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Knowledge about actions is an important part of commonsense knowl-

edge studied in Artificial Intelligence. For decades, researchers have been

developing methods for describing how actions affect states of the world and

for automating reasoning about actions. In recent years, significant progress

has been made. In particular, the frame problem has been solved using non-

monotonic knowledge representation formalisms, such as logic programming

under the answer set semantics. New theories of causality have allowed us to

express causal dependencies between fluents, which has proved essential for

solving the ramification problem. It has been shown that reasoning about ac-

tions described by logic programs and causal theories can be automated using

answer set programming.

Action description languages are high level languages that allow us to

represent knowledge about actions more concisely than when logic programs

are used. Many action description languages have been described in the litera-

ture, including B, C, and C+. Reasoning about dynamic domains described in
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languages C and C+ can be performed automatically using the Causal Calcu-

lator (ccalc), which employs SAT solvers for search, and the systems coala

and cplus2asp, which employ answer set solvers such as clingo.

The dissertation addresses problems of three kinds. First, we study

some mathematical properties of expressive action languages based on non-

monotonic causal logic that were not well understood until now. This includes

causal rules expressing synonymy, nondefinite causal rules, and nonproposi-

tional causal rules. We generalize existing translations from nonmonotonic

causal theories to logic programming under the answer set semantics. This

makes it possible to automate reasoning with a wider class of causal theories

by calling answer set solvers.

Second, we design and study a new action language BC, which is more

expressive in some ways than the existing and previously proposed languages.

We develop a framework that combines the most useful expressive features

of the languages B and C+, and use program completion to characterize the

effects of actions described in these languages.

Third, we illustrate the possibilities of the new action language by two

practical applications: to the dynamic domain of the Reactive Control System

of the space shuttle, and to the task planning of mobile robots.
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Chapter 1

Introduction

Knowledge about actions is an important part of commonsense knowl-

edge studied in Artificial Intelligence. For decades, researchers have been

developing methods for describing how actions affect states of the world and

for the automation of reasoning about actions. Following the groundbreaking

paper by John McCarthy and Patrick Hayes [62], the logic school of artificial

intelligence describes a state of the world by values of fluents that can be af-

fected by performing actions. For instance, a light switch can be either on or

off, so that its state can be described by the Boolean (that is, truth-valued)

fluent On. The location of a block B in the blocks world can be described by

the non-Boolean fluent Loc(B). Possible values of this fluent are Table and

other blocks. Performing the action Toggle changes the value of On from true

to false and vice versa, and performing the action Move(B,Table) makes the

value of Loc(B) equal to Table.

Reasoning about dynamic domains typically deals with three kinds of

computational problems:

• temporal projection (also known as prediction): given the values of flu-

ents in the initial state and a sequence of actions to be performed, what

1



can we say about the values of fluents in the resulting state?

• postdiction: given the values of fluents after performing a sequence of

actions, what can we say about the initial state?

• planning: find a sequence of actions that leads from a given initial state

to a given goal state.

An agent should be able to answer queries of these kinds in order to behave

intelligently in the world.

Developing methodologies for describing action domains in logic-based

formalisms and for solving computational problems described above are major

topics of research in artificial intelligence. After the publication of the paper

by McCarthy and Hayes [62], solving the frame problem remained one of the

key research challenges, leading to the invention of default theories [68], au-

toepistemic logic [64], and circumscription [60, 61]. One of the solutions to

the frame problem available today uses the answer set semantics of logic pro-

grams [27, 28]. Another approach to the frame problem is based on theories of

causality [25, 33, 44, 54, 59].

Action description languages are high level languages that allow us to

represent knowledge about actions more concisely than the situation calculus.

Many action description languages have been described in the literature, from

the well-known STRIPS [22], to more expressive ADL [66], to action languages

invented more recently such as B [30, Section 5], C [30, 34, Section 6], and

2



C+ [33]. The last three allow us to describe actions with indirect effects,

or “ramifications.” The semantics of B is closely related to the answer set

semantics of logic programs. The languages C and C+ are closely related to

the causal logic proposed in [59].

Theoretical work on developing logic-based formalisms and action lan-

guages has led to the implementation of systems that can efficiently automate

reasoning about actions. The “definite” fragment of C+ is implemented in

the Causal Calculator (ccalc)1, which translates a causal theory into a set of

propositional clauses and calls a SAT solver to answer queries. On the other

hand, definite causal theories can be represented by logic program under the

answer set semantics [58], so that they can be also implemented using compu-

tational methods of answer set programming (ASP). Systems of this kind are

coala [24] and cplus2asp [2, 8]. They transform an action description and a

query into a logic program and call an answer set solver, such as clingo with

its gounder gringo2, or smodels with its grounder lparse3 to compute its

stable models.

Some kinds of commonsense reasoning require the use of nondefinite

causal theories. It was pointed out in [14] that humans often define actions

as special cases of a more general action. For instance, the dictionary defines

action “push” as synonymous with “move by steady pressure.” To talk about

1www.cs.utexas.edu/user/tag/cc/
2http://potassco.sourceforge.net/
3http://www.tcs.hut.fi/Software/smodels/
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synonymy in causal logic, we need nondefinite rules.

Both stable models and causal theories were originally defined in propo-

sitional setting. These concepts were lifted to the first-order case in [44] and

[17, 20]. The first-order versions of these nonmonotonic formalisms are similar

to circumscription: each of them employs a syntactic transformation that turns

a first-order sentence into a stronger sentence, which may involve second-order

quantifiers. This additional generality is important for many applications to

the theory of commonsense reasoning.

The dissertation addresses problems of three kinds. First, we study

some mathematical properties of expressive action languages based on non-

monotonic causal logic that were not well understood until now. This includes

causal rules expressing synonymy, nondefinite causal rules, and nonproposi-

tional causal rules. In particular, we generalize existing translations from

nonmonotonic causal theories to logic programming under the answer set se-

mantics, so that it is possible to automate reasoning with a wider class of

causal theories by calling answer set solvers.

Second, we design and study a new action language BC, more expres-

sive in some ways than the languages proposed in the past. This includes

developing a framework that combines the most useful expressive possibilities

of the languages B and C, and using program completion to characterize the

effects of actions described in these languages.

Third, we illustrate the possibilities of the new action language by two

4



practical applications: to the dynamic domain of the Reactive Control System

of the space shuttle, and to the task planning of mobile robots. The system

cplus2asp is used for translating action descriptions into logic programs for

query-answering and automated planning.

The dissertation is organized as follows. Chapter 2 reviews earlier work

on reasoning about actions, in particular, nonmonotonic formalisms, and the

technical background for the research described in this dissertation: first-order

nonmonotonic causal logic [44] and first-order stable models [20].

Chapters 3–5 focuses on representing actions using causal logic. Chap-

ter 3 deals with the important concept of literal completion [44]. As pointed

out above, the semantics of causal theories involves second-order formulas. Lit-

eral completion is the process that allows us, in some cases, to turn them into

equivalent first-order formulas. It is, however, applicable to a causal theory

only if each of its “explainable” symbols is a predicate constant. Explainable

function symbols are often useful: they are needed, for instance, to talk about

non-Boolean fluents such as Loc(B) in the blocks world example above. We

show in this chapter how to extend the definition of literal completion and

the theorem on literal completion from [44] to causal theories with explainable

function symbols.

In Chapter 4, we generalize earlier work on translating causal theo-

ries into logic programs. First, we study causal rules with heads of the form

L1 ↔ L2, where L1 and L2 are literals. Such a rule says that there is a cause

for L1 and L2 to be equivalent (“synonymous”) under some condition, ex-

5



pressed by the body of the rule. As described above, synonymy rules play an

important role in the theory of commonsense reasoning in view of the fact that

humans often explain the meaning of words by referring to their synonyms.

Second, we extend the translations proposed earlier from propositional causal

rules to first-order causal rules.

In Chapter 5, we propose a way to eliminate explainable function sym-

bols in causal theories in favor of explainable predicate symbols. This is impor-

tant because the translation proposed in Chapter 4 is not directly applicable

to fluents with non-Boolean values, represented by function symbols. In clas-

sical logic, this process is well understood, but extending it to nonmonotonic

causal logic is not straightforward, especially if we want to arrive eventually

at an executable ASP program. In this chapter, we describe two procedures

for eliminating function constants from a causal theory in favor of predicate

constants, “general” and “definite.” Then we show how definite elimination

can help us turn a causal theory into executable ASP code, and how it can be

extended to rules that express the synonymy of function symbols.

Chapters 6–9 focus on representing actions by logic programs. In Chap-

ter 6, we define a new action description language, called BC, that combines

the attractive features of B and C+. This language, like B, can be imple-

mented using computational methods of answer set programming. The main

difference between the way causal rules are treated in B and in BC is similar

to the difference between inference rules and default rules. Informally speak-

ing, a default rule allows us to derive its conclusion from its premise if its

6



“justifications” can be consistently assumed; default logic [68] makes this idea

precise.

The semantics of BC is defined by transforming action descriptions into

logic programs under the stable model semantics. We define two translations

from BC into logic programming. Their target languages use slightly differ-

ent versions of the stable model semantics, but we show that they give the

same meaning to BC-descriptions. The first version uses nested occurrences

of negation as failure [49]; the second involves strong (classical) negation [28]

but does not require nesting.

Examples of formalizing commonsense domains discussed in this chap-

ter illustrate the expressive capabilities of BC and the use of answer set solvers

for the automation of reasoning about actions described in this language. We

study properties of language BC, including two theorems relating BC to B and

to C+.

Proofs of the theorems stated in Chapter 6 are presented in Chapter 7.

Chapter 8 is about conditions when stable models of a logic program

are characterized by the program’s completion in the sense of [11, 56]. This

problem was discussed in many papers by many researchers, beginning with

François Fages [15]. Our enhancement of Fages’ theorem, based on the concept

of a “rule dependency graph,” is motivated by examples of logic programs

describing dynamic domains. As a tool for proving Theorem 8.2.1 of that

chapter, in Chapter 9 we extend Fages’ theorem to infinitary propositional logic
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programs. Sections 9.1–9.3, in which we review Truszczynski’s definition of a

stable model for infinitary formulas [72] and prove a Fages-style theorem for

infinitary programs, can be read independently of the rest of this dissertation.

Chapters 10–12 describe practical applications of action language BC.

In these applications, dynamic domains are formalized as action descriptions,

and cplus2asp is used to translate action descriptions into logic program-

ming, so that automated planning and query-answering can be achieved by

calling an answer set solver. cplus2asp was first implemented as a tool for

translating ccalc input into the input language of gringo [8]. Its second

version also supports an input language with rules similar to the laws in BC.

In Chapter 10, we describe a subset of the input language of cplus2asp and

relate it to BC action descriptions. This input language extends BC by several

useful syntactical features, leading to more concise formalizations.

In Chapter 11 we formalize the Reactive Control System (RCS) of space

shuttle. The primary responsibility of the RCS system is for maneuvering the

space shuttle when it is in space. It consists of fuel and oxidizer tanks, valves

and other plumbing needed to provide propellant to the maneuvering jets of

the shuttle. It also consists of electronic circuitry: both to control valves in

the fuel lines and to prepare the jets to receive firing commands. Both human

and computer can perform a sequence of actions either by issuing commands

or manual flipping the switches to control the valves so that fuel and oxidizer

is pumped to jets to perform certain maneuver mission. USA/RCS-Advisor

[65] is a system such that the sequence of actions can be automatically gener-
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ated. In that system, the dynamic domain is formalized in logic programming.

Our formalization is based on the action language described in Chapter 10.

By comparing the cplus2asp encoding and the original ASP encoding, we

illustrate the expressiveness of BC.

Chapter 12 describes the use of BC to implementing a task planner for

a mobile robot that behaves intelligently in the newly built Dell and Gates

Computer Science Complex (GDC) of the University of Texas at Austin. The

project, named Building-Wide Intelligence and led by Professor Peter Stone,

aims to build a team of mobile robots that will help both the long-term in-

habitants and visitors to the building. The task planner allows the robot to

plan for several tasks, including collecting mails from people, asking about

locations of people in case of incomplete knowledge by human-robot interac-

tion, and learning action costs through experience. Execution monitoring and

replanning are implemented to handle execution failure. The task planner

implemented based on the approach is used on a robot operating in the 3NE

Wing of the GDC building.

Most work described in the dissertation is published [19, 37, 39, 40, 50–

53, 73].
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Chapter 2

Background

2.1 Earlier Work on Reasoning about Actions

The Situation Calculus [62] is a formalism for describing fluents and

actions based on first-order logic. As soon as it was proposed, researchers

noticed that it was not easy to use it because of the need to specify which

conditions are not affected by executing actions. In human common sense, the

general rule-of-thumb is:

an action can be assumed not to change a given property of a

situation unless there is evidence to the contrary.1

This is known as the commonsense law of inertia. It will allow us to derive,

for instance, that throwing a ball will not change its color. Reasoning with the

commonsense law of inertia is not monotonic: with more information added

later, some conclusions derived earlier can be retracted, because that informa-

tion may provide “evidence to the contrary.” For instance, the color of the

ball will change if it is thrown into a bucket of paint. However, first-order logic

is known to be monotonic, so that formalizing the commonsense law of inertia

requires a declarative language of a different kind.

1http://plato.stanford.edu/entries/frame-problem/
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John McCarthy [60, 61] proposed an approach to the frame problem

based on “abnormality theories”—first-order theories containing the special

predicate Ab. A model of an abnormality theory is called minimal if the

extent of Ab in it cannot be made smaller without violating the axioms.2

Minimal models are models “with few abnormal objects.” The minimality

condition can be expressed by a second-order formula, called circumscription.

McCarthy proposed a formalization of the commonsense law of inertia based

on circumscription, which expressed the idea of minimizing change. But his

approach turned out to be incorrect: the theory has unintended minimal mod-

els that do not have the desired properties. The fact that some unintuitive

models are not eliminated by minimizing change was proved using a counter

example known as the Yale Shooting Scenario [36].

Reiter’s default theories [68] can postulate both first-order theory ax-

ioms and defaults — expressions of the form

F : MG1 · · · MGn

H
,

where the premises F , the justifications G1, . . . , Gn and the conclusion H are

first-order formulas. Intuitively this default allows us to derive H from F if all

justifications can be consistently assumed. Reiter expressed the commonsense

law of inertia by a “frame default.”

2“Smaller” is understood here in the sense of set inclusion, not in the sense of comparing
cardinalities. To make the concept of a minimal model precise, we need to specify whether
the extents of predicates other than Ab may be changed as we try to make the extent of Ab
smaller; we do not go here into discussing this issue.
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Prolog rules with negation as failure are similar to Reiter’s defaults [6].

The concept of an answer set [27, 28] provided a precise semantics for nega-

tion as failure in Prolog rules and established an even closer relationship be-

tween Prolog rules and Reiter’s default theories. Logic programming under

the answer set semantics, known as answer set programming, was later used

to describe dynamic domains and reasoning about actions [29].

Theories of causality by Geffner [25] and Lin [54] allow us to express

causal dependencies between fluents. Nonmonotonic causal theories in the

sense of McCain and Turner [59] and their generalizations [33, 44] achieve this

goal also. They consist of causal laws of the form

F ⇐ G (2.1)

where F and G are formulas of the underlying signature. The semantics of

causal logic distinguishes between “being true” and “being caused”. Rule (2.1)

is read as “If G is true, then there is a cause for F to be true”. The models of

a causal theory are interpretations such that anything that is true is caused,

and vice versa. This is called the universal law of causation. This semantics,

like default logic and the answer set semantics, provide a concise solution to

the frame problem.

Other solutions to the frame problem were described in [71].
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2.2 Examples of Dynamic Domains

Example 2.2.1 (Toggling Switches). There are n light switches. Each of

them can be on or off, so the system has 2n states. The action of toggling a

switch changes its position from on to off and vice versa. Any combination of

actions can be concurrently executed.

Example 2.2.2 (Moving Objects). There are m objects and each of them can

be in one of n possible locations. The system has mn states. The action of

moving an object to a location changes its location, and any combination of

actions can be concurrently executed.

Example 2.2.3 (Blocks World). Consider n blocks. In any state, blocks are

arranged in towers resting on the table. For instance, if n = 2 then there are

3 possible states: Block 1 on top of Block 2; Block 2 on top of Block 1; both

blocks are on the table. The action of moving a block changes the location

of the block. A block with no block on its top can be moved either to table

or to the top of another block whose top is also clear. In this domain, it is

possible that some actions can be executed one-by-one but not concurrently.

For instance, it is not possible to move two blocks to the same location.

Example 2.2.4 (Leaking Container). Consider a container of capacity n that

has a leak, so that it loses k units of liquid per unit of time, unless more liquid

is added. With the discrete model of time, the system has n + 1 states that

describe the amount of liquid inside the container, from 0 to n. The action of

filling the container makes the container full: the amount of liquid is turned
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to n. This domain does not satisfy the commonsense law of inertia: its state

changes even when no actions are executed.

Work on representing dynamic domains has been applied also to much

larger, realistic domains, and found important practical applications, for in-

stance, the decision support system for the space shuttle discussed in the

introduction.

2.3 Review of Causal Logic

2.3.1 Syntax and Semantics

According to [44], a first-order causal theory T is defined by

• a list c of distinct function and/or predicate constants,3 called the ex-

plainable symbols of T , and

• a finite set of causal rules of the form F ⇐ G, where F and G are

first-order formulas.

The semantics of causal theories is defined by a syntactic transformation

that is somewhat similar to circumscription [61]; its result is usually a second-

order formula. For each member c of c, choose a new variable υc similar to c,4

3We view object constants as function constants of arity 0, so that they are allowed in c.
Similarly, propositional symbols are viewed as predicate constants of arity 0. Equality, on
the other hand, may not be included in c.

4That is to say, if c is a function constant then υc should be a function variable of the
same arity; if c is a predicate constant then υc should be a predicate variable of the same
arity.
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and let υc stand for the list of all these variables. By T †(υc) we denote the

conjunction of the formulas

∀x(G→ F c
υc) (2.2)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G. (The

expression F c
υc expresses that the result of substituting the variables υc for the

corresponding constants c in F .) We view T as shorthand for the sentence

∀υc(T †(υc)↔ (υc = c)). (2.3)

(By υc = c we denote the conjunction of the formulas υc = c for all members c

of the tuple c.) Accordingly, by a model of the causal theory T we understand a

model of (2.3) in the sense of classical logic. The models of T are characterized,

informally speaking, by the fact that the interpretation of the explainable

symbols c in the model is the only interpretation of these symbols that is

“causally explained” by the rules of T .

In Section 2.3.5 we will show how the dynamic domain from Exam-

ple 2.2.1 and 2.2.2 above can be described in causal logic.

2.3.2 Literal Completion

Let T be a causal theory such that all its explainable symbols are

predicate constants. We say that T is definite if the heads of its rules are

literals or do not contain explainable symbols. Literal completion introduced

in [44] allows us to turn a definite causal theory into equivalent first-order

sentence. In this review, we impose a more restrictive condition, similar to the
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definition of Clark normal form in [20, Section 6.1]. This is not a significant

limitation, because any definite causal theory can be converted to this normal

form by equivalent transformations.

We say that T is in Clark normal form if all its explainable symbols are

predicate symbols, and it consists of

• rules of the form

p(x)⇐ G(x), (2.4)

one for each explainable predicate symbol p, where x is a tuple of distinct

variables, and G(x) is a formula without any free variables other than

the members of x,

• rules of the form

¬p(x)⇐ G(x), (2.5)

one for each explainable predicate symbol p, where x and G(x) are as

above, and

• rules without explainable symbols in the head.

The literal completion of a causal theory T in Clark normal form is the

conjunction of the sentences

∀x(p(x)↔ G(x)) (2.6)

for all rules of T of the form (2.4), the sentences

∀x(¬p(x)↔ G(x)) (2.7)
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for all rules of T of the form (2.5), and the sentences

∀̃(G→ F ) (2.8)

(the symbol ∀̃ expresses that universal closure) for all rules F ⇐ G of T

without explainable symbols in the head.

Fact 2.3.1. [44, Completion Theorem] Any causal theory in Clark normal

form is equivalent to its literal completion.

2.3.3 Examples

Example 2.3.1. Consider the propositional causal theory T0

p ⇐ ¬q
¬q ⇐ p

(2.9)

where p and q are explainable. According to the semantics of causal logic, T0

is shorthand for the sentence

∀υp∀υq((¬q → υp) ∧ (p→ ¬υq)↔ υp = p ∧ υq = q)).

The literal completion of T0 is the formula

(p↔ ¬q) ∧ (¬p↔ ⊥) ∧ (¬q ↔ p) ∧ (q ↔ ⊥)

which is equivalent to p ∧ ¬q.

Example 2.3.2. Let T1 be the causal theory consisting of two rules:

p(a)⇐ >
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(the symbols ⊥ and > denote the logical constant false and true) and

¬p(x)⇐ ¬p(x),

with the explainable symbol p. The first rule says that there is a cause for a

to have property p. The second rule says that if an object does not have

property p then there is a cause for that; including this rule in a causal theory

has, informally speaking, the same effect as saying that p is false by default

[44, Section 3]. In this case, T †(υp) is

υp(a) ∧ ∀x(¬p(x)→ ¬υp(x)),

so that T is understood as shorthand for the sentence

∀υp(υp(a) ∧ ∀x(¬p(x)→ ¬υp(x))↔ ∀x(υp(x)↔ p(x))).

The literal completion of this theory is

∀x(p(x)↔ x = a) ∧ ∀x(¬p(x)↔ ¬p(x)). (2.10)

Example 2.3.3. Causal theory T2 has two rules:

p(x) ⇐ q(x),
¬p(x) ⇐ ¬p(x),

(2.11)

and the predicate constant p is explainable. According to the semantics of

causal logic, T1 is shorthand for the sentence

∀υp(∀x(q(x)→ υp(x)) ∧ ∀x(¬p(x)→ υp(x)) ↔ υp = p),

where υp is a predicate variable. Its literal completion, in simplified form, is

∀x(p(x)↔ q(x)).
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2.3.4 Explainable Function Symbols

Recall that in a first-order causal theory, function symbols (in particu-

lar, object constants) can be explainable as well.

Example 2.3.4. Causal theory T3 has the rules

⊥ ⇐ a = b,
c = a ⇐ c = a,
c = b ⇐ q,

and the object constant c is explainable. The first rule of T3 says that a is

different from b. The second rule (“if c = a then there is a cause for this”)

expresses, in the language of causal logic, that by default c = a. The last

rule says that there is a cause for c to be equal to b if q is true. Theory T3 is

shorthand for the sentence

∀υc((a = b→ ⊥) ∧ (c = a→ υc = a) ∧ (q → υc = b) ↔ υc = c)

where υc is an object variable. This formula is equivalent to

a 6= b ∧ (q → c = b) ∧ (¬q → c = a). (2.12)

The second conjunctive term shows that if q holds then the value of c is different

from its default value a.

However, this theory is not definite, because of its explainable function

symbol c. The process of literal completion is not applicable to it. In Chap-

ter 3 we will generalize the definition of literal completion to allow explainable

function symbols, which will allow us to use a procedure similar to the one

introduced in [44] to turn causal theories such as T3 into a first-order sentence.
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We will also return to this example in Chapter 5 to illustrate the process

of eliminating explainable functions in favor of explainable predicates.

2.3.5 Describing Dynamic Domains in Causal Logic

Example 2.3.5. Consider Example 2.2.1 (toggling switches). For simplicity

we will only consider the time instants 0,1 and the execution of the toggle

action at time 0. We will write on i(x) to express that switch x is on at time i,

and toggle(x) to express that switch x is toggled at time 0. This dynamic

domain can be formalized by the following causal rules:

on1(x) ⇐ toggle(x) ∧ ¬on0(x),
¬on1(x) ⇐ toggle(x) ∧ on0(x),

on1(x) ⇐ on0(x) ∧ on1(x),
¬on1(x) ⇐ ¬on0(x) ∧ ¬on1(x).

(2.13)

The first pair of rules describes the effect of toggling a switch x: this action

causes the fluent on(x) at time 1 to take the value opposite to its value at

time 0. The second pair solves the frame problem for the fluent on(x) by

postulating that if the value of that fluent at time 1 is equal to its previous

value then there is a cause for this. Inertia, in the sense of commonsense

reasoning, is the cause, and these two rules represents commonsense law of

inertia.The predicate symbol on1 is the only explainable symbol.

Using literal completion, we can check that (2.13) is equivalent to

∀x(on1(x)↔ ((on0(x) ∧ ¬toggle(x)) ∨ (¬on0(x) ∧ toggle(x)))). (2.14)

In Chapter 4 we will see how this causal theory can be translated into the
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language of answer set programming, and use the stable model semantics to

characterize its model which is equivalent to (2.14).

We will discuss also the elaboration of this example that contains, in

addition to (2.13), the rule

dark ↔ ¬on1(myswitch)⇐ >. (2.15)

This is a nondefinite “synonymy” rule, and we will be able to translate rules

like this into ASP as well.

Example 2.3.6. Consider Example 2.2.2 (moving objects) again, for the time

instants 0,1. We would like to take into account the fact that the domain

involves things of several kinds: movable objects, places, and time instants.

To this end, we include the auxiliary symbol none, which is used as the value

of loc(x, t) when the arguments are “not of the right kind” (that is, when x is

not a movable object or when t is not a time instant). The rules of the causal

theory T4 are

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj (x) ∧ place(y) ⇐ move(x, y),
loc(x, 0) = y ⇐ loc(x, 0) = y ∧ obj (x) ∧ place(y),
loc(x, 1) = y ⇐ move(x, y),
loc(x, 1) = y ⇐ loc(x, 0) = y ∧ loc(x, 1) = y ∧ obj (x) ∧ place(y),

loc(x, t) = none ⇐ ¬obj (x),
loc(x, t) = none ⇐ t 6= 0 ∧ t 6= 1,

and the function constant loc is explainable. The rule with loc(x, 0) in the

head allows an object x to be initially anywhere: whichever place is the value
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of loc(x, 0), there is a cause for that. The next two rules describe the effect

of moving objects and the inertia property of locations. According to the

semantics of causal logic, T4 is shorthand for the second-order formula

∀υloc(T †4 (υloc)↔ (υloc = loc)),

where υloc is a binary function variable.

Due to the presence of explainable function symbol loc, it is not pos-

sible to apply literal completion to transform it into an equivalent first-order

sentence. In Chapter 3 we will accomplish that using the generalized literal

completion.

To show that computing the model of T4 can be automated, we will, in

Chapter 5, eliminate explainable function symbols loc in favor of an auxiliary

explainable predicate symbol at , thus turn this causal theory into a definite

causal theory. This will not only allow us to use literal completion to charac-

terize its models, but will also pave the way to turning it into a logic program,

by the translation proposed in Section 4.3. Executable code shown in Section

5.6.2 shows that a model of T4 can be computed by calling answer set solvers.

2.3.6 Disjoint Causal Theories

About causal theories T1, T2 with sets c1, c2 of explainable symbols we

say that they are disjoint if

• c1 is disjoint from c2, and
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• the symbols in c1 do not occur in the heads of the rules of T2, and the

symbols in c2 do not occur in the heads of the rules of T1

[44, Section 6]. For any pairwise disjoint causal theories T1, . . . , Tm, define

their union to be the causal theory obtained by combining their rules and

their explainable symbols.

Fact 2.3.2. [44, Lemma 1] The union of pairwise disjoint causal theories

T1, . . . , Tm is equivalent to the conjunction T1 ∧ . . . ∧ Tm.

2.4 Review of Stable Models

2.4.1 Definition of Stable Models

We adopt the view that first-order formulas are formed using the propo-

sitional connectives:

>, ⊥, ¬, ∧, ∨, →

(as well as the quantifiers ∀, ∃). The symbol ¬ corresponds to negation as

failure (“not” in ASP programs) and not to strong (classical) negation in the

sense of [28].

Stable models are only defined here for sentences of a special syntactic

form. A first-order sentence is a rule5 if it has the form ∀̃(F → G) and has no

occurrences of → other than the one explicitly shown. This expression can be

abbreviated as G ← F . Rules of the form G ← > will be abbreviated as G.

5Or program rule, to distinguish it from causal rules in the sense of Section 2.3.1.
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Rules of the form ⊥ ← F will be abbreviated as ← F ; such rules are called

constraints. If the head of a rule has the form p(t) ∨ ¬p(t), then it can be

abbreviated as {p(t)}. Such rules are called choice rules. A logic program is a

conjunction of rules.

The definition of a stable model below is more limited than the def-

inition from [20] because it is only applicable to programs, not to arbitrary

sentences. For instance, it does not cover the formulas (p → q) → r and

(p→ q) ∨ r. On the other hand, it is simpler than the general definition, and

it is sufficient for this dissertation.

We need the following notation from [43]. If p and q are predicate

constants of the same arity then p ≤ q stands for the formula

∀x(p(x)→ q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn

and q1, . . . , qn of predicate constants then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q)∧¬(q ≤ p). In second-order logic, we apply the

same notation to tuples of predicate variables.

Let p be a list of distinct predicate constants; members of p will be

called intensional predicates.6 For each p ∈ p, choose a predicate variable υp

6This list usually consists of all predicate symbols occurring in the heads of rules; those
are the predicates that we “intend to characterize” by the rules of the program.
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of the same arity, and let υp stand for the list of all these variables. For any

logic program F , by SMp[F ] we denote the second-order sentence

F ∧ ¬∃υp((υp < p) ∧ F �(υp)), (2.16)

where F �(υp) is the formula obtained from F by replacing, for every p ∈ p,

each occurrence of p that is not in the scope of negation with υp. A model of F

is stable (relative to the set p of intensional predicates) if it satisfies SMp[F ].

Example 2.4.1. Let F be the propositional formula ¬p→ q. If both p and q

are intensional then F �(υp, υq) is

¬p→ υq,

so that SMpq[F ] is

(¬p→ q) ∧ ¬∃(υp)(υq)(((υp, υq) < (p, q)) ∧ (¬p→ υq)).

This formula is equivalent to ¬p∧ q. Consequently F has one stable model: p

is false and q is true.

Example 2.4.2. Let F be the formula

∀x(¬p(x)→ (q(x) ∨ ¬q(x))) (2.17)

If we take q to be the only intensional predicate then F �(υq) is

∀x(¬p(x)→ (υq(x) ∨ ¬q(x))).

Consequently SMq[F ] is

∀x(¬p(x)→ (q(x)∨¬q(x)))∧ ¬∃υq((υq < q)∧∀x(¬p(x)→ (υq(x)∨¬q(x)))).
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The first conjunctive term here is logically valid and can be dropped. The

second is equivalent to the first-order formula ¬∃x(p(x)∧ q(x)), which reflects

the intuitive meaning of choice: q is an arbitrary set disjoint from p.

If two formulas F and G are intuitionistically equivalent then they

have the same stable models. Moreover, they are “strongly equivalent”: for

any formula H, F ∧H and G ∧H have the same stable models [20].

2.4.2 Describing Dynamic Domains by Logic Programs

In Section 2.3.5, we saw how moving objects can be described in causal

logic. Now we will represent the same domain in logic programming.

Example 2.4.3. The signature of the logic program M consists of

• the object constants 0̂, . . . , k̂, where k is a fixed nonnegative integer;

• the unary predicate constants object , place, and step; they correspond

to the three types of individuals under consideration;

• the binary predicate constant next ; it describes the temporal order of

steps;

• the ternary predicate constants at and move; they represent the fluents

and actions that we are interested in.

The predicate constants step, next , and at are intensional; the other three are

not. The program consists of the following rules:
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(i) the facts

step(0̂), step(1̂), . . . step(k̂);

next(0̂, 1̂), next(1̂, 2̂), . . . , next(k̂−1, k̂);

(ii) the unique name constraints

← î = ĵ (1 ≤ i < j ≤ k);

(iii) the constraints describing the arguments of at and move:

← at(x, y, z) ∧ ¬(object(x) ∧ place(y) ∧ step(z))

and

← move(x, y, z) ∧ ¬(object(x) ∧ place(y) ∧ step(z));

(iv) the uniqueness of location constraint

← at(x, y1, z) ∧ at(x, y2, z) ∧ y1 6= y2;

(v) the existence of location constraint

← object(x) ∧ step(z) ∧ ¬∃y at(x, y, z);

(vi) the rule expressing the effect of moving an object:

at(x, y, u)← move(x, y, z) ∧ next(z, u);

(vii) the choice rule expressing that initially an object can be anywhere:

{at(x, y, 0)} ← object(x) ∧ place(y);
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(viii) the choice rule expressing the commonsense law of inertia:7

{at(x, y, u)} ← at(x, y, z) ∧ next(z, u).

In Chapter 6 we define an action language BC whose semantics is based

on logic programming. We use it to describe dynamic domains: blocks world

(Example 2.2.3) and leaking container (Example 2.2.4). By calling answer set

solvers, reasoning about the dynamic domains can be automated.

2.4.3 Properties of Stable Models

Here are some general properties of stable models.

For a list p of predicate symbols, Choice(p) stands for the conjunction

of the choice formulas

∀x(p(x) ∨ ¬p(x)),

where x is a tuple of distinct variables, for all members p of list p. In particular,

if p is a propositional symbol then Choice(p) stands for p ∨ ¬p.

Fact 2.4.1. For any program F and any disjoint lists p, q of distinct predicate

constants,

(a) SM[F ;pq] entails SM[F ;p],

(b) SM[F ∧ Choice(q);pq] is equivalent to SM[F ;p].

7This representation of inertia follows the example of [5, Figure 1].
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Recall that an occurrence of a symbol in a formula is F positive if

the number of implications containing that occurrence in the antecedent is

even, and strictly positive if that number is 0. (Recall that we treat ¬F as

an abbreviation for the implication F → ⊥.) We say that an occurrence of a

predicate constant in a formula is negated if it belongs to a subformula of the

form ¬F (that is, F → ⊥), and nonnegated otherwise. For instance, in the

formula

p(x) ∧ ¬r(x)→ p(x) (2.18)

both p and r are positive, p is strictly positive, and r is negated.

Fact 2.4.2. For any programs F and G and any list p of predicate symbols,

(a) SM[F ;p] ∧G entails SM[F ∧G;p],

(b) if G does not contain strictly positive occurrences of symbols from p then

SM[F ;p] ∧G is equivalent to SM[F ∧G;p].

Assertion (a) is immediate from the definition of SM. Assertion (b) is

proved in [20, Section 5.1].

Fact 2.4.3. For any programs F and G and any list p of predicate symbols, if

the equivalence F ↔ G can be derived in intuitionistic logic from the formulas

Choice(q) for the predicate symbols q that do not belong to p then SM[F ;p] is

equivalent to SM[G;p].

This is a weaker form of [20, Theorem 5].
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In the following we introduce the splitting theorem from [21]. For a

first-order formula of F , the predicate dependency graph of F relative to the

list of p of intensional predicates, is the directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q, for some rule G→ H of F ,

– p has a strictly positive occurrence in H, and

– q has a positive nonnegated occurrence in G.

For instance, the predicate dependency graph of (2.18) relative to p, q, r

has one edge, from p to q. We will denote the predicate dependency graph of

F relative to p by DGp[F ].

About a formula F we say that it is negative on a tuple p of predicate

constants if members of p have no strictly positive occurrences in F .

Fact 2.4.4. [21, Splitting Theorem] Let F , G be programs, and let p, q be

disjoint tuples of distinct predicate constants. If

• each strongly connected component of DGpq[F ∧G] is a subset of p or a

subset of q,

• F is negative on q, and

• G is negative on p,

then SMpq[F ∧G] is equivalent to

SMp[F ] ∧ SMq[G].
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2.4.4 Lloyd-Topor Programs and Completion

The process of completing a logic program was introduced in [11] and

generalized in [56]. A Lloyd-Topor program is a program consisting of rules of

the form

p(t)← G, (2.19)

where t is a tuple of terms, and G is a formula.

Let Π be a Lloyd-Topor program, and p a predicate constant (other

than equality). Let

p(ti)← Gi (i = 1, 2, . . . ) (2.20)

be all rules of Π that contain p in the head. The definition of p in Π is the

rule

p(x)←
∨
i

∃yi(x = ti ∧Gi), (2.21)

where x is a list of distinct variables not appearing in any of the rules (2.20),

and yi is the list of free variables of (2.20).8 The completed definition of p in

Π is the formula

∀x

(
p(x)↔

∨
i

∃yi(x = ti ∧Gi)

)
. (2.22)

For instance, the completed definitions of p and q in program

p(a),
q(b),
p(x)← q(x)

(2.23)

8By x = ti we denote the conjunction of the equalities between members of the tuple x
and the corresponding members of the tuple ti.
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are the formulas

∀x1(p(x1)↔ x1 = a ∨ ∃x(x1 = x ∧ q(x))),
∀x1(q(x1)↔ x1 = b),

which can be equivalently rewritten as

∀x(p(x)↔ x = a ∨ q(x)),
∀x(q(x)↔ x = b).

(2.24)

By Comp[Π] we denote the conjunction of the completed definitions of

all predicate constants p in Π. This sentence is similar to the completion of Π

in the sense of [57, Section 2], except that it does not include Clark equality

axioms.

Program completion can be used to characterize the stable models of

logic programs, if they are “tight.” We will review now the definition of

tightness from [20, Section 7.3]. In application to a Lloyd-Topor program Π,

when all predicate constants occurring in Π are treated as intensional, that

definition can be stated as follows.

The predicate dependency graph of Π is the directed graph that has

• all predicate constants occurring in Π as its vertices, and

• an edge from p to q whenever Π contains a rule (2.19) with p in the head

such that its body G has a positive nonnegated occurrence of q.

We say that Π is tight if the predicate dependency graph of Π is acyclic.
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For example, the predicate dependency graph of program (2.23) has a

single edge, from p to q. The predicate dependency graph of program

p(x)← q(x),
q(a)← p(b).

(2.25)

has two edges, from p to q and from q to p. The predicate dependency graph

of the program

p(a, b)
q(x, y)← p(y, x) ∧ ¬p(x, y)

(2.26)

has a single edge, from q to p (because one of the occurrences of p in the body

of the second rule is nonnegated). The predicate dependency graph of the

program
p(x)← q(x),
q(x)← r(x),
r(x)← s(x)

(2.27)

has 3 edges:

p −→ q −→ r −→ s.

Programs (2.23), (2.26) and (2.27) are tight; program (2.25) is not.

Fact 2.4.5. If a Lloyd-Topor program Π is tight then SM[Π] is equivalent to

Comp[Π].

This is an easy corollary to a theorem from [20]. Indeed, consider the

set Π′ of the definitions (2.21) of all predicate constants p in Π. It can be viewed

as a formula in Clark normal form in the sense of [20, Section 6.1]. It is tight,

because it has the same predicate dependency graph as Π. By Theorem 11

from [20], SM[Π′] is equivalent to the completion of Π′ in the sense of [20,
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Section 6.1], which is identical to Comp[Π]. It remains to observe that Π is

intuitionistically equivalent to Π′, so that SM[Π] is equivalent to SM[Π′] [20,

Section 5.1].

To illustrate limitations of Fact 2.4.5, note that it cannot be used to

characterize the stable models of the program M in Example 2.4.3 in terms

of completion. There are two reasons: first, M contains choice rules and

constraints, which are not allowed in a Lloyd-Topor program; second, M is

not tight. In Chapter 8 we generalize the notion of tightness using a new

concept of “rule dependency graph” instead of the less informative “predicate

dependency graph.” We also show how to use this concept to characterize the

stable model of some programs describing dynamic domains such as M .

2.5 Strong Negation

In many ASP programs, we distinguish between two kinds of negation:

negation as failure discussed above, and strong (classical) negation [32].

In this dissertation, we will refer to strong negation only in the context

of propositional programs. We will distinguish between propositional atoms

of two kinds, positive and negative, and assume that each negative atom is

an expression of the form ∼ A, where A is a positive atom. The symbol ∼

represents strong negation. A stable model of a logic program with strong

negation is called its answer set if it does not contain “complementary” pairs

of atoms A,∼A.
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Answer set solvers can be used for generating answer sets of programs of

two kinds of negation. In their input languages, negation as failure is denoted

by not, and strong negation is denoted by -.
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Chapter 3

Functional Completion

Literal completion introduced in Section 2.3.2 is applicable to a theory

only if each of its explainable symbols is a predicate constant; function con-

stants are allowed in the signature, but they cannot be explainable. As we

mentioned in the Introduction, explainable function symbols are often useful.

It is possible, of course, to replace the function symbol loc in Example 2.3.6

by the predicate symbol at as in Example 2.4.3, but it would make the rep-

resentation less concise. The advantages of using functional notation in such

cases are the same as the advantages of writing x+ y = z in formal arithmetic

in comparison with sum(x, y, z): there is no need to postulate the existence

and uniqueness of the value of the function, and many ideas can be expressed

more concisely. For instance, we can write

loc(x1, t) = loc(x2, t)

instead of

∃y(at(x1, y, t) ∧ at(x2, y, t)).

Our goal here is to extend the definition of literal completion and the

theorem on literal completion reviewed above (Fact (2.3.1)) to causal theories

with explainable function symbols.
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3.1 Clark Normal Form Extended to Explainable Func-
tions

The definition of Clark normal form in Section 2.3.2 is extended to

causal theories with explainable functions by adding an extra clause. About a

causal theory T we say that it is in Clark normal form if it consists of

• rules of the form (2.4), one for each explainable predicate symbol p,

• rules of the form (2.5), one for each explainable predicate symbol p,

• rules of the form

f(x) = y ⇐ G(x, y), (3.1)

one for each explainable function symbol f , where x, y is a tuple of

distinct variables, and G(x, y) is a formula without any free variables

other than the members of x, y,

• rules without explainable symbols in the head.

In many cases, a causal theory can be transformed into an equivalent

causal theory in Clark normal form. For instance, the causal theory T3 in

Example 2.3.4 can be converted to Clark normal form by rewriting its last two

rules as

c = x ⇐ x = a ∧ c = a,
c = x ⇐ x = b ∧ q

and then merging them into one rule:

c = x⇐ (x = a ∧ c = a) ∨ (x = b ∧ q). (3.2)
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It is clear that the part of T †3 (υc) contributed by the last two rules of T3

is logically equivalent to the part contributed by (3.2). Similarly, the Clark

normal form of T4 in Example 2.3.6 is

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj (x) ∧ place(y) ⇐ move(x, y),
loc(x, t) = y ⇐ (t = 0 ∧ loc(x, 0) = y ∧ obj (x) ∧ place(y))

∨(t = 1 ∧move(x, y))
∨(t = 1 ∧ loc(x, 0) = y ∧ loc(x, 1) = y
∧obj (x) ∧ place(y))

∨(y = none ∧ ¬obj (x))
∨(y = none ∧ t 6= 0 ∧ t 6= 1).

(3.3)

3.2 Literal Completion Extended to Explainable Func-
tions

Functional completion is a generalization of literal completion to causal

theories in Clark normal form that may include explainable functions. The

functional completion of a causal theory T in Clark normal form is the con-

junction of

• sentences (2.6) for all rules of T of the form (2.4),

• sentences (2.7) for all rules of T of the form (2.5),

• sentences

∀̃(f(x) = y ↔ G(x, y))

for all rules of T of the form (3.1), and
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• sentences (2.8) for all rules F ⇐ G of T without explainable symbols in

the heads.

We will denote the functional completion of T by Comp[T ].

Theorem 3.2.1. For any causal theory T in Clark normal form,

∃x1x2(x1 6= x2) (3.4)

entails T ↔ Comp[T ].

Corollary 3.2.2. If a causal theory in Clark normal form contains a rule of

the form ⊥ ⇐ t1 = t2 then it is equivalent to its functional completion.

Consider, for instance, theory T3 in Example 2.3.4. As discussed above,

its Clark normal form consists of rules (3.2) and

⊥ ⇐ a = b.

Its functional completion is the conjunction of the formulas

∀x(c = x↔ (x = a ∧ c = a) ∨ (x = b ∧ q))

and a = b→ ⊥ (that is, a 6= b). By the corollary, this conjunction is equivalent

to T3.
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The Clark normal form of T4 is (3.3). The functional completion of this

theory is the conjunction of the formulas

0 6= 1, 0 6= none, 1 6= none,
∀xy(move(x, y)→ obj (x) ∧ place(y)),

∀xty(loc(x, t) = y ↔ (t = 0 ∧ loc(x, 0) = y ∧ obj (x) ∧ place(y))
∨(t = 1 ∧move(x, y))
∨(t = 1 ∧ loc(x, 0) = y ∧ loc(x, 1) = y
∧obj (x) ∧ place(y))

∨(y = none ∧ ¬obj (x))
∨(y = none ∧ t 6= 0 ∧ t 6= 1)).

By the corollary, this conjunction is equivalent to T4. Using equivalent trans-

formations in first-order-logic, we can rewrite it as the conjunction of the

formulas

0 6= 1, 0 6= none, 1 6= none,
∀xy(move(x, y)→ obj (x) ∧ place(y)),
∀x(obj (x)→ place(loc(x, 0))),

∀xt((¬obj (x) ∨ (t 6= 0 ∧ t 6= 1))→ loc(x, t) = none),
∀xy(obj (x)→

loc(x, 1) = y ↔ (move(x, y) ∨ (loc(x, 0) = y ∧ ¬∃w move(x,w)))).

The last of these formulas characterizes the location of an object at time 1 in

terms of its location at time 0 and the actions that have been executed. In

this sense, it is similar to successor state axioms as defined in [69].

Without the assumption that the theory contains a rule ⊥ ⇐ t1 = t2

the assertion of the corollary would be incorrect. For instance, consider the

causal theory consisting of one rule

c = x⇐ ⊥,

where c is an explainable object constant. This theory is equivalent to

∀υc(υc = c);
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its completion is equivalent to ⊥.

3.3 Proof of Theorem 3.2.1

3.3.1 A Special Case

We will first prove the theorem from Section 3.2 for the special case

when T consists of a single rule (3.1), where f is explainable. We need to

show that (3.4) entails the equivalence between

∀υf(∀xy(G(x, y)→ υf(x) = y)↔ υf = f) (3.5)

and

∀xy(f(x) = y ↔ G(x, y)). (3.6)

Right-to-left: under assumption (3.6), formula (3.5) is equivalent to the logi-

cally valid formula

∀υf(∀xy(f(x) = y → υf(x) = y)↔ υf = f).

Left-to-right: assume (3.5), that is,

∀υf(∀xy(G(x, y)→ υf(x) = y)→ υf = f) (3.7)

and

∀xy(G(x, y)→ f(x) = y). (3.8)

The last formula is one half of equivalence (3.6). It remains to derive the

other half, that is, G(x, f(x)). Assume that for some x0, ¬G(x0, f(x0)). By
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(3.4), there exists a y0 different from f(x0). We will prove that the function υf

defined by the condition

υf(x0) = y0 ∧ ∀x(x 6= x0 → υf(x) = f(x))

satisfies the antecedent of (3.7). Assume G(x, y). Since ¬G(x0, y), x 6= x0.

Then υf(x) = f(x). On the other hand, by (3.8), f(x) = y. Consequently

υf(x) = y; the antecedent of (3.7) is proved. It follows that the consequent

υf = f holds, so that y0 = υf(x0) = f(x0). This is impossible by the choice

of y0.

3.3.2 The General Case

Let T be a causal theory in Clark normal form, and let f1, . . . , fm be

its explainable function symbols. For each i = 1, . . . ,m, let Ti be the causal

theory whose only rule is the rule of T that contains fi in the head, with fi

as its only explainable symbol. Let Tm+1 be the causal theory whose rules are

the rules of T that do not contain explainable function symbols in their heads,

and whose set of explainable symbols is the set of all explainable predicate

symbols of T . It is clear that theories T1, . . . , Tm, Tm+1 are pairwise disjoint,

and that their union is T . By Fact 2.3.2, it follows that T is equivalent to

T1∧ . . . Tm∧Tm+1. According to the special case proved in Section 3.3.1, (3.4)

entails

Ti ↔ Comp[Ti] (i = 1, . . . ,m).
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By Fact 2.3.1, Tm+1 is equivalent to Comp[Tm+1]. Consequently (3.4) entails

T ↔ Comp[T1] ∧ · · · ∧ Comp[Tm] ∧ Comp[Tm+1].

It remains to observe that the right-hand side of this equivalence is Comp[T ].

To sum up, the process of completion, extended in this chapter to flu-

ents represented by function symbols, allows us in some cases to turn a causal

theory into an equivalent first-order formula. This possibility is important

because, semantically, first-order languages are simpler and better understood

than many nonmonotonic languages. The completion process is useful also be-

cause it clarifies the relationship between causal logic and monotonic solutions

to the frame problem, such as those based on the approach of [69].
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Chapter 4

Representing First-order Causal Theories in

Logic Programming

In this chapter we will generalize McCain’s translation [58] and Ferraris’

translation [16] from causal theories to logic programming in several ways.

First, we discard the requirement that the bodies of the given causal rules be

conjunctions of literals. Second, instead of requiring that the head of each

causal rule be a literal, we allow the heads to be disjunctions of literals. In

this more general setting, the logic program corresponding to the given causal

theory becomes disjunctive as well.

Third, we study causal rules with heads of the form L1 ↔ L2, where L1

and L2 are literals. Such a rule says that there is a cause for L1 and L2 to be

equivalent (“synonymous”) under some condition, expressed by the body of

the rule. As discussed in Introduction, synonymy rules play an important role

in the theory of commonsense reasoning in view of the fact that humans often

explain the meaning of words by referring to their synonyms. A synonymy

rule

L1 ↔ L2 ⇐ G (4.1)
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can be translated into logic programming by rewriting it as the pair of rules

L1 ∨ L2 ⇐ G
L1 ∨ L2 ⇐ G

where L expresses that the literal complementary to L, and then using our

extension of McCain’s translation to rules with disjunctive heads. It turns

out, however, that there is no need to use disjunctive logic programs in the

case of synonymy rules. If, for instance, G in (4.1) is an atom then the following

group of nondisjunctive rules with strong negation will do:

(L1)¬∼ ← (L2)¬∼ ∧ ¬ ∼G
(L2)¬∼ ← (L1)¬∼ ∧ ¬ ∼G
(L1)¬∼ ← (L2)¬∼ ∧ ¬ ∼G
(L2)¬∼ ← (L1)¬∼ ∧ ¬ ∼G.

where L¬∼ expresses that the atom obtained by replacing ¬ in an literal L by

∼.

Finally, we extend the translation from propositional causal rules to

first-order causal rules in the sense of [44]. This version of causal logic is

useful for defining the semantics of variables in action descriptions [48].

4.1 McCain’s Translation Revisited

In this section we assume that a causal theory T is propositional and

all its atoms are explainable.
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4.1.1 Basic McCain’s Translation

McCain’s translation is applicable to a causal theory T if the head of

each rule of T is a literal, and the body is a conjunction of literals:

L⇐ A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ¬An. (4.2)

The corresponding logic program consists of the logic programming rules

L¬∼ ← ¬ ∼A1 ∧ · · · ∧ ¬ ∼Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (4.3)

for all rules (4.2) of T . According to Proposition 6.7 from [58], complete answer

sets of this logic program are identical to the models of T . (A set of atoms

is complete if it contains exactly one member of each complementary pair of

atoms A,∼ A. We identify a complete set of atoms with the corresponding

truth assignment.)

For instance, McCain’s translation turns causal theory T0 in Exam-

ple 2.3.1 into

p ← ¬q
∼q ← ¬ ∼p.

The only answer set of this program is {p,∼ q}. It is complete, and it corre-

sponds to the model of causal theory T0.

4.1.2 Incorporating Constraints

In causal logic, a constraint is a rule with the head⊥ (falsity). McCain’s

translation can be easily extended to constraints with a conjunction of literals
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in the body—causal rules of the form

⊥ ⇐ A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An. (4.4)

In the language of logic programming, (4.4) can be represented by a rule similar

to (4.3):

⊥ ← ¬ ∼A1 ∧ · · · ∧ ¬ ∼Am ∧ ¬Am+1 ∧ · · · ∧ ¬An. (4.5)

Furthermore, each of the combinations ¬ ∼ in (4.5) can be dropped without

destroying the validity of the translation; that is to say, the rule

⊥ ← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (4.6)

can be used instead of (4.5).

4.1.3 Eliminating Strong Negation

A negative atom ∼A can be replaced in a logic program by a (regular)

atom Â if we add a constraint that doesn’t allow A and Â to be in the same

stable model. In this way, we arrive at the modified McCain’s translation of a

causal theory T that does not use strong negation.

The modified McCain translation of a causal theory consisting of rules

of the forms (4.2) and (4.4) includes

• rules (4.6) corresponding to constraints (4.4);

• rules corresponding to rules (4.2):

A0 ← ¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An (4.7)
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if L is a positive literal A0, and

Â0 ← ¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An (4.8)

if L is a negative literal ¬A0;

• the constraints

← A ∧ Â
← ¬A ∧ ¬Â

(4.9)

for all atoms A.

For instance, the modified McCain translation of T0 in Example 2.3.1

is
p ← ¬q
q̂ ← ¬p̂
← p ∧ p̂
← ¬p ∧ ¬p̂
← q ∧ q̂
← ¬q ∧ ¬q̂.

(4.10)

The only stable model of this program is {p, q̂}.

4.1.4 Translating Arbitrary Definite Theories

The requirement, in the definition of McCain’s translation, that the

bodies of all causal rules should be conjunctions of literals can be lifted by

slightly modifying the translation process. Take any set T of causal rules of

the forms

A⇐ G, (4.11)

¬A⇐ G, (4.12)
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⊥ ⇐ G, (4.13)

where A is an atom and G is an arbitrary propositional formula. For each

rule (4.11), take the formula A ← ¬¬G; for each rule (4.12), the formula

Â ← ¬¬G; for each rule (4.13), the formula ¬G. Then add completeness

constraints

⊥ ← A ∧ Â
⊥ ← ¬A ∧ ¬Â.

(4.14)

for all atoms A. Stable models of this collection of propositional formulas

correspond to the models of T .

In application to T0 in Example 2.3.1, this modification of McCain’s

translation gives
p← ¬¬¬q
q̂ ← ¬¬p
⊥ ← p ∧ p̂
⊥ ← ¬p ∧ ¬p̂
⊥ ← q ∧ q̂
⊥ ← ¬q ∧ ¬q̂.

(4.15)

It is not surprising that (4.15) has the same stable model as (4.10): the two

collections of formulas are intuitionistically equivalent to each other.1

4.2 Four Types of Causal Rules

In the rest of the chapter, we assume that the bodies of causal rules do

not contain implication. This is not an essential limitation, because in classical

1Indeed, ¬¬¬q is intuitionistically equivalent to ¬q; the equivalence between ¬¬p and
¬p̂ is intuitionistically entailed by the formulas ¬(p∧ p̂) and ¬(¬p∧¬p̂), which belong both
to (4.10) and to (4.15).
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logic → can be expressed in terms of other connectives, and the meaning of

a causal rule does not change if we replace its body (or head) by a classically

equivalent formula.

Here are four types of rules that we are going to consider, in the order

of increasing complexity of their heads:

• The head is ⊥, that is, the rule is a constraint. Such causal rules will be

also called C-rules.

• The head is a literal containing an explainable predicate symbol. These

are L-rules.

• The head has the form L1 ↔ L2, where each Li is a literal containing an

explainable predicate symbol. These are synonymy rules, or S-rules.

• The head has the form L1 ∨ · · · ∨ Ln (n ≥ 0), where each Li is a literal

containing an explainable predicate symbol. These are D-rules.

All C-rules and L-rules can be viewed also as D-rules, and any S-rule

can be replaced with an equivalent pair of D-rules (see Lemma 4.8.11 in Sec-

tion 4.8.2). Nevertheless, we give special attention here to rules of the first

three types, and the reason is that our translation handles such rules in special

ways. It appears that causal rules of types C, L, and S will be more impor-

tant than general D-rules in applications of this work to the automation of

reasoning about actions.

50



On the other hand, the possibility of reducing types C, L, and S to

type D plays an important role in the proof of the soundness of our translation

(Section 4.8). This is one of the reasons why we are interested in general D-

rules.

The requirement, in the definitions of types L, S and D, that the literals

in the head of the rule contain explainable predicate symbols is not an essen-

tial limitation. If, for instance, the predicate symbol in the head of L ⇐ G

is not explainable then this rule can be equivalently replaced by the C-rule

⊥ ⇐ G ∧ L. If a rule has the form

L1 ↔ L2 ⇐ G

and the predicate symbol in L1 is not explainable then the rule can be replaced

by

L2 ⇐ G ∧ L1,
L2 ⇐ G ∧ L1.

If a rule has the form

L1 ∨ · · · ∨ Ln ⇐ G

and the predicate symbol in L1 is not explainable then the rule can be replaced

by

L2 ∨ · · · ∨ Ln ⇐ G ∧ L1.

4.3 Translating C-Rules and L-Rules

The transformation described in this section generalizes McCain’s trans-

lation, in the form described in Section 4.1.4, to first-order causal theories.
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The operator Trc, which transforms any C-rule into a program rule, is

defined by the formula

Trc[⊥ ⇐ G] = ← ¬G.

The operator Trl, which transforms any L-rule into a program rule, is

defined by the formulas

Trl[p(t)⇐ G] = p(t)← ¬¬G,
Trl[¬p(t)⇐ G] = p̂(t)← ¬¬G

(t is a tuple of terms).

If T is a causal theory consisting of C-rules and L-rules then its trans-

lation Tr[T ] is the logic program obtained by conjoining

• the rules obtained by applying Trc to the C-rules of T ,

• the rules obtained by applying Trl to the L-rules of T , and

• the completeness constraints

⊥ ← p(x) ∧ p̂(x),
⊥ ← ¬p(x) ∧ ¬p̂(x)

(4.16)

(x is a tuple of distinct object variables) for all explainable predicate

symbols p of T .

Let p be the list of explainable predicate symbols p of T , and let p̂ be

the list of the corresponding predicate symbols p̂. Take the union of p and p̂

to be the set of intensional predicates. Then the stable models of the logic

program Tr[T ] are “almost identical” to the models of T ; the difference is due
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to the fact that the language of T does not contain the symbols p̂. Let CC be

the conjunction of all completeness constraints (4.16). Then the relationship

between T and Tr[T ] can be described as follows:

SMpp̂[Tr[T ]] is equivalent to T ∧ CC . (4.17)

This claim, expressing the soundness of our translation, is extended in Sec-

tions 4.4 and 4.5 to causal theories containing S-rules and D-rules.

Since the conjunction of the sentences corresponding to rules (4.16) is

classically equivalent to

∀x(p̂(x)↔ ¬p(x)), (4.18)

CC can be viewed as the conjunction of explicit definitions of the predicates p̂

in terms of the predicates p. Consequently the relationship (4.17) shows that

SMpp̂[Tr[T ]] is a definitional extension of T . The models of Tr[T ] that are

stable relative to pp̂ can be characterized as the models of T extended by the

interpretations of the predicates p̂ that are provided by definitions (4.18).

Example 4.3.1 (Example 2.3.1, continued). For causal theory T0 where both p

and q explainable, Tr[T0] is the conjunction of formulas (4.15). The result of

applying the operator SMpqp̂q̂ to this conjunction is equivalent to

p ∧ ¬q ∧ ¬p̂ ∧ q̂.

Recall that T is equivalent to the first half of this conjunction (Section 2.3.1).

The second half tells us that the truth values of p̂, q̂ are opposite to the truth

values of p, q. In the only stable model of (4.15), p and q̂ are true, and p̂ and q
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are false; if we “forget” the truth values of p̂ and q̂ then we will arrive at the

model of T0.

Example 4.3.2 (Example 2.3.2, continued). Our translation turns the causal

theory T1 from Example 2.3.2 into the conjunction of the sentences

¬¬> → p(a),
∀x(¬¬¬p(x)→ p̂(x)),
∀x¬(p(x) ∧ p̂(x)),
∀x¬(¬p(x) ∧ ¬p̂(x)),

or, after intuitionistically equivalent transformations,

p(a),
∀x(¬p(x)→ p̂(x)),
∀x¬(p(x) ∧ p̂(x)),
∀x¬(¬p(x) ∧ ¬p̂(x)).

The result of applying SMpp̂ to the conjunction of these formulas is equivalent

to the conjunction of (2.10) with the formula ∀x(p̂(x) ↔ ¬p(x)), which says

that p̂ is the complement of p.

Example 4.3.3 (Example 2.3.5, continued). Our translation turns causal the-

ory (2.13) into the conjunction of the sentences

∀x(¬¬(toggle(x) ∧ ¬on0(x))→ on1(x)),
∀x(¬¬(toggle(x) ∧ on0(x))→ ôn1(x)),
∀x(¬¬(on0(x) ∧ on1(x))→ on1(x)),
∀x(¬¬(¬on0(x) ∧ ¬on1(x))→ ôn1(x)),
∀x¬(on1(x) ∧ ôn1(x)),
∀x¬(¬on1(x) ∧ ¬ôn1(x)),

(4.19)
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or, equivalently,2

∀x(toggle(x) ∧ ¬on0(x)→ on1(x)),
∀x(toggle(x) ∧ on0(x)→ ôn1(x)),
∀x(on0(x) ∧ ¬ôn1(x)→ on1(x)),
∀x(¬on0(x) ∧ ¬on1(x)→ ôn1(x)),
∀x¬(on1(x) ∧ ôn1(x)),
∀x¬(¬on1(x) ∧ ¬ôn1(x)).

(4.20)

The result of applying SMon1ôn1 to this program is equivalent to the conjunc-

tion of (2.14) with the formula ∀x(ôn1(x)↔ ¬on1(x)), which says that ôn1 is

the complement of on1.

Example 4.3.4 (Example 4.3.3, continued). The constraint

⊥ ⇐ toggle(badswitch)

expresses that badswitch is stuck: the action of toggling it is not executable. If

we add this constraint to the causal theory from Example 2.3.5 then the rule

¬toggle(badswitch)

will be added to its translation (4.20).

The bodies of causal rules in Examples 2.3.5 and 4.3.4 are syntactically

simple: they are conjunctions of literals. The general definitions of a C-rule

2Removing the double negations in the first two lines of (4.19) is possible because neither
toggle nor on0 is intensional (see the comment on equivalent transformations of logic pro-
grams at the end of Section 2.4). In a similar way, the antecedent of the third implication
in (4.19) can be replaced by on0(x) ∧ ¬¬on1(x); the equivalence between ¬¬on1(x) and
¬ôn1(x) is intuitionistically entailed by the last two lines of (4.19). The fourth line of (4.19)
is simplified in a similar way.
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and an L-rule do not impose any restrictions on the form of the body, and in

applications of causal logic to formalizing commonsense knowledge this gener-

ality is often essential. For instance, the statement “each position must have

at least one neighbor” in the landscape structure of the Zoo World3 would be

represented in causal logic by a C-rule with a quantifier in the body.

4.4 Translating S-Rules

We will turn now to translating synonymy rules (Section 4.2). The

operator Trs, transforming any such rule into a logic program, is defined by

the formulas

Trs[p1(t1)↔ p2(t2)⇐ G] = Trs[¬p1(t1)↔ ¬p2(t2)⇐ G]

=


p2(t2)← ¬¬G ∧ p1(t1)
p1(t2)← ¬¬G ∧ p2(t1)
p̂2(t2)← ¬¬G ∧ p̂1(t1)
p̂1(t2)← ¬¬G ∧ p̂2(t1)

Trs[¬p1(t1)↔ p2(t2)⇐ G] = Trs[p1(t1)↔ ¬p2(t2)⇐ G]

=


p2(t2)← ¬¬G ∧ p̂1(t1)
p1(t2)← ¬¬G ∧ p̂2(t1)
p̂2(t2)← ¬¬G ∧ p1(t1)
p̂1(t2)← ¬¬G ∧ p2(t1)

(t1, t2 are tuples of terms). The definition of program Tr[T ] from Section 4.3

is extended to causal theories that may contain S-rules, besides C-rules and

L-rules, by adding that Tr[T ] includes also

• the rules obtained by applying Trs to the S-rules of T .

3The challenge of formalizing the Zoo World was proposed as part of the Logic Modelling
Workshop (http:/www/ida.liu.se/ext/etai/lmw/). The possibility of addressing this
challenge using ccalc is discussed in [1, Section 4].

56



Example 4.4.1 (Example 2.3.5, continued). Extend the theory from Exam-

ple 4.3.3 by the rule (2.15) where dark is explainable. The corresponding logic

program is obtained from (4.20) by adding the rules

on1(myswitch)← d̂ark ,

d̂ark ← on1(myswitch),
ôn1(myswitch)← dark ,
dark ← ôn1(myswitch),

⊥ ← dark ∧ d̂ark ,

⊥ ← ¬dark ∧ ¬d̂ark .

(4.21)

We will see that the soundness property (4.17) holds for arbitrary causal

theories consisting of rules of types C, L, and S.

4.5 Translating D-Rules

A D-rule (Section 4.2) has the form

∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G (4.22)

for some sets Pos, Neg of atomic formulas.

If A is an atomic formula p(t), where p ∈ p and t is a tuple of terms,

then by Â we will denote the formula p̂(t). The operator Trd transforms D-

rule (4.22) into the program rule

∨
A∈Pos

A ∨
∨

A∈Neg

Â← ¬¬G ∧
∧

A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A). (4.23)

This is a generalization of the translation of propositional causal theo-

ries into logic programs due to [17].
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Example 4.5.1. The result of applying Trd to the D-rule

p ∨ ¬q ∨ ¬r ⇐ s

is

p ∨ q̂ ∨ r̂ ← ¬¬s ∧ (p̂ ∨ ¬p̂) ∧ (q ∨ ¬q) ∧ (r ∨ ¬r).

The number of “excluded middle formulas” conjoined with ¬¬G in (4.23)

equals the number of disjunctive terms in the head of D-rule (4.22). In par-

ticular, if (4.22) is an L-rule then the antecedent of (4.23) contains one such

formula. For instance, in application to the first rule of (2.9) Trd produces the

program rule

p← ¬¬¬q ∧ (p̂ ∨ ¬p̂),

which is more complex than the first rule of (4.15).

4.6 Soundness of Translation

For a fixed collection p of explainable symbols, let C, L, S, and D be

finite sets of causal rules of types C, L, S, and D respectively. By Tr[C,L, S,D]

we denote the logic program obtained by conjoining

• the rules obtained by applying Trc to all rules from C,

• the rules obtained by applying Trl to all rules from L,

• the programs obtained by applying Trs to all rules from S,

• the rules obtained by applying Trd to all rules from D,
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• the completeness constraints (4.16) for all explainable symbols p.

Theorem 4.6.1 (Soundness of Translation). For the causal theory T with the

set of rules C ∪ L ∪ S ∪D,

SMpp̂[Tr[C,L, S,D]] is equivalent to T ∧ CC (4.24)

In the special case when D is empty this theorem turns into the asser-

tion stated at the end of Section 4.4.

4.7 Using Answer Set Solvers to Generate Models of a
Causal Theory

The discussion of answer set solvers in this section, as almost any dis-

cussion of software, is somewhat informal. We assume here that the first-order

language under consideration does not contain function constants of nonzero

arity.

An answer set solver can be viewed as a system for generating sta-

ble models in the sense of Section 2.4, with three caveats. First, currently

available solvers require that the input program have a syntactic form that

is much more restrictive than the syntax of first-order logic.4 Preprocessing

based on intuitionistically equivalent transformations often helps us alleviate

this difficulty. There exists a tool, called f2lp [42], that converts first-order

formulas of a rather general kind into logic programs accepted by lparse.

4They also require that the input satisfy some safety conditions. See, for instance,
Chapter 3 of the SCdlv manual, http://www.dbai.tuwien.ac.at/proj/dlv/man/.
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The rules produced by the process described in the previous section have no

existential quantifiers in their heads, and all quantifiers in their bodies are in

the scope of negation. Consequently, these rules satisfy a syntactic condition

that guarantees the correctness of the translation implemented in f2lp.

Second, answer set solvers represent stable models by sets of ground

atoms. To introduce such a representation, we usually choose a finite set of

object constants that includes all object constants occurring in the program,

and restrict attention to Herbrand interpretations of the extended language.

The #domain construct of lparse can be used to specify the object constants

constituting the domain of the variables in the program.

Third, most existing answer set solvers are unaware of the possibility

of non-intensional (or extensional) predicates. Treating a predicate constant

as extensional can be simulated using a choice rule [20, Theorem 2]. There is

also another approach to overcoming this limitation. Take a conjunction E of

some ground atoms containing extensional predicates, and assume that we are

interested in the Herbrand stable models of a program F that interpret the

extensional predicates in accordance with E (every atom from E is true; all

other atoms containing extensional predicates are false). Under some syntactic

conditions,5 these stable models are identical to the Herbrand stable models

of F∧E with all predicate constants treated as intensional. This can be proved

using the splitting theorem ( Fact 2.4.4).

5Specifically, under the assumption that every occurrence of every extensional predicate
in F is in the scope of negation or in the antecedent of an implication.
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u(a;b;c;d).

#domain u(X).

{q(X)} :- not p(X).

p(a;b).

Figure 4.1: Example 4.7.1 with a 4-element universe in the language of lparse

Example 4.7.1 (Example 2.4.2, continued). We would like to find the stable

models of (2.17), with q intensional, that have the universe {a, b, c, d} and

make p true on a, b and false on c, d. This is the same as to look for the

Herbrand stable models of the formula

∀x(¬p(x)→ (q(x) ∨ ¬q(x))) ∧ p(a) ∧ p(b),

with c and d viewed as object constants of the language along with a and b,

and with both p and q taken to be intensional.

A representation of this example in the language of lparse is shown

in Figure 4.1. The auxiliary predicate u describes the universe of the interpre-

tations that we are interested in. The first line is shorthand for

u(a). u(b). u(c). u(d).

and the last line is understood by lparse in a similar way.

Given this input, the answer set solver smodels generates 4 stable

models, representing the subsets of {a, b, c, d} that are disjoint from {a, b}:

Answer: 1
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Stable Model: p(b) p(a) u(d) u(c) u(b) u(a)

Answer: 2

Stable Model: p(b) p(a) q(d) u(d) u(c) u(b) u(a)

Answer: 3

Stable Model: p(b) p(a) q(c) u(d) u(c) u(b) u(a)

Answer: 4

Stable Model: p(b) p(a) q(d) q(c) u(d) u(c) u(b) u(a)

In application to the logic program obtained from a causal theory T ,

this process often allows us to find the models of T with a given universe and

given extents of extensional predicates.

Example 4.7.2 (Example 4.4.1, continued). There are two switches, myswitch

and hisswitch. It is dark in my room at time 1 if and only if myswitch is not

on at time 1. At time 0, both switches are on; then hisswitch is toggled, and

myswitch is not. Is it dark in my room at time 1? We would like to answer

this question using answer set programming.

This example of commonsense reasoning involves inertia (the value of

the fluent on(myswitch) does not change because this fluent is not affected by

the action that is executed) and indirect effects of actions: whether or not it

is dark in the room at time 1 after performing some actions is determined by

the effect of these actions on the fluent on(myswitch).

Mathematically, we are talking here about the causal theory T with

rules (2.13) and (2.15), with the object constant hisswitch added to the lan-
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guage, and with the explainable symbols on1 and dark . We are interested in

the Herbrand models of T in which the extents of the extensional predicates

are described by the atoms

on0(myswitch), on0(hisswitch), toggle(hisswitch).

As we have seen, the logic program Tr[T ] is equivalent to the conjunc-

tion of rules (4.20) and (4.21). The corresponding lparse input file is shown

in Figure 4.2. In this file, the “true negation” symbol - is used in the ASCII

representations of the symbols ôn1 and d̂ark ; the lparse counterparts of the

rules
⊥ ← on1(x) ∧ ôn1(x),

⊥ ← dark ∧ d̂ark

are dropped, because such “coherence” conditions are verified by the system

automatically.

Given this input, smodels generates the only model of T satisfying

the given conditions:

Answer: 1

Stable Model: -on1(hisswitch) on1(myswitch) -dark

toggle(hisswitch) on0(hisswitch) on0(myswitch)

u(hisswitch) u(myswitch)

The presence of -dark in this model tells us that it is not dark in the room at

time 1.
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u(myswitch;hisswitch).

#domain u(X).

on1(X) :- toggle(X), not on0(X).

-on1(X) :- toggle(X), on0(X).

on1(X) :- on0(X), not -on1(X).

-on1(X) :- not on0(X), not on1(X).

:- not on1(X), not -on1(X).

on1(myswitch) :- -dark.

-dark :- on1(myswitch).

-on1(myswitch) :- dark.

dark :- -on1(myswitch).

:- not dark, not -dark.

on0(myswitch;hisswitch).

toggle(hisswitch).

Figure 4.2: Example 4.7.2 with two switches in the language of lparse

The example above is an example of “one-step temporal projection”—

predicting the value of a fluent after performing a single action in a given

state. Some other kinds of temporal reasoning and planning can be performed

by generating models of simple modifications of the given causal theory [33,

Section 3.3]; this is one of the ideas behind the design of ccalc and coala.

McCain’s translation reviewed in Section 4.1 and its generalization presented

above allow us to solve such problems automatically using an answer set solver.
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4.8 Proof of Theorem 4.6.1

To prove claim (4.24), which expresses the soundness of our translation,

we will first establish it for the case when C = L = S = ∅ (Section 4.8.1). In

this “leading special case” all rules of the given causal theory are D-rules, and

they are converted to program rules using the translation Trd. Then we will

derive the soundness theorem in full generality (Section 4.8.2).

4.8.1 Leading Special Case

Let T be a finite set of causal rules of the form (4.22). Let Π be

the conjunction of the corresponding program rules (4.23), and let CC , as

before, stand for the conjunction of the completeness constraints (4.16) for all

explainable symbols p of T . We want to show that

SMpp̂[Π ∧ CC ] is equivalent to T ∧ CC . (4.25)

The key steps in the proof below are Lemma 4.8.5 (one half of the

equivalence) and Lemma 4.8.8 (the other half).

In the statement of the following lemma, ¬p stands for the list of pred-

icate expressions6 λx¬p(x), where x is a list of distinct object variables, for

all p from p. By υp, υp̂ we denote the lists of predicate variables used in the

second-order formula SMpp̂[Π ∧ CC ] (see Section 2.4).

6See [43, Section 3.1].

65



Lemma 4.8.1. Formula (υp, υp̂) < (p,¬p) is equivalent to

∨
p∈p

(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x))).

Proof. Note first that

(υp, υp̂) < (p,¬p)
⇔ ((υp, υp̂) ≤ (p,¬p)) ∧ ¬ ((p,¬p) ≤ (υp, υp̂))
⇔ ((υp, υp̂) ≤ (p,¬p)) ∧

∨
p∈p ∃x((p(x) ∧ ¬υp(x)) ∨ (¬p(x) ∧ ¬υp̂(x)))

⇔
∨
p∈p(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x((p(x) ∧ ¬υp(x)) ∨ (¬p(x) ∧ ¬υp̂(x)))).

The disjunction after ∃x is equivalent to

(p(x) ∨ ¬υp̂(x)) ∧ (¬υp(x) ∨ ¬p(x)) ∧ (¬υp(x) ∨ ¬υp̂(x)). (4.26)

Since (υp, υp̂) ≤ (p,¬p) entails

υp(x)→ p(x) and υp̂(x)→ ¬p(x),

the first conjunctive term of (4.26) can be rewritten as ¬υp̂(x), and the second

term as ¬υp(x), so that (4.26) will turn into ¬υp(x) ∧ ¬υp̂(x).

For any formula F , by FΣ1 we denote the formula

F
(υp)(υp̂)
(υp∧p)(¬υp∧¬p)

where υp ∧ p is understood as the list of predicate expressions

λx(υp(x) ∧ p(x))

for all p ∈ p, and ¬υp ∧ ¬p is understood in a similar way.7

7For the definition of Fp
υp see Section 2.3.1.
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Lemma 4.8.2. Formula

((υp, υp̂) < (p,¬p))Σ1

is equivalent to υp 6= p.

Proof. In view of Lemma 4.8.1, ((υp, υp̂) < (p,¬p))Σ1 is equivalent to the

disjunction of the formulas(∧
p∈p ∀x(υp(x)→ p(x))Σ1

)
∧
(∧

p∈p ∀x(υp̂(x)→ ¬p(x))Σ1

)
∧ ∃x(¬υp(x) ∧ ¬υp̂(x))Σ1

(4.27)

for all p ∈ p. It is easy to verify that

(υp(x)→ p(x))Σ1 = (υp(x) ∧ p(x)→ p(x)) ⇔ > ,

(υp̂(x)→ ¬p(x))Σ1 = (¬υp(x) ∧ ¬p(x)→ ¬p(x)) ⇔ >,

(¬υp(x) ∧ ¬υp̂(x))Σ1 ⇔ ((¬υp(x) ∨ ¬p(x)) ∧ ¬(¬υp(x) ∧ ¬p(x)))
⇔ (υp(x)↔ ¬p(x))
⇔ ¬(υp(x)↔ p(x)).

Therefore (4.27) is equivalent to ∃x¬(υp(x) ↔ p(x)), so that the disjunction

of all formulas (4.27) is equivalent to υp 6= p.

If A is an atomic formula p(t), where p ∈ p and t is a tuple of terms,

then we will write υA for υp(t), and Â for υp̂(t). By ∀̃objF we denote the

formula ∀xF , where x is list of all free object variables of F (“object-level

universal closure”).

Define H(υp, υp̂) to be the conjunction of the implications

∀̃obj

(
G→

∨
A∈Pos

((υÂ ∨ A)→ υA) ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)

)
(4.28)

for all rules (4.22) in T .
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Lemma 4.8.3. Formula SMpp̂[Π ∧ CC ] is equivalent to

Π ∧ CC ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬H(υp, υp̂)). (4.29)

Proof. Every occurrence of every intensional predicate in CC is in the scope

of a negation. Consequently SMpp̂[Π ∧ CC ] is

Π ∧ CC ∧ ¬∃(υp)(υp̂)(((υp, υp̂) < (p, p̂)) ∧ Π�(υp, υp̂) ∧ CC ),

which is equivalent to

Π ∧ CC ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬Π�(υp, υp̂)).

We will conclude the proof by showing that CC entails

Π�(υp, υp̂)↔ H(υp, υp̂).

The left-hand side of this equivalence is the conjunction of the formulas

∀̃obj

(
¬¬G ∧

∧
A∈Pos

(υÂ ∨ ¬Â) ∧
∧

A∈Neg

(υA ∨ ¬A)→
∨

A∈Pos

υA ∨
∨

A∈Neg

υÂ

)

for all rules (4.22) in T . Under the assumption CC this formula can be rewrit-

ten as

∀̃obj

(
G→

∨
A∈Pos

¬(υÂ ∨ A) ∨
∨

A∈Neg

¬(υA ∨ ¬A) ∨
∨

A∈Pos

υA ∨
∨

A∈Neg

υÂ

)
.

The last formula is equivalent to

∀̃obj

(
G→

∨
A∈Pos

(¬(υÂ ∨ A) ∨ υA) ∨
∨

A∈Neg

(¬(υA ∨ ¬A) ∨ υÂ)

)
.

and consequently to (4.28).

68



Lemma 4.8.4. T †(υp) is equivalent to H(υp, υp̂)Σ1.

Proof. Formula T †(υp) is the conjunction of the formulas

∀̃obj

(
G→

∨
A∈Pos

υA ∨
∨

A∈Neg

¬υA

)
(4.30)

for all rules (4.22) in T . On the other hand, H(υp, υp̂)Σ1 is the conjunction

of the formulas

∀̃obj

(
G→

∨
A∈Pos

((υÂ ∨ A)→ υA)Σ1 ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)Σ1

)
(4.31)

for all rules (4.22) in T . It remains to observe that

((υÂ ∨ A)→ υA)Σ1 = (¬υA ∧ ¬A) ∨ A→ υA ∧ A
⇔ ¬υA ∨ A→ υA ∧ A
⇔ (υA ∧ ¬A) ∨ (υA ∧ A)
⇔ υA,

and that, similarly, ((υA ∨ ¬A)→ υÂ)Σ1 is equivalent to ¬υA.

Lemma 4.8.5. SMpp̂[Π ∧ CC ] |= T ∧ CC .

Proof. Recall that, according to Lemma 4.8.3, SMpp̂[Π ∧ CC ] is equivalent

to (4.29). The second conjunctive term of (4.29) is CC . The first conjunctive

term is equivalent to T †(p). From the other two terms we conclude:

∀υp(((υp, υp̂) < (p, p̂))Σ1 → ¬H(υp, υp̂)Σ1).

By Lemma 4.8.2 and Lemma 4.8.4, this formula is equivalent to

∀υp((υp 6= p)→ ¬T †(υp)),
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and consequently to

∀υp(T †(υp)→ (υp = p)).

The conjunction of the last formula with T †(p) is equivalent to (2.3).

For any formula F , by FΣ2 we denote the formula

F υp
(((υp,υp̂)≤(p,¬p))∧¬υp∧¬υp̂)↔¬p

where the subscript

(((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp ∧ ¬υp̂)↔ ¬p

is understood as the list of predicate expressions

λx((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x))↔ ¬p(x))

for all p ∈ p.

Lemma 4.8.6. Formula

(υp 6= p)Σ2

is equivalent to (υp, υp̂) < (p,¬p).

Proof. Formula (υp 6= p)Σ2 is equivalent to

∨
p∈p

∃x(υp(x)↔ ¬p(x))Σ2

that is,

∨
p∈p

∃x((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x)↔ ¬p(x))↔ ¬p(x)).
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This formula can be equivalently rewritten as

∨
p∈p

(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x))),

which is equivalent to (υp, υp̂) < (p,¬p) by Lemma 4.8.1.

Lemma 4.8.7. The implication

(υp, υp̂) ≤ (p,¬p)→ (T †(υp)Σ2 ↔ H(υp, υp̂))

is logically valid.

Proof. Recall that T †(υp) is the conjunction of implications (4.30) for all

rules (4.22) in T . Consequently T †(υp)Σ2 is the conjunction of the formulas

∀̃obj

(
G→

∨
A∈Pos

(υA)Σ2 ∨
∨

A∈Neg

¬(υA)Σ2

)
,

that is to say,

∀̃obj(G→
∨
A∈Pos((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υA ∧ ¬υÂ)↔ ¬A)∨∨
A∈Neg ¬((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υA ∧ ¬υÂ)↔ ¬A).

Under the assumption

(υp, υp̂) ≤ (p,¬p) (4.32)

the last formula can be equivalently rewritten as

∀̃obj

(
G→

∨
A∈Pos

((υA ∨ υÂ)↔ A) ∨
∨

A∈Neg

((υA ∨ υÂ)↔ ¬A)

)
.

It remains to check that, under assumption (4.32),

(υA ∨ υÂ)↔ A (4.33)
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can be equivalently rewritten as

υÂ ∨ A→ υA, (4.34)

and

υA ∨ υÂ↔ ¬A (4.35)

can be rewritten as

υA ∨ ¬A→ υÂ. (4.36)

Formula (4.33) is equivalent to

(υA→ A) ∧ (υÂ→ A) ∧ (A→ υA ∨ υÂ). (4.37)

Since assumption (4.32) entails υA → A and υÂ → ¬A, formula (4.37) can

be rewritten as

¬υÂ ∧ (A→ υA). (4.38)

On the other hand, formula (4.34) is equivalent to

(υÂ→ υA) ∧ (A→ υA),

which, under assumption (4.32), can be rewritten as (4.38) as well. In a similar

way, each of the formulas (4.35), (4.36) can be transformed into

¬υA ∧ (¬A→ υÂ).

Lemma 4.8.8. T ∧ CC |= SMpp̂[Π ∧ CC ].
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Proof. Recall that T is equivalent to

T †(p) ∧ ∀υp(T †(υp)→ (υp = p)). (4.39)

Since the first conjunctive term is equivalent to Π, T ∧ CC entails

Π ∧ CC . (4.40)

From the second conjunctive term of (4.39) we conclude

T †(υp)Σ2 → (υp = p)Σ2

and consequently

∀(υp)(υp̂)((υp 6= p)Σ2 → ¬T †(υp)Σ2).

By Lemma 4.8.6, this is equivalent to

∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬T †(υp)Σ2)

and, by Lemma 4.8.7, to

∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬H(υp, υp̂)).

By Lemma 4.8.3, the conjunction of this formula with (4.40) is equivalent to

SMpp̂[Π ∧ CC ].

Assertion (4.25) follows from Lemmas 4.8.5 and 4.8.8.
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4.8.2 General Case

Lemma 4.8.9. For any C-rule R, Trc[R] is intuitionistically equivalent to

Trd[R].

Proof. If R is ⊥ ⇐ G then Trc[R] is ∀̃¬G, and Trd[R] is ∀̃(¬¬G→ ⊥).

Lemma 4.8.10. For any L-rule R, the conjunction CC of completeness con-

straints intuitionistically entails

Trl[R]↔ Trd[R].

Proof. If R is p(t)⇐ G then Trl[R] is

∀̃(¬¬G→ p(t)),

and Trd[R] is

∀̃(¬¬G ∧ (p̂(t) ∨ ¬p̂(t))→ p(t)).

Since CC intuitionistically entails

¬(p(t)↔ p̂(t)), (4.41)

it is sufficient to check that p(t) can be derived from (4.41) and

p̂(t) ∨ ¬p̂(t)→ p(t) (4.42)

by the deductive means of intuitionistic propositional logic. Since (4.42) is

equivalent to p(t) in classical propositional logic, it is easy to see that ¬p̂(t)

can be derived from (4.41) and (4.42) in classical propositional logic. By

74



Glivenko’s theorem,8 it follows that it can be derived intuitionistically as well.

Since p(t) is intuitionistically derivable from (4.42) and ¬p̂(t), we can conclude

that p(t) is intuitionistically derivable from (4.41) and (4.42).

The case when R is ¬p(t)⇐ G is similar.

Lemma 4.8.11. If R is an S-rule

L1 ↔ L2 ⇐ G (4.43)

and R1, R2 are the D-rules

L1 ∨ L2 ⇐ G and L1 ∨ L2 ⇐ G (4.44)

then the conjunction CC of completeness constraints intuitionistically entails

Trs[R]↔ Trd[R1] ∧ Trd[R2].

Proof. If each of the literals Li is an atom Ai then Trs[R] is the conjunction

of the formulas
∀̃(¬¬G ∧ A1 → A2),

∀̃(¬¬G ∧ A2 → A1),

∀̃(¬¬G ∧ Â1 → Â2),

∀̃(¬¬G ∧ Â2 → Â1),

(4.45)

Trd[R1] is

∀̃(¬¬G ∧ (Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2)→ A1 ∨ Â2), (4.46)

8This theorem [35], [63, Theorem 3.1] asserts that if a formula beginning with negation
can be derived from a set Γ of formulas in classical propositional logic then it can be derived
from Γ in intuitionistic propositional logic as well.
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and Trd[R2] is

∀̃(¬¬G ∧ (A1 ∨ ¬A1) ∧ (Â2 ∨ ¬Â2)→ Â1 ∨ A2). (4.47)

We need to show that CC intuitionistically entails the equivalence between the

conjunction of formulas (4.45) and the conjunction of formulas (4.46), (4.47).

Since CC intuitionistically entails

¬(A1 ↔ Â1) (4.48)

and

¬(A2 ↔ Â2), (4.49)

it is sufficient to check that the conjunction of formulas (4.48), (4.49),

A1 ↔ A2 (4.50)

and

Â1 ↔ Â2 (4.51)

is equivalent in intuitionistic propositional logic to the conjunction of formu-

las (4.48), (4.49),

(Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2)→ A1 ∨ Â2 (4.52)

and

(A1 ∨ ¬A1) ∧ (Â2 ∨ ¬Â2)→ Â1 ∨ A2. (4.53)

Left-to-right: Assume (4.48)–(4.51) and

(Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2); (4.54)
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our goal is to derive intuitionistically A1 ∨ Â2. Consider two cases, in accor-

dance with the first disjunction in (4.54). Case 1: Â1. Then, by (4.51), Â2,

and consequently A1 ∨ Â2. Case 2: ¬Â1. Consider two cases, in accordance

with the second disjunction in (4.54). Case 2.1: A2. Then, by (4.50), A1,

and consequently A1 ∨ Â2. Case 2.2: ¬A2. Then, by (4.50), ¬A1, which

contradicts (4.48).

Thus we proved that (4.52) is intuitionistically derivable from (4.48)–

(4.51). The proof for (4.53) is similar.

Right-to-left: Let Γ be the set consisting of formulas (4.48), (4.49), (4.52),

(4.53) and A1. We claim that A2 can be derived from Γ in intuitionistic propo-

sitional logic. Note that, classically,

• Formula (4.48) is equivalent to A1 ↔ ¬Â1,

• Formula (4.49) is equivalent to A2 ↔ ¬Â2, and

• Formula (4.53) is equivalent to Â1 ∨ A2.

It follows that ¬Â2 is derivable from Γ in classical propositional logic. By

Glivenko’s theorem, it follows that ¬Â2 is derivable from Γ intuitionistically

as well. Hence the antecedent of (4.53) is an intuitionistic consequence of Γ,

and so is the consequent Â1 ∨ A2. In combination with A1 and (4.48), this

gives us A2.

We conclude that A1 → A2 is intuitionsistically derivable from (4.48),

(4.49), (4.52) and (4.53). The derivability of the implication A2 → A1 from
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these formulas can be proved in a similar way. Thus (4.50) is an intuitionistic

consequence of (4.48), (4.49), (4.52), and (4.53).

The derivability of (4.51) from these formulas in propositional intu-

itionistic logic is proved in a similar way.

The cases when the literals Li are negative, or when one of them is

positive and the other is negative, are similar.

Proof of the soundness property (4.24). Let C, L, S, and D be sets of causal

rules of types C, L, S, and D respectively, and let T be the causal theory

with the set of rules C ∪ L ∪ S ∪D. Consider the causal theory T ′ obtained

from T by replacing each rule (4.43) from S with the corresponding rules (4.44).

According to the result (4.25) of Section 4.8.1,

SMpp̂[Π ∧ CC ] is equivalent to T ′ ∧ CC ,

where Π is the conjunction of the program rules Trd[R] for all rules R of T ′.

It is clear that Π∧CC is Tr[T ′], and that T ′ is equivalent to T . Consequently

SMpp̂[Tr[T ′]] is equivalent to T ∧ CC . (4.55)

On the other hand, Lemmas 4.8.9, 4.8.10 and 4.8.11 show that the formulas

Tr[T ′] and Tr[C,L, S,D] are intuitionistically equivalent to each other, because

each of them contains CC as a conjunctive term. It follows that

SMpp̂[Tr[T ′]] is equivalent to SMpp̂[Tr[C,L, S,D]]. (4.56)

Assertion (4.24) follows from (4.55) and (4.56).
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4.9 Summary

In this chapter, we generalized McCain’s embedding of definite causal

theories into logic programming. We expect that this work will provide a

theoretical basis for extending the system coala to more expressive action

languages, including the modular action language MAD [70]. It is essential,

from this perspective, that our translation is applicable to synonymy rules,

because such rules are closely related to the main new feature of MAD, its

import construct.

Our translation is not applicable to causal rules with quantifiers in the

head. It may be possible to extend it to positive occurrences of existential

quantifiers, since an existentially quantified formula can be thought of as an

infinite disjunction. But the translation would be a formula with positive

occurrences of existential quantifiers as well, and it is not clear how to turn

such a formula into executable code.

In Chapter 5, we will to extend the translation described above to

causal theories with explainable function symbols, which correspond to non-

Boolean fluents in action languages. Since the definition of a stable model

does not allow function symbols to be intensional, such a generalization will

involve extending the language by auxiliary predicate symbols.
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Chapter 5

Eliminating Functions from a Causal Theory

In Chapter 4 we generalized McCain’s translation to a more general

class of causal theories. The generalization allows us to reason about the

domains where all fluents are Boolean-valued, which in causal theory is rep-

resented as predicate symbols, by translating the causal theory into logic pro-

gram and calling ASP solvers to compute its models. However, the translation

is not directly applicable to fluents with non-Boolean values, represented by

function symbols, such as the location of an object in Example 2.3.6. There

is a good reason for this limitation: describing non-Boolean fluents by logic

programs involves an additional difficulty in view of the fact that rules in a

logic program characterize predicates, not functions.1

Our approach is to show how a function symbol in a causal theory

can be eliminated in favor of a new predicate symbol. In classical logic, this

process is well understood. For instance, addition in first-order arithmetic can

be described using a ternary predicate symbol, instead of a binary function

symbol: we can write sum(x, y, z) instead of x+ y = z. (This alternative

1The language of [55] is not an exception: it does not permit formulas like loc(x, t+1) = y
in heads of rules. Explainable functions are allowed in more recent generalizations of the
stable model semantics [5, 45].
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leads to the use of cumbersome formulas, of course, when complex algebraic

expressions are involved.) Extending this process to nonmonotonic causal

logic is not straightforward, especially if we want to arrive eventually at an

executable ASP program.

In this chapter, we will describe two procedures for eliminating function

constants from a causal theory in favor of predicate constants, “general” and

“definite.” Then we will show how definite elimination can help us turn a

causal theory into executable ASP code, and how it can be extended to rules

that express the synonymy of function symbols.

5.1 Plain Causal Theories

Let f be a function constant. An atomic formula is f -plain if

• it does not contain f , or

• has the form f(t) = u, where t is a tuple of terms not containing f ,

and u is a term not containing f .

A first-order formula, a causal rule, or a causal theory is f -plain if all its atomic

subformulas are f -plain. For instance, the causal theory T3 from Example 2.3.4

is c-plain, and the causal theory T4 from Example 2.3.6 is loc-plain.

It is easy to transform any first-order formula into an equivalent f -plain

formula. For instance, p(f(f(x)) is equivalent to the f -plain formula

∃yz(f(x) = y ∧ f(y) = z ∧ p(z)).
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Any causal theory can be transformed into an equivalent f -plain causal the-

ory by applying this transformation to the heads and bodies of all rules. In

Sections 5.2–5.6 we will assume that the given causal theory is f -plain.

5.2 General Elimination

Let T be an f -plain causal theory, where f is an explainable function

constant. The causal theory T ′ is obtained from T as follows:

(1) in the signature of T , replace f with a new explainable predicate constant

p of arity n+ 1, where n is the arity of f ;

(2) in the rules of T , replace each subformula f(t) = u with p(t, u);

(3) add the rules

(∃y)p(x, y)⇐ > (5.1)

and

¬p(x, y) ∨ ¬p(x, z)⇐ y 6= z, (5.2)

where x is a tuple of variables, and the variables x, y, z are pairwise

distinct.

Rule (5.2) expresses, in the language of causal logic, the uniqueness of y

such that p(x, y).

Theorem 5.2.1. The sentence

∀xy(p(x, y)↔ f(x) = y) (5.3)
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entails T ↔ T ′.

Example 5.2.1 (Example 2.3.4, continued). The result T ′3 of applying this

transformation to T3 and to the object constant c as f is the causal theory

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,

(∃y)p(y) ⇐ >,
¬p(y) ∨ ¬p(z) ⇐ y 6= z

with the explainable symbol p. According to Theorem 5.2.1, the equivalence

between T3 and T ′3 is entailed by the sentence

∀y(p(y)↔ c = y). (5.4)

Example 5.2.2 (Example 2.3.6, continued). The result T ′4 of applying this

transformation to T4 and to the function constant loc as f is the causal theory

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj (x) ∧ place(y) ⇐ move(x, y)
at(x, 0, y) ⇐ at(x, 0, y) ∧ obj (x) ∧ place(y),
at(x, 1, y) ⇐ move(x, y),
at(x, 1, y) ⇐ at(x, 0, y) ∧ at(x, 1, y) ∧ obj (x) ∧ place(y),

at(x, t, none) ⇐ ¬obj (x),
at(x, t, none) ⇐ t 6= 0 ∧ t 6= 1,
(∃y)at(x, t, y) ⇐ >,

¬at(x, t, y) ∨ ¬at(x, t, z) ⇐ y 6= z

with the explainable symbol at . According to Theorem 5.2.1, the equivalence

between T4 and T ′4 is entailed by the sentence

∀xty(at(x, t, y)↔ loc(x, t) = y) (5.5)
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By repeated applications of this process we can eliminate all explainable

function symbols, provided that T is f -plain for each explainable symbol f .

The following corollary shows that there is a simple 1–1 correspondence

between models of T and models of T ′. Recall that the signature of T ′ is ob-

tained from the signature of T by replacing f with p. For any interpretation I

of the signature of T , by Ifp we denote the interpretation of the signature of T ′

obtained from I by replacing the function f I with the set pI that consists of

the tuples

〈ξ1, . . . , ξn, f
I(ξ1, . . . , ξn)〉

for all ξ1, . . . , ξn from the universe of I.

Corollary 5.2.2. (a) An interpretation I of the signature of T is a model

of T iff Ifp is a model of T ′. (b) An interpretation J of the signature of T ′ is

a model of T ′ iff J = Ifp for some model I of T .

Part (a) follows from the fact that the “union” of I and Ifp satisfies (5.3).

To show that any model of T ′ can be represented in the form Ifp for some in-

terpretation I, note that T ′ contains rules (5.1), (5.2) and consequently entails

∀x(∃!y)p(x, y). (5.6)

5.3 Proof of the Theorem 5.2.1

In the following, assume T is a f -plain theory with a set of rules F ⇐ G

where F and G are first-order formulas, an explainable function symbol f , and

84



a set of explainable function symbols c other than f . T †(υf, υc) stands for

∧
F⇐G∈T

∀̃obj
(
G→ F f,c

υf,υc

)
T is the shorthand for the second-order sentence

∀υf υc(T †(υf, υc)↔ (υf = f) ∧ (c = υc)) (5.7)

Assume T ′ is a causal theory obtained from T by applying general

elimination to function symbol f . Then (T ′)†(υp, υc) stands for

∧
F⇐G∈T

∀̃obj
(
Gf
p → (F f

p )p,cυp,υc
)
∧ UE

where Gf
p is the formula obtained from G by replacing f(t) = u by p(t, u),

F f
p is the formula obtained from F by replacing f(t) = u by p(t, u), and UE

expresses that the conjunction of

∀̃(y 6= z → ¬υp(x, y) ∨ ¬υp(x, z)),
∀̃(> → (∃y)υp(x, y)).

Clearly, UE is equivalent to

(∀x∃!y)υp(x, y). (5.8)

T ′ is the shorthand for the second-order sentence

∀υp υc((T ′)†(υp, υc)↔ (υp = p) ∧ (υc = c)) (5.9)

Theorem 5.2.1 is proved as follows.
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Proof. (⇒) Assume (5.3), (5.7), that is

∀υf υc

(( ∧
F⇐G∈T

∀̃obj
(
G→ F f,c

υf,υc

))
↔ (υf = f) ∧ (υc = c)

)
, (5.10)

our goal is to prove for any υp,( ∧
F⇐G∈T

∀̃obj
(
Gf
p → (F f

p )p,cυp,υc
)
∧ UE

)
↔ (υp = p) ∧ (υc = c). (5.11)

Take υp. Consider two cases.

Case 1: ¬UE . Then the left-hand side of (5.11) is ⊥. In the presence

of (5.3), the right-hand side of (5.11) entails

∀xy(υp(x, y)↔ f(x) = y)

which violates ¬UE . So (5.11) holds trivially.

Case 2: UE . Then there exists υf such that

∀xy(υf(x) = y ↔ υp(x, y)). (5.12)

Under this condition, υp = p can be rewritten as

∀xy(υf(x) = y ↔ p(x, y)),

The formula (F f
p )p,cυp,υc can be obtained from F f,c

υf,υc by replacing each

subformula of the form υf(t) = u by υp(t, u), that is (F f,c
υf,υc)

υf
υp . From (5.12),

(F f
p )p,cυp,υc ↔ F f,c

υf,υc. This equivalence, along with UE and 5.12, allow us to

rewrite (5.11) as
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( ∧
F⇐G∈T

∀̃obj
(
Gf
p → F f,c

υf,υc

))
↔ (∀xy(υf(x) = y ↔ p(x, y)) ∧ (υc = c)).

(5.13)

In the presence of (5.3), Gf
p can be rewritten as G, and ∀xy(υf(x) =

y ↔ p(x, y)) can be rewritten as

∀xy(υf(x) = f(x)),

so that (5.13) follows from (5.10).

(⇐) Assume (5.3) and T ′, that is (5.9), our goal is to prove, for any υf

and υc, ( ∧
F⇐G∈T

∀̃obj
(
G→ F f,c

υf,υc

))
↔ (υf = f) ∧ (υc = c) (5.14)

Take υp satisfying (5.12). By (5.9),( ∧
F⇐G∈T

∀̃obj
(
Gf
p → (F f

p )p,cυp,υc
)
∧ UE

)
↔ (υp = p) ∧ (υc = c), (5.15)

From (5.12) we can derive (5.8) and consequently UE . As above, using

UE and (5.3), we can rewrite (5.15) as (5.14).

5.4 Definite Elimination

Unfortunately, the elimination process described in the previous section

does not help us turn a causal theory with explainable function symbols into

a logic program. The problem is that the translation from causal logic into
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logic programming described in Chapter 4 does not apply to causal rules with

an existential quantifier in the head, such as (5.1). We will now describe an

alternative elimination process, which is limited to causal theories of a special

form but does not add rules containing quantifiers.

Consider an f -plain causal theory T , where f is an explainable function

constant f satisfying the following condition: the head of any rule of T either

does not contain f or has the form f(t) = u, where t is a tuple of terms not

containing explainable symbols, and u is a term not containing explainable

symbols. The causal theory T ′′ is obtained from T as follows:

(1) in the signature of T , replace f with a new explainable predicate constant

p of arity n+ 1, where n is the arity of f ;

(2) in the rules of T , replace each subformula f(t) = u with p(t, u);

(3′) add the rule

¬p(x, y)⇐ ¬p(x, y), (5.16)

where x is a tuple of variables, and the variables x, y are pairwise distinct.

Rule (5.16) expresses the “closed world assumption” for p: by default,

p(x, y) is false.

We call this process “definite elimination” because all new causal rules

that it introduces are definite (Section 2.3.2). Definite elimination is appli-

cable to the causal theories from Examples 1 and 2, but it cannot be ap-
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plied, for instance, to a theory containing a rule with the head of the form

f(x) = y ∨ f(x) = z or ¬(f(x) = y).

Theorem 5.4.1. The sentences (5.3) and

∃xy(x 6= y) (5.17)

entail T ↔ T ′′.

Formula (5.17) expresses that the universe contains at least two ele-

ments. Without this assumption, the statement of Theorem 5.4.1 would be

incorrect. Indeed, consider the causal theory T4 with an explainable function

symbol f that consists of the single rule > ⇐ >. It is easy to check that T4 is

equivalent to ∀xy(x = y). On the other hand, T ′′4 consists of the rules

> ⇐ >,
¬p(x, y) ⇐ ¬p(x, y),

and is equivalent to ∀xy¬p(x, y). The interpretation with a singleton universe

that makes p identically true satisfies (5.3) and is a model of T4, but it is not

a model of T ′′4 .

Corollary 5.4.2. If T contains a constraint of the form ⊥ ⇐ t1 = t2, where

t1, t2 don’t contain explainable function symbols, then (5.3) entails T ↔ T ′′.

Indeed, if T contains the constraint ⊥ ⇐ a = b then T ′′ contains it

also, so that (5.17) is entailed both by T and by T ′′.
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Example 5.4.1 (Example 2.3.4, continued). The result T ′′3 of applying definite

elimination to T3 and to the object symbol c is the theory

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ ¬p(y)

(5.18)

with the explainable symbol p. By Corollary 5.4.2, the equivalence between

T3 and T ′′3 is entailed by sentence (5.4). Using the completion theorem (Fact

2.3.1), it is easy to check that causal theory (5.18) is equivalent to the first-

order sentence

a 6= b ∧ (q ↔ p(b)) ∧ ∀y(p(y)↔ (y = a ∨ y = b)).

Under assumption (5.6), which can be written in this case as

(∃!y)p(y), (5.19)

this sentence can be equivalently transformed into a formula conveying the

same information as (2.12):

a 6= b ∧ (q → p(b)) ∧ (¬q → p(a)). (5.20)

Example 5.4.2 (Example 2.3.6, continued). The result T ′′4 of applying definite
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elimination to theory T4 and to function symbol loc is the theory

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj (x) ∧ place(y) ⇐ move(x, y)
at(x, 0, y) ⇐ at(x, 0, y) ∧ obj (x) ∧ place(y),
at(x, 1, y) ⇐ move(x, y)
at(x, 1, y) ⇐ at(x, 0, y) ∧ at(x, 1, y) ∧ obj (x) ∧ place(y),

at(x, t, none) ⇐ ¬obj (x),
at(x, t, none) ⇐ t 6= 0 ∧ t 6= 1,
¬at(x, t, y) ⇐ ¬at(x, t, y)

(5.21)

with the explainable symbol at . By Corollary 5.4.2, the equivalence between

T4 and T ′′4 is entailed by sentence (5.5). Using the completion theorem from

[44] we can show that under assumption (5.6), which can be written in this

case as

∀xt(∃!y)at(x, t, y), (5.22)

theory (5.21) can be equivalently transformed into the conjunction of the uni-

versal closures of the formulas

¬(0 = 1), ¬(0 = none), ¬(1 = none),
∀xy(at(x, 0, y) ∧ ¬obj (x)→ y = none),
∀xy(at(x, 0, y) ∧ obj (x)→ place(y)),
∀xy(at(x, 1, y)↔ ((move(x, y) ∧ obj (x) ∧ place(y))

∨ (at(x, 0, y) ∧ obj (x) ∧ place(y) ∧ ¬∃w(move(x,w) ∧ place(w)))
∨ (y = none ∧ ¬obj (x)))),

∀xyt((t 6= 0 ∧ t 6= 1)→ (at(x, t, y)↔ y = none)).

The equivalence with the left-hand side at(x, 1, y) is similar to successor state

axioms in the sense of [69].

By repeated applications of this process we can eliminate all explainable

function symbols provided that
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• T is f -plain for each explainable function symbol f , and

• the head of each rule of T containing an explainable function symbol f

has the form f(t) = u, where t is a tuple of terms not containing ex-

plainable symbols, and u is a term not containing explainable symbols.

We saw in Section 5.2 that the mapping I 7→ Ifp is a 1–1 correspon-

dence between the class of models of T and the class of models of T ′. For

definite elimination, this mapping establishes a 1–1 correspondence between

the models of T with the universe of cardinality > 1 and the models of T ′′

with the universe of cardinality > 1 that satisfy additional condition (5.6);

that condition, generally, is not entailed by T ′′. By T ∃! we denote the causal

theory obtained from T ′′ by adding the constraint

⊥ ⇐ (∃!y)p(x, y).

It is clear that T ∃! is equivalent to the conjunction of T ′′ with (5.6).

Corollary 5.4.3. (a) An interpretation I of the signature of T with the uni-

verse of cardinality > 1 is a model of T iff Ifp is a model of T ∃!. (b) An

interpretation J of the signature of T ∃! with the universe of cardinality > 1

is a model of T ∃! iff J = Ifp for some model I of T .

For instance, the mapping I 7→ Icp establishes a 1–1 correspondence

between the models of T1 and the models of T ∃!1 . Similarly, the mapping

I 7→ I locat establishes a 1–1 correspondence between the models of T2 and the

models of T ∃!2 .
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As discussed at the beginning of this section, the definite elimination

process is limited to causal rules satisfying an additional syntactic restriction:

if the head of a rule of T contains f then it should be an atomic formula.

Without this restriction, the assertion of Theorem 5.4.1 would be incorrect.

Consider, for instance, the causal theory T5 with the rules

⊥⇐ a = b,
c = a ∨ c = b ⇐ >

and explainable c. It is easy to check that T5 is inconsistent. On the other

hand, T ′′5 is
⊥⇐ a = b,

p(a) ∨ p(b) ⇐ >,
¬p(x) ⇐ ¬p(x).

This causal theory is equivalent to

a 6= b ∧ (∀x(p(x)↔ x = a) ∨ ∀x(p(x)↔ x = b)).

The interpretation with the universe {a, b} that interprets c as a and p as {a}

satisfies (5.3), (5.17), and T ′′5 , but does not satisfy T5.

Another restriction imposed at the beginning of this section is that in

formulas f(t) = u in the heads of rules, t and u don’t contain explainable

symbols. Without this restriction, the assertion of Theorem 5.4.1 would be

incorrect. Let T6 be the causal theory obtained from T5 by adding the rule

d = c⇐ >,

with both c and d explainable. It is easy to check that T6 is inconsistent.
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Consider the result T ′′6 of applying definite elimination to T6 and d:

⊥ ⇐ a = b,
c = a ∨ c = b ⇐ >,

p(c) ⇐ >,
¬p(x) ⇐ ¬p(x),

with p and c explainable. This causal theory is equivalent to

(a 6= b) ∧ (∀x(p(x)↔ x = a) ∨ ∀x(p(x)↔ x = b)) ∧ p(c).

The interpretation with the universe {a, b} that interprets c as a, d as a, and p

as {a} satisfies (5.3), (5.17), and T ′′6 , but does not satisfy T6.

5.5 Modified Definite Elimination

As discussed in Section 5.4, rule (5.16) expresses the closed world as-

sumption for p. In “modified definite elimination,” (5.16) is replaced by a

definite counterpart of the uniqueness rule (5.2):

¬p(x, y)⇐ p(x, z) ∧ y 6= z

(x is a tuple of variables, and the variables x, y, z are pairwise distinct). We

will denote the result of applying the modified definite elimination process

to T by T ′′′. For instance, T ′′′4 is

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ p(z) ∧ y 6= z.

Causal theories T ′′ and T ′′′ are essentially equivalent to each other. To

be precise, formula (5.3) entails T ′′ ↔ T ′′′. Indeed, (T ′′′)† can be obtained
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from (T ′′)† by replacing

∀xy(¬p(x, y)→ ¬υp(x, y)) (5.23)

with

∀xyz(p(x, z) ∧ y 6= z → ¬υp(x, y)). (5.24)

Formula (5.24) can be rewritten as

∀xy(∃z(p(x, z) ∧ y 6= z)→ ¬υp(x, y)).

In the presence of (5.3), the antecedent of this formula is equivalent to the

antecedent of (5.23).

This fact implies that the assertions of Theorem 5.4.1 and Corollary 5.4.2

will remain valid if we replace T ′′ in their statements with T ′′′.

5.6 From Causal Logic to ASP

5.6.1 Turning Causal Theories into Logic Programs

The translation defined in Chapter 4 transforms a causal theory T

satisfying some syntactic conditions into a first-order sentence F that has “the

same meaning under the stable model semantics” as the theory T . (One of

the conditions on T is that its explainable symbols are predicate constants,

not function constants.) To be more precise, if the explainable symbols of T ,

along with the auxiliary predicate symbols introduced by the translation, are

taken to be intensional then the stable models of F are identical to the models

of T , provided that the interpretations of the auxiliary predicate symbols are
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“forgotten.” In many cases, this translation can be applied to theories obtained

by the definite elimination process described above.

Example 5.6.1 (Example 5.4.1, continued.). Consider the causal theory T ∃!2 ,

which, as we have seen, is “isomorphic” to T2. It consists of the rules

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ ¬p(y),
⊥ ⇐ ¬(∃!y)p(y).

The result of applying the translation from Chapter 4 to this theory is the

conjunction of the universal closures of the formulas

¬(a = b),
¬¬p(a) → p(a),
¬¬q → p(b),

¬¬¬p(x) → p̂(x),
¬¬¬(∃!y)p(y) → ⊥,
¬(p(x)↔ p̂(x)),

(5.25)

where p̂ is an auxiliary predicate. Fact 2.4.3 shows that these formulas can be

rewritten as
a 6= b,

¬p̂(a) → p(a),
q → p(b),

¬p(x) → p̂(x),
¬¬(∃!y)p(y),
¬(p(x) ↔ p̂(x))

(5.26)

without changing the class of stable models. Thus the stable models of (the

conjunction of the universal closures of) formulas (5.26) turn into the models

of T ∃!1 as soon as the interpretation of p̂ is dropped. It follows that the class

of stable models of (5.26) is “isomorphic” to the class of models of T1.
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Example 5.6.2 (Example 5.4.2, continued). The result of applying the trans-

lation from Chapter 4 to T ∃!2 becomes, after simplifications,

0 6= 1, 0 6= none, 1 6= none,

¬ât(x, 0, y) ∧ obj (x) ∧ place(y) → at(x, 0, y),
move(x, y) → place(y)
move(x, y) → obj (x)
move(x, y) → at(x, 1, y),

¬ât(x, 0, y) ∧ ¬ât(x, 1, y) ∧ obj (x) ∧ place(y) → at(x, 1, y),

¬at(x, t, y) → ât(x, t, y),
¬obj (x) → at(x, t, none),

t 6= 0 ∧ t 6= 1 → at(x, t, none),
¬¬(∀xt∃!y)at(x, t, y),

¬(ât(x, t, y) ↔ at(x, t, y)).

(5.27)

The class of stable models of (5.27) is “isomorphic” to the class of models

of T2.

5.6.2 Turning Causal Theories into Executable Code

In many cases, answer set solvers such as clingo allow us to generate

the Herbrand stable models of a given sentence. Consequently they can be

sometimes used to generate models of causal theories.

Example 5.6.3 (Example 5.6.1, continued). We would like to find all models

of T2 with the universe {a, b} in which the constants a, b represent themselves.

These models correspond to the Herbrand stable models of (5.26). We can

find them by running clingo on the following input:

u(a;b). #domain u(X).

{q}.
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p(a) :- not -p(a).

p(b) :- q.

-p(X) :- not p(X).

:- not 1{p(Z):u(Z)}1.

:- not p(X), not -p(X).

The first line expresses that the universe u consists of a and b, and that X is

a variable for arbitrary elements of u. The choice rule in the second line says

that q can be assigned an arbitrary value. The other lines correspond to all

formulas (5.26) except for a 6= b (the unique name assumption is true in all

Herbrand models and thus is taken by clingo for granted), with the classical

negation -p representing p̂.2

Given this input, clingo generates two stable models: one containing

q and p(b), the other containing p(a). Consequently T1 has two models of

the kind that we are interested in: in one of them q is true and the value of c

is b; in the other, q is false and the value of c is a.

Example 5.6.4 (Example 5.6.2, continued.). Consider the dynamic domain

consisting of two objects o1, o2 that can be located in any of two places l1, l2.

What are the possible locations of the objects after moving o1 to l2, for each

2The last line of (5.26) can be replaced by the pair of formulas

¬(p(x) ∧ p̂(x)), ¬(¬p(x) ∧ ¬p̂(x));

with p̂ represented by classical negation, the former is redundant.
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possible initial state? To answer this question, we will find the models of T2

with the universe

{o1, o2, l1, l2, 0, 1, none}

such that

• each of the constants 0, 1, none represents itself,

• the extent of obj is {o1, o2},

• the extent of place is {l1, l2}, and

• the extent of move is {〈o1, l2〉}.

To this end, we will find the stable models of (5.27) that satisfy all these

conditions.

This computational task is equivalent to finding the Herbrand models

of the sentence obtained by conjoining the universal closures of formulas (5.27)

with the formulas

obj (o1), obj (o2), place(l1), place(l2), move(o1, l2)

(o1, o2, l1, l2 are new object constants), with obj , place and move included in

the list of intensional predicates along with at and ât .3 To find these models,

we run clingo on the following input:

3This claim can be justified using the splitting theorem (Fact 2.4.4).

99



u(o1;o2;l1;l2;0;1;none).

#domain u(X). #domain u(T). #domain u(Y).

obj(X) :- move(X,Y).

place(Y) :- move(X,Y).

at(X,0,Y) :- not -at(X,0,Y), obj(X), place(Y).

at(X,1,Y) :- move(X,Y).

at(X,1,Y) :- not -at(X,0,Y), not -at(X,1,Y), obj(X), place(Y).

-at(X,T,Y) :- not at(X,T,Y).

at(X,T,none) :- not obj(X).

at(X,T,none) :- T!=0, T!=1.

:- not 1{at(X,T,Z):u(Z)}1.

:- not at(X,T,Y), not -at(X,T,Y).

obj(o1;o2). place(l1;l2). move(o1,l2).

clingo generates 4 stable models, one for each possible combination

of the locations of o1 and o2 at time 0. In every stable model, at time 1 object

o1 is at l2, and object o2 is at the same place where it was at time 0.

5.7 Synonymy Rules

In this section we extend the definite elimination process to the case

when several explainable function constants are eliminated in favor of predicate

constants simultaneously, and the causal theory may contain rules of the form

f1(t1) = f2(t2)⇐ G,
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where f1 and f2 are two of the symbols that are eliminated. This rule expresses

that there is a cause for f1(t1) to be “synonymous” to f2(t2) under condition G.

Consider a causal theory T and a tuple f of explainable function con-

stants such that the bodies of the rules of T are f -plain for all members f of f,

and the head of any rule of T

• does not contain members of f, or

• has the form f(t) = u, where f is a member of f, t is a tuple of terms

not containing explainable symbols, and u is a term not containing ex-

plainable symbols, or

• has the form f1(t1) = f2(t2), where f1, f2 are members of f, and t1, t2

are tuples of terms not containing explainable symbols.

The causal theory T ′′ is obtained from T as follows:

(1) in the signature of T , replace each member f of f with a new explainable

predicate constant p of arity n+ 1, where n is the arity of f ;

(2a) in the rules of T , replace each subformula f(t) = u such that f is a

member of f and u doesn’t contain members of f, with p(t, u);

(2b) in the heads of rules of T , replace each formula f1(t1) = f2(t2) such

that f1, f2 are members of f, with p1(t1, y)↔ p2(t2, y), where y is a new

variable;
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(3′) add, for every new predicate p, the rule (5.16).

Theorem 5.7.1. Sentences (5.3) for all f from f and sentence (5.17) entail

T ↔ T ′′.

Example 5.7.1. Consider the causal theory

f(x) = y ⇐ a(x, y),
g(x) = y ⇐ b(x, y),

f(x) = g(x) ⇐ c(x)

with the explainable symbols f , g. Its translation is

p(x, y) ⇐ a(x, y),
q(x, y) ⇐ b(x, y),

p(x, y)↔ q(x, y) ⇐ c(x),
¬p(x, y) ⇐ ¬p(x, y),
¬q(x, y) ⇐ ¬q(x, y)

(5.28)

with the explainable symbols p, q.

Theorem 5.7.1 turns into Theorem 5.4.1 in the special case when f is a

single function symbol and T does not contain synonymy rules.

By applying the transformation described in Section 4.4, the causal

theory above can be translated into the conjunction of the universal closures

of the following formulas:

¬¬a(x, y) → p(x, y),
¬¬b(x, y) → q(x, y),

¬¬c(x) ∧ p(x, y) → q(x, y),
¬¬c(x) ∧ q(x, y) → p(x, y),
¬¬c(x) ∧ p̂(x, y) → q̂(x, y),
¬¬c(x) ∧ q̂(x, y) → p̂(x, y),

¬¬¬p(x, y) → p̂(x, y),
¬¬¬q(x, y) → q̂(x, y),
¬(p(x)↔ p̂(x)),
¬(q(x)↔ q̂(x)).
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where p and q are intensional predicates.

5.8 Proof of Theorem 5.7.1

5.8.1 Leading Special Case

We begin with a special case that will be extended to the general proof

of Theorem 5.7.1 in the next section. In this special case, we assume, first,

that f is the list of all explainable symbols of T ; second, that the head of every

rule of T includes a member of f. It follows that T consists of rules of the

forms

f(t) = u⇐ G, (5.29)

and

f(t1) = g(t2)⇐ G, (5.30)

where no explainable symbols are contained in t, t1 or t2.

In the leading special case, T is shorthand for the formula

∀υf(T †(υf)↔ υf = f)

where υf is the list of new function variables υf similar to the members f of

f, and T †(υf) is∧
f(t)=u⇐G∈T

∀̃obj (G→ υf(t) = u) ∧
∧

f(t1)=g(t2)⇐G∈T

∀̃obj (G→ υf(t1) = υg(t2)).

(5.31)

Similarly, T ′′ is shorthand for

∀υp((T ′′)†(υp)↔ υp = p)
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where υp is the list of new predicate variables υp similar to the members p of

p, and (T ′′)†(υp) is

∧
f(t)=u⇐G∈T

∀̃obj (Gf
p → υp(t, u))

∧
∧

f(t1)=g(t2)⇐G∈T

∀̃obj (Gf
p → (υp(t1, y)↔ υq(t2, y))) ∧ (vp ≤ p)

(5.32)

where Gf
p is the formula obtained from G by replacing f(t) = u by p(t, u), for

each member f of f.

In the rest of the proof, we will drop the expressions f(t) = u⇐ G ∈ T

and f(t1) = g(t2)⇐ G ∈ T in conjunctions over rules of T .

Define Λ(υf) as the list of lambda expressions

λxy(υf(x) = y)

for all members υf of υf. Using this notation, we can rewrite the conjunction

of formulas (5.3) for all f from f and the corresponding members p of p as

Λ(f) = p.

Lemma 5.8.1. Λ(f) = p |= T †(f)↔ (T ′′)†(p).

Proof. T †(f) is∧
∀̃(G→ f(t) = u) ∧

∧
∀̃(G→ f(t1) = g(t2)).

Since Λ(f) = p, this formula can be rewritten as∧
∀̃(Gf

p → p(t, u)) ∧
∧
∀̃(Gf

p → (p(t1, y)↔ q(t2, y))).
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This formula is identical to (T ′′)†(p).

If predicate symbols p and q have the same arity, we’ll write p ∧ q for

λx(p(x) ∧ q(x))

where x is a tuple of distinct variables; (p1, . . . , pn)∧ (q1, . . . , qn) will stand for

(p1 ∧ q1, . . . , pn ∧ qn),

and similarly for predicate expressions in place of p, q.

Lemma 5.8.2. Λ(f) = p ∧ T ′′ |= ∀f(T †(υf)→ υf = f)

Proof. From T ′′ we derive∧
∀̃(Gf

p → p(t, u)) ∧
∧
∀̃(Gf

p → (p(t1, y)↔ q(t2, y))) (5.33)

and

∀υp
((∧

∀̃obj (Gf
p → υp(t, u))

∧
∧
∀̃obj (Gf

p → (υp(t1, y)↔ υq(t2, y))) ∧ (vp ≤ p)
)
→ υp = p

)
.

(5.34)

Assume T †(υf), that is (5.31), The goal is to prove υf = f. Since Λ(f) = p,

(5.33) and (5.34) can be rewritten as∧
∀̃(G→ f(t) = u) ∧

∧
∀̃(G→ (f(t1) = g(t2))) (5.35)

and

∀υp
((∧

∀̃obj (G→ υp(t, u))

∧
∧
∀̃obj (G→ (υp(t1, y)↔ υq(t2, y))) ∧ (vp ≤ p)

)
→ υp = p

)
.

(5.36)
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Apply (5.36) to the predicates υp defined by the condition

∀xy(υp(x, y)↔ (f(x) = y ∧ υf(x) = y)). (5.37)

The antecedent of (5.36) becomes the conjunction of∧
∀̃obj (G→ f(t) = u ∧ υf(t) = u), (5.38)∧

∀̃obj (G→ ((υf(t1) = y ∧ f(t1) = y)↔ (υg(t2) = y ∧ g(t2) = y))), (5.39)

and

(Λ(f) ∧ Λ(υf)) ≤ p. (5.40)

We will show that (5.38), (5.39), (5.40) can be derived from (5.31)

(5.35) and (5.37). Formula (5.38) follows from the first conjunctive term of

(5.35) and the first conjunctive term of (5.31). Formula (5.39) follows from the

second conjunctive term of (5.35) and the second conjunctive term of (5.31).

Formula (5.40) follows from Λ(f) = p.

We have proved the antecedent of (5.36), so we can derive the conse-

quent of (5.36). Since Λ(f) = p, the consequent can be rewritten as

(Λ(f) ∧ Λ(υf)) = Λ(f),

that is, ∧
f∈f

∀xy((f(x) = y ∧ υf(x) = y)↔ f(x) = y).

This formula is equivalent to∧
f∈f

∀xy(f(x) = y → υf(x) = y)

and consequently to f = υf.
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Lemma 5.8.3. Λ(f) = p∧∃x1x2(x1 6= x2)∧T |= (∀υp)((T ′′)†(υp)→ υp = p).

Proof. From T ,∧
∀̃(G→ f(t) = u) ∧

∧
∀̃(G→ f(t1) = g(t2)) (5.41)

and

∀υf
(∧
∀̃obj (G→ υf(t) = u) ∧

∧
∀̃obj (G→ υf(t1) = υg(t2))→ f = υf

)
.

(5.42)

Take any υp satisfying (T ′′)†(υp), that is, (5.32). Our goal is to show υp = p.

Under the condition Λ(f) = p, (5.32) can be rewritten as∧
∀̃obj (G→ υp(t, u)) ∧

∧
∀̃obj (G→ (υp(t1, y)↔ υq(t2, y))) ∧ (υp ≤ p).

(5.43)

The third conjunctive term shows that we only need to prove p ≤ υp, or,

equivalently, Λ(f) ≤ υp. This is a conjunction of several formulas, one for

each member of the tuple f, and, to simplify notation, we will show how to

prove the first conjunctive term

(∀x)υp1(x, f1(x)).

Assume that for some x∗, ¬υp1(x∗, f ∗1 (x∗)). Then we are going to

define υf such that the antecedent of (5.42) is satisfied, while the consequent

is violated; that will complete the proof of the lemma.

For each member f of f, choose a new predicate variable δp of the same

arity as f (so that the arity of δp is less by 1 than the arity of p.) By δp
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we denote the tuple consisting of all these variables. By Hf (x) we denote the

formula

∀δp
(
δp1(x∗) ∧

(∧
∀̃obj (G→ (δp(t1)↔ δq(t2)))

)
→ δp(x)

)
.

In view of the assumption ∃x1x2(x1 6= x2), there exists a y∗ such that

y∗ 6= f1(x∗).

Define each υf ∈ υf by the condition:

∀x((Hf (x)→ υf(x) = y∗) ∧ (¬Hf (x)→ υf(x) = f(x))). (5.44)

The proof of the fact that υf is indeed a counterexample to (5.42) is

based on two claims.

Claim 1: υp ≤ Λ(υf).

To prove Claim 1, take any member υp∗ of υp and consider any x∗∗

and y∗∗ such that

υp∗(x∗∗, y∗∗). (5.45)

We need to check that υf ∗(x∗∗) = y∗∗. Since υp ≤ p = Λ(f),

f ∗(x∗∗) = y∗∗ (5.46)

It remains to prove that f ∗(x∗∗) = υf ∗(x∗∗). To this end, we will show that

¬Hf∗(x∗∗). We will define a set of predicates δp such that

δp1(x∗) ∧
(∧
∀̃obj (G→ (δp(t1)↔ δq(t2)))

)
, (5.47)
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but

¬δp∗(x∗∗). (5.48)

Define each δp by the condition

∀x(δp(x)↔ ¬υp(x, f(x))). (5.49)

By (5.45) and (5.46), υp∗(x∗∗, f(x∗∗)), so that (5.48) follows.

To prove (5.47), note first that by the choice of x∗, ¬υp1(x∗, f1(x∗)), so

the first conjunctive term of (5.47) follows. By (5.43),

∀̃obj (G→ (υp(t1, y)↔ υq(t2, y))),

and consequently

∀̃obj (G→ (υp(t1, f(t1))↔ υq(t2, f(t1)))).

By (5.41), it follows that

∧
∀̃obj (G→ (υp(t1, f(t1))↔ υq(t2, g(t2)))),

In combination with (5.49), this formula gives us the second conjunctive term

of (5.47).

Claim 2: For any conjunctive term

∀̃(G∗ → f ∗(t1) = g∗(t2))

of (5.41), sentence

∀̃(G∗ → (Hf∗(t1)↔ Hg∗(t2)))

109



is logically valid.

Hf∗(t1) is

∀δp
(
δp1(x∗) ∧

∧
∀̃obj (G→ (δp(t1)↔ δq(t2)))→ δp∗(t1)

)
. (5.50)

Under assumption G∗, from the antecedent of this formula we can derive

δp∗(t1)↔ δq∗(t2)

so that (5.50) can be equivalently rewritten as

∀δp
(
δp∗1(x∗) ∧

∧
∀̃obj (G→ (δp(t1)↔ δq(t2)))→ δq∗(t2)

)
,

that is, Hg∗(t2).

Now we return to the proof of Lemma 5.8.3. For υf defined by (5.44),

we will prove that the antecedent of (5.42) is satisfied while the consequent

not. From the definition of Hf (x), it is clear that Hf1(x
∗). By the choice

of υf , it follows that υf1(x∗) = y∗. By the choice of y∗, we conclude that

υf1(x∗) 6= f1(x∗), which contradicts the consequent of (5.42). So it remians to

show that the antecedent of (5.42) is satisfied.

By Claim 1 and the first conjunctive term of (5.43), the first conjunctive

term of (5.42) is satisfied. The remaining conjunctive terms have the form

∀̃obj (G∗ → υf ∗(t1) = υg∗(t2)).

Assume G∗. Case 1: Hf∗(t1). Then by Claim 2, Hg∗(t2). By the choice of

υf , it follows that υf ∗(t1) = y∗ and υg∗(t2) = y∗. Case 2: ¬Hf∗(t1). Then by
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Claim 2, ¬Hg∗(t2). By the choice of υf , it follows that υf ∗(t1) = f ∗(t1) and

υg∗(t2) = g∗(t2). It remains to notice that f ∗(t1) = g∗(t2) by (5.41).

The statement of Theorem 5.7.1 for the special case immediately follows

from Lemmas 5.8.1–5.8.3.

5.8.2 General Case

To prove Theorem 5.7.1 in full generality, we divide a causal theory T

into two parts

• theory T1 containing a set of rules of form (5.29) and (5.30), with the

explainable symbols of each rule in T2 being those explainable in the

same rule of T ; and

• theory T2 containing other rules, with explainable symbols of each rule

in T2 being those explainable in the same rule of T .

Clearly, T1, T2 are pairwise disjoint theories. Similarly, we divide T ′′

into two parts

• theory T ′′1 containing a set of rules of corresponding to the rule (5.29)

and (5.30) in T1, and the set of explainable symbols in T ′′1 corresponds

to those in T1.

• theory T ′′2 containing other rules. The explainable symbols of each rule

in T2 are those explainable in the same rule in T ′′.
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Clearly, T ′′1 , T ′′2 are pairwise disjoint theories. By [44, Lemma 1],

T ↔ T1 ∧ T2

and

T ′′ ↔ T ′′1 ∧ T ′′2

By Theorem 5.4.1,

p = Λ(f) ∧ ∃x1x2(x1 6= x2) |= T2 ↔ T ′′2

By Lemma 5.8.1,

p = Λ(f) ∧ ∃x1x2(x1 6= x2) |= T1 ↔ T ′′1

Therefore, we obtain

p = Λ(f) ∧ ∃x1x2(x1 6= x2) |= T1 ∧ T2 ↔ T ′′1 ∧ T ′′2

and finally

p = Λ(f) ∧ ∃x1x2(x1 6= x2) |= T ↔ T ′′.

5.9 Related Work

The problem addressed in this chapter is similar to the problem of elim-

inating multi-valued propositional constants from a multi-valued causal theory

[33]. In this sense, our general elimination and modified definite elimination

are similar to the elimination methods proposed in [38, Section 6.4.2]. On the
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other hand, modified definite elimination does not introduce rules similar to

constraint (6.26) from [38], and our proofs (not included in this note) are en-

tirely different: the semantics of multi-valued propositional constants is based

on a fixpoint construction and does not refer to syntactic transformations.

Eliminating function constants in the framework of a different non-

monotonic formalism—a version of the stable model semantics—is discussed

in [55].

To sum up, in this chapter we investigated some of the cases when

an explainable function symbol can be eliminated from a first-order causal

theory in favor of a predicate symbol. This is a step towards the goal of

creating a compiler from the modular action language MAD [47] into answer

set programming. It will differ from the current version of coala [24] in that

it will be applicable to action descriptions that involve non-Boolean fluents

and synonymy rules. Translating causal rules with equivalences in the head,

such as the third rule of (5.28), into ASP is studied (for the propositional case)

in [39].
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Chapter 6

Action Language BC

In this chapter, we design a new action language based on action lan-

guages B and C. The languages B and C have significant common core [31].

Nevertheless, some expressive possibilities of B are difficult or impossible to

simulate in C, and the other way around. The main advantage of B is that it

allows the user to give Prolog-style recursive definitions. Recursively defined

concepts, such as the reachability of a node in a graph, play important role

in applications of automated reasoning about actions, including the design of

the decision support system for the space shuttle [65]. On the other hand, the

language B, like STRIPS and ADL, solves the frame problem by incorporating

the commonsense law of inertia in its semantics, which makes it difficult to

talk about fluents whose behavior is described by defaults other than inertia.

The position of a moving pendulum, for instance, is a non-inertial fluent: it

changes by itself, and an action is required to prevent the pendulum from mov-

ing. The amount of liquid in a leaking container (Example 2.2.4) changes by

itself, and an action is required to prevent it from decreasing. A spring-loaded

door closes by itself, and an action is required to keep it open. Work on the ac-

tion language C and its extension C+ was partly motivated by examples of this

kind. In these languages, the inertia assumption is expressed by axioms that
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the user is free to include or not to include. Other default assumptions about

the relationship between the values of a fluent at different time instants can

be postulated as well. On the other hand, some recursive definitions cannot

be easily expressed in C and C+.

The new action description language we define in this chapter, called BC,

combines the attractive features of B and C+. This language, like B, can be

implemented using computational methods of answer set programming.

The main difference between B and BC is similar to the difference be-

tween inference rules and default rules. Informally speaking, a default rule

allows us to derive its conclusion from its premise if its justification can be

consistently assumed; default logic [68] makes this idea precise. In the lan-

guage B, a static law has the form

<conclusion> if <premise> .

In BC, a static law may include a justification:

<conclusion> if <premise> ifcons < justification>

(ifcons is an acronym for “if consistent”). Dynamic laws may include justifi-

cations also.

The semantics of BC is defined by transforming action descriptions into

logic programs under the stable model semantics. When static and dynamic

laws of the language B are translated into the language of logic programming,

as in [4], the rules that we get do not contain negation as failure. Logic pro-

grams corresponding to B-descriptions do contain negation as failure, but this
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is because inertia rules are automatically included in them. In the case of BC,

on the other hand, negation as failure is used for translating justifications in

both static and dynamic laws.

We define here two translations from BC into logic programming. One

of them uses strong negation, and the other doesn’t, but we show that both

translations give the same meaning to BC-descriptions.

Examples of formalizing commonsense domains discussed in this paper

illustrate the expressive capabilities of BC and the use of answer set solvers

for the automation of reasoning about actions described in this language. We

state also two theorems relating BC to B and to C+.

6.1 Syntax

An action description in the language BC includes a finite set of symbols

of two kinds, fluent constants and action constants. Fluent constants are

further divided into regular and statically determined. A finite set of cardinality

≥ 2, called the domain, is assigned to every fluent constant.

An atom is an expression of the form f=v, where f is a fluent constant,

and v is an element of its domain. If the domain of f is {f, t} then we say

that f is Boolean.

A static law is an expression of the form

A0 if A1, . . . , Am ifcons Am+1, . . . , An (6.1)

(n ≥ m ≥ 0), where each Ai is an atom. It expresses, informally speaking,
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that every state satisfies A0 if it satisfies A1, . . . , Am, and Am+1, . . . , An can

be consistently assumed. If m = 0 then we will drop if; if m = n then we will

drop ifcons.

A dynamic law is an expression of the form

A0 after A1, . . . , Am ifcons Am+1, . . . , An (6.2)

(n ≥ m ≥ 0), where

• A0 is an atom containing a regular fluent constant,

• each of A1, . . . , Am is an atom or an action constant, and

• Am+1, . . . , An are atoms.

It expresses, informally speaking, that the end state of any transition satis-

fiesA0 if its beginning state and its action satisfyA1, . . . , Am, andAm+1, . . . , An

can be consistently assumed about the end state. If m = n then we will drop

ifcons.

For any action constant a and atom A,

a causes A

stands for

A after a.

For any action constant a and atoms A0, . . . , Am (m > 0),

a causes A0 if A1, . . . , Am
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stands for

A0 after a,A1, . . . , Am.

An action description in the language BC is a finite set consisting of

static and dynamic laws.

6.2 Defaults and Inertia

Static laws of the form

A0 if A1, . . . , Am ifcons A0 (6.3)

and dynamic laws of the form

A0 after A1, . . . , Am ifcons A0 (6.4)

will be particularly useful. They are similar to normal defaults in the sense of

[68]. We will write (6.3) as

default A0 if A1, . . . , Am,

and we will drop if when m = 0. We will write (6.4) as

default A0 after A1, . . . , Am.

For any regular fluent constant f , the set of the dynamic laws

default f=v after f=v

for all v in the domain of f expresses the commonsense law of inertia for f .

We will denote this set by

inertial f. (6.5)

118



6.3 Semantics

For every action description D, we will define a sequence of logic pro-

grams PN0(D),PN1(D), . . . so that the stable models of PNl(D) represent

paths of length l in the transition system corresponding to D. The signa-

ture σD,l of PNl(D) consists of

• expressions i :A for nonnegative integers i ≤ l and all atoms A, and

• expressions i :a for nonnegative integers i < l and all action constants a.

Thus every element of the signature σD,l is a “time stamp” i followed by an

atom in the sense of Section 6.1 or by an action constant. The program consists

of the following rules:

• the translations

i :A0 ← i :A1 ∧ · · · ∧ i :Am ∧ ¬¬ i :Am+1 ∧ · · · ∧ ¬¬ i :An

(i ≤ l) of all static laws (6.1) from D,

• the translations

(i+ 1):A0 ← i :A1 ∧ · · · ∧ i :Am ∧¬¬ (i+ 1):Am+1 ∧ · · · ∧ ¬¬ (i+ 1):An

(i < l) of all dynamic laws (6.2) from D,

• the choice rule {0 : A} for every atom A containing a regular fluent

constant,

119



• the choice rule {i :a} for every action constant a and every i < l,

• the existence of value constraint

← ¬ i : (f=v1) ∧ · · · ∧ ¬ i : (f=vk)

for every fluent constant f and every i ≤ l, where v1, . . . , vk are all

elements of the domain of f ,

• the uniqueness of value constraint

← i : (f=v) ∧ i : (f=w)

for every fluent constant f , every pair of distinct elements v, w of its

domain, and every i ≤ l.

The transition system T (D) represented by an action description D is

defined as follows. For every stable model X of PN0(D), the set of atoms A

such that 0 :A belongs to X is a state of T (D). In view of the existence of

value and uniqueness of value constraints, for every state s and every fluent

constant f there exists exactly one v such that f = v belongs to s; this v is

considered the value of f in state s. For every stable model X of PN1(D), T (D)

includes the transition 〈s0, α, s1〉, where si (i = 0, 1) is the set of atoms A such

that i :A belongs to X, and α is the set of action constants a such that 0 : a

belongs to X.

The soundness of this definition is guaranteed by the following fact:

Theorem 6.3.1. For every transition 〈s0, α, s1〉, s0 and s1 are states.
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The proofs of this theorem and other theorems stated in this chapter

are given in Chapter 7.

We promised that stable models of PNl(D) would represent paths of

length l in the transition system corresponding to D. For l = 0 and l = 1,

this is clear from the definition of T (D); for l > 1 this needs to be verified.

For every set X of elements of the signature σD,l, let X i (i < l) be the triple

consisting of

• the set of atoms A such that i :A belongs to X,

• the set of action constants a such that i :a belongs to X, and

• the set of atoms A such that (i+ 1):A belongs to X.

Theorem 6.3.2. For every l ≥ 1, X is a stable model of PNl(D) iff X0, . . . , X l−1

are transitions.

The rules contributed to PNl(D) by static law (6.3) have the form

i :A0 ← i :A1 ∧ · · · ∧ i :Am ∧ ¬¬ i :A0.

They can be equivalently rewritten as

{i :A0} ← i :A1 ∧ · · · ∧ i :Am

(see [46]). Similarly, the rules contributed to PNl(D) by dynamic law (6.4)

have the form

(i+ 1):A0 ← i :A1 ∧ · · · ∧ i :Am ∧ ¬¬ (i+ 1):A0.
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They can be equivalently rewritten as

{(i+ 1):A0} ← i :A1 ∧ · · · ∧ i :Am.

In particular, the rules contributed by the commonsense law of inertia (6.5)

can be rewritten as

{(i+ 1):f = v} ← i :f = v.

6.4 Other Abbreviations

In BC-descriptions that involve Boolean fluent constants we will use

abbreviations similar to those established for multi-valued formulas in [33,

Section 2.1]: if f is Boolean then we will write the atom f = t as f , and the

atom f= f as ∼f .

A static constraint is a pair of static laws of the form

f=v if A1, . . . , Am
f=w if A1, . . . , Am

(6.6)

where v 6= w and m > 0. We will write (6.6) as

impossible A1, . . . , Am.

The use of this abbreviation depends on the fact that the choice of f , v,

and w in (6.6) is inessential, in the sense of Theorem 6.4.1 below. About

action descriptions D1 and D2 we say that they are strongly equivalent to

each other if, for any action description D (possibly of a larger signature),

T (D∪D1) = T (D∪D2). This is similar to the definition of strong equivalence

for logic programs [46].
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Theorem 6.4.1. Any two static constraints (6.6) with the same atoms A1, . . . , Am

are strongly equivalent to each other.

The rules contributed to PNl(D) by (6.6) can be equivalently written

as

⊥ ← i :A1 ∧ · · · ∧ i :Am.

A dynamic constraint is a pair of dynamic laws of the form

f=v after a1, . . . , ak, A1, . . . , Am
f=w after a1, . . . , ak, A1, . . . , Am

(6.7)

where v 6= w, a1, . . . , ak (k > 0) are action constants, and A1, . . . , Am are

atoms. We will write (6.7) as

nonexecutable a1, . . . , ak if A1, . . . , Am,

and we will drop if in this abbreviation when m = 0. The use of this abbrevi-

ation depends on the following fact:

Theorem 6.4.2. Any two dynamic constraints (6.7) with the same action

constants a1, . . . , ak and the same atoms A1, . . . , Am are strongly equivalent to

each other.

The rules contributed to PNl(D) by (6.7) can be equivalently written

as

⊥ ← i :a1 ∧ · · · ∧ i :ak, i :A1 ∧ · · · ∧ i :Am.
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6.5 Example: The Blocks World

We will use BC to describe the blocks world (Example 2.2.3). We

further require that every block should belong to a tower that rests on the

table; there are no blocks or groups of blocks “floating in the air.”

Let Blocks be a finite non-empty set of symbols (block names) that does

not include the symbol Table. The action description below uses the following

fluent and action constants:

• for eachB ∈ Blocks , regular fluent constant Loc(B) with domain Blocks ∪ {Table},

and statically determined Boolean fluent constant InTower(B);

• for each B ∈ Blocks and each L ∈ Blocks ∪ {Table}, action constant

Move(B,L).

In the list of static and dynamic laws, B, B1 and B2 are arbitrary elements

of Blocks , and L is an arbitrary element of Blocks ∪ {Table}. Two different

blocks cannot rest on the same block:

impossible Loc(B1)=B,Loc(B2) = B (B1 6= B2).

The definition of InTower(B):

InTower(B) if Loc(B)=Table,
InTower(B) if Loc(B)=B1, InTower(B1),
default ∼InTower(B).

Blocks don’t float in the air:

impossible ∼InTower(B).
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The commonsense law of inertia:

inertial Loc(B).

The effect of moving a block:

Move(B,L) causes Loc(B)=L.

A block cannot be moved unless it is clear:

nonexecutable Move(B,L) if Loc(B1)=B.

Figure 6.1 is a representation of logic programs PNl(D) (Section 6.3),

for this action description D, in the input language of the grounder gringo.

The values of the symbolic constants l (the number of steps) and n (the

number of blocks) are supposed to be specified in command line. The stable

models generated by an answer set solver for this input file will represent all

trajectories of length l in the transition system corresponding to the blocks

world with n blocks. For instance, if we ground this program with the gringo

options

-c l=0 -c n=3

then the resulting program will have 13 stable models, corresponding to the

states of the transition system—to all possible configurations of 3 blocks.

The rules involving intower can be written more economically if we

use strong negation and replace
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% declarations of variables for steps, blocks, and locations

step(0..l).

#domain step(I).

block(b(1..n)).

#domain block(B).

#domain block(B1).

#domain block(B2).

location(X) :- block(X).

location(table).

#domain location(L).

% translations of static laws

:- loc(B1,B,I), loc(B2,B,I), B1!=B2.

intower(B,true,I) :- loc(B,table,I).

intower(B,true,I) :- loc(B,B1,I), intower(B1,true,I).

intower(B,false,I).

:- intower(B,false,I).

% translations of dynamic laws

loc(B,L,I+1) :- loc(B,L,I), I<l.

loc(B,L,I+1) :- move(B,L,I), I<l.

:- move(B,L,I), loc(B1,B,I), I<l.

loc(B,L,0).

move(B,L,I) :- I<l.

:- loc(B,LL,I) : location(LL) 0.

:- intower(B,false,I), intower(B,true,I) 0.

:- 2 loc(B,LL,I): location(LL).

:- intower(B,false,I), intower(B,true,I).

Figure 6.1: Blocks World in the language of gringo

intower(B,true,I), intower(B,false,I)

with
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intower(B,I), -intower(B,I).

That would make the uniqueness of value constraint for intower redundant.

6.6 Example: A Leaking Container

The leaking container (Example 2.2.4) can be described using the reg-

ular fluent constants Amt with domain {0, . . . , n}, for the amount of liquid in

the container, and the action constant FillUp. There are two dynamic laws:

default Amt =max(a− k, 0) after Amt =a (a = 0, . . . , n),
FillUp causes Amt =n.

(When k = 0, the first of them turns into inertial Amt .)

Consider the following temporal projection problem involving this do-

main, with n = 2 and k = 3: initially the container is full, and it is filled up

at time 3; we would like to know how the amount of liquid in the container

will change with time.

The program shown in Figure 6.2 consists of the rules of PNl(D) and

rules encoding the temporal projection problem. The solver clingo produces

the following output:

amt(10,0) amt(10,4) amt(7,5) amt(7,1) amt(4,2) amt(4,6)

amt(1,7) amt(1,3) amt(0,9) amt(0,8)
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% declarations of variables for steps and amounts

step(0..l).

#domain step(I).

amount(0..n).

#domain amount(A).

% translations of dynamic laws

amt(AA,I+1) :- amt(A,I), AA=(|A-k|+(A-k))/2, I<l.

amt(n,I+1) :- fillup(I), I<l.

% standard choice rules

amt(A,0).

fillup(I) :- I<l.

% existence of value constraints

:- amt(AA,I) : amount(AA) 0.

% uniqueness of value constraints

:- 2 amt(AA,I) : amount(AA).

% temporal projection

amt(n,0).

fillup(3). -fillup(0..2;4..l).

#hide.

#show amt/2.

Figure 6.2: Leaking Container in the language of gringo

6.7 Translation into the Language of Logic Programs
with Strong Negation

In the definition of the semantics of BC in Section 6.3 the programs PNl(D)

can be replaced by the programs with strong negation PSl(D) that consist of

the following rules:
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• the translations

i :A0 ← i :A1 ∧ · · · ∧ i :Am ∧ ¬ ∼ i :Am+1 ∧ · · · ∧ ¬ ∼ i :An

(i ≤ l) of all static laws (6.1) from D,

• the translations

(i+ 1):A0 ← i :A1 ∧ · · · ∧ i :Am ∧ ¬ ∼ (i+ 1):Am+1 ∧ · · · ∧ ¬ ∼ (i+ 1):An

(i < l) of all dynamic laws (6.2) from D,

• the disjunctive rules

0 :A ∨ ∼ 0:A

for every atom A containing a regular fluent constant,

• the disjunctive rules

i :a ∨ ∼ i :a

for every action constant a and every i < l,

• the existence of value constraint

← ¬ i : (f=v1) ∧ · · · ∧ : ¬ i : (f=vk)

for every fluent constant f and every i ≤ l, where v1, . . . , vk are all

elements of the domain of f ,

• the uniqueness of value rule

∼ i : (f=v)← i : (f=w)
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for every fluent constant f , every pair of distinct elements v, w of its

domain, and every i ≤ l.

The stable models of the program PNl(D) from Section 6.3 can be

obtained from the (complete) answer sets of PSl(D) by removing all negative

literals:

Theorem 6.7.1. A set X of atoms of the signature σD,l is a stable model of

PNl(D) iff X ∪ {∼A | A ∈ σD,l \X} is an answer set of PSl(D).

It follows that the translation PN in the definition of T (D) can be

replaced with the translation PS.

6.8 Relation to B

The version of the action language B referred to in this section is de-

fined in [31]. For any action description D in the language B, by D¬∼ we

denote the result of replacing each negative literal ¬f in D with the atom ∼f

(that is, f = f). The abbreviations introduced in Sections 6.1 and 6.4 above

allow us to view D¬∼ as an action description in the sense of BC, provided

that all fluent constants are treated as regular Boolean. We define the trans-

lation of D into BC as the result of extending D¬∼ by adding the inertiality

assumptions (6.5) for all fluent constants f .

We will loosely refer to states and transitions of the transition system

represented by D as states and transitions of D.
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To state the claim that this translation preserves the meaning of D, we

need to relate states and transitions in the sense of the semantics of B to states

and transitions in the sense of Section 6.3. In B, a state is a consistent and

complete set of literals f , ¬f for fluent constants f . For any set s of atoms f ,

∼f , by s∼¬ we denote the set of literals obtained from s by replacing each atom

∼f with the negative literal ¬f . Furthermore, an action in B is a consistent

and complete set of literals a, ¬a for action constants a.

Theorem 6.8.1. For any action description D in the language B,

(a) a set s of atoms is a state of the translation of D into the language BC

iff s∼¬ is a state of D;

(b) for any sets s0, s1 of atoms and any set α of action constants, 〈s0, α, s1〉

is a transition of the translation of D into the language BC iff

〈(s0)∼¬ , α ∪ {¬0:a | a /∈ α}, (s1)∼¬ 〉

is a transition of D.

The description of the blocks world from Section 6.5 does not corre-

spond to any B-description, in the sense of this translation, for two reasons.

First, some fluent constants in it are not regular: it uses statically determined

fluents InTower(B), defined recursively in terms of Loc(B). They are similar

to “defined fluents” allowed in the extension of B introduced in [26]. Second,

some fluent constants in it are not Boolean: the values of Loc(B) are locations.
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The leaking container example (Section 6.6) does not correspond to

any B-description either: the regular fluent Amt is not Boolean, and the

default describing how the value of this fluent changes is different from the

commonsense law of inertia. An alternative approach to describing the leaking

container is based on an extension of B by “process fluents,” called H [10].

6.9 Relation to C+

The semantics of C+ is based on the idea of universal causation [59].

Formal relationships between universal causation and stable models are in-

vestigated in [18, 58], and it is not surprising that a large fragment of BC is

equivalent to a large fragment of C+.

In C+, just as in BC, some fluent symbols can be designated as “stati-

cally determined.” (Other fluents are called “simple” in C+; they correspond

to regular fluents in our terminology.) Fluent symbols in C+ may be non-

exogenous; in BC such fluents are not allowed. Action symbols in C+ may be

non-Boolean; in this respect, that language is more general than the version

of BC defined above.

Consider a BC-description such that, in each of its static laws (6.1),

m = 0. In other words, we assume that every static law has the form

A0 ifcons A1, . . . , An. (6.8)

Such a description can be translated into C+ as follows:

• all action constants are treated as Boolean;

132



• every static law (6.8) is replaced with

caused A0 if A1 ∧ · · · ∧ An;

• every dynamic law (6.2) is replaced with

caused A0 if Am+1 ∧ · · · ∧ An after A1 ∧ · · · ∧ Am;

• for every action constant a,

exogenous a

is added.

Theorem 6.9.1. For any action description D in the language BC such that

in each of its static laws (6.1) m = 0,

(a) the states of the translation of D into the language C+ are identical to

the states of D;

(b) the transitions of the translation of D into the language C+ can be char-

acterized as the triples

〈 s0, {a=t | a ∈ α} ∪ {a= f | a ∈ σA \ α}, s1 〉

for all transitions 〈s0, α, s1〉 of D.

This translation is applicable, for instance, to the leaking container ex-

ample. The description of the blocks world from Section 6.5 cannot be trans-

lated into C+ in this way, because the static laws in the recursive definition of

InTower(B) violate the condition m = 0.

133



To sum up, in this chapter we propose a new action language by com-

bining attractive features from both language B and C+, leading to language

BC. The semantics of the action description in BC is defined by translating

into logic program under stable model semantics. The new language can be

used to automate reasoning about actions by calling answer set solvers.
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Chapter 7

Proofs

Recall that the translations of static laws (6.1) introduced in Section 6.3

are the formulas

i :A1 ∧ · · · ∧ i :Am ∧ ¬¬ i :Am+1 ∧ · · · ∧ ¬¬ i :An → i :A0, (7.1)

and the translations of dynamic laws (6.2) are

i :A1∧· · ·∧ i :Am∧¬¬ (i+ 1):Am+1∧· · ·∧¬¬ (i+ 1):An → (i+ 1):A0. (7.2)

Using the notation introduced in Section 2.4.3, the choice rules from PNl(D)

can be written as Choice(0 : A) and Choice(i : a). Finally, the existence of

value and uniqueness of value constraints from Section 6.3 are

¬(¬ i : (f=v1) ∧ · · · ∧ ¬ i : (f=vk)) (7.3)

and

¬(i : (f=v) ∧ i : (f=w)). (7.4)

Formulas of the form (7.1) corresponding to the same static law can

be obtained from each other by adding the same number to all time stamps,

or by subtracting the same number. We will denote by F ↑ i the formula
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obtained from a formula F by adding i to each time stamp; F ↓ i is the result

of subtracting i from each time stamp. If F is a formula of the form (7.1) with

i = 0 then the other formulas (7.1) corresponding to the same static law can

be written as F ↑ 1, . . . , F ↑ l. This notation will be used also in connection

with formulas (7.2)–(7.4).

Let σF be the set of expressions of the form f =v, where f is a fluent

constant and v is an element of its domain. Let σR be the part of σF consisting

of the expressions f =v with regular f , and σSD be the part of σF consisting

of expressions in which f is statically determined. By σA we denote the set of

all action constants.

Let SL be the conjunction of formulas (7.1) with i = 0 for all static

laws from D. Let DL be the conjunction of formulas (7.2) with i = 0 for all

dynamic laws from D. Let C be the conjunction of formulas (7.3) and (7.4)

with i = 0 for all fluent constants f and all pairs of distinct v,w. Then PN0(D)

is

SL ∧ Choice(0 :σR) ∧ C,

and PN1(D) is

SL ∧ SL↑1 ∧ DL ∧ Choice(0 :σR, 0:σA) ∧ C ∧ C ↑1.

Here is how Facts 2.4.1(b) and 2.4.2(b) can be used to characterize

states and transitions of an action description. An interpretation s0 of the

signature σR ∪ σSD is a state iff 0 :s0 is a stable model of PN0, that is,

0 :s0 |= SM[SL ∧ Choice(0 :σR) ∧ C; 0 :σF ].
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This condition is equivalent to

0:s0 |= SM[SL; 0 :σSD] ∧ C. (7.5)

For any interpretations s0 and s1 of the signature σF and any interpretation α

of the signature σA, 〈0 :s0, 0 :α, 1 :s1〉 is a transition iff 0 :s0 ∪ 0 :α ∪ 1 :s1 is a

stable model of PN1(D), that is, iff

0 :s0 ∪ 0:α ∪ 1:s1 |= SM[SL ∧ SL↑1 ∧ DL ∧ Choice(0 :σR, 0:σA) ∧ C ∧ C ↑1;
0 :σF ∪ 0:σA ∪ 1:σF ].

This condition is equivalent to

0:s0 ∪ 0:α ∪ 1:s1 |= SM[SL ∧ SL↑1 ∧ DL; 0 :σSD ∪ 1:σF ] ∧ C ∧ C ↑1. (7.6)

Furthermore, by Fact 2.4.4, that the conjunctive term

SM[SL ∧ SL↑1 ∧ DL; 0 :σSD ∪ 1:σF ]

from (7.6) is equivalent to

SM[SL; 0 :σSD] ∧ SM[SL↑1 ∧ DL; 1 :σF ].

Consequently, σA, 〈0:s0, 0:α, 1:s1〉 is a transition iff

0:s0∪ 0:α∪ 1:s1 |= SM[SL; 0 :σSD]∧SM[SL↑1∧DL; 1 :σF ]∧C ∧C ↑1. (7.7)

7.1 Proof of Theorem 6.3.1

Theorem 6.3.1. For every transition 〈s0, α, s1〉, s0 and s1 are states.
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Proof. Condition (7.5), expressing that s0 is a state, immediately follows

from (7.7). The assertion that s1 is a state is expressed by the condition

0:s1 |= SM[SL; 0 :σSD] ∧ C,

or, equivalently,

1 :s1 |= SM[SL↑1; 1 :σSD] ∧ C ↑1. (7.8)

Assume (7.7). Recall that DL is the conjunction of implications (7.2)

with i = 0. By DL′ we denote the formula obtained from DL by replacing

each of the conjunctive terms 0 :Aj (1 ≤ j ≤ m) in the antecedents of these

implications with > if Aj ∈ s0 ∪ α, and with ⊥ otherwise. Let α∗ is the union

of α with the set of literals ¬a for all action constants a that do not belong

to α. The equivalence between each of the atoms 0:Aj from DL and the truth

value that replaced it in DL′ is an intuitionistic consequence of the formulas

0 :s0, 0:α∗, C. (7.9)

Indeed, each atom 0 :Aj that is replaced by > belongs to 0 : s0 ∪ 0 : α∗. For

each atom of the form 0:a that is replaced by ⊥, its negation belongs to 0:α∗.

For each atom of the form 0:(f = v) that is replaced by ⊥, its negation is an

intuitionistic consequence of the atom 0 : (f = w) from 0 : s0, where w is the

value of f in state s0, and the uniqueness constraint

¬(0 : (f = v) ∧ 0:(f = w))

from C.
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Thus the equivalence DL ↔ DL′ is an intuitionistic consequence of

formulas (7.9), so that the conjunction

SL↑1 ∧ DL ∧ C ∧ 0:s0 ∧ 0:α∗

is intuitionistically equivalent to

SL↑1 ∧ DL′ ∧ C ∧ 0:s0 ∧ 0:α∗.

By Fact 2.4.3, it follows that

SM[SL↑1 ∧ DL ∧ C ∧ 0:s0 ∧ 0:α∗; 0 :σSD ∪ 1:σF ] (7.10)

is equivalent to

SM[SL↑1 ∧ DL′ ∧ C ∧ 0:s0 ∧ 0:α∗; 0 :σSD ∪ 1:σF ]. (7.11)

(In these formulas, 0 :s0 is the conjunction of the elements of the set 0 :s0, and

0:α∗ is understood in a similar way.)

From (7.7), by Fact 2.4.2(b),

0 :s0 ∪ 0:α ∪ 1:s1 |= SM[SL↑1 ∧ DL ∧ C; 0 :σSD ∪ 1:σF ].

Since

0 :s0 ∪ 0:α ∪ 1:s1 |= 0:s0 ∧ 0:α∗,

we further conclude, by Fact 2.4.2(a), that 0 :s0 ∪ 0 :α ∪ 1 :s1 satisfies (7.10),

and consequently (7.11).
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By Fact 2.4.4, formula (7.11) can be equivalently rewritten as the con-

junction of

SM[SL↑1 ∧ DL′; 1 :σF ] (7.12)

and

SM[C ∧ 0:s0 ∧ 0:α∗; 0 :σSD].

Hence the interpretation 1 : s1 of the signature 1 : σF satisfies (7.12). By

Fact 2.4.1(a), it follows that

1 :s1 |= SM[SL↑1 ∧ DL′; 1 :σSD].

Then, by Fact 2.4.2(b),

1 :s1 |= SM[SL↑1; 1 :σSD].

Assertion (7.8) follows from this formula and (7.7).

The following remark will be useful in the proof of Theorem 6.3.2: the

assertion that s1 is a state for any transition 〈s0, α, s1〉 can be expressed by

saying that the sentence

SM[SL ∧ SL↑1 ∧ DL; 0 :σSD ∪ 1:σF ] ∧ C ∧ C ↑1 (7.13)

from (7.6) entails the sentence

SM[SL↑1; 1 :σSD] (7.14)

from (7.8).
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7.2 Proof of Theorem 6.3.2

Theorem 6.3.2. For every l ≥ 1, X is a stable model of PNl(D) iff X0, . . . , X l−1

are transitions.

Proof. For any set X of elements of the signature σl,D, X i can be described

as the triple 〈s0, α, s1〉 satisfying the conditions

i :s0 = X ∩ (i :σF ),
i :α = X ∩ (i :σA),

(i+ 1):s1 = X ∩ (i+ 1:σF ),

or, equivalently,
0 :s0 = (X ∩ (i :σF ))↓ i,
0:α = (X ∩ (i :σA))↓ i,
1:s1 = (X ∩ (i+ 1:σF ))↓ i.

The set 0 :s0 ∪ 0:α ∪ 1:s1 for this triple can be written as

(X ∩ (i :σF ∪ i :σA ∪ i+ 1:σF ))↓ i.

In view of the characterization of transitions given by formula (7.6), X i is a

transition iff

(X ∩ (i :σF ∪ i :σA ∪ i+ 1:σF ))↓ i |=
SM[SL ∧ SL↑1 ∧ DL; 0 :σSD ∪ 1:σF ] ∧ C ∧ C ↑1,

or, equivalently,

X |= SM[SL↑ i∧SL↑(i+1)∧DL↑ i; i :σSD∪(i+1):σF ]∧C ↑ i∧C ↑(i+1). (7.15)

Consequently Theorem 6.3.2 can be expressed by saying that the sentence

SM

[
PNl(D);

l⋃
i=0

i :σF ∪
l−1⋃
i=0

i :σA

]
(7.16)
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is equivalent to the conjunction

l−1∧
i=0

(
SM[SL↑ i ∧ SL↑(i+ 1) ∧ DL↑ i; i :σSD ∪ (i+ 1):σF ] ∧ C ↑ i ∧ C ↑(i+ 1)

)
(7.17)

of sentences from (7.15).

Let us show first that (7.17) entails (7.16). By Fact 2.4.4, (7.17) is

equivalent to

l−1∧
i=0

(
SM[SL↑ i; i :σSD] ∧ SM[SL↑(i+ 1) ∧ DL↑ i; i+ 1:σF ]

)
∧

l∧
i=0

C ↑ i,

which implies

SM[SL; 0 :σSD] ∧
l−1∧
i=0

SM[SL↑(i+ 1) ∧ DL↑ i; i+ 1:σF ] ∧
l∧

i=0

C ↑ i.

By Fact 2.4.4, this formula can be equivalently rewritten as

SM

[
SL ∧

l−1∧
i=0

(SL↑(i+ 1) ∧ DL↑ i); 0 :σSD ∪
l⋃

i=1

i :σF

]
∧

l∧
i=0

C ↑ i,

which, by Facts 2.4.1(b) and 2.4.2(b), is equivalent to (7.17).

We will now show that (7.16) entails (7.17) by induction on l. If l = 1

then (7.16) is as

SM[PN1(D); 0 :σF ∪ 0:σA ∪ 1:σF ],

and (7.17) is

SM[SL ∧ SL↑1 ∧ DL; 0 :σSD ∪ 1:σF ] ∧ C ∧ C ↑1.

The latter follows from the former by Facts 2.4.1(b) and 2.4.2(b).
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Assume, for some value of l, that (7.16) entails (7.17), and assume

SM

[
PNl+1(D);

l+1⋃
i=0

i :σF ∪
l⋃

i=0

i :σA

]
. (7.18)

Our goal is to derive

SM[SL↑ i∧SL↑(i+ 1)∧DL↑ i; i :σSD ∪ (i+ 1):σF ]∧C ↑ i∧C ↑(i+ 1). (7.19)

for i = 0, . . . , l. First, notice that PNl+1(D) is

PNl(D) ∧ SL↑(l + 1) ∧ DL↑ l ∧ Choice(l :σA) ∧ C ↑(l + 1).

By the splitting theorem (Fact 2.4.4), from (7.18) we conclude

SM

[
PNl(D);

l⋃
i=0

i :σF ∪
l−1⋃
i=0

i :σA

]
(7.20)

and

SM[SL↑(l+ 1)∧DL↑ l∧Choice(l :σA)∧C ↑(l+ 1); (l+ 1):σF ∪ l :σA]. (7.21)

By the induction hypothesis, (7.20) implies (7.19) for i = 0, . . . , l − 1. It

remains to derive (7.19) for i = l.

We have already proved (7.19) for i = l − 1, that is,

SM[SL↑(l−1)∧SL↑ l∧DL↑(l−1); (l−1) :σSD∪l :σF ]∧C ↑(l−1)∧C ↑ l. (7.22)

As we observed in Section 7.1, formula (7.13) entails (7.14). Consequently (7.22)

entails

SM[SL↑ l; l : σSD].
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Using the last term of (7.22), we can further conclude, using Fact 2.4.2(b),

that

SM[SL↑ l ∧ C ↑ l; l : σSD].

On the other hand, from (7.21) we conclude by Fact 2.4.1(b) that

SM[SL↑(l + 1) ∧ DL↑ l ∧ C ↑(l + 1); (l + 1):σF ].

By Fact 2.4.4, it follows that

SM[SL↑ l ∧ C ↑ l ∧ SL↑(l + 1) ∧ DL↑ l ∧ C ↑(l + 1); l : σSD ∪ (l + 1):σF ],

which is (7.19) for i = l.

7.3 Proofs of Theorems 6.4.1 and 6.4.2

Theorem 6.4.1. Any two static constraints (6.6) with the same atoms A1, . . . , Am

are strongly equivalent to each other.

Proof. We need to show that for any action description D and any two static

constraints SC1

f = v if A1, . . . , Am
f = w if A1, . . . , Am

and SC2

f ′ = v′ if A1, . . . , Am
f ′ = w′ if A1, . . . , Am,

T (D ∪ SC1) = T (D ∪ SC2). It is sufficient to check that the logic programs

PNl(D ∪ SC1) and PNl(D ∪ SC2), which describe the states and transitions of

T (D ∪ SC1) and T (D ∪ SC2) when l = 0, 1, have the same stable models. We
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will show that these programs are intuitionistically equivalent to each other,

and the claim that they have the same stable models will follow by Fact 2.4.3.

Program PNl(D ∪ SC1) is the conjunction of PNl(D) with the implica-

tions

i :A1 ∧ · · · ∧ i :Am → i : (f = v),
i :A1 ∧ · · · ∧ i :Am → i : (f = w)

(i = 0, . . . , l). Since PNl(D) contains the formulas

¬(i : (f = v) ∧ i : (f = w)),

PNl(D ∪ SC1) is intuitionistically equivalent to

PNl(D) ∧
l∧

i=0

¬(i :A1 ∧ · · · ∧ i :Am). (7.23)

Similarly, PN1(D ∪ SC2) is intuitionistically equivalent to (7.23) as well.

The proof of Theorem 6.4.2 is similar.

7.4 Proof of Theorem 6.7.1

Consider the logic program PN′l(D) obtained from PNl(D) by

(a) adding to its signature a new atom A for every atom A,

(b) adding the rule

A← ¬ A (7.24)

for every A,
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(c) adding the constraint

← A,A (7.25)

for every A, and

(d) replacing the uniqueness of value constraints

← i : (f=v), i : (f=w) (7.26)

by the rules

i : (f = v)← i : (f = w). (7.27)

Lemma 7.4.1. X is a stable model of PNl(D) iff X ∪ {A : A ∈ σl,D \X} is

a stable model of PN′l(D).

Proof. Let X ′ denote X ∪{A : A ∈ σl,D \X}, and the program obtained from

PNl(D) after steps (a)–(c) as PN′′l (D).

First, by Lemma on Explicit Definitions from [16], for the program

obtained from PNl(D) after steps (a) and (b), X is a stable model of PNl(D)

iff X ′ is its stable model. Second, since A ∈ X ′ iff A /∈ X ′, X ′ satisfies the

constraints (7.25), and therefore X ′ is a stable model of PN′′l (D). To prove X ′

is a stable model of PN′l(D), by Fact 2.4.3, it remains to prove that PN′′l (D)

is intuitionistically equivalent to the program PN′l(D). It is easy to see that

the set of formulas (7.24) and (7.26) is intuitionistically equivalent to (7.24),

(7.25) and (7.27).

Theorem 6.7.1 A set X of atoms of the signature σl,D is a stable model of

PNl(D) iff X ∪ {∼A : A ∈ σl,D \X} is an answer set of PSl(D).
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Proof. As observed in Section 4.1.3, a negative atom can be replaced in a

logic program by a regular atom if we add a constraint that does not allow

both atoms to be in the same stable model. In this spirit, for each atom A

from σl,D, we choose a new atom A which will be used in place of the negative

atom ∼A. Let PSl(D)+ be the program obtained from PSl(D) by replacing

each negative atom ∼A with A and adding the rules

← A,A (7.28)

for all atoms A. For any set X of atoms of the signature σl,D,

X ∪ {∼A : A ∈ σl,D \X} is an answer set of PSl(D) (7.29)

iff

X ∪ {A : A ∈ σl,D \X} is a stable model of PSl(D)+. (7.30)

Consider now the program obtained from PSl(D)+ by

(a) replacing the rules

0 : (f=v) ∨ 0:(f=v) (7.31)

for regular fluent constants f with

0:(f=v) ← ¬ 0:(f=v),

0:(f=v) ← ¬ 0:(f=v),
(7.32)

(b) replacing the rules

i :a ∨ i :a (7.33)
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for action constants a with

i :a ← ¬ i :a,
i :a ← ¬ i :a, (7.34)

and

(c) replacing all expressions of the form ¬A with ¬¬A.

These transformations do not affect the stable models of the program. For

steps (a) and (b), this assertion follows from the results on strong equivalence

proved in [46], because the program contains constraints (7.28); see the discus-

sion of formulas (4) and (5) in that paper. For step (c), it is sufficient to check,

in view of Fact 2.4.3, that this is an intuitionistically equivalent transforma-

tion. In the syntax of propositional formulas, step (c) consists in replacing ¬A

with ¬¬A; we need to show that the equivalence between these two formulas

intuitionistically follows from the program obtained after steps (a) and (b). By

the Glivenko theorem [35], it is sufficient to derive ¬A↔ A from this program

in classical propositional logic.

Indeed, some of the rules of the program obtained after steps (a)

and (b), written as propositional formulas, are

¬(¬i : (f = v1) ∧ · · · ¬ ∨ i : (f = vk)) (7.35)

for every fluent f where v1, . . . , vk are all elements of the domain of f (existence

of value rules),

i : (f = w)→ i : (f = v) (7.36)
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for each fluent f and all v, w ∈ Dom(f) such that v 6= w (uniqueness of value

rules),

¬(i : (f=v) ∧ i : (f=v)) (7.37)

for every fluent constant f and all v ∈ Dom(f) (rule (7.28) with i : (f = v)

as A),

¬(i :a ∧ i :a) (7.38)

for every action constant a (rule (7.28) with i :a as A), and

¬ i :a→ i :a (7.39)

for every action constant a (rule (7.34) with i :a as A).

It is easy to see that

i :a↔ ¬ i :a

follows from (7.38) and (7.39), for action constant a. For an atom of the form

i : (f = v), we need to derive the equivalence

i : (f = v)↔ ¬ i : (f = v)

First, the implication left-to-right follows from (7.37). To prove the implication

right-to-left, assuming ¬ i : (f = v), by (7.36), we derive ¬i : (f = w) for all

w ∈ Dom(f) \ {v}, and f = v follows from (7.35).

It remains to observe that the obtained program is PN′l(D). Therefore,

(7.30) is equivalent to saying that X is a stable model of PNl(D).
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7.5 Proof of Theorem 6.8.1

In the following proof, we refer to the definition of the semantics of B

given in [31]. In that paper, a consistent and complete set X of propositional

literals is identified with the propositional interpretation that satisfies X. Note

that this is different from the convention adopted in this paper: we identify

that interpretation with the set X+ of atoms that belong to X.

Theorem 6.8.1. For any action description D in the language B,

(a) the states of the translation of D into the language BC can be character-

ized as the sets s¬∼ for all states s of D;

(b) the transitions of the translation of D into the language BC can be char-

acterized as the triples

〈 (s0)¬∼, α ∩ σA, (s1)¬∼ 〉

for all transitions 〈s0, α, s1〉 of D.

Proof. Take an action description D in the language B. To prove part (a),

we need to show that for any consistent and complete set s of fluent literals,

s¬∼ is a state of the translation of D into the language BC iff s is a state of D,

that is to say, iff s+ satisfies the formulas

¬(L1 ∧ · · · ∧ Lm ∧ ¬L0) (7.40)

for all static laws

L0 if L1, . . . , Lm (7.41)
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of D.

The set s¬∼ is a state of the translation of D into the language BC iff

0 :s¬∼ is a stable model of the program PN0(D¬∼). This program consists of the

rules

0 : (L0)¬∼ ← 0:(L1)¬∼, . . . , 0:(Lm)¬∼

for all static laws (7.41) of D, and the choice rules

{0:f}, {0:∼f}

and the constraints

← 0:f, 0:∼f,
← ¬ 0:f,¬ 0:∼f

for all fluent constants f . These rules, rewritten as formulas, can be converted

by intuitionistically equivalent transformations into the formulas

¬(0 : (L1)¬∼ ∧ · · · ∧ 0:(Lm)¬∼ ∧ ¬0:(L0)¬∼) (7.42)

for all static laws (7.41) of D, and

0:f ∨ ¬0:f, 0:∼f ∨ ¬0:∼f, (7.43)

¬(0 :f ∧ 0:∼f), ¬(¬ 0:f ∧ ¬ 0:∼f) (7.44)

for all fluent constants f . In view of Fact 2.4.2(b), the set 0 :s¬∼ is a stable model

of these formulas iff it satisfies all formulas (7.42) and (7.44), or, equivalently,

iff s¬∼ satisfies the formulas

∼f ↔ ¬f (7.45)
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and (7.40). It remains to observe that s¬∼ satisfies (7.45), because s is consistent

and complete, and that every atom occurring in (7.40) belongs to s¬∼ iff it

belongs to s+.

To prove (b), according to [31], a B action description D can be trans-

lated into its logic programming representation LP(D) that consists of rules SB

i :L← i :L1, . . . i :Lm (i = 0, 1),

for each static law

L if L1, . . . Lm

where L1, . . . Lm are fluent literals; rules DB

1:L← 0:a, 0:L1, . . . 0:Ln

for each dynamic law

a causes L if L1, . . . Ln

where L,L1, . . . Ln are fluent literal an a is an elementary action; rules IN B

1:f ← 0:f,¬ ∼ 1:f
∼ 1:f ←∼ 0:f,¬ 1:f

for each fluent constant f .

CB expresses that the rules

0 :f ← ¬ ∼ 0:f
∼ 0:f ← ¬0:f

for each fluent constant f , and

0:a ← ¬ ∼ 0:a
∼ 0:a ← ¬ 0:a
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for all elementary actions a. By [31, Lemma 2], for any sets s0, s1 of fluent

literals, and any action α, 〈s0, α, s1〉 is a transition of T (D) iff the set

{0: l | l ∈ s0 ∪ α} ∪ {1 : l | l ∈ s1}

is an answer set of the program LP(D) ∪ CB.

Translating a B action description D into language BC we obtain

PN1(D) and a set IN ′ of rules

1 :f ← 0:f,¬¬ 1:f,
1:∼f ← 0:∼f,¬¬ 1:∼f,

for each fluent constant f . Therefore, it is sufficient to prove that a set X of

literals is an answer set of LP(D) ∪ CB, iff

{i :f | i :f ∈ X, i = 0, 1} ∪ {i :∼f | ¬i :f ∈ X, i = 0, 1} ∪ {0:a : a ∈ X}

(7.46)

is a stable model of PN1(D) ∪ IN’ , where f is a fluent constant and a is an

action constant.

Let LP′(D), S ′B, D′B, IN ′B and C ′B denote the sets of rules obtained by

substituting ∼i :f for each literal ¬i :f , and i : â for each literal ¬i :a in LP(D),

SB, DB, IN ′B and CB, respectively. By N we denote the set of constraints

← i :f,∼i :f

for all fluent constants f , and

← i :a, i : â. (7.47)
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for all action constants a. Then by [28, Proposition 2],

X is an answer set of LP(D) ∪ CB (7.48)

iff

X ′ is a stable model of LP′(D) ∪ C ′B ∪N (7.49)

where X ′ is

{i :f | i :f ∈ X, i = 0, 1} ∪ {∼i :f | ¬i :f ∈ X, i = 0, 1}
∪{0:a | a ∈ X} ∪ {0: â | ¬a ∈ X}.

Since a transition of B is a complete set of literals, for any fluent f ,

i :f ∈ X or i :¬f ∈ X, (i = 0, 1)

and for elementary action a,

0 :a ∈ X or 0 :¬a ∈ X,

due to CB. Therefore, for the stable model X ′ of LP′(D) ∪ C ′B ∪ N , for any

fluent f ,

i :f ∈ X ′ or i :∼f ∈ X ′, (i = 0, 1)

and for any action constant a,

0 :a ∈ X or 0 : â ∈ X.

Therefore, (7.49) iff

X ′ is a stable model of LP′(D) ∪ C ′B ∪N ∪ COMP . (7.50)
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where COMP is the set of constraints

← ¬ i :f,¬ ∼i :f, (i = 0, 1)

for all fluent constants f , and

← ¬ 0:a,¬ 0: â, (i = 0, 1) (7.51)

for all action constants a.

Furthermore, N ∪Comp ∪C ′B ∪ IN ′B is strongly equivalent to the set of

rules consisting of N ∪ Comp, choice rules CH

0:f ∨ ¬ 0:f, 0:∼f ∨ ¬ 0:∼f, 0:a ∨ ¬ 0:a

and

0̂ :a← ¬ 0:a (7.52)

for all fluent constants f and action constants a, and IN ′.

Therefore, LP′(D) ∪ C ′B ∪ N ∪ COMP in (7.50) is strongly equivalent

to

S ′B ∪D′B ∪ IN ′ ∪ CH ∪N ∪ COMP

So (7.50) iff

X ′ is a stable model of S ′B ∪D′B ∪ IN ′ ∪ CH ∪N ∪ COMP . (7.53)

Observe that S ′B ∪ D′B ∪ IN ′ ∪ CH ∪ N ∪ COMP is PN1(D) ∪ IN ′ union

with explicit definitions (7.52), constraints (7.47) and (7.51). The explicit

definitions guarantee that the constraints (7.47) and (7.51) are not violated,

and therefore they can be dropped. By Lemma of Explicit Definitions [16], we

conclude that (7.53) iff (7.46) is a stable model of PN1(D) ∪ IN ′.
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7.6 Proof of Theorem 6.9.1

Theorem 6.9.1 For any action description D in the language BC such that

in each of its static laws (6.1) m = 0,

(a) the states of the translation of D into the language C+ are identical to

the states of D;

(b) the transitions of the translation of D into the language C+ can be char-

acterized as the triples

〈 s0, {a=t | a ∈ α} ∪ {a= f | a ∈ σA \ α}, s1 〉 (7.54)

for all transitions 〈s0, α, s1〉 of D.

Proof. Consider the C+ action description DC obtained by translating a BC

description D. According to [33, Section 4], a multi-valued interpretation s of

fluent constants is a state of DC iff it is a model of the nonmonotonic causal

theory D0
C that consists of the causal rules

0 :A0 ⇐ 0:A1 ∧ · · · ∧ 0:An

for the static laws (6.8) of D and the rules

0 :f = v ⇐ 0:f = v

for all regular fluents. Furthermore, for any multi-valued interpretations s0,

s1 of fluent constants and any set α of action constants, the triple (7.54) is a
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transition of DC iff

0 :s0 ∪ {0:a=t | a ∈ α} ∪ {0:a= f | a ∈ σA \ α} ∪ 1:s1 (7.55)

is a model of the nonmonotonic causal theory D1
C that consists of the causal

rules

i :A0 ⇐ i :A1 ∧ · · · ∧ i :An (i = 0, 1)

for the static laws (6.8) of D, the rules

i :A0 ⇐ i :A1 ∧ · · · ∧ i :An (i = 0, 1)

for the static laws (6.8) of D, the rules

1 :A0 ⇐ 0:A1 ∧ · · · ∧ 0:Am ∧ 1:Am+1 ∧ · · · ∧ 1:An

for the dynamic laws (6.2) of D, the rules

0 :a = t ⇐ 0:a = t,
0:a = f ⇐ 0:a = f

for all action constants a, and the rules

0 :f = v ⇐ 0:f = v

for all regular fluents f and all v ∈ Dom(f).

We will prove claim (b); the proof of claim (a) is similar. The proof is

based on the fact that program PN1(D) is tight,1 so that its stable models are

characterized by its completion. On the other hand, the models of the causal

1See, for instance, Section 2.4.4.
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theory D1
C are characterized by its completion in the sense of [33, Section 2.6].

We will calculate and compare these two completions.

The completion of D1
C is the conjunction of formulas of four kinds. For

every atom A0 containing a regular fluent, it includes the equivalence

0 :A0 ↔
∨(

n∧
i=1

0:Ai

)
∨ 0:A0, (7.56)

where the big disjunction extends over all static laws (6.1) of D beginning with

that atom. Similarly, for every atom A0 containing a statically determined

fluent, it includes the equivalence

0 :A0 ↔
∨(

n∧
i=1

0:Ai

)
. (7.57)

For every atom A0, it includes the equivalence

1 :A0 ↔
∨(

n∧
i=1

1:Ai

)
∨
∨(

m∧
i=1

0:Ai ∧
n∧

i=m+1

1:Ai

)
, (7.58)

where the first big disjunction extends over all static laws (6.1) of D begin-

ning with that atom, and the second big disjunction extends over all dynamic

laws (6.2) of D beginning with that atom. Finally, for every action constant a

it includes the equivalences

0 :a = t ↔ 0:a = t,
0:a = f ↔ 0:a = f.

(7.59)

These equivalences are tautological and can be disregarded.

On the other hand, PN1(D) is a tight logic program: since m = 0 for

all static laws (6.1), time stamps decrease along any path in its dependency
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graph. The program’s completion includes formulas similar to (7.56)–(7.59):

0 :A0 ↔
∨(

n∧
i=1

0:¬¬Ai

)
∨ 0:A0 (7.60)

for each atom A0 containing a regular fluent,

0 :A0 ↔
∨(

n∧
i=1

0:¬¬Ai

)
(7.61)

for each atom A0 containing a statically determined fluent,

1 : A0 ↔
∨(

n∧
i=1

¬¬ 1:Ai

)
∨
∨(

m∧
i=1

0:Ai ∧
n∧

i=m+1

¬¬ 1:Ai

)
(7.62)

for each atom A0, and

0:a↔ 0:a (7.63)

for each action constant a. In addition, the completion of PN1(D) includes

formulas corresponding to constraints:

¬

 ∧
v∈Dom(f)

¬i : (f = v)

 (7.64)

for each fluent f and i = 0, 1, and

¬(i : (f = v) ∧ i : (f = w)) (7.65)

for each fluent f , each pair of distinct members v, w of its domain, and i = 0, 1.

The equivalences (7.63) are tautological and can be disregarded. Take any

multi-valued interpretations s0, s1 of fluent constants and any set α of action

constants such that the triple (7.54) is a transition of DC. Then the multi-

valued interpretation (7.55) satisfies the completion (7.56)–(7.58) of D1
C

[33,

159



Proposition 6]. Consequently the interpretation 0:s0 ∪ 0:α∪ 1:s1 satisfies the

formulas (7.60)–(7.62) from the completion of PN1(D). It obviously satisfies

(7.64) and (7.65) as well. It follows that this interpretation is a stable model

of PN1(D), so that 〈s0, α, s1〉 is a transition of D.

The other way around, for any transition 〈s0, α, s1〉 of D, the interpre-

tation 0:s0∪0:α∪1:s1 is a stable model of PN1(D), and consequently satisfies

the completion (7.60)–(7.62), (7.64), (7.65) of this program. In view of the last

two formulas, (7.55) is a multi-valued interpretation; in view of (7.60)–(7.62),

this multi-valued interpretation satisfies the completion (7.56)–(7.58) of D1
C.

Consequently it is a model of D1
C, so that (7.54) is a transition of DC.
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Chapter 8

Lloyd-Topor Completion and General Stable

Models

Section 2.4.4 describes a case when the stable model semantics is equiv-

alent to program completion. Let F be the program (2.23), that is

p(a),
q(b),
p(x)← q(x),

or, in other words, the sentence

p(a) ∧ q(b) ∧ ∀x(q(x)→ p(x)).

The program is tight and Fact 2.4.5 shows that its stable models are described

as the conjunction of the completed definitions of p and q, which is (2.24):

∀x(p(x)↔ x = a ∨ q(x)),
∀x(q(x)↔ x = b).

Let now F be the program (2.25), that is,

p(x)← q(x),
q(a)← p(b).

This program is not tight in the sense of Section 2.4.4, so that the above-

mentioned theorem is not applicable. In fact, SM[F ] is stronger in this case
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than the conjunction of the completed definitions

∀x(p(x)↔ q(x)),
∀x(q(x)↔ x = a ∧ p(b)). (8.1)

A counterexample is provided by any interpretation that treats each of the

symbols p, q as a singleton such that its element is equal to both a and b.

Such a (non-Herbrand) interpretation satisfies (8.1), but it is not a stable

model of (2.25). (In stable models of (2.25) both p and q are empty.)

Program (2.25) is, however, atomic-tight in the sense of [41, Section 5.1.1].

Corollary 5 from that paper allows us to conclude that the equivalence between

SM[F ] and (8.1) is entailed by the unique name assumption a 6= b. It follows

that the result of applying SM to the program obtained from (8.1) by adding

the constraint

← a = b

is equivalent to the conjunction of the completion sentences (8.1) with a 6= b.

This example illustrates the role of a property more general than the logical

equivalence between SM[F ] and the completion of F : it may be useful to know

when the equivalence between these two formulas is entailed by a certain set

of assumptions. This information may be relevant if we are interested in a

logic program obtained from F by adding constraints.

The result of applying SM to the program

p(a) ← p(b),
q(c) ← q(d),

← a = b,
← c = d

(8.2)
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is equivalent to the conjunction of the formulas

∀x(p(x)↔ x = a ∧ p(b)),
∀x(q(x)↔ x = c ∧ q(d)),

a 6= b,
c 6= d.

(8.3)

This claim cannot be justified, however, by a reference to Corollary 5 from

[41]. The program in this example is atomic-tight, but it does not contain

constraints corresponding to some of the unique name axioms, for instance

a 6= c. We will show how our claim follows from Theorem 8.2.1 of this chapter.

We will discuss also an example illustrating limitations of earlier work

that is related to describing dynamic domains in answer set programming.

The program in that example is not atomic-tight because of rules expressing

the commonsense law of inertia. We will show nevertheless that the process

of completion can be used to characterize its stable models by a first-order

formula.

The class of tight programs is defined in [20] in terms of predicate

dependency graphs; that definition is reproduced in Section 2.4.4 below. The

definition of an atomic-tight program in [41] refers to more informative “first-

order dependency graphs.” Our approach is based on an alternative solution to

the problem of making predicate dependency graphs more informative, “rule

dependency graphs.”

We begin with defining rule dependency graphs in Section 8.1, state

the main theorem of this chapter (Theorem 8.2.1) and give examples of its use

in Sections 8.2 and 8.3.
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8.1 Rule Dependency Graph

We are interested in conditions on a Lloyd-Topor program Π ensuring

that the equivalence

SM[Π]↔ Comp[Π]

is entailed by a given set of assumptions Γ. Fact 2.4.5 gives a solution for the

special case when Γ is empty. The following definition will help us answer the

more general question.

The rule dependency graph of a Lloyd-Topor program Π is the directed

graph that has

• rules of Π, with variables (both free and bound) renamed arbitrarily, as

its vertices, and

• an edge from a rule p(t)← G to a rule p′(t′)← G′, labeled by an atomic

formula p′(s), if p′(s) has a positive nonnegated occurrence in G.

Unlike the predicate dependency graph, the rule dependency graph of

a program is usually infinite. For example, the rule dependency graph of

program (2.26), that is,

p(a, b)
q(x, y)← p(y, x) ∧ ¬p(x, y)

has the vertices p(a, b) and

q(x1, y1)← p(y1, x1) ∧ ¬p(x1, y1) (8.4)
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for arbitrary pairs of distinct variables x1, y1. It has an edge from each ver-

tex (8.4) to p(a, b), labeled p(y1, x1). The rule dependency graph of pro-

gram (2.27) has edges of two kinds:

• from p(x1)← q(x1) to q(x2)← r(x2), labeled q(x1), and

• from q(x1)← r(x1) to r(x2)← s(x2), labeled r(x1)

for arbitrary variables x1, x2.

The rule dependency graph of a program is “dual” to its predicate

dependency graph, in the following sense. The vertices of the predicate de-

pendency graph are predicate symbols, and the presence of an edge from p to q

is determined by the existence of a rule that contains certain occurrences of p

and q. The vertices of the rule dependency graph are rules, and the presence

of an edge from R1 to R2 is determined by the existence of a predicate symbol

with certain occurrences in R1 and R2.

There is a simple characterization of tightness in terms of rule depen-

dency graphs:

Proposition 8.1.1. A Lloyd-Topor program Π is tight iff there exists n such

that the rule dependency graph of Π has no paths of length n.

Proof. Assume that Π is tight, and let n be the number of predicate symbols

occurring in Π. Then the rule dependency graph of Π has no paths of length n+

1. Indeed, assume that such a path exists:

R0
p1(. . . )→ R1

p2(. . . )→ R2
p3(. . . )→ · · · pn+1(. . . )→ Rn+1.
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Each of the rules Ri (1 ≤ i ≤ n) contains pi in the head and a positive

nonnegated occurrence of pi+1 in the body. Consequently the predicate de-

pendency graph of Π has an edge from pi to pi+1, so that p1, . . . , pn+1 is a path

in that graph; contradiction. Now assume that Π is not tight. Then there

is an infinite path p1, p2, . . . in the predicate dependency graph of Π. Let Ri

be a rule of Π that has pi in the head and a positive nonnegated occurrence

of pi+1 in the body. Then the rule dependency graph of Π has an infinite path

of the form

R1
p2(. . . )→ R2

p3(. . . )→ · · · .

Theorem 8.2.1, stated in the next section, refers to finite paths in the

rule dependency graph of a program Π that satisfy an additional condition:

the rules at their vertices have no common variables (neither free nor bound).

Such paths will be called chains.

Corollary 8.1.2. A Lloyd-Topor program Π is tight iff there exists n such

that Π has no chains of length n.

Indeed, any finite path in the rule dependency graph of Π can be con-

verted into a chain of the same length by renaming variables.
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8.2 Main Theorem on Γ-Tightness

Let C be a chain
p0(t0)← Body0

↓p1(s1)
p1(t1)← Body1

↓p2(s2)
. . . . . . . . . . .

↓pn(sn)
pn(tn)← Bodyn

(8.5)

in a Lloyd-Topor program Π. The corresponding chain formula FC is the

conjunction
n∧
i=1

si = ti ∧
n∧
i=0

Body i.

For instance, if C is the chain

q(x1, y1)← p(y1, x1) ∧ ¬p(x1, y1)

↓p(y1, x1)
p(a, b)

in program (2.26) then FC is

y1 = a ∧ x1 = b ∧ p(y1, x1) ∧ ¬p(x1, y1).

Let Γ be a set of sentences. About a Lloyd-Topor program Π we will

say that it is tight relative to Γ, or Γ-tight, if there exists a positive integer n

such that, for every chain C in Π of length n,

Γ,Comp[Π] |= ∀̃¬FC .

Theorem 8.2.1. If a Lloyd-Topor program Π is Γ-tight then

Γ |= SM[Π]↔ Comp[Π].
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The proof of the theorem is given in Chapter 9. The proof is based on

the theory of stable models of infinitary propositional formulas [72].

Corollary 8.1.2 shows that every tight program is trivially Γ-tight even

when Γ is empty. Consequently Theorem 8.2.1 can be viewed as a generaliza-

tion of Fact 2.4.5.

Tightness in the sense of Section 2.4.4 is a syntactic condition that is

easy to verify; Γ-tightness is not. Nevertheless, the main theorem is useful

because it may allow us to reduce the problem of characterizing the stable

models of a program by a first-order formula to verifying an entailment in

first-order logic.

Here are some examples. In each case, to verify Γ-tightness we take

n = 1. We will check the entailment in the definition of Γ-tightness by deriving

a contradiction from (some subset of) the assumptions Γ, Comp[Π], and FC .

Example 8.2.1. The one-rule program

p(a)← p(x) ∧ x 6= a

is tight relative to ∅. Indeed, any chain of length 1 has the form

p(a)← p(x1) ∧ x1 6= a

↓p(x1)
p(a)← p(x2) ∧ x2 6= a.

The corresponding chain formula

x1 = a ∧ p(x1) ∧ x1 6= a ∧ p(x2) ∧ x2 6= a.
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is contradictory.

Thus the stable models of this program are described by its completion,

even though the program is not tight (and not even atomic-tight).

Example 8.2.2. Let Π be the program consisting of the first 2 rules of (8.2):

p(a)← p(b),
q(c)← q(d).

To justify the claim about (8.2) made in the introduction, we will check that Π

is tight relative to {a 6= b, c 6= d}. There are two chains of length 1:

p(a)← p(b)

↓p(b)
p(a)← p(b)

and
q(c)← q(d)

↓q(d)
q(c)← q(d).

The corresponding chain formulas are

b = a ∧ p(b) ∧ p(b)

and

d = c ∧ q(d) ∧ q(d).

Each of them contradicts Γ.

Example 8.2.3. Let us check that program (2.25) is tight relative to {a 6= b}.

Its chains of length 1 are
p(x1)← q(x1)

↓q(x1)
q(a)← p(b)
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and
q(a)← p(b)

↓q(b)
p(x1)← q(x1)

for an arbitrary variable x1. The corresponding chain formulas include the

conjunctive term p(b). Using the completion (8.1) of the program, we derive

b = a, which contradicts Γ.

8.3 A Larger Example

Programs found in actual application of ASP usually involve constructs

that are now allowed in Lloyd-Topor programs, such as choice rules and con-

straints. Nevertheless, Theorem 8.2.1 stated above can help us characterize

the stable models of a “realistic” program by a first-order formula.

Example 8.3.1 (Example 2.4.3, continued). Program M in Example 2.4.3

is not atomic-tight, so that methods of [41] are not directly applicable to it.

Nevertheless, we can describe the stable models of this program without the

use of second-order quantifiers. In the statement of the proposition below, p

stands for the list of intensional predicates step, next and at , and H is the

conjunction of the universal closures of the formulas

î 6= ĵ (1 ≤ i < j ≤ k),
at(x, y, z)→ object(x) ∧ place(y) ∧ step(z),
move(x, y, z)→ object(x) ∧ place(y) ∧ step(z),
at(x, y1, z) ∧ at(x, y2, z)→ y1 = y2,
object(x) ∧ step(z)→ ∃y at(x, y, z).

Proposition 8.3.1. SMp[M ] is equivalent to the conjunction of H with the
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universal closures of the formulas

step(z)↔
k∨
i=0

z = î, (8.6)

next(z, u)↔
k−1∨
i=0

(z = î ∧ u = î+1), (8.7)

at(x, y, î+1)↔ (move(x, y, î) ∨ (at(x, y, î) ∧ ¬∃w move(x,w, î)))
(i = 0, . . . , k − 1).

(8.8)

Recall that the effect of adding a constraint to a logic program is to

eliminate its stable models that violate that constraint [20, Theorem 3]. An

interpretation satisfies H iff it does not violate any of the constraints (ii)–

(v). So the statement of Proposition 8.3.1 can be summarized as follows:

the contribution of rules (i) and (vi)–(viii), under the stable model semantics,

amounts to providing explicit definitions for step and next , and “successor

state formulas” for at .

The proof of Proposition 8.3.1 refers to the Lloyd-Topor program Π

consisting of rules (i), (vi),

(vii′) at(x, y, 0)← object(x) ∧ place(y) ∧ ¬¬at(x, y, 0),

(viii′) at(x, y, u)← at(x, y, z) ∧ next(z, u) ∧ ¬¬at(x, y, t2),

and
object(x) ← ¬¬object(x),
place(y) ← ¬¬place(y),

move(x, y, z) ← ¬¬move(x, y, z).
(8.9)
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It is easy to see that SMp[M ] is equivalent to SM[Π]∧H. Indeed, consider the

program M ′ obtained from M by adding rules (8.9). These rules are strongly

equivalent to the choice rules

{object(x)}, {place(y)}, {move(x, y, z)}.

Consequently SMp[M ] is equivalent to SM[M ′] [20, Theorem 2]. It remains to

notice that (vii) is strongly equivalent to (vii′), and (viii) is strongly equivalent

to (viii′).

Furthermore—and this is the key step in the proof of Proposition 8.3.1—

the second-order formula SM[Π] ∧ H is equivalent to the first-order formula

Comp[Π] ∧H, in view of Theorem 8.2.1 and the following fact:

Lemma 8.3.2. Program Π is H-tight.

To derive Proposition 8.3.1 from the lemma, we only need to observe

that (8.6) and (8.7) are the completed definitions of step and next in Π, and

that the completed definition of at can be transformed into (8.8) under as-

sumptions (8.6), (8.7), and H.

Proof of Lemma 8.3.2. Consider a chain in Π of length k + 2:

R0
p1(. . . )→ R1

p2(. . . )→ · · · pk+1(. . . )→ Rk+1
pk+2(. . . )→ Rk+2. (8.10)

Each Ri is obtained from one of the rules (i), (vi), (vii′), (viii′), (8.9) by renam-

ing variables. Each pi occurs in the head of Ri and has a positive nonnegated

occurrence in Ri−1. Since there are no nonnegated predicate symbols in the
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bodies of rules (i) and (8.9), we conclude that R0, . . . , Rk+1 are obtained from

other rules of Π, that is, from (vi), (vii′), and (viii′). Since the predicate

constant in the head of each of these three rules is at , each of p1, . . . , pk+1 is

the symbol at . Since there are no nonnegated occurrences of at in the bod-

ies of (vi) and (vii′), we conclude that R0, . . . , Rk are obtained by renaming

variables in (viii′). This means that chain (8.9) has the form

at(x0, y0, u0)← at(x0, y0, z0) ∧ next(z0, u0) ∧ ¬¬at(x0, y0, u0)

↓at(x0, y0, z0)
at(x1, y1, u1)← at(x1, y1, z1) ∧ next(z1, u1) ∧ ¬¬at(x1, y1, u1)

↓at(x1, y1, z1)
. . .

↓at(xk−1, yk−1, zk−1)
at(xk, yk, uk)← at(xk, yk, zk) ∧ next(zk, uk) ∧ ¬¬at(xk, yk, uk)

↓at(xk, yk, zk)
Rk+1

↓ · · ·
Rk+2.

The corresponding chain formula contains the conjunctive terms

z0 = u1, z1 = u2, . . . , zk−1 = uk

and

next(z0, u0), next(z1, u1), . . . , next(zk, uk).

From these formulas we derive

next(u1, u0), next(u2, u1), . . . , next(uk+1, uk), (8.11)

where uk+1 stands for zk. Using the completed definition of next , we conclude:

ui = 0̂ ∨ · · · ∨ ui = k̂ (0 ≤ i ≤ k + 1).
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Consider the case when

ui = ĵi (0 ≤ i ≤ k + 1)

for some numbers j0, . . . , jk+1 ∈ {0, . . . , k}. There exists at least one subscript i

such that ji 6= ji+1 + 1, because otherwise we would have

j0 = j1 + 1 = j2 + 2 = · · · = jk+1 + k + 1,

which is impossible because j0, jk+1 ∈ {0, . . . , k}. By the choice of i, from

the completed definition of next and the unique name assumption (included

in H) we can derive ¬next(ĵi+1, ĵi). Consequently ¬next(ui+1, ui), which con-

tradicts (8.11).

To sum up, in this chapter we proposed a new method for representing

SM[F ] in the language of first-order logic. It is more general than the ap-

proach of [20]. Its relationship with the ideas of [41] requires further study.

This method allows us, in particular, to prove the equivalence of some ASP

descriptions of dynamic domains to axiomatizations based on successor state

axioms.
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Chapter 9

Propositional Infinitary Logic Programs

In this chapter we review the definition of a stable model for infinitary

formulas [72] and study their relationship to supported models. This will help

us prove Theorem 8.2.1.

9.1 Review of Stable Models of Infinitary Formulas

Let A be a set of propositional atoms. The sets F0,F1, . . . are defined

as follows:

• F0 = A ∪ {⊥};

• Fi+1 consists of expressions H∧ and H∨, for all subsets H of F0∪ . . .∪Fi,

and of expressions F → G, where F,G ∈ F0 ∪ . . . ∪ Fi.

An infinitary formula (over A) is an element of
⋃∞
i=0 Fi.

A (propositional) interpretation is a subset of A. The satisfaction rela-

tion between an interpretation and an infinitary formula is defined in a natural

way. The definition of the reduct F I of a formula F relative to an interpreta-

tion I proposed in [16] is extended to infinitary formulas as follows:
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• ⊥I = ⊥.

• For A ∈ A, AI = ⊥ if I 6|= A; otherwise AI = A.

• (H∧)I = ⊥ if I 6|= H∧; otherwise (H∧)I = {GI : G ∈ H}∧.

• (H∨)I = ⊥ if I 6|= H∨; otherwise (H∨)I = {GI : G ∈ H}∨.

• (G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI .

(Note that according to this definition F I is ⊥ whenever I 6|= F .) An inter-

pretation I is a stable model of an infinitary formula F if I is a minimal model

of F I . An interpretation I satisfies F I iff it satisfies F [72, Proposition 1], so

that stable models of F are models of F .

Infinitary formulas are used to encode first-order sentences as follows.

For any interpretation I in the sense of first-order logic, let A be the set of

ground atoms formed from the predicate constants of the underlying signature

and the “names” ξ∗ of elements ξ of the universe |I| of I—new objects con-

stants that are in a 1–1 correspondence with elements of |I|. By Ir we denote

the set of atoms from A that are satisfied by I. In the definition below, tI

stands for the value assigned to the ground term t by the interpretation I.

The grounding of a first-order sentence F relative to I (symbolically, gr I(F ))

is the infinitary formula over A constructed as follows:

• gr I(⊥) = ⊥.

• gr I(p(t1, . . . , tk)) = p((tI1)∗, . . . , (tIk)
∗).
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• gr I(t1 = t2) = >, if tI1 = tI2, and ⊥ otherwise.

• If F = G ∧H, gr I(F ) = gr I(G) ∧ gr I(H).

• If F = G ∨H, gr I(F ) = gr I(G) ∨ gr I(H).

• If F = G→ H, gr I(F ) = gr I(G)→ gr I(H).

• If F = ∃xG(x), gr I(F ) = {gr I(G(u∗)) : u ∈ |I|}∨.

• If F = ∀xG(x), gr I(F ) = {gr I(G(u∗)) : u ∈ |I|}∧.

It is easy to check that gr I is a faithful translation in the following sense: I

satisfies a first-order sentence F iff Ir satisfies gr I(F ).

This transformation is also faithful in the sense of the stable model

semantics: I satisfies SM[F ] iff Ir is a stable model of gr I(F ) [72, Theorem 5].

This is why infinitary formulas can be used for proving properties of the op-

erator SM.

9.2 Fages’ Theorem for Infinitary Programs

An infinitary rule is an implication G → A with with A ∈ A. We

will write it as A ← G and call A the head and G the body of the rule. An

infinitary program is a conjunction of (possibly infinitely many) implications.

For instance, if Π is a Lloyd-Topor program then, for any interpretation I,

gr I(Π) is an infinitary program. We say that an interpretation I is supported
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by an infinitary program Π if each atom A ∈ I is the head of a rule A ← G

of Π such that I |= G.

The set of positive nonnegated atoms of an infinitary formula, denoted

by Pnn(F ), and the set of negative nonnegated atoms of F , denoted by Nnn(F ),

are defined recursively, as follows:

• Pnn(⊥) = ∅.

• For A ∈ A, Pnn(A) = {A}.

• Pnn(H∧) = Pnn(H∨) =
⋃
H∈H Pnn(H).

• Pnn(G→ H) =

{
∅ if H = ⊥,
Nnn(G) ∪ Pnn(H) otherwise.

• Nnn(⊥) = ∅,

• For A ∈ A, Nnn(A) = ∅.

• Nnn(H∧) = Nnn(H∨) =
⋃
H∈H Nnn(H).

• Nnn(G→ H) =

{
∅ if H = ⊥,
Pnn(G) ∪ Nnn(H) otherwise.

Let Π be an infinitary program, and I a propositional interpretation.

About atoms A,A′ ∈ I we say that A′ is a parent of A relative to Π and I

if Π has a rule A← G with the head A such that I |= G and A′ is a positive

nonnegated atom of G. We say that Π is tight on I if there is no infinite

sequence A0, A1, . . . of elements of I such that for every i, Ai+1 is a parent of

Ai relative to F and I.
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The following theorem expresses a Fages-style property of infinitary

formulas similar to Theorem 1 from [13].

Theorem (Fages’ Theorem for Infinitary Programs). For any model I of an

infinitary program Π such that Π is tight on I, I is stable iff I is supported

by Π.

9.3 Proof of Fages’ Theorem for Infinitary Programs

In this section, Π is an arbitrary infinitary program. It is clear that for

any model I of Π, the reduct ΠI is the conjunction of (i) the rules A← GI for

all rules A ← G of Π such that A ∈ I, and (ii) tautologies ⊥ ← ⊥. We will

disregard these tautologies and think of ΠI as a program.

Lemma 9.3.1. A model I of Π is supported by Π iff it is supported by ΠI .

Proof. A model I of Π is supported by ΠI iff for every atom A ∈ I there

exists a rule A ← G in Π such that I |= GI . By Proposition 1 from [72],

I |= GI iff I |= G.

Lemma 9.3.2. Any stable model of Π is supported by Π.

Proof. By Lemma 9.3.1, it is sufficient to check that any stable model I

of Π is supported by ΠI . Take an atom A ∈ I. Since I is a stable model of Π,

I is minimal among the models of ΠI . Therefore I \ {A} does not satisfy ΠI ,

that is to say, for some rule A′ ← G of Π such that

A′ ∈ I, (9.1)
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I \ {A} does not satisfy the corresponding rule A′ ← GI of ΠI . Then

I \ {A} |= GI (9.2)

and

A′ 6∈ I \ {A}. (9.3)

From (9.2), I |= G (because otherwise GI would be ⊥), and consequently

I |= GI . From (9.1) and (9.3), A′ = A. Thus A′ ← GI is a rule of ΠI such

that its head is A and its body is satisfied by I.

Lemma 9.3.3. For any infinitary formula F and any interpretation I,

Pnn(F I) ⊆ Pnn(F ), Nnn(F I) ⊆ Nnn(F ).

Proof: Straightforward, by strong induction on the construction of F (defined

as the value of i for which F ∈ Fi).

Lemma 9.3.4. For any model I of Π, if Π is tight on I then so is ΠI .

Proof. Assume that ΠI is not tight on I, and let A0, A1, . . . be an infinite

sequence of elements of I such that Ai+1 is a parent of Ai relative to ΠI and

I. Consider the rule of ΠI justifying this property. That rule has the form

A ← GI for some rule A ← G of Π such that A ∈ I, and it satisfies the

following conditions:

A = Ai, I |= GI , Ai+1 ∈ I ∩ Pnn(GI).
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Then I |= G and, in view of Lemma C,

Ai+1 ∈ I ∩ Pnn(GI) ⊆ I ∩ Pnn(G).

Consequently, for every i, Ai+1 is a parent of Ai relative to I and Π, contrary

to the assumption that Π is tight on I.

The statement of the following lemma refers to the set of strictly positive

atoms of an infinitary formula F , denoted by SPos(F ), which is defined as

follows:

• SPos(⊥) = ∅.

• For A ∈ A, SPos(A) = {A}.

• SPos(H∧) =
⋃
H∈H SPos(H).

• SPos(H∨) =
⋃
H∈H SPos(H).

• SPos(G→ H) = SPos(H).

Lemma 9.3.5. For any infinitary formula F , SPos(F ) ⊆ Pnn(F ).

Proof: Straightforward, by induction on the construction of F .

Lemma 9.3.6. Let I be a model of an infinitary formula F . If F can be repre-

sented in the form GI for some infinitary formula G then any interpretation J

such that

I ∩ SPos(F ) ⊆ J

is a model of F as well.
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Proof. By induction on the construction of G we can show that if I |= GI

(or, equivalently, I |= G) and I ∩ SPos(GI) ⊆ J then J |= GI . Consider

the more difficult case when G has the form H1 → H2. Since I |= G, and

GI is HI
1 → HI

2 . We can distinguish between two subcases: (i) I 6|= H1

and (ii) I |= H2. In the first case, HI
1 is ⊥, so that GI is tautological, and the

assertion J |= GI is trivial. Assume now that I |= H2. Since

I ∩ SPos(GI) = I ∩ SPos(HI
2 ) ⊆ J,

we can conclude from the induction hypothesis that J |= HI
2 . Consequently

J |= GI .

Proof of Fages’ Theorem for Infinitary Programs. The only if part is

immediate from Lemma 9.3.2. Let I be a supported model of Π such that Π

is tight on I. To prove the stability of I, we need to show that no proper

subset of I satisfies ΠI . Take a proper subset J of I. There is an atom A in

I \ J that has no parent in I \ J relative to ΠI and I. Indeed, if every atom

in I \ J has a parent relative to ΠI and I that belongs to I \ J then there

exists an infinite sequence A0, A1, . . . of elements of I \ J such that Ai+1 is a

parent of Ai, so that ΠI is not tight on I; this is impossible by Lemma 9.3.4.

Consider such an atom A. By Lemma 9.3.1, I is supported by ΠI . It follows

that there is a rule A ← F in ΠI such that I |= F . By the definition of the

parent relation, all elements of I ∩Pnn(F ) are parents of A relative to ΠI and

I. By the choice of A, no parent of A relative to ΠI and I belongs to I \ J .

182



Consequently I ∩ Pnn(F ) is disjoint from I \ J , so that

I ∩ Pnn(F ) ⊆ J.

In view of Lemma 9.3.5, it follows that

I ∩ SPos(F ) ⊆ J.

Since A ← F is a rule of ΠI , F has the form GI for some formula G. By

Lemma 9.3.6, it follows that J |= F . Since A ∈ I \J , we conclude that J does

not satisfy A← F and therefore is not a model of ΠI .

9.4 Proof of Theorem 8.2.1

In the statement of Theorem 8.2.1, the implication left-to-right

SM[Π]→ Comp[Π]

is logically valid for any Lloyd-Topor program Π. This fact follows from [20,

Theorem 11] by the argument used in the proof of Fact 2.4.5. To prove the

theorem in the other direction, we need to establish the following:

If a Lloyd-Topor program Π is Γ-tight,
and an interpretation I satisfies both Γ and Comp[Π],

then I satisfies SM[Π].
(9.4)

This assertion follows from Fages’ theorem for infinitary programs (Sec-

tion 9.3) and two lemmas. One of them (Lemma 9.4.2) relates the Γ-tightness

condition from the statement of Theorem 8.2.1 to tightness on an interpreta-

tion as defined in Section 9.2. The other (Lemma 9.4.3) states that models of

Comp[Π] can be characterized in terms of satisfaction and supportedness.
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9.4.1 Relating Γ-tightness to Tightness on an Interpretation

Our goal is to relate the Γ-tightness of a Lloyd-Topor program Π (de-

fined in Section 8.2) to the tightness of gr I(Π) on Ir in the sense of Section 9.4.

As a preliminary step, we will describe a relationship between positive non-

negated atomic subformulas of a first-order formula F , referred to in the def-

inition of the rule dependency graph, and the positive nonnegated atoms of

the infinitary formula gr I(F ).

In the following lemmas, I is an interpretation in the sense of first-

order logic, and F is a first-order sentence that may contain the names ξ∗ of

elements ξ of the universe of I. If u is a tuple ξ1, . . . , ξk of elements of the

universe then u∗ stands for the corresponding tuple of names ξ∗1 , . . . , ξ
∗
k. If t is a

tuple t1, . . . , tk of ground terms then gr I(t) stands for the tuple (tI1)∗, . . . , (tIk)
∗

of the names of their values.

Lemma 9.4.1. For any ground atom of the form p(u∗),

(i) if p(u∗) ∈ Pnn(gr I(F )) then u∗ has the form gr I(t(v
∗)) for some tuple

t(x) of terms such that p(t(x)) has a positive nonnegated occurrence in F ,

and some tuple v of elements of the universe;

(ii) if p(u∗) ∈ Nnn(gr I(F )) then u∗ has the form gr I(t(v
∗)) for some tuple

t(x) of terms such that p(t(x)) has a negative nonnegated occurrence

in F , and some tuple v of elements of the universe.
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Proof. The proof is by induction on the size of F . We will consider three

cases: when F atomic, when F is an implication, and when F begins with the

universal quantifier.

If F is an atomic formula that does not contain p then gr(F ) does not

contain atoms of the form p(u∗), and assertions (i) and (ii) are trivial. Assume

that F is p(t), so that gr I(p(t)) = p(gr I(t)), Pnn(gr I(F )) = {p(gr I(t))},

and Nnn(gr I(F )) = ∅. If p(u∗) ∈ Pnn(gr I(F )) then u∗ = gr I(t); p(u∗) ∈

Nnn(gr I(F )) is impossible.

If F is G→ H then gr I(F ) is gr I(G)→ gr I(H). Assume that gr I(H)

is different from ⊥ (otherwise both Pnn(gr I(F )) and Nnn(gr I(F )) are empty).

Then

Pnn(gr I(F )) = Nnn(gr I(G)) ∪ Pnn(gr I(H)),
Nnn(gr I(F )) = Pnn(gr I(G)) ∪ Nnn(gr I(H)).

To prove (i), assume that p(u∗) ∈ Pnn(gr I(F )). Then

p(u∗) ∈ Nnn(gr I(G)) or p(u∗) ∈ Pnn(gr I(H).

By the induction hypothesis, it follows that u∗ has the form gr I(t(v∗)) for some

tuple t(x) of terms such that p(t(x)) has a negative nonnegated occurrence

in G or a positive nonnegated occurrence in H. Since gr I(H) is not ⊥, H is

not ⊥ either. Consequently p(t(x)) has a positive nonnegated occurrence in

G→ H. The proof of (ii) is similar.

If F is ∀zG(z) then

gr I(F ) = {gr I(G(w∗)) : w ∈ |I|}∧.
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To prove (i), assume that p(u∗) ∈ Pnn(gr I(F )). Since

Pnn(gr I(F )) =
⋃
w∈|I|

Pnn(gr I(G(w∗))),

p(u∗) ∈ Pnn(gr I(G(w∗))) for some w ∈ |I|. By the induction hypothesis,

it follows that u∗ has the form gr I(t(v∗)) for some tuple t(x) of terms such

that, for some w ∈ |I|, p(t(x)) has a positive nonnegated occurrence in G(w∗).

Without loss of generality we can assume that every member of x occurs in

t(x). Case 1: z is not a member of x. Let p(t′(x, z)) be the part of G(z) from

which the occurrence of p(t(x)) in G(w∗) is obtained by substituting w∗ for z.

This part has a positive nonnegated occurrence in G(z), and consequently in

F (z). On the other hand, t(x) is t′(x, w∗), so that t(v∗) is t′(v∗, w∗), and

u∗ = gr I(t(v
∗)) = gr I(t

′(v∗, w∗)).

Case 2: z is a member of x. Then p(t(x)) contains z, which is only possible if

all occurrences of z in the part of F (z) from which the occurrence of p(t(x)) is

obtained by substitution are bound. Then that part of F (z) is not affected by

the substitution and equals p(t(x)). Thus p(t(x)) has a positive nonnegated

occurrence in F (z), and u∗ is gr I(t(v
∗)). The proof of part (ii) is similar.

Lemma 9.4.2. If a Lloyd-Topor program Π is Γ-tight, and an interpretation I

satisfies both Γ and Comp[Π], then gr I(Π) is tight on Ir.

Proof. Assume that Π is Γ-tight, that an interpretation I satisfies both

Comp[Π] and Γ, and that gr I(Π) is not tight on Ir. Then there exists an
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infinite sequence A0, A1, . . . of atoms such that each Ai+1 is a parent of Ai

relative to gr I(Π) and Ir. In other words, there exist rules

pi(gr I(t
i(c∗i )))← gr I(Gi(c

∗
i )) (i = 0, 1, . . . )

of gr I(Π), obtained by grounding from rules

pi(t
i(xi))← Gi(x

i) (9.5)

of Π, such that Ai is pi(gr I(t
i(c∗i ))),

Ir |= gr I(Gi(c
∗
i )), (9.6)

and Ai+1 ∈ Pnn(gr I(Gi(c
∗
i ))). Atom Ai+1 can be written as pi+1(u∗), where u∗

is gr I(t
i+1(c∗i+1)). By Lemma 9.4.1,

gr I(t
i+1(c∗i+1)) is gr I(s

i+1(d∗i )) (9.7)

for some atom pi+1(si+1(zi)) that has a positive nonnegated occurrence in

Gi(c
∗
i ), and some tuple di of elements of the universe. That occurrence of

pi+1(si+1(zi)) is the result of substituting c∗i for xi in some atom pi+1(ri+1(xi, zi))

that has a positive nonnegated occurrence inGi(x
i), so that si+1(zi) is ri+1(c∗i , z

i).

From (9.7) we conclude that

gr I(t
i+1(c∗i+1)) is gr I(r

i+1(c∗i ,d
∗
i )). (9.8)

Since Π is Γ-tight and I satisfies Comp[Π] and Γ, there exists n such

that, for every chain C in Π of length n, I |= ∀̃¬FC . Consider rules (9.5) for

i = 0, . . . , n. Let

pi(t
i(x̂i))← Ĝi(x̂i) (9.9)
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be those rules with variables renamed so that different rules have no common

variables. (Formula Ĝi(x̂i) is the result of renaming bound variables in Gi(x̂i).)

Then pi+1(ri+1(x̂i, ẑi)) has a positive nonnegated occurrence in Ĝi(x̂i), for some

tuple ẑi of variables. Let C be the chain

p0(t0(x̂0))← Ĝ0(x̂0)

↓p1(r1(x̂0, ẑ0))

p1(t1(x̂1))← Ĝ1(x̂1)

↓p2(r2(x̂1, ẑ1))

p2(t2(x̂2))← Ĝ2(x̂2)

↓p3(r3(x̂2, ẑ2))
· · ·

↓pn(rn(x̂n−1, ẑn−1))

pn(tn(x̂n))← Ĝn(x̂n).

The corresponding chain formula FC is

n−1∧
i=0

ti+1(x̂i+1) = ri+1(x̂i, ẑi) ∧
n∧
i=0

Ĝi(x̂i).

Since interpretation I satisfies ∀̃¬FC , it satisfies also

¬

(
n−1∧
i=0

ti+1(ĉ∗i+1) = ri+1(ĉ∗i , d̂
∗
i ) ∧

n∧
i=0

Ĝi(ĉ∗i )

)
,

so that Ir satisfies

¬

(
n−1∧
i=0

gr I(t
i+1(ĉ∗i+1) = ri+1(ĉ∗i , d̂

∗
i )) ∧

n∧
i=0

gr I(Ĝi(ĉ∗i ))

)
.
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In view of (9.8), each of the formulas gr I(t
i+1(ĉ∗i+1) = ri+1(ĉ∗i , d̂

∗
i )) is >, so

that Ir satisfies

¬
n∧
i=0

gr I(Ĝi(ĉ∗i )).

This is impossible by (9.6).

9.4.2 Relating Models of Completion to Supportedness

Lemma 9.4.3. For any Lloyd-Topor program Π, an interpretation I satisfies

Comp[Π] iff Ir satisfies gr I(Π) and is supported by gr I(Π).

Proof. Recall that the rules of a Lloyd-Topor program Π have the form

p(t(y))← G(y)

(with all free variables of the rule explicitly shown), and that the rules of the

infinitary program gr I(Π) have the form

p(gr I(t(v∗)))← gr I(G(v∗)) (9.10)

for all tuples v of elements of |I|. For any Lloyd-Topor program Π, Comp[Π]

is equivalent to the conjunction of Π with the universal closures of the defini-

tions (2.21) of all predicate constants p. To prove Lemma 9.4.3, we need to

check that the condition: for all p,

I |= ∀x

(
p(x)→

∨
i

∃yi(x = ti(yi)) ∧Gi(yi)

)
, (9.11)
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is equivalent to the assertion that gr I(Π) is supported by Ir.Note first that (9.11)

is equivalent to the condition:

Ir |=

{
gr I

(
p(u∗)→

∨
i

∃yi(u∗ = ti(yi) ∧Gi(y
i))

)
: u ∈ |I|k

}∧
,

where k is the arity of p. The conjunctive terms gr I(· · · ) can be written as

p(u∗)→
∨
i

{
gr I(u

∗ = ti(v∗)) ∧ gr I(Gi(v
∗))) : v ∈ |I|li

}∨
,

where li is the length of the tuple yi. Therefore (9.11) is equivalent to following

condition: for every u ∈ |I|k such that p(u∗) ∈ Ir,

there exist i and v such that u∗ is gr I(t
i(v∗)), and Ir |= gr I(Gi(v

∗)). (9.12)

Condition (9.12) is equivalent to saying that p(u∗) is the head of one of the

rules (9.10) whose body is satisfied by Ir.

9.4.3 Proof of Theorem 8.2.1

To derive assertion (9.4) from these lemmas, assume that Π is a Γ-tight

Lloyd-Topor program, and that I is an interpretation satisfying both Γ and

Comp[Π]. By Lemma 9.4.2, gr I(Π) is tight on Ir. By Lemma 9.4.3, Ir satisfies

gr I(Π) and is supported by gr I(Π). By Fages’ theorem for infinitary formulas

(Section 9.2), it follows that Ir is a stable model of gr I(Π). By Theorem 5

from [72], quoted at the end of Section 9.1, it follows that I satisfies SM[Π].
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Chapter 10

From BC to the Input Language of

CPLUS2ASP

Software system cplus2asp, designed and implemented at Arizona

State University, was originally created to answer queries about action de-

scriptions described in C+. According to [2], its version 2 is applicable also to

other action languages, including the language BC described in Chapter 6 of

this dissertation. However, there are significant syntactic differences between

BC and the input language of cplus2asp. For instance, in the input lan-

guage of cplus2asp we can declare sorts, variables and constants; one line

in cplus2asp code may correspond to a large set of causal laws of BC that

follow the same pattern.

In this chapter, we clarify the relationship between BC and a fragment

of the input language cplus2asp by describing a translation from the latter

to the former. A context-free grammar describing the syntax of that fragment

is given in Appendix 1. It is based on the grammar used for the generation

of the parser of cplus2asp1. In Section 10.1, we give an informal description

of that syntax and examples of its use. The translation into BC is given in

1Joseph Babb, personal communication, Jan, 13, 2014
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Section 10.2.

10.1 Syntax

10.1.1 Identifiers and Integers

An identifier is a string of letters, digits and underscores that begins

with a letter. An integer is a whole number in the usual decimal notation, such

as 5 or -20. Extended integers are arithmetic expressions that are evaluated to

integers. A number range is defined as an interval of extended integers, such

as 1..5.

10.1.2 Comments

A comment is the text appearing on a line following a % or appearing

on one or more lines between /* and */.

10.1.3 Declarations

A declaration assigns an identifier, or each member of a group of iden-

tifiers, to one of 4 categories: sorts, objects, constants, variables. An identifier

for a variable must be capitalized. Identifiers for the other three categories

should not be capitalized. Every declaration begins with :- and the name of

the group.
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10.1.3.1 Sort Declarations

A sort represents a set of objects. A sort declaration allows us to

describe the subsort relation between sorts. For instance, the declaration

:- sorts

index;

location >> block.

expresses that there are three sets of objects—indices, locations, blocks—and

also that every block is a location.

10.1.3.2 Object Declarations

An object declaration describes expressions of certain syntactic forms

as objects and specifies the sorts of these objects. For instance, the declaration

:- objects

table :: location;

1..10 :: index;

box(index) :: block.

expresses that table is an object of sort location, that numbers 1,..,10 are

objects of sort index, and that the identifier box followed by an object of sort

index enclosed in parentheses is an object of sort block.
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10.1.3.3 Variable Declarations

A variable declaration describes an identifier, or each of several identi-

fiers, as a schematic variable for objects of a certain sort:

:- variables

P1, P2 :: boolean;

B1, B2 :: block;

L1, L2 :: location.

(The identifier boolean is a standard sort in the language. The objects of this

sort are false and true.)

10.1.3.4 Constant Declarations

A constant declaration describes expressions of certain syntactic forms

as fluent constants or action constants. For a fluent constant, the declaration

also specifies its domain. For instance, the declaration

:- constants

loc(block) :: simpleFluent(location);

above(block,block) :: sdFluent;

move(block,location) :: action.

expresses that the identifier loc followed by an object of sort block enclosed in

parentheses is a regular fluent constant whose domain is the set of locations;
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the identifier above followed by a pair of objects of sort block enclosed in

parentheses is a boolean statically determined fluent constant; and the identi-

fier move followed by a pair of objects of sorts block and location enclosed

in parentheses is an action constant.

In a constant declaration, the reserved word inertialFluent can be

used in place of simpleFluent. The use of this symbol indicates that a dy-

namic law expressing the common sense law of inertia for this fluent will

be included in translation of the domain description into BC. The reserved

word rigid has the same meaning as sdFluent, except that the syntax of

cplus2asp allows a statically determined fluent to be declared as rigid only

when its values do not depend on the state. The use of rigid allows cplus2asp

to process domain descriptions more efficiently.

10.1.4 Atomic Formulas

Atomic formulas are formed from constants, objects, and variables. For

instance,

loc(B1)=L1, above(box(1),box(2))=false, loc(box(1))=table

are atomic formulas. The second formula can be also written as

-above(box(1),box(2)).
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10.1.5 Rules

The syntax of rules is the same as the syntax of static and dynamic

laws in BC (Chapter 6), with atomic formulas used as atoms. Abbreviations

defined in Sections 6.1, 6.2, 6.4 are also allowed. A rule is followed by a period:

intower(B) if loc(B)=table.

move(B,L) causes loc(B)=L.

10.1.6 Domain Descriptions

A domain description consists of declarations, rules, and comments,

which may appear in any order. For instance, a domain description repre-

senting the blocks world in the input language of cplus2asp is shown in

Figure 10.1. The translation of that domain description into BC, formed as

defined in the next section, is essentially identical to the representation of the

blocks world shown in Section 6.5.

10.2 Translation to BC

To specify an action description in language BC, we need to specify its

fluent constants along with their domains, its action constants, and its static

and dynamic laws (Section 6.1).
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:- sorts

loc >> block.

:- objects

b1, b2, b3, b4 :: block;

table :: loc.

:- constants

loc(block) :: inertialFluent(loc);

intower(block) :: sdFluent;

move(block, loc):: action.

:- variables

B, B1, B2 :: block;

L, L1 :: loc.

% location

impossible loc(B1) = B, loc(B2) = B, B1/=B2.

% Definition of a tower

default -in tower(B).

intower(B) if loc(B) = table.

intower(B) if loc(B) = B1, intower(B1).

% Blocks don’t float in the air

impossible -intower(B).

% Moving a block

move(B,L) causes loc(B)=L.

nonexecutable move(B,L) if loc(B1) = B.

Figure 10.1: Blocks World in the language of cplus2asp

10.2.1 Fluent and Action Constants

A sort identifier S represents a set of objects declared as members of the

sort, either directly or as members of subsorts of S. For instance, given the sort

declarations and the object declarations in the examples of Sections 10.1.3.1
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and 10.1.3.2 above, the set associated with the sort location consists of the

expressions

box(1), ..., box(10), table.

The set of regular fluent constants is defined by the constant declara-

tions of the forms

f(S1, . . . , Sn) :: simpleFluent(Sn+1)

and

f(S1, . . . , Sn) :: inertialFluent(Sn+1).

It consists of the symbols fo1...on where each oi belongs to the set represented

by the sort Si (i = 1, . . . , n). The domain of this fluent constant is the set

represented by Sn+1.

The statically determined fluent constants and their domains are de-

fined in a similar way by the constant declarations of the forms

f(S1, . . . , Sn) :: sdFluent(Sn+1)

and

f(S1, . . . , Sn) :: rigid(Sn+1).

The set of action constants is defined by the constant declarations of

the form

f(S1, . . . , Sn) :: action.
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It consists of the symbols fo1...on where each oi belongs to the set represented

by the sort Si (i = 1, . . . , n).

For instance, in the translation of the action description in Figure 10.1

into BC

• the regular fluent constants are loc(bi), where i = 1, 2, 3, 4; their domain

is {b1, b2, b3, b4, table},

• the statically determined boolean fluent constants are intower(bi), where

i = 1, 2, 3, 4,

• the action constants are move(bi, bj), move(bi, table), where i, j = 1, 2, 3, 4.

10.2.2 Static and Dynamic Laws

The static and dynamic laws of the translation are obtained from rules

by grounding. The process of grounding consists of two steps. First, objects

of appropriate sorts are substituted for all variables. Second, each expression

of the form o1 = o2 where o1 and o2 are objects, is replaced by true if o1

equals o2, and by false otherwise, and similarly for expressions of the form

o1/ =o2.

For instance, the rule

intower(B) if loc(B) = table.
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in Figure 10.1 turns into the set of 4 static laws:

intower(b1) if loc(b1) = table,
. . .

intower(b4) if loc(b4) = table.

The dynamic law

move(B,L) causes loc(B)=L

turns into a set of 20 dynamic laws, such as

move(b1, b3) causes loc(b1) = b3.

which is shorthand for

loc(b1) = b3 after move(b1, b3) ifcons >

(Section 6.1).

In addition to the static and dynamic laws obtained by translating rules

as shown above, the BC domain description contains the dynamic laws

inertial fo1...on

for all regular fluent constants fo1...on corresponding to the declarations of the

form

f(S1, . . . , Sn) :: inertialFluent(Sn+1).

For instance, the translation of Figure 10.1 contains the dynamic laws

inertial loc(b1),
. . .

inertial loc(b4).
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Chapter 11

Reactive Control System in Space Shuttle

Answer set programming has been used to formalize the Reaction Con-

trol System (RCS) of space shuttle [65], leading to the USA/RCS-Advisor

system that provides decision support for controlling space shuttle maneuvers.

The primary responsibility of the RCS system is for maneuvering the space

shuttle in space. It consists of fuel and oxidizer tanks, valves and other plumb-

ing needed to provide propellant to the maneuvering jets of the shuttle. It also

includes electronic circuitry: both to control valves in the fuel lines and to pre-

pare the jets to receive firing commands. When an orbit maneuver is required,

the astronauts must perform actions necessary to prepare the RCS—to close

or open valves or energize the proper circuitry. During normal shuttle oper-

ations, such plans are pre-scripted so that astronauts know what actions to

perform to achieve certain maundering goals. However, since the space shuttle

system is complex and involves a high number of components, multiple failures

may occur: switches and valves can be stuck in various positions, electrical

circuits can malfunction in various ways, valves can be leaking, jets can be

damaged, etc. In this situation, the number of possible sets of failures is too

large to pre-plan for all of them. It is also not trivial to manually find such

a plan, pressured by strict requirement on time and precision, and the cost of
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a single error can vary from abortion of the mission, in the best scenario, to

loss of space vehicles and the crew’s lives, in the worst case. The most difficult

part is proving that the plan will achieve expected results, given the current

condition of the shuttle, without causing any possible dangerous side effects.

The USA/RCS-Advisor system serves as a tool to facilitate this task: it can

efficiently verify and generate plans that prepare the RCS system for required

maneuvers.

The RCS system is one of those dynamic systems that can be described

in action description languages. At the time when the USA/RCS-Advisor was

created, action languages that were sufficiently expressive for that purpose

had been neither carefully defined nor implemented. Its design was inspired

earlier work of action description languages, but its implementation was done

directly in answer set programming. The code was highly optimized, so that a

plan could be efficiently verified or found using the early answer set grounder

lparse and solver smodels. A set of policies— heuristics to shrink search

space and speed up plan generation—was included in the RCS system formal-

ization. However, after many years of development of answer set solvers, the

same set of plans can be now generated quickly without using any heuristics.

This chapter is about the part of the USA/RCS-Advisor that describes

the fluid control system1. We reimplemented that piece of software in the

fragment of the input language of cplus2asp defined in Chapter 10. Our code

1http://mbal.tk/RCS-ASP/rcs/rcs1
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can be found in Appendix 2. This reformulation shows that the expressiveness

of BC meets the requirements of such a large, complex application. We tested

the new implementation using cplus2asp 2, gringo 3.0, and clasp 4.0. In

all instances that we experimented with, the new implementation produced

exactly the same results as the USA/RCS-Advisor. Since our reformulation

uses a higher-level language, it is more compact and user-friendly. As could

be expected, on the other hand, it is much less efficient than the original code

written in the input language of lparse: in our experiments, the solving time

is greater by up to 2 orders of magnitude.

11.1 Fluid Control System of the RCS

The RCS system is divided into left RCS, right RCS and forward RCS.

Forward RCS is located on the forward fuselage nose area of the orbiter, and

left and right RCS are located in the aft fuselage of the orbiter. There are

twelve possible maneuvers to be performed by firing jets of the shuttle: +X,

-X, +Y, -Y, +Z, -Z, +roll, -roll, +pitch, -pitch, +yaw, -yaw.

The fluid control system of the RCS includes a hydraulic module and a

valve control module. The hydraulic module consists of a collection of tanks,

jets and pipe junctions connected through pipes. The flow of fluids through

the pipe is controlled by valves. The system’s purpose is to deliver fuel and

oxidizers to the jets needed to perform a maneuver. The structure of the

hydraulic system can be represented as a directed graph, with vertices corre-

sponding tanks, jets and pipe junctions, and with arcs labeled by valves. The
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possible faults of the system at this level include leaky valves, damaged jets,

and valves stuck in some position.

Formalizing the hydraulic module involves describing how faults and

changes in the position of valves affect the pressure of tanks, jets and junctions.

In particular, when fuel and oxidizer flow from the tanks to a properly working

jet at the right pressure, the jet is considered ready to fire. In order for a

maneuver to start, all the jets it requires must be ready to fire. Pressurization

of fuel and oxidizer tanks is obtained by releasing helium from helium tanks

connected to the fuel and oxidizer tanks. The necessary condition for a fluid

to flow from a tank to a jet, and in general to any node of the directed graph,

is that there exists a path without leaks from the tank to the nodes and that

all valves along the path are open.

The flow of fuel and oxidizer propellants from tanks to jets is controlled

by opening/closing valves along the path connecting these nodes. The state of

valves can be changed either by manipulating mechanical switches or by issuing

computer commands. Switches and computer commands are connected to the

valves they control by electrical circuits.

In some specific phases of operation of the shuttle, such as launching

and landing, the on-board general purpose computers, GPCs, will be in charge

of opening/closing valves and will achieve this objective by sending computer

commands. If the shuttle is in orbit, or the computer system is malfunctioning,

an astronaut can normally override these commands by manually flipping the

switches that control the valves to be opened or closed. The valve control
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module describes how computer commands and changes in the position of

switches affect the state of valves. The action of flipping a switch to some

position normally puts a valve controlled by the switch in that position, and

similarly for computer commands. However, switches and valves can be stuck

at some position, and electrical circuits can malfunction in various ways. In

the formalization investigated in this chapter, we assumed that all electrical

circuits are working properly.

11.2 Comparison of Encodings

In this section we compare our encoding (Appendix 2) with the orig-

inal ASP encoding (http://mbal.tk/RCS-ASP/rcs/rcs1). As an example,

consider the multi-valued inertial fluent in state(Dev), which describes the

state of the device Dev. In the cplus2asp encoding, it is declared as follows:

in_state(device):: inertialFluent(state);

In the ASP encoding, three rules correspond to this declaration:

h(in_state(D,S),T1) :- next(T,T1), of_type(D,Dev), state_of(S,Dev),

h(in_state(D,S),T), not -in_state(D,S,T1).

nh(in_state(D,S),T) :- time(T), of_type(D,Dev), state_of(S,Dev),

state_of(S1,Dev), neq(S,S1), h(in_state(D,S1),T).
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:- time(T), of_type(D,Dev), state_of(S,Dev),

h(in_state(D,S),T), nh(in_state(D,S),T).

The cplus2asp formulation is more compact because the idea of inertia

and the uniqueness of the value of a multi-valued fluent are incorporated in

the syntax and semantics of BC, and because action description languages do

not use time stamps.

The need to include the atoms of type(D,Dev) and state of(S,Dev)

in the bodies of the rules is explained by the fact that there are no variable

declarations in traditional ASP languages. The new ASP language SPARC

[3] addresses this problem by allowing the user to include typing information

in the ASP code. For instance, the predicate in state can be declared as

follows:

in_state(#device,#state,#time).

In the presence of this declaration, the three rules shown above can be written

more concisely:

in_state(D,S,T1) :- next(T,T1), in_state(D,S,T),

not -in_state(D,S,T1).

-in_state(D,S,T) :- neq(S,S1), in_state(D,S1,T).

:- h(in_state(D,S),T), nh(in_state(D,S),T).
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11.3 Operation of CPLUS2ASP

The system cplus2asp translates action descriptions in its input lan-

guage into logic programming rules. This process is somewhat similar, but

not quite identical to the composition of two translations defined in this dis-

sertation: the translation from cplus2asp into BC (Section 10.2), and the

translation from BC description into logic programming (Section 6.3). The

main difference is that it produces a program with variables that needs to be

grounded.

Consider, for instance, the rule

flip(Sw,S) causes in_state(Sw)=S if -stuckd(Sw). (11.1)

The translation into BC defined in Section 10.2 turns it into the set of dynamic

laws

flipo1,o2 causes in state(o1) = o2 if ∼stuckd(o1)

for all members o1 of sort switch and all members o2 of sort state. The

translation PNl further converts these dynamic laws into the rules

i+ 1: in state(o1) = o2 ← i :flipo1,o2 ∧ i :∼stuckd(o1) (11.2)

where 0 ≤ i ≤ l − 1.

On the other hand, cplus2asp translates (11.1) into a logic program-

ming rule with variables:

h(eql(in_state(Sw),S),V_astep) :- h(eql(stuckd(Sw),false)),

occ(eql(flip(Sw,S),true),V_astep-1).
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Here, h stands for “holds,” eql stands for “equals,” and occ stands for

“ occurs.”

11.4 Plan Generation

To generate a plan, the initial conditions and the goal of the planning

query should be added to the output of cplus2asp, and the resulting program

should be sent to an answer set solver.

The rules in Figure 11.2 correspond to the query

http://mbal.tk/RCS-ASP/rcs/instances/instances-manual/instance_003

It describes the initial state where the tanks that contain fuel and oxidizers

are pressurized properly, there is no abnormal input to the valve and all other

nodes are not pressurized. All switches are in the gpc mode except for the

switch lx12, which is closed. Some valves are closed and others are open.

On the path to the jets, some valves have leaks and some switches are stuck.

The planning goal is specified by three constraints.

The first stable model generated by clingo with maxstep=7 is shown

in Figure 11.1.
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occ(eql(flip(lx345,gpc),true),6)

occ(eql(flip(fhb,open),true),6)

occ(eql(issue(open loi345a),true),6)

occ(eql(flip(fi345,open),true),5)

occ(eql(issue(open rfm4),true),5)

occ(eql(flip(fi12,open),true),4)

occ(eql(flip(rx12,open),true),4)

occ(eql(issue(closeb lfm1),true),4)

occ(eql(flip(fm1,open),true),3)

occ(eql(flip(li12,open),true),3)

occ(eql(issue(openb roi12),true),3)

occ(eql(flip(fm4,open),true),2)

occ(eql(flip(rx345,open),true),2)

occ(eql(flip(lx345,open),true),2)

occ(eql(flip(fm3,closed),true),1)

occ(eql(issue(opena rfha),true),1)

occ(eql(issue(opena lfhb),true),1)

occ(eql(flip(fm2,closed),true),0)

occ(eql(flip(lm4,open),true),0)

occ(eql(issue(openb rfx12),true),0)

Figure 11.1: The plan for the maneuvering task

For two smaller planning problems, we verified that the set of plans that

can be generated using our reimplementation of the USA/RCS-Advisor is the

same as the set of plans generated by the original system. For one problem,

the number of plans is around 5000, and the other is close to 100,000.

The table below compares the grounding time, solving time, and the

sizes of the grounded program for the original ASP encoding and for the new

implementation. All numbers for the new implementation are larger by 2-3

orders of magnitude. This fact shows that the translation implemented in the
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current version of cplus2asp needs to be significantly improved before the

system becomes applicable to industrial-size domains.

BC encoding ASP encoding

grounding time(sec) 28.179 0.056
solving time(sec) 5.281 0.03
ground file size 118M 140K

In this chapter we showed how to use a subset of the input language

of cplus2asp for formalizing the valve control system and hydraulic system

of the RCS. Compared to the original formulation, the input to cplus2asp is

more concise and easier to understand, but significantly less efficient.
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% initial state

h(eql(pressurized by(ffh,ffh),true),0).

h(eql(pressurized by(foh,foh),true),0).

h(eql(pressurized by(lfh,lfh),true),0).

h(eql(pressurized by(loh,loh),true),0).

h(eql(pressurized by(rfh,rfh),true),0).

h(eql(pressurized by(roh,roh),true),0).

h(eql(ab input(V),false),0).

h(eql(pressurized by(N,T),false),0) :- N!=T.

h(eql(pressurized by(T,T),false),0) :- T!=ffh, T!=foh,

T!=lfh, T!=loh, T!=rfh, T!=roh.

h(eql(in state(Swi),gpc),0) :- Swi!=lx12.

h(eql(in state(V),closed),0):- V!=ffdummy, V!=fodummy,

V!=lfdummy, V!=lodummy,

V!=rfdummy, V!=rodummy,

V!=ffm2, V!=fom3,

V!=lfx345, V!=lom1,

V!=rfm3,V!=rfm4,

V!=rfi345a, V!=roi345b,

V!=rfi12.

h(eql(in state(DV),open),0).

h(eql(has leak(ffm2),true)).h(eql(has leak(fom3),true)).

h(eql(has leak(rfm3),true)).h(eql(has leak(rfm4),true)).

h(eql(has leak(lom1),true)).h(eql(has leak(lfx345),true)).

h(eql(stuck(rfi345a,closed),true)).

h(eql(stuck(roi345b,closed),true)).

h(eql(stuck(rfi12,closed),true)).h(eql(stuck(lx12,closed),true)).

h(eql(in state(ffm2),open),0).h(eql(in state(fom3),open),0).

h(eql(in state(lfx345),open),0).h(eql(in state(lom1),open),0).

h(eql(in state(rfm3),open),0).h(eql(in state(rfm4),open),0).

%goal

false :- not h(eql(maneuver of(minus z,left rcs),true),maxstep).

false :- not h(eql(maneuver of(minus z,fwd rcs),true),maxstep).

false :- not h(eql(maneuver of(minus z,right rcs),true),maxstep).

Figure 11.2: The planning query for a maneuvering task
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Chapter 12

Task Planning for Mobile Robots

As robots deal with increasingly complex tasks, automated planning

systems can provide great flexibility over direct implementation of behaviors

for robotic tasks. In mobile robotics, uncertainty about the environment stems

from many sources, which is particularly true for domains inhabited by hu-

mans, where the state of the environment can change outside the robot’s con-

trol in ways that are difficult to predict.

The qualitative modeling of dynamic domains at a given abstraction

level, based on a formal language, allows for the generation of provably correct

plans. The brittleness owing to the prevalent uncertainty in the model can be

overcome through execution monitoring and replanning, when the outcome of

an action deviates from the expected effect.

In this chapter we demonstrate that the action language BC can be

used for robot task planning in realistic domains that require planning in the

presence of missing information and indirect action effects. These features

are necessary to completely describe many complex tasks. For instance, in a

task where a robot has to collect mail intended for delivery from all building

residents, the robot may need to visit a person whose location it does not know.

212



To overcome this problem, it can plan to complete its task by asking someone

else for that person’s location, thereby acquiring this missing information.

Additionally, a person may forward his mail to another person in case he

will be unavailable when the robot comes around to collect mail. In such

situations, the information about mail transfers is best expressed through a

recursive definition. When the robot visits a person who has mail from multiple

people, planning needs to account for the fact that mail from all these people

will be collected indirectly. In this chapter, we use this mail collection task

to demonstrate how these problems can be solved. The overall methodology

is applicable to other planning domains that involve recursive fluents, indirect

action effects, and human-robot interaction.

Furthermore, we show in this chapter how answer set planning under

action costs [12] can be applied to robot task planning. Incorporating costs in

symbolic planning is important for applications that involve physical systems

and deal with limited resources such as time, battery, communication band-

width, etc. Previous applications of action languages to robotics [7, 9] do not

consider these costs. A robot can learn these costs from experience [37, 73].

12.1 Architecture Description

Figure 12.1 shows an architecture that integrates deterministic plan-

ning, execution monitoring, replanning and cost learning. It includes three

modules: a planner and a cost learner. At planning time, the planner gen-

erates a description of the initial state of the world based on observations
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Figure 12.1: The architecture used in our approach. The planner invokes a
cost learner that learns costs from sensing during execution.

provided by the executor. The initial state, the goal provided by the user and

the domain description (translated by cplus2asp are sent to an answer set

solver clingo. clingo polls the cost of each action from the cost learner,

and produces an optimal plan. After plan generation, the executor invokes

the appropriate controllers for each action, grounds numeric sensor observa-

tions into information about values of fluents, and returns these information to

the planning module. If the observed values are incompatible with the state

expected by the planner, then the planner will update the robot’s domain

knowledge and replan. During action execution, the cost learner employs a

learning algorithm to estimate the cost of each action from the experienced

samples.
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Figure 12.2: The layout of the example floor plan used in the text along with
the information about the residents of the building.

12.2 Domain Representation

In order to demonstrate how ASP can be used for robot task planning

under incomplete information, with human-robot interaction and with action

costs, we use a small domain as a running example. The example domain

we consider has a mobile robot that navigates inside a building, visiting and

serving the inhabitants by collecting mail:

The robot drops by offices at 2pm every day to collect outgoing

mail from the residents. However, some people may not be in

their offices at that time, so they can pass their outgoing mail to

colleagues in other offices, and send this information to the robot.

When the robot collects the mail, it should obtain it while only
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visiting people as necessary. If the robot needs to collect mail from

a person whose location is not known, it should plan to visit other

people to acquire this information.

The floor plan of the example building is shown in Figure 12.2. In this

example, we consider the following objects:

• alice, bob, carol and dan are people,

• o1, o2, o3 are offices and lab1 is a lab,

• cor (corridor) is a room,

• d1, d2 and d3 are doors.

In the following subsections, we will use meta-variables P, P1, P2, . . . to denote

people, R,R1, R2, . . . to denote rooms, offices and labs, and D,D1, D2, . . . to

denote doors.

Domain knowledge about a building includes three types of information:

rigid knowledge, time-dependent knowledge, and action knowledge. We explain

each of these in detail in the following subsections.

12.2.1 Rigid Knowledge

Rigid knowledge includes information about the building that does not

depend upon the passage of time. In our example, rigid knowledge includes

accessibility between the rooms, the lab, and the corridor. This knowledge has

been formalized as follows:
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• hasdoor(R,D): office R has door D. An office R does not have a door

D unless specified. This default expresses the closed world assumption

[67] for hasdoor :

hasdoor(o1, d1) hasdoor(o2, d2) hasdoor(o3, d3)
hasdoor(lab1, d4) hasdoor(lab1, d5)
default ∼hasdoor(R,D).

• acc(R1, D,R2): room R1 is accessible from room R2 via door D. Two

rooms are not connected by a door unless specified:

acc(R,D, cor) if hasdoor(R,D)
acc(R,D, cor) if acc(cor,D,R)
default ∼acc(R1, D,R2).

• knows(P1, P2) describes P1 knows where person P2 is. By default, a

person P1 does not know where another person P2 is.

• passto(P1, P2): person P1 has passed mail to person P2. By default, a

person P1 has not passed mail to a person P2 (including himself).

12.2.2 Time-Dependent Knowledge

Time-Dependent Knowledge includes information about the environ-

ment that can change with the passage of time, as the robot moves around in

the environment. It has been formalized as follows:

• The current location of a person is expressed by the fluent inside. inside(P,R)

means that person P is located in room R. A person can only be inside

a single room at any given time. The fluent is inertial:

∼inside(P,R2) if inside(P,R1) (R1 6= R2)
inertial inside(P,R).
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• Whether the robot knows the current location of a person is expressed

by the fluent knowinside. knowinside(P,R) means that the robot knows

that person P is located in room R. The robot knows that a person can

only be inside a single room at any given time. The fluent is inertial:

∼knowinside(P,R2) if knowinside(P,R1) (R1 6= R2)
inertial knowinside(P,R).

If the robot knows that a person P is in room R, then P is indeed in

room R:

inside(P,R) if knowinside(P,R).

• open(D): a door D is open. By default, a door is not open.

• visiting(P ): the robot is visiting a person P . By default, a robot is not

visiting anyone.

• The fluent mailcollected(P ) means the robot has collected mail from P .

This fluent is inertial. It is recursively defined as follows. The robot has

collected P1’s mail if it has collected P2’s mail and P1 has passed his mail

to P2.

mailcollected(P1) if mailcollected(P2), passto(P1, P2). (12.1)

• facing(D): the robot is next to a door D and is facing it. The robot

cannot face two different doors simultaneously.

• beside(D): the robot is next to door D. beside(D) is true if facing(D) is

true, and the robot cannot be beside two different doors simultaneously.
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Since beside is implied by facing , it will become an indirect effect of the

actions that make the fluent facing true.

• loc = R: the robot is at room R.

12.2.3 Action Knowledge

Action knowledge includes the rules that formalize the actions of the

robot, the preconditions for executing those actions, and the effects of those

actions. The robot can execute the following actions:

• approach(D): the robot approaches door D. The robot can only ap-

proach a door accessible from the the robot’s current location and if it

is not facing the door. Approaching a door causes the robot to face that

door.

approach(D) causes facing(D)
nonexecutable approach(D) if loc = R,∼hasdoor(R,D)
nonexecutable approach(D) if facing(D).

• gothrough(D): the robot goes through door D. The robot can only go

through a door if the door is accessible from the robot’s current location,

if it is open, and if the robot is facing it. Executing the gothrough action

results in the robot’s location being changed to the connecting room and

the robot no longer facing the door.

• greet(P ): the robot greets person P . A robot can only greet a person

if the robot knows that both the robot and that person are in the same

room. Greeting a person P results in the visiting(P ) fluent being true.
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• collectmail(P ): the robot collects mail from person P . A robot can only

collect mail from a person if the robot knows that both the robot and

that person are in the same room, if the person has not passed his mail

to someone else, and if the person’s mail has not been collected yet.

Collecting mail from a person P results in the mailcollected(P ) fluent

being true, formalized as

collectmail(P ) causes mailcollected(P )

Because of the recursive definition of mailcollected in (12.1), collectmail(P )

will also indirectly lead to the other people’s mail passed to P to be col-

lected as well.

• opendoor(D): the robot opens a closed door D. The robot can only open

a door that it is facing.

• askploc(P ): The robot asks the location of person P if it does not know

the location of person P . Furthermore, the robot can only execute this

action if it is visiting a person P1 who knows the location of person P .

This is the action that triggers human-robot interaction. By executing

this action, the robot knows that the location of person P is room R,

formalized as

askploc(P1, P ) causes knowinside(P,R) if inside(P,R).

A complete description of this domain in the fragment of the input language

of cplus2asp defined in Chapter 10 is shown in Appendix 3.
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12.3 Planning for a Mobile Robot

12.3.1 Generating and executing plans

Before a plan can be generated, the planner needs to obtain an initial

state from two sources:

• The planner maintains tables for some portion of the domain knowl-

edge, namely, knowinside, knows , and passto, that help the robot reason

about acquiring missing information and figure out how mail has been

forwarded recursively. At planning time, the contents of the table are

translated into a part of query that describes the initial state. For in-

stance, the table that contains fluent values for knowinside is:

knowinside o1 o2 o3 lab1

alice t f f f
bob f t f f

carol f f t f
dan f f f f

(12.2)

Using this table, the planner outputs the table contents as a set of atoms

which are joined to the query:

knowinside(alice, o1),∼knowinside(alice, o2), . . . ,
∼knowinside(bob, o1), knowinside(bob, o2), . . . ,

Note that all values in the last row of the table are f, indicating that

Dan’s location is not known.

• The planner polls the sensors to obtain the values of some portion of

the time-dependent knowledge, namely, beside, facing , open and loc,

and translates them into a part of the query that describes the initial
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state. The sensors guarantee that the value for loc is always returned for

exactly one location, and beside and facing are returned with at most

one door. If the robot is facing a door, the value of open for that door

is sensed and returned as well. For instance, in the initial state, if the

robot is in lab1 and not facing any door, the planner senses and appends

the following to the description of the initial state:

loc = lab1,∼beside(d4),∼facing(d4), . . .

In addition to the initial state, the query includes also a goal, for instance,

visiting(alice).

To find the shortest plan, clingo is called repeatedly with larger and

larger plan lengths up to a user-defined number maximumLength. Execution is

stopped at the first length for which a plan exists. In the case where the robot

starts in lab1 and its goal is visiting(alice), the following 7-step is generated

by clingo:

0 :approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:greet(alice)

The output of clingo also contains the values of the fluents at various

times:

0 : loc = lab1, 0:∼facing(d5), 1: loc = lab1, 1: facing(d5), . . .

These values are used to monitor execution. For instance, assume that the

robot is executing approach(d5) at time 0. The robot attempts to navigate
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to door d5, but fails and returns an observation ∼facing(d5) at time 1. Since

this observation does not match the expected effect of approach(d5) at time 1,

which is facing(d5), the robot incorporates ∼facing(d5) as part of a new initial

condition and plans again.

12.3.2 The Mail Collection Task

To solve the mail collection problem, the robot first needs to receive

information about how mail was transferred from one person to another person,

i.e., information that relates to the fluent passto. Any person who passes his

mail to other people will send this information to the robot.

In our example domain, let’s assume that the robot receives the follow-

ing information:
passto alice bob carol dan

alice f f f f
bob t f f f

carol f f f f
dan f t f f

(12.3)

Let’s assume that initially the robot is in lab1 and not beside nor facing any

door. The goal of collecting everyone’s mail and reaching the corridor can be

described as:

mailcollected(alice),mailcollected(bob),
mailcollected(carol),mailcollected(dan), loc = cor .
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clingo generates an answer set with the following plan:

0 :approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:collectmail(alice),
7:approach(d1), 8:opendoor(d1), 9:gothrough(d1),
10:approach(d3), 11:opendoor(d3), 12:gothrough(d3),
13:collectmail(carol),
14:approach(d3), 15:opendoor(d3), 16:gothrough(d3)

In this plan, the robot only visits Alice and Carol, and doing so is sufficient

to collect everyone’s mail, even if Dan’s location is not known.

12.3.3 Planning with Human Robot Interaction

Consider the modification of Table 12.3 in which Dan doesn’t forward

his mail to Bob. To collect Dan’s mail, the robot now needs to visit him.

However, the robot does not know where Dan is, as shown in the last row of

Table 12.2. In our example domain, we assume Carol knows Dan’s location:

knows alice bob carol dan

alice f f f f
bob f f f f

carol f f f t
dan f f f f

Again, let’s assume that the robot is initially located in lab1 and not beside

nor facing any door. The planner calls clingo with the same initial state

and the same goal as in the previous section to generate the following shortest
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plan:
0 :approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:collectmail(alice),
7:approach(d1), 8:opendoor(d1), 9:gothrough(d1),
10:approach(d3), 11:opendoor(d3), 12:gothrough(d3),
13:collectmail(carol),
14:greet(carol), 15:askploc(dan), 16:collectmail(dan),
17:approach(d3), 18:opendoor(d3), 19:gothrough(d3)

The first 13 steps of this plan are the same as in the plan shown in Section

12.3.2. It is important to notice that the answer set also contains the following

atom:

16:knowinside(dan, o3) (12.4)

This atom describes the effect of executing action askploc(dan) at time 15.

Since clingo searches for the shortest plan by incrementing the number of

steps, the “optimistic” plan that it finds corresponds to the case where Dan is

located at the same office as Carol.

As before, the plan is executed and the execution is monitored. The

robot executes action askploc(dan) at time 15 by asking Carol for Dan’s loca-

tion. The robot obtains Carol’s answer as an atom, for instance,

16 :knowinside(dan, o2),

which contradicts (12.4). As in the case of execution failure, replanning is

necessary. Before replanning, the acquired information is used to update Ta-

ble 12.2. While replanning, the time stamp is reset to start from 0, and the

updated table will generate the new initial condition 0:knowinside(dan, o2).
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After running clingo again, a new plan is found based on the infor-

mation acquired from Carol:

0 :approach(d3), 1:opendoor(d3), 2:gothrough(d3),
3:approach(d2), 4:opendoor(d2), 5:gothrough(d2),
6:collectmail(dan),
7:approach(d2), 8:opendoor(d2), 9:gothrough(d2)

By interacting with Carol, the robot obtained Dan’s location, updated its

knowledge base, and completed its goal of collecting mail from everyone in-

cluding Dan.

12.3.4 Planning with Action Costs

In the previous section, the planner generates multiple plans of equal

length out of which one is arbitrarily selected for execution. But those plans

may not be equivalent to each other in the sense that different actions may

have different costs. In our domain, we consider the cost of an action to be

the time spent during its execution. For instance, when the robot visits Alice

in the first few steps of plan execution, the generated plan includes the robot

exiting lab1 through door d5. The planner also generated another plan of

the same length where the robot could have exited through door d4, but that

plan was not selected. If we look at the layout of the example environment in

Figure 12.2 then we can see that it is indeed faster to reach Alice’s office o1

through door d4. In this section, we show how costs can be associated with

actions, and how a plan with the smallest cost can be found.

Costs are functions of both the action being performed and the state at

the beginning of that action. cplus2asp does not directly support formalizing
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costs for generating optimal plans, but clingo allows the user to write a logic

program with optimization statements (indicated via the keywords #maximize

and #minimize) to generate optimal answer sets. Therefore, in our application,

cost formalization and optimization statements are directly written in logic

program rules in clingo syntax. They are then appended to the domain

description and query and sent to clingo to generate an optimal plan.

In the example domain, we assume that all actions other than approach

have fixed costs. Specifically, the actions askploc, opendoor , greet , and collectmail

have cost 1, and gothrough has cost 5. The cost of executing the action

approach(D) depends on the physical location of the robot. It is computed in

two different ways:

• When the robot approaches door D1 from door D2 and is currently lo-

cated in R, the values of fluents uniquely identify the physical location

of the robot in the environment. The cost of action approach(D1) is

specified by the external term @cost(D1,D2,R). At the time of plan

generation, clingo will make external function calls to compute the

value of the external term.

• When the robot is not next to a door (for instance, in the middle of the

corridor), the cost for approaching any door is fixed to 10. This only

happens in the initial condition.

With costs assigned to actions, we use the optimization statement

#minimize to guide the solver to return a plan of optimal cost, instead of
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the shortest plan. When costs are involved, we do not call clingo repeat-

edly while incrementing values of maximum plan length; instead, we directly

search for the optimal plan with a maximum of maximumLength steps. It is

important to note that the optimal plan found by clingo is not necessarily

the global optimal plan, but only the optimal plan up to maximumLength

steps. maximumLength needs to be set appropriately to balance optimality

with execution time based on computational power available.

In this chapter, we introduced an approach that uses action language

BC for robot task planning and incorporates action costs to produce optimal

plans. We applied this approach to a mail collection task. Using action lan-

guage BC allows us to formalize indirect effects of actions on recursive fluents.

In the presence of incomplete information, the proposed approach can generate

plans to acquire missing information through human-robot interaction.

The planning method described in this chapter has been used to imple-

ment a task planner for robots operating in the 3NE Wing of the GDC building

at the University of Texas at Austin, within the framework of the “Building-

Wide Intelligence” project led by Professor Peter Stone. The project was also

contributed by Piyush Khandelwal and Matteo Leonetti. The source code for

that application is shown in Appendix 3.2.
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Chapter 13

Conclusion

The dissertation addressed problems of three kinds.

First, we studied some mathematical properties of expressive action lan-

guages based on nonmonotonic causal logic that had not been well understood

in the past. This includes causal rules expressing synonymy, nondefinite causal

rules, and nonpropositional causal rules. We generalized existing translations

from nonmonotonic causal theories to logic programming under the answer

set semantics. We extended the notion of a definite causal theory by allowing

explainable function symbols in the head, and generalized literal completion to

such theories. After that, we generalized McCain’s translation and Ferraris’s

translation, which had been originally defined for propositional causal theories,

to the first-order case. We also studied translating synonymy rules into logic

programs under the first-order stable model semantics. Finally, we addressed

the problem of eliminating explainable function symbols from a causal theory

in favor of predicate symbols. This makes it possible to automate reasoning

with a wider class of causal theories by calling answer set solvers.

Second, we designed and studied a new action language BC, which is

more expressive in some ways than the existing and previously proposed lan-
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guages. We developed a framework that combines the most useful expressive

features of the languages B and C+, and investigated their relationship to BC.

Furthermore, we studied the cases where program completion can be used to

characterize the effects of actions described in these languages. We generalized

the concept of tight logic program by introducing rule-dependency graph.

Third, we illustrated the possibilities of the new action language by

two practical applications: to the dynamic domain of the Reactive Control

System of the space shuttle, and to the task planning of mobile robots. We

began with defining the syntax of a fragment of the input language of software

system cplus2asp version 2, and characterized its semantics by a translation

into a BC action description. After that, we used this language to reimplement

a large part of the USA/RCS-Advisor. Finally, we used this language to

formalize the dynamic domain of a mobile robot, and showed how the domain

description can be used to generate optimal plans, monitor execution, replan,

and interact with humans to gather information. These applications illustrate

the expressiveness of the language BC and demonstrate its applicability to

realistic domains.

The future work of this dissertation may involve the following two as-

pects. First, action language BC can be generalized into first-order case where

variables are not longer interpreted as meta-variables. Second, we will further

investigate more sophisticated application in robotics, involving using hierar-

chical domain representation to speed up planning, incorporating human-robot

dialogue to facilitate planning under incomplete information, and further inte-
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grating planning with probablistic models such as partially observeable Markov

decision process (POMDP).
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Appendix 1

Syntax of The Input Language of Chapter 10

The context-free grammar below uses EBNF notation. The symbols

::= | { }

belong to EBNF notation. The vertical bar expresses disjunction and curly

braces expresses grouping. Nonterminals begin with a capital letter. Many of

the parentheses in this grammar can be dropped due to operator precedences.

1.1 Identifiers and Integers

ExtendedInteger ::= integer | - ExtendedInteger

| ( ExtendedInteger { + | - | * | // | mod }

ExtendedInteger )

Num_range ::= ExtendedInteger .. ExtendedInteger

The second operand of // (which stands for integer division) and the

second operand of mod must have nonzero values.

The expressions based on extended integers are defined as follows.

Extended_integer_outer_expression::= Extended_integer_expression

| ( Extended_integer_expression )
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Extended_integer_expression::= Extended_integer

| Extended_integer_outer_expression +

Extended_integer_outer_expression

| Extended_integer_outer_expression -

Extended_integer_outer_expression

| Extended_integer_outer_expression *

Extended_integer_outer_expression

| Extended_integer_outer_expression //

Extended_integer_outer_expression

| Extended_integer_outer_expression mod

Extended_integer_outer_expression

1.2 Declarations

1.2.1 Sorts

Sorts are denoted by identifiers, and their declarations have the follow-

ing syntax:

Sort_statement::= :- Sorts Sort_spec_outer_tuple .

Sort_spec_outer_tuple::= Sort_spec_tuple

| ( Sort_spec_tuple )

Sort_spec_tuple::= Sort_spec

| Sort_spec_outer_tuple ; Sort_spec_outer_tuple

| Sort_spec_outer_tuple , Sort_spec_outer_tuple

Sort_spec::= Sort_identifier_no_range

| Sort_identifier_no_range >> Sort_spec_outer_tuple

Sort_identifier_no_range::= Sort_identifier_name

| Sort_identifier_name *

| Sort_identifier_name + none

Sort_identifier_name::= identifier
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1.2.2 Objects

Object_statement::= :- objects Object_spec_outer_tuple .

Object_spec_outer_tuple::= Object_spec_tuple

| ( Object_spec_tuple )

Object_spec_tuple::= Object_outer_spec

| Object_spec_outer_tuple ; Object_spec_outer_tuple

Object_outer_spec::= Object_spec

| ( Object_spec )

Object_spec::= Object_outer_schema_list :: Sort_outer_identifier

Object_outer_schema_list::= Object_schema_list

| ( Object_schema_list )

Object_schema_list::= Object_outer_schema

| Object_outer_schema_list, object_outer_schema

Object_outer_schema::= Object_schema

| ( Object_schema )

object_schema::= identifier

| identifer ( Sort_identifier_list )

| Extended_integer_outer_expression

| Num_range

1.2.3 Variables

Variable identifier must begin with capitalized letter.

Variable_statement::= :- variables Variable_spec_outer_tuple .

Variable_spec_outer_tuple::= Variable_spec_tuple

| ( Variable_spec_tuple )

Variable_spec_tuple::= Variable_outer_spec
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| Variable_outer_spec ;

variable_spec_outer_tuple

Variable_outer_spec::= Variable_spec | ( Variable_spec )

Variable_spec ::= Variable_outer_list ::

Variable_binding

Variable_outer_list::= Variable_list | ( Variable_list )

Variable_list::= identifier

| Variable_list , identifier

Variable_binding::= Sort_identifier_no_range

| ( Sort_identifier_no_range )

| Num_range

1.2.4 Constants

Constant_statement::= :- constants Constant_spec_outer_tuple .

Constant_spec_outer_tuple::= Constant_spec_tuple | ( Constant_spec_tuple )

Constant_spec_tuple::= Constant_outer_spec

| Constant_spec_outer_tuple ; Constant_outer_spec

Constant_outer_spec::= Constant_spec | ( Constant_spec )

Constant_spec::= Constant_schema_outer_list ::

Constant_outer_binder

Constant_schema_outer_list::= Constant_schema_list

| ( Constant_schema_list )

Constant_schema_list::= Constant_outer_schema

| Constant_schema_outer_list ,

Constant_outer_schema

Constant_outer_schema::= Constant_schema
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| ( Constant_schema )

Constant_schema::= identifier

| identifier ( Sort_identifier_list )

Constant_schema_nodecl::= identifier

| identifier ( Sort_identifier_list )

Constant_outer_binder::= Constant_binder

| ( Constant_binder )

Constant_binder::= Sort_constant_name ( Sort_identifier )

| Num_range

1.2.5 Rules

Atom_list ::= Atom | Atom, Atom_list

Atom ::= identifier | identifier(Argument_list)

| identifier = identifier

| identifier(Argument_list) = identifier

| identifier(Argument_list) = identifier(Argument_list)

| identifier \= identifier

| identifier(Argument_list) \= identifier

| identifier(Argument_list) \= identifier(Argument_list)

Argument_list ::= identifer| identifier Argument_list

Rules ::= empty | Static_law | Dynamic_law

Static_law ::= Atom if Atom_list ifcons Atom_list .

| Atom if Atom_list .

| Atom .

| default Atom .

| default Atom if Atom_list .

| impossible Atom_list .

Dynamic_law ::= Atom after Atom_list ifcons Atom_list .

| Atom after Atom_list .
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| Atom causes Atom if Atom_list .

| default Atom after Atom_list .

| inertial identifer .

| inertial identifer(Argument_list) .

| nonexecutable Atom_list .

1.3 Non-Context-Free Regulations

To write a correct description, the following regulations are imposed.

• The following words are reserved from the set of identifiers:

sorts, objects, variables, constants, action, rigidFluent, sdFlu-

ent, simpleFluent, inertialFluent, if, ifcons, after, causes, de-

fault, inertial, nonexecutable, impossible, boolean.

• The set of object declarations in a ccalc input file must be acyclic. For

instance,

next(index) :: index

is not allowed. The acyclicity condition guarantees that the set of objects

of each sort is finite.

• An identifier used as a name for an object and a constant may not be

declared more than once. If a variable is declared more than once then

it should be assigned the same sort in all its declarations.

238



• Argument list should only contain object identifiers and variable identi-

fiers. identifer and identifer(Argument list) occurring to the right

of the equality or inequality should be either an object or a variable.

• Any rule should not contain any undeclared objects, constants or vari-

ables. The argument of a constant must match the corresponding sort

declared in constant specification: a variable must be declared to denote

the element of the sort, and an object must be declared to be a member

of the sort.

• Static law may not contain any action identifer.

• In Dynamic law, the Atom before if may not contain any fluent declared

as statically determined fluent or rigid fluent.

• The Atom list after impossible does not contain any action identifers.

• The identifer after inertial may not contain action identifer.

• The Atom list after nonexecutable must contain at least one action

identifer.

239



Appendix 2

Source Code of The Reactive Control System

In the source code below, the following symbols are used:

• link(node,node,valve) expresses that there exists a directed linkage

from one node to the other through a valve.

• direction(jet,direct) describes the direction of a jet.

• pair of jets(jet,jet) expresses that two jets are paired.

• has leak(valve) expresses that a valve has a leak.

• done(maneuver,system) expresses that a system is ready to perform

certain maneuver task.

• controls(switch,valve,circuit) expresses that a switch controls a

valve through a circuit.

• control(switch,valve) expresses that a switch controls a valve.

• bad circuitry(valve) expresses that a valve has a bad circuit.

• stuck(device,state) expresses that a device is stuck in a state.
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• stuckd(device) expresses that a device is stuck.

• basic command(command,valve,state) expresses that a basic computer

command makes a valve into certain position.

• general command(command,valve,state) expresses that a computer

command (including basic command and compound command) makes a

valve into certain position.

• leaking(node) expresses that a node is leaking.

• ready to fire(jet) expresses that a jet is ready to fire.

• damaged(jet) expresses that a jet is damaged.

• maneuver of(maneuver,system) expresses that an RCS system can per-

form certain maneuver task.

• in state(device) is an inertial multi-valued fluent with domain being

the set of state. It expresses that a device is in certain position.

• ab input(valve) is a regular boolean fluent that expresses that a valve

has an abnormal input.

• pressurized by(node,tank) is a regular boolean fluent that expresses

that a node is pressurized by a tank.

• flip(switch,state) expresses that a switch is flipped into certain po-

sition.

241



• issue(command) expresses that a command is issued by the computer.
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The Source Code:

:- sorts

node >> miscnode;

node >> tank;

node >> jet;

jet >> leftjet;

jet >> rightjet;

jet >> forwardjet;

nontank >> jet;

nontank >> miscnode;

device >> valve;

dummyvalve >> dummyleftvalve;

dummyvalve >> dummyrightvalve;

dummyvalve >> dummyforwardvalve;

valve >> forward_valve >> dummyforwardvalve;

valve >> left_valve >> dummyleftvalve;

valve >> right_valve>> dummyrightvalve;

valve >> dummyvalve;

device >> switch;

switch >> left_switch;

switch >> right_switch;

switch >> forward_switch;
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circuit;

direct;

state;

maneuver;

command;

command >> left_command;

command >> right_command;

command >> forward_command;

system.

:- objects

%nodes in forward RCS

ffj,ff12j,ff345j,ff345j :: miscnode;

ffha,ffhb,ffi12,ffi345,ffm1,ffm2,ffm3,ffm4,ffm5::forward_valve;

%nodes and valves on fuel lines

%nodes in left RCS

lfj,lf12j,lf345j,l2l,fxfeed,lf12j :: miscnode;

lfha,lfhb,lfi12,lfi345a,lfi345b,lfm1,lfm2,lfx12,lfm3,lfm4,lfm5,

lfx345,lox12 :: left_valve;
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%nodes in right RCS

rfj,rf12j,rf345j:: miscnode;

rfha,rfhb,rfi12,rfi345a,rfi345b,rfm1,rfm2,rfx12,rfm3,rfm4,rfm5,

rfx345 :: right_valve;

% nodes and valves on oxidizer lines

%nodes in forward RCS

foj,fo12j,fo345j,f1u,f1f,f1l,f1d,f2u,f2f,f2r,f2d,f3u,f3f,f3l,f3d,

f4r,f4d,f5l,f5r :: miscnode;

foha,fohb,foi12,foi345,fom1,fom2,fom3,fom4,fom5 :: forward_valve;

%nodes in left RCS

loj,lo12j,lo345j,l1u,l1a,l1l,l2u,l2d,l2l,oxfeed,l3a,l3d,l3l,l4u,

l4l,l5d,l5l :: miscnode;

loha,lohb,loi12,loi345a,loi345b,lom1,lom2,lox2,lom3,lom4,lom5,

lox345 :: left_valve;

%nodes in right RCS
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roj,ro12j,ro345j,r1u,r1a,r1r,r2u,r2d,r2r,ro12j,r3a,r3d,r3r,r4u,

r4d,r5d,r5r :: miscnode;

roha,rohb,roi12,roi345a,roi345b,rom1,rom2,rox12,rom3,rom4,rom5,

rox345 :: right_valve;

% dummy valves

ffdummy, fodummy :: dummyforwardvalve;

lfdummy, lodummy :: dummyleftvalve;

rfdummy, rodummy :: dummyrightvalve;

% switches

fha,fhb,fi12,fi345,fm1,fm2,fm3,fm4,fm5:: forward_switch;

lha,lhb,li12,li345a,li345b,lm1,lm2,lm3,lm4,lm5,lx12,lx345 :: left_switch;

rha,rhb,ri12,ri345a,ri345b,rm1,rm2,rm3,rm4,rm5,rx12,rx345 :: right_switch;

fwd_rcs,left_rcs,right_rcs,ohms :: system;

ffh,ff,foh,fo,lfh,lf,loh,lo,rfh,rf,roh,ro,ohmsf,ohmso :: tank;

flu, f1f,f1l,f1d,f2u,f2f,f2r,f2d,f3u,f3f,f3l,f3d,f4r,f4d :: forwardjet;

l1u,l1a,l1l,l2u,l2l,l2d,l3a,l3l,l3d,l4u,l4l,l4d :: leftjet;

r1u,r1a,r1r,r2u,r2r,r2d,r3a,r3r,r3d,r4u,r4r,r4d :: rightjet;
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forward, up, down, aft, left, right :: direct;

minus_x,plus_x,minus_y,plus_y,minus_z,plus_z,minus_roll,

plus_roll, minus_pitch,plus_pitch,minus_yaw,plus_yaw :: maneuver;

open,closed,gpc :: state;

fhca,fhcb,fic12,fic345,fmc1,fmc2,fmc3,fmc4,fmc5,lhca,lhcb,lic12,

lic345a,lic345b,lmc1,lmc2,lmc3,lmc4,lmc5, lxc12, lxc345, lox12,

rhca,rhcb,ric12,ric345a, ric345b,rmc1,rmc2,rmc3,rmc4,rmc5,rxc12,rxc345 ::

circuit;

% control commands of RCS

% forward control commands

open_ffha,closea_ffha,opena_ffhb,closea_ffhb,opena_fi12,opena_foi12,

opena_ffi345,opena_foi345,open_ffm1,closea_ffm1,closeb_ffm1,open_ffm2,
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closea_ffm2,closeb_ffm2, open_ffm3,closea_ffm3, closeb_ffm3,

open_ffm4,closea_ffm4,closeb_ffm4 :: forward_command;

% left control commands

opena_lfha,closea_lfha,opena_lfhb,closea_lfhb,opena_li12,openb_lfi12,

openb_loi12,opena_lx12,openb_lfx12,open_lfi345a,close_lfi345a,

open_lfi345b,open_loi345b,close_lfi345b,close_loi345b,open_lfx345,

open_lox345,close_lfx345,close_lox345,open_lfm1,closea_lfm1,closeb_lfm1,

open_lfm2,closea_lfm2,closeb_lfm2,open_lfm3,closea_lfm3,closeb_lfm3,

open_lfm4,closea_lfm4,closeb_lfm4 :: left_command;

% right control commands

opena_rfha,closea_rfha,opena_rfhb,closea_rfhb,opena_ri12,openb_roi12,
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opena_rx12,openb_rfx12,openb_rox12,open_rfi345a,open_roi345a,

open_rfi345b,open_roi345b,close_rfi345b,close_roi345b,open_rfx345,

open_rox345,close_rox345,open_rfm1,closea_rmf1,closeb_rfm1,open_rfm2,

closea_rmf2,openb_lox12,open_loi345a,close_loi345a,openb_rfi12,

close_roi345a,close_rfi345a,closea_rfm1,closea_rfm2,closea_rfm3,

closeb_rfm2,open_rfm3,closea_rmf3,closeb_rfm3,open_rfm4,closea_rfm4,

closeb_rfm4,close_rfx345:: right_command;

% compound commands

closea_fi12_closeb_ffi12,opena_ffm5_openb_ffm5,closea_ffm5_closeb_ffm5,

closea_fi12_closeb_foi12 :: forward_command;

closea_li12_closeb_lfi12,close_lx12_close_lfx12,opena_lfm5_openb_lfm5,
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closea_lfm5_closeb_lfm5,closea_ri12_closeb_rfi12,close_rx12_close_rfx12,

closea_li12,_closeb_loi12,close_lx12_close_lox12,closea_li12_closeb_loi12

:: left_command;

closea_ri12_closeb_roi12,close_rx12_close_rox12,opena_rfm5_openb_rfm5,

closea_rfm5_closeb_rfm5 :: right_command.

:- variables

NT :: nontank;

N, N1,N2,N3 :: node;

J,J1,J2 :: jet;

LJ :: leftjet;

RJ :: rightjet;

FJ, FJ1, FJ2 :: forwardjet;
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T, T1,T2, TK1,TK2 :: tank;

V, V1,V2 :: valve;

LV, LV1, LV2 :: left_valve;

RV, RV1, RV2 :: right_valve;

FV, FV1, FV2 :: forward_valve;

Dv :: dummyvalve;

Swi, Swi1,Swi2 :: switch;

LSwi, LSwi1, LSwi2 :: left_switch;

RSwi, RSwi1, RSwi2 :: right_switch;

FSwi, FSwi1, FSwi2 :: forward_switch;

De :: device;
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R,S, S1,S2,R1,R2 :: system;

St1,St2 :: state;

X, X1, X2 :: maneuver;

D, D1,D2 :: direct;

C :: command;

LC, LC1, LC2 :: left_command;

RC, RC1, RC2 :: right_command;

FC, FC1, FC2 :: forward_command;

Ci :: circuit.

:- constants

link(node,node,valve), direction(jet,direct),

pair_of_jets(jet,jet), has_leak(valve), done(maneuver,system)
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:: rigidFluent;

controls(switch,valve,circuit), control(switch,valve),

bad_circuitry(valve), stuck(device,state),stuckd(device),

basic_command(command,valve,state),

general_command(command,valve,state):: rigidFluent;

leaking(node),ready_to_fire(jet),damaged(jet),

maneuver_of(maneuver,system)::sdFluent;

in_state(device):: inertialFluent(state);

ab_input(valve) :: simpleFluent;

pressurized_by(node,tank) :: simpleFluent;
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flip(switch,state),issue(command) :: action.

% topology of the plumbing system

default -link(N1,N2,V).

% links for fuel line, forward RCS

link(ffh,ff,ffha). link(ffh,ff,ffhb). link(ff,ffj,ffdummy).

link(ffj,ff12j,ffi12). link(ffj,ff345j,ffi345).

link(ff12j,f1u,ffm1). link(ff12j,f1f,ffm1).

link(ff12j,f1l,ffm1). link(ff12j,f1d,ffm1).

link(ff12j,f2u,ffm2). link(ff12j,f2f,ffm2).

link(ff12j,f2r,ffm2). link(ff12j,f2d,ffm2).

link(ff345j,f3u,ffm3). link(ff345j,f3f,ffm3).

link(ff345j,f3l,ffm3). link(ff345j,f3d,ffm3).

link(ff345j,f4r,ffm4). link(ff345j,f4d,ffm4).

link(ff345j,f5l,ffm5). link(ff345j,f5r,ffm5).

% Left RCS

link(lfh,lf,lfha). link(lfh,lf,lfhb). link(lf,lfj,lfdummy).

link(lfj,lf12j,lfi12). link(lfj,lf345j,lfi345a).
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link(lfj,lf345j,lfi345b). link(lf12j,l1u,lfm1).

link(lf12j,l1a,lfm1). link(lf12j,l1l,lfm1).

link(lf12j,l2u,lfm2). link(lf12j,l2d,lfm2).

link(lf12j,l2l,lfm2). link(lf12j,fxfeed,lfx12).

link(fxfeed,lf12j,lfx12). link(lf345j,l3a,lfm3).

link(lf345j,l3d,lfm3). link(lf345j,l3l,lfm3).

link(lf345j,l4u,lfm4). link(lf345j,l4d,lfm4).

link(lf345j,l4l,lfm4). link(lf345j,l5d,lfm5).

link(lf345j,l5l,lfm5). link(lf345j,fxfeed,lfx345).

link(fxfeed,lf345j,lfx345).

% Right RCS

link(rfh,rf,rfha). link(rfh,rf,rfhb). link(rf,rfj,rfdummy).

link(rfj,rf12j,rfi12). link(rfj,rf345j,rfi345a).

link(rfj,rf345j,rfi345b). link(rf12j,r1u,rfm1).

link(rf12j,r1a,rfm1). link(rf12j,r1r,rfm1).

link(rf12j,r2u,rfm2). link(rf12j,r2d,rfm2).

link(rf12j,r2r,rfm2). link(rf12j,fxfeed,rfx12).

link(fxfeed,rf12j,rfx12). link(rf345j,r3a,rfm3).

link(rf345j,r3d,rfm3). link(rf345j,r3r,rfm3).

link(rf345j,r4u,rfm4). link(rf345j,r4d,rfm4).

link(rf345j,r4r,rfm4). link(rf345,r5d,rfm5).
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link(rf345j,r5r,rfm5). link(rf345j,fxfeed,rfx345).

link(fxfeed,rf345j,rfx345).

% links for oxidizer lines. Forward RCS

link(foh,fo,foha). link(foh,fo,fohb). link(fo,foj,fodummy).

link(foj,fo12j,foi12). link(foj,fo345j,foi345).

link(fo12j,f1u,fom1). link(fo12j,f1f,fom1).

link(fo12j,f1l,fom1). link(fo12j,f1d,fom1).

link(fo12j,f2u,fom2). link(fo12j,f2f,fom2).

link(fo12j,f2r,fom2). link(fo12j,f2d,fom2).

link(fo345j,f3u,fom3). link(fo345j,f3f,fom3).

link(fo345j,f3l,fom3). link(fo345j,f3d,fom3).

link(fo345j,f4r,fom4). link(fo345j,f4d,fom4).

link(fo345j,f5l,fom5). link(fo345j,f5r,fom5).

% Left RCS

link(loh,lo,loha). link(loh,lo,lohb). link(lo,loj,lodummy).

link(loj,lo12j,loi12). link(loj,lo345j,loi345a).

link(loj,lo345j,loi345b). link(lo12j,l1u,lom1).

link(lo12j,l1a,lom1). link(lo12j,l1l,lom1).

link(lo12j,l2u,lom2). link(lo12j,l2d,lom2).
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link(lo12j,l2l,lom2). link(lo12j,oxfeed,lox12).

link(oxfeed,lo12j,lox12). link(lo345j,l3a,lom3).

link(lo345j,l3d,lom3). link(lo345j,l3l,lom3).

link(lo345j,l4u,lom4). link(lo345j,l4d,lom4).

link(lo345j,l4l,lom4). link(lo345j,l5d,lom5).

link(lo345j,l5l,lom5). link(lo345j,oxfeed,lox345).

link(oxfeed,lo345j,lox345).

% Right RCS

link(roh,ro,roha). link(roh,ro,rohb). link(ro,roj,rodummy).

link(roj,ro12j,roi12). link(roj,ro345j,roi345a).

link(roj,ro345j,roi345b). link(ro12j,r1u,rom1).

link(ro12j,r1a,rom1). link(ro12j,r1r,rom1).

link(ro12j,r2u,rom2). link(ro12j,r2d,rom2).

link(ro12j,r2r,rom2). link(ro12j,oxfeed,rox12).

link(oxfeed,ro12j,rox12). link(ro345j,r3a,rom3).

link(ro345j,r3d,rom3). link(ro345j,r3r,rom3).

link(ro345j,r4u,rom4). link(ro345j,r4d,rom4).

link(ro345j,r4r,rom4). link(ro345j,r5d,rom5).

link(ro345j,r5r,rom5). link(ro345j,oxfeed,rox345).

link(oxfeed,ro345j,rox345).
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% direction(J,D) iff jet J fires in direction D.

default -direction(J,D).

direction(f1f,forward). direction(f2f,forward).

direction(f3f,forward). direction(f1u,up).

direction(f2u,up). direction(f3u,up).

direction(l1u,up). direction(l2u,up).

direction(l4u,up). direction(r1u,up).

direction(r2u,up). direction(r4u,up).

direction(f1d,down). direction(f2d,down).

direction(f3d,down). direction(f4d,down).

direction(l2d,down). direction(l3d,down).

direction(l4d,down). direction(r2d,down).

direction(r3d,down). direction(r4d,down).

direction(l1a,aft). direction(l3a,aft).

direction(r1a,aft). direction(r3a,aft).

direction(f1l,left). direction(f3l,left).

direction(l1l,left). direction(l2l,left).

direction(l3l,left). direction(l4l,left).

direction(f2r,right). direction(f4r,right).

direction(r1r,right). direction(r2r,right).

direction(r3r,right). direction(r4r,right).
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% The downward firing jets on the forward rcs must be used

%in pairs, one on each side.

default -pair_of_jets(J1,J2).

pair_of_jets(f1d,f2d). pair_of_jets(f1d,f4d).

pair_of_jets(f3d,f2d). pair_of_jets(f3d,f4d).

% By default a valve does not have leak and

% a node is not leaking. A node is leaking if (1)

% it is connected to another node via a valve that

% has a leak and the valve is open, or (2) it is

% connected to a leaking node and the connecting valve is open.

default -has_leak(V).

default -leaking(N).

leaking(N1) if link(N1,N2,V), has_leak(V), in_state(V)=open.

leaking(N1) if link(N1,N2,V), leaking(N2), in_state(V)=open.

% By default a node is not pressurized by a tank.

% A Tank is always pressurized by itself if it is once

% pressurized by itself. A non-tank node NT is pressurized

% by a tank T if it is not leaking, another node N2 is connected

% to NT via valve V, the valve is open, and N2 is pressurized by T.
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% A tank node T1 is pressurized by T if another node N1 is linked to

% T1 via an open valve, and N1 is pressurized by T.

pressurized_by(T1,T1) after pressurized_by(T1,T1).

default -pressurized_by(N1,T1).

pressurized_by(NT,T) if link(N2,NT,V), in_state(V)=open,

pressurized_by(N2,T), -leaking(NT).

pressurized_by(T1,T) if link(N2,T1,V),

in_state(V)=open,pressurized_by(N2,T).

% By default a jet is not damaged and not ready to fire.

% It is ready to fire if it is not damaged and pressurized

% by two different tanks.

default -damaged(J).

default -ready_to_fire(J).

ready_to_fire(J) pressurized_by(J,TK1), pressurized_by(J,TK2),

-damaged(J), TK1\=TK2.

% By default a maneuver is not ready to perform unless

% it is known to be done. A RCS system is ready to perform

% a maneuver if one of its jet in corresponding direction is

% ready to fire. This involves the following rules which are
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% self-explained:

default -done(X,S).

default -maneuver_of(X,S).

maneuver_of(X,S) if done(X,S).

maneuver_of(plus_x,left_rcs) if direction(LJ,aft),

ready_to_fire(LJ).

maneuver_of(plus_x,right_rcs) if direction(RJ,aft),

ready_to_fire(RJ).

done(plus_x,fwd_rcs).

maneuver_of(minus_x,fwd_rcs) if direction(FJ1,forward),

direction(FJ2,forward),

ready_to_fire(FJ1),

ready_to_fire(FJ2), FJ1\=FJ2.

done(minus_x,left_rcs).

done(minus_x,right_rcs).

maneuver_of(plus_y,left_rcs) if direction(LJ,left),

ready_to_fire(LJ).

maneuver_of(plus_y,fwd_rcs) if direction(FJ,left),

ready_to_fire(FJ).

done(plus_y,right_rcs).

maneuver_of(minus_y,right_rcs) if direction(RJ,right),

ready_to_fire(RJ).
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maneuver_of(minus_y,fwd_rcs) if direction(FJ,right),

ready_to_fire(FJ).

done(minus_y,left_rcs).

maneuver_of(plus_z,left_rcs) if direction(LJ,up),

ready_to_fire(LJ).

maneuver_of(plus_z,right_rcs) if direction(RJ,up),

ready_to_fire(RJ).

maneuver_of(plus_z,fwd_rcs) if direction(FJ,up),

ready_to_fire(FJ).

maneuver_of(minus_z,left_rcs) if direction(LJ,down),

ready_to_fire(LJ).

maneuver_of(minus_z,right_rcs) if direction(RJ,down),

ready_to_fire(RJ).

maneuver_of(minus_z,fwd_rcs) if pair_of_jets(FJ1,FJ2),

ready_to_fire(FJ1),

ready_to_fire(FJ2).

maneuver_of(plus_roll,left_rcs) if direction(LJ,down),

ready_to_fire(LJ).

maneuver_of(plus_roll,right_rcs) if direction(RJ,up),

ready_to_fire(RJ).

done(plus_roll,fwd_rcs).

maneuver_of(minus_roll,left_rcs) if direction(LJ,up),

ready_to_fire(LJ).
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maneuver_of(minus_roll,right_rcs) if direction(RJ,down),

ready_to_fire(RJ).

done(minus_roll,fwd_rcs).

maneuver_of(plus_pitch,fwd_rcs) if pair_of_jets(FJ1,FJ2),

ready_to_fire(FJ1),

ready_to_fire(FJ2).

maneuver_of(plus_pitch,left_rcs) if direction(LJ,up),

ready_to_fire(LJ).

maneuver_of(plus_pitch,right_rcs) if direction(RJ,up),

ready_to_fire(RJ).

maneuver_of(minus_pitch,fwd_rcs) if direction(FJ,up),

ready_to_fire(FJ).

maneuver_of(minus_pitch,left_rcs) if direction(LJ,down),

ready_to_fire(LJ).

maneuver_of(minus_pitch,right_rcs) if direction(RJ,down),

ready_to_fire(RJ).

maneuver_of(plus_yaw,right_rcs) if direction(RJ,right),

ready_to_fire(LJ).

maneuver_of(plus_yaw,fwd_rcs) if direction(FJ,left),

ready_to_fire(FJ).

done(plus_yaw,left_rcs).

maneuver_of(minus_yaw,left_rcs) if direction(LJ,left),

ready_to_fire(LJ).
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maneuver_of(minus_yaw,fwd_rcs) if direction(FJ,right),

ready_to_fire(FJ).

done(minus_yaw,right_rcs).

control(Swi,V) if controls(Swi,V,Ci).

default -control(Swi,V).

default -controls(Swi,V,Ci).

% Forward RCS

controls(fha,ffha,fhca).controls(fha,foha,fhca).

controls(fhb,ffhb,fhcb).controls(fhb,fohb,fhcb).

controls(fi12,ffi12,fic12).controls(fi12,foi12,fic12).

controls(fi345,ffi345,fic345).controls(fi345,foi345,fic345).

controls(fm1,ffm1,fmc1).controls(fm1,fom1,fmc1).

controls(fm2,ffm2,fmc2).controls(fm2,fom2,fmc2).

controls(fm3,ffm3,fmc3).controls(fm3,fom3,fmc3).

controls(fm4,ffm4,fmc4).controls(fm4,fom4,fmc4).

controls(fm5,ffm5,fmc5).controls(fm5,fom5,fmc5).

% Left RCS

controls(lha,lfha,lhca).controls(lha,loha,lhca).
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controls(lhb,lfhb,lhcb).controls(lhb,lohb,lhcb).

controls(li12,lfi12,lic12).controls(li12,loi12,lic12).

controls(li345a,lfi345a,lic345a).controls(li345a,loi345a,lic345a).

controls(li345b,lfi345b,lic345b).controls(li345b,loi345b,lic345b).

controls(lm1,lfm1,lmc1).controls(lm1,lom1,lmc1).

controls(lm2,lfm2,lmc2).controls(lm2,lom2,lmc2).

controls(lm3,lfm3,lmc3).controls(lm3,lom3,lmc3).

controls(lm4,lfm4,lmc4).controls(lm4,lom4,lmc4).

controls(lm5,lfm5,lmc5).controls(lm5,lom5,lmc5).

controls(lx12,lfx12,lxc12).controls(lx12,lox12,lxc12).

controls(lx345,lfx345,lxc345).controls(lx345,lox345,lxc345).

% Right RCS

controls(rha,rfha,rhca).controls(rha,roha,rhca).

controls(rhb,rfhb,rhcb).controls(rhb,rohb,rhcb).

controls(ri12,rfi12,ric12).controls(ri12,roi12,ric12).

controls(ri345a,rfi345a,ric345a).controls(ri345a,roi345a,ric345a).

controls(ri345b,rfi345b,ric345b).controls(ri345b,roi345b,ric345b).

controls(rm1,rfm1,rmc1).controls(rm1,rom1,rmc1).

controls(rm2,rfm2,rmc2).controls(rm2,rom2,rmc2).

controls(rm3,rfm3,rmc3).controls(rm3,rom3,rmc3).

controls(rm4,rfm4,rmc4).controls(rm4,rom4,rmc4).

265



controls(rm5,rfm5,rmc5).controls(rm5,rom5,rmc5).

controls(rx12,rfx12,rxc12).controls(rx12,rox12,rxc12).

controls(rx345,rfx345,rxc345).controls(rx345,rox345,rxc345).

% basic commands

default -basic_command(C,V,St1).

basic_command(opena_lfha,lfha,open).

basic_command(opena_lfha,loha,open).

basic_command(closea_lfha,lfha,closed).

basic_command(closea_lfha,loha,closed).

basic_command(opena_lfhb,lfhb,open).

basic_command(opena_lfhb,lohb,open).

basic_command(closea_lfhb,lfhb,closed).

basic_command(closea_lfhb,lohb,closed).

% Commands to control valves lfi12, loi12

basic_command(opena_li12,lfi12,open).

basic_command(opena_li12,loi12,open).

basic_command(openb_lfi12,lfi12,open).

basic_command(openb_loi12,loi12,open).
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% Commands to control valves (crossfeeds) lfx12, lox12

basic_command(opena_lx12,lfx12,open).

basic_command(opena_lx12,lox12,open).

basic_command(openb_lfx12,lfx12,open).

basic_command(openb_lox12,lox12,open).

% Commands to control valves lfi345a, lfi345b, loi345a, lfi345b

basic_command(open_lfi345a,lfi345a,open).

basic_command(open_loi345a,loi345a,open).

basic_command(close_lfi345a,lfi345a,closed).

basic_command(close_loi345a,loi345a,closed).

basic_command(open_lfi345b,lfi345b,open).

basic_command(open_loi345b,loi345b,open).

basic_command(close_lfi345b,lfi345b,closed).

basic_command(close_loi345b,loi345b,closed).

% Commands to control valves (crossfeeds) lfx345, lox345

basic_command(open_lfx345,lfx345,open).

basic_command(open_lox345,lox345,open).

basic_command(close_lfx345,lfx345,closed).
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basic_command(close_lox345,lox345,closed).

% Commands to control valves (manifolds) lfm1, lom1

basic_command(open_lfm1,lfm1,open).

basic_command(open_lfm1,lom1,open).

basic_command(closea_lfm1,lfm1,closed).

basic_command(closea_lfm1,lom1,closed).

basic_command(closeb_lfm1,lfm1,closed).

basic_command(closeb_lfm1,lom1,closed).

% Commands to control valves (manifolds) lfm2, lom2

basic_command(open_lfm2,lfm2,open).

basic_command(open_lfm2,lom2,open).

basic_command(closea_lfm2,lfm2,closed).

basic_command(closea_lfm2,lom2,closed).

basic_command(closeb_lfm2,lfm2,closed).

basic_command(closeb_lfm2,lom2,closed).

% Commands to control valves (manifolds) lfm3, lom3

basic_command(open_lfm3,lfm3,open).
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basic_command(open_lfm3,lom3,open).

basic_command(closea_lfm3,lfm3,closed).

basic_command(closea_lfm3,lom3,closed).

basic_command(closeb_lfm3,lfm3,closed).

basic_command(closeb_lfm3,lom3,closed).

% Commands to control valves (manifolds) lfm4, lom4

basic_command(open_lfm4,lfm4,open).

basic_command(open_lfm4,lom4,open).

basic_command(closea_lfm4,lfm4,closed).

basic_command(closea_lfm4,lom4,closed).

basic_command(closeb_lfm4,lfm4,closed).

basic_command(closeb_lfm4,lom4,closed).

% Right RCS

% Commands to control valves rfha, rohb, rfha, rohb

basic_command(opena_rfha,rfha,open).

basic_command(opena_rfha,roha,open).

basic_command(closea_rfha,rfha,closed).

basic_command(closea_rfha,roha,closed).
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basic_command(opena_rfhb,rfhb,open).

basic_command(opena_rfhb,rohb,open).

basic_command(closea_rfhb,rfhb,closed).

basic_command(closea_rfhb,rohb,closed).

% Commands to control valves rfi12, roi12

basic_command(opena_ri12,rfi12,open).

basic_command(opena_ri12,roi12,open).

basic_command(openb_rfi12,rfi12,open).

basic_command(openb_roi12,roi12,open).

% Commands to control valves (crossfeeds) rfx12, rox12

basic_command(opena_rx12,rfx12,open).

basic_command(opena_rx12,rox12,open).

basic_command(openb_rfx12,rfx12,open).

basic_command(openb_rox12,rox12,open).

% Commands to control valves rfi345a, rfi345b, roi345a, fi345b

basic_command(open_rfi345a,rfi345a,open).

basic_command(open_roi345a,roi345a,open).

270



basic_command(close_rfi345a,rfi345a,closed).

basic_command(close_roi345a,roi345a,closed).

basic_command(open_rfi345b,rfi345b,open).

basic_command(open_roi345b,roi345b,open).

basic_command(close_rfi345b,rfi345b,closed).

basic_command(close_roi345b,roi345b,closed).

% Commands to control valves (crossfeeds) rfx345, rox345

basic_command(open_rfx345,rfx345,open).

basic_command(open_rox345,rox345,open).

basic_command(close_rfx345,rfx345,closed).

basic_command(close_rox345,rox345,closed).

% Commands to control valves (manifolds) rfm1, rom1

basic_command(open_rfm1,rfm1,open).

basic_command(open_rfm1,rom1,open).

basic_command(closea_rfm1,rfm1,closed).

basic_command(closea_rfm1,rom1,closed).

basic_command(closeb_rfm1,rfm1,closed).

basic_command(closeb_rfm1,rom1,closed).
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% Commands to control valves (manifolds) rfm2, rom2

basic_command(open_rfm2,rfm2,open).

basic_command(open_rfm2,rom2,open).

basic_command(closea_rfm2,rfm2,closed).

basic_command(closea_rfm2,rom2,closed).

basic_command(closeb_rfm2,rfm2,closed).

basic_command(closeb_rfm2,rom2,closed).

% Commands to control valves (manifolds) rfm3, rom3

basic_command(open_rfm3,rfm3,open).

basic_command(open_rfm3,rom3,open).

basic_command(closea_rfm3,rfm3,closed).

basic_command(closea_rfm3,rom3,closed).

basic_command(closeb_rfm3,rfm3,closed).

basic_command(closeb_rfm3,rom3,closed).

% Commands to control valves (manifolds) rfm4, rom4

basic_command(open_rfm4,rfm4,open).

basic_command(open_rfm4,rom4,open).

basic_command(closea_rfm4,rfm4,closed).
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basic_command(closea_rfm4,rom4,closed).

basic_command(closeb_rfm4,rfm4,closed).

basic_command(closeb_rfm4,rom4,closed).

% general command

default -general_command(C,V,St1).

general_command(C,V,St1) if basic_command(C,V,St1).

general_command(closea_fi12_closeb_ffi12,ffi12,closed).

general_command(closea_fi12_closeb_foi12,foi12,closed).

general_command(opena_ffm5_openb_ffm5,ffm5,open).

general_command(opena_ffm5_openb_ffm5,fom5,open).

general_command(closea_ffm5_closeb_ffm5,ffm5,closed).

general_command(closea_ffm5_closeb_ffm5,fom5,closed).

general_command(closea_li12_closeb_lfi12,lfi12,closed).

general_command(closea_li12_closeb_loi12,loi12,closed).

general_command(close_lx12_close_lfx12,lfx12,closed).

general_command(close_lx12_close_lox12,lox12,closed).

general_command(opena_lfm5_openb_lfm5,lfm5,open).

general_command(opena_lfm5_openb_lfm5,lom5,open).

general_command(closea_lfm5_closeb_lfm5,lfm5,closed).

general_command(closea_lfm5_closeb_lfm5,lom5,closed).

general_command(closea_ri12_closeb_rfi12,rfi12,closed).
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general_command(closea_ri12_closeb_roi12,roi12,closed).

general_command(close_rx12_close_rfx12,rfx12,closed).

general_command(close_rx12_close_rox12,rox12,closed).

general_command(opena_rfm5_openb_rfm5,rfm5,open).

general_command(opena_rfm5_openb_rfm5,rom5,open).

general_command(closea_rfm5_closeb_rfm5,rfm5,closed).

general_command(closea_rfm5_closeb_rfm5,rom5,closed).

% If a device is stuck at certain position, it is stuck;

% by default a device is not stuck. All dummy valves are stuck

% at open position. By default a valve doesn’t have a bad circuitry,

% and is not an abnormal input.

stuckd(De) if stuck(De,St1).

stuck(Dv,open).

default -stuck(De,St1).

default -stuckd(De).

default -bad_circuitry(V).

default -ab_input(V).

% A valve is in a state if the state is not {\tt gpc} state,

% the switch that controls valve is in the state and the valve
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% is not stuck, doesn’t have bad circuitry, or is an abnormal input:

in_state(V)=St1 if control(Swi,V),

-ab_input(V),

-stuckd(V),

-bad_circuitry(V)

St1\=gpc.

% Flipping a unstuck switch to a state causes the switch to be

% in this state. It is not executable if the switch has already

% been in this state.

flip(Swi,St1) causes in_state(Swi)=St1 if -stuckd(Swi).

nonexecutable flip(Swi,St1) if in_state(Swi)=St1.

% Issuing a command C causes a valve V to be in a state St1 if

% the valve is controlled by a switch that is in gpc state, and C

% is a general command that changes V into state St1, V is not

% stuck or has a bad circuitry.

issue(C) causes in_state(V)=St1 if control(Swi,V),

in_state(Swi)=gpc,

general_command(C,V,St1),
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-stuckd(V),

-bad_circuitry(V).

% If switch Swi controlling a valve V is in some state

% St1 (open or closed) and all computer command required to

% move V to some state St2 different from St1 were issued,

% then the input to V is considered abnormal, i.e. the state of V

% is undefined in high-level valve control system.

issue(C) causes ab_input(V) if control(Swi,V),

in_state(Swi)=St1,

St1\=gpc,

general_command(C,V,St2),

St2\=St1

-bad_circuitry(V).

% Finally, at any time, for each RCS system, only one action can be performed:

nonexecutable flip(LSwi1,St1), flip(LSwi2,St2) where LSwi1\=LSwi2.

nonexecutable flip(RSwi1,St1), flip(RSwi2,St2) where RSwi1\=RSwi2.

nonexecutable flip(FSwi1,St1), flip(FSwi2,St2) where FSwi1\=FSwi2.

nonexecutable issue(LC1), issue(LC2) where LC1\=LC2.

nonexecutable issue(RC1), issue(RC2) where RC1\=RC2.
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nonexecutable issue(FC1), issue(FC2) where FC1\=FC2.

nonexecutable flip(LSwi,St1), issue(LC).

nonexecutable flip(RSwi,St1), issue(RC).

nonexecutable flip(FSwi,St1), issue(FC).
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Appendix 3

Source Code for the Robot Task Planning

Domain

3.1 Example from Section 12.2

:- sorts

room>>office;

door;

person.

:- objects

alice,bob,carol,dan :: person;

o1,o2,o3 :: office;

cor :: room;

d1,d2,d3 :: door.

:- variables

D,D1,D2,D3 :: door;

P,P1,P2,P3 :: person;

R,R1,R2,R3 :: room;

O,O1,O2,O3 :: office.
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:- constants

hasdoor(room,door), acc(room,door,room),

knows(person,person), passto(person,person),

relatedto(person,person) :: sdFluent;

inside(person,room),beside(door),facing(door),

knowinside(person,room),served(person):: simpleFluent;

loc :: simpleFluent(room);

open(door), visiting(person) :: simpleFluent;

approach(door), gothrough(door), callforopen(door),

goto(person), askploc(person,person),serve(room) :: action.

inertial inside(P1,R1).

inertial beside(D).

inertial facing(D).

inertial knowinside(P,R).

inertial served(P).

inertial loc.
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default -hasdoor(R,D).

caused hasdoor(o1,d1).

caused hasdoor(o2,d2).

caused hasdoor(o3,d3).

caused hasdoor(cor,d1).

caused hasdoor(cor,d2).

caused hasdoor(cor,d3).

default -open(D).

default -acc(R1,D,R2).

caused acc(R,D,cor) if hasdoor(R,D).

caused acc(R1,D,R2) if acc(R2,D,R1).

default -relatedto(P1,P2).

default -passto(P1,P2).

caused relatedto(P1,P2) if passto(P2,P1).

caused relatedto(P3,P1) if passto(P1,P2), relatedto(P3,P2).

caused knows(alice,dan).

default -knows(P1,P2).
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caused -beside(D1) if beside(D2) where D2\=D1.

caused -facing(D2) if facing(D1) where D2\=D1.

caused beside(D) if facing(D).

caused -inside(P,R1) if inside(P,R2) where R2\=R1.

caused -knowinside(P,R2) if knowinside(P,R1) where R2\=R1.

caused inside(P,R) if knowinside(P,R).

default -open(D).

default -visiting(P).

approach(D) causes facing(D).

nonexecutable approach(D) if loc=R, -hasdoor(R,D).

nonexecutable approach(D) if facing(D).

gothrough(D) causes loc=R if acc(R1,D,R), loc=R1 where R\=R1.

gothrough(D) causes -facing(D).

nonexecutable gothrough(D) if -facing(D).

nonexecutable gothrough(D) if -open(D).

nonexecutable gothrough(D) if loc=R, -hasdoor(R,D).
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callforopen(D) causes open(D).

nonexecutable callforopen(D) if -facing(D).

nonexecutable callforopen(D) if open(D).

goto(P) causes visiting(P).

goto(P) causes served(P).

caused served(P1) if served(P), relatedto(P,P1).

nonexecutable goto(P) if loc=R, -knowinside(P,R).

nonexecutable goto(P) if loc\=R, knowinside(P,R).

askploc(P1,P) causes knowinside(P,R) if inside(P,R).

nonexecutable askploc(P1,P) if -visiting(P1).

nonexecutable askploc(P1,P) if visiting(P1), -knows(P1,P).

nonexecutable askploc(P1,P) if knowinside(P,R).

noconcurrency.

3.2 A Robot in the GDC Building

The source code shown in this section is used in a mobile robot that

navigates through GDC 3NE wing.

:- sorts
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room>>office;

door;

person.

:- objects

peterstone,danaballard,raymooney,stacymiller :: person;

o3_508,o3_510,o3_512,o3_416,l3_414a,s3_516,l3_436,o3_428,

o3_426,l3_414b,l3_414,o3_402,o3_412,o3_502,o3_404,o3_418,

o3_420,o3_422,o3_430,o3_432 :: office;

cor :: room;

d3_508,d3_510,d3_512,d3_416,d3_414a1,d3_414a2,d3_414a3,

d3_5161,d3_5162,d3_4361,d3_4362,d3_428,d3_426,d3_414b1,

d3_414b2,d3_414b3,d3_402,d3_412,d3_502,d3_404,d3_418,

d3_420,d3_422,d3_430,d3_432 :: door.

:- variables

D,D1,D2,D3 :: door;

P,P1,P2,P3 :: person;

R,R1,R2,R3 :: room;

O,O1,O2,O3 :: office.
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:- constants

hasdoor(room,door), acc(room,door,room),

knows(person,person), passto(person,person),

relatedto(person,person) :: rigidFluent;

inside(person,room),beside(door),facing(door),

knowinside(person,room),served(person):: inertialFluent;

loc :: inertialFluent(room);

open(door), visiting(person) :: simpleFluent;

approach(door), gothrough(door), callforopen(door),

goto(person), askploc(person,person),serve(room) :: exogenousAction.

default -hasdoor(R,D).

hasdoor(o3_508,d3_508).

hasdoor(o3_510,d3_510).

hasdoor(o3_512,d3_512).

hasdoor(o3_416,d3_416).

hasdoor(l3_414a,d3_414a1).

hasdoor(l3_414a,d3_414a2).

hasdoor(l3_414a,d3_414a3).

hasdoor(s3_516,d3_5161).

hasdoor(s3_516,d3_5162).
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hasdoor(l3_436,d3_4361).

hasdoor(l3_436,d3_4362).

hasdoor(o3_426,d3_426).

hasdoor(o3_428,d3_428).

hasdoor(l3_414b,d3_414b1).

hasdoor(l3_414b,d3_414b2).

hasdoor(l3_414b,d3_414b3).

hasdoor(o3_402,d3_402).

hasdoor(o3_412,d3_412).

hasdoor(o3_502,d3_502).

hasdoor(o3_404,d3_404).

hasdoor(o3_418,d3_418).

hasdoor(o3_420,d3_420).

hasdoor(o3_422,d3_422).

hasdoor(o3_430,d3_430).

hasdoor(o3_432,d3_432).

hasdoor(cor,D) where D\=d3_414a3, D\=d3_414b3.

default -open(D).

default -acc(R1,D,R2).

acc(R,D,cor) if hasdoor(R,D) where D\=d3_414a3, D\=d3_414b3.

acc(R1,D,R2) if acc(R2,D,R1).
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acc(l3_414a,d3_414a3,l3_414).

acc(l3_414b,d3_414b3,l3_414).

default -relatedto(P1,P2).

default -passto(P1,P2).

relatedto(P1,P2) if passto(P2,P1).

relatedto(P3,P1) if passto(P1,P2), relatedto(P3,P2).

knows(peterstone,danaballard).

knows(stacymiller,raymooney).

default -knows(P1,P2).

caused -beside(D1) if beside(D2) where D2\=D1.

caused -facing(D2) if facing(D1) where D2\=D1.

caused beside(D) if facing(D).

caused -inside(P,R1) if inside(P,R2) where R2\=R1.

caused -knowinside(P,R2) if knowinside(P,R1) where R2\=R1.

caused inside(P,R) if knowinside(P,R).

default -open(D).
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default -visiting(P).

approach(D) causes facing(D).

nonexecutable approach(D) if loc=R, -hasdoor(R,D).

nonexecutable approach(D) if facing(D).

gothrough(D) causes loc=R if acc(R1,D,R), loc=R1 where R\=R1.

gothrough(D) causes -facing(D).

nonexecutable gothrough(D) if -facing(D).

nonexecutable gothrough(D) if -open(D).

nonexecutable gothrough(D) if loc=R, -hasdoor(R,D).

callforopen(D) causes open(D).

nonexecutable callforopen(D) if -facing(D).

nonexecutable callforopen(D) if open(D).

goto(P) causes visiting(P).

goto(P) causes served(P).

caused served(P1) if served(P), relatedto(P,P1).

nonexecutable goto(P) if loc=R, -knowinside(P,R).

nonexecutable goto(P) if loc\=R, knowinside(P,R).

askploc(P1,P) causes knowinside(P,R) if inside(P,R).
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nonexecutable askploc(P1,P) if -visiting(P1).

nonexecutable askploc(P1,P) if visiting(P1), -knows(P1,P).

nonexecutable askploc(P1,P) if knowinside(P,R).

noconcurrency.
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