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Metacommunties are sets of interacting species embedded in landscapes and 

interconnected via dispersal. The development of metacommunity theory has 

greatly outpaced its experimental testing. This situation restricts the feedbacks 

between theory and natural systems, hindering the development of useful theory 

and limiting application of theory to natural patterns. My dissertation aims to 

accelerate the testing of metacommunity theory using three microcosm 

experiments ranging from highly to more loosely constrained. The first 

experiment implemented a competition-colonization tradeoff between two strains 

of bacteria and tested if the tradeoff produced the expected patterns of 

coexistence and ecosystem function. Generally, the results conformed closely to 

theoretical expectations, though high stochasticity limited coexistence. The 

second experiment utilized multi-trophic protist communities to test if assembly 

history followed by complete mixing can produce situations where one 
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community replaces another. Results indicate that community replacement can 

occur under mixing, though it may be buffered by trophic structure. The third 

experiment tested the ability of variance partitioning to attribute landscape 

patterns to process in a one-predator two-prey system. Results indicate that both 

predators and dispersal can generate similar spatial patterns. Distinguishing 

between the two requires explicitly incorporating the predator into the partition. In 

summary, each of these three experiments reinforces aspects of existing theory 

while illuminating new paths for future theoretical and empirical exploration.  



 viii 

Table of Contents 

List of Tables ............................................................................................. xi 

List of Figures ........................................................................................... xii 

Chapter 1: Competition-colonization dynamics in an experimental bacterial 
metacommunities ................................................................................ 1 
Introduction ......................................................................................... 2 
Results ................................................................................................ 4 
Discussion ........................................................................................ 18 
Methods ............................................................................................ 21 
References ....................................................................................... 25 

Chapter 2: The dynamics of community assembly under sudden mixing in 
experimental microcosms ................................................................. 31 
Introduction ....................................................................................... 32  
Materials and Methods ..................................................................... 36 
Results .............................................................................................. 43 
Discussion ........................................................................................ 49 
References ....................................................................................... 53 

Chapter 3: Predators and disturbance interact to regulate spatial pattern in 
multi-trophic microcosms .................................................................. 57 
Introduction ....................................................................................... 58  
Methods ............................................................................................ 60 
Results .............................................................................................. 67 
Discussion ........................................................................................ 75 
References ....................................................................................... 79 
 
 
 



 ix 

Appendix: Supplemental Information ........................................................ 84 

Bibliography ............................................................................................ 123 



 x 
 

List of Tables  

 

Table 2.1...............................................................................................48 

Supplementary Table 1.1......................................................................84 

Supplementary Table 1.2......................................................................85 

Supplementary Table 2.1....................................................................104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi 

List of Figures 

Figure 1.1.................................................................................................6 

Figure 1.2.................................................................................................7 

Figure 1.3.................................................................................................8 

Figure 1.4...............................................................................................11 

Figure 1.5...............................................................................................12 

Figure 1.6...............................................................................................14 

Figure 1.7...............................................................................................18 

Figure 2.1...............................................................................................38 

Figure 2.2...............................................................................................45 

Figure 2.3...............................................................................................46 

Figure 2.4...............................................................................................47 

Figure 3.1...............................................................................................63 

Figure 3.2...............................................................................................67 

Figure 3.3...............................................................................................70 

Figure 3.4...............................................................................................72 

Figure 3.5...............................................................................................74 

Supplementary Figure 1.1…..................................................................86 

Supplementary Figure 1.2…..................................................................87 

Supplementary Figure 1.3…..................................................................88 

Supplementary Figure 1.4…..................................................................89 

Supplementary Figure 2.1…................................................................112 

Supplementary Figure 2.2…................................................................113 

Supplementary Figure 3.1…................................................................122 

 



 1 
 

Chapter 1: Competition-colonization dynamics in experimental 

bacterial metacommunities 

 

Abstract: One of the simplest hypotheses used to explain species coexistence is the 

competition–colonization trade-off, that is, species can stably coexist in a landscape if 

they show a trade-off between competitive and colonization abilities. Despite extensive 

theory, the dynamics predicted to result from competition–colonization trade-offs are 

largely untested. Landscape change, such as habitat destruction, is thought to greatly 

influence coexistence under competition–colonization dynamics, although there is no 

formal test of this prediction. Here we present the first illustration of competition–

colonization dynamics that fully transposes theory into a controlled experimental 

metacommunity of two Pseudomonas bacterial strains. The competition–colonization 

dynamics were achieved by directly manipulating trade-off strength and colonization 

rates to generate the full range of coexistence conditions and responses to habitat 

destruction. Our study successfully generates competition–colonization dynamics 

matching theoretical predictions, and our results further reveal a negative relationship 

between diversity and productivity when scaling up to entire metacommunities. 
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Introduction 

 

Competition–colonization (CC) trade-off models predict that species can coexist in 

landscapes with patch turnover by means of spatial niche partitioning1, 2, 3, 4. Under CC 

dynamics, species can occupy a ‘colonization niche’ by efficiently colonizing empty 

habitat patches (that is, ‘fugitive species’) or a ‘competition niche’ by outcompeting other 

species within sites5. Depending on allocation trade-offs, such as those determined by 

life history, these alternative strategies (that is, ‘colonizers’ versus ‘competitors’) reduce 

the ratio of interspecific to intraspecific competition and allow coexistence to occur 

without environmental heterogeneity among patches6. Although early CC 

models1, 2 somewhat unrealistically assumed strict trade-offs, including habitat 

homogeneity and the absence of both patch pre-emption and stochasticity, CC model 

predictions have been shown to be applicable to situations of greater complexity4, 7. 

CC models predict that changes to landscape structure impact coexistence even in the 

absence of changes in environmental conditions at the local scale8. A key prediction of 

such models is that habitat destruction (or any other environmental change that reduces 

overall colonization rates) should preferentially suppress superior competitors or drive 

them extinct, whereas increasing the regional abundance of inferior competitors8. If 

these landscape-level processes are resolved on long time scales, then extinction debts 

(that is, species committed to extinction) are expected to develop9. It is also likely that 

changes in the prevalence of competitively dominant species could alter ecosystem 

functioning if such species are more productive than inferior competitors5. 
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Despite a general acceptance of the theoretical framework, to our knowledge there is no 

direct experimental treatment of the general predictions of the CC theory; in fact, indirect 

tests that attempted to document the existence of the CC trade-off have produced 

contradictory results in experimental10, 11, 12, 13 and observational studies of natural 

species assemblages14, 15, 16, 17, 18. Moreover, because the existence of a CC trade-off in 

an assemblage does not necessarily indicate that CC dynamics are determinant, 

indirect approaches have limited power to evaluate the theory. 

In this study, we present the first experimental illustration of a CC dynamic by 

manipulating the trade-off strength and colonization rate in an experimental system 

of Pseudomonas fluorescensbacteria in 96-well plate 

metacommunities. Pseudomonas has emerged as a model for experimental ecology 

and evolution19, 20, 21. We first tailored the general CC model2, 3 to our experimental 

system, which allowed us to make quantitative predictions regarding the conditions 

under which different patterns of coexistence and dominance are predicted in the 

metacommunity. We constructed and manipulated the two key mechanisms of CC 

dynamics in the model (trade-off strength and colonization rate) within a controlled 

setting to impose an experimental CC dynamic. We subsequently tested the predicted 

consequences of this dynamic for coexistence, landscape change and ecosystem 

function by monitoring strain persistence, local dominance, patch occupancy and 

metacommunity productivity. Our experiment is thus a targeted test of CC dynamics; 

however, it is an implementation rather than a test of underlying mechanisms. 
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Results 

 

Experimental system 

We used two Pseudomonas bacterial strains (analogous to ecological species22), a 

strong competitor (‘competitor’) and a poor competitor (‘colonizer’), to generate a strict 

asymmetry of competition in local patches (that is, the colonizer is completely excluded 

from local patches). The rationale underlying the use of a two-strain system is 

consistent with other existing experimental and empirical studies of the CC (for 

example, 13, 15, 18) and a variety of other studies that use microbes to investigate 

ecological phenomenon (for example, 23, 24, 25). We manipulated the strength of the CC 

trade-off by controlling the colonization of the two strains independently; both strains 

could have the same colonization rate in the experiment (no trade-off treatment) or the 

colonization rate of the colonizer could be strongly increased relative to the competitor 

(strong trade-off treatment). The manipulation of colonization rate was achieved by 

diluting each strain when building the ‘colonizers pool’ (when inoculating a new 

microplate between two time steps of our experiment); greater dilution reduced the 

number of cells that entered the colonizers pool and consequently reduced the 

probability that a strain would successfully colonize each inoculated well 

(see Methods and Supplementary Methods 1). 

In contrast to most CC models that assume continuous colonization processes, we 

aimed to conduct our colonization treatments at discrete-time intervals for logistical 

feasibility. To achieve this goal, we needed to derive a discrete version of the CC 
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competition model that we could parameterize for our experimental system 

(see Methods and Supplementary Methods 1). The following experiments and model 

conditions were implemented. An initial metacommunity was inoculated with each of the 

two strains in half of the wells of a 96-well microplate. Every 24 h, the regional 

abundances (that is, microplate scale) of the two strains were estimated and used to 

build a ‘colonizer pool,’ which was subsequently used to inoculate a new microplate 

containing fresh medium. The relative contribution of the two strains in the colonizer 

pool and the dilution of this pool were adjusted before each transfer (Fig. 1.1), to 

manipulate the absolute and relative colonization rates (and thus the strength of the CC 

trade-off) of the two strains in the metacommunity. This procedure ensured that our 

experimental manipulations remained constant throughout the experiment, but that 

potential deviations from the predicted trajectories in the preceding transfers would be 

taken into account in the computations of the colonization pool. The overall dilution 

ensured that colonization rates were low enough to approximate limited or near-limited 

dispersal and generate an exponential growth phase. To prevent any possible 

confounding of evolutionary changes in each strain from affecting the dynamics, at each 

new transfer, the bacterial colonization pool was reconstituted from initial frozen stock 

and not from the bacteria of the previous transfer. Using this experimental setting and 

our model (Fig. 1.2, see Methods), we predicted the outcome of metacommunity 

dynamics under different trade-off and colonization scenarios (Fig. 1.3). We 

subsequently assigned our primary experimental treatments along this parameter space 

to generate all predicted outcomes, which consisted of the exclusion of the colonizer or 
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competitor, coexistence and the extinction of both strains (Supplementary Table 1.1). In 

general, our experimental results closely corresponded to the predictions of our model. 

 

Figure 1.1:  Implementing competition–colonization trade-offs. The experiment 
consisted of six basic steps: (1) set up an initial metacommunity with equal proportions 
of both strains in all wells (48 wells at random occupied by each strain); (2) build a new 
‘colonizer pool’ based on the regional abundances of the two strains after every 24 h; (3) 
modify the relative contribution of the two strains in the colonization pool and the dilution 
of this pool according to each experimental treatment (see Supplementary Table 1.1) to 
manipulate the absolute and relative colonization rates (and thus the strength of the CC 
trade-off) of the two strains in the metacommunity; and finally (4) inoculate new 
metacommunities (that is, new microplates containing fresh media); (5) measuring 
abundances in each microplate metacommunity by estimating optical density; 
presence/absence results were confirmed via plating. Finally, (6) characterize colonizer 
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pool using data from step 5 to estimate the relative abundances of each strain in the 
colonizer pool. This experimental procedure was run for ten transfers. 

 
Figure 1.2: Cobweb plot for the patch occupancy model. Patch occupancies after 
one transfer (P1 for strain 1 and P2 for strain 2 at t +1) are functions of their current 
values through the probability of successful colonization following dispersal (f1 and f2). 
The equilibrium is stable provided that f is concave (f′′<0), and under this condition, the 
persistence conditions are f′1(0)>1 for strain 1 and f2′(0)>1/(1−P1) for strain 2. One can 
determine the equilibrium occupancy of the competitor (P1) and, subsequently, the 
equilibrium occupancy of the colonizer (P2), given P1. 
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Figure 1.3: Coexistence predictions. These predictions take into account the 
colonization rates (that is, dilution rates) of strong competitor (competitor) and poor 
competitor (colonizer) strains. Numbers indicate the treatment corresponding to each 
combination of strain colonization rates (obtained from the model presented in Fig. 2). 
Axes indicate the colonization rates of the competitor and colonizer strains as the 
concentrations used before inoculation at each transfer; smaller values (that is, greater 
dilutions) indicate that fewer cells colonize each well (that is, are inoculated); greater 
values indicate more cells being dispersed. Light gray, colonizer excluded by the 
competitor; white, coexistence; dark gray, competitor excluded by the colonizer; black, 
extinction of both strains. Lines correspond to the four trade-off strengths: no trade-off 
(solid white line), weak, medium and strong trade-offs (all indicated by white dashed 
lines). Thicker arrows indicate the predicted trajectories of isolation treatments (H7 and 
H11) subjected to reductions in colonization rate (70 or 90%). *Treatments whose 
observed dynamics are displayed in Fig 1.4. Dynamics for the remaining treatments are 
shown in Supplementary Fig. 1.1. 
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Coexistence and patch occupancy 

The persistence of both strains was most prevalent and resulted in the most even 

relative patch occupancies at moderate trade-off strength (Figs 1.4 and Fig. 1.5, and 

also see Supplementary Fig. 1.1). Treatments with no or weak trade-off strength 

resulted in the rapid exclusion of the colonizer, whereas strong trade-offs caused 

extinction of the competitor. Low absolute colonization resulted in the extinction of both 

strains. There was a highly significant interaction between strain identity and trade-off 

strength in predicting equilibrium patch occupancy (Fig. 1.5; generalized-linear 

model,P<0.0001, df=74, χ2=32.81, Supplementary Table 1.2), which occurs because 

the two strains are affected in opposite ways by trade-off strength. Our experimental 

results thus showed that CC dynamics may regulate the outcome of species competition 

in a landscape that conforms to theoretical assumptions of strictly asymmetric 

competition, patch homogeneity and discrete global dispersal. Interestingly, the most 

important deviation between our predictions and the experimental results occurred 

under conditions for which our model predicted coexistence (Supplementary Fig. 1.2). In 

half of such cases, either the competitor or the colonizer went extinct (four colonizer and 

two competitor extinctions). This evidence suggests that stochasticity may be important 

in CC dynamics, because it can lead to apparently random extinctions of either species, 

even under conditions that are favourable to the persistence of both strains. Our 

simulations indicate that these effects are not solely due to the finite size of the 

metacommunity13 or to demographic stochasticity (Supplementary Fig. 1.2), and that 

they are influenced by temporal variation (among transfers) in the overall colonization 
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rates of the two species. In our experiments, this situation occurs because the actual 

colonization rates that we impose are highly sensitive to (1) density estimates in our 

metacommunities and stock cultures, (2) unavoidable procedural imprecision during 

dilution and (3) variability in the number of colonizing cells per well. This effect is likely 

to be comparable to the temporal stochasticity in overall dispersal that may occur in 

natural metacommunities. 
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Figure 1.4: Time series for all replicates from select treatments. Treatments T1, 
T4, T7, T10 and T14 are included. Panels a–e show observed occupancies (points) and 
model predictions for each strain (thick lines). Each treatment included three replicates 
and was run for a maximum of ten transfers. Replicates were stopped after the 
extinction of one or both strains occurred. Aside from treatment T10, which showed 
strong variability, all other treatments were consistent with the model predictions. 
Dynamics for the remaining treatments from the main experiment are shown in the 
Supplementary Fig. 1.1. 
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Figure 1.5: Effect of trade-off strength on equilibrium patch occupancy by strain. 
Each point indicates the average proportion of occupied patches by each strain in each 
replicate (averages of transfers eight to ten in our experiment). The ‘competitor dilution 
reduction factor’ represents the proportional reduction in the overnight culture volume of 
the competitor before dilution (the strength of the trade-off in terms of reduced 
colonization rate). Treatment T1 was not included in this analysis because the extinction 
of both strains was predicted. A smoothing loess line is fitted to points from each strain 
to highlight the colonization pattern. All points were jittered to avoid overlap and improve 
the clarity of the figure. 
 

Metacommunity productivity 

We found evidence for functional consequences of CC dynamics in a negative 

relationship between regional diversity and metacommunity productivity (Fig. 1.6). 

Productivity was measured as the sum of cell densities (estimated by optical density) in 
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all of the wells in each microplate averaged over the last three transfers. Taking in 

account that there were only two strains in this system, we calculated the Shannon 

index (or Shannon entropy) to measure diversity using the relative density of each strain 

within each microplate (that is, metacommunity). If both species were equally common, 

the Shannon index would be maximized. The more unequal the abundances of each 

strain are in the metacommunity, the smaller the corresponding Shannon index. If only 

one strain is contributing to the overall biomass and the other strain is very rare (or 

absent), the Shannon index approaches zero26. These scenarios are analogous to those 

in communities in which there are substantial changes in the relative proportions of 

abundant species, although not in numbers of species (for example, 27, 28). In our 

experimental system, the competitor was much more productive (that is greater cell 

densities) than the colonizer (Supplementary Fig. 1.3). Taking into account that these 

strains cannot coexist locally, the asymmetry in productivity implies that 

metacommunities dominated by the colonizer have lower productivity than those 

dominated by the competitor do. In fact, the low-diversity metacommunities often 

consisted of monocultures of the competitor with high productivity, whereas high-

diversity metacommunities resulted in mixtures of productive (occupied by the 

competitor) and unproductive patches (occupied by the colonizer) that lead to a 

negative relationship between regional diversity and productivity (Fig. 1.6). 

Theoretically, the low-diversity communities could also have consisted of monocultures 

of the colonizers, which would lead to a unimodal relationship between productivity and 

diversity29, but this scenario was not observed because there were far more treatments 
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in which the competitor was expected to be more likely to persist than the colonizer (Fig 

1.3). 

 

Figure 1.6: Total metacommunity productivity and Shannon diversity. Points are 
averages from each replicate in the 14 main experimental treatments over transfers 8–
10. Circle sizes are proportional to the mean patch occupancy of each strain (see scale 
in the figure). Notably, diversity was calculated based on the productivity and not the 
occupancy data, so plates with uneven occupancy can have high diversity 
(P<0.036, R2=0.108, F=0.57, n=42). 
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As opposed to other regional mechanisms of species coexistence that have found a 

positive biodiversity-ecosystem function (BEF; for example, source-sink dynamics30, 31), 

our experiment showed how CC dynamics may produce a rarely observed negative 

BEF relationship32, 33, which is likely explained by a combination of patch dynamics and 

the regional dominance of a productive and competitive species (a ‘negative selection 

effect’, sensu34). These results suggest that the definition of complementarity and 

selection effects, as the main drivers underlying the BEF relationship, may need to be 

revisited to accommodate broader coexistence mechanisms. Complementarity is based 

on niche differentiation and/or facilitation35, 36 and leads to a positive BEF, whereas the 

selection effect assumes that the dominant species are driving the BEF pattern and 

predicts either a positive or a negative relationship, depending on whether the traits of 

dominance are positively or negatively correlated to ecosystem functioning34. Although 

complementarity is clearly linked to the mechanism of species coexistence, the 

selection effect does not integrate any information on what drives species coexistence 

or abundances. In our experiment, dominance is linked to the proportion of patches 

occupied in the metacommunity and this is driven by an interaction between species 

traits (CC trade-off strength) and an external driver (perturbation rate) that ‘selects’ for 

dominance of either the competitor or colonizer. As dominance here is decoupled from 

species productivity (that is, the dominant species can be either the most or the least 

productive species), it leads to a negative selection effect where the most diverse 

metacommunities are less productive because they are dominated by the less 

productive species. Besides illustrating one of the first experimental negative BEF 
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relationships (see also 32, 37) our results stress the need for redefining the drivers of the 

BEF based on the relationship between the traits driving coexistence (for example, CC 

trade-offs versus local niche differentiation) and traits related to ecosystem 

functioning per se. Future research will need to disentangle the mechanisms driving 

species coexistence at local and regional scales, and reveal the manner in which niche 

traits at multiple scales are related to ecosystem functioning to advance a mechanistic 

understanding of the BEF relationship29, 38, 39. 

Increasing patch isolation 

In a second experiment, we investigated whether increased patch isolation could modify 

the outcome of metacommunity dynamics8, 9. We reproduced two experimental 

treatments from the first experiment that revealed (1) the strong persistence of both 

strains and (2) rapid exclusion of the colonizer (treatments H11 and H7, respectively, 

in Fig. 1.7). We subsequently generated new predictions from the model, which showed 

that decreased overall colonization by 70 and 90%(corresponding to highly isolated 

patches) in each treatment (Fig. 1.3) should qualitatively affect coexistence outcomes 

(eliminating the competitor from the H11 treatment, inducing coexistence in the H7 

treatment). We ran these treatments in a second experiment with identical conditions for 

ten transfers. As predicted, we found that the persistence of both strains was enhanced 

for the 70%reduction and that the extinction of the best competitor (referred to as PI) 

was observed for the 90% reduction (Fig. 1.7). Extinctions and reversals in persistence 

scenarios required multiple transfers to resolve relative to controls (especially in H7, Fig. 

1.7), suggesting the existence of an ‘extinction debt’9. This situation illustrates the 
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susceptibility of communities structured by the CC trade-off to the changes in absolute 

colonization rate that are predicted under human impacts on landscapes, including 

habitat destruction9, 40, fragmentation8 or changes in inter-habitat matrix quality41. 

Previous experimental studies have been limited to binary or coarse-scale 

manipulations of colonization rate to simulate reductions in landscape connectivity42, 43. 

By coupling our model predictions to a tailored experimental system, we were able to 

identify and test critical thresholds in the effects of decreased connectivity on 

metacommunities. Future developments will include measuring how these thresholds 

are affected by other scenarios of competitive interaction (for example, 4) or landscape 

topology and dispersal patterns (for example, 44). 
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Figure 1.7: Time series for all replicates from all treatments in the habitat 
isolation experiment. Panels a–f show observed occupancies (points) and model 
predictions for each strain (thick lines). Each treatment included three replicates and 
was run for a maximum of ten transfers. Replicates were stopped after the extinction of 
one or both strains occurred. 
 

Discussion 

In the context of increasing global change, ecologists are being urged to shorten the 

loop between theory and application45. Although ecologists have now adapted to include 

larger-scale mechanisms through the use of metapopulation, metacommunity and meta-

ecosystem concepts and models46, 47, 48, 49, experimental work targeting biodiversity and 
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ecosystem effects at larger spatial scales is still in the initial stages50. The reality is that 

many theoretical models, often used to understand the consequences of global change, 

are difficult to test in natural systems, especially without first evaluating their 

performance in highly controlled experimental settings. Our study was done using a 

unitrophic community in an aquatic microcosm system, which is a common feature of 

many experimental tests of metacommunity paradigms50. These systems closely 

approximate theoretical assumptions and have a long history in ecology serving as 

bridges between theory and natural systems51, 52, making them ideal for theory that is 

challenging to test like CC dynamics. Here we demonstrated that CC dynamics can 

indeed be implemented in a controlled microcosm system, facilitating the 

comprehensive and quantitative evaluation of these theoretical models in more robust 

situations. 

Our combined theoretical–experimental framework opens the way for further 

investigation of different aspects of CC dynamics (1) as a coexistence mechanism, (2) 

as a determinant of patterns of biodiversity loss under anthropogenic landscape impacts 

and (3) as a driver of regional BEF relationships. A prime example of the potential 

applications of our framework is the demonstration that the effects on landscape-level 

coexistence could be closely linked to those on regional level BEF relationships, 

suggesting that the effects of fragmentation on extinction debts may also cascade to 

ecosystem attributes. Our findings illustrate that BEF relationships may depend on the 

spatial scale over which they occur and the mechanisms generating the gradient of 

diversity29, 30,38. 
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We believe that our experimental framework is likely to prompt further investigations into 

the mechanisms underlying the evolution of CC dynamics in natural communities by 

exploring the particular ecological scenarios that trigger the evolution of CC trade-offs. 

As the changes in colonization rates in our experiment have analogous effects to 

reductions in the number of susceptible hosts or reduced transmissibility in 

epidemiological models53, 54, our experimental setting has strong potential for use 

beyond community and landscape ecology questions; for example, to investigate 

questions related to spatial epidemiology. 

Our ability to bridge advances in theory with natural systems partially relies on using 

formal tests of predictions derived from theoretical models51, 52. Although the highly 

controlled nature of our system and related experiments (for example, 55, 56) does not 

allow direct extrapolation of our primary results to natural landscapes, they are a key 

step toward the understanding of natural metacommunity dynamics and properties. 

These approaches provide critical mechanistic explanations that will ultimately facilitate 

the application of theory towards the conservation and management of biodiversity and 

ecosystems on large scales. 

Methods 

A model for CC dynamics in microplate metacommunities 

We used a patch occupancy model to describe how the proportion of wells (patches) in 

a microplate that are occupied by a particular bacterial strain changes through 

successive transfers from one plate to the next. This model can be seen as the discrete-
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time equivalent of seminal community ecology models2, 3 or the limiting case of a 

haystack metapopulation model when local competitive exclusion is rapid (see 57). 

With P1 and P2 as the proportion of wells occupied by strain 1 (competitor, equation 1) 

and strain 2 (colonizer, equation 2), respectively, the dynamic equations are as follows: 

 

 

where n1 and n2 are the local densities of each strain and d1 and d2 are their 

colonization rates; fis any function, including a Poisson zero-term 

function f=a(1−e(−bx)), such as the one used in this study. Important assumptions are 

that (1) strain 1 is completely dominant so that strain 2 disappears from any well where 

strain 1 is found; and (2) at the end of a transfer, both strains reach a given density in 

any colonized well, irrespective of initial conditions. 

The equilibrium occupancies can be determined graphically for any function f (see Fig. 

1.2). Coexistence occurs if the proportion of successfully colonized wells exceeds zero 

for both strains and strain 2 has colonization rate sufficiently greater than strain 1 (Fig. 

1.3). We took dispersal to follow a Poisson distribution, which was appropriate for our 

method of diluting cell cultures58, and we assumed that at least one cell was needed for 

successful colonization, yielding f(x)=1−e(−x). This function was validated in preliminary 

trials (Supplementary Fig. 1.4). 

Bacterial strains 
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We used two isogenic strains for both experiments; Pseudomonas SBW25-LacZ (LacZ, 

‘colonizer’) and an unknown strain of Pseudomonas were isolated on Gould S1 medium 

(sucrose, glycerol, casamino acids, NaHCO3, MgSO4 7H2O, K2HPO4 3H2O, N lauroyl 

sarcosine sodium, trimethoprim) from soil samples collected in Montpellier, France59. 

We refer to the second strain as ‘PI’ (‘competitor’). LacZ was chosen because it can be 

distinguished under plating with X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) and IPTG (isopropyl-β-D-thio-galactoside). PI was chosen because 

it clearly outcompeted LacZ (see Supplementary Methods 1, Competitive assay 

section). In all trials and the main experiment, bacteria were grown for 24 h (overnight) 

at 28 °C on KB medium (glycerol 10 μl l−1+20 g l−1 protease peptone 

H3+1.5 g l−1 K2HPO4+1.5 g l−1 MgSO4; autoclaved 20 min at 121 °C) under constant 

agitation21. 

Model parameterization 

Preliminary trials showed that increasing the dilution rates generated a Poisson 

distribution of growth success in microplate wells (Supplementary Fig. 1.4) and that this 

distribution was similar between the two strains. This result confirmed that we could 

manipulate colonization using pre-inoculation dilution and allowed us to use a specific 

distribution (Poisson) in our model. We parameterized our model with the average 

strain-specific growth in a single well after 24 h of 1.027 × 108 for LacZ and 9.517 × 

108 cells for PI and the number of wells per microplate, which was 96. Colonization 

(dilution) rates were selected based on an exploration of model coexistence state 

outputs. Cell number was assayed following the droplet procedure described above. 
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This model was implemented in Mathematica 8 (Wolfram). Model results are shown 

in Figs 3, 4 and 7. 

Basic experimental design 

The main experiment consisted of manipulating trade-off strength (that is, weak, 

moderate, strong and no trade-off) across 14 treatments (Fig. 1.3), with 3 independent 

replicates for a starting total of 42 microplates (metacommunities), or 4,032 wells 

(patches). Our experiment consisted of six basic steps as follows: (1) set up an initial 

metacommunity with equal proportions of both strains in all wells (48 wells at random 

occupied by each strain); (2) build a new ‘colonizer pool’ based on the regional 

abundances of the two strains after every 24 h; (3) modify the relative contribution of the 

two strains in the colonization pool and the dilution of this pool according to each 

experimental treatment (see Fig. 1.1) to manipulate the absolute and relative 

colonization rates (and thus the strength of the CC trade-off) of the two strains in the 

metacommunity; and finally (4) inoculate new metacommunities (that is, new 

microplates containing fresh media); (5) measuring abundances in each microplate 

metacommunity by estimating optical density at 650 nm on a FLUOStar 

spectrophotometer; and (6) characterize colonizer pool using a custom-made script in R 

that uses data from step 5 to estimate the relative abundances of each strain in the 

colonizer pool (for complete description of these steps see Supplementary Methods 1, 

Detailed experimental protocol, and Supplementary Note 1 for R script). This 

experimental procedure was run for 10 transfers, which we considered appropriate 

following model simulations (Figs 1.4 and 1.7). The treatment- and strain-specific pre-
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inoculation dilution, concentrations of each strain and isolation levels can be found in 

Supplementary Table 1.1. 

Similar to the main experiment, the isolation experiment had six basic steps as follows: 

(1) set up an initial metacommunity; (2) build a ‘colonizer pool’; (3) modify the relative 

contribution of the two strains in the colonizers pool and the dilution of this pool 

according to each experimental treatment and (4) inoculate new metacommunities. To 

mimic isolation, we imposed an additional reduction in overall colonization by reducing 

the inoculation volumes of the two strains by 0 (control), 70 or 90%in replicate 

microplates. The two coexistence scenarios that we implemented were the same as 

treatment T7 and T11 in the main experiment. Following the implementation of the 

additional reduction we proceeded with steps 5 and 6 as in the previous experiment. 

This experiment consisted of a starting total 18 microplates or 1,728 patches and was 

run for 10 transfers. 

Stock cultures and experimental duration 

A key issue in this experiment was to ensure that no substantial evolution occurred 

between transfers so as not to interfere with the ecological CC dynamics predicted by 

our model. For this purpose, we generated a uniform stock library of bacteria by freezing 

(−80 °C) 300 μl aliquots from overnight cultures in KB medium and glycerol (60/40 

bacteria to glycerol, 80% v/v ratio). Before each transfer, we defrosted (for 5 min) and 

vortexed (for 10 s) new frozen aliquots to remove the glycerol from the aliquot before 

inoculation. Separate overnight tubes with 6 ml of KB were inoculated with 125 μl of 
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LacZ and 30 μl of PI from the defrosted and vortexed aliquots. Previous pilot 

experiments have shown that these inoculation volumes ensured relative congruence 

between overnight growth and growth in the microplates. This detail meant that our 

procedure relating optical density-estimated cell counts in overnight cultures to 

microplate estimates (see Supplementary Methods 1, Measuring abundances and 

Detailed experimental protocol) was not correcting for great differences in cell counts. 

Overnight cultures were grown overnight at 28 °C under constant orbital shaking. 

Statistical analysis 

Productivity was measured as the sum of bacterial growth in all wells of each 

microplate. Diversity was calculated as the Shannon diversity index that takes into 

account the relative contribution to productivity of each strain. The Shannon index used 

was calculated as H=−Σpilog(b)pi, where pi is the proportional abundance of species i, 

and b is the base of the logarithm. This index is also known as Shannon entropy 26. If 

both species are equally common, the Shannon index is maximized. The more unequal 

the abundances of each strain are in the metacommunity, the smaller the corresponding 

Shannon index. If only one strain is contributing to the overall biomass and the other 

strain is very rare (or absent), the Shannon index approaches zero26. These calculations 

were performed using the vegan package in R60. We tested for an interaction between 

strain identity and trade-off strength in predicting equilibrium patch occupancy using 

generalized-linear model (Supplementary Table 1.2). 
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Chapter 2: The dynamics of community assembly under sudden mixing in 
experimental microcosms 

 

Abstract: Landscape connectivity has been shown to alter community assembly and its 

consequences.  Here we examine how strong, sudden changes in connectivity may 

affect community assembly by conducting experiments on the effects of ‘community 

mixing’, situations where previously-isolated communities become completely 

connected with consequent community re-organization.  Previous theory indicates that 

assembly history dictates the outcome of mixing: mixing randomly-assembled 

communities leads to a final community with random representation from the original 

communities, while mixing communities that were assembled via a long history of 

colonizations and extinctions leads to strong asymmetry, with one community 

dominating the other. It also predicts that asymmetry should be stronger in the presence 

of predators in the system. We experimentally tested and explored this theory by mixing 

aquatic microcosms inhabited by a complex food web of heterotrophic protists, and 

algae. Our results confirm the prediction that long assembly history can produce 

asymmetry under mixing and suggest these dynamics could be important in natural 

systems. However, in contrast to previous theory we also found asymmetry weaker 

under mixing of communities with more complex trophic structure.    
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Introduction 

 Spatial effects are increasingly recognized to be important to community 

assembly at local and regional scales (Leibold et al. 2004, Holyoak et al. 2005).  A 

central finding is that the degree of connectivity among local communities in a 

metacommunity can alter patterns of diversity, composition, and food web and 

ecosystem attributes (Massol et al. 2011, Logue et al. 2011).  To date, most of this work 

has focused on cases where connectivity is fixed in time.  However connectivity can 

change due to both natural and anthropogenic factors.  Although some attention has 

been given to altered fragmentation corresponding to rapidly decreased connectivity 

(Didham et al. 2012), a largely unexplored and interesting possibility is the reverse: a 

sudden increase in connectivity through ‘community mixing’.   

 Community mixing occurs when previously isolated communities merge into one. 

The phenomenon is likely widespread in nature, but it is difficult to identify cases of 

mixing because field data is not typically collected with a delineation of past community 

isolation or of changes in connectivity across time. However, community mixing does 

occur. For example, over long geologic time scales macroecological events such as the 

collision of landmasses or the merging of ocean or river basins (Vermeij 1991, 

Wilkinson et al. 2006) provide opportunities for community mixing. On decadal time 

scales, defragmentation processes may also represent contemporary mixing (e.g. 

reforestation, Sitzia et al. 2010, Didham et al. 2012). Seasonally, recurrent rainfall 

events induce rivulets to form among rock pool communities and this dispersal mode 

accounted for the majority of dispersal volume of invertebrates in one system 



 33 

(Vanschoenwinkel et al. 2008). Even on daily time scales, tidal action floods and re-

isolates coastal water bodies (Larkin et al. 2008) and the mixing of some microbial 

communities may occur at even higher frequency (Gonzalez et al. 2012).  

What is the outcome of such events? Tilman (2011) reviewed cases of the 

historical merging of “biogeographic realms.” In general, coexistence was the 

predominant outcome and wholesale extinctions of taxa from either of the two source 

realms did not occur, nor did the overall extinction rate among both groups of taxa 

increase. A notable exception to this pattern comes from the extinction of 12 of 20 

genera of South American ungulates after the collision of the North and South American 

landmasses possibly due to direct or apparent competition with Northern taxa (Webb 

1976). Although these examples provide patterns, it is extremely difficult to determine 

the processes responsible. Possible processes involve pre-contact evolutionary 

community assembly like character displacement, coevolution, phylogenetics, species 

range evolution (Urban et al. 2008) and trade-off surfaces (Tilman 2011), or post-

contact ecological community assembly involving rapid re-assembly through species 

interactions and environmental heterogeneity among the previously isolated realms.  

Simple assembly models based on competition can aid interpretation of the 

general pattern of coexistence observed in biogeographic contexts. These models 

reveal the expected consequences of community mixing under simple, widely applicable 

ecological scenarios.  Gilpin (1994) used Lotka-Volterra models to show that after 

mixing, one community could mostly or entirely replace the other, much as in the partial 

replacement of the South American mammal fauna by the Northern.  He contrasted 
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situations where the initial communities were ‘random’ vs. ‘non-random.’  The ‘random’ 

ones were created by drawing species at random from a species pool and finding sets 

of species that could stably coexist but were subject to no other mechanisms of 

community assembly.  The ‘non-random’ communities were those that initially contained 

an unstable set of species, but collapsed under deterministic extinctions to a smaller 

subset of species that could stably coexist. He found that mixing two ‘random’ 

communities usually resulted in a final community that comprised roughly equal 

numbers of species from the two initial communities. In contrast, he found that mixing of 

two ‘non-random’ communities resulted in final communities that were often completely 

or partially biased to contain species only from one or the other of the initial ones 

(asymmetry). The results illustrate that ‘non-random’ communities are likely to have a 

set of species with a more globally stable species composition (across many possible 

species combinations) and can thus “trap” mixed communities more than do ‘random’ 

ones with local stability (across few possible species combinations). However, only 29% 

of mixes among ‘non-random’ communities produced asymmetry, indicating that the 

occurrence of asymmetry is sensitive to the composition of mixed communities. 

Subsequent theoretical work also showed that communities with few species tend to 

overtake more species-rich ones (Toquenaga 1997).  

Incorporating trophic structure by adding a trophic level to communities enhances 

asymmetry due to the increased global stability imposed by the predator relative to 

competitors (Wright 2008). This increased global stability occurred because the effects 

imposed by predators on their prey tended to be larger than the interaction coefficients 
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among competitors. Under the mixing of non-random communities with predators, 

asymmetry in the final community is further enhanced by the need for the prey from 

each initial community to coexist with a novel predator and for those predators to coexist 

with one another (Wright 2008). Although unexplored theoretically, mixing a single 

trophic level community with a two level community could produce similarly enhanced 

asymmetry.   

Although intriguing, this theory is poorly developed, being represented by only 

the three related simulation studies summarized above. Conversely, examples from 

natural systems suffer from a lack of control that hinders interpretation of patterns. An 

experimental approach can complement theory and observations from nature, reveal if 

asymmetric outcomes of mixing are possible in communities comprised of real (as 

opposed to theoretical) organisms, and allow causation to be attributed to the mixing 

event (as opposed to, e.g., pre-mixing evolutionary history).  

 We use multi-trophic aquatic microbial communities to explore the dynamics 

resulting from assembly in isolation followed by sudden mixing. Microbial microcosms 

are a powerful model system for bridging the gap between theory and nature (Lawler 

and Morin 1993, Morin 1999, Cadotte et al. 2005, Fox et al. 2010). We used a well-

characterized food web involving producers, herbivores, omnivores, and predators. To 

address the effect of trophic structure, communities included interaction networks whose 

species composition was manipulated to produce with either mostly competitive (C) or 

trophic (predator-prey) (T) interactions among species. We mixed two competitive 
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communities (CC), two trophic communities (TT), and one of each (TC) in replicated 

pairs.  

We tested two hypotheses about the mixing of two isolated communities: H1) 

asymmetric outcomes (one community largely or entirely replaces the other) occur more 

often than expected by chance; and H2) asymmetry is more frequent in TT and TC than 

in CC mixes. We explored potential biological mechanisms underlying the mixing 

process using an analysis of asymmetry within each of six trophic guilds used in our 

experiment: bacterivores, inedible algae, edible algae, herbivores, predators, and 

omnivores.    

 

Materials and methods 

Experimental design 

 The 52 species in the experiment included edible algae, inedible algae, 

bacterivores, omnivores, herbivores, and predators. We generated 132 eight-species 

communities divided equally into two types: communities that were dominated by trophic 

interactions (T); and communities that were dominated by competitive interactions (C). 

Like Gilpin (1994) and Wright (2008), we choose to initiate our communities with equal 

numbers of species. Unlike Wright's (2008) model, both C and T communities include 

trophic and competitive interactions, however, we varied the ratio of trophic to 

competitive species in an analogous way to Wright’s method of substituting one prey for 

a predator.   
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We then paired communities in three ways: 22 pairs of competitive communities 

(CC), 22 pairs where one community was a competitive community and the second was 

a trophic community (TC), and 22 pairs in which both were trophic (TT) (66 total pairs, 

Fig. 2.1). Each community in the experiment contained a unique species composition 

and there was no overlap in composition between paired communities. We mixed 

community pairs 45 days after establishment and allowed the mixed communities to 

reassemble for an additional 45 days. These periods are similar to previous microcosm 

assembly experiments (Fox 2008) and represent approximately 90 generations by the 

end of the experiment for mid-trophic-level species (other groups have longer or shorter 

generation times).  
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Figure 2.1: Schematic of experimental design. The general food web was adapted from 
the feeding trial (Appendix B) and Petchey et al. (1999). Dashed lines indicate context-
dependent feeding links. 132 trophic (T) and competitive (C) communities each with 8 
species were randomly generated and paired in TC, CC, and TT combinations (66 total 
pairs and 22 of each type, see Methods). These communities were assembled for 45 
days, mixed, and assembled for another 45 days until the end of the experiment.  
 

Trophic and Competitive Community Assembly 

 Trophic communities were inoculated with one species each of bacterivore, 

inedible algae, edible globular algae, edible non-globular algae, herbivore, predator, and 

two omnivore species. In competitive communities, we increased the frequency of 

competitive interactions by removing the herbivore and predator and adding an 

additional omnivore and inedible algae species. Competitive communities were 
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inoculated with one each of bacterivore, edible globular algae, edible non-globular 

algae, two inedible algae, and three omnivore species (Fig. 2.1). Edibility of algae was 

determined by size (Appendix A2 and methods in Appendix B2). We classified the 

majority of heterotrophic species into trophic categories based on a combination of 

feeding trials (Appendix B2 and C2), mouthpart size, and published observations (see 

refs in Appendix A2). Although precise feeding relationships were context dependent, all 

herbivores, predators and omnivores used in the experiment are considered to be 

generalists. 

Stock cultures were obtained from biological supply companies and contributions 

from other microbiological labs (see Appendix A2). We inoculated communities from 

high-density stock cultures grown under similar conditions for 10 days prior to the start 

of the experiment. Bacterivores, omnivores in pure culture, and algae were added as 

250 ul innocula. Spirogyra sp., a filamentous algae, was added as a single strand. For 

omnivores, herbivores, and predators, we isolated 5 individuals for innoculation by serial 

dilution. Food webs were assembled from the base up, with bacterivores and algae 

added at 7 d, and omnivores, herbivores, and predators added at 14 d.  

 

Microcosm conditions  

 We used deep 100 x 25 mm petri dishes as microcosms filled with 39 ml of 

COMBO culture medium (Kilham et al. 1998), on which all species exhibited vigorous 

growth. Lids were vented allowing gas exchange. To initiate bacterial populations we 

inoculated autoclaved wheat seeds (carbon source) with a mixture of three unknown 
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bacterial strains that were isolated from cultures of bacterivorous protists. We then 

added two of these wheat seeds to each microcosm. Our cultures were not axenic, and 

other unknown bacterial species and possibly nanoflagellates were unavoidably 

introduced. However, additions of these unknown organisms were consistent across 

replicates and are unlikely to confound our results (Fox 2008).  

Microcosms were placed under a single fluorescent tube light in a growth 

chamber with a 16:8 light dark cycle at 20 °C. Each week we replaced 11% of culture 

volume with fresh sterile medium to prevent the accumulation of toxic metabolites. Trays 

of 18 petri dishes were rotated weekly within the growth chamber to ensure uniform 

lighting conditions, but all community pairs were placed adjacent to each other to assure 

that each pair was subject to identical conditions.  

 

Mixing and sampling procedures 

 Mixing involved pouring the contents (including wheat seeds) of both petri dishes 

simultaneously into a single new sterile dish. A sterile cell scraper was used to transfer 

attached biofilms. Mixing doubled the volume in each microcosm to 78ml. 

 We sampled communities at mixing and at the end of the experiment. 

Communities were placed under a stereomicroscope and scanned until all species were 

accounted for or a maximum of 10 minutes. Preliminary trials and other studies (Fox 

2008) demonstrate that this length of time is sufficient to find all species present. 

Because of logistical constraints we only sampled species abundances for 24 

community pairs (distributed evenly across treatments). If supplemented with 
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abundance data, presence-absence provides sufficient information to address our main 

hypotheses. Thus, for the remaining 42 community pairs we scanned communities for 

presence/absence only. To check if extinctions were still occurring at mixing, we 

scanned 13 communities selected at random for extinctions at 28 d.   

For those communities where abundance was estimated, 300 ul was extracted 

using a micropipette after swirling the dish and counted under a stereoscope (Fox 

2002). Algae that were either too abundant or too small to count using this method were 

estimated by transferring approximately 30 ul to a haemocytometer for counting under a 

compound scope. High-density samples were diluted until they reached countable 

densities.  

 

Statistical analyses   

We calculated asymmetry in composition as the absolute value of the difference 

in post-mixing extinction rates from each initial community within a mixed pair. Let  

represent asymmetry and  and  represent the proportion of species present at the 

time of mixing that went extinct after mixing in communities 1 and 2. The equation for 

asymmetry is thus: . This method controls for variation in species richness 

between each community in a pair prior to mixing and allowed us to look at both the 

randomness of the overall distribution of asymmetry outcomes as well as the outcome 

for any particular pair of communities.  

 Our core results involve comparing the mean, variance and skew of our observed 

asymmetry in composition with that predicted by a null model (described below). We 
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make comparisons overall, within treatments, and to aid interpretation of community-

level results, within guilds. Skew is only reported for the overall distribution because 

among treatments and guilds it never significantly deviated from the null model. For our 

guild-level analysis, we calculated asymmetry separately for each guild within paired 

communities. We calculated asymmetry using the same general equation presented 

above, but only for those cases where both communities contained at least one species 

in a given guild. 

 We neither expected nor observed all species to persist in all microcosms 

because of species interactions and demographic stochasticity. This allowed us to 

analyze our results using a null model. We used each species’ pre-mixing persistence 

probabilities to simulate extinctions in observed communities from the time of mixing 

until the end of the experiment. The pre-mixing persistence probability for each species 

was calculated as the number of communities with that species present after 45 d 

divided by the total number of communities inoculated with that species (probabilities 

are reported in Appendix A2). This model assumes that species persistence 

probabilities are unaffected by mixing, i.e. that persistence probabilities are the same 

during the first and last 45 d of the experiment. We test this assumption by correlating 

pre and post-mixing persistence probabilities. After 1,000 simulation runs, we inferred 

the likelihood of observing symmetric versus asymmetric outcomes by generating 

confidence intervals (mean, variance, skew of distributions, and deviance of asymmetry 

values from expected for each mixed pair of communities).  
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 For the 48 communities with abundance data, we calculated asymmetry in Raup-

Crick dissimilarity to address the possibility that focusing on presence/absence data 

missed important patterns using the vegan package in R (Oksanen et al. 2013). 

Asymmetry was calculated as the difference in dissimilarity of the communities in each 

pair relative to the final mixed community. This asks if, in terms of Raup-Crick 

dissimilarity, the final community is more similar to one of the two pre-mixing 

communities. The Raup-Crick index was used to avoid confounding effects of differing 

species richness among communities (Chase et al. 2011). 

 We explored two mechanisms that could have determined the identity of 

dominant communities. For the first, we asked if the presence of particular species was 

associated with communities showing significantly higher or lower asymmetry than 

expected under the null model. For the second, we asked if the pre-mixing extinction 

rate in each community correlated with the post-mixing extinction rate or with 

asymmetry using a GLM with a logit link function. The simulations and all statistical 

analyses were implemented in R (v2.14.1; R Development Core Team 2012, 

Supplement 2). 

 

Results 

 

Pre-mixing assembly  

 Species persistence probabilities prior to mixing ranged widely from 0% to 100% 

(Appendix A2). Trophic communities had significantly higher pre-mixing extinction rates 
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than competitive communities (Fig. 2.2a). Persistence probabilities differed significantly 

among guilds, being highest for inedible algae and lowest for predators and herbivores 

(Fig. 2.2b). The average number of extinctions among pre-mixing communities ranged 

from zero to six with an average of 2.3 (+/- St. Dev. 1.2). The weekly extinction rate 

during the first 28 d of assembly was 5.5% and between 28 and 45 d of assembly it was 

5%. This indicates the extinction rate was not increasing and may have attained levels 

reflecting background stochasticity prior to mixing.  

 

Post-mixing assembly  

 After mixing, the extinction rate among species from the 13 communities during 

the first 28 d was 3.5%, but dropped to 0.01% between 28 and 45 d. This indicates that 

extinctions had stabilized by the final sample. Species persistence probabilities again 

ranged from 0% to 100% and were significantly correlated with pre-mixing probabilities 

(Fig. 2c, Appendix A2). Overall the extinction rate was significantly lower post-mixing 

and CC, TC and TT mixes had similar post-mixing extinction rates (Fig. 2a). Among 

guilds, three (bacterivores, herbivores and predators) exhibited significantly lower 

extinction rates after mixing (Fig. 2b). These reduced extinction rates occurred because 

two bacterivore species, three herbivore species, and two predators had extremely low 

or zero pre-mixing persistence probability (Appendix A2) and were thus eliminated 

before mixing. The number of post-mixing extinctions per community again ranged from 

zero to six with an average of 2.5 (+/- St. Dev. 1.4). 
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Figure 2.2: Pre and post-mixing effects on extinction/persistence rates. Error bars show 
standard error. (a) Mean extinction by treatment. C=competitive; T=trophic; CC, TC, TT 
are mixes. Pre and post are overall rates before and after mixing, respectively. N=1056 
in pre and N= 748 in post. The difference between C and T and pre and post is 
significant (GLM, P<0.001, df=1055, X²=885.29, and P<0.01, df=1806, X²=1629.34, 
respectively), but not among mixing types. (b) Mean persistence by guild. There is a 
significant effect of guild on persistence rate before (GLM, P<0.00001, df=1055, 
X²=782.69) and after mixing (GLM, P<0.001, df=743, X²=625.64). (c) Mean pre and 
post-mixing persistence for all species present at both times (N=48). Fitted with a 
binomial GLM (P<0.01, df =47, X²=23.32). 
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Asymmetry  

 We observed significantly greater overall mean asymmetry and also greater 

variance relative to the null model (Table 2.1), supporting H1. Comparing the frequency 

distributions shows a fatter tail of high asymmetry communities in the observed data 

(Fig. 2.3). By analyzing individual pairs of pre-mixing communities, we found 10 pairs of 

communities deviated from predicted with significantly greater asymmetry (Fig. 2.4). 

Asymmetry was significantly greater than expected in CC mixes, but not in TC or TT, 

failing to support H2 (Table 2.1, Fig. 2.4). Disregarding the null model, observed 

asymmetry among CC, TC, and TT treatments did not differ significantly.  Among guilds, 

we found significantly greater asymmetry than expected under the null model for all 

groups except bacterivores and omnivores (Table 2.1). Asymmetry in Raup-Crick 

dissimilarity is correlated with asymmetry in extinction rate (Appendix 2D).  

 

Figure 2.3: Histogram of asymmetry in composition. N=66 for observed data and 
N=66,000 for simulation results. Shows observed and simulated composition 
asymmetry.  
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Figure 2.4: Scatterplot of observed and expected asymmetry by community. The 
“Observed Deviation” represents the difference between the mean expected asymmetry 
(simulated) and the observed value for each of the 66 post-mixing communities. 
Significant deviants are calculated at the P<0.05 level. 
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Table 2.1: Summary statistics by treatment and guild for asymmetry in composition.  
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Mechanisms  

 We observed that the presence of four species, Anabaena sp., Campylomonas 

reflexa, Loxocephalus sp., and Tetrahymena pyriformis, before or after mixing was 

associated with asymmetry in composition (P<0.05, none after Bonferroni correction), 

but there was no tendency for these species to be associated with the dominant final 

community.  More extinctions prior to mixing did not affect the chances a community 

would dominate another after mixing, or the likelihood of extinctions post-mixing.  

 

 

Discussion  

 Community mixing results in asymmetrical outcomes more often than expected 

under our null model, supporting H1. Asymmetry occurs despite the fact that pre-mixing 

communities did not differ in their evolutionary history or environment, were assembled 

and paired at random, and that “wining” and “losing” communities were not consistently 

associated with the presence of particular species. Although our experiment does not 

include unmixed control communities, similar overall and per species extinction rates 

pre and post-mixing suggest that the microcosm environment was largely unaffected by 

mixing and our null model is a reasonable approximation. Significant asymmetry in 

composition occurred in 18% of 66 mixes. By comparison, Gilpin (1994) observed 

asymmetry in 29% of simulated mixes among communities structured only by 

competition and Wright (2008) observed this number to be 38% when including 
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predation. However, these percentages are sensitive to arbitrary choices of model 

parameters, so that no particular value is necessarily expected.   

Previous models of community mixing found both an effect of assembly history 

and a combinatorial effect (Gilpin 1994, Toquenaga 1997, Wright 2008). This is because 

even mixing among ‘random’ communities could sometimes produce asymmetry due to 

the rarity of multi-species attractors in phase space just as with the ‘non-random’ 

communities. Our experiment does not include ‘random’ communities. This is because 

in an experimental setting it is not possible to generate randomly assembled 

communities since the effect of deterministic assembly history cannot be eliminated. 

This is not a shortcoming of our approach, but rather it is an indication of the probable 

rarity of completely randomly assembled communities in nature. Furthermore, several 

lines of evidence suggest that asymmetry at the community and guild-level were 

influenced by assembly history (H1) and were not random.  First, although cases of 

asymmetry occurred in TT and TC, we found significant overall asymmetry only among 

CC mixes which included guilds with more species per guild than in TC or especially TT 

mixes. This is concordant with Gilpin's simulations, in which competition-driven 

extinctions during assembly enhanced the likelihood of asymmetry under mixing. 

Second, extinctions were quite frequent during the assembly process. We did not 

observe any consistent effects of extinction rate during assembly on the outcome of 

mixing, but the timing, order, and species identity of extinctions and density changes 

likely had strong effects (Drake 1990, Lundberg et al. 2000, Fukami 2004) analogous to 

the assembly method in Gilpin’s model.    
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 The significant trend towards asymmetry is a robust result because our 

experimental system both maintained key features of theoretical models and 

incorporated substantial novel complexity. Consequently, we also find evidence for 

effects that have not been considered by theory. In contrast to our results that found 

lower asymmetry in TT and TC than CC mixes, Wright (2008) found substantially more 

asymmetry when simulating mixing of simple trophic communities than mixing 

competitive communities (H2). Our failure to support H2 may be explained by three 

complexities that are absent from Wright’s model relating to the guild structure of our 

trophic communities. First, Wright’s model did not include unsaturated communities.  

Our trophic communities have fewer species in the omnivore and algae guilds, making it 

more likely that under mixing a ‘niche-filling’ process occurs on resource heterogeneity 

(Davies et al. 2009). This could reduce post-mixing competition and enhance 

persistence. A role for niche-filling is suggested by non-significant asymmetry for 

bacterivores (a guild likely not to be saturated at two species, Davies et al. 2009). 

Second, the traits of species in Wright’s model were fixed. However, species may show 

adaptive feeding responses (behavior or plasticity) to mixing in trophic communities that 

reduce resource competition and enhance persistence (Petchey 2000). Supporting this 

possibility, we found that omnivores (generally most flexible in diet) show non-significant 

asymmetry despite containing relatively more species than other guilds. Third, Wright’s 

model including only a predator and prey guild whereas our experiment included up to 

six guilds. Trophic and competitive communities differ in their capacity to “swap” guild 

modules rather than individual component species. Upon mixing, TT or TC mixes can, 
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for example, maintain the omnivores from one community but the herbivores and 

predators from another. Mean asymmetry is often high within guilds (higher than the 

overall community-level asymmetry in four of five guilds, Table 1) suggesting that 

between guild-interaction is more intense under sudden mixing than interactions 

between whole communities.  

Although asymmetry may seem only marginally more common than under our 

null model, it is important to emphasize that even the occasional occurrence of a highly 

asymmetric outcome of mixing can be a major event that produces the complete 

replacement of local community composition. Our experiment has only considered the 

mixing of environmentally identical patches, however in nature synergistic or 

antagonistic interactions between communities and environmental heterogeneity among 

patches could affect asymmetry or the composition of dominant communities. Further, 

the frequency of asymmetry might be higher under other assembly scenarios, such as 

those involving concurrent and directional environmental change (deterministically 

favoring one community over another, Croft 2001) or interactions involving direct and 

obligate facilitative or parasitic interactions (producing linked extinctions, (Goodnight 

2011)). Lastly, study of anthropogenic interaction with ecosystems has focused on the 

effects of lowered connectivity while the role of increased connectivity is less well 

understood in contexts like species introductions producing invasive communities and 

invasional meltdown (Simberloff 2006), canal and corridor construction, or restoration 

projects requiring enhanced connectivity (Gilpin 1994, Lockwood et al. 2005). 
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Theoretical frameworks like sudden mixing theory are urgently needed in the context of 

rapid anthropogenic change to ecosystem connectivity.  
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Chapter 3: Predators and disturbance interact to regulate spatial pattern in multi-

trophic microcosms  

Abstract: Variation partitioning methods are a key tool for the application of 

metacommunity theory to natural landscapes. However, the interpretation of 

environmental, spatial and residual variation is challenging because multiple ecological 

processes involving dispersal, disturbance, heterogeneity in niche breadth, and 

predation can produce similar patterns. Consequently, the application of variance 

partitioning to situations where underlying ecological processes are well characterized 

can help define appropriate interpretations in more challenging natural settings. We 

applied variance partitioning methods to experimental multi-trophic protist microcosm 

landscapes with one predator, two competing prey, two patch types, and localized 

dispersal. To test the ability of variance partitioning to identify underlying processes, we 

applied three disturbance regimes to our landscapes with the expectation that the 

impact of the predator would be reduced by disturbance. We find that the environmental 

and spatial components are indistinguishable among treatments and that the predator 

was the most important explanatory factor in no and intermediate disturbance, while in 

high disturbance spatial effects were predominant due to the increased extinction rate of 

the predator. Spatial segregation developed in the no disturbance treatment between 

the predator and its preferred prey, while this pattern weakened with disturbance. 

Overall, our results indicate that spatial patterns like those produced by trophic 

interactions should be explicitly incorporated into variance partitioning analyses.   
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Introduction 

 

 Metacommunity theory currently centers on the interplay of the local environment 

with spatial effects generated by dispersal (Leibold 2011, Logue et al. 2011, 

Winegardner et al. 2012). Variation partitioning methods are the primary quantitative 

approach linking this theory to natural patterns in community composition across space 

(Gilbert and Bennett 2010). Variance partitioning addresses multicolinearity (Lawler and 

Edwards 2006) and attributes unique variances explained by local environmental 

variables versus spatial variables (Borcard and Legendre 1994, Legendre and Legendre 

1998). Strong environmental signal is thought to indicate species sorting, strong spatial 

signal is hypothesized to indicate either patch or neutral dynamics, and a combination is 

hypothesized to indicate mass effects (Cottenie 2005). A meta-analysis (Cottenie 2005) 

and subsequent studies using variance partitioning on natural communities most 

frequently report either environmental or a mixture of environmental and spatial effects 

(Smith and Lundholm 2010, Logue et al. 2011).   

 Despite its widespread application, the diagnostic use of variance partitioning to 

test among metacommunity models has been questioned for both statistical and 

ecological reasons. The statistical issues associated with variance partitioning are 

related to the mischaracterization of explanatory environmental and spatial matrices and 

sampling design (Gilbert and Bennett 2010). This results in over or underestimation of 

the variances attributed (Gilbert and Bennett 2010). Fortunately, improved statistical 

techniques exist (Yee 2006) or are under development (Diniz-Filho et al. 2012) and 
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variance partitioning can be supplemented with other independent statistical analyses, 

such as those describing spatial pattern formation (Kefi et al. 2010, Biswas and Wagner 

2012).   

 The ecologically based problems center on the fact that variance partitioning is 

correlative while multiple ecological processes can produce the same patterns 

(Guichard and Steenweg 2008).  In addition to the frequently hypothesized role of 

dispersal rate (e.g. (Beisner et al. 2006)), three other factors have been shown to 

mediate the relative importance of environmental, spatial and residual components: 1) it 

has been theoretically and experimentally demonstrated that increasing disturbance 

rates can increase residual and spatial effects by forcing recolonization with species 

from neighboring patches that are not optimally adapted to local conditions (Leibold and 

Loeuille in review, Fukumori et al. in review, (Ohashi and Hoshino 2014)), 2) 

heterogeneity in the niche breadth of species within communities can produce divergent 

patterns for specialists versus generalists (Pandit et al. 2009, Coyle et al. 2013), and 3) 

species interactions such as predation can produce spatial patterns in the absence of 

underlying environmental heterogeneity (Borcard and Legendre 1994), such as 

cascading effects when higher trophic levels are dispersal limited (Verreydt et al. 2012).   

 Although the effects of disturbance, niche breadth, and predation on variance 

partitions have been studied in isolation, these factors occur simultaneously in natural 

metacommunities and they likely interact. This makes disentangling their effects with 

natural datasets difficult. However, the application of variance partitioning to situations 

where underlying ecological processes are well characterized can help define 
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appropriate interpretations in more challenging settings (Gilbert and Bennett 2010). We 

implemented these three factors in experimental protist microcosm metacommunities. 

Protist microcosms are a powerful tool to bridge theory with natural patterns (Cadotte et 

al. 2005, Benton et al. 2007), including among metacommunities (Carrara et al. 2012, 

Livingston et al. 2013). Specifically, we applied variance partitioning methods to 

landscapes with multi-trophic communities including one predator and two competing 

prey each with a different niche breadth, two patch types, and localized dispersal. 

Predators are susceptible to increasing rates of patch disturbance and face 

metapopulation extinction beyond critical thresholds (Swihart et al. 2001, Staddon et al. 

2010). This means that community variance explained by predation should weaken with 

increasing disturbance. To explore this, our landscapes were replicated across three 

levels of disturbance from none to 30 percent of patches defaunated weekly. We test 

how well variance partitioning techniques can distinguish among the combined effects of 

disturbance, variable niche breadth, and the predator. We do this by 1) partitioning prey 

community variance using separate environmental, predator, and spatial explanatory 

matrices. We then 2) crosscheck and supplement the variance partitioning using a 

spatially explicit analysis of species pairwise clustering patterns.   

 

Methods 

 

Overview 
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Our experimental system is based on that used in Fukumori et al. (in review), 

however the experimental design used here differs in several important aspects. Each 

landscape consisted of a lattice with an equal mixture of illuminated patches that 

support algal production and herbivory and patches with a wheat seed to support 

decomposition and both herbivory and bacterivory. Landscapes were inoculated with 

two competing omnivorous (mixed herbivore and bacterivore) protists, one 

(Paramecium sp.) a strong herbivore, and the other (Colpidium striatum) a strong 

bacterivore. A voracious shared predator (Didinium nasutum) was added to this two-

prey system. Disturbance was manipulated at three levels by replacing patches weekly 

with sterilized medium to achieve “defaunation.” Dispersal was implemented weekly by 

transferring a small amount of medium from one to the next patch from four directions. 

We monitored the number of individuals weekly for six-weeks and performed statistical 

analyses on the observed two-species prey metacommunities. 

 

Microcosms and study species  

 

Microcosms consisted of 60 mm × 15 mm vented petri dishes. Landscapes 

consisted of a 10 × 10 lattice of patches with half of the patches with wheat seeds and 

half without. Seedless patches consisted of 11 ml of sterilized medium with 0.55 g/L of 

protozoa pellets (Carolina Biological Supply, Burlington, North Carolina, USA) in 

deionized water and 800 ul of stock algae (Chlamydomonas reinhardtii, NIES-2239, 

NIES Culture Collection). Seed patches consisted of 12 ml of pellet medium and one 
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sterilized wheat seed as a source of slowly released carbon. Once a week, 10% of 

medium was removed from each patch and replaced with fresh medium to reduce the 

build-up of toxic metabolites. We generated three 100-patch landscapes at each 

disturbance level for a total of nine landscapes or 900 communities.  

We used three protozoan species: Colpidium striatum, Paramecium sp. and 

Didinium nasutum. Colpidium was obtained from Carolina Biological Supply. 

Paramecium and Didinium were obtained from other laboratories. Both prey species are 

omnivores. Paramecium grows equally well on a mixed or pure algae diet, while 

Colpidium grows best on bacteria alone and supports extremely low growth when 

cultured on algae alone (Fukumori et al. in review, Figure 3.1). Both species are 

competitors, although they can coexist (Fukumori et al. in review, Figure 3.1). The niche 

breadth of Paramecium includes both patch types while Colpidium is effectively 

restricted to patches with wheat seeds (Figure 3.1). Didinium nasutum is a voracious 

predator on Paramecium and upon colonization typically drives a Paramecium 

population to extinction within one week (Luckinbill 1973). Although Didinium fed on 

Colpidium in our experimental system, it was not observed to reduce the population size 

of Colpidium and in fact Colpidium benefits from the presence of Didnium due to the 

associated removal of its competitor (Figure 3.1). After exhausting its prey, Didinium 

formed resting cysts that hatch following the recolonization of Paramecium and that 

once again eliminate the founding Paramecium population (Beers 1937). Colpidium 

populations did not induce the formation or hatching of cysts. Given our weekly 
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sampling window, we conceptualize patches with cysts as permanent predator 

populations.    

 

 
Figure 3.1: Abundance of prey species in patches with and without wheat seeds and 
with and without Didinium. Data are from all replicates combined from week six. 
Didinium significantly decreases the abundance of Paramecium (P<0.0001, df=298, 
F=108) and marginally significantly increases the abundance of Colpidium (P=0.068, 
df=250, F=3.372).  

 

 
Initial conditions and dispersal 

 

All patch types were assigned at random in each replicate. All landscapes were 

started with 1/3 of the patches inoculated at random with one or the other of the two 

prey species and 1/3 of the landscape being empty. We inoculated with 200ul of the two 
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prey protists from high-density stock cultures. One individual of Didinium was added at 

random to 1/3 of the patches at week 2. Experimental cultures were kept at 20 C and a 

14:10 h light:dark cycle. 

 Dispersal was implemented by transferring a small amount of medium (≈3μl) 

from one to the next patch from four directions of the lattice design using a dental 

toothpick (Fukumori et al. in review). We estimate that each dispersal event between 

two adjacent patches typically transferred 0-9 individuals from established prey 

populations (Fukumori et al. in review). Dispersal was started one week after 

inoculation.   

 

Disturbance treatments 

 

The exact same local patch type alignment was used in each of three replicate 

landscapes across the disturbance treatments (disturbance treatment was blocked by 

landscape alignment). Disturbance was manipulated by varying the frequency of 

patches replaced at random with a new patch containing sterilized fresh medium (no 

disturbance =0% (0 patches), intermediate disturbance =15% (15 patches/week), and 

high disturbance =30% (30 patches/week)). Preliminary trials had shown that higher 

extinction rates led to rapid global extinctions of some or all species in the 

metacommunity (Fukumori et al. in review). The disturbance treatments were performed 

weekly beginning the second week to allow protists to attain multiple large populations 
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before disturbance. Throughout the experiment, disturbances occurred immediately 

before a dispersal treatment. 

 

Sampling 

 

We counted all individuals of the three species (including Didnium cysts) in a 100-µL 

sample. Due to logistical constraints, it was not feasible to count all landscapes every 

week. One replicate was counted only during weeks two, three and six, while the other 

two replicates were counted every week beginning on week two for a total of 36 

landscape counts. In addition to population size, we sampled several ecosystem 

properties to determine if our results had possible consequences for ecosystem 

function. The only known impact of the protist species used in this experiment on 

ecosystem properties is the herbivory of Paramecium on Chlamydomonas. By reducing 

Chlamydomonas abundance, this has the potential to regulate concentrations of 

nutrients used by Chlamydomonas. We measured bulk chlorophyll fluorescence during 

week three to six, and NO4 and NH4 concentrations during week five in two replicates. 

Chlorophyll fluorescence (ex440 em680 (Sher et al. 2011)) and colorimetric assays for 

NO4/NH4 (Sims et al. 1995, Doane and Horwáth 2003) were measured in 96 well 

microplates using a plate reader (CS-9300 microplate reader (Shimadzu, Tokyo, 

Japan)). Results of chlorophyll and nutrient sampling are reported in the supplement.  

 

Statistical analyses 
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 Our core set of statistical analyses use partial canonical analyses (Legendre and 

Legendre 2012) to partition community variation into environmental and spatial 

components. In some analyses, we also partition variation explained by Didinium and by 

fine and broad scale spatial variables. In total, we utilized five explanatory matrices: 

environment (no seed/seed), Didinium (presence/absence), total space, fine scale 

space, and broad scale space. Variation partitioning works by subtracting the variation 

explained individually by each explanatory matrix (conditional variation) from the 

variation explained by all explanatory matrices combined (total variation) to estimate 

independent and covariance fractions (Gilbert and Bennett 2010). A full description of 

this technique can be found in (Peres-Neto et al. 2006).  

All analyses were performed using R (version 3.0.6). Variance partitioning was 

performed using the varpart function in Vegan (Oksanen et al. 2013). The adjusted 

canonical R-squared produced by this function are analogous to the adjusted R-squared 

in multiple regression (Peres-Neto et al. 2006). Species abundances were transformed 

using the Hellinger transformation (Legendre and Legendre 2012). Environmental and 

Didinium variables were not transformed. We characterized space using PCNM, a 

technique that captures spatial dependencies at multiple spatial scales using a 

truncated distance matrix among sites (Dray et al. 2006). Following forward selection 

using the QuickPCNM function (PCNM library), we grouped the resulting positive and 

negative spatial axes into broad and fine spatial scales by selecting two sets of 

relatively more contiguous axes (Borcard et al. 2011). We did not detrend our data prior 

to using PCNM because linear gradients likely result from dispersal in our experimental 
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landscapes. Differences among disturbance treatments and the effect of time on 

variation components was analyzed using ANOVA.  

 To relate the spatial patterns in the PCNM to known species interactions among 

the protists, we used the Kcross summary statistic (Lotwick and Silverman 1982) 

implemented using the envelope function in Spatstat. Kcross is related to Ripley’s K and 

measures the degree of clustering or segregation among pairwise combinations of 

species using point pattern analysis. For each landscape and each of the three possible 

pairwise combinations of species, we identified those that showed significant clustering 

at any sample radius (P=0.01, Monte Carlo test, runs=199, (Ripley 1981)) and summed 

the observed Kcross statistics at spatial scales where it fell outside the upper or lower 

critical envelope.   

 

Results 

 

Patch occupancy and metacommunity abundance 

 

 From the initial 30% of patches inoculated, Paramecium rapidly increased in 

occupancy to a mean of 77% by week two, while Colpidium increased more slowly 

(Figure 3.2). Across treatments, both species continued to increase significantly or 

marginally significantly from weeks two to six (F=3.55-7.35, df=36, P=0.02-0.08), except 

for Colpidium in the high treatment (F=3.1, df=36, P=0.11). The dip in Paramecium 

occupancy observed from week two to three is due to the addition of Didinium. 
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Throughout the experiment Paramecium occupied more patches (>60%) than Colpidium 

(<60%), although the two species sometimes overlapped in metacommunity abundance. 

There was no significant effect of disturbance treatment on Paramecium or Colpidium 

occupancy (F=0.12, df=36, P=0.88; F=1.54, df=36, P=0.23, respectively) or abundance 

(F=0.38, df=36, P=0.68; F=1.03, df=36, P=0.37, respectively).  

Increasing disturbance had a significantly negative effect on Didinium occupancy 

(F=13.84, df=27, P<0.0001) and cyst abundance (F=4.02, df=27, P<0.05, Figure 3.2). 

Didinium occupancy significantly increased over time in the no disturbance treatment to 

a mean of 34% by week six (F=12.02, df=8, P<0.01), while there was a nonsignificant 

decline at high disturbance to 13% (F=0.63, df=8, P=0.45).    
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Figure 3.2: Patch occupancy (a) and metacommunity abundance (b) patterns for each 
of the three species from week two to six in three disturbance treatments. Didinium was 
added on week two and first counted on week three. Didinium abundance represents 
the total number of cysts observed. Points are fit with a Loess smoother.  

 

 

Variance partitions 
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 From initially random conditions, the variation partitions for each landscape 

changed over time across the treatments (Figure 3.3). In all treatments, the 

environmental component increased as Colpidium spread to patches with seeds (No: 

F=7.12, df=11, P<0.05; Intermediate: F=27.36, df=11, P<0.01; High: F=7.55, df=11, 

P<0.05). None of the other components showed a significant trend with time (Figure 

3.3), likely due to the relatively small number of landscapes per week by treatment 

combination. Qualitatively, in the no disturbance treatment spatial and residual 

components decreased, while Didinium showed a hump-shaped trend with time. This 

pattern became progressively weaker with disturbance, with little temporal pattern 

apparent in the high disturbance treatment.      

 
Figure 3.3: Variation partitioning through time by explanatory factor: (a) Didinium, (b) 
environment, (c) space, and (d) 1-residuals. Error bars show standard deviation. 
Component is the unique proportion of variance explained.     
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 To examine absolute differences in variation components among treatments, we 

combined the values for the last three weeks after the landscapes had time to depart 

from initial conditions. We also further decomposed space and Didinium with space into 

broad and fine spatial scales (Figure 4). Overall, residuals were the largest component 

in all treatments (greater than 50%). In the no disturbance treatment residuals were 

significantly lower than under high disturbance (F=4.11, df=18, P<0.05, TukeyHSD). 

The variance explained by Didinium was significantly higher in the no versus high 

disturbance (F=3.08, df=18, P<0.05, TukeyHSD) and Didinium with space was 

marginally significantly higher (F=3.25, df=13, P=0.07, TukeyHSD). Fine scale space 

was highest in the high disturbance treatment, although this was only significant for the 

intermediate to high comparison (F=4.14, df=13, P<0.05). There were no significant 

effects of disturbance on environment, broad scale space, or Didinium with fine scale 

space.  
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Figure 3.4:  The variance partition by spatial scales for weeks 4 to 6. Space (a) is 
divided into broad (b) and fine (c) scales.  Didinium with space (d) is the shared 
component between Didinium and space and is also split into broad (e) and fine (f). 
Broad and fine space sum to total space or total Didinium with space. Error bars show 
standard deviation.   
 

 

Spatial co-clustering   

 

 Among the three pairwise combinations of species (Paramecium-Didinium, 

Colpidium-Didinium, and Paramecium-Colpidium), in all weeks we observed 26 

significant deviations (P=0.01) from the expected value in no disturbance, 25 in 

intermediate, and 18 in high disturbance. A majority of deviations were below the 

expected value (62%), indicating segregation was more common than clustering. The 

number of significant pairs increased with time in the no disturbance treatment (weeks 
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3-6 only to account for the addition of Didinium; F=13.98, df=8, P<0.01), while there was 

no significant effect of time at intermediate or high disturbance (F=1.96, df=8, P=0.20; 

F=0.02, df=8, P=0.9). Including both clustering and segregation, 49% of deviations 

under no disturbance were either Paramecium-Didinium (37%) or Colpidium-Didinium 

(11%) pairs (Figure 5). This percentage decreased to 38% at intermediate and to only 

19% at high disturbance. Thus under high disturbance, 81% of deviations were 

Paramecium-Colpidium pairs.   
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Figure 3.5: Significant spatial clustering or segregation among pairs of species. 
Clustering was measured using the Kcross statistic. (a) Bars show percent of the total 
number of significant associations detected in all replicates and weeks of each 
treatment combined. (b) Landscape maps from a representative replicate at week three 
when Didinium was added and at the end of the experiment (week 6). The size of circles 
is proportional to the population size in each patch, except for Didinium which is shown 
as presence/absence only.   
 

 



 75 

Herbivory, chlorophyll and nutrients  

 

We found that the correlation between Paramecium abundance and Chlorophyll 

across patches was negative in no and intermediate disturbance landscapes and that 

there was no correlation under high disturbance (Supplementary Figure 1, F=3.18, 

df=16, p=0.07, TukeyHSD). NO4 was at undetectable levels in our landscapes 

(<0.05ppm). NH4 showed the same pattern with Paramecium as Chlorophyll, however 

this result was not significant (Supplementary Figure 3.1). 

 

Discussion 

 

Summary  

 

 We find that in our microcosm landscapes variation partitioning successfully 

distinguishes among the effects of 1) disturbance, 2) heterogeneous niche breadth and 

3) the predator. The effect of disturbance is detectable in the decreased variance 

explained by Didinium and Didinium with space as disturbance increased. As we 

hypothesized, this is due to the reduced occupancy and abundance of Didinium. The 

effect of heterogeneous niche breadth is detectable in the environmental component 

that can be attributed entirely to the spread of Colpidium. Lastly, the variance explained 

by the predator is the largest non-residual component in the no and intermediate 

disturbance treatments, demonstrating the strong control it exhibits on landscape 
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pattern. However, the pure spatial component is similar across treatments and cannot 

readily be attributed to dispersal limitation versus species interactions. We discuss the 

implications of these results for variance partitioning of natural landscapes. 

 

Scaling to natural systems 

 

 Although we controlled and manipulated key aspects of our microcosms, our 

experiment reproduces several features common in natural systems including 

randomness, unmeasured or unknown environmental variables, and long transient 

effects. All of our initial conditions were completely random and this caused variation 

among replicates. We characterized the environment coarsely as seed or no seed, while 

in reality the uncharacterized bacterial community in both patch types likely contributed 

to both spatial and temporal variation in protist abundance (Simek et al. 1997). Both 

initial randomness and unmeasured environment likely contributed to the high residuals 

in the variance partition even under no disturbance. Such high residual variation is 

commonly observed in variance partitions (Cottenie 2005). Lastly, the increasing prey 

abundances and decreasing predator abundance under disturbance indicate our system 

was not at steady state after six weeks. Steady state under no disturbance would likely 

involve all patches being occupied by Didinium cysts, whereas under high disturbance 

Didinium is likely to have gone extinct. However, our intention was not to investigate 

steady state behavior, but rather to explore the transient dynamics occurring after a 

reasonable number of protist generations had passed (~45-135 generations in 
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continuously occupied patches by week six). Transient dynamics are commonly 

observed in natural systems, particularly those under disturbance regimes (Fukami and 

Nakajima 2011).        

 

Importance of trophic structure  

 

 Our results underscore the importance of including explanatory factors that 

characterize trophic structure into variance partitioning because they can substantially 

improve the total variance explained. Several other studies have recognized the 

cascading effects of limited predator dispersal on prey (Verreydt et al. 2012) or utilized 

entire predator or parasite communities as factors in variance partitions (Halpern et al. 

2006, Kurek et al. 2011, Rzanny et al. 2012). However, the number of studies that have 

included predators as explanatory matrices is small relative to the availability of data on 

predator abundance.  Our study is the first to explicitly compare variation components 

produced by trophic versus environmental and spatial factors in controlled and highly 

replicated landscapes. The strong control of trophic structure in our system is a function 

of the strength of predation of Didinium on Paramecium and the lack of environmental 

effects on Didinium. Our results suggest the impact of predators on the focal 

metacommunity is likely to be strongest in systems with low levels of disturbance where 

those interactors are themselves spatially structured by dispersal and unaffected by 

environmental gradients within the study area. For example, in aquatic systems, the fish 

versus fishless community context is a strong effect of a dispersal-limited predator 
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(Reissig et al. 2006) that is also susceptible to high rates of disturbance (WILSON et al. 

2008). Even in systems where predators are not dispersal limited, fluctuating or cyclical 

predator prey-dynamics make trophic structure a key aspect of the local environment 

(Gouhier et al. 2010).     

 

Interpreting space  

 

 We find that attribution of the pure spatial component to a single causal process 

is particularly challenging. Fundamentally, this is because environmental variables are 

identified before they are measured, whereas spatial variables are produced ad hoc 

using statistical procedures and then used as indirect signatures of process. Spatial 

signal is most frequently considered a signature of dispersal limitation or of mass effects 

if environmental signal is also observed (Cottenie 2005). In our experiment, the Kcross 

statistics indicate that the predominate cause of spatial pattern under no disturbance is 

Didinium, whereas under disturbance the predominant cause is random clustering 

resulting from frequent re-colonization and dispersal limitation. In addition, we find that 

fine scale spatial patterns increase under high disturbance. This supports the 

hypothesis that spatial effects should be more common at fine scales that are smaller 

than the scale of environmental drivers (Dray et al. 2012), in our case Didinium. 

Together, these results suggest that spatial components of variance partitioning can be 

better understood if decomposed with scale and supplemented with independent tests 

of spatial pattern.  
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Conclusions  

 

 Our results highlight three important considerations for variance partitioning:  

 

1) Attributing variance to multiple causal processes may be facilitated by splitting 

sampled sites into separate groups using estimates of disturbance rate.   

 

2) Predators should be included as separate explanatory matrices. Future analyses 

including predators may help reduce residual variation and including them as separate 

matrices may provide deeper insights into assembly processes.  

 

3) Spatial components should be interpreted with caution and supplemented with 

independent analyses investigating the possible role of predation or other species 

interactions in generating spatial signal.   
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Appendix: Supplemental Information  

 

Chapter 1 Supplemental Information  

 

Supplementary Table 1.1: Treatment parameters. The “Treatment” column shows the 
treatment numbers (corresponding to those in Fig. 2 for treatments T1-T14). The 
isolation experiments are H7 and H11 and correspond to the initial parameters used in 
treatment T7 and T11. Metacommunity “isolation” refers to the proportion by which 
absolute colonization rates were reduced in the isolation experiment. “Dilutions LacZ” 
(the weak competitor) and “PI” (the strong competitor) are the negative exponent (base 
10) of the “Concentration LacZ” and “PI” after dilution for each treatment. The “PI 
dilution reduction factor” represents a proportional reduction in the volume of PI before 
serial dilution was implemented (the strength of the trade-off).  

Treatment Isolation 
Dilutions LacZ 
(10-X) 

Dilutions 
PI  (10-X) 

Concentration 
LacZ 

Concentration 
PI  

PI dilution 
reduction factor 
(trade-off) 

T1 - 7 7.968 1.00E-07 1.08E-08 0.892 
T2 - 6.5 7.468 3.16E-07 3.40E-08 0.892 
T3 - 6 6.968 1.00E-06 1.08E-07 0.892 
T4 - 5.5 6.468 3.16E-06 3.40E-07 0.892 
T5 - 6.5 7.55 3.16E-07 2.82E-08 0.911 
T6 - 6 7.256 1.00E-06 5.54E-08 0.945 
T7 - 5.5 6.962 3.16E-06 1.09E-07 0.965 
T8 - 6.5 7.633 3.16E-07 2.33E-08 0.926 
T9 - 6 7.545 1.00E-06 2.85E-08 0.972 
T10 - 5.5 7.456 3.16E-06 3.50E-08 0.989 
T11 - 5 7.368 1.00E-05 4.29E-08 0.996 
T12 - 6.5 7.715 3.16E-07 1.93E-08 0.939 
T13 - 6 7.833 1.00E-06 1.47E-08 0.985 
T14 - 5.5 7.95 3.16E-06 1.12E-08 0.997 
H7 0.7 5.5 6.962 3.16E-06 1.09E-07 0.966 
H7 0 5.5 6.962 3.16E-06 1.09E-07 0.966 
H7 0.9 5.5 6.962 3.16E-06 1.09E-07 0.966 
H11 0.7 5 7.368 1.00E-05 4.29E-08 0.996 
H11 0 5 7.368 1.00E-05 4.29E-08 0.996 
H11 0.9 5 7.368 1.00E-05 4.29E-08 0.996 
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Supplementary Table 1.2. Generalized linear model (GLM) fitting with a binomial error 
distribution and a logit link function (GLM function in R 61).  Levels of significance: 0 ‘***’ 
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. The response variable is the proportion of occupied 
patches by each strain in each replicate (averages of transfers 8-10). The trade-off 
predictor is the ‘Competitor dilution reduction factor’ (see Table S2) or the proportional 
reduction in the overnight culture volume of the competitor prior to dilution (the reduction 
in colonization rate). Strain is the strain identity; colonizer (LacZ) or competitor (PI). 
Treatment T1 was not included in this analysis because the extinction of both strains 
was predicted.  Strain details n = 78.   

Coefficients: Estimate  Std. Error  Z value Pr(>|z|) 

(Intercept) 33.86 13.29 2.547  0.010864* 

Trade-off -34.31 13.73 2.499  0.012444* 

Strain  -74.75 20.82  3.589  0.000331*** 

Trade-off x Strain 75.67 21.44 3.530  0.000416*** 

 
 

 

 

 

 

 

 

 

 

 

 

 



 86 

Supplementary Figure 1.1: Time series for all treatments (T1-T14) from the main 
experiment. Panel a shows treatments T11 and T1, which are outside the three main 
absolute dilution levels (see Fig. 2). Panels c-f, g-j and k-m each cross the coexistence 
zone along a range of absolute dilution rates (see Fig. 2). Each treatment included three 
replicates and was run for a maximum of 10 transfers. Replicates were stopped after the 
extinction of one or both strains occurred. Different circle colors indicate different 
strains: LacZ, black circles; PI, white circles. 
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Supplementary Figure 1.2: Observed and predicted occupancy for each strain after 
each transfer.  Colors indicate predicted persistence scenario. Four different scenarios 
are indicated by colored circles: the persistence of the two strains (red); the competitor 
persists (dark gray); the colonizer persists (light gray) and none of the strains persist 
(black). The dashed line indicates the 1:1 (perfect) match between predicted and 
observed values. Points above and below this line indicate that observed occupancies 
were greater or less than those predicted by the model, respectively. Full lines indicate 
95% confidence envelopes from the stochastic binomial distribution of colonization 
events. Predicted and observed occupancy for the colonizer are scaled to available 
patches (i.e. those unoccupied by the competitor), and the different envelopes 
correspond to increasing proportions of available patches (from 1 – inner envelope to 
0.2 – outer envelope).  
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Supplementary Figure 1.3: Growth of LacZ (weak competitor) and PI (strong 
competitor). Cells were counted after 24 hours of growth in wells filled with 200 µl KB 
in a 96-well microplate using droplet plating (15 µl droplets diluted to a 10^-6 
concentration, replicated 3 times) on a selection of 5 wells with equal inoculation 
proportions of each strain. Bars represent means values for the total estimated number 
of cells in a single well and error bars represent standard error. 
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Supplementary Figure 1.4: Proportion of wells containing each strain in 96-
well plates as a function of the pre-inoculation dilution. Different colors of 
circles indicate different strains: LacZ, black circles; PI, white circles.  Overnight 
cultures of each strain were serially diluted equal amounts before inoculation 
onto separate 96-well microplates and grown for 24 h in 200 µl of KB. Each 
dilution level per strain was not replicated. Notably, the initial cell density was not 
equalized among strains prior to this trial, generating variation among the curves 
for each strain.  

 

 

 
 
Supplementary Methods 1 

This methods section describes two experiments that manipulated 

competition-colonization trade-offs of bacterial metacommunities in experimental 
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microcosms. In the first experiment – the main experiment – we quantitatively 

manipulated two key parameters: trade-off strength and absolute colonization 

rate.  In the second experiment – the isolation experiment – we manipulated the 

isolation of each community from the species pool by imposing reductions in 

overall colonization rate.  These experiments were conducted with marked 

Pseudomonas fluorescens strains of known competitive ability that can be made 

to approximate a two-species system. The supplementary methods detail three 

aspects of the design: 1) competition assays; 2) measuring abundances; and 3) 

the experimental protocol. 

 

Competition assays. We assayed the competitive ability of both strains after 24 

and 48 h in KB medium at 28°C in 96-well (240-µl) microplates (Falcon USA 

#353072). We used the range of relative inoculation densities of the two strains 

that would be used in our experiment by diluting LacZ and PI from overnights 

(incubated together) at rates corresponding to the same 14 treatments 

implemented in the main experiment (Supplementary Table S1; three replicates 

per treatment). This method produced a range from equal initial proportions of 

each strain to strongly biased toward LacZ.  After 24 h of growth (conditions 

described in Methods Bacterial strains), we used a 96 pin replicator (Boekel well 

model 140500) to check for the presence/absence of each strain from one 

microplate per treatment (selected at random).  One microliter of culture was filed 

onto petri dishes that contained a mixture of LB agar (Luria-Bertani medium with 
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agar; 5 g.l-1 yeast extract + 10 g.l-1 tryptone + 5 g.l-1 NaCl, autoclaved 20 min at 

121°C), X-gal and IPTG. PI colonies (yellow) can easily be distinguished from the 

LacZ (blue) on this medium. We further confirmed the pin replicator results using 

droplet plating (15-µl droplets diluted to a 10^-6 concentration, replicated 3 times) 

on a selection of 5 wells from the microplate with equal inoculation proportions of 

each strain (Supplementary Fig. S3).  

We observed complete exclusion of LacZ after 24 h in all equal proportion 

wells and in 99% of the 1344 wells in the 14 microplates. However, when the 

initial inoculation proportion was biased toward LacZ by one order of magnitude 

or greater, complete exclusion in the remaining 1% of wells was not observed 

until after 48 h with plating using a pin replicator. Importantly, PI dominated these 

wells so that our measurement procedure for microplates (see Methods Basic 

experimental design) recorded these wells as occupied by PI even though LacZ 

was not excluded until 48 h. From this, we considered the competitive exclusion 

of LacZ by PI in patches as effectively instantaneous after 24 h.  

 

Measuring abundances. Preliminary trials showed that optical density (OD) 

measurements (650 nm) of growth were sufficiently accurate for our high cell 

density microplates and that a simple linear relationship exists between OD 

values and bacterial cell counts (R2 = 0.943, P < 0.0001, F = 133, cells = 1.247 x 

108 * OD + 0.971). We developed this equation by droplet plating overnight 

cultures (n = 10, 5 per strain) with cell counts (replicated 3x at 10-6 dilution for 
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plating) ranging from 3.33 x 105 cells/15 µl to 7.14 x 107 cells/15 µl and 

regressing the counts against OD values (n = 10) for the same cultures. All OD 

measurements were performed with a FLUOstar Optima spectrophotometer 

(BMG LABTECH).  

We developed a procedure to determine the presence of a strain in a well 

by calculating maximum growth thresholds for each strain.  This calculation could 

be achieved because the mean OD-estimated growth at 10-5 initial dilution of 

LacZ (0.606, +/- 0.026) is substantially lower than PI (1.092, +/- 0.037).  After 24 

hours, these differences hold across all dilutions used in the experiment, with the 

maximum LacZ value of 0.666 never exceeding the minimum PI value of 0.893. 

In addition, the minimum growth of LacZ is always greater than OD values for 

wells with blank medium. Given these values, we considered that wells with OD 

values < 0.750 could be classified as LacZ, whereas those > 0.750 could be 

classified as PI. We are confident that this method is accurate; although an 

average of 4% of wells identified as PI at 24 h had not yet reached exclusion of 

LacZ in high dilution treatments, 100 % of wells classified as PI at 24 hours 

showed exclusion at 48 h. Wells with values less than the maximum blank value 

+0.10 were identified as no-growth wells. Due to the large volume of microplates, 

some minimal error in OD measurement is expected over the course of the 

experiment. To ensure the accuracy of the identification of LacZ and PI, a 

randomly selected replicate from each treatment was pin-replicated each transfer 

using a 96-pin replicator.  Following 48 h incubations, the correlation between OD 
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strain/no-growth classifications and plated values was strong and highly 

significant (PI: R2 = 0.996, F = 18477; LacZ: R2 = 0.969, F = 2285, P < 0.0001; n 

= 75 for both strains).  

 

Detailed experimental protocol.  Here, we provide a detailed account of our 

transfer procedure, which involved setting up initial conditions, determining 

relative abundances of each strain, and generating the colonizer pool for the 

subsequent transfers. This procedure was supported by an R script (see 

Supplementary Note) that compiles and analyzes information about observed 

growth and occupancy by taking into account experimental treatments (i.e. trade-

off strength and colonization rate). The script outputs the inoculation volumes for 

the subsequent transfer independently for each replicate.  This procedure 

allowed us to follow the dynamics of each replicate separately and control for 

potential daily variation in overnight growth from our frozen stocks.  For clarity, 

we divided this protocol into six steps 1) initial conditions, 2) building pool of 

colonizers, 3) implementing trade-offs, 4) inoculation, 5) measuring abundances, 

and 6) characterizing colonizers pool. 

1. Initial conditions. To achieve an initial dilution approaching the limit of 

<100% successful colony growth across the microplate, we diluted 4000 µl 

of LacZ and 2344 µl of PI (OD corrected, higher OD value corrected to 

lower) in culture volume separately for each strain 5x serially in 18 ml of 

M9 minimal salts medium (NH4Cl, 1 g l-1; Na2HPO4, 6 g l-1; KH2PO4, 3 gl-1; 
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NaCl, 0.5 g l-1, autoclaved 20 min at 121°C). Using a multi-channel pipette, 

10 µl of each strain was added with 190 µl of KB in two separate halves of 

a 96-well microplate as arbitrary non-equilibrium starting conditions. All 

microplates were placed in the incubator at the same time at 28°C for 24 

hours, after which OD was measured for each microplate. All transfers 

included three microplates designated as “blanks.” Blank microplates 

received 10 µl of M9 minimal salts media without bacteria, but were 

otherwise subjected to the same procedures as the treatment microplates. 

A second set of overnight tubes was grown with these microplates to 

initiate the second transfer. 

2. Building a pool of colonizers: The first step to generate the colonizer 

pool was to determine how much of each strain is present in the 

metacommunity. This task was achieved by categorizing the growth value 

for each well as either LacZ or PI (see the Measuring abundances section) 

to calculate regional abundances of each strain per replicate. Because the 

dilution amount was computed using cell densities, all OD values were 

converted to estimated cell counts using the equations previously 

described in the Measuring abundances section.  

3. Implementing trade-offs: The estimated cell counts were subsequently 

multiplied by the proportion of each microplate occupied by each strain 

and the strength of the trade-off (applied as a proportional reduction to PI 

only and produced using predicted dilution rates from our model; see 
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Supplementary Table S1 for values) and corrected against the overnight 

OD values to determine the volume of each strain (adjusted from 200 µl) 

to add. The equation implemented for PI was Volume = cells * trade-off * 

(cells/cells_overnight) * 200, and for LacZ, it was Volume = cells * 

(cells/cells_overnight) * 200. Note that for “no trade-off” scenarios, the 

dilution rates were not equal between the two strains because the final 

growth of PI is always greater than LacZ. To equalize the number of cells 

inoculated, the dilution rate was higher for PI (1.08-08, and 1.0-07 for LacZ) 

under “no trade-off” scenarios. 

4. Inoculation: The inoculation volume generated by the previous step was 

subsequently diluted serially in wells with 1600 µl (the initial volume was 

adjusted up or down to accommodate the exact volumes added for each 

strain). 

5. Measuring abundances: Abundances were estimated in each microplate 

metacommunity by estimating optical density at 650nm on a FLUOStar 

spectrophotometer. See details on the abundances estimates in the 

“Measuring abundances” above. 

6. Characterize colonizer pool: A custom made script in R was used to 

estimate the relative abundances of each strain in the colonizer pool 

based on the data from step 5).   This script takes in account the bacterial 

in each individual well and calculates the exact contribution of each strain 
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for the colonizers pool of the subsequent step.  These calculations were 

done separately for each replicate of each treatment. 

 

Ending the experiments: We stopped transferring a replicate if one or two strains 

reached zero occupancy. After each transfer, all microplates were discarded, and 

new microplates were inoculated using data from the previous transfer.  All 

replicates were processed independently at each step. 

Supplementary Note: R script describing the calculations involved in each 

transfer, including serial dilution and routines for correcting variation within 96-

well microplates due to edge effects. 

 
######################################################################## 
# 
# This R script describes the calculations involved in the experiments described in the paper:  
# 
# Competition-colonization dynamics in experimental bacterial metacommunities  
# 
# 1. George Livingston*^, 2. Miguel Matias*, 3. Vincent Calcagno, 4. Claire Barbera, 5. Marine 
Combe, 6. Mathew A. Leibold and 7. Nicolas Mouquet 

# 
# *These authors contributed equally to this work 
# ^Current address  
# (1,2,4,5,7) Institut des Sciences de l’Evolution – CNRS UMR 5554 - Université de Montpellier II 
- CC 065 34095 MONTPELLIER Cedex 05 

# (3) INRA Sophia-Antipolis 400 Route des Chappes - BP 167 06903 Sophia-Antipolis FRANCE  
# (6,^) Section of Integrative Biology University of Texas at Austin 1 University Station C0930 
# Austin, TX 78712, USA 
#  
# For additional information please contact the corresponding at at glivingston@utexas.edu 
# 
######################################################################## 
# libraries 
 
library(SCiAn) 
 
######################################################################## 
# set working directory 
 
path <- c("/your path/") 



 97 

 
######################################################################## 
# set parameters 
 
# upload table with parameters 
FINALtable <- read.csv(paste(path,"/treatment_tables/treatments_table.csv",sep="")) 
 
# set number of transfers transfer 
transf=10 
 
# set the overnight values measured using optical density 
piOV=c(0.9132) 
lOV=c(0.6316) 
blankOV=c(0.466) 
 
# remove the background signal from the growth medium 
piOV=piOV-blankOV 
lOV=lOV-blankOV 
 
# calculate cells concebntrations based on previously established relationship 
logCellOVI <- 3.316*piOV+.899 
logCellOVL <- 3.316*lOV+.899 
 
# determine the actual cell densities for each strain 
CellOVI <- 10^logCellOVI 
CellOVL <- 10^logCellOVL 
 
# set treatments (this example refers to the second habitat destruction experiment) 
treatments=c("L5","L8","5","8","H5","H8") 
 
# set number of replicates 
replicates=c(1:3) 
 
######################################################################## 
# Calculate mean and max blanks 
 
# Load blank plates and using Scian functions. These functions are available at CRAN and 
facilitate the upload from Spectrophotometer's output files. 

 
data.blank=formatDF(read.cinetic(paste(path,"/data/D_", transf,"_B_", 1, ".csv", sep=""))) 
blank1 <- data.frame(position=NA,measure=NA) 
for (i in 1:length(data.blank)) {blank1[i,2]<-data.blank[i]} 
 
data.blank=formatDF(read.cinetic(paste(path,"/data/D_", transf,"_B_", 2, ".csv", sep=""))) 
blank2 <- data.frame(position=NA,measure=NA) 
for (i in 1:length(data.blank)) {blank2[i,2]<-data.blank[i]} 
 
data.blank=formatDF(read.cinetic(paste(path,"/data/D_", transf,"_B_", 3, ".csv", sep=""))) 
blank3 <- data.frame(position=NA,measure=NA) 
for (i in 1:length(data.blank)) {blank3[i,2]<-data.blank[i]} 
 
# determine the max blank value 
max(blank1[,2]) 
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max(blank2[,2]) 
max(blank3[,2]) 
 
# determine the mean blank value per rows and columns to adjust for potential edge effects  
firstrowmaxblank <- max(cbind(blank1[1:12,2],blank2[1:12,2],blank3[1:12,2])) 
firstrowmeanblank <- mean(cbind(blank1[1:12,2],blank2[1:12,2],blank3[1:12,2])) 
siderowmaxblank <- 
max(cbind(blank1[c(24,36,48,60,72,84),2],blank2[c(24,36,48,60,72,84),2],blank3[c(24,36,48,60,
72,84),2])) 

siderowmeanblank <- 
mean(cbind(blank1[c(24,36,48,60,72,84),2],blank2[c(24,36,48,60,72,84),2],blank3[c(24,36,48,60
,72,84),2])) 

bottomrowmaxblank <- max(cbind(blank1[85:96,2],blank2[85:96,2],blank3[85:96,2])) 
bottomrowmeanblank <- mean(cbind(blank1[85:96,2],blank2[85:96,2],blank3[85:96,2])) 
interiormeanblank <- mean(cbind(blank1[-c(1:12,24,36,48,60,72,84,85:96),2],blank2[-
c(1:12,24,36,48,60,72,84,85:96),2],blank3[-c(1:12,24,36,48,60,72,84,85:96),2])) 

 
# determine the max blank values for the entire set of plates using boxplot.stats function. These 
adjustments are essential to improve the accuracy of the method of determining the type of 
strain based on their growth 

 
allblank <- rbind(as.matrix(blank1[1:12,2]),as.matrix(blank2[1:12,2]),as.matrix(blank3[1:12,2])) 
blankstats <- boxplot.stats(allblank) 
firstrowmaxblank <- blankstats$stats[5] 
 
allblank <- 
rbind(as.matrix(blank1[c(24,36,48,60,72,84),2]),as.matrix(blank2[c(24,36,48,60,72,84),2]),as.mat
rix(blank3[c(24,36,48,60,72,84),2])) 

blankstats <- boxplot.stats(allblank) 
siderowmaxblank <- blankstats$stats[5] 
 
allblank <- rbind(as.matrix(blank1[85:96,2]),as.matrix(blank2[85:96,2]),as.matrix(blank3[85:96,2])) 
blankstats <- boxplot.stats(allblank) 
bottomrowmaxblank <- blankstats$stats[5] 
 
allblank <- rbind(as.matrix(blank1[-c(1:12,24,36,48,60,72,84,85:96),2]), as.matrix(blank2[-
c(1:12,24,36,48,60,72,84,85:96),2]), as.matrix(blank3[-c(1:12,24,36,48,60,72,84,85:96),2])) 

blankstats <- boxplot.stats(allblank) 
interiormaxblank <- blankstats$stats[5] 
 
######################################################################## 
# Main loop 
 
counter=1 
for (treat in treatments) { 
 
 for (rep in replicates) { 
 
  #Read DO measure file 
  data.plaque=formatDF(read.cinetic(paste(path,"/data/D_", transf,"_", treat,"_", rep, ".csv" , 
sep=""))) 

 
  mat <- data.frame(strain=NA,measure=NA) 
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  for (i in 1:length(data.plaque)) {mat[i,2]<-data.plaque[i]}  
   
     
    # Determine the type of strain based on optical density with adjustments for edge effects. The 
cut-offs are adjusted based on daily overnights and blanks. 

       
  # Interior 
  for (i in 1:96) { 
      if (mat[i,2] < interiormaxblank+0.010) {mat[i,1]="NG"} # No growth 
   if (mat[i,2] >= interiormaxblank+0.010) {if (mat[i,2] < 0.800) {mat[i,1]="L"}} # Lac 
strain  

   if (mat[i,2] >= 0.800) {mat[i,1]="PI"} # Pi strain 
   } 
 
  # Cut-offs top row!! 
  for (i in 1:12) { 
   if (mat[i,2] < firstrowmaxblank +0.010) {mat[i,1]="NG"} # No growth 
   if (mat[i,2] > firstrowmaxblank +0.010) {if (mat[i,2] < 0.870) {mat[i,1]="L"}} # Lac strain 
   if (mat[i,2] > 0.870) {mat[i,1]="PI"} # Pi strain 
   } 
 
  # Cut-offs bottom row!! 
  for (i in 85:96) { 
   if (mat[i,2] < bottomrowmaxblank +0.010) {mat[i,1]="NG"} # No growth 
   if (mat[i,2] > bottomrowmaxblank +0.010) {if (mat[i,2] < 0.870) {mat[i,1]="L"}} # Lac 
strain 

   if (mat[i,2] > 0.870) {mat[i,1]="PI"} # Pi strain 
   } 
   
  # Cut-offs side row!! 
  for (i in c(24,36,48,60,72,84)) { 
   if (mat[i,2] < siderowmaxblank+0.010) {mat[i,1]="NG"} # No growth 
   if (mat[i,2] > siderowmaxblank+0.010) {if (mat[i,2] < 0.870) {mat[i,1]="L"}} # Lac strain 
   if (mat[i,2] > 0.870) {mat[i,1]="PI"} # Pi strain 
   } 
   
  #### Edge effect corrections #### 
     
    # Calculate means for each position 
  mfirstrow <- mean(mat[1:12,2]) 
  innertop <- mat[13:48,2] 
  minnertop <- mean(innertop[-c(12,24,36)]) 
  sidetop <- mean(innertop[c(12,24,36)]) 
  mbottomrow <- mean(mat[85:96,2]) 
  innerbottom <- mat[49:84,2]  
  minnerbottom <- mean(innerbottom[-c(12,24,36)]) 
  sidebottom <- mean(innerbottom[c(12,24,36)]) 
  # correct top 
  for (i in 1:12) {mat[i,2] <- mat[i,2]*(minnertop/mfirstrow)} 
  # correct bottom 
  for (i in 85:96) {mat[i,2] <- mat[i,2]*(minnerbottom/mbottomrow)} 
  # correct last column top 
  for (i in c(24,36,48)) {mat[i,2] <- mat[i,2]*(minnertop/sidetop)} 
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  # correct last column bottom 
  for (i in c(60,72,84)) {mat[i,2] <- mat[i,2]*(minnerbottom/sidebottom)} 
 
 
  # Blank correction 
  mat[1:96,2]=mat[1:96,2]-interiormeanblank # remove interior blank 
   
     
    #### Daily transfer routine #### 
     
    #### 1. Take the mean DO values and divide them by overnight DO values for each strain. 
    # Multiply these proportions by 400ul for each strain to caculate DO corrected volumes (VL,VI). 
   
  #Calculate the mean measure by strain and counts 
  matPI <- subset(mat,mat$strain=="PI",select="measure") 
  countsPI <- nrow(matPI) 
  meanPI <- mean(matPI) 
  if (countsPI==0) meanPI=0 
     
  logCellI <- 3.316*meanPI+.899 
  CellI <- 10^logCellI # actual values 10^6 cells 
 
  matL <- subset(mat,mat$strain=="L",select="measure") 
  countsL <- nrow(matL) 
  meanL <- mean(matL) 
  if (countsL==0) meanL=0 
 
  logCellL <- 3.316*meanL+.899 
  CellL <- 10^logCellL   
   
  # Daily overnight adjustment 
  
  piadj <- CellI/CellOVI 
  ladj <- CellL/CellOVL 
  
  # Dilution volumes adjustment 
    
  VI1 <- piadj*400 
  VL1 <- ladj*400 
  
  #### 2. Calculate from the layout the number of wells (out of 96) occupied for each strain. 
Multiply VL and VI from #1 by these proportions.  

  
  propI <- countsPI/96 
  propL <- countsL/96 
  
  # Volume by occupancy adjustment 
  VI2 <- VI1*propI 
  VL2 <- VL1*propL  
  
  #### 3. Mutiply volume by occupancy (VI) by the treatment specific reduction factor.  
 
  VI3 <- VI2*FINALtable[counter,"IDF"] # The table with reduction factors can be found in the 



 101 

supplementary material provide with the paper 
  VL3 <- VL2 
   
  #### 4. Mutiply VI3 by the destrction factor (This step is only for the second experiment) 
    # This factor reduces the volume added to the dispersal pool by a proportion equivalent to the 
global reduction in dispersal rate  

   
  if (treat=="L5") { 
   VI4 <- VI3*FINALtable[counter,"Destruction"] 
   VL4 <- VL3*FINALtable[counter,"Destruction"] 
   } 
  if (treat=="L8") { 
   VI4 <- VI3*FINALtable[counter,"Destruction"] 
   VL4 <- VL3*FINALtable[counter,"Destruction"] 
   } 
  if (treat=="H5") { 
   VI4 <- VI3*FINALtable[counter,"Destruction"] 
   VL4 <- VL3*FINALtable[counter,"Destruction"] 
   } 
  if (treat=="H8") { 
   VI4 <- VI3*FINALtable[counter,"Destruction"] 
   VL4 <- VL3*FINALtable[counter,"Destruction"] 
   } 
  if (treat=="5") { 
   VI4 <- VI3 
   VL4 <- VL3 
   } 
  if (treat=="8") { 
   VI4 <- VI3 
   VL4 <- VL3 
   }   
   
    # Initial dilution. The corrections below are implemented to ensure all innocualtion volumes are 
greater than 10ul. 

    # Dilutions are implemented in 2ml x 4 x 6 microplates by changing tips after each ejection and 
with 200ul of transfer volume except for some final volumes which are 632ul if it is a half dilution 
step  

   
  dilI=NA 
  if (VI4<10) { # correction in case the volume of VI$ is <10 
      dilI <- VI4 
   VI4=VI4*10 
   IniDil <- 2000-VI4-VL4 
      } 
    if (VI4<10) { # correction in case the volume of VI4 is still <10 
      VI4=VI4*10 
      IniDil <- 2000-VI4-VL4 
      } 
    if (VI4<10) { # correction in case the volume of VI4 is still <10 
      VI4=VI4*10 
      IniDil <- 2000-VI4-VL4 
      } 
    dilL=NA 
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    if (VL4<10) { # correction in case the volume of VL4 is <10 
      dilL <-VL4 
      VL4=VL4*10 
      IniDil <- 2000-VI4-VL4 
      } 
 
  if (VI4>=10) {IniDil <- 2000-VI4-VL4} 
  if (VL4>=10) {IniDil <- 2000-VI4-VL4} 
     
  # Output table 
  
  FINALtable[counter,"Transfer"] <- transf 
  FINALtable[counter,"Max_blank"] <- interiormaxblank 
  FINALtable[counter,"Mean_blank"] <- interiormeanblank 
  FINALtable[counter,"OV_Lac"] <- lOV 
  FINALtable[counter,"OV_PI"] <- piOV 
  FINALtable[counter,"CellOVI"] <-CellOVI 
  FINALtable[counter,"CellOVL"] <-CellOVL 
  FINALtable[counter,"CountsI"] <- countsPI 
  FINALtable[counter,"CountsL"] <- countsL 
  FINALtable[counter,"MeansI"] <- meanPI 
  FINALtable[counter,"MeansL"] <- meanL 
  FINALtable[counter,"CellI"] <-CellI 
  FINALtable[counter,"CellL"] <-CellL 
  FINALtable[counter,"piadj_"] <- piadj 
  FINALtable[counter,"ladj_"] <- ladj 
  FINALtable[counter,"VI1_"] <- VI1 
  FINALtable[counter,"VL1_"] <- VL1 
  FINALtable[counter,"propI_"] <- propI 
  FINALtable[counter,"propL_"] <- propL 
  FINALtable[counter,"VI2_"] <- VI2 
  FINALtable[counter,"VL2_"] <- VL2 
  FINALtable[counter,"VI3_"] <- VI3 
  FINALtable[counter,"VL3_"] <- VL3 
  FINALtable[counter,"VI4_"] <- VI4 
  FINALtable[counter,"VL4_"] <- VL4 
  FINALtable[counter,"Initial.dilution"] <- IniDil 
  FINALtable[counter,"correctionI"] <- dilI 
  FINALtable[counter,"correctionL"] <- dilL 
  
  
 counter=counter+1  
 }# for (rep in replicates) 
 
} #for (t in treat) 
 
write.table(FINALtable[-c(2,7,8,9,11,14,15,16,17,18),],paste(path, 
transf,".txt",sep=""),row.names=FALSE) 

 
######################################################################## 
# Plot dynamics 
 
graphtable <- FINALtable[,c("Treatment","Replicate","propL_","propI_")] 
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graphL <- tapply(graphtable$propL_,graphtable$Treatment,mean) 
graphI <- tapply(graphtable$propI_,graphtable$Treatment,mean) 
labels <- unique(FINALtable[,"Treatment"]) 
 
graphbind <- cbind(labels, graphL, graphI, graphL+ graphI) 
 
barplot(t(graphbind[,-1]),beside=TRUE,legend.text=c("Lac","Pi","Total")) 
 
############################################################################# 
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Chapter 2 Supplemental Information  

 

APPENDIX A. Summary table of species used in the experiment. 

SUPPLEMENTARY TABLE 2.1. Summary of species used in the experiment. Trial 
prey refer to those species used as prey during the feeding trial. Per = Peranema 
sp.; Tetra = Tetrahymena pyriformis; Col = Colpidium striata; Chl = Chlorella 
vulgaris; Crypto = Cryptomonas erosa; Chloro = Chloromonas clathrata. (-) 
signifies not applicable. 

Species Type Trop
hic 
Guil

d 

Pre-
mix 

Pers. 
Prob. 
(mea
n, N, 
SE) 

Post-
mix 
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Prob. 
(mean
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y 

Cell 
Biovol
ume 

Supporting 
Guild/Biovol

ume 
Citations 

Culture 
Source 

Colpoda sp
. 

Proti
st 

Bact
erivo

re 

0.00, 
17, 
0.000 

- Chl - Violle et al. 
2010 (1) 

Jiang 
Lab 

Euplotes 
diadaleos 

Proti
st 

Bact
erivo

re 

0.63, 
16, 
0.125 

0.90, 
10, 
0.100 

Chl - Kusch et al. 
1995 (2) 

Jiang 
Lab 

Halteria 
grandinella 

Proti
st 

Bact
erivo

re 

0.75, 
32, 
0.078 

0.96, 
25, 
0.040 

Chl - Jiang et al. 
2011 (3) 

Jiang 
Lab 

Spirostomu
m sp. 

Proti
st 

Bact
erivo

re 

0.21, 
14, 
0.114 

0.67, 
3, 
0.333 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Unk. 
Ciliate 

Proti
st 

Bact
erivo

re 

0.64, 
28, 
0.092 

0.81, 
16, 
0.101 

Chl -   Jiang 
Lab 

Uronema s
p. 

Proti
st 

Bact
erivo

re 

1.00, 
25, 
0.000 

1.00, 
25, 
0.000 

Chl -   Jiang 
Lab 
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Brachionus 
calyciflorus 

Rotif
er 

Herb
ivore 

0.00, 
12, 
0.000 

- - - Mohr and 
Adrian 2002 
(4) 

Fussma
n Lab 

Brachionus 
havanensis 

Rotif
er 

Herb
ivore 

0.00, 
8, 
0.000 

- - - Mohr and 
Adrian 2002 
(4) 

Fussma
n Lab 

Brachionus 
rubens 

Rotif
er 

Herb
ivore 

0.10, 
10, 
0.100 

0.00, 1 - - Aránguiz-
Acuña et al. 
2011 (5) 

Fussma
n Lab 

Parameciu
m 
caudatum 

Proti
st 

Herb
ivore 

0.55, 
11, 
0.157 

0.83, 
6, 
0.167 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Parameciu
m sp. 1 

Proti
st 

Herb
ivore 

0.92, 
13, 
0.077 

0.83, 
12, 
0.112 

Per
/Ch
loro 

-   Jiang 
Lab 

Unk. 
Rotifer 

Rotif
er 

Herb
ivore 

0.83, 
12, 
0.112 

1.00, 
10, 
0.000 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Glaucoma 
scintellans 

Proti
st 

Omn
ivore 
(b/h) 

0.94, 
34, 
0.041 

0.69, 
32, 
0.083 

Per
/Ch
loro 

-   Jiang 
Lab 

Loxocepha
lus sp. 

Proti
st 

Omn
ivore 
(b/h) 

0.77, 
40, 
0.067 

0.60, 
30, 
0.091 

Per
/Ch
loro 

- Jiang et al. 
2011 (3) 

Jiang 
Lab 

Parameciu
m bursaria 

Proti
st 

Omn
ivore 
(b/h) 

0.83, 
35, 
0.065 

0.76, 
29, 
0.081 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Tetrahyme
na 
pyriformis 

Proti
st 

Omn
ivore 
(b/h) 

0.56, 
34, 
0.086 

0.16, 
19, 
0.086 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 
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Tetrahyme
na 
thermophil
a 

Proti
st 

Omn
ivore 
(b/h) 

0.58, 
26, 
0.099 

0.40, 
15, 
0.131 

Per
/Ch
loro 

-   Jiang 
Lab 

Colpidium 
kleini 

Proti
st 

Omn
ivore 
(b/h/
p) 

0.74, 
34, 
0.077 

0.84, 
25, 
0.075 

Per
/Ch
loro 

-   Jiang 
Lab 

Colpidium 
striatum 

Proti
st 

Omn
ivore 
(b/h/
p) 

0.45, 
33, 
0.088 

0.67, 
15, 
0.126 

Per
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Euplotes 
patella 

Proti
st 

Omn
ivore 
(b/h/
p) 

0.59, 
34, 
0.086 

0.89, 
19, 
0.072 

Per
/Ch
loro 

- Holyoak and 
Sachdev 
1998 (6), Fox 
2004 (7) 

Carolin
a 

Biologic
al 

Supply 

Tetrahyme
na vorax 

Proti
st 

Omn
ivore 
(b/h/
p) 

0.80, 
30, 
0.074 

0.83, 
23, 
0.081 

Col
/Ch
loro 

-   Jiang 
Lab 

Parameciu
m sp. 2 

Proti
st 

Omn
ovor

e 
(p/h) 

0.90, 
31, 
0.054 

1.00, 
28, 
0.000 

Per
/Ch
loro 

-   Jiang 
Lab 

Amoeba 
proteus 

Proti
st 

Pred
ator 

0.25, 
12, 
0.131 

0.67, 
3, 
0.333 

Col
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Asplanchn
a 
brightwelli 

Rotif
er 

Pred
ator 

0.31, 
16, 
0.120 

0.60, 
5, 
0.245 

Col
/Cr
ypt
o 

-   Fussma
n Lab 

Blepharism
a 
americanu
m 

Proti
st 

Pred
ator 

1.00, 
12, 
0.000 

0.92, 
12, 
0.083 

Col
/Ch
loro 

-   Carolin
a 

Biologic
al 
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Supply 

Dileptus 
monilatus 

Proti
st 

Pred
ator 

0.50, 
8, 
0.189 

0.50, 
4, 
0.289 

Tet
ra/
Chl
oro 

-   Carolin
a 

Biologic
al 

Supply 

Stentor 
coeruleus 

Proti
st 

Pred
ator 

0.70, 
10, 
0.153 

0.57, 
7, 
0.202 

Col
/Ch
loro 

-   Carolin
a 

Biologic
al 

Supply 

Unk. 
Protist sp. 

Proti
st 

Pred
ator 

0.90, 
10, 
0.100 

1.00, 
9, 
0.000 

Tet
ra/
Chl
oro 

-   Unknow
n 

Campylom
onas 
reflexa 

Glob
ular 
alga 

Edibl
e to 
proti
sts 

1.00, 
24, 
0.000 

0.96, 
24, 
0.042 

- 1507 Elena 
Litchman 

UTEX 

Chlamydo
monas 
reinhardtii 

Glob
ular 
alga 

Edibl
e to 
proti
sts 

0.92, 
24, 
0.058 

0.71, 
21, 
0.101 

- 45 Elena 
Litchman 

Carolin
a 

Biologic
al 

Supply 

Chloromon
as 
clathrata 

Glob
ular 
alga 

Edibl
e to 
proti
sts 

1.00, 
20, 
0.000 

0.90, 
20, 
0.069 

- 179.5 UTEX photos UTEX 

Chroomon
as 
pochmanii 

Glob
ular 
alga 

Edibl
e to 
proti
sts 

0.12, 
25, 
0.066 

0.00, 
3, 
0.000 

- 151 Elena 
Litchman 

UTEX 

Cryptomon
as erosa 

Glob
ular 
alga 

Edibl
e to 
proti
sts 

0.77, 
26, 
0.084 

0.25, 
20, 
0.099 

- 1507 Elena 
Litchman 

UTEX 

Vischeria 
helvetica 

Glob
ular 
alga 

Edibl
e to 
proti

1.00, 
16, 
0.000 

1.00, 
16, 
0.000 

- 381.51 Algaebase (8) UTEX 
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sts 

Ankistrode
smus 
falcatus 
var. aci 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

1.00, 
21, 
0.000 

1.00, 
21, 
0.000 

- 151 Elena 
Litchman 

UTEX 

Chlorokybu
s 
atmophytic
us 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

0.82, 
17, 
0.095 

0.50, 
14, 
0.139 

- 267.95 UTEX photos UTEX 

Colacium 
vesiculosu
m 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

0.29, 
24, 
0.095 

0.33, 
6, 
0.211 

- 492 Elena 
Litchman 

UTEX 

Pediastrum
 sp. 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

0.95, 
21, 
0.048 

0.95, 
21, 
0.048 

- 3200 Elena 
Litchman 

UTEX 

Scenedes
mus 
gladiosum 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

1.00, 
23, 
0.000 

0.96, 
23, 
0.043 

- 300 Elena 
Litchman 

UTEX 

Sellaphora 
pupula var. 
rectangular
is 

Non-
globu

lar 
alga 

Edibl
e to 
rotife

rs 

0.43, 
23, 
0.106 

0.60, 
10, 
0.163 

- 266.24 UTEX photos UTEX 

Anabaena 
sp. 

Filam
entou

s 
alga 

Inedi
ble 

1.00, 
26, 
0.000 

0.96, 
26, 
0.038 

- -   UTEX 

Atractomor
pha 
echinata 

Filam
entou

s 
alga 

Inedi
ble 

1.00, 
16, 
0.000 

0.44, 
16, 
0.128 

- -   UTEX 

Boldia 
erythrosiph
on 

Filam
entou

s 
alga 

Inedi
ble 

0.06, 
17, 
0.059 

0.00, 1 - -   UTEX 

Closterium Glob Inedi 1.00, 0.92, - 175840 Elena UTEX 
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acerosum ular 
alga 

ble 13, 
0.000 

13, 
0.077 

Litchman 

Eudorina 
unicocca 
var. 
periphe 

Glob
ular 
alga 

Inedi
ble 

1.00, 
15, 
0.000 

0.80, 
15, 
0.107 

- 268, 8 
cells 
per 

colony 

Olenina et al. 
2006 (9) 

UTEX 

Haematoc
occus 
lacustris 

Glob
ular 
alga 

Inedi
ble 

1.00, 
11, 
0.000 

1.00, 
11, 
0.000 

- 6000 Weger et al. 
2002 (10) 

UTEX 

Oscillatoria 
amoena 

Filam
entou

s 
alga 

Inedi
ble 

1.00, 
23, 
0.000 

1.00, 
23, 
0.000 

- -   UTEX 

Pleodorina 
californica 

Glob
ular 
alga 

Inedi
ble 

0.78, 
9, 
0.147 

0.40, 
5, 
0.245 

- 33493.
33 

Prescott 1962 
(11) 

UTEX 

Spirogyra 
occidentali
s 

Filam
entou

s 
alga 

Inedi
ble 

1.00, 
23, 
0.000 

0.87, 
23, 
0.072 

- -   UTEX 

Staurastru
m 
gladiosum 

Glob
ular 
alga 

Inedi
ble 

0.83, 
12, 
0.112 

0.60, 
10, 
0.163 

- 1616 Elena 
Litchman 

UTEX 

Volvox 
rousseletti 

Glob
ular 
alga 

Inedi
ble 

0.33, 
12, 
0.142 

0.25, 
4, 
0.250 

- 8000–
17000, 

cell 
size 45 

Elena 
Litchman 

UTEX 

Zygnema 
circumcari
natum 

Filam
entou

s 
alga 

Inedi
ble 

0.95, 
21, 
0.048 

0.80, 
20, 
0.092 

- -   UTEX 

Supporting citations: 

1. Violle C., Z. Pu and L. Jiang. 2010. Experimental demonstration of the 
importance of competition under disturbance. Proceedings of the National 
Academy of Sciences107:12925–12929. 

2. Kusch, J. 1995. Adaptation of inducible defenses in Euplotes diadaleos 
(Ciliophora) to predation risks by various predators. Microbial Ecology 30:79–88. 
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3. Jiang L., H. Joshi, S. K. Flakes and Y. Jung. 2011. Alternative community 
compositional and dynamical states: the dual consequences of assembly history. 
Journal of Animal Ecology80:577–585. 

4. Mohr, S., and R. Adrian. 2002. Reproductive success of the rotifer Brachionus 
calyciflorus feeding on ciliates and flagellates of different trophic modes. 
Freshwater Biology 47:1832–1839. 

5. Aránguiz-Acuña A., R. Ramos-Jiliberto, and R. O. Bustamante. 2011. 
Experimental evidence that induced defenses promote coexistence of 
zooplanktonic populations. Journal of Plankton Research 33:469–477. 

6. Holyoak, M., and S. Sachdev. 1998. Omnivory and the stability of simple food 
webs. Oecologia117:413–419. 

7. Fox, J. W. 2004. Effects of algal and herbivore diversity on the partitioning of 
biomass within and among trophic levels. Ecology85:549–559. 

8. www.algaebase.org/search/?genus=Vischeria 

9. Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, et al. 
2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. 

10. Weger H. G., J. K. Middlemiss and C. D. Petterson. 2002. Ferric chelate 
reductase activity as affected by the iron-limited growth rate in four species of 
unicellular green algae (Chlorophyta). Journal of Phycology 38:513–519. 

11. Prescott, G. W. 1962. Algae of the Western Great Lakes Area. Revised ed. 
Brown, Dubuque, Iowa, USA. 
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Appendix B. Methods for feeding trials and characterization of trophic structure. 

We classified the majority of heterotrophic species into trophic categories based 
on a combination of feeding trials, the literature, and mouthpart size. We 
inoculated five individuals of each species into each of four culture conditions: (1) 
wheat seed only, (2) wheat seed and protist prey, (3) algae only, and (4) algae 
and protist prey. Based on culture experience and the literature, suitable potential 
prey were selected for each species (Appendix A). Petri dishes were filled with 
30mL of COMBO and algae/prey were grown for one week prior to inoculation of 
focal species. Trials were not replicated and density was sampled using the 
same methods as in the main experiment after one or two weeks depending on 
when the species attained a countable density. Bacteria, prey protists, and algae 
were given one week to grow before species were inoculated. Species with 
growth on wheat seeds only were classified as bacterivores, those with growth on 
protist prey were classified as predators, those with growth on algae were 
classified as herbivores, and those with growth on some combination of bacteria, 
algae, and protists were classified as various types of omnivores (Fig. 2a, 
Appendix A). 

Eight of the twenty-eight species in the trial failed to grow on at least one 
resource due either to strong Allee effects or low establishment success in mono-
inoculation (i.e., co-inoculation with many other species increases establishment 
success). For these species, we inferred their trophic position from the literature, 
culturing experience, and cases in which they grew successfully in the feeding 
trial. All of these eight species are well described in the literature and assigning 
them to guilds was not ambiguous (supporting citations for each species in 
Appendix A). 

Algae were classified as edible or inedible based on size. Edible species were 
less than 20µm in both width and length (generally 15µm maximum) and inedible 
species were greater than 20µm in at least one dimension. 
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Appendix C. Heat map of feeding trial growth rates and the general experimental 
food web. 

 

Supplementary Fig. 2.1. Heat map of feeding trial growth rates and the general 
experimental food web. (a) Growth rates of all species with complete information 
from the feeding trial. White squares represent NA values were growth was not 
assayed because protists were either too small to potentially feed on candidate 
prey (in the case of bacterivores) or known not to grow on bacteria alone (in the 
case of predators). Methods for the feeding trial are described in Appendices A 
and B. 
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Appendix D. Scatterplot of asymmetry in species composition. 

 

Supplementary Fig. 2.2. Scatterplot of asymmetry in species composition (based 
on extinctions) and asymmetry based on Raup-Crick dissimilarity (N = 20). The 
correlation is non significant (GLM, P = 0.07, df = 19, Χ² = 29), but note the 
positive trend. 
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Supplemental R Script 
 
The supplement is a script (R_script_simulation.r) demonstrating the 
implementation of our simulations and subsequent analysis of asymmetry. The 
simulation method we utilized is nonparametric and user-defined. For this reason 
we have included the script. As described in the methods section of our 
associated manuscript, the simulation involves imposing species extinctions in 
our post-mixing communities and using the output as a null model against which 
we compare our observed results. The script includes annotations describing the 
function of each section of code. 
 
##Nov. 27, 2012 
#R code for Livingston et al.## 
################ Load Packages ############### 
library(moments) 
library(gdata) 
library(lattice) 
############################ Read in Data ############################ 
setwd("~/Desktop/R input files")  # Set working directory 
 
# Read in data  
mydata<-read.csv("~/Desktop/R input files/Emerge/data_07062011.csv",header=TRUE) # 
"data_07062011.csv" is the raw file of each species' occurrence per community pre- and post- 
mixing 
mydata.pre.ori<-mydata[mydata$sample=="Pre",] #initial communities (subset of mydata) 
mydata.post.ori<-mydata[mydata$sample=="Post",] # species composition at the time of mixing 
(subset of mydata) 
mix.com.name<-names(summary(mydata$mixcommunity))[-1] # # Retrieve the names of all 
mixed communities 
 
persistance_pr<-read.csv("~/Desktop/R input files/Emerge/persistance_prob.csv",header=TRUE) 
# "persistance_prob" is species' persistence probability 
 
 
connect_deviant_data<-read.csv("~/Desktop/R input files/Emerge/composition 
asymmetry.csv",header=TRUE) # Observed asymmetries 
 
simmulation.no<-10 # The number of simulation runs 
 
#############################################################################
############### Asymmetry in Species Composition############# 
 
################################# Define Functions ################## 
# 1) Function: Asym.Comp()  
# Function Asym.Comp() takes in two datasets, "mydata.mix" (communities present after 
simulated extinctions) and "mydata.post.ori" (communities present at the time of mixing). This 
function is used to calculate the overall asymmetry in species composition and asymmetry in 
species composition in each community by guild. 
 
Asym.Comp<-function (mydata.mix,mydata.post.ori) { 
  # Create null vectors 
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  Diff<-c() 
  exC1<-c() 
  exC2<-c() 
  S1<-c() 
  S2<-c() 
   
  #Retrieve the name of the two mixed communities in each "mix" communities pairs 
  for (i in 1:length(mix.com.name)){ 
    mix1.com<-mydata.mix[mydata.mix$mixcommunity==mix.com.name[i],]$mix1[1]  # Retrieve 
the name of the first pre-mix community 
    mix2.com<-mydata.mix[mydata.mix$mixcommunity==mix.com.name[i],]$mix2[1] # Retrieve the 
name of the second pre-mix community 
     
    # Asymmetry Calculation 
    exC1<-length(mydata.post.ori[mydata.post.ori$community==mix1.com,]$sppID) - 
length(mydata.mix[mydata.mix$community==mix1.com,]$sppID) # exC1=simulated number of 
species that went extinct post-assembly in the first premixing community 
    exC2<-length(mydata.post.ori[mydata.post.ori$community==mix2.com,]$sppID) - 
length(mydata.mix[mydata.mix$community==mix2.com,]$sppID) # exC2=simulated number of 
species that went extinct post-assembly in the second premixing community 
    S1<-length(mydata.post.ori[mydata.post.ori$community==mix1.com,]$sppID)  #S1= the 
number of species present at the time of mixing in the first premixing community 
    S2<-length(mydata.post.ori[mydata.post.ori$community==mix2.com,]$sppID)  #S2= the 
number of species present at the time of mixing in the second premixing community 
     
    Diff.temp<-abs((exC1/S1)-(exC2/S2))  # Asymmetry: the absolute difference in extinction rates 
    Diff<-cbind(Diff, as.numeric(Diff.temp)) # Diff contains the asymmetry values of each mixed 
community in each simulation run 
  } 
  return(Diff) 
} 
##### the end of function Asym.Comp() ######### 
 
# 2) Function: Asym.Comp.Treat() 
 
# Function Asym.Comp.Treat() takes in three datasets, "mydata.mix" (simulated data: 
communities present after mixing), "mydata.post.ori" (experimental data: communities present at 
the time of mixing) and "mix.com.name" (a vector of names of all mixed communities). this 
function calculates the asymmetry in species composition in each community by treatment. 
 
Asym.Comp.Treat<-function (mydata.mix,mydata.post.ori,mix.com.name)  
{ 
  # Create null vectors 
  Diff<-c() 
  exC1<-c() 
  exC2<-c() 
  S1<-c() 
  S2<-c() 
   
  #Retrieve the name of the two mixed communities in each "mix" pair of communities 
  for (i in 1:length(mix.com.name)) 
  { 
    mix1.com<-mydata.mix[mydata.mix$mixcommunity==mix.com.name[i],]$mix1[1]  # Retrieve 
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the name of the first pre-mix community 
    mix2.com<-mydata.mix[mydata.mix$mixcommunity==mix.com.name[i],]$mix2[1]  # Retrieve 
the name of the second pre-mix community 
     
    # Asymmetry Calculation: 
    # exC1/exC2=simulated number of species went extinct post-assembly in each of the 
premixing communities; S1/S2= the number of species actually present at the time of mixing in 
each of the premixing communities 
    exC1 <- length(mydata.post.ori[mydata.post.ori$community==mix1.com,]$sppID) - 
length(mydata.mix[mydata.mix$community==mix1.com,]$sppID) 
    exC2 <- length(mydata.post.ori[mydata.post.ori$community==mix2.com,]$sppID) - 
length(mydata.mix[mydata.mix$community==mix2.com,]$sppID)  
    S1<-length(mydata.post.ori[mydata.post.ori$community==mix1.com,]$sppID) 
    S2<-length(mydata.post.ori[mydata.post.ori$community==mix2.com,]$sppID) 
    Diff.temp<-abs((exC1/S1)-(exC2/S2)) # Asymmetry: the absolute difference in extinction rates 
    Diff<-cbind(Diff, as.numeric(Diff.temp)) # Diff contains the asymmetries of each mixed 
community in each simulated dataset 
  } 
  return(Diff) 
} 
##### the end of function Asym.Comp.Treat() ######### 
 
# 3) Function: Asym.Comp.Stat() 
 
# Function Asym.Comp.Stat() takes in a dataset "Asymmetry.t" (each row of Asymmetry.t 
contains simulated asymmetries in species compostition in each mixed communites in one 
simulation run) and calculate an overall mean asymmetry across all communities across all 
simulation runs, with standard deviation and 95% confidence interval. 
 
Asym.Comp.Stat <- function (Asymmetry.t) { 
  # transpose dataset 
  Asymmetry<-t(Asymmetry.t) 
   
  # Create null vectors 
  asymmetry_mean_total<-c() 
  asymmetry_mean_total_temp<-c() 
  asymmetry_sd_total<-c() 
  asymmetry_low_total<-c() 
  asymmetry_high_total<-c() 
  Difference_total<-c() 
   
  # Extract mean asymmetry of each communities (a total of 66 mean asymmetries) across all 
simulation runs for following calculations 
  for (i in 1:simmulation.no) {      
    asymmetry_mean_total_temp <-cbind(asymmetry_mean_total_temp, mean(Asymmetry[,i], 
na.rm=TRUE)) 
  } 
   
  asymmetry_mean_total<-mean(as.numeric(asymmetry_mean_total_temp),na.rm=TRUE) 
#calculate the overall mean asymmetry 
  asymmetry_sd_total<-sd(as.numeric(asymmetry_mean_total_temp),na.rm=TRUE) #calculate 
SD  
  asymmetry_low_total<-qnorm(0.025,mean= asymmetry_mean_total,sd=asymmetry_sd_total) 
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#calculate the lower boundary of 95% CI 
  asymmetry_high_total<-qnorm(0.975,mean= asymmetry_mean_total,sd=asymmetry_sd_total)  
#calculate the upper boundary of 95% CI 
  #Export data 
  Difference_total <- as.data.frame(cbind(t(asymmetry_mean_total), t(asymmetry_sd_total), 
t(asymmetry_low_total), t(asymmetry_high_total))) 
  colnames(Difference_total)<-c("mean","SD","95% CI","95% CI") 
  return(Difference_total)  
} 
###### Function "Asym.Comp.Stat.Var" Ends ###### 
. 
 
# 4) Function: Asym.Comp.Stat.Var()  
# Function Asym.Comp.Stat.Var() takes in a dataset "Asymmetry.t" (which contains all simulated 
asymmetries in species compostition in each mixed communites in each simulation run) and 
calculate an overall mean variance of asymmetry across all communities, with standard deviation 
and 95% confidence interval. 
 
Asym.Comp.Stat.Var <- function (Asymmetry.t) { 
  # transpose dataset 
  Asymmetry<-t(Asymmetry.t) 
   
  # Create null vectors 
  asymmetry_var_total<-c() 
  asymmetry_var_total_temp<-c() 
  asymmetry_sd_var_total<-c() 
  asymmetry_low_var_total<-c() 
  asymmetry_high_var_total<-c() 
  Difference_var_total<-c() 
   
  # Extract the variance in asymmetry of all communities in each simulation run for following 
calculations 
  for (i in 1:simmulation.no) { 
    asymmetry_var_total_temp<-
cbind(asymmetry_var_total_temp,var(Asymmetry[,i],na.rm=TRUE)) 
  }  
   
  asymmetry_var_total<-mean(as.numeric(asymmetry_var_total_temp),na.rm=TRUE) #calculate 
the overall mean variance of asymmetry 
  asymmetry_sd_var_total<-sd(as.numeric(asymmetry_var_total_temp),na.rm=TRUE) #calculate 
SD 
  asymmetry_low_var_total<- qnorm(0.025,mean=asymmetry_var_total, 
sd=asymmetry_sd_var_total)  #calculate the lower boundary of 95% CI 
  asymmetry_high_var_total<-qnorm(0.975,mean= 
asymmetry_var_total,sd=asymmetry_sd_var_total)  #calculate the upper boundary of 95% CI 
   
  #Export data 
  Difference_var_total<-as.data.frame (cbind(t(asymmetry_var_total), t(asymmetry_sd_var_total), 
t(asymmetry_low_var_total), t(asymmetry_high_var_total))) 
  colnames(Difference_var_total)<-c("mean","SD","95% CI","95% CI") 
  return(Difference_var_total)  
} 
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######### Function "Asym.Comp.Stat.Var" Ends ######## 
 
 
 
#############################Simulations################################# 
 
# Create null vectors for overall asymmetry in species composition 
mydata.left<-c() 
Asymmetry.t<-c() 
 
# Create null vectors for asymmetry in species compostition by guild 
mydata.mix.Bac<-c() 
Asymmetry.t.Bac<-c() 
mydata.mix.Edible<-c() 
Asymmetry.t.Edible<-c() 
mydata.mix.Herb<-c() 
Asymmetry.t.Herb<-c() 
mydata.mix.Inedible<-c() 
Asymmetry.t.Inedible<-c() 
mydata.mix.Omni<-c() 
Asymmetry.t.Omni<-c() 
mydata.mix.Predator<-c() 
Asymmetry.t.Predator<-c() 
 
# Create null vectors for asymmetry in species compostition by treatment  
mydata.mix.1_2<-c() 
Asymmetry.t.1_2<-c() 
mydata.mix.3<-c() 
Asymmetry.t.3<-c() 
mydata.mix.CC<-c() 
Asymmetry.t.CC<-c() 
mydata.mix.TC<-c() 
Asymmetry.t.TC<-c() 
mydata.mix.TT<-c() 
Asymmetry.t.TT<-c() 
 
for (i in 1: simmulation.no) { 
  cat("simulation",i,"\n") #Print current simulation number 
  persist<-c()  
  mydata.left<-c() 
  #The following "for loop"" finds the persistence prob of each species in "mydata", and simulates 
whether it will persist or not and return the result as TRUE/FALSE 
  for (i in 1:length(mydata$species)) { 
    p<-c() 
    p<-c(p,persistance_pr[persistance_pr[1]==as.character(mydata$species[i]),2]) # For each 
species in "mydata", find its persistance probability in "persistance_pr" and save it as p 
    persist.temp<-sample(c(TRUE,FALSE),size=1,replace=TRUE,prob=c(p,1-p))   #based on 
persistance probability, estimate whether each sample from each species would persist or not 
    persist<-c(persist,persist.temp) #save the result above as "persist" 
  } 
  #After simulating every species in "mydata", now "persist" is a vector with the same length as 
the number of rows in "mydata", and filled with TURE or FALSE 
  mydata.left<-mydata[persist,] #species that persist after simulation will now be stored in a new 
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vector "mydata.left" 
   
  mydata.mix<-mydata.left[!is.na(mydata.left$mix1),]  #Extract all mix communities from 
"mydata.left" 
   
  ######### Asymmetry in Species Composition Overall ######### 
  Diff<-Asym.Comp(mydata.mix,mydata.post.ori) 
  Asymmetry.t<-rbind(Asymmetry.t,Diff) # Asymmetry.t contains all simulated asymmetries in 
species compostition in each mixed communites in each simulation run 
   
  ######## Asymmetry in Species Composition by Guild######### 
  # Extracting asymmetry results by guild 
  #Bacteria 
  mydata.mix.Bac<-mydata.mix[mydata.mix$guild=="Bac",] 
  mydata.post.ori.Bac<-mydata.post.ori[mydata.post.ori$guild=="Bac",]  
  Diff.Bac<-Asym.Comp(mydata.mix.Bac,mydata.post.ori.Bac) 
  Asymmetry.t.Bac<-rbind(Asymmetry.t.Bac,Diff.Bac)   
  #Edible 
  mydata.mix.Edible<-mydata.mix[mydata.mix$guild=="Edible",] 
  mydata.post.ori.Edible<-mydata.post.ori[mydata.post.ori$guild=="Edible",]  
  Diff.Edible<-Asym.Comp(mydata.mix.Edible,mydata.post.ori.Edible) 
  Asymmetry.t.Edible<-rbind(Asymmetry.t.Edible,Diff.Edible) 
  #Herbivore 
  mydata.mix.Herb<-mydata.mix[mydata.mix$guild=="Herb",] 
  mydata.post.ori.Herb<-mydata.post.ori[mydata.post.ori$guild=="Herb",]  
  Diff.Herb<-Asym.Comp(mydata.mix.Herb,mydata.post.ori.Herb) 
  Asymmetry.t.Herb<-rbind(Asymmetry.t.Herb,Diff.Herb) 
  #Inedible 
  mydata.mix.Inedible<-mydata.mix[mydata.mix$guild=="Inedible ",] #"Inedible+blank" 
  mydata.post.ori.Inedible<-mydata.post.ori[mydata.post.ori$guild=="Inedible ",]  
  Diff.Inedible<-Asym.Comp(mydata.mix.Inedible,mydata.post.ori.Inedible) 
  Asymmetry.t.Inedible<-rbind(Asymmetry.t.Inedible,Diff.Inedible) 
  #Omnivore 
  mydata.mix.Omni<-mydata.mix[mydata.mix$guild=="Omni",] 
  mydata.post.ori.Omni<-mydata.post.ori[mydata.post.ori$guild=="Omni",]  
  Diff.Omni<-Asym.Comp(mydata.mix.Omni,mydata.post.ori.Omni) 
  Asymmetry.t.Omni<-rbind(Asymmetry.t.Omni,Diff.Omni) 
  #Predator 
  mydata.mix.Predator<-mydata.mix[mydata.mix$guild=="Predator",] 
  mydata.post.ori.Predator<-mydata.post.ori[mydata.post.ori$guild=="Predator",]  
  Diff.Predator<-Asym.Comp(mydata.mix.Predator,mydata.post.ori.Predator) 
  Asymmetry.t.Predator<-rbind(Asymmetry.t.Predator,Diff.Predator) 
   
   
   
  ######## Asymmetry in Species Composition by treatment######### 
  # Extracting asymmetry resuls by treatment 
  # CC    
  mydata.mix.CC<-mydata.mix[mydata.mix$mixtype=="CC",] 
  mydata.post.ori.CC<-mydata.post.ori[mydata.post.ori$mixtype=="CC",] 
  mix.com.name.CC<-names(summary(drop.levels(mydata.post.ori.CC$mixcommunity))) 
  Diff.CC<-Asym.Comp.Treat(mydata.mix.CC,mydata.post.ori.CC,mix.com.name.CC) 
  Asymmetry.t.CC<-rbind(Asymmetry.t.CC,Diff.CC) 
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  # TC    
  mydata.mix.TC<-mydata.mix[mydata.mix$mixtype=="TC",] 
  mydata.post.ori.TC<-mydata.post.ori[mydata.post.ori$mixtype=="TC",] 
  mix.com.name.TC<-names(summary(drop.levels(mydata.post.ori.TC$mixcommunity))) 
  Diff.TC<-Asym.Comp.Treat(mydata.mix.TC,mydata.post.ori.TC,mix.com.name.TC) 
  Asymmetry.t.TC<-rbind(Asymmetry.t.TC,Diff.TC) 
   
  # TT  
  mydata.mix.TT<-mydata.mix[mydata.mix$mixtype=="TT",] 
  mydata.post.ori.TT<-mydata.post.ori[mydata.post.ori$mixtype=="TT",] 
  mix.com.name.TT<-names(summary(drop.levels(mydata.post.ori.TT$mixcommunity))) 
  Diff.TT<-Asym.Comp.Treat(mydata.mix.TT,mydata.post.ori.TT,mix.com.name.TT) 
  Asymmetry.t.TT<-rbind(Asymmetry.t.TT,Diff.TT)   
} 
 
# SIMULATION ENDS 
 
 
#### Statistical Analysis of Asymmetry in Species Composition##### 
 
# Mean asymmetry with SD and 95% CI 
Asym.Comp.Stat(Asymmetry.t) 
 
# Asymmetry by guild with SD and 95% CI  
Asym.Comp.Stat(Asymmetry.t.Bac) 
Asym.Comp.Stat(Asymmetry.t.Edible) 
Asym.Comp.Stat(Asymmetry.t.Herb) 
Asym.Comp.Stat(Asymmetry.t.Inedible) 
Asym.Comp.Stat(Asymmetry.t.Omni) 
Asym.Comp.Stat(Asymmetry.t.Predator) 
 
# Asymmetry by treatment with SD and 95% CI  
Asym.Comp.Stat(Asymmetry.t.CC) 
Asym.Comp.Stat(Asymmetry.t.TC) 
Asym.Comp.Stat(Asymmetry.t.TT) 
 
# Overall mean variance in asymmetry with SD and 95% CI 
Asym.Comp.Stat.Var(Asymmetry.t) 
 
# Mean variance in asymmetry with SD and 95% CI by guild 
Asym.Comp.Stat.Var(Asymmetry.t.Bac) 
Asym.Comp.Stat.Var(Asymmetry.t.Edible) 
Asym.Comp.Stat.Var(Asymmetry.t.Herb) 
Asym.Comp.Stat.Var(Asymmetry.t.Inedible) 
Asym.Comp.Stat.Var(Asymmetry.t.Omni) 
Asym.Comp.Stat.Var(Asymmetry.t.Predator) 
 
# Mean variance in asymmetry with SD and 95% CI by treatment 
Asym.Comp.Stat.Var(Asymmetry.t.CC) 
Asym.Comp.Stat.Var(Asymmetry.t.TC) 
Asym.Comp.Stat.Var(Asymmetry.t.TT) 
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#Idividual community level deviants from 95% CI in asymmetry 
# Transpose dataset 
asym.comp.temp<-t(Asymmetry.t) 
rownames(asym.comp.temp)<-names(summary(mydata.mix$mixcommunity))[-1] 
 
# Create null vectors 
mix_mean_indiv.comp<-c() 
mix_sd_indiv.comp<-c() 
mix_low_indiv.comp<-c() 
mix_high_indiv.comp<-c() 
connect_asym_indiv.comp<-c() 
 
# Calculate the mean asymmetry in species composition for each mix community across all 
simulation runs and store the result in connect_asym_indiv.comp 
for (i in 1:66) { 
  mix_mean_indiv.comp<-cbind(mix_mean_indiv.comp,mean(asym.comp.temp[i,],na.rm=TRUE)) 
  mix_sd_indiv.comp<-cbind(mix_sd_indiv.comp,sd(asym.comp.temp[i,],na.rm=TRUE)) 
  mix_low_indiv.comp<-cbind(mix_low_indiv.comp,qnorm(0.00038,mean= 
mean(asym.comp.temp[i,],na.rm=TRUE),sd= sd(asym.comp.temp[i,],na.rm=TRUE)))   
  mix_high_indiv.comp<-cbind(mix_high_indiv.comp,qnorm(0.99962,mean= 
mean(asym.comp.temp[i,],na.rm=TRUE),sd=sd(asym.comp.temp[i,],na.rm=TRUE))) 
} 
connect_asym_indiv.comp <- as.data.frame(cbind(t(mix_mean_indiv.comp), 
t(mix_sd_indiv.comp), t(mix_low_indiv.comp), t(mix_high_indiv.comp))) 
names(connect_asym_indiv.comp)<-c("mean","SD","95%_CI.low","95%_CI.hi") 
rownames(connect_asym_indiv.comp)<-mix.com.name 
 
#Identfy Deviants 
sum(connect_deviant_data$comp_diff < connect_asym_indiv.comp[3]) #The number of deviants 
below CI 
sum(connect_deviant_data$comp_diff > connect_asym_indiv.comp[4]) #The number of deviants 
above CI 
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Chapter 3 Supplemental Information  

 
Supplementary Figure 3.1: Pearson correlation coefficients between abundance 

of Paramecium and chla and NH4. NH4 data was only collected for landscapes in 

week 5 from two replicates. Chlorophyll (chl) data was collected for weeks 3-6. 

Error bars show standard deviation.   
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