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CO2 injection in oil reservoirs provides the dual benefit of increasing oil

recovery as well as sequestration. Compositional simulations using phase be-

havior calculations are used to model miscibility and estimate oil recovery. The

injected CO2, however, is known to react with brine. The precipitation and

dissolution reactions, especially with carbonate rocks, can have undesirable

consequences. The geochemical reactions can also change the mole numbers

of components and impact the phase behavior of hydrocarbons.

A Gibbs free energy framework that integrates phase equilibrium com-

putations and geochemical reactions is presented in this dissertation. This

framework uses the Gibbs free energy function to unify different phase de-

scriptions - Equation of State (EOS) for hydrocarbon components and ac-

tivity coefficient model for aqueous phase components. A Gibbs free energy

minimization model was developed to obtain the equilibrium composition for

viii



a system with not just phase equilibrium (no reactions) but also phase and

chemical equilibrium (with reactions). This model is adaptable to different

reservoirs and can be incorporated in compositional simulators.

The Gibbs free energy model is used for two batch calculation applica-

tions. In the first application, solubility models are developed for acid gases

(CO2/H2S) in water as well as brine at high pressures (0.1 - 80 MPa) and high

temperatures (298-393 K). The solubility models are useful for formulating acid

gas injection schemes to ensure continuous production from contaminated gas

fields as well as for CO2 sequestration. In the second application, the Gibbs

free energy approach is used to predict the phase behavior of hydrocarbon

mixtures - CO2-nC14H30 and CH4-CO2. The Gibbs free energy model is also

used to predict the impact of geochemical reactions on the phase behavior of

these two hydrocarbon mixtures.

The Gibbs free energy model is integrated with flow using operator

splitting to model an application of cation exchange reactions between aque-

ous phase and the solid surface. A 1-D numerical model to predict effluent

concentration for a system with three cations using the Gibbs free energy min-

imization approach was observed to be faster than an equivalent stochiomet-

ric approach. Analytical solutions were also developed for this system using

hyperbolic theory of conservation laws and are compared with experimental

results available at laboratory and field scales.
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Chapter 1

Introduction

This chapter presents description of the research problem and lists the

research objectives. The contents of each chapter are also presented to provide

an overview of this dissertation.

1.1 Problem Description

CO2 is used for enhancing oil recovery from reservoirs as it develops

miscibility with oil under some circumstances. Compositional simulations use

phase behavior calculations (flash and stability calculations) to model the mass

transfer between the oil and the injected CO2 to describe miscibility. The

injection of CO2 in oil reservoirs has the additional benefit of sequestration in

underground storage sites, currently being investigated as a mitigation strategy

for combating global warming. Hence, the injection of CO2 in oil reservoirs

provides the dual benefit of increasing recovery and sequestration.

The injected CO2 is also known to react with brine and rock. The

geochemical reaction of the fluids, especially with carbonate rocks, can have

undesirable consequences. The precipitation reactions around the injection

well could lead to an increase in injectivity. The dissolution of rocks could
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result in leakage pathways and the opening of cemented fractures, which is

undesirable for CO2 sequestration.

Compositional simulation models must integrate phase behavior com-

putations and geochemical reactions to completely describe such processes.

The geochemical reactions change the overall mole numbers of components

present in the system and hence, impact the phase behavior computations. In

extreme cases, they could also change the number of phases. In this research,

we present an approach to integrate reactions with phase behavior computa-

tions in compositional simulations.

The phase behavior calculations for hydrocarbon components are per-

formed for components in hydrocarbon phases that are commonly described

using an Equation of State (EOS) approach. However, the geochemical re-

actions between the aqueous phase components and the rock are commonly

described using activity coefficient models. One of the challenges in integrating

phase behavior computations and geochemical reactions is the use of different

thermodynamic phase descriptions - Equation of State and activity coefficient

models.

The Gibbs free energy function provides a possible way to combine

different component phase descriptions and hence, integrate phase behavior

calculations and geochemical reactions. The equilibrium compositions that

arise out of both phase (no reactions) as well phase and chemical equilibrium

(with reactions) can be obtained by minimization of the Gibbs free energy

function. The results of the global minimum of the Gibbs free energy function
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for the entire system corresponds to this equilibrium composition.

1.2 Research Objectives

The goal of this research is to develop a framework using the Gibbs free

energy function that can integrate phase behavior and geochemical reactions.

The capability of this framework to combine different phase descriptions is

a distinguishing feature of this research as compared to the other available

methods. The research objectives to develop this framework are :-

1. Establish, using a case study, when the Gibbs free energy approach is

preferable over the stochiometric approach (the alternative approach) for

batch calculations finding equilibrium compositions in a reactive system.

2. Investigate how the Gibbs free energy function can be used to combine

different phase descriptions - Equation of State (EOS) models and ac-

tivity coefficient models.

3. Demonstrate, using applications, how the Gibbs free energy model can

be used in batch calculations to predict compositions arising of phase

equilibrium (no reactions) as well as phase and chemical equilibrium

(with reactions).

4. Establish whether the Gibbs free energy approach or the stochiometric

approach is preferable to integrate with flow, using a 1-D case study of

cation exchange reactions with three cations.
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5. Develop 1-D analytical solution for the above case study of three cations

with exchange reactions to compare with the numerical solution and

experimental results.

1.3 Dissertation Outline

In the second chapter, a literature survey of available methods to inte-

grate phase equilibrium and geochemical reactions is presented. This survey

includes Gibbs free energy models that have been previously used in geochem-

istry to predict precipitation and dissolution of minerals.

In the third chapter background material from equilibrium thermody-

namics, essential for this dissertation, is presented. The two approaches to

obtain equilibrium composition for a system with reactive components - the

Gibbs free energy approach as well as the stochiometric approach are com-

pared using a case study of a single aqueous phase system with components

typically present in a carbonate system. The Gibbs free energy approach was

found to be the faster approach to find equilibrium compositions for this case

study, when the same number of nonlinear equations are solved using either

approache in the case study.

In the fourth chapter, details of the Gibbs free energy model are pre-

sented. This chapter lists the underlying equations and assumptions used to

combine the different phase descriptions - EOS model and activity coefficient

model descriptions. The equations presented in this chapter have been used to

obtain equilibrium composition for applications presented in this dissertation.
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The fifth chapter covers the first application of using the Gibbs free

energy function to calculate the acid gas (CO2/H2S) solubility in pure water

(phase equilibrium only) as well as brine containing ions (phase and chemical

equilibrium). The model predictions are compared to available experimental

values. The acid gas solubility model, shown to be accurate at high temper-

atures and pressures, are particularly useful for production of hydrocarbons

from contaminated (hydrocarbons with CO2/H2S/mixture) gas fields.

The use of Gibbs free energy function to predict the influence of geo-

chemical reactions on hydrocarbon phase behavior is presented in the sixth

chapter. The phase behavior of hydrocarbon mixtures (phase equilibrium cal-

culation only) as well as the change in phase behavior of the mixture in the

presence of aqueous phase with ions (phase and chemical equilibrium) are dis-

cussed. Two hydrocarbon mixtures - CO2-CH4 and CH4-CO2-nC14H30, have

been considered for this illustration as experimental values are available for

these mixtures.

In the seventh chapter, a case study of 1-D flow with cation exchange

reactions is used to illustrate the integration of the Gibbs free energy model

with flow. A similar scheme of integration with the stochiometric approach is

also presented to identify which one is faster and hence, preferable.

In the eighth chapter, analytical solutions are developed using the sim-

ple wave theory for the case of three cation exchange reactions. These solutions

were developed to test the accuracy of predictions from the numerical solution

obtained in the previous chapter. A comparison of analytical solutions with
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available experimental data, at laboratory and field scales, is also presented in

this chapter. Analytical solutions predict the first-order fronts observed during

such displacements.

The conclusions from this research are presented in the ninth chap-

ter. This chapter also includes recommendation for future work, highlighting

further uses of the Gibbs free energy framework and ways to improve it.
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Chapter 2

Literature Review

This chapter presents a review of previous research applicable to this

dissertation and is presented in two sections.

The first section summarizes the established approaches for integrating

flow, reactions and phase behavior. A review of commonly used reactive and

compositional simulators are presented along with their shortcomings in cou-

pling flow, reactions and phase behavior together. The next section reviews the

Gibbs free energy minimization function to predict equilibrium compositions

in previous research.

A more pertinent literature review, specific to the applications of the

Gibbs free energy model discussed in this dissertation, are discussed in Chap-

ters 5, 6 and 8.

2.1 Established Approaches in Simulators

This dissertation focusses on modeling at the continuum scale where

system macroscopic properties are obtained by averaging over a macroscopic

length. This is also referred to as the REV - Representative Elemental Volume

(Bear, 2013) and Darcy’s law is applicable at this scale. The choice of REV
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Reactions

Flow

Phase behavior

• Globally implicit
• Sequentially non-iterative
• Sequentially iterative

• Fully explicit
• IMPES
• Fully implicit

• Stochiometric
• Gibbs free energy

Figure 2.1: Approaches to integrate flow, reactions and phase behavior

scale, however, presents a challenge for reaction rates as these reactions occur

at the pore scale and the commonly used volume averaging method for con-

tinuum models might not be applicable (Steefel et al., 2005). The upscaling of

reaction rates from the pore scale to the macroscopic scale is an active research

area (Li et al., 2006a, 2007). In this dissertation, we assume all reactions are

at equilibrium.

Figure 2.1 gives an overview of the different approaches used to in-

tegrate any two of the three physical phenomena of flow, reaction and phase

behavior computations at the REV scale. The stochiometric approach and the

non-stochiometric approach, also known as the Gibbs free energy approach,

are two ways of finding equilibrium compositions for a reactive system. The

advantage of the Gibbs free energy approach and a case study to determine

which approach is faster is presented in Chapter 3.
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2.1.1 Reactive Simulators

Steefel and MacQuarrie (1996) provide a summary of commonly used

approaches in reactive simulators that integrate flow and reactions. In the

globally implicit approach, the flow module and reaction module are solved

together as one big system implicitly. A sequential computation between the

flow and the reactions module and iteration of concentration between the two

modules characterizes the other two approaches. The globally implicit method

has the disadvantage of having large computational times as compared to the

sequential approaches. The sequential iterative approach is more accurate

than the non-iterative approach.

Geochemical reactions have been included in some reactive flow simula-

tors like UTCHEM, PHREEQC, PFLOTRAN, TOUGHREACT and STARS.

Among these, only STARS has the capability to include a hydrocarbon phase

in modeling.

Pope et al. (1978c) presented formulation for a chemical flooding simu-

lator, UTCHEM, originally developed to calculate oil recovery. Bhuyan (1989)

incorporated reactions in UTCHEM primarily associated with high pH chem-

ical flooding. The model presented includes aqueous reaction chemistry, re-

actions between the acidic components of crude oil and the base components

of surfactants injected, precipitation/dissolution of minerals as well as cation

exchange reactions (Bhuyan et al., 1990). All reactions are assumed to be at

equilibrium and the aqueous phase components are assumed ideal.
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PHREEQC is a package for modeling geochemical reactions in the

aqueous phase developed by United States Geological Survey (USGS) (Parkhust

and Appelo, 2013). The geochemical package can be used to find equilibrium

composition for batch calculations for systems with reactions that are kineti-

cally controlled as well as reactions at equilibrium. The manual recommends

a careful selection of aqueous species and thermodynamic data as the data in

the databases lack internal consistency.

The PFLOTRAN code has been used to model variably saturated,

nonisothermal and reactive porous media flow in one, two or three spatial

dimensions. It consists of two separate modules PFLOW (mass and energy

flow equations) and PTRAN (reactive transport equations) that are coupled

together sequentially (Mills et al., 2007). The equations are solved implicitly

within each module. The software has homogenous and heterogenous reactions

between aqueous and solid phase. It covers all forms of reversible and irre-

versible reactions - aqueous complexing, oxidation-reduction reactions, mineral

precipitation/dissolution reactions as well as adsorption. The irreversible re-

actions require a kinetic description while the reversible reactions use mass

action equations.

PFLOTRAN code has been used for modeling CO2 sequestration (Lu

and Lichtner, 2005) using a Henry’s law estimate to calculate CO2 concen-

tration in water and a pure CO2 EOS (Duan et al., 1992). The Henry’s law

estimate is not valid at high pressures and inaccurate initial estimates can lead

to error in equilibrium computations.
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TOUGHREACT uses the sequential iterative approach and incorpo-

rates a gas phase in addition to the aqueous phase and solid phase (Xu et al.,

2012). It also has the option of using the sequential non-iterative approach.

The aqueous phase components are described using extended Debye-Huckel

equation that can deal with ionic strengths from dilute to moderately saline

water. The authors do not recommend using this modified model for solutions

having ionization constant above four. To handle higher salinities, they im-

plemented Pitzer’s ion-interaction model. It is also capable of incorporating

changes in porosity and permeability by accouting for the volume change of

the fluids in the system.

In summary, the number of phases in PHREEQC, PFLOTRAN and

TOUGHREACT are fixed (aqueous and/or gas and solid phase) and cannot

include hydrocarbon phases. While UTCHEM does include a hydrocarbon

phase, a compositional formulation is not used to describe the hydrocarbons

and hence, cannot be used to describe the changes in phase behavior occuring

during CO2 injection.

Saaf (1996) has discussed the numerical approaches to integrate flow

and reactions in the aqueous phase. In this study, the operator splitting ap-

proach was implemented in PARSim1 simulator (Arbogast, 1998) and a few

cases of aqueous phase components and precipitation/dissolution reactions are

analyzed. The cases considered do not include hydrocarbons.

The STARS simulator model uses the stochiometric approach to find

equilibrium composition of reactive systems. Both reversible and irreversible
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reactions have been considered in the formulation. It includes a hydrocarbon

phase, but the phase equilibrium is calculated by specifying partition coef-

ficients (constant K values) in the aqueous, gas and the oil phase for each

component (Computer Modeling Group, 2010).

The partition coefficient approach (constant K values) does not ad-

equately represent the hydrocarbon phase behaviour, especially the case of

phase changes accompanying CO2 injection in oil reservoirs (Okuno et al.,

2010) that are more accurately modeled using an EOS description. This is a

considerable limitation to model phase and chemical equilibrium in STARS.

2.1.2 Compositional Simulators

Compositional simulators integrate flow and phase behavior computa-

tions. The fully implicit approach of finding the solution for the pressure and

the saturation equations have better accuracy than the fully explicit approach.

In the IMPES (Implicit Pressure Explicit Saturation) approach, the pressure

equation is solved implicity while the saturation equation is explicit. The IM-

PES approach is capable of describing the phase changes accompanying CO2

injection (Chang et al., 1990; Okuno, 2011). The inhouse simulator UTCOMP

is based on the IMPES formulation (Chang, 1990). Efforts are underway to

integrate PHREEQC in UTCOMP (Kazemi Nia Korrani et al., 2013, 2014).

Nghiem et al. (2010) have also incorporated geochemical reactions in

their compositional simulator CMG calling it CMG-GHG . In this formulation,

the aqueous phase chemical reactions are assumed fast and hence, at chemical
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equilibrium while the mineral reactions (between aqueous ions and solid) are

assumed to be slow and rate-dependent. The CO2 concentration distribution

between the aqueous and the gas phase is determined using the Henry’s law

coefficient with salinity correction using Soriede and Whitson correlation (Sor-

eide and Whitson, 1992). There is no attempt to reconcile the concentration

of CO2 as a result of the aqueous reactions for every gridblock.

Besides, the Soriede and Whitson correlation is valid and useful only at

low salinity solutions. For high salinity cases, the CO2 concentration cannot

be determined by Henry’s law as this separation of the phase equilibrium from

the chemical equilibrium problem (that includes aqeuous phase reactions) is

not accurate. CMG-GHG simulator also does not provide for cases where the

number of hydrocarbon phases may change.

Fan (2010) implemented reaction modeling in Stanford’s compositional

simulator GPRS (General Purpose Reservoir Simulator). A unified globally

implicit approach (GIA) method was implemented with reactions within a EOS

compositional simulation framework. The reaction and transport equations are

solved simultaneously in the GIA approach. A conservation equation using

elements was developed to take advantage of the fact that no reaction terms

appear in elemental balance.

The two applications (Fan, 2010) do not consider hydrocarbon phases

and geochemical reactions simultaneously. The first one which models the re-

active mechanism during the in-situ upgrading of oil shales does not include

aqueous phase (reactions occur at temperatures above the boiling point of wa-
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ter and no aqueous phase is formed). Similary, the other application discussed

on the CO2 storage in saline aquifers excludes the presence of hydrocarbon

phase. The GIA approach is expected to be computationally intensive.

The Implicit Parallel Accurate Reservoir Simulator (IPARS ) developed

at The University of Texas at Austin (Center for Subsurface Modeling, 2000)

has the capability to model multiple phases and components. A reaction mod-

ule TRCHEM is integrated with the IPARS framework (Peszynska and Sun,

2001) and has the capability to model mineral, adsorption and radionuclide

decay reactions. These reactions could either be at equilibrium or governed by

kinetic rate laws. The concentrations from pure equilibrium controlled reac-

tions are obtained by using the interior point algorithm to minimize the Gibbs

free energy.

However, the mass transfer between the flowing phases are modeled

using linear and constant partitioning coefficients (constant K values). The

use of partition coefficients do not adequately represent the phase behavior

of hydrocarbons as more phases may be present during CO2 injection in oil

reservoirs (Okuno, 2011).

In summary, there is a need to develop a framework that can couple

flow, phase behavior and reactions. A framework using the Gibbs free energy

function is presented in this dissertation to accurately model flow, phase be-

havior and reactions. The Gibbs free energy approach used for prediction of

equilibrium compositions is discussed in the next section.
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2.2 Gibbs Free Energy Minimization Procedure

The Gibbs free energy minimization approach to determine composi-

tions for purely phase (no reactions) as well as phase and chemical equilibrium

problems (reacting components) is extensively used for chemical engineering

applications like distillation and chemical separation. It is also used to model

geochemical reactions. An overview of the important developments in this

approach for different applications is presented in this section.

White et al. (1958) developed the RAND algorithm to predict equi-

librium concentrations using Newton’s method for minimizing the Gibbs free

energy function. The system considered was a reactive set of ideal species in

a single phase but it was later extended for nonideal systems and to include

pure solid, multicomponent solid as well as multicomponent liquid phases (all

ideal species).

While the Gibbs free energy function is convex for ideal species in a

single phase, convexity need not hold for multiphase systems or even species

where nonideality is considered in the form of activity coefficient models (Smith

and Missen, 1982b). Hence, the problem in case of multiphase multicompo-

nent system becomes increasingly difficult as the number of phases and the

component distribution, in those phases, at equilibrium are unknown.

One approach suggested by researchers is a step-by-step approach of

increasing phases and checking if the Gibbs free energy of the system de-

creases. This methodology of equilibrium computation has been used effec-
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tively for problems in reactive distillation and hydrocarbon phase computa-

tions in reservoir engineering. This method is also used in geochemical reaction

modeling where algorithms does not presume the presence of all components

in all phases.

2.2.1 Reactive Distillation

Gautam and Seider (1979a) proposed the phase splitting algorithm

to predict equilibrium composition for multicomponent species in multiple

phases. This algorithm begins by assuming all components to be present in

a single phase and increases phases to check if the Gibbs free energy of the

entire system decreases. The addition of phases is continued as long as the

Gibbs free energy of the sytem decreases. For cases illustrated in the original

paper, this step-by-step approach of increasing phases to find the minimum of

Gibbs free energy works well even with poor initial guesses. The presence of

many phases at equilibrium drastically increases the computational time.

An alternative to the step-by-step approach is the global minimization

approach. Mcdonald and Floudas (1994) presented a global optimization algo-

rithm for liquid components represented using NRTL (even UNIQUAC) and

ideal vapor phase components. The overall function was converted into con-

vex sub-problems using transformed variables instead of mole numbers. This

approach of partitioning and use of a transformation was developed in the con-

text of only phase equilibrium (no reactions) and has not yet been developed

for vapor components defined using EOS. The advances in global optimiza-
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tion techniques are useful for finding equilibrium composition, especially for

reservoir fluids with changing phases during CO2 injection in oil reservoirs.

Smith et al. (1993a) proposed the most general criteria for finding equi-

librium composition in a multiphase multicomponent system (with each phase

containing one or all components). The authors formulate the problem of

finding equilibrium composition as one of minimizing the Gibbs free energy

of the system with equality (elemental balance) and non-equality constraints

(positive mole numbers). The first order necessary conditions for the general

form of the equilibrium problem is used to find the KKT points and further

derive two new criteria for global optimality. Though the authors indicate

their intention of working to develop an algorithm for this global optimality,

there have been no further publication from this group.

2.2.2 Reservoir Engineering

In compositional simulation, a step-by-step approach similar to the ap-

proach presented in Gautam and Seider (1979a) is used for phase stability

calculations. Baker et al. (1982) formulated the tangent plane distance func-

tion to separate local and global minima of the Gibbs free energy function. The

tangent plane distance function is the distance between the tangent plane, at

any extremum point (any identified minimum) in the Gibbs free energy func-

tion, and the Gibbs free energy function value of the entire phase at any other

feasible point. This distance function is never negative in the composition

space if the tangent is constructed at the global minima.
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Michelsen (1982) proposed a numerical implementation scheme to com-

pute the tangent plane distance function and use it for phase stability calcula-

tions. The central idea is to obtain all stationary points of this tangent plane

distance function, a negative value implying an unstable phase and the need

to add another phase. A flash algorithm determines the new phase composi-

tions and the stability algorithm is repeated using new composition values in

either phase. The disadvantage of this method is that all stationary points of

the tangent plane distance function cannot be obtained using this approach.

Michelsen suggests using different guesses as starting points to ensure all sta-

tionary points are obtained.

Trangenstein (1987) also developed a minimization procedure using the

Gibbs free energy function for both flash and stability analysis using the tan-

gent plane distance function. The numerical algorithm proposed was partic-

ularly useful for phase behavior calculations near the critical points. Thus,

the algorithm provides an advantage over the successive substitution meth-

ods (Prausnitz and Chueh, 1968), more commonly used for flash calculations,

which can be slow close to critical points.

Wasylkiewicz et al. (1996) used concepts from topology to track the

ridges and valleys of the tangent plane distance function to determine the total

number of stationary points of the tangent plane distance function. Jalali and

Seader (1999) proposed linear homotopy functions to find stationary points

of the tangent plane distance function. The use of activity coefficient models

for components further increases this nonlinearity (Jalali et al., 2008). These
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homotopy functions provide a smooth transition between a linear approxi-

mation to a solution and the true solution. Sun and Seider (1995) showed

that the Newton-homotopy-continuation method reliably determines multiple

stationary points of tangent plane distance function.

2.2.3 Geochemistry

Harvie et al. (1987a,b) use Lagrange multipliers to convert the con-

strained minimization of Gibbs free energy function to an unconstrained op-

timization problem. The approach predicts equilibrium composition for the

case of aqueous phase with mineralization reactions (Harvie and Weare, 1980;

Harvie et al., 1982; Spencer et al., 1990; Møller et al., 1998).

Newton’s method is used to find the descent direction to reduce the

Gibbs free energy function in this approach. The addition of solid phase

(arising out of precipitation) is formulated as a separate optimization problem.

The conditions for global minimum of the Gibbs free energy function of the

system are established for this system.

2.3 Conclusions

The existing compositional and reactive flow simulators cannot accu-

rately model the coupling of flow with reactions as well as hydrocarbon phase

behavior associated with CO2 injection in carbonate reservoirs. The Gibbs free

energy framework is a potential approach to model these processes. The back-

ground theory for this framework is presented in chapter 3. The Gibbs free
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energy model that integrates different phases descriptions - EOS and activity

coefficient models is presented in chapter 4.

The global optimization techniques show promise in obtaining equilib-

rium composition. However, owing to the large number of phases and compo-

nents associated with coupling of phase behavior computations and geochem-

ical reactions, these computations may get cumbersome.

A step-by-step approach of increasing the number of phases sequen-

tially, to find the global minimum of the Gibbs free energy function of the

entire system, has been used to compute equilibrium composition for all ex-

amples presented in this dissertation. A Newton’s method is used to find the

minimum of the Gibbs free energy function. The minimization method and

the constraints used are further discussed for acid gas solubility applications

(chapter 5) and hydrocarbon phase behavior applications (chapter 6).
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Chapter 3

Geochemical Reaction Modeling

This chapter presents background material from equilibrium thermody-

namics drawn from some excellent texts in the area (Sandler, 2006; Denbigh,

1966; Nordstorm and Munoz, 1986; Prausnitz et al., 1998; Garrels and Christ,

1990).

Equilibrium criteria are derived for both closed and open systems and

its implication on the Gibbs free energy function is discussed. A case study is

presented to highlight the difference between the two approaches (stochiomet-

ric and Gibbs free energy minimization) used for obtaining the equilibrium

composition for a system with geochemical reactions and determine which

approach is faster.

3.1 Equilibrium

All isolated systems, left for adequate time, tend towards a state of

equilibrium. Equilibrium systems represent simplification but provide insights

into the properties of the system. The criteria for equilibrium are presented in

this section. The Gibbs free energy function is introduced and the implication

of equilibrium on the Gibbs free energy function is presented.
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3.1.1 Multicomponent Systems

The thermodynamic properties for a single component is given in terms

of the molar property of the component (θ
¯
) where the molar property θ

¯
= θ/N

and N is the total number of moles. The relation for total internal energy U ,

volume V as well as entropy S for a single component system can be given as,

U = NU
¯

; V = NV
¯

; S = NS
¯
. (3.1)

The partial molar property θ̄i of any thermodynamic variable θ for

a component i, in a multicomponent system, is the conditional change in

the total system molar property (θ
¯
) when moles of that component, Ni, are

varied while the temperature (T ), pressure (P ) and other other component

moles numbers (Nj 6=i) are kept constant. The partial molar property for a

multicomponent system with Nc components is a derivative of the total molar

property and can be written as,

θ̄i =

[
∂(Nθ

¯
)

∂Ni

]
T,P,Nj 6=i

where N =
Nc∑
i=1

Ni. (3.2)

The thermodynamic properties such as internal energy U , volume V as well as

entropy S for such a multicomponent system can also be expressed in terms of

their respective component partial molar properties. These relationships are

given as,

U =
Nc∑
i=1

NiŪi ; V =
Nc∑
i=1

NiV̄i ; S =
Nc∑
i=1

NiS̄i. (3.3)

22



Eqns 3.3 and 3.1 can be appropriately used to analyze equilibrium as

shown in the following sections and are equally applicable to multicomponent

and single component systems if P and T are constants.

3.1.2 Entropy and Equilibrium

The mass and energy balance equations, by themselves, do not account

for the experimental observation of all systems moving towards equilibrium.

This sense of direction is provided by the second law of thermodynamics with

the additional thermodynamic variable of entropy.

Clausius (1867) defined entropy as the sum of the transformation-value

of the heat present in the body and disgregation, the exisiting arrangement of

particles of the body. He referred to entropy as the transformational content

of the current state of a system.

The entropy for a system, Ssys, at absolute temperature T and with

heat content, Q, is given as,

Ssys =

∫
dQ

T
(3.4)

The entropy balance (second law of thermodynamics) for an open sys-

tem exchanging heat and mass with the surroundings can be written as,

dS

dt
=
Q̇

T
+

Nc∑
i=1

FiSi
¯

+ Ṡgen. (3.5)

Here, S is the entropy of the system, Q̇ is the rate of heat exchanged between

the system and the surroundings, T is the absolute temperature, Si
¯

is the
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molar entropy of component i with molar flow rate Fi and Ṡgen is the internal

rate of entropy generation in the system.

At equilibrium, entropy S is time invariant (dS/dt = 0) and for a closed

system, Fk = 0. Hence, eq 3.5 can be written as,

Q̇

T
+ Ṡgen = 0. (3.6)

Eq 3.6 incorporates the sense of direction towards equilibrium for natural

processes. An axiomatic definition of entropy generation Ṡgen, being always

positive (except zero at equilibrium), can be used to establish the direction

of heat flow between the system and the surroundings during thermal equi-

librium (Sandler, 2006). Alternatively, the experimental observation of heat

flow from bodies with higher degree of “hotness” to lower degrees for thermal

equilibrium, can help establish a positive entropy generation Ṡgen (Denbigh,

1966). The second law, thus, helps establish how natural processes, left to

themselves, are directed towards equilibrium.

The first law and the second law, together, can help make inferences

regarding the nature of the Gibbs free energy function at equilibrium.

3.1.3 Open System

An open system is a system capable of exchanging heat and mass from

the surroundings. The energy balance equation for an open multicomponent

system at constant temperature and pressure can be given as,

dU

dt
=

Nc∑
i=1

FiH̄i + Q̇− P dV
dt

+
dWs

dt
; (3.7)
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Here, H̄i is the partial molar enthalpy of component i with molar flow rate

Fi, Q̇ is the rate of heat exchanged between the system and the surroundings

while Ws is the shaft work. The entropy balance equation for this system at

constant temperature T with entropy generation Sgen can be given as,

dS

dt
=

Nc∑
i=1

FiS̄i +
Q̇

T
+ Ṡgen. (3.8)

The partial molar quantities, H̄i and S̄i, are used as P and T are constants.

The shaft work is neglected (Ws = 0) and the process is assumed reversible

(Ṡgen = 0). Eqns 3.7 and 3.8 can then be simplified and written over a time

interval dt to get,

dU = TdS − PdV +
Nc∑
i=1

(H̄i − T S̄i)dNi (3.9)

The Gibbs free energy (G) is defined as G = H−TS. At constant temperature

and pressure, Ḡi is the partial molar Gibbs free energy of component i defined

analogous to the definitions in eq 3.2 so that Ḡi = H̄i − T S̄i. Also, dNi is the

moles of component given by dNi = Fidt. Eq 3.9 can be written as,

dU = TdS − PdV +
Nc∑
i=1

ḠidNi. (3.10)

It can be inferred from eq 3.10 that entropy (S), volume (V ) and mole numbers

(N) are the independent variables of the total internal energy U for an open

system at constant temperature and pressure. Also, the change in internal

energy in terms of the independent variables can be given as,

dU =

(
∂U

∂S

)
V,Ni

dS +

(
∂U

∂V

)
S,Ni

dV +
Nc∑
i=1

(
∂U

∂Ni

)
V,S,Nj 6=i

dNi. (3.11)
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Using eqns 3.10 and 3.11,(
∂U

∂S

)
V,Ni

= T ;

(
∂U

∂V

)
S,Ni

= −P
(
∂U

∂Ni

)
V,S,Nj 6=i

= Ḡi. (3.12)

The applications discussed in this dissertation are to closed systems

with multiple components distributed in different phases. The internal energy

of such a multicomponent closed system attaining equilibrium is also a function

of these independent variables. The equilibrium analysis for closed systems and

the implications on the Gibbs free energy is discussed in the next section.

3.1.4 Closed System

The energy balance equation from the first law of thermodynamics for

a closed multicomponent system at constant temperature and pressure is,

dU

dt
=
dQ

dt
− P dV

dt
= Q̇− d

dt
(PV ). (3.13)

Here, P is the pressure and Q̇ is the rate of heat exchanged between the system

and the surroundings. A convention of a positive value for heat transferred

from the surroundings to the system is used. Also, U and V are the total

internal energy and total volume of the multicomponent system respectively,

as defined in eq 3.3. The entropy balance for this system can be given as,

dS

dt
=
Q̇

T
+ Ṡgen. (3.14)

Using eqns 3.13 and 3.14,

dU

dt
+
d

dt
(PV )− d

dt
(TS) =

dG

dt
= −T Ṡgen ≤ 0. (3.15)
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In eq 3.15, T is the absolute temperature, always positive. There are two in-

ferences that can be drawn from the axiomatic definition of entropy generation

and eq 3.15.

1. Because Ṡgen>0, the Gibbs free energy, defined as G = U + PV − TS,

decreases with time (dG/dt<0) for all physical processes. This implies

that any spontaneous change in a system must be accompanied by a

decrease in the Gibbs free energy of the system, making it a decreasing

function with time.

2. At equilibrium Ṡgen = 0, so that dG/dt = 0. This implies that the

decreasing Gibbs free energy function of the entire system attains its

minimum at equilibrium. Thus, the minimum of the Gibbs free energy

function of the entire system is the equilibrium criterion for a multicom-

ponent system at constant temperature and pressure in a closed system.

The definitions of molar and partial molar properties (in eqns 3.1 and 3.3)

make the two inferences equally applicable to both single component and mul-

ticomponent systems.

3.1.5 Equilibrium Criteria

Gibbs (1877) introduced the notion of a free energy in his seminal work

on the theory of equilibrium of heterogeneous substances. He introduced the

chemical potential, subsequently called the partial molar Gibbs free energy, Ḡ,

thus -
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“If any homogenous mass we suppose an infinitesimal quantity of any

substance to be added, the mass remaining homogenous and its entropy and

volume remaining unchanged, the increase of the energy of the mass divided

by the quantity of the substance added is the potential for that substance in

the mass considered.” This definition can be written as,

Ḡi =

(
∂U

∂Ni

)
S,V,Nj 6=i

. (3.16)

The introduction of chemical potential makes the above analysis for

open systems (eq 3.9) also applicable for closed systems with varying compo-

sition. A multicomponent and multiphase system in the process of attaining

equilibrium at constant temperature and pressure is one such example of a

closed system with varying composition.

The total Gibbs free energy of a multicomponent and a multiphase

system at constant temperature and pressure is a sum of the Gibbs free energy

of all components in all the phases. The internal energy for closed system is

also a function of the three independent variables - entropy S, volume V and

moles of component Ni like the open system.

Using eqns 3.10 and 3.16 and rearranging for a multicomponent (Nc)

multiphase (Np) system,

dS =

Np∑
j=1

1

Tj
dUj +

Np∑
j=1

Pj
Tj
dVj −

Np∑
j=1

Nc∑
i=1

ḠijdNij. (3.17)

Here, Tj and Pj are the temperature and pressure of each phase j, while Ḡij is

the partial molar Gibbs free energy of component i in phase j. However, for a
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closed multicomponent multiphase system with no reacting components, the

total number of moles of any component i is a constant. This implies,

Np∑
j=1

dNij = 0 =⇒ dNiNp = −
Np−1∑
j=1

dNij ∀ i = 1, 2, . . . , Nc. (3.18)

As the entire system is closed, there are no changes in internal energy and

volume of the system. This results in,

dUNp = −
Np−1∑
j=1

dUj ; dVNp = −
Np−1∑
j=1

dVj. (3.19)

The total change in entropy for a multicomponent multiphase system can be

given as,

dS =

Np−1∑
j=1

(
1

Tj
− 1

TNp

)
dUj+

Np−1∑
j=1

(
Pj
Tj
− PNp

TNp

)
dVj+

Np−1∑
j=1

Nc∑
i=1

(Ḡij−ḠiNp)dNij

(3.20)

At equilibrium, the entropy attains a maximum in a closed system at con-

stant internal energy U and volume V . The variables - Uj, Tj and Nij are

independent (section 3.1.3) and hence, variation of entropy with respect to

all independent variables is zero. This leads to the following conditions for a

multicomponent multiphase system at equilbirium,

Tj = TNp ; Pj = PNp ∀ j = 1, 2, . . . , Np − 1. (3.21)

Ḡi1 = Ḡi2 = . . . = ḠiNp ∀ i = 1, 2, . . . , Nc (3.22)

The equality of chemical potentials (eq 3.22) is a necessary, but not a sufficient

condition for equilibrium. If the fluid phases are confined in narrow pores, the
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equality of pressure between phases does not hold. The difference in pressure

between phases is referred to as capillary pressures.

A more direct way to arrive at the equality of chemical potentials is by

using the expression for change in the Gibbs free energy of the system. Eq 3.9

can rearranged for a multicomponent multiphase system using the definition

of Gibbs free energy (G = U + PV − TS) to obtain,

dG = V dP − SdT +

Np∑
j=1

Nc∑
i=1

ḠijdNij (3.23)

The change in Gibbs free energy of the entire system at constant temperature

and pressure can be written as,

dG|T,P =

Np∑
j=1

Nc∑
i=1

ḠijdNij. (3.24)

As the total number of moles of component i remains constant, eq 3.18 holds.

The change in Gibbs free energy of the system can then be given as,

dG =
Nc∑
i=1

Np−1∑
j=1

(Ḡij − ḠiNp)dNij =
Nc∑
i=1

Np∑
j=1

(Ḡij − ḠiNp)dNij (3.25)

Because the Gibbs free energy function of the system attains a minimum at

equilibrium, the change in total Gibbs free energy with respect to independent

variables is zero (dG/dNij = 0). This also leads equality of chemical potential

of components in all phases (eq 3.22) at equilibrium.

In summary, the temperature and pressure of all phases are equal at

equilibrium. The components in a system are distributed among phases so
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that the total Gibbs free energy function attains its global minimum at equi-

librium. As a consequence, the partial molar Gibbs free energy Ḡ (also called

the chemical potential) of components are equal in each of the phases they are

distributed.

3.1.6 Stability Analysis

The phase equilibrium computations by equating chemical potentials

in hydrocarbon systems with multiple phases is always followed by stability

analysis calculations to identify the global minimum from the extremum (also

called stationary states) of the total Gibbs free energy. As the Gibbs free

energy function can have multiple minima, the solutions obtained by equating

chemical potentials might be any stationary point (local minima, local maxima

or saddle point) and not the global minimum (equilibrium composition).

Thus, the equality of chemical potentials of any component in all phase

j, Ḡij, is a necessary, but not a sufficient condition to find equilibrium compo-

sition of a multicomponent and multiphase system. This is especially relevant

in cases of CO2 injection in hydrocarbon reservoirs where miscibility is induced

by changing the number of hydrocarbon phases (Okuno, 2011).

Baker et al. (1982) formulated the tangent plane distance criteria us-

ing the Gibbs free energy function to identify the global minimum from the

stationary points. The Gibbs free energy function of any phase j, Gj, is the
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sum of the Gibbs free energy of all components in that phase and is given as,

Gj(nj) =
Nc∑
i=1

nijḠij(nj) ∀ j = 1, 2, . . . , Np. (3.26)

Here, nij are components of nj = [n1j, n2j, . . . , nNcj] and are the feasible com-

position of components (mole numbers) in phase j that satisfy the mass balance

and obtained by equating flash calculation. The equation of a tangent plane,

Lj(x) at the point nj on the Gibbs free energy function Gj can be given as,

Lj(x) = Gj(nj) +
Nc∑
i=1

[xi − nij]
[
∂Gj

∂xi

]
x=nj

= Gj(nj) +
Nc∑
i=1

[xi − nij]Ḡij(nj).

(3.27)

Using eq 3.26,

Lj(x) =
Nc∑
i=1

nijḠij(nj) +
Nc∑
i=1

[xi − nij]Ḡij(nj) =
Nc∑
i=1

xiḠij(nj). (3.28)

The chemical potentials of components, Ḡij, are equal in all phases at all

extrema (local minima, local maxima and saddle point) of the Gibbs free

energy function of the system (eq 3.22). Thus, if all components are present in

all phases, the tangent plane is the same for all the individual Gibbs free energy

of different phases (L1 = L2 = . . . = LNp). However, when all components

are not present in all phases, the tangent plane equation shall be different and

this is further discussed in section 4.4.

The tangent plane distance (D) at any point zj is the distance between

the tangent plane, drawn at point nj on the Gibbs free energy surface (Gj)

and extended to point zj, and the Gibbs free energy value at point zj, Gj(zj).
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This can be given as,

D(zj) = Gj(zj)− Lj(zj) = Gj(zj)−
Nc∑
i=1

ziḠij(nj). (3.29)

If D ≥ 0 for all possible values of zj, the Gibbs free energy function is always

above the tangent plane and the phase j with composition nj is stable.

In reservoir simulation, as all components are present in all phases, and

all phases are typically described using the Peng-Robinson EOS, the stability

of one phase implies the stability of all other phases. Starting with a single

phase, the stability of phases can be established by using D. If the minimum is

negative, the phase is not stable. An additional phase is accounted in the new

flash calculations and the stability test is repeated with the new composition

until a nonnegative minimum value for D is obtained.

The tangent plane distance D(zj) also helps identify the global minima

from other stationary points. Let n and m be any two stationary points, each

with Np and Np′ phases respectively. Here, Np′ ≥ 1 and can be any number

of phases. Also, let nj = [n1j, n2j, . . . , nNcj] and mj = [m1j,m2j, . . . ,mNcj]

represent the mole numbers of components in phase j. The mass balance

equation for each component i results in,

Np∑
j=1

nij =

Np′∑
j=1

mij = ni ∀ i = 1, 2, . . . , Nc. (3.30)

The total Gibbs free energy of the system GT , using the fact that chemical

potentials are equal in all phases and eq 3.30, can be given as,

GT (n) =

Np∑
j=1

Gj(nj) =
Nc∑
i=1

Np∑
j=1

nijḠij(nj) =
Nc∑
i=1

Np′∑
j=1

mijḠij(nj). (3.31)
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Using eq 3.28,

GT (n) =

Np′∑
j=1

Lj(mj). (3.32)

The difference in total Gibbs free energy of the system, ∆G between the two

states can be given as,

∆G = GT (m)−GT (n) (3.33)

=

Np′∑
j=1

Gj(mj)−
Np′∑
j=1

Lj(mj) =

Np′∑
j=1

D(mj). (3.34)

Thus, if D(mj) ≥ 0 for all phases j = 1, 2, . . . , Np′ , the difference in Gibbs free

energy is positive. This implies GT (n) ≤ GT (m). If this relationship holds for

all stationary points like m, the composition n is the global minimum of the

Gibbs free energy function and hence, the equilibrium composition.

Michelsen (1982) recast the tangent plane distance criteria in terms of

fugacity that is easier for EOS phase description and proposed a numerical

implementation for stability analysis. The stationary points of the tangent

plane distance function are obtained and the phase is stable if all the minimums

are nonnegative.

The difference in Gibbs free energy between any two states in eq 3.33

has been shown to be the sum of tangent plane distance functions in all phases.

Using the equality of chemical potential of component in each phase and eq
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3.30 results in,

∆G = GT (m)−GT (n) =
Nc∑
i=1

Np′∑
j=1

mijḠij(m)−
Np∑
j=1

nijḠij(nj)


=

Nc∑
i=1

ni[Ḡij(m)− Ḡij(n)]. (3.35)

Multiplying 1/RT in eq 3.35,

∆F = ∆G/RT =
Nc∑
i=1

ni(lnyi + lnφi − hi) (3.36)

where,

yi =
mi∑Nc

i=1mi

φi = φ(m) & hi = ln

(
ni∑Nc

i=1 ni

)
+ lnφi(n) (3.37)

The nonlinear equations obtained by setting ∂∆F/∂ni = 0,

lnyi + lnφi − hi = k i = 1, 2, . . . , Nc. (3.38)

The stationary points are obtained by solving this set of nonlinear equations.

A new variable Yi = yie
(−k) is defined so that eq 3.38 is,

lnYi + lnφi − hi = 0 i = 1, 2, . . . , Nc. (3.39)

The phase is stable if the sum of the variables Yi is less than or equal to one

and unstable otherwise (Michelsen, 1982).

Smith and Missen (1982b) have shown that the problem of finding

equilibrium composition for a multicomponent single phase ideal system has a

unique solution. They proved uniqueness by showing that the Hessian matrix
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of the Gibbs free energy function, for an ideal single phase multicomponent

system, is always positive. We use this result to find equilibrium composition

using the Gibbs free energy minimization approach for the case study described

in the next section.

3.2 Reactive System

The general criteria for equilibrium, equal temperatures and pressures

of all phases and equal chemical potential of all components in each phase,

also hold for a system with reactive components. Additional relationships

exist among the partial molar Gibbs free energy of reacting components in

the system. These additional relationships are derived using the necessary

condition of minimum in the Gibbs free energy function of the entire system.

The use of this additional relationship to find the equilibrium composition for

a system with reactive components constitutes the stochiometric approach.

Equilibrium compositions can also be obtained without recourse to

these additional relationships. The Gibbs free energy function of the entire

system attains its global minima at equilibrium, whether components present

in the system are reactive or otherwise. The challenge in multicomponent and

multiphase systems is the identification of the global minimum from several

local minima. The compositions that correspond to the global minimum of

the Gibbs free energy function of the entire system are then the equilibrium

compositions for a system with or without reactive components. This method

of estimating equilibrium compositions is referred to as the Gibbs free energy
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minimization approach.

In the next section, the equilibrium criteria for a multicomponent mul-

tiphase system with reacting components are presented. The details of a case

study is discussed and the two approaches to find equilibrium composition are

presented.

3.2.1 Phase and Chemical Equilibrium

A multicomponent multiphase closed system with reacting components

at constant temperature and pressure attains phase and chemical equilibrium.

The moles of component i in phase j (Nij) can be expressed in terms of reaction

extents εk (k = 1, 2, . . . , R),

Nij = N0
ij +

R∑
k=1

νij,kεk ∀ i = 1, 2, . . . , Nc; j = 1, 2, . . . , Np. (3.40)

Here, νi,k is the stochiometric coefficient of the component in kth reaction and

N0
ij is the initial moles of component in phase j. Eq 3.40 can be summed over

all phases to obtain,

Np∑
j=1

Nij = N0
i +

R∑
k=1

νi,kεk i = 1, . . . , Nc. (3.41)

Here, N0
i is the total initial moles of component in all phases. Eq 3.41 is the

additional constraint in a reactive system that separates it from a system where

no reactions occur. The equilibrium composition for this reactive system can

then be obtained by minimizing the Gibbs free energy function of the system

subject to the reaction constraint in eq 3.41.
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A Lagrangian approach is used to obtain the equilibrium composition

for such a reactive system. In this approach, a new objective function G is

defined using Lagrange multipliers, αi, that includes the reaction constraint in

addition to the total Gibbs free energy of the system. There are a total of Nc

Lagrange multipliers, one for each component. The function G can be given

as,

G =

Np∑
j=1

Nc∑
i=1

NijḠij +
Nc∑
i=1

αi

(
Np∑
j=1

Nij −N0
i −

R∑
k=1

νi,kεk

)
(3.42)

Here, εk, Nij and αi are independent variables and the necessary condition of

minimum is used to obtain the equilibrium criteria. The equations obtained

using the necessary condition for the independent parameter Nij are,

(
∂G

∂Nij

)
T,P,εk,Ni 6=i

= 0 =⇒
��

�
��

�
��
�*0

Np∑
j=1

Nc∑
i=1

Nij
∂Ḡi

∂Nij︸ ︷︷ ︸
Gibbs-Duhem equation

+Ḡij+αi = 0.∀s = 1, 2, . . . , Nc.

(3.43)

Eq 3.43 is obtained for the component i in every phase j. This implies,

Ḡi1 = Ḡi2 = . . . = ḠiNp = −αi. ∀ i = 1, 2, . . . , Nc. (3.44)

Also, the equations obtained from the necessary condition for the independent

parameter εk results in the following equations,(
∂G

∂εm

)
T,P,εk 6=m,Nij

= 0 =⇒
Np∑
j=1

Nc∑
i=1

νi,mαi = 0; ∀ k = 1, 2, . . . , R.

Using eq 3.44,

Nc∑
i=1

νi,kḠij = 0; ∀ k = 1, 2, . . . , R. j = 1, 2, . . . , Np. (3.45)
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In summary, in addition to the equality of chemical potentials, addi-

tional relationship among all reacting components (eq 3.45) exist for a system

with reactive components. Eqns 3.44 and 3.45 together, constitute the phase

and chemical equilibrium criteria for a closed system at constant temperature

and pressure.

3.2.2 Case Study

In this example, the equilibrium compositions have been estimated us-

ing the Gibbs free minimization approach and the stochiometric approach for

a case of single phase aqueous components. The components are assumed

ideal, and are those expected in a carbonate system (See Table 3.1). The

equilibrium compositions have been obtained for a specific case of initial mole

numbers (Table 3.1) at standard conditions (temperature, T0 = 25◦C and

pressure, P0 = 1 atm). The nonlinear equations solved in either approaches

are presented and the objective is to identify the faster approach to obtain

equilibrium composition.

3.2.2.1 Gibbs free energy approach

In this approach, equilibrium composition of a system, with or without

reactions, is the solution of a minimization problem. The Gibbs free energy

function of the entire system is the objective function that is to be minimized.

The elemental balance constraint is the equality constraint while the positive

mole number requirement constitutes the inequality constraint for this mini-
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No, Components, Stadard state, Initial
i ni G

¯
0
i (KJ/mol) moles n0

i

1 Ca2+ -132.18 1
2 HCO−3 -140.31 0
3 H+ 0 0
4 OH− -37.6 0
5 H2O -56.69 1
6 CO2−

3 -126.22 1
7 H2CO3 -149.00 0
8 CO2 -92.31 0.5
9 CaCO3 -262.76 0

Table 3.1: Case study with components and initial moles used in case study.
The standard state Gibbs free energy values, Ḡ0

i , are from Rossini et al. (1952)

No. Elements Total moles
(k) (bk)
1 Ca 1
2 C 1.5
3 O 5
4 H 2

Table 3.2: Elemental balance from initial mole numbers used in case study.
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mization problem.

The case study consists of aqueous phase components with initial num-

ber of moles as listed in Table 3.1. The standard state Gibbs free energy for

aqueous component, Ḡ0
i , is the hypothetical aqueous solution of unit molality

of the solute component i in the Lewis-Randall convention (Lewis and Ran-

dall, 1961). The Gibbs free energy values at standard state conditions for each

component, Ḡ0
i , are also listed in Table 3.1. The standard state values are

from Rossini et al. (1952).

The partial molar Gibbs free energy, Ḡi, of a component i in an ideal

aqueous phase mixture, with mole fraction xi and moles ni can be given as

(Denbigh, 1966),

Ḡi(T0, P ) = Ḡ0
i (T0, P0) +RTlnxi = Ḡ0

i (T0, P0) +RTln(
ni∑Nc

i=1 ni
) (3.46)

As seen in Table 3.1, there are a total of nine components (Nc = 9) and

four elements (M = 4) in this single phase case study. Equilibrium composi-

tions are obtained by minimizing the Gibbs free energy function for the entire

system, GT . The objective function along with the equality and nonequality

contraints can be written as,

Minimize GT =
9∑
i=1

niḠi =
9∑
i=1

ni

[
Ḡ0
i +RTln(

ni∑9
i=1 ni

)

]
(3.47)

Subject to
9∑
i=1

akini = bk ∀ k = 1, 2 . . . 4.

and ni ≥ 0.
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In this case study, there are four elements Ca, C, O and H with initial moles

bk given in Table 3.2. In eq 3.47, aik is the coefficient of particular element k

in the molecular formula of any component i. As an example, for component

CO2 where i = 8, a81 = 0, a82 = 1, a83 = 2 and a84 = 0.

The minimization of the Gibbs free energy function of the single phase

system with ideal components, results in a unique solution (Smith and Missen,

1982b). Hence, the necessary condition for the minimum is used to obtain

equilibrium composition.

A Lagrangian approach is used to convert the constrained minimization

problem to an unconstrained minimization problem. The Lagrangian function

(L) using Lagrangian parameters, λk for constraints in eq 3.47 is,

L =
9∑
i=1

niḠi +
4∑

k=1

λk(bk −
9∑
i=1

akini). (3.48)

The necessary conditions for minimum of the function are,

∂L

∂ni
= 0 =⇒ Ḡi −

4∑
k=1

λkaki = 0 ∀i = 1, 2, . . . 9. (3.49)

∂L

∂λk
= 0 =⇒ bk −

9∑
i=1

akini = 0 ∀k = 1, 2 . . . 4. (3.50)

The equilibrium composition is obtained by solving equations resulting from

the necessary conditions of minimum of the Lagrangian function, L (eqns 3.49

and 3.50). For this case study, the total number of nonlinear equations solved

in the Gibbs free energy minimization approach is N+M =13, that simplifies

to M+1 =5 for ideal components (See Appendix A). The solution obtained
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Reaction Reaction Reaction
extent constant

H+ + OH− ⇔ H2O ξ1 K1 = 0.0077
HCO−3⇔ H+ + CO2−

3 ξ2 K2 = 0.9943
HCO−3 +H+⇔ H2CO3 ξ3 K3 = 1.0035
HCO−3 ⇔ OH− + CO2 ξ4 K4 = 0.9958
Ca2+ + HCO−3 ⇔ H+ + CaCO3 ξ5 K5 = 0.9961

Table 3.3: Linearly independent reactions in the case study and the equilibrium
constants at standard conditions.

by solving this minimization problem is the equilibrium composition and is

presented in Table 3.5.

In summary, only a list of components and their standard state values

are required to determine the equilibrium composition for a system with or

without reacting components.

3.2.2.2 Stochiometric approach calculation

The calculation of equilibrium composition in the stochiometric ap-

proach follows from the additional relationships between reacting components.

The additional relationships are derived using the necessary condition arising

out of a minimum in the Gibbs free energy function of the entire system. The

stochiometric formulation, in constrast to the Gibbs free energy approach, re-

quires a knowledge of all reactions occuring between the components in the

system.

There are five linearly independent reactions (R = 5) in this case study.

These reactions are listed in Table 3.14. The knowledge of reactions helps
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No, Component, Initial Equilibrium
(i) moles (n0

i ) composition (ni)
1 Ca2+ 1 n0

1 + ξ5

2 HCO−3 0 n0
2 + ξ2 − ξ3 − ξ4

3 H+ 0 n0
3 − ξ1 + ξ2 − ξ3 + ξ5

4 OH− 0 n0
4 − ξ1 + ξ4

5 H2O 1 n0
5 + ξ1

6 CO2−
3 1 n0

6 + ξ2

7 H2CO3 0 n0
7 + ξ3

8 CO2 0.5 n0
8 + ξ4

9 CaCO3 0 n0
9 + ξ5

Table 3.4: Equilibrium component mole numbers in terms of reaction extents.

determine the stochiometric coefficient, νij, of each component i in the different

reactions j. Hence, component mole numbers ni can be expressed in terms of

the reaction extents, ξj. The component mole numbers can be given as,

ni = n0
i +

R=5∑
j=1

νijξj ∀ i = 1, 2, . . . 9. (3.51)

The Gibbs free energy function of the entire system can then be written as,

Minimize GT =
9∑
i=1

niḠi =
9∑
i=1

(
n0
i +

R∑
j=1

νijξj

)
Ḡi (3.52)

Again, the necessary condition for a minimum in the Gibbs free energy leads

to the following equations,

∂GT

∂ξj
= 0 =⇒

�
�
�
�
�
�>

0
N=9∑
i=1

ni
∂Ḡi

∂ξj︸ ︷︷ ︸
Gibbs-Duhem equation

+
N=9∑
i=1

νijḠi = 0 ∀j = 1, 2, . . . 5.

=⇒
N=9∑
i=1

νijḠi = 0 ∀j = 1, 2, . . . 5. (3.53)
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Eq 3.53 is simplified using the Gibbs-Duhem equation and represents the ad-

ditional relationship that exists among the reactive components. The equi-

librium mole numbers of all components in terms of the reaction constants

are given in Table 3.4. The expression for partial molar Gibbs free energy Ḡi

is similar to that given in eq 3.46 where nt is the total number of moles at

equilibrium. Rearranging eq 3.53 for the first reaction in Table 3.4 results in,

xH2O

xH+xOH−
= exp

[−(G
¯

0
H2O
−G

¯
0
H+ −G

¯
0
OH−)

RT

]
= K1

=⇒
[

n0
5 + ξ1

(n0
3 − ξ1 + ξ2 − ξ3 + ξ5)(n0

4 − ξ1 + ξ4)

](
1

nt

)
= K1 (3.54)

where nt = (
9∑
i=1

n0
i )− ξ1 + 3ξ2 − ξ3 + ξ4 + 3ξ5

The four similar equations for other reactions in Table 3.4 are,[
(n0

3 − ξ1 + ξ2 − ξ3 + ξ5)(n0
6 + ξ2)

n0
2 + ξ2 − ξ3 − ξ4

]
(nt) = K2 (3.55)[

(n0
7 + ξ3)

(n0
3 − ξ1 + ξ2 − ξ3 + ξ5)(n0

2 + ξ2 − ξ3 − ξ4)

](
1

nt

)
= K3 (3.56)[

(n0
8 + ξ4)(n0

4 − ξ1 + ξ4)

n0
2 + ξ2 − ξ3 − ξ4

]
(nt) = K4 (3.57)[

(n0
3 − ξ1 + ξ2 − ξ3 + ξ5)(n0

9 + ξ5)

(n0
1 + ξ5)(n0

2 + ξ2 − ξ3 − ξ4)

]
= K5 (3.58)

The constants Ki (i = 1, 2, . . . 5) can be directly obtained from the Gibbs free

energy standard state values of components (eq 3.54) and are listed in Table

3.3.

The number of nonlinear equations solved to obtain equilibrium com-

position using the stochiometric approach is equal to the number of linearly
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No, Components, Initial Stochiometric Gibbs free energy
(i) moles (n0

i ) approach approach
1 Ca2+ 1 0.4017 0.4017
2 HCO−3 0 0.7962 0.7962
3 H+ 0 2.56E-08 2.56E-08
4 OH− 0 5.60E-07 5.60E-07
5 H2O 1 0.5825 0.5825
6 CO2−

3 1 0.0036 0.0036
7 H2CO3 0 0.0194 0.0194
8 CO2 0.5 0.0825 0.0825
9 CaCO3 0 0.5983 0.5983

Table 3.5: Equilibrium composition for the case study using both approaches

independent reactions (R). Eqns 3.54-3.58 form a set of five equations formed

by the five linearly independent reactions of this system to obtain the five

unknown reaction extents (ξj). The equilibrium mole numbers can be further

obtained from these reaction extents.

3.2.3 Conclusions

The same number of nonlinear equations are solved to obtain equilib-

rium compositions using both methods. Identical results have been obtained

using either approaches (Table 3.5). The computational times taken to obtain

equilibrium composition using either approach was compared for this exam-

ple case study. The Gibbs free energy minimization approach was about 30%

faster than the stochiometric approach (0.2143 sec versus 0.0573 sec) and is

due to the nature of the nonlinear equations solved in either cases.

The choice of approach to calculate equilibrium composition is gov-
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erned by the number of nonlinear equations that is solved in each approach.

For an ideal single phase system, the number of reactions in the system, R,

corresponds to the number of nonlinear equations solved in the stochiometric

approach. The number of nonlinear equations solved in the Gibbs free energy

minimization approach is N +M which simplifies to M + 1 for the ideal case.

When the number of nonlinear equations being solved using either ap-

proaches is the same, the Gibbs free energy algorithm is faster. In addition,

since no equilibrium constant need to be specified, the Gibbs free energy ap-

proach is the preferred method of finding equilibrium composition for reactive

system. This algorithm is further investigated for integrating phase equilib-

rium computations with geochemical reactions in the next chapter.
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Chapter 4

Gibbs Free Energy Model

In this chapter, the Gibbs free energy expressions used for different com-

ponents are presented. These expressions together with the reference states

constitute the Gibbs free energy model that is used to calculate equilibrium

compositions. The Gibbs free energy function for applications discussed in

this dissertation are also presented in this chapter.

4.1 Gibbs Free Energy Expression

The expressions developed for Gibbs free energy in chapter 3 measure

changes rather than absolute values of free energy. Eqn 3.23 gives the change

in Gibbs free energy for a multicomponent system. The expression for change

in Gibbs free energy for a single component system where mole number is not

an independent variable, is given as,

dG
¯

= V
¯
dP − S

¯
dT (4.1)

Here, G
¯

, V
¯

and S
¯

are the molar properties - Gibbs free energy, volume and

entropy respectively, of the pure component. The change in Gibbs free energy

48



at constant temperature can then be given as,(
∂G

¯

∂P

)
T

= V
¯

(4.2)

The change in Gibbs free energy at constant pressure can be given as,(
∂G

¯

∂T

)
P

= −S
¯

=
G
¯
−H

¯

T
(4.3)

Multiplying eq 4.3 by (1/T ) on both sides,

−
(
G
¯

T 2

)
+

1

T

(
∂G

¯

∂T

)
P

= −
(
H
¯

T 2

)

=⇒
(
∂(G

¯
/T )

∂T

)
P

= −
(
H
¯

T 2

)
(4.4)

Eq 4.4 is also referred to as the Gibbs-Helmholtz equation. Eqns 4.2

and 4.4 can also be used to obtain an equivalent expression for a change in

Gibbs free energy for a mixture. Multiplying eq 4.2 by total number of moles

N and differentiating with respect to Ni, the moles of component i results in,

∂

∂Ni

∣∣∣∣
Nj 6=i

[
∂(NG

¯
)

∂P

]
T

=
∂

∂Ni

∣∣∣∣
Nj 6=i

[NV
¯

]. (4.5)

The order of differentiation can be interchanged and the definitions of partial

molar properties (eq 3.2) are used to obtain,

∂Ḡi

∂P

∣∣∣∣
T r,Nj

= V̄i. (4.6)

The same technique is employed for the Gibbs free energy change for a mixture

at constant pressure (eq 4.4). The resulting expression for change of partial
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molar Gibbs free energy at constant pressure is,

∂(Ḡi/T )

∂T

∣∣∣∣
P,Nj

= −
(
H̄i

T 2

)
. (4.7)

Eqns 4.6 and 4.7 are the expressions for change in Gibbs free energy for mix-

tures. The reference states, discussed in the next section, are used to obtain

the absolute values of Gibbs free energy for different components.

4.2 Reference States

The expression for the absolute value of Gibbs free energy of a pure

component at any pressure P is obtained by integrating eq 4.2 at constant

temperature T r. This results in,

G
¯

(T r, P ) = G
¯

r(T r, P r) +

∫ P

P r

V
¯
dP. (4.8)

Here, G
¯

r and G
¯

are the Gibbs free energy values of the pure component at

reference pressure, P r, and desired pressure, P , respectively. If the component

is assumed ideal,

G
¯

(T r, P ) = G
¯

r(T r, P r) +RT rln
P

P r
. (4.9)

The equivalent expression for the Gibbs free energy for any component in a

mixture at pressure P is obtained by integrating eq 4.6 at constant temperature

to obtain,

Ḡi(T
r, P ) = Ḡi(T

r, P r) +

∫ P

P r

V̄idP. (4.10)

This can be further simplified for an ideal gas mixture to obtain,

Ḡi(T
r, P ) = Ḡi(T

r, P r) +RTln
xiP

P r
. (4.11)
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In eq 4.11, the reference state for the Gibbs free energy is the partial molar

Gibbs free energy of the component (Ḡi) at T r and P r. One can also choose

the pure component property (Gi
¯

) at T r and P r as the reference state. The

choice of pure component property as reference state for an ideal gas mixture

results in,

Ḡi(T
r, P ) = Gi

¯
(T r, P r) +RTln

xiP

P r
. (4.12)

Here, xi is the mole fraction of component i in the ideal gas mixture while P

is the total pressure of the system. While any values for P r and T r may be

chosen, it is important to note that G
¯

at pressure P and obtained using eq 4.9

is at the chosen reference temperature, T r.

Lewis and Randall (1961) defined fugacity for consistency with the

corresponding equation for an ideal gas (eq 4.11). The general expression

for chemical potential of any component i in a non-ideal phase mixture is

measured from a reference state (Prausnitz et al., 1998) and is given as,

Ḡij = Ḡr
i +RTln

(
f̄ij
f̄ rij

)
(4.13)

Here, Ḡij is the chemical potential of component i in phase j at the pressure

and temperature conditions of interest, f̄ij is the fugacity of component i in

phase j at the state of interest, Ḡr
i is the chemical potential of the component at

reference state and f̄ rij is the fugacity at that reference state. The temperature

is constant, both, at the reference state and the state of interest while the

pressure may vary.
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The chemical potential can also be defined in terms of activity (aij)

of the component (Nordstorm and Munoz, 1986), the reference state being

implicit in the definition of activity.

Ḡij = Ḡr
i +RTln aij (4.14)

The convention for the reference state for components varies and depends on

the nature of the component (solute or solvent) as well as the thermodynamic

description (activity coefficient model or EOS description) of the phase in

which the component is present. The Lewis-Randall convention for reference

states for different components are listed in Table 4.1.

The NIST database (Rossini et al., 1952) lists the Gibbs free energy

reference state values for different components in the Lewis-Randall conven-

tion. These values of reference state values from the NIST database listed in

Table 3.1 were used to estimate equilibrium compositions in the case study

of chapter 3. The specific Gibbs free energy expressions for components in

gas phase, hydrocarbon phase, aqueous phase and solid phase are presented

in Appendix A.

4.3 Gibbs Free Energy Model

In the Gibbs free energy approach for computing equilibrium composi-

tion, the Gibbs free energy function of the entire system is the objective func-

tion that is minimized using an elemental balance constraint. The solution to

the minimization problem is the equilibrium composition. The advantage of
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Table 4.1: Reference states for components as reported in the Lewis-Randall
convention in NIST database (Rossini et al., 1952). The reference state is at
standard conditions of temperature, T0 = 25◦C and pressure, P0 = 1 atm.
Component type Reference state (at standard conditions)
Gas phase component Hypothetical ideal gas
Hydrocarbon phase component Hypothetical ideal gas
Aqueous phase component Hypothetical ideal solution of unit molality
Water Pure liquid
Solid Pure solid

the Gibbs free energy model is that it is equally applicable to both systems

with or without reactive components. In this section, the formulation for this

model is presented.

The Gibbs free energy function of the entire system is a sum of the

appropriate Gibbs free energy expressions for different components in the sys-

tem. These components may be present in different phases and hence, have

different reference states as discussed in the previous section. It is possible

to combine components that use different reference state descriptions and/or

components with reference states at different pressure and temperature con-

ditions. This combination constitutes the Gibbs free energy function for the

entire system that is minimized to obtain the equilibrium composition at a

fixed temperature and pressure.

4.3.1 Combining Reference States

As discussed in section 4.2, the Gibbs free energy expression for different

components in the system are based on different reference states. However,
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the reference states of a component in different phases may be related by a

standard expression. As an example, the aqueous and gas phase reference

states at standard conditions for a component i are related by the following

equation,

Ḡ0
s(T0, P0) = Gs

¯

IG(T0, P0) + (∆G)hyd(T0, P0). (4.15)

Here, Gs
¯

IG is the reference state for the component in the gas phase, Ḡ0
s

is the reference state property for the component in the aqueous phase, while

(∆G)hyd is the Gibbs free energy of hydration of the component ; all properties

at standard conditions of temperature and pressure. The hydration energy is

defined as the energy required to convert the component from a hypothetical

ideal gas to an aqueous solute at a concentration of unit molality.

More generally, the components with reference states at different pres-

sure but same temperature can also be related. Consider the case of component

i, present in two phases (I and II) that use different reference states - ḠI (T ,

P I) and ḠII (T , P II) for their Gibbs free energy expression. Using eq 4.13,

the partial molar Gibbs free energy (chemical potential) of the component in

the two phases, Ḡi and Ḡi2, at any pressure P and system temperature T can

be given as,

Ḡi1(T, P ) = ḠI
i (T, P

I) +RTln

(
f̄i1
f̄ Ii

)
; (4.16)

Ḡi2(T, P ) = ḠII
i (T, P II) +RTln

(
f̄i2
f̄ IIi

)
. (4.17)

In the above equation, f̄ Ii and f̄ IIi are the fugacity of component i at reference

pressures P I and P II respectively, while f̄i1 and f̄i2 are the fugacity of the
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component in the two phases at pressure P . Eq 4.13 can also be used to relate

the reference states (Prausnitz et al., 1998) to obtain,

ḠII
i (T, P II) = ḠI

i (T, P
I) +RTln

(
f̄ IIi
f̄ Ii

)
. (4.18)

Eqns 4.16-4.18 imply that the chemical potentials of the component, Ḡi1 and

Ḡi2 are equal at equilibrium (a necessary condition for equilibrium) even

though different reference states might be used for the same component in

different phases. This also implies that the fugacities of the component in

these phases, f̄i1 and f̄i2, are also equal. Hence, the equality of chemical po-

tential criteria of a component present in different phases at equilibrium also

extends to the equality of fugacity of the same component in different phases

irrespective of the reference state. However, the activities of the component

(defined in eq 4.14) are equal at equilibrium only if the same reference states

are used for the component in both the phases.

In summary, as shown for component in aqueous and gas or hydrocar-

bon phase, the Gibbs free energy function of the entire system is additive if

all the different reference states for components are at standard conditions of

temperature and pressure (eq 4.15). Also, the reference states at different pres-

sures but same temperatures can also be related using appropriate corrections

(eqn 4.18) to make the Gibbs free energy function additive. If the reference

states of components are at different pressures and temperatures, appropriate

corrections can be made to make the system Gibbs free energy function ad-

ditive. The details of the corrections to the Gibbs free energy expressions for

different components used in this model is explained below.
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4.3.2 Combining States at Different Pressure and Temperature

The system pressure (P ) and temperature (T ) condition can be chosen

as a reference state instead of the standard conditions (P0 and T0). This choice

of system T and P as reference state results in the following expression for

the partial molar Gibbs free energy for components in gas/hydrocarbon phase

(Ḡig in eq A.8),

Ḡig(T, P ) = Gi
¯

IG(T, P ) +RTln(yiφ̂i). (4.19)

For component in the aqueous phase (eq A.10) the partial molar Gibbs free

energy ( Ḡiw) is,

Ḡiw(T, P ) = Ḡ0
i (T, P ) +RTln(xiγi). (4.20)

The expression for the partial molar Gibbs free energy for the solid phase

component (Ḡis in eq A.12) is,

Ḡis(T, P ) = Gi
¯

0(T, P ) +RTln(ziδi) (4.21)

The partial molar Gibbs free energy for solvent water (Ḡw) that has pure water

as reference state (eq A.11) is,

Ḡw(T, P ) = Gw
¯

0(T, P ) +RTln(xwγw) (4.22)

The second term of on the right side in eqns 4.19-4.21 represents deviation from

ideality (φ̂i, γs/γw, δi) with this choice of reference state. Using the change

in Gibbs free energy for pure components (eqns 4.2, 4.4) as the change for
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components in mixtures (eqns 4.6 and 4.7), the new reference state values at

any system T and P can be related to the NIST tabulated values at standard

conditions of T0 and P0. This results in the following equations for components,

Gi
¯

IG(T, P ) = Gi
¯

IG(To, Po) +RTln(
P

Po
) + T

∫ T

To

−

Hi
¯

T 2


P

dT (4.23)

Ḡ0
iw(T, P ) = Ḡ0

i (To, Po) +

∫ P

Po

(v̄i)TodP + T

∫ T

To

−
(
H̄iw

T 2

)
P

dT (4.24)

Ḡ0
is(T, P ) = Gi

¯

0(To, Po) +

∫ P

Po

(vi
¯

)TodP + T

∫ T

To

−

Hi
¯

T 2


P

dT (4.25)

Ḡ0
w(T, P ) = Gw

¯

0(To, Po) +

∫ P

Po

(vw
¯

)TodP + T

∫ T

To

−

Hw
¯

T 2


P

dT (4.26)

Here, yi is the mole fraction in the gas phase, φ̂i is the fugacity coefficient,

v̄s is the molar volume of solute, vw
¯

is the molar volume of water, vi
¯

is the

molar volume of pure solid phase component while Hi
¯

is the molar enthalpy

of component i in the gas phase and solid phase, Hw
¯

is the molar enthalpy of

pure water and H̄sw is the partial molar enthalpy of solute component in the

aqueous phase.

Helgeson and co-workers (Shock et al., 1989; Helgeson and Kirkham,

1976; Johnson et al., 1992) have developed EOS models for the partial molal

volumes vs
¯

as well as expressions for partial molal enthalpies Hs
¯

for aqueous

solutes (CO2, H2S as well as ionic solutes) to evaluate the reference state

values at high temperatures and pressures (upto 1000◦C and 5000 bars). The

applications considered in this dissertation are in the pressure range 20-80
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MPa. In this model, the molar volumes and enthalpies at T0 and P0 (tabulated

in NIST database (Rossini et al., 1952)) are assumed to be constants over the

pressure and the temperature range of acid gas injection. We can then simplify

eqns 4.23-4.26 to obtain,

Gi
¯

IG(T, P ) = Gi
¯

IG(To, Po) +RTln(
P

Po
) + [Hi

¯
]Po,To

(
1− T

To

)
(4.27)

Ḡ0
iw(T, P ) = Ḡ0

i (To, Po) + (v̄∞1 )To (P − Po) + [H̄iw]Po,To

(
1− T

To

)
(4.28)

Ḡ0
is(T, P ) = Ḡ0

i (To, Po) + (v̄1)To (P − Po) + [H̄sw]Po,To

(
1− T

To

)
(4.29)

Ḡ0
w(T, P ) = Gw

¯

0(To, Po) + (v2
¯

)To(P − Po) + [Hw
¯

]Po,To

(
1− T

To

)
(4.30)

The Gibbs free energy function of the system is the sum of all components in

all the phases. The Gibbs free energy expression for corresponding components

in gas phase, aqueous phase and solid phase are used to construct the total

system Gibbs free energy function GT . The resulting function for a system

with Nc components and Nc phases (sum of gas/hydrocarbon, aqueous phase

as well as solid phase) is,

GT (T, P ) =
Nc∑
i=1

Np∑
j=1

nijḠij(T, P )

=
Nc∑
i=1

nigḠig(T, P ) +
Nc∑
i=1

niwḠiw(T, P ) +
Nc∑
i=1

nisḠis(T, P ) + nwḠw

Here, nig, niw and nis are the number of moles of component i in the gas/hydrocarbon

phase, aqueous phase and solid phase respectively. Also, nw is the moles of

solvent water in the aqueous phase. Using eqns 4.19-4.22 in the above equa-
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tion,

GT (T, P ) =
Nc∑
i=1

nig[Gi
¯

IG(T, P ) +RTlnyiφ̂i] +
Nc∑
i=1

niw[Ḡ0
iw(T, P ) +RTlnxiγi]

+
Nc∑
i=1

nis[Ḡ
0
is(T, P ) +RTlnziδi] + nw[Ḡ0

w(T, P ) +RTlnxwγw]. (4.31)

The reference states Gi
¯

IG for gas phase as well as hydrocarbon phase compo-

nents, Ḡ0
iw for aqueous phase components, Ḡ0

is for solid phase components and

Ḡ0
w for pure water are at system T and P . The model eqns 4.27-4.30 are used

to relate these reference state values at system T and P to the NIST database

values.

As discussed in section 3.1, the global minimum of the Gibbs free energy

function (GT in eq 4.31) at any temperature and pressure is the equilibrium

composition of the system at those conditions. The Gibbs free energy mini-

mization approach can be used to find equilibrium composition of not just pure

phase equilibrium but also phase and chemical equilibrium. The Gibbs free

energy function, GT , specific to the applications discussed in this dissertation

are presented below.

4.3.2.1 Gas solubility computations

Several industrial processes require computation of gas solubility in

water at high temperatures and pressures. The Gibbs free energy minimization

approach can be used to obtain the mole fraction of the gas component in the

aqueous phase. The gas phase can be a mixture of components or just a single
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component. The Gibbs free energy function used for such applications is,

GT (T, P ) =
Nc∑
i=1

nig[Gi
¯

IG(T, P ) +RTlnyiφ̂i] +
Nc∑
i=1

niw[Ḡ0
iw(T, P ) +RTlnxiγi]

+ nw[Ḡ0
w(T, P ) +RTlnxwγw]. (4.32)

The standard state values for different components are required for this com-

putation. The standard states can be related to the reference state value at

system T and P using eqns 4.27 and 4.28. The acid gas solubility model de-

veloped in chapter 5 have been developed using the Gibbs free energy function

in eq 4.32. This is a case of pure phase equilibrium computation as only the

acid gas component and pure water are in the aqueous phase.

If, in addition to the gas phase components, ions are present in the

aqueous phase that are capable of reacting with solid, the Gibbs free energy

function for system can be given as,

GT (T, P ) =
Nc∑
i=1

nig[Gi
¯

IG(T, P ) +RTlnyiφ̂i] +
Nc∑
i=1

niw[Ḡ0
iw(T, P ) +RTlnxiγi]

+ nw[Ḡ0
w(T, P ) +RTlnxwγw] + ns[Gs

¯
(T, P )]. (4.33)

In the above equation, the solid is assumed as a pure component, ns are the

moles of the solid and Gs
¯

is the reference state of the pure component solid.

The gas solubility models for such cases of phase and chemical equilibrium are

also presented in chapter 5.

4.3.2.2 Hydrocarbon phase equilibrium computations

Compositional simulators routinely perform phase equilibrium compu-

tations to calculate the distribution of components in phases and estimate
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recovery. Multiple hydrocarbon phases may exist, especially, during CO2 injec-

tion in oil reservoirs. The equilibrium composition for such phase equilibrium

computations can also be calculated using the Gibbs free energy minimization

approach.

The minimization can be performed assuming different number of phases

to find the number of phases that gives the lowest Gibbs free energy. The ref-

erence state Gibbs free energy values for hydrocarbon phase components is

the hypothetical pure component ideal gas value Gi
¯

IG (Table 4.1). However,

these reference states are not required for these equilibrium computations of

involving only hydrocarbon systems. This is explained below.

Consider a hydrocarbon system with Nc components distributed in Np

phases. Let the initial moles of each component be zi these moles are dis-

tributed in the hydrocarbon phases at equilibrium so that zi =
∑Np

j=1 nij where

nij is the number of moles of component i in phase j. Also, xij is the corre-

sponding mole fraction. The Gibbs free energy function of the system using the

partial molar Gibbs free energy expression for hydrocarbon phase component

is,

GT (T, P ) =
Nc∑
i=1

Np∑
j=1

nijḠij(T, P )

=
Nc∑
i=1

Np∑
j=1

nij[Gi
¯

IG(T, P ) +RTln(xijφ̂i)] (4.34)
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Relating the reference state to NIST database in eqn 4.27 results in,

GT (T, P ) =
Nc∑
i=1

Np∑
j=1

nij

[
Gi
¯

IG(T0, P0) +RTln(
P

P0

) + [Hi
¯

]Po,To

(
1− T

To

)]

+
Nc∑
i=1

Np∑
j=1

nij[RTln(xijφ̂i)] (4.35)

Expanding and rearranging,

GT (T, P ) =
Nc∑
i=1

zi

[
Gi
¯

IG(T0, P0) +RTln(
P

P0

) + [Hi
¯

]Po,To

(
1− T

To

)]
︸ ︷︷ ︸

a constant

+
Nc∑
i=1

Np∑
j=1

nij[RTln(xijφ̂i)]. (4.36)

A new function H can be defined as below,

H(T, P ) =
Nc∑
i=1

Np∑
j=1

nij[RTln(xijφ̂i)] (4.37)

Both functions, GT (eq 4.36) and H (eq 4.37) have the same minimum as the

first term on the right side in eq 4.36 is a constant. Also, the function H is

devoid of reference state values and hence, preferable over GT for minimization

to obtain equilibrium composition. This is, of course, true for only phase

equilibrium computations involving only hydrocarbon components. However,

the challenge of finding the global minimum from local minima persists.

4.3.2.3 Hydrocarbon and aqueous phase equilibrium computations

If the aqueous phase with their components are combined with the hy-

drocarbon phase components, the Gibbs free energy function is formulated
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using corresponding expressions for each component. Recognizing that not all

components are present in all phases, it is possible to divide total Nc compo-

nents into two groups - category A with Nc1 components and category B with

Nc2 components.

The components in the first category (A) participate in only phase equi-

librium within the hydrocarbon phases. The heavy hydrocarbon components

that have negligible solubility in water are examples of components in this

category. The category B components are present in both hydrocarbon phases

as well as the aqueous phase. Hydrocarbon components like CH4, C2H6 as well

as CO2 are some examples of components in category B that participate in

geochemical reactions occuring between aqueous components and solid rock.

While an elemental balance constraint with just elements C, O, H etc.,

is used for minimization for all other cases discussed above, for cases involv-

ing hydrocarbon and aqueous phase equilibrium computations, category A

components are included as base components in the constraint set that are

additionally conserved. This ensures that class A components associated with

just phase equilibrium remain separate from category B components, associ-

ated with phase as well as chemical equilibrium. This is further explained for

specific cases discussed in chapter 6.

The total number of phases Np is the sum of Nhc hydrocarbon phases

and an aqueous phase. The total Gibbs free energy function for this entire
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system is,

GT (T, P ) =
Nc∑
i=1

Np∑
j=1

nijḠij(T, P )

=

Nc1∑
i=1

Nhc∑
j=1

nij[Gi
¯

IG(T, P ) +RTln(xijφ̂i)]︸ ︷︷ ︸
category A

+

Nc2∑
i=1

Nhc∑
j=1

nij[Gi
¯

IG(T, P ) +RTln(xijφ̂i)]︸ ︷︷ ︸
category B

+

Nc2∑
i=1

niw[Ḡ0
iw(T, P ) +RTlnxiγi] + nw[Ḡ0

w(T, P ) +RTlnxwγw]︸ ︷︷ ︸
category B

(4.38)

It can be shown, using the argument previously presented for system with

only hydrocarbon components in eqns 4.36 and 4.37, that the reference state

values for components in category A are not required for the estimation of

equilibrium composition for this system. However, the reference state values

for components in category B are required. The equivalent H function that

has the same minimum as GT in eq 4.38 for this system is,

H(T, P ) =

Nc1∑
i=1

Nhc∑
j=1

nij[RTln(xijφ̂i)] +

Nc2∑
i=1

Nhc∑
j=1

nij[Gi
¯

IG(T, P ) +RTln(xijφ̂i)]

+

Nc2∑
i=1

niw[Ḡ0
iw(T, P ) +RTlnxiγi] + nw[Ḡ0

w(T, P ) +RTlnxwγw] (4.39)

The examples of equilibrium computations for hydrocarbon and aqueous com-

ponents with geochemical reactions use the above function and are further
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discussed in chapter 6.

The Gibbs free energy minimization approach to find equilibrium com-

position has been extensively used for process engineering applications as well

as for geochemical analysis to predict mineral solubilities in water (Harvie and

Weare, 1980; Harvie et al., 1984). Luckas et al. (1994) have used a similar

approach to predict phase and chemical equilibrium for flue gas systems and

water at low pressures. The Gibbs free energy minimization approach has

been extended for higher pressures and temperatures in this dissertation.

Numerous algorithms using this approach, have been developed to com-

pute equilibrium compositions not just for phase equilibrium (Trangenstein,

1987) but also for coupled phase and chemical equilbrium (Gautam and Sei-

der, 1979b; McDonald and Floudas, 1996; Harvie et al., 1987b; Peng Lee et al.,

1999; Smith et al., 1993b). The RAND algorithm (White et al., 1958) dis-

cussed in the previous chapter is used to find the equilibrium composition for

this system.

4.4 Stability Analysis

In the present section, stability analysis for systems having components

distributed in different phases, each phase described by different thermody-

namic models (EOS and activity coefficients) are presented. The stability

analysis for components distributed in the hydrocarbon phase and described

using EOS was presented in section 3.1.6. Also, the analysis in section 3.1.6

was particular to cases where all components are present in all phases.
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The presence of aqueous phase ions as well as hydrocarbon components

results in cases where not all components are present in all phases. This is

particularly true of ions that are exclusively present in the aqueous phase

for pressure and temperature conditions discussed in this dissertation. The

stability analysis, for such cases where all components are not present in all

phases and there are no reactions in the system, is presented to identify the

global minimum and hence, the equilibrium composition for the system.

Consider a system consisting of hydrocabon phase components as well

as aqueous phase components. Let nij be the number of moles of component

i that are present in hydrocarbon phases. The hydrocarbon phases includes

both types of components A and B (as defined in section 4.3.2.3). Let niw be

the number of moles of component i in the aqueous phase. The aqueous phase

includes the ions as well as component type B that participate in geochemical

reactions. For stability analysis, the total system Gibbs free energy GT for

this system (eq 4.38), is equivalently given as,

GT =

N1∑
i=1

Nhc∑
j=1

nijḠij +

Naq∑
i=1

niwḠiw. (4.40)

Here, Nhc is the total number of hydrocarbon phases, N1 is the total number

of components distributed in all the hydrocarbon phases, whereas, Naq is the

total number of components present in the aqueous phase and also includes

water as a component.

Let Gaq and Gj (j = 1, 2, . . . , Nhc) represent the Gibbs free energy of all

components in aqueous phase and corresponding components in hydrocarbon
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phases respectively. The total Gibbs free energy of the complete system having

a composition n is,

GT (n) =

Nhc∑
j=1

Gj(nj) +Gw(nw) (4.41)

where,

Gw =

Naq∑
i=1

niwḠiw(nw); Gj =

N1∑
i=1

nijḠij(nj) ∀ j = 1, 2, . . . , Nhc. (4.42)

The equation of tangent plane Lj(x) at any point n, on the Gibbs free energy

surface is different for different phases. The tangent plane for hydrocarbon

phases is similar to eq 3.28 and given as,

Lj(x) =

N1∑
i=1

xiḠij(nj) j = 1, 2, . . . , Nhc. (4.43)

Here, nj = [n1j, n2j, . . . , nN1j] represents the mole number of components in

the hydrocarbon phase. The tangent plane for the aqueous phase differs in

the number of components and is given as,

Lw(x) =

Naq∑
i=1

xiḠiw(nw). (4.44)

Here, nw = [n1w, n2w, . . . , nNaqw]. Lw is also different in the partial molar

expressions for aqueous phase components (Ḡiw) than for components present

in the hydrocarbon phase (Ḡij in eq 4.43).

The corresponding tangent plane distance functions (D) at any point
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z can be given as,

D(zj) = Gj(zj)− Lj(zj) = Gj(zj)−
N1∑
i=1

ziḠij(nj)

∀ j = 1, . . . , Nhc. (4.45)

D(zw) = Gw(zw)− Lw(zw) = Gw(zw)−
Naq∑
i=1

zwḠiw(nw). (4.46)

Let m and n be two compositions, with same components distributed in both

in the aqueous phase and in the hydrocarbon phases but different number of

hydrocarbon phases - Nhc′ and Nhc respectively. The Gibbs free energy of the

system with composition n can be given as,

Nhc∑
j=1

Gj(nj) =

N1∑
i=1

Nhc∑
j=1

nijḠij(nj) =

N1∑
i=1

Ḡij(nj)

Nhc∑
j=1

nij (4.47)

The equality of chemical potential of all components in all phases was used to

simplify above equation. Using the component balance for component i,

Nhc∑
j=1

nij + niw =

Nhc′∑
j=1

mij +miw (4.48)

Eq 4.48 holds for class A as well as class B components and when no reactions

occur in the system. Using eqns 4.47 and 4.48,

Nhc∑
j=1

Gj(nj) =

N1∑
i=1

Ḡij(nj)(miw − niw +

Nhc′∑
j=1

mij)

=

N1∑
i=1

(miw − niw)Ḡij(nj) +

Nhc′∑
j=1

N1∑
i=1

mijḠij(nj)

=

N1∑
i=1

(miw − niw)Ḡij(nj) +

Nhc′∑
j=1

Lj(mj) (4.49)
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The difference in Gibbs free energy of the system can be given as,

∆G = GT (m)−GT (n)

=

[
Nhc′∑
j=1

Gj(mj) +Gw(mw)

]
−
[
Nhc∑
j=1

Gj(nj) +Gw(nw)

]
(4.50)

Using eq 4.49,

∆G =

Nhc′∑
j=1

[Gj(mj)− Lj(mj)] + [Gw(mw)−Gw(nw)]−
N1∑
i=1

(miw − niw)Ḡij(nj)

=

Nhc′∑
j=1

D(mj) + [Gw(mw)−Gw(nw)]−
N1∑
i=1

(miw − niw)Ḡij(nj). (4.51)

This equation is different from the difference in total system Gibbs free energy

obtained in eq 3.34 for system with all components distributed in all phases.

Thus, in addition to D(mj) ≥ 0 for hydrocarbon phases j = 1, 2, . . . , Nhc′ , the

additional function in eq 4.51 should also be greater than zero for n to be the

global minimum of the Gibbs free energy function and hence, the equilibrium

composition.

In special cases of two phase equilibrium, between components in gas

and aqueous phase, multiple minima are unlikely. This has been shown by the

existence of only two phase - gas and aqueous phase, in experimental studies

of gas solubility in aqueous phase. These cases are further discussed in chapter

5, where the equilibrium composition are obtained by equating the chemical

potential of components directly without any stability analysis.
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4.5 Conclusions

A Gibbs free energy model that integrates different phase descriptions

(EOS and activity coefficient model) using the Gibbs free energy function of

the entire system was presented in this chapter. The Gibbs free energy function

of the entire system was simplified, depending on the system and applications,

to obtain equivalent functions. These equivalent functions are used in the

subsequent chapters to obtain equilibrium composition.

A tangent plane criteria, for stability analysis to identify the global from

the local minima, was developed for a case with different phase descriptions

and where all components are non-reacting and not present in all phases.
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Chapter 5

Applications: Acid Gas Solubility

In this chapter, the application of the Gibbs free energy model to pre-

dict acid gas solubility in water (phase equilibrium calculations) as well as

brine with ions (phase and chemical equilibrium) is presented. This chapter

begins with an introduction to acid gas injection and the need for accurate

solubility models for continuous hydrocarbon production from contaminated

gas fields as well as for CO2 sequestration. The details of the solubility model,

previously developed is also presented in the literature section.

5.1 Introduction

About 40% of world gas reserves have been estimated to be contami-

nated with the acid gases - CO2 and/or H2S (IHS, May 2009). There are vast

reserves of such fields, also called sour gas fields, having more than 10% of

such contaminants in Canada, North Africa, SE Asia/NW Australia and the

Middle East. New separation technologies (Li et al., 2006b; van Kemenade and

Brouwers, 2012; Klaver and Geers, 2007; Northrop and Valencia, 2009) have

enabled production of hydrocarbons from these sour gas fields. This, however,

brings with it the challenge to safely dispose the acid gas resulting from the
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separation process. An effective acid gas disposal strategy is imperative for

continuous hydrocarbon production from these sour gas fields. Aquifers are

commonly used for the disposal of the acid gas in sour gas operating fields

(Bachu and Gunter, 2004a,b).

The International Energy Agency (IEA), as part of the global efforts

to reduce CO2 in the atmosphere, estimates the Carbon Capture and Storage

(CCS) technologies to contribute one-fifth of the total target of halving current

levels of emission by 2050 (IEA, 2008). The capture and storage of flue gasses

from fossil power plants is part of this plan to reduce emissions. Flue gas is a

mixture containing CO2, H2S and trace amounts of CH4. The research efforts

pertaining to CO2 capture and storage have also identified aquifers as efficient

storage sites for storing CO2 by the solubility trapping mechanism (Bachu and

Adams, 2003).

In the above applications, it is important to accurately estimate the

acid gas solubility in both water as well as brine containing ions at equilibrium.

Geochemical reactions occur in the presence of ions. Hence, the solubility of

gas in brine is likely to be different than that in pure water. The Gibbs

free energy minimization approach is a unified approach that can be used to

predict acid gas solubility in water, where only phase equilibrium occurs, as

well as in brine, where the presence of ions and solid results in reactions and

hence, phase and chemical equilibrium. In the next section, details of acid gas

solubility model in water is presented followed by solubility model in brine.
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5.2 Acid Gas Solubility in Water

In this application, a model for acid gas solubility prediction in water

at high temperatures (298-393 K) and pressures (0.1-80 MPa) has been devel-

oped. The advantage of the Gibbs free energy model is its flexibility to use

different thermodynamic models. This model uses the Peng Robinson (PR)

Equation of State (EOS) description for gas components while the liquid com-

ponents are described using the ideal assumption for the temperature range

298-323 K and the Non Random Two Liquid (NRTL) activity coefficient model

at temperatures greater than 323 K.

Unlike conventional approaches, which rely on experimental data to

parameterize Henry’s law constant, the proposed model for acid gas solubility

in water is predictive for the temperature range of 298-323 K and uses only

the Gibbs free energy values at the standard state conditions. The Gibbs free

energy values at the standard state conditions for different components have

been tabulated in the NIST database (Rossini et al., 1952). The predictions

from the model compare well with the experimental values for binary mixtures

at varying pressures (0.1-55 MPa) in this temperature range.

At temperatures greater than 323K, the ideal liquid assumption is no

longer valid and an activity coefficient model is required to describe the solubil-

ity of gas in water. The Non Random Two Liquid (NRTL) activity coefficient

model for the aqueous phase has been proposed for predicting solubility. The

interaction parameters, used in the proposed activity coefficient model, have

been developed as a function of temperature for the binary systems - H2S-
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H2O and CO2-H2O to predict solubility at temperatures greater than 50◦C.

The linear correlation for interaction parameters, obtained using experimental

data for binary systems between 323-383 K, is used to predict mixture solu-

bility for the ternary system of CO2-H2S-H2O. The ternary mixture solubility

predictions also compare well with the experimental data at 393 K.

5.2.1 Literature Review

The acid gas solubility models, previously developed, can be classified

into two broad types depending on the thermodynamic description of phases.

In models of the first type (Type I), aqueous phase components are assumed

to be ideal while the gas phase components are described by an EOS model.

In models of the other type (Type II), both the aqueous phase and the gas

phase are described using a modified EOS. Developments in both these types

of solubility models are discussed in this section.

The starting equation for most solubility models is equal fugacities of

components in different phases. In this system, the solvent is H2O (i=1 ) while

the solute is CO2 or H2S (i=2 ).

f̄ig = f̄il ⇒ yiφ̂iP = xiγifi i = 1, 2. (5.1)

Here, xi and yi are the mole fractions of the component in the gas and aqueous

phases respectively, φ̂i is the fugacity coefficient of component i in the gas

phase calculated using an EOS at the system pressure P and fi is the fugacity

of the component in the liquid phase at that pressure. The fugacity of the
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component in the liquid phase is further simplified in Type I models to be,

f1 = P sat
1 exp

v1
¯

(P − P0)

RT

 f2 = Hexp

[
v̄2
∞(P − P0)

RT

]
(5.2)

Here, P sat
1 is the saturation pressure of water at the temperature of inter-

est, P0 = 1 atm, H is the Henry’s law constant for the binary system. The

exponential terms represent corrections to the fugacities at the total system

pressure P, v1
¯

is the molar volume of water while v̄∞2 is the partial molar

volume of aqueous solute CO2 or H2S at infinite dilution. The Henry’s law

constant H and the saturation pressure of water P sat
1 (eq 5.2) are also related

to the reference states1.

Carroll and Mather (1989) used this relationship (eq 5.2) to predict

solubility of acid gas H2S at low pressures in aqueous phase. The fugacity

coefficient was calculated using a modification to the PR EOS suggested by

Stryjek and Vera (1986) and a correlation for the Henry’s law constant H

was developed using experimental values at different temperatures. Enick and

Klara (1990) used the PR EOS to develop similar correlations for Henry’s

1Rearranging eq A.8 and A.10 to get,

yiφ̂iP

xiγi
= fiexp

(
Ḡ0

i −GIG
i

RT

)
i = 1. (5.3)

= fiexp

G0
i

¯
−GIG

i

RT

 i = 2. (5.4)

For solutes, the convention is γi → 1 as xi → 0 so that the right side reduces to Henry’s
law constant H. In case of the solvent, the convention is γi → 1 as xi → 1 so that the right
side reduces to Psat based on Raoult’s law.
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law constant. Li and Nghiem (1986) have also used the same approach for

predicting the solubility of CO2 and light hydrocarbon gases in pure and saline

water.

In Type II models, the equation of state representation by themselves

are not capable of describing the aqueous phase. Several modifications to the

EOS (Peng and Robinson, 1980; Stryjek and Vera, 1986) have been proposed

to incorporate the aqueous phase for better prediction of vapor liquid equilib-

rium and vapor pressure data. These modifications include either using sepa-

rate sets of binary interaction parameters for the components in the aqueous

and non-aqueous phases or using different mixing rules for polar asymmetric

mixtures (Panagiotopoulos and Reid, 1986). More specifically for acid gases,

more accurate EOS for the binary system of both H2S-H2O and CO2-H2O

using virial expansions have been proposed to predict the solubilities (Duan

et al., 2007, 1995). These EOS models regress on experimental data to find

the coefficients in the virial expansion EOS.

The Henry’s law approach, used conventionally, works well at low pres-

sures. However, the acid gas disposal for hydrocarbon processing as well as

carbon capture and sequestration occurs at high pressures (200-600 bar). Duan

et al. (2007) have also shown that Henry’s law approach does not predict accu-

rate solubilities for H2S at high pressures. The number of coefficients in their

proposed virial expansion EOS makes it cumbersome for use in simulators that

perform phase equilibrium calculations of mixtures.

The other disadvantage of both these models (types I and II) is its
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inability to incorporate geochemical reactions as these models are based only

on phase equilibrium computations. The Gibbs free energy minimization ap-

proach is used in this application to predict solubility. This approach is ada-

patable to diffferent brine compositions and provides the flexibility to incor-

porate ion concentrations in the brine for solubility calculations and hence,

incorporate geochemical reactions, as discussed in section 5.3.

5.2.2 Method

In this model, the acid gas (CO2 or H2S, i = 1) and H2O (i = 2)

are the only two components in the gas phase (j = 1). In addition to these

components, the components in the aqueous phase (j = 2) include the ions

H+ (i = 3) and OH− (i = 4). As discussed chapter 4, the reference state for

components in a gas phase described using an EOS is the pure component ideal

gas property. The partial molar Gibbs free energy for gas phase components

at any T and P is related to the tabulated values for Gibbs free energy Gi
¯

IG

at standard conditions (eq 4.27) by,

ḠIG
i1 (T, P ) = Gi

¯

IG(To, Po) +RTln(
P

Po
) + [Hi

¯
]Po,To

(
1− T

To

)
i = 1, 2. (5.5)

The solvent, H2O ( i=2) in the aqueous phase, on the other hand, is described

using a reference state, G2
¯

0 which is the pure component water property at P0

and T0 and the Gibbs free energy expressions for the solvent (eq 4.30) in the

aqueous phase ( j = 2) is,

Ḡ0
22(T, P ) = G2

¯

0(To, Po) + (v2
¯

)To(P − Po) + [H2
¯

]Po,To

(
1− T

To

)
(5.6)
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In the aqueous phase, the solutes are described using a reference state Ḡ∗i2 of

unit molality m of the solutes - CO2 or H2S (i = 1), H+ (i = 3), OH− (i = 4)

at P0 and T0 and converted to unit molarity (Ḡ0
i2) to obtain the following

expression for partial molar Gibbs free energy of solute component (eq 4.28),

Ḡ0
i2(T, P ) = Ḡ0

i2(To, Po) + (v̄∞i )To (P − Po) + [H̄i2]Po,To

(
1− T

To

)
i = 1, 3, 4.

(5.7)

The total Gibbs free energy function of the entire system (GT ) that includes

all components in all phases is,

GT (T, P ) =

Np∑
i=1

Nc∑
i=1

nijḠij (5.8)

=
2∑
i=1

ni1[ḠIG
i1 (T, P ) +RTlnyiφ̂i]︸ ︷︷ ︸

gas phase components

+n22[G2
¯

0(T, P ) +RTlnx2γ2]︸ ︷︷ ︸
solvent water

+
4∑

i=1,i 6=2

ni2[Ḡ0
i2(T, P ) +RTlnxiγi]︸ ︷︷ ︸

aqueous phase solutes

. (5.9)

GT is minimized and the solution corresponds to the equilibrium composi-

tion. The balance among elements (C or S , O and H) forms the equality

constraint for this minimization. For this system with two phases (Np=2)

and two components (Nc1 = 2) in the gas phase and four components in the

aqueous phase (Nc2 = 4), the equilibrium composition is the solution to the

constrained nonlinear optimization problem below,

Minimize GT (T, P ) (5.10)

Subject to AN = E and nij ≥ 0.
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Here, A is the elemental matrix representing the number of specific

elements in each component, N is the matrix comprising of moles of each

component nij in each phase (unknowns) while E is formed by the total number

of moles of each element. As an example, the matrices for the binary system

comprising of H2S (i = 1) and H2O (i = 2) when both components are present

in the gas phase (j =1) and the aqueous phase (j =2) are,

A =

 1 0 1 0
0 1 0 1
2 2 2 2

 N =


n11

n12

n21

n22

 E =

 eS
eO
eH

 (5.11)

The total moles of each element e (S, O and H) is obtained from the ini-

tial number of moles. Depending on the pressure and temperature conditions,

H2O may or may not be present in the gas phase. We perform equilibrium

computations for both cases and choose the equilibrium composition that gives

the lowest total Gibbs free energy (GT ).

If the objective function, GT , is convex, the global minimum can be

obtained irrespective of initial guesses. While GT for ideal gas mixture and

ideal liquid assumption is a convex function (White et al., 1958), the use of

Wilson activity coefficient model for aqueous phase components also results

in a convex objective function (McDonald and Floudas, 1995) so that the

global minimum may be obtained. In this manuscript, the experimental data

presented for comparison have been drawn from different sources where only

two phases were observed during experiments. The initial guess values to

the optimization problem were varied to check for the presence of multiple
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solutions. Multiple solutions did not occur at the temperature and pressure

conditions of the solubility models presented in this manuscript.

The RAND algorithm (White et al., 1958) has been used to obtain the

solution to the optimization problem. The RAND formulation uses Lagrangian

multipliers and the steepest descent method (Smith and Missen, 1982a). We

use this approach to find the equilibrium composition and hence solubility, for

the binary systems of CO2-H2O and H2S-H2O as well as for the ternary system

of CO2-H2S-H2O.

The conventional approach to calculate phase equilibrium composition

is by using the Rachford-Rice algorithm (Rachford Jr and Rice, 1952) using

successive substitution where components in both phases are described using

EOS (Type II models as defined in the Literature Review section) with initial

guess provided by Wilson’s correlation. A test system was designed to compute

equilibrium composition for the CO2-H2O system with two phases using the

conventional approach and the Gibbs free energy minimization method. As

the phases were pre-defined, no phase stability analysis was performed in either

approaches. For the test case, the Gibbs free energy minimization approach

using the RAND algorithm was found to be 30 % faster than the conventional

approach.

In addition to computational speed, the Gibbs free energy minimization

algorithm also provides the advantage of combining different phase description

of components (EOS and activity coefficient model). This approach can be

extended to include ions present in brine as additional components in the aque-
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ous phase and hence, incoporate any geochemical reactions that is discussed

in section 5.3. The specific parameter values for such ions (molar volumes and

partial molar enthalpies at T0 and P0) are available in the literature (Johnson

et al., 1992).

5.2.3 Results and Observations

The total Gibbs free energy function of the system GT is minimized to

find the equilibrium composition and hence the gas solubility, for the binary

systems of CO2-H2O and H2S-H2O as well as for the ternary system of CO2-

H2S-H2O. The reference state values for the Gibbs free energy at any T and P

(ḠIG
i1 , Ḡ0

i2 and G2
¯

0) are evaluated using the standard state properties of com-

ponents tabulated in Table 5.1 (Garrels and Christ, 1990) and the expressions

in eqns 4.27, 4.28 and 4.30. The fugacity coefficient for components at different

pressures has been calculated using the standard expressions available for the

PR EOS. The critical properties and the binary interaction coefficients Kij for

PR EOS are assumed to be constants for all computation. These values are

listed in Table 5.2.

A Henry’s law model with fugacity correction for CO2 in the gas phase

(Chang, 1990) is typically used in compositional simulators like UTCOMP and

CMG. Figure 4.13 shows a comparision of experimental values of solubility

with the Gibbs free energy model and a Henry’s law model with fugacity

correction in UTCOMP at 25◦C. While the predictions from either model

are close to experimental values at low pressures, the Henry’s law model can
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Table 5.1: Thermodynamic properties used for equilibrium computation (Gar-
rels and Christ, 1990). Values are in kJ/moles except partial volume in cm3.

Component Thermodynamic property at Value
T0 = 25◦C and P0 = 1atm

Gibbs free energy of an ideal gas, G11
¯

IG -33.02

Molar enthalpy in gas phase, H1
¯

-20.15

H2S Partial volume of at infinite dilution, v̄1
∞ 34.92

Partial molar Gibbs free energy
of aqueous solute, Ḡ0

1 -27.36
Partial molar enthalpy of solute
in aqueous phase, H̄12 -39.33

Gibbs free energy of an ideal gas, G11
¯

IG -394.38

Molar enthalpy in gas phase, H1
¯

-393.51

CO2 Partial volume of at infinite dilution, v̄1
∞ 32.80

Partial molar Gibbs free energy
of aqueous solute, Ḡ0

1 -386.23
Partial molar enthalpy of solute
in aqueous phase, H̄12 -412.92

Gibbs free energy of an ideal gas, G21
¯

IG -228.57

Molar enthalpy of in gas phase, H2
¯

-241.81

H2O Molar volume of H2O, v2
¯

19

Molar Gibbs free energy, G2
¯

0 -237.19

Molar enthalpy of H2O
in aqueous phase, H22

¯
-285.84

Molar volume of H+, v3
¯

Partial molar Gibbs free energy
H+ in the aqueous phase, Ḡ0

3

Partial molar enthalpy of H+

in the aqueous phase, H32
¯
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Molar volume of OH−, v4
¯

Partial molar Gibbs free energy
OH− in the aqueous phase, Ḡ0

4

Partial molar enthalpy of OH−

in aqueous phase, H42
¯

lead to inaccurate predictions of solubility at high pressures, especially at

25 ◦C. Mohebbinia (2013) has shown that the predictions using Henry’s law

correlation, available in UTCOMP, compares well with experimental values at

high temperatures ( >100◦C).

A comparison of the binary model predictions for CO2-H2O and H2S-

H2O, assuming ideal liquid solution (γi = 1 ∀i = 1, . . . 4), with experimental

data for varying pressures at different temperatures is presented in Figures 5.2,

5.3 and 5.4. It can be inferred that the ideal liquid assumption is only valid

in the temperature range of 298-323 K for both the binary systems and not at

higher temperatures. The proposed solubility model has been classfied into two

temperature ranges - the moderate temperature range (between 298-323 K)

where the liquid phase is ideal and the high temperature range (temperatures

greater than) where the liquid phase is described using an activity coefficient

model.

5.2.3.1 Ideal aqueous model for binary system

The Gibbs free energy minimization model predictions assuming ideal

aqueous solution have been compared with experimental values at the mod-

erate tempeature range of 298-323 K for both binary systems. The model
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Table 5.2: Properties used for evaluation of fugacity coefficient using PR EOS
for gas mixture (BIP is binary interaction parameter)

Component Critical Critical Accentric BIP BIP
Pressure, Temperature, factor,

(i) Pc (MPa) Tc (K) ω Ki,H2O Ki,CO2

H2S 8.942 373.2 0.1 0.087 0.097
CO2 7.373 304.2 0.225 -0.0576 0
H2O 22.063 647.1 0.345 0 -0.0576

predictions match well with the experimental values (Figure 5.2). This is re-

flected in the low average deviation values between the model prediction and

the experimental values as well as large R2 at these temperatures2 (Table 5.3).

The only exception is H2S-H2O at 323 K where predictions are still reason-

able compared to the experimental values. Also, the H2S-H2O system pressure

range is low because at high pressures, H2S forms a separate liquid phase.

In this temperature range, there is no regression with the experimen-

tal data. This makes the model predictive in this temperature range as only

the thermodynamic properties at standard conditions (Table 5.1) are used to

obtain the solubility values from the minimization algorithm.

2Coefficient of determination R2 measures the variability of a data set consisting of model
predicted values (yi) and experimental values (fi) in terms of meanȳ and sums of squares.

R2 = 1−

∑
i

(yi − fi)2∑
i

(yi − ȳ)2
.
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Table 5.3: Experimental data source for binary systems and comparison with
model prediction
Binary Temperature Experimental R2 Average deviation
system (K) data source (percent)
H2S-H2O 310 Selleck et al. (1952) 0.98 4.45 %
H2S-H2O 323 Koschel et al. (2007) 0.78 14.3 %

Lee and Mather (1977)
CO2-H2O 298 Dodds et al. (1956) 0.93 13.52%

King et al. (1992)
Wiebe (1941)

CO2-H2O 323 Bamberger et al. (2000) 0.98 2.78%
Tödheide and Franck (1963)
Wiebe (1941)

5.2.3.2 NRTL aqueous model for binary system

At higher temperatures, the predictions using the ideal liquid assump-

tion do not match the experimental data at those temperatures for both binary

systems (Figures 5.3 and 5.4). To accurately represent the aqueous phase at

high temperatures, the NRTL activity coefficient model (Renon and Prausnitz,

1968) is used for components in the aqueous phase. The activity coefficients

using the NRTL model along with the thermodynamic properties at standard

conditions can be used to estimate the solubility at temperatures greater than

50◦C.

The NRTL activity coefficient model has been used extensively to model

acid gas solubility in amine solutions (Austgen et al., 1991). In the NRTL

model, the activity coefficient is a function of the randomness parameter αij

and the interaction parameter τij. The expressions for a binary system (mole
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fractions x1 and x2) are,

ln γ1 = x2
2

[
τ21

(
G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)2

]

ln γ2 = x2
1

[
τ12

(
G12

x2 + x1G12

)2

+
τ21G21

(x1 + x2G21)2

]

lnG12 = −α12τ12 lnG21 = −α21τ21 (5.12)

The activity coefficient expression (eq 5.12) reduces to just one variable - the

interaction parameter τ , by assuming τ12 = τ21 and α12 = α21 = 0.2 (value

for most systems (Renon and Prausnitz, 1968)). The expressions for activity

coefficient using this assumption is,

ln γ1 = x2
2

[
τ

(
G

x1 + x2G

)2

+
τG

(x2 + x1G)2

]

ln γ2 = x2
1

[
τ

(
G

x2 + x1G

)2

+
τG

(x1 + x2G)2

]

lnG = −0.2τ τ = A+
B

T
(5.13)

A linear correlation for τ is proposed as a function of temperature specific

to each binary system (eq 5.13). This correlation is developed using avail-

able experimental values in the temperature range 323-383 K. For each binary

system, we vary τ to find the particular value τ0, so that model predictions

using the Gibbs free energy minimization method agree well with the available

experimental data between 333 and 383 K. We use the coefficient of determi-

nation (R2) as a measure of agreement between the model prediction and the
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experimental values. Thus, τ0 maximizes the coefficient of determination for

a dataset containing experimental values of solubility for varying pressures at

a particular temperature.

The source of experimental data, the value of τ0 at that temperature

and the largest coefficient of determination at τ0 are given in Tables 5.4 and

5.5 for both binary systems. In order to ensure continuity, the value of τ0 at

323 K (zero because ideal solution) has been included in the analysis. Figures

5.3 and 5.4 compares the experimental values and calculated water solubility

using the ideal model prediction and the solubility predictions obtained using

the τ0 values in the NRTL activity coefficient model (Tuned NRTL). These

τ0 values have been used to find a linear correlation with (1/T) for both the

binary systems (Figure 5.5). Similar linear correlation models have been ob-

tained to describe acid gas solubility in amine solutions (Austgen et al., 1991).

The values of the constants A and B in the linear correlation (Table 5.6) are

obtained using the linear least-squares minimum approach.

Figures 5.3 and 5.4 compares the experimental values and calculated

water solubility using the ideal model prediction and the solubility predictions

obtained using the τ0 values in the NRTL activity coefficient model (Tuned

NRTL). These τ0 values have been used to find a linear correlation with (1/T)

for both the binary systems (Figure 5.5). Similar functional relations have

been obtained to describe acid gas solubility in amine solutions (Austgen et al.,

1991). The values of the constants A and B in the linear correlation obtained

using this procedure have been listed in Table 5.6.
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Figure 5.3: Comparison of experimental data with ideal solution prediction
and NRTL model with tuned interaction parameter τ0 to fit experimental
data for H2S-H2O binary system.
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Table 5.4: τ0 values for H2S-H2O system using regression over experimental
values

Temperature Experimental data τ0 Coefficient of
(K) source determination (R2)
323 Koschel et al. (2007) 0 0.78

Lee and Mather (1977)
333 Lee and Mather (1977) -0.19 0.98
344.1 Selleck et al. (1952) -0.18 0.97
353 Koschel et al. (2007) -0.36 0.83
363 Lee and Mather (1977) -0.3 0.97
377.4 Selleck et al. (1952) -0.42 0.94
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solubility in the aqueous phase for the binary system H2S-H2O at 393 K. (b)
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Table 5.5: τ0 values for CO2-H2O system using regression over experimental
values
Temperature Experimental data τ0 Coefficient of
(K) source determination (R2)
323 Bamberger et al. (2000) 0 0.98

Tödheide and Franck (1963)
Wiebe (1941)

333 Bamberger et al. (2000) -0.04 0.99
348 Wiebe (1941) -0.1 0.99
353 Bamberger et al. (2000) -0.12 0.99
373 Wiebe (1941) -0.22 0.99
383 Takenouchi and Kennedy (1965) -0.31 0.99

Table 5.6: Constants A and B in the interaction parameter correlation (τ = A
+ B

T
) for binary systems obtained by linear regression over experimental data

using least squares method.
Binary system A B (K)

H2S-H2O -2.78 883
CO2-H2O -1.88 613.1
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Table 5.7: Experimental data source for binary systems at 393 K and compar-
ison with model prediction (Figure 5.6). τ is calculated from the correlation
in Table 5.6 for the corresponding binary system.
Binary Experimental τ Coefficient of Average
system data source determination (R2) deviation
H2S-H2O Lee and Mather (1977) -0.53 0.94 19 %

Savary et al. (2012)
Koschel et al. (2007)

CO2-H2O Prutton and Savage (1945) -0.32 0.97 6.7 %
Savary et al. (2012)

The proposed NRTL model, applicable at high temperatures, is val-

idated by comparing with the experimental values at 393 K for the binary

systems. This temperature is higher than the range originally used to obtain

the interaction parameter correlation and helps validate the correlation. The

interaction coefficient τ at 393 K, along with the thermodynamic properties

listed in Table 5.1 are used to find the solubility values using the Gibbs free en-

ergy minimization method. Figure 5.6 shows a good match between the model

prediction and the experimental values and hence validates the correlation for

τ . The results are summarized in Table 5.7.

5.2.3.3 Gas phase mole fractions

The critical properties of components used to calculate fugacities of gas

phase components are presented in Table 5.2. The binary constant parameters

for CO2-H2O (Ozah et al., 2005), H2S-H2O and CO2-H2S (Sandler, 2006) were

assumed constants for all equilibrium computations at different pressures and

temperatures. A BIP value of 0.087 was assumed for the H2S-H2O system.
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This assumption was tested by choosing a different value for BIP and finding

equilibrium compositions. While similar results were obtained, values lower

than 0.03 had convergence problems at high pressures using this approach.

Figure 5.7 shows the impact of varying BIPs on model prediction for the

CO2-H2O system. The choice of BIP has an influence on equilibrium compu-

tations of gas phase compositions but not on the aqueous phase composition.

As the value of BIP’s are increased, the match with gas phase mole fractions

is better. The same procedure can be employed to obtain NRTL parameters

with a different choice of BIP for either binary systems.

5.2.3.4 Mixture solubility

The interaction parameters in the NRTL activity coefficient model de-

veloped for the binary system are further used to investigate whether it can

predict solubility for the ternary mixture of CO2-H2S-H2O. Savary et al. (2012)

reported several batch experiments to measure solubility for this ternary sys-

tem at 393 K. These batch experiments were performed with different initial

overall compositions of the mixture. The predictions from the Gibbs free en-

ergy minimization model are compared with the experimental results available

at 393 K (Figures 5.8(a) and 5.8(c)). The percentage deviation between the

model prediction and the experimental value at every data point has been

shown in Figures 5.8(b) and 5.8(d). The error in the experimental measure-

ments are about 10-20 % for the mixture solubilities (Savary et al., 2012). It

can be seen that the percentage deviation of the majority of points for both
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H2S as well as CO2 lie in this experimental error range.

Experimental data for the ternary mixture is not available at other tem-

peratures, currently. As more data becomes available, a comparison between

the experimental data and model prediction, using the interaction coefficients

from the binary mixture data, can further help establish temperature ranges

where this model is applicable.

In summary, the PR EOS description for gas phase components to-

gether with the ideal aqueous solution (between 298-323 K) and the NRTL

activity coefficient model with a temperature dependent interaction parameter

τ (for temperatures greater than 323 K) can be used to predict the solubil-

ity of acid gases in water for the binary systems of H2S-H2O and CO2-H2O.

This approach can also be used to obtain estimates for solubility in the com-

plete mixture (H2S-CO2-H2O) at high temperatures and in the absence of any

experimental data.

5.3 Acid Gas Solubility in Brine

In this application, the Gibbs free energy minimization algorithm is

extended to a case of phase and chemical equilibrium in the presence of geo-

chemical reactions as result of ions present in brine. Local equilibrium is

assumed so that all reactions occuring in the system are at equilibrium. The

aqueous phase components are described using the Pitzers activity coefficient

model while the gas phase components are described using the PR Equation

of State (EOS).
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The Pitzers activity coefficient model extends the ability to make com-

putations for high salinity brine. This activity model accounts for interaction

between different ions as well as between molecules (neutral components) and

ions (Pitzer, 1973) present in the aqueous phase. Pitzer proposed equations

for the activity coefficients for 1-1 (Pitzer and Mayorga, 1973), 2-2 (Pitzer

and Mayorga, 1974) as well as mixed electrolytes (Pitzer and Kim, 1974).

This activity coefficient model has been used extensively in several geochemi-

cal applications including prediction of mineral equilbiria in sea water system

(Harvie et al., 1982). The equations corresponding to the Pitzer’s activity co-

efficient model as well as the interaction coefficients between ions are presented

in Appendix B.

The interaction parameters listed in Appendix B have been obtained

from mineral solubility experiments (Harvie et al., 1982). An example of using

experimental data from simple systems to find interaction coefficients (bench-

marking) and using the coefficients to make predictions for a more complex

system is presented in the following section.

5.3.1 CO2-CaCl2-H2O System

The Gibbs free energy minimization algorithm is used to predict CO2

solubility as a function of pressure in three different CaCl2 solutions of varying

mole percents (10.1 mole %, 20.2 mole % and 30.2 mole %) at 120◦C in wa-

ter. This CO2-CaCl2-H2O system is chosen for solubility prediction in brine

as experimental data is available for this system. Here, CO2 and H2O are
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gas phase components and CO2, H+, OH−, Ca2+, Cl− and CaCl2 are aqueous

phase solute components in solvent H2O. The values for the binary interac-

tion coefficients at 25◦C for CO2 and Ca2+ (λCO2−Ca2+) and CO2 and Cl−

(λCO2−Cl−) as well as the ternary interaction coefficient for CO2, Ca2+ and

Cl− (ξCO2−Ca2+−Cl−), as listed in Appendix B, are used in the activity coeffi-

cient model. The total Gibbs free energy for the entire system is as given in eq

5.9 and this function is minimized to obtain equilibrium composition values.

Figure 5.9 shows the comparison between the model and experiments.

The model qualitatively predicts the experimental behavior of decreas-

ing solubility as CaCl2 concentration in water is increased. The model predic-

tions are reasonably close to experimental values at the high concentration of

30.2 mole % CaCl2 solution but do not match at lower concentrations. One

possible reason is that the interaction coefficients in the Pitzer activity coeffi-

cient model vary with temperature and pressure and we have considered them

as constants (values at 25◦C and 1 atm pressure).

The interaction parameters (λCO2−Ca2+ , λCO2−Cl−and ξCO2−Ca2+−Cl−)

in the Pitzer activity coefficient model are obtained by matching experimental

data. As in the previous section, the coefficient of determination (R2) is used

as a measure to these parameter values. The closer the value of R2 to 1, the

better the match between model and experimental data. The tuned parameter

values for different CaCl2 concentrations in H2O are given in Table 5.8. Figure

5.10 a shows comparison of tuned model for CO2 solubility with experimental

data for 10.1 % CaCl2 solution.
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Figure 5.9: Comparision of experimental values (Prutton and Savage, 1945)
and model prediction for CO2 solubility in different concentrations of CaCl2
solution at 120◦C.
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Table 5.8: Tuned Pitzer activity coefficient parameter values for CO2-CaCl2-
H2O system
CaCl2 mole Tuned binary parameter Tuned ternary parameter R2

in H2O (λCO2−Ca2+ , λCO2−Cl−) (ξCO2−Ca2+−Cl−)
10.1 % -0.02, -0.02 -0.0002 0.99
20.2 % 0.025, 0.025 -0.0002 0.99
30.2 % 0.061, 0.061 -0.0002 0.97

5.3.2 Model Prediction for CO2-CaCl2-H2O and CaCO3 (Solid)

The Pitzer activity coefficient along with the tuned interaction parame-

ter values obtained from the above section are used to predict the solubility for

a complex system that contains calcite (CaCO3 solid) in addition to the CaCl2

solution. The model predictions have been compared with the corresponding

experimental predictions and help validate the parameter values obtained in

the previous section.

The presence of solid phase (calcite) introduces additional components

in the aqueous phase. The complete system then consists of three phases -

gas phase (j = 1) with components CO2 (i = 1), H2O (i = 2), solvent H2O,

aqueous phase (j = 2) components CO2, Ca2+ (i = 3), HCO−3 (i = 4), Cl−

(i = 5), H2CO3 (i = 6), CaCO3(i = 7) and and solid phase (j = 3) component
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CaCO3. The total Gibbs free energy of the system (GT ) is given as,

GT (T, P ) =
2∑
i=1

ni1[ḠIG
i1 (T, P ) +RTlnyiφ̂i]︸ ︷︷ ︸

gas phase components

+n22[G2
¯

0(T, P ) +RTlnx2γ2]︸ ︷︷ ︸
solvent water

+
7∑

i=1,i 6=2

ni2[Ḡ0
i2(T, P ) +RTlnxiγi]︸ ︷︷ ︸

aqueous phase solutes

+n7[G7
¯

(T, P )]︸ ︷︷ ︸
solid CaCO3

. (5.14)

The optimization formulation to find equilibrium composition for this system

can be given as,

Minimize GT (T, P ) (5.15)

Subject to AN = E and nij ≥ 0.

A =


1 0 1 0 0 1 0 1 1 1
2 1 2 1 0 3 0 3 3 3
0 2 0 2 0 1 0 2 0 0
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0

 E =


eC
eO
eH
eCa
eCl


N =

[
n11 n21 n12 n22 n32 n42 n52 n62 n72 n73

]T
(5.16)

The thermodynamic properties for the different components in the com-

plete system at 25◦C used for equilibrium calculation using the Gibbs free

minimization approach are listed in Tables 5.1 and 5.9. The model predictions

compare well with the experimental observations (R2 = 0.77 in Figure 5.10).

In summary, unlike the acid gas solubility model in pure water at low

temperatures (section 5.2.3.1), regression is used to obtain the activity coef-

ficient model interaction parameters that match the experimental solubility
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Figure 5.10: (a) Model prediction and tuning interaction parameters for match
with experiments (Prutton and Savage, 1945) for benchmarking case of 10.1
mole % CO2-CaCl2 system at 120◦C. (b) Comparision of model prediction and
experiments (Prutton and Savage, 1945) for complex system of CO2-CaCl2 and
solid CaCO3 at 120◦C.
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Table 5.9: Thermodynamic properties of components (Garrels and Christ,
1990). Values are in kJ/moles except partial volume in cm3.

Component Thermodynamic property at Value
T0 = 25◦C and P0 = 1atm
Molar volume, v1

¯

Partial molar Gibbs free energy of -553.04
Ca2+ in the aqueous phase, Ḡ0

1

Partial molar enthalpy -542.96
in the aqueous phase, H̄12

Molar volume, v2
¯

Partial molar Gibbs free energy of -131.17
Cl− in the aqueous phase, Ḡ0

2

Partial molar enthalpy -167.46
in the aqueous phase, H̄22

Molar volume, v3
¯

Partial molar Gibbs free energy of -528.10
CO−3 in the aqueous phase, Ḡ0

3

Partial molar enthalpy -676.26
in the aqueous phase, H̄32

Molar volume, v4
¯

Partial molar Gibbs free energy of -587.06
HCO−3 in the aqueous phase, Ḡ0

4

Partial molar enthalpy -691.11
in the aqueous phase, H̄42

Molar volume, v5
¯

Partial molar Gibbs free energy of -816.05
CaCl2 in the aqueous phase, Ḡ0

5

Partial molar enthalpy -877.3
in the aqueous phase, H̄52

Molar volume, v6
¯

Partial molar Gibbs free energy of -623.42
H2CO3 in the aqueous phase, Ḡ0

6

Partial molar enthalpy -698.73
in the aqueous phase, H̄62
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Molar volume , v7
¯

Partial molar Gibbs free energy of -1099.39
in the aqueous phase, Ḡ0

7

Partial molar enthalpy -1196.62
CaCO3 in the aqueous phase, H̄72

Molar Gibbs free energy of -1128.76
in the solid phase, G7

¯

Molar enthalpy -1206.87
in the aqueous phase, H̄72

predictions for the simpler case of CO2 in CaCl2 aqueous solution. These

parameters are further used to predict the solubility for a complex system

containing solid CaCO3 in addition to the aqueous and the gas phase. A com-

prehensive list of of binary and ternary interaction coefficients for commonly

occuring ions have been presented in the Appendix B. These coefficients can

be used to predict solubility of brine having any composition.

The Gibbs free energy minimization approach can thus be used to pre-

dict solubility of gases in high salinity brine containing different ions by uti-

lizing the experimental data available for a simplified system.

5.4 Conclusions

In the first application of phase equilibrium (no reactions), an acid

gas solubility model was developed using the Gibbs free energy minimization

method for binary systems of H2S-H2O and CO2-H2O at high temperatures

(298-393 K) and varying pressures (1-80 MPa). This model uses the tabulated

thermodynamic properties (Rossini et al., 1952) at standard conditions.
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The Henry’s law approach with fugacity corrections commonly used

in simulators like UTCOMP result in inaccurate solubility estimates at high

pressures (pressures >10 MPa). The Gibbs free energy model predictions in

the temperature range of 298-323 K, assuming ideal liquid phase and PR EOS

for gas phase components, compare well with experimental values. The NRTL

activity coefficient model with temperature dependent interaction parameters

(τ) have been proposed to predict solubility at temperatures greater than 323

K.

The interaction parameters for the binary systems can be further used

as an estimate for CO2 and H2S solubility in the ternary system of H2S-CO2-

H2O. The average deviation for the ternary model prediction with the exper-

imental values at 393 K is 14.4% for H2S and 21.1% for CO2 in the pressure

range 1-40 MPa. However, ternary mixture experimental data at different

temperatures are required to establish when interaction parameters, obtained

from binary mixture data, can be used for predicting the ternary mixture

solubility.

The Gibbs free energy minimization approach has also been used for a

system with geochemical reactions in addition to phase equilibrium. In this

case, the aqueous phase components were described using the Pitzer activity

coefficient model. Models using the interaction coefficients in the Pitzer activ-

ity coefficient from mineral solubility data do not match experimental values.

The interaction parameters were tuned to match available experimental data

of simple systems and further make predictions for more complex systems.
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This approach was illustrated using a particular case of CO2-CaCl2 system,

where available experimental data was used to obtain the interaction coeffi-

cients. The new interaction coefficients were further used to predict solubility

of CO2 in more complex system with CaCO3 solid. The model predictions

compare well with experimental values.

Thus, the solubility estimates of gas in water as well as brine obtained

using this model can aid in designing acid gas injection schemes that are

critical to producing hydrocarbons from these sour gas fields. These estimates

can also be used to evaluate the storage capacity of potential aquifers for flue

gases. The solubility models developed in this chapter helps demonstrate the

applications of the Gibbs free energy minimization as a unified approach in not

just phase equilibrium calculations but also phase and chemical equilibrium

calculations of solubility in the presence of brine and solid.
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Chapter 6

Applications: Hydrocarbon Phase Behavior

The application of Gibbs free energy model to predict phase behavior of

three different hydrocarbon mixtures - CO2-CH4-H2O, CO2-nC14H30-H2O and

CH4-CO2-nC16H34-H2O are presented in this chapter. The impact of geochem-

ical reactions on the phase behavior of hydrocarbon mixture is also presented

using the Gibbs free energy model. This further demonstrates the applicability

of the Gibbs free energy approach to predict not just phase equilibrium (no

reactions) but also phase and chemical equilibrium (with reactions).

6.1 Introduction

CO2 is injected in hydrocarbon reservoirs under specific conditions of

temperature and pressure to attain miscibility with the hydrocarbon phases

and thereby, increase oil recovery. The Gibbs free energy model can be used

to predict hydrocarbon phase changes associated with this injection.

The CO2 injection may also result in geochemical reactions because of

ions in the brine as well as the solid phase components of a carbonate reser-

voir. The equilibrium composition arising out of geochemical reactions can be

obtained using the stochiometric as well as the Gibbs free energy minimization
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approach. As illustrated in the case study presented in section 3.22, the Gibbs

free energy model is faster than the stochiometric approach when solving the

same number of nonlinear equations.

The current methods (Nghiem et al., 2010; Chang, 1990) to model

hydrocarbon phase behavior with geochemical reactions solve the phase and

the reaction equilibrium problems separately. In these methods, Henry’s law

is used to estimate CO2 concentration in aqueous phase that is further used

as the initial CO2 aqueous concentration to obtain equilibrium composition

arising out of geochemical reactions.

As shown in section 5.2.3, estimates of CO2 concentration in the aque-

ous phase using the Henry’s law are not accurate at higher pressures. Because

equilibrium concentration of a reactive system depend on initial concentra-

tions, this method of decoupling phase and chemical equilibrium problems

could result in inaccurate predictions of equilibrium concentration of compo-

nents. Further, as the concentration of components change after the reactions,

the fugacities of CO2 in aqueous phase and the hydrocarbon phases are not

equal. This further impacts the hydrocarbon phase behavior computations

and is not accounted in these methods.

The Gibbs free energy model can be used to accurately model such

cases. The Gibbs free energy approach integrates phase behavior computations

corresponding to the hydrocarbons as well as geochemical reaction equilibrium

computations corresponding to the ions in the brine and the solid phase. The

global minimum of the Gibbs free energy function of the entire system, in-

111



cluding all components in oleic, aqueous and solid phases, correponds to the

equilibrium composition arising out of both phase equilibrium and chemical

reactions between the components in the system. At the global minimum of

the Gibbs free energy function, the partial molar Gibbs free energy of the

components distributed in different phases are equal and hence, are their fu-

gacities. Additionally, at the global minimum, geochemical reactions occuring

between components result in relationships like eq 3.45 at equilibrium.

The Gibbs free energy model is used to compute the equilibrium compo-

sition corresponding to phase and chemical equilibrium for different mixtures

in this chapter. The reservoir rock constitutes the solid phase in the Gibbs

free energy model in addition to hydrocarbon and aqueous phases. While a

carbonate reservoir rock may consist of a mixture of components, the solid

phase is represented by a single component - calcite (CaCO3), for all cases of

geochemical reactions discussed in this chapter.

6.2 Hydrocarbon Phase Equilibrium

In this section, the Gibbs free energy minimization approach is used to

predict equilibrium composition for cases of phase equilibrium of hydrocarbon

mixtures. There are no reactions considered in this section and the equilibrium

compositions are only because of phase equilibrium. The two specific mixtures

discussed in the following sections were chosen as experimental values are

available for these systems.
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6.2.1 CO2-nC14H30 and CO2-nC14H30-H2O Mixture

Mangone (1985) performed experiments on the CO2-nC14H30 system

to obtain the two-phase envelope for this system. These experiments were

performed at 343 K for different compositions. For a particular composition,

the pressure is varied and the bubble and the dew points are inferred from

the volumetric measurement of phases. An additional set of experiments were

performed in the presence of water to obtain the phase envelope for the CO2-

nC14H30-H2O system.

The Gibbs free energy model was used to obtain the equilibrium com-

position of the CO2-nC14H30 system for a fixed overall composition at 343 K

and various pressures. As all components are described using the PR EOS, the

reference state of components is the ideal gas state so that the equivalent func-

tion H can be minimized to find equilibrium compositions (section 4.3.2.2).

The equilibrium compositions are the solution to the following optimization

problem,

Minimize H =
Nc∑
i=1

Np∑
j=1

nij[RTln(xijφ̂i)] (6.1)

Subject to AN = E and nij ≥ 0.

If there are two phases at equilibrium, Np = 2. The constraint equation can

be given as,

A =

 1 14 1 14
2 0 2 0
0 30 0 30

 ; E =

 eC
eO
eH

 ;

N =
[
n11 n21 n21 n22

]T
. (6.2)
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In the above equation, C, O and H are the elements that are conserved. As this

is a phase equilibrium problem, an equivalent constraint set can be given using

the components (CO2 and n-C14H30) as base components that are conserved.

While N remains the same, the matrices A and E in this equivalent constraint

set is,

A =

[
1 0
0 1

]
; E =

[
eCH4

eC14H30

]
. (6.3)

Equilibrium computations were performed for a fixed overall composi-

tion assuming two phases and the total Gibbs free energy of the system, GT

(or, equivalently H) is compared with that of a single phase system. The com-

bination corresponding to lowest GT is the equilibrium composition at that

temperature and pressure. This information is used to plot the phase enve-

lope for the CO2-nC14H30 binary system in Figure 6.1. All components are

described using the PR EOS for this binary system.

For the CO2-nC14H30-H2O mixture, the hydrocarbon phase components

are described using the PR EOS while the aqueous phase is described using the

Pitzer activity coefficient model (Appendix B). The equilibrium composition

for this system is the minimum of the Gibbs free energy function for this

system (similar to eq 4.32) given as,

GT (T, P ) =
3∑
i=1

ni1[Gi
¯

IG(T, P ) +RTlnyiφ̂i] +
2∑
i=1

ni2[Ḡ0
i2(T, P ) +RTlnxiγi]

+ n32[Ḡ0
3(T, P ) +RTlnx3γ3]. (6.4)
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The matrices in the elemental balance contraint for this system are,

A =

 1 14 0 1 14 0
2 0 1 2 0 1
0 30 2 0 30 2

 ; E =

 eC
eO
eH

 ;

N =
[
n11 n21 n31 n12 n22 n32

]T
. (6.5)

The experimental measurements for the CO2-nC14H30-H2O mixture

(Mangone, 1985) were made for equal initial volumes of water and nC14H30.

This corresponds to a constant mole ratio of 14.45 between total moles of

H2O and total moles of nC14H30, calculated using the molecular weights and

densities of H2O and nC14H30. A comparison of model prediction for the CO2-

nC14H30-H2O with experimental measurements, converted to a water-free ba-

sis, are also shown in Figure 6.1. As an example, consider a case of nC14H30

= 0.0157, CO2 = 0.7582 and H2O = 0.2261 (equal volume of nC14H30). The

equivalent mole fraction excluding water, also refered to as the water free basis

in this representation, corresponds to nC14H30 = 0.02 and CO2 = 0.88.

The binary interaction parameters (Table 6.1) were obtained by tuning

the experimental data in Figure 6.1. The thermodynamic properties are listed

in Table 6.2. These parameters are further used for computations involving

geochemical reactions (phase and chemical equilibrium). The presence of H2O

shifts the two-phase envelope of the hydrocarbon system towards lower moles

of nC14H30. This shift occurs because some CO2 enters the aqueous phase and

the overall mole faction of CO2 in phase equilibrium with nC14H30 decreases.
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Figure 6.1: Two-phase envelope for CO2-C14H30 and CO2-C14H30-H2O mix-
tures at 343 K.

Table 6.1: Properties of components used in PR EOS for CO2-C14H30 and
CO2-C14H30-H2O mixtures
Component Critical Critical Accentric BIP BIP
(i) Pressure Temperature Factor Ki,H2O Ki,CO2

(MPa) (K) (w) (tuned) (tuned)
C14H30 1.62 693 0.644 0.95 0.0889
CO2 7.376 304.2 0.225 0.4 0
H2O 22.06 647 0.344 0 0.4
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6.2.2 CH4-CO2-H2O Mixture

Song and Kobayashi (1994) have performed experiments of water solu-

bility in a CH4 (5.31 mole %) - CO2 (94.69 mole %) mixture. The Gibbs free

energy minimization is used to predict the solubility values for this system.

All three components - CH4 (i = 1) , CO2 (i = 2) and H2O (i = 3) are present

in the gas phase (j = 1) and the aqueous phase (j = 2). The Gibbs free energy

function for this system with PR EOS and activity coefficient is also given by

eq 6.4. The matrices in the elemental balance constraint are,

A =

 1 1 0 1 1 0
0 2 1 0 2 1
4 0 2 4 0 2

 ; E =

 eC
eO
eH

 ;

N =
[
n11 n21 n31 n12 n22 n32

]T
. (6.6)

As no ions are present in the aqueous phase, this is an example of only phase

equilibrium. The PR EOS is used to describe the gas phase while the aqueous

phase is described using the Pitzer activity coefficient model. The Gibbs free

energy model predictions compare well with experimental results (Figure 6.2).

The thermodynamic values used for this model are listed in Table 6.2 while

the PR EOS parameters used are given in Table 6.3.

6.2.3 CH4-CO2-n-C16H34 Mixture

In this section, the Gibbs free energy minimization approach is used

to predict equilibrium composition of the hydrocarbon mixture consisting of 5

mole % CH4 (i = 1), 90 mole % CO2 (i = 2) and 5 mole % n-C16H34 (i = 3).

Pan et al. (1998) have shown that an additional CO2 rich phase is formed
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Table 6.2: Thermodynamic properties used for equilibrium computation (Gar-
rels and Christ, 1990). Values are in kJ/moles. Partial volume is in cm3.

Component Thermodynamic property at Value
(i) T0 = 25◦C and P0 = 1atm

Gibbs free energy of an ideal gas, Gi
¯

IG -394.38

Molar enthalpy in gas phase, Hi
¯

-393.51

CO2 Partial volume of at infinite dilution, v̄1
∞ 32.80

Partial molar Gibbs free energy
of aqueous solute, Ḡ0

1 -386.23
Partial molar enthalpy of solute
in aqueous phase, H̄12 -412.92

Gibbs free energy of an ideal gas, Gi
¯

IG -228.57

Molar enthalpy of in gas phase, Hi
¯

-241.81

H2O Molar volume of H2O, v2
¯

19

Molar Gibbs free energy, G2
¯

0 -237.19

Molar enthalpy of H2O
in aqueous phase, H22

¯
-285.84

Gibbs free energy of an ideal gas, Gi
¯

IG -50.79

Molar enthalpy of in gas phase, Hi
¯

-74.85

CH4 Partial volume of at infinite dilution, v̄1
∞ 37.14

Partial molar Gibbs free energy
of aqueous solute, Ḡ0

1 16.26
Partial molar enthalpy of solute
in aqueous phase, H̄12 -13.16

Gibbs free energy of an ideal gas, Gi
¯

IG 65.64

C14H30 Molar enthalpy of in gas phase, Hi
¯

-329.8133
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Figure 6.2: Solubility of H2O in gas mixture of CH4 (5.31 mole %) and CO2

(94.69 mole %) at 50◦C.
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Table 6.3: Properties of components used in PR EOS for CH4-CO2-H2O mix-
ture
Component Critical Critical Accentric BIP BIP
(i) Pressure Temperature Factor Ki,H2O Ki,CO2

(MPa) (K) (w) (tuned) (tuned)
CH4 4.596 190.6 0.008 0.485 0.1
CO2 7.376 304.2 0.225 0.1896 0
H2O 22.06 647 0.344 0 0.1896

between 64 bar and 70 bar at 294.3 K in addition to the two hydrocarbon

phases formed by this mixture.

All components are described using the PR EOS, so that the compo-

nents use ideal gas state at standard conditions as reference state and hence,

the equivalent function H to be minimized is eq 6.1 and the matrices in the

elemental constraint equation can be given as,

A =

 1 1 16 1 1 16 1 1 16
0 2 0 0 2 0 0 2 0
4 0 34 4 0 34 4 0 34

 ; E =

 eC
eO
eH

 ;

N =
[
n11 n21 n31 n12 n22 n32 n13 n23 n33

]T
. (6.7)

The constraint equation has been written for the conserved elements C, O and

H. The matrices in the equivalent constraint set using the components (CO2,

CH4 and n-C16H34) as base components that are conserved can be given as,

A =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 ; E =

 eCH4

eCO2

eC16H34

 . (6.8)

The phase mole fractions at equilibrium, obtained from the results of

the minimization problem, as a function of varying pressure and constant
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Table 6.4: Properties of components used in PR EOS for CH4-CO2-nC16H34

mixture (Pan et al., 1998)
Component Critical Critical Accentric BIP BIP
(i) Pressure Temperature factor Ki,nC16 Ki,CO2

(MPa) (K) (w) (tuned) (tuned)
CH4 4.596 190.6 0.008 0.078 0.1
CO2 7.376 304.2 0.225 0.125 0
n-C16H34 1.4189 717 0.742 0 0.125

temperature of 294.3 K are in Figure 6.3. The Gibbs free energy model predicts

the presence of an additional CO2 phase between 6.4 and 7.1 MPa. The PR

EOS parameters used in the equilibrium computations are given in Table 6.4.

6.3 Phase and Chemical Equilibrium

The impact of geochemical reactions on hydrocarbon mixtures of CO2-

nC14H30 and CO2-CH4 is presented in this section. The complete system

includes

• Hydrocarbon phases with corresponding components - CO2, H2O, nC14H30

and CH4 that are described using PR EOS.

• Aqueous phase with components that include ions along with undis-

sociated components are present. The aqueous phase components are

described using the Pitzer activity coefficient model (Appendix B).

• A single solid phase component (CaCO3) that is assumed ideal.
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mole %) and n-C16H34 (5 mole %) mixture at 294.3K.
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It is assumed that the heavy hydrocarbon component (nC14H30) is not

present in the aqueous phase owing to its negligible solubility. This is included

as a separate constraint and is explained for each specific case in the following

sections. Hence, the changes in the hydrocarbon phase behavior occur as

CO2 (and CH4) enters the aqueous phase and participates in the geochemical

reactions.

In the absence of experimental data for the complete system, the pa-

rameters obtained for systems where experimental data is available are used for

all cases discussed in the following sections. The binary interaction parameters

listed in Tables 6.1, 6.3 and 6.4 and obtained by tuning hydrocarbon phase

behavior experiments are used for analysis of geochemical reactions. Similarly,

the Pitzer activity parameters for 10.1 % CaCl2 solution, listed in Table 5.8 and

obtained by comparing experimental data for CO2-CaCl2-H2O-CaCO3 (solid)

system in section 5.3.2 are also used for the aqueous phase components. These

parameter values are assumed constants for the sensitivity study discussed in

the following sections.

6.3.1 CO2-nC14H30-H2O System With Geochemical Reactions

The phase envelope of CO2-nC14H30 hydrocarbon mixture was obtained

both in the absence and the presence of H2O in section 6.2.1. A carbonate

system with ions in the aqueous phase can induce geochemical reactions. In

this section, the impact of geochemical reactions on the phase envelope of

this hydrocarbon mixture as well as the phase mole fractions are obtained for
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different initial mole ratios.

The components in the hydrocarbon phases are nC14H30 (i = 1), CO2

(i = 2) and H2O (i = 3). The aqueous phase components are ions typically

present in a carbonate system are - Ca2+ (i = 4), HCO−3 (i = 5), CO2−
3 (i = 6),

H+ (i = 7), OH− (i = 8), Cl− (i = 9) as well as undissociated components -

H2CO3 (i = 10), CaCO3 (i = 11), CaCl2 (i = 12), CO2 (i = 13) and H2O. The

solid component CaCO3 (i = 14) is assumed ideal. As discussed in section 4.3,

nC14H30 is identified as a class A component that participates only in phase

equilibrium while CO2 is a class B component that participates in both phase

and chemical equilibrium. We can write the equivalent function H (eq 4.39)

specific to this mixture as,

H(T, P ) = n11[RTln(x11φ̂1)] + n21[G2
¯

IG(T, P ) +RTln(x21φ̂2)]

+
13∑
i=4

niw[Ḡ0
iw(T, P ) +RTlnxiγi] + n14[Ḡ0

14]

+ n3[Ḡ0
3(T, P ) +RTlnx3γ3]. (6.9)

The elemental balance contraint for this system corresponding to a

single hydrocarbon phase at equilibrium and including

A =


0 1 0 0 1 1 0 0 0 1 1 0 1 0 1
0 2 1 0 3 3 0 1 0 3 3 0 2 1 3
0 0 2 0 1 0 1 1 0 2 0 0 0 2 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 2 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ; E =


eC
eO
eH
eCa
eCl

eC14H30

 .
(6.10)
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The component n-C14H30 identified as class A is included as a separate

base component that is conserved in addition to the elements in E. This iad-

ditional constraint helps define that n-C14H30 does not participate in reactions

and the C and H elements in this component are not available for reactions.

An additional hydrocarbon phase with components CO2 and n-C14H30 may be

present depending on the pressure and temperature conditions. The total sys-

tem Gibbs free energy (GT ) for both cases are compared and the combination

with lowest GT corresponds to the equilibrium concentration of the system.

As equilibrium concentration of components for a reactive system de-

pends on the initial concentration of components, the impact of geochemical

reactions on phase behavior of the hydrocarbon mixture can vary based on the

initial mole number of components. The equilibrium composition correspond-

ing to this case of both phase and chemical equilibrium can depend on

• Moles of the solid relative to the aqueous phase moles.

• Volume ratio of H2O and nC14 and hence, molar ratio. A volume ratio

is preferable owing to analogous measurements of initial saturations of

water and oil that is possible in an oil field.

• CaCl2 concentration in aqueous phase, which is representative of ionic

concentration of species and is analogous to the salinity of the reservoir

brine.

A sensitivity study is done to determine how a change in initial mole

125



numbers of the above identified parameters can change the phase envelope of

the CO2-n-C14H30 hydrocarbon mixture.

6.3.1.1 Base case

A base case is defined as the case where volume of water is equal to

the volume of n-C14H30 similar to the experiments for the CO2-C14H30-H2O

system (Mangone, 1985). This corresponds to a constant molar ratio of 14.45,

obtained using densities and molecular weights of H2O and n-C14H30. Also,

the number of moles of solid and water are equal in the base case. The con-

centration of CaCl2 in the base case is taken as 10.1 mole % of water.

The Pitzer parameters obtained in section 5.3.1 (Table 5.8) as well as

the binary interaction parameters in Table 6.1 are used for phase and chem-

ical equilibrium computations. Figure 6.4 shows the impact of geochemical

reactions on the phase envelope for two different concentrations of CaCl2. It

can be seen that the phase envelope of the hydrocarbon mixture shifts further

towards decreasing concentration of C14 in the presence of geochemical reac-

tions than just water. At an overall mole fraction of 0.2 mole % of C14, the

bubble point pressure of the CO2-C14 mixture in the presence of water changes

by about 5 % while in the presence of geochemical reactions, the bubble point

pressure decreases by about 10 %.
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Figure 6.4: Two-phase envelopes for CO2-C14H30 system in presence of water
(no reactions) as well as with 10.1 and 20.2 mole % of CaCl2 solution at 343
K. The mole fraction of n-C14H30 is water-free basis.
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6.3.1.2 Moles of solid relative to the aqueous phase moles

The moles of solid relative to the aqueous phase moles have no effect on

the phase behavior of the hydrocarbon mixture. As solid is a pure component

phase that is assumed ideal in the model, its fugacity is fixed by the pressure.

At equilibrium, since the fugacity of CaCO3 in the aqueous phase is equal to

that of CaCO3 solid the concentration of CaCO3 in the aqueous phase is fixed.

Hence, increasing solid moles do not have an effect on the hydrocarbon phase

behavior.

6.3.1.3 Volume ratio of H2O and nC14

This is an important parameter that may be determined in the field

based on the saturation data. Figure 6.5 shows that the difference in phase

envelope between cases of only phase equilibrium with no reactions and phase

equilibrium with geochemical reactions when other parameters are held con-

stant as in the base case. The moles of solid are equal to the moles of water

and the CaCl2 is 10 % of H2O in all cases considered.

Figure 6.5 shows that the difference between the phase envelopes for

cases with and without reactions increases as the initial ratio of H2O to nC14

(Y ) increases. The difference in phase envelopes for the case where Y = 5 is

greater than that for Y = 0.5. If Y is higher, the geochemical reactions have

a greater impact on the phase envelope of CO2-C14H30-H2O system. At a C14

overall mole fraction of 0.2 %, the bubble point pressure decrease for Y = 0.5

and in the presence of reactions fis insignificant. However, at the same C14
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overall mole fraction of 0.2 %, the decrease in bubble point pressure for Y = 5

is about 27 % in the presence of reactions. In summary, the initial volume

ratio of H2O and nC14 is an important parameter that influences the shift in

phase envelope.

6.3.1.4 CaCl2 concentration in aqueous phase

An intial mole ratio of 5 between H2O and nC14 was chosen to magnify

the impact of geochemical reactions and study the effect of varying CaCl2

concentration. Also the amount of solid was taken equal to the amount of

H2O (as in the base case). Figure 6.6 shows the phase envelope for different

CaCl2 concentration.

The geochemical reactions, occuring because of CaCl2 solution in the

aqueous phase along with solid CaCO3 and all the aqueous phase ions associ-

ated with the carbonate system, shift the phase envelope even further towards

lower nC14. This has implications for oil recovery predictions using compo-

sitional simulations. The equilibrium concentrations obtained as solution to

the Gibbs free energy minimization indicate that the aqueous concentration of

CO2 increases as the concentration of CaCl2 in the aqueous phase increases.

The amount of CO2 available for phase equilibrium with nC14 decreases and

hence, a shift is observed. The decrease in bubble point pressure at 0.2 %

overall mole fraction of C14 is about 35% at 30% CaCl2 concentration (Figure

6.6).
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6.3.1.5 Discussion

The changes in two-phase envelope of the CO2-nC14 mixture has im-

plications in oil recovery predictions. As an example, let point A in Figure

6.6 represent an overall mole fraction and pressure occuring during reservoir

simulation. As point A lies within the two phase envelope, two phases are

present at equilibrium and this is also obtained by flash calculations and sta-

bility analysis performed in compositional simulations. If no reactions are

considered, the vapor and liquid compositions at equilibrium are represented

by points L1 and V1, respectively. However, if the new two-phase envelope due

to reactions (say 10.1 % CaCl2) are considered, the equilibrium composition

are represented by points L2 and V2. While there is little difference between

compositions represented by points V1 and V2, the difference in composition

represented by points L1 and L2, impacts liquid mole fractions at equilibrium

and hence, oil recovery predictions.

Let point B in Figure 6.6 represent an overall mole fraction and pressure

occuring during reservoir simulation. If no geochemical reactions are occuring

in the system, a flash computation in compositional simulation will predict

a two phase system (as it lies within the two phase envelope for CO2-nC14

system without any reactions). If geochemical reactions are considered, point

B lies outside the two-phase envelope so that only a single phase is present

at equilibrium at that overall mole fraction and pressure. Thus, the changes

in two-phase envelope impacts the equilibrium compositions at different mole

fractions and pressures and hence, the oil recovery predictions.
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6.3.1.6 Summary

The initial mole ratio of H2O and nC14 and the concentration of CaCl2

in H2O are important parameters that influences the impact of geochemical

reactions on the phase envelope of the CO2-C14H30 system. The changes in

phase envelope may further impact oil recovery predictions.

6.3.2 CO2-CH4-H2O System With Geochemical Reactions

The CO2-CH4-H2O mixture is used to analyze the impact of overall

mole fractions due to geochemical reactions. This is an important represen-

tative mixture as the gas typically injected for miscibility contains varying

amounts of these components and geochemical reactions may occur in the

presence of aqueous phase ions and the solid phase (CaCO3). The compo-

nents in the gas phase are CO2 (i = 1), CH4 (i = 2) and H2O (i = 3) while

the components in the aqueous phase are Ca2+ (i = 4), HCO−3 (i = 5), CO2−
3

(i = 6), H+ (i = 7), OH− (i = 8), as well as undissociated components -

H2CO3 (i = 9), CaCO3 (i = 10), CO2 (i = 11), CH4 (i = 12) and H2O.The

solid component CaCO3 (i = 13) is assumed ideal.

There are no class A components present in this system and both CO2

and CH4 are class B components that participate in phase and chemical equi-

librium. The equilibrium composition is the minimum of the total system
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Gibbs free energy given as,

G(T, P ) =
3∑
i=1

ni1[Gi
¯

IG(T, P ) +RTln(xi1φ̂i)]

+
12∑
i=4

niw[Ḡ0
iw(T, P ) +RTlnxiγi] + n13[Ḡ0

13]

+ n3[Ḡ0
3(T, P ) +RTlnx3γ3]. (6.11)

The matrices that constitute the elemental balance constraint for this system

are,

A =


1 1 0 0 1 1 0 0 1 1 1 1 0 1
2 0 1 0 3 3 0 1 3 3 2 0 1 3
0 4 2 0 1 0 1 1 2 0 0 4 2 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1

 ; E =


eC
eO
eH
eCa

 .
(6.12)

Three cases of varying CH4 mole % in the CO2-CH4 mixture are con-

sidered (5.41 %, 15.41 % and 25.41 %). In the absence of experimental data

for 15.41 mole% and 25.41 mole% CH4 in CO2-CH4 mixture, it is assumed

that each system with different compositions of CH4, CO2, CaCO3 and H2O

can be each described using the PR EOS for gas phase components and the

Pitzers activity coefficient model for the aqueous phase components similar to

the system in section 6.2.2 with 5.31 mole % CO2. As the inlet gas compo-

sition changes, it can potentially influence the overall aqueous and gas phase

moles and hence, the distribution of components in those phases.

The Gibbs free energy minimization approach is used to find the equi-

librium composition for each case of varying inlet composition (5%, 15% and
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25% CH4 in CO2-CH4 mixture). In each case, minimization was performed us-

ing different combination of phases to find the combination with lowest Gibbs

free energy (global minimum). This global minimum in the Gibbs free energy

function of the system corresponds to the equilibrium composition. The equi-

librium composition predicted for each case of varying CH4 mole fractions has

components distributed in all phases.

As the initial gas composition changes, the changes in the mole fraction

of the phases (solid, aqueous and the gas phase) are not significant (Figure

6.7). Also, as the molality of CaCO3 in the aqueous solution increases to 10,

the aqueous and gas phase mole fraction do not vary significantly with pressure

(Figure 6.8). The initial mole fraction of CaCO3 also does not have an impact

on the aqueous and gas phase mole fraction varation with pressure (Figure

6.9).

In summary, for the hydrocarbon mixture considered in this study and

for the pressure range of 0.1-20 MPa and T = 50◦C, the ions present in the

brine in a typical carbonate system that participate in geochemical reactions,

do not change the number of phases or influence the overall mole fractions of

the different phases. The equilibrium mole fraction of phases for this sytem is

thus independent of pressure. However, the moles of the component in each

of the phases may change owing to these reactions.
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6.4 Conclusions

The Gibbs free energy model can predict the phase behavior of three

different hydrocarbon mixtures - CO2-nC14H30, CO2-CH4-H2O and CH4-CO2-

nC16H34. In these models, the PR EOS was used for components in the hydro-

carbon phase while the aqueous phase components, if present, were described

using the Pitzer activity coefficient model. Some predictions from the model

have been compared with experimental values.

The binary interaction parameters obtained from the phase equilibrium

calculations were used to analyze the impact of geochemical reactions on the

phase envelope of the CO2-nC14H30 system. While the presence of water shifts

the saturation pressures in the direction of lower C16 mole fraction, the geo-

chemical reactions shift this envelope further. Also, the changes in the phase

envelope of CO2-nC14 mixture, due to geochemical reactions is specific to the

initial mole ratio of components. The important parameters that influence the

phase envelope are the mole ratios of water to n-C16 present initially in the

system and the CaCl2 concentration in H2O.

The impact of geochemical reactions on the CO2-CH4-H2O system be-

cause of the presence of typical ions of a carbonate system was also investi-

gated. In this case too, the PR EOS was used for gas phase components while

the Pitzer activity coefficient model was used for aqueous phase components.

The geochemical reactions have little impact on the equilibrium mole fraction

of phases at 50◦C in the pressure range 0.1-20 MPa.
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The Gibbs free energy model is a comprehensive approach since it in-

tegrates phase equilibrium computations with geochemical reactions to model

CO2 injection for enhancing oil recovery. The initial mole ratios of aqueous

and solid phase along with brine samples can help identify the major compo-

nents present in the system. These components can be used to construct a

specific Gibbs free energy model for the reservoir. In addition to the phase

behavior changes induced by CO2 injection, the Gibbs free energy model can

also help predict the impact of geochemical reactions.
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Chapter 7

Integration of Equilibrium Model with Flow

In this chapter, the algorithms used to find equilibrium composition

arising out of reactions are coupled with flow. The coupling is illustrated by

developing a 1-D flow model with cation exchange reactions using the sto-

chiometric algorithm and the Gibbs free energy minimization algorithm. A

comparison between the two methods is presented for a particular system.

7.1 Phase and Chemical Equilibrium with Flow

As discussed in chapter 3, the Gibbs free energy minimization approach

and the stochiometric approach are the two methods to estimate equilibrium

composition for a reactive system. These computations, performed at a par-

ticular temperature, pressure and for a fixed value of initial composition, are

also commonly referred to as batch calculations. The applications presented

in chapters 5 and 6 are all examples of batch calculations using the Gibbs free

energy minimization approach.

The batch calculations using both the methods can be coupled with

flow to describe processes when reactions occur during transport of fluids. The

Local Equilibrium Assumption (LEA) is invoked and the system is assumed
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to be in phase and chemical equilibrium at every time step. This implies that

reactions between components occur at a higher rate than the rate of transport

of components. Thus, LEA provides for easy integration of batch calculations

with flow.

The stochiometric approach was described in chapter 3 for a single

phase system where the law of mass actions are used for all reactions to obtain

nonlinear equations along with the associated reaction constants. In case of a

multiphase system, in addition to the law of mass action equations, phase equi-

librium relationships that equate fugacities of components in different phases

are required to find equilibrium compositions for cases of phase and chemical

equilibrium.

The solution to the Gibbs free energy minimization gives equilibrium

composition of a system with phase and chemical equilibrium directly. Hence,

no additional equations are required in the Gibbs free energy approach.

7.2 Numerical Model for Cation Exchange Reactions

Cation exchange reactions commonly occur with flow of groundwater in

reservoirs and aquifers. The cations in the aqueous phase (flowing phase) can

exchange with those adsorbed in the solid phase (stationary phase). One im-

portant application of these reactions is the remediation of aquifers to potable

standards. Another complimentary application is the safe disposal of nuclear

waste to prevent radionuclides intrusion in groundwater. The exchange reac-

tions determine the mobility of ions or radionuclide (Lichtner et al., 2004) and
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therefore, the appropriate remediation strategy (Bethke and Brady, 2000).

Cation exchange reactions also occur during the intrusion of seawater

into fresh water zones or vice-versa owing to the difference in cation concen-

trations. The resulting displacement patterns are used to determine whether

the seawater or the fresh water is advancing and make predictions on aquifer

water quality where such intrusion occurs (Appelo, 1994).

In this section, a numerical model is developed to describe the pro-

cess of cation exchange reactions occuring during flow. In particular, a 1-D

numerical flow model is presented for a case of cation exchange reactions oc-

curing between flowing aqueous phase and a stationary solid phase to illustrate

coupling of flow and reactions. Separate numerical models using two meth-

ods of coupling using stochiometric approach as well as the Gibbs free energy

minimization approach is presented.

The system consists of three cations - Na+, Ca2+ and Mg2+ in the

aqueous phase that is capable of adsorbing on the solid surface and an anion,

Cl−, that does not adsorb. This system was chosen as experimental results

are available for this system at the field scale (Valocchi et al., 1981b). The

numerical models developed in this chapter are further modified in the next

chapter to verify analytical solution predictions presented in the next chapter.

7.2.1 Assumptions And General Equations

The assumptions associated with this numerical model are -
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1. The cation exchange capacity for the solid surface (Zv), where all the

adsorption reactions occur, is a constant.

2. The phases are ideal and hence, the activities of components are equiv-

alent to dimensionless concentrations (ςi/ς0, ςi is the concentration of

component i in the aqueous phase and ς0 is unit concentration of the

component).

3. The medium has a constant porosity, φ, and the heterogeneities of the

solid phase are neglected. The fluid velocity in the medium, v, is also

constant in this model.

4. The process is assumed to be isothermal.

The general conservation equation for 1-D flow for a cation component

i in the flowing aqueous phase and capable of adsorbing on stationary solid

phase can be written as (Lake et al., 2003),

φ
∂(ςi + ς̂i)

∂t
+
∂(ςiv)

∂x
= D

∂2ςi
∂x2

∀ i = 1, 2, 3. andx ∈ [0, L]. (7.1)

Here, v is the velocity of the aqueous phase, D is the dispersion coefficient while

ςi and ς̂i are the aqueous and solid phase concentration of cation component i,

repectively. All concentrations are in moles/pore volume. Eq 7.1 is valid for

all the three cations - Na+ (i = 1), Ca2+ (i = 2) and Mg2+ (i = 3). Eq 7.1

is modified by introducing dimensionless variables ξ = x/L, τ = vt/(φL) and

Peclet number, Pe = (vL)/D to obtain,

∂(ςi + ς̂i)

∂τ
+
∂ςi
∂ξ

=
1

Pe

(
∂2ςi
∂ξ2

)
∀ i = 1, 2, 3. and ξ ∈ [0, 1]. (7.2)
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This conservation equation is adapted and discretized to develop a nu-

merical solution. The advection term is discretized explicitly while the disper-

sion term is integrated implicitly (LeVeque, 1994). The domain ξ is divided

into Nx+2 cells each of width ∆ξ = 1/(Nx+1) and the two boundary cells are

of width ∆ξ/2. The domain τ is also divided into Nt + 1 cells each of width

∆τ = 1/(Nt + 1). The discretized equation describing cation flow is given as,

(ςn+1
i,m + ς̂n+1

i,m )− (ςni,m + ς̂ni,m)

∆τ
+

(ςni,m − ςni,m−1)

∆ξ
− 1

Pe

(
ςn+1
i,m+1 − 2ςn+1

i,m + ςn+1
i,m−1

∆ξ2

)
= 0.

∀m = 2, . . . , Nx + 1 & n = 1, 2, Nt + 1. (7.3)

As the anion does not adsorb on the solid surface, the discretized equation for

anion with concentration ςa is,

(ςn+1
a,m − ςna,m)

∆τ
+

(ςna,m − ςna,m−1)

∆ξ
− 1

Pe

(
ςn+1
a,m+1 − 2ςn+1

a,m + ςn+1
a,m−1

∆ξ2

)
= 0.

∀m = 2, . . . , Nx + 1 & n = 1, 2, Nt + 1. (7.4)

Eq 7.4 for all points in space (∀m = 2, . . . , Nx + 1) can be rearranged as a

matrix equation to obtain,

L1


ςn+1
a,2

ςn+1
a,3

...
ςn+1
a,Nx+1

+ L2


ςna,2
ςna,3

...
ςna,Nx+1

 =


ςna,1

Pe∆ξ2
+

ςn−1
a,1

∆ξ

0
...

0

 ∀n = 2, 3, . . . , Nt + 1.(7.5)
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Here, L1 and L2 are Nx X Nx matrices that are constants and given as,

L1 =



(
2

Pe∆ξ2
+ 1

∆τ

) (
−1

Pe∆ξ2

)
0 . . . 0

(
−1

Pe∆ξ2

) (
2

Pe∆ξ2
+ 1

∆τ

) (
−1

Pe∆ξ2

)
. . .

...

0
(
−1

Pe∆ξ2

) (
2

Pe∆ξ2
+ 1

∆τ

)
. . .

...
...

. . . . . . . . .
...

0 . . . 0
(
−1

Pe∆ξ2

) (
1

Pe∆ξ2
+ 1

∆τ

)


;

L2 =



(
1

∆ξ
− 1

∆τ

)
0 . . . 0

(
−1
∆ξ

) (
1

∆ξ
− 1

∆τ

)
. . .

...

0
(
−1
∆ξ

) (
1

∆ξ
− 1

∆τ

) ...
...

. . . . . .
...

0 . . .
(
−1
∆ξ

) (
1

∆ξ
− 1

∆τ

)


.

The experimental data used for comparison are a series of experiments that

were performed using a constant initial concentration and a constant injection

concentration of components, also referred to as Riemann problems. A con-

stant initial (ςaI) and a constant injection (ςaJ) concentration for the anion

component in the discretized system can be written as,

ςna,1 = ςaI n = 1;

= ςaJ ∀n = 2, 3, . . . , Nt + 1. (7.6)

Hence, the RHS of eq 7.5 is the forcing function, which is also a constant (eq

7.6). Hence, eq 7.4 can be solved independently to obtain values at all points
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in space and time. This approach of obtaining values of anion concentration

is the same for both the methods. The anion concentration values are used

for the solution of the cation concentrations obtained from both the methods.

According to the assumptions listed, the charge balance holds in the

aqueous phase while in the solid phase, the cation exchange capacity is a

constant. The balance equations for the two phases are,

ς1 + 2ς2 + 2ς3 = ςa and ς̂1 + 2ς̂2 + 2ς̂3 = Zv. (7.7)

Having obtained the anion concentration at every cell, the charge and

the cation exchange capacity conservation equations can be used to eliminate

aqueous and solid concentration (ς1 and ς̂1) of Na+. There are then 4Nx

variables (ςn+1
2,m , ς̂n+1

2,m , ςn+1
3,m and ς̂n+1

3,m ∀m = 2, 3, ..., Nx + 1) at every time step.

There are two approaches to obtain values of these 4Nx variables.

7.2.2 Stochiometric Approach

The law of mass action equations are directly used in the stochiometric

approach. The two independent reactions for this system with three cations

and the corresponding law of mass action equations are,

Mg2+ + 2N̂a
 2Na+ + M̂g K10 =
ς̂2ς

2
1

ς̂2
1 ς2

; (7.8)

Ca2+ + 2N̂a
 2Na+ + Ĉa K20 =
ς̂3ς

2
1

ς̂2
1 ς3

. (7.9)

The charge balance and cation exchange capacity equations are valid at every

discretized cell. They are used to simplify the law of mass action equations.
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This results in,

[
K10(ςn+1

2,m )(Zv − ς̂n+1
2,m − ς̂n+1

3,m )2
]
−
[
(ς̂n+1

2,m )(ςn+1
a,m − ςn+1

2,m − ςn+1
3,m )2

]
= 0; (7.10)[

K20(ςn+1
3,m )(Zv − ς̂n+1

2,m − ς̂n+1
3,m )2

]
−
[
(ς̂n+1

3,m )(ςn+1
a,m − ςn+1

2,m − ςn+1
3,m )2

]
= 0; (7.11)

∀m = 2, 3, . . . , Nx + 1.

The conservation equations for Ca and Mg are,

(ςn+1
2,m + ς̂n+1

2,m )− (ςn2,m + ς̂n2,m)

∆τ
+

(ςn2,m − ςn2,m−1)

∆ξ
− 1

Pe

(
ςn+1
2,m+1 − 2ςn+1

2,m + ςn+1
2,m−1

∆ξ2

)
= 0;

(7.12)

(ςn+1
3,m + ς̂n+1

3,m )− (ςn3,m + ς̂n3,m)

∆τ
+

(ςn3,m − ςn3,m−1)

∆ξ
− 1

Pe

(
ςn+1
3,m+1 − 2ςn+1

3,m + ςn+1
3,m−1

∆ξ2

)
= 0;

∀m = 2, 3, . . . , Nx + 1. (7.13)

The two law of mass action expressions at every cell (7.10 and 7.11) along with

the discretized conservation equation for the two cations (7.12 and 7.13) form

a set of 4Nx nonlinear equations at every time step. We solve this nonlinear

system of equations at every time step using the Newton-Raphson method to

obtain cation concentration values at all cells.

The advantage of this numerical formulation is the direct coupling of

reactions using law of mass actions. Hence, the complexity of the reactions

can be increased to account for nonidealities. This formulation can also be

extended to include more number of cations.
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7.2.3 Gibbs Free Energy Minimization Approach

In the Gibbs Free Energy Minimization approach, the cation concen-

trations are obtained by minimizing the Gibbs free energy function for cation

components in both aqueous and solid phase in every cell. The solution to the

minimization problem is the cation concentration while the anion concentra-

tions are obtained independently, as described in the previous section. The

operator splitting approach is employed in the Gibbs free energy minimization

approach of integrating flow and reactions.

In the operator splitting approach, the transport step and the reaction

step occur discretely. In the first step, called the transport step, the concentra-

tion of components arising out of only transport (advection and diffusion but

no reactions) are obtained. The concentrations resulting from transport are

referred to as transported concentrations, ς tni,m and are obtained from the con-

servation equation for cations. The discretized equation to obtain transported

concentrations is,

(ς tni,m − ςni,m)

∆τ
+

(ςni,m − ςni,m−1)

∆ξ
− 1

Pe

(
ς tni,m+1 − 2ς tni,m + ς tni,m−1

∆ξ2

)
= 0;

∀ i = 1, 2, 3; m = 2, . . . , Nx + 1 & n = 1, 2, Nt + 1. (7.14)

Eq 7.14 is similar to the anion concentration equation (eq 7.4) that was used to

obtain anion concentration independently at every cell. The same approach,

described in the previous section, is used to find the transported cation con-

centrations, ς tni,m, at all points in space.
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In the next reaction step, concentrations arising out of cation exchange

reactions are obtained. The only unknowns are the cation concentrations in the

aqueous phase and the solid phase. Because either phase concentrations (ςi and

ς̂i) are expressed as moles/pore volume, the number of moles of the component

in either phases can be obtained by multiplying the concentration of that

component with pore volume of the cell. As the components are assumed to

be ideal, the Gibbs free energy function for cation components in both aqueous

and solid phase at every cell m is GN
m and is given as,

GC
m =

GN
m

PVc
=

3∑
i=1

ςi,m(Ḡiw)m +
3∑
p=1

ςp,m(Ḡps)m

=
3∑
i=1

ςi,m

(
Ḡ0
i +RTln

ςi,m∑
i ςi,m

)
︸ ︷︷ ︸

aqueous phase components

+
3∑
p=1

ς̂p,m

(
Ḡ0
p +RTln

ς̂p,m∑
p ς̂p,m

)
︸ ︷︷ ︸

solid phase components

.

(7.15)

Here, PVc = Aφ∆ξ is the pore volume for every cell with cross sectional area

A and width ∆ξ. As PVc is a constant, GC
m (in units kJ/pore volume) can

be minimized directly to obtain the cation concentration in every cell. Also,

Ḡ0
i and Ḡ0

p are the standard state Gibbs free energy values of components in

aqueous phase and solid phase respectively.

While tabulated standard state values (Rossini et al., 1952) were used

in earlier applications, the standard state values for a system of reacting com-

ponents can also be obtained from equilibrium constant data measured exper-

imentally. Inorder to provide better comparison between the two numerical
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models and the experimental values, the standard state Gibbs free energy val-

ues were obtained from the equilibrium constants. Appendix C describes the

method of obtaining reference state values from the equilibrium constant data.

The reference state values, listed in Table C.1, are used to obtain equilibrium

compositions using the Gibbs free energy method presented in this section.

The equilibrium composition is obtained by minimizing GC
m. The min-

imization is performed for all points in space (m = 2, 3, . . . , Nx + 1). The

minimization problem can be written as,

Minimize GC
m =

3∑
i=1

ςi,m

(
Ḡ0
i +RTln

ςi,m
ςa,m

)
+

3∑
p=1

ς̂p,m

(
Ḡ0
p +RTln

ς̂p,m
Zv

)
.

Subject to AC = E and ςi,m ≥ 0, ς̂i,m ≥ 0. (7.16)

Here, A is the elemental matrix, C is the matrix of component con-

centration while E is the matrix of total element concentration, as described

in chapter 4. The elements are ordered as Na (k = 1), Ca (k = 2) and Mg

(k = 3). The cation exchange capacity equation is added as additional equality

constraint for this minimization problem. The matrices for this minimization

are,

A =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 2 2

 ; C =


ς1,m
ς2,m
ς3,m
ς̂1,m
ς̂2,m
ς̂3,m

 ; E =


ε1,m
ε2,m
ε3,m
Zv

 .

The transported concentrations are used as inputs to the elemental balance

equation for the Gibbs free energy minimization approach. The total amount
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of any element k at any cell m is εk,m and is obtained using,

εk,m =
3∑

k=1

ai,k
[
ς̂ni,m + ς tni,m

]
∀m = 2, 3, . . . , Nx + 1 and n = 2, 3, Nt + 1.

(7.17)

7.3 Case Study

Valocchi et al. (1981b) has described field scale measurements for ternary

cation transport observed in a shallow alluvial aquifer in the Palo Alto Bay-

lands region. They presented a numerical solution to the 1-D problem. The

original field description along with the evolution of the groundwater compo-

sition at different wells is available in Valocchi et al. (1981a). In an effort

to charge groundwater, treated municipal effluent was injected at a constant

composition value and water composition was monitored over time at an ob-

servation well. The native groundwater composition at the monitoring well

and the injected water composition are listed in Table 7.1.

The numerical models using both the stochiometric approach as well as

the Gibbs free energy minimization approach are developed for this particular

case of constant initial and injection concentration of cations (Table 7.1). The

values of the variables used in the numerical solution are listed in Table 7.2.

The longitudinal dispersivity, αL = 1, and distance between L, between the

producer and injector well is given as 16 m (Valocchi et al., 1981b). The

Peclect number is then Pe = L/αL = 16.

The magnitude of ∆ξ and ∆τ impact numerical dispersion and conver-

152



Table 7.1: Component compositions adapated from Valocchi et al. (1981b).
Anion concentration calculated using charge balance for construction of nu-
merical solutions.

Component Initial Injected
composition (mM) composition (mM)

Na+ 86.52 9.4
Mg2+ 17.95 0.5
Ca2+ 11.1 2.15
Cl− 144.62 14.7

gence, respectively. For both the numerical models, the values of ∆ξ = 0.005

and ∆τ = 0.004 are chosen to minimize numerical dispersion and for conver-

gence. Similar results were obtained using either approach.

The computational times required to solve the nonlinear equations pre-

sented in the two approaches were compared. When the same initial guesses

were used, the Gibbs free energy approach was about 35% faster than the

stochiometric approach for this particular case of three cation system.

The operator splitting method used in the Gibbs free energy approach

offers the advantage of decoupling flow and reactions. Hence, the Gibbs free

energy approach is likely faster than the stochiometric approach where flow

and reactions are coupled in one single system. The computational time ad-

vantage of the Gibbs free energy approach make it more favourable over the

stochiometric approach to obtain equilibrium compositions for the three cation

case discussed in this chapter. Figure 7.1 shows that the prediction from the

numerical model constructed using the Gibbs free energy approach compares

well with the effluent cation concentration measured in the field.
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Figure 7.1: Comparison of Gibbs free energy numerical model with field mea-
surements (Valocchi et al., 1981b).

Table 7.2: Constants used in Numerical Model Solution (Valocchi et al., 1981b)
Parameters Value
K10 2.667
K20 4.0
Zv 0.75
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7.4 Conclusions

Numerical models were presented using both the stochiometric ap-

proach and the Gibbs free energy approach. In either approach, the advection

term was discretized explicitly while the dispersion term was discretized im-

plicitly. A case study of three-cation exchange and flow with constant initial

and injection concentration described in Valocchi et al. (1981b) was used to

compare numerical solutions.

A comparison of computation times indicated that the Gibbs free en-

ergy approach was 35% faster than the stochiometric approach. The results

from the numerical models compare well with the field experimental values.
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Chapter 8

Analytical Solutions for Cation Exchange

Reactions

In this chapter, analytical solutions have been developed to predict ef-

fluent profiles for dispersion-free flow of the three cations introduced in chapter

7. The predictions from the analytical solution as well as from the numerical

model (from chapter 7) are compared with experimental data for this system.

8.1 Introduction

Analytical solutions have been developed for 1-D flow equations that

describe solute chromatography as well as cation exchange by neglecting dis-

persion. The underlying mass conservation equation for solute chromatogra-

phy as well as cation exchange neglecting dispersion is,

∂a(c)

∂t
+
∂c

∂x
= 0. (8.1)

Here, a(c) is the accumulation term and is a function of independent vari-

ables in c, usually, the concentration of components. Analytical solutions can

be developed when the system of equations represented by eq 8.1 is hyperbolic.

The solution of hyperbolic systems comprises series of intermediate regions of

constant concentration (also referred to as constant state) connected by waves
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with changing concentrations. The solution in composition space is subse-

quently translated onto profile or history plots by connecting the intermediate

points by waves. The waves can be self-sharpening (shocks) or spreading (rar-

efactions).

The solution for hyperbolic systems are constructed and analyzed in

a space of dependent variables, here the composition space. The composi-

tion space is formed c, for a two component system where c = [c1, c2], the

composition space is formed by c1 and c2 as the x and y axes, respectively.

The intermediate constant states and waves connecting them are obtained by

analyzing the solution for hyperbolic systems in the composition space. The

composition space helps summarize possible solutions for different combina-

tions of initial and injected concentrations and hence, provides unique insights.

The solution in composition space is subsequently translated onto profile or

history plots.

Analytical solutions offer the advantage of quick estimation of inter-

mediate compositions observed during displacements resulting from a case of

constant injection and initial compositions. The number and nature of waves

as well as when they occur can be predicted to a reasonable accuracy using

this theory. This is useful for sensitivity analysis of the displacement behavior

for different injection concentrations for these applications. These solutions

can also guide design of experiments. Additionally, analytical solutions can be

used to benchmark results from numerical models.

A review of adsorption and cation exchange isotherms that are central
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to the development of analytical solutions is presented in this section along

with analytical solution developments specific to the ternary cation case of

interest.

8.1.1 Adsorption and Ion Exchange Isotherms

Adsorption isotherms are expressions that relate the concentration of

the adsorbed concentration of components to the aqueous phase concentra-

tions. The typical isotherms used are linear, Freundlich and Langmuir, and

BET isotherms (Mazzotti and Rajendran, 2013). The coefficients in the isotherm

expression are obtained by fitting experimental data to cover a wide range of

concentrations.

Glueckauf (1949) presented the general theory for two solute adsorption

in a column. He also obtained analytical solutions for the specific case of a

Langmuir isotherm by identifying the solution paths along which compositions

appear. Rhee et al. (1972) describe analytical solutions for flow with adsorp-

tion for a binary system. In this approach, the method of characteristics is

used to find the solutions that lie on characteristic curves in the hodographic

plane. A hodographic plane is formed by component concentrations and also

referred to as the composition space. The functional form of the Langmuir

isotherms are used to get the characteristic curves. The slope of these curves,

called characteristic parameters (Rhee and Amundson, 1970), are used to pre-

dict shocks or rarefaction waves during the displacement.

The theory by Glueckauf (1949) was extended to ion exchange processes
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by Klein et al. (1967), Tondeur and Klein (1967) and Helfferich and Klein

(1970). They use a different approach, obtaining the isotherm expressions

from the charge balance equation, the adsoption site balance equation and the

law of mass action. This approach can be used to not only derive most well

known isotherms (see Appendix F) but also isotherms for electrostatic surface

complexation models to predict pH variations in soil (Buergisser et al., 1994).

Helfferich and Klein (1970) developed analytical solutions using coher-

ence theory, originally for chromatographic separation. This theory stipulates

equal concentration velocities for all components at any given point in space

and time. The coherence theory is, infact, a consequence of Riemann boundary

conditions for the hyperbolic system (See Appendix E).

8.1.2 Ternary System with Cation Exchange Reactions

Pope et al. (1978b) introduced analytical solutions in the context of

incorporating cation exchange reactions in chemical (surfactant) flooding de-

sign. They used a combination of method of characteristics and the coherence

theory to predict the composition path for a two cation case and a three cation

case (identical to the system considered in this study). They estimated the

intermediate composition using coherence theory.

Valocchi et al. (1981b) used the theory of chromatography to under-

stand the evolution of water quality during aquifer recharge with a municipal

effluent. Appelo et al. (1993) introduced the shock front solution by estimating

the pleateau concentrations (constant states) to match the field observations
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in Valocchi et al. (1981b). The constant states were obtained by solving a set

of non-linear equations using the jump conditions (see section 4.2).

Charbeneau (1988) has also presented the solution to the general ternary

system with heterovalent ions using the method of characteristics. He identi-

fied the presence of constant states and obtained the three eigenvalues asso-

ciated with the analytical solution. While the general problem is discussed,

only a solution with sharp fronts has been reported and compared with field

data in Valocchi et al. (1981b). The waves for a general hyperbolic system,

however, can be shocks or rarefactions (LeVeque, 1994). The shock solution

developed by Appelo et al. (1993) is just one of four types of waves that can

be obtained for a ternary system.

8.2 General Solution

Equivalent concentrations, ci and ĉi, defined as ci = νiςi and ĉi = νiς̂i,

where νi is the valency of the cation component, are used in the construction of

analytical solutions. All concentrations are in moles/pore volume. The mass

balance and the cation exchange capacity equation for a system of Nc cation

components in terms of equivalent concentrations is,

Nc∑
i=1

ci = ca and
Nc∑
i=1

ĉi = Zv. (8.2)

The law of mass action expression for cation exchange reactions in equivalent

concentrations is,

Kij =
(cj)

νi(ĉi)
νj

(ĉj)νi(ci)νj
∀ i, j = 0, 1, 2, · · · , Nc − 1. (8.3)
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Table 8.1: Unknowns and Equations for n Component System

Unknowns

Cations (ci, i = 1, 2, ..., Nc) Nc

Anion (ca) 1
Adsorbed cations (ĉi, i = 1, 2, ..., Nc) Nc

Total unknowns 2Nc + 1

Equations

Charge balance 1
Cation exchange capacity 1
Reactions (Kij) Nc − 1
Total equations Nc + 1

Independent variables Unknowns - Equations Nc

There are Nc independent variables for this system (Table 8.1). The

concentrations of Nc cations (c1, c2, . . . , cNc) are the chosen set of independent

variables for subsequent development. With this choice of independent vari-

ables, the adsorbed concentrations are the dependent variables that can be

expressed as a function of the aqueous concentrations. These expressions that

relate the adsorbed concentrations and aqueous concentrations are referred to

as adsorption isotherms (Lake et al., 2003) or ion exchange isotherms (Char-

beneau, 1982). Klein et al. (1967) have also given the implicit expressions for

cation exchange isotherm. The explicit expressions for isotherms for an ideal

system with two and three cations, using this choice of independent variables,

are listed in Table 8.2.

A total concentration, ai, for component i where ai = ci + ĉi can be

defined so that the conservation equation, neglecting dispersion (D = 0 in eq

7.2) is,

∂a

∂τ
+
∂c

∂ξ
= 0, 0 ≤ ξ < 1, τ ≥ 0. (8.4)
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Table 8.2: Adsorption Isotherms for Systems with Monovalent Anion
Cation type and Exchange Isotherm expressions
valency expression

Mono (c1) - Mono (c2) K21 =
ĉ2c1

ĉ1c2

ĉ1 =
Zvc1

c1 +K21c1

; ĉ2 =
ZvK21c1

c1 +K21c2

.

Mono (c1) - Di (c2) K21 =
ĉ2c

2
1

ĉ2
1c2

ĉ1 =
c1

√
c2

1 + 4ZvK21c2 − c2
1

2K21c2

;

ĉ2 = Zv −
[
c1

√
c2

1 + 4ZvK21c2 − c2
1

2K21c2

]
.

Mono (c1, c2 and c3) K21 =
ĉ2c1

ĉ1c2

, ĉ1 =
Zvc1

c1 +K21c2 +K31c3

;

K31 =
ĉ3c0

ĉ0c2

. ĉ2 =
Zvc2K21

c1 +K21c2 +K31c3

;

ĉ3 =
Zvc3K31

c1 +K21c2 +K31c3

.

Mono (c1) - Di (c2 and c3) K21 =
ĉ2c

2
1

ĉ2
1c2

, ĉ1 =
c1

√
c2

1 + 4Zv(K21c2 +K31c3)− c2
1

2(K21c2 +K31c3)
;

K31 =
ĉ3c

2
1

ĉ2
1c3

. ĉ2 =
K21c2(

√
c2

1 + 4Zv(K21c2 +K31c3)− c1)2

4(K21c2 +K31c3)2
;

ĉ3 =
K31c3(

√
c2

1 + 4Zv(K21c2 +K31c3)− c1)2

4(K21c2 +K31c3)2
.
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Here, a = [a1, a2, · · · , aNc ]
T , ĉ = [ĉ1, ĉ2, · · · , ĉNc ]

T and c = [c1, c2, · · · , cNc ]
T .

Eq (8.4) can be written in the following quasilinear form,

A
∂c

∂τ
+
∂c

∂ξ
= 0, (8.5)

where, A is the Jacobian matrix given as,

A = ∇c a =


1 + ∂ĉ1

∂c1

∂ĉ1
∂c2

· · · ∂ĉ1
∂cNc

∂ĉ2
∂c1

1 + ∂ĉ2
∂c2
· · · ∂ĉ2

∂cNc
...

...
. . .

...
∂ĉNc

∂c1

∂ĉNc

∂c2
· · · 1 +

∂ĉNc

∂cNc

 . (8.6)

This system is strictly hyperbolic if A is diagonizable with real and distinct

eigenvalues for all values of concentrations in the range of the solution (LeV-

eque, 1994).

If A is strictly hyperbolic, A = RΓR−1 where Γ = diag(σ1, σ2, · · · , σn)

is the diagonal matrix of eigenvalues σp and R = [r1|r2| · · · |rn] is the matrix of

right eigenvectors rp. The constant coefficient linear system assumption for A

implies these eigenvalues are constants. Multiplying (8.5) by R−1 and defining

a new variable v=R−1c to obtain,

Γ
∂v

∂τ
+
∂v

∂ξ
= 0.

This is equivalent to the following n linear advection equations,

∂vp
∂τ

+ λp
∂vp
∂ξ

= 0 ∀ p = 1, 2, · · · , n. (8.7)

Here, λp = 1/σp. The solution to such a linear advection equation is just the

initial condition propogated with velocity λp given by,

c(ξ, τ) =
n∑
p=1

vp(ξ, τ)rp =
n∑
p=1

vp(ξ − λpτ, 0)rp . (8.8)
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A distinction in the velocity of propogation should be noted between the con-

servation equation developed in LeVeque (1994) and our conservation equation

(eq 8.5). The velocity of propogation is the reciprocal of the eigenvalues of

matrix A rather than the eigenvalues themselves in LeVeque (1994).

Analytical solutions have been developed to the Riemann problem for

this quasilinear system. A single discontinuity in a piecewise constant data

like in the case of a constant initial, cI , and a constant injected concentration,

cJ , are commonly referred to as Riemann problems . This is given as,

c(ξ, τ) =

{
cI 0 ≤ ξ ≤ 1 and τ = 0,
cJ ξ = 0 and τ ≥ 0.

(8.9)

The Riemann condition in equation (8.9) can be further decomposed into

eigenvectors with constant coefficients αp and βp so that,

cI =
Nc∑
p=1

αprp and cJ =
Nc∑
p=1

βprp . (8.10)

The solution can be written in the coordinates of the eigenvectors as,

c(x, t) =

P (ξ,τ)∑
p=1

αprp +
Nc∑

p=P (ξ,τ)+1

βprp . (8.11)

Here, P (ξ, τ) is the maximum value of p for which x− λpt > 0. This implies

that the solution propagates as a series of discontinuities.

The solution to the Riemann problem for a strictly hyperbolic linear

system is often visualized in a composition space. This composition space,

more generally called the phase space (LeVeque, 1994), is formed by the lin-

early independent component concentrations of the system. In a composition
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space with Nc linearly independent component concentrations, the injected

(J) and initial (I) concentrations are points cJ and cI with coordinates cJ =

(c1J , c2J , · · · , cNcJ) and cI=(c1I , c2I , · · · , cNcI). The solution to the Riemann

problem in this space consists of Nc− 1 intermediate points (or compositions)

between cI and cJ connected by Nc waves along the eigenvectors. These inter-

mediate compositions, represented as intermediate points in the composition

space, are also referred to as constant states cMi
. In the strictly hyperbolic

linear system, the eigenvalues are distinct and the wave velocities are ordered

as,

λ1 > λ2 > · · · > λNc . (8.12)

Each wave Wp is advected with velocity λp. The waves occur sequentially, in

the order of decreasing velocities at the observation point ξ = 1. Therefore,

the general solution can be given as,

cI
W1−→ cM1

W2−→ cM2

W3−→ · · · WNc−1−→ cMNc−1

WNc−→ cJ . (8.13)

It can also be shown that each discontinuity, for the constant coefficient

linear system, satisfies the Rankine-Hugoniot jump condition (LeVeque, 1994).

Each wave connecting these intermediate points are contact discontinuities

(Lax, 1957).

The matrix A in eq 8.6 is nonlinear. However, the structure of solution,

shown in eq 8.13, also holds for a genuinely nonlinear hyperbolic system, where

the eigenvalues vary monotonically along the associated eigenvectors (LeVeque,

1994). Therefore, the solution consists of Nc waves with Nc − 1 intermediate
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states arranged in increasing order of their velocities. However, unlike the

constant coefficient linear system, where all waves are contact discontinuities,

the individual waves for the genuinely nonlinear case can be either rarefactions

or shocks. The entropy condition is used to identify the type of wave between

any two intermediate states in the composition space (Lax, 1957). The details

of the construction of each type of wave, specific to the three cation and one

anion problem, in the next section.

8.3 Analytical Solution for Three Cations

In this section, analytical solutions are presented for the specific case

of three cations Na+ (c1), Ca2+ (c2) and Mg2+ (c3) along with an anion Cl−

(ca). The conservation equations in equivalent concentrations for this system

are,

c1 + c2 + c3 = ca and ĉ1 + ĉ2 + ĉ3 = Zv. (8.14)

The cation exchange reaction equations for this system are,

K21 =
ĉ2c

2
1

ĉ2
1c2

and K31 =
ĉ3c

2
1

ĉ2
1c3

. (8.15)

There are seven unknowns (c1, c2, c3, ĉ1, ĉ2, ĉ3 and ca) and four equa-

tions (8.14-8.15) for this system. The divalent cation equivalent concentrations

c2 and c3 and the anion equivalent concentration ca are chosen as the three

independent variables for this system. The isotherm expressions for adsorbed

concentrations, using this set of independent variables, is given in Table 8.2.
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Define similarity variable σ = τ/ξ, and transforming equation (8.5) to

an eigenvalue-eigenvector problem,

(A− σI)
dc

dσ
= 0. (8.16)

The boundary conditions for the Riemann problem can also be trans-

formed using this variable. Here, I is a 3 × 3 identity matrix and A is given

as,

A =

 1 + ĉ22 ĉ23 ĉ2a

ĉ32 1 + ĉ33 ĉ3a

0 0 1

 . (8.17)

The last row in matrix A simplifies because the anion c3 does not

adsorb. Also, ĉij = ∂ĉi/∂cj is used to denote the partial derivatives of the

isotherms. The eigenvalues of A are,

σ1 = 1,

σ2 = 1 +
ĉ22 + ĉ33 −

√
(ĉ22 − ĉ33)2 + 4ĉ23ĉ32

2
,

σ3 = 1 +
ĉ22 + ĉ33 +

√
(ĉ22 − ĉ33)2 + 4ĉ23ĉ32

2
. (8.18)

The eigenvalues obtained for all analytical solutions presented in this

chapter (laboratory and field case) were real, distinct and positive and are

ordered as follows,

σ1 < σ2 < σ3. (8.19)

Here, the eigenvalues are reciprocal of wave velocities (σ = 1/λ), also referred

to as retardations. The characteristic field represented by σ1=1 is linearly de-

generate . Also, the characteristic fields represented by σ2 and σ3 are genuinely

167



nonlinear (LeVeque, 1994) for all the solutions developed in this chapter. The

analytical solution to the Riemann problem can then be constructed in the

composition space.

The three unknowns for this system form a three dimensional composi-

tion space (Figure 8.1). The initial and the injected concentrations are points

cI and cJ with coordinates (c1I , c2I , caI) and (c1J , c2J , caJ) respectively. The

Riemann solution in this composition space consists of three waves and two

intermediate points (or constant states) cM1 and cM2 (eq 8.13). These waves

arrive in the increasing order of retardations at the observation point ξ = 1.

Hence, all solutions can be represented as,

cI
W1−→ cM1

W2−→ cM2

W3−→ cJ . (8.20)

The fast wave has a constant speed (σ1=1) so the wave W1 is a contact discon-

tinuity (D). The other two waves can be rarefactions or shocks. The analytical

solution for this system then consists of finding the intermediate points cM1

and cM2 and the nature of waves W2 and W3 (shock or rarefaction), that

connect them.

8.3.1 Anion Wave and Cation Exchange Waves

Lake et al. (2003) have shown that the eigenvector equations offer in-

sights into the nature of the solution in the composition space. The eigenvalue

associated with W1, also called the anion wave, is σ1 = 1. The eigenvector
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Figure 8.1: Composition space and waves for a system with three cations and
one anion. The lines in constant anion plane represent solution paths in the
composition space.
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equation for σ1 can be simplied to obtain,

ĉ22
dc2

dσ
+ ĉ23

dc3

dσ
+ ĉ2a

dca
dσ

= 0 ⇒ dĉ2

dσ
= 0.

ĉ32
dc2

dσ
+ ĉ33

dc3

dσ
+ ĉ3a

dca
dσ

= 0 ⇒ dĉ3

dσ
= 0. (8.21)

Eq 8.21 implies that the adsorbed concentrations, ĉ2 and ĉ3, do not change

along the anion wave W1. Hence, cM1 = cI .

The eigenvector equations for the other eigenvalues σi (i = 2, 3) can

also be simplified to obtain,

(1− σi)
dca
dσi

= 0 ⇒ dca
dσi

= 0.

(1 + ĉ22 − σi)
dc2

dσi
+ ĉ23

dc3

dσi
= 0 ⇒ dc2

dc3

=
ĉ12

σi − 1− ĉ11

. (8.22)

This implies that the anion concentration does not change along W2 and W3.

Thus, in the composition space, the points cM1 , cM2 and cJ lie on a plane of

constant anion concentration (See Figure 8.1). Because only cation concentra-

tions changes along W2 and W3, they are referred to as the cation exchange

waves.

In summary, the adsorbed concentrations do not change along anion

wave W1, so that ĉM1 = ĉI . Hence, at point cM1 , all the adsorbed concentra-

tions are known. Also, the intermediate point cM1 lies in the plane of injected

anion concentration so that c3M1 = c3J . The law of mass action equations and

charge conservation at anion plane c3J are used to obtain a quadratic equation.
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Using the positive root,

c1M1 =

−1 +

√
1 + 4caJ

(
ĉ2I

ĉ21IK21
+ ĉ3I

ĉ21IK31

)
2
(

ĉ2I
ĉ21IK21

+ ĉ3I
ĉ21IK31

) . (8.23)

The other flowing concentrations are calculated using the law of mass action,

c2M1 =
ĉ2M1c

2
1M1

K21ĉ2
1M1

and c3M1 =
ĉ3M1c

2
1M1

K31ĉ2
1M1

. (8.24)

The eigenvalue-eigenvector analysis (8.21-8.22) is generic and can be

extended to a system of Nc cations and one anion. The matrix A will have

Nc eigenvalues including σ1 = 1 corresponding to anion wave W1. The anion

concentration changes from the initial to the injected concentration along W1

and will remain constant along all the other Nc−1 cation waves. The adsorbed

concentrations are constant across W1 and can be used to obtain the first

intermediate point cM1 .

In the three cation case, the other intermediate point cM2 lies at the

intersection of wave W2 from point cM1 and wave W3 from point cJ (Figure

8.1). The waves W2 and W3 can be rarefactions or shocks. Hugoniot loci and

integral curves are sets of admissible shocks and rarefaction waves, respectively.

8.3.2 Hugoniot Loci and Integral Curves

Hugoniot loci are the set of all points in the composition space that

connect two states with a discontinuity and satisfy the Rankine-Hugoniot jump

condition. The Rankine-Hugoniot jump condition connecting any two points,
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cL as the left state and cR as the right state can be given as,

σ̃p =
(ĉR + cR)− (ĉL + cL)

cR − cL
. (8.25)

The Hugoniot curve from point cM1 (left state for wave W2) is the locus

of all points cR, the right state, that satisfy this jump condition. The vector

equation (G.4) results in the following scalar equation,

(ĉ2R + c2R)− (ĉ2M1 + c2M1)

c2R − c2M1

=
(ĉ3R + c3R)− (ĉ3M1 + c3M1)

c3R − c3M1

. (8.26)

In this equation, the adsorbed concentrations can be expressed as a function of

aqueous concentrations using isotherm expressions available in Table 8.2. The

Hugoniot curves from point cM1 are obtained by solving for the root of this

algebraic equation numerically in the plane of constant anion concentration

caJ . A similar algebraic equation for the Hugoniot curve from point cJ , the

right state for wave W3, is used to obtain the unknown compositions cL,

representing the left state, that satisfy the Rankine-Hugoniot condition.

The integral curves from any point in the composition space is the set

of points obtained by integrating along the eigenvectors from that point. The

two ODEs resulting from the two eigenvalues in (8.22) are,(
dc2

dc3

)
σ2

=

[
2ĉ23

ĉ33 − ĉ22 −
√

(ĉ22 − ĉ33)2 + 4ĉ23ĉ32

]
; (8.27)

(
dc2

dc3

)
σ3

=

[
2ĉ23

ĉ33 − ĉ22 +
√

(ĉ22 − ĉ33)2 + 4ĉ23ĉ32

]
. (8.28)

The integral curves from cJ can be obtained by numerically integrating these

ODEs and using the initial condition,

c2(c3J) = c2J . (8.29)
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Table 8.3: Classification of Cation Exchange Waves for Three Cation and
One Anion System . Here, Si represents wave Wi is a shock wave while Ri

represents wave Wi is a rarefaction wave.
Wave combination Condition on W2 Condition on W3

(W2-W3)
S2 − S3 (σ2)M1 ≥ (σ2)R ≥ (σ2)M2 (σ3)M2 ≥ (σ3)L ≥ (σ3)J

R2 − R3 (σ2)M1 ≤ (σ2)R ≤ (σ2)M2 (σ3)M2 ≤ (σ3)L ≤ (σ3)J

S2 − R3 (σ2)M1 ≥ (σ2)R ≥ (σ2)M2 (σ3)M2 ≤ (σ3)L ≤ (σ3)J

R2 − S3 (σ2)M1 ≤ (σ2)R ≤ (σ2)M2 (σ3)M2 ≥ (σ3)L ≥ (σ3)J

A similar set of equations are used to obtain the integral curve from cM1 . The

derivatives of the adsorbed concentrations in (eqs G.6) and (G.7) are obtained

from the adsorption isotherm expressions in Table 8.2.

The entropy condition is used to determine the nature of waves W2

and W3 (Lax, 1957). There are four posssibilities, two each (rarefaction and

shock) for waves W2 and W3, depending on the behavior of eigenvalues along

these waves. The appropriate wave can be identified using conditions listed

in Table 8.3. The point cM2 lies at the intersection of the waves from cJ and

cM1 . The intermediate points, cM1 and cM2 , along with the appropriate waves

(shocks or rarefactions) connecting them is the complete analytical solution in

the composition space for this system.

The composition space solution can be used to obtain concentration

history (concentration versus time) as well as profile (concentration versus

distance). The initial, cI , injected, cJ , and the intermediate concentrations,
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cM1 and cM2 , appear as constant states in these plots and are connected by

appropriately identified waves (shocks or rarefactions). If the wave Wp is a

shock, there will be a sharp discontinuity in the concentration between the

constant states. This discontinuity travels with velocity given by the Rankine-

Hugoniot jump condition (σ̃p is reciprocal of velocity in eq G.4). However, if

the wave Wp is a rarefaction wave, all concentrations between the constant

states occur in the plot. Each concentration travels with velocity given by the

reciprocal of eigenvalue, 1/σp, at that point. The analytical solution from the

composition space can thus be used to construct composition profile/history

plots for any combination of initial and injection composition.

8.4 Results and Discussion

The prediction of concentration histories from the analytical solution,

developed in the previous section, was compared with experimental data at

laboratory and field scale. This is the first direct comparison of analytical

solution with experimental values at both scales.

8.4.1 Laboratory Scale

Voegelin et al. (2000) performed laboratory experiments to study the

cation exchange and transport between cations Na+, Mg2+ and Ca2+ and

anion Cl− using adsorption columns. They performed detailed characterization

experiments to understand the adsorption behavior in multiple combinations

of binary systems. They further performed a series of transport experiments
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for the ternary system using a mixture of electrolytes NaCl, MgCl2 and CaCl2

at constant pH. These well characterized experiments provide an optimal test

for the analytical theory.

8.4.1.1 Summary of experiments

In the original paper, Voegelin et al. (2000) obtained the binary inter-

action coefficients for different isotherm models as best fits to multiple combi-

nations of binary adsorption experimental data. These isotherm models differ

in their use of an additional emperical parameter nij in the mass action law,

Kij =
ĉνij
ĉ
νj
i

(
c
νj
i

cνij

)nij

. (8.30)

This emperical parameter nij helps account for nonidealities of the phases and

the heterogenieties in the solid phase. The emperical parameter and the binary

interaction coefficients are estimated using the experimental data.

All phases are assumed ideal for the development of the analytical so-

lutions and use the mass action without any emperical constants. This is

equivalent to the 1-site Gaines-Thomas isotherm Voegelin et al. (2000) . The

binary interaction coefficients along with the cation exchange capacity, used

for the development of analytical solutions, are listed in Table 8.4.

In the ternary experiments, varying concentration of electrolyte mix-

tures were injected sequentially for a fixed interval of time. The effluent so-

lution was sampled at regular intervals and the cation concentrations were

determined using atomic absorption spectroscopy. While results from a nu-
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Table 8.4: Constants used for Development of Analytical Solution.
Parameter Laboratory scale Field scale

(Voegelin et al., 2000) (Valocchi et al., 1981b)
K21 46.933 1.7 eq/litre
K31 67.839 3.0 eq/litre
Zv 0.1171 (mol/litre) 0.1 meq/litre
Pore volume Column 1 = 2.11 ml 401.9 m3

Column 2 = 3.87 ml

merical model were compared with experiments in Voegelin et al. (2000), ana-

lytical solutions have been developed and compared them with effluent cation

concentrations reported in the ternary experiments.

The ternary experiments chosen for comparison with the analytical so-

lution are listed in Table 8.5. Within each experiment, sufficient pore volumes

were injected and the injected concentration was changed only after the efflu-

ent cation concentrations stabilized. Hence, each experiment in Voegelin et al.

(2000) corresponds to multiple solutions of different Riemann problems as the

waves do not interfere. Experiments 4 and 5 have been excluded from the anal-

ysis because it is not clear if all waves eluted before the injected concentration

was changed. In Table 8.5, three parts each for Experiment 1 and 3 and two

parts in Experiment 6 that constitute eight separate Riemann problems have

been identified. Analytical solutions have been developed for each of these

Riemann problems.

176



Table 8.5: Ternary Transport Experiments in Voegelin et al. (2000). Eq in the
table stands for equivalent concentration.
No Influent CaCl2 MgCl2 NaCl Eq Ca Eq Mg Eq Na Eq Cl

(pore (mM) (mM) (mM) c2(mM) c1(mM) c3(mM) ca(mM)
volumes)

1 < 0 5.2 4.55 4.65 10.4 9.1 4.65 24.15
0 5.3 - - 10.6 - - 10.6
20 - 2.4 4.6 - 4.8 4.6 9.4
65 5.2 4.55 4.65 10.4 9.1 4.65 24.15

3 < 0 5.4 5 95 10.8 10 95 115.8
0 5 - - 10 - - 10
20 - 2.6 95 - 5.2 95 100.2
65 5.7 5.4 95 11.4 10.8 95 117.2

6 < 0 11.5 49 470 23 98 470 591
0 3.1 0.62 1.7 6.2 1.24 1.7 9.14
20 11.5 49 470 23 98 470 591

8.4.1.2 Analytical solution and experimental data

Figure 8.2 shows the adsorption isotherms resulting from the constant

anion plane (c3=0.0091 M) in the analytical solution for Experiment 6.1. The

eigenvalues for this system were observed to be real, distinct and positive. The

eigenvalues σ2 and σ3 were also monotonic and hence the fields are genuinely

nonlinear. The solution to the Riemann problem can therefore be constructed

using the theory described in the previous section.

The complete analytical solution obtained for the experiments are sum-

marized in Tables 8.6- 8.8. The first intermediate point cM1 is obtained (eqs

G.2 and G.3) using the inference that the adsorbed concentrations are constant

along wave W1. The other intermediate point cM2 is obtained by the intersec-

tion of waves W3 and W2 from points cJ from cM1 respectively. The Hugoniot
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Figure 8.2: Adsorption isotherm for constant anion plane of c3 = 0.0091 M in
for Experiment 6 in Voegelin et al. (2000)
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Table 8.6: Analytical Solution for Experiments 1 and 2 in Voegelin et al.
(2000).
Part Equivalent cI cJ cM1 cM2 W1- W2- W3

concentration (moles/ (moles/ (moles/ (moles/
(c) litre) litre) litre) litre)

1 Na, c1 0.0046 - 0.0029 - D1 − S2 − S3

Mg, c2 0.0091 - 0.0036 0.00496
Ca, c3 0.0104 0.0106 0.0041 0.00564
Cl, ca 0.0241 0.0106 0.0106 0.0106

2 Na, c1 - 0.0046 - 0.00458 D1 − R2 − R3

Mg, c2 - 0.0048 - -
Ca, c3 0.0106 - 0.0094 0.00482
Cl, ca 0.0106 0.0094 0.0094 0.0094

3 Na, c1 0.0046 0.0046 0.0083 0.0047 D1 − S2 − S3

Mg, c2 0.0048 0.0091 0.0158 0.0195
Ca, c3 - 0.0104 - -
Cl, ca 0.0094 0.0241 0.0241 0.0242

loci and integral curves are constructed using the procedure explained in sec-

tion 8.3.2. The appropriate waves in the solution are identified based on the

criteria listed in Table 8.3.

The analytical solution for Experiments 6.1 and 3.2 compare well with

the experimental data in the composition space (Figures 8.3 and 8.5). A

contrast in the nature of waves is observed during the displacement for these

experiments. Because points cM1 and cJ lie on the same plane, one can charac-

terize these waves based on their relative position and divide the composition

space into four regions. Each region shows a different displacement behavior.

The intermediate point cM1 in Experiment 6.1 lies in the region of only shocks

(region 1 in Figure 8.3) so that cM2 lies at the intersection of Hugoniot loci
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Table 8.7: Analytical Solution for Experiment 3 in Voegelin et al. (2000).
Part Equivalent cI cJ cM1 cM2 W1- W2- W3

concentration (moles/ (moles/ (moles/ (moles/
(c) litre) litre) litre) litre)

1 Na, c1 0.095 - 0.0098 0 D1 − S2 − S3

Mg, c2 0.01 - 0.0001 0.005268
Ca, c3 0.0108 0.01 0.0001 0.004731
Cl, ca 0.1158 0.01 0.01 0.01

2 Na, c1 - 0.095 - 0.0943 D1 − R2 − R3

Mg, c2 - 0.0052 - -
Ca, c3 0.01 - 0.1002 0.0059
Cl, ca 0.01 0.1002 0.1002 0.1002

3 Na, c1 0.095 0.095 0.1102 0.0956 D1 − S2 − S3

Mg, c2 0.0052 0.0108 0.007 0.0216
Ca, c3 - 0.0114 - -
Cl, ca 0.1002 0.1172 0.1172 0.1172

Table 8.8: Analytical Solution for Experiment 6 in Voegelin et al. (2000).
Part Equivalent cI cJ cM1 cM2 W1- W2- W3

concentration (moles/ (moles/ (moles/ (moles/
(c) litre) litre) litre) litre)

1 Na, c1 0.47 0.0017 0.0091 0.0017 D1 − S2 − S3

Mg, c2 0.098 0.00124 3.67E-005 0.0062
Ca, c3 0.023 0.0062 8.61E-006 0.0012
Cl, ca 0.591 0.0091 0.0091 0.0091

2 Na, c1 0.0017 0.47 0.015 0.457 D1 − R2 − R3

Mg, c2 0.00124 0.098 0.096 0.0171
Ca, c3 0.0062 0.023 0.48 0.117
Cl, ca 0.0091 0.591 0.591 0.591
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from points cJ and cM1 (S2 and S3). The intermediate point cM1 in Experi-

ment 3.2 lies in the two rarefaction region (region 3 in Figure 8.5) so that cM2

lies at the intersection of integral curves from points cJ and cM1 (R2 and R3).

The effluent profile is captured well by the analytical solution (Figures 8.4 and

8.6).

The analytical solution predicts the intermediate constant states cM1

and cM2 to a reasonable accuracy. The analytical solution is also able to predict

the trend of concentration changes and compares well with laboratory experi-

ments. The sharp Ca concentration peak in Figure 8.6, not easily identifiable

during experiments, is also captured well by the analytical solution.

Predictions from the numerical model using finite differences, presented

in chapter 7, is used to verify the analytical solution predictions. The numerical

model using the Gibbs free energy minimization approach was used to make

predictions for this case of three cations. The values of the variables used in

the numerical model are Pe = 109, ∆τ = 0.004 and ∆ξ = 0.005 for laboratory

experiments and ∆ξ = 0.004 for the field case. A large value of Pe has

been chosen to represent the hyperbolic equation. Also, a smaller value of

∆ξ was chosen to minimize numerical dispersion. The predictions from the

numerical model are compared with the analytical solutions and the measured

effluent concentrations in Figures 8.4 and 8.6. The numerical solution matches

well with analytical solutions, further increasing our confidence in analytical

solutions.

For the laboratory case, the prediction of wave W2 as a shock is earlier
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than that observed in the experiments (Figures 8.4 and 8.6). One likely ex-

planation is the binary interaction coefficients, estimated using experiments,

have been observed to be a function of concentration (Voegelin et al., 2000).

However, these coefficients are assumed to be constants over the entire range

of concentrations. The analytical solution predicts a shock (sharp disconti-

nuity) for both waves W2 and W3 while a smooth concentration profile was

observed in experiments. Hydrodynamic dispersion and slow reaction kinetics

could lead to a broadening of the shock fronts to a finite width (Rhee et al.,

1971).

8.4.2 Field Scale

The field case study described in chapter 7 fits the description of a

Riemann problem with a constant initial and a constant injected concentration.

The native groundwater composition at the monitoring well and the injected

water composition are listed in Table 8.9.

However, the initial and the injected equivalent concentrations of the

cations do not add up to the anion concentration in Table 8.9. In addition to

K+, that constitutes a minor portion of the initial concentration observed in

the field Valocchi et al. (1981a), there could also be other cations and anions.

The analytical solutions have been constructed by neglecting the presence

of these other cations and an equivalent anion concentration, obtained from

charge balance (Table 8.9), has been used. The binary interaction coefficients,

determined in the laboratory, and reported in the original paper (Valocchi
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Table 8.9: Field Scale Effluent Concentration Measurements at Producing Well
S23 Described in (Valocchi et al., 1981b).* is the equivalent concentration (Eq)
calculated using charge balance and used to construct the analytical solution.
Component Well initial Standard Injection Eq Eq

composition deviation composition initial injected
(mg/l) (mg/l) (mg/l) (mM) (mM)

Cl− 5700 54 320 160.6 (144.62* ) 9 (14.7*)
Na+ 1990 30 216 86.52 9.4
Mg2+ 436 5.6 12 35.9 1
Ca2+ 444 12 85 22.2 4.3

Table 8.10: Analytical Solution for Ternary Transport Data in Producing Well
S23 in Valocchi et al. (1981b)

Equivalent cI cJ cM1 cM2 W1- W2- W3

concentration (moles/ (moles/ (moles/ (moles/
(c) litre) litre) litre) litre)
Na+, c1 0.08652 0.0094 0.0133 0.0095 D1 − S2 − S3

Mg2+, c2 0.0359 0.001 0.0009 0.0033
Ca2+, c3 0.0222 0.0043 0.0005 0.0019
Cl−, ca 0.14462 0.0147 0.0147 0.0147

et al., 1981b) are used for the development of this analytical solution (Table

8.4).

The eigenvalues for the field case were also observed to be real, distinct

and positive along with monotonic σ2 and σ3. The analytical solution to get

the intermediate compositions and the nature of the waves is similar to the

laboratory case in Experient 6.1. Figure 8.7 shows the comparison in the

composition space. The intermediate point cM2 is obtained by the intersection

of the Hugoniot curves (S2 and S3) from points cM1 and cJ (Table 8.10). The

analytical predictions, along with the numerical solution compare well with
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the effluent cation measured at the observation well S23 (Figure 8.8).

As in the laboratory case, the analytical solution predicts the trend of

concentration changes at the field scale. Dispersion increases at the field scale

and hence both the waves W2 and W3 are more disperse at the field scale

(Figure 8.8). Ca2+, Mg2+, Na+ and Cl− are only the major ions present in

groundwater Valocchi et al. (1981a). The other ions, also present in the na-

tive ground water, may form complexes. This could account for the deviation

between experimental and analytical results, especially for the anion concen-

tration. Though radial flow occurs in the field, linear flow has been assumed

for the development of analytical solutions. The heterogeneities at the field

scale and our assumption of constant porosity and constant exchange capacity

could also contribute to the deviation.

8.5 Conclusions

Analytical solutions for 1D heterovalent cation exchange for a ternary

system in a uniformly porous medium have been developed in the limit of local

equilibrium and no dispersion. The predictions from the analytical solution

for Riemann problems with constant initial and injection composition compare

well with experimental data obtained at two different scales - laboratory scale

and field scale. A numerical solution has also been developed that shows good

agreement with the analytical solution.

The theory developed here allows the inspection of all possible solutions

as a set of admissible paths in composition space for any set of initial and in-
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(1981b)
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jected concentrations. The theory clearly delineates regions in the composition

space that realize four types of displacements in ternary cation exchange sys-

tems.

The theory predicts the first order structure of the reaction fronts at

both field and laboratory scales and hence provides a good estimate at either

scales. This can further help in designing experiments as well as validate field

remediation processes in a laboratory.
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Chapter 9

Conclusions and Recommendations

In this chapter, a summary of conclusions is presented along with rec-

ommendations for future research.

9.1 Conclusions

A framework for integrating phase behavior and geochemical reactions

was developed using the Gibbs free energy function in this research. The

presented Gibbs free energy model is capable of combining different phase de-

scriptions (EOS and activity coefficient models) to estimate equilibrium com-

positions at different temperatures and pressures. The Gibbs free energy model

can be used to predict equilibrium concentrations for not just phase equilib-

rium (no reactions) but also phase and chemical reactions (with geochemical

reactions) using the standard state of all components.

The use of Gibbs free energy model in batch calculations were demon-

strated for two applications. In the first application, acid gas solubility models

in pure water as well as brine with ions were developed that give better predic-

tions at high pressures than the Henry’s law model with fugacity correactions.

The solubility models have applications in CO2 sequestration as well as for de-
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signing acid gas reinjection schemes to produce from contaminated gas fields.

In the second application, the Gibbs free energy model was used for

predicting phase equilibrium of hydrocarbon mixtures- CO2-nC14H30 and CH4-

CO2. The model was also used to predict the impact of geochemical reactions,

occuring because of ions in the brine as well as solid CaCO3, on the hydrocar-

bon phase behavior during CO2 injection for enhancing oil recovery.

The Gibbs free energy model was integrated with 1D flow using the

operator splitting approach for a case of cation exchange reactions with three

cations. A similar integration with the stochiometric approach was also pre-

sented. The Gibbs free energy approach was observed to be faster than the

stochiometric approach and hence, preferable for integration in compositional

simulators.

The Gibbs free energy model can be adapted for different reservoir

brines. The major components present in the brine can be identified and the

Gibbs free energy model can be used to predict the change in phase behavior

of hydrocarbons, and hence oil recovery, if CO2 is injected especially in a

carbonate reservoir.

Analytical solutions were developed for this case of three cation ex-

change reactions with 1D flow. The analytical solutions were compared with a

numerical model developed using the Gibbs free energy model as well as with

experimental data that was available at both laboratory and field scales.
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9.2 Recommendations

The recommendations for improving the Gibbs free energy model and

using the Gibbs free energy function as a unifying function for different appli-

cations as listed below -

1. One of the limitations of the model is the need to define all components

present in the system. The field brine composition along with the hydro-

carbon composition can help define all the components in the system. If

some components that are present in the system are not included in the

computations, the equilibrium compositions can be different. A future

research project can investigate which components (from those typically

present in a carbonate system), when included or excluded in computa-

tions, impact the equilibrium compositions drastically.

2. The tangent plane criteria for a system where all components are not

present in all phases, derived in section 4.4, can be validated for cases

of hydrocarbons with brine where there are no reactions. The tangent

plane criteria can be extended to cases with reactions and hence identify

the global from the local minimia for use in compositional simulations.

3. The current method of finding equilibrium compositions presented in

this research involves finding the Gibbs free energy value of the system

at different local minima to identify the global minima. While a simple

Newton algorithm is used to find a minimum in the Gibbs free energy

function of the system, more sophisticated algorithms for minimization
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can be used to identify global minimia from the local minima. This is

especially pertinent for cases when the number of hydrocarbon phases

and the components increase. These algorithms can help reduce the time

required to estimate equilibrium composition and help integration of the

Gibbs free energy model in numerical simulators.

4. One of the challenges associated with current approach of integrating

the geochemical package PHREEQC with UTCOMP (Kazemi Nia Ko-

rrani et al., 2014, 2013) is the time taken for simulations. The Gibbs

free energy model, presented in this research, provides a potential way

to integrate the extensive set of reactions, included in the PHREEQC

package, in compositional simulators and reduce computational times.

This integration can help quantify the impact of reactions on oil recov-

ery predictions.

5. Experimental results are not available for the entire system consisting of

CO2, hydrocarbons, solid phase and the aqueous phase with ions. These

results can help validate the model predictions.

6. Researchers have proposed that geochemical reactions are responsible for

the increase in oil recovery observed during the low salinity waterflood

process in laboratory as well as field scales. The ability of the Gibbs

free energy model to include geochemical reactions can help model and

explain these observations and make predictions.
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7. The Gibbs free energy model can be used to develop macroscopic thermo-

dynamic models for methane hydrates. One proposed recovery scheme

involves injecting CO2 and recovering CH4 while sequestering CO2. Ther-

modynamic models can be developed by modeling the hydrate formation

and dissociation as a precipitation/dissolution reaction and find optimum

pressure and temperature conditions for recovery.

8. The Gibbs free energy model can be also used to find equilibrium com-

positions at different scales by adding the appropriate energy function

relevant at that scale. As an example, energy because of capillarity can

be appropriately added for finding the equilibrium composition at the

microscopic scale of shale rocks. This can be used for developing phase

behavior models of hydrocarbons trapped in narrow pores of shale gas.

9. In addition to chemical compositions, the Gibbs free energy function can

also be used to compute the equilibrium state of a system under deforma-

tion by addition of strain energy to the Gibbs free energy function. The

Gibbs free energy function along with the strain energy can be further

used to predict fracture propogation in reservoirs.
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Appendix A

Gibbs Free Energy Expressions

In this appendix, the Gibbs free energy expressions for components in

different phases are presented.

A.1 Gas Phase Components

The expression for Gibbs free energy for a component present as a pure

component is different than if the component were present in a mixture.

A.1.0.1 Pure component

The reference state for Gibbs free energy for an ideal gas single com-

ponent system is the value of the molar Gibbs free energy at standard con-

ditions of unit atmosphere pressure (P r = P0 = 1 atm) and temperature,

T r = T0 = 25◦C. Thus, eq 4.9 for an ideal gas can be written as,

G
¯

IG(T0, P ) = G
¯

IG(T0, P0) +RTln
P

P0

(A.1)

For a real gas (non-ideal gas), the corresponding equation for the molar Gibbs

free energy, G
¯

, is written in terms of the fugacity f ,

G
¯

(T0, P ) = G
¯

IG(T0, P0) +RTln
f

P0

(A.2)
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The fugacity of any real fluid is also a measure of the deviation of the Gibbs free

energy of that fluid from the ideal gas state. This is explained by considering

the Gibbs free energy of an ideal gas at temperature (T ) and pressure (P ) as

the reference state instead of standard conditions (T0 and P0). This results in,

G
¯

(T0, P ) = G
¯

IG(T0, P ) +RTln
f

P

=⇒ f = Pexp

G¯ (T0, P )−G
¯

IG(T0, P )

RT

 (A.3)

Eqn A.3 is also used to define fugacity (Sandler, 2006) as a psuedo measure

of pressure for a real fluid. Also, fugacity coefficient is defined as φ = f/P .

Further, it is possible to evaluate this deviation by integrating eq 4.2 for ideal

and real gas between any two pressures,

G
¯

IG(T0, P2)−G
¯

IG(T0, P1) =

∫ P2

P1

V
¯

IGdP =

∫ P2

P1

RT

P
dP (A.4)

G
¯

(T0, P2)−G
¯

(T0, P1) =

∫ P2

P1

V
¯
dP (A.5)

Subtracting eqns A.4 from A.5, setting P1 = 0 along with recognition that all

fluids are ideal at P = 0 (Sandler, 2006) results in,

G
¯

(T0, P )−G
¯

IG(T0, P ) =

∫ P

0

(
V
¯
− RT

P

)
dP (A.6)

Eqn A.6 is a general expression of the deviation in the Gibbs free energy

from ideal gas state for any fluid. The fugacity as well as fugacity coefficient

at different pressures can be estimated using this expression if experimental

measurements of molar volume are available. These values of fugacities are

199



subsequently used in the Gibbs free energy expressions in eq A.2. Also, the

expressions of molar volume available for fluids described using different Equa-

tion of State (EOS) (Sandler, 2006) like Peng Robinson, Virial, SRK etc. can

be used to evaluate the integral in eq A.6.

A.1.0.2 Component in a mixture

The corresponding equation for the partial molar Gibbs free energy of

component i in an ideal gas mixture (ḠIGM
ig ) using eq 4.6 is,

ḠIGM
ig (T0, P ) = Gi

¯

IG(T0, P0) +RTln
Pi
P0

= Gi
¯

IG(T0, P0) +RTln
yiP

P0

(A.7)

For real gas mixtures, the partial molar Gibbs free energy of component i

having mole fraction yi in the mixture, can be given in terms of fugacity of

component, f̄i, or fugacity coefficient, φ̂i, as,

Ḡig(T0, P ) = Gi
¯

IG(T0, P0) +RTln
f̄i
P0

= Gi
¯

IG(T0, P0) +RTln
yiφ̂iP

P0

(A.8)

Eqns A.7 and A.8 relate the partial molar Gibbs free energy of a component

in a gas mixture (Ḡig) with the Gibbs free energy of the pure component as an

ideal gas (Gi
¯

IG). The expressions for fugacity coefficient of a component in a

mixture, described using different Equation of States (EOS), is also available

(Sandler, 2006) for use in eq A.8 directly.

A.2 Hydrocarbon Phase Components

An equation of state description, especially PR EOS, is commonly used

for hydrocarbon phase components. The reference state for components in the
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hydrocarbon phase is the hypothetical pure component ideal gas property at

standard conditions. All the equations developed for real gas phase compo-

nents (pure fluids in eq A.2 and mixtures in eq A.8) in the previous section

hold good for components in the hydrocarbon phase.

A.3 Aqueous Phase Components

An activity coefficient model is generally used to describe components

present as solutes in the aqueous phase. In the Lewis-Randall convention

(Table 4.1), the reference state for solute is different than that for the solvent

H2O. The reference state for solutes is the Gibbs free energy value, Ḡ∗i , at unit

molality at standard conditions (T0 and P0). For consistency, we convert this

reference state value of Gibbs free energy from unit molality of solute in the

Lewis-Randall convention (Ḡ∗i ) to unit molarity of the solute (Ḡ0
s) using the

molecular weight M0 of water to obtain,

Ḡ0
i = Ḡ∗i +RTln

(
1000

M0

)
. (A.9)

The expression for partial molar Gibbs free energy of a solute component i

in water (Ḡiw) at any pressure (P ) having molality mi (or molarity xi) and

described using an activity coefficient γi is given as,

Ḡiw(To, P ) = Ḡ∗i (To, Po) +RTln
miγifi
f 0
i

= Ḡ0
i (To, Po) +RTln

xiγifi
f 0
i

. (A.10)

Here, fi is the pure component fugacity at the desired pressure P while f 0
i

is the fugacity of the pure component at standard pressure, P0. Both these

fugacities are at the same temperature T0.
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However, the Gibbs free energy of pure water at standard conditions

(G0
w

¯

) is the reference state for the solvent, H2O, in the Lewis-Randall con-

vention. Using this reference state, the Gibbs free energy expression for the

solvent at any pressure P is,

Ḡw(To, P ) = G0
w

¯

(To, Po) +RTln

(
xwγwfw
f 0
w

)
. (A.11)

In this equation, xw is the mole fraction of water in the solution, γw is the

activity coefficient for water, fw is the fugacity of pure component water at

mixture pressure P while f 0
w is the fugacity of pure water at standard condi-

tions (P0 and T0).

A.4 Solid Phase Components

The reference state used for components in a solid phase is the pure

component property at standard conditions. This is the same as the reference

state for pure water. The partial molar Gibbs free energy for component i in

the solid phase (Ḡis) is,

Ḡis(To, P ) = Gi
¯

0(To, Po) +RTln

(
ziδifs
f 0
s

)
(A.12)

Here, Gi
¯

0 is the Gibbs free energy of the pure component at standard pressure

P0, fs is the fugacity of pure solid component at pressure P , f 0
s is fugacity of

pure component at standard pressure P0, zi is the mole fraction of the solid

component in the solid phase and δi is the activity coefficient in the solid

phase.

202



In this dissertation, for all applications involving solid components, each

component is taken as a separate phase. The Gibbs free energy expression for

any solid component with this assumption is,

G0
i

¯

(To, P ) = G0
i

¯

(To, Po) +RTln

(
fs
f 0
s

)
(A.13)

The Gibbs free energy expressions presented in this appendix are used

in the Gibbs free energy function for the entire system.
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Appendix B

Pitzer Activity Coefficient Model

The Pitzers activity coefficient is extensively used to model the impact

of ions in geochemistry in high salinity brines. It is used for solutions when the

ionic strength I is greater than 0.02. The ionic strength measures ionic activity

where mi and zi as molality and charge of component i, respectively and given

as I = 0.5
∑

i zim
2
i . The more popular Debye-Huckel activity coefficients and

their extensions, are only used for solutions with ionic strengths less than 1.

For solutions with even higher ionic strengths, Mayer (1950) proposed

a theoritically consistent virial expansion of the activity coefficient for high

ionic concentrations that also accurately represents the experimental data.

The expansion can be given as,

lnγi = lnγDH +
∑
j

Bij(I)mj +
∑
jk

Cijk(I)mjmk + . . . (B.1)

Here, γDH is the Dubye-Huckel activity coefficient, mi is the molality of species

i while Bij and Cijk are the second and third virial activity coefficients respec-

tively.

Harvie and Weare (1980) have adapted the Pitzer activity coefficient

model for geochemical reactions. They have shown that it is sufficient to use
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Table B.1: Interaction parameter data range and reference
Temperature Range System Reference
-60◦C - 25◦C Na-K-Ca-Mg-Cl-SO4-H2O Spencer et al. (1990)
25◦C Na-K-Mg-Ca-Cl-SO4-H2O Harvie and Weare (1980)
25◦C - 250◦C Na-Ca-Cl-SO4-H2O Møller (1988)

the second (Bij) and the third (Cijk) virial coefficients to accurately describe

mineral solubility data. These coefficients account for effects between like-

charged ions at high ionic activity as well as the solvent structure and use the

same parametrization as interaction coefficients used by Pitzer (Pitzer and

Kim, 1974; Pitzer and Mayorga, 1974, 1973). The mineral solubility data at

different temperatures were used to find temperature dependent expressions

for the interaction parameters (See Table B.1).

In this appendix, the equations as well as the interaction coefficients

for the Pitzer activity coefficient model are presented. The interaction coef-

ficients, originally defined for a system of aqueous ions and minerals (listed

in Harvie and Weare (1980)) are assumed to hold for a system that includes

hydrocarbons in addition to aqueous ions and rock (for cases discussed in chap-

ter 6 this dissertation). Although the interaction parameters are functions of

temperature and pressure, the values at 25◦C are used in all models developed

at other temperatures and pressures.

In the Pitzer activity coefficient model, mi is the molality of species i

(mc for cation with charge zc and ma for anion with charge za). Also, M , c

and c′ represent cations while X, a and a′ represent anions. The underlying
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equation for excess Gibbs free energy (GE in the Pitzer activity coefficient

model is,

GE/RT = nw

[
f(I) +

∑
i

∑
j

λij(I)mimj

+
∑
i

∑
j

∑
k

µijkmimjmk

]
(B.2)

Here, both the first term f(I) is the Debye-Huckel coefficient and the second

coefficient in the virial expansion λij(I) are functions of the ionic strength, I,

while the third coefficient µijk is independent of I.

B.1 Solvent

The expression for GE is used to derive expressions for osmotic coef-

ficient and the activity coefficients of components. The osmotic coefficient

measures the deviation of the solvent (water) from ideal behavior. The ex-

pression for osmotic coefficient (φ) for the Pitzer activity coefficient model

is,

φ− 1 =
2∑

i

mi

[
− AφI3/2

1 + bI1/2
+
∑
c

∑
a

mcma(B
φ
ca + ZCca)

+
∑
c

∑
c′

mcmc′(φ
φ
cc′ +

∑
a

maψcc′a)

+
∑
a

∑
a′

mama′(φ
φ

aa′
+
∑
c

mcψaa′c)

]
. (B.3)

At 25◦C, Aφ = 0.392 and b = 1.2. In the above equation, Z =
∑

imizi. The

activity of water (aH2O) is obtained from the osmotic coefficient (φ) and given
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as (Møller et al., 1998),

lnaH2O = −0.0018(
∑
i

mi)φ. (B.4)

The other elements in eq B.3 are defined below.

B.2 Ionic Species

The activity coefficient expressions for cations (γM)and anions (γX) in

the aqueous phase are,

lnγM = z2
MF +

∑
a

ma(2BMa + ZCMa) +
∑
c

mc(2φMc +
∑
a

maψMca)

+
∑
a

∑
a′

mcma′ψaa′M + zM
∑
c

∑
a

mcmaCca (B.5)

lnγX = z2
XF +

∑
c

mc(2BcX + ZCcX) +
∑
a

ma(2φXa +
∑
c

mcψXac)

+
∑
c

∑
c′

mamc′ψcc′X + zX
∑
c

∑
a

mcmaCca (B.6)

In eqns B.5 and B.6, F represents the Debye-Huckel term and the derivatives

of the second coefficient with respect to ionic strength (I), and is given as,

F = −Aφ
[ √

I

I + b
√
I

+
2

b
ln(1 + b

√
I)

]
+
∑
c

∑
a

mcmaB
′
ca

+
∑
c

∑
c′

mcmc′φ
′
cc′ +

∑
a

∑
a′

mama′φ
′
aa′ (B.7)

As mentioned earlier, Aφ and b are considered constants with values 0.392 and

1.2 respectively. Also, B′, B, φij, φ
′
ij are coefficients of the binary interaction

parameter and ψijk is the coefficient for ternary interaction parameter.
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The expressions for coefficients Bφ
MX , BMX and B′MX in eqns B.3-B.7

for 1-1 valence type ions are,

Bφ
MX = β0

MX + β1
MXe

−α
√
I (B.8)

BMX = β0
MX + β1

MXg(α
√
I) (B.9)

B′MX = β1
MXg

′(α
√
I)/I (B.10)

In eqns B.8-B.10, α = 2 has been emperically found by Pitzer and x = α
√
I.

Besides, g(x) and g′(x) are functions defined as,

g(x) =
2[1− (1 + x)e−x]

x2
(B.11)

g′(x) = − [1− (1 + x+ 1
2
x2)e−x]

x2
(B.12)

The constants Bφ
MX , BMX and B′MX for 2-2 valence type ions (α1 = 2 and

α2 = 12) are given by,

Bφ
MX = β0

MX + β1
MXe

−α1

√
I + β2

MXe
−α2

√
I (B.13)

BMX = β0
MX + β1

MXg(α1

√
I) + β2

MXg(α2

√
I) (B.14)

B′MX = β1
MX

(
g′(α1

√
I)

I

)
+ β2

MX

(
g′(α2

√
I)

I

)
(B.15)

The constants CMX , φφij and φ′ij in eqns B.3-B.7 are,

CMX =
Cφ
MX

2
√
zMzX

(B.16)

φφij = θij + Eθij(I) + IEθ′ij(I) (B.17)

φij = θij + Eθij(I) (B.18)

φ′ij = Eθ′ij(I) (B.19)
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Here, Eθij and Eθ′ij account for electrostatic unsymmetrical mixing effects and

depend only on charges of ions i and j and the total ionic strength I. They

are both zero if i and j are of the same charge. A complete list of binary

interaction parameters for any two paris of cations/anions (φφcc′/φ
φ
aa′) as well

as ternary interaction parameters between two cations and one anion (ψcc′a)

or two anions and one cation (ψaa′c)are listed in Tables B.2 and B.4.

B.3 Neutral Components

The neutral species considered in our aqueous system for applications

discussed in chapter 6 is CO2 (aq). The Pitzer equations for activity coefficient

for CO2 (γ) to include its interaction with other ions is given as,

log γ =
∑
c

2mcλCO2−c +
∑
a

2maλCO2−a +
∑
c

∑
a

mcmaξCO2−c−a. (B.20)

The binary interaction parameter (λ) and the ternary interaction parame-

ter (ξ) between CO2 and different anions and cations at 25◦C (He and Morse,

1993) are given in Tables B.3 and B.5 respectively. The interaction coefficients

are functions of temperature and pressure. However, for all applications dis-

cussed in this dissertation, the values at 25◦C are used for models at different

temperatures and pressures.
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Table B.2: Pitzer binary interaction parameters between different cations and
anions (Harvie and Weare, 1980; He and Morse, 1993)

Component Component β0
MX β1

MX β2
MX Cφ

MX

(i) (j)
Na+ Cl− 0.0765 0.2664 - 0.00127
Na+ SO2−

4 0.01958 1.113 - 0.00497
Na+ HCO−3 0.028 0.044 - -
Na+ CO2−

3 0.036 1.512 - 0.0052
K+ Cl− 0.04835 0.2122 - 0.00084
K+ SO2−

4 0.04995 0.7793 - -
K+ HCO−3 -0.0107 0.048 - -
K+ CO2−

3 0.129 1.433 - 0.0005
Mg2+ Cl− 0.35235 1.6815 - 0.00519
Mg2+ SO2−

4 0.221 3.343 -37.25 0.025
Mg2+ HCO−3 0.03 0.8 - -
Mg2+ CO2−

3 - - - -
Ca2+ Cl− 0.3159 1.614 - -0.00034
Ca2+ SO2−

4 0.2 2.65 -57.7 0
Ca2+ HCO−3 0.2 0.3 - -
Ca2+ CO2−

3 - - - -

Table B.3: Binary interaction coefficient between CO2 and ionic component
(He and Morse, 1993).

Component λCO2 − j
(j)
H+ -
Na+ 0.07748
K+ 0.04583
Ca2+ 0.19775
Mg2+ 0.1946
Cl− 0.02021
SO2−

4 0.1392
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Table B.4: Pitzer binary (θij) and ternary (ψijk) interaction parameters for
dirrerent cations and anions at 25◦C (Harvie and Weare, 1980; He and Morse,
1993)

Component Component Component θij ψijk
(i) (j) (k)
Na+ K+ Cl− -0.012 -0.0018
Na+ K+ SO2−

4 - -0.01
Na+ Mg2+ Cl− 0.07 -0.012
Na+ Mg2+ SO2−

4 - -0.015
Na+ Ca2+ Cl− 0.07 -0.014
Na+ Ca2+ SO2−

4 - -0.023
K+ Mg2+ Cl− - -0.022
K+ Mg2+ SO2−

4 - -0.048
K+ Ca2+ Cl− 0.032 -0.025
K+ Ca2+ SO2−

4 - -
Mg2+ Ca2+ Cl− 0.007 -0.012
Mg2+ Ca2+ SO2−

4 - 0.05
Cl− SO2−

4 Na+ 0.02 0.0014
Cl− SO2−

4 K+ - -
Cl− SO2−

4 Mg2+ - -0.004
Cl− SO2−

4 Ca2+ - -

Table B.5: Ternary interaction coefficient between CO2 and ionic components
(He and Morse, 1993)

Component Component ξCO2−ij
(i) (j)
H+ Cl− -0.00465
Na+ Cl− -0.00055
K+ Cl− -0.01273
Ca2+ Cl− -0.01607
Mg2+ Cl− -0.01529
Na+ SO2−

4 -0.0373
K+ SO2−

4 -0.00041
Mg2+ SO2−

4 -0.09277
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Appendix C

Gibbs Free Energy Values at Reference State

from Equilibrium Constants

The standard state values of components are needed for obtaining equi-

librium composition using the Gibbs free energy minimization approach. The

experimental values of equilibrium reaction constants are, however, more ex-

tensively reported especially, for ionic reactions. While equilibrium constant

data lends itself naturally to the stochiometric approach, it can also be used

to find a set of consistent reference state values of components for use in the

Gibbs free energy minimization approach to find equilibrium composition.

Cheluget et al. (1987) have shown the general approach to obtain Gibbs

free energy values for a system with reactive components when the equilbrium

constant data is available. This approach has been adapted for a system

of cations with exchange reactions between the aqueous phase and the solid

phase. There are two independent reactions for this system,

Mg2+ + 2N̂a
 2Na+ + M̂g. K10 =
ς̂2ς

2
1

ς̂2
1 ς2

; (C.1)

Ca2+ + 2N̂a
 2Na+ + Ĉa. K20 =
ς̂3ς

2
1

ς̂2
1 ς3

. (C.2)

The values of equilibrium constants K10 and K20 are available as they have

been experimentally measured. These values are used to obtain the Gibbs
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Free Energy values at reference states (Ḡr
i ) for all the six components - Na+,

Ca2+, Mg2+, N̂a, Ĉa and M̂g. The aqueous and the solid phase are assumed

to be ideal. The partial molar Gibbs free energy (Ḡiw) of a component i with

mole fraction xi in an ideal aqueous phase (γi = 1 in eq 4.20) is given as,

Ḡiw(T, P ) = Ḡr
i (T, P ) +RTlnxi ∀ i = 1, 2, 3. (C.3)

The partial molar Gibbs free energy (Ḡps) of a component p with mole fraction

zp in the ideal solid phase (δi = 1 in eq 4.21) is given as,

Ḡps(T, P ) = Ḡr
p(T, P ) +RTlnzp ∀ p = 1, 2, 3. (C.4)

The six reference state values (Ḡr
j and Ḡr

p) are required values input to the

Gibbs free energy minimization approach for obtaining equilibrium composi-

tions using eq 7.16. These can be found from the equilibrium constants K10

and K20.

The necessary condition for a minimum in Gibbs free energy at equi-

librium for a system with N components and R reactions is,

N∑
i=1

νijḠi = 0 ∀j = 1 2, . . . , R. (C.5)

Here, N = 6, including cation components in both the aqueous and the solid

phase and R = 2. Using eqs C.3-C.5,

Ḡr
Ca2+ + 2Ḡr

N̂a
− Ḡr

Ĉa
− 2Ḡr

Na+ = RTln
x2
Na+zĈa

z2
N̂a
xCa2+

(C.6)

Ḡr
Mg2+ + 2Ḡr

N̂a
− Ḡr

M̂g
− 2Ḡr

Na+ = RTln
x2
Na+zM̂g

z2
N̂a
xMg2+

(C.7)
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The charge balance equation holds for aqueous phase components while the

cation exchange capacity equation is valid for solid phase components. This

results in,

xi =
ςi∑
i ςi

=
ςi
ςa

; zp =
ς̂p∑
p ς̂p

=
ς̂p
Zv

∀ i, p = 1, 2, 3. (C.8)

Eqns C.6 and C.7 can be further simplified in terms of known quantities to

obtain,

Ḡr
Ca2+ + 2Ḡr

N̂a
− Ḡr

Ĉa
− 2Ḡr

Na+ = RTlnK10 +RTln
Zv
ςa

(C.9)

Ḡr
Mg2+ + 2Ḡr

N̂a
− Ḡr

M̂g
− 2Ḡr

Na+ = RTlnK20 +RTln
Zv
ςa

(C.10)

The anion concentrations ςa are already known, as they are obtained indepen-

dently (section 7.2.3). The solution set comprising of the Gibbs free energy

reference state values for components is not unique as there are six unknowns

and two equations. The four independent variables are chosen as zero and a

compatible list of reference state values for the Gibbs free energy minimization

method is presented in Table C.1. These values are used in the numerical model

constructed using the Gibbs free energy minimization approach described in

section 7.2.3.
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Table C.1: Gibbs free energy reference state values for Gibbs free energy min-
imization approach

Component Value

Ḡr
Na+ 0

Ḡr
Ca2+ RTlnK10 +RTlnZv

ςa

Ḡr
Mg2+ RTlnK20 +RTlnZv

ςa

Ḡr
N̂a

0

Ḡr
Ĉa

0

Ḡr
M̂g

0
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Appendix D

Minimization Algorithm

The minimization algorithm used in the Gibbs free energy minimiza-

tion approach to find equilibrium compositions is presented in this appendix.

The RAND algorithm variation has been used for all the minimization cases

discussed in this dissertation. The equations presented and the subsequent

simplifications for ideal case are from Smith and Missen (1982b).

The minimization problem can be given as,

Minimize GT =
Nc∑
i=1

Np∑
j=1

nijḠij

Subject to
Nc∑
i=1

Np∑
j=1

akinij = bk ∀ k = 1, 2 . . .M andnij ≥ 0. (D.1)

Here, GT is the total Gibbs free energy of the system consisting Nc components

in Np phases, M is the number of elements in the system, aki is the coefficient

of moles of element k in the molecular formula of component i, bk is the

total number of moles of element k that is obtained by summing over all the

components present in the system, nij is the numbers of moles and Ḡij is

the partial molar Gibbs free energy of component i in phase j. As described

in chapter 4, there are different expressions for Ḡij depending on whether

the component is described using the EOS (hydrocarbon phase or gas phase
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component) or described using the activity coefficient model (aqueous phase

component).

D.1 Nonideal System

A Lagrangian approach is used to convert the constrained minimization

problem to an unconstrained minimization problem. The Lagrangian function

using Lagrangian parameters, λk, that is minimized can be given as,

L =
Nc∑
i=1

Np∑
j=1

nijḠij +
M∑
k=1

λk(bk −
Nc∑
i=1

Np∑
j=1

akinij). (D.2)

The necessary conditions for minimum of the Lagrangian function L

are,

∂L

∂nij
= 0 =⇒ Ḡij −

M∑
k=1

λkaki = 0.∀ i = 1, 2, . . . Nc; ∀ j = 1, 2, . . . Np.(D.3)

∂L

∂λk
= 0 =⇒ bk −

Nc∑
i=1

Np∑
j=1

akinij = 0.∀k = 1, 2 . . .M. (D.4)

The unknowns are nij (∀ i = 1, 2 . . . Nc and ∀ j = 1, 2 . . . Np) and λk

(∀ k = 1, 2 . . .M). The total number of unknowns are NcNp+M . Eqs D.3 and

D.4, together, give a total of NcNp +M equations that are solved to find the

unknowns. Linearization about an arbitrary estimate of solution (n(m), λ(m))

of eq D.3 gives,

−
Nc∑
i=1

Np∑
j=1

(
∂Ḡij

∂nij

)
n(m)

δn
(m)
j +RT

M∑
k=1

akiδλ
(m)
k = Ḡ

(m)
ij −RT

M∑
k=1

akiλ
(m)
k

∀ i = 1, 2 . . . Nc and∀ j = 1, 2 . . . Np. (D.5)
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Also,

δn
(m)
j = nj − n(m)

j . (D.6)

δλ
(m)
k = λk − λ(m)

k . (D.7)

Eq D.4 is linearized around the solution (n(m), λ(m)) to obtain ,

Nc∑
i=1

Np∑
j=1

akiδn
(m)
ij = bk − b(m)

k ; k = 1, 2, . . . ,M. (D.8)

where,

b
(m)
k =

Nc∑
i=1

Np∑
j=1

akin
(m)
ij ; k = 1, 2, . . . ,M. (D.9)

Eqs D.7-D.9 form set of NcNp +M nonlinear equations that can be solved to

obtain the unknowns. These equations are also simplified by using appropriate

expressions for Ḡij presented in Appendix A. The number of equations can be

reduced for a ideal system and this is discussed in the next section.

D.2 Ideal System

The number of nonlinear nonlinear equations can be reduced for ideal

systems. This is illustrated for a single phase system. As explained in the pre-

vious section, for a single phase system, there are Nc+M nonlinear equations.

1

RT

(
∂Ḡi

∂ni

)
=
δij
ni
− 1

jt
(D.10)

δn
(m)
i = n

(m)
i

(
M∑
k=1

aki
RT

λk + u− Ḡ
(m)
i

RT

)
; i = 1, 2, . . . , Nc. (D.11)
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u =

∑Nc

i=1 δn
(m)
i

n
(m)
t

(D.12)

M∑
s=1

(
Nc∑
k=1

askajkn
(m)
k

)
λs
RT

+ b
(m)
j u =

Nc∑
k=1

ajkn
(m)
k

Ḡ
(m)
k

RT
+ bj − b(m)

j ;

∀ j = 1, 2, . . . ,M. (D.13)

M∑
i=1

b
(m)
i

λi
RT
− nzu =

Nc∑
k=1

n
(m)
k

Ḡk

RT
(D.14)

Eqns D.13-D.14 are the M+1 equations that are solved for ideal components

(Smith and Missen, 1982b). The solution obtained by solving this minimiza-

tion problem is the equilibrium compositions for all cases discussed in this

dissertation.

In summary, only a list of components and their standard state values

are required to determine the equilibrium composition for a system with or

without reacting components.
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Appendix E

Coherence Theory

Helfferich (1981) presented the coherence theory in the context of mul-

ticomponent and multiphase flow in porous media. He proposed that the

concentration velocities of all components are equal irrespective of the nature

of waves - shock or rarefaction waves and called it the coherence condition.

We show how this is related to eigenvectors corresponding to the hyperbolic

theory developed here. Walsh and Lake (1989) have derived this relationship

for the case when the waves are rarefactions. We further extend it for cases

where the waves are shocks.

Pope et al. (1978b) used the theory of coherence to derive their analyt-

ical solution. The coherence condition for spreading waves occuring in cation

exchange (Pope et al., 1978b) can be given as,

dĉi = νdci ∀ i = 1, 2, · · · , n. (E.1)

Here, ν is the coherence velocity and is a constant for all n cation exchanging

components. Using the chain rule, (E.1) can also be written as,

j=n∑
j=1

∂ĉi
∂cj

dcj = νdci ∀ i = 1, 2, · · · , n. (E.2)
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Using ĉij =∂ĉi/ ∂cj, we get, ĉ11 ĉ12 ĉ13

ĉ21 ĉ22 ĉ23

ĉ31 ĉ32 ĉ33

 dc1

dc2

dc3

 = ν

 dc1

dc2

dc3

 . (E.3)

This eigenvalue-eigenvector equation has eigenvalues ν and can be directly

compared with (8.17). The difference is the choice of independent variables -

two cations and one anion in (8.17) whereas there are three cation concentra-

tions present in (E.3). The system in (8.17) can also be developed using three

cations as the linearly independent variables and one would obtain the same

eigenvalues (σ1, σ2 and σ3 in 8.18). We thus have,

σ = 1 + ν. (E.4)

An identical relationship exists when the wave is a shock. The coher-

ence condition in such a case is called the integral coherence (Helfferich, 1981)

and can be written as,

∆ĉi = ν̃∆ci ∀ i = 1, 2, · · · , n. (E.5)

The Rankine-Hugoniot jump condition for a shock is given by (G.4) and can

be written in scalar form for all components

σ̃ =
(ĉi,L + ci,L)− (ĉi,R + ci,R)

ci,L − ci,R
∀ i = 1, 2, · · · , n, (E.6)

or equivalently,

σ̃ = 1 +
∆ĉi
∆ci

= 1 + ν̃ ∀ i = 1, 2, · · · , n. (E.7)

The coherence condition itself, is a consequence of the hyperbolic theory and

the Riemann boundary conditions (a step change at the origin).
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Appendix F

Cation Exchange and Adsorption

The difference between modeling of cation exchange and solute adsorp-

tion processes is the presence of vacant sites in the latter case. We show

equivalence between them and the special case for which they hold.

Glueckauf (1946) has stated the equations for equilibrium chromatog-

raphy between two interacting solutes. Rhee et al. (2001) have also derived

these expressions using kinetics. We use equilibrium arguments to derive the

isotherm resulting from adsorption of a solute.

Consider two solutes, A and B, that are capable of adsorbing on surfaces

with vacant sites. Let ĉ1 and ĉ2 be the adsorbed concentrations while c1 and

c2 be the concentrations of A and B in the flowing phase respectively. Let X

represent the free sites. This process depends on the amount of vacant sites

available and let c0 be a measure of concentration for the vacant sites. The

adsorption process can be represented as an equilibrium reaction to give the

following equations,

A+ X̂ 
 ÂX K1 =
ĉ1

c1ĉ0

; (F.1)

B + X̂ 
 B̂X K2 =
ĉ2

c2ĉ0

. (F.2)
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The total number of sites on the solid surface is the exchange capacity Zv and

corresponds to the sum of occupied and free sites,

c1 + c2 + c0 = Zv. (F.3)

The isotherm expressions obtained using (F.2) and (F.3) are of the Langmuir

type and given as,

ĉ1 =
K1c1Zv

1 +K1c1 +K2c2

ĉ2 =
K2c2Zv

1 +K1c1 +K2c2

. (F.4)

The isotherm expression obtained by using balance equations (charge

and exchange capacity) and law of mass action for the case of cation exchange

between three monovalent cations (Table B.4) is,

ĉ1 =
Zvc1K10

c0 +K10c1 +K20c2

. (F.5)

Here, c0, c1 and c2 are the concentration of the three cations in the flowing

phase while ĉ1 is the adsorbed concentration of cation 1 in the solid surface.

The isotherm expressions (F.4 and F.5) developed for two solute adsorption

and monovalent ternary cation exchange are equivalent when the following

relationship holds,

K1 =
K10

c0

and K2 =
K20

c0

. (F.6)

It is easy to extend the above relationship for a general case of adsorption of n

solutes and cation exchange between n+1 cations. The only condition is that

all cations should be monovalent.
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Appendix G

Intermediate Points in Analytical Solution

The key to the analytical solution is the recognition that the adsorbed

concentrations do not change along the anion wave W1. In the composition

space, the intermediate point cM1 is connected to the initial concentration

(point cI) by the anion wave W1 and lies in the plane of injected anion con-

centration (c3M1 =c3J),

ĉM1 = ĉI . (G.1)

At point cM1 , all the adsorbed concentrations are known. We use mass action

equations and charge conservation at anion plane c3J to obtain a quadratic

equation. We choose the positive root to obtain,

c0M1 =

−1 +

√
1 + 4c3J

(
ĉ1I

ĉ20IK10
+ ĉ2I

ĉ20IK20

)
2
(

ĉ1I
ĉ20IK10

+ ĉ2I
ĉ20IK20

) . (G.2)

The other flowing concentrations are calculated using the law of mass action,

c1M1 =
ĉ1M1c

2
0M1

K10ĉ2
0M1

and c2M1 =
ĉ2M1c

2
0M1

K20ĉ2
0M1

. (G.3)

The above equations can also be used to obtain the flowing concentrations at

different planes of anion concentrations. This is used to plot the anion wave

W1 in composition plots - Figures 8.3, 8.5 and 8.7. This wave is curved owing
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to the heterovalent nature of the cations and the curvature depends on the

concentration ranges involved (the curvature is more prominent in Figure 8.3

than Figure 8.5). The anion wave W1 for monovalent ternary cation system

will be a straight line.

The other intermediate point cM2 lies at the intersection of wave W2

from cM1 and W3 from cJ . These waves can be Hugoniot curves or integral

curves. Hugoniot curves are constructed using the Rankine-Hugoniot jump

condition. The jump condition connecting any two points, cL as the left state

and cR as the right state can be given as,

σ̃p =
(ĉR + cR)− (ĉL + cL)

cR − cL
. (G.4)

The Hugoniot curve from point cM1 (left state for wave W2) is the locus of

all points cR, the right state, that satisfy this jump condition. The vector

equation (G.4) results in the following scalar equation,

(ĉ1R + c1R)− (ĉ1M1 + c1M1)

c1R − c1M1

=
(ĉ2R + c2R)− (ĉ2M1 + c2M1)

c2R − c2M1

. (G.5)

Here, the adsorbed concentrations can be expressed as a function of aqueous

concentrations using isotherm expressions available in Table 8.2. The Hugo-

niot curves from point cM1 are obtained by solving for the root of this algebraic

equation numerically in the plane of constant anion concentration c3J . A simi-

lar algebraic equation for the Hugoniot curve from point cJ , the right state for

wave W3, can be obtained. In this case, we solve for unknown compositions

cL, representing the left state, that satisfy the Rankine-Hugoniot condition.

225



The integral curves from any point in the composition space is the set

of points obtained by integrating along the eigenvectors from that point. The

two ODEs resulting from the two eigenvalues in (8.22) are,(
dc1

dc2

)
σ2

=

[
2ĉ12

ĉ22 − ĉ11 −
√

(ĉ11 − ĉ22)2 + 4ĉ12ĉ21

]
; (G.6)

(
dc1

dc2

)
σ3

=

[
2ĉ12

ĉ22 − ĉ11 +
√

(ĉ11 − ĉ22)2 + 4ĉ12ĉ21

]
. (G.7)

The integral curves from cJ can be obtained by numerically integrating these

ODEs and using the initial condition,

c1(c2J) = c1J . (G.8)

A similar set of equations are used to obtain the integral curve from cM1 . The

derivatives of the adsorbed concentrations in (G.6) and (G.7) are obtained

from the adsorption isotherm expressions in Table 8.2.
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