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This dissertation begins with an introduction to finite-dimensional opti-

mization and optimal control theory. It then proves lossless convexification

for three problems: 1) a minimum time rendezvous using differential drag, 2)

a maximum divert and landing, and 3) a general optimal control problem with

linear state constraints and mixed convex and non-convex control constraints.

Each is a unique contribution to the theory of lossless convexification. The first

proves lossless convexification in the presence of singular controls and specifies

a procedure for converting singular controls to the bang-bang type. The sec-

ond is the first example of lossless convexification with state constraints. The

third is the most general result to date. It says that lossless convexification

holds when the state space is a strongly controllable subspace. This extends

the controllability concepts used previously, and it recovers earlier results as a

special case. Lastly, a few of the remaining research challenges are discussed.
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CHAPTER I:

INTRODUCTION

The topic of this dissertation is lossless convexification, which is the study

of convex optimization problems and their equivalence with non-convex prob-

lems. Given a non-convex optimization problem of interest, the simplest case

of lossless convexification consists of only two steps: 1) proposing a convex

problem and 2) proving that the convex problem has the same solution as the

non-convex problem. This two step process can be complicated in any number

of ways. We will explore these complications in Chapters IV through VI.

Simply put, the motivation for lossless convexification is that non-convex

problems are more difficult to solve than convex problems. Typical numer-

ical methods for non-convex problems require a good initial guess, do not

guarantee convergence, and do not certify global optimality [1, p. 9]. Numer-

ical methods for convex problems correct these deficiencies [2]. Additionally,

current research with customized methods indicates orders of magnitude im-

provement in computation time [3–5].

Thus, lossless convexification has very practical implications in engineering.

The most notable successes are the 2012 and 2013 flight tests with Masten

Space Systems, Inc. [6, 7]. By means of a lossless convexification, optimal

trajectories were computed onboard and successfully flown by the Xombie

rocket. A more encompassing theory, including the results in this dissertation,

facilitates broader opportunities and greater successes in engineering practice.
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Lossless convexification was introduced by Açıkmeşe and Ploen in 2007 [8].

They proved lossless convexification for a fuel optimal planetary landing prob-

lem. The problem contained a number of state constraints. However, the

proof was completed with simplifying assumptions stating that the state con-

straints could not be active over intervals, i.e., they could only be active at a

finite number of points. This is a strong assumption since it cannot be verified

before solving the problem.

This work was extended by Blackmore et al. in 2010 [9]. They developed

a prioritized scheme in which landing occurred at the specified final point if

possible and at the nearest possible location otherwise. Lossless convexification

was used in both cases under the same state constraint assumptions as before.

A more general result was obtained in 2011 by Açıkmeşe and Blackmore [10].

Interest shifted away from a specific landing problem, and lossless convexifi-

cation was proved for an optimal control problem with convex cost, linear

dynamics, and a non-convex control constraint. It was here where it was first

seen why convexification works and how it is tied to system properties. It

was shown, under a few other assumptions, that lossless convexification holds

if the linear system is controllable. This is a very powerful result since most

systems are engineered to be controllable.

This result was extended to nonlinear systems in 2012 by Blackmore et

al. [11]. Although a general condition was stated regarding lossless convexi-

fication, it was very difficult to verify since it depends on gradient matrices

maintaining full rank. These gradients in turn depend on the optimal state

and control trajectories. Even so, some special cases were treated rigorously.
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Attention returned to planetary landing in the work by Açıkmeşe et al. in

2013 [12]. They focused on an additional thrust pointing constraint. Proof

of lossless convexification could not be completed in the typical way. This

was because one could only prove that the optimal control belonged on the

boundary of the control set not the extremal points of the control set. As a

workaround, they introduced a small perturbation to the problem and then

completed the proof. In this sense, the result is non-rigorous.

This brief literature survey encapsulates the state of lossless convexifica-

tion. Many open questions remain since lossless convexification has only been

proven for a relatively small class of problems. A few of the more important

questions are the following.

1. How does one proceed when optimal solutions are non-unique and con-

vexification can only be proven for some solutions?

2. How does one address the planetary landing problem with state con-

straints?

3. How does one generalize the previous result [10] for problems with state

constraints; and under what conditions can pointing constraints be han-

dled rigorously?

Chapters IV, V, and VI answer these three questions, respectively. These three

chapters have been published in journal form [13–15], where additional details

and results are provided. We now give a brief introduction to the upcoming

chapters. More details and references are given at the start of each chapter.
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Chapter II: Finite-Dimensional Optimization

This chapter introduces the mathematical theory of finite-dimensional opti-

mization. It starts with a general, nonlinear optimization problem and then

specializes the results for linear and convex programming problems. Attention

is paid to the concepts of attainability, strong duality, and normality. The

chapter concludes with a result connecting the three for convex problems.

Chapter III: Optimal Control Theory

This chapter introduces the mathematical theory of optimal control. It starts

with a basic optimal control problem and statement of necessary conditions.

The conditions are proved again paying attention to the concept of normality.

The proof is not too different than the original of Pontryagin, although the

measure-theoretic concepts are avoided by considering only piecewise contin-

uous controls. The chapter concludes by stating an optimal control problem

with explicit time dependence and state constraints and the associated neces-

sary conditions.

Chapter IV: Rendezvous Using Differential Drag

This chapter presents lossless convexification for the rendezvous problem of

multiple spacecraft using only relative aerodynamic drag. The work is unique

because it is only proven that the convexification can work – not that it must.

The reason is that singular controls exist when there are more than two space-

craft. A result due to LaSalle on bang-bang controls is invoked, and a con-

structive procedure for converting singular controls to the bang-bang type is

specified. This guarantees lossless convexification.
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Chapter V: Maximum Divert and Landing

This chapter presents lossless convexification for the maximum divert and land-

ing of a single engine rocket. The work is unique because it is the first to prove

lossless convexification with state constraints. Numerical results show cases

where two of the three state constraints are active simultaneously. The proof

is complicated by the state constraints since they make the adjoint differential

equations inhomogeneous and state boundary arcs are similar to singular arcs,

which are typically undesirable in lossless convexification.

Chapter VI: A General Result for Linear Systems

This chapter presents lossless convexification for a class of optimal control

problems governed by linear differential equations, linear state constraints,

and mixed convex and non-convex control constraints. The work is unique

because it is the most general result to date. It says that convexification holds

whenever the state space is a strongly controllable subspace. This extends the

controllability concept used by Açıkmeşe and Blackmore [10], and it recovers

their result as a special case. The work naturally handles pointing constraints

and answers the question of when lossless convexification can be done without

having to perturb the problem.

Chapter VII: Final Remarks

This chapter briefly explores open questions in lossless convexification and an-

ticipates future challenges. These challenges include theory and practice, and

in particular, the challenge of reshaping the engineering community’s concept

of real-time path planning and control.
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The notation used throughout the remaining chapters is mostly standard.

In the context of optimal control, functions are denoted by the parenthetical

dot notation or just the symbol. For example, x(·), or just x, is an element of a

function space such as the space of piecewise continuous functions. The nota-

tion x(t) means the function x(·) evaluated at t, and it is a finite-dimensional

vector.

If a function has many arguments, the bracket notation is used. For ex-

ample, a function with three arguments f(·, ·, ·) is sometimes written as f [·].

If all three arguments depend on time, then the function evaluated at time t

can be written as f [t]. This is only done when it will not lead to confusion.

If a scalar valued function f(·) is differentiable at the point x ∈ Rn, then

its partial derivative is given by the column vector

∂xf(x) =


∂f(x)
∂x1

...

∂f(x)
∂xn

 (1)

If a vector valued function g(·) that maps to Rm is differentiable at the point

x ∈ Rn, then its partial derivative is given by the matrix

∂xg(x) =


∂g1(x)
∂x1

. . . ∂gm(x)
∂x1

...
. . .

...

∂g1(x)
∂xn

. . . ∂gm(x)
∂xn

 (2)

The time derivative of a function x(·) is denoted with an over dot as ẋ(·). The

time derivate evaluated at time t is ẋ(t).
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If the function x(·) is differentiable at t, then it is true that

x(t+ h) = x(t) + ẋ(t)h+ o(h) (3)

for any h so long as t+ h is the domain of x(·). The term o(h) is a remainder

term, and the little “o” notation indicates the property

lim
h→0

o(h)

h
= 0 (4)

Similar statements hold if the function is only differentiable from one side.

Each chapter contains optimization/optimal control problems that are of

interest. These problems are denoted P0, P1, and so on. Each problem state-

ment contains the performance index to be minimized or maximized along with

all of the constraints. Unless stated otherwise, we use the words minimum and

optimal to mean global minimum. The feasible sets for each of these problems

are denoted F0, F1, and so on. The optimal solution sets are F∗0 , F∗1 , and so

on. We repeatedly use the fact that F∗ ⊂ F since all optimal solutions must

be feasible.

Optimal control problems are infinite-dimensional optimization problems.

They must be discretized, or converted to finite-dimensional optimization

problems, in order to be solved numerically. An example of discretization for

the planetary landing problem is given by Açıkmeşe and Ploen [8]. The excel-

lent paper by Hull covers the topic at a general level [16]. For the example prob-

lems herein, the simplest discretization is used. The time interval is divided

into equally spaced subintervals, the control is assumed piecewise constant,
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and the constraints are enforced at each node. The finite-dimensional prob-

lem is then solved using one of the following software packages: SDPT3 [17],

SeDuMi [18], Gurobi [19], or CVX [20]. The topic of discretization is not

discussed further in this dissertation.

Each of the above software packages implements a numerical method specif-

ically suited for linear or convex programming problems (or more generally

semidefinite programming problems). The most powerful methods are the

primal-dual interior point methods. There are a number of excellent papers

and books on the methods [1, 2, 21–23]. The most important properties of in-

terior point methods are the polynomial complexity and certification of global

optimality. Polynomial complexity means that the number of arithmetic oper-

ations required to solve the problem is bounded above by a polynomial function

of the problem size (number of constraints and number of variables). Certifi-

cation of global optimality can be made because the primal and dual problems

are solved simultaneously. Equally important, the methods can certify infea-

sibility of the primal and dual problems. This means that the method can

recognize in polynomial time whether or not the problem is feasible and if

the optimal solution is bounded. This is critically important in real-time ap-

plications. The topic of numerical methods is not discussed further in this

dissertation. However, Chapter II introduces finite-dimensional optimization

using duality theory. This is a good place to start since it is the foundation of

all primal-dual interior point methods.
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CHAPTER II:

FINITE-DIMENSIONAL OPTIMIZATION

In this chapter, we introduce finite-dimensional optimization – also called pa-

rameter optimization. The subject has this name because it is concerned with

finding the best points, or parameters, to minimize a function. These points

are elements of a finite-dimensional set.

Finite-dimensional optimization is a mature subject with a long history.

Our goal here is to prove some of the standard results and to emphasize a

few subtle, interesting aspects of the theory. These aspects include attain-

ability, strong duality, and normality. Even in a finite-dimensional setting,

these issues are at times difficult to address. They are even more so in the

infinite-dimensional setting.

Although there are many ways of proving the results herein, we do so from

a duality theory perspective. The chapter begins with the problem statement

followed by the formulation of the dual problem. This leads to a generic set of

optimality conditions called the Karush-Kuhn-Tucker (KKT) conditions. We

then specialize this result to linear and convex programming problems paying

close attention to attainability and strong duality. Finally, dual attainability,

strong duality, and normality are connected in Lemma 5.

Popular references for much of this material are the books by Berkovitz [24]

and Boyd [1]. Many of the results here can be found in one or the other.
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A. Problem Description

Consider the finite-dimensional optimization problem

min f(x)

subj. to g(x) ≤ 0

h(x) = 0

(1)

The optimization variable is x ∈ Rn, and the cost function is f : Rn ⊃ Ωf →

R. The inequality constraint function is g : Rn ⊃ Ωg → Rp. The equality

constraint function is h : Rn ⊃ Ωh → Rq. The problem domain

Ω = Ωf ∩ Ωg ∩ Ωh (2)

is assumed to be open and nonempty. For the time being, we make no con-

straint qualifications regarding differentiability, existence of feasible solutions,

or otherwise.

For reasons to be made explicit shortly, this problem is called the primal

problem. The feasible set P is the set of all points x that satisfy the constraints.

P = {x ∈ Ω : g(x) ≤ 0, h(x) = 0} (3)

This set may be empty, finite, or infinite corresponding to no feasible solutions,

finitely many feasible solutions, or infinitely many feasible solutions.

10



We can now define the optimal cost to account for each of these scenarios.

The optimal cost is given by p∗ where

p∗ =


+∞, #P = 0

inf{f(x) : x ∈ P}, #P > 0

(4)

In words, this means that the optimal cost for an infeasible problem is infinite.

The optimal cost for a feasible problem is the greatest lower bound on all

feasible solutions. The goal is to find an optimal point x∗ such that p∗ = f(x∗).

Thus, it is clear that by optimal we mean global minimum.

Note that p∗ always exists but is not always attainable meaning that there

is not always a feasible point x∗ such that p∗ = f(x∗). In such cases, an optimal

solution does not exist. For example, the function f(x) = x3 is unbounded

below so that p∗ = −∞. The function e−x has a greatest lower bound of

zero, but no optimal solution exists since zero is not attainable. These two

situations are shown graphically in Figure 1.

x−∞

−∞

∞

x
3

∞ 0
0

1

x

e
−x

∞

Figure 1: Functions with unattainable costs.
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In line with these observations, the attainable optimal solution set is

P∗ = {x∗ ∈ P : f(x∗) ≤ f(x) ∀x ∈ P} (5)

When the optimal cost is attainable, all of the optimal solutions belong to the

set P∗. If the optimal cost is not attainable, then the set P∗ is empty and no

optimal solutions exist.

B. Duality Theory

We now introduce duality theory to set the stage for deriving optimality con-

ditions. The duality approach begins with less restrictive assumptions than

a classical variational approach, and its results can be specialized to obtain

the classical KKT conditions as will be shown. We define the Lagrangian

L : Ω× Rp × Rq → R as

L(x, λ, ν) = f(x) + λTg(x) + νTh(x) (6)

The Lagrange multipliers are λ ∈ Rp and ν ∈ Rq. They are also called the dual

variables. The Lagrange dual function, or just dual function, ` : Rp×Rq → R̄

is defined to be

`(λ, ν) = inf
x∈Ω
L(x, λ, ν) = inf

x∈Ω
f(x) + λTg(x) + νTh(x) (7)

Note that x is not required to belong to the feasible set P , and that the dual

function takes the value of −∞ if the Lagrangian is unbounded below in x.
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We now prove that the dual function lower bounds the primal cost. This is

called weak duality.

Lemma 1. For any λ ≥ 0 and any ν, `(λ, ν) ≤ p∗.

Proof. First, consider the case when the primal problem is infeasible. Then

p∗ = +∞ and the inequality is satisfied trivially. Next, consider the case when

the primal problem is feasible. Let x̂ be a feasible point and let λ ≥ 0. It

follows that

λTg(x̂) + νTh(x̂) ≤ 0 (8)

since each term in the first product is non-positive and each term in the second

product is zero. Therefore, the Lagrangian is bounded above as

L(x̂, λ, ν) = f(x̂) + λTg(x̂) + νTh(x̂) ≤ f(x̂) (9)

By taking the infimum, it is clear that the value of the Lagrangian can only

be decreased. Thus,

`(λ, ν) = inf
x∈Ω
L(x, λ, ν) ≤ L(x̂, λ, ν) ≤ f(x̂) (10)

Since `(λ, ν) ≤ f(x̂) for all feasible x̂, it follows from the definition of p∗ that

the dual function satisfies `(λ, ν) ≤ p∗.
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Weak duality holds but is trivial when `(λ, ν) = −∞. Upon defining the set

Γ = {(λ, ν) : `(λ, ν) > −∞} (11)

it is clear that weak duality provides a nontrivial lower bound only when λ ≥ 0

and (λ, ν) ∈ Γ. A natural question is, “What is the best lower bound that

can be obtained from the dual function?” This question leads to another

optimization problem called the Lagrange dual problem, or simply the dual

problem.

max `(λ, ν)

subj. to λ ≥ 0

(λ, ν) ∈ Γ

(12)

All of the statements regarding the primal have analogs for the dual. For

example, the dual feasible set is

D = {(λ, ν) ∈ Γ : λ ≥ 0} (13)

The attainable optimal solution set is

D∗ = {(λ∗, ν∗) ∈ D : `(λ∗, ν∗) ≥ `(λ, ν) ∀(λ, ν) ∈ D} (14)

and the optimal dual cost, denoted d∗, is given by

d∗ =


−∞, #D = 0

sup{`(λ, ν) : (λ, ν) ∈ D}, #D > 0

(15)
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By invoking weak duality, we can make two “dual” statements: 1) a feasible,

unbounded primal implies an infeasible dual and 2) a feasible, unbounded dual

implies an infeasible primal.

The optimal dual cost d∗ is the best lower bound on the optimal primal

cost p∗ that can be obtained from the dual function. In terms of the dual cost,

weak duality can be stated as d∗ ≤ p∗. Weak duality is very important since

it has been derived under very general terms. The difference p∗ − d∗ is called

the optimal duality gap since it gives the smallest gap between the optimal

primal cost and dual cost.

Strong duality occurs when the optimal duality gap is zero such that

d∗ = p∗. Strong duality does not always hold, but it does hold under cer-

tain constraint qualifications (CQs). Some of the more popular CQs are the

linear CQ, Slater’s CQ for convex problems, the linear independence CQ, and

the Mangasarian-Fromowitz CQ. When strong duality does hold, we can state

some generic optimality conditions for differentiable problems.

Theorem 1 (KKT Conditions). Assume that f , g, and h are differentiable.

If 1) the primal attains a minimum at x∗, 2) the dual attains a maximum at

(λ∗, ν∗), and 3) strong duality holds, then the following system is solvable:

g(x∗) ≤ 0

h(x∗) = 0

λ∗ ≥ 0

λ∗Tg(x∗) = 0

∂xf(x∗) + ∂xg(x∗)λ∗ + ∂xh(x∗)ν∗ = 0

(16)
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Proof. The three hypotheses imply that x∗ and (λ∗, ν∗) are feasible so that

g(x∗) ≤ 0, h(x∗) = 0, and λ∗ ≥ 0. Because the optimal costs are attainable

and strong duality holds, f(x∗) = `(λ∗, ν∗). Consequently,

f(x∗) = `(λ∗, ν∗)

= inf
x∈Ω

(
f(x) + λ∗Tg(x) + ν∗Th(x)

)
≤ f(x∗) + λ∗Tg(x∗) + ν∗Th(x∗)

≤ f(x∗)

(17)

The second line is the definition of the dual function at the optimal dual pair.

The third line follows because of the infimum. The fourth line follows from

the fact that λ∗ ≥ 0, g(x∗) ≤ 0, and h(x∗) = 0. It is obvious that the first and

fourth lines hold with equality. Consequently, the third line also holds with

equality, and we can make two very important conclusions:

1. The point x∗ also minimizes L(x, λ∗, ν∗) over x ∈ Ω.

2. The product λ∗Tg(x∗) = 0.

When the functions f , g, and h are differentiable, the first conclusion indicates

that

∂xL(x∗, λ∗, ν∗) = ∂xf(x∗) + ∂xg(x∗)λ∗ + ∂xh(x∗)ν∗ = 0 (18)

since it is an unconstrained minimization problem.
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The conditions (16) are frequently stated as “necessary conditions for x∗ to

be optimal.” However, it is clear that the conditions are only necessary under

three assumptions: 1) the optimal primal cost is attainable, 2) the optimal

dual cost is attainable, and 3) strong duality holds.

The question of how one can verify these assumptions is important. In the

next two sections, we will look at linear and convex programming problems

for which there exist the linear CQ and Slater’s CQ, respectively. These CQs

allow us to remove the dual attainability and strong duality assumptions and

strengthen the KKT conditions to be necessary and sufficient.

C. Linear Programming

In this section, we explore the linear programming problem. The problem

carries this name because the cost function and constraints are linear. The

linear structure can be exploited to arrive at a much stronger statement than

the generic KKT conditions in Theorem 1. In particular, the dual attainability

and strong duality assumptions can be removed. Also, the conditions can be

strengthened to be necessary and sufficient.

One of the standard forms for linear programming problems is stated below

alongside its dual problem.

min cTx max − bTλ

subj. to Ax ≤ b subj. to λ ≥ 0

ATλ+ c = 0

(19)
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A sketch of such a problem for two variables is shown in Figure 2.

𝑥1 

𝑥2 

𝑎 

𝑏  

𝑐 

𝑑 

𝑒 
𝑓 

Figure 2: Geometry of a bounded linear programming problem.

Each edge of the polygon represents one of the inequality constraints in

Ax ≤ b. The six dashed lines represent contours of constant cost. If, for

example, the f contour has the greatest cost and cost decreases toward a,

then the optimal cost is b and the solution is uniquely attained at the apex.

On the other hand, if the a contour has the greatest cost and cost decreases

toward f , then the optimal cost is e and any point on the edge aligned with e

is an optimal solution. The constraints do not have to form a closed polygon.

Such an example is shown in Figure 3.

𝑥1 

𝑥2 

𝑎 

𝑏  

𝑐 

𝑑 

𝑒 
𝑓 

Figure 3: Geometry of an unbounded linear programming problem.
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Now, if the f contour has the greatest cost and cost decreases toward a,

then the optimal cost is unbounded and no solution is attained. If the direction

of decreasing cost reverses, we again have any point on the edge aligned with

e attaining the optimal cost.

In an effort to prove KKT conditions for the linear programming problem,

we now prove two results known as Farkas’ Lemma and Farkas’ Corollary. Such

results are frequently referred to as theorems of the alternative since they state

that exactly one of two systems must be solvable.

Lemma 2. Exactly one of the following is solvable:

1. Ax ≤ 0, cTx < 0, x ∈ Rn

2. ATy + c = 0, y ≥ 0, y ∈ Rp

Proof. Proving that exactly one of the statements is solvable is logically equiv-

alent to proving that both cannot have a solution and that one of them not

having a solution implies the other does.

We first show that both cannot have a solution by contradiction. Suppose

that both are solvable. Multiplying statement 1 with y implies that yTAx ≤ 0

since y ≥ 0. Multiplying statement 2 with x implies that yTAx = −cTx > 0

since cTx < 0. The quantity yTAx cannot be greater than zero and less than

or equal to zero. Thus, both statements cannot have a solution.

We now prove that statement 2 not having a solution implies that statement

1 does. Define the set Q as

Q = {s : s = ATy =
∑

aiyi, y ≥ 0} (20)
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where ai are the columns of AT . Thus, statement 2 is solvable if and only if

−c ∈ Q. Suppose statement 2 does not have a solution. Because Q is closed

and convex [24, p. 62], there is a hyperplane strictly separating {−c} and

Q [24, p. 49], i.e., there exist an α 6= 0 and β such that

αT (−c) < β and αT s < β ∀s ∈ Q (21)

Since Q contains the zero element, we know that β > 0. It is also true that

aiλ ∈ Q for all λ > 0. Consequently,

αT (λai) < β ∀λ > 0 such that αTai < β/λ ∀λ > 0 (22)

Since β > 0, as λ → ∞, we get αTai ≤ 0. By setting x = α, it follows

that xT (−c) > β such that cTx < 0. Finally, because αTai ≤ 0, we get that

aTi x ≤ 0 for all i. This implies Ax ≤ 0. Thus, statement 1 is solvable.

Corollary 1. Exactly one of the following is solvable:

1. Ax ≤ b, x ∈ Rn

2. ATy = 0, bTy < 0, y ≥ 0, y ∈ Rp

Proof. We first show that both cannot have a solution. Suppose that both are

solvable. Multiplying statement 1 with y implies that yTAx ≤ yT b < 0 since

yT b ≤ 0. Multiplying statement 2 with x implies that yTAx = 0. The quantity

yTAx cannot be less than zero and equal to zero. Thus, both statements cannot

have a solution.

20



We now prove that statement 2 not having a solution implies that statement

1 does. Note that statement 2 is equivalent to

ATy = 0, bTy = −γ, y ≥ 0 for some γ > 0 (23)

The two equalities can be combined in matrix form such that

[
AT

bT

]
y =

[
0

−γ

]
, y ≥ 0 for some γ > 0 (24)

Suppose this is false. Then, from Lemma 2, there exist x and λ such that

Ax+ bλ ≤ 0 and γλ < 0. Since γ > 0, we know that λ < 0 and

A

(
x

−λ

)
≤ b (25)

Thus, statement 1 is solvable.

Using Farkas’ Lemma and Corollary, the KKT theorem for linear pro-

gramming problems can be proved. The only assumption required is primal

attainability. The assumptions on dual attainability and strong duality are

removed. A discussion of attainability and strong duality follows the proof.

Theorem 2 (KKT Conditions for Linear Programming). The primal attains

a minimum at x∗ if and only if the following system is solvable:

Ax∗ ≤ b, λ∗ ≥ 0, λ∗T (Ax∗ − b) = 0, ATλ∗ + c = 0 (26)

Note: The system in (26) is the same as (16) in Theorem 1.
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Proof. The system in (26) is equivalent to

Ax∗ ≤ b, −λ∗ ≤ 0, cTx∗ + bTλ∗ ≤ 0, ATλ∗ ≤ −c, −ATλ∗ ≤ c (27)

Case 1: ( =⇒ ) Suppose that the primal attains a minimum at x∗ and that

(27) does not have a solution. From Corollary 1, and after some algebra, the

system (27) does not have a solution provided the following system does.

ATu+ cw = 0, Av + bw ≥ 0, bTu− cTv < 0, u, v, w ≥ 0 (28)

Suppose that w = 0. Then, ATu = 0, Av ≥ 0, and either bTu < 0 or cTv > 0.

If bTu < 0, then Corollary 1 implies that primal is infeasible, which contradicts

the hypothesis that the primal attains a minimum. If cTv > 0, then for all

γ > 0, A(x − γv) ≤ b. Further, since cTv > 0, we have cT (x − γv) → −∞

as γ → ∞. This again contradicts the hypothesis that the primal attains a

minimum. Thus w 6= 0. Suppose that w > 0. Dividing through by w gives

AT
( u
w

)
+ c = 0, A

(
− v
w

)
≤ b, cT

(
− v
w

)
< −bT

( u
w

)
(29)

This violates weak duality and implies that (28) does not have a solution.

Thus, (27) must be solvable contradicting the original hypothesis.

Case 2: (⇐= ) Suppose that (26) is solvable. Then, for any feasible x,

cTx− cTx∗ = λ∗TAx∗ − λ∗TAx ≥ λ∗T (Ax− b) = 0 (30)

Thus, the primal attains a minimum at x∗.
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We are now in a position to discuss attainability and strong duality. It is

shown that the optimal primal cost is attainable if it is finite and that strong

duality holds unless the primal and dual are both infeasible.

Lemma 3. If the optimal primal cost is finite, then it is attainable.

Proof. We will prove the contrapositive. Suppose that the optimal primal

cost is not attainable. Theorem 2 implies that (26) does not have a solution.

Case 1 in the proof of that theorem indicates that (26) not having a solution

implies 1) the primal is infeasible, 2) the primal is unbounded below, or 3)

weak duality does not hold. Since weak duality must hold, it must be that the

primal is infeasible or unbounded below. In either case, the cost is infinite.

Lemma 4. If the primal or dual is feasible, then strong duality holds.

Proof. There are three cases: 1) the primal and dual are feasible, 2) the primal

is feasible and the dual is infeasible, and 3) the primal is infeasible and the

dual is feasible.

Case 1: Suppose that the primal and dual are feasible and that strong

duality does not hold, i.e., p∗ > d∗. Then, there is no x such that

Ax ≤ b and cTx ≤ d∗ (31)

Corollary 1 implies there is a λ ≥ 0 and γ ≥ 0 for which

ATλ+ γc = 0 and bTλ < −γd∗ (32)

If γ = 0, then ATλ = 0 and bTλ < 0. Consequently, Corollary 1 says that
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Ax ≤ b does not have a solution, which contradicts the hypothesis. Thus,

γ 6= 0. If γ > 0, then we can divide through by γ to get

AT
(
λ

γ

)
+ c = 0 and − bT

(
λ

γ

)
> d∗ (33)

This cannot happen by definition of dual optimality. Thus, strong duality

must hold.

Case 2: Suppose that the primal is feasible and the dual is infeasible.

From Lemma 2, dual infeasibility implies there is an x such that Ax ≤ 0 and

cTx < 0. Let x̂ be a primal feasible point. Then, for all γ > 0,

A(x̂+ γx) ≤ b (34)

Further, since cTx < 0, we have that cT (x̂ + γx) → −∞ as γ → ∞. Thus,

p∗ = −∞ and strong duality holds.

Case 3: Suppose that the primal is infeasible and the dual is feasible.

From Corollary 1, primal infeasibility implies there is a λ such that ATλ = 0,

bTλ < 0, and λ ≥ 0. Let λ̂ be a dual feasible point. Then, for all γ > 0,

AT (λ̂− γλ) + c = 0 (35)

Further, since bTλ < 0, we have that bT (λ̂ − γλ) → ∞ as γ → ∞. Thus,

d∗ =∞ and strong duality holds.
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D. Convex Programming

We now turn our attention to the convex programming problem. The convex

problem is one in which the cost and constraint functions are convex. This

immediately implies that the equality constraints must be affine, i.e., h(x) =

Ax − b = 0. With regard to this constraint, we can assume without loss of

generality that matrix A is onto. If not, then there are redundant constraints

that can be removed or inconsistent constraints that preemptively make the

problem infeasible.

Convex problems can be more complicated than linear problems because of

nonlinearities in the cost or inequality constraint functions. Loosely speaking,

convexity ensures that the cost function is curved upward on a domain without

holes or indentations. Like linear programming problems, convex programming

problems have enough structure to significantly strengthen the generic KKT

conditions in Theorem 1. In particular, the three hypotheses of Theorem 1

reduce to primal attainability and a constraint qualification, and the conditions

become necessary and sufficient. These conditions are at the core of numerical

methods for convex problems.

We begin the analysis by considering the two sets

A = {(t, u, v) : ∃ x ∈ Ω s.t. f(x) ≤ t, g(x) ≤ u,Ax− b = v}

B = {(s, 0, 0) : s < p∗}
(36)

SetA is nonempty and captures the cost, t, and amount of constraint violation,

(u, v), for a given point x. If the point x is a feasible point, then u and v are
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zero. It can be shown that A is convex when f and g are convex. Further, the

optimal primal cost is

p∗ = inf{t : (t, 0, 0) ∈ A} (37)

which is consistent with our earlier definition. Set B is nonempty provided p∗

is greater than −∞. In this case, it is easy to show that B is convex and does

not intersect A. The geometry is illustrated in Figure 4.

(𝑢, 𝑣) 

𝑡 

𝑝∗ 

Figure 4: Geometry of sets A and B.

The set A is the shaded region in the upper right, and set B is the line

segment along the t-axis below p∗. If the point (p∗, 0, 0) is attainable, then

it belongs to A but not B. If it is not attainable, then it does not belong to

either. This geometry and separation of convex sets motivates the following

constraint qualification, which guarantees dual attainability and strong duality

when the primal problem is strictly feasible. Strictly feasible points are those

satisfying g(x) < 0 and h(x) = 0.
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Theorem 3 (Slater’s Constraint Qualification). If there exists an x̂ ∈ Ω that

is strictly feasible and the optimal primal cost is finite, then the dual attains a

maximum and strong duality holds.

Proof. By hypothesis, the primal problem is feasible and p∗ is finite such that

the sets A and B are nonempty disjoint convex sets. Hence, they can be

separated by a hyperplane [24, p. 53], i.e., there is a vector (λ0, λ, ν) 6= 0 and

a scalar α such that

(t, u, v) ∈ A =⇒ λ0t+ λTu+ νTv ≥ α

(t, u, v) ∈ B =⇒ λ0t+ λTu+ νTv ≤ α

(38)

From the first condition, we deduce that (λ0, λ) ≥ 0. Otherwise, the terms

λ0t+ λTu would be unbounded below. From the second condition, we deduce

that λ0t ≤ α for all t < p∗, which implies λ0p
∗ ≤ α. Consequently,

(t, u, v) ∈ A =⇒ λ0t+ λTu+ νTv ≥ λ0p
∗, (λ0, λ) ≥ 0 (39)

This statement can be rewritten in terms of x: For any x ∈ Ω,

λ0f(x) + λTg(x) + νT (Ax− b) ≥ λ0p
∗, (λ0, λ) ≥ 0 (40)

Suppose that λ0 = 0. Then, for any x ∈ Ω,

λTg(x) + νT (Ax− b) ≥ 0 (41)

At the strictly feasible point x̂ ∈ Ω, λTg(x̂) ≥ 0. Because g(x̂) < 0 and λ ≥ 0,
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we conclude that λ = 0. Because λ0, λ, and ν cannot all be zero, the vector ν

must be nonzero such that

νT (Ax− b) ≥ 0 ∀x ∈ Ω

νT (Ax̂− b) = 0

(42)

Because Ω is open, there is a neighborhood of x̂ in Ω. Thus, the inequality

can be made negative unless ATν = 0. This is impossible since A is an onto

matrix. We conclude that λ0 6= 0.

Suppose that λ0 > 0. Dividing through by λ0 gives

L(x, λ/λ0, ν/λ0) ≥ p∗ ∀x ∈ Ω (43)

After taking the infimum, we get `(λ/λ0, ν/λ0) ≥ p∗. Combining this with

weak duality gives `(λ∗, ν∗) = p∗ where λ∗ = λ/λ0 and ν∗ = ν/λ0.

Theorem 4 (KKT Conditions for Convex Programming). Assume that f and

g are differentiable. If Slater’s CQ holds, then the primal attains a minimum

at x∗ if and only if the following system is solvable:

g(x∗) ≤ 0

Ax∗ = b

λ∗ ≥ 0

λ∗Tg(x∗) = 0

∂xf(x∗) + ∂xg(x∗)λ∗ + ATν∗ = 0

(44)

Note: The system in (44) is the same as (16) in Theorem 1.
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Proof. Case 1: ( =⇒ ) Suppose that the primal attains a minimum at x∗.

Then the optimal primal cost p∗ is finite. Slater’s CQ implies that the dual

attains a maximum at (λ∗, ν∗) and strong duality holds. Thus, the hypotheses

of Theorem 1 are satisfied and the system (16), which is the same as (44), is

solvable.

Case 2: ( ⇐= ) Suppose that (44) holds. The first two conditions imply

that x∗ is feasible. Because the Lagrangian L(x, λ∗, ν∗) is convex in x and its

derivative is zero at x∗, it attains a minimum there. Thus,

`(λ∗, ν∗) = L(x∗, λ∗, ν∗)

= f(x∗) + λ∗Tg(x∗) + ν∗T (Ax∗ − b)

= f(x∗)

(45)

This indicates that the primal attains a minimum at x∗, the dual attains a

maximum at (λ∗, ν∗), and strong duality holds.

In the linear programming section, we followed the KKT theorem with a

statement that attainability occurs if the optimal primal cost is finite. Unfor-

tunately, no such statement can be made for convex problems. This is easily

seen by trying to minimize the convex function f(x) = e−x without constraints.

As discussed earlier and shown in Figure 1, the optimal primal cost is finite

but cannot be attained.
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E. Normality in Convex Programming

In proving Theorem 1, we used three assumptions: 1) primal attainability, 2)

dual attainability, and 3) strong duality. The first assumption is expected.

The reasons for the second and third assumptions are less clear since they

involve the dual variables, which are not directly part of the original problem.

For convex problems, Slater’s CQ was invoked, and this served as a sufficient

condition for dual attainability and strong duality. We are now interested in

removing all assumptions except primal attainability and proving new opti-

mality conditions for convex problems. Doing so leads to what are generally

called the Fritz John (FJ) conditions.

Theorem 5 (FJ Conditions for Convex Programming). Assume that f and g

are differentiable. If the primal attains a minimum at x∗, then the following

system is solvable:

(λ∗0, λ
∗, ν∗) 6= 0

g(x∗) ≤ 0

Ax∗ = b

(λ∗0, λ
∗) ≥ 0

λ∗Tg(x∗) = 0

λ∗0∂xf(x∗) + ∂xg(x∗)λ∗ + ATν∗ = 0

(46)

30



Proof. The optimal point x∗ is a feasible point. Thus, g(x∗) ≤ 0 and Ax∗ = b.

Everything from the proof of Theorem 3 remains true up to and including

(40). That is, there is a vector (λ∗0, λ
∗, ν∗) 6= 0 satisfying (λ∗0, λ

∗) ≥ 0 and

λ∗0f(x) + λ∗Tg(x) + ν∗T (Ax− b) ≥ λ∗0p
∗, (λ∗0, λ

∗) ≥ 0, ∀x ∈ Ω (47)

Case 1: Suppose that λ∗0 = 0. Then,

λ∗Tg(x) + ν∗T (Ax− b) ≥ 0 ∀x ∈ Ω (48)

At the optimal point x∗, the second terms goes to zero. Since λ∗T ≥ 0 and

g(x∗) ≤ 0, we conclude that the product must be zero: λ∗Tg(x∗) = 0. Since

the above inequality is zero at x∗, it is minimized at that point. Thus,

∂xg(x∗)λ∗ + ATν∗ = 0 (49)

which implies that the system (46) is solvable with λ∗0 = 0.

Case 2: Suppose that λ∗0 > 0. Dividing through by λ∗0 gives

L(x, λ∗/λ∗0, ν
∗/λ∗0) ≥ p∗ ∀x ∈ Ω (50)

Consequently, `(λ∗/λ∗0, ν
∗/λ∗0) ≥ p∗. Combining this with weak duality gives

`(λ∗/λ∗0, ν
∗/λ∗0) = p∗. Therefore, the dual attains a maximum at (λ∗/λ∗0, ν

∗/λ∗0)

and strong duality holds. The hypotheses of Theorem 1 are satisfied implying

that the system (46) is solvable with λ∗0 = 1.
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Remark 1. If a solution satisfies Equation 46 with λ∗0 = 1, then the solution

is called a normal solution. If a solution satisfies Equation 46 and λ∗0 must be

zero, then the solution is called an abnormal solution. Note that some authors

denote any solution with λ∗0 = 0 as an abnormal solution, and solutions where

λ∗0 must be zero as a strictly abnormal solution.

Theorem 1 indicates that dual attainability and strong duality imply nor-

mality – even for non-convex problems. The proof of Theorem 5 suggests

that the reverse implication is also true for convex problems. This result is

formalized in Lemma 5.

Lemma 5. Suppose the primal attains a minimum at x∗. Dual attainability

and strong duality hold if and only if normality holds.

Proof. If dual attainability and strong duality hold, Theorem 1 implies that

normality holds. If normality holds, then the last of (46) indicates that

∂xL(x∗, λ∗, ν∗) = 0. Because L is convex in x, it attains a minimum at x∗.

Thus,

L(x∗, λ∗, ν∗) = inf
x∈Ω
L(x, λ∗, ν∗) (51)

Weak duality implies that f(x∗) ≥ d∗. Additionally, by definition of the dual

cost, d∗ ≥ `(λ∗, ν∗). Thus, the following inequalities hold.

f(x∗) ≥ d∗

≥ `(λ∗, ν∗)

= L(x∗, λ∗, ν∗)

= f(x∗)

(52)
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It is obvious that the first and fourth lines hold with equality such that the

intermediate lines do as well. Thus, f(x∗) = `(λ∗, ν∗), i.e., the dual attains a

maximum at (λ∗, ν∗) and strong duality holds.

The above result cannot be generalized for non-convex problems since (51)

does not necessarily hold. Additionally, there are known examples where nor-

mality holds but strong duality does not.
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CHAPTER III:

OPTIMAL CONTROL THEORY

The purpose of this chapter is to state and prove necessary conditions for

global optimality of optimal control problems. These necessary conditions fall

within the scope of the now famous work by Pontryagin, and they are a result

of what is commonly called Pontryagin’s principle, the maximum principle,

the minimum principle, or some combination.

Optimal control problems are infinite-dimensional optimization problems.

This is because the objective is to find the best control functions to minimize

an integral. These control functions are elements of an infinite-dimensional

space – a function space – such as the space of continuous functions, piecewise

continuous functions, or measurable functions. For this reason, optimal control

theory is more involved than finite-dimensional optimization theory.

Optimal control theory has a rich history and is an outgrowth of the clas-

sical calculus of variations. Centuries of work culminated in the 1950s and

1960s with the results of Pontryagin and his colleagues [25]. We will prove

their result for control functions belonging to the space of piecewise continu-

ous functions. This is weaker than their original result, but it is sufficient for

our purposes.

In the author’s view, one of the more important aspects of the maximum

principle is its removal of normality assumptions (assumptions on the existence

of control variations). Any conditions that operate under normality assump-
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tions without qualification are not actually necessary, and so this aspect is an

important one. The literature indicates that McShane first resolved the nor-

mality issue in the calculus of variations in 1939 [26]. Even after the work of

McShane and Pontryagin, normality assumptions persisted in singular optimal

control theory [27–30] until 1977 when Krener removed them [31].

As in finite-dimensional optimization, the issues of attainability and nor-

mality are interesting. There are many examples where the cost is lower

bounded but not attainable. The simplest example is to minimize the con-

trol effort required to drive a stable, linear time-invariant system to the origin

in free final time. Any feasible solution can be improved by extending the final

time, but the lower bound of zero control effort is not attainable. The issue

of attainability has been addressed by Berkovitz under certain convexity and

compactness assumptions [32, Ch. 3].

There are also many problems that have abnormal solutions. The simplest

example is to minimize the time it takes to drive a harmonic oscillator to the

origin with a bounded control. For certain initial conditions, the global optimal

solution is unique and abnormal. If one were to study this physically motivated

problem under a normality assumption, he would incorrectly conclude that no

optimal solution exists. The issue of normality is typically addressed on a case

by case basis. The details of attainability and normality in optimal control

are beyond the scope of this chapter.

The primary references for this chapter are the original work by Pontrya-

gin [25] and the more recent exposition by Liberzon [33]. We first work with

a basic optimal control problem followed by a problem with state constraints.
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A. Problem Description

In optimal control, one controls a dynamic system over a finite interval [t0, tf ]

so that a given performance index is minimized. The control function u(·) is

assumed to belong to the space of piecewise continuous functions, i.e.,

u(·) ∈ PC : [t0, tf ]→ Ω ⊂ Rm (1)

Thus, it is continuous except at a finite number of points where it is dis-

continuous. The points of continuity are called regular points; the points of

discontinuity are called irregular points. Without loss of generality, we assume

that u(·) is continuous from the left, i.e.,

u(tp) = lim
t↑tp

u(t) (2)

for all irregular points tp. The set Ω is the control constraint set, and it is

assumed to be fixed. Dynamic systems of interest take the form

ẋ(t) = f(x(t), u(t)), x(t0) = a, x(tf ) = b (3)

so that the state evolves according to ordinary differential equations.

Remark 1. When writing differential equations, the equality sign is used to

mean “equal almost everywhere.” The reason is that the integral of a piecewise

continuous function is only differentiable at the regular points of the func-

tion [34, p. 133].
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Consequently, the state function x(·) is absolutely continuous, i.e.,

x(·) ∈ AC : [t0, tf ]→ Rn (4)

It is assumed that f(·, ·) ∈ C and f(·, ω) ∈ C1 for each fixed ω. In words, it is

continuous in both arguments and continuously differentiable with respect to

the first.

Remark 2. These assumptions in conjunction with piecewise continuity of u(·)

guarantee local existence and uniqueness for solutions of Equation 3. These

assumptions can be relaxed using local Lipschitz arguments [33, p. 83-86].

The cost is given by the scalar quantity J = x0(tf ) where x0(·) satisfies the

differential equation

ẋ0(t) = `(x(t), u(t)), x0(t0) = 0 (5)

The function `(·, ·) shares the same properties as f(·, ·). Given the existence

and uniqueness assumptions, the cost is a function of the control function, i.e.,

J = J [u(·)].

The feasible set F is the set of all control functions that satisfy the con-

straints.

F = {u(·) : u(·) satisfies Equation 1 and x(·) satisfies Equation 3} (6)

This set may be empty, finite, or infinite corresponding to no feasible solutions,

finitely many feasible solutions, or infinitely many feasible solutions. As in
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finite-dimensional optimization, the optimal cost is given by J∗ where

J∗ =


+∞, #F = 0

inf{J [u(·)] : u(·) ∈ F}, #F > 0

(7)

In words, this means that the optimal cost for an infeasible problem is infinite.

The optimal cost for a feasible problem is the greatest lower bound on all

feasible solutions. The goal is to find an optimal control u∗(·) such that J∗ =

J [u∗(·)]. Thus, it is clear that by optimal we mean global minimum. As

mentioned in the introduction to this chapter, attainability is an important

question, but it is beyond the scope of this chapter. Nonetheless, the attainable

optimal solution set is

F∗ = {u∗(·) : J [u∗(·)] ≤ J [u(·)] ∀u(·) ∈ F} (8)

When the optimal cost is attainable, all of the optimal solutions belong to the

set F∗. If the optimal cost is not attainable, then the set F∗ is empty and no

optimal solutions exist.

For the sake of brevity, it is common to drop the function space and dif-

ferentiability requirements and state the problem more concisely. With those

requirements still in force, a concise statement of the basic optimal control
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problem (BOCP) is below.

min J = x0(tf ) (BOCP)

subj. to ẋ0(t) = `(x(t), u(t)), x0(t0) = 0

ẋ(t) = f(x(t), u(t)), x(t0) = a, x(tf ) = b

u(t) ∈ Ω, t0 fixed, tf free

Before stating the necessary conditions that we will prove in the following

sections, it is convenient to introduce the following functions

y(t) =

[
x0(t)

x(t)

]
, q(t) =

[
p0(t)

p(t)

]
, g(y(t), u(t)) =

[
`(x(t), u(t))

f(x(t), u(t))

]
(9)

such that ẏ(t) = g(y(t), u(t)). Then, the Hamiltonian is defined to be

H(x(t), u(t), p(t), p0(t)) = 〈q(t), g(y(t), u(t))〉

= 〈p0(t), `(x(t), u(t))〉+ 〈p(t), f(x(t), u(t))〉
(10)

Lastly, we define the terminal sets

Sb = {x : x = b}

S ′b = {(x0, x) : x0 ∈ R and x ∈ Sb}

S ′′b = {(x0, x) : x0 < J∗ and (x0, x) ∈ S ′b}

(11)

The final point must belong to Sb since x(tf ) = b, and S ′b simply lifts Sb into

the x0 direction. The set S ′′b consists only of those points in S ′b that have lower

cost than the optimal. Figures 5 and 6 illustrate the geometric significance.
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Note the different axes used in these figures. They are used repeatedly

throughout the rest of the chapter.
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Figure 5: Optimal solutions in the original and lifted space.
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Figure 6: Suboptimal, optimal, and impossible solutions.

We can now state necessary conditions for BOCP. The original result is

due to Pontryagin. The next few sections prove this theorem by investigating

properties of the terminal cone, adjoint system, and Hamiltonian.
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Theorem 1 (Necessary Conditions for BOCP). If BOCP attains a minimum

at u∗(·), then the following system is solvable:

i) the normality condition

p∗0 ≤ 0 (12)

ii) the non-triviality condition

(p∗0, p
∗(t)) 6= 0 ∀t ∈ [t0, t

∗
f ] (13)

iii) the differential equations

ẋ∗0(t) = `(x∗(t), u∗(t))

ẋ∗(t) = ∂pH(x∗(t), u∗(t), p∗(t), p∗0)

−ṗ∗(t) = ∂xH(x∗(t), u∗(t), p∗(t), p∗0, )

(14)

iv) the pointwise maximum condition

u∗(t) = arg max
ω∈Ω
H(x∗(t), ω, p∗(t), p∗0, ) a.e. t ∈ [t0, t

∗
f ] (15)

v) the Hamiltonian condition

H(x∗(t), u∗(t), p∗(t), p∗0) = 0 ∀t ∈ [t0, t
∗
f ] (16)

vi) the boundary conditions

x∗0(t0) = 0, x∗(t0) = a, x∗(t∗f ) = b (17)
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B. Generating the Terminal Cone

1. Temporal Perturbations

In this section, we explore how the final point of the optimal trajectory y∗(·)

varies with respect to changes in the final time. In all that follows, ε is a

constant, positive scalar. The perturbed final time is

tf = t∗f + ετ (18)

where τ is a scalar that can be positive or negative. For every τ , we define a

perturbed control function u(·), which generates y(·). The perturbed control

is

u(t) =


u∗(t), t0 ≤ t ≤ t∗f

u∗(t∗f ), t∗f < t ≤ tf

(19)

Thus, it is well-defined for all perturbation times. This is illustrated graphi-

cally in Figure 7.
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𝑢∗ 𝑢∗ 

Figure 7: Temporal perturbations.
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In exploring the affect of perturbing the final time, we first recognize that

the point t∗f is a regular point of u∗(·) and u(·). Therefore, the time derivatives

of y∗(·) and y(·) are well-defined at t∗f . When τ < 0, it is known that y(tf ) =

y∗(tf ). Thus,

y(tf ) = y∗(t∗f + ετ)

= y∗(t∗f ) + g(y∗(t∗f ), u
∗(t∗f ))ετ + o(ε)

(20)

When τ > 0, we have

y(tf ) = y(t∗f + ετ)

= y(t∗f ) + g(y(t∗f ), u(t∗f ))ετ + o(ε)

(21)

At the optimal final time, it is true that y(t∗f ) = y∗(t∗f ) and u(t∗f ) = u∗(t∗f ).

Hence, when τ > 0,

y(tf ) = y∗(t∗f ) + g(y∗(t∗f ), u
∗(t∗f ))ετ + o(ε) (22)

which is the same as for the case when τ < 0. By defining the linear function

δ(τ) = g(y∗(t∗f ), u
∗(t∗f ))τ , the perturbed final point can be simply written as

y(tf ) = y∗(t∗f ) + εδ(τ) + o(ε) (23)

The set

∆t = {ξ : ξ = y∗(t∗f ) + εδ(τ), ε fixed} (24)

represents a linear approximation to the set of all reachable states achievable

by perturbing the optimal final time. Figure 8 shows the set ∆t in context of
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the optimal trajectory.
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Figure 8: Linear approximation of temporal variations.

2. Spatial Perturbations

In this section, we explore how the trajectory varies with respect to changes

in the control. These changes will be constructed by introducing pulses away

from the optimal control. Let I be the interval

I = (tp − εσ, tp] ⊂ (t0, t
∗
f ) (25)

where tp is a regular point of u∗(·) and σ is a positive scalar. Let ω be an

arbitrary element of the control set Ω. Then the simplest spatial control

perturbation is

u(t) =


u∗(t), t /∈ I

ω, t ∈ I
(26)

This scenario is shown in Figure 9.
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Figure 9: Simplest spatial perturbation.

We now want to study how the perturbed trajectory deviates from the

optimal on the interval I. Because tp is a regular point, we can write

y∗(tp − εσ) = y∗(tp)− ẏ∗(tp)εσ + o(ε)

= y∗(tp)− g(y∗(tp), u
∗(tp))εσ + o(ε)

(27)

Note that the point tp−εσ is not a regular point of u(·) since, by construction,

it is discontinuous there. Nonetheless, we can use the right-sided derivative,

ẏ+(tp − εσ), to write

y(tp) = y(tp − εσ) + ẏ+(tp − εσ)εσ + o(ε)

= y(tp − εσ) + g(y(tp − εσ), ω)εσ + o(ε)

(28)

Because y(tp − εσ) = y∗(tp − εσ), it follows that

y(tp) = y∗(tp)− g(y∗(tp), u
∗(tp))εσ + g(y∗(tp − εσ), ω)εσ + o(ε) (29)
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The third term on the right hand side can be expanded using the series notation

about tp. After doing so, the above equation becomes

y(tp) = y∗(tp) + γp(ω)εσ + o(ε) (30)

where

γp(ω) = g(y∗(tp), ω)− g(y∗(tp), u
∗(tp)) (31)

This perturbed value at time tp propagates forward to the optimal final time.

To characterize this effect, we introduce the function η(·) ∈ AC : [tp, t
∗
f ] →

Rn+1 such that

y(t) = y∗(t) + εη(t) + o(ε) (32)

for which it is already known that η(tp) = γp(ω)σ. On the interval [tp, t
∗
f ], u(·)

and u∗(·) share the same regular and irregular points. Differentiating at the

regular points time and solving for the first-order part gives

η̇(t) = ∂Ty g(y∗(t), u∗(t))η(t), η(tp) = γp(ω)σ (33)

which, as with other differential equations, only holds almost everywhere. The

solution of such a linear system is frequently written in terms of the state

transition matrix, i.e., η(t) = Φ(t, tp)γp(ω)σ, where Φ(t, tp) satisfies

Φ̇(t, tp) = ∂Ty g(y∗(t), u∗(t))Φ(t, tp), Φ(tp, tp) = I (34)
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Thus, at the optimal final time, the perturbed state is given by

y(t∗f ) = y∗(t∗f ) + Φ(t∗f , tp)γp(ω)εσ + o(ε) (35)

Defining δ(ω, I) = Φ(t∗f , tp)γp(ω)σ, we have

y(t∗f ) = y∗(t∗f ) + εδ(ω, I) + o(ε) (36)

A sketch of the first-order behavior is shown in Figure 10.
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𝑦∗ 

𝑦∗(𝑡𝑓
∗) 

𝑦(𝑡𝑓
∗) 

𝑦 

Figure 10: Effect of a spatial perturbation.

The set

∆s(ω, tp) = {ξ : ξ = y∗(t∗f ) + εδ(ω, I), ε fixed} (37)

represents a linear approximation of all reachable states achievable by the

simplest spatial perturbation. The elements of the set are a linear function of

σ. This set is illustrated in Figure 11.
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Figure 11: Linear approximation of a spatial perturbation.

As indicated by the notation, the set ∆s(ω, tp) depends on the particular

control ω and the time tp. There are an infinite number of times that could

be used as well as different controls (finite or infinite depending on the control

set). We now define the set ∆s to be the union of all possible sets of the

form ∆s(ω, tp). That is, ∆s is a linear approximation of all reachable states

achievable by all the possible simplest perturbations. Figure 12 shows a simple

illustration of this set.
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Figure 12: Linear approximation of multiple spatial perturbations.
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Note that ∆s is a cone emanating from the optimal final point y∗(t∗f ), and

it may be convex or not depending on the problem.

We now construct a perturbed control that contains two pulses over the

distinct intervals I1 and I2.

I1 = (t1 − εσ1, t1] and I2 = (t2 − εσ2, t2] (38)

Again, it must be assumed that t1 and t2 are regular points of the optimal

control u∗(·). It is also assumed that the intervals do not overlap and that I1

precedes I2. This scenario is shown in Figure 13.
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Figure 13: Two spatial perturbations.

Using the formulas just derived and properties of the state transition ma-

trix, it follows that

y(t∗f ) = y∗(t∗f ) + εδ(ω1, I1) + εδ(ω2, I2) + o(ε) (39)
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That is, two spatial control perturbations “add” together to affect the final

point. A simple inductive argument shows that this is true for any finite

number of perturbations. This requires some notational complexity but is

given by Pontryagin [25, p. 86-92].

Conversely, it is easy to see that a final perturbation of the form

y(t∗f ) = y∗(t∗f ) + εr1δ(ω1, I1) + εr2δ(ω2, I2) + o(ε) (40)

with r1, r2 ≥ 0 is possible by simply changing the intervals to

I ′1 = (t1 − εr1σ1, t1] and I ′2 = (t2 − εr2σ2, t2] (41)

By choosing all values of r1 and r2 such that r1 + r2 = 1, we construct all

possible convex combinations, i.e., the convex hull of the sets ∆s(ω1, t1) and

∆s(ω2, t2). This hull is a linear approximation to the set of all reachable states

generated by the two pulses at t1 and t2.

We then extend this idea to include all convex combinations of points in the

set ∆s. What results is the convex hull of ∆s, denoted co(∆s). The set co(∆s)

is a linear approximation to the set of all reachable states generated by all

possible convex combinations of simple perturbations. The set is also a convex

cone emanating from the point y∗(t∗f ). Figure 14 provides an illustration.
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Figure 14: Convex hull of spatial perturbations.

We now construct a linear approximation to the set of all reachable states

generated by affine combinations of elements in ∆t and co(∆s). This set is

given by

∆ = {ξ : ξ = y∗(t∗f ) + εr0δ(τ) + ε
k∑
i=1

riδ(ωi, Ii)} (42)

where ri ≥ 0. The fact that any element in co(∆s) can be constructed using a

finite number of pulses has been proved by Carathéodory [24, p. 41]. The set ∆

is convex, and because of its special significance, it is called the terminal cone.

It is shown in Figure 15. It is the infinite wedge between the two half-planes.
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Figure 15: Terminal cone.

C. Properties of the Terminal Cone

The significance of the terminal cone is the following: for every point ξ ∈ ∆,

there is a perturbation of the optimal control such that the terminal point of

the perturbed trajectory is within an order of epsilon, i.e., there is a perturbed

control generating y(tf ) such that

y(tf ) = ξ + o(ε) (43)

where y(tf ) may or may not be in the terminal cone.

We now use the fact that u∗(·) is the optimal control, and hence, no other

control gives a lower cost. Geometrically, no other trajectory intersects the

terminal set S ′b at a lower point. Since the terminal cone ∆ is a linear approx-

imation of the reachable set, it is expected that the terminal cone should face

“upward.” This must be proved.
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Consider the vector π = (−1, 0, . . . , 0) ∈ Rn+1, which points downward.

Let all of the points on the half-ray emanating from y∗(t∗f ) in the direction of

π be denoted by the set Π.

Π = {ξ : ξ = y∗(t∗f ) + rπ, r ≥ 0} (44)

This set is illustrated below in Figure 16.
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Figure 16: Terminal wedge and vector.

We must prove the following lemma.

Lemma 1. The set Π does not intersect the interior of ∆.

Before proving this lemma, we will outline a popular line of reasoning,

which is incorrect. Suppose that the lemma were false and that Π did intersect

the interior of ∆. Then there exists a control u(·) that generates

y(tf ) = y∗(t∗f ) + εrπ + o(ε) (45)
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for some r > 0. Writing y(tf ) in terms of its components yields

J [u(·)] = J [u∗(·)]− εr + o(ε)

x(tf ) = x∗(t∗f ) + o(ε)

(46)

The perturbed control clearly gives a lower cost since ε, r > 0. Therefore,

some may conclude, this contradicts the definition of an optimal control. How-

ever, it is important to note that the perturbed control is not feasible since

x(tf ) 6= x∗(t∗f ). At this point, another popular approach is to make a normal-

ity assumption. This was done in the calculus of variations until 1939 when

McShane resolved the issue [26]. It was also done in singular optimal control

theory until Krener resolved the issue there [31]. Lemma 1 is proved below.

Proof. Suppose that the lemma is false and that Π does intersect the interior

of ∆. Then there exists a point ξ such that ξ ∈ Π and ξ ∈ int(∆). This implies

that the point must be of the form

ξ = y∗(t∗f ) + εrπ (47)

for some r > 0. By definition of interior, the second inclusion implies that

there is a ball centered at ξ with radius ε, B(ξ, ε), such that B(ξ, ε) ⊂ int(∆).

Further, it implies that all elements of B(ξ, ε) have the form

y∗(t∗f ) + εγ (48)

where γ is a function of the perturbation parameters such as τ , ω, and I.
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Corresponding to each element in B(ξ, ε), there is a point of the form

y∗(t∗f ) + εγ + o(ε) (49)

which is the actual terminal point, as opposed to the linear approximation.

The set of actual terminal points is denoted B̃(ξ, ε). Since it is only o(ε) away

from B(ξ, ε), it can be thought of as a warping as shown in Figure 17.
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Figure 17: Actual terminal points in a warped ball.

As shown in Figure 17, the set of actual terminal points B̃(ξ, ε) intersects

S ′′b (note that ξ ∈ S ′′b since r > 0). If this were true, a contradiction would be

reached since those points are feasible and generate a lower cost.

However, we must prove B̃(ξ, ε) and S ′′b have a non-empty intersection, i.e.,

that B̃(ξ, ε) does not have a hole in it. This is done by showing that, for all

sufficiently small ε, B̃(ξ, ε) contains the ball B(ξ, (1− α)ε) for any α ∈ (0, 1).
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By definition of o(ε),

||o(ε)|| < αε, α ∈ (0, 1) (50)

for all sufficiently small ε. We define the function F : B(ξ, ε)→ B̃(ξ, ε), which

is the mapping from an approximated terminal point to the actual terminal

point. That is, given a point c ∈ B(ξ, ε), the point F (c) ∈ B̃(ξ, ε) and

F (c) = c+ o(ε) (51)

Additionally, F is continuous since the terminal points depend continuously

on the perturbation parameters. Let q be an arbitrary point in B(ξ, (1−α)ε),

and consider the map G with domain B(ξ, ε).

G(p) = p− F (p) + q (52)

For all sufficiently small ε, ||G(p) − q|| < αε, and hence, G(p) ∈ B(ξ, ε).

Thus, G is a continuous map from B(ξ, ε) to itself. Brouwer’s fixed point

theorem indicates that G has a fixed point [34, p. 203], i.e., there exists a

point c ∈ B(ξ, ε) such that G(c) = c.

Consequently, F (c) = q, i.e., q is an actual terminal point. Because q was

arbitrary, we conclude that for all sufficiently small ε, B(ξ, (1−α)ε) ⊂ B̃(ξ, ε).

Therefore, B̃(ξ, ε) and S ′′b have a non-empty intersection. This contradicts

optimality and completes the proof of Lemma 1.
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Corollary 1. There is a hyperplane that separates the sets Π and ∆.

Proof. Both sets are convex and Π does not intersect int(∆). The convexity

of ∆ ensures that 1) int(∆) is convex or 2) int(∆) is empty [24, p. 39]. In

the first case, there is a hyperplane that properly separates Π and ∆ [24, p.

53]. In the second case, there is a hyperplane that contains ∆ and trivially

separates Π and ∆ [35, p. 239].

The existence of a separating hyperplane implies that there is a non-zero

vector, which we define to be q∗(t∗f ), such that

〈q∗(t∗f ), β〉 ≤ 0 ∀β s.t. y∗(t∗f ) + β ∈ ∆ (53)

〈q∗(t∗f ), π〉 ≥ 0 (54)

The hyperplane and normal vector are sketched in Figure 18.
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Figure 18: Separating hyperplane and normal vector.
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D. Properties of the Adjoint System

The inequalities in Equation 53 and 54 will now be used in conjunction with

the adjoint system. Two linear systems of the form ẋ1(t) = Ax1(t) and ẋ2(t) =

−ATx2(t) are called adjoint to each other. Adjoint systems satisfy the property

that their inner product is constant. This is seen by direct calculation.

d

dt
〈x2(t), x1(t)〉 = 〈ẋ2(t), x1(t)〉+ 〈x2(t), ẋ1(t)〉

= (−ATx2(t))Tx1(t) + x2(t)Ax1(t) = 0

(55)

Recalling the linear system in Equation 33, we define the adjoint system as

q̇∗(t) = −∂yg(y∗(t), u∗(t))q∗(t) (56)

We can now prove the following lemma regarding this system.

Lemma 2. The function p∗0(·) is constant and non-positive, the adjoint vector

(p∗0, p
∗(t)) 6= 0 ∀t ∈ [t0, t

∗
f ], and p∗(·) satisfies the differential equation

−ṗ∗(t) = ∂xH(x∗(t), u∗(t), p∗(t), p∗0(t)) (57)

Proof. Expanding Equation 56 into component form gives the following dif-

ferential equations.

ṗ∗0(t) = 0

−ṗ∗(t) = ∂xH(x∗(t), u∗(t), p∗(t), p∗0(t))

(58)
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Hence p∗0(·) is constant and Equation 57 is satisfied. The inequality in Equation

54 yields p∗0 ≤ 0, i.e., p∗0 is non-positive. Finally, since q∗(t) is the solution of

a linear homogeneous differential equation and its boundary condition is non-

zero, it is non-zero for all time. That is,

(p∗0, p
∗(t)) 6= 0 ∀t ∈ [t0, t

∗
f ] (59)

This completes the proof.

Geometrically, q∗(t) represents the normal to the separating hyperplane

evolving backward from the final point. The coordinate p∗0 is the vertical

component. The backward evolution is illustrated in Figure 19. Note that

−q∗(t) is plotted for illustration purposes.
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Figure 19: Backward evolution of hyperplanes.

We now invoke Corollary 1 and properties of the adjoint system to prove

the famous pointwise maximization condition.
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Lemma 3. The optimal control u∗(·) maximizes the Hamiltonian almost ev-

erywhere. That is,

u∗(t) = arg max
ω∈Ω
H(x∗(t), ω, p∗(t), p∗0) (60)

for almost every t ∈ [t0, t
∗
f ].

Proof. Recall that any element ξ ∈ ∆ that is generated by the simplest spatial

perturbation, a single pulse, has the form

ξ = y∗(t∗f ) + εΦ(t∗f , tp)γp(ω) (61)

The second term on the right is the linear perturbation, and the separation

property in Equation 53 indicates that

〈q∗(t∗f ), εΦ(t∗f , tp)γp(ω)〉 ≥ 0 (62)

Since Φ(·, tp) is the state transition matrix for the linear system in Equation

33, we can invoke the property of adjoints to get

〈q∗(tp), γp(ω)〉 ≥ 0 (63)

Expanding both elements of the inner product into component form and rear-

ranging gives the inequality

H(x∗(tp), u
∗(tp), p

∗(tp), p
∗
0) ≥ H(x∗(tp), ω, p

∗(tp), p
∗
0) (64)
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However, both the control element ω and pulse time tp were arbitrary except

for tp being a regular point of u∗(·). Thus, the optimal control must maximize

the Hamiltonian at all regular points. This leads to the famous pointwise

maximization condition

u∗(t) = arg max
ω∈Ω
H(x∗(t), ω, p∗(t), p∗0) (65)

which holds for almost all t.

Remark 3. Lemma 3 can be strengthened to hold everywhere [25, p. 102].

This strengthened result is not needed here and is not pursued any further.

E. Properties of the Hamiltonian

We will prove that the Hamiltonian is zero everywhere. This is done by showing

that the Hamiltonian at the final point is zero, it is a continuous function of

time, and it has zero derivative almost everywhere.

Lemma 4. The Hamiltonian at the final time is zero.

Proof. The separation property in Equation 53 applies, in particular, to the

case when β = δ(τ) and y∗(t∗f ) + δ(τ) ∈ ∆. Recalling the linear function

δ(τ) = g(y∗(t∗f ), u
∗(t∗f ))τ and that τ can be positive or negative, the separation

inequality leads to 〈q∗(t∗f ), δ(τ)〉 = 0. In terms of the Hamiltonian, we have

H(x∗(t∗f ), u
∗(t∗f ), p

∗(t∗f ), p
∗
0) = 0 (66)

This completes the proof.
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Lemma 5. The Hamiltonian is a continuous function of time.

Proof. The Hamiltonian H(x∗(·), u∗(·), p∗(·), p∗0) is continuous at the regular

points of u∗(·) since it is a continuous function of each of its arguments and

they are all continuous functions of time. Let tp be an irregular point of u∗(·).

Define

ω1 = lim
t↑tp

u∗(t) and ω2 = lim
t↓tp

u∗(t) (67)

Let τ > 0 such that (tp + τ) is a regular point. Application of the pointwise

maximization condition in Lemma 3 gives

H(x∗(tp+ τ), u∗(tp+ τ), p∗(tp+ τ), p∗0) ≥ H(x∗(tp+ τ), u∗(tp− τ), p∗(tp+ τ), p∗0)

(68)

Taking the limit of both sides as τ goes to zero gives

H(x∗(tp), ω2, p
∗(tp), p

∗
0) ≥ H(x∗(tp), ω1, p

∗(tp), p
∗
0) (69)

since limits preserve weak inequalities [36, p. 43] and x∗(·) and p∗(·) are con-

tinuous. Switching the time arguments above and repeating the limit process

leads to the inequality

H(x∗(tp), ω1, p
∗(tp), p

∗
0) ≥ H(x∗(tp), ω2, p

∗(tp), p
∗
0) (70)

Thus, we conclude that equality holds. Provided u∗(tp) is defined to equal its

left limit, ω1, or its right limit, ω2, continuity holds since the left and right

limits equal H(x∗(tp), u
∗(tp), p

∗(tp), p
∗
0).
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Lemma 6. The Hamiltonian has zero derivative almost everywhere.

Proof. A consequence of Equation 64 is the following inequality. Let t1 and t2

be regular points of u∗(·) in the open interval (t0, t
∗
f ). Then

H(x∗(t2), u∗(t2), p∗(t2), p∗0)−H(x∗(t1), u∗(t2), p∗(t1), p∗0)

≥ H(x∗(t2), u∗(t2), p∗(t2), p∗0)−H(x∗(t1), u∗(t1), p∗(t1), p∗0)

≥ H(x∗(t2), u∗(t1), p∗(t2), p∗0)−H(x∗(t1), u∗(t1), p∗(t1), p∗0)

(71)

Consider the case when t2 > t1. Then, using Equation 71,

lim
t2→t1

H(x∗(t2), u∗(t2), p∗(t2), p∗0)−H(x∗(t1), u∗(t1), p∗(t1), p∗0)

t2 − t1

≤ lim
t2→t1

H(x∗(t2), u∗(t2), p∗(t2), p∗0)−H(x∗(t1), u∗(t2), p∗(t1), p∗0)

t2 − t1

= 〈∂xH(x∗(t1), u∗(t1), p∗(t1), p∗0), ẋ∗(t1)〉

+ 〈∂pH(x∗(t1), u∗(t1), p∗(t1), p∗0), ṗ∗(t1)〉 = 0

(72)

That is, the first limit of Equation 72 must be less than or equal zero. Re-

peating this limit argument using the bottom two lines of Equation 71 says

that the first line must be greater than or equal zero. Thus, the limit from the

right is zero.

This process can be repeated with t2 < t1. Because the first line is the

definition of the time derivative of the Hamiltonian, and the limit is zero from

both directions, we conclude that the time derivative is zero at all regular
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points of u∗(·), i.e.,

d

dt
H(x∗(t), u∗(t), p∗(t), p∗0) = 0 (73)

for almost every t ∈ [t0, t
∗
f ].

The above properties of the Hamiltonian lead to the following corollary.

Corollary 2. The Hamiltonian is zero everywhere.

Proof. This follows directly from the fact that the Hamiltonian at the final

point is zero, the time derivative is zero almost everywhere, and it is a contin-

uous function of time. Thus,

H(x∗(t), u∗(t), p∗(t), p∗0) = 0 (74)

for all t ∈ [t0, t
∗
f ].

Remark 4. Note that Equation 17 and the first two equations of Equation 14

are just restatements of the constraints in BOCP. Thus, Lemma 2, Lemma 3,

and Corollary 2 complete the proof Theorem 1.

F. The Transversality Condition

We now relax BOCP so that the final point must belong not to a point set, but

to a smooth (n − p)-fold in Rn [37, p. 92-95]. The manifold is characterized
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by the function b(·) ∈ C1 : Rn → Rp. Thus, the new problem, BOCP’, is

min J = x0(tf ) (BOCP’)

subj. to ẋ0(t) = `(x(t), u(t)), x0(t0) = 0

ẋ(t) = f(x(t), u(t)), x(t0) = a, b(x(tf )) = 0

u(t) ∈ Ω, t0 fixed, tf free

Note that the only change from BOCP is this final boundary condition on x(·).

Only one element in the preceding arguments is affected by this change. It is

the proof of Lemma 1. We will complete the proof for BOCP’ and obtain one

more separation inequality in addition to those in Equations 53 and 54.

It is convenient to define the following sets.

Sb = {x : b(x) = 0}

S ′b = {(x0, x) : x0 ∈ R and x ∈ Sb}

S ′′b = {(x0, x) : x0 < J∗ and (x0, x) ∈ S ′b}

(75)

The set Sb is the terminal set, and S ′b simply lifts Sb in the x0 direction. The

set S ′′b is a subset of S ′b. It consists only of those points in S ′b that have lower

cost than the optimal. The set Π is redefined to be

Π = {ξ : ξ = y∗(t∗f ) + rπ +

[
0

s

]
, r ≥ 0, s ∈ T (Sb |x∗(t∗f ))} (76)

where T (Sb |x∗(t∗f )) is the tangent space of Sb at the point x∗(t∗f ). Some

aspects of these sets are captured in Figure 20.
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Figure 20: Illustration of sets.

With this new definition of Π, we prove Lemma 1.

Proof (Lemma 1 for BOCP’). Suppose that the lemma is false and that Π

does intersect the interior of ∆. Then there exists a point ξ such that ξ ∈ Π

and ξ ∈ int(∆). This implies that ξ must be of the form

ξ = y∗(t∗f ) + εrπ +

[
0

s

]
(77)

for some r > 0 and some s ∈ T (Sb |x∗(t∗f )). And as before, there is the

ball B(ξ, ε) ⊂ int(∆) and the associated warped ball B̃(ξ, ε). To reach a

contradiction, we must show that B̃(ξ, ε) intersects S ′′b .

The same fixed point arguments hold such that B(ξ, (1 − α)ε) ⊂ B̃(ξ, ε).

Because Π and S ′′b are tangent to each other along the direction of π, the

distance from ξ to S ′′b is of order o(ε). Thus, for all sufficiently small ε, B(ξ, (1−

α)ε) intersects S ′′b . This completes the proof since B(ξ, (1−α)ε) ⊂ B̃(ξ, ε).
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Since Lemma 1 remains true, Corollary 1 does as well. Recognizing the

fact that 0 ∈ T (Sb |x∗(t∗f )) , we recover the inequalities in Equations 53 and

54. By setting r = 0, we obtain a third inequality

〈q∗(t∗f ),
[

0

s

]
〉 ≥ 0 ∀s ∈ T (Sb |x∗(t∗f )) (78)

For every s ∈ T (Sb |x∗(t∗f )) we also have −s ∈ T (Sb |x∗(t∗f )). Thus, the

inequality must be satisfied with strict equality. Expanding into component

form gives the transversality condition

〈p∗(t∗f ), s〉 = 0 ∀s ∈ T (Sb |x∗(t∗f )) (79)

The only change that must be made to Theorem 1 to adapt it to BOCP’

is statement vi. It now reads

vi) the boundary conditions

x∗0(t0) = 0, x∗(t0) = a, b(x∗(t∗f )) = 0, 〈p∗(t∗f ), s〉 = 0 ∀s ∈ T (Sb |x∗(t∗f )) (80)

Remark 5. The transversality condition says that p∗(t∗f ) is orthogonal to the

null space of ∂Tx b(x
∗(t∗f )). Hence, there is a non-zero vector ν such that p∗(t∗f ) =

∂xb(x
∗(t∗f ))ν.

A number of generalizations can be reached from this point. For example,

problems with time dependence, terminal and integral costs, and final time

constraints can easily be transformed to the above form so that necessary

conditions can be stated [33, p. 130-134].
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G. Optimal Control with State Constraints

Attention is now turned to optimal control problems with state constraints.

In these problems, the state cannot evolve arbitrarily in Rn. It must evolve

in some subset. Necessary conditions for such problems are not simple gener-

alizations of the previous results, and their history and proof are beyond the

scope of this chapter. The exposition here is an adaptation of a recent survey

paper [38].

Consider the following optimal control problem with explicit time depen-

dence and state constraints (OCPSC).

min J = m(tf , x(tf )) +
∫ tf
t0
`(t, x(t), u(t)) dt (OCPSC)

subj. to ẋ(t) = f(t, x(t), u(t)), x(t0) = a, t0 fixed

g(t, x(t), u(t)) ≤ 0, h(t, x(t)) ≤ 0

b(tf , x(tf )) = 0, c(tf , x(tf )) ≤ 0

It is assumed that each of the above functions is continuously differentiable

with respect to all of its arguments – even the control. This assumption is quite

strong and can be relaxed, but it is sufficient for our purposes. Additionally, it

is assumed that the gradient of all active constraints are linearly independent.

See Hartl et al. for more details [38].

The control constraints are now given in function form. The control set is

Ω(t, x(t)) = {ω : g(t, x(t), ω) ≤ 0} (81)
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The intervals where the state constraints h(t, x(t)) are satisfied with strict

equality are called boundary arcs. The intervals where they are satisfied with

strict inequality are called interior arcs. The time instances joining boundary

and interior arcs are called junction times and denoted by τ . Lastly, inequality

constraints on the final point are also present with c(tf , x(tf )) ≤ 0.

Before stating the necessary conditions, it is convenient to define three

functions.

H(t, x(t), u(t), p(t), p0) = 〈p0`(t, x(t), u(t))〉+ 〈p(t), f(t, x(t), u(t))〉 (82)

L(t, x(t), u(t), p(t), p0, λ(t), ν(t)) = H(t, x(t), u(t), p(t), p0)

+ 〈λ(t), g(t, x(t), u(t))〉+ 〈ν(t), h(t, x(t))〉
(83)

G(tf , x(tf ), p0, ξ, µ) = 〈p0,m(tf , x(tf ))〉+ 〈ξ, b(tf , x(tf ))〉

+ 〈ζ, c(tf , x(tf ))〉+ 〈µ, h(tf , x(tf ))〉
(84)

Special cases of the result below have been studied by Jacobson, Lele, and

Speyer [39] and Maurer [40]. A more modern exposition can be found in the

survey paper [38]. The necessary conditions for OCPSC are below.

Theorem 2 (Necessary Conditions for OCPSC). If OCPSC attains a mini-

mum at u∗(·) such that x∗(·) has a finite number of junction times, then the

following system is solvable:
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i) the normality condition

p∗0 ≤ 0 (85)

ii) the non-triviality condition

(p∗0, p
∗(t)) 6= 0 ∀t ∈ [t0, t

∗
f ] (86)

iii) the differential equations

ẋ∗(t) = ∂pL(t, x∗(t), u∗(t), p∗(t), p∗0, λ
∗(t), ν∗(t))

−ṗ∗(t) = ∂xL(t, x∗(t), u∗(t), p∗(t), p∗0, λ
∗(t), ν∗(t)) (87)

Ḣ(t, x∗(t), u∗(t), p∗(t), p∗0) = ∂tL(t, x∗(t), u∗(t), p∗(t), p∗0, λ
∗(t), ν∗(t))

iv) the pointwise maximum condition

u∗(t) = arg max
ω∈Ω(t,x∗(t))

H(t, x∗(t), ω, p∗(t), p∗0) a.e. t ∈ [t0, t
∗
f ] (88)

v) the stationary condition

∂uL(t, x∗(t), u∗(t), p∗(t), p∗0, λ
∗(t), ν∗(t)) = 0 a.e. t ∈ [t0, t

∗
f ] (89)
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vi) the complementary slackness conditions

g(t, x∗(t), u∗(t)) ≤ 0, λ∗(t) ≤ 0 〈λ∗(t), g(t, x∗(t), u∗(t))〉 = 0

h(t, x∗(t)) ≤ 0, ν∗(t) ≤ 0, 〈ν∗(t), h(t, x∗(t))〉 = 0

c(t∗f , x
∗(t∗f )) ≤ 0, ζ∗ ≤ 0, 〈ζ∗, c(t∗f , x∗(t∗f ))〉 = 0

h(τ ∗, x∗(τ)) ≤ 0, η∗(τ ∗) ≤ 0, 〈η∗(τ ∗), h(τ ∗, x∗(τ))〉 = 0

h(t∗f , x
∗(t∗f )) ≤ 0, µ∗ ≤ 0, 〈µ, h(t∗f , x

∗(t∗f ))〉 = 0

(90)

vii) the jump conditions

p(τ ∗−) = p(τ ∗+) + ∂xh(τ ∗, x∗(τ ∗))η(τ ∗) ∀τ ∗

H(τ ∗−, x(τ ∗), u(τ ∗−), p(τ ∗−), p0) = H(τ ∗+, x(τ ∗), u(τ ∗+), p(τ ∗+), p0)

− ∂th(τ ∗, x∗(τ ∗))η(τ ∗) ∀τ ∗

(91)

viii) the boundary conditions

x(t0) = a, b(t∗f , x
∗(t∗f )) = 0, c(t∗f , x

∗(t∗f )) ≤ 0

p∗(t∗f ) = ∂xG(t∗f , x
∗(t∗f ), p

∗
0, ξ
∗, µ∗) (92)

−H(t∗f , x
∗(t∗f ), u

∗(t∗f ), p
∗(t∗f ), p

∗
0) = ∂tG(t∗f , x

∗(t∗f ), p
∗
0, ξ
∗, µ∗)

The statement of these conditions concludes this chapter on optimal con-

trol. We now have the tools to study lossless convexification.
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CHAPTER IV:

RENDEZVOUS USING DIFFERENTIAL DRAG

This chapter presents a method to solve the minimum time rendezvous prob-

lem of multiple spacecraft using differential drag. The method is based on

lossless convexification and reduces the problem to solving a fixed number of

linear programming (LP) problems. The problem is to rendezvous any num-

ber of chaser spacecraft with a single target spacecraft in low earth orbit using

only the relative aerodynamic drag between the chaser and target vehicles.

Attached to each spacecraft are drag plates that can be deployed or not. It

is the actuation of these plates that generates the relative aerodynamic drag.

The objective is to minimize the total time to achieve rendezvous.

There are a number of reasons to use differential drag as a control in forma-

tion flight [41]. First, fuel savings are possible since thrust is not used or used

only for corrections. Second, plumes and jet firings may be harmful to other

spacecraft in the vicinity. Third, and generally speaking, the use of thrust re-

quires more complicated mechanical systems and so the system hardware can

be simplified. Interest in rendezvous using differential drag is evident in the

work of the Canadian and Japanese Space Agencies and Israel Aerospace In-

dustries [42,43]. Convex optimization for rendezvous and proximity operations

has also been introduced recently by Lu and Liu [44].
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Leonard et al. [41] studied the problem of station keeping using differential

drag and used the Clohessy-Wiltshire-Hill equations [45] to describe the rela-

tive motion. They introduced a transformation that separated the equations

of motion into that of a double integrator and a harmonic oscillator coupled

only through the control. It is important to note that optimal strategies for

the decoupled systems are well understood [37, Ch. 7], but a general analysis

for the coupled system remains an open problem. In the end, Leonard et al.

developed an analytical, sub-optimal control law.

Bevilacqua and Romano [46] studied the problem of rendezvous using dif-

ferential drag and used the Schweighart-Sedwick equations [47] to describe

the relative motion. These equations are of the same form as the Clohessy-

Wiltshire-Hill equations, but they include an averaged J2 effect more suitable

for maneuvers that occur over several periods. They developed an analytical,

sub-optimal control law for two vehicles. The approach was then extended to

the rendezvous of multiple vehicles by sequentially applying the two-vehicle

control law. Bevilacqua et al. [48] also solved the problem by using a combi-

nation of differential drag and thrust for the final approach.

In this chapter, it is assumed that the relative motion of each chaser with

respect to the target is accurately described by the Schweighart-Sedwick equa-

tions. The equations are then simplified through two transformations. At this

point, the optimization problem is most naturally solved as a mixed integer

nonlinear programming (MINLP) problem because the feasible control set is

{−1, 0} and the final time is free. Such problems are generally difficult to

solve, and for this reason, the control set is relaxed from {−1, 0} to [−1, 0],
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i.e., from a non-convex point set to a convex interval. Feasible controls for the

relaxed problem are not necessarily feasible for the original problem. The proof

of lossless convexification shows that a minimum time control of the relaxed

problem exists that is also a minimum time control of the original problem.

This relaxation and proof are different than others in lossless convexifica-

tion. Typical proofs hinge on the non-existence of singular controls. Singular

controls do exist in the current problem. However, 1) it is shown that singular

controls that are bang-bang also exist and 2) a constructive procedure for con-

verting non-bang-bang singular controls to bang-bang controls is given. These

points make the work a unique contribution.

Because the final time is free, lossless convexification of the control set only

reduces the problem to a nonlinear programming (NLP) problem. However,

for a given final time, the problem of finding the optimal control reduces

to a LP problem. When a feasible solution exists, LPs can be solved with

guaranteed convergence to the global minimum in polynomial time. When

feasible solutions do not exist, the program returns infeasible in polynomial

time. Thus, the problem reduces to a one-dimensional search for the least final

time so that the program returns a feasible answer.

Upon completion, some controls will be singular, and so the procedure

mentioned above is implemented to make all singular controls be bang-bang

controls. The same line search could have been used to convert the MINLP

problem to a sequence of integer linear programming (ILP) problems, thus

avoiding the need for convexification. However, ILPs do not share the poly-

nomial time convergence rate and are generally NP-hard [49].
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The LP method developed here is programmed using a custom solver.

Mattingley and Boyd [3] have shown that LP problems can be solved two

to three orders of magnitude faster using custom code than with standard

algorithms. Such significant speed ups are not evident here, but the customized

solver does out perform all others tested.

A. Problem Description

The Schweighart-Sedwick equations [47] describe the linearized relative motion

of two generic spacecraft in a local vertical local horizontal frame. In deriving

the equations, it is assumed that the reference orbit is circular, the spacecraft

are close to each other compared to their orbital radius, and the only forces

acting on the spacecraft are gravity and aerodynamic drag. The gravity force

is composed of a two-body effect and an averaged effect of the J2 perturbation

over one orbit. The aerodynamic drag appears as part of the control term

since it is the primary mechanism for maneuvering the spacecraft [48]. The

equations are



ż1(t)

ż2(t)

ż3(t)

ż4(t)


=



0 1 0 0

b 0 0 a

0 0 0 1

0 −a 0 0





z1(t)

z2(t)

z3(t)

z4(t)


+



0

0

0

aD


[u(t)− u0(t)] (1)

The origin of the frame is located at the target spacecraft. The coordinates z1

and z2 are the relative position and velocity in the vertical or radial direction.

The coordinates z3 and z4 are the relative position and velocity in the hori-
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zontal or tangential direction. The positive constants a and b are associated

with a particular reference path about which the motion was linearized.

The constant aD is the magnitude of acceleration associated with opening

the drag panels.

aD = 1
2
βρrV

2
r (2)

The air density associated with the reference orbit is ρr. The speed associated

with a spacecraft in the reference orbit is Vr, and β is the differential ballistic

coefficient between the spacecraft when one vehicle has the drag plates de-

ployed and the other does not. In the calculation of drag, it is assumed that

the air density is constant throughout the maneuver and that the speeds of

the spacecraft are reasonably approximated as their reference orbital speed.

The assumptions are reasonable since motion about the reference is expected

to be small. The control of the chaser spacecraft is u, and the control of the

target spacecraft is u0. At a given time, each control can take values in the

set {−1, 0} corresponding to the cases where the drag plates are deployed or

not. It follows that the effective control, ue(t) = u(t) − u0(t), can only take

one of three values at a given time.

1. If the drag plates on the chaser are deployed and the drag plates on the

target are not, then ue(t) = −1.

2. If the drag plates on the target are deployed and the drag plates on the

chaser are not, then ue(t) = +1.

3. If the drag plates on both spacecraft are in the same position, then

ue(t) = 0.
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The system matrix in Equation 1 is defective so that it cannot be diagonalized.

Nonetheless, the system can be reduced to a double integrator and harmonic

oscillator by a similarity transform. The columns of the transformation matrix

P consist of the generalized eigenvectors of the system matrix. After defining

ω2 = a2 − b,

P =



0 −a 0 −1/a

0 0 ω2/a 0

b 0 1 0

0 b 0 1


(3)

The new states are given by y(t) = P−1z(t). Differentiating and substituting

for ż(t) gives



ẏ1(t)

ẏ2(t)

ẏ3(t)

ẏ4(t)


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 −ω2 0





y1(t)

y2(t)

y3(t)

y4(t)


+



0

−aD/ω2

0

a2aD/ω
2


[u(t)− u0(t)] (4)

It is now obvious that the first two states form a double integrator, the last

two states form a harmonic oscillator, and the two are coupled by the control

variables. For convenience, one more transformation is introduced.

Q =
ω2

aD



−1 0 0 0

0 −1 0 0

0 0 ω/a2 0

0 0 0 1/a2


(5)
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The final states are given by x(t) = Qy(t). Differentiating and substituting

for ẏ(t) gives



ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


=



0 1 0 0

0 0 0 0

0 0 0 ω

0 0 −ω 0





x1(t)

x2(t)

x3(t)

x4(t)


+



0

1

0

1


[u(t)− u0(t)] (6)

This system of differential equations describes the relative motion of one chaser

with respect to the target spacecraft. Henceforth, the system matrix in Equa-

tion 6 is labeled as A and the control influence matrix is labeled as B.

In these transformed coordinates, the motion of each state can be simply

understood by studying the phase plane. Figure 21 shows the x1-x2 phase

plane. The solid curves represent paths of constant effective control ue(t) =

−1. The dashed curves represent paths of constant effective control ue(t) =

+1. Paths for zero effective control are not shown, but are horizontal lines.
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Figure 21: x1-x2 phase plane.
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Figure 22 shows the ωx3-ωx4 phase plane. The solid circles centered at

(−1, 0) represent paths of constant effective control ue(t) = −1. The dashed

circles centered at (+1, 0) represent paths of constant effective control ue(t) =

+1. Paths for zero effective control are not shown, but are circles centered at

the origin. The arrows indicate that all motion occurs in a clockwise direction.
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Figure 22: ωx3-ωx4 phase plane.

Now considering the case where there are M chasers, the motion of each

chaser relative to the target is again given by Equation 6, which is written

below for ith chaser.

ẋi(t) = Axi(t) +Bui(t)−Bu0(t), ∀i = 1, . . .M (7)

The subscript i indicates that the equation describes the motion of the ith

chaser relative to the target. It is evident that each chaser is coupled to the

others by the target control u0. Thus the motion of the entire system, including
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all M + 1 vehicles, must be considered as a whole. Upon defining the matrices

A =



A

A

. . .

A


and B =



−B B

−B 0 B

...
. . .

−B 0 0 B


(8)

the motion of the entire system can be described by using the new, augmented

state and control vectors x := [xT1 , . . . , x
T
M ]T and u := [u0, u1, . . . , uM ]T , which

satisfy the dynamics ẋ(t) = Ax(t) + Bu(t). This system will be of primary

concern in the upcoming theoretical developments. In developing results for

the special case of only one chaser, it will be made clear that the results hold

only when M = 1.

Attention is turned to the optimal control problem. Considering the system

equations in the previous paragraph, a formal statement of the minimum time

rendezvous problem is below.

min J =
∫ tf
t0

1 dt (P0)

subj. to ẋ(t) = Ax(t) + Bu(t)

x(t0) = x0, x(tf ) = 0

ui(t) ∈ {−1, 0} ∀i = 0, . . . ,M

A full analysis for the minimum time transfer to the origin is currently un-

available, but a number of important facts are still known [37, Ch. 7]. The

discussion begins by setting M = 1 and considering the uncoupled double inte-
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grator and harmonic oscillator – for which a complete analysis is possible. For

the double integrator system, the minimum time control consists of at most

one switch. Figure 23 shows the switch curve in the x1-x2 plane. If the state

initially lies below the switch curve, the optimal strategy is to apply ue(t) = +1

until the state intersects the switch curve, and then switch to ue(t) = −1 until

the state reaches the origin. If the state initially lies above the switch curve,

the optimal strategy is to apply ue(t) = −1 and then ue(t) = +1.

−4 −2 0 2 4

−4

−2

0

2

4

x1(t)
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Figure 23: Double integrator switch curve.

Analyzing the harmonic oscillator is more difficult since the number of

switches cannot be bounded a priori. Figure 24 shows the switch curve in the

ωx3-ωx4 plane. If the state lies below the switch curve, the optimal strategy

is to apply ue(t) = +1 until the state intersects the switch curve, and then

switch to ue(t) = −1. If the state lies above the switch curve, the optimal

strategy is to apply ue(t) = −1 and then ue(t) = +1. This process repeats

until the state reaches the origin.
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Figure 24: Harmonic oscillator switch curve.

Solving the double integrator and harmonic oscillator systems simultane-

ously can be done for some sets of initial conditions, but a general analysis is

unavailable. It follows that a general analysis for M > 1 is also unavailable.

This motivates the lossless convexification and solution method introduced in

the next two sections.

B. Lossless Convexification

Note that the control set in problem P0 is not convex, which introduces nu-

merical challenges. At the risk of introducing infeasible solutions, the control
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set is relaxed from {−1, 0} to [−1, 0], and a new problem is formulated.

min J =
∫ tf
t0

1 dt (P1)

subj. to ẋ(t) = Ax(t) + Bu(t)

x(t0) = x0, x(tf ) = 0

ui(t) ∈ [−1, 0] ∀i = 0, . . . ,M

With Theorem 1 of Chapter III in mind, the Hamiltonian and differential

equations for the relaxed problem P1 are

H(x(t), u(t), p(t), p0) = p0 + 〈p(t),Ax(t)〉+ 〈p(t),Bu(t)〉

ẋ(t) = Ax(t) + Bu(t) (9)

−ṗ(t) = ATp(t)

Upon defining the switching functions ϕi(t) = 〈p(t),Bi〉, the pointwise maxi-

mum condition indicates that the optimal controls are

ui(t) =


−1, ϕi(t) < 0

0, ϕi(t) > 0

singular, ϕi(t) = 0

(10)

The aim of the remainder of this section is to prove that an optimal solution

of the relaxed problem P1 exists that is also an optimal solution of the original

problem P0.
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The following definitions regarding the optimal control fix some nomencla-

ture used throughout the rest of the chapter.

Definition 1. A control ui(t) is a bang-bang control if it only takes values of

-1 and 0.

Definition 2. A control ui(t) is a non-singular control if the switching func-

tion ϕi(t) is non-zero for almost every t.

Remark 1. It follows from these definitions and Eq. 10 that a non-singular

control is a bang-bang control.

Definition 3. A control ui(t) is a singular control if the switching function

ϕi(t) is zero for almost every t.

Remark 2. For relaxed problem P1, if a control is non-singular (singular) on

any interval, then it is non-singular (singular) on [t0, tf ]. This follows from

the fact that the switching functions are independent of the state and control

trajectories.

It is obvious that non-singular solutions for the relaxed problem P1 are

feasible solutions for the original problem P0. However, it is shown that when

M > 1, singular solutions must exist for the relaxed problem P1. Thus,

solutions for the relaxed problem P1 are not necessarily feasible for the original

problem P0. Below, several lemmas and proofs are given to help synthesize

the optimal control problem, and the bang-bang principle due to LaSalle [50]

is invoked to prove that bang-bang singular controls exist.

In light of this fact, the section culminates with Theorem 1 stating that an

optimal solution of the relaxed problem P1 exists that is an optimal solution
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of the original problem P0. The next two lemmas assert the existence of a

minimum time control and the existence of a non-trivial adjoint.

Lemma 1. If a feasible control exists, then a minimum time control exists.

Proof. See Pontryagin [25, p. 127].

Lemma 2. The adjoint p(·) is never zero.

Proof. If p(·) is zero somewhere, it is zero everywhere since it is the solution

of a homogeneous differential equation. Because the Hamiltonian is zero ev-

erywhere, p0 must be zero. This violates the non-triviality condition. Thus,

p(·) is never zero.

The next four lemmas assess several important controllability criterion of

the linear system. It is first shown in Lemma 3 that the (A,B) and (A,B)

pairs are controllable. It is then shown in Lemma 4 that upon removing any

control from the system, the linear system is still controllable. Finally, in

Lemma 5, it is shown that the linear system is normal when M = 1 and not

normal when M > 1, which is used in Lemma 6 to prove existence of singular

and non-singular controls.

Lemma 3. The (A,B) and (A,B) pairs are controllable.

Proof. The determinant of the controllability matrix is

det(C) = det([B AB A2B A3B]) = ω5 6= 0 (11)

Thus, the controllability matrix is full row rank, rank(C) = 4, and the (A,B)

pair is controllable. Define the matrix C̃ = [B AB . . . A4M−1B], for which
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rank(C̃) = 4 since the (A,B) pair is controllable. The controllability matrix

for the (A,B) pair is then

C =



−C̃ C̃

−C̃ 0 C̃

...
. . .

−C̃ 0 0 C̃


(12)

It is obvious that the M blocks of rows are linearly independent. Thus, the

controllability matrix is full row rank, rank(C) = 4M , and the (A,B) pair is

controllable.

Definition 4. The control influence matrix with the jth column removed is

denoted B∼j. The corresponding controllability matrix is denoted C∼j.

Lemma 4. The (A,B∼j) pair is controllable for any j.

Proof. Denote the jth block of columns as Cj. Any block of columns can be

written as a linear combination of the others, i.e.,

Cj = −
M+1∑
i=1
i 6=j

Ci (13)

Thus, the controllability matrix with the jth block of columns removed, C∼j,

is full rank,

rank(C∼j) = rank(C) = 4M (14)

It follows that upon removing any control variable, the (A,B∼j) pair remains

controllable.
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Definition 5. The linear system is normal if the (A,Bj) pair is controllable

for all j. That is, A is controllable with every column of B.

Lemma 5. The linear system is normal when M = 1. The linear system is

not normal when M > 1.

Proof. It is easy to see that rank(Cj) = 4. Thus, only when M = 1 is

rank(Cj) = 4M ∀j. It follows that the linear system is normal when M = 1,

and the linear system is not normal when M > 1.

Lemma 6. i) Singular controls cannot exist when M = 1 and at least one

singular control must exist when M > 1. ii) At least two controls are bang-

bang.

Proof. i) A necessary and sufficient condition for the non-existence of singular

controls is that the linear system be normal [37, p. 399]. In light of Lemma 5,

singular controls cannot exist when M = 1, and at least one singular control

must exist when M > 1.

ii) Suppose that all controls are singular. Then ϕj(t) = 0 a.e. t ∈ [t0, tf ]

for all j. Differentiating each switching function 4M − 1 times implies that

CTj p(t) = 0 a.e. t ∈ [t0, tf ] for all j. However, Lemmas 2 and 3 imply CTp(t) 6=

0 ∀t ∈ [t0, tf ]. Thus, in light of Remark 2, there exists at least one j such

that ϕj(t) 6= 0 a.e. t ∈ [t0, tf ], i.e., at least one control is bang-bang. Upon

removing the jth column, the matrix C∼j remains full rank (see Lemma 4).

Applying the same logic as before, at least one more control is bang-bang. It

follows that at least two controls are bang-bang.
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Existing proofs of lossless convexification hinge on proving the non-existence

of singular controls. The proof here is complicated by the fact that singular

controls do exist when M > 1, and hence, not all extremal controls for relaxed

problem P1 are feasible controls for the original problem P0. The bang-bang

principle due to LaSalle [50] helps resolve this issue.

Lemma 7. If a minimum time control exists, then a minimum time control

that is bang-bang exists.

Proof. See LaSalle [50].

A consequence of Lemma 7 is that a minimum time control for relaxed

problem P1 exists that is also a feasible solution for original problem P0. This

leads to the following theorem.

Theorem 1. A minimum time control of relaxed problem P1 exists that is

also a minimum time control for the original problem P0.

Proof. Note that the cost functions for P0 and P1 are the same. Since F1 ⊂ F2,

J∗2 ≤ J∗1 . Lemma 7 implies that K = F1 ∩ F∗2 is non-empty. Since the cost of

every trajectory in K is J∗2 and K ⊂ F1, it must be that J∗1 ≤ J∗2 . The two

inequalities imply J∗1 = J∗2 . Thus, every trajectory in K is in F∗1 , i.e., K ⊂ F∗1 .

That is, there is an optimal control for P1 that is optimal for P0.

Thus, it has been proved that the relaxation can be lossless but is not

necessarily so. The crux of the proof is Lemma 7, which is only a statement

existence – not uniqueness.
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C. Solution Method

This section describes the solution method to solve the problem P1 to ensure

that it is a solution of P0. It is the combination of the results above and

this solution method that make the relaxation a lossless convexification. Es-

sentially, the method answers the question of how to replace non-bang-bang

controls with bang-bang controls. For this reason, it is not required if M = 1

since singular controls do not exist according to Lemma 6.

The first step is to discretize the problem so that it can be solved numeri-

cally. For any fixed final time, this numerical problem is a linear programming

problem. Thus, the minimum time can be found by solving a sequence of lin-

ear programs. At the minimum time, the linear program returns an optimal

control. According to Lemma 6, some controls may not be bang-bang. The

final step is to replace the non-bang-bang control with bang-bang controls.

This procedure is first described in words. Then, the specific steps of

the procedure are enumerated for precision. The first step is to solve the

optimization problem as described above. According to Lemma 6, at least one

control will be singular and at least two controls will be bang-bang. Removing

one of the system equations associated with a bang-bang control eliminates

one of the control variables from the problem. Upon solving this reduced

system with the other bang-bang control as a known function of time, Lemma

4 guarantees that at least one more control will be made bang-bang. This

process of repeatedly reducing the system equations and obtaining a bang-

bang control is continued until all controls are bang-bang. Precise statement

of the procedure is below.
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1. Define I = {1, . . . ,M}.

2. Solve the optimization problem considering all systems ẋi ∀i ∈ I (see

Eq. 7).

3. Obtain at least two bang-bang controls, u∗α and u∗β, and the minimum

time, t∗f . NOTE: The two bang-bang controls do not need to be specified

a priori. They are a product of optimization in Step 2.

4. Update I. I = I − {β}. Define γ = α.

5. Solve the optimization problem considering systems ẋi,∀i ∈ I with u∗γ a

known function of time.

6. Obtain at least one bang-bang control, u′α, and a final time, t′α ≤ t∗f .

7. Define

u∗α =


u′α, t ∈ [t0, t

′
α]

u∗γ, t ∈ (t′α, t
∗
f ]

. (15)

8. Update I. I = I − {γ}. Define γ = α.

9. If I = {}, end. Else, go to Step 5.

Upon completing the procedure, all controls are bang-bang and the problem

is solved.

A brief comment is in order on why an equation can be removed each time.

As an example, consider the case where there are two spacecraft, and let u∗1

and u∗2 be the two bang-bang controls associated with the minimum time t∗f .
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Upon defining ξ = x2 − x1, the system equations become

ẋ1(t) = Ax1(t) +B[u∗1(t)− u0(t)] (16)

ξ̇(t) = Aξ(t) +B[u∗2(t)− u∗1(t)] (17)

Thus, the ξ dynamics are completely determined by the two bang-bang con-

trols. Eliminating this system leaves only the x1 system. Solving the optimiza-

tion problem with u∗1 as a known function of time gives u′0, which is bang-bang,

and a new final time t′0 ≤ t∗f . The optimal control u′0 can be extended to t∗f as

in Step 7 above. But this has no effect on the ξ system. Thus, it is possible

to remove the x2 system as described above. This generalizes to the case for

arbitrary M .

D. Results

The method is first tested with M = 1 (one target and one chaser) using the

following constants and initial conditions taken from the literature [46].

a = 8.24 1/hr

b = 50.90 1/hr2 (18)

aD = 0.59 km/hr2

z(0) = [−0.53 km, 0.25 km/hr,−0.48 km, 3.31 km/hr]

The integration step size was set at three minutes. The linear programs were

solved using the custom LP code CVXGEN [3], and the one-dimensional search
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Figure 25: x1-x2 phase plane with M = 1.

for the minimum time converged in 4 iterations. The minimum time is 4.09

hours. Figure 25 shows the x1-x2 phase plane. The three switches are obvious,

and the segments associated with positive and negative controls resemble that

described earlier in Figure 21.

Figure 26 shows the ωx3-ωx4 phase plane. The three switches are not so

obvious here. The trajectory first completes the circle on the right, moves

to the bottom left, redirects upward, and then moves to the origin along a

circular arc. The fact that the trajectory circles the points (±1, 0) resembles

the motion described earlier in Figure 22.

Figure 27 shows the control history for the target, u0(t), and Figure 28

shows the control history for the chaser, u1(t). Each control switches three

times between 0 and −1.
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Figure 26: ωx3-ωx4 phase plane with M = 1.
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Figure 27: Target spacecraft control with M = 1.
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Figure 28: Chaser spacecraft control with M = 1.
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To help place this in context with existing results, we compare with an ana-

lytical sub-optimal approach [46]. The linear programming approach described

here took 0.006 seconds to run. The analytical approach, for simplicity’s sake,

took 0 seconds. However, the linear programming solution is simpler in that

the resulting flight is about 1.5 hours shorter and requires two fewer control

switches. Further comparisons with other numerical methods have been made

elsewhere [13].

Next, the method is tested with M = 4 (one target and four chasers).

Again, all of the data is from the literature [46]. The initial conditions are

z1(0) = [−0.53 km, 0.25 km/hr,−0.48 km, 3.31 km/hr]

z2(0) = [0.53 km, 0.25 km/hr,−0.48 km,−3.31 km/hr] (19)

z3(0) = [0.38 km, 0.25 km/hr,−0.38 km,−2.30 km/hr]

z4(0) = [0.28 km, 0.25 km/hr, 0.44 km,−1.69 km/hr]

The one-dimensional search plus elimination of non-bang-bang controls re-

quired 33 iterations in 0.029 seconds for the custom LP solver. The flight time

is 8.55 hours. Compared to the analytical approach, the final time reduces by

about ten hours from 18.16 hours to 8.55 hours. The control histories for the

target and four chasers appear in Figures 29-31 to show that the non-bang-

bang controls have been eliminated and all controls belong to the original set

{−1, 0}. In both examples, it was observed that no collisions occurred.
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Figure 29: Target spacecraft control u0(t) with M = 4.
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Figure 30: Chaser spacecraft control u1(t) and u2(t) with M = 4.

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (hr)

u
3
(t
)

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (hr)

u
4
(t
)

Figure 31: Chaser spacecraft control u3(t) and u4(t) with M = 4.
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It is interesting that the line search converged in four iterations in the two

vehicle example and 33 iterations in the five vehicle example. The primary

reason for the increase is that steps five through eight of the solution method

described are unnecessary in the two vehicle example. In the five vehicle exam-

ple, these particular steps are not only necessary, but they are repeated three

times in the elimination of the non-bang-bang controls. In fact, in the five ve-

hicle example, the first five iterations solve the optimization problem and the

next 28 replace non-bang-bang controls with bang-bang controls. Nonethe-

less, the general convergence properties of the algorithm are not affected by

the increase in vehicles, i.e., the guaranteed, polynomial time convergence is

derived from the fact that a finite number of linear programs must be solved

– not from the special case of there being two vehicles.

E. Summary and Conclusions

In this chapter, we proved lossless convexification for the minimum time ren-

dezvous of any number of spacecraft using differential drag. The work is unique

because it did so by specifying a procedure to ensure that singular controls

are bang-bang in nature. This is in contrast to typical proofs of lossless con-

vexification that rely on the non-existence of singular controls. Compared to

existing methods, our linear programming based method yields significantly

shorter mission times at the expense of hundredths or thousandths of seconds

in computation time. It is concluded that the theory of lossless convexification

offers practical advantages in the differential drag rendezvous problem.
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CHAPTER V:

MAXIMUM DIVERT AND LANDING

This chapter presents a method to solve the problem of performing a maximum

divert maneuver and landing. The method is based on lossless convexification

and reduces the problem to solving a fixed number of convex programming

problems. This is the first time lossless convexification has been established

for problems with active linear and quadratic state constraints. The problem is

to land safely on the surface of a planet. In mid-course, the vehicle is to abort

and retarget to a landing site as far from the nominal as physically possible.

The divert trajectory must satisfy a number of state and control constraints

on the velocity and thrust magnitude.

Large divert type maneuvers have been considered for Mars pinpoint land-

ing [8, 9]. Trajectories generated by similar convex optimization algorithms

have recently been flight tested to demonstrate their effectiveness. As an

example, flight tests of a vehicle from Masten Space Systems, Inc. showed

significant improvements in divert capabilities by using similar algorithms [6].

Their vehicle “Xombie” flew up to 750 meters and landed safely in three con-

secutive flight tests. Prior flights of Xombie flew diverts less than 100 meters.

In these flight tests, velocity constraints were imposed to keep aerodynamic

forces below a threshold to ensure structural integrity. Thrust constraints were

imposed to point the sensors to the ground. Existing results in convexification

do not apply to this problem [8,9, 12].
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Planetary landing problems have long provided motivation for research.

Hull showed that minimum fuel vertical take-off/landing trajectories consist

only of coast and maximum thrust arcs regardless of the mathematical form

of the gravitational force [51,52]. He used a technique based on Green’s The-

orem developed by Miele [53]. Meditch analyzed the vertical landing problem

with constant gravitational acceleration using the maximum principle [54]. He

derived a simple switching function so that the maximum thrust arc begins at

the correct time for a safe landing.

More recently, the research has focused on the landing problem that in-

cludes the descent phase so that the problem is two or three-dimensional.

For example, Hull solves the problem by assuming a flat planet and constant

thrust [55,56]. After a small angle approximation, he finds an analytical solu-

tion using throttling to satisfy the boundary conditions. The same ideas can

be used in the ascent problem [57]. Analytical solutions are well-suited for

guidance applications because of their simplicity, and they provide a certain

physical insight into the problem and solution. Numerous other simple solu-

tions exist in the literature, for example, Apollo guidance [58], IGM [59, 60],

and PEG [61].

Other recent work has focused more on numerical methods allowing more

complicated models and constraints to be incorporated. For example, the

problem has been converted to a nonlinear parameter optimization and solved

using direct collocation and direct multiple shooting [62]. These direct numer-

ical methods are attractive because explicit use of necessary conditions is not

required. In this setting, the infinite-dimensional optimal control problem is
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converted to a finite-dimensional parameter optimization problem and solved

by a nonlinear programming method [16]. In general, such methods do not

offer convergence guarantees.

This work focuses on lossless convexification of the control set in the pres-

ence of state constraints. Because of nonlinear dynamics, this does not lead to

a convex problem directly. A transformation of variables is introduced to rig-

orously linearize the dynamics. Unfortunately, this introduces non-convexity

back into the problem elsewhere and an approximation must be made. This

approximation is conservative in the sense that the new feasible set is con-

tained in the original feasible set. This is desirable for practical reasons, and

the numerical example indicates that the approximation is good.

A. Problem Description

The problem is to perform a maximum distance divert from the specified

target location and land safely on the planet’s surface. It is assumed that 1)

the only forces acting on the vehicle are the thrust and gravity forces and 2)

the vehicle is sufficiently close to the planet to warrant a flat planet model

where the acceleration due to gravity is constant, and 3) the maneuver time

is sufficiently short that rotation of the planet can be ignored. The equations

of motion under these assumptions are

ṙ(t) = v(t)

v̇(t) = T (t)/m(t)− g (1)

ṁ(t) = −α||T (t)||
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The components of r are the range, cross range, and altitude, and the com-

ponents of v are their respective rates. For example, r1 is the range, and v1

is the range rate. The symbol m denotes the mass. The thrust is T , and the

gravity is g, which is constant and points only in the altitude direction. The

positive constant α is the engine constant describing the mass flow rate.

All of the initial conditions for the system are specified and denoted with a

subscript zero. The vehicle is required to land softly on the surface; thus, the

final altitude and final velocities are specified and denoted with a subscript f .

r(t0) = r0, v(t0) = v0, m(t0) = m0

r3(tf ) = 0, v(tf ) = 0

(2)

The final range, cross range, and mass are free; however, the final mass cannot

be less than the dry mass of the vehicle, i.e., m(tf ) ≥ mc.

The problem is to perform a maximum divert from the specified target

location; that is, given a nominal landing site, divert to a landing site as far

from the nominal as physically possible. For convenience, the nominal landing

site is specified to be the origin. Mathematically, the performance index for

the problem is

max w1r1(tf ) + w2r2(tf ) (3)

where the constants w1 and w2 are non-zero weights. By picking the signs and

magnitudes of the weights in the performance index, the analyst can design

the trajectory. As an example, consider the scenario described in Figure 32.
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Scientific Area Crater 

Boulders 

Safe Landing 

𝑟1  

𝑟2  

Figure 32: Maximum divert landing scenario.

The axes are the range and cross range, and the nominal landing site is at

the origin. The terrain associated with the first quadrant contains a number

of boulders and irregular ground unsuitable for a safe landing. The third

quadrant and lower portion of the second quadrant contains the location of

scientific interest, and it is best to leave this area undisturbed for research.

The fourth quadrant contains a large crater, which is also unsuitable for a

safe landing. Thus, the best location for divert is the upper portions of the

second quadrant. In this case, the weights are chosen as w1 < 0, w2 > 0, and

|w2| > |w1|.

Another scenario where maximum divert trajectories are useful is when a

lander is asked to land near a desired location, (r1d , r2d , 0) , but it is physically

impossible to get there. In that case, the weights can be chosen as w1 = r1d−r10

and w2 = r2d − r20 to ensure maximum divert towards the target location.

There are a number of safety requirements for landing problems. A com-

mon one is that the velocity of the vehicle not exceed a critical value. For
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example, it is not desirable for the speed to approach the speed of sound,

which leads to instabilities in the thrusters. There are three velocity con-

straints added to the problem: 1) a range velocity constraint, 2) a cross range

velocity constraint, and 3) a total speed constraint.

|v1(t)| ≤ Va, |v2(t)| ≤ Vb, ||v(t)|| ≤ Vc (4)

The quantities Va, Vb, and Vc are constant values describing the upper bounds.

Finally, the thrust magnitude cannot exceed a lower and upper bound. The

lower bound exists because the engine cannot operate reliably below the bound.

The upper bound exists because arbitrarily large thrusts are impossible.

ρ1 ≤ ||T (t)|| ≤ ρ2 (5)

This thrust magnitude constraint is not convex. This type of constraint looks

like the annulus in Figure 33 where the shaded region is the admissible region.

𝑇1 

𝑇2 

𝜌1 

𝜌2 

Figure 33: Two-dimensional non-convex thrust constraint.
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The following assumptions are also made.

Assumption 1. The velocity bounds satisfy V 2
a +V 2

b > V 2
c such that the range

and cross range velocity constraints cannot be active simultaneously.

Assumption 2. The thrust bounds satisfy ρ1 ≤ ||mcg|| and ||m0g|| ≤ ρ2 such

that the thrust force can always cancel the gravitational force.

For convenience, the performance index and all constraints are collected

here in the statement of the original problem P0. Without loss of generality,

the maximization problem has been converted to a minimization problem.

min J = −w1r1(tf )− w2r2(tf ) (P0)

subj. to ṙ(t) = v(t), r(t0) = r0, r3(tf ) = 0

v̇(t) = T (t)/m(t)− g, v(t0) = v0, v(tf ) = 0

ṁ(t) = −α||T (t)||, m(t0) = m0, mc ≤ m(tf )

|v1(t)| ≤ Va, |v2(t)| ≤ Vb, ||v(t)|| ≤ Vc

ρ1 ≤ ||T (t)|| ≤ ρ2

As stated, problem P0 is highly constrained and non-convex. The non-convexity

arises because of 1) the lower bound on the thrust magnitude and 2) the non-

linear dynamics. The rest of this chapter addresses lossless convexification

of the thrust constraint and a transformation of variables for the nonlinear

dynamics.
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B. Lossless Convexification

The purpose of this section is to prove a lossless convexification of the non-

convex thrust constraint in Equation 5. The proposed relaxation is to replace

Equation 5 with the two constraints

||T (t)|| ≤ Γ(t) and ρ1 ≤ Γ(t) ≤ ρ2 (6)

where Γ(t) is a scalar slack variable. The variable Γ(t) is also inserted into

the mass dynamics, but all other constraints are kept the same such that the

only source of non-convexity is the nonlinear dynamics. Geometrically, this

relaxation is obtained by pulling the annulus of Figure 33 out along the Γ

direction. This is shown in Figure 34.

𝑇1 

𝑇2 

Γ 
𝜌1 𝜌2 

Figure 34: Relaxed thrust constraints.

The thrust constraints are now convex, however, optimal solutions of the

relaxed problem are not necessarily optimal solutions of the original problem.

For example, the control (T (t),Γ(t)) = (0, ρ1) is feasible in the relaxed prob-
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lem, but T (t) = 0 is not feasible in the original problem. The goal is to show

that any optimal solution satisfies ||T (t)|| = Γ(t), in which case, the relaxation

is lossless, i.e., optimal solutions of the relaxed problem are indeed optimal so-

lutions of the original problem. In Figure 34, lossless convexification holds

when the thrust is always on the boundary of the cone shape.

The relaxed problem P1 is now stated. All of the constraints which are

non-differentiable in P0 are written in a form so that they are differentiable

as required by Theorem 2 of Chapter III.

min J = −w1r1(tf )− w2r2(tf ) (P1)

subj. to ṙ(t) = v(t), r(t0) = r0, r3(tf ) = 0

v̇(t) = T (t)/m(t)− g, v(t0) = v0, v(tf ) = 0

ṁ(t) = −αΓ(t), m(t0) = m0, mc ≤ m(tf )

v1(t) ≤ Va, −v1(t) ≤ Va, v2(t) ≤ Vb, −v2(t) ≤ Vb

||v(t)||2 ≤ V 2
c , ||T (t)||2 ≤ Γ2(t), ρ1 ≤ Γ(t) ≤ ρ2

The goal is to now prove lossless convexification of the thrust constraint. To

synthesize the relaxed problem, the useful conditions from Theorem 2 of Chap-

ter III are listed below. The Hamiltonian is

H[t] = pr(t)
Tv(t) + pv(t)

T (T (t)/m(t)− g)− αpm(t)Γ(t) (7)
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The Lagrangian is

L[t] = H[t] + λ1(t)(||T (t)||2 − Γ2(t)) + λ2(t)(ρ1 − Γ(t)) + λ3(t)(Γ− ρ2)

+ ν+
1 (t)(v1(t)− Va) + ν−1 (t)(−v1(t)− Va) (8)

+ ν+
2 (t)(v2(t)− Vb) + ν−2 (t)(−v2(t)− Vb) + ν3(t)(||v(t)||2 − V 2

c )

The endpoint function is

G[t] = −p0w1r1(tf )− p0w2r2(tf ) + ξr3r3(tf ) + ξTv v(tf )

+ ζm(mc −m(tf )) + µ+
1 (v1(tf )− Va) + µ−1 (−v1(tf )− Va) (9)

+ µ+
2 (v2(tf )− Vb) + µ−2 (−v2(tf )− Vb) + µ3(||v(tf )||2 − V 2

c )

The adjoint differential equations are

ṗr(t) = 0

ṗv(t) = −pr(t)− e1(ν+
1 (t)− ν−1 (t))− e2(ν+

2 (t)− ν−2 (t))− 2ν3(t)v(t) (10)

ṗm(t) = pv(t)
TT (t)/m2(t)

The stationary conditions are

∂TL[t] = pv(t)/m(t) + 2λ1(t)T (t) = 0

∂ΓL[t] = −αpm(t)− 2λ1(t)Γ(t)− λ2(t) + λ3(t) = 0

(11)
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The complementary slackness conditions for the control constraints are

||T (t)||2 − Γ2(t) ≤ 0, λ1(t) ≤ 0, λ1(t)(||T (t)||2 − Γ2(t)) = 0

ρ1 − Γ(t) ≤ 0, λ2(t) ≤ 0, λ2(t)(ρ1 − Γ(t)) = 0 (12)

Γ(t)− ρ2 ≤ 0, λ3(t) ≤ 0, λ3(t)(Γ(t)− ρ2) = 0

The complementary slackness conditions for the state constraints are

v1(t)− Va ≤ 0, ν+
1 (t) ≤ 0, ν+

1 (t)(v1(t)− Va) = 0

− v1(t)− Va ≤ 0, ν−1 (t) ≤ 0, ν−1 (t)(−v1(t)− Va) = 0

v2(t)− Vb ≤ 0, ν+
2 (t) ≤ 0, ν+

2 (t)(v2(t)− Vb) = 0 (13)

− v2(t)− Vb ≤ 0, ν−2 (t) ≤ 0, ν−2 (t)(−v2(t)− Vb) = 0

||v(t)||2 − V 2
c ≤ 0, ν3(t) ≤ 0, ν3(t)(||v(t)||2 − V 2

c ) = 0

The complementary slackness conditions at the final time are

mc −m(tf ) ≤ 0, ζm ≤ 0, ζm(mc −m(tf )) = 0

v1(tf )− Va ≤ 0, µ+
1 ≤ 0, µ+

1 (v1(tf )− Va) = 0

− v1(tf )− Va ≤ 0, µ−1 ≤ 0, µ−1 (−v1(tf )− Va) = 0

v2(tf )− Vb ≤ 0, µ+
2 ≤ 0, µ+

2 (v2(tf )− Vb) = 0

− v2(tf )− Vb ≤ 0, µ−2 ≤ 0, µ−2 (−v2(tf )− Vb) = 0

||v(tf )||2 − V 2
c ≤ 0, µ3 ≤ 0, µ3(||v(tf )||2 − V 2

c ) = 0

(14)
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The transversality conditions are

pr(tf ) = −e1p0w1 − e2p0w2 + e3ξr3

pv(tf ) = ξv + e1(µ+
1 − µ−1 ) + e2(µ+

2 − µ−2 ) + 2µ3v(tf ) (15)

pm(tf ) = −ζm

Finally, because the final time is free and the problem does not depend explic-

itly on time, the Hamiltonian is identically zero, i.e.,

H[t] = 0 ∀t (16)

With the optimality conditions clearly stated, the goal is to now show that

any optimal solution of P1 is also an optimal solution of P0.

Lemma 1. i) If T (·) is feasible for P0, then there exists a Γ(·) such that

(T (·),Γ(·)) is feasible for P1. ii) If (T (·),Γ(·)) is feasible for P1 and ||T (t)|| =

Γ(t) ∀t, then T (·) is feasible for P0.

Proof. i) Suppose that T (·) is feasible for P0. Define Γ(t) := ||T (t)|| ∀t. It

follows that ρ1 ≤ Γ(t) ≤ ρ2 ∀t, which implies that (T (·),Γ(·)) is feasible for

P1. ii) Suppose that (T (·),Γ(·)) is feasible for P1 and ||T (t)|| = Γ(t) ∀t. Since

ρ1 ≤ ||T (t)|| ≤ ρ2 ∀t, it follows that T (·) is feasible for P0.

Lemma 2. If (T (·),Γ(·)) is optimal for P1, then ||T (t)|| = Γ(t) ∀t.

Proof. Suppose that (T (·),Γ(·)) is optimal for P1 and there exists a t where

||T (t)|| < Γ(t). Because T (·) and Γ(·) are piecewise continuous, there exists
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an interval, [τ1, τ2] ⊂ [t0, tf ], where ||T (t)|| < Γ(t) ∀t ∈ [τ1, τ2]. The first of the

slackness conditions in Equation 12 implies that λ1(t) = 0, and it follows from

Equation 11 that pv(·) and its derivatives are zero on the interval. Solving for

pr using Equation 10 gives

pr = −e1(ν+
1 (t)− ν−1 (t))− e2(ν+

2 (t)− ν−2 (t))− 2ν3(t)v(t) (17)

where the time dependence of pr has been dropped since it is constant. Com-

puting p̈v(t) and pre-multiplying with v̇(t)T gives

v̇(t)T p̈v(t) = −v̇(t)T e1(ν̇+
1 (t)− ν̇−1 (t))− v̇(t)T e2(ν̇+

2 (t)− ν̇−2 (t))

− 2ν̇3(t)v̇(t)Tv(t)− 2ν3(t)v̇(t)T v̇(t) = 0

(18)

Note that the first three terms on the right hand side are each zero. For ex-

ample, looking at the first term, if the the velocity constraint on v1 is inactive,

then ν+
1 (t) = ν−1 (t) = ν̇+

1 (t) = ν̇−1 (t) = 0. If the constraint is active, then

v1(t) = ±va and v̇1(t) = 0. In either case, the term is zero. Similar arguments

apply to the second and third terms. Thus, the fourth term must also be zero,

which implies that

ν3(t) = 0 or v̇(t) = 0 (19)

The remainder of the proof addresses these two cases.

Case 1. Suppose that ν3(t) = 0. Then pr(t) becomes

pr = −e1(ν+
1 (t)− ν−1 (t))− e2(ν+

2 (t)− ν−2 (t)) (20)
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Since pr is constant, the values above can be equated with the transversality

conditions. Writing in component form gives

pr1 = −(ν+
1 − ν−1 ) = −w1p0

pr2 = −(ν+
2 − ν−2 ) = −w2p0 (21)

pr3 = ξr3 = 0

Because V 2
a + V 2

b > V 2
c by Assumption 1, the range and cross range velocity

constraints cannot be active simultaneously. For sake of argument, and with-

out loss of generality, suppose the range constraint is the inactive one such

that ν+
1 = ν−1 = 0. It follows immediately, since w1 and w2 are nonzero, that

p0 = 0 and that ν+
2 = ν−2 = 0. Thus, it has been shown that pv(t) = pr(t) = 0.

Finally, because of the Hamiltonian condition in Equation 16, it is true that

pm(t) = 0. This violates the non-triviality condition since

(p0, pr(t), pv(t), pm(t)) = 0 (22)

The case when ν3(t) = 0 has been ruled out.

Case 2. Suppose that v̇(t) = 0 and ν3(t) 6= 0. For this to be true, the thrust ac-

celeration must equal the gravitational acceleration, i.e., T (t) = m(t)g, which

by Assumption 2, satisfies ρ1 ≤ ||T (t)|| ≤ ρ2. The pointwise maximum condi-

tion reduces to

max −αpm(t)Γ(t) (23)

subject to ||T (t)|| ≤ Γ(t) and ρ1 ≤ Γ ≤ ρ2. If pm(t) > 0, it is clear that Γ(t)
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should be made as small as possible, i.e., ||T (t)|| = Γ(t). It is now shown that

pm(t) is indeed positive. Equation 16 along with pv(t) = 0 gives

pTr v(t) = αpm(t)Γ(t) (24)

Expanding the left hand side gives

pTr v(t) = −(ν+
1 (t)− ν−1 (t))v1(t)− (ν+

2 (t)− ν−2 (t))v2(t)− 2ν3(t)||v(t)||2 (25)

Note that ||v(t)|| = Vc, since otherwise ν3(t) = 0. Expanding the above

equation gives

pTr v(t) = −ν+
1 (t)v1(t) + ν−1 (t)v1(t)− ν+

2 (t)v2(t) + ν−2 (t)v2(t)− 2ν3(t)V 2
c (26)

Each term on the right hand side is non-negative. For example, if v1(t) < Va,

then ν+
1 (t) = 0. If v1(t) = Va, then ν+

1 (t) ≤ 0 such that −ν+
1 (t)v1(t) ≥ 0.

Similar arguments hold for the other terms. Finally, because ν3(t) is strictly

negative, the right hand side is strictly positive. Thus, using Equation 23,

pm(t) > 0 and ||T (t)|| = Γ(t), which contradicts the original hypothesis.

Thus, the lemma has been established and (T (·),Γ(·)) being optimal for

P1 implies ||T (t)|| = Γ(t) ∀t.

The following theorem is the main result of this section. It states that

optimal solutions of P1 are optimal solutions of P0.
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Theorem 1. If (T (·),Γ(·)) is optimal for P1, then T (·) is optimal for P0.

Proof. Suppose that (T (·),Γ(·)) is optimal for P1. Lemma 2 implies that

||T (t)|| = Γ(t) ∀t. Lemma 1 implies that T (·) is feasible for P0. Because the

optimal solution of P1 is a feasible solution for P1, it must be that J∗0 ≤ J∗1 .

Similarly, from Lemma 1, feasible solutions for P0 define feasible solutions for

P1. Thus, J∗1 ≤ J∗0 . The two inequalities imply equality: J∗1 = J∗0 . Therefore,

T (·) is optimal for P0.

The theorem is a statement of lossless convexification of the thrust con-

straint, and it is true because all optimal solutions of P1 are on the boundary

of the relaxed control set, i.e., ||T (t)|| = Γ(t). The boundary of the relaxed

set generates feasible controls for the original problem, and hence, optimal

controls for the original problem.

The fact that the controls are on the boundary is not surprising – in fact,

the maximum principle says that an optimal control maximizes the Hamilto-

nian pointwise. This is what motivated the relaxation moving from Figure 33

to Figure 34. A projection of the optimal control set of P1 onto the T−plane

(in Figure 34) coincides with the feasible set of P0 (in Figure 33).

C. Transformation of Variables

After the control relaxation, the only source of non-convexity is the nonlin-

ear equations of motion. A transformation of variables is made to rigorously

linearize the equations, but, unfortunately, this causes the control bounds to

become time-varying and non-convex. These bounds are then approximated
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in a conservative sense so that feasible solutions are still feasible in the original

problem. The transformation is

σ(t) =
Γ(t)

m(t)
, u(t) =

T (t)

m(t)
, z(t) = ln(m(t)) (27)

which is well-defined since the mass is strictly positive. This leads to the

linearized equations of motion

ṙ(t) = v(t)

v̇(t) = u(t) + g (28)

ż(t) = −ασ(t)

The relaxed thrust constraints in Equation 6 become

||u(t)|| ≤ σ(t) (29a)

ρ1e
−z(t) ≤ σ(t) ≤ ρ2e

−z(t) (29b)

The inequality in Equation 29a is convex. The left inequality in Equation

29b defines a convex region, but the right inequality does not. Further, even

though the lower constraint is convex, it does not fit within the structure of a

second-order cone problem. For this reason, it is approximated as a quadratic

constraint using a Taylor series. The upper constraint is approximated as a

linear constraint so that it is convex. The Taylor series approximation is based
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on the reference trajectory

zr(t) =


ln(m0 − αρ2t) 0 ≤ t ≤ (m0 −mc)/(αρ2)

ln(mc) otherwise

(30)

which is a lower bound on z(t) at time t. This guarantees that the approxi-

mation is conservative [8]. Then the approximation of Equation 29b is

ρ1e
−zr(t)

[
1− (z(t)− zr(t)) +

1

2
(z(t)− zr(t))2

]
≤ σ(t)

≤ ρ2e
−zr(t) [1− (z(t)− zr(t))]

(31)

This leads to the statement of the convex problem P2. It is emphasized that

this problem is not equivalent to problems P0 and P1 due to the conservative

approximations just made. It is true however that this problem is convex and

its optimal solutions are feasible solutions to P0 and P1.

min J = −w1r1(tf )− w2r2(tf ) (P2)

subj. to ṙ(t) = v(t), r(t0) = r0, r3(tf ) = 0

v̇(t) = u(t)− g, v(t0) = v0, v(tf ) = 0

ż(t) = −ασ(t), z(t0) = ln(m0), ln(mc) ≤ z(tf )

v1(t) ≤ Va, −v1(t) ≤ Va, v2(t) ≤ Vb, −v2(t) ≤ Vb

||v(t)||2 ≤ V 2
c , ||u(t)||2 ≤ σ2(t)

ρ1e
−zr(t)

[
1− (z(t)− zr(t)) + 1

2
(z(t)− zr(t))2

]
≤ σ(t)

σ(t) ≤ ρ2e
−zr(t) [1− (z(t)− zr(t))]
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D. Results

The convexification and solution method are now tested in a specific landing

scenario using CVX [20,63]. The initial conditions are set for a nominal landing

(c.f. [9]), at which point it is decided to perform a maximum divert maneuver.

The boundary conditions are

r(0) = [2000, 500, 1500] m, r3(tf ) = 0 m

v(0) = [−25, −10, −20] m/s, v(tf ) = [0, 0, 0] m/s (32)

m(0) = 1905 kg, m(tf ) ≥ 1505 kg

The initial conditions are fixed. The final range and cross range are free;

however, the final altitude, velocities, and mass must satisfy constraints. The

planet of interest is Mars, and the constant acceleration vector due to gravity

is g = [0, 0, −3.71] m/s2. The state constraints and thrust constants are

|v1(t)| ≤ 45 m/s, ρ1 = 4972 N

|v2(t)| ≤ 45 m/s, ρ2 = 13260 N (33)

||v(t)|| ≤ 50 m/s, α = 4.53× 10−4 s/m

Note that the range rate and cross range rate constraint magnitudes do not

have to be equal, and Assumption 1 is satisfied.

To illustrate different landing scenarios, three sets of weights have been

chosen. In the first scenario, the goal is to land near the middle of the second

quadrant using the weights w1 = −1 and w2 = 1. In the second scenario,
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the goal is to push the trajectory ‘upward’ using the weights w1 = −1 and

w2 = 10. In the third scenario, the goal is to push the trajectory ‘downward’

using the weights w1 = −10 and w2 = 1. Results are illustrated in Figure 35.
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Figure 35: Comparison of positions using different weights.

To show that the different state constraints become active in the different

scenarios, plots of the total speed, range rate, and cross range rate are shown

in Figure 36 on page 117.

Finally, to illustrate that the thrust constraints are also satisfied, the thrust

magnitude is plotted in Figure 37 on page 118 for the first scenario where

w1 = −1 and w2 = 1. The horizontal dashed lines that bound the thrust

correspond to ρ1 and ρ2. It is evident that the constraint is in fact satisfied.

The interval where the thrust is not at the upper boundary corresponds to a

state boundary arc where the velocity constraints are active. The fact that

this intermediate thrust is always admissible follows from Assumption 2.
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Figure 36: Comparison of velocities using different weights.
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Figure 37: Thrust magnitude for maximum divert.

Figure 38 shows the mass profile. The mass decreases to the dry mass

of the vehicle. This is expected since the goal is to maximize the distance

traveled. If mass were left over, the vehicle could have traveled further.
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Figure 38: Mass profile for maximum divert.
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E. Summary and Conclusions

In this chapter, we proved lossless convexification of a thrust constraint in

the maximum divert and landing problem. The work is unique because it did

so in the presence of active linear and quadratic state constraints. Addition-

ally, it serves as a mathematical foundation for current flight tests that use

lossless convexification and convex optimization in the guidance routine. The

evolution of real-time convex optimization depends on strong theoretical and

numerical guarantees. This chapter enlarges the class of problems that can

be solved with these guarantees. It is concluded that lossless convexification

offers practical advantages in the planetary landing problem.
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CHAPTER VI:

A GENERAL RESULT FOR LINEAR SYSTEMS

This chapter presents lossless convexification for a class of optimal control

problems with linear state constraints and mixed convex and non-convex con-

trol constraints. It is the most general result to date since 1) convexification

is tied not to any one problem, but to a class of problems that share some

system properties, and 2) the results simplify to the known special cases.

Previous convexification results are all tied to controllability of the dynamic

system [10, 11]. The generality of our current result is best seen in this light.

By bringing the notions of strongly controllable/observable subspaces into the

picture [64, p. 182-188], we naturally incorporate the dynamics, control con-

straints, and restricted state space into the convexification result. The new

result states that convexification holds when the state space is a strongly con-

trollable subspace for the system (dynamics and control constraints). When

there are no additional control and state constraints, the state space becomes

Rn and strong controllability reduces to the standard notion of controllability.

This indicates a deep and useful connection with multivariable systems theory.

There are numerous problems that belong to the class studied here and pro-

vide strong motivation for this work. In the planetary landing problem [65],

a spacecraft lands using thrusters, which produce a force vector whose magni-

tude is bounded above and below. The lower bound introduces a non-convex

control constraint. The landing problem also incorporates a number of state
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constraints, e.g., altitude limits and landing cones, which can be written as

linear state constraints. The rendezvous problem in low earth orbit is based

on the Clohessy-Wiltshire-Hill equations and fits squarely within the class of

problems studied here [45]. That problem has pointing constraints, thrust

magnitude constraints, and more. Additionally, the Clohessy-Wiltshire-Hill

equations decouple into a double integrator and harmonic oscillator. Inte-

grators and oscillators are prevalent in many mechanical systems, and so our

results here apply to many practical problems.

The rest of the chapter formally states the problem of interest and as-

sumptions on which convexification can be proved. A few results from linear

systems theory are needed such as controllability and observability subspaces.

These are documented and expanded upon as necessary. Finally, lossless con-

vexification is proved by analyzing convex relaxations of the original problem.

Unfortunately, the most intuitive relaxation cannot be analyzed simply, and

so variable transformations are introduced and the dimension of the system is

reduced. It is in this reduced state that convexification is proved. While this

process is laborious and less than ideal, it does not weaken the result. That is,

one can still claim that convexification holds for the most intuitive relaxation.
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A. Problem Description

This section introduces the optimal control problem that is of primary interest.

It is labeled as problem P0.

min J = m(tf , x(tf )) +
∫ tf
t0
`(κ(u(t))) dt (P0)

subj. to ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(t0) = x0

0 < ρ1 ≤ κ(u(t)) ≤ ρ2, Cu(t) ≤ d

x(t) ∈ X , b(tf , x(tf )) = 0

The typical convexification result does not include the linear control constraint

Cu(t) ≤ d nor the state constraint x(t) ∈ X . The linear control constraint is

important since it is one way to enforce pointing type constraints in a landing

problem. The state constraint is important since most practical problems have

constraints such as altitude limits, velocity limits, or something similar. The

following constraint qualifications are made:

• The function m(·, ·) is affine in both arguments.

• The functions `(·) and κ(·) are convex and strictly positive except pos-

sibly at the origin.

• The set X is a linear subspace of Rn with dimension kx.

• The function b(·, ·) is affine in both arguments.

Additionally, for consistency with Theorem 2 of Chapter III, it is assumed

that each function is differentiable with respect to all of its arguments.
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Problem P0 is a non-convex optimal control problem since the control

inequality constraint 0 < ρ1 ≤ κ(u(t)) ≤ ρ2 is non-convex. In two dimensions,

this non-convex constraint looks like an annulus as in Figure 39.

𝑢1 

𝑢2 

𝜌1 

𝜌2 

Figure 39: Two-dimensional non-convex control constraint.

The shaded region is the set of admissible controls, and it is clearly non-

convex. Problem P0 also includes linear inequality constraints on the control of

the form Cu(t) ≤ d. In the two-dimensional example, each row of C represents

a line cutting through the annulus. For example, when C has two rows C1 and

C2, the constraints are illustrated in Figure 40.

𝑢1 

𝑢2 

𝜌1 

𝜌2 

𝐶1𝑢 𝑡 ≤ 𝑑1 

𝐶2𝑢 𝑡 ≤ 𝑑2 

Figure 40: Two-dimensional constraint with linear inequalities.
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The set of admissible controls becomes the shaded region below the C2

constraint and left of the C1 constraint. The control set remains non-convex

in this case.

The purpose of the rest of this chapter is to show that a convex relaxation

of problem P0 can be solved to obtain a solution for P0. The relaxation is

motivated by geometric insight. In two dimensions, the annulus of Figure 40

can be lifted to a convex region by introducing a third dimension and extending

the annulus in this direction. See Figure 41.

𝑢1 

𝑢2 

𝜌1 Γ 𝜌2 

Figure 41: Three-dimensional constraint.

This solid cone shape extends from ρ1 to ρ2 along the Γ axis. The two planes

that intersect the cone are the two linear inequality constraints that have also

been extended in the Γ direction. The set of admissible controls is now all

points in the cone that are also below the planes. This particular relaxation has

introduced controls that may be inadmissible in P0 since points inside the cone

are not necessarily admissible. For example, the point (u1(t), u2(t),Γ(t)) =

(0, 0, ρ2) is admissible in the relaxation although (u1(t), u2(t)) = (0, 0) is not

admissible in P0. In lossless convexification, it is shown that this cannot occur.
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With this motivation, the relaxed convex problem is stated below as P1.

min J = m(tf , x(tf )) +
∫ tf
t0
`(Γ(t)) dt (P1)

subj. to ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(t0) = x0

0 < ρ1 ≤ Γ(t) ≤ ρ2, κ(u(t)) ≤ Γ(t)

Cu(t) ≤ d, x(t) ∈ X , b(tf , x(tf )) = 0

Under certain conditions, solutions of P1 are also solutions of P0. Thus,

the convex problem can be solved instead of the non-convex problem. These

sufficient conditions are stated below in Assumption 1.

Assumption 1. i) P0 is time-invariant and there exist friends F and G

such that X is the strongly controllable subspace for the linear system (A +

BF,BG,CF,CG); or, ii) P0 is time-varying, X is A-invariant, the matrix

 ∂xm(tf , x(tf )) ∂xb(tf , x(tf ))

∂tm(tf , x(tf )) + `(Γ(tf )) ∂tb(tf , x(tf ))

 (1)

is full column rank, and there exists a friend G such that X is the strongly

controllable subspace for the linear system (A,BG, 0, CG).

The problem is considered time-invariant if time does not explicitly appear

in any of the functions defining the problem. It is time-variant otherwise. All

of the conditions in Assumption 1 can be checked a priori, and they are natural

extensions of the standard controllability conditions required for convexifica-

tion of problems without state constraints [10].
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Physically, the conditions require that the dynamic system be controllable

on the restricted subspace – not the entire state space – meaning the system

can transfer between any two points in the subspace without leaving the sub-

space. The conditions are satisfied for many applications since controllability

is designed into the system for practical reasons. The notions of a “friend”

of a linear system and a strongly controllable subspace are introduced in the

next section.

The full rank condition in Assumption 1 is a strengthening of the non-

triviality condition. To see this, we expand the transversality conditions in

Theorem 2 of Chapter III. Rearranging and recognizing that there are no

inequality constraints at the final point gives

 p(tf )

−p(tf )Tf [tf ]

 =

 ∂xm(tf , x(tf )) ∂xb(tf , x(tf ))

∂tm(tf , x(tf )) + `(Γ(tf )) ∂tb(tf , x(tf ))


p0

ξ

 (2)

If p(tf ) = 0, then p0 = 0. This violates the non-triviality condition. Thus,

under the full rank assumption, p(tf ) 6= 0, which indicates that the separating

hyperplane cannot be horizontal. It must be tilted. Refer to Chapter III for

geometric illustrations of the adjoint vector and the separating hyperplane.

Given Assumption 1, the formal statement for lossless convexification of

P0 to P1 is Theorem 1. The proof is the goal of the remainder of this chapter.

Theorem 1. If Assumption 1 is satisfied, then optimal solutions of P1 are

optimal solutions of P0.
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B. Linear System Theory

This section presents important concepts from linear systems theory including

those in Assumption 1. Only those concepts that are critical to the proof of

lossless convexification are covered in this section.

The first task is to establish the meaning of a “friend”. This is done by

considering the following linear system, which is the same as that in problems

P0 and P1.

ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(t0) = x0 (3)

As in those problems, the state x(t) is restricted to evolve in a subspace X

of dimension kx ≤ n. By simple extensions of [64, p. 82-85], it can be shown

that the state evolves in X if and only if the control has the form

u(t) = Fx(t) +Gv(t) +Hw(t) (4)

where v(t) is a new control variable. The matrices F , G, and H are the

so-called friends, and they must belong to the following sets.

F(X ) := {F : (A+BF )X ⊂ X}

G(X ) := {G : im BG ⊂ X} (5)

H(X ) := {H : (E +BH)W ⊂ X}

The second task is to establish the meaning of strongly controllable and

strongly observable subspaces. To do so, we must introduce the standard linear
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system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(6)

Note that we are reusing some of these variables. No connection with P0

or P1 is implied at this point. Together with Equation 3, this linear system

is denoted Σ = (A,B,C,D). By definition, an initial point is a strongly

controllable point if the origin is instantaneously reachable by an impulsive

input. The set of all such points forms the strongly controllable subspace,

denoted C(Σ). If the strongly controllable subspace is the entire space, then

the system is said to be strongly controllable. Strong observability is explicitly

used later so it is formally defined [64, p. 164].

Definition 1. The system Σ is strongly observable if for every initial condition

x(t0) and every control input u(·), y(t) = 0 ∀t ≥ t0 implies that x(t0) = 0.

It is important to know that Σ being strongly controllable is equivalent to

ΣT = (AT , CT , BT , DT ) being strongly observable [64, p. 192].

We also have the following theorem, which sometimes serves as a definition

of the strongly controllable subspace.

Theorem 2. C(Σ) is the smallest subspace V for which there exists a linear

map K such that

(A+KC)V ⊂ V and im(B +KD) ⊂ V (7)

Proof. See Trentelman et al. [64, p. 185].
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This theorem leads us to a very important fact used later to prove convex-

ification. Suppose that AC(Σ) ⊂ C(Σ), i.e., C(Σ) is A-invariant, imB ⊂ C(Σ),

and let T be a basis adapted to C(Σ). Then the differential equations for Σ

can be written as ζ̇(t)

σ̇(t)

 =

Ã ∗

0 ∗


ζ(t)

σ(t)

+

B̃
0

u(t) (8)

where the star quantities are possibly non-zero and σ(t) = 0 ∀t if and only if

x(t) ∈ C(Σ) ∀t. Likewise, the output equation can be written as

y(t) = [C̃ ∗ ]

ζ(t)

σ(t)

+ D̃u(t) (9)

The system of matrices with tilde and starred quantities is denoted Σ̄ =

(Ā, B̄, C̄, D̄), and the system with only tilde quantities is similarly denoted

Σ̃ = (Ã, B̃, C̃, D̃). With this notation, we can state the following theorem.

Theorem 3. If AC(Σ) ⊂ C(Σ) and imB ⊂ C(Σ), then Σ̃ is strongly control-

lable.

Proof. Suppose that AC(Σ) ⊂ C(Σ) and imB ⊂ C(Σ). By Theorem 2, there

exists a matrix K such that

(A+KC)C(Σ) ⊂ C(Σ) and im(B +KD) ⊂ C(Σ) (10)
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Thus, for every x ∈ C(Σ) and every u ∈ Rm there exist p, q ∈ C(Σ) such that

Ax+KCx = p and Bu+KDu = q (11)

By using basis T , it follows that for every ζ ∈ Rkc and every u ∈ Rm there

exist p̃, q̃ ∈ Rkc , where kc is the dimension of C(Σ), such that

Ãζ + K̃C̃ζ = p̃ and B̃u+ K̃D̃u = q̃ (12)

Therefore, when V = Rkc , there exists a linear map K̃ satisfying Equation 7.

It remains to be shown that Rkc is the smallest such V . Suppose it is not such

that there exists a subspace L with dimension less than kc and a K̂ satisfying

(Ã+ K̂C̃)L ⊂ L and im(B̃ + K̂D̃) ⊂ L (13)

LetM⊂ C(Σ) be a subspace of Rn with the same dimension as L, and let M

be a basis for Rn adapted to the chainM, C(Σ) such that M = T . By similar

arguments as before, it can be shown that for every x ∈M and every u ∈ Rm

there exist p, q ∈M such that

Ax+KCx = p and Bu+KDu = q. (14)

Thus, there exists a linear map K forM⊂ C(Σ) satisfying Equation 7, which

contradicts the definition of C(Σ). Thus, Σ̃ is strongly controllable.
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C. Lossless Convexification

The purpose of this section is to prove Theorem 1, which says that optimal

solutions of P1 are optimal solutions of P0. This is the main result of the

chapter. To complete the proof, two more problems, P2 and P3, will be

considered. The strategy here is to prove a property about optimal solutions of

P3, link the solutions of P0-P3, and then show that this implies convexification

between P0 and P1. The problems P2 and P3 are used only in the proofs.

They have no role in the numerical solution process.

The problem P2 is obtained from P1 by replacing the state constraint

x(t) ∈ X with the constraint specified in Equation 4 and repeated here.

u[t] = Fx(t) +Gv(t) +Hw(t) (15)

The bracket notation is used to emphasize that the control is no longer inde-

pendent. It is a function of other variables. The closed loop system is

ẋ(t) = AFx(t) +BGv(t) + EHw(t) (16)

where AF = A+BF , BG = BG, and EH = E +BH. Problem P2 is

min J = m(tf , x(tf )) +
∫ tf
t0
`(Γ(t)) dt (P2)

subj. to ẋ(t) = AFx(t) +BGv(t) + EHw(t), x(t0) = x0

κ(u[t]) ≤ Γ(t), 0 < ρ1 ≤ Γ(t) ≤ ρ2

Cu[t] ≤ d, b(tf , x(tf )) = 0
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The final problem, labeled P3, is obtained by reducing the state space to X

by using the basis as in Equation 8. In that case, the evolution of the system

on X can be expressed as follows

ζ̇(t) = ÃF ζ(t) + B̃Gv(t) + ẼHw(t) (17)

Additionally, the control constraint can be expressed as

ũ[t] = F̃ ζ(t) +Gv(t) +Hw(t) (18)

Again, the bracket notation indicates that ũ is dependent on other variables.

Similar adaptations hold for the terminal cost and terminal constraint since

they are affine by assumption. By using the new state variable ζ, these are

written as m̃(tf , ζ(tf )) and b̃(tf , ζ(tf )), respectively. The final problem is

min J = m̃(tf , ζ(tf )) +
∫ tf
t0
`(Γ(t)) dt (P3)

subj. to ζ̇(t) = ÃF ζ(t) + B̃Gv(t) + ẼHw(t), ζ(t0) = ζ0

κ(ũ[t]) ≤ Γ(t), 0 < ρ1 ≤ Γ(t) ≤ ρ2

Cũ[t] ≤ d, b̃(tf , ζ(tf )) = 0

This problem fits the appropriate form so that Theorem 2 of Chapter III ap-

plies. Results connecting problems P0 through P3 are now given in a sequence

of lemmas leading to the main result. Then Theorem 1, the main theorem of

the paper, is proved. Note that the control variables in P2 and P3 are v(·)

and Γ(·). The original control u(·) no longer appears.
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Lemma 1 connects the feasible sets for the original problem P0 and its

convex relaxation P1.

Lemma 1. i) If u(·) ∈ F0, then there exists a Γ(·) such that (u(·),Γ(·)) ∈ F1.

ii) If (u(·),Γ(·)) ∈ F1 and κ(u(t)) = Γ(t) ∀t, then u(·) ∈ F0.

Proof. i) Suppose u(·) ∈ F0 and define Γ(t) = κ(u(t)) ∀t. Then ρ1 ≤ Γ(t) ≤

ρ2 ∀t such that all constraints of P1 are satisfied and (u(·),Γ(·)) ∈ F1. ii) Since

ρ1 ≤ κ(u(t)) ≤ ρ2 ∀t, all constraints of P0 are satisfied and u(·) ∈ F0.

In a similar fashion, Lemmas 2 and 3 connect the optimal solutions of

problems P1, P2, and P3.

Lemma 2. (u(·),Γ(·)) ∈ F∗1 if and only if there exists a v(·) such that the pair

(v(·),Γ(·)) ∈ F∗2 .

Proof. The result follows from the facts that 1) the performance indices for

P1 and P2 are the same and 2) x(t) ∈ X if and only if there exists a v(t) such

that u(t) = Fx(t) +Gv(t) +Hw(t) [64, p. 82-85].

Lemma 3. (v(·),Γ(·)) ∈ F∗2 if and only if (v(·),Γ(·)) ∈ F∗3 .

Proof. The result follows from the fact that the only difference between the

problems is a coordinate adaptation (see Equation 8 and the related discus-

sion). Thus, the cost is the same and the constraints are equivalent in the new

space.

We are now finally to the point of synthesizing problem P3 using the op-

timality conditions given in Theorem 2 of Chapter III. The goal is to charac-

terize the optimal solutions with a link back to problems P0 and P1 so that
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lossless convexification can be proved. To do so, we define the Hamiltonian,

Lagrangian, and endpoint functions specifically for P3.

H[t] = p0`(Γ(t)) + p(t)T (ÃF ζ(t) + B̃Gv(t) + ẼHw(t)) (19)

L[t] = H[t] + λ1(t)(κ(ũ[t])− Γ(t)) + λ2(t)(ρ1 − Γ(t))

+ λ3(t)(Γ(t)− ρ2) + λ4(t)T (Cũ[t]− d)

(20)

G[tf ] = p0m̃(tf , ζ(tf )) + ξT b̃(tf , ζ(tf )) (21)

The adjoint differential equation is

−ṗ(t) = ÃTFp(t) + F̃ TCTλ4(t) (22)

The stationary conditions are

∂ΓL[t] = p0∂Γ`(Γ(t))− λ1(t)− λ2(t) + λ3(t) = 0

∂vL[t] = B̃T
Gp(t) + λ1(t)∂vκ(ũ[t]) +GTCTλ4(t) = 0

(23)

The complementary slackness conditions are

κ(ũ[t])− Γ(t) ≤ 0, λ1(t) ≤ 0, λ1(t)(κ(ũ[t])− Γ(t)) = 0

ρ1 − Γ(t) ≤ 0, λ2(t) ≤ 0, λ2(t)(ρ1 − Γ(t)) = 0

Γ(t)− ρ2 ≤ 0, λ3(t) ≤ 0, λ3(t)(Γ(t)− ρ2) = 0

Cũ[t]− d ≤ 0, λ4(t) ≤ 0, λ4(t)T (Cũ[t]− d) = 0

(24)
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Lemma 4. If Assumption 1 is satisfied, then (v(·),Γ(·)) ∈ F∗3 implies κ(ũ[t]) =

Γ(t) ∀t.

Proof. The proof is handled in two cases. Case 1 is for the time-invariant

problem, and Case 2 is for the time-varying problem.

Case 1. Suppose that (v(·),Γ(·)) ∈ F∗3 and there exists a t such that κ(ũ[t]) <

Γ(t). Because ũ[·] and Γ(·) are piecewise continuous in time, and κ(·) is differ-

entiable, there exists an interval [τ1, τ2] ⊂ [t0, tf ] where κ(ũ[t]) < Γ(t) for all

t ∈ [τ1, τ2]. Equation 24 implies that λ1(t) = 0 on this interval. Equations 22

and 23 become

−ṗ = ÃTFp(t) + F̃ TCTλ4(t)

0 = B̃T
Gp(t) +GTCTλ4(t)

(25)

By part i) of Assumption 1, X is the strongly controllable subspace for (A +

BF,BG,CF,CG). Theorem 3 implies that the system (ÃF , B̃G, CF̃ , CG)

is strongly controllable, i.e., (ÃTF , F̃
TCT , B̃T

G, G
TCT ) is strongly observable.

Strong observability implies p(τ1) = 0. Because the problem is time-invariant,

the Hamiltonian is identically zero. This means that p0 = 0 since `(Γ(τ1)) can-

not be zero. This violates the non-triviality condition. Thus, κ(ũ[t]) = Γ(t) ∀t.

Case 2. By part ii) of Assumption 1, X is A-invariant such that F = 0 is a

friend. Thus, Equation 25 becomes

−ṗ = ÃTp(t)

0 = B̃T
Gp(t) +GTCTλ4(t)

(26)

Again, Theorem 3 implies that the system (Ã, B̃G, 0, CG) is strongly con-
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trollable, i.e., (ÃT , 0, B̃T
G, G

TCT ) is strongly observable. Strong observability

implies p(τ1) = 0. Since p(·) is the solution of a homogeneous equation,

p(tf ) = 0. It follows from the full rank condition in Assumption 1 that

(p0, p(tf )) = 0, which violates the non-triviality condition (see Equation 2).

Thus, κ(ũ(t)) = Γ(t) ∀t.

Lemma 5. If Assumption 1 is satisfied, then the pair (u(·),Γ(·)) ∈ F∗1 implies

κ(u(t)) = Γ(t) ∀t.

Proof. Suppose (u(·),Γ(·)) ∈ F∗1 and there exists a t such that κ(u(t)) < Γ(t).

Then, from Lemmas 2 and 3, there exists a v(·) such that (v(·),Γ(·)) ∈ F∗3
with κ(ũ[t]) < Γ(t). This contradicts Lemma 4.

The following theorem establishes lossless convexification between P0 and

P1. It is a main result of the paper and says that optimal solutions of P1 are

also optimal solutions of P0. It is the same as Theorem 1.

Theorem 4. If Assumption 1 is satisfied, then the pair (u(·),Γ(·)) ∈ F∗1
implies u(·) ∈ F∗0 .

Proof. Suppose that (u(·),Γ(·)) ∈ F∗1 . Lemma 5 implies that κ(u(t)) =

Γ(t) ∀t. Consequently, problems P0 and P1 have the same cost function.

Lemma 1 implies that u(·) ∈ F0. Thus, J∗0 ≤ J∗1 . Similarly, Lemma 1 also

implies that J∗1 ≤ J∗0 . Thus, J∗0 = J∗1 . Because the cost functions are the

same, the cost of u(·) in P0 is J∗1 = J∗0 . Thus, u(·) ∈ F∗0 .

We now use this result to solve two example problems from the aerospace

engineering field.
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D. Example 1: Minimum Fuel Planetary Landing

The first example is the planetary landing problem. In the final descent phase,

it is assumed that 1) the vehicle is close enough to the surface that gravity

is constant, 2) the thrust forces dominate the aerodynamic forces, and 3) a

known time-varying disturbance acts on the system. In this case, the equations

of motion are

ẍ(t) = −g + u(t) + w(t) (27)

The first component of x, denoted x1, is the range. The altitude and cross

range are x2 and x3, respectively. The components x4, x5, and x6 are the

range rate, altitude rate, and cross range rate. Near the surface of Mars, the

gravity vector is approximately g = [0 −3.71 0] m/s2. It is assumed that the

disturbance is a sinusoidal function of time of the form w(t) = [sin(t) 0 cos(t)]

m/s2. The problem is to transfer the vehicle from its initial condition to the

landing site with zero final velocity, e.g.,

x(0) = [400 400 300] m, x(tf ) = [0 0 0] m

ẋ(0) = −[10 10 75] m/s, ẋ(tf ) = [0 0 0] m/s

(28)

For safety reasons, it is also required that the vehicle not approach the landing

site with too steep or too shallow an approach angle. A 45 degree approach

in the altitude/range plane is specified and can be written as

x1(t)− x2(t) = 0 (29)
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The control magnitude is bounded above and below since the thrusters cannot

operate reliably below this bound.

2 ≤ ||u(t)|| ≤ 10 m/s2 (30)

The goal is to achieve the landing and minimize the fuel consumption, i.e.,

min J =

∫ tf

0

||u(t)|| dt (31)

The optimal control problem is defined by Equations 27 through 31 and fits

within the structure of P0 given in Equation P0. Note that no linear control

constraints are present, i.e., no C. The convex relaxation is easily obtained by

relaxing Equation 30 to the two constraints

||u(t)|| ≤ Γ(t) and 2 ≤ Γ(t) ≤ 10 (32)

and minimizing J =
∫ tf

0
Γ(t) dt. For the state to evolve on the plane x1(t) −

x2(t) = 0, the time derivative of the constraint must also be zero, i.e., x4(t)−

x5(t) = 0. Thus, the subspace X is given as

X = null


1 −1 0 0 0 0

0 0 0 1 −1 0


 (33)
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The friends F , G, and H are

F = 0, G =


−1 0

−1 0

0 1

 , H =


−1

2
1
2

0

1
2
−1

2
0

0 0 0

 (34)

The fact that these are in fact friends and that X is the strongly controllable

subspace for the system (A+BF,BG,CF,CG) can be checked using the tests

in Trentelman et al. [64, p. 182-188].

The numerical simulations are carried out using SDPT3 [17]. Figure 42

shows the state trajectory. The trajectory begins at the top center, ends at

the origin in the bottom right, and evolves on the 45 degree plane.
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Figure 42: State trajectory for constrained landing.

The thrust magnitude is shown in Figure 43. The upper constraint is active

along the initial and final arcs, and the control is in the interior during the

middle arc. The oscillations are caused by the time-varying disturbance.
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Figure 43: Control trajectory for constrained landing.

E. Example 2: Minimum Time Rendezvous

A second example is the rendezvous of two spacecraft at constant altitude using

low thrust. It is assumed that the motion of the chaser spacecraft relative to

the target spacecraft is accurately described by the Clohessy-Wiltshire-Hill

equations [45] so the equations of motion are

ẍ(t) = 3ω2x(t) + 2ωẏ(t) + u1(t)

ÿ(t) = −2ωẋ(t) + u2(t) (35)

z̈(t) = −ω2z(t) + u3(t)

The states x, y, and z are the altitude, range, and cross range, respectively, and

ẋ, ẏ, ż are the rates. The orbital mean motion is ω = 4 hr−1, and corresponds

to a near circular, low earth orbit. The problem is to rendezvous the two

vehicles, i.e., bring them together with zero relative velocity. The boundary
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conditions are

[x(0) y(0) z(0)] = [0 2 1] km, [x(tf ) y(tf ) z(tf )] = [0 0 0] km

[ẋ(0) ẏ(0) ż(0)] = [0 − 0.5 − 0.25] km/s, [ẋ(tf ) ẏ(tf ) ż(tf )] = [0 0 0] km/s

(36)

For safety reasons, viewing angles, etc., it is required that the rendezvous

maneuver take place at constant altitude. This constraint is written simply as

x1(t) = 0. As in the previous example, the thrust magnitude is bounded above

and below

3 ≤ ||u(t)|| ≤ 5 km/hr2 (37)

It is also required that the chaser spacecraft not point in the cross range

direction more than θ = 45 degrees.

u3(t)− u2(t) tan θ ≤ 0 (38)

The goal is to achieve the rendezvous and minimize the time of flight so that

the cost function is simply J = ∫ tft0 1 dt. This optimal control problem also fits

within the structure of P0, and the convex relaxation of the control constraints

is obtained by relaxing the control constraint to

||u(t)|| ≤ Γ(t) and 3 ≤ Γ(t) ≤ 5 (39)

and minimizing the same cost J = ∫ tft0 1 dt.
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For the state to evolve on the plane x(t) = 0, the time derivative of the

constraint must also be zero, i.e., ẋ(t) = 0. Thus, the subspace X is given as

X = null


1 0 0 0 0 0

0 0 0 1 0 0


 (40)

The friends F , G, and H are

F =


1 0 0 1 −8 0

1 1 1 1 1 1

1 1 9 1 1 1

 , G =


0 0

1 0

0 1

 , H =


0

0

0

 (41)

Figure 44 shows the range and cross range. The trajectory begins in the upper

right, oscillates, and terminates at the origin on the left.
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Figure 44: State trajectory for constant altitude rendezvous.

The thrust angle is shown in Figure 45, and it is evident that the angle

satisfies the point constraint of 45 degrees.
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Figure 45: Control trajectory for constant altitude rendezvous.

The altitude plot is not shown since it is identically zero. The thrust

magnitude is not shown, but it is constant along the upper boundary.

F. Summary and Conclusions

In this chapter, the theory of lossless convexification was generalized to optimal

control problems with mixed non-convex and convex control constraints and

linear state constraints. This was done by introducing the strongly controllable

subspaces and studying a sequence of convex relaxations of the original prob-

lem. As a consequence, a larger class of non-convex problems can be solved

as a convex problem. The work is significant because this class of problems

includes several important practical applications.

143



CHAPTER VII:

FINAL REMARKS

Significant work on lossless convexification in the last seven years has culmi-

nated in numerous publications [8–15] and two successful flight tests [6, 7].

Results have progressed from specific applications to general theoretical re-

sults with state constraints and mixed control constraints. However, there are

many avenues for continued research.

The first is to continue exploring state constraints. The analysis of Chap-

ter VI is laborious because it depends on certain coordinate representations.

Recent work by Sussmann indicates a very natural description of optimal con-

trol on manifolds in a coordinate free way [66]. It is possible that the proof of

lossless convexification will be much more direct in this new setting. It may

also open the door to stronger results since one can more easily identify system

properties.

Another avenue is to forgo optimal control problems and prove lossless con-

vexification directly with the finite-dimensional optimization problem. This is

desirable since the finite-dimensional problem is the one solved in the end.

However, recent attempts to do so have not been fruitful. The reason is that

the finite-dimensional problem is essentially a fixed final time problem. Most

convexification results are with free final time wherein the Hamiltonian is zero

everywhere. Future researchers should look for a constraint qualification or a

critical final time for which convexification works with any lesser final time.
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Lossless convexification is also important in the design of Markov decision

processes [67,68]. Through convexification, it is possible to design probabilistic

and decentralized control strategies for large, multi-agent systems using convex

optimization. Applications include meteorology, oceanography, and aerospace

engineering. Work in this area has already begun, but considerable progress

can still be made especially with applications.

Finally, and most importantly, lossless convexification and the resulting

algorithms must be pushed into industry. Management is not always interested

in mathematical eloquence. Flight tests and numerical experiments are the

best way to convince skeptics. Any opportunity for either should be accepted.

Because this process has already started [6, 7], the future is promising.
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