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In semiconductor manufacturing, wafers are grouped into lots and sent to a 

separate facility for assembly and test (AT) before being shipped to the customer.  Up to 

a dozen operations are required during AT.  The facility in which these operations are 

performed is a reentrant flow shop consisting of several dozen to several hundred 

machines and up to a thousand specialized tools.  Each lot follows a specific route 

through the facility, perhaps returning to the same machine multiple times. Each step in 

the route is referred to as a “pass.”  Lots in work in process (WIP) that have more than a 

single step remaining in their route are referred to as multi-pass lots.  The multi-pass 

scheduling problem is to determine machine setups, lot assignments and lot sequences to 

achieve optimal output, as measured by four objectives related to key device shortages, 

throughput, machine utilization, and makespan, prioritized in this order. The two primary 

goals of this research are to develop a new formulation for the multipass problem and to 

design a variety of solution algorithms that can be used for both planning and real-time 

control.  To begin, the basic AT model considering only single-pass scheduling and the 

previously developed greedy randomized adaptive search procedure (GRASP) along with 

its extensions are introduced.  Then two alternative schemes are proposed to solve the 

multipass scheduling problem. In the final phase of this research, an efficient procedure is 



 v 

presented for prioritizing machine changeovers in an AT facility on a periodic basis that 

provides real-time support.  In daily planning, target machine-tooling combinations are 

derived based on work in process, due dates, and backlogs.  As machines finish their 

current lots, they need to be reconfigured to match their targets.  The proposed algorithm 

is designed to run in real time.  
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Chapter 1:  Introduction 

The technology used to fabricate, assemble and test semiconductor devices is the 

most complex and expensive in the world of manufacturing. Although the processes 

differ by product and company, the general approach can be divided into two major 

phases: front-end operations, referred to as wafer fabrication and wafer probe (Mönch et 

al. 2011), and the back-end operations, known as assembly and test (AT). Both phases 

consist of a series of intricate steps that utilize sophisticated equipment and technology. 

Front-end operations start with a raw disc-shaped wafer typically made out of silicon and 

end with electronic circuits in the form of chips on the wafer (details are provided by 

Mönch et al. 2011).  In the second phase, the wafers are grouped into lots and delivered 

to an AT facility. Assembly consists of four steps: (i) “die preparation” where each wafer 

is sawed into individual integrated circuits (IC); (ii) “die attachment” where the ICs are 

attached to a support structure or package (e.g., lead frame); (iii) “IC bonding” where the 

ICs are connected to the electrical contacts of the package – this allows interaction with 

the outside world; and (iv) “IC encapsulation” where each device is encased in a plastic 

molding compound or ceramic material, giving physical and chemical protection to the 

circuits.   

Next, the packaged devices are put through a series of tests to ensure that their 

circuits are working properly. The testing is performed on a variety of machines that are 

programmed to check different operating specifications including functionality, voltage, 

current and timing. If no shorts or faults are discovered, the devices are shipped to the 

customer or placed in finished goods inventory. For more detail on back-end operations, 

see, e.g., Ovacik and Uzsoy (1997). 

http://link.springer.com/search?facet-author=%22Lars+M%C3%B6nch%22�
http://link.springer.com/search?facet-author=%22Lars+M%C3%B6nch%22�
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In the semiconductor industry, on-time delivery is a critical component of 

customer satisfaction. Failing to meet promised due dates may incur steep financial 

penalties and result in an unrecoverable loss of business.  Therefore, careful planning at 

each stage in the supply chain has become the norm, especially since wafer fabrication 

and AT operations are most often performed in different facilities in different countries. 

In this research, we investigate the latter, which is arguably the more critical of the two 

manufacturing phases be ing the last link in the supp ly chain.  The goal of the research 

was to develop new mathematical models that could be used to provide production plans 

for up to a week at a time, given a backlog of work in process (WIP) in the form of lots, 

and a demand targets for a subset of devices. In formulating our models, the following 

four objectives were considered: minimizing the shor tage of key devices, maximizing the 

weighted throughput of lots processed, minimizing the number of machine used, and 

minimizing the makespan.  The work was done in conjunction with a leading 

semiconductor manufacturer who has several AT facilities in Asia. 

Back-end operations are performed using families of parallel machines configured 

with various types of too ling. Each device follows a predetermined sequence of steps 

called a route and is processed in batches or lots without interruption.  After finishing 

the current step, a lot may return to the same machine or to a different machine for  the 

next step, giving rise to what is termed reentrant flow (Graves et al., 1983). What needs 

to be decided is how to set up each machine with tooling to run at a specific temperature, 

which lots to assign to each machine, and how to sequence the lots once they are 

assigned. The difficulty in making “optimal” decisions is a consequence of the large 

number of candidate machine-tooling-temperature- lot combinations, and the fact that it is 

necessary to plan for  each step in the route and not just the next one in the sequence. This 
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is what we call the multi-pass aspect of the problem or, as mentioned, the reentrant aspect 

of the flow.   

The first attempt to model this problem was undertaken by Deng et al. (2010) who 

developed a greedy randomized adaptive search procedure (GRASP) to solve the single-

pass version of the prob lem that only took into account the upcoming step.  The model 

developed by Deng et al. (2010) did not give the multipass requirements much 

consideration.  In fact, each lot must undergo a series of operations, defined by its route, 

that are spaced no more than a predetermined number of minutes apart.  When creating 

schedules, it is therefore necessary to look ahead and take into account machine and 

tooling requirements for all operations in a route, and not just the current one.  An 

effective way to deal with this issue is to give higher priority to those lots with several 

passes remaining over those having only one pass to go.  Nevertheless, this greatly 

increases the complexity of the problem and challenges our ability to develop efficient 

algorithms 

The main contribution of this research has been to introduce two different 

schemes that take into account the multipass requirements omitted from the original 

mod el by Deng et al. (2010) and to design solution algorithms that can be implemented in 

an industrial setting.  Related contributions include the design of real-time support 

procedures and test results using actual facility data to validate all algorithms.   

The first scheme for the multi-pass version is a three-phase heuristic.  In the first 

phase, an attempt is made to schedule as many lots as possible in accordance with the 

four objectives mentioned above. Only the upcoming step is considered for each lot.  In 

the second phase, subsequent steps in the route are considered and the corresponding lots 

are assigned to machines if the tooling and temperature are compatible, and capacity still 

exists. In the third phase, machines are reconfigured in an effort to exploit their unused 
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capacity. Nevertheless, subop timal solutions are almost always the result because 

schedules are constructed without regard to downstream steps in the routes. This was 

born out in our latest testing.   

The second scheme is a three-phase optimization-based approach that is aimed at 

correcting the shortsightedness of the first scheme.  The new methodology is centered on 

solving two mixed- integer programming (MIP) models; the first is used to assign tooling 

and lots to machines, and the second to sequence the lots.  This constitutes Phases I and 

II. In Phase III, a changeover procedure is applied to make use of any remaining machine 

capacity. Compared to the first scheme, the second methodology considers all steps in a 

route when planning the machine setups and lot assignments, rather than just the 

upcoming s tep.   

The mod els are now being tested at several facilities of the collaborating company 

in the Far East to examine its effectiveness for capacity planning, estimating daily 

completions, and giving direction to shop floor personnel for resetting machines.  Under 

ideal conditions, models like this provide an indication of maximum throughput (e.g., see 

Freed et al. 2006 ).  However, if the initial state of the system is noticeably different than 

the state recommended by the model, it is not clear how to make the transition as 

opportunities arise over the day.  Equipment failures, insufficient tooling, the arrival of 

hot lots, and limited manpower invariably undermine the best of plans.  As a 

consequence, guidance is needed to handle disruptions and changing circumstances.   

In practice, one of the biggest obstacles to realizing the recommended state by the 

end of the planning horizon is crew availability.  Changeovers take anywhere from 30 to 

60 minutes, so only a handful can be performed each hour.  To help shop floor 

personnel make the most productive decisions under these circumstances, we have 

developed a real-time dynamic procedure for prioritizing machine changeovers and lot 
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assignments.  The methodology uses the maximum-capacity solution obtained from the 

planning model as a target, and constructs a list of recommendations based on available 

tooling, lot weights, processing requirements, and remaining machine capacities. The 

driving force is the perceived value of the lots in WIP, which is measured by several 

parameters including their age, size, planned cycle time, upcoming operation, and the 

number of similar lots. An aggregate benefit measure is computed for each lot and used 

to evaluate all feasible machine setups.  This allows us to construct a priority list for 

resetting one or more machines.  The procedure is intended to be run every few minutes 

or whenever machines and crew are idle. 

The next section presents a literature review. Section 3 introduces the statement of 

the AT problem with multipass.  Section 4 provides mathematical formulations of basic 

AT problems and a GRASP to the basic AT.  Section 5 introduces the multipass AT 

prob lem.  Sections 6 and 7 propose two different modeling and solution methodologies 

for multipass AT.  Section 8 discusses real-time decision support.  Section 9 presents 

opportunities for future work.   
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Chapter 2:  Literature Review 

AT facilities with multipass requirements can be viewed as reentrant shop  flows 

where a job may return to a machine several times before its completion.  The concept of 

reentrant flow was introduced by Graves et al. (1983) motivated by production 

scheduling for a plant manufacturing integrated circuits.  Allahverdi et al. (1999) 

undertook a comprehensive review of research directed towards the solution of static 

scheduling problems involving setup decisions.  Gupta and Sivakumar (2006) conducted 

a survey of job shop scheduling methods in semiconductor manufacturing.  Lin and Lee 

(2011) updated their findings, summarizing models, solution methods, and applications 

appearing in the literature through 2009 that focused on reentrant flow in front-end 

operations.  The reentrant shop investigated in this research is based on back-end 

operations but shares many characteristics of the job shop version of the prob lem 

described by Lin and Lee (2011). However, when multiple passes are considered, as they 

are here, the scheduling becomes more difficult since it is necessary to take into account 

tooling constraints and temperature requirements for each job or lot.  During the past 

thirty years, a large number of solution methods have been proposed.  To provide 

structure to our review, we use the following classification scheme: dispatching rules, 

mathematical programming, and heuristics.  

Dispatching rules are prevalent in both the scheduling and industrial practice 

literature. Although such rules are computationally efficient and easy to implement, they 

are often myopic and give poor results.  In an early survey, Panwalker and Iskandar 

(1977) presented over 100 dispatching rules, which they classified as either local (e.g., 

first- in-first-out) and global.  Examples of the latter are the minimum inventory 

variability scheduler proposed by Li et al. (1996) and the next arrival control heur istic 

from Fowler et al. (1992).  The key weakness of local dispatching rules is that they 

http://link.springer.com/search?facet-author=%22Appa+Iyer+Sivakumar%22�
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cannot handle reentrant flows.  Global rules overcome this difficulty to some extent, but 

they can be complicated to implement and rarely produce optimal solutions, especially 

when the prob lem is defined by multiple objectives.  Taking an integrated approach, 

Dabbas and Fowler (2003) combined a variety of local dispatching rules to sidestep the 

weaknesses of global rules. Using simulation, they demonstrated that their algorithm 

performed better than any common single dispatching policy with respect to on-time 

delivery, variability of lateness, and mean cycle time metrics.  In related work, Choi et 

al. (2011) suggested a real-time decision tree based dispatching rule selector. In the first 

step, a real-time scheduler determines when to choose a new dispatching rule; in the 

second step, a new dispatching rule is chosen using decision trees. The methodology was 

demonstrated using data from a thin film transistor- liquid crystal display manufacturing 

line, which is a typical reentrant flow shop. 

With respect to mathematical programming methods, the use of scheduling 

models and decomposition techniques have figured prominently among researchers.  

Considering scheduling methods first, Graves et al. (1983) modeled a wafer fab as a 

reentrant flow shop  with the objective of minimizing the average throughput time subject 

to meeting a given production rate.  They developed a cyclic technique under high 

volume requirements for scheduling jobs with similar or identical routings which 

included multiple tasks at one or more facilities.  The idea was to reduce the problem 

size by creating cycles over the planning horizon; however, computational feasibility still 

proved to be a challenge.  Kubiak et al. (1996) designed a two-step approach to 

minimize total completion time in a reentrant shop with one hub machine that jobs enter 

multiple times.  They proved that the shortest processing time rule produced optimal 

schedules under the assumptions that the hub machine is the bottleneck and that the 

processing times of jobs on that machine are at least as great as on any other machine 
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(this is referred to as the hereditary order).  Relaxing either assumption did not allow for 

efficient algorithms.  Zhang et al. (2007) proposed a two-level hierarchical capacity 

planning framework to reconfigure kit components in AT operations.  The first level 

focused on midterm planning while the second level created executable plans for 

individual facilities.  The authors also proposed a MIP for the first level problem.  The 

methodology was successfully applied at one of Intel’s AT sites resulting in an annual 

$10 million saving in the purchase of kit components.   

Although the literature on parallel machine scheduling is also vast, there has been 

little published research that looks at machine-tooling combinations, and virtually none 

that considers temperature requirements – a unique aspect of our problem.  Quadt and 

Kuhn (2009) investigated at a simplified version of the AT planning problem and 

developed a MIP formulation based on capacitated lot-sizing models with backorders and 

setups.  They assumed that the machines could be grouped by family so a separate 

scheduling problem could be solved for each. This eliminated the need to treat the 

machines as nonhomogeneous and greatly reduced the size of the original problem.  

Nevertheless, even without too ling and temperature cons iderations the resultant MIPs 

could not be solved exactly, so heuristics were used.  Similar work was undertaken by 

Chen and Chen (2008), Chung et al. (2009), Jia and Mason (2009), Kang and Shin 

(2010), Pfund et al. (2008).  The largest parallel scheduling instances that can be solved 

to optimality contain up to a half-dozen machines and 30 jobs (e.g., see Bard and 

Rojanasoonthon 2006).  

Decomposition techniques are usually applied with the scheduling model 

together.  Based on the work of Ovacik and Uzsoy (1994) and Ovacik and Uzsoy (1997), 

Demirkol and Uzsoy (1997) examined the performance of schedules obtained by 

decomposition aimed at minimizing the maximum lateness.  One observation from their 
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experiments was that minimizing the maximum lateness leads to good solutions for other 

objectives like minimizing the makespan.  In the facility they mode led, the final set of 

operations included test, brand and burn-in, each performed at different workcenters, but 

always using the same family of machines at each.  A complicating feature of the 

problem was sequence-dependent setup times due to the fact that lots could be tested at 

various temperatures. Branding took place at a common workcenter, after which some 

lots required an add itional operation that was performed at the test workcenter.  These 

flow restrictions contrast with ours where a job may undergo many operations as part of 

the testing regimen, sometimes returning to the same machine multiple times, or perhaps 

visiting a different machine at each step in its route.  Demirkol et al. (1995) proposed a 

procedure that decomposes job shop scheduling problems into workcenters consisting of 

groups of identical machines.  They schedule the workcenters one by one in decreasing 

order of importance. However, their analysis was limited to the post-burn-in segment of 

the final testing phase, which is just one of the steps in AT operations.  Knutson et al. 

(1999) investigated a problem in which lots in an AT facility were formed to match the 

size of customer orders.  They assumed that all lots consisted of the same type of chip 

and that yield losses were zero. The planning horizon was set to one day and any delivery 

tardiness or over supply was treated as a penalty.  The problem was formulated as a 

nonlinear integer program with three objectives: maximize the satisfaction of customer 

demand, minimize the number of die (chips) sent to the warehouse, and minimize 

delivery tardiness.  To find solutions, a two-stage decomposition approach was used.  

Demirkol and Uzsoy (2000) proposed a decomposition method for minimizing the 

maximum lateness in reentrant flow shops  with sequence-dependent setup times.  Using 

data from a wafer fab they were not able to improve upon results obtained with simple 

dispatching rules, calling into question the computational burden accompanying their 
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scheme.  The problem proved harde r than expected.   In a similar vein, Bard et al. (2010) 

presented a decomposition algorithm for production planning in a high volume fab that 

uses quarterly commitments to define daily target outputs.  The objective was to 

minimize the sum of the deviations between the target outputs and finished goods 

inventory.  The planning horizon was broken into weekly subproblems that could be 

solved to optimality within a few minutes. A post-processor was then applied to smooth 

production and to increase machine utilization. Extensive testing on realistic size 

instances spanning 4–13 weeks showed that the proposed scheme could find solutions 

quickly, and was much more effective than Lagrangian relaxation or Benders 

decomposition 

Regarding heuristics, Pearn et al. (2004) proposed a three network-based 

heuristics and repor t on a case study for the scheduling prob lem assoc iated with the fina l 

testing of integrated-circuits, which is a generalization of the classical reentrant flow 

batching problem as well as the identical parallel machine problem.  In their mode l, jobs 

were clustered by product type and processed on groups of parallel machines at each step 

in their route.  Processing times were a function of the product type, and the machine 

setup times were sequentially dependent. The objective was to minimize the total 

machine workload without violating due dates.   

With respect to metaheuristics methods, Chen et al. (2008) proposed a genetic 

algorithm and Chen et al. (2008) developed a hybrid tabu search procedure to minimize 

makespan. In the reentrant flow shop they investigated, all jobs have the same routing 

through the machines, and the same sequence is traversed several times to complete the 

jobs.  Song et al. (2007) applied ant colony optimization to reduce the conversion time of 

a bottleneck machine during AT operations.  Three objectives were also investigated: 

minimize unfilled customer demand, minimize total number of machine changeovers, and 
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minimize total changeover time.  The ir algorithm was successfully applied at an Intel 

AT facility and achieved changeover time reductions of up to 20% compared to the 

manual approach then being used.  

The work proposed in the first scheme of this research derives from the mode l and 

solution procedure in Deng et al. (2010).  Their GRASP was designed to examine a 

diversity of machine-tooling combinations and lot assignments over many iterations. 

Tests were conducted using data from the collaborating semiconductor manufacturer with 

the results showing that the GRASP achieves high quality solutions comparable to those 

obtained with CPLEX in often half the time. However, what was missing from their work 

was the inclusion of constraints and logic for scheduling more than a single operation for 

a lot at a time 

The methodology that is described in the second scheme of this research 

decomposes the original multipass scheduling problem into assignment and sequencing 

problems.  Pinto and Grossmann (1998) provided an overview of various assignment and 

sequencing models used for chemical process scheduling. They mainly focused on single-

machine assignment models in which the assignment of jobs to machines is known, and 

multiple-machine assignment models based on time slots and event times. The approach 

that was common to most of the studies they reviewed required an initial specification of 

the number of time slots for each machine in the facility; however, for the multiple 

machine assignment problem, they observed that there is no efficient way to calculate the 

exact number of time slots required to accommodate all the jobs within the given time 

hor izon 

Regarding the assignment problem, Mazzola and Neebe (1986) developed a 

branch-and-bound algorithm and a heur istic for finding solut ions when side constraints 

are present. They provided test results for both procedures for over 400 randomly 



 12 

generated instances. Bard and Wan (2006) constructed a multi-commodity network 

model for assigning tasks to postal service workers during their daily shifts. They 

developed a delayed idle period assignment algorithm in which idle periods were treated 

implicitly and idle time was scheduled in a post-processing phase. In add ition, they 

designed a decomposition algorithm that divided a week into 7 daily problems, and 

applied tabu search to each to find solutions. In their problem, the workforce was 

homogenous, the number of time periods was predetermined, and there was no 

sequencing requirement among tasks.   

In the context of wafer fabrication, Kim et al. (2008 ) investigated a process by 

which lots are assigned to orders with the objective of meeting due-dates. They proposed 

three soft pegging strategies under which the assignment of lots to orders could be 

changed during the production period.  Discrete event simulation was used to evaluate 

the performance of the three strategies.   

With respect to sequencing models, Lee and Lee (2006) designed a Petri net 

based- method for single-armed cluster tools with various reentrant wafer flow patterns, 

which drove a MIP mode l that was used to find an opt imal sequence for a given wafer 

flow pattern. Denton et al. (2007) presented a two-stage stochastic recourse model and 

some practical heuristics for computing operating room schedules that hedge aga inst the 

uncertainty of surgery durations. They focused on the simultaneous effects of sequencing 

surgeries and assigning start times. Hwang and Sun (1997) investigated a problem of 

finding a production sequence of the jobs to minimize makespan. They formulated the 

prob lem as a general two-machine flow shop with a set of job precedence constraints, and 

developed an exact solution procedure based on a modified dynamic programming 

approach. A small numerical example highlighting their methodology was presented but 

no numerical tests were conducted.   
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Other than our prior work, little if any published research exists on the reentrant 

flow, machine-tooling- lot assignment problem that goes beyond traditional job-shop  

scheduling.  In undertaking this study, we viewed the computational challenge as one of 

obtaining high-quality solutions quickly.  As a practical matter, shop floor planners at 

the collaborating company were not willing to wait more than a few hours for results 
  



 14 

Chapter 3:  Problem Description 

3.1 EXPLANATION OF TERMS 

AT operations are performed on a variety of machines that must be set up with the 

appropriate tooling to run under a designed temperature, sometimes referred to as 

certification. Each machine belongs to a machine family, which contains a multiple 

number of identical instances. The same is true for the tooling, which is categorized by 

family type.  During machine setup, tooling is placed on the machine and the 

temperature is adjusted accordingly.  This takes a certain amount of time and requires at 

least one person to perform the basic operations. Therefore, it is desirable to maintain the 

same setup for as long as possible, only considering changeovers when the WIP is 

exhausted. To clarify the terminology, we say that a tooling setup is a specific number of 

tooling pieces from one or more tooling families to be run under a designated 

temperature.  Note that a machine may only be compatible with a subset of tooling 

families and a subset of temperatures. Also,  tooling may only be compatible with a subset 

of temperatures.  The set of temperatures considered in this paper is {1 = low, 2 = 

medium, 3 = high}, which is sufficient for most situations.   

Each machine can not only be set up once during the planning horizon to operate 

at one temperature, but also be re-setup after the machine finishing all the lots assigned to 

it. That is, if machine m is set up with tooling configuration λ1 under temperature τ1, and 

assigned a set of lots l1, then after finishing lots l1, it can run with another too ling setup λ2 

under another temperature τ2 to process another lot set l2 later in the planning horizon, 

when τ2 is feasible for configuration λ2.  

An individual unit undergoing AT operations is referred to as a device. 

Homogeneous wafers containing the same device are grouped into lots and go through 

the AT facility as a batch. Some lots contain critical devices that are given the highest 
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priority to ensure that promised delivery dates are met. These devices are defined as key 

devices, and lots containing them are called key lots. For each key device there is a 

minimum production target for the planning horizon.  Failure to meet the targets results 

in large penalties. However, once the minimum target is achieved, lots with key devices 

are redefined as regular lots and only prioritized by their weight, an input parameter that 

depends on how long the lot has been in process and its relative importance. Note that 

different lots may contain the same device but vary in size.  In our data set, for example, 

both lots 4000654 and 4000655 contain device XPS54386PWPR, but the quantity in lot 

4000654 is 8640 and that in lot 4000655 is 3564.  As mentioned, each lot has its own 

weight which is specified in the input file ”wip.csv.” 

The age of a lot is the current time minus the time it entered the facility. Each lot  

has a planned cycle time (CT) that is constantly compared to its age, as measured by the 

time it enters the facility.  Age, and planned and cumulative CT are used in part to 

determine a weight that reflects the urgency with which a lot should be included in the 

schedule.  Two lots may consist of the same device but differ in chip count, age, and 

upcoming step, and so will have different weights.  Lots are assigned a value that 

depends on their age and remaining cycle time in the facility.  Regardless of the weight 

or designation, though, all devices in a lot must be fully processed at each step without 

preemption, but can be buffered between steps.  

Regarding the flow, a device needs to undergo a predetermined sequence of 

operations that are regarded as a route. There is a one-to-one relationship between a route 

and a device.  Each ope ration in a route is referred as a step or a pass, specifying which 

combinations of machine and tooling setups can perform this operation on this device. 

Each pass has a unique internal id referred to as a logpoint. For example, the respective 

logpoints for first and second passes of device SN0806054PWPR are 7100 and 7121. As 
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seen, the logpoints of two subsequent passes may not be consecutive. Although each 

device has a unique route, each step in the route may be performed by different machines 

and setups. We refer to these alternatives as subroute.  For example, for the first pass of 

device SN0806054PWPR, there is preferred setup and four alternatives. The main setup 

uses machine family ETS-0-64 and the alternatives use machine families ETS-1-64, ETS-

1-128, ETS-1M-64, and ETS-2-64, respectively. In this example, all subroutes share the 

same tooling family, number of required tooling pieces, and temperature.   

For the devices manufactured by the sponsoring company, a route may contain 

anywhere from 1 to 5 steps. We refer to any lot with more than a single step remaining in 

its route as a multipass lot. Because AT facilities are typically arranged as a job shop and 

a route may return a lot to the same machine several times, the majority of AT operations 

result in reentrant flow.  At time zero, lots may either be in process or queued up on the 

shop floor waiting for a machine to become free. All such lots are referred to as first-pass 

lots regardless of the current step in their route.  Once the current step is completed, the 

lot becomes a second-pass lot, with the same logic applying to subsequent steps. As a 

consequence, when a lot is being scheduled, a ll future steps in its route must be taken into 

considerations.  This leads to the concept of a virtual lot. To illustrate, assume that lot  

4000654 containing device XPS54386PWPR is in its first step at logpoint 7100. Also 

assume that its route contains a total of two steps. Thus the second pass of lot 7100 with 

logpoint 7121 is a virtual lot that must be taken into account when developing a 

production plan.  To reiterate, at the start of the planning horizon, the second step in the 

route of device XPS54386PWPR is viewed as a virtual lot and only becomes a “real” lot 

when its first step is finished.  Again, each pass or step may call for different machines 

and tooling setups, adding greatly to the complexity of the problem.   
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In the basic AT problem, each operation is treated as independent of the others, 

thus allowing the corresponding problems to be solved separately. As such, the 

discussion in the basic AT problem relates to an ind ividual ope ration rather than the AT 

facility as a whole. For an incoming lot, a particular subroute must be selected when there 

is more than one option. Each subroute specifies the eligible machine family, the tooling 

requirements, the processing rate, and the operating temperature. Once a subroute is 

selected for the upcoming operation, the lot is assigned to one of the machines in the 

specified family and the required tooling pieces are installed. Each assigned lot is 

processed completely without preemption.   

At the start of the planning horizon, a machine may already be set up with tooling 

and processing some lot that is defined as an initia l lot.  In such cases, we also use the 

terms initia l machine and initial tooling.  The machine, tooling, lot, route and initial 

machine information are recorded in the input files “machines.csv,” “tooling.csv,” 

“wip.csv,” “route.csv” and “initialsetup.csv,” respectively. A detailed description of these 

files can be found in Chapter 5. 

3.2 PROBLEM STATEMENT 

Using the above concepts and terms, we now define the multipass scheduling 

problem: For a given set of machines, tooling, lots, and route table, we wish to decide 

which machines to set up, which tooling and temperature levels to assign to each 

machine, which lots to assign to which machines, and how to sequence the real (and 

virtual) lots to optimize four prioritized objective function components. When no 

additional lots can be processed with the derived machine-tooling assignments but time 

still remains in the planning horizon, we wish to determine how best to change over the 

machines to exploit the unused capacity.  
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The full objective function is the sum of the following four terms: the weighted 

shortage of key devices, the weighted sum of lots processed, the number of machines 

used, and the makespan.  The objective is to minimize the first, third and fourth terms 

and to maximize the second. The constraints can be divided into four categories. The first 

category is associated with resource availability and limits the different machine-tooling 

assignments to the number of machines and tooling available. The second category deals 

with routing issues.  At each step in a route a feasible machine-tooling-temperature 

combination must be selected. Within the model, alternative subroutes are permitted but 

penalized to encourage the selection of the main subroute.  The third category limits 

machine time plus changeover time to the length of the planning horizon, while the fourth 

set of constraints imposes precedent relations on the order the steps in a route follow.  

The sequencing constraints derive from the multipass nature of AT operations. A lot 

cannot start its subsequent pass until it finishes its current pass. It will be seen that the 

virtual lots not only increase the scale of the problem but create modeling difficulties that 

make good solutions difficult to find.  

The real time decision support presents an efficient procedure for prioritizing 

machine changeovers in a semiconductor assembly and test facility on a periodic basis.  

A production plan provides guidelines for running a manufacturing facility over the mid-

term and is often derived with sophisticated models that may require hours of 

computation time. When implemented, though, emergency orders, new requests and o ther 

disruptions can quickly throw the plan out of alignment. To get back on track, this means 

constant re-planning and updating.  In addition, even if there is no disruption in daily 

planning, as machines finish their current lots, they need to be reconfigured to match their 

target setups, derived based on work in process, due dates, and backlogs.  The proposed 

algorithm in Section 9 is designed to achieve this objective and run in real time.   
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Chapter 4:  Basic AT Modeling 

In this section, we present the mathematical formulations for the basic AT 

problem in which it is assumed that all lots require a single operation only. To find 

solutions, we use an enhanced version of our GRASP (Deng et al. 2010) to handle initial 

lots and multiple setups.  

4.1 INTRODUCTION TO BASIC AT MODELING 

The basic model for the AT machine scheduling problem with resource 

constraints considers at most one setup for each machine.  A critical assumption is that 

all machines are idle at the beginning of the planning horizon, all tooling pieces are 

detached, and that setup and unloading times are negligible.  Nevertheless, even with 

these simplifications, the corresponding MIP requires a large amount of notation to 

correctly represent all the machine-tooling-temperature combinations, and from a 

practical point of view, is intractable.  Current technology limits the size of instances 

that can be solved optimally to less than a dozen machines and several hundred lots.   

Indices and sets 

D set of all devices; j ∈ D 

K set of key devices; k ∈ K ⊆ D 

L set of lots in WIP; l ∈ L 

Λ set of feasible tooling setups; λ ∈ Λ 

M set of machines (each machine is a member of a machine family); i ∈ M 

N set of feasible temperature combinations for machines and tooling; n, m ∈ N 

N(n) set of temperature combinations that intersect combination n 

R set of routes (each route is a collection of subroutes that represent a specific 

machine−tooling−temperature combination); r ∈ R 

T set of tooling families; t ∈ T 
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ΤP set of operating temperatures; τ ∈ TP 

TP(n) set of operating temperatures that are elements of temperature combination 

n 

Parameters and data 

bλt number of tooling p ieces from family t required by tooling setup λ 
tooling
mtn  number of tooling pieces from family t available under temperature 

combination m 
devices
ln  number of devices (chips) in lot l 
min_key
kn  minimum number of chips associated with key device k required to be 

processed over the planning hor izon 

ρilr processing rate of lot l on machine i using subroute r (devices pe r hour) 

wl weight (benefit) associated with processing lot l (function of lot age and the 

remaining planned cycle time) 
short
kε  weight (penalty) associated with shortage of key device k 

εr penalty for choosing subroute r  

εM penalty on the number of machines used 

εT penalty on the makespan 

C normalizing constant associated with the various key device shortages 

Hi (capacity) number of hours available on machine i over the planning horizon 

Decision variables 

xilr 1 if lot l is processed by machine i with subroute r, 0 otherwise 

yiλ 1 if machine i uses tooling setup λ, 0 otherwise 
short
k∆  shortage of key device k 

tmax latest completion time among all machines processing lots (makespan) 

tiλ total time used by machine i with tooling setup λ to process lots 
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 tiλ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i) (1f) 

 tmax ≥ tiλ, ∀ i ∈ M, λ ∈ Λ(i) (1g) 
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 xilr ∈ {0,1},∀ i ∈ M, l ∈ L(i), r ∈ R(i,l),   

yiλ ∈ {0,1}, tiλ ≥ 0, ∀ i ∈ M, λ ∈ Λ(i) 

 short
k∆ ≥ 0, ∀ k ∈ K, tmax ≥ 0 (1i) 

Note that indices enclosed in parentheses are used to qualify a set; for example, 

L(i,λ) is the set of lots that can be processed on machine i with tooling setup λ. 

As in goal programming, the subscripted weights (w and ε ) in (1a) are designed to 

prioritize the order in which each objective function term is optimized.  The first term 

corresponds to the objective of minimizing the shortage of the key devices and is given 

the largest weights such that short
kε  >> max{wl : l ∈ L}. The second term is aimed at 

maximizing the total weighted number of lots processed over the planning horizon, which 

is the second objective.  For lot l, wl = lot age + total planned cycle time − cumulative 

cycle time.  The parameter εr in the second term of (1a ) is the penalty incurred when 

(sub)route r is chosen.  Both primary and alternate routes exist for most lots.  To 

encourage the selection of primary routes when at all possible, we use the following 

settings: εr = 0 for r a primary route, εr ∈ (0, min{wl : l ∈ L}) for r an alternate route.   
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The third term in (1a) is intended to minimize the number of machines that are set 

up over the planning horizon be fore changeovers are considered, and the last term is 

designed to minimize the workspan.  The corresponding weights must be specified to 

satisfy the following relationships: min{wl : l ∈ L} >> εM >> εT.  When all the weights wl 

have the same value and short
kε = εM = εT = 0, the problem is equivalent to maximizing the 

throughput.  How the weights are calculated in the numerical test is explained in detail in 

Section 7.3.1.   

Before describing the constraints, we would like to clarify the difference between 

a (sub)route inde xed by r, and a tooling setup indexed by λ.  A device has a route, which 

specifies the machine family,  the tooling families and number of pieces from each, and 

the operating temperature.  Setups are associated with machines and indicate the actual 

tooling pieces and operating temperature specified for each.  Clearly, there is significant 

overlap between these two terms but not a one-to-one relationship; several routes can 

have the same setup because λ is machine independent.   

Accordingly, constraints (1b) require that if lot l is assigned to machine i ∈ M(l), 

then the tooling associated with one of the routes r ∈ R(i,l) must be installed on that 

machine.  Lot l cannot be assigned to more than one machine or be given more than one 

route.  These constraints do not require that each lot be processed but the objective 

function ensures that the as many lots as possible are selected for processing when there 

are a sufficient number of machines, tooling p ieces, and time available.   

Constraints (1c) limit each machine i to at most one tooling configuration λ from 

the set Λ(i).  When the number of lots |L| is small, or when the available tooling is 

limited, it may not be desirable or feasible to set up all machines.  Because changeovers 

are not considered at this point, once the tooling- temperature combination λ is selected 
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for a particular machine, only lots compatible with that combination can be processed on 

that machine.   

Constraints (1d) restrict the total number of tooling pieces assigned to machines 

from family t to the number of pieces available under temperature combination n.  The 

left-hand side of these constraints counts the number of tooling pieces from family t 

associated with the choice of yiλ over all machines, temperatures in TP(n), and 

corresponding tooling setups.  The right-hand side counts the total available number of 

tooling pieces in family t under temperature combination n by summing tooling
mtn  over all 

combinations m ∈ N(n).  For each t ∈ T, there are tooling
mtn  tooling pieces that can be used 

under the nth combination if m shares some temperatures with n.  As an example, assume 

that there are three discrete temperatures, that is, TP = {1,2,3}, and tooling
mtn  = 1, for all t ∈ 

T, m ∈ N, and let the set of possible temperature combinations N = {{1}, {2}, {3}, {1,2}, 

{1,3}, {2,3}, {1,2,3}}.  For n = 4, for example, the temperature set TP(4) = {1,2} and 

N(4) = NC({1,2}) = {{1}, {2}, {1,2}, {1,3}, {2,3}, {1,2,3}} = N \ {3}.  The right-hand 

side of (1d) under combination n is then
 
|N(4)| = 6 for all tooling families t ∈ T.   

Constraints (1e) compute the amount of processing time consumed by machine i 

∈ M under tooling configuration λ ∈ Λ(i) when lot l ∈ L(i,λ) is assigned to it.  The 

complementary constraints (1f) ensure that no machines exceed their capacity.  Although 

we don’t specify the length of the planning horizon explicitly, it is bounded by max{Hi : i 

∈ M}.  The next set of constraints (1g) is used to determine the makespan, tmax.  The 

hierarchical nature of the objective function, though, does not necessarily lead to the 

minimum makespan, even when an exact optimum is obtained for the problem. The 

makespan will be minimal only for the given number of machines required to meet the 

first three objectives.   
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Constraints (1h) ensure that as many lots as possible containing key device k are 

processed, at least until demand min_key
kn  is satisfied.   The shor tage short

k∆  will be 

positive if some of the demand cannot be met due to limited resources.  In that case, a 

penalty equal to short short
k kε ∆  is incurred, where C = max{wl : l ∈ L} + 0.1Σl∈Lwl is a 

normalizing constant used to ensure that the left-hand-side coefficients in (1h) are all the 

same order of magnitude.  In (1i), binary restrictions are placed on the x and y variables, 

and nonnegative restrictions are placed on the remaining ∆ and t variables. The solution 

to (1a) – (1i) provides the target values for configuring the facility over the planning 

hor izon.   

4.2 BASIC GRASP 

In the original work by Deng et al. (2010), model (1) was solved with a two-level 

decomposition strategy embedded in a reactive GRASP.  Initial lots, setups and the 

multipass requirements of some lots were not taken into account.   

The algorithm was based on the observation that model (1) becomes much easier 

to solve when the machines setups are given, that is, when the yiλ variables are fixed, 

leaving what we call the lower level problem (LLP) in the xils variables.  Although 

practical instances of LLP can often be solved as an integer program with a commercial 

code, we took a heuristic approach to avoid dependence on third party software.  For the 

upper level problem (ULP), a strategic decision must be made concerning machine-

tooling assignments.  Rather than sequentially selecting the most beneficial 

combinations, as gauged by the weighted sum of lots that each combination can process, 

the yiλ variables are randomly chosen in accordance with an adaptive greedy function that 

self-adjusts to reflect the quality of the feasible solutions uncovered at each iteration.  

The integer program associated with LLP is then solved as a linear program and the xilr 

variables that are 1 in the solution are fixed.  The remaining xilr variables are chosen with 
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a randomization scheme based again on a function that measures the immediate benefit of 

assigning lot l to machine i provided its tooling setup λ is compa tible with route r.  This 

process is repeated many times allowing for a full exploration of the feasible region.  In 

phase II, a novel linear programming-Monte Carlo-based neighborhood search scheme 

that makes use of local branching ideas (Fischetti and Lodi 2003) is called to improve the 

results. The details along with the various pseudocodes are provided by Deng et al. 

(2010). 

4.3 EXTENDED MODEL AND EXTENDED GRASP  

The basic AT model assumes that all machines are idle at the beginning of the 

planning horizon, all tooling pieces are detached, and that setup and unloading times are 

negligible.  However, these assumptions are too restrictive in practice.  In the extended 

version of the model, initial setups and lot processing are taken into account. As a 

consequence the available time for machine i, denoted by Hi, is not the entire planning 

hor izon H, but the difference between H and the time required to finish the current lot 

being processed.  The logic in the GRASP is adjusted accordingly. To account for the 

setup and unloading times, we let load
lτ be the aggregate time to perform these functions 

for lot l and replace constraint (1e) with  

 tiλ =
( , ) ( , , )

devices
loadl
l ilr

l L i r R i l ilr

n x
λ λ

τ
ρ∈ ∈

 
+ 

 
∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (1e′) 

in the extended model.  The calculations in the extended GRASP are modified to reflect 

this change 
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Chapter 5:  Introduction to the Multipass Model 

5.1 LOGPOINT AND OP ERATION NUMBER 

The routing table identifies all the operations that must be performed on each 

device during assembly and test.  The basic unit is called a “step” and corresponds to a 

combination of a logpoint and an operation number. The logpoint is an internal 

accounting reference in TI’s data base system and is typically a four-digit number such as 

7100, which corresponds to "final test 1." There may be several operations at each 

logpoint but in the vast majority of cases, there is only one.  Consequently, we use the 

words “step” and “operation” interchangeably unless there is a need to distinguish them.   

Logpoint-operation data are contained in the input files route.csv and wip.csv 

which are illustrated in Tables 2 and 3.   It is assumed that if a lot is available for 

processing, it has an entry in wip.csv, which gives its upcoming step, its weight, the 

associated number of devices, its cycle time (CT), and related information.  From the 

route.csv file we can determine the remaining steps for the device that constitutes the lot.  

To establish a frame of reference, we say that first-pass lots are those lots whose 

upcoming step is shown in wip.csv, regardless of specific logpoint and operation number.  

Higher-pass lots don’t yet exist and so can be considered “virtual.” That is, a second-pass 

lot is created only after the upcoming step of the corresponding first-pass lot is 

completed.  This naming convention applies to all subsequent steps  

5.2 INPUT FILES  

A series of input files are required to run the program that encodes model (1) as 

well as the procedures described in subsequent sections.  Table 1 lists the major files and 

gives a brief description of each.   
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Table 1: Name and brief description of primary input files. 

File name Description 
input.txt A configuration file to specify values for the algorithm 

parameters 
key_package.csv Specify the key packages with the corresponding target 

outputs 
key_pin_package.csv Specify the key pin packages with the corresponding 

target outputs 
keydevices.csv Specify the key devices with the corresponding target 

outputs 
machines.csv Indicates which family each machine instances belong 

to, specifies permissible temperatures for each 
operation 

machine_hours.csv Specifies available running time for each machine 
instance 

tooling.csv Indicates which family each tooling instances belong 
to, specifies temperatures permissible for each 
operation 

toolingfamily_setuptime.csv Specify the setup time for each tooling family 
route.csv Specify routes for the devices to be processed 
wip.csv Indicates the number of chips, weights, device category 

and other related info for the incoming lots 
initialsetup.csv Lists each machine instance, its corresponding family, 

the tooling installed on it, and the operating temperature 
in the beginning of the time horizon.  

The route.csv and wip.csv files are illustrated in Tables 2 and 3, respectively.  

Looking at Table 2 we can see that the logpoints for device QPWPRG4 are "7100," 

"7101," "7102," "7110," and "7112"; a description of each is given in column 4.  In 

Table 3, the first two columns give the lot identifier (id) and corresponding device name. 

Looking at the first record, observe that lot 263 contains 4806 items each being device 

QPWPRG4, and its upcoming logpoint is “7100” and hence has four more steps to go.   

Thus the first pass of lot 263 is "7100," its second-pass lot is "7101," its third-pass lot is 

"7102," its fourth-pass lot is "7110," and its fifth and final pass lot is "7112."  Note that 

in the fifth row of data in Table 3, lot 329 also contains device QPWPRG4 but its 

upcoming step is "7102."  Accordingly, the first pass of lot 329 is "7102," its second 
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pass is "7110," and its third and final pass 329 is "7112."  Knowing the logpoint 

information for each device is a prerequisite for multipass modeling and analysis.   

Tables 2 and 3 also contain the basic data required to set up and solve our 

optimization model that will be present in Chapter 6 and 7.  Each row in Table 2 

corresponds to a subroute-pass combination for a particular route (LTR-T3 in the tables), 

and contains the step information (logpoint, operation number, description), the 

processing rate in parts per hour (PPH), the machine family, the tooling family and 

number of tooling pieces required, and the temperature (temp).  The “Subroute” column 

lists the preferred option (blank) and alternatives that are available for each step and pass.  

For example, for logpoint 7100, operation 1, there are four options.  Each requires the 

same tooling and temperature, but offers the possibility of four different machines: ETS-

0-64, ETS-1-64, ETS-1-128, ETS-1M-64, with the first being preferred.  The 

corresponding four rows define R(i, l,p), the set of subroutes that use machine i to process 

the pth pass of lot l.  Here, l = 263 and p = 1. 

Table 3 defines the WIP at the beginning of the planning horizon.  As mentioned, 

each row corresponds to a particular lot and gives the device name, the quantity of 

devices in the lot, the value of the objective function weight parameter (wlp), the 

upcoming step, and cycle time information.  Those lots that are running at time zero 

(current time) can be identified by examining the “Start time” column.  A non-blank 

entry specifies when the lot started processing.  The next column gives the machine 

instance on which it is running, and the last column gives the current time.  The 

difference between the current time and start time indicates how long the lot has been in 

process. To determine when it will finish, we need to first calculate the total time that the 

lot requires on the current machine i. Dividing the “Quantity” in Table 3 by the “PPH” in 

Table 2 gives us the desired result.  Now, subtracting the in-process time from the total 
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time tells us how many hours the lot still needs (call this value ∆Hi), and indirectly, when 

machine i and its tooling will become free.  This information is used to update the 

capacity of machine i.
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Table 2: Example of a route 

 

Route 
name 

Step  
name 

Step 
description Device Subroute PPH 

Machine 
Family 

Tooling 
family 

Tooling 
quantity Temp 

LTR-T3 7100 FinalTest1 QPWPRG4  1988 ETS-0-64 Master648 1 2 
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1-64 Master648 1 2 
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1-128 Master648 1 2 
LTR-T3 7100 FinalTest1 QPWPRG4 alt 1988 ETS-1M-64 Master648 1 2 
LTR-T3 7101 FinalTest2 QPWPRG4  1988 ETS-0-64 Master648 2 1 
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1-64 Master648 2 1 
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1-128 Master648 2 1 
LTR-T3 7101 FinalTest2 QPWPRG4 alt 1988 ETS-1M-64 Master648 2 1 
LTR-T3 7102 FinalTest3 QPWPRG4  1988 ETS-0-64 Master648 1 3 
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1-64 Master648 1 3 
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1-128 Master648 1 3 
LTR-T3 7102 FinalTest3 QPWPRG4 alt 1988 ETS-1M-64 Master648 1 3 
LTR-T3 7110 QASample1 QPWPRG4  1988 ETS-0-64 Master648 1 2 
LTR-T3 7110 QASample1 QPWPRG4 alt 1988 ETS-1-64 Master648 1 2 
LTR-T3 7112 QASample3 QPWPRG4  1988 ETS-0-64 Master648 1 3 
LTR-T3 7112 QASample3 QPWPRG4 alt 1988 ETS-1-64 Master648 1 3 
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Table 3: Portion of WIP file 

Lot  
name Device Quantity Weight 

Step 
name 

Planned 
CT 

Cum 
CT 

Lot age 
(hrs) Start time 

Machine 
instance Current time 

263 QPWPRG4 4806 1000 7100 15.3 77 83.9 

 

 5/24/2010 11:49 
275 SWR5111W 5760 500000 7100 18.8 62.6 81.4 5/24/2010 11:36 AMAT19-1 5/24/2010 11:49 
275 51116PWPR 5744 500000 7100 0 62.6 81.4 

 

 5/24/2010 11:49 
299 C5696PNR 523 5000 7100 16.9 60.7 77 5/24/2010 11:31 AMAT505-1 5/24/2010 11:49 
329 QPWPRG4 7676 8300 7102 9.3 12.2 21.5 5/24/2010 8:46 AMAT25-1 5/24/2010 11:49 
342 TPS65161 8640 4000 7100 15 53.3 68.6 

 

 5/24/2010 11:49 
347 TPS65161 5759 1 7100 0 0 0 

 

 5/24/2010 11:49 
378 Q1SO7420Q 271 500000 7141 38.1 56.9 61.8 5/24/2010 9:27 AMAT15-1 5/24/2010 11:49 
395 2U54616Q 1960 328800 7124 42.4 5.4 58.8 

 

 5/24/2010 11:49 
419 160APWPR 4320 1 7100 0 0 0 

 

 5/24/2010 11:49 
446 TPA0172 6238 3000 7100 16.3 33 49 5/24/2010 11:33 AMAT02-1 5/24/2010 11:49 
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5.3 AT SCHEDULING FOR THE MULTIPASS MODEL 

With these concepts defined in Section 5.1 in mind, we can now de fine the AT 

scheduling problem for multipass lots.  Given a finite planning horizon (H), a set of 

machines (M), a set of tooling families (T), a set of temperatures (TP), a set of routes (R), 

and a set of lots with upcoming s teps {(l, logpoint(l) : for all l ∈ L}, we wish to de termine 

an optimal sequence of machine-tooling setups and assignments of lots to machines at 

each step in their route so that a hierarchical series of objectives are met.  In order of 

priority, the first objective is to minimize the shortage of key devices; the second is to 

maximize the weighted sum of lots processed; the third is to minimize the number of 

machine used; and the fourth is to minimize the makespan.  At the beginning of the 

planning horizon, some lots will invariably be in process and hence some machines may 

already be  set up.  Depending on the scenario, it may be necessary to take these initial 

conditions into account. 

Figure 1 depicts a typical schedule for three machines. Lots 0 and 8 are on 

machines 1 and 3 respectively at time zero.  Their current logpoints are identified by the 

4-digit number in the bar chart.  During the planning process lots 1 – 7 are assigned to 

machines but only lot 3 can begin at time zero; the other six lots must wait until their 

assigned machines become free.  The second pass of lots 1 and 3 are assigned to 

machine 1.  The second pass of lot 6 is assigned to machine 3. 
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Figure 1: A sample scheduling for multipass problem 

To summarize, the scheduling of multipass lots requires the choice of machine-

tooling setups, lot assignments, and lot sequences to hierarchically optimize four 

objectives subject to the following constraints 

1. All lots l with steps (l, logpoint(l)) must be processed in accordance with their 

subroutes.  At most one machine and one subroute can be chosen for a lot at a 

particular step.   

2. At most one tooling configuration can be installed on a machine at a time 

although changeovers are permitted.   

3. For a given tooling family, the number of tooling pieces in use at any time cannot 

exceed the number available.   

4. The amount of work assigned to each machine cannot extend beyond the planning 

hor izon.   
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5. Unloading a finished lot and loading the upcoming lot requires a certain amount 

of time, which is assumed to be constant.  In the analysis, 10 minutes is used for 

the total.   

6. The prescribed sequencing of steps for a lot must be maintained; that is, pass p+1 

of lot l cannot be started until pass p is finished.  
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Chapter 6:  Multipass Scheduling Scheme I 

6.1 MATHEMATICAL MODEL 

The full machine setup and scheduling problem cannot be modeled efficiently as a 

MIP when machine changeovers and lot sequencing considerations are included. An 

exponential number of logic variables and constraints would be required to keep track of 

lot sequences and starting times on each machine. Instead, we present a partial mode l that 

includes the major components of the problem, and then describe how solutions are 

obtained that satisfy all the constraints.  In the developments, we make use of the 

following notation.   

Indices and sets 

D set of all devices; j ∈ D 

K set of key devices; k ∈ K ⊆ D 

L set of lots in WIP; l ∈ L 

L(j) set of lots in WIP containing device j; l ∈ L(j)  

L(i,k,s) set of lots containing key device k whose step s can be processed on 

machine i.   

Λ set of feasible tooling setups; λ ∈ Λ 

M set of machines (each machine is a member of a machine family); i ∈ M 

N set of feasible temperature combinations for machines and tooling; n, m ∈ N 

N(n) set of temperature combinations that intersect combination n 

P set of all possible passes; p ∈ P  

P(l) set of passes considered in the planning hor izon for each lot l (if a lot is now 

in its second pass, for example, and a total of four passes are required to 

finish its processing, then passes 2, 3 and 4 will be considered); p ∈ P(l) 
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p(j,l,s) pass number corresponding to step s of device j in lot l; p(j,l,s) ∈ P(l), j ∈ D, 

l ∈ L(j), s ∈ S(j) 

R set of routes (each route is a collection of subroutes that represent a specific 

machine−tooling−temperature combination); r ∈ R 

R(i,l,p) set of subroutes that use machine i to process the pth pass of lot l 

R(i,l,λ,p) set of subroutes that use machine i to process the pth pass of lot l with 

tooling setup λ 

S(j) set of all steps in the route for the device j; s ∈ S(j) 

T set of tooling families; t ∈ T 

ΤP set of operating temperatures; τ ∈ TP 

TP(n) set of operating temperatures that are elements of temperature combination 

n 

Parameters and data 

bλt number of tooling p ieces from family t required by tooling setup λ 

Hi (capacity) number of hours available on machine i over the planning horizon 
tooling
mtn  number of tooling pieces from family t available under temperature 

combination m 
devices
ln  number of devices (chips) in lot l 
min_key
ksn  minimum number of chips associated with key device k that are required to 

be processed over the planning horizon at step s 

ρils processing rate of lot l on machine i using subroute r (devices pe r hour) 

wlp weight (benefit) associated with processing lot l during pass p (function of 

lot age and the remaining planned cycle time) 
short
kε  weight (penalty) associated with shortage of key device k 

εr penalty for choosing subroute r  
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Mε  penalty on the number of machines used 

Tε  penalty on the makespan 
load
lτ  unload plus load time for each lot l 

Decision variables 
p

ilrx  1 if pass p of lot l is performed on machine i using subroute r, 0 otherwise 

yiλ 1 if machine i uses tooling setup λ, 0 otherwise 
short
ks∆  shortage of key device k for lots undergoing step s  

tmax latest completion time among all machines processing lots (makespan) 

tiλ total time used by machine i with tooling setup λ to process lots 

Model 
Min ( )

( ) ( ) ( ) ( , , ) ( )
 short short p

k ks lp r ilr M i
k K s S k i M l L i p P l r R i l p i M i

w x y λ
λ

ε ε ε
Λ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∆ − − +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ + Tε tmax (2a) 

subject to 
( ) ( , )

1p
ilr

i M l r R i l
x

∈ ∈

≤∑ ∑ ,  ∀ l ∈ L, p∈ P (l) (2b) 

 
( )

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (2c) 

 
( ) ( , , ) ( )

tooling
t i mt

i M TP n i t m N n
b y nλ λ

τ λ τΛ∈ ∈ ∈ ∈

≤∑ ∑ ∑ ∑ ,  ∀ t ∈ T, n ∈ N (2d) 

 tiλ =
( , ) ( ) ( , , , )

devices
load pl
l ilr

l L i p P l r R i l p ilr

n x
λ λ

τ
ρ∈ ∈ ∈

 
+ 

 
∑ ∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (2e) 

 tiλ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i) (2f) 

 tmax ≥ tiλ, ∀ i ∈ M, λ ∈ Λ(i) (2g) 
 ( , , )

( , , ) ( , , )

devices p k l s short min_key
l ilr ks ks

i M l L i k s r R i l p
n x C n

∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ ,  ∀ k ∈ K, s ∈ S(k) (2h) 

 1

( ) ( , , ) ( ) ( , , )

p p
ilr ilr

i M l r R i l p i M l r R i l p
x x +

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑ , ∀ l ∈ L, p ∈ P (2i) 

 p
ilrx  ∈ {0,1},  ∀ i ∈ M, l ∈ L(i), p∈ P(l), r ∈ R(i, l);  

 yiλ ∈ {0,1}, tiλ ≥ 0,  ∀ i ∈ M,  λ ∈ Λ(i);  

 short
ks∆ ≥ 0, ∀ k ∈ K, s ∈ S(k),  tmax ≥ 0  (2j) 
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Model (2a) – (2j) is an extens ion of the single-pass model (1) that now takes into 

account the reentrant flow.  The original decision variables xilr in the basic model have 

been changed to p
ilrx to reflect the pass number p. The first term in the objective function 

in (2a) is aimed at minimizing the shortages of key devices for each step. The second 

term represents the weighted sum of all lots processed over all possible passes.  

Depending on the lot weights, wlp, this term tries to strike a balance between lots 

undergoing their first pass and those with several passes to come. The last two terms 

penalize the number of machines used and the makespan, respectively, which are viewed 

as secondary objectives.   

Constraints (2b) ensure that during each pass, at most one machine and one 

subroute are chosen for a lot, while constraints (2c) limit the number of setups on a 

machine to 1. Constraints (2d) ensure that no more than the given number of tooling 

pieces in each family are assigned to machines. The next three constraints (2e) – (2g) 

track machine usage and make sure that the maximum time available on each machine is 

not exceeded.  When the pth pass of lot l is assigned to machine i (that is, p
ilrx  = 1 for 

some r) the corresponding time is summed on the right-hand side of (2e).  There is no 

requirement, however, that all passes of a lot be performed on the same machine; in fact, 

each pass may require a different machine and setup.   

Constraints (2h) keep track of the number of key devices processed and along 

with the first term in (2a) minimize shortages. These are the only demand constraints in 

the model.  Note that the index func tion p(k,l,s) inc luded in the decision variable p
ilrx  is 

needed to convert the step id to the pass number.  For the most part, the objective 

function drives output.  It should be pointed out that the minimum requirement for key 

device k in the original model was given as min_key
kn , without the subscript s.  Because 

each lot typically undergoes many steps, only the requirements of those at their final step 
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can be specified directly. Output requirements for key devices whose lots are at 

intermediate steps are a function of the final requirements. By examining all lots that 

consist of key device k, we can derive the appropriate values for their requirements at 

each step s in the computation of short
ks∆ .  In our implementation, we assume that for a 

given k, min_key
ksn is constant for all s.   

Constraints (2i) are introduced to partially account for the precedence relations 

between two consecutive passes of a lot.  It ensures that if pass p + 1 is scheduled for lot 

l on some machine, then pass p has to be scheduled as well; however, it does not 

guarantee that pass p precedes pass p + 1 unless they are both assigned to the same 

machine, and then only implicitly because there are no sequencing constraints.  To 

enforce the timing restriction, it would be necessary to keep track of the sequence on each 

machine and the time at which each lot finished. As mentioned this would require the 

addition of an unmanageably large number of new variables and constraints.  Finally, 

variable definitions are given in (2i).  For each device j, the set of remaining steps in its 

is S(j).  If S denotes the maximum number of steps for all devices, i.e., S= 

{ }max | ( ) |j D S j∈ , then in total there are O(M×L×P×R) variables and O( 

2L×P+ K×S+ 3M×Λ+T×N) constraints.   

Initial conditions. Once the updated machine capacities are determined by putting Hi ← 

Hi − ∆Hi, we need to decide whether or not machines running initial lots can be reset 

when they become free. In our original work, this was the assumption we made so the 

only consequence of initial lots was reduced machine capacity. In an extended version of 

the model we relaxed this assumption and began with yiλ = 1 for all machines i running 

lots at time zero, where λ is determined from Table 1 by picking the setup with the 

largest PPH; however, because the logpoint was ignored we didn’t always select the 
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correct λ.  This oversight is addressed in the current work as well as the option for 

changing over machines after their first setup.   

6.2 SOLUTION METHODOLOGY  

Upon solving model (2), we have an “optimal” assignment of lots to machines 

and the setup information for each machine, but not the lot  sequences. Nevertheless, there 

still may be ample capacity remaining on a subset of the machines to accommodate 

higher-pass lots, even without changeovers.  To ensure the attainment of solutions that 

make the most effective use of the available resources, we have developed a three-phase 

heuristic.  In phase I, the input files are read and a solution is generated for the first-pass 

lots only by solving the equivalent of model (2) for p = 1 using an augmented version of 

the GRASP in Section 4.3.  In phase II, the phase I solution is parsed to identify 

available second- and higher-pass of lots (a second-pass lot becomes available after its 

corresponding first-pass lot is finished and so on), and an attempt is made to insert them 

into existing sequences on the active machines.  In phase III, the active machines are 

reset with different tooling at the time at which they would have finished all their 

assigned lots, and then assigned additional lots whenever possible.  The latter could 

include unassigned first-pass lots.  The goal of phase III is to maximize the utilization of 

each machine’s remaining capacity.   

To diversify the search for solutions, randomness is introduced at several points in 

the execution of the phases II and III to make lot assignments.  In the implementation, 

these two phases are sequentially repeated many times and the schedule associated with 

the best objective function value is reported as the solution.   

An outline of each phase is given below. Those interested in the algorithmic 

details are referred to the corresponding appendix, which contains most of the 
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pseudocodes and their description.  Structurally speaking, phase I embodies the single-

pass algorithm, phase II embodies the multipass algorithm, and phase III embodies the 

changeover algorithm.   

6.2.1 Phase I: single-pass algorithm 

The single-pass algorithm was developed from the basic versions of our GRASP 

that omitted initial machine-tooling setups and simply estimated the time required to 

finish lots running at time zero. The updated version reads the initial machine-tooling 

setups as input, calculates the exact time required to finish initial lots (setup times aren’t 

considered because the initial tooling is already on the machine) and then applies the 

GRASP to get machine-tooling- lot assignments without fixing the initial tooling setups.  

Not all the machines have tooling on them at time zero.  For discussion purposes, 

machines that do, as indicated in the “initialsetup.csv” file are called initial machines 

while the remainder are called regular machines. If an initial machine finishes its initial 

lot before the start of the time horizon, it will be taken as a regular machine by the single-

pass algorithm. In addition, because the pass number of a lot was not considered, 

modifications to the code were made to take the logpoint and operation number into 

account.  The procedure used for this purpose is given in Appe ndix A.  Output is written 

to the file “solutions.csv." 

A sample output of the single-pass algorithm is depicted in Figure 2.  The pair 

(9,1) in the bar chart means lot 9 is undergoing pass number 1.  As can be seen, the first 

pass of lot 9 is already assigned to machine 1 before the start of the planning horizon. 

When the schedule is developed lots 1 – 8 are assigned to one of the four machines. Lots 

3, 6 and 7 start at time zero, but lot 1 as well as lots 2, 4, 5 and 8 must wait until their 

assigned machines are available.   
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Figure 2: Sample output from single-pass algorithm 

6.2.2 Phase II: multipass algor ithm without changeovers  

The multipass algorithm maintains the machine-tooling setups provided by the 

single-pass algorithm and tries to insert second- and higher-pass of lots to the existing 

schedule.  Assume that the production target of each key device is the same for each pass 

and that the weight of a lot for each pass is the same.  Also, the hierarchical nature of the 

objective function remains in force as do the constraints in model (2).  A new set of 

constraints are needed, though, to account for the precedence relations among passes; that 

is, a higher pass lot cannot be processed until its preceding passes are all finished.  In 

other words, the starting time of higher pass lots cannot be earlier than the completion 

time of their preceding passes.   

The approach we take is to suppress the availability of higher-pass lots until their 

immediate predecessors are finished.  This requires that the list of candidate lots be 

upda ted dynamically whenever a machine finishes its assigned lots.  Moreover, it is 

necessary to keep track of the order in which machines become free.   
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The first step is to initialize all parameters and sets used in the algorithm and to 

create a candidate list for lots (CL), a candidate list for machines in use (C_M_Λ_T), and 

a candidate list for machines that can process higher-pass lots (C_M_Λ_T_2) from the 

phase I solution.  Based on a ranking of when the active machines in C_M_Λ_T become 

free, we select the first machine and denote the time when it finishes its assigned lots as 

the current_time. All first-pass lots that are finished at the current_time, regardless of 

which machine they were processed on, are added to the candidate lot list, CL, provided 

that they are not at the last step in their route.  An attempt is then made to sequence the 

lots in CL on the free machine. After all possible second- or higher-pass lot assignments 

are made, the current_time becomes the last_time and a new current_time is determined 

by identifying when the next machine on the list becomes free. Initially, la st_time is set 

to 0. 

Lots that finish in the interval [last_time, current_time] and are at an intermediate 

step in their route are added to CL. After updating CL, the candidate lots are ranked based 

on their benefit value as measured by their contribution to (2a).  The next step is to 

identify which machines are eligible to be assigned the lots l ∈ CL at the current_time.  

All machines finishing their assigned lots earlier than or at curren_time satisfy this 

condition.   

Now, rather than assigning lots with greatest benefit first, a randomized procedure 

is used to allow us to explore a larger neighborhood. The computations are done 

hierarchically. In an outer set of iterations, we cycle through each available machine.  In 

an inner loop, we implement a two-step randomized lot-assignment scheme.  In the first 

step a ranked candidate list of lots CL(i,λ(i)) ⊆ CL is built for machine i with tooling 

setup λ(i) from the compatible lots in CL.  In the second step, we randomly choose one 

lot from top five ranked lots in CL(i,λ(i)) and check whether the time available on 
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machine i is sufficient to process it.  If so, then the lot is removed from CL(i,λ(i)) and 

assign to the machine. The second step is repeated until all the lots in CL(i,λ(i)) are 

explored.  In the implementation several simplifications were considered, depending on 

whether any new lots were added to CL at the current iteration. If not, then only the 

machines available at current_time need to be examined.   

To describe the algorithm in more detail, we make use of the following additional 

notation.  After giving the pseudocode, we discuss the individual steps. The details of the 

subroutines used in the algorithm are given in the Appendix B.  

Indices and sets 

Λ(i) set of all tooling setups that are compatible with machine i; λ ∈ Λ 

M1 set of machines used in the solut ion of first-pass a lgor ithm; i ∈ M1 

L set of lot ids in “wip.csv”; l ∈ L 

L1 set of combinations of lot id and logpoint that are assigned to some machine 

in the solut ion of single-pass algorithm; (l, logpoint(l)) ∈ L1  

L1(i) set of combinations of lot id and logpoint that are assigned to machine i in 

the solution of single-pass algor ithm; (l,logpoint(l)) ∈ L1(i) 

L2(i) set of combinations of lot id and logpoint that are assigned to machine i by 

the multipass algor ithm that are not assigned by the single-pass algor ithm; 

(l, logpoint(l)) ∈ L2(i) 

CL candidate list of higher-pass lots: set of combinations of lot id, logpo int of 

available higher-pass lots, e.g., second-pass lots with corresponding first-

pass lots finished, or third-pass lots with corresponding second-pass lots 

finished.  Note for first-pass lots, the completion time for the preceding 

logpoint is taken as 0; (l, logpoint(l), ∈ CL 
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CL(i,λ) set of combination of lot id and logpoint for available higher-pass lots that 

can be processed by machine i with tooling setup λ; (l,logpoint(l), ∈ 

CL(i,λ(i)) 

FL set of combinations of lot id and logpoint associated with finished lots in the 

solution provided by the multipass a lgor ithm; (l,logpoint(l)) ∈ FL 

R(i,λ,l,logpoint(l)) set of subroutes that use machine i to process lot l at logpoint with 

tooling setup λ  

Algorithmic symbols 

current_time time at which a machine finishes its assigned lots 

last_time most recent time at which a machine other than the current 

machine finishes its assigned lots 

next_logpoint(l) logpoint of the next step in the route of lot l. Note if the second 

step of lot l is finished, this means the logpoint of the third step; if 

the current step of the lot l does not started to be processed yet, this 

just means the logpoint of the current step;  l ∈ L  

preceding_logpoint(l) logpoint of the preceding step in the route of lot l. Note if the 

second step of lot l is finished, this means the logpo int of the first 

step; if the current step of the lot l is not yet finished, this just 

means the logpo int of the current step;   l ∈ L  

λ(i) tooling setup for machine i used in the solution of single-pass 

algorithm 

tc(i)  completion time of the last lot assgined to machine i; i ∈ M 

tcl(l, logpoint(l)) completion time of a lot l with the step denoted by logpoint(l); l ∈ 

L 
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M_Λ_Τ  set of combinations of machine instance id, tooling setup, and 

completion time of the last lot finished on this machine; M_Λ_T = 

{(i,λ(i),tc(i)) : machine i is set up according to λ(i), and finishes its 

last assigned lot at time tc(i), ∀ i ∈ M} 

C_M_Λ_T candidate list of machines in use and ranked according to the time 

they become free; C_M_Λ_T ⊆ M_Λ_L 

C_M_Λ_T_2 candidate machine list for phase II lot assignments; C_M_Λ_T_2 ⊆ 

M_Λ_L  

Input data 

logpoint(l) logpoint of the current step in the route of  lot l; l ∈ L 

d(l) device contained in lot l, as determined from wip.csv file; l ∈ L; 

d(l) ∈ D 

H(i) planning horizon for machine instance i; i ∈ M 

Unload_Load_Time  time required to unload a finished lot and load the next lot 

Multipass_Algorithm  

Step 0 Initialization  

WHILE C_M_Λ_T  ≠ Ø  

Step 1. Rank the elements in C_M_Λ_T in ascending orde r of tc(i).  Choose the first 

element (i1,λ(i1),tc(i1)) in C_M_Λ_T and let current_time = tc(i1).  

Step 2. Update candidate lot list CL. Run Building_CL_Algorithm with CL, L1, 

FL, tcl(l,logpoint(l)), l ∈ L, last_time, and current_time as input. 

Step 3 Build candidate machine list C_M_Λ_T_2 for new lot assignments; set 

C_M_Λ_T_2 = Ø. 

If (l,logpoint(l)) is added to CL in Step 2, then 

FOR each i ∈ M  
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If tc(i) ≤ current_time, then 

add (i,λ(i),tc(i)) to C_M_Λ_T_2. 

Endif 

ENDFOR 

Else 

add (i,λ(i),tc(i)) to C_M_Λ_T _2. 

Endif 

Step 4 FOR each (i,λ(i),tc(i)) ∈ C_M_Λ_T_2 

Run Assign_Lot_Algorithm with input (i,λ(i),tc(i)), CL, FL, R, 

tcl(l, logpoint(l)), l ∈ L to update tc(i), CL, and FL; 

If no lot is assigned to machine i, then 

 delete the corresponding mahcine (i,λ(i),tc(i)) from C_M_Λ_T. 

Endif 

ENDFOR 

ENDWHILE 

Complexity. The number of iterations is greater than or equal to the number of 

machines,M, because the “While” loop has to be executed at least once for each 

machine. In the worst case, the number of iterations is M× L1× max_pass_no, 

where max_pass_no means the largest pass number of lots available for processing. 

During each iteration, ranking the elements in C_M_Λ_T in Step 2 takes O(M× 

logM) time; the complexity of the other steps are analyzed in Appendix B. In sum, the 

worst case complexity of Multipass_Algorithm is O(M×Λ×L + M× 

logM + L× logL + L×R).  

The subroutines used in Multipass_Algorithm are provided in Appendix B.   
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Sample output from the multipass algorithm. Assume that we have run Single-

Pass_Algorithm and obtained the results in Figure 2, and that we are currently 

running Multipass_Algorithm.  The candidate machine list C_M_Λ_T = {1, 2, 3, 

4}.  According to Step 1 of Multipass_Algorithm, the four machines are ranked 

based on the time they finish their assigned lots. As shown in Figure 3, Machine 4 is the 

first to finish.  Denote the finish time as 1,  so current_time = tc(4) = 1 and last_time = 0.  

At Step 2 we need to build the candidate lot list CL, initializing it as the empty set.  Lots 

(9,1), (1,1), (3,1), (6,1), and (7,1) in this order are finished at time 1. Next, we apply the 

Check_for_Next-Pass_Algorithm to these five lots and as a result suppose that 

only lot (6,1)  is at its last step; the others have at least one more step in their route.  Thus 

we insert (9,2) , (1,2) , (3,2) , (7,2) into the candidate lot list CL in nondecreasing order of 

their benefit.  Suppose the result is CL = {(7,2) , (1,2) , (3,2) , (9,2)}.  As Step 3, we 

need to identify all machines available before or at time 1.   Just machine 4 is available so 

C_M_Λ_T _2 = {4}.  Step 4 assigns second-pass lots to the machines in C_M_Λ_T _2 so 

at this point we only check machine 4 for which CL(4,λ(4)) = Ø.   

To build CL(4,λ(4)), we need to check each lot in CL.  Take lot (1,2) as an 

example.  If this lot can be processed by machine 4 with tooling setup 4 and sufficient 

capacity is available, then it is added into CL(4,λ(4)).  For the example, suppose 

CL(4,λ(4)) = {(1,2), (3,2)}.  Since we don’t have five candidates we randomly select one 

of the two and assign it to machine 4. We then consider the lots remaining in CL(4,λ(4)), 

which is the second one and assign it as well to machine 4.  Because at least one lot was 

assigned, we don't delete any machines from the set C_M_Λ_T.   

The current schedule is depicted in Figure 3.  Now, given that C_M_Λ_T  ={1,  

2, 3, 4}, and hence is not empty, we need to repeat Steps 1 to 4 in 

Multipass_Algorithm.  In Step 1, Machine 1 is identified as the next machine to 
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finish its assigned lots (see Figure 3), say, at time 2.  As such, we set last_time = 1 and 

current_time = 2.  In Step 2, lots (2,1) and (6,1) are seen to finish between times 1 and 2, 

and (6,1) is at its last step.  Only lot (2,1) has at least one more step to go, and so is put 

on the candidate lot set CL.  Lots (1,2) and (3,2) are already assigned to machine 4 and 

have been removed from CL.  Thus CL = {(9,2), (7,2), (2,2)}.  In Step 3, machine 1 is 

the only one that finishes its assigned lots before or at time 2.   Thus C_M_Λ_T _2 = {1}.  

In Step 4, we check the compatibility of lots in CL with machine 1 and tooling setup 1.  

As a result, we find that lots (9,2) and (2,2) can be processed by machine 1 with tooling 

setup 1 so CL(1,λ(1)) = {(9,2), (2,2)}.  Next, the Assigning_Lot_Algorithm is 

run.  For this case, lots (9,2) and (2,2) are both assigned during the iteration and so are 

included in the new solution. Again, because lots were assigned to machine 1 it remains 

in C_M_Λ_T. 

Figure 4 displays the schedule after round 1 with the second-pass lots added to 

machines 1 and 4.  The last_time is set to 1 and the current_time is set to 2, which 

coincides with the completion of the lots assigned to machine. With the additional lots, 

machine 4’s completion time comes after time 2.   The iterations continue until 

C_M_Λ_T is empty, i.e., until all machines finish their assigned lots.  The full schedule 

is shown in Figure 5.  
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Figure 3: First time a machine finishes its assinged lots 

 

 

Figure 4: Second time a machine finishes its assigned lots 
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Figure 5 Schedule derived from Multipass Algorithm for example 

6.2.3 Phase III: changeover algorithm 

The single-pass and multipass algorithms make full use of the capacity of the 

current machine-tooling setups.  For those machines whose schedules do not extend to 

the end of the planning horizon, assigning them additional lots requires a changeover, a 

process that must not only take into account machine-tooling-temperature- lot  

compatibility, but also the consistency of logpoint and operation number with the 

selected subroute, and the multipass sequence constraints.   

To ensure that the sequence constraints are satisfied, we take an approach similar 

to that used in phase II where the candidate lots are dynamically updated.  Now, 

however, all unassigned first-pass lots are included in the set of candidate lots when 

resetting machines.  In addition, the set of available tooling is dynamically updated.  

The basic idea is to release the tooling on each machine when it finishes the last lot 
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assigned to it, upda te the candidate lot list, and try to reset the machine with the available 

tooling.  If additional lots can be assigned to the machine when it is reconfigured with 

new tooling, then the change is made.  Otherwise, it remains free.  Whenever there is 

new tooling available or a new candidate lot, an attempt is made to reset the machine 

again.  The same procedure is applied to all machines in the order in which they finish 

the lots assigned to them.  The flowchart of Changeover_Algorithm is shown in 

Figure 6.  All sets, indices and symbols that were defined for Multipass 

Algorithm are used here. 
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Figure 6: Flowchart for Changeover_Algorith
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The details of the initialization step, Update_Candidate_lot_Algorithm 

and Changeover_a_Machine_Algorithm are given in Appendix C. 

6.3 OUTP UT FILES 

In addition to the phase I solution.csv file, the two additional files 

multi_solution.csv and multi_machine_time.csv are generated at the end of phases III.  

Table 4 lists the principal output files 

Table 4: Output data files 

File name Description 
multi_solution.csv Solut ion generated by the three-phase methodology, 

includes all machine-tooling setups and multipass lot 

assignments. 

multi_machine_time.csv Records the operating time of each machine in the 

file multi_solution.csv. 

solution.csv Solut ion ob tained in phase I by the single-pass 

algorithm; provides input to phases II and III. 

time.csv Records the operating time of all machines after 

phase I.   

keydevice_production.csv         Specifies information on shortage of key devices at 

the end of phase I.   

result_summery.txt         Records the total objective function value and the 

value of each term for all passes. 

long_lot.csv Lots not processed due to lack of machine capacity  

In the multipass solution, it is necessary to list lot starting times to make sure that 

the starting time of a second-pass lot does not precede the completion time of its 

corresponding first-pass lot. Examples of the entries in the solution.csv file and 

multi_solut ion.csv file for the machine AMAT11-1 are shown in Tables 5 and 6, 
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respectively.  In these tables, the first row contains the column headings.  Subsequent 

rows represent lots and the machine-tooling setups used to process them.  The columns 

labeled “Machine instance,” “Machine family name,” “Lot name,” “Logpoint,” “Lot 

weight,” “Device name,” “Tooling family name,” “Certification” and Pass no.” are self-

explanatory.  The column with the heading “Quantity” gives the number of devices in 

the lot.  “Initial lot flag” indicates whether the lot is being processed as time zero.  If the 

entry in this column is “Y,” then the entries in columns “Tooling family name” and 

“Certification” will be blank.  “Setup time” specifies when the machine was or will be 

configured with tooling to operate at the indicated certification (temperature).  

“Completion time” indicates when the lot will finish its current pass. In Table 6, “Start 

time” refers to the time at which the lot on the machine is removed and the next one is 

loaded. This value is equal to the completion time of the previous lot. 
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Table 5: An example of “solut ion.csv” for one machine instance 

Machine 
instance 

Machine 
family 
name Lot name Logpoint Quantity 

Lot 
weight 

Initial lot 
flag 

AMAT11-1 ETS-1-64 4014923 7100 3480 2.51E+06 Y 
AMAT11-1 ETS-1-64 4020631 7100 121 60100 N 
AMAT11-1 ETS-1-64 4031897 7100 6590 45400 N 
AMAT11-1 ETS-1-64 4020626 7100 6363 63000 N 
AMAT11-1 ETS-1-64 4033780 7100 7313 1 N 
AMAT11-1 ETS-1-64 4009555 7110 4108 72500 N 

 

Device name 
Tooling 

family name Certification Setup time 
Completion 

time 
XPS40055  

 
11/5/2009 10:32 11/5/2009 10:47 

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 11:01 
TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 15:34 
TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 19:59 
TPA3124D2 6481146C 1 11/5/2009 10:47 11/5/2009 23:58 
XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:32 
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Table 6: An example of “multi_solution.csv” for one machine instance 

Machine 
instance 

Machine family 
name Lot name Logpoint Quantity 

Lot 
weight 

Initial 
lot flag 

AMAT11-1 ETS-1-64 4014923 7100 3480 2.51E+06 Y 
AMAT11-1 ETS-1-64 4020631 7100 121 60100 N 
AMAT11-1 ETS-1-64 4031897 7100 6590 45400 N 
AMAT11-1 ETS-1-64 4020626 7100 6363 63000 N 
AMAT11-1 ETS-1-64 4033780 7100 7313 1 N 
AMAT11-1 ETS-1-64 4009555 7110 4108 72500 N 
AMAT11-1 ETS-1-64 4020631 7110 121 60100 N 
AMAT11-1 ETS-1-64 4035295 7110 8754 1 N 
AMAT11-1 ETS-1-64 4039963 7100 3625 1.65E+06 N 

 

Device name 

Tooling 
family 
name 

Certifi
cation Setup time Start time 

Completion 
time 

Pass 
no. 

XPS40055   11/5/2009 10:32 11/5/2009 8:35 11/5/2009 
10:47 

1 

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 10:47 11/5/2009 
11:01 

1 

TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 11:01 11/5/2009 
15:34 

1 

TPA3121D2 6481146C 1 11/5/2009 10:47 11/5/2009 15:34 11/5/2009 
19:59 

1 

TPA3124D2 6481146C 1 11/5/2009 10:47 11/5/2009 19:59 11/5/2009 
23:58 

1 

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/5/2009 23:58 11/6/2009 
2:32 

1 

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:32 11/6/2009 
2:47 

2 

XPA3123 D2 6481146C 1 11/5/2009 10:47 11/6/2009 2:47 11/6/2009 
8:05 

2 

XPS65160A 6469171D 1 11/6/2009 8:05 11/6/2009 8:05 11/6/2009 
10:19 

1 
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In Table 5, only one setup (6481146C, 1) for machine AMAT11-1 is observed 

since the entries were obt ained from the phase I solut ion which doe s not allow for  

changeovers. In Table 6, we see that the machine was reset once towards the end of the 

planning horizon when the last device, XPS65160A, was scheduled.  Also the machine 

was assigned two second-pass lots 4020631 and 4035295 while still operating under the 

first setup.  The changeover went from tooling 6481146C under certification 1 to tooling 

6469171D under certification 1 at 11/6/2009 8:05.  Note that third- and higher-pass lots 

were considered by the algorithm but only second-pass lots were assigned, either because 

no candidate third-pass lots were available or there was insufficient time remaining in the 

planning horizon.    
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6.4 COMPUTATIONAL R ESULT  

Testing was done using both real and randomly generated data.  The real data 

were provided by the Southeast Asian AT facility of the collaborating company and 

consisted of a typical instance, which served as the basis for randomly generating eight 

additional instances. In all cases, each instance contains 36 machines, 284 tooling pieces 

from 6 families, and 1 temperature (certification) setting.  The number of lots varied as 

explained be low.   

The nine problem sets are divided into three groups of three instances each.  The 

first group contains the original instance and two variants, each with 29 initial machines. 

The second group was derived from the first by randomly reclassifying nine initial 

machines as free and updating the “wip.csv” file accordingly.  These changes result in 

20 initial machines and 9 additional lots, or 1045  lots in total that require processing.  

The third group was created by randomly selecting 10 of the 29 machines as the initial 

machines, and then for  each, choosing a feasible tooling setup from the “route.csv” file 

and an initial lot from the “wip.csv” file.  The total number of lots is 1036 + 19 = 1055. 

Problem 1: lots1036_1_group_1 

Problem 2: lots1036_2_group_1 

Problem 3: lots832_1_group_1 

Problem 4: lots1045_1_group_2 

Problem 5: lot1045_2_group_2 

Problem 6: lot841_1_group_2 

Problem 7: lot1055_1_group_3 

Problem 8: lot1055_2_group_3 

Problem 9: lot800_1_group_3 

where the fields X, Y and Z in the term “lotsX_Y_group_Z” mean 
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X = number of lots 

Y = 1: entries in the column labeled “Quantity” (number of 

devices) in the wip.csv file are used (see Table 5) 

Y = 2: entries in the column labeled “Quant ity” in the wip.csv file 

are randomly generated by using the random function: int(rand()*10000+100). 

Z = group number 1, 2 or 3 

The results obtained with the single-pass algorithm (phase I) were compared to 

those obtained with the three-phase scheme and reported in Tables 7 to 12.  In all cases, 

the entries under the column heading "Percent diff" were calculated as follows.   

Percent diff = 100%(multipass value − single-pass value) / single-pass value 

Table 7 compares objective function values. To put the results on an equal 

footing, the first term in Eq. (2a) was calculated exactly as represented although at most a 

single step is permitted for each lot in WIP when the single-pass algorithm is run.  Thus, 

large shortages are possible for key devices whose lots are in mid-route.  Recall that the 

objective is minimization.   
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Table 7: Comparison of single-pass with multipass results 

Prob.  
no. 

Single-pass  
objective value (106) 

Multipass  
objective value (106) 

Percent  
diff (%) 

1 29,232 25,152 -13.96 
2 68,956 57,336 -16.85 
3 17,214 15,643 -9.13 
4 92,193 82,978 -10.00 
5 67,718 56,473 -16.61 
6 147,463 141,055 -4.35 
7 89,597 84,397 -5.80 
8 227,673 212,334 -6.74 
9 29,085 26,137 -10.14 

Avg. 85,459 77,945 -10.40 

As seen in the Table 7, the three-phase scheme provides an average objective 

function decrease of 10.40%.  The fairly large values in columns 2 and 3 are a result of 

the first term in Eq. (2a) which dominates the other three. In general, the weighted sum of 

key device shortages is a function of the number of key devices in WIP, their target 

values ( min_key
ksn ), the pe rcentage of lots that have key devices, and the number of steps 

remaining in their routes.  To get a more realistic picture of the advantage provided by 

the three-phase scheme, it is useful to compare shortages with respect to the last step in 

each route of each key device. 

Recall that the target production of a key device refers to its last step only.  To 

calculate the unweighted shortage it is necessary to subtract the quantity of each key 

device produced whose last step is included in the schedule from its target value.  Of 

course, only positive shortages are counted. Table 8 presents the corresponding results. 

As can be seen, the percentage difference is 11.73% on average, a slight decrease.  
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Table 8: Compa rison of total key device shortages 

Prob.  
no. 

Single-pass  
key device shortage 

Multipass  
key device shortage 

Percent  
diff (%) 

1 292,660 243,867 -16.67 
2 311,648 254,193 -18.44 
3 461,952 416,246 -9.89 
4 296,820 260,438 -12.26 
5 301,360 243,092 -19.34 
6 471,142 451,785 -4.11 
7 283,539 264,640 -6.67 
8 278,081 256,081 -7.91 
9 282,356 253,400 -10.26 

Avg. 331,062 293,749 -11.73 

The first term in Eq. (2a), however, is the weighted sum of key device shortages, 

not the unweighted sum. Table 9 lists the relevant values for the two approaches along 

with their percentage differences in the last column. The results indicate that the average 

weighed sum of key device shortages obtained from the three-phase scheme is nearly 

12% smaller than that obtained from the single-pass algorithm. Thus, the actual 

contribution of the three-phase scheme to the improvement in the solution is measurably 

higher than reflected in the objective function va lue in Table 7. 

Table 10 specifies the objective function value contributed by lots processed by 

the single-pass algorithm and the three-phase scheme.  The first column identifies the 

problem number.  The second and third columns respectively specify the values of the 

weighted sum of lots processed by the single-pass algorithm and the three-phase scheme.  

The fourth column presents the percentage difference between the two latter values.  

Columns 5 – 8 list the contribution of each pass to the total weighted sum of lots 

processed by the three-phase scheme.  The value in the third column is just the sum of 

the values obtained from the four passes.   
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The results in Table 10 indicate that the multipass scheme yields a nearly 40% 

increase in weighted throughput on average.  It can also be observed that the weighted 

sum of first-pass lots processed is much higher than that for the second-pass lots, which 

in turn is much higher than for third-pass lots.  In five out of the nine problem sets, no 

fourth-pass lots are processed.  This decline is to be expected given the precedent 

relations between the various passes. Implicitly, first-pass lots are given pr ior ity over the 

higher-pass lots, in terms of weighted throughput.  

Table 9: Weighted sum of key device shortages 

Prob.  
no. 

Single-pass  
weighted key device 

shortage  (106) 

Multipass  
weighted key device 

shortage (106) 
Percent  
diff (%) 

1 23,241 19,264 -17.11 
2 54,310 43,770 -19.41 
3 13,817 12,414 -10.15 
4 73,379 64,345 -12.31 
5 52,527 42,280 -19.51 
6 115,886 111,060 -4.16 
7 70,611 65,707 -6.95 
8 176,241 161,071 -8.61 
9 21,328 19,114 -10.38 

Avg. 66,815 59,892 -12.07 
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Table 10: Weighted sum of lots processed 

 Single-pass 
results 
(106) 

Multipass results 

Prob. 
no. 

Total 
(106) 

Percent  
diff (%) 

First pass 
(106) 

Second 
pass (106) 

Third 
pass 
(106) 

Fourth 
pass (106) 

1 32,589 43,191 32.53 33,738 8,626 827 0 
2 33,027 47,375 43.44 36,808 10,567 0 0 
3 15,360 19,810 28.97 16,873 2,928 9 0 
4 35,792 53,875 50.52 35942 10,903 6,203 827 
5 39,344 54,897 39.53 39,528 13,552 1,817 0 
6 20,539 25,468 24 21,642 3,817 9 0 
7 36,829 54,459 47.87 38,760 9,996 5,703 0 
8 36,586 48,046 31.32 39,636 6,932 744 734 
9 23,027 35,799 55.47 24621 4,936 3,948 2,294 

Avg. 30,343 42,742 39.82 31,919 8,226 2,250 1,040 

It should also be mentioned that for both approaches, all 36 machines were used 

to some extent over the 24-hour planning horizon.  Table 11 lists the makespan and 

average machine operation time obtained from the single-pass algorithm and the three-

phase scheme, and the percentage difference between them.  The column headings are 

self explanatory.  As can be seen, the makespan associated with all instances is 

essentially 24 hours, which implies that the capacity of at least one of the 36 machines is 

fully utilized.  However, the average machine operation time for the multipass schedule 

is roughly 7% to 18% greater than that associated with the single-pass schedule, a much 

more insightful result.  The difference is a measure of the increased efficiency that is 

realized when machine changeovers and the reuse of tooling are part of the analysis. 

Table 12 lists the runtime of the single-pass algorithm (phase I), phases II plus III 

of the three-phase scheme, and the sum of all three phases.  After extens ive testing, t he 

number of iterations of phase I was set to 500 and the number of iterations of phase II as 
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well as phase III was set to 100; that is, In  = 500, IIn  = IIIn  = 100.  In the 

implementation the GRASP is first run for 500 iterations to get the single-pass solution. 

Then, starting with the best phase I solution, phases II and III are repeated 100 times. 

 The statistics in Table 12 indicate that the three-phase scheme never takes more 

than thirty minutes.  Although the number of iterations for phases II and III is only one-

fifth of that for phase I, the runtime of phases II and III is nearly 40% more than that of 

phase I on average.  Given this contrast, if it were desirable to reduce the computational 

effort, it would be best to focus on the second two phases. 

Table 11: Comparison of average makespan and machine time 

Prob. 
no. 

Single-pass  
makespan 

 (hr) 

Multipass  
makespan 

(hr) 
Percent  
diff (%) 

Single-pass  
average  

mach time (hr) 

Multipass  
average  

mach time (hr) 
Percent  
diff (%) 

1 24 24 0 21.47 23.106 7.62 
2 24 24 0 20.42 23.4209 14.70 
3 24 24 0 18.8 20.8207 10.75 
4 24 24 0 20.55 23.1489 12.65 
5 24 24 0 21.07 23.5307 11.68 
6 24 24 0 18.99 20.9661 10.41 
7 23.97 23.99 0.08 21.52 23.2414 8.00 
8 23.98 23.99 0.04 21.82 23.3344 6.94 
9 23.98 23.98 0 18.46 21.778 17.97 

Avg. 23.99 23.99 0.01 20.34 22.59 11.19 
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Table 12: Runtime comparison 

Prob.  
no. 

Single-pass (s) Phase II and III (s) 
Total (s) In  = 500 IIn  = IIIn = 100 

1 936 920 1,856 
2 950 936 1,886 
3 638 940 1,578 
4 835 931 1,766 
5 824 968 1,792 
6 573 932 1,505 
7 597 1,017 1,614 
8 502 990 1,492 
9 275 669 944 

Avg. 681 923 1,604 
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Chapter 7:  Multipass Scheduling Scheme II 

7.1 MATHEMATICAL MODEL 

The mode l presented in this section is an extension of the single-pass model (1), 

which only considers first-pass lots.  For model (1), the basic GRASP was developed to 

find solutions because the underlying MIP was too difficult to solve exactly with a 

commercial code.  The multipass nature increases both the dimensionality of problem by 

taking the pass into account and the scale of the problem by considering virtual lots. 

Incorporating these factors as well as the precedence constraints implied by the pass 

requirements into the original MIP would have vastly increased the number of variables 

and constraints, which would have correspondingly increased the computational burden 

to the point where even small instances would not have been solvable 

The full machine setup and scheduling problem cannot be modeled efficiently as a 

MIP when machine changeovers and lot sequenc ing considerations are included. As a 

consequence, we decomposed the problem into two parts. In the first part a variation of 

an assignment problem is solve which includes the objective function and all the 

constraints described in Section 3.2, except the sequencing constraints. In other words, 

the assignment problem determines how to best choose machine-tooling-temperature 

combinations and how to assign lots to machines, but not how sequence the lots. In the 

second part, a sequencing problem is solved that orders the lots on their assigned 

machines. Here, we do not permit machine setups to be modified or unassigned lots to be 

introduced. To maintain feasibility after an “optimal” sequence is found, it may be 

necessary to remove lots or insert idle time into the schedule. The objective of the 

sequencing model is to minimize the weighted sum of lots that have to be discarded from 

the solution of the assignment model plus the weighted sum of any added idle time.  In 
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the Appendix D, the complexity of both problems is analyzed and each is shown to be 

NP-hard in the strong sense.   

7.1.1 Assignment model 

To further clarify terminology, lot pass number p specifies which step o f the route 

the lot is to next undergo. Assume device 1 has five steps in its route and lot 101 

containing device 1 is to undergo the third step. Then, the set of passes, P, considered for 

lot 101 during the planning horizon, is {3, 4, 5} instead of {1, 2, 3}. For convenience, we 

call pass 3 of lot 101 as first pass of lot 101 although its pass number is really 3 in 

actuality.  In the developments, we make use of the following notation.  

Indices and sets 

D set of all devices; j ∈ D 

K set of key devices; k ∈ K ⊆ D 

L set of lots in WIP including initial lots; l ∈ L 

M set of machines (each machine is a member of a machine family); i ∈ M 

P set of all possible passes; p ∈P 

R set of subroutes (each subroute is a specific machine−tooling−temperature 

combination); r ∈ R 

T set of tooling families; t ∈ T 

ΤP set of operating temperatures; τ ∈ TP 

j(l) the device contained in lot l  

L(i)  set of lots that can be processed on machine i during the upcoming pass or 

a future pass (virtual lots); l ∈ L(i), i ∈ M   

Λ set of feasible tooling setups; λ ∈ Λ 
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Λ(i) set of feasible tooling setups that are compatible with machine i; λ  ∈ Λ(ι), 

i ∈ M 

Λ(i,l) set of feasible tooling setups that are compatible with machine i and can 

process lot l; i ∈ M, l ∈ L(i)  

Λ(i,t) set of feasible tooling setups that are compatible with machine i and 

contain tooling family t; λ ∈ Λ(i, t) , i ∈ M, t ∈ T 

Λ(i, t,τ) set of feasible tooling setups that are compatible with machine i, contain 

tooling family t and run under temperature τ; λ ∈ Λ(i, t,τ), i ∈ M, t ∈ T, τ  

∈ TP 

P(j) set of all passes in the route for device j; p ∈ P(j), j ∈ D   

P(l) set of passes considered during the planning horizon for each lot l. For 

example, assuming lot l is to undergo step 2 of its route and there are four 

steps in the route, then P(l) = {2, 3, 4}. Note that if lot l is an initial lot, 

then P(l) will be {3, 4} with the initial pass ignored; p ∈ P(l), l ∈ L 

p0(l) upcoming pass for each lot l ; that is, p0(l) is the first element in the set 

P(l). For example, assuming that step 2 in the route of the device in lot l is 

the next step, then pass 2 will be the upcoming pass; p0 ∈ P(l), l ∈ L 

p1(l) the last pass for lot l ; that is, p1(l) is the last element in the set P(l). For 

example, assuming a lot has a total of four passes, then pass 4 will be the 

last pass; p1 ∈ P(l), l ∈ L 

P(k) set of passes for each key device k; P(k) ⊂ P, k ∈ K 

M(j,p) set of machines that can process pass p of device j; i ∈ M(j,p), j ∈ D, p 

∈P(j)   

M(l) set of machines that can process at least one pass of lot l; i ∈ M(l), l ∈ L 

M(l,p) set of machines that can process pass p of lot l; i ∈ M(l,p), l ∈ L, p ∈ P(l) 
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P(l,i) set of passes considered during the planning hor izon for each lot l such 

that these passes can be processed by machine i; p ∈ P(l,i), l ∈ L, i ∈ M(l) 

N(t) set of temperatures that are compatible with tooling family t; τ ∈ N(t), t ∈ 

T 

L(i,j,p) set of lots (including virtual lots) containing device j and undergoing pass 

p that can be processed by machine i; l ∈ L(i,j,p), i ∈ M, j ∈ D, p ∈P(j)  

R(i,l,p) set of subroutes that use machine i to process pass p of lot l; r ∈ R(i,l,p), i 

∈ M, l ∈ L(i) ,p∈ P(l,i) 

R(i,l,λ,p) set of subroutes that use machine i to process pass p of lot l with tooling 

setup λ; r ∈ R(i,l, λ,p), i ∈ M, l ∈ L(i) , λ ∈ Λ(i,l), p∈ P(l,i) 

Parameters and data 

bλt number of tooling pieces from family t required by setup λ 

C normalizing constant associated with the various key device shortages 

Hi (capacity) number of hours available on machine i over the planning 

hor izon; that is, the total machine hours less the amount of time used to 

process the initial lot if machine i has an initial lot 
tooling
tnτ  number of tooling pieces from family t available under temperature τ 

tooling
tn  number of tooling p ieces available from family t  
devices
ln  number of devices (chips) in lot l 
min_key
pkn  minimum number of devices associated with key device k  that are required 

to be processed over the planning horizon during pass p 

ρilr processing rate of lot l on machine i using subroute r (devices per hour) 

wlp weight (benefit) associated with processing lot l during pass p (function of 

lot age and the remaining planned cycle time) 
short
kε  weight (penalty) associated with shortage of key device k 
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εr penalty for choosing subroute r; for the preferred subroute εr = 0. 

εM penalty on the number of machines used 

εT penalty on the makespan 

STi number of hours required to finish the initial lot on machine i if it has an 

initial lot, 0 o therwise 
load
lτ  load and unload time for each lot l 
setup
λτ  setup time for each setup λ  

Decision variables 
p

ilrx  1 if pass p of lot l is processed by machine i using subroute r, 0 otherwise;  

i ∈ M, l ∈ L(i), p ∈ P(l,i), r ∈ R(i, l,p) 

yiλ 1 if machine i uses setup λ, 0 otherwise; i ∈ M, λ ∈ Λ(i) 
short
pk∆  shortage of key device k at pass p; k ∈ K, p ∈ P(k) 

tmax latest completion time among all machines processing lots (makespan) 

tiλ total time used by machine i with setup λ to process lots; i ∈ M, λ ∈ Λ(i) 

ti total time used by machine i to process lots; i ∈ M 

Model 

Minimize ( )
( ) ( ) ( , ) ( , , )

1  short short p
k pk lp r ilr

k K p P k i M l L i p P l i r R i l p
w x

C
ε ε

∈ ∈ ∈ ∈ ∈ ∈

∆ − −∑ ∑ ∑ ∑ ∑ ∑  

 +
( )

M i
i M i

y λ
λ

ε
Λ∈ ∈

∑ ∑ + εTtmax (3a) 

subject to 
( , ) ( , , )

1p
ilr

i M l p r R i l p
x

∈ ∈

≤∑ ∑ ,  ∀ l ∈ L, p∈ P (l) (3b) 

 
( )

1i
i

y λ
λ∈Λ

≤∑ ,  ∀ i ∈ M (3c)  

 
( , ) ( , , ) ( )

( , )p
ilr i

p P l i r R i l p i
x P l i y λ

λ∈ ∈ ∈Λ

≤∑ ∑ ∑ , ∀ i ∈ M, l ∈ L(i) (3d) 

 
( ) ( , , )

tooling
t i t

i M N t i t
b y nλ λ

τ λ τΛ∈ ∈ ∈

≤∑ ∑ ∑ ,  ∀ t ∈ T (3e) 

 ti =
( ) ( , ) ( , , )

devices
load pl
l ilr

l L i p P l i r R i l p ilr

n xτ
ρ∈ ∈ ∈

 
+ 

 
∑ ∑ ∑ +

( )

setup
i

i
yλ λ

λ

τ
∈Λ
∑ , ∀ i ∈ M (3f) 
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 ti ≤ 
( )

i i
i

H y λ
λ∈Λ
∑ ,  ∀ i ∈ M (3g) 

 tmax ≥ ti,  ∀ i ∈ M (3h) 
 

( , ) ( , , ) ( , , )

devices p short min_key
l ilr pk pk

i M k p l L i k p r R i l p
n x n

∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ ,  ∀ k ∈ K, p∈ P(k)  (3i) 

 1

( , ) ( , , ) ( , 1) ( , , 1)

p p
ilr ilr

i M l p r R i l p i M l p r R i l p
x x +

∈ ∈ ∈ + ∈ +

≥∑ ∑ ∑ ∑ ,  ∀ l ∈ L, p ∈ P (l): p <  p1(l) (3j) 

 0

0 0

( )

( , ( )) ( , , ( )) ( ) ( , ) ( , , )

devices
p l p loadl

i ilr ilr l
i M l p l r R i l p l p P l i M l p r R i l p ilr

p p

nST x x τ
ρ

′

′ ′ ′∈ ∈ ∈ ∈ ∈
′≤

   
+ +   

  
∑ ∑ ∑ ∑ ∑  

 
( , ) ( , , )

( ) p
i i ilr

i M l p r R i l p
H ST x

∈ ∈

 
≤ +  

 
∑ ∑ ,  ∀ l ∈ L, p ∈ P (l): p > p0(l) (3k) 

 p
ilrx  ∈ {0,1},∀ i ∈ M, l ∈ L(i), p∈ P(l),r ∈ R(i,l,p),  

  yiλ ∈ {0,1}, tiλ ≥ 0, ∀ i ∈ M, λ ∈ Λ(i), 
 short

pk∆ ≥ 0, integer, ∀ k ∈ K,  tmax ≥ 0 (3l) 

There are four terms in the objective function (3a) given in order of importance. 

The first term is the weighted sum of key device shortage. In fact, these shortages are 

reduced only when the last pass of a lot containing the device is completed.  To account 

for this in the model, we created shortage variables, short
pk∆ , for each pass p of key device 

k, and set the production target min_key
pkn  of each pass to be the same as the target of the 

final product except if the pass p of device k is an initial lot. The target production for 

each pass of a device needs to be reduced by the amount contained in initial lots. If 

desired,  the shor tage penalty short
kε  associated with key device k can be modified to be a 

function of the different passes.  The second term is the weighted sum of lots processed, 

the third is number of machine used, and the fourth is the makespan. The magnitude of 

the penalties associated with the four terms reflects their relative importance.  In Section 

7.3.1, we explain how these penalties are calculated.   

Constraints (3b) − (3e) account for resource availability and route selection. 

Constraints (3b) limit the number of machines and subroutes chosen for a lot at any pass 
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to at most one while (3c) limit the setups on a machine to at most one. Constraints (3d)  

indicate the relationship between lot l and machine i. First, if a machine is not set up with 

tooling, then no lot can be assigned to it; if machine i has been set up and lot l assigned to 

it, then the number of passes of lot l cannot be larger than |P(l,i)|, the number of passes of 

lot l that can be performed on machine i with its designated setup.  Constraints (3e) 

ensure that the number of tooling pieces used from tooling family t does not exceed the 

number available. 

Constraints (3f) − (3h) are associated with operation times. Constraints (3f) 

calculate the total time used by a machine for setup, loading and unloading, and lot 

processing, but not the time for processing initial lots. A single value, load
lτ , is used for 

unloading lot l on its current machine and then loading the next lot onto that machine.  

At time zero, if a machine is not processing a lot, we assume the loading time of the first 

lot is zero. Constraints (3g) show that the operations of any machine i cannot extend 

beyond its available time, Hi. The makespan is computed by constraints (3h). Recall that 

the minimization of t max is included in the objective function, so constraints (3h) are 

equivalent to t max = max{ti, ∀ i ∈ M }.  

Combined with the first term in the objective function (3a), constraints (3i) 

calculate the quantity of key device shortages. Because short
pk∆ is nonnegative, even if 

production of key device k is over its target min_key
pkn at pass p, short

pk∆ will still be 0. Thus, 

when the target key device k is reached, there is no incentive in the model to give priority 

to lots with k so the selection of those lots will only depend on their relative weights, wlp. 

Constraints (3j) enforce the precedence relations between each consecutive pair of 

passes. They require that if pass p + 1 of lot l is assigned to a machine, then pass p must 

also be assigned. For example, assume that the next pass for lot 103 is pass 2 and P(103) 

= {2, 3, 4}. If pass 2 of lot 103 is not assigned, then pass 3 and 4 cannot be assigned 
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either. Note that (3j) say nothing about the order in which the passes are executed so the 

solution to model (3) may not be feasible. 

Constraints (3k) account for the total time associated with each pass p of lot  l 

beyond the first pass p0(l). The essential difference between these constraints and (3f) −  

(3h) lies in the fact that the former are derived from the sequence of passes of a lot while 

the latter are derived from the lot queuing on a machine. Constraints (3k) ensure that the 

total processing t ime accumulated by lot l from pass p0(l) until pass p must be not greater 

than the hours available on the machine that processes pass p of lot l. Note that the 

starting point of the planning horizon is regarded as hour 0.  The first term on the left-

hand side (LHS) takes into account the starting time of pass p0(l) if it is performed on a 

machine that has an initial lot. The second term sums the processing, load and unload 

times of the passes from p0(l) up to p.  To better understand (3k), suppose we are 

considering lot 103 such that p0(103) is pass 2 and p1(103) is pass 4, and that the 

processing time plus load and unload time for passes 2, 3, and 4 are 9, 10 and 5 hours, 

respectively. Then completing pass 4 requires at least 24 hours, that is, the sum of 

processing hours plus load plus unload hours of passes 2, 3 and 4.  Now assume that the 

amount of time available on machine 1 is 24 hours and on machine 2, 23 hours. Thus 

pass 4 of lot 103 can be assigned to machine 1 but not machine 2. In fact, assigning pass 

4 to machine 1 cannot be guaranteed to be feasible since the time when passes 2 and 3 are 

finished is unknown. The sequencing model addresses this issue. Finally, variable 

definitions are given in (3l). 

Initial conditions. For model (3), an option exists that allows machines processing a lot at 

time zero to be reset when those lots are finished. The default is to maintain the initial 

setup. If the option is not selected, then we set yiλ = 1 for all such machines i, where λ is 

determined from the input file " initialsetup.csv." Moreover, the last term on the RHS of 
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constraints (3f) that sums the tooling setup time setup
λτ  is removed for the corresponding 

machines. 

7.1.2 Sequencing model 

Given the machine setups and lot assignments provided by the solution of model 

(3), we wish to sequence the lots on their assigned machines to ensure feasibility while 

maximizing the weighted sum of lots processed.  At this stage, we do not permit 

machines to be reset nor do we allow lots to be switched from one machine to another or 

unassigned lots to be introduced into the production plan. Even with these restrictions, 

the problem is not straightforward because of the need to take into account start times and 

precedence relations between passes of the same lot. To assure feasibility, it will often be 

necessary to remove some lots from the production plan or to insert idle time between 

some lots.  

Since both real and virtual lots may be in the assignment model solution, two lots 

may differ only by their pass number p. To distinguish these cases, we define a lot-pass 

combination that consists of the lot name l and a pass number p, collectively indexed by 

g. A lot name is an alphanumeric string.  For modeling purposes, a single dummy lot-

pass combination, gdum, is created for the index of the predecessor of the first lot and the 

successor of the last lot on any machine. In addition to the notation introduced in Section 

7.1.1, we also make use of the following 

Indices and sets 

G  set of lot-pass combinations in the solution to the assignment model; g ∈ 

G  

L  set of lots in the solution to the assignment mode l (each lot is identified by 

its name); l ∈ L  
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P (l) set of passes associated with lot name l in the solution to the assignment 

model (not including the initial pass of initial lots); p ∈ P (l), l ∈ L  

g(l,p) index of lot-pass combination (l,p) 

gdum dummy lot-pass combination with lot name l = −1 and pass number p = −1 

lg lot na me associated with the lot-pass combination g (different g could 

contain the same lot) 

pg pass number associated with the lot-pass combination g 

M  set of machines used in the solution to the assignment model; i ∈ M  

( )G i  set of lot-pass combinations assigned to machine i in the solut ion to the 

assignment model; i ∈ M , g ∈ ( )G i  

( )L i  set of lot identified by their name assigned to machine i in the solution to the 

assignment model; l ∈ ( )L i , i ∈ M  

Parameters and data 
H maximum machine capacity; that is, max { }ii MH H

∈
=  

process
gτ  processing time for each lot associated with index g derived from the 

solution to the assignment model; if g

g

p
il rx = 1, then 

g g g

process devices
l l il rnτ ρ= ; g ∈ 

G  
setup
iτ  setup time for machine i when it is in the assignment model solution; if 

iy λ

= 1, then setup setup
i λτ τ= , i ∈ M  

εdelay penalty for a 1-hour delay; εdelay = 1/(100H) 
seq
gω  weight for the lot-pass combination p in the sequencing model; if the lot 

associated with g contains key device k, then seq
gω = short

kε + wlp, else seq
gω =  

wlp.  
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Decision variables 

ug 1 if lot-pass combination g is contained in the solution of the sequencing  

model, 0 otherwise; g ∈ G  

∆g amount of idle time (hours) inserted right before the lot associated with g is 

to begin processing; g ∈ G  

stg starting time of lot associated with g; g ∈ G  

ctg completion time of lot associated with g; g ∈ G  

zi,g,g′  1 if lot-pass combination g is processed right before lot-pass combination g′ 

on machine i (i.e., lot associated with g′ is the immediate successor of lot 

associated with g on machine i), 0 otherwise; i ∈ M , g ∈ G ∪ { gdum}, g′ 

∈ G ∪ { gdum}, g ≠ g′ 

Model  
Maximize seq delay

g g g
g G g G

uω ε ∆
∈ ∈

−∑ ∑  (4a) 

subject to 

 ( )setup
i i g g gST u stτ+ + ∆ ≤ ,  ∀ i ∈ M , g ∈ ( )G i  (4b) 

 
, ,

( ) (1 )dum
setup

g i i g g i i g g
st ST u H zτ≤ + + ∆ + − ,  ∀ i ∈ M , g ∈ ( )G i  (4c) 

 ( )
g

process load
g g g l gct st uτ τ= + + ,  ∀ g ∈ G  (4d) 

 g i ict H ST≤ + ,  ∀ i ∈ M , g ∈ ( )G i  (4e) 
 , , '

' ( ) { }
'

1
dummy

i g g
g G i g
g g

z
∈ ∪
≠

=∑ ,  ∀ i ∈ M , g ∈ G (i) ∪ {gdum} (4f) 

 , ',
' ( ) { }
'

1
dummy

i g g
g G i g
g g

z
∈ ∪
≠

=∑ ,   ∀ i ∈ M , g ∈ G (i) ∪ {gdum} (4g) 

 ' ' , , '(1 )g g g i i g gct st H z+ ∆ ≤ + − ,   ∀ i ∈ M , g ∈ ( )G i , g′ ∈ ( )G i , g′  ≠ g (4h) 

 ( , ) ( , ') ( , ) ( , ')(2 )g l p g l p g l p g l pct st H u u≤ + − − ,  ∀ l ∈ L ,  

  p ∈ P (l), p′ ∈ P (l), p′ = p+1 (4i) 
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 ( , ') ( , )g l p g l pu u≤ ,  ∀ l ∈ L , p ∈ P (l), p′∈ P (l), p′ = p+1 (4j) 

 ' , ',(1 )g g i i g g gst ct H z− − − ≤ ∆ ,  ∀ i ∈ M , g ∈ ( )G i , g′ ∈ J (i), g′  ≠ g (4k) 

 ( )g

process setup load
g i g i l gH uτ τ τ∆ ≤ − − − ,  ∀ i ∈ M , g ∈ ( )G i , (4l) 

 ug ∈ {0,1}, ∆g ≥ 0, stg ≥ 0, ctg ≥ 0,  ∀ g ∈ G  

 zi,g,g′ ∈ {0,1}, ∀ i ∈ M , g ∈ G ∪ {gdum}, g′ ∈ G ∪ {gdum}, g′  ≠ g (4m) 

The primary goal of model (4) is to process as many of the lots contained in the 

solution to model (3) as possible taking their relative importance into account.  When 

necessary, idle time can be inserted right before a lot starts to be processed to ensure that 

the full schedule is feasible. The secondary goal is to minimize the total number of idle 

hours that are inserted, which is equivalent to minimizing the completion time on each 

machine. The objective function (4a) contains two terms corresponding these goals. The 

priority order is enforced by setting the penalty parameter εdelay to a small positive 

number.  

Constraints (4b) provide a lower bound on the time that machine i can start 

processing each lot assigned to it as indicated by the index g ≡  g(l,p). The bound is the 

sum of starting time of the machine, its setup time, and the number of idle hours that are 

inserted right before the lot.  Constraints (4c) provide an upper bound on the starting 

time of the first lot processed on machine i. If the lot associated g is the first lot processed 
on machine i, then it will be the immediate successor of the dummy lot gdum

., with 
, ,dumi g g

z

= 1. Taking (4b) and (4c) together, we see that stg is equal to the lower bound of the 
starting time for the lot associated with index g that gives

, ,dumi g g
z = 1 on machine i.   

These constraints force the first lot on each machine i to start at ( )setup
i i g gST uτ+ + ∆ , 

which is as early as possible. 

Constraints (4d) indicate that the completion time of a lot is equal to the staring 

time plus the processing time (including loading and unloading time) of the lot. If the lot 
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associated with g is removed from the sequence, i.e., ug = 0, then constraints (4d) imply 

that the starting time is just equal to the completion time for processing that lot so the 

capacity of machine i is unaffected. Constraints (4e) impose an upper bound on the 

completion time for processing the lot associated with g. The bound is the starting time 

plus the capacity of the machine to which the lot was assigned in the solution of model 

(3). 

Constraints (4f) − (4j) are associated with lot sequencing. Constraints (4f) and 

(4g) respectively require that each lot assigned to machine i must have exactly one 

successor and one predecessor, which could be the dummy lot. That is, the last lot in the 

sequence will be followed by the dummy lot while the first lot will have the dummy lot 

as its predecessor. Constraints (4h) place a bound on the start time of the lot associated 

with g′ equal to the completion time of its immediate predecessor, ctg, plus the amount of 

idle time inserted right before it. For example, assume that the lots associated with g1 and 

g2 are assigned to machine 1 in the solution to the model (3). If g1 is the immediate 

predecessor of g2, then 
1 21, ,g gz  = 1 and (4h) becomes 

1 2 2g g gct st+ ∆ ≤ . If g1 is not the 

immediate predecessor of g2, then (4h) is redundant since add ing H1 to 
2gst makes the 

RHS at least as large as the LHS.  

Constraints (4i) ensure that the completion time of a lot cannot be greater than the 

starting time of its next pass. As can be seen, only if both ug(l,p) and ug(l,p′) are equal to1 for 

p′ = p + 1,  will ctg(l,p) ≤ stg(l,p′) be enforced. Constraints (4j) enforce the precedence 

relations between passes; if any pass of lot has to be removed then its subsequent passes 

must also be removed.   

Constraints (4k) and (4l) place bounds on the amount of idle time that can be 

inserted before a lot. Constraints (4k) limit the length of the hours before the lot 

associated with g to no more than the lot's starting time stg minus the completion time of 
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the lot's immediate predecessor denoted by ctg′. When , ',i g gz = 1, constraints (4k) in 

conjunction with the second term in the objective function (4a) ensure that ∆g = stg − 'gct

.  When , ',i g gz = 0, then the LHS of (4k) is sufficiently small to make the constraint 

redundant. Constraints (4l) provide upper bounds on the number of idle hours that can be 

inserted before a lot. When ug = 1, the term in pa rentheses on the RHS represents the 

number of hours available on machine i minus the number required to finish processing 

lot lg. Logically, any idle time inserted into the schedule must not exceed this value. I f the 

lot associated with g is removed, then ug = 0 forcing the idle time to be 0. Finally, all the 

variables in the model are defined in (4m). 

7.2 SOLUTION M ETHODOLOGY 

A three-phase methodology referred to as ASC (assignment, sequence and 

changeover) is used to solve the full AT scheduling prob lem. In the first phase, the 

assignment model (3a) − (3l) is solved to get an opt imal machine -tooling configuration 

and lot assignments. The resulting production plan is used in the second phase where 

mod el (4a ) − (4 m) is sequence the assigned lots on their corresponding machines. In the 

third phase, a greedy randomized procedure (but not a full GRASP) is used to reconfigure 

machines to exploit their full capacity.  A sample problem is provided throughout 

Section 7.2 to illustrate the output after each phase. The sample problem has four 

machines indexed from 1 to 4, and nine lots similarly indexed and divided into four sets: 

L1 = {1,4,5,6}, L2 = {2,3,8}, L3 = {7}, L4 = {9}.  The lots in L1 are to undergo passes 1 

and 2, those in L2 are to undergo passes 1 – 3, lot 7 in L3 is to undergo pass 2, and lot 9 in 

L4 is in process at time zero on machine 1.  
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7.2.1 Phase I: assignment model 

Model (3) proved extremely difficult to solve to optimality within several hours 

with CPLEX so a number of tightening variables and constraints were added to the 

formulation.  The augmented model led to much reduced runtimes and improved results.  

The following notation is used in the presentation here. 

Indices and sets 

F set of machine families; f ∈ F  
M(f) set of machine instances that are members machine family f; i1, i2,.. ., 

fni ∈ 

M(f), f ∈ F 

Decision Variables 

iy  1 if machine i is set up with some tooling, 0 otherwise; i ∈ M  

Constraints 
 

( )
i i

i
y yλ

λ∈Λ

=∑ ,  ∀ i ∈ M (3m) 

 
1q qi iy y

+
≤ ,  ∀ f ∈ F,  q ∈ {1, 2, 3…nf −1} (3n) 

 iy ∈ {0, 1},  ∀ i ∈ M (3o) 

 A machine is counted as “selected” if it is set up with tooling and assigned lots. 

Constraints (3m) are a stronger version of (3c) and have proven effective in finding 

feasible solutions during branch and bound (e.g., see Jarrah et al. 1994). Setting iy  = 0 

will result in all variables of yiλ equal to zero, which improves the efficiency of branching 

scheme. For the machine instances in the same machine family, the order in which they 

are selected is controlled by the symmetry breaking constraints (3n). The machine 

instance with larger index is selected first. Without constraints (3n), the optimization 

code will randomly choose a machine instance from a machine family, which 

exponentially increases the number of configurations that would have to be explored. For 

instance, assume machines 1, 2, and 3 belong to the machine family.  Also assume that 
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in the derived solution only two machine instances in this family are used.  With 

constraints (3n), this will be just machines 2 and 3 rather than all three combinations of 

the three machines taken in pairs. 

The solution of model (3a) − (3o) for the sample prob lem is shown in Figure 7 

where it is assumed that the index number of the optimal tooling setup is just the same as 

the machine to which it is assigned, and that only one temperature is feasible.  The 

notation (l,p) refers to the lot-pass combination (l,p) with lot na me l and pass number p.  

The bars in the figure indicate the lot-pass combinations that were assigned to each 

machine in the solution. Those not assigned are listed below the graph. At time zero, for 

example, machine 1 is processing pass 1 of lot 9, and is assigned the lot-pass 

combinations (1,1), (2,1), (2,2), (4,2), (9,2) for the remainder of the planning horizon. 

The solution presented, of course, only represents lot assignments so the lot sequences 

are arbitrary.  There are many equivalent solutions not all of which are feasible.  In fact, 

it can be seen that pass 4 of lot 9 starts on machine 2 before pass 2 starts on machine 1.  

The arrangement of lots only shows the number of hours consumed on the respective 

machines.  Finally, the lot-pass combinations (2,3), (7,2), (3,3) and (8,3) were not 

assigned to any machine, either because they are not  compa tible with any of the four 

setups or the machine capacity was insufficient to work them in.  
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Figure 7: Sample results of Phase I 

7.2.2 Phase II: sequencing model 

Model (4) is much smaller than the assignment model in terms of number of 

variables and constraints as shown in the next section.  Although a proo f that the 

sequencing problem is strongly NP-hard is provided in the Appe ndix D, all the instances 

we investigated were easy to solve with CPLEX.   

The solution to the sequencing model for the sample problem is given in Figure 8. 

All precedence requirements are seen to be satisfied between passes even if a lot are 

processed on different machines. For example, the starting time of lot-pass (1,2) on 

machine 4 was earlier than the completion time of lot-pass (1,1) on machine 1 in Figure 

1, but now its starting time is feasible with respect to the new sequence. The same applies 

to (9,2) and (9,3). However, on machine 2, it was necessary to remove lot-pass (9,4) to 
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achieve feasible sequences on machines 1 and 3.  If pass 3 of lot 9 was placed in a earlier 

position on machine 3, say, before lot-pass (6,1) or (8,1), then it would have been 

necessary to remove either lot-pass (6,2) or (8,2) instead of (9,4).  Doing so would have 

been subop timal with respect to their contribution to the objective function value (4a).  A 

final point to make about the solution was the need to insert idle time before lot-pass 

(3,2) on machine 4.  Starting it any earlier would have resulted in a conflict with the 

completion of lot-pass (3,1) on machine 2.       

 

Figure 8: Sample results of Phase II 

7.2.3 Phase III: changeover algorithm 

Within the planning horizon, the machine-tooling combinations derived in Phase I 

cannot process more lots than those contained in the solution to mod el (3). However, it is 

often possible to exploit the unused capacity of a particular machine by reconfiguring it 
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with different tooling after it completes its assigned lots. This is the purpose of Phase III 

which is called after the sequencing problem is solved. During the computations, 

changeovers are considered for all machines when they become idle regardless of their 

initial condition at time zero.   

The changeover algorithm is adapted from the procedures described by Section 

6.2.3.  After the production plan is determined by the sequencing mode l, the time when 

each machine will finish its assigned lots is determined. The calculations tell us when the 

machine becomes empty and its tooling becomes available.  All unprocessed real lots are 

also denoted as available and all virtual lots corresponding to the next pass of those lots 

that were just completed are similarly termed available. Of course, there might be other 

empty machines at the moment a particular machine finishes its assigned lots. This may 

be due to the fact that they were either empty at time zero or that they could not be 

reconfigured before the current moment due to lack of tooling or suitable lots. 

Regardless, check which machines are empty, and which tooling and lots are available at 

the moment a machine finishes all its assigned lots. Note that if a lot was previously 

assigned to some machine but processing had not yet started at the current moment, that 

lot would still be viewed as unavailable. 

Now, each time a machine becomes empty we apply a greedy randomized 

procedure to decide whether any of the empty machines can be reset, which tooling is 

best, which lots to assign to which machines, and how to sequence the lots. The flowchart 

for the changeover algorithm is depicted in Figure 6, where  tc(i) indicates completion 

time of the last lot assgined to machine i and L3(i) is the set of lot-pass combinations 

assigned to machine i dur ing this phase of the computations (previously assigned lots are 

not included). A detailed explanation of each component in the flowchart can be found in 

the Appendix C.  
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When the changeover algorithm is applied to the sample problem, we get the 

results presented in Figure 9. Machine 2 was the first machine that finished all its 

assigned lots. When it became idle, it was reset with different tooling, which took a  small 

amount of time as indicated by the blank area between lot-pass (5,2) and lot-pass (7,2). 

This allowed us to assign lot-pass combinations (7,2) and (2,3) to machine 2. Machine 1 

was the next machine to finish its originally assigned lots but could not be reset due to 

either lack of compatible tooling and lots, or insufficient capacity to finish any of the lots 

in WIP. The same was true for machines 3 and 4, and for machine 2 after finishing lot-

pass (2,3). Consequently, we were only able to exploit a portion of the idle capacity of 

machine 2 in this phase of the computations.  

 

Figure 9: Sample results of Phase III 
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7.3 COMPUTATIONAL R ESULTS 

To demonstrate the performance of the three-phase methodology, we conducted a 

series of numerical tests and compared the results with those ob tained with Scheme I. 

The latter contains a GRASP, multipass heuristic, and a changeover procedure. For 

conciseness, we refer to it as the GRASP in Section 7.3 .  For both methodologies, the 

same data were used.  Recall that in the first phase of ASC, machines are configured 

with tooling and lots are assigned to machines.  In the second phase, the assigned lots are 

sequenced but the machine-tooling setups remain static.  Some lots assigned in the first 

phase may be removed or delayed in the second phase to satisfy the precedence 

requirement between passes. In the GRASP, feasibility is maintained throughout so no 

lots are removed. In the third phase, machines may be reset if doing so allows additional 

lots to be processed. The GRASP also accommodates changeovers. 

Besides the comparisons between the GRASP and the ASC, we are also interested 

in evaluating the degree of infeasibility of the assignment model. Feasible solutions are 

guaranteed only after the sequencing model is solved.  In the computations, if a machine 

is running a lot at time zero, we maintain its current tooling setup for the first two phases; 

only in the third phase are changeovers permitted. The same rule applies to the GRASP.   

Both methodologies were implemented in C++ and run in the High Performance 

Computing laboratory of the Mechanical Engineering Department at University of Texas. 

The lab has a cluster of twelve Dell Poweredge 2950 workstations, each with 2 dualcore, 

hyperthreading 3.73 GHz Xeon processors and 24 GB of shared memory, and each 

running Red Hat Linux.  CPLEX 12.4 was used to solve all mixed integer programs. 

Both real and randomly generated data were used in the experiments.  The real 

data were provided by the AT facility of the collaborating company and consisted of a 

typical instance, which served as the basis for randomly generating eight additional 
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instances. In all cases, each instance contains 36 machines, 284 tooling pieces from 6 

families, and 1 temperature (certification) setting.  The number of lots varied from a low 

of 800 to a high of 1045 [for further explanation, see Section 6.4].  The input data, itself, 

is contained in eleven csv files, the most important being “machines.csv,” “tooling.csv,” 

“route.csv” and “wip.csv.”  A full description of each can be found in Deng et al. 

(2010). 

The computational results are presented in the next two subsections in a series of 

tables.  The entries in the first column indicate the problem number and those in the last  

7.3.1 GRASP vs. ASC  

Table 13 compares the final objective func tion values of the GRASP and the ASC 

model.  In the case of the latter, a real time upper limit of 2400 seconds was placed on 

the assignment model and 1200 seconds on the sequencing model.  The changeover 

component was run once for each problem and took about 15 seconds. In the case of the 

former, no runtime limit was set but an upper limit of 200 iterations was imposed on the 

computations.  This value was determined after extensive testing and reflects a tradeoff 

between runtime and solution quality.  The changeover procedure was run after every 

iteration.  The last column of the table records the percentage difference between the two 

approaches and was calculated as follows: 

Percent ∆ = 100 × (GRASP value − ASC value) / GRASP value 
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Table 13: Comparison of GRASP with ASC results 

Prob.  
no.  

GRASP 
objective value (1010) 

ASC 
objective value (1010) 

Percent ∆  
(%) 

1 3.83 0.85 77.88 
2 9.01 2.64 70.71 
3 1.66 1.04 37 
4 9.50 2.33 75.46 
5 6.92 1.92 72.23 
6 14.1 8.58 39.04 
7 8.07 2.42 70.02 
8 21.8 5.15 76.38 
9 14.0 8.37 40.4 

Avg. 9.88 3.70 62.12 

As seen in Table 13, the average objective function value obtained by solving the 

ASC model is 62.12% less than the average provided by the GRASP.  Recall that key 

device shortages dominate the computations so the large values on the order of 1010 

reflect the weights used to enforce the preemptive nature of the objective function 

(below, each term is analyzed separately).  For all nine problems, the three-phase 

methodo logy showed significant improvement.  Taking problem no. 1, for example, the 

objective function values for the GRASP and ASC are 3.83 × 1010 and 8.47 × 109, 

respectively; an improvement of 77.88%.  

Tables 14 – 17 provide respective comparisons for each of the four weighted 

objective function terms: sum of key device shortages, sum of lots processed, number of 

machines used, and machine time or makespan.  The weights associated with these terms 

decrease by several orders of magnitude from one to the other.  For the lots, their 

weights, wlp, are contained in the input file "wip.csv."  The remaining weights and 

coefficients are calculated as follows.   

• Normalizing constant in key device shortage term: C = sum of weight of all 

regular lots / (10×max{weight of single device over all regular lots}) 
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• Shortage of key device k : short
kε  = sum of weights of all regular lots + sum of 

weights of regular lots containing device k 

• Number of machine used: Mε  = minimum positive lot weight  

• Machine time: Tε  = minimum positive lot weight / maximum time horizon 

Table 14 indicates that the ASC methodology provides an average reduction of 

61.77% in key device shortages compared with the GRASP solution. The average percent 

difference in Table 14 is close to that in Table 13 due to the dominance of this term.  For 

problem no. 1, for example, the GRASP and ASC values in Table 13 are 3.83 × 1010 and 

0.85 × 1010, respectively, while the corresponding values in Table 14 are 3.89 × 1010 and 

0.901 × 1010.  The slight increase is due to the second term (lots processed) whose 

objective is really one of maximization. 

Table 15 presents the comparisons for the weighted sum of lots processed.  The 

average percent difference is 5.86%, much smaller than the difference obtained for the 

overall objective function value.  In fact, in some cases the ASC methodology processed 

fewer lot s than the GRASP.  This could have been anticipa ted by the preemptive weights 

in the objective function, which allow either approach to give priority to key devices at 

the expense of regular lots.  For problem no. 2, for example, the three-phase 

methodology processed 0.71% fewer lots than the GRASP, but by comparison was able 

to reduce the key device shortages by 70.71%. Similar results were observed for four of 

the nine problem instances. However, the percent differences in Table 15 vary widely so 

no general conclusions can be drawn.   
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Table 14: Comparison of weighted sum of key device shortages 

Prob.  
no.  

GRASP 
weighted sum of key 
device shortage (1010) 

ASC 
weighted sum of key 
device shortage (1010) 

Percent ∆  
(%) 

1 3.89 0.901 76.86 
2 9.07 2.70 70.26 
3 1.69 1.06 37.07 
4 9.57 2.39 75.06 
5 6.98 1.98 71.68 
6 14.1 8.60 39.05 
7 8.12 2.48 69.45 
8 21.9 5.20 76.22 
9 14.1 8.40 40.31 

Avg. 9.93 3.75 61.77 
 

Table 15: Comparison of weighted sum of lots processed 

Prob.  
no.  

GRASP 
weighted sum of lots (108) 

ASC 
weighted sum of lots (108) 

Percent ∆  
(%) 

1 5.42 5.32 1.86 
2 6.03 6.07 -0.71 
3 2.41 1.80 25.09 
4 6.05 5.34 11.71 
5 5.28 5.40 -2.27 
6 2.55 1.61 36.9 
7 5.39 6.31 -17.04 
8 4.91 4.76 2.99 
9 3.20 3.38 -5.76 

Avg. 4.58 4.44 5.86 

Tables 16 and 17 highlight the comparisons for the number of machines used in 

the solutions and the average time those machines were running during the planning 

horizon, respectively.  More specifically, Table 16 refers to the number of machines that 

are set up with tooling and are assigned lots.  As seen, the number of machines used by 

the ASC methodo logy is 3.7%  less on average than that of the GRASP.  In Table 17, 
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machine time denotes the makespan or how long a machine runs from the start of the 

planning horizon until all its assigned lots are completed.  The "average machine time" is 

the average over all machines with assigned lots even though they may be idle for a 

portion of the time.  Recall that it may not be possible to immediately process a lot on its 

assigned machine until its previous pass is finished on some other machine.  As a result, 

a machine may be idle for a while, waiting for its next lot to arrive.  The machine time 

includes this idle time.   

The average machine time reported in the solution to the ASC model is 2.26% 

less on average than for the GRASP.  In all but two o f the nine instances, the three-phase 

methodo logy used less machine time than the GRASP.  When the statistics in Tables 13, 

16 and 17 are viewed collectively, the advantage of the ASC approach is evident.   

Table 16: Comparison of number of machines 

Prob.  
no.  

GRASP 
number of machines  

ASC 
number of machines 

Percent ∆  
(%) 

1 36 35 2.78 
2 36 35 2.78 
3 36 32 11.11 
4 36 35 2.78 
5 36 35 2.78 
6 36 32 11.11 
7 36 36 0 
8 36 36 0 
9 36 36 0 

Avg. 36 34.67 3.70 
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Table 17: Comparison of average machine time 

Prob.  
no.  

GRASP 
average machine time (hr) 

ASC 
average machine time (hr) 

Percent ∆  
(%) 

1 22.97 21.43 6.69 
2 23.39 21.6 7.64 
3 20.72 20.69 0.14 
4 23.29 22.27 4.38 
5 23.52 22.73 3.34 
6 20.82 21.82 -4.79 
7 23.52 22.96 2.38 
8 23.37 23.03 1.45 
9 22.07 22.27 -0.9 

Avg. 22.63 22.09 2.26 

Table 18 reports the CPU time used by the two approaches. The lower values 

associated with the GRASP for this metric are partly due to the fact that the ASC model 

was solved with CPLEX which was set to run up to four threads at a time, while the 

GRASP was programmed to use only a single thread.  The CPU time counts time used 

by all threads.  Without going into too much detail, in an ideal situation, when the real 

time advances 10 seconds, a four-thread code uses roughly 40 seconds, as opposed to 10 

seconds for the single-thread code.  In the planning environment, it may be necessary to 

trade superior performance for reduced CPU time, or at least reduced real time.  For 

problem nos. 1 – 8, the three-phase methodology required all of the allotted 3600 

seconds.  

The above results are inclusive of the reductions realized after machine 

changeovers take place.  In the case of the ASC methodology, the third phase provides a 

7.56%  improvement, on average, over the second phase solution.  For the GRASP, the 

improvement is 8.25%  on average.   
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Table 18: Compa rison of CPU time 

Prob.  
no.  

GRASP 
CPU time (s) 

ASC 
CPU time (s) 

Percent ∆  
(%) 

1 797.40 10,691 -1240.73 
2 790.85 11,011 -1292.3 
3 654.57 12,434 -1799.57 
4 660.34 11,638.5 -1662.5 
5 685.71 11,315.7 -1550.22 
6 577.36 12,261.3 -2023.68 
7 536.61 10,478.6 -1852.74 
8 509.28 9,744.28 -1813.34 
9 424.91 792.51 -86.51 

Avg. 626.34 10,040.77 -1480.18 

7.3.2 Assignment vs. Sequencing Solut ions 

The assignment model (3a) – (3l) represents a relaxation of the full problem because it 

ignores the order in which lots are processed and it excludes changeovers.  Nevertheless, 

it is still a large scale MILP and difficult to solve.  The sequencing model (4a) – (4m) 

takes the solution to the assignment model as input and produces an optimal sequence for 

the assigned lots.  This may require removing or delaying some lots to achieve 

feasibility.  However, we do not allow the tooling to be changed or new lots to be 

assigned.  The time we allotted to solve either model reflects their relative difficulty.  

Tables 19 and 20 summarize the size and performance statistics for all nine 

instances.  As seen from Table 19, the assignment model averages 26,538 constraints 

and 42,451 variables, the majority of which are binary.  CPU times averaged 6,116 

seconds and the optimality gap ranged from 0.18 to 17.48%, averaging 8.94%. The 

comparable statistics for the sequencing model are given in Table 20, which indicates 

much smaller instances. The average of number of constraints is 5,486 and the average 

number of variables is 3,231.  The CPU times and op timality gaps were similarly smaller, 
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averaging 3,894.62 seconds and 2.10%, respectively.  Looking at problem 1, for 

example, the assignment model has roughly five times the number of constraints and 

thirteen and half times the number of variables as the sequencing model, and achieved an 

optimal gap of 9.01% in about 6,354 CPU seconds.  In contrast, the sequencing model 

reached an optimal gap of 1.23% in 4,320 CPU seconds.   

Table 19: Input and output statistics for assignment model 

Prob. no. No. of constraints No. of variables CPU time (s) Optimal gap (%) 
1 27,717 44,092 6,354.44 9.01 
2 27,717 44,092 6,627.65 10.48 
3 24,507 39,974 8,058.66 1.24 
4 27,844 44,305 7,283.04 9.12 
5 27,844 44,305 7,154.08 16.44 
6 24,634 40,187 7,846.21 1.50 
7 28,004 44,625 6,056.38 15.01 
8 28,004 44,625 5,590.86 17.48 
9 22,569 35,858 75.24 0.18 

Avg. 26,538 42,451 6,116.28 8.94 
 

Table 20: Input and output statistics for sequencing model 

Prob. no. No. of constraints No. of variables CPU time (s) Optimal gap (%) 
1 5,546 3,272 4,319.73 1.23 
2 5,584 3,294 4,362.26 2.50 
3 4,404 2,626 4,350.87 1.46 
4 5,870 3,446 4,333.55 2.01 
5 5,699 3,338 4,129.34 4.76 
6 4,725 2,810 4,391.01 1.38 
7 7,535 4,382 4,386.04 2.69 
8 4,168 2,484 4,108.14 2.03 
9 5,847 3,426 670.66 0.82 

Avg. 5,486 3,231 3,894.62 2.10 



96 
 

Table 21 reports the differences in the number of lots processed and makespan of 

the solutions provided by the two models.  The entries under column heading "No. of 

lots processed" denotes how many lots are assigned in the solution provided by the 

respective models.  The entries in the column with heading "No. lots removed" is the 

difference between the two previous columns.  The sequencing model removed between 

2 to 12 lots from the assignment model solutions. For all nine problem instances the 

average number of lots removed was 5.78 lots. 

The major heading "Total machine time" refers to the sum of the machine time of 

all machines used in the solutions of the two models.  The entries in the last column 

"Total idle in sequence" is the sum of all idle hours between two consecutive lots on all 

machines in the solution to the sequencing model.  Note that this is not just the 

difference between the "total machine time" derived from the assignment and sequencing 

models because some lots are removed by the sequencing model.   

The percent difference for total machine time in Table 21 is calculated as follows: 

Percent ∆ = 100 × (sequencing value − assignment value) / assignment value 

The statistics indicate that the sequencing model produced a 3.6% decrease on 

average in total machine time. For problem 9, however, the solution shows an increase of 

0.68%, which results from an increase in total idle hours.  This value is greater than the 

decrease in the number of hours associated with the removed lots.  On average, the 

sequencing model solutions contain 6.42 total idle hours.   
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Table 21: Comparison of lots processed and machine time 

Prob. 
no.  

No. of lots processed Total machine time  

Assignment Sequencing  
No. lots 
removed 

Assignment 
(hr) 

Sequence 
(hr) 

Percent ∆ 
(%) 

Total idle in 
sequence 

(hr) 
1 246 243 3 750.84 728.64 -2.96 0.73 
2 248 240 8 756.64 699.02 -7.62 0.12 
3 210 206 4 654.98 634.90 -3.07 7.76 
4 254 249 5 779.30 759.70 -2.51 6.43 
5 243 231 12 798.36 737.13 -7.67 14.52 
6 221 218 3 697.92 686.59 -1.62 1.86 
7 305 297 8 827.14 799.23 -3.37 2.42 
8 204 197 7 803.45 769.12 -4.27 12.67 
9 247 245 2 764.80 769.97 0.68 11.28 

Avg. 242 236 5.78 759.27 731.59 -3.60 6.42 

Table 22 presents comparisons of the objective function values and the weighted 

sum of key device shortages provided by the assignment and sequencing model solutions. 

Recall that the sequencing mode l has a different ob jective function than the assignment 

mod el so to create a valid frame of reference, the assignment model solution was taken as 

the benchmark.  In the table, the entries under the heading "Objective function value" 

and the subheading "Sequencing" are obtained by substituting the solution of the 

sequencing model into the objective function of the assignment model.  Both models 

have a minimization objective.  The results indicate that the sequencing model solutions 

are 18.24% greater on average than the assignment model solutions, and that the 

weighted sum of key device shortages increases by an average of 17.75 % from phase 1 to 

phase 2. This conforms with our expectations since the two terms are highly correlated 

due to the relative pr ior ity assigned to key device shortages, and the fact that the 

assignment model is a relaxation of the full problem. To obtain feasibility it was 
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necessary for the sequencing model to remove some lots from the assignment model 

solution. 

Table 23 presents the last of the comparisons for the weighted sum of lots 

processed and the number of machines used, the second and third objective function 

terms in (3a).  As in Table 22, the entries under the “Sequencing” subheadings were 

obtained by substituting the sequencing model solution values into the corresponding 

assignment model objective function terms.  As might have been expected, the 

sequencing model processes fewer (weighted) lots than the assignment model, but 

averaged only 1.1% less over all nine instances.  When all of the lots assigned to a 

machine are removed by the sequencing model, the machine is regarded as "removed."  

The entries under the heading "No. machines removed" indicate that this never happened.  

The number of machines is the same in the solutions of both models 

Table 22: Comparison of objective function value and weighted sum of key device 
shortages 

Prob. 
no.  

Objective func tion value Weighted sum of key device shortages 
Assignment 

(1010) 
Sequencing  

(1010) 
Percent ∆ 

(%) 
Assignment 

(1010) 
Sequencing  

(1010) 
Percent ∆ 

(%) 
1 0.793 0.887 11.86 0.847 0.941 11.11 
2 2.15 2.69 25.36 2.20 2.74 24.74 
3 1.01 1.05 4.43 1.03 1.07 4.34 
4 2.18 2.52 15.46 2.23 2.57 15.08 
5 1.57 2.23 41.47 1.63 2.28 39.94 
6 8.48 8.65 2.05 8.50 8.67 2.05 
7 2.20 2.70 22.47 2.27 2.76 21.85 
8 4.34 6.09 40.31 4.38 6.13 39.87 
9 8.31 8.37 0.75 8.34 8.40 0.75 

Avg. 3.45 3.91 18.24 3.49 3.95 17.75 
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Table 23: Comparison of weighted sum of lots and number of machine used 

Prob. 
no.  

Weighted sum of lots processed No. of machine used 
Assignment 

(108) 
Sequencing 

(108) 
Percent ∆ 

(%) Assignment Sequencing  
No. machines 

removed 
1 5.33 5.32 -0.2 35 35 0 
2 5.26 5.22 -0.59 35 35 0 
3 1.73 1.71 -1.08 31 31 0 
4 5.34 5.32 -0.47 35 35 0 
5 5.44 5.20 -4.31 35 35 0 
6 1.61 1.60 -0.62 32 32 0 
7 6.18 6.16 -0.28 36 36 0 
8 4.51 4.40 -2.34 36 36 0 
9 3.27 3.27 0 35 35 0 

Avg. 4.30 4.25 -1.10 34.44 34.44 0 

From Tables 13 – 17 and 21 – 23, we can see how the solut ion changes through 

the assignment, sequencing, and changeover phases of the methodology.  Take problem 

1 as an example.  The objective function value obtained by solving the assignment 

model is 7.93 × 109, as indicated in Table 22.  When the sequencing mode l is solved,  

three lots are removed and 0.73 idle hours are added, as seen in Table 21.  Consequently, 

the objective function value increased by 11.86% to 8.87 × 109.  Dur ing the changeover 

procedure, some machines are reset with new tooling and assigned new lots.  Table 13 

shows that the objective function value decreased to 8.47× 109.  A similar progression 

can be seen in the value of the weighted sum of key device shortages, the first objective 

function term in (3a). 
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Chapter 8:  Real-time Decision Support for AT Operations 

The output of model (1) for basic AT is used to establish machine setup and lot  

assignment targets for daily operations.  To aid shop floor personnel in reaching these 

targets we have developed two complementary procedures for prioritizing choices 

whenever an oppor tunity for machine changeovers becomes available.  At TI’s facilities, 

the data needed to support the review process are obtained from their factory database 

system.  A query to the system returns a snapshot of WIP, current machine setups, 

tooling availability, and lot loadings.  From the lot loadings, we can calculate the time at 

which the active machines along with their tooling will become free.  It is assumed that 

only a handful of changeovers are possible due to limited personnel, and that preemption 

is not allowed. 

During the review process, which may be as frequent as every 15 minutes, if a 

machine is currently set up in accordance with the target solution, it, as well as the lots 

assigned to it, are omitted from the analysis.  Of the remaining machines, those that are 

free or will be become free in, say, ∆free minutes are given the highest priority. Typically, 

rule-based procedures are used at this level of control (e.g., see Dolgui and Proth 2010, 

Liu et al. 2011) but are seldom effective from a global perspective. Experience at TI’s 

facilities suggests that much greater output can be realized by continua lly adjusting 

machine setups to match the maximum capacity solution. 

Our procedures were designed with this goal in mind and consist of two parts: (i) 

a comparison between the current tooling setup and the target tooling setup (i.e., the 

maximum capacity solution) for all available machines; (ii) construction of a priority list 

that provides recommendations for changing over the machines that are not set up in 

accordance with the target solution.  To be precise, a setup refers to a combination of a 
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tooling piece(s) from a particular family and a corresponding certification or temperature 

at which lots are to be tested.  The phrase “when a machine becomes free” means the 

time at which the machine under consideration finishes processing its current lot and, by 

assumption, can release the tooling installed on it. 

In the methodology, the waiting time parameter ∆free serves two purposes. First, it 

specifies the time increment starting from the current time, t0, for defining priority 

classes.  Machines that can be reset with their target tooling between t0 and t0 + ∆free are 

placed in the top class and ranked based on the ir weight (discussed presently).  

Similarly, machines that can be reset between t0 + ∆free and t0 + 2∆free define the second 

class and so on.  Second, it specifies the maximum amount of time a machine can wait 

for tooling to become available or to finish its current lot in order for it to be placed in the 

top class. If a machine cannot be reset within ∆free hours from t0 for any reason, then it is 

said to be unavailable but is still ranked based on either its weight or the time when it 

will become available. 

8.1 COMPARISON OF CURRENT AND MAXIMUM CAPACITY SOLUTIONS 

The first algorithm reads the initial setup and target solution files to determine 

which machines are eligible for changeover during the current review process. The main 

complication arises from the fact that identical machines exist in the same family but 

their initial setups might not be aligned with the target solution. To avoid overlooking 

equivalent setups it is necessary to perform a series of comparisons and relabeling 

operations.  The steps are delineated below but first we describe the output. 

Table 24 displays a portion of the Compare_Algorithm output.  Column 1 

lists the machine families and column 2 identifies the machine instance ‘id.’ Columns 3 

and 4 give the current tooling family and certification on the machine, respectively. If 
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these fields are empty, it means that the machine is not set up at t0. The target tool family 

and certification are identified in columns 5 and 6.  Column 7 (second portion of the 

table) specifies when the machine will finish its current lot. If the entry is “Now,” this 

means that the machine is currently empty (no lots are running on it); otherwise the day 

and time are given. Column 8 specifies whether or not the machine needs to be reset – a 

determination based on the current and target setups. 

Column 9 lists a machine whose target setup is equivalent to the setup o f the 

machine in the row under consideration. For example, row 3 is associated with 

AMAT27-1 and is currently configured with a tooling piece from family 6473283C. An 

equivalent machine, AMAT02-1, has the same setup in the target solut ion.  If the field is 

empty, it means no such machine exists in the solution provided by model (1).  The last 

two columns 10 and 11 give the target setup.  If a machine does not need to be reset, 

then the target will be “Cur_Tooling” and “Cur_Certification.”  In those cases in which 

there is an entry in the Equivalent_Machine column, there is no need for a resetup 

because the current setup on the machine is just the target setup of another machine from 

the same family.   As such, the machine under consideration can switch the target with 

the machine indicated in in the Equivalent_Machine column. This is handled by re-

indexing the machines. For example, assume that machines i1 and i2 are currently set up 

with tooling- temperature configurations λ1 and λ2, respectively, while the target solution 

calls for i2 to be set up according to λ1 and i1 according to λ3.  If these two machines are 

in the same family and hence interchangeable, then the ir ind ices in the target solut ion 

should be reversed as long as there are no other machines in that family set up according 

to λ3. 
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Table 24: Example of output from comparison algorithm 

Machine_Family Machine_Instance Cur_Tooling Cur_Certification Tar_Tooling  Tar_Certification 
ETS-1-64 AMAT01-1    6492377B 1 

ETS-1-64 AMAT02-1    6473283C 1 

ETS-1-64 AMAT27-1 6473283C 1 6463103B 1 

ETS-1M-64 AMAT23-1 6463103B 1 6473198B 1 

ETS-2-64 AMAT35-1    6469171D 1 

 

When_Free Resetup_Needed Equivalent_Machine Final_Tar_Tooling Final_Tar_Certification 
Now Y   6492377B 1 

Now Y   6463103B 1 

11/5/2010 15:16 N AMAT02-1 Cur_Tooling Cur_Certification 

Now Y   6490924B 1 

Now Y   6466496A 1 
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8.2 COMPARISON ALGORITHM   

Compare_Algorithm 

Step 0. Let M = {all machines}, M1 = {machines with initial setups}, M2 = {machines 

without initial setups}, n = |M|, and mk denote the kth machine in M. 

Step 1. Read “initialsetup.csv” (see Table 1).  For each machine in M, record its family 

id, instance id, corresponding tooling family id, and certification.  If a machine’s 

tooling family id and certification are empty, then mark the machine as 

belonging to the set M2; otherwise, mark it as belonging to the set M1. 

Step 2. Read “solution.csv”. For each machine in M, record the family id, instance id, 

tooling family id, and certification for the setup associated with the first lot 

assigned to the machine that is not an initial lot. Let this information be the 

machine’s target. If a machine has not been assigned any lot other than the initial 

lot to process, then record the tooling family id and certification for the initial lot 

as the machine’s target. Record the time when the machine is expected to finish 

its initial lot. If a machine doesn’t have an initial lot or can finish the initial lot 

before the beginning of the planning horizon denoted by t0, then the time 

“When_Free” is marked as “Now.” 

 Step 3. For each machine in M, compare its target setup with its initial status.  Set k = 1. 

Do while k ≤ n.  

3a. If machine mk ∈ M2, then a “Y” is entered in the column in Table 24 labeled 

“Resetup_Needed”; put k ← k +1 and continue.  Otherwise, go to Step 3b. 

3b. Check whether the target setup of machine mk is the same as its initial 

too ling setup. If yes, then an “N” is entered in the column labe led 
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“Resetup_Needed,” put k ← k +1, and go to Step 3a; otherwise, go to Step 

3c. 

3c. Check whether the initial tooling setup of machine mk is the same as the 

target setup of some other machine in the same family whose target has not 

yet been achieved.  If yes, then an “N” is entered in the column labeled 

“Resetup_Needed” and the other machine’s target tooling setup switch to 

the target tooling setup of machine mk ; otherwise the entry is “Y,” we put k 

← k +1, and go to Step 3a. 

End while (at termination, let M denote the set of eligible machines) 

8.3 PRIORITY LIST CONSTRUCTION 

The Priority_List_Algorithm provides an ordered list of 

recommendations for resetting all eligible machines.  The format is illustrated in Table 

25.  Columns 1 and 2 list the name of the machine family and machine instance id,  

respectively.  Column 3 gives the length of time relative to the current time when a 

machine processing an initial lot will finish that lot and become available. For each 

machine, columns 4 and 5 provide the target setup obtained from the 

Compare_Algorithm.  Column 6 indicates the number of hours from the current 

time t0 when a changeover is possible.  
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Table 25: Example of priority computations† 

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling 
ETS-1M-64 AMAT23-1 0 6490924B 

ETS-1-64 AMAT01-1 0 6492377B 

ETS-1-64 AMAT02-1 0 6463103B 

ETS-2-64 AMAT35-1 0 6466496A 

 

Final_Tar_Cert Time_to_Reset (hr) Tool_Source Resetup_P riority Benefit_value 
1 0 Inventory 1 7.42E+06 

1 0.401 AMAT17-1 2 6.35E+06 

1 0 Inventory 3 1.14E+06 

1 0.396 AMAT30-1 18 0.12E+06 
†Although AMAT27-1 appears in Table 24, it is absent from Table 25 because it doesn’t need to be reset 

Column 7 specifies the source of the target tooling.  If the entry is “Inventory,” it 

means that the required tooling will be available when the machine finishes the lot that it 

is currently processing.  By implication, if the machine is idle, then the tooling should 

also be available. If the entry is the name of a machine instance, e.g., “AMAT30-1,” it 

means that a changeover cannot occur until the machine instance in the corresponding 

row finishes its current lot and releases its tooling.  If the entry is “null,” it means that 

the target tooling is not expected to become available in the time remaining in the 

planning horizon. This situation occurs when the needed tooling is neither in “inventory” 

nor on any machine(e.g. when some toolings are broken).  

Column 8 gives the priority for resetting each available machine in decreasing 

order.  These values are calculated with the algorithm described in the next subsection.  

Column 9 indicates the benefit that would result if a machine were reset to match the 

target tooling and temperature specified by the solution to model (1).  It is the largest 
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possible weighted sum of lots that would be processed on that machine according to the 

maximum capacity solution.   

8.3.1 Rules for setting the pr iorities 

The values in the last column of Table 25 indicate the benefit of a setup between 

t0 and the end of the planning horizon.  The machines that can be reset in the interval [t0, 

t0 + ∆free] fall into the highest priority class and take precedence over those that either 

becomes available or whose target tooling becomes available after t0 + ∆free.  The same 

logic applies for machines that can be reset between t0 + ∆free and t0 + 2∆free with respect 

to those that cannot be reset in this interval, and so on, until the end of the planning 

horizon is reached. 

The procedure for setting the priorities includes the following steps: compute the 

benefit value, as described in the next section, of resetting each machine that is free in the 

interval [t0, t0 + ∆free]; determine which machines can be reset in the interval [t0, t0 + ∆free] 

and when they can be reset (tooling may not be available so a machine that is free may 

not be able to be reset); rank the machines that can be reset in the interval [t0, t0 + ∆free] 

based on their benefit value and assign lots to the machines. The same procedure is 

applied to the machines that are free between t0 + ∆free and t0 + 2∆free , including the 

machines that are free but not  reset in the previous interval, and so on until the end o f the 

planning hor izon. Further explanation is now given.   

8.3.2 Calcula tions 

To perform the rankings, we first compute a benefit value for machines that can 

be reset in the upcoming time interva l and then use the above rules to construct an order.  

The following algorithm is used for this purpose. 
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Benefit_Calculation_Algorithm 

Step 0. Initialization 

(a) From the file "solution.csv," identify all machine-family-tooling-setup 

combinations used in the target solution. Let the following set contain these 

combiant ions: MF_TF_CERT = {(mf, tf, cert) : machine family mf , tooling 

family tf, and certification cert is used in the target solut ion}.  

(b) For each machine family, identify machine intances eligible for changeover 

during the current time interval according to comparion result as well as those 

previously identified but not reset. Let MF_MI(mf) = {mi :  machine instance mi 

belongs to machine family mf and is free during the current time interval}.  

(c) For each tooling family, identify which tooling instances are available during 

the current time interval. Let TF_TI(tf) = {ti : tooling instance ti belongs to 

tooling family tf and is available during the current time interval}. The tooling 

available can be determined from the data in the files "tooling.csv" and 

"initialsetup.csv," and the results for the calculations associated with the previous 

time intervals. 

(d) Identify all lots associated with the target solution that have not yet been 

assigned to a machine using the data in the file "solution.csv" and the results from 

the previous time intervals.  Denote the set of available lots as L. 

Step 1. Compute the weighted sum of available lots that can be processed for each 

combination (mf, tf, cert) ∈ MF_TF_CERT according to the target solution. Rank 

the elements in MF_TF_CERT based on the weighted sum of lots in descending 

order. Break ties arbitrarily.  
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Step 2. From the ranked list MF_TF_CERT, choose the first (mf, tf, cert) such that there 

exists an mi ∈ MF_MI(mf) and a ti ∈ TF_TI(tf) that can both operate under 

certification cert. If no eligible (mf, tf, cert) can be found, then stop. 

Step 3. Choose the machine instance mi ∈ MF_MI(mf) that becomes available at the 

earliest time, and an arbitrary tooling instance ti ∈ TF_TI(tf). If several machine 

instances are free at the same time, choose the one whose target tooling family is 

tf.  

Step 4. Rank the lots in the target solution that are processed by (mf, tf, cert) from highest 

to lowest based on weight_rate, given by  

  

where 

weight = entry in the column “weight” in WIP file (see Table 3), which is the 

benefit obtained by processing the corresponding lot 

CUR_QTY = number of devices contained in the lot 

Step 5. From the ranked lot list found in Step 4, select the lots from top that can be 

processed within the time horizon remaining for the mi chosen in Step 3. Sum the 

weights of the chosen lots to get the benefit value associated with the combination 

(mf, tf, cert). 

Step 6. If the target tooling setup for mi as determined by Compare_Algorithm is 

different than the tooling family and certification associated with (mf, tf, cert), 

then there must be some other machine instance in mf whose target tooling setup 

is just (tf, cert). Swap the target toolings between these two machine instances.  

_
_ /
weightweight rate

CUR QTY PPH
=
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Step 7. Update MF_MI(mf), TF_TI(tf) and L.  Mark the corresponding machine instance, 

lots and tooling as unavailble for calculating subsequent benefit values. Go to 

Step 1. 

Step 0 identifies which machines, toolings and lots that are free in the current time 

interval.  Step 1 ranks the machine-family- tooling-setup combinations in the target 

solution.  In Step 2,  the first machine-family-tooling-setup combination from the ranked 

list is chosen provided that both the machine and its specified tooling are free.  Step 3 

indicates how to select the machine instance and tooling intance for the setup chosen in 

Step 2.  Step 4 ranks the lots availabe for computing benefits.  The weight and 

CUR_QTY values can be obtained directly from the WIP file.  To get the PPH , the 

route used for processing the lot must be identified from “solution.csv,” as can be seen in 

Table 2.  In Step 5, the benefit value is calculated by assigning lots to the machine under 

consideration.  Note that the lots are only “assigned” for the purposes of the calculation. 

In Step 6 the tooling on the current machine is switched with the tooling on an identical 

instance to match tf if need be.  Step 7 updates the availability of machines, tooling and 

lots and removes the chosen setup from future consideration.   

The algorithm terminates with a benefit value for each machine that can be reset 

in the upcoming interval. We now discuss how the changeover prioity list is actually 

constructed.  

Criteria for determining when a machine is reset.  For purposes of determining if and 

when a changeover is possible, three machine classes are defined. The first corresponds 

to the case where sufficient tooling is or will be available in the time interval when the 

machine becomes available.  If a machine in this class is currently idle, then the target 

tooling must be in inventory or will be freed up in the current time interval.  The second 

class is similar to the first but now only a subset of the required tooling is or will be 
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available in the current time interval when the machines become free so they compete for 

the tooling.  We need to decide which machines are reset immediately, which ones will 

be reset within the current time interval, and which ones will be reset later when 

additional tooling is released. This determination is based on the benefit value associated 

with the competing machines. A higher benefit translates into greater consideration.  The 

third class includes those machines whose tooling is not available in the time interval 

when they become free, which may be at the current time or in the future.  In this case, 

the target tooling is in use so all machines sharing the tooling must wait unt il the next 

time interval before any action is taken, and, by definition fall into a secondary priority 

class. 

After each machine that is not currently set up in accordance with its target 

tooling is placed in one of the three classes, a priority list is constructed that makes use of 

the results obtained from the Benefit_Calculation_Algorithm.  The procedure 

is as follows.  

Priority_List_Algorithm 

Step 0. Set L  = ∅.  Initialize priority list. 

Step 1. Identify a subset of the machines M0 eligible for resetting within the interval [t0, 

t0+∆free]. 

Step 2. Calculate the benefit for all machines in M0 using 

Benefit_Calculation_Algorithm. 

Step 3. Determine when a machine in M0 should be reset following the logic in Section 

8.3.1. 

Step 4. Identify the machines that cannot be reset in the interval [t0, t0+∆free] and remove 

them from M0. 
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Step 5.  Rank the machines in M0 according to their calculated benefit from highest to 

lowest.  

Step 6. Add the machines to the priority list L . Assign lots to the machines using the 

greedy randomized procedure discussed in Section 8.3.3.  Record the tooling 

and lots assigned to the machines. Mark the corresponding lots, machines and 

tooling pieces as unavailable for resetting.   

Step 7. Put t0 ← t0 + ∆free.  If t0 is still within the planning horizon, then go to Step 1; 

otherwise, stop.  

To illustrate how the algorithm works, let ∆free = 1 (hr) and the end of the 

planning hor izon be t0 + 2.  Table 26, 27 and 28 list all the machines, tooling, and initial 

setups for this example.  In Table 26, columns 1 and 2 list the name of the machine 

family and machine instance id, respectively.  Column 3 gives the length of time relative 

to t0 when a machine now processing a lot will finish that lot and become free.  For each 

machine, columns 4 and 5 provide the target setup obtained from the 

Compare_Algorithm.  

In Table 27, columns 1 and 2 list the name of the tooling family and tooling 

instance id, respectively.  In the example, there are three tooling families and four 

tooling instances.  In Table 28, column 1 gives the machine instance id.  Column 2 and 

3 provide the name of tooling family and the certification respectively for the initial setup 

of the corresponding machine.  Initially, machine instance AMAT03-1 is configured 

with tooling instance T02-1 and AMAT04-1 is configured with T03-1. Therefore T02-1 

and T03-1 are not available until AMAT03-1 and AMAT04-1 finish their initial lots. 
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Table 26: Machines for example of Priority_List_Algorithm 

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling Final_Tar_Cert 
ETS-1M-64 AMAT01-1 0 6490924B 1 
ETS-1-64 AMAT02-1 0 6490924B 1 
ETS-1-64 AMAT03-1 1.2 6463103B 1 
ETS-2-64 AMAT04-1 1.6 6466496A 1 
 

Table 27: Tooling for example of Priority_List_Algorithm 

Tooling_Family Tooling_Instance 

6490924B T01-1 

6490924B T02-1 

6463103B T03-1 

6466496A T04-1 

 

Table 28: Initial tooling setups for example of Priority_List_Algorithm 

Machine_Instance Initial_Tooling_Family Initial_Tooling_I nstance Initial_Certification 

AMAT03-1 6490924B T02-1 1 

AMAT04-1 6463103B T03-1 1 

Applying the Priority_List_Algorithm to the example, we see at Step 1 

from the column “Time_to_Mach_Free” in Table 26, that AMAT01-1 and AMAT02-1 

are free within the interval [t0, t0+∆free].  This gives M0 = {AMAT01-1, AMAT02-1}.  

At Step 2, we calculate the benefit value for these two machines using the 

Benefit_Calculation_Algorithm and get 2500 for AMAT01-1’s and 2000 for 

AMAT02-1.  Next, at Step 3, we determine when each machine in M0 should be reset.  

The target tooling for both AMAT01-1 and AMAT02-1 are the family 6490924B but 

only instance T01 is available between t0 and t0+∆free (that is, T01 is not in use at t0). 
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Thus only one machine instance can be reset within [t0, t0+∆free].  Since AMAT01-1’s 

benefit is greater than AMAT02-1’s, the former is chosen to reset at time t0.   

At Step 4, AMAT02-1 is removed from M0 giving M0 = {AMAT01-1}.  Since 

there is only one machine in M0, by default, it is place in the first position on the priority 

list L  at Step 5.  Lots are then assigned to AMAT01-1, and the lots, machine and 

tooling instances are marked as unavailable.  Putting t0 ← t0 + ∆free = t0 + 1 which is less 

than the planning horizon denoted by t0 + 2, the algorithm returns to Step 1 and repeats.  

The remaining calculations can be obtained from the authors.  The results are shown in 

Table 29.   

Table 29: Example results for Priority_List_Algorithm 

Machine_Family Machine_Instance Time_to_Mach_Free (hr) Final_Tar_Tooling 

ETS-1M-64 AMAT01-1 0 6490924B 

ETS-2-64 AMAT04-1 1.6 6466496A 

ETS-1-64 AMAT02-1 0 6463103B 

ETS-1-64 AMAT03-1 1.2 6463103B 

 

Final_Tar_Cert Time_to_Reset (hr) Tool_Source Resetup_P riority Weight 

1 0 Inventory 1 2500 

1 1.6 Inventory 2 3000 

1 1.2 AMAT03-1 3 2000 

1 1.6 AMAT04-1 4 2000 

A second approach for constructing the priority list has also been developed.  It 

emphasizes the time when a machine can be reset without regard to ∆free.  The 

implementation invo lves replacing Step 5 above with the following. 
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Step 5. Rank the machines first based on the time when they can be reset with their target 

tooling and then by their benefit. The second criterion is used to break ties. 

The results of the computations are contained in the summary file 

“priority.summery.txt.” The following data are provided. 

Total number of machines that need resetting: total number of machines in 

“priority_list.csv” that are candidates for resetting.  This value excludes machines 

that are currently set up with the target tooling.  

Total number of machines that need resetting within time limit: number of machines 

that become idle between t0 and t0 + ∆free.  

Number of machines ranked within the time limit : number of machines that become 

free and whose target tooling is available between t0 and t0 + ∆free.  These machines 

are ranked. 

Number of machines not ranked within time limit : number of machines that are idle 

between current time t0 and t0 + ∆free but cannot be reset in this interval because their 

target tooling is not available. 

8.3.3 Greedy randomized procedure for lot assignments  

In Step 6 of the Priority_List_Algorithm, lots are assigned to machines 

for the given too ling setup. Rather than making these assignments in decreasing order of 

the value of their weight_rates, as calculated in Step 4 of 

Benefit_Calculation_Algorithm  

A greedy randomized proedure is used to diversify the search for good solutions. 

A purely myopic approach is likely to suffer from “end” effects as the number of options 

deceases when only a few lots remain.  For example, assume that we have a machine m1 

with 24 hours remaining, and four lots with weight_rates ordered such that l1 = 100 = l2 = 
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100 > l3 = 99 = l4 = 99.  The times required for processing l1, l2, l3, and l4 are 13, 8, 5 and 

5 hours, respectively. The greedy solution would have l1, l2 assigned to m1. A better 

solution would have l1, l3, and l4 assigned to m1. 

Our methodo logy cons ists of a construction phase only.  Starting with the first 

machine on the pr iority list L  that has not been assigned any lots, we randomly choose 

a lot from the top five candidates in a ranked list until all the available time on the current 

machine is consumed.  The result is recorded and the process is repeated for a total of 10 

iterations.  The assignments asssociated with the highest weighted sum of lots found 

during the 10 iterations represents the solution for the machine.  The procedure is 

repeated applied to each machine in L  that is available in the current time period.  

It should be mentioned that an improvement phase based on swaps could have 

been added after all machines are assigned lots to get a fulfledged GRASP.  Although 

theoretically, swapping target tooling between two machines and reassigning lots to the 

machines could result in better solutions, we found that after some initial experimentation 

the effort spent just trying to stay feasible within a neighborhood proved too time 

consuming to be effective. 

Greedy_Lot_Assignment_Algorithm 

Step 1. (Initialization) 

1a. For the machine-tooling setup under consideration, read the file 

“solution.csv” to identify all lots processed by the same machine family and 

tooling setup in the target solut ion.  Exclude any lots on machines at t0 

(i.e., initial lots) and those that have already been assigned.  

1b. Choose routes from the file "route.csv" for the lots found in Step 1a. The 

routes correspond to the same machine family, tooling family, and 
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certification as the machine-tooling setup under consideration. For each lot 

choose the route that has the highest processing rate in terms of PPH.  

1c. Compute weight_rate for lots found in Step 1 in the same way as in the Step 

4 of Benefit_Calculation_Algorithm.  Rank the lots based on 

weight_rate.  

Step 2. Set k = 1.  Record the ranked lot list in Step 1c as lot_list_original.  Let 

lot_assigned_opt record the optimal weighted lots assigned to the machine. Let 

weighted_sum_opt = 0. 

Step 5. If k > 10, stop,  Otherwise, let lot_list_temp = lot_list_original, and create a 

new list, call it lots_assigned, which holds the lots assigned to the machine. Let 

weighted_sum = 0; 

Step 6.  If the number of lots in lot_list_temp is 0, then go to Step 8.  Otherwise, 

randomly choose a lot from the top 5 (or from the remaining number, if less) of 

lot_list_temp.  

Step 7.  Remove the lot found in Step 6 from lot_list_temp.  If the time required for 

processing the lot found in Step 6 is less than the time remaining for the 

machine, add its weight to weighted_sum, and place in lot_assigned; otherwise, 

discard it. Go to Step 6.  

Step 8.  Put k ← k + 1. If weighted_sum > weighted_sum_opt, put weighted_sum_opt = 

weighted_sum, lot_assigned_opt = lot_assigned. Go to Step 5. 

8.4 MIXED-INTEGER PROGRAMMING MODEL FOR REAL-TIME CONTROL PROBLEM 

To validate the results from our real- time control heuristic, we have also 

developed two competing MIPs that provide “optimal” changeover and scheduling 

recommendations similarly based on real-time data inputs.  Each makes use of the 
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maximum capacity solution obtained from (1a) – (1i).  The first tries to minimize the 

weighted sum of the absolute deviations from the target solution and the second tries to 

maximize the weighted sum of processed lots. The assumptions underlying the MIPs are 

the same as those enumerated before section 8.1 within Chapter 8.  If a machine is 

currently set up in accordance with the target solution, it, as well as the lots assigned to it, 

are omitted from the analysis.  Of the remaining machines in M, only those that are free 

or will be become free in ∆free minutes are included in the problem instance. The 

corresponding formulations are given in Appe ndix E. 

8.5 COMPUTATIONAL EXP ERIMENTS 

The complementary algorithms described from Section 8.1 to Section 8.3 were 

tested using the same data described in Section 6.4.  The basic data set consists of 36 

machines, 284 tooling pieces from 6 families, 1036 lots, and 1 temperature (certification) 

setting, and served as the basis for randomly generating eight additional data sets.  

Randomly generated data based on this real case is also used [for further explanation, see 

Section 6.4].  For discussion purposes, machines processing lots at t0 are called “initial 

machines” and generally have tooling installed on them.  

Procedures, Compare_Algorithm and Priority_List_Algorithm, 

were implemented in C++ and run under Ubuntu Linux on a Dell Poweredge 2950 

workstation with 2 dual core hyperthreading 3.73 GHz Xeon processors and 8 GB of 

memor y.  CPLEX 12.1 was used to solve the two MIPs described in Appendix E without 

changing its default settings. 

8.5.1 Results for Compare_Algorithm 

In all the testing, the waiting time limit ∆free was set to 1 hr.  The results appear 

in Tables 30 − 32 whose column headings are defined as follows. 
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Total no. machines: Total number of machines in the problem instance including 

the machines that are already set up according to the target 

solution 

Total no. tools: Total number of tooling pieces including those in use  

No. need reset: Number of machines that are candidates for changeover during the 

remainder of the planning hor izon 

Free within ∆free: Number of machines that become free between t0 and t0 + ∆free  

Reset within ∆free: Number of machines that can be reset between t0 and t0 + ∆free  

Not reset within ∆free: Number of machines that are idle between t0 and t0 + ∆free 

but cannot be reset because target tooling is not available 
 

Table 30: Compare results for group 1 

Prob lem 
no. 

Total no. 
machines 

Total 
no. tools 

No. need 
reset 

Free within 
∆free 

Reset within 
∆free 

Not reset 
within ∆free 

1 36 284 23 12 11 1 
2 36 284 25 16 14 2 
3 36 284 22 13 12 1 

 

Table 31: Compare results for group 2 

Prob lem 
no. 

Total no. 
machines 

Total 
no. tools 

No. need 
reset 

Free within 
∆free 

Reset within 
∆free 

Not reset 
within ∆free 

4 36 284 29 20 19 1 
5 36 284 29 22 20 2 
6 36 284 25 21 19 2 
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Table 32: Compare results for group 3 

Prob lem 
no. 

Total no. 
machines 

Total 
no. tools 

No. need 
reset 

Free within 
∆free 

Reset within 
∆free 

Not reset 
within ∆free 

7 36 284 33 29 29 0 
8 36 284 34 29 27 2 
9 36 284 34 29 29 0 

In all but one case, 67% or more of the 36 machines needed to be reset at t0.  For 

the base case, problem 1, 12 machines are available in the upcoming hour and 10 of them 

can be reset.  This suggests that there is ample tooling available to permit the 

changeovers.  In all cases, no more than 4 machines that are candidates for changeover 

cannot be reset within the hour (see last column of tables). 

8.5.2 Results for Pr iority_List_Algor ithm 

Table 33 reports the results for Problem no. 1 listed in Table 30. Of the 23 

machines that are candidates to be reset, column 3 indicates that 12 are available for 

changeover in the upcoming hour.  Column 4 gives the target tooling and column 5 

indicates the time from t0 when either the tooling or machine will become free.  Column 

6 identifies the source of the tooling.  For machines AMAT30-1 and AMAT15-1 in 

rows 12 and 18, the tooling is currently installed on two other machines and will not be 

available in the hour. For the remaining 21 cases, the tooling is currently available so any 

delay noted in column 5 is a consequence of the machine still processing a lot.  The 

"Benefit_value" entered in the last column is the measure used to rank the changeovers.  

The large values reflect the wide variation in lot weights; lots with key devices may be 

assigned weights that are several orders of magnitude greater than regular lot 
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Table 33: Priorities for resetting available machines 

Machine 

family 

Machine 

instance 

Time to 

machine  

free (hr) Final target tooling 

Time to 

reset (hr) Tool source 

Reset 

priority 

Benefit 

value  

ETS564 AMAT13-1 0 6462741B 0 inventory 1 8.50E+07 

ETS-2-64 AMAT33-1 0 6504853A/6487463C 0 inventory 2 5.37E+07 

ETS-0-64 AMAT31-1 0 6473198B 0 AMAT16-1 3 2.95E+07 

ETS-1M-64 AMAT22-1 0 No_Tooling 0 inventory 4 2.33E+07 

ETS-1M-64 AMAT26-1 0 6469171D 0 inventory 5 1.16E+07 

ETS-1-128 AMAT16-1 0 6501065B 0 inventory 6 4.74E+06 

ETS564 AMAT06-1 0 6440109A 0 inventory 7 831902 

ETS-2-64 AMAT35-1 0 6481146C 0 inventory 8 199202 

ETS564 AMAT05-1 0 6453620A 0 inventory 9 58000 

ETS564 AMAT04-1 0 6442302C 0 inventory 10 23404 

ETS564 AMAT07-1 0.045 6462741B 0.045 inventory 11 1 

ETS-0-64 AMAT30-1 0.308056 6473198B 1.46861 AMAT21-1 12 2.95E+07 

ETS-1M-64 AMAT21-1 1.46861 No_Tooling 1.46861 inventory 13 2.33E+07 

ETS-1M-64 AMAT25-1 1.65611 6469171D 1.65611 inventory 14 1.16E+07 

ETS-1-64 AMAT08-1 1.02222 6466496A 1.02222 AMAT30-1 15 4.45E+06 

ETS-1-64 AMAT14-1 1.78694 6481146C 1.78694 inventory 16 263600 

ETS-2-64 AMAT32-1 2.43278 6483172A 2.43278 inventory 17 3.07E+07 

ETS-1-64 AMAT15-1 2.51472 6473283C 2.74694 AMAT34-1 18 4.86E+06 

ETS-2-64 AMAT34-1 2.74694 6485429B 2.74694 inventory 19 81302 

ETS-1M-64 AMAT23-1 3.72167 No_Tooling 3.72167 inventory 20 2.33E+07 

ETS-1-64 AMAT11-1 3.68083 6479471B 3.68083 inventory 21 219300 

ETS-1-128 AMAT12-1 7.75333 6501065B 7.75333 inventory 22 3.67E+06 

ETS-1-64 AMAT19-1 8.75167 6490924B 8.75167 inventory 23 1.42E+06 
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8.5.3 Comparison of heuristic and MIP results  

The nine problems listed in Tables 34 – 36 were analyzed and the results 

compared to the solutions obtained for Models (5) and (6) presented in Appendix E.  For 

the MIPs, the maximum number of changeovers permitted was 10 and a 1-hour time limit 

was placed on the CPLEX runs.  Tables 34 and 36 detail the output statistics obtained 

with the priority heuristic and CPLEX for Model 5, respectively. The objective values 

reported are those computed from (5a) and (6a); that is, 

( ) ( , ) ( , ) ( , )lr ilr ilrl L r R l i M l r l i l
w x X

λ λ∈ ∈ ∈ ⊆ ∈
−∑ ∑ ∑ ∑M M

 
 and 

( ) ( , ) lr ilri M l L i r R i l
w x

∈ ∈ ∈∑ ∑ ∑ , 

where M is the set of machines that are available for changeover in the upcoming hour.  

For problem no. 1, for example, the machines in M are those in Table 33 whose entry in 

column 3 is less than or equal to 1.  

The first six columns in Tables 34 and 35 are self-explanatory. The ‘Model 5 

objective’ value in column 2 is the sum of the weights of the target lots that are not 

processed by the same route as in the target solution as determined by substituting the 

heuristic solution into (5a).  For the first 10 machines in Table 33, the weight sums are 0 

because all targets are met.  Thus, the value 6697×104 for problem no. 1 in Table 34 

corresponds to the sum of the weights of lots that are not processed by the first 10 

machines in Table 33. In contrast, the ‘Total weight of lots’ value in column 3 represents 

the sum of the weights of all the lots that can be assigned to the machines that are 

available within the hour, but only up to a maximum of nsetups which has a value of 10 in 

all the computations. Note the fact that exactly 10 machines can be reset in the solution 

contained in Table 33 is a coincidence. 

Column 7 reports the average number of hours that the lots assigned to the reset 

machines will consume within the planning horizon, which is 24 hours for all cases. 
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Columns 8 and 9 give the maximum machine time and minimum machine time used, 

respectively, for the reset machines. The results indicate that for both the heuristic and 

CPLEX the full capacity of at least one machine in each problem set is used; the average 

over all cases was 20.6 hours.  For the heuristic, there are several problems where some 

of the machines have significant unused capacity, while the CPLEX results indicate that 

there is at least one machine in all cases with significant unused capacity. The run times 

reported in the last column are negligible for the heuristic and anywhere from 33 to 278 

sec for CPLEX which found the optimal solution for each problem set.   

Table 34: Heuristic changeover results 

Prob. 
no.  

Model 5 
objective 

(104) 

Total 
weight of 
lots (104) 

No. of 
lots 

No. lots 
with key 
devices  

No. of 
change-
overs 

Average 
mach. time 

(hr) 

Maximum 
mach. time 

(hr) 

Minimum 
mach. time 

(hr) 

Run 
time 
(sec) 

1 6697 20760 85 79 10 17.42 23.79 5.37 1 
2 7190 19743 90 80 10 21.25 23.97 12.87 1 
3 2627 4985 39 37 10 13.03 23.47 0.90 1 
4 4169 30961 101 97 10 22.39 23.97 12.85 0 
5 5827 31220 107 105 10 23.25 23.99 22.09 0 
6 3476 9420 67 66 10 22.07 23.95 12.85 1 
7 8010 28100 86 82 10 23.49 23.95 22.21 1 
8 8079 28966 112 110 10 22.83 23.91 20.35 0 
9 8881 17378 78 73 10 22.92 23.97 20.97 1 
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Table 35: CPLEX changeover results for Model 1 

Prob. 
no.  

Model 5 
objective 

(104) 

Total 
weight of 
lots (104) 

No. of 
lots 

No. lots 
with key 
devices  

No. of 
change-
overs 

Average 
mach. time 

(hr) 

Maximum 
mach. time 

(hr) 

Minimum 
mach. time 

(hr) 

Run 
time 
(sec) 

Solution 
status 

1 6698 20759 83 77 10 22.54 23.92 18.19 141 optimal 
2 7180 19753 84 84 10 22.54 23.92 18.19 182 optimal 
3 2621 4991 40 38 10 13.33 23.79 0.90 97 optimal 
4 4173 30957 102 98 10 22.42 23.95 12.85 206 optimal 
5 5827 31220 107 105 10 23.24 23.92 22.09 213 optimal 
6 3428 9469 68 67 10 22.22 23.95 12.85 159 optimal 
7 7931 28179 95 91 10 23.49 23.98 22.21 378 optimal 
8 8078 28966 112 110 10 22.83 23.91 20.35 392 optimal 
9 8881 17378 78 73 10 22.87 23.97 20.97 328 optimal 

Table 36 identifies the percentage differences between the CPLEX and heuristic 

solutions provided in Tables 34 and 35, respectively.  The results are nearly identical for 

the 'Model 5 objective' values and the ‘total weight of lots’ values in columns 2 and 3 

respectively. For problem nos.1 and 4, although the solution status returned by CPLEX is 

"optimal," the heuristic produced better results.  This is possible because the tolerance 

used for the case in CPLEX is 0.21%, which is higher than the percentage differences in 

Table 36 for these two problems. One additional point of interest is that the CPLEX 

processes a few more lots with key devices on average than the heur istic. In the analys is 

here, we do not distinguish between lot types.  Only the lot weights are used to guide the 

changeovers, and while lots with key devices generally have large weights, they are not  

necessarily dominant. 
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Table 36: Percentage difference between CPLEX and heuristic solutions for Model 5† 

Prob. no.  
Model 5 
objective  

Total 
weight of 

lots 
No. of 
lots 

No. lots 
with key 
devices  

No. of 
change-
overs 

Average 
mach. time 

(hr) 

Maximum 
mach. time 

(hr) 

Minimum 
mach. time 

(hr) 
1 0.01 0 -2.41 -2.60 0 22.72 0.54 70.48 
2 -0.14 0.05 -7.14 4.76 0 5.72 -0.21 29.25 
3 -0.23 0.12 2.5 2.63 0 2.25 1.35 0 
4 0.1 -0.01 0.98 1.02 0 0.13 -0.08 0 
5 0 0 0 0 0 -0.04 -0.29 0 
6 -1.4 0.52 1.47 1.49 0 0.68 0 0 
7 -1 0.28 9.47 9.89 0 0 0.13 0 
8 -0.01 0 0 0 0 0 0 0 
9 0 0 0 0 0 -0.22 0 0 

Average -0.30 0.11 0.54 1.91 0 3.47 0.16 11.08 
† Values reported are calculated as follows: 100% × (CPLEX − heuristic) / CPLEX 

The CPLEX results for Model 6 are presented in Table 37 and the percentage 

differences with the heuristic solutions are given in Table 38.  In these runs, the idea of 

aiming for the target solut ion is abandoned in favor of the greedy objective of 

maximizing the weighted sum of the lots processed.  As expected, the CPLEX solutions 

always provide larger objective function values, averaging 21.28% above the heuristic 

solutions.  Also, CPLEX processes more lots in general but fewer key lots. In neither 

case was preemptive priority given to key lots as it was in Model (5) for the target setting 

run.  Moreover, the heuristic is not trying to achieve the Model (6) objective of 

maximizing the weighted sum of the lots processed.  Instead, it is trying to identify 

changeovers that come as close as possible to the target solutions. 

Although the feasible regions of Models 5 and 6 are identical, CPLEX had much 

more difficulty finding opt imal solutions when the objective was to maximize the 

weighted sum of lots selected for processing, and was only able to arrive at an optimum 
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within 1 hour for three of the nine cases. This can be seen in the last two columns of 

Table 37.  There is no theoretical explanation for this result but empirically we have 

found in the past that it is easier to solve optimization problems with variable targets than 

when the objective function is more general (e.g., see Zhang and Bard 2006) .  The use of 

an absolute value objective function focuses the search for the optimum around the target 

values in the feasible region thus reducing its effective size. This has a “convexifying” 

effect on the problem so local optimum are often global optima. To some extent, this can 

be seen when (6a) is linearized by replacing each term of the form |x − X| with z and 

adding the constraints z ≥ x − X and z ≥ X − x to the model. 

Table 37: CPLEX changeover results for Model 6 

Prob. 
no.  

Total 
weight of 
lots (104) 

No. of 
lots 

No. lots 
with key 
devices  

No. of 
change-
overs 

Average 
mach. time 

(hr) 

Maximum 
mach. time 

(hr) 

Minimum 
mach. time 

(hr) 

Run 
time 
(sec) 

Solution 
status 

1 25069 83 69 10 20.74 23.86 9.10 43 optimal 
2 26277 92 90 10 22.24 23.97 11.26 3664 feasible 
3 7403 44 39 10 13.02 23.51 3.89 28 optimal 
4 36209 79 76 10 22.26 24.00 11.84 396 optimal 
5 36108 89 86 10 22.24 23.99 11.26 3681 feasible 
6 13731 71 70 10 20.43 23.98 3.88 507 optimal 
7 33493 79 77 10 22.51 24.00 13.84 3777 feasible 
8 35995 102 98 10 23.47 24.00 22.67 3786 feasible 
9 22199 70 68 10 22.48 24.00 13.84 3763 feasible 
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Table 38: Percentage difference between CPLEX and heuristic solutions for Model 6† 

Prob. no. 

Total 
weight of 

lots 
No. of 
lots 

No. lots 
with key 
devices 

No. of 
change-
overs 

Average 
mach_time 

(hr) 

Maximum 
mach_time 

(hr) 

Minimum 
mach_time 

(hr) 
1 17.19 -2.41 -14.49 0 16.01 0.29 40.99 
2 24.87 2.17 25.56 0 15.02 0.42 66.61 
3 32.66 11.36 0 0 -18.74 -1.19 76.86 
4 14.49 -27.85 -17.11 0 8.49 0.21 57.09 
5 13.54 -20.22 -11.63 0 3.1 0.38 51.87 
6 31.4 5.63 4.29 0 8.27 0.13 -30.93 
7 16.1 -8.86 -18.18 0 -4.35 0.25 -60.48 
8 19.53 -9.8 -10.2 0 1.24 0.21 2.69 
9 21.72 -11.43 1.47 0 -4.76 0.13 -60.48 

Average 21.28 -6.82 -4.48 0 2.70 0.09 16.03 
† Values reported are calculated as follows: 100% × (CPLEX − heuristic) / CPLEX 
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Chapter 9:  Future Work 

Although significant progress has been made in solving the AT multipass 

scheduling problem, improvements are still possible. For Scheme I described in Chapter 

6, at least two areas of opportunity present themselves. First, the sequential nature in 

which passes are scheduled gives priority to the current lots in WIP regardless of their 

step number.  If it were possible to take a more expansive view of the processing 

requirements of a route, this might allow us to schedule all passes of high priority lots at 

the beginning of the planning horizon.  Doing so could decrease shortages of some key 

devices, but at the expense of increasing shor tages of other key devices in the current or  

next planning horizon.  The tradeoffs would have to be carefully weighed.  The second 

area concerns the computational effort. For some instances considered in Section 6.4, 500 

iterations for phase I and 100 iterations for phases II and III produced long runtimes. The 

implication is that larger instances might require more than 100 iterations for phases II 

and III to guarantee good solutions.  Determining the best settings to balance solution 

quality with runtime is a matter that will be addressed in any upcoming pilot project 

aimed mainly at fixing data formats and user interface requirements 

For Scheme II present in Chapter 7, the computations showed that on average 

6,116 CPU seconds using four threads were required to reach an optimality gap of 8.94%.  

Future work to improve the Scheme II includes the development of a customized 

algorithm to solve the phase 1 assignment model, the primary bottleneck.  We believe 

that a column generation approach will prove much more effective than CPLEX for this 

problem. In addition, it would be useful develop a real-time control algorithm for making 

adjustments to the schedule in light of uncertain events such as machine breakdowns and 
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newly arriving orders, or when more changeovers are called for in a specific time period 

than can be performed by the available crew.   

Finally,  the real- time algorithm detailed in Chapter 8 could be updated to take 

multiple passes into account.  
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Appendix A: Procedure to Account for Logpoint and Operation Number in Multipass 
Scheme I 

 

1. When reading the input files, the logpoint and operation number information are 

recorded for each lot in the “wip.csv” file and each route in “route.csv” file.   

2. When the single-pass algorithm chooses candidate routes for a lot or a machine-

tooling- lot assignment (including initial machine tooling and lot), not only the 

device but also the logpoint and operation number of the lot must be consistent 

with those of the routes.  This leads to smaller sets of candidate routes for a lot or 

a machine-tooling- lot assignment in the single-pass algorithm than in the original 

GRASP.   

3. When the single-pass algorithm chooses candidate lots for a machine or a 

machine-tooling setup, it picks candidate routes first and then the candidate lots 

based on the candidate routes. Not only device but also logpoint and operation 

number of the candidate lots must be consistent with those of one of the candidate 

routes for the machine or the machine-tooling setup.  This results in smaller sets 

of candidate lots for a machine or a machine-tooling setup in the single-pass 

algorithm than in the original GRASP.   

4. When the op timal machine-tooling- lot assignment for the first-pass lots is written 

to the “solution.csv” file, the logpoint and “Pass_num” of a lot is added in the 

record that represents the lot.  Since all the lots are first-pass lots by convention, 

the "Pass_num" for these lots are just 1.   
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Appendix B: : Pseudocodes for Subroutines in Multipass Scheme I 

B.1 INITIALIZATION 

At Step 0 the files "solution.csv" and "route.csv" are read to initialize the necessary data 

structures and parameters.  

Initialization_for_Multipass_Algorithm 

Input: solution.csv and route.csv 

Output: C_M_Λ_T , M_Λ_T,  L1(i), tcl(l,logpoint(l)), last_time = 0, current_time = 0, 

FL, R and  R(i,λ, l, logpoint(l)) 

Step 1. Read solution.csv; set M_Λ_T = Ø and L1(i) = Ø .    

1a. FOR each i ∈ M1  

Identify machine-tooling setup id λ(i) and completion time tc(i) of 

the last lot assigned to the machine.  Add (i,λ (i),tc(i)) to M_Λ_T. 

Indentify the lots ( l,logpoint(l)) assigned to machine i and add them 

to L1(i).   

ENDFOR 

1b. FOR each l ∈ L1 

Identify the completion time of l and the corresponding logpoint in 

the solution.csv file, and get tcl(l,logpoint(l))  

ENDFOR 

Step 2. Initialize two variables recording the current time and last time (most recent 

time) that some machine finished all lots assgined to it; last_time = 0, 

current_time = 0.  

Step 3. Set candidate lot list CL = Ø and finished lot list FL = Ø.  
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Step 4. Read route.csv file and initialize R and R(i,λ, l, logpoint(l)) for i ∈ M, 

λ ∈ Λ(i), l ∈ L 

Step 5. Initialize C_M_Λ_T.  Add ( i,λ (i),tc(i)) into the set C_M_Λ_T for all i ∈ M.   

Steps 2 and 3 can be completed in constant time. The worst case for Step 1 is 

O(M1×Λ+  L1) , the worst case for Step 4 is O(M×Λ×L), and the worst 

case for Step 5 is O(M).  Thus the complexity of the procedure is 

O(M×Λ×L).   

B.2 UPDATING CANDIDATE LOT LIST 

At the beginning of the planning horizon, all higher-pass lots are unavailable by 

definition.  When a machine finishes its assigned lots, higher-pass lots may become 

available except for those at the final step in their route since no more processing is 

required.   

Building_CL_Algorithm 

Input : last_time, current_time, CL, L1, FL, tcl(l,logpoint(l)), l ∈ L 

Output: upda ted CL 

Step 1. Try to add the lots that are scheduled by the single-pass algorithm and finish 

processing between last_time and current_time to the candidate lot list CL.   

FOR (l, logpoint(l)) ∈ L1  

If last_time = 0, then 

If last_time ≤ tcl(l,logpoint(l)) ≤ current_time, then 

run Check_for_Next-Pass_Algorithm with input 

(l, logpoint(l)).   

Endif 

Else 

If last_time < tcl(l,logpoint(l)) ≤ current_time, then 
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run Check_for_Next-Pass_Algorithm with input 

(l, logpoint(l)).   

Endif 

Endif 

If (l, next_logpoint(l)) is returned, then 

add (l, next_logpoint(l)) to the candidate lot list CL. 

Endif 

ENDFOR 

Step 2. Try to add the lots that are scheduled by Multipass_Algorithm and finish 

between last_time and current_time to the candidate lot list CL.   

FOR (l, logpoint(l)) ∈ FL 

 If last_time < tcl(l,logpoint(l)) ≤ current_time, then 

 run Checking_for_Next_Pass_Algorithm to (l,logpoint(l)).   

 If (l, next_logpoint(l)) is returned, then 

 add (l, next_logpoint(l)) to the candidate lot list CL. 

endif 

endif 

ENDFOR 

Step 1 can be  executed in O(CL×R) time and Step 2 in O(FL×R) time.  

Thus, the complexity of Building_CL_Algorithm is O((CL+FL) ×R).  

B.3 CHECKING WHETHER NEXT PASS EXISTS 

The essence of Building_CL_Algorithm is to check whether a scheduled lot is at 

the end of its route or if additional processing is required.  The check is performed by 

comparing the current logpoint with the last logpoint for the device in the routing table. 

Check_for_Next-Pass_Algorithm  
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Input: ( l, logpoint(l)) 

Output: (l,next_lotpoint(l)) or ∅ 

Step 1. Check whether there exists a “next pass” for the lot (l,logpoint(l)): Read route.csv 

file and identify all subroutes r ∈ R(i,λ, l,logpoint(l)) for device d(l); rank the 

subroutes in an ascending order based on logpoint(l).   

Step 2. If there exists any logpo int greater than logpoint(l), then 

 identify the logpoint closest to logpoint(l) and denote it by next_logpoint(l); 

go to Step 3;  

else  

 Return ∅, stop. 

endif 

Step 3. Create a new combination of lot id and logpoint (l, next_logpoint(l)) and return.  

 

 The complexity of the algorithm is O(R).   

B.4 GREEDY RANDOMIZED P ROCEDURE FOR ASSIGNING LOTS 

Given the candidate machine list C_M_Λ_T_2 and the candidate lot list CL at Step 4 of 

the Multipass Algorithm, we must decide which lots to assign to which machines.  

Each machine in C_M_Λ_T_2 is considered in sequence starting with the first one, say, 

i1.  Rather than assigning lots to i1 in decreasing order of their benefit value, though, a 

greedy randomized procedure is used to diversify the search for good solutions.  The 

main idea is to randomly choose a lot from the top five candidates in the ranked list 

CL(i1,λ(i1)) ⊆ CL. The process is repeated until no more assignments are possible, at 

which point, the next machine i2 is considered. 

 In the computations, some lots become available earlier than the machine under 

consideration, and other lots later. Thus we need to keep track of when a lot become 
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available, i.e., when the step associated with its preceding logpoint is finished.   This 

information is recorded in (l, next_logpoint(l)), tcl(l, preceding_ logpoint(l)) ∈ CL. 

The advantage of this randomized approach over a purely greedy approach is that 

it expands the search area allowing us to explore more of the feasible region.  For 

example, assume that we have a machine i1 with 18 hours remaining, and four lots in 

CL(i1,λ(i1))  with benefit values orde red such that l1 = l2 = 100 > l3 = l4 = 99. The times 

required for processing l1, l2, l3 and l4 are 8, 8, 5 and 5 hours, respectively. The greedy 

solution would assign l1, l2 to i1.  A better solution would be to assign l1, l3, and l4 to i1.  

This procedure is outlined below. 

Assign_Lot_Algorithm  

Input: (i,λ (i),tc(i)), CL, FL, R, tcl(l, logpoint(l)) 

Output: Updated CL, FL, L2(i), tcl(l,logpoint(l)) 

Step 1. Rank the lots in CL in a descending order based on their benefit contribution to 

(1a). 

Step 2.  Build CL(i,λ(i)), the candidate lot list that can be processed by machine i with 

tooling setup λ(i).   

FOR each (l,logpoint(l)) ∈ CL, beginning with the first element, 

If R(i,λ,l, logpoint(l)) ≠ Ø, then 

 find t he subroute r ∈  R(i,λ, l,logpoint(l)) with the largest PP H; 

 calculate time required to finish the lot (l, logpoint(l)) as follows: 

required_time = Quantity/ PPH +  Load_Unload_Time 

 If required_time ≤ H(i) − tc(i), then 

 add  (l, logpoint(l)to CL(i,λ(i))  

Endif 

Endif 
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ENDFOR 

Step 3. Rank the lots in CL(i,λ(i)) in non- increasing order based on their benefit va lue 

Step 4. WHILE (|CL(i,λ(i)) | ≥ 1) 

Let num_candidate = min{|CL(i,λ(i))|, 5}, then 

 randomly choose a lot (l, logpoint(l)) from top num_candidate in the 

CL(i,λ(i)); 

Calculate time required to finish lot (l, logpoint(l)) as follows:  

 required_time = Quantity/ PPH +  Load_Unload_Time. 

Let start_time = max{tc_temp, tcl(l, preceding_logpoint(l))} 

If required_time ≤ H(i) − start_time, then 

put tc(i) ← start_time + required_time; 

 add (l, logpoint(l)) to FL; 

add (l, logpoint(l)) to L2(i); 

put tc(i) ← tc(i) + required_time; 

set tcl(l,logpoint(l)) = tc (i); 

Endif 

Delete (l,logpoint(l)) from CL; 

 ENDWHILE 

 Step 1 has complexity O(CL× log(CL).  In the worst case, Step 2 takes 

O(CL×R) time, Step3 takes O(CL× log(CL) time, and Step 4 takes O(CL).  

Thus, complexity of the algorithm is O(CL× log(CL) +  CL×R).   
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Appendix C: Pseudocodes for Changeover Algorithm Subroutines 

C.1 Initialization 

Four sets: available_tooling_set, candidate_lot_list, candi_mach_for 

_toolings_list, and candi_mach_for _changeover_list need to be initialized. The results 

give the status of machine setups and lot assignments at the beginning of the planning 

hor izon.  Note the candidate_lot_list associated with the changeover algorithm is larger 

than CL associated with the multipass algorithm since unassigned first-pass lots are now 

taken into consideration.  

Sets and indices  

candidate_lot_list  set of combinations of lot id and logpoint – this set 

stores available lots that can be assigned to reset 

machines; (l,logpoint(l)) ∈ candidate_lot_list  

candi_mach_for _toolings_list set of combinations of machine instance id, tooling 

setup, and completion time of the last lot finised on 

this machine.  This set stores the machines that still 

have toolings  on them; (i,λ(i),tc(i)) ∈ candi_mach_for 

_toolings_list 

candi_mach_for _changeover_list set of combinations of machine instance id and 

completion time of the last lot finished on this machine 

– stores the machines that are eligible to be reset;  

(i,tc(i)) ∈ candi_mach_for _changeover_list 

available_tooling_set  set of combinations of tooling family tf and number of  

tooling pieces ntf available from the tooling family tf; 

(tf, ntf) ∈ available_tooling_set  
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L3(i) set of combinations of lot id and logpoint that are 

assigned to machine i during t he changeover algorithm 

(excludes lots assigned by the single-pass or multipass 

algorithms); (l, logpoint(l)) ∈ L3(i). 

Initialization  

Step1. Set available_tooling_set = Ø.  For each tooling family tf, perform 

1a. Read tooling.csv, and identify total  number of tooling pieces for tooling 

family tf.   

1b. Read initialsetup.csv, and identify number of used of tooling pieces for 

tooling family tf.   

ntf = total  number − number of used  

1c. Read solution.csv, and identify the number of machine that setup with 

tooling family tf and their initial setup were not tooling family tf.  Then the 

number of tooling pieces available for tf is updated as:  

ntf = total  number − number of machine  

1d. Add (tf, ntf) to available_tooling_set 

Step 2. Set candidate_lot_list = Ø.  

2a. Read wip.csv and identify all lots and their logpoints, and add (l, logpoint(l))  

to the set candidate_lot_list.  Mark all lots in wip.csv as first-pass lots.  

2b. Read solution.csv and identify all assigned lots and their logpoints, and 

delete (l, logpoint(l)) from the set candidate_lot_list. Mark all lots in 

solution.csv as first-pass lots.  

Step3. Set candi_mach_for_toolings_list = Ø, and  

L3(i) = Ø for all i ∈ M. 
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3a. Read solutions.csv to identify the machines that are setup or that have initial 

setup. Add these machines to candi_mach_for _toolings_list 

3b. Read machines.csv and solutions.csv to identify the machines that are idle at 

the beginning of the time horizon. These machines are those don’t have any 

lots to processs during t ime horizon, and don’t have initial lots to process or 

have finished initial lots before the start of the time horizon. Add these 

machines to candi_mach_for _resetup_list  

C.2 Updating candidate_lot_list 
When a machine finishes all of the lots assigned to it, we need to update the set 

candidate_lot_list.  The corresponding procedure is similar to the one used to update CL 

in Multipass_Algorithm, but whenever we find a (l, next_logpoint(l)) by running 

Checking_for_Next_Pass_Algorithm, we need to check whether this lot has 

already been assigned to a machine by Multipass_Algorithm for subsequent 

processing.  Since this information is stored in FL, we simply check whether (l, 

next_logpoint(l)) is in FL.    

Update_Candidate_Lot_List_Algorithm 

Input: (i,λ(i),tc(i)), L1(i), L2(i), L3(i), FL, candidate_lot_list,  

Output: Updated candidate_lot_list  

Step 1: FOR each lot (l, logpoint(l)) ∈ L1(i) ∪ L2(i) ∪ L3(i), apply 

Check_for_Next_Pass_Algorithm to (l,logpoint(l)). 

If (l, next_logpoint(l)) is returned, then 

check whether (l, next_logpoint(l)) is in FL. 

If not, then add (l, next_logpoint(l)) to candidate_lot_list 

Endif 

ENDFOR 
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C.3 Changeover a machine 

When a machine is empty, i.e., no tooling is installed on it, this machine is eligible to be 

reset.  Whenever a new tooling piece becomes available or a lot finishes a step in its 

route, we call the Changeover_a_Machine_Algorithm to check whether the 

machine can be reset at the current time.  If so, then we will app ly the 

Assign_Lot_Algorithm discussed in Appendix B.4 to assign lots.   

Changeover_a_Machine_Algorithm 

Input: (i,tc(i)), Λ(i), candidate_lot_list, available_tooling_set, R, Load_Unload_Time 

Step 1. Rank the lots in candidate_lot_list by the benefit value of l corresponding to (l, 

next_logpoint(l)), tcl(l, preceding_ logpoint(l)). Let best_benefit = 0, 

candidate_lot_list_best =  candidate_lot_list, FL_best =  FL, L3(i)_best =  L3(i), 

tcl(l, logpoint(l))_best =  tcl(l, logpoint(l)). 

 FOR each λ ∈ Λ(i),  

Step 2. Check available_tooling_set to see whether there are enough tooling pieces for 

λ. 

If yes, then go to Step 3.  

Step 3. Let candidate_lot_list_temp = candidate_lot_list, FL_temp = FL, R_temp = R, 

tcl(l, logpoint(l))_temp =  tcl(l, logpoint(l)). Apply 

Assign_Lot_Algorithm with (i,λ,tc(i)), candidate_lot_list_temp, 

FL_temp, R_temp, tcl(l, logpoint(l))_temp as inputs.  Get updated 

candidate_lot_list_temp, FL_temp, L3(i)_temp, tcl(l, logpoint(l))_temp. 

 Calculate the contribution to (1a) based on the updated FL_temp, L3(i)_temp, 

and denote the contribution as benefit_temp. If benefit_temp > best_benefit, 

candidate_lot_list_best =  candidate_lot_list_temp, FL_best =  FL_temp, 

L3(i)_best =  L3(i)_temp, tcl(l, logpoint(l))_best =  tcl(l, logpoint(l))_temp. 
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ENDFOR 

Step 4. candidate_lot_list = candidate_lot_list_best, FL = FL_best, L3(i) = L3(i)_best, 

tcl(l, logpoint(l)) = tcl(l, logpoint(l))_best 
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Appendix D: Complexity of the Assignment Model and Sequencing 
Model 

Both the assignment mode l and the sequencing mode l are large-scale MIPs, but 

only the former turned out to be difficult to solve to optimality.  In this section, we 

explore the computational complexity of the two models and show that they are both 

strongly NP-hard.   In add ition, we investigate various versions of the sequencing mode l 

to gain insight into its quick convergence.  The analysis indicates that simple cases are 

either polynomial or pseudopo lynomial solvable suggesting that some instances of the 

full problem may still be easy to solve.  Our results are based on analogies to either 

structured integer programs or standard machine scheduling problems whose 

complexities are well established, so no formal proofs will be given. In most cases, we 

will cite results from either Garey and Johnson (1979) or Brucker and Knust’s website 

(http://www.informatik.uni-osnabrueck.de/knust/class/). For example, the single machine 

scheduling problem (SMSP) with arbitrary setup times between jobs is equivalent to the 

traveling salesman problem, which is strongly NP-hard. Therefore, so is the SMSP.  

Machined-tooling-lot assignment problem.  Although model (3) has a number of 

complicating constraints which are included to keep track of resources, time, and 

machine capacity, it is only necessary to consider a simplified version to see its 

complexity.  

Proposition 1. The problem represented by model (3) is NP-hard in the strong sense. 

Proof. We show that the generalized assignment problem (GAP), which is known to be 

strongly NP-hard, can be polynomially transformed into the machine-tooling- lot 

assignment problem (MTLAP).  For n jobs and m machines each with capacity ci, i = 

1,…,m, recall that the GAP is given by 

http://www.informatik.uni-osnabrueck.de/knust/class/�
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Maximize
1 1 1 1

: , 1,..., ;  1, 1,..., ;  {0,1}, ,
m n n m

ij ij ij ij i ij ij
i j j i

w x a x c i m x j n x i j
= = = =

 
≤ = ≤ = ∈ ∀ 

 
∑∑ ∑ ∑  

where wij is the benefit when job j is executed by machine i, aij is the capacity of 

machine i required to perform job j, and xij = 1 if job j is a assigned to machine i, 0 

otherwise.  Now, given an instance of GAP an instance of MTLAP can be created as 

follows. Assume that the objective is to maximize the weighted sum of lots processed, 

each machine is already set up with too ling, and that there is only a single route for each 

lot on each machine (that is, subroutes don’t exist so the subscribe r is not needed).  For 

all machines i, set ci = Hi, and let ail be as in the GAP (the capacity required to process lot 

l on machine i will depend on the tooling assigned it).  Because the transformation from 

GAP to MTLAP is one-to-one, the result follows immediately.     

Sequencing problems.  In this subsection, we make use of the standard three-field 

machine scheduling notation: α |β |γ, where α indentifies the machine environment and 

contains a single entry, β  describes processing characteristics and places restrictions on 

the jobs, and may be empty, and γ is the objective to be minimized and usually contains a 

single entry (see Pinedo 2012). For our purposes, the following parameters are relevant. 

α : single machine (1); identical machines in parallel (Pm); unrelated machines in 

parallel (Rm) 

β : ready time of lot l (rl); deadline of lot l (dl); processing time of lot l (pl); precedence 

constraints (prec); sequence in which lots must be processed (chains), common due 

date (D); lot l must be processed on one of a subset of machines (Ml) 

γ : makespan (Cmax); completion time on machine i (Ci); binary indicator that lot l is late 

(Ul); tardiness of lot l (Tl); weight of lot l (wl) 
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Model (4) is a parallel machine scheduling problem with three objectives: (i) 

minimize the weighted sum of unprocessed key lots; (ii) maximize the weighted sum of 

processed lots; and (iii), minimize the sum of completion times over all machines, subject 

to precedence constraints, deadlines and lot-machine assignments. If we consider the first 

objective, then the problem can be represented by Rm | prec, dl, Ml | Σl wlUl.  The 

inclusion of Ml in field β  accounts for the fact that each lot l must be processed on a 

specific machine as determined by the solution to model (3).  Although this problem 

does not appear to have been previously studied, several simplifications lead us to the 

following result. 

Proposition 2. The problem represented by model (4) is NP-hard in the strong sense. 

Proof. We consider the case of a single machine with ready times and the objective of 

minimizing the weighted sum of unprocessed lots, 1| rl | Σl wlUl.  This problem is NP-

hard in the strong sense (Pinedo 2012) and can be obtained by fixing the lots on all 

machines but one and assuming that the lots to be sequenced on the remaining machine 

have only one pass to complete.  Accordingly, the second- and higher-pass lots among 

them will have ready times (and deadlines).  By the restriction principle (Garey and 

Johnson 1979) then, we can conclude that the problem represented by model (4) has the 

same complexity.   

Interestingly, the result also holds for the second objective function (because it is 

really equivalent to the first), the third objective of minimizing the sum of completion 

times on a single machine, 1| rl | Σl Cl, as well as when all the lots have unit processing 

time, chains are present, and the objective is to minimize the unweighted sum of 

unprocessed lots; that is, 1| chains, pl = 1|Σl Ul.  Note that chains correspond to two or 

more of the same lot on the same machine but with different pass numbers. When there 

are no restrictions on the lots, however, and the objective is to minimize the weighted 
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sum of unprocessed lots, the problem, 1||Σl wlUl, is NP-hard in the ordinary sense.  

Finally, for our purposes, when the lots have unit processing time but there is a ready 

time for each, the problem of minimizing the weighted sum of unprocessed lots on a 

single machine, 1| rl, pl = 1|Σl wlUl, becomes even easier and  is polynomially solvable.  

In general, all SMSP with ready times and due dates are strongly NP-hard (Garey and 

Johnson 1979). As mentioned, such a problem might arise if all the lot start times were 

fixed on all but one machine. The lots assigned to the remaining machine would have 

ready times and deadlines that could be derived from schedules of the same lots 

undergoing different passes in their route on the fixed machines.  Of course, if all the 

lots on a machine are unique without predecessor or successor passes on other machines 

giving 1||Σl Ul, any sequence is optimal in isolation as long as the pass order is preserved. 
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Appendix E – Mathematical Programming Models for Real-Time 
Decision Making 

Our first model tries to determine new setups and lot assignments that are as close 

as possible to those of the target solution; the second is aimed at maximizing the 

weighted sum of lots selected for processing.  Both models are derived from (1a) – (1i) 

and use the same notation.  Several new symbols are defined below.   

Sets 

L(i) set of available lots that can be processed on machine i 

L(i,λ) set of available lots that can be processed on machine i with tooling setup λ 

M  set of  all machines 

M (l) set of all machines that can process lot l 

M (l,r) set of all machines that can process lot l using route r  

M set of machines that are eligible for changeover (each machine falls into a 

machine group); M ⊆ M 

M(l) set of machines that can process lot l 

M(l, r) set of machines that can process lot l using route r  

R(l) set of routes that can process lot l 

R(i,l) set of routes that use machine i to process lot l 

R(i,l,λ) set of routes that use machine i to process lot l with tooling setup λ 

Λ(i) set of tooling setups that can be installed on machine i 

Λ(i,t) set of tooling setups that can be installed on machine i that use a tooling 

piece from family t 

Parameters and data 

nt
tooling  number of tooling pieces from family t that are available or will become 

available in the next ∆free hours  
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nsetups maximum number of changeovers permitted 
load
lτ  load the unload time for each lot l 

Xilr ,Yiλ  values of the target solutions for xilr and yiλ, respectively;  

 

Model 5  

φ 1 = Minimize 
( ) ( , ) ( , ) ( , )

lr ilr ilr
l L r R l i M l r l i l

w x X
λ λ∈ ∈ ∈ ⊆ ∈

−∑ ∑ ∑ ∑
M M

 (5a) 

 subject to xilr
r ∈R(i,l )
∑

i∈M (l )
∑ ≤ 1,  ∀ l ∈ L (5b) 

  
  

yiλ
λ∈Λ( i)
∑ ≤ 1, ∀ i ∈ M (5c) 

  xilr
r ∈R(i,l ,λ )

∑
l∈L(i,λ )
∑ ≤ L(i,λ) yiλ ,  ∀ i ∈ M, λ ∈ Λ(i) (5d) 

  
( , )

tooling
t i t

i M i t
b y nλ λ

λ∈ ∈Λ

≤∑ ∑ ,  ∀ t ∈ T (5e) 

  
( )

setups
i

i M i
y nλ

λ∈ ∈Λ

≤∑ ∑  (5f) 

  
( , ) ( , , )

devises
loadl
l ilr

l L i r R i l ilr

n x
λ λ

τ
ρ∈ ∈

 
+ 

 
∑ ∑ ≤ Hiyiλ, ∀ i ∈ M, λ ∈ Λ(i), (5g) 

  xilr ∈ 0,1{ }, ∀ i ∈ M,  l ∈ L(i), r ∈ R(i,l)  (5h) 

  { }0,1iy λ ∈ ,  ∀ i ∈ M, λ ∈ Λ(i) (5i) 

 The objective in (5a) is to minimize the weighted sum of the absolute deviations 

of the assignment variables xilr from the target solution Xilr (here, wlr = wl − εr). This is an 

indirect way of guiding the setup variables yiλ to the target solution Yiλ.  It is necessary to 

sum xilr and Xilr over all i ∈ M(l,r) ⊆ M(l,λ) to take into account the fact that different 

machines in the same family are essentially identical.  If route r is used to process lot l 

on machine m1 in the maximum capacity solution, then the solut ion to mode l 5 will meet 

the target for lot l when it is processed on any machine in the same family as m1 which is 

set up in accordance with route r.   As required by constraints (5b), the equivalent of 
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(1b), each lot can be processed by at most one route on one machine so 

( , ) ( , ) ilri M l r l
x

λ∈ ⊆∑ M
(and 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M
) is either 0 or 1 in (5a).  When lot l is 

assigned to machine i ∈ M(l), then the tooling associated with one of the routes r ∈ R(i,l) 

must be installed on that machine and the temperature set accordingly.   

Constraints (5c) are the same as (1c) and restrict each machine i to at most one 

tooling configuration from the set Λ(i).  Constraints (5d) allow up to |L(i,λ)| lots to be 

processed on machine i but prevent a particular lot from being processed on that machine 

unless an appropriate setup λ ∈ Λ(i) is made.  In conjunction with (5b) , no more than 

one route r ∈ R(i,l,λ) can be selected for lot l.   

Constraints (5e) are a simplified version of (1d) where it is now assumed that the 

temperature is implicitly accounted for in the definition of λ.  They restrict the total 

number of tooling pieces assigned to machines from family t  to the number of pieces 

available as specified by the parameter nt
tooling .  Constraint (5f) in conjunction with (5c) 

limit the number of changeovers to at most nsetups.  Constraints (5g) ensure that the total 

amount of time for processing lots on each machine is less than or equal to the amount of 

time available. Logical restrictions are placed on the variables in (5h) – (5i). 

Nevertheless, when solving Model 5, should φ 1 = 0 at optimality in (5a), then 

( ) ( , ) ii M l
y λλ λ∈ ⊆∑ M

 = 
( ) ( , ) ii M l

Yλλ λ∈ ⊆∑ M
 for all λ ∈ Λ.  A formal statement of this 

observation follows. 

Proposition 1. If the optimal solution to Model 5 yields φ 1 = 0, then there exists an 
optimal solution with 

( ) ( , ) ii M l
y λλ λ∈ ⊆∑ M

= 
( ) ( , ) ii M l

Yλλ λ∈ ⊆∑ M
 for all λ ∈ Λ. 

Proof.  Although a route for a particular device, (and hence a lot) is not unique, each 

route maps into a particular machine family, tooling family, and temperature. Therefore, 
if 

( , ) ( , ) ilri M l r l
x

λ∈ ⊆∑ M
 = 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M
= 1, implying that the corresponding term in 

(5a) is zero, then there must exist a machine i ∈ M(l, r) with r fixed, and a machine i' ∈ 
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M(l, r) with r fixed (i' may be or not equal to i ),  must have a unique setup λ such that yiλ 

= Yi’λ = 1.  Otherwise, it would not possible to process lot l on machine i using route r.   
Alternatively, if 

( , ) ( , ) ilri M l r l
x

λ∈ ⊆∑ M
= 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M
= 0, which implies that 

( ) ( , ) ii M l
Yλλ λ∈ ⊆∑ M

= 0, then we can safely set 
( ) ( , ) ii M l

y λλ λ∈ ⊆∑ M
= 0 without adversely 

affecting the solution to Model 5.  That is, there are no other lots l ∈ L(i) that could be 
processed on machine i using routing r  such that 

( , ) ( , ) ilri M l r l
x

λ∈ ⊆∑ M
= 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M
= 1 because this would require  

( ) ( , ) ii M l
y λλ λ∈ ⊆∑ M

= 

( ) ( , ) ii M l
Yλλ λ∈ ⊆∑ M

= 1.        

 

A second alternative to the objective function in (6a) is to minimize the weighted 
sum of the two absolute value terms, 

( , ) ( , ) ilri M l r l
x

λ∈ ⊆∑ M
− 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M  and  

( ) ( , ) ii M l
y λλ λ∈ ⊆∑ M

− 
( ) ( , ) ii M l

Yλλ λ∈ ⊆∑ M
, but this presents the problem of choosing the 

appropriate weights.  Regardless of objective function, though, the individual absolute 

value terms in (6a) can be linearized without introducing any additional variables or 
constraints by recognizing that 

( , ) ( , ) ilri M l r l
X

λ∈ ⊆∑ M
 is binary for all i, l, r.  When the 

latter term is 0, we replace the corresponding absolute value term with 
( , ) ( , ) ilri M l r l

x
λ∈ ⊆∑ M

; when it is 1, we replace the absolute value term with 1 − 
( , ) ( , ) ilri M l r l

x
λ∈ ⊆∑ M

. 

Model 6 

The above mode l focuses on the target setups and assignments indicated in the solution of 

(1a) – (1i) and derives a new solution for the x and y variables. This solution only 

considers the resources available at the current time, call it τ, along with those that will 

become available in the upcoming interval τ + ∆free.  The second model takes an 

opportunistic approach and tries to achieve the greatest benefit in the upcoming round of 

changeovers. 
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φ 2 = Maximize 

( ) ( , )
lr ilr

i M l L i r R i l
w x

∈ ∈ ∈
∑ ∑ ∑  (6a) 

 subject to (5b) – (5i) (6b) 

The objective function in (6a) corresponds to the weighted sum of the lots 

selected for processing.  Nevertheless, the solution to (6a) – (6b) may be nearsighted 

because it doesn’t consider subsequent setups and resource requirements; it ignores the 

target solution which is optimal for the full planning horizon not just for the interval τ to 

τ + ∆free.  When τ is close to 0, the objective function value φ 2 is likely to be larger than 

the equivalent value provided by the heuristic but as τ approaches the end of the planning 

horizon, the opposite is likely to be true.  In either case, however, we have the following 

theoretical result. 

Proposition 2. The machine setup and lot scheduling (MSLS) problem represented by 

either Model 5 or Model 6 is NP-complete in the strong sense. 

Proof.  We begin with the 3-dimensional matching (3DM) problem, which Garey and 

Johnson (1979) indicate is NP-complete in the strong sense, and reduce it to an instance 

of MSLS. 

3DM instance:  Set Θ ⊆ W × X × Y, where W, X, Y are disjoint sets have the same 

number q of elements.  

Question: Does Θ contain a matching; i.e., is there a subset Θ′ ⊆ Θ such that |Θ′| = q and 

no two elements of Θ′ agree in any coordinate (no two elements of Θ′ share the same 

components) 

Given an instance of 3DM, we create an instance of MSLS by associating the set 

of machines M with W, the set of lots L with X, and the set of tooling families T with Y.  

For this instance, we assume that each tooling family has only a single tooling piece, all 
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temperatures requirements are identical, and that each of the sets M, L and T has exactly q 

elements; that is, |M| = |T| = |L| = q.  We also assume that each machine can process at 

most one lot and that wlr = 1 for all (i,l,t) ∈ M × L ×  T.  The one-to-one association of 

(i,l,r ) with (i,l,t) is possible because each route corresponds to a unique machine-tooling 

combination. 

Given this instance of MSLS, the equivalent question is whether there is a feasible 

machine-tool assignment such that the total payoff is no less than q?  A “yes” answer to 

this question means that we can find a solut ion to MSLS such that q or more lots can be 

processed.  By implication then, solving the restricted version of MSLS implies that we 

can solve 3DM and vice versa.  To conclude, we observe that the transformation from 

3DM to MSLS can be done in linear time and that any proposed solution to MSLS can be 

checked in polynomial time.       
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