
 

 

 

 

 

 

 

 

 

Copyright 

by 

Jong Suk Kim 

2014 

 

 

  



The Dissertation Committee for Jong Suk Kim certifies that this is the approved 

version of the following dissertation: 

 

 

Modeling, Control, and Optimization of Combined Heat and Power 

Plants 

 

 

 

 

 

Committee: 

 

Thomas Edgar, Supervisor 

Michael Baldea 

Roger Bonnecaze 

Gary Rochelle 

Glenn Masada 



Modeling, Control, and Optimization of Combined Heat and Power 

Plants 

 

 

by 

Jong Suk Kim, B.S.; M.S.E. 

 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2014 



Dedication 

 

To my parents and sisters, who deserves this degree as much as I do. 

 

 



 v 

Acknowledgements 

First and foremost, I would like to thank my supervisor Dr. Thomas Edgar for his 

tremendous help in guiding me through this work at the University of Texas at Austin 

(UT Austin). It was a great opportunity and a pleasure to be able to work with him.  His 

patient efforts and encouragement on my behalf are sincerely appreciated. 

The faculty and staff of the McKetta Department of Chemical Engineering at UT 

Austin were helpful and supportive during my time here. Special thanks to T stockman, 

Kay Costales-Swift, Sarah D. Berry-Caperton, Carrie Brown, Kristine Poland, and Randy 

Rife for their efforts. 

The Utilities and Energy Management at UT Austin have been greatly 

acknowledged for providing the plant data needed to perform this work. Apart from the 

data, the staff, especially Ryan Thompson and Juan Ontiveros, and the operators were 

also helpful and supportive in providing insight into the power plant operation. 

I would like to thank the sponsor of my research, CHEMSTATIONS. Without the 

generous support of this donor, none of this would be possible. 

I am grateful for the association with the members of Dr. Edgar’s research group 

(both past and present) here at UT Austin including: Dr. Kody Powell, Dr. Kriti Kapoor, 

Dr. Wesley Cole, Akshay Sriprasad, Bo Lu, Shu Xu, Matt Walters, Victor Duribe, 

Jungup Park, Ankur Kumar, Krystian Perez, and Abigail Ondeck. Their help and support 

are greatly appreciated. The members of the Baldea research group have become my 

friends as well, and I have learned so much from all of them. 

Finally, I am most grateful for the love, encouragement, understanding and 

support of my parents and sisters. This work is a tribute to their sacrifice. 

 

Jong Suk Kim 

May 2014 



 vi 

Modeling, Control, and Optimization of Combined Heat and Power 

Plants 

 

Jong Suk Kim, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor: Thomas Edgar 

 

Combined heat and power (CHP) is a technology that decreases total fuel 

consumption and related greenhouse gas emissions by producing both electricity and 

useful thermal energy from a single energy source. In the industrial and commercial 

sectors, a typical CHP site relies upon the electricity distribution network for significant 

periods, i.e., for purchasing power from the grid during periods of high demand or when 

off-peak electricity tariffs are available. On the other hand, in some cases, a CHP plant is 

allowed to sell surplus power to the grid during on-peak hours when electricity prices are 

highest while all operating constraints and local demands are satisfied. Therefore, if the 

plant is connected with the external grid and allowed to participate in open energy 

markets in the future, it could yield significant economic benefits by selling/buying 

power depending on market conditions. This is achieved by solving the power system 

generation scheduling problem using mathematical programming.  

In this work, we present the application of mixed-integer nonlinear programming 

(MINLP) approach for scheduling of a CHP plant in the day-ahead wholesale energy 

markets. This work employs first principles models to describe the nonlinear dynamics of 

a CHP plant and its individual components (gas and steam turbines, heat recovery steam 

generators, and auxiliary boilers). The MINLP framework includes practical constraints 
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such as minimum/maximum power output and steam flow restrictions, minimum 

up/down times, start-up and shut-down procedures, and fuel limits. We provide case 

studies involving the Hal C. Weaver power plant complex at the University of Texas at 

Austin to demonstrate this methodology. The results show that the optimized operating 

strategies can yield substantial net incomes from electricity sales and purchases.  

This work also highlights the application of a nonlinear model predictive control 

scheme to a heavy-duty gas turbine power plant for frequency and temperature control. 

This scheme is compared to a classical PID/logic based control scheme and is found to 

provide superior output responses with smaller settling times and less oscillatory 

behavior in response to disturbances in electric loads. 
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Chapter 1: Introduction 

The choice of energy sources plays an important role in determining 

environmental impact, costs, and plant reliability. Renewable energy resources such as 

solar, photovoltaic, geothermal, and wind are abundant and can be utilized as free energy 

sources in many industries (power generation, chemical, pulp and paper, refineries, etc.). 

They are indefinite and can substitute a finite resource, fossil fuels, to reduce the carbon 

footprint in these industries. However, the intermittency and unpredictability of 

renewable generation sources puts them at a disadvantage compared to fossil fuels. The 

oil and gas industry continues spend billions of dollars each year developing and 

deploying new technologies to allow more resources to be recovered, ensuring that fossil 

fuels remain competitive and readily available for customers. Therefore, fossil fuels will 

continue to supply the majority of our energy needs until renewable energies become 

more cost-competitive. 

 Efficient energy use in power generation industry also has a significant impact on 

operating costs due to volatile cost of energy today. As the use of fossil fuels for power 

generation and cogeneration is expected to grow during the next 20 years [1], it is 

necessary to analyze how to best operate existing plants that utilize fossil fuels as their 

primary energy sources. The efficient and clean energy solution is a combined heat and 

power technology. 

Combined heat and power (CHP) plants produce electricity and thermal energy 

simultaneously from a single energy source such as natural gas, coal, oil, diesel, biomass, 

or a fuel cell. CHP plants mainly consist of a gas turbine, a heat recovery steam generator 

(HRSG), a boiler, and a steam turbine [2]. In a conventional energy supply system, 

electricity is generated at a power plant while thermal energy is generated separately via a 
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boiler. The waste heat from the system is vented via cooling towers or ponds without 

being utilized. The great majority of U.S. electric generation does not make use of waste 

heat. As a result, the average efficiency of utility generation has remained at about 34 

percent since the 1960s. Also, the energy lost in the United States from wasted heat in the 

power generation sector is greater than the total energy use of Japan [3]. On the other 

hand, in CHP plants, the waste heat from the gas turbine is recovered by a HRSG and 

produces a high-pressure steam. This steam can be used directly for process heating in 

the manufacturing industries or for district heating to meet the thermal demands. The 

steam generated from a HRSG can drive a steam turbine to extract an additional power. If 

a CHP system is strategically located at or near the point of energy use (commercial or 

residential buildings), the effluent heat from a gas turbine can be readily recovered and 

used to heat the neighboring buildings [4, 5]. As a result, typical CHP systems exhibit 

high efficiencies up to 75 %, whereas conventional energy supply systems yield around 

51 % efficiency [6, 7]. Figure 1.1 compares a conventional energy supply system with a 

CHP system and shows the energy inputs that each system requires to ultimately produce 

the same amount of energy. 
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Figure 1.1: Conventional energy supply system (left) vs. combined heat and power 

(right). Image is from [7]. 

Distributed electricity generation systems, such as CHP, can also substantially 

reduce transmission costs and efficiency losses as the power does not have to be 

transported using high-voltage power lines over long distances as compared to larger, 

centralized power plants [8]. The vast majority of existing and planned CHP installations 

use natural gas as the primary fuel. 

In the industrial and commercial sectors, a typical CHP site relies upon the 

electricity distribution network for significant periods, i.e., for purchasing power from the 

grid during periods of high demand or when off-peak electricity tariffs are available [9]. 

On the other hand, in some cases, a CHP plant is allowed to sell surplus power to the grid 

during on-peak hours when electricity prices are highest while all operating constraints 

and local demands are satisfied. This is achieved by the economic dispatch (ED), which 
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assigns the system load demand to the committed generating units for minimizing the 

power generation cost [10]. The net income of a CHP plant obtained by participating in 

wholesale energy markets can be significant, especially during the late afternoon or early 

evening hours when peak demand occurs. Due to such a compelling potential profit 

opportunity, the ED of a CHP plant is attracting a great deal of attention and is one of the 

two important tasks considered in power system generation scheduling problem. The 

other is the unit commitment (UC) that determines the unit start-up and shut-down 

schedules in order to minimize the system fuel expenditure when more than one 

generating unit exists. In other words, an important criterion in power system operation is 

to meet the power demand at minimum fuel cost using an optimal mix of different 

generating units [11]. 

Application of ED to district heating and cooling networks that incorporate CHP 

(i.e., university, airport, and hospital) have been popular as the system loads (heat and 

electrical) fluctuate considerably with time of day/year. CHP applications in district 

heating and cooling networks can be found in several references [12-15]. For example, 

the optimal size of a CHP system under British spot market conditions [12] and under 

German spot market conditions [15] is analyzed. Ristic et al. [13] used three different 

cost functions, each of which was formulated as a linear programming (LP) problem for 

each time step. By comparing the solutions from the three functions, the lowest cost 

during a time step defines the optimal operation of the CHP system. However, this model 

is empirical in that heat production was assumed to be proportional to electricity 

production. Rolfsman [14] showed that the optimal operating strategy allowed the CHP 

units that include thermal energy storage (TES) to operate at full-load condition when 

electricity prices are high, storing the excess heat produced in the TES units. The TES 

would then be discharged during off-peak hours when it was not economic to produce 
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electricity. Ito et al. [16] combined the dynamic programming method with mixed-integer 

programming to determine the optimal operation of a diesel engine cogeneration plant. 

Their study only covers 12 representative days for the whole year with a fixed-rate 

electricity price for summer and that for winter. So, the model does not reflect the diurnal 

variation in electricity prices. The work shown in  [17] has similarities to [16], but it 

included a space-cooling demand. The optimization problem was formulated as a large-

scale mixed-integer linear programming (MILP) problem and was solved by means of the 

decomposition method. Lawrence Berkeley National Laboratory developed one of the 

most advanced CHP optimization strategies [18]. This sophisticated model optimizes a 

distributed microgrid of several CHP systems, electricity generators, heat boilers, and 

heat storage tanks. The objective function takes into account fuel costs, operation and 

maintenance costs, carbon emission taxation, and investment costs. However, the model 

does not consider the possibility of interconnection to the external grid. Stoppato et al. 

[19] proposed a model that accounts for additional costs associated with the cyclic type of 

operation (i.e., unit start-ups and shut-downs) and with unplanned maintenance and 

unavailability of the plant if a failure occurs, due to creep and thermo-mechanical fatigue 

loadings. Nevertheless, this model is limited to a steam power plant. 

Happ [20] presented a comprehensive survey on ED, which covers several 

aspects: developments in ED since early 1920’s, valve point loading, multi-area concepts 

in economic dispatch, and optimal load flow. Chowdhury et al. [21] presented a survey 

addressing various aspects of ED during the period 1977-88, namely: optimal power 

flow, ED in relation to automatic generation control (AGC), dynamic dispatch, and ED 

with non-conventional generation sources. The fuel cost of the generator described in [20, 

21] is approximately represented by polynomial functions (mostly a single quadratic 

function as this is convex in nature) for ED computation. It is also standard industrial 
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practice that polynomial functions are predominantly used to estimate the fuel cost of 

generator as the resulting ED problem can be solved as convex optimization problem. In 

actual practice, however, this assumption (quadratic or piecewise quadratic, 

monotonically increasing cost functions) is not valid because the cost functions exhibit 

higher order nonlinearities and discontinuities due to prohibited operating zones, multiple 

fuels, and valve point loading effects [22, 23]. Dynamic programming (DP) [24] has been 

used to overcome these difficulties, but due to the curse of dimensionality and excessive 

evaluation at each stage it has limitations. Genetic algorithm (GA) is a potential solution 

methodology for nonconvex ED problem due to the independence of the objective 

function from the auxiliary information such as differentiability and continuity [22, 23, 

25-30]. However, the disadvantages of the GA are its slow convergence speed near the 

global optimum and long computational time. Particle swarm optimization (PSO) [31, 

32] is another way to deal with a nonconvex ED problem but is prone to the same 

problems associated with GA (slow convergence and stagnation phenomenon in the 

proximity of the optimal solution). Dotzauer et al. [33] solved the operational 

optimization problem of a CHP plant that includes TES by using a Lagrangean relaxation 

(LR) approach. Rong et al. [34] extended the work shown in [33] and included 

restrictions on minimum up/down times. In a number of studies [35-37], a dynamic 

process was performed in conjunction with ED in order to satisfy the ramping constraints.  

Operating constraints such as minimum up/down times and ramping limits that 

are modeled in some of the previously mentioned references result in a complex 

optimization problem and originate from the so-called unit commitment problem. Besides 

the methods mentioned previously, i.e., DP, GA, PSO, and LR, other approaches have 

been proposed to address the UC problem such as exhaustive enumeration [38], priority 

listing [39, 40], branch and bound [41, 42], interior point optimization [43], tabu search 
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[44, 45], simulated annealing [46], fuzzy logic [47], artificial neural networks [48, 49], 

evolutional programming [50, 51],and hybrid models [52-54] as well as mathematical 

programming, i.e., MILP and mixed-integer nonlinear programming (MINLP). For a 

detailed review on various methods of generation scheduling in electric power systems, 

see [55, 56]. Nowadays, among all methods, mixed-integer programming (MIP) is the 

method of choice due to advances in solution algorithms and computing power [57]. In 

practice, many US independent system operators (ISOs) use MIP for generation UC 

within the electric industry.  

Arroyo and Conejo [58] proposed an MILP formulation for the UC and Carrion 

and Arroyo [59] improved the model shown in [58] by reducing the number of binary 

variables. Liu et al. [60] introduced an MINP model, which considers “units” of 

individual components within the plant, and showed that their model is superior to an 

aggregated mode model for the scheduling of combined cycle combustion turbine 

(CCCT) plants due to the more accurate description of the physical range of operation. 

Aghaei and Alizadeh [61] considered a scheduling problem of a CHP-based microgrid as 

an MIP-based multi-objective (i.e., minimizing total operational cost of the plant and 

minimizing carbon emissions) optimization problem. Mitra et al. [62] developed a 

deterministic MILP model that allows optimal production planning for continuous power-

intensive processes. They emphasized the systematic modeling of operational transitions 

that result from switching the operating modes of the plant equipment, with logic 

constraints. Mitra et al. [63] extended their previous work and modeled transitional 

behavior (i.e., warm and cold start-ups and shut-downs) with different operating modes. 

However, all the works shown in [61-63] used empirical models to relate the power 

production rate to the fuel consumption, thus the operating cost of generator. 
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The solution of the scheduling problem strongly depends on the accuracy of the 

plant models used for simulations. Therefore, it is critical to develop the plant models that 

establish physically correct quantitative relationships between real systems and models of 

those real systems. For processes that operate over a wide range of operating conditions 

or often close to the boundaries of admissible regions due to tight economic and 

environmental conditions, linear or/and empirical models are unsuitable to adequately 

describe the process dynamics. Therefore, complex nonlinear models must be used. 

The Electric Reliability Council of Texas (ERCOT) is one of 10 regional 

reliability councils in the North America Electric Reliability Council (NERC), as shown 

in Figure 1.2. 

 

Figure 1.2: North American Reliability Council (NERC) Members Organizations. Image 

is from [64]. 

http://www.nerc.com/regional/regions.map
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The ERCOT ISO is responsible for reliable power grid operations in the ERCOT 

region together with the electrical energy industry organizations that operate within that 

region. Also, ERCOT ensures open access to transmission and distribution systems in 

areas that permit competition, the timely conveyance of market information to market 

participants, and accurate accounting of power produced and delivered [64, 65]. About 

85% of the electrical load in Texas (the largest electricity-consuming state in the U.S.) is 

satisfied through the ERCOT market. ERCOT has an overall generating capacity of 

approximately 90 Gigawatts (GW) from more than 550 generators [64]. ERCOT’s 

members include retail consumers, investor-owned utilities, municipally-owned utilities, 

rural electric cooperatives, river authorities, independent generators, power marketers and 

retail electric providers. ERCOT market represents about 10% of the total electricity sales 

in the United States. Natural gas is used for over 44% of the electricity generation 

involved in market transactions and constitutes over 70% of the generating capacity [66]. 

Detailed descriptions of the ERCOT market can be found in [65]. 

ERCOT relies on the availability of generation capacity to provide energy to 

maintain the electric system within allowable reliability limits. Capacity and energy 

procurement, which are needed by ERCOT to perform reliability role, are competitively 

procured from qualified scheduling entities (QSEs) on a resource specific basis. 

Generation units, which can be on standby and available to be called upon to provide 

loads or energy that are available to be interrupted to relieve the need for additional 

energy, may provide these services upon meeting ERCOT qualification requirements. To 

ensure the reliable operation of the transmission system and increase grid stability, 

“ancillary services” are sourced from generation or load resources and provided to 

ERCOT. Types of ancillary services that ERCOT procures include regulation reserve, 
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responsive reserve, non-spinning reserve, black start, reliability must-run, voltage support 

service, and emergency response service (ERS) [64, 67].    

ERCOT procures emergency response service (ERS) by selecting qualified loads 

generators (including aggregations of loads and generators) to make themselves available 

for deployment in an electric grid emergency. ERS is a valuable emergency service 

designed to decrease the likelihood of the need for firm load shedding such as rolling 

blackouts. Because ERCOT only accepts day-ahead or real-time wholesale transactions 

in accordance with ERCOT protocol from QSEs, customers meeting ERS criteria must 

provide the service through their QSEs [64]. In other words, all day-ahead or real-time 

financial settlement for the ERCOT wholesale market is between ERCOT and QSEs 

only.  

This work also highlights the application of a nonlinear model predictive control 

scheme to a heavy-duty gas turbine power plant for frequency and temperature control. 

So, the reviews of plant models and their control strategies are presented next. 

Recently, natural gas-fired turbines have found widespread use because of their 

higher efficiencies, lower capital costs, shorter installation times, abundance of natural 

gas supplies, lower greenhouse gas emissions compared to other energy sources, and fast 

start-up capability, which enables them to be used as peaking units that respond to peak 

demands [68]. Due to their special characteristics, natural gas-fired turbines are installed 

in numerous places in the world and have become an important source for power 

generation.  

Because of their complexity, there is a need for simplified mathematical models of 

gas turbine generators that can be used to investigate power system stability, determine the 

best operating strategies, and develop contingency plans for system upsets. One of the 

most commonly used simplified models (Rowen-I) was presented by Rowen [69], taking 
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into account the load-frequency, temperature, and acceleration control of a heavy-duty gas 

turbine (HDGT). Rowen modified the model (Rowen-II) to be applicable for a combined 

heat and power plant by adding the influence of compressor inlet guide vanes (IGVs) on 

the gas turbine dynamics, especially the exhaust gas temperature [70]. Rowen’s models 

(Rowen-I and Rowen-II) have provided a starting point for development of several models 

[71-75] that provided deeper insight into internal processes.  

Although the classical feedback control system, i.e. proportional-derivative-

integral (PID control), has been developed for the HDGT, it is important to develop more 

advanced process control (APC) strategies in order to minimize the operating cost while 

satisfying constraints. Model predictive control (MPC) is the most widely used APC 

technique that uses a model of the process to predict the values of outputs over a future 

interval called the prediction horizon. MPC is more powerful than classical feedback 

control, even for single loops without constraints, without being much more difficult to 

tune, even on difficult loops such as those containing long time delays [76]. The 

application of MPC to control a gas turbine was introduced by Vroemen and Essen [77]. 

Mu and Rees presented an approximate MPC used to control shaft speed of a gas turbine 

engine [78]. These models [77, 78] are either empirical or linear models. In practice; 

however, the process gains and dynamics of the gas turbine change with operating points, 

so more accurate nonlinear modeling and control of the gas turbine is needed. 

The real-time implementation has been particularly challenging since the MPC 

requires solving an optimization problem with a large number of variables at each control 

step. D’Amato [79] developed and implemented the MPC solution for combined-cycle 

plant startups at Baglan Bay, South Wales. His study showed that the MPC startup 

controller resulted in reduced operating costs due to lower fuel consumption and lower 

emissions. However, once the generator is synchronized and connected to the power grid, 
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a nonlinear optimization problem needs to be solved and deployed at each control step 

faster than the sampling rate, which is on the order of a few seconds. Therefore, efficient 

algorithms compatible with real-time implementation are necessary. 

1.1 RESEARCH OBJECTIVES  

The objective of this work is to develop an optimal operating strategy for the CHP 

plant in the competitive Texas electricity market. As a result of competition among utility 

providers and fluctuations in prices of energy resources, CHP systems experience 

frequent start-up/shut-down operations. Depending on their profitability, the CHP units 

shut down for short periods of time or for longer periods. Therefore, they are subject to a 

large number of transients. Especially, the start-up process represents a major interest 

because the start-up costs of generating units are subject to the unit start-up types (i.e., 

hot, warm, and cold start-ups), which depend on the unit’s prior reservation time.  

Case studies involving the Hal C. Weaver power plant complex at the University 

of Texas at Austin (see Figure 1.3) are provided to demonstrate the effectiveness of the 

proposed methodology.  
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Figure 1.3: Overview of energy generation and distribution at the University of Texas at 

Austin campus 

The power plant at the University of Texas at Austin (UT Austin) campus does 

not rely on the external grid, thus the campus is effectively an independent micro-grid 

[80, 81]. Although the plant is one of the most reliable CHP systems in the country, it 

does not participate in wholesale energy markets. If the plant is connected with external 

grid and allowed to participate in open energy markets in the future, it could yield 

economic benefits by selling/buying power to/from the grid depending on market 

conditions.  
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Figure 1.4: Electric generation capacity and actual electrical demands at UT Austin for 

2011 (green dashed line) and 2012 (red solid line). 

Figure 1.4 compares on-campus electric generation capacity with the actual 

electrical demands. It can be seen that UT Austin could have sold surplus electrical 

energy of 157 GWh to the grid in 2011 (or 176 GWh in 2012), yielding annual revenue of 

$ 3.14 million (or $ 3.53 million in 2012) at an average price of 2 ₵/kWh. However, the 

electricity prices vary on an hourly basis (in day-ahead electricity markets). Also, it is not 

economical to sell extra power to the grid at off-peak electricity tariffs or to self-generate 

the power during the off-peak hours when the electricity prices are cheap. The goal is to 

develop optimal scheduling of the CHP plant at UT Austin in the day-ahead wholesale 

energy market (electricity is purchased the day before it is used) of the ERCOT. The 

maximum profit of the plant from electricity sales and purchases should be recognized by 

committing more efficient and less expensive units in the plant while satisfying the 

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

En
e

rg
y 

(G
W

h
) 

Electric generation capacity

Measured electrical demands - 2011

Measured electrical demands - 2012



 15 

demands that fluctuate considerably with time of day/year and the system operating 

constraints on an hourly basis. Note that the unit commitment literature usually considers 

“unit” at a plant level [63]. In this work, “unit” at an individual component within the 

CHP plant (gas turbines with heat recovery steam generators, steam turbines, and boilers) 

is considered and the interactions of components are modeled using first principles 

models.  

In order to assess the net incomes of a CHP plant in the future, one day ahead 

forecasts for loads (electrical, cooling, and heating) must be made as they are used to 

determine day-ahead prices for the electricity market and which units should be 

committed for economic dispatch [82-84]. However, the focus of this work is on the 

development of an optimal operating strategy of a CHP system based on historic plant and 

market data other than the development of accurate forecasting models. In this work, the 

solution of the scheduling problem is based on a totally deterministic case, i.e., 2011 or 

2012 historical data are used for the economic analysis. Development of accurate 

forecasting models is beyond the scope of this work. 

In this work, first principles dynamic modeling and multivariable control of 

natural-gas fired turbine power plants are also explored. The goal is to develop an 

advanced process control strategy that provides superior output responses with smaller 

settling times to the variations in the main disturbance (electric load) than those observed 

in the PID control system. The proposed control scheme should also prevent the tripping 

of the plant when a sudden large increase in the electric load is introduced into a power 

generation unit. Efficient algorithms compatible with real-time implementation must be 

proposed. 



 16 

1.2 OVERVIEW OF DISSERTATION 

Literature reviews surveying the power system generation scheduling problem 

and multivariable control of the GTPP are given in the previous sections. Section 1.1 

presented the research objectives.  

 In Chapter 2, the first principle models that describe the nonlinear dynamics of a 

CHP plant and its individual components are developed and validated. The unit-specific 

model parameters are estimated via least mean squares (LMS) algorithm using the actual 

plant data. An overview of the CHP plant at UT Austin is also presented. 

 Chapter 3 proposes a methodology for optimizing operating of a CHP plant 

participating in the competitive wholesale electricity markets. The constrained nonlinear 

optimization problem is formulated to minimize the cost function (or maximizing the net 

income) while considering economic savings. The optimized operating schedules are 

compared to the historical operating schedules over a certain period of time. Also, the 

sensitivity of the net incomes to changes in the fuel costs is examined in Chapter 3. 

 Chapter 4 uses the model developed in Chapter 3 and goes a step further. An 

additional profit of the CHP plant by providing the emergency response service (ERS) 

through a QSE is evaluated. In this work, the ERS is assumed to be procured for a four-

month contract period (June to September of 2012) for deployment in an electric grid 

emergency. Case studies demonstrate how the net incomes of the CHP plant change as a 

function of MWs sold to the ERCOT for the ERS while participating in the wholesale 

energy markets. 

In Chapter 5, the optimization problem introduced in Chapter 3 is greatly 

expanded. An MINLP framework for optimal scheduling of a CHP plant in the day-ahead 

energy market is proposed. A 24-hour scheduling problem is solved to maximize the 

profit of the CHP plant from electricity sales over a four-month period (June to 
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September of 2012) while satisfying the demands. The model accounts for the different 

phases (synchronization, soak, dispatch, and desynchronization) during start-up and shut-

down of each component. Three different start-up types (hot, warm, and cold) are 

explicitly modeled, each with distinct start-up cost, depending on the component’s prior 

reservation time.  

In Chapter 6, a nonlinear model predictive control (NMPC) scheme is applied to a 

HDGT power plant for frequency and temperature control. This scheme is compared to a 

classical PID/logic based control scheme to demonstrate the effectiveness of the proposed 

NMPC strategy. As the sampling rate observed in a HDGT power plant is fast (on the 

order of seconds), an efficient algorithm compatible with real-time implementation is 

suggested in order to reduce the computation time when solving a set of differential 

algebraic equations. 

 Finally, Chapter 7 summarizes the key contributions of this research and presents 

recommendations for future work. 

All tests (case studies) are performed on a PC with Intel Core
TM

2 Duo processor 

2.54 GHz and 4.00 GB of RAM, running 32-bit Windows. The nonlinear programming 

(NLP) problems are solved in MATLAB environment using the sequential quadratic 

programming (SQP) algorithm [85] in Chapters 2, 3, 4, and 5, whereas the NLP problems 

in Chapter 6 are solved using an interior-point (IP) algorithm [86]. 
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Chapter 2: Mathematical Modeling of Combined Heat and Power 

Plants 

In this section, the mathematical models of major pieces of equipment present in a 

CHP plant are developed using first principles models. System overview of the CHP 

plant (Hal C. Weaver power plant complex at UT Austin), to which the proposed models 

are applied and validated, is presented in the following sub-section in greater details. 

2.1 SYSTEM OVERVIEW OF THE HAL C. WEAVER POWER PLANT COMPLEX 

The Hal C. Weaver power plant complex at UT Austin meets 100% of the 

university’s utility needs (power, heat, and cooling demands) throughout the year, serving 

more than 160 buildings and about 17 million ft
2
 of space via over 6 miles of 

underground distribution tunnels and electrical duct banks [80, 81, 87]. Ties to the city 

grid exist, but they are for emergency purposes only. The power plant includes 136 MW 

of onsite electrical power generation, 1.28 million lb/hr (161 kg/s) of steam generation, 

and 140 million ton-hours of chilled water capacity. The plant also provides the campus 

compressed air and demineralized water for buildings and laboratory use. 

The simplified diagram of the CHP plant is presented in Figure 2.1. The plant 

mainly consists of a heavy-duty gas turbine (HDGT), a heat recovery steam generator 

(HRSG), an auxiliary boiler, and a steam turbine. A natural gas-fired gas turbine 

generates electrical power for distribution throughout the campus. Turbine inlet air 

cooling (TIAC) is used to increase the density of the combustion air by cooling the gas 

turbine air intake, thereby increasing both the throughput and the efficiency of the gas 

turbine compressor. As a result, the power output of the gas turbine increases with the use 

of TIAC [88]. For example, as shown in Figure 2.2, the air temperature coming out from 
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the TIAC system (or air temperature at compressor inlet) has been reduced to around 52 

°F (11 °C) via the TIAC during the on-peak hours in hot summer days. 

 

Figure 2.1: A simplified schematic of Hal C. Weaver Power Complex at UT Austin. 

 

 

Figure 2.2: Air temperature at compressor inlet (blue dashed line) vs. ambient 

temperature (red solid line). 



 20 

The waste heat from the gas turbine is recovered by a HRSG and produces high-

pressure (HP) steam at 425 psi (30 bar) and 750 F (399 F) for use in campus. The boiler 

feed pump is connected to the discharge of the deaerator. The boiler feed pump raises the 

feedwater pressure to that of the boiler (43 bar) and pumps the feedwater through the 

high-pressure feedwater heaters. The HRSG is a natural-circulation boiler with natural 

gas-fired supplementary firing. Supplementary firing is carried out using an in-duct 

burner to raise the exhaust gas temperature, resulting in an increase in steam flow. There 

is an auxiliary boiler that burns natural gas and generates an additional HP steam when 

steam demand is high, especially during the winter. An extraction steam turbine is fed 

partially by the auxiliary boiler and partially by the HRSG. This combined steam flow 

drives the steam turbine to generate additional electricity during steam expansion. A 

portion of a medium-pressure (MP) steam at 160 psi (11 bar) is extracted from at an 

intermediate point in the turbine casting for distribution throughout the campus to meet 

the heating loads. After steam expansion, the rest is dropped to near atmospheric pressure 

at saturation conditions.  

About 70% of the electricity produced from gas and steam turbines is consumed 

by the campus while the other 30% is used by the cooling system to make chilled water 

for air conditioning on campus, primarily by the centrifugal chillers, cooling towers and 

pumps [89]. This combination of the two power generation cycles (gas turbine in Brayton 

and steam turbine in Rankin cycles) enhances the efficiency of the plant. The plant is 

therefore a combined cycle and a tri-generation system, providing electricity, heating, and 

cooling. The rated capacity of major pieces of power plant equipment is summarized in 

Table 2.1.   
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Table 2.1: A rated capacity of designated run units. 

Generator 
Unit 

name 

Electrical 

power 

(MWe)
a
 

Boiler 
Unit 

name 

Steam 

generation 

(kg/s) 

Gas turbine 8 GT8 42 Boiler 8 HRSG8 
36.4  

(289
b
) 

Gas turbine 10 GT10 32 Boiler 10 HRSG10 
24.3  

(193
b
) 

Steam turbine 9 ST9 25 Boiler 3 BR3 
18.9  

(150
b
) 

Steam turbine 7 ST7 25 Boiler 7 BR7 
63.0  

(500
b
) 

a 
electrical MW 

b 
steam generation defined in thousand lb/hr 

There are back-up units (steam turbines 4 and 5 and boilers 1 and 2) that can be 

brought on-line in case of emergency, but they are excluded from this work as they are 

rarely used in practice. GT8 is always coupled with HRSG8, and GT10 is always coupled 

with HRSG10. ST9 is used throughout the year as it is more efficient than ST7, but ST7 

replaces ST9 when ST9 is under maintenance. There are two gas turbines (GT8 and 

GT10), each of which is equipped with the TIAC system, two HRSGs (HRSG8 and 

HRSG10), and two auxiliary boilers (BR7 and BR3) in the plant, but in general only one 

unit operates at a time. For example, GT8, HRSG8, and BR3 are operated from May to 

October, whereas GT10, HRSG10, and BR7 are used during the rest of the year. 

Overall the plant exhibits “utility efficiency” of greater than 80 % [80]. “Utility 

efficiency” is the sum of energy products (electric power, steam, and chilled water) 

defined in the same unit (i.e., MWe) divided by the total fuel input. This is a useful metric 

in comparing the operation of the UT Austin power plant from year to year but is not 

really useful in comparison to other CHP systems, because CHP systems lack a cooling 

system. When calculating the utility efficiency of the plant, the amount of heat to be 

removed from the circulating water within the cooling tower is not taken into account, 
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resulting in the underestimation of the COP (the coefficient of performance of a chiller). 

As a result, cooling load defined in the electrical power is overestimated, yielding the 

overestimated plant efficiency. The actual “thermal efficiency” of the UT Austin power 

plant, which is a combined cycle system, is lower than what the typical CHP systems 

exhibit (i.e., less than 60 % vs. 75 %) as the form of the energy has to change from the 

thermal to electrical via the steam turbine. 

2.2 MODEL DEVELOPMENT 

In this work, the sampling rate ∆t of one hour is used for parameter estimation, 

but the units present in a CHP system show relatively much faster dynamic responses. 

For this reason, a steady state assumption is made in modeling the system. The 

mathematical models are divided into units in an object-oriented fashion that correspond 

to the modular nature of the facility.  

2.2.1 Turbine Inlet Air Cooling System 

The TIAC system is used to pre-cool the ambient air before it is fed to the gas 

turbine’s compressor in order to improve gas turbine efficiency. The effectiveness of a 

heat exchanger  is the ratio of the actual heat transfer rate for a heat exchanger to the 

maximum possible heat transfer rate. For the TIAC system  is defined by 

, , , , 

min

, , , , 

 w TIAC inw TIAC out

air TIAC out w TIAC in

T T

T T





  
(2.1) 

where Tw, TIAC, out and Tw, TIAC, in are the temperatures of chilled water exiting and entering 

the TIAC system, respectively, and 
min

, , air TIAC outT is the minimum possible air temperature 

at the outlet of the TIAC system [90]. A typical value for  is 0.85-0.9 [91], so  is 
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assumed to be 0.9 in this study. If condensation does not occur when the air is cooled, the 

energy balance equation across the TIAC system is expressed by  
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where W is the actual dry-air mass flow, Tair, TIAC, out (also referred to as Tc) is the air 

temperature coming out from the TIAC system, ρw is the water density, Vw, TIAC is the 

volumetric flow rate of chilled water entering the TIAC system, Cpc is the specific heat of 

air flow, Tamb is ambient temperature, and Pamb is ambient pressure. In (2.3), MWair is the 

molecular weight of the air, Rg is the ideal gas constant, and Pc and Vc are the pressure 

and volumetric air flow at the compressor inlet, respectively. The volumetric air flow Vc 

is adjusted by the compressor inlet guide vanes (IGVs) by the following relation: 
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  (2.4) 

where IGV is the angular position of the IGVs, Vcn is the volumetric air flow at nominal 

operating condition, and max and min are the maximum and minimum guide van angles, 

respectively. By combining (2.2)-(2.4) and assuming  is 1, , , 

min

air TIAC outT can be 

calculated. Then, Tw, TIAC, out is obtained from (2.1) with a known Tw, TIAC, in and is 

substituted back into (2.2) to solve for Tair, TIAC, out (or Tc).  Finally, W is determined by 

IGV as shown in (2.4). The average pressure drop across the TIAC (∆PTIAC) can be 
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obtained from the data to estimate Pc. If condensation of air occurs in the TIAC system, 

W becomes a function of the relative humidity.

 

 

2.2.2 Gas Turbine 

In deriving the gas turbine model parameters, the efficiencies of the units 

(compressor, combustor, and turbine), the specific heat of the working fluids (air and 

exhaust gas), and the lower heating value (LHV) of the fuel (natural gas) are assumed to 

be constant [92]. A schematic of a single-shaft heavy-duty gas turbine is shown in Figure 

2.3. In the Brayton cycle shown in Figure 2.3, air with atmospheric conditions at point 1 

is compressed adiabatically by the compressor to point 2. Segment 2-3 pertains to 

isobaric heating of compressed air in the combustor, which increases the temperature to 

point 3. The combustion product and compressor discharge air at point 3 will enter the 

turbine and expand adiabatically to point 4. The pressure loss in the air filters and the 

combustion chamber is neglected [93]. 



 25 

 

Figure 2.3: Schematic of a single-shaft heavy-duty gas turbine (upper) and P-v (lower 

left) and T-s (lower right) diagrams of an ideal Brayton cycle (q: heat, P: 

pressure, v: volume, T: temperature, s: entropy). 

Adiabatic compression described in the process 1-2 in Figure 2.3 gives the 

following relationship:  

1
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In (2.5), Td and Tc are the temperatures at compressor outlet and inlet, respectively, and 

c is the compressor efficiency. In (2.6), PR is the compression ratio, Wn is the air flow at 

nominal operating condition (full-load condition), and c is the cold end ratio of specific 

heats. From the energy balance equation in the combustion chamber, gas turbine firing 

temperature Tf  is defined by (2.7): 

, , 

, 

f GTcomb GT

f d

ph f GT

WLHV
T T

C W W

   
           

 
(2.7) 

where LHV is the lower heating value of the fuel,comb, GT is the combustor efficiency, 

and Cph is the specific heat of exhaust gas flow. The gas turbine fuel flow Wf, GT is defined 

by (2.8): 

 (2.8) 

where Fd, GT is the gas turbine’s fuel demand, KNL is the fuel valve lower limit, and Wfn, GT 

is the gas turbine fuel flow at nominal operating condition. For the adiabatic expansion 

described in the process 3-4 in Figure 3, (2.9) relates Tf to the exhaust gas temperature Te: 
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where t is the turbine efficiency. Equation (2.10) defines xh in (2.9): 
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whereh is the hot end ratio of specific heats. The net energy supplied to HDGT PGT is 

given by (2.11):  

     , GT f GT ph f e pc d cP W W C T T W C T T          (2.11) 

The first term on the right-hand side (RHS) in (2.11) is the mechanical power generated 

by the turbine, and the second term is the power consumed by the compressor. Note that a 

greater difference between the turbine inlet and outlet temperatures allows more work to 

be extracted from the expanding gases. The parameters shown in (2.4)-(2.11) and process 

variables at nominal operating condition are summarized in Table 2.2. 

Table 2.2: Gas turbines. 

Symbol Description Unit 
Value 

GT8 GT10 

Pn, GT Gas turbine power output MWe 42.0 32.2 

Wn Air flow rate kg/s 139 56.6 

Wfn, GT Gas turbine fuel flow rate kg/s 2.44 1.81 

Tf 
ref

   Turbine firing temperature C 1,115 1,744 

Te
ref

 Exhaust gas temperature C 523 861 

PR Gas turbine compression ratio - 13.1 24.4 

min Minimum IGV angle degrees 11.6 11.6 

max Maximum IGV angle degrees 85.0 85.0 

Cpc Specific heat of air flow kJ/kgK 1.005 1.005 

Cph 
Specific heat of exhaust gas 

flow 
kJ/kgK 1.157 1.157 

c Cold end ratio of specific heats - 1.4 1.4 

h Hot end ratio of specific heats - 1.33 1.33 

comb, GT 
Gas turbine combustion 

efficiency 
% 99 99 

LHV LHV of the fuel (natural gas) kJ/kg 47,249 47,249 

KNL Fuel valve lower limit pu
a
 0.1094 0.1014 

∆PTIAC 
Pressure drop across the TIAC 

system 
PSI 0.2639 0.3075 

a 
per unit value 
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2.2.3 Heat Recovery Steam Generator 

The main assumptions made about the HRSG in this study are as follows [94]. 

The HRSG is treated as a bulk heat exchanger to which governing equations are applied. 

Heat is transferred from the exhaust gas to water or steam by convection only. The 

temperature and pressure of process streams at the superheater outlet, economizer inlet, 

and stack do not vary significantly, so they are assumed to be constant.  

 

Figure 2.4: Schematic of the HRSG. 

Figure 2.4 is a schematic diagram of an HRSG whose function is to convert the 

useful thermal energy in the gas turbine exhaust into steam. After heating in the 

economizer, the feedwater enters the drum at slightly subcooled conditions. From the 

drum, it is circulated to the evaporator and returns to the drum as a water/steam mixture 

where water and steam are separated. Saturated steam exits the drum and is fed to the 

superheater where it is heated to meet the desired superheated steam temperature. When 

additional superheated steam is desired from the HRSG or when the gas turbine exhaust 
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gas is not hot enough to produce the desired temperature of superheated steam, the 

exhaust gas temperature can be raised via supplementary firing using in-duct burner in 

the HRSG as the following: 
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where αHRSG and βHRSG are lumped parameters (see Table 2.7 for the definitions), Wg is 

the gas turbine exhaust flow, Te, HRSG, in is the raised Te after supplementary firing, and Wf, 

HRSG is the duct burner fuel flow. The HRSG steam flow WSH, HRSG is calculated by an 

overall energy balance on the HRSG, shown in (2.13), where HFWHTR is the feedwater 

heat duty, ĤSH, HRSG is the specific enthalpy of the superheated steam exiting the HRSG, 

and ĤEC, HRSG is the specific enthalpy of the feedwater entering the economizer. 
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 (2.13) 

As described in (2.13), the amount of heat which can be recovered from exhaust gas in the 

HRSG depends on: the flow rate and temperature of exhaust gas and the flow rate and 

temperature of circulating water [95]. The definitions of the variables shown in Figure 2.4 

as well as their values are given in Table 2.3. 
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Table 2.3: HRSGs. 

Symbol Description Unit 
Value 

HRSG8 HRSG10 

WSH, HRSG HRSG steam flow rate 
thousand 

lb/hr 
289 193 

TSH, HRSG 
Temperature at the outlet 

of the superheater 
C 400 399 

PSH, HRSG 
Pressure at the outlet 

of the superheater 
bar 30 31 

ĤSH, HRSG 
Enthalpy at the outlet 

of the superheater 
kJ/kg 3,232 3,228 

TEC, HRSG 
Temperature at the inlet 

of the economizer 
C 120 122 

PEC, HRSG 
Pressure at the inlet 

of the economizer 
bar 34 39 

ĤEC, HRSG 
Enthalpy at the inlet 

of the economizer 
kJ/kg 506 515 

Te, HRSG, out 
Exhaust gas temperature 

at the outlet of the HRSG 
C 191 188 

HFWHTR 
Heat duty for the 

feedwater preheater 
kW 2,352 0 

2.2.4 Auxiliary Boiler 

The auxiliary boiler produces additional superheated steam when it is needed. The 

steam output of the auxiliary boiler WSH, BR depends on the fuel mass flow entering the 

boiler Wf, BR as shown in (2.14): 
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, , 
ˆ ˆ

BR f BR

SH BR

SH BR EC BR
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 (2.14) 

where αBR is the lumped parameter (see Table 2.8 for its definition and estimated value 

from the regression), ĤSH, BR is the specific enthalpy of the superheated steam exiting the 

boiler, and ĤEC, BR is the specific enthalpy of the feedwater entering the boiler. Table 2.4 

summarizes the nominal values of the model parameters shown in (2.14). 
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Table 2.4: Boilers. 

Symbol Description Unit 
Value 

BR3 BR7 

WSH, BR Boiler steam flow rate 
thousand 

lb/hr 
150 500 

TSH, BR 
Temperature at the outlet 

of the superheater 
C 339 375 

PSH, BR 
Pressure at the outlet 

of the superheater 
bar 30 30 

ĤSH, BR 
Enthalpy at the outlet 

of the superheater 
kJ/kg 3,090 3,175 

TEC, BR 
Temperature at the inlet 

of the economizer 
C 221 190 

PEC, BR 
Pressure at the inlet 

of the economizer 
bar 43 43 

ĤEC, BR 
Enthalpy at the inlet 

of the economizer 
kJ/kg 945 810 

 

2.2.5 Steam Turbine 

 

 

Figure 2.5: Schematic of the steam turbine. 

A mass balance on the superheated steam header yields the throttling steam flow 

WS, THR entering the extraction steam turbine: 
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,  , , S THR SH HRSG SH BRW W W   (2.15) 

This combined steam output is throttled through the steam turbine, generating additional 

electricity (see Figure 2.5 for the steam turbine schematic). The medium pressure steam 

is removed from the turbine and sent to campus to meet the heating demand. The rest of 

the steam that is not extracted is expanded in a number of stages and exits near saturated 

vapor conditions. The net energy supplied to the steam turbine PST is computed by 

applying mass and energy balances on the steam turbine as follows: 

 , , , , , , 
ˆ ˆ ˆ

ST ST S THR S THR S EXT S  EXT S COND S CONDP W H W H W H       (2.16) 

subject to 

 (2.17) 

 (2.18) 

where ST is the steam turbine efficiency, WS, EXT is the extraction steam flow, WS, COND is 

the condensate flow, and q is the vapor quality of the condensate. Table 2.5 summarizes 

the nominal values of the model parameters shown in (2.16)-(2.18). 

 

 

 

 

 

 

, , ,S COND S THR S  EXTW W W 

 , ' '
ˆ ˆ ˆ1v l

S COND sat d sat dH q H q H    
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Table 2.5: Steam turbines. 

Symbol Description Unit 
Value 

ST7 ST9 

Pn, ST Steam turbine power output MWe 25 25 

ĤS, THR 
Enthalpy of the throttle 

steam 
kJ/kg 3,197 3,198 

ĤS, EXT 
Enthalpy of the extraction 

steam 
kJ/kg 3,060 3,052 

'
ˆ v

sat dH  
Enthalpy of the saturated 

vapor 
kJ/kg 2,567 2,567 

'
ˆ l

sat dH  
Enthalpy of the saturated 

liquid 
kJ/kg 153 153 

ĤS, COND Enthalpy of the condensate kJ/kg 2,326 2,326 

q Vapor quality - 0.9 0.9 

 

2.3 MODEL VALIDATION 

We validate the models using hourly measured data, which are obtained from the 

Department of Utility and Energy Management at UT Austin [80]. The goodness of fit 

(R
2
) is used to quantify the quality of the models.  

The model parameters (tand c of gas turbines were estimated by applying least 

mean squares (LMS) nonlinear regression algorithm to match the generated power PGT 

with the developed models. Figure 2.6 shows the power output match for the two gas 

turbines. Estimated model parameters with 95% confidence intervals and the goodness of 

fit of gas turbines are summarized in Table 2.6. 
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Figure 2.6: Data vs. model prediction of power outputs: (a) GT8, (b) GT10 

 

Table 2.6: Model parameter estimates of the gas turbines. 

Symbol Description Unit 
Value 

GT8 GT10 

T Turbine efficiency % 90.3  0.01
a
 80.0  0.17

a
 

C Compressor efficiency  % 80.7  0.07
a
 86.5  0.06

a
 

R
2
 Goodness of fit - 0.981 0.953 

a
 95% confidence intervals 

As seen in Figure 2.6 the model fits the data well with large R
2
 values for both 

GT8 and GT10 except during the time between February 5
th

 and 7
th

 for GT10. This 

discrepancy was caused by the fact that the fuel flow measurement device in GT10 is 

inaccurate at low flow rates. The fuel flow rates were overestimated than the actual ones 
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when the power outputs were lower than 24 MW. However, the 95% confidence intervals 

of the model estimates are narrow enough to conclude the regression coefficients are 

statistically significant.  

Hourly data over a period of one week are plotted for HRSG8 and HRSG10 in 

Figure 2.7 illustrating the quality of the model fits compared to data. Estimated model 

parameters (αHRSG and βHRSG) with 95% confidence intervals and R
2
 values of the HRSG 

model are listed in Table 2.7.  

 

 

Figure 2.7: Data vs. model prediction of steam flows: (a) HRSG8, (b) HRSG10 
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Table 2.7: Model parameter estimates of the gas turbines.  

Symbol Description Unit 
Value 

HRSG8 HRSG10 

αHRSG HRSG·Cph kJ/kgK 1.27  0.01
a
 0.819  0.01

a
 

βHRSG HRSG·HRSG, comb·LHV kJ/kg 30,344  4,987
a
 54,507  783

a
 

R
2
 Goodness of fit - 0.900 0.986 

Notes: HRSG, comb is the duct burner combustion efficiency. HRSG is the overall HRSG efficiency. 
a
 95% confidence intervals 

The high R
2
 values indicate good model fits. Narrow confidence intervals of the model 

parameters indicate that the regression coefficients are precisely estimated. 

Regression results for the auxiliary boilers (BR3 and BR7) and steam turbines 

(ST7 and ST9) are plotted in Figures 2.8 and 2.9, respectively. Their estimated model 

parameters with 95% confidence intervals and R
2
 values are summarized in Tables 2.8 

and 2.9.  

 

Figure 2.8: Data vs. model prediction of steam flows: (a) BR3, (b) BR7 
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Table 2.8: Model parameter estimates of the auxiliary boilers.  

Symbol Description Unit 
Value 

BR3 BR7 

αBR BR·NG·LHV Btu/SCF 983  2.1
a
 951  4.5

a
 

R
2
 Goodness of fit - 0.967 0.969 

Notes: BR is the boiler efficiency. NG is the density of natural gas.
 

a
 95% confidence intervals 

 

Figure 2.9: Data vs. model prediction of power outputs: (a) ST7, (b) ST9 

Table 2.9: Model parameter estimates of the steam turbines. 

Symbol Description Unit 
Value 

ST7 ST9 

ST Steam turbine efficiency % 89.9  0.06
a
 97.0  0.17

a
 

R
2
 Goodness of fit - 0.938 0.901 

a
 95% confidence intervals 

The quality of the model fits compared to data as well as the high R
2
 values 

indicate excellent model fits. 
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2.4 SUMMARY 

In this section, the mathematical models of major pieces of equipment present in a 

CHP plant (gas turbine, HRSG, auxiliary boiler, and steam turbine) are developed and 

validated. The first principle models (on an individual component basis) being developed 

could capture the general trends of plant outputs (power and steam productions) at high 

accuracy over the entire range of operating conditions. The good model fits lead to 

meaningful solutions to the optimization formulations. 
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Chapter 3: Economic Dispatch of Combined Heat and Power Plants  

In this section, the mathematical models developed in Chapter 2 are applied to the 

day-ahead wholesale energy market to evaluate three objectives: (1) maximizing revenue 

by selling/buying power (referred to as “Case 1”), (2) maximizing revenue by selling 

power only (referred to as “Case 2”), and (3) maximizing energy efficiency without 

participating in the wholesale energy markets (referred to as “Case 3”). The resulting 

problems are complex optimization problems because all the pieces of equipment present 

in a CHP plant are inter-related, i.e., the outputs of some components become the inputs 

of others. 

3.1 NONLINEAR PROGRAMMING FORMULATION  

In Cases 1 and 2, the objective is to maximize the net income of the CHP plant by 

participating in the day-ahead electricity market: 

 
, 

, , , , , 
 
max  

C t

DAM DAM DAM
e t t e t TIAC t f f tot t

X
t T

J C P C P C W t


        (3.1) 

where 

 (3.2) 

 
(3.3) 

 (3.4) 

 , , , ,    DAM
t GT t ST t E tP P P L t T    

, 

, ,   
TIAC t

TIAC t

H
P t T

COP


   

, , , , , , , ,  ,   f tot t f GT t f HRSG t f BR tW W W W t T    
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The objective function defined in (3.1) is the net income of a CHP plant including 

the revenue of selling/buying power to/from the grid, the cost associated with additional 

cooling from electrically-powered chillers due to the use of the TIAC system, and total 

fuel cost, where , 
DAM
e tC is the day-ahead electricity price at hour t, Cf is the fixed fuel cost, 

and ∆t is the sampling rate. Equation (3.2) defines the power output accepted by the ISO at 

hour t in the day-ahead energy market (Pt 
DAM

), where LE, t is the electric load at the 

corresponding hour. In some cases, Pt 
DAM

 can be negative (i.e., during the off-peak hours, 

it is more economical to buy the power from the wholesale electricity market rather than 

to self-generate). Equation (3.3) relates the cooling load of a gas turbine inlet air cooling 

system (∆HTIAC, t) to the power consumption of an electrically-powered chiller at hour t 

(PTIAC, t). The total fuel flow in the system at hour t (Wf, tot, t) is defined in (3.4). 

In Case 3, the first term on the RHS in (3.1) is ignored as the plant does not 

participate in the wholesale energy markets (Pt 
DAM

 = 0): 

 
, 

, , , , 
 
min  

C t

DAM
e t TIAC t f f tot t

X
t T

J C P C W t


      (3.5) 

In this case, the objective is to minimize the operating costs of the CHP plant. 

The problems posed above ((3.1) and (3.5)) are NLP problems solved by changing 

a set of continuous decision variables (XC). Table 3.1 summarizes the lower and upper 

bounds for the XC. 
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Table 3.1: Constraint limits on continuous decision variables (XC). 

Decision variable Unit 
Bound 

Lower Upper 

Fd, GT8, Fd, GT10 pu
a
 -0.1 1.5 

IGV, GT8, IGV, GT10 degrees 52.2 88 

Vw, TIAC, GT8 GPM 0 2,695 

Vw, TIAC, GT10 GPM 0 1,902 

Wf, HRSG8 kg/s 0 0.630 

Wf, HRSG10 kg/s 0 0.583 

Wf, BR3 kg/s 0.138 N/A 

Wf, BR7 kg/s 0.254 N/A 

WS, EXT, ST7, WS, EXT, ST9 kg/s see (3.8) see (3.8)  
Note: Inequality constraints are imposed on the decision variables for all three case studies. 
a 
per unit value 

 

In Case 2, in addition to the constraints on the decision variables, (3.1) is also 

subject to satisfying the campus loads. In order to meet the electric load, (3.6) is proposed 

to ensure that the total electric power generated from the system is greater than the 

campus electric load (LE). 

, , , ,   E t GT t ST tL P P t T     (3.6) 

 In Case 3, (3.6) is replaced by (3.7) to ensure that the power generation meets the 

campus electric loads at all times: 

, , , ,   E t GT t ST tL P P t T     (3.7) 

 In all case studies, the extraction steam flow (WS, EXT) must be greater than the 

campus heating load (LH) but is restricted to be less than the throttling steam flow in a 

steam turbine (WS, THR), ensuring the mass balance on a steam turbine is not violated: 

,  , , , , ,    H  t S  EXT t S  THR tL W W t T     (3.8) 
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 In addition to meeting the loads (electric loads in Cases 2 and 3 and heating loads 

in Cases 1, 2, and 3), the system is subject to a number of system operating constraints as 

follows: 

, ,    min
c c tT T t T    (3.9) 

, ,   min
GT GT tP P t T    (3.10) 

, ,   ref
e t eT T t T    (3.11) 

, ,   ref
f t fT T t T    (3.12) 

, , , , ,    min

SH HRSG HRSG e HRSG in tT T T t T     (3.13) 

, , , ,    max
SH  HRSG t SH HRSGW W t T    (3.14) 

, , , , ,    min max
SH BR SH BR t SH BRW W W t T     (3.15) 

S S , S ,   min max
T T t TP P P t T     (3.16) 

The lower limit on Tc in (3.9) is specified to be 7 C to avoid the risk of freezing at the 

intake of the compressor [88]. Equation (3.10) ensures that the gas turbine power output 

is kept greater than its technical minimum (40% of its rated power output). Equation 

(3.11) enforces the maximum gas turbine’s exhaust gas temperature so as not to damage 

the gas turbine [92]. In order to regulate Nitrogen Oxide (NOx) emissions, the turbine’s 
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firing temperature also needs to be kept lower than a specified upper limit as shown in 

(3.12). The gas temperature entering the HRSG after duct burning must remain above the 

superheated steam temperature by a minimum differential (see (3.13)). The HRSG (3.14) 

and boiler (3.15) steam flows are constrained with lower and upper bounds. The steam 

turbine power output must also remain within bounds as shown in (3.16). Note that the 

upper bound on PGT is dropped since it is bounded indirectly due to (3.11) or (3.12). 

3.2 CASE STUDIES 

The optimal operating strategies obtained by solving (3.1) for Cases 1 and 2, and 

(3.5) for Case 3 are compared with historical operating schedule (referred to as “base 

case”) for 2 simulated time periods: (1) from February to November in 2011 and (2) from 

January to December in 2012. The two-month time periods (January and December) in 

2011 are excluded in the analysis due to bad quality of data. When estimating the net 

incomes, savings in operating costs, and fuel costs, the electrical and heating loads on an 

annual basis, the January and December values are assumed to be the same as those in 

November. Required data that are not listed in Tables 2.2-2.4 in Chapter 2 are provided in 

Table 3.2. 
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Table 3.2: Parameter values used in the case studies. 

Symbol Description Unit Value 

8
min

GTP  
Minimum power output from GT8 

MWe 16.8 

10
min

GTP  
Minimum power output from GT10 MWe 12.9 

7
min

STP  Minimum power output from ST7 MWe 6 

9
min

STP  Minimum power output from ST9 MWe 6 

, 3
min

SH BRW  Minimum steam output from BR3 kg/s 2.90 

, 7
min

SH BRW  Minimum steam output from BR7 kg/s 5.67 

min
cT  Minimum compressor inlet air temperature C (or K) 7 

min

HRSGT  Minimum temperature differential in HRSG8 C (or (K) 8 

 Effectiveness of a heat transfer - 0.9 

MWair Molecular weight of air  g/mol 28.96 

Rg Ideal gas constant J/molK 8.314 

COP8 
Coefficient of performance of a chiller from May to 

October  
MWth/MWe 6 

COP10 
Coefficient of performance of a chiller from 

November to April in the following year 
MWth/MWe 10 

ρW Density of water kg/m
3
 999.97 

ρNG Density of natural gas lb/SCF 0.0438 

Cf, 2011 Fuel price in 2011 $/MMBtu 5.12 

Cf, 2012 Fuel price in 2012 $/MMBtu 3.96 

  

Assumptions for the case studies are as follows: 

(1) Operation and maintenance (O&M) costs are constant regardless of the 

operational strategy and do not affect the solution outcome.
 

(2) Accurate forecasting models for the loads and day-ahead electricity prices are 

available in advance.
 

(3) A price-taker producer is considered, i.e., a producer whose market actions do 

not alter the market clearing prices.
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(4) The wholesale power prices are constant regardless of the fuel price, i.e., the 

fuel prices do not drive the wholesale electricity prices.
 

3.2.1 Case 1: Maximizing Revenue by Selling/Buying Power 

In Case 1, the objective is to maximize the net income of the CHP plant by 

participating in the day-ahead energy market. Figure 3.1(a) compares the optimized total 

power production rates with historical power production rates (base case) on May 28, 

2011. Figure 3.1(b) shows the day-ahead electricity prices during the corresponding 

hours, in the Austin Load Zone of the ERCOT grid. Optimized steam production rates vs. 

historical steam production rates (base case) are shown in Figure 3.2. 

 

 

Figure 3.1: Case 1 results for May 28, 2011 – (a) total power outputs, (b) day-ahead 

electricity prices 
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Figure 3.2: Case 1 results for May 28, 2011 – (a) total steam flow, (b) HRSG steam flow, 

(c) boiler steam flow 

In hours 1-5, the total power production was limited to its technical minimum as it 

would have been more economical to buy the deficit power (difference between the  

power output in base case and that in Case 1) from the grid at off-peak electricity tariffs 

rather than to self-generate. In hours 6-8, the results show that the plant could increase 

the net income by selling the extra power to the grid when the electricity prices were 

above about $0.03/kWh. In hours 9-23, the power production was maximized (67 MWe), 

owing to high electricity prices of the late afternoon hours during the summer months 

(from May to October) in the ERCOT grid. Figure 3.2 witnesses that the overall HP 
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steam flow directed to the steam turbine has been maximized during the on-peak hours 

(hours 9-23), resulting in an increase in the power outputs from the steam turbine and 

bringing additional profits from electricity sales. The suggested plant’s operating scheme 

was repetitive on a daily basis throughout the year (both in 2011 and 2012). 

3.2.2 Case 2: Maximizing Revenue by Selling Power 

In Case 2, the objective is to maximize the net income of the CHP plant by selling 

surplus power to the grid (buying power from the grid is not allowed). Figure 3.3(a) 

compares the optimized total power production rates with historical power production 

rates (base case) on May 28, 2011. Optimized steam production rates vs. historical steam 

production rates (base case) are shown in Figure 3.4. In Case 2, the results are similar to 

those observed in Case 1, except the plant did not buy the power from the grid during the 

off-peak hours (hours 1-8) but met the campus electric load. 

 

 

Figure 3.3: Case 2 results for May 28, 2011 – (a) total power outputs, (b) day-ahead 

electricity prices 
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Figure 3.4: Case 2 results for May 28, 2011 – (a) total steam flow, (b) HRSG steam flow, 

(c) boiler steam flow 

 The annual power production schedules based on the optimal strategy are 

presented in Figure 3.5(a) and the day-ahead electricity prices for the year 2012 are 

shown in Figure 3.5(b). Figure 3.5 witnesses that electricity sales are highly 

recommended when electricity prices are high (especially from April to September), at 

which high profits are expected for wholesale market participants.  
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Figure 3.5: Case 2 results for year 2012 – (a) total power outputs, (b) day-ahead 

electricity prices. Optimized power outputs (red solid line) are highly 

correlated to the day-ahead electricity prices. 

3.2.3 Case 3: Maximizing Energy Efficiency without Participating in the Wholesale 

Energy Markets 

In Case 3, the goal is to determine a schedule of local energy production that 

minimizes the costs of providing the electrical and heating loads without participating in 

the wholesale energy markets. The results are shown in Figure 3.6 (power production) 

and Figure 3.7 (steam production). 
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Figure 3.6: Case 3 results for August 22, 2011 – (a) total power outputs, (b) gas turbine 

power outputs, (c) steam turbine power outputs 

 

Figure 3.7: Case 3 results for May 28, 2011 – (a) total steam flow, (b) HRSG steam flow, 

(c) boiler steam flow 
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 In hours 1-14 and 18-24, the optimized total power outputs (Figure 3.6(a)), gas 

turbine power outputs (Figure 3.6(b)), and steam turbine power outputs (Figure 3.6(c)) 

were the same as those observed in base case. In hours 15-17, the power outputs from the 

gas turbine were reduced and the steam turbine made up the deficit power. During these 

hours, the plant was able to generate the same power outputs at lower operating costs 

through the optimal allocation of the total power among the gas turbine (GT8) and steam 

turbine (ST9). Similar results in terms of the steam production were observed as seen in 

Figure 3.7.   

 Table 3.3 summarizes the total yearly cost for each case study performed for the 

year 2011. Figure 3.8 shows the same results as histograms.  

 

Table 3.3: Summary of the cases studies performed for year 2011. 

Scenarios 
Operating costs 

($ million) 

Net income 

($ million) 

Net income 

(%) 

Base case 16.0
b
 - - 

Case 1: 

sell/buy power 
12.6 

3.42 

(2.23
a
) 

21.4 

(14.0
a
) 

Case 2: 

sell power only 
13.7 2.34 14.6 

Case 3: 

No power sales 

or purchases 

15.7 0.27 1.7 

a
 net income by selling power to the grid 

b
 net income in January and December are assumed to be the same as those in November 
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Figure 3.8: Annual operating costs for year 2011 for Cases 1, 2, and 3. 

 In Case 3, the plant could reduce annual operating costs by 1.7% (or $0.27 million 

per year) through the optimal allocations of the total power and total steam. The fact that 

only a marginal benefit was resulted in Case 3 indicates that the current operating scheme 

of the power plant at UT Austin campus is close its optimal operating scheme. In Case 2, 

revenue from selling surplus power helped to significantly offset an additional fuel costs, 

resulting in annual net income of $2.34 million (14.6% of the base case operating costs). 

As in Case 1, when power could be bought/sold from/to the grid, the net income was 

further increased. For instance, in Case 1, the simulated results show that the plant could 

achieve annual net income of $3.42 million (21.4% of the base case operating costs), of 

which $2.23 million (about two-thirds of the net income) came from by selling surplus 

power to the grid during the on-peak hours when electricity prices are highest, and the 

remainder came from the buying cheap power from the grid during the off-peak hours. 

While the gas and steam turbines must still be run to meet heating loads, their power 

productions were minimized by supplementing the electrical generation with imported 

power. 
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 Figure 3.9 shows the monthly operating costs for Case 1 presented in histograms 

and Figure 3.10 represents the corresponding average electricity prices.  

 

 

Figure 3.9: Case 1 results for year 2011 - monthly operating costs. 

 

Figure 3.10: Average monthly day-ahead electricity prices for year 2011. 

The results imply that higher overall profits are expected when electricity prices 

are higher as the profit by selling power at expensive on-peak rates outweighs that by 
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buying cheap power. Especially, in August, the highest monthly net income was observed 

($1.61 million), which was about half of the annual net income, owing to extremely high 

electricity prices (average price of $0.15/kWh) observed in the corresponding month. 

 The same case studies were performed using 2012 historical data and day-ahead 

electricity prices, of which the ranges represent typical values. The optimized results are 

summarized in Table 3.4 and graphically represented in Figure 3.11. 

Table 3.4: Summary of the cases studies performed for year 2012. 

Scenarios 
Operating costs 

($ million) 

Net income 

($ million) 

Net income 

(%) 

Base case 13.4 - - 

Case 1: 

sell/buy power 
12.0 

1.4 

(0.71
a
) 

10.8 

(5.3
a
) 

Case 2: 

sell power only 
12.4 1.0 7.5 

Case 3: 

No power sales 

or purchases 

12.9 0.5 3.7 

a
 net income by selling power to the grid 

 

 

Figure 3.11: Annual operating costs for year 2012 for Cases 1, 2, and 3. 
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In comparison to the results obtained when 2011 historical data were used, annual 

net incomes calculated based on 2012 historical data were relatively lower, i.e., $1.4 

million and $1.0 million for Case 1 and Case 2, respectively.  

To better understand the effects of fuel prices on overall net incomes of the plant, 

sensitivity analysis was performed using various fuel prices using 2012 historical data. 

Figure 3.12 shows the optimized power productions under various fuel prices for Case 2 

during a May week in 2011. Figures 3.13 and 3.14 show the changes in annual operating 

costs and net incomes, respectively, as a function of fuel prices. 

 

 

Figure 3.12: Case 2 results for a May week in 2011- optimized power outputs under 

various fuel prices. 
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Figure 3.13: Evolution of expected annual operating cost for year 2011 vs. fuel prices. 

 

 

Figure 3.14: Evolution of expected annual net income for year 2011 vs. fuel prices. 
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 In Figure 3.12, when the fuel price was low (i.e., $3/MMBtu), the power 

production was maximized during the most of the time periods as significant profits by 

selling extra power to the grid could offset an increased operating costs. As the fuel price 

increased (i.e., when going from $3/MMBtu to $5.12/MMBtu or/and from $5.12/MMBtu 

to$7/MMBtu), the amount of electrical energy sold to the grid decreased, resulting in 

reduced net income.  

As seen in Figure 3.13, the plant’s annual operating costs for both cases (base 

case and optimal strategy) increase as the fuel prices increase. But their differences for 

each fuel-price scenario (see Figure 3.14) decrease as the fuel prices increase. In order 

words, higher variations in electricity prices (or equivalently lower fuel costs when 

electricity prices are the same for each fuel-price scenario) allow achieving better 

economic results. 

It should be noted that labor and other operational costs are not included in the 

costs discussed in this work. Also, the case studies performed in this chapter assume that 

the system is freely able to exchange electricity with the grid at wholesale market prices. 

Thus, the scenarios considered are idealized as there may be a number of regulatory 

hurdles (non-technical) to overcome when exporting/importing power to /from the grid. 

Nevertheless, the ability to sell/buy power to/from the grid can significantly offset 

operating costs although there may be regulatory constraints for district energy system 

freely to do so. From a purely technical point of view, the benefits of participating in the 

wholesale energy market are straightforward. 

3.3 SUMMARY 

This chapter has introduced the constrained nonlinear optimization approach to 

develop an optimal operating strategy for the CHP system in the competitive wholesale 
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energy markets. The ability to exchange power with the external grid gives the district 

energy system additional degrees of freedom, allowing it to export surplus power when 

electricity prices are high and to import when they are low. Ideal objectives (i.e., 

maximizing revenue by participating in the wholesale energy market or maximum energy 

efficiency) can be achieved by exploiting these degrees of freedom through optimization. 

Optimal solutions to the different objective functions provide insight into the best 

strategies for operating the systems. 

 

 

 

 

 

 

 

  



 59 

Chapter 4: Economic Dispatch of Combined Heat and Power Plants 

that Provide the Emergency Response Service 

The electricity grid experiences short-term, temporary changes in overall capacity 

even in the best of circumstances. For this reason grid operators and utilities must be 

prepared to account for contingencies, i.e., power plants or transmission lines that go out 

of service or unforeseen drastic changes in electric demand. Furthermore, as grid 

operators and utilities increase their reliance on intermittent renewable energy resources 

such as solar, photovoltaic, geothermal, and wind power, additional balancing resources 

are required to address any inconsistencies in power generation. Therefore ancillary 

services must be continuously sourced from generation or load resources and provided to 

the electricity grid to ensure the reliable operation of the transmission system and 

increase grid stability.  

4.1 BACKGROUND 

In Texas, ERCOT periodically procures emergency response service (ERS) 

resources to provide ERS through qualified schedule entities (QSEs). QSEs are able to 

submit offers to sell and/or bids to buy energy in the wholesale energy markets (the day-

ahead market (DAM) and the real-time market (RTM)) on behalf of entities that own or 

control potential ERS resources, i.e., resource entities (REs) or load serving entities 

(LSEs) [67]. Thus, they are responsible for settling financially with ERCOT.  

ERS providers can receive a capacity payment based on MWs awarded for each 

hour in the contract periods. The payment to a QSE is made regardless of whether there is 

a deployment event. Participants may offer to provide the ERS for one or more non-

overlapping contract periods. According to Standard Contract Term [96], the current 

four-month contract periods are as follows: 
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- February – May 

- June – September 

- October – January 

Table 4.1 summarizes the average capacity payment per unit ERS load (MW) per 

hour in the ERCOT market during the contract periods from June to September in 2012. 

Table 4.1: Capacity payments in the four different business hours in the June to 

September 2012 contract period. 

Business Hours 

(hrs ϵ BHs) 
Time periods 

Total hours 

(hours
b
) 

Capacity payment  

($/MWh
b
) ($/MW

b
) 

Business Hours 1 

(BHs1) 

8 AM to 1 PM 

Monday - Friday
a
 

420 8.7 3,654 

Business Hours 2 

(BHs2) 

1 PM to 4 PM 

Monday - Friday
a
 

252 9.67 2,437 

Business Hours 3 

(BHs3) 

4 PM to 8 PM 

Monday - Friday
a
 

336 9.97 3,350 

Non-Business 

Hours (NBHs) 
All other hours 1,920 8.83 16,954 

a
 except ERCOT holidays  

b
 from June to September, 2012 

As seen in Table 4.1, the capacity payment is relatively higher during the late afternoon 

hours (from 1 PM to 8 PM) than the rest of the hours.  

 ERS providers will be called upon to provide the ERS into the ERCOT in an 

electric grid emergency for a maximum of 8 hours for each deployment event. If one or 

more ERS resources exhaust their obligation during a day, the contract period ends that 

night at midnight for all awarded resources. However, if ERS resources operate at less 

than 8 hours but greater than 4 hours for the first deployment event, then they are subject 

to obligation of being called the second time to provide the ERS for an additional 4 hours 

at maximum if needed. If ERS resources provide the ERS less than 4 hours for the first 

deployment event, then the remainder of their 8-hour obligation is carried over for the 



 61 

second possible deployment event. In other words, they will still have a cumulative 

deployment obligation time of 8 hours prior to a next deployment event. 

A QSE may schedule in advance with ERCOT periods of unavailability for an 

ERS load for up to 2 % of its total committed hours in an ERS contract period. These 

scheduled periods of unavailability must be communicated to ERCOT by an authorized 

representative of the QSE representing the ERS load at least five business days prior to 

the first day of the period of unavailability [96]. 

4.2 PROBLEM FORMULATION 

The NLP model developed in Section 3.1 (Case 2) is adapted in this section. The 

objective is to maximize the net income of a CHP plant that not only sells surplus power 

to the grid at wholesale spot market prices but also participates in providing ERS, which 

is a significant additional income source. 

The logic that determines whether to participate in the day-ahead market (DAM) 

is shown in Table 4.2. Equation (4.1a) states that generation resources (individual or 

aggregated) do not participate in the DAM because their total electric load will exceed 

the maximum generation capacity when required to provide the ERS in an electric grid 

emergency by the contract. They may participate in the RTM if it is profitable to sell 

surplus power to the grid, especially during the on-peak hours. If the total electric load is 

less than the maximum generation capacity (4.1b), then generation resources may 

participate in the DAM.  
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Table 4.2: Wholesale energy market participation under different logic conditions. 

, , 

,    ,    

sold max
E t ERS hrs i

i I

L L P

t T hrs BHs




  


    



 

If the sum of the local electric load in 

hour t (LE, t) and the ERS capacity sold to 

ERCOT in business hours hrs ( , 
sold
ERS hrsL ) 

is equal to or greater than the maximum 

available generation capacity, then 

generation resources do not participate in 

the DAM. 

 

(4.1a) 

, , 

,    ,    

sold max
E t ERS hrs i

i I

L L P

t T hrs BHs




  


    


 

If the sum of LE, t and LERS, hrs is less than 

the maximum available generation 

capacity, then regeneration resources 

may participate in the DAM. 

 

(4.1b) 

 

If (4.1a) holds, then (4.2) is solved: 

 
, 

, , , , , 
 
max  

C t

RTM RTM
e t t e t TIAC t f f tot t

X
t T

J C P C P C W t


        (4.2) 

  , , ,    ,    t it E t ERS hrs

i I

P P L L t T hrs BHs


        (4.3) 

subject to (3.3)-(3.4), (3.8)-(3.16), and (4.4): 

 , , ,    ,    E t ERS hrs it

i I

L L P t T hrs BHs


       
(4.4) 

where LERS, hrs is the ERS load in business hours hrs (see Table 4.1 for business hours). 

The total electric load (sum of the local electric load (LE, t) and the ERS load (LERS, hrs) in 

case of a grid emergency) is satisfied by (4.4). Note that the power output accepted by the 

ISO in hour t (Pt) does not include LE, t and LERS, hrs. Equations (4.3) and (4.4) reduce to 

(3.2) and (3.6), respectively, if there is no electric grid emergency (LERS, hrs = 0). 
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The profit of selling surplus power to the grid in time t (Profitt 
wholesale

) defined in 

(4.5) consists of two parts: power revenue from electricity sales in the RTM (4.6) and the 

operating cost of the system (4.7) as follows: 

 , ,  wholesale
t power t cost tProfit REV Opr t    (4.5) 

, , 
RTM

power t e t tREV C P   (4.6) 

 , , , , 
RTM

cost, t e t TIAC t f f tot tOpr C P C W     (4.7) 

where , 
RTM
e tC is the real-time electricity price in time t. Note that (4.5)-(4.7) are used only 

when (4.1a) holds. 

 When (4.1b) holds (i.e., the total electric load is less than the maximum available 

generation capacity), generation resources may participate in the DAM. In this case, the 

optimization procedure is divided into two steps. First, (3.1), the objective function 

defined in Section 3.1 for Case 2, is solved to determine the amount of electricity to be 

sold in the DAM subject to (3.2)-(3.4), (3.6), (3.8)-(3.16), and (4.8): 

    , ,   ,    max sold
it it ERS hrs

i I i I

P P L t T hrs BHs
 

        (4.8) 

where , 
sold
ERS hrsL is the ERS capacity that is sold the ERCOT in business hours hrs. 

Ancillary service providers shall not bid the capacity that they have sold to ERCOT into 

the market for other capacity services. This is achieved by (4.8) to save the capacity to 

provide the ERS for a possible emergency deployment in the following day. By solving 

(3.1) an optimal amount of power to be sold is calculated and offered to bid to sell energy 
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in the DAM. Subsequently, an additional power to be sold in the RTM is calculated by 

(4.9): 

 
, 

, , , , , 
 
max  

C t

RTM RTM RTM
e t t e t TIAC t f f tot t

X
t T

J C P C P C W t


        (4.9) 

  , , ,    ,    RTM DAM
t it t E t ERS hrs

i I

P P P L L t T hrs BHs


         (4.10) 

subject to (3.3)-(3.4), (3.8)-(3.16), and (4.11): 

 , , ,    ,    DAM
t E t ERS hrs it

i I

P L L P t T hrs BHs


        (4.11) 

where Pt 
RTM

 and Pt 
DAM

 are the power outputs accepted by the ISO at hour t in the RTM 

and DAM, respectively. Equation (4.10) ensures that Pt 
RTM

 must exclude Pt 
DAM

, LE, t, and 

LERS, hrs. As defined in (4.11), the total power output in time t should be equal to or greater 

than the sum of Pt 
DAM

, LE, t, and LERS, hrs to meet the loads. Equations (4.10) and (4.11) 

reduce to (4.3) and (4.4), respectively, if generating units do not participate in the DAM. 

When (4.1b) holds, Profitt 
wholesale

 consists of three parts: power revenue from 

electricity sales in the DAM (4.13), power revenue from electricity sales in the RTM 

(4.14), and the operating cost of the system (4.7) as follows: 

 , , , 
wholesale DAM RTM
t power t power t cost tProfit REV REV Opr t     (4.12) 

, , 
DAM DAM DAM
power t e t tREV C P   (4.13) 

 , 
RTM RTM RTM
power, t e t tREV C P   (4.14) 
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Finally, the net income of ERS resources (Incomenet) is defined by 

 , , , 
wholesale sold

net t ERS hrs ERS hrs ERS hrs

t T hrs BHs

Income Profit C L T
 

      (4.15) 

where CERS, hrs is the capacity payment per MWh in business hours hrs, and TERS, hrs is the 

total number of hours in business hours hrs during the contract periods. The first term on 

the RHS of (4.15) accounts for the profit of selling surplus power in the wholesale energy 

markets (in the RTM or/and DAM) over the time span T. The second term on the RHS of 

(4.15) accounts for the ERS capacity payment. 

4.3 CASE STUDIES 

Case studies demonstrate how the net incomes of the CHP plant at UT Austin 

campus change as a function of MWs sold to the ERCOT for the ERS. The net income 

consists of the two parts: the ERS capacity payments based on MWs awarded for each 

hour during the contract periods and the power revenue by selling the extra power in the 

wholesale markets excluding the capacity that is sold to the ERCOT for the ERS. The net 

income of ERS resources by the end of the contract periods will depend on whether they 

are called to provide the ERS during the contract periods. This aspect is also examined in 

detail. 

The same assumptions made for the case studies in Section 3.2 hold in this 

section. Additional assumptions are as follows: 

(1) Ancillary service providers do not bid the capacity that they have sold to 

ERCOT into the market for other capacity services. 

(2) LERS, hrs is the same for all business hours in each case scenario for the sake of 

simplicity, so the subscript hrs is left off. 
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(3) The ERS is assumed to be procured for a four-month contract period (June to 

September of 2012) for deployment in an electric grid emergency. 

(4) Sampling rate (∆t) of 1 hour is considered. 

(5) Purchasing the power from the grid is not allowed. 

4.3.1 Net Incomes under Various ERS Capacities Sold to the ERCOT without a 

Deployment Event 

The case studies were performed under various ERS capacities that were sold to 

the ERCOT. In these cases, the ERCOT did not have to procure the ERS as there was no 

electric grid emergency observed during the contract periods. Table 4.3 summarizes the 

total power revenue and net income corresponding to a specific value of , 
sold
ERS hrsL . Figure 

4.1 shows the contribution of three power revenues: an ERS capacity payment, electricity 

sales in the RTM, and electricity sales in the DAM. 

 

Table 4.3: Total power revenue and net income under various , 
sold
ERS hrsL  

, 
sold
ERS hrsL

 (MW) 

Total power revenue 

($) 

Net income 

($) (%) 

1 756,783 (26,394
a
) 443,914 10.2 (0.6

a
) 

2 763,729 (52,789
 a
) 458,909 10.5 (1.2

a
) 

3 769,543 (79,183
 a
) 473,763 10.8 (1.8

a
) 

4 775,580 (105,580
 a
) 488,380 11.2 (2.4

a
) 

5 781,600 (131,970
 a
) 503,000 11.5 (3.0

a
) 

6 787,910 (158,370
 a
) 517,370 11.8 (3.6

a
) 

8 799,170 (211,150
 a
) 546,960 12.5 (4.8

a
) 

10 812,250 (263,940
 a
) 577,110 13.2 (6.0

a
) 

15 883,047 (395,920
a
) 668,110 15.3 (9.1

a
) 

20 980,885 (527,890
a
) 788,840 18.1 (12.1

a
) 

a
 additional profit by providing the ERS  
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Figure 4.1: Power revenues as a function of , 
sold
ERS hrsL : ERS capacity payment (top green), 

power revenue from the RTM (middle red), and power revenue from the 

DAM (bottom blue). 

The results (see Figure 4.1) show that the power revenues from electricity sales in 

the RTM increased but those in the DAM decreased as , 
sold
ERS hrsL  increased. A reduced 

total available power that could be sold to the DAM (if profitable) due to an increased 

, 
sold
ERS hrsL  resulted in a reduction in power revenues from electricity sales in the DAM. 

However, this resulted in an increased available power that was sold to the RTM in the 

following day (if profitable), resulting in an increased power revenues from electricity 

sales in the RTM. In all cases, the power revenues from the DAM are greater than those 

obtained from the RTM due to two reasons: (1) the maximum amount of power that 

could be sold in the RTM equals to , 
sold
ERS hrsL  (especially during the on-peak hours) and it 

is less than the amount of power sold in the DAM most of the times, and (2) the day-

ahead electricity prices are usually greater than real-time electricity prices unless the 

electric grid is stressed by high demand. The combined revenues from electricity sales in 
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the wholesale energy markets (DAM and RTM) decreased as , 
sold
ERS hrsL  increased; 

however, ERS capacity payments, which increased linearly with , 
sold
ERS hrsL , could offset 

reduced power revenues. As a result, the net income of the plant (shown in Table 4.3) 

increased as the ERS capacity of generating units sold to the ERCOT increased. 

4.3.2 Effect of Deploying the ERS on the Net Income 

Day-ahead electricity prices are usually more expensive than real-time electricity 

prices, but the opposite happens when the electric grid is stressed due to weather, 

generator malfunctions, or loss of renewables often caused by lack of wind or cloud 

cover. In the Austin Load Zone on June 26, 2012, the grid experienced excessive 

demand, resulting in extremely high electricity prices in both the day-ahead and real-time 

markets as shown in Figure 4.2. 

 

 

 

Figure 4.2: Day-ahead and real-time settlement point prices for the Austin Load Zone in 

the ERCOT market on June 26, 2012. 
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On this date, real-time electricity prices were higher than day-ahead electricity 

prices throughout the day (except hours from midnight to 1 AM and hours from 3 PM to 

5 PM), requiring ERCOT to procure the ERS to balance electrical supply and demand. 

So, the case study was performed to demonstrate the effect of deploying the ERS on the 

net income as well as operating strategy of the plant in response to a grid emergency. 

In hours 9-16 (from 8 AM to 3 PM), the generation resources were called to 

provide the ERS for 8 continuous hours, so they exhausted their 8-hour obligation with 

one deployment event. The capacity payments for four business hours are listed in Table 

4.1. The ERS capacity sold to the ERCOT was 6 MW during the procurement cycle. 

Figures 4.3 and 4.4 show the power outputs on June 26 in 2012 with and without a 

deployment event, respectively. 

 

 

Figure 4.3: Power outputs on June 26 in 2012 without a deployment event. 
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Figure 4.4: Power outputs on June 26 in 2012 with a deployment event. 

When there was no deployment event, the plant did not participated in the DAM 

in hours 1-12 and 23 due to low day-ahead electricity prices but participated in the RTM 

in hours 11-12, owing to relatively high real-time electricity prices. In hour 22, the plant 

only participated in the DAM because the real-time electricity price during this hour was 

not attractive to sell the power. In hours 13-21, at least 6 MW was saved to provide the 

ERS in case of a grid emergency when participating in the DAM. As there was no 

deployment event observed, the remaining power could be sold to the RTM as well at 

expensive real-time market electricity prices. In the rest of the hours, the total power 

output met the load and did not participate in neither the DAM nor the RTM due to the 

low wholesale settlement point prices during these hours. 

When a grid emergency occurred, the ERS of 6 MW was procured for 8 hours in 

hours 9-16 (see Figure 4.4). Compared to the case without a deployment event, the plant 

lost the profit of $21,326; however, this was significantly offset by the ERS capacity 

payment ($158,370), that amounted to 32% of the net income. 
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The optimal economic dispatch algorithm proposed is effective and safe to 

implement because the ERS capacity is always reserved to be procured in response to a 

possible grid emergency in the following day while maximizing the net income by 

participating in the wholesale energy markets. It is recommended to limit , 
sold
ERS hrsL  to be 

less than 10% of the total generation capacity of the plant or/and the least surplus power 

based on the highest predicted local load of the contract periods to ensure that the local 

electric load is met. In this case study, the total generation capacity of the power plant at 

UT Austin was 67 MW, 10% of which was 6.7 MW, and the least surplus power 

observed during the contact periods was 13.2 MW. So, , 
sold
ERS hrsL of less than 6.7 MW was 

recommended. 

4.4 SUMMARY 

In this chapter, net incomes of generation resources by providing the ERS while 

participating in the wholesale energy markets have been evaluated. Case studies 

demonstrated that the ERS participants can achieve a significant additional profit since 

the capacity payment is (1) made regardless of there is a deployment event and (2) 

enough to offset the decrease in net income due to the ERS procurement in case of a grid 

emergency. The key-value of the proposed economic dispatch algorithm comes by its 

ability to save the ERS load when the ERS providers participating in the DAM, allowing 

them to procure the ERS if required in the following day or to sell the reserved ERS 

energy to the RTM. 
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Chapter 5: Optimal Scheduling of Combined Heat and Power Plants 

The optimization problem addressed in this chapter is formulated as a scheduling 

problem. So, a producer (or a unit) needs to determine the best scheduling (most 

profitable), i.e., start-up and shut-down planning, of its production units in advance.  

5.1 MIXED-INTEGER NONLINEAR PROGRAMMING FORMULATION 

When the pieces of equipment in a CHP plant (referred to as “producers”) to be 

committed to operation are known a priori, the scheduling problem is an NLP problem as 

no binary decision variables are required. On the other hand, if we assume multiple 

producers can be brought on-line to maximize the CHP plant’s profit as many as they 

exist in the system, then the scheduling problem is formulated in an MINLP framework 

as both continuous (XC) and binary decision variables (XB) are required to solve an 

optimization problem. The optimal usage of generating resources during a scheduling 

period (T) is determined by solving the following objective function: 

 
, , 

, , , , 
 , 

max  
C it B it

DAM DAM DAM
e t t e t TIAC it prod it

X X
t T i I

J C P C P C t
 

 
      

 
   (5.1) 

subject to 

 , , ,  0,    ,   C it B itc X X i I t T      (5.2) 

 , , ,  0,    ,  eq C it B itc X X i I t T      (5.3) 

, , , ,    ,  min max
C it C it C itX X X i I t T       (5.4) 
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 , 0,1 ,   ,  B itX i I t T      (5.5) 

where , TIAC itP  is the power consumption of a chiller associated with TIAC unit i in 

hour t and Cprod, it is the production cost of unit i in hour t. Equations (5.2) and (5.3) 

enforce the inequality and equality constraints, respectively. The continuous (5.4) and 

binary (5.5) decision variables are also constrained with lower and upper bounds. These 

constraints represent the system operating constraints of the producers such as 

minimum/maximum power output and steam flow restrictions, minimum up/down times, 

start-up and shut-down procedures, fuel limits, etc. They are further described in the 

following sub-sections in greater details. 

When the producer is committed to operation, it experiences a predefined 

sequence of modes (or phases), with a residence time specified for each mode. Figure 5.1 

represents the different operating modes of the producer [97]. After being turned off (uit = 

0) for Ti
off

 hours, which should be greater than the minimum down time, i.e., Ti
min,down

 ≤ 

Ti
off 

, the producer starts up at hour t1 (yit = 1) and continues committed for at least 

minimum up time (Ti
min,

 
up, l

) until the producer is shut-down at hour t5 (zit = 1). Once 

committed, the producer enters four consecutive operating phases: (1) synchronization, 

(2) soak, (3) dispatchable, and (4) desynchronization, denoted by binary variables uit
syn

, 

uit
soak

, uit
disp

, and uit
desyn

, respectively. The producer start-up phase consists of the two 

phases: (1) synchronization and (2) soak. After a type-l start-up decision is made (yit 
l
 = 

1), the producer enters the synchronization phase that lasts for Ti
syn, l

 hours. No power is 

produced during the synchronization phase. Subsequently, the producer enters the soak 

phase that lasts for Ti
soak, l

 hours. During the soak phase the producer’s power ramps up 

from the synchronization load (Pi
syn

) to the technical minimum power output (Pi 
min

).  
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Figure 5.1: Operating modes of a unit. Image is adopted from [97]. 

Three start-up types are modeled: hot, warm and cold, each with distinct 

synchronization time (Ti
syn, l

), soak time (Ti
soak, l

), and start-up cost (Ci
start, l

). These three 

model parameters depend on the producer’s prior reservation time (Ti
off

). For example, if 

Ti
off 

is greater than zero but less than Ti 
w
, than the start-up type is classified as the “hot” 

start-up. When Ti
off 

falls in between Ti 
w
 and Ti 

c
, then the start-up type is classified as the 

“warm” start-up. If Ti
off 

is greater than Ti 
c
, we classify the start-up type as the “cold” 

start-up. 

Once the producer is bought on-line, it must complete the start-up sequence and 

enter the dispatchable phase during which it can receive dispatch instructions to vary its 

power output between its technical minimum and its nominal power output as many 
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hours as needed to satisfy the minimum up time requirement. Subsequently, the producer 

follows a predefined shut-down sequence, which we will describe later for each producer 

individually. In the following sub-sections, we adapt the notation and terminology from 

[97]. 

5.1.1 Start-up Type Constraints 

1

,    ,  ,  

l
i

l
i

t T
l
it i

t T

y z i I t T l L





  

      
 

(5.6) 

,    ,  l
it it

l L

y y i I t T


      (5.7) 

 Equation (5.6) chooses the distinct start-up type of the unit i depending on the 

unit’s prior reservation time by constraining the type-l start-up of unit i during hour t (yit 
l
) 

to be zero unless there has been a prior shut-down of the unit within the time window [

l
it T , 

l
it T ] (see Table 5.1). Equation (5.7) makes sure that only one start-up type per 

start-up is selected. 

Table 5.1. Producer start-up model.  

Start-up 

type 

Prior reservation time 
ll off
ii iT T T   

Synchroni-

zation time 

Soak 

time 

Start-up 

cost 

Hot 0 off w
i iT T   Ti

syn, h
 Ti

soak, h
 Ci

start, h
 

Warm 
w off c

i i iT T T   Ti
syn, w

 Ti
soak,w

 Ci
start, w

 

Cold 
c off

i iT T T   Ti
syn, c

 Ti
soak,c

 Ci
start, c

 

Note: T 
is the maximum length of the planning horizon extended to the past (negative time). 
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5.1.2 Synchronization Phase Constraints 

, 

, 

1

,    ,  ,  
syn l

i

t
syn l l
it i

t T

u y i I t T l L

   

        (5.8) 

, ,    ,  syn syn l
it it

l L

u u i I t T


      (5.9) 

After the type-l start-up decision is made (yit
l
 = 1) for unit i, it must enter the 

synchronization phase immediately (see Figure 5.1). This is achieved in (5.8) by turning 

on the type-l synchronization phase binary variable (uit
syn, l

 = 1), whenever a type-l start-

up of the unit i is selected in the past Ti
syn, l

 hours. Equation (5.9) ensures that only one 

synchronization phase type per start-up is selected. 

5.1.3 Soak Phase Constraints 

, 

, , 

, 

1

,    ,  ,  

syn l
i

syn l soak l
i i

t T
soak l l
it i

t T T

u y i I t T l L





   

        
(5.10) 

, ,    ,  soak soak l
it it

l L

u u i I t T


      (5.11) 

The producer should enter a soak phase immediately after a synchronization 

phase as described in Figure 5.1.  This is achieved in (5.10) by turning on the type-l 

soak phase binary variable (uit
soak, l

 = 1), whenever a type-l start-up of the unit i is selected 

in the past time interval [t - Ti
syn, l

 – Ti
soak, l

 +1, t - Ti
syn, l

]. Equation (5.11) ensures that only 

one soak phase type per start-up is selected. During the soak phase, the power output 
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from turbines is fixed to the constant value (
soak

iP ) while in soak phase. So, the power 

output of unit i during the soak phase in hour t is defined by (5.12): 

, ,    ,  
soaksoak soak l
iit it

l L

P P u i I t T


      (5.12) 

The duration of the soak phase so as the power output during the soak phase depends on 

the unit i start-up type. 

5.1.4 Desynchronization Phase Constraints 

1

,    ,  

desyn
it T

desyn
it i

t

u z i I t T




 

      
(5.13) 

Before shutting down the unit i, it should operate in the desynchronization phase 

for Ti
desyn

 hours (see Figure 5.1). This is achieved by turning on the desynchronization 

phase binary variable (uit
desyn

 = 1), whenever a shut-down of the unit i occurs in the future 

time interval [t +1 and t + Ti
desyn

], as modeled in (5.13). The power output during the 

desynchronization phase decreases linearly from its technical minimum value (Pi
min

) to 

zero: 

 
1

,    ,  

desyn
it T min

desyn i
it i desyn

t i

P
P z t i I t T

T







 

 
        
  
  

(5.14) 

 

5.1.5 Minimum Up/Down Time Constraints 

, , 1

,    ,  ,  
min up l

i

t
l
i it

t T

y u i I t T l L

   

        (5.15) 
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, 1

1 ,    ,  ,  
min down

i

t

i it

t T

z u i I t T l L

   

        
(5.16) 

The unit must meet the minimum up time constraint once it is committed to 

operation. This is achieved in (5.15) by forcing the unit i committed at hour t (uit = 1) if a 

unit’s start-up started in the past time interval [t - Ti
min, up, l

, t]. Similarly, if a unit’s shut-

down started in the past time interval [t - Ti
min, down

, t], it should remain de-committed at 

hour t as described in (5.16) [98]. 

5.1.6 Logical Status of Commitment 

,   ,  syn soak disp desyn
it it it it itu u u u u i I t T         (5.17) 

 1
,   ,  it it it i t

y z u u i I t T


        (5.18) 

1,   ,  it ity z i I t T       (5.19) 

Equation (5.17) ensures that only one of the binary variables corresponding to the 

different commitment states, i.e., synchronization (uit
syn

), soak (uit
soak

), dispatchable 

(uit
disp

), and desynchronization (uit
desyn

), of the unit i to be equal to 1 at hour t. The logic of 

the start-up and shut-down status change is modeled in (5.18). Equation (5.19) is for 

prevention of a unit to be at start-up and shut-down at the same time in a given hour t. 
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5.1.7 Objective Function 

In preparation for reformulating a scheduling problem as an MINLP problem, the 

objective function (5.1) needs to be rewritten in terms of the binary and continuous 

variables as the follow: 

   

 

, , 

, , , 
 , 

, 

max  

                   

C it B it

DAM DAM DAM disp
e t t e t TIAC it

X X
t T t T i I

prod it

t T i I

J C P t C P t

C t

  

 

     

 

 


 

(5.20) 

  , ,    DAM soak disp desyn
t it it it E t

i I

P P P P L t T


       (5.21) 

,    ,  disp disp
it it itP P u i I t T       (5.22) 

, 

, ,    ,  
TIAC itdisp disp

TIAC it it

H
P u i I t T

COP


        

(5.23) 

 , 
, ,  ,    ,  start l l shut disp

prod it i it i it f f it

l L

C C y C z C W i I t T


           (5.24) 

, ,  ,    ,  disp disp
f it f it itW W u i I t T       (5.25) 

The surplus power sold to the grid (Pt 
DAM

) comprises the power outputs during the soak 

phase (Pit
soak

), dispatchable phase (Pit
disp

), and desynchronization phase (Pit
desyn

), and the 

electric load. The production cost of unit i in hour t (Cprod, it) defined in (5.24) consists of 

three parts: the unit’s start-up type dependent start-up cost (Ci
start, l

), shut-down cost 
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(Ci
shut

), and the time dependent fuel cost. Note that Pit
disp

 in (5.22) and , 
disp

TIAC itP in (5.23) 

are nonzero only during the dispatchable phase (uit
disp

 = 1). Likewise, the fuel cost 
disp
f, itW

(the last term) in (5.24) is accounted for during the unit’s dispatchable phase only as that 

during synchronization, soak, and desynchronization is included in the unit start-up and 

shut-down costs.  

The start-up cost in (5.24) is discretized into three levels, each of which 

corresponds to the distinct start-up type (see Figure 5.2). However, the start-up cost can 

be an exponential or linear function of the number of hours a unit has been off [99].   

 

Figure 5.2: Producer start-up cost depending on the start-up types: hot (h), warm (w), and 

cold (c). 

5.1.8 System Operating Constraints 

As the producer experiences predefined start-up (synchronization and soak 

phases) and shut-down schedules, the constraints defined in Section 3.1 are accounted 

during its dispatchable phase only. Therefore, the constraints become active only during 
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the dispatchable phase. This is achieved by using the binary variable uit
disp

 to 

enable/disable the constraints associated with each producer. 

Inequality constraints imposed on the total power output and steam flow are 

redefined as follows: 

 , ,    soak disp desyn
E t it it it

i I

L P P P t T


      
(5.26) 

, , , ( ) ,    disp
H t S EXT st t

st EST

L W t T


    
(5.27) 

where 

, , ( ) , , ( ) ( ) ,    ,  disp disp
S EXT st t S EXT st t st tW W u st EST t T       (5.28) 

Equations (5.26) and (5.27) state that the sum of power and extraction steam (defined in 

(5.28)) generations in the system should be greater than the campus electric and heating 

loads, respectively, during the dispatchable phase.  

 Equations (5.29)-(5.39) comprise the number of system operating constraints in 

the system:  

   , ( ) ,    ,  min disp disp
c c gt tgt t gt t

T u T u gt HDGT t T        (5.29) 

     , , 
,    ,  disp ref disp

e gte gt t gt t gt t
T u T u gt HDGT t T        (5.30) 

     , , 
,    ,  disp ref disp

f gtf gt t gt t gt t
T u T u gt HDGT t T        (5.31) 
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,   ,  min disp disp max disp
i it it it i itP u P u P u i I t T          (5.32) 

        , , , 
,    ,    min disp disp

HRSGSH gt t gt t e in gt t gt t
T T u T u gt HDGT t T         (5.33) 

, , , ,    ,  min disp disp max disp
SH i it SH it it SH i itW u W u W u i I t T          (5.34) 

, , ( ) , , ( ) ,    ,  disp disp
S THR st t SH tot t st tW W SFR st EST t T       (5.35) 

 , , , ,    disp disp
SH tot t SH it it

i I

W W u t T


     
(5.36) 

( )0 1,    ,  st tSFR st EST t T      (5.37) 

( ) 1,    st t

st EST

SFR t T


    
(5.38) 

   , , , , 
0 ,    ,  disp disp

S EXT st t S THR st t
W W st EST t T       (5.39) 

Equations (5.29)-(5.34) are equivalent to Equations (3.9)-(3.16) defined in Section 3.1. 

Equation (5.35) states that the throttling steam flow fed to a steam turbine ( , , ( )
disp

S THR st tW ) 

is regulated through the steam flow regulator (SFR) by allocating the total HP steam 

available in the system, which is defined in (5.36), to an individual steam turbine. The 

SFR(st)t, an additional decision variable besides those listed in Table 3.1, is the fraction of 

the total HP steam to be allocated to the steam turbine st at hour t. Equation (5.37) 
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imposes lower and upper bounds on SFR. The sum of SFR(st)t should be one at any given 

time (5.38) to ensure that the mass balance of the HP steam is conserved. Equation (5.39) 

restricts the extraction steam flow during the dispatchable phase to lie between zero and 

throttling steam flow in a steam turbine. 

 In order to assess the system efficiency on a wide range of operating conditions, 

the overall plant heat rate (HRt) in hour t is calculated by  

 

, 

SCF

Btu Btuh
 ,    

kWh SCFkW

f it

t

i I it

W

HR LHV t T
P

  
  

           
    
 
 

  (5.40) 

where Wf is the total fuel flow in hour t. LHV of natural gas is assumed to be 1,020 

Btu/SCF in this work. 

 It should be noted that a scheduling problem (MINLP problem) reduces to an 

economic dispatch problem (NLP problem) when producers to be committed are known 

prior to operation. 

5.2 CASE STUDIES 

The developed methods in Sections 3.1 and 5.1 have been applied to the day-

ahead energy market of the ERCOT interconnection for scheduling of the CHP plant 

located at UT Austin. Table 5.2 presents the technical and economic data of the producers 

used for the objective function, i.e., type-l start-up time and corresponding start-up cost, 

minimum up/down times, duration of the operating phases, etc. They have been selected 

from [97, 100] and scaled appropriately to match the rated capacity of designated run 

units, which are depicted in Figure 5.3. Note that the optimal start-up trajectory of the 

producer can be calculated offline through the deployment of nonlinear model predictive 
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control (NMPC) as shown in [79], and then can be included in the proposed optimization 

model. 

 

Table 5.2: Technical and economic data of the producers. 

Unit 

name 

 i I   

Ti 
w

 

(h) 

Ti 
desyn  

(h) 
Start-up time 

Ti
syn,l

 (h), Ti
soak,l

 (h) 

Ti 
min, up, l

 (h) 
Ti

min, 

down
 

(h) 

Ci 
start, l

 ($) 

Ti 
c
 

(h) 

Ci 
shut

 

($) 

l = hot l = warm l = cold l = 

hot 

l = 

warm 

l = 

cold syn soak syn soak syn soak 

GT8 & 

HRSG8 

(1) 

3 2 
0 1 0 2 0 3 

2 3 4 
2 

8 1,467 558 1,115 1,673 

GT10 & 

HRSG10 

(2) 

3 2 
0 1 0 2 0 3 

2 3 4 
2 

8 1,048 396 793 1,189 

ST7 

(3) 

3 1 
0 1 1 2 2 3 

2 4 6 
1 

8 440 272 816 1,360 

ST9 

(4) 

3 1 
0 1 1 2 2 3 

2 4 6 
1 

8 440 272 816 1,360 

BR3 

(5) 

3 - 
- 1 - 2 - 3 

2 3 4 
1 

8 390 321 643 964 

BR7 

(6) 

3 - 
- 1 - 2 - 3 

2 3 4 
1 

8 964 611 1,223 1,834 

Note: The gas turbine and HRSG are assumed to operate together, so they are lumped as 

one producer.  
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Figure 5.3: Flowsheet of Hal C. Weaver Power Complex at UT Austin. 

 In case studies, hourly data over a period of 4 months (from June to September, 

2012) are used to illustrate the effectiveness of the proposed frameworks. Two case 

studies are considered. In Case 1, the operating units are known in advance to follow the 

heuristic unit commitment approach. In this case, only GT8, HRSG8, ST7, and BR3 are 

in service throughout the entire time horizon, resulting in an economic dispatch problem 

formulated in an NLP framework. In Case 2, in addition to the economic dispatch, the 

unit commitment is also taken into account as multiple generating units can be bought in 

service when needed. In this case, the scheduling problem is formulated in an MINLP 

framework. Required data that are not listed in Tables 2.2-2.5, 2.1, and 3.1 are provided 

in Table 5.3. 
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Table 5.3: Parameter values used in the case studies. 

Symbol Description Unit Value 

8

soak

GTP  Fixed power output from GT8 while in soak phase MWe 8.4 

10

soak

GTP  Fixed power output from GT10 while in soak phase MWe 6.4 

7

soak

STP  Fixed power output from ST7 while in soak phase MWe 3 

9

soak

STP  Fixed power output from ST9 while in soak phase MWe 3 

 

 In Case 2, the scheduling period (T) of 24 hours (i.e., scheduling adjustments are 

performed on a daily basis) with sampling rate (∆t) of 1 hour is considered. The sizes of 

the NLP and MINLP problems expressed as the number of continuous variables, binary 

variables, and constraints are provided in Table 5.4. 

 

Table 5.4: Problem sizes of the case studies 

Case study 

Number of  

decision variables 
Number of 

constraints 
Continuous Binary 

Case 1: NLP problem 144 0 552 

Case 2: MINLP problem 336 2,304 3,000 

Note: For equivalent comparison, each entry associated with Case 1 is multiplied by the length of 

the scheduling period (24 hours). 

 

The MINLP problem is solved in MATLAB environment using the SQP 

algorithm in conjunction with solver SCIP (Solving Constraint Integer Programs) [101]. 

The same assumptions made for the case studies in Section 3.2 hold in this 

section. Additional assumptions are as follows: 

(1) The gas turbine and HRSG are treated as one producer.
 

(2) Initially, GT8, HRSG8, ST7, and BR3 have completed the unit start-up phase 

(ui0
disp

 = 1).
 



 87 

(3) Initially, the GT10, HRSG10, ST9, and BR7 have been reserved for more than 

Ti 
c
 (uit = 0), above which the start-up type of unit i is cold start-up.

 

(4) Ramp up/down limits can be imposed on plant outputs, i.e., power output and 

steam flow, as in [11, 63, 97]. However, they can ramp up (down) from (to) the 

minimum value to (from) nominal value within the sampling rate in our case 

studies. Therefore, ramping constraints are not used.
 

(5) Purchasing the power from the grid is not allowed.
 

5.2.1 Case 1: Economic Dispatch of the CHP Plant Formulated as an NLP Problem 

Figure 5.4 shows the day-ahead electricity prices for July 20, 2012, in the Austin 

Load Zone of the ERCOT grid. Figure 5.5 demonstrates how the plant operating 

schedules change responding to the hourly changing electricity prices on July 20, 2012. 

 

 

Figure 5.4: Day-ahead settlement point prices for the Austin Load Zone in the ERCOT 

market on July 20, 2012. Electricity prices are specified at one-hour 

intervals in the day-ahead market. 



 88 

 

Figure 5.5: Case 1 results for July 20, 2012 - (a) power, (b) HP steam. Optimized 

operating schedules are shown as histograms and historical operating 

schedule s are shown as black dashed lines. 

As seen in Figure 5.5(a), in hours 1-11 and 24, the plant power outputs increased 

(decreased) as the electricity prices increased (decreased), without participating in the 

wholesale energy market. During these hours, the plant was able to generate the same 

power outputs at lower operating costs through the optimal allocation of the total power 

among GT8 and ST7. This was achieved by reducing the power from ST7 (less efficient 

and more expensive producer) and increasing the power from GT8 (more efficient and 
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less expensive producer) to make up the deficit power. Figure 5.5(b) witnesses that the 

overall HP steam flow directed to ST7 in Case 1 has been reduced compared to that in 

base case, resulting in a reduction in the power outputs from ST7. 

In hours 12-23, it would have been more profitable to sell surplus power to the 

grid when the electricity prices were above about $0.03/kWh. In hours 12, 22-23, the 

power production from GT8 was maximized (42 MW) but that from ST7 remained at 

about half of its nominal power (12.5 MW). In hours 13-21, the power production from 

both GT8 and ST7 were maximized, owing to the high electricity prices of the late 

afternoon hours during the summer months in the ERCOT grid. 

The overall thermodynamic efficiency decreases for supplementary firing in 

HRSG due to the fact that the generated heat is only used in the steam turbines to 

generate power. For this reason, in Case 1, the duct burner fuel flows in HRSG8 were 

zero during the whole scheduling period. Likewise, the steam production from the 

auxiliary boiler (BR3) was limited to its technical minimum in hours 1-12 and 22-24 in 

order to maintain the high thermal efficiency of the system.  

5.2.2 Case 2: Unit Commitment and Economic Dispatch of the CHP Plant 

Formulated as an MINLP Problem 

 Figure 5.6 shows the optimal power generation schedules in Case 2 during the 

same day (July 20, 2012). In Case 2, GT8 and ST9 were “base-load” units, which ran for 

24 hours, as opposed to GT8 and ST7 in Case 1. The reason for this is that ST9 is more 

efficient and less expensive generating unit than ST7 (see Table 2.9 for their efficiency 

comparison).  



 90 

 

Figure 5.6: Case 2 results for July 20, 2012 - Optimized operating schedules are shown as 

histograms and historical operating schedules are shown as a black dashed 

line. 

When only GT10, which is more efficient than GT8, and ST9 are committed to 

operation, the combined-cycle power output from the CHP plant at nominal operating 

condition is 44 MWe, without utilizing supplementary firing in HRSG10. However, the 

lowest electric load observed was 46 MWe, so the power generation cannot meet the load 

if GT10 and ST9 were used. The load can be met if more units are bought in service, but 

this will decrease the overall thermodynamic efficiency and incur additional operating 

costs due to their start-ups/shut-downs. For this reason, although GT8 is less efficient 

than GT10, the plant prefers to operate GT8 and ST9, with which the combined-cycle 

power output at nominal condition is 56 MWe (sufficient to meet the load during all 24 

hours of the scheduling horizon). 

In hours 1-8, the power output from GT8 and ST9 met the load and did not 

participate in the wholesale electricity market due to the low electricity prices during 

these hours. In hour 7, a cold start-up of ST7 has been initiated and after 2 hours (time to 
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synchronize), during which the power output was zero, it entered the soak phase for 3 

hours during which the power output was maintained at 3 MW (fixed power output from 

ST7 while in soak phase). In hour 9, a cold start-up of GT10 has been initiated and 

entered the soak phase immediately for 3 hours during which the power output was 

maintained at 6.4 MW (fixed power output from GT10 while in soak phase). Note that 

the time to synchronize with the gas turbine (peak load unit) is zero. The plant did not 

participate in the wholesale electricity market until hour 11 but started selling the surplus 

power to the grid at hour 12. In hours 13 and 20-21, the power outputs from GT9, GT10, 

and ST9 were maximized as it was profitable to sell the extra power at attractive 

wholesale electricity prices (~ $ 0.035/kWh). In hours 14-19, all the power generating 

units maximized their productions and sold as much power as possible to the grid, owing 

the expensive electricity prices of the late afternoon hours (< $ 0.042/kWh) as shown in 

Figure 5.4. Finally, after being in the dispatchable phase for several hours, which are 

greater than the minimum down times, ST7 and GT10 entered the desynchronization 

phase for 1 (hour 22) and 2 hours (hours 23-24), respectively, and followed a predefined 

sequence of the power output values as denoted in (5.14) and shown in Figure 5.6. In 

hours 23-24, the plant did not contribute to selling the power to the grid but met the 

campus electric load. Note that GT10 and HRSG10 started up prior to the start-up of ST7 

due to the associated low operating cost of co-generation of steam and electricity. 

 Table 5.5 summarizes the start-up costs, shut-down costs, and committed 

operating hours of the producers during the four-month time periods for Case 2 expressed 

in terms of percentage.  
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Table 5.5: Start-up costs, shut-down costs, and committed operating hours of the 

individual plant components for Case 2 expressed in terms of percentage. 

Unit 

index 

i 

Unit 

name 

Start-up 

cost, C
start

 

($) 

Shut-down 

cost, C
shut

 

($) 

Unit 

Commitment 

(%) 

1 
GT8 & 

HRSG8 
0 0 100 

2 
GT10 & 

HSRG10 
158,500 104,670 33 

3 ST7 115,460 46,697 22 

4 ST9 0 0 100 

5 BR3 118,580 35,969 22 

6 BR7 199,810 60,548 13 

 

GT8, HRSG8, and ST9 operated continuously since they could meet the heating 

and electrical demands during the off-peak hours with minimum operating costs. GT10 

and HRSG10 operated about 33 % of the tested time periods. BR3 and ST7 (the least 

efficient generating unit) operated about 22 % of the tested time periods during which 

BR3 provided additional HP steam to the steam turbines. The fact that the start-up cost of 

BR7 is the most expensive due to its largest steam production capacity among all the 

boilers resulted in its lowest contribution to operation (13 %). However, during these 

hours all the generating units reached at their rated capacity because market conditions 

favored the production of surplus electricity. It should be noted that the start-up 

procedures involved mostly cold start-ups because the reservation times of the producers 

were mostly greater than Ti 
c
 (8 hours) but less than the duration of continuous off-peak 

hours in typical days (16 hours). Therefore, even if a longer, i.e., 48 hours, scheduling 

horizon is considered, the producers’ profitability from participating in the wholesale 

energy market would be the same as the case where a short-sighted day-ahead profit 

maximization model is used as in this study. 
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Table 5.6 presents the total electrical energy produced, operating costs, and net 

income estimated for two cases studies.  

Table 5.6: Net income by selling surplus power to the grid from June to September in 

2012.  

Scenarios 
Electrical energy 

produced (GWh) 

Operating costs 

($ million) 

Net income  

($ million) (%) 

Base case 142 4.37 - - 

Case 1: 

NLP problem 
154 3.95 0.42 9.5 

Case 2: 

MINLP problem 
200 

3.23 

(0.84
a
) 

1.14 26 

a
 additional operating costs incurred due to the unit start-ups and shut-downs 

 

In Case 1, the simulated results show that the plant could achieve net income of 

$ 0.42 million from June to September in 2012 by selling surplus energy of 12 GWh to 

the grid. In Case 2, the plant could achieve net income of $ 1.14 million by selling 

surplus energy of 58 GWh to the grid. In the second case, the profit was considerably 

higher than in the first case because more energy (46 GWh) could be sold to the grid with 

multiple-generating units operating although additional operating costs of $ 0.84 million 

were incurred due to the unit start-ups and shut-downs. 

The system efficiencies expressed in terms of the plant heat rate (the inverse of 

efficiency) for July 20, 2012 are shown in Figure 5.7(a) and the power outputs during the 

corresponding hours are shown in Figure 5.7(b).  
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Figure 5.7: Plant heat rates (a) and power outputs (b) for July 20, 2012 

 In hours 1-11 and 23-24, during which there were no power sales, the results 

show that the heat rates decreased as the power production rates increased for all three 

cases. The reason for this is that a gas turbine experiences a reduced efficiency at part-

load conditions. During these hours, in Case 1, the heat rates were lower than in the base 

case as less efficient units were operating at their technical minimum, i.e., steam 

production from BR3 was limited to its minimum. In Case 2, the heat rates were lower 
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than in Case 1, because more efficient units were brought in to operation and replaced 

less efficient units, i.e., ST9 was used instead of ST7. In hours 12-22, the heat rates in 

base case were considerably lower than those observed in neighboring hours because 

GT8 was operating near its nominal capacity [102]. On the other hand, during the same 

hours, the heat rates observed in Case 1 and Case 2 were higher than neighboring hours. 

Especially, during the on-peak hours (hours 13-18 in Case 1 and hours 14-19 in Case 2) 

the heat rates were higher than those observed in the base case. However, increased 

operating costs associated with the increased fuel consumption during the on-peak hours 

were compensated by the additional power revenues from day-ahead energy market for 

both cases. 

5.3 SUMMARY 

 This chapter presented a mixed-integer nonlinear programming approach that 

provides optimal scheduling of combined heat and power plants in day-ahead electricity 

markets. The maximum profit of the plant from selling surplus power to the grid is 

realized by committing more efficient generating units while satisfying local loads and 

system operating constraints and dispatching the committed units economically. The 

proposed model takes into account of different start-up types (hot, warm, and cold) as 

well as different operating modes (or phases) of generating units. From the case studies 

involving a real-world commercial CHP plant at UT Austin, when compared to the base 

case, the day-ahead profit maximization model was able to achieve net income up to 

26%. 
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Chapter 6: Nonlinear Model Predictive Control of a Heavy-Duty Gas 

Turbine Power Plant 

In this chapter, a nonlinear model predictive control (NMPC) scheme is applied to 

a heavy-duty gas turbine (HDGT) power plant for frequency and temperature control. 

This scheme is compared to a classical PID/logic based control scheme.  

The model used to describe the physical behavior of the gas turbine power plant 

(GTPP) is based on a Detailed model [75]. The air flow dynamics described in [74] is 

also applied in conjunction with the Detailed model. It is expected that the model is valid 

for variations in shaft speed between 95% to 105% and for unit loading above about 50% 

load [74]. Typical ISO conditions are assumed for this study (i.e. 1 atm ambient pressure, 

15 °C and 60% relative humidity [93]). A gas turbine shows a very fast dynamic response 

due to small time constants, some of which are less than 0.2 sec, so a steady state 

assumption is made for the gas turbine dynamics [69-75]. Therefore, the gas turbine 

model developed in Section 2.2.2 is adapted in this chapter. The details of the model 

parameters of HDGT at nominal condition selected for modeling, which have been 

adapted from [93], are shown in Table 6.1. 
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Table 6.1: Nominal data of the gas turbine selected for modeling (adapted from [93]). 

Model Parameter Symbol Unit Value 

Plant power output Pm MW 166 

Nominal frequency f Hz 50 

Rotation speed of the rotor shaft 

in the gas turbine 
N RPM 3000 

Exhaust mass flow W kg/s 537 

Fuel flow Wf kg/s 10.2 

Gas turbine firing temperature Tf C 1096 

Exhaust gas temperature Te C 522 

Pressure ratio PR - 15.4 

Turbine efficiency T % 89 

Compressor efficiency C % 86 

Combustion efficiency comb % 99 

Specific heat of air flow Cpc kJ/kgK 1.005 

Specific heat of exhaust gas flow Cph kJ/kgK 1.157 

Cold end ratio of specific heats c - 1.4 

Hot end ratio of specific heats h - 1.33 

 

6.1 CONTROL SYSTEM OF THE GAS TURBINE POWER PLANT 

The three main controlled variables (CVs) in gas turbine power plant are the rotor 

speed N, exhaust gas temperature Te, and turbine firing temperature Tf. Once the generator 

is synchronized and connected to the power grid, the power imbalance between the 

generator power output Pm and electric load PI will cause the deviation of the grid 

frequency unless it is controlled properly. Therefore, the rotation speed (frequency) of the 

rotor shaft in the gas turbine must be controlled at its nominal frequency all the time. The 

turbine’s exhaust gas temperature needs to be kept lower than its reference temperature so 

as not to damage the gas turbine, yet high enough to achieve high efficiency. In order to 

regulate Nitrogen Oxide (NOx) emissions, the turbine firing temperature also needs to be 

kept lower than a specified upper limit as well. These CVs are controlled by manipulating 

two variables: fuel demand Fd to vary the fuel flow and compressor inlet guide vanes 
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(IGVs) to schedule air flow. Possible disturbance variables (DVs) are ambient air 

conditions, i.e. temperature, pressure, and relative humidity, and electric load. 

6.1.1 Classical Feedback Control 

Figure 6.1 shows a simplified block diagram for a single-shaft heavy-duty gas 

turbine together with its classical feedback control system used in this study.  

 

 

Figure 6.1: Simplified gas turbine simulation block diagram [74, 75]. 
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Variables shown in Figure 6.1 are normalized by their rated values at nominal 

operating condition and expressed in per unit values, pu (per unit values are the decimal 

equivalents of percent values). In the percent system, 100 equals the design value, while in 

the per unit system 1.00 equals the design value [69, 70]. 

First-order dynamic models are used to represent the pneumatic valve positioner 

and valve actuator in the fuel control system as well as the radiation shield and 

thermocouple in the exhaust gas temperature measuring system. Also, a time lag that 

exists in the compressor discharge path to the turbine inlet is modeled as a first-order 

transfer function.  

The speed/load control block determines the fuel demand Fd according to the rotor   

speed deviation from the rated value (1-N) and the load reference VL. The temperature 

control block prevents the turbine’s exhaust temperature Te from exceeding its reference 

temperature Tr. The measured exhaust gas temperature Te’ is compared with the reference 

temperature Tr. The temperature control signal Tc is compared with the fuel demand Fd, 

and the lower value is selected by the low value selector (LVS), which determines the fuel 

flow Wf into the combustor. The fuel flow is proportional to the rotor speed N. Supervisory 

control defines the reference temperature Tr for the exhaust gas temperature Te [75]. When 

the turbine firing temperature Tf exceeds its rated value, supervisory control reacts by 

decreasing Tr.  

The air control block regulates the air flow W so as to achieve the desired exhaust 

gas temperature. The exhaust gas temperature Te is kept lower than Tr, by an offset, i.e. 

1% of its rated value [72]. The air flow is adjusted by the compressor inlet guide vanes 

(IGVs). Nonlinear dependency of a rotor speed of a gas turbine, ambient air temperature, 

and ambient air pressure on air flow is given as the followings [74]: 
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The parameters (Pa0, Ta0, minmax, A0, A1, and A2) in (6.1)-(6.3) as well as those shown in 

Figure 6.1 are summarized in Table 6.2. The maximum rate of change in air flow is 

assumed to be 1.6 %/sec [103]. 
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Table 6.2: Model parameters of the system shown in Figure 6.1. 

Model parameter Symbol Unit Value 

Ambient air pressure reference Pa0 atm 1 

Ambient air temperature reference Ta0 K 288.15 

Minimum IGV angle min degrees 11.6 

Maximum IGV angle max degrees 85.0 

Air flow speed factor A0 - 0.945 

Air flow speed factor A1 - -7.8 

Air flow speed factor A2 - 39 

Speed governor gain R 1/pu
a
 0.04 

Speed governor time constant Tg sec 0.05 

Gain of radiation shield K4 pu 0.85 

Gain of radiation shield K5 pu 0.15 

Radiation shield time constant T3 sec 12.2 

Thermocouple time constant T4 sec 1.7 

Exhaust gas temp. upper limit Tcmax pu 1.1 

Exhaust gas temp. lower limit Tcmin pu 0.0 

Fuel control upper limit Fdmax pu 1.5 

Fuel control lower limit Fdmin pu -0.112 

Ratio of fuel adjustment K3 pu 0.8938 

Fuel valve lower limit K6 pu 0.1062 

Valve positioner time constant TV sec 0.04 

Fuel system external feedback constant Kf pu 0 

Fuel system time constant TF sec 0.26 

Time constant of Tf  control T6 sec 60 

Rated exhaust gas temp. upper limit Trmax pu 1.01 

Rated exhaust gas temp. lower limit Trmin pu 0.9772 

Air control time constant TW sec / pu 0.4789 

Air valve upper limit gmax pu / sec 1.0 

Air valve lower limit gmin pu / sec 0.73 

Compressor discharge lag time constant  TCD sec 0.16 

Temperature offset Tr offset pu 0.01 

Turbine’s rotor time constant TI sec 18.5 
a
 per unit value 

The shaft The shaft dynamic model considers the torque inputs/outputs from each 

unit (turbine, compressor, starter motor, and generator), as well as friction [104]. 

Newton’s law is applied to the torque balance yielding the shaft speed expression: 
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   (6.4) 

where  

    -  N is the rotational speed of the rotor shaft in RPM (revolution per minute) 

    -  JR is the lumped polar moment of inertia of compressor, turbine, starter motor, 

and generator 

    -  QT is the developed torque, and 

    -  QI is the load torque. 

Equation (6.4) shows that the rotor speed changes with time unless the developed torque 

QT and the load torque QI are balanced to each other at any moment. The torque equation 

is accurate to within 5 percent at part load and is significantly more accurate at the 100 

percent design rating [69]. 

 

6.1.2 NMPC Formulation 

The model predictive controller is formulated as an NLP problem. The objective 

function associated with the model described in Figure 6.1is formed to minimize the sum 

of squared residuals at each sampling time k as shown in (6.5): 
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where 

( ) ( 1),     = 0, 1, . . . ,  -1d d dF F k j F k j j M       (6.6) 
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subject to 

( ) ,    = 0, 1, . . . ,  -1d d dF F k j F j M     (6.10) 

( ) ,    = 0, 1, . . . ,  -1IGV IGV IGVk j j M       (6.11) 

max( ) ( 1) ,    = 0, 1, . . . ,  -1IGV IGV IGVk j k j j M         (6.12) 

where P is the prediction horizon, M is the control horizon, N
sp

 is the set point of N, and 

Te
ref

 and Tf 
ref

  are the reference temperatures for Te and Tf, respectively. A perfect model 

is assumed, so an output feedback term (bias correction) is not included in (6.5). The 

output weighting factors for the temperatures (QTe, QTf) shown in (6.5) depend on the 

conditional statements ((6.8) and (6.9)). Relatively higher weighting factors are chosen in 

the case of Te and/or Tf exceed their reference temperatures. On the other hand, lower 

weighting factors are specified to achieve high exhaust gas temperature by increasing the 

air flow, thus increasing the thermal efficiency of the gas turbine as long as Te and/or Tf 

remain lower than their upper bounds. Constraints on the manipulated variables (MVs) as 
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shown in (6.10)-(6.12) ensure that the optimal solution to (6.5) lies within the feasible 

region. Their values used for this study are summarized in Table 6.3. 

Table 6.3: Constraint limits on manipulated variables. 

Constraint limits Values 

Lower limit on dF , dF 
 -0.1123 pu 

Upper limit on dF , dF 
 1.5 pu 

Lower limit on 
IGV , 

IGV   0.6588 pu 

Upper limit on 
IGV , 

IGV   1.00 pu 

Maximum change allowed in 
IGV , 

max

IGV  0.0176 pu 

A good rule of thumb is to choose the sampling period ∆t so that the sampling rate 

is less than one-tenth of the process time constant [105]. The largest time constant 

observed in the GTPP is the rotor inertia time constant (18.5 sec), so the sampling period 

of 1 second was selected. Considering the ∆t of 1 sec, reasonable computation time, and 

frequent change in load demands, it has been found that the best performance could be 

obtained with M of 4 (4 sec) and P of 8 (8 sec). MPC tuning parameters and their values 

are listed in Table 6.4 

Table 6.4: MPC tuning parameters. 

Tuning parameters Values 

Sampling rate, t 1 sec 

Control horizon, M 4 

Prediction horizon, P 8 

Output weighting factor for N, QN 10 

Conditional output weighting factors
a
, 

e

hi

TQ , 
f

hi

TQ  
5 

Conditional output weighting factors
a
, 

e

low

TQ , 
f

low

TQ  1 

Move suppression factor for dF ,
dFR  1 

Move suppression factor for IGV ,
IGV

R  3 
a
 see (6.8) and (6.9) for the conditional statements 
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6.2 SIMULTANEOUS SOLUTION METHOD 

Figure 6.2 presents a schematic illustrating collocation on finite elements 

discretization with a first-order assumed for inputs (u) in each element (k). The 

differential state variables (x) are approximated at each of the collocation points, denoted 

by i [106]. 

 

Figure 6.2: A schematic illustrating the orthogonal collocation on finite elements 

discretization with a first-order hold assumed for inputs (u) in each element 

(k). The differential state variables (x) are approximated at each of the 

collocation points, denoted by i. The points are represented using different 

shapes and colors, which help distinguish one finite element from another. 

Using orthogonal collocation on finite elements, differential equations are 

converted to algebraic equations using Lagrange interpolation polynomials (Ω), which 
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are used  to  represent  derivatives  at  select  points,  known as the collocation 

points [107]. A set of derivatives given by 
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is represented by (Ω) using the following relationship 
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where τ is a normalized time variable, x represents the differential states, y the algebraic 

states, u the user-defined inputs, and p the external inputs or disturbances. The Lagrange 

polynomials are given by:
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where Nc is the number of collocation points used in the approximation. With this 

representation, approximations of the state variables themselves are given by integrating 

(6.13) as shown in (6.15), where w is the width of the time intervals used and ̂  is the 

integral of Ω over w.  
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    (6.15) 

Using this method, the differential algebraic equation (DAE) system is converted 

to a set of algebraic equations so that the objective function can be minimized 

simultaneously to the constraints being satisfied using NLP. Simultaneous methods are 

generally much more efficient for solving NMPC problems as compared to sequential 



 107 

methods, which rely on forward integration of the differential states subject to a set of 

pre-determined trial inputs. For further reading on this methodology, see [106, 108].  

6.3 CASE STUDIES 

The proposed classical feedback control (or PID control) was modeled 

dynamically with MATLAB/Simulink. The same controller settings in [72] were used in 

this work. NMPC system was implemented using Advanced Process Monitor (APM) 

[109]. APM uses orthogonal collocation on finite elements to covert the dynamic problem 

to a NLP problem. This NLP problem was then solved using analytical derivatives and an 

interior-point (IP) algorithm to provide fast solution times. In this work, ambient air 

temperature and pressure were assumed to have constant values (15 °C and 1 atm). Thus, 

the only disturbance considered in this study was the load PI. Two case studies are 

considered to compare the simulated results between MPC and PID control. 

6.3.1 Case 1: Plant Responses to Random Variations in PI 

Figure 6.3 and Figure 6.4 show the MVs and CVs responses to random variations 

in demand load. Figure 6.5 compares the random variations in PI to the power output PM 

from the plant simulated for 100 seconds. For practical cases, variations in demand load 

are less dramatic than those shown in Figure 6.5. However, during the island mode 

operation, a sudden large increase in demand load for a particular power generation unit 

could occur in case of one of the generators failing [72]. 
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Figure 6.3: Controller responses to random variations in PI: (a) IGV angle, (b) Fuel 

demand Fd 

 

Figure 6.4: Output responses to random varations in PI: (a) Rotor speed N, (b) Exhaust 

gas temperature Te, (c) Turbine firing temperature Tf 
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Figure 6.5: Demand load (PI) vs. plant power ouput (Pm) 

During the time between zero and 70 seconds, both the PID and MPC controllers 

were able to maintain the CVs at their set points (see Figure 6.4). In Figure 6.3, the 

control movements resulted from the MPC controller show smoother variations in MVs 

than those resulting from the PID controller. In Figure 6.5, the power outputs simulated 

by the MPC controller show relatively less oscillatory behavior than those simulated with 

the PID controller. 

During the time between 70 and 100 seconds, the MPC controller provided 

superior output responses with small settling times. In comparison to the controller 

outputs from the PID controller, input changes of Fd calculated by the MPC controller 

were more aggressive. The main disadvantage of the PID controller is that it is not 

capable of predicting the future performance of the process. On the other hand, the MPC 

controller is able to predict the future values of the outputs based a reasonably accurate 

dynamic model of the process and current measurements. In Figure 6.4 and Figure 6.5, 
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the time period between 70 and 80 seconds well illustrates the drawback of PID control. 

During this period of time, a high demand load was sustained causing the frequency to 

drop continuously. The frequency drop through the speed governor control immediately 

resulted in an increase of fuel demand Fd in order to bring the frequency back to its 

nominal frequency (see Figure 6.3(b)). However, an increased fuel flow resulted in a 

temperature increase (see Figure 6.4(b)) that activated temperature control. This limits 

the fuel flow and power production as shown in Figure 6.5. On the other hand, the MPC 

controller was able to control the both frequency and turbine’s exhaust gas temperature at 

their desired set points over the whole time horizon. 

Figure 6.6 shows the time required to solve a NLP problem using the finite 

element method. The computation time significantly increased with an increase in 

prediction horizon P. However, the effect of control horizon M on the computation time 

was less significant. The computation time at each control step was sufficiently faster 

than the sampling rate (1 sec), allowing real-time implementation of NMPC for the 

GTPP. This problem was solved on a PC with Intel Core
TM

2 Duo processor 2.54 GHz 

and 4.00 GB of RAM. 
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Figure 6.6: Computation time required to solve a NLP problem. M is the control horizon. 

 

6.3.2 Case 2: Plant Responses to the Step Change Made in PI 

Figure 6.7 shows the output responses to the step change made in the electric 

load.  The initial power output from the plant was 0.8 pu, and an additional electric load 

of 0.2 pu was introduced at the time of 2 seconds.   

 

 

 

 

 

20

30

40

50

60

4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
se

c)
 

Prediction horizon, P 

M=2 M=4 M=6



 112 

 

Figure 6.7: Output responses to PI change from 0.8 to 1.0 pu: (a) Power output, (b) 

Exhaust gas temperature Te, (c) Turbine firing temperature Tf, (d) Rotor 

speed N, (e) Fuel flow Wf, (f) Air flow W 

In this case, the plant could not recover the frequency with the PID control 

system. As seen in Figure 6.7(a), after the first post-disturbance period of two seconds, 

the power generation was reduced to avoid overheating of gas turbine blades by 

decreasing the fuel flow (see Figure 6.7(e)). The activation of the temperature control 

resulted in a decrease in both Te (Figure 6.7(b)) and Tf (Figure 6.7(c)). The temperature 

control made it possible to increase power generation without exceeding the upper limits 

of Te and Tf by increasing the fuel and air (Figure 6.7(f)) flows. However, the frequency 
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experienced a continuous drop, and the plant went out of control (see Figure 6.7(d)). 

Unlike the PID controller, the MPC controller could maintain the rotor speed at its set 

point and keep Te and Tf lower than their upper limits even when a large disturbance was 

introduced to the system instantaneously. 

6.4 SUMMARY 

In this study, both PID and MPC controllers were implemented to analyze the 

stability of a heavy-duty gas turbine power plant. The plant model was identified using 

two models (Detailed model and FD model) in order to simulate the gas turbine’s rotor 

speed (frequency), exhaust gas temperature, firing temperature, and the power output. 

The plant responses to the major disturbance (demand load) were studied in both control 

systems. By comparison, the MPC controller provided superior output responses with 

smaller settling times, less oscillatory behavior and more aggressive control actions to the 

random variations in the electric load than those observed in the PID control system. 

When a sudden large step change was made in the load, the PID controller could not 

recover the rotor speed as opposed to the MPC controller was able to bring the rotor 

speed back to its nominal speed. When obtaining the NMPC solution, the computation 

time required to solve an optimization problem was sufficiently faster than the sampling 

rate by applying orthogonal collocation on finite elements. This efficient scheme would 

allow NMPC to be implemented via real-time optimization for gas turbine power plants 

in a fast and robust manner. 
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Chapter 7: Conclusions and Future Work 

Optimization can be one of the most cost-effective methods to improve a utility 

network. The results of the analysis of plant-wide utility optimization led to improve the 

system energy efficiency and minimize operating costs and carbon footprint by optimal 

allocations of available resources. With the assumption that a combined heat and power 

(CHP) plant is allowed to exchange electricity with the external grid at wholesale market 

prices, operational decisions on whether to self-generate or buy power depend on prices 

of various energy commodities (electricity, fuel, etc.) as well as changes in the weather. 

The case studies provided insights into how different types of utility pricing, fuel costs, 

and various operational and ambient conditions affect the power output, energy 

efficiency, and total revenue. The ability to provide the emergency response service 

(ERS) has proven to be a compelling potential profit opportunity for ERS participants. 

For a power plant with multiple generating units, the proposed optimal scheduling 

technique, which determines unit commitment and economic dispatch relative to 

wholesale market prices and local electric loads, provides operational decision support to 

yield the highest net income during scheduling periods. As the solution of the scheduling 

problem strongly depends on the accuracy of the plant models used for simulations, 

mathematical models that are simple but accurately represent the complexity of a CHP 

system have been developed and validated. This work also highlighted the application of 

a nonlinear model predictive control (NMPC) scheme to a heavy-duty gas turbine power 

plant for frequency and temperature control. The case studies demonstrate that a NMPC 

scheme provides superior output responses with smaller settling times and less oscillatory 

behavior compared to a classical PID/logic based control scheme in response to 

disturbances in electric loads. 
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The case studies illustrated in this work are based on deterministic cases; 

therefore, the ability to forecast loads and electricity prices in advance is a valuable tool, 

which allows real-time implementation of the proposed method for a CHP plant. Powell 

et al. [106] developed a nonlinear autoregressive model with exogenous inputs (NARX) 

to accurately forecast hourly loads (electrical, heating, and cooling) for a district energy 

system up to 24 hours in advance using weather and time variables (month, hour, and 

day). They provided case studies involving the Hal C. Weaver power plant complex at 

UT Austin campus (the same power plant used for case studies throughout this work) to 

demonstrate the effectiveness of their forecasting model. So, incorporation of this load 

forecasting tool into the optimal scheduling model developed in this work is 

recommended. Also, the modeling of uncertainties in forecasted loads and electricity 

prices in a scheduling problem under the stochastic MINLP framework is the scope of 

proposed future work. 

The model parameters in Chapter 2 once estimated were assumed to be constant 

over prediction horizons, of which spanned for the entire year. However, daily and 

seasonal changes in the weather will affect the model outputs and the efficiency of the 

system. Therefore, more up-to-date model must be used to account for changes in those 

conditions and provide a more accurate prediction. Updating the model using the most 

recently measured data on more frequent basis, i.e., a daily basis, is recommended.  

The optimal scheduling algorithm developed in this work has proven to be an 

effective cost and energy saving methodology, so implementing optimal operational 

scheme on real systems and in real-time is recommended. The system studied in this 

work only involved six units, resulting in reasonable computation time of few hours to 

determine the optimal operation in 24-hour ahead. When this methodology is extended 

for solving a large- and commercial-scale problem with hundreds of generating units, it 
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would be difficult to find the optimal solution (or impractical to find the global solution) 

within the scheduling period. To overcome computational expense issues associated with 

solving such large-scale MINLP problems, intelligent initialization routines and novel 

solution methods are recommended for future work. 

A thermal energy storage (TES) tank, when added to a CHP system, can provide 

extra flexibility. A TES tank stores chilled water so that it can be used later for cooling. 

This allows the system to produce extra cooling when capacity exceeds demand 

(typically at night) and then extract this energy when demand exceeds capacity, which is 

the current purpose of the thermal energy storage system. It essentially provides an extra 

chiller, thus extra electricity for electrically-powered chillers as in the UT Austin power 

plant, for hot summer days when cooling demands are at their peak. However, a TES tank 

can also be used to increase efficiency by shifting cooling demand to times when chillers 

operate more efficiently and by maximizing the use of the most efficient equipment. 

Thus, a TES tank gives the district energy system additional degrees of freedom which 

can be exploited through optimization to determine optimal operation. UT Austin campus 

also has the TES tank in use. So, an economic analysis on incorporating the TES system 

into the CHP plant is recommended. 
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Appendix: Establishment of Confidence Intervals on Fitted Parameters 

To establish the confidence intervals about the fitted parameters, the sum of the 

squares of the fitted function from the actual data points is defined first: 

2

1

( ( , ))
N

r i i i

i

S f f x y


   (A.1) 

where Sr is the sum of the squared residuals, fi is the actual (or measured) data points, and 

f(xi,yi) is the proposed linear regression function with two independent variables (x and y) 

evaluated at the i
th

 x and y values [110]. Next, the effective standard deviation about a 

regression curve is calculated by (A.2), 

/
r

y x
S

S
N m




 (A.2) 

where, /y xS is the standard error, rS is defined by (A.1), N is the total number of data 

points, and m is the total number of coefficients in the fitted equation [110]. 

 To construct confidence intervals about the fitted parameters, the inverse of the 

covariance matrix C is defined by (A.3), 

1
1 TC Z Z


      (A.3) 

where C
-1

 is the inverse of covariance matrix C and Z is the matrix that consists of M 

columns, one for each coefficient in the proposed regression function, and N rows, one 

for each of the data points. Z
T
 is the transpose of the matrix in which the rows and 

columns are switched [110]. 
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 Finally, the 95% confidence interval about a fitted parameter is given below as a 

function of the variance value (Cii) for that coefficient and the standard error of fit: 

1
0.95 /( )i y x iia t N m S C 

    (A.4) 

where ai is a fitted parameter, t0.95( = N – m) is the student’s t-distribution at 95% 

confidence limits in which  is the degree of freedom, and 
1

iiC 

is the square root of 

the off-diagonal elements of C
-1

 [110]. 
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Nomenclature 

Acronyms 

AGC automatic generation control 
 

APC advanced process control  

APM advanced process monitor  

BHs business hours  

CCCT combined cycle combustion turbine  

CHP combined heat and power   

CVs controlled variables  

DAE differential algebraic equation  

DAM day-ahead market  

DP dynamic programming  

ERCOT electric reliability council of Texas  

ED economic dispatch  

GA genetic algorithm  

GTPP gas turbine power plant  

HDGT heavy-duty gas turbine  

HP high-pressure  

HRSG heat recovery steam generator  

IGVs inlet guide vanes  

IP interior-point  

ISOs independent system operators  

LMS Least mean squares  

LR Lagrangean relaxation  

LSEs load serving entities  

LVS low value selector  

MILP mixed-integer linear programming  

MINLP mixed-integer nonlinear programming  

MIP mixed-integer programming  

MP Medium-pressure  

MPC model predictive control  

MVs manipulated variables  
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NARX nonlinear autoregressive model with exogenous inputs  

NERC North America electric reliability council  

NMPC nonlinear model predictive control  

NOx nitrogen oxide  

PID proportional-derivative-integral  

PSO particle swarm optimization  

QSEs qualified scheduling entities  

REs resource entities  

RHS right-hand side  

RTM real-time market  

SQP sequential quadratic programming  

TES thermal energy storage  

TIAC turbine inlet air cooling  

UC unit commitment  

UT Austin University of Texas at Austin 
 

 

 

Sets 

gt (HDGT) index (set) of gas turbines HDGT = {GT_HRSG8, GT_HRSG10}, 

where “GT_HRSG8” is gas turbine 8 coupled with HRSG 8, 

“GT_HRSG10” is gas turbine 10 coupled with HRSG 10 

 

hrs (BHs) index (set) of business hours BHs = {BHs1, BHs2, BHs3, NBH}, 

where “BHs1” is from 8 AM to 1 PM during weekdays, “BHs2” is 

from 1 PM to 4 PM, “BHs3” is from 4 PM to 8 PM, and “NBHs” is 

all other hours. BHs1, BHs2, and BHs3 only include hours during 

weekdays, except ERCOT holidays. 

 

i (I) index (set) of units 
 

l (L) index (set) of unit start-up type L = {h, w, c}, where “h” is hot, “w” is 

warm, and “c” is cold 
 

st (EST) index (set) of steam turbines EST = {ST7, ST9}, where “ST7” is 

steam turbine 7, “ST9” is steam turbine 9 
 

t (T) index (set) of hours of the planning horizon 
 

 

 

Binary variables 

uit 1 if a unit i is committed during hour t ; and 0 otherwise  



 121 

uit
n
 1 if unit i is in operating phase n during hour t, where n = syn: 

synchronization, n = soak: soak, n = disp: dispatchable, and n = 

desyn: desynchronization; and 0 otherwise 

 

uit
n, l

 1 if a type-l start-up of unit i is in operating phase n during hour t, 

where n = syn: synchronization, n = soak: soak, n = disp: 

dispatchable, and n = desyn: desynchronization; and 0 otherwise 

 

XB binary decision variables  

yit 1 if unit i is started-up during hour t 
 

yit 
l
 1 if a type-l start-up of unit i is initiated during hour t  

zit 1 if unit i is shut-down during hour t  

 

Continuous variables 

Fd, t gas turbine fuel demand at time t , in pu
a
 

SFR(st)t 
steam flow regulator of the steam turbine st during hour 

t 
 

Vw, TIAC, t 
volumetric flow rate of chilled water entering the TIAC 

system at time t 
, in GPM 

Wf, BR, t auxiliary boiler fuel flow at time t , in kg/sec 

Wf, HRSG, t HRSG duct burner fuel flow at time t , in kg/sec 

WS, EXT, (st)t extraction steam flow of the steam turbine st at time t , in kg/sec 

XC continuous decision variables 
 

IGV angular position of the IGVs , in degree 
a 
per unit value 

 

 

Parameters 

A0 air flow speed factor  

A1 air flow speed factor  

A2 air flow speed factor  

, 
DAM
e tC  day-ahead electricity price at hour t , in $/kWh 

, 
RTM
e tC  Real-time electricity price at hour t , in $/kWh 

Cf fixed fuel cost , in $/kg 

Ci
shut

 shut-down cost of unit i , in $ 

Ci
start, l

 start-up cost of unit i under type-l start-up , in $ 

Cpc specific heat of air flow , in kJ/kgK 
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Cph specific heat of exhaust gas flow , in kJ/kgK 

Cprod, it production cost of unit i in hour t , in $ 

COP coefficient of performance of a chiller , in MWth/MWe 

f frequency , in HZ 

Fdmax Fuel control upper limit , in pu 

Fdmin Fuel control lower limit , in pu 

gmax air valve upper limit , in pu/sec 

gmin air valve lower limit , in pu/sec 

ĤEC, BR specific enthalpy of the feedwater entering the 

auxiliary boiler 
, in kJ/kg 

ĤEC, HRSG specific enthalpy of the feedwater entering the 

economizer 
, in kJ/kg 

HRt overall plant heat rate , in Btu/kWh 

'
ˆ l

sat dH  specific enthalpy of the saturated liquid , in kJ/kg 

'
ˆ v

sat dH  specific enthalpy of the saturated vapor , in kJ/kg 

ĤS, COND specific enthalpy of the condensate , in kJ/kg 

ĤS, EXT specific enthalpy of the extraction steam , in kJ/kg 

ĤSH, BR specific enthalpy of the superheated steam exiting the 

auxiliary boiler 
, in kJ/kg 

ĤSH, HRSG specific enthalpy of the superheated steam exiting the 

HRSG 
, in kJ/kg 

ĤS, THR specific enthalpy of the throttle steam , in kJ/kg 

Kf fuel system external feedback constant , in pu 

K5 gain of radiation shield , in pu 

K4 gain of radiation shield , in pu 

KNL or K6 fuel valve lower limit , in pu 

K3 ratio of fuel adjustment , in pu 

LE, t electric load at during hour t , in MWe 

LERS, hrs ERS load in business hours hrs , in MWe 

, 
sold
ERS hrsL  ERS capacity that is sold the ERCOT in business 

hours hrs 
, in MWe 

LH, t heating load in time t , in kg/sec 

LHV lower heating value of the fuel , in kJ/kg 
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M control horizon  

MWair molecular weight of the air , in kg/kmol 

N rotation speed of the rotor shaft in the gas turbine , in RPM 

P prediction horizon  

Pamb ambient pressure , in bar 

Pa0 ambient air pressure reference , in bar 

Pc pressure of air at the compressor inlet , in bar 

PEC, BR pressure of the auxiliary boiler feedwater at the inlet 

of the economizer 
, in bar 

PEC, HRSG pressure of the HRSG feedwater at the inlet of the 

economizer 
, in bar 

PGT, t net energy supplied to HDGT at time t , in MWe 

PI electric load , in MWe 

soak

iP  fixed power output of unit i while in soak phase , in MWe 

Pit power output of unit i at time t , in MWe 

Pit 
desyn

 power output of unit i during the desynchronization 

phase in time t 
, in MWe 

Pit 
disp

 power output of unit i during the dispatchable phase , in MWe 

Pit 
soak

 power output of unit i during the soak phase in time t , in MWe 

Pm net power output from a HDGT , in MWe 

PST, t net energy supplied to the steam turbine at time t , in MWe 

PSH, BR pressure of the auxiliary boiler steam at the outlet of 

the superheater 
, in bar 

PSH, HRSG pressure of the HRSG superheated steam at the outlet 

of the superheater 
, in bar 

Pt power output accepted by the ISO during time t , in MWe 

Pt 
DAM 

power output accepted by the ISO during time t in the 

DAM 
, in MWe 

Pt 
RTM 

power output accepted by the ISO during time t in the 

RTM 
, in MWe 

PR gas turbine compression ratio  

q vapor quality  

QN output weighting factor for N  

eTQ  output weighting factor for Te  
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fTQ  output weighting factor for Tf  

R speed governor gain , in 1/pu
a
 

dFR  move suppression factor for Fd  

Rg ideal gas constant , in J/molK 

R
2
 goodness of fit 

 

IGV
R  move suppression factor for IGV  

Tamb ambient temperature , in C 

, , 

min

air TIAC outT  minimum possible air temperature at the outlet of the 

TIAC system 
, in C 

Ta0 ambient air temperature reference , in K 

TCD compressor discharge lag time constant , in sec 

Tcmax Exhaust gas temperature upper limit , in pu 

Tcmin Exhaust gas temperature lower limit , in pu 

Tc, t temperature at compressor inlet at time t , in K 

Td, t temperature at compressor outlet at time t , in K 

Te, t gas turbine’s exhaust gas temperature at time t , in K 

Te, HRSG, in, t post duct burner HRSG air temperature at time t , in K 

Te, HRSG, out, t exhaust gas temperature at the outlet of the HRSG at 

time t 
, in K 

TEC, BR temperature of the auxiliary boiler feedwater at the 

inlet of the economizer 
, in K 

TEC, HRSG temperature of the HRSG feedwater at the inlet of the 

economizer 
, in K 

TF fuel system time constant , in sec 

T4 thermocouple time constant , in sec 

Tf, t gas turbine’s firing temperature at time t , in K 

Tg speed governor time constant , in sec 

TI turbine’s rotor time constant , in pu 

Ti 
l
  Time off-load before going into longer standby 

conditions (l = w: hot to warm, l = c: hot to cold) of 

unit i 

, in hour 

Ti
min,down

 minimum down time of unit i , in hour 

Ti
min,

 
up, l

 minimum up time of a type-l start-up of unit i , in hour 
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Ti
off

 prior reservation time of unit i , in hour 

Ti
desyn

 time from desynchronize unit i , in hour 

Ti
soak, l

 soak time of unit i under type-l start-up , in hour 

Ti
syn, l

 time to synchronize unit i under type-l start-up , in hour 

Tr reference temperature , in K 

Tr offset temperature offset , in pu 

Trmax rated exhaust gas temperature upper limit , in pu 

Trmin rated exhaust gas temperature upper limit , in pu 

TSH, BR temperature of the auxiliary boiler superheated steam 

at the outlet of the superheater 
, in K 

TSH, HRSG temperature of the HRSG superheated steam at the 

outlet of the superheater 
, in K 

T6 time constant of Tf  control , in sec 

T3 radiation shield time constant , in sec 

TV valve positioner time constant , in sec 

TW Air control time constant , in sec/pu 

Tw, TIAC, in temperature of chilled water entering the TIAC 

system 
, in C 

Tw, TIAC, out temperature of chilled water exiting the TIAC system , in C 

T 
 

maximum length of the planning horizon extended to the 

past (negative time) 
, in hour 

Vc volumetric air flow at the compressor inlet , in m
3
/sec 

Wt actual dry-air mass flow at time t , in kg/sec 

Wf fuel flow in the HDGT , in kg/sec 

Wf, GT, t gas turbine fuel flow at time t , in kg/sec 

Wf, it fuel flow of unit i during time t , in kg/sec 

Wf, tot, t total fuel flow during time t , in kg/sec 

Wg, t gas turbine exhaust flow at time t , in kg/sec 

WS, COND, t condensate flow at time t , in kg/sec 

WSH, BR, t auxiliary boiler steam flow rate at time t , in kg/sec 

WSH, HRSG, t HRSG steam flow rate at time t , in kg/sec 

WSH, tot, t total steam flow rate at time t , in kg/sec 

WS, THR, t throttling steam flow entering the steam turbine at 

time t 
, in kg/sec 

αBR lumped parameter for an auxiliary boiler , in Btu/SCF 
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αHRSG lumped parameter for an HRSG , in kJ/kgK 

HRSG lumped parameter for an HRSG , in kJ/kg  

c cold end ratio of specific heats  

h hot end ratio of specific heats  

HFWHTR, t HRSG feedwater heat duty at time t , in kWth 

∆HTIAC, t cooling load of a TIAC system during hour t , in kWth 

∆PTIAC average pressure drop across the TIAC , in PSI 

∆PTIAC, t power consumption of an electrically-powered chiller 

at hour t 
, in kWe 

∆t sampling rate , in hour or sec 

min

HRSGT  Minimum temperature differential between Te, HRSG, in, 

t and TSH, HRSG 
, in C 

max

IGV  Maximum change allowed in IGV , in pu 

 effective of a heat exchanger  

c compressor efficiency  
 

comb, GT gas turbine combustor efficiency  

ST steam turbine efficiency  

t turbine efficiency  

max maximum IGV angle , in degree 

min minimum IGV angle , in degree 

ρNG density of natural gas , in lb/SCF 

ρw density of water , in kg/m
3
 

a 
per unit value 

 

Subscripts 

i unit  

n at nominal condition 
 

Superscripts 

disp during the dispatchable phase  

max maximum   

min minimum   

ref reference 
 

sp set point  
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