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Abstract 

 
Total Delay Optimization for Column Reduction Multipliers 
Considering Non-Uniform Arrival Times to the Final Adder 

Ronald S. Waters, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Earl E. Swartzlander, Jr. 

Column Reduction Multiplier techniques provide the fastest multiplier designs 

and involve three steps. First, a partial product array of terms is formed by logically 

ANDing each bit of the multiplier with each bit of the multiplicand. Second, adders or 

counters are used to reduce the number of terms in each bit column to a final two. This 

activity is commonly described as column reduction and occurs in multiple stages. 

Finally, some form of carry propagate adder (CPA) is applied to the final two terms in 

order to sum them to produce the final product of the multiplication. Since forming the 

partial products, in the first step, is simply forming an array of the logical AND’s of two 

bits, there is little opportunity for delay improvement for the first step. There has been 

much work done in optimizing the reduction stages for column multipliers in the second 

reduction step. All of the reduction approaches of the second step result in non-uniform 

arrival times to the input of the final carry propagate adder in the final step. The designs 

for carry propagate adders have been done assuming that the input bits all have the same 

arrival time. It is not evident that the non-uniform arrival times from the columns impacts 

the performance of the multiplier. A thorough analysis of the several column reduction 

methods  and the impact of carry propagate adder designs, along with the column 



 v 

reduction design step, to provide the fastest possible final results, for an array of 

multiplier widths has not been undertaken. This dissertation investigates the design 

impact of three carry propagate adders, with different performance attributes, on the final 

delay results for four column reduction multipliers and suggests general ways to optimize 

the total delay for the multipliers.  
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Chapter 1. Introduction 

Column Reduction Multipliers (CRM) are some of the faster multiplication 

circuits available; therefore, they are commonly used in Fast Fourier Transforms, Digital 

Signal Processor algorithms for convolution and filtering, graphics applications and 

communications applications, such as Viterbi decoders. Since multipliers tend to be in the 

critical path for an algorithm, their speed is important. The reason column reduction 

multipliers are preferred over array and other multipliers is that their delay is proportional 

to the logarithm of the multiplier width [1] as opposed to an array multiplier’s delay 

which is proportional to N, the width of the multiplier. 

Column reduction multipliers have three main sections. For an N-by-N multiplier, 

first an N2 array of partial products is generated by performing the logical AND of each 

bit value of the multiplicand with each bit value of the multiplier. Second, these partial 

products are reduced by combining, with counters, compressors or adders, through 

multiple stages, until there are only two remaining rows in the final stage of the 

reduction. Finally, a carry propagate adder (CPA) is used to add the final two rows, 

producing the sum of the two rows, which results in the product of the multiplicand and 

the multiplier that were used to generate the N-by-N array of partial product terms [1]. 

Figure 1 illustrates the reduction flow for column reduction multipliers. 

Column reduction multipliers have a set of rules applied during the partial product 

reduction stage. Four types of multipliers are explored, including: Wallace [2], Dadda [3, 

4], Reduced Area [5, 6] and Modified Wallace [7].  
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Figure 1:  Diagram of Procedure for Column Multiplier Reduction 

Dadda [3] popularized the “dot diagram” notation for drawing column reduction 

multiplier designs. The conventions that he used are still used today and are defined as: 

 
A Partial Product term (AND gate output) 
The outputs of a Half Adder 
The outputs of a Full Adder 

 

A “dot diagram” for an 8-bit by 8-bit multiplier using one (Wallace) of the four 

reduction methods reviewed in this research is shown in Figure 2. 
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Figure 2: Dot Diagram for 8-bit by 8-bit Wallace Multiplier 

Due to the nature of column reduction multipliers, the arrival times for the final 

two rows of bits to be summed by the final carry propagate adder (CPA) vary depending 

upon bit significance. For an N-by-N multiplier, the Least Significant Bits (LSB) and the 

Most Significant Bits (MSB) arrive well before the bits in the region of the Nth or Nth+1 

significant bit columns. Figure 3 illustrates this non-uniform arrival profile for an 8-bit by 

8-bit Wallace multiplier. The bits at the least and most significant positions arrive sooner 

than the bits in the center of the column reduction structure. Throughout this dissertation, 

the convention will be the LSB being on the right side and the MSB being on the left side 

of the diagrams. 
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Figure 3:  Arrival Gate Delays for an 8-bit by 8-bit Wallace Multiplier 

Most carry propagate adder designs assume that the bits all arrive at the same 

time.  Since that is not the case with the arrival times from column reduction, the best 

design to minimize the overall delay for the multiplier, of the carry propagate adder to 

sum the final two rows in the reduction process is not easily determined. This dissertation 

investigates overall multiplier delay for three designs of the carry propagate adder (ripple 

carry, carry select and Kogge-Stone parallel prefix) along with four column reduction 

methods (Wallace, Dadda, reduced area and modified Wallace) and multiplication widths 

(8-bit, 12-bit, 16-bit, 24-bit, 32-bit and 53-bit). Simply counting gate delays, as was done 

in Figure 3, will prove to be insufficient to accurately model overall multiplier delays. 

Therefore, rigorous use of a design modeling technique known as logical effort is used. 
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

15	
  14	
  13	
  12	
  11	
  10	
   9	
   8	
   7	
   6	
   5	
   4	
   3	
   2	
   1	
   0	
  

G
at
e	
  
D
el
ay
s	
  

MSB	
  <-­Bit	
  Position	
  -­>	
  LSB	
  



 5 

Chapter 2. Previous Work 

Past work has dealt with multipliers of specific widths without extensive analysis 

of the impact of various column reduction methods. The analysis of the delay, introduced 

by the carry propagate adder in the final stage, typically looked at one type of adder or 

another or, for a single size of multiplier and reduction method, investigated the potential 

impact of hybridizing the carry propagate adder with a mixture of different types of 

adders. No analysis has been performed for a significant range of multiplier sizes and 

reduction methods in order to investigate the impact of multiplier width and reduction 

method on carry propagate adder selection. 

TOWNSEND, ET AL. 

Townsend, et al. analyzed both Wallace and Dadda multipliers of 4-bit and 8-bit 

width [8]. The carry propagate adders used were a ripple carry adder and a 4-bit carry 

look ahead adder. In the analysis of the reduction stages, terms were grouped in order to 

minimize the delay through the reductions stages and were not necessarily grouped by 

adjacency. This grouping technique is different than the approach taken here.  In this 

research, adjacent terms are grouped.  However, comparative analysis shows that the 

results from different grouping strategies do not matter much.  

First, a ripple carry adder was applied to the final two reduction terms to generate 

the final product results. The adder characteristics used were for a nine gate full adder 

and a four gate half adder, with the following number of input to output gate delays: 
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Table 1:  Full Adder and Half Adder Delays for Townsend Comparison 

Path Gate Delays 

Full adder In to Sum 6 

Full adder In to Cout 5 

Full adder Cin to Sum 3 

Full adder Cin to Cout 2 

Half adder In to Sum 3 

Half adder In to Cout 1 

 

The following Figures 4 and 5 compare Townsend’s results for an 8-bit by 8-bit 

Wallace and Dadda multiplier with a ripple carry adder. The bars represent the total delay 

through the column reduction stages for each bit in the multiplier. The solid line 

represents the final delay including the partial product generation, the reduction stage 

delay plus the delay through the final CPA, using a ripple carry adder. 

 

 

Figure 4:  Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Wallace 
Multiplier (after [8]) 
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Figure 5:  Townsend Ripple Carry Adder Delay for an 8-Bit by 8-Bit Dadda 
Multiplier (after [8]) 

Townsend’s primary finding was that for 8-bit by 8-bit multipliers, though Dadda 

requires a wider final CPA, the overall delay through the multiplier, using a ripple carry 

adder or a carry look ahead is shorter for Dadda than for Wallace’s column reduction 

method. This is due to the overall smaller delay through the reduction stages resulting 

from the Dadda reduction (19 delays maximum) versus the Wallace reduction (21 delays 

maximum) and the fact that the LSB to MSB slope of the delay on the LSB side of the 

reduction profile has a more shallow slope (delay/bit) than Wallace and as a result, a 

Ripple Carry Adder is just as effective as any other CPA approach for summing the final 

two terms in the reduction stage, and “delay build” on the LSB side still allows for a 

faster multiplier, even given the need for a wider CPA. Delay build is defined as the 

increase in delay from bit to bit as results pass from carry out of one stage into carry in of 

the next stage. 

OKLOBDZIJA, ET AL. 

Oklobdzija has probably been the most prolific researcher in optimizing the delay 

of multipliers by including analysis of the CPA. He and his research teams spent much 
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time in the mid to late 1990’s looking at ways to reduce column reduction delays in 

multipliers as well as investigating ways to optimize the carry propagate adder in order to 

consider the non-uniform bit arrival times and minimize overall multiplier delay [9, 10, 

11, 12, 13].  

In [9], Oklobdzija and Villeger approached multiplier performance improvement 

by use of (4,2) and (9,2) counters for the column reduction stage, but more importantly, 

investigated a CPA scheme using a conditional sum adder and carry select adder for the 

design of the CPA. Using “dynamic programming optimization techniques” they 

determined that the optimum carry select adder based CPA for minimum delay was a 

carry select adder configuration of 1-2-3-1-3-4-2-3-4-8-1 for the 16-bit multiplier 

considered. Their analysis also capitalized upon the improved column reduction afforded 

by the use of (4,2) counters. Figure 6 illustrates their results. 

 

 

Figure 6: Oklobdzija Delay Profile for 16-bit Multiplier Using (4,2) Counters and a 
Carry Select Adder (after [9]) 
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The figure has been mirrored so that the LSB is on the right as is the case for all 

of the analysis in this dissertation. Delays are expressed in equivalent XORs. One 

observation made is that the delay difference between conditional sum adder and carry 

select adder diminishes as the delay profile of the inputs to the CPA multiplier becomes 

less uniform, as is the case with the column reduction section outputs into the CPA. 

Further, the authors suggest that the carry select adder is slower than the conditional sum 

adder, but that the difference is so slight as to be offset by the relative ease of design of 

the carry select adder as compared to a conditional sum adder. 

STELLING AND OKLOBDZIJA 

Stelling and Oklobdzija [10] focused on optimizing a 32-bit by 32-bit multiplier 

using ripple carry adder, carry skip adder and carry look ahead blocks to form the CPA. 

By using hybrid adders comprised of blocks of these adders, they were able to achieve 

significant performance improvement. Using a hybrid ripple carry adder/1-level carry 

skip adder/one carry select adder based CPA; the delay profile for the 32-bit by 32-bit 

multiplier was developed and is shown in Figure 7. The figure is mirrored from the 

original diagram such that the LSB is on the right side of the figure; delays are not 

expressed in unit delays but in terms of delays of equivalent XORs. 
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Figure 7: Hybrid Adder using a Ripple Carry Adder, 1-level Carry Skip Adder and 
one Carry Select Adder (after [10]) 

The delays presented at the bottom of the column reduction section of column 

multipliers, are non-uniform in arrival. Oklobdzija [11] suggests that analysis of the delay 

profile from column multipliers has three regions. The first region is described as region 

one on the LSB side of the delay profile. Region two is the central region of the delay 

profile where the differences between column delays are relatively small and region three 

is the region toward the MSB side. Figure 8 illustrates these three regions. 
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Figure 8: Regions of Delay in Column Multiplier Delay Profile (after [11]) 

This region nomenclature will be used in this research. Oklobdzija’s primary 

work in [11] was based upon a 13-bit multiplier. Analysis of the CPA used ripple carry 

adders, conditional sum adders, carry look ahead adders, carry select adders and variable 

block adders. The results suggest that if the delay/bit in region one is greater than the 

delay through an XOR gate (Cin to Cout for a ripple carry adder), then a ripple carry 

adder is the most appropriate adder to use for region one. For the negative slope side 

(LSB), it was assumed that the delay/bit slope was less than an XOR delay and that a 

CPA design, other than ripple carry adder was needed. The analysis suggested that 

variable block adder using carry skip adders of various heuristically determined sizes 

would give the optimum delay results. CPAs using variable block size adders for carry 

select adders were also analyzed. In all analysis, the CPA was not hybridized but used 

either carry skip adders or carry select adders, but used variable block sizes in order to 

generate the minimal overall delay through the multiplier. 
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OKLOBDZIJA AND VILLEGER 

In Oklobdzija and Villeger [12], a twelve-bit multiplier is analyzed with the 

conclusion that a combination of a ripple carry adder and a carry select adder would 

provide optimal delay. This assumes that the bit delays in region one are larger than the 

delay through a ripple carry adder stage, which is reasonable. The paper suggests that the 

inflection points between the three regions of the chart determine the length of the 

respective adders and that determining the lengths of the adders is an iterative process. 

The analysis and design practices for generating CPAs in multipliers, is extended 

in Stelling and Oklobdzija [13] to Multiply-Accumulate. A 32-bit multiply-accumulate 

design is explored as compared to the 32-bit multiplier, only. The overall optimal delay is 

achieved by using a combination of a ripple carry adder, a conditional sum adder and a 

carry select adder for the three regions. The first region is B0 containing bits 0 through 32 

on the LSB side, B1 covers the flat area in the center of the multiplier where the reduction 

delay is maximum, bits 33 through 40. Finally, B2 is the region of the remaining bits 41 

through 63. A ripple carry adder is used for B0 while a “symmetric” conditional sum 

adder is used for B1. Since the bit delays in B2 are decreasing with bit significance, a 

carry select adder is used for that section. Figure 9 illustrates the results of using this 

hybrid CPA. 
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Figure 9: Delays Using Optimal Hybrid Adder for 32-Bit Multiply-Accumulate (after 
[13]) 

BARAN, ET AL. 

In Baran, et al. [14], a multiplier for low power applications using Deep-CMOS is 

analyzed. The 16-bit by 16-bit multiplier used a hybrid carry propagate adder (CPA) with 

a 4-bit ripple carry adder on the LSB side, followed by a 24-bit Ling adder with a sparse-

2 carry tree, ending with a 4-bit ripple carry adder. 

Over time there has been much analysis performed on how to optimize multiplier 

performance by considering the delay through the final stage, the carry propagate adder. 

There has been no comprehensive analysis of the various column reduction methods 

along with considerations for the non-uniform arrival times for the partial product 

reduction stage for delays that are presented to the final CPA. This research will endeavor 

to develop some fundamental understandings regarding the interaction between the 

column reduction method and the final CPA in order to design optimum carry propagate 

adders in order to optimize the delay times through various multiplier designs and sizes.  
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Previous work has looked at individual multiplier widths, considering a particular 

column reduction method. Delays have either been counted in gate delays or in 

equivalent XOR gate delays. There has not been a comprehensive study done of multiple 

column reduction multiplier techniques, using logical effort as the analysis method. This 

research studies the delay performance of four column reduction methods, Wallace, 

Dadda, reduced area and modified Wallace. Further, multiplier widths of 8-bit, 12-bit, 

16-bit, 24-bit, 32-bit and 53-bit are analyzed, considering a slow carry propagate adder, 

ripple carry adder, a moderately fast carry propagate adder, carry select adder, and a fast 

carry propagate adder, Kogge-Stone parallel prefix adder. 
  



 15 

Chapter 3. Column Reduction Methods 

This section reviews the strategy and approach for the design of four column 

reduction multipliers: Wallace, Dadda, reduced area and modified Wallace. Examples for 

the design of each are reviewed for subject completeness. 

WALLACE MULTIPLIER 

For the conventional Wallace reduction method [2], once the partial product array 

(of N2 bits) is formed, adjacent rows are collected into non-overlapping groups of three. 

Each group of three rows is reduced by: 

 (1) Applying a full adder to each column that contains 3-bits or a triplet 

(2) Applying a half adder to each column that contains 2-bits or a duple and  

(3) Passing any single bit in a column to the next stage without processing  

This reduction method is applied to each successive stage until only two rows 

remain. The final two rows are summed with a carry propagate adder. This process is 

illustrated by the 9-bit by 9-bit Wallace multiplier shown in Figure 10. Light lines show 

the three row groupings. The reduction is performed in four stages (each with the delay of 

one full adder) with a total of 50 full adders and 21 half adders being used for the 

reduction. The third phase will require a 13-bit wide carry propagate adder. 

The use of a 9-bit by 9-bit multiplier is necessary in order to demonstrate the need 

for half adders in several of the other reduction methods. 
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Figure 10: Conventional Wallace 9-bit by 9-bit Reduction 

DADDA MULTIPLIER 

In contrast to the Wallace reduction, the Dadda method [3, 4] does the least 

reduction necessary at each stage. To determine how many reduction stages are required, 

the maximum height of each stage is calculated by working back from the final stage. 

The final stage has a height of 2 rows. Each preceding stage height can be no larger than 

⎣3•successor height/2⎦ where ⎣x⎦ denotes the integer portion of x. This gives 2, 3, 4, 6, 9, 

13, 19, 28, 42, 63, etc. as the maximum heights for the various previous stages. The 

Dadda reduction then uses just enough full and half adders to achieve the limits for the 

stage reduction height. A 9-bit by 9-bit Dadda multiplier is shown in Figure 11. The 

reduction is performed in four stages (the same as with the Wallace reduction) with a 

total of 48 full adders and 8 half adders being used. The third phase will require a 16-bit 

wide carry propagate adder. 
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The Dadda multiplier uses 2 fewer full adders and 13 fewer half adders in the 

second phase reduction than the Wallace multiplier, but requires a larger carry propagate 

adder in the third phase as a result. 

Habibi has suggested that the Dadda multiplier reduction method offers the 

optimum reduction in that it uses the least number of full adders [15]. 

 

 

Figure 11: Dadda 9-bit by 9-bit Reduction 

REDUCED AREA MULTIPLIER 

In reduced area multipliers [5, 6], the objective is a multiplier design that 

minimizes the number of lines crossing from one reduction stage to another in order to 

minimize the number of latches required if the multiplier is pipelined. Also, (2,2) 

counters (also known as half adders) are used to move least significant partial products to 
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adder. Additionally, (2,2) counters are used to ensure that the number of reduction stages 

matches that of Dadda so that the overall multiplier delay is not impacted by additional 

stage delays and provides equivalent multiplier delay as Wallace. Figure 12 illustrates the 

design of a reduced area 9-bit by 9-Bit multiplier. As can be seen, there is a (2,2) counter 

on the least significant bit side of each reduction stage. Also, there is a single (2,2) 

counter used in the first and second reduction stages in order to ensure that the total 

number of delay stages is not greater than Wallace or Dadda, thus ensuring an equivalent 

number of reduction stages and delay through the reduction section of the multiplier. 

The reduced area multiplier uses 51 full adders and 12 half adders and a final 

phase carry propagate adder of 13-bits. 

 

 

Figure 12: Reduced Area 9-Bit by 9-Bit Reduction 
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MODIFIED WALLACE 

The modified Wallace multiplier [7] was developed with the intention of reducing 

the number of half adders. In column reduction, full adders (3,2) and half adders (2,2) are 

used to reduce the partial product terms to two single inputs that are then applied to a 

carry propagate adder. Full adders result in reducing terms (three inputs resulting in two 

outputs), while half adders do not reduce the number of partial products, but only migrate 

terms to more significant bits. It could be said that half adders do not do any work in 

reducing the complexity of the multiplier. The modified Wallace multiplier desires to 

minimize the use of half adders in order to improve the reduction efficiency for column 

reduction multipliers. The approach is different from the reduced area approach in that: 1. 

Since half adders do not reduce the number of partial products, use only full adders. 2. 

Use half adders only where they are required to keep the number of reduction stages to 

the number specified by Dadda for the given multiplier width. The reduction, using the 

modified Wallace multiplier is shown in Figure 13. The modified Wallace approach uses 

52 full adders and four half adders and a final carry propagate adder size of 16-bits. 
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Figure 13: Modified Wallace 9-Bit by 9-Bit Reduction 

As can be seen, the final CPA is the same width as Dadda, due to the second most 

LSB having two terms to deal with. This is the primary difference in results as compared 

to the reduced area approach. 
 

Table 2 summarizes the complexity for each of the four column reduction 

approaches. The second column shows the number of full adders (3,2) to implement the 

four multipliers, the third column shows the number of half adders (2,2), the fourth 

column shows the number of reduction stages and the last column shows the carry 

propagate carry width needed for the final adder. An interesting note is that the Dadda 

and modified Wallace reduction methods always have the same number of adders, though 

different combinations of full adders and half adders. 
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Table 2: 9-Bit by 9-Bit Multiplier Comparison 

Type (9-bit by 9-bit) # (3,2) # (2,2) # Stages CPA Length 
Wallace 50 20 4 13 
Dadda 48 8 4 16 
Reduced Area 52 12 4 13 
Modified Wallace 52 4 4 16 

All four reduction methods require four reduction stages in order to reduce the 

partial products to two terms that are summed by the final carry propagate adder. For the 

Wallace and the reduced area multipliers, the final carry propagate adders are of 13 bit 

length while for the Dadda and the modified Wallace multipliers, the final adder is 16 bits 

wide. Though it should be noted that the first five bits of the carry propagate adder for 

modified Wallace may be implemented with half adders. The Wallace multiplier uses the 

most half adders even for this relatively small example. 

This research extends to the 53-bit multiplier. The following table shows the 

complexity for each of the column reduction methods for the 53-bit multiplier case. 

Table 3: 53-Bit by 53-Bit Multiplier Comparison 

Type (53-bit by 53-bit) # (3,2) # (2,2) # Stages CPA Length 
Wallace 2606 301 9 96 
Dadda 2600 52 9 105 
Reduced Area 2610 48 9 96 
Modified Wallace 2610 42 9 105 

For the 53-bit multipliers, each of the column reduction methods use essentially 

the same number of full adders and take the same number of reduction stages (9). In the 

case of the Wallace multipliers, it uses significantly more half adders. Since the 

multipliers each have the same number of stages and essentially the same number of full 

adders, the area required to lay out the multipliers will approximately be the same. The 

Wallace multiplier may take up slightly more area due to the higher use of half adders.  
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Chapter 4: Logical Effort (LE) 

INTRODUCTION TO LOGICAL EFFORT 

Logical effort is a relatively straightforward and simple method to calculate 

delays through CMOS gates and circuits. It is a reasonably simple technique that is more 

exact than simply gate delay counting, but not as exact as doing a design layout, back 

annotating parasitic values and performing a detailed SPICE circuit simulation.  

The first step in logical effort is to determine the, time based, unit delay τ which 

is, for a given process, the delay through an inverter driving an identically sized inverter 

and is approximately 3RC.  For various CMOS processes, τ is shown on the following 

figure [24][25][26][27]. 

 

 

Figure 14: Tau values for various CMOS technology Nodes (after [24][25][26][27]) 

The absolute delay, dabs through a gate or circuit, using logical effort, is the logical 

effort delay, d, times τ. 
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!!"# = !! 

Logical effort models delay in a logic gate with two elements, parasitic delay, p, 

and effort delay, f. The parasitic delay is dependent upon the gates structure as compared 

to an inverter. The effort delay, or stage effort, is a function of the load on the gate’s 

output. The overall delay of a gate is the sum of the stage effort and the parasitic delay 

and is expressed as: 

! = ! + ! 

The effort delay can be further decomposed into logical effort, g, electrical effort, 

h, and branching effort, b. The effort delay then may be expressed as the product of the 

various effort terms as: 

! = !"ℎ 

The logical effort, g, represents the gate topology to produce current as compared 

to an inverter. The electrical effort, h, is simply an assessment of the gate’s electrical 

environment and is stated as the ratio of output capacitance (input capacitance to the 

subsequent node) to the input capacitance for a circuit being analyzed. 

ℎ = !!"#/!!" 

Obviously, if the input capacitance and the output capacitance (input capacitance 

that the final output stage of the circuit is driving) are the same, then the electrical effort, 

h, for the analysis is 1. 

The final component in logical effort analysis is the branching effort, b. The 

branching effort looks at a given node’s “in path” effort and the “off path” effort. The 

calculation for b for a given node is: 

 

! =
!!"  !"#! + !!""  !"#!

!!"  !"#!
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Analysis typically looks at the total device width that is being driven, both in path 

and off path, divided by the in path device width. 

If there is no fan-out or off path gates in the analyzed circuit path, then the 

branching effort, b, is 1. 

DETERMINING VALUES OF LOGICAL EFFORT, G 

Assuming pull-up transistor width versus pull-down transistor width and device 

gains produce an n-channel with twice the strength of a p-channel, the following tables 

illustrates the various values of logical effort, g. 

Table 3: Logical Effort, g, values for various gates 

Number of Inputs 

Gate Type 1 2 n 

Inverter 1   

NAND  4/3 (n+2)/3 

NOR  5/3 (2n+1)/3 

Multiplexer  2 2 

XOR (Parity)  4  

The following figure shows the construction of an inverter using one p-channel 

and one n-channel. The numbers represent the device widths for each transistor. The ratio 

of 2:1 is usually the case due to the mobility or gain of the respective devices and gives 

equivalent pull-up and pull-down delays. 
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Figure 15: CMOS Inverter schematic (after [24]) 

Logical effort for gates are normalized to the inverter, so the logical effort, g, for 

this inverter is 3/3, or 1. 

A two input NAND gate is comprised of four transistors configured as in the 

following figure. 

 

Figure 16: Two Input NAND Gate (after [24]) 

Note that the stack of n-channels gives an effective drive strength for the pull-

down devices of 1. The logical effort, g, for the two input NAND gate is the total device 

widths seen by an input, divided by 3 to normalize to that of an inverter or 4/3. 
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A two input NOR gate is comprised of four transistors configured as in the 

following figure. 

 

Figure 17: Two Input NOR Gate (after [24]) 

Note that the stack of p-channels gives an effective drive strength of the pull-up 

devices of 2. The logical effort, g, for the two input NOR gate is the total device widths, 

seen by an input, divided by 3 to normalize to that of an inverter or 5/3. 

DETERMINING VALUE OF PARASITIC DELAY, P 

Assuming simple layout styles, the parasitic delay of an inverter, p, is defined as 

1. The parasitic delay is a model of the overhead delay due to the source and drain region 

capacitances of the transistors of the gate that drive the gate’s output. This model of 

parasitic capacitance does not consider the capacitances of nodes that are between 

devices in series such as the pull-downs of a NAND gate or the pull-ups of a NOR gate. 

For NAND and NOR gates, the model for the parasitic capacitance of a gate is the 

parasitic capacitance of an inverter, pinv, times the number of inputs, n, for the NAND or 

NOR gate. So an n input NAND or NOR gate has a parasitic delay of npinv. 
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The final value that is required in order to perform a logical effort delay 

calculation is simply the count of the number of gates in an analyzed circuits path, N. 

On a macro level, the overall values for a circuit path for logical effort, G, 

electrical effort, H branching effort, B, and parasitic delay, P, are expressed as either the 

product or sums of the respective individual efforts for the gates that make up the path 

being analyzed. 

! = Π!! 

! = Πℎ! 

! = Π!! 

! = Σ!! 

Given these equations, the path effort, F, is defined as 

! = !"# 

The path overall delay, !, is defined as 

! = !!!/! + ! 

This delay is in gate delay units and is multiplied by the technology value, τ, to 

give the delay in time value. 

LIMITATIONS OF LOGICAL EFFORT 

The main limitation of logical effort is that it is difficult to model the impact of 

interconnect in a design. Usually, with logical effort, the design has not even been laid 

out. Interconnect, if an attempt is made to model it, impacts the branching effort as it 

adds more capacitance “off path” that must be considered by the model. Burgess in [28] 

suggests that the impact of capacitance loading of interconnect for a full adder is 

approximately the same as the input capacitance of a simple CMOS inverter. 
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Since logical effort is a simple RC based model, it does not consider the impact of 

rise or fall times. In well designed circuits, rise and fall time are relatively equal through 

out the design as are the effort delays.  

Logical effort is typically used to design a path to minimize the delay through the 

path, but it does not lend any ability to minimize area or power with a set delay. 

For complex circuits with complicated branch structures with different parasitic 

delays or gate delays in each branch, iterative analysis must be performed. Fortunately 

for multiplier designs, the branching considerations are within the full adders and can be 

modeled there. Connections between adders in the column reduction stages are point to 

point and do not involve branches. Therefore, branching effort need only be considered 

within each of the adders and not as the outputs transcend column reduction levels. 

USE OF LOGICAL EFFORT IN THIS RESEARCH 

Using the logical effort equations, spreadsheet based models were developed for 

each of the multiplier sizes and column reduction methods. Individual sheet tabs were 

created, based upon the multiplier design for each of the effort values, g, b, p and number 

of the gate count through each path in the multiplier structure. The electrical effort, h, 

was set to 1 since it is assumed that the multiplier fan-out from input to the partial 

product NAND gates to the input driven by the final carry propagate adder output is 1. 

Logical effort models were created for each of the carry propagate adders that were 

analyzed and applied to the outputs of the column reduction multiplier models. 
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Chapter 5: Gate Delays versus Logical Effort Estimations 

Much of the prior work has looked at the gate delay count through the multiplier 

in order to determine relative figures of merit for various designs. Counting gate delays 

does not necessarily provide insight into the fastest multiplier design.  

Two full adder designs are considered and the design of 32-bit by 32-bit Dadda 

multipliers are developed to compare the gate delay count versus the delay that a logical 

effort model for the column reduction multipliers would suggest. One full adder uses 

eleven total gates while the second, implemented with NAND gates, uses only nine gates. 

The eleven gate implementation is illustrated in Figure 18. 

 

 

Figure 18: Full Adder Implemented with Eleven Gates 

The eleven gate full adder has the following worst case gate delay counts through 

its various paths: 

Table 4: Gate Delay Counts for Eleven Gate Full Adder 

Input A/B to Cout 6 
Input A/B to Sum 7 
Cin to Cout 4 
Cin to Sum 5 
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Figure 19: Full Adder Implemented with Nine NAND Gates 

The nine gate full adder has the following worst case gate delay counts through its 

various paths: 

Table 5: Gate Delay Counts for Nine gate NAND Full Adder 

Input A/B to Cout 5 
Input A/B to Sum 6 
Cin to Cout 2 
Cin to Sum 3 

For the 9-gate NAND full adder, note that four of the six nodes from input to Sum 

and four of five nodes from input to carry out have branching effort considerations, of 

which two have three-way branches. This will have implications when multiplier delay is 

analyzed. 

Applying the gate delay counts for these two full adder designs yields the 

following maximum delay profile through the Dadda multiplier column reduction for a 

32-bit by 32-bit Dadda multiplier. The analysis suggests that the 9-gate NAND full adder 

implementation would be the fastest of the two designs. 
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Figure 20: Gate Delay count comparison for 32-Bit by 32-Bit Dadda Multiplier using 
9-gate and 11-gate Full Adders 

Applying the principles of logical effort to the design yields entirely different 

results as is seen in the following figure. The 11-gate full adder implementation is faster. 

This is due to the extensive fan-outs of the NAND based design that contribute 

significant circuit performance impact in the logical effort analysis due to the branching 

effort effects. Figure 22 illustrates what the delay would be after removing the branching 

effort component in the logical effort calculations of the 9-gate full adder. 
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Figure 21: Logical Effort delay comparison for 32-Bit by 32-Bit Dadda Multiplier 
using 9-gate NAND and 11-gate CMOS Full Adders 

 

Figure 22: Logical Effort delay for 32-Bit by 32-Bit Dadda Multiplier including 
removal of impact of Branching Effort 
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Careful consideration to more than just gate count delays from input to output is 

required in the selection of the adder primitives to be used in a column reduction 

multiplier. The adder with the least gate delays, because of the impact of branching effort 

or fanout, may introduce more actual delay in the circuit path. 
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Chapter 6: Carry Propagate Adders 

In order to set a reasonable boundary for this research, a finite number of carry 

propagate adders were selected for the analysis. Representative slow, medium and fast 

carry propagate adders were selected and modeled. Those adders are: ripple carry [29], 

carry select [16] and Kogge-Stone [20] parallel prefix adders. Other carry propagate 

adders such as carry look ahead [17], carry skip [18], and conditional sum [19] are not 

studied as the range of performance between ripple carry and parallel prefix covers the 

performance domain for these other carry propagate adders. 

RIPPLE CARRY 

The simplest carry propagate adder is the ripple carry adder [29]. It is simply a 

cascade of full adders where the carry out of a bit is fed into the carry in of the next most 

significant bit. Circuit wise, it is the simplest design, but performance wise, it is not the 

fastest. However, since column multipliers have an arrival time profile that increases 

from the less significant bit to near the center column, ripple carry adders may be 

sufficient for the less significant bit side of the multiplier. If the delay through the ripple 

carry is faster than the delay down the columns of the column multiplier, then a ripple 

carry adder is the best choice for that portion of the carry propagate adder. That is, indeed 

the case for the multipliers designed, as will be illustrated. The design of a ripple carry 

adder is discussed later in this work. 

CARRY SELECT 

Carry select adders [16] break the carry propagate adder into blocks of bit width 

and calculates the expected output of each block considering if a carry in occurs or not. 

This doubles the amount of hardware required as well as adds N+1 2:1 multiplexors to 
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the design for each block, where N is the width of a block. The specific design of a carry 

select adder used in this research is discussed in Chapter 7. 

KOGGE-STONE (CARRY LOOK AHEAD/PARALLEL PREFIX) 

There are several implementations of the parallel prefix carry propagate adder. 

One of the fastest adders is the Kogge-Stone adder [30]. Parallel prefix adders generate 

the carry propagate and generate values for each bit position in parallel. 
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 Chapter 7:  Scope of Work 

There has been limited broad analysis performed to understand the column 

multiplier and CPA interaction, given that the column multiplier presents non-uniform 

arrival times to the input of the carry propagate adder. This research performed an 

extensive analysis of four types of column multipliers and the overall delay performance 

achievable using a multitude of carry propagate adders.  

Column reduction designs were done using Wallace, Dadda, reduced area and 

modified Wallace reduction methods for 8-bit, 12-bit, 16-bit, 24-Bit, 32-bit and 53-bit 

multipliers. These reduction delay profiles were analyzed with three carry propagate 

adders. 

The following table illustrates the number of delay models developed, and 

supporting work, considering the six multiplier sizes, the three carry propagate adders 

and the four types of column reduction methods. 
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Table 6: Table of Delay Models Developed 

 

COLUMN REDUCTION MULTIPLIERS 

Four types of column reduction multipliers with different reduction strategies 

were explored, including: 

1. Wallace [2] 

2. Dadda [3,4] 

3. Reduced Area [5, 6] 

4. Modified Wallace [7] 
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ADDERS 

Many different full adder designs could be considered. A Dadda 32-bit by 32-bit 

multiplier was implemented with three full adder designs. These full adders were one 

using eleven gates and two with nine gate implementations.  

The three designs for each of the full adders are shown in the following three 

figures. 

 

Figure 23:  Eleven Gate Full Adder 

 

Figure 24: Nine Gate CMOS Full Adder 

 

Figure 25: Nine Gate NAND Full Adder 
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The gate delay counts for the three full adders, from inputs to outputs, are shown 

in the following Table. 

Table 7: Full Adder Gate Delay Counts 

	
  
11-­‐Gate	
   9-­‐Gate	
  CMOS	
   9-­‐Gate	
  NAND	
  

	
   	
   	
  FAAS_GD	
   7.0	
   6.0	
   6.0	
   Full	
  Adder	
  Gate	
  delays	
  A	
  to	
  Sum	
  
FAAC_GD	
   6.0	
   5.0	
   5.0	
   Full	
  Adder	
  Gates	
  delays	
  A	
  to	
  Cout	
  
FACS_GD	
   5.0	
   3.0	
   3.0	
   Full	
  Adder	
  Gate	
  Delays	
  Cin	
  to	
  Sum	
  
FACC_GD	
   4.0	
   2.0	
   2.0	
   Full	
  Adder	
  Gate	
  Delays	
  Cin	
  to	
  Cout	
  

As can be seen, both of the nine gate designs have the same number of gate delays 

from inputs to outputs. The eleven gate CMOS full adder has one additional gate delay 

through each data path. However, the logical effort delays do not align with the gate 

delays as will be seen. The maximum logical effort delay profiles for the three adders are 

compared in the following figure for the 32-bit by 32-bit Dadda column reduction 

multiplier. 

 

 

Figure 26: Three 32-bit Dadda Multipliers using different full adders 
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The eleven gate full adder is used in the multiplier analysis done in this work. One 

of the two nine gate implementations is faster then the eleven gate design, while the other 

full adder that uses nine NAND gates, is slower than the implementation using the eleven 

gate full adder. Clearly, results for logical effort modeling are dependent upon the adder 

designs used. 

The objective for this dissertation is to analyze bit arrival times of various column 

reduction multipliers and suggest the best carry propagate adder designs to provide the 

best overall multiplier delay performance. To limit the scope of the designs, the five gate 

half adder and an eleven gate full adder are implemented; these designs use only inverters 

and two input CMOS gates. Alternative designs are, of course, possible using gates with 

three or more inputs or fewer gates such as the previously discussed nine gate full adders, 

or more compact circuit techniques such as merged gates.  

Adders are defined by their number of gate delays and their gate count. For the 

half adder, the first delay is input (A, B) to sum (S) and the second delay is input to carry 

out (Cout). For the full adder, there are four numbers. The first number is the delay from 

input to sum, the second is for input to carry out (Cout), the third is for carry in (Cin) to 

sum and the fourth number is for carry in to carry out. The half adder used is a five gate 

implementation, in CMOS, using 2-input NAND gates and an inverter. 

3-2 Five Gate Half Adder 

 

Figure 27: Schematic for Five Gate, 3-2 Delay Half Adder 
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For the full adder, the eleven gate CMOS design is used which is comprised of 

five 2-input NAND gates, two 2-input NOR gates and four inverters.  

7-6-5-4 Eleven Gate Full Adder 

Figure 28: Schematic for Eleven Gate, 7-6-5-4 Delay Full Adder 

Summary of Gate Delay Performance 

The following tables summarize the gate delay counts for the half adder (HA) and 

the full adders (FA) being considered.  

Table 8: Half Adder Delay Summary 

HA Delays 5-Gate HA 
In to Sum 3 
In to Cout 2 

Table 9: Full Adder Delay Summary 

FA Delays 11-Gate FA 
In to Sum 7 
In to Cout 6 
Cin to Sum 5 
Cin to Cout 4 

CARRY PROPAGATE ADDERS (CPA) 

For review, for column reduction multipliers, there are three stages in the design. 

First the array of N2 partial products is developed by the logical bit AND of each of the 
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terms of the multiplicand with each of the terms of the multiplier. Second, the desired 

column reduction technique is used to reduce the number of rows to the final two. 

Ultimately, the last two rows from the bottom of the column reduction process, 

representing the sum and carry terms from the column reduction,  are added together 

using some type of carry propagate adder.  

The designs of the final carry propagate adder will be performed using various 

types of adders, each with different delay characteristics. Hybrid adders using various 

lengths of different adders may be used to explore how to optimize the overall delay 

through the multiplier from the generation of the partial products through the outputs of 

the carry propagate adder. There are many designs for carry propagate adders (CPA). For 

this research a slow CPA, moderately fast CPA and a fast CPA are chosen for the 

analysis. Other carry propagate adders could have been selected, however, the three 

chosen for this research give a meaningful range of performance from slowest to fastest. 

The CPA will be designed using the following adder types: 

Ripple Carry Adder [29] 
The ripple carry adder is simply a chain of full adders that output a sum and a 

carry out into the carry in of the next most significant full adder. The adder on the LSB 

side is a half adder as there is no carry in for the LSB. The following figure illustrates the 

design of a ripple carry adder. Ripple carry is the slowest adder design. The critical path 

delay is from A and B inputs of the LSB to the carry out of the MSB of the CPA adder 

width. 
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Figure 29:  Schematic diagram of Ripple Carry Adder 

Carry Select Adder [16] 

Carry select adders are designed using two blocks of ripple carry bit adders that 

are each driven by a carry-in of one and zero. That way, both results are generated for the 

bits handled by the block before the propagate term arrives from the carry output of the 

previous block. A four bit carry select adder is illustrated in Figure 30. Both A and B 

adder inputs drive to full adders, each whose carry-in is either a one or a zero. The carry-

in of the previous block controls which full adder output is multiplexed to the final adder 

sum out and also control which carry out state is propagated to the next carry select 

block. 

Carry select adders are implemented in many ways. The optimum delay is 

achieved, for fixed block size and uniform data arrival times, when the carry select blocks 

are √! where N is the width of the adder being designed [31]. Other implementations are 

possible as well, such as using variable width blocks. This research limits the block width 

for the carry select adder to four bit blocks. One reason for this is that for larger blocks, 

as the number of multiplexers that the carry out control from the previous block 
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increases, the branching effort or fanout increases to do the selection and impacts 

performance.  

 

Figure 30: Schematic diagram of Carry Select Adder 

Parallel Prefix Adder [20] 
Kogge-Stone [20] carry lookahead or parallel prefix adders are the fastest adders 

and are used extensively in high-performance 32-bit and 64-Bit adders [30]. Kogge-Stone 
adders are built with blocks of logic that have been described as black cells, gray cells 
and buffers. The body of the adder is comprised of these cells and buffer building blocks 
which are various group propagate and generate cells shown logically as: 
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 Figure 31:  Basic Building Block Cells for Kogge-Stone Adder 

The propagate terms are derived from the exclusive OR of the two inputs to be 
summed, while the generate terms are derived by an AND of the two inputs being 
summed. The resulting propagate and generate terms drive the black and gray cells of the 
Kogge-Stone architecture. 

The final sum output is created by Exclusive ORing the propagate bit of bit 
position N with the generate term of bit position N-1. 

The connections for a Kogge-Stone 16-bit adder are shown in Figure 32.  

 

Figure 32: Schematic Diagram of Kogge-Stone Adder 
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INTEGER MULTIPLIER SIZES 

Finally, it was expected that the design considerations may be different for 

various sizes of integer multipliers. Designs, using logical effort, were performed with 

various combinations of column reduction multipliers, final carry propagating adders 

(CPA) and sizes of multipliers including: 8-bit x 8-bit, 12-bit x 12-bit, 16-bit x 16-bit, 24-

bit x 24-bit, 32-bit x 32-bit and 53-bit x 53-bit. 

DESIGN CONSTRAINTS 

There are many variables that could be considered in this research project; several 

design constraints have been imposed.  

Static CMOS Design and Device Mobility 

Static CMOS design techniques and topologies are used in the design of both the 

column multipliers as well as the final summing carry propagate adders (CPA). 

The mobility relationship between PMOS and NMOS transistors is set at 2. This 

assumption drives the logical effort values throughout the analysis. 

Reduction Stage Components 

Various reduction techniques, using more complex compressors or counters, have 

been proposed beyond the reductions first proffered by Wallace and Dadda. This research 

will be limited to using classic full adders, which reduce three inputs of the same 

significance to one output of the same significance and one output of the next most 

significance (3,2) and half adders, which reduce two inputs of the same significance to 

one output of the same significance and one output of the next most significance (2,2). 

The others, including Oklobdzija [9] and Santoro [21], have used higher order (4,2) and 

(9,2) counters in order to reduce the delay through the column reduction section of the 

multiplier. Robinson [22] used a (4,3) counter for selected multiplier sizes that enabled 
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the removal of one stage of reduction delay in the column reduction section of the 

multiplier. The Robinson approach, however, is limited to multipliers of bit size 5, 14, 20, 

29, 43, etc. 

Integer Multiplication 

This research focuses upon unsigned integer multiplication. The principles and 

practices learned are applicable beyond this limitation. By selectively inverting terms and 

adding a one in the top left position and bottom left position of the partial product array, a 

two’s complement multiplier can be developed [23]. 

Adjacent Row Grouping in Reduction Stages 

For the column reduction stages, two or three terms are grouped and applied to 

either a half adder or full adder, respectively, for reduction. All of the designs in this 

project, with the exception of Dadda, will use adjacent row terms in a reduction stage to 

generate the duples, for inputs to the half adders, or triplets, for inputs to the full adders, 

that are applied for column reduction. This is consistent with Wallace techniques as 

described and, for routing purposes, would result in the least complexity of routing, since 

grouped terms are in physical proximity. The initial work done, comparing overall 

multiplier results using adjacent grouping as compared to grouping to minimize column 

delay reduction [8], suggests that adjacent grouping is nearly equivalent. For Dadda, 

columns are grouped in order to minimize the sum and carry delays from each of the 

adder outputs. Because Dadda minimizes the use of adders in each reduction stage, there 

are many terms in each stage that do not increase from reduction step to the next. That is 

not the case with all other reduction methods, therefore, for Dadda, there are 

opportunities to selectively group terms in order to pair terms such that delays are 

minimized further than if adjacent rows were grouped. The following figure illustrates 
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the incremental delay improvement derived from selective grouping of reduction terms, 

versus adjacent term grouping, for a 24-bit by 24-bit Dadda column reduction multiplier. 

 

 

Figure 33: Delay of 24-Bit by 24-Bit Dadda with Selective term grouping 

The speed improvement by selectively grouping terms in the Dadda multiplier is 

between 5% to 11% for the multipliers analyzed with the exception of the 24-bit 

multiplier and 53-bit multiplier, which only benefited by 1%. It should be noted that since 

Dadda reduction does not use grouping of adjacent terms, but is implemented with 

selective term grouping to minimize the delay through a reduction stage, that there might 

be increased metal routing lines which would increase the load capacitance and impact 

the performance. This potential increase in delay, which would contribute to increased 

“branching effort,” is not considered in this analysis since the actual impact is dependent 
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upon actual design layout. If selective grouping of terms was not done, then it will be 

seen that the Dadda performance is the same as for the other three reduction methods. 

Multiplier Configuration 

For the work performed in this research, the number of bits of the multiplier and 

the number of bits of the multiplicand are the same. 

Delay Considerations 

Complete logical effort principles are used to develop the delay models for each 

of the multipliers. All designs were done considering CMOS elements for 

implementation.  For the H term in the logical effort model, it is assumed that the input of 

the multiplier and the output that the multiplier drives into have the same size and 

capacitance. Therefore, the H value for calculations is of value 1. 

Wire delays were not factored into the analysis. Burgess in [28] determined that 

the impact of wire interconnect crossing one bit position in an adder is approximately the 

same as a simple inverter input capacitance. Since the Kogge-Stone architecture has 

many lines traversing many bits, the performance impact on Kogge-Stone adders is 

believed to be higher than for similar width carry select adders. Consequently, the 

additional capacitance of wire would reduce the estimated performance advantage of the 

Kogge-Stone adders. 

DELAY PROFILER DEVELOPMENT 

Using Matlab and some manual designs, column multiplier designs were 

developed for the four column reduction methods (Wallace, Dadda, reduced area and 

modified Wallace). Using Excel, carry propagate adder (CPA) delay models were also 

designed to model the delays of various configurations of CPA with inputs from the 

various column multipliers. Combinations of column reduction methods with various 
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CPAs and hybridized CPAs were modeled for the multiplier widths and reduction 

methods of interest. From this analysis, fundamental design considerations for 

minimizing the delay through the various multiplier reduction methods and sizes were 

explored. 
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Chapter 8: Column Reduction Delay Results 

Column reduction models were developed for 8-bit, 12-bit, 16-bit, 24-bit, 32-bit 

and 53-bit multipliers. Four different column reduction methods, Wallace, Dadda, 

reduced area and modified Wallace were used to reduce the terms to two final terms to 

apply to the carry propagate adder. The following figures illustrate the results, for logical 

effort delay, through each of the multipliers. The Dadda model results reflect selective 

grouping in order to have minimum delay through the columns. It is of note that if Dadda 

terms were group by adjacency as with the other reduction methods, then the delay 

through the Dadda multiplier would match that of the other three methods. 

The following figures contain discrete data, however, lines are drawn connecting 

the data points to aid in seeing the data point groupings by multiplier reduction type. 

 

 

Figure 34: 8-Bit by 8-Bit Column Reduction Multiplier Delays 
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For the 8-bit Dadda column reduction, selective grouping of terms in the second 

reduction stage results in 11% improvement in delay performance through the column 

reduction multiplier. 

 

 

Figure 35: 12-Bit by 12-Bit Colum Reduction Multiplier Delays 

For the 12-bit multiplier, selective grouping of reduction terms in the second stage 

of the Dadda column reduction results in a 7% improvement in delay through the column 

reduction stages of the multiplier. 
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Figure 36: 16-Bit by 16-Bit Column Reduction Multiplier Delays 

For the 16-bit Dadda multiplier, selective term grouping in the second stage of 

column reduction results in a 10.3% reduction in delay through the column reduction 

multiplier section of the multiplier. 
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Figure 37: 24-Bit by 24-Bit Column Reduction Multiplier Delays 

The 24-bit Dadda multiplier benefits next to least from selective term grouping. 

Grouping the reduction terms from the first stage in the second stage of reduction results 

in only 1.1% improvement in delay through the column reduction portion of the 

multiplier. 
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Figure 38: 32-Bit by 32-Bit Column Reduction Multiplier Delays 

For the 32-bit Dadda multiplier, selective term grouping in the second stage of 

column reduction results in a 4.2% reduction in delay through the column reduction 

section of the Dadda multiplier. 

 

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

63	
   60	
   57	
   54	
   51	
   48	
   45	
   42	
   39	
   36	
   33	
   30	
   27	
   24	
   21	
   18	
   15	
   12	
   9	
   6	
   3	
   0	
  

Lo
gi
ca
l	
  E
ff
or
t	
  D

el
ay
	
  	
  

32-­‐Bit	
  Mul<plier	
  Column	
  Delays	
  

Wallace	
   Dadda	
   Modified	
  Wallace	
   Reduced	
  Area	
  



 56 

 

Figure 39: 53-Bit by 53-Bit Column Reduction Multiplier Delays 

For the 53-bit Dadda multiplier, selective term grouping in the second stage of 

column reduction results in a less than 1% reduction in delay through the column 

reduction multiplier section of the multiplier. 
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as compared to adder outputs from the sum of the adder of the previous reduction stage, 

then there is opportunity to selectively group terms and, with Dadda, develop a multiplier 

design with less overall delay than the other three reduction methods. 
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Chapter 9:   Results Based upon Multiplier Type 

WALLACE RESULTS 

Wallace reduction based designs have been analyzed for multipliers of sizes 8, 12, 

16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven gate full 

adders were used. Overall multiplier delays were profiled for a standard ripple carry 

adder, carry select adder and a Kogge-Stone parallel prefix adder. The following figures 

show the logical effort delay profiles for each of the multiplier sizes. 

 

Figure 40: 8-Bit by 8-Bit Wallace Multiplier Results 
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Figure 41: 12-Bit by 12-Bit Wallace Multiplier Results 

In Figure 41, it appears that the Wallace multiplier using the carry select and 

Kogge-Stone adders have nearly the same performance. In order to evaluate this for 
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clear that the impact of branching in the Kogge-Stone adder has significant impact on 

delay. 

 

Figure 42: 12-Bit Wallace Multiplier with K-S Branching ignored 
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Figure 43: 16-Bit by 16-Bit Wallace Multiplier Results 

 

Figure 44: 24-Bit by 24-Bit Wallace Multiplier Results 
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Figure 45: 32-Bit by 32-Bit Wallace Multiplier Results 

 

Figure 46: 53-Bit by 53-Bit Wallace Multiplier Results 
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For all of the Wallace multipliers, the Kogge-Stone adder has the best delay 

performance of the three carry propagate adders analyzed. However, the differences seen 

for smaller multipliers are not as evident as for the differences seen for the larger widths. 

The following table summarizes the worst case logical effort delays through an 8-

bit, 12-bit, 16-bit, 24-bit, 32-bit and 53-bit Wallace multiplier for the three carry 

propagate adders analyzed, ripple carry, carry select and Kogge-Stone final adders. 

Table 10: Summary of Worst Case Delays for Wallace Multipliers 

 

For the 8-bit Dadda multiplier, the Kogge-Stone final adder results in only 6% 

better delay performance than a carry select final adder; for the 53-bit multiplier, Kogge-

Stone is 27% faster than a multiplier using a carry select final adder. 

DADDA RESULTS 

Dadda reduction based designs have been analyzed for multipliers of sizes 8, 12, 

16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven gate full 

adders were used. Overall multiplier delays were profiled for a standard ripple carry 

adder, a carry select adder and a Kogge-Stone parallel prefix adder. The following figures 

show the logical effort delay profiles for each of the multiplier sizes. 
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Figure 47: 8-Bit by 8-Bit Dadda Multiplier Results 

 

Figure 48: 12-Bit by 12-Bit Dadda Multiplier Results 
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Figure 49: 16-Bit by 16-Bit Dadda Multiplier Results 

 

Figure 50: 24-Bit by 24-Bit Dadda Multiplier Results 
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Figure 51: 32-Bit by 32-Bit Dadda Multiplier Results 

 

Figure 52: 53-Bit by 53-Bit Dadda Multiplier Results 
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second bit on the LSB side and the Kogge-Stone adders is slower than either ripple carry 

or carry select adders for the first ten product bits, then surpasses both ripple carry and 

carry select adders in worst case delay performance. 

Table 11: Summary of Worst Case Delays for Dadda Multipliers 

 

 

REDUCED AREA RESULTS 

Reduced area multiplier reduction based designs have been analyzed for 

multipliers of sizes 8, 12, 16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-

6-5-4 eleven gate full adders were used. Overall multiplier delays were profiled for a 

standard ripple carry adder, a carry select adder and a Kogge-Stone parallel prefix adder. 

The following figures show the logical effort delay profiles for each of the multiplier 

sizes. 
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Figure 53: 8-Bit by 8-Bit Reduced Area Multiplier Results 

 

Figure 54: 12-Bit by 12-Bit Reduced Area Multiplier Results 
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Figure 55: 16-Bit by 16-Bit Reduced Area Multiplier Results 

 

Figure 56: 24-Bit by 24-Bit Reduced Area Multiplier Results 
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Figure 57: 32-Bit by 32-Bit Reduced Area Multiplier Results 

 

Figure 58: 53-Bit by 53-Bit Reduced Area Multiplier Results 
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This is especially true for the 53-bit multiplier where the Kogge-Stone adder is 29% 

faster than the carry select adder. 

Table 12: Summary of Worst Case Delays for Reduced Area Multipliers 

 

MODIFIED WALLACE RESULTS 

Modified Wallace reduction based designs have been analyzed for multipliers of 

sizes 8, 12, 16, 24, 32, and 53 bits. The 3-2 four gate half adder and the 7-6-5-4 eleven 

gate full adders were used. Overall multiplier delays were profiled for a standard ripple 

carry adder, a carry select adder and a Kogge-Stone parallel prefix adder. The following 

figures show the logical effort delay profiles for each of the multiplier sizes. 

 

 

Figure 59: 8-Bit by 8-Bit Modified Wallace Multiplier Results 
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Figure 60: 12-Bit by 12-Bit Modified Wallace Multiplier Results 

 

Figure 61: 16-Bit by 16-Bit Modified Wallace Multiplier Results 
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Figure 62: 24-Bit by 24-Bit Modified Wallace Multiplier Results 

 

Figure 63: 32-Bit by 32-Bit Modified Wallace Multiplier Results 
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Figure 64: 53-Bit by 53-Bit Modified Wallace Multiplier Results 
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Table 13: Summary of Worst Case Delays for Modified Wallace Multipliers 
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Chapter 10: Results Based upon Carry Propagate Adder 

RIPPLE CARRY ADDER 

For all ripple carry adder designs, the Dadda multiplier based design is the fastest. 

 

 

Figure 65: 8-Bit by 8-Bit Multiplier with Ripple Carry Final Adder 
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Figure 66: 12-Bit by 12-Bit Multiplier with Ripple Carry Final Adder 

 

Figure 67: 16-Bit by 16-Bit Multiplier with Ripple Carry Final Adder 
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Figure 68: 24-Bit by 24-Bit Multiplier with Ripple Carry Final Adder 

 

Figure 69: 32-Bit by 32-Bit Multiplier with Ripple Carry Final Adder 
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Figure 70: 53-Bit by 53-Bit Multiplier with Ripple Carry Final Adder 

For multipliers implemented with a ripple carry adder for the carry propagate 

adder, the Dadda multiplier provided the best performance followed by the Wallace 

multiplier. Both the reduced area multiplier and the modified Wallace multiplier had 

slower overall performance than either the Dadda or Wallace multipliers. 
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CARRY SELECT ADDER 

 

Figure 71: 8-Bit by 8-Bit Multiplier with Carry Select Final Adder 

 

Figure 72: 12-Bit by 12-Bit Multiplier with Carry Select Final Adder 
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Figure 73: 16-Bit by 16-Bit Multiplier with Carry Select Final Adder 

 

Figure 74: 24-Bit by 24-Bit Multiplier with Carry Select Final Adder 
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Figure 75: 32-Bit by 32-Bit Multiplier with Carry Select Final Adder 

 

Figure 76: 53-Bit by 53-Bit Multiplier with Carry Select Final Adder 
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As with the multipliers that use ripple carry final adders, multipliers with carry 

select final adders based upon the Dadda reduction method provide better delay 

performance than Wallace, reduced area or modified Wallace multipliers. Wallace 

multiplier designs out performed reduced area and modified Wallace multipliers. In some 

cases, reduced area was faster than modified Wallace. 

KOGGE-STONE PARALLEL PREFIX ADDER 

 

Figure 77: 8-Bit by 8-Bit Multiplier with Kogge-Stone Final Adder 
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Figure 78: 12-Bit by 12-Bit Multiplier with Kogge-Stone Final Adder 

 

Figure 79: 16-Bit by 16-Bit Multiplier with Kogge-Stone Final Adder 
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Figure 80: 24-Bit by 24-Bit Multiplier with Kogge-Stone Final Adder 

 

Figure 81: 32-Bit by 32-Bit Multiplier with Kogge-Stone Final Adder 
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Figure 82: 53-Bit by 53-Bit Multiplier with Kogge-Stone Final Adder 

As with the multipliers that use ripple carry final adders and carry select adders, 

multipliers with Kogge-Stone final adders based upon the Dadda reduction method 

provide better delay performance than Wallace, reduced area or modified Wallace 

multipliers. Wallace multiplier designs out performed reduced area and modified Wallace 

multipliers. In some cases, reduced area was faster than modified Wallace. 
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Chapter 11:  Overall Delay Results 

8-BIT MULTIPLIERS 

Twelve 8-bit multipliers consisting of four column reduction methods (Wallace, 

Dadda, reduced area, and modified Wallace) were combined with three carry propagate 

adders (ripple carry, carry select and Kogge-Stone) and were analyzed. The following 

figure shows the maximum logical effort delay through each of these multiplier designs. 

Multiplying these numbers by the tau value for a given technology provides an estimate 

of the circuit’s, time based performance. 

 

 

Figure 83: Logical Effort Delay for Twelve 8-Bit by 8-Bit Multipliers 

For all three of the final adders, Dadda multipliers provide the best performance. 

Using the Dadda column reduction method, for the three carry propagate adders 

analyzed, always has the least delay through the multiplier and final adder. The Kogge-

Stone final adder provides slightly better performance than the carry select final adder. 
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For the Kogge-Stone final adder, the logical effort delay is 157 units. Therefore, for a 

0.35um technology, which has a tau value of approximately 20 psec, the time delay 

through the multiplier is calculated to be approximately 3.1 nsec. Considering 45nm 

technology, which as a tau value of 4.1 psec, the time delay through the multiplier is 

calculated to be approximately 0.64 nsec. 

12-BIT MULTIPLIERS 

For 12-bit multipliers, the Dadda multiplier reduction provided the highest 

performance for each of the carry propagate adders used. The carry select and Kogge-

Stone carry propagate adders had the same performance. The following figure compares 

the relative logical effort delay for the twelve 12-bit multipliers analyzed. 

 

 

Figure 84: Logical Effort Delay for Twelve 12-Bit by 12-Bit Multipliers 

For smaller width multipliers, there is little performance difference between using 

the carry select or Kogge-Stone final adder. 

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

Lo
gi
ca
l	
  E
ff
or
t	
  D

el
ay
	
  	
  

Ripple	
  Carry	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Carry	
  Select	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Kogge	
  Stone	
  

12-­‐Bit	
  Mul<plier	
  Delays	
  

Wallace	
  RCA	
   Dadda	
  RCA	
   Reduced	
  Area	
  RCA	
   Modified	
  Wallace	
  RCA	
  

Wallace	
  CS	
   Dadda	
  CS	
   Reduced	
  Area	
  CS	
   Modified	
  Wallace	
  CS	
  

Wallace	
  KS	
   Dadda	
  KS	
   Reduced	
  Area	
  KS	
   Modified	
  Wallace	
  KS	
  



 88 

16-BIT MULTIPLIERS 

The following figure shows the performance of twelve 16-bit multipliers. The left 

four points are for the multipliers with ripple carry final adders, the center four points 

show the performance of the four multipliers with carry select final adders and the right 

four points show the performance of the Kogge-Stone based implementations. 

 

 

Figure 85: Logical Effort Delay for Twelve 16-Bit by 16-Bit Multipliers 

For 16-bit multipliers, the Dadda column reduction multiplier using a Kogge-
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show the performance of the four multipliers with carry select final adders and the right 

four points show the performance of the Kogge-Stone based implementations. 

 

 

Figure 86: Logical Effort Delay for Twelve 24-Bit by 24-Bit Multipliers 

Using the Dadda column reduction method along with Kogge-Stone CPA 
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Figure 87: Logical Effort Delay for Twelve 32-Bit by 32-Bit Multipliers 

As with smaller multipliers, Dadda column reduction provides faster 

performance. With wider multipliers, the difference between carry select and Kogge-

Stone widens. The Dadda based multiplier with Kogge-Stone CPA is the faster 32-bit 

multiplier. 

53-BIT MULTIPLIER 

The following figure shows the performance of twelve 53-bit multipliers. The left 

four points are for the ripple carry adders, the center four points show the performance of 

the four carry select based multipliers and the right four points show the performance of 

the Kogge-Stone based implementations. 
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Figure 88: Logical Effort Delay for Twelve 53-Bit by 53-Bit Multipliers 
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Table 14: Summary of Logical Effort Delays for all Multipliers 

 
 
With one exception, the 12-bit Dadda multiplier, the Kogge-Stone carry propagate 

adder provides the fastest worst case delay. For the 12-bit Dadda multiplier, the carry 
select carry propagate adder is 1% faster.  
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Chapter 12:  Comparing Dynamic Power 

Power dissipation, both static and dynamic is a function of the technology being 

used and the transistor sizes that are used in the circuit implementation. However, it is 

possible to make some comparisons for dynamic power dissipation for the multipliers 

reviewed in this research. Dynamic power is the result of outputs driving subsequent 

input capacitances and driving output capacitances.  In Logical Effort, the electrical 

effort, h, the logical effort, g, and the parasitic delay, p, are all referenced to an inverter 

and are parameters that relate to some capacitance load. In [32], Kabanni has developed a 

logical effort based power model where the normalized switching power of a gate is: 

!!" = !!"!(!ℎ + !) 

Where Pnm is the normalized switching power of a gate, αnm is the normalized gate 

activity factor and Z is a constant that represents the size of a gate as compared to its 

template. Since the transistor width ratios are not known until a given technology is 

chosen, Z cannot be determined, but for a given technology, the normalized power of a 

gate is proportional to its activity, and the three logical effort variables, g, h and p. In this 

research, h has been set to 1 as the input and output capacitances are set to the same. 

Therefore, for a given activity factor, the normalized power of a gate is proportional to g 

and p. 

!!" ∝ (! + !) 

Therefore, by summing the g and p values for the circuits in a given design, the 

relative normalized power dissipation, for the same activity factor, can be determined for 

the multiplier designs in this research. 

Both 8-bit and 53-bit Dadda column reduction multipliers using the three carry 

propagate adders were analyzed with this relative power estimation. First the total 
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multiplier power was estimated, separating the carry propagate power from the column 

reduction power. The activity factor for the multipliers are not considered as it is very 

dependent upon terms being multiplied. For example, if the multiplier were changed from 

0 x 0 to 0 x 0 (no change from cycle to cycle), then the activity factor would be zero. 

However, if it were changed from 0 x 0 to 1 x max, where max represents the largest 

value expressed by a multiplier (all one’s), then the activity factor would be very high 

(near one).  

8-BIT DADDA MULTIPLIER POWER ESTIMATION 

The following figure shows the column reduction power for an 8-bit Dadda 

multiplier column reduction along with the power contributed by the carry propagate 

adders. Note that the Kogge-Stone carry propagate adder with the most power 

consumption, only uses about 15% of the total power for the multiplier. 

 

 

Figure 89: Relative Power for 8-Bit Dadda Multipliers 
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Since the column reduction power will be the same for each design, the following 

figure shows only the relative power dissipation for each of the carry propagate adders. 

 

 

Figure 90: Relative Power for each CPA used in 8-Bit Dadda Multiplier 
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the carry propagate adders. The ripple carry final adder adds 7% more power than the 

power estimate for the 8-bit Dadda column reduction. The carry select final adder adds 

16% more power. The Kogge-Stone final adder represents about 19% estimated power 

above the dynamic power of the 8-bit Dadda column reduction stages. 

53-BIT DADDA MULTIPLIER POWER ESTIMATION 

For the 53-bit multiplier, almost all of the dynamic power is dissipated in the 

column reduction. The power dissipation of the carry propagate adder is small by 

comparison. The following figure illustrates the relative power dissipation for each of the 

three designs, breaking out the column reduction power from the carry propagate adder 

component. 

 

 

Figure 91: Relative Power for the 53-Bit Dadda Multipliers 
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Figure 92: Relative Power for each CPA used in the 53-Bit Dadda Multiplier 

For a 53-bit carry propagate adder, Kogge-Stone uses about six times the power 

of ripple carry or twice the carry select power. 

The following table lists the gate counts, number of transistors and summations of 

the logical effort term, g and p, for the 53-bit multipliers. 

Table 16: Design Data for 53-Bit Dadda Multipliers 
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to the design. The Kogge-Stone carry propagate adder is faster than the carry select 

adder, and has about 60% higher power dissipation as compared to the carry select adder, 

but both are negligible (at most 3%) in comparison to the power consumed by the column 

reduction section. 

Table 17: Power Estimate Summary for 8-Bit and 53-Bit Multipliers 

 

By adding all of  the g and p logical effort terms for a given multiplier design, it is 

possible to estimate the relative dynamic power dissipated by each design. The activity 

factor for the four column reduction methods is assumed to be the same for a given 

multiplication. For smaller multipliers, the final carry propagate adder has a significant 

dynamic power contribution, for the 8-bit analysis it ranged from 7% to 19%. For larger 

multiplier widths, however, the dynamic power dissipation in the final carry propagate 

adder, regardless of type, was negligible at less than 3%. 
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Chapter 13:  Conclusions 

Much work has been done in analyzing the impact of the final carry propagate 

adder on multiplier performance. It has, however, been limited to individual multiplier 

widths without a comprehensive analysis of various widths. Also, much of the analysis 

has been measured in gate delay counts or in equivalent XOR delays. Little comparative 

research has been done in the analysis of column reduction methods and their impact on 

multiplier performance.  

COLUMN REDUCTION METHOD SELECTION 

Column reduction techniques, such as Dadda, that minimize the delays in the 

column of reduction stages are preferred as they present smaller delays to the CPA for 

final summation. All of the current column reduction techniques have non-uniform 

arrival times with the longer times in the central bits of the column reduction stages. 

Minimizing the delays through the center of the multiplier will have significant positive 

performance impact. In this research, Dadda was the fastest column reduction method. 

MINIMIZING COLUMN DELAY BY TERM SELECTION IN DADDA 

Because, mostly, all terms are used in subsequent reduction stages in all reduction 

methods except for Dadda, the term delays in a reduction stage track each other. That is, 

they have been input into a similar number of adders and have accumulated similar 

delays through the same number of reduction stages.  That is not the case for Dadda 

multipliers which do the minimum amount of reduction possible from stage to stage, only 

to ensure that the same number of reduction stages as Wallace are met. Consequently, 

since the delays from the inputs to carry and sum on an adder are different, there are 

opportunities to selectively group terms in order to minimize the delays through the 

column reduction portion of Dadda multipliers. More importantly, the inputs to sum 
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outputs of full adders have significantly more delay than the inputs to outputs of half 

adders or the inputs to carry outs of full adders. For the Dadda multiplier, the opportunity 

to group terms is in the second reduction stage. The second stage groups terms from the 

previous, first, reduction stage and reduces the number of rows by ⎣3•successor height/2⎦ 

where ⎣x⎦ denotes the integer portion of x. For the multipliers analyzed the improvement 

by grouping terms to minimize the delay varies from 1% to 11%, depending upon the 

multiplier width. The important consideration is the number of full adder terms in the 

first reduction stage as compared to the number of terms that have been passed through 

from the partial product array or the outputs of half adders. The following table lists the 

number of terms in the first reduction stage for the multipliers that are outputs of full 

adders, in the center column, versus terms that are passed down from the partial product 

array or are outputs of half adders. 

Table 18: First Reduction Stage Terms and Dadda Column Delay Improvement 

 

 

In all cases analyzed, the Dadda multiplier with term selection yielded the fastest 

multiplier. For Dadda column reduction where term grouping was not performed, that is 

the terms were applied to adders based upon adjacency as with the other column 

reduction methods, the speed through the Dadda column reduction was the same as for 

the other three reduction methods. 
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The following figure illustrates a delay heat map for a 12-bit Dadda multiplier 

with selective term grouping (left side) and without selective term grouping (right side). 

 

 

Figure 93: 12-Bit Dadda Multiplier Heat Maps 

The least delay values are green, starting with the partial product AND array at 

the top and progress through yellow, orange and red as the delay values increase down 

the columns. The selective term grouping in the second reduction stage may be seen in 

the values for the delays as well as the heat map shading differential. 

CARRY PROPAGATE ADDER SELECTION 

Column multipliers can be considered as having three Regions. Region 1 is the 

rising delay on the LSB side of the reduction column. Region 2 is the center portion of 

the column reduction where the delay from column to column is relative flat. Region 3 is 

the MSB side of the column reduction where the column delays are tailing off. Those 

three regions are illustrated in the following figure showing the column reduction profile 

for a 32-bit by 32-bit column reduction multiplier using the Wallace reduction approach. 
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This delay profile is due to there not being many partial product terms on the LSB and 

MSB sides of the multiplier. Consequently, there are few reduction stages, which are 

delays through half or full adders that increase the overall delay through the multiplier 

paths for the LSB and MSB columns. 

Since full adders use three input terms and since the sum of the full adder has a 

longer delay than the carry out, there is the opportunity to use a long delay term (from the 

sum of a previous full adder) to drive the carry input of the full adder on the subsequent 

reduction stage. This results in a shorter delay through the subsequent full adder than if 

the long delay term was applied to input A or B. Therefore, by taking one long delay term 

and applying it to the carry in and two shorter delay terms and applying them to the A 

and B inputs of the subsequent adder, the delay is minimized. However, this requires that 

there be two short delay terms for every long delay term. As can be seen in the previous 

table, when the ratio of short delay terms (partial product or half adder outputs) is 2 or 

more, the potential to improve delay through the Dadda column reduction is higher. In 

the case of 24-bit and 53-bit multipliers, there are insufficient low delay values in order to 

pair them with the outputs of full adders in order to minimize the delay through the 

second reduction stage. 

 



 103 

 

Figure 94: Regions in 32-Bit by 32-Bit Wallace Multiplier  

For all the design implementations used in this research, the delay build from least 

significant bit toward most significant in region 1 is steeper than the delay build through 

the ripple carry adder which is the slowest carry propagate adder, Therefore, improving 

carry propagate performance will not improve performance as the circuit will be waiting 

for the delay times down the least significant columns. Therefore, a slow carry propagate 

adder, such as a ripple carry adder is sufficient for region 1. 

Wider designs have a much broader region 2 and significant focus on minimizing 

the carry propagation through these bits in region 2 is essential for optimal design. Carry 

propagate adders such as carry select adders and Kogge-Stone adders are applicable in 

region 2. 

For region 3, where the delays from the column reduction are “tailing off”, 

extending the carry propagate from Region 2 is advisable since each bit significance 

arrives sooner than the previous bit in Region 3 and is ready to be processed much earlier 
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than the arrivals of the results through the carry propagate adder. As a result, in region 3, 

performance is dependent upon quickly adding through the final carry propagate adder. 

It is likely that optimal multiplier performance is achieved through the use of a 

hybrid carry propagate adder with different adder designs for the several regions of the 

multiplier. The use of ripple carry adders for region 1 and using fast carry propagate 

adders such as carry select or Kogge-Stone adders for region 2, and extending across 

region 3 will provide the best delay performance. To perform a preliminary assessment of 

this hypothesis, a 32-bit Dadda multiplier was designed with the ten least significant bits 

being added with a ripple carry adder and the remaining bits of the carry propagate adder 

being added using the Kogge-Stone carry propagate adder. The comparison of a 32-bit 

Dadda fully using a Kogge-Stone carry propagate adder and this 10-bit ripple carry adder 

followed by a 53-bit Kogge-Stone carry propagate adder is illustrated in Figure 95. 

 

 

Figure 95: 32-bit Dadda Multipliers Comparison with Kogge-Stone and Hybrid 
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While the use of a hybrid carry propagate adder improved delay in the least 

significant bits for the 32-Bit Dadda multiplier, the delay efficiency of Kogge-Stone in 

later bits results in the overall worst case delays being the same. Therefore, a hybrid carry 

propagate adder could be used in order to reduce the final adder complexity, but, there is 

not improvement in worst case delay performance. 

As multipliers become larger, the percent of delay contributed by the CPA 

becomes much larger and there is a wider region 2 where faster carry circuitry is critical. 

REDUCING LSB SIDE DELAY 

For the modified Wallace multiplier, the second most LSB partial product does 

not get initially reduced as with Wallace or reduced area. Figure 95 highlights that, as a 

result, the final carry propagate adder must be longer than for Wallace or for reduced 

area. While the carry propagate adder for modified Wallace reduction is as long as for an 

equivalent Dadda multiplier, the modified Wallace reduction method does not have the 

opportunity to use selective term grouping as with Dadda. Consequently, the modified 

Wallace reduction method will always be the slowest multiplier for a given size and carry 

propagate adder. 
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Figure 96: Modified Wallace Multiplier Illustrating Reduction Issue 

ADDER SELECTION 

Adder selection will obviously impact multiplier performance as well. Selection 

of the adder based upon the input to output gate delays will not necessarily yield the 

fastest multiplier. Using the three full adders reviewed in an earlier chapter, a 32-bit by 
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each of the full adders, the following figure illustrates the performance of the three 
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Figure 97: 32-Bit Dadda Multiplier using K-S CPA for three Different Full Adders 

The 9-Gate CMOS and 9-Gate NAND full adders have the same gate delay 

counts from inputs to outputs. However, their performance differs due to the fan-out or 

branching effort of the 9-Gate NAND gate implementation. For the fastest multiplier 

analyzed, Dadda reduction with Kogge-Stone carry propagate adder, the 11-gate and 9-

gate CMOS adders had nearly the same performance, but have different gate delay 

counts. 

SIMPLIFYING THE COLUMN REDUCTION LOGICAL DELAY ESTIMATION 

During the analysis of the column reduction multipliers for the eleven gate CMOS 

full adder, it was observed that the ratio of the logical effort delay divided by the gate 

delay in the center reduction columns was between 3.4 and 3.5.  Therefore, it is feasible 

to estimate the gate delay count in a circuit path in the column reduction portion of the 

multiplier and simply multiply it by 3.5 in order to estimate the logical effort delay down 
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the columns. This simplified analysis is only applicable, however, for the column 

reduction section of the multiplier design.  It does not apply to delay estimations for the 

final carry propagate adder. The following figure shows the ratio of logical effort delay 

divided by gate count in a column path, for a 16-bit by 16-bit multiplier, for the two 

terms that drive the final carry propagate adder, for the four column reduction methods 

explored. 

 

 

Figure 98: Ratio of Logical Effort Delay/Gate Delay for 16-Bit Multiplier 

In Figure 98, the ratio of the logical effort divided by the gate delay count for 

each of the columns is shown for all four column reduction methods. Multiplying the gate 
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of the multiplier reduction is the slowest, the higher ratio factors on the MSB and LSB 

sides may be ignored as the center columns are the slowest paths through the multiplier.  

Table 19: Table of LE/Gate delay ratio for 16-Bit Column Reductions 

 

The data used for Figure 97 is shown in Table 19. The MSB position, bit 31 has 

no data as the Dadda column reduction does not force a carry into the MSB column. 

For the nine gate CMOS full adder, an analysis was done for a 32-bit Dadda 

multiplier. There was also a near constant ratio, however, it was higher at 3.9. Using the 

nine-gate NAND based full adder, a 32-bit Dadda multiplier was analyzed and the logical 

effort to gate count delay ration was an average of 4.3. While the two nine gate full adder 

implementations have the same number of gate delay counts, the ratios for logical effort 

to gate delay count are different. This is due to the higher branching efforts in the nine 

NAND gate implementation. 

For a given full adder design, there appears to be a common logical effort to gate 

delay count ratio that may be determined. 

The delay of a column reduction multiplier can be improved by doing three 

things. First, select a column reduction method that minimizes the delay through the 

center columns. This is achieved by selective term grouping using a Dadda reduction 

method. Second, move LSB terms toward the MSB side of the reduction columns by 

using the reduction strategy of the Reduced Area multiplier. This will reduce the size of 

the final carry propagate adder. There may be opportunities to merge the Dadda and 

Reduced Area column reduction methods to derive a column reduction method that yields 

a faster multiplier than Dadda alone. Finally, use a simple ripple carry adder for the LSB 
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terms in region 1 of the multiplier, then use a carry lookahead or parallel prefix adder for 

the other two regions of the multiplier to provide a fast multiplier with minimal circuitry 

in the carry propagate adder. 

DYNAMIC POWER ESTIMATION 

Using logical effort for design analysis allows a quick relative assessment of 

relative dynamic power as well as was being able to identify where the power is being 

consumed in the design.  

SUMMARY 

This research has extended the analysis to consider the use of logical effort in 

analyzing delays. Since logical effort is independent of technology, the results may be 

used to estimate multiplier performance for various CMOS technologies. In the course of 

this research, over 72 multipliers were designed using four different multiplier column 

reduction methods, six different multiplier widths and three different carry propagate 

adders. The results of the research suggest the best possible multiplier column reduction 

method, the importance of full adder selection on delay, the potential to use a slow and 

simple carry propagate adder for a certain region of the least significant bits, the potential 

to use the results of the logical effort analysis to estimate dynamic power for relative 

power analysis and the potential to quickly estimate the column reduction section’s delay 

by multiplying column gate delay by a constant that is dependent upon the full adder 

selected. 
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