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Cognitive sensor platforms are the next step in the evolution of intelligent sensor 

platforms. These platforms have the capability to reason about both their external 

environment and internal conditions and to modify their processing behavior and 

configuration in a continuing effort to optimize their operational life and functional 

utility. The addition of cognitive capabilities is necessary for unattended sensor systems 

as it is generally not feasible to routinely replace the battery or the sensor(s). This 

platform provides a chassis that can be used to compose embedded sensor systems from 

composable elements. The composable elements adhere to a synchronous data flow 

(SDF) protocol to communicate between the elements using channels. The SDF protocol 

provides the capability to easily compose heterogeneous systems of multiple processing 

elements, sensor elements, debug elements and communications elements. The 

processing engine for this platform is a Dataflow-Processing Element (DPE) that 

receives, processes and dispatches SDF data tokens. The DPE is specifically designed to 

support the processing of SDF tokens using microcoded actors where programs are 

assembled by instantiating actors in a graphical modeling tool and verifying that the SDF 

protocol is adhered to.  
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Chapter 1. Introduction to Reactive Sensor Systems 

1.1 Transducers, sensors, actuators and systems 

A transducer is a device converts energy from one form to another. There are two 

types of transducers: 1) sensors that detect a change in a physical stimulus and turn it into 

a signal that can be measured and 2) actuators that output action into the physical world. 

Figure 1.1 below shows an example of typical sensor/actuator system. The sensor in this 

system can be thermistor that measures temperature and the actuator is a relay that 

controls a cooling or heating system.  
 

 

Figure 1.1:  Typical sensor/actuator system 

Typical input transducers would include strain gauges, piezoelectric devices, 

phototransistors, hall-effect devices, magnetometers, thermo-couples, ion-sensitive 

transistors, capacitive displacement devices, thermistors and bio-sensing devices.  Table 

1.1 below shows examples of various types of stimulus sources. 

As can be seen in Figure 1.1, the input data from the sensor element is processed 

before it outputted to the actuator. There are three levels of processing capability 

associated with sensor systems and are described in more detail in the next section.  
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Table 1.1: Examples of stimulus sources for sensor systems 

STIMULUS 
TYPE 

EXAMPLES 

Acoustic Wave amplitude, spectrum, polarization, velocity, phase 

Electrical Voltage, charge, current, electric field, conductivity, permittivity 

Magnetic Magnetic field, amplitude, phase, polarization, flux, permeability 

Optical 
Wave amplitude, spectrum, polarization, velocity phase, emissivity, 

reflectivity, absorption 

Thermal Temperature, flux, thermal conductivity, specific heat 

Mechanical 
Position, mass, shape, density, acceleration, force, stress, strain, pressure, 

torque, stiffness, orientation 

1.2 Hierarchy of sensor systems 

The hierarchy of sensor systems is generally described as having three distinct 

levels of capabilities. The first level is a smart sensor system where the system is able to 

identify its purpose and is able to communicate information to and from other devices. 

The second level is generally classified as intelligent and this is achieved by adding the 

ability to recognize, interpret and understand sensor stimuli. The third level of capability 

is the cognitive sensor system that adds reasoning and cognition to the intelligent sensor 

system, allowing it to make decisions based on the sensor stimuli and to be totally aware 

of the environment. This classification is graphically illustrated in Figure 1.2 below [1].  
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Figure 1.2:  Computational hierarchy of advanced sensor systems 

Each level of hierarchical capability requires a corresponding improvement in 

computational and energy performance. While transistor scaling has provided some of the 

additional computational efficiency, the energy supply for embedded sensors is staying 

virtually constant since Moore’s Law does not apply to battery technology. That said, 

Koomey, et al, observe that computational efficiency (measured in computations/Joule) is 

improving at a similar rate to Moore’s Law [2]. This may be adequate for workloads 

whose computational efficiency requirements remain constant from one generation to the 

next. However as will be shown below in Section 1.5 there needs to be a huge increase in 

computational efficiency in the next 20 years and relying on transistor scaling will not be 

an option. 
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1.3 Reactive systems 

Sensor systems are generally considered to be event-driven (reactive) systems. 

The classical definition of a reactive system is “A system that changes its inherent 

operations, outputs and system state in response to stimuli both from within or externally 

generated” [3]. Reactive systems follow a pace dictated by the environment and they only 

need to be as fast as required to handle the stimuli. Additionally, reactive systems are 

concurrent, discrete valued and time varying. The concurrency of a reactive system is an 

essential feature that can be implemented using a number of different models including 

Dynamic Dataflow (DDF), Synchronous Dataflow (SDF), Discrete Events (DE), Petri 

nets, Khan Process Networks (KPN), and the synchronous/reactive model. For this work 

Synchronous Dataflow (SDF) is used to model how the processing elements process 

tokens as they propagate through the network. SDF is a special case of dataflow where 

the flow of control is predictable at compilation time [4]. 

1.4 Synchronous Dataflow network 

A Synchronous Dataflow network is a collection of functional nodes, which are 

connected and communicate via unbounded First-In-First-Out (FIFO) queues [5] [6]. 

Each node is called an “Actor” and performs computations on the data that is 

communicated via the queues. Each datum is called a “Token” and in a Synchronous 

Dataflow model there are a fixed number of tokens consumed each time an actor 

performs a computation. The actor “Fires” when all of the tokens have been received by 

the FIFO queue. When fired, the actors consume input tokens and produce output tokens. 

Figure 1.3 below shows an example of a Finite-Impulse-Response (FIR) actor and an 

addition (ADD) actor. The FIR actor consumes a stream of one input token and produces 
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one output token. The ADD actor consumes two input tokens and produces one output 

token.  

 

  

Figure 1.3:  Synchronous Dataflow Actors 

A key property of a dataflow model is that the output token sequences do not 

depend on the firing order of the actors. Figure 1.4 shows an example of a system 

composed of three actors. Actor ONE consumes five tokens and produces one token. 

Actor TWO consumes three tokens and produces two tokens. Actor THREE consumes 

the tokens from actors ONE and TWO and produces five output tokens. 

 

 

Figure 1.4:  SDF system composed of three actors 

The firing order of actors ONE and TWO does not matter since actor THREE will 

not fire until all of the tokens are received in its two input FIFO queues. For every actor 

FIR 
1 1 

ADD 
1 1 
1 
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there is a set of rules that determine when an actor will fire. An actor with more than one 

input stream can have N firing rules. This is expressed as: 

ℜ

The actor can fire if and only if one or more of the firing rules is satisfied, where 

each firing rule constitutes a set of patterns, one for each of the p inputs: 

The pattern Ri,j is a (finite) sequence.  For firing rule i to be satisfied, each pattern 

Ri,j must form a prefix of the sequence of unconsumed tokens at input j. The input queues 

for this platform will be designed to support a maximum of two inputs and i + x tokens 

for each input, where x is the number of entries in the FIFO needed for functional node 

operation. 

Every input to an actor has a queue and the queues in an SDF network are 

unbounded which means that they will not block tokens from entering the queue [4]. 

Practically speaking it is not possible to build an unbounded queue due to size and power 

limitations. The system designer will need to perform a complete system simulation to 

determine if the depth of the input queues will support all possible scenarios. This design 

uses a bounded queue that has blocking signals to prevent queue overrun. Figure 1.5 

below illustrates the direct mapping of the Actors shown above in Figure 1.4 to three 

processing elements, each composed of a control block, datapath, and register file. The 

processing elements are connected via channel nodes that contain the queues. 
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Figure 1.5:  Mapping of actors to processing elements 

The Dataflow-Processing Element (DPE) that is used in this platform is 

implemented using a stack-based microarchitecture. A key feature of this micro-

architecture is the merger of the SDF input queue with a stack removing the dependency 

to fetch token data from the queue and moving it to the stack. The merger of the SDF 

input queue and the stack based register file is shown below in Figure 1.6. The merged 

element is referred to as a Queued-Stack (QS) and is described in detail in Chapter 5. 

Note that the channel node has been decomposed into an output FIFO and an input queue 

so that the stack register file could be integrated into the input queue. 
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In this example the three Actors are individually mapped to single Dataflow 

Processing Elements. It is possible to “compose” a system where the Actors are mapped 

to different DPE configurations. This will be described in the next section.  

 

 

Figure 1.6:  Merged input-queue and stack based register file 

1.5 System composability 

Composability is a key requirement of the sensor platform design presented in this 

dissertation. It provides the ability to select composable elements and assemble them into 

various topologies as needed for a specific algorithm. For a component to be composable 

it must be modular (self-contained) and can be deployed independently. It must also be 

stateless which means that it treats each request (or firing) as an independent transaction, 

unrelated to any previous request [5] [6]. The composition rules for this platform are 

listed below. 
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1. All inputs to a component will have FIFO queues. Outputs can have FIFO 

queues to satisfy the need of Rule #2 below. 

2. All data propagates through the dataflow network via channels. Note: channel 

nodes convert data streams as they pass through the network, e.g. serial-

parallel, parallel-serial, stream-FLIT, FLIT-stream, etc. 

3. For Push-Mode operation, Reads to the FIFO will block, however, Writes will 

not. For Pull-Mode operation the inverse is true. Note: this platform is 

designed to support both Push-Mode and Pull-Mode operation. 

4. The composed system will be determinate, which requires that each actor is 

functional and that the set of firing rules are sequential. Functional means that 

an actor firing lacks side effects and that the output tokens are purely a 

function of the input tokens consumed in that firing. 

5. Components can be software routines. Rule #4 states that these routines can 

be moved to alternate computational engines and execute without 

modification. 

The implementation details of channel nodes and functional nodes as well as 

Push/Pull modes are described in detail in Chapter 4. Figure 1.7 below shows an example 

of a composed system where Actors One and Two are in a single DPE. Figure 1.8 below 

shows a single DPE system where all three Actors are in a single DPE. 
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Figure 1.7:  Composed system using two dual-input DPEs 

 

 

Figure 1.8:  Composed system using a single DPE 

Figure 1.9 below shows a sensor system topology where the channel nodes are 

configured as routers. The channel routing node routes tokens through the network in a 

predefined pattern. The patterns are loaded during system initialization and are generally 

static. These types of network topologies provide flexibility in building a wide range of 
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sensor platforms at the expense of increased energy requirements. The design of the 

channel routing node will be described in more detail in Chapter 4. 

 

 

Figure 1.9:  Composed system showing channel nodes configured as routers 

1.6 Research motivation and contribution 

The world is becoming increasing connected via the ever-expanding Internet. The 

data that populates the Internet is for the most part generated by humans. Most of the data 

relates to ideas and very little to the things that make up our environment. This has led to 

the notion that perhaps the Internet should comprehend “things”. This idea is called the 
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Internet of Things (IoT) and was first introduced by Kevin Ashton in 2009. With the 

advent of the next generation Internet protocol (IPv6), it is now conceivable to assign a 

unique address to every “thing” on the planet. In fact the IoT is precisely about doing so. 

It is easy to envision where there will be between 100-200 addressable sensors per person 

by 2050. These would be in the form of such things as RFID tags, home automation 

sensors, territorial/security monitoring, resource monitoring, and health monitoring, etc. 

This would indicate that there could be in excess of 1.5 trillion sensors connected to the 

IoT. It is interesting to do an energy analysis of what 1.5 trillion sensors would require: 

Assume: 

– 1% duty cycle, which is ~ 315 K-Sec per year 

– 25μW power per sensor 

The Energy/Sensor would be: 

The energy requirements per year for the 1.5 trillion sensors would be 11.8 T-Joules 

 

Assume that 1% of the sensors are powered by single-use batteries and that 

battery technology in 2050 would provide 7.0 MJ/Kg of specific energy, the result is a 

massive pile of batteries that must be disposed of every year. 

What is not obvious from the analysis is that 25μW of power per sensor system is 

a very aggressive assumption if transistor technology is the only source of energy 

improvement. Figure 1.10 below shows the estimated power usage for the wireless sensor 

nodes that will be presented in the next chapter [8] [9] [10] [11] [12]. Most of the power 
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usage is in the wireless subsystem, primarily due to the high data transmission rates 

(10kbps – 100kbps) and the sensor-networking overhead. The idle power is also driven 

by the wireless subsystem where the nodes are listening for relevant transmission data 

from other sensors and data aggregators in the network. 

 

 

Figure 1.10: Subsystem power usage for various wireless sensor nodes 

To save power, the duty cycle for these platforms is usually between 0.1% and 

5%. Figure 1.11 shows the power usage for 1% duty cycle operation. The total power is 

the weighted sum of the power usage for each of the sensor node subsystems. The 

weighted sum power usage for these platforms is between 550μW and 850μW, which is 

considerably larger than the 25μW that was assumed above. The wireless subsystem 

consumes too much power and the optimal solution is to limit the amount of data that 
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must be transmitted and received. Additionally the idle time power must be limited by 

reducing the percentage of time that the sensor node listens for commands. The 

transducer/sensor(s) power will require advances in material science to substantially 

reduce their power requirements. The processor power and the sleep power are addressed 

by the processing element described in this dissertation and will come from aggressive 

optimization of computational efficiency at the system level. 

 

 

Figure 1.11: Weighted-Sum power usage for various wireless sensor nodes  

 

From a system-level design perspective optimal computational efficiency is 

achieved by “impedance matching” the four domains that comprise a sensor platform 

design. The four domains include the algorithmic domain, the software program domain, 
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the hardware architecture and micro-architecture, and lastly the silicon technology. This 

is described by the following pseudo-equation:  
 

(1.5)

 

where:   #inst = number of executed instructions  

TP = Trace parallelism 

PP = Processor parallelism 

LL = Levels of Logic 

ns = nanoseconds or 1/frequency 

 

The number of instructions per task is the mapping of the application/algorithmic 

domain by the software compiler into single or multiple software threads. Ideally the 

number of software threads is matched to the number of processing elements or hardware 

threads. The processing element(s) would then be designed to provide the optimal 

energy-performance in order to accomplish the task as determined by levels of logic 

needed per clock cycle. It can be seen that solving the equation “as is” results in a value 

of one Joules-ns/Task, which indicates an ideal impedance match between all 

components of the equation.  

For very high volume applications excellent computational efficiency can be 

accomplished using an Application Specific Processor (ASP) or an Application Specific 

Integrated Circuit (ASIC). For low volume applications however, commercial-off-the-

shelf (COTS) microprocessors or microcontroller are generally used. These COTS 

computing elements provide excellent programmability and debug capabilities at the 

expense of non-optimal energy/computation efficiency. The computational element 

designed for this platform is considered to be an ASP and is targeted for low-energy 
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embedded sensor applications specifically those that can be implemented using an event-

driven computational model. 

The research presented in this dissertation is primarily focused on two areas: 1) 

the implementation of a computationally efficient processing element that 2) addresses 

the micro-architectural requirements needed to support an event-driven Cognitive Sensor 

Platform (CSP). This research has resulted in a computationally efficient processing 

element that can handle the workloads of deeply embedded sensor platforms that require 

some level of cognitive capabilities. All domains described above in Equation 1.5 were 

optimized in the implementation of the processing element. These include the following. 
 

1. Algorithmic level: algorithms are modeled in Matlab and verified in 

Simulink/SimEvents, which can simultaneously model continuous time and 

discrete time systems. This level of modeling provides the best opportunity to 

optimize system behavior and energy usage. System parameters such as data 

precision, token throughput and redundancy can be tuned for a specific sensor 

application.  

2. Application software and operating system level: the discrete time 

components are instantiated using a library of actors which can be 

implemented either as hard coded logic blocks or as is the case in this 

implementation using microcoded routines. The requirements for an operating 

system and corresponding middleware are removed using this mechanism of 

specifying operations.  

3. Hardware architecture level: optimal mapping of the software domain to the 

hardware domain is accomplished by implementing a machine that directly 

executes actors and follows a Synchronous Dataflow (SDF) protocol. The 

parallelism specified in the SW domain can be precisely matched in the HW 

domain using low overhead system composability. The HW implementation is 
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novel in that it is not a Von-Neumann or Harvard style machine. The merger 

of the SDF input FIFO’s and the stack-based register file (Figure 1.5 above) 

provides an extremely energy efficient mechanism of managing and 

consuming tokens. The same structure is used to manage and fetch actors 

while allowing asynchronous events to be queued, executed and deprecated. 

4. Hardware microarchitecture level: the ratio of control logic to datapath logic 

is optimized for maximum power efficiency. Features such as nested looping, 

microinstruction repeat functionality and conditional execution are 

implemented with less than a 4% increase in area of the control logic block. 

One-hot encoding is used throughout the design including the Queued-Stack 

element, eliminating glitching power caused by decoding logic. Aggressive 

use of clock gating is possible due the event driven system architecture. 

5. Transistor implementation: the levels of logic required to implement the HW 

microarchitecture is matched to algorithmic performance requirements 

specified at the system level design. 

 

It should be noted that the actual design and implementation of a cognitive sensor 

platform is not part of this dissertation. During the research into existing sensor platform 

implementations it became obvious that the classical stored program mechanism (Von-

Neumann) was not optimal for deeply embedded low-energy sensors. This drove the 

subsequent research and development of the computationally efficient processing element 

presented in this dissertation.  

1.7 Dissertation flow 

This dissertation focuses on the implementation of a Dataflow-Processing 

Element (DPE) for a Cognitive Sensor Platform (CSP). This platform is used in 

embedded applications that are extremely energy sensitive and require a high level of 
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autonomy. Chapter 2 will survey some key sensor platforms and operating systems that 

have been developed over the last 15 years. In Chapter 3 the key requirements of the CSP 

are presented and the system architecture of the CSP is presented in Chapter 4. The 

microarchitecture of the DPE is described in detail in Chapter 5 and the DPE 

microprogramming environment will be discussed in Chapter 6. Chapter 7 presents a 

high-level modeling environment for the CSP using Matlab/Simulink and SimEvents. 

Chapter 8 presents a performance analysis of the DPE for the FIR and IIR algorithms and 

the corresponding energy analysis for the two workloads. Future work and conclusions 

will be presented in Chapters 9. In Appendix C the results of synthesizing, placing, 

routing and extraction are presented for a 180nm implementation. An identical 

implementation of the DPE integrated circuit design was prototyped in an FPGA and the 

prototyping results are presented in Appendix D. 
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Chapter 2. Survey of Sensor Platform Architectures 

2.1 Commercial microprocessors for sensor platforms 

There are a number of low power sensor platform architectures that have been 

developed over the last fifteen years. The very early platforms used commercial-off-the-

shelf (COTS) microcontrollers from Motorola and Intel, specifically the 8-bit families 

such as the 68HC05, 68HC08, and 8051. The more recent platforms used either custom 

microprocessors or COTS microprocessors from Atmel, Microchip, Texas Instruments 

and ARM. Table 2.1 below shows a comparison of the various COTS microcontrollers 

used in the sensor platforms described in this chapter.  

Table 2.1:  COTS Microcontrollers used in sensor platforms 

Manufacturer Device 
SRAM 

(KB) 
FLASH 

(KB) 
Active 
(mA) 

Standby 
(µA) 

Release 
Date 

Atmel 

AT90LS8535 

ATMega 128 

ATMega 165/325/645 

AT91 (ARM-THUMB) 

0.5 

4 

4 

256 

8 

128 

64 

1024 

5 

8 

2.5 

38 

15 

20 

2 

160 

1998 

2001 

2004 

2004 

Motorola 

HC05 

HC08 

HCS08 

0.5 

2 

4 

32 

32 

60 

6.6 

8 

6.5 

90 

100 

1 

1988 

1993 

2003 

Intel 

8051 (8-bit) 

8051 (16-bit) 

XSCALE PXA27 

0.5 

1 

256 

32 

16 

- 

30 

45 

39 

5 

10 

574 

1995 

1996 

2004 

Phillips 80C51 (16-bit) 2 60 15 3 2000 

Microchip PIC 4 128 2.2 1 2002 

Texas 

Instruments 

MSP430F14 

MSP430F16 

MSP430F26 

2 

10 

64-128 

60 

48 

128-256 

1.5 

2 

.25 

1 

1 

.1 

2000 

2004 

2010 
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The sensor platforms that were built using these COTS processors have additional 

components such as wireless/infrared transmitters and a wide variety of sensors 

including: acoustic, seismic, magnetometers, temperature, pressure, light, accelerometers, 

ultra-sound and location sensing (GPS). Table 2.2 below is a partial list of sensor 

platforms developed by various university research programs since 1998 [8] [9] [10] [11] 

[12]. The key aspects of each of these platforms are discussed below. Some of these 

programs have been completed and are now part of commercialization efforts.  

Table 2.2:  Survey of first generation sensor platform configurations  

Node Years 
Active CPU Memory I/O & 

Sensors 
Research 

Group 

iBadge 

2000 

to 

2007 

 

ATMEGA-103L 

TI TMS320VC5416 
 

Temperature, 
pressure, 
humidity, 
magnetometer, 
accelerometer, 
acoustic 

UCLA 

Medusa  
MK-II 

1999 

to 

2005 

ATMEGA-128L 

AT91FR4081-ARM 
THUMB 

1MB Flash, 
136KB RAM 

Ultrasound 
transceivers to 
perform high 
accuracy distance 
measurements 

UCLA 

Smart 
Dust/Motes 

1999 

to 

2008 

ATMEGA-128L 
4K RAM  

128K Flash 
See Table 2.3 

UC Berkeley & 
Crossbow 

PicoNode 
1998 

to 

2004 

STRONG-ARM 1100 
4Mb DRAM, 
4mB FLASH 

Temperature, 
humidity, light, 
sound, 
acceleration, 
magnetic fields 
and provisions 
for GPS. 

UC Berkeley 
Wireless Research 
Center 

µAMPS 
1999 

to 

2004 

STRONG-ARM 1100 
16Mb RAM, 
512KB ROM 

Seismic and 
acoustic 

MIT 
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2.1.1 UCLA iBadge 

The iBadge sensor platform was designed for the NSF supported Smart 

Kindergarten project [8]. The sensor platform was designed to be worn by children to help 

create a smart problem-solving environment for early childhood education. It was equipped 

with a microphone and loudspeaker and was capable of capturing and playing back speech 

and possessed enough capacity to handle complex speech processing algorithms. Figure 2.1 

below shows the platform block diagram. There are two processing elements, one for general 

purpose control processing (Atmel ATMEGA-103L) and one for speech processing (Texas 

Instruments TMS320VC5416). The platform has a large number of sensors including: 

acoustic in/out, temperature, pressure, humidity, magnetometer, accelerometer, 

ultrasound localization, magnetometer and accelerometer. It contains a Bluetooth radio 

for transmission of sensor data to a central processing system for analysis. 

 

 

Figure 2.1:  Block diagram of iBadge sensor platform 
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2.1.2 UCLA: Medusa MK-2 

The Medusa-2 platform was designed to support research into different sensing 

technologies and was employed as a ceiling mounted beacon node for the Smart 

Kindergarten program [9]. The platform was also used for the development of network 

protocols for low energy embedded sensing environments. Figure 2.2 below shows a 

block diagram of the MK-2 platform [9]. There are two processing elements. The first 

one is an Atmel 8-bit 4MHz ATMega128L microcontroller with 32KB of FLASH 

memory and 4KB of RAM that is used as an interface to the sensors and for radio 

baseband processing. The second processing element is a 16/32-bit AT91FR4081 ARM 

THUMB processor also from Atmel and has 136KB of RAM and 1MB of on-chip 

FLASH memory. The sensing subsystem contains a MEMs accelerometer (ADXL202E 

from Analog Devices) and a temperature sensor. The platform has a generous amount of 

I/O channels including:  eight 10-bit ADC inputs, serial ports (I
2
C, RS-232, RS-485, SPI) 

and standard general-purpose ports. 

 

 

Figure 2.2:  Block diagram of the Medusa MK-II platform 
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2.1.3 UC Berkeley Smart Dust Motes 

The first platform of UC Berkeley Smart Dust Motes program was introduced in 

1998 with the WeC platform. The Smart Dust program goal was to make a cubic 

millimeter autonomous sensing device [10]. Early platforms were built with COTS 

components and referred to as COTS Dust. Table 2.3 below shows the family of Mote 

platforms [10]. 

Table 2.3:  Family of Berkeley Motes 

Mote Type 
 

Years Active 

WeC 

1998 -
2001 

René 

1999 -
2002/ 

René2 

2000 -
2004 

Dot 

2000 -
2004 

Mica 

2001 - 
2005 

M2Dot 

2002 -
2005 

Mica 2 

2002 - 
2006 

Telos 

2004 -
2010 

                                                          Microcontroller 

Part Number AT90LS8535 ATmega163 ATmega128 MSP430 

Program Memory (KB) 8 16 128 48 

RAM (KB) 0.5 1 4 10 

Active Power (mW) 15 15 8 33 3 

Sleep Power (µW) 

Wakeup Time (µS) 

45 

1000 

45 

36 

75 

180 

75 

180 

15 

6 

                                                        Communications 

Radio part number TR1000 TR1000 CC1000 CC2420 

Data Rate (kbps) 10 40 38.4 250 

Modulation Type OOK ASK FSK O-QPSK 

Receive Power (mW) 9 12 29 38 

Transmit Power at 0dBm (mW) 36 36 42 35 

                                                           Power Consumption 

Minimum Operation (Volts) 

Total Active Power (mW) 

2.7 

24 

2.7 

24 

2.7 

24 

2.7 

24 

2.7 

27 

2.7 

44 

2.7 

89 

1.8 

41 

                                                               Expansion and Sensor Interface 

Expansion bus None 51-pin 51-pin None 51-pin 19-pin 51.pin 16-pin 

Integrated Sensors No No No Yes No No No Yes 
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Figure 2.3 below shows the basic microarchitecture of a Smart Dust Mote. The 

timers that are driven by the real time clock (RTC) generate events that are registered by 

the operating system and tasks are queued to handle them. 

 

 

Figure 2.3:  Block diagram of a basic Smart Dust Mote System 

The WeC platform was built with an 8-bit Atmel AVR-AT90LS8535 

microprocessor with about 4 MIPS (million instructions per second) of throughput 

capability. The platform was used for early testing of wireless communications utilizing 

an integrated printed circuit board (PCB) antenna. The communications capability and 

reprogrammable memory provided the ability to update the platform software remotely. 

The board was approximately the size of a silver dollar and contained temperature and 

light sensors that were connected via a 51-pin connector.  

The René platforms were produced by Crossbow Technologies and were similar 

in design to the WeC platform. The modular sensor board had temperature and light 
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sensors and built using stackable boards connected via a 51-pin connector; providing the 

capability to design application specific sensor boards. The René-2 platform replaced the 

AT90LS8535 processor with an ATmega128L  

The Dot platform was similar to the René platform but removed the 51-pin 

connector limiting its sensing capability to temperature and light. It was a proof of 

concept design to demonstrate wireless re-programmability, ad hoc network discovery, 

routing, and aggregation.  

The MICA mote platform was developed in collaboration with Intel Research. It 

includes an 8-bit Atmel ATMEGA-128L microcontroller, 132K of memory and 512K of 

nonvolatile FLASH memory. The platform had a 40 Kbps radio operating at 433 MHz or 

916 MHz with software programmable frequency hopping for better noise immunity and 

increased range. 

The Telos platform [7] was the first platform to be designed using the TI MSP430 

microcontroller. At that time the MSP430 had the lowest power consumption in both 

sleep and active modes and operated down to 1.8V. This allowed the designers to use two 

batteries in series and operate down to the 0.9V cut-off voltage for each battery. The 

MSP430 had the fastest wakeup time from standby to active mode in less than 6µs. The 

wireless interface used the IEEE 802.15.4 wireless standard operating at 2.4GHz. The 

antenna was built into the PCB and was tuned to match the radio interface. TinyOS was 

redesigned for the platform using a three-tier architecture that was independent of the 

processor or wireless radio used. 
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2.1.4 UC Berkeley PicoNodes 

The PicoNode was designed to provide maximum system flexibility and low 

energy consumption [11]. It consisted of four main functional modules: computing, 

sensing, communications and power as shown below in Figure 2.4. 

 

 

Figure 2.4:  Block diagram of the PicoNode platform 

The first module contains two computational units including a StrongARM SA-

1100 processor with 4MB RAM and 3MB FLASH and a configurable logic unit using a 

Xilinx XC4020XLA FPGA. The SA-1100 is used for both general purpose computing 

and for DSP functions. It provides a CPU core and a variety of integrated controllers for 

services such as standard I/O control and timers. The FPGA is used to emulate tasks that 

are assigned to configurable or custom logic on the PicoNode. The communication 

module includes a configurable digital physical layer and a simple direct-down 

conversion RF front end. The sensor module is customized for each application. These 

modules are interconnected by a low-energy interconnect scheme. The driving force 

behind the design of the PicoNode platform was to provide a balance between flexibility 

(FPGA) and programmability (ARM processor). The designers provided a development 

infrastructure to support the mapping of algorithms and tasks to the ARM processor, the 
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FPGA or both. A kernel was developed that provided access to the various resources in 

the SA-1100 as well as a port abstraction to the FPGA.  

2.1.5 MIT’s μAMPs Platform 

The MIT µAMPS platform utilized the StrongARM SA-1100 processor coupled 

to a seismic sensor and an acoustic sensor as shown below in Figure 2.5 [12].  

 

 

Figure 2.5:  Block diagram of the COTS version of the MIT µAMPS platform 

Energy efficiency was the primary goal of this platform design. A number of 

lower power design techniques were used to save energy including: sub-threshold 

circuits, dynamic voltage and frequency scaling, energy harvesting and adaptive routing 

of cluster sensor data. The team developed two custom ICs for the platform: 1) an ASIC 

for the RF module that included an ultra-low power FFT and 2) a low-power A/D 

converter for the sensor module. The platform was used for acoustic acquisition 
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applications. Acoustic data was filtered and fused using a beam-forming algorithm to 

reduce the amount of data that needed to be transmitted to the central collection node.  

A variation of the uAMPS was proposed which coupled a DSP with specialized 

hardware accelerators as shown below in Figure 2.6 [12]. The hardware accelerators 

provided optimal energy-performance-mm
2
 for the application domain that the platform 

was designed for. 

 

Figure 2.6:  Custom implementation of the MIT µAMPS platform 
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Table 2.4:  Custom processors for sensor platforms (2004-2011) 

Processor 
Arch 
Style 

Data 
Path 

Width 

Event 
Driven 

Circuit 
Family 

Memory 
(KB) 

Process 
(nm) 

Voltage MIPS 
Energy 

(pJ/Inst) 

Pleiades DSP 16 N STD 0.512 600 1.5 14 205 

SNAP 
RISC+ 

Accel 
16 Y ASYNC 8 180 

1.8 

0.6 

200 

23 

218 

24 

BitSNAP 
RISC 

Bit 

Serial 

16 Y ASYNC 8 180 
1.8 

0.6 

54 

6 

152 

17 

Subliminal GP 8 Y 
Sub- 

Threshold 
0.256 130 ~0.360 0.8 2.6 

SmartDust RISC 8 N STD 3.125 250 1.0 .5 12 

 

These custom processors were designed to improve computational efficiency by 

utilizing advance circuit techniques such as asynchronous logic and sub-threshold logic, 

the use of hardware acceleration for specialized tasks, and reconfigurable control/data 

logic for algorithmic flexibility. The Pleiades, SNAP and Subliminal processor will be 

discussed in more detail below. 

2.2.1 Pleiades Platform 

The Pleiades platform from UC Berkeley was designed for voice processing in 

wireless applications. Figure 2.7 below shows the high-level block diagram of the 

platform [14]. The processing unit combines an ARM core with 21 satellite processors: 

two MACs, two ALUs, eight address generators, eight embedded memories, and an 

embedded low-energy programmable array.  
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Figure 2.7:  Block diagram of the Pleiades Platform 

The ARM processor configures the memory-mapped satellites via a hierarchical 

interconnect block that contains three levels of interconnect hierarchy that superimposed 

nearest neighbor, mesh and tree architectures for optimal energy usage. The dual-stage 

pipelined MAC (Multiply-Accumulate including shift, round and saturate functions) and 

the ALU (Arithmetic Logic Unit) can be configured to handle a wide range of operations. 

Synchronization between the satellite processors is accomplished by a data-driven 

communication protocol in accordance with the dataflow nature of the computations 

performed in the kernel. An interface wrapper is placed around each of the satellite 

processors to comply with the inter-processor communication protocol. The address 

generators and embedded memories are distributed to supply multiple parallel data 

streams to the computational elements. The address generator has a small local 

instruction memory that can be programmed to support various types of addressing 

patterns and nested loops using loop counters and stride counters (similar to the 

BlackFin® DSP from Analog Devices). The programmable logic block is optimized for 

arithmetic and data-flow control functions.  
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2.2.2 SNAP 

The SNAP (Sensor Network Asynchronous Processor) from Cornell University is 

based on an asynchronous data-driven 16-bit RISC core [15] as shown below in Figure 

2.8. The processor instruction set is optimized for sensor-network applications, with 

support for event scheduling, pseudo-random number generation, bit-field operations, and 

radio/sensor interfaces. In addition, the platform has a hardware event queue and event 

coprocessors, which allow the processor to avoid OS overhead such as task schedulers 

and external interrupt servicing.  

 

 

Figure 2.8:  Block diagram of the SNAP  

The designers of the SNAP processor were concerned with the following system 

requirements: low-power sleep mode, low overhead wakeup mechanism, low power 

consumption while awake and a simple programming model. The use of quasi-delay-

insensitive (QDI) asynchronous circuits in SNAP resulted in automatic, fine-grained 

power management, because the circuits that are not required to perform a particular 

operation do not have any switching activity. Using QDI circuits also eliminates glitches 

or switching hazards in the processor, removing a key source of energy usage. By default 



32 
 

 

asynchronous circuits have minimal clocking requirements, which facilitates low-power 

clock-gated operation. The SNAP processor does not perform continuous program 

execution, but instead responds to events from the message/timer coprocessor. The event 

queue coprocessor generates tokens to designate which event handler the processor will 

execute; resulting in a very rapid wakeup mechanism and very rapid response to system 

events. The processor executes the sequence of instructions until a done instruction is 

executed. If the event queue is empty, the processor stalls (in a low power sleep mode) 

waiting for a new event. The timer coprocessor consists of three self-decrementing timer 

registers that post a timer event token when the registers reach zero. The message 

coprocessor serves as the interface between the processor and the sensors or the radio. 

Each time a byte arrives in the radio, the message coprocessor posts an event to the event 

queue. The event triggers the processor to execute the appropriate communication 

instructions to read or write the data byte from the radio unit. The same is true when 

sensor data arrives. A bit-serial implementation of the SNAP processor was designed to 

investigate the power savings that can be obtained from minimizing energy needed to 

switch the wide busses. As can be seen from Table 2.4, the gains are not as much as 

would be expected. Note that the performance degraded by 75% while the 

energy/instruction only decreased by 30%.  

2.2.3 Subliminal processor 

The subliminal processor was designed to run in sub-threshold mode at a supply 

voltage of 0.36V. It was one of the first processors designed specifically for wireless 

sensor systems [16]. Figure 2.9 below shows a block diagram of the processor. It is a 

simple 3-stage pipeline with an 8-bit data path and 12-bit instruction width. The designers 

optimized the microarchitecture and instruction set for the specific workloads they would 
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be running. These workloads included an ad-hoc router control algorithm, run length 

encoded compressor, encryption algorithm, CRC check, FIR filter, binary search and 

maximum value search. 
 

 

Figure 2.9:  Microarchitecture block diagram of the Subliminal Processor 

The designers investigated a number of variable-width and fixed-width instruction 

sets and decided to use a two-operand RISC-like Instruction Set Architecture (ISA) that 

supported merged micro-operations. In addition, application specific instructions like 

event scheduling, timer control and pointer manipulation were added to the ISA. Due to 

energy limitations a simplified Branch-Taken mechanism was implemented. A limited 

out-of-order execution feature was implemented, which monitored one instruction ahead 

in the instruction prefetch buffer to determine if it could be fed into the pipeline before 

the dependent ALU operation. 
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Three key lessons came out of the implementation of the Subliminal Processor 

with respect to energy optimization in the subthreshold design domain [16]: 
 

1. Area must be minimized, as it is a critical energy factor due to the increased 

leakage energy at subthreshold voltages. 

2. Transistor utilization must be maximized because effective transistor 

computation offsets static leakage power, which permits a lower operating 

voltage and lower overall energy consumption for the design. 

3. The clocks per instruction (CPI) must be minimized at the same time; 

otherwise, gains through small area and high transistor utility are squandered 

on inefficient computation. 

 

The first key lesson is generally applicable to all energy sensitive designs. 

Leakage is a strong function of the average width of all devices in the design, which 

ultimately drives die area. Increasing die area results in added wire capacitance while 

increasing dynamic power. 

The second lesson is related to the first; switching transistors are more effective 

than leaking transistors. Optimize the use of transistors by eliminating marginally used 

logic blocks. The ratio of datapath logic to control logic should also be maximized.  

The last lesson is key to all chip design; a one percent increase in area should 

ideally result in a one percent increase in performance. This is described in more detail in 

Section 8.8. 
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2.3 Software systems for sensor platforms 

Computational efficiency is a function of the application software and the 

operating system (OS) as described in equation (1). The early platforms used cyclic 

executives and commercial real time operating systems (RTOS) to control platform 

operations. These were not well suited to the low energy requirements and limited 

resources of sensor platforms. To address this obvious mismatch, the researchers at UC 

Berkeley developed the TinyOS operating system [20] [21], which has become the OS of 

choice for most COTS based sensor platforms. The researchers at UCLA developed SOS 

(Sensor Operating System) [18] to fix some shortfalls of TinyOS, specifically the 

inability to dynamically reconfigure a sensor node once it was deployed. In parallel, the 

scientists at the Swedish Institute of Computer Science developed Contiki to address the 

need to dynamically load and unload individual programs and services [19]. Nano-RK 

was developed at CMU to provide a full preemptive RTOS for multi-hop wireless 

networks [17]. 

The key elements of these operating systems include some or all of the following: 
 

• Time management system 

o Measurement resolution 

o Event timer resolution 

o Synchronization in distributed systems 

• Networking and Communications 

o Safe data sharing 

o Hazard prevention and deadlock avoidance 

o Bounded channel access and message transmission delays 

o Networking stack support 
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• Task scheduling 

o Static or dynamic 

o Deterministic 

o Preemptive or non-preemptive using round robin or priority policies. 

2.3.1 TinyOS  

The Tiny Micro-threading Operating System (TinyOS) was developed at UC 

Berkeley for the Smart Dust Motes described above [20] [21]. The designers of the 

operating system were trying to address the needs of a networked sensor system, which 

included small physical size, lower power consumption, diversity in design and usage, 

limited computational capability and concurrent intensive operations. The TinyOS 

concurrency model does not support blocking or spin loops, which is ideal for reactive 

processing and interfacing with hardware. It also does not define a system/user boundary 

or a set of system services that need to be part of each compilation. Instead, it provides a 

framework for defining such boundaries and allows applications to select services needed 

for a particular user application. Additionally, there is a large set of common services 

available including timers, data acquisition, power management, and networking.  

TinyOS applications are written in nesC, which is a variant of C. The basic units 

of nesC are components that connect via standard interfaces called ‘wires’ and use 

configuration tables to specify the connectivity. Modules are components that have 

variables and executable code. Figure 2.11 below shows basic configuration of a 

component. A component has four interrelated parts: a set of command handlers, a set of 

event handlers, an encapsulated fixed-size frame, and a bundle of simple tasks. 
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Figure 2.11: TinyOS component configuration. 

Commands are non-blocking requests made to lower level components. A 

command must provide feedback to its caller by returning a status indicating whether it 

was successful or not. Event handlers are invoked to deal with hardware events, either 

directly or indirectly. The low level components have handlers directly connected to the 

hardware interrupts, which may be external interrupts, timer events, or counter events. 

Tasks perform the primary work in TinyOS and are atomic with respect to other 

tasks. The tasks run to completion but can be preempted by events. Tasks can call lower 

level commands, signal higher-level events and schedule other tasks within a component. 

The run-to-completion semantics of tasks make it possible to allocate a single stack that 

is assigned to the currently executing task. 

The task scheduler is a simple FIFO scheduler, utilizing a bounded size 

scheduling data structure. Depending on the requirements of the application, a more 

sophisticated priority-based or deadline-based structure can be used.  
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2.3.2 SOS – Sensor Operating System 

The Sensor Operating System (SOS) was developed at UCLA in the Network and 

Embedded Systems Lab (NESL) for use with Atmel based COTS microprocessors [18]. 

The OS was designed to provide re-configurability of sensor nodes after the network had 

been deployed. Key to this was the ability to incrementally add, remove or update 

software components while the sensor is functioning. A secondary goal was to provide a 

set of application programming interface (API) primitives that aided in the development 

of wireless sensor networks. The list of features in SOS include: 
 

• Ability to reconfigure individual components of a deployed system, enabling 

heterogeneous system deployments.  

• Easy program development:  

o Programs written using standard C code and compilers.  

o Kernel support for common services such as dynamic memory allocation, 

simple garbage collection, and priority scheduling.  

• Truly modular system development. The modules that are used to create an 

application remain modular when deployed in the network.  

• Debugging support via standard C code debuggers such as GDB.  

As with many university developed sensor platforms, SOS is no longer being 

supported. The designers suggest using Contiki or TinyOS, which have been successfully 

moved into the public domain and have a large user base of sensor system developers. 

2.3.3 Contiki 

The Contiki operating system was developed at the Swedish Institute of Computer 

Science [19]. It is a portable multitasking operating system designed for memory 
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constrained networked sensor systems. Typical system configurations require a few 

hundred bytes of SRAM and a few kilobytes of code space. Contiki supports a per-

process preemptive multi-threading, inter-process communication mechanism using 

message passing through events. It also supports IP communication for both IPv4 and 

IPv6. The IPv6 stack combined with a special purpose MAC (Media Access Controller) 

provides the ability for battery-operated devices to use IPv6 networking. Contiki supports 

header compression, IETF RPL IPv6 routing, and the IETF CoAP application layer 

protocol, among many other protocols and mechanisms.  

The kernel uses a lightweight event based scheduler to dispatch events to active 

processes. All processes are triggered by events or in some instances by polling which 

implies that the kernel does not preempt the event handler once it has been scheduled. 

That said the event handlers could use built-in functions to provide preemption 

capability. The kernel handles both asynchronous and synchronous events. Contiki 

supports dynamic linking of services at run-time. Services appear as a shared library to 

the programmer. Typical examples of services include sensor device drivers, protocol 

stacks and high-level functions such as filter or data fusing algorithms. 

2.3.4 Nano-RK 

Nano-RK was developed at CMU to provide a fully preemptive RTOS [17]. The 

design goals for Nano-RK included: 
 

• Small footprint 

• Support for multitasking 

• Networking stack support 

• Support for priority based preemption 
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• Low-energy operation utilizing resource usage limits 

 

Nano-RK has support for multi-hop networks, which is required for some wireless 

sensor networks. It currently runs on the Fire-Fly Sensor Networking Platform and on 

Mica-Z Motes. The lightweight kernel requires approximately 2KB of SRAM and 18KB 

of FLASH/ROM and provides excellent functionality and timing support. The kernel 

supports fixed priority preemptive multitasking to ensure task deadlines are met and 

supports a reservation mechanism for access to sensors, actuators, network and CPU 

resources. The tasks specify resource demands and the kernel provides timely, guaranteed 

and controlled access. Figure 2.10 below shows the architecture of the Nano-RK OS [17]. 
 

 

Figure 2.10: Architecture of the Nano-RK operating system 

2.3.5 Sensor OS middleware  

The primary purpose of OS middleware is to support development, maintenance, 

deployment, and execution of applications or services. In some cases support for re-

programmability and repair-ability is provided by the middleware. There are numerous 
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implementations of middleware for sensor networks. Many are simply application 

programming interfaces (API) on top of the sensor OS while others are implemented as 

virtual machines with a set of domain specific interpreted instructions or support for 

generic scripting languages. Typical application or services supported by middleware for 

sensor systems include [22]: 
 

• Abstraction support for multiple platforms, computational elements, 

communication element, algorithmic accelerators. 

• Resource management of computational energy, memory usage, battery 

power. 

• Dynamic reconfiguration of program operation, network configurations, 

sensor re-calibration, and node/sensor repair. 

• Data fusion and filtering of sensor data. Generation of metadata from fused 

data. 

• Domain specific support. 

• Programming environment. 

• Adaptive processing. 

• Scalability — static or dynamic. 

• Security. 

• Quality and robustness of response time, availability, bandwidth allocation, 

etc. 

A number of middleware packages have been developed for TinyOS including 

Maté [23], Tiny Lime [24], Tiny Cubus [25], Agilla [26] and TinyDB [27]. Maté is a 

virtual machine that is implemented on top of TinyOS and is designed to abstract the 

asynchronous behavior and race conditions of the operating system. It uses a stack-based 
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architecture and supports multiple contexts. Tiny Lime provides data aggregation and 

data/feature extraction of collected sensor data. Tiny Cubus provides a cross-layer 

framework, a configuration engine and small data management framework. Agilla is a 

mobile agent that allows agents to move from one sensor node to another. It uses a stack-

based architecture similar to Maté to reduce code size. TinyDB is a database that is used 

for collecting data from sensor nodes for message aggregation using a built-in query 

manager. TinyDDS provides a pluggable framework that allows Wireless Sensor Node 

(WSN) applications to have fine-grained control over application-level and middleware-

level non-functional properties. Figure 2.12 illustrates where middleware fits into the OSI 

layer model paradigm. 

 

Figure 2.12: Wireless Sensor Middleware vs. OSI Model 
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2.4 Summary 

The sensor platform research described above has spawned the next generation of 

platforms that are just now appearing in research journals. Many of these new platforms 

are focused on biological sensing and analysis including electronic noses, electronic 

tongues, genomics and proteomics. The hyper-integration of mechanical and electronic 

sensing elements into bulk CMOS processes is producing low-energy, low-cost Labs-on-

Chip (LoC). However these systems continue to use classic stored program (Von-

Neumann) class of microcontrollers. The platform described in this dissertation is 

designed to support these new biological sensor platforms as well as low energy 

embedded sensor platforms using a novel event driven microarchitecture. The concept of 

an operating system and supporting middleware is not applicable to this platform. 

Programming is accomplished by instantiating Actors that consume and produce tokens. 

The microarchitecture is custom designed to directly execute this new “Software” 

paradigm. Additionally this platform is intended to support the system requirements of a 

sensor platform that has basic cognitive capabilities. These requirements are described in 

the next chapter.  
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Chapter 3. Cognitive Sensor Platform (CSP) Requirements 

3.1 Overview   

This platform is designed be used in low energy embedded sensor applications 

including medical implants, structural implants and remote sensing. The key figure of 

merit (FOM) for this class of embedded sensors is energy-performance/volume where 

battery volume is the limiting factor as it determines the number of joules available for 

system operation. The addition of cognitive capabilities is necessary for these types of 

unattended applications as it is generally not feasible to routinely replace the battery or 

sensor(s) in these applications. Cognition in the context of a sensor platform is defined as 

the “process of knowing, including aspects of awareness, perception, reasoning, and 

judgment” [1]. Figure 3.1 shows conceptually how the process of knowing applies to 

fault detection and repair in an embedded sensor system that has basic cognitive 

capabilities. 
 

 

Figure 3.1:  Example of fault detection/repair in a cognitive sensor system 

This process of knowing drives the following baseline functional requirements of 

the CSP. These include the ability to: 
 

• Perform self-diagnostics and self-calibration 

• Reason about the state of the system and perform needed services to maintain 

optimal system performance 

Awareness        Perception             Cognition  
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• Detect and repair corrupted data 

• Compensate for systematic errors, system drift and random errors produced by 

system parametric changes such as sensor aging, battery aging, etc. 

• Anticipate potential systematic changes and modify operational behavior 

• Transmit/receive information to/from other devices via a standard network 

protocol 

The functional requirements described above drive a number of key architectural 

features that are described in the following sections. These include the following 

capabilities: 
 

• Self-diagnosis and self-calibration 

• Time Stamping 

• Adaptive capabilities including: 

o Configurable data lookup capability 

o Reconfigurable and event-driven programming capability 

o Dynamic sampling and frequency scaling 

o Dynamic data precision 

• Fuzzy Logic capability 

• Data fusion capability 

• Communications capability 

3.2 Self-diagnostics and self-calibration  

The CSP provides a computational (digital) diagnostic mode that utilizes auxiliary 

channels to confirm that the primary channels are performing as expected [28]. Injecting 

calibration tokens into the SDF network and analyzing the response to confirm 
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computational accuracy accomplishes the diagnostic. The source of the calibration tokens 

is generally the Debug Unit; however, the Channel Nodes may be designed to inject 

tokens in response to a control signal from the Debug Unit or scan test unit. A wide range 

of diagnostics is accomplished using digital tokens including discrete value validation 

and the temporal response of the SDF network.  

In addition to the digital diagnostics, the Debug Unit can inject analog values into 

the sensor readout circuitry. The values are generally limited to those that are easily 

implemented using voltage references that are insensitive to aging, power supply 

variations and temperature changes. In most cases these will be built using some form of 

a band-gap reference circuit. If the system has an analog actuator such as a Digital-to-

Analog Converter (DAC) then the Debug Unit can inject a wide range of analog values 

into the SDF network. 

Calibration of the sensor readout circuitry is accomplished using a programmable 

content-addressable lookup table (CLT) in the sensor data-conditioning element. The 

CLT is initialized at reset with the stored calibration data. During system operation, the 

CLT values can be updated to adapt to environmental changes in the sensor transducer. If 

the baseline calibration data is located in some form of reprogrammable memory such as 

FLASH memory, then the updated lookup values can be transferred from the CLT to the 

memory so that subsequent reset operations load new calibration data into the CLT. 

3.3 Time stamping 

Time stamping capability is required to synchronize tokens as they propagate 

through the network. It used by a number different algorithms including token fusion, 

token quality analysis and repair. The time stamp reference can be generated internally or 

provided from an external source. In most deeply embedded applications it will be 
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generated internally which requires that system level synchronization be done externally 

[45] [46] [47].  

A time stamp is a unique value that is tagged to the token data produced by A/D 

converter and is propagated as sideband tokens. It can also be used externally if it is 

transmitted along with the data tokens. The time stamping algorithm is described below 

in Section 4.3.2.1. 

3.4 Adaptive capabilities 

The CSP detects environmental changes by tracking factors such as rate of change 

of sensor data, computational data errors, battery voltage, temperature, etc. The CSP can 

adapt to these changes using pre-defined rules. There are four adaptive capabilities that 

are required for this platform. These include having a dynamically configurable lookup 

table, reconfigurable and event-driven programming capability, dynamic sampling, 

dynamic voltage/frequency scaling and dynamic data precision. Many of these adaptation 

techniques utilize Fuzzy Logic decision-making [29], which is described below in 

Section 3.5. 

3.4.1 Dynamically reconfigurable data lookup capability 

The CSP contains a CLT that can be dynamically reconfigured under program 

control. Additionally, the Debug Unit can load and unload the CLT contents from 

external FLASH memory using the scan test unit.  The CLT is used to linearize sensor 

data, hold route tables for a Network-on-Chip (NOC) topology (Figure 1.8) or provide 

complex logic functions as is typically done in an FPGA [37] [38].  Additionally it is 

used for Fuzzy Logic operations specifically in the defuzzify operation in which the 
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antecedents are mapped to deterministic output values. Implementation details for the 

CLT are described later in Section 5.4.2.2. 

3.4.2 Reconfigurable event-driven programming 

This feature is required for cognitive systems that need to dynamically modify 

their algorithms based on operational conditions [39] [40]. This capability in the CSP is 

achieved by using an Actor/Event queue. The queue is actually a variation of the Queued-

Stack introduced in Section 1.3. The relative order of how the commands are processed 

can be dynamically changed by reentering or reordering the actors in the queue. The 

actors are entered into the queue in either FIFO or LIFO order. The actors are executed in 

a first-in first-out order (FIFO). Each actor is mapped to a microcode routine that 

terminates using a Wait-for-Event instruction. Interrupts and other asynchronous events 

can also enter commands to the queue by inserting them into the program stream in a 

similar manner as is done in the SNAP processor [15]. These events are squashed from 

the Actor/Event queue after they are executed. The Actor/Event queue is circular which 

allows it to execute continuously until a break condition is encountered. Typically a break 

condition occurs when new token data is needed. 

The Debug Unit can preload the actor-queue with a prescribed sequence of actors 

via the scan test unit. As the CSP becomes operationally/conditionally aware of its 

environment the operation-queue will be periodically saved to external FLASH memory 

so that the new state can be reloaded during the next reset cycle. This is also 

accomplished via the same scan test unit that is used to preload the operation-queue. 
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3.4.3 Dynamic sampling and frequency scaling  

The CSP can modify the sampling rate of the sensor data if the rate of change of 

the incoming data is low or high. Additionally, the operating frequency of the CSP can be 

modified, as needed using the same mechanism. The frequency scaling is accomplished 

by changing the divider value in the system PLL. 

3.4.4 Dynamic data precision 

The datapath in the Dataflow-Processing Element (DPE) is designed to use signed 

saturating arithmetic. The data precision can be dynamically modified to save power by 

changing the saturation limits and scaling the data tokens as needed. The base 

configuration is to saturate at +/- 24 bits; however, the DPE datapath can be reconfigured 

for +/- 8 bits and +/- 16 bits. The impact of this re-configurability is that the power 

requirements are reduced when the datapath precision is reduced. 

3.5 Fuzzy Logic capabilities 

The CSP contains a Fuzzy Logic engine to analyze sensor data and make 

systematic adjustments to the operation of the platform plus provide specialized functions 

like data fusing (described in Section 3.6). This engine is implemented using a 

combination of specialized hardware functions and microcode routines. The specialized 

hardware consists of logic to perform minimum, maximum and table lookup functions. 

The microcode engine performs the membership, rule evaluation and weighted average 

functions. 

As mentioned above, the CSP can control energy usage by controlling the 

sampling rate of the sensor data and/or controlling the clock frequency. A Fuzzy Logic 
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based algorithm is used to determine the sampling rate by analyzing the change and the 

rate of change of the input data.  

3.6 Data fusion 

Data fusion is important for data reliability and robustness, data compression and 

composing complimentary or spectral data [31]. The CSP supports low-energy data 

fusion using a combination of microcode routines and the Fuzzy Logic engine to perform 

the fusion operations [32] [33]. This low-energy approach is preferred over 

mathematically intensive algorithms using least square-based estimation methods such as 

Kalman Filtering [34] or probabilistic methods such as Bayesian analysis [35]. For those 

sensor applications that require a more accurate data fusion algorithm, a hybrid of 

Kalman filters and Fuzzy Logic can be implemented with minimal additional logic [36]. 

The limitation of this hybrid approach is the limited data precision provided by the DPE 

and the increased energy usage.  

Data from either single or multiple sensors can be fused into a composite data 

stream. The fused data contains more information than the original inputs and is used 

either locally in the CSP and/or transmitted to a receiving node for further processing. 

Figure 3.2 shows single-sensor multi-converter configuration and two multi-sensor 

configurations. In (a), the same sensor is connected to multiple analog-digital (A/D) 

converters. The A/D converters can be symmetrically or asymmetrically configured. 

Asymmetrical operation provides the ability to analyze different characteristics of the 

same sensor. Symmetrical operation provides redundant conversion data. In (b), there are 

multiple transducers and A/D converters. The sensors will generally be measuring 

different physical effects and the fused data is a composite of the two, however, the two 

sensors can be identical providing redundancy at the sensor and conversion level. 
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Alternatively in (c), multiple transducers can be time multiplexed into a single A/D 

converter to save area and energy while providing redundancy at the sensor level. 

 

 

(a) Single transducer, multiple A/D converters 

  

(b) Multiple transducers and A/D converters 

 

 

(c) Multiple transducers and a single A/D converter 

Figure 3.2:  Multi-sensor configurations 
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3.6.1 Fuzzy Logic data fusion algorithm 

The Fuzzy Logic data fusion algorithm involves aggregating data from the input 

sensors and utilizing predictive data from past aggregation to generate fused data and 

optional sideband data as shown below in Figure 3.3 [32]. 

 

 

Figure 3.3:  Flow diagram of Fuzzy Logic data fusion 

In this particular example, the data from two asymmetrical sensors are fused 

together to produce a composite signal that has the key characteristics from each sensor. 

The first operation involves determining the absolute value of the change and rate of 

change (ROC) for the two sensors. The second operation performs a membership 

evaluation and series of fuzzy rule evaluations to produce a weighting factor and a sensor 

drift value. The third operation uses the weighting and sensor drift information to produce 

the fused data and a quality tag. The quality tag is sideband data that can be used by the 

CSP to adapt to sensor drift, data sampling issues, etc. 

The fuzzy rule evaluation uses a series of antecedents and consequences to infer 

what the weighted value should be. A typical set of rules (where S1 and S2 are sensor 

inputs) would be expressed as: 
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IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS SMALL 
THEN: WEIGHT SHOULD BE SMALL 
 
IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS LARGE 
THEN: WEIGHT SHOULD BE LARGE 
 
IF ABSOLUTE (S1-S2) IS LARGE AND ABSOLUTE (DS2/DT) IS SMALL 
THEN: WEIGHT SHOULD BE VERY SMALL 
 
IF ABSOLUTE (S1-S2) IS LARGE AND ABSOLUTE (DS2/DT) IS LARGE 
THEN: WEIGHT SHOULD BE VERY LARGE 
 

Additionally, the drift value would be calculated using the following rule: 
 
IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS LARGE 
THEN: DRIFT SHOULD BE LARGE 
 

The weighted averaging and fusing operation utilizes a combination of 

algorithmic calculations and table lookup to generate the fused data. The CLT is used for 

linearization, compensation and interpolation of sensor input data when performing the 

fusing operation. Additionally, the CLT can be used to defuzzify the results from the 

fuzzy rule evaluation. Appendix A describes the Fuzzy Logic techniques used by the 

CSP. 

3.7 Communications capability 

The basic communication protocol for the CSP is based on the IEEE-1451 

standard. It describes a set of open, common, network-independent communication 

interfaces for connecting transducers (sensors or actuators) to receiving devices. This 

protocol is useful for both wired and wireless systems. It is not practical for low energy 

embedded applications where battery volume is minimal. Low energy communication 

protocols such as ANT™ [41] should be investigated as an alternative for future 

implementations of the CSP. The ANT™ documentation states: 

 ANT™ is a practical wireless sensor network protocol running in the 2.4 GHz 

ISM band. Designed for ultra-low power, ease of use, efficiency and scalability, ANT 
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easily handles peer-to-peer, star, connected star, tree and fixed mesh topologies. ANT 

provides reliable data communications; flexible and adaptive network operation and 

cross-talk immunity. ANT protocol stack is extremely compact, requiring minimal 

microcontroller resources and considerably reduces system costs. 

3.8 Summary 

The requirements specified above pertain to a class of sensor platforms that are 

generally battery powered low-energy autonomous systems. The addition of basic 

cognitive capabilities extends the operational life and functional utility of these sensor 

platforms. Adding additional features will impact the energy-performance characteristics 

of the CSP and must be considered carefully.  
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Chapter 4. Cognitive Sensor Platform (CSP) Architecture 

4.1 Overview  

The CSP is an event driven Synchronous Dataflow architecture. The system is 

composed by instantiating functional elements that are connected via channels. The 

functional elements provide key operational services commonly called actors in dataflow 

systems. In the current implementation the channels are modeled as bounded FIFOs 

(described above in Section 1.3). The datum that is communicated via the channel 

interface is referred to as a token. The current implementation of the CSP uses a Pull-

Mode channel interface protocol to compose the functional elements. The Pull-Mode 

protocol adheres to the rules outlined in Section 1.4. The channel signaling protocol is 

described below in Section 4.3.3. 

 

Figure 4.1:  CSP high level block diagram 

Figure 4.1 above shows the five basic functional elements that are used to 

compose a CSP:  
 

• Sensor Element – Transducer and Readout Circuitry (Section 4.2) 

• Sensor Data Conditioning Element (Section 4.3) 

• Dataflow-Processing Element (Section 4.4) 
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• Communications Element (Section 4.5) 

• Debug Element (Section 4.6)  

 

The output from the readout circuitry in the Sensor Element will generally be an 

analog signal that will require some additional analog processing such as filtering, 

amplification and conversion to a digital representation using an analog-to-digital 

converter (ADC). This additional processing is done in a preprocessing unit in the SDC 

element. The CSP will have one or more DPEs to process the data from the SDC and 

communicate the output data via the COM element to a receiving device. In addition to 

these four elements, an optional debug element can be used to debug functional failures 

and reconfigure the CSP during normal operations.  

4.2 Sensor element 

This platform is designed to support a reasonably wide variety of sensing 

techniques including, voltage, resistive, capacitive, inductive, optical, magnetic, force and 

acceleration. Typical transducers would include strain gauges, piezoelectric devices, 

phototransistors, hall-effect devices, thermo-couples, ion-sensitive transistors, capacitive 

displacement devices, and bio-sensing devices.  Figures 4.2, 4.3 and 4.4 are examples of 

capacitive displacement devices [42], ion-sensitive field effect (FET) transistor [43], and 

electrochemical/photovoltaic bio-sensing devices [44]. 
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Figure 4.2   Various capacitive displacement transducers  

 

Figure 4.3:  Ion-Sensitive FET transducer 

Reference Electrode 
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Figure 4.4:  Bio-sensing transducers 

4.3 Sensor Data Conditioning (SDC) Element 

The sensor data-conditioning element provides a broad range of data conditioning 

and transformation services. These services include: 
 

• Signal conditioning 

• Signal conversion 

• Detection functions 

• Data reduction 

• Data fusion 

The high-level block diagram for the SDC element is shown below in Figure 4.5 

and contains three basic units:  

1. Preprocessing unit (PPU) - includes filters, A/D converters, etc. 
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2. Functional services unit (FSU) - performs data conditioning services. 

3. Channel node 

 

Figure 4.5:  Sensor Data Conditioning (SDC) Element block diagram 

The basic architecture of each unit is described below in sub-sections 4.3.1, 4.3.2 

and 4.3.3.  

4.3.1 Preprocessing Unit (PPU)   

A typical preprocessing unit contains some combination of the following 

components: filters, amplifiers, analog-to-digital converters (ADC), sample-hold circuits 

and analog multiplexors as shown in Figure 4.6. 

 

Figure 4.6:  Typical configuration of a PPU 
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Figure 4.7:  High performance configuration of a PPU 

In a low cost, low power system configuration the outputs from multiple sensors 

are multiplexed through one ADC, however, in time-critical applications multiple ADCs 

can be used as shown above in Figure 4.7. The digital and analog outputs of the PPU may 

be time division multiplexed or output in parallel from the PPU.  

The timing control block will generally get input from the Functional Services 

Unit (FSU) or from the Dataflow-Processing Element (DPE). The control block in the 

PPU performs three basic functions: 
 

1. Provide clocks to the multiplexor and ADC 

2. Latch valid data in the digital interface logic 

3. Perform reset and calibration functions 

 

The FSU has the capability to modulate the frequency of the PPU based on the 

analysis of the data-flow characteristics of the system. For example, slow-changing 

signals to FSU may result in a lower sampling frequency in the PPU in order to conserve 
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power. The FSU can compensate for the lower frequency of operation by modulating the 

width and period of the time stamp window. 

4.3.2 Functional Services Unit (FSU)   

The FSU can be implemented using a synthesized hard-coded logic unit or with a 

microcoded engine such as the DPE. The synthesized implementation is preferred for 

basic services including: 
 

• Averaging 

• Data compression 

• Transition counting 

• Event triggering 

• Threshold detection 

 

The microcoded engine is best suited for the complex services listed below, as 

they typically require detailed processing of temporal data: 
 

• Linearization and smoothing 

• Edge detection 

• Data suppression  

• Data fusion  

• Filtering 

• Signal reproduction 

 

Figure 4.8 below shows the microcoded implementation of the FSU. The 

architecture of the FSU is similar to the Dataflow-Processing Element (DPE), which will 
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be described in more detail in Chapter 5. The primary difference between the two is 

addition of the timing reference and two output channels – one for data tokens and the 

other for sideband data tokens.  

 

 

Figure 4.8:  Block diagram of a microcoded FSU 

In addition to the data conditioning services listed above, the FSU is used for the 

following special functions: 
 

• Time stamping 

• Energy management 

• Signal quality analysis 

These special functions are described below in the following sections. 



63 
 

 

4.3.2.1 Time stamping 

The time stamp function uses a timing reference to generate a unique number that 

is tagged to the data from the PPU as it enters the input queue in the FSU. This timing 

reference may originate internally in the CSP or be derived from an external network 

synchronization signal [45]. If the timing reference is derived internally the external 

receiver must synchronize to the internal timing reference by algorithmic means [46] 

[47]. Depending on the mode of operation, the FSU will check to see if multiple samples 

are to be acquired before the time stamp value is incremented. The time stamping flow is 

described in the flow chart shown below in Figure 4.9.  

The FSU waits for valid data from the pre-processing unit (PPU) and then tags the 

data with the current time stamp value based on the number of samples that will be used. 

The number of samples is determined by the operation that the CSP is intended to 

perform. For example, if five samples are being averaged to a single datum then the 

timing window is valid for five samples and a single time stamp value is issued. Note that 

the time stamp value is incremented for every sample and one of the five time stamp 

values is used to tag the data depending on the algorithm being performed. In this 

example, the third time stamp value could be used when averaging five samples. This 

technique provides a built in time reference for all data that is being processed by the 

FSU and the DPE.  
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Figure 4.9:  Time stamping flow chart 

The number of unique time stamp values needed is determined during system 

composition. It is a function of the depth of the computational latency (CL) through the 

CSP and is measured from the input to the PPU to the output of the communication 

element (COM). It is deterministic if the CSP does not dynamically modify its operating 

conditions. Non-deterministic operation requires that the CSP re-characterize the CL 

value. 
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The CL value is determined by the following equation: 

 

 

Where: 

 N == Total number of actors needed to process a token from the output of the 

PPU to the input of the communications element. 

#clks(COM) == Total number of clocks needed to communicate the token from 

the PPU 

#clks(PPU) == Total number of clocks to process the data from the output of 

the sensor readout circuitry. 

 

The CL is the total number of system clocks needed to process one token, 

assuming that the token propagates through the FSU and DPE as a single token and is not 

fused, average, filtered, etc. This number is used to seed the maximum time stamp value. 

This ensures that there is a unique time stamp value for every token in the CSP. The time 

stamp value is transmitted with an output token and is used to externally synchronize data 

from multiple CSPs.  

4.3.2.2 Energy management 

The CSP controls energy usage by modifying the sampling rate of the sensor data 

and/or the clocks to the DPE. A Fuzzy Logic based algorithm is used to determine the 

sampling rate by analyzing the change and the rate of change of the input data. Figure 

4.10 below shows a flow diagram for the Fuzzy Logic engine [30]. The first step 
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performs a membership evaluation on the inputs. There are two inputs; one is the 

absolute value of the sensor data change and the second input being the rate of change of 

data change. The second step performs the evaluation of the rules that determine the 

energy levels. The third step converts the energy levels into sampling rates for the Sensor 

Element and SDC element. 

 

Figure 4.10: Fuzzy Logic flow diagram 

Figure 4.11 below shows a table of the potential outputs from the rule evaluation 

of the energy function. The lower energy operations occur when the input data is not 

changing very rapidly and the ‘rate of change of the change’ is also not varying rapidly. 

Conversely if the data is changing rapidly a higher energy is required to process the data. 
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Figure 4.11: Energy usage rule evaluation table 

Figure 4.12 below shows an example of the change and rate of change 

calculations for a sine wave. The slow rate of change for a clean sine wave indicates the 

CSP can function in the low energy mode.  

 

 

Figure 4.12: Rate of change calculations for a clean sine wave. 
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Figure 4.13: Rate of change calculations for a noisy sine wave. 

Figure 4.13 above shows the effects that random noise on the sine wave signal has 

on the rate of change calculations. In this case the CSP will most likely be in a medium-

energy mode. Figure 4.14 below shows a square wave where the CSP would be in a high-

energy mode to handle the rapid rate of change of the data. 

 

 

Figure 4.14: Rate of change calculations for a square wave. 
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4.3.2.3 Signal quality analysis 

The Fuzzy Logic analysis of the sensor data is used to derive a signal quality 

value that is provided as sideband data tokens to the DPE along with signal data tokens. 

The quality value is determined by the following two functions: 
 

1. Rate of change of the sampled data – if the data is changing too rapidly then it 

is possible that there is noise being injected into the sensor element and the 

data values should be analyzed accordingly. 

2. Value of the data – if the data is not changing and/or is at the extreme limits of 

the data range then it is possible the sensor is broken and that the channel 

needs to be shut down or recalibrated.  

 

The data encoding for the quality tag is fuzzy-compatible. This encoding indicates 

the quality error value and the rate of change of the quality error value under faulty and 

normal operating conditions as shown below in Tables 4.1 and 4.2. The signal quality 

data tokens are used to further qualify the sensor data tokens.  

Table 4.1: Quality tag encoding – faulty operation 

[Inc]_[Error]_[Dec] Error Error 

1__00__1 NONE NOT CHANGING - FAULT 

1__01__1 SMALL NOT CHANGING - FAULT 

1__10__1 MID NOT CHANGING - FAULT 

1__11__1 LARGE NOT CHANGING - FAULT 
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Table 4.2:  Quality tag encoding – normal operation 

[Inc]_[Error]_[Dec] Error Error Rate 

0__00__1 NONE DECREASING 

0__00__0 NONE NOT CHANGING 

1__00__0 NONE INCREASING 

0__01__1 SMALL DECREASING 

0__01__0 SMALL NOT CHANGING 

1__01__0 SMALL INCREASING 

0__10__1 MED DECREASING 

0__10__0 MED NOT CHANGING 

1__10__0 MED INCREASING 

0__11__1 LARGE DECREASING 

0__11__0 LARGE NOT CHANGING 

1__11__0 LARGE INCREASING 

 

4.3.3 Channel nodes and channel routing nodes 

Channel nodes handle all transmission and buffering of data between the 

Functional Service Unit (FSU) and the PPU.  The FSU is fired when the channel node 

has buffered all of the token data from the PPU and is ready to transmit it. The channel 

node interface protocol is described below in Section 4.3.3.1. There is a variation of the 

channel node that buffers and routes data between multiple DPEs. These Channel 

Routing Nodes can be used to implement a network-on-chip (NOC) interconnection 

between Dataflow-Processing Elements. Figure 4.15 below shows a modified torus 

connection between eight heterogeneous processing elements. 
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Figure 4.15: Channel routing nodes connecting multiple DPEs 

A flit (flow-control unit) is the basic unit of communication between NOC 

Channel routing Nodes.  There are two types of flits: event and token. Each flit utilizes 

two bits to encode its type. An event flit is either a control flit or a tail flit. The control flit 

contains channel node destination and debug information while the tail flit indicates the 

end of the transmission. The token flit is either a data word or a tag word. Figure 4.16 

below shows the encoding for the four different types of flits. The flits are converted to 

the channel node interface protocol as shown below in the block diagram of a Channel 

Routing Node (Figure 4.17).   
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Figure 4.16  Flit encoding 

The channel routing node consists of a standard channel interface unit and FIFO 

buffer to receive data from the DPE/FSU/COM elements. The channel routing node also 

unpacks data from the unit routers (via the cross-bar) and transmits the data to the input 

channel on the processing elements. 

A full channel routing node consists of two X routing ports and two Y routing 

ports and a single channel node. The routing ports can be parallel or serial depending on 

the system implementation. 
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Figure 4.17: Block diagram of full Channel Routing Node 

4.3.3.1 Channel node interface protocol 

The I/O signals for the channel interface are described below in Table 4.3. There 

are four signal groupings: event, data, control and debug.  The event signals are used to 

trigger the FSU/DPE to start execution. The control signals are used to reset the 

FSU/DPE and force a bypass condition for special testing operations.  The debug signals 

are connected to the scan test unit and are used to put the channel node into either a 

debug or test mode configuration. 
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Table 4.3:   Summary of I/O signal descriptions for Channel Interface 

Signal I/O Group Description 
READY_IN I EVENT INDICATES RECEIVING NODE CAN START PROCESSING DATA 

READY_OUT O EVENT INDICATES SENDING NODE HAS VALID DATA 

HOLD_IN I EVENT INDICATES THAT SENDING NODE SHOULD HOLD DATA 

HOLD_OUT O EVENT INDICATES RECEIVING NODE IS NOT READY TO PROCESS DATA 

TOKEN_SZ_IN I EVENT INDICATES # OF TOKENS TO CONSUME 

TOKEN_SZ_OUT O EVENT INDICATES # TOKENS TO BE SENT TO RECEIVING NODE 

TOKEN_CLK_IN I EVENT CLOCK TO SEND TOKENS TO RECEIVING NODE 

TOKEN_CLK_OUT O EVENT CLOCK TO SENDING NODE TO TRANSFER TOKENS 

DATA_IN I DATA 
DATA INPUT TO THE SERVICE NODE. CAN BE MULTIPLE 

TOKENS 

DATA_OUT O DATA DATA OUTPUT FROM THE SERVICE NODE 

BYPASS I CONTROL FORCES ELEMENTS TO BYPASS PROCESSING STEP(S) 

CLOCK/CLOCK_90 I CONTROL REFERENCE CLOCKING SIGNALS 

RESET I CONTROL MASTER RESET 

SE_DEBUG I DEBUG SCAN ENABLE VS. DEBUG MODE 

SCAN_IN I DEBUG SCAN DATA CHAIN INPUT 

SCAN_OUT 0 DEBUG SCAN DATA CHAIN OUTPUT 

SCK_IN I DEBUG SCAN CLOCK INPUT 

SCK_OUT O DEBUG SCAN CLOCK OUTPUT 

 

As described above in Section 4.1, the FSU and DPE in the CSP are modeled as 

Synchronous Data Flow (SDF) actors. This implies that each element adheres to an 

event-driven processing paradigm. As indicated above in Table 4.3, there are four event 

control signals that provide the handshaking between channel and service nodes. These 

are READY, HOLD, TOKEN_SZ and TOKEN_CLK. The READY signal is an 

indication that the sending node has valid data to be processed by the receiving node. The 
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HOLD signal is used to keep the READY signal asserted until all of the tokens have been 

received. The TOKEN_SZ signal indicates how many tokens to process. The 

TOKEN_CK is the clock signal that transfers the tokens from the sending node to the 

receiving node. Figure 4.18 below shows the timing diagram for the four event signals 

during a receive operation. 

 

 

Figure 4.18: Timing diagram for event signals during the receive cycle 

The READY_IN signal generates an edge-triggered event that starts the 

sequencing of operations in the receiving node. The token clock transfers the requisite 

number of tokens and then asserts the HOLD_OUT signal, which indicates to the sending 

node that the READY_IN signal can be negated. The receiving node processes the token 

data while the HOLD_OUT signal is asserted. The negation of the HOLD_OUT signal 

occurs when the processed token data has been successfully transferred to the next node. 

Figure 4.19 below illustrates the timing sequence during the send cycle. Once HOLD_IN 

is negated the sending node asserts the READY_OUT signal and the TOKEN_SIZE 

signals to indicate another tranche of tokens are available to be consumed. 
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Figure 4.19: Timing diagram for event control signals during the send cycle  

The sequencing of the channel or service node is controlled either by an external 

synchronous clock or via an internal self-timed clocking mechanism. Figure 4.20 below 

shows the timing diagram of a self-timed clocking circuit that drives the SPU and DPE. 

 

 

Figure 4.20: Self-timed clocking timing diagram 

The CLK/CLK90 clock signals are enabled by the edge detection of the FIRE 

signal and disabled when the actor completes processing the token data. The clocks run 

until an idle condition is detected or when a Wait-for-Event instruction is executed. All 
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operations in the FSU/DPE execute in a single cycle. Figure 4.21 shows the phasing of 

the CLK and CLK90 clock signals. 

 

 

Figure 4.21: CLK/CLK90 timing diagram 

4.4 Dataflow-Processing Element (DPE) 

The DPE is an event-driven microcoded Queued-Stack based machine. Stack 

based processors were originally designed to support stack oriented languages such as 

Forth [49] and Java [50]. Specialized stack based register files have also been used for 

VLIW machines to provide multiple operands for parallel operations [51]. As mentioned 

earlier the DPE merges an input queue with a stack thus removing the dependency to 

fetch token data from the queue and moving it to the stack. The stack is controlled via a 

unique one-hot addressing method that significantly reduces power compared to a 

classical register file. 

The DPE processes the token data and forwards the results as tokens to other 

DPEs or to the communications element (COM). Typical functions performed by the 

DPE include: 
 

• Signal Processing 

• System Diagnostics and Calibration 

• Algorithmic optimization 
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• Compensation for systematic errors, system drift and random errors produced 

by system parametric changes such as sensor aging, battery aging. 

• Reasoning about the state of the system and performing needed services to 

maintain optimal system performance.  

• Anticipating potential systematic changes and modifying operational 

behavior. 

 

The DPE is described in more detail in Chapter 5. The microprogramming for the 

DPE is described in Chapter 6 and the high-level modeling environment in Chapter 7. 

4.5 Communications element (COM) 

The communication element for the current implementation of the CSP is an 

IEEE-1451 compliant module that provides Level-0 communications capability [48]. The 

IEEE-1451 is a family of Smart Transducer Interface Standards. It describes a set of 

open, common, network-independent communication interfaces for connecting 

transducers (sensors or actuators) to microprocessors, instrumentation systems, and 

control/field networks. The key feature of these standards is the definition of Transducer 

Electronic Data Sheets (TEDS). The TEDS is a memory device attached to the transducer 

that stores transducer identification, calibration, correction data, measurement range, and 

manufacture-related information, etc. The goal of IEEE-1451 is to allow the access of 

transducer data through a common set of interfaces whether the transducers are connected 

to systems or networks via a wired or wireless means. 

Compliance with this standard provides a number of benefits for intelligent sensor 

systems. These are: 
 

• Develop network-independent and vendor-independent transducer interfaces 
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• Define standardized Transducer Electronic Data Sheets (TEDS) that contain 

manufacture-related data 

• Support a general model for transducer data, control, timing, configuration, 

and calibration 

• Eliminate error prone, manual entering of data and system configuration steps, 

ultimately achieving Plug and Play 

• Allow transducers (sensors or actuators) to be installed, upgraded, replaced or 

moved with minimum effort 

• Able to get wired or wireless sensor data and information seamlessly from a 

host system or network anywhere in the world. 

4.6 Debug element 

The debug element is designed to provide observability and controllability of the 

CSP functional elements. It uses an IEEE 1149.7 Compact Joint Test Action Group 

(cJTAG) controller to provide the following features: 
 

• Single stepping 

• Run-to-WFE 

• Run-to-Halt 

• Queued-stack loading and unloading 

• Loading and modifying microcode 

• Loading the CLT state 

• Injecting calibration tokens into the CSP 

 

The IEEE 1149.7 standard improves upon the IEEE 1149.1 standard, commonly 

referred to as JTAG (Joint Test Action Group) that is used for testing and debugging 
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integrated circuits. The purpose of 1149.7 is to meet an expanding set of challenges 

facing debug and test systems while preserving the hardware and software investments of 

the community currently using the 1149.1 standard. The cJTAG implementation builds 

upon 1149.1 and is a true superset of JTAG. The benefits of cJTAG are: 
 

• Reduced pin count 

• Core level bypass for multi-core or NOC systems 

• Individual device addressing 

• Star topology 

• Additional power management features 

 

Figure 4.22 below shows examples of core level bypass and individual device 

addressing. 

 

 

Figure 4.22: Example of Core Level Bypass in scan chains 
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4.7 Summary 

The architecture presented above is a high level view of what a typical CSP would 

look like. There is considerable more detail that could be presented but is beyond the 

scope of this dissertation. A list of follow-on research topics related to this dissertation is 

presented in Chapter 9. 
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Chapter 5. Dataflow-Processing Element 

5.1 Overview 

The Dataflow-Processing Element (DPE) in the CSP is implemented using a 

stack-based microcoded engine with advanced features such as nested looping, 

conditional execution, repeat execution, Actor/Event queuing, Fuzzy Logic acceleration 

and a programmable content-addressable lookup table. Figure 5.1 below shows a block 

diagram of a typical DPE implementation using two Input Queued-Stack (IQS) units, one 

Result Queued-Stack (RQS) unit and one output FIFO. 

 

 

Figure 5.1:  Dataflow-Processing Element block diagram 
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The two IQS units are used to receive input channel data. Alternatively they can 

be configured such that one IQS unit is used for receiving channel data while the other is 

used to store operands or result data. The outputs of the two IQS units are symmetrically 

multiplexed onto the datapath. The RQS is used to store the higher precision results of the 

datapath operations. The datapath supports single cycle shift-multiply-accumulate 

operations, Boolean logic operations and Special-Function operations. 

The microcode engine controls the DPE using a 96-bit wide control word. Key 

control signals are 1-hot which eliminates the need for complex decoding and prevents 

logic glitching. The code memory used in the microcode engine is implemented using a 

standard single port ROM or a Writable Control Store (WCS) memory compiler. The 

WCS configuration is useful for systems where the microcode needs to be updated from 

an external source such as FLASH memory.  

The DPE is implemented using a parameterized synthesizable model where the 

width and depth of the stacks, functional units, and datapaths are determined during 

algorithmic development time. For systems that are composed of multiple DPEs, it is 

feasible for each DPE to be configured for a particular task or group of tasks during the 

synthesis process by selecting the optimal parameters.  

5.2 Input Queued-Stack (IQS) Unit 

There are two basic modes of operation for the Input Queued-Stack unit: Pull-

Mode and Push-Mode. In Push-Mode the input channel data is asynchronously inserted 

into the IQS. This can result in an overrun condition if the DPE cannot process the 

channel data from the previous transaction. In Pull-Mode the IQS will fetch data from the 

input channel once the microcode engine is in an idle condition thus preventing overrun. 

In Pull-Mode, the output data from the sending DPE must be stored in an output FIFO to 
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prevent stalling its processing element. Pull-Mode provides an additional benefit in that it 

allows the IQS to be used as a circular buffer to store filter coefficients used in many 

filtering algorithms. In both modes the microcode engine will wait for the fire signal 

before it starts to process the data.  

The IQS is implemented as a circular buffer that has two circular pointers, one to 

track the queue (FIFO) data and the other to track the stack (LIFO) data. The pointer 

registers are implemented using 1-hot shift registers. This eliminates decoding logic and 

reduces power. A three-entry IQS is shown below in Figure 5.2.  

 

 

Figure 5.2:  Three-entry Queued-Stack unit block diagram 

The FIFO-queue pointer tracks data inserted into the queue from either the 

channel data or the result data from the datapath operations. The LIFO-stack pointer is 

used to track pushes and pops from the stack. The IQS can insert data into the queue 

while simultaneously pushing or popping data on/off the stack. This allows channel data 

to be asynchronously inserted into the queue element while the computational engine is 

processing data from a previous transaction. The IQS uses a 2-read-port, 2-write-port 
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memory cell. This provides the capability to simultaneously access both the top-of-stack 

(TOS) data and the bottom-of-stack (BOS) data. The microcode engine can manipulate 

the pointer registers to select data anywhere in the circular buffer. For example, the stack 

pointer can be rotated two positions to the right and the queue pointer can be rotated two 

positions to the left in a single instruction by executing a POP command and an INS_NW 

command with a REPEAT of two. Similar operations can be performed on the Result 

Queued-Stack in the same micro-operation.  

The pointer registers and read/write operations for both IQS units are under 

microcode control, which allows a number of simultaneous operations to be performed 

each clock cycle. These operations are specified in Table 5.1 below. 
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Table 5.1: Input Queued-Stack Operations 

Operation Description 
PUSH ROTATE TOS POINTER RIGHT AND WRITE RESULT-BUS VALUE TO NEW TOS 

POP ROTATE TOS POINTER LEFT (W/O WRITE) 

POP_WR ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS VALUE TO NEW TOS 

INS ROTATE BOS POINTER LEFT AND WRITE RESULT-BUS VALUE TO BOS 

INS_NW ROTATE BOS POINTER LEFT (W/O WRITE) 

PUSH_NW ROTATE TOS POINTER RIGHT (W/O WRITE) 

TOP WRITE RESULT BUS VALUE TO TOS W/O ROTATING POINTER 

BOT WRITE RESULT BUS VALUE TO BOS W/O ROTATING POINTER 

TOP_BOT WRITE RESULT BUS VALUE TO TOS/BOS W/O ROTATING POINTERS 

PUSH_INS ROTATE BOTH POINTERS AND WRITE RESULT-BUS VALUE TO TOS/BOS 

POP_BOT ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS TO BOS 

POP_INS 
ROTATE TOS POINTER LEFT, ROTATE BOS LEFT AND WRITE RESULT-BUS TO NEW 

BOS 

POP_WR_BOT ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS TO BOS AND TO NEW TOS 

PUSH_NW_BOT ROTATE TOS POINTER RIGHT AND WRITE RESULT-BUS TO BOS 

TOP_INS ROTATE BOS POINTER LEFT AND WRITE RESULT-BUS TO TOS AND TO NEW BOS 

NOP NO OPERATION 

 

The IQS operations specified above are performed on the second half of the clock 

cycle as shown below in Figure 5.3. The Queue and Stack pointers are modified on the 

falling edge of the clock, i.e., shifted left or right. The data on the result-bus from the 

datapath is written at this time. Both pointer addresses remain pointing to valid data for 
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the next operation on the rising edge of the CLOCK signal. The read-muxes shown above 

in Figure 5.1 drive the TOS and BOS data from the two IQS units to the datapath.  
 

 

 

Figure 5.3:  Queued-Stack timing diagram 

5.3 Result Queued-Stack (RQS) Unit 

The RQS uses the same parameterized building blocks as the IQS. The width of 

RQS is generally the width of the adder in the datapath unit. The class of algorithms 

determines the depth of the RQS that the DPE is being synthesized to perform. The RQS 

performs the same Queued-Stack operations as the IQS as shown above in Table 5.1 

Figure 5.4 below shows the block diagram for a three entry RQS. The primary 

difference between IQS and the RQS is that the write-data is only sourced from the result 

bus.  

 

CLOCK 

READ_MUXES Hold Source Buses Drive Source Buses 

Execute Phase 
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DATAPATH 

Write QS Data 

QS Address 

CLOCK_90 

Read Phase Write Phase 
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Figure 5.4:  Three-entry Result Queued-Stack unit block diagram 

5.4 Datapath Unit 

The DPE datapath is composed of five major units: shifter, multiplier, adder, 

logical unit (LU) and a special function unit (SFU) as shown below in Figure 5.5. 

 

 

Figure 5.5:  Block Diagram of the DPE Datapath 
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There are two levels of multiplexors that control the source data to the datapath 

units. Table 5.2 below shows the various source data configurations. 

Table 5.2: Input data source for the datapath units 

Shifter Input Multiplier/LU/SFU 
Input Adder Input 

TOS/BOS IQS1 SHIFTER_A/SHIFTER_B SHIFTER_A/SHIFTER_B 

TOS/BOS IQS2 TOS/BOS IQS1 TOS/BOS IQS1 

TOS/BOS RQS TOS/BOS IQS2 TOS/BOS IQS2 

IMMEDIATE DATA TOS/BOS RQS TOS/BOS RQS 

 IMMEDIATE DATA IMMEDIATE DATA 

  MULTIPLIER 

 

The 4-input multiplexors that feed the datapath have latching outputs that are used 

to prevent spurious transactions propagating through the shifter-multiplier-adder paths. 

This reduces power and can also be used to store intermediate data from previous 

transactions. The adder input multiplexors either zero-fill or sign-extend the input data to 

match the output width of the adder. For example, in the current implementation the IQS 

is 16-bits wide, the shifter is 32-bits wide, the adder is 48-bits wide and the RQS is 48-

bits wide. 

The datapath is capable of executing the following combination of instructions in 

a single cycle: 
 

• Shift-Multiply-ADD/SUB or Shift-Multiply-Saturating ADD/SUB 

• Multiply- ADD/SUB or Multiply-Saturating ADD/SUB 

• Shift- ADD/SUB or Shift-Saturating ADD/SUB 

• ADD/SUB or Saturating ADD/SUB 
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• Arithmetic & Logical Shift 

• Boolean operations: AND, NAND, OR, NOR, INVERT, XOR, XNOR 

• Table lookup 

The Write-Back-Unit multiplexes data from the adder, special function unit, 

logical unit and the general purpose input port on to the result bus. The result bus is 

connected to the two IQS units, the RQS unit and the output FIFO as shown above in 

Figure 5.1. The RQS is used to store the results of the datapath transactions and is 

synthesized to be the width of the output of the adder. Note: an IQS unit can also be used 

to store results, however, it is limited to storing data that is the width of the incoming 

channel data.  

The functions that the SFU performs are determined during the algorithmic design 

phase. Typical functions include: table-lookup for sensor recalibration, interpolation, 

linearization, averaging, Fuzzy Logic acceleration, data compression, data fusion, time 

stamping, edge detection, threshold detection, period measurements, etc. 

5.4.1 Condition code generation 

There are two sets of condition codes generated within the DPE. The first set is 

generated by the arithmetic operations in the datapath. The second set is generated in the 

Special Function Unit. The condition codes are used by the microcode engine for 

conditional branch instructions and the conditional execution of microinstructions. 

The write-back data from each arithmetic datapath operation is compared to a 

reference value each cycle to determine if it is greater-than, equal to, less-than a specified 

reference value. The reference value is stored in the Write-Back Unit by specifying the 

WB_LAT control bit in the microinstruction. Additionally, there is a reference value 

stored in the SFU that is used to compare the results of SFU operations that are written 



91 
 

 

back via the Write-Back Unit. The SFU reference value is stored in the Write-Back Unit 

by specifying the SFU_LAT control bit in the microinstruction. 

Figure 5.6 below shows the timing diagram for a typical datapath operation where 

the condition codes are determined during the high phase of the CLOCK_90 signal. The 

condition codes a registered on the following edge of the CLOCK_90 signal and used 

during the next cycle for conditional micro-opcode execution or branching operations.  

 

 

Figure 5.6:  Timing Diagram for Condition Code Generation  

5.4.2 Special Function Unit (SFU) 

The SFU is an algorithmic specific unit that is synthesized using DesignWare® 

components1. In the current implementation the SFU is used to accelerate the Fuzzy 

                                                
1 Courtesy of Synopsys Inc.         
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Logic algorithms. There are two accelerators in the current implementation: 1) 

MIN/MAX unit and 2) Content Addressable Lookup Table (CLT). 

5.4.2.1 MIN/MAX unit 

The MIN/MAX unit supports minimum and maximum of the 3 inputs: A_BUS, 

B_BUS and REFERENCE_DATA.  Figure 5.7 below shows the block diagram of the 

unit. 

 

Figure 5.7:  Block diagram of MIN/MAX logic 

5.4.2.2 Content-Addressable Lookup Table (CLT) 

In the current configurations of the DPE, a 64x6 bit memory array coupled to a 

64x8 array that is synthesized to provide a low power content-addressable lookup table. 

The CLT can be dynamically reconfigured via the DPE result bus. Additionally, the 

Debug Unit can load and unload both memory arrays using the scan test logic. The CLT 

data would generally reside in an external FLASH memory device connected to the 

Debug Unit. 
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Figure 5.8 below shows the basic architecture of the CLT. The output of the 64x6 

memory array is used as the address for the 64x8 memory array whose output is then 

multiplexed onto the result bus through the write-back mux. Each array can be 

dynamically reconfigured independently of each other. The CLT can be used to linearize 

sensor data [37], hold route tables for a Network-on-Chip (NOC) topology (Figure 1.8) or 

provide complex logic functions as is typically done in an FPGA [38].  Additionally, it 

can be used for Fuzzy Logic operations where in a defuzzify operation the first array 

holds the antecedent mapping to the fuzzy output value that is in the second array. 
 

 

Figure 5.8:  Content addressable lookup table (CLT) architecture 

5.5 Microcode Engine 

The decision to use a microcoded instruction format was primarily driven by the 

fact that the DPE is not pipelined and there are a number of parallel operations that must 
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be performed in a single cycle thus eliminating a sequencer to control the various units in 

the DPE. This also eliminates the need for an instruction decoder, as the output from the 

Actor/Event queue is a micro-address to a routine in the microcode memory. There are 

three communicating finite state machines (CFSM) that control the flow DPE as shown 

below in Figure 5.9.  
 

 

Figure 5.9:  DPE Operation Flow Chart 
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The input state machine tracks the number of input tokens and generates the FIRE 

signal when all of the tokens are in the IQS. The event queue state machine tracks the 

availability of actors and events to be executed by the microcode state machine. The 

microcode state machine tracks the operational state of the DPE as shown below in 

Figure 5.13. 

5.5.1 Microcode fields 

There are five control fields in the microcode word as shown below in Figure 

5.10. The first field defines specific micro-operations within the microcode engine. These 

include nested looping, repeat function, branching and conditional execution. Three 

levels of hardware nested looping [52] are supported. All nested loop offsets are 

backwards while branch offsets can be both forwards and backwards. The branch 

operation utilizes the offset field and the loop count fields, which extends the range. The 

repeat operation further modifies the program flow by providing the capability to execute 

multiple nested loops. This is useful for operating on multi-dimensional data arrays. 

There are three repeat counters, one for each level of nesting. A state machine tracks the 

nesting context of all active loops. Most microcode operations can be conditionally 

executed. The exceptions are loop returns and the HALT instruction. Conditional 

execution uses condition codes derived from the arithmetic units in the datapath and the 

SFU. The first field also contains the immediate data word that can be used as an operand 

by the datapath or the SFU. The width of this field is determined by the algorithmic 

requirements of the machine.  
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Micro-engine control: 

IMMED 
DATA 

<95:80> 

BRANCH  
OFFSET     
<79:73> 

LOOP 
COUNTER 

NUM   
<72:71> 

REPEAT 
COUNT    
<70:68> 

UCODE 
OP    

<67:64> 

Datapath control: 

SHFT   
MODE   

B       
<45> 

SHFT   
MODE   

A       
<44> 

SHFT     
B      

<43:39> 

SHFT     
A     

<38:34> 

SHFT   
TC     
B      

<33> 

SHFT   
TC     
A      

<32> 

MULT 
<31> 

SAT 
<30> 

DP      
EN     

<29> 

ADD/SUB 
<28> 

Queued-Stack control for next operand selection: 

READ    
TOS    
QS2 
<63> 

READ   
TOS   
QS1 
<62> 

READ   
BOS     
QS2 
<61> 

READ   
BOS    
QS1 
<60> 

QS2      
CTL   

<59:56> 

QS1    
CTL    

<55:52:> 

B_BUS 
MUX 

<51:50> 

A_BUS 
MUX 

<49:48> 

CHAN   
MUX    
QS2 
<47> 

CHAN   
MUX    
QS1 
<46> 

Queued-Stack control for write-back operations: 

QS2      
BUS      
SEL  

<23:22> 

QS1      
BUS      
SEL  

<21:20> 

WB    
MUX     
SEL 

<18:17> 

RQS      
CTL     

<9:6> 

RD     
RQS     
<4> 

RQS      
BUS    
MUX     
<3> 

SFU & I/O control: 

LOGIC    
OP       

<16:14> 

SFU      
OP    

<13:11> 

WR      
SFU     
LAT 
<10> 

WR     
EQ      

LAT   
<5> 

FIFO    
WE     
<2> 

GPIO    
WE      
<0> 

Figure 5.10: Microcode control fields 

The second field controls the multiplexors and the functional units in the datapath 

using a combination of one-hot control bits and encoded control bits [53]. As can be seen 

from Figures 5.1 and 5.5 above, there are 10 multiplexors that control the flow of data 

through the functional units, the write-back mux and the IQS elements.  
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The third and fourth fields are for Queued-Stack control. The timing diagram for a 

typical operation is shown above in Figure 5.3. During the first half of the cycle the IQS 

provides the operands to datapath and the second half of the cycle the address of the IQS 

can be modified for the write operation. For example, if a PUSH operation is performed 

the FIFO pointer is shifted right to point to next location on the stack. The result data can 

be written to this location at the end of the cycle. The pointers in the IQS units and the 

RQS unit always point to valid data and are only modified during a write cycle. 

The fifth field is used to control the special function unit, the general-purpose I/O 

port and the output FIFO. The block diagram of the micro-engine as shown below in 

Figure 5.11 consists of four components: a writeable control store, micro-address 

generation, Actor/Event queue and a finite state machine controller. 
 

 

Figure 5.11: Block Diagram of the Microcode Engine 

The micro-engine is controlled via a 4-bit micro-opcode field. The micro-engine 

opcodes supported are shown below in Table 5.3.  
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Table 5.3: Micro-Engine operation codes 

OPCODE RPT MICRO-OPERATION 

EXEC Y UNCONDITIONAL EXECUTION 

EXEC_WB_EQ Y EXECUTE IF WRITEBACK == REFERENCE DATA 

EXEC_WB_GT Y EXECUTE IF WRITEBACK > REFERENCE DATA 

EXEC_WB_LT Y EXECUTE IF WRITEBACK < REFERENCE DATA 

WFE N HALT AT PC+1; WAIT-FOR-EVENT SIGNAL 

JMP N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD 

JMP_HLT N 
JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT 

AND WAIT FOR AN EVENT SIGNAL 

LOOP_BACK Y LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY) 

BRA N BRANCH UNCONDITIONALLY 

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA 

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA 

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA 

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA 

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA 

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA 

TXFR N TRANSFER OUTPUT FIFO DATA TO CHANNEL 

 

There are two basic execution modes: normal and conditional. In normal mode all 

micro-operations execute independently of the value of the condition codes. The 

conditional execution micro-opcode (EXEC_WB_XX) uses the value of the condition 

codes from the previous cycle to determine if the microinstruction can be executed. If the 

microinstruction is not executed the datapath retains its original state and the next 

microinstruction is then fetched. 
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All branch instructions operate in normal mode and are referred to as merged 

instructions. A merged instruction is one where the jump/branch can be executed 

simultaneously with a datapath operation [54].  

The repeat function provides the capability of executing a single microinstruction 

or group of microinstructions 2 to 8 times. Table 5.3 above shows the microinstructions 

that can be executed using the repeat function and the ones that cannot.  

The finite state machine (FSM) controls the nested looping and repeat functions. 

Three levels of nesting looping are supported in the base architecture. The repeat function 

is used to control the number of times a loop is repeated. There is a repeat counter for 

each nested loop that is loaded from the RPT_CNT field. The OFFSET field in the 

microcode is used to loop backwards in the loop when the LOOP_BACK opcode is 

executed. The RPT_CNT and OFFSET fields are used by the BRANCH opcode to 

increase the twos-complement offset range of the branch into the micro-ROM.  

Figure 5.12 below shows a typical nested looping microcode sequence. In this 

sequence there are two nested loops and one conditionally executed branch loop. The 

nested loops execute 10 times before the branch instruction is executed. Note that the 

microinstructions are executed in parallel, resulting in zero-overhead loop and branch 

instructions. Once the conditional branch is not taken the JMP_HLT microinstruction is 

executed. 
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Figure 5.12: Typical nested looping microcode sequence 

The JMP_HLT is a merged microinstruction that jumps to the address specified 

and halts the micro-engine to wait for the next event signal. The microcode engine is 

‘fired’ when the new channel data is inserted into the Queued-Stack. Note: the micro-

engine clocks are disabled during idle mode resulting in minimal power dissipation. 

5.5.2 Microcode finite state machine 

A finite state machine tracks the five possible states that the micro-engine can be 

operate in. These states are described below in Table 5.4. 
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Table 5.4: FSM operating modes 

State Operating mode 
S0 WAITING FOR EVENT/FIRE SIGNAL 

S1 NON-LOOPING EXECUTION STATE 

S2 LOOP-1 (INNER MOST) EXECUTION STATE 

S3 LOOP-2 EXECUTION STATE 

S4 LOOP-3 (OUTER MOST) EXECUTION STATE 

 

The state diagram for the FSM is show below in Figure 5.13.  

 

 

Figure 5.13: State diagram for micro-engine control 

The micro-engine remains in State-S0 until the input queue receives all of the 

tokens or when an event occurs. In either case, a FIRE signal is issued which brings the 
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micro-engine out of low-power mode and into full execution mode (Figure 4.20). State-

S1 is the normal operating mode when the machine is not executing in a nested loop. 

States S2, S3 and S4 track nested looping operation. State-S2 tracks execution in the 

outermost loop and State-S4 tracks execution in the innermost loop. The loops are 

entered sequentially from the outer loop to the inner loop and retire from the inner loop to 

the outer loop. Change of flow instructions (JUMP/BRANCH/WFE) cannot be executed 

in a nested loop nor can they enter a nested loop from outside of the loop. 

There are three loop counters that track the number of passes through each loop. 

The counters are loaded with the repeat count value when the first instruction of a loop is 

executed. The loop counter number and the repeat count value are specified in the 

microinstruction as shown below in Figure 5.14 (PC = 0 and PC = 2). The repeat counters 

are 3 bits wide, which allows a maximum repeat count value of 8 per loop. The loop-back 

address is 7 bits wide, which provides the ability to loop backwards 0 to 64 memory 

locations. A single instruction can be repeated 8 times by specifying a repeat count of 

0x00 and loopback address of 0x00. A single instruction can be repeated 512 times by the 

following sequence of five microinstructions shown in Figure 5.14. 

 

Figure 5.14: Nested looping/repeat example  
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Note that setting the repeat count value to zero (8 modulo 2) causes an underflow 

condition before the zero-detect is issued resulting in a full count of 8 operations. 

5.5.3 Microcode storage memory 

As mentioned above, the microcode storage can be implemented using a low 

power read-only-memory (ROM) [55] based or writable-control-store (WCS) memory 

[56]. In either case the clocks to the storage element are controlled by the FSM. For non-

looping repeat functions, the latched microcode word is accessed instead of accessing the 

memory element. This provides additional energy savings as it eliminates pre-charge 

clocking energy and memory access power. The WCS is loaded via the scan test unit 

interface and is used in systems where overlaying of microcode is needed due to the size 

of the code or for debugging microcode before it is committed to ROM. Figure C.3 in 

Appendix C shows the size difference between a ROM and a WCS. 

5.5.4 Actor/Event queue  

The microcode engine supports an Actor/Event queue that is used to store 

recirculated actors and/or asynchronous events. Events are normally generated from 

external sources such as timers, exceptions and interrupts. This is similar to the SNAP 

processor [15] as shown above in Figure 2.8. Recirculating actors provides the capability 

to preload a sequence of operations actors and have them execute until a break occurs. 

Typically a break condition occurs when new token data is needed. The Wait-For-Event 

instruction will cause a break condition. 

Figure 5.15 below shows the block diagram of the Actor/Event queue and how it 

is integrated into the microcode address generator.  
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Figure 5.15: Block diagram of the Actor/Event queue 

The Actor/Event queue contains entry points (micro-addresses) into the 

microcode memory. There are two types of entries in the queue: 1) those that recirculate 

ad infinitum or 2) those that are squashed from the queue once they execute. 

Asynchronous events such as timer interrupts are Type-2 entries and “actors” are Type-1 

entries. 

The event controller generates entry points for the asynchronous events being 

processed. These asynchronous event entry points can be entered on the “Top of Stack” 

(TOS) if they need to be executed immediately or entered into the “Bottom of Stack” 

(BOS) if it is not critical when they are executed. Type-2 entries are removed from the 

queue once they are executed. Type-1 entries are recirculated back into the Actor/Event 

queue by re-writing them to the BOS.  
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The FSM in the microcode engine controls the flow of addresses/entry-points to 

the microcode ROM/WCS. There are three main address sources:  
 

1. Next Micro-Address (NMA) 

2. The JUMP Immediate Address 

3. The Actor/Event Queue Address 

Each address can be modified by three offsets:  
 

1. Zero value (no offset) 

2. A value of one for basic incrementing  

3. An OFFSET value supplied by the microcode word being executed.  

 

The Actor/Event queue can be loaded from the result bus or via a scan chain 

controlled by the debug unit. Loading the queue from the result bus provides the ability to 

use the CLT to look up entry-points and writing them to the queue. The entry-points can 

be dynamically changed based on algorithmic or Fuzzy Logic based heuristics as the 

sensor system ages. The debug unit will copy the contents of the queue to external flash 

memory as needed to preserve the new operating state of the CSP. 
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Chapter 6. DPE Microprogramming 

6.1 Overview 

As described in Section 1.3, the CSP is a Synchronous Dataflow (SDF) machine. 

The DPE is considered an “actor” that processes tokens and generates tokens. Actors can 

be composed of multiple actors as long as the rules described in Section 1.4 are adhered 

to. A single DPE can contain one actor or many actors, each of which is implemented in a 

single microcode routine. Each microcode routine (actor) is terminated using a Jump-Halt 

or a Wait-for-Event microinstruction. The DPE waits for an event before executing the 

next actor. The events come from two sources: the Actor/Event queue (Section 5.5.4) or 

the next tranche of tokens generating a fire signal (Section 5.5.2). 

It was an easy decision to use a microcoded implementation to optimize power in 

the CSP. Each microcode routine (actor) is deterministic which satisfies one of the 

premises of an SDF machine. This provides the ability to deterministically schedule all 

transactions that the CSP will perform (another premise of an SDF machine). This also 

provides the ability to precisely time-stamp all tokens that pass through the CSP (see 

Section 4.3.2.1). 

The CSP does support non-deterministic operation by virtue of the fact that 

asynchronous events can be inserted into the DPE Actor/Event queue. The ability to 

dynamically reconfigure the CSP can also cause non-deterministic operation. In both 

cases the effect can be that the CSP cannot process tokens at the rate the PPU is issuing 

them to the FSU and/or the DPE. Recall that the CSP supports both Push/Pull modes as 

described in Section 1.4. The Pull-Mode is recommended for non-deterministic 

operation, as it will provide backpressure on all tokens that are being generated by the 

PPU and the FSU. The backpressure can be sensed by the debug unit, which can modify 
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the sampling rate of the PPU to match the throughput of the SDF machine(s). Of course 

non-deterministic operation requires dynamic characterization of the machine in order to 

determine the maximum time-stamp value (Equation 4.1).  

The Actor/Event queue can be considered to be program storage sans the 

immediate data capability that most ISA’s provide. A deterministic Actor/Event queue 

(one without asynchronous events) is considered a collection of actors that the DPE will 

execute in a deterministic order for every tranche of tokens that are received. The WFE 

microinstruction is used to halt the machine and wait for the next Actor/Event queue 

entry to be decoded as an entry point in the microcode memory.  

Microcode programming has always been considered to be tedious and that is 

definitely the case for the DPE. The use of a stack-based machine further complicates the 

programming paradigm. This is indicative of what it requires to optimize power for low 

energy embedded applications while maintaining the ability to dynamically reprogram 

the flow of the machine. The remainder of this chapter discusses how to micro-program 

the DPE. 

Two programming environments were reviewed as a part of this research. These 

are described below in Section 6.2. Microcode programming has long since fallen out of 

favor among programmers and the coding tool choices are very limited. The final 

solution was to use a simple spreadsheet based micro-assembler further validating the 

fact that spreadsheets can do almost anything. 

Section 6.3 below describes the details of the microcode word and Section 6.4 

describes the microcode programming syntax. This syntax is unique because of the 

addition of the stack operations that must be performed for each microcode operation.  
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6.2 Programing environment 

The limitation of many new machine architectures is the availability of a usable 

and stable programming environment. There are numerous freeware tools to build 

assemblers and compilers for classical register-based machines but virtually none for 

stack-based machines. These tools require an extensive overhaul when trying to make 

them work with a stack-based machine. There are stack-based languages like Forth [58] 

that compile down to machine code that runs on a register-based machine where a 

software based stack model is used. In looking at the opcode generation capability of the 

Forth compiler it was obvious that it was not suited for a Queued-Stack synchronous 

data-flow model.  

The software implementation of the actors is the most challenging because the 

DPE is a microcoded machine. Ideally this would be accomplished using a high level 

language that is compiled into microcode routines. As mentioned earlier, this would 

require a large-scale code generation development effort that is beyond the scope of this 

research. There are approximately 30 actors that are needed to support the class of 

workloads that the CSP is designed for. Combinations of these basic actors are used to 

build more complicated ones. That said, it was decided that the implementation of the 

actors would be accomplished using a microcode assembler. 

Two microprogramming environments were investigated as part of this research. 

These are described in the following sub-sections and include: 
 

1. Machine independent microcode programming languages [59] 

2. Microsoft Excel spreadsheet based micro-assembler. 
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6.2.1 Microcode Program Languages (MPL) 

These languages were developed during the early days of micro-programmable 

machines to implement microcode using control constructs such as IF-THEN-ELSE, DO-

WHILE, etc. These MPLs were generally machine specific, however, machine 

independent languages were proposed to provide portability from one generation to the 

next [59]. These languages were compiled into microcode-assembler opcodes/operands 

and then passed through a machine specific assembler to generate the binary files that can 

be loaded into a WCS or ROM. After looking for adequate off-the-shelf tools it was 

determined that the applicability of MPLs for DPE microprogramming was very limited 

primarily due to the fact that they do not support stack-based machines. 

6.2.2 Microsoft Excel spreadsheet assembler 

After reviewing numerous microcode assemblers it became obvious that all of 

them were based on a classic register file based datapath implementation. The distributed 

Queued-Stack implementation in the DPE with its multiple operation mechanism 

required extensive rewrite of these assemblers. The most optimal solution was to use a 

tool that has the ability to do table lookup functions with a broad range of IF-THEN 

control functions and a bit manipulation functions to build various data fields used in the 

microcode. Excel provides this capability. Interestingly enough an Excel spreadsheet can 

also be used to model an SDF algorithm, as it is a reactive system in itself. This would be 

an interesting Master’s project as follow-on to this research. A detailed description of the 

microcode assembler is presented in Appendix B.  
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6.3 Microcode Field Descriptions 

The microcode word is 96-bits wide and divided into five control blocks: micro-

engine control, datapath control, Queued-Stack control for write-back operations, 

Queued-Stack control for next operand selection operations, SFU and I/O control as 

shown below. The fields are described in detail in the next four subsections. 

Micro-engine control: 

IMMED 
DATA 

<95:80> 

BRANCH 
OFFSET     
<79:73> 

LOOP 
COUNTER 

NUM   
<72:71> 

REPEAT 
COUNT    
<70:68> 

UCODE 
OP    

<67:64> 

Datapath control: 

SHFT   
MODE   

B       
<45> 

SHFT   
MODE   

A       
<44> 

SHFT     
B      

<43:39> 

SHFT     
A     

<38:34> 

SHFT   
TC     
B      

<33> 

SHFT   
TC     
A      

<32> 

MULT 
<31> 

SAT 
<30> 

DP      
EN     

<29> 

ADD/SUB 
<28> 

Queued-Stack control for write-back operations: 

QS2      
BUS      
SEL  

<23:22> 

QS1      
BUS      
SEL  

<21:20> 

WB    
MUX     
SEL 

<18:17> 

RQS      
CTL     

<9:6> 

RD     
RQS     
<4> 

RQS      
BUS    
MUX     
<3> 

Queued-Stack control for next operand selection: 

READ    
TOS    
QS2 
<63> 

READ   
TOS   
QS1 
<62> 

READ   
BOS     
QS2 
<61> 

READ   
BOS    
QS1 
<60> 

QS2      
CTL   

<59:56> 

QS1    
CTL    

<55:52:> 

B_BUS 
MUX 

<51:50> 

A_BUS 
MUX 

<49:48> 

CHAN   
MUX    
QS2 
<47> 

CHAN   
MUX    
QS1 
<46> 

SFU & I/O control: 

LOGIC    
OP       

<16:14> 

SFU      
OP    

<13:11> 

WR      
SFU     
LAT 
<10> 

WR     
WB     
LAT   
<5> 

FIFO    
WE     
<2> 

GPIO    
WE      
<0> 
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6.3.1 Micro-engine control 

Table 6.1 below shows the bit field assignments for the micro-engine control. The 

five fields control the sequencing of all microinstructions and are described in Section 

5.5.  

Table 6.1: Micro-engine control bit field assignment 

IMMEDIATE 

DATA AND 
JUMP ADDRESS 

<95:80> 

LOOP 

& 
BRANCH 

OFFSET 

<79:73:> 

LOOP 

NUMBER 

<72:71> 

REPEAT 

COUNT 

<70:68> 

MICRO 

OPCODE 

<67:64> 

-32768 TO +32767  0-3 0-7 EXEC 

-32768 TO +32767  0-3 0-7 EXEC_WB_EQ 

-32768 TO +32767  0-3 0-7 EXEC_WB_GT 

-32768 TO +32767  0-3 0-7 EXEC_WB_LT 

    WFE 

-512 TO +511    JMP 

-512 TO +511    JMP_HLT 

-32768 TO +32767 -64 TO 0 0-3  LOOP_BACK 

-32768 TO +32767 -64 TO +63   BRA 

-32768 TO +32767 -64 TO +63   BR_WB_EQ 

-32768 TO +32767 -64 TO +63   BR_WB_GT 

-32768 TO +32767 -64 TO +63   BR_WB_LT 

-32768 TO +32767 -64 TO +63   BR_SFU_GT 

-32768 TO +32767 -64 TO +63   BR_SFU_LT 

-32768 TO +32767 -64 TO +63   BR_SFU_EQ 

    TXFR 
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6.3.1.1 Immediate data – Bit field <95:80> 

This bit field is used to provide immediate data to the datapath units. Figure 6.1 

below shows the datapath block diagram. There are three consumers of immediate data: 

1) the datapath input multiplexor, 2) the Write-Back Unit (WBU) and 3) the Special 

Function Unit (SFU). The immediate data can be sign extended using control bit <19>. 

This immediate data field is also used as the two’s complement address for the two jump 

instructions. Consequently jump instructions cannot use the immediate data field for 

datapath instructions. The branch-always opcode (BRA) can be used for unconditional 

jumps where the immediate data field is needed by the microinstruction. 
 

 

Figure 6.1:  Datapath block diagram 

6.3.1.2 Branch offset – Bit field <79:73> 

This field provides the two’s complement offset for the branch instructions and 

the negative offset for the loop back instruction. The field is limited to 7 bits for the 
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current implementation of the DPE, providing a -64 to +63 offset for branch instructions 

and the loop back instruction. 

6.3.1.3 Loop number – Bit field <72:71> 

This field indicates which loop number the micro-engine should enter. This 

provides the ability to do 3-deep nested looping (see Section 5.5) and is used in 

conjunction with the repeat count field. Figure 6.2 below shows that state diagram of the 

micro-engine as it tracks which loop is active.  

 

 

Figure 6.2:  Micro-engine state diagram 

6.3.1.4 Repeat count – Bit field <70:68> 

The repeat count field is used for repeating individual microinstructions or for 

repeating nested loops. The 3-bit field provides the ability to repeat a loop or an 

FIRE 

FIRE 

HALT LOOP * HALT 

LOOP_1 

LOOP_ZD 

LOOP_ZD * LOOP_2 

LOOP_2 

LOOP_ZD 

RESET 

LOOP_ZD * LOOP_3 

LOOP_3 

LOOP_ZD 

LOOP_ZD  
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instruction 1 to 8 times. A single micro-instruction can be repeated 512 times by 

specifying 3 levels of nesting and a repeat count of 0 (8 modulo 2) for each loop. 

6.3.1.5 Micro-engine opcode – Bit field <67:64> 

The 4-bit micro-engine opcode field provides up to 16 micro-operations that the 

micro-engine can execute. Table 6.2 below describes the 16 opcodes that the current 

implementation of the DPE can execute. 

Table 6.2: Micro-Engine Operation Codes 

OPCODE RPT MICRO-OPERATION 

EXEC Y UNCONDITIONAL EXECUTION 

EXEC_WB_EQ Y EXECUTION IF WRITEBACK == REFERENCE DATA 

EXEC_WB_GT Y EXECUTION IF WRITEBACK > REFERENCE DATA 

EXEC_WB_LT Y EXECUTION IF WRITEBACK < REFERENCE DATA 

WFE N HALT AT PC+1; WAIT-FOR-EVENT SIGNAL 

JMP N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD 

JMP_HLT N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT 

LOOP_BACK Y LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY) 

BRA N BRANCH UNCONDITIONALLY 

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA 

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA 

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA 

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA 

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA 

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA 

TXFR N TRANSFER OUTPUT FIFO DATA TO CHANNEL 
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6.3.2 Datapath control 

The datapath control is composed of multiplexor control and arithmetic function 

control. Figure 6.3 below shows a block diagram of the multiplexors and the arithmetic 

units.  

 

Figure 6.3:  Block diagram of the multiplexors and the arithmetic units 

6.3.2.1 Multiplexor control for datapath 

The first set of multiplexors steer the output data from the IQS1 and IQS2 

Queued-Stack elements. The second set multiplexes the output of the RQS unit, 

immediate data and the output from the first set of multiplexors. The last set multiplexes 

the output from the second multiplexor, the output from the shifter, the output from the 

multiplier, an additional output from the RQS unit and lastly a ZERO value. Table 6.3 

below shows the bit field assignments for the datapath multiplexor control. 
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Table 6.3: Datapath multiplexor control bit field assignments 

ENCODE 
QS2 BUS 

<23:22> 
QS1 BUS 

<21:20> 

B_BUS   

MUX    

<51:50> 

A_BUS   

MUX    

<49:48> 

B-MUX 

SEL 

<27:26> 

A-MUX 

SEL 

<25:24> 

00 TOS_QS2 TOS_QS1 QS2_BUS QS1_BUS ZERO ZERO 

01 BOS_QS2 BOS_QS1 IMM_DATA IMM_DATA B_BUS A_BUS 

10 TOS_QS1 TOS_QS2 TOS_RQS TOS_RQS B_BUS_SHFT A_BUS_SHFT 

11 BOS_QS1 BOS_QS2 BOS_RQS BOS_RQS MULT RQS_BUS 

 

6.3.2.2 Shifter control 

The shifter control bits are shown below in Tables 6.4 and 6.5. The shifter 

supports arithmetic and barrel shifts. When the control signal SHIFT_TC = 0, the shift 

value is interpreted as an unsigned positive number, and the shifter performs only left 

shift operations. When SHIFT_TC = 1, the shift value is a two’s complement number, 

with a negative coefficient performing a right shift and a positive coefficient performing 

a left shift. The input data, DATA_IN, is interpreted as an unsigned number when 

DATA_TC=0. When DATA_TC=1, DATA_IN is interpreted as a signed number, and a 

sign extension is performed for right arithmetic shift operations. 

Table 6.4: Datapath control for A-BUS shifter 

SHIFT 
MODE       

A        

<44> 

SHIFT    

A 
    

<38:34> 

SHIFT   

TC        

A 

<32> 

DATA   

TC 

            

<19> 

MSB      

OP 

 

 

OPERATION 

1 0-31 0 - - LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 - 0 LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 0 0 RIGHT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 1 1 RIGHT ARITHMETIC SHIFT, SIGN EXT. PADDING 

0 0-31 0 - 0 LEFT BARREL SHIFT 

0 0-31 1 - 1 RIGHT BARREL SHIFT 
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Table 6.5: Datapath control for B-BUS shifter 

SHIFT 
MODE       

B        

<45> 

SHIFT     

B 
    

<39:43> 

SHIFT   

TC        

B 

<33> 

DATA   

TC    

         

<19> 

MSB      

OP 

 

 

OPERATION 

 0-31 0 - - LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 - 0 LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 0 0 RIGHT ARITHMETIC SHIFT, LOGIC 0 PADDING 

1 0-31 1 1 1 RIGHT ARITHMETIC SHIFT, SIGN EXT. PADDING 

0 0-31 0 - 0 LEFT BARREL SHIFT 

0 0-31 1 - 1 RIGHT BARREL SHIFT 

6.3.2.3 Multiplier control 

The multiplier control bits are shown below in table 6.6. The multiplier supports 

both signed and unsigned operations. 

Table 6.6: Datapath control for Multiplier 

MULT 
MODE       

<31> 

DATA   

TC        

<19> 
OPERATION 

0 - NO OPERATION 

1 0 UNSIGNED MULTIPLY 

1 1 SIGNED MULTIPLY 

 

6.3.2.4 Adder control 

The adder control bits are shown below in table 6.7. The adder supports 

signed/unsigned, saturating/non-saturating, and add/subtract. The default is to use signed 

saturating arithmetic for all operations. 
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Table 6.7: Datapath control bit field assignments for ADD/SUB 

ADD/SUB     

<28> 
SAT 

<30> 

DATA   

TC        

<19> 
OPERATION 

0 0 0 UNSIGNED ADD 

0 0 1 SIGNED ADD 

0 1 0 SATURATED UNSIGNED ADD 

0 1 1 SATURATED SIGNED ADD 

1 0 0 UNSIGNED SUBTRACT 

1 0 1 SIGNED SUBTRACT 

1 1 0 SATURATED UNSIGNED SUBTRACT 

1 1 1 SATURATED SIGNED SUBTRACT 

 

6.3.2.5 Signed/Unsigned operation 

The TC control bit <19> is used to set all data path elements to operate in either 

signed or unsigned operation. The PPU converts all token data to the appropriate format 

based on the operating mode of the CSP. 
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6.3.3 Queued-Stack control  

Table 6.8 below shows the microcode encoding for IQS1, IQS2 and RQS fields. 

A number of the operations are described in the following sub-sections. There are 15 

basic operations: PUSH, POP, INS, TOP, BOT and WR/NW. PUSH and POP are stack 

operations that advance the pointers. INS is a queue operation where the operand is 

inserted into the queue (bottom of the stack) and advances the pointers. TOP/BOT are 

operations that write operands to the top and bottom of the stack without advancing the 

pointers. WR/NW modify the basic operations to either write (WR) or not-write (NW) 

the operand as specified in the write-back column. 

Table 6.8: Queued-Stack operation encoding 

ENCODE 
IQS2_CTL 

<59:56> 

IQS1_CTL 

<55:52> 

RQS_CTL 

<9:6> 

1001 PUSH PUSH PUSH 

0100 POP POP POP 

0111 POP_WR POP_WR POP_WR 

0010 INS INS INS 

0011 INS_NW INS_NW INS_NW 

1100 PUSH_NW PUSH_NW PUSH_NW 

1101 TOP TOP TOP 

0001 BOT BOT BOT 

1110 TOP_BOT TOP_BOT TOP_BOT 

1011 PUSH_INS PUSH_INS PUSH_INS 

0101 POP_BOT POP_BOT POP_BOT 

0110 POP_INS POP_INS POP_INS 

1000 POP_WR_BOT POP_WR_BOT POP_WR_BOT 

1010 PUSH_NW_BOT PUSH_NW_BOT PUSH_NW_BOT 

1111 TOP_INS TOP_INS TOP_INS 

0000 NOP NOP NOP 
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6.3.3.1 PUSH operation 

Figure 6.4 below shows the PUSH operation on a Queued-Stack after reset where 

TOS pointer is advanced before the write operation. 

 

Figure 6.4:  PUSH operation 

6.3.3.2 BOT operation 

Figure 6.5 shows the BOT operation that writes 0x3344 to the BOS without 

advancing the pointer. 

 

Figure 6.5:  BOT operation 
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6.3.3.3 PUSH_INS operation 

Figure 6.6 shows the PUSH_INS operation where 0xABCD is written to the TOS 

and the BOS after the pointers have been advanced appropriately. 

 

Figure 6.6:  PUSH_INS operation 

6.3.3.4 TOP_BOT operation 

Figure 6.7 below shows the TOP_BOT instruction that writes 0x1234 to both the 

TOS and the BOS without advancing the pointers. 

 

Figure 6.7:  TOP_BOT operation 
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6.3.3.5 POP operation 

Figure 6.8 below shows the POP operation that simply advances the TOS pointer 

appropriately. 

 

Figure 6.8:  POP operation 

6.3.3.6 POP_WR operation 

Figure 6.9 below shows the POP_WR operation where the TOS pointer is 

advanced and 0x5678 is written to the new TOS location. 

 

Figure 6.9:  POP_WR operation 
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6.3.3.7 PUSH_NW operation 

Figure 6.10 below shows two sequential PUSH_NW instructions where the TOS 

pointer is advanced without writing the data. 

 

Figure 6.10: PUSH_NW operation 

6.3.3.8 TOP_INS operation 

Figure 6.11 below illustrates the TOP_INS operation where the TOS is written 

without advancing the TOS pointer while BOS pointer is advanced and the BOS is 

written with a value of 0xDEAD. 

 

Figure 6.11: TOP_INS operation 
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6.3.4 Logical Unit, Special Function Unit and I/O Control 

The current implementation of the DPE supports a Boolean Logic Unit (BLU) and 

a special function unit that is used for Fuzzy Logic operations. 

6.3.4.1 Logical operations 

The DPE supports 8 logical operations as shown below in Table 6.9. Recall that 

the inputs to the logical unit are from the output of the shifter (Figure 5.5). This provides 

basic bit field extraction capability. 

Table 6.9:  Logical operations 

OPCODE DESCRIPTION 
A_NOT INVERT VALUE ON A_INPUT 

B_NOT INVERT VALUE ON B_INPUT 

AND A_INPUT AND B_INPUT 

NAND A_INPUT NAND B_INPUT 

OR A_INPUT OR B_INPUT 

NOR A_INPUT NOR B_INPUT 

XNOR A_INPUT XNOR B_INPUT 

 

6.3.4.2 SFU operations 

The SFU implemented in the current version of the DPE is designed to accelerate 

Fuzzy Logic routines, specifically MIN/MAX functions. Table 6.10 below shows the 

eight MIN/MAX operations that are supported by the SFU. The REF_DATA input is a 

constant value that is stored in a register located in the SFU. It is used for threshold 

detection algorithms. 
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Table 6.10: MIN/MAX operations 

ENCODE OPCODE OPERATION 

000 MIN_A_B MIN(SHFT_A_BUS, SHFT_B_BUS, SHFT_B_BUS) 

001 MIN_A_REF MIN(SHFT_A_BUS, REF_DATA, REF_DATA) 

010 MIN_B_REF MIN(SHFT_B_BUS, REF_DATA, REF_DATA) 

011 MIN_A_B_REF MIN(SHFT_A_BUS, SHFT_B_BUS, REF_DATA) 

100 MAX_A_B MAX(SHFT_A_BUS, SHFT_B_BUS, SHFT_B_BUS) 

101 MAX_A_REF MAX(SHFT_A_BUS, REF_DATA, REF_DATA) 

110 MAX_B_REF MAX(SHFT_B_BUS, REF_DATA, REF_DATA) 

111 MAX_A_B_REF MAX(SHFT_A_BUS, SHFT_B_BUS, REF_DATA) 

 

The MIN/MAX logic block in the SFU has three inputs: A_BUS_SHFT, 

B_BUS_SHFT and REF_DATA as seen below in Figure 6.12. There are two SFU 

operations that require 3 inputs while the remaining six use only two inputs. In those 

cases the same input is used for two of the three inputs. 

 

Figure 6.12: Block diagram of MIN/MAX logic  
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6.4 Microcode programming syntax 

There are five operational fields that can be specified for each microinstruction: 
 

1. Arithmetic operations 

2. Non-arithmetic operations 

3. Write back operations 

4. Next-operand operations 

5. Micro-engine operations 

 

In most cases the fields do not have to be completely specified. The microcode 

assembler will set the appropriate fields to the correct state. For example, if a datapath 

operation is not specified the DP_ENABLE signal will be negated. The syntax for the 

operations follows the stack based Reverse Polish Notation (RPN) where the source data 

is presented before the operation [57]. Each operation is delineated using a vertical bar |. 

6.4.1 Arithmetic operations 

The datapath supports up to 3 concurrent arithmetic operations: shift(scale), 

multiply and add/subtract. As can be seen in Figure 6.3 above, the two shifters feed the 

MULT unit and the ADD/SUB unit, while the MULT unit feeds only the B-BUS on the 

ADD/SUB unit. The shifter instruction is specified first if the shifter is modifying the 

values being inputted into the MULT unit. The datapath supports both signed and 

unsigned operations. The same mnemonics apply to both modes of operation. 
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The basic instruction format for the shifter is: 
 
| SOURCE <MNEMONIC=COUNT> | 

There are four shifter operations: LSR, ASR, LSL and ASL that can be specified. 

Examples of shifter instructions for the shifter on the A_BUS: 
| TOS_QS1 LSLA=0X1A | 
| TOS_QS2 ASRA=0X15 | 
| BOS_QS2 ASRA=0X18 | 
| BOS_RQS ASRA=0X31 | 
| IMM_DATA=0X2F LSRA=0X0A |  

The same instructions are applicable for the shifter on the B_BUS  
 
| TOS_QS1 LSLB=0X05 | 
| TOS_QS2 ASRB=0X17 | 
| BOS_QS1 LSRB=0X1F | 
| TOS_RQS ASRB=0X2F | 
| IMM_DATA=0X2F LSRB=0X0A |  
 

The basic instruction formats for the MULT unit are: 
 
| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> |     // IMPLIES SHIFT=0X00 
| <SHIFTER_A_OP>  <SHIFTER_B_OP>  <MNEMONIC> |   // IMPLIES DEFAULT SOURCE 
| SOURCE <SHIFTER_A_OP> | SOURCE <SHIFTER_B_OP> | <MNEMONIC> | 
 

Code examples multiplier instructions where the shifter units are not active: 
 
| TOS_QS1 TOS_QS2 MULT |    
| TOS_QS2 TOS_QS1 MULT | 
| BOS_QS1 BOS_QS2 MULT | 
| BOS_QS2 BOS_QS1 MULT | 
| TOS_RQS IMM_DATA=0X4A MULT | 
| BOS_RQS TOS_RQS MULT | 
| IMM_DATA=0X66 TOS_QS2 MULT | 
| IMM_DATA=0X12 IMM_DATA=0X12 MULT | 
| IMM_DATA=0X9A BOS_RQS MULT | 
 

Code examples of multiplier instructions where the shifter is active: 
 
| TOS_QS1 LSLA=12 | TOS_QS2 LSLB=15 | MULT | 
| IMM_DATA=0X7E LSLA=21 | TOS_QS1 LSLB=11 | MULT| 
| BOS_QS1 LSLA=0X1A | TOS_QS2 ASRB=0X17 | MULT | 
 

The instruction formats for the ADD/SUB unit are: 
 
| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | 
| SOURCE_A_MUX SOURCE_B_MUX <MNEMONIC> | 
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Code examples of add/subtract instruction include: 
 
| ZERO ZERO  ADD | 
| A_BUS B_BUS_SHFT  SAT_ADD | 
| RQS_BUS=BOS_RQS MULT_BUS SAT_SUB | 
| TOS_QS1 IMM_DATA=0X11 SUB | 
 

A typical scaled-multiply-saturating-accumulate microinstruction would be written as: 
 
1: 
| TOS_QS1 LSRB=3     // SCALE (DIVIDE BY 8) 
| IMM_DATA=0X17 LSLB=5   // SCALE (MULTIPLY 17 X 32) 
| MULT      // MULTIPLY SCALED VALUES 
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD |:1 // SATURATE ADD 
 

6.4.2 Non-arithmetic operations 

There are number of special function instructions which are supported by the 

current implementation of the DPE. These include Boolean logic operations and special 

function unit (SFU) operations. 

6.4.2.1 Boolean logic operations 

The inputs to the Boolean Logic Unit are from the output of the shifter. As with 

previous instructions the inputs to the shifters must be specified. Additionally, the source 

of data on the write-back bus must be specified (see Section 6.4.3 below). The supported 

Boolean logic operations are described above in Section 6.3.4.1 

The syntax for Boolean logic operations is: 
 
| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | // IMPLIES SHIFT=0X00 
| <SHIFTER_A_OPERATION> | <SHIFTER_B_OPERATION> | <MNEMONIC> | 
 

Here is an example of a microcode word that performs a basic logical NAND operation 

and writes the result to the QS2 top of stack: 
 
 
1: 
| TOS_QS1     // GET ONE OPERAND FROM TOS_QS1 
  IMM_DATA=0X55    // GET FIXED VALUE 
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  NAND     // TOS_QS1 NAND 0X55 ** 
| WB=LU      // SELECT LOGICAL UNIT AS SOURCE TO WB 
| POP_QS1     // SELECT NEXT OPERAND 
| PUSH_QS2 |:1    // PUSH RESULT ON TOS_QS2  

 

** Note: operations can be specified across multiple lines and comments can be inserted 

in between for clarity.  

Here is an example of a more complex logical operation where the GPIO port is read, 

modified and then re-written. 
 
1: 
| WB=GPIO     // SETUP TO READ GPIO PORT 
| PUSH_QS1 |:1    // PUSH ON QS1 
 
2: 
| TOS_QS1, LSLB=2     // GET GPIO VALUE 
| TOS_QS2, LSRB=4     // GET SAVED OPERAND 
| NAND     // TOS_QS1 NAND TOS_QS2 
| WB=LU     // SELECT LOGICAL UNIT AS SOURCE TO WB 
| POP_QS2     // SELECT NEXT OPERAND 
| GPIO |:2     // STORE TO GPIO PORT 

6.4.2.2 SFU syntax 

The inputs to the SFU are from the output of the shifter. As with previous 

instructions the inputs to the shifters and the source of the data on the write-back must be 

specified. The supported SFU operations are described above in Section 6.2.4.2.  

The syntax for SFU operations is: 
 
 
| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | // IMPLIES SHIFT=0X00 
| <SHIFTER_A_OPERATION> | <SHIFTER_B_OPERATION> | <MNEMONIC> | 
 

An example of a sequence of SFU microinstructions is shown below. In this example the 

minimum value of the TOS_QS1 and TOS_QS2 is inserted into the BOS_QS1 and the 

operation continues until the result is greater than the reference value. 
 
1: 
| TOS_QS1 LSLB=0     // READ TOS_QS1 
| TOS_QS2 LSRB=0    // READ TOS_QS2 
| MIN_A_B     // MIN TOS_QS1, TOS_QS2 
| WB=SFU     // SELECT SFU AS SOURCE TO WB 
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| INS_QS1     // INSERT INTO QS1  
| POP_QS1 | POP_QS2  |:1   // SELECT NEXT OPERANDS 
 
2: 
| BR_SFU_GT=-1 |:2    // BRANCH IF RESULT > REF_DATA 
 

Note: the BR_SFU_GT instruction is described below in Section 6.4.4.3 

6.4.3 Write-back operations 

There are four sources of write-back data. These include: 

1. Arithmetic Unit (Shifter, Multiplier, Adder) 

2. Boolean Logic Unit 

3. Special Function Unit 

4. GPIO Port 

The instruction format for specifying the write-back source is: 
 
| WB=SOURCE |    // WHERE SOURCE == DP, LU, SFU, GPIO 
  

The write-back data can be simultaneously written to any of the 3 Queued-Stacks, 

the output channel FIFO, the general-purpose I/O (GPIO) port, the two compare latches 

(WB_LAT and SFU_LAT) and the Operation Queue. The QS1, QS2 and RQS stacks can 

perform 15 write-back and/or stack manipulation operations as described above in 

Section 6.3.3. Note: the FIFO only supports the basic insert operation.  

The stack operation instruction format is: 
 
| <MNEMONIC>_<STACK> |    // SINGLE QUEUED-STACK OPERATION 
| <MNEMONIC>_<STACK> | <MNEMONIC>_<STACK> |  // PARALLEL QUEUED-STACK OPERATION 
 

Coding examples of the various stack operations include: 
 
| PUSH_QS1 | 
| POP_QS2 | 
| POP_WR_RQS | 
| TOP_QS1, BOT_QS2 |  
| TOP_BOT_QS1 | PUSH_INS_RQS | 
| POP_BOT_QS2 | POP_INS_QS1 | SFU_LAT | WB_LAT | 
| POP_WR_BOT_QS2 | PUSH_NW_BOT_QS1 | TOP_INS_RQS | FIFO | GPIO |  OP_QUEUE 



131 
 

 

As noted above the write-back data can be written to all 3 Queued-Stacks, the output 

FIFO, the Actor/Event Queue and the GPIO port as shown in last code example. This 

provides the ability write back result data to a queue while writing it to a stack and 

outputting it to the next DPE.  
 

Below are examples of arithmetic operations and Queued-Stack operations: 
 
1: 
| ZERO ZERO ADD    // ZERO -> ACCUMULATOR 
| WB=DP      // SELECT DP (DEFAULT) 
| PUSH_RQS |:1    // INSERT AT TOS IN RQS 
 
2: 
| TOS_QS1 LSLB=12     // SCALE 
| IMM_DATA=0X55 LSRB=17   // SCALE 
| MULT     // MULTIPLY SCALED VALUES 
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD  // SATURATED ADD 
| WB=DP     // SELECT DP AS SOURCE TO WB 
| PUSH_RQS     // WRITE-BACK TO ACCUMULATOR 
| POP_QS1 | POP_QS2 |:2   // SELECT NEXT OPERANDS 
 
3: 
| WB=GPIO     // SETUP TO READ GPIO PORT 
| FIFO     // WRITE-BACK TO FIFO 
| PUSH_QS1      // WRITE-BACK TO QS1 
| POP_QS1 | POP_QS2 |:3   // SELECT NEXT OPERANDS 

 

The following code sequence sets up the compare latch in the datapath and illustrates the 

its use as part of conditional execution and conditional branching. Conditional branching 

is described below in Section 6.4.4.3. 
 
1: 
| ZERO IMM_DATA=0X55 ADD   // SETUP COMPARE VALUE 0X55 
| WB=DP     // SELECT DP AS SOURCE TO WB (DEFAULT) 
| WB_LAT |:1     // WRITE TO WB COMPARE LATCH 
 
2: 
| COND_EXEC_EQ    // CONDITIONALLY EXECUTE 
| TOS_QS1 LSLB=0X01    // READ TOS_QS1 AND SCALE 
| TOS_QS2 LSRB=0X02    // READ TOS_QS2 AND SCALE 
| ADD      // ADD 
| WB=DP     // SELECT DP AS SOURCE TO WB (DEFAULT) 
| POP_QS1 | POP_QS2  |:2   // SELECT NEXT OPERANDS 
 
3: 
| BR_WB_GT=-2 |:3    // BRANCH IF RESULT > 0X55 
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6.4.4 Micro-engine operations 

The DPE microcode engine can execute sixteen basic opcodes as shown below in 

Table 6.11. The microcode engine is similar to a VLIW machine where multiple 

operations can execute simultaneously. In the case of the DPE, branches and datapath 

operations can execute in the same microinstruction and event operations can execute in 

parallel with datapath operations. However not all three operations can execute in 

parallel. 

Table 6.11: Mapping of micro-engine opcodes to execution type 

OPCODE EXECUTION TYPE 

EXEC NON-BRANCHING 

EXEC_WB_EQ NON-BRANCHING CONDITIONAL 

EXEC_WB_GT NON-BRANCHING CONDITIONAL 

EXEC_WB_LT NON-BRANCHING CONDITIONAL 

WFE EVENT 

JMP UNCONDITIONAL BRANCHING 

JMP_HLT UNCONDITIONAL BRANCHING/EVENT 

LOOP_BACK UNCONDITIONAL BRANCHING 

BRA UNCONDITIONAL BRANCHING  

BR_WB_EQ CONDITIONAL BRANCHING 

BR_WB_GT CONDITIONAL BRANCHING 

BR_WB_LT CONDITIONAL BRANCHING 

BR_SFU_GT CONDITIONAL BRANCHING 

BR_SFU_LT CONDITIONAL BRANCHING 

BR_SFU_EQ CONDITIONAL BRANCHING 

TXFR CHANNEL 
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The DPE microinstructions are categorized into three classes of operation: 
  

1. Non-branching datapath execution including conditional and unconditional 

operations. 

2. Branching execution including conditional and unconditional operations. 

3. Event and channel handling operations. 

 

The first two classes of instruction support both non-conditional and conditional 

execution. Conditional execution is predicated on the state of one of the three condition 

codes that is determined by the previous datapath or SFU operation. As described above 

in Section 5.4.1 the DPE supports three condition codes: equal, greater-than and less-

than. The three condition codes are generated by comparing the value on the write-back 

bus with a stored reference value. There are two stored values: one for datapath 

operations and one for SFU operations. The stored values that are used for the 

comparison operations are written using a standard datapath operation that will be 

described below. 

6.4.4.1 Non-branching operations 

EXEC is the only unconditional non-branching microinstruction. The instruction 

is assumed to be unconditional if EXEC is not specified in the microinstruction. The 

EXEC instruction must be specified when entering a loop. The syntax for an EXEC 

instruction that specifies a loop number is: 
 
EXEC=<LOOP NUMBER> 
 

An example of a typical loop instruction sequence is: 
 
1: 
| EXEC=1 | RPT=7    // ENTER LOOP #1, REPEAT 7 TIMES 
| ZERO ZERO ADD    // ZERO -> ACC  
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| INS_RQS |:1    // INSERT AT BOS OF RQS 
      
2:  
| POP_QS1 POP_QS2 |:2   // POP VARIABLES OFF OF INPUT STACKS 
 
3: 
| LOOP_BACK=-2 |:3    // LOOP BACK TO 1: 

There are three conditional non-branching microinstructions: EXEC_WB_EQ, 

EXEC_WB_GT and EXEC_WB_LT. An example of a conditional non-branching 

microinstruction is: 
 
1: 
| EXEC_WB_EQ     // CONDITIONAL EXECUTION WB == ZERO 
| TOS_QS1 LSLB=12    // SCALE 
| IMM_DATA=0X55 LSLB=2   // SCALE 
| MULT     // MULTIPLY SCALED VALUES 
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD // SATURATED ADD 
| WB=DP,     // SELECT DP AS SOURCE TO WB (IMPLIED) 
| PUSH_RQS |:1    // WRITE TO ACCUMULATOR 
 

This microinstruction will execute the store to the RQS if the result from the previous 

instruction is a zero. 

6.4.4.2 Unconditional branching operations 

There are four unconditional branching operations supported by the microcode 

engine. These are JMP, JMP_HALT, BRA, LOOP_BACK and are described below in 

Table 6.12 

Table 6.12: Unconditional branching operations 

OPCODE MICRO-OPERATION 

JMP JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD 

JMP_HLT JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT 

LOOP_BACK LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY) 

BRA BRANCH UNCONDITIONALLY TO ADDRESS SPECIFIED IN BRANCH OFFSET 
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An example of the JMP_HLT micro-operation is shown below.  
 
1: 
| ZERO ZERO ADD    // ZERO -> ACCUMULATOR 
| WB=DP      // SELECT DP (DEFAULT) 
| PUSH_RQS |:1    // INSERT AT TOS IN RQS 
 
2: 
| TOS_QS1 LSLB=12     // SCALE 
| IMM_DATA=0X55 LSRB=17   // SCALE 
| MULT     // MULTIPLY SCALED VALUES 
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD  // SATURATED ADD 
| WB=DP     // SELECT DP AS SOURCE TO WB 
| PUSH_RQS,     // WRITE-BACK TO ACCUMULATOR 
| POP_QS1 | POP_QS2 |:2   // SELECT NEXT OPERANDS 
 
3: 
| WB=GPIO     // SETUP TO READ GPIO PORT 
| FIFO     // WRITE-BACK TO FIFO 
| JMP_HLT=1 |:3    // JUMP TO 1: AND WAIT FOR NEW EVENT 

 

An example of the LOOP_BACK micro-operation is shown below.  
 
1: 
| EXEC=1 | RPT=7    // ENTER LOOP #1, REPEAT 7 TIMES 
| ZERO ZERO ADD    // ZERO -> ACC  
| INS_RQS |:1    // INSERT AT BOS OF RQS 
      
2:  
| POP_QS1 POP_QS2 |:2   // POP VARIABLES OFF OF INPUT STACKS 
 
3: 
| LOOP_BACK=-2 |:3    // LOOP BACK TO 1: 
 

6.4.4.3 Conditional branching operations 

There are six conditional branching operations, 3 for arithmetic operations and 3 

for SFU operations. These are described below in Table 6.13. 
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Table 6.13: Conditional branching operations. 

OPCODE RPT MICRO-OPERATION 

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA 

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA 

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA 

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA 

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA 

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA 

 

The following code shows an example of both conditional execution and 

conditional branch operations: 
 
1: 
| ZERO IMM_DATA=0X55 ADD   // SETUP COMPARE VALUE 0X55 
| WB=DP     // SELECT DP AS SOURCE TO WB (DEFAULT) 
| WB_LAT |:1     // WRITE TO WB COMPARE LATCH 
 
2: 
| COND_EXEC_EQ    // CONDITIONALLY EXECUTE 
| TOS_QS1 LSLB=0X01    // READ TOS_QS1 AND SCALE 
| TOS_QS2 LSRB=0X02    // READ TOS_QS2 AND SCALE 
| ADD      // ADD 
| WB=DP     // SELECT DP AS SOURCE TO WB (DEFAULT) 
| POP_QS1 | POP_QS2    // SELECT NEXT OPERANDS 
 
3: 
| BR_WB_GT=-2 |:2    // BRANCH IF RESULT > 0X55 
 
4: 
| WB=GPIO     // SETUP TO READ GPIO PORT 
| FIFO     // WRITE-BACK TO FIFO 
| JMP_HLT=1 |:4    // JUMP TO 1: AND WAIT FOR A NEW EVENT 
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6.4.4.4 Event operations 

There are two event operations. JMP_HALT and WFE. Event operations are 

specified as instructions that execute and then wait for an event to occur. The 

JMP_HALT is a merged micro-operation where a datapath operation is executed in 

parallel to a JMP instruction that then halts the micro-engine at the address specified in 

the immediate data field. The WFE (Wait-for-Event) micro-operation halts the micro-

engine at the address to the next microinstruction. Both micro-operations are used to 

terminate the execution of an actor.  

Here is a code example of an FIR actor that is terminated by a JMP_HALT 

instruction: 

 
1:  
| ZERO ZERO ADD   // ZERO -> ACC  
| INS_RQS | :1   // INSERT AT BOS RQS 
 
2:  
| TOS_QS1 TOS_QS2 MULT  // A(3,2,1) * X(N-3,2,1) 
| BOS_RQS MULT_BUS ADD  // + ACC 
| BOT_RQS    // -> ACC 
| POP_QS1 | POP_QS2   // POINT AT NEW VARIABLE 
| RPT=3 | :2    // REPEAT 3 TIMES 
 
3:  
| TOS_QS1 TOS_QS2 MULT  // A(0) * X(N) 
| BOS_RQS MULT_BUS ADD   // + ACC 
| FIFO    // OUTPUT Y(N) TO FIFO ELEMENT 
| POP_QS1 | :3   // CONSUME X(N) TOKEN 
 
4:  
| PUSH_QS1 |PUSH_QS2  // RESET VARIABLE POINTERS 
| RPT=4 | :4    // REPEAT 4 TIMES 
 
5:  
| JMP_HALT=1 |:5   // JUMP AND WAIT FOR NEW X(N) TOKEN 
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Chapter 7. High Level Modeling Environment 

The ideal modeling environment for the CSP architecture is one where actors are 

instantiated and connected in a graphical schematic environment. Analysis and 

simulation are accomplished by netlisting the schematic into a form that can be input to 

an SDF aware tool. The tool would do an analysis of the validity of the synchronous data-

flow graph (SDFG) generated by the netlister to confirm that it is consistent and does not 

have any deadlock situations. Simulation of the SDFG would be accomplished using 

tools such Ptolemy [60] or YAPI [61]. Once the simulation confirms the validity of the 

algorithm being designed, the netlist is mapped to an implementation on the CSP. The 

implementation determines the number of DPEs and the network topology that connects 

the DPEs.  

After reviewing many of the options, two modeling environments were 

investigated as part of this research: SDF3 and SimEvents®. These are described in the 

following sub-sections.  

7.1 SDF3 

SDF3 is a tool from Eindhoven University of Technology that provides the ability 

to analyze, simulate and visualize Synchronous Dataflow Graphs (SDFG) [62]. 

Additionally it provides transformation services that convert SDFGs to HSDFGs 

(Homogenous SDFGs) that can be mapped to multi-processor SOCs, specifically NOC 

based systems [63]. This mapping converts a streaming application onto a NOC-based 

architecture while determining optimal resource allocation and producing a deterministic 

timing behavior. This is required for a CSP with multiple DPEs and for deterministic 

time stamping. 
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The key limitation of the tool is that it does not comprehend the Push-Pull 

protocol of the channels in the CSP. The tool assumes infinite resources and schedules all 

SDF algorithms across the multiple processors accordingly. Recall in Pull-Mode that the 

DPE can exert backpressure on the flow of tokens thus eliminating channel buffer 

(Queued-Stack) overflow conditions. This limitation is not an issue with SimEvents® as 

it allows the various network elements to provide backpressure as a programming option.  

SDF3 uses the YAPI [61] tool to provide simulation capability. YAPI is an 

application programmer's interface to write signal and stream processing applications as 

process networks. The communication between processes is based on Kahn Process 

Networks with blocking reads on theoretically unbounded FIFOs.  

7.2 SimEvents® 

SimEvents® is an event-based simulator from Mathworks [64]. It works in 

conjunction with Simulink to model both time-based systems and event-driven systems. 

The sensor and ADC sub-system are described in Matlab or built from Simulink library 

models. The output of the ADC is converted into a signal-event that is processed by the 

SimEvents® simulator. SimEvents® does not perform a computational simulation but 

rather simulates entities propagating through the SDF network. Each resource in the 

network can be instrumented to determine if there are any errors as the entities propagate. 

Additionally, the instrumentation enables debug capability by providing visibility to 

various parameters in a particular network resource. 
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7.2.1 Entities and Attributes 

SimEvents® uses different terminology to describe an SDF system. Rather than 

use tokens it uses entities2 where entities are generated by signal-based events or by time-

based events as shown below in Figure 7.1. The time-based generator launches 

entities/tokens into the network at a prescribed rate while the event-based generator only 

launches an entity/token when an event is detected on the VC pin. 

 

 

Figure 7.1:  Entity generators 

Entities can have multiple attributes attached to them. The attributes are tagged 

with descriptor names. The attributes propagate through the network and can be extracted 

by referencing the descriptor names. Figure 7.2 below shows the Set-Attribute and Get-

Attribute library elements.  

 

 

Figure 7.2:  Attribute generator and extractor 

                                                
2 Entities and tokens will be used interchangeably throughout the rest of this document. 
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Figure 7.3 shows a typical dialog box that is used to set the multiple attributes to 

an entity. In this case there are two attributes: FSU_Value and the Time_Stamp value.  

 

 

Figure 7.3:  Set-Attribute dialog box 

Figure 7.4 shows how the attributes are extracted from an entity. Note the ability 

to do error checking if attribute is missing and the ability to set a default value in the case 

of a warning. 

 

 

Figure 7.4:  Get-Attribute dialog box 

The time based entity generator can issue multiple entities/tokens per time period. 

This simulates a system where the need for queuing is needed to prevent overrun. An 

event based sequence generator that is set for cyclic repetition is used to trigger the entity 

generator as shown below in Figure 7.5. 
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Figure 7.5:  Time-based entity generator example 

7.2.2 Servers 

SimEvents® uses the concept of a Server to process entities (tokens). This is 

effectively an SDF actor with exception that it does not consume entities and it has only 

one input. Entities are consumed by using a switch block in front of the server as shown 

below in Figure 7.6. In this example the number of tokens is divided by 2 before entering 

the Actor/Server3.  

 

Figure 7.6:  Token consumer 

The actor processes input tokens and dispatches the output tokens after a 

prescribed number of event cycles. The actor has a single input so all tokens must be 

                                                
3 Servers and actors will be used interchangeably throughout the rest of this chapter. 
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combined before entering the actor/server. This is accomplished using a token combiner 

as shown below in Figure 7.7. 
 

 

Figure 7.7:  Example of a token combiner feeding a token consumer 

7.2.3 FIFOs and LIFOs 

SimEvents® supports both queues (FIFOs) and stacks (LIFOs). These elements 

are used to store entities for processing by the server. In Figure 7.6 above, the output the 

two token queues are combined into a composite token that is fed to the actor. The depth 

of the queues can be specified using the dialog box and can be instrumented to show 

statistical data on the entities/tokens entering and leaving the queue as shown below in 

Figure 7.8. 
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Figure 7.8:  Dialog box for a queue element 

As mentioned above, SimEvents® uses a Pull-Mode to propagate entities/tokens 

through the network. If there is a resource that is busy, the queue will continue to fill until 

it cannot handle new tokens. The elements that are launching tokens into the network 

need to be configured to produce an error condition when the network cannot process the 

required number of tokens per unit of time. 

7.2.4 CSP Modeling 

Figure 7.9 shows a CSP SimEvents® model with two Functional Service Units 

(FSU) and three Dataflow-Processing Elements. The FSUs are token generators that 

launch tokens into the network. Each token has two attributes as shown above in Figure 

7.3.  
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Figure 7.9:  CSP SimEvents® Model 

The DPEs process the tokens and outputs them to a communications element that 

is modeled as a token sink. DPE_1 and DPE_2 are modeled with a single queue and a 

single actor as shown below in Figure 7.10. Note the instrumentation ports on the actor. 

These are used to determine optimal resource allocation for the single queue DPE. 

 

 

Figure 7.10: Single queue DPE model 
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DPE_3 is modeled with two queues, a token combiner, token consumer and a 

single actor as shown below: 

 

Figure 7.11: Multiple queue DPE model 

The actor in this model is configured to measure the number of tokens that are 

processed and the average wait time for every token. Figure 7.12 shows the output from 

the average wait time scope and Figure 7.13 shows the total number of tokens that are 

processed by DPE_3. The average wait time is two time units once the tokens reach the 

actor at time 7. This indicates that the actor requires two clocks to process the data. 

Each dot on a line in the graph indicates a token. In this example there is only one 

token per time unit. However the token combiner shows two tokens per time unit (Figure 

7.14). The actor in DPE_3 is designed to consume two tokens and issue only one and is 

accomplished by the token consumer as shown above in Figures 7.6 and 7.11. 
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Figure 7.12: Average wait time for tokens entering DPE_3 

 

 

Figure 7.13: Total number of tokens processed by DPE_3 
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Figure 7.14: Total number of tokens leaving the Token Combiner 

7.3 Summary 

SimEvents® is a reasonably good tool to model and simulate a deterministic CSP 

topology. A SimEvents® simulation is primarily used to confirm that there are no 

overrun situations in the queues and the actors. If a NOC topology is required, a 

combination of SDF3 and SimEvents® may be needed to generate deterministic results 

(Note: this has not been researched as part of this work). It is possible though to generate 

a statistical model of an NOC topology using SimEvents® as it provides the ability to 

launch and propagate tokens using various types of algorithms that can be specified using 

MATLAB. The NOC network is modeled as switches that propagate packets through the 

network attempting to generate a deadlock situation.  
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Chapter 8. Results 

8.1 Overview 

Two performance critical workloads were analyzed as part of this research. The 

workloads are the core routines for FIR and IIR filter applications [65] [66]. These are 

also used for the energy-delay and energy-performance analysis described below in 

Section 8.4. The DPE was compared to the ARM Cortex-M3 [67] [68] and the Pleiades 

[14] processor. The M3 was selected as it is used in a large number of embedded 

applications and is a general-purpose computer. The Pleiades processor was chosen, as it 

is an excellent example of a low power application specific processor. 

8.2 FIR Filter Performance 

Figure 8.1 shows the FIR filter configuration that executes in ten clock cycles and 

is implemented with 5 microinstructions.  
 

 

Figure 8.1:  FIR filter configuration 

The data storage configuration for the FIR filter calculations is shown below in 

Figure 8.2. IQS1 is used to store the incoming data tokens from the channel node. The 

Z-1 Z-1
X(n)

Z-1

XA(0) XA(1) XA(2) XA(3)

+ + + +Y(n)
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tokens are inserted at the bottom of the stack. The old tokens are overwritten when the 

BOS pointer recirculates. IQS2 is used to store the filter variables for each of the stage 

multipliers. The addition results are accumulated in the RQS element. The filter 

calculations proceed from oldest data token to the most recent. The TOS pointers for 

IQS1 and IQS2 are popped to point at the next variable and token for each multiplication 

step. NOTE: The initial conditions for the TOS/BOS pointers for each Queued-Stack are 

shown below. 

 

Figure 8.2:  Initial data storage configuration for FIR filter routine 

The code sequence below does not include the initialization code to set up the 

variables in in IQS2. This requires 4 clock cycles assuming that the variables are stored 

as constants in the microcode word. 
 
1:  
| ZERO ZERO ADD   // ZERO -> ACC  
| INS_RQS | :1   // INSERT AT BOS RQS 
 
2:  
| TOS_QS1 TOS_QS2 MULT  // A(3,2,1) * X(N-3,2,1) 
| BOS_RQS MULT_BUS ADD  // + ACC 
| BOT_RQS    // -> ACC 
| POP_QS1 | POP_QS2   // POINT AT NEW VARIABLE 
| RPT=3 | :2    // REPEAT 3 TIMES 
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3:  
| TOS_QS1 TOS_QS2 MULT  // A(0) * X(N) 
| BOS_RQS MULT_BUS ADD   // + ACC 
| FIFO    // OUTPUT Y(N) TO FIFO ELEMENT 
| POP_QS1 | :3   // CONSUME X(N) TOKEN 
 
4:  
| PUSH_QS1 |PUSH_QS2  // RESET VARIABLE POINTERS 
| RPT=4 | :4    // REPEAT 4 TIMES 
 
5:  
| JMP_HALT=1 |:5   // JUMP AND WAIT FOR NEW X(N) TOKEN 
 
 

The first microinstruction inserts a ZERO into the BOS of the Result-QS, which is 

used as the accumulator for MULT-ADD instructions. The second microinstruction is 

repeated 3 times and executes a MULT-ADD of the last 3 stages of the filter, 

accumulating the result in the RQS. The third microinstruction does a MULT-ADD of the 

new data token and the A(0) filter variable and issues a POP command to consume the 

X(n) variable. The result is also sent to the output FIFO using WB_FIFO command in the 

same microinstruction. The fourth microinstruction resets the TOS pointers to point to the 

A(3) filter variable and the new X(-3) data token. The JMP_HLT microinstruction 

branches back to the second instruction that clears the accumulator and waits for the next 

data token. Once the X(n) variable is inserted into the BOS of IQS1, the channel node 

issues a FIRE signal to the DPE and the sequence repeats itself.  

Table 8.1: FIR Throughput comparison 

 Cortex-M3  Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

DELAY 50ns 71ns 100ns 

THROUGHPUT (CYCLES/FIR)  107 4 10 
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Table 8.1 above shows the FIR throughput comparisons for the Cortex-M3 

processor from ARM, the Pleiades processor and the DPE. The Pleiades uses a special 

DSP to provide the excellent throughput numbers, however, as described in the next 

chapter it requires more energy to do so.  

8.3 IIR Filter Performance 

Figure 8.3 below shows a Bi-Quad IIR filter configuration that can be 

implemented in 9 microinstructions and 11 clocks.  

 

Figure 8.3:  IIR filter configuration (Bi-Quad) 

The data storage for the IIR filter calculations is shown below in Figure 8.4. This 

includes the initial conditions of the TOS/BOS pointers. There are two summing nodes. 

Each one is a separate entry in the RQS. The first sum is inserted into the bottom of the 

RQS and it becomes the V(n-1) variable the next time the filter is evaluated. The second 

sum replaces the V(n-2) variable once it is used.  
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Figure 8.4:  Initial data storage configuration for IIR filter routine 

In the following IIR code example the status of the three Queued-Stacks will be 

annotated after the execution of each microinstruction.  
 

 
1:   
| ZERO TOS_QS1 ADD   // V(N) = X(N)  
| PUSH_NW_BOT_RQS |:1  // WRITE -> V(N) AND POINT @ V(N-1) 
 

 
 
 
2:  
| TOS_RQS TOS_QS2 MULT  // V(N-1) * A(1)  
| BOS_RQS MULT_BUS ADD  // ADD TO V(N)  
| PUSH_NW_BOT_RQS   // WRITE -> V(N) AND POINT @ V(N-2) 
| POP_QS2 |:2   // POINT @ A(2) 
 

 
 
 
3:  
| TOS_RQS TOS_QS2 MULT  // V(N-2) * A(2)  
| BOS_RQS MULT_BUS ADD  // ADD TO V(N)  
| PUSH_NW_BOT_RQS   // WRITE -> V(N)AND POINT @ Y(N) 
| POP_QS2 |:3   // POINT @ B(2) 
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4:  
| BOS_RQS BOS_QS2 MULT // V(N) * B(0)  
| TOS_RQS MULT_BUS ADD // ADD TO Y(N)  
| POP_INS_RQS    |:4 // WRITE -> Y(N) TO BOS 
 

 
 
 
5:  
| TOS_RQS TOS_QS2 MULT // V(N-2) * B(2)  
| BOS_RQS MULT_BUS ADD // ADD TO Y(N)  
| POP_BOT_RQS  // WRITE -> Y(N) 
| POP_QS2 |:5  // POINT @ B(1) 
  

 
 
 
6:  
| TOS_RQS TOS_QS2 MULT // V(N-1) * B(1)  
| BOS_RQS MULT_BUS ADD // ADD TO Y(N)  
| POP_BOT_RQS  // WRITE -> Y(N) POINT TO V(N-2) 
| FIFO |:6  // OUTPUT TO FIFO 
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7:  
| ZERO BOS_RQS ADD  // GET Y(N) 
| TOP_RQS |:7  // WRITE -> Y(N) 
 

 
 
  
8:  
| POP_RQS   // RESET RQS POINTER 
| PUSH_NW_QS2  // RESET QS2 POINTER 
| RPT=3 |:8  // REPEAT 3 TIMES 
 

 
 
 
9:  
JMP_HALT=1 |:9  // JUMP AND WAIT FOR NEXT TOKEN 

 

Table 8.2 below shows the FIR throughput comparisons for the Cortex-M3, the 

Pleiades processor and the DPE. 

Table 8.2: IIR Throughput comparison 

 Cortex-M3 Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

DELAY 50ns 71ns 100ns 

THROUGHPUT (CYCLES/IIR)  129 8 11 

 

The Pleiades processor has greater throughput than the DPE due to the fact that it 

has two MAC units. As we will see in the next chapter, the DPE is between 1.5X and 3X 
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better in Energy-Delay/Operation than the Pleiades. This is a benefit for the class of 

workloads that the DPE is designed to perform. In addition, the benefits of composability 

will be analyzed where the energy-performance costs of adding multiple DPE’s is shown 

to be minimal. 

8.4 DPE energy analysis 

There are four energy analysis techniques that were used to benchmark the energy 

performance of the DPE. These are: Energy-Delay product (E-D), Energy/Instruction, 

Energy-Delay/Operation and Energy Performance Percentage Ratio (EPPR). Before 

proceeding it is necessary to review the energy and power relationships that are key to 

this analysis.  
 

Recall that power is defined as: 

And that power is also defined as: 

Where Tprogram is the program (workload) execution time and is defined as the number 

of instructions required to execute the program multiplied by the clock period per 

instruction:  
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Energy4 can then be defined as: 

Energy per instruction is simply one instruction multiplied by the clock period: 

The current (Ickt) is defined as: 

Therefore 

 
Where  is generally equal to Vdd (for digital logic). This also assumes that 

Capswitch is charged and discharged every cycle, which is only true for clock signals. The 

energy usage is decomposed into two components, one from clock nodes switching and 

one from logic nodes switching: 

Recall that logic nodes only switch every other cycle, which is accounted for by the ½ 

term in the equation. The energy equation can be converted to a power equation by 

multiplying it by 1/sec. 

                                                
4 Energy is expressed in Watt-Seconds or Watts/Frequency. One Joule of energy is equivalent to 1 

Watt-Second. 



158 
 

 

8.5 DPE Energy-Delay 

One figure of merit in the design of the DPE is the Energy-Delay (E-D) product. 

Figure 8.5 below shows the relationship between energy, delay and the E-D product. The 

optimal area to operate is between the dashed lines where the energy-delay product is 

minimal. 

 

 

Figure 8.5:  Energy-Delay product relationship 

To further understand the application of energy-delay, refer to the schematic 

shown below in Figure 8.6 where one inverter is connected to another inverter via a wire. 

The input gate capacitance of the inverter is Cg and the capacitance of the wire is Cw.  
 

DELAY 

ENERGY 

ENERGY-DELAY 
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Figure 8.6:  E-D Inverter schematic 

Recall that delay is proportional to the ratio of gate + wire capacitance to load 

capacitance [69]:  

 

Energy is proportional to the amount of capacitance that is charged in a cycle: 

 

The Energy-Delay product is then: 

The optimal Energy-Delay minima occurs when the derivative of the Energy-Delay 

product with respect to Cg is zero: 

The optimal Energy-Delay occurs when Cg = Cw.  

Cg Cw Cg
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There are additional Energy-Delay metrics where the impact of the delay 

component is emphasized, e.g., Energy-Delay
2
 or Energy-Delay

3
. Table 8.3 below shows 

the results of the various optimizations that can be done using the Energy-Delay product. 

Table 8.3: Energy-Delay optimizations 

OPTIMAL ENERGY CG = MIN 

OPTIMAL ENERGY-DELAY CG = CW 

OPTIMAL ENERGY-DELAY
2
 CG = 2*CW 

OPTIMAL ENERGY-DELAY
N

 CG = N*CW 

OPTIMAL DELAY CG =  

 

The DPE was synthesized for a broad range of frequencies to analyze the 

synthesis results on energy and delay. Figure 8.7 below shows that the DPE architecture 

uses approximately the same energy/filter-operation in the operating range of 10–25 

MHz. The slight increase in energy usage over this range is due to the impact of the clock 

tree synthesis tool optimizing setup and hold times. At 30 MHz and above the synthesis 

tool uses the larger size standard cells that increase the area and the amount of 

interconnect wiring.  
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Figure 8.7:  Energy vs. Cycle-Time for the IIR and FIR workloads 

The energy-delay analysis of the DPE was done using a 180nm mixed-signal 

process. The DPE logic was synthesized and the layout generated by DC-Topo/ICC from 

Synopsys using the typical process corner at 85°C. The layout parasitics were extracted 

using Calibre from Mentor Graphics. The timing and energy values were then derived 

using PrimeTime (PT) and PrimeTime-PX (PTPX) respectively. 

Tables 8.4 and 8.5 below show the energy-delay for the DPE, a reconfigurable 

DSP (Pleiades) developed at UC-Berkley [14] and the Cortex-M3 from ARM [67]. The 

Cortex-M3 is widely used in embedded designs as both a general-purpose processor and 

a DSP. The reconfigurable DSP from UCB is an excellent example of a DSP 

implementation that is tuned for similar filter applications as the DPE.  

The throughput and energy values for the Pleiades DSP were derived from the 

600 nm implementation specified in [14] using the scaling calculations defined by the 

authors for their own benchmarking exercise. The energy calculations for the Cortex-M3 

are derived from an 180nm reference design [71].  A DSP library of filter functions 

designed specifically for the Cortex-M3 [68] was used to determine the throughput. The 
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DPE energy values are derived from PTPX using a 180nm extracted netlist. All DPE 

benchmarks use 16-bit integer data tokens and 48-bit integer results. 

Table 8.4: FIR Energy-Delay benchmarks 

 Cortex-M3  Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

DELAY 50ns 71ns 100ns 

ENERGY 148.9pJ 61.5pJ 5.64pJ 

ENERGY-DELAY (J-S X 10-18) 7.44 4.36 .564 

Table 8.5: IIR Energy-Delay benchmarks 

 Cortex-M3  Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

DELAY 50ns 71ns 100ns 

ENERGY 169.0pJ 70.1pJ 7.13pJ 

ENERGY-DELAY (J-S X 10-18) 8.45 4.97 .713 

 

At first glance it looks like the Cortex-M3 is roughly 1/2 the performance of the 

Pleiades. However when comparing the IIR and FIR operations performed by the two 

machines the Pleiades is 15-25 times better than the Cortex-M3. This is a limitation of the 

E-D analysis and is described below where we look at energy-delay per operation. 

Tables 8.6 and 8.7 below shows the Energy-Delay product for the DPE data 

presented above in Tables 8.4 and 8.5 for various operating frequencies at VDD=1.8V. 
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Table 8.6: FIR Energy-Delay for various cycle times 

Cycle-Time 10ns 20ns 40ns 60ns 80ns 100ns 

ENERGY/INSTRUCTION 47.9PJ 21.1PJ 8.10PJ 7.13PJ 6.48PJ 5.64 

ENERGY-DELAY (J-S X 10-18) .48 .421 .324 .428 .518 .564 

Table 8.7: IIR Energy-Delay for various cycle times 

Cycle-Time 10ns 20ns 40ns 60ns 80ns 100ns 

ENERGY/INSTRUCTION 61.5PJ 25.9PJ 10.37PJ 9.07PJ 8.10PJ 7.13PJ 

ENERGY-DELAY (J-S X 10-18) .616 .518 .415 .544 .648 .713 

 

 

 

Figure 8.8:  DPE Energy-Delay/Actor for cycle-time design points 

Figure 8.8 above shows the graph of the Energy-Delay/Actor. Note that 25MHz is 

the optimal operating point for the DPE from an E-D perspective. This data needs to be 

considered in context with other key system metrics. For example, executing an IIR 2.5 
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times faster (25MHz vs. 10 MHz) at a better E-D is beneficial if the 25MHz clock is shut 

off when the DPE is idle. Otherwise the idle clock power will negate the benefits of the 

lower E-D during normal operation. 

8.6 DPE Energy/Instruction vs. Energy-Delay/Operation  

Energy per instruction is another measurement of the efficiency of computational 

element and is typically measured in Joules/Instruction. A variation of this measurement 

is Watts/IPS or the more widely used variant: MIPS/Watt. The derivation of this equality 

is shown below: 
 

       

Analyzing energy per instruction can provide an interesting mechanism for 

measuring the impact of control logic on the overall energy usage of a particular 

microarchitecture. The complexity of the control logic is a function of the instruction set 

architecture (ISA), the depth of the pipeline and complex features such as register 

renaming, branch prediction, prefetching, etc. For energy sensitive processors like the 

DPE, increasing the complexity of the control logic has minimal impact on performance 

and consumes more area, power in addition to impacting cycle time [70]. Ideally the ratio 

of control logic to datapath logic for this class of machines is much less than 1:1. The 

DPE has a ratio of 0.36:1 due in large part to the single cycle microcoded control logic 

design. Table 8.8 below shows the Energy/Instruction for the various computational 

elements that are used in embedded sensor applications. Note: the Pleiades numbers are 

for a 600nm process and were scaled to 180nm for this energy analysis exercise. 
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Table 8.8: Energy/Instruction for various computational elements 

Processor 
Arch 
Style 

Data 
Path 

Width 

Event 
Driven 

Memory 
(KB) 

Process 
(nm) 

Voltage MIPS 
Energy 

(pJ/Inst) 

SNAP 
RISC+ 

Accel 
16 Y 8 180 

1.8 

0.6 

200 

23 

218 

24 

BitSNAP RISC 16 Y 8 180 
1.8 

0.6 

54 

6 

152 

17 

Subliminal GP 8 Y 0.256 130 ~0.360 0.8 2.6 

Pleiades DSP 16 N 0.512 600 1.5 14 205 

SmartDust RISC 8 N 3.125 250 1.0 .5 12 

Atmel 
128L GP 8 N 132 350 3.0 7.3 3200 

Intel 
XScale GP 32 N 8 130 1.65 400 1100 

 

There are a number of limitations with using the energy/instruction metric to 

benchmark different microarchitectures because it does not comprehend how much work 

is accomplished with each instruction, nor does it account for the different technologies 

and power supply voltages that a particular architecture uses. The first limitation can be 

addressed by measuring Energy-Delay/Operation instead of Energy/Instruction if the 

frequency of machine and the number of instructions it takes to complete an operation are 

known. The second limitation can be partially addressed by normalizing the impact of 

technology scaling on the energy-delay [73].  

Tables 8.9 and 8.10 below show the results of the Energy-Delay/Operation for the 

IIR and FIR operations including frequency and throughput numbers. As mentioned 

above, the M3 and the DPE are implemented in 180nm technology and the Pleiades is 

implemented in 600nm and scaled to 180nm. 
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Table 8.9:  FIR Energy-Delay/Operation Benchmarks 

 Cortex-M3  Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

CYCLE-TIME 50NS 71.4NS 100NS 

THROUGHPUT (CYCLES/FIR)  107 4 10 

SWITCHED-CAPACITANCE/FIR 4.92NF 126PF 17.4PF 

ENERGY/FIR 15,941PJ 285PJ 56.4PJ 

ENERGY-DELAY/FIR (J-S X 10-18) 85,284 81.3 56.4 

Table 8.10: IIR Energy-Delay/Operation Benchmarks 

 Cortex-M3  Pleiades DPE 
VDD 1.8 1.5 1.8 

FREQUENCY (MHZ) 20 14 10 

CYCLE-TIME 50NS 71.4NS 100NS 

THROUGHPUT (CYCLES/IIR)  129 8 11 

SWITCHED-CAPACITANCE/IIR 6.73NF 295PF 22.6PF 

ENERGY/IIR 21,805PJ 659PJ 78.3PJ 

ENERGY-DELAY/IIR (J-S X 10-18) 140,642 376.8 86.1 

 

The DPE is obviously better than the M3 and the Pleiades processors for these 

particular workloads. The limitation of the DPE is that it has very little local storage and 

is suited primarily for low energy streaming data applications. For workloads that require 

large amounts of storage, the Pleiades processor is a better choice; however, the CSP is 

easily scaled to handle larger workloads by composing multi-DPE systems. This is 

described in the following section. 



167 
 

 

8.7 Energy Performance Percentage Ratio 

Another interesting figure of merit is the scaling relationship (ratio) between 

energy and performance; in other words, the impact on performance when energy is 

increased or decreased. Ideally a 1% increase in energy results in a 1% increase in 

performance. If one considers that energy is a proxy for the number of transistors then 

adding 1% more transistors should result in a 1% improvement in performance. Taking 

this to an extreme, adding an additional processor core should double the performance. 

We know that is generally not the case especially as the number of cores increases 

beyond a certain limit. The problem of course goes back to equation 1.1 where we need 

to impedance match the application domain, the software compiler domain, the 

microarchitecture domain and the lastly the transistor technology domain. 

This section discusses three basic areas of optimization: energy optimized, 

energy-performance optimized and performance optimized. Each area has an impact on 

resulting the micro-architectural optimizations and environmental conditions i.e., VDD, 

frequency, temperature, etc. Performance can be specified many different ways. It is 

generally in the form of a standard benchmark like SPEC [74], TPC [75], EEMBC [76] 

or something more algorithmic specific such as Multiply-Accumulates/Second. In all 

cases, performance has a temporal component where each benchmark is measured by 

how quickly it completes the benchmark. Figure 8.9 shows the relationship between 

energy and performance and introduces the concept of Energy Performance Percentage 

Ratio (EPPR).  
 



168 
 

 

 

Figure 8.9:  Energy-Performance relationship 

There are three regions of interest: 1) EPPR < 1 where an increase in energy 

results in a proportional increase in performance and 2) the 1<= EPPR <= 2 region where 

a moderate increase in energy produces reasonable performance increase or 3) EPPR > 2 

where an increase in energy provides a marginal increase in performance while 

asymptotically approaching a finite performance limit. EPPR= n is the point of inflection 

between region 1 and 3 and is derived below.  

In this derivation E(x) is the energy expended modifying a particular variable (x) 

such as supply voltage, number of processor cores, number of pipeline stages, cache size, 

etc. P(x) is the resulting performance improvements that modifying each variable 

provides. This is accomplished by taking the derivative of energy vs. performancen and 

then solving for n.  
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This results in the following relationship: 

Solving for the energy and performance ratios: 

Solving for n: 

The ratio is then expressed as: 

This indicates that a 1% increase in performance costs n% increase in additional 

energy.  

 

The three EPPR operating regions roughly map to the following characteristics in 

general purpose computation elements [77]: 
 

1. Energy Optimized: EPPR < 1 

• Run at low VDD 

• Mostly small devices 

• Shallow pipeline 

2. Energy – Performance: 1<= EPPR <= 2 

• Run at nominal VDD 

• Moderate pipeline depth, moderate instruction level parallelism 
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3. Performance optimized: EPPR > 2 

• Run at maximum VDD 

• Little concurrency in application 

• Deep pipelines 
 

An example of EPPRs for two different variables is shown in Figure 8.10. The 

system designer would use these EPPRs to determine which region to operate in. 

 

           

Figure 8.10: EPPRs for different design variables 

One of the key advantages of this platform is that it is easy to compose a system 

of multiple DPEs. Figure 8.11 below shows the four configurations that were analyzed to 

determine the impact of multiple DPEs on EPPR. The performance metric for this 

evaluation is “token throughput” where the throughput increase is approximately linear 

with the additional number of DPEs. The system is tuned for minimal token wait time for 

all four configurations. 
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Figure 8.11: DPE topology for EPPR evaluation 

Each system configuration has a single output and executes a Fuzzy Logic based 

data fusion algorithm on each DPE. The fusion algorithm is described above in Section 

3.6.1. The algorithm is implemented using four Actors as shown below in Figure 8.12. 

The tokens passed between Actors are annotated in the figure as they propagate through 

the SDF network. The tokens are stored in IQS1, IQS2 and RQS as shown below in 

Figure 8.13. IQS-1 receives tokens from Channel-1 and IQS-2 from Channel-2. RQS is 

used to store the Change, Rate-of-Change, Weight and Drift data. The fusing algorithm 

requires 35 clock cycles per operation. 

Result 

3-DPE 7-DPE 15-DPE 1-DPE 
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Figure 8.12: Actors used in Fuzzy Logic fusing algorithm 

 

 

Figure 8.13: Queued-Stack storage for Fuzzy Logic fusing algorithm 

Table 8.11 below shows the Energy-Delay/Operation for the four multi-DPE 

topologies. 
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Table 8.11: Energy-Delay/Operation benchmarks for fusing algorithm 

 1-DPE 3-DPE 7-DPE 15-DPE 
VDD 1.8 1.8 1.8 1.8 

FREQUENCY (MHZ) 10 10 10 10 

CYCLE-TIME 100NS 100NS 100NS 100NS 

# SENSOR CHANNELS 2 4 8 16 

THROUGHPUT (CYCLES/OP) 35 35 35 35 

SWITCHED-CAPACITANCE/OP (PF) 67.6 212.8 548.5 1357.8 

ENERGY/OP (PJ) 218.9 689.4 1772.2 4596.1 

ENERGY-DELAY/OP (J-S X 10-18) 766.1 804.3 888.6 1072.4 

EPPR 0.35 0.42 0.62 1.93 

 

 

Figure 8.14: Impact of multiple DPEs on EPPR for a tree topology 

Figure 8.14 above shows the EPPR for the four multi-DPE systems described 

above. The variable in this case is the number of cores. For ten DPEs the EPPR is still 

less than 1. At 15 DPEs the EPPR approaches 2. The decrease in energy efficiency is 
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primarily due to the limitations of the physical implementation of a multiple DPE 

substrate resulting in a larger die size and increased wire capacitance (Figure C.2 below). 

Additionally, the global clocking and signal routing power increases proportionally to the 

X-Y growth of the resulting die.  

Figure 8.15 below shows the impact of token wait times on EPPR for the 4 

different DPE platform configurations. Looking at token wait times and the impact on the 

energy utilization is a useful EPPR to consider as there are a number of variables which 

impact token wait time including: algorithmic mapping to actors, actor placement on 

multiple DPE’s, clock frequency, etc. For this evaluation the clock frequency is constant 

and optimized for maximum performance for each configuration. The token delays are 

randomly introduced into the network by using an event triggered delay element.  

 

 

Figure 8.15: Impact of Token Wait Time on EPPR 
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As expected the impact of token wait times impacts a single DPE more than a 15 

DPE platform. Obviously the system designer should optimize the number of DPE’s, the 

clock frequency and actor placement to minimize the effects of token wait time on EPPR. 

8.8 DPE Performance and Energy Analysis Summary 

Energy-Delay is not a good indicator of energy usage from a benchmarking 

perspective. It is good for optimizing the physical implementation of a computational 

element for a specific architectural implementation. Energy-Delay/Operation on the other 

hand provides a composite view of the impact of architectural and physical 

implementation decisions on energy usage vs. performance for various benchmarks. 

EPPR is very useful for determining the sensitive variables of a particular architecture or 

implementation with respect to the workloads targeted for the platform. These variables 

are optimized as needed to generate an optimal composite EPPR. 

As can be seen from the energy analysis data presented above, the DPE has been 

optimized for low energy operation with the optimal level of performance for embedded 

sensor workloads. The composability of the DPE provides the capability to build higher 

performance systems with minimal degradation of EPPR for certain workloads. 

A number of micro-architectural features were instrumental in achieving optimal 

energy-performance/operation. These have been described above and include: 
 

• One-hot control signals that eliminate decode logic and associated glitching 

power. 

• Novel stack based register file system that uses one-hot shifters that eliminate 

decoding logic. 

• Single cycle pipeline depth. 
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• Multiplexed latches in the datapath to eliminate spurious transactions 

• Single cycle RPT instruction that requires only one access to the microcode 

memory for each loop. 

• Nested looping, which eliminates branch instruction execution. 

• Conditional execution, which eliminates branch instruction execution 

overhead. 

• Self timed operation using the SDF “firing” mechanism 

• Extensive clock gating. 
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Chapter 9.  Final Observations and Future Work 

It is a virtual certainty that battery technology will not improve at the same rate as 

transistor technology in the foreseeable future. This will require system designers to 

continuously improve the energy efficiency of energy-limited systems. The challenge is 

both technical and economical. This dissertation illustrated a number of technical 

methods to improve energy and computational efficiency. What it did not do is look at 

the economical feasibility of crafting a new platform for a specific class of workloads. 

For low volume applications the costs of a COTS design can be prohibitive. Adding 

flexibility to a platform modifies the computational efficiency by producing an 

impedance mismatch between the hardware and software domains. Yet it may provide 

the ability to increase the production volume of the platform and make it feasible to pay 

for the NRE (non-recurring expense) of designing and validating a new platform. The 

NOC implementation of the CSP provides some of this flexibility at the expense of 

increased communication overhead. It can be economically feasible if the number of 

supported workloads is sufficient [78].  

The processing element presented in this dissertation is a unique amalgam of 

micro-architectural features from 30 years of computer design. These include microcode 

controlled dataflow engine, Fuzzy Logic acceleration, lookup table capability, Queued-

Stack based register file and scale-multiply-accumulate ALU functionality. The low 

overhead composability of the platform provides excellent scalability that can be matched 

to the algorithmic workload of a particular sensor system. The ability to directly map and 

execute SDF based algorithms eliminates the overhead of an operating system and 

requisite middleware. The mapping of SDF based algorithms to the platform is 
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accomplished by simply instantiating actors using a graphical modeling and simulation 

environment. 

There are four patentable ideas that resulted from the amalgamation process. The 

first one is the merged Queued-Stack with its unique control functions to perform 

multiple stack/queue operations in a single cycle. The second is the Actor/Event queue 

that uses a variant of the Queued-Stack to dynamically control the sequencing of the DPE 

while allowing asynchronous events to be inserted into the actor stream and squashed 

upon execution. The third is the low-energy microcode engine with its n-way looping, 

repeat function and conditional execution capabilities. The last includes sending actors 

and/or events with data tokens. The actors or events can be used to modify the operation 

of the down-stream SDF processing element(s). 

There are a number of research areas that can be pursued based on the work in 

this dissertation. These include: 
 

• Analyze the EPPR for various Network-on-Chip topologies. NOC’s are ideal for 

some algorithms but not all. The EPPR of an NOC is highly dependent on the 

utilization of the processing elements and the network. There are numerous 

challenges mapping and scheduling network traffic in NOCs. There is also high 

level modeling challenges associated with NOCs. As mentioned in Chapter 7, 

SimEvents® can be used to statistically model the network traffic to determine 

throughput, however, it may not be adequate to detect potential deadlock or live-

lock situations.  

• Develop an SDFG model using YAPI [61] to validate the algorithms that will be 

mapped to an NOC or to a fixed function topology. This model would detect 

deadlock or live-lock situations. These situations can arise in implementations 
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where the DPEs are algorithmically changing their operating mode based on the 

environmental changes that are occurring to sensors, battery, etc. 

• Develop an energy modeling environment in SimEvents® that uses attributes 

attached to tokens to propagate cumulative energy usage data through the 

network. Each actor can be well characterized as to the amount of energy required 

to perform a particular function. This information can be attached to the output 

tokens and analyzed as the tokens enter the communication element. 

• Advanced communication protocols such as ANT™ [41] should be researched. 

Most of the energy in an embedded sensor system is consumed by the 

communication system. Should a star configuration be used, or would a 

distributed network system provide better energy utilization? 

• The microcode programming environment needs lots of help. While using Excel 

is a unique method for writing microcode, there are potentially better solutions 

that should be considered. For systems with a small number of actors, it may be 

feasible to synthesize the entire microcode control unit while saving area and 

reducing power. 

• The system level programming of the CSP can be done a number of different 

ways. Algorithms can be specified graphically or in textual format. Which way 

works the best for an SDF based platform? How is the resulting program mapped 

to the CSP? Many of the UC Berkley tools look like they could be modified to 

work in conjunction with YAPI and SimEvents. 

• Research additional SFU functionality for algorithmic specific support. Are there 

better accelerators for data fusing?  

• Research QDI (Quasi-Delay0Insensitive) and NDI (Non-Delay-Insensitive) 

implementations of the DPE. 



180 
 

 

Appendix A.   Fuzzy Logic Tutorial  

The flow diagram for a Fuzzy Logic system [30] is shown below in Figure A.1. 

There are two steps in designing a Fuzzy Logic system. First, the system designer must 

design a set of rules and membership functions that the evaluation engines will use. 

Secondly, the system designer has to design a fuzzy inference kernel that takes the 

system inputs and produces outputs based on the rules and membership functions. 

 

Figure A.1: Flow diagram of a Fuzzy Logic system 

A.1.0  Membership Evaluation (Fuzzification) 

During membership evaluation, the system input values are compared against 

stored input membership functions to determine the degree of membership. This is 

accomplished by finding the y-axis intercept point for the current input value on a 

trapezoidal membership function as shown below in Figure A.2. The y-axis represents the 
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degree of membership and the x-axis represents the input value. In this example for an 

input value of 0.25 the degree of membership is 0.17 (17%). A trapezoidal membership 

function defines a fuzzy set (the foundation of Fuzzy Logic). To describe a trapezoidal 

membership function, you need four values: (1) the start point of the trapezoid, (2) the 

first slope, (3) second slope, and (4) the endpoint of the trapezoid.   

 

Figure A.2: Trapezoidal Membership Function Example 

A fuzzy set is a set without a crisp, clearly defined boundary.  It can contain 

elements with only a partial degree of membership.  For example, the membership 

function for HOT could equal 0.5 for temperatures above 100 degrees and 1.0 for 120 

degrees.  Any input falling in this range would be considered HOT. There are typically 

many membership functions that must be evaluated to determine the state of the inputs. 

Figure A.3 shows an example where there are 3 membership functions: HOT, WARM 

and COLD. For an input of 64 degrees, the outputs from the membership evaluation are 
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0% for HOT, 48% for WARM and 83% for COLD. This indicates that it is more COLD 

than it is WARM and it is definitely not HOT. 

 

Figure A.3: Output from Fuzzification Operation 
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The output from the fuzzification operation can be in the form of singletons that 

are discrete outputs used during the de-fuzzification process. Figure A.4 (a) below shows 

what this would represent. In this case there are only three conditions, however, there can 

be multiple singletons as shown below in Figure A.4 (b). The singletons are given 

linguistic variables that are used in rule generation and evaluation. 

 

  (a)      (b) 

Figure A.4: Singleton output from the Fuzzification process 
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A.1.1  Rule Evaluation 
 

There are three basic Fuzzy Set operators: Union, Intersection and Complement. 

The union of two membership functions is calculated using a MAX function: 

An example of this is shown below in Figure A.5 where the union of COLD and 

WARM membership functions is illustrated. 

 

Figure A.5: Union of COLD and WARM Membership Functions 

 

The intersection of WARM and HOT membership functions is shown below in 

Figure A.6 and is calculated using the MIN function: 
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Figure A.6: Intersection of WARM and HOT Membership Functions 

The complement of COLD membership functions is shown below in Figure A.7 

and is calculated using the following function: 

 

Figure A.7: Complement of the COLD Membership Function 
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The three Fuzzy Set operators can be also be described using the following truth 

tables. 

Table A.1: Truth Table for Fuzzy Set Complement Operator 

F(a) Complement F(a) 
0.0 1.0 

0.25 0.75 

0.5 0.5 

0.75 0.25 

1.0 0.0 

Table A.2: Truth Table for Fuzzy Set Intersection Operator (MIN) 

F(a) 
F(b) 

0.0 0.25 0.5 0.75 1.0 
0.0 0.0 0.0 0.0 0.0 0.0 

0.25 0.0 0.25 0.25 0.25 0.25 

0.5 0.0 0.25 0.5 0.5 0.5 

0.75 0.0 0.25 0.5 0.75 0.75 

1.0 0.0 0.25 0.5 0.75 1.0 

Table A.3: Truth Table for Fuzzy Set Union Operator (MAX) 

F(a) 
F(b) 

0.0 0.25 0.5 0.75 1.0 
0.0 0.0 0.25 0.5 0.75 1.0 

0.25 0.25 0.25 0.5 0.75 1.0 

0.5 0.5 0.5 0.5 0.75 1.0 

0.75 0.75 0.75 0.75 0.75 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 
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Rule evaluation performs the actual calculations on the results from the 

membership evaluations. An example of a rule list is shown below: 

 
 IF TEMPERATURE IS COLD AND WIND IS HIGH, THEN HEAT IS ON HIGH. 
 
 IF TEMPERATURE IS WARM AND WIND IS LOW, THEN HEAT IS ON LOW. 
 
 IF TEMPERATURE IS HOT AND WIND IS LOW, THEN HEAT IS OFF. 

 

   After the fuzzy inputs are evaluated, the system’s fuzzy outputs indicate the 

degree to which an output should have a specific value.  These outputs must then undergo 

de-Fuzzification before their values are useful.  Creating the rule list is actually very 

straightforward.  The antecedents (left side of the rule) are the fuzzy inputs created by the 

membership evaluation (e.g., a temperature reading evaluated with the COLD, WARM 

and HOT membership functions).  The consequents (right side of the rule) are the fuzzy 

outputs of the system.  Each antecedent is joined using the fuzzy Intersection Operator 

(MIN).  This minimum value is compared to the current fuzzy output of each consequent 

using the fuzzy Union Operator (MAX), and the maximum of these two values is stored 

in each consequent (fuzzy output).  In other words, the overall truth of a rule is stored in 

the fuzzy outputs and if a subsequent rule is truer, then the fuzzy outputs are updated to 

reflect this new value.  
 

A.1.2  Defuzzification 
 

The next step in the Fuzzy Logic calculation is defuzzification, where the raw 

fuzzy outputs are evaluated to create a crisp system output. Defuzzification is performed 

according to the membership function of the output variable. There are different 

algorithms for defuzzification as shown below in the following equations: 
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The variables are described below in Table A.4 

Table A.4: Variables used in equations A.4 – A.7 

  Variable Meaning 
U RESULT OF DEFUZZIFICATION 

U OUTPUT VARIABLE 

N NUMBER OF SINGLETONS 

µ MEMBERSHIP FUNCTION AFTER ACCUMULATION 

I INDEX 

MIN LOWER LIMIT OF DEFUZZIFICATION 

MAX UPPER LIMIT OF DEFUZZIFICATION 

SUP LARGEST VALUE 

INF SMALLEST VALUE 

 
 

 

Rather than using the equations above to calculate the system outputs, a table 

lookup function can also be used. The output values are predetermined and loaded in the 

lookup table when the system is initially configured. As the system ages the values in the 

table can be modified to handle sensor aging, etc.  
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Appendix B.   Microcode Assembler  

The microcode assembler for the DPE was implemented using a Microsoft Excel 

spreadsheet. Excel has the ability to do table lookup functions and a broad range of IF-

THEN control functions. It also has a concatenate function that is used to compose each 

microcode word. Additionally, it has the capability to do very useful bit manipulation 

functions to build various data fields used in the microcode word. Figure B.1 shows how 

the microcode is entered into the spreadsheet. The grey section is the user entry area. The 

section above shows the valid entries for each field.  

 

 

Figure B.1: Microcode entry example. 
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Figure B.2 below shows the remaining entry fields for the spreadsheet. 

 

Figure B.2: Microcode entry example (continued) 

 

Figures B.3 and B.4 below illustrate how the microcode field data is generated. 
 

 

Figure B.3: Microcode field generation 
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Figure B.4: Microcode field generation (continued) 

 

B.1.0 Field generation equations 

The field generation equations for each of the microcode fields are presented 

below: 

IMMEDIATE DATA <95:80>: 

=IF(MID(DEC2BIN($B22,10),1,1)=1,CONCATENATE(111111,DEC2BIN($B22,1

0)),(CONCATENATE(000000,DEC2BIN($B22,10)))) 

BRANCH OFFSET <79:73>: 

=MID(DEC2BIN($C22,10),4,7) 

LOOP COUNTER # < 72:71> 

=IF($E22<>0,(DEC2BIN($E22,2)),00) 

REPEAT COUNT <70:68>: 

=IF($F22=EXEC,(DEC2BIN($D22,3)),(IF($F22=LOOP_BACK,(DEC2BIN($D22,

3)),000))) 

UCODE OP <67:64>:  

=IF($F22<>0,(VLOOKUP(F22,$BW$4:$BX$19,2)),0000)  
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READ TOS QS2<63>: 

=(IF($H22=TOS_QS2,1,(IF($G22=TOS_QS2,1,0)))) 

READ TOS QS1<62>: 

=(IF($G22=TOS_QS1,1,(IF(H22=TOS_QS1,1,0)))) 

READ BOS QS2<61>: 

=(IF(G22=BOS_QS2,1,(IF(H22=BOS_QS2,1,0)))) 

 READ BOS QS1<60>: 

=(IF(G22=BOS_QS1,1,(IF(H22=BOS_QS1,1,0)))) 

QS2 CTL<59:56>: 

=IF($Y22<>0,(VLOOKUP($Y22,$CT$4:$CU$11,2)),0000) 

QS1 CTL<55:52>: 

=IF($X22<>0,(VLOOKUP($X22,$CT$4:$CU$11,2)),0000) 

B-BUS MUX CTL<51:50>: 

=IF(J22<>0,(VLOOKUP(J22,$CE$4:$CF$7,2)),00) 

A-BUS MUX CTL<49:48>: 

=IF(I22<>0,(VLOOKUP(I22,$CC$4:$CD$7,2)),00) 

QS2 CHANNEL MUX CTL<47>: 

=IF(Y22<>0,1,0) 
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QS1 CHANNEL MUX CTL<46>: 

=IF(X22<>0,1,0) 

B-BUS SHIFTER CTL<43:39>: 

=MID(DEC2BIN(R22,10),6,10) 

A-BUS SHIFTER CTL<38:34>: 

=MID(DEC2BIN(P22,10),6,10) 

B-BUS SHIFTER TC CTL<33>: 

=IF(Q22=LSRB,1,(IF(Q22=ASRB,1,0))) 

A-BUS SHIFTER TC CTL<32>: 

=IF(O22=LSRA,1,(IF(O22=ASRA,1,0))) 

MULTIPLIER ENABLE<31>: 

=IF(S22=MULT,1,0) 

ADDER SATURATION MODE CTL<30>: 

=IF(T22=SAT_ADD,1,(IF(T22=SAT_SUB,1,0))) 

DATAPATH ENABLE<29>:  

=IF(T22<>0,1,(IF(S22<>0,1,(IF(Q22<>0,1,(IF(O22<>0,1,0))))))) 

ADD/SUB CTL<28>: 

=IF(T22=SUB,1,(IF(T22=SAT_SUB,1,0))) 

B-MUX SEL<27:26>: 
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=IF($M22<>0,(VLOOKUP($M22,$CI$4:$CJ$7,2)),00) 

A-MUX SEL<25:24>: 

=IF($L22<>0,(VLOOKUP($L22,$CG$4:$CH$7,2)),00) 

QS2 BUS MUX SELECT<23:22>: 

=IF($H22<>0,(VLOOKUP($H22,$CA$4:$CB$7,2)),00) 

QS1 BUS MUX SELECT<21:19>: 

=IF($G22<>0,(VLOOKUP($G22,$BY$4:$BZ$7,2)),00) 

TWO’S COMPLEMENT CTL<19>: 

=IF(N22=TC,1,0) 

WRITEBACK MUX SELECT<18:17>: 

=IF(W22<>0,(VLOOKUP(W22,$CO$4:$CP$7,2)),00) 

LOGIC OPERATION CTL<16:14>: 

=IF(U22<>0,(VLOOKUP(U22,$CM$4:$CN$11,2)),000) 

SPECIAL FUNCTION UNIT CTL<13:11>: 

=IF(V22<>0,(VLOOKUP(V22,$CQ$4:$CR$9,2)),000) 

WRITE SFU REGISTER< 10>: 

=IF(AA22=SFU_LAT,1,0) 

RQS CONTROL<9:6>: 

=IF($Z22<>0,(VLOOKUP($Z22,$CT$4:$CU$11,2)),0000) 
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WRITE WB REGISTER<5>: 

=(IF($AA22=WB_LAT,1,0)) 

READ RQS CONTROL<4>: 

=IF(I22<>0,1,(IF(J22<>0,1,(IF(K22<>0,1,0))))) 

RQS BUS MUX CONTROL<3>: 

=IF(K22=BOS_RQS,1,0) 

FIFO WRITE ENABLE<2>: 

=IF($AA22=FIFO,1,0) 

OPERATION QUEUE WRITE ENABLE<1>: 

=IF($AA22=OP_QUEUE,1,0) 

GPIO WRITE ENABLE<0>: 

=IF($AA22=GPIO,1,0) 
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B.1.1 Lookup tables 

The lookup tables used in the equations above are shown below: 
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Appendix C.   DCT/ICC Implementation Details 

The DPE was synthesized in a 180nm TSMC process using Design Compiler 

Topographical (DCT) from Synopsys. The synthesized output was placed and routed 

using IC Compiler (ICC) from Synopsys. Figure C.1 below shows the layout of the DPE 

from ICC. The microcode RAM is the regular structure in the bottom center of the layout. 

Figure C.2 shows the layout for a 15 DPE implementation. 

 

 

Figure C.1: Layout of a single DPE (from IC Compiler) 
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Figure C.2: Layout of a 15-DPE implementation (from IC Compiler) 
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C.1.0   Synthesis Constraints 

The synthesis constraints for a 25MHz (single DPE) implementation are shown 

below. The DPE was synthesized for a range of cycle times ranging from 5ns-100ns. 

 
# Set cycle time in nanoseconds 
 
create_clock -period 40 clk -waveform {0 20} 
create_clock -period 40 clk90 -waveform {10 30} 
 
#  Set driving cell on all inputs 
set_driving_cell -lib_cell INVX2 [all_inputs] 
 
#  Isolate ports on all outputs 
set_isolate_ports [all_outputs] -force 
 
#  Set load on all outputs 
set_load 0.20 [all_outputs] 
 
 
set_input_delay -max[expr 0.5 * ($CCT)]  -clock clk  [ get_nets cpe_hold_in ] 
set_input_delay -max[expr 0.5 * ($CCT)]  -clock clk  [ get_nets cpe_ready_in ] 
set_input_delay –max[expr 0.1 * ($CCT)]  -clock clk  [ get_nets reset_b ] 
set_input_delay -max[expr 0.1 * ($CCT)]  -clock clk  [ get_nets cpe_token_ck_in ] 
set_input_delay -max[expr 0.2 * ($CCT)]  -clock clk  [ get_nets scan_enable ] 
set_input_delay -max[expr 0.3 * ($CCT)]  -clock clk  [ get_nets scan_in ] 
 
 
set_output_delay -max  [expr 0.1 * ($CCT)]  -clock clk [ get_nets cpe_token_ck_out]  
set_output_delay -max  [expr 0.2 * ($CCT)]  -clock clk [ get_nets cpe_hold_out]  
set_output_delay -max  [expr 0.2 * ($CCT)]  -clock clk [ get_nets cpe_ready_out]  
 
remove_attribute [get_lib_cells */*FF*] dont_use 
 
set_dont_use [get_lib_cells */*XL ] 
set_dont_use [get_lib_cells */*CLK* ] 
 
set_max_transition 1.0 [get_designs] 
set_fix_hold clk  
set_fix_hold clk90 
 
 
compile_ultra -no_autoungroup -timing_high_effort_script 
compile_ultra  -incremental -only_design_rule -no_autoungroup 
 
 set j 0; 
 while {$j<5} { 
   set x [get_timing_path] 
   set slack [get_attribute $x slack] 
   if {$slack < 0 } { 
     compile_ultra -incremental –no_autoungroup 
     incr j 
   } else { 
     set j 10 
   } 
 } 
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C.1.1   Critical Timing Paths 
 

The worse case timing path in the DPE is from the SFU compare register write, 

the MIN/MAX compare and to the microcode finite state machine. It is a quarter cycle 

path: CLK (fall) to CLK90 (fall). This path is a false path as “writes” to the compare 

register followed by a compare is not valid. If this register-write operation is followed by 

a conditional branch then there is a chance that the branch operation may fail as the 

validity of the condition code bit is questionable.  
 
 
 
**************************************** 
Report : timing 
        -path full 
        -delay min 
        -max_paths 1 
        -transition_time 
Design : dpe 
Version: E-2010.12 
Date   : Oct 26 13:40:58 2012 
 
  Startpoint: dp/dp_sfu_0/ref_data_reg_13_ 
              (rising edge-triggered flip-flop clocked by clk') 
  Endpoint: ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg 
            (falling edge-triggered flip-flop clocked by clk90) 
  Path Group: clk90 
  Path Type: max 
 
  Point                                                   Incr       Path 
  -------------------------------------------------------------------------- 
  clock clk (fall edge)                                   5.00       5.00 
  clock network delay (ideal)                             0.00       5.00 
  dp/dp_sfu_0/ref_data_reg_13_/CK (DFFSX4)                0.00       5.00 r 
  dp/dp_sfu_0/ref_data_reg_13_/QN (DFFSX4)                0.24       5.24 r 
  dp/dp_sfu_0/U207/Y (NAND2X2)                            0.05 *     5.28 f 
  dp/dp_sfu_0/U292/Y (AND2X4)                             0.13 *     5.42 f 
  dp/dp_sfu_0/U248/Y (NOR2X4)                             0.08 *     5.49 r 
  dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT1_1_6_0/Y (OAI21X2) 
                                                          0.06 *     5.55 f 
  dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT0_2_3_1/Y (AOI21X1) 
                                                          0.12 *     5.67 r 
  dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT1_3_1_3/Y (OAI21X1) 
                                                          0.07 *     5.74 f 
  dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT0_4_0_7/Y (AOI21X2) 
                                                          0.10 *     5.84 r 
  dp/dp_sfu_0/U151/Y (XOR2X2)                             0.19 *     6.03 r 
  dp/dp_sfu_0/min_max_unit_minmax41_0_U1/Y (OAI2BB2X4) 
                                                          0.14 *     6.17 r 
  dp/dp_sfu_0/U43/Y (BUFX20)                              0.12 *     6.29 r 
  dp/dp_sfu_0/U374/Y (MXI2X4)                             0.11 *     6.41 f 
  dp/dp_sfu_0/sfu_out[2] (dp_sfu)                         0.00       6.41 f 
  dp/dp_wbmux_0/lut_in[2] (dp_wbmux)                      0.00       6.41 f 
  dp/dp_wbmux_0/U187/Y (OAI2BB1X4)                        0.15 *     6.55 f 
  dp/dp_wbmux_0/wb_cmp/wb_data[2] (wb_cmp)                0.00       6.55 f 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/A[2] (cmp6)                 0.00       6.55 f 
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  dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U184/Y (NAND2X1) 
                                                          0.08 *     6.63 r 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/U132/Y (OAI2BB1X2)          0.10 *     6.73 r 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/U131/Y (OAI21X1)            0.06 *     6.79 f 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U178/Y (AOI21X2) 
                                                          0.11 *     6.89 r 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U163/Y (OAI21X2) 
                                                          0.06 *     6.95 f 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U132/Y (AOI21X2) 
                                                          0.18 *     7.13 r 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U1/Y (OAI21X4) 
                                                          0.06 *     7.19 f 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/U128/Y (NOR2X1)             0.10 *     7.29 r 
  dp/dp_wbmux_0/wb_cmp/cmp_eq/LT (cmp6)                   0.00       7.29 r 
  dp/dp_wbmux_0/wb_cmp/wb_lt (wb_cmp)                     0.00       7.29 r 
  dp/dp_wbmux_0/wb_lt (dp_wbmux)                          0.00       7.29 r 
  dp/wb_lt (dp)                                           0.00       7.29 r 
  ctl/wb_lt (ctl)                                         0.00       7.29 r 
  ctl/ctl_ucode_1/wb_lt (ctl_ucode)                       0.00       7.29 r 
  ctl/ctl_ucode_1/ucode_fsm/wb_lt (ctl_ucode_fsm)         0.00       7.29 r 
  ctl/ctl_ucode_1/ucode_fsm/U70/Y (MXI2X1)                0.06 *     7.35 f 
  ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg/D (DFFNSX1)     0.00 *     7.35 f 
  data arrival time                                                  7.35 
 
  clock clk90 (fall edge)                                 7.50       7.50 
  clock network delay (ideal)                             0.00       7.50 
  ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg/CKN (DFFNSX1) 
                                                          0.00       7.50 f 
  library setup time                                     -0.15       7.35 
  data required time                                                 7.35 
  -------------------------------------------------------------------------- 
  data required time                                                 7.35 
  data arrival time                                                 -7.35 
  -------------------------------------------------------------------------- 

  slack (MET)                                                  0.00 
 
 
 
 

C.1.2   PTPX Power Analysis Results 

The results from PTPX for a single DPE core running at 25MHz operation are 

shown below. A SAIF (switching activity interchange format) pattern was used to 

generate the power numbers for the FIR filter operation. Energy was then derived using 

equation 8.12 and used in the analysis presented in Chapter 8. 

 
************************************************************************** 
Report : Averaged Power 
 -cell_power 
 -verbose 
 -sort_by cell_internal_power 
 -power_greater_than       0 
Design : dpe 
Version: H-2012.12 
Date   : Nov  5 14:28:54 2012 
 
************************************************************************** 
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Library(s) Used: 
 
    typical (File: /IMPLEMENTATION/Artisan/synopsys/typical.lib) 
    typical (File: /IMPLEMENTATION/Artisan/synopsys/typical.db) 
    dw_foundation.sldb (File: 
/usr/local/packages/synopsys_2012/syn/libraries/syn/dw_foundation.sldb) 
    RA1SHD (File: /home/ecelrc/faculty/mcdermot/IMPLEMENTATION/WCS/RA1SHD.db) 
 
 
************************************************************************** 
 
Operating Conditions: typical   Library: typical 
Wire Load Model Mode: Parasitic 
 
Power-specific unit information: 
    Voltage Units   = 1 V 
    Capacitance Units   = 1 pf. 
    Time Units   = 1 ns 
    Dynamic Power Units  = 1 W 
    Leakage Power Units  = 1 W 
    Cycle-time   = 40 ns 
 
 
  Attributes 
  ---------- 
      a  -  Annotated internal & leakage power 
      b  -  Black-box (unresolved) cell 
      c  -  Clock pin internal power only 
      d  -  Does not include clock pin internal power 
      h  -  Hierarchical cell 
 
                    Internal  Switching  Leakage    Total 
Cell                Power     Power      Power      Power   (     %)  Attrs 
---------------------------------------------------------------------------- 
dp                  4.106e-06 4.587e-06 5.107e-09 8.699e-06 (43.74%)  h 
ctl                 3.504e-06 6.223e-07 9.070e-08 4.217e-06 (21.20%)  h 
qs1                 6.966e-07 1.462e-06 9.770e-09 2.168e-06 (10.90%)  h 
rqs                 6.373e-07 1.797e-06 2.670e-08 2.461e-06 (12.37%)  h 
qs2                 3.994e-07 1.287e-06 9.483e-09 1.696e-06 ( 8.53%)  h 
fifo                1.416e-07 1.168e-07 6.984e-10 2.591e-07 ( 1.30%)  h 
 
------------------------------------------------------------------------------- 
Totals (6 cells)    9.560e-06 1.019e-05 1.425e-07 1.989e-05 (100.0%) 

 

Note that the ratio of datapath power to control power is 43.7% to 21.2%. This is key to 

the energy efficiency of the DPE. In this implementation the CTL power is dominated by 

the RAM microcode memory. This can be reduced by about 35% by using a read-only 

memory (ROM). Figure C.3 below shows the layout differences between the ROM and 

the RAM layouts. 
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Figure C.3: ROM (top) vs. RAM (bot) layout comparison 
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Appendix D.   FPGA Implementation Details 

The TLL-5000 System Design Platform was used to implement and test the DPE 

[79]. The TLL5000 is a hardware and software design platform that consists of a Xilinx 

Spartan-3 XC3S1500 FPGA (field-programmable gate array) and a large assortment of 

peripherals including the following:  
 

• 16 MB Flash 

• 16MG DRAM 

• LEDs (light-emitting diodes) 

• LCD (liquid crystal display) 

• SD (secure digital) card/MMC (Multi-Media-Card) I/F 

• Video encoder/decoder with video input/output ports 

• VGA output 

• Audio codec with audio amplifier and output connection 

• Microphone and audio input connection 

• Mouse and keyboard ports, 

• Ethernet interface 

• User switches and push buttons 

 

These peripherals are powered by on-board power supplies and driven by the 

FPGA and internal clocks.  The TLL500 has two 80-pin mezzanine expansion connectors 

for additional processing or interfacing capabilities.  Currently, one of these mezzanine 

connectors is used to interface the TLL6219 ARM9 Module to the Baseboard.  Figure 

D.1 below shows a photograph of the TLL5000 Baseboard and its various on-board 

components.   
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Figure D.1: TLL5000 System Development Platform 

The synthesized gate level netlist from DCT was used as the netlist for the FPGA 

implementation of the DPE. The netlist was instantiated into a bus controller Verilog 

model that provides the interface between the ARM SOC and the DPE. Figure D.2 shows 

the block diagram of the DPE test environment. 

 



206 
 

 

 

 

Figure D.2: Block diagram of the DPE test environment 

The ARM processor is used to load the microcode in the DPE. The microcode 

memory is memory mapped into the ARM processor memory map. The ARM processor 

is uses a memory mapped control register in the FPGA to “fire” the DPE. The output of 

the DPE FIFO is accessible via the accessory port on TLL5000 and was used to verify 

correct system operation using a logic analyzer. Additional internal control and clock 

signals were routed to the accessory connector. These were compared to the original 

Verilog simulation to further confirm correct internal operation. Using the synthesized 

gate level netlist was instrumental in making sure the silicon and FPGA designs 

functioned identically. The same self-checking test that was used to verify the RTL 

functionality of DPE was used to verify the FPGA implementation. The IQS-1 is used to 
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seed the test by loading tokens and triggering the FIRE signal. The output of the FIFO is 

recirculated back into IQS-2 and used as the feedback mechanism for the test. The ARM 

processor can read the result of the test via a register in the bus controller. The microcode 

WCS is memory mapped into the ARM address space allowing for dynamic changing of 

the microcode for debugging, reloading, etc. 

Figure D.3 shows a block diagram of the test environment for the FPGA 

implementation of the DPE. 

 

Figure D.3: Test configuration for FPGA implementation of the DPE. 
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D.1.0   FPGA Implementation Details 

Figure D.4 below shows the post synthesis, mapping and place & route 

implementation summary.  
 

 

Figure D.4: FPGA implementation summary 
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D.1.1   Synthesis Timing Constraints 

The timing constraints for the FPGA synthesis of the DPE and the bus controller 

logic is shown below: 
 
# *************************************************** 
# RESET PIN 
# *************************************************** 
NET SYS_RST_N LOC=AB11; 
NET SYS_RST_N IOSTANDARD = LVCMOS33; 
NET SYS_RST_N TIG;   # IGNORE TIMING. RST IS SYNCHRONIZED INTERNALLY 
# *************************************************** 
# 24 MHZ CLOCK INPUT 
# *************************************************** 
NET SYS_CLK LOC=AE14; 
NET SYS_CLK IOSTANDARD = LVCMOS33; 
NET SYS_CLK   TNM_NET  = SYS_CLK; 
TIMESPEC TS_SYS_CLK = PERIOD SYS_CLK   41.6666 NS HIGH 50 %; 
# *************************************************** 
# 100MHZ/N CLOCK INPUT FROM AD9510 CLOCK GENERATOR 
# *************************************************** 
NET FPGA_CLK3 LOC = AF14; 
NET FPGA_CLK3 IOSTANDARD = LVCMOS33; 
NET FPGA_CLK3 TNM_NET    = "FPGA_CLK3"; 
TIMESPEC "TS_FPGA_CLK3"  = PERIOD "FPGA_CLK3"  10 NS HIGH 50 %; 
# *************************************************** 
# FPGA_CLK4 CONFIGURED FOR VE_CLK (27MHZ) ON BOARD 
# *************************************************** 
NET FPGA_CLK4 LOC = AE13;  
NET FPGA_CLK4 IOSTANDARD = LVCMOS33; 
NET "FPGA_CLK4" TNM_NET = "FPGA_CLK4"; 
#TIMESPEC "TS_FPGA_CLK4"     = PERIOD "FPGA_CLK4"  37 NS HIGH 50 %; 
# *********************************************************** 
# CPLD CLK FROM ARM CORE 
# *********************************************************** 
NET "MZ_CPLD_CLKO" LOC = "AA18"; 
NET MZ_CPLD_CLKO IOSTANDARD = LVCMOS33; 
#NET "MZ_CPLD_CLKO" TNM_NET = "MZ_CPLD_CLKO"; 
TIMESPEC "TS_MZ_CPLD_CLK0"  = PERIOD "MZ_CPLD_CLKO" 20 NS HIGH 50 %; 
# *********************************************************** 
TIMEGRP "EB"         OFFSET = IN 6 NS    BEFORE "SYS_CLK"; 
TIMEGRP "ADDR"       OFFSET = IN 6 NS    BEFORE "SYS_CLK"; 
TIMEGRP "DATABUS"   OFFSET = OUT 11 NS  AFTER  "SYS_CLK"; 
# *********************************************************** 
 
 
 

The DPE was synthesized for 12 MHz operation using the SYS_CLK clock, 

which is driven by an external 24MHz oscillator on the TLL5000. The SYS_CLK is 

divided by 2 and phase shifted 90 degrees to generate the two clocks for the DPE. 
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D.1.2   Synthesis Timing Report 

The resulting timing report is shown below. The synthesized DPE netlist is able to 

meet the 12 MHz timing constraint. 
 
----------------------------------------------------------------------------  
 RELEASE 14.4 TRACE  (LIN)  
 COPYRIGHT (C) 1995-2012 XILINX, INC.  ALL RIGHTS RESERVED.  
   
 /MISC/LINUXWS/PACKAGES/XILINX/14.4/ISE_DS/ISE/BIN/LIN/UNWRAPPED/TRCE -INTSTYLE  
 ISE -V 3 -S 4 -N 3 -FASTPATHS -XML TOP.TWX TOP.NCD -O TOP.TWR TOP.PCF  
   
 DESIGN FILE:              TOP.NCD  
 PHYSICAL CONSTRAINT FILE: TOP.PCF  
 DEVICE,PACKAGE,SPEED:     XC3S1500,FG676,-4 (PRODUCTION 1.39 2012-12-04)  
 REPORT LEVEL:   VERBOSE REPORT  
   
 ----------------------------------------------------------------------------  
   
 INFO:TIMING:3224 - THE CLOCK SYS_CLK ASSOCIATED WITH TIMEGRP "ADDR" OFFSET   
    = IN 6 NS BEFORE COMP "SYS_CLK";   
 INFO:TIMING:3225 - TIMING CONSTRAINT TIMEGRP "ADDR" OFFSET = IN 6 NS BEFORE   
    COMP " SYS_CLK "; 
 INFO:TIMING:3391 - TIMING CONSTRAINT TIMEGRP "ADDR" OFFSET = IN 6 NS BEFORE   
    COMP "SYS_CLK";  
 INFO:TIMING:3224 - THE CLOCK SYS_CLK ASSOCIATED WITH TIMEGRP "EB" OFFSET =   
    IN 6 NS BEFORE COMP " SYS_CLK ";  
 INFO:TIMING:3225 - TIMING CONSTRAINT TIMEGRP "EB" OFFSET = IN 6 NS BEFORE   
    COMP " SYS_CLK "; 
 INFO:TIMING:3391 - TIMING CONSTRAINT TIMEGRP "EB" OFFSET = IN 6 NS BEFORE   
    COMP " SYS_CLK ";    
 INFO:TIMING:3412 - TO IMPROVE TIMING, SEE THE TIMING CLOSURE USER GUIDE (UG612).  
 INFO:TIMING:2752 - TO GET COMPLETE PATH COVERAGE, USE THE UNCONSTRAINED PATHS   
    OPTION. ALL PATHS THAT ARE NOT CONSTRAINED WILL BE REPORTED IN THE   
    UNCONSTRAINED PATHS SECTION(S) OF THE REPORT.  
 INFO:TIMING:3339 - THE CLOCK-TO-OUT NUMBERS IN THIS TIMING REPORT ARE BASED ON   
    A 50 OHM TRANSMISSION LINE LOADING MODEL.  FOR THE DETAILS OF THIS MODEL,   
    AND FOR MORE INFORMATION ON ACCOUNTING FOR DIFFERENT LOADING CONDITIONS,   
    PLEASE SEE THE DEVICE DATASHEET.  
  INFO:TIMING:3389 - THIS ARCHITECTURE DOES NOT SUPPORT 'DISCRETE JITTER' AND   
    'PHASE ERROR' CALCULATIONS, THESE TERMS WILL BE ZERO IN THE CLOCK   
    UNCERTAINTY CALCULATION.  PLEASE MAKE APPROPRIATE MODIFICATION TO   
    SYSTEM_JITTER TO ACCOUNT FOR THE UNSUPPORTED DISCRETE JITTER AND PHASE   
    ERROR.  
=============================================================================  
 TIMING CONSTRAINT: TIMEGRP "EB" OFFSET = IN 6 NS BEFORE COMP "SYS_CLK";  
 FOR MORE INFORMATION, SEE OFFSET IN ANALYSIS IN THE TIMING CLOSURE USER GUIDE (UG612).  
  3412 PATHS ANALYZED, 2998 ENDPOINTS ANALYZED, 0 FAILING ENDPOINTS  
  0 TIMING ERRORS DETECTED.  
-----------------------------------------------------------------------------  
 
   ALL CONSTRAINTS WERE MET.  
 
=============================================================================  
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  D.1.3   Place and Route Details 

Figure D.5 below shows the resulting placement and routing of the DPE and the 

bus controller in the XC3S-1500-4FG676. The overall utilization is about 40% and is 

described in detail in Figure D.4 The three Queued-Stack implementations consume a 

large number of the available resources due to the latch based implementation. Future 

implementations should be done using the RAMB16 modules. This will require an 

extensive rewrite of the DPE Verilog code. 
 

 

Figure D.5: Placement and routing of the DPE and bus controller   
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Glossary     

 

CSP  – Cognitive Sensor Platform 

DPE  – Dataflow-Processing Element 

FSU  – Functional Services Unit 

PPU – Preprocessing Unit 

IQS – Input Queued Stack 

RQS – Result Queued Stack 

DSP  – Digital Signal Processor 

GPP  – General Purpose Processor 

ASP  – Application Specific Processor 

ASIC  – Application Specific Integrated Circuit 

ISA – Instruction Set Architecture 

FPGA  – Field Programmable Gate Array 

FSM  – Finite State Machine 

SDF  – Synchronous Data Flow 

TOS  – Top of Stack 

BOS – Bottom of Stack 

ADC  – Analog-to-Digital Converter 

SDC  – Sensor Data Conditioning Unit 

FIFO  – First-in-First-out (queue) 

LIFO  – Last-in-First-out (stack) 

ROM  – Read only memory 

SRAM – Static Random Access Memory 

WCS – Writeable Control Store 

NOC  – Network-on-Chip 

FLIT  – Flow Control Unit or Flow Digits  

COTS  – Commercial-off-the-Shelf 
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