

Copyright

by

Ronald S. Waters

2014

The Dissertation Committee for Ronald S. Waters Certifies that this is the approved

version of the following dissertation:

Total Delay Optimization for Column Reduction Multipliers
Considering Non-Uniform Arrival Times to the Final Adder

Committee:

Earl E. Swartzlander, Jr. Supervisor

Lizy K. John

Mike Schulte

Arjang Hassibi

Adnan Aziz

Total Delay Optimization for Column Reduction Multipliers
Considering Non-Uniform Arrival Times to the Final Adder

by

Ronald S. Waters, B.S.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2014

 iv

Abstract

Total Delay Optimization for Column Reduction Multipliers
Considering Non-Uniform Arrival Times to the Final Adder

Ronald S. Waters, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Earl E. Swartzlander, Jr.

Column Reduction Multiplier techniques provide the fastest multiplier designs

and involve three steps. First, a partial product array of terms is formed by logically

ANDing each bit of the multiplier with each bit of the multiplicand. Second, adders or

counters are used to reduce the number of terms in each bit column to a final two. This

activity is commonly described as column reduction and occurs in multiple stages.

Finally, some form of carry propagate adder (CPA) is applied to the final two terms in

order to sum them to produce the final product of the multiplication. Since forming the

partial products, in the first step, is simply forming an array of the logical AND’s of two

bits, there is little opportunity for delay improvement for the first step. There has been

much work done in optimizing the reduction stages for column multipliers in the second

reduction step. All of the reduction approaches of the second step result in non-uniform

arrival times to the input of the final carry propagate adder in the final step. The designs

for carry propagate adders have been done assuming that the input bits all have the same

arrival time. It is not evident that the non-uniform arrival times from the columns impacts

the performance of the multiplier. A thorough analysis of the several column reduction

methods and the impact of carry propagate adder designs, along with the column

 v

reduction design step, to provide the fastest possible final results, for an array of

multiplier widths has not been undertaken. This dissertation investigates the design

impact of three carry propagate adders, with different performance attributes, on the final

delay results for four column reduction multipliers and suggests general ways to optimize

the total delay for the multipliers.

 vi

Table of Contents

Abstract .. iv	

List of Tables ... ix	

List of Figures ..x	

Chapter 1.	
 Introduction ...1	

Chapter 2.	
 Previous Work ...5	

Townsend, et al. ..5	

Oklobdzija, et al. ...7	

Stelling and Oklobdzija ...9	

Oklobdzija and Villeger ..12	

Baran, et al. ...13	

Chapter 3.	
 Column Reduction Methods ..15	

Wallace Multiplier ..15	

Dadda Multiplier ...16	

Reduced Area Multiplier ...17	

Modified Wallace ..19	

Chapter 4:	
 Logical Effort (LE) ...22	

Introduction to Logical Effort ...22	

Determining values of Logical Effort, g ...24	

Determining value of Parasitic Delay, p ...26	

Limitations of Logical Effort ..27	

Use of Logical Effort in this Research ..28	

Chapter 5:	
 Gate Delays versus Logical Effort Estimations29	

Chapter 6:	
 Carry Propagate Adders ..34	

Ripple Carry ..34	

 vii

Carry Select ...34	

Kogge-Stone (Carry Look Ahead/Parallel Prefix) ..35	

Chapter 7:	
 Scope of Work ..36	

Column Reduction Multipliers ...37	

Adders ...38	

Carry Propagate Adders (CPA) ..41	

Integer Multiplier Sizes ...46	

Design Constraints ..46	

Delay Profiler Development ...49	

Chapter 8:	
 Column Reduction Delay Results ...51	

Chapter 9:	
 Results Based upon Multiplier Type ...58	

Wallace Results ...58	

Dadda Results ...63	

Reduced Area Results ...67	

Modified Wallace Results ...71	

Chapter 10:	
 Results Based upon Carry Propagate Adder75	

Ripple Carry Adder ...75	

Carry Select Adder ..79	

Kogge-Stone Parallel Prefix Adder ..82	

Chapter 11:	
 Overall Delay Results ..86	

8-Bit Multipliers ...86	

12-Bit Multipliers ...87	

16-Bit Multipliers ...88	

24-Bit Multipliers ...88	

32-Bit Multipliers ...89	

53-Bit Multiplier ...90	

Chapter 12:	
 Comparing Dynamic Power ...93	

8-Bit Dadda Multiplier Power Estimation ..94	

 viii

53-Bit Dadda Multiplier Power Estimation ..96	

Chapter 13:	
 Conclusions ..99	

Column Reduction Method Selection ...99	

Minimizing Column delay by Term Selection in Dadda99	

Carry Propagate Adder Selection ..101	

Reducing LSB Side Delay ..105	

Adder Selection ...106	

Simplifying the Column Reduction Logical Delay Estimation107	

Dynamic Power Estimation ..110	

Summary ...110	

References ..111	

 ix

List of Tables

Table 1: 	
 Full Adder and Half Adder Delays for Townsend Comparison 6	

Table 2:	
 9-Bit by 9-Bit Multiplier Comparison ... 21	

Table 3:	
 53-Bit by 53-Bit Multiplier Comparison ... 21	

Table 3:	
 Logical Effort, g, values for various gates ... 24	

Table 4:	
 Gate Delay Counts for Eleven Gate Full Adder .. 29	

Table 5:	
 Gate Delay Counts for Nine gate NAND Full Adder 30	

Table 6:	
 Table of Delay Models Developed .. 37	

Table 7:	
 Full Adder Gate Delay Counts .. 39	

Table 8:	
 Half Adder Delay Summary .. 41	

Table 9:	
 Full Adder Delay Summary ... 41	

Table 10:	
 Summary of Worst Case Delays for Wallace Multipliers 63	

Table 11:	
 Summary of Worst Case Delays for Dadda Multipliers 67	

Table 12:	
 Summary of Worst Case Delays for Reduced Area Multipliers 71	

Table 13:	
 Summary of Worst Case Delays for Modified Wallace Multipliers 74	

Table 14:	
 Summary of Logical Effort Delays for all Multipliers 92	

Table 15:	
 Design Data for 8-Bit Dadda Multipliers .. 95	

Table 16:	
 Design Data for 53-Bit Dadda Multipliers .. 97	

Table 17: Power Estimate Summary for 8-Bit and 53-Bit Multipliers 98	

Table 18:	
 First Reduction Stage Terms and Dadda Column Delay Improvement 100	

Table 19:	
 Table of LE/Gate delay ratio for 16-Bit Column Reductions 109	

 x

List of Figures

Figure 1:	
 Diagram of Procedure for Column Multiplier Reduction 2	

Figure 2:	
 Dot Diagram for 8-bit by 8-bit Wallace Multiplier .. 3	

Figure 3:	
 Arrival Gate Delays for an 8-bit by 8-bit Wallace Multiplier 4	

Figure 4: 	
 Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Wallace

Multiplier (after [8]) .. 6	

Figure 5:	
 Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Dadda Multiplier

(after [8]) ... 7	

Figure 6:	
 Oklobdzija Delay Profile for 16-bit Multiplier Using (4,2) Counters and a

Carry Select Adder (after [9]) ... 8	

Figure 7:	
 Hybrid Adder using a Ripple Carry Adder, 1-level Carry Skip Adder and one

Carry Select Adder (after [10]) ... 10	

Figure 8:	
 Regions of Delay in Column Multiplier Delay Profile (after [11]) 11	

Figure 9:	
 Delays Using Optimal Hybrid Adder for 32-Bit Multiply-Accumulate (after

[13]) 13	

Figure 10:	
 Conventional Wallace 9-bit by 9-bit Reduction ... 16	

Figure 11:	
 Dadda 9-bit by 9-bit Reduction .. 17	

Figure 12:	
 Reduced Area 9-Bit by 9-Bit Reduction .. 18	

Figure 13:	
 Modified Wallace 9-Bit by 9-Bit Reduction .. 20	

Figure 14:	
 Tau values for various CMOS technology Nodes (after [24][25][26][27]) . 22	

Figure 15:	
 CMOS Inverter schematic (after [24]) ... 25	

Figure 16:	
 Two Input NAND Gate (after [24]) ... 25	

 xi

Figure 17:	
 Two Input NOR Gate (after [24]) ... 26	

Figure 18:	
 Full Adder Implemented with Eleven Gates .. 29	

Figure 19:	
 Full Adder Implemented with Nine NAND Gates 30	

Figure 20:	
 Gate Delay count comparison for 32-Bit by 32-Bit Dadda Multiplier using 9-

gate and 11-gate Full Adders .. 31	

Figure 21:	
 Logical Effort delay comparison for 32-Bit by 32-Bit Dadda Multiplier

using 9-gate NAND and 11-gate CMOS Full Adders .. 32	

Figure 22:	
 Logical Effort delay for 32-Bit by 32-Bit Dadda Multiplier including

removal of impact of Branching Effort ... 32	

Figure 23:	
 Eleven Gate Full Adder ... 38	

Figure 24:	
 Nine Gate CMOS Full Adder ... 38	

Figure 25:	
 Nine Gate NAND Full Adder ... 38	

Figure 26:	
 Three 32-bit Dadda Multipliers using different full adders 39	

Figure 27:	
 Schematic for Five Gate, 3-2 Delay Half Adder .. 40	

Figure 28:	
 Schematic for Eleven Gate, 7-6-5-4 Delay Full Adder 41	

Figure 29:	
 Schematic diagram of Ripple Carry Adder ... 43	

Figure 30:	
 Schematic diagram of Carry Select Adder ... 44	

Figure 31: 	
 Basic Building Block Cells for Kogge-Stone Adder 45	

Figure 32:	
 Schematic Diagram of Kogge-Stone Adder ... 45	

Figure 33:	
 Delay of 24-Bit by 24-Bit Dadda with Selective term grouping 48	

Figure 34:	
 8-Bit by 8-Bit Column Reduction Multiplier Delays 51	

Figure 35:	
 12-Bit by 12-Bit Colum Reduction Multiplier Delays 52	

 xii

Figure 36:	
 16-Bit by 16-Bit Column Reduction Multiplier Delays 53	

Figure 37:	
 24-Bit by 24-Bit Column Reduction Multiplier Delays 54	

Figure 38:	
 32-Bit by 32-Bit Column Reduction Multiplier Delays 55	

Figure 39:	
 53-Bit by 53-Bit Column Reduction Multiplier Delays 56	

Figure 40:	
 8-Bit by 8-Bit Wallace Multiplier Results ... 58	

Figure 41:	
 12-Bit by 12-Bit Wallace Multiplier Results ... 59	

Figure 42:	
 12-Bit Wallace Multiplier with K-S Branching ignored 60	

Figure 43:	
 16-Bit by 16-Bit Wallace Multiplier Results ... 61	

Figure 44:	
 24-Bit by 24-Bit Wallace Multiplier Results ... 61	

Figure 45:	
 32-Bit by 32-Bit Wallace Multiplier Results ... 62	

Figure 46:	
 53-Bit by 53-Bit Wallace Multiplier Results ... 62	

Figure 47:	
 8-Bit by 8-Bit Dadda Multiplier Results .. 64	

Figure 48:	
 12-Bit by 12-Bit Dadda Multiplier Results .. 64	

Figure 49:	
 16-Bit by 16-Bit Dadda Multiplier Results .. 65	

Figure 50:	
 24-Bit by 24-Bit Dadda Multiplier Results .. 65	

Figure 51:	
 32-Bit by 32-Bit Dadda Multiplier Results .. 66	

Figure 52:	
 53-Bit by 53-Bit Dadda Multiplier Results .. 66	

Figure 53:	
 8-Bit by 8-Bit Reduced Area Multiplier Results .. 68	

Figure 54:	
 12-Bit by 12-Bit Reduced Area Multiplier Results 68	

Figure 55:	
 16-Bit by 16-Bit Reduced Area Multiplier Results 69	

Figure 56:	
 24-Bit by 24-Bit Reduced Area Multiplier Results 69	

Figure 57:	
 32-Bit by 32-Bit Reduced Area Multiplier Results 70	

 xiii

Figure 58:	
 53-Bit by 53-Bit Reduced Area Multiplier Results 70	

Figure 59:	
 8-Bit by 8-Bit Modified Wallace Multiplier Results 71	

Figure 60:	
 12-Bit by 12-Bit Modified Wallace Multiplier Results 72	

Figure 61:	
 16-Bit by 16-Bit Modified Wallace Multiplier Results 72	

Figure 62:	
 24-Bit by 24-Bit Modified Wallace Multiplier Results 73	

Figure 63:	
 32-Bit by 32-Bit Modified Wallace Multiplier Results 73	

Figure 64:	
 53-Bit by 53-Bit Modified Wallace Multiplier Results 74	

Figure 65:	
 8-Bit by 8-Bit Multiplier with Ripple Carry Final Adder 75	

Figure 66:	
 12-Bit by 12-Bit Multiplier with Ripple Carry Final Adder 76	

Figure 67:	
 16-Bit by 16-Bit Multiplier with Ripple Carry Final Adder 76	

Figure 68:	
 24-Bit by 24-Bit Multiplier with Ripple Carry Final Adder 77	

Figure 69:	
 32-Bit by 32-Bit Multiplier with Ripple Carry Final Adder 77	

Figure 70:	
 53-Bit by 53-Bit Multiplier with Ripple Carry Final Adder 78	

Figure 71:	
 8-Bit by 8-Bit Multiplier with Carry Select Final Adder 79	

Figure 72:	
 12-Bit by 12-Bit Multiplier with Carry Select Final Adder 79	

Figure 73:	
 16-Bit by 16-Bit Multiplier with Carry Select Final Adder 80	

Figure 74:	
 24-Bit by 24-Bit Multiplier with Carry Select Final Adder 80	

Figure 75:	
 32-Bit by 32-Bit Multiplier with Carry Select Final Adder 81	

Figure 76:	
 53-Bit by 53-Bit Multiplier with Carry Select Final Adder 81	

Figure 77:	
 8-Bit by 8-Bit Multiplier with Kogge-Stone Final Adder 82	

Figure 78:	
 12-Bit by 12-Bit Multiplier with Kogge-Stone Final Adder 83	

Figure 79:	
 16-Bit by 16-Bit Multiplier with Kogge-Stone Final Adder 83	

 xiv

Figure 80:	
 24-Bit by 24-Bit Multiplier with Kogge-Stone Final Adder 84	

Figure 81:	
 32-Bit by 32-Bit Multiplier with Kogge-Stone Final Adder 84	

Figure 82:	
 53-Bit by 53-Bit Multiplier with Kogge-Stone Final Adder 85	

Figure 83:	
 Logical Effort Delay for Twelve 8-Bit by 8-Bit Multipliers 86	

Figure 84:	
 Logical Effort Delay for Twelve 12-Bit by 12-Bit Multipliers 87	

Figure 85:	
 Logical Effort Delay for Twelve 16-Bit by 16-Bit Multipliers 88	

Figure 86:	
 Logical Effort Delay for Twelve 24-Bit by 24-Bit Multipliers 89	

Figure 87:	
 Logical Effort Delay for Twelve 32-Bit by 32-Bit Multipliers 90	

Figure 88:	
 Logical Effort Delay for Twelve 53-Bit by 53-Bit Multipliers 91	

Figure 89:	
 Relative Power for 8-Bit Dadda Multipliers .. 94	

Figure 90:	
 Relative Power for each CPA used in 8-Bit Dadda Multiplier 95	

Figure 91:	
 Relative Power for the 53-Bit Dadda Multipliers .. 96	

Figure 92:	
 Relative Power for each CPA used in the 53-Bit Dadda Multiplier 97	

Figure 93:	
 12-Bit Dadda Multiplier Heat Maps ... 101	

Figure 94:	
 Regions in 32-Bit by 32-Bit Wallace Multiplier .. 103	

Figure 95:	
 32-bit Dadda Multipliers Comparison with Kogge-Stone and Hybrid 104	

Figure 96:	
 Modified Wallace Multiplier Illustrating Reduction Issue 106	

Figure 97:	
 32-Bit Dadda Multiplier using K-S CPA for three Different Full Adders . 107	

Figure 98:	
 Ratio of Logical Effort Delay/Gate Delay for 16-Bit Multiplier 108	

 1

Chapter 1. Introduction

Column Reduction Multipliers (CRM) are some of the faster multiplication

circuits available; therefore, they are commonly used in Fast Fourier Transforms, Digital

Signal Processor algorithms for convolution and filtering, graphics applications and

communications applications, such as Viterbi decoders. Since multipliers tend to be in the

critical path for an algorithm, their speed is important. The reason column reduction

multipliers are preferred over array and other multipliers is that their delay is proportional

to the logarithm of the multiplier width [1] as opposed to an array multiplier’s delay

which is proportional to N, the width of the multiplier.

Column reduction multipliers have three main sections. For an N-by-N multiplier,

first an N2 array of partial products is generated by performing the logical AND of each

bit value of the multiplicand with each bit value of the multiplier. Second, these partial

products are reduced by combining, with counters, compressors or adders, through

multiple stages, until there are only two remaining rows in the final stage of the

reduction. Finally, a carry propagate adder (CPA) is used to add the final two rows,

producing the sum of the two rows, which results in the product of the multiplicand and

the multiplier that were used to generate the N-by-N array of partial product terms [1].

Figure 1 illustrates the reduction flow for column reduction multipliers.

Column reduction multipliers have a set of rules applied during the partial product

reduction stage. Four types of multipliers are explored, including: Wallace [2], Dadda [3,

4], Reduced Area [5, 6] and Modified Wallace [7].

 2

Figure 1: Diagram of Procedure for Column Multiplier Reduction

Dadda [3] popularized the “dot diagram” notation for drawing column reduction

multiplier designs. The conventions that he used are still used today and are defined as:

A Partial Product term (AND gate output)
The outputs of a Half Adder
The outputs of a Full Adder

A “dot diagram” for an 8-bit by 8-bit multiplier using one (Wallace) of the four

reduction methods reviewed in this research is shown in Figure 2.

 3

Figure 2: Dot Diagram for 8-bit by 8-bit Wallace Multiplier

Due to the nature of column reduction multipliers, the arrival times for the final

two rows of bits to be summed by the final carry propagate adder (CPA) vary depending

upon bit significance. For an N-by-N multiplier, the Least Significant Bits (LSB) and the

Most Significant Bits (MSB) arrive well before the bits in the region of the Nth or Nth+1

significant bit columns. Figure 3 illustrates this non-uniform arrival profile for an 8-bit by

8-bit Wallace multiplier. The bits at the least and most significant positions arrive sooner

than the bits in the center of the column reduction structure. Throughout this dissertation,

the convention will be the LSB being on the right side and the MSB being on the left side

of the diagrams.

 4

Figure 3: Arrival Gate Delays for an 8-bit by 8-bit Wallace Multiplier

Most carry propagate adder designs assume that the bits all arrive at the same

time. Since that is not the case with the arrival times from column reduction, the best

design to minimize the overall delay for the multiplier, of the carry propagate adder to

sum the final two rows in the reduction process is not easily determined. This dissertation

investigates overall multiplier delay for three designs of the carry propagate adder (ripple

carry, carry select and Kogge-Stone parallel prefix) along with four column reduction

methods (Wallace, Dadda, reduced area and modified Wallace) and multiplication widths

(8-bit, 12-bit, 16-bit, 24-bit, 32-bit and 53-bit). Simply counting gate delays, as was done

in Figure 3, will prove to be insufficient to accurately model overall multiplier delays.

Therefore, rigorous use of a design modeling technique known as logical effort is used.

0	

5	

10	

15	

20	

25	

30	

15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

G
at
e	

D
el
ay
s	

MSB	
 <-­Bit	
 Position	
 -­>	
 LSB	

 5

Chapter 2. Previous Work

Past work has dealt with multipliers of specific widths without extensive analysis

of the impact of various column reduction methods. The analysis of the delay, introduced

by the carry propagate adder in the final stage, typically looked at one type of adder or

another or, for a single size of multiplier and reduction method, investigated the potential

impact of hybridizing the carry propagate adder with a mixture of different types of

adders. No analysis has been performed for a significant range of multiplier sizes and

reduction methods in order to investigate the impact of multiplier width and reduction

method on carry propagate adder selection.

TOWNSEND, ET AL.

Townsend, et al. analyzed both Wallace and Dadda multipliers of 4-bit and 8-bit

width [8]. The carry propagate adders used were a ripple carry adder and a 4-bit carry

look ahead adder. In the analysis of the reduction stages, terms were grouped in order to

minimize the delay through the reductions stages and were not necessarily grouped by

adjacency. This grouping technique is different than the approach taken here. In this

research, adjacent terms are grouped. However, comparative analysis shows that the

results from different grouping strategies do not matter much.

First, a ripple carry adder was applied to the final two reduction terms to generate

the final product results. The adder characteristics used were for a nine gate full adder

and a four gate half adder, with the following number of input to output gate delays:

 6

Table 1: Full Adder and Half Adder Delays for Townsend Comparison

Path Gate Delays

Full adder In to Sum 6

Full adder In to Cout 5

Full adder Cin to Sum 3

Full adder Cin to Cout 2

Half adder In to Sum 3

Half adder In to Cout 1

The following Figures 4 and 5 compare Townsend’s results for an 8-bit by 8-bit

Wallace and Dadda multiplier with a ripple carry adder. The bars represent the total delay

through the column reduction stages for each bit in the multiplier. The solid line

represents the final delay including the partial product generation, the reduction stage

delay plus the delay through the final CPA, using a ripple carry adder.

Figure 4: Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Wallace
Multiplier (after [8])

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

G
at
e	

D
el
ay
s	

 7

Figure 5: Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Dadda
Multiplier (after [8])

Townsend’s primary finding was that for 8-bit by 8-bit multipliers, though Dadda

requires a wider final CPA, the overall delay through the multiplier, using a ripple carry

adder or a carry look ahead is shorter for Dadda than for Wallace’s column reduction

method. This is due to the overall smaller delay through the reduction stages resulting

from the Dadda reduction (19 delays maximum) versus the Wallace reduction (21 delays

maximum) and the fact that the LSB to MSB slope of the delay on the LSB side of the

reduction profile has a more shallow slope (delay/bit) than Wallace and as a result, a

Ripple Carry Adder is just as effective as any other CPA approach for summing the final

two terms in the reduction stage, and “delay build” on the LSB side still allows for a

faster multiplier, even given the need for a wider CPA. Delay build is defined as the

increase in delay from bit to bit as results pass from carry out of one stage into carry in of

the next stage.

OKLOBDZIJA, ET AL.

Oklobdzija has probably been the most prolific researcher in optimizing the delay

of multipliers by including analysis of the CPA. He and his research teams spent much

0	

10	

20	

30	

40	

50	

15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

G
at
e	

D
el
ay
s	

 8

time in the mid to late 1990’s looking at ways to reduce column reduction delays in

multipliers as well as investigating ways to optimize the carry propagate adder in order to

consider the non-uniform bit arrival times and minimize overall multiplier delay [9, 10,

11, 12, 13].

In [9], Oklobdzija and Villeger approached multiplier performance improvement

by use of (4,2) and (9,2) counters for the column reduction stage, but more importantly,

investigated a CPA scheme using a conditional sum adder and carry select adder for the

design of the CPA. Using “dynamic programming optimization techniques” they

determined that the optimum carry select adder based CPA for minimum delay was a

carry select adder configuration of 1-2-3-1-3-4-2-3-4-8-1 for the 16-bit multiplier

considered. Their analysis also capitalized upon the improved column reduction afforded

by the use of (4,2) counters. Figure 6 illustrates their results.

Figure 6: Oklobdzija Delay Profile for 16-bit Multiplier Using (4,2) Counters and a
Carry Select Adder (after [9])

 9

The figure has been mirrored so that the LSB is on the right as is the case for all

of the analysis in this dissertation. Delays are expressed in equivalent XORs. One

observation made is that the delay difference between conditional sum adder and carry

select adder diminishes as the delay profile of the inputs to the CPA multiplier becomes

less uniform, as is the case with the column reduction section outputs into the CPA.

Further, the authors suggest that the carry select adder is slower than the conditional sum

adder, but that the difference is so slight as to be offset by the relative ease of design of

the carry select adder as compared to a conditional sum adder.

STELLING AND OKLOBDZIJA

Stelling and Oklobdzija [10] focused on optimizing a 32-bit by 32-bit multiplier

using ripple carry adder, carry skip adder and carry look ahead blocks to form the CPA.

By using hybrid adders comprised of blocks of these adders, they were able to achieve

significant performance improvement. Using a hybrid ripple carry adder/1-level carry

skip adder/one carry select adder based CPA; the delay profile for the 32-bit by 32-bit

multiplier was developed and is shown in Figure 7. The figure is mirrored from the

original diagram such that the LSB is on the right side of the figure; delays are not

expressed in unit delays but in terms of delays of equivalent XORs.

 10

Figure 7: Hybrid Adder using a Ripple Carry Adder, 1-level Carry Skip Adder and
one Carry Select Adder (after [10])

The delays presented at the bottom of the column reduction section of column

multipliers, are non-uniform in arrival. Oklobdzija [11] suggests that analysis of the delay

profile from column multipliers has three regions. The first region is described as region

one on the LSB side of the delay profile. Region two is the central region of the delay

profile where the differences between column delays are relatively small and region three

is the region toward the MSB side. Figure 8 illustrates these three regions.

 11

Figure 8: Regions of Delay in Column Multiplier Delay Profile (after [11])

This region nomenclature will be used in this research. Oklobdzija’s primary

work in [11] was based upon a 13-bit multiplier. Analysis of the CPA used ripple carry

adders, conditional sum adders, carry look ahead adders, carry select adders and variable

block adders. The results suggest that if the delay/bit in region one is greater than the

delay through an XOR gate (Cin to Cout for a ripple carry adder), then a ripple carry

adder is the most appropriate adder to use for region one. For the negative slope side

(LSB), it was assumed that the delay/bit slope was less than an XOR delay and that a

CPA design, other than ripple carry adder was needed. The analysis suggested that

variable block adder using carry skip adders of various heuristically determined sizes

would give the optimum delay results. CPAs using variable block size adders for carry

select adders were also analyzed. In all analysis, the CPA was not hybridized but used

either carry skip adders or carry select adders, but used variable block sizes in order to

generate the minimal overall delay through the multiplier.

 12

OKLOBDZIJA AND VILLEGER

In Oklobdzija and Villeger [12], a twelve-bit multiplier is analyzed with the

conclusion that a combination of a ripple carry adder and a carry select adder would

provide optimal delay. This assumes that the bit delays in region one are larger than the

delay through a ripple carry adder stage, which is reasonable. The paper suggests that the

inflection points between the three regions of the chart determine the length of the

respective adders and that determining the lengths of the adders is an iterative process.

The analysis and design practices for generating CPAs in multipliers, is extended

in Stelling and Oklobdzija [13] to Multiply-Accumulate. A 32-bit multiply-accumulate

design is explored as compared to the 32-bit multiplier, only. The overall optimal delay is

achieved by using a combination of a ripple carry adder, a conditional sum adder and a

carry select adder for the three regions. The first region is B0 containing bits 0 through 32

on the LSB side, B1 covers the flat area in the center of the multiplier where the reduction

delay is maximum, bits 33 through 40. Finally, B2 is the region of the remaining bits 41

through 63. A ripple carry adder is used for B0 while a “symmetric” conditional sum

adder is used for B1. Since the bit delays in B2 are decreasing with bit significance, a

carry select adder is used for that section. Figure 9 illustrates the results of using this

hybrid CPA.

 13

Figure 9: Delays Using Optimal Hybrid Adder for 32-Bit Multiply-Accumulate (after
[13])

BARAN, ET AL.

In Baran, et al. [14], a multiplier for low power applications using Deep-CMOS is

analyzed. The 16-bit by 16-bit multiplier used a hybrid carry propagate adder (CPA) with

a 4-bit ripple carry adder on the LSB side, followed by a 24-bit Ling adder with a sparse-

2 carry tree, ending with a 4-bit ripple carry adder.

Over time there has been much analysis performed on how to optimize multiplier

performance by considering the delay through the final stage, the carry propagate adder.

There has been no comprehensive analysis of the various column reduction methods

along with considerations for the non-uniform arrival times for the partial product

reduction stage for delays that are presented to the final CPA. This research will endeavor

to develop some fundamental understandings regarding the interaction between the

column reduction method and the final CPA in order to design optimum carry propagate

adders in order to optimize the delay times through various multiplier designs and sizes.

 14

Previous work has looked at individual multiplier widths, considering a particular

column reduction method. Delays have either been counted in gate delays or in

equivalent XOR gate delays. There has not been a comprehensive study done of multiple

column reduction multiplier techniques, using logical effort as the analysis method. This

research studies the delay performance of four column reduction methods, Wallace,

Dadda, reduced area and modified Wallace. Further, multiplier widths of 8-bit, 12-bit,

16-bit, 24-bit, 32-bit and 53-bit are analyzed, considering a slow carry propagate adder,

ripple carry adder, a moderately fast carry propagate adder, carry select adder, and a fast

carry propagate adder, Kogge-Stone parallel prefix adder.

 15

Chapter 3. Column Reduction Methods

This section reviews the strategy and approach for the design of four column

reduction multipliers: Wallace, Dadda, reduced area and modified Wallace. Examples for

the design of each are reviewed for subject completeness.

WALLACE MULTIPLIER

For the conventional Wallace reduction method [2], once the partial product array

(of N2 bits) is formed, adjacent rows are collected into non-overlapping groups of three.

Each group of three rows is reduced by:

 (1) Applying a full adder to each column that contains 3-bits or a triplet

(2) Applying a half adder to each column that contains 2-bits or a duple and

(3) Passing any single bit in a column to the next stage without processing

This reduction method is applied to each successive stage until only two rows

remain. The final two rows are summed with a carry propagate adder. This process is

illustrated by the 9-bit by 9-bit Wallace multiplier shown in Figure 10. Light lines show

the three row groupings. The reduction is performed in four stages (each with the delay of

one full adder) with a total of 50 full adders and 21 half adders being used for the

reduction. The third phase will require a 13-bit wide carry propagate adder.

The use of a 9-bit by 9-bit multiplier is necessary in order to demonstrate the need

for half adders in several of the other reduction methods.

 16

Figure 10: Conventional Wallace 9-bit by 9-bit Reduction

DADDA MULTIPLIER

In contrast to the Wallace reduction, the Dadda method [3, 4] does the least

reduction necessary at each stage. To determine how many reduction stages are required,

the maximum height of each stage is calculated by working back from the final stage.

The final stage has a height of 2 rows. Each preceding stage height can be no larger than

⎣3•successor height/2⎦ where ⎣x⎦ denotes the integer portion of x. This gives 2, 3, 4, 6, 9,

13, 19, 28, 42, 63, etc. as the maximum heights for the various previous stages. The

Dadda reduction then uses just enough full and half adders to achieve the limits for the

stage reduction height. A 9-bit by 9-bit Dadda multiplier is shown in Figure 11. The

reduction is performed in four stages (the same as with the Wallace reduction) with a

total of 48 full adders and 8 half adders being used. The third phase will require a 16-bit

wide carry propagate adder.

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • ••
••

• • • • • • • • •
• • • • • • • ••
••

• • • • • • • • •
• • • • • • • ••
••

• • • • • • • • •
• • • • • • ••
••

• • • • • • •
• • • • • ••
•••

• ••
••

• • •
•

•
• • • • • • • • •

• • • • • ••
••

• • • • •• •• • ••
•
• ••

•• • • •
•

• • • • • • • • •
• • • • ••
••

•• •
•
• ••

•• • • •
•

•

 17

The Dadda multiplier uses 2 fewer full adders and 13 fewer half adders in the

second phase reduction than the Wallace multiplier, but requires a larger carry propagate

adder in the third phase as a result.

Habibi has suggested that the Dadda multiplier reduction method offers the

optimum reduction in that it uses the least number of full adders [15].

Figure 11: Dadda 9-bit by 9-bit Reduction

REDUCED AREA MULTIPLIER

In reduced area multipliers [5, 6], the objective is a multiplier design that

minimizes the number of lines crossing from one reduction stage to another in order to

minimize the number of latches required if the multiplier is pipelined. Also, (2,2)

counters (also known as half adders) are used to move least significant partial products to

the left, at each reduction stage, in order to minimize the size of the final carry propagate

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • • • •
• • • • • • • •

• • • • • • • •

•
• • • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • • • •
• • • • • • • •
••

• • • • • • •
••

•
• • • • ••

•
•

•

• • • • • • • • • •
• • • • • • ••
••

• • • • • •••
•
• •
•

• • • • • • • • • •
• • • • • ••
••

• •
• • •

•

•
•

•
•

•
•

•
•

•

• •
•

•
• • •
• •

•

•
•

•
•

• •
•

•
• • ••

•
•

•
•

•
•

•
•

• • • • • • • • •
•

•
•

•
•

••

•
•

•

•

•
•

•
•

•
•

•
•

•

•
•
•

•
•

•
•

•

•

•

 18

adder. Additionally, (2,2) counters are used to ensure that the number of reduction stages

matches that of Dadda so that the overall multiplier delay is not impacted by additional

stage delays and provides equivalent multiplier delay as Wallace. Figure 12 illustrates the

design of a reduced area 9-bit by 9-Bit multiplier. As can be seen, there is a (2,2) counter

on the least significant bit side of each reduction stage. Also, there is a single (2,2)

counter used in the first and second reduction stages in order to ensure that the total

number of delay stages is not greater than Wallace or Dadda, thus ensuring an equivalent

number of reduction stages and delay through the reduction section of the multiplier.

The reduced area multiplier uses 51 full adders and 12 half adders and a final

phase carry propagate adder of 13-bits.

Figure 12: Reduced Area 9-Bit by 9-Bit Reduction

 19

MODIFIED WALLACE

The modified Wallace multiplier [7] was developed with the intention of reducing

the number of half adders. In column reduction, full adders (3,2) and half adders (2,2) are

used to reduce the partial product terms to two single inputs that are then applied to a

carry propagate adder. Full adders result in reducing terms (three inputs resulting in two

outputs), while half adders do not reduce the number of partial products, but only migrate

terms to more significant bits. It could be said that half adders do not do any work in

reducing the complexity of the multiplier. The modified Wallace multiplier desires to

minimize the use of half adders in order to improve the reduction efficiency for column

reduction multipliers. The approach is different from the reduced area approach in that: 1.

Since half adders do not reduce the number of partial products, use only full adders. 2.

Use half adders only where they are required to keep the number of reduction stages to

the number specified by Dadda for the given multiplier width. The reduction, using the

modified Wallace multiplier is shown in Figure 13. The modified Wallace approach uses

52 full adders and four half adders and a final carry propagate adder size of 16-bits.

 20

Figure 13: Modified Wallace 9-Bit by 9-Bit Reduction

As can be seen, the final CPA is the same width as Dadda, due to the second most

LSB having two terms to deal with. This is the primary difference in results as compared

to the reduced area approach.

Table 2 summarizes the complexity for each of the four column reduction

approaches. The second column shows the number of full adders (3,2) to implement the

four multipliers, the third column shows the number of half adders (2,2), the fourth

column shows the number of reduction stages and the last column shows the carry

propagate carry width needed for the final adder. An interesting note is that the Dadda

and modified Wallace reduction methods always have the same number of adders, though

different combinations of full adders and half adders.

• • • • • • • ••
• • • • • • •

•
•
• • • • • •

•
•
•
• • • • •

•
•
•
•
• • • •

•
•
•
•
•
• • •

•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•

• • • • • • • • • •
• • • • • • •

•
•
•

•

••
• • • • • • • •

•
•
• • • • •

•
•
•
• • • •
• • • • • • • • • •

• • • • • • •
••

• • • • • •
•

• •
• • •

• • •

• • • • • • • • • •
• • • • • ••
••

• • • •
•
• •
• •

• • • • • • • • • •
• • • •••
••

• •
• • •

•

•
•

•

•
•

•

•
•

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•

••
• •

• •
• •

• •
•

•
•

•
• •

• •
• •

• •
••

 21

Table 2: 9-Bit by 9-Bit Multiplier Comparison

Type (9-bit by 9-bit) # (3,2) # (2,2) # Stages CPA Length
Wallace 50 20 4 13
Dadda 48 8 4 16
Reduced Area 52 12 4 13
Modified Wallace 52 4 4 16

All four reduction methods require four reduction stages in order to reduce the

partial products to two terms that are summed by the final carry propagate adder. For the

Wallace and the reduced area multipliers, the final carry propagate adders are of 13 bit

length while for the Dadda and the modified Wallace multipliers, the final adder is 16 bits

wide. Though it should be noted that the first five bits of the carry propagate adder for

modified Wallace may be implemented with half adders. The Wallace multiplier uses the

most half adders even for this relatively small example.

This research extends to the 53-bit multiplier. The following table shows the

complexity for each of the column reduction methods for the 53-bit multiplier case.

Table 3: 53-Bit by 53-Bit Multiplier Comparison

Type (53-bit by 53-bit) # (3,2) # (2,2) # Stages CPA Length
Wallace 2606 301 9 96
Dadda 2600 52 9 105
Reduced Area 2610 48 9 96
Modified Wallace 2610 42 9 105

For the 53-bit multipliers, each of the column reduction methods use essentially

the same number of full adders and take the same number of reduction stages (9). In the

case of the Wallace multipliers, it uses significantly more half adders. Since the

multipliers each have the same number of stages and essentially the same number of full

adders, the area required to lay out the multipliers will approximately be the same. The

Wallace multiplier may take up slightly more area due to the higher use of half adders.

 22

Chapter 4: Logical Effort (LE)

INTRODUCTION TO LOGICAL EFFORT

Logical effort is a relatively straightforward and simple method to calculate

delays through CMOS gates and circuits. It is a reasonably simple technique that is more

exact than simply gate delay counting, but not as exact as doing a design layout, back

annotating parasitic values and performing a detailed SPICE circuit simulation.

The first step in logical effort is to determine the, time based, unit delay τ which

is, for a given process, the delay through an inverter driving an identically sized inverter

and is approximately 3RC. For various CMOS processes, τ is shown on the following

figure [24][25][26][27].

Figure 14: Tau values for various CMOS technology Nodes (after [24][25][26][27])

The absolute delay, dabs through a gate or circuit, using logical effort, is the logical

effort delay, d, times τ.

0	

10	

20	

30	

40	

50	

60	

45	
 65	
 90	
 130	
 180	
 250	
 350	
 500	
 600	

T
au
	
 (
p
ic
os
ec
on
d
s)
	

Technology	
 Geometry	
 (nm)	

Tau	
 value	
 versus	
 Technology	

 23

!!"# = !!

Logical effort models delay in a logic gate with two elements, parasitic delay, p,

and effort delay, f. The parasitic delay is dependent upon the gates structure as compared

to an inverter. The effort delay, or stage effort, is a function of the load on the gate’s

output. The overall delay of a gate is the sum of the stage effort and the parasitic delay

and is expressed as:

! = ! + !

The effort delay can be further decomposed into logical effort, g, electrical effort,

h, and branching effort, b. The effort delay then may be expressed as the product of the

various effort terms as:

! = !"ℎ

The logical effort, g, represents the gate topology to produce current as compared

to an inverter. The electrical effort, h, is simply an assessment of the gate’s electrical

environment and is stated as the ratio of output capacitance (input capacitance to the

subsequent node) to the input capacitance for a circuit being analyzed.

ℎ = !!"#/!!"

Obviously, if the input capacitance and the output capacitance (input capacitance

that the final output stage of the circuit is driving) are the same, then the electrical effort,

h, for the analysis is 1.

The final component in logical effort analysis is the branching effort, b. The

branching effort looks at a given node’s “in path” effort and the “off path” effort. The

calculation for b for a given node is:

! =
!!" !"#! + !!"" !"#!

!!" !"#!

 24

Analysis typically looks at the total device width that is being driven, both in path

and off path, divided by the in path device width.

If there is no fan-out or off path gates in the analyzed circuit path, then the

branching effort, b, is 1.

DETERMINING VALUES OF LOGICAL EFFORT, G

Assuming pull-up transistor width versus pull-down transistor width and device

gains produce an n-channel with twice the strength of a p-channel, the following tables

illustrates the various values of logical effort, g.

Table 3: Logical Effort, g, values for various gates

Number of Inputs

Gate Type 1 2 n

Inverter 1

NAND 4/3 (n+2)/3

NOR 5/3 (2n+1)/3

Multiplexer 2 2

XOR (Parity) 4

The following figure shows the construction of an inverter using one p-channel

and one n-channel. The numbers represent the device widths for each transistor. The ratio

of 2:1 is usually the case due to the mobility or gain of the respective devices and gives

equivalent pull-up and pull-down delays.

 25

Figure 15: CMOS Inverter schematic (after [24])

Logical effort for gates are normalized to the inverter, so the logical effort, g, for

this inverter is 3/3, or 1.

A two input NAND gate is comprised of four transistors configured as in the

following figure.

Figure 16: Two Input NAND Gate (after [24])

Note that the stack of n-channels gives an effective drive strength for the pull-

down devices of 1. The logical effort, g, for the two input NAND gate is the total device

widths seen by an input, divided by 3 to normalize to that of an inverter or 4/3.

 26

A two input NOR gate is comprised of four transistors configured as in the

following figure.

Figure 17: Two Input NOR Gate (after [24])

Note that the stack of p-channels gives an effective drive strength of the pull-up

devices of 2. The logical effort, g, for the two input NOR gate is the total device widths,

seen by an input, divided by 3 to normalize to that of an inverter or 5/3.

DETERMINING VALUE OF PARASITIC DELAY, P

Assuming simple layout styles, the parasitic delay of an inverter, p, is defined as

1. The parasitic delay is a model of the overhead delay due to the source and drain region

capacitances of the transistors of the gate that drive the gate’s output. This model of

parasitic capacitance does not consider the capacitances of nodes that are between

devices in series such as the pull-downs of a NAND gate or the pull-ups of a NOR gate.

For NAND and NOR gates, the model for the parasitic capacitance of a gate is the

parasitic capacitance of an inverter, pinv, times the number of inputs, n, for the NAND or

NOR gate. So an n input NAND or NOR gate has a parasitic delay of npinv.

 27

The final value that is required in order to perform a logical effort delay

calculation is simply the count of the number of gates in an analyzed circuits path, N.

On a macro level, the overall values for a circuit path for logical effort, G,

electrical effort, H branching effort, B, and parasitic delay, P, are expressed as either the

product or sums of the respective individual efforts for the gates that make up the path

being analyzed.

! = Π!!

! = Πℎ!

! = Π!!

! = Σ!!

Given these equations, the path effort, F, is defined as

! = !"#

The path overall delay, !, is defined as

! = !!!/! + !

This delay is in gate delay units and is multiplied by the technology value, τ, to

give the delay in time value.

LIMITATIONS OF LOGICAL EFFORT

The main limitation of logical effort is that it is difficult to model the impact of

interconnect in a design. Usually, with logical effort, the design has not even been laid

out. Interconnect, if an attempt is made to model it, impacts the branching effort as it

adds more capacitance “off path” that must be considered by the model. Burgess in [28]

suggests that the impact of capacitance loading of interconnect for a full adder is

approximately the same as the input capacitance of a simple CMOS inverter.

 28

Since logical effort is a simple RC based model, it does not consider the impact of

rise or fall times. In well designed circuits, rise and fall time are relatively equal through

out the design as are the effort delays.

Logical effort is typically used to design a path to minimize the delay through the

path, but it does not lend any ability to minimize area or power with a set delay.

For complex circuits with complicated branch structures with different parasitic

delays or gate delays in each branch, iterative analysis must be performed. Fortunately

for multiplier designs, the branching considerations are within the full adders and can be

modeled there. Connections between adders in the column reduction stages are point to

point and do not involve branches. Therefore, branching effort need only be considered

within each of the adders and not as the outputs transcend column reduction levels.

USE OF LOGICAL EFFORT IN THIS RESEARCH

Using the logical effort equations, spreadsheet based models were developed for

each of the multiplier sizes and column reduction methods. Individual sheet tabs were

created, based upon the multiplier design for each of the effort values, g, b, p and number

of the gate count through each path in the multiplier structure. The electrical effort, h,

was set to 1 since it is assumed that the multiplier fan-out from input to the partial

product NAND gates to the input driven by the final carry propagate adder output is 1.

Logical effort models were created for each of the carry propagate adders that were

analyzed and applied to the outputs of the column reduction multiplier models.

 29

Chapter 5: Gate Delays versus Logical Effort Estimations

Much of the prior work has looked at the gate delay count through the multiplier

in order to determine relative figures of merit for various designs. Counting gate delays

does not necessarily provide insight into the fastest multiplier design.

Two full adder designs are considered and the design of 32-bit by 32-bit Dadda

multipliers are developed to compare the gate delay count versus the delay that a logical

effort model for the column reduction multipliers would suggest. One full adder uses

eleven total gates while the second, implemented with NAND gates, uses only nine gates.

The eleven gate implementation is illustrated in Figure 18.

Figure 18: Full Adder Implemented with Eleven Gates

The eleven gate full adder has the following worst case gate delay counts through

its various paths:

Table 4: Gate Delay Counts for Eleven Gate Full Adder

Input A/B to Cout 6
Input A/B to Sum 7
Cin to Cout 4
Cin to Sum 5

 30

Figure 19: Full Adder Implemented with Nine NAND Gates

The nine gate full adder has the following worst case gate delay counts through its

various paths:

Table 5: Gate Delay Counts for Nine gate NAND Full Adder

Input A/B to Cout 5
Input A/B to Sum 6
Cin to Cout 2
Cin to Sum 3

For the 9-gate NAND full adder, note that four of the six nodes from input to Sum

and four of five nodes from input to carry out have branching effort considerations, of

which two have three-way branches. This will have implications when multiplier delay is

analyzed.

Applying the gate delay counts for these two full adder designs yields the

following maximum delay profile through the Dadda multiplier column reduction for a

32-bit by 32-bit Dadda multiplier. The analysis suggests that the 9-gate NAND full adder

implementation would be the fastest of the two designs.

 31

Figure 20: Gate Delay count comparison for 32-Bit by 32-Bit Dadda Multiplier using
9-gate and 11-gate Full Adders

Applying the principles of logical effort to the design yields entirely different

results as is seen in the following figure. The 11-gate full adder implementation is faster.

This is due to the extensive fan-outs of the NAND based design that contribute

significant circuit performance impact in the logical effort analysis due to the branching

effort effects. Figure 22 illustrates what the delay would be after removing the branching

effort component in the logical effort calculations of the 9-gate full adder.

0	

10	

20	

30	

40	

50	

60	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

G
at
e	

D
el
ay
	

GD	
 11-­‐gate	
 CMOS	
 GD	
 NAND	
 9-­‐gate	

 32

Figure 21: Logical Effort delay comparison for 32-Bit by 32-Bit Dadda Multiplier
using 9-gate NAND and 11-gate CMOS Full Adders

Figure 22: Logical Effort delay for 32-Bit by 32-Bit Dadda Multiplier including
removal of impact of Branching Effort

0	

50	

100	

150	

200	

250	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

LE	
 11-­‐gate	
 CMOS	
 LE	
 NAND	
 9-­‐gate	

0	

50	

100	

150	

200	

250	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

LE	
 11-­‐gate	
 CMOS	
 LE	
 NAND	
 9-­‐gate	
 LE	
 NAND	
 9-­‐gate	
 w/o	
 Branching	

 33

Careful consideration to more than just gate count delays from input to output is

required in the selection of the adder primitives to be used in a column reduction

multiplier. The adder with the least gate delays, because of the impact of branching effort

or fanout, may introduce more actual delay in the circuit path.

 34

Chapter 6: Carry Propagate Adders

In order to set a reasonable boundary for this research, a finite number of carry

propagate adders were selected for the analysis. Representative slow, medium and fast

carry propagate adders were selected and modeled. Those adders are: ripple carry [29],

carry select [16] and Kogge-Stone [20] parallel prefix adders. Other carry propagate

adders such as carry look ahead [17], carry skip [18], and conditional sum [19] are not

studied as the range of performance between ripple carry and parallel prefix covers the

performance domain for these other carry propagate adders.

RIPPLE CARRY

The simplest carry propagate adder is the ripple carry adder [29]. It is simply a

cascade of full adders where the carry out of a bit is fed into the carry in of the next most

significant bit. Circuit wise, it is the simplest design, but performance wise, it is not the

fastest. However, since column multipliers have an arrival time profile that increases

from the less significant bit to near the center column, ripple carry adders may be

sufficient for the less significant bit side of the multiplier. If the delay through the ripple

carry is faster than the delay down the columns of the column multiplier, then a ripple

carry adder is the best choice for that portion of the carry propagate adder. That is, indeed

the case for the multipliers designed, as will be illustrated. The design of a ripple carry

adder is discussed later in this work.

CARRY SELECT

Carry select adders [16] break the carry propagate adder into blocks of bit width

and calculates the expected output of each block considering if a carry in occurs or not.

This doubles the amount of hardware required as well as adds N+1 2:1 multiplexors to

 35

the design for each block, where N is the width of a block. The specific design of a carry

select adder used in this research is discussed in Chapter 7.

KOGGE-STONE (CARRY LOOK AHEAD/PARALLEL PREFIX)

There are several implementations of the parallel prefix carry propagate adder.

One of the fastest adders is the Kogge-Stone adder [30]. Parallel prefix adders generate

the carry propagate and generate values for each bit position in parallel.

 36

 Chapter 7: Scope of Work

There has been limited broad analysis performed to understand the column

multiplier and CPA interaction, given that the column multiplier presents non-uniform

arrival times to the input of the carry propagate adder. This research performed an

extensive analysis of four types of column multipliers and the overall delay performance

achievable using a multitude of carry propagate adders.

Column reduction designs were done using Wallace, Dadda, reduced area and

modified Wallace reduction methods for 8-bit, 12-bit, 16-bit, 24-Bit, 32-bit and 53-bit

multipliers. These reduction delay profiles were analyzed with three carry propagate

adders.

The following table illustrates the number of delay models developed, and

supporting work, considering the six multiplier sizes, the three carry propagate adders

and the four types of column reduction methods.

 37

Table 6: Table of Delay Models Developed

COLUMN REDUCTION MULTIPLIERS

Four types of column reduction multipliers with different reduction strategies

were explored, including:

1. Wallace [2]

2. Dadda [3,4]

3. Reduced Area [5, 6]

4. Modified Wallace [7]

 38

ADDERS

Many different full adder designs could be considered. A Dadda 32-bit by 32-bit

multiplier was implemented with three full adder designs. These full adders were one

using eleven gates and two with nine gate implementations.

The three designs for each of the full adders are shown in the following three

figures.

Figure 23: Eleven Gate Full Adder

Figure 24: Nine Gate CMOS Full Adder

Figure 25: Nine Gate NAND Full Adder

 39

The gate delay counts for the three full adders, from inputs to outputs, are shown

in the following Table.

Table 7: Full Adder Gate Delay Counts

	

11-­‐Gate	
 9-­‐Gate	
 CMOS	
 9-­‐Gate	
 NAND	

	
 	
 	
 FAAS_GD	
 7.0	
 6.0	
 6.0	
 Full	
 Adder	
 Gate	
 delays	
 A	
 to	
 Sum	

FAAC_GD	
 6.0	
 5.0	
 5.0	
 Full	
 Adder	
 Gates	
 delays	
 A	
 to	
 Cout	

FACS_GD	
 5.0	
 3.0	
 3.0	
 Full	
 Adder	
 Gate	
 Delays	
 Cin	
 to	
 Sum	

FACC_GD	
 4.0	
 2.0	
 2.0	
 Full	
 Adder	
 Gate	
 Delays	
 Cin	
 to	
 Cout	

As can be seen, both of the nine gate designs have the same number of gate delays

from inputs to outputs. The eleven gate CMOS full adder has one additional gate delay

through each data path. However, the logical effort delays do not align with the gate

delays as will be seen. The maximum logical effort delay profiles for the three adders are

compared in the following figure for the 32-bit by 32-bit Dadda column reduction

multiplier.

Figure 26: Three 32-bit Dadda Multipliers using different full adders

0	

50	

100	

150	

200	

250	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	

D
el
ay
	

Dadda	
 11	
 gate	
 Dadda	
 9	
 gate	
 NAND	
 Dadda	
 9	
 gate	
 CMOS	

 40

The eleven gate full adder is used in the multiplier analysis done in this work. One

of the two nine gate implementations is faster then the eleven gate design, while the other

full adder that uses nine NAND gates, is slower than the implementation using the eleven

gate full adder. Clearly, results for logical effort modeling are dependent upon the adder

designs used.

The objective for this dissertation is to analyze bit arrival times of various column

reduction multipliers and suggest the best carry propagate adder designs to provide the

best overall multiplier delay performance. To limit the scope of the designs, the five gate

half adder and an eleven gate full adder are implemented; these designs use only inverters

and two input CMOS gates. Alternative designs are, of course, possible using gates with

three or more inputs or fewer gates such as the previously discussed nine gate full adders,

or more compact circuit techniques such as merged gates.

Adders are defined by their number of gate delays and their gate count. For the

half adder, the first delay is input (A, B) to sum (S) and the second delay is input to carry

out (Cout). For the full adder, there are four numbers. The first number is the delay from

input to sum, the second is for input to carry out (Cout), the third is for carry in (Cin) to

sum and the fourth number is for carry in to carry out. The half adder used is a five gate

implementation, in CMOS, using 2-input NAND gates and an inverter.

3-2 Five Gate Half Adder

Figure 27: Schematic for Five Gate, 3-2 Delay Half Adder

 41

For the full adder, the eleven gate CMOS design is used which is comprised of

five 2-input NAND gates, two 2-input NOR gates and four inverters.

7-6-5-4 Eleven Gate Full Adder

Figure 28: Schematic for Eleven Gate, 7-6-5-4 Delay Full Adder

Summary of Gate Delay Performance

The following tables summarize the gate delay counts for the half adder (HA) and

the full adders (FA) being considered.

Table 8: Half Adder Delay Summary

HA Delays 5-Gate HA
In to Sum 3
In to Cout 2

Table 9: Full Adder Delay Summary

FA Delays 11-Gate FA
In to Sum 7
In to Cout 6
Cin to Sum 5
Cin to Cout 4

CARRY PROPAGATE ADDERS (CPA)

For review, for column reduction multipliers, there are three stages in the design.

First the array of N2 partial products is developed by the logical bit AND of each of the

 42

terms of the multiplicand with each of the terms of the multiplier. Second, the desired

column reduction technique is used to reduce the number of rows to the final two.

Ultimately, the last two rows from the bottom of the column reduction process,

representing the sum and carry terms from the column reduction, are added together

using some type of carry propagate adder.

The designs of the final carry propagate adder will be performed using various

types of adders, each with different delay characteristics. Hybrid adders using various

lengths of different adders may be used to explore how to optimize the overall delay

through the multiplier from the generation of the partial products through the outputs of

the carry propagate adder. There are many designs for carry propagate adders (CPA). For

this research a slow CPA, moderately fast CPA and a fast CPA are chosen for the

analysis. Other carry propagate adders could have been selected, however, the three

chosen for this research give a meaningful range of performance from slowest to fastest.

The CPA will be designed using the following adder types:

Ripple Carry Adder [29]
The ripple carry adder is simply a chain of full adders that output a sum and a

carry out into the carry in of the next most significant full adder. The adder on the LSB

side is a half adder as there is no carry in for the LSB. The following figure illustrates the

design of a ripple carry adder. Ripple carry is the slowest adder design. The critical path

delay is from A and B inputs of the LSB to the carry out of the MSB of the CPA adder

width.

 43

Figure 29: Schematic diagram of Ripple Carry Adder

Carry Select Adder [16]

Carry select adders are designed using two blocks of ripple carry bit adders that

are each driven by a carry-in of one and zero. That way, both results are generated for the

bits handled by the block before the propagate term arrives from the carry output of the

previous block. A four bit carry select adder is illustrated in Figure 30. Both A and B

adder inputs drive to full adders, each whose carry-in is either a one or a zero. The carry-

in of the previous block controls which full adder output is multiplexed to the final adder

sum out and also control which carry out state is propagated to the next carry select

block.

Carry select adders are implemented in many ways. The optimum delay is

achieved, for fixed block size and uniform data arrival times, when the carry select blocks

are √! where N is the width of the adder being designed [31]. Other implementations are

possible as well, such as using variable width blocks. This research limits the block width

for the carry select adder to four bit blocks. One reason for this is that for larger blocks,

as the number of multiplexers that the carry out control from the previous block

A0	
 	
 	
 	
 	
 	
 B0

.	
 .	
 .

A1	
 	
 	
 	
 	
 	
 B1 A2	
 	
 	
 	
 	
 	
 B2 An-­‐1	
 	
 	
 Bn-­‐1

Sn Sn-­‐1 Sn-­‐2 Sn-­‐3 S2 S1 S0

An-­‐2	
 	
 	
 Bn-­‐2 An-­‐3	
 	
 	
 Bn-­‐3

Ci	
 Co Ci	

C

Ci	
 Co Ci	
 Co Ci	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

C

Co

 44

increases, the branching effort or fanout increases to do the selection and impacts

performance.

Figure 30: Schematic diagram of Carry Select Adder

Parallel Prefix Adder [20]
Kogge-Stone [20] carry lookahead or parallel prefix adders are the fastest adders

and are used extensively in high-performance 32-bit and 64-Bit adders [30]. Kogge-Stone
adders are built with blocks of logic that have been described as black cells, gray cells
and buffers. The body of the adder is comprised of these cells and buffer building blocks
which are various group propagate and generate cells shown logically as:

 45

 Figure 31: Basic Building Block Cells for Kogge-Stone Adder

The propagate terms are derived from the exclusive OR of the two inputs to be
summed, while the generate terms are derived by an AND of the two inputs being
summed. The resulting propagate and generate terms drive the black and gray cells of the
Kogge-Stone architecture.

The final sum output is created by Exclusive ORing the propagate bit of bit
position N with the generate term of bit position N-1.

The connections for a Kogge-Stone 16-bit adder are shown in Figure 32.

Figure 32: Schematic Diagram of Kogge-Stone Adder

 46

INTEGER MULTIPLIER SIZES

Finally, it was expected that the design considerations may be different for

various sizes of integer multipliers. Designs, using logical effort, were performed with

various combinations of column reduction multipliers, final carry propagating adders

(CPA) and sizes of multipliers including: 8-bit x 8-bit, 12-bit x 12-bit, 16-bit x 16-bit, 24-

bit x 24-bit, 32-bit x 32-bit and 53-bit x 53-bit.

DESIGN CONSTRAINTS

There are many variables that could be considered in this research project; several

design constraints have been imposed.

Static CMOS Design and Device Mobility

Static CMOS design techniques and topologies are used in the design of both the

column multipliers as well as the final summing carry propagate adders (CPA).

The mobility relationship between PMOS and NMOS transistors is set at 2. This

assumption drives the logical effort values throughout the analysis.

Reduction Stage Components

Various reduction techniques, using more complex compressors or counters, have

been proposed beyond the reductions first proffered by Wallace and Dadda. This research

will be limited to using classic full adders, which reduce three inputs of the same

significance to one output of the same significance and one output of the next most

significance (3,2) and half adders, which reduce two inputs of the same significance to

one output of the same significance and one output of the next most significance (2,2).

The others, including Oklobdzija [9] and Santoro [21], have used higher order (4,2) and

(9,2) counters in order to reduce the delay through the column reduction section of the

multiplier. Robinson [22] used a (4,3) counter for selected multiplier sizes that enabled

 47

the removal of one stage of reduction delay in the column reduction section of the

multiplier. The Robinson approach, however, is limited to multipliers of bit size 5, 14, 20,

29, 43, etc.

Integer Multiplication

This research focuses upon unsigned integer multiplication. The principles and

practices learned are applicable beyond this limitation. By selectively inverting terms and

adding a one in the top left position and bottom left position of the partial product array, a

two’s complement multiplier can be developed [23].

Adjacent Row Grouping in Reduction Stages

For the column reduction stages, two or three terms are grouped and applied to

either a half adder or full adder, respectively, for reduction. All of the designs in this

project, with the exception of Dadda, will use adjacent row terms in a reduction stage to

generate the duples, for inputs to the half adders, or triplets, for inputs to the full adders,

that are applied for column reduction. This is consistent with Wallace techniques as

described and, for routing purposes, would result in the least complexity of routing, since

grouped terms are in physical proximity. The initial work done, comparing overall

multiplier results using adjacent grouping as compared to grouping to minimize column

delay reduction [8], suggests that adjacent grouping is nearly equivalent. For Dadda,

columns are grouped in order to minimize the sum and carry delays from each of the

adder outputs. Because Dadda minimizes the use of adders in each reduction stage, there

are many terms in each stage that do not increase from reduction step to the next. That is

not the case with all other reduction methods, therefore, for Dadda, there are

opportunities to selectively group terms in order to pair terms such that delays are

minimized further than if adjacent rows were grouped. The following figure illustrates

 48

the incremental delay improvement derived from selective grouping of reduction terms,

versus adjacent term grouping, for a 24-bit by 24-bit Dadda column reduction multiplier.

Figure 33: Delay of 24-Bit by 24-Bit Dadda with Selective term grouping

The speed improvement by selectively grouping terms in the Dadda multiplier is

between 5% to 11% for the multipliers analyzed with the exception of the 24-bit

multiplier and 53-bit multiplier, which only benefited by 1%. It should be noted that since

Dadda reduction does not use grouping of adjacent terms, but is implemented with

selective term grouping to minimize the delay through a reduction stage, that there might

be increased metal routing lines which would increase the load capacitance and impact

the performance. This potential increase in delay, which would contribute to increased

“branching effort,” is not considered in this analysis since the actual impact is dependent

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
fo
or
t	
 D

el
ay
	

Mul<plier	
 Bit	
 Posi<on	

Dadda	
 LE	
 adjacent	
 Dadda	
 with	
 selecNve	

 49

upon actual design layout. If selective grouping of terms was not done, then it will be

seen that the Dadda performance is the same as for the other three reduction methods.

Multiplier Configuration

For the work performed in this research, the number of bits of the multiplier and

the number of bits of the multiplicand are the same.

Delay Considerations

Complete logical effort principles are used to develop the delay models for each

of the multipliers. All designs were done considering CMOS elements for

implementation. For the H term in the logical effort model, it is assumed that the input of

the multiplier and the output that the multiplier drives into have the same size and

capacitance. Therefore, the H value for calculations is of value 1.

Wire delays were not factored into the analysis. Burgess in [28] determined that

the impact of wire interconnect crossing one bit position in an adder is approximately the

same as a simple inverter input capacitance. Since the Kogge-Stone architecture has

many lines traversing many bits, the performance impact on Kogge-Stone adders is

believed to be higher than for similar width carry select adders. Consequently, the

additional capacitance of wire would reduce the estimated performance advantage of the

Kogge-Stone adders.

DELAY PROFILER DEVELOPMENT

Using Matlab and some manual designs, column multiplier designs were

developed for the four column reduction methods (Wallace, Dadda, reduced area and

modified Wallace). Using Excel, carry propagate adder (CPA) delay models were also

designed to model the delays of various configurations of CPA with inputs from the

various column multipliers. Combinations of column reduction methods with various

 50

CPAs and hybridized CPAs were modeled for the multiplier widths and reduction

methods of interest. From this analysis, fundamental design considerations for

minimizing the delay through the various multiplier reduction methods and sizes were

explored.

 51

Chapter 8: Column Reduction Delay Results

Column reduction models were developed for 8-bit, 12-bit, 16-bit, 24-bit, 32-bit

and 53-bit multipliers. Four different column reduction methods, Wallace, Dadda,

reduced area and modified Wallace were used to reduce the terms to two final terms to

apply to the carry propagate adder. The following figures illustrate the results, for logical

effort delay, through each of the multipliers. The Dadda model results reflect selective

grouping in order to have minimum delay through the columns. It is of note that if Dadda

terms were group by adjacency as with the other reduction methods, then the delay

through the Dadda multiplier would match that of the other three methods.

The following figures contain discrete data, however, lines are drawn connecting

the data points to aid in seeing the data point groupings by multiplier reduction type.

Figure 34: 8-Bit by 8-Bit Column Reduction Multiplier Delays

0	

20	

40	

60	

80	

100	

120	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

8-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Modified	
 Wallace	
 Dadda	
 Reduced	
 Area	

 52

For the 8-bit Dadda column reduction, selective grouping of terms in the second

reduction stage results in 11% improvement in delay performance through the column

reduction multiplier.

Figure 35: 12-Bit by 12-Bit Colum Reduction Multiplier Delays

For the 12-bit multiplier, selective grouping of reduction terms in the second stage

of the Dadda column reduction results in a 7% improvement in delay through the column

reduction stages of the multiplier.

0	

20	

40	

60	

80	

100	

120	

140	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

12-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Modified	
 Wallace	
 Reduced	
 Area	
 Dadda	

 53

Figure 36: 16-Bit by 16-Bit Column Reduction Multiplier Delays

For the 16-bit Dadda multiplier, selective term grouping in the second stage of

column reduction results in a 10.3% reduction in delay through the column reduction

multiplier section of the multiplier.

0	

20	

40	

60	

80	

100	

120	

140	

160	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

16-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Modified	
 Wallace	
 Reduced	
 Area	
 Dadda	

 54

Figure 37: 24-Bit by 24-Bit Column Reduction Multiplier Delays

The 24-bit Dadda multiplier benefits next to least from selective term grouping.

Grouping the reduction terms from the first stage in the second stage of reduction results

in only 1.1% improvement in delay through the column reduction portion of the

multiplier.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Modified	
 Wallace	
 Reduced	
 Area	
 Dadda	

 55

Figure 38: 32-Bit by 32-Bit Column Reduction Multiplier Delays

For the 32-bit Dadda multiplier, selective term grouping in the second stage of

column reduction results in a 4.2% reduction in delay through the column reduction

section of the Dadda multiplier.

0	

50	

100	

150	

200	

250	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Dadda	
 Modified	
 Wallace	
 Reduced	
 Area	

 56

Figure 39: 53-Bit by 53-Bit Column Reduction Multiplier Delays

For the 53-bit Dadda multiplier, selective term grouping in the second stage of

column reduction results in a less than 1% reduction in delay through the column

reduction multiplier section of the multiplier.

In all cases, but with varying improvement, the selective grouping of terms in the

second reduction stage of the Dadda multiplier reduction results in a shorter delay

through the column reduction portion of the Dadda multiplier. Without the selective

grouping, then Dadda reductions match the delay through the other three reduction

methods. Therefore, for all multiplier sizes analyzed, the Dadda column reduction

method resulted in less delay through the column reduction section of the multiplier. The

minimal use of reduction adders in the reduction stages causes small delay values from

previous stages to be passed down into the next multiplier reduction stage. Since the full

adder has two inputs (A and B) with relatively long delay and one input (Cin) with

shorter delay, if there are twice the number of delays in a column that are relatively short

0	

50	

100	

150	

200	

250	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Mul<plier	
 Column	
 Delays	

Wallace	
 Modified	
 Wallace	
 Dadda	
 Reduced	
 Area	

 57

as compared to adder outputs from the sum of the adder of the previous reduction stage,

then there is opportunity to selectively group terms and, with Dadda, develop a multiplier

design with less overall delay than the other three reduction methods.

 58

Chapter 9: Results Based upon Multiplier Type

WALLACE RESULTS

Wallace reduction based designs have been analyzed for multipliers of sizes 8, 12,

16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven gate full

adders were used. Overall multiplier delays were profiled for a standard ripple carry

adder, carry select adder and a Kogge-Stone parallel prefix adder. The following figures

show the logical effort delay profiles for each of the multiplier sizes.

Figure 40: 8-Bit by 8-Bit Wallace Multiplier Results

Because the column delays in bits 0 through 4 are so much larger than the delays

compiled through the CPA stages, all CPA designs have the same delays for the first five

least significant bits. Thereafter, carry select and Kogge-Stone adders have similar delays

with Kogge-Stone improving slightly more from product bit 10 onward.

0	

50	

100	

150	

200	

250	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

 59

Figure 41: 12-Bit by 12-Bit Wallace Multiplier Results

In Figure 41, it appears that the Wallace multiplier using the carry select and

Kogge-Stone adders have nearly the same performance. In order to evaluate this for

validity, a Kogge-Stone model was generated with the effects of branching (fan-out)

ignored by setting the branch effort to 1. The following figure illustrates the branching

effort impact on Kogge-Stone multiplier performance. The models suggest that the

benefit of parallel prefix adders, such as Kogge-Stone, are diminished due to their high

fan-out or branching effort as compared to a conventional carry select carry propagate

adder.

For the 12-Bit multiplier using a Kogge-Stone adder, the effect of branching in

the parallel prefix carry propagate adder was removed and performance compared to a

carry select and a Kogge-Stone adder with branching. Comparing carry select with

Kogge-Stone adders, there is minimal delay difference. From the following figure, it is

0	

50	

100	

150	

200	

250	

300	

350	

400	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

 60

clear that the impact of branching in the Kogge-Stone adder has significant impact on

delay.

Figure 42: 12-Bit Wallace Multiplier with K-S Branching ignored

The following four figures compare ripple carry, carry select and Kogge-Stone

adder’s performance for 16-bit, 24-bit, 32-bit and 53-bit Wallace multipliers.

0	

50	

100	

150	

200	

250	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Wallace	
 K-­‐S	
 Mul<plier	
 Branching	

Effort	
 Impact	

Wallace	
 K-­‐S	
 Wallace	
 K-­‐S	
 no	
 Branching	
 Wallace	
 CS	

 61

Figure 43: 16-Bit by 16-Bit Wallace Multiplier Results

Figure 44: 24-Bit by 24-Bit Wallace Multiplier Results

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

0	

100	

200	

300	

400	

500	

600	

700	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

 62

Figure 45: 32-Bit by 32-Bit Wallace Multiplier Results

Figure 46: 53-Bit by 53-Bit Wallace Multiplier Results

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Wallace	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Wallace	
 CS	
 Wallace	
 K-­‐S	
 Wallace	

 63

For all of the Wallace multipliers, the Kogge-Stone adder has the best delay

performance of the three carry propagate adders analyzed. However, the differences seen

for smaller multipliers are not as evident as for the differences seen for the larger widths.

The following table summarizes the worst case logical effort delays through an 8-

bit, 12-bit, 16-bit, 24-bit, 32-bit and 53-bit Wallace multiplier for the three carry

propagate adders analyzed, ripple carry, carry select and Kogge-Stone final adders.

Table 10: Summary of Worst Case Delays for Wallace Multipliers

For the 8-bit Dadda multiplier, the Kogge-Stone final adder results in only 6%

better delay performance than a carry select final adder; for the 53-bit multiplier, Kogge-

Stone is 27% faster than a multiplier using a carry select final adder.

DADDA RESULTS

Dadda reduction based designs have been analyzed for multipliers of sizes 8, 12,

16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven gate full

adders were used. Overall multiplier delays were profiled for a standard ripple carry

adder, a carry select adder and a Kogge-Stone parallel prefix adder. The following figures

show the logical effort delay profiles for each of the multiplier sizes.

 64

Figure 47: 8-Bit by 8-Bit Dadda Multiplier Results

Figure 48: 12-Bit by 12-Bit Dadda Multiplier Results

0	

50	

100	

150	

200	

250	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

0	

50	

100	

150	

200	

250	

300	

350	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

 65

Figure 49: 16-Bit by 16-Bit Dadda Multiplier Results

Figure 50: 24-Bit by 24-Bit Dadda Multiplier Results

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

0	

100	

200	

300	

400	

500	

600	

700	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

 66

Figure 51: 32-Bit by 32-Bit Dadda Multiplier Results

Figure 52: 53-Bit by 53-Bit Dadda Multiplier Results

For Dadda multipliers, the Kogge-Stone adder is the fastest carry propagate adder

for the multipliers analyzed. However, the Dadda carry propagate adder begins at the

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Dadda	
 Mul<plier	
 Delays	

Dadda	
 RC	
 Dadda	
 CS	
 Dadda	
 K-­‐S	
 Dadda	

 67

second bit on the LSB side and the Kogge-Stone adders is slower than either ripple carry

or carry select adders for the first ten product bits, then surpasses both ripple carry and

carry select adders in worst case delay performance.

Table 11: Summary of Worst Case Delays for Dadda Multipliers

REDUCED AREA RESULTS

Reduced area multiplier reduction based designs have been analyzed for

multipliers of sizes 8, 12, 16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-

6-5-4 eleven gate full adders were used. Overall multiplier delays were profiled for a

standard ripple carry adder, a carry select adder and a Kogge-Stone parallel prefix adder.

The following figures show the logical effort delay profiles for each of the multiplier

sizes.

 68

Figure 53: 8-Bit by 8-Bit Reduced Area Multiplier Results

Figure 54: 12-Bit by 12-Bit Reduced Area Multiplier Results

0	

50	

100	

150	

200	

250	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	

8-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

0	

50	

100	

150	

200	

250	

300	

350	

400	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

 69

Figure 55: 16-Bit by 16-Bit Reduced Area Multiplier Results

Figure 56: 24-Bit by 24-Bit Reduced Area Multiplier Results

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

0	

100	

200	

300	

400	

500	

600	

700	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

 70

Figure 57: 32-Bit by 32-Bit Reduced Area Multiplier Results

Figure 58: 53-Bit by 53-Bit Reduced Area Multiplier Results

For the reduced area multiplier, a carry propagate adder implemented with a

Kogge-Stone adder has the fastest delay performance for all multiplier sizes analyzed.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Reduced	
 Area	
 Mul<plier	
 Delays	

Reduced	
 Area	
 RC	
 Reduced	
 Area	
 CS	
 Reduced	
 Area	
 K-­‐S	
 Reduced	
 Area	

 71

This is especially true for the 53-bit multiplier where the Kogge-Stone adder is 29%

faster than the carry select adder.

Table 12: Summary of Worst Case Delays for Reduced Area Multipliers

MODIFIED WALLACE RESULTS

Modified Wallace reduction based designs have been analyzed for multipliers of

sizes 8, 12, 16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven

gate full adders were used. Overall multiplier delays were profiled for a standard ripple

carry adder, a carry select adder and a Kogge-Stone parallel prefix adder. The following

figures show the logical effort delay profiles for each of the multiplier sizes.

Figure 59: 8-Bit by 8-Bit Modified Wallace Multiplier Results

0	

50	

100	

150	

200	

250	

300	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

 72

Figure 60: 12-Bit by 12-Bit Modified Wallace Multiplier Results

Figure 61: 16-Bit by 16-Bit Modified Wallace Multiplier Results

0	

50	

100	

150	

200	

250	

300	

350	

400	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

0	

100	

200	

300	

400	

500	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

 73

Figure 62: 24-Bit by 24-Bit Modified Wallace Multiplier Results

Figure 63: 32-Bit by 32-Bit Modified Wallace Multiplier Results

0	

100	

200	

300	

400	

500	

600	

700	

800	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

0	

200	

400	

600	

800	

1000	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

 74

Figure 64: 53-Bit by 53-Bit Modified Wallace Multiplier Results

As with the Dadda multiplier, the carry propagate adder the modified Wallace

multiplier begins at the second LSB position. Consequently, the Kogge-Stone adder

initially has slower performance for the first few LSB’s of the adder. However, its overall

performance is superior to ripple carry or carry select adders. The advantage for the

Kogge-Stone adder based 53-bit multiplier is 32% faster than a carry select adder for the

modified Wallace multiplier.

Table 13: Summary of Worst Case Delays for Modified Wallace Multipliers

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Modified	
 Wallace	
 Mul<plier	
 Delays	

Modified	
 Wallace	
 RC	
 Modified	
 Wallace	
 CS	

Modified	
 Wallace	
 K-­‐S	
 Modified	
 Wallace	

 75

Chapter 10: Results Based upon Carry Propagate Adder

RIPPLE CARRY ADDER

For all ripple carry adder designs, the Dadda multiplier based design is the fastest.

Figure 65: 8-Bit by 8-Bit Multiplier with Ripple Carry Final Adder

0	

50	

100	

150	

200	

250	

300	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Ripple	
 Carry	
 Delays	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	

Dadda	
 RC	
 Reduced	
 Area	
 RC	

 76

Figure 66: 12-Bit by 12-Bit Multiplier with Ripple Carry Final Adder

Figure 67: 16-Bit by 16-Bit Multiplier with Ripple Carry Final Adder

0	

50	

100	

150	

200	

250	

300	

350	

400	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Ripple	
 Carry	
 Delays	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	
 Dadda	
 RC	
 Reduced	
 Area	
 RC	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Ripple	
 Carry	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	
 Dadda	
 RC	
 Reduced	
 Area	
 RC	

 77

Figure 68: 24-Bit by 24-Bit Multiplier with Ripple Carry Final Adder

Figure 69: 32-Bit by 32-Bit Multiplier with Ripple Carry Final Adder

0	

100	

200	

300	

400	

500	

600	

700	

800	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Ripple	
 Carry	
 Delays	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	
 Dadda	
 RC	
 Reduced	
 Area	
 RC	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Ripple	
 Carry	
 Delays	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	
 Dadda	
 RC	
 Reduced	
 Area	
 RC	

 78

Figure 70: 53-Bit by 53-Bit Multiplier with Ripple Carry Final Adder

For multipliers implemented with a ripple carry adder for the carry propagate

adder, the Dadda multiplier provided the best performance followed by the Wallace

multiplier. Both the reduced area multiplier and the modified Wallace multiplier had

slower overall performance than either the Dadda or Wallace multipliers.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Ripple	
 Carry	
 Mul<plier	
 Delays	

Wallace	
 RC	
 Modified	
 Wallace	
 RC	
 Dadda	
 RC	
 Reduced	
 Area	
 RC	

 79

CARRY SELECT ADDER

Figure 71: 8-Bit by 8-Bit Multiplier with Carry Select Final Adder

Figure 72: 12-Bit by 12-Bit Multiplier with Carry Select Final Adder

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Carry	
 Select	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

0	

50	

100	

150	

200	

250	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Carry	
 Select	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

 80

Figure 73: 16-Bit by 16-Bit Multiplier with Carry Select Final Adder

Figure 74: 24-Bit by 24-Bit Multiplier with Carry Select Final Adder

0	

50	

100	

150	

200	

250	

300	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Carry	
 Select	
 	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

0	

50	

100	

150	

200	

250	

300	

350	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Carry	
 Select	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

 81

Figure 75: 32-Bit by 32-Bit Multiplier with Carry Select Final Adder

Figure 76: 53-Bit by 53-Bit Multiplier with Carry Select Final Adder

0	

50	

100	

150	

200	

250	

300	

350	

400	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Carry	
 Select	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

0	

100	

200	

300	

400	

500	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Carry	
 Select	
 Mul<plier	
 Delays	

Wallace	
 CS	
 Modified	
 Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	

 82

As with the multipliers that use ripple carry final adders, multipliers with carry

select final adders based upon the Dadda reduction method provide better delay

performance than Wallace, reduced area or modified Wallace multipliers. Wallace

multiplier designs out performed reduced area and modified Wallace multipliers. In some

cases, reduced area was faster than modified Wallace.

KOGGE-STONE PARALLEL PREFIX ADDER

Figure 77: 8-Bit by 8-Bit Multiplier with Kogge-Stone Final Adder

0	

50	

100	

150	

200	

15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

8-­‐Bit	
 Kogge	
 Stone	
 Delays	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

 83

Figure 78: 12-Bit by 12-Bit Multiplier with Kogge-Stone Final Adder

Figure 79: 16-Bit by 16-Bit Multiplier with Kogge-Stone Final Adder

0	

50	

100	

150	

200	

250	

23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

12-­‐Bit	
 Kogge	
 Stone	
 Delays	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

0	

50	

100	

150	

200	

250	

31	
 28	
 25	
 22	
 19	
 16	
 13	
 10	
 7	
 4	
 1	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

16-­‐Bit	
 Kogge	
 Stone	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

 84

Figure 80: 24-Bit by 24-Bit Multiplier with Kogge-Stone Final Adder

Figure 81: 32-Bit by 32-Bit Multiplier with Kogge-Stone Final Adder

0	

50	

100	

150	

200	

250	

300	

47	
 44	
 41	
 38	
 35	
 32	
 29	
 26	
 23	
 20	
 17	
 14	
 11	
 8	
 5	
 2	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

24-­‐Bit	
 Kogge	
 Stone	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

0	

50	

100	

150	

200	

250	

300	

350	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

32-­‐Bit	
 Kogge	
 Stone	
 Delays	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

 85

Figure 82: 53-Bit by 53-Bit Multiplier with Kogge-Stone Final Adder

As with the multipliers that use ripple carry final adders and carry select adders,

multipliers with Kogge-Stone final adders based upon the Dadda reduction method

provide better delay performance than Wallace, reduced area or modified Wallace

multipliers. Wallace multiplier designs out performed reduced area and modified Wallace

multipliers. In some cases, reduced area was faster than modified Wallace.

0	

50	

100	

150	

200	

250	

300	

350	

10
5	

10
2	
 99
	

96
	

93
	

90
	

87
	

84
	

81
	

78
	

75
	

72
	

69
	

66
	

63
	

60
	

57
	

54
	

51
	

48
	

45
	

42
	

39
	

36
	

33
	

30
	

27
	

24
	

21
	

18
	

15
	

12
	
 9	
 6	
 3	
 0	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

53-­‐Bit	
 Kogge	
 Stone	
 Mul<plier	
 Delays	

Wallace	
 K-­‐S	
 Modified	
 Wallace	
 K-­‐S	
 Dadda	
 K-­‐S	
 Reduced	
 Area	
 K-­‐S	

 86

Chapter 11: Overall Delay Results

8-BIT MULTIPLIERS

Twelve 8-bit multipliers consisting of four column reduction methods (Wallace,

Dadda, reduced area, and modified Wallace) were combined with three carry propagate

adders (ripple carry, carry select and Kogge-Stone) and were analyzed. The following

figure shows the maximum logical effort delay through each of these multiplier designs.

Multiplying these numbers by the tau value for a given technology provides an estimate

of the circuit’s, time based performance.

Figure 83: Logical Effort Delay for Twelve 8-Bit by 8-Bit Multipliers

For all three of the final adders, Dadda multipliers provide the best performance.

Using the Dadda column reduction method, for the three carry propagate adders

analyzed, always has the least delay through the multiplier and final adder. The Kogge-

Stone final adder provides slightly better performance than the carry select final adder.

0	

50	

100	

150	

200	

250	

300	

Lo
gi
ca
l	
 E
ff
or
t	

D
el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

8-­Bit	
 Multiplier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 ModiIied	
 Wallace	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 ModiIied	
 Wallace	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 ModiIied	
 Wallace	
 KS	

 87

For the Kogge-Stone final adder, the logical effort delay is 157 units. Therefore, for a

0.35um technology, which has a tau value of approximately 20 psec, the time delay

through the multiplier is calculated to be approximately 3.1 nsec. Considering 45nm

technology, which as a tau value of 4.1 psec, the time delay through the multiplier is

calculated to be approximately 0.64 nsec.

12-BIT MULTIPLIERS

For 12-bit multipliers, the Dadda multiplier reduction provided the highest

performance for each of the carry propagate adders used. The carry select and Kogge-

Stone carry propagate adders had the same performance. The following figure compares

the relative logical effort delay for the twelve 12-bit multipliers analyzed.

Figure 84: Logical Effort Delay for Twelve 12-Bit by 12-Bit Multipliers

For smaller width multipliers, there is little performance difference between using

the carry select or Kogge-Stone final adder.

0	

50	

100	

150	

200	

250	

300	

350	

400	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

12-­‐Bit	
 Mul<plier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 Modified	
 Wallace	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 Modified	
 Wallace	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 Modified	
 Wallace	
 KS	

 88

16-BIT MULTIPLIERS

The following figure shows the performance of twelve 16-bit multipliers. The left

four points are for the multipliers with ripple carry final adders, the center four points

show the performance of the four multipliers with carry select final adders and the right

four points show the performance of the Kogge-Stone based implementations.

Figure 85: Logical Effort Delay for Twelve 16-Bit by 16-Bit Multipliers

For 16-bit multipliers, the Dadda column reduction multiplier using a Kogge-

Stone carry propagate adder is always the fastest, though only marginally faster than a

carry select final adder implementation.

24-BIT MULTIPLIERS

The following figure shows the performance of twelve 24-bit multipliers. The left

four points are for the multipliers with ripple carry final adders, the center four points

0	

100	

200	

300	

400	

500	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

16-­‐Bit	
 Mul<plier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 Modified	
 Wallace	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 Modified	
 Wallace	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 Modified	
 Wallace	
 KS	

 89

show the performance of the four multipliers with carry select final adders and the right

four points show the performance of the Kogge-Stone based implementations.

Figure 86: Logical Effort Delay for Twelve 24-Bit by 24-Bit Multipliers

Using the Dadda column reduction method along with Kogge-Stone CPA

provides slightly better performance than the other column reduction methods. Dadda, for

ripple carry and carry select is superior.

32-BIT MULTIPLIERS

The following figure shows the performance of twelve 32-bit multipliers. The left

four points are for the multipliers with ripple carry final adders, the center four points

show the performance of the four multipliers with carry select final adders and the right

four points show the performance of the Kogge-Stone based implementations.

0	

200	

400	

600	

800	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

24-­‐Bit	
 Mul<plier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 Waters	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 Waters	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 Waters	
 KS	

 90

Figure 87: Logical Effort Delay for Twelve 32-Bit by 32-Bit Multipliers

As with smaller multipliers, Dadda column reduction provides faster

performance. With wider multipliers, the difference between carry select and Kogge-

Stone widens. The Dadda based multiplier with Kogge-Stone CPA is the faster 32-bit

multiplier.

53-BIT MULTIPLIER

The following figure shows the performance of twelve 53-bit multipliers. The left

four points are for the ripple carry adders, the center four points show the performance of

the four carry select based multipliers and the right four points show the performance of

the Kogge-Stone based implementations.

0	

200	

400	

600	

800	

1000	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

32-­‐Bit	
 	
 Mul<plier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 Modified	
 Wallace	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 Modified	
 Wallace	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 Modified	
 Wallace	
 KS	

 91

Figure 88: Logical Effort Delay for Twelve 53-Bit by 53-Bit Multipliers

Since there is minimal speed difference, down the column reduction section,

between Dadda and the other three column reduction implementations, Kogge-Stone

based CPA is the fastest implementation, but, the performance for any of the four

reduction methods was essentially the same.

The following table lists the logical effort delays for all multiplier widths (8-bit,

12-bit, 16-bit, 24-bit, 32-bit and 53-bit), column reduction methods (Wallace, Dadda,

reduced area and modified Wallace) and carry propagate adders analyzed (ripple carry,

carry select and Kogge-Stone parallel prefix adders).

-­‐100	

100	

300	

500	

700	

900	

1100	

1300	

1500	

Lo
gi
ca
l	
 E
ff
or
t	
 D

el
ay
	
 	

Ripple	
 Carry	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Carry	
 Select	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kogge	
 Stone	

53-­‐Bit	
 Mul<plier	
 Delays	

Wallace	
 RCA	
 Dadda	
 RCA	
 Reduced	
 Area	
 RCA	
 Modified	
 Wallace	
 RCA	

Wallace	
 CS	
 Dadda	
 CS	
 Reduced	
 Area	
 CS	
 Modified	
 Wallace	
 CS	

Wallace	
 KS	
 Dadda	
 KS	
 Reduced	
 Area	
 KS	
 Modified	
 Wallace	
 KS	

 92

Table 14: Summary of Logical Effort Delays for all Multipliers

With one exception, the 12-bit Dadda multiplier, the Kogge-Stone carry propagate

adder provides the fastest worst case delay. For the 12-bit Dadda multiplier, the carry
select carry propagate adder is 1% faster.

 93

Chapter 12: Comparing Dynamic Power

Power dissipation, both static and dynamic is a function of the technology being

used and the transistor sizes that are used in the circuit implementation. However, it is

possible to make some comparisons for dynamic power dissipation for the multipliers

reviewed in this research. Dynamic power is the result of outputs driving subsequent

input capacitances and driving output capacitances. In Logical Effort, the electrical

effort, h, the logical effort, g, and the parasitic delay, p, are all referenced to an inverter

and are parameters that relate to some capacitance load. In [32], Kabanni has developed a

logical effort based power model where the normalized switching power of a gate is:

!!" = !!"!(!ℎ + !)

Where Pnm is the normalized switching power of a gate, αnm is the normalized gate

activity factor and Z is a constant that represents the size of a gate as compared to its

template. Since the transistor width ratios are not known until a given technology is

chosen, Z cannot be determined, but for a given technology, the normalized power of a

gate is proportional to its activity, and the three logical effort variables, g, h and p. In this

research, h has been set to 1 as the input and output capacitances are set to the same.

Therefore, for a given activity factor, the normalized power of a gate is proportional to g

and p.

!!" ∝ (! + !)

Therefore, by summing the g and p values for the circuits in a given design, the

relative normalized power dissipation, for the same activity factor, can be determined for

the multiplier designs in this research.

Both 8-bit and 53-bit Dadda column reduction multipliers using the three carry

propagate adders were analyzed with this relative power estimation. First the total

 94

multiplier power was estimated, separating the carry propagate power from the column

reduction power. The activity factor for the multipliers are not considered as it is very

dependent upon terms being multiplied. For example, if the multiplier were changed from

0 x 0 to 0 x 0 (no change from cycle to cycle), then the activity factor would be zero.

However, if it were changed from 0 x 0 to 1 x max, where max represents the largest

value expressed by a multiplier (all one’s), then the activity factor would be very high

(near one).

8-BIT DADDA MULTIPLIER POWER ESTIMATION

The following figure shows the column reduction power for an 8-bit Dadda

multiplier column reduction along with the power contributed by the carry propagate

adders. Note that the Kogge-Stone carry propagate adder with the most power

consumption, only uses about 15% of the total power for the multiplier.

Figure 89: Relative Power for 8-Bit Dadda Multipliers

Dadda	
 RCA	
 Dadda	
 CS	
 Dadda	
 K-­‐S	

R
el
ai
ve
	
 D
yn
am

ic
	
 P
ow

er
	

8-­Bit	
 Dadda	
 Power	
 Comparison	

Column	
 Power	
 CPA	
 Power	

 95

Since the column reduction power will be the same for each design, the following

figure shows only the relative power dissipation for each of the carry propagate adders.

Figure 90: Relative Power for each CPA used in 8-Bit Dadda Multiplier

The Kogge-Stone carry propagate adder uses only about 20% more power than

the carry select final adder, but about three times as much as the ripple carry final adder.

Table 15: Design Data for 8-Bit Dadda Multipliers

The power estimate for the 8-bit Dadda multiplier is normalized to the power

estimated for the column reduction section only (100%). The power is estimated by

summing the g and p logical effort values for the column reduction section and each of

Dadda	
 RCA	
 Dadda	
 CS	
 Dadda	
 K-­‐S	

Re
la
<
ve
	
 D
yn
am

ic
	
 P
ow

er
	

8-­‐Bit	
 Dadda	
 CPA	
 Power	

CPA	
 Power	

 96

the carry propagate adders. The ripple carry final adder adds 7% more power than the

power estimate for the 8-bit Dadda column reduction. The carry select final adder adds

16% more power. The Kogge-Stone final adder represents about 19% estimated power

above the dynamic power of the 8-bit Dadda column reduction stages.

53-BIT DADDA MULTIPLIER POWER ESTIMATION

For the 53-bit multiplier, almost all of the dynamic power is dissipated in the

column reduction. The power dissipation of the carry propagate adder is small by

comparison. The following figure illustrates the relative power dissipation for each of the

three designs, breaking out the column reduction power from the carry propagate adder

component.

Figure 91: Relative Power for the 53-Bit Dadda Multipliers

The following figure compares only the carry propagate adder power for the three

adder designs.

Dadda	
 RCA	
 Dadda	
 CS	
 Dadda	
 K-­‐S	

Re
la
<
ve
	
 D
yn
am

ic
	
 P
ow

er
	
 	

53-­‐Bit	
 Dadda	
 Power	
 Comparison	

Column	
 Power	
 CPA	
 Power	

 97

Figure 92: Relative Power for each CPA used in the 53-Bit Dadda Multiplier

For a 53-bit carry propagate adder, Kogge-Stone uses about six times the power

of ripple carry or twice the carry select power.

The following table lists the gate counts, number of transistors and summations of

the logical effort term, g and p, for the 53-bit multipliers.

Table 16: Design Data for 53-Bit Dadda Multipliers

From this analysis, the column reduction portion of the 53-bit multiplier uses

most of the power. The power estimation is normalized to the column reduction portion

of the multiplier (100%). The ripple carry final adder only adds about 1% dynamic power

Dadda	
 RCA	
 Dadda	
 CS	
 Dadda	
 K-­‐S	

Re
la
<
ve
	
 D
yn
am

ic
	
 P
ow

er
	
 	

53-­‐Bit	
 Dadda	
 CPA	
 Power	

CPA	
 Power	

 98

to the design. The Kogge-Stone carry propagate adder is faster than the carry select

adder, and has about 60% higher power dissipation as compared to the carry select adder,

but both are negligible (at most 3%) in comparison to the power consumed by the column

reduction section.

Table 17: Power Estimate Summary for 8-Bit and 53-Bit Multipliers

By adding all of the g and p logical effort terms for a given multiplier design, it is

possible to estimate the relative dynamic power dissipated by each design. The activity

factor for the four column reduction methods is assumed to be the same for a given

multiplication. For smaller multipliers, the final carry propagate adder has a significant

dynamic power contribution, for the 8-bit analysis it ranged from 7% to 19%. For larger

multiplier widths, however, the dynamic power dissipation in the final carry propagate

adder, regardless of type, was negligible at less than 3%.

 99

Chapter 13: Conclusions

Much work has been done in analyzing the impact of the final carry propagate

adder on multiplier performance. It has, however, been limited to individual multiplier

widths without a comprehensive analysis of various widths. Also, much of the analysis

has been measured in gate delay counts or in equivalent XOR delays. Little comparative

research has been done in the analysis of column reduction methods and their impact on

multiplier performance.

COLUMN REDUCTION METHOD SELECTION

Column reduction techniques, such as Dadda, that minimize the delays in the

column of reduction stages are preferred as they present smaller delays to the CPA for

final summation. All of the current column reduction techniques have non-uniform

arrival times with the longer times in the central bits of the column reduction stages.

Minimizing the delays through the center of the multiplier will have significant positive

performance impact. In this research, Dadda was the fastest column reduction method.

MINIMIZING COLUMN DELAY BY TERM SELECTION IN DADDA

Because, mostly, all terms are used in subsequent reduction stages in all reduction

methods except for Dadda, the term delays in a reduction stage track each other. That is,

they have been input into a similar number of adders and have accumulated similar

delays through the same number of reduction stages. That is not the case for Dadda

multipliers which do the minimum amount of reduction possible from stage to stage, only

to ensure that the same number of reduction stages as Wallace are met. Consequently,

since the delays from the inputs to carry and sum on an adder are different, there are

opportunities to selectively group terms in order to minimize the delays through the

column reduction portion of Dadda multipliers. More importantly, the inputs to sum

 100

outputs of full adders have significantly more delay than the inputs to outputs of half

adders or the inputs to carry outs of full adders. For the Dadda multiplier, the opportunity

to group terms is in the second reduction stage. The second stage groups terms from the

previous, first, reduction stage and reduces the number of rows by ⎣3•successor height/2⎦

where ⎣x⎦ denotes the integer portion of x. For the multipliers analyzed the improvement

by grouping terms to minimize the delay varies from 1% to 11%, depending upon the

multiplier width. The important consideration is the number of full adder terms in the

first reduction stage as compared to the number of terms that have been passed through

from the partial product array or the outputs of half adders. The following table lists the

number of terms in the first reduction stage for the multipliers that are outputs of full

adders, in the center column, versus terms that are passed down from the partial product

array or are outputs of half adders.

Table 18: First Reduction Stage Terms and Dadda Column Delay Improvement

In all cases analyzed, the Dadda multiplier with term selection yielded the fastest

multiplier. For Dadda column reduction where term grouping was not performed, that is

the terms were applied to adders based upon adjacency as with the other column

reduction methods, the speed through the Dadda column reduction was the same as for

the other three reduction methods.

 101

The following figure illustrates a delay heat map for a 12-bit Dadda multiplier

with selective term grouping (left side) and without selective term grouping (right side).

Figure 93: 12-Bit Dadda Multiplier Heat Maps

The least delay values are green, starting with the partial product AND array at

the top and progress through yellow, orange and red as the delay values increase down

the columns. The selective term grouping in the second reduction stage may be seen in

the values for the delays as well as the heat map shading differential.

CARRY PROPAGATE ADDER SELECTION

Column multipliers can be considered as having three Regions. Region 1 is the

rising delay on the LSB side of the reduction column. Region 2 is the center portion of

the column reduction where the delay from column to column is relative flat. Region 3 is

the MSB side of the column reduction where the column delays are tailing off. Those

three regions are illustrated in the following figure showing the column reduction profile

for a 32-bit by 32-bit column reduction multiplier using the Wallace reduction approach.

 102

This delay profile is due to there not being many partial product terms on the LSB and

MSB sides of the multiplier. Consequently, there are few reduction stages, which are

delays through half or full adders that increase the overall delay through the multiplier

paths for the LSB and MSB columns.

Since full adders use three input terms and since the sum of the full adder has a

longer delay than the carry out, there is the opportunity to use a long delay term (from the

sum of a previous full adder) to drive the carry input of the full adder on the subsequent

reduction stage. This results in a shorter delay through the subsequent full adder than if

the long delay term was applied to input A or B. Therefore, by taking one long delay term

and applying it to the carry in and two shorter delay terms and applying them to the A

and B inputs of the subsequent adder, the delay is minimized. However, this requires that

there be two short delay terms for every long delay term. As can be seen in the previous

table, when the ratio of short delay terms (partial product or half adder outputs) is 2 or

more, the potential to improve delay through the Dadda column reduction is higher. In

the case of 24-bit and 53-bit multipliers, there are insufficient low delay values in order to

pair them with the outputs of full adders in order to minimize the delay through the

second reduction stage.

 103

Figure 94: Regions in 32-Bit by 32-Bit Wallace Multiplier

For all the design implementations used in this research, the delay build from least

significant bit toward most significant in region 1 is steeper than the delay build through

the ripple carry adder which is the slowest carry propagate adder, Therefore, improving

carry propagate performance will not improve performance as the circuit will be waiting

for the delay times down the least significant columns. Therefore, a slow carry propagate

adder, such as a ripple carry adder is sufficient for region 1.

Wider designs have a much broader region 2 and significant focus on minimizing

the carry propagation through these bits in region 2 is essential for optimal design. Carry

propagate adders such as carry select adders and Kogge-Stone adders are applicable in

region 2.

For region 3, where the delays from the column reduction are “tailing off”,

extending the carry propagate from Region 2 is advisable since each bit significance

arrives sooner than the previous bit in Region 3 and is ready to be processed much earlier

 104

than the arrivals of the results through the carry propagate adder. As a result, in region 3,

performance is dependent upon quickly adding through the final carry propagate adder.

It is likely that optimal multiplier performance is achieved through the use of a

hybrid carry propagate adder with different adder designs for the several regions of the

multiplier. The use of ripple carry adders for region 1 and using fast carry propagate

adders such as carry select or Kogge-Stone adders for region 2, and extending across

region 3 will provide the best delay performance. To perform a preliminary assessment of

this hypothesis, a 32-bit Dadda multiplier was designed with the ten least significant bits

being added with a ripple carry adder and the remaining bits of the carry propagate adder

being added using the Kogge-Stone carry propagate adder. The comparison of a 32-bit

Dadda fully using a Kogge-Stone carry propagate adder and this 10-bit ripple carry adder

followed by a 53-bit Kogge-Stone carry propagate adder is illustrated in Figure 95.

Figure 95: 32-bit Dadda Multipliers Comparison with Kogge-Stone and Hybrid

0	

50	

100	

150	

200	

250	

300	

350	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

32-­Bit	
 Dadda	
 Hybrid	
 RCA/K-­S	

10-­bit	
 Ripple	
 Carry	
 with	
 53-­bit	
 Kogge-­Stone	

Dadda	
 K-­‐S	
 Dadda	
 Hybrid	
 RCA	
 K-­‐S	

 105

While the use of a hybrid carry propagate adder improved delay in the least

significant bits for the 32-Bit Dadda multiplier, the delay efficiency of Kogge-Stone in

later bits results in the overall worst case delays being the same. Therefore, a hybrid carry

propagate adder could be used in order to reduce the final adder complexity, but, there is

not improvement in worst case delay performance.

As multipliers become larger, the percent of delay contributed by the CPA

becomes much larger and there is a wider region 2 where faster carry circuitry is critical.

REDUCING LSB SIDE DELAY

For the modified Wallace multiplier, the second most LSB partial product does

not get initially reduced as with Wallace or reduced area. Figure 95 highlights that, as a

result, the final carry propagate adder must be longer than for Wallace or for reduced

area. While the carry propagate adder for modified Wallace reduction is as long as for an

equivalent Dadda multiplier, the modified Wallace reduction method does not have the

opportunity to use selective term grouping as with Dadda. Consequently, the modified

Wallace reduction method will always be the slowest multiplier for a given size and carry

propagate adder.

 106

Figure 96: Modified Wallace Multiplier Illustrating Reduction Issue

ADDER SELECTION

Adder selection will obviously impact multiplier performance as well. Selection

of the adder based upon the input to output gate delays will not necessarily yield the

fastest multiplier. Using the three full adders reviewed in an earlier chapter, a 32-bit by

32-bit Dadda multiplier with a Kogge-Stone carry propagate adder was designed utilizing

each of the full adders, the following figure illustrates the performance of the three

designs.

• • • • • • • ••
• • • • • • •

•
•
• • • • • •

•
•
•
• • • • •

•
•
•
•
• • • •

•
•
•
•
•
• • •

•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•

• • • • • • • • • •
• • • • • • •

•
•
•

•

••
• • • • • • • •

•
•
• • • • •

•
•
•
• • • •
• • • • • • • • • •

• • • • • • •
••

• • • • • •
•

• •
• • •

• • •

• • • • • • • • • •
• • • • • ••
••

• • • •
•
• •
• •

• • • • • • • • • •
• • • •••
••

• •
• • •

•

•
•

•

•
•

•

•
•

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•

••
• •

• •
• •

• •
•

•
•

•
• •

• •
• •

• •
••

 107

Figure 97: 32-Bit Dadda Multiplier using K-S CPA for three Different Full Adders

The 9-Gate CMOS and 9-Gate NAND full adders have the same gate delay

counts from inputs to outputs. However, their performance differs due to the fan-out or

branching effort of the 9-Gate NAND gate implementation. For the fastest multiplier

analyzed, Dadda reduction with Kogge-Stone carry propagate adder, the 11-gate and 9-

gate CMOS adders had nearly the same performance, but have different gate delay

counts.

SIMPLIFYING THE COLUMN REDUCTION LOGICAL DELAY ESTIMATION

During the analysis of the column reduction multipliers for the eleven gate CMOS

full adder, it was observed that the ratio of the logical effort delay divided by the gate

delay in the center reduction columns was between 3.4 and 3.5. Therefore, it is feasible

to estimate the gate delay count in a circuit path in the column reduction portion of the

multiplier and simply multiply it by 3.5 in order to estimate the logical effort delay down

0	

50	

100	

150	

200	

250	

300	

350	

63	
 60	
 57	
 54	
 51	
 48	
 45	
 42	
 39	
 36	
 33	
 30	
 27	
 24	
 21	
 18	
 15	
 12	
 9	
 6	
 3	
 0	

32-­Bit	
 Dadda	
 Kogge	
 Stone	
 Delays	

Dadda	
 9-­‐Gate	
 CMOS	
 Dadda	
 11-­‐Gate	
 CMOS	
 Dadda	
 9-­‐Gate	
 NAND	

 108

the columns. This simplified analysis is only applicable, however, for the column

reduction section of the multiplier design. It does not apply to delay estimations for the

final carry propagate adder. The following figure shows the ratio of logical effort delay

divided by gate count in a column path, for a 16-bit by 16-bit multiplier, for the two

terms that drive the final carry propagate adder, for the four column reduction methods

explored.

Figure 98: Ratio of Logical Effort Delay/Gate Delay for 16-Bit Multiplier

In Figure 98, the ratio of the logical effort divided by the gate delay count for

each of the columns is shown for all four column reduction methods. Multiplying the gate

delay count by a factor of 3.5 would provide a reasonably accurate estimation of the

logical effort delay through the column reduction section of the multipliers. This 3.5 ratio

occurs for all of the multipliers analyzed using the eleven gate full adder. Since the center

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

31	
 29	
 27	
 25	
 23	
 21	
 19	
 17	
 15	
 13	
 11	
 9	
 7	
 5	
 3	
 1	

Wallace	
 Waters	
 Dadda	
 Reduced	
 Area	

 109

of the multiplier reduction is the slowest, the higher ratio factors on the MSB and LSB

sides may be ignored as the center columns are the slowest paths through the multiplier.

Table 19: Table of LE/Gate delay ratio for 16-Bit Column Reductions

The data used for Figure 97 is shown in Table 19. The MSB position, bit 31 has

no data as the Dadda column reduction does not force a carry into the MSB column.

For the nine gate CMOS full adder, an analysis was done for a 32-bit Dadda

multiplier. There was also a near constant ratio, however, it was higher at 3.9. Using the

nine-gate NAND based full adder, a 32-bit Dadda multiplier was analyzed and the logical

effort to gate count delay ration was an average of 4.3. While the two nine gate full adder

implementations have the same number of gate delay counts, the ratios for logical effort

to gate delay count are different. This is due to the higher branching efforts in the nine

NAND gate implementation.

For a given full adder design, there appears to be a common logical effort to gate

delay count ratio that may be determined.

The delay of a column reduction multiplier can be improved by doing three

things. First, select a column reduction method that minimizes the delay through the

center columns. This is achieved by selective term grouping using a Dadda reduction

method. Second, move LSB terms toward the MSB side of the reduction columns by

using the reduction strategy of the Reduced Area multiplier. This will reduce the size of

the final carry propagate adder. There may be opportunities to merge the Dadda and

Reduced Area column reduction methods to derive a column reduction method that yields

a faster multiplier than Dadda alone. Finally, use a simple ripple carry adder for the LSB

 110

terms in region 1 of the multiplier, then use a carry lookahead or parallel prefix adder for

the other two regions of the multiplier to provide a fast multiplier with minimal circuitry

in the carry propagate adder.

DYNAMIC POWER ESTIMATION

Using logical effort for design analysis allows a quick relative assessment of

relative dynamic power as well as was being able to identify where the power is being

consumed in the design.

SUMMARY

This research has extended the analysis to consider the use of logical effort in

analyzing delays. Since logical effort is independent of technology, the results may be

used to estimate multiplier performance for various CMOS technologies. In the course of

this research, over 72 multipliers were designed using four different multiplier column

reduction methods, six different multiplier widths and three different carry propagate

adders. The results of the research suggest the best possible multiplier column reduction

method, the importance of full adder selection on delay, the potential to use a slow and

simple carry propagate adder for a certain region of the least significant bits, the potential

to use the results of the logical effort analysis to estimate dynamic power for relative

power analysis and the potential to quickly estimate the column reduction section’s delay

by multiplying column gate delay by a constant that is dependent upon the full adder

selected.

 111

References

[1] K. C. Bickerstaff, E. E. Swartzlander, Jr, and M. J Schulte, “Analysis of Column
Compression Multipliers,” 15th IEEE Symposium on Computer Arithmetic, 2001,
pp. 33-39.

[2] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on
Electronic Computers, vol. EC-13, pp. 14-17, 1964.

[3] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp.
349-356, 1965.

[4] L. Dadda, “On Parallel Digital Multipliers,” Alta Frequenza, vol. 45, pp. 574-580,
1976.

[5] K. C. Bickerstaff, M. Schulte and E. E. Swartzlander, Jr., “Reduced Area
Multipliers,” International Conference on Application-Specific Array Processors,
1993, pp. 478-489.

[6] K. C. Bickerstaff, M. J. Schulte and E. E. Swartzlander, Jr., “Parallel Reduced
Area Multipliers,” Journal of VLSI Signal Processing, vol. 9, no. 3, pp. 181-191,
April 1995.

[7] R. S. Waters and E. E. Swartzlander, Jr., “A Reduced Complexity Wallace
Multiplier Reduction,” IEEE Transactions on Computers, vol. 59, pp. 1134-1137,
August 2010.

[8] W. J. Townsend, E. E. Swartzlander, Jr. and J. A. Abraham, “A Comparison of
Dadda and Wallace Multiplier Delays,” SPIE, Advanced Signal Processing
Algorithms, Architectures, and Implementations, XIII, vol. 5205, 2003, pp. 552-
560.

[9] V. G. Oklobdzija and D. Villeger, “Multiplier Design Utilizing Improved Column
Compression Tree and Optimized Final Adder in CMOS Technology,” 1993
International Symposium on VLSI Technology, Systems and Applications, 1993,
pp. 209-212.

[10] P. F. Stelling and V. Oklobdzija, “Design Strategies for the Final Adder in a
Parallel Multiplier,” Twenty-Ninth Asilomar Conference on Signals, Systems and
Computers, 1995, vol. 1, pp. 591-595.

[11] V. G. Oklobdzija, “Design and Analysis of Fast Carry-Propagate Adder Under
Non-Equal Input Signal Arrival Profile,” Twenty-Eighth Asilomar Conference on
Signals, Systems and Computers, 1994, vol. 2, pp. 1398-1401, Oct. 31-Nov. 2,
1994.

 112

[12] V. G. Oklobdzija and D. Villeger, “Improving Multiplier Design by Using
Improved Column Compression Tree and Optimized Final Adder in CMOS
Technology,” IEEE Transactions on VLSI Systems, vol. 3, pp. 292-301, 1995.

[13] P. F. Stelling and V. G. Oklobdzija, “Implementing Multiply-Accumulate
Operation in Multiplication Time,” Proceedings of 13th IEEE Symposium on
Computer Arithmetic, pp. 99-106, 1997.

[14] D. Baran, M. Aktan and V. G. Oklobdzija, “Multiplier Structures for Low Power
Applications in Deep-CMOS,” IEEE International Symposium on Circuits and
Systems, pp. 1061-1064, 2011.

[15] A. Habibi and P. A. Wintz, “Fast Multipliers,” IEEE Transactions on Computers,
vol. C-19, pp. 153-157, 1970.

[16] O. J. Bedrij, “Carry-Select Adder,” IRE Transactions on Electronic Computers,
EC-9, pp. 226-231, 1960.

[17] A. Weinberger and J. L. Smith, “A Logic for High-Speed Addition,” National
Bureau of Standards, Circ. 591, pp. 3-12, 1958.

[18] T. Kilburn, D. B. G. Edwards, and D Aspinall, “Parallel Addition in Digital
Computers: A New Fast “Carry” Circuit,” Proceedings of IEE, vol. 106, part B,
pp. 464-466, Sept 1959.

[19] J. Sklansky, “Conditional-Sum Addition Logic,” IRE Transactions on Electronic
Computers, vol. EC-9, pp. 226-231, 1960.

[20] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of
a General Class of Recurrence Equations,” IEEE Transactions on Computers, vol.
C-22, pp. 786-793, 1973.

[21] M. R. Santoro, Design and Clocking of VLSI Multipliers, Stanford University,
PhD Dissertation, Technical Report no. CSL-TR-89-397, 1989.

[22] M. E. Robinson and E. E. Swartzlander, Jr., “A Reduction Scheme to Optimize
the Wallace Multiplier,” International Conference on Computer Design, pp. 122-
127, 1998.

[23] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, New
York: Oxford University Press, p. 179, 2000.

[24] I. Sutherland, B Sproull, D. Harris, Logical Effort: Designing Fast CMOS
Circuits, San Diego: Academic Press, 1999.

[25] Mauro Olivieri, "Overview on a formal model of architecture/circuit trade-offs for
the implementation of fast processors," Computer Physics Communications vol.
139.1, 2001, pp. 144-150.

 113

[26] Jo Ebergen, Jonathan Gainsley, and Paul Cunningham, "Transistor sizing: How to
control the speed and energy consumption of a circuit," 10th International
Symposium on Asynchronous Circuits and Systems, 2004, pp. 51-56.

[27] Dursun Baran, Mustafa Aktan, and Vojin G. Oklobdzija. "Multiplier structures for
low power applications in deep-CMOS," IEEE International Symposium on
Circuits and Systems (ISCAS), 2011, pp. 1061-1064.

[28] Neil Burgess. "Fast ripple-carry adders in standard-cell CMOS VLSI," 20th IEEE
Symposium on Computer Arithmetic, IEEE, 2011, pp. 103-111.

[29] Richard Kohler Richards, Arithmetic Operations in Digital Computers, Princeton:
D. Van Nostrand Co., Inc. 1955.

[30] Neil Weste and David Harris, CMOS VLSI Design, A Circuits and Systems
Perspective, Boston: Pearson Addison Wesley, 2005.

[31] Vojin G. Oklobdzija, ed., The Computer Engineering Handbook, Boca Raton,
FL.: CRC Press, 2001.

[32] Adnan Kabbani, "Logical effort based dynamic power estimation and
optimization of static CMOS circuits," Integration, the VLSI Journal, vol. 43.3
(2010), pp. 279-288.

