site,

FixMeUp computes an interprocedural summary of side effects, representing

the def-use information for every parameter, member variable, and base vari-

able at this site. These analyses are standard compiler fare and we do not

describe them further.

In general, slices that perform access-control enforcement are typically

loop-free computations that first acquire or retrieve user credentials or session

state, and then check them. All of our benchmarks follow this pattern. State-

78

ments in these slices update only a small set of dedicated variables which are

used in the check but do not affect the rest of the program. The exceptions

are global variables that hold database connections and session state. These

variables are typically initialized before performing access control and read

throughout the program. When FixMeUp inserts code to repair vulnerabili-

ties, it takes care not to duplicate statements with side effects.

4.2.1.2 Extracting Access-control Templates

Statements in a slice may be spread across multiple methods and thus

do not directly yield an executable code sequence for inserting elsewhere.

Therefore, FixMeUp converts slices into templates.

An access-control template (ACT) is a hierarchical data structure whose

hierarchy mirrors the calling context of the access-control check. Each level

of the ACT corresponds to a method in the context. For each method, the

ACT records the statements in that method that are part of the slice. These

statements may include calls to methods that return before the access-control

check is executed, but only if the call subgraphs rooted in these methods

contain statements that are part of the slice.

The last level of the ACT contains the access-control check and the

failed-authorization code that executes if the check fails (e.g., termination

or redirection). The developer optionally specifies the failed-authorization

branch. Without such specification, FixMeUp uses the branch that contains a

program exit call, such as die or exit. We label each ACT with the programmer-

79

specified user role from the check’s annotation.

Formally, ACTrole is an ordered list of (mi, Si) pairs, where mi are

method names and Si ∈ mi are ordered lists of statements. Each mi is in the

calling context of check, i.e., it will be on the stack when check executes. Each

statement s ∈ Si is part of the access-control logic because (1) the check is

data- or control-dependent on s, or (2) s is a call to a method n that contains

such a statement somewhere in its call graph, but n returns before the check

executes, or (3) s is a statement in the failed-authorization branch of check.

Consider the following example:

1 main () {
2 a = b ;
3 c = c r e d e n t i a l s (a) ;
4 i f (c) then f a i l (. . .) ;
5 perform secu r i t y−s e n s i t i v e opera t i on
6 }

The conditional statement if (c) is the access-control check and its calling

context is simply main. The computed template ACTrole includes the call to

credentials, as well as fail(...) in the branch corresponding to the failed check.

We add the following pair to the ACTrole: (main, { a=b, c=credentials(a), if (c)

then fail(...) }).

Figure 4.2 shows the algorithm that, given a calling context and a slice,

builds an ACT. The algorithm also constructs data- and control-dependence

maps, DDACT and CDACT , which represent all dependences between state-

ments in the ACT. FixMeUp uses them to (1) preserve dependences between

80

GetACT (CC, SLICE) {
1 // INPUT
2 CC = {(cs1,m0), (cs2,m1) . . . (check,mn)}: calling context of the check, where csi+1 ∈ mi is the

call site of mi+1

3 SLICE: statements on which the check is data− or control−dependent and statements executed
when authorization fails

4 // OUTPUT
5 ACT : template {(mi, si)}, where si is an ordered list of statements in method mi

6 DDACT , CDACT : data and control dependences in ACT
7
8 ACT ← ∅
9 ACT.CCsrc ← CC

10 BuildACT (m0, CC, SLICE)
11 DDACT = {(sk, sj) s.t. sk,j ∈ ACT and sk is data−dependent on sj}
12 CDACT = {(sk, sj) s.t. sk,j ∈ ACT and sk is control−dependent on sj}
13
14 return ACT
15 }

BuildACT (mi, CC, SLICE) {
1 Si ← ∅
2 j ← 0
3 for (k = 0 to |mi|, sk ∈ mi) { // |mi| is the number of statements in mi

4 if (sk ∈ SLICE) {
5 Si[j + +] = sk

6 }
7 if (sk is a callsite s . t . (sk,mi+1) ∈ CC) {
8 BuildACT (mi+1, CC, SLICE)
9 }

10 }
11 ACT ← {(mi, Si)} ∪ACT
12 }

Figure 4.2: Computing an access-control template (ACT)

statements when inserting repair code, and (2) match templates to each other

when validating repairs. Figure 4.1 gives an example of an access-control slice

and the corresponding ACT from Newsscript 1.3.

4.2.2 Finding and Repairing Access-control Vulnerabilities

This section firsts give a high-level overview of how FixMeUp finds

vulnerabilities, repairs them, and validates the repairs, and then we describe

each step in more detail.

81

FixMeUp considers all security-sensitive operations in the program.

Recall that each sensitive operation is associated with a particular user role

(see Section 4.1). For each operation, FixMeUp computes all of its calling

contexts. For each context, it considers all candidate checks, computes the

corresponding access-control template ACT ′, and compares it with the role’s

access-control template ACTrole. If some context CCtgt is missing the check, its

ACT ′ will not match ACTrole. This context has an access-control vulnerability

and FixMeUp targets it for repair.

To repair CCtgt, FixMeUp inserts the code from ACTrole into the

methods of CCtgt. ACTrole contains the calling context CCsrc of a correct

access-control check and FixMeUp uses it to guide its interprocedural repair

of CCtgt. FixMeUp matches CCsrc method by method against CCtgt. At

the last matching method minline, FixMeUp inlines all statements from the

methods deeper in CCsrc than minline into minline. We call this adapting the

ACT to a target context. Adaptation produces a method map indicating, for

each msrc ∈ ACTrole, the method mtgt ∈ CCtgt where to insert statements

from msrc.

For each statement in ACTrole, FixMeUp inserts statements from msrc

into the corresponding mtgt only if they are missing from mtgt. In the simplest

case, when a vulnerable context has only the entry method and no code that

corresponds to any code in ACTrole, FixMeUp inserts the entire template into

the entry method.

A repair can potentially introduce two types of undesired semantic

82

methoda(C0, ..., Ci) methodb(C ′0, ..., C
′
i)

Match if (1) methoda = methodb and
(2) all constants Ck = C ′k

localvara = C ∈ mi localvarb = C ′ ∈ mk
Match if (1) mi = mk or both meth-
ods are entry methods and (2) constants
C = C ′

globalvara = C ∈ mi globalvarb = C ′ ∈ mk Match if (1) globalvara = globalvarb
and (2) constants C = C ′

Table 4.1: Matching statements without dependences

changes to the target code. First, statements already present in the target

may affect statements inserted from the template. We call these unintended

changes to the inserted policy. Second, inserted statements may affect state-

ments already present in the target. We call these unintended changes to the

program. Because our analysis keeps track of all data and control dependences

and because our repair procedure carefully renames all variables, FixMeUp

prevent most of these errors. As we show in Section 4.4, FixMeUp detects

when template statements with side effects are already present in the program

and does not insert them.

To validate that there are no unintended changes to an inserted policy,

FixMeUp computes a fresh ACT from the repaired code and compares it with

the adapted ACT . If they match, FixMeUp gives the repaired code to the

developer; otherwise, it issues a warning.

83

isMatchingACT (ACTx, ACTy) {
1 // INPUT: two ACTs to be compared
2 // OUTPUT: true if ACTx and ACTy match, false otherwise
3
4 if (|ACTx| 6= |ACTy |) return false;
5
6 V arMap← φ
7 StatementMap← φ
8 for(sx ∈ ACTx in order) {
9 if (∃only one (sx, sy) s.t. sy ∈ ACTy and isMatching(sx, sy)) {

10 StatementMap← StatementMap ∪ {(sx, sy)}
11 } else {
12 return false;
13 }
14 }
15 return true;
16 }

isMatching (ssrc, stgt) {
1 // INPUT: statements ssrc ∈ ACT , stgt ∈ mtgt to be compared
2 // OUTPUT: true if ssrc and stgt match, false otherwise
3 V arMap: updated variable mappings
4
5 if (∃(ssrc, stgt) ∈ StatementMap) return true
6
7 if (AST structures of ssrc and stgt are equivalent) {
8 msrc ←method containing ssrc ∈ ACT
9 DDsrc ← {(ssrc, d) s.t. ssrc is data−dependent on d ∈ msrc}

10 DDtgt ← {(stgt, d) s.t. stgt is data−dependent on d ∈ mtgt}
11 if (DDsrc ≡ φ and DDtgt ≡ φ) {
12 // no data dependences
13 if (ssrc and stgt are one of the types described in Table 1) {
14 if (ssrc = “vx = Cx” and stgt = “vy = Cy” and
15 constants Cx and Cy are equal) {
16 V arMap = V arMap ∪ {(vx, vy)}
17 }
18 return true
19 } else return false
20 } else if (|DDsrc| == |DDtgt|) {
21 if (∀(ssrc, dx) ∈ DDsrc, ∃ (stgt, dy) ∈ DDtgt and (dx, dy) ∈ StatementMap) {
22 if (ssrc = “vx = . . . ” and stgt = “vy = . . . ”) {
23 V arMap = V arMap ∪ {(vx, vy)}
24 }
25 return true
26 } } }
27 return false
28 }

Figure 4.3: Matching access-control templates

4.2.2.1 Matching Templates

To find vulnerabilities and validate repairs, FixMeUp matches tem-

plates. In general, it is impossible to decide whether two arbitrary code se-

84

quences are semantically equivalent. Matching templates is tractable, however,

because ACTs of real-world applications are loop-free and consist of a small

number of assignments, method invocations, and conditional statements. Fur-

thermore, when developers implement the same access-control policy in mul-

tiple places in the program, they tend to use structurally identical code which

simplifies the matching process.

Figure 4.3 shows our template matching algorithm and the statement

matching algorithm that it uses. The latter algorithm compares statements

based on their data and control dependences, and therefore the syntactic or-

der of statements does not matter. Matching is conservative: two matching

templates are guaranteed to implement the same logic.

LetACTx andACTy be two templates. For every sx ∈ ACTx, FixMeUp

determines if there exists only one matching statement sy ∈ ACTy, and vice

versa. The developers may use different names for equivalent variables in

different contexts, thus syntactic equivalence is too strict. Given statements

sx ∈ ACTx and sy ∈ ACTy, FixMeUp first checks whether the abstract syntax

tree structures and operations of sx and sy are equivalent. If so, sx and sy are

syntactically isomorphic, but can still compute different results. FixMeUp

next considers the data dependences of sx and sy. If the dependences also

match, FixMeUp declares that the statements match. Table 4.1 shows the

matching rules when neither statement has any dependences.

85

4.2.2.2 Finding Access-control Vulnerabilities

For each security-sensitive operation (sso), FixMeUp computes the

tree of all calling contexts in which it may execute by (1) identifying all meth-

ods that may directly invoke sso and (2) performing a backward, depth-first

pass over the call graph from each such method to all possible program entries.

FixMeUp adds each method to the calling context once, ignoring cyclic con-

texts, because it only needs to verify that the access-control policy is enforced

once before sso is executed.

For each calling context CC in which sso may be executed, FixMeUp

first finds candidate access-control checks. A conditional statement b is a

candidate check if it (1) controls whether sso executes or not, and (2) is syn-

tactically equivalent to the correct check given by the ACTrole. For each such

b, FixMeUp computes its slice, converts it into ACTb using the algorithms

in Figure 4.2, and checks whether ACTb matches ACTrole. If so, this con-

text already implements correct access-control logic. Otherwise, if there are

no candidate checks in the context or if none of the checks match the correct

check, the context is vulnerable and FixMeUp performs the repair.

4.2.2.3 Applying The Template

Formally, CCsrc = {(cs1,m0) . . . (check,mn)}, CCtgt = {(cs′1,m′0) . . . (sso,m′l)},

where csi+1 ∈ mi, cs
′
i+1 ∈ m′i are the call sites of mi+1, m′i+1 respectively. For

simplicity, we omit the subscript from ACTrole.

86

AdaptACT (ACTsrc, CCtgt) {
1 // Adapt ACTsrc to the target context CCtgt

2
3 ACT ←clone ACTsrc

4 CCsrc = ACT.CCsrc

5 l← 0
6
7 for (i = 0; i < |CCsrc|; i++) {
8 // iterate from the entry to the bottom method in CCsrc

9 mi ← ith method in CCsrc

10 mtgt ← ith method in CCtgt

11 if (mi and mtgt are entries or mi == mtgt) {
12 MethodMap←MethodMap ∪ {(mi,mtgt)}
13 l← i
14 } else break;
15 }
16 minline ← lth method in CCtgt

17 for (k = l+1 ; k < |CCsrc|; k++) {
18 inline method mk from CCsrc into minline in ACT
19 MethodMap←MethodMap ∪ {(mk,minline)}
20 }
21 return ACT
22 }

Figure 4.4: Adapting ACT to a particular calling context

FixMeUp uses DoRepair in Figure 4.5 to carry out a repair. It starts

by adapting ACT to the vulnerable calling context CCtgt. If CCtgt already

invokes some or all of the methods in ACT , we do not want to repeat these

calls because the policy specifies that they should be invoked only once in a

particular order. After eliminating redundant method invocations, FixMeUp

essentially inlines the remaining logic from ACT into ACTadapted.

Formally, the algorithm finds common method invocations in CCsrc and

CCtgt by computing the deepest minline ∈ CCsrc such that for all i ≤ inline mi

matches m′i. For i = 0, m0 and m′0 match if they are both entry methods. For

i ≥ 1, mi and m′i match if they are invocations of exactly the same method.

The first for loop in AdaptACT from Figure 4.4 performs this process.

87

DoRepair (ACT , CCtgt) {
1 // INPUT
2 ACT : access−control template specification
3 CCtgt = {(cs′1,m′

0), (cs′2,m
′
1) . . . (sso,m′

n)}: calling context of the vulnerable security−sensitive
operation sso

4 // OUTPUT
5 RepairedAST : repaired program AST
6 MatchCount: number of ACT statements already in the target
7
8 MethodMap← φ // Initialize maps between ACT and target context
9 StatementMap← φ

10 V arMap← φ
11
12 ACTadapted = AdaptACT (ACT,CCtgt)
13 (RepairedAST, InsertedCheck,MatchCount)←
14 ApplyACT (ACTadapted, CCtgt)
15 if (ValidateRepair (ACTadapted, InsertedCheck)) {
16 return (RepairedAST,MatchCount)
17 }
18 return warning
19 }

ValidateRepair (ACTorig, InsertedCheck) {
1 // INPUT
2 ACTorig : applied access−control template
3 InsertedCheck: inserted access−control check
4 // OUTPUT:
5 true if extracted ACT from the repaired code matches ACTorig

6
7 SEEDS ← {InsertedCheck, exit branch of InsertedCheck}
8 newSLICE ← doSlicing (SEEDS)
9 newCC ← calling context of InsertedCheck

10 ACTrepair ← GetACT (newSLICE, newCC)
11 return isMatchingACT (ACTorig , ACTrepair)
12 }

Figure 4.5: Repairing vulnerable code and validating the repair

The algorithm then adapts ACT to CCtgt by inlining the remaining

statements—those from the methods deeper than minline in ACT—into minline.

The second for loop in AdaptACT from Figure 4.4 performs this process

and produces ACTadapted. While matching methods and inlining statements,

FixMeUp records all matching method pairs (mi,m
′
i), including minline, in

MethodMap. In the simplest case, the entry m′0 ∈ CCtgt is the only method

matching minline = m0. In this case, FixMeUp inlines every statement in

88

ACT below m0 and produces a flattened ACTadapted.

Otherwise, consider the longest matching method sequence (m0 . . .minline)

and (m′0 . . .m
′
inline) in CCsrc and CCtgt, respectively. For 1 ≤ i ≤ inline− 1,

mi and m′i are exactly the same; only m0 and minline are distinct from m′0

and m′inline, respectively. AdaptACT stores the (m0, m′0) and (minline,m
′
inline)

mappings in MethodMap.

FixMeUp uses the resulting template ACTadapted to repair the target

context using the ApplyACT algorithm in Figure 4.6. This algorithm respects

the statement order, control dependences, and data dependences in the tem-

plate. Furthermore, it avoids duplicating statements that are already present

in the target methods.

The algorithm iterates msrc over m0 and minline in ACTadapted because,

by construction, these are the only methods that differ between the template

and the target. It first initializes the insertion point iptgt in mtgt correspond-

ing to msrc in MethodMap. The algorithm only inserts statements between

the beginning of mtgt and the sensitive operation sso, or—if mtgt calls other

methods to reach sso—the call site of the next method in the calling context

of sso. Intuitively, the algorithm only considers potential insertion points and

matching statements that precede sso.

Before FixMeUp inserts a statement s, it checks if there already ex-

ists a matching statement s′ ∈ mtgt. If so, FixMeUp adds s and s′ to

StatementMap, sets the current insertion point iptgt to s′, and moves on to

89

ApplyACT (ACT,CCtgt) {
1 // Insert statements only in entry and/or last method of CCtgt that matches a method from adapted

ACT . Other methods match ACT exactly (see AdaptACT).
2 // INPUT
3 ACT : access−control template
4 CCtgt = {(cs′1,m′

0), (cs′2,m
′
1) . . . (sso,m′

n)}: calling context of the vulnerable sensitive operation sso
5 // OUTPUT
6 RepairedAST : AST of the repaired code
7 InsertedCheck: inserted access−control check
8 MatchCount: number of ACT statements found in the target
9

10 MatchCount← 0
11 InsertedCheck ← null
12 m0 ← the entry of ACT
13 minline ← the method containing check in ACT
14 for (msrc ∈ {m0,minline}) {
15 iptgt ← null
16 mtgt ←MethodMap(msrc)
17 for (s ∈ ACT (msrc) in order) {
18 // Is there a statement after iptgt in mtgt that matches s?
19 s′ ← FindMatchingStmt(s, iptgt,mtgt)
20 if (s′ 6= null) { // target method already contains s
21 iptgt ← s′

22 MatchCount++
23 } else { // no match, insert s into target
24 (t, d)← a pair of statement t and direction d s.t. s is immediately control−dependent on t in d
25 s′ ← RenameVars(s,mtgt) // rename variables in s for mtgt

26 if (s′ is a conditional statement) { // add two branches
27 add true and false branches to s′ with empty statements
28 if (s is the access control check)
29 InsertedCheck ← s′

30 }
31 if (iptgt == null) {
32 insert s′ at the first statement in mtgt

33 } else if (t 6= null) { // s is immediately control−dependent on t
34 // insert on the corresponding conditional branch
35 t′ ← StatementMap(t)
36 insert s′ at the last statement on branch d of t′

37 } else { insert s′ immediately after iptgt in mtgt }
38 iptgt ← s′

39 StatementMap← StatementMap ∪ {(s, s′)}
40 } } }
41 RepairedASTs← all modified ASTs of mtgt ∈MethodMap
42 return (RepairedASTs, InsertedCheck, MatchCount)
43 }

Figure 4.6: Applying an access-control template

the next statement. Otherwise, it inserts s as follows:

1. Transform s into s′ by renaming variables.

2. If s is a conditional, insert empty statements on the true and false

90

branches of s′.

3. If iptgt has not been set yet, insert s′ at the top of mtgt.

4. Otherwise, if s is immediately control-dependent on some conditional

statement t, insert s′ as the last statement on the statement list of the

matching branch of the corresponding conditional t′ ∈ mtgt.

5. Otherwise, insert s′ after iptgt, i.e., as the next statement on the state-

ment list containing iptgt. For example, if iptgt is an assignment, insert

s′ as the next statement. If iptgt is a conditional, insert s′ after the true

and false clauses, at tremediathe same nesting level as iptgt.

6. Add (s, s′) to StatementMap and set iptgt to s′.

ApplyACT returns the repaired AST, the inserted check, and the num-

ber of reused statements.

Variable renaming. When FixMeUp inserts statements into a method, it

must create new variable names that do not conflict with those that already

exist in the target method. Furthermore, because FixMeUp, when possible,

reuses existing statements that match statements from the ACT semantically

(rather than syntactically), it must rename variables. Lastly, as the algorithm

establishes new names and matches, it must rewrite subsequent dependent

statements to use the new names. The isMatching function in Figure 4.3 es-

tablishes a mapping between a variable name from the template and a variable

name from the target method when it matches assignment statements.

As FixMeUp inserts subsequent statements, it uses the variable map

to replace the names from the template (see Figure 4.7). Before ApplyACT

91

inserts a statement, it calls RenameVars to remap all variable names to the

names used by the target method. For unmapped variables, RenameVars

creates fresh names that do not conflict with the existing names.

Dealing with multiple matching statements. In theory, there may ex-

ist multiple statements in mtgt that match s and thus multiple ways to insert

ACTadapted into the target context. Should this happen, FixMeUp is designed

to exhaustively explore all possible matches, generate the corresponding can-

didate repairs, and validate each candidate. FixMeUp picks the validated

candidate that reuses the most statements already present in the target and

suggests it to the developer.

4.2.2.4 Validating Repairs

As mentioned previously, FixMeUp can potentially introduce two types

of semantic errors into the repaired program: (1) unintended changes to the in-

serted policy, and (2) unintended changes to the program. Unintended changes

to the inserted policy may occur when existing statements change the seman-

tics of the inserted code. Unintended changes to the program may occur when

the inserted code changes the semantics of existing statements.

To detect type (1) errors, FixMeUp computes afresh an ACT from the

repaired code and compares it—using ValidateRepair from Figure 4.5—with

the ACT on which the repair was based. An ACT captures all control and

data dependences. Any interference from the existing statements that affects

the inserted code must change the dependences of the inserted statements.

92

FindMatchingStmt(s, iptgt,mtgt) {
1 //INPUT:
2 s : statement in ACT
3 iptgt: last inserted statement in mtgt

4
5 if (mtgt contains the sensitive operation sso)
6 SL = { statements in mtgt after iptgt that dominate sso}
7 else
8 SL = { statements in mtgt after iptgt that dominate the callsite of next method in CCtgt }
9 for(t ∈ SL) {

10 if (isMatching(s, t)) {
11 StatementMap← StatementMap ∪ {(s, t)}
12 return t
13 }
14 // If multiple statements in SL match s, they are handled as described in Section 5.3
15 }
16 return null
17 }

RenameVars (s,mtgt) {
1 // INPUT: s ∈ ACT , target method mtgt

2 // OUTPUT: s′ with variables remapped, updated V arMap
3 s′ ← clone s
4 if (s = “vACT = . . . ” and vACT is local) {
5 if (6 ∃t s.t. (vACT , t) ∈ V arMap) {
6 V arMap← V arMap ∪ {(vACT , vnew)}
7 }}
8 for (v ∈ s′) {
9 if (∃(v, vnew) ∈ V arMap)

10 replace v with vnew in s′

11 }
12 return s′

13 }
Figure 4.7: Matching statements and renaming variables

For example, suppose the reused statement has dependent statements already

in the program that are not part of the ACT. In this case, the ACTs will

not match and FixMeUp will issue a warning. This validation procedure

guarantees that reusing an existing statement is always safe. We examined

all 38 repairs suggested by FixMeUp for our benchmarks (see Section 4.4)

and in only one case did the insertion of the repair code change the ACT

semantics. FixMeUp’s validation algorithm detected this inconsistency and

issued a warning.

93

With respect to type (2) errors, unintended changes to the program,

observe that the actual purpose of the repair is to change the program’s se-

mantics by adding access-control logic. FixMeUp therefore cannot guarantee

that the repaired program is free from type (2) errors because it cannot know

the full intent of the programmer.

The purpose of repair is to introduce a new dependence: all state-

ments after the inserted access-control check become control-dependent on

the check, which is a desired semantic change. Because FixMeUp inserts the

check along with the statements defining the values used in the check, the

inserted access-control logic may change both control and data dependences

of statements that appear after the check. Our repair procedure minimizes

the risk of unintended dependences by reusing existing statements as much as

possible and by renaming all variables defined in the template to fresh names,

thus preventing unintended dependences with the variables already present in

the program. In just one of the 38 repairs on our benchmarks (see Figure 4.11

in Section 4.4) did an incorrectly annotated role cause FixMeUp to “repair”

a context that already implemented a different access-control policy and thus

introduce unwanted changes to the program.

4.3 Limitations

Good program analysis and transformation tools help developers pro-

duce correct code. They are especially useful for subtle semantic bugs such as

inconsistent enforcement of access-control policies, but developers must still

94

be intimately involved in the process. The rest of this section discusses the

general limitations of any automated repair tool and the specific limitations

of our implementation.

Programmer burden. Suggesting a repair, or any program change, to de-

velopers requires some specification of correct behavior. We rely on developers

to annotate access-control checks and security-sensitive operations in their ap-

plications and tag them with the corresponding user role. We believe that this

specification burden is relatively light and, furthermore, it can be supported by

policy inference tools, such as the technique presented in chapter 3. We require

that the specifications be consistent for all security-sensitive operations in a

given role. If the programmer wants different checks in different contexts for

the same operation, the specification won’t be consistent and our approach will

attempt to conservatively over-protect the operation. For example, Figure 4.8

shows that FixMeUp inserts a credential check performed in one context into

a different context that already performs a CAPTCHA check, in this case in-

troducing an unwanted duplicate check. Developers should always examine

suggested repairs for correctness.

We believe that the consequences of access-control errors are sufficiently

dire to motivate the developers to bear this burden in exchange for suggested

code repairs, since it is easier to reject or manually fix a suggested change

than it is to find the error and write the entire repair by hand. The latter

requires systematic, tedious, error-prone examination of the entire program

and its call graph. Language features of PHP, such as the absence of a proper

95

module system, dynamic typing, and eval, further complicate this process for

PHP developers. The number of errors found by FixMeUp in real-world PHP

applications attests to the difficulty of correctly programming access control

in PHP.

Static analysis. FixMeUp uses a standard static interprocedural data-

and control-dependence analysis to extract the program slice representing the

access-control logic. Because this analysis is conservative, the slice could con-

tain extraneous statements and therefore would be hard to apply as a transfor-

mation. Program slicing for more general debugging purposes often produces

large slices [69]. Fortunately, access-control policies are typically self-contained

and much more constrained. They consist of retrieving stored values into local

variables, checks on these variables, and code that exits or restarts the pro-

gram after the check fails. Consequently, access-control templates tend to be

short (see Table 4.2).

Our FixMeUp prototype does not handle all of the dynamic language

features of PHP, nor does it precisely model all system calls with external side

effects. In particular, the analysis resolves dynamic types conservatively to

build the call graph, but does not model eval or dynamic class loading, which

is unsound in general. In practice, only myBB uses eval and we manually

verified that there are no call chains or def-use chains involving eval that lead

to security-sensitive operations, thus eval does not affect the computed ACTs.

Static analysis can only analyze code that is present at analysis time.

PHP supports dynamic class loading and thus potentially loads classes our

96

code does not analyze. However, our benchmarks use dynamic class loading

in only a few cases, and we did analyze the classes they load. To handle these

cases, we annotated 18 method invocations with the corresponding dynamic

methods to generate a sound call graph that includes all possible call edges.

Our analysis models database connections such as open, close, and

write, file operations that return file descriptors., but it does not perform sym-

bolic string analysis on the arguments. This is a possible source of imprecision.

For example, consider two statements: writeData(”a.txt”,$data) and $newdata

= readData($b). If $b is “a.txt”, the second statement is data-dependent on

the first. A more precise algorithm would perform symbolic analysis to deter-

mine if the two statements may depend on each other and conservatively insert

a dependence edge. Although this omissions makes our analysis unsound in

general, in practice, we never observed these types of dependences. Therefore,

even a more conservative and precise analysis would have produced the same

results on our benchmarks.

Statement matching is weaker than semantic equivalence. For example,

our matching algorithm does not capture that statements a = b + c and a =

add(b, c) are equivalent. Another minor limitation of our matching algorithm

is the use of coarse-grained statement dependences instead of variable def-

use chains on the remapped variable names. A more precise algorithm would

enforce consistency between the def-use information for each variable name

varx used in sx and vary used in sy, even if the names are not the same given

the variable mapping produced thus far. The current algorithm may yield a

97

match with an inconsistent variable mapping in distinct statements and thus

change the def-use dependences at the statement level. We never encountered

this problem in practice and, in any case, our validation procedure catches

errors of this type.

4.4 Evaluation

We evaluate FixMeUp on ten open-source interactive PHP Web appli-

cations, listed in Table 4.2. We chose SCARF, YaPiG, AWCM, minibloggie,

and DNscript because they were analyzed in prior work on detecting access-

control vulnerabilities [65, 73]. Unlike FixMeUp, none of the previous tech-

niques repair the bugs they find. In addition to repairing known vulnerabilities,

FixMeUp found four new vulnerabilities in AWCM 2.2 and one new vulner-

ability in YaPiG that prior analysis [73] missed. We added Newsscript and

phpCommunityCal to our benchmarks because they have known access-control

vulnerabilities, all of which FixMeUp repaired successfully. To test the scal-

ability of FixMeUp, we included two relatively large applications, GRBoard

and myBB. Table 4.2 lists the lines of code (LoC) and total analysis time

for each application, measured on a Linux workstation with Intel dual core

2.66GHz CPU with 2 GB of RAM. Analysis time scales well with the number

of lines in the program.

Our benchmarks are typical of server-side PHP applications: they store

information in a database or local file and manage it based on requests from

Web users.

98

Analysis Role ACT missing alternative inserted policies unwanted
Web applications LoC time (s) tag instances LoC checks policies partial full warn side effects

minibloggie 1.1 2,287 26 admin 2 6 1 0 0 0 1 0
DNscript 3,150 22 admin 14 4 3 0 0 3 0 0

normal 8 4 1 1 1 1 0 0
Events Lister 2.03 2,571 24 admin 9 4 2 1 0 3 0 0
Newsscript 1.3 2,635 65 admin 1 8 1 0 1 0 0 0
SCARF (before patch) 1,490 40 admin 4 4 1 0 1 0 0 0

normal 1 4 0 0 0 0 0 0
YaPiG 0.95 7,194 250 admin 3 5 0 0 0 0 0 0

normal 3 11 1 1 2 0 0 1
phpCommunityCal 4.0.3 12,298 367 admin 5 8 12 0 12 0 0 0
AWCM 2.2 11,877 1221 admin 38 8 0 0 0 0 0 0

normal 8 4 4 3 6 1 0 0
GRBoard 1.8.6.5 50,491 1742 admin 14 4 2 0 1 1 0 0

normal 9 4 3 1 4 0 0 0
myBB 1.6.7 107,515 5133 admin 38 2 0 0 0 0 0 0

normal 31 8 0 0 0 0 0 0

totals 31 7 28 9 1 1

Table 4.2: PHP benchmarks, analysis time in seconds, ACT characterization, and repair characterization

99

Table 4.2 shows that four applications have a single access-control pol-

icy that applies throughout the program. The other six have two user roles

each and thus two role-specific policies. Policies were specified by manual an-

notation. They are universal, i.e., they prescribe an access-control check that

must be performed in all contexts associated with the given role.

FixMeUp finds 38 access-control bugs, correctly repairs 30 instances,

and issues one warning. Nine of the ten benchmarks contained bugs. Seven

bugs were previously unknown. As mentioned above, five of the previously

unknown bugs appeared in applications that had been analyzed in prior work

which missed the bugs. Five of the ten applications implement seven correct,

but alternative policies in some of their contexts (i.e., these policies differ from

the policy in the template).

The fourth and fifth columns in Table 4.2 characterize the access-control

templates; the third column lists the user role to which each policy applies.

Six applications have two policies, admin or normal. The fourth column shows

the total instances of the template in the code, showing that developers often

implement the same access-control logic in multiple places in the program.

For example, the DNscript application has two roles and thus two role-specific

access-control policies. Out of the 22 templates in DNscript, only 2 are unique.

The “LoC” column shows the size of each template (in AST statements). The

templates are relatively small, between 2 and 11 statements each.

The “missing checks” and “alternative policies” columns in Table 4.2

show that FixMeUp finds a total of 38 missing checks. The “alternative

100

policies” column shows that in seven cases FixMeUp inserts an access-control

policy, but that the target code already has a different check.

AddDn.php
1 <?
2 session start () ;
3 i f (! $ SESSION [’member ’]) {
4 header (’ Locat ion : l o g i n . php ’) ;
5 exit ;
6 } . . .
7 ?>

Process.php
1 <?
2 session start () ; // e x i s t i n g statement
3 i f (! $ SESSION [’member ’]) { // [FixMeUp repa i r]
4 header (’ Locat ion : l o g i n . php ’) ; // [FixMeUp repa i r]
5 exit ; // [FixMeUp repa i r]
6 }
7 . . .
8 $number = $ POST [’ image ’] ;
9 i f (md5($number) != $ SESSION [’ image random value ’]) {

10 echo ’ V e r i f i c a t i o n does not match . . Go back and r e f r e s h your browser and
then retype your v e r i f i c a t i o n ’ ;

11 exit () ;
12 }
13 \?>

Figure 4.8: DNscript: Different access-control checks within the same user
role

The “inserted polices” columns shows that FixMeUp made 37 vali-

dated repairs with one warning, 30 of which fixed actual vulnerabilities. For

the other 7, the program already contained alternative logic for the same role

(e.g., CAPTCHA vs. login). The case that generated the warning is shown

in Figure 4.9. FixMeUp only inserts statements that are missing from the

target. In minibloggie, the statements session start() and dbConnect() are both

in the template and in Del.php, thus FixMeUp does not insert them. It only

inserts the missing statement if (!verifyuser()) {header (’Location: ./login.php’);}.

The access-control check at line 10, however, now depends on the conditional

101

at line 7. This dependence did not exist in the original ACT and does not

pass FixMeUp validation.

Attempted repair of Del.php
1 <? . . .
2 session start () ; // e x i s t i n g statement
3 . . .
4 i f ($conf i rm==””) {
5 n o t i c e (” Conf irmation ” , ”Warning : Do you want to d e l e t e t h i s post ? <a

h r e f=de l . php? p o s t i d=” . $p o s t i d . ”&conf i rm=yes>Yes”) ;
6 }
7 e l s e i f ($conf i rm==” yes ”) {
8 dbConnect () ; // e x i s t i n g statement
9

10 i f (! v e r i f y u s e r ()) { // [FixMeUp repa i r]
11 header (’ Locat ion : . / l o g i n . php ’) ; // [FixMeUp repa i r]
12 die ; // [FixMeUp repa i r]
13 }
14

15 $ s q l = ”DELETE FROM blogdata WHERE p o s t i d=$p o s t i d ” ;
16 $query = mysql query ($ s q l) or die (”Cannot query the database .
” .

mysql error ()) ;
17 $conf i rm =”” ;
18 n o t i c e (”Del Post” , ”Data Deleted ”) ;
19 }
20 ?>

Access-control template of minibloggie
1 <?
2 1 . ProgramEntry
3 include ” conf . php” ;
4 i n c l ude once ” i n c l u d e s . php” ;
5 session start () ;
6 dbConnect () ;
7 i f (! v e r i f y u s e r ()) {
8 header (’ Locat ion : . / l o g i n . php ’) ;
9 }

10 ?>

Figure 4.9: minibloggie: Attempted repair

The “partial” and “full” columns shows that, in 28 of 38 attempted

repairs, FixMeUp reused some of the existing statements in the target when

performing the repair, and only in 9 cases did it insert the entire template.

This reuse demonstrates that repairs performed by FixMeUp are not simple

clone-and-patch insertions, and adapting the template for each target is critical

102

to successful repair.

Figure 4.10 shows repairs to GRBoard in remove multi file.php and

swfupload ok.php. These two files implement different access-control logic to

protect role-specific sensitive operations. Observe that $GR variable in sw-

fupload ok.php is not renamed and the existing variable is used instead, i.e.,

$GR = new COMMON() at line 4. On the other hand, in remove multi file.php,

FixMeUp defines a new variable $GR newone to avoid unwanted dependences

when it inserts this statement.

Correct repair of remove multi file.php
1 <?
2 include (’ c l a s s /common . php ’) ; // [FixMeUp repa i r]
3 $GR newone = new COMMON() ; // [FixMeUp repa i r]
4 i f (($ SESSION [’ no ’] != 1)) { // [FixMeUp repa i r]
5 $GR newone−>e r r o r (’ Require admin p r i v i l e d g e ’ , 1 , ’CLOSE ’) ; // [FixMeUp

repa i r]
6 }
7

8 i f (! $ POST [’ id ’] | | ! $ POST [’ f i l ename ’]) exit () ;
9 $ POST [’ id ’] = s t r r e p l a c e (array (’ . . / ’ , ’ . php ’) , ’ ’ , $ POST [’ id ’]) ;

10 $ POST [’ f i l ename ’] = s t r r e p l a c e (array (’ . . / ’ , ’ . php ’) , ’ ’ , $ POST [’
f i l ename ’]) ;

11 //@SSO(’ admin ’)
12 @unlink (’ data / ’ . $ POST [’ id ’] . ’ / ’ . $ POST [’ f i l ename ’]) ;
13 . . .
14 ?>

Correct repair of swfupload ok.php
1 i f (i s set ($ POST [”PHPSESSID”])) session id ($ POST [”PHPSESSID”]) ;
2

3 include ’ c l a s s /common . php ’ ; // e x i s t i n g statement
4 $GR = new COMMON() ; // e x i s t i n g statement
5 i f (! $ SESSION [’ no ’]) { // [FixMeUp repa i r]
6 $GR−>e r r o r (’ Require l o g i n procedure ’) ; // [FixMeUp repa i r]
7 }
8 . . .
9 i f (time () > 600+@fi lemtime ($tmp)) $tmpFS = @fopen ($tmp , ’w ’) ; else $tmpFS

= @fopen ($tmp , ’ a ’) ;
10 //@SSO(’member ’)
11 @fwrite ($tmpFS , $ saveResu l t) ;
12 @fc lo s e ($tmpFS) ;

Figure 4.10: GRBoard: Same ACT in different contexts

103

slidesshow.php
1 . . .
2 $gid=$ GET [’ g id ’] ; // e x i s t i n g s ta tements
3 $form pw newone = $ POST [’ form pw ’] ; // [FixMeUp repa i r]
4
5 i f (! check admin log in ()) {// [FixMeUp repa i r]
6 i f ((strlen ($ g i d i n f o [’ ga l l e ry pa s sword ’]) > 0)) { // [FixMeUp repa i r]
7 // @ACC(’ gues t ’)
8 i f (! che ck ga l l e ry pa s sword ($ g i d i n f o [’ ga l l e ry pa s sword ’] ,

$form pw newone)) { // [FixMeUp repa i r]
9 include ($TEMPLATE DIR . ’ f a c e b e g i n . php . mphp ’) ; // [FixMeUp repa i r]

10 e r r o r (y (’ Password i n c o r r e c t . ’)) ; // [FixMeUp repa i r]
11 } } }
12
13 i f (! che ck ga l l e ry pa s sword ($ g i d i n f o [’ ga l l e ry pa s sword ’] , $form pw)) {
14 include ($TEMPLATE DIR . ’ f a c e b e g i n . php . mphp ’) ;
15 e r r o r (y (”Password i n c o r r e c t . ”)) ;
16 }

Figure 4.11: YaPiG: Attempted repair

Figure 4.8 also shows how FixMeUp leaves line 2 intact in process.php

when applying the template based on AddDn.php. This reuse is crucial for

correctness. Had FixMeUp naively inserted this statement from the template

rather than reuse the existing statement, the redundant, duplicated statement

would have introduced an unwanted dependence because this function call

has a side effect on the $ SESSION variable. Because of statement reuse,

however, this dependence remains exactly the same in the repaired code as in

the original.

The last column demonstrates that the inserted statements in 37 repair

instances introduce no unwanted dependences that affect the rest of the pro-

gram. Figure 4.11 shows one instance where a repair had a side effect because

of an already present alternative policy. Line 13 shows an access-control check

already present in slidesshow.php. Because the policy implemented by the

existing check does not match the ACT that prescribes additional checks for

104

the administrator role, FixMeUp inserts Line 3-11. However, the function

call on Line 8 has a side effect on $ SESSION and $ COOKIE which are

used in the function call at Line 13. This side effect is easy to detect with

standard dependence analysis, but the reason it occurred is a faulty annota-

tion: the access-control policy represented by the ACT should not have been

applied to this context.

We reported the new vulnerabilities found by FixMeUp and they were

assigned CVE candidate numbers: CVE-2012-2443, 2444, 2445, 2437 and 2438.

We confirmed the correctness of our repairs by testing each program and ver-

ifying that it is no longer vulnerable. When an unauthorized user invokes the

repaired applications through either an intended or unintended entry point

and attempts to execute the sensitive operation, every repaired application

rejects the attempt and executes the code corresponding to the failed check

from the original ACT.

4.5 Conclusion

We presented FixMeUp, the first static analysis tool for automati-

cally finding and repairing access-control bugs in Web applications. FixMeUp

starts with an access-control policy that maps security-sensitive operations—such

as database query sites and privileged file operations—to access-control checks

that protect them from unauthorized execution. FixMeUp then automati-

cally extracts the code responsible for access-control enforcement, uses it to

create an access-control template, finds calling contexts where the check is

105

missing or is implemented incorrectly, and repairs the vulnerability by apply-

ing the template. FixMeUp successfully repaired 34 access-control bugs in 9

real-world PHP applications, demonstrating its practical utility.

106

Chapter 5

Detecting Code Injection Attacks

on Web Applications

The previous two chapters addressed access-control vulnerabilities in

which Web attackers cause unintended control flows to security-sensitive oper-

ations. This chapter addresses code injection vulnerabilities. A code injection

attack occurs when a Web adversary manages to inject his/her own code into a

program generated by the Web application. This attack is an unintended data

flow. Injected code may steal data, compromise database integrity, and/or by-

pass authentication and access control, violating system correctness, security,

and privacy properties.

Database queries generated by server-side Web applications are the

classic target of code injection. However, the recent trend towards using

NoSQL databases [46] instead of relational SQL databases is not reducing code

injection threats. Many NoSQL databases, including MongoDB, CouchDB,

and DynamoDB, use JSON and/or JavaScript as query languages, but this

does not help protect NoSQL-based applications from code injection attacks.

In 2010, Diaspora reported a serious NoSQL code injection vulnerability in

its social community framework [47]. Code injection attacks on JavaScript

107

queries for MongoDB were also demonstrated at Black Hat 2011 [72].

By definition, a code injection attack on a Web application involves

tainted code: the application generates a string that is interpreted as an

executable program (e.g., an SQL or NoSQL query), and the string contains

user input that is interpreted as code when the program executes. Preventing

code injection attacks requires precisely determining (1) which parts of the

generated string are code, and (2) which parts of the generated string are

tainted by user input.

All prior approaches to runtime detection of code injection attacks suf-

fer from two types of problems. They either fail to precisely define what

constitutes code, or their taint analysis algorithm does not identify exactly

which characters in the application-generated SQL string originate from user

input and which originate from the application itself. Errors of both types

lead to false positives (benign queries rejected) and false negatives (missing

code injection attacks).

This chapter introduces Diglossia, a new runtime tool that precisely

and efficiently detects code injection attacks. The key idea behind our ap-

proach is to transform the problem of detecting injected code into a string

propagation and parsing problem.

To identify taints efficiently, Diglossia dynamically creates a shadow

string for each query issued by the application P . In the shadow query, all

application-generated parts use shadow characters, while all tainted parts—i.e.,

108

substrings originating from user input—use original characters. When P is in-

voked, Diglossia dynamically generates a set of shadow characters that occur

in neither user input, nor the original query language. Diglossia then cre-

ates a one-to-one map from each character used by the query language to a

unique shadow character. As P executes, Diglossia adds a shadow execution

that computes shadow values for all strings computed by P that depend on

user input. The shadow execution follows the control flow of P ’s execution

and performs shadow operations only on input-dependent string and charac-

ter array operations. In a shadow string, all characters c originating from P

are remapped to shadow characters sc where sc = map(c), while all charac-

ters originating from user input remain intact. Value shadowing is a precise,

lightweight way to propagate character-level taint information, because it per-

forms the same string and array operation as the program, but only for a

subject of operation. We implement this functionality as a PHP interpreter

extension that dynamically remaps characters and computes shadow values in

tandem with the string and character array operations performed by P .

When P issues a query, Diglossia examines the original query and its

shadow using a dual parser. Dual parsing is the key technical innovation in

Diglossia. For any string accepted by the original query language, the dual

parser accepts the same string, as well as strings in which the original char-

acters are replaced with their corresponding shadow characters. Diglossia

examines the parse trees of the actual query and its shadow and establishes

the following two conditions:

109

1. There is a one-to-one mapping between the parse tree of the actual query

and the parse tree of the shadow query. In particular, all code in the actual

query maps exactly to equivalent code in the shadow query.

2. The shadow query does not contain any code in the original language L.

If either condition does not hold, Diglossia reports a code injection

attack. Intuitively, the presence of any original-language code in the shadow

query and/or any syntactic difference between the actual query and its shadow

indicate a code injection attack.

We demonstrate the precision and efficiency of Diglossia on 10 open-

source PHP Web applications that issue queries to relational MySQL and

MongoDB NoSQL backend databases. Diglossia detects all 25 code in-

jection attacks we attempted against these applications with no perceptible

performance overhead.

By recasting the problem of detecting code injection attacks as a string

propagation and parsing problem, we gain substantial improvements in effi-

ciency and precision over prior work. Diglossia uses shadow values only

to detect injected code and does not actually submit shadow queries to the

database. Therefore, in contrast to SQL keyword randomization [6] and com-

plementary encoding [40], Diglossia does not require any changes to Web

applications, databases, query parsers, Web servers, or Web browsers.

110

1 2 3 4 5 6 7 8 9 10 11

Ray and Ligatti’s definition of code injection [58] Yes Yes Yes No Yes Yes No Yes Yes Yes No

Tools Halfond et al. [22], Nguyen-Tuong et al. [45] Yes Yes Yes No No No No No No No Yes
Xu et al. [80] Yes Yes Yes No No No No No No No Yes

SQLCHECK [71] Yes No No Yes No No No No No No No
CANDID [3] Yes Yes Yes No No No Yes No No No Yes

Diglossia Yes Yes Yes No Yes Yes No Yes Yes No No

1 SELECT bal FROM acct WHERE
pwd=‘’ OR 1=1 - -’

7 SELECT * FROM t WHERE flag=TRUE

2 SELECT balance FROM acct WHERE pin=
exit()

8 SELECT * FROM t WHERE flag=aaaa

3 ...WHERE flag=1000 > GLOBAL 9 SELECT * FROM t WHERE flag=password
4 SELECT * FROM properties WHERE

filename=‘f.e’
10 CREATE TABLE t (name CHAR(40))

5 ...pin=exit() 11 SELECT * FROM t WHERE name=‘x’
6 ...pin=aaaa()

Table 5.1: Canonical code injection attacks and non-attacks misclassified by prior methods. Underlined
terms are user input.

111

5.1 Motivation

This section starts with a definition of code in target query languages. It

then explains common mistakes in detecting SQL injection attacks, which are

originated from the absence of a strict “code” definition. It also introduces a

syntax mimicry code-injection attack that is capable of bypassing prior syntax-

based methods.

5.1.1 Pitfalls of Detecting SQL Injection Attacks

We illustrate SQL injection attacks using 11 canonical examples de-

scribed by Ray and Ligatti [58]. Table 5.1 shows how five prior tools and

Diglossia classify these cases. Underlined terms are user input. Below, we

review each attack and non-attack on this list and explain how Diglossia

improves over prior work.

1. SELECT bal FROM acct WHERE pwd=‘’ OR 1=1 - -’

This case is the classic SQL injection attack with a backquote that ends a

string and injects user input as code into the query. All tools detect this

code injection. Diglossia detects it because the injected code “OR”, “=”,

and “-” appears in original characters in the shadow query.

2. SELECT balance FROM acct WHERE pin= exit()

User input injects exit(), which is a built-in function call. SQLCHECK

misclassifies this case because the function call is an ancestor of complete

leaf nodes (injected) in the query’s parse tree. Diglossia detects this

112

injection because exit is a bound variable (and, therefore, code), yet appears

in original characters in the shadow query.

3. ...WHERE flag=1000>GLOBAL

The injected “>” is code that SQLCHECK misses because, again, this input

is correctly positioned in the parse tree. Diglossia detects it because > is

code, yet appears in original characters in the shadow query.

4. SELECT * FROM properties WHERE filename=‘f.e’

Even if f.e is an object reference, the quotes enforce its interpretation as

a string. SQLCHECK strips off quotes and misclassifies f.e as a reference,

generating a false positive. All other tools, including Diglossia, correctly

classify this input as a string literal and not an injection.

5. ...pin=exit()

All tools except Diglossia miss the injection of the exit identifier because

they do not reason about bound names at all. Diglossia detects code

injection because exit is bound (and, therefore, code), yet appears in original

characters in the shadow query.

6. ...pin=aaaa()

When the identifier is undefined, only Diglossia correctly detects code

injection.

7. SELECT * FROM t WHERE flag=TRUE

Since the injected TRUE is a literal value, this case is not an attack. CAN-

DID incorrectly classifies this input as code injection because the TRUE

113

literal is parsed to a different terminal than the benign input “aaaa”, which

is parsed to an identifier. Diglossia correctly parses this input as a literal

in both the actual query and its shadow, and does not report an attack.

8. SELECT * FROM t WHERE flag=aaaa

This attack injects a bound identifier (equal to the benign input used by

CANDID) into the query. It is missed by all prior methods. Diglossia

detects code injection because aaaa is bound (and, therefore, code), yet

appears in original characters in the shadow query.

9. SELECT * FROM t WHERE flag=password

This attack injects a bound identifier into the query and is missed by

all prior methods. Diglossia detects code injection because password

is bound (and, therefore, code), yet appears in original characters in the

shadow query.

10. CREATE TABLE t (name CHAR(40))

Diglossia does not detect this case as code injection. Unlike Ray and

Ligatti, we consider integer literals, even in SQL type definitions, to be

values, thus this case is not an injection attack from our viewpoint.

11. SELECT * FROM t WHERE name=‘x’

Since the injected ‘x’ is a string literal, this case is not an attack. CANDID

uses ‘aaa’ instead of ‘x’ in the shadow execution; they are different terminals

and CANDID incorrectly reports a code injection attack. Xu et al. classify

this case as an attack because tainted meta-characters (quotes) appear in

114

the query. Halfond et al. also classify this case as an attack because quotes

do not come from a trusted source. Diglossia, on the other hand, parses

‘x’ into a literal in both the actual query and its shadow, and correctly does

not report an attack.

5.1.2 Syntax Mimicry Attacks

The query containing injected code need not be syntactically differ-

ent from a benign query (we call such injections syntax mimicry attacks).

Consequently, detection tools such as CANDID that look for syntactic dis-

crepancies between the actual query and the query on a benign input will miss

some attacks.

vulnerable.php
1 <?
2 // Bui ld a JavaScr ip t query t ha t checks whether pwd f i e l d i s the same as

user input $ GET[’ id ’]
3

4 $query = ” func t i on q () { ” ;
5 $query .= ” var secret number = t h i s . pwd ; ” ;
6 $query .= ” var u s e r t r y = ’ . $ GET [‘ id ’] . ‘ ; ” ;
7 $query .= ” i f (secret number != u s e r t r y) re turn f a l s e ; ” ;
8 $query .= ” return true ; ” ;
9 $query .= ”}” ;

10

11 $ c o l l e c t i o n−>f i n d (array (‘ $where ’ => $query)) ;
12 ?>

Attack URL

http://victimHost/vulnerable.php?id=secret number

Figure 5.1: JavaScript syntax mimicry attack.

Figure 5.1 shows sample PHP code that builds a JavaScript query

for a MongoDB. User input in $ GET [‘id’] is supposed to be a numeric lit-

115

eral. If the attacker inputs secret number instead of a number, the query

will return “true”, sabotaging the intended semantics. CANDID will use

“aaaaaaaaaaaa” as the benign input for secret number in its shadow execu-

tion and miss the attack, but Diglossia will detect it.

login.php in minibill
1 <?
2 $Q = ”SELECT ∗ FROM use r s
3 WHERE emai l =‘{$ REQUEST[‘ emai l ’] } ’
4 AND password=‘{$ REQUEST[‘ password ’] } ’
5 LIMIT 1” ;
6 $ r e s = mysql query ($Q) ;
7 ?>

Attack URL
http://victimHost/login.php?email=no\&password=AND others=‘any

Actual query
SELECT * FROM users WHERE email=‘no\’ AND password=’ AND others=‘any’ LIMIT 1

Query on a benign input
SELECT * FROM users WHERE email=‘aaa’ AND password=‘aaaaaaaaaaaaaaaa’ LIMIT 1

Figure 5.2: SQL syntax mimicry attack on minibill.

Figure 5.2 shows login.php in minibill, an actual PHP program vulner-

able to syntax mimicry attacks. The attack URL makes the syntactic struc-

tures of the actual and shadow queries equivalent. Observe, however, that the

attack query refers to the others field instead of the intended password field.

This particular attack may not seem damaging, but if the actual query had

used OR instead of AND, the attack would have been much more serious.

Figure 5.3 shows another PHP program with an injection vulnerabil-

ity (CVE-2013-0135). The attack URL results in this query resetting the

passwords of users whose ZIP code is 77051. Diglossia can detect syntax

116

reset password save.php in phpAddressBook 8.2.5
1 <?
2 $password hint = $ REQUEST[‘ password hint ’] ;
3 $emai l=$ REQUEST[‘ emai l ’] ;
4 . . .
5 // Assume tha t $cleanpw i s ” a r b i t r a r y ”
6 $query = ”UPDATE use r s SET password=‘$cleanpw ’ , password hint =‘

$password hint ’ WHERE emai l =‘$emai l ’ ” ;
7

8 $ r e s = mysql query ($query) ;
9 ?>

Attack URL exploiting CVE-2013-0135
http://victimHost/login.php?password hint=no\&email=WHERE zip=‘77051

Actual query
UPDATE users SET password=‘arbitrary’, password hint=‘no\’ WHERE email=’ WHERE zip=‘77051’

Query on a benign input
UPDATE users SET password=’arbitrary’, password hint=’aaa’ WHERE email=’aaaaaaaaaaaaaaaaa’

Figure 5.3: SQL syntax mimicry attack on phpAddressBook.

mimicry attacks such as this one because, unlike CANDID, it creates shadow

queries from the same input as the actual execution. The syntactic structures

of the actual and shadow queries are equivalent, but the shadow contains the

code “WHERE” in original characters (since it originated from user input).

Therefore, Diglossia reports an attack.

5.1.3 Defining code

As Section 5.1.1 shows, defining code simply as pre-specified keywords

and operators does not provide a clear distinction between code and non-

code. Instead, precisely identifying code and non-code requires parsing the

query [58].

117

Diglossia accepts only values (numeric and string literals) and re-

served values (NULL, TRUE, etc.) as non-code. Code comprises all reserved

keywords, operators, and method calls, as well as all uses of bound identifiers

(variables, types, and method names). Note that this definition forbids the

dangerous programming practice where certain user inputs are intended by

a developer to be interpreted as code in the query. In the absence of strict

access control on database operations, this practice may lead to arbitrary code

execution and should be deprecated.

5.2 Implementation

Diglossia is as an extension to the PHP interpreter. It is imple-

mented in C using PECL (PHP Extension Community Library). The Web

server invokes the interpreter automatically when the URL hosting a PHP

application is accessed. Diglossia has three phases, as depicted in Figure 5.4

and described below.

Phase I creates a shadow character map and the dual parser.

Phase II computes a shadow value for each string that depends on user input.

Phase III detects injected code by examining and comparing the actual query

string and its shadow.

Phase I creates a map from all characters c in the query language L

to a disjoint set of shadow characters SC = {map(c)}. Phase I also creates

118

Malicious Input

id = “12; return true;//”

Diglossia

PHP script

...

$q = “var id = “ . $_GET[‘id’] . “;”;

$q .= “if(this.id == id) return true”;

$q .= “else return false”;

…

$collection->find(array(“$where” => $q));

Mapping Table (CT)

 A => 가

 I => 나

 F => 다

 …

Original Parser (P)

 IF

 ELSE

 DO

 …

Dual Parser (PCT)

 IF, 나다

 ELSE, 마바사마

 DO, 아자

 …

Original values

 $q =“var id =”. “12;return true;// ” . “;”;

 $q .= “if(this.id == id) return true;”

 $q .= “else return false;”

Shadow values

 $q_s=“이가영 타아 는”. “12;return true;// ” . “끝”;

 $q_s=“나다 괄티카타사점나아 는는 나아괼

 영마티유영엔 티영유마끝”;

 $q_s=“마바사마 영마티유영엔 다가바사마끝”;

root

stmt 1

var

id

=

12

return

true

; ;

stmt 2 comment 1

;if(this.id …

//

root

stmt 1

이가영

타아

는

12

return

true

; ;

stmt 2 comment 1

끝 나다 …

//

code injection!

Phase II. Value shadowing

Phase I. Prepare a character mapping table and a dual parser

Phase III. Validate queries

Actual query parse tree Shadow query parse tree

PHP interpreter

Figure 5.4: Overview of Diglossia.

119

the dual parser for the shadow language SL, which is a superset of L and

described in more detail in Section 5.2.3.

In tandem with the execution of the application, Phase II creates and

computes shadow values for all strings and array operations that depend on

user input. When the Web server invokes a PHP application, Diglossia cre-

ates a shadow string value for each input string, exactly equal to that string.

Therefore, at the beginning of the execution, all shadow values consist only

of original characters. For every subsequent string or character array compu-

tation where one or both operands already have shadow values, Diglossia

computes the shadow value for the result of the operation. If an operand

does not have a shadow value, Diglossia creates a shadow value for it by

remapping each character to the corresponding shadow character.

When the PHP application issues a query q, Phase III intervenes and

checks whether the query includes injected code. To this end, Diglossia

parses q and its shadow q′ with the dual parser and checks the following two

conditions.

First, there must exist a one-to-one mapping between the nodes in the

respective parse trees of q and q′. Furthermore, each parse tree node in q′

must be a shadow of the corresponding node in q, as defined in Section 5.2.3.

For instance, a string literal node in q must map to a string literal node in

q′, except that the string in q only uses characters in C, whereas the string

in q′ may use characters in C ∪ SC. This isomorphism condition ensures that

shadow characters in the shadow query correspond exactly to the untainted

120

characters in the actual query.

Second, all code in the shadow query q′ must use only the characters

in SC, because all characters in C come from user input.

If both conditions are satisfied, Diglossia passes the original query

q to the backend database. Otherwise, Diglossia stops the application and

reports a code injection attack.

5.2.1 Character Remapping

We implemented character remapping and dual parsing for SQL, JSON,

and JavaScript query languages. These languages use ASCII characters, found

on standard English keyboards, for all keywords, numerals, identifiers (vari-

ables, types, method names, etc.) and special values (NULL, TRUE, etc.).

Although the languages are different and Diglossia has a separate parser for

each, we use the term “query language L” generically to simplify the exposi-

tion.

Let C be the subset of ASCII characters consisting of the lower- and

upper-case English alphabet and special characters (Diglossia does not remap

digits). Formally, C includes characters whose decimal ASCII codes are from

33 to 47 and from 58 to 126. Diglossia dynamically creates a one-to-one

mapping from each character in C to a shadow UTF-8 character that occurs

in neither C, nor user input. Observe that since L uses only characters from

C, no shadow characters appear in code written in L.

UTF-8 is a variable-byte representation that uses one to four 8-bit bytes

121

to encode characters. The total number of UTF-8 characters is 1,112,064 and

it is easy to find 84 characters among them that do not occur in user in-

put. In our current implementation, every webpage request (i.e., every invo-

cation of a PHP application) results in a different random map. To create

this map, Diglossia (1) randomly selects two-byte shadow characters from

among 1,112,064 possible UTF-8 characters, and (2) examines all variables

holding user input (e.g., POST , GET , and COOKIE) to ensure that shadow

characters do not occur in them.

It is also possible to pre-compute a set of random mappings offline to

reduce runtime overhead.

5.2.2 Value Shadowing

As the application executes, Diglossia computes shadow values for

the results of all string and character array operations that depend on user

input. Because Diglossia is implemented using PECL, a part of a PHP

interpreter, it can directly manage memory and monitor program statements

during the application’s execution.

Diglossia allocates shadow values on the heap and stores their ad-

dresses in a shadow value table indexed by the address of the memory location

for the original value. For operations that do not involve user input, including

all non-string, non-array operations, conditionals, branches, arithmetic oper-

ations, etc., Diglossia performs no computations or allocations. Therefore,

the control flow of value shadowing follows the control flow of the application.

122

When a Web server invokes the PHP application, it passes in user

inputs as strings. Diglossia allocates a shadow value for each input string,

equal to the string itself, and adds this value to the shadow value table. If

the application reads in additional user input, Diglossia repeats this process.

These initial shadow values contain only characters from the original character

set C.

Whenever the application performs a string or character array oper-

ation lhs = operation(op1, op2) where one or both operands (op1 and op2)

already have shadow values—and, therefore, the operation is data-dependent

on user input—Diglossia computes the shadow value shadowlhs for the result

as follows.

If one operand op does not already have a shadow value, Diglossia

allocates a new shadow value and remaps each character in op to the corre-

sponding shadow character, creating shadowop. Given individual characters

ci ∈ op, shadowop = map(c0) || . . . || map(cn−1) where n is the length of op.

This remapping guarantees that all characters introduced by the application

itself are in the shadow character set, regardless of whether they appear in

the application as explicit string literal constants, come from libraries, or are

generated dynamically. Diglossia then computes

shadow lhs = operation(shadowop1,shadowop2).

If lhs does not have an entry in the shadow value table, Diglossia

allocates a shadow value and enters it in the table. Diglossia shadows

123

built-in PHP string and array operations. Built-in PHP string operations

include string trim, string assignment, substring, concatenation, and replace-

ment. Built-in PHP array operations include array merge, push, pop, and

assignment.

Memory for shadow values is proportional to memory tainted by user

input, and shadow computations are proportional to the number of program

statements that depend on user input. The number of lookups for taint infor-

mation is significantly smaller than in byte-level taint tracking methods. In

value shadowing, the number of lookups is the same as the number of involved

values; in contrast, the number of lookups in precise byte- and character-level

taint tracking methods is proportional to the byte or character length of every

value. Furthermore, fine-grained taint tracking methods require heavy aug-

mentation of built-in operations on strings and bytes to precisely propagate

taint information. In contrast, value shadowing performs only the same string

and array operations on shadow values as the application performs on the

actual values, which is lighter and more efficient.

Figure 5.4 shows an overview of our approach, in which we remap ASCII

characters into Korean characters and use the latter to compute shadow values.

In Figure 5.4, the assignment $q = “var id = ”.“12; return true; //”.“; ”;

concatenates string constants with user input. We compute the shadow value

as $qs = map(“var id = ”).“12; return true; //”.map(“; ”);. Observe that

computing the shadow value involves the same concatenation operation on the

shadow values as done in the original application. All strings originating from

124

user input remain the same, but string constants introduced by the application

have been remapped to (in this case) Korean UTF-8 characters. Diglossia

stores the resulting $qs as the shadow of q and uses it for subsequent shadow

operations.

// boxes show the shadow opera t ions
1 $ input = $ GET [' input '] ;

$input s = $ GET[‘input’];

2 $amount = $ GET ['amount '] ;

$amount s = $ GET[‘amount’];

3 $SQL = 'CCS13SELECT ∗ FROM ' ;

$SQL s = map(‘CCS13SELECT * FROM ’);

4 i f ($ input < 100) {
5 $SQL = $SQL . ' small numbers WHERE count < ' . $amount ;

$SQL s = $SQL s . map(‘small numbers WHERE count < ’) . $amount s;

6 } else i f ($ input > 200) {
7 $SQL = $SQL . ' large numbers WHERE count > ' . $amount ;

$SQL s = $SQL s . map(‘large numbers WHERE count > ’) . $amount s;

8 } else {
9 $SQL = $SQL . ' middle numbers WHERE count < ' . $amount ;

$SQL s = $SQL s . map(‘middle numbers WHERE count < ’) . $amount s;

10 }
11 $SQL = subs t r ($SQL , 6) ; // trim f i v e charac t e r s from the s t a r t

$SQL s = substr($SQL s, 6);

12 In t e rpo s e and v a l i d a t e ($SQL , $SQL s) ;
13 mysql query ($SQL) ;
?>

Figure 5.5: An example of value shadowing.

Figure 5.5 illustrates how Diglossia computes shadow values. Given

that $input is 150, this PHP application computes the $SQL string to be used

as the query. $SQLs is the shadow value of $SQL. Let SOi be the shadow

operation corresponding to the ith line of the application (it is shown in the

125

gray box underneath the corresponding line). The full execution sequence

comprises lines 1, SO1, 2, SO2, 3, SO3, 4, 6, 9, SO9, 11, SO11, 12, and

13 in order. Observe that non-string, non-character-array operations are not

shadowed.

Line 13 makes the database call with the query stored in string $SQL.

In this case, $SQL has a shadow value $SQLs because the query depends on

user input.

5.2.3 Detecting Injected Code

When the application issues a query q using calls such as mysql query,

MongoCollection::find, or MongoCollection::remove, Diglossia intervenes and

compares q with its shadow q′. Diglossia checks that (1) q and q′ are syn-

tactically isomorphic, and (2) the code in the shadow query q′ is not tainted.

If either condition fails, it reports an attack. Diglossia performs both checks

at the same time, using a dual parser.

Intuitively, the purpose of the dual parser is to analyze the shadow

query using the grammar of the query language L, but taking into account the

fact that the shadow query contains a mix of original and shadow characters.

Value shadowing guarantees that all characters in q′ that were introduced by

the application are in the shadow character set, and all characters in q′ that

originate from user input are in the original character set.

We first formally define a new shadow language SL that is a superset

of the original query language L. We then describe how we optimize our

126

implementation by re-using the parser for L to parse the shadow language SL.

Query language and grammar. LetG = (N,Σ, R, S) be the context-

free grammar of the query language L. N is the set of non-terminal states,

representing operations, conditionals, expressions, etc. Σ is the set of termi-

nal states, disjoint from N . We will use the symbol ε to refer to individual

terminal states in Σ. R is the set of production rules that express the finite

relation from N to (N ∪ Σ)∗. S ∈ N is the unique start symbol.

When the parser uses this grammar G to accept a program P , it pro-

duces a parse tree that maps every character in P to a terminal. Each terminal

is either code or non-code. Code terminals include operations (e.g., “+” and

“-”), keywords, bound identifiers, and method calls. Non-code terminals in-

clude constant literals, string literals, and reserved symbols (NULL, TRUE,

etc.).

Shadow language and grammar. Given a query language L and

its grammar G, Diglossia defines a corresponding shadow language SL and

shadow grammar SG. As described in Section 5.2.1, every character c used in

L has a corresponding shadow character sc. Characters in SL are drawn from

C ∪SC, where C is the original character set and SC is the shadow character

set.

We define SG = (N,Σs, Rs, S) to be the grammar of the shadow lan-

guage SL. N and S are the same as in G. For every terminal ε ∈ Σ, there

exists exactly one corresponding shadow terminal εs ∈ Σs, defined as follows.

127

Let σε be any string accepted by ε. If ε is an identifier or string lit-

eral, then, for each legal character c occurring in σε, the shadow terminal εs

accepts c or map(c). In other words, any identifier or string literal from the

original language L can be expressed in an arbitrary mixture of original and

shadow characters in the shadow language SL. For these terminals, εs accepts

a superset of ε.

For any other terminal ε in G, the corresponding shadow terminal εs

accepts only σε or map(σε). In other words, any non-identifier, non-string-

literal terminal in the shadow language must be expressed entirely in original

characters, or else entirely in shadow characters. For instance, if the query

language L contains a “SELECT” terminal, the shadow grammar will accept

“map(SELECT) * FROM table”, but not “SELEmap(CT) * FROM table”.

This restriction immediately rules out some injection attacks even before the

security checks described below. For example, keywords that contain both

original and shadow characters will not even parse.

For each production rule ∈ R, SG has a corresponding rules ∈ Rs.

Formally, rule has the form: rule : n → v1v2...vl where n ∈ N, v ∈ N ∪ Σ.

In rules, all non-terminals are the same as in rule, while the terminals εs are

defined as above.

Consider the following example, where rules are the rules from the

original grammar, and ruless are the corresponding rules from the shadow

grammar.

128

rules : select stmt → SELECT term list exp table exp

SELECT term→ SELECT

identifier → {a|b| . . .}
. . .

ruless : select stmt → SELECT term list exp table exp

SELECT term→ SELECT | map(SELECT)
identifier → {a|b| . . . |map(a)|map(b)| . . .}
. . .

The example shows one non-terminal rule and two terminal rules. Since

select stmt ∈ G is a non-terminal rule, it is exactly the same in both gram-

mars. The terminal rule for SELECT term ∈ SG accepts both SELECT

and map(SELECT), a superset of the original language, since SELECT is

a keyword. The terminal rule for identifier ∈ SG accepts strings with an ar-

bitrary mix of original characters c and the corresponding shadow characters

map(c).

Applying these simple transformations to the original language and

parser, we create a shadow language and parser. Shadow production rules

defined in this fashion do not add conflicts, thus the parser for SG produces

a deterministic parse tree.

Each character map requires its own shadow grammar. Since a fresh

map is dynamically generated for each page request (i.e., each invocation of

a PHP application), automatically building a new parser for each execution

would be expensive. Instead, Diglossia takes advantage of the fact that the

non-terminals are the same in G and SG, and there is a one-to-one correspon-

dence between the terminals. This enables Diglossia to re-use the parser for

129

G when parsing SG.

A parser is a function that chooses the next parsing state based on the

current state and the input token. If a particular token t triggers a production

rule in G (e.g., SELECT term ∈ G in the example above), then the remapped

token ts triggers the corresponding rule in SG (e.g., SELECT term ∈ SG in

the example above). This feature enables Diglossia to use the same inter-

nal handle for both t and ts, while extending the set of accepted characters.

With this optimization, Diglossia can use the same parsing tables for all

dynamically generated shadows of a given query language.

Using the dual parser to detect injected code. Let DP be the

dual parser that can parse query strings according to either the original gram-

mar G, or the shadow grammar SG defined above.

Given the actual query q issued by the application, DP parses it using

G and generates a parse tree T . DP then parses the corresponding shadow

query q′ and generates a parse tree T ′. If DP cannot produce a parse tree for

either q or q′, it rejects the query and reports a code injection attack.

Otherwise, DP compares the terminal nodes in the two parse trees, T

and T ′, and checks the following two conditions:

1. For each node ti ∈ T , there exists a one-to-one mapping to t′i ∈ T ′ and,

furthermore, t′i is the shadow of ti. For example, if ti is a particular code

operator, then t′i is the same code operator.

130

2. If ti parses to a code terminal, then for every character tij ∈ C, there exists

a one-to-one mapping from tij to the correct shadow character t′ij ∈ SC

such that t′ij = map(tij), where map is the shadow character map.

If either condition is violated, Diglossia reports a code injection at-

tack.

The actual query q may only use the original characters c ∈ C for code,

whereas its shadow q′ may only use the shadow characters sc ∈ SC for code.

For example, if an identifier terminal ε ∈ q is generated by merging a string

constant with user input, the identifier terminal εs ∈ q′ will contain original

characters. This case is an instance of code injection because the code of the

query depends on user input. Diglossia makes sure that all code terminals

in q come entirely from the application itself and not a single character comes

from user input.

On the other hand, the non-code in q′ may use any combination of orig-

inal and shadow characters, reflecting the fact that non-code may be derived

from strings originating from user input or the application itself. For example,

if the query q contains a string literal “ab”, then “map(a)map(b)”, “amap(b)”

or ‘map(a)b” can all occur in the shadow query q′.

In summary, given the parse tree for the actual query q and the parse

tree for the shadow query q′, Diglossia checks whether the two queries agree

on code and non-code. Since all code in q′ that comes from the application

itself is in shadow characters and all code in q′ that comes from user input

131

is in original characters, Diglossia checks whether q′ contains any code in

original characters and, if so, reports a code injection attack.

5.3 Limitations

Diglossia follows Ray and Ligatti’s strict definition of code and non-

code [58] which does not permit any user input to be used as part of code in the

query. If the application developer intentionally incorporates user input into

the query code (a dangerous and ill-advised programming practice), Diglos-

sia will report a code injection attack when the application is executed.

The ability to recognize and separate code and non-code in the query

string generated by the application critically depends on using the correct

grammar for the query language. If the language accepted by the database’s

query parser differs from the language accepted by Diglossia’s parser during

its analysis, Diglossia may generate both false positives (mistakenly parse a

tainted part of the query as code, even though it will not be parsed as code

by the database) and false negatives (mistakenly parse a tainted part of the

query as non-code, even though it will be parsed as code by the database).

If the application passes an input-tainted string to a third-party PECL

extension or some other built-in function that is not implemented in PHP, value

shadowing can be incomplete because Diglossia cannot observe the string

operations inside these functions. Incomplete value shadowing may lead to

false negatives (missed attacks). Fortunately, unlike Java and C applications,

PHP applications do not use third-party libraries heavily.

132

Diglossia propagates taint information by performing shadow opera-

tions on shadow values, mixtures of original and shadow characters. Thus, the

semantic of particular shadow operations may be different to their correspond-

ing original operations. If the application generates a tainted string query by

changing characters with numeric type-casting operations, the corresponding

shadow operations cannot preserve the same semantic due to randomly cho-

sen shadow characters. When performing such shadow operations to build

tainted queries, Diglossia may generate false positives. However, building

database queries mostly involves a series of string built-in operations. We did

not observe string operations that cause false positives.

5.4 Evaluation

To evaluate Diglossia, we created a test suite of ten Web applications

implemented in PHP (see Table 5.2). Four of our benchmark applications

use MongoDB and contain NoSQL injection vulnerabilities, which we found

by manual inspection of the applications’ source code: mongodb php basic,

mongodb-admin, MongoT inyURL, and simple-user-auth. Two, MongoPress

and rockmongo, were chosen to demonstrate the performance of Diglossia

on relatively large applications. The remaining four applications were chosen

because they contain known SQL injection vulnerabilities [30, 41].

We implemented concrete attacks exploiting the known vulnerabilities

in the benchmark applications. We also implemented concrete instances for

all of Ray and Ligatti’s canonical cases listed in Table 5.1. All experiments

133

Applications Database LoC Attacks Detected

MongoPress

MongoDB

35,231 0 0
mongodb-admin 555 2 2
mongodb php basic 209 1 1
rockmongo 11,218 0 0
MongoTinyURL 60 1 1
simple-user-auth 236 1 1

faqforge

MySQL

1,520 1 1
schoolmate 7,024 6 6
webchess 5,780 12 12
MyBB with

108,267 1 1
MyYoutube(1.0)

Table 5.2: Benchmark PHP applications.

were performed on an Intel(R) dual core 3.30 GHz machine with 8G of RAM.

Table 5.2 summarizes the results of our evaluation on the ten bench-

mark Web applications. The first column lists the applications, the second

column shows the backend database each application uses, the third column

shows the size of the application. The fourth column shows the number of dif-

ferent code injection attacks we attempted against the application, while the

last column demonstrates that Diglossia successfully detected all attacks.

Figure 5.6 shows the time it took to build the front page of each appli-

cation, measured as the average of 50 runs with the database cache disabled.

Range bars represent 95% confidence intervals. Most interval ranges overlap,

thus the performance overhead of Diglossia is unnoticeable to the users of

the application.

134

1.9

3.3

2.8

5.7

0.1

0.4

6.2

0.4

3.1

2

5

6.8

6.1

7.3

4.1

8.7

13.5

12.5

8.5

2.8

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms

mongodb-admin

mongo_php_basic

MongoPress

rockMongo

MongoTinyURL

simple-user-auth

faqforge

schoolmate

webchess

MyBB

Full (parsing + value shadowing) Value shadowing without parsing Original

Page building time (ms)

Figure 5.6: Performance overhead of Diglossia with the database cache disabled.

135

11.9

4.3

1.1

1.3

9.5

12.5

9

13.2

11.8

0.3

12.6

22.5

3

5.5

12.6

23.3

22.1

18.8

19.2

1.4

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

mongodb-admin

mongo_php_basic

MongoPress

rockMongo

MongoTinyURL

simple-user-auth

faqforge

schoolmate

webchess

MyBB

Full (parsing + value shadowing) Value shadowing without parsing Original

Page building time (ms)

Figure 5.7: Performance overhead of Diglossia with the database cache enabled.

136

The numbers at the top of each bar represent overhead percentages,

computed by taking the time it took to build the page with Diglossia de-

ployed and dividing it by the original page-building time. The maximum

overhead is 13%, but the actual time difference is less than 2 ms, within the

variance of the original page-building time.

Figure 5.7 shows the performance overhead of Diglossia with the

database cache enabled. The overall response times are lower, thus the over-

head percentages are bigger than those in Figure 5.6. However, most overhead

is not statistically significant compared to the variation in the page-loading

time. To measure the overhead of validating a query, we implemented five sim-

ple PHP applications. Each of them performs only one of the following five

query operations on an empty database. We selected the following queries that

are used in the benchmark applications and MongoDB PHP code samples [39].

1. SELECT gameID FROM mainT WHERE lastMove < 2

2. UPDATE user names SET access f = TRUE WHERE uid=‘arbitrary’ AND

pwd =‘guessme’

3. SELECT ids.name AS iname, files.name AS fname, COUNT(*) AS C FROM

tokens INNER JOIN ids ON ids.eid = tokens.eid WHERE ids.eid = ‘arbi-

trary’ GROUP BY ids.eid

4. function nosql query() { var id = ’any id’; if(id == this.id) return true;

else return false; }

5. {‘key’ : {‘$gt’ : 10 } }

137

109.5 µs

176.6 µs

160.6 µs

151.1 µs

144.5 µs

.0 ms .20 ms .40 ms .60 ms .80 ms 1.0 ms 1.20 ms

SQL query #1

SQL query #2

SQL query #3

JavaScript query #4

JSON query #5

Full (parsing + value shadowing) Original

Page building time (ms)

Figure 5.8: Performance overhead of dual parsing in Diglossia.

Figure 5.8 shows the time Diglossia took to execute each application.

We measured the average execution time of 50 runs. The number at the top of

each bar represents the execution time for each application. We measured the

time it took to build each application with Diglossia deployed and subtract

from it the original page-building time. These experimental results show that

Diglossia accurately detects SQL and NoSQL code injection attacks with

virtually unnoticeable performance overhead.

138

5.5 Conclusion

To the best of our knowledge, Diglossia is the first tool capable of

accurately detecting both SQL and NoSQL injection attacks on server-side

PHP applications at runtime, without any modifications to applications or

backend databases.

Diglossia follows Ray and Ligatti’s definition of code and non-code,

combined with very precise character-level taint tracking, and thus avoids the

false positives and false negatives of prior tools for detecting code injection

attacks. In tandem with the execution of the application, Diglossia remaps

all characters introduced into the query by the application itself into a shadow

character set, while leaving the characters that originate from user input intact.

The resulting query and its shadow are then analyzed using a dual parser that

can parse both the original and shadow query languages. Dual parsing is the

main technical innovation of this work. Any discrepancy between the parse

trees of the query and its shadow, or the presence of any original characters

in the code of the shadow query indicate that the code of the actual query is

tainted by user input and thus a code injection attack has occurred.

Diglossia imposes negligible performance overhead and does not re-

quire any changes to the existing applications, databases, Web servers, or

Web browsers. It can be easily added to the PHP environment and is ready

to deploy today.

139

Chapter 6

Conclusion

Web security has become a principal factor in building reliable Web

services. Web attacks take advantage of application vulnerabilities caused by

developers’ mistakes or their ignorance of security. Identifying and repairing

these vulnerabilities demand tedious and error-prone code auditing, which

motivates the search for alternatives.

We argue that automated security tools help identify and remediate

Web vulnerabilities, resulting in better Web security. For access-control vul-

nerabilities in server-side Web applications, we presented RoleCast and

FixMeUp that find and repair access-control vulnerabilities, respectively.

RoleCast infers a role-specific access-control policy without a priori access-

control specification by exploiting common software-engineering patterns. Fur-

thermore, FixMeUp suggests candidate repairs to developers in order to ease

the patching of access-control vulnerabilities. We demonstrate that our meth-

ods are effective in enforcing consistent role-specific and context-specific access-

control logic.

To defeat code-injection threats against SQL and NoSQL database

queries, we present Diglossia. It is a dynamic detection tool that identifies

140

code-injection attacks while a Web application is executing. We demonstrate

its precision and efficiency in detecting subtle code-injection attacks using dual

parsing and value shadowing. We also show that a precise definition of code

in the target query language is essential for accurate identification of SQL and

NoSQL command injection attacks.

In the thesis, we demonstrate the utility and benefits of static and

dynamic tools that help improve server-side Web security. Automated security

tools can not only help developers who lack security expertise, but also enforce

consistent security properties while minimizing tedious code auditing for better

server-side Web security.

141

Bibliography

[1] J. Andersen and J. Lawall. Generic patch inference. In ASE, pages 337–

346, 2008.

[2] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. Multi-module

vulnerability analysis of Web-based applications. In CCS, pages 25–35,

2007.

[3] S. Bandhakavi, P. Bisht, Madhusudan P, and V. N. Venkatakrishnan.

CANDID: Preventing SQL injection attacks using dynamic candidate

evaluations. In CCS, pages 12–24, 2007.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site

request forgery. In CCS, pages 75–88, 2008.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakrish-

nan. NoTamper: Automatic blackbox detection of parameter tampering

opportunities in web applications. In CCS, pages 607–618, 2010.

[6] S. Boyd and A. Keromytis. SQLrand: Preventing SQL injection attacks.

In ACNS, pages 292–302, 2004.

[7] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans. GuardRails:

A data-centric Web application security framework. In WebApps, pages

1–1, 2011.

142

[8] D. Canali and D. Balzarotti. Behind the scenes of online attacks: an

analysis of exploitation behaviors on the web. In NDSS, 2013.

[9] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security en-

forcement using dynamic data flow analysis. In CCS, pages 39–50, 2008.

[10] A. Chlipala. Ur: Statically-typed metaprogramming with type-level

record computation. In PLDI, pages 122–133, 2010.

[11] A. Chlipala. Static checking of dynamically-varying security policies in

database-backed applications. In OSDI, pages 1–1, 2011.

[12] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An

approach for the anomaly-based detection of state violations in Web ap-

plications. In RAID, pages 63–86, 2007.

[13] CVE detail. http://www.cvedetails.com/vulnerabilities-by-types.php.

[14] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Effi-

ciently computing static single assignment form and the control depen-

dence graph. ACM Transactions on Programming Languages and Sys-

tems, 13(4):451–490, 1991.

[15] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing au-

thentication and access control vulnerabilities in Web applications. In

USENIX Security, pages 267–282, 2009.

143

[16] D. Dede. Attack of wordpress blogs on rackspace. http://blog.sucuri.net/

2010/06/mass-attack-of-wordpress-blogs-on-racksp%ace.html, 2010.

[17] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear the EAR: Discovering

and mitigating execution after redirect vulnerabilities. In CCS, pages

251–262, 2011.

[18] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant

behavior: A general approach to inferring errors in systems code. In

SOSP, pages 57–72, 2001.

[19] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward auto-

mated detection of logic vulnerabilities in Web applications. In USENIX

Security, pages 143–160, 2010.

[20] J. Grossman. Whitehat security website statistics report. 2012.

[21] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for Ajax

intrusion detection. In WWW, pages 561–570, 2009.

[22] W. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-

aware evaluation to counter sql injection attacks. In FSE, pages 175–185,

2006.

[23] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating navigation

errors in Web applications via model checking and runtime enforcement

of navigation state machines. In ASE, pages 235–244, 2010.

144

[24] Internet World Stats Usage and Population Statistics. http://www.

internetworldstats.com/stats.htm.

[25] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-

violation fixing. In PLDI, pages 389–400, 2011.

[26] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for

detecting web application vulnerabilities. In Security and Privacy, pages

258–263, 2006.

[27] N. Jovanovic, C. Kruegel, and E. Kirda. BLUEPRINT: Robust preven-

tion of cross-site scripting attacks for existing browsers. In Security and

Privacy, pages 331–346, 2009.

[28] JSON. http://www.json.org.

[29] JSP. http://java.sun.com/products/jsp.

[30] A. Kieżun, P. Guo, K. Jayaraman, and M. Ernst. Automatic creation of

SQL injection and cross-site scripting attacks. In ICSE, pages 199–209,

2009.

[31] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for

Java. In OOPSLA, pages 359–372, 2002.

[32] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou. SQLProb: A proxy-

based architecture towards preventing SQL injection attacks. In SAC,

2009.

145

[33] B. Livshits and T. Zimmermann. Dynamine: Finding common error pat-

terns by mining software revision histories. In ESEC/FSE, pages 296–305,

2005.

[34] V.B. Livshits and M. Lam. Finding security vulnerabilities in java appli-

cations with static analysis. In USENIX Security, 2005.

[35] N. Meng, M. Kim, and K. McKinley. Systematic editing: Generating

program transformations from an example. In PLDI, pages 329–342, 2011.

[36] N. Meng, M. Kim, and K. McKinley. LASE: Locating and applying sys-

tematic edits by learning from examples. In ICSE, pages 502–511, 2013.

[37] L. Meyerovich and B. Livshits. ConScript: Specifying and enforcing fine-

grained security policies for JavaScript in the browser. In Security and

Privacy, pages 481–496, 2010.

[38] MongoDB production deployments. http://www.mongodb.org/about/

production-deployments/.

[39] MongoDB. http://www.mongodb.org.

[40] R. Mui and P. Frankl. Preventing Web application injections with com-

plementary character coding. In ESORICS, pages 80–99, 2011.

[41] MyYoutube MyBB Plugin 1.0 SQL Injection. http://www.exploit-db.

com/exploits/23353.

146

[42] H. Nguyen, T. Nguyen, G. Wilson Jr., A. Nguyen, M. Kim, and

T. Nguyen. A graph-based approach to API usage adaptation. In OOP-

SLA, pages 302–321, 2010.

[43] H. Nguyen and M. Rinard. Detecting and eliminating memory leaks using

cyclic memory allocation. In ISMM, pages 15–29, 2007.

[44] T.T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T.N. Nguyen.

Recurring bug fixes in object-oriented programs. In ICSE, pages 315–

324, 2010.

[45] A. Nguyen-tuong, S. Guarnieri, D. Greene, and D. Evans. Automatically

hardening web applications using precise tainting. In IFIP International

Information Security Conference, pages 372–382, 2005.

[46] NoSQL. http://nosql-database.org/.

[47] NoSQL injection attack on Diaspora. http://www.kalzumeus.com/2010/

09/22/security-lessons-learned-from-the-diaspora-launch/.

[48] Owasp attack. https://www.owasp.org/index.php/Category:Attack.

[49] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,

C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W-F. Wong, Y. Zibin,

M. Ernst, and M. Rinard. Automatically patching errors in deployed

software. In SOSP, pages 87–102, 2009.

[50] PHC : open source php compiler. http://www.phpcompiler.org.

147

[51] PHP. http://www.php.net.

[52] PHP advent 2010: Usage statistics. http://phpadvent.org/2010/

usage-statistics-by-ilia-alshanetsky.

[53] T. Pietraszek, C. Berghe, C. V, and E. Berghe. Defending against injec-

tion attacks through context-sensitive string evaluation. In RAID, pages

124–145, 2005.

[54] M. Pistoia, R. Flynn, L. Koved, and V. Sreedhar. Interprocedural analysis

for privileged code placement and tainted variable detection. In ECOOP,

pages 362–386, 2005.

[55] N. Popper and S. Sengupta. U.S. says ring stole 160 mil-

lion credit card numbers. http://dealbook.nytimes.com/2013/07/25/

arrests-planned-in-hacking-of-fi%nancial-companies/, 2013.

[56] B. Proffitt. Yahoo’s 450,000 Account Security Breach. http://

readwrite.com/2012/07/12/yahoos-450-000-account-security-breach-%

whose-fault-was-it, 2012.

[57] Quercus. http://quercus.caucho.com.

[58] D. Ray and J. Ligatti. Defining code-injection attacks. In POPL, pages

179–190, 2012.

[59] R. Richmond. Twitter Is Hacked Tuesday Morning, 2010. http://bits.

blogs.nytimes.com/2010/09/21/twitter-hacked-tuesday-morning%/.

148

[60] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W. Beebee.

Enhancing server availability and security through failure-oblivious com-

puting. In OSDI, pages 303–316, 2004.

[61] P. Ryck, L. Desmet, W. Joosen, and F. Piessens. Automatic and precise

client-side protection against CSRF attacks. In ESORICS, pages 100–116,

2011.

[62] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX: Systematic

discovery of client-side validation vulnerabilities in rich Web applications.

In NDSS, 2010.

[63] R. Sekar. An efficient black-box technique for defeating web application

attacks *. In NDSS, 2009.

[64] A. Sistla, V. Venkatakrishnan, M. Zhou, and H. Branske. CMV: Auto-

matic verification of complete mediation for Java Virtual Machines. In

ASIACCS, pages 100–111, 2008.

[65] S. Son, K. McKinley, and V. Shmatikov. RoleCast: Finding missing

security checks when you do not know what checks are. In OOPSLA,

pages 1069–1084, 2011.

[66] S. Son and V. Shmatikov. SAFERPHP: Finding semantic vulnerabilities

in PHP applications. In PLAS, 2011.

[67] S. Son and V. Shmatikov. The Postman Always Rings Twice: Attacking

and defending postmessage in html5 websites. In NDSS, 2013.

149

[68] Soot: A Java optimization framework. http://www.sable.mcgill.ca/soot/.

[69] M. Sridharan, S. Fink, and R. Bodik. Thin slicing. In PLDI, pages

112–122, 2007.

[70] V. Srivastava, M. Bond, K. McKinley, and V. Shmatikov. A security pol-

icy oracle: Detecting security holes using multiple API implementations.

In PLDI, pages 343–354, 2011.

[71] Z. Su and G. Wassermann. The essence of command injection attacks in

Web applications. In POPL, 2006.

[72] B. Sullivan. Server-side JavaScript injection. http://media.blackhat.com/

bh-us-11/Sullivan/BH˙US˙11˙Sullivan˙Server˙Side˙WP.pdf, 2011.

[73] F. Sun, L. Xu, and Z. Su. Static detection of access control vulnerabilities

in Web applications. In USENIX Security, pages 11–11, 2011.

[74] F. Sun, L. Xu, and Z. Su. Detecting logic vulnerabilities in e-commerce

applications. In NDSS, 2014.

[75] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Auto-

matically inferring security specifications and detecting violations. In SS,

pages 379–394, 2008.

[76] Apache Tomcat. http://tomcat.apache.org.

150

[77] J. Vijayan. TJX data breach: At 45.6M card numbers, it’s the

biggest ever. http://www.computerworld.com/s/article/9014782/TJX˙

data˙breach˙At˙45.6M˙card˙numbers˙it˙s˙the˙biggest˙ever, 2007.

[78] G. Wasserman and Z. Su. Sound and precise analysis of web applications

for injection vulnerabilities. In PLDI, 2007.

[79] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically

finding patches using genetic programming. In ICSE, pages 364–374,

2009.

[80] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a

practical approach to defeat a wide range of attacks. In USENIX Security,

2006.

[81] A. Yip, X. Wang, N. Zeldovich, and F. Kaashoek. Improving application

security with data flow assertions. In SOSP, pages 291–304, 2009.

[82] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards locating execution

omission errors. In PLDI, pages 415–424, 2007.

[83] M. Zhou, P. Bisht, and V. N. Venkatakrishnan. Strengthening XSRF

defenses for legacy web applications using whitebox analysis and trans-

formation. In ICISS, pages 96–110, 2010.

151

Vita

Sooel Son was born in Suwon, South Korea on 1 July 1981. He received

the degree of Bachelor of Science from Hanyang University at Ansan in 2008.

He entered the Computer Science Ph.D. program at the University of Texas

at Austin in 2008.

Permanent address: 11500 Jollyville Rd Apt 1024
Austin, Texas 78759

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

152

