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Genetic basis for ichthyotoxicity and osmoregulation in the euryhaline 

haptophyte, Prymnesium parvum N. Carter 
 

 

Aimee Elizabeth Talarski, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor: John W. La Claire, II 

 

There is limited information currently available regarding the underlying 

physiological responses and molecular mechanisms of osmoregulation, acetate 

metabolism [in relation to the synthesis of glycerolipids, polyunsaturated fatty acids 

(PUFA), and ichthyotoxins], and transport in Prymnesium parvum N. Carter, a microalga 

that causes devastating harmful algal blooms (HAB) worldwide. This dissertation 

examines gene expression under environmental conditions that are associated with HAB 

formation, including phosphate limitation and low salinity, using microarrays and RNA 

sequencing (RNA-Seq). A comparative fatty acid methyl ester (FAME) analysis at 30 vs. 

5 practical salinity units (psu) was performed to gain additional insight into acetate 

metabolism. The RNA-Seq analysis included a de novo assembly of the P. parvum 

transcriptome, generating 47,289 transcripts, of which 35.4% were identifiable. This 

permitted the evaluation of the expression of many more genes compared with the 

microarray analysis, which examined ~3,500 genes. Relevant candidate genes identified 

included those whose products are involved in osmolyte production, salinity stress, and 

ion transport. With respect to the putative synthesis of polyketide ichthyotoxins, 32 

different polyketide synthase (PKS) transcripts were identified in the transcriptome 

assembly, none of which were differentially expressed. Hemolysin and 

monogalactosyldiacylglycerol synthase were downregulated at 30 vs. 5 psu, suggesting 

the increased presence of additional ichthyotoxins at the lower salinity. Evidence for 

several PUFA synthesis pathways was also revealed. Fatty acid compositions were 
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largely similar at the two salinities, containing relatively prominent quantities of the 

PUFA stearidonic acid, but compositions varied among strains. The transcription of 

genes whose products are associated with vesicular transport was elevated, and higher 

levels of extracellular prymnesins were observed in HAB-forming conditions. Thus, with 

regard to acetate metabolism, I have revealed evidence for the post-transcriptional 

regulation of the production of prymnesins and the contributory effects of hemolysin, 

monogalactosyldiacylglycerol, and PUFA towards ichthyotoxicity. Further, I propose that 

toxin transport is triggered in HAB-forming conditions, in which the toxins are actively 

being excreted. Collectively, these data shed light on the transcriptional responses that 

occur following alterations in phosphate availability and salinity, including those 

associated with the synthesis and delivery of a number of potential ichthyotoxins from P. 

parvum.  
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Chapter 1:  Introduction 

1.1 THE ORGANISM 

Prymnesium parvum is a globally distributed, unicellular isokont belonging to the 

phylum Haptophyta (Coleman, 1988; Guo et al., 1996; Johansson and Graneli, 1999; 

Barkoh et al., 2008). It is commonly referred to as the “golden alga” due to the 

preponderance of carotenoids in its plastids, which cause bodies of water to take on a 

golden hue during periods of bloom (Jeffrey and Wright, 1994; Olli and Trunov, 2007). It 

is mixotrophic, ingesting dissolved organic and particulate matter, including bacteria and 

protists, in addition to deriving energy from photosynthesis (Moestrup, 1994; Graneli and 

Carlsson, 1998; Baker et al., 2007; Burkholder et al., 2008; Lindehoff et al., 2009; 

Bowers et al., 2010). It is also euryhaline and has been shown to be able to adapt to 

media salinity levels ranging from 3 to 30 practical salinity units (psu), although it 

typically forms blooms in brackish waters (Larsen and Bryant, 1998; Graneli et al., 

2012). These harmful algal blooms (HABs) have led to extensive fish kills worldwide 

(Otterstrøm and Steeman-Nielsen, 1940; Shilo, 1971; Holmquist and Willen, 1993). The 

consequential negative impact on the coastal marine ecosystem and associated economic 

problems for commercial aquaculture have prompted extensive studies on this organism. 

Much research on P. parvum HABs has been focused on the environmental causes of 

blooms, toxin identification, and bloom management (Guo et al., 1996; Johansson and 

Graneli, 1999; Graneli and Johansson, 2003; Sengco et al., 2005; Barkoh et al., 2008). 

For example, blooms typically coincide with abiotic and biotic stress events, including 

not only salt stress but also nutrient limitation (nitrogen and/or phosphate) and 

fluctuations in temperature and light intensity (Yariv and Hestrin, 1961; Shilo, 1967; 

Larsen et al., 1993; Stabell et al., 1993; Simonsen and Moestrup, 1997; Igarashi et al., 

1999; Johansson and Graneli, 1999).  
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1.2 PRYMNESINS 

The toxins that have long been thought to be responsible for the ichthyotoxicity of 

P. parvum HABs include prymnesins-1 and -2 (Fig. 1.1) (Yariv and Hestrin, 1961; 

Igarashi et al., 1999; Sengco et al., 2005), although recently, other compounds have also 

been suggested to play roles, including fatty acid amides, polyunsaturated fatty acids 

(PUFA), and galactolipids (Kozakai et al., 1982; Henrikson et al., 2010; Bertin et al., 

2012). Prymnesins in particular belong to a class of secondary metabolites called 

polyketides (Reich et al., 1965; Igarashi et al., 1996). Such secondary metabolites are not 

critical to the survival of an organism but may confer advantages, such as defense, 

predation, and competitor reduction as has been suggested for prymnesins (Driscoll et al., 

2013). Ichthyotoxicity is generally caused by increasing permeability of the gill cell 

membranes, leading to cell swelling and subsequent lysis and death (Yariv and Hestrin, 

1961; Dafni and Shilo, 1966; Paster, 1973). Notably, P. parvum does not exhibit 

autotoxicity (Fistarol et al., 2003). Prymnesins require cofactors for activation, such as 

Ca2+, Mg2+, and Na+, and antibiotics, including streptomycin (Yariv and Hestrin, 1961; 

Ulitzur and Shilo, 1964; Sarig, 1989). The precise mechanisms that are involved in 

prymnesin synthesis and delivery remain to be delineated.  

Figure 1.1 Structures of prymnesins-1 and -2 (insert). Reproduced with permission 
from Manning and La Claire (2010). 

. 

 



 
 
 
 

3 

Structurally, the prymnesins are amphiphilic, glycosidic toxins that are 90 carbons 

in length and contain trans-1,6-transdioxadecaline units, conjugated double and triple 

bonds, and chlorine and nitrogen atoms (Igarashi et al., 1999). As polyketides, they 

possess the characteristic keto groups that are attached to many of their alternating carbon 

atoms. In prymnesins and a number of other polyketides, these keto groups are reduced to 

hydroxyl groups during biosynthesis (Hopwood and Sherman, 1990; Igarashi et al., 

1999). Prymnesins are structurally similar to toxins that are produced by other algae 

utilizing modular type I polyketide synthase (PKS) enzymes, including maitotoxin and 

ciguatoxin in dinoflagellates, which both contain polycyclic ether moieties (Murata and 

Yasumoto, 2000).  

 

1.2.1 Putative Role of PKS in Prymnesin Synthesis 

Polyketides include a very diverse group of compounds with different functions 

depending on the side chains, chain lengths, and keto group positioning (Hopwood and 

Sherman, 1990). PKS enzymes include types I, II, and III. Type I PKS can be modular or 

iterative; the former possess enzymes that are arranged in distinct modules, while the 

latter contains the same catalytic domains but on a single polypeptide. Type II PKS is 

also iterative, but contains slight differences in its catalytic domains. Type III PKS is 

iterative and homodimeric, typically acting primarily as a condensing enzyme (Hopwood 

and Sherman, 1990; Shen, 2003). The polyketide prymnesins are thought to be 

synthesized by the PKS enzyme complex in an acetate-metabolism-related pathway 

(Cane and Walsh, 1999; Mann, 2001). Genes encoding type I PKS in particular have 

been isolated and sequenced from axenic P. parvum cultures (La Claire, 2006), and this 

enzyme is thought to be responsible for prymnesin synthesis. Type I PKS has also been 

detected in closely related organisms, including Emiliana huxleyi (John et al., 2008). This 

enzyme complex consists of modular, covalently linked proteins, and it synthesizes 

polyketides by successive Claisen condensations of malonyl-CoA-derived extender units 
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to carboxylic acid starter units in a manner that is very similar to fatty acid biosynthesis. 

The malonyl Co-A is formed from the carboxylation of acetyl-CoA and CO2; thus, 

acetyl-CoA availability is critical to polyketide synthesis via PKS (Moore and Hertweck, 

2001; Smith and Tsai, 2007). 

 

1.3 ACETATE METABOLISM IN POLYKETIDE AND FATTY ACID BIOSYNTHESIS 

Although acetyl-CoA is necessary for both fatty acid and polyketide biosynthesis, 

it cannot be transported across membranes. Thus, different subcellular compartments 

must independently synthesize their own pools for relevant metabolic processes. The 

plastid is the main site of fatty acid biosynthesis, where the acetyl-CoA is typically 

supplied by acetate and pyruvate via the actions of the pyruvate dehydrogenase complex 

and acetyl-CoA synthetase (Ke et al., 2000; Oliver et al., 2009). The cytosol is where 

fatty acid elongation primarily takes place, and cytoplasmic acetyl-CoA is typically 

supplied by citrate via the activity of ATP citrate lyase (Ke et al., 2000; Fatland et al., 

2002; Khozin-Goldberg and Cohen, 2011). Other organelles that contain acetyl-CoA 

pools include the mitochondria, where acetyl-CoA may be converted to citrate and 

supplied to the tricarboxylic acid (TCA) cycle or be involved in fatty acid biosynthesis 

and breakdown, and peroxisomes, where fatty acids are broken down (Oliver et al., 

2009). Although the plastid is the main site of fatty acid biosynthesis by the enzyme fatty 

acid synthase (FAS) (Ohlrogge and Browse, 1995; Nikolau et al., 2003; Joyard et al., 

2010), the site of prymnesin synthesis by PKS in P. parvum is unknown. It may occur in 

the chloroplast or cytosol, or alternatively, a precursor may be formed in the chloroplast 

that is exported to the endoplasmic reticulum (ER) for additional processing, as has been 

suggested to occur in the formation of the structurally similar brevetoxins in the 

dinoflagellate Karenia brevis (Huerlimann and Heimann, 2013; Van Dolah et al., 2013). 

Thus, each sub-cellular site contains unique enzymes for the synthesis of acetyl-CoA, and 
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enzyme activities may be investigated at the transcriptional level in addition to those of 

the FAS and PKS enzymes, and their associated modules. 

  

1.3.1 Modular Type I FAS Activities 

The first committed step in fatty acid biosynthesis is the carboxylation of acetyl-

CoA to form malonyl-CoA. Thus, it is a point of regulation for this pathway (Ohlrogge 

and Browse, 1995; Khozin-Goldberg and Cohen, 2011). The biosynthesis of fatty acids 

by the modular enzyme Type I FAS initiates with the transfer of a coenzyme A-linked 

starter unit to an acyl carrier protein (ACP) by an acyltransferase (AT). At this point, the 

growing chain is tethered to the enzymatic apparatus by a thioester linkage (Hopwood 

and Sherman, 1990; Kwan and Schulz, 2011). Next, ketosynthase (KS) extends the 

growing chain by decarboxylative condensation. The AT, KS, and ACP constitute the 

core catalytic domains, and the auxiliary domains, which are reductive elements, include 

ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER). Following synthesis, 

the final fully reduced, aliphatic molecule is released from the enzymatic apparatus by a 

thioesterase (TE) (Cane and Walsh, 1999; Smith and Tsai, 2007; Korman et al., 2010; 

Arakawa, 2012). FAS produces saturated acyl moieties with either 16 or 18 carbons, 

which are largely utilized to form glycerolipid membrane components. They also may be 

exported from the plastid for further modifications, such as elongation, desaturation, and 

phospholipid and triacylglycerol (TAG) formation in the ER (Ohlrogge and Browse, 

1995; Cook, 1996; Huerlimann and Heimann, 2013). 

  

1.3.2 Modular Type I PKS Activities 

Modular Type I PKS differs from Type I FAS due to the variable compositions 

that may comprise its reductive domain (Fig 1.2). Additionally, it may contain a cyclase. 

Thus, Type I PKS is able to produce diverse output with varying reductive states 
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(Hopwood and Sherman, 1990; Kwan et al., 2011; Arakawa, 2012). This enzyme is also 

capable of using alternative starter and extender units, which further contributes to this 

variation (Moore and Hertweck, 2001; Chan et al., 2009). As a result, the final products 

of Type I PKS include a wide array of metabolites with an assortment of functionalities 

(Ohlrogge and Browse, 1995; Cook, 1996; Huerlimann and Heimann, 2013).  

 

Figure 1.2 Example of modular type I PKS.  

 

1.4 POSSIBLE MODES OF PRYMNESIN TRANSPORT 

To be toxic to fish, the polyketide prymnesins must be out in the water column 

(Graneli et al., 2012). The path that prymnesins take to reach the extracellular 

environment is unknown. Actually, there is a lack of information concerning the 

mechanisms of excretion of similar polyketides in any HAB-forming algae. They may be 

actively extruded from P. parvum cells, be released from dying cells, or both. Due to the 

large sizes and amphipathic natures of the prymnesins, it is unlikely that they are simply 

diffused out of cells, although leakage from damaged cells might be possible. Many 

species, including plants, fungi, bacteria, and algae, use specific membrane transporters 

to accomplish the translocation of polyketides and other secondary metabolites (Callahan 

et al., 1999; Pfeifer and Khosla, 2001; Pearson et al., 2004; Yazaki, 2006; Chen et al., 

2013; Masschelein et al., 2013). Alternatively, vesicle-mediated secretion is the preferred 

method for their export in other organisms (Kunst and Samuels, 2003; Lin et al., 2003; 
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Yazaki, 2006; Chanda et al., 2009; Reis et al., 2013). Notably, the sequestration of 

secondary metabolites into vesicles or vacuoles, for example, is commonly observed in a 

variety of eukaryotic organisms as a means of protecting cells from autotoxicity (McKey, 

1979; Sirikantaramas et al., 2008). A similar compartmentalization of enzymes and 

intermediates that are involved in secondary metabolism have also been frequently 

reported (Chiou et al., 2004; Lee et al., 2004; Maggio-Hall et al., 2005; Chanda et al., 

2009; Hong and Linz, 2009), suggesting the possibility of the involvement of several sub-

cellular locations in prymnesin synthesis in P. parvum. Collectively, these data suggest 

that prymnesins may similarly be transported/exported via membrane transporters or a 

vesicle-mediated transport and secretion system in P. parvum.   

 

1.4.1 Potential Role of Secretory Pathway in Prymnesin Secretion 

The secretory system usually includes vesicles and vacuoles in addition to the ER, 

Golgi, endosomes, and plasma membrane (Chrispeels, 1991; Roze et al., 2011). The first 

step of secretion in the conventional pathway typically includes the sequestration of 

metabolites in the ER lumen, after which they traffic to the Golgi apparatus in (COPII-

coated) vesicles. The metabolites are released into and pass through the Golgi and trans-

Golgi network (TGN) and are again packaged into vesicles, which fuse with the plasma 

membrane and deposit their contents into the external environment (Neumann et al., 

2003; Hawes and Satiat-Jeunemaitre, 2005; Peer, 2011) (Fig. 1.3). The fusion process is 

precipitated by the actions of tethering factors, which form loose links to connect the 

vesicle and target membrane (Latjinhouwers et al., 2005; Lupashin and Sztul, 2005). 

Tethering factors interact with various sub-cellular membranes and include the trafficking 

protein particle (TRAPP) complex, which is involved in ER-to-Golgi traffic, and the 

exocyst, which acts at the TGN and plasma membrane (Raymond et al., 1992; Sacher et 

al., 2001; Whyte and Munro, 2002). The tethering complexes are thought to activate 

small GTPases on the vesicle membrane, such as RAB, which facilitate the subsequent 
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vesicle docking and fusion (Batoko et al., 2000; Sacher et al., 2001; Sztul and Lupashin, 

2006). ADP-ribosylation factor (ARF) is another regulatory protein that is involved in the 

recruitment of coat proteins, tethering complexes, and membrane remodeling enzymes 

(D’Souza-Schorey and Chavrier, 2006; Gillingham and Munro, 2007). 

Vesicle fusion is mediated by interactions between soluble N-ethylmaleimide 

sensitive factor attachment receptor proteins (SNARES) that reside on the outer vesicle 

coat and cytosolic side of the plasma membrane (Moreau et al., 2006). Following fusion, 

contents are released outside of the cell. Cytoskeletal elements including actin and 

myosin have been linked to exocytosis and are thought to either aid in the expulsion of 

cargo through contractile force or to stabilize the fusion process, allowing for the release 

of vesicular contents. Vesicle mobility and direction also involve these two cytoskeletal 

proteins (Poste and Allison, 1973; Burridge and Phillips, 1975; Winsor and Schiebel, 

1997; Deneka et al., 2003; Ojangu et al., 2007; Salgado et al., 2008; Nightingale et al., 

2012). Elevations in cytosolic Ca2+ concentrations are known to induce exocytosis (Sutter 

et al., 2007). Some Ca2+-dependent candidates that may be involved in the regulation of 

plant exocytosis include calmodulin, Ca2+-dependent protein kinases, NADPH oxidases, 

actin-binding protein, synaptotagmin, and annexin (Cole and Fowler, 2006; Mortimer et 

al., 2008; Schapire et al., 2008). 
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Figure 1.3 Conventional secretory pathway in eukaryotes. Arrows highlight path 
leading to exocytosis. Inset depicts close-up view of vesicle-target 
membrane interaction. PM- plasma membrane. 

 

1.4.2 Potential Role of Membrane Transporters in Prymnesin Extrusion 

In addition to vesicular transport, the sequestration and export of secondary 

metabolites have also been reported through the action of ATP-binding cassette (ABC) 

transporters. In fact, the genes encoding these transporters have been observed to be 

situated in close proximity to PKS genes and non-ribosomal peptide synthase 

(NRPS)/PKS hybrid genes in some organisms (Pfeifer and Khosla, 2001; Sun et al., 

2003; Pearson et al., 2004; Martin et al., 2005; Chen et al., 2013; Masschelein et al., 

2013). Other transporters that have been observed to be clustered with secondary 

metabolite biosynthesis genes include the major facilitator superfamily, small multidrug 

resistance, resistance-nodulation-cell division, and drug/metabolite exporter (Paulsen et 

al., 1996; Pao et al., 1998; Daßler et al., 2000; Putman et al., 2000; Zheleznova et al., 

2000). Investigations into the proximity of these transporter genes to the secondary 

metabolite genes in addition to assessment of transporter activities strongly support their 
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involvement in secondary metabolite export. Additionally, some amphipathic secondary 

metabolites have been reported to utilize glutathione–S-transferase (GST) as a carrier to 

aid in membrane translocation (Marrs et al., 1995; Weisiger, 1996; Ishikawa et al., 1997; 

Rea et al., 1998; Walczak and Dean, 2000; Bartholomew et al., 2002; Kolukisaoglu et 

al., 2002). Multidrug resistance protein is typically the substrate preference for GST-

conjugates, which is a family of drug transporters that includes ABC transporters 

(Bartholomew et al., 2002). Because there is a lack of knowledge regarding the transport 

and exudation of polyketides in toxic algae, investigations into this process are warranted.  

 

1.5 MECHANISMS OF SALT TOLERANCE IN MARINE ALGAE 

It has been established that hyposalinity stress promotes the extracellular 

accumulation of polyketides in P. parvum (Baker et al., 2007 and 2009; Brooks et al., 

2010; Freitag et al., 2011; Weissbach and Legrand, 2012). However, there is limited 

information describing the mechanisms that enable this microalga to adapt to euryhaline 

environments, and no information on how the prymnesins exit the cells, as already noted.  

Salt tolerance in many euryhaline marine algae typically involves a two-phase 

process. First, cell volume is adjusted by the influx or efflux of water along the osmotic 

gradient. This typically occurs in a matter of seconds. Ionic adjustments also rapidly 

occur, mainly involving K+, Na+, and Cl- (Kirst, 1989; Kobayashi et al., 2007). However, 

precise mechanisms of ionic adaptations to salt stress vary among algal species. Because 

excessive Na+ concentrations are toxic to the cell, interfering with vital metabolic 

pathways, euryhaline and halotolerant plants and algae have developed strategies to 

effectively maintain homeostasis within the cell, such as the use of Na+/H+ antiporters to 

counteract excessive Na+ uptake (Padan and Sculdiner, 1996; Inaba et al., 2001; 

Wutipraditkul et al., 2005). Excess Na+ and Cl- may also be compartmentalized (for 

example, into vacuoles) to decrease cytosolic ion levels and facilitate osmotic adjustment 

(Binzel et al., 1988; Niu et al., 1995). Notably, the initial influx of NaCl from the 
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external environment leads to the cytosolic accumulation of Ca2+, which triggers stress 

signal transduction pathways, further facilitating salt adaptation (Perez-Prat et al., 1992; 

Mendoza et al., 1994; Knight et al., 1997). However, sustained increases in Ca2+ 

concentrations are also damaging to cells, so it is necessary to regain homeostasis, as well 

as to maintain balanced intracellular K+ concentrations because these ions are necessary 

for performing essential cellular processes (Pick et al., 1986; Talebi et al., 2013). Ion 

homeostasis within cells is achieved through the activity of a variety of transporters, 

including plasma membrane and vacuolar H+-ATPases and pyrophosphatases, Na+- and 

Ca2+-ATPases, secondary active transporters (antiporters and symporters), ion channels, 

and ABC transporters (Niu et al., 1995; Sze et al., 1999; Blumwald et al., 2000). It 

should be noted that P. parvum expresses a variety of types of ion and other transporters 

(La Claire, 2006; Beszteri et al., 2012).  

Osmolytes are also important for salt-tolerant and euryhaline organisms to adapt 

to changing salinity levels. These compounds act as solutes to maintain osmotic balance 

in the cell, avoiding the accumulation of high concentrations of ions that would inhibit 

crucial metabolic processes (Brown and Simpson, 1972; Ford, 1984; Kobayashi et al., 

2007). The main osmolyte that has been observed in haptophytic algae including P. 

parvum is β-(dimethylsulphonio)-propionate (DMSP), which is a tertiary sulfonium 

compound that is a precursor of dimethylsulfide (DMS) (Dickinson and Kirst, 1987; 

Steinke et al., 1998; Kobayashi et al., 2007). DMSP is usually associated with long-term 

salinity changes, particularly in hypersaline environments (Dickinson and Kirst, 1986; 

Young et al., 1987; Edwards et al., 1988). In marine algae, the pathway leading to DMSP 

synthesis has been elucidated, in which methionine undergoes transamination, reduction, 

methylation (which is carried out by an S-adenosylmethionine S-methyltransferase in 

Enteromorpha intestinalis), and oxidative decarboxylation reactions (Gage et al., 1997; 

Summers et al., 1998). Thus, the presence of this osmolyte contributes to the ability of P. 

parvum to adapt to fluctuating environmental salinity concentrations. 
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Hypersalinity has other metabolic effects. For example, it typically disrupts the 

activity of the photosynthetic apparatus, leading to decreased levels of light harvesting 

pigments (Schubert et al., 1993; Sayed, 2003; Kosova et al., 2011; Bhargava and 

Srivastava, 2013). CO2 solubility is also reduced, which affects photosynthesis rates 

(Booth and Beardall, 1991; Moisander et al., 2002). Therefore, carbon acquisition-related 

activity may be enhanced in these conditions. Increased rates of photosynthetic CO2 

fixation and energy metabolism have also been observed in more salt-tolerant species, 

and carbon metabolism may likely be directed toward the synthesis of osmolytes (Takabe 

et al., 1988; Liska et al., 2004; Bhargava and Srivastava, 2013; Incharoensakdi and 

Waditee-Sirisattha, 2013). Membranes also are destabilized and undergo restructuring, 

affecting the solubility and transport of substrates and ions, as a potential means of 

enhancing salt tolerance. Additionally, membrane fluidity is often altered in the effort to 

maintain cell integrity, along with changes in membrane protein composition and 

abundance due to their syntheses and degradation (Lee et al., 1989; Singh et al., 2002; 

Katz et al., 2007). Increases in chaperone activity also typically occur, which stabilize 

and direct the transport and insertion of newly synthesized proteins. Further, the 

increased presence of ubiquitins is frequently observed, which regulate membrane protein 

stability and turnover. Finally, the upregulation of antioxidative stress enzymes has been 

observed as a secondary response to salt stress (Sunkar et al., 2003; Katz et al., 2007; 

Ashraf, 2009; Bhargava and Srivastava, 2013).   

 

1.6 RESEARCH OBJECTIVES 

This dissertation addresses the transcriptomic responses of P. parvum (UTEX 

2797) to environmental stress conditions, including those of phosphate limitation and 

salinity. In particular, pathways involving salinity adaptation and osmoregulation were 

examined to obtain insight into relevant mechanisms that might confer euryhaline 

capabilities to this and likely other marine algae. Also, patterns of gene expression in 
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relation to acetate metabolism were investigated to elucidate relevant activities that occur 

as a result of abiotic stress, both globally and particularly in terms of prymnesin 

synthesis. The transcription of genes whose products are involved in transport-related 

processes were investigated as well, to obtain insight into potential mechanisms that may 

be used by this organism to deliver prymnesins to the external environment. Research 

objectives were accomplished using high-throughput techniques that allow for the 

evaluation of the expression of a large number of genes simultaneously, including DNA 

microarrays and RNA sequencing (RNA-Seq).  

This research was conducted based on the notion that there would be significant 

differential gene expression occurring in treatment conditions (abiotic stress) versus 

control conditions and the prediction that altering growth conditions to induce abiotic 

stress would allow for the elucidation of candidate genes and mechanisms that are 

involved in osmoregulation and salinity adaptation, acetate metabolism and transport, and 

prymnesin production and secretion. Thus, my null hypothesis was that there would be no 

significant differences in gene expression between conditions.  

In Chapter 2, microarrays were used to examine differential gene expression 

following the growth of P. parvum in both phosphate-deficient and phosphate-replete 

conditions. These arrays were printed in-house, and a unique working protocol was 

developed. Microarrays allowed for the simultaneous evaluation of the expression of 

approximately 3,500 genes. Although this experiment did not reveal the differential 

expression of any PKS genes, potential transcriptomic patterns in relation to acetate 

metabolism and transport began to emerge. Thus, a further and more extensive evaluation 

of gene expression in response to abiotic stress was desirable.  

Chapter 3 is an expansion upon Chapter 2 where the number of transcripts that 

were able to be evaluated increased from 3,500 to over 45,000 because this method 

enabled the de novo assembly of the full P. parvum transcriptome. This represents a 

comprehensive characterization of global gene expression in this organism. Salinity stress 
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was selected as the treatment so that mechanisms of euryhaline adaptation could be 

evaluated along with those of acetate metabolism- and transport-related transcription.  

Further insight into acetate metabolism in P. parvum is provided in Chapter 4, in 

which a fatty acid profile was established. This was achieved via the isolation of total 

lipids from P. parvum cells, which were subjected to fatty acid methyl ester (FAME) 

analyses using gas chromatography-mass spectrometry (GC-MS). Profiles of several 

extracts were also compared following growth in the same two salinity conditions that 

were evaluated in Chapter 3. This information further elaborates upon the transcriptomic 

data by providing a brief glimpse further downstream from transcription to clarify a 

subset of the metabolic products that are actually being produced.  
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Chapter 2: Differential gene expression corresponding with increased 

prymnesins in Prymnesium parvum cultures following nutrient 

limitation 

2.1 INTRODUCTION 

Bloom formation and toxin production in P. parvum are induced by abiotic and 

biotic stress conditions, including nutrient limitation, particularly that of nitrogen and 

phosphorus (Johansson and Graneli, 1999). Phosphorus limitation in particular has been 

well established as being associated with increased toxicity in P. parvum, both in the field 

and in laboratory-grown cultures (Shilo, 1967; Dafni et al., 1972; Kaartvedt et al., 1991; 

Larsen et al., 1993; Meldahl et al., 1994; Johansson and Graneli, 1999). This organism 

out-competes other algal species in such conditions, forming nearly monospecific blooms 

(Graneli and Johansson, 2003). An environment that is deficient in inorganic phosphate 

has been associated with a ten- to twentyfold increase in toxin production (Johansson and 

Graneli, 1999). Thus, phosphate limitation has been an established means of provoking P. 

parvum toxin production in a laboratory setting.   

In an effort to understand the molecular basis of its ability to outcompete other 

algae under nutrient-limiting conditions, a cDNA library was previously constructed with 

mRNA from late-logarithmic growth phase P. parvum cultures, which resulted in the 

assembly of 3,415 tentative unigenes (TUGs) (La Claire, 2006). This study revealed high 

levels of transcripts encoding phosphate transporters, indicating that P. parvum may be 

very proficient in this regard. The more recent advent of high-throughput transcriptome 

assays, such as microarrays and RNA-Seq analyses, have facilitated the evaluation of 

gene expression in response to phosphate limitation in P. parvum and other algal species 

(Dyhrman et al., 2006; Moseley et al., 2006; Freitag et al., 2011; Morey et al., 2011; 

Yang et al., 2011; Beszteri et al., 2012; Dyhrman et al., 2012; Harke and Gobler, 2013). 

Microarrays enable the assessment of the expression of many transcripts simultaneously 
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and also the comparison of different treatments to identify differentially expressed genes. 

Thus, in the present study, custom microarrays (constructed with oligonucleotides for the 

~3,400 unigenes previously identified) were probed using amplified RNA (aRNA) that 

was prepared from cultures grown in phosphate-replete versus phosphate-limited 

seawater at a salinity level of 5 psu. This allowed for gene expression comparisons 

between conditions with potentially varying ichthyotoxicities. The elucidation of the 

transcriptomic changes that occur during P. parvum blooms and phosphate fluctuations 

may aid in their future management and/or prevention. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Culture Conditions 

One mL of a Texas strain of P. parvum (UTEX LB 2797) containing 1.05 x 106 

cells was used to inoculate (8) 250 mL Erlenmeyer flasks containing 150 mL of 5 psu f/2 

media (minus Si) (Guillard and Ryther, 1962). Five of the flasks contained 36.3 μM 

phosphate (NaH2PO4-H2O) and 5 contained 5.67 μM phosphate, the latter representing 

the phosphate-limited cultures. Flasks were randomly assigned to positions on a 

gyrorotatory shaker (150 rpm) and incubated at a constant temperature of 23 °C under a 

16:8 LD photoperiod with a photon flux of 20 μmole/m2/s. They were grown until late-

logarithmic phase (approximately 1.5 million cells/mL for phosphate-limited and 3 

million cells/mL for phosphate-replete cultures) and then harvested by centrifugation at 

5,000 rpm for 5 min at 22 °C. They were sampled 4 times throughout the experiment to  

verify growth phase status, which were assessed using previously constructed growth 

curves (Fig. 2.1). 
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Figure 2.1 Growth curves of phosphate-limited (P-Ltd) versus full-phosphate (Full P) 
cultures.  

 

2.2.2 Phosphate Analysis 

Approximately 10 mL were removed from each of two phosphate-deficient and -

replete cultures at days 14, 28, 38, and 48 post-inoculation (corresponding with the early-

, mid-, late-, and post-logarithmic growth phases). Samples were centrifuged at 5,000 

rpm for 10 min at 22 °C, and supernatants were harvested and frozen at -4 °C for further 

analyses. Additional supernatants were collected from the phosphate-replete cultures at 

day 0, 6, and 10.  

A phosphorus (P) standard at a concentration of 1,000 parts per million (ppm = 

mg/L) (Cat. No. PP1KW-100, Ricca Chemical Co., Arlington, TX) was used to prepare a 

125 ppm (mg/L) working stock solution using HPLC-grade water (OmniSolve, EMD 

Chemicals Inc., Gibbstown, NJ). This stock solution was then used to prepare 7 serial 

dilutions in total volumes of 10 mL to which 0.12 mL of nitric acid were added. The 
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dilutions contained the following concentrations: 50, 25, 10, 1.0, 0.5, 0.25, and 0 mg/L P. 

Next, 10 mL of the sample supernatants were combined with 0.12 mL of nitric acid. All 

dilutions were performed in 15 mL conical polypropylene centrifuge tubes.  

The serial dilutions and sample supernatants were then loaded into a Varian 710-

ES that was equipped with an autosampler (Agilent Technologies Inc., Santa Clara, CA), 

and P levels in mg/L were measured via inductively coupled plasma-optical emissions 

spectrometry (ICP-OES) using standard operating conditions and wavelengths of 

177.434, 213.618, and 214.914 nm. Output was assessed using the ICP Expert II software 

(Agilent Technologies Inc.). For each sample supernatant, final P concentrations were 

determined by calculating the average of the 3 concentrations from each wavelength.  

Phosphate concentrations were determined from those of P using a conversion 

factor of 3.06, which was obtained by dividing the molecular weight of phosphate (PO4
3-) 

by that of P itself (95/31). This conversion factor was multiplied by the average P 

concentrations of the samples to determine the corresponding phosphate concentrations 

(mg/L) in the media.  

 

2.2.3 RNA Extraction, Purification, and Amplification 

RNA was isolated from cell pellets according to the Epicentre Biotechnologies 

Masterpure Complete DNA and RNA Purification Kit protocol with minor modifications 

(Epicentre Biotechnologies, Madison, WI). Following resuspension in 100 μl of 

diethylpyrocarbonate (DEPC)-treated water, 3 rounds of phenol-chloroform extraction 

were performed to further purify the samples (Sambrook and Russell, 2006). Next, 

ethanol precipitations were conducted, and dried pellets were resuspended in 20 μl of 

DEPC water containing 1 μl Scriptguard RNase Inhibitor (Epicentre Biotechnologies). 

The concentrations and qualities of the RNA samples were measured using a NanoDrop 

ND-100 Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE) and Agilent 

2100 BioAnalyzer (Agilent Technologies Inc.), respectively. After quality was confirmed 
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(260/280 nm readings in the range of 1.8-2.0 and 260/230 nm readings > 1.8 on 

NanoDrop and no degradation apparent on BioAnalyzer), the samples were frozen at -80 

°C for subsequent analyses. 

 

2.2.4 Amplified RNA Preparation, Labeling, and Purification 

Five hundred nanograms of total RNA from each sample were amplified using the 

Epicentre Biotechnologies TargetAmp-1-Round aRNA Amplification Kit protocol 

(Epicentre Biotechnologies) and purified using the Qiagen RNeasy Mini Kit or the 

Qiagen RNeasy MinElute Cleanup Kit with minor modifications depending on whether 

the expected yield of aminoallyl amplified RNA (aRNA) was > 40 μg or < 40 μg, 

respectively (Qiagen Inc., Valencia, CA). β-mercaptoethanol was added to the Epicentre 

RLT solution at a ratio of 1:1000 μl. Additionally, a phosphate wash buffer was used in 

place of the Epicentre RPE solution (100 mM KPO4, pH = 8.0, 80% ethanol). The 

concentrations and qualities were again measured spectrophotometrically. The aRNA 

samples were then stored at -80 °C.  

Five micrograms of aRNA were dried in a Savant SC-100 speed-vacuum 

concentrator (Thermo Fisher Scientific Inc.) prior to the subsequent fluorescent labeling 

steps. Dried aRNA was labeled using the Alexa Fluor 555 and Alexa Fluor 647 Reactive 

Dye Decapacks according to the manufacturer’s protocol with modifications (Life 

Technologies, Grand Island, NY). The aRNA was resuspended in 8 μl of 2× coupling 

buffer (0.2 M sodium bicarbonate buffer, pH 8.6-9.0) and incubated at 37 °C for 15 min. 

It was then cooled to room temperature. Eleven μl of dimethyl sulfoxide was added to the 

tube of Alexa Fluor dye. This dye solution was combined with the aRNA sample and 

incubated in the dark in a desiccator at room temperature overnight (~18 h). To stop the 

reaction, 4.5 μl of 4 M hydroxylamine was added to the sample, incubated at room 

temperature for 15 min, and then purified using the Qiagen columns as previously 

described (for post-labeling purifications, β-mercaptoethanol was not used, and the kit-
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supplied RPE solution was used instead of the phosphate wash buffer). Following 

purification, the sample concentration and quality were again measured 

spectrophotometrically, and the frequency of incorporation (FOI) value was assessed 

using the online Invitrogen Dye:Base Ratio Calculator 

(http://probes.invitrogen.com/resources/calc/dyebaseratio.html). An FOI value of at least 

15 bases per 1000 nucleotides was indicative of adequate dye incorporation and 

suitability of the sample for microarray hybridization. 

 

2.2.5 Microarray Preparation and Hybridization 

Long (70-mer) oligonucleotide probes were designed and assembled by Operon 

Biotechnologies Inc. (Huntsville, AL) using the cDNA sequences identified by La Claire 

(2006). These probes included 3,500 oligonucleotides representing 3,415 unique genes. 

The dried probes (~600 pmol each) were resuspended in Pronto! Universal Spotting 

Solution (Corning Inc., Tewksbury, MA) to concentrations of 20 μM. They were then 

transferred to Corning 384-well microplates (Corning Inc.) in preparation for array 

printing. Plates were stored at 4 °C during printing runs and were stored long-term at -20 

°C. Before each print run, they were centrifuged at 1,000 rpm for 3 min.  

The oligonucleotide probes were printed onto UltraGAPS coated slides (Corning 

Inc.) using the Calligrapher Mini-Arrayer (Bio-Rad, Hercules, CA) and Telechem SMP3 

pins (ArrayIt Corp., Sunnyvale, CA) according to the manufacturer’s protocol with minor 

modifications. Printing was conducted at 55% humidity. Printed arrays were cross-linked 

at 600 mJ using a Stratagene UV Stratalinker 1800 (Agilent Technologies Inc.) and 

stored in a desiccator. They were probed within 6 months of fabrication.  

Each array was hybridized with 2 dual-labeled samples (phosphate deficient 

versus replete) according to the scheme presented in Fig. 2.2. With the balanced loop 

experimental design, samples are hybridized to the arrays in a loop pattern, and each 

sample is labeled once with each dye. This reduces any technical variation that is due to 
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dye effects. Prior to hybridization, slides were pre-treated according to the Pronto! 

Universal Hybridization Kit protocol (Corning Inc.) and then dried by centrifugation in 

microarray slide dryers (Molecular Devices Inc., Sunnyvale, CA). A LifterSlip (Thermo 

Scientific Inc., Portsmouth, NH) that had been pre-soaked with pre-hybridization solution 

(Corning Inc.) was placed over the printed array.  

 

 

Figure 2.2 Balanced-loop design used for microarray hybridizations. A2-A5 represent 
phosphate-limited and B2-B5 represent phosphate-replete cultures. Arrows 
denote “hybridization with”. Green and red colors indicate Alexa Fluor 555 
and 647 dyes, respectively. (n = 4 biological replicates for each treatment).  

 

To prepare the dye-labeled aRNA samples for hybridization, they were dried in a 

speed-vacuum concentrator in subdued light and then dissolved in the recommended 

volume of Long Oligo/cDNA hybridization solution (Corning Inc.) according to the 

manufacturer’s protocol. They were then heated to 85 °C, centrifuged at 13,500 × g for 2 

min, and cooled to room temperature. The labeled aRNA was injected under the 
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LifterSlip, and the array was placed into a hybridization chamber (Molecular Devices 

Inc.) and incubated at 42 °C for 12-16 h. Following hybridization, the arrays were 

washed successively in wash solutions 1, 2, and 3 according to the manufacturer’s 

recommendations (Corning Inc.), briefly dipped in double-distilled water, and dried by 

centrifugation at 500 rcf for 4 min. Immediately after drying, the slides were scanned, 

and the images were quantitated and normalized with the locally weighted scatterplot 

smoothing (LOWESS) algorithm using the Perkin Elmer ScanArray Gx and associated 

software (Perkin Elmer Inc., Waltham, MA). Spots that were flagged by the software as 

“not found,” “absent,” and “bad” were discarded from further analyses, and those that 

were flagged as “good” and “found” were retained. These latter spots were visually 

verified for each array.  

 

2.2.6 Microarray Data Evaluation 

Normalized data were processed with the MultiExperiment Viewer (MeV) 

version 10.2, which is part of the TM4 software suite (Saeed et al., 2003). Log ratios 

(base 2) of signal intensities of low-phosphate versus full-phosphate grown samples were 

calculated for each spot on the arrays, and a Student’s t-test was performed at p ≤ 0.01. 

Those that registered as (statistically) significant different were subjected to BlastX 

alignments with the National Center for Biotechnology Information (NCBI) non-

redundant (NR) database at expect values of E < 10-3.  Pathways were assessed using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database 

(http://www.genome.jp/kegg/ko.htmL). Differences in KEGG pathways between 

conditions were assessed using Fisher’s Exact Test (p < 0.05). 
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2.2.7 Reverse Transcription Polymerase Chain Reaction (RT-PCR) Validation 

Confirmatory RT-PCR analyses were performed using RNA samples from the 2 

treatments. PCR primers were synthesized by Integrated DNA Technologies (Coralville, 

IA) for 2 transcripts of known identity, one showing increased expression levels in 

phosphate-deficient conditions (60S ribosomal protein L24) and one showing decreased 

levels of expression (malate synthase). For the PCR, cDNA was created from the RNA 

samples as follows: 1 μg of RNA was added to a PCR tube containing 2 μl of anchored  

oligo(dT) primer (Life Technologies Inc.), and DEPC double-distilled water was added to 

a final volume of 18 μl. The tube was incubated at 70 °C for 5 min in a PTC-200 

thermocycler (MJ Research, Inc., Quebec, Canada). Next, 6 μl of 5X first strand buffer, 

1.5 μl of 0.1 M dithiothreitol (DTT), 1.5 μl of 10 mM dNTP Mix, 1 μl of RNase Out, and 

2 μl of Superscript III reverse transcriptase (Life Technologies Inc.) at a 200 U/μl 

dilution were added to the tube, and cDNA synthesis was carried out in the PTC-200 

thermocycler, in which the temperature was increased to 55 °C in increments of 0.1°/s 

and maintained at 55 °C for 1 h. Twenty-five nanograms of each sample was obtained for 

PCR using the Takara PCR Amplification Kit (Clontech Laboratories Inc., 

Mountainview, CA) according to the manufacturer’s protocol with minor modifications. 

The PCR reactions were run using an initial denaturation at 95 °C for 5 min and then a 

denaturation step at 95 °C for 30 s, annealing at 57 °C for 45 s, and extension at 72 °C for 

15 s for 25 cycles. A final extension step was performed at 72°C for 5 min. Images were 

semi-quantitated using ImageJ (Schneider et al., 2012), and values were used to calculate 

log2 (phosphate-deficient versus –replete) values for each gene.  

 

2.2.8 Solid-Phase Extraction (SPE) and Prymnesin Detection 

Three each of phosphate-deficient and -replete cultures were grown as described 

above. Supernatants were obtained at 3 time points (corresponding with the early/mid-, 
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late-, and post-logarithmic growth phases) following the centrifugation of cultures at 

5,000 rpm for 10 min at 22 °C. The volumes of each supernatant were halved to produce 

technical replicates. SPE were performed to isolate polyketide prymnesins according to 

Manning and La Claire (2013).  

The semi-quantitative detection of the polyketide prymnesins was carried out 

according to La Claire et al. (in preparation). The statistical significance of results was 

evaluated using the Student’s t-test at p < 0.05. 

 

2.3 RESULTS 

The phosphate-limited cultures exhibited slower and reduced growth compared to 

the phosphate-replete cultures as expected, peaking at approximately 1.5×106 cells/mL 

(compared with 3.0×106 cells/mL for the phosphate-replete cultures) (Fig. 2.1). Thus, the 

final concentrations of the phosphate-limited cultures only reached approximately half of 

those of the phosphate-replete cultures. 

 

2.3.1 ICP-OES Analysis of Phosphate Levels 

The ICP analysis of phosphorus/phosphate levels at the early-, mid-, late-, and 

post-logarithmic growth phases (corresponding with days 14, 28, 38, and 48) revealed a 

steep decline in phosphate concentrations (from 3.8 to 0.5 mg/L) in the replete cultures 

from the early- to late-logarithmic growth phases, respectively, while the deficient 

cultures remained at fairly even levels averaging 0.2 mg/L throughout the growth phases 

(Fig. 2.3). Additionally, from days 0 to 14, phosphate levels initially underwent a slow, 

steady decline in the phosphate-replete cultures from 4.3 to 3.8 mg/L, with the most rapid 

drop occurring from days 14 to 38, representing the early- to late-logarithmic growth 

phases, respectively.  
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Figure 2.3 Phosphorus (left y-axis) and phosphate (right y-axis) concentrations in mg/L 
for the phosphate-replete cultures at days 0, 6, and 10, and both the 
phosphate-deficient and -replete cultures at day 14 (early-), 24 (mid-), 38 
(late-), and 48 (post-logarithmic growth phases). (n = 2 for each treatment). 

 

2.3.2 Microarray-based Gene Expression Analysis 

Of the 3,500 oligonucleotides that were analyzed, 207 (6%) registered a 

fluorescent signal that was (statistically) significantly different across the 8 arrays. One 

hundred thirty-six (3.9%) displayed decreased transcription levels, and 71 (2.0%) 

displayed increased transcription levels in low-phosphate versus full-phosphate 

conditions, which are listed in Appendix A: Tables 1 and 2, respectively. Of these, 94 

(45.4%) were identifiable by sequence homology. The remainder could not be recognized 

by sequence identity, and therefore some might encode potentially novel proteins. The 

fold change distributions are summarized in Table 2.1, which ranged from -3.19 to 3.07. 

 

0.0	  

0.5	  

1.0	  

1.5	  

2.0	  

2.5	  

3.0	  

3.5	  

4.0	  

4.5	  

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	   50	  

Ph
os
ph
at
e	  
(m
g/
L)
	  

Ph
os
ph
or
us
	  (m

g/
L)
	  

Days	  After	  Inoculation	  

Full	  Phosphate	   Phosphate	  Limited	  



 
 
 
 

26 

A heat map of the 207 statistically significant genes across the 8 arrays is depicted in Fig. 

2.4, in which the downregulated and upregulated genes are each grouped together and 

clustered. Additionally, the volcano plot is shown in Fig. 2.5, which shows all of the 

genes on the array, highlighting those that are statistically significant in red.  

Among the genes whose transcription was downregulated in phosphate-deficient 

conditions, there were a variety of cell metabolism-associated genes, including β-

ketoacyl-ACP reductase, which is a domain of the modular Type I polyketide synthase 

(PKS) enzyme. Additionally, two homologs of carbonic anhydrase were downregulated, 

one of which was the top downregulated gene  (log ratio = -3.19, p = 0.005177). The 

majority of photosynthesis-associated homologs were downregulated. Molecular 

transport-associated genes that were downregulated included one homolog of a 

chloroplast phosphate translocator (glucose-6-phosphate/phosphate and 

phosphoenolpyruvate/phosphate translocator) and several anion transporters. Particular 

KEGG pathways that were only present among the downregulated genes included 

inorganic ion transport, DNA replication, recombination, and repair, and inositol 

phosphate and lipid metabolism. The pathway representing energy production and 

conversion was significantly downregulated. 

TUGs that were upregulated in low phosphate conditions included those involved 

with cellular stress responses. Additionally, a number of vesicular transport-associated 

genes were upregulated. Several cytoskeletal-associated genes were also upregulated. 

Twenty-three different 60S, 40S, and 30S ribosomal proteins were upregulated, and the 

top upregulated gene was homologous to 60S ribosomal protein L38 (log ratio = 3.07, p = 

2.87E-05). The KEGG pathway representing intracellular traffic, secretion, and vesicular 

transport was only present among the upregulated transcripts. Additionally, the pathways 

representing the cytoskeleton and translation, ribosomal structure, and biogenesis were 

both significantly downregulated. 
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Table 2.1 Distributions of fold changes (FC) for both down- and upregulated TUGs 
representing log2 (phosphate-limited versus -replete) values that were 
obtained from microarrays.  

Down: 
FC > 3 

Down: 
FC > 2 

Down: 
FC > 1 

All 
down 

Up: 
FC > 3 

Up: 
FC > 2 

Up: 
FC > 1 All up 

1 8 64 136 1 3 24 71 
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Figure 2.4 Heat map of log2 (phosphate-deficient versus –
replete) fold changes of 207 differentially expressed genes 
(p ≤ 0.01) across the 8 arrays; columns represent arrays, and 
rows contain individual genes. Green represents 
downregulated genes, and red depicts upregulated genes, 
which range from -3.0 to 3.0 as indicated by colored bar at 
top of figure. Arrays 1 through 8 represent the following 
hybridizations: A4 and B5 (1), A3 and B3 (2), A3 and B4 
(3), A2 and B4 (4), A2 and B5 (5), A4 and B2 (6) A5 and 
B1 (7), and A5 and B3 (8). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

29 

Figure 2.5 Volcano plot. Each point represents an individual gene. X-axis depicts log2 
fold changes; y-axis indicates negative log10 –transformed p-values from 
Student’s t-test. Red data points represent genes that are significantly 
differentially expressed. 

 

2.3.3 RT-PCR Validation 

Confirmatory RT-PCR results correlated with those observed on the microarray 

for 60S ribosomal protein L24, which showed increased expression levels in phosphate-

deficient conditions, and malate synthase, which showed decreased levels of expression 

(Fig. 2.6), although to lesser degrees than microarrays indicated (-0.8 fold change from 

RT-PCR versus -1.88 from microarray for malate synthase and 0.5 versus 1.86 for 60S 

ribosomal protein L24). 
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Figure 2.6 Electrophoresis of RT-PCR products. Log2 of (-)P/(+)P for lanes 1/2 (malate 
synthase) = -0.8; log2 of (-)P/(+)P for lanes 3/4 (60S RPL24) = 0.5.  

 

2.3.4 Prymnesin Detection and Quantitation 

The fluorescence assay revealed that the prymnesins were more abundant in the 

phosphate-limited versus replete supernatants on a pg/cell basis throughout the growth 

phases (Fig. 2.7). They peaked in the early-/mid-logarithmic growth phase samples for 

both the phosphate-limited (3 pg/cell) and –replete (2.8 pg/cell) supernatants. However, 

while levels in the phosphate-limited samples dropped to approximately 2 pg/cell in the 

late-logarithmic growth phase and then to 1.9 pg/cell in the post-logarithmic growth 

phase, representing only a 5% decline, levels in the phosphate-replete cultures fell from 

1.7 pg/cell to 0.5 pg/cell in late- and post-logarithmic growth phases, respectively, 

representing a decrease of 71% (significant at p < 0.05). Additionally, the greatest 

differences between prymnesin levels in the phosphate-limited versus –replete cultures 

occurred in the post-logarithmic growth phase, in which the phosphate-limited cultures 

had 74% greater levels of prymnesins (p < 0.05).  
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Figure 2.7 Fluorescence detection of prymnesins in supernatants from cultures that 
were grown in phosphate-limited and -replete media for the early-/mid- (day 
20), late- (day 33), and post (day 45)-logarithmic growth phases. Prymnesin 
concentrations are reported in pg/cell. (n = 4 total measurements for each 
treatment).  

 

2.4 DISCUSSION 

As expected in full-phosphate media, declining levels of phosphate were 

indicated, with the most significant decrease occurring in mid-logarithmic phase cultures 

when cells were most actively dividing. Phosphate limitation clearly had an effect on 

prymnesin presence in the culture medium. The increased prymnesin content that was 

observed in the phosphate-limited supernatants validates the presence of increased 

extracellular prymnesins under phosphate-limiting conditions and thus supports a 

correlation of pertinent gene expression changes as markers of toxin synthesis/secretion. 

Further, the RT-PCR results substantiated some of the microarray findings, and the 

comparatively diminished magnitudes of the fold changes that were observed were likely 
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due to the semi-quantitative nature of PCR gel analysis. Although a substantial 

proportion (45.4%) of the 207 differentially expressed TUGs in the microarrays were 

recognized by sequence identity, over half were not and therefore potentially encode 

novel proteins. It is possible that some of these unidentified proteins are involved in the 

synthesis and excretion of toxins.  

Several of the TUGs that were identified on the arrays are associated with acetate 

metabolism and thus are potentially linked to toxin synthesis. These include acetyl-CoA 

synthetase, biotin carboxylase (which is a component of acetyl-CoA carboxylase) 

(Huerlimann and Heimann, 2013), and phosphate acetyltransferase. All were expressed at 

decreased levels in phosphate-deficient conditions. Two other genes of interest in this 

context that were expressed at lower levels were β-ketoacyl-ACP reductase and 

methylmalonyl-CoA mutase, which are potential candidate enzymes for polyketide 

prymnesin synthesis. Two participants in the glyoxylate cycle, malate synthase and 

isocitrate lyase, were also less abundant. The main function of the glyoxylate cycle is to 

utilize lipids as alternative carbon sources for energy (Kunze et al., 2006). However, by 

facilitating acetate assimilation, those enzymes could also potentially provide precursors 

for polyketide biosynthesis (Li et al., 2004). The expression of these two genes in 

addition to the two potential candidates for prymnesin synthesis at decreased levels in 

low phosphate conditions, in which extracellular prymnesin content was higher, and the 

lack of significant differential expression of any other potential participants in prymnesin 

synthesis points to the presence of post-transcriptional regulation, which has been 

previously reported in the dinoflagellate Karenia brevis (Erdner and Anderson, 2006; 

Monroe et al., 2010; Morey et al., 2011). 

The assessment of the expression of transport-associated gene products revealed 

the upregulation of homologs associated with vesicular trafficking in low phosphate 

conditions. These included ARF1, clathrin, Ras, and profilin, supporting the concept of 

increased toxin secretion in these cells. With regard to transmembrane transporters, an 
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ABC-type phosphate transporter was previously reported to be highly expressed in P. 

parvum in an EST study of phosphate-replete late-logarithmic phase cultures (La Claire, 

2006). It was postulated that it may confer a competitive advantage to this alga under 

low-phosphate conditions. However, it was not significantly differentially expressed in 

the current analysis, suggesting that if it is involved, it is not regulated at the 

transcriptional level. One chloroplast phosphate translocator (glucose-6-

phosphate/phosphate and phosphoenolpyruvate/phosphate translocator) was expressed at 

lower levels in the phosphate-limited compared with the phosphate-replete conditions. 

Notably, this translocator is localized to the chloroplast membrane, and it transports 

organic molecules in addition to phosphate (Kammerer et al., 1998; Rausch and Bucher, 

2002). Thus, its lower expression in phosphate-limited conditions may be associated with 

the decreased metabolism that is occurring because it is involved in glucose-6-phosphate 

import, which is used for the synthesis of starch and fatty acids (Flügge, 2001; 

Niewiadomski et al., 2005). Additional transmembrane transport-associated homologs 

that decreased in abundance in low phosphate conditions included band 3 protein, which 

is a bicarbonate/chloride exchanger. The decreased expression of this gene in addition to 

carbonic anhydrase, which play roles in photosynthesis, correlates with the 

aforementioned decrease in photosynthetic gene expression (Cook et al., 1986; Drechsler 

and Beer, 1991; Moroney et al., 2001).  

The collective downregulation of metabolic enzymes in addition to those that are 

associated with photosynthesis (as verified by the significant upregulation of the KEGG 

pathway for energy production and conversion) are typical in conditions of stress because 

cells slow these processes to conserve energy. In particular, the low phosphate levels of 

the phosphate-deficient cultures likely hindered ATP formation and thus the synthesis of 

photosynthetic assimilates, nucleic acids, and phospholipids (Plaxton and Carswell, 1999; 

de Groot et al., 2003; Beardall et al., 2005; Morey et al., 2011). This would lead to 

reduced rates of growth and cell division in accordance with the downregulation of 
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centrin 3 and β-tubulin that was observed. The finding that homologs for gene products 

with direct involvement in the cellular stress response were upregulated in low phosphate 

conditions was not unexpected, and these products included several ubiquitins and both 

cold- and heat-shock proteins. Cell stress may have also led to the significant increase in 

ribosomal gene expression that was observed under phosphate limitation. Although 

ribosomal proteins are typically involved in translation, they also play a potential role in 

monitoring the physiological status of cells (Wamer and McIntosh, 2009). Thus, their 

high expression in low phosphate conditions in the current analysis may be due to the 

poorer health of the nutrient-deprived cells. 

There are a number of studies in the algal literature assessing gene expression 

under phosphate-limiting conditions (for summary, see Table 2.2). For example, Beszteri 

et al. (2012) performed a microarray analysis using stationary-phase P. parvum cultures 

that were grown in varying nutrient conditions, including both nitrogen and phosphate 

(replete vs. depleted). In particular, potential biomarkers of nitrogen and phosphate 

deficiencies were evaluated. Their analysis revealed the differential expression of 1,742 

(27%) TUGs, including the upregulation of a number that are related to transport and cell 

motility, including ARF, similar to the present study. In contrast, they also reported the 

upregulation of some phosphate-associated transcripts and the downregulation of 

ribosomal proteins in phosphate-limiting conditions. It is possible that the differing 

salinities of the growth media (26 psu versus 5 psu in present study) or other variable 

growth conditions, different microarray hybridization conditions, and/or dissimilar data 

normalization/analysis methods contributed to some of the variations between studies. 

For example, they found a larger proportion of differentially expressed genes, including 

the upregulation of a number of phosphate transporters, while only one phosphate 

transporter was found to be significantly differentially expressed in the current analysis, 

and it was downregulated under phosphate limitation. They suggested that phosphate 

transporters increase in numbers in phosphate-limiting conditions to facilitate increased 
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phosphate uptake in the nutrient-stressed cells. Notably, while we used phosphate-

deficient growth media (5.67 μM concentration), they omitted it from the media entirely, 

so it is likely that the cells were more stressed in their study. Further, at the time of 

harvest (late-logarithmic phase) in the current study, both the phosphate-deficient and –

replete cultures contained very low levels of phosphate (0.14 and 0.30 mg/L phosphate, 

respectively); thus, the expression of phosphate transporter genes may have been 

correspondingly similar in both conditions. Further transcriptional analyses of P. parvum 

under phosphate limitation may clarify the discrepancies in these findings. 

Dyhrman et al. (2006), who studied the effects of phosphate depletion in the 

closely related alga Emiliana huxleyi using long serial analysis of gene expression 

(SAGE), reported the upregulation of several photosynthesis-related genes including light 

harvesting complex and fucoxanthin cholorphyll a/c binding protein in contrast with the 

present study. However, they attributed this to increased calcification rates in this 

coccolithophorid alga; P. parvum does not possess a calcified coccosphere (Paasche, 

1998). They further reported the upregulation of ribosome-associated transcription 

similar to the present study, noting that the mechanisms behind this overabundance of 

rRNA transcription were unclear. However, they found ARF to be downregulated in 

contrast with the present findings. It is possible that there are differences in vesicular 

transport-associated transcription in these two algae due to the trafficking of components 

of the coccosphere in E. huxleyi, which does not form toxic blooms, so toxin transport 

and exudation from the cells are not relevant in that alga. 

A long SAGE analysis of phosphorus limitation in Aureococcus anophagefferens 

revealed the upregulation of photosynthesis-related transcripts similar to Dhyrman et al. 

(2006). They noted that the response of this category of genes to nutrient stress in other 

algae has been variable and suggested that although many genes are typically 

downregulated in stress conditions to conserve energy, this process may not be as strong 

or rapid for genes such as the light harvesting complex in this particular algal species and 



 
 
 
 

36 

likely others (Wurch et al., 2011). They found ubiquitin to be downregulated in contrast 

with our findings; however, they isolated cells in the mid-logarithmic growth phase that 

were undergoing exponential growth and they proposed that higher levels of ubiquitin 

were present in the nutrient-replete cultures due to the general cellular stress that was 

present in relation to the rapid protein turnover that was occurring in that growth phase. 

In accordance with the present findings, they found Clp protease to be downregulated, 

which is dependent upon ATP and thus would intuitively be less active in conditions of 

limiting phosphate.  

A previous microarray study of Chlamydomonas reinhardtii exhibited many 

parallels with the current findings despite the fact that the cells were not isolated at 

similar time points in the growth phase (Moseley et al., 2006). However, ribosomal 

proteins were largely downregulated in contrast with the current findings in addition to 

protein disulfide isomerase, β-tubulin, and centrin. It is quite possible that such unrelated 

algae as Prymnesium and Chlamydomonas respond differently to similar stresses, and it 

is likely that their contrasting harvesting schedules contributed to the differences that 

were observed. 

Finally, Harke and Gobler (2013) examined phosphate limitation in the 

cyanobacterium Microcystis aeruginosa using RNA-Seq. Similar to what was observed 

by Moseley et al. (2006) in C. reinhardtii and the current results for P. parvum, this 

species also exhibited a downregulation of photosynthesis-related transcription. 

Additionally, GST was upregulated similar to C. reinhardtii and P. parvum. Some 

metabolism-related transcripts were also similarly downregulated, including β-ketoacyl 

reductase. Ribosomal genes were downregulated in contrast with our findings and those 

by Dyhrman et al. (2006) for E. huxleyi, and it was suggested that this was a growth rate-

dependent regulatory response to cell stress.  

The comparisons of the present findings with others in the literature pertaining to 

the transcriptional responses of algae to phosphate limitation are highly variable. 
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However, it must be noted that microarray studies in particular are prone to variation. 

Although great efforts have been made to standardize protocols and provide guidelines 

for best practice that have greatly reduced this variation, it is not possible to eliminate all 

of it. The more recent advent of RNA-Seq technologies have also greatly reduced 

variation (among other advantages), making results more comparable across studies and 

facilitating the comparison of the expression of larger numbers of genes over a broader 

range of expression levels. Future RNA-Seq analyses of phosphate limitation in P. 

parvum and other algae will provide more thorough information regarding gene 

expression in response to this abiotic stress. As more of these analyses are carried out, a 

clearer picture of the consequences of deficiencies in this critical nutrient will emerge. 

For bloom-forming algae such as P. parvum, gene expression patterns may also be 

further clarified that characterize HAB formation in response to not only nutrient 

limitation but additional toxicity-stimulating abiotic stresses, such as temperature and 

salinity.  
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Table 2.2 Similarities of current data with previous studies in literature assessing 
algal/cyanobacterial gene expression in response to phosphate 
limitation/depletion (decreased and increased gene expression in phosphate-
deficient or -depleted conditions).  
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Chapter 3: Transcriptome analysis of the euryhaline alga, Prymnesium 

parvum N. Carter: effects of salinity on differential gene expression 

3.1 INTRODUCTION 

Salinity is a crucial parameter defining the growth and distribution of microalgae, 

some of which can tolerate large fluctuations in salt concentrations in their environments. 

One such euryhaline alga is the unicellular haptophyte, Prymnesium parvum, which is a 

globally significant species that causes extensive blooms and costly fish kills in response 

to a variety of biotic and abiotic environmental stimuli, including fluctuations in salinity 

(Jeffrey and Wright, 1994; Baker et al., 2007; Olli and Trunov, 2007; Manning and La 

Claire, 2010). The adaptive mechanisms of osmoregulation in P. parvum at the 

transcriptome level have not been investigated to date. Thus, this alga represents a model 

organism for studying the effects of salinity fluctuations on gene expression, which may 

lend further insight into the mechanisms that plants and algae use to tolerate this abiotic 

stress. 

Studies investigating the effects of salinity variations on the toxicity of P. parvum 

show a collective trend toward decreased extracellular toxicity at higher levels of salinity 

(Ulitzur and Shiloh, 1964; Paster, 1973; Larsen et al., 1993; Baker et al., 2007 and 2009; 

Manning and La Claire, 2010; Freitag et al., 2011; Weissbach and Legrand, 2012). It is 

currently unknown whether this organism actively secretes/excretes toxins or whether 

they are merely released when cells lyse. Therefore, those responses potentially 

underlying the formation of HABs as well as the production of toxins may also be 

revealed by a transcriptome analysis, due to the propensity of P. parvum to form HABs in 

low-salinity waters (Hallegraeff, 1993; Larsen et al., 1993; Baker et al., 2007; Brooks et 

al., 2010; Manning and La Claire, 2010).  

Salinity stress has been shown also to increase the synthesis of TAG in various 

algal species (Elenkov et al., 1996; Hu et al., 2008; Pal et al., 2011; Zhila et al., 2011), 
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which is significant to biofuel production. Microalgae in particular have the unique 

ability to produce abundant quantities of TAG following the manipulation of certain 

environmental conditions. PUFA are a co-product of TAG synthesis, which are 

economically valuable alternative sources of fish oil and other oils with abundant ω-3 

fatty acids (Bruton et al., 2009; Singh et al., 2011). Thus, a closer inspection of acetate 

metabolism-related transcription in relation to osmotic stress in P. parvum may uncover 

patterns that are not only associated with alterations in the transcription of polyketides or 

other putative ichthyotoxins during HAB events but also provide valuable knowledge 

regarding the mechanisms of TAG and PUFA production in this and other organisms, as 

well as elucidating the potential roles of salinity in the optimization of their syntheses.  

Microarrays and RNA-Seq are valuable tools for evaluating gene expression at 

the transcriptome level. The Genbank expressed sequence tag (EST) database currently 

contains 23,443 ESTs for P. parvum (http://www.ncbi.nlm.nih.gov/dbEST/index.html), 

and the literature to date includes EST analyses, microarrays, and qPCR (La Claire, 2006; 

Freitag et al., 2011; Beszteri et al., 2012); however, there are no reported RNA-Seq 

analyses of this organism. Therefore, a study of this magnitude would greatly expand 

upon the current knowledge of gene expression in P. parvum.  

In the current study, RNA-Seq was used to assemble a P. parvum transcriptome 

and to compare gene expression in cultures that were grown at two salinity levels (5 and 

30 psu). The salinity variations allowed for comparisons focusing on the mechanisms 

underlying long-term osmoregulatory adaptation and acetate metabolism-associated 

pathways in addition to those involving the intracellular and extracellular transport of 

various ions and molecules. This work should contribute to current knowledge regarding 

abiotic stress tolerance as well as toxin, glycerolipid, and PUFA syntheses and transport 

mechanisms in this and possibly other species of algae. The present study represents the 

first comprehensive transcriptomic analysis of P. parvum and is one of few RNA-Seq 

analyses investigating the osmoregulation of eukaryotic euryhaline algae. 
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3.2 MATERIALS AND METHODS 

3.2.1 Culture Maintenance and Harvesting 

A strain of P. parvum (UTEX LB 2797) that was isolated in Texas was used in 

this study. The f/2 media (minus Si) were prepared at both 5 and 30 psu using steamed 

seawater (Guillard and Ryther, 1962). From an inoculum containing 2.0 x 106 cells, 3.4 

mL were added to (2) 250 mL Erlenmeyer flasks, each containing 150 mL of 5 psu 

medium. The same concentration of inoculum from a 30 psu culture that had been 

gradually pre-acclimated from 5 psu was also added to (2) 250 mL Erlenmeyer flasks 

containing 150 mL of 30 psu medium. Cultures were maintained on a gyrorotatory shaker 

(150 rpm) under a 16:8 LD photoperiod with a photon flux of 20 μmole/m2/s at 23 °C. 

They were grown until mid-log phase (approximately 1 million cells/mL), after which the 

cells were harvested by centrifugation at 5,000 rpm for 5 minutes at 23 °C.  A small 

aliquot of cells was also retained for morphological assessment using light microscopy. 

 

3.2.2 RNA Extraction and Purification 

Cell pellets were resuspended in Trizol reagent (Life Technologies, Grand Island, 

NY) and flash-frozen in liquid nitrogen. Total RNA was extracted from each culture 

using the Trizol RNA extraction protocol. Precipitated RNA was dissolved in 100 μl of 

diethylpyrocarbonate (DEPC) water, and 3 rounds of phenol-chloroform extraction were 

performed to further purify the samples (Sambrook and Russell, 2006). Next, the RNA 

was again precipitated and resuspended in 100 μl DEPC water. Finally, the samples were 

purified using the Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA), and 1 μl of 

ScriptGuard RNase Inhibitor was added to each (Epicentre Biotechnologies, Madison, 

WI). The concentration and quality of RNA samples were assessed using a NanoDrop 

ND-100 Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE), an Agilent 

2100 BioAnalyzer (Agilent Technologies Inc., Santa Clara, CA), and RNA denaturing 
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gel electrophoresis, according to Grierson (1990), with minor modifications. After the 

quality of the RNA was confirmed (260/280 nm readings in the range of 1.8-2.0, A260/230 

nm readings > 1.8 on NanoDrop and no degradation apparent on BioAnalyzer or RNA 

gels), the 5 and 30 psu samples were frozen at -80 °C for subsequent RNA-Seq analyses. 

 

3.2.3 RNA-Seq Transcriptome Analysis 

RNA sequencing was carried out by the National Center for Genome Resources 

(NCGR, Santa Fe, NM). Upon receipt, the NGCR prepared paired-end Illumina RNA-

Seq libraries for each condition (5 and 30 psu salinities), which were then sequenced 

using Illumina HiSeq 2000 technology (one sample per lane on the flow cell) (Illumina, 

Inc., San Diego, CA). The resulting raw reads from the 5 and 30 psu libraries were 

deposited in the NCBI Sequence Read Archive under accession numbers SRR931174 and 

SRR931877, respectively. These reads were dynamically trimmed to remove substandard 

bases and adaptor sequences, and then assembled de novo using the Trinity software 

(version r20120317) with a k-mer size of 25, minimum contig length of 200, and paired 

fragment length of 500 (Grabherr et al., 2011). This software was run on the Texas 

Advanced Computing Center Lonestar Linux Cluster. Subsequently, BlastX alignments 

between the transcripts and the National Center for Biotechnology Information (NCBI) 

non-redundant (NR) and Swiss-Prot databases at E < 10-6 were carried out, and gene 

ontology (GO) analyses were conducted using the Blast2GO software (Conesa and Gotz, 

2008). Pathways were evaluated with the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Automatic Annotation Server (KAAS) (http://www.genome.jp/tools/kaas). The 

contiguity and completeness of the assembly were evaluated according to Zhang et al. 

(2013) with minor modifications. Contiguity was calculated according to a subset of 

approximately 1,000 of the top-ranked complete transcripts. For these calculations, the E. 

huxleyi "All Models" fasta file (Emihu1_all_proteins.fasta.gz) was used as the reference 
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assembly, which was produced by the U.S. Department of Energy Joint Genome Institute 

(http://www.jgi.doe.gov) in collaboration with the user community (Read et al., 2013).  

Likely coding sequences were extracted from the assembly using TransDecoder, 

which was included in the Trinity software package. Target peptides were assessed from 

coding sequences using the TargetP 1.1 Server (http://www.cbs.dtu.dk/services/TargetP/) 

(Emanuelsson et al., 2000).  

 

3.2.4 Identification of Differentially Expressed Genes 

For the differential expression analyses, the recommended pipeline that is built 

into the Trinity software was used (http://trinityrnaseq.sourceforge.net). The reads from 

each salinity treatment were first aligned to the Trinity assembly output using the 

“alignReads.pl” script with the Bowtie option as previously described by Langmead et al. 

(2009). Separate alignments were performed for each salinity treatment (5 and 30 psu). 

The output (SAM) files were assessed for quality using the SAMtools flagstat function 

from the SAMtools software (http://davetang.org/wiki/tiki-index.php?page=SAMTools) 

and visualized using the Integrated Genomics Viewer software (IGV) (Thorvaldsdóttir et 

al., 2013).  

Following the Bowtie alignments, the “run_RSEM.pl” script that is built into the 

Trinity software was used to estimate transcript abundance for each treatment using the 

RSEM software (Li and Dewey, 2011). The two files were then joined into a matrix, and 

the “run_EdgeR.pl” script was used to direct the Bioconductor EdgeR software to 

perform trimmed means of M-values normalization and identify transcripts with two-fold 

or greater changes in expression with p-values < 0.01 [cut-off at 5% false discovery rate 

(FDR)] (Robinson et al., 2009). BlastX searches were conducted on the corresponding 

sequences using the NR and Swiss-Prot databases at E < 10-6, which were then annotated 

using Blast2GO. An annotation enrichment analysis was performed on the GO categories 
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in each condition using the Blast2GO software, which applies the Fisher’s Exact Test to 

obtain those with significant FDR-adjusted p-values (< 0.05) (Blüthgen et al., 2005). 

 

3.2.5 Solid-Phase Extraction and Prymnesin Detection 

Supernatants from both sets of cultures were obtained at 3 time points 

(corresponding with the early/mid-, late-, and post-logarithmic growth phases) following 

the centrifugation of cultures at 5,000 rpm for 10 min at 22 °C. The volumes of each 

supernatant were halved to produce technical replicates. Solid-phase extractions (SPE) 

were performed to isolate polyketide prymnesins according to Manning and La Claire 

(2013).  

The semi-quantitative detection of the polyketide prymnesins was carried out 

according to La Claire et al. (in preparation). The statistical significance of results was 

evaluated using the Student’s t-test at p < 0.05. 

 

3.3 RESULTS  

3.3.1 Transcriptome Sequencing and Assembly 

Approximately 19.4 and 22.8 million paired-end reads averaging 100 base pairs 

(bp) in length were obtained for the 5 and 30 psu libraries, respectively. Assemblies 

generated a total of 47,289 transcripts with an N50 of 1,271 (the value at which 50% of 

the transcripts are larger than or equal to the average size of 829.5 bp). Sizes ranged from 

201 to over 5000 bp (Fig. 3.1). In total, 12,555 (approximately 26.5%) transcripts were 

larger than 1 kb. Out of the 47,289 transcripts, there were a total of 41,957 components, 

which are collections of closely related contigs that are grouped by the Trinity software. 

Table 3.1 describes various characteristics of the final output of the assembly. In addition 

to the N25, N50, and N75 values, the quality of the assembly was evaluated via 
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completeness and contiguity scores. Completeness refers to the percentage of sequences 

that are covered at greater than 80% of their lengths, while contiguity measures the 

percentage of sequences that are covered by a single contig to greater than 80% of their 

lengths; i.e. the likelihood that a full-length transcript is represented by a single contig 

(Martin and Wang, 2011).  

 

Figure 3.1 Length distribution of transcripts assembled by Trinity software. The inset 
shows a closer view of transcripts with lengths of 1800 to >5000 bp.  
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Table 3.1 Output of the RNA-Seq assembly. 

Total length of sequence: 39225809 bp 

Total number of sequences: 47289 

N25: 2199 bp 

N50: 1271 bp 

N75: 657 bp 

Total GC count: 23126729 bp 

GC % 58.96% 

Completeness 84% 

Contiguity 82.6% 

 

3.3.2 Sequence Identification and Functional Annotation 

A total of 16,731 (35.4%) of the transcripts were putatively identified by BlastX, 

and 14,393 (30.4%) could be functionally annotated using Blast2GO. Out of the latter, 

12,221 involved more than one GO term. In total, 37,749 annotations were assigned. The 

biological process, molecular function, and cellular component sub-ontologies consisted 

of 17,890 (47.4%), 10,722 (28.4%), and 8,488 (22.5%) annotations, respectively. 

Functional classifications at GO level 3 are depicted in Fig. 3.2, which are grouped by the 

3 sub-ontologies. GO levels can generally be considered as annotation depths, with level 

1 terms being the most broad and each subsequent level increasing in specificity. The 

classifications revealed that stimulus response and the development and organization of 

cellular structures were well represented within the biological process sub-ontology. 

Within molecular function, binding and enzymatic activity were prominent, primarily 

involving hydrolases and transferases. The cellular component sub-ontology shows that 

both membrane- and non-membrane-bound organelles in addition to the extracellular 

region were active in P. parvum under the tested conditions.  
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Figure 3.2 GO annotations by Blast2GO at level 3.  

 

The distribution of KEGG pathways was also evaluated, which is an alternative 

method of categorizing gene functions based on biochemical pathways. This assessment 

revealed a total of 287 pathways involving 7,960 (47.6%) of the 16,725 transcripts that 

were identified by BlastX. The top predicted pathways included those associated with 

ribosomes (114 members), spliceosomes (97 members), purine metabolism (87 

members), RNA transport (70 members), and protein processing in the endoplasmic 

reticulum (ER) (70 members). Other KEGG pathways of note included vesicular 

transport (13 members) and ABC transporters (28 members). Many acetate metabolism-

related pathways were present, in addition to the glycerolipid metabolic pathway that is 
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involved in TAG synthesis (26 members). Furthermore, the pathways for the metabolism 

of the PUFA arachidonic (C20:4n-6), linoleic (C18:2n-6), and α-linolenic (C18:3n-3) 

acid were present (7, 5 and 3 members, respectively).  

 

3.3.3 Genes Associated with Transmembrane and Vesicular Transport 

At the sequence identity level, the analysis was partly focused on transport-

associated transcription. The transcripts with the highest FPKM values (fragments per 

kilobase of transcript per million mapped reads - essentially measuring transcript 

abundance) were calculated by combining the values from each condition (5 and 30 psu) 

to demonstrate their total relative abundances (summarized in Table 3.2). Among the 

most prominent homologs specific to the transport of ions and/or solutes included a 

solute carrier 4 family transporter with a total FPKM value of over 3,000. Numerous 

additional ion channels and exchangers, symporters, antiporters, and other transporters 

were also revealed. In terms of vesicular transport, many pertinent homologs were 

identified, including those that are associated with ER and Golgi processing and 

trafficking, which amounted to 50/202 (25%) of those transcripts with FPKM values > 

100. There are also approximately 40/202 (20%) homologs within this subset with roles 

in vesicle trafficking, membrane fusion, and secretion.  
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Table 3.2 Subset of top-expressed transcripts involved in transport-related metabolism 
ranked by total FPKM value. 

 

3.3.4 Genes Associated with Acetate Metabolism 

With regard to acetate metabolism, a subset of transcripts with the highest total 

FPKM values are listed in Table 3.3. The full transcriptome included homologs to Type I 

and Type III PKS (26 and 2 members, respectively), which in some cases represented one 

or several PKS domains, including ketoreductase, ketosynthase, enoyl reductase, and 

phosphopantetheine binding, the latter of which serves as a prosthetic group of acyl-

carrier protein (ACP) (Appendix B: Table 1). Acetyl-CoA carboxylase was the most 

highly expressed acetate metabolism-associated transcript. Isocitrate lyase and malate 

synthase also possessed high FPKM values (7070.0 and 1898.9, respectively). There 

were 55 acetate metabolism-related transcripts in total with FPKM values > 100. 

Seq ID Identity FPKM* E-value 
Transmembrane 

transport    
comp21942_c0_seq4 Solute carrier 4 family 3126.7 8.0E-162 
comp21973_c0_seq1 ABC transporter ATP-binding protein 3113.8 9.4E-15 
comp21857_c0_seq1 Cyclic nucleotide binding protein 2897.2 3.0E-99 

comp17813_c0_seq1 Phosphate ABC transporter substrate 
binding protein 2252.6 1.0E-68 

comp8560_c0_seq1 V-type H(+)-translocating pyrophosphatase 2153.8 0 
comp8590_c0_seq1 Porin 2027.3 9.4E-91 
comp16040_c0_seq1 ABC transporter ATP-binding protein 1690.2 9.0E-157 
comp8584_c0_seq1 Mitochondrial carrier family protein 1365.5 3.19E-93 
Vesicular transport    

comp8489_c0_seq1 ADP-ribosylation factor 1 1994.5 3.3E-106 
comp15884_c0_seq1 RAB family GTPase 1280.3 4.1E-107 
comp14651_c0_seq1 Autophagy-related protein 8 precursor 1143.3 5.6E-58 
comp22199_c0_seq1 RAS-related protein RAB-5c 758.3 3.0E-101 
comp12660_c0_seq1 Clathrin heavy chain 1 618.02 0 
comp19832_c1_seq1 β-adaptin-like protein c 598.73 0 
comp9044_c0_seq1 RAS-related protein RAB-7a 513.48 1.3E-119 
comp3514_c0_seq1 Clathrin assembly small subunit protein 472.65 6.8E-73 
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Transcripts that are associated with TAG and PUFA synthesis are also depicted in Table 

3.3 and in some cases overlap with several of those mentioned above.  

 

Table 3.3 Subset of top-expressed transcripts involved in acetate-related metabolism 
ranked by total FPKM value. 

Seq ID Identity FPKM E-value 

comp19265_c0_seq1 Acetyl-CoA carboxylase 1509.8 0 

comp14084_co_seq1 Alcohol dehydrogenase 1036.7 6.27E-105 

comp16429_c0_seq1 Δ9-oleate desaturase 922.0 5.0E-145 

comp8897_c0_seq1 Glycerol-3-phosphate dehydrogenase 871.0 9.32E-117 

comp15582_c0_seq1 Acyl carrier protein 827.3 2.5E-33 

comp14555_c0_seq1 Acyl-CoA dehydrogenase 737.0 0 

comp14856_c0_seq1 Glycerol-3-phosphate dehydrogenase 597.5 1.83E-110 

comp9029_c0_seq1 Long-chain-fatty-acid-CoA ligase 499.2 1.5E-155 

comp14895_c0_seq1 Glycolipid transfer protein HET-C2 487.5 1.87E-22 

comp20237_c0_seq1 Carnitine O-acetyltransferase 470.8 8.03E-138 

comp19967_c0_seq1 Acetyl-CoA synthetase 434.6 0 

comp19555_c0_seq1 Glycerol-3-phosphate dehydrogenase 382.5 1.63E-136 

 

3.3.5 Comparative Analysis of Cultures Grown at 5 and 30 psu  

The microscopic evaluation revealed that cell morphologies were largely similar 

at the two salinities. There were 2,507 (6%) transcripts in total that were differentially 

expressed at a fold change of 2 or greater in 30 psu cultures when compared to those 

grown at 5 psu (p-value < 0.01, 5% FDR cut-off). The upregulated transcripts at 30 psu 

amounted to 1,507 (3.2%), and 1,000 (2.1%) transcripts were downregulated. Among the 

former, 600 (39.8%) were putatively identified by BlastX in addition to 478 (47.8%) of 

the 1,000 downregulated transcripts. There were 626 (41.5%) and 470 (47%) identifiable 

annotations among the up- and down-regulated transcripts, respectively, and a total of 
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1,984 and 1,601 GO terms were assigned to each. For the biological process sub-

ontology, there were 858 (44.8%) and 683 (42.7%) GO terms represented in the up- and 

downregulated transcripts; for molecular function, there were 710 (37.1%) and 491 

(29.2%); and for cellular component, there were 345 (18.0%) and 394 (23.4%), 

respectively. The annotation enrichment analysis confirmed the significance of 

differentially expressed GO categories at p < 0.05, a subset of which are listed in Table 

3.4.  
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Table 3.4 Subset of differentially expressed GO categories determined to be 
significant by annotation enrichment analysis (P- biological process, F- 
molecular function, C- cellular component). 

GO ID GO Term Category P-value 
Down at 30 psu    

GO:0071840 Cellular component organization or biogenesis P 1.8E-05 
GO:0070727 Cellular macromolecule localization P 0.014543 
GO:0034613 Cellular protein localization P 0.014543 
GO:0015995 Chlorophyll biosynthetic process P 0.037864 
GO:0045184 Establishment of protein localization P 0.048091 
GO:0034220 Ion transmembrane transport P 0.024657 
GO:0043231 Intracellular membrane-bounded organelle C 4.5E-04 
GO:0006886 Intracellular protein transport P 0.030471 
GO:0032991 Macromolecular complex C 0.043608 
GO:0009059 Macromolecule biosynthetic process P 0.002178 
GO:0016020 Membrane C 0.009677 
GO:0043227 Membrane-bounded organelle C 4.5E-04 
GO:0009536 Plastid C 3.5E-06 
GO:0004872 Receptor activity F 0.002000 
GO:0005840 Ribosome C 1.2E-10 
GO:0003723 RNA binding F 0.014543 
GO:0005198 Structural molecule activity F 6.5E-07 
GO:0006412 Translation P 5.5E-07 
Up at 30 psu    
GO:0005488 Binding F 7.6E-04 

GO:0009081 Branched chain family amino acid metabolic 
process P 0.029703 

GO:0019752 Carboxylic acid metabolic process P 0.001289 
GO:0006520 Cellular amino acid metabolic process P 0.004135 
GO:0042180 Cellular ketone metabolic process P 0.002133 
GO:0006952 Defense response P 0.025378 
GO:0003677 DNA binding F 0.013611 
GO:0043167 Ion binding F 0.024115 
GO:0005874 Microtubule C 0.002794 

GO:0001071 Nucleic acid-binding transcription factor 
activity F 0.025378 

GO:0006082 Organic acid metabolic process P 6.9E-04 

GO:0006796 Phosphorus-containing compound metabolic 
process P 0.006633 

GO:0004672 Protein kinase activity F 2.8E-04 
GO:0036211 Protein modification process P 5.5E-04 
GO:0006950 Response to stress P 0.043622 
GO:0044281 Small molecule metabolic process P 0.045731 
GO:0016740 Transferase activity F 0.004042 
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3.3.6 Transmembrane Transport-Related Differential Expression 

Inspections were performed of the differentially expressed transcripts’ sequence 

identities with regard to transport, which were grouped by components; fold changes and 

p-values were averaged if multiple transcripts existed for the same component. These 

included general transmembrane transporters, which are listed in Table 3.5. Many 

homologs are evident involving both the unidirectional and bidirectional transport of ions 

across cellular membranes. Transcription involving general transmembrane transport 

included numerous ABC transporter homologs (14 members), and the top up- and 

downregulated transcripts were ABC transporters (sub-families B and F, respectively).  

 

Table 3.5 Subset of differentially expressed components associated with general 
transmembrane transport. 

Seq ID Description Fold 
Change P-value 

UPREGULATED    
comp15188_c0_seq6 ABC transporter sub-family B member 9 5.771 0.002864 
comp21644_c0_seq2-8  Major facilitator superfamily transporter 4.213 0.000869 

comp179972_c0_seq1 ABC transporter sub-family A member 1-
like 4.013 0.001743 

comp19592_c0_seq1, 4 Permease 3.537 0.000592 

comp20284_c0_seq1 ABC transporter sub-family A member 3-
like 3.189 1.3E-05 

comp21858_c0_seq1-2 ABC transporter sub-family B 3.174 0.001334 
comp20833_c0_seq2 ABC transporter sub-family C 2.956 0.000306 
comp16671_c0_seq1 ABC transporter sub-family C member 1 2.538 0.000383 
DOWNREGULATED    
comp11681_c0_seq1 ABC transporter sub-family F -3.491 5.4E-05 
comp21280_c0_seq1 Permease -3.340 5.4E-06 
comp7704_c0_seq1 ABC transporter sub-family F -2.948 0.000189 
comp134647_c0_seq1 ABC transporter sub-family A member 3 -2.793 0.002912 
comp17791_c0_seq1 ABC transporter sub-family C member 2 -2.688 0.000397 
comp10024_c0_seq1 ABC transporter sub-family G member 7 -2.559 0.000534 
comp17606_c0_seq2 ABC transporter sub-family A member 3 -2.404 0.000759 
comp2218_c0_seq1 ABC transporter ATP-binding protein -2.377 0.001234 
comp14568_c0_seq1 ABC transporter sub-family A member 2 -2.142 0.003283 
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3.3.7 Salinity Adaptation/Osmoregulation-Associated Transcription 

The highest fold-change among the downregulated salinity-associated transcripts 

at 30 psu belonged to a voltage-gated ion channel homolog (Table 3.6). A 

hydrogen/chloride exchanger and chloride channel were the 2 top upregulated salinity-

associated transcripts. A number of other pertinent transporters were also observed. 

Notably, salt stress response-related transcription was upregulated, including the 

tryptophan-rich sensory protein/peripheral-type benzodiazepine receptor (TSPO/MBR)-

related protein (fold change = 7.520, p-value = 1.0E-06) and AMMECR1 (fold change = 

3.068, p-value = 0.000102). Also, several homologs with potential involvement in 

osmolyte synthesis were upregulated at 30 psu, including S-adenosylmethionine S-

methyltransferase and sulfotransferase. 
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Table 3.6 Subset of differentially expressed salinity-specific transport-related 
components. 

Seq ID Description Fold 
Change P-value 

UPREGULATED    

comp21899_c0_seq2 Hydrogen/chloride exchange transporter 7-
like 8.245 1.8E-08 

comp21894_c0_seq2 Chloride channel protein 2 7.752 3.0E-07 
comp17830_c0_seq2 Sulfotransferase 7.100 9.5E-06 
comp17608_c0_seq2 S-adenosylmethionine S-methyltransferase 7.092 9.5E-06 
comp13420_c0_seq2 Potassium channel protein 6.665 7.4E-05 

comp21203_c0_seq2 Transient receptor potential cation channel 
subfamily M member 2 6.022 0.001006 

comp19353_c0_seq1 Transient receptor potential cation channel 
subfamily M member 3 5.816 0.001997 

comp17214_c0_seq2 Sodium myo-inositol co-transporter 5.026 1.6E-10 

comp19216_c0_seq1 Calcium-activated outward-rectifying 
potassium channel  3.544 2.0E-06 

comp19801_c0_seq1 Bestrophin-like protein 3.529 0.000977 
comp13488_c0_seq1,2 S-adenosylmethionine S-methyltransferase 3.422 0.000101 
comp18877_c0_seq1 S-adenosylmethionine S-methyltransferase 3.164 8.6E-06 

comp21617_c0_seq2 Vanilloid receptor-related osmotically 
activated channel 3.055 0.000774 

comp21107_c0_seq1 Sodium/calcium exchanger 3 2.816 7.1E-05 
comp20702_c0_seq1 Cation-chloride co-transporter 2.672 0.000145 
comp21620_c0_seq1 Sodium/calcium exchanger 1-like 2.653 0.000152 
comp20699_c0_seq1 Potassium voltage-gated channel H member 5 2.217 0.002832 
DOWNREGULATED    
comp21855_c0_seq1 Voltage-gated ion channel superfamily -10.895 8.3E-16 

comp9358_c0_seq2 Potassium voltage-gated sub-family H 
member 7 -8.259 1.8E-08 

comp21377_c0_seq2 Sodium/hydrogen exchanger 8 -7.466 1.4E-06 
comp9953_c0_seq1 Potassium channel KOR1 -3.304 3.4E-05 
comp15314_c0_seq1 Potassium voltage-gated channel H member 2 -3.276 1.4E-05 
comp216851_c0_seq1 Sodium/calcium exchanger 3 -2.803 0.000617 
comp7033_c0_seq1 Sodium/potassium/calcium exchanger 3 -2.689 0.000521 
comp18085_c0_seq1 Sodium/potassium/calcium exchanger 4 -2.398 0.000898 
comp12500_c0_seq1 Outward rectifying potassium channel -2.374 0.002996 
comp15349_c0_seq1 Sodium/hydrogen exchanger 8 -2.209 0.001220 
comp21026_c0_seq2 Potassium voltage-gated channel H member 6 -2.196 0.003031 
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3.3.8 Vesicular Transport-Related Differential Expression 

A subset of differentially expressed vesicular transport-associated transcripts are 

listed in Table 3.7. The top upregulated transcript was SEC61 and the top downregulated 

one was trafficking protein particle complex subunit 2 (TRAPPC2). 

 

Table 3.7 Subset of differentially expressed components associated with vesicular 
transport. 

Seq ID Description Fold 
Change P-value 

UPREGULATED    
comp19925_c0_seq2 Protein transporter SEC61 subunit 6.233 0.000391 
comp7586_c0_seq1 RAS-related protein RAB-1a 4.255 1.3E-05 
comp15563_c0_seq1 Double C2 domain-containing protein alpha 4.055 4.2E-06 

comp15562_c0_seq2 Multiple C2 and transmembrane domain-
containing protein 1 3.447 9.7E-05 

 
comp20380_c0_seq1-2 ARF-GAP  3.217 1.3E-05 

comp19739_c0_seq1 Multiple C2 and transmembrane domain-
containing protein 1 2.967 4.8E-05 

 
DOWNREGULATED    

comp17350_c0_seq2 Trafficking protein particle complex subunit 
2 -7.077 1.2E-05 

comp4935_c0_seq1 SEC14p-like protein TAP3 -3.400 0.000815 
comp20469_c0_seq1 RAB1-family small GTPase -2.938 4.3E-05 
comp18879_c0_seq1 Signal peptidase I-1 -2.658 0.000219 
comp15204_c0_seq2 Lipoprotein signal peptidase -2.524 0.002122 
comp11203_c0_seq1 ARF-GAP: ZAC -2.501 0.001108 

comp78103_c0_seq1 Trafficking protein particle complex subunit 
12 -2.440 0.000732 

comp3190_c0_seq1 RAS-related protein ORAB-1 -2.491 0.000359 
comp16927_c0_seq1 ADP-ribosylation factor 6 -2.488 0.000467 
comp15610_c0_seq1 ADP-ribosylation factor 3 -2.306 0.001514 
comp18024_c0_seq1 RAB1-family small GTPase -2.155 0.003162 
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3.3.9 Acetate Metabolism-Related Expression 

The differentially expressed transcripts that were associated with acetate 

metabolism were also assessed and are listed in Table 3.8. One homolog for β-ketoacyl-

acyl carrier protein (ACP) synthase and one for malonyl-CoA ACP transacylase were 

downregulated. Notably, acetate kinase was the top upregulated transcript within this 

subset, and a G-D-S-L family lipolytic protein experienced the highest downregulation. 

Isocitrate lyase (fold change = 2.425, p-value = 0.000423) and malate synthase (fold 

change = 3.569, p-value = 7.69E-07) were also upregulated. With regard to TAG 

synthesis, one wax ester synthase/acyl-CoA:diacylglyceride acyltransferase/acyl-

CoA:monoacylglyceride acyltransferase (WS/DGAT/MGAT) homolog was found to be 

downregulated in 30 psu cultures. Additionally, one de novo PUFA synthase was 

upregulated. 
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Table 3.8 Subset of differentially expressed components associated with acetate 
metabolism.  

Seq ID Description Fold 
Change P-value 

UPREGULATED    
comp19954_c0_seq2 Acetate kinase 10.298 4.4E-14 

comp19101_c0_seq1 1-phosphatidylinositol-4,5-bisphosphate 
phosphodiesterase 7.084 9.48E-06 

comp21893_c0_seq3, 8 De novo PUFA synthase 6.999 0.000503 

comp19433_c0_seq2 Acyltransferase-domain-containing 
protein 6.299 0.000391 

comp17328_c0_seq1 Short-chain dehydrogenase reductase 5.598 8.71E-05 
comp18144_c0_seq1 Acetyltransferase 5.137 9.4E-11 
comp21947_c0_seq3, 4, 
6  

1-phosphatidylinositol-4,5-bisphosphate 
phosphodiesterase 4.283 0.000524 

comp10678_c0_seq1 Acyl-CoA binding protein 3.709 1.6E-06 
comp6347_c0_seq1 Fatty acid synthase 3.299 6.2E-05 
comp620_c0_seq1 Lipase esterase 3.165 0.002088 
comp15199_c0_seq1 Coenzyme A transferase 2.985 0.000200 
comp16397_c0_seq1 Acyl-CoA oxidase 2.918 3.3E-05 
comp3307_c0_seq1 Phosphate acetyltransferase 2.854 4.6E-05 
comp21756_c0_seq1 Fatty acid synthase 2.837 5.7E-05 
comp20442_c0_seq1 Galactolipid galactosyltransferase 2.759 0.000263 

comp19374_c0_seq1 Methylmalonate-semialdehyde 
dehydrogenase 2.541 0.000237 

comp14725_c0_seq1, 2 Acyl-CoA dehydrogenase 2.376 0.001078 
comp14555_c0_seq1 Acyl-CoA dehydrogenase 2.257 0.000968 
comp19967_c0_seq1 Acetyl-CoA synthetase 2.204 0.001252 
comp20802_c0_seq2 Glycosyltransferase family protein 2.166 0.001830 
comp20903_c0_seq1 Sterol-3-β-glucosyltransferase 2.166 0.001704 
DOWNREGULATED    

comp20314_c0_seq5 Lipolytic protein GDSL family -6.148 0.000291 
comp17516_c0_seq2 Acyl-CoA binding protein -4.138 5.6E-07 
comp2616_c0_seq1 Sphingosine-1-phosphate lyase -3.614 4.31E-05 
comp177464_c0_seq1 β-ketoacyl-ACP synthase -3.569 0.000169 
comp7167_c0_seq1 Phytol kinase 2 -3.324 4.01E-05 
comp18562_c0_seq1, 2 Methyltransferase-like protein -3.077 0.000316 
comp176632_c0_seq1 Acyltransferase, WS/DGAT/MGAT -3.027 0.000253 

comp21140_c0_seq1 Cyclopropane-fatty-acyl-phospholipid 
synthase -2.871 6.68E-05 

comp7926_c0_seq1 Δ4-desaturase -2.173 0.002509 
comp20217_c0_seq1 Monogalactosyldiacylglycerol synthase -2.104 0.002529 

comp20058_c0_seq1 Malonyl-CoA acyl carrier protein 
transacylase -2.005 0.003268 
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3.3.10 Prymnesin Detection and Quantitation 

The fluorescence assay revealed that the prymnesins were 53% less abundant in 

the 30 psu versus 5 psu supernatants on a pg/cell basis (p < 0.05) (Fig. 3.3).  

 

Figure 3.3 Fluorescence detection of prymnesins in supernatants from cultures that 
were grown in 5 and 30 psu media. Prymnesin concentrations are reported 
as average pg/cell values (n = 12 total measurements for each treatment). 

 

3.4 DISCUSSION 

This study presents the first extensive transcriptome analysis of P. parvum. The 

goal of this examination was to characterize the transcriptome of this organism and 

determine changes in gene expression that occur in response to altered salinity levels. 

This would allow for the delineation of molecular patterns that are associated with 

salinity adaptation in this euryhaline alga. Additionally, the focus was on acetate 
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metabolism- and general transport-related gene expression to gain insight into the 

synthesis and transport of pertinent metabolites and cellular constituents including toxins, 

glycerolipids, and PUFA.  

There are currently very few published studies examining the transcriptomic 

responses of P. parvum to fluctuations in salinity. Freitag et al. (2011) used qPCR to 

examine the expression of 3 PKS ESTs in P. parvum following exposure to several 

physiological shock treatments, finding inconclusive evidence of differential expression 

following a two-hour salinity shock. The effects of salinity alterations on gene expression 

have also been evaluated in a variety of other eukaryotic algal species, including the 

heterokont Ectocarpus siliculosis, the dinoflagellates Karenia brevis and Oxyrrhis 

marina, and several red algae (Collen et al., 2007; Dittami et al., 2009; Teo et al., 2009; 

Ichihara et al., 2011; Liu et al., 2011; Lowe et al., 2011; Dittami et al., 2012). These 

studies have looked at both short- and long-term responses to changes in salinity using 

EST analyses, microarrays, and qPCR; few RNA-Seq analyses have been reported. Thus, 

the present data represent an important contribution to research involving salinity-based 

high-throughput gene expression analyses of eukaryotic, euryhaline algae.  

 

3.4.1 Transcriptome Characterization 

The general ouput of the present sequence assembly correlates well with a 

previous, less extensive EST study that reported an overall GC content of 58% (La 

Claire, 2006), and the completeness and contiguity scores verify its quality. The GO 

annotation and KEGG pathway analyses that were obtained provide categorical 

overviews of the functioning of P. parvum at the transcriptome level. The abundance of 

transcripts that are associated with structural activities, including those involving 

membrane- and non-membrane-bound organelles as revealed by the GO annotations, 

include components of the secretory pathway. This suggests the relevance of their 

structural integrity in P. parvum. Additionally, the prominence of the stimulus response 
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GO category correlates well with the ability of this organism to adapt to salinity stress 

conditions. 

The individual assessment of transcripts revealed many specific homologs that are 

involved in salinity adaptation. For example, a solute carrier family 4 (SLC4) homolog 

was the most prominent in this subgroup, which functions as a chloride/bicarbonate 

exchanger (Alper, 2009). Further, the presence of cyclic nucleotide binding protein 

transcripts involving sulfate transport may play a role in sulfur assimilation for the 

synthesis of the osmolyte dimethylsulfoniopropionate (DMSP) and thus be involved in 

osmoregulation. Significantly, V-type H(+)-translocating pyrophosphatases and 

sodium/hydrogen antiporters have been implicated in increased salt tolerance in plants, 

and their abundance within the transcriptome of P. parvum may well contribute to its 

euryhaline capabilities (Silva and Geros, 2009). 

Regarding secretion, transcripts encoding components of the conventional 

secretory pathway were well represented, pointing to their importance in this organism. 

Additionally, autophagy-related protein has been implicated in the unconventional 

secretion of a variety of compounds in yeasts (Manjithaya and Subramani, 2011), 

suggesting that this organism may utilize similar mechanisms for some of its secretory 

activities. The presence of other transcripts that have been observed to be involved in this 

type of secretion, including autophagy-related proteins (ATG4, 5, 8, and 13), SEC18, 

TLG2, and vacuolar protein sorting (VPS4 and 23) homologs, support this notion 

(Reggiori et al., 2004; Yorimitsu and Klionsky, 2005; Xie and Klionsky, 2007; Duran et 

al., 2010; Manjithaya and Subramani, 2011). Unconventional secretion includes both 

non-vesicular and vesicular routes that deviate from the conventional pathway (Nickel, 

2010). Non-vesicular proteins that have been reported to be involved include ABC 

transporters and lipid transfer proteins, homologs of which were both present at high 

levels in the present assembly (McGrath and Varshavsky, 1989; Duden et al., 1991; 

Kader, 1996; Lev, 2010).  
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Acetate metabolism-related transcripts included 32 PKS homologs in total. The 

majority showed homology to PKS Type I transcripts from the closely related haptophyte 

E. huxleyi in addition to several bacterial species. All of the PKS transcripts were present 

as unique components, suggesting the absence of isoforms, which would have indicated 

possible splice variants. However, some of these transcripts only coded for one or two 

particular PKS domains. Typically, full-length PKS Type I transcripts code for the 

complete set of corresponding enzymatic domains (Zhu et al., 2002). Similar single 

domain transcripts have been observed in the dinoflagellate K. brevis, which possesses a 

trans-splicing mechanism of transcriptional regulation (Zhang et al., 2007; Monroe and 

Van Dolah, 2008). Although my study provided a comprehensive overview of genome-

wide transcription in P. parvum, it led to difficulty in obtaining full-length transcripts 

because it was a de novo assembly. Thus, it may be interesting to assess these PKS 

transcripts using a technique which generates full length sequences, such as rapid 

amplification of cDNA ends (RACE), to assess the possible presence of such single 

domain transcripts and spliced leader sequences in P. parvum.  

Other transcripts that are associated with acetate metabolism included two 

encoding PKS Type III, which belong to the chalcone synthase superfamily and are 

involved in the synthesis of a variety of secondary metabolites in plants (Austin and 

Noel, 2003; Abe and Morita, 2010). β-ketoacyl synthase transcripts showed similar 

homology distributions as were observed with PKS. The sxtA homologs were similar to 

those from the dinoflagellate Alexandrium fundyense and the cyanobacterium 

Aphanizomenon. Its gene product is involved in the first step in saxitoxin synthesis as 

part of an integral PKS module (Al-Tebrineh et al., 2010). P. parvum is not known to 

produce saxitoxin. But, because stxA homologs have been observed in other non-

saxitoxin producing organisms, they are likely derived from a common ancestral gene to 

those in the dinoflagellates and cyanobacteria (Hackett et al., 2013). 
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Some transcripts were also identified that play roles in fatty acid and polyketide 

biosynthesis. Acetyl-CoA, which was the most prominent transcript in this subset, 

converts acetyl-CoA to malonyl-CoA to provide substrates for fatty acid biosynthesis 

(Oliver et al., 2009). This particular transcript was predicted to be localized to the 

chloroplast by TargetP with relatively high likelihood [reliability class (RC) = 2], which 

supports its functioning within the chloroplast as the main site of fatty acid synthesis. 

However, it remains unclear whether all or part of the synthesis of prymnesins also 

occurs in the chloroplast.  

PUFA-related homologs included Δ-9 elongase and Δ-8 desaturase, indicating 

that like its close relative E. huxleyi, P. parvum may not synthesize ω-3 long-chain PUFA 

via the conventional Δ-6 pathway. Instead, these findings suggest that it uses an 

alternative pathway that involves the elongation of α-linolenic acid (C18:3n-3) to 

eicosatrienoic acid (C20:3n-3) followed by two subsequent desaturation events 

(Sayanova et al., 2011; Read et al., 2013). This pathway has also been observed in 

freshwater dinoflagellates, the prymnesiophytes Isochrysis galbana and Pavlova salina, 

and the euglenoid Euglena gracilis (Wallis and Browse, 1999; Qi et al., 2002; Zhou et 

al., 2007; Robert et al., 2009; Sayanova et al., 2011). Its evolutionary significance is 

unknown, but sequence similarities of the various desaturases (Δ-5, Δ-6, and Δ-8) 

suggest that they all diverged from a common ancestor (Sayanova et al., 2011). 

Interestingly, stearidonic acid (SDA; C18:4n-3) has been reported to be a prominent 

PUFA in P. parvum that potentially contributes to its ichthyotoxicity during HABs 

(Henrikson et al., 2010). This fatty acid is synthesized by the conventional Δ-6 pathway, 

suggesting the utility of both the alternative and conventional pathways in this organism 

(Bell and Pond, 1996). It is possible that this strategy enables the selective increase in the 

production of certain long-chain PUFA, such as SDA, during HAB formation.  

Additional PUFA-related findings included homologs to a de novo PUFA 

synthase in Schizochytrium sp. This organism accumulates abundant quantities of both 
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docosahexaenoic acid (DHA; C22:6n-3) and docosapentaenoic acid (DPA, C22:5n-6) by 

a pathway involving this PUFA synthase, which is separate from the fatty acid synthase 

that produces the C14:0 and C16:0 fatty acids that are predominately found in its TAG 

(Metz et al., 2001; Hauvermale et al., 2006; Johnson and Wen, 2009). Thus, it is possible 

that P. parvum uses a similar mechanism for PUFA production, which may act as an 

additional long-chain PUFA synthesis pathway. This information further clarifies the 

findings from the GO and KEGG analyses and characterizes the most prominently 

expressed transcripts in P. parvum. As a whole, the identification of candidate transcripts 

involving salinity adaptation, transport, and acetate metabolism confers in-depth insight 

into the particular molecular mechanisms that are utilized by P. parvum. For example, the 

abundance of ion transporter homologs of various types within the transcriptome in 

addition to those involving the salt stress response and osmolyte biosynthesis indicate 

that this organism is well suited for survival in divergent salinities. The prominence of 

transcripts encoding components of both conventional and unconventional secretory 

pathways bring about questions regarding the manner of release of prymnesins from this 

organism. The collective assessment of these transcripts by a differential expression 

analysis in varying salinities provided further insight into these activities at the 

transcriptional level.   

 

3.4.2 Differential Expression Analysis - Comparisons to Previous Studies  

Due to the relatively small number of transcriptomic studies that have been 

performed on algae involving osmotic stress and the variable experimental treatments 

(salinity levels and exposure times) that have been applied, accurate comparisons 

between the present findings and those of previous studies are difficult. However, a few 

general similarities were noted. For example, Dittami et al. (2009) studied short-term (6 

h) responses to hyper- and hyposalinity shock in Ectocarpus siliculosis  (a filamentous 

brown alga) using microarrays, reporting the upregulation of valine, leucine and 
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isoleucine metabolism and the downregulation of RNA binding and translation factor 

activity during hyperosmotic stress, which is similar to what we found for P. parvum. 

They also found isocitrate lyase to be strongly upregulated in response to stress 

conditions, suggesting that the activation of the glyoxylate cycle acts to re-allocate 

nutrients to crucial biological processes. However, amino acid metabolism was found to 

be downregulated by this group, while it was upregulated in the present study. Further, 

they described the downregulation of GST during hypersaline stress conditions; this was 

also observed with P. parvum in addition to the macroalgal rhodophyte Gracilaria 

changii, in which GST was downregulated following a 7-day exposure to hyposaline 

stress (Teo et al., 2009). The expression of the following additional genes that were 

induced following osmotic stress in P. parvum have been previously described in the 

literature: serine acetyl transferase (Dittami et al., 2009; Teo et al., 2009), fructose 

bisphosphate aldolase (Collen et al., 2007; Teo et al., 2009), heat shock protein 90 

(HSP90) (Collen et al., 2007; Dittami et al., 2009; Teo et al., 2009; Lowe et al., 2011), 

and hemolysin (Teo et al., 2009). Additionally, osmotic stress was found to reduce the 

expression of light harvesting protein in Gracilaria changii and Chondrus crispus  

(Collen et al., 2007; Teo et al., 2009), which is in agreement with the present study. 

Further, Dittami et al. (2009) described the inhibition of photosynthesis-related 

transcripts (chlorophyll a/c-binding proteins) in osmotic stress conditions in Ectocarpus. 

In fact, photosynthesis may be less active in hypersaline conditions due to the inhibition 

of electron transfer and activation of repair pathways (Kirst, 1989). Finally, several of the 

aforementioned studies, including the current one, detected the downregulation of many 

ribosomal genes in stress conditions, which indicate that protein synthesis is repressed at 

high salinity levels, likely due to the osmotic stress (Collen et al., 2007; Dittami et al., 

2009). Thus, this cross comparison of P. parvum with other osmoregulatory studies from 

the literature reveals a number of similarities, which sheds light on common responses to 

salinity stress across different strains of algae. However, additional high-throughput 
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studies involving the osmoregulation of these and other species might clarify such 

correlations.  

 

3.4.3 Differential Expression Analysis - Highlights 

My differential expression analysis sheds light on potential osmoregulatory 

mechanisms that are utilized in this organism. The annotation enrichment analysis 

indicated that in this strain and likely others, hyperosmotic conditions may trigger 

pertinent stress responses. Because P. parvum is widespread in the oceans and seas, this 

finding poses questions as to the origin of the alga. Perhaps it first evolved in hyposaline 

environments and subsequently migrated into oceans. Alternatively, our strain may have 

required a longer time period to adjust to higher salinity levels because it was isolated 

from freshwater, cultured at 5 psu initially and subsequently acclimatized to 30 psu. 

Thus, it may be interesting to compare the present gene expression data with those from 

an isolate that is naturally growing in open seawater. 

The decreased abundance of the cellular trafficking and membrane activity GO 

categories at 30 psu along with macromolecular biosynthesis and organization support 

the notion of depressed toxin synthesis and secretion at the higher salinity level. 

Additionally, the decrease in transcripts belonging to the transmembrane ion transport 

GO category was surprising from an osmoregulation standpoint because the increase in 

environmental ion concentrations would presumably require increased transporters. 

However, the 30 psu culture was acclimated long-term over the course of many months. 

It is possible that there was an initial increase in the transcription of transporters at 30 psu 

that was not detectable in my study. The annotation enrichment analysis also indicated 

suppressed photosynthetic activity at 30 psu, which would necessitate fewer 

transmembrane transporters at that salinity level. Further, the decreases in the ribosome 

and translation GO categories at 30 psu indicate that translation is being repressed at the 

higher salinity level, which may be a stress response allowing for energy conservation. 
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This is in accordance with the heightened stress response at 30 psu. The elevated levels of 

transcripts that belong to the GO categories involving transcription factors, protein 

kinases, and protein modification may also play roles in the stress response and 

enzymatic regulation.  

At the sequence level, the pattern of differential expression of particular ion 

transporter homologs was assessed. The elevated abundance of chloride transporter 

transcripts at 30 psu may indicate the increased sequestration of this ion as an 

osmoregulatory response or the extrusion of excess chloride that may have leaked into 

the cells. Additionally, the variable expression of sodium and potassium transporters can 

be explained by the fact that many are bidirectional. The high expression of the vanilloid 

receptor-related osmotically activated channel suggests that it plays a significant role in 

osmoregulation in P. parvum. The expression patterns of transcripts encoding enzymes 

that may be involved in DMSP synthesis (known to function in osmoregulation), 

including S-adenosylmethionine S-methyltransferase, were in accordance with the 

increased cellular need for this solute at the higher salinity level (Summers et al., 1998). 

PTC1 transcription decreased, which is a type 2C serine/threonine phosphatase that has 

been reported to be a negative regulator of osmotic stress in Saccharomyces cerevisiae 

(Warmka et al., 2001). Accordingly, TSPO/MBR-related protein and AMMECR1 

transcription increased, which have been reported to be induced in response to salt stress 

in Arabidopsis thaliana (Jiang et al., 2007; Guillaumot et al., 2009). These findings also 

support those from the GO analysis regarding an increased stress response at 30 psu. 

ABC transporters showed variable expression patterns in line with their diverse 

biological functions. ABCB in particular may be potentially more functional in 

conditions of higher salinity because multiple transcripts from this sub-family were 

present solely at 30 psu. In contrast, ABCF may be less active at 30 psu. Collectively, 

these results indicate the pattern of ion transport-associated gene expression, the 

involvement of particular salt stress response genes, and evidence of increased osmolyte 
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synthesis that may all contribute to salinity adaptation and osmoregulation in P. parvum. 

They also suggest the possibility that chloride toxicity, rather than sodium toxicity, is the 

underlying factor controlling the molecular responses of P. parvum to long-term 

hypersalinity stress. Future analyses could assess short-term transcriptional changes at the 

two salinities for comparative purposes, which is typically when ion trafficking is most 

active to regulate the intracellular osmotic balance (Kirst, 1989; Kobayashi et al., 2007). 

Thus, a greater number and/or different types of ion transporters may be differentially 

expressed in the short-term. Gene expression analyses could also be performed over a 

wider variety of salinities to detect any incremental alterations that may be occurring. 

Further, a comparative assessment of the plasma membrane proteome of P. parvum at the 

two salinities may shed light on adaptive mechanisms that are occurring in this alga that 

are specific to this subcellular location. Analyses at the transcriptomic level revealed 

many potential plasma membrane-associated homologs, including those encoding 

numerous transmembrane transporters in addition to flagellar proteins, structural proteins, 

signaling molecules, antioxidative stress and lipid-metabolizing enzymes, and those 

involved in protein synthesis, stability, and degradation. However, their precise 

subcellular localization could not be determined in the majority of cases. Thus, an 

assessment of proteome-level responses would allow for a clearer picture of plasma 

membrane alterations that occur during salinity adaptation. This may also provide useful 

information regarding membrane protein restructuring in HAB-forming conditions.  

Transcripts whose gene products are associated with secretion were generally 

reduced at the higher salinity level and thus more abundant at the lower salinity level, the 

latter being associated with the formation of HAB of this organism. This correlates with 

the comparative prymnesin assay that was performed at the two salinities. Pertinent 

transcripts that decreased in quantity at 30 psu included ARF, which are GTP-binding 

proteins that are localized to a variety of organellar membranes in addition to the plasma 

membrane and are involved in the regulation of membrane traffic and organelle structure 
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(D’Souza-Schorey and Chavrier, 2006; Donaldson and Jackson, 2011). Additionally, the 

reduced expression of signal peptidase homologs at 30 psu, which are responsible for 

converting secretory proteins and certain membrane proteins to their mature forms 

(Tuteja, 2005), and TRAPP complex subunits, which participate in ER to Golgi 

trafficking and are activators of RAB proteins (Barrowman et al., 2010), further indicate 

the possibility of decreased cellular trafficking at the higher salinity. Some transport-

related transcripts did not show a specific expression pattern and thus may undergo post-

transcriptional regulation. The transcription of SEC61, which is involved in ER 

translocation in eukaryotes, and multiple C2 transmembrane domain-containing proteins 

increased at 30 psu. The latter are typically involved in both signaling and membrane 

trafficking (Wilkinson et al., 1996; Shin et al., 2005). Because the GO category involving 

protein kinase signaling also increased at 30 psu, this particular result may be indicative 

of the heightened activity of signaling-associated mechanisms and not be representative 

of those associated with transport per se. The fact that no transcripts that are involved 

with unconventional secretion were differentially expressed while a number of those that 

play roles in the conventional pathway were present at decreased levels at 30 psu 

suggests that vesicular transport may be occurring via the conventional pathway at the 

lower salinity. The presence of greater concentrations of extracellular prymnesins at the 

lower salinity indicates the likelihood that they are being extruded at a more rapid rate in 

those conditions, which are associated with HAB formation. Thus, I suspect that 

prymnesins are likely secreted via vesicles in such conditions. However, it must be noted 

that a number of ABC transporters were also downregulated as mentioned above, which 

could potentially be involved in non-vesicular prymnesin transport. However, this route 

is less likely due to the large size and molecular structure of these toxins. A future 

comparative analysis of signal peptides may provide valuable information regarding the 

proportions of proteins that are targeted for secretion in differing environmental 

conditions in addition to the subcellular localizations of proteins of interest. For these 
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analyses, it is crucial to obtain full-length transcripts from which coding sequences can be 

predicted because signal peptides are located at the N-terminus of proteins (Emanuelsson 

et al., 2000). Thus, the RACE technique would enable a more thorough evaluation of 

signal peptides than was possible with this assembly (Zhang and Frohman, 1997).  

The assessment of acetate metabolism-related transcription revealed the increased 

prominence of many pertinent transcripts at 30 psu. This is likely indicative of the 

heightened energy needs of the cells during hypersalinity stress. For example, acetate 

kinase was the most abundant homolog, which promotes acetyl-CoA production and 

works in conjunction with phosphate acetyltransferase, which was also present at 

increased levels (Bock et al., 1999). The transcription of isocitrate lyase and malate 

synthase was also elevated, which ultimately condense glyoxylate with acetyl-CoA to 

form malate, thus facilitating acetate assimilation as an energy source via the 

tricarboxylic acid (TCA) cycle from fatty acids and other pertinent sources (Theodoulou 

and Eastmond, 2012). This might indicate an increased breakdown of fatty acids and 

other pertinent substrates needed for energy. Additionally, methylmalonate semialdehyde 

dehydrogenase produces acetyl-CoA in the mitochondrion (Sokatch et al., 1968; Popov et 

al., 1992), and acetyl-CoA synthetase may be also contributing to mitochondrial acetyl-

CoA pools (Schwer et al., 2006). Sterol-3-glucosyltransferase and the signaling molecule 

1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase have been previously 

associated with the stress response in other organisms, and they increased in abundance at 

30 psu (Murakami-Murofushi et al., 1997; Kunimoto et al., 2002; Pokotylo et al., 2013). 

A number of organisms have been reported to alter their distributions of membrane 

cyclopropane fatty acids in response to salinity fluctuations and other abiotic stresses, and 

the current analysis provides evidence of their decrease in abundance at 30 psu (Grogan 

and Cronen, 1997; Guillot et al., 2000; Dominguez-Ferreras et al., 2006). Several 

homologs that are involved in glycerolipid metabolism that were differentially expressed 

included galactolipid galactosyltransferase and glycosyltransferase (upregulated) and 
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monogalactosyldiacylglycerol (MGDG) synthase (downregulated). This is potentially 

interesting given the proposed ichthyotoxic properties of MGDG (Henrikson et al., 2010). 

Consequently, the increased ichthyotoxicity at lower salinities may result from increased 

production/secretion of MGDG as well as the prymnesins, making the alga doubly 

hazardous to fish. The decrease in MGDG synthase transcription at 30 psu also correlates 

with the decreased photosynthesis that is likely occurring at that salinity level due to cell 

stress because it constitutes a prominent part of the chloroplast thylakoid membrane 

(Block et al., 1983; Masuda et al., 2011). Interestingly, galactolipid galactosyltransferase 

has been shown to be involved with galactolipid remodeling in response to abiotic stress 

in Arabidopsis (Moellering et al., 2010) and thus may play a role in adaptive membrane 

restructuring in P. parvum.   

Several transcripts that are involved in fatty acid breakdown were differentially 

expressed, including acyl-CoA dehydrogenase, which increased in transcription at 30 psu 

and is involved in fatty acid β-oxidation (Thorpe and Kim, 1995). The decreased 

expression of phytol kinase may relate to its role in phytol recycling following 

chlorophyll degradation, including its incorporation into lipid esters and tocopherols 

(Ischebeck et al., 2005; Valentin et al., 2006). Thus, it correlates with the reduced 

photosynthetic activity that is occurring at that salinity. Sphingosine-1-phosphate lyase 

plays a degradative role in the sphingolipid metabolic pathway. Sphingolipids are 

predominately found in the plasma membrane and play roles in the cellular stress 

response, so its decrease in transcription at 30 psu supports the increased cell stress at the 

higher salinity level (Quist et al., 2009; Zhang et al., 2012).  

Because fatty acid and polyketide biosynthesis follow similar pathways, and none 

of the PKS homologs were differentially expressed, no steadfast conclusions about gene 

expression at the transcriptional level can be drawn regarding toxin synthesis in P. 

parvum at differing salinities. However, homologs to β-ketoacyl ACP synthase and 

malonyl-CoA ACP transacylase, which are domains of the modular PKS synthase 
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enzyme, were present at decreased levels at 30 psu. Similar to our findings, Freitag et al. 

(2011) studied the expression of 3 PKS ESTs in P. parvum following physiological shock 

treatments (including salinity shock) and did not find conclusive evidence of differential 

PKS expression either. The current findings substantiate the presence of a post-

transcriptional control mechanism for polyketide prymnesin production, such as that 

which has been reported in brevetoxin PKS expression in dinoflagellates (Van Dolah et 

al., 2009). The assessment of full-length transcripts using splice prediction tools for 

splice site consensus sequences is warranted as evidence of this type of post-

transcriptional regulation. Notably, the spliceosome KEGG pathway was prominent in 

this transcriptome, suggesting that splicing is an important means of expression 

regulation in P. parvum. 

One homolog to hemolysin III also decreased in abundance, which is a pore-

forming hemolysin (Baida and Kuzmin, 1996). These molecules have been previously 

described as contributing to the toxicity of P. parvum. Here again, these compounds may 

further contribute to the alga’s toxicity beyond the synergistic effects of the prymnesins 

and MGDG. The hemolysins had been characterized as galactolipids, but studies have 

produced variable results likely depending on the chemical isolation methods that were 

used. One such study reported that the highest abundance of hemolysin I (out of 6) was 

present in P. parvum; however, another described 6 structurally different molecules 

(Ulitzur and Shilo, 1970; Kozakai et al., 1982; Yasumoto et al., 1990; Manning and La 

Claire, 2010). The decrease in hemolysin III transcription at 30 psu (and thus its 

increased abundance at 5 psu), and the lack of hemolysin I homologs in the present study, 

may indicate that different growing conditions stimulate the production of different 

hemolysins. 

My analysis of TAG and PUFA expression indicated that the expression of a de 

novo PUFA synthase increased 30 psu, suggesting the potential for higher levels of ω-3 

PUFA synthesis at higher salinities. Interestingly, one Δ-4 desaturase was present at 
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decreased levels, which also synthesizes DHA, pointing to the preferential utilization of 

particular long-chain PUFA pathways in varying salinities. FAME profiles have been 

previously carried out for P. parvum (Lee and Loeblich, 1971; Lang et al., 2011). 

However, none of these analyses compared the fatty acids that are produced by this 

organism at varying salinities. Comparative FAME analyses at different growth phases 

and salinity levels may shed light on the potential utility of P. parvum for the production 

of high quantities of PUFA, such as DHA. Such work is covered in the next chapter. The 

transcriptomic data laid the foundation for further investigation into the utility of P. 

parvum in this realm. 
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Chapter 4: Characterization and analysis of fatty acids of Prymnesium 
parvum N. Carter (UTEX 2797) 

4.1 INTRODUCTION 

Lipids are crucial to organisms for supplying metabolic energy, the formation of 

cellular membranes, and cellular communication and signaling (Berge and Barnathan, 

2005; Subramaniam et al., 2011). The ability of algae in particular to thrive in a wide 

variety of environmental conditions is in part due to the variable lipid compositions of the 

different genera and species that confer adaptive capabilities; often, unique fatty acid 

profiles are even observed between different strains of the same species (Kayama et al., 

1989; Rezanka, 1989; Christie, 2003; Dalsgaard et al., 2003; Lang et al., 2011). Thus, 

fatty acid profiling is an excellent tool to characterize species and for identifying strain-

specific fatty acid compositions, particularly in response to environmental fluctuations. 

In non-stress conditions inside of the cell, the majority of lipids are esterified to 

form glycerol-based membrane lipids (Ohlrogge and Browse, 1995). Typical algal lipid 

content during optimal growth conditions has been reported to be approximately 5-20% 

of culture dry cell weight (DCW). Particular environmental stressors that often lead to the 

modification of lipid content include temperature, light, nutrient availability, and salinity 

(Teshima et al., 1983; Ben-Amotz et al., 1985; Cohen et al., 1988; Lee et al., 1989; Al-

Hasan et al., 1990; Roessler, 1990; Thompson, 1996). In some cases, lipid yields may 

double or even triple and be directed toward the formation of TAG under stress 

conditions, in part due to the reorganization and degradation of intracellular membrane 

systems, such as the photosynthetic membranes (Guckert and Cooksey, 1990; Hu et al., 

2008; Singh et al., 2011). TAG consist of 3 fatty acids that are covalently bound to a 

glycerol backbone; they act as energy reserves and carbon storage units (Hu et al., 2008). 

These neutral lipids are similar to fossil oils, and thus, much research has been performed 

investigating their capacities as biofuels (Dyer and Mullen, 2008; Cagliari et al., 2011). 

In addition to TAG, many algae show promise for the production of PUFA, which are 
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pharmaceutically and nutritionally valuable molecules. Chromist species in particular, 

including cryptomonads, heterokonts, and haptophytes, tend to produce abundant 

quantities of long-chain PUFA, including the ω-3 PUFAs, eicosapentaenoic acid (EPA; 

C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), although compositions vary from 

species to species (Cavalier-Smith, 2010; Mulroth et al., 2013).  

Fatty acids may be synthesized with variable chain lengths, double-bond 

positions, and/or functional groups. It is likely that many have not yet been discovered, 

highlighting the importance of investigations into the fatty acid profiles of various 

unstudied algae. There have been several investigations into lipid production and fatty 

acid profiling in the haptophyte algae, including Prymnesium parvum (Renaud and Parry, 

2004; Hu et al., 2008; Lang et al., 2011; Makri et al., 2011; Sayanova et al., 2011; 

Custodio et al., 2014). Investigations into its lipid composition and that of its close 

relative, Emiliana huxleyi, have revealed unique features, such as an abundance of C14:0 

and DHA in addition to the PUFA octodecapentaeonic acid (OPA; C18:5n-3), which has 

also been associated with ichthyotoxicity in other algal species (Lee and Loeblich, 1971; 

Volkman et al., 1981; Viso and Marty, 1993; Lang et al., 2011; Makri et al., 2011; 

Sayanova et al., 2011). However, because fatty acid profiles of microalgae have been 

observed to differ by strain, isolate and/or habitat, it is difficult to make generalizations.  

To date, the effects of salinity alterations on the fatty acid composition of P. 

parvum have not been evaluated nor has the lipid profile of P. parvum N. Carter (UTEX 

strain LB 2797) been fully elucidated. Thus, in this study, the methyl esters of fatty acids 

from total lipid extracts of P. parvum cells that were isolated in stationary phase at both 5 

and 30 practical salinity units (psu) were evaluated by gas chromatography-mass 

spectrometry (GC-MS) to determine the general fatty acid profile of this strain in addition 

to the effects of salinity manipulations on fatty acid composition. 
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4.2 MATERIAL AND METHODS 

4.2.1 Culture Maintenance and Harvesting 

A strain of P. parvum (UTEX 2797) that was isolated in Texas was used in this 

study. The f/2 media (minus Si) were prepared containing steamed seawater at final 

salinities of 5 and 30 psu (Guillard and Ryther, 1962). From an inoculum containing 

approximately 2 x 106 pre-acclimated cells, 5 mL were added to each of four 250 mL 

Erlenmeyer flasks, two containing 150 mL each of 5 psu medium and two containing 150 

mL each of 30 psu medium. Cultures were grown as described in Chapter 2. Cultures 

were sampled at regular intervals throughout growth for spectrophotometric 

quantification at 680 nm using the following extinction coefficient:  

ε = 2.0E-07 cm2 cell-1. 

Cultures were grown until post-log phase (approximately 2.5 and 2.2 million cells/mL for 

5 and 30 psu cultures, respectively), after which they were harvested by centrifugation at 

5,000 rpm for 5 min at 23 °C. 

 

4.2.2 Lipid Extractions 

Lipid extractions were performed according to Jones et al. (2012) with minor 

modifications for small-scale isolations. Cell particulates were removed using vacuum 

filtration, and extracts were dried by rotary evaporation. The following day, extract 

weights were determined. They were then resuspended in 1 mL 2:2:1:1 

hexane:toluene:acetone:MeOH (v/v/v/v), transferred to 14.8 mL borosilicate vials 

(ThermoFisher Scientific Inc., Wilmington, DE), and stored at 4 °C until further analyses. 

 



 
 
 
 

77 

4.2.3 Thin-Layer Chromatography (TLC) 

TLC analyses were performed according to Jones et al. (2012) with minor 

modifications. First, 10 μl of each lipid extract was spotted onto a silica gel 60 F254 

aluminum-backed TLC plate (10 cm x 10 cm; EMD Chemicals Inc., Gibbstown, NJ) 

using WiretrolTM capillary micropipettes (Drummond Scientific Co., Broomall, PA). Two 

sequential solvent systems were used; first, the plate was developed to the halfway point 

in 65:10:20:10:3 chloroform:MeOH:acetone:acetic acid:H2O (v/v/v/v). The plate was 

then dried and developed to completion in 80:20:1 hexane:diethyl ether:acetic acid 

(v/v/v). The plate was again dried, and spots were stained and visualized by exposure to 

iodine vapors.   

 

4.2.4 Preparation of Fatty Acid Methyl Ester (FAME) Derivatives  

FAME derivatives were prepared by transesterification according to O’Fallon et 

al. (2007) with as follows: first, lipid extracts were dried overnight in the fume hood and 

resuspended in 5.3 mL MeOH. Next, 500 μl of 10 N potassium hydroxide was added, and 

the solutions were incubated at 60 °C for 1 h. The solutions were then brought to room 

temperature, and 500 μl of 18 M sulfuric acid was slowly added to each. The vials were 

then rinsed with MeOH, vortexed, and incubated at 60 °C for 1 h. The solutions were 

cooled to room temperature and 5 mL of hexane was added to each vial and vortexed. 

Finally, the top hexane layers were transferred to new pre-weighed borosilicate vials and 

dried overnight in the fume hood, after which dry weights were obtained. Samples were 

resuspended in 1 mL of hexane and transferred to 1.5 mL amber vials (Alltech Associates 

Inc., Deerfield, IL) for further analyses. Full conversion of fatty acids to their methyl 

ester derivatives was assessed using the same TLC solvent system described above.  
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4.2.5 Gas Chromatography-Mass Spectrometry (GC-MS) 

GC-MS analyses were carried out using an Agilent 5973-6890 system (Agilent 

Technologies, Cedar Creek, TX). One microliter each of the FAME samples was injected 

via a 5 μl, 23-gauge syringe (cone tip, needle length = 50 mm; SGE Analytical Science 

Inc., Austin, TX) into a Restek Rxi®-5SilMS column (30 m, 0.25 mm ID, 0.25 μm df; 

Bellefonte, PA). The initial temperature was 40 °C, which was held for 1 min, after 

which the temperature was raised to 200 °C at a rate of 30 °C/min, increased to 230 °C at 

a rate of 5 °C/min, and finally, heated to 250 °C at a rate of 30 °C/min, where it was held 

for 3 min. The GLC-30 FAME standards mix (Sigma Aldrich Co. LLC, St. Louis, MO) 

(containing C8, C10, C12, C14, and C16) was injected to establish retention times . 

Quantitative and qualitative analyses were conducted using the Xcalibur software, 

version 1.4 (Thermo Fisher Scientific Inc.). Unknown mass spectral data were compared 

with spectra from the American Oil Chemists’ Society Lipid Library 

(http://lipidlibrary.aocs.org/ms/masspec.html), and their relative abundances were 

calculated based on the known C14:0 standard. 

 

4.3 RESULTS AND DISCUSSION 

Cells that were grown at 5 and 30 psu demonstrated similar densities for 

approximately the first 6 weeks of culturing as determined spectrophotometrically. 

However, the 30 psu cultures entered post-log phase approximately 2 weeks earlier than 

the 5 psu cultures (Fig. 4.1). 

 



 
 
 
 

79 

Figure 4.1 Growth curves for 5 and 30 psu cultures over 70 days (n = 2 for each 
treatment).  

 

There was a 29% lower average relative abundance of lipids (based on DCW) in 

the 30 psu cultures when compared with the 5 psu cultures. This contrasts with reports in 

the literature that describe increased total cellular lipids following increases in salinity in 

a number of algal species, including the prymnesiophyte, Isochrysis galbana (Renaud 

and Parry, 1994; Guschina and Harwood, 2006; Kirrolia et al., 2011; Jayanta et al., 2012; 

Sharma et al., 2012). However, similar trends of decreasing lipid content with increasing 

salinity have been reported in several organisms, including the freshwater diatom 

Fragilaria capucina, a marine species of the diatom Nitzchia frustulum, and the marine 

heterokont Schizochytrium limacinum (Renaud and Parry, 1994; Zhu et al., 2007; Chaffin 

et al., 2011). 

The TLC revealed that the total lipids were distributed into 6 main fractions, 

including β-carotene, TAG, free fatty acids, pigments (chlorophylls and xanthophylls), 

galactolipids, and phospholipids. Similar distributions of both polar and non-polar lipids 
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were observed for each replicate lipid extract at both 5 and 30 psu (Fig. 4.2). The polar 

lipids, pigments, and TAG represented the major fractions, while free fatty acids were the 

least prominent. Thus, although salt stress-induced TAG accumulation has been observed 

in other algal species, it did not appear to occur in this strain of P. parvum (Hu et al., 

2008; Muhlroth et al., 2013). The fatty acids that were bound to the lipids were converted 

to FAME, which were also assessed by TLC, indicating full conversion of available fatty 

acids to their methyl ester derivatives (Appendix C: Figure 1).  
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Figure 4.2 TLC plate of 4 lipid extracts for cultures grown at 5 and 30 psu (n 

= 2 for each treatment). 
 

GC-MS analyses of the 4 samples resulted in similar chromatographs, 

demonstrating comparable fatty acid profiles between the two salinities, with the most 

abundant species being myristic acid (C14:0) followed by palmitic acid (C16:0), 

respectively (Appendix C: Figure 2). Overall, the relative abundance of C14:0 was 20% 

greater on average in the 30 psu cultures. The relative abundance of C16:0 was not 

significantly different (Fig. 4.3). Additionally, low levels of lauric acid (C12:0) were 

detected in the 5 psu (averaging 3.5%) but not in the 30 psu samples. Figure 4.4 depicts a 
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closer view of the chromatograph for sample 5.2, in which the 10 identified peaks are 

labeled. Those that were identified by their respective mass spectra included stearidonic 

acid (SDA, C18:4n-3), linoleic acid (LA, C18:2n-6), oleic acid (C18:1), stearic acid 

(C18:0), and DHA. Palmitoleic acid (C16:1) and eicosadienoic acid (C20:2) were also 

present at very low levels. 

 

Figure 4.3 Percent relative abundance of the 2 major fatty acids (C14:0 and C16:0) in 
each sample (based on ng of sample injected into GC column) (n=2 for each 
treatment). 

 

 

 

 

 

 

0.0% 

10.0% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

30.1 30.2 5.1 5.2 

52.3% 52.9% 

33.7% 31.8% 

25.0% 

37.5% 
34.7% 

23.3% 

%
 R

el
at

iv
e 

ab
un

da
nc

e 

Sample 

14:0 

16:0 



 
 
 
 

83 

Figure 4.4 Chromatograph of total FAME with labels designating identified peaks. 

There have been several reports in the literature describing the fatty acid profiles 

of a variety of P. parvum strains in addition to those of its close relative, E. huxleyi, 

including strains from Texas (TX), Scotland, England, and Greece (Volkman et al., 1981; 

Lee and Loeblich, 1971; Henrikson et al., 2010; Lang et al., 2011; Makri et al., 2011). A 

summary of previously reported results compared with those of the current study is 

shown in Table 4.1. Although C14:0 was the major fatty acid in the isolate from 

Scotland, representing nearly 70% of the total fatty acid constituents (Lee and Loeblich, 

1971) and was present in the current analysis of the TX strain at levels of approximately 

30% and 50% at 5 and 30 psu, respectively, it constituted less than 10% of the total fatty 

acids in the isolates from England and Greece (Lang et al., 2011; Makri et al., 2011). 

C14:0 also appears to be a prominent fatty acid in E. huxleyi (Volkman et al., 1981). 

Additionally, a previous analysis of fatty acids from the same strain as the current study 
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(UTEX 2797) using 20-day-old cultures that were grown in brackish media revealed 

similar results, with cells containing the highest levels of C14:0 (relative abundances (%) 

were not reported) (Henrikson et al., 2010). 

 

Table 4.1 Comparison of the fatty acid profile for the isolate from TX (P. parvum1) 
with 4 different isolates of P. parvum and E. huxleyi. All values indicate 
relative abundances (%). [P. parvum1 – UTEX 2797 (TX); P. parvum2- 
SMBA 65, Scotland (Lee and Loeblich, 1971); P. parvum3- UTEX LB 995, 
England (Lang et al., 2011); P. parvum4- Greece (Makri et al., 2011); E. 
huxleyi1- England (Volkman et al., 1981)]. 

Fatty 
acids 

P. 
parvum

1 

P. 
parvum

2 

P. 
parvum

3 

P. 
parvum

4 

E. 
huxleyi 

1 

C14:0 31.8% 68.9% 8.3% <4.5% 35.1% 
C16:0 23.3% 8.8% 3% 37.9% 3.1% 
C16:1 <1% 0.6% <1% 2.6%  
C16:2      
C18:0 9.5%   8.6% 1% 
C18:1 4.5% 10.1% 1.5% 21.7% 15.3% 
C18:2 6% 0.9% 1% 8.7% 2.1% 
C18:3   4% 2.4% 7% 
C18:4 9%  17% 4.5% 8% 
C18:5   10.5%  10% 
C20:1  1.7%  0.3%  
C20:2 1.5% 2.6% 1%   
C20:4  0.4%    
C20:5  0.3% <1% 0.4%  
C22:5     1% 
C22:6 6.5% 1.4% 12% 8.6% 11% 

 

In addition to C14:0, a number of other fatty acids figured prominently in these 

strains, which in some cases varied. The minor fatty acids in the currently reported TX P. 

parvum samples (C16:1 and C20:2) were present in correspondingly low proportions in 

the other strains and were not detected in E. huxleyi. These findings verify the effects of 
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habitat location on fatty acid composition and provide insight into the particular 

alterations that underlie the exceptional ability of P. parvum and other euryhaline algae to 

adapt to a variety of environmental conditions. The fact that fatty acid profiles were 

generally similar across salinities in the current study indicates that salinity alterations by 

themselves do not appear to induce gross changes in fatty acid composition in this (and 

potentially all) strain(s). However, the disparate degrees of desaturation among some of 

the reported strains potentially point to the restructuring of membranes as an adaptive 

mechanism in response to variable environmental conditions. For example, increased 

membrane desaturation (and thus decreased membrane fluidity) has been reported in 

association with environmental stress, including temperature and osmotic stress, in a 

number of organisms (Lee et al., 1989; Chintalapati et al., 2004; Romantsov et al., 2009). 

Although only one (Δ-4) desaturase was downregulated at 30 psu in the P. parvum 

transcriptome, a number of transcripts involving membrane remodeling increased in 

expression, such as those associated with galactolipids and sphingolipids. Additionally, 

the relative abundance of C14:0 was observed to be 20% greater at 30 psu, potentially 

indicating that a restructuring of the plasma membrane was occurring. Thus, it may be 

interesting to assess fatty acids that are present in the plasma membrane in comparison 

with those in the microsomes and thylakoids in altering salinities to attain more specific 

insight into adaptive changes that may be occurring in this context.  

In terms of PUFA, EPA was not detected in the TX P. parvum or E. huxleyi 

strains and was present at low levels (<1%) in the other reported P. parvum strains. Thus, 

it is likely that these algal species are not abundant EPA producers. However, DHA 

represented one of the major fatty acids in the English strain (12%) and was fairly 

prominent in all evaluated isolates with the exception of that from Scotland (1.4%). 

DHA-producing organisms that are of commercial interest are able to produce upwards of 

50% total fatty acids as DHA under optimal conditions (Iida et al., 1996; Nakahara et al., 

1996; Yaguchi et al., 1997; De Swaaf et al., 1999). Therefore, P. parvum likely does not 
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have capabilities for commercial DHA production, but it does appear to produce it at 

moderate quantities. The PUFA OPA was not detected in the TX strain nor in most others 

that were evaluated with the exception of the English P. parvum and E. huxleyi strain, the 

latter of which was also English in origin. Interestingly, in the previous evaluation of the 

TX strain, SDA was found to be a relatively prominent constituent of the fatty acid 

profile of both laboratory-grown cultures and active blooms and was revealed to have 

ichthyotoxic properties (Henrikson et al., 2010). Although this fatty acid was present at 

toxic levels in their laboratory cultures, it did not reach adequate levels to induce lethality 

to fish in the natural bloom samples (Henrikson et al., 2010). The role of SDA in the 

ichthyotoxicity of P. parvum blooms and the identity of other as yet unknown toxins 

remain to be elucidated, but the presence of SDA at moderate levels in the current study 

verifies its prominence in this strain. 

In addition to comparing the fatty acid profile of the current study with those of 

other P. parvum and E. huxleyi strains, comparisons with Schizochytrium may also be of 

interest because of the similar PUFA synthases that these two organisms possess, in 

addition to the similar responses of decreased lipid production following salinity stress. 

For example, several parallels may be drawn between the current study and that of 

Schizochytrium limacinum, which was evaluated for fatty acid content following growth 

at 5 different salinities (Zhu et al., 2007). Like P. parvum, this heterotrophic heterokont 

inhabits marine waters and produces substantial quantities of C14:0 and C16:0 in addition 

to DHA, which it synthesizes using the de novo PUFA synthase that is distinct from the 

fatty acid synthases that generate its saturated fatty acids (Hauvermale et al., 2006). 

Because this enzyme was also detected in the P. parvum transcriptome, long-chain PUFA 

synthesis could be carried out using similar mechanisms in both Schizochytrium and P. 

parvum. However, related organisms, such as E. huxleyi, which also share similar fatty 

acid profiles, utilize the alternative Δ-8 desaturation and conventional Δ-6 pathways for 

long-chain PUFA synthesis. The P. parvum transcriptome displayed evidence of both. 
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Thus, this organism may utilize any or all of these pathways depending on the 

environmental conditions and pertinent cellular needs that enable adaptation to occur. 

Future studies may confirm and evaluate the role of the PUFA synthase in P. parvum in 

addition to assessing the activities of the different enzymes of the Δ-6 and Δ-8 pathways 

to verify which pathway(s) is(are) being utilized in P. parvum. 
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Chapter 5: Concluding remarks 

 

This dissertation describes differential gene expression in P. parvum N. Carter 

(UTEX 2797) cultures in response to abiotic factors, including phosphate limitation and 

salinity variations, in addition to providing a comprehensive transcriptome assembly for 

this organism. These studies impart insights into euryhaline adaptation, acetate-related 

metabolism, and transport. Additionally, fatty acid profiling was performed for cultures 

growing at two different salinities and although the profiles were largely similar, 

information was obtained regarding the impacts of salinity and habitat location (via a 

comparative analysis) on fatty acid composition.  

The RNA-Seq analysis allowed for the assessment of long-term osmoregulation 

and salinity adaptation, providing novel insight into the mechanisms underlying the 

euryhaline capabilities of P. parvum. Pertinent gene homologs for ion transport, salt-

stress response, and osmolyte biosynthesis within the transcriptome, a number of which 

were differentially expressed, likely play roles in the ability of this organism to inhabit a 

wide variety of salinities. This strain exhibited an increased salt-stress response at the 

higher salinity, bringing to question its origin because it is typically a marine alga. The 

slow acclimation of this strain from 5 psu, in which it was originally cultured, to 30 psu 

may have also activated the stress response. This analysis particularly revealed evidence 

of heightened chloride sequestration/extrusion, pointing to its potential role in adaptation 

to long-term salinity stress in P. parvum. Fatty acid profiling also indicated increased 

fatty acid desaturation and the potential restructuring of membranes as a means of salinity 

adaptation. This was supported by transcriptomic data. 

Correlations between the microarray (P-limited vs. P-replete) and RNA-Seq (30 

psu vs. 5 psu) analyses provided a number of potential biomarkers of HAB formation in 

addition to producing evidence for the post-transcriptional regulation of polyketide 

prymnesin synthesis. The RNA-Seq analysis revealed that the increased expression of 



 
 
 
 

89 

MGDG and hemolysin at low salinities may confer synergistic effects towards 

ichthyotoxicity. Fatty acid profiling demonstrated that appreciable levels of the PUFA 

SDA are present in this organism as well, which may produce further ichthyotoxic effects 

in this organism. Several long-chain PUFA synthesis pathways were identified, including 

the de novo, conventional Δ-6, and alternative Δ-8 pathways, among which P. parvum 

may preferentially utilize to selectively increase the production of particular PUFA 

during HAB formation.  

This work additionally provided evidence of the involvement of vesicular 

transport in the active secretion of algal toxins in P. parvum, both transcriptionally and 

through the detection of extracellular prymnesins. These transport-related findings bring 

to light a question of the evolutionary origin of this increased transport activity. It is 

possible that P. parvum evolved to increase secretion under particular environmental 

conditions that correspond with increased secondary metabolism, in order to extrude 

toxic metabolites as part of competitor inhibition. On the other hand, secreting toxins 

might improve its phagotrophic ingestion of other organisms. Alternatively, it may have 

developed increased secretion in these conditions as a means of waste product 

elimination with prymnesin transport being increased by proxy because increased HAB 

formation typically occurs late in the growth cycle, coinciding with their accumulation 

(Graneli and Johansson, 2003). Further research into the mechanisms of allelopathy, 

toxicity, and transport in this organism may clarify these questions.  

Collectively, important findings were revealed regarding the mechanisms 

underlying HAB formation in P. parvum, in addition to potential biomarkers of salinity 

adaptation and indicators for bloom development, including those involved in toxin 

synthesis and transport. Increased knowledge of the mechanisms of HAB formation in 

this alga, which causes devastating impacts on aquaculture globally, are crucial for the 

future development of detection and mitigation strategies. 
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APPENDIX A 

Table 1. Subset of downregulated TUGs that were identified at p ≤ 0.01 [log2 (-) 
phosphate/(+) phosphate ranging from -0.5 to -3.19]. 

Description Log2 fold 
change 

E-
value P-value 

Carbonic anhydrase 
 

-3.19 2E-08 0.005177 
Band 3 protein -2.43 5E-05 

 
2.19E-04 

Centrin 3 -2.07 3E-07 0.003511 
Light harvesting complex protein I 
 

-2.06 2E-17 0.009777 
Malate synthase 
 
 
 

-1.88 7E-147 0.005371 
Fucoxanthin chlorophyll a/c-binding protein -1.83 1E-57 2.93E-04 
Cell surface protein -1.81 5E-35 0.002509 
Glucose-6-phosphate & phosphoenol pyruvate/ 
phosphate translocator 
 

-1.68 5E-13 5.72E-04 

NLI-interacting factor-like phosphatase -1.46 5E-31 0.002122 
Band 3 protein -1.42 1E-10 3.68E-04 
Putative lipoprotein -1.30 7E-19 0.005059 
Zinc finger protein 135 
 

-1.28 5E-08 1.60E-04 
DNA ligase -1.28 1E-05 0.001440 
Band 3 protein -1.15 1E-24 0.002586 
Biotin carboxylase -1.13 2E-32 5.42E-04 
Isocitrate lyase -1.11 1E-51 0.003053 
Biotin carboxylase -1.10 2E-32 0.002869 
Dolichyl phosphate mannosyltransferase 
polypeptide 2 -1.09 7E-05 0.004826 

Cytochrome b6-F complex iron sulfur subunit -1.08 4E-72 0.003620 
Low CO2-inducible protein -1.07 8E-13 0.002570 
β-ketoacyl-ACP reductase -1.06 3E-105 0.005051 
Elongation factor EF-TS, mitochondrial -1.04 2E-51 6.89E-04 
Aldehyde reductase -1.04 4E-65 0.004478 
Zinc finger protein (C2H2-type) -1.04 5E-20 0.001874 
Histidine-rich protein -0.98 2E-22 0.002388 
Light harvesting protein 3 -0.94 1E-59 0.009577 
β-tubulin -0.93 2E-18 7.38E-04 
Acetyl-CoA synthetase -0.92 6E-16 6.62E-04 
Phosphate acetyltransferase -0.90 5E-70 0.004692 
Translation initiation inhibitor, ijgF family -0.89 1E-14 0.003327 
Exonuclease I -0.87 3E-22 0.003790 
40S ribosomal protein S25-1 -0.84 1E-07 2.24E-04 
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Table 1 cont.  

Description Log2 fold 
change 

E-
value P-value 

Dioxygenase, alpha chain -0.83 8E-49 0.005624 
Proteasome (26S), regulatory subunit RPN5 -0.72 2E-19 0.002421 
Methyltransferase type 11 -0.72 3E-06 0.004116 
Glutamine amidotransferase of anthranilate synthetase -0.72 2E-05 0.002239 

Flavoprotein (flavin) oxygenase/reductase (FMN-
binding) -0.68 1E-27 0.002489 

FtsH, AAA-metalloprotease; cell division protein -0.67 2E-51 0.004146 
NADH dehydrogenase -0.66 9E-08 0.001844 
Dehydrogenase/reductase (SDR, short chain) -0.64 2E-36 0.001079 
Methylmalonyl-CoA mutase -0.59 4E-58 0.003872 
ATP-dependent Clp protease, proteolytic subunit -0.57 3E-74 0.007098 
Transcriptional regulator, araC family -0.50 2E-17 0.001942 
Carboxyl esterase -0.50 6E-33 0.007515 
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Table 2. Subset of upregulated TUGs that were identified at p ≤ 0.01 [log2 (-) 
phosphate/(+) phosphate ranging from 0.37 to 1.88]. 

Description Log2 fold 
change E- value P-value 

40S ribosomal protein S13 1.88 3E-61 0.003547 
60S ribosomal protein L24 1.86 5E-23 1.25E-04 
60S ribosomal protein P1 (acidic) 1.64 4E-15 0.003056 
Heat shock protein 90 1.57 0 

 
0.001083 

60S ribosomal protein P0 (acidic) 1.50 2E-38 4.53E-04 
60S ribosomal protein L44 1.45 1E-34 0.002396 
60S ribosomal protein L6 1.44 2E-43 0.001983 
40S ribosomal protein S21 1.32 1E-23 6.45E-04 
60S ribosomal protein L22 1.25 1E-44 7.27E-05 
60S ribosomal protein L8 1.20 6E-93 4.79E-04 
PsbA (Photosystem II Q (b) protein D1; YCF35 
protein), chloroplast 1.14 5E-152 8.46E-04 

40S ribosomal protein S4 1.14 8E-52 5.20E-05 
Actin depolymerizing factor (ADF) 1.09 3E-25 2.48E-04 
Actin depolymerizing factor (ADF) 1.07 3E-25 4.10E-05 
Glycine-rich protein (cold shock protein) 1.06 1E-18 0.001739 
Ubiquitin C 1.05 3E-29 0.002822 
Ubiquitin (ubiquitin-60S ribosomal protein fusion; 
ubiquitin extension protein) 
 

1.04 1E-36 0.004247 

40S ribosomal protein S5 0.98 2E-82 0.005898 
40S ribosomal protein S23 0.97 4E-25 8.27E-04 
40S ribosomal protein S19 0.94 7E-32 0.001948 
Protein disulfide isomerase 0.91 4E-26 0.009135 
60S ribosomal protein L38 0.90 3E-16 8.87E-04 
Profilin 0.89 5E-14 0.001579 
Glutathione-S-transferase 0.89 2E-15 0.001897 
40S ribosomal protein S10 0.88 4E-29 0.003517 
60S ribosomal protein L27 0.88 2E-41 0.002261 
Ubiquitin C 0.87 3E-29 0.002913 
40S ribosomal protein S3 0.85 5E-89 0.006316 
60S ribosomal protein L35a 0.83 9E-31 0.002688 
30S ribosomal protein S3E 0.80 3E-115 0.001417 
Profilin 0.79 2E-13 9.54E-04 
40S ribosomal protein S26 0.76 4E-21 0.009928 
60S ribosomal protein L19 0.75 9E-45 9.81E-04 
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Table 2 cont. 

Description Log2 fold 
change E-value P-value 

Glycerol kinase 0.73 3E-42 0.008141 
Heat shock protein HsIV, ATP-dependent protease 0.71 1E-56 0.003517 
Zinc finger protein (C4-type) 0.71 9E-36 0.001630 
Glycosyl transferase 0.71 4E-12 1.41E-05 
Checkpoint with forkhead and ring finger domains 0.69 7E-05 0.009606 

Ras, GTP-binding protein 0.67 3E-52 0.001283 

60S ribosomal protein L17 0.65 7E-45 0.001827 

ADP-ribosylation factor 1 0.64 3E-83 0.005456 

GDP dissociation inhibitor 0.52 4E-17 0.001638 
60S ribosomal protein L15 0.47 5E-75 9.54E-04 
Cytochrome C 0.43 3E-29 0.002834 
Annexin A13 
 

0.43 1E-04 0.004825 
Ni-binding urease accessory protein 0.39 1E-72 0.004131 
Clathrin-adaptor complex protein AP-1 
 

0.37 5E-53 0.001576 
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APPENDIX B 

Table 1. Analysis of PKS and PKS-associated homologs from P. parvum transcriptome. 

Sequence ID Description Species E-value Conserved 
Domains/Comments 

comp298233_
c0_seq1 polyketide synthase E. huxleyi 5.00E-15 none 

comp180298_
c0_seq1 polyketide synthase E. huxleyi 6.00E-78 none 

comp386299_
c0_seq1 polyketide synthase E. huxleyi 3.00E-23 none 

comp725357_
c0_seq1 polyketide synthase E. huxleyi 6.00E-18 none 

comp704780_
c0_seq1 polyketide synthase E. huxleyi 1.00E-13 none 

comp528_c0_
seq1 

polyketide synthase, 
partial E. huxleyi 2.00E-22 none 

comp686861_
c0_seq1 polyketide synthase E. huxleyi 2.00E-17 none 

comp328676_
c0_seq1 

polyketide synthase, 
partial E. huxleyi 3.00E-28 none 

comp695227_
c0_seq1 polyketide synthase E. huxleyi 4.00E-28 none 

comp16_c0_s
eq1 polyketide synthase E. huxleyi 8.00E-25 none 

comp936250_
c0_seq1 polyketide synthase E. huxleyi 2.00E-30 none 

comp508564_
c0_seq1 polyketide synthase E. huxleyi 2.00E-46 none 

comp7125_c0
_seq1 polyketide synthase E. huxleyi 2.00E-13 

Phosphopantetheine 
(PP)-binding 
superfamily 

comp685553_
c0_seq1 polyketide synthase E. huxleyi 4.00E-11 PP-binding 

superfamily 
comp550676_
c0_seq1 polyketide synthase E. huxleyi 2.00E-17 PP-binding 

superfamily 

comp10250_c
0_seq1 polyketide synthase E. huxleyi 6.00E-79 

Ketoacyl synthase 
(KAS)/ PP-binding/ 
ketoreductase (KR) 

comp5345_c0
_seq1 polyketide synthase E. huxleyi 1.00E-11 KR / PP-binding 

comp955576_
c0_seq1 polyketide synthase E. huxleyi 2.00E-28 KR 

comp10346_c
0_seq1 

polyketide synthase 
family protein 

Cylindrospermum 
stagnale 2.00E-30 KR 

comp227706_
c0_seq1 

polyketide synthase 
module 

Streptoalloteichus 
sp. 7.00E-20 KAS 
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comp5978_c0
_seq1 

polyketide synthase 
subunit Bacillus pumilus 2.00E-43 KAS 

comp42_c0_s
eq1 

polyketide synthase, 
partial Actinoplanes sp. 3.00E-08 KAS 

comp536793_
c0_seq1 polyketide synthase E. huxleyi 3.00E-25 

Medium chain 
dehydrogenase/reducta
se (MDR) superfamily 

enoyl reductase 
comp18297_c
0_seq1 polyketide synthase Norocardia 

brasiliensis 2.00E-45 enoyl reductase 

comp220599_
c0_seq1 polyketide synthase E. huxleyi 2.00E-36 ω-3 PfaA 

comp8306_c0
_seq1 

polyunsaturated fatty 
acid synthase subunit 

A 
Schizochytrium sp. 2.00E-37 ω-3  PfaA 

comp6776_c0
_seq1 polyketide synthase E. huxleyi 0 ω-3  PfaA 

comp21893_c
0_seq1-9 polyketide synthase E. huxleyi 0 ω-3 PfaD 

comp7646_c0
_seq1 

putative non-
ribosomal polyketide 

synthase, partial 

Clostridium 
botulinum 1.00E-59 

Nonribosomal peptide 
synthase (NRPS) 

adenylation domain 
comp406498_
c0_seq1 chalcone synthase 1 E. huxleyi 1.00E-76 PKS type III 

comp366249_
c0_seq1 chalcone synthase 1 E. huxleyi 7.00E-48 PKS type III 

comp447301_
c0_seq1 

β-ketoacyl synthase, 
partial 

Nannochloropsis 
gaditana 4.00E-20 KAS 

comp539607_
c0_seq1 β -ketoacyl synthase Clostridium 

papyrosolvens 2.00E-14 KAS 

comp565215_
c0_seq1 

β -ketoacyl synthase: 
acyl transferase 

region 

Crocosphaera 
watsonii 3.00E-11 KAS 

comp278119_
c0_seq1 

β -ketoacyl-ACP 
synthase E. huxleyi 2.00E-24 3-oxoacyl-(acyl carrier 

protein) synthase II 

comp5271_c0
_seq1 β -ketoacyl synthase 

Candidatus 
Solibacter usitatus 

Ellin6076 
2.00E-51 KAS 

comp8064_c0
_seq1 

β -ketoacyl-ACP 
synthase E. huxleyi 6.00E-49 KAS 

comp20233_c
0_seq1-2 β -ketoacyl synthase Ectocarpus 

siliculosus 
2.00E-

143 KAS 

comp89774_c
0_seq1 

β -ketoacyl-ACP 
synthase II, putative 

Acanthamoeba 
castellanii str. Neff 

2.00E-
129 KAS 

comp20988_c
0_seq1 3-oxoacyl synthase E. huxleyi 4.00E-

173 KAS 

comp16920_c
0_seq1 3-oxoacyl synthase E. huxleyi 0 KAS 

comp333291_ sxtA long isoform Alexandrium 9.00E-05 none 
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c0_seq1 precursor fundyense 
comp21499_c
0_seq1 sxtA Aphanizomenon sp. 2.00E-

104 
keratin high-sulfur B2 

protein 

comp199664_
c0_seq1 

StxA short form 
precursor 

Alexandrium 
fundyense 9.00E-15 

adenosylmethionine-
dependent 

methyltransferase 
superfamily 

comp177464_
c0_seq1 

fatty acid elongase, 
partial E. huxleyi 2.00E-76 elongase superfamily 

comp20842_c
0_seq1-2 

ketoyl reductase 
domain protein 

Amphidiunium 
carterae 5.00E-76 KR 
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     5.1         5.2        30.1      30.2    

APPENDIX C 

Fig. 1. TLC plate showing successful trans-esterification of fatty acids for cultures 
grown at 5 (5.1 and 5.2) and 30 (30.1 and 30.2) psu as indicated by the 
presence of only 2 major spots representing the FAME and β-carotene 
fractions. Spots are labeled on left.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β-carotene 
 

FAME 
 



 
 
 
 

98 

Fig. 2. Chromatographs of the 4 samples that were grown at 5 (5.1 and 5.2) and 30 
(30.1 and 30.2) psu. Samples are labeled on right. The 2 most prominent 
fatty acids, C14:0 and C16:0 (with retention times of 9.68 and 11.16, 
respectively) are labeled at top  
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