

Copyright

by

Zhufeng Gao

2014

The Dissertation Committee for Zhufeng Gao Cer tifies that this is the approved
version of the following dissertation:

Assembly and Test Operations with Multipass Requirements in

Semiconductor Manufacturing

Committee:

Jonathan F. Bard, Supervisor

James E Bicke l

Erhan Kutanoglu

David P Morton

Leon S Lasdon

Assembly and Test Operations with Multipass Requirement in

Semiconductor Manufacturing

by

Zhufeng Gao, B.S.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2014

 iv

Assembly and Test Operations with Multipass Requirement in

Semiconductor Manufacturing

Zhufeng Gao, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Jonathan F. Bard

In semiconductor manufacturing, wafers are grouped into lots and sent to a

separate facility for assembly and test (AT) before being shipped to the customer. Up to

a dozen operations are required during AT. The facility in which these operations are

performed is a reentrant flow shop consisting of several dozen to several hundred

machines and up to a thousand specialized tools. Each lot follows a specific route

through the facility, perhaps returning to the same machine multiple times. Each step in

the route is referred to as a “pass.” Lots in work in process (WIP) that have more than a

single step remaining in their route are referred to as multi-pass lots. The multi-pass

scheduling problem is to determine machine setups, lot assignments and lot sequences to

achieve optimal output, as measured by four objectives related to key device shortages,

throughput, machine utilization, and makespan, prioritized in this order. The two primary

goals of this research are to develop a new formulation for the multipass problem and to

design a variety of solution algorithms that can be used for both planning and real-time

control. To begin, the basic AT model considering only single-pass scheduling and the

previously developed greedy randomized adaptive search procedure (GRASP) along with

its extensions are introduced. Then two alternative schemes are proposed to solve the

multipass scheduling problem. In the final phase of this research, an efficient procedure is

 v

presented for prioritizing machine changeovers in an AT facility on a periodic basis that

provides real-time support. In daily planning, target machine-tooling combinations are

derived based on work in process, due dates, and backlogs. As machines finish their

current lots, they need to be reconfigured to match their targets. The proposed algorithm

is designed to run in real time.

 vi

Table of Contents

List of Tables ..ix

List of Figures ...xi

Chapter 1: Introduction ..1

Chapter 2: Literature Review...6

Chapter 3: Problem Description ..14

3.1 Explanation of terms ...14

3.2 Problem statement...17

Chapter 4: Basic AT Modeling ..19

4.1 Introduction to basic AT modeling ...19

4.2 Basic GRASP ..24

4.3 Extended model and extended GRASP ..25

Chapter 5: Introduction to the Multipass Model..26

5.1 Logpoint and operation number ..26

5.2 Input files ..26

5.3 AT scheduling for the multipass model ..32

Chapter 6: Multipass Scheduling Scheme I ...35

6.1 Mathematical model..35

6.2 Solution methodology ...40

6.2.1 Phase I: single-pass algorithm ..41

6.2.2 Phase II: multipass algorithm without changeovers42

6.2.3 Phase III: changeover algorithm ...51

6.3 Output files..54

6.4 Computational Result..59

Chapter 7: Multipass Scheduling Scheme II..67

7.1 Mathematical model..67

7.1.1 Assignment model ..68

 vii

7.1.2 Sequencing model ...75

7.2 Solution Methodology ..80

7.2.1 Phase I: assignment model ..81

7.2.2 Phase II: sequencing model ..83

7.2.3 Phase III: changeover algorithm ...84

7.3 Computational Results ..87

7.3. 1 GRASP vs. ASC ..88

7.3.2 Assignment vs. Sequencing Solutions ..94

Chapter 8: Real-time Decision Suppor t for AT Operations100

8.1 Comparison of current and maximum capacity solutions.....................101

8.2 Comparison algorithm ..104

8.3 Priority list construction..105

8.3.1 Rules for setting the priorities ...107

8.3.2 Calculations...107

8.3.3 Greedy randomized procedure for lot assignments115

8.4 Mixed- integer programming model for real-time control problem117

8.5 Computational experiments ..118

8.5.1 Results for Compare_Algorithm118

8.5.2 Results for Priority_List_Algorithm ...120

8.5.3 Comparison of heuristic and MIP results..................................122

 viii

Chapter 9: Future Work ...128

Appendix A: Procedure to Account for Logpoint and Operation Number in Multipass
Scheme I..130

Appendix B: : Pseudocodes for Subroutines in Multipass Scheme I...................131

B.1 INITIALIZATION 131

B.2 UPDATING CANDIDATE LOT LIST 132

B.3 CHECKING WHETHER NEXT PASS EXISTS 133

B.4 GREEDY RANDOMIZED PROCEDURE FOR ASSIGNING LOTS 134

Appendix C: Pseudocodes for Changeover Algorithm Subroutines....................137

C.1 INITIALIZATION 137

C.2 UPDATING CANDIDATE_LOT_LIST 139

C.3 CHANGEOVER A MACHINE 140

Appendix D: Complexity of the Assignment Model and Sequencing Model142

Appe ndix E – Mathematical Programming Models for Real-Time Decision Making
...146

References ..152

 ix

List of Tables

Table 1: Name and brief description of primary input files.27

Table 2: Example of a route ..30

Table 3: Portion of WIP file ..31

Table 4: Output data files ..54

Table 5: An example of “solut ion.csv” for one machine instance56

Table 6: An example of “multi_solution.csv” for one machine instance57

Table 7: Comparison of single-pass with multipass results61

Table 8: Comparison of total key device shortages ..62

Table 9: Weighted sum of key device shortages...63

Table 10: Weighted sum of lots processed..64

Table 11: Comparison of average makespan and machine time65

Table 12: Runtime comparison ...66

Table 13: Comparison of GRASP with ASC results ..89

Table 14: Comparison of weighted sum of key device shortages.....................91

Table 15: Comparison of weighted sum of lots processed91

Table 16: Comparison of number of machines ...92

Table 17: Comparison of average machine time...93

Table 18: Compa rison of CPU time ..94

Table 19: Input and output statistics for assignment model..............................95

Table 20: Input and output statistics for sequencing model..............................95

Table 21: Comparison of lots processed and machine time..............................97

Table 22: Comparison of objective function value and weighted sum of key device

shortages..98

Table 23: Comparison of weighted sum of lots and number of machine used .99

 x

Table 24: Example of output from comparison algorithm103

Table 25: Example of priority computations† ...106

Table 26: Machines for example of Priority_List_Algorithm113

Table 27: Tooling for example of Priority_List_Algorithm113

Table 28: Initial tooling setups for example of Priority_List_Algorithm

...113

Table 29: Example results for Priority_List_Algorithm114

Table 30: Compare results for group 1..119

Table 31: Compare results for group 2..119

Table 32: Compare results for group 3..120

Table 33: Priorities for resetting available machines121

Table 34: Heuristic changeover results ...123

Table 35: CPLEX changeover results for Model 1 ...124

Table 36: Percentage difference between CPLEX and heuristic solutions for Model

5† ...125

Table 37: CPLEX changeover results for Model 6 ...126

Table 38: Percentage difference between CPLEX and heuristic solutions for Model

6† ...127

 xi

List of Figures

Figure 1: A sample scheduling for multipass problem.....................................33

Figure 2: Sample output from single-pass algorithm42

Figure 3: First time a machine finishes its assinged lots50

Figure 4: Second time a machine finishes its assigned lots..............................50

Figure 5 Schedule derived from Multipass Algorithm for example ...51

Figure 6: Flowchart for Changeover_Algorithm....................................53

Figure 7: Sample results of Phase I ..83

Figure 8: Sample results of Phase II ...84

Figure 9: Sample results of Phase III..86

 1

Chapter 1: Introduction

The technology used to fabricate, assemble and test semiconductor devices is the

most complex and expensive in the world of manufacturing. Although the processes

differ by product and company, the general approach can be divided into two major

phases: front-end operations, referred to as wafer fabrication and wafer probe (Mönch et

al. 2011), and the back-end operations, known as assembly and test (AT). Both phases

consist of a series of intricate steps that utilize sophisticated equipment and technology.

Front-end operations start with a raw disc-shaped wafer typically made out of silicon and

end with electronic circuits in the form of chips on the wafer (details are provided by

Mönch et al. 2011). In the second phase, the wafers are grouped into lots and delivered

to an AT facility. Assembly consists of four steps: (i) “die preparation” where each wafer

is sawed into individual integrated circuits (IC); (ii) “die attachment” where the ICs are

attached to a support structure or package (e.g., lead frame); (iii) “IC bonding” where the

ICs are connected to the electrical contacts of the package – this allows interaction with

the outside world; and (iv) “IC encapsulation” where each device is encased in a plastic

molding compound or ceramic material, giving physical and chemical protection to the

circuits.

Next, the packaged devices are put through a series of tests to ensure that their

circuits are working properly. The testing is performed on a variety of machines that are

programmed to check different operating specifications including functionality, voltage,

current and timing. If no shorts or faults are discovered, the devices are shipped to the

customer or placed in finished goods inventory. For more detail on back-end operations,

see, e.g., Ovacik and Uzsoy (1997).

http://link.springer.com/search?facet-author=%22Lars+M%C3%B6nch%22�
http://link.springer.com/search?facet-author=%22Lars+M%C3%B6nch%22�

 2

In the semiconductor industry, on-time delivery is a critical component of

customer satisfaction. Failing to meet promised due dates may incur steep financial

penalties and result in an unrecoverable loss of business. Therefore, careful planning at

each stage in the supply chain has become the norm, especially since wafer fabrication

and AT operations are most often performed in different facilities in different countries.

In this research, we investigate the latter, which is arguably the more critical of the two

manufacturing phases be ing the last link in the supp ly chain. The goal of the research

was to develop new mathematical models that could be used to provide production plans

for up to a week at a time, given a backlog of work in process (WIP) in the form of lots,

and a demand targets for a subset of devices. In formulating our models, the following

four objectives were considered: minimizing the shor tage of key devices, maximizing the

weighted throughput of lots processed, minimizing the number of machine used, and

minimizing the makespan. The work was done in conjunction with a leading

semiconductor manufacturer who has several AT facilities in Asia.

Back-end operations are performed using families of parallel machines configured

with various types of too ling. Each device follows a predetermined sequence of steps

called a route and is processed in batches or lots without interruption. After finishing

the current step, a lot may return to the same machine or to a different machine for the

next step, giving rise to what is termed reentrant flow (Graves et al., 1983). What needs

to be decided is how to set up each machine with tooling to run at a specific temperature,

which lots to assign to each machine, and how to sequence the lots once they are

assigned. The difficulty in making “optimal” decisions is a consequence of the large

number of candidate machine-tooling-temperature- lot combinations, and the fact that it is

necessary to plan for each step in the route and not just the next one in the sequence. This

 3

is what we call the multi-pass aspect of the problem or, as mentioned, the reentrant aspect

of the flow.

The first attempt to model this problem was undertaken by Deng et al. (2010) who

developed a greedy randomized adaptive search procedure (GRASP) to solve the single-

pass version of the prob lem that only took into account the upcoming step. The model

developed by Deng et al. (2010) did not give the multipass requirements much

consideration. In fact, each lot must undergo a series of operations, defined by its route,

that are spaced no more than a predetermined number of minutes apart. When creating

schedules, it is therefore necessary to look ahead and take into account machine and

tooling requirements for all operations in a route, and not just the current one. An

effective way to deal with this issue is to give higher priority to those lots with several

passes remaining over those having only one pass to go. Nevertheless, this greatly

increases the complexity of the problem and challenges our ability to develop efficient

algorithms

The main contribution of this research has been to introduce two different

schemes that take into account the multipass requirements omitted from the original

mod el by Deng et al. (2010) and to design solution algorithms that can be implemented in

an industrial setting. Related contributions include the design of real-time support

procedures and test results using actual facility data to validate all algorithms.

The first scheme for the multi-pass version is a three-phase heuristic. In the first

phase, an attempt is made to schedule as many lots as possible in accordance with the

four objectives mentioned above. Only the upcoming step is considered for each lot. In

the second phase, subsequent steps in the route are considered and the corresponding lots

are assigned to machines if the tooling and temperature are compatible, and capacity still

exists. In the third phase, machines are reconfigured in an effort to exploit their unused

 4

capacity. Nevertheless, subop timal solutions are almost always the result because

schedules are constructed without regard to downstream steps in the routes. This was

born out in our latest testing.

The second scheme is a three-phase optimization-based approach that is aimed at

correcting the shortsightedness of the first scheme. The new methodology is centered on

solving two mixed- integer programming (MIP) models; the first is used to assign tooling

and lots to machines, and the second to sequence the lots. This constitutes Phases I and

II. In Phase III, a changeover procedure is applied to make use of any remaining machine

capacity. Compared to the first scheme, the second methodology considers all steps in a

route when planning the machine setups and lot assignments, rather than just the

upcoming s tep.

The mod els are now being tested at several facilities of the collaborating company

in the Far East to examine its effectiveness for capacity planning, estimating daily

completions, and giving direction to shop floor personnel for resetting machines. Under

ideal conditions, models like this provide an indication of maximum throughput (e.g., see

Freed et al. 2006). However, if the initial state of the system is noticeably different than

the state recommended by the model, it is not clear how to make the transition as

opportunities arise over the day. Equipment failures, insufficient tooling, the arrival of

hot lots, and limited manpower invariably undermine the best of plans. As a

consequence, guidance is needed to handle disruptions and changing circumstances.

In practice, one of the biggest obstacles to realizing the recommended state by the

end of the planning horizon is crew availability. Changeovers take anywhere from 30 to

60 minutes, so only a handful can be performed each hour. To help shop floor

personnel make the most productive decisions under these circumstances, we have

developed a real-time dynamic procedure for prioritizing machine changeovers and lot

 5

assignments. The methodology uses the maximum-capacity solution obtained from the

planning model as a target, and constructs a list of recommendations based on available

tooling, lot weights, processing requirements, and remaining machine capacities. The

driving force is the perceived value of the lots in WIP, which is measured by several

parameters including their age, size, planned cycle time, upcoming operation, and the

number of similar lots. An aggregate benefit measure is computed for each lot and used

to evaluate all feasible machine setups. This allows us to construct a priority list for

resetting one or more machines. The procedure is intended to be run every few minutes

or whenever machines and crew are idle.

The next section presents a literature review. Section 3 introduces the statement of

the AT problem with multipass. Section 4 provides mathematical formulations of basic

AT problems and a GRASP to the basic AT. Section 5 introduces the multipass AT

prob lem. Sections 6 and 7 propose two different modeling and solution methodologies

for multipass AT. Section 8 discusses real-time decision support. Section 9 presents

opportunities for future work.

 6

Chapter 2: Literature Review

AT facilities with multipass requirements can be viewed as reentrant shop flows

where a job may return to a machine several times before its completion. The concept of

reentrant flow was introduced by Graves et al. (1983) motivated by production

scheduling for a plant manufacturing integrated circuits. Allahverdi et al. (1999)

undertook a comprehensive review of research directed towards the solution of static

scheduling problems involving setup decisions. Gupta and Sivakumar (2006) conducted

a survey of job shop scheduling methods in semiconductor manufacturing. Lin and Lee

(2011) updated their findings, summarizing models, solution methods, and applications

appearing in the literature through 2009 that focused on reentrant flow in front-end

operations. The reentrant shop investigated in this research is based on back-end

operations but shares many characteristics of the job shop version of the prob lem

described by Lin and Lee (2011). However, when multiple passes are considered, as they

are here, the scheduling becomes more difficult since it is necessary to take into account

tooling constraints and temperature requirements for each job or lot. During the past

thirty years, a large number of solution methods have been proposed. To provide

structure to our review, we use the following classification scheme: dispatching rules,

mathematical programming, and heuristics.

Dispatching rules are prevalent in both the scheduling and industrial practice

literature. Although such rules are computationally efficient and easy to implement, they

are often myopic and give poor results. In an early survey, Panwalker and Iskandar

(1977) presented over 100 dispatching rules, which they classified as either local (e.g.,

first- in-first-out) and global. Examples of the latter are the minimum inventory

variability scheduler proposed by Li et al. (1996) and the next arrival control heur istic

from Fowler et al. (1992). The key weakness of local dispatching rules is that they

http://link.springer.com/search?facet-author=%22Appa+Iyer+Sivakumar%22�

 7

cannot handle reentrant flows. Global rules overcome this difficulty to some extent, but

they can be complicated to implement and rarely produce optimal solutions, especially

when the prob lem is defined by multiple objectives. Taking an integrated approach,

Dabbas and Fowler (2003) combined a variety of local dispatching rules to sidestep the

weaknesses of global rules. Using simulation, they demonstrated that their algorithm

performed better than any common single dispatching policy with respect to on-time

delivery, variability of lateness, and mean cycle time metrics. In related work, Choi et

al. (2011) suggested a real-time decision tree based dispatching rule selector. In the first

step, a real-time scheduler determines when to choose a new dispatching rule; in the

second step, a new dispatching rule is chosen using decision trees. The methodology was

demonstrated using data from a thin film transistor- liquid crystal display manufacturing

line, which is a typical reentrant flow shop.

With respect to mathematical programming methods, the use of scheduling

models and decomposition techniques have figured prominently among researchers.

Considering scheduling methods first, Graves et al. (1983) modeled a wafer fab as a

reentrant flow shop with the objective of minimizing the average throughput time subject

to meeting a given production rate. They developed a cyclic technique under high

volume requirements for scheduling jobs with similar or identical routings which

included multiple tasks at one or more facilities. The idea was to reduce the problem

size by creating cycles over the planning horizon; however, computational feasibility still

proved to be a challenge. Kubiak et al. (1996) designed a two-step approach to

minimize total completion time in a reentrant shop with one hub machine that jobs enter

multiple times. They proved that the shortest processing time rule produced optimal

schedules under the assumptions that the hub machine is the bottleneck and that the

processing times of jobs on that machine are at least as great as on any other machine

 8

(this is referred to as the hereditary order). Relaxing either assumption did not allow for

efficient algorithms. Zhang et al. (2007) proposed a two-level hierarchical capacity

planning framework to reconfigure kit components in AT operations. The first level

focused on midterm planning while the second level created executable plans for

individual facilities. The authors also proposed a MIP for the first level problem. The

methodology was successfully applied at one of Intel’s AT sites resulting in an annual

$10 million saving in the purchase of kit components.

Although the literature on parallel machine scheduling is also vast, there has been

little published research that looks at machine-tooling combinations, and virtually none

that considers temperature requirements – a unique aspect of our problem. Quadt and

Kuhn (2009) investigated at a simplified version of the AT planning problem and

developed a MIP formulation based on capacitated lot-sizing models with backorders and

setups. They assumed that the machines could be grouped by family so a separate

scheduling problem could be solved for each. This eliminated the need to treat the

machines as nonhomogeneous and greatly reduced the size of the original problem.

Nevertheless, even without too ling and temperature cons iderations the resultant MIPs

could not be solved exactly, so heuristics were used. Similar work was undertaken by

Chen and Chen (2008), Chung et al. (2009), Jia and Mason (2009), Kang and Shin

(2010), Pfund et al. (2008). The largest parallel scheduling instances that can be solved

to optimality contain up to a half-dozen machines and 30 jobs (e.g., see Bard and

Rojanasoonthon 2006).

Decomposition techniques are usually applied with the scheduling model

together. Based on the work of Ovacik and Uzsoy (1994) and Ovacik and Uzsoy (1997),

Demirkol and Uzsoy (1997) examined the performance of schedules obtained by

decomposition aimed at minimizing the maximum lateness. One observation from their

 9

experiments was that minimizing the maximum lateness leads to good solutions for other

objectives like minimizing the makespan. In the facility they mode led, the final set of

operations included test, brand and burn-in, each performed at different workcenters, but

always using the same family of machines at each. A complicating feature of the

problem was sequence-dependent setup times due to the fact that lots could be tested at

various temperatures. Branding took place at a common workcenter, after which some

lots required an add itional operation that was performed at the test workcenter. These

flow restrictions contrast with ours where a job may undergo many operations as part of

the testing regimen, sometimes returning to the same machine multiple times, or perhaps

visiting a different machine at each step in its route. Demirkol et al. (1995) proposed a

procedure that decomposes job shop scheduling problems into workcenters consisting of

groups of identical machines. They schedule the workcenters one by one in decreasing

order of importance. However, their analysis was limited to the post-burn-in segment of

the final testing phase, which is just one of the steps in AT operations. Knutson et al.

(1999) investigated a problem in which lots in an AT facility were formed to match the

size of customer orders. They assumed that all lots consisted of the same type of chip

and that yield losses were zero. The planning horizon was set to one day and any delivery

tardiness or over supply was treated as a penalty. The problem was formulated as a

nonlinear integer program with three objectives: maximize the satisfaction of customer

demand, minimize the number of die (chips) sent to the warehouse, and minimize

delivery tardiness. To find solutions, a two-stage decomposition approach was used.

Demirkol and Uzsoy (2000) proposed a decomposition method for minimizing the

maximum lateness in reentrant flow shops with sequence-dependent setup times. Using

data from a wafer fab they were not able to improve upon results obtained with simple

dispatching rules, calling into question the computational burden accompanying their

 10

scheme. The problem proved harde r than expected. In a similar vein, Bard et al. (2010)

presented a decomposition algorithm for production planning in a high volume fab that

uses quarterly commitments to define daily target outputs. The objective was to

minimize the sum of the deviations between the target outputs and finished goods

inventory. The planning horizon was broken into weekly subproblems that could be

solved to optimality within a few minutes. A post-processor was then applied to smooth

production and to increase machine utilization. Extensive testing on realistic size

instances spanning 4–13 weeks showed that the proposed scheme could find solutions

quickly, and was much more effective than Lagrangian relaxation or Benders

decomposition

Regarding heuristics, Pearn et al. (2004) proposed a three network-based

heuristics and repor t on a case study for the scheduling prob lem assoc iated with the fina l

testing of integrated-circuits, which is a generalization of the classical reentrant flow

batching problem as well as the identical parallel machine problem. In their mode l, jobs

were clustered by product type and processed on groups of parallel machines at each step

in their route. Processing times were a function of the product type, and the machine

setup times were sequentially dependent. The objective was to minimize the total

machine workload without violating due dates.

With respect to metaheuristics methods, Chen et al. (2008) proposed a genetic

algorithm and Chen et al. (2008) developed a hybrid tabu search procedure to minimize

makespan. In the reentrant flow shop they investigated, all jobs have the same routing

through the machines, and the same sequence is traversed several times to complete the

jobs. Song et al. (2007) applied ant colony optimization to reduce the conversion time of

a bottleneck machine during AT operations. Three objectives were also investigated:

minimize unfilled customer demand, minimize total number of machine changeovers, and

 11

minimize total changeover time. The ir algorithm was successfully applied at an Intel

AT facility and achieved changeover time reductions of up to 20% compared to the

manual approach then being used.

The work proposed in the first scheme of this research derives from the mode l and

solution procedure in Deng et al. (2010). Their GRASP was designed to examine a

diversity of machine-tooling combinations and lot assignments over many iterations.

Tests were conducted using data from the collaborating semiconductor manufacturer with

the results showing that the GRASP achieves high quality solutions comparable to those

obtained with CPLEX in often half the time. However, what was missing from their work

was the inclusion of constraints and logic for scheduling more than a single operation for

a lot at a time

The methodology that is described in the second scheme of this research

decomposes the original multipass scheduling problem into assignment and sequencing

problems. Pinto and Grossmann (1998) provided an overview of various assignment and

sequencing models used for chemical process scheduling. They mainly focused on single-

machine assignment models in which the assignment of jobs to machines is known, and

multiple-machine assignment models based on time slots and event times. The approach

that was common to most of the studies they reviewed required an initial specification of

the number of time slots for each machine in the facility; however, for the multiple

machine assignment problem, they observed that there is no efficient way to calculate the

exact number of time slots required to accommodate all the jobs within the given time

hor izon

Regarding the assignment problem, Mazzola and Neebe (1986) developed a

branch-and-bound algorithm and a heur istic for finding solut ions when side constraints

are present. They provided test results for both procedures for over 400 randomly

 12

generated instances. Bard and Wan (2006) constructed a multi-commodity network

model for assigning tasks to postal service workers during their daily shifts. They

developed a delayed idle period assignment algorithm in which idle periods were treated

implicitly and idle time was scheduled in a post-processing phase. In add ition, they

designed a decomposition algorithm that divided a week into 7 daily problems, and

applied tabu search to each to find solutions. In their problem, the workforce was

homogenous, the number of time periods was predetermined, and there was no

sequencing requirement among tasks.

In the context of wafer fabrication, Kim et al. (2008) investigated a process by

which lots are assigned to orders with the objective of meeting due-dates. They proposed

three soft pegging strategies under which the assignment of lots to orders could be

changed during the production period. Discrete event simulation was used to evaluate

the performance of the three strategies.

With respect to sequencing models, Lee and Lee (2006) designed a Petri net

based- method for single-armed cluster tools with various reentrant wafer flow patterns,

which drove a MIP mode l that was used to find an opt imal sequence for a given wafer

flow pattern. Denton et al. (2007) presented a two-stage stochastic recourse model and

some practical heuristics for computing operating room schedules that hedge aga inst the

uncertainty of surgery durations. They focused on the simultaneous effects of sequencing

surgeries and assigning start times. Hwang and Sun (1997) investigated a problem of

finding a production sequence of the jobs to minimize makespan. They formulated the

prob lem as a general two-machine flow shop with a set of job precedence constraints, and

developed an exact solution procedure based on a modified dynamic programming

approach. A small numerical example highlighting their methodology was presented but

no numerical tests were conducted.

 13

Other than our prior work, little if any published research exists on the reentrant

flow, machine-tooling- lot assignment problem that goes beyond traditional job-shop

scheduling. In undertaking this study, we viewed the computational challenge as one of

obtaining high-quality solutions quickly. As a practical matter, shop floor planners at

the collaborating company were not willing to wait more than a few hours for results

 14

Chapter 3: Problem Description

3.1 EXPLANATION OF TERMS

AT operations are performed on a variety of machines that must be set up with the

appropriate tooling to run under a designed temperature, sometimes referred to as

certification. Each machine belongs to a machine family, which contains a multiple

number of identical instances. The same is true for the tooling, which is categorized by

family type. During machine setup, tooling is placed on the machine and the

temperature is adjusted accordingly. This takes a certain amount of time and requires at

least one person to perform the basic operations. Therefore, it is desirable to maintain the

same setup for as long as possible, only considering changeovers when the WIP is

exhausted. To clarify the terminology, we say that a tooling setup is a specific number of

tooling pieces from one or more tooling families to be run under a designated

temperature. Note that a machine may only be compatible with a subset of tooling

families and a subset of temperatures. Also, tooling may only be compatible with a subset

of temperatures. The set of temperatures considered in this paper is {1 = low, 2 =

medium, 3 = high}, which is sufficient for most situations.

Each machine can not only be set up once during the planning horizon to operate

at one temperature, but also be re-setup after the machine finishing all the lots assigned to

it. That is, if machine m is set up with tooling configuration λ1 under temperature τ1, and

assigned a set of lots l1, then after finishing lots l1, it can run with another too ling setup λ2

under another temperature τ2 to process another lot set l2 later in the planning horizon,

when τ2 is feasible for configuration λ2.

An individual unit undergoing AT operations is referred to as a device.

Homogeneous wafers containing the same device are grouped into lots and go through

the AT facility as a batch. Some lots contain critical devices that are given the highest

 15

priority to ensure that promised delivery dates are met. These devices are defined as key

devices, and lots containing them are called key lots. For each key device there is a

minimum production target for the planning horizon. Failure to meet the targets results

in large penalties. However, once the minimum target is achieved, lots with key devices

are redefined as regular lots and only prioritized by their weight, an input parameter that

depends on how long the lot has been in process and its relative importance. Note that

different lots may contain the same device but vary in size. In our data set, for example,

both lots 4000654 and 4000655 contain device XPS54386PWPR, but the quantity in lot

4000654 is 8640 and that in lot 4000655 is 3564. As mentioned, each lot has its own

weight which is specified in the input file ”wip.csv.”

The age of a lot is the current time minus the time it entered the facility. Each lot

has a planned cycle time (CT) that is constantly compared to its age, as measured by the

time it enters the facility. Age, and planned and cumulative CT are used in part to

determine a weight that reflects the urgency with which a lot should be included in the

schedule. Two lots may consist of the same device but differ in chip count, age, and

upcoming step, and so will have different weights. Lots are assigned a value that

depends on their age and remaining cycle time in the facility. Regardless of the weight

or designation, though, all devices in a lot must be fully processed at each step without

preemption, but can be buffered between steps.

Regarding the flow, a device needs to undergo a predetermined sequence of

operations that are regarded as a route. There is a one-to-one relationship between a route

and a device. Each ope ration in a route is referred as a step or a pass, specifying which

combinations of machine and tooling setups can perform this operation on this device.

Each pass has a unique internal id referred to as a logpoint. For example, the respective

logpoints for first and second passes of device SN0806054PWPR are 7100 and 7121. As

 16

seen, the logpoints of two subsequent passes may not be consecutive. Although each

device has a unique route, each step in the route may be performed by different machines

and setups. We refer to these alternatives as subroute. For example, for the first pass of

device SN0806054PWPR, there is preferred setup and four alternatives. The main setup

uses machine family ETS-0-64 and the alternatives use machine families ETS-1-64, ETS-

1-128, ETS-1M-64, and ETS-2-64, respectively. In this example, all subroutes share the

same tooling family, number of required tooling pieces, and temperature.

For the devices manufactured by the sponsoring company, a route may contain

anywhere from 1 to 5 steps. We refer to any lot with more than a single step remaining in

its route as a multipass lot. Because AT facilities are typically arranged as a job shop and

a route may return a lot to the same machine several times, the majority of AT operations

result in reentrant flow. At time zero, lots may either be in process or queued up on the

shop floor waiting for a machine to become free. All such lots are referred to as first-pass

lots regardless of the current step in their route. Once the current step is completed, the

lot becomes a second-pass lot, with the same logic applying to subsequent steps. As a

consequence, when a lot is being scheduled, a ll future steps in its route must be taken into

considerations. This leads to the concept of a virtual lot. To illustrate, assume that lot

4000654 containing device XPS54386PWPR is in its first step at logpoint 7100. Also

assume that its route contains a total of two steps. Thus the second pass of lot 7100 with

logpoint 7121 is a virtual lot that must be taken into account when developing a

production plan. To reiterate, at the start of the planning horizon, the second step in the

route of device XPS54386PWPR is viewed as a virtual lot and only becomes a “real” lot

when its first step is finished. Again, each pass or step may call for different machines

and tooling setups, adding greatly to the complexity of the problem.

 17

In the basic AT problem, each operation is treated as independent of the others,

thus allowing the corresponding problems to be solved separately. As such, the

discussion in the basic AT problem relates to an ind ividual ope ration rather than the AT

facility as a whole. For an incoming lot, a particular subroute must be selected when there

is more than one option. Each subroute specifies the eligible machine family, the tooling

requirements, the processing rate, and the operating temperature. Once a subroute is

selected for the upcoming operation, the lot is assigned to one of the machines in the

specified family and the required tooling pieces are installed. Each assigned lot is

processed completely without preemption.

At the start of the planning horizon, a machine may already be set up with tooling

and processing some lot that is defined as an initia l lot. In such cases, we also use the

terms initia l machine and initial tooling. The machine, tooling, lot, route and initial

machine information are recorded in the input files “machines.csv,” “tooling.csv,”

“wip.csv,” “route.csv” and “initialsetup.csv,” respectively. A detailed description of these

files can be found in Chapter 5.

3.2 PROBLEM STATEMENT

Using the above concepts and terms, we now define the multipass scheduling

problem: For a given set of machines, tooling, lots, and route table, we wish to decide

which machines to set up, which tooling and temperature levels to assign to each

machine, which lots to assign to which machines, and how to sequence the real (and

virtual) lots to optimize four prioritized objective function components. When no

additional lots can be processed with the derived machine-tooling assignments but time

still remains in the planning horizon, we wish to determine how best to change over the

machines to exploit the unused capacity.

 18

The full objective function is the sum of the following four terms: the weighted

shortage of key devices, the weighted sum of lots processed, the number of machines

used, and the makespan. The objective is to minimize the first, third and fourth terms

and to maximize the second. The constraints can be divided into four categories. The first

category is associated with resource availability and limits the different machine-tooling

assignments to the number of machines and tooling available. The second category deals

with routing issues. At each step in a route a feasible machine-tooling-temperature

combination must be selected. Within the model, alternative subroutes are permitted but

penalized to encourage the selection of the main subroute. The third category limits

machine time plus changeover time to the length of the planning horizon, while the fourth

set of constraints imposes precedent relations on the order the steps in a route follow.

The sequencing constraints derive from the multipass nature of AT operations. A lot

cannot start its subsequent pass until it finishes its current pass. It will be seen that the

virtual lots not only increase the scale of the problem but create modeling difficulties that

make good solutions difficult to find.

The real time decision support presents an efficient procedure for prioritizing

machine changeovers in a semiconductor assembly and test facility on a periodic basis.

A production plan provides guidelines for running a manufacturing facility over the mid-

term and is often derived with sophisticated models that may require hours of

computation time. When implemented, though, emergency orders, new requests and o ther

disruptions can quickly throw the plan out of alignment. To get back on track, this means

constant re-planning and updating. In addition, even if there is no disruption in daily

planning, as machines finish their current lots, they need to be reconfigured to match their

target setups, derived based on work in process, due dates, and backlogs. The proposed

algorithm in Section 9 is designed to achieve this objective and run in real time.

 19

Chapter 4: Basic AT Modeling

In this section, we present the mathematical formulations for the basic AT

problem in which it is assumed that all lots require a single operation only. To find

solutions, we use an enhanced version of our GRASP (Deng et al. 2010) to handle initial

lots and multiple setups.

4.1 INTRODUCTION TO BASIC AT MODELING

The basic model for the AT machine scheduling problem with resource

constraints considers at most one setup for each machine. A critical assumption is that

all machines are idle at the beginning of the planning horizon, all tooling pieces are

detached, and that setup and unloading times are negligible. Nevertheless, even with

these simplifications, the corresponding MIP requires a large amount of notation to

correctly represent all the machine-tooling-temperature combinations, and from a

practical point of view, is intractable. Current technology limits the size of instances

that can be solved optimally to less than a dozen machines and several hundred lots.

Indices and sets

D set of all devices; j ∈ D

K set of key devices; k ∈ K ⊆ D

L set of lots in WIP; l ∈ L

Λ set of feasible tooling setups; λ ∈ Λ

M set of machines (each machine is a member of a machine family); i ∈ M

N set of feasible temperature combinations for machines and tooling; n, m ∈ N

N(n) set of temperature combinations that intersect combination n

R set of routes (each route is a collection of subroutes that represent a specific

machine−tooling−temperature combination); r ∈ R

T set of tooling families; t ∈ T

 20

ΤP set of operating temperatures; τ ∈ TP

TP(n) set of operating temperatures that are elements of temperature combination

n

Parameters and data

bλt number of tooling p ieces from family t required by tooling setup λ
tooling
mtn number of tooling pieces from family t available under temperature

combination m
devices
ln number of devices (chips) in lot l
min_key
kn minimum number of chips associated with key device k required to be

processed over the planning hor izon

ρilr processing rate of lot l on machine i using subroute r (devices pe r hour)

wl weight (benefit) associated with processing lot l (function of lot age and the

remaining planned cycle time)
short
kε weight (penalty) associated with shortage of key device k

εr penalty for choosing subroute r

εM penalty on the number of machines used

εT penalty on the makespan

C normalizing constant associated with the various key device shortages

Hi (capacity) number of hours available on machine i over the planning horizon

Decision variables

xilr 1 if lot l is processed by machine i with subroute r, 0 otherwise

yiλ 1 if machine i uses tooling setup λ, 0 otherwise
short
k∆ shortage of key device k

tmax latest completion time among all machines processing lots (makespan)

tiλ total time used by machine i with tooling setup λ to process lots

 21

Minimize ()

() (,) ()
 short short

k k l r ilr M i
k K i M l L i r R i l i M i

w x y λ
λ

ε ε ε
Λ∈ ∈ ∈ ∈ ∈ ∈

∆ − − +∑ ∑ ∑ ∑ ∑ ∑

+ εTtmax (1a)

subject to
() (,)

1ilr
i M l r R i l

x
∈ ∈

≤∑ ∑ , ∀ l ∈ L (1b)

()

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (1c)

() (, ,) ()

tooling
t i mt

i M TP n i t m N n
b y nλ λ

τ λ τΛ∈ ∈ ∈ ∈

≤∑ ∑ ∑ ∑ , ∀ t ∈ T, n ∈ N (1d)

 tiλ =
(,) (, ,)

devices
l

ilr
l L i r R i l ilr

n x
λ λ ρ∈ ∈

 
 
 

∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (1e)

 tiλ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i) (1f)

 tmax ≥ tiλ, ∀ i ∈ M, λ ∈ Λ(i) (1g)

(,) (,)

devices short min_key
l ilr k k

i M l L i k r R i l
n x C n

∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ , ∀ k ∈ K (1h)

 xilr ∈ {0,1},∀ i ∈ M, l ∈ L(i), r ∈ R(i,l),

yiλ ∈ {0,1}, tiλ ≥ 0, ∀ i ∈ M, λ ∈ Λ(i)

 short
k∆ ≥ 0, ∀ k ∈ K, tmax ≥ 0 (1i)

Note that indices enclosed in parentheses are used to qualify a set; for example,

L(i,λ) is the set of lots that can be processed on machine i with tooling setup λ.

As in goal programming, the subscripted weights (w and ε) in (1a) are designed to

prioritize the order in which each objective function term is optimized. The first term

corresponds to the objective of minimizing the shortage of the key devices and is given

the largest weights such that short
kε >> max{wl : l ∈ L}. The second term is aimed at

maximizing the total weighted number of lots processed over the planning horizon, which

is the second objective. For lot l, wl = lot age + total planned cycle time − cumulative

cycle time. The parameter εr in the second term of (1a) is the penalty incurred when

(sub)route r is chosen. Both primary and alternate routes exist for most lots. To

encourage the selection of primary routes when at all possible, we use the following

settings: εr = 0 for r a primary route, εr ∈ (0, min{wl : l ∈ L}) for r an alternate route.

 22

The third term in (1a) is intended to minimize the number of machines that are set

up over the planning horizon be fore changeovers are considered, and the last term is

designed to minimize the workspan. The corresponding weights must be specified to

satisfy the following relationships: min{wl : l ∈ L} >> εM >> εT. When all the weights wl

have the same value and short
kε = εM = εT = 0, the problem is equivalent to maximizing the

throughput. How the weights are calculated in the numerical test is explained in detail in

Section 7.3.1.

Before describing the constraints, we would like to clarify the difference between

a (sub)route inde xed by r, and a tooling setup indexed by λ. A device has a route, which

specifies the machine family, the tooling families and number of pieces from each, and

the operating temperature. Setups are associated with machines and indicate the actual

tooling pieces and operating temperature specified for each. Clearly, there is significant

overlap between these two terms but not a one-to-one relationship; several routes can

have the same setup because λ is machine independent.

Accordingly, constraints (1b) require that if lot l is assigned to machine i ∈ M(l),

then the tooling associated with one of the routes r ∈ R(i,l) must be installed on that

machine. Lot l cannot be assigned to more than one machine or be given more than one

route. These constraints do not require that each lot be processed but the objective

function ensures that the as many lots as possible are selected for processing when there

are a sufficient number of machines, tooling p ieces, and time available.

Constraints (1c) limit each machine i to at most one tooling configuration λ from

the set Λ(i). When the number of lots |L| is small, or when the available tooling is

limited, it may not be desirable or feasible to set up all machines. Because changeovers

are not considered at this point, once the tooling- temperature combination λ is selected

 23

for a particular machine, only lots compatible with that combination can be processed on

that machine.

Constraints (1d) restrict the total number of tooling pieces assigned to machines

from family t to the number of pieces available under temperature combination n. The

left-hand side of these constraints counts the number of tooling pieces from family t

associated with the choice of yiλ over all machines, temperatures in TP(n), and

corresponding tooling setups. The right-hand side counts the total available number of

tooling pieces in family t under temperature combination n by summing tooling
mtn over all

combinations m ∈ N(n). For each t ∈ T, there are tooling
mtn tooling pieces that can be used

under the nth combination if m shares some temperatures with n. As an example, assume

that there are three discrete temperatures, that is, TP = {1,2,3}, and tooling
mtn = 1, for all t ∈

T, m ∈ N, and let the set of possible temperature combinations N = {{1}, {2}, {3}, {1,2},

{1,3}, {2,3}, {1,2,3}}. For n = 4, for example, the temperature set TP(4) = {1,2} and

N(4) = NC({1,2}) = {{1}, {2}, {1,2}, {1,3}, {2,3}, {1,2,3}} = N \ {3}. The right-hand

side of (1d) under combination n is then

|N(4)| = 6 for all tooling families t ∈ T.

Constraints (1e) compute the amount of processing time consumed by machine i

∈ M under tooling configuration λ ∈ Λ(i) when lot l ∈ L(i,λ) is assigned to it. The

complementary constraints (1f) ensure that no machines exceed their capacity. Although

we don’t specify the length of the planning horizon explicitly, it is bounded by max{Hi : i

∈ M}. The next set of constraints (1g) is used to determine the makespan, tmax. The

hierarchical nature of the objective function, though, does not necessarily lead to the

minimum makespan, even when an exact optimum is obtained for the problem. The

makespan will be minimal only for the given number of machines required to meet the

first three objectives.

 24

Constraints (1h) ensure that as many lots as possible containing key device k are

processed, at least until demand min_key
kn is satisfied. The shor tage short

k∆ will be

positive if some of the demand cannot be met due to limited resources. In that case, a

penalty equal to short short
k kε ∆ is incurred, where C = max{wl : l ∈ L} + 0.1Σl∈Lwl is a

normalizing constant used to ensure that the left-hand-side coefficients in (1h) are all the

same order of magnitude. In (1i), binary restrictions are placed on the x and y variables,

and nonnegative restrictions are placed on the remaining ∆ and t variables. The solution

to (1a) – (1i) provides the target values for configuring the facility over the planning

hor izon.

4.2 BASIC GRASP

In the original work by Deng et al. (2010), model (1) was solved with a two-level

decomposition strategy embedded in a reactive GRASP. Initial lots, setups and the

multipass requirements of some lots were not taken into account.

The algorithm was based on the observation that model (1) becomes much easier

to solve when the machines setups are given, that is, when the yiλ variables are fixed,

leaving what we call the lower level problem (LLP) in the xils variables. Although

practical instances of LLP can often be solved as an integer program with a commercial

code, we took a heuristic approach to avoid dependence on third party software. For the

upper level problem (ULP), a strategic decision must be made concerning machine-

tooling assignments. Rather than sequentially selecting the most beneficial

combinations, as gauged by the weighted sum of lots that each combination can process,

the yiλ variables are randomly chosen in accordance with an adaptive greedy function that

self-adjusts to reflect the quality of the feasible solutions uncovered at each iteration.

The integer program associated with LLP is then solved as a linear program and the xilr

variables that are 1 in the solution are fixed. The remaining xilr variables are chosen with

 25

a randomization scheme based again on a function that measures the immediate benefit of

assigning lot l to machine i provided its tooling setup λ is compa tible with route r. This

process is repeated many times allowing for a full exploration of the feasible region. In

phase II, a novel linear programming-Monte Carlo-based neighborhood search scheme

that makes use of local branching ideas (Fischetti and Lodi 2003) is called to improve the

results. The details along with the various pseudocodes are provided by Deng et al.

(2010).

4.3 EXTENDED MODEL AND EXTENDED GRASP

The basic AT model assumes that all machines are idle at the beginning of the

planning horizon, all tooling pieces are detached, and that setup and unloading times are

negligible. However, these assumptions are too restrictive in practice. In the extended

version of the model, initial setups and lot processing are taken into account. As a

consequence the available time for machine i, denoted by Hi, is not the entire planning

hor izon H, but the difference between H and the time required to finish the current lot

being processed. The logic in the GRASP is adjusted accordingly. To account for the

setup and unloading times, we let load
lτ be the aggregate time to perform these functions

for lot l and replace constraint (1e) with

 tiλ =
(,) (, ,)

devices
loadl
l ilr

l L i r R i l ilr

n x
λ λ

τ
ρ∈ ∈

 
+ 

 
∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (1e′)

in the extended model. The calculations in the extended GRASP are modified to reflect

this change

 26

Chapter 5: Introduction to the Multipass Model

5.1 LOGPOINT AND OP ERATION NUMBER

The routing table identifies all the operations that must be performed on each

device during assembly and test. The basic unit is called a “step” and corresponds to a

combination of a logpoint and an operation number. The logpoint is an internal

accounting reference in TI’s data base system and is typically a four-digit number such as

7100, which corresponds to "final test 1." There may be several operations at each

logpoint but in the vast majority of cases, there is only one. Consequently, we use the

words “step” and “operation” interchangeably unless there is a need to distinguish them.

Logpoint-operation data are contained in the input files route.csv and wip.csv

which are illustrated in Tables 2 and 3. It is assumed that if a lot is available for

processing, it has an entry in wip.csv, which gives its upcoming step, its weight, the

associated number of devices, its cycle time (CT), and related information. From the

route.csv file we can determine the remaining steps for the device that constitutes the lot.

To establish a frame of reference, we say that first-pass lots are those lots whose

upcoming step is shown in wip.csv, regardless of specific logpoint and operation number.

Higher-pass lots don’t yet exist and so can be considered “virtual.” That is, a second-pass

lot is created only after the upcoming step of the corresponding first-pass lot is

completed. This naming convention applies to all subsequent steps

5.2 INPUT FILES

A series of input files are required to run the program that encodes model (1) as

well as the procedures described in subsequent sections. Table 1 lists the major files and

gives a brief description of each.

 27

Table 1: Name and brief description of primary input files.

File name Description
input.txt A configuration file to specify values for the algorithm

parameters
key_package.csv Specify the key packages with the corresponding target

outputs
key_pin_package.csv Specify the key pin packages with the corresponding

target outputs
keydevices.csv Specify the key devices with the corresponding target

outputs
machines.csv Indicates which family each machine instances belong

to, specifies permissible temperatures for each
operation

machine_hours.csv Specifies available running time for each machine
instance

tooling.csv Indicates which family each tooling instances belong
to, specifies temperatures permissible for each
operation

toolingfamily_setuptime.csv Specify the setup time for each tooling family
route.csv Specify routes for the devices to be processed
wip.csv Indicates the number of chips, weights, device category

and other related info for the incoming lots
initialsetup.csv Lists each machine instance, its corresponding family,

the tooling installed on it, and the operating temperature
in the beginning of the time horizon.

The route.csv and wip.csv files are illustrated in Tables 2 and 3, respectively.

Looking at Table 2 we can see that the logpoints for device QPWPRG4 are "7100,"

"7101," "7102," "7110," and "7112"; a description of each is given in column 4. In

Table 3, the first two columns give the lot identifier (id) and corresponding device name.

Looking at the first record, observe that lot 263 contains 4806 items each being device

QPWPRG4, and its upcoming logpoint is “7100” and hence has four more steps to go.

Thus the first pass of lot 263 is "7100," its second-pass lot is "7101," its third-pass lot is

"7102," its fourth-pass lot is "7110," and its fifth and final pass lot is "7112." Note that

in the fifth row of data in Table 3, lot 329 also contains device QPWPRG4 but its

upcoming step is "7102." Accordingly, the first pass of lot 329 is "7102," its second

 28

pass is "7110," and its third and final pass 329 is "7112." Knowing the logpoint

information for each device is a prerequisite for multipass modeling and analysis.

Tables 2 and 3 also contain the basic data required to set up and solve our

optimization model that will be present in Chapter 6 and 7. Each row in Table 2

corresponds to a subroute-pass combination for a particular route (LTR-T3 in the tables),

and contains the step information (logpoint, operation number, description), the

processing rate in parts per hour (PPH), the machine family, the tooling family and

number of tooling pieces required, and the temperature (temp). The “Subroute” column

lists the preferred option (blank) and alternatives that are available for each step and pass.

For example, for logpoint 7100, operation 1, there are four options. Each requires the

same tooling and temperature, but offers the possibility of four different machines: ETS-

0-64, ETS-1-64, ETS-1-128, ETS-1M-64, with the first being preferred. The

corresponding four rows define R(i, l,p), the set of subroutes that use machine i to process

the pth pass of lot l. Here, l = 263 and p = 1.

Table 3 defines the WIP at the beginning of the planning horizon. As mentioned,

each row corresponds to a particular lot and gives the device name, the quantity of

devices in the lot, the value of the objective function weight parameter (wlp), the

upcoming step, and cycle time information. Those lots that are running at time zero

(current time) can be identified by examining the “Start time” column. A non-blank

entry specifies when the lot started processing. The next column gives the machine

instance on which it is running, and the last column gives the current time. The

difference between the current time and start time indicates how long the lot has been in

process. To determine when it will finish, we need to first calculate the total time that the

lot requires on the current machine i. Dividing the “Quantity” in Table 3 by the “PPH” in

Table 2 gives us the desired result. Now, subtracting the in-process time from the total

 29

time tells us how many hours the lot still needs (call this value ∆Hi), and indirectly, when

machine i and its tooling will become free. This information is used to update the

capacity of machine i.

 30

Table 2: Example of a route

Route
name

Step
name

Step
description Device Subroute PPH

Machine
Family

Tooling
family

Tooling
quantity Temp

LTR-T3 7100 FinalTest1 QPWPRG4 1988 ETS-0-64 Master648 1 2
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1-64 Master648 1 2
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1-128 Master648 1 2
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1M-64 Master648 1 2
LTR-T3 7101 FinalTest2 QPWPRG4 1988 ETS-0-64 Master648 2 1
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1-64 Master648 2 1
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1-128 Master648 2 1
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1M-64 Master648 2 1
LTR-T3 7102 FinalTest3 QPWPRG4 1988 ETS-0-64 Master648 1 3
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1-64 Master648 1 3
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1-128 Master648 1 3
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1M-64 Master648 1 3
LTR-T3 7110 QASample1 QPWPRG4 1988 ETS-0-64 Master648 1 2
LTR-T3 7110 QASample1 QPWPRG4 alt 1988 ETS-1-64 Master648 1 2
LTR-T3 7112 QASample3 QPWPRG4 1988 ETS-0-64 Master648 1 3
LTR-T3 7112 QASample3 QPWPRG4 alt 1988 ETS-1-64 Master648 1 3

 31

Table 3: Portion of WIP file

Lot
name Device Quantity Weight

Step
name

Planned
CT

Cum
CT

Lot age
(hrs) Start time

Machine
instance Current time

263 QPWPRG4 4806 1000 7100 15.3 77 83.9

 5/24/2010 11:49
275 SWR5111W 5760 500000 7100 18.8 62.6 81.4 5/24/2010 11:36 AMAT19-1 5/24/2010 11:49
275 51116PWPR 5744 500000 7100 0 62.6 81.4

 5/24/2010 11:49
299 C5696PNR 523 5000 7100 16.9 60.7 77 5/24/2010 11:31 AMAT505-1 5/24/2010 11:49
329 QPWPRG4 7676 8300 7102 9.3 12.2 21.5 5/24/2010 8:46 AMAT25-1 5/24/2010 11:49
342 TPS65161 8640 4000 7100 15 53.3 68.6

 5/24/2010 11:49
347 TPS65161 5759 1 7100 0 0 0

 5/24/2010 11:49
378 Q1SO7420Q 271 500000 7141 38.1 56.9 61.8 5/24/2010 9:27 AMAT15-1 5/24/2010 11:49
395 2U54616Q 1960 328800 7124 42.4 5.4 58.8

 5/24/2010 11:49
419 160APWPR 4320 1 7100 0 0 0

 5/24/2010 11:49
446 TPA0172 6238 3000 7100 16.3 33 49 5/24/2010 11:33 AMAT02-1 5/24/2010 11:49

32

5.3 AT SCHEDULING FOR THE MULTIPASS MODEL

With these concepts defined in Section 5.1 in mind, we can now de fine the AT

scheduling problem for multipass lots. Given a finite planning horizon (H), a set of

machines (M), a set of tooling families (T), a set of temperatures (TP), a set of routes (R),

and a set of lots with upcoming s teps {(l, logpoint(l) : for all l ∈ L}, we wish to de termine

an optimal sequence of machine-tooling setups and assignments of lots to machines at

each step in their route so that a hierarchical series of objectives are met. In order of

priority, the first objective is to minimize the shortage of key devices; the second is to

maximize the weighted sum of lots processed; the third is to minimize the number of

machine used; and the fourth is to minimize the makespan. At the beginning of the

planning horizon, some lots will invariably be in process and hence some machines may

already be set up. Depending on the scenario, it may be necessary to take these initial

conditions into account.

Figure 1 depicts a typical schedule for three machines. Lots 0 and 8 are on

machines 1 and 3 respectively at time zero. Their current logpoints are identified by the

4-digit number in the bar chart. During the planning process lots 1 – 7 are assigned to

machines but only lot 3 can begin at time zero; the other six lots must wait until their

assigned machines become free. The second pass of lots 1 and 3 are assigned to

machine 1. The second pass of lot 6 is assigned to machine 3.

33

Figure 1: A sample scheduling for multipass problem

To summarize, the scheduling of multipass lots requires the choice of machine-

tooling setups, lot assignments, and lot sequences to hierarchically optimize four

objectives subject to the following constraints

1. All lots l with steps (l, logpoint(l)) must be processed in accordance with their

subroutes. At most one machine and one subroute can be chosen for a lot at a

particular step.

2. At most one tooling configuration can be installed on a machine at a time

although changeovers are permitted.

3. For a given tooling family, the number of tooling pieces in use at any time cannot

exceed the number available.

4. The amount of work assigned to each machine cannot extend beyond the planning

hor izon.

34

5. Unloading a finished lot and loading the upcoming lot requires a certain amount

of time, which is assumed to be constant. In the analysis, 10 minutes is used for

the total.

6. The prescribed sequencing of steps for a lot must be maintained; that is, pass p+1

of lot l cannot be started until pass p is finished.

35

Chapter 6: Multipass Scheduling Scheme I

6.1 MATHEMATICAL MODEL

The full machine setup and scheduling problem cannot be modeled efficiently as a

MIP when machine changeovers and lot sequencing considerations are included. An

exponential number of logic variables and constraints would be required to keep track of

lot sequences and starting times on each machine. Instead, we present a partial mode l that

includes the major components of the problem, and then describe how solutions are

obtained that satisfy all the constraints. In the developments, we make use of the

following notation.

Indices and sets

D set of all devices; j ∈ D

K set of key devices; k ∈ K ⊆ D

L set of lots in WIP; l ∈ L

L(j) set of lots in WIP containing device j; l ∈ L(j)

L(i,k,s) set of lots containing key device k whose step s can be processed on

machine i.

Λ set of feasible tooling setups; λ ∈ Λ

M set of machines (each machine is a member of a machine family); i ∈ M

N set of feasible temperature combinations for machines and tooling; n, m ∈ N

N(n) set of temperature combinations that intersect combination n

P set of all possible passes; p ∈ P

P(l) set of passes considered in the planning hor izon for each lot l (if a lot is now

in its second pass, for example, and a total of four passes are required to

finish its processing, then passes 2, 3 and 4 will be considered); p ∈ P(l)

36

p(j,l,s) pass number corresponding to step s of device j in lot l; p(j,l,s) ∈ P(l), j ∈ D,

l ∈ L(j), s ∈ S(j)

R set of routes (each route is a collection of subroutes that represent a specific

machine−tooling−temperature combination); r ∈ R

R(i,l,p) set of subroutes that use machine i to process the pth pass of lot l

R(i,l,λ,p) set of subroutes that use machine i to process the pth pass of lot l with

tooling setup λ

S(j) set of all steps in the route for the device j; s ∈ S(j)

T set of tooling families; t ∈ T

ΤP set of operating temperatures; τ ∈ TP

TP(n) set of operating temperatures that are elements of temperature combination

n

Parameters and data

bλt number of tooling p ieces from family t required by tooling setup λ

Hi (capacity) number of hours available on machine i over the planning horizon
tooling
mtn number of tooling pieces from family t available under temperature

combination m
devices
ln number of devices (chips) in lot l
min_key
ksn minimum number of chips associated with key device k that are required to

be processed over the planning horizon at step s

ρils processing rate of lot l on machine i using subroute r (devices pe r hour)

wlp weight (benefit) associated with processing lot l during pass p (function of

lot age and the remaining planned cycle time)
short
kε weight (penalty) associated with shortage of key device k

εr penalty for choosing subroute r

37

Mε penalty on the number of machines used

Tε penalty on the makespan
load
lτ unload plus load time for each lot l

Decision variables
p

ilrx 1 if pass p of lot l is performed on machine i using subroute r, 0 otherwise

yiλ 1 if machine i uses tooling setup λ, 0 otherwise
short
ks∆ shortage of key device k for lots undergoing step s

tmax latest completion time among all machines processing lots (makespan)

tiλ total time used by machine i with tooling setup λ to process lots

Model
Min ()

() () () (, ,) ()
 short short p

k ks lp r ilr M i
k K s S k i M l L i p P l r R i l p i M i

w x y λ
λ

ε ε ε
Λ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∆ − − +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ + Tε tmax (2a)

subject to
() (,)

1p
ilr

i M l r R i l
x

∈ ∈

≤∑ ∑ , ∀ l ∈ L, p∈ P (l) (2b)

()

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (2c)

() (, ,) ()

tooling
t i mt

i M TP n i t m N n
b y nλ λ

τ λ τΛ∈ ∈ ∈ ∈

≤∑ ∑ ∑ ∑ , ∀ t ∈ T, n ∈ N (2d)

 tiλ =
(,) () (, , ,)

devices
load pl
l ilr

l L i p P l r R i l p ilr

n x
λ λ

τ
ρ∈ ∈ ∈

 
+ 

 
∑ ∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (2e)

 tiλ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i) (2f)

 tmax ≥ tiλ, ∀ i ∈ M, λ ∈ Λ(i) (2g)
 (, ,)

(, ,) (, ,)

devices p k l s short min_key
l ilr ks ks

i M l L i k s r R i l p
n x C n

∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ , ∀ k ∈ K, s ∈ S(k) (2h)

 1

() (, ,) () (, ,)

p p
ilr ilr

i M l r R i l p i M l r R i l p
x x +

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑ , ∀ l ∈ L, p ∈ P (2i)

 p
ilrx ∈ {0,1}, ∀ i ∈ M, l ∈ L(i), p∈ P(l), r ∈ R(i, l);

 yiλ ∈ {0,1}, tiλ ≥ 0, ∀ i ∈ M, λ ∈ Λ(i);

 short
ks∆ ≥ 0, ∀ k ∈ K, s ∈ S(k), tmax ≥ 0 (2j)

38

Model (2a) – (2j) is an extens ion of the single-pass model (1) that now takes into

account the reentrant flow. The original decision variables xilr in the basic model have

been changed to p
ilrx to reflect the pass number p. The first term in the objective function

in (2a) is aimed at minimizing the shortages of key devices for each step. The second

term represents the weighted sum of all lots processed over all possible passes.

Depending on the lot weights, wlp, this term tries to strike a balance between lots

undergoing their first pass and those with several passes to come. The last two terms

penalize the number of machines used and the makespan, respectively, which are viewed

as secondary objectives.

Constraints (2b) ensure that during each pass, at most one machine and one

subroute are chosen for a lot, while constraints (2c) limit the number of setups on a

machine to 1. Constraints (2d) ensure that no more than the given number of tooling

pieces in each family are assigned to machines. The next three constraints (2e) – (2g)

track machine usage and make sure that the maximum time available on each machine is

not exceeded. When the pth pass of lot l is assigned to machine i (that is, p
ilrx = 1 for

some r) the corresponding time is summed on the right-hand side of (2e). There is no

requirement, however, that all passes of a lot be performed on the same machine; in fact,

each pass may require a different machine and setup.

Constraints (2h) keep track of the number of key devices processed and along

with the first term in (2a) minimize shortages. These are the only demand constraints in

the model. Note that the index func tion p(k,l,s) inc luded in the decision variable p
ilrx is

needed to convert the step id to the pass number. For the most part, the objective

function drives output. It should be pointed out that the minimum requirement for key

device k in the original model was given as min_key
kn , without the subscript s. Because

each lot typically undergoes many steps, only the requirements of those at their final step

39

can be specified directly. Output requirements for key devices whose lots are at

intermediate steps are a function of the final requirements. By examining all lots that

consist of key device k, we can derive the appropriate values for their requirements at

each step s in the computation of short
ks∆ . In our implementation, we assume that for a

given k, min_key
ksn is constant for all s.

Constraints (2i) are introduced to partially account for the precedence relations

between two consecutive passes of a lot. It ensures that if pass p + 1 is scheduled for lot

l on some machine, then pass p has to be scheduled as well; however, it does not

guarantee that pass p precedes pass p + 1 unless they are both assigned to the same

machine, and then only implicitly because there are no sequencing constraints. To

enforce the timing restriction, it would be necessary to keep track of the sequence on each

machine and the time at which each lot finished. As mentioned this would require the

addition of an unmanageably large number of new variables and constraints. Finally,

variable definitions are given in (2i). For each device j, the set of remaining steps in its

is S(j). If S denotes the maximum number of steps for all devices, i.e., S=

{ }max | () |j D S j∈ , then in total there are O(M×L×P×R) variables and O(

2L×P+ K×S+ 3M×Λ+T×N) constraints.

Initial conditions. Once the updated machine capacities are determined by putting Hi ←

Hi − ∆Hi, we need to decide whether or not machines running initial lots can be reset

when they become free. In our original work, this was the assumption we made so the

only consequence of initial lots was reduced machine capacity. In an extended version of

the model we relaxed this assumption and began with yiλ = 1 for all machines i running

lots at time zero, where λ is determined from Table 1 by picking the setup with the

largest PPH; however, because the logpoint was ignored we didn’t always select the

40

correct λ. This oversight is addressed in the current work as well as the option for

changing over machines after their first setup.

6.2 SOLUTION METHODOLOGY

Upon solving model (2), we have an “optimal” assignment of lots to machines

and the setup information for each machine, but not the lot sequences. Nevertheless, there

still may be ample capacity remaining on a subset of the machines to accommodate

higher-pass lots, even without changeovers. To ensure the attainment of solutions that

make the most effective use of the available resources, we have developed a three-phase

heuristic. In phase I, the input files are read and a solution is generated for the first-pass

lots only by solving the equivalent of model (2) for p = 1 using an augmented version of

the GRASP in Section 4.3. In phase II, the phase I solution is parsed to identify

available second- and higher-pass of lots (a second-pass lot becomes available after its

corresponding first-pass lot is finished and so on), and an attempt is made to insert them

into existing sequences on the active machines. In phase III, the active machines are

reset with different tooling at the time at which they would have finished all their

assigned lots, and then assigned additional lots whenever possible. The latter could

include unassigned first-pass lots. The goal of phase III is to maximize the utilization of

each machine’s remaining capacity.

To diversify the search for solutions, randomness is introduced at several points in

the execution of the phases II and III to make lot assignments. In the implementation,

these two phases are sequentially repeated many times and the schedule associated with

the best objective function value is reported as the solution.

An outline of each phase is given below. Those interested in the algorithmic

details are referred to the corresponding appendix, which contains most of the

41

pseudocodes and their description. Structurally speaking, phase I embodies the single-

pass algorithm, phase II embodies the multipass algorithm, and phase III embodies the

changeover algorithm.

6.2.1 Phase I: single-pass algorithm

The single-pass algorithm was developed from the basic versions of our GRASP

that omitted initial machine-tooling setups and simply estimated the time required to

finish lots running at time zero. The updated version reads the initial machine-tooling

setups as input, calculates the exact time required to finish initial lots (setup times aren’t

considered because the initial tooling is already on the machine) and then applies the

GRASP to get machine-tooling- lot assignments without fixing the initial tooling setups.

Not all the machines have tooling on them at time zero. For discussion purposes,

machines that do, as indicated in the “initialsetup.csv” file are called initial machines

while the remainder are called regular machines. If an initial machine finishes its initial

lot before the start of the time horizon, it will be taken as a regular machine by the single-

pass algorithm. In addition, because the pass number of a lot was not considered,

modifications to the code were made to take the logpoint and operation number into

account. The procedure used for this purpose is given in Appe ndix A. Output is written

to the file “solutions.csv."

A sample output of the single-pass algorithm is depicted in Figure 2. The pair

(9,1) in the bar chart means lot 9 is undergoing pass number 1. As can be seen, the first

pass of lot 9 is already assigned to machine 1 before the start of the planning horizon.

When the schedule is developed lots 1 – 8 are assigned to one of the four machines. Lots

3, 6 and 7 start at time zero, but lot 1 as well as lots 2, 4, 5 and 8 must wait until their

assigned machines are available.

42

Figure 2: Sample output from single-pass algorithm

6.2.2 Phase II: multipass algor ithm without changeovers

The multipass algorithm maintains the machine-tooling setups provided by the

single-pass algorithm and tries to insert second- and higher-pass of lots to the existing

schedule. Assume that the production target of each key device is the same for each pass

and that the weight of a lot for each pass is the same. Also, the hierarchical nature of the

objective function remains in force as do the constraints in model (2). A new set of

constraints are needed, though, to account for the precedence relations among passes; that

is, a higher pass lot cannot be processed until its preceding passes are all finished. In

other words, the starting time of higher pass lots cannot be earlier than the completion

time of their preceding passes.

The approach we take is to suppress the availability of higher-pass lots until their

immediate predecessors are finished. This requires that the list of candidate lots be

upda ted dynamically whenever a machine finishes its assigned lots. Moreover, it is

necessary to keep track of the order in which machines become free.

43

The first step is to initialize all parameters and sets used in the algorithm and to

create a candidate list for lots (CL), a candidate list for machines in use (C_M_Λ_T), and

a candidate list for machines that can process higher-pass lots (C_M_Λ_T_2) from the

phase I solution. Based on a ranking of when the active machines in C_M_Λ_T become

free, we select the first machine and denote the time when it finishes its assigned lots as

the current_time. All first-pass lots that are finished at the current_time, regardless of

which machine they were processed on, are added to the candidate lot list, CL, provided

that they are not at the last step in their route. An attempt is then made to sequence the

lots in CL on the free machine. After all possible second- or higher-pass lot assignments

are made, the current_time becomes the last_time and a new current_time is determined

by identifying when the next machine on the list becomes free. Initially, la st_time is set

to 0.

Lots that finish in the interval [last_time, current_time] and are at an intermediate

step in their route are added to CL. After updating CL, the candidate lots are ranked based

on their benefit value as measured by their contribution to (2a). The next step is to

identify which machines are eligible to be assigned the lots l ∈ CL at the current_time.

All machines finishing their assigned lots earlier than or at curren_time satisfy this

condition.

Now, rather than assigning lots with greatest benefit first, a randomized procedure

is used to allow us to explore a larger neighborhood. The computations are done

hierarchically. In an outer set of iterations, we cycle through each available machine. In

an inner loop, we implement a two-step randomized lot-assignment scheme. In the first

step a ranked candidate list of lots CL(i,λ(i)) ⊆ CL is built for machine i with tooling

setup λ(i) from the compatible lots in CL. In the second step, we randomly choose one

lot from top five ranked lots in CL(i,λ(i)) and check whether the time available on

44

machine i is sufficient to process it. If so, then the lot is removed from CL(i,λ(i)) and

assign to the machine. The second step is repeated until all the lots in CL(i,λ(i)) are

explored. In the implementation several simplifications were considered, depending on

whether any new lots were added to CL at the current iteration. If not, then only the

machines available at current_time need to be examined.

To describe the algorithm in more detail, we make use of the following additional

notation. After giving the pseudocode, we discuss the individual steps. The details of the

subroutines used in the algorithm are given in the Appendix B.

Indices and sets

Λ(i) set of all tooling setups that are compatible with machine i; λ ∈ Λ

M1 set of machines used in the solut ion of first-pass a lgor ithm; i ∈ M1

L set of lot ids in “wip.csv”; l ∈ L

L1 set of combinations of lot id and logpoint that are assigned to some machine

in the solut ion of single-pass algorithm; (l, logpoint(l)) ∈ L1

L1(i) set of combinations of lot id and logpoint that are assigned to machine i in

the solution of single-pass algor ithm; (l,logpoint(l)) ∈ L1(i)

L2(i) set of combinations of lot id and logpoint that are assigned to machine i by

the multipass algor ithm that are not assigned by the single-pass algor ithm;

(l, logpoint(l)) ∈ L2(i)

CL candidate list of higher-pass lots: set of combinations of lot id, logpo int of

available higher-pass lots, e.g., second-pass lots with corresponding first-

pass lots finished, or third-pass lots with corresponding second-pass lots

finished. Note for first-pass lots, the completion time for the preceding

logpoint is taken as 0; (l, logpoint(l), ∈ CL

45

CL(i,λ) set of combination of lot id and logpoint for available higher-pass lots that

can be processed by machine i with tooling setup λ; (l,logpoint(l), ∈

CL(i,λ(i))

FL set of combinations of lot id and logpoint associated with finished lots in the

solution provided by the multipass a lgor ithm; (l,logpoint(l)) ∈ FL

R(i,λ,l,logpoint(l)) set of subroutes that use machine i to process lot l at logpoint with

tooling setup λ

Algorithmic symbols

current_time time at which a machine finishes its assigned lots

last_time most recent time at which a machine other than the current

machine finishes its assigned lots

next_logpoint(l) logpoint of the next step in the route of lot l. Note if the second

step of lot l is finished, this means the logpoint of the third step; if

the current step of the lot l does not started to be processed yet, this

just means the logpoint of the current step; l ∈ L

preceding_logpoint(l) logpoint of the preceding step in the route of lot l. Note if the

second step of lot l is finished, this means the logpo int of the first

step; if the current step of the lot l is not yet finished, this just

means the logpo int of the current step; l ∈ L

λ(i) tooling setup for machine i used in the solution of single-pass

algorithm

tc(i) completion time of the last lot assgined to machine i; i ∈ M

tcl(l, logpoint(l)) completion time of a lot l with the step denoted by logpoint(l); l ∈

L

46

M_Λ_Τ set of combinations of machine instance id, tooling setup, and

completion time of the last lot finished on this machine; M_Λ_T =

{(i,λ(i),tc(i)) : machine i is set up according to λ(i), and finishes its

last assigned lot at time tc(i), ∀ i ∈ M}

C_M_Λ_T candidate list of machines in use and ranked according to the time

they become free; C_M_Λ_T ⊆ M_Λ_L

C_M_Λ_T_2 candidate machine list for phase II lot assignments; C_M_Λ_T_2 ⊆

M_Λ_L

Input data

logpoint(l) logpoint of the current step in the route of lot l; l ∈ L

d(l) device contained in lot l, as determined from wip.csv file; l ∈ L;

d(l) ∈ D

H(i) planning horizon for machine instance i; i ∈ M

Unload_Load_Time time required to unload a finished lot and load the next lot

Multipass_Algorithm

Step 0 Initialization

WHILE C_M_Λ_T ≠ Ø

Step 1. Rank the elements in C_M_Λ_T in ascending orde r of tc(i). Choose the first

element (i1,λ(i1),tc(i1)) in C_M_Λ_T and let current_time = tc(i1).

Step 2. Update candidate lot list CL. Run Building_CL_Algorithm with CL, L1,

FL, tcl(l,logpoint(l)), l ∈ L, last_time, and current_time as input.

Step 3 Build candidate machine list C_M_Λ_T_2 for new lot assignments; set

C_M_Λ_T_2 = Ø.

If (l,logpoint(l)) is added to CL in Step 2, then

FOR each i ∈ M

47

If tc(i) ≤ current_time, then

add (i,λ(i),tc(i)) to C_M_Λ_T_2.

Endif

ENDFOR

Else

add (i,λ(i),tc(i)) to C_M_Λ_T _2.

Endif

Step 4 FOR each (i,λ(i),tc(i)) ∈ C_M_Λ_T_2

Run Assign_Lot_Algorithm with input (i,λ(i),tc(i)), CL, FL, R,

tcl(l, logpoint(l)), l ∈ L to update tc(i), CL, and FL;

If no lot is assigned to machine i, then

 delete the corresponding mahcine (i,λ(i),tc(i)) from C_M_Λ_T.

Endif

ENDFOR

ENDWHILE

Complexity. The number of iterations is greater than or equal to the number of

machines,M, because the “While” loop has to be executed at least once for each

machine. In the worst case, the number of iterations is M× L1× max_pass_no,

where max_pass_no means the largest pass number of lots available for processing.

During each iteration, ranking the elements in C_M_Λ_T in Step 2 takes O(M×

logM) time; the complexity of the other steps are analyzed in Appendix B. In sum, the

worst case complexity of Multipass_Algorithm is O(M×Λ×L + M×

logM + L× logL + L×R).

The subroutines used in Multipass_Algorithm are provided in Appendix B.

48

Sample output from the multipass algorithm. Assume that we have run Single-

Pass_Algorithm and obtained the results in Figure 2, and that we are currently

running Multipass_Algorithm. The candidate machine list C_M_Λ_T = {1, 2, 3,

4}. According to Step 1 of Multipass_Algorithm, the four machines are ranked

based on the time they finish their assigned lots. As shown in Figure 3, Machine 4 is the

first to finish. Denote the finish time as 1, so current_time = tc(4) = 1 and last_time = 0.

At Step 2 we need to build the candidate lot list CL, initializing it as the empty set. Lots

(9,1), (1,1), (3,1), (6,1), and (7,1) in this order are finished at time 1. Next, we apply the

Check_for_Next-Pass_Algorithm to these five lots and as a result suppose that

only lot (6,1) is at its last step; the others have at least one more step in their route. Thus

we insert (9,2) , (1,2) , (3,2) , (7,2) into the candidate lot list CL in nondecreasing order of

their benefit. Suppose the result is CL = {(7,2) , (1,2) , (3,2) , (9,2)}. As Step 3, we

need to identify all machines available before or at time 1. Just machine 4 is available so

C_M_Λ_T _2 = {4}. Step 4 assigns second-pass lots to the machines in C_M_Λ_T _2 so

at this point we only check machine 4 for which CL(4,λ(4)) = Ø.

To build CL(4,λ(4)), we need to check each lot in CL. Take lot (1,2) as an

example. If this lot can be processed by machine 4 with tooling setup 4 and sufficient

capacity is available, then it is added into CL(4,λ(4)). For the example, suppose

CL(4,λ(4)) = {(1,2), (3,2)}. Since we don’t have five candidates we randomly select one

of the two and assign it to machine 4. We then consider the lots remaining in CL(4,λ(4)),

which is the second one and assign it as well to machine 4. Because at least one lot was

assigned, we don't delete any machines from the set C_M_Λ_T.

The current schedule is depicted in Figure 3. Now, given that C_M_Λ_T ={1,

2, 3, 4}, and hence is not empty, we need to repeat Steps 1 to 4 in

Multipass_Algorithm. In Step 1, Machine 1 is identified as the next machine to

49

finish its assigned lots (see Figure 3), say, at time 2. As such, we set last_time = 1 and

current_time = 2. In Step 2, lots (2,1) and (6,1) are seen to finish between times 1 and 2,

and (6,1) is at its last step. Only lot (2,1) has at least one more step to go, and so is put

on the candidate lot set CL. Lots (1,2) and (3,2) are already assigned to machine 4 and

have been removed from CL. Thus CL = {(9,2), (7,2), (2,2)}. In Step 3, machine 1 is

the only one that finishes its assigned lots before or at time 2. Thus C_M_Λ_T _2 = {1}.

In Step 4, we check the compatibility of lots in CL with machine 1 and tooling setup 1.

As a result, we find that lots (9,2) and (2,2) can be processed by machine 1 with tooling

setup 1 so CL(1,λ(1)) = {(9,2), (2,2)}. Next, the Assigning_Lot_Algorithm is

run. For this case, lots (9,2) and (2,2) are both assigned during the iteration and so are

included in the new solution. Again, because lots were assigned to machine 1 it remains

in C_M_Λ_T.

Figure 4 displays the schedule after round 1 with the second-pass lots added to

machines 1 and 4. The last_time is set to 1 and the current_time is set to 2, which

coincides with the completion of the lots assigned to machine. With the additional lots,

machine 4’s completion time comes after time 2. The iterations continue until

C_M_Λ_T is empty, i.e., until all machines finish their assigned lots. The full schedule

is shown in Figure 5.

50

Figure 3: First time a machine finishes its assinged lots

Figure 4: Second time a machine finishes its assigned lots

51

Figure 5 Schedule derived from Multipass Algorithm for example

6.2.3 Phase III: changeover algorithm

The single-pass and multipass algorithms make full use of the capacity of the

current machine-tooling setups. For those machines whose schedules do not extend to

the end of the planning horizon, assigning them additional lots requires a changeover, a

process that must not only take into account machine-tooling-temperature- lot

compatibility, but also the consistency of logpoint and operation number with the

selected subroute, and the multipass sequence constraints.

To ensure that the sequence constraints are satisfied, we take an approach similar

to that used in phase II where the candidate lots are dynamically updated. Now,

however, all unassigned first-pass lots are included in the set of candidate lots when

resetting machines. In addition, the set of available tooling is dynamically updated.

The basic idea is to release the tooling on each machine when it finishes the last lot

52

assigned to it, upda te the candidate lot list, and try to reset the machine with the available

tooling. If additional lots can be assigned to the machine when it is reconfigured with

new tooling, then the change is made. Otherwise, it remains free. Whenever there is

new tooling available or a new candidate lot, an attempt is made to reset the machine

again. The same procedure is applied to all machines in the order in which they finish

the lots assigned to them. The flowchart of Changeover_Algorithm is shown in

Figure 6. All sets, indices and symbols that were defined for Multipass

Algorithm are used here.

53

Figure 6: Flowchart for Changeover_Algorith

54

The details of the initialization step, Update_Candidate_lot_Algorithm

and Changeover_a_Machine_Algorithm are given in Appendix C.

6.3 OUTP UT FILES

In addition to the phase I solution.csv file, the two additional files

multi_solution.csv and multi_machine_time.csv are generated at the end of phases III.

Table 4 lists the principal output files

Table 4: Output data files

File name Description
multi_solution.csv Solut ion generated by the three-phase methodology,

includes all machine-tooling setups and multipass lot

assignments.

multi_machine_time.csv Records the operating time of each machine in the

file multi_solution.csv.

solution.csv Solut ion ob tained in phase I by the single-pass

algorithm; provides input to phases II and III.

time.csv Records the operating time of all machines after

phase I.

keydevice_production.csv Specifies information on shortage of key devices at

the end of phase I.

result_summery.txt Records the total objective function value and the

value of each term for all passes.

long_lot.csv Lots not processed due to lack of machine capacity

In the multipass solution, it is necessary to list lot starting times to make sure that

the starting time of a second-pass lot does not precede the completion time of its

corresponding first-pass lot. Examples of the entries in the solution.csv file and

multi_solut ion.csv file for the machine AMAT11-1 are shown in Tables 5 and 6,

55

respectively. In these tables, the first row contains the column headings. Subsequent

rows represent lots and the machine-tooling setups used to process them. The columns

labeled “Machine instance,” “Machine family name,” “Lot name,” “Logpoint,” “Lot

weight,” “Device name,” “Tooling family name,” “Certification” and Pass no.” are self-

explanatory. The column with the heading “Quantity” gives the number of devices in

the lot. “Initial lot flag” indicates whether the lot is being processed as time zero. If the

entry in this column is “Y,” then the entries in columns “Tooling family name” and

“Certification” will be blank. “Setup time” specifies when the machine was or will be

configured with tooling to operate at the indicated certification (temperature).

“Completion time” indicates when the lot will finish its current pass. In Table 6, “Start

time” refers to the time at which the lot on the machine is removed and the next one is

loaded. This value is equal to the completion time of the previous lot.

56

Table 5: An example of “solut ion.csv” for one machine instance

Machine
instance

Machine
family
name Lot name Logpoint Quantity

Lot
weight

Initial lot
flag

AMAT11-1 ETS-1-64 4014923 7100 3480 2.51E+06 Y
AMAT11-1 ETS-1-64 4020631 7100 121 60100 N
AMAT11-1 ETS-1-64 4031897 7100 6590 45400 N
AMAT11-1 ETS-1-64 4020626 7100 6363 63000 N
AMAT11-1 ETS-1-64 4033780 7100 7313 1 N
AMAT11-1 ETS-1-64 4009555 7110 4108 72500 N

Device name
Tooling

family name Certification Setup time
Completion

time
XPS40055

11/5/2009 10:32 11/5/2009 10:47

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 11:01
TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 15:34
TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 19:59
TPA3124D2 6481146C 1 11/5/2009 10:47 11/5/2009 23:58
XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:32

57

Table 6: An example of “multi_solution.csv” for one machine instance

Machine
instance

Machine family
name Lot name Logpoint Quantity

Lot
weight

Initial
lot flag

AMAT11-1 ETS-1-64 4014923 7100 3480 2.51E+06 Y
AMAT11-1 ETS-1-64 4020631 7100 121 60100 N
AMAT11-1 ETS-1-64 4031897 7100 6590 45400 N
AMAT11-1 ETS-1-64 4020626 7100 6363 63000 N
AMAT11-1 ETS-1-64 4033780 7100 7313 1 N
AMAT11-1 ETS-1-64 4009555 7110 4108 72500 N
AMAT11-1 ETS-1-64 4020631 7110 121 60100 N
AMAT11-1 ETS-1-64 4035295 7110 8754 1 N
AMAT11-1 ETS-1-64 4039963 7100 3625 1.65E+06 N

Device name

Tooling
family
name

Certifi
cation Setup time Start time

Completion
time

Pass
no.

XPS40055 11/5/2009 10:32 11/5/2009 8:35 11/5/2009
10:47

1

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 10:47 11/5/2009
11:01

1

TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 11:01 11/5/2009
15:34

1

TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 15:34 11/5/2009
19:59

1

TPA3124D2 6481146C 1 11/5/2009 10:47 11/5/2009 19:59 11/5/2009
23:58

1

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 23:58 11/6/2009
2:32

1

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:32 11/6/2009
2:47

2

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:47 11/6/2009
8:05

2

XPS65160A 6469171D 1 11/6/2009 8:05 11/6/2009 8:05 11/6/2009
10:19

1

58

In Table 5, only one setup (6481146C, 1) for machine AMAT11-1 is observed

since the entries were obt ained from the phase I solut ion which doe s not allow for

changeovers. In Table 6, we see that the machine was reset once towards the end of the

planning horizon when the last device, XPS65160A, was scheduled. Also the machine

was assigned two second-pass lots 4020631 and 4035295 while still operating under the

first setup. The changeover went from tooling 6481146C under certification 1 to tooling

6469171D under certification 1 at 11/6/2009 8:05. Note that third- and higher-pass lots

were considered by the algorithm but only second-pass lots were assigned, either because

no candidate third-pass lots were available or there was insufficient time remaining in the

planning horizon.

59

6.4 COMPUTATIONAL R ESULT

Testing was done using both real and randomly generated data. The real data

were provided by the Southeast Asian AT facility of the collaborating company and

consisted of a typical instance, which served as the basis for randomly generating eight

additional instances. In all cases, each instance contains 36 machines, 284 tooling pieces

from 6 families, and 1 temperature (certification) setting. The number of lots varied as

explained be low.

The nine problem sets are divided into three groups of three instances each. The

first group contains the original instance and two variants, each with 29 initial machines.

The second group was derived from the first by randomly reclassifying nine initial

machines as free and updating the “wip.csv” file accordingly. These changes result in

20 initial machines and 9 additional lots, or 1045 lots in total that require processing.

The third group was created by randomly selecting 10 of the 29 machines as the initial

machines, and then for each, choosing a feasible tooling setup from the “route.csv” file

and an initial lot from the “wip.csv” file. The total number of lots is 1036 + 19 = 1055.

Problem 1: lots1036_1_group_1

Problem 2: lots1036_2_group_1

Problem 3: lots832_1_group_1

Problem 4: lots1045_1_group_2

Problem 5: lot1045_2_group_2

Problem 6: lot841_1_group_2

Problem 7: lot1055_1_group_3

Problem 8: lot1055_2_group_3

Problem 9: lot800_1_group_3

where the fields X, Y and Z in the term “lotsX_Y_group_Z” mean

60

X = number of lots

Y = 1: entries in the column labeled “Quantity” (number of

devices) in the wip.csv file are used (see Table 5)

Y = 2: entries in the column labeled “Quant ity” in the wip.csv file

are randomly generated by using the random function: int(rand()*10000+100).

Z = group number 1, 2 or 3

The results obtained with the single-pass algorithm (phase I) were compared to

those obtained with the three-phase scheme and reported in Tables 7 to 12. In all cases,

the entries under the column heading "Percent diff" were calculated as follows.

Percent diff = 100%(multipass value − single-pass value) / single-pass value

Table 7 compares objective function values. To put the results on an equal

footing, the first term in Eq. (2a) was calculated exactly as represented although at most a

single step is permitted for each lot in WIP when the single-pass algorithm is run. Thus,

large shortages are possible for key devices whose lots are in mid-route. Recall that the

objective is minimization.

61

Table 7: Comparison of single-pass with multipass results

Prob.
no.

Single-pass
objective value (106)

Multipass
objective value (106)

Percent
diff (%)

1 29,232 25,152 -13.96
2 68,956 57,336 -16.85
3 17,214 15,643 -9.13
4 92,193 82,978 -10.00
5 67,718 56,473 -16.61
6 147,463 141,055 -4.35
7 89,597 84,397 -5.80
8 227,673 212,334 -6.74
9 29,085 26,137 -10.14

Avg. 85,459 77,945 -10.40

As seen in the Table 7, the three-phase scheme provides an average objective

function decrease of 10.40%. The fairly large values in columns 2 and 3 are a result of

the first term in Eq. (2a) which dominates the other three. In general, the weighted sum of

key device shortages is a function of the number of key devices in WIP, their target

values (min_key
ksn), the pe rcentage of lots that have key devices, and the number of steps

remaining in their routes. To get a more realistic picture of the advantage provided by

the three-phase scheme, it is useful to compare shortages with respect to the last step in

each route of each key device.

Recall that the target production of a key device refers to its last step only. To

calculate the unweighted shortage it is necessary to subtract the quantity of each key

device produced whose last step is included in the schedule from its target value. Of

course, only positive shortages are counted. Table 8 presents the corresponding results.

As can be seen, the percentage difference is 11.73% on average, a slight decrease.

62

Table 8: Compa rison of total key device shortages

Prob.
no.

Single-pass
key device shortage

Multipass
key device shortage

Percent
diff (%)

1 292,660 243,867 -16.67
2 311,648 254,193 -18.44
3 461,952 416,246 -9.89
4 296,820 260,438 -12.26
5 301,360 243,092 -19.34
6 471,142 451,785 -4.11
7 283,539 264,640 -6.67
8 278,081 256,081 -7.91
9 282,356 253,400 -10.26

Avg. 331,062 293,749 -11.73

The first term in Eq. (2a), however, is the weighted sum of key device shortages,

not the unweighted sum. Table 9 lists the relevant values for the two approaches along

with their percentage differences in the last column. The results indicate that the average

weighed sum of key device shortages obtained from the three-phase scheme is nearly

12% smaller than that obtained from the single-pass algorithm. Thus, the actual

contribution of the three-phase scheme to the improvement in the solution is measurably

higher than reflected in the objective function va lue in Table 7.

Table 10 specifies the objective function value contributed by lots processed by

the single-pass algorithm and the three-phase scheme. The first column identifies the

problem number. The second and third columns respectively specify the values of the

weighted sum of lots processed by the single-pass algorithm and the three-phase scheme.

The fourth column presents the percentage difference between the two latter values.

Columns 5 – 8 list the contribution of each pass to the total weighted sum of lots

processed by the three-phase scheme. The value in the third column is just the sum of

the values obtained from the four passes.

63

The results in Table 10 indicate that the multipass scheme yields a nearly 40%

increase in weighted throughput on average. It can also be observed that the weighted

sum of first-pass lots processed is much higher than that for the second-pass lots, which

in turn is much higher than for third-pass lots. In five out of the nine problem sets, no

fourth-pass lots are processed. This decline is to be expected given the precedent

relations between the various passes. Implicitly, first-pass lots are given pr ior ity over the

higher-pass lots, in terms of weighted throughput.

Table 9: Weighted sum of key device shortages

Prob.
no.

Single-pass
weighted key device

shortage (106)

Multipass
weighted key device

shortage (106)
Percent
diff (%)

1 23,241 19,264 -17.11
2 54,310 43,770 -19.41
3 13,817 12,414 -10.15
4 73,379 64,345 -12.31
5 52,527 42,280 -19.51
6 115,886 111,060 -4.16
7 70,611 65,707 -6.95
8 176,241 161,071 -8.61
9 21,328 19,114 -10.38

Avg. 66,815 59,892 -12.07

64

Table 10: Weighted sum of lots processed

 Single-pass
results
(106)

Multipass results

Prob.
no.

Total
(106)

Percent
diff (%)

First pass
(106)

Second
pass (106)

Third
pass
(106)

Fourth
pass (106)

1 32,589 43,191 32.53 33,738 8,626 827 0
2 33,027 47,375 43.44 36,808 10,567 0 0
3 15,360 19,810 28.97 16,873 2,928 9 0
4 35,792 53,875 50.52 35942 10,903 6,203 827
5 39,344 54,897 39.53 39,528 13,552 1,817 0
6 20,539 25,468 24 21,642 3,817 9 0
7 36,829 54,459 47.87 38,760 9,996 5,703 0
8 36,586 48,046 31.32 39,636 6,932 744 734
9 23,027 35,799 55.47 24621 4,936 3,948 2,294

Avg. 30,343 42,742 39.82 31,919 8,226 2,250 1,040

It should also be mentioned that for both approaches, all 36 machines were used

to some extent over the 24-hour planning horizon. Table 11 lists the makespan and

average machine operation time obtained from the single-pass algorithm and the three-

phase scheme, and the percentage difference between them. The column headings are

self explanatory. As can be seen, the makespan associated with all instances is

essentially 24 hours, which implies that the capacity of at least one of the 36 machines is

fully utilized. However, the average machine operation time for the multipass schedule

is roughly 7% to 18% greater than that associated with the single-pass schedule, a much

more insightful result. The difference is a measure of the increased efficiency that is

realized when machine changeovers and the reuse of tooling are part of the analysis.

Table 12 lists the runtime of the single-pass algorithm (phase I), phases II plus III

of the three-phase scheme, and the sum of all three phases. After extens ive testing, t he

number of iterations of phase I was set to 500 and the number of iterations of phase II as

65

well as phase III was set to 100; that is, In = 500, IIn = IIIn = 100. In the

implementation the GRASP is first run for 500 iterations to get the single-pass solution.

Then, starting with the best phase I solution, phases II and III are repeated 100 times.

 The statistics in Table 12 indicate that the three-phase scheme never takes more

than thirty minutes. Although the number of iterations for phases II and III is only one-

fifth of that for phase I, the runtime of phases II and III is nearly 40% more than that of

phase I on average. Given this contrast, if it were desirable to reduce the computational

effort, it would be best to focus on the second two phases.

Table 11: Comparison of average makespan and machine time

Prob.
no.

Single-pass
makespan

 (hr)

Multipass
makespan

(hr)
Percent
diff (%)

Single-pass
average

mach time (hr)

Multipass
average

mach time (hr)
Percent
diff (%)

1 24 24 0 21.47 23.106 7.62
2 24 24 0 20.42 23.4209 14.70
3 24 24 0 18.8 20.8207 10.75
4 24 24 0 20.55 23.1489 12.65
5 24 24 0 21.07 23.5307 11.68
6 24 24 0 18.99 20.9661 10.41
7 23.97 23.99 0.08 21.52 23.2414 8.00
8 23.98 23.99 0.04 21.82 23.3344 6.94
9 23.98 23.98 0 18.46 21.778 17.97

Avg. 23.99 23.99 0.01 20.34 22.59 11.19

66

Table 12: Runtime comparison

Prob.
no.

Single-pass (s) Phase II and III (s)
Total (s) In = 500 IIn = IIIn = 100

1 936 920 1,856
2 950 936 1,886
3 638 940 1,578
4 835 931 1,766
5 824 968 1,792
6 573 932 1,505
7 597 1,017 1,614
8 502 990 1,492
9 275 669 944

Avg. 681 923 1,604

67

Chapter 7: Multipass Scheduling Scheme II

7.1 MATHEMATICAL MODEL

The mode l presented in this section is an extension of the single-pass model (1),

which only considers first-pass lots. For model (1), the basic GRASP was developed to

find solutions because the underlying MIP was too difficult to solve exactly with a

commercial code. The multipass nature increases both the dimensionality of problem by

taking the pass into account and the scale of the problem by considering virtual lots.

Incorporating these factors as well as the precedence constraints implied by the pass

requirements into the original MIP would have vastly increased the number of variables

and constraints, which would have correspondingly increased the computational burden

to the point where even small instances would not have been solvable

The full machine setup and scheduling problem cannot be modeled efficiently as a

MIP when machine changeovers and lot sequenc ing considerations are included. As a

consequence, we decomposed the problem into two parts. In the first part a variation of

an assignment problem is solve which includes the objective function and all the

constraints described in Section 3.2, except the sequencing constraints. In other words,

the assignment problem determines how to best choose machine-tooling-temperature

combinations and how to assign lots to machines, but not how sequence the lots. In the

second part, a sequencing problem is solved that orders the lots on their assigned

machines. Here, we do not permit machine setups to be modified or unassigned lots to be

introduced. To maintain feasibility after an “optimal” sequence is found, it may be

necessary to remove lots or insert idle time into the schedule. The objective of the

sequencing model is to minimize the weighted sum of lots that have to be discarded from

the solution of the assignment model plus the weighted sum of any added idle time. In

68

the Appendix D, the complexity of both problems is analyzed and each is shown to be

NP-hard in the strong sense.

7.1.1 Assignment model

To further clarify terminology, lot pass number p specifies which step o f the route

the lot is to next undergo. Assume device 1 has five steps in its route and lot 101

containing device 1 is to undergo the third step. Then, the set of passes, P, considered for

lot 101 during the planning horizon, is {3, 4, 5} instead of {1, 2, 3}. For convenience, we

call pass 3 of lot 101 as first pass of lot 101 although its pass number is really 3 in

actuality. In the developments, we make use of the following notation.

Indices and sets

D set of all devices; j ∈ D

K set of key devices; k ∈ K ⊆ D

L set of lots in WIP including initial lots; l ∈ L

M set of machines (each machine is a member of a machine family); i ∈ M

P set of all possible passes; p ∈P

R set of subroutes (each subroute is a specific machine−tooling−temperature

combination); r ∈ R

T set of tooling families; t ∈ T

ΤP set of operating temperatures; τ ∈ TP

j(l) the device contained in lot l

L(i) set of lots that can be processed on machine i during the upcoming pass or

a future pass (virtual lots); l ∈ L(i), i ∈ M

Λ set of feasible tooling setups; λ ∈ Λ

69

Λ(i) set of feasible tooling setups that are compatible with machine i; λ ∈ Λ(ι),

i ∈ M

Λ(i,l) set of feasible tooling setups that are compatible with machine i and can

process lot l; i ∈ M, l ∈ L(i)

Λ(i,t) set of feasible tooling setups that are compatible with machine i and

contain tooling family t; λ ∈ Λ(i, t) , i ∈ M, t ∈ T

Λ(i, t,τ) set of feasible tooling setups that are compatible with machine i, contain

tooling family t and run under temperature τ; λ ∈ Λ(i, t,τ), i ∈ M, t ∈ T, τ

∈ TP

P(j) set of all passes in the route for device j; p ∈ P(j), j ∈ D

P(l) set of passes considered during the planning horizon for each lot l. For

example, assuming lot l is to undergo step 2 of its route and there are four

steps in the route, then P(l) = {2, 3, 4}. Note that if lot l is an initial lot,

then P(l) will be {3, 4} with the initial pass ignored; p ∈ P(l), l ∈ L

p0(l) upcoming pass for each lot l ; that is, p0(l) is the first element in the set

P(l). For example, assuming that step 2 in the route of the device in lot l is

the next step, then pass 2 will be the upcoming pass; p0 ∈ P(l), l ∈ L

p1(l) the last pass for lot l ; that is, p1(l) is the last element in the set P(l). For

example, assuming a lot has a total of four passes, then pass 4 will be the

last pass; p1 ∈ P(l), l ∈ L

P(k) set of passes for each key device k; P(k) ⊂ P, k ∈ K

M(j,p) set of machines that can process pass p of device j; i ∈ M(j,p), j ∈ D, p

∈P(j)

M(l) set of machines that can process at least one pass of lot l; i ∈ M(l), l ∈ L

M(l,p) set of machines that can process pass p of lot l; i ∈ M(l,p), l ∈ L, p ∈ P(l)

70

P(l,i) set of passes considered during the planning hor izon for each lot l such

that these passes can be processed by machine i; p ∈ P(l,i), l ∈ L, i ∈ M(l)

N(t) set of temperatures that are compatible with tooling family t; τ ∈ N(t), t ∈

T

L(i,j,p) set of lots (including virtual lots) containing device j and undergoing pass

p that can be processed by machine i; l ∈ L(i,j,p), i ∈ M, j ∈ D, p ∈P(j)

R(i,l,p) set of subroutes that use machine i to process pass p of lot l; r ∈ R(i,l,p), i

∈ M, l ∈ L(i) ,p∈ P(l,i)

R(i,l,λ,p) set of subroutes that use machine i to process pass p of lot l with tooling

setup λ; r ∈ R(i,l, λ,p), i ∈ M, l ∈ L(i) , λ ∈ Λ(i,l), p∈ P(l,i)

Parameters and data

bλt number of tooling pieces from family t required by setup λ

C normalizing constant associated with the various key device shortages

Hi (capacity) number of hours available on machine i over the planning

hor izon; that is, the total machine hours less the amount of time used to

process the initial lot if machine i has an initial lot
tooling
tnτ number of tooling pieces from family t available under temperature τ

tooling
tn number of tooling p ieces available from family t
devices
ln number of devices (chips) in lot l
min_key
pkn minimum number of devices associated with key device k that are required

to be processed over the planning horizon during pass p

ρilr processing rate of lot l on machine i using subroute r (devices per hour)

wlp weight (benefit) associated with processing lot l during pass p (function of

lot age and the remaining planned cycle time)
short
kε weight (penalty) associated with shortage of key device k

71

εr penalty for choosing subroute r; for the preferred subroute εr = 0.

εM penalty on the number of machines used

εT penalty on the makespan

STi number of hours required to finish the initial lot on machine i if it has an

initial lot, 0 o therwise
load
lτ load and unload time for each lot l
setup
λτ setup time for each setup λ

Decision variables
p

ilrx 1 if pass p of lot l is processed by machine i using subroute r, 0 otherwise;

i ∈ M, l ∈ L(i), p ∈ P(l,i), r ∈ R(i, l,p)

yiλ 1 if machine i uses setup λ, 0 otherwise; i ∈ M, λ ∈ Λ(i)
short
pk∆ shortage of key device k at pass p; k ∈ K, p ∈ P(k)

tmax latest completion time among all machines processing lots (makespan)

tiλ total time used by machine i with setup λ to process lots; i ∈ M, λ ∈ Λ(i)

ti total time used by machine i to process lots; i ∈ M

Model

Minimize ()
() () (,) (, ,)

1 short short p
k pk lp r ilr

k K p P k i M l L i p P l i r R i l p
w x

C
ε ε

∈ ∈ ∈ ∈ ∈ ∈

∆ − −∑ ∑ ∑ ∑ ∑ ∑

 +
()

M i
i M i

y λ
λ

ε
Λ∈ ∈

∑ ∑ + εTtmax (3a)

subject to
(,) (, ,)

1p
ilr

i M l p r R i l p
x

∈ ∈

≤∑ ∑ , ∀ l ∈ L, p∈ P (l) (3b)

()

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (3c)

(,) (, ,) ()

(,)p
ilr i

p P l i r R i l p i
x P l i y λ

λ∈ ∈ ∈Λ

≤∑ ∑ ∑ , ∀ i ∈ M, l ∈ L(i) (3d)

() (, ,)

tooling
t i t

i M N t i t
b y nλ λ

τ λ τΛ∈ ∈ ∈

≤∑ ∑ ∑ , ∀ t ∈ T (3e)

 ti =
() (,) (, ,)

devices
load pl
l ilr

l L i p P l i r R i l p ilr

n xτ
ρ∈ ∈ ∈

 
+ 

 
∑ ∑ ∑ +

()

setup
i

i
yλ λ

λ

τ
∈Λ
∑ , ∀ i ∈ M (3f)

72

 ti ≤
()

i i
i

H y λ
λ∈Λ
∑ , ∀ i ∈ M (3g)

 tmax ≥ ti, ∀ i ∈ M (3h)

(,) (, ,) (, ,)

devices p short min_key
l ilr pk pk

i M k p l L i k p r R i l p
n x n

∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ , ∀ k ∈ K, p∈ P(k) (3i)

 1

(,) (, ,) (, 1) (, , 1)

p p
ilr ilr

i M l p r R i l p i M l p r R i l p
x x +

∈ ∈ ∈ + ∈ +

≥∑ ∑ ∑ ∑ , ∀ l ∈ L, p ∈ P (l): p < p1(l) (3j)

 0

0 0

()

(, ()) (, , ()) () (,) (, ,)

devices
p l p loadl

i ilr ilr l
i M l p l r R i l p l p P l i M l p r R i l p ilr

p p

nST x x τ
ρ

′

′ ′ ′∈ ∈ ∈ ∈ ∈
′≤

   
+ +   

  
∑ ∑ ∑ ∑ ∑

(,) (, ,)

() p
i i ilr

i M l p r R i l p
H ST x

∈ ∈

 
≤ +  

 
∑ ∑ , ∀ l ∈ L, p ∈ P (l): p > p0(l) (3k)

 p
ilrx ∈ {0,1},∀ i ∈ M, l ∈ L(i), p∈ P(l),r ∈ R(i,l,p),

 yiλ ∈ {0,1}, tiλ ≥ 0, ∀ i ∈ M, λ ∈ Λ(i),
 short

pk∆ ≥ 0, integer, ∀ k ∈ K, tmax ≥ 0 (3l)

There are four terms in the objective function (3a) given in order of importance.

The first term is the weighted sum of key device shortage. In fact, these shortages are

reduced only when the last pass of a lot containing the device is completed. To account

for this in the model, we created shortage variables, short
pk∆ , for each pass p of key device

k, and set the production target min_key
pkn of each pass to be the same as the target of the

final product except if the pass p of device k is an initial lot. The target production for

each pass of a device needs to be reduced by the amount contained in initial lots. If

desired, the shor tage penalty short
kε associated with key device k can be modified to be a

function of the different passes. The second term is the weighted sum of lots processed,

the third is number of machine used, and the fourth is the makespan. The magnitude of

the penalties associated with the four terms reflects their relative importance. In Section

7.3.1, we explain how these penalties are calculated.

Constraints (3b) − (3e) account for resource availability and route selection.

Constraints (3b) limit the number of machines and subroutes chosen for a lot at any pass

73

to at most one while (3c) limit the setups on a machine to at most one. Constraints (3d)

indicate the relationship between lot l and machine i. First, if a machine is not set up with

tooling, then no lot can be assigned to it; if machine i has been set up and lot l assigned to

it, then the number of passes of lot l cannot be larger than |P(l,i)|, the number of passes of

lot l that can be performed on machine i with its designated setup. Constraints (3e)

ensure that the number of tooling pieces used from tooling family t does not exceed the

number available.

Constraints (3f) − (3h) are associated with operation times. Constraints (3f)

calculate the total time used by a machine for setup, loading and unloading, and lot

processing, but not the time for processing initial lots. A single value, load
lτ , is used for

unloading lot l on its current machine and then loading the next lot onto that machine.

At time zero, if a machine is not processing a lot, we assume the loading time of the first

lot is zero. Constraints (3g) show that the operations of any machine i cannot extend

beyond its available time, Hi. The makespan is computed by constraints (3h). Recall that

the minimization of t max is included in the objective function, so constraints (3h) are

equivalent to t max = max{ti, ∀ i ∈ M }.

Combined with the first term in the objective function (3a), constraints (3i)

calculate the quantity of key device shortages. Because short
pk∆ is nonnegative, even if

production of key device k is over its target min_key
pkn at pass p, short

pk∆ will still be 0. Thus,

when the target key device k is reached, there is no incentive in the model to give priority

to lots with k so the selection of those lots will only depend on their relative weights, wlp.

Constraints (3j) enforce the precedence relations between each consecutive pair of

passes. They require that if pass p + 1 of lot l is assigned to a machine, then pass p must

also be assigned. For example, assume that the next pass for lot 103 is pass 2 and P(103)

= {2, 3, 4}. If pass 2 of lot 103 is not assigned, then pass 3 and 4 cannot be assigned

74

either. Note that (3j) say nothing about the order in which the passes are executed so the

solution to model (3) may not be feasible.

Constraints (3k) account for the total time associated with each pass p of lot l

beyond the first pass p0(l). The essential difference between these constraints and (3f) −

(3h) lies in the fact that the former are derived from the sequence of passes of a lot while

the latter are derived from the lot queuing on a machine. Constraints (3k) ensure that the

total processing t ime accumulated by lot l from pass p0(l) until pass p must be not greater

than the hours available on the machine that processes pass p of lot l. Note that the

starting point of the planning horizon is regarded as hour 0. The first term on the left-

hand side (LHS) takes into account the starting time of pass p0(l) if it is performed on a

machine that has an initial lot. The second term sums the processing, load and unload

times of the passes from p0(l) up to p. To better understand (3k), suppose we are

considering lot 103 such that p0(103) is pass 2 and p1(103) is pass 4, and that the

processing time plus load and unload time for passes 2, 3, and 4 are 9, 10 and 5 hours,

respectively. Then completing pass 4 requires at least 24 hours, that is, the sum of

processing hours plus load plus unload hours of passes 2, 3 and 4. Now assume that the

amount of time available on machine 1 is 24 hours and on machine 2, 23 hours. Thus

pass 4 of lot 103 can be assigned to machine 1 but not machine 2. In fact, assigning pass

4 to machine 1 cannot be guaranteed to be feasible since the time when passes 2 and 3 are

finished is unknown. The sequencing model addresses this issue. Finally, variable

definitions are given in (3l).

Initial conditions. For model (3), an option exists that allows machines processing a lot at

time zero to be reset when those lots are finished. The default is to maintain the initial

setup. If the option is not selected, then we set yiλ = 1 for all such machines i, where λ is

determined from the input file " initialsetup.csv." Moreover, the last term on the RHS of

75

constraints (3f) that sums the tooling setup time setup
λτ is removed for the corresponding

machines.

7.1.2 Sequencing model

Given the machine setups and lot assignments provided by the solution of model

(3), we wish to sequence the lots on their assigned machines to ensure feasibility while

maximizing the weighted sum of lots processed. At this stage, we do not permit

machines to be reset nor do we allow lots to be switched from one machine to another or

unassigned lots to be introduced into the production plan. Even with these restrictions,

the problem is not straightforward because of the need to take into account start times and

precedence relations between passes of the same lot. To assure feasibility, it will often be

necessary to remove some lots from the production plan or to insert idle time between

some lots.

Since both real and virtual lots may be in the assignment model solution, two lots

may differ only by their pass number p. To distinguish these cases, we define a lot-pass

combination that consists of the lot name l and a pass number p, collectively indexed by

g. A lot name is an alphanumeric string. For modeling purposes, a single dummy lot-

pass combination, gdum, is created for the index of the predecessor of the first lot and the

successor of the last lot on any machine. In addition to the notation introduced in Section

7.1.1, we also make use of the following

Indices and sets

G set of lot-pass combinations in the solution to the assignment model; g ∈

G

L set of lots in the solution to the assignment mode l (each lot is identified by

its name); l ∈ L

76

P (l) set of passes associated with lot name l in the solution to the assignment

model (not including the initial pass of initial lots); p ∈ P (l), l ∈ L

g(l,p) index of lot-pass combination (l,p)

gdum dummy lot-pass combination with lot name l = −1 and pass number p = −1

lg lot na me associated with the lot-pass combination g (different g could

contain the same lot)

pg pass number associated with the lot-pass combination g

M set of machines used in the solution to the assignment model; i ∈ M

()G i set of lot-pass combinations assigned to machine i in the solut ion to the

assignment model; i ∈ M , g ∈ ()G i

()L i set of lot identified by their name assigned to machine i in the solution to the

assignment model; l ∈ ()L i , i ∈ M

Parameters and data
H maximum machine capacity; that is, max { }ii MH H

∈
=

process
gτ processing time for each lot associated with index g derived from the

solution to the assignment model; if g

g

p
il rx = 1, then

g g g

process devices
l l il rnτ ρ= ; g ∈

G
setup
iτ setup time for machine i when it is in the assignment model solution; if

iy λ

= 1, then setup setup
i λτ τ= , i ∈ M

εdelay penalty for a 1-hour delay; εdelay = 1/(100H)
seq
gω weight for the lot-pass combination p in the sequencing model; if the lot

associated with g contains key device k, then seq
gω = short

kε + wlp, else seq
gω =

wlp.

77

Decision variables

ug 1 if lot-pass combination g is contained in the solution of the sequencing

model, 0 otherwise; g ∈ G

∆g amount of idle time (hours) inserted right before the lot associated with g is

to begin processing; g ∈ G

stg starting time of lot associated with g; g ∈ G

ctg completion time of lot associated with g; g ∈ G

zi,g,g′ 1 if lot-pass combination g is processed right before lot-pass combination g′

on machine i (i.e., lot associated with g′ is the immediate successor of lot

associated with g on machine i), 0 otherwise; i ∈ M , g ∈ G ∪ { gdum}, g′

∈ G ∪ { gdum}, g ≠ g′

Model
Maximize seq delay

g g g
g G g G

uω ε ∆
∈ ∈

−∑ ∑ (4a)

subject to

 ()setup
i i g g gST u stτ+ + ∆ ≤ , ∀ i ∈ M , g ∈ ()G i (4b)

, ,

() (1)dum
setup

g i i g g i i g g
st ST u H zτ≤ + + ∆ + − , ∀ i ∈ M , g ∈ ()G i (4c)

 ()
g

process load
g g g l gct st uτ τ= + + , ∀ g ∈ G (4d)

 g i ict H ST≤ + , ∀ i ∈ M , g ∈ ()G i (4e)
 , , '

' () { }
'

1
dummy

i g g
g G i g
g g

z
∈ ∪
≠

=∑ , ∀ i ∈ M , g ∈ G (i) ∪ {gdum} (4f)

 , ',
' () { }
'

1
dummy

i g g
g G i g
g g

z
∈ ∪
≠

=∑ , ∀ i ∈ M , g ∈ G (i) ∪ {gdum} (4g)

 ' ' , , '(1)g g g i i g gct st H z+ ∆ ≤ + − , ∀ i ∈ M , g ∈ ()G i , g′ ∈ ()G i , g′ ≠ g (4h)

 (,) (, ') (,) (, ')(2)g l p g l p g l p g l pct st H u u≤ + − − , ∀ l ∈ L ,

 p ∈ P (l), p′ ∈ P (l), p′ = p+1 (4i)

78

 (, ') (,)g l p g l pu u≤ , ∀ l ∈ L , p ∈ P (l), p′∈ P (l), p′ = p+1 (4j)

 ' , ',(1)g g i i g g gst ct H z− − − ≤ ∆ , ∀ i ∈ M , g ∈ ()G i , g′ ∈ J (i), g′ ≠ g (4k)

 ()g

process setup load
g i g i l gH uτ τ τ∆ ≤ − − − , ∀ i ∈ M , g ∈ ()G i , (4l)

 ug ∈ {0,1}, ∆g ≥ 0, stg ≥ 0, ctg ≥ 0, ∀ g ∈ G

 zi,g,g′ ∈ {0,1}, ∀ i ∈ M , g ∈ G ∪ {gdum}, g′ ∈ G ∪ {gdum}, g′ ≠ g (4m)

The primary goal of model (4) is to process as many of the lots contained in the

solution to model (3) as possible taking their relative importance into account. When

necessary, idle time can be inserted right before a lot starts to be processed to ensure that

the full schedule is feasible. The secondary goal is to minimize the total number of idle

hours that are inserted, which is equivalent to minimizing the completion time on each

machine. The objective function (4a) contains two terms corresponding these goals. The

priority order is enforced by setting the penalty parameter εdelay to a small positive

number.

Constraints (4b) provide a lower bound on the time that machine i can start

processing each lot assigned to it as indicated by the index g ≡ g(l,p). The bound is the

sum of starting time of the machine, its setup time, and the number of idle hours that are

inserted right before the lot. Constraints (4c) provide an upper bound on the starting

time of the first lot processed on machine i. If the lot associated g is the first lot processed
on machine i, then it will be the immediate successor of the dummy lot gdum

., with
, ,dumi g g

z

= 1. Taking (4b) and (4c) together, we see that stg is equal to the lower bound of the
starting time for the lot associated with index g that gives

, ,dumi g g
z = 1 on machine i.

These constraints force the first lot on each machine i to start at ()setup
i i g gST uτ+ + ∆ ,

which is as early as possible.

Constraints (4d) indicate that the completion time of a lot is equal to the staring

time plus the processing time (including loading and unloading time) of the lot. If the lot

79

associated with g is removed from the sequence, i.e., ug = 0, then constraints (4d) imply

that the starting time is just equal to the completion time for processing that lot so the

capacity of machine i is unaffected. Constraints (4e) impose an upper bound on the

completion time for processing the lot associated with g. The bound is the starting time

plus the capacity of the machine to which the lot was assigned in the solution of model

(3).

Constraints (4f) − (4j) are associated with lot sequencing. Constraints (4f) and

(4g) respectively require that each lot assigned to machine i must have exactly one

successor and one predecessor, which could be the dummy lot. That is, the last lot in the

sequence will be followed by the dummy lot while the first lot will have the dummy lot

as its predecessor. Constraints (4h) place a bound on the start time of the lot associated

with g′ equal to the completion time of its immediate predecessor, ctg, plus the amount of

idle time inserted right before it. For example, assume that the lots associated with g1 and

g2 are assigned to machine 1 in the solution to the model (3). If g1 is the immediate

predecessor of g2, then
1 21, ,g gz = 1 and (4h) becomes

1 2 2g g gct st+ ∆ ≤ . If g1 is not the

immediate predecessor of g2, then (4h) is redundant since add ing H1 to
2gst makes the

RHS at least as large as the LHS.

Constraints (4i) ensure that the completion time of a lot cannot be greater than the

starting time of its next pass. As can be seen, only if both ug(l,p) and ug(l,p′) are equal to1 for

p′ = p + 1, will ctg(l,p) ≤ stg(l,p′) be enforced. Constraints (4j) enforce the precedence

relations between passes; if any pass of lot has to be removed then its subsequent passes

must also be removed.

Constraints (4k) and (4l) place bounds on the amount of idle time that can be

inserted before a lot. Constraints (4k) limit the length of the hours before the lot

associated with g to no more than the lot's starting time stg minus the completion time of

80

the lot's immediate predecessor denoted by ctg′. When , ',i g gz = 1, constraints (4k) in

conjunction with the second term in the objective function (4a) ensure that ∆g = stg − 'gct

. When , ',i g gz = 0, then the LHS of (4k) is sufficiently small to make the constraint

redundant. Constraints (4l) provide upper bounds on the number of idle hours that can be

inserted before a lot. When ug = 1, the term in pa rentheses on the RHS represents the

number of hours available on machine i minus the number required to finish processing

lot lg. Logically, any idle time inserted into the schedule must not exceed this value. I f the

lot associated with g is removed, then ug = 0 forcing the idle time to be 0. Finally, all the

variables in the model are defined in (4m).

7.2 SOLUTION M ETHODOLOGY

A three-phase methodology referred to as ASC (assignment, sequence and

changeover) is used to solve the full AT scheduling prob lem. In the first phase, the

assignment model (3a) − (3l) is solved to get an opt imal machine -tooling configuration

and lot assignments. The resulting production plan is used in the second phase where

mod el (4a) − (4 m) is sequence the assigned lots on their corresponding machines. In the

third phase, a greedy randomized procedure (but not a full GRASP) is used to reconfigure

machines to exploit their full capacity. A sample problem is provided throughout

Section 7.2 to illustrate the output after each phase. The sample problem has four

machines indexed from 1 to 4, and nine lots similarly indexed and divided into four sets:

L1 = {1,4,5,6}, L2 = {2,3,8}, L3 = {7}, L4 = {9}. The lots in L1 are to undergo passes 1

and 2, those in L2 are to undergo passes 1 – 3, lot 7 in L3 is to undergo pass 2, and lot 9 in

L4 is in process at time zero on machine 1.

81

7.2.1 Phase I: assignment model

Model (3) proved extremely difficult to solve to optimality within several hours

with CPLEX so a number of tightening variables and constraints were added to the

formulation. The augmented model led to much reduced runtimes and improved results.

The following notation is used in the presentation here.

Indices and sets

F set of machine families; f ∈ F
M(f) set of machine instances that are members machine family f; i1, i2,.. .,

fni ∈

M(f), f ∈ F

Decision Variables

iy 1 if machine i is set up with some tooling, 0 otherwise; i ∈ M

Constraints

()
i i

i
y yλ

λ∈Λ

=∑ , ∀ i ∈ M (3m)

1q qi iy y

+
≤ , ∀ f ∈ F, q ∈ {1, 2, 3…nf −1} (3n)

 iy ∈ {0, 1}, ∀ i ∈ M (3o)

 A machine is counted as “selected” if it is set up with tooling and assigned lots.

Constraints (3m) are a stronger version of (3c) and have proven effective in finding

feasible solutions during branch and bound (e.g., see Jarrah et al. 1994). Setting iy = 0

will result in all variables of yiλ equal to zero, which improves the efficiency of branching

scheme. For the machine instances in the same machine family, the order in which they

are selected is controlled by the symmetry breaking constraints (3n). The machine

instance with larger index is selected first. Without constraints (3n), the optimization

code will randomly choose a machine instance from a machine family, which

exponentially increases the number of configurations that would have to be explored. For

instance, assume machines 1, 2, and 3 belong to the machine family. Also assume that

82

in the derived solution only two machine instances in this family are used. With

constraints (3n), this will be just machines 2 and 3 rather than all three combinations of

the three machines taken in pairs.

The solution of model (3a) − (3o) for the sample prob lem is shown in Figure 7

where it is assumed that the index number of the optimal tooling setup is just the same as

the machine to which it is assigned, and that only one temperature is feasible. The

notation (l,p) refers to the lot-pass combination (l,p) with lot na me l and pass number p.

The bars in the figure indicate the lot-pass combinations that were assigned to each

machine in the solution. Those not assigned are listed below the graph. At time zero, for

example, machine 1 is processing pass 1 of lot 9, and is assigned the lot-pass

combinations (1,1), (2,1), (2,2), (4,2), (9,2) for the remainder of the planning horizon.

The solution presented, of course, only represents lot assignments so the lot sequences

are arbitrary. There are many equivalent solutions not all of which are feasible. In fact,

it can be seen that pass 4 of lot 9 starts on machine 2 before pass 2 starts on machine 1.

The arrangement of lots only shows the number of hours consumed on the respective

machines. Finally, the lot-pass combinations (2,3), (7,2), (3,3) and (8,3) were not

assigned to any machine, either because they are not compa tible with any of the four

setups or the machine capacity was insufficient to work them in.

83

Figure 7: Sample results of Phase I

7.2.2 Phase II: sequencing model

Model (4) is much smaller than the assignment model in terms of number of

variables and constraints as shown in the next section. Although a proo f that the

sequencing problem is strongly NP-hard is provided in the Appe ndix D, all the instances

we investigated were easy to solve with CPLEX.

The solution to the sequencing model for the sample problem is given in Figure 8.

All precedence requirements are seen to be satisfied between passes even if a lot are

processed on different machines. For example, the starting time of lot-pass (1,2) on

machine 4 was earlier than the completion time of lot-pass (1,1) on machine 1 in Figure

1, but now its starting time is feasible with respect to the new sequence. The same applies

to (9,2) and (9,3). However, on machine 2, it was necessary to remove lot-pass (9,4) to

84

achieve feasible sequences on machines 1 and 3. If pass 3 of lot 9 was placed in a earlier

position on machine 3, say, before lot-pass (6,1) or (8,1), then it would have been

necessary to remove either lot-pass (6,2) or (8,2) instead of (9,4). Doing so would have

been subop timal with respect to their contribution to the objective function value (4a). A

final point to make about the solution was the need to insert idle time before lot-pass

(3,2) on machine 4. Starting it any earlier would have resulted in a conflict with the

completion of lot-pass (3,1) on machine 2.

Figure 8: Sample results of Phase II

7.2.3 Phase III: changeover algorithm

Within the planning horizon, the machine-tooling combinations derived in Phase I

cannot process more lots than those contained in the solution to mod el (3). However, it is

often possible to exploit the unused capacity of a particular machine by reconfiguring it

85

with different tooling after it completes its assigned lots. This is the purpose of Phase III

which is called after the sequencing problem is solved. During the computations,

changeovers are considered for all machines when they become idle regardless of their

initial condition at time zero.

The changeover algorithm is adapted from the procedures described by Section

6.2.3. After the production plan is determined by the sequencing mode l, the time when

each machine will finish its assigned lots is determined. The calculations tell us when the

machine becomes empty and its tooling becomes available. All unprocessed real lots are

also denoted as available and all virtual lots corresponding to the next pass of those lots

that were just completed are similarly termed available. Of course, there might be other

empty machines at the moment a particular machine finishes its assigned lots. This may

be due to the fact that they were either empty at time zero or that they could not be

reconfigured before the current moment due to lack of tooling or suitable lots.

Regardless, check which machines are empty, and which tooling and lots are available at

the moment a machine finishes all its assigned lots. Note that if a lot was previously

assigned to some machine but processing had not yet started at the current moment, that

lot would still be viewed as unavailable.

Now, each time a machine becomes empty we apply a greedy randomized

procedure to decide whether any of the empty machines can be reset, which tooling is

best, which lots to assign to which machines, and how to sequence the lots. The flowchart

for the changeover algorithm is depicted in Figure 6, where tc(i) indicates completion

time of the last lot assgined to machine i and L3(i) is the set of lot-pass combinations

assigned to machine i dur ing this phase of the computations (previously assigned lots are

not included). A detailed explanation of each component in the flowchart can be found in

the Appendix C.

86

When the changeover algorithm is applied to the sample problem, we get the

results presented in Figure 9. Machine 2 was the first machine that finished all its

assigned lots. When it became idle, it was reset with different tooling, which took a small

amount of time as indicated by the blank area between lot-pass (5,2) and lot-pass (7,2).

This allowed us to assign lot-pass combinations (7,2) and (2,3) to machine 2. Machine 1

was the next machine to finish its originally assigned lots but could not be reset due to

either lack of compatible tooling and lots, or insufficient capacity to finish any of the lots

in WIP. The same was true for machines 3 and 4, and for machine 2 after finishing lot-

pass (2,3). Consequently, we were only able to exploit a portion of the idle capacity of

machine 2 in this phase of the computations.

Figure 9: Sample results of Phase III

87

7.3 COMPUTATIONAL R ESULTS

To demonstrate the performance of the three-phase methodology, we conducted a

series of numerical tests and compared the results with those ob tained with Scheme I.

The latter contains a GRASP, multipass heuristic, and a changeover procedure. For

conciseness, we refer to it as the GRASP in Section 7.3 . For both methodologies, the

same data were used. Recall that in the first phase of ASC, machines are configured

with tooling and lots are assigned to machines. In the second phase, the assigned lots are

sequenced but the machine-tooling setups remain static. Some lots assigned in the first

phase may be removed or delayed in the second phase to satisfy the precedence

requirement between passes. In the GRASP, feasibility is maintained throughout so no

lots are removed. In the third phase, machines may be reset if doing so allows additional

lots to be processed. The GRASP also accommodates changeovers.

Besides the comparisons between the GRASP and the ASC, we are also interested

in evaluating the degree of infeasibility of the assignment model. Feasible solutions are

guaranteed only after the sequencing model is solved. In the computations, if a machine

is running a lot at time zero, we maintain its current tooling setup for the first two phases;

only in the third phase are changeovers permitted. The same rule applies to the GRASP.

Both methodologies were implemented in C++ and run in the High Performance

Computing laboratory of the Mechanical Engineering Department at University of Texas.

The lab has a cluster of twelve Dell Poweredge 2950 workstations, each with 2 dualcore,

hyperthreading 3.73 GHz Xeon processors and 24 GB of shared memory, and each

running Red Hat Linux. CPLEX 12.4 was used to solve all mixed integer programs.

Both real and randomly generated data were used in the experiments. The real

data were provided by the AT facility of the collaborating company and consisted of a

typical instance, which served as the basis for randomly generating eight additional

88

instances. In all cases, each instance contains 36 machines, 284 tooling pieces from 6

families, and 1 temperature (certification) setting. The number of lots varied from a low

of 800 to a high of 1045 [for further explanation, see Section 6.4]. The input data, itself,

is contained in eleven csv files, the most important being “machines.csv,” “tooling.csv,”

“route.csv” and “wip.csv.” A full description of each can be found in Deng et al.

(2010).

The computational results are presented in the next two subsections in a series of

tables. The entries in the first column indicate the problem number and those in the last

7.3.1 GRASP vs. ASC

Table 13 compares the final objective func tion values of the GRASP and the ASC

model. In the case of the latter, a real time upper limit of 2400 seconds was placed on

the assignment model and 1200 seconds on the sequencing model. The changeover

component was run once for each problem and took about 15 seconds. In the case of the

former, no runtime limit was set but an upper limit of 200 iterations was imposed on the

computations. This value was determined after extensive testing and reflects a tradeoff

between runtime and solution quality. The changeover procedure was run after every

iteration. The last column of the table records the percentage difference between the two

approaches and was calculated as follows:

Percent ∆ = 100 × (GRASP value − ASC value) / GRASP value

89

Table 13: Comparison of GRASP with ASC results

Prob.
no.

GRASP
objective value (1010)

ASC
objective value (1010)

Percent ∆
(%)

1 3.83 0.85 77.88
2 9.01 2.64 70.71
3 1.66 1.04 37
4 9.50 2.33 75.46
5 6.92 1.92 72.23
6 14.1 8.58 39.04
7 8.07 2.42 70.02
8 21.8 5.15 76.38
9 14.0 8.37 40.4

Avg. 9.88 3.70 62.12

As seen in Table 13, the average objective function value obtained by solving the

ASC model is 62.12% less than the average provided by the GRASP. Recall that key

device shortages dominate the computations so the large values on the order of 1010

reflect the weights used to enforce the preemptive nature of the objective function

(below, each term is analyzed separately). For all nine problems, the three-phase

methodo logy showed significant improvement. Taking problem no. 1, for example, the

objective function values for the GRASP and ASC are 3.83 × 1010 and 8.47 × 109,

respectively; an improvement of 77.88%.

Tables 14 – 17 provide respective comparisons for each of the four weighted

objective function terms: sum of key device shortages, sum of lots processed, number of

machines used, and machine time or makespan. The weights associated with these terms

decrease by several orders of magnitude from one to the other. For the lots, their

weights, wlp, are contained in the input file "wip.csv." The remaining weights and

coefficients are calculated as follows.

• Normalizing constant in key device shortage term: C = sum of weight of all

regular lots / (10×max{weight of single device over all regular lots})

90

• Shortage of key device k : short
kε = sum of weights of all regular lots + sum of

weights of regular lots containing device k

• Number of machine used: Mε = minimum positive lot weight

• Machine time: Tε = minimum positive lot weight / maximum time horizon

Table 14 indicates that the ASC methodology provides an average reduction of

61.77% in key device shortages compared with the GRASP solution. The average percent

difference in Table 14 is close to that in Table 13 due to the dominance of this term. For

problem no. 1, for example, the GRASP and ASC values in Table 13 are 3.83 × 1010 and

0.85 × 1010, respectively, while the corresponding values in Table 14 are 3.89 × 1010 and

0.901 × 1010. The slight increase is due to the second term (lots processed) whose

objective is really one of maximization.

Table 15 presents the comparisons for the weighted sum of lots processed. The

average percent difference is 5.86%, much smaller than the difference obtained for the

overall objective function value. In fact, in some cases the ASC methodology processed

fewer lot s than the GRASP. This could have been anticipa ted by the preemptive weights

in the objective function, which allow either approach to give priority to key devices at

the expense of regular lots. For problem no. 2, for example, the three-phase

methodology processed 0.71% fewer lots than the GRASP, but by comparison was able

to reduce the key device shortages by 70.71%. Similar results were observed for four of

the nine problem instances. However, the percent differences in Table 15 vary widely so

no general conclusions can be drawn.

91

Table 14: Comparison of weighted sum of key device shortages

Prob.
no.

GRASP
weighted sum of key
device shortage (1010)

ASC
weighted sum of key
device shortage (1010)

Percent ∆
(%)

1 3.89 0.901 76.86
2 9.07 2.70 70.26
3 1.69 1.06 37.07
4 9.57 2.39 75.06
5 6.98 1.98 71.68
6 14.1 8.60 39.05
7 8.12 2.48 69.45
8 21.9 5.20 76.22
9 14.1 8.40 40.31

Avg. 9.93 3.75 61.77

Table 15: Comparison of weighted sum of lots processed

Prob.
no.

GRASP
weighted sum of lots (108)

ASC
weighted sum of lots (108)

Percent ∆
(%)

1 5.42 5.32 1.86
2 6.03 6.07 -0.71
3 2.41 1.80 25.09
4 6.05 5.34 11.71
5 5.28 5.40 -2.27
6 2.55 1.61 36.9
7 5.39 6.31 -17.04
8 4.91 4.76 2.99
9 3.20 3.38 -5.76

Avg. 4.58 4.44 5.86

Tables 16 and 17 highlight the comparisons for the number of machines used in

the solutions and the average time those machines were running during the planning

horizon, respectively. More specifically, Table 16 refers to the number of machines that

are set up with tooling and are assigned lots. As seen, the number of machines used by

the ASC methodo logy is 3.7% less on average than that of the GRASP. In Table 17,

92

machine time denotes the makespan or how long a machine runs from the start of the

planning horizon until all its assigned lots are completed. The "average machine time" is

the average over all machines with assigned lots even though they may be idle for a

portion of the time. Recall that it may not be possible to immediately process a lot on its

assigned machine until its previous pass is finished on some other machine. As a result,

a machine may be idle for a while, waiting for its next lot to arrive. The machine time

includes this idle time.

The average machine time reported in the solution to the ASC model is 2.26%

less on average than for the GRASP. In all but two o f the nine instances, the three-phase

methodo logy used less machine time than the GRASP. When the statistics in Tables 13,

16 and 17 are viewed collectively, the advantage of the ASC approach is evident.

Table 16: Comparison of number of machines

Prob.
no.

GRASP
number of machines

ASC
number of machines

Percent ∆
(%)

1 36 35 2.78
2 36 35 2.78
3 36 32 11.11
4 36 35 2.78
5 36 35 2.78
6 36 32 11.11
7 36 36 0
8 36 36 0
9 36 36 0

Avg. 36 34.67 3.70

93

Table 17: Comparison of average machine time

Prob.
no.

GRASP
average machine time (hr)

ASC
average machine time (hr)

Percent ∆
(%)

1 22.97 21.43 6.69
2 23.39 21.6 7.64
3 20.72 20.69 0.14
4 23.29 22.27 4.38
5 23.52 22.73 3.34
6 20.82 21.82 -4.79
7 23.52 22.96 2.38
8 23.37 23.03 1.45
9 22.07 22.27 -0.9

Avg. 22.63 22.09 2.26

Table 18 reports the CPU time used by the two approaches. The lower values

associated with the GRASP for this metric are partly due to the fact that the ASC model

was solved with CPLEX which was set to run up to four threads at a time, while the

GRASP was programmed to use only a single thread. The CPU time counts time used

by all threads. Without going into too much detail, in an ideal situation, when the real

time advances 10 seconds, a four-thread code uses roughly 40 seconds, as opposed to 10

seconds for the single-thread code. In the planning environment, it may be necessary to

trade superior performance for reduced CPU time, or at least reduced real time. For

problem nos. 1 – 8, the three-phase methodology required all of the allotted 3600

seconds.

The above results are inclusive of the reductions realized after machine

changeovers take place. In the case of the ASC methodology, the third phase provides a

7.56% improvement, on average, over the second phase solution. For the GRASP, the

improvement is 8.25% on average.

94

Table 18: Compa rison of CPU time

Prob.
no.

GRASP
CPU time (s)

ASC
CPU time (s)

Percent ∆
(%)

1 797.40 10,691 -1240.73
2 790.85 11,011 -1292.3
3 654.57 12,434 -1799.57
4 660.34 11,638.5 -1662.5
5 685.71 11,315.7 -1550.22
6 577.36 12,261.3 -2023.68
7 536.61 10,478.6 -1852.74
8 509.28 9,744.28 -1813.34
9 424.91 792.51 -86.51

Avg. 626.34 10,040.77 -1480.18

7.3.2 Assignment vs. Sequencing Solut ions

The assignment model (3a) – (3l) represents a relaxation of the full problem because it

ignores the order in which lots are processed and it excludes changeovers. Nevertheless,

it is still a large scale MILP and difficult to solve. The sequencing model (4a) – (4m)

takes the solution to the assignment model as input and produces an optimal sequence for

the assigned lots. This may require removing or delaying some lots to achieve

feasibility. However, we do not allow the tooling to be changed or new lots to be

assigned. The time we allotted to solve either model reflects their relative difficulty.

Tables 19 and 20 summarize the size and performance statistics for all nine

instances. As seen from Table 19, the assignment model averages 26,538 constraints

and 42,451 variables, the majority of which are binary. CPU times averaged 6,116

seconds and the optimality gap ranged from 0.18 to 17.48%, averaging 8.94%. The

comparable statistics for the sequencing model are given in Table 20, which indicates

much smaller instances. The average of number of constraints is 5,486 and the average

number of variables is 3,231. The CPU times and op timality gaps were similarly smaller,

95

averaging 3,894.62 seconds and 2.10%, respectively. Looking at problem 1, for

example, the assignment model has roughly five times the number of constraints and

thirteen and half times the number of variables as the sequencing model, and achieved an

optimal gap of 9.01% in about 6,354 CPU seconds. In contrast, the sequencing model

reached an optimal gap of 1.23% in 4,320 CPU seconds.

Table 19: Input and output statistics for assignment model

Prob. no. No. of constraints No. of variables CPU time (s) Optimal gap (%)
1 27,717 44,092 6,354.44 9.01
2 27,717 44,092 6,627.65 10.48
3 24,507 39,974 8,058.66 1.24
4 27,844 44,305 7,283.04 9.12
5 27,844 44,305 7,154.08 16.44
6 24,634 40,187 7,846.21 1.50
7 28,004 44,625 6,056.38 15.01
8 28,004 44,625 5,590.86 17.48
9 22,569 35,858 75.24 0.18

Avg. 26,538 42,451 6,116.28 8.94

Table 20: Input and output statistics for sequencing model

Prob. no. No. of constraints No. of variables CPU time (s) Optimal gap (%)
1 5,546 3,272 4,319.73 1.23
2 5,584 3,294 4,362.26 2.50
3 4,404 2,626 4,350.87 1.46
4 5,870 3,446 4,333.55 2.01
5 5,699 3,338 4,129.34 4.76
6 4,725 2,810 4,391.01 1.38
7 7,535 4,382 4,386.04 2.69
8 4,168 2,484 4,108.14 2.03
9 5,847 3,426 670.66 0.82

Avg. 5,486 3,231 3,894.62 2.10

96

Table 21 reports the differences in the number of lots processed and makespan of

the solutions provided by the two models. The entries under column heading "No. of

lots processed" denotes how many lots are assigned in the solution provided by the

respective models. The entries in the column with heading "No. lots removed" is the

difference between the two previous columns. The sequencing model removed between

2 to 12 lots from the assignment model solutions. For all nine problem instances the

average number of lots removed was 5.78 lots.

The major heading "Total machine time" refers to the sum of the machine time of

all machines used in the solutions of the two models. The entries in the last column

"Total idle in sequence" is the sum of all idle hours between two consecutive lots on all

machines in the solution to the sequencing model. Note that this is not just the

difference between the "total machine time" derived from the assignment and sequencing

models because some lots are removed by the sequencing model.

The percent difference for total machine time in Table 21 is calculated as follows:

Percent ∆ = 100 × (sequencing value − assignment value) / assignment value

The statistics indicate that the sequencing model produced a 3.6% decrease on

average in total machine time. For problem 9, however, the solution shows an increase of

0.68%, which results from an increase in total idle hours. This value is greater than the

decrease in the number of hours associated with the removed lots. On average, the

sequencing model solutions contain 6.42 total idle hours.

97

Table 21: Comparison of lots processed and machine time

Prob.
no.

No. of lots processed Total machine time

Assignment Sequencing
No. lots
removed

Assignment
(hr)

Sequence
(hr)

Percent ∆
(%)

Total idle in
sequence

(hr)
1 246 243 3 750.84 728.64 -2.96 0.73
2 248 240 8 756.64 699.02 -7.62 0.12
3 210 206 4 654.98 634.90 -3.07 7.76
4 254 249 5 779.30 759.70 -2.51 6.43
5 243 231 12 798.36 737.13 -7.67 14.52
6 221 218 3 697.92 686.59 -1.62 1.86
7 305 297 8 827.14 799.23 -3.37 2.42
8 204 197 7 803.45 769.12 -4.27 12.67
9 247 245 2 764.80 769.97 0.68 11.28

Avg. 242 236 5.78 759.27 731.59 -3.60 6.42

Table 22 presents comparisons of the objective function values and the weighted

sum of key device shortages provided by the assignment and sequencing model solutions.

Recall that the sequencing mode l has a different ob jective function than the assignment

mod el so to create a valid frame of reference, the assignment model solution was taken as

the benchmark. In the table, the entries under the heading "Objective function value"

and the subheading "Sequencing" are obtained by substituting the solution of the

sequencing model into the objective function of the assignment model. Both models

have a minimization objective. The results indicate that the sequencing model solutions

are 18.24% greater on average than the assignment model solutions, and that the

weighted sum of key device shortages increases by an average of 17.75 % from phase 1 to

phase 2. This conforms with our expectations since the two terms are highly correlated

due to the relative pr ior ity assigned to key device shortages, and the fact that the

assignment model is a relaxation of the full problem. To obtain feasibility it was

98

necessary for the sequencing model to remove some lots from the assignment model

solution.

Table 23 presents the last of the comparisons for the weighted sum of lots

processed and the number of machines used, the second and third objective function

terms in (3a). As in Table 22, the entries under the “Sequencing” subheadings were

obtained by substituting the sequencing model solution values into the corresponding

assignment model objective function terms. As might have been expected, the

sequencing model processes fewer (weighted) lots than the assignment model, but

averaged only 1.1% less over all nine instances. When all of the lots assigned to a

machine are removed by the sequencing model, the machine is regarded as "removed."

The entries under the heading "No. machines removed" indicate that this never happened.

The number of machines is the same in the solutions of both models

Table 22: Comparison of objective function value and weighted sum of key device
shortages

Prob.
no.

Objective func tion value Weighted sum of key device shortages
Assignment

(1010)
Sequencing

(1010)
Percent ∆

(%)
Assignment

(1010)
Sequencing

(1010)
Percent ∆

(%)
1 0.793 0.887 11.86 0.847 0.941 11.11
2 2.15 2.69 25.36 2.20 2.74 24.74
3 1.01 1.05 4.43 1.03 1.07 4.34
4 2.18 2.52 15.46 2.23 2.57 15.08
5 1.57 2.23 41.47 1.63 2.28 39.94
6 8.48 8.65 2.05 8.50 8.67 2.05
7 2.20 2.70 22.47 2.27 2.76 21.85
8 4.34 6.09 40.31 4.38 6.13 39.87
9 8.31 8.37 0.75 8.34 8.40 0.75

Avg. 3.45 3.91 18.24 3.49 3.95 17.75

99

Table 23: Comparison of weighted sum of lots and number of machine used

Prob.
no.

Weighted sum of lots processed No. of machine used
Assignment

(108)
Sequencing

(108)
Percent ∆

(%) Assignment Sequencing
No. machines

removed
1 5.33 5.32 -0.2 35 35 0
2 5.26 5.22 -0.59 35 35 0
3 1.73 1.71 -1.08 31 31 0
4 5.34 5.32 -0.47 35 35 0
5 5.44 5.20 -4.31 35 35 0
6 1.61 1.60 -0.62 32 32 0
7 6.18 6.16 -0.28 36 36 0
8 4.51 4.40 -2.34 36 36 0
9 3.27 3.27 0 35 35 0

Avg. 4.30 4.25 -1.10 34.44 34.44 0

From Tables 13 – 17 and 21 – 23, we can see how the solut ion changes through

the assignment, sequencing, and changeover phases of the methodology. Take problem

1 as an example. The objective function value obtained by solving the assignment

model is 7.93 × 109, as indicated in Table 22. When the sequencing mode l is solved,

three lots are removed and 0.73 idle hours are added, as seen in Table 21. Consequently,

the objective function value increased by 11.86% to 8.87 × 109. Dur ing the changeover

procedure, some machines are reset with new tooling and assigned new lots. Table 13

shows that the objective function value decreased to 8.47× 109. A similar progression

can be seen in the value of the weighted sum of key device shortages, the first objective

function term in (3a).

100

Chapter 8: Real-time Decision Support for AT Operations

The output of model (1) for basic AT is used to establish machine setup and lot

assignment targets for daily operations. To aid shop floor personnel in reaching these

targets we have developed two complementary procedures for prioritizing choices

whenever an oppor tunity for machine changeovers becomes available. At TI’s facilities,

the data needed to support the review process are obtained from their factory database

system. A query to the system returns a snapshot of WIP, current machine setups,

tooling availability, and lot loadings. From the lot loadings, we can calculate the time at

which the active machines along with their tooling will become free. It is assumed that

only a handful of changeovers are possible due to limited personnel, and that preemption

is not allowed.

During the review process, which may be as frequent as every 15 minutes, if a

machine is currently set up in accordance with the target solution, it, as well as the lots

assigned to it, are omitted from the analysis. Of the remaining machines, those that are

free or will be become free in, say, ∆free minutes are given the highest priority. Typically,

rule-based procedures are used at this level of control (e.g., see Dolgui and Proth 2010,

Liu et al. 2011) but are seldom effective from a global perspective. Experience at TI’s

facilities suggests that much greater output can be realized by continua lly adjusting

machine setups to match the maximum capacity solution.

Our procedures were designed with this goal in mind and consist of two parts: (i)

a comparison between the current tooling setup and the target tooling setup (i.e., the

maximum capacity solution) for all available machines; (ii) construction of a priority list

that provides recommendations for changing over the machines that are not set up in

accordance with the target solution. To be precise, a setup refers to a combination of a

101

tooling piece(s) from a particular family and a corresponding certification or temperature

at which lots are to be tested. The phrase “when a machine becomes free” means the

time at which the machine under consideration finishes processing its current lot and, by

assumption, can release the tooling installed on it.

In the methodology, the waiting time parameter ∆free serves two purposes. First, it

specifies the time increment starting from the current time, t0, for defining priority

classes. Machines that can be reset with their target tooling between t0 and t0 + ∆free are

placed in the top class and ranked based on the ir weight (discussed presently).

Similarly, machines that can be reset between t0 + ∆free and t0 + 2∆free define the second

class and so on. Second, it specifies the maximum amount of time a machine can wait

for tooling to become available or to finish its current lot in order for it to be placed in the

top class. If a machine cannot be reset within ∆free hours from t0 for any reason, then it is

said to be unavailable but is still ranked based on either its weight or the time when it

will become available.

8.1 COMPARISON OF CURRENT AND MAXIMUM CAPACITY SOLUTIONS

The first algorithm reads the initial setup and target solution files to determine

which machines are eligible for changeover during the current review process. The main

complication arises from the fact that identical machines exist in the same family but

their initial setups might not be aligned with the target solution. To avoid overlooking

equivalent setups it is necessary to perform a series of comparisons and relabeling

operations. The steps are delineated below but first we describe the output.

Table 24 displays a portion of the Compare_Algorithm output. Column 1

lists the machine families and column 2 identifies the machine instance ‘id.’ Columns 3

and 4 give the current tooling family and certification on the machine, respectively. If

102

these fields are empty, it means that the machine is not set up at t0. The target tool family

and certification are identified in columns 5 and 6. Column 7 (second portion of the

table) specifies when the machine will finish its current lot. If the entry is “Now,” this

means that the machine is currently empty (no lots are running on it); otherwise the day

and time are given. Column 8 specifies whether or not the machine needs to be reset – a

determination based on the current and target setups.

Column 9 lists a machine whose target setup is equivalent to the setup o f the

machine in the row under consideration. For example, row 3 is associated with

AMAT27-1 and is currently configured with a tooling piece from family 6473283C. An

equivalent machine, AMAT02-1, has the same setup in the target solut ion. If the field is

empty, it means no such machine exists in the solution provided by model (1). The last

two columns 10 and 11 give the target setup. If a machine does not need to be reset,

then the target will be “Cur_Tooling” and “Cur_Certification.” In those cases in which

there is an entry in the Equivalent_Machine column, there is no need for a resetup

because the current setup on the machine is just the target setup of another machine from

the same family. As such, the machine under consideration can switch the target with

the machine indicated in in the Equivalent_Machine column. This is handled by re-

indexing the machines. For example, assume that machines i1 and i2 are currently set up

with tooling- temperature configurations λ1 and λ2, respectively, while the target solution

calls for i2 to be set up according to λ1 and i1 according to λ3. If these two machines are

in the same family and hence interchangeable, then the ir ind ices in the target solut ion

should be reversed as long as there are no other machines in that family set up according

to λ3.

103

Table 24: Example of output from comparison algorithm

Machine_Family Machine_Instance Cur_Tooling Cur_Certification Tar_Tooling Tar_Certification
ETS-1-64 AMAT01-1 6492377B 1

ETS-1-64 AMAT02-1 6473283C 1

ETS-1-64 AMAT27-1 6473283C 1 6463103B 1

ETS-1M-64 AMAT23-1 6463103B 1 6473198B 1

ETS-2-64 AMAT35-1 6469171D 1

When_Free Resetup_Needed Equivalent_Machine Final_Tar_Tooling Final_Tar_Certification
Now Y 6492377B 1

Now Y 6463103B 1

11/5/2010 15:16 N AMAT02-1 Cur_Tooling Cur_Certification

Now Y 6490924B 1

Now Y 6466496A 1

104

8.2 COMPARISON ALGORITHM

Compare_Algorithm

Step 0. Let M = {all machines}, M1 = {machines with initial setups}, M2 = {machines

without initial setups}, n = |M|, and mk denote the kth machine in M.

Step 1. Read “initialsetup.csv” (see Table 1). For each machine in M, record its family

id, instance id, corresponding tooling family id, and certification. If a machine’s

tooling family id and certification are empty, then mark the machine as

belonging to the set M2; otherwise, mark it as belonging to the set M1.

Step 2. Read “solution.csv”. For each machine in M, record the family id, instance id,

tooling family id, and certification for the setup associated with the first lot

assigned to the machine that is not an initial lot. Let this information be the

machine’s target. If a machine has not been assigned any lot other than the initial

lot to process, then record the tooling family id and certification for the initial lot

as the machine’s target. Record the time when the machine is expected to finish

its initial lot. If a machine doesn’t have an initial lot or can finish the initial lot

before the beginning of the planning horizon denoted by t0, then the time

“When_Free” is marked as “Now.”

 Step 3. For each machine in M, compare its target setup with its initial status. Set k = 1.

Do while k ≤ n.

3a. If machine mk ∈ M2, then a “Y” is entered in the column in Table 24 labeled

“Resetup_Needed”; put k ← k +1 and continue. Otherwise, go to Step 3b.

3b. Check whether the target setup of machine mk is the same as its initial

too ling setup. If yes, then an “N” is entered in the column labe led

105

“Resetup_Needed,” put k ← k +1, and go to Step 3a; otherwise, go to Step

3c.

3c. Check whether the initial tooling setup of machine mk is the same as the

target setup of some other machine in the same family whose target has not

yet been achieved. If yes, then an “N” is entered in the column labeled

“Resetup_Needed” and the other machine’s target tooling setup switch to

the target tooling setup of machine mk ; otherwise the entry is “Y,” we put k

← k +1, and go to Step 3a.

End while (at termination, let M denote the set of eligible machines)

8.3 PRIORITY LIST CONSTRUCTION

The Priority_List_Algorithm provides an ordered list of

recommendations for resetting all eligible machines. The format is illustrated in Table

25. Columns 1 and 2 list the name of the machine family and machine instance id,

respectively. Column 3 gives the length of time relative to the current time when a

machine processing an initial lot will finish that lot and become available. For each

machine, columns 4 and 5 provide the target setup obtained from the

Compare_Algorithm. Column 6 indicates the number of hours from the current

time t0 when a changeover is possible.

106

Table 25: Example of priority computations†

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling
ETS-1M-64 AMAT23-1 0 6490924B

ETS-1-64 AMAT01-1 0 6492377B

ETS-1-64 AMAT02-1 0 6463103B

ETS-2-64 AMAT35-1 0 6466496A

Final_Tar_Cert Time_to_Reset (hr) Tool_Source Resetup_P riority Benefit_value
1 0 Inventory 1 7.42E+06

1 0.401 AMAT17-1 2 6.35E+06

1 0 Inventory 3 1.14E+06

1 0.396 AMAT30-1 18 0.12E+06
†Although AMAT27-1 appears in Table 24, it is absent from Table 25 because it doesn’t need to be reset

Column 7 specifies the source of the target tooling. If the entry is “Inventory,” it

means that the required tooling will be available when the machine finishes the lot that it

is currently processing. By implication, if the machine is idle, then the tooling should

also be available. If the entry is the name of a machine instance, e.g., “AMAT30-1,” it

means that a changeover cannot occur until the machine instance in the corresponding

row finishes its current lot and releases its tooling. If the entry is “null,” it means that

the target tooling is not expected to become available in the time remaining in the

planning horizon. This situation occurs when the needed tooling is neither in “inventory”

nor on any machine(e.g. when some toolings are broken).

Column 8 gives the priority for resetting each available machine in decreasing

order. These values are calculated with the algorithm described in the next subsection.

Column 9 indicates the benefit that would result if a machine were reset to match the

target tooling and temperature specified by the solution to model (1). It is the largest

107

possible weighted sum of lots that would be processed on that machine according to the

maximum capacity solution.

8.3.1 Rules for setting the pr iorities

The values in the last column of Table 25 indicate the benefit of a setup between

t0 and the end of the planning horizon. The machines that can be reset in the interval [t0,

t0 + ∆free] fall into the highest priority class and take precedence over those that either

becomes available or whose target tooling becomes available after t0 + ∆free. The same

logic applies for machines that can be reset between t0 + ∆free and t0 + 2∆free with respect

to those that cannot be reset in this interval, and so on, until the end of the planning

horizon is reached.

The procedure for setting the priorities includes the following steps: compute the

benefit value, as described in the next section, of resetting each machine that is free in the

interval [t0, t0 + ∆free]; determine which machines can be reset in the interval [t0, t0 + ∆free]

and when they can be reset (tooling may not be available so a machine that is free may

not be able to be reset); rank the machines that can be reset in the interval [t0, t0 + ∆free]

based on their benefit value and assign lots to the machines. The same procedure is

applied to the machines that are free between t0 + ∆free and t0 + 2∆free , including the

machines that are free but not reset in the previous interval, and so on until the end o f the

planning hor izon. Further explanation is now given.

8.3.2 Calcula tions

To perform the rankings, we first compute a benefit value for machines that can

be reset in the upcoming time interva l and then use the above rules to construct an order.

The following algorithm is used for this purpose.

108

Benefit_Calculation_Algorithm

Step 0. Initialization

(a) From the file "solution.csv," identify all machine-family-tooling-setup

combinations used in the target solution. Let the following set contain these

combiant ions: MF_TF_CERT = {(mf, tf, cert) : machine family mf , tooling

family tf, and certification cert is used in the target solut ion}.

(b) For each machine family, identify machine intances eligible for changeover

during the current time interval according to comparion result as well as those

previously identified but not reset. Let MF_MI(mf) = {mi : machine instance mi

belongs to machine family mf and is free during the current time interval}.

(c) For each tooling family, identify which tooling instances are available during

the current time interval. Let TF_TI(tf) = {ti : tooling instance ti belongs to

tooling family tf and is available during the current time interval}. The tooling

available can be determined from the data in the files "tooling.csv" and

"initialsetup.csv," and the results for the calculations associated with the previous

time intervals.

(d) Identify all lots associated with the target solution that have not yet been

assigned to a machine using the data in the file "solution.csv" and the results from

the previous time intervals. Denote the set of available lots as L.

Step 1. Compute the weighted sum of available lots that can be processed for each

combination (mf, tf, cert) ∈ MF_TF_CERT according to the target solution. Rank

the elements in MF_TF_CERT based on the weighted sum of lots in descending

order. Break ties arbitrarily.

109

Step 2. From the ranked list MF_TF_CERT, choose the first (mf, tf, cert) such that there

exists an mi ∈ MF_MI(mf) and a ti ∈ TF_TI(tf) that can both operate under

certification cert. If no eligible (mf, tf, cert) can be found, then stop.

Step 3. Choose the machine instance mi ∈ MF_MI(mf) that becomes available at the

earliest time, and an arbitrary tooling instance ti ∈ TF_TI(tf). If several machine

instances are free at the same time, choose the one whose target tooling family is

tf.

Step 4. Rank the lots in the target solution that are processed by (mf, tf, cert) from highest

to lowest based on weight_rate, given by

where

weight = entry in the column “weight” in WIP file (see Table 3), which is the

benefit obtained by processing the corresponding lot

CUR_QTY = number of devices contained in the lot

Step 5. From the ranked lot list found in Step 4, select the lots from top that can be

processed within the time horizon remaining for the mi chosen in Step 3. Sum the

weights of the chosen lots to get the benefit value associated with the combination

(mf, tf, cert).

Step 6. If the target tooling setup for mi as determined by Compare_Algorithm is

different than the tooling family and certification associated with (mf, tf, cert),

then there must be some other machine instance in mf whose target tooling setup

is just (tf, cert). Swap the target toolings between these two machine instances.

_
_ /
weightweight rate

CUR QTY PPH
=

110

Step 7. Update MF_MI(mf), TF_TI(tf) and L. Mark the corresponding machine instance,

lots and tooling as unavailble for calculating subsequent benefit values. Go to

Step 1.

Step 0 identifies which machines, toolings and lots that are free in the current time

interval. Step 1 ranks the machine-family- tooling-setup combinations in the target

solution. In Step 2, the first machine-family-tooling-setup combination from the ranked

list is chosen provided that both the machine and its specified tooling are free. Step 3

indicates how to select the machine instance and tooling intance for the setup chosen in

Step 2. Step 4 ranks the lots availabe for computing benefits. The weight and

CUR_QTY values can be obtained directly from the WIP file. To get the PPH , the

route used for processing the lot must be identified from “solution.csv,” as can be seen in

Table 2. In Step 5, the benefit value is calculated by assigning lots to the machine under

consideration. Note that the lots are only “assigned” for the purposes of the calculation.

In Step 6 the tooling on the current machine is switched with the tooling on an identical

instance to match tf if need be. Step 7 updates the availability of machines, tooling and

lots and removes the chosen setup from future consideration.

The algorithm terminates with a benefit value for each machine that can be reset

in the upcoming interval. We now discuss how the changeover prioity list is actually

constructed.

Criteria for determining when a machine is reset. For purposes of determining if and

when a changeover is possible, three machine classes are defined. The first corresponds

to the case where sufficient tooling is or will be available in the time interval when the

machine becomes available. If a machine in this class is currently idle, then the target

tooling must be in inventory or will be freed up in the current time interval. The second

class is similar to the first but now only a subset of the required tooling is or will be

111

available in the current time interval when the machines become free so they compete for

the tooling. We need to decide which machines are reset immediately, which ones will

be reset within the current time interval, and which ones will be reset later when

additional tooling is released. This determination is based on the benefit value associated

with the competing machines. A higher benefit translates into greater consideration. The

third class includes those machines whose tooling is not available in the time interval

when they become free, which may be at the current time or in the future. In this case,

the target tooling is in use so all machines sharing the tooling must wait unt il the next

time interval before any action is taken, and, by definition fall into a secondary priority

class.

After each machine that is not currently set up in accordance with its target

tooling is placed in one of the three classes, a priority list is constructed that makes use of

the results obtained from the Benefit_Calculation_Algorithm. The procedure

is as follows.

Priority_List_Algorithm

Step 0. Set L = ∅. Initialize priority list.

Step 1. Identify a subset of the machines M0 eligible for resetting within the interval [t0,

t0+∆free].

Step 2. Calculate the benefit for all machines in M0 using

Benefit_Calculation_Algorithm.

Step 3. Determine when a machine in M0 should be reset following the logic in Section

8.3.1.

Step 4. Identify the machines that cannot be reset in the interval [t0, t0+∆free] and remove

them from M0.

112

Step 5. Rank the machines in M0 according to their calculated benefit from highest to

lowest.

Step 6. Add the machines to the priority list L . Assign lots to the machines using the

greedy randomized procedure discussed in Section 8.3.3. Record the tooling

and lots assigned to the machines. Mark the corresponding lots, machines and

tooling pieces as unavailable for resetting.

Step 7. Put t0 ← t0 + ∆free. If t0 is still within the planning horizon, then go to Step 1;

otherwise, stop.

To illustrate how the algorithm works, let ∆free = 1 (hr) and the end of the

planning hor izon be t0 + 2. Table 26, 27 and 28 list all the machines, tooling, and initial

setups for this example. In Table 26, columns 1 and 2 list the name of the machine

family and machine instance id, respectively. Column 3 gives the length of time relative

to t0 when a machine now processing a lot will finish that lot and become free. For each

machine, columns 4 and 5 provide the target setup obtained from the

Compare_Algorithm.

In Table 27, columns 1 and 2 list the name of the tooling family and tooling

instance id, respectively. In the example, there are three tooling families and four

tooling instances. In Table 28, column 1 gives the machine instance id. Column 2 and

3 provide the name of tooling family and the certification respectively for the initial setup

of the corresponding machine. Initially, machine instance AMAT03-1 is configured

with tooling instance T02-1 and AMAT04-1 is configured with T03-1. Therefore T02-1

and T03-1 are not available until AMAT03-1 and AMAT04-1 finish their initial lots.

113

Table 26: Machines for example of Priority_List_Algorithm

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling Final_Tar_Cert
ETS-1M-64 AMAT01-1 0 6490924B 1
ETS-1-64 AMAT02-1 0 6490924B 1
ETS-1-64 AMAT03-1 1.2 6463103B 1
ETS-2-64 AMAT04-1 1.6 6466496A 1

Table 27: Tooling for example of Priority_List_Algorithm

Tooling_Family Tooling_Instance

6490924B T01-1

6490924B T02-1

6463103B T03-1

6466496A T04-1

Table 28: Initial tooling setups for example of Priority_List_Algorithm

Machine_Instance Initial_Tooling_Family Initial_Tooling_I nstance Initial_Certification

AMAT03-1 6490924B T02-1 1

AMAT04-1 6463103B T03-1 1

Applying the Priority_List_Algorithm to the example, we see at Step 1

from the column “Time_to_Mach_Free” in Table 26, that AMAT01-1 and AMAT02-1

are free within the interval [t0, t0+∆free]. This gives M0 = {AMAT01-1, AMAT02-1}.

At Step 2, we calculate the benefit value for these two machines using the

Benefit_Calculation_Algorithm and get 2500 for AMAT01-1’s and 2000 for

AMAT02-1. Next, at Step 3, we determine when each machine in M0 should be reset.

The target tooling for both AMAT01-1 and AMAT02-1 are the family 6490924B but

only instance T01 is available between t0 and t0+∆free (that is, T01 is not in use at t0).

114

Thus only one machine instance can be reset within [t0, t0+∆free]. Since AMAT01-1’s

benefit is greater than AMAT02-1’s, the former is chosen to reset at time t0.

At Step 4, AMAT02-1 is removed from M0 giving M0 = {AMAT01-1}. Since

there is only one machine in M0, by default, it is place in the first position on the priority

list L at Step 5. Lots are then assigned to AMAT01-1, and the lots, machine and

tooling instances are marked as unavailable. Putting t0 ← t0 + ∆free = t0 + 1 which is less

than the planning horizon denoted by t0 + 2, the algorithm returns to Step 1 and repeats.

The remaining calculations can be obtained from the authors. The results are shown in

Table 29.

Table 29: Example results for Priority_List_Algorithm

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling

ETS-1M-64 AMAT01-1 0 6490924B

ETS-2-64 AMAT04-1 1.6 6466496A

ETS-1-64 AMAT02-1 0 6463103B

ETS-1-64 AMAT03-1 1.2 6463103B

Final_Tar_Cert Time_to_Reset (hr) Tool_Source Resetup_P riority Weight

1 0 Inventory 1 2500

1 1.6 Inventory 2 3000

1 1.2 AMAT03-1 3 2000

1 1.6 AMAT04-1 4 2000

A second approach for constructing the priority list has also been developed. It

emphasizes the time when a machine can be reset without regard to ∆free. The

implementation invo lves replacing Step 5 above with the following.

115

Step 5. Rank the machines first based on the time when they can be reset with their target

tooling and then by their benefit. The second criterion is used to break ties.

The results of the computations are contained in the summary file

“priority.summery.txt.” The following data are provided.

Total number of machines that need resetting: total number of machines in

“priority_list.csv” that are candidates for resetting. This value excludes machines

that are currently set up with the target tooling.

Total number of machines that need resetting within time limit: number of machines

that become idle between t0 and t0 + ∆free.

Number of machines ranked within the time limit : number of machines that become

free and whose target tooling is available between t0 and t0 + ∆free. These machines

are ranked.

Number of machines not ranked within time limit : number of machines that are idle

between current time t0 and t0 + ∆free but cannot be reset in this interval because their

target tooling is not available.

8.3.3 Greedy randomized procedure for lot assignments

In Step 6 of the Priority_List_Algorithm, lots are assigned to machines

for the given too ling setup. Rather than making these assignments in decreasing order of

the value of their weight_rates, as calculated in Step 4 of

Benefit_Calculation_Algorithm

A greedy randomized proedure is used to diversify the search for good solutions.

A purely myopic approach is likely to suffer from “end” effects as the number of options

deceases when only a few lots remain. For example, assume that we have a machine m1

with 24 hours remaining, and four lots with weight_rates ordered such that l1 = 100 = l2 =

116

100 > l3 = 99 = l4 = 99. The times required for processing l1, l2, l3, and l4 are 13, 8, 5 and

5 hours, respectively. The greedy solution would have l1, l2 assigned to m1. A better

solution would have l1, l3, and l4 assigned to m1.

Our methodo logy cons ists of a construction phase only. Starting with the first

machine on the pr iority list L that has not been assigned any lots, we randomly choose

a lot from the top five candidates in a ranked list until all the available time on the current

machine is consumed. The result is recorded and the process is repeated for a total of 10

iterations. The assignments asssociated with the highest weighted sum of lots found

during the 10 iterations represents the solution for the machine. The procedure is

repeated applied to each machine in L that is available in the current time period.

It should be mentioned that an improvement phase based on swaps could have

been added after all machines are assigned lots to get a fulfledged GRASP. Although

theoretically, swapping target tooling between two machines and reassigning lots to the

machines could result in better solutions, we found that after some initial experimentation

the effort spent just trying to stay feasible within a neighborhood proved too time

consuming to be effective.

Greedy_Lot_Assignment_Algorithm

Step 1. (Initialization)

1a. For the machine-tooling setup under consideration, read the file

“solution.csv” to identify all lots processed by the same machine family and

tooling setup in the target solut ion. Exclude any lots on machines at t0

(i.e., initial lots) and those that have already been assigned.

1b. Choose routes from the file "route.csv" for the lots found in Step 1a. The

routes correspond to the same machine family, tooling family, and

117

certification as the machine-tooling setup under consideration. For each lot

choose the route that has the highest processing rate in terms of PPH.

1c. Compute weight_rate for lots found in Step 1 in the same way as in the Step

4 of Benefit_Calculation_Algorithm. Rank the lots based on

weight_rate.

Step 2. Set k = 1. Record the ranked lot list in Step 1c as lot_list_original. Let

lot_assigned_opt record the optimal weighted lots assigned to the machine. Let

weighted_sum_opt = 0.

Step 5. If k > 10, stop, Otherwise, let lot_list_temp = lot_list_original, and create a

new list, call it lots_assigned, which holds the lots assigned to the machine. Let

weighted_sum = 0;

Step 6. If the number of lots in lot_list_temp is 0, then go to Step 8. Otherwise,

randomly choose a lot from the top 5 (or from the remaining number, if less) of

lot_list_temp.

Step 7. Remove the lot found in Step 6 from lot_list_temp. If the time required for

processing the lot found in Step 6 is less than the time remaining for the

machine, add its weight to weighted_sum, and place in lot_assigned; otherwise,

discard it. Go to Step 6.

Step 8. Put k ← k + 1. If weighted_sum > weighted_sum_opt, put weighted_sum_opt =

weighted_sum, lot_assigned_opt = lot_assigned. Go to Step 5.

8.4 MIXED-INTEGER PROGRAMMING MODEL FOR REAL-TIME CONTROL PROBLEM

To validate the results from our real- time control heuristic, we have also

developed two competing MIPs that provide “optimal” changeover and scheduling

recommendations similarly based on real-time data inputs. Each makes use of the

118

maximum capacity solution obtained from (1a) – (1i). The first tries to minimize the

weighted sum of the absolute deviations from the target solution and the second tries to

maximize the weighted sum of processed lots. The assumptions underlying the MIPs are

the same as those enumerated before section 8.1 within Chapter 8. If a machine is

currently set up in accordance with the target solution, it, as well as the lots assigned to it,

are omitted from the analysis. Of the remaining machines in M, only those that are free

or will be become free in ∆free minutes are included in the problem instance. The

corresponding formulations are given in Appe ndix E.

8.5 COMPUTATIONAL EXP ERIMENTS

The complementary algorithms described from Section 8.1 to Section 8.3 were

tested using the same data described in Section 6.4. The basic data set consists of 36

machines, 284 tooling pieces from 6 families, 1036 lots, and 1 temperature (certification)

setting, and served as the basis for randomly generating eight additional data sets.

Randomly generated data based on this real case is also used [for further explanation, see

Section 6.4]. For discussion purposes, machines processing lots at t0 are called “initial

machines” and generally have tooling installed on them.

Procedures, Compare_Algorithm and Priority_List_Algorithm,

were implemented in C++ and run under Ubuntu Linux on a Dell Poweredge 2950

workstation with 2 dual core hyperthreading 3.73 GHz Xeon processors and 8 GB of

memor y. CPLEX 12.1 was used to solve the two MIPs described in Appendix E without

changing its default settings.

8.5.1 Results for Compare_Algorithm

In all the testing, the waiting time limit ∆free was set to 1 hr. The results appear

in Tables 30 − 32 whose column headings are defined as follows.

119

Total no. machines: Total number of machines in the problem instance including

the machines that are already set up according to the target

solution

Total no. tools: Total number of tooling pieces including those in use

No. need reset: Number of machines that are candidates for changeover during the

remainder of the planning hor izon

Free within ∆free: Number of machines that become free between t0 and t0 + ∆free

Reset within ∆free: Number of machines that can be reset between t0 and t0 + ∆free

Not reset within ∆free: Number of machines that are idle between t0 and t0 + ∆free

but cannot be reset because target tooling is not available

Table 30: Compare results for group 1

Prob lem
no.

Total no.
machines

Total
no. tools

No. need
reset

Free within
∆free

Reset within
∆free

Not reset
within ∆free

1 36 284 23 12 11 1
2 36 284 25 16 14 2
3 36 284 22 13 12 1

Table 31: Compare results for group 2

Prob lem
no.

Total no.
machines

Total
no. tools

No. need
reset

Free within
∆free

Reset within
∆free

Not reset
within ∆free

4 36 284 29 20 19 1
5 36 284 29 22 20 2
6 36 284 25 21 19 2

120

Table 32: Compare results for group 3

Prob lem
no.

Total no.
machines

Total
no. tools

No. need
reset

Free within
∆free

Reset within
∆free

Not reset
within ∆free

7 36 284 33 29 29 0
8 36 284 34 29 27 2
9 36 284 34 29 29 0

In all but one case, 67% or more of the 36 machines needed to be reset at t0. For

the base case, problem 1, 12 machines are available in the upcoming hour and 10 of them

can be reset. This suggests that there is ample tooling available to permit the

changeovers. In all cases, no more than 4 machines that are candidates for changeover

cannot be reset within the hour (see last column of tables).

8.5.2 Results for Pr iority_List_Algor ithm

Table 33 reports the results for Problem no. 1 listed in Table 30. Of the 23

machines that are candidates to be reset, column 3 indicates that 12 are available for

changeover in the upcoming hour. Column 4 gives the target tooling and column 5

indicates the time from t0 when either the tooling or machine will become free. Column

6 identifies the source of the tooling. For machines AMAT30-1 and AMAT15-1 in

rows 12 and 18, the tooling is currently installed on two other machines and will not be

available in the hour. For the remaining 21 cases, the tooling is currently available so any

delay noted in column 5 is a consequence of the machine still processing a lot. The

"Benefit_value" entered in the last column is the measure used to rank the changeovers.

The large values reflect the wide variation in lot weights; lots with key devices may be

assigned weights that are several orders of magnitude greater than regular lot

121

Table 33: Priorities for resetting available machines

Machine

family

Machine

instance

Time to

machine

free (hr) Final target tooling

Time to

reset (hr) Tool source

Reset

priority

Benefit

value

ETS564 AMAT13-1 0 6462741B 0 inventory 1 8.50E+07

ETS-2-64 AMAT33-1 0 6504853A/6487463C 0 inventory 2 5.37E+07

ETS-0-64 AMAT31-1 0 6473198B 0 AMAT16-1 3 2.95E+07

ETS-1M-64 AMAT22-1 0 No_Tooling 0 inventory 4 2.33E+07

ETS-1M-64 AMAT26-1 0 6469171D 0 inventory 5 1.16E+07

ETS-1-128 AMAT16-1 0 6501065B 0 inventory 6 4.74E+06

ETS564 AMAT06-1 0 6440109A 0 inventory 7 831902

ETS-2-64 AMAT35-1 0 6481146C 0 inventory 8 199202

ETS564 AMAT05-1 0 6453620A 0 inventory 9 58000

ETS564 AMAT04-1 0 6442302C 0 inventory 10 23404

ETS564 AMAT07-1 0.045 6462741B 0.045 inventory 11 1

ETS-0-64 AMAT30-1 0.308056 6473198B 1.46861 AMAT21-1 12 2.95E+07

ETS-1M-64 AMAT21-1 1.46861 No_Tooling 1.46861 inventory 13 2.33E+07

ETS-1M-64 AMAT25-1 1.65611 6469171D 1.65611 inventory 14 1.16E+07

ETS-1-64 AMAT08-1 1.02222 6466496A 1.02222 AMAT30-1 15 4.45E+06

ETS-1-64 AMAT14-1 1.78694 6481146C 1.78694 inventory 16 263600

ETS-2-64 AMAT32-1 2.43278 6483172A 2.43278 inventory 17 3.07E+07

ETS-1-64 AMAT15-1 2.51472 6473283C 2.74694 AMAT34-1 18 4.86E+06

ETS-2-64 AMAT34-1 2.74694 6485429B 2.74694 inventory 19 81302

ETS-1M-64 AMAT23-1 3.72167 No_Tooling 3.72167 inventory 20 2.33E+07

ETS-1-64 AMAT11-1 3.68083 6479471B 3.68083 inventory 21 219300

ETS-1-128 AMAT12-1 7.75333 6501065B 7.75333 inventory 22 3.67E+06

ETS-1-64 AMAT19-1 8.75167 6490924B 8.75167 inventory 23 1.42E+06

122

8.5.3 Comparison of heuristic and MIP results

The nine problems listed in Tables 34 – 36 were analyzed and the results

compared to the solutions obtained for Models (5) and (6) presented in Appendix E. For

the MIPs, the maximum number of changeovers permitted was 10 and a 1-hour time limit

was placed on the CPLEX runs. Tables 34 and 36 detail the output statistics obtained

with the priority heuristic and CPLEX for Model 5, respectively. The objective values

reported are those computed from (5a) and (6a); that is,

() (,) (,) (,)lr ilr ilrl L r R l i M l r l i l
w x X

λ λ∈ ∈ ∈ ⊆ ∈
−∑ ∑ ∑ ∑M M

 and

() (,) lr ilri M l L i r R i l
w x

∈ ∈ ∈∑ ∑ ∑ ,

where M is the set of machines that are available for changeover in the upcoming hour.

For problem no. 1, for example, the machines in M are those in Table 33 whose entry in

column 3 is less than or equal to 1.

The first six columns in Tables 34 and 35 are self-explanatory. The ‘Model 5

objective’ value in column 2 is the sum of the weights of the target lots that are not

processed by the same route as in the target solution as determined by substituting the

heuristic solution into (5a). For the first 10 machines in Table 33, the weight sums are 0

because all targets are met. Thus, the value 6697×104 for problem no. 1 in Table 34

corresponds to the sum of the weights of lots that are not processed by the first 10

machines in Table 33. In contrast, the ‘Total weight of lots’ value in column 3 represents

the sum of the weights of all the lots that can be assigned to the machines that are

available within the hour, but only up to a maximum of nsetups which has a value of 10 in

all the computations. Note the fact that exactly 10 machines can be reset in the solution

contained in Table 33 is a coincidence.

Column 7 reports the average number of hours that the lots assigned to the reset

machines will consume within the planning horizon, which is 24 hours for all cases.

123

Columns 8 and 9 give the maximum machine time and minimum machine time used,

respectively, for the reset machines. The results indicate that for both the heuristic and

CPLEX the full capacity of at least one machine in each problem set is used; the average

over all cases was 20.6 hours. For the heuristic, there are several problems where some

of the machines have significant unused capacity, while the CPLEX results indicate that

there is at least one machine in all cases with significant unused capacity. The run times

reported in the last column are negligible for the heuristic and anywhere from 33 to 278

sec for CPLEX which found the optimal solution for each problem set.

Table 34: Heuristic changeover results

Prob.
no.

Model 5
objective

(104)

Total
weight of
lots (104)

No. of
lots

No. lots
with key
devices

No. of
change-
overs

Average
mach. time

(hr)

Maximum
mach. time

(hr)

Minimum
mach. time

(hr)

Run
time
(sec)

1 6697 20760 85 79 10 17.42 23.79 5.37 1
2 7190 19743 90 80 10 21.25 23.97 12.87 1
3 2627 4985 39 37 10 13.03 23.47 0.90 1
4 4169 30961 101 97 10 22.39 23.97 12.85 0
5 5827 31220 107 105 10 23.25 23.99 22.09 0
6 3476 9420 67 66 10 22.07 23.95 12.85 1
7 8010 28100 86 82 10 23.49 23.95 22.21 1
8 8079 28966 112 110 10 22.83 23.91 20.35 0
9 8881 17378 78 73 10 22.92 23.97 20.97 1

124

Table 35: CPLEX changeover results for Model 1

Prob.
no.

Model 5
objective

(104)

Total
weight of
lots (104)

No. of
lots

No. lots
with key
devices

No. of
change-
overs

Average
mach. time

(hr)

Maximum
mach. time

(hr)

Minimum
mach. time

(hr)

Run
time
(sec)

Solution
status

1 6698 20759 83 77 10 22.54 23.92 18.19 141 optimal
2 7180 19753 84 84 10 22.54 23.92 18.19 182 optimal
3 2621 4991 40 38 10 13.33 23.79 0.90 97 optimal
4 4173 30957 102 98 10 22.42 23.95 12.85 206 optimal
5 5827 31220 107 105 10 23.24 23.92 22.09 213 optimal
6 3428 9469 68 67 10 22.22 23.95 12.85 159 optimal
7 7931 28179 95 91 10 23.49 23.98 22.21 378 optimal
8 8078 28966 112 110 10 22.83 23.91 20.35 392 optimal
9 8881 17378 78 73 10 22.87 23.97 20.97 328 optimal

Table 36 identifies the percentage differences between the CPLEX and heuristic

solutions provided in Tables 34 and 35, respectively. The results are nearly identical for

the 'Model 5 objective' values and the ‘total weight of lots’ values in columns 2 and 3

respectively. For problem nos.1 and 4, although the solution status returned by CPLEX is

"optimal," the heuristic produced better results. This is possible because the tolerance

used for the case in CPLEX is 0.21%, which is higher than the percentage differences in

Table 36 for these two problems. One additional point of interest is that the CPLEX

processes a few more lots with key devices on average than the heur istic. In the analys is

here, we do not distinguish between lot types. Only the lot weights are used to guide the

changeovers, and while lots with key devices generally have large weights, they are not

necessarily dominant.

125

Table 36: Percentage difference between CPLEX and heuristic solutions for Model 5†

Prob. no.
Model 5
objective

Total
weight of

lots
No. of
lots

No. lots
with key
devices

No. of
change-
overs

Average
mach. time

(hr)

Maximum
mach. time

(hr)

Minimum
mach. time

(hr)
1 0.01 0 -2.41 -2.60 0 22.72 0.54 70.48
2 -0.14 0.05 -7.14 4.76 0 5.72 -0.21 29.25
3 -0.23 0.12 2.5 2.63 0 2.25 1.35 0
4 0.1 -0.01 0.98 1.02 0 0.13 -0.08 0
5 0 0 0 0 0 -0.04 -0.29 0
6 -1.4 0.52 1.47 1.49 0 0.68 0 0
7 -1 0.28 9.47 9.89 0 0 0.13 0
8 -0.01 0 0 0 0 0 0 0
9 0 0 0 0 0 -0.22 0 0

Average -0.30 0.11 0.54 1.91 0 3.47 0.16 11.08
† Values reported are calculated as follows: 100% × (CPLEX − heuristic) / CPLEX

The CPLEX results for Model 6 are presented in Table 37 and the percentage

differences with the heuristic solutions are given in Table 38. In these runs, the idea of

aiming for the target solut ion is abandoned in favor of the greedy objective of

maximizing the weighted sum of the lots processed. As expected, the CPLEX solutions

always provide larger objective function values, averaging 21.28% above the heuristic

solutions. Also, CPLEX processes more lots in general but fewer key lots. In neither

case was preemptive priority given to key lots as it was in Model (5) for the target setting

run. Moreover, the heuristic is not trying to achieve the Model (6) objective of

maximizing the weighted sum of the lots processed. Instead, it is trying to identify

changeovers that come as close as possible to the target solutions.

Although the feasible regions of Models 5 and 6 are identical, CPLEX had much

more difficulty finding opt imal solutions when the objective was to maximize the

weighted sum of lots selected for processing, and was only able to arrive at an optimum

126

within 1 hour for three of the nine cases. This can be seen in the last two columns of

Table 37. There is no theoretical explanation for this result but empirically we have

found in the past that it is easier to solve optimization problems with variable targets than

when the objective function is more general (e.g., see Zhang and Bard 2006) . The use of

an absolute value objective function focuses the search for the optimum around the target

values in the feasible region thus reducing its effective size. This has a “convexifying”

effect on the problem so local optimum are often global optima. To some extent, this can

be seen when (6a) is linearized by replacing each term of the form |x − X| with z and

adding the constraints z ≥ x − X and z ≥ X − x to the model.

Table 37: CPLEX changeover results for Model 6

Prob.
no.

Total
weight of
lots (104)

No. of
lots

No. lots
with key
devices

No. of
change-
overs

Average
mach. time

(hr)

Maximum
mach. time

(hr)

Minimum
mach. time

(hr)

Run
time
(sec)

Solution
status

1 25069 83 69 10 20.74 23.86 9.10 43 optimal
2 26277 92 90 10 22.24 23.97 11.26 3664 feasible
3 7403 44 39 10 13.02 23.51 3.89 28 optimal
4 36209 79 76 10 22.26 24.00 11.84 396 optimal
5 36108 89 86 10 22.24 23.99 11.26 3681 feasible
6 13731 71 70 10 20.43 23.98 3.88 507 optimal
7 33493 79 77 10 22.51 24.00 13.84 3777 feasible
8 35995 102 98 10 23.47 24.00 22.67 3786 feasible
9 22199 70 68 10 22.48 24.00 13.84 3763 feasible

127

Table 38: Percentage difference between CPLEX and heuristic solutions for Model 6†

Prob. no.

Total
weight of

lots
No. of
lots

No. lots
with key
devices

No. of
change-
overs

Average
mach_time

(hr)

Maximum
mach_time

(hr)

Minimum
mach_time

(hr)
1 17.19 -2.41 -14.49 0 16.01 0.29 40.99
2 24.87 2.17 25.56 0 15.02 0.42 66.61
3 32.66 11.36 0 0 -18.74 -1.19 76.86
4 14.49 -27.85 -17.11 0 8.49 0.21 57.09
5 13.54 -20.22 -11.63 0 3.1 0.38 51.87
6 31.4 5.63 4.29 0 8.27 0.13 -30.93
7 16.1 -8.86 -18.18 0 -4.35 0.25 -60.48
8 19.53 -9.8 -10.2 0 1.24 0.21 2.69
9 21.72 -11.43 1.47 0 -4.76 0.13 -60.48

Average 21.28 -6.82 -4.48 0 2.70 0.09 16.03
† Values reported are calculated as follows: 100% × (CPLEX − heuristic) / CPLEX

128

Chapter 9: Future Work

Although significant progress has been made in solving the AT multipass

scheduling problem, improvements are still possible. For Scheme I described in Chapter

6, at least two areas of opportunity present themselves. First, the sequential nature in

which passes are scheduled gives priority to the current lots in WIP regardless of their

step number. If it were possible to take a more expansive view of the processing

requirements of a route, this might allow us to schedule all passes of high priority lots at

the beginning of the planning horizon. Doing so could decrease shortages of some key

devices, but at the expense of increasing shor tages of other key devices in the current or

next planning horizon. The tradeoffs would have to be carefully weighed. The second

area concerns the computational effort. For some instances considered in Section 6.4, 500

iterations for phase I and 100 iterations for phases II and III produced long runtimes. The

implication is that larger instances might require more than 100 iterations for phases II

and III to guarantee good solutions. Determining the best settings to balance solution

quality with runtime is a matter that will be addressed in any upcoming pilot project

aimed mainly at fixing data formats and user interface requirements

For Scheme II present in Chapter 7, the computations showed that on average

6,116 CPU seconds using four threads were required to reach an optimality gap of 8.94%.

Future work to improve the Scheme II includes the development of a customized

algorithm to solve the phase 1 assignment model, the primary bottleneck. We believe

that a column generation approach will prove much more effective than CPLEX for this

problem. In addition, it would be useful develop a real-time control algorithm for making

adjustments to the schedule in light of uncertain events such as machine breakdowns and

129

newly arriving orders, or when more changeovers are called for in a specific time period

than can be performed by the available crew.

Finally, the real- time algorithm detailed in Chapter 8 could be updated to take

multiple passes into account.

130

Appendix A: Procedure to Account for Logpoint and Operation Number in Multipass
Scheme I

1. When reading the input files, the logpoint and operation number information are

recorded for each lot in the “wip.csv” file and each route in “route.csv” file.

2. When the single-pass algorithm chooses candidate routes for a lot or a machine-

tooling- lot assignment (including initial machine tooling and lot), not only the

device but also the logpoint and operation number of the lot must be consistent

with those of the routes. This leads to smaller sets of candidate routes for a lot or

a machine-tooling- lot assignment in the single-pass algorithm than in the original

GRASP.

3. When the single-pass algorithm chooses candidate lots for a machine or a

machine-tooling setup, it picks candidate routes first and then the candidate lots

based on the candidate routes. Not only device but also logpoint and operation

number of the candidate lots must be consistent with those of one of the candidate

routes for the machine or the machine-tooling setup. This results in smaller sets

of candidate lots for a machine or a machine-tooling setup in the single-pass

algorithm than in the original GRASP.

4. When the op timal machine-tooling- lot assignment for the first-pass lots is written

to the “solution.csv” file, the logpoint and “Pass_num” of a lot is added in the

record that represents the lot. Since all the lots are first-pass lots by convention,

the "Pass_num" for these lots are just 1.

131

Appendix B: : Pseudocodes for Subroutines in Multipass Scheme I

B.1 INITIALIZATION

At Step 0 the files "solution.csv" and "route.csv" are read to initialize the necessary data

structures and parameters.

Initialization_for_Multipass_Algorithm

Input: solution.csv and route.csv

Output: C_M_Λ_T , M_Λ_T, L1(i), tcl(l,logpoint(l)), last_time = 0, current_time = 0,

FL, R and R(i,λ, l, logpoint(l))

Step 1. Read solution.csv; set M_Λ_T = Ø and L1(i) = Ø .

1a. FOR each i ∈ M1

Identify machine-tooling setup id λ(i) and completion time tc(i) of

the last lot assigned to the machine. Add (i,λ (i),tc(i)) to M_Λ_T.

Indentify the lots (l,logpoint(l)) assigned to machine i and add them

to L1(i).

ENDFOR

1b. FOR each l ∈ L1

Identify the completion time of l and the corresponding logpoint in

the solution.csv file, and get tcl(l,logpoint(l))

ENDFOR

Step 2. Initialize two variables recording the current time and last time (most recent

time) that some machine finished all lots assgined to it; last_time = 0,

current_time = 0.

Step 3. Set candidate lot list CL = Ø and finished lot list FL = Ø.

132

Step 4. Read route.csv file and initialize R and R(i,λ, l, logpoint(l)) for i ∈ M,

λ ∈ Λ(i), l ∈ L

Step 5. Initialize C_M_Λ_T. Add (i,λ (i),tc(i)) into the set C_M_Λ_T for all i ∈ M.

Steps 2 and 3 can be completed in constant time. The worst case for Step 1 is

O(M1×Λ+  L1) , the worst case for Step 4 is O(M×Λ×L), and the worst

case for Step 5 is O(M). Thus the complexity of the procedure is

O(M×Λ×L).

B.2 UPDATING CANDIDATE LOT LIST

At the beginning of the planning horizon, all higher-pass lots are unavailable by

definition. When a machine finishes its assigned lots, higher-pass lots may become

available except for those at the final step in their route since no more processing is

required.

Building_CL_Algorithm

Input : last_time, current_time, CL, L1, FL, tcl(l,logpoint(l)), l ∈ L

Output: upda ted CL

Step 1. Try to add the lots that are scheduled by the single-pass algorithm and finish

processing between last_time and current_time to the candidate lot list CL.

FOR (l, logpoint(l)) ∈ L1

If last_time = 0, then

If last_time ≤ tcl(l,logpoint(l)) ≤ current_time, then

run Check_for_Next-Pass_Algorithm with input

(l, logpoint(l)).

Endif

Else

If last_time < tcl(l,logpoint(l)) ≤ current_time, then

133

run Check_for_Next-Pass_Algorithm with input

(l, logpoint(l)).

Endif

Endif

If (l, next_logpoint(l)) is returned, then

add (l, next_logpoint(l)) to the candidate lot list CL.

Endif

ENDFOR

Step 2. Try to add the lots that are scheduled by Multipass_Algorithm and finish

between last_time and current_time to the candidate lot list CL.

FOR (l, logpoint(l)) ∈ FL

 If last_time < tcl(l,logpoint(l)) ≤ current_time, then

 run Checking_for_Next_Pass_Algorithm to (l,logpoint(l)).

 If (l, next_logpoint(l)) is returned, then

 add (l, next_logpoint(l)) to the candidate lot list CL.

endif

endif

ENDFOR

Step 1 can be executed in O(CL×R) time and Step 2 in O(FL×R) time.

Thus, the complexity of Building_CL_Algorithm is O((CL+FL) ×R).

B.3 CHECKING WHETHER NEXT PASS EXISTS

The essence of Building_CL_Algorithm is to check whether a scheduled lot is at

the end of its route or if additional processing is required. The check is performed by

comparing the current logpoint with the last logpoint for the device in the routing table.

Check_for_Next-Pass_Algorithm

134

Input: (l, logpoint(l))

Output: (l,next_lotpoint(l)) or ∅

Step 1. Check whether there exists a “next pass” for the lot (l,logpoint(l)): Read route.csv

file and identify all subroutes r ∈ R(i,λ, l,logpoint(l)) for device d(l); rank the

subroutes in an ascending order based on logpoint(l).

Step 2. If there exists any logpo int greater than logpoint(l), then

 identify the logpoint closest to logpoint(l) and denote it by next_logpoint(l);

go to Step 3;

else

 Return ∅, stop.

endif

Step 3. Create a new combination of lot id and logpoint (l, next_logpoint(l)) and return.

 The complexity of the algorithm is O(R).

B.4 GREEDY RANDOMIZED P ROCEDURE FOR ASSIGNING LOTS

Given the candidate machine list C_M_Λ_T_2 and the candidate lot list CL at Step 4 of

the Multipass Algorithm, we must decide which lots to assign to which machines.

Each machine in C_M_Λ_T_2 is considered in sequence starting with the first one, say,

i1. Rather than assigning lots to i1 in decreasing order of their benefit value, though, a

greedy randomized procedure is used to diversify the search for good solutions. The

main idea is to randomly choose a lot from the top five candidates in the ranked list

CL(i1,λ(i1)) ⊆ CL. The process is repeated until no more assignments are possible, at

which point, the next machine i2 is considered.

 In the computations, some lots become available earlier than the machine under

consideration, and other lots later. Thus we need to keep track of when a lot become

135

available, i.e., when the step associated with its preceding logpoint is finished. This

information is recorded in (l, next_logpoint(l)), tcl(l, preceding_ logpoint(l)) ∈ CL.

The advantage of this randomized approach over a purely greedy approach is that

it expands the search area allowing us to explore more of the feasible region. For

example, assume that we have a machine i1 with 18 hours remaining, and four lots in

CL(i1,λ(i1)) with benefit values orde red such that l1 = l2 = 100 > l3 = l4 = 99. The times

required for processing l1, l2, l3 and l4 are 8, 8, 5 and 5 hours, respectively. The greedy

solution would assign l1, l2 to i1. A better solution would be to assign l1, l3, and l4 to i1.

This procedure is outlined below.

Assign_Lot_Algorithm

Input: (i,λ (i),tc(i)), CL, FL, R, tcl(l, logpoint(l))

Output: Updated CL, FL, L2(i), tcl(l,logpoint(l))

Step 1. Rank the lots in CL in a descending order based on their benefit contribution to

(1a).

Step 2. Build CL(i,λ(i)), the candidate lot list that can be processed by machine i with

tooling setup λ(i).

FOR each (l,logpoint(l)) ∈ CL, beginning with the first element,

If R(i,λ,l, logpoint(l)) ≠ Ø, then

 find t he subroute r ∈ R(i,λ, l,logpoint(l)) with the largest PP H;

 calculate time required to finish the lot (l, logpoint(l)) as follows:

required_time = Quantity/ PPH + Load_Unload_Time

 If required_time ≤ H(i) − tc(i), then

 add (l, logpoint(l)to CL(i,λ(i))

Endif

Endif

136

ENDFOR

Step 3. Rank the lots in CL(i,λ(i)) in non- increasing order based on their benefit va lue

Step 4. WHILE (|CL(i,λ(i)) | ≥ 1)

Let num_candidate = min{|CL(i,λ(i))|, 5}, then

 randomly choose a lot (l, logpoint(l)) from top num_candidate in the

CL(i,λ(i));

Calculate time required to finish lot (l, logpoint(l)) as follows:

 required_time = Quantity/ PPH + Load_Unload_Time.

Let start_time = max{tc_temp, tcl(l, preceding_logpoint(l))}

If required_time ≤ H(i) − start_time, then

put tc(i) ← start_time + required_time;

 add (l, logpoint(l)) to FL;

add (l, logpoint(l)) to L2(i);

put tc(i) ← tc(i) + required_time;

set tcl(l,logpoint(l)) = tc (i);

Endif

Delete (l,logpoint(l)) from CL;

 ENDWHILE

 Step 1 has complexity O(CL× log(CL). In the worst case, Step 2 takes

O(CL×R) time, Step3 takes O(CL× log(CL) time, and Step 4 takes O(CL).

Thus, complexity of the algorithm is O(CL× log(CL) + CL×R).

137

Appendix C: Pseudocodes for Changeover Algorithm Subroutines

C.1 Initialization

Four sets: available_tooling_set, candidate_lot_list, candi_mach_for

_toolings_list, and candi_mach_for _changeover_list need to be initialized. The results

give the status of machine setups and lot assignments at the beginning of the planning

hor izon. Note the candidate_lot_list associated with the changeover algorithm is larger

than CL associated with the multipass algorithm since unassigned first-pass lots are now

taken into consideration.

Sets and indices

candidate_lot_list set of combinations of lot id and logpoint – this set

stores available lots that can be assigned to reset

machines; (l,logpoint(l)) ∈ candidate_lot_list

candi_mach_for _toolings_list set of combinations of machine instance id, tooling

setup, and completion time of the last lot finised on

this machine. This set stores the machines that still

have toolings on them; (i,λ(i),tc(i)) ∈ candi_mach_for

_toolings_list

candi_mach_for _changeover_list set of combinations of machine instance id and

completion time of the last lot finished on this machine

– stores the machines that are eligible to be reset;

(i,tc(i)) ∈ candi_mach_for _changeover_list

available_tooling_set set of combinations of tooling family tf and number of

tooling pieces ntf available from the tooling family tf;

(tf, ntf) ∈ available_tooling_set

138

L3(i) set of combinations of lot id and logpoint that are

assigned to machine i during t he changeover algorithm

(excludes lots assigned by the single-pass or multipass

algorithms); (l, logpoint(l)) ∈ L3(i).

Initialization

Step1. Set available_tooling_set = Ø. For each tooling family tf, perform

1a. Read tooling.csv, and identify total number of tooling pieces for tooling

family tf.

1b. Read initialsetup.csv, and identify number of used of tooling pieces for

tooling family tf.

ntf = total number − number of used

1c. Read solution.csv, and identify the number of machine that setup with

tooling family tf and their initial setup were not tooling family tf. Then the

number of tooling pieces available for tf is updated as:

ntf = total number − number of machine

1d. Add (tf, ntf) to available_tooling_set

Step 2. Set candidate_lot_list = Ø.

2a. Read wip.csv and identify all lots and their logpoints, and add (l, logpoint(l))

to the set candidate_lot_list. Mark all lots in wip.csv as first-pass lots.

2b. Read solution.csv and identify all assigned lots and their logpoints, and

delete (l, logpoint(l)) from the set candidate_lot_list. Mark all lots in

solution.csv as first-pass lots.

Step3. Set candi_mach_for_toolings_list = Ø, and

L3(i) = Ø for all i ∈ M.

139

3a. Read solutions.csv to identify the machines that are setup or that have initial

setup. Add these machines to candi_mach_for _toolings_list

3b. Read machines.csv and solutions.csv to identify the machines that are idle at

the beginning of the time horizon. These machines are those don’t have any

lots to processs during t ime horizon, and don’t have initial lots to process or

have finished initial lots before the start of the time horizon. Add these

machines to candi_mach_for _resetup_list

C.2 Updating candidate_lot_list
When a machine finishes all of the lots assigned to it, we need to update the set

candidate_lot_list. The corresponding procedure is similar to the one used to update CL

in Multipass_Algorithm, but whenever we find a (l, next_logpoint(l)) by running

Checking_for_Next_Pass_Algorithm, we need to check whether this lot has

already been assigned to a machine by Multipass_Algorithm for subsequent

processing. Since this information is stored in FL, we simply check whether (l,

next_logpoint(l)) is in FL.

Update_Candidate_Lot_List_Algorithm

Input: (i,λ(i),tc(i)), L1(i), L2(i), L3(i), FL, candidate_lot_list,

Output: Updated candidate_lot_list

Step 1: FOR each lot (l, logpoint(l)) ∈ L1(i) ∪ L2(i) ∪ L3(i), apply

Check_for_Next_Pass_Algorithm to (l,logpoint(l)).

If (l, next_logpoint(l)) is returned, then

check whether (l, next_logpoint(l)) is in FL.

If not, then add (l, next_logpoint(l)) to candidate_lot_list

Endif

ENDFOR

140

C.3 Changeover a machine

When a machine is empty, i.e., no tooling is installed on it, this machine is eligible to be

reset. Whenever a new tooling piece becomes available or a lot finishes a step in its

route, we call the Changeover_a_Machine_Algorithm to check whether the

machine can be reset at the current time. If so, then we will app ly the

Assign_Lot_Algorithm discussed in Appendix B.4 to assign lots.

Changeover_a_Machine_Algorithm

Input: (i,tc(i)), Λ(i), candidate_lot_list, available_tooling_set, R, Load_Unload_Time

Step 1. Rank the lots in candidate_lot_list by the benefit value of l corresponding to (l,

next_logpoint(l)), tcl(l, preceding_ logpoint(l)). Let best_benefit = 0,

candidate_lot_list_best = candidate_lot_list, FL_best = FL, L3(i)_best = L3(i),

tcl(l, logpoint(l))_best = tcl(l, logpoint(l)).

 FOR each λ ∈ Λ(i),

Step 2. Check available_tooling_set to see whether there are enough tooling pieces for

λ.

If yes, then go to Step 3.

Step 3. Let candidate_lot_list_temp = candidate_lot_list, FL_temp = FL, R_temp = R,

tcl(l, logpoint(l))_temp = tcl(l, logpoint(l)). Apply

Assign_Lot_Algorithm with (i,λ,tc(i)), candidate_lot_list_temp,

FL_temp, R_temp, tcl(l, logpoint(l))_temp as inputs. Get updated

candidate_lot_list_temp, FL_temp, L3(i)_temp, tcl(l, logpoint(l))_temp.

 Calculate the contribution to (1a) based on the updated FL_temp, L3(i)_temp,

and denote the contribution as benefit_temp. If benefit_temp > best_benefit,

candidate_lot_list_best = candidate_lot_list_temp, FL_best = FL_temp,

L3(i)_best = L3(i)_temp, tcl(l, logpoint(l))_best = tcl(l, logpoint(l))_temp.

141

ENDFOR

Step 4. candidate_lot_list = candidate_lot_list_best, FL = FL_best, L3(i) = L3(i)_best,

tcl(l, logpoint(l)) = tcl(l, logpoint(l))_best

142

Appendix D: Complexity of the Assignment Model and Sequencing
Model

Both the assignment mode l and the sequencing mode l are large-scale MIPs, but

only the former turned out to be difficult to solve to optimality. In this section, we

explore the computational complexity of the two models and show that they are both

strongly NP-hard. In add ition, we investigate various versions of the sequencing mode l

to gain insight into its quick convergence. The analysis indicates that simple cases are

either polynomial or pseudopo lynomial solvable suggesting that some instances of the

full problem may still be easy to solve. Our results are based on analogies to either

structured integer programs or standard machine scheduling problems whose

complexities are well established, so no formal proofs will be given. In most cases, we

will cite results from either Garey and Johnson (1979) or Brucker and Knust’s website

(http://www.informatik.uni-osnabrueck.de/knust/class/). For example, the single machine

scheduling problem (SMSP) with arbitrary setup times between jobs is equivalent to the

traveling salesman problem, which is strongly NP-hard. Therefore, so is the SMSP.

Machined-tooling-lot assignment problem. Although model (3) has a number of

complicating constraints which are included to keep track of resources, time, and

machine capacity, it is only necessary to consider a simplified version to see its

complexity.

Proposition 1. The problem represented by model (3) is NP-hard in the strong sense.

Proof. We show that the generalized assignment problem (GAP), which is known to be

strongly NP-hard, can be polynomially transformed into the machine-tooling- lot

assignment problem (MTLAP). For n jobs and m machines each with capacity ci, i =

1,…,m, recall that the GAP is given by

http://www.informatik.uni-osnabrueck.de/knust/class/�

143

Maximize
1 1 1 1

: , 1,..., ; 1, 1,..., ; {0,1}, ,
m n n m

ij ij ij ij i ij ij
i j j i

w x a x c i m x j n x i j
= = = =

 
≤ = ≤ = ∈ ∀ 

 
∑∑ ∑ ∑

where wij is the benefit when job j is executed by machine i, aij is the capacity of

machine i required to perform job j, and xij = 1 if job j is a assigned to machine i, 0

otherwise. Now, given an instance of GAP an instance of MTLAP can be created as

follows. Assume that the objective is to maximize the weighted sum of lots processed,

each machine is already set up with too ling, and that there is only a single route for each

lot on each machine (that is, subroutes don’t exist so the subscribe r is not needed). For

all machines i, set ci = Hi, and let ail be as in the GAP (the capacity required to process lot

l on machine i will depend on the tooling assigned it). Because the transformation from

GAP to MTLAP is one-to-one, the result follows immediately. 

Sequencing problems. In this subsection, we make use of the standard three-field

machine scheduling notation: α |β |γ, where α indentifies the machine environment and

contains a single entry, β describes processing characteristics and places restrictions on

the jobs, and may be empty, and γ is the objective to be minimized and usually contains a

single entry (see Pinedo 2012). For our purposes, the following parameters are relevant.

α : single machine (1); identical machines in parallel (Pm); unrelated machines in

parallel (Rm)

β : ready time of lot l (rl); deadline of lot l (dl); processing time of lot l (pl); precedence

constraints (prec); sequence in which lots must be processed (chains), common due

date (D); lot l must be processed on one of a subset of machines (Ml)

γ : makespan (Cmax); completion time on machine i (Ci); binary indicator that lot l is late

(Ul); tardiness of lot l (Tl); weight of lot l (wl)

144

Model (4) is a parallel machine scheduling problem with three objectives: (i)

minimize the weighted sum of unprocessed key lots; (ii) maximize the weighted sum of

processed lots; and (iii), minimize the sum of completion times over all machines, subject

to precedence constraints, deadlines and lot-machine assignments. If we consider the first

objective, then the problem can be represented by Rm | prec, dl, Ml | Σl wlUl. The

inclusion of Ml in field β accounts for the fact that each lot l must be processed on a

specific machine as determined by the solution to model (3). Although this problem

does not appear to have been previously studied, several simplifications lead us to the

following result.

Proposition 2. The problem represented by model (4) is NP-hard in the strong sense.

Proof. We consider the case of a single machine with ready times and the objective of

minimizing the weighted sum of unprocessed lots, 1| rl | Σl wlUl. This problem is NP-

hard in the strong sense (Pinedo 2012) and can be obtained by fixing the lots on all

machines but one and assuming that the lots to be sequenced on the remaining machine

have only one pass to complete. Accordingly, the second- and higher-pass lots among

them will have ready times (and deadlines). By the restriction principle (Garey and

Johnson 1979) then, we can conclude that the problem represented by model (4) has the

same complexity. 

Interestingly, the result also holds for the second objective function (because it is

really equivalent to the first), the third objective of minimizing the sum of completion

times on a single machine, 1| rl | Σl Cl, as well as when all the lots have unit processing

time, chains are present, and the objective is to minimize the unweighted sum of

unprocessed lots; that is, 1| chains, pl = 1|Σl Ul. Note that chains correspond to two or

more of the same lot on the same machine but with different pass numbers. When there

are no restrictions on the lots, however, and the objective is to minimize the weighted

145

sum of unprocessed lots, the problem, 1||Σl wlUl, is NP-hard in the ordinary sense.

Finally, for our purposes, when the lots have unit processing time but there is a ready

time for each, the problem of minimizing the weighted sum of unprocessed lots on a

single machine, 1| rl, pl = 1|Σl wlUl, becomes even easier and is polynomially solvable.

In general, all SMSP with ready times and due dates are strongly NP-hard (Garey and

Johnson 1979). As mentioned, such a problem might arise if all the lot start times were

fixed on all but one machine. The lots assigned to the remaining machine would have

ready times and deadlines that could be derived from schedules of the same lots

undergoing different passes in their route on the fixed machines. Of course, if all the

lots on a machine are unique without predecessor or successor passes on other machines

giving 1||Σl Ul, any sequence is optimal in isolation as long as the pass order is preserved.

146

Appendix E – Mathematical Programming Models for Real-Time
Decision Making

Our first model tries to determine new setups and lot assignments that are as close

as possible to those of the target solution; the second is aimed at maximizing the

weighted sum of lots selected for processing. Both models are derived from (1a) – (1i)

and use the same notation. Several new symbols are defined below.

Sets

L(i) set of available lots that can be processed on machine i

L(i,λ) set of available lots that can be processed on machine i with tooling setup λ

M set of all machines

M (l) set of all machines that can process lot l

M (l,r) set of all machines that can process lot l using route r

M set of machines that are eligible for changeover (each machine falls into a

machine group); M ⊆ M

M(l) set of machines that can process lot l

M(l, r) set of machines that can process lot l using route r

R(l) set of routes that can process lot l

R(i,l) set of routes that use machine i to process lot l

R(i,l,λ) set of routes that use machine i to process lot l with tooling setup λ

Λ(i) set of tooling setups that can be installed on machine i

Λ(i,t) set of tooling setups that can be installed on machine i that use a tooling

piece from family t

Parameters and data

nt
tooling number of tooling pieces from family t that are available or will become

available in the next ∆free hours

147

nsetups maximum number of changeovers permitted
load
lτ load the unload time for each lot l

Xilr ,Yiλ values of the target solutions for xilr and yiλ, respectively;

Model 5

φ 1 = Minimize
() (,) (,) (,)

lr ilr ilr
l L r R l i M l r l i l

w x X
λ λ∈ ∈ ∈ ⊆ ∈

−∑ ∑ ∑ ∑
M M

 (5a)

 subject to xilr
r ∈R(i,l)
∑

i∈M (l)
∑ ≤ 1, ∀ l ∈ L (5b)

yiλ
λ∈Λ(i)
∑ ≤ 1, ∀ i ∈ M (5c)

 xilr
r ∈R(i,l ,λ)

∑
l∈L(i,λ)
∑ ≤ L(i,λ) yiλ , ∀ i ∈ M, λ ∈ Λ(i) (5d)

(,)

tooling
t i t

i M i t
b y nλ λ

λ∈ ∈Λ

≤∑ ∑ , ∀ t ∈ T (5e)

()

setups
i

i M i
y nλ

λ∈ ∈Λ

≤∑ ∑ (5f)

(,) (, ,)

devises
loadl
l ilr

l L i r R i l ilr

n x
λ λ

τ
ρ∈ ∈

 
+ 

 
∑ ∑ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i), (5g)

 xilr ∈ 0,1{ }, ∀ i ∈ M, l ∈ L(i), r ∈ R(i,l) (5h)

 { }0,1iy λ ∈ , ∀ i ∈ M, λ ∈ Λ(i) (5i)

 The objective in (5a) is to minimize the weighted sum of the absolute deviations

of the assignment variables xilr from the target solution Xilr (here, wlr = wl − εr). This is an

indirect way of guiding the setup variables yiλ to the target solution Yiλ. It is necessary to

sum xilr and Xilr over all i ∈ M(l,r) ⊆ M(l,λ) to take into account the fact that different

machines in the same family are essentially identical. If route r is used to process lot l

on machine m1 in the maximum capacity solution, then the solut ion to mode l 5 will meet

the target for lot l when it is processed on any machine in the same family as m1 which is

set up in accordance with route r. As required by constraints (5b), the equivalent of

148

(1b), each lot can be processed by at most one route on one machine so

(,) (,) ilri M l r l
x

λ∈ ⊆∑ M
(and

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M
) is either 0 or 1 in (5a). When lot l is

assigned to machine i ∈ M(l), then the tooling associated with one of the routes r ∈ R(i,l)

must be installed on that machine and the temperature set accordingly.

Constraints (5c) are the same as (1c) and restrict each machine i to at most one

tooling configuration from the set Λ(i). Constraints (5d) allow up to |L(i,λ)| lots to be

processed on machine i but prevent a particular lot from being processed on that machine

unless an appropriate setup λ ∈ Λ(i) is made. In conjunction with (5b) , no more than

one route r ∈ R(i,l,λ) can be selected for lot l.

Constraints (5e) are a simplified version of (1d) where it is now assumed that the

temperature is implicitly accounted for in the definition of λ. They restrict the total

number of tooling pieces assigned to machines from family t to the number of pieces

available as specified by the parameter nt
tooling . Constraint (5f) in conjunction with (5c)

limit the number of changeovers to at most nsetups. Constraints (5g) ensure that the total

amount of time for processing lots on each machine is less than or equal to the amount of

time available. Logical restrictions are placed on the variables in (5h) – (5i).

Nevertheless, when solving Model 5, should φ 1 = 0 at optimality in (5a), then

() (,) ii M l
y λλ λ∈ ⊆∑ M

 =
() (,) ii M l

Yλλ λ∈ ⊆∑ M
 for all λ ∈ Λ. A formal statement of this

observation follows.

Proposition 1. If the optimal solution to Model 5 yields φ 1 = 0, then there exists an
optimal solution with

() (,) ii M l
y λλ λ∈ ⊆∑ M

=
() (,) ii M l

Yλλ λ∈ ⊆∑ M
 for all λ ∈ Λ.

Proof. Although a route for a particular device, (and hence a lot) is not unique, each

route maps into a particular machine family, tooling family, and temperature. Therefore,
if

(,) (,) ilri M l r l
x

λ∈ ⊆∑ M
 =

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M
= 1, implying that the corresponding term in

(5a) is zero, then there must exist a machine i ∈ M(l, r) with r fixed, and a machine i' ∈

149

M(l, r) with r fixed (i' may be or not equal to i), must have a unique setup λ such that yiλ

= Yi’λ = 1. Otherwise, it would not possible to process lot l on machine i using route r.
Alternatively, if

(,) (,) ilri M l r l
x

λ∈ ⊆∑ M
=

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M
= 0, which implies that

() (,) ii M l
Yλλ λ∈ ⊆∑ M

= 0, then we can safely set
() (,) ii M l

y λλ λ∈ ⊆∑ M
= 0 without adversely

affecting the solution to Model 5. That is, there are no other lots l ∈ L(i) that could be
processed on machine i using routing r such that

(,) (,) ilri M l r l
x

λ∈ ⊆∑ M
=

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M
= 1 because this would require

() (,) ii M l
y λλ λ∈ ⊆∑ M

=

() (,) ii M l
Yλλ λ∈ ⊆∑ M

= 1. 

A second alternative to the objective function in (6a) is to minimize the weighted
sum of the two absolute value terms,

(,) (,) ilri M l r l
x

λ∈ ⊆∑ M
−

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M and

() (,) ii M l
y λλ λ∈ ⊆∑ M

−
() (,) ii M l

Yλλ λ∈ ⊆∑ M
, but this presents the problem of choosing the

appropriate weights. Regardless of objective function, though, the individual absolute

value terms in (6a) can be linearized without introducing any additional variables or
constraints by recognizing that

(,) (,) ilri M l r l
X

λ∈ ⊆∑ M
 is binary for all i, l, r. When the

latter term is 0, we replace the corresponding absolute value term with
(,) (,) ilri M l r l

x
λ∈ ⊆∑ M

; when it is 1, we replace the absolute value term with 1 −
(,) (,) ilri M l r l

x
λ∈ ⊆∑ M

.

Model 6

The above mode l focuses on the target setups and assignments indicated in the solution of

(1a) – (1i) and derives a new solution for the x and y variables. This solution only

considers the resources available at the current time, call it τ, along with those that will

become available in the upcoming interval τ + ∆free. The second model takes an

opportunistic approach and tries to achieve the greatest benefit in the upcoming round of

changeovers.

150

φ 2 = Maximize

() (,)
lr ilr

i M l L i r R i l
w x

∈ ∈ ∈
∑ ∑ ∑ (6a)

 subject to (5b) – (5i) (6b)

The objective function in (6a) corresponds to the weighted sum of the lots

selected for processing. Nevertheless, the solution to (6a) – (6b) may be nearsighted

because it doesn’t consider subsequent setups and resource requirements; it ignores the

target solution which is optimal for the full planning horizon not just for the interval τ to

τ + ∆free. When τ is close to 0, the objective function value φ 2 is likely to be larger than

the equivalent value provided by the heuristic but as τ approaches the end of the planning

horizon, the opposite is likely to be true. In either case, however, we have the following

theoretical result.

Proposition 2. The machine setup and lot scheduling (MSLS) problem represented by

either Model 5 or Model 6 is NP-complete in the strong sense.

Proof. We begin with the 3-dimensional matching (3DM) problem, which Garey and

Johnson (1979) indicate is NP-complete in the strong sense, and reduce it to an instance

of MSLS.

3DM instance: Set Θ ⊆ W × X × Y, where W, X, Y are disjoint sets have the same

number q of elements.

Question: Does Θ contain a matching; i.e., is there a subset Θ′ ⊆ Θ such that |Θ′| = q and

no two elements of Θ′ agree in any coordinate (no two elements of Θ′ share the same

components)

Given an instance of 3DM, we create an instance of MSLS by associating the set

of machines M with W, the set of lots L with X, and the set of tooling families T with Y.

For this instance, we assume that each tooling family has only a single tooling piece, all

151

temperatures requirements are identical, and that each of the sets M, L and T has exactly q

elements; that is, |M| = |T| = |L| = q. We also assume that each machine can process at

most one lot and that wlr = 1 for all (i,l,t) ∈ M × L × T. The one-to-one association of

(i,l,r) with (i,l,t) is possible because each route corresponds to a unique machine-tooling

combination.

Given this instance of MSLS, the equivalent question is whether there is a feasible

machine-tool assignment such that the total payoff is no less than q? A “yes” answer to

this question means that we can find a solut ion to MSLS such that q or more lots can be

processed. By implication then, solving the restricted version of MSLS implies that we

can solve 3DM and vice versa. To conclude, we observe that the transformation from

3DM to MSLS can be done in linear time and that any proposed solution to MSLS can be

checked in polynomial time. 

152

References

Bard, J.F., Deng, Y., Chacon, R. and Stuber, J. (2010). Midterm planning to minimize
deviations from daily target outputs in semiconductor manufacturing. IEEE
transactions on semiconductor manufacturing, 23(3), 456-467.

Bard, J.F., Gao, Z., Chacon, R. and Stuber, J. (2013). Daily scheduling of multi-pass
lots at assembly & test facilities. International Journa l of Production Research,
51(23-24).

Bard, J.F. and S. Rojanasoonthon (2006). A branch & price algorithm for parallel
machine scheduling with time windows and job priorities. Naval Research
Logistics, 53(1), 24-44.

Bard, J.F. and Wan, L. (2006). The task assignment problem for unrestricted movement
between workstation groups. Journal of Scheduling, 9(4), 315-341.

Chen, J. and C hen, F.F. (2008). Adaptive scheduling and tool flow control in flexible job
shops, International Journal of Production Research, 46(15), 4035-4059.

Chen, J.S., Pan, J.C.-H. and Lin, C.M. (2008). A hybr id genetic algor ithm for the re-
entrant flow-shop scheduling problem. Expert Systems with Applications, 34(1),
570-577.

Chen, J.S., Pan, J. C.-H., and Wu, C.K. (2008). Hybrid tabu search for re-entrant
permutation flow-shop scheduling problem. Expert Systems with Applications, 34
(3), 1924-1930.

Chiang, D.M., Guo, R.S. and Pai, F.Y. (2008). Improved customer satisfaction with a
hybrid dispatching rule in semiconductor back-end factories, International
Journal of Production Research, 46(17), 4903-4923.

Chiang, T.C., Shen, Y.S. and Fu, L.C. (2008). A new paradigm for rule-based scheduling
in the wafer probe centre. International Journal of Production Research, 46(15),
4111-4133.

Chung, S.H., Tai, Y.T. and Pearn, W.L. (2009). Minimising makespan on parallel batch
processing machines with non- identical ready time and arbitrary job sizes.
International Journal of Production Research, 47(18), 5109-5128.

Dabbas, R.M. and Fowler, J.W. (2003). A new scheduling approach using combined
dispatching criteria in wafer fabs. IEEE Transactions on semiconductor
manufacturing, 16(3), 501-510.

Demirkol, E., Uzsoy, R. and Ovacik, I.M. (1995). Decomposition algorithms for
scheduling semiconductor testing facilities. IEEE/CPMT International
Electronics Manufacturing Technology Symposium, 199-204.

153

Demirkol, E. and Uzsoy, R. (1997). Performance of decomposition methods for complex
workshops under multiple criteria. Computers & Industrial Engineering, 33(1-2),
261-264.

Demirkol, E. and R. Uzsoy (2000). Decomposition methods for reentrant flow shops with
sequence-dependent setup times. Journal of Scheduling, 3(3), 155-177.

Deng, Y., Bard, J.F., Chacon, R. and Stuber, J. (2010). Scheduling back-end operations in
semiconductor manufacturing. IEEE Transactions on Semiconductor
Manufacturing, 23 (2), 210-220.

Denton, B., Viapiano, J. and Vogl, A. (2007). Optimization of surgery sequencing and
scheduling decisions under uncertainty. Hea lth Care Manage Science, 10, 13-24.

Dolgui, A. and Proth J.M. (2010). Supply Chain Engineering: Useful Methods and
Techniques. Springer, Heidelberg.

Feo, T.A., Venkatraman, K. and Bard, J.F. (1991). A GRASP for a difficult single
machine scheduling problem. Computers & Operations Research, 18(8), 635-643.

Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming, 98(1),
23-47.

Fowler, J.W., Phillips, D. T. and Hogg, G. L. (1992). Real time control of multiproduct
bulk-service semiconductor manufacturing processes. IEEE Transactions on
Semiconductor Manufacturing, 5, 158–163.

Freed, T., Doerr, K.H. and Chang, T. (2006). In-house development of scheduling
decision suppor t systems: case study for scheduling semiconductor device test
operations. International Journal of Production Research, 45(21), 5075-5093.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York

Graves, S.C., Meal, H.C., Stefek, D. and Zeghmi, A.H. (1983). Scheduling of re-entrant
flow shops. Journa l of Operations Management, 3, 197-207

Gupta, A.M. and Sivakumar, A.I. (2006). Job shop scheduling techniques in
semiconductor manufacturing. The International Journal of Advanced
Manufacturing Technology, 27, 1163-1169

Hwang, H. and Sun, J.U. (1997). Production sequencing prob lem with reentrant work
flows and sequence dependent setup times. Computers & Industrial Engineering,
33(3-4), 773-776

Jarrah, A.I.Z., Bard, J.F. and deSilva, A.H. (1994). Equipment selection and machine
scheduling in general mail facilities. Management Science, 40(8), 1049-1068

Jia, J. and Mason, S.J. (2009). Semiconductor manufacturing scheduling of jobs
containing multiple orders on identical parallel machines. International Journal of
Production Research, 47(10), 2565-2585.

http://link.springer.com/search?facet-author=%22Amit+Kumar+Gupta%22�
http://link.springer.com/search?facet-author=%22Appa+Iyer+Sivakumar%22�
http://link.springer.com/journal/170�
http://link.springer.com/journal/170�

154

Kang, Y.H. and Shin, H.J. (2010). An adaptive scheduling algorithm for a parallel
machine problem with rework processes. International Journal of Production
Research, 48(1), 95-115.

Kim, Y., Bang, J.Y., An, K.Y., and Lim, S.K. (2008). A due-date-based algorithm for lot-
order assignment in a semiconductor wafer fabrication facility. IEEE
Transactions on Semiconductor Manufacturing, 21(2), 209-216.

Knutson, K., Kempf, K., Fowler, J.W. and Carlyle, M. (1999). Lot-to-order matching for
a semiconductor assembly and test facility. IIE Transactions on Scheduling &
Logistics, 31(11), 1103-1111.

Kubiak, W., Lou, S. X. C. and Wang, Y. (1996). Mean flow time minimization in
reentrant job shops with a hub. Operations Research, 44(5), 764-776.

Leachman, R.C.(2002). Application of mathematical optimization to semiconductor
production planning, in M. Resende, P. Pardolos (eds.), Handbook of Applied
Optimization. Oxford University Press, New York, 746-762.

Leachman, R.C. and Carmon, T. (Freed) (1992). “On capacity modeling for production
planning with alternative machine types,” IIE Transactions on Scheduling &
Logistics, 24(4), 62-72.

Leachman, R.C., Jeenyoung K. and Lin V. (2002). SLIM: short cycle time and low
inventory in manufacturing at Samsung electronics. Interfaces, 32(1), 61-77

Lee, H.Y. and Lee, T.E. (2006). Scheduling single-armed cluster tools with reentrant
wafer flows. IEEE Transactions on Semiconductor Manufacturing, 19(2), 226-
240.

Lee, Y.H. and Kim T. (2002). Manufacturing cyc le time reduction using ba lance control
in the semi-conductor fabrication line, Production P lanning & Control, 13(6),
529-540.

Li, S., Tang, T. and Collins D.W. (1996). Minimum inventory variability scheduler with
app lications in semiconductor manufacturing. IEEE Transactions on
Semiconductor Manufacturing, 9, 1–5.

Lin, D. and Lee, C.K.M. (2011). A review of the research methodo logy for the re-entrant
scheduling problem. International Journa l of Production Research, 49(8),
2221−2242.

Liu, H., Zabinsky, Z.B. and Kohn, W. (2011). Rule-based forecasting and production
control systems design utilizing a feedback control structure. IIE Transactions on
Operations Engineering & Analysis, 43(2), 143-152.

Mazzola J.B. and Neebe A.W. (1986). Resource-constrained assignment scheduling.
Operations Research, 34(4), 560-572.

155

Mönch L., Fowler J.W., Dauzère-Pérès S., Mason S.J. and Rose O. (2011). A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations. Journa l of Scheduling, 14(6), 583−599.

Monkman, S.K, Morrice, D.J. and Bard, J.F. (2008). A production scheduling heur istic
for an electronics manufacturer with sequence dependent setup costs. European
Journal of Operationa l Research, 187(3), 1100-1114.

Or, I. (1976). Traveling salesmen-type combinatorial problems and their relation to the
logistics of blood banking. Ph.D. thesis, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, IL.

Quadt, D. and Kuhn,H. (2009). Capacitated lot‐sizing and scheduling with parallel
machines, back‐orders and setup carry‐over, Naval Research Logistics, 56(4),
366‐384.

Ovacik, I.M. and Uzsoy, R. (1994). Rolling horizon algorithms for a single machine
dynamic scheduling problem with sequence dependent setup times, International
Journal of Production Research, 32, 1243−1263.

Ovacik, I.M. and Uzsoy, R. (1995). Rolling horizon procedures for dynamic parallel
machine scheduling with sequence-dependent setup times. International Journal
of Production Research, 33(11), 3173-3192.

Ovacik, I.M. and Uzsoy, R. (1997). Decomposition methods for complex factory
scheduling problems. Kluwer Academic, Boston

Panwalkar, S. S. and Iskander, W. (1977). A Survey of Scheduling Rules. Operations
Research, 25(1), 45-61.

Pearn, W.L., Chung, S.H., Chen, A.Y. and Yang, M.H. (2004). A case study on the
multistage IC final testing scheduling problem with reentry. International Journal
of Production Economics, 88(3), 257–267.

Pfund, M., Fowler, J.W., Gadkari, A. and Chen, Y. (2008). Scheduling jobs on parallel
machines with setup times and ready times. Computers & Industria l Engineering,
54(4), 764-782.

Pinedo, M.L. (2012). Scheduling: Theory, Algor ithms, and Systems, Fourth Edition.
Springer, New York

Pinto, J.M. and Grossmann, I.E. (1998). Assignment and sequencing models for the
scheduling of process systems. Anna ls of Operations Research, 81,433– 466.

Rojanasoonthon, S. and Bard, J.F. (2005). A GRASP for parallel machine scheduling
with time windows. INFORMS Journal on Computing, 17(1), 32–51.

Song, Y., Zhang, M.T., Yi, J., Zhang, L. and Zheng, L. (2007). Bottleneck station
scheduling in semiconductor assembly and test manufacturing using ant colony

http://link.springer.com/search?facet-author=%22Lars+M%C3%B6nch%22�
http://link.springer.com/search?facet-author=%22St%C3%A9phane+Dauz%C3%A8re-P%C3%A9r%C3%A8s%22�
http://link.springer.com/search?facet-author=%22Scott+J.+Mason%22�
http://link.springer.com/search?facet-author=%22Oliver+Rose%22�
http://link.springer.com/journal/10951�

156

optimization, IEEE Transactions on Automation Science and Engineer ing, 4(4),
569-578.

Tu, Y.M., Chao, Y.H., Chang, S.H. and You, H.C. (2005). Model to determine the
backup capacity of a wafer foundry, International Journal of Production
Research, 43(2), 339–359.

Uzsoy, R., Lee, C.Y. and Martin-Vega, L.A. (1992). A review of production planning
and scheduling models in the semiconductor industry part I: system
characteristics, performance evaluation and production planning,” IIE
Transaction on Scheduling & Logistics, 24(4), 47-60.

Van, Z.P. (2000). Microchip Fabrication: A Practical Guide to Semiconductor
Processing, 4th Edition, McGraw-Hill, NY.

Wein, L.M. (1988). Scheduling semiconductor wafer fabrication, IEEE Transactions on
Semiconductor Manufacturing, 1(3), 115–130.

Zhang, X. and Bard, J.F. (2006). Compa rative Approaches to Equipment scheduling in
high volume factories. Computers & Operations Research 33(1), 132-157.

Zhang, M.T., Niu, S., Deng, S., Zhang, Z., Li, Q. and Zheng, L. (2007). Hierarchical
capacity planning with reconfigurable kits in globa l semiconductor assembly and
test manufacturing, IEEE Transactions on Automation Science and Engineering,
4(4), 543-552.

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Problem Description
	3.1 Explanation of terms
	3.2 Problem statement

	Chapter 4: Basic AT Modeling
	4.1 Introduction to basic AT modeling
	4.2 Basic GRASP
	4.3 Extended model and extended GRASP

	Chapter 5: Introduction to the Multipass Model
	5.1 Logpoint and operation number
	5.2 Input files
	Table 1: Name and brief description of primary input files.
	Table 2: Example of a route
	Table 3: Portion of WIP file

	5.3 AT scheduling for the multipass model
	Figure 1: A sample scheduling for multipass problem

	Chapter 6: Multipass Scheduling Scheme I
	6.1 Mathematical model
	6.2 Solution methodology
	6.2.1 Phase I: single-pass algorithm
	Figure 2: Sample output from single-pass algorithm

	6.2.2 Phase II: multipass algorithm without changeovers
	Figure 3: First time a machine finishes its assinged lots
	Figure 4: Second time a machine finishes its assigned lots
	Figure 5 Schedule derived from Multipass Algorithm for example

	6.2.3 Phase III: changeover algorithm
	Figure 6: Flowchart for Changeover_Algorith

	6.3 Output files
	Table 4: Output data files
	Table 5: An example of “solution.csv” for one machine instance
	Table 6: An example of “multi_solution.csv” for one machine instance

	6.4 Computational Result
	Table 7: Comparison of single-pass with multipass results
	Table 8: Comparison of total key device shortages
	Table 9: Weighted sum of key device shortages
	Table 10: Weighted sum of lots processed
	Table 11: Comparison of average makespan and machine time
	Table 12: Runtime comparison

	Chapter 7: Multipass Scheduling Scheme II
	7.1 Mathematical model
	7.1.1 Assignment model
	7.1.2 Sequencing model

	7.2 Solution Methodology
	7.2.1 Phase I: assignment model
	Figure 7: Sample results of Phase I

	7.2.2 Phase II: sequencing model
	Figure 8: Sample results of Phase II

	7.2.3 Phase III: changeover algorithm
	Figure 9: Sample results of Phase III

	7.3 Computational Results
	7.3.1 GRASP vs. ASC
	Table 13: Comparison of GRASP with ASC results
	Table 14: Comparison of weighted sum of key device shortages
	Table 15: Comparison of weighted sum of lots processed
	Table 16: Comparison of number of machines
	Table 17: Comparison of average machine time
	Table 18: Comparison of CPU time

	7.3.2 Assignment vs. Sequencing Solutions
	Table 19: Input and output statistics for assignment model
	Table 20: Input and output statistics for sequencing model
	Table 21: Comparison of lots processed and machine time
	Table 22: Comparison of objective function value and weighted sum of key device shortages
	Table 23: Comparison of weighted sum of lots and number of machine used

	Chapter 8: Real-time Decision Support for AT Operations
	8.1 Comparison of current and maximum capacity solutions
	Table 24: Example of output from comparison algorithm

	8.2 Comparison algorithm
	8.3 Priority list construction
	Table 25: Example of priority computations†
	8.3.1 Rules for setting the priorities
	8.3.2 Calculations
	Table 26: Machines for example of Priority_List_Algorithm
	Table 27: Tooling for example of Priority_List_Algorithm
	Table 28: Initial tooling setups for example of Priority_List_Algorithm
	Table 29: Example results for Priority_List_Algorithm

	8.3.3 Greedy randomized procedure for lot assignments

	8.4 Mixed-integer programming model for real-time control problem
	8.5 Computational experiments
	8.5.1 Results for Compare_Algorithm
	Table 30: Compare results for group 1
	Table 31: Compare results for group 2
	Table 32: Compare results for group 3

	8.5.2 Results for Priority_List_Algorithm
	Table 33: Priorities for resetting available machines

	8.5.3 Comparison of heuristic and MIP results
	Table 34: Heuristic changeover results
	Table 35: CPLEX changeover results for Model 1
	Table 36: Percentage difference between CPLEX and heuristic solutions for Model 5†
	Table 37: CPLEX changeover results for Model 6
	Table 38: Percentage difference between CPLEX and heuristic solutions for Model 6†

	Chapter 9: Future Work
	Appendix A: Procedure to Account for Logpoint and Operation Number in Multipass Scheme I
	Appendix B: : Pseudocodes for Subroutines in Multipass Scheme I
	B.1 Initialization
	B.2 Updating candidate lot list
	B.3 Checking whether next pass exists
	B.4 Greedy randomized procedure for assigning lots
	Appendix C: Pseudocodes for Changeover Algorithm Subroutines

	C.1 Initialization
	C.2 Updating candidate_lot_list
	C.3 Changeover a machine
	Appendix D: Complexity of the Assignment Model and Sequencing Model
	Appendix E – Mathematical Programming Models for Real-Time Decision Making
	References

