

Copyright

by

Mark William McDermott

2014

The Dissertation Committee for Mark William McDermott certifies that

this is the approved version of the following dissertation:

Dataflow-Processing Element for a

Cognitive Sensor Platform

Committee:

Jacob Abraham, Supervisor

Andreas Gerstlauer

Glenn Lightsey

Haris Vikalo

Steven Smith

Arjang Hassibi

Dataflow-Processing Element for a
Cognitive Sensor Platform

By

Mark William McDermott, BSEE; MSE

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2014

Dedication

This is dedicated to my family for the support they have provided in my crazy

dream to complete this degree.

v

Acknowledgements

I would like to acknowledge and thank Dr. Margarida Jacome for planting the

seed about the power of Synchronous Dataflow many years ago. It was the genesis of this

dissertation and has taken me on a six-year journey of researching, designing and

implementing this platform.

I also need to thank Dr. Tony Ambler for introducing me to a great book about the

future of engineering, specifically “The Engineer of 2020”. This book and its companion

book “Educating the Engineer of 2020” inspired me to work on this Ph.D. so that I can

become more directly involved in the education of future engineers.

Many thanks to the members of my committee. It is a real honor to work with

them on this endeavor, as they are all involved in the sensor ecosystem from different

reference points. I am especially honored to be able to work with Dr. Abraham on both

the academic teaching side and on this research topic. It has been fourteen years since he

formed the “Circuit Board” and spawned a world-class Circuits and Systems program at

the University of Texas at Austin. I have learned so much from him about how to put

together excellent teaching programs. As my research advisor he has been instrumental in

helping me to focus on what really matters. He has this wonderfully subtle way of putting

ideas in my head about what to do next.

And, eternal thanks to everyone who has helped me fill my toolbox of life. You

know who you are and I am paying it forward.

vi

Dataflow-Processing Element for a
Cognitive Sensor Platform

Mark William McDermott, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Jacob Abraham

Cognitive sensor platforms are the next step in the evolution of intelligent sensor

platforms. These platforms have the capability to reason about both their external

environment and internal conditions and to modify their processing behavior and

configuration in a continuing effort to optimize their operational life and functional

utility. The addition of cognitive capabilities is necessary for unattended sensor systems

as it is generally not feasible to routinely replace the battery or the sensor(s). This

platform provides a chassis that can be used to compose embedded sensor systems from

composable elements. The composable elements adhere to a synchronous data flow

(SDF) protocol to communicate between the elements using channels. The SDF protocol

provides the capability to easily compose heterogeneous systems of multiple processing

elements, sensor elements, debug elements and communications elements. The

processing engine for this platform is a Dataflow-Processing Element (DPE) that

receives, processes and dispatches SDF data tokens. The DPE is specifically designed to

support the processing of SDF tokens using microcoded actors where programs are

assembled by instantiating actors in a graphical modeling tool and verifying that the SDF

protocol is adhered to.

vii

Table of Contents

List of Figures .. xii

List of Tables ... xvii

Chapter 1. Introduction to Reactive Sensor Systems ... 1

1.1 Transducers, sensors, actuators and systems ... 1

1.2 Hierarchy of sensor systems .. 2

1.3 Reactive systems ... 4

1.4 Synchronous Dataflow Network ... 4

1.5 System composability ... 8

1.6 Research motivation and contribution .. 11

1.7 Dissertation flow ... 17

Chapter 2. Survey of Sensor Platform Architectures .. 19

2.1 Commercial microprocessors for sensor platforms 19

2.1.1 UCLA iBadge ... 21

2.1.2 UCLA: Medusa MK-2 .. 22

2.1.3 UC Berkeley Smart Dust Motes ... 23

2.1.4 UC Berkeley PicoNodes ... 26

2.1.5 MIT’s μAMPs Platform ... 27

2.2 Custom Microprocessors for Sensor Platforms ... 28

2.2.1 Pleiades Platform .. 29

2.2.2 SNAP .. 31

2.2.3 Subliminal processor .. 32

2.3 Software systems for sensor platforms ... 35

2.3.1 TinyOS .. 36

viii

2.3.2 SOS – Sensor Operating System .. 38

2.3.3 Contiki .. 38

2.3.4 Nano-RK ... 39

2.3.5 Sensor OS middleware ... 40

2.4 Summary ... 43

Chapter 3. Cognitive Sensor Platform (CSP) Requirements 44

3.1 Overview ... 44

3.2 Self-diagnostics and self-calibration ... 45

3.3 Time stamping ... 46

3.4 Adaptive capabilities ... 47

3.4.1 Dynamically reconfigurable data lookup capability 47

3.4.2 Reconfigurable event-driven programming 48

3.4.3 Dynamic sampling and frequency scaling .. 49

3.4.4 Dynamic data precision .. 49

3.5 Fuzzy Logic capabilities ... 49

3.6 Data fusion .. 50

3.6.1 Fuzzy Logic data fusion algorithm ... 52

3.7 Communications capability ... 53

3.8 Summary ... 54

Chapter 4. Cognitive Sensor Platform (CSP) Architecture 55

4.1 Overview ... 55

4.2 Sensor element .. 56

4.3 Sensor Data Conditioning (SDC) Element ... 58

4.3.1 Preprocessing Unit (PPU) ... 59

4.3.2 Functional Services Unit (FSU) ... 61

ix

4.3.3 Channel nodes and channel routing nodes 70

4.4 Dataflow-Processing Element (DPE) .. 77

4.5 Communications element (COM) ... 78

4.6 Debug element .. 79

4.7 Summary ... 81

Chapter 5. Dataflow-Processing Element ... 82

5.1 Overview ... 82

5.2 Input Queued-Stack (IQS) Unit .. 83

5.3 Result Queued-Stack (RQS) Unit ... 87

5.4 Datapath Unit .. 88

5.4.1 Condition code generation .. 90

5.4.2 Special Function Unit (SFU) .. 91

5.5 Microcode Engine ... 93

5.5.1 Microcode fields ... 95

5.5.2 Microcode finite state machine ... 100

5.5.3 Microcode storage memory .. 103

5.5.4 Actor/Event queue .. 103

Chapter 6. DPE Microprogramming .. 106

6.1 Overview ... 106

6.2 Programing environment ... 108

6.2.1 Microcode Program Languages (MPL) .. 109

6.2.2 Microsoft Excel spreadsheet assembler .. 109

6.3 Microcode Field Descriptions ... 110

6.3.1 Micro-engine control .. 111

6.3.2 Datapath control ... 115

x

6.3.3 Queued-Stack control ... 119

6.3.4 Logical Unit, Special Function Unit and I/O Control 124

6.4 Microcode programming syntax ... 126

6.4.1 Arithmetic operations ... 126

6.4.2 Non-arithmetic operations .. 128

6.4.3 Write-back operations ... 130

6.4.4 Micro-engine operations ... 132

Chapter 7. High Level Modeling Environment .. 138

7.1 SDF3 ... 138

7.2 SimEvents® .. 139

7.2.1 Entities and Attributes .. 140

7.2.2 Servers .. 142

7.2.3 FIFOs and LIFOs .. 143

7.2.4 CSP Modeling ... 144

7.3 Summary ... 148

Chapter 8. Results ... 149

8.1 Overview ... 149

8.2 FIR Filter Performance ... 149

8.3 IIR Filter Performance .. 152

8.4 DPE energy analysis ... 156

8.5 DPE Energy-Delay .. 158

8.6 DPE Energy/Instruction vs. Energy-Delay/Operation 164

8.7 Energy Performance Percentage Ratio .. 167

8.8 DPE Performance and Energy Analysis Summary 175

Chapter 9. Final Observations and Future Work .. 177

xi

Appendix A. Fuzzy Logic Tutorial .. 180

Appendix B. Microcode Assembler ... 189

Appendix C. DCT/ICC Implementation Details .. 197

Appendix D. FPGA Implementation Details .. 204

Glossary ... 212

References .. 213

xii

List of Figures

Figure 1.1: Typical sensor/actuator system .. 1

Figure 1.2: Computational hierarchy of advanced sensor systems 3

Figure 1.3: Synchronous Dataflow Actors .. 5

Figure 1.4: SDF system composed of three actors ... 5

Figure 1.5: Mapping of actors to processing elements ... 7

Figure 1.6: Merged input-queue and stack based register file .. 8

Figure 1.7: Composed system using two dual-input DPEs ... 10

Figure 1.8: Composed system using a single DPE ... 10

Figure 1.9: Composed system showing channel nodes configured as routers 11

Figure 1.10: Subsystem power usage for various wireless sensor nodes 13

Figure 1.11: Weighted-Sum power usage for various wireless sensor nodes 14

Figure 2.1: Block diagram of iBadge sensor platform .. 21

Figure 2.2: Block diagram of the Medusa MK-II platform .. 22

Figure 2.3: Block diagram of a basic Smart Dust Mote System 24

Figure 2.4: Block diagram of the PicoNode platform ... 26

Figure 2.5: Block diagram of the COTS version of the MIT µAMPS platform 27

Figure 2.6: Custom implementation of the MIT µAMPS platform 28

Figure 2.7: Block diagram of the Pleiades Platform ... 30

Figure 2.8: Block diagram of the SNAP ... 31

Figure 2.9: Microarchitecture block diagram of the Subliminal Processor 33

Figure 2.11: TinyOS component configuration. .. 37

Figure 2.10: Architecture of the Nano-RK operating system .. 40

Figure 2.12: Wireless Sensor Middleware vs. OSI Model .. 42

xiii

Figure 3.1: Example of fault detection/repair in a cognitive sensor system 44

Figure 3.2: Multi-sensor configurations ... 51

Figure 3.3: Flow diagram of Fuzzy Logic data fusion .. 52

Figure 4.1: CSP high level block diagram .. 55

Figure 4.2 Various capacitive displacement transducers ... 57

Figure 4.3: Ion-Sensitive FET transducer ... 57

Figure 4.4: Bio-sensing transducers .. 58

Figure 4.5: Sensor Data Conditioning (SDC) Element block diagram 59

Figure 4.6: Typical configuration of a PPU .. 59

Figure 4.7: High performance configuration of a PPU ... 60

Figure 4.8: Block diagram of a microcoded FSU ... 62

Figure 4.9: Time stamping flow chart ... 64

Figure 4.10: Fuzzy Logic flow diagram .. 66

Figure 4.11: Energy usage rule evaluation table .. 67

Figure 4.12: Rate of change calculations for a clean sine wave. 67

Figure 4.13: Rate of change calculations for a noisy sine wave. 68

Figure 4.14: Rate of change calculations for a square wave. ... 68

Figure 4.15: Channel routing nodes connecting multiple DPEs 71

Figure 4.16 Flit encoding .. 72

Figure 4.17: Block diagram of full Channel Routing Node ... 73

Figure 4.18: Timing diagram for event signals during the receive cycle 75

Figure 4.19: Timing diagram for event control signals during the send cycle 76

Figure 4.20: Self-timed clocking timing diagram .. 76

Figure 4.21: CLK/CLK90 timing diagram .. 77

Figure 4.22: Example of Core Level Bypass in scan chains .. 80

xiv

Figure 5.1: Dataflow-Processing Element block diagram .. 82

Figure 5.2: Three-entry Queued-Stack unit block diagram .. 84

Figure 5.3: Queued-Stack timing diagram .. 87

Figure 5.4: Three-entry Result Queued-Stack unit block diagram 88

Figure 5.5: Block Diagram of the DPE Datapath ... 88

Figure 5.6: Timing Diagram for Condition Code Generation 91

Figure 5.7: Block diagram of MIN/MAX logic .. 92

Figure 5.8: Content addressable lookup table (CLT) architecture 93

Figure 5.9: DPE Operation Flow Chart .. 94

Figure 5.10: Microcode control fields ... 96

Figure 5.11: Block Diagram of the Microcode Engine .. 97

Figure 5.12: Typical nested looping microcode sequence ... 100

Figure 5.13: State diagram for micro-engine control ... 101

Figure 5.14: Nested looping/repeat example ... 102

Figure 5.15: Block diagram of the Actor/Event queue .. 104

Figure 6.1: Datapath block diagram .. 112

Figure 6.2: Micro-engine state diagram .. 113

Figure 6.3: Block diagram of the multiplexors and the arithmetic units 115

Figure 6.4: PUSH operation .. 120

Figure 6.5: BOT operation .. 120

Figure 6.6: PUSH_INS operation ... 121

Figure 6.7: TOP_BOT operation .. 121

Figure 6.8: POP operation ... 122

Figure 6.9: POP_WR operation .. 122

Figure 6.10: PUSH_NW operation .. 123

xv

Figure 6.11: TOP_INS operation ... 123

Figure 6.12: Block diagram of MIN/MAX logic ... 125

Figure 7.1: Entity generators ... 140

Figure 7.2: Attribute generator and extractor ... 140

Figure 7.3: Set-Attribute dialog box ... 141

Figure 7.4: Get-Attribute dialog box .. 141

Figure 7.5: Time-based entity generator example .. 142

Figure 7.6: Token consumer ... 142

Figure 7.7: Example of a token combiner feeding a token consumer 143

Figure 7.8: Dialog box for a queue element ... 144

Figure 7.9: CSP SimEvents® Model .. 145

Figure 7.10: Single queue DPE model ... 145

Figure 7.11: Multiple queue DPE model ... 146

Figure 7.12: Average wait time for tokens entering DPE_3 .. 147

Figure 7.13: Total number of tokens processed by DPE_3 ... 147

Figure 7.14: Total number of tokens leaving the Token Combiner 148

Figure 8.1: FIR filter configuration .. 149

Figure 8.2: Initial data storage configuration for FIR filter routine 150

Figure 8.3: IIR filter configuration (Bi-Quad) .. 152

Figure 8.4: Initial data storage configuration for IIR filter routine 153

Figure 8.5: Energy-Delay product relationship .. 158

Figure 8.6: E-D Inverter schematic ... 159

Figure 8.7: Energy vs. Cycle-Time for the IIR and FIR workloads 161

Figure 8.8: DPE Energy-Delay/Actor for cycle-time design points 163

Figure 8.9: Energy-Performance relationship ... 168

xvi

Figure 8.10: EPPRs for different design variables ... 170

Figure 8.11: DPE topology for EPPR evaluation .. 171

Figure 8.12: Actors used in Fuzzy Logic fusing algorithm ... 172

Figure 8.13: Queued-Stack storage for Fuzzy Logic fusing algorithm 172

Figure 8.14: Impact of multiple DPEs on EPPR for a tree topology 173

Figure 8.15: Impact of Token Wait Time on EPPR ... 174

Figure A.1: Flow diagram of a Fuzzy Logic system ... 180

Figure A.2: Trapezoidal Membership Function Example ... 181

Figure A.3: Output from Fuzzification Operation ... 182

Figure A.4: Singleton output from the Fuzzification process 183

Figure A.5: Union of COLD and WARM Membership Functions 184

Figure A.6: Intersection of WARM and HOT Membership Functions 185

Figure A.7: Complement of the COLD Membership Function 185

Figure B.1: Microcode entry example. .. 189

Figure B.2: Microcode entry example (continued) .. 190

Figure B.3: Microcode field generation ... 190

Figure B.4: Microcode field generation (continued) ... 191

Figure C.1: Layout of a single DPE (from IC Compiler) .. 197

Figure C.2: Layout of a 15-DPE implementation (from IC Compiler) 198

Figure C.3: ROM (top) vs. RAM (bot) layout comparison ... 203

Figure D.1: TLL5000 System Development Platform .. 205

Figure D.2: Block diagram of the DPE test environment .. 206

Figure D.3: Test configuration for FPGA implementation of the DPE. 207

Figure D.4: FPGA implementation summary .. 208

Figure D.5: Placement and routing of the DPE and bus controller 211

xvii

List of Tables

Table 1.1: Examples of stimulus sources for sensor systems .. 2

Table 2.1: COTS Microcontrollers used in sensor platforms 19

Table 2.2: Survey of first generation sensor platform configurations 20

Table 2.3: Family of Berkeley Motes ... 23

Table 2.4: Custom processors for sensor platforms (2004-2011) 29

Table 4.1: Quality tag encoding – faulty operation ... 69

Table 5.1: Input Queued-Stack Operations .. 86

Table 5.2: Input data source for the datapath units .. 89

Table 5.3: Micro-Engine operation codes .. 98

Table 5.4: FSM operating modes ... 101

Table 6.1: Micro-engine control bit field assignment .. 111

Table 6.2: Micro-Engine Operation Codes .. 114

Table 6.3: Datapath multiplexor control bit field assignments 116

Table 6.4: Datapath control for A-BUS shifter .. 116

Table 6.5: Datapath control for B-BUS shifter .. 117

Table 6.6: Datapath control for Multiplier ... 117

Table 6.7: Datapath control bit field assignments for ADD/SUB 118

Table 6.8: Queued-Stack operation encoding .. 119

Table 6.9: Logical operations ... 124

Table 6.10: MIN/MAX operations .. 125

Table 6.11: Mapping of micro-engine opcodes to execution type 132

Table 6.12: Unconditional branching operations ... 134

Table 6.13: Conditional branching operations. .. 136

xviii

Table 8.1: FIR Throughput comparison ... 151

Table 8.2: IIR Throughput comparison ... 155

Table 8.3: Energy-Delay optimizations ... 160

Table 8.4: FIR Energy-Delay benchmarks .. 162

Table 8.5: IIR Energy-Delay benchmarks ... 162

Table 8.6: FIR Energy-Delay for various cycle times ... 163

Table 8.7: IIR Energy-Delay for various cycle times .. 163

Table 8.8: Energy/Instruction for various computational elements 165

Table 8.9: FIR Energy-Delay/Operation Benchmarks .. 166

Table 8.10: IIR Energy-Delay/Operation Benchmarks ... 166

Table 8.11: Energy-Delay/Operation benchmarks for fusing algorithm 173

Table A.1: Truth Table for Fuzzy Set Complement Operator 186

Table A.2: Truth Table for Fuzzy Set Intersection Operator (MIN) 186

Table A.3: Truth Table for Fuzzy Set Union Operator (MAX) 186

Table A.4: Variables used in equations A.4 – A.7 ... 188

1

Chapter 1. Introduction to Reactive Sensor Systems

1.1 Transducers, sensors, actuators and systems

A transducer is a device converts energy from one form to another. There are two

types of transducers: 1) sensors that detect a change in a physical stimulus and turn it into

a signal that can be measured and 2) actuators that output action into the physical world.

Figure 1.1 below shows an example of typical sensor/actuator system. The sensor in this

system can be thermistor that measures temperature and the actuator is a relay that

controls a cooling or heating system.

Figure 1.1: Typical sensor/actuator system

Typical input transducers would include strain gauges, piezoelectric devices,

phototransistors, hall-effect devices, magnetometers, thermo-couples, ion-sensitive

transistors, capacitive displacement devices, thermistors and bio-sensing devices. Table

1.1 below shows examples of various types of stimulus sources.

As can be seen in Figure 1.1, the input data from the sensor element is processed

before it outputted to the actuator. There are three levels of processing capability

associated with sensor systems and are described in more detail in the next section.

Data

Processing
Element

 Sensor Element

Transducer Conversion
Circuitry

Actuator Element

Transducer Conversion
Circuitry

Input

Output

2

Table 1.1: Examples of stimulus sources for sensor systems

STIMULUS
TYPE

EXAMPLES

Acoustic Wave amplitude, spectrum, polarization, velocity, phase

Electrical Voltage, charge, current, electric field, conductivity, permittivity

Magnetic Magnetic field, amplitude, phase, polarization, flux, permeability

Optical
Wave amplitude, spectrum, polarization, velocity phase, emissivity,

reflectivity, absorption

Thermal Temperature, flux, thermal conductivity, specific heat

Mechanical
Position, mass, shape, density, acceleration, force, stress, strain, pressure,

torque, stiffness, orientation

1.2 Hierarchy of sensor systems

The hierarchy of sensor systems is generally described as having three distinct

levels of capabilities. The first level is a smart sensor system where the system is able to

identify its purpose and is able to communicate information to and from other devices.

The second level is generally classified as intelligent and this is achieved by adding the

ability to recognize, interpret and understand sensor stimuli. The third level of capability

is the cognitive sensor system that adds reasoning and cognition to the intelligent sensor

system, allowing it to make decisions based on the sensor stimuli and to be totally aware

of the environment. This classification is graphically illustrated in Figure 1.2 below [1].

3

Figure 1.2: Computational hierarchy of advanced sensor systems

Each level of hierarchical capability requires a corresponding improvement in

computational and energy performance. While transistor scaling has provided some of the

additional computational efficiency, the energy supply for embedded sensors is staying

virtually constant since Moore’s Law does not apply to battery technology. That said,

Koomey, et al, observe that computational efficiency (measured in computations/Joule) is

improving at a similar rate to Moore’s Law [2]. This may be adequate for workloads

whose computational efficiency requirements remain constant from one generation to the

next. However as will be shown below in Section 1.5 there needs to be a huge increase in

computational efficiency in the next 20 years and relying on transistor scaling will not be

an option.

4

1.3 Reactive systems

Sensor systems are generally considered to be event-driven (reactive) systems.

The classical definition of a reactive system is “A system that changes its inherent

operations, outputs and system state in response to stimuli both from within or externally

generated” [3]. Reactive systems follow a pace dictated by the environment and they only

need to be as fast as required to handle the stimuli. Additionally, reactive systems are

concurrent, discrete valued and time varying. The concurrency of a reactive system is an

essential feature that can be implemented using a number of different models including

Dynamic Dataflow (DDF), Synchronous Dataflow (SDF), Discrete Events (DE), Petri

nets, Khan Process Networks (KPN), and the synchronous/reactive model. For this work

Synchronous Dataflow (SDF) is used to model how the processing elements process

tokens as they propagate through the network. SDF is a special case of dataflow where

the flow of control is predictable at compilation time [4].

1.4 Synchronous Dataflow network

A Synchronous Dataflow network is a collection of functional nodes, which are

connected and communicate via unbounded First-In-First-Out (FIFO) queues [5] [6].

Each node is called an “Actor” and performs computations on the data that is

communicated via the queues. Each datum is called a “Token” and in a Synchronous

Dataflow model there are a fixed number of tokens consumed each time an actor

performs a computation. The actor “Fires” when all of the tokens have been received by

the FIFO queue. When fired, the actors consume input tokens and produce output tokens.

Figure 1.3 below shows an example of a Finite-Impulse-Response (FIR) actor and an

addition (ADD) actor. The FIR actor consumes a stream of one input token and produces

5

one output token. The ADD actor consumes two input tokens and produces one output

token.

Figure 1.3: Synchronous Dataflow Actors

A key property of a dataflow model is that the output token sequences do not

depend on the firing order of the actors. Figure 1.4 shows an example of a system

composed of three actors. Actor ONE consumes five tokens and produces one token.

Actor TWO consumes three tokens and produces two tokens. Actor THREE consumes

the tokens from actors ONE and TWO and produces five output tokens.

Figure 1.4: SDF system composed of three actors

The firing order of actors ONE and TWO does not matter since actor THREE will

not fire until all of the tokens are received in its two input FIFO queues. For every actor

FIR
1 1

ADD
1 1
1

6

there is a set of rules that determine when an actor will fire. An actor with more than one

input stream can have N firing rules. This is expressed as:

ℜ

The actor can fire if and only if one or more of the firing rules is satisfied, where

each firing rule constitutes a set of patterns, one for each of the p inputs:

The pattern Ri,j is a (finite) sequence. For firing rule i to be satisfied, each pattern

Ri,j must form a prefix of the sequence of unconsumed tokens at input j. The input queues

for this platform will be designed to support a maximum of two inputs and i + x tokens

for each input, where x is the number of entries in the FIFO needed for functional node

operation.

Every input to an actor has a queue and the queues in an SDF network are

unbounded which means that they will not block tokens from entering the queue [4].

Practically speaking it is not possible to build an unbounded queue due to size and power

limitations. The system designer will need to perform a complete system simulation to

determine if the depth of the input queues will support all possible scenarios. This design

uses a bounded queue that has blocking signals to prevent queue overrun. Figure 1.5

below illustrates the direct mapping of the Actors shown above in Figure 1.4 to three

processing elements, each composed of a control block, datapath, and register file. The

processing elements are connected via channel nodes that contain the queues.

7

Figure 1.5: Mapping of actors to processing elements

The Dataflow-Processing Element (DPE) that is used in this platform is

implemented using a stack-based microarchitecture. A key feature of this micro-

architecture is the merger of the SDF input queue with a stack removing the dependency

to fetch token data from the queue and moving it to the stack. The merger of the SDF

input queue and the stack based register file is shown below in Figure 1.6. The merged

element is referred to as a Queued-Stack (QS) and is described in detail in Chapter 5.

Note that the channel node has been decomposed into an output FIFO and an input queue

so that the stack register file could be integrated into the input queue.

8

In this example the three Actors are individually mapped to single Dataflow

Processing Elements. It is possible to “compose” a system where the Actors are mapped

to different DPE configurations. This will be described in the next section.

Figure 1.6: Merged input-queue and stack based register file

1.5 System composability

Composability is a key requirement of the sensor platform design presented in this

dissertation. It provides the ability to select composable elements and assemble them into

various topologies as needed for a specific algorithm. For a component to be composable

it must be modular (self-contained) and can be deployed independently. It must also be

stateless which means that it treats each request (or firing) as an independent transaction,

unrelated to any previous request [5] [6]. The composition rules for this platform are

listed below.

9

1. All inputs to a component will have FIFO queues. Outputs can have FIFO

queues to satisfy the need of Rule #2 below.

2. All data propagates through the dataflow network via channels. Note: channel

nodes convert data streams as they pass through the network, e.g. serial-

parallel, parallel-serial, stream-FLIT, FLIT-stream, etc.

3. For Push-Mode operation, Reads to the FIFO will block, however, Writes will

not. For Pull-Mode operation the inverse is true. Note: this platform is

designed to support both Push-Mode and Pull-Mode operation.

4. The composed system will be determinate, which requires that each actor is

functional and that the set of firing rules are sequential. Functional means that

an actor firing lacks side effects and that the output tokens are purely a

function of the input tokens consumed in that firing.

5. Components can be software routines. Rule #4 states that these routines can

be moved to alternate computational engines and execute without

modification.

The implementation details of channel nodes and functional nodes as well as

Push/Pull modes are described in detail in Chapter 4. Figure 1.7 below shows an example

of a composed system where Actors One and Two are in a single DPE. Figure 1.8 below

shows a single DPE system where all three Actors are in a single DPE.

10

Figure 1.7: Composed system using two dual-input DPEs

Figure 1.8: Composed system using a single DPE

Figure 1.9 below shows a sensor system topology where the channel nodes are

configured as routers. The channel routing node routes tokens through the network in a

predefined pattern. The patterns are loaded during system initialization and are generally

static. These types of network topologies provide flexibility in building a wide range of

11

sensor platforms at the expense of increased energy requirements. The design of the

channel routing node will be described in more detail in Chapter 4.

Figure 1.9: Composed system showing channel nodes configured as routers

1.6 Research motivation and contribution

The world is becoming increasing connected via the ever-expanding Internet. The

data that populates the Internet is for the most part generated by humans. Most of the data

relates to ideas and very little to the things that make up our environment. This has led to

the notion that perhaps the Internet should comprehend “things”. This idea is called the

12

Internet of Things (IoT) and was first introduced by Kevin Ashton in 2009. With the

advent of the next generation Internet protocol (IPv6), it is now conceivable to assign a

unique address to every “thing” on the planet. In fact the IoT is precisely about doing so.

It is easy to envision where there will be between 100-200 addressable sensors per person

by 2050. These would be in the form of such things as RFID tags, home automation

sensors, territorial/security monitoring, resource monitoring, and health monitoring, etc.

This would indicate that there could be in excess of 1.5 trillion sensors connected to the

IoT. It is interesting to do an energy analysis of what 1.5 trillion sensors would require:

Assume:

– 1% duty cycle, which is ~ 315 K-Sec per year

– 25μW power per sensor

The Energy/Sensor would be:

The energy requirements per year for the 1.5 trillion sensors would be 11.8 T-Joules

Assume that 1% of the sensors are powered by single-use batteries and that

battery technology in 2050 would provide 7.0 MJ/Kg of specific energy, the result is a

massive pile of batteries that must be disposed of every year.

What is not obvious from the analysis is that 25μW of power per sensor system is

a very aggressive assumption if transistor technology is the only source of energy

improvement. Figure 1.10 below shows the estimated power usage for the wireless sensor

nodes that will be presented in the next chapter [8] [9] [10] [11] [12]. Most of the power

13

usage is in the wireless subsystem, primarily due to the high data transmission rates

(10kbps – 100kbps) and the sensor-networking overhead. The idle power is also driven

by the wireless subsystem where the nodes are listening for relevant transmission data

from other sensors and data aggregators in the network.

Figure 1.10: Subsystem power usage for various wireless sensor nodes

To save power, the duty cycle for these platforms is usually between 0.1% and

5%. Figure 1.11 shows the power usage for 1% duty cycle operation. The total power is

the weighted sum of the power usage for each of the sensor node subsystems. The

weighted sum power usage for these platforms is between 550μW and 850μW, which is

considerably larger than the 25μW that was assumed above. The wireless subsystem

consumes too much power and the optimal solution is to limit the amount of data that

14

must be transmitted and received. Additionally the idle time power must be limited by

reducing the percentage of time that the sensor node listens for commands. The

transducer/sensor(s) power will require advances in material science to substantially

reduce their power requirements. The processor power and the sleep power are addressed

by the processing element described in this dissertation and will come from aggressive

optimization of computational efficiency at the system level.

Figure 1.11: Weighted-Sum power usage for various wireless sensor nodes

From a system-level design perspective optimal computational efficiency is

achieved by “impedance matching” the four domains that comprise a sensor platform

design. The four domains include the algorithmic domain, the software program domain,

15

the hardware architecture and micro-architecture, and lastly the silicon technology. This

is described by the following pseudo-equation:

(1.5)

where: #inst = number of executed instructions

TP = Trace parallelism

PP = Processor parallelism

LL = Levels of Logic

ns = nanoseconds or 1/frequency

The number of instructions per task is the mapping of the application/algorithmic

domain by the software compiler into single or multiple software threads. Ideally the

number of software threads is matched to the number of processing elements or hardware

threads. The processing element(s) would then be designed to provide the optimal

energy-performance in order to accomplish the task as determined by levels of logic

needed per clock cycle. It can be seen that solving the equation “as is” results in a value

of one Joules-ns/Task, which indicates an ideal impedance match between all

components of the equation.

For very high volume applications excellent computational efficiency can be

accomplished using an Application Specific Processor (ASP) or an Application Specific

Integrated Circuit (ASIC). For low volume applications however, commercial-off-the-

shelf (COTS) microprocessors or microcontroller are generally used. These COTS

computing elements provide excellent programmability and debug capabilities at the

expense of non-optimal energy/computation efficiency. The computational element

designed for this platform is considered to be an ASP and is targeted for low-energy

16

embedded sensor applications specifically those that can be implemented using an event-

driven computational model.

The research presented in this dissertation is primarily focused on two areas: 1)

the implementation of a computationally efficient processing element that 2) addresses

the micro-architectural requirements needed to support an event-driven Cognitive Sensor

Platform (CSP). This research has resulted in a computationally efficient processing

element that can handle the workloads of deeply embedded sensor platforms that require

some level of cognitive capabilities. All domains described above in Equation 1.5 were

optimized in the implementation of the processing element. These include the following.

1. Algorithmic level: algorithms are modeled in Matlab and verified in

Simulink/SimEvents, which can simultaneously model continuous time and

discrete time systems. This level of modeling provides the best opportunity to

optimize system behavior and energy usage. System parameters such as data

precision, token throughput and redundancy can be tuned for a specific sensor

application.

2. Application software and operating system level: the discrete time

components are instantiated using a library of actors which can be

implemented either as hard coded logic blocks or as is the case in this

implementation using microcoded routines. The requirements for an operating

system and corresponding middleware are removed using this mechanism of

specifying operations.

3. Hardware architecture level: optimal mapping of the software domain to the

hardware domain is accomplished by implementing a machine that directly

executes actors and follows a Synchronous Dataflow (SDF) protocol. The

parallelism specified in the SW domain can be precisely matched in the HW

domain using low overhead system composability. The HW implementation is

17

novel in that it is not a Von-Neumann or Harvard style machine. The merger

of the SDF input FIFO’s and the stack-based register file (Figure 1.5 above)

provides an extremely energy efficient mechanism of managing and

consuming tokens. The same structure is used to manage and fetch actors

while allowing asynchronous events to be queued, executed and deprecated.

4. Hardware microarchitecture level: the ratio of control logic to datapath logic

is optimized for maximum power efficiency. Features such as nested looping,

microinstruction repeat functionality and conditional execution are

implemented with less than a 4% increase in area of the control logic block.

One-hot encoding is used throughout the design including the Queued-Stack

element, eliminating glitching power caused by decoding logic. Aggressive

use of clock gating is possible due the event driven system architecture.

5. Transistor implementation: the levels of logic required to implement the HW

microarchitecture is matched to algorithmic performance requirements

specified at the system level design.

It should be noted that the actual design and implementation of a cognitive sensor

platform is not part of this dissertation. During the research into existing sensor platform

implementations it became obvious that the classical stored program mechanism (Von-

Neumann) was not optimal for deeply embedded low-energy sensors. This drove the

subsequent research and development of the computationally efficient processing element

presented in this dissertation.

1.7 Dissertation flow

This dissertation focuses on the implementation of a Dataflow-Processing

Element (DPE) for a Cognitive Sensor Platform (CSP). This platform is used in

embedded applications that are extremely energy sensitive and require a high level of

18

autonomy. Chapter 2 will survey some key sensor platforms and operating systems that

have been developed over the last 15 years. In Chapter 3 the key requirements of the CSP

are presented and the system architecture of the CSP is presented in Chapter 4. The

microarchitecture of the DPE is described in detail in Chapter 5 and the DPE

microprogramming environment will be discussed in Chapter 6. Chapter 7 presents a

high-level modeling environment for the CSP using Matlab/Simulink and SimEvents.

Chapter 8 presents a performance analysis of the DPE for the FIR and IIR algorithms and

the corresponding energy analysis for the two workloads. Future work and conclusions

will be presented in Chapters 9. In Appendix C the results of synthesizing, placing,

routing and extraction are presented for a 180nm implementation. An identical

implementation of the DPE integrated circuit design was prototyped in an FPGA and the

prototyping results are presented in Appendix D.

19

Chapter 2. Survey of Sensor Platform Architectures

2.1 Commercial microprocessors for sensor platforms

There are a number of low power sensor platform architectures that have been

developed over the last fifteen years. The very early platforms used commercial-off-the-

shelf (COTS) microcontrollers from Motorola and Intel, specifically the 8-bit families

such as the 68HC05, 68HC08, and 8051. The more recent platforms used either custom

microprocessors or COTS microprocessors from Atmel, Microchip, Texas Instruments

and ARM. Table 2.1 below shows a comparison of the various COTS microcontrollers

used in the sensor platforms described in this chapter.

Table 2.1: COTS Microcontrollers used in sensor platforms

Manufacturer Device
SRAM

(KB)
FLASH

(KB)
Active
(mA)

Standby
(µA)

Release
Date

Atmel

AT90LS8535

ATMega 128

ATMega 165/325/645

AT91 (ARM-THUMB)

0.5

4

4

256

8

128

64

1024

5

8

2.5

38

15

20

2

160

1998

2001

2004

2004

Motorola

HC05

HC08

HCS08

0.5

2

4

32

32

60

6.6

8

6.5

90

100

1

1988

1993

2003

Intel

8051 (8-bit)

8051 (16-bit)

XSCALE PXA27

0.5

1

256

32

16

-

30

45

39

5

10

574

1995

1996

2004

Phillips 80C51 (16-bit) 2 60 15 3 2000

Microchip PIC 4 128 2.2 1 2002

Texas

Instruments

MSP430F14

MSP430F16

MSP430F26

2

10

64-128

60

48

128-256

1.5

2

.25

1

1

.1

2000

2004

2010

20

The sensor platforms that were built using these COTS processors have additional

components such as wireless/infrared transmitters and a wide variety of sensors

including: acoustic, seismic, magnetometers, temperature, pressure, light, accelerometers,

ultra-sound and location sensing (GPS). Table 2.2 below is a partial list of sensor

platforms developed by various university research programs since 1998 [8] [9] [10] [11]

[12]. The key aspects of each of these platforms are discussed below. Some of these

programs have been completed and are now part of commercialization efforts.

Table 2.2: Survey of first generation sensor platform configurations

Node Years
Active CPU Memory I/O &

Sensors
Research

Group

iBadge

2000

to

2007

ATMEGA-103L

TI TMS320VC5416

Temperature,
pressure,
humidity,
magnetometer,
accelerometer,
acoustic

UCLA

Medusa
MK-II

1999

to

2005

ATMEGA-128L

AT91FR4081-ARM
THUMB

1MB Flash,
136KB RAM

Ultrasound
transceivers to
perform high
accuracy distance
measurements

UCLA

Smart
Dust/Motes

1999

to

2008

ATMEGA-128L
4K RAM

128K Flash
See Table 2.3

UC Berkeley &
Crossbow

PicoNode
1998

to

2004

STRONG-ARM 1100
4Mb DRAM,
4mB FLASH

Temperature,
humidity, light,
sound,
acceleration,
magnetic fields
and provisions
for GPS.

UC Berkeley
Wireless Research
Center

µAMPS
1999

to

2004

STRONG-ARM 1100
16Mb RAM,
512KB ROM

Seismic and
acoustic

MIT

21

2.1.1 UCLA iBadge

The iBadge sensor platform was designed for the NSF supported Smart

Kindergarten project [8]. The sensor platform was designed to be worn by children to help

create a smart problem-solving environment for early childhood education. It was equipped

with a microphone and loudspeaker and was capable of capturing and playing back speech

and possessed enough capacity to handle complex speech processing algorithms. Figure 2.1

below shows the platform block diagram. There are two processing elements, one for general

purpose control processing (Atmel ATMEGA-103L) and one for speech processing (Texas

Instruments TMS320VC5416). The platform has a large number of sensors including:

acoustic in/out, temperature, pressure, humidity, magnetometer, accelerometer,

ultrasound localization, magnetometer and accelerometer. It contains a Bluetooth radio

for transmission of sensor data to a central processing system for analysis.

Figure 2.1: Block diagram of iBadge sensor platform

POWER
SUPPLY

BLUETOOTH
WIRELESS

UNIT

LOCATION UNIT:
ULTRA-SOUND TRANSCEIVER

RFM TR-1000

MICROCONTROLLER
AVR ATMEGA 103L

DSP
TMS320

ENVIRONMENTAL
SENSING

UNIT:
HUMIDITY
PRESSURE

LIGHT
TEMP

BATTERY
POWER MGMT.

ORIENTATION AND TILT SENSING
MAGNETIC FIELD SENSORS

ACCELEROMETER

CODEC

22

2.1.2 UCLA: Medusa MK-2

The Medusa-2 platform was designed to support research into different sensing

technologies and was employed as a ceiling mounted beacon node for the Smart

Kindergarten program [9]. The platform was also used for the development of network

protocols for low energy embedded sensing environments. Figure 2.2 below shows a

block diagram of the MK-2 platform [9]. There are two processing elements. The first

one is an Atmel 8-bit 4MHz ATMega128L microcontroller with 32KB of FLASH

memory and 4KB of RAM that is used as an interface to the sensors and for radio

baseband processing. The second processing element is a 16/32-bit AT91FR4081 ARM

THUMB processor also from Atmel and has 136KB of RAM and 1MB of on-chip

FLASH memory. The sensing subsystem contains a MEMs accelerometer (ADXL202E

from Analog Devices) and a temperature sensor. The platform has a generous amount of

I/O channels including: eight 10-bit ADC inputs, serial ports (I
2
C, RS-232, RS-485, SPI)

and standard general-purpose ports.

Figure 2.2: Block diagram of the Medusa MK-II platform

MEGA128L

ADC
ULTRASOUND
ACCESSORY

BOARD

RFM

PMTU

AT91FR4081
ARM

UART/
JTAG

ACCELEROMETER

LIGHT & TEMP

PUSH BUTTONS

UART/
JTAG

PUSH BUTTONS

RS-485

GPIO/I2C

23

2.1.3 UC Berkeley Smart Dust Motes

The first platform of UC Berkeley Smart Dust Motes program was introduced in

1998 with the WeC platform. The Smart Dust program goal was to make a cubic

millimeter autonomous sensing device [10]. Early platforms were built with COTS

components and referred to as COTS Dust. Table 2.3 below shows the family of Mote

platforms [10].

Table 2.3: Family of Berkeley Motes

Mote Type

Years Active

WeC

1998 -
2001

René

1999 -
2002/

René2

2000 -
2004

Dot

2000 -
2004

Mica

2001 -
2005

M2Dot

2002 -
2005

Mica 2

2002 -
2006

Telos

2004 -
2010

 Microcontroller

Part Number AT90LS8535 ATmega163 ATmega128 MSP430

Program Memory (KB) 8 16 128 48

RAM (KB) 0.5 1 4 10

Active Power (mW) 15 15 8 33 3

Sleep Power (µW)

Wakeup Time (µS)

45

1000

45

36

75

180

75

180

15

6

 Communications

Radio part number TR1000 TR1000 CC1000 CC2420

Data Rate (kbps) 10 40 38.4 250

Modulation Type OOK ASK FSK O-QPSK

Receive Power (mW) 9 12 29 38

Transmit Power at 0dBm (mW) 36 36 42 35

 Power Consumption

Minimum Operation (Volts)

Total Active Power (mW)

2.7

24

2.7

24

2.7

24

2.7

24

2.7

27

2.7

44

2.7

89

1.8

41

 Expansion and Sensor Interface

Expansion bus None 51-pin 51-pin None 51-pin 19-pin 51.pin 16-pin

Integrated Sensors No No No Yes No No No Yes

24

Figure 2.3 below shows the basic microarchitecture of a Smart Dust Mote. The

timers that are driven by the real time clock (RTC) generate events that are registered by

the operating system and tasks are queued to handle them.

Figure 2.3: Block diagram of a basic Smart Dust Mote System

The WeC platform was built with an 8-bit Atmel AVR-AT90LS8535

microprocessor with about 4 MIPS (million instructions per second) of throughput

capability. The platform was used for early testing of wireless communications utilizing

an integrated printed circuit board (PCB) antenna. The communications capability and

reprogrammable memory provided the ability to update the platform software remotely.

The board was approximately the size of a silver dollar and contained temperature and

light sensors that were connected via a 51-pin connector.

The René platforms were produced by Crossbow Technologies and were similar

in design to the WeC platform. The modular sensor board had temperature and light

CONTROLLER OSCILLATOR

RADIO

TIMER
COMPARE
REGISTER

TIMER
COMPARE
REGISTER

TIMER
COMPARE
REGISTER

SENSOR

DATAPATH

REAL
TIME

CLOCK
OSCILLATOR

25

sensors and built using stackable boards connected via a 51-pin connector; providing the

capability to design application specific sensor boards. The René-2 platform replaced the

AT90LS8535 processor with an ATmega128L

The Dot platform was similar to the René platform but removed the 51-pin

connector limiting its sensing capability to temperature and light. It was a proof of

concept design to demonstrate wireless re-programmability, ad hoc network discovery,

routing, and aggregation.

The MICA mote platform was developed in collaboration with Intel Research. It

includes an 8-bit Atmel ATMEGA-128L microcontroller, 132K of memory and 512K of

nonvolatile FLASH memory. The platform had a 40 Kbps radio operating at 433 MHz or

916 MHz with software programmable frequency hopping for better noise immunity and

increased range.

The Telos platform [7] was the first platform to be designed using the TI MSP430

microcontroller. At that time the MSP430 had the lowest power consumption in both

sleep and active modes and operated down to 1.8V. This allowed the designers to use two

batteries in series and operate down to the 0.9V cut-off voltage for each battery. The

MSP430 had the fastest wakeup time from standby to active mode in less than 6µs. The

wireless interface used the IEEE 802.15.4 wireless standard operating at 2.4GHz. The

antenna was built into the PCB and was tuned to match the radio interface. TinyOS was

redesigned for the platform using a three-tier architecture that was independent of the

processor or wireless radio used.

26

2.1.4 UC Berkeley PicoNodes

The PicoNode was designed to provide maximum system flexibility and low

energy consumption [11]. It consisted of four main functional modules: computing,

sensing, communications and power as shown below in Figure 2.4.

Figure 2.4: Block diagram of the PicoNode platform

The first module contains two computational units including a StrongARM SA-

1100 processor with 4MB RAM and 3MB FLASH and a configurable logic unit using a

Xilinx XC4020XLA FPGA. The SA-1100 is used for both general purpose computing

and for DSP functions. It provides a CPU core and a variety of integrated controllers for

services such as standard I/O control and timers. The FPGA is used to emulate tasks that

are assigned to configurable or custom logic on the PicoNode. The communication

module includes a configurable digital physical layer and a simple direct-down

conversion RF front end. The sensor module is customized for each application. These

modules are interconnected by a low-energy interconnect scheme. The driving force

behind the design of the PicoNode platform was to provide a balance between flexibility

(FPGA) and programmability (ARM processor). The designers provided a development

infrastructure to support the mapping of algorithms and tasks to the ARM processor, the

SA-1100

R
E

C
O

N
FI

G
U

R
A

B
LE

D

AT
A

PA
TH

D
IG

IT
A

L
S

IG
N

A
L

P
R

O
C

E
S

S
O

R

RECONFIGURABLE
CONTROL

RF
FILTER,

LNA
AND

MIXER

FLASH
&

SRAM

ADC

ADC

27

FPGA or both. A kernel was developed that provided access to the various resources in

the SA-1100 as well as a port abstraction to the FPGA.

2.1.5 MIT’s μAMPs Platform

The MIT µAMPS platform utilized the StrongARM SA-1100 processor coupled

to a seismic sensor and an acoustic sensor as shown below in Figure 2.5 [12].

Figure 2.5: Block diagram of the COTS version of the MIT µAMPS platform

Energy efficiency was the primary goal of this platform design. A number of

lower power design techniques were used to save energy including: sub-threshold

circuits, dynamic voltage and frequency scaling, energy harvesting and adaptive routing

of cluster sensor data. The team developed two custom ICs for the platform: 1) an ASIC

for the RF module that included an ultra-low power FFT and 2) a low-power A/D

converter for the sensor module. The platform was used for acoustic acquisition

ADC

ACOUSTIC
SENSOR

SEISMIC
SENSOR

SA-1100
ARM

PROCESSOR

FLASH SRAM

DC-DC
CONVERSION BATTERY

RADIO

28

applications. Acoustic data was filtered and fused using a beam-forming algorithm to

reduce the amount of data that needed to be transmitted to the central collection node.

A variation of the uAMPS was proposed which coupled a DSP with specialized

hardware accelerators as shown below in Figure 2.6 [12]. The hardware accelerators

provided optimal energy-performance-mm
2
 for the application domain that the platform

was designed for.

Figure 2.6: Custom implementation of the MIT µAMPS platform

2.2 Custom Microprocessors for Sensor Platforms

A number of custom microprocessor architectures have been developed for use in

sensor platforms as shown below in Table 2.4 below [14] [15] [16]. The Pleiades and

Subliminal processor development efforts are no longer active, but the SNAP processor

from Cornell is still being used for low-power sensor platform designs.

ADC Radio

DATA MEMORY

DMA
ENGINE

DSP

C
O

D
IN

G

FI
R

 F
IL

TE
R

S

FF
T

E
N

C
R

Y
P

TI
O

N

S
E

N
S

O
R

 I/
F

R
A

D
IO

 I/
F

INSTRUCTION MEMORY

29

Table 2.4: Custom processors for sensor platforms (2004-2011)

Processor
Arch
Style

Data
Path

Width

Event
Driven

Circuit
Family

Memory
(KB)

Process
(nm)

Voltage MIPS
Energy

(pJ/Inst)

Pleiades DSP 16 N STD 0.512 600 1.5 14 205

SNAP
RISC+

Accel
16 Y ASYNC 8 180

1.8

0.6

200

23

218

24

BitSNAP
RISC

Bit

Serial

16 Y ASYNC 8 180
1.8

0.6

54

6

152

17

Subliminal GP 8 Y
Sub-

Threshold
0.256 130 ~0.360 0.8 2.6

SmartDust RISC 8 N STD 3.125 250 1.0 .5 12

These custom processors were designed to improve computational efficiency by

utilizing advance circuit techniques such as asynchronous logic and sub-threshold logic,

the use of hardware acceleration for specialized tasks, and reconfigurable control/data

logic for algorithmic flexibility. The Pleiades, SNAP and Subliminal processor will be

discussed in more detail below.

2.2.1 Pleiades Platform

The Pleiades platform from UC Berkeley was designed for voice processing in

wireless applications. Figure 2.7 below shows the high-level block diagram of the

platform [14]. The processing unit combines an ARM core with 21 satellite processors:

two MACs, two ALUs, eight address generators, eight embedded memories, and an

embedded low-energy programmable array.

30

Figure 2.7: Block diagram of the Pleiades Platform

The ARM processor configures the memory-mapped satellites via a hierarchical

interconnect block that contains three levels of interconnect hierarchy that superimposed

nearest neighbor, mesh and tree architectures for optimal energy usage. The dual-stage

pipelined MAC (Multiply-Accumulate including shift, round and saturate functions) and

the ALU (Arithmetic Logic Unit) can be configured to handle a wide range of operations.

Synchronization between the satellite processors is accomplished by a data-driven

communication protocol in accordance with the dataflow nature of the computations

performed in the kernel. An interface wrapper is placed around each of the satellite

processors to comply with the inter-processor communication protocol. The address

generators and embedded memories are distributed to supply multiple parallel data

streams to the computational elements. The address generator has a small local

instruction memory that can be programmed to support various types of addressing

patterns and nested loops using loop counters and stride counters (similar to the

BlackFin® DSP from Analog Devices). The programmable logic block is optimized for

arithmetic and data-flow control functions.

FLASH

ARM
PROCESSOR

SRAM

GPIO

ADDR
GEN
(2)

SRAM
(2)

MAC
ALU

SHIFTER

SRAM
(2)

ADDR
GEN
(2)

ADDR
GEN
(2)

SRAM
(2)

MAC
ALU

SHIFTER
SRAM

(2)

ADDR
GEN
(2)

31

2.2.2 SNAP

The SNAP (Sensor Network Asynchronous Processor) from Cornell University is

based on an asynchronous data-driven 16-bit RISC core [15] as shown below in Figure

2.8. The processor instruction set is optimized for sensor-network applications, with

support for event scheduling, pseudo-random number generation, bit-field operations, and

radio/sensor interfaces. In addition, the platform has a hardware event queue and event

coprocessors, which allow the processor to avoid OS overhead such as task schedulers

and external interrupt servicing.

Figure 2.8: Block diagram of the SNAP

The designers of the SNAP processor were concerned with the following system

requirements: low-power sleep mode, low overhead wakeup mechanism, low power

consumption while awake and a simple programming model. The use of quasi-delay-

insensitive (QDI) asynchronous circuits in SNAP resulted in automatic, fine-grained

power management, because the circuits that are not required to perform a particular

operation do not have any switching activity. Using QDI circuits also eliminates glitches

or switching hazards in the processor, removing a key source of energy usage. By default

32

asynchronous circuits have minimal clocking requirements, which facilitates low-power

clock-gated operation. The SNAP processor does not perform continuous program

execution, but instead responds to events from the message/timer coprocessor. The event

queue coprocessor generates tokens to designate which event handler the processor will

execute; resulting in a very rapid wakeup mechanism and very rapid response to system

events. The processor executes the sequence of instructions until a done instruction is

executed. If the event queue is empty, the processor stalls (in a low power sleep mode)

waiting for a new event. The timer coprocessor consists of three self-decrementing timer

registers that post a timer event token when the registers reach zero. The message

coprocessor serves as the interface between the processor and the sensors or the radio.

Each time a byte arrives in the radio, the message coprocessor posts an event to the event

queue. The event triggers the processor to execute the appropriate communication

instructions to read or write the data byte from the radio unit. The same is true when

sensor data arrives. A bit-serial implementation of the SNAP processor was designed to

investigate the power savings that can be obtained from minimizing energy needed to

switch the wide busses. As can be seen from Table 2.4, the gains are not as much as

would be expected. Note that the performance degraded by 75% while the

energy/instruction only decreased by 30%.

2.2.3 Subliminal processor

The subliminal processor was designed to run in sub-threshold mode at a supply

voltage of 0.36V. It was one of the first processors designed specifically for wireless

sensor systems [16]. Figure 2.9 below shows a block diagram of the processor. It is a

simple 3-stage pipeline with an 8-bit data path and 12-bit instruction width. The designers

optimized the microarchitecture and instruction set for the specific workloads they would

33

be running. These workloads included an ad-hoc router control algorithm, run length

encoded compressor, encryption algorithm, CRC check, FIR filter, binary search and

maximum value search.

Figure 2.9: Microarchitecture block diagram of the Subliminal Processor

The designers investigated a number of variable-width and fixed-width instruction

sets and decided to use a two-operand RISC-like Instruction Set Architecture (ISA) that

supported merged micro-operations. In addition, application specific instructions like

event scheduling, timer control and pointer manipulation were added to the ISA. Due to

energy limitations a simplified Branch-Taken mechanism was implemented. A limited

out-of-order execution feature was implemented, which monitored one instruction ahead

in the instruction prefetch buffer to determine if it could be fed into the pipeline before

the dependent ALU operation.

34

Three key lessons came out of the implementation of the Subliminal Processor

with respect to energy optimization in the subthreshold design domain [16]:

1. Area must be minimized, as it is a critical energy factor due to the increased

leakage energy at subthreshold voltages.

2. Transistor utilization must be maximized because effective transistor

computation offsets static leakage power, which permits a lower operating

voltage and lower overall energy consumption for the design.

3. The clocks per instruction (CPI) must be minimized at the same time;

otherwise, gains through small area and high transistor utility are squandered

on inefficient computation.

The first key lesson is generally applicable to all energy sensitive designs.

Leakage is a strong function of the average width of all devices in the design, which

ultimately drives die area. Increasing die area results in added wire capacitance while

increasing dynamic power.

The second lesson is related to the first; switching transistors are more effective

than leaking transistors. Optimize the use of transistors by eliminating marginally used

logic blocks. The ratio of datapath logic to control logic should also be maximized.

The last lesson is key to all chip design; a one percent increase in area should

ideally result in a one percent increase in performance. This is described in more detail in

Section 8.8.

35

2.3 Software systems for sensor platforms

Computational efficiency is a function of the application software and the

operating system (OS) as described in equation (1). The early platforms used cyclic

executives and commercial real time operating systems (RTOS) to control platform

operations. These were not well suited to the low energy requirements and limited

resources of sensor platforms. To address this obvious mismatch, the researchers at UC

Berkeley developed the TinyOS operating system [20] [21], which has become the OS of

choice for most COTS based sensor platforms. The researchers at UCLA developed SOS

(Sensor Operating System) [18] to fix some shortfalls of TinyOS, specifically the

inability to dynamically reconfigure a sensor node once it was deployed. In parallel, the

scientists at the Swedish Institute of Computer Science developed Contiki to address the

need to dynamically load and unload individual programs and services [19]. Nano-RK

was developed at CMU to provide a full preemptive RTOS for multi-hop wireless

networks [17].

The key elements of these operating systems include some or all of the following:

• Time management system

o Measurement resolution

o Event timer resolution

o Synchronization in distributed systems

• Networking and Communications

o Safe data sharing

o Hazard prevention and deadlock avoidance

o Bounded channel access and message transmission delays

o Networking stack support

36

• Task scheduling

o Static or dynamic

o Deterministic

o Preemptive or non-preemptive using round robin or priority policies.

2.3.1 TinyOS

The Tiny Micro-threading Operating System (TinyOS) was developed at UC

Berkeley for the Smart Dust Motes described above [20] [21]. The designers of the

operating system were trying to address the needs of a networked sensor system, which

included small physical size, lower power consumption, diversity in design and usage,

limited computational capability and concurrent intensive operations. The TinyOS

concurrency model does not support blocking or spin loops, which is ideal for reactive

processing and interfacing with hardware. It also does not define a system/user boundary

or a set of system services that need to be part of each compilation. Instead, it provides a

framework for defining such boundaries and allows applications to select services needed

for a particular user application. Additionally, there is a large set of common services

available including timers, data acquisition, power management, and networking.

TinyOS applications are written in nesC, which is a variant of C. The basic units

of nesC are components that connect via standard interfaces called ‘wires’ and use

configuration tables to specify the connectivity. Modules are components that have

variables and executable code. Figure 2.11 below shows basic configuration of a

component. A component has four interrelated parts: a set of command handlers, a set of

event handlers, an encapsulated fixed-size frame, and a bundle of simple tasks.

37

Figure 2.11: TinyOS component configuration.

Commands are non-blocking requests made to lower level components. A

command must provide feedback to its caller by returning a status indicating whether it

was successful or not. Event handlers are invoked to deal with hardware events, either

directly or indirectly. The low level components have handlers directly connected to the

hardware interrupts, which may be external interrupts, timer events, or counter events.

Tasks perform the primary work in TinyOS and are atomic with respect to other

tasks. The tasks run to completion but can be preempted by events. Tasks can call lower

level commands, signal higher-level events and schedule other tasks within a component.

The run-to-completion semantics of tasks make it possible to allocate a single stack that

is assigned to the currently executing task.

The task scheduler is a simple FIFO scheduler, utilizing a bounded size

scheduling data structure. Depending on the requirements of the application, a more

sophisticated priority-based or deadline-based structure can be used.

38

2.3.2 SOS – Sensor Operating System

The Sensor Operating System (SOS) was developed at UCLA in the Network and

Embedded Systems Lab (NESL) for use with Atmel based COTS microprocessors [18].

The OS was designed to provide re-configurability of sensor nodes after the network had

been deployed. Key to this was the ability to incrementally add, remove or update

software components while the sensor is functioning. A secondary goal was to provide a

set of application programming interface (API) primitives that aided in the development

of wireless sensor networks. The list of features in SOS include:

• Ability to reconfigure individual components of a deployed system, enabling

heterogeneous system deployments.

• Easy program development:

o Programs written using standard C code and compilers.

o Kernel support for common services such as dynamic memory allocation,

simple garbage collection, and priority scheduling.

• Truly modular system development. The modules that are used to create an

application remain modular when deployed in the network.

• Debugging support via standard C code debuggers such as GDB.

As with many university developed sensor platforms, SOS is no longer being

supported. The designers suggest using Contiki or TinyOS, which have been successfully

moved into the public domain and have a large user base of sensor system developers.

2.3.3 Contiki

The Contiki operating system was developed at the Swedish Institute of Computer

Science [19]. It is a portable multitasking operating system designed for memory

39

constrained networked sensor systems. Typical system configurations require a few

hundred bytes of SRAM and a few kilobytes of code space. Contiki supports a per-

process preemptive multi-threading, inter-process communication mechanism using

message passing through events. It also supports IP communication for both IPv4 and

IPv6. The IPv6 stack combined with a special purpose MAC (Media Access Controller)

provides the ability for battery-operated devices to use IPv6 networking. Contiki supports

header compression, IETF RPL IPv6 routing, and the IETF CoAP application layer

protocol, among many other protocols and mechanisms.

The kernel uses a lightweight event based scheduler to dispatch events to active

processes. All processes are triggered by events or in some instances by polling which

implies that the kernel does not preempt the event handler once it has been scheduled.

That said the event handlers could use built-in functions to provide preemption

capability. The kernel handles both asynchronous and synchronous events. Contiki

supports dynamic linking of services at run-time. Services appear as a shared library to

the programmer. Typical examples of services include sensor device drivers, protocol

stacks and high-level functions such as filter or data fusing algorithms.

2.3.4 Nano-RK

Nano-RK was developed at CMU to provide a fully preemptive RTOS [17]. The

design goals for Nano-RK included:

• Small footprint

• Support for multitasking

• Networking stack support

• Support for priority based preemption

40

• Low-energy operation utilizing resource usage limits

Nano-RK has support for multi-hop networks, which is required for some wireless

sensor networks. It currently runs on the Fire-Fly Sensor Networking Platform and on

Mica-Z Motes. The lightweight kernel requires approximately 2KB of SRAM and 18KB

of FLASH/ROM and provides excellent functionality and timing support. The kernel

supports fixed priority preemptive multitasking to ensure task deadlines are met and

supports a reservation mechanism for access to sensors, actuators, network and CPU

resources. The tasks specify resource demands and the kernel provides timely, guaranteed

and controlled access. Figure 2.10 below shows the architecture of the Nano-RK OS [17].

Figure 2.10: Architecture of the Nano-RK operating system

2.3.5 Sensor OS middleware

The primary purpose of OS middleware is to support development, maintenance,

deployment, and execution of applications or services. In some cases support for re-

programmability and repair-ability is provided by the middleware. There are numerous

41

implementations of middleware for sensor networks. Many are simply application

programming interfaces (API) on top of the sensor OS while others are implemented as

virtual machines with a set of domain specific interpreted instructions or support for

generic scripting languages. Typical application or services supported by middleware for

sensor systems include [22]:

• Abstraction support for multiple platforms, computational elements,

communication element, algorithmic accelerators.

• Resource management of computational energy, memory usage, battery

power.

• Dynamic reconfiguration of program operation, network configurations,

sensor re-calibration, and node/sensor repair.

• Data fusion and filtering of sensor data. Generation of metadata from fused

data.

• Domain specific support.

• Programming environment.

• Adaptive processing.

• Scalability — static or dynamic.

• Security.

• Quality and robustness of response time, availability, bandwidth allocation,

etc.

A number of middleware packages have been developed for TinyOS including

Maté [23], Tiny Lime [24], Tiny Cubus [25], Agilla [26] and TinyDB [27]. Maté is a

virtual machine that is implemented on top of TinyOS and is designed to abstract the

asynchronous behavior and race conditions of the operating system. It uses a stack-based

42

architecture and supports multiple contexts. Tiny Lime provides data aggregation and

data/feature extraction of collected sensor data. Tiny Cubus provides a cross-layer

framework, a configuration engine and small data management framework. Agilla is a

mobile agent that allows agents to move from one sensor node to another. It uses a stack-

based architecture similar to Maté to reduce code size. TinyDB is a database that is used

for collecting data from sensor nodes for message aggregation using a built-in query

manager. TinyDDS provides a pluggable framework that allows Wireless Sensor Node

(WSN) applications to have fine-grained control over application-level and middleware-

level non-functional properties. Figure 2.12 illustrates where middleware fits into the OSI

layer model paradigm.

Figure 2.12: Wireless Sensor Middleware vs. OSI Model

43

2.4 Summary

The sensor platform research described above has spawned the next generation of

platforms that are just now appearing in research journals. Many of these new platforms

are focused on biological sensing and analysis including electronic noses, electronic

tongues, genomics and proteomics. The hyper-integration of mechanical and electronic

sensing elements into bulk CMOS processes is producing low-energy, low-cost Labs-on-

Chip (LoC). However these systems continue to use classic stored program (Von-

Neumann) class of microcontrollers. The platform described in this dissertation is

designed to support these new biological sensor platforms as well as low energy

embedded sensor platforms using a novel event driven microarchitecture. The concept of

an operating system and supporting middleware is not applicable to this platform.

Programming is accomplished by instantiating Actors that consume and produce tokens.

The microarchitecture is custom designed to directly execute this new “Software”

paradigm. Additionally this platform is intended to support the system requirements of a

sensor platform that has basic cognitive capabilities. These requirements are described in

the next chapter.

44

Chapter 3. Cognitive Sensor Platform (CSP) Requirements

3.1 Overview

This platform is designed be used in low energy embedded sensor applications

including medical implants, structural implants and remote sensing. The key figure of

merit (FOM) for this class of embedded sensors is energy-performance/volume where

battery volume is the limiting factor as it determines the number of joules available for

system operation. The addition of cognitive capabilities is necessary for these types of

unattended applications as it is generally not feasible to routinely replace the battery or

sensor(s) in these applications. Cognition in the context of a sensor platform is defined as

the “process of knowing, including aspects of awareness, perception, reasoning, and

judgment” [1]. Figure 3.1 shows conceptually how the process of knowing applies to

fault detection and repair in an embedded sensor system that has basic cognitive

capabilities.

Figure 3.1: Example of fault detection/repair in a cognitive sensor system

This process of knowing drives the following baseline functional requirements of

the CSP. These include the ability to:

• Perform self-diagnostics and self-calibration

• Reason about the state of the system and perform needed services to maintain

optimal system performance

Awareness Perception Cognition

45

• Detect and repair corrupted data

• Compensate for systematic errors, system drift and random errors produced by

system parametric changes such as sensor aging, battery aging, etc.

• Anticipate potential systematic changes and modify operational behavior

• Transmit/receive information to/from other devices via a standard network

protocol

The functional requirements described above drive a number of key architectural

features that are described in the following sections. These include the following

capabilities:

• Self-diagnosis and self-calibration

• Time Stamping

• Adaptive capabilities including:

o Configurable data lookup capability

o Reconfigurable and event-driven programming capability

o Dynamic sampling and frequency scaling

o Dynamic data precision

• Fuzzy Logic capability

• Data fusion capability

• Communications capability

3.2 Self-diagnostics and self-calibration

The CSP provides a computational (digital) diagnostic mode that utilizes auxiliary

channels to confirm that the primary channels are performing as expected [28]. Injecting

calibration tokens into the SDF network and analyzing the response to confirm

46

computational accuracy accomplishes the diagnostic. The source of the calibration tokens

is generally the Debug Unit; however, the Channel Nodes may be designed to inject

tokens in response to a control signal from the Debug Unit or scan test unit. A wide range

of diagnostics is accomplished using digital tokens including discrete value validation

and the temporal response of the SDF network.

In addition to the digital diagnostics, the Debug Unit can inject analog values into

the sensor readout circuitry. The values are generally limited to those that are easily

implemented using voltage references that are insensitive to aging, power supply

variations and temperature changes. In most cases these will be built using some form of

a band-gap reference circuit. If the system has an analog actuator such as a Digital-to-

Analog Converter (DAC) then the Debug Unit can inject a wide range of analog values

into the SDF network.

Calibration of the sensor readout circuitry is accomplished using a programmable

content-addressable lookup table (CLT) in the sensor data-conditioning element. The

CLT is initialized at reset with the stored calibration data. During system operation, the

CLT values can be updated to adapt to environmental changes in the sensor transducer. If

the baseline calibration data is located in some form of reprogrammable memory such as

FLASH memory, then the updated lookup values can be transferred from the CLT to the

memory so that subsequent reset operations load new calibration data into the CLT.

3.3 Time stamping

Time stamping capability is required to synchronize tokens as they propagate

through the network. It used by a number different algorithms including token fusion,

token quality analysis and repair. The time stamp reference can be generated internally or

provided from an external source. In most deeply embedded applications it will be

47

generated internally which requires that system level synchronization be done externally

[45] [46] [47].

A time stamp is a unique value that is tagged to the token data produced by A/D

converter and is propagated as sideband tokens. It can also be used externally if it is

transmitted along with the data tokens. The time stamping algorithm is described below

in Section 4.3.2.1.

3.4 Adaptive capabilities

The CSP detects environmental changes by tracking factors such as rate of change

of sensor data, computational data errors, battery voltage, temperature, etc. The CSP can

adapt to these changes using pre-defined rules. There are four adaptive capabilities that

are required for this platform. These include having a dynamically configurable lookup

table, reconfigurable and event-driven programming capability, dynamic sampling,

dynamic voltage/frequency scaling and dynamic data precision. Many of these adaptation

techniques utilize Fuzzy Logic decision-making [29], which is described below in

Section 3.5.

3.4.1 Dynamically reconfigurable data lookup capability

The CSP contains a CLT that can be dynamically reconfigured under program

control. Additionally, the Debug Unit can load and unload the CLT contents from

external FLASH memory using the scan test unit. The CLT is used to linearize sensor

data, hold route tables for a Network-on-Chip (NOC) topology (Figure 1.8) or provide

complex logic functions as is typically done in an FPGA [37] [38]. Additionally it is

used for Fuzzy Logic operations specifically in the defuzzify operation in which the

48

antecedents are mapped to deterministic output values. Implementation details for the

CLT are described later in Section 5.4.2.2.

3.4.2 Reconfigurable event-driven programming

This feature is required for cognitive systems that need to dynamically modify

their algorithms based on operational conditions [39] [40]. This capability in the CSP is

achieved by using an Actor/Event queue. The queue is actually a variation of the Queued-

Stack introduced in Section 1.3. The relative order of how the commands are processed

can be dynamically changed by reentering or reordering the actors in the queue. The

actors are entered into the queue in either FIFO or LIFO order. The actors are executed in

a first-in first-out order (FIFO). Each actor is mapped to a microcode routine that

terminates using a Wait-for-Event instruction. Interrupts and other asynchronous events

can also enter commands to the queue by inserting them into the program stream in a

similar manner as is done in the SNAP processor [15]. These events are squashed from

the Actor/Event queue after they are executed. The Actor/Event queue is circular which

allows it to execute continuously until a break condition is encountered. Typically a break

condition occurs when new token data is needed.

The Debug Unit can preload the actor-queue with a prescribed sequence of actors

via the scan test unit. As the CSP becomes operationally/conditionally aware of its

environment the operation-queue will be periodically saved to external FLASH memory

so that the new state can be reloaded during the next reset cycle. This is also

accomplished via the same scan test unit that is used to preload the operation-queue.

49

3.4.3 Dynamic sampling and frequency scaling

The CSP can modify the sampling rate of the sensor data if the rate of change of

the incoming data is low or high. Additionally, the operating frequency of the CSP can be

modified, as needed using the same mechanism. The frequency scaling is accomplished

by changing the divider value in the system PLL.

3.4.4 Dynamic data precision

The datapath in the Dataflow-Processing Element (DPE) is designed to use signed

saturating arithmetic. The data precision can be dynamically modified to save power by

changing the saturation limits and scaling the data tokens as needed. The base

configuration is to saturate at +/- 24 bits; however, the DPE datapath can be reconfigured

for +/- 8 bits and +/- 16 bits. The impact of this re-configurability is that the power

requirements are reduced when the datapath precision is reduced.

3.5 Fuzzy Logic capabilities

The CSP contains a Fuzzy Logic engine to analyze sensor data and make

systematic adjustments to the operation of the platform plus provide specialized functions

like data fusing (described in Section 3.6). This engine is implemented using a

combination of specialized hardware functions and microcode routines. The specialized

hardware consists of logic to perform minimum, maximum and table lookup functions.

The microcode engine performs the membership, rule evaluation and weighted average

functions.

As mentioned above, the CSP can control energy usage by controlling the

sampling rate of the sensor data and/or controlling the clock frequency. A Fuzzy Logic

50

based algorithm is used to determine the sampling rate by analyzing the change and the

rate of change of the input data.

3.6 Data fusion

Data fusion is important for data reliability and robustness, data compression and

composing complimentary or spectral data [31]. The CSP supports low-energy data

fusion using a combination of microcode routines and the Fuzzy Logic engine to perform

the fusion operations [32] [33]. This low-energy approach is preferred over

mathematically intensive algorithms using least square-based estimation methods such as

Kalman Filtering [34] or probabilistic methods such as Bayesian analysis [35]. For those

sensor applications that require a more accurate data fusion algorithm, a hybrid of

Kalman filters and Fuzzy Logic can be implemented with minimal additional logic [36].

The limitation of this hybrid approach is the limited data precision provided by the DPE

and the increased energy usage.

Data from either single or multiple sensors can be fused into a composite data

stream. The fused data contains more information than the original inputs and is used

either locally in the CSP and/or transmitted to a receiving node for further processing.

Figure 3.2 shows single-sensor multi-converter configuration and two multi-sensor

configurations. In (a), the same sensor is connected to multiple analog-digital (A/D)

converters. The A/D converters can be symmetrically or asymmetrically configured.

Asymmetrical operation provides the ability to analyze different characteristics of the

same sensor. Symmetrical operation provides redundant conversion data. In (b), there are

multiple transducers and A/D converters. The sensors will generally be measuring

different physical effects and the fused data is a composite of the two, however, the two

sensors can be identical providing redundancy at the sensor and conversion level.

51

Alternatively in (c), multiple transducers can be time multiplexed into a single A/D

converter to save area and energy while providing redundancy at the sensor level.

(a) Single transducer, multiple A/D converters

(b) Multiple transducers and A/D converters

(c) Multiple transducers and a single A/D converter

Figure 3.2: Multi-sensor configurations

A/D
Converter Sensor

Data
Fusing

Fused Data

Sideband Data SENSOR
A/D

Converter

SENSOR A/D
Converter Sensor

Data
Fusing

Fused Data

Sideband Data

SENSOR A/D
Converter

SENSOR A
nalog M

U
X

A/D
Converter

Sensor
Data

Fusing
SENSOR

SENSOR

Fused Data

Sideband Data

52

3.6.1 Fuzzy Logic data fusion algorithm

The Fuzzy Logic data fusion algorithm involves aggregating data from the input

sensors and utilizing predictive data from past aggregation to generate fused data and

optional sideband data as shown below in Figure 3.3 [32].

Figure 3.3: Flow diagram of Fuzzy Logic data fusion

In this particular example, the data from two asymmetrical sensors are fused

together to produce a composite signal that has the key characteristics from each sensor.

The first operation involves determining the absolute value of the change and rate of

change (ROC) for the two sensors. The second operation performs a membership

evaluation and series of fuzzy rule evaluations to produce a weighting factor and a sensor

drift value. The third operation uses the weighting and sensor drift information to produce

the fused data and a quality tag. The quality tag is sideband data that can be used by the

CSP to adapt to sensor drift, data sampling issues, etc.

The fuzzy rule evaluation uses a series of antecedents and consequences to infer

what the weighted value should be. A typical set of rules (where S1 and S2 are sensor

inputs) would be expressed as:

53

IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS SMALL
THEN: WEIGHT SHOULD BE SMALL

IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS LARGE
THEN: WEIGHT SHOULD BE LARGE

IF ABSOLUTE (S1-S2) IS LARGE AND ABSOLUTE (DS2/DT) IS SMALL
THEN: WEIGHT SHOULD BE VERY SMALL

IF ABSOLUTE (S1-S2) IS LARGE AND ABSOLUTE (DS2/DT) IS LARGE
THEN: WEIGHT SHOULD BE VERY LARGE

Additionally, the drift value would be calculated using the following rule:

IF ABSOLUTE (S1-S2) IS SMALL AND ABSOLUTE (DS2/DT) IS LARGE
THEN: DRIFT SHOULD BE LARGE

The weighted averaging and fusing operation utilizes a combination of

algorithmic calculations and table lookup to generate the fused data. The CLT is used for

linearization, compensation and interpolation of sensor input data when performing the

fusing operation. Additionally, the CLT can be used to defuzzify the results from the

fuzzy rule evaluation. Appendix A describes the Fuzzy Logic techniques used by the

CSP.

3.7 Communications capability

The basic communication protocol for the CSP is based on the IEEE-1451

standard. It describes a set of open, common, network-independent communication

interfaces for connecting transducers (sensors or actuators) to receiving devices. This

protocol is useful for both wired and wireless systems. It is not practical for low energy

embedded applications where battery volume is minimal. Low energy communication

protocols such as ANT™ [41] should be investigated as an alternative for future

implementations of the CSP. The ANT™ documentation states:

 ANT™ is a practical wireless sensor network protocol running in the 2.4 GHz

ISM band. Designed for ultra-low power, ease of use, efficiency and scalability, ANT

54

easily handles peer-to-peer, star, connected star, tree and fixed mesh topologies. ANT

provides reliable data communications; flexible and adaptive network operation and

cross-talk immunity. ANT protocol stack is extremely compact, requiring minimal

microcontroller resources and considerably reduces system costs.

3.8 Summary

The requirements specified above pertain to a class of sensor platforms that are

generally battery powered low-energy autonomous systems. The addition of basic

cognitive capabilities extends the operational life and functional utility of these sensor

platforms. Adding additional features will impact the energy-performance characteristics

of the CSP and must be considered carefully.

55

Chapter 4. Cognitive Sensor Platform (CSP) Architecture

4.1 Overview

The CSP is an event driven Synchronous Dataflow architecture. The system is

composed by instantiating functional elements that are connected via channels. The

functional elements provide key operational services commonly called actors in dataflow

systems. In the current implementation the channels are modeled as bounded FIFOs

(described above in Section 1.3). The datum that is communicated via the channel

interface is referred to as a token. The current implementation of the CSP uses a Pull-

Mode channel interface protocol to compose the functional elements. The Pull-Mode

protocol adheres to the rules outlined in Section 1.4. The channel signaling protocol is

described below in Section 4.3.3.

Figure 4.1: CSP high level block diagram

Figure 4.1 above shows the five basic functional elements that are used to

compose a CSP:

• Sensor Element – Transducer and Readout Circuitry (Section 4.2)

• Sensor Data Conditioning Element (Section 4.3)

• Dataflow-Processing Element (Section 4.4)

COMM
Element

Sensor Element(s)

Dataflow
Processing
Element(s)

Transducer(s) Readout
Circuitry

Sensor Data
Conditioning

Element

Feedback & Control

Debug Element (Optional)

56

• Communications Element (Section 4.5)

• Debug Element (Section 4.6)

The output from the readout circuitry in the Sensor Element will generally be an

analog signal that will require some additional analog processing such as filtering,

amplification and conversion to a digital representation using an analog-to-digital

converter (ADC). This additional processing is done in a preprocessing unit in the SDC

element. The CSP will have one or more DPEs to process the data from the SDC and

communicate the output data via the COM element to a receiving device. In addition to

these four elements, an optional debug element can be used to debug functional failures

and reconfigure the CSP during normal operations.

4.2 Sensor element

This platform is designed to support a reasonably wide variety of sensing

techniques including, voltage, resistive, capacitive, inductive, optical, magnetic, force and

acceleration. Typical transducers would include strain gauges, piezoelectric devices,

phototransistors, hall-effect devices, thermo-couples, ion-sensitive transistors, capacitive

displacement devices, and bio-sensing devices. Figures 4.2, 4.3 and 4.4 are examples of

capacitive displacement devices [42], ion-sensitive field effect (FET) transistor [43], and

electrochemical/photovoltaic bio-sensing devices [44].

57

Figure 4.2 Various capacitive displacement transducers

Figure 4.3: Ion-Sensitive FET transducer

Reference Electrode

58

Figure 4.4: Bio-sensing transducers

4.3 Sensor Data Conditioning (SDC) Element

The sensor data-conditioning element provides a broad range of data conditioning

and transformation services. These services include:

• Signal conditioning

• Signal conversion

• Detection functions

• Data reduction

• Data fusion

The high-level block diagram for the SDC element is shown below in Figure 4.5

and contains three basic units:

1. Preprocessing unit (PPU) - includes filters, A/D converters, etc.

2.
5

m
m

12
0
μm

59

2. Functional services unit (FSU) - performs data conditioning services.

3. Channel node

Figure 4.5: Sensor Data Conditioning (SDC) Element block diagram

The basic architecture of each unit is described below in sub-sections 4.3.1, 4.3.2

and 4.3.3.

4.3.1 Preprocessing Unit (PPU)

A typical preprocessing unit contains some combination of the following

components: filters, amplifiers, analog-to-digital converters (ADC), sample-hold circuits

and analog multiplexors as shown in Figure 4.6.

Figure 4.6: Typical configuration of a PPU

Functional Services Unit (FSU)

Signal
Data Tokens

Sideband
Data Tokens

Preprocessing

Unit (PPU)

Conditioning

Conversion

Detection

Reduction

Input
from

Sensor
Readout
Circuitry

Fusion Control

Time Stamping

Channel
Node

60

Figure 4.7: High performance configuration of a PPU

In a low cost, low power system configuration the outputs from multiple sensors

are multiplexed through one ADC, however, in time-critical applications multiple ADCs

can be used as shown above in Figure 4.7. The digital and analog outputs of the PPU may

be time division multiplexed or output in parallel from the PPU.

The timing control block will generally get input from the Functional Services

Unit (FSU) or from the Dataflow-Processing Element (DPE). The control block in the

PPU performs three basic functions:

1. Provide clocks to the multiplexor and ADC

2. Latch valid data in the digital interface logic

3. Perform reset and calibration functions

The FSU has the capability to modulate the frequency of the PPU based on the

analysis of the data-flow characteristics of the system. For example, slow-changing

signals to FSU may result in a lower sampling frequency in the PPU in order to conserve

61

power. The FSU can compensate for the lower frequency of operation by modulating the

width and period of the time stamp window.

4.3.2 Functional Services Unit (FSU)

The FSU can be implemented using a synthesized hard-coded logic unit or with a

microcoded engine such as the DPE. The synthesized implementation is preferred for

basic services including:

• Averaging

• Data compression

• Transition counting

• Event triggering

• Threshold detection

The microcoded engine is best suited for the complex services listed below, as

they typically require detailed processing of temporal data:

• Linearization and smoothing

• Edge detection

• Data suppression

• Data fusion

• Filtering

• Signal reproduction

Figure 4.8 below shows the microcoded implementation of the FSU. The

architecture of the FSU is similar to the Dataflow-Processing Element (DPE), which will

62

be described in more detail in Chapter 5. The primary difference between the two is

addition of the timing reference and two output channels – one for data tokens and the

other for sideband data tokens.

Figure 4.8: Block diagram of a microcoded FSU

In addition to the data conditioning services listed above, the FSU is used for the

following special functions:

• Time stamping

• Energy management

• Signal quality analysis

These special functions are described below in the following sections.

63

4.3.2.1 Time stamping

The time stamp function uses a timing reference to generate a unique number that

is tagged to the data from the PPU as it enters the input queue in the FSU. This timing

reference may originate internally in the CSP or be derived from an external network

synchronization signal [45]. If the timing reference is derived internally the external

receiver must synchronize to the internal timing reference by algorithmic means [46]

[47]. Depending on the mode of operation, the FSU will check to see if multiple samples

are to be acquired before the time stamp value is incremented. The time stamping flow is

described in the flow chart shown below in Figure 4.9.

The FSU waits for valid data from the pre-processing unit (PPU) and then tags the

data with the current time stamp value based on the number of samples that will be used.

The number of samples is determined by the operation that the CSP is intended to

perform. For example, if five samples are being averaged to a single datum then the

timing window is valid for five samples and a single time stamp value is issued. Note that

the time stamp value is incremented for every sample and one of the five time stamp

values is used to tag the data depending on the algorithm being performed. In this

example, the third time stamp value could be used when averaging five samples. This

technique provides a built in time reference for all data that is being processed by the

FSU and the DPE.

64

Figure 4.9: Time stamping flow chart

The number of unique time stamp values needed is determined during system

composition. It is a function of the depth of the computational latency (CL) through the

CSP and is measured from the input to the PPU to the output of the communication

element (COM). It is deterministic if the CSP does not dynamically modify its operating

conditions. Non-deterministic operation requires that the CSP re-characterize the CL

value.

65

The CL value is determined by the following equation:

Where:

 N == Total number of actors needed to process a token from the output of the

PPU to the input of the communications element.

#clks(COM) == Total number of clocks needed to communicate the token from

the PPU

#clks(PPU) == Total number of clocks to process the data from the output of

the sensor readout circuitry.

The CL is the total number of system clocks needed to process one token,

assuming that the token propagates through the FSU and DPE as a single token and is not

fused, average, filtered, etc. This number is used to seed the maximum time stamp value.

This ensures that there is a unique time stamp value for every token in the CSP. The time

stamp value is transmitted with an output token and is used to externally synchronize data

from multiple CSPs.

4.3.2.2 Energy management

The CSP controls energy usage by modifying the sampling rate of the sensor data

and/or the clocks to the DPE. A Fuzzy Logic based algorithm is used to determine the

sampling rate by analyzing the change and the rate of change of the input data. Figure

4.10 below shows a flow diagram for the Fuzzy Logic engine [30]. The first step

66

performs a membership evaluation on the inputs. There are two inputs; one is the

absolute value of the sensor data change and the second input being the rate of change of

data change. The second step performs the evaluation of the rules that determine the

energy levels. The third step converts the energy levels into sampling rates for the Sensor

Element and SDC element.

Figure 4.10: Fuzzy Logic flow diagram

Figure 4.11 below shows a table of the potential outputs from the rule evaluation

of the energy function. The lower energy operations occur when the input data is not

changing very rapidly and the ‘rate of change of the change’ is also not varying rapidly.

Conversely if the data is changing rapidly a higher energy is required to process the data.

67

Figure 4.11: Energy usage rule evaluation table

Figure 4.12 below shows an example of the change and rate of change

calculations for a sine wave. The slow rate of change for a clean sine wave indicates the

CSP can function in the low energy mode.

Figure 4.12: Rate of change calculations for a clean sine wave.

68

Figure 4.13: Rate of change calculations for a noisy sine wave.

Figure 4.13 above shows the effects that random noise on the sine wave signal has

on the rate of change calculations. In this case the CSP will most likely be in a medium-

energy mode. Figure 4.14 below shows a square wave where the CSP would be in a high-

energy mode to handle the rapid rate of change of the data.

Figure 4.14: Rate of change calculations for a square wave.

69

4.3.2.3 Signal quality analysis

The Fuzzy Logic analysis of the sensor data is used to derive a signal quality

value that is provided as sideband data tokens to the DPE along with signal data tokens.

The quality value is determined by the following two functions:

1. Rate of change of the sampled data – if the data is changing too rapidly then it

is possible that there is noise being injected into the sensor element and the

data values should be analyzed accordingly.

2. Value of the data – if the data is not changing and/or is at the extreme limits of

the data range then it is possible the sensor is broken and that the channel

needs to be shut down or recalibrated.

The data encoding for the quality tag is fuzzy-compatible. This encoding indicates

the quality error value and the rate of change of the quality error value under faulty and

normal operating conditions as shown below in Tables 4.1 and 4.2. The signal quality

data tokens are used to further qualify the sensor data tokens.

Table 4.1: Quality tag encoding – faulty operation

[Inc]_[Error]_[Dec] Error Error

1__00__1 NONE NOT CHANGING - FAULT

1__01__1 SMALL NOT CHANGING - FAULT

1__10__1 MID NOT CHANGING - FAULT

1__11__1 LARGE NOT CHANGING - FAULT

70

Table 4.2: Quality tag encoding – normal operation

[Inc]_[Error]_[Dec] Error Error Rate

0__00__1 NONE DECREASING

0__00__0 NONE NOT CHANGING

1__00__0 NONE INCREASING

0__01__1 SMALL DECREASING

0__01__0 SMALL NOT CHANGING

1__01__0 SMALL INCREASING

0__10__1 MED DECREASING

0__10__0 MED NOT CHANGING

1__10__0 MED INCREASING

0__11__1 LARGE DECREASING

0__11__0 LARGE NOT CHANGING

1__11__0 LARGE INCREASING

4.3.3 Channel nodes and channel routing nodes

Channel nodes handle all transmission and buffering of data between the

Functional Service Unit (FSU) and the PPU. The FSU is fired when the channel node

has buffered all of the token data from the PPU and is ready to transmit it. The channel

node interface protocol is described below in Section 4.3.3.1. There is a variation of the

channel node that buffers and routes data between multiple DPEs. These Channel

Routing Nodes can be used to implement a network-on-chip (NOC) interconnection

between Dataflow-Processing Elements. Figure 4.15 below shows a modified torus

connection between eight heterogeneous processing elements.

71

Figure 4.15: Channel routing nodes connecting multiple DPEs

A flit (flow-control unit) is the basic unit of communication between NOC

Channel routing Nodes. There are two types of flits: event and token. Each flit utilizes

two bits to encode its type. An event flit is either a control flit or a tail flit. The control flit

contains channel node destination and debug information while the tail flit indicates the

end of the transmission. The token flit is either a data word or a tag word. Figure 4.16

below shows the encoding for the four different types of flits. The flits are converted to

the channel node interface protocol as shown below in the block diagram of a Channel

Routing Node (Figure 4.17).

72

Figure 4.16 Flit encoding

The channel routing node consists of a standard channel interface unit and FIFO

buffer to receive data from the DPE/FSU/COM elements. The channel routing node also

unpacks data from the unit routers (via the cross-bar) and transmits the data to the input

channel on the processing elements.

A full channel routing node consists of two X routing ports and two Y routing

ports and a single channel node. The routing ports can be parallel or serial depending on

the system implementation.

73

Figure 4.17: Block diagram of full Channel Routing Node

4.3.3.1 Channel node interface protocol

The I/O signals for the channel interface are described below in Table 4.3. There

are four signal groupings: event, data, control and debug. The event signals are used to

trigger the FSU/DPE to start execution. The control signals are used to reset the

FSU/DPE and force a bypass condition for special testing operations. The debug signals

are connected to the scan test unit and are used to put the channel node into either a

debug or test mode configuration.

74

Table 4.3: Summary of I/O signal descriptions for Channel Interface

Signal I/O Group Description
READY_IN I EVENT INDICATES RECEIVING NODE CAN START PROCESSING DATA

READY_OUT O EVENT INDICATES SENDING NODE HAS VALID DATA

HOLD_IN I EVENT INDICATES THAT SENDING NODE SHOULD HOLD DATA

HOLD_OUT O EVENT INDICATES RECEIVING NODE IS NOT READY TO PROCESS DATA

TOKEN_SZ_IN I EVENT INDICATES # OF TOKENS TO CONSUME

TOKEN_SZ_OUT O EVENT INDICATES # TOKENS TO BE SENT TO RECEIVING NODE

TOKEN_CLK_IN I EVENT CLOCK TO SEND TOKENS TO RECEIVING NODE

TOKEN_CLK_OUT O EVENT CLOCK TO SENDING NODE TO TRANSFER TOKENS

DATA_IN I DATA
DATA INPUT TO THE SERVICE NODE. CAN BE MULTIPLE

TOKENS

DATA_OUT O DATA DATA OUTPUT FROM THE SERVICE NODE

BYPASS I CONTROL FORCES ELEMENTS TO BYPASS PROCESSING STEP(S)

CLOCK/CLOCK_90 I CONTROL REFERENCE CLOCKING SIGNALS

RESET I CONTROL MASTER RESET

SE_DEBUG I DEBUG SCAN ENABLE VS. DEBUG MODE

SCAN_IN I DEBUG SCAN DATA CHAIN INPUT

SCAN_OUT 0 DEBUG SCAN DATA CHAIN OUTPUT

SCK_IN I DEBUG SCAN CLOCK INPUT

SCK_OUT O DEBUG SCAN CLOCK OUTPUT

As described above in Section 4.1, the FSU and DPE in the CSP are modeled as

Synchronous Data Flow (SDF) actors. This implies that each element adheres to an

event-driven processing paradigm. As indicated above in Table 4.3, there are four event

control signals that provide the handshaking between channel and service nodes. These

are READY, HOLD, TOKEN_SZ and TOKEN_CLK. The READY signal is an

indication that the sending node has valid data to be processed by the receiving node. The

75

HOLD signal is used to keep the READY signal asserted until all of the tokens have been

received. The TOKEN_SZ signal indicates how many tokens to process. The

TOKEN_CK is the clock signal that transfers the tokens from the sending node to the

receiving node. Figure 4.18 below shows the timing diagram for the four event signals

during a receive operation.

Figure 4.18: Timing diagram for event signals during the receive cycle

The READY_IN signal generates an edge-triggered event that starts the

sequencing of operations in the receiving node. The token clock transfers the requisite

number of tokens and then asserts the HOLD_OUT signal, which indicates to the sending

node that the READY_IN signal can be negated. The receiving node processes the token

data while the HOLD_OUT signal is asserted. The negation of the HOLD_OUT signal

occurs when the processed token data has been successfully transferred to the next node.

Figure 4.19 below illustrates the timing sequence during the send cycle. Once HOLD_IN

is negated the sending node asserts the READY_OUT signal and the TOKEN_SIZE

signals to indicate another tranche of tokens are available to be consumed.

Token Xfer
Phase

READY_IN

HOLD_OUT

TOKEN_CK_OUT

TOKEN_SZ_IN 3 Tokens

Node Execution
Phase

76

Figure 4.19: Timing diagram for event control signals during the send cycle

The sequencing of the channel or service node is controlled either by an external

synchronous clock or via an internal self-timed clocking mechanism. Figure 4.20 below

shows the timing diagram of a self-timed clocking circuit that drives the SPU and DPE.

Figure 4.20: Self-timed clocking timing diagram

The CLK/CLK90 clock signals are enabled by the edge detection of the FIRE

signal and disabled when the actor completes processing the token data. The clocks run

until an idle condition is detected or when a Wait-for-Event instruction is executed. All

READY_OUT

HOLD_IN

TOKEN_SZ_OUT Token Size Valid

Token Transfer Phase

READY_IN

HOLD_OUT

TOKEN_CK_OUT

TOKEN_SZ_IN 3 Tokens

DPE Execution Phase

FIRE

CLK

CLK90

77

operations in the FSU/DPE execute in a single cycle. Figure 4.21 shows the phasing of

the CLK and CLK90 clock signals.

Figure 4.21: CLK/CLK90 timing diagram

4.4 Dataflow-Processing Element (DPE)

The DPE is an event-driven microcoded Queued-Stack based machine. Stack

based processors were originally designed to support stack oriented languages such as

Forth [49] and Java [50]. Specialized stack based register files have also been used for

VLIW machines to provide multiple operands for parallel operations [51]. As mentioned

earlier the DPE merges an input queue with a stack thus removing the dependency to

fetch token data from the queue and moving it to the stack. The stack is controlled via a

unique one-hot addressing method that significantly reduces power compared to a

classical register file.

The DPE processes the token data and forwards the results as tokens to other

DPEs or to the communications element (COM). Typical functions performed by the

DPE include:

• Signal Processing

• System Diagnostics and Calibration

• Algorithmic optimization

CLK
Execute Phase

CLK_90

Read Phase Write Phase

78

• Compensation for systematic errors, system drift and random errors produced

by system parametric changes such as sensor aging, battery aging.

• Reasoning about the state of the system and performing needed services to

maintain optimal system performance.

• Anticipating potential systematic changes and modifying operational

behavior.

The DPE is described in more detail in Chapter 5. The microprogramming for the

DPE is described in Chapter 6 and the high-level modeling environment in Chapter 7.

4.5 Communications element (COM)

The communication element for the current implementation of the CSP is an

IEEE-1451 compliant module that provides Level-0 communications capability [48]. The

IEEE-1451 is a family of Smart Transducer Interface Standards. It describes a set of

open, common, network-independent communication interfaces for connecting

transducers (sensors or actuators) to microprocessors, instrumentation systems, and

control/field networks. The key feature of these standards is the definition of Transducer

Electronic Data Sheets (TEDS). The TEDS is a memory device attached to the transducer

that stores transducer identification, calibration, correction data, measurement range, and

manufacture-related information, etc. The goal of IEEE-1451 is to allow the access of

transducer data through a common set of interfaces whether the transducers are connected

to systems or networks via a wired or wireless means.

Compliance with this standard provides a number of benefits for intelligent sensor

systems. These are:

• Develop network-independent and vendor-independent transducer interfaces

79

• Define standardized Transducer Electronic Data Sheets (TEDS) that contain

manufacture-related data

• Support a general model for transducer data, control, timing, configuration,

and calibration

• Eliminate error prone, manual entering of data and system configuration steps,

ultimately achieving Plug and Play

• Allow transducers (sensors or actuators) to be installed, upgraded, replaced or

moved with minimum effort

• Able to get wired or wireless sensor data and information seamlessly from a

host system or network anywhere in the world.

4.6 Debug element

The debug element is designed to provide observability and controllability of the

CSP functional elements. It uses an IEEE 1149.7 Compact Joint Test Action Group

(cJTAG) controller to provide the following features:

• Single stepping

• Run-to-WFE

• Run-to-Halt

• Queued-stack loading and unloading

• Loading and modifying microcode

• Loading the CLT state

• Injecting calibration tokens into the CSP

The IEEE 1149.7 standard improves upon the IEEE 1149.1 standard, commonly

referred to as JTAG (Joint Test Action Group) that is used for testing and debugging

80

integrated circuits. The purpose of 1149.7 is to meet an expanding set of challenges

facing debug and test systems while preserving the hardware and software investments of

the community currently using the 1149.1 standard. The cJTAG implementation builds

upon 1149.1 and is a true superset of JTAG. The benefits of cJTAG are:

• Reduced pin count

• Core level bypass for multi-core or NOC systems

• Individual device addressing

• Star topology

• Additional power management features

Figure 4.22 below shows examples of core level bypass and individual device

addressing.

Figure 4.22: Example of Core Level Bypass in scan chains

81

4.7 Summary

The architecture presented above is a high level view of what a typical CSP would

look like. There is considerable more detail that could be presented but is beyond the

scope of this dissertation. A list of follow-on research topics related to this dissertation is

presented in Chapter 9.

82

Chapter 5. Dataflow-Processing Element

5.1 Overview

The Dataflow-Processing Element (DPE) in the CSP is implemented using a

stack-based microcoded engine with advanced features such as nested looping,

conditional execution, repeat execution, Actor/Event queuing, Fuzzy Logic acceleration

and a programmable content-addressable lookup table. Figure 5.1 below shows a block

diagram of a typical DPE implementation using two Input Queued-Stack (IQS) units, one

Result Queued-Stack (RQS) unit and one output FIFO.

Figure 5.1: Dataflow-Processing Element block diagram

83

The two IQS units are used to receive input channel data. Alternatively they can

be configured such that one IQS unit is used for receiving channel data while the other is

used to store operands or result data. The outputs of the two IQS units are symmetrically

multiplexed onto the datapath. The RQS is used to store the higher precision results of the

datapath operations. The datapath supports single cycle shift-multiply-accumulate

operations, Boolean logic operations and Special-Function operations.

The microcode engine controls the DPE using a 96-bit wide control word. Key

control signals are 1-hot which eliminates the need for complex decoding and prevents

logic glitching. The code memory used in the microcode engine is implemented using a

standard single port ROM or a Writable Control Store (WCS) memory compiler. The

WCS configuration is useful for systems where the microcode needs to be updated from

an external source such as FLASH memory.

The DPE is implemented using a parameterized synthesizable model where the

width and depth of the stacks, functional units, and datapaths are determined during

algorithmic development time. For systems that are composed of multiple DPEs, it is

feasible for each DPE to be configured for a particular task or group of tasks during the

synthesis process by selecting the optimal parameters.

5.2 Input Queued-Stack (IQS) Unit

There are two basic modes of operation for the Input Queued-Stack unit: Pull-

Mode and Push-Mode. In Push-Mode the input channel data is asynchronously inserted

into the IQS. This can result in an overrun condition if the DPE cannot process the

channel data from the previous transaction. In Pull-Mode the IQS will fetch data from the

input channel once the microcode engine is in an idle condition thus preventing overrun.

In Pull-Mode, the output data from the sending DPE must be stored in an output FIFO to

84

prevent stalling its processing element. Pull-Mode provides an additional benefit in that it

allows the IQS to be used as a circular buffer to store filter coefficients used in many

filtering algorithms. In both modes the microcode engine will wait for the fire signal

before it starts to process the data.

The IQS is implemented as a circular buffer that has two circular pointers, one to

track the queue (FIFO) data and the other to track the stack (LIFO) data. The pointer

registers are implemented using 1-hot shift registers. This eliminates decoding logic and

reduces power. A three-entry IQS is shown below in Figure 5.2.

Figure 5.2: Three-entry Queued-Stack unit block diagram

The FIFO-queue pointer tracks data inserted into the queue from either the

channel data or the result data from the datapath operations. The LIFO-stack pointer is

used to track pushes and pops from the stack. The IQS can insert data into the queue

while simultaneously pushing or popping data on/off the stack. This allows channel data

to be asynchronously inserted into the queue element while the computational engine is

processing data from a previous transaction. The IQS uses a 2-read-port, 2-write-port

Channel Data

Read BOS

Read TOS

PUSH POP

INSERT

Write BOS

Write TOS

R
es

ul
t B

us

Stack Pointer
Register

Stack Pointer
Register

Stack Pointer
Register

Queue Pointer
Register

2RD/2WR
RAM Word

2RD/2WR
RAM Word

2RD/2WR
RAM Word

Queue Pointer
Register

Queue Pointer
Register

85

memory cell. This provides the capability to simultaneously access both the top-of-stack

(TOS) data and the bottom-of-stack (BOS) data. The microcode engine can manipulate

the pointer registers to select data anywhere in the circular buffer. For example, the stack

pointer can be rotated two positions to the right and the queue pointer can be rotated two

positions to the left in a single instruction by executing a POP command and an INS_NW

command with a REPEAT of two. Similar operations can be performed on the Result

Queued-Stack in the same micro-operation.

The pointer registers and read/write operations for both IQS units are under

microcode control, which allows a number of simultaneous operations to be performed

each clock cycle. These operations are specified in Table 5.1 below.

86

Table 5.1: Input Queued-Stack Operations

Operation Description
PUSH ROTATE TOS POINTER RIGHT AND WRITE RESULT-BUS VALUE TO NEW TOS

POP ROTATE TOS POINTER LEFT (W/O WRITE)

POP_WR ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS VALUE TO NEW TOS

INS ROTATE BOS POINTER LEFT AND WRITE RESULT-BUS VALUE TO BOS

INS_NW ROTATE BOS POINTER LEFT (W/O WRITE)

PUSH_NW ROTATE TOS POINTER RIGHT (W/O WRITE)

TOP WRITE RESULT BUS VALUE TO TOS W/O ROTATING POINTER

BOT WRITE RESULT BUS VALUE TO BOS W/O ROTATING POINTER

TOP_BOT WRITE RESULT BUS VALUE TO TOS/BOS W/O ROTATING POINTERS

PUSH_INS ROTATE BOTH POINTERS AND WRITE RESULT-BUS VALUE TO TOS/BOS

POP_BOT ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS TO BOS

POP_INS
ROTATE TOS POINTER LEFT, ROTATE BOS LEFT AND WRITE RESULT-BUS TO NEW

BOS

POP_WR_BOT ROTATE TOS POINTER LEFT AND WRITE RESULT-BUS TO BOS AND TO NEW TOS

PUSH_NW_BOT ROTATE TOS POINTER RIGHT AND WRITE RESULT-BUS TO BOS

TOP_INS ROTATE BOS POINTER LEFT AND WRITE RESULT-BUS TO TOS AND TO NEW BOS

NOP NO OPERATION

The IQS operations specified above are performed on the second half of the clock

cycle as shown below in Figure 5.3. The Queue and Stack pointers are modified on the

falling edge of the clock, i.e., shifted left or right. The data on the result-bus from the

datapath is written at this time. Both pointer addresses remain pointing to valid data for

87

the next operation on the rising edge of the CLOCK signal. The read-muxes shown above

in Figure 5.1 drive the TOS and BOS data from the two IQS units to the datapath.

Figure 5.3: Queued-Stack timing diagram

5.3 Result Queued-Stack (RQS) Unit

The RQS uses the same parameterized building blocks as the IQS. The width of

RQS is generally the width of the adder in the datapath unit. The class of algorithms

determines the depth of the RQS that the DPE is being synthesized to perform. The RQS

performs the same Queued-Stack operations as the IQS as shown above in Table 5.1

Figure 5.4 below shows the block diagram for a three entry RQS. The primary

difference between IQS and the RQS is that the write-data is only sourced from the result

bus.

CLOCK

READ_MUXES Hold Source Buses Drive Source Buses

Execute Phase

Drive Result Bus
DATAPATH

Write QS Data

QS Address

CLOCK_90

Read Phase Write Phase

88

Figure 5.4: Three-entry Result Queued-Stack unit block diagram

5.4 Datapath Unit

The DPE datapath is composed of five major units: shifter, multiplier, adder,

logical unit (LU) and a special function unit (SFU) as shown below in Figure 5.5.

Figure 5.5: Block Diagram of the DPE Datapath

89

There are two levels of multiplexors that control the source data to the datapath

units. Table 5.2 below shows the various source data configurations.

Table 5.2: Input data source for the datapath units

Shifter Input Multiplier/LU/SFU
Input Adder Input

TOS/BOS IQS1 SHIFTER_A/SHIFTER_B SHIFTER_A/SHIFTER_B

TOS/BOS IQS2 TOS/BOS IQS1 TOS/BOS IQS1

TOS/BOS RQS TOS/BOS IQS2 TOS/BOS IQS2

IMMEDIATE DATA TOS/BOS RQS TOS/BOS RQS

 IMMEDIATE DATA IMMEDIATE DATA

 MULTIPLIER

The 4-input multiplexors that feed the datapath have latching outputs that are used

to prevent spurious transactions propagating through the shifter-multiplier-adder paths.

This reduces power and can also be used to store intermediate data from previous

transactions. The adder input multiplexors either zero-fill or sign-extend the input data to

match the output width of the adder. For example, in the current implementation the IQS

is 16-bits wide, the shifter is 32-bits wide, the adder is 48-bits wide and the RQS is 48-

bits wide.

The datapath is capable of executing the following combination of instructions in

a single cycle:

• Shift-Multiply-ADD/SUB or Shift-Multiply-Saturating ADD/SUB

• Multiply- ADD/SUB or Multiply-Saturating ADD/SUB

• Shift- ADD/SUB or Shift-Saturating ADD/SUB

• ADD/SUB or Saturating ADD/SUB

90

• Arithmetic & Logical Shift

• Boolean operations: AND, NAND, OR, NOR, INVERT, XOR, XNOR

• Table lookup

The Write-Back-Unit multiplexes data from the adder, special function unit,

logical unit and the general purpose input port on to the result bus. The result bus is

connected to the two IQS units, the RQS unit and the output FIFO as shown above in

Figure 5.1. The RQS is used to store the results of the datapath transactions and is

synthesized to be the width of the output of the adder. Note: an IQS unit can also be used

to store results, however, it is limited to storing data that is the width of the incoming

channel data.

The functions that the SFU performs are determined during the algorithmic design

phase. Typical functions include: table-lookup for sensor recalibration, interpolation,

linearization, averaging, Fuzzy Logic acceleration, data compression, data fusion, time

stamping, edge detection, threshold detection, period measurements, etc.

5.4.1 Condition code generation

There are two sets of condition codes generated within the DPE. The first set is

generated by the arithmetic operations in the datapath. The second set is generated in the

Special Function Unit. The condition codes are used by the microcode engine for

conditional branch instructions and the conditional execution of microinstructions.

The write-back data from each arithmetic datapath operation is compared to a

reference value each cycle to determine if it is greater-than, equal to, less-than a specified

reference value. The reference value is stored in the Write-Back Unit by specifying the

WB_LAT control bit in the microinstruction. Additionally, there is a reference value

stored in the SFU that is used to compare the results of SFU operations that are written

91

back via the Write-Back Unit. The SFU reference value is stored in the Write-Back Unit

by specifying the SFU_LAT control bit in the microinstruction.

Figure 5.6 below shows the timing diagram for a typical datapath operation where

the condition codes are determined during the high phase of the CLOCK_90 signal. The

condition codes a registered on the following edge of the CLOCK_90 signal and used

during the next cycle for conditional micro-opcode execution or branching operations.

Figure 5.6: Timing Diagram for Condition Code Generation

5.4.2 Special Function Unit (SFU)

The SFU is an algorithmic specific unit that is synthesized using DesignWare®

components1. In the current implementation the SFU is used to accelerate the Fuzzy

1 Courtesy of Synopsys Inc.

CLOCK

READ_MUXES Drive Source Buses

Execute Phase

DATAPATH

CONDITION CODES

CLOCK_90

COND_MICRO_OP

Read Phase

COND_EQ

Write Phase

REGISTERED CONDITION CODES

92

Logic algorithms. There are two accelerators in the current implementation: 1)

MIN/MAX unit and 2) Content Addressable Lookup Table (CLT).

5.4.2.1 MIN/MAX unit

The MIN/MAX unit supports minimum and maximum of the 3 inputs: A_BUS,

B_BUS and REFERENCE_DATA. Figure 5.7 below shows the block diagram of the

unit.

Figure 5.7: Block diagram of MIN/MAX logic

5.4.2.2 Content-Addressable Lookup Table (CLT)

In the current configurations of the DPE, a 64x6 bit memory array coupled to a

64x8 array that is synthesized to provide a low power content-addressable lookup table.

The CLT can be dynamically reconfigured via the DPE result bus. Additionally, the

Debug Unit can load and unload both memory arrays using the scan test logic. The CLT

data would generally reside in an external FLASH memory device connected to the

Debug Unit.

93

Figure 5.8 below shows the basic architecture of the CLT. The output of the 64x6

memory array is used as the address for the 64x8 memory array whose output is then

multiplexed onto the result bus through the write-back mux. Each array can be

dynamically reconfigured independently of each other. The CLT can be used to linearize

sensor data [37], hold route tables for a Network-on-Chip (NOC) topology (Figure 1.8) or

provide complex logic functions as is typically done in an FPGA [38]. Additionally, it

can be used for Fuzzy Logic operations where in a defuzzify operation the first array

holds the antecedent mapping to the fuzzy output value that is in the second array.

Figure 5.8: Content addressable lookup table (CLT) architecture

5.5 Microcode Engine

The decision to use a microcoded instruction format was primarily driven by the

fact that the DPE is not pipelined and there are a number of parallel operations that must

94

be performed in a single cycle thus eliminating a sequencer to control the various units in

the DPE. This also eliminates the need for an instruction decoder, as the output from the

Actor/Event queue is a micro-address to a routine in the microcode memory. There are

three communicating finite state machines (CFSM) that control the flow DPE as shown

below in Figure 5.9.

Figure 5.9: DPE Operation Flow Chart

95

The input state machine tracks the number of input tokens and generates the FIRE

signal when all of the tokens are in the IQS. The event queue state machine tracks the

availability of actors and events to be executed by the microcode state machine. The

microcode state machine tracks the operational state of the DPE as shown below in

Figure 5.13.

5.5.1 Microcode fields

There are five control fields in the microcode word as shown below in Figure

5.10. The first field defines specific micro-operations within the microcode engine. These

include nested looping, repeat function, branching and conditional execution. Three

levels of hardware nested looping [52] are supported. All nested loop offsets are

backwards while branch offsets can be both forwards and backwards. The branch

operation utilizes the offset field and the loop count fields, which extends the range. The

repeat operation further modifies the program flow by providing the capability to execute

multiple nested loops. This is useful for operating on multi-dimensional data arrays.

There are three repeat counters, one for each level of nesting. A state machine tracks the

nesting context of all active loops. Most microcode operations can be conditionally

executed. The exceptions are loop returns and the HALT instruction. Conditional

execution uses condition codes derived from the arithmetic units in the datapath and the

SFU. The first field also contains the immediate data word that can be used as an operand

by the datapath or the SFU. The width of this field is determined by the algorithmic

requirements of the machine.

96

Micro-engine control:

IMMED
DATA

<95:80>

BRANCH
OFFSET
<79:73>

LOOP
COUNTER

NUM
<72:71>

REPEAT
COUNT
<70:68>

UCODE
OP

<67:64>

Datapath control:

SHFT
MODE

B
<45>

SHFT
MODE

A
<44>

SHFT
B

<43:39>

SHFT
A

<38:34>

SHFT
TC
B

<33>

SHFT
TC
A

<32>

MULT
<31>

SAT
<30>

DP
EN

<29>

ADD/SUB
<28>

Queued-Stack control for next operand selection:

READ
TOS
QS2
<63>

READ
TOS
QS1
<62>

READ
BOS
QS2
<61>

READ
BOS
QS1
<60>

QS2
CTL

<59:56>

QS1
CTL

<55:52:>

B_BUS
MUX

<51:50>

A_BUS
MUX

<49:48>

CHAN
MUX
QS2
<47>

CHAN
MUX
QS1
<46>

Queued-Stack control for write-back operations:

QS2
BUS
SEL

<23:22>

QS1
BUS
SEL

<21:20>

WB
MUX
SEL

<18:17>

RQS
CTL

<9:6>

RD
RQS
<4>

RQS
BUS
MUX
<3>

SFU & I/O control:

LOGIC
OP

<16:14>

SFU
OP

<13:11>

WR
SFU
LAT
<10>

WR
EQ

LAT
<5>

FIFO
WE
<2>

GPIO
WE
<0>

Figure 5.10: Microcode control fields

The second field controls the multiplexors and the functional units in the datapath

using a combination of one-hot control bits and encoded control bits [53]. As can be seen

from Figures 5.1 and 5.5 above, there are 10 multiplexors that control the flow of data

through the functional units, the write-back mux and the IQS elements.

97

The third and fourth fields are for Queued-Stack control. The timing diagram for a

typical operation is shown above in Figure 5.3. During the first half of the cycle the IQS

provides the operands to datapath and the second half of the cycle the address of the IQS

can be modified for the write operation. For example, if a PUSH operation is performed

the FIFO pointer is shifted right to point to next location on the stack. The result data can

be written to this location at the end of the cycle. The pointers in the IQS units and the

RQS unit always point to valid data and are only modified during a write cycle.

The fifth field is used to control the special function unit, the general-purpose I/O

port and the output FIFO. The block diagram of the micro-engine as shown below in

Figure 5.11 consists of four components: a writeable control store, micro-address

generation, Actor/Event queue and a finite state machine controller.

Figure 5.11: Block Diagram of the Microcode Engine

The micro-engine is controlled via a 4-bit micro-opcode field. The micro-engine

opcodes supported are shown below in Table 5.3.

98

Table 5.3: Micro-Engine operation codes

OPCODE RPT MICRO-OPERATION

EXEC Y UNCONDITIONAL EXECUTION

EXEC_WB_EQ Y EXECUTE IF WRITEBACK == REFERENCE DATA

EXEC_WB_GT Y EXECUTE IF WRITEBACK > REFERENCE DATA

EXEC_WB_LT Y EXECUTE IF WRITEBACK < REFERENCE DATA

WFE N HALT AT PC+1; WAIT-FOR-EVENT SIGNAL

JMP N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD

JMP_HLT N
JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT

AND WAIT FOR AN EVENT SIGNAL

LOOP_BACK Y LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY)

BRA N BRANCH UNCONDITIONALLY

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA

TXFR N TRANSFER OUTPUT FIFO DATA TO CHANNEL

There are two basic execution modes: normal and conditional. In normal mode all

micro-operations execute independently of the value of the condition codes. The

conditional execution micro-opcode (EXEC_WB_XX) uses the value of the condition

codes from the previous cycle to determine if the microinstruction can be executed. If the

microinstruction is not executed the datapath retains its original state and the next

microinstruction is then fetched.

99

All branch instructions operate in normal mode and are referred to as merged

instructions. A merged instruction is one where the jump/branch can be executed

simultaneously with a datapath operation [54].

The repeat function provides the capability of executing a single microinstruction

or group of microinstructions 2 to 8 times. Table 5.3 above shows the microinstructions

that can be executed using the repeat function and the ones that cannot.

The finite state machine (FSM) controls the nested looping and repeat functions.

Three levels of nesting looping are supported in the base architecture. The repeat function

is used to control the number of times a loop is repeated. There is a repeat counter for

each nested loop that is loaded from the RPT_CNT field. The OFFSET field in the

microcode is used to loop backwards in the loop when the LOOP_BACK opcode is

executed. The RPT_CNT and OFFSET fields are used by the BRANCH opcode to

increase the twos-complement offset range of the branch into the micro-ROM.

Figure 5.12 below shows a typical nested looping microcode sequence. In this

sequence there are two nested loops and one conditionally executed branch loop. The

nested loops execute 10 times before the branch instruction is executed. Note that the

microinstructions are executed in parallel, resulting in zero-overhead loop and branch

instructions. Once the conditional branch is not taken the JMP_HLT microinstruction is

executed.

100

Figure 5.12: Typical nested looping microcode sequence

The JMP_HLT is a merged microinstruction that jumps to the address specified

and halts the micro-engine to wait for the next event signal. The microcode engine is

‘fired’ when the new channel data is inserted into the Queued-Stack. Note: the micro-

engine clocks are disabled during idle mode resulting in minimal power dissipation.

5.5.2 Microcode finite state machine

A finite state machine tracks the five possible states that the micro-engine can be

operate in. These states are described below in Table 5.4.

101

Table 5.4: FSM operating modes

State Operating mode
S0 WAITING FOR EVENT/FIRE SIGNAL

S1 NON-LOOPING EXECUTION STATE

S2 LOOP-1 (INNER MOST) EXECUTION STATE

S3 LOOP-2 EXECUTION STATE

S4 LOOP-3 (OUTER MOST) EXECUTION STATE

The state diagram for the FSM is show below in Figure 5.13.

Figure 5.13: State diagram for micro-engine control

The micro-engine remains in State-S0 until the input queue receives all of the

tokens or when an event occurs. In either case, a FIRE signal is issued which brings the

FIRE

FIRE

HALT LOOP * HALT

LOOP_1

LOOP_ZD

LOOP_ZD * LOOP_2

LOOP_2

LOOP_ZD

RESET

LOOP_ZD * LOOP_3

LOOP_3

LOOP_ZD

LOOP_ZD

102

micro-engine out of low-power mode and into full execution mode (Figure 4.20). State-

S1 is the normal operating mode when the machine is not executing in a nested loop.

States S2, S3 and S4 track nested looping operation. State-S2 tracks execution in the

outermost loop and State-S4 tracks execution in the innermost loop. The loops are

entered sequentially from the outer loop to the inner loop and retire from the inner loop to

the outer loop. Change of flow instructions (JUMP/BRANCH/WFE) cannot be executed

in a nested loop nor can they enter a nested loop from outside of the loop.

There are three loop counters that track the number of passes through each loop.

The counters are loaded with the repeat count value when the first instruction of a loop is

executed. The loop counter number and the repeat count value are specified in the

microinstruction as shown below in Figure 5.14 (PC = 0 and PC = 2). The repeat counters

are 3 bits wide, which allows a maximum repeat count value of 8 per loop. The loop-back

address is 7 bits wide, which provides the ability to loop backwards 0 to 64 memory

locations. A single instruction can be repeated 8 times by specifying a repeat count of

0x00 and loopback address of 0x00. A single instruction can be repeated 512 times by the

following sequence of five microinstructions shown in Figure 5.14.

Figure 5.14: Nested looping/repeat example

103

Note that setting the repeat count value to zero (8 modulo 2) causes an underflow

condition before the zero-detect is issued resulting in a full count of 8 operations.

5.5.3 Microcode storage memory

As mentioned above, the microcode storage can be implemented using a low

power read-only-memory (ROM) [55] based or writable-control-store (WCS) memory

[56]. In either case the clocks to the storage element are controlled by the FSM. For non-

looping repeat functions, the latched microcode word is accessed instead of accessing the

memory element. This provides additional energy savings as it eliminates pre-charge

clocking energy and memory access power. The WCS is loaded via the scan test unit

interface and is used in systems where overlaying of microcode is needed due to the size

of the code or for debugging microcode before it is committed to ROM. Figure C.3 in

Appendix C shows the size difference between a ROM and a WCS.

5.5.4 Actor/Event queue

The microcode engine supports an Actor/Event queue that is used to store

recirculated actors and/or asynchronous events. Events are normally generated from

external sources such as timers, exceptions and interrupts. This is similar to the SNAP

processor [15] as shown above in Figure 2.8. Recirculating actors provides the capability

to preload a sequence of operations actors and have them execute until a break occurs.

Typically a break condition occurs when new token data is needed. The Wait-For-Event

instruction will cause a break condition.

Figure 5.15 below shows the block diagram of the Actor/Event queue and how it

is integrated into the microcode address generator.

104

Figure 5.15: Block diagram of the Actor/Event queue

The Actor/Event queue contains entry points (micro-addresses) into the

microcode memory. There are two types of entries in the queue: 1) those that recirculate

ad infinitum or 2) those that are squashed from the queue once they execute.

Asynchronous events such as timer interrupts are Type-2 entries and “actors” are Type-1

entries.

The event controller generates entry points for the asynchronous events being

processed. These asynchronous event entry points can be entered on the “Top of Stack”

(TOS) if they need to be executed immediately or entered into the “Bottom of Stack”

(BOS) if it is not critical when they are executed. Type-2 entries are removed from the

queue once they are executed. Type-1 entries are recirculated back into the Actor/Event

queue by re-writing them to the BOS.

105

The FSM in the microcode engine controls the flow of addresses/entry-points to

the microcode ROM/WCS. There are three main address sources:

1. Next Micro-Address (NMA)

2. The JUMP Immediate Address

3. The Actor/Event Queue Address

Each address can be modified by three offsets:

1. Zero value (no offset)

2. A value of one for basic incrementing

3. An OFFSET value supplied by the microcode word being executed.

The Actor/Event queue can be loaded from the result bus or via a scan chain

controlled by the debug unit. Loading the queue from the result bus provides the ability to

use the CLT to look up entry-points and writing them to the queue. The entry-points can

be dynamically changed based on algorithmic or Fuzzy Logic based heuristics as the

sensor system ages. The debug unit will copy the contents of the queue to external flash

memory as needed to preserve the new operating state of the CSP.

106

Chapter 6. DPE Microprogramming

6.1 Overview

As described in Section 1.3, the CSP is a Synchronous Dataflow (SDF) machine.

The DPE is considered an “actor” that processes tokens and generates tokens. Actors can

be composed of multiple actors as long as the rules described in Section 1.4 are adhered

to. A single DPE can contain one actor or many actors, each of which is implemented in a

single microcode routine. Each microcode routine (actor) is terminated using a Jump-Halt

or a Wait-for-Event microinstruction. The DPE waits for an event before executing the

next actor. The events come from two sources: the Actor/Event queue (Section 5.5.4) or

the next tranche of tokens generating a fire signal (Section 5.5.2).

It was an easy decision to use a microcoded implementation to optimize power in

the CSP. Each microcode routine (actor) is deterministic which satisfies one of the

premises of an SDF machine. This provides the ability to deterministically schedule all

transactions that the CSP will perform (another premise of an SDF machine). This also

provides the ability to precisely time-stamp all tokens that pass through the CSP (see

Section 4.3.2.1).

The CSP does support non-deterministic operation by virtue of the fact that

asynchronous events can be inserted into the DPE Actor/Event queue. The ability to

dynamically reconfigure the CSP can also cause non-deterministic operation. In both

cases the effect can be that the CSP cannot process tokens at the rate the PPU is issuing

them to the FSU and/or the DPE. Recall that the CSP supports both Push/Pull modes as

described in Section 1.4. The Pull-Mode is recommended for non-deterministic

operation, as it will provide backpressure on all tokens that are being generated by the

PPU and the FSU. The backpressure can be sensed by the debug unit, which can modify

107

the sampling rate of the PPU to match the throughput of the SDF machine(s). Of course

non-deterministic operation requires dynamic characterization of the machine in order to

determine the maximum time-stamp value (Equation 4.1).

The Actor/Event queue can be considered to be program storage sans the

immediate data capability that most ISA’s provide. A deterministic Actor/Event queue

(one without asynchronous events) is considered a collection of actors that the DPE will

execute in a deterministic order for every tranche of tokens that are received. The WFE

microinstruction is used to halt the machine and wait for the next Actor/Event queue

entry to be decoded as an entry point in the microcode memory.

Microcode programming has always been considered to be tedious and that is

definitely the case for the DPE. The use of a stack-based machine further complicates the

programming paradigm. This is indicative of what it requires to optimize power for low

energy embedded applications while maintaining the ability to dynamically reprogram

the flow of the machine. The remainder of this chapter discusses how to micro-program

the DPE.

Two programming environments were reviewed as a part of this research. These

are described below in Section 6.2. Microcode programming has long since fallen out of

favor among programmers and the coding tool choices are very limited. The final

solution was to use a simple spreadsheet based micro-assembler further validating the

fact that spreadsheets can do almost anything.

Section 6.3 below describes the details of the microcode word and Section 6.4

describes the microcode programming syntax. This syntax is unique because of the

addition of the stack operations that must be performed for each microcode operation.

108

6.2 Programing environment

The limitation of many new machine architectures is the availability of a usable

and stable programming environment. There are numerous freeware tools to build

assemblers and compilers for classical register-based machines but virtually none for

stack-based machines. These tools require an extensive overhaul when trying to make

them work with a stack-based machine. There are stack-based languages like Forth [58]

that compile down to machine code that runs on a register-based machine where a

software based stack model is used. In looking at the opcode generation capability of the

Forth compiler it was obvious that it was not suited for a Queued-Stack synchronous

data-flow model.

The software implementation of the actors is the most challenging because the

DPE is a microcoded machine. Ideally this would be accomplished using a high level

language that is compiled into microcode routines. As mentioned earlier, this would

require a large-scale code generation development effort that is beyond the scope of this

research. There are approximately 30 actors that are needed to support the class of

workloads that the CSP is designed for. Combinations of these basic actors are used to

build more complicated ones. That said, it was decided that the implementation of the

actors would be accomplished using a microcode assembler.

Two microprogramming environments were investigated as part of this research.

These are described in the following sub-sections and include:

1. Machine independent microcode programming languages [59]

2. Microsoft Excel spreadsheet based micro-assembler.

109

6.2.1 Microcode Program Languages (MPL)

These languages were developed during the early days of micro-programmable

machines to implement microcode using control constructs such as IF-THEN-ELSE, DO-

WHILE, etc. These MPLs were generally machine specific, however, machine

independent languages were proposed to provide portability from one generation to the

next [59]. These languages were compiled into microcode-assembler opcodes/operands

and then passed through a machine specific assembler to generate the binary files that can

be loaded into a WCS or ROM. After looking for adequate off-the-shelf tools it was

determined that the applicability of MPLs for DPE microprogramming was very limited

primarily due to the fact that they do not support stack-based machines.

6.2.2 Microsoft Excel spreadsheet assembler

After reviewing numerous microcode assemblers it became obvious that all of

them were based on a classic register file based datapath implementation. The distributed

Queued-Stack implementation in the DPE with its multiple operation mechanism

required extensive rewrite of these assemblers. The most optimal solution was to use a

tool that has the ability to do table lookup functions with a broad range of IF-THEN

control functions and a bit manipulation functions to build various data fields used in the

microcode. Excel provides this capability. Interestingly enough an Excel spreadsheet can

also be used to model an SDF algorithm, as it is a reactive system in itself. This would be

an interesting Master’s project as follow-on to this research. A detailed description of the

microcode assembler is presented in Appendix B.

110

6.3 Microcode Field Descriptions

The microcode word is 96-bits wide and divided into five control blocks: micro-

engine control, datapath control, Queued-Stack control for write-back operations,

Queued-Stack control for next operand selection operations, SFU and I/O control as

shown below. The fields are described in detail in the next four subsections.

Micro-engine control:

IMMED
DATA

<95:80>

BRANCH
OFFSET
<79:73>

LOOP
COUNTER

NUM
<72:71>

REPEAT
COUNT
<70:68>

UCODE
OP

<67:64>

Datapath control:

SHFT
MODE

B
<45>

SHFT
MODE

A
<44>

SHFT
B

<43:39>

SHFT
A

<38:34>

SHFT
TC
B

<33>

SHFT
TC
A

<32>

MULT
<31>

SAT
<30>

DP
EN

<29>

ADD/SUB
<28>

Queued-Stack control for write-back operations:

QS2
BUS
SEL

<23:22>

QS1
BUS
SEL

<21:20>

WB
MUX
SEL

<18:17>

RQS
CTL

<9:6>

RD
RQS
<4>

RQS
BUS
MUX
<3>

Queued-Stack control for next operand selection:

READ
TOS
QS2
<63>

READ
TOS
QS1
<62>

READ
BOS
QS2
<61>

READ
BOS
QS1
<60>

QS2
CTL

<59:56>

QS1
CTL

<55:52:>

B_BUS
MUX

<51:50>

A_BUS
MUX

<49:48>

CHAN
MUX
QS2
<47>

CHAN
MUX
QS1
<46>

SFU & I/O control:

LOGIC
OP

<16:14>

SFU
OP

<13:11>

WR
SFU
LAT
<10>

WR
WB
LAT
<5>

FIFO
WE
<2>

GPIO
WE
<0>

111

6.3.1 Micro-engine control

Table 6.1 below shows the bit field assignments for the micro-engine control. The

five fields control the sequencing of all microinstructions and are described in Section

5.5.

Table 6.1: Micro-engine control bit field assignment

IMMEDIATE

DATA AND
JUMP ADDRESS

<95:80>

LOOP

&
BRANCH

OFFSET

<79:73:>

LOOP

NUMBER

<72:71>

REPEAT

COUNT

<70:68>

MICRO

OPCODE

<67:64>

-32768 TO +32767 0-3 0-7 EXEC

-32768 TO +32767 0-3 0-7 EXEC_WB_EQ

-32768 TO +32767 0-3 0-7 EXEC_WB_GT

-32768 TO +32767 0-3 0-7 EXEC_WB_LT

 WFE

-512 TO +511 JMP

-512 TO +511 JMP_HLT

-32768 TO +32767 -64 TO 0 0-3 LOOP_BACK

-32768 TO +32767 -64 TO +63 BRA

-32768 TO +32767 -64 TO +63 BR_WB_EQ

-32768 TO +32767 -64 TO +63 BR_WB_GT

-32768 TO +32767 -64 TO +63 BR_WB_LT

-32768 TO +32767 -64 TO +63 BR_SFU_GT

-32768 TO +32767 -64 TO +63 BR_SFU_LT

-32768 TO +32767 -64 TO +63 BR_SFU_EQ

 TXFR

112

6.3.1.1 Immediate data – Bit field <95:80>

This bit field is used to provide immediate data to the datapath units. Figure 6.1

below shows the datapath block diagram. There are three consumers of immediate data:

1) the datapath input multiplexor, 2) the Write-Back Unit (WBU) and 3) the Special

Function Unit (SFU). The immediate data can be sign extended using control bit <19>.

This immediate data field is also used as the two’s complement address for the two jump

instructions. Consequently jump instructions cannot use the immediate data field for

datapath instructions. The branch-always opcode (BRA) can be used for unconditional

jumps where the immediate data field is needed by the microinstruction.

Figure 6.1: Datapath block diagram

6.3.1.2 Branch offset – Bit field <79:73>

This field provides the two’s complement offset for the branch instructions and

the negative offset for the loop back instruction. The field is limited to 7 bits for the

113

current implementation of the DPE, providing a -64 to +63 offset for branch instructions

and the loop back instruction.

6.3.1.3 Loop number – Bit field <72:71>

This field indicates which loop number the micro-engine should enter. This

provides the ability to do 3-deep nested looping (see Section 5.5) and is used in

conjunction with the repeat count field. Figure 6.2 below shows that state diagram of the

micro-engine as it tracks which loop is active.

Figure 6.2: Micro-engine state diagram

6.3.1.4 Repeat count – Bit field <70:68>

The repeat count field is used for repeating individual microinstructions or for

repeating nested loops. The 3-bit field provides the ability to repeat a loop or an

FIRE

FIRE

HALT LOOP * HALT

LOOP_1

LOOP_ZD

LOOP_ZD * LOOP_2

LOOP_2

LOOP_ZD

RESET

LOOP_ZD * LOOP_3

LOOP_3

LOOP_ZD

LOOP_ZD

114

instruction 1 to 8 times. A single micro-instruction can be repeated 512 times by

specifying 3 levels of nesting and a repeat count of 0 (8 modulo 2) for each loop.

6.3.1.5 Micro-engine opcode – Bit field <67:64>

The 4-bit micro-engine opcode field provides up to 16 micro-operations that the

micro-engine can execute. Table 6.2 below describes the 16 opcodes that the current

implementation of the DPE can execute.

Table 6.2: Micro-Engine Operation Codes

OPCODE RPT MICRO-OPERATION

EXEC Y UNCONDITIONAL EXECUTION

EXEC_WB_EQ Y EXECUTION IF WRITEBACK == REFERENCE DATA

EXEC_WB_GT Y EXECUTION IF WRITEBACK > REFERENCE DATA

EXEC_WB_LT Y EXECUTION IF WRITEBACK < REFERENCE DATA

WFE N HALT AT PC+1; WAIT-FOR-EVENT SIGNAL

JMP N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD

JMP_HLT N JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT

LOOP_BACK Y LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY)

BRA N BRANCH UNCONDITIONALLY

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA

TXFR N TRANSFER OUTPUT FIFO DATA TO CHANNEL

115

6.3.2 Datapath control

The datapath control is composed of multiplexor control and arithmetic function

control. Figure 6.3 below shows a block diagram of the multiplexors and the arithmetic

units.

Figure 6.3: Block diagram of the multiplexors and the arithmetic units

6.3.2.1 Multiplexor control for datapath

The first set of multiplexors steer the output data from the IQS1 and IQS2

Queued-Stack elements. The second set multiplexes the output of the RQS unit,

immediate data and the output from the first set of multiplexors. The last set multiplexes

the output from the second multiplexor, the output from the shifter, the output from the

multiplier, an additional output from the RQS unit and lastly a ZERO value. Table 6.3

below shows the bit field assignments for the datapath multiplexor control.

116

Table 6.3: Datapath multiplexor control bit field assignments

ENCODE
QS2 BUS

<23:22>
QS1 BUS

<21:20>

B_BUS

MUX

<51:50>

A_BUS

MUX

<49:48>

B-MUX

SEL

<27:26>

A-MUX

SEL

<25:24>

00 TOS_QS2 TOS_QS1 QS2_BUS QS1_BUS ZERO ZERO

01 BOS_QS2 BOS_QS1 IMM_DATA IMM_DATA B_BUS A_BUS

10 TOS_QS1 TOS_QS2 TOS_RQS TOS_RQS B_BUS_SHFT A_BUS_SHFT

11 BOS_QS1 BOS_QS2 BOS_RQS BOS_RQS MULT RQS_BUS

6.3.2.2 Shifter control

The shifter control bits are shown below in Tables 6.4 and 6.5. The shifter

supports arithmetic and barrel shifts. When the control signal SHIFT_TC = 0, the shift

value is interpreted as an unsigned positive number, and the shifter performs only left

shift operations. When SHIFT_TC = 1, the shift value is a two’s complement number,

with a negative coefficient performing a right shift and a positive coefficient performing

a left shift. The input data, DATA_IN, is interpreted as an unsigned number when

DATA_TC=0. When DATA_TC=1, DATA_IN is interpreted as a signed number, and a

sign extension is performed for right arithmetic shift operations.

Table 6.4: Datapath control for A-BUS shifter

SHIFT
MODE

A

<44>

SHIFT

A

<38:34>

SHIFT

TC

A

<32>

DATA

TC

<19>

MSB

OP

OPERATION

1 0-31 0 - - LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 - 0 LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 0 0 RIGHT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 1 1 RIGHT ARITHMETIC SHIFT, SIGN EXT. PADDING

0 0-31 0 - 0 LEFT BARREL SHIFT

0 0-31 1 - 1 RIGHT BARREL SHIFT

117

Table 6.5: Datapath control for B-BUS shifter

SHIFT
MODE

B

<45>

SHIFT

B

<39:43>

SHIFT

TC

B

<33>

DATA

TC

<19>

MSB

OP

OPERATION

 0-31 0 - - LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 - 0 LEFT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 0 0 RIGHT ARITHMETIC SHIFT, LOGIC 0 PADDING

1 0-31 1 1 1 RIGHT ARITHMETIC SHIFT, SIGN EXT. PADDING

0 0-31 0 - 0 LEFT BARREL SHIFT

0 0-31 1 - 1 RIGHT BARREL SHIFT

6.3.2.3 Multiplier control

The multiplier control bits are shown below in table 6.6. The multiplier supports

both signed and unsigned operations.

Table 6.6: Datapath control for Multiplier

MULT
MODE

<31>

DATA

TC

<19>
OPERATION

0 - NO OPERATION

1 0 UNSIGNED MULTIPLY

1 1 SIGNED MULTIPLY

6.3.2.4 Adder control

The adder control bits are shown below in table 6.7. The adder supports

signed/unsigned, saturating/non-saturating, and add/subtract. The default is to use signed

saturating arithmetic for all operations.

118

Table 6.7: Datapath control bit field assignments for ADD/SUB

ADD/SUB

<28>
SAT

<30>

DATA

TC

<19>
OPERATION

0 0 0 UNSIGNED ADD

0 0 1 SIGNED ADD

0 1 0 SATURATED UNSIGNED ADD

0 1 1 SATURATED SIGNED ADD

1 0 0 UNSIGNED SUBTRACT

1 0 1 SIGNED SUBTRACT

1 1 0 SATURATED UNSIGNED SUBTRACT

1 1 1 SATURATED SIGNED SUBTRACT

6.3.2.5 Signed/Unsigned operation

The TC control bit <19> is used to set all data path elements to operate in either

signed or unsigned operation. The PPU converts all token data to the appropriate format

based on the operating mode of the CSP.

119

6.3.3 Queued-Stack control

Table 6.8 below shows the microcode encoding for IQS1, IQS2 and RQS fields.

A number of the operations are described in the following sub-sections. There are 15

basic operations: PUSH, POP, INS, TOP, BOT and WR/NW. PUSH and POP are stack

operations that advance the pointers. INS is a queue operation where the operand is

inserted into the queue (bottom of the stack) and advances the pointers. TOP/BOT are

operations that write operands to the top and bottom of the stack without advancing the

pointers. WR/NW modify the basic operations to either write (WR) or not-write (NW)

the operand as specified in the write-back column.

Table 6.8: Queued-Stack operation encoding

ENCODE
IQS2_CTL

<59:56>

IQS1_CTL

<55:52>

RQS_CTL

<9:6>

1001 PUSH PUSH PUSH

0100 POP POP POP

0111 POP_WR POP_WR POP_WR

0010 INS INS INS

0011 INS_NW INS_NW INS_NW

1100 PUSH_NW PUSH_NW PUSH_NW

1101 TOP TOP TOP

0001 BOT BOT BOT

1110 TOP_BOT TOP_BOT TOP_BOT

1011 PUSH_INS PUSH_INS PUSH_INS

0101 POP_BOT POP_BOT POP_BOT

0110 POP_INS POP_INS POP_INS

1000 POP_WR_BOT POP_WR_BOT POP_WR_BOT

1010 PUSH_NW_BOT PUSH_NW_BOT PUSH_NW_BOT

1111 TOP_INS TOP_INS TOP_INS

0000 NOP NOP NOP

120

6.3.3.1 PUSH operation

Figure 6.4 below shows the PUSH operation on a Queued-Stack after reset where

TOS pointer is advanced before the write operation.

Figure 6.4: PUSH operation

6.3.3.2 BOT operation

Figure 6.5 shows the BOT operation that writes 0x3344 to the BOS without

advancing the pointer.

Figure 6.5: BOT operation

121

6.3.3.3 PUSH_INS operation

Figure 6.6 shows the PUSH_INS operation where 0xABCD is written to the TOS

and the BOS after the pointers have been advanced appropriately.

Figure 6.6: PUSH_INS operation

6.3.3.4 TOP_BOT operation

Figure 6.7 below shows the TOP_BOT instruction that writes 0x1234 to both the

TOS and the BOS without advancing the pointers.

Figure 6.7: TOP_BOT operation

122

6.3.3.5 POP operation

Figure 6.8 below shows the POP operation that simply advances the TOS pointer

appropriately.

Figure 6.8: POP operation

6.3.3.6 POP_WR operation

Figure 6.9 below shows the POP_WR operation where the TOS pointer is

advanced and 0x5678 is written to the new TOS location.

Figure 6.9: POP_WR operation

123

6.3.3.7 PUSH_NW operation

Figure 6.10 below shows two sequential PUSH_NW instructions where the TOS

pointer is advanced without writing the data.

Figure 6.10: PUSH_NW operation

6.3.3.8 TOP_INS operation

Figure 6.11 below illustrates the TOP_INS operation where the TOS is written

without advancing the TOS pointer while BOS pointer is advanced and the BOS is

written with a value of 0xDEAD.

Figure 6.11: TOP_INS operation

124

6.3.4 Logical Unit, Special Function Unit and I/O Control

The current implementation of the DPE supports a Boolean Logic Unit (BLU) and

a special function unit that is used for Fuzzy Logic operations.

6.3.4.1 Logical operations

The DPE supports 8 logical operations as shown below in Table 6.9. Recall that

the inputs to the logical unit are from the output of the shifter (Figure 5.5). This provides

basic bit field extraction capability.

Table 6.9: Logical operations

OPCODE DESCRIPTION
A_NOT INVERT VALUE ON A_INPUT

B_NOT INVERT VALUE ON B_INPUT

AND A_INPUT AND B_INPUT

NAND A_INPUT NAND B_INPUT

OR A_INPUT OR B_INPUT

NOR A_INPUT NOR B_INPUT

XNOR A_INPUT XNOR B_INPUT

6.3.4.2 SFU operations

The SFU implemented in the current version of the DPE is designed to accelerate

Fuzzy Logic routines, specifically MIN/MAX functions. Table 6.10 below shows the

eight MIN/MAX operations that are supported by the SFU. The REF_DATA input is a

constant value that is stored in a register located in the SFU. It is used for threshold

detection algorithms.

125

Table 6.10: MIN/MAX operations

ENCODE OPCODE OPERATION

000 MIN_A_B MIN(SHFT_A_BUS, SHFT_B_BUS, SHFT_B_BUS)

001 MIN_A_REF MIN(SHFT_A_BUS, REF_DATA, REF_DATA)

010 MIN_B_REF MIN(SHFT_B_BUS, REF_DATA, REF_DATA)

011 MIN_A_B_REF MIN(SHFT_A_BUS, SHFT_B_BUS, REF_DATA)

100 MAX_A_B MAX(SHFT_A_BUS, SHFT_B_BUS, SHFT_B_BUS)

101 MAX_A_REF MAX(SHFT_A_BUS, REF_DATA, REF_DATA)

110 MAX_B_REF MAX(SHFT_B_BUS, REF_DATA, REF_DATA)

111 MAX_A_B_REF MAX(SHFT_A_BUS, SHFT_B_BUS, REF_DATA)

The MIN/MAX logic block in the SFU has three inputs: A_BUS_SHFT,

B_BUS_SHFT and REF_DATA as seen below in Figure 6.12. There are two SFU

operations that require 3 inputs while the remaining six use only two inputs. In those

cases the same input is used for two of the three inputs.

Figure 6.12: Block diagram of MIN/MAX logic

126

6.4 Microcode programming syntax

There are five operational fields that can be specified for each microinstruction:

1. Arithmetic operations

2. Non-arithmetic operations

3. Write back operations

4. Next-operand operations

5. Micro-engine operations

In most cases the fields do not have to be completely specified. The microcode

assembler will set the appropriate fields to the correct state. For example, if a datapath

operation is not specified the DP_ENABLE signal will be negated. The syntax for the

operations follows the stack based Reverse Polish Notation (RPN) where the source data

is presented before the operation [57]. Each operation is delineated using a vertical bar |.

6.4.1 Arithmetic operations

The datapath supports up to 3 concurrent arithmetic operations: shift(scale),

multiply and add/subtract. As can be seen in Figure 6.3 above, the two shifters feed the

MULT unit and the ADD/SUB unit, while the MULT unit feeds only the B-BUS on the

ADD/SUB unit. The shifter instruction is specified first if the shifter is modifying the

values being inputted into the MULT unit. The datapath supports both signed and

unsigned operations. The same mnemonics apply to both modes of operation.

127

The basic instruction format for the shifter is:

| SOURCE <MNEMONIC=COUNT> |

There are four shifter operations: LSR, ASR, LSL and ASL that can be specified.

Examples of shifter instructions for the shifter on the A_BUS:
| TOS_QS1 LSLA=0X1A |
| TOS_QS2 ASRA=0X15 |
| BOS_QS2 ASRA=0X18 |
| BOS_RQS ASRA=0X31 |
| IMM_DATA=0X2F LSRA=0X0A |

The same instructions are applicable for the shifter on the B_BUS

| TOS_QS1 LSLB=0X05 |
| TOS_QS2 ASRB=0X17 |
| BOS_QS1 LSRB=0X1F |
| TOS_RQS ASRB=0X2F |
| IMM_DATA=0X2F LSRB=0X0A |

The basic instruction formats for the MULT unit are:

| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | // IMPLIES SHIFT=0X00
| <SHIFTER_A_OP> <SHIFTER_B_OP> <MNEMONIC> | // IMPLIES DEFAULT SOURCE
| SOURCE <SHIFTER_A_OP> | SOURCE <SHIFTER_B_OP> | <MNEMONIC> |

Code examples multiplier instructions where the shifter units are not active:

| TOS_QS1 TOS_QS2 MULT |
| TOS_QS2 TOS_QS1 MULT |
| BOS_QS1 BOS_QS2 MULT |
| BOS_QS2 BOS_QS1 MULT |
| TOS_RQS IMM_DATA=0X4A MULT |
| BOS_RQS TOS_RQS MULT |
| IMM_DATA=0X66 TOS_QS2 MULT |
| IMM_DATA=0X12 IMM_DATA=0X12 MULT |
| IMM_DATA=0X9A BOS_RQS MULT |

Code examples of multiplier instructions where the shifter is active:

TOS_QS1 LSLA=12	TOS_QS2 LSLB=15	MULT
IMM_DATA=0X7E LSLA=21	TOS_QS1 LSLB=11	MULT
BOS_QS1 LSLA=0X1A	TOS_QS2 ASRB=0X17	MULT

The instruction formats for the ADD/SUB unit are:

| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> |
| SOURCE_A_MUX SOURCE_B_MUX <MNEMONIC> |

128

Code examples of add/subtract instruction include:

| ZERO ZERO ADD |
| A_BUS B_BUS_SHFT SAT_ADD |
| RQS_BUS=BOS_RQS MULT_BUS SAT_SUB |
| TOS_QS1 IMM_DATA=0X11 SUB |

A typical scaled-multiply-saturating-accumulate microinstruction would be written as:

1:
| TOS_QS1 LSRB=3 // SCALE (DIVIDE BY 8)
| IMM_DATA=0X17 LSLB=5 // SCALE (MULTIPLY 17 X 32)
| MULT // MULTIPLY SCALED VALUES
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD |:1 // SATURATE ADD

6.4.2 Non-arithmetic operations

There are number of special function instructions which are supported by the

current implementation of the DPE. These include Boolean logic operations and special

function unit (SFU) operations.

6.4.2.1 Boolean logic operations

The inputs to the Boolean Logic Unit are from the output of the shifter. As with

previous instructions the inputs to the shifters must be specified. Additionally, the source

of data on the write-back bus must be specified (see Section 6.4.3 below). The supported

Boolean logic operations are described above in Section 6.3.4.1

The syntax for Boolean logic operations is:

| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | // IMPLIES SHIFT=0X00
| <SHIFTER_A_OPERATION> | <SHIFTER_B_OPERATION> | <MNEMONIC> |

Here is an example of a microcode word that performs a basic logical NAND operation

and writes the result to the QS2 top of stack:

1:
| TOS_QS1 // GET ONE OPERAND FROM TOS_QS1
 IMM_DATA=0X55 // GET FIXED VALUE

129

 NAND // TOS_QS1 NAND 0X55 **
| WB=LU // SELECT LOGICAL UNIT AS SOURCE TO WB
| POP_QS1 // SELECT NEXT OPERAND
| PUSH_QS2 |:1 // PUSH RESULT ON TOS_QS2

** Note: operations can be specified across multiple lines and comments can be inserted

in between for clarity.

Here is an example of a more complex logical operation where the GPIO port is read,

modified and then re-written.

1:
| WB=GPIO // SETUP TO READ GPIO PORT
| PUSH_QS1 |:1 // PUSH ON QS1

2:
| TOS_QS1, LSLB=2 // GET GPIO VALUE
| TOS_QS2, LSRB=4 // GET SAVED OPERAND
| NAND // TOS_QS1 NAND TOS_QS2
| WB=LU // SELECT LOGICAL UNIT AS SOURCE TO WB
| POP_QS2 // SELECT NEXT OPERAND
| GPIO |:2 // STORE TO GPIO PORT

6.4.2.2 SFU syntax

The inputs to the SFU are from the output of the shifter. As with previous

instructions the inputs to the shifters and the source of the data on the write-back must be

specified. The supported SFU operations are described above in Section 6.2.4.2.

The syntax for SFU operations is:

| SOURCE_A_BUS SOURCE_B_BUS <MNEMONIC> | // IMPLIES SHIFT=0X00
| <SHIFTER_A_OPERATION> | <SHIFTER_B_OPERATION> | <MNEMONIC> |

An example of a sequence of SFU microinstructions is shown below. In this example the

minimum value of the TOS_QS1 and TOS_QS2 is inserted into the BOS_QS1 and the

operation continues until the result is greater than the reference value.

1:
| TOS_QS1 LSLB=0 // READ TOS_QS1
| TOS_QS2 LSRB=0 // READ TOS_QS2
| MIN_A_B // MIN TOS_QS1, TOS_QS2
| WB=SFU // SELECT SFU AS SOURCE TO WB

130

| INS_QS1 // INSERT INTO QS1
| POP_QS1 | POP_QS2 |:1 // SELECT NEXT OPERANDS

2:
| BR_SFU_GT=-1 |:2 // BRANCH IF RESULT > REF_DATA

Note: the BR_SFU_GT instruction is described below in Section 6.4.4.3

6.4.3 Write-back operations

There are four sources of write-back data. These include:

1. Arithmetic Unit (Shifter, Multiplier, Adder)

2. Boolean Logic Unit

3. Special Function Unit

4. GPIO Port

The instruction format for specifying the write-back source is:

| WB=SOURCE | // WHERE SOURCE == DP, LU, SFU, GPIO

The write-back data can be simultaneously written to any of the 3 Queued-Stacks,

the output channel FIFO, the general-purpose I/O (GPIO) port, the two compare latches

(WB_LAT and SFU_LAT) and the Operation Queue. The QS1, QS2 and RQS stacks can

perform 15 write-back and/or stack manipulation operations as described above in

Section 6.3.3. Note: the FIFO only supports the basic insert operation.

The stack operation instruction format is:

| <MNEMONIC>_<STACK> | // SINGLE QUEUED-STACK OPERATION
| <MNEMONIC>_<STACK> | <MNEMONIC>_<STACK> | // PARALLEL QUEUED-STACK OPERATION

Coding examples of the various stack operations include:

| PUSH_QS1 |
| POP_QS2 |
| POP_WR_RQS |
| TOP_QS1, BOT_QS2 |
| TOP_BOT_QS1 | PUSH_INS_RQS |
| POP_BOT_QS2 | POP_INS_QS1 | SFU_LAT | WB_LAT |
| POP_WR_BOT_QS2 | PUSH_NW_BOT_QS1 | TOP_INS_RQS | FIFO | GPIO | OP_QUEUE

131

As noted above the write-back data can be written to all 3 Queued-Stacks, the output

FIFO, the Actor/Event Queue and the GPIO port as shown in last code example. This

provides the ability write back result data to a queue while writing it to a stack and

outputting it to the next DPE.

Below are examples of arithmetic operations and Queued-Stack operations:

1:
| ZERO ZERO ADD // ZERO -> ACCUMULATOR
| WB=DP // SELECT DP (DEFAULT)
| PUSH_RQS |:1 // INSERT AT TOS IN RQS

2:
| TOS_QS1 LSLB=12 // SCALE
| IMM_DATA=0X55 LSRB=17 // SCALE
| MULT // MULTIPLY SCALED VALUES
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD // SATURATED ADD
| WB=DP // SELECT DP AS SOURCE TO WB
| PUSH_RQS // WRITE-BACK TO ACCUMULATOR
| POP_QS1 | POP_QS2 |:2 // SELECT NEXT OPERANDS

3:
| WB=GPIO // SETUP TO READ GPIO PORT
| FIFO // WRITE-BACK TO FIFO
| PUSH_QS1 // WRITE-BACK TO QS1
| POP_QS1 | POP_QS2 |:3 // SELECT NEXT OPERANDS

The following code sequence sets up the compare latch in the datapath and illustrates the

its use as part of conditional execution and conditional branching. Conditional branching

is described below in Section 6.4.4.3.

1:
| ZERO IMM_DATA=0X55 ADD // SETUP COMPARE VALUE 0X55
| WB=DP // SELECT DP AS SOURCE TO WB (DEFAULT)
| WB_LAT |:1 // WRITE TO WB COMPARE LATCH

2:
| COND_EXEC_EQ // CONDITIONALLY EXECUTE
| TOS_QS1 LSLB=0X01 // READ TOS_QS1 AND SCALE
| TOS_QS2 LSRB=0X02 // READ TOS_QS2 AND SCALE
| ADD // ADD
| WB=DP // SELECT DP AS SOURCE TO WB (DEFAULT)
| POP_QS1 | POP_QS2 |:2 // SELECT NEXT OPERANDS

3:
| BR_WB_GT=-2 |:3 // BRANCH IF RESULT > 0X55

132

6.4.4 Micro-engine operations

The DPE microcode engine can execute sixteen basic opcodes as shown below in

Table 6.11. The microcode engine is similar to a VLIW machine where multiple

operations can execute simultaneously. In the case of the DPE, branches and datapath

operations can execute in the same microinstruction and event operations can execute in

parallel with datapath operations. However not all three operations can execute in

parallel.

Table 6.11: Mapping of micro-engine opcodes to execution type

OPCODE EXECUTION TYPE

EXEC NON-BRANCHING

EXEC_WB_EQ NON-BRANCHING CONDITIONAL

EXEC_WB_GT NON-BRANCHING CONDITIONAL

EXEC_WB_LT NON-BRANCHING CONDITIONAL

WFE EVENT

JMP UNCONDITIONAL BRANCHING

JMP_HLT UNCONDITIONAL BRANCHING/EVENT

LOOP_BACK UNCONDITIONAL BRANCHING

BRA UNCONDITIONAL BRANCHING

BR_WB_EQ CONDITIONAL BRANCHING

BR_WB_GT CONDITIONAL BRANCHING

BR_WB_LT CONDITIONAL BRANCHING

BR_SFU_GT CONDITIONAL BRANCHING

BR_SFU_LT CONDITIONAL BRANCHING

BR_SFU_EQ CONDITIONAL BRANCHING

TXFR CHANNEL

133

The DPE microinstructions are categorized into three classes of operation:

1. Non-branching datapath execution including conditional and unconditional

operations.

2. Branching execution including conditional and unconditional operations.

3. Event and channel handling operations.

The first two classes of instruction support both non-conditional and conditional

execution. Conditional execution is predicated on the state of one of the three condition

codes that is determined by the previous datapath or SFU operation. As described above

in Section 5.4.1 the DPE supports three condition codes: equal, greater-than and less-

than. The three condition codes are generated by comparing the value on the write-back

bus with a stored reference value. There are two stored values: one for datapath

operations and one for SFU operations. The stored values that are used for the

comparison operations are written using a standard datapath operation that will be

described below.

6.4.4.1 Non-branching operations

EXEC is the only unconditional non-branching microinstruction. The instruction

is assumed to be unconditional if EXEC is not specified in the microinstruction. The

EXEC instruction must be specified when entering a loop. The syntax for an EXEC

instruction that specifies a loop number is:

EXEC=<LOOP NUMBER>

An example of a typical loop instruction sequence is:

1:
| EXEC=1 | RPT=7 // ENTER LOOP #1, REPEAT 7 TIMES
| ZERO ZERO ADD // ZERO -> ACC

134

| INS_RQS |:1 // INSERT AT BOS OF RQS

2:
| POP_QS1 POP_QS2 |:2 // POP VARIABLES OFF OF INPUT STACKS

3:
| LOOP_BACK=-2 |:3 // LOOP BACK TO 1:

There are three conditional non-branching microinstructions: EXEC_WB_EQ,

EXEC_WB_GT and EXEC_WB_LT. An example of a conditional non-branching

microinstruction is:

1:
| EXEC_WB_EQ // CONDITIONAL EXECUTION WB == ZERO
| TOS_QS1 LSLB=12 // SCALE
| IMM_DATA=0X55 LSLB=2 // SCALE
| MULT // MULTIPLY SCALED VALUES
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD // SATURATED ADD
| WB=DP, // SELECT DP AS SOURCE TO WB (IMPLIED)
| PUSH_RQS |:1 // WRITE TO ACCUMULATOR

This microinstruction will execute the store to the RQS if the result from the previous

instruction is a zero.

6.4.4.2 Unconditional branching operations

There are four unconditional branching operations supported by the microcode

engine. These are JMP, JMP_HALT, BRA, LOOP_BACK and are described below in

Table 6.12

Table 6.12: Unconditional branching operations

OPCODE MICRO-OPERATION

JMP JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD

JMP_HLT JUMP TO ADDRESS SPECIFIED IN IMMED_DATA FIELD THEN HALT

LOOP_BACK LOOP BACK FOR LOOP # (NEGATIVE OFFSET ONLY)

BRA BRANCH UNCONDITIONALLY TO ADDRESS SPECIFIED IN BRANCH OFFSET

135

An example of the JMP_HLT micro-operation is shown below.

1:
| ZERO ZERO ADD // ZERO -> ACCUMULATOR
| WB=DP // SELECT DP (DEFAULT)
| PUSH_RQS |:1 // INSERT AT TOS IN RQS

2:
| TOS_QS1 LSLB=12 // SCALE
| IMM_DATA=0X55 LSRB=17 // SCALE
| MULT // MULTIPLY SCALED VALUES
| RQS_BUS=TOS_RQS MULT_BUS SAT_ADD // SATURATED ADD
| WB=DP // SELECT DP AS SOURCE TO WB
| PUSH_RQS, // WRITE-BACK TO ACCUMULATOR
| POP_QS1 | POP_QS2 |:2 // SELECT NEXT OPERANDS

3:
| WB=GPIO // SETUP TO READ GPIO PORT
| FIFO // WRITE-BACK TO FIFO
| JMP_HLT=1 |:3 // JUMP TO 1: AND WAIT FOR NEW EVENT

An example of the LOOP_BACK micro-operation is shown below.

1:
| EXEC=1 | RPT=7 // ENTER LOOP #1, REPEAT 7 TIMES
| ZERO ZERO ADD // ZERO -> ACC
| INS_RQS |:1 // INSERT AT BOS OF RQS

2:
| POP_QS1 POP_QS2 |:2 // POP VARIABLES OFF OF INPUT STACKS

3:
| LOOP_BACK=-2 |:3 // LOOP BACK TO 1:

6.4.4.3 Conditional branching operations

There are six conditional branching operations, 3 for arithmetic operations and 3

for SFU operations. These are described below in Table 6.13.

136

Table 6.13: Conditional branching operations.

OPCODE RPT MICRO-OPERATION

BR_WB_EQ N BRANCH IF WRITEBACK == REFERENCE DATA

BR_WB_GT N BRANCH IF WRITEBACK > REFERENCE DATA

BR_WB_LT N BRANCH IF WRITEBACK < REFERENCE DATA

BR_SFU_GT N BRANCH IF SFU RESULT > REFERENCE DATA

BR_SFU_LT N BRANCH IF SFU RESULT < REFERENCE DATA

BR_SFU_EQ N BRANCH IF SFU RESULT == REFERENCE DATA

The following code shows an example of both conditional execution and

conditional branch operations:

1:
| ZERO IMM_DATA=0X55 ADD // SETUP COMPARE VALUE 0X55
| WB=DP // SELECT DP AS SOURCE TO WB (DEFAULT)
| WB_LAT |:1 // WRITE TO WB COMPARE LATCH

2:
| COND_EXEC_EQ // CONDITIONALLY EXECUTE
| TOS_QS1 LSLB=0X01 // READ TOS_QS1 AND SCALE
| TOS_QS2 LSRB=0X02 // READ TOS_QS2 AND SCALE
| ADD // ADD
| WB=DP // SELECT DP AS SOURCE TO WB (DEFAULT)
| POP_QS1 | POP_QS2 // SELECT NEXT OPERANDS

3:
| BR_WB_GT=-2 |:2 // BRANCH IF RESULT > 0X55

4:
| WB=GPIO // SETUP TO READ GPIO PORT
| FIFO // WRITE-BACK TO FIFO
| JMP_HLT=1 |:4 // JUMP TO 1: AND WAIT FOR A NEW EVENT

137

6.4.4.4 Event operations

There are two event operations. JMP_HALT and WFE. Event operations are

specified as instructions that execute and then wait for an event to occur. The

JMP_HALT is a merged micro-operation where a datapath operation is executed in

parallel to a JMP instruction that then halts the micro-engine at the address specified in

the immediate data field. The WFE (Wait-for-Event) micro-operation halts the micro-

engine at the address to the next microinstruction. Both micro-operations are used to

terminate the execution of an actor.

Here is a code example of an FIR actor that is terminated by a JMP_HALT

instruction:

1:
| ZERO ZERO ADD // ZERO -> ACC
| INS_RQS | :1 // INSERT AT BOS RQS

2:
| TOS_QS1 TOS_QS2 MULT // A(3,2,1) * X(N-3,2,1)
| BOS_RQS MULT_BUS ADD // + ACC
| BOT_RQS // -> ACC
| POP_QS1 | POP_QS2 // POINT AT NEW VARIABLE
| RPT=3 | :2 // REPEAT 3 TIMES

3:
| TOS_QS1 TOS_QS2 MULT // A(0) * X(N)
| BOS_RQS MULT_BUS ADD // + ACC
| FIFO // OUTPUT Y(N) TO FIFO ELEMENT
| POP_QS1 | :3 // CONSUME X(N) TOKEN

4:
| PUSH_QS1 |PUSH_QS2 // RESET VARIABLE POINTERS
| RPT=4 | :4 // REPEAT 4 TIMES

5:
| JMP_HALT=1 |:5 // JUMP AND WAIT FOR NEW X(N) TOKEN

138

Chapter 7. High Level Modeling Environment

The ideal modeling environment for the CSP architecture is one where actors are

instantiated and connected in a graphical schematic environment. Analysis and

simulation are accomplished by netlisting the schematic into a form that can be input to

an SDF aware tool. The tool would do an analysis of the validity of the synchronous data-

flow graph (SDFG) generated by the netlister to confirm that it is consistent and does not

have any deadlock situations. Simulation of the SDFG would be accomplished using

tools such Ptolemy [60] or YAPI [61]. Once the simulation confirms the validity of the

algorithm being designed, the netlist is mapped to an implementation on the CSP. The

implementation determines the number of DPEs and the network topology that connects

the DPEs.

After reviewing many of the options, two modeling environments were

investigated as part of this research: SDF3 and SimEvents®. These are described in the

following sub-sections.

7.1 SDF3

SDF3 is a tool from Eindhoven University of Technology that provides the ability

to analyze, simulate and visualize Synchronous Dataflow Graphs (SDFG) [62].

Additionally it provides transformation services that convert SDFGs to HSDFGs

(Homogenous SDFGs) that can be mapped to multi-processor SOCs, specifically NOC

based systems [63]. This mapping converts a streaming application onto a NOC-based

architecture while determining optimal resource allocation and producing a deterministic

timing behavior. This is required for a CSP with multiple DPEs and for deterministic

time stamping.

139

The key limitation of the tool is that it does not comprehend the Push-Pull

protocol of the channels in the CSP. The tool assumes infinite resources and schedules all

SDF algorithms across the multiple processors accordingly. Recall in Pull-Mode that the

DPE can exert backpressure on the flow of tokens thus eliminating channel buffer

(Queued-Stack) overflow conditions. This limitation is not an issue with SimEvents® as

it allows the various network elements to provide backpressure as a programming option.

SDF3 uses the YAPI [61] tool to provide simulation capability. YAPI is an

application programmer's interface to write signal and stream processing applications as

process networks. The communication between processes is based on Kahn Process

Networks with blocking reads on theoretically unbounded FIFOs.

7.2 SimEvents®

SimEvents® is an event-based simulator from Mathworks [64]. It works in

conjunction with Simulink to model both time-based systems and event-driven systems.

The sensor and ADC sub-system are described in Matlab or built from Simulink library

models. The output of the ADC is converted into a signal-event that is processed by the

SimEvents® simulator. SimEvents® does not perform a computational simulation but

rather simulates entities propagating through the SDF network. Each resource in the

network can be instrumented to determine if there are any errors as the entities propagate.

Additionally, the instrumentation enables debug capability by providing visibility to

various parameters in a particular network resource.

140

7.2.1 Entities and Attributes

SimEvents® uses different terminology to describe an SDF system. Rather than

use tokens it uses entities2 where entities are generated by signal-based events or by time-

based events as shown below in Figure 7.1. The time-based generator launches

entities/tokens into the network at a prescribed rate while the event-based generator only

launches an entity/token when an event is detected on the VC pin.

Figure 7.1: Entity generators

Entities can have multiple attributes attached to them. The attributes are tagged

with descriptor names. The attributes propagate through the network and can be extracted

by referencing the descriptor names. Figure 7.2 below shows the Set-Attribute and Get-

Attribute library elements.

Figure 7.2: Attribute generator and extractor

2 Entities and tokens will be used interchangeably throughout the rest of this document.

141

Figure 7.3 shows a typical dialog box that is used to set the multiple attributes to

an entity. In this case there are two attributes: FSU_Value and the Time_Stamp value.

Figure 7.3: Set-Attribute dialog box

Figure 7.4 shows how the attributes are extracted from an entity. Note the ability

to do error checking if attribute is missing and the ability to set a default value in the case

of a warning.

Figure 7.4: Get-Attribute dialog box

The time based entity generator can issue multiple entities/tokens per time period.

This simulates a system where the need for queuing is needed to prevent overrun. An

event based sequence generator that is set for cyclic repetition is used to trigger the entity

generator as shown below in Figure 7.5.

142

Figure 7.5: Time-based entity generator example

7.2.2 Servers

SimEvents® uses the concept of a Server to process entities (tokens). This is

effectively an SDF actor with exception that it does not consume entities and it has only

one input. Entities are consumed by using a switch block in front of the server as shown

below in Figure 7.6. In this example the number of tokens is divided by 2 before entering

the Actor/Server3.

Figure 7.6: Token consumer

The actor processes input tokens and dispatches the output tokens after a

prescribed number of event cycles. The actor has a single input so all tokens must be

3 Servers and actors will be used interchangeably throughout the rest of this chapter.

143

combined before entering the actor/server. This is accomplished using a token combiner

as shown below in Figure 7.7.

Figure 7.7: Example of a token combiner feeding a token consumer

7.2.3 FIFOs and LIFOs

SimEvents® supports both queues (FIFOs) and stacks (LIFOs). These elements

are used to store entities for processing by the server. In Figure 7.6 above, the output the

two token queues are combined into a composite token that is fed to the actor. The depth

of the queues can be specified using the dialog box and can be instrumented to show

statistical data on the entities/tokens entering and leaving the queue as shown below in

Figure 7.8.

144

Figure 7.8: Dialog box for a queue element

As mentioned above, SimEvents® uses a Pull-Mode to propagate entities/tokens

through the network. If there is a resource that is busy, the queue will continue to fill until

it cannot handle new tokens. The elements that are launching tokens into the network

need to be configured to produce an error condition when the network cannot process the

required number of tokens per unit of time.

7.2.4 CSP Modeling

Figure 7.9 shows a CSP SimEvents® model with two Functional Service Units

(FSU) and three Dataflow-Processing Elements. The FSUs are token generators that

launch tokens into the network. Each token has two attributes as shown above in Figure

7.3.

145

Figure 7.9: CSP SimEvents® Model

The DPEs process the tokens and outputs them to a communications element that

is modeled as a token sink. DPE_1 and DPE_2 are modeled with a single queue and a

single actor as shown below in Figure 7.10. Note the instrumentation ports on the actor.

These are used to determine optimal resource allocation for the single queue DPE.

Figure 7.10: Single queue DPE model

146

DPE_3 is modeled with two queues, a token combiner, token consumer and a

single actor as shown below:

Figure 7.11: Multiple queue DPE model

The actor in this model is configured to measure the number of tokens that are

processed and the average wait time for every token. Figure 7.12 shows the output from

the average wait time scope and Figure 7.13 shows the total number of tokens that are

processed by DPE_3. The average wait time is two time units once the tokens reach the

actor at time 7. This indicates that the actor requires two clocks to process the data.

Each dot on a line in the graph indicates a token. In this example there is only one

token per time unit. However the token combiner shows two tokens per time unit (Figure

7.14). The actor in DPE_3 is designed to consume two tokens and issue only one and is

accomplished by the token consumer as shown above in Figures 7.6 and 7.11.

147

Figure 7.12: Average wait time for tokens entering DPE_3

Figure 7.13: Total number of tokens processed by DPE_3

Event time

W
ai

t t
im

e

Event time

To

ke
ns

148

Figure 7.14: Total number of tokens leaving the Token Combiner

7.3 Summary

SimEvents® is a reasonably good tool to model and simulate a deterministic CSP

topology. A SimEvents® simulation is primarily used to confirm that there are no

overrun situations in the queues and the actors. If a NOC topology is required, a

combination of SDF3 and SimEvents® may be needed to generate deterministic results

(Note: this has not been researched as part of this work). It is possible though to generate

a statistical model of an NOC topology using SimEvents® as it provides the ability to

launch and propagate tokens using various types of algorithms that can be specified using

MATLAB. The NOC network is modeled as switches that propagate packets through the

network attempting to generate a deadlock situation.

Event time

To

ke
ns

149

Chapter 8. Results

8.1 Overview

Two performance critical workloads were analyzed as part of this research. The

workloads are the core routines for FIR and IIR filter applications [65] [66]. These are

also used for the energy-delay and energy-performance analysis described below in

Section 8.4. The DPE was compared to the ARM Cortex-M3 [67] [68] and the Pleiades

[14] processor. The M3 was selected as it is used in a large number of embedded

applications and is a general-purpose computer. The Pleiades processor was chosen, as it

is an excellent example of a low power application specific processor.

8.2 FIR Filter Performance

Figure 8.1 shows the FIR filter configuration that executes in ten clock cycles and

is implemented with 5 microinstructions.

Figure 8.1: FIR filter configuration

The data storage configuration for the FIR filter calculations is shown below in

Figure 8.2. IQS1 is used to store the incoming data tokens from the channel node. The

Z-1 Z-1
X(n)

Z-1

XA(0) XA(1) XA(2) XA(3)

+ + + +Y(n)

X(n-1) X(n-2) X(n-3)

150

tokens are inserted at the bottom of the stack. The old tokens are overwritten when the

BOS pointer recirculates. IQS2 is used to store the filter variables for each of the stage

multipliers. The addition results are accumulated in the RQS element. The filter

calculations proceed from oldest data token to the most recent. The TOS pointers for

IQS1 and IQS2 are popped to point at the next variable and token for each multiplication

step. NOTE: The initial conditions for the TOS/BOS pointers for each Queued-Stack are

shown below.

Figure 8.2: Initial data storage configuration for FIR filter routine

The code sequence below does not include the initialization code to set up the

variables in in IQS2. This requires 4 clock cycles assuming that the variables are stored

as constants in the microcode word.

1:
| ZERO ZERO ADD // ZERO -> ACC
| INS_RQS | :1 // INSERT AT BOS RQS

2:
| TOS_QS1 TOS_QS2 MULT // A(3,2,1) * X(N-3,2,1)
| BOS_RQS MULT_BUS ADD // + ACC
| BOT_RQS // -> ACC
| POP_QS1 | POP_QS2 // POINT AT NEW VARIABLE
| RPT=3 | :2 // REPEAT 3 TIMES

X(n)
X(n-1)
X(n-2)
X(n-3) TOS
X(n-4)

BOS

INSERT

IQS-1

A(0)
A(1)
A(2)
A(3)

?????

BOS

INSERT

IQS-2

ACC
ACC(-1)
ACC(-2)
ACC(-3)

TOS

ACC(-4)

BOS

INSERT

RQS

TOS

151

3:
| TOS_QS1 TOS_QS2 MULT // A(0) * X(N)
| BOS_RQS MULT_BUS ADD // + ACC
| FIFO // OUTPUT Y(N) TO FIFO ELEMENT
| POP_QS1 | :3 // CONSUME X(N) TOKEN

4:
| PUSH_QS1 |PUSH_QS2 // RESET VARIABLE POINTERS
| RPT=4 | :4 // REPEAT 4 TIMES

5:
| JMP_HALT=1 |:5 // JUMP AND WAIT FOR NEW X(N) TOKEN

The first microinstruction inserts a ZERO into the BOS of the Result-QS, which is

used as the accumulator for MULT-ADD instructions. The second microinstruction is

repeated 3 times and executes a MULT-ADD of the last 3 stages of the filter,

accumulating the result in the RQS. The third microinstruction does a MULT-ADD of the

new data token and the A(0) filter variable and issues a POP command to consume the

X(n) variable. The result is also sent to the output FIFO using WB_FIFO command in the

same microinstruction. The fourth microinstruction resets the TOS pointers to point to the

A(3) filter variable and the new X(-3) data token. The JMP_HLT microinstruction

branches back to the second instruction that clears the accumulator and waits for the next

data token. Once the X(n) variable is inserted into the BOS of IQS1, the channel node

issues a FIRE signal to the DPE and the sequence repeats itself.

Table 8.1: FIR Throughput comparison

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

DELAY 50ns 71ns 100ns

THROUGHPUT (CYCLES/FIR) 107 4 10

152

Table 8.1 above shows the FIR throughput comparisons for the Cortex-M3

processor from ARM, the Pleiades processor and the DPE. The Pleiades uses a special

DSP to provide the excellent throughput numbers, however, as described in the next

chapter it requires more energy to do so.

8.3 IIR Filter Performance

Figure 8.3 below shows a Bi-Quad IIR filter configuration that can be

implemented in 9 microinstructions and 11 clocks.

Figure 8.3: IIR filter configuration (Bi-Quad)

The data storage for the IIR filter calculations is shown below in Figure 8.4. This

includes the initial conditions of the TOS/BOS pointers. There are two summing nodes.

Each one is a separate entry in the RQS. The first sum is inserted into the bottom of the

RQS and it becomes the V(n-1) variable the next time the filter is evaluated. The second

sum replaces the V(n-2) variable once it is used.

Z-1

X(n)

X

B(1)

+

+ + Y(n)V(n)

Z-1

X

B(2)

X

A(1)

X

A(2)

+

X

B(0)

+

+V(n-1)

V(n-2)

153

Figure 8.4: Initial data storage configuration for IIR filter routine

In the following IIR code example the status of the three Queued-Stacks will be

annotated after the execution of each microinstruction.

1:
| ZERO TOS_QS1 ADD // V(N) = X(N)
| PUSH_NW_BOT_RQS |:1 // WRITE -> V(N) AND POINT @ V(N-1)

2:
| TOS_RQS TOS_QS2 MULT // V(N-1) * A(1)
| BOS_RQS MULT_BUS ADD // ADD TO V(N)
| PUSH_NW_BOT_RQS // WRITE -> V(N) AND POINT @ V(N-2)
| POP_QS2 |:2 // POINT @ A(2)

3:
| TOS_RQS TOS_QS2 MULT // V(N-2) * A(2)
| BOS_RQS MULT_BUS ADD // ADD TO V(N)
| PUSH_NW_BOT_RQS // WRITE -> V(N)AND POINT @ Y(N)
| POP_QS2 |:3 // POINT @ B(2)

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2
TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)

TOS/BOS

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2
TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)
TOS

BOS

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)
TOS

BOS

TOS

154

4:
| BOS_RQS BOS_QS2 MULT // V(N) * B(0)
| TOS_RQS MULT_BUS ADD // ADD TO Y(N)
| POP_INS_RQS |:4 // WRITE -> Y(N) TO BOS

5:
| TOS_RQS TOS_QS2 MULT // V(N-2) * B(2)
| BOS_RQS MULT_BUS ADD // ADD TO Y(N)
| POP_BOT_RQS // WRITE -> Y(N)
| POP_QS2 |:5 // POINT @ B(1)

6:
| TOS_RQS TOS_QS2 MULT // V(N-1) * B(1)
| BOS_RQS MULT_BUS ADD // ADD TO Y(N)
| POP_BOT_RQS // WRITE -> Y(N) POINT TO V(N-2)
| FIFO |:6 // OUTPUT TO FIFO

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)

TOS

BOS

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2) TOS

BOS

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)
TOS

BOS

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2) TOS

BOS

155

7:
| ZERO BOS_RQS ADD // GET Y(N)
| TOP_RQS |:7 // WRITE -> Y(N)

8:
| POP_RQS // RESET RQS POINTER
| PUSH_NW_QS2 // RESET QS2 POINTER
| RPT=3 |:8 // REPEAT 3 TIMES

9:
JMP_HALT=1 |:9 // JUMP AND WAIT FOR NEXT TOKEN

Table 8.2 below shows the FIR throughput comparisons for the Cortex-M3, the

Pleiades processor and the DPE.

Table 8.2: IIR Throughput comparison

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

DELAY 50ns 71ns 100ns

THROUGHPUT (CYCLES/IIR) 129 8 11

The Pleiades processor has greater throughput than the DPE due to the fact that it

has two MAC units. As we will see in the next chapter, the DPE is between 1.5X and 3X

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2

TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

V(n+1)

V(n)

V(n-1)

RQS
TOS

BOS

Y(n)

B(0)
B(1)
B(2)
A(2)
A(1)

BOS

IQS2
TOS

X(n)
X(n-1)
X(n-2)
X(n-3)
X(n-4)

TOS/BOS

IQS1

Y(n)

V(n)

V(n-1)

RQS

V(n-2)

TOS
BOS

156

better in Energy-Delay/Operation than the Pleiades. This is a benefit for the class of

workloads that the DPE is designed to perform. In addition, the benefits of composability

will be analyzed where the energy-performance costs of adding multiple DPE’s is shown

to be minimal.

8.4 DPE energy analysis

There are four energy analysis techniques that were used to benchmark the energy

performance of the DPE. These are: Energy-Delay product (E-D), Energy/Instruction,

Energy-Delay/Operation and Energy Performance Percentage Ratio (EPPR). Before

proceeding it is necessary to review the energy and power relationships that are key to

this analysis.

Recall that power is defined as:

And that power is also defined as:

Where Tprogram is the program (workload) execution time and is defined as the number

of instructions required to execute the program multiplied by the clock period per

instruction:

157

Energy4 can then be defined as:

Energy per instruction is simply one instruction multiplied by the clock period:

The current (Ickt) is defined as:

Therefore

Where is generally equal to Vdd (for digital logic). This also assumes that

Capswitch is charged and discharged every cycle, which is only true for clock signals. The

energy usage is decomposed into two components, one from clock nodes switching and

one from logic nodes switching:

Recall that logic nodes only switch every other cycle, which is accounted for by the ½

term in the equation. The energy equation can be converted to a power equation by

multiplying it by 1/sec.

4 Energy is expressed in Watt-Seconds or Watts/Frequency. One Joule of energy is equivalent to 1

Watt-Second.

158

8.5 DPE Energy-Delay

One figure of merit in the design of the DPE is the Energy-Delay (E-D) product.

Figure 8.5 below shows the relationship between energy, delay and the E-D product. The

optimal area to operate is between the dashed lines where the energy-delay product is

minimal.

Figure 8.5: Energy-Delay product relationship

To further understand the application of energy-delay, refer to the schematic

shown below in Figure 8.6 where one inverter is connected to another inverter via a wire.

The input gate capacitance of the inverter is Cg and the capacitance of the wire is Cw.

DELAY

ENERGY

ENERGY-DELAY

159

Figure 8.6: E-D Inverter schematic

Recall that delay is proportional to the ratio of gate + wire capacitance to load

capacitance [69]:

Energy is proportional to the amount of capacitance that is charged in a cycle:

The Energy-Delay product is then:

The optimal Energy-Delay minima occurs when the derivative of the Energy-Delay

product with respect to Cg is zero:

The optimal Energy-Delay occurs when Cg = Cw.

Cg Cw Cg

160

There are additional Energy-Delay metrics where the impact of the delay

component is emphasized, e.g., Energy-Delay
2
 or Energy-Delay

3
. Table 8.3 below shows

the results of the various optimizations that can be done using the Energy-Delay product.

Table 8.3: Energy-Delay optimizations

OPTIMAL ENERGY CG = MIN

OPTIMAL ENERGY-DELAY CG = CW

OPTIMAL ENERGY-DELAY
2
 CG = 2*CW

OPTIMAL ENERGY-DELAY
N

 CG = N*CW

OPTIMAL DELAY CG =

The DPE was synthesized for a broad range of frequencies to analyze the

synthesis results on energy and delay. Figure 8.7 below shows that the DPE architecture

uses approximately the same energy/filter-operation in the operating range of 10–25

MHz. The slight increase in energy usage over this range is due to the impact of the clock

tree synthesis tool optimizing setup and hold times. At 30 MHz and above the synthesis

tool uses the larger size standard cells that increase the area and the amount of

interconnect wiring.

161

Figure 8.7: Energy vs. Cycle-Time for the IIR and FIR workloads

The energy-delay analysis of the DPE was done using a 180nm mixed-signal

process. The DPE logic was synthesized and the layout generated by DC-Topo/ICC from

Synopsys using the typical process corner at 85°C. The layout parasitics were extracted

using Calibre from Mentor Graphics. The timing and energy values were then derived

using PrimeTime (PT) and PrimeTime-PX (PTPX) respectively.

Tables 8.4 and 8.5 below show the energy-delay for the DPE, a reconfigurable

DSP (Pleiades) developed at UC-Berkley [14] and the Cortex-M3 from ARM [67]. The

Cortex-M3 is widely used in embedded designs as both a general-purpose processor and

a DSP. The reconfigurable DSP from UCB is an excellent example of a DSP

implementation that is tuned for similar filter applications as the DPE.

The throughput and energy values for the Pleiades DSP were derived from the

600 nm implementation specified in [14] using the scaling calculations defined by the

authors for their own benchmarking exercise. The energy calculations for the Cortex-M3

are derived from an 180nm reference design [71]. A DSP library of filter functions

designed specifically for the Cortex-M3 [68] was used to determine the throughput. The

162

DPE energy values are derived from PTPX using a 180nm extracted netlist. All DPE

benchmarks use 16-bit integer data tokens and 48-bit integer results.

Table 8.4: FIR Energy-Delay benchmarks

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

DELAY 50ns 71ns 100ns

ENERGY 148.9pJ 61.5pJ 5.64pJ

ENERGY-DELAY (J-S X 10-18) 7.44 4.36 .564

Table 8.5: IIR Energy-Delay benchmarks

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

DELAY 50ns 71ns 100ns

ENERGY 169.0pJ 70.1pJ 7.13pJ

ENERGY-DELAY (J-S X 10-18) 8.45 4.97 .713

At first glance it looks like the Cortex-M3 is roughly 1/2 the performance of the

Pleiades. However when comparing the IIR and FIR operations performed by the two

machines the Pleiades is 15-25 times better than the Cortex-M3. This is a limitation of the

E-D analysis and is described below where we look at energy-delay per operation.

Tables 8.6 and 8.7 below shows the Energy-Delay product for the DPE data

presented above in Tables 8.4 and 8.5 for various operating frequencies at VDD=1.8V.

163

Table 8.6: FIR Energy-Delay for various cycle times

Cycle-Time 10ns 20ns 40ns 60ns 80ns 100ns

ENERGY/INSTRUCTION 47.9PJ 21.1PJ 8.10PJ 7.13PJ 6.48PJ 5.64

ENERGY-DELAY (J-S X 10-18) .48 .421 .324 .428 .518 .564

Table 8.7: IIR Energy-Delay for various cycle times

Cycle-Time 10ns 20ns 40ns 60ns 80ns 100ns

ENERGY/INSTRUCTION 61.5PJ 25.9PJ 10.37PJ 9.07PJ 8.10PJ 7.13PJ

ENERGY-DELAY (J-S X 10-18) .616 .518 .415 .544 .648 .713

Figure 8.8: DPE Energy-Delay/Actor for cycle-time design points

Figure 8.8 above shows the graph of the Energy-Delay/Actor. Note that 25MHz is

the optimal operating point for the DPE from an E-D perspective. This data needs to be

considered in context with other key system metrics. For example, executing an IIR 2.5

164

times faster (25MHz vs. 10 MHz) at a better E-D is beneficial if the 25MHz clock is shut

off when the DPE is idle. Otherwise the idle clock power will negate the benefits of the

lower E-D during normal operation.

8.6 DPE Energy/Instruction vs. Energy-Delay/Operation

Energy per instruction is another measurement of the efficiency of computational

element and is typically measured in Joules/Instruction. A variation of this measurement

is Watts/IPS or the more widely used variant: MIPS/Watt. The derivation of this equality

is shown below:

Analyzing energy per instruction can provide an interesting mechanism for

measuring the impact of control logic on the overall energy usage of a particular

microarchitecture. The complexity of the control logic is a function of the instruction set

architecture (ISA), the depth of the pipeline and complex features such as register

renaming, branch prediction, prefetching, etc. For energy sensitive processors like the

DPE, increasing the complexity of the control logic has minimal impact on performance

and consumes more area, power in addition to impacting cycle time [70]. Ideally the ratio

of control logic to datapath logic for this class of machines is much less than 1:1. The

DPE has a ratio of 0.36:1 due in large part to the single cycle microcoded control logic

design. Table 8.8 below shows the Energy/Instruction for the various computational

elements that are used in embedded sensor applications. Note: the Pleiades numbers are

for a 600nm process and were scaled to 180nm for this energy analysis exercise.

165

Table 8.8: Energy/Instruction for various computational elements

Processor
Arch
Style

Data
Path

Width

Event
Driven

Memory
(KB)

Process
(nm)

Voltage MIPS
Energy

(pJ/Inst)

SNAP
RISC+

Accel
16 Y 8 180

1.8

0.6

200

23

218

24

BitSNAP RISC 16 Y 8 180
1.8

0.6

54

6

152

17

Subliminal GP 8 Y 0.256 130 ~0.360 0.8 2.6

Pleiades DSP 16 N 0.512 600 1.5 14 205

SmartDust RISC 8 N 3.125 250 1.0 .5 12

Atmel
128L GP 8 N 132 350 3.0 7.3 3200

Intel
XScale GP 32 N 8 130 1.65 400 1100

There are a number of limitations with using the energy/instruction metric to

benchmark different microarchitectures because it does not comprehend how much work

is accomplished with each instruction, nor does it account for the different technologies

and power supply voltages that a particular architecture uses. The first limitation can be

addressed by measuring Energy-Delay/Operation instead of Energy/Instruction if the

frequency of machine and the number of instructions it takes to complete an operation are

known. The second limitation can be partially addressed by normalizing the impact of

technology scaling on the energy-delay [73].

Tables 8.9 and 8.10 below show the results of the Energy-Delay/Operation for the

IIR and FIR operations including frequency and throughput numbers. As mentioned

above, the M3 and the DPE are implemented in 180nm technology and the Pleiades is

implemented in 600nm and scaled to 180nm.

166

Table 8.9: FIR Energy-Delay/Operation Benchmarks

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

CYCLE-TIME 50NS 71.4NS 100NS

THROUGHPUT (CYCLES/FIR) 107 4 10

SWITCHED-CAPACITANCE/FIR 4.92NF 126PF 17.4PF

ENERGY/FIR 15,941PJ 285PJ 56.4PJ

ENERGY-DELAY/FIR (J-S X 10-18) 85,284 81.3 56.4

Table 8.10: IIR Energy-Delay/Operation Benchmarks

 Cortex-M3 Pleiades DPE
VDD 1.8 1.5 1.8

FREQUENCY (MHZ) 20 14 10

CYCLE-TIME 50NS 71.4NS 100NS

THROUGHPUT (CYCLES/IIR) 129 8 11

SWITCHED-CAPACITANCE/IIR 6.73NF 295PF 22.6PF

ENERGY/IIR 21,805PJ 659PJ 78.3PJ

ENERGY-DELAY/IIR (J-S X 10-18) 140,642 376.8 86.1

The DPE is obviously better than the M3 and the Pleiades processors for these

particular workloads. The limitation of the DPE is that it has very little local storage and

is suited primarily for low energy streaming data applications. For workloads that require

large amounts of storage, the Pleiades processor is a better choice; however, the CSP is

easily scaled to handle larger workloads by composing multi-DPE systems. This is

described in the following section.

167

8.7 Energy Performance Percentage Ratio

Another interesting figure of merit is the scaling relationship (ratio) between

energy and performance; in other words, the impact on performance when energy is

increased or decreased. Ideally a 1% increase in energy results in a 1% increase in

performance. If one considers that energy is a proxy for the number of transistors then

adding 1% more transistors should result in a 1% improvement in performance. Taking

this to an extreme, adding an additional processor core should double the performance.

We know that is generally not the case especially as the number of cores increases

beyond a certain limit. The problem of course goes back to equation 1.1 where we need

to impedance match the application domain, the software compiler domain, the

microarchitecture domain and the lastly the transistor technology domain.

This section discusses three basic areas of optimization: energy optimized,

energy-performance optimized and performance optimized. Each area has an impact on

resulting the micro-architectural optimizations and environmental conditions i.e., VDD,

frequency, temperature, etc. Performance can be specified many different ways. It is

generally in the form of a standard benchmark like SPEC [74], TPC [75], EEMBC [76]

or something more algorithmic specific such as Multiply-Accumulates/Second. In all

cases, performance has a temporal component where each benchmark is measured by

how quickly it completes the benchmark. Figure 8.9 shows the relationship between

energy and performance and introduces the concept of Energy Performance Percentage

Ratio (EPPR).

168

Figure 8.9: Energy-Performance relationship

There are three regions of interest: 1) EPPR < 1 where an increase in energy

results in a proportional increase in performance and 2) the 1<= EPPR <= 2 region where

a moderate increase in energy produces reasonable performance increase or 3) EPPR > 2

where an increase in energy provides a marginal increase in performance while

asymptotically approaching a finite performance limit. EPPR= n is the point of inflection

between region 1 and 3 and is derived below.

In this derivation E(x) is the energy expended modifying a particular variable (x)

such as supply voltage, number of processor cores, number of pipeline stages, cache size,

etc. P(x) is the resulting performance improvements that modifying each variable

provides. This is accomplished by taking the derivative of energy vs. performancen and

then solving for n.

PERFORMANCE

EN
ER

G
Y

EPPR = n

Emin

EPPR < 1

EPPR > 2

169

This results in the following relationship:

Solving for the energy and performance ratios:

Solving for n:

The ratio is then expressed as:

This indicates that a 1% increase in performance costs n% increase in additional

energy.

The three EPPR operating regions roughly map to the following characteristics in

general purpose computation elements [77]:

1. Energy Optimized: EPPR < 1

• Run at low VDD

• Mostly small devices

• Shallow pipeline

2. Energy – Performance: 1<= EPPR <= 2

• Run at nominal VDD

• Moderate pipeline depth, moderate instruction level parallelism

170

3. Performance optimized: EPPR > 2

• Run at maximum VDD

• Little concurrency in application

• Deep pipelines

An example of EPPRs for two different variables is shown in Figure 8.10. The

system designer would use these EPPRs to determine which region to operate in.

Figure 8.10: EPPRs for different design variables

One of the key advantages of this platform is that it is easy to compose a system

of multiple DPEs. Figure 8.11 below shows the four configurations that were analyzed to

determine the impact of multiple DPEs on EPPR. The performance metric for this

evaluation is “token throughput” where the throughput increase is approximately linear

with the additional number of DPEs. The system is tuned for minimal token wait time for

all four configurations.

0.5

EP
PR

Processors

1.0

1.5

2.0

2.5

1->2 2->3 3->4 4->5 5->6 6->7 7->8

1.0

EP
PR

Number of pipeline stages

1.5

2.0

2.5

3.0

1->2 2->4 4->8 8->16 16->32

171

Figure 8.11: DPE topology for EPPR evaluation

Each system configuration has a single output and executes a Fuzzy Logic based

data fusion algorithm on each DPE. The fusion algorithm is described above in Section

3.6.1. The algorithm is implemented using four Actors as shown below in Figure 8.12.

The tokens passed between Actors are annotated in the figure as they propagate through

the SDF network. The tokens are stored in IQS1, IQS2 and RQS as shown below in

Figure 8.13. IQS-1 receives tokens from Channel-1 and IQS-2 from Channel-2. RQS is

used to store the Change, Rate-of-Change, Weight and Drift data. The fusing algorithm

requires 35 clock cycles per operation.

Result

3-DPE 7-DPE 15-DPE 1-DPE

172

Figure 8.12: Actors used in Fuzzy Logic fusing algorithm

Figure 8.13: Queued-Stack storage for Fuzzy Logic fusing algorithm

Table 8.11 below shows the Energy-Delay/Operation for the four multi-DPE

topologies.

2

4

2

8 4 1

IQS2

TOS

SEN1(n)

TS1(n)

IQS1

Drift(n-1)

Weight(n)

Drift(n)

RQS

Weight(n-1)

TOS

BOS BOS
ROC(n)

CH(n)

ROC(n-1)

CH(n-1)

ROC(n-2)

CH(n-2)

ROC(n-4)

CH(n-3)

SEN1(n-1)

TS1(n-1)

SEN1(n-2)

TS1(n-2)
SEN1(n-3)

TS1(n-3)

SEN1(n-4)

TS1(n-4)

TOS

SEN2(n)

TS2(n)
BOS

SEN2(n-1)

TS2(n-1)

SEN2(n-2)

TS2(n-2)
SEN2(n-3)

TS2(n-3)

SEN2(n-4)

TS2(n-4)

In
se

rt

In
se

rt

173

Table 8.11: Energy-Delay/Operation benchmarks for fusing algorithm

 1-DPE 3-DPE 7-DPE 15-DPE
VDD 1.8 1.8 1.8 1.8

FREQUENCY (MHZ) 10 10 10 10

CYCLE-TIME 100NS 100NS 100NS 100NS

SENSOR CHANNELS 2 4 8 16

THROUGHPUT (CYCLES/OP) 35 35 35 35

SWITCHED-CAPACITANCE/OP (PF) 67.6 212.8 548.5 1357.8

ENERGY/OP (PJ) 218.9 689.4 1772.2 4596.1

ENERGY-DELAY/OP (J-S X 10-18) 766.1 804.3 888.6 1072.4

EPPR 0.35 0.42 0.62 1.93

Figure 8.14: Impact of multiple DPEs on EPPR for a tree topology

Figure 8.14 above shows the EPPR for the four multi-DPE systems described

above. The variable in this case is the number of cores. For ten DPEs the EPPR is still

less than 1. At 15 DPEs the EPPR approaches 2. The decrease in energy efficiency is

174

primarily due to the limitations of the physical implementation of a multiple DPE

substrate resulting in a larger die size and increased wire capacitance (Figure C.2 below).

Additionally, the global clocking and signal routing power increases proportionally to the

X-Y growth of the resulting die.

Figure 8.15 below shows the impact of token wait times on EPPR for the 4

different DPE platform configurations. Looking at token wait times and the impact on the

energy utilization is a useful EPPR to consider as there are a number of variables which

impact token wait time including: algorithmic mapping to actors, actor placement on

multiple DPE’s, clock frequency, etc. For this evaluation the clock frequency is constant

and optimized for maximum performance for each configuration. The token delays are

randomly introduced into the network by using an event triggered delay element.

Figure 8.15: Impact of Token Wait Time on EPPR

175

As expected the impact of token wait times impacts a single DPE more than a 15

DPE platform. Obviously the system designer should optimize the number of DPE’s, the

clock frequency and actor placement to minimize the effects of token wait time on EPPR.

8.8 DPE Performance and Energy Analysis Summary

Energy-Delay is not a good indicator of energy usage from a benchmarking

perspective. It is good for optimizing the physical implementation of a computational

element for a specific architectural implementation. Energy-Delay/Operation on the other

hand provides a composite view of the impact of architectural and physical

implementation decisions on energy usage vs. performance for various benchmarks.

EPPR is very useful for determining the sensitive variables of a particular architecture or

implementation with respect to the workloads targeted for the platform. These variables

are optimized as needed to generate an optimal composite EPPR.

As can be seen from the energy analysis data presented above, the DPE has been

optimized for low energy operation with the optimal level of performance for embedded

sensor workloads. The composability of the DPE provides the capability to build higher

performance systems with minimal degradation of EPPR for certain workloads.

A number of micro-architectural features were instrumental in achieving optimal

energy-performance/operation. These have been described above and include:

• One-hot control signals that eliminate decode logic and associated glitching

power.

• Novel stack based register file system that uses one-hot shifters that eliminate

decoding logic.

• Single cycle pipeline depth.

176

• Multiplexed latches in the datapath to eliminate spurious transactions

• Single cycle RPT instruction that requires only one access to the microcode

memory for each loop.

• Nested looping, which eliminates branch instruction execution.

• Conditional execution, which eliminates branch instruction execution

overhead.

• Self timed operation using the SDF “firing” mechanism

• Extensive clock gating.

177

Chapter 9. Final Observations and Future Work

It is a virtual certainty that battery technology will not improve at the same rate as

transistor technology in the foreseeable future. This will require system designers to

continuously improve the energy efficiency of energy-limited systems. The challenge is

both technical and economical. This dissertation illustrated a number of technical

methods to improve energy and computational efficiency. What it did not do is look at

the economical feasibility of crafting a new platform for a specific class of workloads.

For low volume applications the costs of a COTS design can be prohibitive. Adding

flexibility to a platform modifies the computational efficiency by producing an

impedance mismatch between the hardware and software domains. Yet it may provide

the ability to increase the production volume of the platform and make it feasible to pay

for the NRE (non-recurring expense) of designing and validating a new platform. The

NOC implementation of the CSP provides some of this flexibility at the expense of

increased communication overhead. It can be economically feasible if the number of

supported workloads is sufficient [78].

The processing element presented in this dissertation is a unique amalgam of

micro-architectural features from 30 years of computer design. These include microcode

controlled dataflow engine, Fuzzy Logic acceleration, lookup table capability, Queued-

Stack based register file and scale-multiply-accumulate ALU functionality. The low

overhead composability of the platform provides excellent scalability that can be matched

to the algorithmic workload of a particular sensor system. The ability to directly map and

execute SDF based algorithms eliminates the overhead of an operating system and

requisite middleware. The mapping of SDF based algorithms to the platform is

178

accomplished by simply instantiating actors using a graphical modeling and simulation

environment.

There are four patentable ideas that resulted from the amalgamation process. The

first one is the merged Queued-Stack with its unique control functions to perform

multiple stack/queue operations in a single cycle. The second is the Actor/Event queue

that uses a variant of the Queued-Stack to dynamically control the sequencing of the DPE

while allowing asynchronous events to be inserted into the actor stream and squashed

upon execution. The third is the low-energy microcode engine with its n-way looping,

repeat function and conditional execution capabilities. The last includes sending actors

and/or events with data tokens. The actors or events can be used to modify the operation

of the down-stream SDF processing element(s).

There are a number of research areas that can be pursued based on the work in

this dissertation. These include:

• Analyze the EPPR for various Network-on-Chip topologies. NOC’s are ideal for

some algorithms but not all. The EPPR of an NOC is highly dependent on the

utilization of the processing elements and the network. There are numerous

challenges mapping and scheduling network traffic in NOCs. There is also high

level modeling challenges associated with NOCs. As mentioned in Chapter 7,

SimEvents® can be used to statistically model the network traffic to determine

throughput, however, it may not be adequate to detect potential deadlock or live-

lock situations.

• Develop an SDFG model using YAPI [61] to validate the algorithms that will be

mapped to an NOC or to a fixed function topology. This model would detect

deadlock or live-lock situations. These situations can arise in implementations

179

where the DPEs are algorithmically changing their operating mode based on the

environmental changes that are occurring to sensors, battery, etc.

• Develop an energy modeling environment in SimEvents® that uses attributes

attached to tokens to propagate cumulative energy usage data through the

network. Each actor can be well characterized as to the amount of energy required

to perform a particular function. This information can be attached to the output

tokens and analyzed as the tokens enter the communication element.

• Advanced communication protocols such as ANT™ [41] should be researched.

Most of the energy in an embedded sensor system is consumed by the

communication system. Should a star configuration be used, or would a

distributed network system provide better energy utilization?

• The microcode programming environment needs lots of help. While using Excel

is a unique method for writing microcode, there are potentially better solutions

that should be considered. For systems with a small number of actors, it may be

feasible to synthesize the entire microcode control unit while saving area and

reducing power.

• The system level programming of the CSP can be done a number of different

ways. Algorithms can be specified graphically or in textual format. Which way

works the best for an SDF based platform? How is the resulting program mapped

to the CSP? Many of the UC Berkley tools look like they could be modified to

work in conjunction with YAPI and SimEvents.

• Research additional SFU functionality for algorithmic specific support. Are there

better accelerators for data fusing?

• Research QDI (Quasi-Delay0Insensitive) and NDI (Non-Delay-Insensitive)

implementations of the DPE.

180

Appendix A. Fuzzy Logic Tutorial

The flow diagram for a Fuzzy Logic system [30] is shown below in Figure A.1.

There are two steps in designing a Fuzzy Logic system. First, the system designer must

design a set of rules and membership functions that the evaluation engines will use.

Secondly, the system designer has to design a fuzzy inference kernel that takes the

system inputs and produces outputs based on the rules and membership functions.

Figure A.1: Flow diagram of a Fuzzy Logic system

A.1.0 Membership Evaluation (Fuzzification)

During membership evaluation, the system input values are compared against

stored input membership functions to determine the degree of membership. This is

accomplished by finding the y-axis intercept point for the current input value on a

trapezoidal membership function as shown below in Figure A.2. The y-axis represents the

181

degree of membership and the x-axis represents the input value. In this example for an

input value of 0.25 the degree of membership is 0.17 (17%). A trapezoidal membership

function defines a fuzzy set (the foundation of Fuzzy Logic). To describe a trapezoidal

membership function, you need four values: (1) the start point of the trapezoid, (2) the

first slope, (3) second slope, and (4) the endpoint of the trapezoid.

Figure A.2: Trapezoidal Membership Function Example

A fuzzy set is a set without a crisp, clearly defined boundary. It can contain

elements with only a partial degree of membership. For example, the membership

function for HOT could equal 0.5 for temperatures above 100 degrees and 1.0 for 120

degrees. Any input falling in this range would be considered HOT. There are typically

many membership functions that must be evaluated to determine the state of the inputs.

Figure A.3 shows an example where there are 3 membership functions: HOT, WARM

and COLD. For an input of 64 degrees, the outputs from the membership evaluation are

0.0

1.0

0.5

0.0 1.0 0.5 0.25 0.75

Slope-1 Slope-2

17%

182

0% for HOT, 48% for WARM and 83% for COLD. This indicates that it is more COLD

than it is WARM and it is definitely not HOT.

Figure A.3: Output from Fuzzification Operation

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

48%

83%

0%

183

The output from the fuzzification operation can be in the form of singletons that

are discrete outputs used during the de-fuzzification process. Figure A.4 (a) below shows

what this would represent. In this case there are only three conditions, however, there can

be multiple singletons as shown below in Figure A.4 (b). The singletons are given

linguistic variables that are used in rule generation and evaluation.

 (a) (b)

Figure A.4: Singleton output from the Fuzzification process

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

0 32 64 96 128

COLD WARM HOT
VERY
COLD

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

0 32 64 96 128

COLD WARM HOT

MILD
VERY
HOT

BODY
TEMP

184

A.1.1 Rule Evaluation

There are three basic Fuzzy Set operators: Union, Intersection and Complement.

The union of two membership functions is calculated using a MAX function:

An example of this is shown below in Figure A.5 where the union of COLD and

WARM membership functions is illustrated.

Figure A.5: Union of COLD and WARM Membership Functions

The intersection of WARM and HOT membership functions is shown below in

Figure A.6 and is calculated using the MIN function:

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

185

Figure A.6: Intersection of WARM and HOT Membership Functions

The complement of COLD membership functions is shown below in Figure A.7

and is calculated using the following function:

Figure A.7: Complement of the COLD Membership Function

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

0.0

1.0

0.5

0 32 64 96 128

0.25

0.75

186

The three Fuzzy Set operators can be also be described using the following truth

tables.

Table A.1: Truth Table for Fuzzy Set Complement Operator

F(a) Complement F(a)
0.0 1.0

0.25 0.75

0.5 0.5

0.75 0.25

1.0 0.0

Table A.2: Truth Table for Fuzzy Set Intersection Operator (MIN)

F(a)
F(b)

0.0 0.25 0.5 0.75 1.0
0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.0 0.25 0.25 0.25 0.25

0.5 0.0 0.25 0.5 0.5 0.5

0.75 0.0 0.25 0.5 0.75 0.75

1.0 0.0 0.25 0.5 0.75 1.0

Table A.3: Truth Table for Fuzzy Set Union Operator (MAX)

F(a)
F(b)

0.0 0.25 0.5 0.75 1.0
0.0 0.0 0.25 0.5 0.75 1.0

0.25 0.25 0.25 0.5 0.75 1.0

0.5 0.5 0.5 0.5 0.75 1.0

0.75 0.75 0.75 0.75 0.75 1.0

1.0 1.0 1.0 1.0 1.0 1.0

187

Rule evaluation performs the actual calculations on the results from the

membership evaluations. An example of a rule list is shown below:

 IF TEMPERATURE IS COLD AND WIND IS HIGH, THEN HEAT IS ON HIGH.

 IF TEMPERATURE IS WARM AND WIND IS LOW, THEN HEAT IS ON LOW.

 IF TEMPERATURE IS HOT AND WIND IS LOW, THEN HEAT IS OFF.

 After the fuzzy inputs are evaluated, the system’s fuzzy outputs indicate the

degree to which an output should have a specific value. These outputs must then undergo

de-Fuzzification before their values are useful. Creating the rule list is actually very

straightforward. The antecedents (left side of the rule) are the fuzzy inputs created by the

membership evaluation (e.g., a temperature reading evaluated with the COLD, WARM

and HOT membership functions). The consequents (right side of the rule) are the fuzzy

outputs of the system. Each antecedent is joined using the fuzzy Intersection Operator

(MIN). This minimum value is compared to the current fuzzy output of each consequent

using the fuzzy Union Operator (MAX), and the maximum of these two values is stored

in each consequent (fuzzy output). In other words, the overall truth of a rule is stored in

the fuzzy outputs and if a subsequent rule is truer, then the fuzzy outputs are updated to

reflect this new value.

A.1.2 Defuzzification

The next step in the Fuzzy Logic calculation is defuzzification, where the raw

fuzzy outputs are evaluated to create a crisp system output. Defuzzification is performed

according to the membership function of the output variable. There are different

algorithms for defuzzification as shown below in the following equations:

188

The variables are described below in Table A.4

Table A.4: Variables used in equations A.4 – A.7

 Variable Meaning
U RESULT OF DEFUZZIFICATION

U OUTPUT VARIABLE

N NUMBER OF SINGLETONS

µ MEMBERSHIP FUNCTION AFTER ACCUMULATION

I INDEX

MIN LOWER LIMIT OF DEFUZZIFICATION

MAX UPPER LIMIT OF DEFUZZIFICATION

SUP LARGEST VALUE

INF SMALLEST VALUE

Rather than using the equations above to calculate the system outputs, a table

lookup function can also be used. The output values are predetermined and loaded in the

lookup table when the system is initially configured. As the system ages the values in the

table can be modified to handle sensor aging, etc.

189

Appendix B. Microcode Assembler

The microcode assembler for the DPE was implemented using a Microsoft Excel

spreadsheet. Excel has the ability to do table lookup functions and a broad range of IF-

THEN control functions. It also has a concatenate function that is used to compose each

microcode word. Additionally, it has the capability to do very useful bit manipulation

functions to build various data fields used in the microcode word. Figure B.1 shows how

the microcode is entered into the spreadsheet. The grey section is the user entry area. The

section above shows the valid entries for each field.

Figure B.1: Microcode entry example.

190

Figure B.2 below shows the remaining entry fields for the spreadsheet.

Figure B.2: Microcode entry example (continued)

Figures B.3 and B.4 below illustrate how the microcode field data is generated.

Figure B.3: Microcode field generation

191

Figure B.4: Microcode field generation (continued)

B.1.0 Field generation equations

The field generation equations for each of the microcode fields are presented

below:

IMMEDIATE DATA <95:80>:

=IF(MID(DEC2BIN($B22,10),1,1)=1,CONCATENATE(111111,DEC2BIN($B22,1

0)),(CONCATENATE(000000,DEC2BIN($B22,10))))

BRANCH OFFSET <79:73>:

=MID(DEC2BIN($C22,10),4,7)

LOOP COUNTER # < 72:71>

=IF($E22<>0,(DEC2BIN($E22,2)),00)

REPEAT COUNT <70:68>:

=IF($F22=EXEC,(DEC2BIN($D22,3)),(IF($F22=LOOP_BACK,(DEC2BIN($D22,

3)),000)))

UCODE OP <67:64>:

=IF($F22<>0,(VLOOKUP(F22,$BW$4:$BX$19,2)),0000)

192

READ TOS QS2<63>:

=(IF($H22=TOS_QS2,1,(IF($G22=TOS_QS2,1,0))))

READ TOS QS1<62>:

=(IF($G22=TOS_QS1,1,(IF(H22=TOS_QS1,1,0))))

READ BOS QS2<61>:

=(IF(G22=BOS_QS2,1,(IF(H22=BOS_QS2,1,0))))

 READ BOS QS1<60>:

=(IF(G22=BOS_QS1,1,(IF(H22=BOS_QS1,1,0))))

QS2 CTL<59:56>:

=IF($Y22<>0,(VLOOKUP($Y22,CT4:CU11,2)),0000)

QS1 CTL<55:52>:

=IF($X22<>0,(VLOOKUP($X22,CT4:CU11,2)),0000)

B-BUS MUX CTL<51:50>:

=IF(J22<>0,(VLOOKUP(J22,CE4:CF7,2)),00)

A-BUS MUX CTL<49:48>:

=IF(I22<>0,(VLOOKUP(I22,CC4:CD7,2)),00)

QS2 CHANNEL MUX CTL<47>:

=IF(Y22<>0,1,0)

193

QS1 CHANNEL MUX CTL<46>:

=IF(X22<>0,1,0)

B-BUS SHIFTER CTL<43:39>:

=MID(DEC2BIN(R22,10),6,10)

A-BUS SHIFTER CTL<38:34>:

=MID(DEC2BIN(P22,10),6,10)

B-BUS SHIFTER TC CTL<33>:

=IF(Q22=LSRB,1,(IF(Q22=ASRB,1,0)))

A-BUS SHIFTER TC CTL<32>:

=IF(O22=LSRA,1,(IF(O22=ASRA,1,0)))

MULTIPLIER ENABLE<31>:

=IF(S22=MULT,1,0)

ADDER SATURATION MODE CTL<30>:

=IF(T22=SAT_ADD,1,(IF(T22=SAT_SUB,1,0)))

DATAPATH ENABLE<29>:

=IF(T22<>0,1,(IF(S22<>0,1,(IF(Q22<>0,1,(IF(O22<>0,1,0)))))))

ADD/SUB CTL<28>:

=IF(T22=SUB,1,(IF(T22=SAT_SUB,1,0)))

B-MUX SEL<27:26>:

194

=IF($M22<>0,(VLOOKUP($M22,CI4:CJ7,2)),00)

A-MUX SEL<25:24>:

=IF($L22<>0,(VLOOKUP($L22,CG4:CH7,2)),00)

QS2 BUS MUX SELECT<23:22>:

=IF($H22<>0,(VLOOKUP($H22,CA4:CB7,2)),00)

QS1 BUS MUX SELECT<21:19>:

=IF($G22<>0,(VLOOKUP($G22,BY4:BZ7,2)),00)

TWO’S COMPLEMENT CTL<19>:

=IF(N22=TC,1,0)

WRITEBACK MUX SELECT<18:17>:

=IF(W22<>0,(VLOOKUP(W22,CO4:CP7,2)),00)

LOGIC OPERATION CTL<16:14>:

=IF(U22<>0,(VLOOKUP(U22,CM4:CN11,2)),000)

SPECIAL FUNCTION UNIT CTL<13:11>:

=IF(V22<>0,(VLOOKUP(V22,CQ4:CR9,2)),000)

WRITE SFU REGISTER< 10>:

=IF(AA22=SFU_LAT,1,0)

RQS CONTROL<9:6>:

=IF($Z22<>0,(VLOOKUP($Z22,CT4:CU11,2)),0000)

195

WRITE WB REGISTER<5>:

=(IF($AA22=WB_LAT,1,0))

READ RQS CONTROL<4>:

=IF(I22<>0,1,(IF(J22<>0,1,(IF(K22<>0,1,0)))))

RQS BUS MUX CONTROL<3>:

=IF(K22=BOS_RQS,1,0)

FIFO WRITE ENABLE<2>:

=IF($AA22=FIFO,1,0)

OPERATION QUEUE WRITE ENABLE<1>:

=IF($AA22=OP_QUEUE,1,0)

GPIO WRITE ENABLE<0>:

=IF($AA22=GPIO,1,0)

196

B.1.1 Lookup tables

The lookup tables used in the equations above are shown below:

197

Appendix C. DCT/ICC Implementation Details

The DPE was synthesized in a 180nm TSMC process using Design Compiler

Topographical (DCT) from Synopsys. The synthesized output was placed and routed

using IC Compiler (ICC) from Synopsys. Figure C.1 below shows the layout of the DPE

from ICC. The microcode RAM is the regular structure in the bottom center of the layout.

Figure C.2 shows the layout for a 15 DPE implementation.

Figure C.1: Layout of a single DPE (from IC Compiler)

198

Figure C.2: Layout of a 15-DPE implementation (from IC Compiler)

199

C.1.0 Synthesis Constraints

The synthesis constraints for a 25MHz (single DPE) implementation are shown

below. The DPE was synthesized for a range of cycle times ranging from 5ns-100ns.

Set cycle time in nanoseconds

create_clock -period 40 clk -waveform {0 20}
create_clock -period 40 clk90 -waveform {10 30}

Set driving cell on all inputs
set_driving_cell -lib_cell INVX2 [all_inputs]

Isolate ports on all outputs
set_isolate_ports [all_outputs] -force

Set load on all outputs
set_load 0.20 [all_outputs]

set_input_delay -max[expr 0.5 * ($CCT)] -clock clk [get_nets cpe_hold_in]
set_input_delay -max[expr 0.5 * ($CCT)] -clock clk [get_nets cpe_ready_in]
set_input_delay –max[expr 0.1 * ($CCT)] -clock clk [get_nets reset_b]
set_input_delay -max[expr 0.1 * ($CCT)] -clock clk [get_nets cpe_token_ck_in]
set_input_delay -max[expr 0.2 * ($CCT)] -clock clk [get_nets scan_enable]
set_input_delay -max[expr 0.3 * ($CCT)] -clock clk [get_nets scan_in]

set_output_delay -max [expr 0.1 * ($CCT)] -clock clk [get_nets cpe_token_ck_out]
set_output_delay -max [expr 0.2 * ($CCT)] -clock clk [get_nets cpe_hold_out]
set_output_delay -max [expr 0.2 * ($CCT)] -clock clk [get_nets cpe_ready_out]

remove_attribute [get_lib_cells */*FF*] dont_use

set_dont_use [get_lib_cells */*XL]
set_dont_use [get_lib_cells */*CLK*]

set_max_transition 1.0 [get_designs]
set_fix_hold clk
set_fix_hold clk90

compile_ultra -no_autoungroup -timing_high_effort_script
compile_ultra -incremental -only_design_rule -no_autoungroup

 set j 0;
 while {$j<5} {
 set x [get_timing_path]
 set slack [get_attribute $x slack]
 if {$slack < 0 } {
 compile_ultra -incremental –no_autoungroup
 incr j
 } else {
 set j 10
 }
 }

200

C.1.1 Critical Timing Paths

The worse case timing path in the DPE is from the SFU compare register write,

the MIN/MAX compare and to the microcode finite state machine. It is a quarter cycle

path: CLK (fall) to CLK90 (fall). This path is a false path as “writes” to the compare

register followed by a compare is not valid. If this register-write operation is followed by

a conditional branch then there is a chance that the branch operation may fail as the

validity of the condition code bit is questionable.

**
Report : timing
 -path full
 -delay min
 -max_paths 1
 -transition_time
Design : dpe
Version: E-2010.12
Date : Oct 26 13:40:58 2012

 Startpoint: dp/dp_sfu_0/ref_data_reg_13_
 (rising edge-triggered flip-flop clocked by clk')
 Endpoint: ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg
 (falling edge-triggered flip-flop clocked by clk90)
 Path Group: clk90
 Path Type: max

 Point Incr Path
 --
 clock clk (fall edge) 5.00 5.00
 clock network delay (ideal) 0.00 5.00
 dp/dp_sfu_0/ref_data_reg_13_/CK (DFFSX4) 0.00 5.00 r
 dp/dp_sfu_0/ref_data_reg_13_/QN (DFFSX4) 0.24 5.24 r
 dp/dp_sfu_0/U207/Y (NAND2X2) 0.05 * 5.28 f
 dp/dp_sfu_0/U292/Y (AND2X4) 0.13 * 5.42 f
 dp/dp_sfu_0/U248/Y (NOR2X4) 0.08 * 5.49 r
 dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT1_1_6_0/Y (OAI21X2)
 0.06 * 5.55 f
 dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT0_2_3_1/Y (AOI21X1)
 0.12 * 5.67 r
 dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT1_3_1_3/Y (OAI21X1)
 0.07 * 5.74 f
 dp/dp_sfu_0/min_max_unit_minmax41_0_prefix13_UGT0_4_0_7/Y (AOI21X2)
 0.10 * 5.84 r
 dp/dp_sfu_0/U151/Y (XOR2X2) 0.19 * 6.03 r
 dp/dp_sfu_0/min_max_unit_minmax41_0_U1/Y (OAI2BB2X4)
 0.14 * 6.17 r
 dp/dp_sfu_0/U43/Y (BUFX20) 0.12 * 6.29 r
 dp/dp_sfu_0/U374/Y (MXI2X4) 0.11 * 6.41 f
 dp/dp_sfu_0/sfu_out[2] (dp_sfu) 0.00 6.41 f
 dp/dp_wbmux_0/lut_in[2] (dp_wbmux) 0.00 6.41 f
 dp/dp_wbmux_0/U187/Y (OAI2BB1X4) 0.15 * 6.55 f
 dp/dp_wbmux_0/wb_cmp/wb_data[2] (wb_cmp) 0.00 6.55 f
 dp/dp_wbmux_0/wb_cmp/cmp_eq/A[2] (cmp6) 0.00 6.55 f

201

 dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U184/Y (NAND2X1)
 0.08 * 6.63 r
 dp/dp_wbmux_0/wb_cmp/cmp_eq/U132/Y (OAI2BB1X2) 0.10 * 6.73 r
 dp/dp_wbmux_0/wb_cmp/cmp_eq/U131/Y (OAI21X1) 0.06 * 6.79 f
 dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U178/Y (AOI21X2)
 0.11 * 6.89 r
 dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U163/Y (OAI21X2)
 0.06 * 6.95 f
 dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U132/Y (AOI21X2)
 0.18 * 7.13 r
 dp/dp_wbmux_0/wb_cmp/cmp_eq/gt_x_5631_2_U1/Y (OAI21X4)
 0.06 * 7.19 f
 dp/dp_wbmux_0/wb_cmp/cmp_eq/U128/Y (NOR2X1) 0.10 * 7.29 r
 dp/dp_wbmux_0/wb_cmp/cmp_eq/LT (cmp6) 0.00 7.29 r
 dp/dp_wbmux_0/wb_cmp/wb_lt (wb_cmp) 0.00 7.29 r
 dp/dp_wbmux_0/wb_lt (dp_wbmux) 0.00 7.29 r
 dp/wb_lt (dp) 0.00 7.29 r
 ctl/wb_lt (ctl) 0.00 7.29 r
 ctl/ctl_ucode_1/wb_lt (ctl_ucode) 0.00 7.29 r
 ctl/ctl_ucode_1/ucode_fsm/wb_lt (ctl_ucode_fsm) 0.00 7.29 r
 ctl/ctl_ucode_1/ucode_fsm/U70/Y (MXI2X1) 0.06 * 7.35 f
 ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg/D (DFFNSX1) 0.00 * 7.35 f
 data arrival time 7.35

 clock clk90 (fall edge) 7.50 7.50
 clock network delay (ideal) 0.00 7.50
 ctl/ctl_ucode_1/ucode_fsm/wb_lt_lat_reg/CKN (DFFNSX1)
 0.00 7.50 f
 library setup time -0.15 7.35
 data required time 7.35
 --
 data required time 7.35
 data arrival time -7.35
 --

 slack (MET) 0.00

C.1.2 PTPX Power Analysis Results

The results from PTPX for a single DPE core running at 25MHz operation are

shown below. A SAIF (switching activity interchange format) pattern was used to

generate the power numbers for the FIR filter operation. Energy was then derived using

equation 8.12 and used in the analysis presented in Chapter 8.

**
Report : Averaged Power
 -cell_power
 -verbose
 -sort_by cell_internal_power
 -power_greater_than 0
Design : dpe
Version: H-2012.12
Date : Nov 5 14:28:54 2012

**

202

Library(s) Used:

 typical (File: /IMPLEMENTATION/Artisan/synopsys/typical.lib)
 typical (File: /IMPLEMENTATION/Artisan/synopsys/typical.db)
 dw_foundation.sldb (File:
/usr/local/packages/synopsys_2012/syn/libraries/syn/dw_foundation.sldb)
 RA1SHD (File: /home/ecelrc/faculty/mcdermot/IMPLEMENTATION/WCS/RA1SHD.db)

**

Operating Conditions: typical Library: typical
Wire Load Model Mode: Parasitic

Power-specific unit information:
 Voltage Units = 1 V
 Capacitance Units = 1 pf.
 Time Units = 1 ns
 Dynamic Power Units = 1 W
 Leakage Power Units = 1 W
 Cycle-time = 40 ns

 Attributes

 a - Annotated internal & leakage power
 b - Black-box (unresolved) cell
 c - Clock pin internal power only
 d - Does not include clock pin internal power
 h - Hierarchical cell

 Internal Switching Leakage Total
Cell Power Power Power Power (%) Attrs
--
dp 4.106e-06 4.587e-06 5.107e-09 8.699e-06 (43.74%) h
ctl 3.504e-06 6.223e-07 9.070e-08 4.217e-06 (21.20%) h
qs1 6.966e-07 1.462e-06 9.770e-09 2.168e-06 (10.90%) h
rqs 6.373e-07 1.797e-06 2.670e-08 2.461e-06 (12.37%) h
qs2 3.994e-07 1.287e-06 9.483e-09 1.696e-06 (8.53%) h
fifo 1.416e-07 1.168e-07 6.984e-10 2.591e-07 (1.30%) h

Totals (6 cells) 9.560e-06 1.019e-05 1.425e-07 1.989e-05 (100.0%)

Note that the ratio of datapath power to control power is 43.7% to 21.2%. This is key to

the energy efficiency of the DPE. In this implementation the CTL power is dominated by

the RAM microcode memory. This can be reduced by about 35% by using a read-only

memory (ROM). Figure C.3 below shows the layout differences between the ROM and

the RAM layouts.

203

Figure C.3: ROM (top) vs. RAM (bot) layout comparison

204

Appendix D. FPGA Implementation Details

The TLL-5000 System Design Platform was used to implement and test the DPE

[79]. The TLL5000 is a hardware and software design platform that consists of a Xilinx

Spartan-3 XC3S1500 FPGA (field-programmable gate array) and a large assortment of

peripherals including the following:

• 16 MB Flash

• 16MG DRAM

• LEDs (light-emitting diodes)

• LCD (liquid crystal display)

• SD (secure digital) card/MMC (Multi-Media-Card) I/F

• Video encoder/decoder with video input/output ports

• VGA output

• Audio codec with audio amplifier and output connection

• Microphone and audio input connection

• Mouse and keyboard ports,

• Ethernet interface

• User switches and push buttons

These peripherals are powered by on-board power supplies and driven by the

FPGA and internal clocks. The TLL500 has two 80-pin mezzanine expansion connectors

for additional processing or interfacing capabilities. Currently, one of these mezzanine

connectors is used to interface the TLL6219 ARM9 Module to the Baseboard. Figure

D.1 below shows a photograph of the TLL5000 Baseboard and its various on-board

components.

205

Figure D.1: TLL5000 System Development Platform

The synthesized gate level netlist from DCT was used as the netlist for the FPGA

implementation of the DPE. The netlist was instantiated into a bus controller Verilog

model that provides the interface between the ARM SOC and the DPE. Figure D.2 shows

the block diagram of the DPE test environment.

206

Figure D.2: Block diagram of the DPE test environment

The ARM processor is used to load the microcode in the DPE. The microcode

memory is memory mapped into the ARM processor memory map. The ARM processor

is uses a memory mapped control register in the FPGA to “fire” the DPE. The output of

the DPE FIFO is accessible via the accessory port on TLL5000 and was used to verify

correct system operation using a logic analyzer. Additional internal control and clock

signals were routed to the accessory connector. These were compared to the original

Verilog simulation to further confirm correct internal operation. Using the synthesized

gate level netlist was instrumental in making sure the silicon and FPGA designs

functioned identically. The same self-checking test that was used to verify the RTL

functionality of DPE was used to verify the FPGA implementation. The IQS-1 is used to

207

seed the test by loading tokens and triggering the FIRE signal. The output of the FIFO is

recirculated back into IQS-2 and used as the feedback mechanism for the test. The ARM

processor can read the result of the test via a register in the bus controller. The microcode

WCS is memory mapped into the ARM address space allowing for dynamic changing of

the microcode for debugging, reloading, etc.

Figure D.3 shows a block diagram of the test environment for the FPGA

implementation of the DPE.

Figure D.3: Test configuration for FPGA implementation of the DPE.

208

D.1.0 FPGA Implementation Details

Figure D.4 below shows the post synthesis, mapping and place & route

implementation summary.

Figure D.4: FPGA implementation summary

209

D.1.1 Synthesis Timing Constraints

The timing constraints for the FPGA synthesis of the DPE and the bus controller

logic is shown below:

RESET PIN

NET SYS_RST_N LOC=AB11;
NET SYS_RST_N IOSTANDARD = LVCMOS33;
NET SYS_RST_N TIG; # IGNORE TIMING. RST IS SYNCHRONIZED INTERNALLY

24 MHZ CLOCK INPUT

NET SYS_CLK LOC=AE14;
NET SYS_CLK IOSTANDARD = LVCMOS33;
NET SYS_CLK TNM_NET = SYS_CLK;
TIMESPEC TS_SYS_CLK = PERIOD SYS_CLK 41.6666 NS HIGH 50 %;

100MHZ/N CLOCK INPUT FROM AD9510 CLOCK GENERATOR

NET FPGA_CLK3 LOC = AF14;
NET FPGA_CLK3 IOSTANDARD = LVCMOS33;
NET FPGA_CLK3 TNM_NET = "FPGA_CLK3";
TIMESPEC "TS_FPGA_CLK3" = PERIOD "FPGA_CLK3" 10 NS HIGH 50 %;

FPGA_CLK4 CONFIGURED FOR VE_CLK (27MHZ) ON BOARD

NET FPGA_CLK4 LOC = AE13;
NET FPGA_CLK4 IOSTANDARD = LVCMOS33;
NET "FPGA_CLK4" TNM_NET = "FPGA_CLK4";
#TIMESPEC "TS_FPGA_CLK4" = PERIOD "FPGA_CLK4" 37 NS HIGH 50 %;

CPLD CLK FROM ARM CORE

NET "MZ_CPLD_CLKO" LOC = "AA18";
NET MZ_CPLD_CLKO IOSTANDARD = LVCMOS33;
#NET "MZ_CPLD_CLKO" TNM_NET = "MZ_CPLD_CLKO";
TIMESPEC "TS_MZ_CPLD_CLK0" = PERIOD "MZ_CPLD_CLKO" 20 NS HIGH 50 %;

TIMEGRP "EB" OFFSET = IN 6 NS BEFORE "SYS_CLK";
TIMEGRP "ADDR" OFFSET = IN 6 NS BEFORE "SYS_CLK";
TIMEGRP "DATABUS" OFFSET = OUT 11 NS AFTER "SYS_CLK";

The DPE was synthesized for 12 MHz operation using the SYS_CLK clock,

which is driven by an external 24MHz oscillator on the TLL5000. The SYS_CLK is

divided by 2 and phase shifted 90 degrees to generate the two clocks for the DPE.

210

D.1.2 Synthesis Timing Report

The resulting timing report is shown below. The synthesized DPE netlist is able to

meet the 12 MHz timing constraint.

--
 RELEASE 14.4 TRACE (LIN)
 COPYRIGHT (C) 1995-2012 XILINX, INC. ALL RIGHTS RESERVED.

 /MISC/LINUXWS/PACKAGES/XILINX/14.4/ISE_DS/ISE/BIN/LIN/UNWRAPPED/TRCE -INTSTYLE
 ISE -V 3 -S 4 -N 3 -FASTPATHS -XML TOP.TWX TOP.NCD -O TOP.TWR TOP.PCF

 DESIGN FILE: TOP.NCD
 PHYSICAL CONSTRAINT FILE: TOP.PCF
 DEVICE,PACKAGE,SPEED: XC3S1500,FG676,-4 (PRODUCTION 1.39 2012-12-04)
 REPORT LEVEL: VERBOSE REPORT

 --

 INFO:TIMING:3224 - THE CLOCK SYS_CLK ASSOCIATED WITH TIMEGRP "ADDR" OFFSET
 = IN 6 NS BEFORE COMP "SYS_CLK";
 INFO:TIMING:3225 - TIMING CONSTRAINT TIMEGRP "ADDR" OFFSET = IN 6 NS BEFORE
 COMP " SYS_CLK ";
 INFO:TIMING:3391 - TIMING CONSTRAINT TIMEGRP "ADDR" OFFSET = IN 6 NS BEFORE
 COMP "SYS_CLK";
 INFO:TIMING:3224 - THE CLOCK SYS_CLK ASSOCIATED WITH TIMEGRP "EB" OFFSET =
 IN 6 NS BEFORE COMP " SYS_CLK ";
 INFO:TIMING:3225 - TIMING CONSTRAINT TIMEGRP "EB" OFFSET = IN 6 NS BEFORE
 COMP " SYS_CLK ";
 INFO:TIMING:3391 - TIMING CONSTRAINT TIMEGRP "EB" OFFSET = IN 6 NS BEFORE
 COMP " SYS_CLK ";
 INFO:TIMING:3412 - TO IMPROVE TIMING, SEE THE TIMING CLOSURE USER GUIDE (UG612).
 INFO:TIMING:2752 - TO GET COMPLETE PATH COVERAGE, USE THE UNCONSTRAINED PATHS
 OPTION. ALL PATHS THAT ARE NOT CONSTRAINED WILL BE REPORTED IN THE
 UNCONSTRAINED PATHS SECTION(S) OF THE REPORT.
 INFO:TIMING:3339 - THE CLOCK-TO-OUT NUMBERS IN THIS TIMING REPORT ARE BASED ON
 A 50 OHM TRANSMISSION LINE LOADING MODEL. FOR THE DETAILS OF THIS MODEL,
 AND FOR MORE INFORMATION ON ACCOUNTING FOR DIFFERENT LOADING CONDITIONS,
 PLEASE SEE THE DEVICE DATASHEET.
 INFO:TIMING:3389 - THIS ARCHITECTURE DOES NOT SUPPORT 'DISCRETE JITTER' AND
 'PHASE ERROR' CALCULATIONS, THESE TERMS WILL BE ZERO IN THE CLOCK
 UNCERTAINTY CALCULATION. PLEASE MAKE APPROPRIATE MODIFICATION TO
 SYSTEM_JITTER TO ACCOUNT FOR THE UNSUPPORTED DISCRETE JITTER AND PHASE
 ERROR.
===
 TIMING CONSTRAINT: TIMEGRP "EB" OFFSET = IN 6 NS BEFORE COMP "SYS_CLK";
 FOR MORE INFORMATION, SEE OFFSET IN ANALYSIS IN THE TIMING CLOSURE USER GUIDE (UG612).
 3412 PATHS ANALYZED, 2998 ENDPOINTS ANALYZED, 0 FAILING ENDPOINTS
 0 TIMING ERRORS DETECTED.

 ALL CONSTRAINTS WERE MET.

===

211

 D.1.3 Place and Route Details

Figure D.5 below shows the resulting placement and routing of the DPE and the

bus controller in the XC3S-1500-4FG676. The overall utilization is about 40% and is

described in detail in Figure D.4 The three Queued-Stack implementations consume a

large number of the available resources due to the latch based implementation. Future

implementations should be done using the RAMB16 modules. This will require an

extensive rewrite of the DPE Verilog code.

Figure D.5: Placement and routing of the DPE and bus controller

212

Glossary

CSP – Cognitive Sensor Platform

DPE – Dataflow-Processing Element

FSU – Functional Services Unit

PPU – Preprocessing Unit

IQS – Input Queued Stack

RQS – Result Queued Stack

DSP – Digital Signal Processor

GPP – General Purpose Processor

ASP – Application Specific Processor

ASIC – Application Specific Integrated Circuit

ISA – Instruction Set Architecture

FPGA – Field Programmable Gate Array

FSM – Finite State Machine

SDF – Synchronous Data Flow

TOS – Top of Stack

BOS – Bottom of Stack

ADC – Analog-to-Digital Converter

SDC – Sensor Data Conditioning Unit

FIFO – First-in-First-out (queue)

LIFO – Last-in-First-out (stack)

ROM – Read only memory

SRAM – Static Random Access Memory

WCS – Writeable Control Store

NOC – Network-on-Chip

FLIT – Flow Control Unit or Flow Digits

COTS – Commercial-off-the-Shelf

213

References

Chapter 1: Introduction to Sensor Systems

[1] A. Howard and E. Tunstel, Development of Cognitive Sensors, NASA TECH

BRIEF Vol. 26, No. 4, August 2008

[2] J. Koomey, S. Berard, M. Sanchez, H. Wong, Implications of Historical Trends
in the Electrical Efficiency of Computing, Annals of the History of Computing,
IEEE, Volume: 33 Issue: 3, pp. 46 – 54, March 2011

[3] D. Harel and A. Pnueli, On the Development of Reactive Systems, in Logics and
Models of Concurrent Systems (K. R. Apt, ed.), NATO ASI Series, Vol. F-13,
Springer-Verlag, New York, pp. 477-498, 1985

[4] B. Lee, Specification and Design of Reactive Systems, Ph.D. Thesis,
Memorandum UCB/ERL M00/29, Electronics Research Laboratory, University
of California, Berkeley, May 2000

[5] E. A. Lee and D. G. Messerschmitt, Synchronous Data Flow, IEEE Proceedings,
Vol.75, No.9, pp.1235-1245, September 1987

[6] B. Lee, and A. R. Hurson, Issues in dataflow computing, Adv. in Computing,
Vol. 37, pp. 285-333, 1993

Chapter 2: Survey of Sensor Systems

[7] J. Polastre, R. Szewczyk, and D. Culler, Telos: Enabling ultra-low power

wireless research, In Proc. IEEE/ACM Information Processing in Sensor
Networks (IPSN) - Track on Platforms, Tools and Design Methods for
Networked Embedded Systems (SPOTS), 2005

[8] S. Park, I. Locher, A. Savvides, M. B. Srivastava, A. Chen, R. Muntz, S. Yuen,
Design of a Wearable Sensor Badge for Smart Kindergarten, Proceedings of the
International Symposium on Wearable Computing, 2002

[9] A. Savvides and M. B. Srivastava, A Distributed Computation Platform for
Wireless Embedded Sensing, Proceedings of International Conference on
Computer Design (ICCD), Freiburg, Germany, September 2002

[10] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler, The Mote Revolution: Low
Power Wireless Sensor Network Devices, Hot Chips 2004, August 22-24, 2004

214

[11] J. Rabaey, M. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan, Pico-
Radios for Wireless Sensor Networks: The Next Challenge in Ultra-Low-Power
Design, Proc. Of Int'l Solid-State Circuits Conference (ISSCC), February 3-7,
2002

[12] B. Calhoun, et al, Design Considerations for Ultra-low Energy Wireless Micro-
sensor Nodes, IEEE Transactions on Computers, pp. 727-749, June 2005

[13] M. Hempstead, M. Lyons, D. Brooks and G. Wei, Survey of Hardware Systems
for Wireless Sensor Networks, ASP Journal of Low Power Electronics, Vol. 4.,
No. 1, April 2008

[14] A. Abnous et al., Evaluation of a Low-Power Reconfigurable DSP Architecture,
Proceedings of the Reconfigurable Architectures Workshop, Orlando, Florida,
USA, March 1998

[15] C. Kelly, V. Ekanaya, and R. Manohar, SNAP: A Sensor-Network
Asynchronous Processor, Proceedings of the 9th International Symposium on
Asynchronous Circuits and Systems, Vancouver, BC, May 2003

[16] B. Zhai, L. Nazhandali, J. Olson, A, Reeves, M. Minuth, R. Helfand, S. Pant, D.
Blaauw, T. Austin, ″A 2.60pJ/Inst. Sub-threshold Sensor Processor for Optimal
Energy Efficiency,″ IEEE Symposium on VLSI Circuits (VLSI-Symposium),
Honolulu, Hawaii USA, June 2006

[17] A. Eswaran, A. Rowe, R. Rajkumar, Nano-RK: an Energy-aware Resource-
centric RTOS for Sensor Networks, 26th IEEE International Real-Time Systems
Symposium RTSS05, 2005

[18] S. Han, R. Rengaswamy, R. Shea, E. Kohler, M. Srivastava, SOS: A Dynamic
Operating System for Sensor Nodes, In Third International Conference on
Mobile Systems, Applications and Services (Mobisys), June 2005

[19] A. Dunkels, B. Gronvall, and T. Voight, Contiki – a lightweight and flexible
operating system for tiny networked sensors, In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, 2004

[20] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. S. J. Pister, System
architecture directions for networked sensors, Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 93–104, 2000

[21] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer and
D. E. Culler, The Emergence of Networking Abstractions and Techniques in
TinyOS, Networked System Design and Implementation (NSDI), 2004

[22] M. Molla and S. Ahamed, A Survey of Middleware for Sensor Network and
Challenges, Proceedings of the 2006 International Conference on Parallel
Processing Workshops, 2006

215

[23] P. Levis, and D. Culler. Maté: a Tiny Virtual Machine For Sensor Networks,
Architectural Support for Programming Languages and Operating Systems,
2002

[24] C. Curino, M. Giani, M. Giorgetta, A. Giusti, TinyLIME: Bridging mobile and
sensor networks through middleware, In Proc. the 3rd IEEE Int. Conf. Pervasive
Computing and Communications, Kauai Island, Hawaii, March 8-12, 2005

[25] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel. TinyCubus: An
Adaptive Cross-Layer Framework for Sensor Networks, Information
Technology, vol. 47(2), 2005

[26] C. Fok, G. Roman C. Lu. Agilla: A Mobile Agent Middleware for Sensor
Networks, Tech. Rep. WUCSE-06-16, Washington University, Department of
Computer Science and Engineering, St. Louis, 2006

[27] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, TinyDB: An acquisitional
query processing system for sensor networks, ACM Transactions on Database
Systems, 30(1), pp.122–173, 2005

Chapter 3: Cognitive Sensor System Requirements

[28] J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. González, Implementing

End-to-End Register Data-Flow Continuous Self-Test, Presented at IEEE Trans.
Computers, 2011, pp.1194-1206.

[29] C. Lee, Fuzzy Logic in Control Systems, IEEE Trans. on Systems, Man, and
Cybernetics, SMC, Vol. 20, No. 2, 1990, pp. 404-435

[30] CPU-12 Reference Manual, Rev. 4.0, Chapter 9, pp. 341-380, Motorola Inc.,
May 2003

[31] D. Hall and J. Llinas, An introduction to multi-sensor data fusion, Proceedings
of the IEEE, vol. 85, No. 1, pp. 6-23, January 1997

[32] M. Akhoudi, E. Valav, Multi-Sensor Fuzzy Data Fusion Using Sensors with
Different Characteristics, Unpublished, submitted to The CSI Journal on
Computer Science and Engineering (JCSE)

[33] G. Ahmed, A Fuzzy Logic-Based Multi-sensor Data Fusion for Maritime
Surveillance - Real Data Testing, Proceedings of the 26th National Radio
Science Conference (NRSC2009), March 17-19, 2009

[34] Y. Vershinin, A Data Fusion Algorithm for Multi-sensor Systems, Proc. of ISIF,
pp. 341-345, July 2002

216

[35] E. Punskaya, Bayesian approaches to multi-sensor data fusion, Master’s thesis,
Cambridge University Engineering Department, 1999

[36] P. Escamilla-Ambrosio and N. Mort, Hybrid Kalman Filter Fuzzy Logic
Adaptive Multi-sensor Data Fusion Architecture, Proc. of The IEEE Conference
on Decision and Control, 2003, pp. 5215-5220.

[37] R. Francis, A tutorial on logic synthesis for lookup-table based FPGAs,
IEEE/ACM International Conference on Computer-Aided Design (ICCAD-92),
pp. 40-47, 1992

[38] T. Sawkar, Area and delay mapping for table-look-up based field programmable
gate arrays, 29th ACM/IEEE Design Automation Conference, pp.368-378, 1992

[39] J. Hauser, J. Wawrzynek, GARP: a MIPS processor with a reconfigurable
coprocessor, Proceedings, The 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp.12-21, April 16-18, 1997

[40] Q. Zhang, A.B.J. Kokkeler and G.J.M. Smit, Dynamically reconfigurable FFTs
for a Cognitive Radio on a multiprocessor platform, International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA2008), July 2008

[41] ANT™ Protocol, available at: www.thisisant.com

Chapter 4: CSP Architecture

[42] J. Brignell, and N. White, Intelligent Sensor Systems, Institute of Physics

Publishing (Sensors), pp. 51, 1996

[43] J. Brignell, and N. White, Intelligent Sensor Systems, Institute of Physics
Publishing (Sensors), pp. 73, 1996

[44] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, A. Hassibi, A
CMOS electrochemical impedance spectroscopy biosensor array for label-free
bio-molecular detection, International Solid State Circuits Conference, pp. 130-
131, 2010

[45] J. Elson, D. Estrin, Fine-Grained Network Time Synchronization using
Reference Broadcast, The Fifth Symposium on Operating Systems Design and
Implementation (OSDI), p. 147-163, December 2002

[46] S. Ganeriwawal, R. Kumar, M. Srivastava, Timing-Sync Protocol for Sensor
Networks, The First ACM Conference on Embedded Networked Sensor
Systems (SenSys), pp. 138-149, November 2003

217

[47] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The Flooding Synchronization
Protocol, Proc. of the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2004

[48] IEEE Standard for a Smart Transducer Interface for Sensors and Actuators -
Network Capable Application Processor (NCAP) Information Model, IEEE
STD 1451.1-1999

Chapter 5: Dataflow-Processing Element

[49] P. Koopman, Stack Computers The New Wave, Ellis Horwood Ltd, ISBN 0-

7458-0418-7, 1989

[50] M. Schoeberl, Design and implementation of an efficient stack machine,
Proceedings of the 12th IEEE Reconfigurable Architecture Workshop
(RAW2005), Denver, Colorado, USA, April 2005

[51] K. Nakamura, K. Sakai, T. Ae, Real-time multimedia data processing using
VLIW hardware stack processor, Parallel and Distributed Real-Time Systems,
1997. Proceedings of the Joint Workshop on, pp. 296-301, 1-3 April 1997

[52] Y. Tsao, et al, Hardware nested looping of parameterized embedded DSP core,
IEEE International SOC Conference, pp. 49-52, Sep 17, 2003

[53] L. Mengibar, L. Entrena, M. Lorenz, E. Millan, Partitioned state encoding for
low power in FPGAs, Electronics Letters, vol.41, no.17, pp. 948- 949, Aug 18,
2005

[54] Paya-Vaya, G., Martin-Langerwerf, J., Giesemann, F., Blume, H., Pirsch, P.;
Instruction merging to increase parallelism in VLIW architectures, System-on-
Chip, 2009. SOC 2009 International Symposium, pp.143-146, 5-7 Oct. 2009

[55] M. Seok, S. Hanson, S. Jae-sun, D. Sylvester, D. Blaauw, Robust ultra-low
voltage ROM design, Custom Integrated Circuits Conference (CICC 2008),
pp.423-426, September 21-24, 2008

[56] P. Liu, F. Mowle, Techniques of Program Execution with a Writable Control
Memory, IEEE Transactions on Computers, vol. 27, no. 9, pp. 816-827, Sept.
1978

[57] Reverse Polish Notation: http://www.hpmuseum.org/rpn.htm

218

Chapter 6: DPE Microprogramming

[58] Forth Language: http://www.forth.com/

[59] D. DeWitt, Extensibility - a New Approach for Designing Machine Independent
Microprogramming Languages, MICRO-9 Proceedings, pp. 33-41, September
1976

Chapter 7: Modeling and Simulation

[60] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems, International Journal of
Computer Simulation, special issue on Simulation Software Development, vol.
4, pp. 155-182, April 1994

[61] E. de Kock, et al, YAPI: Application Modeling for Signal Processing Systems,
Proceedings 37th Design Automation Conference, Los Angeles, 2000

[62] S. Stuijk, M. Geilen, T. Basten, SDF3: SDF For Free, Proceedings of the Sixth
International Conference on Application of Concurrency to System Design
(ACSD’06), pp. 276-278, June 2006

[63] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.
Sangiovanni-Vincentelli. Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design, DAC 2001, June 18-22, 2001

[64] Matlab: SimEvents®: http://www.mathworks.com/products/simevents/

Chapter 8: Results

[65] FIR C-code example: http://iowahills.com/A7ExampleCodePage.html

[66] IIR C-code example: http://iowahills.com/A7ExampleCodePage.html

[67] Cortex-M3 Technical Reference Manual, ARM Corporation, 2010

[68] Cortex-M3 DSP library filter functions Application Note STM32F10X, ST
Microelectronics, 2010

[69] I. Sutherland, R. Sproull, D. Harris, Logical Effort: Designing Fast CMOS
Circuits, Morgan Kaufmann, 1999

219

[70] Y. Chang, B. Park, I. Park, C. Kyung, Customization of a CISC processor core
for low-power applications, International Conference on Computer Design
(ICCD'99, pp.152-157, 1999

[71] Cortex-M3-implementation-specifications:
http://www.arm.com/products/processors/cortex-m/cortex-m3.php

[72] Synopsys Prime Time Power Analysis (PTPX):
http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/ptpx_
wp.pdf

[73] M. Horowitz, T. Indermaur, R. Gonzalez, Low-power digital design,
Symposium. Low Power Electronics, pp. 8-11, Oct. 1994

[74] SPEC Benchmark: http://www.spec.org/benchmarks.html

[75] TPC Benchmark: http://www.tpc.org/information/benchmarks.asp

[76] EEMBC Benchmark: http://www.eembc.org/products/

[77] P. Hofstee, K. Nowka, VLSI-2 Class Notes, ECE Department, University of
Texas at Austin, 2005-2013

Chapter 9: Final Observations and future work

[78] R. McIvor, Managing for Profit in the Semiconductor Industry, Prentiss Hall,

1989

Appendix D: FPGA Implementation

[79] TLL5000 Electronic System Design Base Module V1.1 User Manual. The
Learning Labs, Inc., 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

