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in Human Walking and Running 
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 Walking and running are essential tasks people take for granted every day.  However, 

these are highly complex tasks that require significant neural control.  This is complicated 

by the inherent redundancy of the nervous system and by physiological noise. Humans 

may adopt different control strategies to achieve different goals (environmental or task 

specific). More specifically, walking/running on a treadmill only requires that one not 

walk off the treadmill.  Of the many possible strategies that can achieve this goal, humans 

attempt to maintain a constant speed from each stride to the next (Dingwell, John et al. 

2010).  However, how humans alter the stride-to-stride regulation of their gait when the 

task goals change (e.g., by maintaining stride length and/or time, during running, or 

during a predicted walk to run transition speed) has not yet been demonstrated.  In the 

first two of three experiments conducted, healthy adults either walked or ran on a 

motorized treadmill at a comfortable speed under the following conditions: constant 

speed, constant speed with the stride length goal (targets on the treadmill), constant speed 

with the stride time goal  (metronome), or constant speed with both stride length and 
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stride time goals. In a third experiment, subjects walked and/or ran at a comfortable speed 

and also at their predicted theoretical walk to run transition speed.  Goal functions 

derived from the task specifications yielded new variables that defined fluctuations either 

directly relevant to, or irrelevant to, achieving each goal. The magnitude of the 

variability, as well as the stride-to-stride temporal fluctuations in these variables, were 

calculated.  

 During walking, subjects exploited different redundancy relationships in different 

ways to prioritize certain task goals (maintain stride speed) over others (maintain stride 

length or stride time) in each different context.  In general, subjects made rapid 

corrections of those stride-to-stride deviations that were most directly relevant to the 

different task goals adopted in each walking condition. Thus, the central nervous system 

readily adapts to achieve multiple goals simultaneously.  

 During running, subjects exhibited similar adaptations to walking, but over-corrected 

to prioritize maintaining stride speed even more strongly.  This suggests that stepping 

control strategies adapt to the level of perceived risk.  This purposeful adaptability of 

these stride-to-stride control strategies could be exploited to developing more effective 

rehabilitation interventions for patients with locomotor impairments. 

 During the predicted walk-to-run speeds, subjects were able to largely exploit the 

redundancy within task goal, and effectively operated at “uncomfortable” speeds. These 

results suggest that the stride speed control is robust even with additional novel tasks and 

uncomfortable, abnormal speeds of locomotion. 
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Chapter 1 

Introduction 

 

Walking and running are essential tasks that most people take for granted every 

day. Both walking and running are specific types of locomotion that are imperative to our 

daily lives. On one hand, these tasks are considered to be relatively basic and simple to 

accomplish for both humans and animals alike. On the other hand, for the human nervous 

system, walking and running are highly complex tasks, which require significant 

neurological control (Zehr and Stein 1999, Warren, Kay et al. 2001, Bent, Inglis et al. 

2004, Rossignol, Dubuc et al. 2006).   

In order to produce efficient and adaptable locomotion, sensory inputs (Rossignol, 

Dubuc et al. 2006) must be integrated with neurological systems to generate the 

appropriate motor outputs.  If the neural system is affected by pathologies or experiences 

any neural degeneration, this could significantly impede the ability to generate this 

precise coordination. Determining how the normal healthy nervous system coordinates 

these fundamental principles that influence control is central to understanding how 

humans regulate locomotion. 

When the nervous system is unable to generate stable and consistent locomotion, 

as could be due to numerous different internal or external factors, falls can occur.  Falls 

are the leading cause of non-fatal injuries for all ages (except those 16-24 years) 

(www.cdc.gov). One in three adults, ages 65+, falls annually (www.cdc.gov). With these 
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staggering statistics, the health care costs are rising exponentially. It is predicted in 2020, 

the health care costs for fall related injuries will be more than $55 billion dollars 

(www.cdc.gov). As researchers, it is important to find ways to help prevent falls and 

ways to better rehabilitate those people that have endured falls.  

Falling is often linked to increased variability during walking (Maki, Holliday et 

al. 1994, Brach, Perera et al. 2010).  The research is divided as to whether or not this 

variability leads to instability or is an indication of adaptability, suggesting that some 

variability can be beneficial while other variability can be detrimental to human 

locomotion. Instability is related to local instability, indicating how sensitive subjects are 

to very small (internally or externally generated) perturbations. Here, adaptability is 

referred to as the ability to counter act any perturbations or disturbances that occur during 

walking.  Since falls are a common occurrence, we must first understand how humans are 

able to generate and regulate consistent stable locomotion. If we are able to understand 

the fundamental principles and the control paradigms used to generate locomotion, we 

may better understand what happens when these involved systems are damaged or 

decayed.    

This dissertation focused on the control paradigms used to control stride-to-stride 

fluctuations in stepping movements (specifically, stride length, stride time, and stride 

speed) during both walking and running.  These fluctuation dynamics require humans to 

adapt at every step (not just on average). While walking and running, humans experience 

many different physical and visual perturbations. There are uneven sidewalks, curbs, 

rugged terrain, gravel, and many other obstacles that cause people to alter or manipulate 



 3 

their gait.  When prognoses like aging or certain neurological pathologies disrupt these 

adaptation mechanisms, it becomes more difficult to account for any disturbances during 

locomotion and a fall or injury may occur. Although the neurophysiological mechanisms 

that implement these reactions are well known (Rossignol, Dubuc et al. 2006), the 

principles controlling stride to stride adaptation remain mostly unknown. The 

adaptability of these stride-to-stride control strategies could be exploited to develop more 

effective rehabilitation interventions for patients with locomotor impairments. 

 

Objectives 

The main objective of this dissertation was to determine how humans alter the stride-to-

stride regulation of their gait when the task goals change.  More specifically, in the 

experiments conducted here, our first two primary goals were to determine how stride-to-

stride regulation changed when certain gait parameters were kept consistent, first during 

walking and then during running. Our third primary objective was to determine how 

humans alter their stride-to-stride control when forced to either walk or run at the same 

predicted theoretical walk-to-run transition speed, an “intermediate” speed where 

variability is known to increase. 

 

DISSERTATION AIMS 

From the previously mentioned objectives, three studies were designed.   In the 

first experiment, the control of stride-to-stride fluctuations during walking were 

investigated. Subjects were given multiple simultaneous goals, including length markers, 
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a metronome and a constant treadmill belt speed. These additional goals were given to 

the subjects to maintain their stride lengths (Ln) and stride times (Tn). The second 

experiment used the same additional task goals while subjects were running on the 

treadmill. The third experiment required subjects to either walk or run at a comfortable 

walking or running speed and also at an “uncomfortable” intermediate speed to determine 

how either walking or running at a predicted walk-to-run transition speed would affect 

the control strategies used during walking or running.  

 

 Aim #1: Determine the extent to which humans adopt different stepping control 

strategies when presented with different task goals during walking. 

 

When walking on a treadmill, subjects have been found to primarily control their stride 

speed (Dingwell, John et al. 2010). In this experiment, subjects were given different task 

goals to achieve while walking on a motorized treadmill at constant speed.  Since the 

treadmill speed was kept constant, it was assumed that maintaining constant stride speed 

(Sn) would constitute one implicit task goal, as previously found (Dingwell, John et al. 

2010). Subjects were then asked to also simultaneously maintain different combinations 

of different explicit task goals. Subjects walked under 4 conditions: (i) normal walking at 

constant speed, (ii) walking at constant speed and constant Tn, (iii) walking at constant 

speed and constant Ln, and (iv) walking at constant speed, Tn, and Ln combined. These 

task goals required subjects to voluntarily attempt to achieve them. The data obtained 

were used to test the following hypotheses: 
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HYPOTHESIS 1: When walking on the treadmill at constant speed, subjects will 

explicitly exploit the redundancy available between stride length 

(Ln) and stride time, (Tn) as they did previously (Dingwell, John 

et al. 2010). 

HYPOTHESIS 2: When asked to also walk with either constant stride length (Ln) 

or stride time (Tn) individually, subjects will adopt 

“intermediate” control strategies. 

HYPOTHESIS 3: When asked to also walk with both constant stride length (Ln) 

and constant stride time (Tn), subjects will adopt a single solution 

that equally achieves all task goals. 

 

Hypothesis 2, in particular, was tested against the very plausible alternative that subjects 

would not try to exploit any remaining redundancies available in these tasks, but would 

instead choose to minimize their variations around the single solution that best satisfied 

both tasks. This experiment determined the extent to which healthy subjects can and 

chose to exploit task redundancies when made available. The results for this experiment 

are described in Chapter 3 of this dissertation. 
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Aim #2: Determine the extent to which humans adopt different stepping control 

strategies when presented with different task goals during running. 

 

Running is a very different task than walking. Specifically, running involves a 

flight phase where both feet are in the air simultaneously, indicating that running has no 

period of double support.  Thus, the relationship between stride length (Ln), stride time 

(Tn), and stride speed (i.e., Sn = Ln/Tn) may not be as explicitly fixed as it is in walking. 

Mechanically, running and walking are similar; however the control mechanisms utilized 

for both running and walking have not been compared directly (or indirectly).   

Additionally, the faster speeds involved in running impose unique challenges to the 

locomotor control system. Faster speeds would be expected to influence the subject to 

adopt longer stride lengths. With these longer Ln’s, the fixed length of the treadmill belt 

surface may encourage subjects to adopt different stride-to-stride control strategies than 

those used during walking.  Therefore, we tested healthy subjects and repeated the same 

combinations of conditions tested in Experiment 1, only during running.  The obtained 

data was used to test the following hypotheses: 

HYPOTHESIS 4a: When running on the treadmill at constant speed, subjects will 

also explicitly exploit the redundancy available between Ln and 

Tn, as they do for walking (Dingwell, John et al. 2010). 

HYPOTHESIS 4b: Alternatively, when running on the treadmill at constant speed, 

subjects will instead adopt a “position control” strategy 
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(Dingwell, John et al. 2010), and not the “speed control” strategy 

used in walking.   

HYPOTHESIS 5: When asked to also run with either constant stride length (Ln) or 

stride time (Tn) individually, subjects will adopt either of the 

appropriate / relevant “intermediate” control strategies. 

HYPOTHESIS 6: When asked to also run with both constant stride length (Ln) and 

constant stride time (Tn), subjects will adopt a single 

“concurrent” control strategy that equally achieves all task goals.  

 

In particular, the outcome of testing Hypotheses 4a vs. 4b determined which 

control strategies were appropriately considered as “intermediate” in Hypothesis 5 and 

“concurrent” in Hypothesis 6.  As in Aim #1, Hypothesis 5 was tested against the 

plausible alternative that subjects instead chose to minimize variations around the single 

solution that best satisfies both task goals. This experiment determined the extent to 

which healthy subjects adopted the same control strategies for running as they did for 

walking. The results for this experiment are described in Chapter 4 of this dissertation. 

 

Aim #3: Determine the extent to which humans can vary their stepping control 

strategies during fast walking speeds and slow running speeds. 

 

This experiment examined how control strategies would be affected when people 

were asked to walk or run at their predicted walk-to-run transition speed. By studying the 
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predicted walk-to-run transition, it is possible to gain a better understanding as to what 

happens as walkers or runners explore the speed limits for each type of locomotion. The 

walk-to-run transition is the distinct shift from walking to running that occurs at a 

characteristic speed as forward speed steadily increases. For this experiment, we asked 

subjects to either walk or run under each of the following 4 conditions: (i) normal 

walking at the subject’s preferred walking speed (PWS), (ii) walking at the subject’s 

calculated walk-to-run transition speed, (iii) running at the subject’s preferred running 

speed, and (iv) running at the subject’s calculated walk-to-run transition speed. For all 

trials, the treadmill speeds were determined based on each subject’s leg length and 

Froude number (Vaughan and O’Malley 2005, Dingwell, John et al. 2010). The obtained 

data  was used to test the following hypotheses: 

 

HYPOTHESIS 7: When walking on the treadmill at PWS, subjects will explicitly 

exploit the redundancy available between Ln and Tn, as shown 

previously (Dingwell, John et al. 2010) and Aim #1. 

HYPOTHESIS 8: When running on the treadmill at constant preferred speed, 

subjects will also explicitly exploit the redundancy available 

between Ln and Tn, as they do for walking (Dingwell, John et al. 

2010) and Aim #2 

HYPOTHESIS 9: When asked to either walk or run at their predicted W-R 

transition, subjects will be unable to maintain their desired 
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control strategies as used when walking/ running at a 

comfortable speed. 

HYPOTHESIS 10: When asked to either walk or run at the predicted W-R 

transition speed, subjects will adopt different control strategies 

dependent on the form of locomotion. 

The results from this experiment are described in Chapter 5 of this dissertation.  

 

PRIMARY SIGNIFICANCE 

This dissertation investigated control strategies used during walking, running, and 

for both walking and running at the predicted walk-to-run transition speed. These 

experiments sought to determine how introducing additional task goals altered subject’s 

control of stride-to-stride fluctuations within three gait parameters, stride length, stride 

time and stride speed. The most significant findings of these experiments were that 

during treadmill walking and running subjects adopted similar control strategies of these 

stride-to-stride dynamics. Initially, we did not know if subjects would be able to maintain 

the same control strategy for running as they did for walking (Chapter 3 and (Dingwell, 

John et al. 2010)) since running has a flight phase (Novacheck 1998) and the 

mathematical coupling between Ln, Tn and Sn might be different while in the air.  

However, subjects controlled for the stride speed parameter, and used stride length and 

stride time to maintain a specific stride speed. Another main finding was that at the 

predicted walk-to-run transition speed, subjects were able to maintain a selected speed; 
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however, they manipulated Ln and Tn in distinctly different ways. These results have 

established that the stride speed control paradigm is robust even with additional task 

goals and determined that humans could voluntarily achieve simultaneous goals during 

treadmill locomotion. 

 

CLINICAL IMPLICATIONS 

These findings may play a role in clinical rehabilitation protocols as results 

indicate that healthy subjects maintain stride speed while exploiting the available 

redundancy (the multiple combinations of Ln and Tn that satisfy the same Sn) in both 

stride time and stride length. This is an important finding for gait retraining, either with 

manual manipulations or robotic assistive devices. Gait retraining should be structured 

around the idea that variability may innately be minimized with respect to stride speed 

and exploited in respect to stride length and stride time. Also, the data analyses used in 

these three experiments could also be utilized to study the control processes of additional 

locomotor task and potentially be extended to other continuous repetitive motions. 
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Chapter 2 

 

Literature Review 

Overview 

People are faced with many challenges during locomotion everyday. Individuals 

are required to walk on multiple surfaces, avoid obstacles, and adapt to many different 

situations. These unpredictable environmental disturbances that we face daily can lead to 

potential injuries or falls, especially in elderly or impaired populations. Falling is the 

leading cause of non-fatal injury in all age groups except 15-24 year olds. One out of 

every three adults (age 65 +) falls each year (www.cdc.com). The health care costs 

associated with these walking related falls or injuries are rising quickly and are predicted 

to reach $54.9 billion by 2020 (www.cdc.com). The prevalence of these falls and related 

injuries is forcing hospitals and outpatient centers to be focused on rehabilitation and the 

recovery of injured patients. Locomotion is a large part of independence of these patients, 

and is a critical reason why researchers are focused on helping people prevent or avoid 

these falls in the first place, as well as learning how to teach people to regain their 

walking abilities.   

While patient populations (elderly etc.), real world (i.e., ecologically valid) 

contexts, and perturbations are all important to study, there must first be a clear 

understanding of what healthy (biomechanically and neurologically intact) individuals do 

during normal, un-perturbed walking. As researchers, it is necessary to understand how 

people control stepping movements and what specific gait parameters people are 

http://www.cdc.com/
http://www.cdc.com/
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attempting to keep consistent during locomotion. It is necessary to determine how people 

manipulate their locomotor control paradigms to achieve steady locomotion during both 

walking and running. 

 

General Locomotion Concepts 

Locomotor Patterns: Mechanics & Dynamics  

Locomotion is a highly researched topic. Experiments have looked at almost 

every aspect of walking; including but not limited to kinematics, kinetics, energy 

expenditure, metabolic costs and etc (Kirtley, Whittle et al. 1985, Novacheck 1998, 

Andriacchi and Alexander 2000). In clinical gait assessments, a clinician will often take 

physical measurements of walking speed, symmetry between limbs, range of motion, and 

muscle recruitment. More rigorous gait assessments will typically include motion 

capture, EMG analyses and kinetic data. 

 Walking is a cyclical process comprised of specific identifiable phases (Gage 

1990). Each phase of the gait cycle is defined by the events that occur within the phase. 

The two main phases of the gait cycle are the stance and swing phases. The stance phase 

accounts for 60% of the gait cycle (Rosenrot, Wall et al. 1980, Vaughan 1996, 

Novacheck 1998).  Walking is most often distinguished by a double support phase, where 

both feet are on the ground simultaneously and bearing weight (Chao, Laughman et al. 

1983). Due to this double support phase, walking demonstrates substantially greater 

ground contact time (Segers, Aerts et al. 2006). Walking can also be modeled as an 
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inverted pendulum and as a passive dynamic system that uses potential and kinetic 

energy to move (Townsend 1981, Winter, Patla et al. 1990).  

During running, the most noticeable difference from walking is the existence of a 

flight phase, in which no limbs are in contact with the ground (Mann 1980, Novacheck 

1998). Running occurs at higher speeds and therefore stride lengths increase and stride 

times decrease (Cavanagh and Kram 1989, Novacheck 1998, Segers, Lenoir et al. 2007).  

From a kinetic standpoint, running incurs much greater ground reaction forces 

when compared to walking (Cavanagh and Lafortune 1980). Running can be modeled as 

a mass-spring system, where energy is stored and returned (Blickhan 1989, McGeer 

1990, Geyer, Seyfarth et al. 2005). The mass spring models exhibit fundamentally 

different dynamics than the inverted pendulum model for walking. By modeling running 

as a mass spring, the propulsive force during the stance phase is increased generating the 

flight phase. Again, the flight phase is one of the biggest distinctions between running 

and walking.  

The most common measures used to characterize basic locomotor movements are 

stride length, stride time and stride speed (Mann 1980, Rosenrot, Wall et al. 1980, Öberg, 

Karsznia et al. 1993). While averages of these specified measures provide information 

about an activity for an extended period of time, it is important to also investigate what is 

occurring at each individual stride and how that influences the next stride (Dingwell, 

John et al. 2010, Decker, Cignetti et al. 2012, Terrier and Dériaz 2012). Thus, it is 

important to examine the relationships between consecutive movements.  
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Neural Control of Movement   

Variability & Noise 

The human nervous system is a complex integration of multiple networks. To add 

to the complexity of the system, noise is ubiquitous at every level, including sensory 

processing, planning, and motor system execution (Harris and Wolpert 1998, Faisal, 

Selen et al. 2008). Noise can be an advantage or disadvantage during human movement. 

On one hand, noise may aid a mechanism in exploring the task space and ultimately 

finding the best solution or the nervous system could moderate the effect of noise and 

improve task performance (Collins, Imhoff et al. 1996, Collins, Priplata et al. 2003, Eldar 

and Elowitz 2010, McDonnell and Ward 2011). On the other hand, noise can corrupt 

control (Takahashi, Nemet et al. 2003).  

Noise within motor commands may result in variability (van Beers, Haggard et al. 

2004). Van Beers et al suggests that in general, execution noise accounts for a large 

amount of movement variability. Regardless of the source of the variability, studies have 

shown that the CNS is robust and is able to perform skilled tasks in the presence of noise 

(Scholz and Schöner 1999, Cohen and Sternad 2009). Even with the previous findings, it 

remains unclear how the CNS accounts for the effects of this motor noise during 

redundant tasks. 

 

Redundancy   

When humans complete motor tasks, various strategies are used to yield the same 

outcome. This is because the human body is inherently redundant, meaning there are 

many more degrees of freedom than needed for any action (Wolpert, Ghahramani et al. 
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1995, Scholz and Schöner 1999, Scott 2004). This idea of an infinite number of possible 

task/goal solutions is also known as equifinity (Cusumano and Cesari 2006). Often tasks 

involve many variables that are controlled by the brain.  However, the value of individual 

variables is not always held constant. For a redundant task, there is an infinite set of 

solutions that can satisfy the task goal. For example, take a task that might be reduced to 

something like X+Y=4. X and Y can be any value, as long as the sum remains constant.  

Hence, there are an infinite number of combinations of X and Y that equally satisfy 

X+Y=4.  In a biomechanical context, X and Y might represent, for example, two joint 

angles of a given limb trying to maintain a constant endpoint position, similar to 

(Cusumano and Cesari 2006), or the forces applied by two fingers in a pressing task, 

similar to (Latash, Scholz et al. 2002).  

Understanding how humans interpret redundancy has been a particularly difficult 

task. There have been many attempts to explain how the central nervous system 

optimizes this redundancy to produce regular, smooth motor outputs. However many of 

these strategies have mostly focused on finding the best solutions to resolve redundancy 

in a given task (Uno, Kawato et al. 1989, Alexander 1997, Harris and Wolpert 1998, 

Nishii and Taniai 2009): i.e., on finding the single, most “optimal” (in some sense), 

solutions that people might strive to achieve on average. However, these studies did not 

speculate about mechanisms to account for variability from trial to trial. Newer studies 

have combined mathematical and experimental approaches in hopes of determining the 

control mechanisms used to address this issue of how variability and redundancy are 

related in movement.  
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Experimental Approaches 

Uncontrolled Manifold (UCM) 

The Uncontrolled Manifold (UCM) was one of the original approaches attempting 

to describe the principles by which motor control is organized. More specifically, UCM 

was developed to approximate the stability of the movement by calculating the trial-to-

trial variability. Although named the “uncontrolled” manifold, this approach maintains 

that control always exists, however the strength of the control may vary. An assumption 

that UCM makes is that if a variable is considered “stable,” (i.e., less variable) this is an 

indication that the nervous system is controlling the variable during the task. These 

variability measures are based on trial to trial variability from previously recorded 

movement data.  

For the UCM approach, a set of hypothesized control variables is created. From 

the previous example, the elemental variables are X and Y (i.e. joint angles in a kinematic 

task). Then for each independent variable a solution space is defined by all position 

solutions. For each individual variable (X and Y), two subspaces are created; one that 

contains all the configurations that do not affect the controlled variables (i.e., 

Uncontrolled), and an additional orthogonal subspace that contains the controlled 

variables (i.e., Controlled).  The uncontrolled subspace of the manifold is where the 

redundancy of the task can be exploited. The solution manifold for a simple task like 

reaching can become more complex and multidimensional with the large number of 

kinematic variables that may need to be accounted for. 
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Figure 2.1. Example of UCM task. Different distributions of variance along the 

uncontrolled manifold. Variance along the manifold is called the 

compensated variance, Vcomp. The variance perpendicular to the manifold, is 

the uncompensated variance, Vun The line along the manifold is where the 

task variables are constant. Motor control is identified by examining the 

ratio of the variances (Rv = Vcomp/Vun). 

 

 

For example, if you are required to use two fingers pressing on a key to yield 

constant force (figure 2.1), where f1=f2, the forces from the fingers are then projected 

onto a manifold where the distribution of these forces determines the level of control. 

There are many options of force combinations of f1 and f2 that yield the same total force. 

Part B in the figure above depicts a situation where the net force generated by the 2 

fingers is strongly controlled, whereas part C indicates weak or no control. UCM 

quantifies the ratio between the variance along the manifold and the variance 

 8 

 

Figure 2: Different possible distributions of variance along the uncontrolled manifold.  
The variance along the manifold is called the uncompensated variance (Vcomp) 

and the variance along the orthogonal subspace is called the uncompensated 

variance (Vun).  The line along the manifold indicates where the task 

variables E1 +E2 = constant.  Motor control is identified by looking at the 

ratio of the compensated and uncompensated variance (RV=Vcomp/Vun). 

Similarly, during a sit-to-stand task (Scholz and Schoner 1999) the redundant 

joint space variables were also mapped to several hypothesized control outputs (Figure 

3).  The variance distributions on the manifold were then used to infer control.  During 

the task, the ankle (! Ankle), thigh (! Thigh), trunk (! Trunk) and neck (! Neck) were 

experimentally recorded.  Since the task was redundant, subject could manipulate 

different combination of the joint angles to accomplish objective of the task.  Therefore, 

several hypothesized control variables were tested to determine which variables were 

controlled during the task.  For example, the center of mass of the body (CMBody) and the 

head (CMHead) were chosen as controlled variables.  The joint angles were then mapped 

onto the task trajectory.  The variances along these trajectories were calculated and the 

uncontrolled hypothesis was tested.  If the variance along the uncontrolled manifold was 

larger then the variance perpendicular to the manifold, then the hypothesis was accepted 

and the variables was deemed “controlled” during the experiment. 
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orthogonal/perpendicular to the manifold to determine which variables are being 

controlled and how they are combined to complete a task (Latash, Scholz et al. 2002).  

The larger the variance that occurs along the uncontrolled manifold, where the inherent 

redundancy in the task is exploited, the more strongly “controlled” or “stabilized” the 

control variable is (Scholz, Schöner et al. 2000, Reisman, Scholz et al. 2002). 

 

Tolerance Noise Covariation  

Another approach, commonly used in reaching tasks, is the tolerance noise 

covariation method or TNC. TNC attempts to define the task goal independent of the 

experimental data, to gain insight as to how subjects organize the related task variables. 

The TNC manifold is defined in relation to a fixed external task goal. This approach 

assesses variability in terms of its cost to the outcome, rather than its covariance within 

the solution space (Müller and Sternad 2004, Cohen and Sternad 2009). Performance is 

evaluated based on the tolerance (the location), the covariation, and the noise (scattering) 

of the actual data. Each cost is defined in terms of the effect it has on the final goal: the 

tolerance cost measures the error at the goal that results from being a given average 

distance off of the solution manifold, the covariation cost measures the error at the goal 

that results from not aligning ones movements along the solution manifold, and the noise 

cost measures the error at the goal that results from the amplitude of the variability in the 

movement.  The TNC method is used to examine how the variance structure changes 

over time throughout learning tasks. 
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Minimum Intervention Principle (MIP) 

 Another approach is the minimum intervention principle (MIP). MIP provides a 

theoretical basis for computational models to assess the redundancy issue. MIP relates the 

task related geometry to stochastic optimal control theory to hypothesize how human 

movements are regulated during redundant tasks (Todorov and Jordan 2002). MIP 

corrects only for deviations that interfere with the completion of the task goals 

(Cusumano and Cesari 2006). In other words, one assumes that it is not efficient to 

minimize errors that do not negatively affect the task goal. MIP accounts for exploration 

of a task space, rather than a joint space (UCM). 

 A well-respected computational mechanism used to implement MIP is stochastic 

optimal feedback control (OFC) (Todorov and Jordan 2002, Todorov 2004, Valero-

Cuevas, Venkadesan et al. 2009).  OFC is one of the primary methods of explaining 

motor variability in redundant tasks. OFC explains that the motor system allows 

variability within the task irrelevant variables and uses feedback to correct any errors in 

the task relevant variable that will interfere with achieving the stated task goals. Although 

this method provides insight into how people regulate variability during redundant tasks, 

it also does not account for the trial-to-trial dynamics.  

 

Limitations of these Methods / Approaches 

 

  Although these previously mentioned approaches have provided much insight into 

how the human nervous system regulates variability during redundant tasks, most of 

these theories have significant limitations. UCM is limited by the tasks and how the 
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control variables are defined. In other words, UCM relies on the variance structure of the 

experimental data itself to infer control.  However, this variance of the body variables 

may be completely independent of the task itself. This may lead to ambiguous 

interpretations of the data (Valero-Cuevas, Venkadesan et al. 2009, Cusumano 2013). 

 The TNC approach has been used in upper extremity tasks, however its learning 

focused approach does not lend well to tasks that are already highly “learned” like 

walking or running. Tasks need to be more “novel” for subjects “learning” to be 

measured and analyzed. TNC also relies solely on the distribution of the variability 

within the data to hypothesize what the subjects were “controlling.”  

 The MIP approach is a more rigorous and computational approach.  However, in 

its implementation, it has not yet been used to account for the trial-to-trial dynamics of 

redundant task experiments. All approaches analyze average measures of specified 

parameters to determine what parameters subjects manipulate during a given tasks. These 

average measures are unable to determine the trial-to-trial differences. The trial-to-trial 

dynamics are essential to understand the nervous system exploits redundancy from one 

movement to the next (Gates and Dingwell 2008, Dingwell, John et al. 2010). 

 

Goal Equivalent manifold (GEM) 

 

Another related approach, the Goal Equivalent manifold (GEM) is defined purely 

by the task, and provides a transformation of the body state variables to goal variables 

(Scholz and Schöner 1999, Cusumano and Cesari 2006). To determine what solutions are 

available for a specific task, a specific goal function must be defined. Any goal function 



 21 

is defined as “the interaction between body variables (vector x(t)), goal variables of the 

task (vector y(t)), and the environment needed for perfect task execution” (Cusumano and 

Cesari 2006). The goal function is defined generally by (Cusumano and Cesari 2006) as: 

                    (1) 

 

The goal function is defined so that it is not a true constraint, therefore the body does not 

always have to satisfy the goal. However when the goal function is specified and 

equifinality inherently exists within the task, all possible task solution strategies in the 

form of a manifold can be defined (Cusumano and Cesari 2006): i.e., all combinations of 

x and y such that f(x,y,t) = 0 exactly.  Any combinations of x and y that lead to f(x,y,t) ≠ 0 

indicate errors in task performance.  

For example, during the game of darts, the objective of the game is to hit the 

bull’s-eye.  This goal exists regardless of who throws the dart, how they throw the dart, 

and even if the dart is thrown at all (Dingwell, Smallwood et al. 2013). Unlike UCM, the 

GEM approach uses mathematical relationships between the body and the goal that are 

defined consistently for any and all subjects.  The GEM makes no a priori assumptions as 

to which variables are controlled and which are not.  

 

Separating “Variability” From “Control” 

 

One fundamental difficulty is that measures of variability (e.g., standard 

deviation, coefficient of variation, etc.) only quantify the average magnitude of 

fluctuations across a large number of strides.  They yield no “dynamic” information about 
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how each step directly influences subsequent steps (Dingwell and Cusumano 2000, 

Dingwell, John et al. 2010), and therefore are unable to quantify how errors change from 

one trial to the next. Many of these previously mentioned approaches attempt to answer 

how movements are controlled by the nervous system by determining the structure of the 

variance.  One problem with this type of analyses is that the variance can be structured 

for a variety of reasons not always related to the specific task related control (Valero-

Cuevas, Venkadesan et al. 2009).  

One effective way to determine these trial-to-trial fluctuations is to apply 

Detrended Fluctuation Analysis or DFA. DFA is one way to determine the correlation 

between consecutive movements, i.e. trial to trial (Peng, Buldyrev et al. 1992, Hausdorff, 

Purdon et al. 1996, Todorov 2004, Cusumano and Cesari 2006, Delignières and Torre 

2009). DFA can determine the statistical persistence or anti-persistence in any time 

series. DFA is used to compute a scaling exponent, alpha (). An  < 0.5 indicates that 

deviations in one direction are likely to be followed by deviations in the opposite 

direction (anti-persistence). An  > 0.5 indicates that deviations are more likely to be 

followed by deviations in the same direction (persistence). Lower values of alpha indicate 

more tightly regulated variables (Peng, Buldyrev et al. 1992, Dingwell, John et al. 2010).  

When used in combination with the notion of a GEM, these DFA analyses can give 

greater insights into the degree of actual “control” being applied to different variables in 

redundant tasks than analyses of variance alone (Cusumano 2013). 

An alternative method of determining the sequential relationships within a time 

series is to use a Lag 1 auto correlation (Dingwell, Smallwood et al. 2013). Similar to 
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DFA, Lag 1 auto correlations can determine the correlation between consecutive 

measures (Goldberger, Amaral et al. 2002). Lambda can be interpreted as a stability 

multiplier that measures the strength of responses to small external perturbations 

(Dingwell and Kang 2007, van Beers 2009). Lag 1 autocorrelation is used to determine a 

measure called lambda (λ) where λ = 0 indicates uncorrelated “white” noise, λ < 0 

exhibits anti-persistence and for λ > 0 exhibits statistical persistence. As with DFA, lower 

values of λ indicate more tightly regulated variables (Peng, Buldyrev et al. 1992, 

Goldberger, Amaral et al. 2002, Dingwell and Kang 2007). In previous work from our lab 

(Dingwell, Smallwood et al. 2013) Lag 1 auto correction has been shown yield similar 

results to DFA, indicating that DFA and Lag 1 auto correlation are both effective ways of 

determining the correlations between consecutive measures (Cusumano 2013).  

 

Dynamics and Control of Walking 

 

Variability & Noise in Walking  

 

For walking, increased gait variability has been prospectively linked to increased 

risk of falling (Maki 1997, Hausdorff, Rios et al. 2001, DeMott, Richardson et al. 2007).  

However, there remains considerable debate about which measures of gait variability are 

most relevant (Owings and Grabiner 2004, Moe-Nilssen and Helbostad 2005, Brach, 

Studenski et al. 2008), with some studies even finding non-intuitive and interesting 

results, such as decreases in speed (slower walking speeds) leading to instability, or too 
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little variability contributing to fall risk (Brach, Berlin et al. 2005, Beauchet, Allali et al. 

2009).  

Additionally, in some contexts additional variability can benefit task performance.  

For example, several recent studies have found that allowing variability in robotic 

locomotor gait re-training interventions leads to faster improvements in gait performance 

(Cai, Fong et al. 2006, Lewek, Cruz et al. 2009, Lee, Won et al. 2011).  Some movement 

variability arises from the ubiquitous noise in the nervous system (Cordo, Inglis et al. 

1996, Osborne, Lisberger et al. 2005, Stein, Gossen et al. 2005, Faisal, Selen et al. 2008).  

However, much of the movement variability we observe arises from redundancy or 

equifinality (Scott 2004, Todorov 2004, Cusumano and Cesari 2006). One reason these 

more variable robotic gait re-training interventions are more effective is likely that the 

device allows appropriate variability for relevant gait parameters, which permits patients 

to more fully explore that space of equally valid task solutions. 

 

Functional / clinical implications  

 

During walking, humans need to adapt at every step (not just on average) to 

respond to perturbations (Dingwell and Cusumano 2000, Dingwell and Marin 2006, 

Kang and Dingwell 2008).  While the neurophysiological mechanisms that enact these 

responses are well known (Rossignol, Dubuc et al. 2006), the fundamental principles 

governing adaptation from one stride to the next remain mostly unknown.  Detrended 

Fluctuation analyses (DFA) has been used repeatedly to quantify the temporal correlation 

structure of specific gait parameters, primarily stride time.  DFA analyses indicate that 
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stride-to-stride variations in gait cycle timing exhibit statistical persistence (Peng, 

Buldyrev et al. 1992, Hausdorff, Peng et al. 1995, Terrier, Turner et al. 2005) and that 

these characteristics can be altered with aging or neurological degradation (Hausdorff, 

Mitchell et al. 1997) .  

 Variability has also been investigated during both treadmill and overground walking 

(Terrier, Turner et al. 2005, Terrier 2012, Terrier and Deriaz 2012, Terrier and Deriaz 

2012). Prior research within our lab has shown that these stride to stride fluctuations can 

be directly interpreted in terms of the degree of control imposed on each specific gait 

variable (Fig. 1 and (Dingwell and Cusumano 2010, Dingwell, John et al. 2010)).  

Understanding how control is enacted from stride to stride therefore requires quantifying 

the specific temporal sequencing of those stride to stride fluctuations (Dingwell and 

Cusumano 2010, Dingwell, John et al. 2010). 

 

Redundancy in Walking  

 

From a neurological standpoint, walking is a highly complex task that requires 

significant amounts of control. The nervous system must integrate multiple systems 

simultaneously in order to generate functional locomotion (Rossignol, Dubuc et al. 2006).  

Due to this advanced multi-system integration, there are often multiple solutions to one 

problem. More specifically with locomotion, there are an infinite number of strategies 

people can choose to create stride lengths (Ln) and stride times (Tn). However, on 

average, humans choose a preferred combination of Ln and Tn thought to be based on 

minimizing energy expenditure (Srinivasan and Ruina 2006), and then attempt to make 



 26 

corrections when errors occur. Often, when injury or paralysis happens, humans endure 

much greater energetic costs. Determining why healthy people chose specific strategies to 

control locomotion, can provide insights into how to re-train those that have lost the 

ability to generate consistent locomotion. 

Since walking is a redundant task, many of the previously discussed approaches 

have been used to analyze walking. The UCM approach has been applied to determine 

the structure of variance in kinematic parameters (joint angles), joint moments, muscle 

activation patterns, etc. (Black, Smith et al. 2007, Scholz, Schöner et al. 2007, Auyang, 

Yen et al. 2009). However UCM is unable to determine the temporal structure of inter-

trial fluctuations within kinematic parameters. Therefore this method does not allow us to 

quantify the control of goal relevant parameters (Cusumano 2013).  

The TNC method has not been applied to walking as TNC is based on learning 

tasks. Since walking is a well-learned task, this type of analyses may not be appropriate. 

Also, TNC only creates a minimal space of variables to satisfy the given task.  

However, the GEM method has been used successfully to address variability in 

human movement (Cusumano and Cesari 2006), and more recently the variability in 

stride to stride fluctuations during walking (Dingwell, John et al. 2010). The GEM 

approach is a more thorough approach because it allows us to analyze only body state 

variables that interact directly with goal level performance, and is designed for specific 

tasks with designated goal functions. Specifically for treadmill walking, the task goal is 

to maintain stride speed, and remain on the treadmill.  
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Dynamics and Control of Running 

 

Running is a vastly studied topic due to the large number of humans that 

participate in the sport. Among these millions of people, 30-75% of runners get injured 

each year (Van Gent, Siem et al. 2007). Walking and running share some basic kinematic 

and kinetic characteristics.  However, they are markedly different locomotive strategies 

as proven by the distinct transition between the two modalities. Similar to walking, 

running is very complex task that requires coordination of many different physiological 

systems. Due to this complexity, the central nervous system must regulate this 

coordination as well as variability within the motor outputs. Running is thought to share 

the same pattern-generating networks as walking (Cappellini, Ivanenko et al. 2006), 

which may indicate similarities in the control of variability. As in walking, some of the 

variability within gait parameters occurs because of equifinality: e.g., there are an infinite 

number of stride lengths (Ln) and strides times (Tn) that yield the same stride speed ~ 

(Ln/Tn = Sn) during running as there are in walking. However, within the literature, it is 

inconclusive where the equation may be violated with the existence of the flight phase 

during running. Few studies have investigated how the variability of stride parameters is 

controlled to achieve stable running gait.  

Variability during running is important to understand since it has been suggested 

that people with injuries often have reduced variability (Hamill, van Emmerik et al. 1999, 

Bartlett and Kram 2008, Meardon, Hamill et al. 2011). It is unknown if these decreases in 

variability of certain kinematic variables exist prior to injuries or rather post injury. 
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Identifying this variability is extremely important in order to know which variability 

should be included and which variability should be minimized from the stride parameters 

that contribute to the task goal.  

Similar to the fluctuations in stride intervals during walking, temporal fluctuations 

have been found to exhibit persistence during running as well (Jordan, Challis et al. 

2006).  These fluctuations in the temporal components of gait cycle are not random 

(Jordan and Newell 2008, Jordan, Challis et al. 2009). A comparison study between 

walking and running determined that DFA alpha values increased with walking speed, 

while this same values decreased with running speed (Jordan, Challis et al. 2009). Also, 

that slower running exhibited greater instability than fast walking at the same variety of 

speeds. However, these results only included stride times. These analyses did not include 

stride length, stride speed, or any coupling between these variables. 

The variability found within running parameters is not simply noise within the 

nervous system but is thought to have a functional purpose (Jordan, Challis et al. 2009).  

Studies have speculated that this variability of movement might be necessary for the 

changes in coordination patterns and more specifically the ability to adapt to any 

perturbation (Bartlett and Kram 2008). However past studies were simply examining the 

variability itself, not the actual temporal fluctuations of the stride parameters (Cusumano 

2013). Variability within the stride time parameter has been the focus of many studies. 

DFA has also been applied to stride time (~Tn) in both healthy and injured populations. A 

study by Meardon and Hamill showed that injured runners exhibit lower alpha values 

(Meardon, Hamill et al. 2011). Additional studies confirm that there is less variability in 
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kinematic parameters in injured populations (Hamill, van Emmerik et al. 1999, Bartlett 

and Kram 2008). Little to no evidence exists whether this is the cause or the effect of 

injury.  

The walk-to-run transition has also been investigated in terms of variability and 

redundancy. Walking and running share symmetries in numerous kinematic and timing 

parameters, however, when reaching the W-R transition speed, increases in variability 

have often been proposed. Studies have shown that this variability exists in many 

different parameters, such as inter-limb coordination (kinematics of joint angles/limb 

trajectories) (Segers, Aerts et al. 2006), stride frequency (Li, van den Bogert et al. 1999), 

and the timing of the actual transition period (Segers, Aerts et al. 2006, Hreljac, Imamura 

et al. 2007, Van Caekenberghe, De Smet et al. 2010, Van Caekenberghe, Segers et al. 

2010, Segers, De Smet et al. 2013).  

Researchers have hypothesized that there are “critical fluctuations” near the gait 

transition. (Schöner and Kelso 1988, Diedrich and Warren 1995). These critical 

fluctuations are thought to be the result of phase shifts from stable attractors (Seay, 

Haddad et al. 2006). The general suggestion is that ‘interesting dynamics’ happen near 

transitions between stable solutions in systems. This could lead to very interesting control 

dynamics.  However the studies investigating variability are inconclusive as to how this 

variability is regulated during running and at the W-R transition.  
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Implications for Current Dissertation 

 

Determining the processes by which the nervous system accounts for motor noise 

and resolves redundancy can provide further knowledge on the underlying mechanisms 

that regulate movement. In this dissertation, we explored the effect of noise and 

redundancy in motor control during locomotion.  

 In the first study of this dissertation, we examined the effect of imposing 

additional tasks (goals) to subjects while treadmill walking. Subjects were asked to 

voluntarily control their stride length, stride time and stride speed using step length 

markers, a metronome and a treadmill. The intent of this experiment was to determine 

how humans alter the stride-to-stride regulation of their gait when the task goals change 

(i.e., by maintaining stride length and/or time). This study was intended to expand upon 

the current literature relating to this topic, more specifically the study by (Dingwell, John 

et al. 2010) where these “control” strategies were identified in normal treadmill walking.  

 One of the goals of this dissertation was to determine how robust these previously 

found control strategies are, and what effect imposing additional task goal(s) might have. 

The second study included a very similar analysis, however we extended the task to 

running rather than walking. The intent of this study was to determine if there were 

differences in how humans alter the stride-to-stride regulation of their gait during 

running.  

Although common in the walking literature, there are few studies that apply task 

constraints or manipulations during running.  In order to determine the robustness of the 

control paradigms used to coordinate and execute consistent running gait, it is important 
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to determine how specific individual parameters are controlled.  One viable method to 

examine the variability within individual parameters is to constrain the specified variable. 

This method could allow us to learning more about what variability is “good” and what 

variability is irrelevant during running. 

The third study of this dissertation directly compared walking to running. We 

were interested in determining how subjects control stride-to-stride fluctuations during 

the steady state at a predicted walk-to-run transition and more specifically at the fastest 

walking speed and the slowest running speeds. Many studies have determined that there 

is increased variability at the walk-to-run transition (Diedrich and Warren 1995, Li 2000, 

Seay, Haddad et al. 2006).  However, it remains unknown if subjects change their control 

of specific gait parameters or if this variability comes from another source. 
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Chapter 3 

 

Adaptability of Stride-to-Stride Control in Human Walking 

Introduction  

People are faced with many challenges during locomotion every day. Individuals 

are required to walk on multiple surfaces, avoid obstacles, and adapt to many different 

situations. These unpredictable environmental disturbances can lead to potential injuries 

and falls, especially in elderly or impaired populations (Maki 1997). Although external 

sources of variability are only one cause of variability, these situations can lead to 

increased variability of specific parameters during locomotion (Hausdorff, Rios et al. 

2001). Increased variability of specific gait parameters may result in an increased chance 

of falling or injury (Maki 1997, DeMott, Richardson et al. 2007).  On the contrary, the 

presence of variability may indicate that humans are utilizing the numerous combinations 

of gait parameters that allow them to walk more efficiently (Hausdorff, Purdon et al. 

1996). More specific analyses of how humans both utilize or minimize variability of 

different gait parameters are needed. 

To investigate measures of variability within certain gait parameters, it is 

necessary to first recognize how the central nervous system regulates and coordinates 

motor variability during walking. The higher order systems that control walking must 

incorporate the multiple sensory inputs to effective generate motor outputs fot efficient 

locomotion (Rossignol, Dubuc et al. 2006).  Establishing the fundamental principles that 

guide this control is essential to understanding how humans regulate walking. 
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Most optimality principles, like minimizing energy cost (Kuo 2001, Srinivasan 

and Ruina 2006), predict an overall, average behavior (Collins 1995, Scott 2004). These 

methods are unable to explain the variability observed within movements (Körding and 

Wolpert 2004, Todorov 2004, Stein, Gossen et al. 2005, Faisal, Selen et al. 2008) 

including walking (Winter 1984, Hausdorff, Peng et al. 1995, Dingwell and Marin 2006, 

Kang and Dingwell 2008, Dingwell, John et al. 2010).  Determining the nature of 

neuromotor variability is necessary to understanding how humans perform skilled 

movements (Körding and Wolpert 2004, Todorov 2004, Cusumano and Cesari 2006, 

Dingwell, John et al. 2010).   

For walking, increased gait variability has been prospectively linked to increased 

risk of falling (Maki 1997, Hausdorff, Rios et al. 2001, DeMott, Richardson et al. 2007).  

However, there remains considerable debate about which measures of gait variability are 

most relevant, such as step width, trunk acceleration and stride time (Owings and 

Grabiner 2004, Moe-Nilssen and Helbostad 2005, Brach, Studenski et al. 2008). 

Additional studies have determined that too much or too little variability can lead to 

instability and/or falls (Brach, Berlin et al. 2005, Beauchet, Allali et al. 2009).  

One fundamental difficulty is that measures of variability (e.g., standard 

deviation, coefficient of variation, etc.) only quantify the average magnitude of 

fluctuations across a large number of strides.  They yield no “dynamic” information about 

how each step directly influences subsequent steps (Dingwell and Cusumano 2000, 

Dingwell, John et al. 2010). With these dynamic analyses, it is possible to investigate 

stride-to-stride fluctuations and how these fluctuations are regulated.  Furthermore, in 
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some contexts additional variability could be beneficial.  For example, several recent 

studies have found that allowing variability in robotic locomotor gait re-training 

interventions leads to faster and better improvements in gait performance (Cai, Fong et 

al. 2006, Lewek, Cruz et al. 2009, Lee, Won et al. 2011).   

Some movement variability arises from the ubiquitous noise in the nervous 

system (Cordo, Inglis et al. 1996, Osborne, Lisberger et al. 2005, Stein, Gossen et al. 

2005, Faisal, Selen et al. 2008).  However, much of the movement variability we observe 

also arises from redundancy or equifinality (Scott 2004, Todorov 2004, Cusumano and 

Cesari 2006): i.e., there are often an infinite number of ways to achieve the exact same 

task goal.  One possible reason these more variable robotic gait re-training interventions 

are more effective could be that the device allows appropriate variability for relevant gait 

parameters, which permits patients to more fully explore that space of equally valid task 

solutions. 

During walking, humans need to adapt at each individual step (not just on 

average) to respond to a specific event or to maintain certain parameters (Dingwell and 

Cusumano 2000, Dingwell and Marin 2006, Kang and Dingwell 2008).  The mechanisms 

by which these responses are implemented are known, (Rossignol, Dubuc et al. 2006), 

yet it is unknown how adaptation occurs from one stride to the next (Dingwell, John et al. 

2010). Understanding how control is enacted from stride to stride therefore requires 

quantifying the specific temporal sequencing of those stride to stride fluctuations 

(Dingwell and Cusumano 2010, Dingwell, John et al. 2010, Cusumano 2013). 
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Fig. 3.1.   A) Definition of “Goal Equivalent Manifold” (GEM) for walking at constant speed 

(Ln/Tn = Constant).  B)  Example time series of fluctuations tangent (δT) and 

perpendicular (δP) to the GEM in (A).  C) DFA results confirming strong statistical 

persistence (α >> ½), indicating very weak stride-to-stride control, for δT 

fluctuations and anti-persistence (α < ½), indicating much stronger stride-to-stride 

control, for δT fluctuations (p < 2×10-12). Results from (Dingwell, John et al. 2010).  

Importantly, these distinctions were only apparent when analyzing δT and δP 

fluctuations.  Analyses of Ln and Tn time series revealed no such differences. 

Our lab recently demonstrated (Dingwell, John et al. 2010) that humans walking 

on a treadmill explicitly exploit the inherent redundancy between stride length (Ln) and 

stride time (Tn) to try to maintain ~constant stride speed (Sn = Ln / Tn) at each step (Fig. 

3.1).  Simple computational models showed that humans could have easily chosen a 

number of other alternative, but equally successful, strategies, but they did not (Dingwell, 

John et al. 2010).  However, these initial results were obtained only for normal walking 

on a treadmill.  The specific strategies people might use were not directly manipulated 

experimentally.  However, the conceptual framework previously developed (Dingwell, 

John et al. 2010) provides an ideal tool to precisely predict the expected step-to-step 

fluctuation dynamics humans should exhibit when imposing any of a wide range of 

explicitly defined control strategies. 
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Fig. 3.1D: Schematic of 4 conditions to be tested in Aim #1 and their respective GEM’s.  

Each GEM defines a specific redundancy between Ln and/or Tn.  These 

experiments explicitly tested the ability of subjects to exploit these different 

redundancies.  

 

Here, we directly manipulated the task conditions presented to subjects during 

treadmill walking. Stride length (Ln), stride time (Tn), and stride speed (Sn) conditions 

were given so as to explicitly vary the nature of the available redundancies (Fig 

3.1.D).  We hypothesized that subjects could complete the multiple simultaneously goals 

by utilizing a strategy that attempts to achieve an “intermediate” goal that partially 

satisfies each individual goal (e.g., Fig. 3.2, Left).  Alternatively, subjects could 

determine the intersection of the two individual task goals and resort to minimizing 

variance around the single solution that equally satisfies both goals (e.g., Fig. 2.2, 

Right).  Although, these are two plausible strategies for this task, there may be other 

additional strategies that satisfy the same overall goal. We directly tested these different 

alternatives for both walking and running in this dissertation.   
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Fig. 3.2.  Example schematics of possible 

strategies subjects might use 

when asked to achieve 

multiple simultaneous goals. 

Left: Subjects could adopt 

“intermediate” strategies that 

balance the competing 

demands of each individual 

task goal.Right: 

Alternatively, subjects could 

adopt the single, optimal 

solution that simultaneously 

achieves both (or all) task 

goals, but does not admit any 

redundancies.   

 

 

 

 

 

Methods 

 

Subjects 

Fourteen (14) healthy adults between 18 and 35 years of age participated (Table 

3.1). All subjects were pre-screened to ensure they had no lower leg injuries, surgeries, or 

cardiovascular, respiratory, neurological, musculoskeletal or visual conditions that could 

have affected their gait. This study was approved by the Institutional Review Board at the 

University of Texas and all participants provided written consent prior to participation. 
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Table 3.1 Subject Characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Protocol 

 

Subjects walked on a Woodway Pro XL treadmill (Woodway USA, Waukesha, 

WI) with a motorized rubber belt. The treadmill belt dimensions were 2.23m long by 

0.685m wide. All subjects wore a safety harness during the experimental session (Fig 

3.3.).  This harness did not interfere with their normal walking movements. 

Subjects first acclimated to walking on the treadmill for at least 5 minutes at the 

beginning of the experiment and 2 minutes prior to each new condition. Walking speed 

was non-dimensionally scaled to each subject’s leg length using the Froude method: 

               √Fn      ,       (2) 

where Fn is the Froude number, which was 0.16 for this study, g is gravity and l is leg 

length; measured from the greater trochanter to the floor (Vaughan and O’Malley 2005).  

For a subject with an “average” leg length (~0.93m), a Froude number of Fn = 0.16 

Subject Characteristics (n=14) 

Age (yrs) 24.14 ± 4.22 

Sex (female/male) 9/5 

Height (m) 1.70 ± 0.13 

Leg Length (m) 0.93 ± 0.07 

Body Mass (kg) 65.75 ± 11.75 
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yields a true walking speed of ~1.21 m/s.  Subjects were asked to verify that this walking 

speed was comfortable.   

Subjects were then asked to complete two 6-minute walking trials each under 

each of the following four experimental conditions:  constant stride speed (SPD), 

constant stride speed and stride length (LEN), constant stride speed and stride time 

(TIM), and constant stride speed, length and time (ALL).   

For all conditions, the treadmill speed was set to the selected Froude speed. For 

the SPD condition, the subjects were given no further instructions. For the LEN 

condition, subjects were asked to step on evenly spaced markers placed on the treadmill 

belt. One-inch wide strips of athletic tape were placed in the identical location (0.67m) 

for all experiments. For the TIM, subjects were asked to walk in time with a metronome.  

For the ALL condition, the subjects were asked to combine all three previously 

mentioned tasks while walking. For all trials, a waist high mirror was also placed in front 

of the treadmill to give subjects visual feedback of their foot placement that did not 

require them to bend their necks to look directly down at their feet (Smid and den Otter 

2013). 

Experimental conditions were presented in random order to each subject, with 

presentation order balanced across subjects. Trials were 6 minutes long and for marker 

placement accuracy were blocked by condition: i.e.,2 trials of each condition were 

collected before going onto the next condition.  Subjects were given a minimum 2 

minutes rest in between trials, and allowed as much rest as needed.  

 



 40 

Data Collection and Processing 

 

Whole-body kinematic data were recorded at 60 Hz using a 10-camera Vicon MX 

motion capture system (Oxford Metrics, Inc., Oxford, UK) for the entire duration of each 

trial. Each subject wore a standardized whole-body marker set of 57 markers, (Fig. 3) 

(Wilken, Rodriguez et al. 2012). Raw kinematic data were processed using Vicon Nexus 

software.  Additional data analyses were performed using MatLab (MathWorks, Inc., 

Natick, MA).   

Individual strides were determined by finding the local maxima of the distances 

between the pelvis and heel markers in the anterior-posterior direction (Zeni, Richards et 

al. 2008).  These data were used to extract time series of the specified stride parameters: 

stride lengths (Ln), stride times (Tn), and stride speeds (Sn) for each walking trial.  Stride 

length (Ln) was defined as the anterior-posterior distance between right heel strike to the 

next consecutive right heel strike. Stride time (Tn) was the amount of time it took to go 

from heel strike of one foot to the next heel strike by the same foot. Stride speed was 

calculated as Sn = Ln/Tn for each stride in each trial. For consistency across analyses, all 

trials were truncated at 150 strides each. 
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Figure 3.3. (Left) Subject walking on the Woodway treadmill in our laboratory. (Right) 

Computer generated image of the 57 marker set used in this study.  

 

Dynamics of Primary Gait Parameters 

 

Means and standard deviations were calculated across all strides for each Ln, Tn 

and Sn time series from each trial.  

Detrended fluctuation analysis or DFA is one way to determine the correlation 

between consecutive movements (Peng, Buldyrev et al. 1992, Hausdorff, Purdon et al. 

1996, Goldberger, Amaral et al. 2002). DFA can quantify the statistical persistence or 

anti-persistence for a given measure for consecutive movements, in this case specific gait 

parameters (Ln, Tn and Sn), independent of the magnitude of variability (Cusumano 2013).  
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DFA was used to compute a scaling exponent called alpha (). An  < 0.5 

indicates that deviations in one direction are more likely to be followed by deviations in 

the opposite direction (anti-persistence). An  > 0.5 indicates that deviations are more 

likely to be followed by deviations in the same direction (persistence). Smaller alpha 

values may be correlated with more tightly controlled processes, however there are other 

potential reasons for low alpha values to occur (Dingwell and Cusumano 2010, Dingwell, 

John et al. 2010).  

An alternative viable method of determining the serial correlation structure in a 

time series is to compute the Lag-1 autocorrelation. Similar to DFA, Lag-1 

autocorrelations quantify the correlation between consecutive data points (in this case, 

strides)(Dingwell and Cusumano 2010). However, for this study, we chose to use DFA as 

it captures fundamental dynamic information about a recorded time series, independent of 

variability magnitude (Cusumano 2013). 

For each of the traditional gait variables (i.e., Ln, Tn, and Sn), the values of each 

dependent measure (i.e., mean, SD, and α) were computed for each trial.  These data were 

then analyzed using 2-factor (Condition x Subject) repeated measures ANOVA, followed 

by Tukey post-hoc analyses. Statistical analyses were performed using SPSS and 

considered statistically significant if p < 0.05. 

 

Root Mean Square Errors 

For completeness, the variability was examined in two distinct analyses. In 

addition to the standard deviation analyses, the variance from each subject’s mean 



 43 

performance, % RMSE was also calculated. The %RMSE measured the variance from 

the task goal itself (Ln*, Tn*, Sn*).  

To determine if subjects performed better relative to certain goals vs. others, we 

calculated the percent root mean square errors (%RMSE) with respect to stride length, 

stride time and stride speed. %RMSE quantifies the percentage error between the actual 

observed data points and the goals given (Ln*, Tn*, and Sn*). Ln* was defined as the goal 

stride length (the distance between step length markers on the treadmill). Tn* was the 

goal stride time (the time between beats of the metronome.) Sn* was the mean calculated 

stride speed.  For each variable (“x”), %RMSE was calculated as: 

 

        [
√        

         
  ⁄ ]                                                   (3) 

 

 

“Perfect” execution would result in %RMSE = 0.  Thus, a low %RMSE would 

verify that the goals for Ln and Tn we selected were reasonable and that these values were 

similar to the parameters humans normally exhibit while walking on a treadmill. Also, 

differences in %RMSE with respect to Ln, Tn, and/or Sn would indicate the relative degree 

to which each subject successfully achieved each sub-goal individually within each task 

(SPD, TIM, LEN, ALL). This allowed the different measures (Ln, Tn, Sn) with 

fundamentally different units (m, s, m/s, respectively) to be compared.  
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Speed GEM-Based Analyses 

Utilizing the procedures developed in (Dingwell, John et al. 2010) these [Tn, Ln] 

data were then decomposed into new variables, tangent to (δT) and perpendicular to (δP) 

the Constant Speed GEM (Fig. 3.4).  Although the constant speed requirement was 

different than the constant Ln or Tn requirements, we assumed the speed requirement was 

an “implicit” task goal whereas the length and time requirements were “explicit” task 

goals. The critical distinction here is that there were real physical consequences to 

consistently (over time) violating the speed requirement (i.e., subjects would eventually 

walk off the treadmill).  However, there were no such corresponding physical 

consequences for errors made with respect to the imposed length and/or time 

requirements. These assumptions were validated by the RMSE analyses. 

 

 

Figure 3.4. Schematic of the goal equivalent manifold (GEM) for the stride speed goal. δT 

identifies deviations tangent to the GEM. δP identifies deviations 

perpendicular to the GEM. Ln and Tn refer to normalized stride length and 

stride time respectively. 
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For the GEM-related variables (δT and δP), trial-to-trial differences were first 

analyzed in a 3-factor (Condition x Direction x Trial) repeated measures ANOVA.  No 

significant differences were found between trials. Therefore, the data were pooled across 

trials and the values of each dependent measure were then subjected to a 3-factor 

(Condition x Direction x Subject) repeated measures ANOVA, followed by appropriate 

post-hoc analyses. The multiple trials obtained for each subject / condition were treated 

as independent observations in the original 3-factor ANOVA. 

 

Directionality Analyses 

Due to the multiple tasks imposed during walking, it is clear that the “speed GEM” is not 

the correct “GEM” for these other tasks (LEN, TIM, or ALL) precisely because those 

other tasks introduce other new goal functions. With these multiple task goals (GEM’s), 

in theory, the structure of the data might be expected to “shift” specifically away from 

close-to-perfect alignment with the speed GEM towards something intermediate. An 

alternative option to the previously described data “shift,” would be that everything 

collapses to control about a single fixed point and no directionality would exist.  

To determine how these shifts occurred and how the statistical persistence 

changed at each orientation, the data were rotated in 1° increments through 180° 

coordinate transformation (Abe and Sternad 2013) with respect to the speed GEM. 

Unlike in (Abe and Sternad 2013),  0° was defined here for each trial as being aligned 

with the Speed GEM (Fig. 5). Transformations from 180°-360° were not performed as 

these simply mirror the analyses from 0°-
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all orientations for each trial.  The maximum/minimum (αMax, αMin) and 

the respective orientations at which they occurred were then extracted (θMax, θMin). The 

αMin indicated the orientation at which the strongest statistical anti-persistence occurred, 

whereas the αMax indicated the orientation at which the strongest statistical persistence 

occurred. This analysis allowed us to determine how the persistence shifted with respect 

to the speed GEM.  More specifically, this analysis determined how each additional task 

goal affected the distribution of the statistical persistence of the data in the [L, T] plane.  

 

 
 

Figure 3.5: Schematic of the rotational analyses: 1° increments rotated from the speed 

GEM (0°) counterclockwise to 180°. 

  

Statistical analyses were completed for the values αMax and αMin and orientation 

(θMax, θMin). Initially, trial-to-trial differences were run in a 3-factor (Condition x 

Direction x Trial) repeated measures ANOVA.  No significant differences were found for 

Trial. Therefore, the values of each dependent measure (αMax, θMax, αMin, and θMin) 
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were subjected to a 3-factor (Condition x Direction x Subject) repeated measures 

ANOVA, followed by appropriate post-hoc analyses.  

 

  

 

Results 

There were slight fluctuations within the time series of Ln, Tn and Sn. However, 

qualitatively more drift was observed in Ln and Tn than in Sn (Fig. 3.6). 

 

Figure 3.6. Raw time series data for stride length, stride time, and stride speed from one 

example subject during the SPD condition (left) and ALL condition (right).  

 

Standard Stride Parameters 

On average, when asked to focus on certain goals, subjects were able to do so. 

Subjects exhibited mean values of stride length, stride time, and stride speed for the LEN, 

TIM and ALL conditions that were within one standard deviation of the SPD condition 

(Fig. 3.7). For stride length, the SPD condition was significantly different from the LEN, 



 48 

TIM and ALL conditions and the TIM condition was significantly different from LEN 

and ALL (Ln: p=0.00). For stride time, the SPD condition was significantly different from 

the TIM and ALL conditions, and TIM was also significantly different from the LEN and 

ALL conditions (Tn: p=0.00). However there were no significant differences across 

condition for stride speed (Sn: p=0.525). This confirmed that the subjects completed all 

tasks within their normal stepping parameters. 

 

Figure 3.7. Mean values of Ln, Tn, and Sn for all 4 conditions: SPD (circles), LEN 

(diamonds), TIM (triangles), and ALL (squares). Error bars indicate ± SD. 
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Standard deviations of Ln, Tn, and Sn actually increased across conditions with 

multiple task goals (Fig. 8) indicating that the subjects became more variable when asked 

to achieve set values of these parameters. For Ln, the SPD condition was significantly 

smaller than the LEN, TIM and ALL conditions (p =0.00), as well as the ALL condition 

was significantly larger than the LEN and TIM conditions (p=0.00). For Tn, there were 

the SPD condition was significantly smaller than the LEN and ALL conditions (p=0.00). 

Additionally, TIM was significantly smaller than the LEN and ALL conditions, while 

ALL was significantly different than LEN as well (p=0.00). For Sn, SPD and TIM were 

significantly smaller than LEN and ALL, and ALL was also significantly larger than 

LEN (p=0.00). 

 



 50 

Figure 3.8. Standard Deviation values of Ln, Tn, and Sn for all 4 conditions: 

SPD (circles), LEN (diamonds), TIM (triangles), and ALL (squares). Error 

bars indicate 95% confidence intervals. 

 

The DFA α’s of Ln during the SPD condition were significantly different from the 

LEN, TIM and ALL conditions, and TIM was also significantly different than LEN and 

ALL. For Tn, SPD was significantly different than the remaining 3 conditions, LEN, TIM 

and ALL (p=0.00). However, there were no significant differences across conditions for 

Sn (p=0.241).  These α values indicated that people quickly corrected the variables that 

they were asked to manipulate. 

 

SPD LEN TIM ALL
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cond

  SDL
n

SPD LEN TIM ALL
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cond

  SDT
n

SPD LEN TIM ALL
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cond

  SDS
n



 51 

 

Figure 3.9. αvalues of Ln, Tn, and Sn for all 4 conditions: SPD (circles), LEN (diamonds), 

TIM (triangles), and ALL (squares). Error bars indicate 95% confidence 

intervals. 

 

 

 

 

 

 

SPD LEN TIM ALL
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cond

  AlphaL
n

SPD LEN TIM ALL
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cond

  AlphaT
n

SPD LEN TIM ALL
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cond

  AlphaS
n



 52 

% RMSE 

The root mean square error results indicated small percentage errors in all stride 

parameters, indicating that subjects generally achieved the given goals with reasonable 

success. For the Ln conditions, %RMSE significantly decreased from the SPD conditions 

to the LEN, TIM and ALL conditions, where subjects were asked to maintain the 

specified variables (see table below). For Tn, the same %RMSE decreased occurred for 

the same conditions with the exception of the ALL condition, where SPD and ALL were 

not significantly different.  

Also, the %RMSE error across conditions (SPD, LEN, TIM, ALL) was 

consistently lower for stride speed (Sn).  

 Sn Ln Tn 

SPD 1.75 +/- 

0.498 

6.16 +/- 3.31 3.83 +/- 

3.011 

LEN 2.36 +/- 

0.623 

3.24 +/- 

0.637 

3.389 +/- 

1.10 

TIM 1.75 +/- 0.44 4.36 +/- 1.64 1.624 +/- 

0.727 

ALL 3.33 +/- 1.23 4.16 +/- 1.54 3.57 +/- 1.27 

            

Table 3.2 %RMSE averages and standard deviations for Ln, Tn and Sn. 
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Figure 3.10.  % RMSE errors across conditions for the stepping parameter, Ln, Tn, and Sn. 

Error bars indicate 95% confidence intervals. 

Speed GEM Specific Parameters 

When additional tasks were given in the LEN, TIM and ALL conditions, subjects’ 

data clouds slightly shifted towards the imposed secondary goal. Qualitatively, subjects 

did not appear to select the “intersection” point of the two tasks (Fig. 11). Also, Fig. 11 

depicts a representation of the given goal functions, as indicated by the colored lines. As 

a limitation of the treadmill belt length, these lines do not perfectly intersect. To divide 

the belt length into an even number of steps/revolution, we had to predetermine this 

distance and an appropriate stride time. Therefore, the stride length and stride time were 

not perfectly matched to the calculated preferred walking speeds of the subjects. 

However, to determine if this had any effect on the stride speed, we calculated the mean 
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stride speed for each subject and compared it to the set treadmill speed. Differences were 

less than one thousandth of a decimal place and therefore considered insignificant.  

 

 

Figure 3.11. Example raw data with task goals indicated, SPD (Blue solid line), LEN (red 

dashed line), and TIM (green dashed line). 
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Subjects exhibited less variability in the perpendicular direction (SD(δP) <1.0) and 

greater variability in the tangent direction (SD(δT) >1.0) (Fig. 3.12A). The SPD condition 

was significantly smaller than the LEN, TIM and ALL for the tangent directions and 

significantly larger for the perpendicular direction, δT (p = 0.0) and δP (p = 0.0). However, 

the DFA α values (Fig. 3.12B) in the tangent direction (δT) for the LEN, TIM and ALL 

conditions were significantly smaller than the SPD condition (p=0.00). In the 

perpendicular direction (δP), there were no significant differences across conditions 

(p=0.243). 
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Figure 3.12. A) Standard deviations in the GEM directions: tangent (red) and 

perpendicular (black). These are normalized standard deviations measures, 

SD=1.   

 

 

Figure 3.12. B) α values of the GEM directions for each of the experimental conditions. 

The threshold to determine persistence or anti-persistence is indicated by the 

horizontal line at 0.5. 
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Directionality Analyses 

 

 
 

Figure 3.13. (A) The maximum and minimum values and coordinating angle 

measuresments for α for all orientations.  

 

Figure 3.13. (B) The Maximum and minimum values of alpha calculated from the 

directionality analysis.   
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Figure 3.13. (C) The Maximum and minimum values of theta calculated from the 

directionality analysis.     

 

The structural orientation of the statistical persistence (α) in the [Tn, Ln] plane 

changed as additional task goals were added. People shifted the orientation of maximal 

control away from the speed GEM and towards some intermediate “goal.” During the 

LEN conditions, the minimum α value shifted towards the left (Fig. 13) or 

counterclockwise (Fig. 14), whereas during the TIM condition, the minimum α value 

shifted to the right, clockwise. The maximum α value for SPD was signifcantly larger 

(p=0.00) than for LEN, TIM and ALL. The maximum degree measurement, the LEN and 

ALL conditions were signifcantly different (p=0.00) from the SPD and TIM conditions.  
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Figure 3.14. Indicates the shifting of the α values when multiple task goals were given. 

Discussion 

Movement variability is a key characteristic of perception–action systems. More 

specifically, the analysis of variability data can provide insight to determine the process 

by which this variability is generated and regulated.  The completion of this experiment 

provided a specific strategy to determine which stepping variables are being tightly 

regulated and how the control of these parameters changes with additional tasks goals.  

By utilizing a multi- faceted approach, it was possible to determine which 

variability was considered “task relevant”, and “task irrelevant”.  With the ability to 

distinguish between these two types of variability, it is possible to tease out what 

variability should was essential to the task, and what variability should be reduced or 

removed. In a rehab setting, this is important so that clinicians to know what variability 

should be re-introduced to those that are learning how to walk again.  

Results indicated that subjects reacted and accommodated multiple goals while 

adjusting their control strategies in systematically predictable ways. Furthermore, this 
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study determined that individuals had the ability to “prioritize” or show “favoritism” 

toward specific goals while walking. Collectively, subjects adapted and manipulated their 

selected gait parameters appropriately when they were asked to do so. 

Subjects exhibited mean stride lengths, stride times, and stride speeds that all fell 

within their normal gait characteristics (Fig. 3.7). This was a critical finding, as the 

experimental design attempted to mitigate the subjects from having to adopt different or 

abnormal gait patterns. Subjects displayed increased variability in gait parameters when 

asked to control a specific variable. The GEM analyses indicated that the subjects were, 

in fact, trying to achieve the task goals, however they were not consistently “successful,” 

leading to increased variability in the standard deviation measures. Due to the task 

requirements, subjects had to achieve these goals repeatedly across many consecutive 

strides, which may have contributed to their increased variability.  

Although basic standard deviations indicated increased variability (Fig. 3.8), the 

GEM analyses showed subjects completed the given task goals. Subjects actively 

regulated the “goal” measures, as indicated by the α values (Fig. 3.9) for the dependent 

measures.  

Subjects tightly regulated (i.e., over-corrected) Ln more than Tn during the LEN, 

TIM and ALL conditions (Fig. 3.9).  However, in the presence of the metronome, Ln 

became less persistent as well, as predicted by the natural coupling of these parameters. 

One on hand, these different results for length markers and metronome conditions could 

be due to the nature of the task: LEN may be harder than TIM, regardless of the mode of 

feedback). On the other hand, it could be due to the mode of feedback itself, visual 
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stimulus vs auditory stimulus.   These results are similar to Terrier’s findings for 

treadmill walking, where subjects exhibited anti-persistence for stride length, time and 

speed (Terrier and Schutz 2003, Terrier, Turner et al. 2005, Terrier and Dériaz 2012). In 

addition to Terrier’s findings, these analyses utilized a more detailed approach to 

determine that the real control is more subtle than adopting one intersection point of the 

task goals.  

In the presence of a metronome, some studies have shown that subjects ignore or 

are not able to match the auditory cue (Decker, Cignetti et al. 2012, Terrier and Dériaz 

2012). This is an important finding for gait retraining. For therapists interested in 

constraining a gait variable, it may be more effective to apply a visual goal rather than an 

auditory goal. Visual cues have also been found to be more effective during overground 

locomotion in a metronome/stepping stone study (Bank, Roerdink et al. 2011). Our 

results are consistent with the idea that subjects respond more strongly to visual cues. 

Across all conditions, stride speed was tightly controlled. These results validated 

the original hypotheses of this study, that subjects exploit redundancy in the task and 

control for stride speed. This was not the only feasible option for treadmill walking; 

however, it is the strategy that people chose. Prior research has proven that there are other 

viable alternatives that subjects could choose; however, they do not (Dingwell, John et al. 

2010).  

For the GEM related variables, the standard deviation values depended on 

direction. The deviations in tangent direction were much larger than those in the 

perpendicular direction. The variance results possibly indicate that people actually exploit 
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this equifinality: i.e., subjects utilized a wide range of the infinite combinations of stride 

lengths and stride times that achieve the same speed. These results extend previous 

studies with the implementation of multiple simultaneous goals and more direct analyses 

 (Terrier and Schutz 2003, Terrier, Turner et al. 2005, Dingwell and Cusumano 2010, 

Dingwell, John et al. 2010, Terrier and Dériaz 2012, Dingwell, Smallwood et al. 2013, 

Smallwood, Cusumano et al. In Revision). 

Although the GEM analyses provided insight into the regulation of stepping 

parameters, the %RMSE analysis was able to provide an additional performance measure 

for the given task goals. These results indicated that when subjects were asked to achieve 

multiple simultaneous goals, prioritization occurred. These data indicated that subjects 

prioritized the speed goal and placed less importance on the additional goals (Ln and Tn). 

This prioritization may have occurred because of the associated risk with errors relating 

to the speed goal (i.e. a real physical penalty).  Conversely, violating either of the other 

two goals (LEN and TIM) resulted in no real bodily penalty if an error were made.  

Additionally, the directionality analyses extended the %RMSE analysis.  The 

directionality analysis provided a more intricate examination of how subjects responded 

to multiple simultaneous task goals. Even though subjects prioritized the speed goal, the 

directionality analyses showed that subjects attempted to achieve any and all goals given. 

Subjects, in general, were able to achieve multiple goals at the same time.   

In general, these results demonstrate humans have the ability to achieve and 

prioritize multiple simultaneous goals during continuous walking tasks. The analyses 



 63 

method used to determine these walking results could also be used to investigate 

numerous different task goals and potentially be applied to other continuous tasks.  
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Chapter 4  

 

Adaptability of Stride-to-Stride Control in Human Running 

 

Introduction 

Running is a vastly studied topic due to the large number of humans that 

participate in the sport. Among these millions of people, 30-75% of runners get injured 

each year (van Gent, Siem et al. 2007). Running studies typically consist of examining 

kinematics, kinetics, footwear, changes with speed and specific foot strike patterns. 

Numerous studies have also compared running to walking. Walking and running are the 

two most common forms of human locomotion.  Running has both similarities and 

differences to walking. Walking and running share some basic kinematic and kinetic 

characteristics.  However, they are markedly different locomotive strategies as 

demonstrated by the distinct transition between the two modalities. 

There are many studies that indicate running is different from walking. Running 

endures greater ground reaction forces than walking (Cavanagh and Lafortune 1980, 

Novacheck 1998). Running has a flight phase, which is markedly different than the 

double support phase that occurs within the walking gait cycle (Novacheck 1998). From a 

kinematics standpoint, running has quicker, longer strides than walking (Nilsson, 

Thorstensson et al. 1985). From a modeling standpoint, running is modeled as a mass 

spring model, utilizing energy storage and return (Geyer, Seyfarth et al. 2005), whereas 

walking is modeled as an inverted pendulum (Kuo 2002, Kuo, Donelan et al. 2005). 
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Similar to walking, running is a very complex task that requires integration of 

many different physiological systems. Due to this complexity, the central nervous system 

must coordinate all involved systems to generate consistent motor outputs. Running is 

thought to share the same pattern-generating networks as walking (Cappellini, Ivanenko 

et al. 2006), which may indicate similarities in the control of walking and running.  

As in walking, variability within gait parameters occurs because there are an 

infinite number of stride lengths (Ln) and strides times (Tn) that yield the same stride 

speed (Ln/Tn =Sn) during running. However, this mathematical equation may be violated 

with the existence of the flight phase during running. Few studies have investigated how 

the variability of stride parameters is controlled to achieve stable running gait.  

Variability during running is important to understand since it has been suggested 

that people with injuries often have reduced variability (Hamill, van Emmerik et al. 1999, 

Bartlett and Kram 2008, Meardon, Hamill et al. 2011). It is unknown if these decreases in 

variability of certain kinematics exist prior to injuries or rather post injuries.  

Similar to the stride-to-stride fluctuations during walking (Chapter 3), similar 

temporal fluctuations have been found during running as well. These fluctuations in the 

temporal components of gait cycle are not random (Jordan, Challis et al. 2006, Dingwell 

and Kang 2007, Dingwell and Cusumano 2010, Meardon, Hamill et al. 2011). Similar to 

our previous analysis of walking, DFA has been used to describe fundamental dynamic 

information about a time series. A comparison study between walking and running 

determined that, DFA α 

decrease with running speed (Jordan and Newell 2008).  
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The faster speeds involved in running impose unique challenges to the locomotor 

control system. At faster speeds, the subject may implement longer Ln. With these longer 

Ln’s, the fixed length of the treadmill belt surface may cause subjects to adopt very 

different control strategies than those used during walking.  

Variability within the stride frequency parameter has been the focus of many 

studies. DFA has also been applied to stride time (Tn) in both healthy and injured 

populations. Meardon and Hamill showed that injured subjects during running exhibited 

lower α values (Meardon, Hamill et al. 2011), which they interpreted as “tighter control.” 

They also tested healthy runners and found the same result, decreased α values at the end 

of a prolonged run (Meardon, Hamill et al. 2011). Additional studies confirm that there is 

less variability in kinematic parameters in injured populations (Novacheck 1998, Hamill, 

van Emmerik et al. 1999, Bartlett and Kram 2008). Overall, the literature is inconclusive 

as to whether this variability is the cause or the effect of the injury.  

Although common in the walking literature, there are few studies that apply task 

constraints or manipulations during running.  To determine the robustness of the control 

paradigms used to coordinate and execute consistent running gait, it is important to 

determine how specific individual parameters are controlled.  One viable method to 

examine the variability within individual parameters is to constrain the specified variable. 

By constraining a particular gait parameter a situation with reduced variability can be 

simulated, (i.e subjects have less redundancy available to exploit).  This approach could 

allow us to learn more about what variability is “good” (i.e., directly “relevant” for 
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control or adaptability) and what variability is “bad” (i.e., “irrelevant” for control) during 

running.  

 

 

Fig. 4.1 Schematic of 4 conditions to be tested in Aim #2 and their respective GEM’s.  

Each GEM defines a specific redundancy between Ln and/or Tn.  These 

experiments explicitly tested the ability of subjects to exploit these different 

redundancies. 

 

Here, the task conditions/goals presented to subjects were directly manipulated 

during treadmill running (Fig. 4.1). Stride length (Ln), stride time (Tn), and stride speed 

(Sn) goals were given to explicitly vary the nature of the available redundancies (Fig 

Fig. 4.2.  Example schematics of possible 

outcomes when subjects are 

asked to achieve multiple 

simultaneous goals.  Left: 

Subjects could adopt 

“intermediate” strategies that 

balance the competing 

demands of each individual 

task goal. Right: Subjects 

could adopt the single, optimal 

solution that simultaneously 

achieves both (or all) task 

goals, but does not admit any 

redundancies.   
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4.1).  One initial hypothesis was that subjects could complete the multiple simultaneous 

goals by utilizing either an intermediate goal that partially satisfies both (e.g., Fig. 4.2, 

Left) or alternatively that subjects would instead determine the intersection of the two 

individual task goals and adopt a single “concurrent” control strategy that equally 

achieved all task goals simultaneously (e.g., Fig. 4.2, Right).   

However, it was assumed that there might be multiple different strategies people 

could adopt (e.g., as in Fig. 4.2), and that any changes observed in how subjects regulated 

their stepping movements would be systematically related to the changes in imposed 

conditions. In other words, people would adjust their control strategies in reasonable and 

purposeful ways. If so, this would provide further evidence that our analyses are 

identifying actual stride-to-stride control strategies and that these strategies are malleable 

within subjects (i.e., the strategies themselves are “adaptable” to changing task conditions 

or goals.  

 

Methods 

The methods applied here in Chapter 4 largely replicate those used in Chapter 3.  

The primary difference, however, was that here, subjects were required to run rather than 

walk.  All other experimental protocol details replicated those in Chapter 3 with three 

minor exceptions:  subject recruitment requirements, the number of subjects tested, and 

the duration of each individual trial. 
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Subjects 

Ten (10) healthy adults between 18 and 35 years of age participated (Table 4.1). 

They were pre-screened to ensure they had no lower leg injuries, surgeries, or 

cardiovascular, respiratory, neurological, musculoskeletal or visual conditions that could 

have affected their gait. This study was approved by the Institutional Review Board at the 

University of Texas and all participants provided written consent prior to participation. 

Subjects had to meet the requirement of being an active recreational runner, and were 

required to have run at least 10-15 miles, 3 times a week within the most recent month. 

 

 

Table 4.1 Subject Characteristics 

 

 

 

 

 

 

 

 

 

 

 

Subject Characteristics (n=10) 

Age (yrs) 28.1 ± 3.87 

Sex (female/male) 4/6 

Height (m) 1.78 ± 0.10 

Leg Length (m) 0.98 ± 0.044 

Body Mass (kg) 70.9 ± 12.35 
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Experimental Protocol 

 

Subjects ran on a Woodway Pro XL treadmill (Woodway USA, Waukesha, WI) 

with a motorized rubber belt. The treadmill belt dimensions were 2.23m long by 0.685m 

wide. All subjects were required to wear a safety harness during the experimental session 

(Fig. 4.3).  

Subjects acclimated to running on the treadmill for at least 5 minutes at the 

beginning of the experiment and 2 minutes prior to each new condition. Running speed 

was set for each subject using a preselected value of 3.22m/s to ensure that subjects were 

in fact “running” as opposed to an intermediate gait pattern between that of walking and 

running: i.e., “jogging”. The selected treadmill speed matched the dimensions of the 

stride length and stride time goal, and created one intersection point of all three task 

goals. During the initial warm-up, subjects were asked to verify that the running speed 

was comfortable.  

Subjects were asked to complete two 4-minute running trials each under each of 

the following four experimental conditions: constant speed (SPD), constant speed and 

stride length (LEN), constant speed and stride time (TIM), and constant speed, stride 

length and stride time (ALL).   

For all conditions, the treadmill was set to the preselected speed. For the SPD 

condition, the subjects were given no further instructions. For the LEN condition, 

subjects were asked to step on evenly spaced markers placed on the treadmill belt. For the 

TIM, subjects were asked to run in time with a metronome.  For the ALL condition, the 
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subjects were asked to combine all three previously mentioned tasks while running. A 

waist high mirror was also placed in front of the treadmill to give subjects visual 

feedback of their foot placement that did not require them to bend their necks to look 

directly down at their feet during all conditions. 

Experimental conditions were presented in random order to each subject, with 

presentation order balanced across subjects. Trials were 4 minutes long and were blocked 

by condition: i.e., the 2 trials of each condition were collected consecutively for the step 

length marker placement accuracy on the treadmill. Subjects were given at least 2 

minutes rest in between trials, and allowed as much rest as needed. 

 

Data Collection and Processing 

 

Whole-body kinematic data were recorded at 120 Hz using a 10-camera Vicon 

MX motion capture system (Oxford Metrics, Inc., Oxford, UK). Each subject wore a 

standardized whole-body marker set of 57 markers, (Fig. 4.3.) (Wilken, Rodriguez et al. 

2012). Raw kinematic data were processed using Vicon Nexus software.  Additional data 

analyses were performed using MatLab (MathWorks, Inc., Natick, MA).   

Individual strides were determined by finding the local maxima of the distances 

between the pelvis and heel markers in the anterior-posterior direction (Zeni, Richards et 

al. 2008).  These data were used to extract time series of the specified stride parameters: 

stride lengths (Ln), stride times (Tn), and stride speeds (Sn) for each running trial. These 

time series data were then subjected to several analyses to assess means, standard 
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deviations, etc. For consistency across analyses, all trials were truncated at 150 strides 

each. 

 

 

   

Figure 4.3. (Left) Subject running on the Woodway treadmill in our laboratory. (Right) 

Computer generated image of the 57 marker set used in this study.  
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Dynamics of Primary Gait Parameters 

 

Stride length (Ln) was defined as the anterior-posterior distance between right heel 

strike to the next consecutive right heel strike. Stride time (Tn) was the amount of time it 

took to go from heel strike of one foot to then next heel strike by the same foot. Stride 

speed was calculated as Sn = Ln/Tn for each stride in each trial. Means and standard 

deviations of Ln, Tn and Sn were calculated across all strides for Ln, Tn and Sn time series 

from each trial. 

Detrended fluctuation analysis or DFA is one way to determine the correlation 

between consecutive movements (Peng, Buldyrev et al. 1992, Hausdorff, Purdon et al. 

1996, Goldberger, Amaral et al. 2002). DFA can determine the statistical persistence or 

anti-persistence for a given measure for consecutive movements, in this case Ln, Tn and 

Sn. DFA was used to compute a scaling exponent, . An  < 0.5 indicates that deviations 

in one direction are more likely to be followed by deviations in the opposite direction 

(anti-persistence). An  > 0.5 indicates that deviations are more likely to be followed by 

deviations in the same direction (persistence). Lower values of α, indicate more tightly 

regulated variables (Dingwell and Cusumano 2010, Dingwell, John et al. 2010).  

An alternative viable method of determining the serial correlation structure in a 

time series is to compute the Lag-1 autocorrelation. Similar to DFA, Lag-1 

autocorrelations quantify the correlation between consecutive data points (in this case, 

strides)(Dingwell and Cusumano 2010). However, for this study, we chose to use DFA as 

it captures fundamental dynamic information about a recorded time series, independent of 

variability magnitude (Cusumano 2013). 
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For each of these traditional gait variables (i.e., Ln, Tn, and Sn), the values of each 

dependent measure (i.e., mean, SD, and α were computed for each trial and were 

analyzed using 2-factor (Condition x Subject) repeated measures ANOVA, followed by 

Tukey post-hoc analyses. Statistical analyses were performed using SPSS and considered 

statistically significant if the measured p-values were p < 0.5. 

 

Root Mean Square Errors 

To determine if subjects performed better relative to certain goals vs. others, we 

calculated the percent root mean square errors (%RMSE) with respect to stride length, 

stride time and stride speed. %RMSE quantifies the percentage error between the actual 

observed data points and the goals given (Ln*, Tn*, and Sn*). Ln* is defined as the goal 

stride length (the distance between step length markers on the treadmill). Tn* is the goal 

stride time (the time between beats of the metronome.) Sn* is the mean calculated stride 

speed.  For each variable (“x”), %RMSE was calculated as: 

 

        [
√        

         
  ⁄ ]                                                   (4) 

 

 

“Perfect” execution would result in %RMSE = 0.  Thus, a low %RMSE would 

verify that the goals for Ln and Tn we selected were reasonable and that these values were 

similar to the parameters humans normally exhibit while walking on a treadmill. Also, 

differences in %RMSE with respect to Ln, Tn, and/or Sn would indicate the relative degree 
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to which each subject successfully achieved each sub-goal individually within each task 

(SPD, TIM, LEN, ALL).  

Speed GEM-Based Analyses 

Utilizing the procedures developed in (Dingwell, John et al. 2010) these [Tn, Ln] 

data were decomposed into new variables, tangent to (δT) and perpendicular to (δP) the 

Constant Speed GEM (Fig. 4.1.A).  Although the constant speed requirement was 

different than the constant Ln or Tn requirements, we assumed the speed requirement was 

an “implicit” task goal whereas the length and time requirements were “explicit” task 

goals. There are real physical consequences to consistently (over time) violating the 

speed requirement (i.e., you could run off the treadmill), but there are no such 

corresponding physical consequences for errors made with respect to the length and time 

requirements. These assumptions were validated by the RMSE analyses previously 

mentioned and further investigated by the GEM analyses. 
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Figure 4.4. Schematic of the goal equivalent manifold (GEM) for the stride speed goal. δT 

identifies deviations tangent to the GEM. δP identifies deviations 

perpendicular to the GEM. Ln and Tn refer to normalized stride length and 

stride time respectively. 

 

For the GEM-related variables (δT and δP), trial-to-trial differences were first 

analyzed in a 3-factor (Condition x Direction x Trial) repeated measures ANOVA.  No 

significant differences were found for Trial. Therefore, the data were pooled across trials 

and the values of each dependent measure, (SD and α) were then subjected to a 3-factor 

(Condition x Direction x Subject) repeated measures ANOVA, followed by appropriate 

post-hoc analyses. The multiple trials obtained for each subject / condition were treated 

as independent observations in the original 3-factor ANOVA. 
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Directionality Analyses 

Due to the multiple tasks imposed during walking, it is clear that the “speed 

GEM” is not the correct “GEM” for these other tasks (LEN, TIM, or ALL) precisely 

because those other tasks introduce other new goal functions. With these multiple task 

goals (GEM’s), in theory, the structure of the data should “shift” specifically away from 

close-to-perfect alignment with the speed GEM towards something intermediate. 

To determine how these shifts occurred and how the statistical persistence 

changed at each orientation, the data were rotated in one degree (1°) increments through 

180° coordinate transformation (Abe and Sternad 2013) with respect to the speed GEM. 

In contrast to (Abe and Sternad 2013),  0° was defined for each trial as aligned with the 

Speed GEM (Fig. 5). Transformations from 180°- 360° were not performed as these 

simply mirror the analyses from 0°- 180° (Cohen and Sternad 2012). Once the α values 

were calculated at all orientations for each trial, the minimum and maximum values of α 

and their respective orientations were determined. The minimum value indicated the 

orientation at which the strongest statistical anti-persistence occurred, whereas the 

maximum value indicated the orientation at which the strongest statistical persistence 

occurred. This analysis allowed us to determine how the persistence shifted with respect 

to the speed GEM.  More specifically, this analysis determined how each additional task 

goal affected the dissemination of data.  
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Figure 4.5. Schematic of the rotational analyses: 1° increments rotated from the speed 

GEM (0°) counterclockwise to 180°. 

Results 

During running, subjects exhibited small fluctuations in each of the stride 

parameters; Ln, Tn and Sn (Fig. 4.6). However, the raw data depicts more drift in Ln and Tn 

than in the Sn parameter.  

 

 

Figure 4.6. Raw time series data for stride length (red), stride time (blue), and stride 

speed (black) from one example subject for the SPD condition (left) and the 

ALL condition (right). 
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Standard Stride Parameters 

The means of basic stride parameters (stride length, Ln, time, Tn, and speed, Sn) 

verified that, on average, people completed the task goals they were given. The means of 

each parameter were similar to the self-selected Ln and Tn during normal running. There 

were no significant differences within the means across any of the 4 conditions. (p > 

0.07). 

 

Figure 4.7. Mean values of Ln, Tn, and Sn for all 4 conditions: SPD (circles), LEN 

(diamonds), TIM (triangles), and ALL (squares).  Please note the vertical 

scaling for each variable, as the between-subject standard deviations are 

minor. 
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When subjects were ask to “restrict” Ln, Tn, and Sn, subjects actually exhibited 

increased variability for the very measures they were instructed to maintain. Moreover, 

these changes in the structure of variance were proportional for all measures. There were 

differences across conditions in all three parameters, however these differences were very 

small (0.025 SD).  

 

 

Figure 4.8. Standard Deviation values of Ln, Tn, and Sn for all 4 conditions: SPD (circles), 

LEN (diamonds), TIM (triangles), and ALL (squares).  
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Although the standard deviations results indicated that subjects were more 

variable across conditions, the DFA α measure provided a measure of the degree of 

control exerted over each variable, regardless of the magnitude of the variability 

(Cusumano 2013).  

There were significant differences across all conditions for Ln (p = 0.002). For 

stride length, the LEN condition was significantly smaller than SPD (p=0.00), TIM 

(p=0.00) and ALL (p=0.045). Additionally for stride length, the SPD condition was 

significantly different from the ALL condition (p=0.002). There were significant 

differences across all conditions for Tn (p = 0.009), more specifically; the SPD condition 

was significantly different than LEN (p=0.00), TIM (p=0.011) and ALL conditions. 

(p=0.002)  For stride speed, the LEN condition was significantly smaller than the SPD 

conditions (p=0.032).   
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Figure 4.9. α values of Ln, Tn, and Sn for all 4 conditions: SPD (circles), LEN (diamonds), 

TIM (triangles), and ALL (squares).  

 

 

%RMSE 

The calculation of the percent root mean square error indicated a small percentage 

error in all stride parameters, indicating that subjects generally achieved the given goals 

with reasonable success. The smallest %RMSE occurred in the speed (Sn) parameter for 
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where stride length was controlled. The SPD condition was significantly different from 

the LEN, TIM and ALL conditions.  During the TIM and ALL condition, subjects’ 

percent error was very similar for both Tn and Sn indicating that subjects may have 

weighted the speed and time goal approximately equally.  

 

 

Figure 4.10 Percent root mean square error for all task goals for each stride parameters. 

Perfect task execution would have 0 % error. 

 

 

 

 

Table 4.2 %RMSE and standard deviations for Ln, Tn and Sn.  

 

 Ln Tn Sn 

SPD 3.00 +/- 1.65 3.10 +/- 1.86 1.006 +/- 0.21 

LEN 2.25 +/- 0.82 2.19 +/- 0.83 1.26 +/- 0.30 

TIM 2.50 +/- 1.49 2.45 +/- 1.78 1.22 +/- 0.26 

ALL 2.48 +/- 1.26 2.48 +/- 1.27 1.11 +/- 0.27 
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Speed GEM Specific Parameters 

When additional tasks were given in the LEN, TIM and ALL conditions, subjects’ 

data clouds slightly shifted towards the imposed secondary goal. Qualitatively, subjects 

did not appear to select the “intersection” point of the two tasks as originally 

hypothesized (Fig, 4.11). Subjects did not gravitate to one single “intersection” point, 

however they did change the location of the data centroid from the SPD or non-goal 

condition.  

 

Figure 4.11. Example raw data with task goals indicated, SPD (Blue solid line), LEN (red 

dashed line), and TIM (green dashed line). The colored lines indicate the 

additional task goals, here they intersect, unlike the previous walking study.   
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Quantitatively, subjects exhibited less variability in the perpendicular direction 

(SD(δP) < 1.0) and greater variability in the tangent direction (SD(δT) > 1.0) (Fig. 12A). 

There were no differences in variability across conditions for δP (p = 0.110). In the 

perpendicular direction, subjects exhibited a trend for the variance to be slightly more 

aligned with the GEM from the SPD to LEN and TIM and ALL.  However, this trend 

was not quite statistically significant δT (p = 0.066). 

 

 

Figure 4.12. (A) describes the standard deviations along the tangent (red) and 

perpendicular (black) directions of the GEM.  Standard deviations are 

normalized, SD =1. 
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Figure 4.12. (B) illustrates the α value of the GEM directions for each of the experimental 

conditions. The threshold to determine persistence or anti-persistence is 

indicated by the horizontal line at α = 0.5. 

 

The DFA α values (Fig. 4.12.B) in the tangent direction (δT) for the LEN, TIM 

and ALL conditions were significantly different than the SPD condition (p=0.002). In the 

perpendicular direction (δP), there were no significant differences across conditions 

(p=0.167). 
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Directionality Analyses 

 

 
 

Figure 4.13. This figure shows the maximum and minimum value for the α measures for 

all 180 degrees.  

 

Figure 4.13. (B) The Maximum and minimum values of alpha calculated from the 

directionality analysis.   
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Figure 4.13. (C) The Maximum and minimum values of alpha calculated from the 

directionality analysis.   
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Discussion 

 

Determining how humans produce precise and repeatable goal-directed 

movements despite redundancy (Bernstein 1967, Scott 2004) and biological noise (Faisal, 

Selen et al. 2008) remains a dominant question in motor neuroscience research. The main 

objective of this study was to determine how people control stride-to-stride fluctuations 

during running. Variability within common gait parameters has been studied greatly, 

however investigating the fluctuations that occur from one stride to the next is essential to 

understanding how variability is controlled or regulated. This regulation is important 

because variability is often correlated with running injuries. Here, subjects were asked to 

maintain specific variables (Ln, Tn, and Sn) with the intention of learning how subjects 

respond to task goals that may reduce the available redundancy within a system. Here, 
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subjects reacted to and accommodated multiple goals while treadmill running.  More 

specifically, subjects adapted and manipulated their selected gait parameters 

appropriately when they were asked to do so. Furthermore, this study determined that 

individuals have the ability to “prioritize” or show “favoritism” toward specific goals 

while running.  

Subjects exhibited mean stride lengths, stride times, and stride speeds that were 

within in their normal running gait characteristics (Figs.4.7). This was a critical fact as 

the experimental design attempted to mitigate the subjects from having to adopt different 

or abnormal gait patterns. Even though the means of Ln, Tn and Sn were within a SD of 

the “control” condition (the SPD condition), subjects displayed increased variability in 

the standard deviation measures. Increased variability was exhibited across the conditions 

where subjects were asked to control a specific variable. Initially, this was an unexpected 

finding. To further examine subject’s variability, the percent root mean square error 

(%RMSE) analysis was completed. The %RMSE measured the variance from the task 

goal itself (Ln*, Tn*, Sn*).  The results indicated that subjects tried to minimize error in 

each parameter.  However, subjects prioritized the speed goal and placed less importance 

on the additional goals (Ln and Tn). This “favoritism” may have occurred due to the 

associated risk of errors relative to the speed goal.  If subjects continuously violated the 

speed goal over many strides, a real physical penalty existed: i.e., the subject could fall 

off either the front or the back of the moving treadmill belt. During running, this level of 

perceived risk may increase, and therefore drive the subjects to more tightly regulate the 

Sn parameter, which they did. The other two goals (LEN and TIM) had no real bodily 
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penalty if an error was made and subjects allowed more variability within these two 

parameters. Upon the recognition of prioritization or favoritism of the stride speed goal, 

we felt it was appropriate to use only the speed goal in our initial goal equivalent 

manifold analyses using the speed GEM.  

The GEM analyses indicated that the subjects were, in fact, trying to achieve the 

task goals.  However, they were not consistently “successful,” leading to increased 

variability in the standard deviation measures. The subjects were more tightly regulating 

the “goal” measures, as indicated by the α values for the dependent measures. Again, 

each additional task goal the subject experienced was coupled with the stride speed goal 

from running on a motorized treadmill.  

Subjects tightly regulated (i.e., over-corrected) Ln more than Tn during the LEN, 

TIM and ALL conditions (Fig. 4.9).  However, in the presence of the metronome, Ln 

became less persistent as well. On one hand, these different results for length markers and 

metronome conditions could be due to the nature of the task: LEN may be harder than 

TIM, regardless of the mode of feedback. On the other hand, it could be due to the mode 

of feedback itself, visual stimulus vs auditory stimulus. These results are supported by the 

walking data from Chapter 3, as well as (Terrier 2012, Terrier and Deriaz 2012, Terrier 

and Deriaz 2012).  Additional studies during walking (Decker, Cignetti et al. 2012, 

Terrier and Deriaz 2012) have shown that subjects may ignore the auditory stimulus 

while on the treadmill. This may be true for running tasks as well. This may indicate that 

subjects are better at maintaining or minimizing error relative to stride length, more so 

than stride time.  
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Upon comparison to the previous walking study in Chapter 3, walking and 

running exhibited various similarities from the applied analyses. For both types of 

locomotion, subjects exhibited increased variability in Ln, Tn, and Sn measures for the 

LEN, TIM and ALL conditions. The standard deviations of these measures increased 

across conditions, the lowest values occurred during SPD and the larger values in the 

ALL condition. Since this variability was found during the additional task goal conditions 

in both walking and running, this may have been a result of subjects having voluntarily 

maintained their stepping parameters. During both walking (Chapter 3) and running, 

subjects strongly controlled for stride speed during every condition. For the GEM 

variables, subjects also exhibited larger variability in the tangent direction in all 

conditions (>1.0); perpendicular deviations were smaller (<1.0) for running and walking.  

On the other hand, the results show several differences when compared to our 

previous walking study (Chapter 3).  As expected, with a faster speed during running, 

subjects exhibited longer stride lengths, shorter stride times and faster stride speeds. The 

%RMSE values for running were lower in all 3 parameters, Ln, Tn, and Sn. As this value 

measures how well the subjects performed on each goal, running subjects on average 

performed each of the task goals with slightly less error.  

DFA α results indicated that during walking, subjects exhibited tighter control of 

Ln during the LEN condition, Tn during the time condition, and Ln and Tn during the ALL 

conditions.  However, during running, the subjects exhibited much tighter control in the 

Sn parameter during all four conditions. These differences may be attributed to the level 

of perceived risk. With the treadmill belt moving faster during running, the penalty of 
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errors relative to the speed goal was more apparent to the subjects. In other words, the 

risk of falling off the front or back of the treadmill was greater as the belt speed was 

faster. Although research has shown that many kinematic parameters change in relation 

to speed, the tighter speed control during running was not originally hypothesized, as the 

goals do not change from walking to running, only the speed.  

These results may also indicate that the size of the treadmill itself may affect the 

degree of control exerted by the subject. Several studies have tested these control 

measures and found slightly different results in different labs during walking (Dingwell, 

John et al. 2010, Decker, Cignetti et al. 2012, Terrier 2012, Terrier and Deriaz 2012, 

Terrier and Deriaz 2012).  However, additional studies must be completed to verify the 

effect of treadmill size and design on these parameters. 

Overall subjects controlled for the stride speed parameter, similar to Chapter 3 

results.  However, subjects manipulated Ln and Tn differently than during walking to 

achieve constant stride speed. This may be for many reasons, but we hypothesize that the 

level of perceived risk increases with the speed of locomotion. Future studies are needed 

to confirm this hypothesis. Additionally, research is still needed to validate these 

measures over ground or on a self-paced treadmill to remove the speed coupling with the 

additional task goals.  
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Chapter 5  

Adaptability of Stride-to-Stride Control in Humans at a predicted 

Walk-to-run transition speed. 

 

Introduction 

Walking and running are the two primary forms of human locomotion. Walking is 

characteristically different than running.  The main difference between walking and 

running is that walking has a double support phase during the gait cycle, whereas running 

has a flight phase (Novacheck 1998). Although there are many differences, this a key 

distinction between the two forms of locomotion.  While these two forms of locomotion 

are markedly different, research suggests that both forms of locomotion may utilize a 

shared pattern generating network for locomotor control (Cappellini, Ivanenko et al. 

2006). As walking speed increases, humans shift from a walking gait to a running gait at 

a very specific and very predictable gait transition speed (Diedrich and Warren 1995, De 

Smet, Segers et al. 2009). This speed is often referred to as the walk-to-run transition 

speed. The walk-to-run transition (W-R) normally occurs at 2.1m/s (Diedrich and Warren 

1995).  However, some studies have shown this speed may vary slightly, potentially due 

to differences in individual subject characteristics; height, build, muscle tone 

(Thorstensson and Roberthson 1987, Hreljac 1993).  

A predominant question within the gait transition literature is why do humans 

switch gaits? It has been hypothesized that humans change gaits for a variety of reasons, 

such as metabolic efficiency, mechanical limits, and/or possibly mechanical stress 
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(undesirable loads/forces) (Diedrich and Warren 1995, Raynor, Yi et al. 2002). Studies 

have also looked at the walk-to-run transition compared to the run-to-walk to transition 

and found that these typically can occur at slightly different speeds (Turvey, Holt et al. 

1999, Raynor, Yi et al. 2002). This is referred to as a hysteresis effect: i.e., people 

transition from walking to running at a consistently slightly faster speed when speed is 

gradually increased than they do from running to walking when speed is gradually 

decreased.  

In addition to the hysteresis of the W-R transition, the W-R timing period has also 

been highly studied, (Segers, Aerts et al. 2006, Hreljac, Imamura et al. 2007, Van 

Caekenberghe, De Smet et al. 2010, Van Caekenberghe, Segers et al. 2010, Segers, De 

Smet et al. 2013). Treadmill inclination and speeds are also thought to contribute to gait 

changes as well as the timing of this phase shift (Hreljac, Imamura et al. 2007, Van 

Caekenberghe, Segers et al. 2010). 

Walking and running share symmetries in numerous kinematic and timing 

parameters.  However, when reaching the W-R transition speed, increases in variability 

have often been predicted (Seay, Haddad et al. 2006, Hreljac, Imamura et al. 2007). 

However, the studies investigating variability are inconclusive as to how this variability 

is regulated during running and at the W-R transition.  

To further investigate the variability at the W-R transition, some studies have 

utilized a dynamical systems approach (Schöner, Haken et al. 1986, Li, van den Bogert et 

al. 1999) (Diedrich and Warren Jr 1995, Li 2000). The reported advantage of using this 

approach to study gait is that it provides a method of simplifying a complex 
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multidimensional system (Li, van den Bogert et al. 1999). These authors proposed that 

the walk-to-run transition is similar to a complex system that exhibits bifurcations 

between different stable attractor states. The preferred walking and running speeds act as 

the stable attractors, and the W-R transition is similar to a non-equilibrium phase 

transition (Diedrich and Warren Jr 1995, Aoi, Katayama et al. 2013). This non-

equilibrium phase transition may be the cause of the increased variability often observed 

at the transition speed (Diedrich and Warren 1995). Due to the energy required to move a 

system away from a stable attractor (in this case, preferred walking speed (PWS) or 

preferred running speed (PRS)), experimental energy consumption measures can indicate 

when this gait transition occurs (Diedrich and Warren 1995). Although this approach 

provides potential insight into how and why a gait transition occurs, it does not explain 

how the transition affects the variability of actual gait parameters or the central nervous 

system.  

Another approach that may provide a more generalized explanation of the motor 

plan and coordination of the musculoskeletal system variability is the approach used in 

(Dingwell, John et al. 2010). This approach indicates that some movement variability 

arises from the ubiquitous noise in the nervous system (Cordo, Inglis et al. 1996, 

Osborne, Lisberger et al. 2005, Stein, Gossen et al. 2005, Faisal, Selen et al. 2008).  

However, much of the movement variability we observe arises from redundancy or 

equifinality (Scott 2004, Todorov 2004, Cusumano and Cesari 2006): i.e., there are often 

an infinite number of ways to achieve the exact same task goal.  During walking and 

running, humans need to adapt at every step (not just on average) to respond to 
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perturbations (Dingwell and Cusumano 2000, Dingwell and Marin 2006, Kang and 

Dingwell 2008, Meardon, Hamill et al. 2011).  While the neurophysiological mechanisms 

that enact these responses are well known (Rossignol, Dubuc et al. 2006), the 

fundamental principles governing adaptation from one stride to the next remain mostly 

unknown, especially during the W-R transition. 

Detrended Fluctuation Analysis (DFA) has been used repeatedly to quantify the 

temporal correlation structure of specific gait parameters.  DFA indicates whether stride-

to-stride variations in gait cycle timing or other relevant variables exhibit statistical 

persistence (Peng, Buldyrev et al. 1992, Hausdorff, Peng et al. 1995, Terrier, Turner et al. 

2005). Prior research in our lab demonstrated that the results of these DFA analyses can 

be directly interpreted in terms of the degree of control imposed on each specific gait 

variable (Dingwell and Cusumano 2010, Dingwell, John et al. 2010).  Understanding how 

control is enacted from stride to stride therefore requires quantifying the specific 

temporal sequencing of those stride to stride fluctuations (Dingwell and Cusumano 2010, 

Dingwell, John et al. 2010). The stride-to-stride fluctuations during walking and running 

have been investigated previously (Chapters 3 & 4).  However, whether (and if so how) 

these fluctuation dynamics might change when nearing a predicted/theoretical W-R 

transition has not been explored.  If the W-R transition represents a condition of 

increased system instability (Diedrich and Warren, 1995) then one would predict that this 

might incur substantial changes in stride-to-stride control as well. 

The aim of this study was to determine how stride-to-stride fluctuations are 

controlled when subjects walk or run at their “calculated” W-R transition speed. Subjects 
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were asked to complete trials of PWS and PRS as well as walking and running at their 

predicted transition speed. Using previous analyses (Dingwell, John et al. 2010), we 

determined which of the main kinematic parameters (stride length, stride time, and stride 

speed) the central nervous system was most strongly actively regulating.  

Our investigation of the W-R transition is relevant because W-R transition is a 

point where subjects exhibit some type of “bifurcation” and this bifurcation induces a 

certain level of “instability” into the system (i.e., it reflects a natural state of self-imposed 

instability). Our main objective was to determine how people regulate steady-state 

locomotion (i.e., where no “transition” occurs) in a context that imposes / induces this 

type of internally-generated instability. Another objective was to determine if people 

adopt the same stepping control strategies as they do during “preferred” steady state 

locomotion (walking or running) at their predicted W-R transition speed?  In addition, to 

the previous question, does the instability imposed by having to walk or run at a naturally 

uncomfortable and/or unstable speed (i.e., the transition speed) require significant 

changes in how one regulates stepping movements in a stride-to-stride manner? 
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Methods 

Experimental protocol 

Ten (10) healthy adults between 18 and 35 years of age participated (Table 5.1). 

All subjects were pre-screened to ensure they had no lower leg injuries, surgeries, or 

cardiovascular, respiratory, neurological, musculoskeletal or visual conditions that could 

have affected their gait. This study was approved by the Institutional Review Board at the 

University of Texas and all participants provided written consent prior to participation. 

Subjects had to meet the requirement of being an active recreational runner, and were 

required to have run at least 10-15 miles, 3 times a week within the most recent month. 

 

Table 5.1 Subject Characteristics 

 

 

 

 

 

 

 

 

 

 

 

Subjects walked or ran on a Woodway Pro XL treadmill (Woodway USA, 

Waukesha, WI) with a motorized rubber belt. The treadmill belt dimensions were 2.23m 

Subject Characteristics (n=14) 

Age (yrs) 24.6 ± 2.04 

Sex (female/male) 5/5 

Height (m) 1.75 ± 0.11 

Leg Length (m) 0.968 ± 0.04 

Body Mass (kg) 68.91± 12.05 
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long by 0.685m wide. All subjects were required to wear a safety harness during the 

experiment session (Fig 5.3.).  

Subjects first acclimated to walking and running on the treadmill for at least 5 

minutes at the beginning of the experiment and 2 minutes prior to each new condition. 

The speeds for each condition were determined using the Froude method, with specific 

Froude numbers chosen depending on what type of gait was required for each condition. 

All speeds were non-dimensionally scaled to each subject’s leg length using the Froude 

method,        √Fn      , where Fn is the Froude number, g is gravity and l is leg 

length; measured from the greater trochanter to the floor (Vaughan and O’Malley 2005).  

For the calculated preferred walking condition (PWS), the Froude number was set to 

0.16.  For the predicted transition speed conditions (WTS, RTS) the Froude number was 

set to 0.5.  For calculated preferred running condition (PRS), the Froude number was set 

to 0.84. For a subject with an “average” leg length (~0.93m), these Froude numbers (Fn = 

0.16, 0.5 and 0.84) yielded true speeds of 1.2 m/s, 2.1 m/s, and 2.77 m/s respectively. 

Prior studies have verified these speeds to be appropriate (Diedrich and Warren 1995, 

McAndrew Young and Dingwell 2012, McAndrew Young and Dingwell 2012).  Subjects 

were asked to verify that these speeds were comfortable.   

Subjects were asked to complete two 4-minute walking trials of each of the 

following four experimental conditions:  walking at the theoretically predicted preferred 

speed (PWS), walking at the theoretically predicted transition speed (WTS), running at 

the theoretically predicted transition speed (RTS), and running at the theoretically 

predicted preferred speed (PRS). 
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For all conditions, the treadmill was set to the appropriate calculated speed. For 

the PWS and the WTS condition, subjects were instructed to walk on the treadmill. For 

the RTS and PRS subjects were instructed to run on the treadmill. A waist high mirror 

was also placed in front of the treadmill to give subjects visual feedback of their foot 

placement that did not require them to bend their necks to look directly down at their feet 

during all conditions (Chapters 3& 4). No further instructions were given. 

Experimental conditions were presented in random order to each subject, with 

presentation order balanced across subjects. Trials were 4 minutes long. Subjects were 

given 2 minutes rest in between trials, and allowed as much rest as needed.  

 

Data Collection and Processing 

Whole-body kinematic data were recorded at 120 Hz using a 10-camera Vicon 

MX motion capture system (Oxford Metrics, Inc., Oxford, UK) for the entire duration of 

each trial. Each subject wore a standardized whole-body marker set of 57 markers, (Fig. 

3, (Wilken, Rodriguez et al. 2012). Raw kinematic data were processed using Vicon 

Nexus software.  Additional data analyses were performed using MatLab (MathWorks, 

Inc., Natick, MA).   

Individual strides were determined by finding the local maxima of the distances 

between the pelvis and heel markers in the anterior-posterior direction (Zeni, Richards et 

al. 2008).  These data were used to extract time series of the specified stride parameters: 

stride lengths (Ln), stride times (Tn), and stride speeds (Sn) for each walking trial. For 

consistency across analyses, all trials were truncated at 150 strides each. 



 102 

   

Figure 5.1. (Left) Subject walking on the Woodway treadmill in our laboratory. (Right) 

Computer generated image of the 57 marker set used in this study.  

 

 

Dyanmics of primary gait parameters 

 

Stride length (Ln) was defined as the anterior-posterior distance between right 

heel strike to the next consecutive right heel strike. Stride time (Tn) was the amount of 

time it took to go from heel strike of one foot to then next heel strike by the same foot. 

Stride speed was calculated as Sn = Ln/Tn for each stride in each trial. Means, standard 

deviations, and DFA scaling components (α, see below) of Ln, Tn and Sn were calculated 

across all strides for Ln, Tn and Sn time series from each trial. 
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Figure 5.2. Schematic of the goal equivalent manifold (GEM) for the stride speed goal. 

δT identifies deviations tangent to the GEM. δP identifies deviations 

perpendicular to the GEM. Ln and Tn refer to normalized stride length and 

stride time respectively. 

 

Detrended fluctuation analysis or DFA is one way to determine the correlation 

between consecutive movements (Peng, Buldyrev et al. 1992, Hausdorff, Purdon et al. 

1996, Goldberger, Amaral et al. 2002). DFA can determine the statistical persistence or 

anti-persistence in a time series. DFA is used to compute a scaling exponent called alpha 

(). An  < 0.5 indicates that deviations in one direction are likely to be followed by 

deviations in the opposite direction (anti-persistence). An  > 0.5 indicates that 

deviations are more likely to be followed by deviations in the same direction 

(persistence). Lower values of  indicate more tightly regulated variables (Dingwell and 

Cusumano 2010, Dingwell, John et al. 2010).  
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For each of these traditional gait variables (i.e., Ln, Tn, and Sn), the values of each 

dependent measure (i.e., mean, SD, and scaling component α) (Dingwell and Marin 2006, 

Kang and Dingwell 2006) were computed for each trial and were analyzed using 2-factor 

(Condition x Subject) repeated measures ANOVA, followed by Tukey post-hoc analyses. 

Statistical analyses were performed using SPSS.  Results were considered statistically 

significant if the resulting p-values were p < 0.5. 

 

Speed GEM based Analyses 

Utilizing the procedures developed by Dingwell, John et al. 2010, these [Tn, Ln] 

data were decomposed into new variables, tangent to (δT) and perpendicular to (δP) the 

Constant Speed GEM (Fig. 3.1.A). Prior work has demonstrated that, in the absence of 

any other goals, people choose to maintain constant Sn during both walking (Dingwell, 

John et al. 2010) & Ch. 3) and running (Ch. 4). 

For the GEM-related variables (δT and δP), the values of each dependent measure 

were subjected to a 3-factor (Condition x Direction x Subject) repeated measures 

ANOVA, followed by appropriate post-hoc analyses. Trial-to-trial differences were run 

in a 3-factor (Condition x Direction x Trial) repeated measures ANOVA and no 

significant differences were found. 

 

 

 



 105 

Results 

 

Upon examination of the raw time series, Ln and Tn qualitatively exhibited more 

drift than Sn (Fig. 5.3) of for the WTS (left) and the RTS (right) conditions. 

 

Figure 5.3. Raw time series data for stride length, stride time, and stride speed for the 

WTS (left) and RTS (right) conditions. 

 

Standard Stride Parameters 

As predicted, during the preferred walking speed condition, subjects exhibited the 

shortest stride lengths and longest stride times of any condition. At faster speeds, the 

stride length increased. The Sn mean verifies that subjects were walking/running at the 

same predicted transition speed. Within the walking conditions, from the PWS to the 

WTS conditions, Ln increased (~0.42) and Tn decreased (~0.27). Similarly, within the 

running conditions, the Ln increased (0.4) and Tn increased slightly (0.02). 

 



 106 

 

Figure 5.4. Mean stride length, stride time and stride speed values for all four conditions, 

preferred walking speed (black), walk at the transition speed (blue), running 

at the transition speed (green) and preferred running speed (red). Error bars 

indicate 95% confidence intervals. 

 

 

For all gait parameters (Ln, Tn, and Sn), there were significant differences across all 

conditions (p=0.000). However, the main differences occurred at the predicted W-R 

transition (WTS and RTS). Here, subjects took longer, slower strides during WTS and 

faster, shorter strides during RTS. Subjects used very different magnitudes of the Ln and 

Tn parameters to effectively achieve the same Sn values. The mean values alone indicated 
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that subjects adopted different stride-to-stride control strategies for walking and running 

at the predicted W-R transition speed.  

 

 

Figure 5.5. Standard deviations for stride length, stride time and stride speed values for 

all four conditions, preferred walking speed (black), walk at the transition 

speed (blue), running at the transition speed (green) and preferred running 

speed (red).  

 

During the two walking conditions, subjects exhibited the lowest standard 

deviation values of Ln, and these were significantly different than both running conditions 
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(p= 0.017). At the faster running speeds, the variability within the Tn significantly 

decreased (p=0.00). The Sn variability was less for PWS than WTS yet was greater for 

RTS than PRS, and all conditions were significantly different from each other (p=0.00). 

 

Figure 5.6. α values for stride length, stride time and stride speed values for all four 

conditions, preferred walking speed (black), walk at the transition speed 

(blue), running at the transition speed (green) and preferred running speed 

(red).  
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Speed GEM Specific Parameters 

The α values for stride length varied across conditions (p = 0.00).  However, all α 

values exhibited statistical persistence (α > 0.5). During the running conditions (RTS and 

PRS), subjects exhibited lower Ln α values than in both walking conditions (p=0.000). 

For stride time, there were no significant differences between conditions (p = 0.903) and 

again all α values exhibited statistical persistence.  For stride speed, all conditions were 

tightly controlled (α  < 0.5), with the only significant difference being between the WTS 

and RTS conditions (p = 0.037).  

Figure 5.7.(A): Standard deviations along the tangent (red) and perpendicular (black) 

directions of the GEM.  
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Quantitatively, subjects exhibited less variability in the perpendicular direction 

(SD(δP) < 1.0) and greater variability in the tangent direction (SD(δT) > 1.0) across all 

conditions (p=0.00) (Fig. 5.7.A). In the tangent direction (δT), PWS was significant 

smaller from the PRS (p=0.00) and slightly smaller than WTS (0.053), however this 

difference was not statistically significant. In the perpendicular direction (δP), the PWS 

was significantly larger than the PRS (p=0.00) and slightly larger than WTS (p=0.06). 

The PRS was smaller than RTS (p=0.05). In both directions, while walking and running 

at the predicted W-R transitions subjects exhibited similar standard deviation values. 

 

 

 

Figure 5.7. (B): α values of the GEM directions for each of the experimental conditions. 

The threshold to determine persistence or anti-persistence is indicated by the 

horizontal line at 0.5. 
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Subjects exhibited DFA α values (Fig. 5.7.B) in the tangent direction that were 

strongly statistically persistent (α > 0.5). The PWS condition was significantly higher 

than RTS (p=0.045), while the WTS was significantly higher than the RTS (p=0.011). α 

values in the perpendicular direction (δP) were significantly higher for WTS than RTS 

(p=0.026).  However, there were no other significant differences between conditions.  

 

 

Figure 5.8. (A) Maximum and minimum value for the α measures for all 180 degrees. 
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Figure 5.8. (B) The Maximum and minimum values of alpha calculated from the 

directionality analysis.   

 

Figure 5.8. (C) The Maximum and minimum values of alpha calculated from the 

directionality analysis.   
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The structural orientation of the statistical persistence (α) in the [Tn, Ln] plane 

changed with the type of locomotion (i.e. walking or running). The minimum α value for 

the running conditions were smaller than both the walking conditions.  

Discussion 

Walking and running are thought of as two different tasks that usually occur at 

independent speeds. During this study, subjects were required to walk and run at their 

predicted W-R transition speed, as well as their calculated preferred walking and running 

speeds. Our rationale for investigating the predicted walk-to-run transition dynamics was 

based upon the assumption that these conditions would be more difficult or more 

“destabilizing” for subjects than their preferred walking and running conditions which 

were previously tested in Chapters 3 and 4 of this dissertation.  Our results indicate that 

subjects were able to walk and run at the same predicted W-R transition speed.  However, 

subjects used very different stride-to-stride control strategies, exhibiting very different 

stride lengths and stride times to achieve their predicted transition speed.  

In the previous chapters of this dissertation, we tested “comfortable” walking 

(Chapter 3) and “comfortable” running speeds (Chapter 4). Here, we were interested in 

examining speeds at which walking and running felt “uncomfortable” and where greater 

active control was likely needed. Anecdotally, the majority of subjects commented that 

the predicted walk-to-run trials were uncomfortable and it was hard to maintain either 

walking or running without switching to the other form of locomotion.  

Mean stride parameters (Fig.5.4) demonstrate that faster speeds required 

simultaneous changes in both stride length (Ln) and stride time (Tn). Subjects were able to 
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generate the same predicted transition speed by walking or by running. However, they 

manipulated different gait parameters to do so. Subjects exhibited longer mean Ln and Tn 

parameters during walking than running, reflecting that during walking at the transition 

speed, subjects remained in contact with the ground longer. When subjects changed from 

PWS to the WTS, stride lengths became longer and stride times decreased. 

Mathematically this makes sense: to achieve faster stride speeds, the ratio between Ln and 

Tn has to increase.  Likewise, the opposite effect occurred from PRS to RTS, Ln 

decreased and Tn slightly decreased (~0.02s). The WTS and the RTS conditions provided 

variability measures for very fast walking and very slow running, where the variability 

has been shown to increase from a normal walking or running speed (Jordan and Newell 

2008).  The means of Ln, Tn, and Sn indicated that subjects were using different methods 

to accomplish the same goal, but additional measures were needed to determine 

variability. 

 The variability structure, as measured by the standard deviation, was unique to 

each individual stride parameter (Fig. 5.5). For stride length, subjects were more variable 

during both running conditions compared to the walking conditions. However for the 

stride time parameter, the variability decreased across conditions.  

 The DFA α values provided another more detailed approach to examine 

variability (Fig. 5.7B), independent of magnitude (Cusumano 2013). For the stride length 

parameter during the running conditions, the SD values indicated increased variability 

while the α measures indicated slightly lower α values, yet still statistically persistent 

values.  This might suggest that subjects made more errors at faster running speeds, yet 
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these errors were also corrected more quickly than at the slower walking conditions. α 

values for stride time indicate “loose” control (α > 0.5) of the Tn parameter across all 

conditions. As found in Chapters 3 and 4, stride speed was tightly controlled during all 

conditions (α < 0.5).   

For the GEM related variables, the standard deviation values depended on the 

direction. The deviations in tangent direction were much larger than those in the 

perpendicular direction. This suggests that people actually exploited this equifinality: i.e. 

subjects utilized a wide range of combinations of stride lengths and stride times that 

achieved the same speeds, similar to the results found by (Dingwell, John et al. 2010). 

The DFA α values indicate the subjects corrected all deviations in the perpendicular 

direction and slightly over corrected during the two running conditions.  

Even though subjects walked and ran at the same predicted W-R speed, they did 

not appear to have significantly changed their overall control strategy, or to have adopted 

a completely new strategy. Subjects appeared to have largely maintained the speed 

control paradigm as previously discovered (Dingwell, John et al. 2010, Terrier and 

Deriaz 2012).  Subjects exhibited differences in how they manipulated stride length and 

stride time, but there were no differences in the stride-to-stride control of the speed 

parameter for any conditions.  

Additionally, within the GEM analyses, the standard deviation and α values were 

similar for the WTS and the RTS conditions. And yet, the α (Ln) analyses showed a large 

difference indicating that something was very different in the control between these two 

conditions, however that difference was not captured by the standard GEM analyses 
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alone (either in terms of variance or DFA). This may suggest that these subjects still 

satisfied the speed GEM control they started with, but for the RTS condition in particular, 

they achieved the speed GEM control in a very different manner. 

For example, when examining the means (Fig. 5.4), subjects adopted very 

different mean Tn & Ln for WTS vs. RTS.  Although they were walking/running at the 

same speed (i.e., the same speed GEM), they were, in fact, locomoting at very different 

mean operating points along that GEM. Perhaps the differences in α (Ln) may then 

suggest that these different locations along the GEM were (perhaps for biomechanical 

and/or other reasons) differentially sensitive to errors in Ln and Tn.  This is only 

speculation at this point, as this is not a feature captured by our current GEM analyses.   

The results from this study correspond with the results from chapter 3 and chapter 

4, confirming that subjects use the same speed control strategy for walking and running. 

However, when either walking or running at the predicted W-R transition speed, subjects 

were able to utilize the GEM solution space and operate in very different locations along 

the GEM to achieve the same goal. These subjects were able to largely exploit the 

redundancy within task goal (more so than in (Dingwell, John et al. 2010), and 

effectively operate at “uncomfortable” speeds. Additionally, these results suggest that the 

stride speed control is robust even with additional novel tasks and uncomfortable, 

abnormal speeds of locomotion.  
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Chapter 6 

Conclusions 

 

In this dissertation, we investigated how humans regulate stride-to-stride 

fluctuations during locomotion. More specifically, we examined how humans alter the 

stride-to-stride regulation of their gait when the task goals change (e.g., by maintaining 

stride length and/or time, or by running rather than walking, and at a predicted walk-to-

run transition speed).  

For Aim #1, we determined the adaptability of stride-to-stride fluctuations during 

walking. In chapter 3, the results demonstrated that subjects exploited different 

redundancy relationships in different ways to prioritize a certain task goal, (maintain 

stride speed) over others (maintain stride length or stride time) in each different 

condition. Subjects also exhibited greater variability within stride parameters, even when 

asked to maintain specific variables.  

We originally hypothesized that subjects would select either an intermediate goal 

solution, that was a combination of the two or three task goals, or that subjects would find 

an intersection point, where one solution satisfied all given task goals. However, we 

determined that subjects did not weight the given task goals equally, or find this 

intersection point. Subjects instead prioritized the speed goal over the LEN, TIM and 

ALL goals. Subjects were clearly doing something different than normal walking.  

However, it was not one of our originally hypothesized solutions.  In general, subjects 

made more rapid corrections of the stride-to-stride deviations that were most directly 
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relevant to the different task goals adopted in each walking condition. Thus, the central 

nervous system readily adapts to achieve multiple goals simultaneously.  

For Aim #2, we determined how adaptable people are at regulating stride-to-stride 

fluctuations during running. In Chapter 4, subjects exhibited similar adaptations as seen 

in the walking experiment, but over-corrected to prioritize maintaining stride speed even 

more than subjects did during the walking experiment. During running, subjects 

controlled stride parameters differently than they did during walking (Chapter 3). 

Subjects manipulated stride length and stride time in different ways, allowing more 

variability within the stride length and stride time parameters, to achieve a tightly 

regulated stride speed parameter. We believe subjects tightly regulated the stride speed as 

a result of increased level of perceived risk the subjects may have encountered. As the 

treadmill belt speed increased from walking to running, the penalty for violating the 

stride speed goal becomes increasingly apparent to the subject, and maybe cause the 

subject to focus or “favor” the stride speed goal even more. This purposeful adaptability 

of these stride-to-stride control strategies could be exploited to developing more effective 

rehabilitation protocols.  

Although previous studies have shown that subjects exhibit statistical anti-

persistence in the presence of a metronome during walking (Terrier 2012), our subjects 

only slighted decreased their amount of statistical persistence during the TIM conditions.   

Our results indicate that subjects were most affected by the LEN condition. The visual 

step length markers on the treadmill forced the subjects to maintain and control stride 

length more than any other condition. This finding may indicate that subjects are more 
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responsive to visual task goals than to auditory goals. This may be important for training 

purposes, and potentially for injury rehabilitation. 

For Aim #3, we examined the adaptability of stride-to-stride fluctuations during 

fast walking and slow running speeds. In Chapter 5, we investigated how the previously 

determined control strategy, found in Chapters 3 and 4, changed as speed of locomotion 

became uncomfortable to the subjects. We initially hypothesized that subjects would be 

unable to maintain their “speed” control strategy as previously found in walking and 

running (Chapters 3 and 4). However, our results disproved our original hypothesis. 

Subjects were able to maintain their “speed” control strategy for both gaits and for all 

three speeds, i.e. calculated preferred walking speed, the predicted walk-to-run transition 

speed, and the calculated preferred running speed.   

During their predicted theoretical W-R transition, subjects were able to utilize the 

entire GEM solution space and operate in very different locations along the GEM to 

achieve the same goal. These subjects were able to largely exploit the redundancy within 

task goal (more so than in Dingwell, John et al. 2010), and to effectively operate at 

“uncomfortable” speeds. Additionally, these results suggest that the stride speed control 

is robust even with additional novel tasks and uncomfortable, abnormal speeds of 

locomotion.  

The results from all three of the experiments presented in this dissertation are 

consistent with the minimum intervention strategy (Todorov and Jordan 2002), indicating 

that subjects only strongly regulate the variables that are directly relevant to the specified 

goal (Dingwell, John et al. 2010). Here, we see that subjects perceive the given task goals 
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differently and on average interpret the constant stride speed goal as the most important 

goal. Even with novel task goals, subjects were able to determine the relevant variables 

for the given task and exploit the redundancy found in other related parameters. Our 

results are novel in the fact that we introduced length tasks, running tasks, and predicted 

transition speed tasks. Subjects were able to respond and achieve all task goals given.  

These experiments have shown that relatively simple experimental tasks goals can 

yield greater understanding about control strategies used during treadmill walking and 

running. Prior studies have shown there are many other strategies that are able to satisfy 

the goal of stride speed, Sn, (Dingwell, John et al. 2010) as well as different fluctuation 

dynamics for Sn utilized during overground walking (Terrier, Turner et al. 2005). 

However, our results indicate that the speed control strategy for treadmill locomotion is 

robust even in the face of additional task goals and that the central nervous system readily 

adapts to achieve multiple goals simultaneously during locomotion.  
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Title: Determining how Humans Regulate Variability during Walking and Running – Experiment #1 
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2109 San Jacinto Blvd, Stop D3700 
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Phone:  (512) 471-4017  

E-Mail:  nicolebohnsack@austin.utexas.edu 

 

Introduction: 

The purpose of this form is to provide you information that may affect your decision as to whether or not to 

participate in this research study.  The person performing the research will answer any of your questions.  

Read the information below and ask any questions you might have before deciding whether or not to take 

part. If you decide to be involved in this study, this form will be used to record your consent. 

 

Purpose of this Study: 

You have been asked to participate in a research study about the variability of movements during walking.  

Human walking is naturally variable.  For the elderly and/or other patients who have difficulty walking, this 

variability may indicate that they are more likely to fall.  The purpose of this study is to determine how 

healthy humans regulate variations in their movements as they walk on a treadmill.  We hope the results we 

obtain will help us better understand how the nervous system regulates movements during walking and will 

help us develop more effective interventions and treatments to help with people with walking impairments. 

You have been chosen to participate in this study as part of a group of 20 healthy volunteers between the age 

of 18 and 35. You should have no history of physical or neurological problems that might affect their ability to 

walk on a treadmill. 

 

What will you be asked to do? 

You will be asked to complete the following procedures during a single visit: 

 You will be asked to report to the Nonlinear Biodynamics Laboratory at the University of Texas at Austin, 

located in Bellmont Hall, Room 530.  Wear comfortable shorts and shoes appropriate for extensive walking. 

Bring a sleeveless shirt, preferably a tank top. Gentlemen may be asked to perform shirtless. 

 Before being admitted to the study, you will be screened for your suitability to participate by completing a 

brief Health History Questionnaire.  You will also be asked about your typical weekly exercise habits. 

 If you qualify to participate in the study, we will measure your height and weight, as well as the lengths of 

various individual body segments, including thigh, lower leg, and foot lengths, hip width, etc.  These 

measurements do not hurt or feel uncomfortable. 
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 To become acclimated to the motorized treadmill, you will be asked to walk for at least 15-minutes at a 

range of speeds, including speeds slightly faster and slower than your comfortable walking speed.  We will 

use these trials to determine your own personal “preferred” walking speed. 

 Next, you will be asked to wear a number of small reflective markers attached to various points on your 

body to measure your movements.  These markers will be attached with double-sided tape.   

 You will then be asked to complete a series of 15-30 walking trials.  Each trial will last 6 minutes.  For each 

trial, the treadmill speed will be set to a moderate comfortable speed.   

 During some trials, you will be asked to alter your normal stride to vary the length and/or timing of your 

steps in different ways.  The magnitudes of these variations will be small enough that you can continue 

walking comfortably.   

 You will be allowed at least 2 minutes, or as much time as you need, to rest between trials. 

 You can stop the warm-up or any of the trials at any point and for any reason. 

 Participation will involve a single experimental sessions, lasting approximately 2½ hours in duration. 

 

What are the risks involved in this study? 

The above procedures are not expected to be painful or uncomfortable in a healthy individual.  If you do find 

any of the procedures to be prohibitively uncomfortable, you should immediately tell the investigator and they 

will be discontinued.  None of the devices being used in this study are invasive.   

 As during any moderate exercise, there is a risk of heart attack or stroke.  This risk will be minimized by 

asking you to complete the Health History Questionnaire to ensure that you are physically active and that you 

do not have any illnesses or injuries, or are taking any medications that might indicate that you would be at 

undue risk of experiencing a heart attack or stroke. 

 As during any moderate exercise, there is a risk that you could experience a muscular injury, such as a muscle 

strain.  Also, it is possible that muscle soreness may develop 24 to 48 hours after testing.  To help reduce these 

risks, a warm-up and stretching session will be mandatory prior to performing these tests, and you will be 

allowed as much time as you need to rest between trials to minimize the effects of fatigue.   

 During the walking trials, there is a possible risk of injury from stepping up onto or down off of the treadmill 

that is elevated approximately 12 inches above the floor.  There is also a risk that you could trip or fall while 

walking.  To reduce these risks, you will be asked to wear a safety harness that will catch you in the event of a 

fall while not constricting your movements.   

 Additionally, the treadmill that will be used is equipped with an emergency “STOP” button that the 

investigator conducting the experiment will control.  In the event of any unwanted event, the investigator will 

press this button to stop the treadmill immediately. 

 During the walking trials, there is a risk that you may become overexerted and/or tired.  To reduce this risk, 

you will not be asked to perform any tasks that are beyond the scope of what you might do during your normal 

daily activities or during moderate exercise.  Additionally, you will be allowed to rest as long as you need 

between trials, and you may stop at any time if you feel the need. 

 Some slight discomfort may also be experienced during removal of the reflective markers, similar to 

removing a band-aid.  If you experience skin irritation, this should subside on its own by the following day. 

 There may also be additional risks that are unknown at this time.  If you wish to discuss the information above 

or any other risks you may experience, you may ask questions now or contact the Principal Investigators listed 

on the front page of this form at any time. 

 

What are the possible benefits of this study? 

There are no direct benefits to you by participating in this study.   
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This study is part of a series of experiments we are conducting to investigate how humans control the variability 

in their movements during walking.  We hope these studies will contribute to a better understanding of the 

neural and/or muscular control mechanisms humans use to regulate human locomotion.  

 

Do you have to participate? 

No, your participation is voluntary. You may decide not to participate at all or, if you start the study, you may 

withdraw at any time.  Withdrawal or refusing to participate will not affect your relationship with The 

University of Texas at Austin (University) in anyway. 

If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 

 

What are the alternatives to participating in this research? 

Your participation in this study is entirely voluntary.  You are free to refuse to be in the study, and your 

refusal will not influence current or future relationships with The University of Texas at Austin. 

 

Will there be any compensation? 

You will be compensated for your time in the amount of $25 for completing this experiment.  If you 

anticipate that payments for all research and survey compensation received from UT Austin to collectively 

total $450.00 or more for the calendar year, you will also be asked to provide your social security number. 

 

Disclosure of your social security number (SSN) is requested from you in order for The University of Texas 

at Austin to process compensation for research activities and to pay you if the total compensation from UT 

Austin amounts to $450 or more.  No statute or other authority requires that you disclose your SSN for that 

purpose.   Failure to provide your SSN, however, may result in no payment or compensation for participation 

beyond $449 for that fiscal year.  Further disclosure of your SSN is governed by the Public Information Act 

(Chapter 552 of the Texas Government Code) and other applicable law. 

 

What if you are injured because of the study?   

By participating in this study, there is a small chance of being injured, as discussed above.  If you are injured, 

the University has no program or plan to provide treatment for research-related injury or payment in the event of 

a medical problem.  The University also has no program or plan for continuing medical care and/or 

hospitalization for research-related injuries or for financial compensation.  In the event of a research-related 

injury, please contact the principal investigator.  Eligible University of Texas at Austin students may be treated 

at the usual level of care with the usual cost for services at the Student Health Center, but no payment can be 
provided in the event of a medical problem. 

 

What are my confidentiality or privacy protections when participating in this research study? 

Each subject will be assigned a unique Subject ID code, which will only be identified with their name on the 

Subject Contact Information Form.  The Health History Questionnaire will not contain any personally 

identifying information.  If a potential subject is found to be ineligible to participate because they fail to meet 

inclusion criteria, all of their screening data and any other identifiable information will be destroyed.  These 

two forms and this Informed Consent Form will be stored in a locked file cabinet inside a locked office.  In all 

other cases, electronic data will only be identifiable by your unique Subject ID code.  Only the director of the 

project (Dr. Dingwell) will have access to a master list that will link your identity to your code.  The 

electronic data will be stored on DVD media and also kept in a locked file cabinet in Dr. Dingwell’s office.  

These data will only contain fully de-identified, non-sensitive information and will be maintained indefinitely. 

The records of this study will be stored securely and kept confidential.  Authorized persons from The 

University of Texas at Austin and members of the University of Texas Institutional Review Board, have the 

legal right to review your research records and will protect the confidentiality of those records to the extent 

permitted by law.  Throughout the study, the researchers will notify you of new information that may become 

available and that might affect your decision to remain in the study. 
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If in the unlikely event it becomes necessary for the Institutional Review Board to review your research 

records, then the University of Texas at Austin will protect the confidentiality of those records to the extent 

permitted by law.  Your research records will not be released without your consent unless required by law or a 

court order.  The data resulting from your participation may be made available to other researchers in the 

future for research purposes not detailed within this consent form.  In these cases, the data will contain no 

identifying information that could associate you with it, or with your participation in any study.  If the results 

of this research are published or presented at scientific meetings, your identity will not be disclosed.   

 

Who should you contact if you have questions about the study? 

Prior, during or after your participation, you can contact the researcher Dr. Jonathan Dingwell at 512-232-1782 

or send an email to jdingwell@austin.utexas.edu.  This study has been reviewed and approved by The 

University Institutional Review Board and the study number is 2012-11-0076. 

 

Who should you contact if you have questions concerning your rights as a research participant? 

For questions about your rights or any dissatisfaction with any part of this study, you can contact, anonymously 

if you wish, the Institutional Review Board by phone at (512) 471-8871 or email at orsc@uts.cc.utexas.edu. 

 

Participation: 

If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 

 

Signatures: 

You have been informed about this study’s purpose, procedures, possible benefits and risks, and you have received a 

copy of this form. You have been given the opportunity to ask questions before you sign, and you have been told 

that you can ask other questions at any time. You voluntarily agree to participate in this study.  By signing this form, 

you are not waiving any of your legal rights. 

 ______   I agree to be photographed and/or audio and/or video recorded. 

______   I do not want to be photographed and/or audio and/or video recorded. 

 

 

        

Printed Name of Participant 

 

 

              

Signature of Participant        Date 

 

As a representative of this study, I have explained the purpose, procedures, benefits, and the risks involved in this 

research study. 

 

 

        

Printed Name of Person Obtaining Consent 

 

 

              

Signature of Person Obtaining Consent      Date 
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IRB USE ONLY        Subject ID:  _____________ 

Study Number:  2012-11-0076  
Approval Date:       
Expires:       

 

Informed Consent to Participate in Research 

The University of Texas at Austin 
 

Title: Determining how Humans Regulate Variability during Walking and Running – Experiment #2 

Investigator(s): 

Jonathan B. Dingwell, Ph.D. – Principal Investigator 

Department of Kinesiology & Health Education 

University of Texas at Austin 

Bellmont Hall, Rm. 536 

2109 San Jacinto Blvd, Stop D3700 

Austin, TX 78712-1415 

Phone:  (512) 232-1782 

E-Mail:  jdingwell@austin.utexas.edu 

Nicole Bohnsack, M.S.  

Department of Kinesiology & Health Education  

University of Texas at Austin   

Bellmont Hall, Rm. 530  

2109 San Jacinto Blvd, Stop D3700 

Austin, TX 78712-1415 

Phone:  (512) 471-4017  

E-Mail:  nicolebohnsack@austin.utexas.edu 

 

Introduction: 

The purpose of this form is to provide you information that may affect your decision as to whether or not to 

participate in this research study.  The person performing the research will answer any of your questions.  

Read the information below and ask any questions you might have before deciding whether or not to take 

part. If you decide to be involved in this study, this form will be used to record your consent. 

 

Purpose of this Study: 

You have been asked to participate in a research study about the variability of movements during walking and 

running.  Human walking and running is naturally variable.  There is evidence to suggest that different aspects 

of this variability may be related to the risk of developing running-related injuries.  The purpose of this study 

is to determine how healthy humans regulate variations in their movements as they walk or run on a treadmill.  

We hope the results we obtain will help us better understand how the human nervous system regulates 

movements during walking and running and will help us develop more effective interventions to help with 

people with running related injuries. 

You have been chosen to participate in this study as part of a group of 20 healthy volunteers between the age 

of 18 and 35. You should have no history of physical or neurological problems that might affect your ability to 

run on a treadmill and you must be an active recreational runner. 

 

What will you be asked to do? 

You will be asked to complete the following procedures during a single visit: 

 You will be asked to report to the Nonlinear Biodynamics Laboratory at the University of Texas at Austin, 

located in Bellmont Hall, Room 530.  Wear comfortable shorts and shoes appropriate for moderate distance 

walking and running. Bring a sleeveless shirt, preferably a tank top. Gentlemen may be asked to perform 

shirtless. 

 Before being admitted to the study, you will be screened for your suitability to participate by completing a 

brief Health History Questionnaire.  You will also be asked about your typical weekly running experience. 

 If you qualify to participate in the study, we will measure your height and weight, as well as the lengths of 

various individual body segments, including thigh, lower leg, and foot lengths, hip width, etc.  These 

measurements do not hurt or feel uncomfortable. 
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 To become acclimated to the motorized treadmill, you will be asked to walk and run for at least 15-minutes 

at a range of speeds, including speeds slightly faster and slower than your comfortable walking and running 

speeds.  We will use these trials to determine your own personal “preferred” walking and running speeds. 

 Next, you will be asked to wear a number of small reflective markers attached to various points on your 

body to measure your movements.  These markers will be attached with double-sided tape.   

 You will then be asked to complete a series of 15-30 walking and running trials.  Each trial will last 3-4 

minutes.  For each trial, the treadmill speed will be set to a moderate comfortable speed.   

 During some trials, you may be asked to alter your normal stride to vary the length and/or timing of your 

steps in different ways.  The magnitudes of these variations will be small enough that you can continue 

walking or running comfortably.   

 You will be allowed at least 2 minutes, or as much time as you need, to rest between trials. 

 You can stop the warm-up or any of the trials at any point and for any reason. 

 Participation will involve a single experimental sessions, lasting approximately 2½ hours in duration. 

 

What are the risks involved in this study? 

The above procedures are not expected to be painful or uncomfortable in a healthy individual.  If you do find 

any of the procedures to be prohibitively uncomfortable, you should immediately tell the investigator and they 

will be discontinued.  None of the devices being used in this study are invasive.   

 As during any moderate exercise, there is a risk of heart attack or stroke.  This risk will be minimized by 

asking you to complete the Health History Questionnaire to ensure that you are physically active and that you 

do not have any illnesses or injuries, or are taking any medications that might indicate that you would be at 

undue risk of experiencing a heart attack or stroke. 

 As during any moderate exercise, there is a risk that you could experience a muscular injury, such as a muscle 

strain.  Also, it is possible that muscle soreness may develop 24 to 48 hours after testing.  To help reduce these 

risks, a warm-up and stretching session will be mandatory prior to performing these tests, and you will be 

allowed as much time as you need to rest between trials to minimize the effects of fatigue.   

 During the walking and running trials, there is a possible risk of injury from stepping up onto or down off of 

the treadmill that is elevated approximately 12 inches above the floor.  There is also a risk that you could trip 

or fall while walking and running.  To reduce these risks, you will be asked to wear a safety harness that will 

catch you in the event of a fall while not constricting your movements.   

 Additionally, the treadmill that will be used is equipped with an emergency “STOP” button that the 

investigator conducting the experiment will control.  In the event of any unwanted event, the investigator will 

press this button to stop the treadmill immediately. 

 During the walking and running trials, there is a risk that you may become overexerted and/or tired.  To 

reduce this risk, you will not be asked to perform any tasks that are beyond the scope of what you might do 

during your normal daily activities or during moderate exercise.  Additionally, you will be allowed to rest as 

long as you need between trials, and you may stop at any time if you feel the need. 

 Some slight discomfort may also be experienced during removal of the reflective markers, similar to 

removing a band-aid.  If you experience skin irritation, this should subside on its own by the following day. 

 There may also be additional risks that are unknown at this time.  If you wish to discuss the information above 

or any other risks you may experience, you may ask questions now or contact the Principal Investigators listed 

on the front page of this form at any time. 

 

What are the possible benefits of this study? 

There are no direct benefits to you by participating in this study.   

126



The University of Texas at Austin  Page 3 of 4 
Institutional Review Board – Revision April 2012 

This study is part of a series of experiments we are conducting to investigate how humans control the variability 

in their movements during walking and running.  We hope these studies will contribute to a better understanding 

of the neural and/or muscular control mechanisms humans use to regulate human locomotion.  

 

Do you have to participate? 

No, your participation is voluntary. You may decide not to participate at all or, if you start the study, you may 

withdraw at any time.  Withdrawal or refusing to participate will not affect your relationship with The 

University of Texas at Austin (University) in anyway. 

If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 

 

What are the alternatives to participating in this research? 

Your participation in this study is entirely voluntary.  You are free to refuse to be in the study, and your 

refusal will not influence current or future relationships with The University of Texas at Austin. 

 

Will there be any compensation? 

You will be compensated for your time in the amount of $25 for completing this experiment.  If you 

anticipate that payments for all research and survey compensation received from UT Austin to collectively 

total $450.00 or more for the calendar year, you will also be asked to provide your social security number. 

 

Disclosure of your social security number (SSN) is requested from you in order for The University of Texas 

at Austin to process compensation for research activities and to pay you if the total compensation from UT 

Austin amounts to $450 or more.  No statute or other authority requires that you disclose your SSN for that 

purpose.   Failure to provide your SSN, however, may result in no payment or compensation for participation 

beyond $449 for that fiscal year.  Further disclosure of your SSN is governed by the Public Information Act 

(Chapter 552 of the Texas Government Code) and other applicable law. 

 

What if you are injured because of the study?   

By participating in this study, there is a small chance of being injured, as discussed above.  If you are injured, 

the University has no program or plan to provide treatment for research-related injury or payment in the event of 

a medical problem.  The University also has no program or plan for continuing medical care and/or 

hospitalization for research-related injuries or for financial compensation.  In the event of a research-related 

injury, please contact the principal investigator.  Eligible University of Texas at Austin students may be treated 

at the usual level of care with the usual cost for services at the Student Health Center, but no payment can be 

provided in the event of a medical problem. 

 

What are my confidentiality or privacy protections when participating in this research study? 

Each subject will be assigned a unique Subject ID code, which will only be identified with their name on the 

Subject Contact Information Form.  The Health History Questionnaire will not contain any personally 

identifying information.  If a potential subject is found to be ineligible to participate because they fail to meet 

inclusion criteria, all of their screening data and any other identifiable information will be destroyed.  These 

two forms and this Informed Consent Form will be stored in a locked file cabinet inside a locked office.  In all 

other cases, electronic data will only be identifiable by your unique Subject ID code.  Only the director of the 

project (Dr. Dingwell) will have access to a master list that will link your identity to your code.  The 

electronic data will be stored on DVD media and also kept in a locked file cabinet in Dr. Dingwell’s office.  

These data will only contain fully de-identified, non-sensitive information and will be maintained indefinitely. 

The records of this study will be stored securely and kept confidential.  Authorized persons from The 

University of Texas at Austin and members of the University of Texas Institutional Review Board, have the 

legal right to review your research records and will protect the confidentiality of those records to the extent 

permitted by law.  Throughout the study, the researchers will notify you of new information that may become 

available and that might affect your decision to remain in the study. 
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If in the unlikely event it becomes necessary for the Institutional Review Board to review your research 

records, then the University of Texas at Austin will protect the confidentiality of those records to the extent 

permitted by law.  Your research records will not be released without your consent unless required by law or a 

court order.  The data resulting from your participation may be made available to other researchers in the 

future for research purposes not detailed within this consent form.  In these cases, the data will contain no 

identifying information that could associate you with it, or with your participation in any study.  If the results 

of this research are published or presented at scientific meetings, your identity will not be disclosed.   

 

Who should you contact if you have questions about the study? 

Prior, during or after your participation, you can contact the researcher Dr. Jonathan Dingwell at 512-232-1782 

or send an email to jdingwell@austin.utexas.edu.  This study has been reviewed and approved by The 

University Institutional Review Board and the study number is 2012-11-0076. 

 

Who should you contact if you have questions concerning your rights as a research participant? 

For questions about your rights or any dissatisfaction with any part of this study, you can contact, anonymously 

if you wish, the Institutional Review Board by phone at (512) 471-8871 or email at orsc@uts.cc.utexas.edu. 

 

Participation: 

If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 

 

Signatures: 

You have been informed about this study’s purpose, procedures, possible benefits and risks, and you have received a 

copy of this form. You have been given the opportunity to ask questions before you sign, and you have been told 

that you can ask other questions at any time. You voluntarily agree to participate in this study.  By signing this form, 

you are not waiving any of your legal rights. 

 ______   I agree to be photographed and/or audio and/or video recorded. 

______   I do not want to be photographed and/or audio and/or video recorded. 

 

 

        

Printed Name of Participant 

 

 

              

Signature of Participant        Date 

 

As a representative of this study, I have explained the purpose, procedures, benefits, and the risks involved in this 

research study. 

 

 

        

Printed Name of Person Obtaining Consent 

 

 

              

Signature of Person Obtaining Consent      Date 
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IRB USE ONLY        Subject ID:  _____________ 
Study Number: 

 

2012-11-0076

 

 
Approval Date: 

     

 
Expires: 

     

 
 

Informed Consent to Participate in Research 
The University of Texas at Austin 

 
Title: Determining how Humans Regulate Variability during Walking and Running – Experiment #3 

Investigator(s): 
Jonathan B. Dingwell, Ph.D. – Principle Investigator 
Department of Kinesiology & Health Education 
University of Texas at Austin 
Bellmont Hall, Rm. 536 
2109 San Jacinto Blvd, Stop D3700 
Austin, TX 78712-1415 
Phone:  (512) 232-1782 
E-Mail:  jdingwell@austin.utexas.edu 

Nicole Bohnsack, M.S.  
Department of Kinesiology & Health Education  
University of Texas at Austin   
Bellmont Hall, Rm. 530  
2109 San Jacinto Blvd, Stop D3700 
Austin, TX 78712-1415 
Phone:  (512) 471-4017  
E-Mail:  nicolebohnsack@austin.utexas.edu 

 
Introduction: 

The purpose of this form is to provide you information that may affect your decision as to whether or not to 
participate in this research study.  The person performing the research will answer any of your questions.  
Read the information below and ask any questions you might have before deciding whether or not to take 
part. If you decide to be involved in this study, this form will be used to record your consent. 

 
Purpose of this Study: 

You have been asked to participate in a research study about the variability of movements during walking.  
Human walking is naturally variable.  For the elderly and/or other patients who have difficulty walking, this 
variability may indicate that they are more likely to fall.  The purpose of this study is to determine how 
healthy humans regulate variations in their movements as they walk on a treadmill.  We hope the results we 
obtain will help us better understand how the nervous system regulates movements during walking and will 
help us develop more effective interventions and treatments to help with people with walking impairments. 

Subjects participating in this study will consist of approximately 20 healthy volunteers between the ages of 18 
and 35. These will be subjects who have no history of physical or neurological problems that might affect their 
ability to walk on a treadmill. 
 

What will you be asked to do? 
You will be asked to complete the following procedures during a single visit: 

• You will be asked to report to the Nonlinear Biodynamics Laboratory at the University of Texas at Austin, 
located in Bellmont Hall, Room 530.  Wear comfortable shorts and shoes appropriate for extensive walking. 
Bring a sleeveless shirt, preferably a tank top. Gentlemen may be asked to perform shirtless. 

• Before being admitted to the study, you will be screened for your suitability to participate by completing a 
brief Health History Questionnaire.  You will also be asked about your typical weekly exercise habits. 

• If you qualify to participate in the study, we will measure your height and weight, as well as the lengths of 
various individual body segments, including thigh, lower leg, and foot lengths, hip width, etc.  These 
measurements do not hurt or feel uncomfortable. 
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• To become acclimated to the motorized treadmill, you will be asked to walk for at least 15-minutes at a 
range of speeds, including speeds slightly faster and slower than your comfortable walking speed.  We will 
use these trials to determine your own personal “preferred” walking speed. 

• Next, you will be asked to wear a number of small reflective markers attached to various points on your 
body to measure your movements.  These markers will be attached with double-sided tape.   

• You will then be asked to complete a series of 15-30 walking trials.  Each trial will last 6 minutes.  For each 
trial, the treadmill speed will be set to a moderate comfortable speed.   

• During some trials, you will be asked to alter your normal stride to vary the length and/or timing of your 
steps in different ways.  The magnitudes of these variations will be small enough that you can continue 
walking comfortably.   

• You will be allowed at least 2 minutes, or as much time as you need, to rest between trials. 

• You can stop the warm-up or any of the trials at any point and for any reason. 

• Participation will involve a single experimental sessions, lasting approximately 2½ hours in duration. 
 

What are the risks involved in this study? 
The above procedures are not expected to be painful or uncomfortable in a healthy individual.  If you do find 
any of the procedures to be prohibitively uncomfortable, you should immediately tell the investigator and they 
will be discontinued.  None of the devices being used in this study are invasive.   

• As during any moderate exercise, there is a risk of heart attack or stroke.  This risk will be minimized by 
asking you to complete the Health History Questionnaire to ensure that you are physically active and that you 
do not have any illnesses or injuries, or are taking any medications that might indicate that you would be at 
undue risk of experiencing a heart attack or stroke. 

• As during any moderate exercise, there is a risk that you could experience a muscular injury, such as a muscle 
strain.  Also, it is possible that muscle soreness may develop 24 to 48 hours after testing.  To help reduce these 
risks, a warm-up and stretching session will be mandatory prior to performing these tests, and you will be 
allowed as much time as you need to rest between trials to minimize the effects of fatigue.   

• During the walking trials, there is a possible risk of injury from stepping up onto or down off of the treadmill 
that is elevated approximately 12 inches above the floor.  There is also a risk that you could trip or fall while 
walking.  To reduce these risks, you will be asked to wear a safety harness that will catch you in the event of a 
fall while not constricting your movements.   

• Additionally, the treadmill that will be used is equipped with an emergency “STOP” button that the 
investigator conducting the experiment will control.  In the event of any unwanted event, the investigator will 
press this button to stop the treadmill immediately. 

• During the walking trials, there is a risk that you may become overexerted and/or tired.  To reduce this risk, 
you will not be asked to perform any tasks that are beyond the scope of what you might do during your normal 
daily activities or during moderate exercise.  Additionally, you will be allowed to rest as long as you need 
between trials, and you may stop at any time if you feel the need. 

• Some slight discomfort may also be experienced during removal of the reflective markers, similar to 
removing a band-aid.  If you experience skin irritation, this should subside on its own by the following day. 

• There may also be additional risks that are unknown at this time.  If you wish to discuss the information above 
or any other risks you may experience, you may ask questions now or contact the Principal Investigators listed 
on the front page of this form at any time. 

 
What are the possible benefits of this study? 

There are no direct benefits to you by participating in this study.   
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This study is part of a series of experiments we are conducting to investigate how humans control the variability 
in their movements during walking.  We hope these studies will contribute to a better understanding of the 
neural and/or muscular control mechanisms humans use to regulate human locomotion.  
 

Do you have to participate? 
No, your participation is voluntary. You may decide not to participate at all or, if you start the study, you may 
withdraw at any time.  Withdrawal or refusing to participate will not affect your relationship with The 
University of Texas at Austin (University) in anyway. 

If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 
 

What are the alternatives to participating in this research? 
Your participation in this study is entirely voluntary.  You are free to refuse to be in the study, and your 
refusal will not influence current or future relationships with The University of Texas at Austin. 
 

Will there be any compensation? 
You will be compensated for your time in the amount of $25 for completing this experiment.  If you 
anticipate that payments for all research and survey compensation received from UT Austin to collectively 
total $450.00 or more for the calendar year, you will also be asked to provide your social security number. 

 
Disclosure of your social security number (SSN) is requested from you in order for The University of Texas 
at Austin to process compensation for research activities and to pay you if the total compensation from UT 
Austin amounts to $450 or more.  No statute or other authority requires that you disclose your SSN for that 
purpose.   Failure to provide your SSN, however, may result in no payment or compensation for participation 
beyond $449 for that fiscal year.  Further disclosure of your SSN is governed by the Public Information Act 
(Chapter 552 of the Texas Government Code) and other applicable law. 
 

What if you are injured because of the study?   
By participating in this study, there is a small chance of being injured, as discussed above.  If you are injured, 
the University has no program or plan to provide treatment for research-related injury or payment in the event of 
a medical problem.  The University also has no program or plan for continuing medical care and/or 
hospitalization for research-related injuries or for financial compensation.  In the event of a research-related 
injury, please contact the principal investigator.  Eligible University of Texas at Austin students may be treated 
at the usual level of care with the usual cost for services at the Student Health Center, but no payment can be 
provided in the event of a medical problem. 
 

What are my confidentiality or privacy protections when participating in this research study? 
Each subject will be assigned a unique Subject ID code, which will only be identified with their name on the 
Subject Contact Information Form.  The Health History Questionnaire will not contain any personally 
identifying information.  If a potential subject is found to be ineligible to participate because they fail to meet 
inclusion criteria, all of their screening data and any other identifiable information will be destroyed.  These 
two forms and this Informed Consent Form will be stored in a locked file cabinet inside a locked office.  In all 
other cases, electronic data will only be identifiable by your unique Subject ID code.  Only the director of the 
project (Dr. Dingwell) will have access to a master list that will link your identity to your code.  The 
electronic data will be stored on DVD media and also kept in a locked file cabinet in Dr. Dingwell’s office.  
These data will only contain fully de-identified, non-sensitive information and will be maintained indefinitely. 

The records of this study will be stored securely and kept confidential.  Authorized persons from The 
University of Texas at Austin and members of the University of Texas Institutional Review Board, have the 
legal right to review your research records and will protect the confidentiality of those records to the extent 
permitted by law.  Throughout the study, the researchers will notify you of new information that may become 
available and that might affect your decision to remain in the study. 
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If in the unlikely event it becomes necessary for the Institutional Review Board to review your research 
records, then the University of Texas at Austin will protect the confidentiality of those records to the extent 
permitted by law.  Your research records will not be released without your consent unless required by law or a 
court order.  The data resulting from your participation may be made available to other researchers in the 
future for research purposes not detailed within this consent form.  In these cases, the data will contain no 
identifying information that could associate you with it, or with your participation in any study.  If the results 
of this research are published or presented at scientific meetings, your identity will not be disclosed.   
 

Who should you contact if you have questions about the study? 
Prior, during or after your participation, you can contact the researcher Dr. Jonathan Dingwell at 512-232-1782 
or send an email to jdingwell@austin.utexas.edu.  This study has been reviewed and approved by The 
University Institutional Review Board and the study number is 2012-11-0076. 
 

Who should you contact if you have questions concerning your rights as a research participant? 
For questions about your rights or any dissatisfaction with any part of this study, you can contact, anonymously 
if you wish, the Institutional Review Board by phone at (512) 471-8871 or email at orsc@uts.cc.utexas.edu. 
 

Participation: 
If you agree to participate, sign and return the form to the investigator.  You will receive a copy of this form. 

 
Signatures: 
You have been informed about this study’s purpose, procedures, possible benefits and risks, and you have received a 
copy of this form. You have been given the opportunity to ask questions before you sign, and you have been told 
that you can ask other questions at any time. You voluntarily agree to participate in this study.  By signing this form, 
you are not waiving any of your legal rights. 
 ______   I agree to be photographed and/or audio and/or video recorded. 

______   I do not want to be photographed and/or audio and/or video recorded. 
 
 
        
Printed Name of Participant 
 
 
              
Signature of Participant        Date 
 
As a representative of this study, I have explained the purpose, procedures, benefits, and the risks involved in this 
research study. 
 
 
        
Printed Name of Person Obtaining Consent 
 
 
              
Signature of Person Obtaining Consent      Date 
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HEALTH  HISTORY  QUESTIONNAIRE 

“Determining how Humans Regulate Variability during Walking and Running” 

 

IRB #  2012-11-0076  Subject ID:  _____________ 

 

Date of Birth (mm/dd/yy):       Age:     

 

MALE:     FEMALE:     

 

Height:   ft./in. =    in.  

 

Weight:     lbs.  

 

 

 

1.  Are you taking any medications on a regular basis? Y  /  N 

  

 

 

 

 

2.   Any over- the -counter meds? Y  /  N 

 If yes, explain: 

 

 

 

 

3.  Do you have any disability or impairment that affects you when you walk? Y  /  N 

  

 

 

 

4.  Have you had any broken bones, surgery, or injury to lower extremities? Y  /  N 

 If yes, explain: 

 

 

 

 

5.  Do you have arthritis? Does it cause pain or discomfort when you stand or walk? Y  /  N 
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6.  Have you had any significant medical problems within the last 10 years? Y  /  N 

 If yes, explain: 

 

 

 

 

7. Do you have a history of neurological diseases likely to affect your ability to stand Y  /  N  

 or walk, including CVA (stroke), disc disease, peripheral neuropathy, or lower 

 extremity weakness? 

  

 

 

 

8. Do you have any history of back problems, such as low back pain? Y  /  N 

 If yes, explain. 

 

 

 

 

9.  Do you have any problems with standing balance? Y  /  N 

  

 

 

 

10.  Do you have any drug and/or alcohol dependence? Y  /  N 

  

 

 

 

11.  Do you have any significant visual impairments? Y  /  N 

 Examples: loss of binocular vision or the presence of double vision 

  

 

 

 

12.  Do you have any heart problems or coronary artery disease? Y  /  N 

  

 

 

 

13.  Do you have hypertension? Y  /  N 

  

 

 

14.  Do you have any lung or respiratory problems? Y  /  N 
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15.  Do you smoke? Y  /  N 

    Pattern? 

 

 

 

16.  Do you use alcohol? Y  /  N 

    Pattern? 

 

 

 

17.  Do you use caffeine (cola, coffee, etc.)? Y  /  N 

    Pattern? 

 

 

 

18.  Do you have any allergies that require medication? Y  /  N 

    If yes, explain. 

 

 

 

 

19.  Have you fallen during the past year? Y  /  N 

    If yes, explain how the fall occurred and what injuries (if any) resulted. 

 

 

 

 

 

Please complete Physical Activity Information on the following pages… 
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HEALTH  HISTORY  QUESTIONNAIRE 

“Determining how Humans Regulate Variability during Walking and Running” 

 

IRB #  2012-11-0076  Subject ID:  _____________ 

 

Please fill out the following three sections: Work, Sport, and Leisure  

For each question, please circle the most appropriate answer. 

 

Work Section:  

Question  Response  Points  

What is your main occupation?  low activity  1  

   moderate activity  3  

   high activity  5  

At work I sit  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   always  5  

At work I stand  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   always  5  

At work I walk  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   always  5  
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Work Section Continued:  

Question  Response  Points  

At work I lift heavy loads  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   always  5  

After working I am tired  very often  5  

   often  4  

   sometimes  3  

   seldom  2  

   never  1  

At work I sweat  very often  5  

   often  4  

   sometimes  3  

   seldom  2  

   never  1  

In comparison of others of my own age I think 

my work is physically  

much heavier  5  

   heavier  4  

   as heavy  3  

   lighter  2  

   much lighter  1  
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Sport Section:  

Question  Response  Points  

Do you play sports?  Yes then continue to Sport 

Part I.  

-  

   No then continue on to 

“Leisure Section” 

- 

 

Sport Part I.  

Question  Response  Points  

In comparison with others of my own age I think 

my physical activity during leisure time is  
much more  5  

   More  4  

   the same  3  

   Less  2  

   much less  1  

During leisure time I sweat  very often  5  

   Often  4  

   sometimes  3  

   Seldom  2  

   Never  1  

During leisure time I play sport  Never  1  

   Seldom  2  

   sometimes  3  

   Often  4  

   very often  5  
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Sport Part II.  

Question  Response  Points  

What sport do you play most frequently  low intensity  0.76  

   medium intensity  1.26  

   high intensity  1.76  

   

How many hours do you play a week?  < 1 hour  0.5  

   1-2 hours  1.5  

   2-3 hours  2.5  

   3-4 hours  3.5  

   > 4 hours  4.5  

How many months do you play in a year?  < 1 month  0.04  

   1-3 months  0.17  

   4-6 months  0.42  

   7-9 months  0.67  

   > 9 months  0.92  

   

 
 

Running.  

Question  Response  

Do you run regularly?   Y   /   N  

How many times per week do you typically run?   ___________ 

How many miles long is your typical run?   ___________ 

How many miles do you run per week?  
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Leisure Section: 

Question  Response  Points  

During leisure time I watch television  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   very often  5  

During leisure time I walk  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   very often  5  

During leisure time I cycle  never  1  

   seldom  2  

   sometimes  3  

   often  4  

   very often  5  

How many minutes do you walk and/or cycle per 

day to and from work school and shopping?  

< 5 minutes  1  

   5-15 minutes  2  

   15-30 minutes  3  

   30-45 minutes  4  

   > 45 minutes  5  

 

 

       Final Total Score: __________ 
       (To be completed by researcher) 
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For the Researcher ONLY: This is NOT to be filled out the study participant !  

 

Exclusion Criteria by Question  

 

1.  1- Are you taking any medications on a regular basis?  

 (Exclusions include:  Psychotropics, Antihistamines, Asthma Meds,  

 Aldomet, Clonidine, Anti-Depressants, Anti-Anxiety Meds) 

 

3.  Do you have any disability or impairment that affects you when you walk?  

 (If yes, excludes.) 

 

5.  Do you have arthritis? Does it cause pain or discomfort when you stand or walk?  

 If yes to discomfort, excludes. 

 

7. Do you have a history of neurological diseases likely to affect your ability to stand or walk,  

 including CVA (stroke), disc disease, peripheral neuropathy, or lower extremity weakness? 

 If yes, excludes. 

 

9.  Do you have any problems with standing balance?  

 If yes, excludes. 

 

10.  Do you have any drug and/or alcohol dependence?  

 If yes, excludes. 

 

11.  Do you have any significant visual impairments?  

 Examples: loss of binocular vision or the presence of double vision 

 If yes, excludes. 

 

12.  Do you have any heart problems or coronary artery disease?  

 If yes, excludes. 

 

13.  Do you have hypertension?  

 If yes, excludes. 

 

14.  Do you have any lung or respiratory problems?  

 If yes, excludes. 

 

Researcher Calculations: 

 

 

Height:   ft./in. =    in.  0.0254 =    m 

 

Weight:     lbs.  0.4567 =    kg.  

 

BMI (kg/m
2
):    (BMI > 35 excludes) 
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Appendix 2: Statistical Procedures and Results 
  
Aim 1: 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .306a 55 .006 112.751 .000 
Intercept 190.412 1 190.412 3865066.708 .000 
Cond .003 3 .001 20.733 .000 
Subj .176 13 .014 275.495 .000 
Cond * Subj .124 39 .003 64.682 .000 
Error .003 55 4.926E-005   
Total 192.451 111    
Corrected Total .308 110    

a. R Squared = .991 (Adjusted R Squared = .982) 
 
 
Multiple Comparisons 
Dependent Variable:   MeanSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.006617527558860
* 

.001875879636290 .005 .001647659091630 .011587396026090 

3-TIM 
.014754186473264
* 

.001875879636290 .000 .009784318006034 .019724054940494 

4-ALL 
.006826815746738
* 

.001893169215019 .004 .001811141071863 .011842490421613 

2-LEN 

1-SPD 
-
.006617527558860
* 

.001875879636290 .005 -
.011587396026090 

-
.001647659091630 

3-TIM 
.008136658914504
* 

.001875879636290 .000 .003166790447274 .013106527381734 

4-ALL 
.000209288187978 .001893169215019 1.000 -

.004806386487097 
.005224962862854 

3-TIM 

1-SPD 
-
.014754186473264
* 

.001875879636290 .000 -
.019724054940494 

-
.009784318006034 

2-LEN 
-
.008136658914504
* 

.001875879636290 .000 -
.013106527381734 

-
.003166790447274 

4-ALL 
-
.007927370726626
* 

.001893169215019 .001 -
.012943045401501 

-
.002911696051751 

4-ALL 

1-SPD 
-
.006826815746738
* 

.001893169215019 .004 -
.011842490421613 

-
.001811141071863 

2-LEN 
-
.000209288187978 

.001893169215019 1.000 -
.005224962862854 

.004806386487097 

3-TIM 
.007927370726626
* 

.001893169215019 .001 .002911696051751 .012943045401501 
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Based on observed means. 
 The error term is Mean Square(Error) = 4.93E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .109a 55 .002 54.425 .000 
Intercept 133.454 1 133.454 3656916.337 .000 
Cond .002 3 .001 18.168 .000 
Subj .022 13 .002 46.276 .000 
Cond * Subj .085 39 .002 59.946 .000 
Error .002 55 3.649E-005   
Total 134.707 111    
Corrected Total .111 110    

a. R Squared = .982 (Adjusted R Squared = .964) 
 
 
Multiple Comparisons 
Dependent Variable:   MeanST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.003751746031846 .001614520777069 .105 -

.000525690401026 
.008029182464517 

3-TIM 
.011645873015973
* 

.001614520777069 .000 .007368436583301 .015923309448644 

4-ALL 
.004872361846073
* 

.001629401467463 .021 .000555501202737 .009189222489409 

2-LEN 

1-SPD 
-
.003751746031846 

.001614520777069 .105 -
.008029182464517 

.000525690401026 

3-TIM 
.007894126984227
* 

.001614520777069 .000 .003616690551555 .012171563416899 

4-ALL 
.001120615814328 .001629401467463 .901 -

.003196244829208 
.005437476457664 

3-TIM 

1-SPD 
-
.011645873015973
* 

.001614520777069 .000 -
.015923309448644 

-
.007368436583301 

2-LEN 
-
.007894126984227
* 

.001614520777069 .000 -
.012171563416899 

-
.003616690551555 

4-ALL 
-
.006773511169999
* 

.001629401467463 .001 -
.011090371813335 

-
.002456650526663 

4-ALL 

1-SPD 
-
.004872361846073
* 

.001629401467463 .021 -
.009189222489409 

-
.000555501202737 

2-LEN 
-
.001120615814328 

.001629401467463 .901 -
.005437476457664 

.003196244829208 

3-TIM 
.006773511169999
* 

.001629401467463 .001 .002456650526663 .011090371813335 
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Based on observed means. 
 The error term is Mean Square(Error) = 3.65E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .163a 55 .003 4516.550 .000 
Intercept 157.123 1 157.123 239853627.718 .000 
Cond 1.481E-006 3 4.937E-007 .754 .525 
Subj .162 13 .012 19018.673 .000 
Cond * Subj 3.850E-005 39 9.872E-007 1.507 .080 
Error 3.603E-005 55 6.551E-007   
Total 158.744 111    
Corrected Total .163 110    

a. R Squared = 1.000 (Adjusted R Squared = 1.000) 
 
 
Multiple Comparisons 
Dependent Variable:   MeanSS   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.000013776511678 

.000216313275781 1.000 -
.000586866867322 

.000559313844167 

3-TIM 
.000086955947219 .000216313275781 .978 -

.000486134408626 
.000660046302863 

4-ALL 
-
.000945116416232
* 

.000218306988671 .000 -
.001523488822297 

-
.000366744010166 

2-LEN 

1-SPD 
.000013776511678 .000216313275781 1.000 -

.000559313844167 
.000586866867322 

3-TIM 
.000100732458797 .000216313275781 .966 -

.000472357897048 
.000673822814441 

4-ALL 
-
.000931339904654
* 

.000218306988671 .000 -
.001509712310719 

-
.000352967498588 

3-TIM 

1-SPD 
-
.000086955947219 

.000216313275781 .978 -
.000660046302863 

.000486134408626 

2-LEN 
-
.000100732458797 

.000216313275781 .966 -
.000673822814441 

.000472357897048 

4-ALL 
-
.001032072363351
* 

.000218306988671 .000 -
.001610444769416 

-
.000453699957285 

4-ALL 

1-SPD 
.000945116416232
* 

.000218306988671 .000 .000366744010166 .001523488822297 

2-LEN 
.000931339904654
* 

.000218306988671 .000 .000352967498588 .001509712310719 

3-TIM 
.001032072363351
* 

.000218306988671 .000 .000453699957285 .001610444769416 

Based on observed means. 
 The error term is Mean Square(Error) = 6.55E-007. 
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*. The mean difference is significant at the 0.05 level. 
 
 

Tests of Between-Subjects Effects 

Dependent Variable:   SDSL   

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model .017a 55 .000 10.089 .000 

Intercept .094 1 .094 2993.846 .000 

Cond .007 3 .002 74.229 .000 

Subj .004 13 .000 10.974 .000 

Cond * Subj .006 39 .000 5.106 .000 

Error .002 55 3.139E-005   

Total .112 111    

Corrected Total .019 110    

a. R Squared = .910 (Adjusted R Squared = .820) 
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Multiple Comparisons 
Dependent Variable:   SDSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.007895126134303
* 

.001497465354083 .000 -
.011862441360692 

-
.003927810907914 

3-TIM 
-
.003976255639130
* 

.001497465354083 .049 -
.007943570865519 

-
.000008940412742 

4-ALL 
-
.020832976704761
* 

.001511267169845 .000 -
.024836857821425 

-
.016829095588097 

2-LEN 

1-SPD 
.007895126134303
* 

.001497465354083 .000 .003927810907914 .011862441360692 

3-TIM 
.003918870495272 .001497465354083 .054 -

.000048444731316 
.007886185721661 

4-ALL 
-
.012937850570558
* 

.001511267169845 .000 -
.016941731687222 

-
.008933969453894 

3-TIM 

1-SPD 
.003976255639130
* 

.001497465354083 .049 .000008940412742 .007943570865519 

2-LEN 
-
.003918870495272 

.001497465354083 .054 -
.007886185721661 

.000048444731316 

4-ALL 
-
.016856721065730
* 

.001511267169845 .000 -
.020860602182395 

-
.012852839949066 

4-ALL 

1-SPD 
.020832976704761
* 

.001511267169845 .000 .016829095588097 .024836857821425 

2-LEN 
.012937850570558
* 

.001511267169845 .000 .008933969453894 .016941731687222 

3-TIM 
.016856721065730
* 

.001511267169845 .000 .012852839949066 .020860602182395 

Based on observed means. 
 The error term is Mean Square(Error) = 3.14E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .011a 55 .000 8.582 .000 
Intercept .056 1 .056 2511.530 .000 
Cond .007 3 .002 96.917 .000 
Subj .002 13 .000 5.954 .000 
Cond * Subj .003 39 7.108E-005 3.172 .000 
Error .001 55 2.241E-005   
Total .067 111    
Corrected Total .012 110    

a. R Squared = .896 (Adjusted R Squared = .791) 
 
Multiple Comparisons 

146



Dependent Variable:   SDST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.010557332384270
* 

.001265264007663 .000 -
.013909464137605 

-
.007205200630935 

3-TIM 
-
.002165098927129 

.001265264007663 .328 -
.005517230680464 

.001187032826407 

4-ALL 
-
.018975540705289
* 

.001276925673608 .000 -
.022358568335278 

-
.015592513075300 

2-LEN 

1-SPD 
.010557332384270
* 

.001265264007663 .000 .007205200630935 .013909464137605 

3-TIM 
.008392233457241
* 

.001265264007663 .000 .005040101703906 .011744365210577 

4-ALL 
-
.008418208321120
* 

.001276925673608 .000 -
.011801235951109 

-
.005035180691131 

3-TIM 

1-SPD 
.002165098927129 .001265264007663 .328 -

.001187032826407 
.005517230680464 

2-LEN 
-
.008392233457241
* 

.001265264007663 .000 -
.011744365210577 

-
.005040101703906 

4-ALL 
-
.016810441778261
* 

.001276925673608 .000 -
.020193469408250 

-
.013427414148272 

4-ALL 

1-SPD 
.018975540705289
* 

.001276925673608 .000 .015592513075300 .022358568335278 

2-LEN 
.008418208321120
* 

.001276925673608 .000 .005035180691131 .011801235951109 

3-TIM 
.016810441778261
* 

.001276925673608 .000 .013427414148272 .020193469408250 

Based on observed means. 
 The error term is Mean Square(Error) = 2.24E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .013a 55 .000 10.378 .000 
Intercept .083 1 .083 3627.602 .000 
Cond .007 3 .002 104.685 .000 
Subj .003 13 .000 10.539 .000 
Cond * Subj .003 39 8.183E-005 3.560 .000 
Error .001 55 2.299E-005   
Total .097 111    
Corrected Total .014 110    

a. R Squared = .912 (Adjusted R Squared = .824) 
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Multiple Comparisons 
Dependent Variable:   SDSS   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.008033858779004
* 

.001281395541457 .000 -
.011428728669468 

-
.004638988888540 

3-TIM 
-
.000110719002062 

.001281395541457 1.000 -
.003505588892526 

.003284150888602 

4-ALL 
-
.019391710139642
* 

.001293205888276 .000 -
.022817869814968 

-
.015965550464316 

2-LEN 

1-SPD 
.008033858779004
* 

.001281395541457 .000 .004638988888540 .011428728669468 

3-TIM 
.007923139777043
* 

.001281395541457 .000 .004528269886579 .011318009667507 

4-ALL 
-
.011357851360738
* 

.001293205888276 .000 -
.014784011036064 

-
.007931691685411 

3-TIM 

1-SPD 
.000110719002062 .001281395541457 1.000 -

.003284150888602 
.003505588892526 

2-LEN 
-
.007923139777043
* 

.001281395541457 .000 -
.011318009667507 

-
.004528269886579 

4-ALL 
-
.019280991137680
* 

.001293205888276 .000 -
.022707150813006 

-
.015854831462354 

4-ALL 

1-SPD 
.019391710139642
* 

.001293205888276 .000 .015965550464316 .022817869814968 

2-LEN 
.011357851360738
* 

.001293205888276 .000 .007931691685411 .014784011036064 

3-TIM 
.019280991137680
* 

.001293205888276 .000 .015854831462354 .022707150813006 

Based on observed means. 
 The error term is Mean Square(Error) = 2.30E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 4.891a 55 .089 5.917 .000 
Intercept 22.636 1 22.636 1506.155 .000 
Cond 3.128 3 1.043 69.372 .000 
Subj .477 13 .037 2.440 .011 
Cond * Subj 1.236 39 .032 2.110 .005 
Error .827 55 .015   
Total 28.474 111    
Corrected Total 5.718 110    

a. R Squared = .855 (Adjusted R Squared = .711) 
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Multiple Comparisons 
Dependent Variable:   AlphaSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.423907127009192
* 

.032764495631752 .000 .337102392556647 .510711861461738 

3-TIM 
.143215587553765
* 

.032764495631752 .000 .056410853101220 .230020322006311 

4-ALL 
.358890155103515
* 

.033066478933766 .000 .271285360102652 .446494950104377 

2-LEN 

1-SPD 
-
.423907127009192
* 

.032764495631752 .000 -
.510711861461738 

-
.337102392556647 

3-TIM 
-
.280691539455527
* 

.032764495631752 .000 -
.367496273908072 

-
.193886805002981 

4-ALL 
-
.065016971905778 

.033066478933766 .213 -
.152621766906640 

.022587823095285 

3-TIM 

1-SPD 
-
.143215587553765
* 

.032764495631752 .000 -
.230020322006311 

-
.056410853101220 

2-LEN 
.280691539455527
* 

.032764495631752 .000 .193886805002981 .367496273908072 

4-ALL 
.215674567549849
* 

.033066478933766 .000 .128069772548986 .303279362550712 

4-ALL 

1-SPD 
-
.358890155103515
* 

.033066478933766 .000 -
.446494950104377 

-
.271285360102652 

2-LEN 
.065016971905778 .033066478933766 .213 -

.022587823095285 
.152621766906640 

3-TIM 
-
.215674567549849
* 

.033066478933766 .000 -
.303279362550712 

-
.128069772548986 

Based on observed means. 
 The error term is Mean Square(Error) = .015. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 2.783a 55 .051 2.652 .000 
Intercept 35.844 1 35.844 1878.209 .000 
Cond .900 3 .300 15.717 .000 
Subj .594 13 .046 2.395 .012 
Cond * Subj 1.292 39 .033 1.736 .030 
Error 1.050 55 .019   
Total 39.850 111    
Corrected Total 3.833 110    

a. R Squared = .726 (Adjusted R Squared = .452) 
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Multiple Comparisons 
Dependent Variable:   AlphaST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.189830092032720
* 

.036920824474422 .000 .092013772798236 .287646411267203 

3-TIM 
.240216563798934
* 

.036920824474422 .000 .142400244564450 .338032883033417 

4-ALL 
.155952477012117
* 

.037261115764517 .001 .057234605823184 .254670348201049 

2-LEN 

1-SPD 
-
.189830092032720
* 

.036920824474422 .000 -
.287646411267203 

-
.092013772798236 

3-TIM 
.050386471766314 .036920824474422 .527 -

.047429847468370 
.148202791000798 

4-ALL 
-
.033877615020703 

.037261115764517 .800 -
.132595486209635 

.064840256168430 

3-TIM 

1-SPD 
-
.240216563798934
* 

.036920824474422 .000 -
.338032883033417 

-
.142400244564450 

2-LEN 
-
.050386471766314 

.036920824474422 .527 -
.148202791000798 

.047429847468370 

4-ALL 
-
.084264086786917 

.037261115764517 .120 -
.182981957975850 

.014453784402215 

4-ALL 

1-SPD 
-
.155952477012117
* 

.037261115764517 .001 -
.254670348201049 

-
.057234605823184 

2-LEN 
.033877615020703 .037261115764517 .800 -

.064840256168430 
.132595486209635 

3-TIM 
.084264086786917 .037261115764517 .120 -

.014453784402215 
.182981957975850 

Based on observed means. 
 The error term is Mean Square(Error) = .019. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.230a 55 .022 1.905 .009 
Intercept 23.084 1 23.084 1965.446 .000 
Cond .051 3 .017 1.439 .241 
Subj .521 13 .040 3.413 .001 
Cond * Subj .665 39 .017 1.453 .100 
Error .646 55 .012   
Total 25.027 111    
Corrected Total 1.876 110    

a. R Squared = .656 (Adjusted R Squared = .311) 
 
 
Multiple Comparisons 
Dependent Variable:   AlphaSS   
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Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.043780724486332 .028964138015897 .438 -

.032955518835718 
.120516967808183 

3-TIM 
.052853120618230 .028964138015897 .273 -

.023883122703820 
.129589363940080 

4-ALL 
.019942167818219 .029231094239986 .903 -

.057501336937151 
.097385672573390 

2-LEN 

1-SPD 
-
.043780724486332 

.028964138015897 .438 -
.120516967808183 

.032955518835718 

3-TIM 
.009072396131997 .028964138015897 .989 -

.067663847190053 
.085808639453848 

4-ALL 
-
.023838556668213 

.029231094239986 .847 -
.101282061423383 

.053604948087157 

3-TIM 

1-SPD 
-
.052853120618230 

.028964138015897 .273 -
.129589363940080 

.023883122703820 

2-LEN 
-
.009072396131997 

.028964138015897 .989 -
.085808639453848 

.067663847190053 

4-ALL 
-
.032910952800110 

.029231094239986 .675 -
.110354457555281 

.044532551955260 

4-ALL 

1-SPD 
-
.019942167818219 

.029231094239986 .903 -
.097385672573390 

.057501336937151 

2-LEN 
.023838556668213 .029231094239986 .847 -

.053604948087157 
.101282061423383 

3-TIM 
.032910952800110 .029231094239986 .675 -

.044532551955260 
.110354457555281 

Based on observed means. 
 The error term is Mean Square(Error) = .012. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.452a 55 .026 3.862 .000 
Intercept 65.000 1 65.000 9505.953 .000 
Cond .152 3 .051 7.387 .000 
Subj .521 13 .040 5.865 .000 
Cond * Subj .777 39 .020 2.915 .000 
Error .376 55 .007   
Total 67.335 111    
Corrected Total 1.828 110    

a. R Squared = .794 (Adjusted R Squared = .589) 
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Multiple Comparisons 
Dependent Variable:   SDDPn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.070169739666266
* 

.022100191686800 .013 .011618517261332 .128720962071200 

3-TIM 
.097131879120531
* 

.022100191686800 .000 .038580656715597 .155683101525465 

4-ALL 
.081155587977457
* 

.022303884395387 .003 .022064711561743 .140246464393170 

2-LEN 

1-SPD 
-
.070169739666266
* 

.022100191686800 .013 -
.128720962071200 

-
.011618517261332 

3-TIM 
.026962139454365 .022100191686800 .617 -

.031589082950770 
.085513361859299 

4-ALL 
.010985848311290 .022303884395387 .960 -

.048105028104623 
.070076724727004 

3-TIM 

1-SPD 
-
.097131879120531
* 

.022100191686800 .000 -
.155683101525465 

-
.038580656715597 

2-LEN 
-
.026962139454365 

.022100191686800 .617 -
.085513361859299 

.031589082950770 

4-ALL 
-
.015976291143174 

.022303884395387 .890 -
.075067167558888 

.043114585272739 

4-ALL 

1-SPD 
-
.081155587977457
* 

.022303884395387 .003 -
.140246464393170 

-
.022064711561743 

2-LEN 
-
.010985848311290 

.022303884395387 .960 -
.070076724727004 

.048105028104623 

3-TIM 
.015976291143174 .022303884395387 .890 -

.043114585272739 
.075067167558888 

Based on observed means. 
 The error term is Mean Square(Error) = .007. 
*. The mean difference is significant at the 0.05 level. 
 
 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .650a 55 .012 3.873 .000 
Intercept 152.468 1 152.468 49991.939 .000 
Cond .069 3 .023 7.490 .000 
Subj .235 13 .018 5.932 .000 
Cond * Subj .345 39 .009 2.901 .000 
Error .168 55 .003   
Total 154.665 111    
Corrected Total .817 110    

a. R Squared = .795 (Adjusted R Squared = .590) 
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Multiple Comparisons 
Dependent Variable:   SDDTn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.050626734039671
* 

.014759638851706 .006 -
.089730236365262 

-
.011523231714081 

3-TIM 
-
.061603136584200
* 

.014759638851706 .001 -
.100706638909790 

-
.022499634258609 

4-ALL 
-
.058744570428960
* 

.014895675265239 .001 -
.098208481316469 

-
.019280659541451 

2-LEN 

1-SPD 
.050626734039671
* 

.014759638851706 .006 .011523231714081 .089730236365262 

3-TIM 
-
.010976402544628 

.014759638851706 .879 -
.050079904870219 

.028127099781162 

4-ALL 
-
.008117836389389 

.014895675265239 .948 -
.047581747276898 

.031346074498320 

3-TIM 

1-SPD 
.061603136584200
* 

.014759638851706 .001 .022499634258609 .100706638909790 

2-LEN 
.010976402544628 .014759638851706 .879 -

.028127099781162 
.050079904870219 

4-ALL 
.002858566155340 .014895675265239 .997 -

.036605344732369 
.042322477042848 

4-ALL 

1-SPD 
.058744570428960
* 

.014895675265239 .001 .019280659541451 .098208481316469 

2-LEN 
.008117836389389 .014895675265239 .948 -

.031346074498320 
.047581747276898 

3-TIM 
-
.002858566155340 

.014895675265239 .997 -
.042322477042848 

.036605344732369 

Based on observed means. 
 The error term is Mean Square(Error) = .003. 
*. The mean difference is significant at the 0.05 level. 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.215a 55 .022 1.913 .009 
Intercept 23.081 1 23.081 1998.305 .000 
Cond .050 3 .017 1.435 .243 
Subj .519 13 .040 3.454 .001 
Cond * Subj .654 39 .017 1.452 .100 
Error .635 55 .012   
Total 24.997 111    
Corrected Total 1.850 110    

a. R Squared = .657 (Adjusted R Squared = .313) 
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Multiple Comparisons 
Dependent Variable:   AlphaDPn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.043376170844072 .028722883548190 .438 -

.032720904085451 
.119473245773395 

3-TIM 
.052697338077229 .028722883548190 .268 -

.023399736852294 
.128794413006552 

4-ALL 
.020592813981699 .028987616181792 .893 -

.056205631303683 
.097391259266882 

2-LEN 

1-SPD 
-
.043376170844072 

.028722883548190 .438 -
.119473245773395 

.032720904085451 

3-TIM 
.009321167233257 .028722883548190 .988 -

.066775907696266 
.085418242162580 

4-ALL 
-
.022783356862473 

.028987616181792 .861 -
.099581802147656 

.054015088422910 

3-TIM 

1-SPD 
-
.052697338077229 

.028722883548190 .268 -
.128794413006552 

.023399736852294 

2-LEN 
-
.009321167233257 

.028722883548190 .988 -
.085418242162580 

.066775907696266 

4-ALL 
-
.032104524095630 

.028987616181792 .686 -
.108902969380812 

.044693921189753 

4-ALL 

1-SPD 
-
.020592813981699 

.028987616181792 .893 -
.097391259266882 

.056205631303683 

2-LEN 
.022783356862473 .028987616181792 .861 -

.054015088422910 
.099581802147656 

3-TIM 
.032104524095630 .028987616181792 .686 -

.044693921189753 
.108902969380812 

Based on observed means. 
 The error term is Mean Square(Error) = .012. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 3.963a 55 .072 3.880 .000 
Intercept 33.659 1 33.659 1812.598 .000 
Cond 2.024 3 .675 36.340 .000 
Subj .493 13 .038 2.040 .034 
Cond * Subj 1.428 39 .037 1.972 .010 
Error 1.021 55 .019   
Total 38.858 111    
Corrected Total 4.984 110    

a. R Squared = .795 (Adjusted R Squared = .590) 
 
 
Multiple Comparisons 
Dependent Variable:   AlphaDTn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 
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1-SPD 

2-LEN 
.356219984429579
* 

.036419881340779 .000 .259730840689586 .452709128169572 

3-TIM 
.243910230782060
* 

.036419881340779 .000 .147421087042067 .340399374522053 

4-ALL 
.296863097009162
* 

.036755555545865 .000 .199484633605511 .394241560412813 

2-LEN 

1-SPD 
-
.356219984429579
* 

.036419881340779 .000 -
.452709128169572 

-
.259730840689586 

3-TIM 
-
.112309753647619
* 

.036419881340779 .016 -
.208798897387612 

-
.015820609907626 

4-ALL 
-
.059356887420517 

.036755555545865 .379 -
.156735350824168 

.038021575983334 

3-TIM 

1-SPD 
-
.243910230782060
* 

.036419881340779 .000 -
.340399374522053 

-
.147421087042067 

2-LEN 
.112309753647619
* 

.036419881340779 .016 .015820609907626 .208798897387612 

4-ALL 
.052952866227202 .036755555545865 .480 -

.044425597176649 
.150331329630853 

4-ALL 

1-SPD 
-
.296863097009162
* 

.036755555545865 .000 -
.394241560412813 

-
.199484633605511 

2-LEN 
.059356887420517 .036755555545865 .379 -

.038021575983334 
.156735350824168 

3-TIM 
-
.052952866227202 

.036755555545865 .480 -
.150331329630853 

.044425597176649 

Based on observed means. 
 The error term is Mean Square(Error) = .019. 
*. The mean difference is significant at the 0.05 level. 
 
 

 
 
Aim 2: 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .105a 39 .003 13.829 .000 
Intercept 379.263 1 379.263 1939228.358 .000 
Cond .009 3 .003 14.808 .000 
Subj .043 9 .005 24.170 .000 
Cond * Subj .045 27 .002 8.458 .000 
Error .007 36 .000   
Total 396.198 76    
Corrected Total .113 75    

a. R Squared = .937 (Adjusted R Squared = .870) 
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Multiple Comparisons 
Dependent Variable:   MeanSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.021800466251791
* 

.004422378706791 .000 -
.033710936712296 

-
.009889995791286 

3-TIM 
-
.019804495720524
* 

.004422378706791 .000 -
.031714966181029 

-
.007894025260019 

4-ALL 
-
.029279451384075
* 

.004690640958814 .000 -
.041912413028693 

-
.016646489739458 

2-LEN 

1-SPD 
.021800466251791
* 

.004422378706791 .000 .009889995791286 .033710936712296 

3-TIM 
.001995970531366 .004422378706791 .969 -

.009914499929339 
.013906440991871 

4-ALL 
-
.007478985132385 

.004690640958814 .394 -
.020111946777002 

.005153976512433 

3-TIM 

1-SPD 
.019804495720524
* 

.004422378706791 .000 .007894025260019 .031714966181029 

2-LEN 
-
.001995970531366 

.004422378706791 .969 -
.013906440991871 

.009914499929339 

4-ALL 
-
.009474955663651 

.004690640958814 .200 -
.022107917308269 

.003158005981167 

4-ALL 

1-SPD 
.029279451384075
* 

.004690640958814 .000 .016646489739458 .041912413028693 

2-LEN 
.007478985132385 .004690640958814 .394 -

.005153976512433 
.020111946777002 

3-TIM 
.009474955663651 .004690640958814 .200 -

.003158005981167 
.022107917308269 

Based on observed means. 
 The error term is Mean Square(Error) = .000. 
*. The mean difference is significant at the 0.05 level. 
 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .010a 39 .000 13.903 .000 
Intercept 36.567 1 36.567 1938432.138 .000 
Cond .001 3 .000 15.325 .000 
Subj .004 9 .000 24.417 .000 
Cond * Subj .004 27 .000 8.415 .000 
Error .001 36 1.886E-005   
Total 38.200 76    
Corrected Total .011 75    

a. R Squared = .938 (Adjusted R Squared = .870) 
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Multiple Comparisons 
Dependent Variable:   MeanST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.006897277777877
* 

.001373472029909 .000 -
.010596349956978 

-
.003198205598777 

3-TIM 
-
.006227888888989
* 

.001373472029909 .000 -
.009926961068089 

-
.002528816709888 

4-ALL 
-
.009266833333433
* 

.001456787079172 .000 -
.013190291866344 

-
.005343374800523 

2-LEN 

1-SPD 
.006897277777877
* 

.001373472029909 .000 .003198205598777 .010596349956978 

3-TIM 
.000669388888989 .001373472029909 .961 -

.003029683290312 
.004368461068089 

4-ALL 
-
.002369555555656 

.001456787079172 .377 -
.006293014088566 

.001553902977455 

3-TIM 

1-SPD 
.006227888888989
* 

.001373472029909 .000 .002528816709888 .009926961068089 

2-LEN 
-
.000669388888989 

.001373472029909 .961 -
.004368461068089 

.003029683290312 

4-ALL 
-
.003038944444545 

.001456787079172 .177 -
.006962402977455 

.000884514088566 

4-ALL 

1-SPD 
.009266833333433
* 

.001456787079172 .000 .005343374800523 .013190291866344 

2-LEN 
.002369555555656 .001456787079172 .377 -

.001553902977455 
.006293014088566 

3-TIM 
.003038944444545 .001456787079172 .177 -

.000884514088566 
.006962402977455 

Based on observed means. 
 The error term is Mean Square(Error) = 1.886E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   MeanSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 5.696E-005a 39 1.460E-006 1.691 .057 
Intercept 754.349 1 754.349 873328778.966 .000 
Cond 5.890E-006 3 1.963E-006 2.273 .097 
Subj 8.645E-006 9 9.606E-007 1.112 .379 
Cond * Subj 4.116E-005 27 1.524E-006 1.765 .056 
Error 3.110E-005 36 8.638E-007   
Total 788.297 76    
Corrected Total 8.805E-005 75    

a. R Squared = .647 (Adjusted R Squared = .264) 
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Multiple Comparisons 
Dependent Variable:   MeanSS   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.000621696834463 .000293898497191 .168 -

.000169838581439 
.001413232250165 

3-TIM 
.000359109409102 .000293898497191 .617 -

.000432426006800 
.001150644824804 

4-ALL 
.000799116554180 .000311726430511 .067 -

.000040433536008 
.001638666644168 

2-LEN 

1-SPD 
-
.000621696834463 

.000293898497191 .168 -
.001413232250165 

.000169838581439 

3-TIM 
-
.000262587425461 

.000293898497191 .808 -
.001054122841163 

.000528947990441 

4-ALL 
.000177419719817 .000311726430511 .941 -

.000662130370371 
.001016969809805 

3-TIM 

1-SPD 
-
.000359109409102 

.000293898497191 .617 -
.001150644824804 

.000432426006800 

2-LEN 
.000262587425461 .000293898497191 .808 -

.000528947990441 
.001054122841163 

4-ALL 
.000440007145178 .000311726430511 .501 -

.000399542945011 
.001279557235166 

4-ALL 

1-SPD 
-
.000799116554180 

.000311726430511 .067 -
.001638666644168 

.000040433536008 

2-LEN 
-
.000177419719817 

.000311726430511 .941 -
.001016969809805 

.000662130370371 

3-TIM 
-
.000440007145178 

.000311726430511 .501 -
.001279557235166 

.000399542945011 

Based on observed means. 
 The error term is Mean Square(Error) = 8.638E-007. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .014a 39 .000 11.162 .000 
Intercept .108 1 .108 3456.620 .000 
Cond .002 3 .001 26.170 .000 
Subj .006 9 .001 22.504 .000 
Cond * Subj .004 27 .000 4.944 .000 
Error .001 36 3.131E-005   
Total .125 76    
Corrected Total .015 75    

a. R Squared = .924 (Adjusted R Squared = .841) 
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Multiple Comparisons 
Dependent Variable:   SDSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.012141581527803
* 

.001769526450790 .000 -
.016907318231477 

-
.007375844824130 

3-TIM 
-
.006056487804213
* 

.001769526450790 .008 -
.010822224507887 

-
.001290751100540 

4-ALL 
-
.014519579892592
* 

.001876866229257 .000 -
.019574407003368 

-
.009464752781816 

2-LEN 

1-SPD 
.012141581527803
* 

.001769526450790 .000 .007375844824130 .016907318231477 

3-TIM 
.006085093723690
* 

.001769526450790 .008 .001319357020016 .010850830427364 

4-ALL 
-
.002377998364889 

.001876866229257 .589 -
.007432825475665 

.002676828746087 

3-TIM 

1-SPD 
.006056487804213
* 

.001769526450790 .008 .001290751100540 .010822224507887 

2-LEN 
-
.006085093723690
* 

.001769526450790 .008 -
.010850830427364 

-
.001319357020016 

4-ALL 
-
.008463092088479
* 

.001876866229257 .000 -
.013517919199254 

-
.003408264977703 

4-ALL 

1-SPD 
.014519579892592
* 

.001876866229257 .000 .009464752781816 .019574407003368 

2-LEN 
.002377998364889 .001876866229257 .589 -

.002676828746087 
.007432825475665 

3-TIM 
.008463092088479
* 

.001876866229257 .000 .003408264977703 .013517919199254 

Based on observed means. 
 The error term is Mean Square(Error) = 3.131E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .001a 39 2.799E-005 9.019 .000 
Intercept .008 1 .008 2462.041 .000 
Cond .000 3 5.169E-005 16.653 .000 
Subj .000 9 4.467E-005 14.392 .000 
Cond * Subj .000 27 1.779E-005 5.733 .000 
Error .000 36 3.104E-006   
Total .009 76    
Corrected Total .001 75    

a. R Squared = .907 (Adjusted R Squared = .807) 
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Multiple Comparisons 
Dependent Variable:   SDST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.002786606148087
* 

.000557111311697 .000 -
.004287033465619 

-
.001286178830555 

3-TIM 
-
.002234375005590
* 

.000557111311697 .002 -
.003734802323122 

-
.000733947688057 

4-ALL 
-
.004021391674852
* 

.000590905779559 .000 -
.005612835171209 

-
.002429948178495 

2-LEN 

1-SPD 
.002786606148087
* 

.000557111311697 .000 .001286178830555 .004287033465619 

3-TIM 
.000552231142597 .000557111311697 .755 -

.000948196175135 
.002052658460130 

4-ALL 
-
.001234785526865 

.000590905779559 .176 -
.002826229023222 

.000356657969692 

3-TIM 

1-SPD 
.002234375005590
* 

.000557111311697 .002 .000733947688057 .003734802323122 

2-LEN 
-
.000552231142597 

.000557111311697 .755 -
.002052658460130 

.000948196175135 

4-ALL 
-
.001787016669362
* 

.000590905779559 .023 -
.003378460165719 

-
.000195573173005 

4-ALL 

1-SPD 
.004021391674852
* 

.000590905779559 .000 .002429948178495 .005612835171209 

2-LEN 
.001234785526865 .000590905779559 .176 -

.000356657969692 
.002826229023222 

3-TIM 
.001787016669362
* 

.000590905779559 .023 .000195573173005 .003378460165719 

Based on observed means. 
 The error term is Mean Square(Error) = 3.104E-006. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .006a 39 .000 8.966 .000 
Intercept .098 1 .098 6068.328 .000 
Cond .002 3 .001 31.722 .000 
Subj .004 9 .000 24.308 .000 
Cond * Subj .001 27 2.687E-005 1.670 .075 
Error .001 36 1.609E-005   
Total .105 76    
Corrected Total .006 75    

a. R Squared = .907 (Adjusted R Squared = .806) 
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Multiple Comparisons 
Dependent Variable:   SDSS   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.008269249234972
* 

.001268630122443 .000 -
.011685958341005 

-
.004852540128939 

3-TIM 
.000175792253296 .001268630122443 .999 -

.003240916852937 
.003592501359329 

4-ALL 
-
.008060414652354
* 

.001345585443590 .000 -
.011684381919681 

-
.004436447385028 

2-LEN 

1-SPD 
.008269249234972
* 

.001268630122443 .000 .004852540128939 .011685958341005 

3-TIM 
.008445041488168
* 

.001268630122443 .000 .005028332382135 .011861750594201 

4-ALL 
.000208834582718 .001345585443590 .999 -

.003415132684808 
.003832801850045 

3-TIM 

1-SPD 
-
.000175792253296 

.001268630122443 .999 -
.003592501359329 

.003240916852937 

2-LEN 
-
.008445041488168
* 

.001268630122443 .000 -
.011861750594201 

-
.005028332382135 

4-ALL 
-
.008236206905550
* 

.001345585443590 .000 -
.011860174172877 

-
.004612239638224 

4-ALL 

1-SPD 
.008060414652354
* 

.001345585443590 .000 .004436447385028 .011684381919681 

2-LEN 
-
.000208834582718 

.001345585443590 .999 -
.003832801850045 

.003415132684808 

3-TIM 
.008236206905550
* 

.001345585443590 .000 .004612239638224 .011860174172877 

Based on observed means. 
 The error term is Mean Square(Error) = 1.609E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 3.145a 39 .081 4.444 .000 
Intercept 24.122 1 24.122 1329.143 .000 
Cond 1.053 3 .351 19.337 .000 
Subj .744 9 .083 4.557 .000 
Cond * Subj 1.307 27 .048 2.668 .003 
Error .653 36 .018   
Total 28.945 76    
Corrected Total 3.798 75    

a. R Squared = .828 (Adjusted R Squared = .642) 
 
 
Multiple Comparisons 
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Dependent Variable:   AlphaSL   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.305643063904193
* 

.042601145914303 .000 .190908500528352 .420377627280034 

3-TIM 
.068462191920921 .042601145914303 .388 -

.046272371455120 
.183196755296763 

4-ALL 
.181862871437154
* 

.045185338743476 .002 .060168489737852 .303557253136457 

2-LEN 

1-SPD 
-
.305643063904193
* 

.042601145914303 .000 -
.420377627280034 

-
.190908500528352 

3-TIM 
-
.237180871983371
* 

.042601145914303 .000 -
.351915435359212 

-
.122446308607530 

4-ALL 
-
.123780192467139
* 

.045185338743476 .045 -
.245474574166441 

-
.002085810767836 

3-TIM 

1-SPD 
-
.068462191920921 

.042601145914303 .388 -
.183196755296763 

.046272371455120 

2-LEN 
.237180871983371
* 

.042601145914303 .000 .122446308607530 .351915435359212 

4-ALL 
.113400679516333 .045185338743476 .075 -

.008293702183170 
.235095061215635 

4-ALL 

1-SPD 
-
.181862871437154
* 

.045185338743476 .002 -
.303557253136457 

-
.060168489737852 

2-LEN 
.123780192467139
* 

.045185338743476 .045 .002085810767836 .245474574166441 

3-TIM 
-
.113400679516333 

.045185338743476 .075 -
.235095061215635 

.008293702183170 

Based on observed means. 
 The error term is Mean Square(Error) = .018. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 3.186a 39 .082 4.738 .000 
Intercept 32.729 1 32.729 1898.098 .000 
Cond .633 3 .211 12.235 .000 
Subj 1.263 9 .140 8.141 .000 
Cond * Subj 1.225 27 .045 2.631 .004 
Error .621 36 .017   
Total 37.676 76    
Corrected Total 3.807 75    

a. R Squared = .837 (Adjusted R Squared = .660) 
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Multiple Comparisons 
Dependent Variable:   AlphaST   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.249358176950688
* 

.041524603354451 .000 .137522987239792 .361193366661582 

3-TIM 
.138019135260971
* 

.041524603354451 .011 .026183945550076 .249854324971866 

4-ALL 
.177355926293965
* 

.044043492927014 .002 .058736794764179 .295975057823752 

2-LEN 

1-SPD 
-
.249358176950688
* 

.041524603354451 .000 -
.361193366661582 

-
.137522987239792 

3-TIM 
-
.111339041689817 

.041524603354451 .051 -
.223174231400712 

.000496148021278 

4-ALL 
-
.072002250656822 

.044043492927014 .373 -
.190621382186609 

.046616880873165 

3-TIM 

1-SPD 
-
.138019135260971
* 

.041524603354451 .011 -
.249854324971866 

-
.026183945550076 

2-LEN 
.111339041689817 .041524603354451 .051 -

.000496148021278 
.223174231400712 

4-ALL 
.039336791033094 .044043492927014 .808 -

.079282340496892 
.157955922562881 

4-ALL 

1-SPD 
-
.177355926293965
* 

.044043492927014 .002 -
.295975057823752 

-
.058736794764179 

2-LEN 
.072002250656822 .044043492927014 .373 -

.046616880873165 
.190621382186609 

3-TIM 
-
.039336791033094 

.044043492927014 .808 -
.157955922562881 

.079282340496892 

Based on observed means. 
 The error term is Mean Square(Error) = .017. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .483a 39 .012 3.230 .000 
Intercept 10.791 1 10.791 2816.854 .000 
Cond .039 3 .013 3.432 .027 
Subj .244 9 .027 7.085 .000 
Cond * Subj .206 27 .008 1.987 .027 
Error .138 36 .004   
Total 11.859 76    
Corrected Total .621 75    

a. R Squared = .778 (Adjusted R Squared = .537) 
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Multiple Comparisons 
Dependent Variable:   AlphaSS   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.056422006541977
* 

.019572409619129 .032 .003709061299260 .109134951784693 

3-TIM 
.034333811440308 .019572409619129 .312 -

.018379133802609 
.087046756683025 

4-ALL 
.003830381349650 .020759675348764 .998 -

.052080140206710 
.059740902905811 

2-LEN 

1-SPD 
-
.056422006541977
* 

.019572409619129 .032 -
.109134951784693 

-
.003709061299260 

3-TIM 
-
.022088195101768 

.019572409619129 .675 -
.074801140344485 

.030624750141148 

4-ALL 
-
.052591625192426 

.020759675348764 .072 -
.108502146748587 

.003318896363934 

3-TIM 

1-SPD 
-
.034333811440308 

.019572409619129 .312 -
.087046756683025 

.018379133802609 

2-LEN 
.022088195101768 .019572409619129 .675 -

.030624750141148 
.074801140344485 

4-ALL 
-
.030503430090758 

.020759675348764 .466 -
.086413951646918 

.025407091465602 

4-ALL 

1-SPD 
-
.003830381349650 

.020759675348764 .998 -
.059740902905811 

.052080140206710 

2-LEN 
.052591625192426 .020759675348764 .072 -

.003318896363934 
.108502146748587 

3-TIM 
.030503430090758 .020759675348764 .466 -

.025407091465602 
.086413951646918 

Based on observed means. 
 The error term is Mean Square(Error) = .004. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.650a 39 .042 8.030 .000 
Intercept 22.123 1 22.123 4199.458 .000 
Cond .183 3 .061 11.599 .000 
Subj .706 9 .078 14.889 .000 
Cond * Subj .703 27 .026 4.945 .000 
Error .190 36 .005   
Total 24.928 76    
Corrected Total 1.839 75    

a. R Squared = .897 (Adjusted R Squared = .785) 
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Multiple Comparisons 
Dependent Variable:   SDDPn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.087765305547016
* 

.022952207220810 .003 .025949797596044 .149580813497989 

3-TIM 
.115364245655509
* 

.022952207220810 .000 .053548737704536 .177179753606482 

4-ALL 
.137707064138478
* 

.024344492053544 .000 .072141816856543 .203272311420414 

2-LEN 

1-SPD 
-
.087765305547016
* 

.022952207220810 .003 -
.149580813497989 

-
.025949797596044 

3-TIM 
.027598940108593 .022952207220810 .629 -

.034216567842580 
.089414448059565 

4-ALL 
.049941758591562 .024344492053544 .189 -

.015623488690574 
.115507005873498 

3-TIM 

1-SPD 
-
.115364245655509
* 

.022952207220810 .000 -
.177179753606482 

-
.053548737704536 

2-LEN 
-
.027598940108593 

.022952207220810 .629 -
.089414448059565 

.034216567842580 

4-ALL 
.022342818483069 .024344492053544 .796 -

.043222428799066 
.087908065765005 

4-ALL 

1-SPD 
-
.137707064138478
* 

.024344492053544 .000 -
.203272311420414 

-
.072141816856543 

2-LEN 
-
.049941758591562 

.024344492053544 .189 -
.115507005873498 

.015623488690574 

3-TIM 
-
.022342818483069 

.024344492053544 .796 -
.087908065765005 

.043222428799066 

Based on observed means. 
 The error term is Mean Square(Error) = .005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   SDDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .364a 39 .009 9.540 .000 
Intercept 121.292 1 121.292 123996.089 .000 
Cond .044 3 .015 15.128 .000 
Subj .164 9 .018 18.678 .000 
Cond * Subj .142 27 .005 5.375 .000 
Error .035 36 .001   
Total 127.072 76    
Corrected Total .399 75    

a. R Squared = .912 (Adjusted R Squared = .816) 
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Multiple Comparisons 
Dependent Variable:   SDDTn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
-
.046582690757989
* 

.009890364022476 .000 -
.073219687800763 

-
.019945693715214 

3-TIM 
-
.050281980756022
* 

.009890364022476 .000 -
.076918977798797 

-
.023644983713248 

4-ALL 
-
.070249188743883
* 

.010490315203038 .000 -
.098501990602971 

-
.041996386884795 

2-LEN 

1-SPD 
.046582690757989
* 

.009890364022476 .000 .019945693715214 .073219687800763 

3-TIM 
-
.003699289998134 

.009890364022476 .982 -
.030336287040908 

.022937707044841 

4-ALL 
-
.023666497985994 

.010490315203038 .128 -
.051919299845082 

.004586303873293 

3-TIM 

1-SPD 
.050281980756022
* 

.009890364022476 .000 .023644983713248 .076918977798797 

2-LEN 
.003699289998134 .009890364022476 .982 -

.022937707044841 
.030336287040908 

4-ALL 
-
.019967207987961 

.010490315203038 .245 -
.048220009847048 

.008285593871327 

4-ALL 

1-SPD 
.070249188743883
* 

.010490315203038 .000 .041996386884795 .098501990602971 

2-LEN 
.023666497985994 .010490315203038 .128 -

.004586303873293 
.051919299845082 

3-TIM 
.019967207987961 .010490315203038 .245 -

.008285593871327 
.048220009847048 

Based on observed means. 
 The error term is Mean Square(Error) = .001. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .481a 39 .012 3.199 .000 
Intercept 10.767 1 10.767 2793.587 .000 
Cond .038 3 .013 3.325 .030 
Subj .245 9 .027 7.056 .000 
Cond * Subj .204 27 .008 1.962 .030 
Error .139 36 .004   
Total 11.836 76    
Corrected Total .620 75    

a. R Squared = .776 (Adjusted R Squared = .533) 
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Multiple Comparisons 
Dependent Variable:   AlphaDPn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.056210652820854
* 

.019631992930846 .034 .003337236184524 .109084069457184 

3-TIM 
.033636638554907 .019631992930846 .332 -

.019236778081623 
.086510055191237 

4-ALL 
.004762506823167 .020822872994405 .996 -

.051318220349109 
.060843233995243 

2-LEN 

1-SPD 
-
.056210652820854
* 

.019631992930846 .034 -
.109084069457184 

-
.003337236184524 

3-TIM 
-
.022574014266047 

.019631992930846 .662 -
.075447430902377 

.030299402370483 

4-ALL 
-
.051448145997787 

.020822872994405 .082 -
.107528873169863 

.004632581174488 

3-TIM 

1-SPD 
-
.033636638554907 

.019631992930846 .332 -
.086510055191237 

.019236778081623 

2-LEN 
.022574014266047 .019631992930846 .662 -

.030299402370483 
.075447430902377 

4-ALL 
-
.028874131731841 

.020822872994405 .516 -
.084954858903916 

.027206595440435 

4-ALL 

1-SPD 
-
.004762506823167 

.020822872994405 .996 -
.060843233995243 

.051318220349109 

2-LEN 
.051448145997787 .020822872994405 .082 -

.004632581174488 
.107528873169863 

3-TIM 
.028874131731841 .020822872994405 .516 -

.027206595440435 
.084954858903916 

Based on observed means. 
 The error term is Mean Square(Error) = .004. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:   AlphaDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 3.359a 39 .086 4.609 .000 
Intercept 31.312 1 31.312 1675.875 .000 
Cond .978 3 .326 17.441 .000 
Subj 1.085 9 .121 6.450 .000 
Cond * Subj 1.235 27 .046 2.448 .006 
Error .673 36 .019   
Total 36.509 76    
Corrected Total 4.031 75    

a. R Squared = .833 (Adjusted R Squared = .652) 
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Multiple Comparisons 
Dependent Variable:   AlphaDTn   
Tukey HSD   

(I) Cond (J) Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-SPD 

2-LEN 
.308614061488594
* 

.043224750426993 .000 .192199989499844 .425028133477344 

3-TIM 
.143032546025869
* 

.043224750426993 .011 .026618474037119 .259446618014619 

4-ALL 
.215680851055372
* 

.045846771213028 .000 .092205081462196 .339156620648549 

2-LEN 

1-SPD 
-
.308614061488594
* 

.043224750426993 .000 -
.425028133477344 

-
.192199989499844 

3-TIM 
-
.165581515462825
* 

.043224750426993 .003 -
.281995587451575 

-
.049167443474075 

4-ALL 
-
.092933210433322 

.045846771213028 .197 -
.216408980026498 

.030542559160054 

3-TIM 

1-SPD 
-
.143032546025869
* 

.043224750426993 .011 -
.259446618014619 

-
.026618474037119 

2-LEN 
.165581515462825
* 

.043224750426993 .003 .049167443474075 .281995587451575 

4-ALL 
.072648305029604 .045846771213028 .400 -

.050827464563772 
.196124074622780 

4-ALL 

1-SPD 
-
.215680851055372
* 

.045846771213028 .000 -
.339156620648549 

-
.092205081462196 

2-LEN 
.092933210433322 .045846771213028 .197 -

.030542559160054 
.216408980026498 

3-TIM 
-
.072648305029604 

.045846771213028 .400 -
.196124074622780 

.050827464563772 

Based on observed means. 
 The error term is Mean Square(Error) = .019. 
*. The mean difference is significant at the 0.05 level. 
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Aim 3: 
 
Tests of Between-Subjects Effects 
Dependent Variable:      MeanSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 5.882a 39 .151 372.041 .000 
Intercept 212.487 1 212.487 524192.541 .000 
Cond 4.652 3 1.551 3825.588 .000 
Subj .768 9 .085 210.608 .000 
Cond * Subj .210 27 .008 19.213 .000 
Error .015 36 .000   
Total 227.373 76    
Corrected Total 5.896 75    

a. R Squared = .998 (Adjusted R Squared = .995) 
 
 
Multiple Comparisons 
Dependent Variable:      MeanSL   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.460138321* .0065321917 .000 -.477730997 -.442545645 

3-PRS -.687975226* .0065321917 .000 -.705567903 -.670382550 

4-RTS -.268071937* .0065321917 .000 -.285664613 -.250479261 

2-WTS 
1-PWS .460138321* .0065321917 .000 .442545645 .477730997 
3-PRS -.227836905* .0065321917 .000 -.245429582 -.210244229 
4-RTS .192066384* .0065321917 .000 .174473708 .209659060 

3-PRS 
1-PWS .687975226* .0065321917 .000 .670382550 .705567903 
2-WTS .227836905* .0065321917 .000 .210244229 .245429582 
4-RTS .419903289* .0065321917 .000 .402310613 .437495966 

4-RTS 

1-PWS .268071937* .0065321917 .000 .250479261 .285664613 

2-WTS -.192066384* .0065321917 .000 -.209659060 -.174473708 

3-PRS -.419903289* .0065321917 .000 -.437495966 -.402310613 

Based on observed means. 
 The error term is Mean Square(Error) = .000. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:       MeanST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.904a 39 .049 574.622 .000 
Intercept 52.845 1 52.845 622025.122 .000 
Cond 1.707 3 .569 6697.719 .000 
Subj .104 9 .012 136.607 .000 
Cond * Subj .040 27 .001 17.442 .000 
Error .003 36 8.496E-005   
Total 56.961 76    
Corrected Total 1.907 75    

a. R Squared = .998 (Adjusted R Squared = .997) 
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Multiple Comparisons 
Dependent Variable:       MeanST   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS .2717027253* .00299044093 .000 .2636487885 .2797566620 

3-PRS .3810719126* .00299044093 .000 .3730179759 .3891258494 

4-RTS .3610918547* .00299044093 .000 .3530379180 .3691457915 

2-WTS 
1-PWS -.2717027253* .00299044093 .000 -.2797566620 -.2636487885 
3-PRS .1093691874* .00299044093 .000 .1013152506 .1174231241 
4-RTS .0893891295* .00299044093 .000 .0813351927 .0974430662 

3-PRS 
1-PWS -.3810719126* .00299044093 .000 -.3891258494 -.3730179759 
2-WTS -.1093691874* .00299044093 .000 -.1174231241 -.1013152506 
4-RTS -.0199800579* .00299044093 .000 -.0280339946 -.0119261211 

4-RTS 

1-PWS -.3610918547* .00299044093 .000 -.3691457915 -.3530379180 

2-WTS -.0893891295* .00299044093 .000 -.0974430662 -.0813351927 

3-PRS .0199800579* .00299044093 .000 .0119261211 .0280339946 

Based on observed means. 
 The error term is Mean Square(Error) = 8.50E-005. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:       MeanSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 24.761a 39 .635 758967.023 .000 
Intercept 320.641 1 320.641 383295536.839 .000 
Cond 23.606 3 7.869 9406349.643 .000 
Subj .123 9 .014 16370.318 .000 
Cond * Subj .017 27 .001 766.270 .000 
Error 3.012E-005 36 8.365E-007   
Total 359.843 76    
Corrected Total 24.761 75    

a. R Squared = 1.000 (Adjusted R Squared = 1.000) 
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Multiple Comparisons 
Dependent Variable:       MeanSS   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.951207905* .0002967434 .000 -.952007103 -.950408708 

3-PRS -1.594442505* .0002967434 .000 -1.595241703 -1.593643308 

4-RTS -.955496221* .0002967434 .000 -.956295419 -.954697024 

2-WTS 
1-PWS .951207905* .0002967434 .000 .950408708 .952007103 
3-PRS -.643234600* .0002967434 .000 -.644033797 -.642435403 
4-RTS -.004288316* .0002967434 .000 -.005087513 -.003489118 

3-PRS 
1-PWS 1.594442505* .0002967434 .000 1.593643308 1.595241703 
2-WTS .643234600* .0002967434 .000 .642435403 .644033797 
4-RTS .638946284* .0002967434 .000 .638147087 .639745482 

4-RTS 

1-PWS .955496221* .0002967434 .000 .954697024 .956295419 

2-WTS .004288316* .0002967434 .000 .003489118 .005087513 

3-PRS -.638946284* .0002967434 .000 -.639745482 -.638147087 

Based on observed means. 
 The error term is Mean Square(Error) = 8.37E-007. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:    SDSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .018a 39 .000 1.033 .462 
Intercept .067 1 .067 151.194 .000 
Cond .004 3 .001 3.356 .029 
Subj .003 9 .000 .807 .613 
Cond * Subj .010 27 .000 .832 .686 
Error .016 36 .000   
Total .105 76    
Corrected Total .034 75    

a. R Squared = .528 (Adjusted R Squared = .017) 
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Multiple Comparisons 
Dependent Variable:    SDSL   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.00174706732 .006847959605 .994 -.02019017814 .01669604351 

3-PRS -.01963716858* .006847959605 .033 -.03808027940 -.00119405776 

4-RTS -.01080314774 .006847959605 .404 -.02924625856 .00763996309 

2-WTS 
1-PWS .00174706732 .006847959605 .994 -.01669604351 .02019017814 
3-PRS -.01789010126 .006847959605 .060 -.03633321209 .00055300956 
4-RTS -.00905608042 .006847959605 .555 -.02749919124 .00938703040 

3-PRS 
1-PWS .01963716858* .006847959605 .033 .00119405776 .03808027940 
2-WTS .01789010126 .006847959605 .060 -.00055300956 .03633321209 
4-RTS .00883402084 .006847959605 .575 -.00960908998 .02727713166 

4-RTS 

1-PWS .01080314774 .006847959605 .404 -.00763996309 .02924625856 

2-WTS .00905608042 .006847959605 .555 -.00938703040 .02749919124 

3-PRS -.00883402084 .006847959605 .575 -.02727713166 .00960908998 

Based on observed means. 
 The error term is Mean Square(Error) = .000. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:         SDST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .001a 39 1.909E-005 6.427 .000 
Intercept .009 1 .009 2991.666 .000 
Cond .000 3 9.319E-005 31.369 .000 
Subj .000 9 2.780E-005 9.356 .000 
Cond * Subj .000 27 6.997E-006 2.355 .008 
Error .000 36 2.971E-006   
Total .010 76    
Corrected Total .001 75    

a. R Squared = .874 (Adjusted R Squared = .738) 
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Multiple Comparisons 
Dependent Variable:         SDST   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS .002891752184* .0005592200755 .000 .001385645487 .004397858882 

3-PRS .005189213979* .0005592200755 .000 .003683107282 .006695320676 

4-RTS .004388535369* .0005592200755 .000 .002882428671 .005894642066 

2-WTS 
1-PWS -.002891752184* .0005592200755 .000 -.004397858882 -.001385645487 
3-PRS .002297461795* .0005592200755 .001 .000791355097 .003803568492 
4-RTS .001496783184 .0005592200755 .052 -.000009323513 .003002889882 

3-PRS 
1-PWS -.005189213979* .0005592200755 .000 -.006695320676 -.003683107282 
2-WTS -.002297461795* .0005592200755 .001 -.003803568492 -.000791355097 
4-RTS -.000800678611 .0005592200755 .488 -.002306785308 .000705428087 

4-RTS 

1-PWS -.004388535369* .0005592200755 .000 -.005894642066 -.002882428671 

2-WTS -.001496783184 .0005592200755 .052 -.003002889882 .000009323513 

3-PRS .000800678611 .0005592200755 .488 -.000705428087 .002306785308 

Based on observed means. 
 The error term is Mean Square(Error) = 2.97E-006. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:         SDSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .041a 39 .001 1.083 .406 
Intercept .078 1 .078 80.920 .000 
Cond .008 3 .003 2.703 .060 
Subj .008 9 .001 .908 .529 
Cond * Subj .024 27 .001 .942 .559 
Error .035 36 .001   
Total .158 76    
Corrected Total .075 75    

a. R Squared = .540 (Adjusted R Squared = .042) 
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Multiple Comparisons 
Dependent Variable:         SDSS   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.00858428142 .010067908814 .829 -.03569944692 .01853088408 

3-PRS -.02809213405* .010067908814 .040 -.05520729955 -.00097696855 

4-RTS -.01739032295 .010067908814 .325 -.04450548845 .00972484255 

2-WTS 
1-PWS .00858428142 .010067908814 .829 -.01853088408 .03569944692 
3-PRS -.01950785263 .010067908814 .231 -.04662301813 .00760731287 
4-RTS -.00880604153 .010067908814 .818 -.03592120703 .01830912397 

3-PRS 
1-PWS .02809213405* .010067908814 .040 .00097696855 .05520729955 
2-WTS .01950785263 .010067908814 .231 -.00760731287 .04662301813 
4-RTS .01070181111 .010067908814 .714 -.01641335439 .03781697660 

4-RTS 

1-PWS .01739032295 .010067908814 .325 -.00972484255 .04450548845 

2-WTS .00880604153 .010067908814 .818 -.01830912397 .03592120703 

3-PRS -.01070181111 .010067908814 .714 -.03781697660 .01641335439 

Based on observed means. 
 The error term is Mean Square(Error) = .001. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:    AlphaSL   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.693a 39 .043 2.808 .001 
Intercept 34.974 1 34.974 2263.123 .000 
Cond .696 3 .232 15.017 .000 
Subj .343 9 .038 2.469 .026 
Cond * Subj .658 27 .024 1.577 .100 
Error .556 36 .015   
Total 38.758 76    
Corrected Total 2.249 75    

a. R Squared = .753 (Adjusted R Squared = .485) 
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Multiple Comparisons 
Dependent Variable:    AlphaSL   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.0773201358 .04033268404 .239 -.1859452160 .0313049444 

3-PRS .0853950184 .04033268404 .167 -.0232300618 .1940200987 

4-RTS .1779874147* .04033268404 .000 .0693623345 .2866124950 

2-WTS 
1-PWS .0773201358 .04033268404 .239 -.0313049444 .1859452160 
3-PRS .1627151542* .04033268404 .001 .0540900740 .2713402344 
4-RTS .2553075505* .04033268404 .000 .1466824703 .3639326308 

3-PRS 
1-PWS -.0853950184 .04033268404 .167 -.1940200987 .0232300618 
2-WTS -.1627151542* .04033268404 .001 -.2713402344 -.0540900740 
4-RTS .0925923963 .04033268404 .118 -.0160326839 .2012174766 

4-RTS 

1-PWS -.1779874147* .04033268404 .000 -.2866124950 -.0693623345 

2-WTS -.2553075505* .04033268404 .000 -.3639326308 -.1466824703 

3-PRS -.0925923963 .04033268404 .118 -.2012174766 .0160326839 

Based on observed means. 
 The error term is Mean Square(Error) = .015. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:     AlphaST   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .643a 39 .016 1.075 .415 
Intercept 47.581 1 47.581 3099.020 .000 
Cond .008 3 .003 .181 .908 
Subj .252 9 .028 1.821 .098 
Cond * Subj .397 27 .015 .957 .541 
Error .553 36 .015   
Total 51.072 76    
Corrected Total 1.196 75    

a. R Squared = .538 (Adjusted R Squared = .037) 
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Multiple Comparisons 
Dependent Variable:     AlphaST   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.0125159468 .04020147733 .989 -.1207876576 .0957557639 

3-PRS .0054065042 .04020147733 .999 -.1028652065 .1136782150 

4-RTS .0101131411 .04020147733 .994 -.0981585697 .1183848518 

2-WTS 
1-PWS .0125159468 .04020147733 .989 -.0957557639 .1207876576 
3-PRS .0179224511 .04020147733 .970 -.0903492597 .1261941618 
4-RTS .0226290879 .04020147733 .942 -.0856426229 .1309007987 

3-PRS 
1-PWS -.0054065042 .04020147733 .999 -.1136782150 .1028652065 
2-WTS -.0179224511 .04020147733 .970 -.1261941618 .0903492597 
4-RTS .0047066368 .04020147733 .999 -.1035650739 .1129783476 

4-RTS 

1-PWS -.0101131411 .04020147733 .994 -.1183848518 .0981585697 

2-WTS -.0226290879 .04020147733 .942 -.1309007987 .0856426229 

3-PRS -.0047066368 .04020147733 .999 -.1129783476 .1035650739 

Based on observed means. 
 The error term is Mean Square(Error) = .015. 
 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:     AlphaSS   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.097a 39 .028 3.109 .000 
Intercept 12.284 1 12.284 1357.192 .000 
Cond .091 3 .030 3.347 .030 
Subj .623 9 .069 7.650 .000 
Cond * Subj .367 27 .014 1.504 .125 
Error .326 36 .009   
Total 14.598 76    
Corrected Total 1.423 75    

a. R Squared = .771 (Adjusted R Squared = .523) 
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Multiple Comparisons 
Dependent Variable:     AlphaSS   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.0099032947 .03086650954 .988 -.0930338167 .0732272272 

3-PRS .0639217737 .03086650954 .182 -.0192087482 .1470522956 

4-RTS .0772563063 .03086650954 .076 -.0058742156 .1603868282 

2-WTS 
1-PWS .0099032947 .03086650954 .988 -.0732272272 .0930338167 
3-PRS .0738250684 .03086650954 .097 -.0093054535 .1569555903 
4-RTS .0871596011* .03086650954 .037 .0040290791 .1702901230 

3-PRS 
1-PWS -.0639217737 .03086650954 .182 -.1470522956 .0192087482 
2-WTS -.0738250684 .03086650954 .097 -.1569555903 .0093054535 
4-RTS .0133345326 .03086650954 .973 -.0697959893 .0964650546 

4-RTS 

1-PWS -.0772563063 .03086650954 .076 -.1603868282 .0058742156 

2-WTS -.0871596011* .03086650954 .037 -.1702901230 -.0040290791 

3-PRS -.0133345326 .03086650954 .973 -.0964650546 .0697959893 

Based on observed means. 
 The error term is Mean Square(Error) = .009. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:    SDDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .926a 39 .024 2.663 .002 
Intercept 34.381 1 34.381 3853.907 .000 
Cond .185 3 .062 6.900 .001 
Subj .363 9 .040 4.516 .001 
Cond * Subj .341 27 .013 1.415 .164 
Error .321 36 .009   
Total 37.377 76    
Corrected Total 1.248 75    

a. R Squared = .743 (Adjusted R Squared = .464) 
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Multiple Comparisons 
Dependent Variable:    SDDPn   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS .0800722500 .03064427315 .060 -.0024597388 .1626042388 

3-PRS .1506986189* .03064427315 .000 .0681666301 .2332306078 

4-RTS .0685472721 .03064427315 .133 -.0139847167 .1510792610 

2-WTS 
1-PWS -.0800722500 .03064427315 .060 -.1626042388 .0024597388 
3-PRS .0706263689 .03064427315 .116 -.0119056199 .1531583578 
4-RTS -.0115249779 .03064427315 .982 -.0940569667 .0710070110 

3-PRS 
1-PWS -.1506986189* .03064427315 .000 -.2332306078 -.0681666301 
2-WTS -.0706263689 .03064427315 .116 -.1531583578 .0119056199 
4-RTS -.0821513468 .03064427315 .051 -.1646833357 .0003806420 

4-RTS 

1-PWS -.0685472721 .03064427315 .133 -.1510792610 .0139847167 

2-WTS .0115249779 .03064427315 .982 -.0710070110 .0940569667 

3-PRS .0821513468 .03064427315 .051 -.0003806420 .1646833357 

Based on observed means. 
 The error term is Mean Square(Error) = .009. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:    SDDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .313a 39 .008 2.373 .005 
Intercept 109.515 1 109.515 32423.927 .000 
Cond .058 3 .019 5.691 .003 
Subj .119 9 .013 3.904 .002 
Cond * Subj .123 27 .005 1.352 .197 
Error .122 36 .003   
Total 114.623 76    
Corrected Total .434 75    

a. R Squared = .720 (Adjusted R Squared = .417) 
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Multiple Comparisons 
Dependent Variable:    SDDTn   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.050374174 .0188556916 .053 -.101156834 .000408487 

3-PRS -.084161289* .0188556916 .000 -.134943950 -.033378629 

4-RTS -.044026853 .0188556916 .109 -.094809513 .006755808 

2-WTS 
1-PWS .050374174 .0188556916 .053 -.000408487 .101156834 
3-PRS -.033787116 .0188556916 .294 -.084569777 .016995545 
4-RTS .006347321 .0188556916 .987 -.044435340 .057129982 

3-PRS 
1-PWS .084161289* .0188556916 .000 .033378629 .134943950 
2-WTS .033787116 .0188556916 .294 -.016995545 .084569777 
4-RTS .040134437 .0188556916 .164 -.010648224 .090917098 

4-RTS 

1-PWS .044026853 .0188556916 .109 -.006755808 .094809513 

2-WTS -.006347321 .0188556916 .987 -.057129982 .044435340 

3-PRS -.040134437 .0188556916 .164 -.090917098 .010648224 

Based on observed means. 
 The error term is Mean Square(Error) = .003. 
*. The mean difference is significant at the 0.05 level. 
 
 
Tests of Between-Subjects Effects 
Dependent Variable:     AlphaDPn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 1.103a 39 .028 3.093 .000 
Intercept 12.311 1 12.311 1346.461 .000 
Cond .093 3 .031 3.378 .029 
Subj .624 9 .069 7.587 .000 
Cond * Subj .370 27 .014 1.499 .127 
Error .329 36 .009   
Total 14.635 76    
Corrected Total 1.432 75    

a. R Squared = .770 (Adjusted R Squared = .521) 
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Multiple Comparisons 
Dependent Variable:     AlphaDPn   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.0095563368 .03102301451 .990 -.0931083622 .0739956885 

3-PRS .0642289705 .03102301451 .182 -.0193230548 .1477809959 

4-RTS .0784014453 .03102301451 .073 -.0051505801 .1619534706 

2-WTS 
1-PWS .0095563368 .03102301451 .990 -.0739956885 .0931083622 
3-PRS .0737853074 .03102301451 .100 -.0097667180 .1573373327 
4-RTS .0879577821* .03102301451 .036 .0044057567 .1715098075 

3-PRS 
1-PWS -.0642289705 .03102301451 .182 -.1477809959 .0193230548 
2-WTS -.0737853074 .03102301451 .100 -.1573373327 .0097667180 
4-RTS .0141724747 .03102301451 .968 -.0693795506 .0977245001 

4-RTS 

1-PWS -.0784014453 .03102301451 .073 -.1619534706 .0051505801 

2-WTS -.0879577821* .03102301451 .036 -.1715098075 -.0044057567 

3-PRS -.0141724747 .03102301451 .968 -.0977245001 .0693795506 

Based on observed means. 
 The error term is Mean Square(Error) = .009. 
*. The mean difference is significant at the 0.05 level. 
 
Tests of Between-Subjects Effects 
Dependent Variable:    AlphaDTn   

Source Type III Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model .826a 39 .021 1.519 .104 
Intercept 49.478 1 49.478 3550.331 .000 
Cond .217 3 .072 5.195 .004 
Subj .223 9 .025 1.778 .107 
Cond * Subj .409 27 .015 1.087 .402 
Error .502 36 .014   
Total 53.149 76    
Corrected Total 1.328 75    

a. R Squared = .622 (Adjusted R Squared = .213) 
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Multiple Comparisons 
Dependent Variable:    AlphaDTn   
Tukey HSD   

(I)  Cond (J)  Cond Mean Difference (I-
J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1-PWS 

2-WTS -.0213086089 .03830105162 .944 -.1244620416 .0818448237 

3-PRS .0708609800 .03830105162 .267 -.0322924526 .1740144126 

4-RTS .1049718458* .03830105162 .045 .0018184132 .2081252784 

2-WTS 
1-PWS .0213086089 .03830105162 .944 -.0818448237 .1244620416 
3-PRS .0921695889 .03830105162 .094 -.0109838437 .1953230216 
4-RTS .1262804547* .03830105162 .011 .0231270221 .2294338874 

3-PRS 
1-PWS -.0708609800 .03830105162 .267 -.1740144126 .0322924526 
2-WTS -.0921695889 .03830105162 .094 -.1953230216 .0109838437 
4-RTS .0341108658 .03830105162 .810 -.0690425668 .1372642984 

4-RTS 

1-PWS -.1049718458* .03830105162 .045 -.2081252784 -.0018184132 

2-WTS -.1262804547* .03830105162 .011 -.2294338874 -.0231270221 

3-PRS -.0341108658 .03830105162 .810 -.1372642984 .0690425668 

Based on observed means. 
 The error term is Mean Square(Error) = .014. 
*. The mean difference is significant at the 0.05 level. 
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Appendix 3: Matlab Code 
Stepping Parameter Code: 
%=============================================================================% 

%  Stepping_parameters_from_CSV - Calculates and exports stepping 

%  parameters from raw marker coordinates imported from VICON in CSV format 

%  

%  Last Modified   - Nicole Bohnsack       -  010/28/13 

%   

%  input files are in the format of P#### E# X## XXX T# 

%  where-->P###=Project #, E#=Experiment #, X##=Subject/Patient/Control #,  

%  XXX=Condition code, T#=Trial#  

% 

%  exports a .MAT file named S##_ExportFormat with sub folders titled for each 

Condition 

%  and Trial (ALL1 ALL2 SPD1 SPD2, etc) which each contain 6 columns of data: 

%  Step/Stride(Length, Time, Speed, Width, Lateral Speed, Lateral Placement) 

%   

%  Batch processing of data requires all .CSV files to be located in 

%  the same folder as this m_file 

% 

%=============================================================================% 

clear all;                                        %  Clear Memory             % 

close all;                                        %  Close All Windows        % 

clc                                               %  Clear Command Window     % 

tic                                               %  Start Stopwatch          % 

%=============================================================================% 

Conditions = ['SPD'; 'LEN'; 'TIM'; 'ALL']; %['NOP'; 'VIS';'MLP']%list all 

conditions in this vector to automate process  

Num_Cond = 4; %the number of conditions that were tested 

Num_Trials = 2; %the number of trials per condition 

  

ExperimentID='E1'; 

ProjectID='P0042'; 

Sample_Freq = 60; %collection frequency in hertz  

  

  

Sub=[1,2,3,4,5,6,7,8,9,10,11,12,13,14];%(Enter the subject# in order. For 

example, if you wanted to process subject #1, #4, and #10, this vector would be 

(Subj=1,4,10)) 

Tred_Speed=[1.25,1.25,1.2,1.25,1.16,1.16,1.16,1.16,1.16,1.16,1.2,1.25,1.16,1.2]

;% in m/s (You will need to enter the appropriate treadmill speed into this 

vector - order should match the order of subjects listed above)  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%loop structure: OutputFormat, Subject#, Condition#, Trial# 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for Output=1:2%Will output both L and R strides...need to make more efficient  

%The options for output are the following: 1=Right Stride; 2=Left Sride; 

3=Right_Left Step; 4=Left_Right Step; 5=Steps; 6-10 are repeats but using 

treadmill speed for SL and SS calc 

%figure_dummy=1; 

for Subjs=13:13; 

    %Subjs=1:length(Sub); 

    Subj=Sub(Subjs); 

    Tred_Spd=Tred_Speed(Subjs); 

    %- clear old data before moving on to next subject: 

    clear SPD1 SPD2    LEN1 LEN2  

    clear TIM1 TIM2    ALL1 ALL2  

     

    if Subj < 10 
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        SubjectID = ['S0', int2str(Subj)]; 

         

    elseif Subj >= 10 

        SubjectID = ['S', int2str(Subj)]; 

    end 

  

    SubjID=SubjectID; 

     

     for Cond=1:Num_Cond 

        ConditionID=Conditions(Cond,:);        

                 

        subfolder = strcat('Data\',ProjectID, ExperimentID, SubjID,'\'); 

        csv_ftemp = strcat(ProjectID, ExperimentID, SubjID, ConditionID, 'T') 

  

        d = dir([subfolder,csv_ftemp,'*']);  

        ntrials = length(d) 

  

  

        for count=1:ntrials %Num_Trials 

            Trial=count; 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%   

        %Assign marker names to data from .CSV files 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

            

         %.CSV format    

            subfolder = strcat('Data\',ProjectID, ExperimentID, SubjectID); 

            csv_file=strcat(subfolder,'\',ProjectID, ExperimentID, SubjectID, 

ConditionID, 'T', int2str(count), '.csv') 

            [data, text]=xlsread(csv_file); 

             [rows, cols]=size(data); 

  

             %pull in markers of interest - columns are x,y,z coords  

             %VICON coordinate system: direction of progression is in the -y 

direction; +z is up, and left is +x...weird convention, but it works 

             %coodinate system origin is at the center of the treadmill 

             %missing data is filled in with NaNs  

  

               RHEEcoordsDumb= data(5:rows, 15:17); %columns are x,y,z coords 

               LHEEcoordsDumb= data(5:rows, 9:11); 

               RTOEcoordsDumb= data(5:rows, 18:20); 

               LTOEcoordsDumb= data(5:rows, 12:14); 

               LPSIcoordsDumb= data(5:rows, 3:5); 

               RPSIcoordsDumb= data(5:rows, 6:8); 

              

%transform coords into regular V3D convention (x is direction of progression, y 

is up, z is lateral) 

%Adjusted the z-coordinates so that reference point is the left side of the 

treadmill 

%For UT treadmill: coincides with y as direction of progression and +z up 

%this value shifts the coordinate axes to left side of treadmill 

                     RHEEcoords(:,1)=RHEEcoordsDumb(:,2); 

                     RHEEcoords(:,2)=RHEEcoordsDumb(:,3); 

                     RHEEcoords(:,3)=(RHEEcoordsDumb(:,1))+343;  

 

%this puts the coordinates into meters 

 RHEEcoords=RHEEcoords./1000;  

                     LHEEcoords(:,1)=LHEEcoordsDumb(:,2); 

                     LHEEcoords(:,2)=LHEEcoordsDumb(:,3); 

                     LHEEcoords(:,3)=(LHEEcoordsDumb(:,1))+343; 
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                     LHEEcoords=LHEEcoords./1000; 

  

                     RTOEcoords(:,1)=RTOEcoordsDumb(:,2).*-1; 

                     RTOEcoords(:,2)=RTOEcoordsDumb(:,3); 

                     RTOEcoords(:,3)=(RTOEcoordsDumb(:,1))+343; 

                     RTOEcoords=RTOEcoords./1000; 

  

                     LTOEcoords(:,1)=LTOEcoordsDumb(:,2); 

                     LTOEcoords(:,2)=LTOEcoordsDumb(:,3); 

                     LTOEcoords(:,3)=(LTOEcoordsDumb(:,1))+343; 

                     LTOEcoords=LTOEcoords./1000; 

  

                     LPSIcoords(:,1)=LPSIcoordsDumb(:,2); 

                     LPSIcoords(:,2)=LPSIcoordsDumb(:,3); 

                     LPSIcoords(:,3)=(LPSIcoordsDumb(:,1))+343; 

                     LPSIcoords=LPSIcoords./1000; 

  

                     RPSIcoords(:,1)=RPSIcoordsDumb(:,2); 

                     RPSIcoords(:,2)=RPSIcoordsDumb(:,3); 

                     RPSIcoords(:,3)=(RPSIcoordsDumb(:,1))+343;  

                     RPSIcoords=RPSIcoords./1000; 

         

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%   % upsample data to 120Hz via interpolation if the 

collection freq=60Hz  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

               

        if Sample_Freq==60 

     

            freq_multiplier=100;                                %Can upsample 

to whatever you want 2:120Hz; 10:600Hz; 1000:6000Hz 

            time2cut = 2;                                       % seconds / 

time to cut off from the beginning & end of upsampled data 

            Samp_Freq = Sample_Freq*freq_multiplier;            % Up-sampling 

Frequency 

            buffer = Sample_Freq*time2cut;                      % # samples in 

orig data to cut off from beginning & end of data 

            cut=buffer*freq_multiplier;                         % # samples in 

upsampled data to cut off from beginning & end of data 

             

%------------------------------------------------------------------------------

-------- 

       %Samp_Freq=Sample_Freq;      

      %buffer=120*(100/freq_multiplier); %SHOULD WE REMOVE THIS ALL TOGETHER?% 

      %cut=(Samp_Freq*freq_multiplier)/2; % the # frames to cut from beginning 

and end of the data 

%------------------------------------------------------------------------------

-------- 

  

  

             RHEEcoords60=RHEEcoords; clear RHEEcoords 

             Front_Buffer_dumb=RHEEcoords60(1:buffer,:); 

             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=RHEEcoords60((length(RHEEcoords60)-

buffer):length(RHEEcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             RHEEcoords60=[Front_Buffer;RHEEcoords60;End_Buffer]; 

              

             LHEEcoords60=LHEEcoords; clear LHEEcoords Front_Buffer_dumb 

Front_Buffer End_Buffer_dumb End_Buffer 

             Front_Buffer_dumb=LHEEcoords60(1:buffer,:); 
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             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=LHEEcoords60((length(LHEEcoords60)-

buffer):length(LHEEcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             LHEEcoords60=[Front_Buffer;LHEEcoords60;End_Buffer]; 

              

             RTOEcoords60=RTOEcoords; clear RTOEcoords Front_Buffer_dumb 

Front_Buffer End_Buffer_dumb End_Buffer 

             Front_Buffer_dumb=RTOEcoords60(1:buffer,:); 

             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=RTOEcoords60((length(RTOEcoords60)-

buffer):length(RTOEcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             RTOEcoords60=[Front_Buffer;RTOEcoords60;End_Buffer]; 

              

             LTOEcoords60=LTOEcoords; clear LTOEcoords Front_Buffer_dumb 

Front_Buffer End_Buffer_dumb End_Buffer 

             Front_Buffer_dumb=LTOEcoords60(1:buffer,:); 

             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=LTOEcoords60((length(LTOEcoords60)-

buffer):length(LTOEcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             LTOEcoords60=[Front_Buffer;LTOEcoords60;End_Buffer]; 

              

             RPSIcoords60=RPSIcoords; clear RPSIcoords Front_Buffer_dumb 

Front_Buffer End_Buffer_dumb End_Buffer 

             Front_Buffer_dumb=RPSIcoords60(1:buffer,:); 

             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=RPSIcoords60((length(RPSIcoords60)-

buffer):length(RPSIcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             RPSIcoords60=[Front_Buffer;RPSIcoords60;End_Buffer]; 

              

             LPSIcoords60=LPSIcoords; clear LPSIcoords Front_Buffer_dumb 

Front_Buffer End_Buffer_dumb End_Buffer 

             Front_Buffer_dumb=LPSIcoords60(1:buffer,:); 

             Front_Buffer=flipud(Front_Buffer_dumb); 

             End_Buffer_dumb=LPSIcoords60((length(LPSIcoords60)-

buffer):length(LPSIcoords60),:); 

             End_Buffer=flipud(End_Buffer_dumb); 

             LPSIcoords60=[Front_Buffer;LPSIcoords60;End_Buffer]; 

              

             %resample  

            

%RHEEcoordsT(:,1)=resample(RHEEcoords60(:,1),freq_multiplier,1,100); 

             

RHEEcoordsT(:,1)=interp1(1:length(RHEEcoords60(:,1)),RHEEcoords60(:,1), 

1:1/freq_multiplier:length(RHEEcoords60(:,1)),'spline'); 

             RHEEcoords(:,1)=RHEEcoordsT(cut:length(RHEEcoordsT(:,1)-cut),1); 

            

%RHEEcoordsT(:,2)=resample(RHEEcoords60(:,2),freq_multiplier,1,100); 

             

RHEEcoordsT(:,2)=interp1(1:length(RHEEcoords60(:,2)),RHEEcoords60(:,2), 

1:1/freq_multiplier:length(RHEEcoords60(:,2)),'spline'); 

             RHEEcoords(:,2)=RHEEcoordsT(cut:length(RHEEcoordsT(:,2)-cut),2); 

             

%RHEEcoordsT(:,3)=resample(RHEEcoords60(:,3),freq_multiplier,1,100); 

             

RHEEcoordsT(:,3)=interp1(1:length(RHEEcoords60(:,3)),RHEEcoords60(:,3), 

1:1/freq_multiplier:length(RHEEcoords60(:,3)),'spline'); 

             RHEEcoords(:,3)=RHEEcoordsT(cut:length(RHEEcoordsT(:,3)-cut),3); 
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%LHEEcoordsT(:,1)=resample(LHEEcoords60(:,1),freq_multiplier,1,100); 

             

LHEEcoordsT(:,1)=interp1(1:length(LHEEcoords60(:,1)),LHEEcoords60(:,1), 

1:1/freq_multiplier:length(LHEEcoords60(:,1)),'spline'); 

             LHEEcoords(:,1)=LHEEcoordsT(cut:length(LHEEcoordsT(:,1)-cut),1); 

            

%LHEEcoordsT(:,2)=resample(LHEEcoords60(:,2),freq_multiplier,1,100); 

             

LHEEcoordsT(:,2)=interp1(1:length(LHEEcoords60(:,2)),LHEEcoords60(:,2), 

1:1/freq_multiplier:length(LHEEcoords60(:,2)),'spline'); 

             LHEEcoords(:,2)=LHEEcoordsT(cut:length(LHEEcoordsT(:,2)-cut),2); 

             

%LHEEcoordsT(:,3)=resample(LHEEcoords60(:,3),freq_multiplier,1,100); 

             

LHEEcoordsT(:,3)=interp1(1:length(LHEEcoords60(:,3)),LHEEcoords60(:,3), 

1:1/freq_multiplier:length(LHEEcoords60(:,3)),'spline'); 

             LHEEcoords(:,3)=LHEEcoordsT(cut:length(LHEEcoordsT(:,3)-cut),3);            

              

            

%RTOEcoordsT(:,1)=resample(RTOEcoords60(:,1),freq_multiplier,1,100); 

             

RTOEcoordsT(:,1)=interp1(1:length(RTOEcoords60(:,1)),RTOEcoords60(:,1), 

1:1/freq_multiplier:length(RTOEcoords60(:,1)),'spline'); 

             RTOEcoords(:,1)=RTOEcoordsT(cut:length(RTOEcoordsT(:,1)-cut),1); 

            

%RTOEcoordsT(:,2)=resample(RTOEcoords60(:,2),freq_multiplier,1,100); 

             

RTOEcoordsT(:,2)=interp1(1:length(RTOEcoords60(:,2)),RTOEcoords60(:,2), 

1:1/freq_multiplier:length(RTOEcoords60(:,2)),'spline'); 

             RTOEcoords(:,2)=RTOEcoordsT(cut:length(RTOEcoordsT(:,2)-cut),2); 

             

%RTOEcoordsT(:,3)=resample(RTOEcoords60(:,3),freq_multiplier,1,100); 

             

RTOEcoordsT(:,3)=interp1(1:length(RTOEcoords60(:,3)),RTOEcoords60(:,3), 

1:1/freq_multiplier:length(RTOEcoords60(:,3)),'spline'); 

             RTOEcoords(:,3)=RTOEcoordsT(cut:length(RTOEcoordsT(:,3)-cut),3); 

              

            

%LTOEcoordsT(:,1)=resample(LTOEcoords60(:,1),freq_multiplier,1,100); 

             

LTOEcoordsT(:,1)=interp1(1:length(LTOEcoords60(:,1)),LTOEcoords60(:,1), 

1:1/freq_multiplier:length(LTOEcoords60(:,1)),'spline'); 

             LTOEcoords(:,1)=LTOEcoordsT(cut:length(LTOEcoordsT(:,1)-cut),1); 

            

%LTOEcoordsT(:,2)=resample(LTOEcoords60(:,2),freq_multiplier,1,100); 

             

LTOEcoordsT(:,2)=interp1(1:length(LTOEcoords60(:,2)),LTOEcoords60(:,2), 

1:1/freq_multiplier:length(LTOEcoords60(:,2)),'spline'); 

             LTOEcoords(:,2)=LTOEcoordsT(cut:length(LTOEcoordsT(:,2)-cut),2); 

             

%LTOEcoordsT(:,3)=resample(LTOEcoords60(:,3),freq_multiplier,1,100); 

             

LTOEcoordsT(:,3)=interp1(1:length(LTOEcoords60(:,3)),LTOEcoords60(:,3), 

1:1/freq_multiplier:length(LTOEcoords60(:,3)),'spline'); 

             LTOEcoords(:,3)=LTOEcoordsT(cut:length(LTOEcoordsT(:,3)-cut),3); 

              

            

%RPSIcoordsT(:,1)=resample(RPSIcoords60(:,1),freq_multiplier,1,100); 

             

RPSIcoordsT(:,1)=interp1(1:length(RPSIcoords60(:,1)),RPSIcoords60(:,1), 

1:1/freq_multiplier:length(RPSIcoords60(:,1)),'spline'); 

             RPSIcoords(:,1)=RPSIcoordsT(cut:length(RPSIcoordsT(:,1)-cut),1); 
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%RPSIcoordsT(:,2)=resample(RPSIcoords60(:,2),freq_multiplier,1,100); 

             

RPSIcoordsT(:,2)=interp1(1:length(RPSIcoords60(:,2)),RPSIcoords60(:,2), 

1:1/freq_multiplier:length(RPSIcoords60(:,2)),'spline'); 

             RPSIcoords(:,2)=RPSIcoordsT(cut:length(RPSIcoordsT(:,2)-cut),2); 

             

%RPSIcoordsT(:,3)=resample(RPSIcoords60(:,3),freq_multiplier,1,100); 

             

RPSIcoordsT(:,3)=interp1(1:length(RPSIcoords60(:,3)),RPSIcoords60(:,3), 

1:1/freq_multiplier:length(RPSIcoords60(:,3)),'spline'); 

             RPSIcoords(:,3)=RPSIcoordsT(cut:length(RPSIcoordsT(:,3)-cut),3); 

              

            

%LPSIcoordsT(:,1)=resample(LPSIcoords60(:,1),freq_multiplier,1,100); 

             

LPSIcoordsT(:,1)=interp1(1:length(LPSIcoords60(:,1)),LPSIcoords60(:,1), 

1:1/freq_multiplier:length(LPSIcoords60(:,1)),'spline'); 

             LPSIcoords(:,1)=LPSIcoordsT(cut:length(LPSIcoordsT(:,1)-cut),1); 

            

%LPSIcoordsT(:,2)=resample(LPSIcoords60(:,2),freq_multiplier,1,100); 

             

LPSIcoordsT(:,2)=interp1(1:length(LPSIcoords60(:,2)),LPSIcoords60(:,2), 

1:1/freq_multiplier:length(LPSIcoords60(:,2)),'spline'); 

             LPSIcoords(:,2)=LPSIcoordsT(cut:length(LPSIcoordsT(:,2)-cut),2); 

             

%LPSIcoordsT(:,3)=resample(LPSIcoords60(:,3),freq_multiplier,1,100); 

             

LPSIcoordsT(:,3)=interp1(1:length(LPSIcoords60(:,3)),LPSIcoords60(:,3), 

1:1/freq_multiplier:length(LPSIcoords60(:,3)),'spline'); 

             LPSIcoords(:,3)=LPSIcoordsT(cut:length(LPSIcoordsT(:,3)-cut),3); 

                  

end      

        

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             

   %Calculate heel strike and toe off events 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

            time=length(RHEEcoords)/Samp_Freq; %calculate the length of the 

trial in seconds 

             %calculate sacrum marker 

             SAC= (LPSIcoords+RPSIcoords)./2; %take average of the LPSI and 

RPSI markers 

              

             %Calculate heel strike locations-according to Zeni 2008 Gait and 

Posture publication 

             %heel strike occurs when the distance between the heel marker and 

the sacrum marker in direction of progression are at a maximum: 

             %HS=max (Loc_heel-Loc_sacrum)); +x is direction of progression 

             clear R_RHEE_SAC_Dist L_LHEE_SAC_Dist 

  

             R_RHEE_SAC_Dist=RHEEcoords(:,1)-SAC(:,1); 

             L_LHEE_SAC_Dist=LHEEcoords(:,1)-SAC(:,1); 

             R_RTOE_SAC_Dist=RTOEcoords(:,1)-SAC(:,1); 

             L_LTOE_SAC_Dist=LTOEcoords(:,1)-SAC(:,1); 

              

             %take derivative of each to look for slope change 

             R_der=diff(R_RHEE_SAC_Dist); 

             L_der=diff(L_LHEE_SAC_Dist); 
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             R_der_toe=diff(R_RTOE_SAC_Dist); 

             L_der_toe=diff(L_LTOE_SAC_Dist); 

              

             %find when slope goes from negative to positive for toe off 

             R_HS_loc=zeros(1,500); 

             L_HS_loc=zeros(1,500); 

             R_TO_loc=zeros(1,500); 

             L_TO_loc=zeros(1,500); 

              

             clear dumb h 

             dumb=1; 

%             

             %find when slope goes from positive to negative for heel strike 

             clear dumb h 

             dumb=1; 

             for h=1:length(R_der)-1; 

                 if R_der(h+1)*R_der(h)<0 && R_der(h+1)<R_der(h) 

                     R_HS_loc(dumb)=h+2; 

                     dumb=dumb+1; 

                 end 

             end 

              

             clear dumb h 

             dumb=1; 

             for h=1:length(L_der)-1; 

                 if L_der(h+1)*L_der(h)<0 && L_der(h+1)<L_der(h) 

                     L_HS_loc(dumb)=h+2; 

                     dumb=dumb+1; 

                 end 

             end 

             

             R_HS_loc_temp=nonzeros(R_HS_loc); 

             clear R_HS_loc 

             L_HS_loc_temp=nonzeros(L_HS_loc); 

             clear L_HS_loc 

%              R_TO_loc=nonzeros(R_TO_loc); 

%              L_TO_loc=nonzeros(L_TO_loc); 

             prm =2; 

              

             R_HS_loc(1)=R_HS_loc_temp(1); 

             for peak_count=2:length(R_HS_loc_temp)-2 

                 time_peak=[R_HS_loc_temp(peak_count)-

(prm*freq_multiplier):R_HS_loc_temp(peak_count)+(prm*freq_multiplier)]; 

                 R_RHEE_SAC_Dist_Max=R_RHEE_SAC_Dist(time_peak); 

                  

                 [Dumb, R_loc]=max(R_RHEE_SAC_Dist_Max); 

                 R_HS_loc(peak_count)=R_loc+time_peak(1); 

                                

%                  figure(1) 

%                  plot(R_RHEE_SAC_Dist_Max); 

%                  hold on 

                 clear time_peak R_loc Dumb R_RHEE_SAC_Dist_Max 

             end  

             clear peak_count time_peak  

              

             L_HS_loc(1)=L_HS_loc_temp(1); 

             for peak_count=2:length(L_HS_loc_temp)-2 

                 time_peak=[L_HS_loc_temp(peak_count)-

(prm*freq_multiplier):L_HS_loc_temp(peak_count)+(prm*freq_multiplier)]; 

                 L_LHEE_SAC_Dist_Max=L_LHEE_SAC_Dist(time_peak); 

                  

                 [Dumb, L_loc]=max(L_LHEE_SAC_Dist_Max); 

                 L_HS_loc(peak_count)=L_loc+time_peak(1); 
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%                  figure(2) 

%                  plot(L_LHEE_SAC_Dist_Max); 

%                  hold on 

                 clear time_peak L_loc Dumb L_LHEE_SAC_Dist_Max 

             end  

             clear peak_count time_peak  

                      

              

  

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

%check to make sure R_HS, R_TO alternate with L_HS, L_TO 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%      

             if(R_HS_loc(1)>L_HS_loc(1)); %indicates a left foot first start - 

determine if the patient started on their left or right foot 

                R=1; L=0; 

             else 

                R=0; L=1; 

             end 

             problem=1; 

             for check=150 %1:length(R_HS_loc)-2 

                 if R==1 

                     if R_HS_loc(check)<L_HS_loc(check) 

                        Prob_R_HS(problem)=R_HS_loc(check); 

                        fprintf('Detected Heel Strikes do not properly 

alternate between L-R: see Prob_R_HS for location of anomoly'); 

                        problem=problem+1; 

                     end 

                 end 

                  

                 if R==0 

                     if L_HS_loc(check)<R_HS_loc(check) 

                        Prob_R_HS(problem)=R_HS_loc(check); 

                        fprintf('Detected Heel Strikes do not properly 

alternate between L-R: see Prob_R_HS for location of anomoly'); 

                        problem=problem+1 

                     end 

                 end       

             end     

              

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

%calculate stepping parameters - in steps and strides 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

 

%for right to left steps 

%check to make sure there are at least 152 strides 

             if length(R_HS_loc)>=152; 

                 for d=2:152 

                     if(R_HS_loc(1)>L_HS_loc(1));  

%indicates patient started on left foot, stepping with right 

                         R=1; L=0; 

                     else 

                         R=0; L=1; 

                     end 
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%==============================================================================

=========== 

                     if R==0 %Indicates subject started on Right foot, stepping 

with left 

                          

%Determine right-to-left and left-to-right Step Time 

                         R_L_ST(d-1)=(L_HS_loc(d-1)-R_HS_loc(d-1))/Samp_Freq;  

%finds number of frames between HS events and then divides by capture rate (hz) 

                         L_R_ST(d-1)=(R_HS_loc(d)-L_HS_loc(d-1))/Samp_Freq; 

                          

%Determine right-to-left and left-to-right Step Length 

            R_L_SL_instant(d-1)=abs(LHEEcoords(L_HS_loc(d-1),1)-

RHEEcoords(L_HS_loc(d-1),1)); 

            L_R_SL_instant(d-1)=abs(RHEEcoords(R_HS_loc(d),1)-

LHEEcoords(R_HS_loc(d),1)); 

                                                

%Determine right-to-left and left-to-right Step Length using treadmill speed 

            R_L_SL(d-1)=LHEEcoords(L_HS_loc(d-1),1)-RHEEcoords(R_HS_loc(d-

1),1)+(R_L_ST(d-1)*Tred_Spd);%*1000);  

%uses treadmill speed to calc step length 

            L_R_SL(d-1)=RHEEcoords(R_HS_loc(d),1)-LHEEcoords(L_HS_loc(d-

1),1)+(L_R_ST(d-1)*Tred_Spd);%*1000);  

%uses treadmill speed to calc step length 

                          

 %Determine right-to-left and left-to-right Step Width 

%take average location of left and right heel markers at heel 

 %strike for each leg and report in global coord (left side of tred) 

                        R_HS_Zcoord=RHEEcoords(R_HS_loc(d-1),3); 

                        L_HS_Zcoord=LHEEcoords(L_HS_loc(d-1),3); 

                        R_L_SWabs(d-1)=(R_HS_Zcoord-L_HS_Zcoord); 

                        R_L_SW(d-1)=abs(R_L_SWabs(d-1)); 

                        R_L_LP(d-1)=L_HS_Zcoord+(R_L_SWabs(d-1)/2); 

                        clear R_HS_Zcoord L_HS_Zcoord 

                          

                        R_HS_Zcoord=RHEEcoords(R_HS_loc(d),3); 

                        L_HS_Zcoord=LHEEcoords(L_HS_loc(d-1),3); 

                        L_R_SWabs(d-1)=(L_HS_Zcoord-R_HS_Zcoord); 

                        L_R_SW(d-1)=abs(L_R_SWabs(d-1)); 

                        L_R_LP(d-1)=R_HS_Zcoord+(L_R_SWabs(d-1)/2); 

                        clear R_HS_Zcoord L_HS_Zcoord 

                         

%determine step speed and lateral step speed 

                        R_L_SS_instant(d-1)=R_L_SL_instant(d-1)./R_L_ST(d-1); 

                        L_R_SS_instant(d-1)=L_R_SL_instant(d-1)./L_R_ST(d-1); 

                 

                        R_L_SS(d-1)=R_L_SL(d-1)./R_L_ST(d-1); 

                        L_R_SS(d-1)=L_R_SL(d-1)./L_R_ST(d-1); 

                         

                        R_L_LS(d-1)=R_L_SW(d-1)./R_L_ST(d-1);  

                        L_R_LS(d-1)=L_R_SW(d-1)./L_R_ST(d-1); 

                       

                         

                 

%==============================================================================

==================== 

                     else %Indicates subject started on Left foot, stepping 

with Right 

                          

                         R_L_ST(d-1)=(L_HS_loc(d)-R_HS_loc(d-1))/Samp_Freq;  

%finds number of frames between HS events and then divides by capture rate (hz) 

                         L_R_ST(d-1)=(R_HS_loc(d-1)-L_HS_loc(d-1))/Samp_Freq; 

                      

%Determine right-to-left and left-to-right Step Length 

190



                         R_L_SL_instant(d-1)=abs(LHEEcoords(L_HS_loc(d),1)-

RHEEcoords(L_HS_loc(d),1)); 

                         L_R_SL_instant(d-1)=abs(RHEEcoords(R_HS_loc(d-1),1)-

LHEEcoords(R_HS_loc(d-1),1)); 

                          

%Determine right-to-left and left-to-right Step Length using treadmill speed 

                         R_L_SL(d-1)=LHEEcoords(L_HS_loc(d),1)-

RHEEcoords(R_HS_loc(d-1),1)+(R_L_ST(d-1)*Tred_Spd);%*1000); %uses treadmill 

speed to calc step length 

                         L_R_SL(d-1)=RHEEcoords(R_HS_loc(d-1),1)-

LHEEcoords(L_HS_loc(d-1),1)+(L_R_ST(d-1)*Tred_Spd);%*1000); %uses treadmill 

speed to calc step length 

                        %Determine right-to-left and left-to-right Step Width 

                        %take average location of left and right heel markers 

at heel 

                        %strike for each leg and report in global coord (left 

side of tred) 

                        R_HS_Zcoord=RHEEcoords(R_HS_loc(d-1),3); 

                        L_HS_Zcoord=LHEEcoords(L_HS_loc(d),3); 

                        R_L_SWabs(d-1)=(R_HS_Zcoord-L_HS_Zcoord); 

                        R_L_SW(d-1)=abs(R_L_SWabs(d-1)); 

                        R_L_LP(d-1)=L_HS_Zcoord+(R_L_SWabs(d-1)/2); 

                        clear R_HS_Zcoord L_HS_Zcoord 

                         

                        R_HS_Zcoord=RHEEcoords(R_HS_loc(d-1),3); 

                        L_HS_Zcoord=LHEEcoords(L_HS_loc(d-1),3); 

                        L_R_SWabs(d-1)=(L_HS_Zcoord-R_HS_Zcoord); 

                        L_R_SW(d-1)=abs(L_R_SWabs(d-1)); 

                        L_R_LP(d-1)=R_HS_Zcoord+(L_R_SWabs(d-1)/2); 

                        clear R_HS_Zcoord L_HS_Zcoord 

                        

                        %determine step speed and lateral step speed 

                        R_L_SS_instant(d-1)=R_L_SL_instant(d-1)./R_L_ST(d-1); 

                        L_R_SS_instant(d-1)=L_R_SL_instant(d-1)./L_R_ST(d-1); 

                 

                        R_L_SS(d-1)=R_L_SL(d-1)./R_L_ST(d-1); 

                        L_R_SS(d-1)=L_R_SL(d-1)./L_R_ST(d-1); 

                         

                        R_L_LS(d-1)=R_L_SW(d-1)./R_L_ST(d-1);  

                        L_R_LS(d-1)=L_R_SW(d-1)./L_R_ST(d-1); 

                    

                    end 

                     

                 end 

             else 

                 fprintf('not enough strides for this trial'); 

             end 

              

%              figure(1) 

%              plot(R_L_SL) 

%              hold on 

%              plot(L_R_SL,'g') 

       

             clear d 

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             %Calculate generic steps 

                Step_ST = zeros(1,150); Step_SL_instant = zeros(1,150); Step_SL 

= zeros(1,150); Step_SS_instant = zeros(1,150); 

                Step_SS = zeros(1,150); Step_SW = zeros(1,150);         Step_LS 

= zeros(1,150); Step_LP = zeros(1,150); 
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             if R==0 %Indicates subject started on Right foot, stepping with 

left 

                count_ST=1; count_SL=1; count_SL_inst=1; count_SS_inst=1; 

count_SS=1; count_SW=1; count_LS=1; count_LP=1; 

                 

               for iceman=1:75; 

                 

                Step_ST(1,count_ST)=R_L_ST(iceman); count_ST=count_ST+1; 

                Step_ST(1,count_ST)=L_R_ST(iceman); count_ST=count_ST+1; 

                 

                Step_SL_instant(1,count_SL_inst) = R_L_SL_instant(iceman); 

count_SL_inst=count_SL_inst+1; 

                Step_SL_instant(1,count_SL_inst) = 

L_R_SL_instant(iceman);count_SL_inst=count_SL_inst+1; 

                 

                Step_SL(1,count_SL) = R_L_SL(iceman); count_SL=count_SL+1; 

                Step_SL(1,count_SL) = L_R_SL(iceman); count_SL=count_SL+1; 

                 

                Step_SS_instant(1,count_SS_inst) = R_L_SS_instant(iceman); 

count_SS_inst=count_SS_inst+1; 

                Step_SS_instant(1,count_SS_inst)= L_R_SS_instant(iceman); 

count_SS_inst=count_SS_inst+1; 

                 

                Step_SS(1,count_SS) = R_L_SS(iceman); count_SS=count_SS+1; 

                Step_SS(1,count_SS)= L_R_SS(iceman); count_SS=count_SS+1; 

                 

                Step_SW(1,count_SW) = R_L_SW(iceman); count_SW=count_SW+1; 

                Step_SW(1,count_SW)= L_R_SW(iceman); count_SW=count_SW+1; 

                 

                Step_LS(1,count_LS) = R_L_LS(iceman); count_LS=count_LS+1; 

                Step_LS(1,count_LS)= L_R_LS(iceman); count_LS=count_LS+1; 

                 

                Step_LP(1,count_LP) = R_L_LP(iceman); count_LP=count_LP+1; 

                Step_LP(1,count_LP)= L_R_LP(iceman); count_LP=count_LP+1;         

                end 

                 

             else %started on left foot 

               count_ST=1; count_SL=1; count_SL_inst=1; count_SS_inst=1; 

count_SS=1; count_SW=1; count_LS=1; count_LP=1; 

                 

               for iceman=1:75; 

                 

                Step_ST(1,count_ST)=L_R_ST(iceman); count_ST=count_ST+1; 

                Step_ST(1,count_ST)=R_L_ST(iceman); count_ST=count_ST+1; 

                 

                Step_SL_instant(1,count_SL_inst) = L_R_SL_instant(iceman); 

count_SL_inst=count_SL_inst+1; 

                Step_SL_instant(1,count_SL_inst) = R_L_SL_instant(iceman); 

count_SL_inst=count_SL_inst+1; 

                 

                Step_SL(1,count_SL) = L_R_SL(iceman); count_SL=count_SL+1; 

                Step_SL(1,count_SL) = R_L_SL(iceman); count_SL=count_SL+1; 

                 

                Step_SS_instant(1,count_SS_inst) = L_R_SS_instant(iceman); 

count_SS_inst=count_SS_inst+1; 

                Step_SS_instant(1,count_SS_inst)= R_L_SS_instant(iceman); 

count_SS_inst=count_SS_inst+1; 

                 

                Step_SS(1,count_SS) = L_R_SS(iceman); count_SS=count_SS+1; 

                Step_SS(1,count_SS)= R_L_SS(iceman); count_SS=count_SS+1; 

                 

                Step_SW(1,count_SW) = L_R_SW(iceman); count_SW=count_SW+1; 

                Step_SW(1,count_SW)= R_L_SW(iceman); count_SW=count_SW+1; 
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                Step_LS(1,count_LS) = L_R_LS(iceman); count_LS=count_LS+1; 

                Step_LS(1,count_LS)= R_L_LS(iceman); count_LS=count_LS+1; 

                 

                Step_LP(1,count_LP) = L_R_LP(iceman); count_LP=count_LP+1; 

                Step_LP(1,count_LP)= R_L_LP(iceman); count_LP=count_LP+1;         

                end 

                       

             end 

                

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

             %calculate stride parameters 

             for d=2:151 

                     if(R_HS_loc(1)>L_HS_loc(1)); %indicates patient started on 

left foot, stepping with right 

                         R=1; L=0; 

                     else 

                         R=0; L=1; 

                     end 

                     

%==============================================================================

==================== 

                     if R==0  %Indicates subject started on Right foot, 

stepping with left 

                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

                        %Calculate Stride Time 

                        R_StrideT(d-1)=R_L_ST(d-1)+L_R_ST(d-1); 

                        L_StrideT(d-1)=L_R_ST(d-1)+R_L_ST(d); 

                         

                        %determine stride length 

                        R_StrideL_instant(d-1)=R_L_SL_instant(d-

1)+L_R_SL_instant(d-1); 

                        L_StrideL_instant(d-1)=L_R_SL_instant(d-

1)+R_L_SL_instant(d); 

                      

                        R_StrideL(d-1)=R_L_SL(d-1)+L_R_SL(d-1); 

                        L_StrideL(d-1)=L_R_SL(d-1)+R_L_SL(d); 

                         

                        %Determine Right and Left Stride Width 

                        R_StrideLP(d-1)=RHEEcoords(R_HS_loc(d),3);  

%Lateral Position relative to edge of treadmill for heel marker 

                        R_StrideW(d-1)=(RHEEcoords(R_HS_loc(d),3)-

RHEEcoords(R_HS_loc(d-1),3)); %NOTE: these calculations assume Z-coords have 

been shifted to edge of treadmill. 

                        L_StrideLP(d-1)=LHEEcoords(L_HS_loc(d),3); 

                        L_StrideW(d-1)=(LHEEcoords(L_HS_loc(d),3)-

LHEEcoords(L_HS_loc(d-1),3)); 

                         

                        %Determine stride speed and lateral speed 

                         R_StrideS_instant(d-1)=R_StrideL_instant(d-

1)./R_StrideT(d-1); 

                         L_StrideS_instant(d-1)=L_StrideL_instant(d-

1)./L_StrideT(d-1); 

                          

                         R_StrideS(d-1)=R_StrideL(d-1)./R_StrideT(d-1); 

                         L_StrideS(d-1)=L_StrideL(d-1)./L_StrideT(d-1); 

                          

                         R_StrideLS(d-1)=R_StrideW(d-1)./R_StrideT(d-1); 

                         L_StrideLS(d-1)=L_StrideW(d-1)./L_StrideT(d-1); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

                     else %indicates patient started on left foot, stepping 

with right                         

                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

%Calculate Stride Time 

                        R_StrideT(d-1)=R_L_ST(d-1)+L_R_ST(d); 

                        L_StrideT(d-1)=L_R_ST(d-1)+R_L_ST(d-1); 

                         

%determine stride length 

                        R_StrideL_instant(d-1)=R_L_SL_instant(d-

1)+L_R_SL_instant(d); 

                        L_StrideL_instant(d-1)=L_R_SL_instant(d-

1)+R_L_SL_instant(d-1); 

                      

                        R_StrideL(d-1)=R_L_SL(d-1)+L_R_SL(d); 

                        L_StrideL(d-1)=L_R_SL(d-1)+R_L_SL(d-1); 

                         

%Determine Right and Left Stride Width 

                        R_StrideLP(d-1)=RHEEcoords(R_HS_loc(d),3);  

%Lateral Position relative to edge of treadmill for heel marker 

                        R_StrideW(d-1)=(RHEEcoords(R_HS_loc(d),3)-

RHEEcoords(R_HS_loc(d-1),3)); %NOTE: these calculations assume Z-coords have 

been shifted to edge of treadmill. 

                        L_StrideLP(d-1)=LHEEcoords(L_HS_loc(d),3); 

                        L_StrideW(d-1)=(LHEEcoords(L_HS_loc(d),3)-

LHEEcoords(L_HS_loc(d-1),3)); 

                         

 %Determine stride speed and lateral speed 

                         R_StrideS_instant(d-1)=R_StrideL_instant(d-

1)./R_StrideT(d-1); 

                         L_StrideS_instant(d-1)=L_StrideL_instant(d-

1)./L_StrideT(d-1); 

                          

                         R_StrideS(d-1)=R_StrideL(d-1)./R_StrideT(d-1); 

                         L_StrideS(d-1)=L_StrideL(d-1)./L_StrideT(d-1); 

                          

                         R_StrideLS(d-1)=R_StrideW(d-1)./R_StrideT(d-1);  

                         L_StrideLS(d-1)=L_StrideW(d-1)./L_StrideT(d-1); 

                    end 

             end                         

                          

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

    %Organize output data in single maatrix in proper format for GEM and other 

analyses    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

             %for stride output 

             if Output==1;  

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(R_StrideL)',R_StrideT',(R_StrideS)', (R_StrideW)', 

(R_StrideLS)', (R_StrideLP)']; % divide by 1000 to put in meters, not mm 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_R_Stride') 

             end 
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             if Output==2; 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(L_StrideL)',L_StrideT',(L_StrideS)', (L_StrideW)', 

(L_StrideLS)', (L_StrideLP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_L_Stride') 

             end 

              

             %for step output 

             if Output==3; 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(R_L_SL)',R_L_ST',(R_L_SS)', (R_L_SW)', (R_L_LS)', 

(R_L_LP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_R_L_Step') 

             end 

                  

             if Output==4 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(L_R_SL)',L_R_ST',(L_R_SS)', (L_R_SW)', (L_R_LS)', 

(L_R_LP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_L_R_Step') 

             end 

              

             if Output==5 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(Step_SL)',Step_ST',(Step_SS)', (Step_SW)', (Step_LS)', 

(Step_LP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_Steps') 

             end 

  

       %for sride output 

             if Output==6; 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(R_StrideL_instant)',R_StrideT',(R_StrideS_instant)', 

(R_StrideW)', (R_StrideLS)', (R_StrideLP)']; % divide by 1000 to put in meters, 

not mm 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_R_Stride_inst') 

             end 

              

             if Output==7; 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(L_StrideL_instant)',L_StrideT',(L_StrideS_instant)', 

(L_StrideW)', (L_StrideLS)', (L_StrideLP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_L_Stride_inst') 

             end 

               

         %for step output 

             if Output==8; 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(R_L_SL_instant)',R_L_ST',(R_L_SS_instant)', (R_L_SW)', 

(R_L_LS)', (R_L_LP)']; 
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             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_R_L_Step_inst') 

             end 

                  

             if Output==9 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(L_R_SL_instant)',L_R_ST',(L_R_SS_instant)', (L_R_SW)', 

(L_R_LS)', (L_R_LP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_L_R_Step_inst') 

             end 

              

             if Output==10 

             trial_str=num2str(count); 

             temp_name=strcat(ConditionID,trial_str); 

             temp_data=[(Step_SL_instant)',Step_ST',(Step_SS_instant)', 

(Step_SW)', (Step_LS)', (Step_LP)']; 

             eval([temp_name '=' 'temp_data',';']) 

             file_name=strcat(SubjectID,'_Steps_inst') 

             end 

              

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 

%clear all variables before next trial interation 

             clear LHEEcoords LHEEcoords60 LHEEcoordsDumb LHEEcoordsT 

LPSIcoords LPSIcoords60 LPSIcoordsDumb LPSIcoordsT 

             clear LTOEcoords LTOEcoords60 LTOEcoordsDumb LTOEcoordsT  

             clear RHEEcoords RHEEcoords60 RHEEcoordsDumb RHEEcoordsT 

RPSIcoords RPSIcoords60 RPSIcoordsDumb RPSIcoordsT 

             clear RTOEcoords RTOEcoords60 RTOEcoordsDumb RTOEcoordsT 

             clear L_HS_loc L_HS_loc_temp L_LHEE_SAC_Dist L_R_LS L_R_SL_instant 

L_R_SS_instant L_R_ST L_R_SW  

             clear R_HS_loc R_HS_loc_temp R_RHEE_SAC_Dist R_L_LS R_L_SL_instant 

R_L_SS_instant R_L_ST R_L_SW 

             clear L_StrideLS L_StrideL_instant L_StrideS_instant L_StrideT 

L_StrideW L_TO_loc L_der 

             clear R_StrideLS R_StrideL_instant R_StrideS_instant R_StrideT 

R_StrideW R_TO_loc R_der 

             clear SAC Test_X1 Test_X2 check cols d data dumb h problem q rows 

s temp_data temp_name text time trial_str xL xR ySacL ySacR 

             clear Samp_Freq Step_SL_Instant Step_ST Step_SS_instant Step_SW 

Step_LS Step_LP Step_SL Step_SS R_L_SS R_L_SL L_R_SL L_R_SS 

             clear R_StrideS R_StrideL L_StrideS L_StrideL  

        end     

    end 

   filename=file_name; 

   clear file_name 

    save(filename,'SPD*', 'LEN*', 'TIM*', 'ALL*'); %add all the condition names 

to this list 

    

end 

end 

toc 
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GEM Analyses Code 
%=============================================================================% 

%  GEM_CAREN2.m    -  Runs GEM Analyses on Re-Structured Trish Data 

% 

%  First Written   -  Jon Dingwell    -  02/10/2012 

%  Last Modified   -  nicole bohnsack    -  04/29/2013 

% 

%=============================================================================% 

  

  

%-----------------------------------------------------------------------------% 

clear all;                                        %  Clear Memory             % 

close all;                                        %  Close All Windows        % 

clc                                               %  Clear Command Window     % 

tic                                               %  Start Stopwatch          % 

  

Starting_Directory = pwd 

Conditions = ['SPD'; 'LEN'; 'TIM'; 'ALL']; %['NOP'; 'VIS';'MLP']%list all 

conditions in this vector to automate process  

Num_Cond = 4; %the number of conditions that were tested 

% Num_Trials = 2; %the number of trials per condition 

ExperimentID='E1'; 

ProjectID='P0042'; 

Sample_Freq = 60; %collection frequency in hertz  

Sub=[1,2,3,4,5,6,7,8,9,10,11,12,13,14];%(Enter the subject# in order. For 

example, if you wanted to process subject #1, #4, and #10, this vector would be 

(Subj=1,4,10)) 

Tred_Speed=[1.25,1.25,1.2,1.25,1.16,1.16,1.16,1.16,1.16,1.16,1.2,1.25,1.16,1.2]

;% in m/s (You will need to enter the appropriate treadmill speed into this 

vector - order should match the order of subjects listed above)  

Leg_length=[0.97,1.06,1.03,1.03,0.9,0.9,0.88,0.85,0.87,0.89,0.92,0.96,0.88,0.9]

; 

  

counter = 1; 

  

% Loop for Subjects 

for Subjs=1:14; 

    %Subjs=1:length(Sub); 

    Subj=Sub(Subjs); 

    Tred_Spd=Tred_Speed(Subjs); 

  

  

    %- clear old data before moving on to next subject: 

    clear SPD1 SPD2    LEN1 LEN2  

    clear TIM1 TIM2    ALL1 ALL2  

     

    if Subj < 10 

        SubjectID = ['S0', int2str(Subj)]; 

         

    elseif Subj >= 10 

        SubjectID = ['S', int2str(Subj)]; 

    end 

  

    SubjID=SubjectID; 

     

    

  %load data file %%%%%%%%%%%%%%%%%%%%%%%%% 

    subfolder = strcat(SubjectID); 

%     foldern = ['Data\',subfolder,'\']; 

    foldern = ['E1_6000hz\']; 

    eval(['load ', foldern, subfolder, '_R_Stride.mat;']); 
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    %- Each *.mat file will contain 25 Matrices:  

    %-           NOP#, APP#, APV#, MLP#, MLV# 

    %-      where '#' indicates Trial Number (1-5) 

    %- Each Matrix contains 5 columns of data: 

    %-           [SL, ST, SS, SW, LS] 

    %-      where:   SL = Step Lengths [m] 

    %-               ST = Step Times [s] 

    %-               SS = Step Speeds (i.e., SL./ST) [m/s] 

    %-               SW = Step Widths [m] 

    %-               LS = Lateral Step Speeds (i.e., SW./ST) [m/s] 

     

    % Loop for Conditions: 

 for Cond = 1:Num_Cond 

        ConditionID=Conditions(Cond,:);  

        %Added on 4/30% used to determine how many trials per condition%%%%%         

%         subfolder = strcat('Data\',ProjectID, ExperimentID, SubjID,'\'); 

%         csv_ftemp = strcat(ProjectID, ExperimentID, SubjID, ConditionID, 

'T'); 

         

%          d = dir([subfolder,csv_ftemp,'*']);  

        d = who([ConditionID,'*']);  

        ntrials = length(d); 

  

         

        % Loop for Trials 

        for count=1:ntrials %Num_Trials 

            Trial=count; 

             

             

            disp(['Subj ' int2str(Subj) '  /  Cond ' Conditions(Cond,:) '  /  

Trial ' int2str(Trial)]) 

             

            %-- Clear variables to be calculated / replaced for each trial: 

            clear SL  SS  ST  SW  LS  

            clear SLn SSn STn SWn LSn 

            clear STShift SLShift DeltaTn DeltaPn 

            clear X Y Xn Yn 

             

            %-- Define SL, ST, and SS data for THIS trial: 

            eval(['SL = ' Conditions(Cond,:) int2str(Trial) '(:,1);']); 

            eval(['ST = ' Conditions(Cond,:) int2str(Trial) '(:,2);']); 

            eval(['SS = ' Conditions(Cond,:) int2str(Trial) '(:,3);']); 

            eval(['SW = ' Conditions(Cond,:) int2str(Trial) '(:,4);']); 

            eval(['LS = ' Conditions(Cond,:) int2str(Trial) '(:,5);']); 

             

             

       

             

         

%==============================================================================

== 

            %-- First, Normalize everything (SL & ST & SW) to unit variance: 

            SLn = SL ./ std(SL); 

            STn = ST ./ std(ST); 

            SSn = SLn ./ STn; 

            SWn = SW ./std(SW); 

            LSn = SWn ./ STn; 

            Tn = ST./mean(ST); 

            Ln = SL./mean(SL); 
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%==============================================================================

== 

            %-- Define GEM from slope defined by average speed: 

            %--  (+/- 3 s.d.'s will plot lines on graphs a bit longer than the 

data 

            V = mean(SS);  %-- V = treadmill speed -- defines the slope of the 

GEM! 

             

            %=== X & Y here are just used for plotting the GEM as a line at 

speed V 

            X  = [(mean(ST)-4*std(ST)), mean(ST), (mean(ST)+4*std(ST))]; 

            Y = V.*X; 

            Y_t = 1.098; 

            X_l = 1.34; 

            %===  NORMALIZED ("__n") DATA ARE USED FOR DOING GEM CALCULATIONS: 

            Vn = mean(SSn); 

            Xn  = [(mean(STn)-4*std(STn)), mean(STn), (mean(STn)+4*std(STn))]; 

            Yn = Vn.*Xn; 

             

%------------------------------------------------------------------------------

- 

            %-- Calculate Deviations Perpendicular & Tangent to the GEM: 

            %-- Use "geometrical" method -- See my notes... 

            STShift = STn - mean(STn);              %- Shifts ST data to 

mean(ST) location... 

            SLShift = SLn - (Vn.*mean(STn));        %- Shiftf SL data to same 

set point... 

            SWShift = SWn - (Vn.*mean(STn));          %- Shiftf SW data to same 

set point... 

            %%%% how do I make this for SW%%%% 

            DeltaTn = (1./sqrt(1+(Vn.^2))) .* (STShift + (Vn.*SLShift)); 

            DeltaPn = (1./sqrt(1+(Vn.^2))) .* ((-Vn.*STShift) + SLShift); 

             

            %------------------------------------------------------------------

------------- 

%-- Calculate Means & SD's for 3 starting variables: 

            MeanSL = mean(SL);                SDSL = std(SL); 

            MeanST = mean(ST);                SDST = std(ST); 

            MeanSS = mean(SS);                SDSS = std(SS); 

            MeanSW = mean(SW);                SDSW = std(SW); 

            MeanLS = mean(LS);                SDLS = std(LS); 

             

            MeanSLn = mean(SLn);              SDSLn = std(SLn); 

            MeanSTn = mean(STn);              SDSTn = std(STn); 

            MeanSSn = mean(SSn);              SDSSn = std(SSn); 

            MeanSWn = mean(SWn);              SDSWn = std(SWn); 

            MeanLSn = mean(LSn);              SDLSn = std(LSn); 

             

            MeanDPn = mean(DeltaPn);          SDDPn = std(DeltaPn); 

            MeanDTn = mean(DeltaTn);          SDDTn = std(DeltaTn); 

             

            

%==============================================================================

= 

           %Directionality analyses%  

%==============================================================================

== 

%     % Normalized varibales for sternad way (SMT) % 

                L_prime=(SL-MeanSL)/SDSL; 

                T_prime= (ST-MeanST)/SDST; 

%     %Fitting line to data to determine slope for theta speed%%% 

                pfline = polyfit(T_prime,L_prime,1);  

                slope = atan(pfline(1,1)); 
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%     %For Theta Prime Calculation 

                Theta_p = (0:0.01*pi:pi); 

                Theta_test = Theta_p + slope; 

%     %For plotting purposes: see below             

           counter2 = 1; 

           for tt = 1:length(Theta_test) 

           % for tt = 1:length(Theta_Prime)    

                theta_temp = Theta_test(tt); 

                d_theta(:,counter2) = T_prime.*cos(theta_temp)+ 

L_prime.*sin(theta_temp); 

%                 hfig = figure; 

%                 plot(d_theta(:,counter2),char(line_color(counter2))); hold 

on;  

                SMT(:,counter2) = d_theta(:,counter2); 

                counter2 = counter2+1; 

           end   

           

%------------------------------------------------------------------------------

- 

%-- Compute "Stability" (lambda) of each measure: 

            N = length(ST); 

             

            PSL = polyfit(SL(1:(N-1),1), SL(2:N,1), 1);                 

LambdaSL = PSL(1); 

            PST = polyfit(ST(1:(N-1),1), ST(2:N,1), 1);                 

LambdaST = PST(1); 

            PSS = polyfit(SS(1:(N-1),1), SS(2:N,1), 1);                 

LambdaSS = PSS(1); 

            PSW = polyfit(SW(1:(N-1),1), SW(2:N,1), 1);                 

LambdaSW = PSW(1); 

            PLS = polyfit(LS(1:(N-1),1), LS(2:N,1), 1);                 

LambdaLS = PLS(1); 

             

            PDP = polyfit(DeltaPn(1:(N-1),1), DeltaPn(2:N,1), 1);       

LambdaDP = PDP(1); 

            PDT = polyfit(DeltaTn(1:(N-1),1), DeltaTn(2:N,1), 1);       

LambdaDT = PDT(1);        PSMT = polyfit(SMT(1:(N-1),1), 

SMT(2:N,1), 1);              LambdaSMT = PSMT(1); 

                                     

%------------------------------------------------------------------------------

- 

%-- Compute scaling exponents (alpha) of each measure: 

            [nSL  fSL  pSL]  = DFA(SL);          AlphaSL = pSL(1); 

            [nST  fST  pST]  = DFA(ST);          AlphaST = pST(1); 

            [nSS  fSS  pSS]  = DFA(SS);          AlphaSS = pSS(1); 

             

            [nSL  fSL  pSL]  = DFA(SLn);         AlphaSLn = pSL(1); 

            [nST  fST  pST]  = DFA(STn);         AlphaSTn = pST(1); 

            [nSS  fSS  pSS]  = DFA(SSn);         AlphaSSn = pSS(1); 

            [nDPn fDPn pDPn] = DFA(DeltaPn);     AlphaDPn = pDPn(1); 

            [nDTn fDTn pDTn] = DFA(DeltaTn);     AlphaDTn = pDTn(1); 

%==============================================================================

=====             

            %calculating Directionality % 

%==============================================================================

===== 

            [rr cc ] = size(SMT); 

             

            for ii = 1:cc 

                [nSMT   fSMT   pSMT]   = DFA(SMT(:,ii));    

                AlphaSMT(ii,1) = pSMT(1); 

                clear nSMT fSMT pSMT 

            end 
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            AlphaSMT_data(:,count,Cond)=AlphaSMT; 

%============================================================================== 

            %-- Put Final Dependent Measures into Big Fat Matrix: 

%============================================================================== 

  

                     

            RowNum = counter; 

            OutData(RowNum,  1:3)  = [Subj, Cond, Trial]; 

             

            OutData(RowNum,  4:13)  = [   MeanSL,    MeanST,    MeanSS,   

MeanSW,    MeanLS,    MeanSLn,   MeanSTn,   MeanSSn,   MeanSWn,   MeanLSn]; 

            OutData(RowNum, 14:23) = [     SDSL,      SDST,      SDSS,     

SDSW,      SDLS,     SDSLn,     SDSTn,     SDSSn,    SDSWn,     SDLSn]; 

             

            OutData(RowNum, 24:25) = [  MeanDPn,   MeanDTn]; 

            OutData(RowNum, 26:27) = [    SDDPn,     SDDTn]; 

             

            OutData(RowNum, 28:32) = [ LambdaSL,  LambdaST,  LambdaSS,  

LambdaSW, LambdaLS]; 

            OutData(RowNum, 33:34) = [ LambdaDP,  LambdaDT]; 

             

            OutData(RowNum, 35:39) = [ AlphaSL,  AlphaST,  AlphaSS,  AlphaSLn, 

AlphaSTn]; 

            OutData(RowNum, 40:42) = [ AlphaSSn,  AlphaDPn, AlphaDTn]; 

            OutData(RowNum, 43:43) = [ AlphaSMT]; 

             

            counter = counter +1; 

%- Below is a single-line list of all of the colums in "OutData" 

%- Save and use this text to cut-paste as column headings into Excel / Minitab! 

%- [Subj, Cond, Trial, MeanSL, MeanST, MeanSS, MeanSW, MeanLS, MeanSLn, 

MeanSTn, MeanSSn, MeanSWn, MeanLSn, SDSL, SDST, SDSS, SDSW, SDLS, SDSLn, SDSTn, 

SDSSn, SDSWn, SDLSn, MeanDPn, MeanDTn, SDDPn, SDDTn, LambdaSL, LambdaST, 

LambdaSS, LambdaSW, LambdaLS, LambdaDP, LambdaDT, AlphaSL,  AlphaST,  AlphaSS,  

AlphaSLn, AlphaSTn, AlphaSSn,  AlphaDPn, AlphaDTn 

%==============================================================================

================ 

%Saving Directionality Files  

%==============================================================================

================ 

   %For SPD  

            if Cond == 1 && count == 1 

               

              OutDataSPD1(Subjs,  1:2)  = [Subj, Trial];   

              OutDataSPD1(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

            if Cond == 1 && count == 2 

              OutDataSPD2(Subjs,  1:2)  = [Subj, Trial];   

              OutDataSPD2(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

    %For LEN 

             if Cond == 2 && count == 1 

               

              OutDataLEN1(Subjs,  1:2)  = [Subj, Trial];   

              OutDataLEN1(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

            if Cond == 2 && count == 2 

              OutDataLEN2(Subjs,  1:2)  = [Subj, Trial];   

              OutDataLEN2(Subjs,  3:103)  = [AlphaSMT];   
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            end 

    %For TIM 

              if Cond == 3 && count == 1 

               

              OutDataTIM1(Subjs,  1:2)  = [Subj, Trial];   

              OutDataTIM1(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

            if Cond == 3 && count == 2 

              OutDataTIM2(Subjs,  1:2)  = [Subj, Trial];   

              OutDataTIM2(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

    %For ALL 

              if Cond == 4 && count == 1 

               

              OutDataALL1(Subjs,  1:2)  = [Subj, Trial];   

              OutDataALL1(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

            if Cond == 4 && count == 2 

              OutDataALL2(Subjs,  1:2)  = [Subj, Trial];   

              OutDataALL2(Subjs,  3:103)  = [AlphaSMT];   

                 

            end 

  

        end   %- for Trial = 1:Num_Trials 

        

  

     

    end   %- for Cond = 1:Num_Cond 

  counter2 = counter2 + 1;  

 save([SubjID,'_alphaSMT','.mat'],'AlphaSMT_data'); 

  

end   %- for Subj = 1:Num_Subj 

  

%- Return to original working directory (Should have never left??): 

eval(['cd ' Starting_Directory]) 

  

%- Save final data file to disk for Statistical Analysis in Minitab: 

save(['OutData_1_7GEM.dat'],'OutData','-ascii','-double','-tabs')  

save(['OutData_1_7GEM.mat'],'OutData')           

  

save OutDataSPD1.dat OutDataSPD1 -ascii -double -tabs 

save OutDataSPD2.dat OutDataSPD2 -ascii -double -tabs 

save OutDataLEN1.dat OutDataLEN1 -ascii -double -tabs 

save OutDataLEN2.dat OutDataLEN2 -ascii -double -tabs 

save OutDataTIM1.dat OutDataTIM1 -ascii -double -tabs 

save OutDataTIM2.dat OutDataTIM2 -ascii -double -tabs 

save OutDataALL1.dat OutDataALL1 -ascii -double -tabs 

save OutDataALL2.dat OutDataALL2 -ascii -double -tabs 

  

clear OutData* 

  

disp('All Done!') 

disp(['Time Elapsed = ' num2str(toc) ' sec.']) 

%- End of Program ------------------------------------------------------- 

  

    

    

 

RMSE Code 
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%=============================================================================% 

%RMSE CALCULATIONS 

%  Last Modified   -  nicole bohnsack    -  04/29/2013 

%=============================================================================% 

  

  

clear all;                                        %  Clear Memory             % 

close all;                                        %  Close All Windows        % 

clc                                               %  Clear Command Window     % 

tic                                               %  Start Stopwatch          % 

  

Starting_Directory = pwd 

Conditions = ['SPD'; 'LEN'; 'TIM'; 'ALL']; %['NOP'; 'VIS';'MLP']%list all 

conditions in this vector to automate process  

Num_Cond = 4; %the number of conditions that were tested 

% Num_Trials = 2; %the number of trials per condition 

ExperimentID='E2'; 

ProjectID='P0042'; 

Sample_Freq = 120; %collection frequency in hertz  

Sub=[1,2,3,4,5,6,7,8,9,10];%(Enter the subject# in order. For example, if you 

wanted to process subject #1, #4, and #10, this vector would be (Subj=1,4,10)) 

Tred_Speed=[3.22,3.22,3.22,3.22,3.22,3.22,3.22,3.22,3.22,3.22,];% in m/s (You 

will need to enter the appropriate treadmill speed into this vector - order 

should match the order of subjects listed above)  

N_strides = 150; 

counter = 1; 

  

% Loop for Subjects 

for Subjs=1:10; 

    Subj=Sub(Subjs); 

    Tred_Spd=Tred_Speed(Subjs); 

%     LegL=Leg_length(Subjs);%for non-dimensionalized i_hat value 

%     Tim_nd=LegL./9.81; % for non-dimensionalized t_hat value 

%     Tim_val=sqrt(Tim_nd) % for non-dimensionalized t_hat value 

  

    %- clear old data before moving on to next subject: 

    clear SPD1 SPD2    LEN1 LEN2  

    clear TIM1 TIM2    ALL1 ALL2  

     

    if Subj < 10 

        SubjectID = ['S0', int2str(Subj)]; 

         

    elseif Subj >= 10 

        SubjectID = ['S', int2str(Subj)]; 

    end 

  

    SubjID=SubjectID; 

     

    

  %load data file %%%%%%%%%%%%%%%%%%%%%%%%% 

    subfolder = strcat(SubjectID); 

%     foldern = ['Data\',subfolder,'\']; 

%     foldern = ['DissertationData\E1_6000hz\']; 

    foldern = ['E2_6000hz\']; 

    eval(['load ', foldern, subfolder, '_R_Stride.mat;']); 

  

  

    %- Each *.mat file will contain 25 Matrices:  

    %-           NOP#, APP#, APV#, MLP#, MLV# 

    %-      where '#' indicates Trial Number (1-5) 

    %- Each Matrix contains 5 columns of data: 

    %-           [SL, ST, SS, SW, LS] 

    %-      where:   SL = Step Lengths [m] 
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    %-               ST = Step Times [s] 

    %-               SS = Step Speeds (i.e., SL./ST) [m/s] 

    %-               SW = Step Widths [m] 

    %-               LS = Lateral Step Speeds (i.e., SW./ST) [m/s] 

     

    % Loop for Conditions: 

    for Cond = 1:Num_Cond 

        ConditionID=Conditions(Cond,:);  

        %Added on 4/30% used to determine how many trials per condition%%%%%         

        subfolder = strcat('Data\',ProjectID, ExperimentID, SubjID,'\'); 

        csv_ftemp = strcat(ProjectID, ExperimentID, SubjID, ConditionID, 'T') 

         

         d = who([ConditionID,'*']);  

        ntrials = length(d); 

         

        % Loop for Trials 

        for count=1:ntrials %Num_Trials 

            Trial=count; 

             

             

             

            disp(['Subj ' int2str(Subj) '  /  Cond ' Conditions(Cond,:) '  /  

Trial ' int2str(Trial)]) 

             

%-- Clear variables to be calculated / replaced for each trial: 

            clear SL  SS  ST  SW  LS  

            clear SLn SSn STn SWn LSn 

            clear STShift SLShift DeltaTn DeltaPn 

            clear X Y Xn Yn 

             

%-- Define SL, ST, and SS data for THIS trial: 

            eval(['SL = ' Conditions(Cond,:) int2str(Trial) '(:,1);']); 

            eval(['ST = ' Conditions(Cond,:) int2str(Trial) '(:,2);']); 

            eval(['SS = ' Conditions(Cond,:) int2str(Trial) '(:,3);']); 

            eval(['SW = ' Conditions(Cond,:) int2str(Trial) '(:,4);']); 

            eval(['LS = ' Conditions(Cond,:) int2str(Trial) '(:,5);']); 

             

         

%==============================================================================

== 

%-- First, Normalize everything (SL & ST & SW) to unit variance: 

            SLn = SL ./ std(SL); 

            STn = ST ./ std(ST); 

            SSn = SLn ./ STn; 

            SWn = SW ./std(SW); 

            LSn = SWn ./ STn; 

%==============================================================================

== 

%-- Define GEM from slope defined by average speed: 

%--  (+/- 3 s.d.'s will plot lines on graphs a bit longer than the data 

            V = mean(SS);  %-- V = treadmill speed -- defines the slope of the 

GEM! 

            

             

            %=== X & Y here are just used for plotting the GEM as a line at 

speed V 

            X  = [(mean(ST)-20*std(ST)), mean(ST), (mean(ST)+20*std(ST))]; 

            Y = V.*X; 

            StrideTime = 0.7217; 

            StrideLength = 2.314; 

            y_temp = ones(2,1).*(2.314); 

            x_temp = ones(2,1).*(0.7217); 

            goalSL = 2.314; 
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            goalST = 0.7217; 

            

%===  NORMALIZED ("__n") DATA ARE USED FOR DOING GEM CALCULATIONS: 

            Vn = mean(SSn); 

            Xn  = [(mean(STn)-4*std(STn)), mean(STn), (mean(STn)+4*std(STn))]; 

            Yn = Vn.*Xn; 

             

%------------------------------------------------------------------------------

- 

            %-- Calculate Deviations Perpendicular & Tangent to the GEM: 

            %-- Use "geometrical" method -- See my notes... 

            STShift = STn - mean(STn);              %- Shifts ST data to 

mean(ST) location... 

            SLShift = SLn - (Vn.*mean(STn));        %- Shiftf SL data to same 

set point... 

            SWShift = SWn - (Vn.*mean(STn));          %- Shiftf SW data to same 

set point... 

            %%%% how do I make this for SW%%%% 

            DeltaTn = (1./sqrt(1+(Vn.^2))) .* (STShift + (Vn.*SLShift)); 

            DeltaPn = (1./sqrt(1+(Vn.^2))) .* ((-Vn.*STShift) + SLShift); 

             

%------------------------------------------------------------------------------

- 

%-- Calculate Means & SD's for 3 starting variables: 

            MeanSL = mean(SL);                SDSL = std(SL); 

            MeanST = mean(ST);                SDST = std(ST); 

            MeanSS = mean(SS);                SDSS = std(SS); 

            MeanSW = mean(SW);                SDSW = std(SW); 

            MeanLS = mean(LS);                SDLS = std(LS); 

             

            MeanSLn = mean(SLn);              SDSLn = std(SLn); 

            MeanSTn = mean(STn);              SDSTn = std(STn); 

            MeanSSn = mean(SSn);              SDSSn = std(SSn); 

            MeanSWn = mean(SWn);              SDSWn = std(SWn); 

            MeanLSn = mean(LSn);              SDLSn = std(LSn); 

             

            MeanDPn = mean(DeltaPn);          SDDPn = std(DeltaPn); 

            MeanDTn = mean(DeltaTn);          SDDTn = std(DeltaTn); 

             

            

  

%------------------------------------------------------------------------------

- 

%-- Compute "Stability" (lambda) of each measure: 

            N = length(ST); 

             

            PSL = polyfit(SL(1:(N-1),1), SL(2:N,1), 1);                 

LambdaSL = PSL(1); 

            PST = polyfit(ST(1:(N-1),1), ST(2:N,1), 1);                 

LambdaST = PST(1); 

            PSS = polyfit(SS(1:(N-1),1), SS(2:N,1), 1);                 

LambdaSS = PSS(1); 

            PSW = polyfit(SW(1:(N-1),1), SW(2:N,1), 1);                 

LambdaSW = PSW(1); 

            PLS = polyfit(LS(1:(N-1),1), LS(2:N,1), 1);                 

LambdaLS = PLS(1); 

             

            PDP = polyfit(DeltaPn(1:(N-1),1), DeltaPn(2:N,1), 1);       

LambdaDP = PDP(1); 

            PDT = polyfit(DeltaTn(1:(N-1),1), DeltaTn(2:N,1), 1);       

LambdaDT = PDT(1); 
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%------------------------------------------------------------------------------

- 

%-- Compute scaling exponents (alpha) of each measure: 

            [nSL  fSL  pSL]  = DFA(SL);          AlphaSL = pSL(1); 

            [nST  fST  pST]  = DFA(ST);          AlphaST = pST(1); 

            [nSS  fSS  pSS]  = DFA(SS);          AlphaSS = pSS(1); 

             

            [nSL  fSL  pSL]  = DFA(SLn);         AlphaSLn = pSL(1); 

            [nST  fST  pST]  = DFA(STn);         AlphaSTn = pST(1); 

            [nSS  fSS  pSS]  = DFA(SSn);         AlphaSSn = pSS(1); 

            [nDPn fDPn pDPn] = DFA(DeltaPn);     AlphaDPn = pDPn(1); 

            [nDTn fDTn pDTn] = DFA(DeltaTn);     AlphaDTn = pDTn(1); 

%============================================================================ 

%RMSE Calculation% 

%============================================================================ 

% RMSE = sqrt(mean((y - yhat).^2));  % Root Mean Squared Error 

             

%   

   %stride speed% 

            Tots1 =(((SS- V).^2)./N_strides); 

            Bob1 = sum(Tots1); 

            Abc1 = sqrt(Bob1); 

            RMSESS = Abc1./V; 

            RMSESSp = RMSESS .* 100; 

             

   %Stide Length % 

            Tots2 =(((SL-goalSL).^2)./N_strides); 

            Bob2 = sum(Tots2); 

            Abc2 = sqrt(Bob2); 

            RMSESL = Abc2./goalSL; 

            RMSESLp = RMSESL .* 100; 

   %Stide Time % 

 

            Tots3 =(((ST-goalST).^2)./N_strides); 

            Bob3 = sum(Tots3); 

            Abc3 = sqrt(Bob3); 

            RMSEST = Abc3./goalST; 

            RMSESTp = RMSEST .* 100; 

  

%------------------------------------------------------------------------------

- 

%-- Put Final Dependent Measures into Big Fat Matrix: 

%             RowNum = 25.*(Subj-1) + 5.*(Cond-1) + Trial; 

                    %from CAREN data  25: 5 con x 5 trials, 5: conditions% 

%             RowNum = 8.*(Subj-1) + 4.*(Cond-1) + Trial;  

                    %use this for nicole dissertation% 

            RowNum = counter; 

            OutData(RowNum,  1:3)  = [Subj, Cond, Trial]; 

             

            OutData(RowNum,  4:13)  = [   MeanSL,    MeanST,    MeanSS,   

MeanSW,    MeanLS,    MeanSLn,   MeanSTn,   MeanSSn,   MeanSWn,   MeanLSn]; 

            OutData(RowNum, 14:23) = [     SDSL,      SDST,      SDSS,     

SDSW,      SDLS,     SDSLn,     SDSTn,     SDSSn,    SDSWn,     SDLSn]; 

             

            OutData(RowNum, 24:25) = [  MeanDPn,   MeanDTn]; 

            OutData(RowNum, 26:27) = [    SDDPn,     SDDTn]; 

             

            OutData(RowNum, 28:32) = [ LambdaSL,  LambdaST,  LambdaSS,  

LambdaSW, LambdaLS]; 

            OutData(RowNum, 33:34) = [ LambdaDP,  LambdaDT]; 

             

            OutData(RowNum, 35:39) = [ AlphaSL,  AlphaST,  AlphaSS,  AlphaSLn, 

AlphaSTn]; 
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            OutData(RowNum, 40:42) = [ AlphaSSn,  AlphaDPn, AlphaDTn]; 

            OutData(RowNum, 43:45) = [ RMSESSp,   RMSESLp,   RMSESTp]; 

            counter = counter +1; 

            %- Below is a single-line list of all of the colums in "OutData" 

            %- Save and use this text to cut-paste as column headings into 

Excel / Minitab! 

            %- [Subj, Cond, Trial, MeanSL, MeanST, MeanSS, MeanSW, MeanLS, 

MeanSLn, MeanSTn, MeanSSn, MeanSWn, MeanLSn, SDSL, SDST, SDSS, SDSW, SDLS, 

SDSLn, SDSTn, SDSSn, SDSWn, SDLSn, MeanDPn, MeanDTn, SDDPn, SDDTn, LambdaSL, 

LambdaST, LambdaSS, LambdaSW, LambdaLS, LambdaDP, LambdaDT, AlphaSL,  AlphaST,  

AlphaSS,  AlphaSLn, AlphaSTn, AlphaSSn,  AlphaDPn, AlphaDTn 

             

 

             

    end   %- for Trial = 1:Num_Trials 

         

    end   %- for Cond = 1:Num_Cond 

  

     

    end   %- for Subj = 1:Num_Subj 

  

%- Return to original working directory (Should have never left??): 

eval(['cd ' Starting_Directory]) 

  

%- Save final data file to disk for Statistical Analysis in Minitab: 

save OutData_E2_1_21.dat OutData -ascii -double -tabs 

  

  

disp('All Done!') 

disp(['Time Elapsed = ' num2str(toc) ' sec.']) 

%- End of Program ------------------------------------------------------- 
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Experimental Subject Data  

 

Chapter 3:  

Experiment 1 

E1 Subjects Sex Age Height (m) Leg Length (m) Weight (kg) Dom. Leg Speed 

1 F 27 1.72 0.97 54.5 R 1.2 

2 M 22 1.87 1.06 75.297 R 1.25 

3 F 26 1.9 1.03 90.8 R 1.25 

4 M 21 1.87 1.03 82.33 R 1.25 

5 F 22 1.65 0.9 57.7 R 1.16 

6 F 30 1.62 0.9 54.4 R 1.16 

7 M 20 1.765 0.88 79.545 R 1.16 

8 F 22 1.66 0.85 64.5 R 1.16 

9 F 28 1.62 0.87 59.1 R 1.16 

10 F 23 1.62 0.89 55 R 1.16 

11 F 34 1.64 0.92 66 R 1.2 

12 M 21 1.7 0.96 63.5 R 1.25 

13 F 22 1.64 0.88 55 R 1.16 

14 F 20 1.65 0.91 62.8 L 1.2 
 

 

Chapter 4:  

Experiment 2 

 

 

E2 Subjects Sex Age Height (m) Leg Length (m) Weight (kg) Dom. Leg Speed 

1 F 25 1.63 0.91 56.8 R 3.22 

2 F 33 1.69 1 60 R 3.22 

3 F 27 1.68 0.98 55 R 3.22 

4 M 32 1.8 1.01 75 R 3.22 

5 M 27 1.9 1.03 85 R 3.22 

6 M 27 1.74 1.02 72 R 3.22 

7 M 26 1.93 1.01 87.8 R 3.22 

8 M 35 1.75 0.99 86.4 R 3.22 

9 M 23 1.66 0.91 66.5 R 3.22 

10 F 26 1.7 0.94 64.5 R 3.22 
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Chapter 5:  

Experiment 3 

 

E3 Subjects Sex Age Height (m) Leg Length (m) Weight (kg) Dom. Leg PWS RTS PRS 

1 F 27 1.68 0.99 55 R 2.8 4.9 6.3 

2 F 30 1.62 0.92 56.5 R 2.7 4.8 6.2 

3 M 24 1.8 0.99 69.9 R 2.8 4.9 6.4 

4 M 26 1.93 1.01 87.2 R 2.8 5 6.5 

5 F 25 1.63 0.91 58.7 R 2.7 4.7 6.1 

6 M 26 1.93 1.03 88.6 R 2.8 5 6.5 

7 M 21 1.87 1.03 80.9 R 2.8 5 6.5 

8 F 23 1.675 0.95 60 R 2.7 4.8 6.3 

9 F 22 1.65 0.92 61.8 R 2.7 4.8 6.2 

10 M 22 1.76 0.93 70.5 R 2.7 4.8 6.2 
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