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This work considers how various integrated energy systems can be managed in 

order to provide economic or energetic benefits. Energy systems can gain additional 

degrees of freedom by incorporating some form of energy storage (in this work, thermal 

energy storage), and the increasing penetration of smart grid technologies provides a 

wealth of data for both modeling and management. 

Data used for the system models here come primarily from the Pecan Street Smart 

Grid Demonstration Project in Austin, Texas, USA. Other data are from the Austin 

Energy Mueller Energy Center and the University of Texas Hal C. Weaver combined 

heat and power plant. Systems considered in this work include thermal energy storage, 

chiller plants, combined heat and power plants, turbine inlet cooling, residential air 

conditioning, and solar photovoltaics. These systems are modeled and controlled in 

integrated environments in order to provide system benefits. In a district cooling system 

with thermal energy storage, combined heat and power, and turbine inlet cooling, model-

based optimization strategies are able to reduce peak demand and decrease cooling 

electricity costs by 79%. 

Smart grid data are employed to consider a system of 900 residential homes in 

Austin. In order to make the system model tractable for a model predictive controller, a 
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reduced-order home modeling strategy is developed that maps thermostat set points to air 

conditioner electricity consumption. When the model predictive controller is developed 

for the system, the system is able to reduce total peak demand by 9%. 

Further work with the model of 900 residential homes presents a modified dual 

formulation for determining the optimal prices that produce a desired result in the 

residential homes. By using the modified dual formulation, it is found that the optimal 

pricing strategy for peak demand reduction is a critical peak pricing rate structure, and 
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Chapter 1: Introduction 

In 2008 the National Academy of Engineering announced fourteen grand 

challenges for engineering for the 21st century. The first three grand challenges dealt 

directly with sustainable energy: solar, fusion, and carbon sequestration [1]. Clearly, the 

need to manage energy systems in a sustainable manner will be an important part of the 

development of future energy systems. 

In the electrical system, one of the challenges is the constant need to match supply 

with demand. Engineers have largely been successful in addressing this challenge, but 

new difficulties relating to sustainability have arisen. For example, renewable energy 

systems such as wind and solar are intermittent and nondispatchable. Additionally, 

climate science has shown how the fossil fuel backbone of the electric grid might be 

driving significant and costly climate changes. The smart grid aims to provide a platform 

for addressing these and other issues through enhanced communication, information, and 

control. 

Because of the new information available through the smart grid infrastructure, 

facilities that were once reactive can become proactive. For example, buildings have 

traditionally been blind consumers of electricity, but with smart grid technologies, they 

can now respond to signals to improve overall grid management. The smart grid provides 

additional degrees of freedom for managing energy systems, and data made available 

through smart meters make it easier to create accurate models of grid systems. This 

combination provides a rich environment for model-based optimization and control of 

energy systems that are connected to the grid. 

The work presented here focuses on how energy systems with thermal energy 

storage (TES) technologies can be harnessed in a smart grid environment to provide grid 
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benefits. As the name implies, TES stores thermal, rather than electrical or chemical 

energy. By so doing, it can integrate with cooling systems, such as chiller networks, to 

manage electricity consumption. Thermal storage has become an increasingly popular 

technology. For example, the utility that provides power to New York City, Consolidated 

Edison (or ConEdison), recently proposed new incentives for TES. ConEdison is offering 

$2600/kW for TES, which is more than for batteries ($2100/kW), demand response 

($800/kW), equipment improvements ($800-1250/kW), or combined heat and power 

plants ($1150-2150/kW) [2]. 

Incorporating storage into an energy system increases the degrees of freedom of 

that system. By implementing optimization or advanced control schemes, such as model 

predictive control, those extra degrees of freedom can be utilized to improve the 

economic or energetic performance of the system. This work investigates how the 

integration of energy systems with thermal energy storage can be managed by predictive, 

optimization-based control schemes in order to provide grid benefits. 

Because this work considers various configurations of thermal energy storage, 

Chapter 2 will provide an introduction and literature review of the optimization and 

control of thermal storage systems. Chapter 3 investigates how chilled water thermal 

energy storage can enhance the flexibility of a small campus in meeting its cooling loads. 

Chapter 4 considers a larger campus of buildings, and integrates a combined heat and 

power plant with turbine inlet cooling, as well as thermal energy storage. Chapter 5 

presents a method for developing a linear, reduced-order model for residential homes, 

and demonstrates how the model can be used in a model predictive control framework. 

Chapter 6 extends the work in Chapter 5 to a community of 900 residential homes and 

investigates how the thermal mass of the homes can be used as thermal storage to shape 

the community’s energy consumption. Chapter 7 builds on Chapter 6 by considering the 
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combined effects of air conditioning thermostat control with solar photovoltaic 

generation. Chapter 8 uses the community model presented in Chapter 6 to find the 

optimal electricity prices that lead to peak demand reduction. 

Each chapter contains its own introduction and conclusion. Chapter 9 then 

summarizes the conclusions of the entire work and presents some directions for future 

research. 

Elements of Chapters 2-8 have been published or submitted for publication. 

Chapter 2 was published in Reviews in Chemical Engineering [3], Chapters 3 and 7 were 

presented as conference papers in the American Control Conference [4], [5], Chapter 4 

was published in the International Journal of Energy Research [6], initial concepts for 

Chapter 5 were presented at the American Control Conference [7], and later 

developments of the chapter were published in Energy & Buildings [8], and Chapters 7 

and 8 have been submitted to Applied Energy and Journal of Process Control, 

respectively [9], [10]. 
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Chapter 2: Optimization and Advanced Control of Energy Systems with 

Thermal Energy Storage1 

INTRODUCTION 

Rising energy prices and the possibility of greenhouse gas emission regulations 

have made energy efficiency essential to all industries. The electric power sector has 

historically dealt with rising demand for electricity by building new power plants. 

Because this demand fluctuates on a daily basis, however, much of the installed power 

capacity goes unused because it is sized to meet peak electrical loads. Therefore, during 

off-peak hours, this equipment might sit idle. Furthermore, “peaking” power plants are 

usually inefficient because they are designed to have low capital costs as they will only 

be used a fraction of the time. However, the paradigm of building new generation 

capacity to meet peak demand might be changing. Energy storage technologies could 

help electric utilities level their electric demand by allowing consumers (or suppliers) of 

energy to shift the times that electricity is used. For instance, energy can be stored during 

off-peak times and dispatched during peak times, thereby reducing the peak generation 

that a utility must have. In order for energy storage to make a significant impact, 

inexpensive storage technologies, which can be implemented on a large scale, must be 

developed. Thermal energy storage (TES), the storage of heat or cooling, has the 

potential to make such an impact.  

Because TES stores energy in one of its basest forms, it is a relatively simple 

technology. It is this simplicity that gives TES the potential to be a very inexpensive, yet 

impactful, technology. For example, TES can have an immediate impact on capital costs 

                                                 
1 This chapter was included in W. J. Cole, K. M. Powell, and T. F. Edgar “Optimization and advanced 

control of thermal energy storage systems,” Reviews in Chemical Engineering, vol. 28, no. 2–3, pp. 81–99, 

2012. Powell’s contributions included a review of TES for solar thermal applications (not included in this 

chapter) and Edgar contributed general advising and editing. 
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by replacing expensive chilling or power generation equipment with a much less 

expensive storage tank. TES will also provide ongoing operating cost savings by 

allowing the system to shift times of consumption (production) of energy to off-peak (on-

peak) times. Therefore, TES systems can dramatically reduce payback periods in addition 

to improving the project’s return on investment.  

Many of the benefits of TES could also be realized in the chemical industry. A 

key to energy efficiency in the chemical industry is waste heat recovery, wherein waste 

heat is extracted from one process and delivered to another in an effort to reduce energy 

consumption. With TES, heat integration can be done dynamically, where excess heat 

can be stored at one time and delivered at another. Because chemical processes are 

typically energy intensive (many even have their own electricity and heat generation 

facilities), TES has significant potential to improve energy efficiency and provide great 

cost savings in the chemical industry. 

Because systems that use energy storage and the storage itself are inherently 

transient, it is critical to develop effective operating strategies for using TES 

technologies. This chapter provides a review of research that has taken place in TES with 

a particular emphasis on modeling, optimization, and control. It is focused on two main 

areas in which TES has found widespread use: combined heat and power systems and 

building systems.  

OVERVIEW OF TES 

TES is the storage of heat or cooling for later use. Because TES involves storing 

energy in one of its most primitive forms, it is a technology that has been used for 

centuries. Its simplicity has allowed it to become a successful energy storage technology. 

TES is typically a very cost-effective method of storing energy, especially when 
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compared to storage technologies that rely on expensive, sometimes exotic materials, 

such as battery storage. As a consequence of its simplicity, however, TES is not as 

versatile. Therefore, intelligent ways to use TES must be developed so that this 

promising, cost-effective technology is effectively applied. 

Thermal energy can be stored as sensible heat (where heat is stored simply by 

changing a material’s temperature), latent heat (where heat is stored by changing a 

material’s phase), or chemical heat (where heat is stored in reversible, endothermic 

reactions and recovered by the corresponding exothermic reaction). TES can be classified 

as active or passive. In active systems, a fluid is circulated in order to collect and 

distribute heat (e.g., hot water flowing from a tank to heat a building). In passive systems, 

the storage medium and delivery system are stationary and are built into the system (e.g., 

the thermal mass of a building).  

TES systems can use any phase (solid, liquid, or vapor) as a storage medium. 

Often, multiple phases might be used, such as in pebble bed storage where a fluid passes 

through a packed bed of solid particles in order to transfer heat to the particles. Latent 

heat storage also uses the transformation of the medium between phases so that energy 

can be stored using the material’s heat of fusion (solid to liquid) or heat of vaporization 

(liquid to vapor). The development of phase change materials (PCMs) for heat storage is 

an active research field. PCMs are materials designed to change phase at a specified 

temperature. For example, one application of PCMs is embedding such materials into a 

building to increase the building’s thermal mass so it can be used for passive heat storage.  

TES can be used to shift electrical, heating, and cooling loads and has found 

popularity in a wide variety of applications. TES is widely used in district cooling, where 

multiple buildings in a region share a cooling loop and a central chilling station. This 

setting, which takes advantage of economies of scale, uses a central TES system 



 7 

(typically with chilled water or ice as a storage medium) to lower electricity costs by 

chilling the water during off-peak hours. This stored energy is then used to offset peak 

cooling loads the following day by using the stored energy, rather than the chiller. 

Combined heat and power (CHP) systems, where electric power and heat are generated 

simultaneously, are frequently used in district heating or cooling, making these 

applications a good candidate for TES as well. If cooling, heat, and electrical loads do not 

coincide, TES can be used to store the heat or cooling, to help better align these loads. 

TES has also found application in solar energy. TES can be used to store the sun’s energy 

as heat, which can be used for space or water heating in buildings. TES can be used in 

solar thermal power applications, taking an intermittent source of energy, such as the sun, 

and converting it into power that can be readily dispatched as needed [11], [12]. Thus, 

TES can be an effective technology, which has proven valuable in a wide variety of 

applications. For further reading regarding TES overview, see Dincer and Rosen [13]. 

OVERVIEW OF CONTROL STRATEGIES 

Because systems that require storage exhibit transient behavior and the storage 

processes themselves are transient, selection of appropriate control strategies is critical. 

In some cases, single-input-single-output (SISO) control can be used. SISO systems use 

only one input to manipulate a corresponding output. SISO control can be done using 

measurements of the process output (feedback) and using that output in an algorithm to 

determine the prescribed input. The most common algorithm is the proportional-integral-

derivative (PID) controller (or variants thereof), where the magnitude, integral, and 

derivative of the error between the measured output and its desired set point are used to 

determine the input. For processes where inputs and outputs are highly coupled, multiple-

input-multiple-output (MIMO) controllers can be used. Feedback control can also be 
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implemented on a MIMO basis, although the PID algorithm will no longer be valid. 

MIMO controllers take a more holistic approach where a combination of output signals is 

used to determine the prescribed inputs. If disturbances to the system can be measured, 

feedforward control can be added to give the system the ability to reject measured 

disturbances in advance, without having to rely entirely on feedback measurements. 

When system dynamics are too complex for a simple feedback control algorithm 

to be adequate or when there are process operating constraints, advanced control methods 

are needed. These advanced control methods often use optimization in order to handle the 

additional complexity and constraints [14]. Much research has been done in the field of 

advanced process control, resulting in a wide variety of control techniques. Among these 

techniques, model predictive control (MPC) has found widespread use. In MPC, a model 

of the system is used to make predictions of system performance and determine the inputs 

that result in optimal performance. Many variants of MPC exist, based on the type of 

model used, performance index, etc. Because MPC is the most widely used advanced 

control technique for systems with TES, it is highlighted in this chapter. However, other 

optimization and control topics are also covered including optimal system design and 

dynamic optimization. 

COMBINED HEAT AND POWER AND TES SYSTEMS 

Introduction 

Combined heat and power (CHP), also known as cogeneration, is the concurrent 

production of electricity and thermal energy from a single energy source. In a 

conventional system electricity is generated at a power plant (usually operated by the 

local utility) and the waste heat from the system is vented via cooling towers or ponds. 

Facilities that get electricity from these power plants then must use additional energy to 
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provide their heating or cooling. Thus CHP has a major advantage over the traditional 

systems because it can utilize the waste heat from the electricity generation to meet the 

heating and cooling loads (via absorption chillers) of the facility (Figure 2.1). There are 

many variations of CHP such as trigeneration or CCHP (combined cooling, heating, and 

power), and BCHP (building combined heat and power) [15], but for this chapter all 

variants of CHP will be grouped into the general CHP category. 

 

 

 

Figure 2.1: Conventional energy supply system (left) vs. combined heat and power 

system (right) [16]. The combined heat and power system has a much higher 

efficiency because it is able to utilize the waste heat from the electricity 

generation process. 

Combined heat and power is not a new technology in the manufacturing 

industries. In paper manufacturing, for example, over 40% of the required electrical 

power was generated using CHP as of 2006 (see Figure 2.2). In other industries, however, 
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CHP is far less prevalent. CHP coupled with TES is even less common. Therefore, there 

is significant potential for further adoption of CHP and TES to increase the energy 

efficiency of manufacturing plants. 

 

 

Figure 2.2: Percent of total electrical power usage that was generated from CHP, by 

industry [17]–[19]. 

In many cases, CHP potential is limited because of the difficulty of matching 

electrical and thermal demands. Thermal energy storage can be coupled with CHP to 

provide economic and energy savings, system flexibility, and system feasibility (see 

Figure 2.3 and Figure 2.4) [20]. These systems will be referred to as CHP-TES systems. 

Thermal and electrical loads can be decoupled to some extent by adding TES to a CHP 

system. This has grown increasingly important as peak loads have grown, increasing the 

gap and variation in on-peak and off-peak electricity market prices. Proper design and 

control is necessary to realize the maximum value of a CHP-TES system. A review of 

optimization in CHP systems without thermal storage was recently published [21]. This 

section focuses solely on CHP-TES systems. 
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Figure 2.3: A typical configuration for a conventional system. Adapted from [22]. 

 

 

Figure 2.4: CHP-TES system. The power generation is typically a gas turbine, but it 

could be a fuel cell, steam turbine, or other device that generates both heat 

and electricity. Adapted from [22]. 

Modeling of CHP systems has been performed using a variety of methods and a 

plethora of software packages. Hinojosa et al. [23] reviewed some of those software 

packages, both commercial and custom, that are commonly used for modeling CHP-TES 
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systems. CHP models can be as simple as a model of the CHP prime mover (typically a 

gas or steam turbine) to meet required electrical and heat demands for a few design days 

or as complex as a large system model that describes not just the prime mover, but also 

electrical and thermal loads, thermal storage, chillers and boilers, and the distribution 

systems. Other considerations in CHP-TES models include an appropriate time step, the 

ability to export electricity, the ability to model the utility rate structure, CO2 saving 

projections, the ability to calculate required financial indicators (e.g., NPV, IRR, payback 

period), and the ability to accept different fuels. It is important to choose a model with the 

appropriate complexity for the project requirements. CHP systems that will be providing 

relatively constant electrical or thermal loads do not require as extensive of a model as a 

system with many integrated components that have significant interdependence and 

fluctuating demands. 

The design and operation of a CHP-TES system is often sufficiently complex that 

researchers apply optimization in order to maximize project economics [24]. Henning 

[25] discussed a number of optimization models that have been created for handling CHP 

systems with storage. Numerous researchers have investigated the best ways to address 

the optimization problem, which is generally formed as a mixed integer linear 

programming problem [26]–[32], though it has been formed as a linear programming 

problem [25], [33], a nonlinear programming problem [34], and a mixed integer 

nonlinear programming problem [35]. Sancho-Bastos and Perez-Blanco [36] formed a 

linear quadric (LQ) problem with the solution provided by a linear quadratic regulator 

(LQR). CHP-TES optimization focuses on two aspects: the optimal CHP-TES operation 

and the optimal CHP-TES design (with emphasis on equipment capacity). Both aspects 

are highly dependent on the requirements of the system and on the electricity rate 

structure. If the electricity rate structure is not defined (such as with electricity spot 
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market prices), this requires the prediction of the electrical prices [29]. Because there will 

always be model uncertainties and errors in predicted values (in the case of Rolfsman 

there was a 35% decrease in system value because of imperfect predictions), it is 

important that optimal controllers are closed-loop [37]. 

Conventional Operation Strategies 

Ristic et al. [38] described the following conventional operation strategies for 

CHP systems with or without TES. 

1. Electricity base load: In the design phase the CHP unit is scaled to only meet the 

base electrical load. The CHP unit then runs at full capacity all the time. This has 

the advantage of operating the equipment at its most efficient operating point. 

However, it cannot take advantage of changing electricity prices or variations in 

thermal loads. 

2. Heat demand following: The CHP system follows the heat demand and 

electricity is treated as a beneficial by-product. This strategy might reduce 

auxiliary boiler requirements and ensures that there is never surplus heat that must 

be wasted. It cannot take advantage of changing electricity prices, and might in 

fact be negatively impacted by the price variation (if heat production is high when 

electricity prices are low it might be more economical to operation a boiler to 

meet the heat load). 

3. Electricity demand following: The CHP system follows the electricity demand 

and the heat is treated as a beneficial by-product. This strategy is typical when 

electricity export is not allowed. It also allows the facility to “island” (i.e. operate 

independent of the power grid), because all electricity can be produced on-site. 
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Objective Function 

The objective functions used for CHP-TES optimization vary considerably, but 

most objective functions follow the standard “costs minus revenue” form. The variation 

between objective functions generally comes about with which specific costs are 

considered as part of the objective function. In general the problem is formed as 

 

  , ,min fuel elec pur elec soldJ C C C    (2.1) 

 

where Cfuel is the cost of fuel consumed by the CHP unit and any auxiliary boilers or 

electricity-only generation units, Celec,pur is cost of any purchased electricity (which might 

include demand charges as in [35]), and Celec,sold is the revenue generated from selling 

electricity to the grid. The objective function is minimized subject to constraints such as 

heating or cooling loads, equipment capabilities (such as maximum or minimum 

capacities), and in some cases legal constraints (e.g., [31]). Constraints can be imposed as 

equality or inequality constraints. A requirement that electricity production matches 

demand would be an equality constraint while an inequality constraint would be, for 

example, the operating range for specific equipment. 

Simple variations to the objective function given in Equation 1 include adding the 

cost of water [35], adding a penalty term for violating space heating or cooling comfort 

rules [39], including staff and maintenance costs [32], adding an electrical standby cost (a 

cost paid to the utility for providing permanent backup power) [35], including a cooling 

tower heat rejection cost [31], including a plant energy self-consumption term [40], 

adding a static transmission efficiency term for electricity exchanged with the grid [41], 

and including a cost relating to storing energy [29]. In some cases the capital costs of the 

CHP-TES system are considered along with the operating costs. Lozano et al. [31] used 
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an objective function that included the fixed costs plus variable costs, or in other words 

the equipment amortization and maintenance costs plus a modified operating cost 

function as given in (2.1). Bruno et al. [42] maximized return on investment (ROI) and 

thereby included both fixed and variable costs. Piacentino and Cardona [43] formed a 

similar objective function, only they maximized rather than considering ROI. Note that 

constants added to the objective function (e.g., fixed capital cost) do not affect the 

optimal solution. 

Wang et al. [22] used the following for their objective function 

 

  1 2 3max energetic economic environmentalJ R R R      (2.2) 

 

where Renergetic is the ratio of energy savings compared to a conventional system, Reconomic 

is the ratio of economic savings compared to a conventional system, Renvironmental is the 

ratio of environmental savings (measured as CO2 emissions) compared to a conventional 

system, and ω1, ω2, and ω3 are weighting factors. The authors used an equal weight 

method (i.e., ω1 = ω2 = ω3 = 1/3). In this way Wang et al. were able to optimize their 

system based on all three conditions. Shifting the weights to give one factor preference 

gives the user more flexibility in examining the “what-if’s” of a system. Using weights in 

the objective function was also performed by Rolfsman [29]. He used the inverse of the 

equipment efficiencies as weighting terms for the fuel consumption of each unit. 

Kostowski and Skorek [44] introduced two objective functions, thermodynamic 

and economic. The thermodynamic optimum was defined as the lowest peak boiler usage, 

so the objective function minimized the peak boiler usage. The economic objective 

function was to maximize the change in net present value, or the increase in net present 

value from adding TES versus the no storage case. The economic optimal TES volume 
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was 38% smaller than the optimal thermodynamic volume with a 27% shorter payback 

period. 

In the majority of cases reviewed the objective function was applied to an entire 

year, but the way the year’s data were compiled varied significantly. As little as three 

days were used to represent a year, one day for each of the three relevant seasons [40], 

while others used 365 distinct days [29]. The climate affects the choice of the appropriate 

number of unique days. For example, Azit and Nor [35] stated that in Malaysia the 

annual facility load can be represented by a single week of typical hourly loads since the 

climate is fairly constant year round. 

Optimization Techniques 

Optimal solutions to both the design and operation problems have been found 

using dynamic programming [45], [46], Lagrangian relaxation [47], evolutionary 

programming [41], branch and bound method [39], sequential quadratic programming 

[37], particle swarm algorithm [48], decomposition method [28], Simplex method [49], 

reduced-gradient algorithm combined with a quasi-Newton algorithm [24], generalized 

reduced gradient method (via Microsoft Excel’s Solver) [40], and Newton-Raphson 

combined with the conjugate method [35]. The optimization technique used might 

influence the optimal solution, but if the optimization problem is convex then an 

optimum is guaranteed and will be global. In that case the choice of the optimization 

technique will largely be affected by computation time, ease of implementation, ability to 

handle required constraints, etc. For solving nonconvex problems, the choice of a solver 

might be more important. In some cases, however, the quality of the solution might be 

largely independent of the algorithm used. For example, Wang et al. [22] showed that the 

optimal solution from particle swarm algorithm produce 1% greater savings than using a 



 17 

genetic algorithm. More information on optimization techniques is readily available in a 

variety of textbooks and other material (e.g., [14], [50]). 

Applications 

Because the design and considerations of a CHP-TES system are dependent on 

the specific application, the most common CHP-TES applications will be reviewed 

separately. They include district heating and cooling, building heating and cooling, and 

integration with renewable energies. These three applications tie directly into chemical 

process facilities: plants often have some sort of district heating or cooling system to 

integrate heating and cooling streams, plants contain buildings which are heated or 

cooled, and introducing renewable energies correctly into plants is a valuable energy 

sustainability measure. 

District Heating and Cooling 

There is more attention given in literature to CHP-TES systems in district heating 

and cooling networks than any other CHP-TES system, nearly all of which emanates 

from Europe. In district heating and cooling networks that incorporate CHP, the CHP 

units produce electricity and use the waste heat from the electricity production to meet 

heating or cooling loads. Typical standalone CHP units are generally operated using the 

heat demand following strategy. This means that CHP units might be producing large 

amounts of electricity (because thermal loads are high) during off-peak hours when 

electricity prices are low thus reducing revenues. It also means that during on-peak hours, 

when electricity prices are highest, CHP units might either have to run at partial capacity 

(because of low thermal loads) or run at full capacity and waste the excess heat. 

Additionally, because the CHP units are required to follow a changing thermal load, they 

will not always be operating in their most efficient operating region (i.e., at or near full 
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capacity). Thermal energy storage, almost exclusively in the form of chilled or hot water, 

has been applied to address these issues. 

Thermal energy storage has been shown to add significant economic savings to a 

CHP plant by taking advantage of the electricity rate structure. Bogdan and Kopjar [40] 

modeled the addition of a hot water TES to a CHP system on a district heating network in 

Croatia and found that TES increased the plant’s net income by 17% compared to the 

CHP-only system under a dual-time electricity tariff (i.e., where different rates apply for 

on-peak and off-peak times). The savings came from maximizing electricity production 

during peak electrical times (thus garnering the higher electricity market price) and 

storing the excess heat in the TES. At night with the low electricity prices, the CHP 

system would shut down and thermal loads would be met by the TES. This resulted in a 

net decrease in annual fuel consumption and electricity production as compared to the 

CHP-only case (i.e., the increase in on-peak production was less than the decrease in off-

peak production). The decrease was allowed because the CHP-TES unit was not 

contracted to supply a set amount of heat or electricity. 

Fragaki et al. [51] found that for the United Kingdom, with a large difference 

between night and day electricity rates, TES can more than double the return on 

investment of CHP plants when measured in terms of net present value. They also 

determined that TES is still economical even if the electricity or gas prices change. In a 

sensitivity analysis they found that TES is economical up to a 15% reduction in average 

electricity prices or a rise in natural gas prices by more than 15%, although optimal size 

of the TES and the resulting NPV varied as prices changed. 

Streckiene et al. [52] found that TES allowed the CHP units to run at full load for 

longer amounts of time, thus increasing system efficiency (a finding also pointed out in 

[53]). They also found that the more variation there is in electricity spot market prices 



 19 

(e.g., the more the price changes), the more favorable CHP-TES systems are. Strekiene et 

al. reported more sensitivity of CHP-TES plants to fuel and electricity prices than did 

Fragaki et al., even to the point of the TES becoming uneconomical with a 10% increase 

in fuel prices. The added sensitivity can in part be explained by the differences between 

the energy markets (Strekiene et al. in Germany and Fragaki et al. in the United 

Kingdom). For example, Fragaki et al. used a two-tariff electricity rate structure, while 

Strekiene et al. used an electricity spot market. However, Strekiene et al. did point out 

that as long as electricity prices and natural gas prices move in the same direction then 

the negative impact on the economic analysis is limited. Adding TES gives the operator 

more market opportunities and more security because fluctuations in heat demand can be 

dealt with more easily, but these benefits come with additional operating risks of price 

sensitivity.  

Pagliarini and Rainieri [54] modeled a CHP-TES system for the University of 

Parma Campus in Parma, Italy. In their analysis they identified a range for the optimal 

TES size and found that by including a TES tank in that range the annual income 

increased by 48% and the overall simple payback period of the system was reduced from 

4.4 to 3.5 years. 

Rolfsman [29] focused on the optimal operation of CHP-TES systems in a district 

heating network. Like Lin and Yi [55], he included not just hot water TES, but also 

passive TES from raising building temperatures in the heating district by 1-2°C. He 

found that proper operation of the TES was able to keep the most expensive equipment 

from coming online in order to meet short spikes in heat demand. He also showed that 

optimal operation allowed the CHP units to work at full capacity when electricity prices 

are high, storing the excess heat in the TES units. The TES would then be discharged at 

night when it was no longer cost effective to produce electricity. 
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The optimal TES capacity in a district heating network is a function of the CHP 

system selected. For example, Lund and Andersen [56] demonstrated that as the engine 

or turbine size increased (e.g., from 2 MWe to 4 MWe) the optimal size of the TES also 

increased. This can also be seen in the work done by Verda & Colella [57]. They found 

that including a second CHP system increased optimal TES size (see Figure 2.5). 

However, Fragaki et al. [51] found that if multiple small engines or turbines were 

selected (e.g., two 2 MWe vs. one 4 MWe) then the optimal TES size decreased because 

during low heat demand and low electricity prices only one engine or turbine needed to 

run. 

 

 

Figure 2.5: Fuel requirements for 1 and 2 CHP plants versus TES volume. Note that the 

optimum value increases as a second CHP plant is added [57]. 

The work by Urbaneck et al. [58]–[60] is interesting in that it focuses on a strictly 

cooling network, and that it includes CHP capacity fired by brown coal instead of natural 

gas. They emphasize that the optimal CHP-TES solution for one system cannot be 

transferred to another system without adaptation. 
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Bruno et al. [42] demonstrated why ice TES is rare compared to chilled water in 

district energy systems. In performing their optimization of a CHP system with ice 

storage they found that the optimal TES size was zero while the optimal chilled-water 

TES size was 47.4 MWh. They suggested that ice TES is only suitable for CHP-TES 

district energy applications where there are significant space limitations. 

As an interesting side note, the idea extending a CHP’s district heating network to 

outlying residences using mobile-TES has been examined by Wang, Hu, et al. [61]. They 

considered four different options for removing heat (either via steam or hot water) from 

the CHP plant in order to charge the mobile-TES for distribution. 

Building Heating and Cooling 

For actively cooling buildings in CHP-TES systems, chilled water and ice are the 

most common forms of TES, although phase change materials (PCMs) embedded into 

buildings to increase thermal mass have also been explored [62], [63]. Except for the rare 

case of aquifer and borehole TES [64], heating buildings in CHP-TES systems uses hot 

water tanks. 

In the case of meeting building cooling loads, one of the major benefits of 

coupling TES with CHP is that it allows the equipment to be downsized. Air conditioning 

equipment is sized based on peak cooling demand requirements, so by incorporating 

TES, air conditioning equipment can be downsized which greatly reduces capital costs. 

For example, Ehyaei et al. [65] looked at using micro gas turbines coupled with ice TES 

to meet the heating, cooling, and hot water needs for a 40-unit residential building in 

three different cities in Iran. The electricity from the CHP micro turbines was used to 

meet building electricity demands and to run mechanical chillers while the waste heat 

was used to run absorption chillers. In two of the cities, 21 micro turbines were required 
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when no TES was used, but only 11 micro turbines were required when TES was 

incorporated. The reduction came because the TES could discharge to meet the peak 

demand, eliminating the need for peaking equipment that only ran during the hot 

afternoon periods. This resulted in a reduction in investment costs by 27.5% and 29.5%, 

respectively. In the third city, the ice TES reduced the required number of micro turbines 

from 75 to 40, resulting in a 14% savings in investment costs. The lower investment cost 

reduction for the third city was attributed to the hot and humid nature of its climate, while 

the other two cities were mild and semi-hot. 

Similarly, Liu et al. [66] examined a hybrid heating, ventilation, and air 

conditioning (HVAC) system that included a CHP unit, liquid desiccant, vapor 

compression and absorption chillers, gas boilers, and hot water and desiccant storage 

tanks for application in a 10-story building. During the summer the excess heat recharged 

the desiccant and ran the absorption chiller. In the winter the CHP unit provided space 

heating. The addition of TES lengthened the operating hours of the CHP system and 

significantly decreased the capacity of the auxiliary boiler and compression chiller. The 

system had a payback period of two years and reduced CO2 emission by 40%. 

Somcharoenwattana et al. [67] performed two case studies, one of an airport and 

the other of a government office building, both located in Bangkok, Thailand. In the 

airport case study they demonstrated the importance of using high efficiency equipment. 

The most optimal economical solution was not to incorporate TES, but to replace the 20-

year-old low efficiency gas turbines with new, high efficiency models. In the office 

building case study the CHP plant was designed to meet the cooling load and the 

electricity production was supplemental. Incorporating cold TES reduced the simple 

payback period of the CHP plant from 17.8 years to 9.2 years. The TES allowed the CHP 

to run more continuously, and decreased the size of needed equipment. The authors 
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pointed out that the longer the operating hours of the CHP plant the better the economic 

outlook of CHP-TES system. A similar investigation with similar findings was reported 

by Ziher & Poredos [68]. 

Khan et al. [69] investigated energy conservation for the buildings of the Asian 

Institute of Technology in Bangkok, Thailand. They compared a CHP-only system and a 

CHP-TES system to a system where all electricity is purchased from the national grid. 

They included a thorough economic analysis, including installation and maintenance 

costs. The savings from incorporating the TES are shown in Table 2.1. 

 

 Peak-Demand 

Reduction 

Energy Reduction Internal Rate of 

Return (IRR) 

CHP only 13% 16% 21% 

CHP with TES 23% 21% 25% 

Table 2.1: Savings from including CHP and CHP-TES vs. purchasing all electricity 

from the national grid. 

McNeill et al. [70] found that incorporating a hybrid CHP-TES system that 

included desiccants for humidity control in a given building brought the same amount of 

savings regardless of location. They regressed the cost savings of the CHP-TES system in 

five different US cities and found that their regression coefficients were nearly identical. 

For a more standard CHP-TES system, however, Wang et al. [48] found that climate 

influenced system energy usage and economic outlook (though they did use the non-

standard objective function given in Equation 8). They examined four building categories 

(hotel, office hospital, school) and five climates. In some of the cases with a high summer 

cooling load, the CHP-TES system used more energy than the conventional system 

during the summertime, though in only one case was the CHP-TES system less 

economical than the conventional system. 
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Other researchers have investigated CHP-TES systems for single-family 

residential buildings. Houwing et al. [30] showed that using MPC on a single-family 

CHP-TES system brought 2-6% savings in operational costs versus the heat demand 

following control strategy. One of the primary benefits of adding TES to these small-

scale CHP units was that the TES allowed the CHP unit to operate more continuously and 

for more hours out of the year. Because of this benefit, a CHP system with an optimally-

sized TES reduces CO2 emissions by almost three times compared to a CHP-only system 

[71]. 

The type of TES model used in a building CHP-TES simulation has been shown 

to affect the results. Campos Celador et al. [72] looked at the effect of how a hot water 

TES tank is modeled on the overall energy and exergy (the maximum useful work 

possible) efficiency of a CHP facility. Energy and exergy efficiency differences between 

perfectly stratified and fully mixed were 2% and 0.7%, respectively. However, this small 

difference translated into a 12% difference in annual net savings between the two tank 

models. 

Integration with Renewable Energies 

When there is a large penetration of intermittent renewable energies such as wind 

and solar power in the electricity sector, there needs to be some “balancing” system that 

can handle the intermittency. CHP-TES is an ideal candidate for balancing intermittent 

renewable energy sources because CHP units are often tied to thermal loads rather than 

electrical loads [73]. This allows the CHP to balance an intermittent electrical load while 

using the TES to meet thermal demands. The incorporation of energy storage is key to 

increasing the system’s ability to balance renewable energies [74]–[77]. Adding TES to 

CHP systems improves flexibility to maximize profit [20]. 
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In places such as Denmark there are large amounts of electricity production 

coming from both wind and CHP. Because of the large penetration of wind, electricity 

prices are largely a function of the amount of wind: when there is an abundance of wind 

power, electricity prices are lower and when there is little or no wind electricity prices are 

higher. This decreases the marginal value of building additional wind turbines. However, 

this also allows for distributed CHP-TES systems to take a larger part in the electricity 

system. When there is lots of wind, CHP-TES facilities can stop producing power and 

meet thermal loads by discharging their TES, or in very high wind scenarios, they can 

even purchase cheap power for running heat pumps to meet thermal loads. During low 

wind scenarios, the CHP units can run at full capacity, the heat pumps can be shut off, 

and the thermal loads can be met by a combination of waste heat and discharging the 

TES. In this way TES increases the flexibility of CHP to deal with the intermittency of 

wind [78], [79]. 

Other Investigations 

Caldon et al. [34] discussed virtual power plants, which is an aggregation of 

distributed CHP facilities treated as a single facility. They showed that incorporation of 

TES in the virtual power plants reduced operation costs. Collazos et al. [39] showed that 

a model predictive controller applied to CHP-TES systems in a virtual power plant 

setting reduced operating costs by 13% versus using a boiler and purchasing all required 

electricity from the grid. Wille-Haussmann et al. [32] demonstrated that TES gives more 

flexibility to a virtual power plant of five CHP units. Optimal control led to a 10% cost 

reduction over heat demand following CHP by allowing the CHP units to actively 

participate in the spot market. 
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Ryu et al. [80] reported on a hybrid CHP-TES system that can be applied to 

military-type or disaster recovery applications where the ability to island is of high 

priority. The system could provide all the heating, cooling, and fresh water needs of a 

facility (it condenses water from the air). Ryu et al. discussed the importance of selecting 

the appropriate heat recovery capacity as that would determine strongly influence the 

selection of other components such as TES size and chiller capacity. 

Several additional investigations on CHP have been published in the literature 

that include, but do not focus on, interaction with TES. They include [81]–[91]. 

Implications for Chemical Industries 

Combined heat and power systems currently produce over 25% of electrical 

power for chemical industries [92]. Coupling thermal storage to CHP has been shown to 

increase CHP operating hours, economics, and flexibility. When proper optimization and 

control are applied, CHP-TES units have been shown to operate effectively in district 

heating/cooling scenarios, building heating and cooling situations, and areas with 

significant renewable energy penetration. Because chemical industries can be viewed as 

district heating/cooling networks and often contain buildings that are heated and cooled, 

the principles reviewed can be directly applied. Applications from using CHP-TES to 

deal with intermittent renewable energy show that CHP-TES is flexible to meet plant 

loads that might be intermittent or uncertain. TES augments the potential of CHP to be a 

cost-effective and sustainable technology for the chemical industries. This might become 

especially valuable in smart grid environments where pricing signals to curb electricity 

demand (or increase electricity production) might vary hourly. TES enables the 

production of CHP electricity on demand without underutilizing waste heat. 
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BUILDINGS AND TES (WITHOUT CHP) 

More work has been done concerning the control and optimization of TES in the 

buildings sector than for any other sector. This is only logical considering the number of 

large-scale buildings throughout the world. Buildings are also an enormous energy sink, 

as 40% of all energy in the U.S. is consumed in buildings [93], [94]. Due to the volume 

of work in this area, building energy systems coupled with TES provides insight into the 

benefits of proper control of TES systems. The building sector has also showcased the 

power of model predictive control (MPC). For that reason, MPC in buildings is given 

special attention to demonstrate that MPC is capable of controlling complex systems 

while generating cost and/or energy savings. 

Thermal energy storage is primarily applied to shift electrical loads from high-

cost peak times to low-cost off-peak times by shifting the building’s thermal load (see 

Figure 2.6). In doing so, it provides extra degrees of freedom for sizing and operating 

heating and cooling equipment. For example, in traditional heating and cooling systems 

equipment is sized to meet the peak demand for the year. For the majority of the year the 

equipment is not operating at peak conditions and is therefore oversized. Adding TES 

reduces the peak load that a chiller or boiler must meet thereby allowing it to operate 

closer to its design points where its efficiency is higher [95]. Other advantages of 

incorporating TES include using cool nighttime air to precool building mass (given the 

appropriate climate) and operating the system’s chillers at improved ambient conditions 

[96]. Conditions that tend to favor the implementation of TES include high utility 

demand costs, high utility on-peak rates, high daily load variations, short duration loads, 

infrequent or cyclical loads, insufficient capacity of cooling equipment to handle peak 

loads, and rebates for shifting peak loads [97]. 
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Figure 2.6: Building TES cooling system. Cooling fluid from the TES flows 

counterclockwise during discharge and clockwise when recharging. 

The TES in buildings systems can be active or passive. Active TES is typically 

ice or chilled water for cooling system and hot water for heating systems. Passive TES is 

most commonly sensible heat storage in the building material (i.e., the concrete, steel, 

etc. that make up the building), but might also include engineered phase change materials 

(PCM). PCM’s have been reviewed extensively (e.g., [98]), so specific information about 

PCM’s will not be included here. Most of the literature on active TES control systems 

focuses on ice TES, though chilled water is very common in actual TES applications 

[99]. Modeling and control of ice TES is more challenging because of the variety of the 

ice-making devices and the difficulty of capturing the dynamic heat transfer 

characteristics as ice is formed or melted [100]. Passive TES has gained popularity in the 

optimal control field because, other than the controller, it can require no system changes. 
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TES Control Strategies 

Most of the recent investigations in literature center on how the TES should be 

used. Determining how the TES system will be used also specifies, to some extent, the 

size of the required size of the system. 

 

 
(a) (b) 

 
(c) (d) 

Figure 2.7: Conventional active TES control strategies. Full-storage (a), demand-

limiting (b), chiller-priority (c), and constant-proportion (d). Full-storage 

and demand limiting are both storage priority control methods. 

Conventional TES control strategies include storage-priority, chiller-priority, and 

constant-proportion control [101]–[105]. Storage-priority control can be further 

subdivided into full-storage and demand-limiting control, though in some senses full-

storage control can be seen as a special case of demand-limiting control [106]. Results 

from applying these different control strategies for TES are shown in Figure 2.7. The 

only difference between the control techniques is the rate and time of the TES discharge. 
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Chiller-priority and constant-proportion control are fairly simple to implement and might 

require no more than an on/off schedule. Storage-priority control is somewhat more 

difficult since it requires load forecasting. These control strategies are used as a metric 

for comparing for more advanced control schemes. 

Model predictive control (MPC) is a more advanced control strategy in which a 

model of the building and appropriate systems (e.g., chiller, ice storage tank, etc.) is 

generated. The controller uses the model along with weather, occupancy, and energy 

price predictions to determine the optimal trajectory of the planning horizon (typically 24 

hours, though 48 hours has been used Henze et al. [107]), but it only takes an action for 

the first time step (see Figure 2.8). For the following time step the planning horizon is 

shifted forward, the optimal trajectory is recalculated, and the first action is again taken. 

In this way the controller is always using the model to predict behavior over the next 

sampling period, e.g., 24 hours, but it only implements the first control action in that 

planning horizon. The models are often created using popular building modeling and 

simulation software such as EnergyPlus or TRNSYS. These modeling tools are able to 

capture the dynamics of a complicated building system without spending excessive 

amounts of time generating a model. These models can even be coupled with tools such 

as MATLAB to further increase user flexibility [108]. 
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Figure 2.8: Model predictive controller for building energy systems. Adapted from 

[109]. 

Most researchers selected 1 hour as their time step (e.g., Henze et al. [110]) but 

some chose smaller time steps [100], [104]. Ma et al. [111] showed that the choice of the 

time step is important. They found that by choosing too coarse of a time step (they used 1 

hour), the MPC was not able to take full advantage of the system because the optimal 

time of many of the decisions occurred between the 1 hour decision periods. The 

drawbacks of MPC include the potential high cost of generating an accurate model for the 

controller, unavoidable mismatch between the model and the actual environment, and the 

difficulty of appropriately predicting future conditions such as weather and electricity 

price. 

Because energy systems using TES depend so heavily on environmental 

conditions in order to make accurate predictions and decisions about how the system 

operates, it is very useful to incorporate weather forecasts so that the ambient conditions 

and projected loads can be anticipated. Henze et al. [102] and Henze et al. [112] 
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examined various weather prediction methods for MPC’s, including random walk, 30- 

and 60-day bin predictors, harmonic predictor, autoregressive neural network, and same-

as-yesterday predictor. They found that the 30- and 60-day bin predictors were the best 

weather predictors and that they led to cost savings that were only marginally worse than 

the perfect prediction scenarios. 

Model predictive controllers have been used for passive TES (e.g., [107]), active 

TES (e.g., [113]), and simultaneous active and passive TES (e.g., [114]). Interest in MPC 

for passive TES has increased because one of the benefits of using MPC is that it can take 

advantage of the building’s thermal mass under a variable electricity rate structure [109], 

[115]. A general solution for passive TES using MPC is shown in Figure 2.9. The 

controller takes advantage of the thermal mass by precooling the building before the 

occupancy period begins and then gradually increases the room temperature set points 

during times when electricity is most expensive to allow the building mass to absorb the 

heat. Use of PCM’s with MPC can further increase the potential of passive TES since 

temperature levels could be kept perpetually within the comfort range. Use of MPC with 

passive TES does not guarantee savings, however. Oldewurtel et al. [116] found that in 

some cases a variable rate structure under optimal MPC can still increase overall energy 

costs versus an average, flat-rate structure because some loads such as lighting cannot be 

shifted to off-peak hours. 
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Figure 2.9: Set points for optimal control of passive TES. The black line is the control 

path and the gray lines are upper and lower control limits. [117]. 

Zhou et al. [118] developed a MPC for an active chilled water TES system. The 

MPC operated differently than typical MPC’s in that instead of changing equipment set 

points it functioned more as an equipment scheduler. The MPC predicted the campus 

load over the planning horizon and then determined the best time to discharge the TES, 

the number of chillers that must operate at each time step to meet the remainder of the 

load, and the start and stop times of each chiller. 

Henze, Kalz, et al. [112], Henze, Felsmann, et al. [119], and Henze et al. [110] 

applied MPC to a system with both active and passive TES. They solved the passive TES 

problem first and the active thermal storage problem second. This led to the same results 

as solving both problems simultaneously but took significantly less computation time and 

reduced the risk of landing in a local optimum. They also used the optimal solution from 

the previous time step as a guess value for future time steps. 



 34 

Liu and Henze [120] analyzed the effects of mismatch between a model and an 

actual system when using a MPC. Incorrectly modeled building construction 

characteristics negatively affected the MPC’s ability to fully utilize passive TES. Zone 

temperature set points and TES performance were strongly affected if the model 

contained improper internal heat gains, especially when those heat gains were 

underestimated. Relative efficiencies between chillers were also quite important as they 

determined the order in which chillers were put on-line. 

By using a fractional factorial analysis Cheng et al. [121] found that the four 

factors that most influence the effectiveness and cost using passive TES with MPC were 

utility rate structure, internal load levels, building mass level, and equipment efficiency. 

In a follow-up study Henze et al. [117] performed a full factorial analysis on four 

parameters found by Cheng et al. They considered four cities, each with its actual rate 

structure. They found that cost savings from passive TES were limited by the available 

storage capacity and that more savings could generally be achieved when the system has 

lower efficiency equipment because more energy usage can be shifted from on-peak to 

off-peak. Control strategies were simplified by applying the average of the four 

optimization variables, and nearly all building achieved equal savings as using the MPC. 

Savings from passive TES were most sensitive to utility rates (which was also 

demonstrated by [96]), followed by building mass and then internal heat gains. Relative 

savings due to passive TES were fairly insensitive to climate. Incorporation of PCM’s 

might change the impact of climate, though. Corgnati et al. [122] found that the influence 

of PCM’s was very climate dependent, but that using building thermal mass provided 

benefit regardless of climate.  

Touretzky and Baldea [123] used nonlinear models to develop a MPC for a small 

building with energy recycle. They provided theoretical justification for the multiple 
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timescale dynamics in buildings with energy recovery and presented methods for 

developing controllers based on decomposing those time scales to the one most relevant 

for control. 

Seo and Krarti [124] considered the influence of building shape on TES MPC 

operation. They found that it had a small impact on TES performance (<5% difference in 

savings potential for a square building versus rectangular building). They also found that 

optimal control led to 15% higher savings than chiller priority. 

Other controllers such as learning controllers [125], fuzzy logic controllers [126], 

heuristic controllers [100], and weight priority method controllers [127] have also been 

used for buildings that include TES with varying levels of success. However, I believe 

that MPC is the most versatile control type for the operation of TES. 

Implications for Chemical Industries 

TES and MPC have only been examined together in building heating and cooling 

environments, demonstrating the potential of model-based predictive controllers in TES 

systems. TES in buildings brings many benefits, such as reducing cycling or the size of 

heating and cooling equipment, but that TES with MPC amplifies the benefits of TES, 

including enhanced economics and flexibility. TES in building systems has also shown 

how advanced control can take advantage of the utility rate structures to bring significant 

cost savings. Deployment of TES in the chemical industries would be similarly benefited 

if advanced controls such as MPC are applied [128]. 

CONCLUSIONS 

There are many benefits and challenges to integration of TES in an energy 

system. Adding TES to a CHP system can improve overall system efficiency and 

economics, and provide some degree of independence from an external utility. TES used 
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in building heating and cooling systems can shift peak loads and reduce the size and cost 

of peaking equipment or peaking energy. TES allows users to take advantage of time-of-

use rates, operating equipment during times of lowest cost. Buildings with TES 

demonstrate that MPC is a viable control strategy to manage complicated systems in a 

variety of utility rate structures and that MPC amplifies the cost-effectiveness of TES 

systems. 

In summary, when TES is properly designed and controlled it can: 

 Increase system flexibility 

 Improve system efficiency 

 Reduce energy consumption 

 Reduce equipment costs 

 Increase independence from utilities 

 Reduce emissions 

 Manage intermittency from an energy source or sink 

Because chemical processes are often heavily integrated with significant thermal 

and electrical loads, thermal energy storage, especially when coupled with CHP, can be 

applied to improve the flexibility and efficiency of chemical processes. In order to take 

full advantage of TES, optimization in design and control (such as MPC) is necessary. 

The flexibility offered by TES is likely to grow more important, especially with 

the advent of the smart grid and the increase in intermittent renewable energy resources. 

Implementation of TES might allow chemical processes to increase the amount of on-site 

renewable energies. As smart grid technologies are deployed, chemical plants can use 

TES to improve their utility economics by enhancing their interactions with the grid as 

they buy and sell power (or simply curb power use) at optimal times. 
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Because TES can reduce required equipment sizes and increase system 

efficiencies, TES can be used to improve the economics of chemical processes. TES also 

reduces equipment cycling, which lengthens equipment life and decreases maintenance 

costs. 

Based on the literature reviewed, the following future research directions are 

recommended: 

 The development of new materials will continue to improve flexibility and 

efficiency of TES systems, thus giving controllers more opportunity to generate 

both energy and cost savings. For example, the development of a cost-effective 

PCM that changes temperature at ~4°C can reduce the TES size to close to that of 

ice TES while at the same time reducing the compressor lift of the chiller that 

must charge the TES (compared to ice storage). 

 Energy systems are likely to become increasingly complicated and integrated, and 

controlling those systems will be possible only through advanced control. The 

integrated systems will leverage the benefits of each of the components of the 

systems, resulting in a more efficient and flexible systems. However, models 

might grow sufficiently complicated that the control cannot function optimally. 

Model reduction techniques and improved algorithms (especially mixed-integer 

algorithms) will need to be developed to address these issues. 

 Increases in the amount of intermittent renewable energy sources will create a 

greater demand for storage. Integrating energy storage systems (e.g., TES, 

batteries, flywheels, etc.) might generate new opportunities to deal with these 

intermittencies. Research and development of new hybrid systems is likely to 

raise overall system efficiency and effectiveness 
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 As advanced control techniques such as MPC are developed, model mismatch 

might become a bottleneck for improvements. Model mismatch can be reduced by 

improving prediction capabilities of disturbance variables, by developing dynamic 

models of TES-related equipment than can be packaged into commercial or open 

source software, and by developing adaptive abilities into the controller so that it 

can adjust to changing process conditions. 

Interaction between TES and intelligent systems such as the smart grid will 

become more beneficial and efficient as more companies develop products that can take 

advantage of intelligent storage. However, for that to be possible, interoperability and 

communication standards must be developed and implemented (e.g., [129]). 
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Chapter 3: Model Predictive Control of Novel Thermal Storage 

Configurations for Commercial Buildings2 

INTRODUCTION 

Thermal energy storage (TES) is a technology where thermal energy is stored as 

either sensible or latent energy in some medium. Thermal energy storage has the potential 

to make significant contributions to lowering peak electrical demand [130], converting an 

intermittent renewable resource into a constant supply resource [131], enhancing the 

flexibility of cogeneration or heating, ventilation, and air conditioning (HVAC) systems 

[132], and improving overall system efficiency [133]–[135]. For a more thorough 

discussion of TES systems see Chapter 2. This chapter focuses on the use of TES in 

building cooling systems. Since TES can be used to meet part of the peak cooling load, it 

can decrease the required size of chilling equipment. The TES can also improve the 

efficiency of chilling systems by shifting cooling loads from hot daytime hours to cooler 

nighttime hours where chiller condenser temperatures can be reduced. The extent of the 

efficiency increase depends on the design of the TES system and on the difference 

between day and night temperatures. 

Many researchers have studied the use of advanced controls, especially MPC, on 

building cooling systems with TES ([133], [136]–[144]). However, most of them only 

considered short operation periods, such as one week or one month, to determine savings. 

For large buildings, cooling must be supplied year-round due to internal heat gains, so 

TES can provide benefits throughout the year. Examining TES performance throughout 

                                                 
2 This chapter was included in W. J. Cole, T. F. Edgar, and A. Novoselac, “Use of model predictive control 

to enhance the flexibility of thermal energy storage cooling systems,” in Proceedings of the 2012 American 

Control Conference, Montreal, Canada, 2012, pp. 2788–2793. Coauthors Edgar and Novoselac contributed 

general advising and editing. 
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the year will also lead to greater understanding as to what types of climates are most 

suited for TES cooling systems. 

Previous work on control of TES systems primarily emphasizes operating cost 

savings rather than energy usage and savings. Thermal energy storage provides an 

opportunity to manage the electricity load profiles from heating and cooling systems. 

This work focuses on how use of year-round TES can bring energy and cost benefits to a 

large cooling system that serves multiple buildings with diverse cooling load profiles. 

This work presents a novel TES configuration to provide additional flexibility in reducing 

peak chiller electricity demand. Other variations of hybrid TES systems have been 

examined in [145]–[147]. 

SYSTEM DESCRIPTIONS 

Chilled Water Systems 

Three variations of a single system are analyzed in this study. The first (system 1) 

is a traditional chiller/cooling tower configuration (see Figure 3.1a). The second (system 

2) is identical to the first except it has a chilled-water TES unit running in parallel with 

the chiller that supplies cold water to the buildings during peak hours (see Figure 3.1b). 

The TES is recharged by the chiller during off-peak hours. The third variation (system 3) 

differs from system 2 in that the relatively cold return water from the building can be sent 

to the chiller’s condenser after it has been used to meet building cooling loads (see Figure 

3.1c). A cooling tower is still used when the water is not recycled through the condenser. 

Although not shown in shown Figure 3.1, each chiller system has two identical chillers 

connected in parallel. In the case of system 3, only one of the two chillers has the 

condenser cooling recycle loop; the other is always cooled via the cooling tower. 
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Figure 3.1: (a) System 1, chiller system with no TES, (b) System 2, chiller system with 

conventional TES system, (c) System 3, chiller system with TES and 

condenser cooling loop. 

In all three cases the chillers, cooling tower, and campus chilled water loop are 

identical. The cooling system is sized to meet a maximum cooling demand of 6050 kW 

by using two identical 3025 kW centrifugal chillers. Two chillers are selected because 

during times of low or medium load, a single, large chiller would be operating far below 

(a) (b) 

(c) 
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its design capacity. The temperatures of the chilled water supply (TCWS) and chilled water 

return (TCWR) are fixed at 4.4°C and 11.7°C, respectively. 

Building Load Model 

A section of the University of Texas at Austin campus is used to produce a 

realistic cooling demand for the three chiller system configurations. This section consists 

of five buildings: two mixed-use (classroom and office) buildings, an office 

administration building, a performing arts building, and a lab building. The five buildings 

have a total floor area of 65,500 m2. Dynamic building cooing load profiles are calculated 

using DOE 2.2 building modeling software [148]. For each of the five buildings the 

software solves a system of ordinary differential equations (ODE) that describe the 

unsteady-state heat transfer in the building structure and in the building mechanical 

systems that include air handling units with variable air volume control. Model inputs 

include building and system properties, weather conditions, occupancy, ventilation rates, 

and internal loads. The solution of the ODEs defines the cooling load for each air 

handling unit at each time step. The hourly cooling demand for the chillers is the sum of 

cooling demand for the cooling coils in all the air handling units of the five buildings, 

assuming that building cooling loads are always met by the chillers. The weather data 

used for this analysis are the typical meteorological year (TMY2) data for Austin, Texas, 

USA. 

Chiller System Models 

 For all three systems the chiller models developed in [149] are used to calculate 

the chiller power (PCHILLER) at each time step: 
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where CAPFT is capacity as a function of temperature, EIRFT is energy input 

ratio as a function of temperature, PLR is part load ratio, EIRFPLR is energy input ratio 

as a function of part load ratio, QEVAP is the cooling load on the evaporator, QNOMINAL is 

the nominal rating of the chiller (in this case 3027 kW), PNOMINAL is the nominal power 

usage of the chiller given a nominal coefficient of performance (COP) of 5.6, and ai 

through fi are constants for centrifugal chillers as given in Table 3.1. Temperatures for all 

equations must be in degrees Fahrenheit. 

 

 a b c d e f 

CAPFT -0.299 0.0300 -8.00∙10-4 0.0174 -3.3∙10-4 6.31∙10-4 

EIRFT 0.518 -4.00∙10-3 2.03∙10-5 6.99∙10-3 8.29∙10-5 -1.60∙10-4 

EIRFPLR 2.54 -7.75 15.5 -15.5 7.69 -1.50 

Table 3.1: Constants used in (3.1), (3.2), and (3.4) for centrifugal chillers. 

The cooling loads were calculated using the following equations: 

 

 EVAP LOAD TESQ Q Q   (3.6) 
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  1.02COND EVAP CHILLERQ Q P   (3.7) 

 

where QLOAD is the combined building load given by the DOE 2 building simulation 

software, QTES is the cooling load met by the TES, and QCOND is the load on the 

condenser. The 1.02 in (3.7) is included as suggested by Stanford [150, p. 116] to account 

for the heat added by the condenser water pumps. 

The cooling tower supply temperature (TCTS) is a function of the wet bulb 

temperature (Tw) and the temperature difference across the condenser (ΔTCOND): 
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(3.8) 

 

To mimic realistic chiller behavior, the maximum ΔTCOND was limited to 8.3°C 

with a nominal value of 5.6°C. A variable speed pump is included on the cooling tower 

loop to keep TCTS above 11.7°C. 

 The pumping through the cooling tower loop was determined using 

standard internal fluid flow equations. These pumping costs were included, though they 

amounted to less than 1% of total system costs. As a result of the small impact of 

pumping energy in this system, all other pumps were assumed to consume negligible 

amounts of energy and were not included. Pumping in the campus chilled water loop was 

not considered since those pumping costs are the same regardless of the system used. 

The thermal storage is a chilled water tank with 19.7 MWh capacity when the 

temperature difference between the entering and exiting water is 7.2°C. In system 3 the 

potential TES capacity is 42.3 MWh since the maximum temperature difference is 
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15.6°C, but actual capacity depends on the actual temperature difference. The TES is 

assumed to have an energy efficiency of 98%, which is not unusual for a chilled-water 

TES system [151]. Chilled water is used instead of ice because ice requires a lower 

chiller evaporator temperature, thereby reducing chiller efficiency. Many investigations 

of optimal control of ice TES show that energy usage actually increases if ice TES is used 

(e.g., [138], [152]). 

PROBLEM FORMULATION 

The objective of the controller considered here is to minimize either electricity 

usage or operating costs. A time of use (TOU) rate structure from an actual utility in 

Austin, Texas, USA, was selected for this analysis. The rate structure has high on-peak 

demand charges, no off-peak demand charges, and relatively small differences between 

on- and off-peak electricity prices (see Table 2). Flat-rate prices are also included for 

comparison. Only electricity costs to run the chiller and cooling tower pumps are 

considered here. Other operating costs (e.g., make-up water for the cooling tower, 

maintenance costs) are assumed to be negligible. 

A simplified storage-priority control is used for a base-line comparison. This 

control strategy discharges the TES at a constant rate over the peak period. For example, 

during a summer peak period, the TES discharges 2457 kWh of cooling energy every 

hour. If the load is less than this TES discharge rate, then the TES flow is reduced to 

match the load. The TES never discharges during off-peak hours. 

 

 

 

 Winter Summer 
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Time of Year Nov 1-Apr 30 Mar 1-Oct 31 

Peak Times 8am-10pm 1pm-9pm* 

On-peak $/kW $11.40 $12.54 

Off-peak $/kW $0.00 $0.00 

Flat-rate $/kW $11.11 $12.10 

On-peak $/kWh $0.04815 $0.05515 

Off-peak $/kWh $0.02815 $0.03665 

Flat-rate $/kWh $0.04605 $0.04605 

*Excluding weekends, Memorial Day, Independence Day, and Labor Day 

Table 3.2: The electricity rates used in the objective function of the model predictive 

controller. These rates are from a utility in Austin, Texas. 

The controller is a model predictive controller. The controlled variables are the 

individual room temperature. The rooms have only two temperature set points per season: 

one for when the room is occupied and one for when it is not. The manipulated variables 

are the chilled water flow rate (which can be supplied from the chillers or to/from the 

TES) and, for system 3, the flow rate through the valve that recycles water to the chiller’s 

condenser. The disturbance variables are weather and occupancy. In this investigation, 

only perfect predictions are considered (i.e., predicted variables are exactly equivalent to 

measured variables). Perfect predictions, while generally not possible in real-world 

settings, provide an upper-limit in savings potential. 

Constraints are enforced to ensure that the system does not operate outside the 

acceptable operating limits of the equipment and to ensure that temperature set points are 

met. Because room temperatures are constrained to meet their set points, there is no 

opportunity to take advantage of the thermal mass of the building. In practice these 
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constraints could be relaxed to allow the room temperatures to fluctuate, so long as they 

stayed within some comfort region, but that is beyond the scope of this work. 

Two objective functions are considered for the MPC: on which minimizes cost 

and one which minimizes energy consumption. The minimum cost objective function is 

 

  min energy demandJ C C   (3.9) 
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where J is the overall operating cost, Cenergy is the cost of the electrical energy used (cost 

for kWh usage), Cdemand is the cost of the peak usage of electricity (cost for maximum kW 

draw), N is the total number of time steps in the one month billing period, relec,i is the 

electricity rate ($/kWh) at time i, Pelec,i is the electrical draw (kW) at time i, Δt is the 

length of the time step, rdemand,i is the demand charge ($/kW) at time i. Service fees are 

not considered because those fees do not change from one billing period to the next. 

Computing Cdemand presents a challenge because without the ability to predict weather, 

building load, and other disturbances over the entire one month billing period, it is 

impossible to minimize the demand costs directly. Rather, the current maximum value of 

Pelec is carried through each time step and updated whenever a new maximum in Pelec is 

reached. When the billing period concludes Pelec is reset to zero. 

The objective function that minimizes energy consumption is 
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Considering total energy usage is of interest in order to investigate the potential of 

TES as an energy saving technology. Though not considered here, constraints or weights 

can be applied to the energy consumption, allowing the controller to optimize energy 

consumption to match a required load profile. This might have significant implications 

for thermal storage units connected to smart grids with high penetration of renewable 

energy technologies. 

The problem is formulated in MATLAB and solved using sequential quadratic 

programming (SQP) and active-set algorithms. For the energy minimization case the 

problem is solved for the entire 24-hour horizon (i.e. N=24). However, for the cost 

minimization scenarios, the TES is always fully utilized during on-peak period, so rather 

than solving the problem over a 24-hour horizon, the problem is solved from the current 

time step to the beginning of the next day’s on-peak or off-peak period. For example, if 

the current time step is during a peak hour, the remainder of the peak period and the 

subsequent off-peak period are solved. This strategy leads to prediction horizons that 

vary between 11 and 24 hours depending on the current time step. In the case of system 

3, the optimal solution with the condenser cooling was compared to the optimal solution 

with no condenser cooling, and the better of those two solutions over an entire period was 

selected. 

RESULTS 

MPC-TES Performance 

Annual operating costs and energy savings for the three systems are shown in 

Table 3.3. All configurations of systems 2 and 3 led to reduced annual operating costs 

over non-TES systems. The base case control scheme led to increased energy usage in 
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both systems 2 and 3, with very high energy increases in system 3. System 3 provided the 

lowest annual operating costs, but by only a marginal amount. The cost savings was 

achieved by shifting more peak energy to off-peak hours, even though total energy 

consumption was increased. This resulted in a reduction in peak energy usage costs and 

peak energy demand costs that was greater than the increase in off-peak energy usage 

costs. When (3.12) was applied to both systems 2 and 3 they produced the same result 

because the most energy efficient operation of system 3 is for it to act like system 2, 

never using the condenser cooling loop. System 3, then, adds flexibility for reducing peak 

energy usage, but cannot increase the flexibility of the system to achieve overall energy 

savings any more than system 2. 

 

System and 

Controller 

Objective Function Operating Cost Energy Usage 

(MWh) 

Sys 1 Flat - $222,500 2489 

Sys 1 - $217,900 2489 

Sys 2 base - $154,000 2495 

Sys 3 base - $147,000 2737 

Sys 2 MPC Eq. 9, 11 $128,000 2428 

Sys 3 MPC Eq. 9, 11 $126,100 2654 

Sys 2 MPC Eq. 12 $156,400 2391 

Sys 3 MPC Eq. 12 $156,400 2391 

Table 3.3: Comparison of annual operating costs and energy usage for the three 

systems under different control schemes. “Flat” indicates flat-rate structure. 

All others use the TOU rate structure. 
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Allowing the TES to discharge and recharge (rather than only recharge) during 

off-peak hours accounts for approximately $1600/year (1.3%) in cost savings and reduces 

energy usage by 45 MWh (1.8%). This savings is primarily accomplished by shifting 

loads during higher ambient temperatures to times with lower ambient temperatures with 

higher chiller efficiency. 

Time of Year Savings 

Energy savings of system 2 versus system 1 is shown in Figure 3.2. For an Austin, 

Texas, climate 75% of the year-round energy savings comes during the “winter” months 

(November-April), even though only 23% of the total year’s cooling load occurs during 

this period. This happens in part because cooling loads are lower and variations in day 

and night wet bulb temperatures are greater. When there are lower cooling loads, the TES 

is able to prevent the chiller from operating at low part-load ratios where chiller operation 

is less efficient. Greater variations in wet bulb temperature mean that loads at higher 

temperatures can be shifted to times of lower temperatures where the chiller operates 

more efficiently. TES will therefore be most beneficial when applied to systems with 

high temperature variations and with frequent and low part-load ratios. 
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Figure 3.2: Daily energy usage of system 2 versus system 1. Negative values indicate 

that system 2 used less energy than system 1. 

Cost savings is the reverse of energy savings. For both systems 2 and 3, 63% of 

the cost savings (versus system 1) occurred during the summer months, primarily due to 

the higher summer cooling loads that increased TES utilization. Clearly the objective 

(energy minimization, cost minimization, or some combination of the two) will affect the 

most appropriate period to be examined for an analysis. 

Electrical Load Profiles 

As electrical grids continue to improve and smart grid and renewable energy 

technologies become more commonplace, the ability to control a facility’s electrical load 

profile will be of increasing importance. Figure 3.3 and Figure 3.4 show the load profile 

of system 2 when costs were minimized. Because of the rate structure, the objective 

function heavily penalized increases in electricity demand. Since Pelec is generally being 

established early in the month days earlier in the month have a flatter profile. Days late in 

the month might fluctuate but stay under the current month’s maximum demand (when 

possible) to keep from incurring additional demand charges. 
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Figure 3.3: System 2 electrical load with MPC using (3.9)-(3.11) during the winter 

period. 

 

 

Figure 3.4: System 2 electrical load with MPC using (3.9)-(3.11) during the summer 

period. 

Figure 3.5 shows system 3 for the same days as Figure 3.4, again using cost 
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flatter than for system 2, even on days later in the month. The reason for this is the 

constraint on the temperature increase across the condenser. If the chiller uses a lot of 

power, then it also rejects a lot of heat. If the TES flow is not sufficient to capture that 

heat without violating the temperature increase constraint, then the chiller load must be 

shifted to the second chiller that has no TES-condenser cooling, resulting in less efficient 

operation. The controller is encouraged to balance the load across the day, resulting in a 

flat electrical load profile. 

 

 

Figure 3.5: System 3 electrical load with MPC using (3.9)-(3.11) during the summer 

period. 

When the MPC’s objective function is altered to enforce demand charges on a 

daily basis, all electrical load profiles are flattened. This is because demand charges are 

so much higher than energy usage charges that priority will be given to lowering demand 

as much as possible. This slight change only increases annual operating costs by about 

$700 (less than 1%). This indicates that some significant modifications in energy usage 

profiles can come at very little cost. 
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CONCLUSIONS 

The following can be concluded from this investigation: 

 The TES is active during off-peak periods as loads are shifted to cooler times 

and low part load ratios are avoided. 

 For an Austin, Texas, climate most of the energy savings (75%) occurs during 

the winter months, but most of the cost savings (63%) occurs during the 

summer months. 

 Demand charges allow for a flexible electricity profile later in the month after 

the maximum demand has been well established. 

 Rate structures with heavy demand charges hamper the ability of model 

predictive control systems to reduce their energy consumption. 

 MPC is well suited to meet energy requirement needs while still maintaining 

most or all of the cost savings. 

Future work includes enabling the controller to increase the chilled water 

temperature (e.g., from 4.4°C to 6.7°C) when buildings thermal loads are low. This gives 

the controller another degree of freedom to improve energy efficiency and electrical load 

profiles. Other work includes allowing the controller to control the electrical demand of 

the entire building instead of just the chiller system. That building can include 

intermittent energy sources (such as solar PV) or on-site cogeneration using fuel cells or 

microturbines. Lastly, new rate structures can be evaluated in order to identify those rate 

structures that will provide mutual benefit to the utility, the customer, and the 

environment. 
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Chapter 4: Integration of Turbine Inlet Cooling with Thermal Energy 

Storage for a Combined Heat and Power System3 

INTRODUCTION 

Cheap, clean energy has become a vital research area in recent years (e.g., [153]). 

However, many efforts focus on solar, wind, and other renewables, while overlooking the 

more efficient use of conventional power equipment. With the world so heavily reliant on 

fossil fuels for electrical generation [154] and with infrastructure for these systems 

already in place, electricity generation is an area ripe for improvements. Turbine inlet 

cooling (TIC) and thermal energy storage (TES) are technologies which complement 

conventional gas turbine power generation equipment. These technologies can potentially 

be used with marginally little capital investment to significantly enhance operation of gas 

turbine systems by increasing power production capacity and overall system efficiency. 

Although TIC and TES can be effectively used independently, this chapter focuses on 

opportunities to use these technologies together (TIC-TES systems). 

This chapter is organized into three main sections: a background section, a section 

on TIC-TES systems, and an investigation section. The background section contains a 

brief description of the relevant technologies discussed in this chapter, the TIC-TES 

section reviews all pertinent literature on systems that couple TIC with TES, and the 

investigation section includes the description and results of an investigation into a TIC-

TES system connected to a district cooling loop in Austin, TX. 

                                                 
3 This chapter was included in W. J. Cole, J. D. Rhodes, K. M. Powell, and T. F. Edgar, “Turbine inlet 

cooling with thermal energy storage,” International Journal of Energy Research, vol. 38, no. 2, pp. 151–

161, 2014. Rhodes assisted in modeling the building energy loads using eQUEST.  Powell assisted in 

building the optimization model for the TIC-TES system.  Edgar contributed general advising and editing. 
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BACKGROUND  

Turbine Inlet Air Cooling 

TIC is a commercially proven technology that is used to increase power output 

and thermal efficiency of combustion turbines. Combustion turbine power output is rated 

at the ISO conditions of 15°C and 60% relative humidity. Among other factors, the 

power output of gas turbines depends on the mass flow rates of air passing through them. 

Because colder air is denser, higher mass flows can be achieved with cold air without 

increasing the volumetric flow. Higher mass flow rates permit higher power outputs as 

the air/fuel mixture is combusted and passes through the turbine. Furthermore, because it 

takes less mechanical work to compress a more dense fluid, the overall thermal efficiency 

increases. As can be seen in Figure 4.1, the power output of a combustion turbine 

typically decreases by 0.5-0.9% for every degree Celsius increase of the inlet air and the 

heat rate increases by about 0.2% per degree Celsius increase [155]–[158]. This means 

that as the ambient temperature increases, combustion turbines produce less power at 

lower efficiencies. This can be a serious problem for gas turbines that are used as peaking 

power plants because summertime peak hours often occur during the hottest times of the 

day. This also means that the maximum power production from gas turbines will vary 

from day to day, decreasing their flexibility and reliability to meet loads. 
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Figure 4.1. Gas turbine performance as a function of inlet air temperature. Correlations 

from [157] and [159]. 

The inlet air of a turbine can be cooled to recover this lost capacity and efficiency. 

There are many methods of TIC including evaporative cooling, fogging, over spraying 

(also called wet compression) and mechanical or absorption chilling [160]–[162].  

Evaporative cooling can reduce inlet air temperatures by mixing the ambient air 

stream with water, thereby cooling the air stream as the water evaporates. An efficient 

evaporative cooling process will saturate the air stream with water vapor. Evaporative 

cooling methods include wetted media, where water flows over a solid material as the air 

passes through, and fogging, where very fine water droplets are sprayed into the air and 

evaporate. Over-spraying is an enhanced fogging method, ensuring that the air becomes 

oversaturated by spraying excess water. The additional water evaporates as the air is 

heated inside the compressor, absorbing more heat. Evaporative cooling, fogging, and 

over-spraying are simple and low-cost options, but they consume large amounts of water 

and are limited in capacity by ambient wet bulb temperature [163]. For example, if the 

wet-bulb temperature is 25°C, then that becomes the lower limit of the inlet air 
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temperature for evaporative-type TIC. Also, changes in ambient conditions can have 

small timescales and make it difficult for the plant operator to adjust. In regions with 

humid climates, evaporative cooling can only harvest a portion of the benefit of TIC 

because the wet bulb temperatures are higher. In regions where water supplies are scarce, 

evaporative cooling can also be limited by the availability of the water supply. 

Mechanical or absorption chillers (see Figure 4.2) can cool the inlet air to as low 

as 4.4°C regardless of ambient conditions [164]–[166]. Below 4.4ºC, icing can occur 

which can cause serious damage to the turbine blades [164], [167]. These chillers, which 

rely on a refrigeration cycle, cool an intermediate fluid such as water or a refrigerant, 

which then removes heat from the turbine inlet air stream via heat exchangers. Chillers 

have advantages over evaporative cooling systems, as they can be used to achieve cooler 

air temperatures so that the TIC will have a greater impact on the gas turbine 

performance. However, chillers are more energy intensive than evaporative coolers and 

can have significantly higher capital costs. Therefore, chiller systems are more common 

in regions of water scarcity and high humidity. 

 

 

Figure 4.2: System that uses a mechanical chiller to perform TIC. 
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The humidity ratio (mass of water per mass of dry air) of ambient air plays an 

important role in TIC performance, although it has little effect on turbine performance 

[168]. As the humidity ratio increases, so does the heat capacity of air. Additionally, if a 

chiller for TIC is cooling the air past its dew point, then a portion of the water in the air is 

condensed. For humid climates chillers must work harder to cool the air to a given 

temperature. Amell and Cadavid [165] showed that for a 160 MW gas turbine the thermal 

load required to cool the inlet air to 4.4°C increased by 94% when the relative humidity 

of 30°C ambient air increased from 34% to 80%. 

Also important in the TIC evaluation is the type of gas turbine used. Achievable 

power boosts by TIC are greater for aeroderivative turbines than for heavy duty turbines 

[161]. 

Thermal Energy Storage 

TES for cooling has proven to be economical because of its ability to shift cooling 

loads to off-peak hours, thereby reducing on-peak electricity consumption (see Chapters 

2 and 3). This is typically accomplished by storing “cold” thermal energy at night, when 

demands are low and cooling equipment is more efficient, and discharging the “cooling” 

energy during the peak times when cooling loads are very high, allowing mechanical 

chilling equipment to shut off. This lets the facility take advantage of pricing differences 

in time-of-use or real-time pricing schemes. Large-scale applications of TES could also 

have the potential to reduce total required electrical generation capacity, which is 

determined by total peak demand. Because TES for cooling has been applied most 

prominently to HVAC systems, it has been predominantly a demand-side energy storage 

technology. By coupling TES with TIC for gas turbine power generation, TES becomes a 

supply-side energy storage technology, giving the utility direct control over its use. 
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TURBINE INLET COOLING WITH THERMAL ENERGY STORAGE 

Without TES, mechanical chillers must be running when the turbine is operating 

in order to cool inlet air, leading to high parasitic loads and reducing net turbine 

generation during peak hours. Turbine inlet cooling coupled with TES (TIC-TES 

systems, see Figure 4.3) allow mechanical chillers to be shut off during peak hours, thus 

reducing parasitic loads. In some cases, TES also allows the chillers or the gas turbines to 

be downsized and still meet the required thermal loads [169]–[171]. The chillers charge 

the TES during off-peak hours and the TES performs TIC during peak hours with 

minimal parasitic load. In order to be economical this operational strategy generally 

requires that electricity prices are higher during peak hours than off-peak hours [172]. 

Although absorption chillers can also be coupled with TES for TIC [173], nearly all TIC-

TES systems use mechanical chillers as opposed to absorption chillers. 

 

 

Figure 4.3: TIC-TES system using a mechanical chiller. The dotted lines show how the 

chiller can bypass the TES when necessary. 
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It appears that only water and ice have been employed as TES media for TIC. In 

ice TES systems the chiller has a lower coefficient of performance (COP) and higher 

capital cost, but the TES storage size is much smaller and the turbine inlet air can be 

cooled to lower temperatures, resulting in higher capacity and efficiency for the turbine. 

Chilled water TES will typically have a chiller that operates at a higher COP, but will 

have a much larger storage tank and will not be able to cool the turbine inlet air to 

temperatures as low as ice TES. Chilled water stored in aquifers (ATES) has also been 

examined, but high capital costs and difficulties in finding suitable aquifers have reduced 

its usability [174], [175]. 

The choice between water and ice TES for TIC was examined by Ameri et al. 

[157] to improve the power output of two 37.5 MW and two 16.6 MW turbines that lost 

up to 30% of their capacity during the hottest parts of the summer. They created five 

cooling scenarios ranging from the lowest summer cooling load to the highest summer 

cooling load and simulated each scenario using ice or chilled water TES. They chose a 

chilled water TES as the most economical option for TIC with a payback period of 3.66 

years and a rate of return of 27.4%. The reason for the positive economic outlook was the 

ability to sell extra power during peak hours when electricity prices were highest while 

using cheap off-peak power to charge the TES at night. In all cases they examined, 

chilled water TES economically outperformed ice TES, primarily because chillers 

capable of making ice have a higher capital cost and lower efficiency. Modeling of TIC-

TES systems by Cross et al. [176] also found chilled water TES to be more economical 

than ice TES. 

Palestra et al. [177] demonstrated the importance of choosing the appropriate 

TIC-TES location along with size and type. They simulated four scenarios: a chilled 

water TES for Northern and Southern Italy, and ice TES for the same locations. In all 
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cases the TES was sized to meet 50% of the cooling demand on the hottest day. 

Following the simulation cases they performed a parametric analysis on the TES size. 

The simulation results indicated that ice storage had better economics, but the parametric 

study showed that chilled water TES ultimately had a lower payback period. Site location 

proved to be a very important variable due to climate differences—the net present value 

(NPV) of the Southern Italy site was nearly double that of Northern Italy. The importance 

of climate was also demonstrated by Boonnasa and Namprakai [178] who performed an 

economic analysis for TIC in Thailand where temperatures never dropped below the ISO 

condition of 15°C. They found that all observed cooling scenarios had payback periods of 

less than 1 year using absorption chilling, which proved to be more economic than 

including chilled water TES [173]. 

Popular choices for making investment decisions for TIC-TES systems include 

NPV, internal rate of return (IRR), and payback period [14]. The different metrics might 

point to different optima; considering them together allows one to make a more informed 

choice. For example, Palestra et al. [179] examined 6 TIC scenarios with various 

combinations of chilled water TES and turbine supercharging systems. They performed a 

parametric study by varying the inlet air temperature. The maximum NPV occurred with 

a turbine inlet temperature of ~12°C, but the minimum payback period occurred with 

~16°C inlet air temperature. 

Work by Chacartegui et al. [180] also demonstrated the importance of multiple 

economic metrics. They examined different TIC technologies, including evaporative 

media, two-stage fogging, mechanical chillers, gas chillers, steam chillers, absorption 

chillers, and ice thermal storage, for a CHP facility in Southern Spain. They found 

fogging to have the lowest payback (1.5 years), but its NPV was also very low due to its 

inability to cool below the wet bulb temperature. Mechanical chillers with TIC-TES had 
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higher NPVs compared to the non-TES systems. As an additional metric, they also 

showed the significance of installation time in choosing a TIC technology. Since the CHP 

facility examined was for a chemical plant, the cost of not operating the plant for one day 

was much greater than the cost difference between choosing one TIC technology over 

another. 

A need remains for long-term validations of TIC-TES systems. Most reports only 

include projected results and only a few contain initial performance results. For example, 

Al Bassam and Al Said [181] reported the performance of a new six-turbine power plant 

with ice TES for TIC. They showed that the TIC-TES system increased the turbine 

electrical output by 22-26% for two days during commissioning, however no long-term 

performance was given. 

Optimization of TIC-TES Systems 

The addition of TES to TIC provides extra degrees of freedom in managing power 

generation and consumption. Optimization can be employed to best take advantage of 

this extra freedom. In optimization, an objective function (also called a performance 

index) that is to be minimized (or maximized) is defined. For example, objective 

functions for TIC-TES systems could be maximizing profit, electricity production, or 

efficiency. An optimization algorithm is employed that finds the optimal value of the 

objective function subject to any constraints imposed on the system. Common algorithms 

include interior point algorithms, sequential quadratic programming, and the simplex 

algorithm, though many others exist. For more information on optimization see [14]. 

Sanaye et al. [182] optimized a TIC system that incorporated mechanical chillers 

and ice TES. They employed two objective functions; the first included the capital and 

operational costs, and the second added an exergy destruction cost rate. No revenue terms 
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from the sale of electricity were included. The decision variables were compressor 

pressure ratio, air compressor isentropic efficiency, turbine isentropic efficiency, turbine 

inlet temperature, and refrigeration system evaporating pressure and condensing pressure. 

A genetic algorithm was used to solve the optimization problem. The use of the exergy 

destruction cost rate in the second objective function pushed the optimal design 

parameters towards more thermodynamically efficient values. The addition of TES to 

TIC increased the power output by 3.9-25.7%, the efficiency by 2.1-5.2%, and the 

payback from 4-7.7 years. 

Arnulfi et al. [183] found the chiller and ice TES sizes of a TIC-TES system by 

maximizing NPV using a genetic algorithm. A 1°C increase in the maximum daily 

temperature range for a climate increased the optimal chiller size by 0.9% and the TES 

volume by 1.8%. They observed that economics of a TIC-TES system are much more 

sensitive to price variations than to variations in climate parameters. When the objective 

function was changed to minimize the payback period instead of NPV the optimization 

results led to smaller chiller and TES sizes and payback periods of 1-2 years. Optimal 

configurations led to a 3% increase in gas turbine efficiency. 

Yokoyama and Ito [184] formed a mixed-integer linear programming (MILP) 

problem to minimize the unit sizing and cost of a cogeneration plant with ice TIC-TES. 

The objective function was the total annual cost of the plant which included equipment 

capital costs and the demand and energy charges from the utility, but ignored operation 

and maintenance costs. The optimization model included binary variables that 

differentiated between electricity purchased from the grid and electricity generated using 

the gas turbine. The optimization model was then linearized. The problem was solved 

using the branch and bound method combined with the Simplex method. They compared 

the results from the optimization to a cogeneration plant with ice TES that did not 
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perform TIC. The TIC system increased the optimal capacities of the gas turbine and ice 

storage, and decreased the optimal size of the conventional equipment. Costs over six 

representative days showed that the optimal solution with TIC reduced total costs by 

1.1%. 

Investigations of the optimization of TIC-TES systems are very limited, but they 

do provide an insight into why optimization is a beneficial tool for analyzing and 

improving TIC-TES systems. Optimization has only been performed on ice TIC-TES 

systems, and no optimization work has been done to compare ice TES and chilled water 

TES for TIC. There is significant potential for the development and application of 

optimization to TIC-TES systems. 

There is also significant potential for the development of advanced controllers 

that can improve performance of TIC-TES systems. For example, in an application of 

TES to meeting a campus cooling load, Ma et al. [111] found that the TES for the chilled 

water loop was being overcharged, and implementation of a model predictive controller 

was able to help operators forecast future energy needs and reduce the amount of energy 

spent charging the TES. Controllers that can forecast electricity prices, weather, and 

electrical and thermal loads and then generate dynamic set points for the times and rates 

of TES recharge/discharge can increase the profitability of installed TIC-TES systems. 

For example, if tomorrow’s weather predictions show that temperatures will be very high 

and that the peak demand will be very long, it might be optimal to only cool the inlet air 

to 18°C or 20°C (as opposed to 5-10°C) so that the TES has a longer discharge duration. 

Also, chiller efficiency is a function of ambient conditions. As the ambient temperature 

increases, chiller efficiency decreases. A predictive controller would be able to take into 

account changing chiller efficiencies as it determines when is the best time to consume 

electricity in order to recharge the TES. 
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Applying predictive controllers to TIC-TES systems would also increase the value 

of TIC-TES systems in the smart grid. By providing the turbine the ability to produce 

maximum power “on-demand” from the TES, the TIC-TES system becomes a “supply 

response” system, capable of quickly altering the amount of electricity supplied in order 

to meet changing loads. Gas turbines with TIC-TES in a distributed generation or micro-

grid setting will have expanded flexibility in participating in the ancillary services market 

or in the smart grid. 

Cost of TIC-TES Systems 

The cost of TIC-TES systems vary based on chiller type, storage media, capacity 

requirements, and location. Specific costs of $141-454/kW of added power output have 

been reported (see Table 4.1). The cost of adding new combined cycle gas turbine 

capacity is on the order of $200-800 [185]. 
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Reference System Type Size Cost Source 

[181] Ice Harvester 13000 m3 / 

19340 kWh 

$141-194/kWi “the consultant” 

[186] Ice Harvester 131500 kWh $165/kW Actual Cost 

[176] Chilled Water 

 

Ice 

 

Hybridii 

Not specified 

 

Not specified 

 

Not specified 

$172-385/kW 

 

$260-454/kW 

 

$211-428/kW 

Simulation 

[174] Not specified Not specified $165/kW [187] 

[172] Not specified Not specified $150-250/kW 

 

[155] 

[155] Not specified Not specified $150-250/kW 

 

[167] 

[167] Chilled Water 

 

Ice 

- 

 

- 

Formulaiii 

 

Formulaiv 

Equipment vendors, 

published literature, 

and cost handbooks 
 i Reported costs were 530-731 Saudi Arabian Riyals/kW. A conversion rate of 0.267 was 

applied. 
ii The hybrid system includes both water and ice TES. 
iii Cost = 572.4(Capacity)0.75 Where Cost is in dollars and Capacity is in ton-hrs. 
iv Cost = 163.6(Capacity)0.75 Where Cost is in dollars and Capacity is in ton-hrs. 

Table 4.1: Summary of costs for TIC-TES systems as reported in literature.  

Sanaye et al. [182] also included capital cost information. They listed all TIC-TES 

components separately (air compressor, combustion chamber, storage tank, refrigeration 

compressor, etc.) in equation form, so their cost information was not able to be included 

in the table above. 
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INVESTIGATION OF A TIC-TES SYSTEM IN A DISTRICT COOLING NETWORK 

System Description 

This analysis considers a unique configuration of a TIC-TES system. Instead of 

simply investigating the system shown in Figure 4.3, this investigation considers a TIC-

TES system that is integrated in a district cooling loop in Austin, Texas (see Figure 4.4). 

The chillers in the loop are responsible for charging the TES, providing TIC, and cooling 

the buildings on the loop. When charged, the TES is able to supply cooling for TIC 

and/or for the buildings. 

The system contains two identical centrifugal water-cooled chillers with a 

combined thermal capacity of 9230 kW. The centrifugal chiller models were the same as 

those presented in Chapter 3 which are based on the steady-state empirical model by 

Hydeman et al. [149]. The TES is a stratified chilled water tank with a capacity of 28000 

kWh and can be discharged or recharged at up to 7000 kW. The gas turbine for this 

system is a Solar Mercury 50 turbine with a nominal capacity of 4.3 MW. The gas turbine 

model is a linear, empirical steady-state model that depends only on the inlet air 

temperature. The turbine is assumed to always operate at full-load (the actual turbine 

system from which the data were taken always operates at full-load). A heat recovery 

steam generator harvests much of the heat from the exhaust which is used to meet local 

steam requirements. Absorption cooling is not considered due to the lack of available 

steam. 
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Figure 4.4: Schematic of TIC-TES system that is incorporated in a district cooling loop. 

The solid arrows represent water streams, the dashed arrows represent gas 

streams (e.g., air, natural gas), and the dotted line represents steam. The 

building icon represents all the buildings in the district cooling loop. HRSG 

stands for heat recovery steam generator. 

To mimic realistic loads placed on the system, an actual district cooling loop in 

Austin, Texas, with a 4.3 MW Solar Mercury 50 gas turbine was simulated. Building 

cooling demand profiles were modeled using the eQUEST building energy simulation 

software [188]. Buildings of interest were those that draw cooling from the district-

cooling loop associated with the TIC-TES system. These buildings are mostly associated 

with Dell Children’s Hospital, including outpatient treatment facilities, physician’s 

clinics, research facilities, administrative offices, and the hospital itself. In order to gather 

the size and geometry of the buildings, the buildings were first imported into Google 

SketchUp [189] using Google Building Maker [190]. Google SketchUp is a free 

computer aided drawing software package. Google Building Maker is a web-based 
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application that projects highly detailed aerial imagery as 3D objects in SketchUp. These 

objects can then be measured for size and then used as inputs into eQUEST.  

eQUEST allows building geometry to be as simple or complex as desired. For 

example, one can set a percentage of a wall to be fenestration, or manually place 

windows and doors where needed. There are many default building types that can be 

used. When setting up a simulation, one can assign a certain building type that comes 

with standard constructions and operating schedules. These standards and schedules can 

be overwritten if needed. eQUEST simulates building energy usage by discretizing time 

into hours of the year and then writing and solving dynamic mass and energy balances. 

The simulation also responds to various stimuli such as temperature set point changes and 

building user schedules.  

Once building geometry, type, and schedules are selected, a weather file is needed 

for simulation. Weather files are typically retrieved from the National Renewable Energy 

Lab (NREL) weather file database and consist of typical meteorological year (TMY) 

data. TMY data files consist of a “standard” year of meteorological data that represents 

the weather of a given location [191]. However, since replicating building cooling loads 

for 2011 was of greater concern (in order to match with 2011 electricity prices), the TMY 

file was edited to include actual 2011 weather data [192]. The measured data included 

2011 Austin dry bulb temperature, relative humidity, wind speed, and wind direction. 

Actual solar irradiation data was not available, so TMY solar irradiation data were used 

in the simulations. 

The electricity prices used for this analysis were the day-ahead settlement point 

prices (SPP) for the Austin load zone in the Electric Reliability Council of Texas 

(ERCOT) market for 2011. Thus the electricity prices corresponded with the weather 
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conditions used to generate the building cooling loads for the year 2011 for Austin, 

Texas. A natural gas price of $5/MMBTU was used. 

Analysis Methods 

An optimization problem was formulated to determine the optimal operation of 

the system shown in Figure 4.4. No design parameters were considered. The formulation 

is a receding horizon, multi-period optimization problem where predictions are used to 

determine the optimal operation N time steps into the future. While optimal inputs to the 

system during the entire time horizon are obtained in the solution, only the inputs for the 

first time horizon are actually implemented. The problem is re-solved at every time step 

to account for any deviations in measured variables versus model predictions. This 

technique is analogous to the popular moving horizon model predictive control 

framework [193]. The optimization problem was formulated as follows: 
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, 30 TES iC u 

 (4.8) 

 

where celec,i is the price of electricity at time i, PCHP,i is the amount of additional electrical 

power produced by the CHP unit because of the TIC at time i, Pchiller,i is the electrical 

power consumed by the chillers at time i, cfuel is the price of the natural gas fuel, mfuel,i is 

the amount of extra fuel burned due to the TIC at time i, Lchiller,i is the cooling load 

provided by the chillers at time i, Lbuildings,i is the cooling load required by the buildings at 

time i, TICi is the amount of cooling required for TIC at time i, TESi is the amount of 

cooling provided by the TES (when it is negative it means that the TES is recharging, i.e., 

requiring rather than providing cooling), Pnominal is the nominal power usage of the chiller 

given a nominal coefficient of performance (COP) of 5.6, DBTi is the dry bulb 

temperature at time i, mair,i is the mass flow rate of air at time i, Cp,air is the heat capacity 

of air, a, b, d, and e are fitting parameters estimated from the turbine operating data, l1 is 

a lower bound, and u1, u2, and u3 are upper bounds of their respective variables. 

Functions CAPFT, EIRFT, and EIRFPLR describe the nonlinear chiller model based on 

[149] and are shown in equations (4.9)-(4.12) (these are the same set of equations that 

were used for the chiller system in Chapter 3):  
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(4.12) 

   

where CAPFT is capacity as a function of temperature, EIRFT is energy input ratio as a 

function of temperature, PLR is part load ratio, EIRFPLR is energy input ratio as a 

function of part load ratio, TCWS is the chilled water supply temperature, TCTS is the 

cooling tower supply temperature (i.e., the temperature of the water that the cooling 

tower supplies to the chiller’s condenser), Qevap is the cooling load on the evaporator, 

Qnominal is the nominal rating of the chiller (in this case 4615 kW), and ai through fi are 

constants found by fitting the equations to actual chiller operating data. Note that TCTS is a 

function of the wet bulb temperature and that all of these calculations are performed at 

each time step i. 

The decision variables are TESi and TICi. The number of decision variables, 

therefore, depends on the number of time steps, N, considered in the prediction horizon. 

Looking 24 hours into the future with time steps of one hour, for example, means that 

there are 48 decision variables. 

The thermal storage tank is modeled as an ideally stratified tank with a 2% 

parasitic energy loss every time water is removed from or added to the tank. The loss 

term allows the model to behave externally as an actual stratified tank while maintaining 

the simplicity of an ideally stratified tank. The end results in efficiency are in line with 

the modeling comparison provided by [194]. 

An alternative objective function was also considered (subject to the same 

constraints), which minimized the amount of electricity consumed from the grid: 
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The optimization problem was formulated in MATLAB and solved using the 

sequential quadratic programming (SQP) algorithm. The optimization was performed 

over the entire year of 2011 using the models described in the system description (i.e., the 

problem in (4.1)-(4.12) was solved 8760 times). 

To provide a benchmark for measuring the effectiveness of this optimization-

based control strategy, an on-off control strategy was also considered. In the on-off 

control strategy, the TES is discharged during a predefined peak period (1-9pm) and then 

recharged beginning at midnight. 

RESULTS 

Three typical summertime charge/discharge periods from using the maximum 

profit optimization strategy for the TES are shown in Figure 4.5. The tank is filled to 

maximum capacity during times when the electricity day-ahead settlement point price is 

lowest and discharged when the settlement point price is highest. Electricity prices (as 

opposed to weather or chiller loading) tend to dominate the TES charging and 

discharging. 
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Figure 4.5: Energy remaining in storage during July 6-8. The maximum capacity of the 

TES is 28000 kWh. 

The TES operation is quite different during the wintertime. The electricity prices 

during the winter are often “double-peaked”—there is a morning peak and an evening 

peak. This causes the TES system to be more active. Three typical wintertime periods are 

shown in Figure 4.6. During the cooler months, the storage tank is often not charged all 

the way because smaller amounts of cooling are needed. 
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Figure 4.6: Energy remaining in storage during January 14-16. Note the “double-peak” 

in the electricity prices, and that the storage tank never reaches full capacity 

(28000 kWh) due to low cooling requirements. 

The effect of the TIC-TES system on the gas turbine power output is shown in 

Figure 4.7. When there is no TIC, the power output follows the same pattern as the 

ambient dry bulb temperature, reaching a low in the mid-afternoon when electricity is 

most needed. For the Austin climate, the wet bulb temperature is nearly constant, so an 

evaporative TIC system would provide a near-constant power output, though it is still 

under the turbine rated capacity of 4.3 MW. With the TIC-TES system, inlet air cooling 

occurs when it is economical to do so. During several hours of the night, no TIC occurs 

because electricity prices are at their lowest. In the morning (~7:00 am) the TIC cools the 

air to near the wet bulb temperature in order to provide some power increase without the 

need to condense any water out of the air. As the electricity prices rise later in the 

morning, the TIC cools at full capacity, increasing turbine power output to well above the 

rated capacity of 4.3 MW. An important result of the TIC-TES system is that it decouples 
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the turbine power output from ambient conditions, giving the system more flexibility in 

responding to price signals from the grid. 

 

 

Figure 4.7: Gas turbine power output for July 25. The TES is used in conjunction with 

the TIC to raise the turbine capacity above the rated capacity during the 

daytime hours. 

The savings obtained from employing optimization are shown in Table 4.2. A 

significant portion of the savings can be achieved from simply using the TES with the on-

off control strategy. The optimization strategy further enhances savings. Using cost 

estimates of $20-33/kWh (which are in line with [42], [155]), this gives a 3-5 year simple 

payback period for the TIC-TES system, down from 4.4-7.3 if only the on-off strategy is 

used. The NPV under the optimal strategy (using a 6% discount rate and a 10-year life) 

ranges from $411,000-760,000, with a corresponding IRR of 15.1%-31.1%. The wide 

range in the payback period, NPV, and IRR is due to the uncertainty in the capital costs 

of the TIC-TES system. Using the on-off control strategy, the NPV ranges from $10,800-

359,000 and the IRR ranges from 6.3%-18.8%. 
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 No TES On-off Control 

Strategy 

Optimal Strategy 

Chiller Costs $376,600 $252,400 $204,000 

TIC Revenue $141,800 $144,700 $154,000 

Net Cost $234,800 $107,700 $50,000 

Change in Chiller 

Costs 

- 33% Decrease 46% Decrease 

Change in TIC 

Revenue 

- 2.0% Increase 8.6% Increase 

Change in Net Cost - 54% Decrease 79% Decrease 

Table 4.2: Comparison of chiller costs, TIC revenue, and net cost without TES, using 

the on-off control strategy, and using the optimal strategy. TIC revenue is 

the additional revenue gained from operating the TIC. All values are on an 

annual basis. The changes in costs are based on the “No TES” costs. 

Value of TES 

As discussed previously, one primary benefit of including TES for TIC is that the 

TES can perform the TIC in order to reduce the parasitic load that would otherwise be 

incurred by the chillers. Under the optimal control strategy the TIC increases the annual 

electrical energy production from the turbine by 4864 MWh. To perform this TIC without 

TES, the chillers consume 403 MWh of electric energy, meaning that the parasitic load 

from operating the chillers for TIC is 8.3%. However, because electricity rates are 

generally higher during warmer periods, this 8.3% parasitic load corresponds to a 20% 

decrease in TIC revenue (TIC revenue is the additional revenue gained from operating 

the TIC). The parasitic losses due to the chiller are over twice as great when considered 

in terms of costs rather than energy loss for this scenario. This also means that the 

addition of TES to a TIC system can increase profits by up to 20%. The reason the total 

savings for this entire system is much higher is that TES serves not just the TIC system, 

but also the buildings in the district cooling loop. 
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TES value can also be examined in terms of its ability to reduce electricity 

demand. Once charged, the TES can be used for providing TIC or for providing cooling 

to the buildings’ air handling units for space cooling. By sending the TES chilled water to 

the buildings, the load that must be supplied by the chiller is reduced. For the year 

investigated here, the chillers operated with coefficients of performance (COP) of 3.9-

8.8. This means that for every kW of cooling provided by the TES, the chiller’s 

electricity demand was reduced by 0.11-0.26 kW. When the TES is used to provide TIC, 

the electrical output of the turbine is increased by 2-2.3 kW for every kW of cooling. In 

terms of power consumption (considering production as negative consumption), the value 

of cooling for TIC is an order of magnitude greater than the value of cooling for a 

building. In a system with a limited amount of cooling capacity that has both building 

cooling loads and TIC loads, the TIC cooling loads will always be given preference if the 

objective is to consume the least amount of power. 

While the results of this study clearly show the benefits for operational cost 

savings of using TES with TIC, the capital investment required to install such a system is 

the main disadvantage. Therefore, when considering such an investment as an upgrade to 

a district cooling system with power generation, it is critical to consider the payback 

period and rate of return on such an investment. Typically, there is an economy-of-scale 

benefit associated with TES, which is the predominant reason that TES systems are most 

common in district cooling systems, where the maximum benefit/cost ratio can be 

achieved.  

Effects of Prediction Horizon 

In the scenario examined in this chapter, the chillers are large enough to meet the 

2011 building loads, but not large enough to meet the building loads and the TIC loads. 
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This makes the TES especially valuable, since the TES allows the system to meet the 

combined cooling load without adding additional chiller capacity. In implementing a 

multi-period optimization scheme (i.e. N>1) to determine the best operating strategy for 

the TES and TIC, it is important that some level of forecasting is used. If no forecasting 

is used, the optimization strategy will never use the TES since it will never be optimal to 

charge the TES. This case reduces to the case where TES does not exist in the system. 

Using longer prediction horizons allows the controller to charge the tank in preparation 

for discharging during peak times when electricity is most expensive. In this 

investigation, the optimal prediction horizon was found to be 12 hours, though a time 

horizon of 10 hours comes within 1% of the optimal and would be sufficient for practical 

purposes. Net energy cost versus prediction horizon is shown in Figure 4.8. 

 

 

Figure 4.8: Annual chiller costs versus the time horizon (N) used in the optimization. 

Effects of Objective Function 

In the case where the objective function is changed to minimize the amount of 

energy consumed from the grid (Equation 13), the TIC always operates unless the outside 
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with the TES to minimize energy usage. The chiller costs in the minimum energy 

scenario are $306,200, and the electricity production revenue from using the TIC is 

$143,900, yielding a net cost of $162,300. The annual net energy drawn from the grid is 

reduced from 2973 MWh to 837 MWh, a 72% reduction. This is accomplished entirely 

through the additional electricity production from running the TIC whenever possible. 

The chillers actually consume more electricity in this scenario because they are required 

to meet the additional load imposed by the more active TIC. 

The system can be operated so that grid electricity is reduced by 72%; however, 

net annual costs increase by $112,300. A modified objective function could then be 

considered to allow the TIC to operate whenever the temperatures are above the chilled 

water temperature and then minimize the cost of the chiller operation as before. In this 

case, grid electricity consumption is 871 MWh, just 4.1% higher than the minimum 

energy case. This strategy increases net costs from $50,000 to $64,700. Thus, for a 

relatively small cost, a facility such as this could move significantly closer to net zero 

grid electricity consumption. The reason the cost is so small is that the cooling equipment 

efficiency generally follows the day-ahead settlement point price—when the electricity 

prices are lower, the equipment efficiency is generally higher, and when the electricity 

prices are higher, the equipment efficiency is generally lower. 

CONCLUSIONS 

Turbine inlet cooling (TIC) increases the power output and efficiency of gas 

turbines during periods of warmer ambient temperature. Evaporative-type cooling is 

cheap and often effective, but it is limited by the ambient wet bulb temperature and water 

availability. Chillers can provide much more cooling than evaporative methods, but are 

capital intensive and have high parasitic electrical loads. Adding thermal energy storage 
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(TES) shifts the chiller’s cooling load to increase chiller efficiency and allows turbine 

inlet cooling to take place during peak hours without the chillers running. Because of the 

ability of TIC-TES systems to cool below the wet bulb temperature, they can have higher 

economic benefits than evaporative-type cooling which leads to higher NPV. However, 

because of the higher capital costs of the systems, the payback periods of TIC-TES 

systems are typically greater.  

A year-long investigation was performed on a TIC-TES system connected to a 

district cooling loop. The system investigation was based on an actual district cooling 

system in Austin, Texas, and used real Austin weather and electricity pricing data for 

2011. By applying multi-period optimization to determine system operation, cost savings 

of 79% were achieved. The benefits of the optimization were greater for the district 

cooling system than for the TIC system. 

However, in terms of electrical power, the TIC system benefits far more from the 

TES cooling energy than the district cooling system. It was also found that the parasitic 

losses on TIC cooling are much greater when considered in financial rather than energetic 

terms in a time-of-use pricing scenario. 

When the objective function was changed to minimize energy consumed from the 

grid, the TIC was able to provide significant grid energy reduction at relatively little cost. 

However, minimizing the energy of the district cooling system was costly and provided 

little energy savings. By minimizing energy consumption using the TIC while 

simultaneously minimizing cost using the district cooling system a reasonable 

compromise was achieved. 
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Chapter 5: Reduced-order Residential Home Modeling for Model 

Predictive Control4 

INTRODUCTION 

As of 2011, there were over 132 million housing units in the United States [195], 

87% of which had air conditioning units [196]. In the southern United States, the 

percentage of homes with air conditioning approaches 100% [196]. These air 

conditioning units tend to exacerbate peak demand issues. For example, during the 2011 

summer peak in the ERCOT (Electric Reliability Council of Texas) grid, over 50% of the 

total electrical load was from residential homes [197], whose loads were primarily driven 

by their air conditioning systems. Because of this, the residential sector has enormous 

potential to be a key player in the future of grid management. 

Modeling tools have been developed to help understand the best way to manage 

building energy consumption, primarily heating, ventilation, and air conditioning 

(HVAC) energy consumption. Models provide insights into a building’s design and 

operation that can lead to significant cost savings over the lifetime of the building. Some 

building certification programs (e.g., LEED) even require building simulation to be 

performed. 

From the building operation side, model predictive control (MPC) has become 

increasingly popular for determining the optimal operation of building HVAC systems 

[198], so much so that new software that helps to evaluate MPC methods for building 

controls and help educate building control engineers about MPC tools have been recently 

developed [199]. Model predictive control uses a model of the system that is being 

                                                 
4This chapter was included in W. J. Cole, K. M. Powell, E. T. Hale, and T. F. Edgar, “Reduced-order 

residential home modeling for model predictive control,” Energy and Buildings, vol. 74, pp. 69–77, 2014. 

Powell contributed the neural network modeling work, and Hale contributed expertise in using the 

OpenStudio analysis package.  Edgar provided general advising and editing. 
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controlled to determine optimal controller actions. These control actions are generally 

implemented on a receding horizon basis, meaning that after an optimal control sequence 

is calculated, only the first control action is actually implemented. The problem is then 

updated with new data at the next time step and re-solved to determine the next control 

action. 

Creating a suitable dynamic building model is one of the primary challenges of 

MPC [198], [200]. Accurate high-order dynamic models are readily available, but are 

generally not suitable for optimization and control algorithms. The higher-order models 

can be computationally expensive and often have model forms that are nonconvex, 

making it difficult for algorithms to converge to an optimal solution in time for the 

solution to be implemented. Therefore, model reduction is an important part of dynamic 

building modeling [201]. 

Creating a reduced-order model proceeds in two steps. First, an appropriate model 

structure is identified. Second, the values of the model parameters are estimated. 

Generating actual test data to perform model reduction can take months or years, and 

many of the inputs are not controllable (e.g., outdoor temperature). Building modeling 

software has been identified as a tool for creating input/output datasets for model 

reduction and parameter estimation [198], [200]. This allows inputs to be exactly 

specified and allows the system to be perturbed in ways that would be unacceptable to 

building occupants or harmful to equipment operating in an actual building. With a 

building simulation package, a wide range of operating conditions can be simulated to 

produce a data set that can be used to fit a simpler model, which is more amenable to 

optimization-based control. Furthermore, the synthetic data can be generated in a matter 

of minutes or hours, rather than the months or years required to generate a similar data set 

from an actual building.  
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Dynamic reduced-order building models come in a variety of forms. One common 

reduced-order model form is the resistor-capacitor (RC) model. In these models the 

buildings are modeled like an electric circuit with thermal resistances and capacitances. 

For example, Karmacharya et al. [202] created a lumped-node RC model of a residential 

home. They used the model to predict indoor air temperature and required HVAC energy 

for a heating environment. The model is implemented in MATLAB/Simulink and 

validated using BESTEST. In [203] Gouda et al. used nonlinear constrained optimization 

to reduce a model of a campus building to a lumped-parameter RC model. Optimization 

was used to determine the optimal parameters in the reduced-order model. They 

benchmarked their model against a 20th order model and found that the reduced-order 

models suffered only minor accuracy losses yet had considerably better computational 

efficiency. 

Another popular model structure for reduced-order modeling is the ARX 

(autoregressive with exogenous inputs) family of models. ARX models use previous 

inputs and outputs to predict future outputs. Malisani et al. [204] used a data-driven ARX 

model for building thermal modeling and discussed identification methods, including 

time-scaled methods. They benchmarked their reduced-order model against a 47th order 

model and found good agreement. 

Although it might not be a true reduced-order model by definition, making 

simplifying assumptions is one way of reducing model complexity and order. For 

example, Kelman and Borrelli [205] introduced several assumptions to develop a low-

order model. The resulting model used for MPC is a bilinear model of a commercial 

HVAC system. 

Once a reduced-order model is obtained, it can be used to determine the best 

inputs to the system. For example, a building can be precooled to avoid peak energy 
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costs. Using the HVAC system to precool a building has been examined extensively in 

the literature [140], [143], [205]–[207]. Precooling takes advantage of the building’s 

thermal mass to store thermal energy before a peak time occurs. The cool thermal mass 

can then absorb heat during the peak period, which reduces or eliminates the load on the 

HVAC system. This use of thermal mass is also called passive thermal energy storage 

(see Chapter 2). One of the primary factors in determining the economic feasibility of 

passive thermal energy storage is the electricity rate structure [143], [208], [209]. 

However, for building occupants to take advantage of price differences, some sort of 

enabling technology (i.e., a device that automatically makes changes) is needed. Klos et 

al. [210] showed that those who have an enabling technology respond much more 

strongly to pricing signals than those without the enabling technology. Those with 

enabling technologies reduced peak loads by 21%, while those without the enabling 

technology reduced their load by 3%. The enabling technology considered in this chapter 

is model predictive control. 

Simple HVAC models can also be used as a basis for developing whole home 

energy management systems (HEMS), such as in [211], [212]. These HEMS manage all 

the energy consumed in the home, from lighting to electronics. Because the HVAC 

system is the largest load in the home, modeling it accurately and simply is the first step 

to creating an effective HEMS. 

This chapter describes an automated method for generating an input/output 

dataset and discusses how this dataset can be used to create a reduced-order home model. 

The reduced-order home model is unique in that its inputs and outputs are easy to 

implement in a HEMS-type system. The manipulated inputs to the model are the home 

thermostat set points and the outputs are the hourly air conditioning energy consumption 

(rather than room temperature). An appropriate model structure for this type of model is 
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identified. The reduced-order model is used in an MPC formulation to determine the 

optimal precooling strategy based on market electricity prices. Finally, the analysis of the 

cost savings and peak reduction is presented and discussed. 

PROBLEM DESCRIPTION 

The purpose of developing the reduced-order model is to have an accurate and 

computationally simple model that can be used by MPC to control a residential home’s 

thermostat set point so that cost is minimized while staying within comfort bounds. 

Because MPC requires solving an optimization problem the model must be simple 

enough for the optimization algorithm to converge before the next time step and accurate 

enough to be applicable to the actual system. In this work, the desired model is one that 

takes in weather inputs (dry bulb temperature and relative humidity), thermostat set 

points, and time of day to predict air conditioning electricity consumption. For the MPC, 

the controlled variable is the air conditioning electricity consumption over the time 

horizon and the manipulated variable is the thermostat set point. The weather inputs are 

disturbance variables. The typical controlled variable for an HVAC system is temperature 

rather than electricity consumption, so the considerations here are somewhat different 

than those in other related work. More discussion on the consequences of choosing 

electricity consumption as the controlled variable is found in the model reduction section. 

The building used in this analysis is a 197.7 m2 residential home in Austin, Texas, 

shown in Figure 5.1. This building is part of the Mueller neighborhood, which is part of 

the Pecan Street Smart Grid Demonstration Project. Building geometry was taken from 

Google Building Maker [213] and implemented using BEopt [214], [215]. BEopt is a 

residential home modeling software packaged developed by the National Renewable 

Energy Laboratory (NREL). BEopt was used to generate an EnergyPlus simulation file. 
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Information for constructions, equipment efficiencies, schedules, duct leakage, etc. came 

from surveys and energy audits conducted by Pecan Street, Inc., for homes in the Mueller 

neighborhood [216], [217]. The home was assumed to be unoccupied from 8:00-17:00 

with allowable thermostat set points given by Figure 5.2. Daily home energy use 

predicted by EnergyPlus (with 10 minute time steps) was compared to the metered 

energy use for homes in the neighborhood and found to be in good agreement. The point 

is not that this EnergyPlus model is an exact match of the home, but that it is a reasonable 

representation of a typical home in the area. 

 

 

 

Figure 5.1: A SketchUp rendering of the residential home using the OpenStudio 

SketchUp Plugin. The purple houses on the left and right side of the 

modeled home represent neighboring homes that provide shading. 
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Figure 5.2: The upper and lower bounds for the thermostat set point. The bounds are 

wider from 8:00-17:00 because the home is unoccupied during that time. 

The dynamics associated with the heat transfer in the system are described within 

the EnergyPlus simulation software, which combines ordinary differential equations 

(ODE) with algebraic expressions to determine heating and cooling loads as a function of 

time. EnergyPlus also includes models of the HVAC system that capture the nonlinear 

effects of system operation as a function of ambient conditions. For more information on 

EnergyPlus see [148]. 

OpenStudio was used to automatically generate modified EnergyPlus input data 

files (IDFs) and EnergyPlus weather files (EPW). OpenStudio is an open-source, cross-

platform software development kit (SDK) and application suite that has the capability to 

use EnergyPlus as a simulation engine. OpenStudio includes an analysis framework and 

run manager that can automatically modify building energy models, simulate them in 

EnergyPlus, and collect the results in a single database. More details about the 

OpenStudio analysis framework and its capabilities are available in [218], [219]. 

EnergyPlus requires weather inputs for the dry bulb temperature, wet bulb 

temperature, and relative humidity, but due to psychrometric relationships, only two of 
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the three need to be specified. In this investigation, the dry bulb temperature and relative 

humidity are selected by a sampling algorithm, while the wet bulb temperature is 

calculated using the following relationship from [220] 

 

    

     

1/21 1

3/21 1

tan 0.151977 8.313659 tan
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 

   
 

(5.1) 

 

where WBT is the wet bulb temperature (in °C), DBT is the dry bulb temperature (in °C), 

and RH is the relative humidity (entered as a percentage, e.g., a relative humidity of 

43.5% is entered as 43.5). 

EnergyPlus is an excellent building energy modeling tool; however, it has a 

relatively slow run-time due to its detailed energy calculations. For example, to simulate 

energy use for one day of the home shown in Figure 5.1 takes 20-25 seconds. This might 

be suitable for general simulation purposes, but not for optimal control implementation. 

Determining optimal set points for a 24-hour period using a gradient-based solver might 

require thousands or tens of thousands of model simulations. If EnergyPlus is the tool for 

those simulations, optimal set point calculations would take on the order of tens of hours, 

which is too long for practical application. Derivative-free solvers could be used to try to 

reduce the number of required simulations, but that might require settling for a 

suboptimal solution. Therefore, a reduced-order model that maintains the accuracy of the 

EnergyPlus model while reducing the computation time is very useful. 

Once a reduced-order model is determined, it can be used in an open-loop 

economic model predictive controller that determines the optimal set points over the 

course of a day in order to minimize costs. The model predictive controller formulation 

used here is  
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(5.3) 

   

    0       , 1, ,y k ub k k k k N       (5.4) 

   

          , 1, ,lb T k ub k k k k N       (5.5) 

 

where J is the operating cost for the air conditioning system over the time period of k to k 

+ N, k is the discrete time step (it can only take on nonnegative integer values), N is the 

length of the prediction horizon, r is the electricity rate ($/kWh) for the given time step, 

and y is the electrical energy (kWh) used by the air conditioning system at the given time 

step, T is the temperature set point (°C), and lb and ub are upper and lower bounds, 

respectively. Other common MPC formulations track a set point ([221]) or minimize 

energy use (see Chapter 3). Some consider combinations of two or more criteria (e.g., 

[222]). Minimizing energy consumption can also be considered here by setting r to the 

same value for all time steps. The reduced-order model is the function (f) given in (5.3). 
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Figure 5.3: Day-ahead market settlement point prices for July 7-9, 2011, for the Austin 

load zone of the ERCOT market. 

The electricity prices (r) used here are the day-ahead settling point prices from the 

Austin load zone in the 2011 ERCOT market. The prices represent actual electricity costs 

in a cooling-dominated climate with costs highest in the afternoon and lowest in the early 

morning hours (see Figure 5.3). Because the day-ahead settling point prices are published 

a day in advance (i.e. prices for July 7 are published on the afternoon of July 6), there is 

no need for a price prediction model. 

MODEL REDUCTION 

The general form of the reduced-order model considered here is a full quadratic 

model given by 
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This general form can include any length of history (e.g., it can include the set 

point or dry bulb temperature from n hours ago) as well as interaction terms (e.g., 

T∙DBT). Each term in the model is associated with a coefficient that is determined from 

input/output data. 

The general methodology in creating a reduced-order model was to generate an 

input/output dataset using the EnergyPlus model. This input/output data was then used to 

identify the model structure (i.e., which terms from the full quadratic model to keep) and 

estimate model parameters. The OpenStudio analysis framework was key to doing this 

with relative ease. 

Each sample was a 24-hour EnergyPlus simulation, running from midnight to 

midnight. The only inputs perturbed were the thermostat set point at each hour, the dry 

bulb temperature at each hour, and the relative humidity at each hour, resulting in a total 

of 72 variables for each sample. All other model parameters were kept constant. 

Determining how to perturb the model inputs was critical to identifying an 

appropriate model. For example, perturbing each input at every hour leads to identifying 

a model with very poor prediction capabilities. Things to consider when determining the 

best input sequence include: 

 

 How frequently will inputs be perturbed? 

 How large will input changes be when they are perturbed? 

 Will parameters be perturbed simultaneously or independently? 

 What is the allowable space for perturbations? 

 

Preliminary input/output data gave several insights. Outdoor relative humidity 

was found to have little impact on air conditioning energy use, so it was eliminated from 
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further consideration. The settling time (the time it takes the system to return to steady-

state after a perturbation) was determined to be approximately 22 hours, indicating that 

rapid changes in model inputs would hide some of the dynamic behavior of the system. 

Zhu [223] recommends holding input values for ¼, ½, and ¾ of the 98% settling 

time when doing nonlinear system identification. He also recommends using at least as 

many levels as the order of the model considered. Because there is no noise, the input 

sequence can be relatively short, making a simple step test or a single cycle of PRBS 

(pseudorandom binary sequence) effective [224]. The lack of noise tends to lead to 

lower-order models [224]. 

Because the output of the system considered here is the air conditioning energy 

consumption, other complications arise in creating the input sequence. One of the inputs 

is the thermostat set point. If the house is at equilibrium, raising the thermostat set point 

will turn off the home’s air conditioning unit, while lowering the set point will turn it on. 

These create very different responses, such that the overall response to the temperature 

set point is nonlinear. This is due to the fact that there is a closed-loop, on-off controller 

(the thermostat) in the system, but the system is treated as an open-loop system. Another 

associated challenge is that output data are averaged over the time step (one hour). The 

output (air conditioning energy consumption) is the average power draw by the air 

conditioner over the course of the hour. If the air conditioner uses 1 kW for one hour the 

output will be exactly the same as if it uses 2 kW for 30 minutes and 0 kW for the 

remaining 30 minutes. 

The input dataset that was used consisted of 180 samples of step tests in T holding 

DBT constant and 120 samples of step tests in DBT holding T constant. Holding a 

variable constant meant that the variable did not change during that sample, but different 

samples had different (though constant) values of the variable. Because of the issue with 
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the air conditioning system turning off if T was raised, T was only allowed to have steps 

down. The magnitude, duration, and start time of the steps for both T and DBT were 

determined using the Latin hypercube sampling (LHS) algorithm [225], which is already 

included in the Dakota libraries used by OpenStudio. The magnitude of T was restricted 

to 20-27.78°C and the magnitude of DBT was restricted to 15-45°C. The range for T was 

taken from Figure 5.2 and the range of DBT was taken from historical summer weather 

data for Austin, Texas. Summer temperatures can be lower than 15°C, but in those cases 

it is assumed that the air conditioning electricity consumption will be zero. Of these 300 

samples, 225 were used for parameter estimation while the remaining 75 were used as a 

validation set. 

The general reduced-order model considered without RH is given by 
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 (5.7) 

   

 1  for mod 24

0            otherwise
i
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  

(5.8) 

 

where nx is the number of time steps considered for input x, a-h are model coefficients, 

and hr is the 0/1 variable given by (5.8). Equation (5.8) allows for a different constant 

term for each hour of the day, which accounts for other disturbances such as occupancy 

and solar irradiation. In the case that all disturbances were modeled, only a single h 

coefficient would be necessary. 
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In summary, the steps taken to generate a reduced-order model are 

 

1. Build a residential home model in BEopt. 

2. Convert the EnergyPlus model (IDF) developed in BEopt into an OpenStudio 

model (OSM). 

3. Use scripts written in Ruby to automatically perturb model parameters 

(including weather data) within their specified ranges and generate unique 

OpenStudio models based on those perturbations. This means that generating 

50 samples will lead to the creation of 50 different OpenStudio models with 

50 different weather files. 

4. Convert the OpenStudio models to EnergyPlus models. 

5. Simulate the models using EnergyPlus. 

6. Post-process the EnergyPlus output files to combine the results from all of the 

models into a single database. 

7. Fit a reduced-order model to the simulation data using a statistical software 

package. 

 

Steps 2-6 are run from a single automated script, for which the user specifies the 

sampling algorithm to be used, the allowable sampling ranges, the sampling distributions, 

and the number of samples desired. The majority of the work is handled by OpenStudio. 

An OpenStudio R library is currently under development that can also automate step 7. 

As a caveat to this automated process, because BEopt was used to develop the 

EnergyPlus model, some elements had to be manually changed before they could be 

imported into OpenStudio. For example, Schedule:Week:Compact objects had to be 
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converted to Schedule:Week:Daily objects. If the models are built in OpenStudio, or only 

include elements already supported by OpenStudio, then this step would not be present. 

Due to the automation offered by OpenStudio, it is simple to alter parts of the 

model and generate new data for fitting a reduced-order model. For example, if the 

home’s occupancy schedules changed, one would simply need to update the EnergyPlus 

model, and then the same OpenStudio script could be run to generate new output data. 

Thus the process is highly replicable. 

RESULTS AND DISCUSSION 

The general goal of the work presented here is to develop a reduced-order 

residential home model that can be effectively used in a model predictive controller in 

order to optimally manage home air conditioning energy use. This section presents the 

results from developing the reduced order model (see “Reduced-order Modeling 

Results”) and then uses the developed model in a model predictive controller (see “Model 

Predictive Controller Results”). Results of using the MPC over the course of a summer 

are also presented in with the Model Predictive Controller Results section. 

Reduced-order Modeling Results 

In estimating the model parameters, the following model form was identified: 
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(5.9) 

 

where all gi,j from (5.7) are zero. The estimated parameters (a-h) in (5.9) had p-values (a 

measure of statistical significance) ranging from 0-0.0000169, and the model had an 
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adjusted R2 of 0.990. However, the coefficients for ei were very small. Forcing ei to be 

identically zero lead to a simpler model that was linear in the inputs (T): 
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(5.10) 

 

This model had an adjusted R2 of 0.988 and the parameters a-g in (5.10) had p-

values from 0-0.0120. Although the nonzero coefficients ei were statistically significant, 

the simpler model lost very little predictive power. Also, because ei from (5.9) contained 

both positive and negative numbers, the model in (5.9) was nonconvex. Setting ei to zero 

in (5.10) leads to a linear, convex model in the manipulated variable. This has two 

advantages when applying this model in the MPC. First, because it is convex, the optimal 

solution found by the solver is guaranteed to be the global optimum, and second, the 

problem can be solved using a linear solver, which is extremely fast. 

All results presented in the chapter use (5.10). The coefficients for (5.10) are 

given in the Appendix. The model is stable, with all poles and zeros inside the unit circle 

(see Appendix for these calculations). Also, the poles and zeros are real, indicating that 

there is no oscillation or inverse response. The steady-state gain for the model is a 

function of DBT, but it is always negative, meaning that an increase in the thermostat set 

point will always lower the steady-state energy consumption. For more information on 

analyzing discrete time dynamic models, see [226], [227]. 

Figure 5.4 shows the model given in (5.10) applied to the validation dataset. The 

R2 for this fit was 0.986. 
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Figure 5.4: Parity plot of actual versus predicted energy use for the validation dataset 

using the model given in (5.10). 

The reduced-order model takes ~10-4 seconds to calculate the energy usage for 

one day, while a day-long EnergyPlus run takes 20-25 seconds. This reduction in 

calculation time allows the optimization algorithms to determine the optimal set points in 

a fraction of a second. 

One challenge of the reduced-order model provided here is that it was trained 

only on stepping the thermostat down (i.e., lowering the thermostat). Stepping the 

thermostat up resulted in the air conditioner turning off no matter the step size, causing 

errors in developing the input-output relationship. As a result of only stepping down, the 

model is less accurate when predicting energy consumption when the thermostat is 

raised. When the air conditioner is on, air is forced through the house, increasing heat 

transfer coefficients and mixing the air. When the air conditioner is off (which is what 

happens when the thermostat is raised), the air is mostly stagnant and heat transfer 

between the air and the house relies more on natural convection. Thus the dynamics of 

the house are slower when the air conditioner is off than when it is on. The inaccuracies 
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associated with the simplifying methodology will be seen in the model predictive control 

results. 

In order to more fully evaluate this methodology, it is compared to a pre-packaged 

neural-network-based time series model, in this case, MATLAB’s Neural Network 

Toolbox ®. This model uses the same input/output dataset as described in Section 4 to 

predict future energy usage. The neural-network model provides an excellent fit to the 

testing data, yielding an adjusted R2 of 0.998. However, the model does not extrapolate 

well and produces very poor results when predicting energy use given inputs that are 

outside of the original step-test response data, meaning that optimal solutions generated 

from this model are unreliable. This remains the case even if the training data are 

expanded to include both up and down steps in the thermostat set point. Furthermore, the 

model introduces nonconvex nonlinearities with respect to the inputs. These 

nonlinearities are significant in that they require solving a nonconvex nonlinear 

programming (NLP) problem to determine the optimal set point profiles, which requires 

significant computational effort. It is therefore concluded that a neural network model 

would require a larger and more diverse set of training data in order to avoid 

extrapolation, which hampers the usefulness of creating a reduced-order model from a 

building simulator. It is also concluded that such a model is not well suited to a real-time 

control application as the corresponding NLP problem requires significant computation 

time (solving for a 24-hour optimal set point trajectory using a neural network model 

required hours of computation time). 

Model Predictive Controller Results 

The model predictive control problem in (5.2)-(5.5), using the reduced-order 

model presented above, was solved using the COIN-OR linear programming (CLP) 
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algorithm. The value of N in (5.2) was chosen to be 12 based on the objective function 

value using different values of N (see Figure 5.5). Extending the prediction horizon 

beyond 12 hours yielded improvements in the objective function of less than 0.1%. 

 

 

Figure 5.5: Normalized objective function value during July and August as a function of 

the prediction horizon (N). 

A single-day solution to the model predictive control problem is shown in Figure 

5.6. On this day, electricity prices are fairly typical for a summer day, ranging from about 

$0.03/kWh in the early morning to $0.13/kWh in the afternoon. The house is precooled in 

the morning and then the thermostat is raised throughout the afternoon so that energy use 

is lowest when electricity prices are highest. At the end of every hour, the room 

temperature is generally very close to the set point. The stair-step behavior from 11:00 to 

15:00 is caused by the nonnegativity constraint given in (5.4), because raising the set 

point higher (e.g., all the way to the upper bound) would result in negative electricity 

consumption. If the model predictions were perfect, then the optimal set point solution 

shown in Figure 5.6 would be equivalent to raising the set point to the upper bound at 
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10:00 and leaving it there for the remainder of the day. This is because the air 

conditioning energy consumption is zero during the stair steps. 

 

 

 

Figure 5.6: The upper plot shows the optimal temperature set point profile for July 8, 

with the upper and lower limits for the set point shown by the dashed lines 

and the room temperature shown by the dotted line. The lower plot shows 

the electricity prices and dry bulb temperature for the same day. 

The actual and predicted energy use for July 8 is given in Figure 5.7. The R2 

between the actual and predicted data is 0.97. The inaccuracies in the reduced-order 

model primarily arise when the air conditioning system is turned off and kept that way 

for several hours by raising the thermostat from 11:00-15:00. The model was trained only 
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using step tests that lowered the thermostat, meaning the air conditioning system would 

come on. The model is therefore less accurate when the system is off, but the 

inaccuracies are relatively small. 

 

 

Figure 5.7: Actual and predicted energy use for July 8. Actual use is given by the 

EnergyPlus simulation, while predicted use is given by the reduced-order 

model (5.10). 

Energy usage and costs for July 8 are given in Table 5.1. Using the optimal 

temperature set points from the model predictive controller, costs are decreased, but 

overall energy usage is increased. Peak energy usage is also dramatically decreased. An 

increase of 1.7 kWh in total energy use led to a peak energy reduction of 2.6 kWh. 

 

 Base Case Optimal Case Percent Change 

Total Usage (kWh) 15.4 17.1 11.0% 

Total Cost $0.80 $0.65 -18.8% 

Peak Usage (kWh) 4.46 1.84 -58.7% 

Peak Cost $0.38 $0.14 -63.2% 

Table 5.1: Total and peak energy consumption and costs for July 8. The percent change 

is the change from the base case to the optimal case. 
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The solution time for computing a single day’s optimal solution is negligible 

(~0.01 s) because the formulation is linear with only 12 decision variables. Lengthening 

the time horizon increases the solution time, but the increase is small enough that it is not 

a concern. 

 

 

 

Figure 5.8: The upper plots shows the optimal temperature set point profile for August 

28, with the upper and lower limits for the set point shown by the dashed 

lines and the room temperature shown by the dotted line. The lower plot 

shows the electricity prices and dry bulb temperature for the same day. 

The optimal set point profile for a day (August 28) with more extreme 

temperatures and prices is shown in Figure 5.8. Precooling begins at the same time as on 
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July 8, but the temperature is kept at the lower bound until 14:00. The thermostat set 

point is raised during the extreme price period to keep energy use low. The thermostat 

never actually reaches the 27.78°C upper bound. Doing so would allow the cooling load 

at 13:00 to be lower, but would increase the cooling load at 17:00. Because prices are 

higher at 17:00 than 13:00, not reaching the upper bound is more economical. 

The savings that come from implementing the optimal profile are significantly 

greater on August 28 (see Table 5.2). Because of the high peak prices (reaching 

$1.50/kWh), the solution performs as much precooling as possible in order to eliminate 

the need to do cooling during those expensive hours. 

 

 Base Case Optimal Case Percent Change 

Total Usage (kWh) 19.7 22.7 15.2% 

Total Cost $5.27 $1.65 -68.7% 

Peak Usage (kWh) 5.7 1.37 -76.0% 

Peak Cost $4.63 $0.80 -82.7% 

Table 5.2: Total and peak energy consumption and costs for August 28. The percent 

change is the change from the base case to the optimal case. 

When compared to the EnergyPlus model results, the reduced-order model 

performs well for this hotter day (see Figure 5.9). The R2 between the EnergyPlus model 

results and the reduced-order model results is 0.966. The good fit shows that the training 

data generated from step tests gives the model accuracy over a very wide range of 

circumstances. 
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Figure 5.9: Actual and predicted energy use for August 28. Actual use is given by the 

EnergyPlus simulation, while predicted use is given by the reduced-order 

model (5.10). 

Table 5.3 summarizes the energy usage and costs for the base case and optimal 

strategies for the months of July and August. The cost of the electricity to the customer 

and to the utility are considered separately, similar to [206]. Nearly one third of the 

energy in the base case scenario is consumed during peak hours, while under the optimal 

strategy less than 8% of the total energy is consumed during peak. It costs 132 kWh of 

extra energy to reduce the peak by 205 kWh. 

It is obvious that under the base case scenario, the utility is losing money during 

peak hours. One solution considered here is to expose the customer to market prices so 

that the customer would pay the actual costs of the electricity, and then provide the 

customer with an enabling technology so they can take advantage of that information 

(i.e., through optimal precooling). In this way, the optimal strategy would lower the two-

month energy bill from $146.45 to $58.48. Another approach would be to have the utility 

pay the customer for the right to control the customer’s thermostat. The utility benefits 

from the optimal strategy by $102.51 over the two months (see Table 5.3), while the 
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$14.54 and $102.51 in order to control the home’s thermostat. For summer months and 

the home considered here, this translates to the utility being willing to pay $7-50/month 

for direct thermostat control. 

 

 Base Case Optimal Case Savings 

 Total 

Energy 

Peak 

Energy 

Total 

Energy 

Peak 

Energy 

Total 

Energy 

Peak 

Energy 

Energy (kWh) 1007 291 1139 86.2 -132 205 

Cost to Customer $110.72 $32.06 $125.26 $9.48 -$14.54 $22.58 

Cost to Utility $146.45 $122.57 $58.48 $17.85 $87.97 $104.72 

Profit to Utility -$35.73 -$90.52 $66.78 -$8.37 $102.51 $82.15 

Table 5.3: Summary of energy usage and costs. The base case is keeping the 

temperature set point at the upper bound for the entire day. The cost to the 

customer is using a fixed rate of $0.11/kWh. The cost to the utility is 

determined by the day-ahead settlement point prices. The utility’s profit is 

the difference between the two. Note that “Total Energy” includes energy 

used during peak. 

In all cases, reducing the peak via precooling the home leads to an increase in 

overall energy use. The amount of peak energy reduction is always greater than the 

amount of extra energy consumed. Figure 5.10 shows the amount of peak reduction 

achieved for a given amount of extra energy consumed. The relationship between peak 

energy reduction and extra energy consumption is strongly linear. The data points at the 

far left, where virtually no extra energy was consumed but significant peak reduction was 

achieved, occurred on days with cool mornings and hot afternoons. Because the air 

conditioner efficiency is a function of outdoor dry bulb temperature, the hot afternoon 

cooling was shifted to the morning when the system efficiency was significantly higher. 

Figure 5.10 also shows that the extra energy cost of reducing 1 kWh of peak energy is 

approximately 0.63 kWh (the slope of the data). 
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Figure 5.10: Extra energy consumed by the air conditioning system in order to reduce 

peak demand via precooling. Peak is defined as 3-7pm. The extra energy 

uses a baseline where the thermostat is kept at the upper limit for the entire 

day. Each data point represents a single day. The data have a slope of less 

than one and all lie above the parity line. 

Figure 5.11 shows the amount of savings achieved in a day compared to the 

amount of extra energy (above the base case) it took to achieve that savings. It is clear 

that a significant amount of energy is expended to obtain very minor costs reductions. If 

consuming extra energy is a concern, including a small penalty in the objective function 

for that extra energy would ensure that extra energy is only consumed if significant cost 

savings are achieved. For example, if the precooling strategy was only implemented on 

days that would save more than $0.25 in electricity costs, then the cost to the utility is 

$62.70 (only $4.22 more than in Table 5.3), and total energy usage is reduced to 1104 

kWh (35 kWh less than in Table 5.3). 
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Figure 5.11: Extra energy consumed by the air conditioning system versus cost savings. 

Each data point represents a single day. 

CONCLUSIONS 

OpenStudio is an effective tool for developing an input/output dataset from an 

EnergyPlus model. The design of the input data, however, is very important. In this work 

relating to a residential home’s air conditioning system, it was found that step tests in 

which only one variable was changed at a time over a 24-hour sample generated good 

output data. 

The best-fit reduced-order model based on this input/output dataset was nonlinear 

in the control and disturbance variables. However, eliminating the nonlinear control 

variable terms resulted in a simple model that retained model accuracy. This simpler 

reduced-order model had an R2 of 0.986 when applied to the validation dataset. 

The reduced-order linear model was used in a model predictive controller to 

determine the optimal thermostat set points to minimize electricity costs in the face of 

electricity market prices. The open-loop MPC results predicted by the model matched the 

EnergyPlus simulations well. The MPC determined the precooling strategy that 

minimized costs, saving this home just over $100 for the two-month period of July and 
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August. This strategy reduced peak energy consumption for air conditioning by 70% over 

that 2-month period. This also demonstrated that reacting to market prices is an effective 

strategy for mitigating the peak demand issues. 

Precooling the home always resulted in an overall increase in electricity 

consumption. On average for the summer, reducing peak energy consumption by 1 kWh 

resulted in 0.63 kWh of additional energy consumption. 

The model and MPC framework are advantageous in that they use relatively 

straightforward inputs (weather, thermostat set point, and electricity price) and outputs 

(electricity consumption) that are easy to obtain. The resulting MPC would be simple to 

implement because it does not require a change to the home’s thermostat—the controller 

simply needs to pass the optimal temperature set points to the existing thermostat. 

Because the objective of the controller is to minimize costs, using electricity consumption 

as an output, rather than using an output like room temperature, is advantageous. 

Neural network models were also considered for creating reduced-order models. 

Although they provided excellent fits for the training and validation data, they performed 

poorly in the model predictive controller, even when the input data set was expanded to 

cover a wider range. When the neural network model was implemented in the MPC, the 

open loop optimization problem took orders of magnitude longer time to solve and 

produced inaccurate and unreasonable solutions due to extrapolation outside of the step-

test-based training data. To make neural networks work for this application, a more 

extensive and comprehensive input/output dataset would be required. 

Future work will use the methodology presented here to create simple linear 

models for an entire community of homes, all of which will be validated using the Pecan 

Street Smart Grid Demonstration Project data. These homes will have a variety of 

occupancy patterns, home constructions, orientations, appliances, etc. that will 
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differentiate them. With this larger system, community-level control can be studied to see 

the effects of implementing precooling strategies over a wider area. 
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Chapter 6: Community-scale Residential Air Conditioning Modeling 

and Control5 

INTRODUCTION 

Chapter 5 discussed how residential air conditioning systems are ubiquitous 

throughout the United States and are major contributors to the peak demand challenges in 

the electric grid. While the peak demand appears relatively coordinated in time, the 

discrete air conditioning systems that cause peak demand typically operate independently 

of each other. One hypothesis of this chapter is that implementation of intelligent control 

of these air conditioning systems can lead to better coordination of air conditioner 

operation, which would potential yield significant consumer cost savings and grid 

benefits [228], [229]. 

There are three general approaches taken in managing air conditioning electricity 

use. The first is to improve the efficiency of the home or the air conditioning unit through 

the implementation of energy efficiency measures [230]. These measures include actions 

such as adding insulation [231], sealing ducts and windows, or planting shade trees 

beside a home [232]. Subsequently, they reduce total air conditioning electricity 

consumption, which typically leads to a reduction in peak electricity consumption. 

The second approach is often referred to as demand response. Demand response 

strategies generally curtail air conditioning usage for short periods of time. For example, 

a utility might broadcast signals to participating air conditioning unit thermostats to turn 

off the compressors for a brief period. After the curtailment period has ended, the air 

conditioning systems resume normal operation. This approach often induces an energy 

                                                 
5 This chapter has been submitted as W. J. Cole, J. D. Rhodes, W. Gorman, M. E. Webber, and T. F. Edgar, 

“Community-scale residential air conditioning control for effective grid management,” Applied Energy, 

under review 2014. Rhodes and Gorman built the EnergyPlus building models based in the smart grid data. 

Webber provided writing guidance in revising the manuscript, and Edgar provided general advising and 

editing. 
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rebound effect, where energy usage increases after the curtailment period as air 

conditioners work harder or longer to return the thermal zones to the desired temperatures 

[233]. This rebound effect has been demonstrated several times in the literature [234]–

[236]. 

The third approach is a precooling strategy. Precooling involves cooling the 

building below the typical temperature to store “cooling energy” in the thermal mass of 

the building. This approach is also called passive thermal energy storage (see Chapter 2). 

Precooling generally consumes more energy than demand response approaches, but it is 

better at maintaining comfort within the home and does not suffer from the rebound 

effect [237]. 

Pricing signals can be used to help encourage the three approaches given above. 

However, there is concern that responding to pricing or other signals can lead to the 

creation of a new peak. For example, Bartusch et al. [238] implemented a demand-based 

electricity pricing program on several hundred residential households in Sweden. This 

pricing program led to the creation of a new off-peak “peak” due to the shifting of loads 

from peak times to off-peak times. In addition to the potential creation of a new peak, it is 

also difficult to quantify the effects of the pricing signals [239], [240]. For example, by 

encouraging people to alter their behavior through price signals, it is difficult to say how 

they would have behaved had those price signals not been used, especially because other 

non-behavioral factors (e.g., weather) impact total energy use. 

In this chapter, a 900-home community was simulated (see the methodology 

section for details on how this simulation was assembled) where home air conditioning 

thermostat set points are controlled using either a centralized or decentralized model 

predictive controller. These controllers have the flexibility to minimize operating costs or 

the peak demand of the community. Related studies have been conducted for centralized 
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thermostat controllers. Callaway [241] considered the manipulation of 60,000 air 

conditioner thermostat set points to follow the dynamic output of a wind farm at a 

resolution of one minute. The air conditioning models were based on resistance-

capacitance (RC) models. Callaway and others (e.g., [228], [242]–[246]) have considered 

the dynamics associated with controlling a large number of thermostatically controlled 

loads or electric vehicles to achieve short-term grid benefits. Because they consider 

shorter-term periods, weather is held constant for the simulations. This chapter focuses 

less on short-term dynamics (such as those required to follow the minute-by-minute 

output of a wind farm) and more on the ability to shift load and/or flatten the peak, the 

work presented here includes the effects of weather. Using actual weather data is a key 

factor in evaluating the energy performance of buildings [247]. While those studies 

offered different insights, they did not have access to the primary data that could be used 

for verification and for building the models. Furthermore, they did not directly compare 

centralized versus decentralized configurations. 

This chapter’s main contribution is to address those issues. First, a novel data set 

comprised of energy audits, homeowner surveys, and direct meter measurements from a 

statistically significant sample of actual homes were synthesized for the modeling and 

simulation of a larger community of homes. Consequently, this work offers the prospect 

of a verified model that can be used to estimate the potential for peak reductions. Second, 

the simulation considers the effects of allowing all homes to automatically respond to 

market electricity prices. The analysis compares decentralized versus centralized control 

strategies and provides a method for replicating the centralized control results through a 

penalty-based decentralized control strategy. 
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METHODOLOGY 

In this investigation air conditioning thermostat set point control methods were 

applied to a notional community of 900 individual homes. The process for developing the 

900 homes models and applying the control is shown in Figure 6.1. These homes are 

derived from a pool of 60 physical homes that are part of a smart grid demonstration 

project based in Austin, Texas, USA. The average year of construction for the 60 

physical homes is 1965 with a standard deviation (σ) of 18 years. One-third of the homes 

are two-story, and the rest are single-story. The homes have an average conditioned area 

of 165 m2 (σ = 83 m2). Roughly half of the homes have older single paned windows, and 

the average R-value of insulation is 22. The average air conditioning system is 10.6 kW 

(3 tons) with a coefficient of performance (COP) of 2.9 and 12% duct leakage [248].  

 

 

Figure 6.1: This flowchart illustrates the data sets and sequence of steps for creating and 

controlling the air conditioning units in a notional 900-home community. 

Models of the 60 physical homes were initially constructed using BEopt, a GUI 

residential front-end for EnergyPlus, developed by the National Renewable Energy 

Laboratory (NREL) [214]. The BEopt models were created from energy audits and 

images from Google Maps; however, not all model inputs were recorded in the audits, so 
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the model defaults were used in this case. To verify the accuracy of the models, the 

simulated total yearly electricity use from the models was compared to actual annual 

billed electricity use, which was provided by the local electric utility for 2011 for 48 of 

the 60 homes (billing data from 12 of the homes was unavailable or unreliable). 

Individual homes had an average absolute error of 23.5% versus the billing data (for 

yearly energy consumption), with a minimum of 0.02% and maximum of 71.2%. A 

histogram of the error between the model output and the annual billing data is shown in 

Figure 6.2. While the errors for individual homes were non-trivial, the aggregated energy 

use of the homes only had a 1.2% error when compared to the aggregated billing data 

over the year, which is acceptably accurate for this project’s research objective.  

 

 

Figure 6.2: This histogram of the error between the annual energy consumption 

predicted by the BEopt model and the annual billing data provided by the 

utility shows that the most common errors were +/- 20% or less for 

individual homes, and the largest error was just over 70%. The error for the 

aggregated consumption of all homes was 1.2%. 

The EnergyPlus models obtained using BEopt were too computationally slow to 

be effectively used in an optimization-based control scheme, reduced-order dynamic 

0

2

4

6

8

10

12

14

-40 -20 0 20 40 60 80

Fr
e

q
u

e
n

cy

Percent Error



 117 

models of the homes were created. To develop a reduced-order model from an 

EnergyPlus home model, a custom MATLAB script was written to process input/output 

data from the EnergyPlus model. A reduced-order ARX model was then identified and 

parameters fitted using this input/output dataset. Details on this method for developing a 

reduced-order ARX model are described in Chapter 5. This method results in an ARX 

model that predicts a home’s hourly air conditioning electricity consumption as a 

function of the outdoor dry bulb temperature, the home’s thermostat set point, and the 

hour of the day. This model is expressed as follows: 
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(6.1) 

 

where yi,j is the air conditioning electricity consumption for home i at time j, DBTj is the 

outdoor dry bulb temperature at time j, Ti,j is the thermostat set point for home i at time j, 

and parameters a-h are home-specific model coefficients. The parameter hj is indexed by 

time j because there is a different value of h for every hour of the day (e.g., the value of h 

at 1:00 is different than at 2:00). This h parameter helps in accounting for unmodeled 

disturbances such as solar irradiation. For all homes, the value of c0 is negative, 

indicating that raising the thermostat will result in a decrease in air conditioning energy 

consumption. 

A notional community of 900 homes was created for the analysis using two steps. 

First, each of the 60 home models was replicated 15 times to create the 900-home 

community. Second, the 900 homes were individualized by integrating different 

occupancy profiles (which will be explained later). Thus, the 900 virtual homes are 
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comprised from variations of 60 physical homes for which comprehensive data were 

available. 

The reduced-order models are used in an economic model predictive control 

framework to determine the optimal thermostat set points that minimize electricity costs 

over the prediction horizon (M). Model predictive control solves a limited-horizon 

optimal control problem that minimizes some objective function subject to a set of 

constraints. For the economic model predictive control case the formulation is 
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(6.4) 
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where J is the objective function value, i is the index for the homes, j is the index for the 

time, rj is the electricity rate at time j, N is the total number of homes, t is the initial time, 

f is the linear reduced-order model given by (5.10), maxLoadi is the maximum electricity 

consumption of the air conditioning unit of home i for one time step, and lbi,j and ubi,j are 

the lower and upper bounds, respectively, of the thermostat set point for home i at time j. 

It does not matter whether decentralized or centralized control is used for this minimum 

cost scenario because the homes are thermally and financially independent of one 

another. For the scenarios considered here, the thermostat set point (T) is the manipulated 
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variable and the air conditioning electricity consumption (y) is the controlled variable, 

with the outdoor dry bulb temperature (DBT) and the electricity rates (r) acting as 

disturbance variables. Weather predictions for the dry bulb temperature are assumed to be 

perfect in this chapter. However, for building heating and cooling systems a predictive 

controller using a simple weather model can get within 1-2% of an optimal, perfect-

prediction solution [112], so this assumption is not likely to introduce much error. The 

electricity rates used here (rj) are the day-ahead settlement point prices from the ERCOT 

system which are published a day in advance and therefore do not require a prediction 

model. All wholesale market prices and weather used in this analysis are actual data for 

Austin, Texas, from 2011. This formulation assumes that there are no behavioral changes 

due to the electricity prices—changes occur purely through the manipulation of the 

thermostat set point within the specified bounds. It is also assumed that occupants cannot 

override the set points chosen by the controller. 

Solving (6.2)-(6.5) leads to optimal set points (Ti,j) for j = t to j = t + M for each 

home i. Only the first solution is implemented, then the time is increased by one time step 

and the problem is re-solved. This method is known as receding horizon control.  

In Chapter 5, it was determined that the optimal value of M was 11 (with one hour 

time steps), and thus that value is used here. That means that index j will always run from 

j = t to j = t + 11. There are 900 homes (N), so index i will always run from 1 to 900. 

The upper and lower bounds for the thermostat set point were determined by the 

occupancy of each home. Homes had a desired thermostat set point temperature, which 

was also the upper bound for the set point while the house was occupied. The lower 

bound was taken to be 2.22°C (4°F) lower than the desired thermostat set point. When 

unoccupied, the upper and lower bound were set to 27.78°C (82°F) and 20°C (68°F), 

respectively. Desired thermostat set points were randomly assigned to houses according 
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the distribution in Figure 6.3. The data in Figure 6.3 are from homeowner surveys of 162 

residents in the Pecan Street Smart Grid Demonstration Project (see [248] for more 

details). Based on clustering analysis and survey data of residential home energy profiles 

from the smart grid demonstration project [249], it was determined that approximately 

50% of homes were occupied during the entire day while 50% of homes were unoccupied 

during typical workday hours (~8:00-17:00), thus when homes were randomly assigned 

occupancy profiles, they had a 50% probability of being occupied all day. Lastly, for the 

homes that were unoccupied for a portion of the day, random departure and arrival times 

were assigned based, again, on the data from the smart grid demonstration project. 

Departure and arrival times were randomly selected based on a uniform distribution from 

6:00-10:00 and 16:00-19:00, respectively. An example of the upper and lower thermostat 

set point bounds for a home that was unoccupied for a portion of the day is shown in 

Figure 6.4. A home that is occupied for part of the day is defined as part-time occupied 

and a home that is occupied for the entire day is said to be full-time occupied. 

 

 

Figure 6.3: A distribution of desired thermostat set point temperatures based on 162 

homeowner surveys shows 25.6°C (78°F) to be the most common set point. 
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Figure 6.4: Upper and lower bounds for a part-time occupied home. The home is 

unoccupied from 9:00-17:00 and has a desired thermostat set point 

temperature of 25.6°C (78°F). These bounds constitute lb and ub in (6.5). If 

this home was occupied for the entire day (i.e., full-time occupied), then the 

upper and lower bounds would have remained constant at 25.6°C and 

23.3°C, respectively, for the whole day. 

Because a small number of homes have either undersized air conditioning units or 

thermally inefficient building envelopes coupled with low thermostat set points, the upper 

bound of the thermostat set point given by the constraint in (6.5) could not always be met 

during exceptionally hot afternoons, i.e., the air conditioner could not keep the 

temperature inside the house at or below the upper bound on the hottest days. To mitigate 

this issue the upper bound in (6.5) was enforced as a soft constraint with a high penalty 

weighting for violation.  

Minimizing the peak electricity demand of the entire community through 

centralized control is done by changing the objective function of the model predictive 

controller to 
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where Ei,j is the non-HVAC (heating, ventilation, and air conditioning) energy usage for 

home i at time j, so that the sum of yi,j and Ei,j is the total energy usage for home i at time 

j. In order to reformulate this problem as a linear program (LP), a new variable, z is added 

such that  

 

 minJ z  (6.7) 
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Equations (6.3)-(6.5) 

 

 

 

where z is the maximum energy use of the community of homes over the time horizon of 

j = t to j = t + M. 

For decentralized control the peak electricity consumption of each individual 

house is minimized and the problem becomes 
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Equations (6.3)-(6.5) 

 

 

 

where zi is the maximum energy use of home i from j = t to j = t + M. 

The 60 physical homes used to create the BEopt models described earlier had 

annual, whole-home billing data available, but had no information regarding the amount 
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of energy used for strictly non-HVAC loads. The non-HVAC energy (Ei,j) was instead 

taken directly from measurements of a separate set of 40 homes. These 40 homes are part 

of the Pecan Street Smart Grid Demonstration Project. The demographics of the 40 

homes are roughly the same as the demographics of the 60 homes [248]; thus, it is 

assumed that behaviors affecting the non-HVAC loads would be similar. In addition, the 

average conditioned space of the 40 homes was 176 m2, which is only 7% different than 

the average conditioned space of the 60-home dataset. Each of these 40 homes had been 

metered with a sub-circuit monitoring system that reported whole-home average power 

draw and HVAC average power draw on a one-minute interval. The HVAC energy was 

subtracted from the whole-home energy consumption to obtain the non-HVAC energy 

use. For each home and day, the one-minute data were averaged into hourly energy use 

data. Figure 6.5 shows the one-hour HVAC and non-HVAC loads for a single home for a 

July day.  

 

 

Figure 6.5: Measured HVAC and non-HVAC loads for a single home for a day in July. 

The total electricity usage and HVAC electricity usage are metered 

separately, so the non-HVAC load is determined by subtracting the HVAC 

usage from the total usage. 
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A one-day, single-home non-HVAC profile was created by averaging the non-

HVAC profiles of the 40 homes over three months of summer. This average profile, 

shown in Figure 6.6, was used for all 900 homes in this investigation (i.e., for a given j, 

the Ei,j for all homes is the same). Real homes have unique non-HVAC profiles, but 

because only community-level effects are considered, using an average profile instead of 

a unique profile will lead to the same net result for the economic and centralized control 

cases. For the economic case, this is because Ei,j does not appear in the formulation. For 

the centralized case, Ei,j is summed over all i, so summing the average yields the same as 

summing the unique profiles. In the decentralized case, the objective function will be 

slightly improved by using an average Ei,j because an average Ei.j value inherently 

contains some information about non-HVAC loads in other homes in the community. 

 

 

Figure 6.6: Average non-HVAC profile (Ei,j) that was applied to all 900 homes. 

In addition to the decentralized and centralized control strategies presented above, 

an additional penalty-based decentralized control strategy is considered that attempts to 
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decentralized control strategy uses an objective function like the one in (6.2), but instead 

of using wholesale market electricity prices for rj, this strategy attempts to flatten the 

system peak energy demand using randomly assigned custom penalty terms. These 

penalty terms vary both across times and homes, so for this scenario the problem 

formulation becomes 
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 subject to  

  

Equations (6.3)-(6.5) 

 

 

 

where ρi,j is the penalty term for home i at time j. The overall goal of this strategy is to 

determine if an economic-like model predictive control strategy can achieve the same 

benefits as the centralized, minimum peak control strategy. In this way, no information 

needs to be shared between homes, reducing privacy risks and communications 

infrastructure requirements. 

All scenarios are compared to a base case scenario. In the base case scenario each 

home’s thermostat set point is kept at the desired thermostat set point for the entire day. 

This means that in the base case scenario the thermostat set point is at the home’s desired 

set point while the home is occupied, and that the set point is raised to 27.78°C (82°F) 

when the home is unoccupied. 

In summary, there are five scenarios considered in this chapter for the 900-home 

community: 

1. Base case, Ti,j = ubi,j   i, j 

2. Minimum cost using wholesale day-ahead market prices, (6.2)-(6.5) 
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3. Minimum peak using centralized control, (6.7), (6.8), (6.3)-(6.5) 

4. Minimum peak using decentralized control, (6.9), (6.10), (6.3)-(6.5) 

5. Minimum peak using decentralized control and custom penalty terms, (6.11), 

(6.3)-(6.5) 

RESULTS AND DISCUSSION 

The results of the five different scenarios are presented here. The first section 

(“Minimum Cost Results”) considers the minimum cost scenario using wholesale market 

electricity prices and compares the results to the base case. The results are presented 

using August 28 as a representative day because that day had the highest peak of all 

summer days in 2011 for the base case. Summertime results are also presented, where 

summertime is defined as the 92 days of June, July, and August.  

The second section (“Minimum Peak Results”) considers the scenarios 3-5 that 

are intended to minimize the peak for the community. Because the purpose of these 

controllers is to minimize the peak, only results from August 28 are presented. This 

second section is relevant to locations where peak demand is of primary concern, such as 

in constructing a microgrid where generation equipment has to be sized to meet the loads 

of the community without grid support. 

Minimum Cost Results 

Minimizing costs according to (6.2)-(6.5) for August 28 for the 900 homes is 

shown in Figure 6.7. Significant precooling in the community causes an increase of air  
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Figure 6.7: The upper plot shows the air conditioning power consumption for the 900-

home community under the minimum cost scenario for August 28, 2011. A 

new peak is created earlier in the day, but it is lower than the original peak 

in the base case. The lower plot shows the actual ERCOT day-ahead 

settlement point prices (rj) and the ambient dry bulb temperature (DBTj) for 

the same day. 

conditioning energy consumption during the morning hours with a sharp decrease in 

energy use in the afternoon when prices are high. This precooling effect results in an 

overall reduction in electricity cost from $19,300 to $17,900 for the community, or 7.0% 

versus the base case. Peak energy demand is reduced from 4912 kW to 4678 kW, or 

4.8%. However, total energy use for the day increases from 70,800 kWh to 77,900 kWh, 
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or 10.1%. Although prices are unusually high for this day (the average hourly price is 

$0.18/kWh with a peak of $1.50/kWh), it will be shown later that the 7% cost savings is 

not atypical for the 2011 summer. 

Because of the precooling, there is no traditional rebound effect. In fact, from 

Figure 6.7 it can be seen that the minimum cost scenario consumes less energy in the 

evening than does the base case. As long as there is only a single afternoon price peak, 

there is no concern about the air conditioning units all turning on at the same time when 

the high price period ends. There are two reasons that there is no concern. The first 

reason is that when the peak afternoon price occurs, the controller ensures that the set 

point is at the upper bound in order to minimize costs because the upper bound will yield 

the lowest energy consumption. Assuming there is no price spike later in the evening, the 

controller will never move the set point from the upper bound because doing so would 

cause an increase in the objective function. The second reason is that all the homes are 

thermally dissimilar and have stored different amount of “cooling” energy in the thermal 

mass of the home by the time the peak afternoon price occurs. Some homes have very 

little thermal energy stored either due to lack of thermal mass or due to limited 

precooling, while other have significant amounts of thermal energy stored. This variation 

in stored thermal energy coupled with the variety of thermal envelopes means that the 

homes will warm up at different rates and air conditioning systems will be turned on or 

up gradually over time. 

Using the economic model predictive controller appears to always lower the 

community’s peak demand. For the 92 summer days considered (June-August), there 

were no days when the morning peak generated by the precooling exceeded the afternoon 

peak from the base case. The maximum peak for the neighborhood occurred on August 

28 (shown in Figure 6.7), and in this case the peak was reduced by 4.8% using the  
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Figure 6.8: Comparison of a home that is occupied all day (upper plot) and a home that 

is unoccupied from 9:00-17:00 (lower plot) for August 28. The home that is 

unoccupied during the daytime hours has much more flexibility in 

precooling the home in anticipation of the high afternoon prices (see Figure 

6.7). 

minimum cost strategy when compared to the base case. On average, the minimum cost 

strategy yielded a 2.7% reduction in the daily peak versus the base case. This peak 

reduction demonstrates that a higher peak is not likely to be created in an automated, 

community-wide response to wholesale market prices in a minimum cost scenario. There 

is not likely to be a new peak because of the inflexibility of those homes that are always 

occupied. Homes that are unoccupied for a portion of the day can perform much more 

precooling because the comfort limits are largely removed while no one is at home. 
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Occupied homes can only perform marginal precooling without violating set point 

bounds (see Figure 6.8). 

Table 6.1 summarizes the results from the minimum cost control strategy over the 

course of the summer. For summer 2011, the minimum cost controller achieves a 5.7% 

cost savings and a 4.8% reduction in total peak, but increases overall energy usage by 

3.9%. Because the costs in Table 6.1 are based on the wholesale market prices, the values 

represent potential savings to the utility and not necessarily to the customer. On average, 

this operating scheme would save the utility about $13 per home per month, so a utility 

would likely not be willing to pay more than this amount in order to implement this 

minimum cost control scheme for the homes in this investigation. 

 

 Base Case Min Cost 

Scenario 

Savings 

Total Cost $ 607,300 $ 572,500 5.7% 

 Air Conditioning Cost $ 405,000 $ 370,100 8.6% 

 Non-HVAC Cost $ 202,300 $ 202,300 - 

Total Energy (kWh) 5,492,000 5,705,000 -3.9% 

 Air Conditioning Energy (kWh) 3,357,000 3,570,000 -6.4% 

 Non-HVAC Energy (kWh) 2,135,000 2,135,000 - 

Total Peak Demand (kW) 4912 4678 4.8% 

 Air Conditioning Peak (kW) 3638 3630 0.2% 

 Non-HVAC Peak (kW) 1361 1361 - 

Table 6.1: Summertime (June-August) costs, energy consumption, and peak demand 

for the 900-home community for the minimum cost scenario using the 

objective function given by (5.2). Total values are subdivided to those from 

the air conditioning systems and those from the non-HVAC systems.  

As a side note, if the minimum cost scenario is solved using constant electricity 

prices (i.e., a flat rate) instead of wholesale market prices, then the optimal solution 

matches the base case. This means that the base case (keeping the thermostat set point at 
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the upper bound for the entire day) is the best strategy for reducing costs in a flat rate 

environment or for minimizing energy consumption. 

Homes that are unoccupied for a portion of the day reap the majority of the 

savings from precooling. This savings is due to the additional flexibility given in 

precooling the homes. Figure 6.8 shows the effect of the additional precooling. In the 

home that is always occupied (Figure 6.8 upper plot) the power draw dips from 4 kW to 

3.2 kW when the thermostat set point is raised. In the home that is unoccupied during the 

daytime (Figure 6.8 lower plot) the power draw drops from 2.6 kW to 0 kW. The 

additional flexibility in precooling allows a significantly greater decrease in energy use 

during the expensive afternoon hours. Figure 6.9 provides a summary of the savings 

achieved by each of the homes over the course of the 3-month summer. Savings versus 

the base case range from 0-46%, with the part-time occupied houses reaping substantially 

higher savings in most cases. The high variation in savings between homes is caused by 

the differences in occupancy schedules, desired thermostat set point, home construction, 

home orientation, home size, number and location of windows, and air conditioning 

equipment efficiency. This high variation in savings between homes also indicates that 

there are certain home attributes or occupant behaviors that are conducive to passive 

thermal storage. Identifying those attributes and behaviors will be the subject of future 

research. 
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Figure 6.9: Histogram of air conditioning cost savings for the 3-month summer using 

the minimum cost objective function across the 900 homes. Homes that are 

occupied during only part of the day experience much greater cost-savings 

than those that are always occupied. 

Minimum Peak Results 

In this section, the objective of the different control scenarios is to minimize the 

total peak of the system by applying centralized or decentralized thermostat set point 

control. In the centralized case, the controller knows what every house is doing and is 

therefore able to minimize the system peak to the maximum extent possible. This 

capability leads to a system demand curve that is level throughout the afternoon (see 

Figure 6.10). For August 28, the day of the summer with the highest system peak, the 

centralized control strategy in (6.7), (6.8), and (6.3)-(6.5) reduces the peak demand by 

430 kW, or 8.8% from the base case. However, this shift comes at the cost of an extra 

9430 kWh of energy use, which is an increase of 13.3% over the base case. 
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Figure 6.10: Power consumption of the 900-homes community for August 28. The 

centralized control strategy flattens the system peak. The decentralized 

strategy reduces the system peak, but not to the same extent as the 

centralized strategy. 

Using the decentralized control strategy in (6.9), (6.10), and (6.3)-(6.5), each 

house only knows what it is doing and only attempts to minimize its own peak. This 

approach leads to a lower peak than in the base case, but a higher peak than the 

centralized controller (see Figure 6.10). For August 28, decentralized control leads to a 

5.7% reduction in the system peak versus the base case. Because the centralized 

controller is managing all the homes simultaneously, it can coordinate thermostat set 

points to perfectly flatten the peak. Decentralized control does not have that capability. 

However, decentralized control has the advantage that information does not need to be 

shared with a centralized controller, which reduces the amount of required 

communication equipment and lessens concerns surrounding data privacy. 

The tradeoff between peak demand and energy consumption is shown in Figure 

6.11. This figure was created using the objective functions (6.2)—with rj set to a constant 
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value for all j—and (6.9) simultaneously and modifying the relative weight given to each 

objective function. The points in the figure follow a quadratic curve that has a slope 

varying from -2.9 to -40.6. This slope indicates the relative value of energy consumption 

to peak reduction, meaning that it takes from 2.9-40.6 kWh of additional energy 

consumption to reduce the peak demand by 1 kW. The first few kW of peak reduction 

cost less energy (2.9 kWh), while the final few kW of peak reduction cost more energy 

(40.6 kWh). Current pricing structures in Austin, TX, value power at ~12.00/kW and 

energy at ~0.11/kWh, giving a ratio of 109 kW/kWh. This real-world price ratio is much 

higher than the 2.9-40.6 kW/kWh tradeoff identified here, meaning that for single-day 

events, the cost-based controller will preferentially reduce the demand at the expense of 

consuming extra energy. 

 

 

Figure 6.11: This figure shows the tradeoff between peak demand and energy 

consumption for the community of homes. The points follow a quadratic 

curve, implying that it is increasingly costly (in terms of energy 

consumption) to reduce peak demand. The right-most point is the base case 

and the left-most point is the centralized, minimum peak case. 
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Figure 6.12 shows the relative tradeoff between the peak demand reduction and 

energy consumption. The percent reduction in peak demand is greater than the percent 

increase in energy use up to 5.3%. Beyond 5.3% the percent increase in energy use is 

greater than the percent reduction in peak demand. 

 

 

Figure 6.12: Relative reduction in peak demand versus the increase in energy required to 

achieve that peak demand reduction. The percent reduction in peak demand 

is greater than the percent increase in energy use up to 5.3%. The left-most 

point (0,0) is the base case, and the right-most point is the centralized, 

minimum peak case. 

To obtain the benefits of both centralized and decentralized control, a 

decentralized control strategy was implemented that used the economic-like penalty 

function given in (6.11). The penalty term, ρi,j varies from home to home, though it 

retains the same general structure. A sample penalty term is shown in Figure 6.13. 

Penalty terms were generated by setting an off-peak penalty that was 1/100th of the peak 

penalty. Each home was randomly assigned a three-hour peak penalty period beginning 

between 14:00 and 19:00 according to the probability distribution shown in Figure 6.14. 
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Figure 6.13: Sample penalty term for the economic-like decentralized control strategy. 

The exact starting time of the peak period is randomly determined based on 

the distribution in Figure 6.14. The off-peak penalty is 0.01. 

 

Figure 6.14: Probability distribution for the start time of the peaking periods for 

designing price structures. 

By applying these penalty terms and allowing each home to minimize its own 

penalty function, the decentralized solution approaches the centralized solution (see 

Figure 6.15). The peak under this price-based decentralized control strategy is within 
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1.1% of the peak of the centralized control strategy, but requires no sharing of 

information between homes. 

 

 

Figure 6.15: Power consumption of the 900-homes community for August 28. By tuning 

the penalty distribution for the decentralized controller, the decentralized 

solution approaches the centralized solution. 

Table 6.2 summarizes the peak reduction results of the five different scenarios. 

Centralized control is the most the most effective at reducing peak demand. 

 

Scenario Peak Demand 

(kW) 

Peak 

Reduction 

1. Base Case 4912 - 

2. Minimum Cost 4678 4.8% 

3. Centralized 4482 8.8% 

4. Decentralized 4631 5.7% 

5. Decentralized (with Penalty Function) 4535 7.7% 

Table 6.2: Peak demand and peak demand reduction versus the base case for the five 

scenarios for August 28. 
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The minimum cost scenario and the minimum peak scenarios presented here 

assume that thermostat set points can be set at any desired value, when in reality most 

thermostats in the United States have a resolution of 0.5 or 1°F (0.27 or 0.56°C). 

However, Perfumo et al. [246] presented a method for addressing that shortcoming 

through applying a distribution of discrete set points that have the same mean as the high-

resolution desired set points. In the case that these control strategies were to be 

implemented, a similar approach could be applied here. 

CONCLUSIONS 

By considering a notional community of 900 homes built with attributes taken 

from 60 actual homes in Austin, Texas, the baseline operational conditions and large-

scale effects of four thermostat control schemes were investigated. Based on the 

simulated community, if all homes responded in a cost-optimal way to market electricity 

prices by adjusting air conditioning thermostat set points, their consumption would be 

shifted. While this shift is significant, it would not likely create a new peak that is higher 

than the original peak. In fact, the summertime peak for this simulated community was 

reduced by 4.8% in the minimum cost scenario. 

Potential savings from one home to another varies greatly across the 900 homes, 

although more savings are achieved in homes that are unoccupied during daytime hours. 

The additional flexibility offered to the controller during those unoccupied periods 

enables substantial precooling activity and, on average, an order of magnitude more of 

cost savings than homes that are occupied during the entire day. 

In the case of minimizing the peak electricity demand for the community, the 

centralized controller achieves the maximum reduction in peak possible (8.8%). The 

decentralized control strategy in which each house minimizes its own peak results in a 
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peak reduction that is just over half that of the centralized controller. However, by 

implementing a penalty-based decentralized control strategy with tuned penalty terms, 

the decentralized control solution can approach the centralized control solution to within 

1.1%. 

In the future the simulations can be expanded to include a larger variety of home 

types that are representative of those across the ERCOT grid service area. This expansion 

would allow consideration of the effects of thermostat control strategies on the overall 

grid peak. Additionally, home characteristics that make homes better candidates for 

automated thermostat control can be identified. Identification of these characteristics can 

help utilities make more informed decisions when implementing peak management 

programs. 
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Chapter 7: Community-scale Air Conditioning Control for High 

Penetration of Rooftop Photovoltaics6 

INTRODUCTION 

The installed capacity of solar photovoltaic (PV) systems in the United States has 

increased in recent years due to declining costs. Reported installed prices of U.S. 

residential and commercial PV systems declined 5%–14% per year, from 1998–2012 

[250]. The decreasing cost of PV panels makes their installation especially appealing in 

warmer climates, where PV generation aligns with high demand periods and can be 

utilized to lower peak electricity demand from the grid [251]. Residential energy 

consumption is highly dependent on outside air temperatures and in hot weather, 

contributes significantly to peak demand through increased use of the air-conditioning 

(A/C) [197]. Using PV systems to provide energy to the A/C systems during peak times 

can be a powerful tool to reduce peak demand from the grid. 

However, like A/C use, PV power output is affected by fluctuating weather 

conditions. Even on clear, sunny days, PV generation changes substantially throughout 

the day. Often peak loads in the home or on the electric grid extend into the evening 

where solar production is very low. Household electricity demand might be relatively low 

when PV generation is highest. So while rooftop PV by itself can reduce peak demand, it 

is limited by the amount of sunlight available during the peak demand period. 

One way to shift more of the energy generated by rooftop PV to peak times is 

through the use of energy storage. While battery storage would likely be cost prohibitive 

                                                 
6 This chapter was included in W. J. Cole, K. X. Perez, J. D. Rhodes, M. E. Webber, M. Baldea, and T. F. 

Edgar, “Community-scale air conditioning control for high penetrations of rooftop photovoltaics,” in 

Proceedings of the 2014 American Control Conference, Portland, OR, USA, 2014. Perez and Rhodes 

contributed the non-HVAC energy use and measured PV data. Webber, Baldea, and Edgar provided 

general advising and editing. 
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for a residential setting, thermal energy storage (TES) is an inherent characteristic of any 

home via the homes’ walls, foundation, etc. acting as the thermal medium. As discussed 

in Chapters 2 and 5, TES uses the thermal mass in the home to store “cooling” energy by 

pre-cooling the home during periods of lower energy demand. The cooling energy in the 

thermal mass maintains thermal comfort later when outdoor air temperatures increase. By 

taking advantage of passive TES, the non-peak PV energy can be used to operate the A/C 

during lower use times, thereby reducing A/C energy consumption during peak hours. 

Passive TES has already been proven successful for commercial buildings in reducing 

peak cooling demand largely because the size of thermal mass has made the strategy 

economically feasible [209], [252]–[255]. In commercial building applications, control 

methods for passive TES are often implemented using a model predictive control 

framework to maximize storage benefit [143], [256]. The application of passive thermal 

storage in residential homes has been limited. Due to the size and variety of home types, 

the benefit of passive TES from a single home can be negligible. However, in the 

aggregate, the passive TES offered by residential homes is likely to be substantial. While 

aggregated passive TES has been modeled (e.g. [241]), and the effects of solar PV are 

relatively straightforward, to my knowledge the integration of the two at scale (e.g., 

hundreds of homes) has not been modeled to estimate their peak reduction potential. It is 

hypothesized that the use of intelligent control can effectively manage energy generated 

from rooftop PV in conjunction with passive TES to lower peak energy demand. Because 

the integrated effects on peak demand from the combined systems are non-obvious (just 

adding the two together does not sufficiently approximate the real-world conditions) 

testing this hypothesis requires an adequate model. Developing and demonstrating the 

model of a community of homes was the subject of Chapter 6. The work in this chapter 

applies the community model in Chapter 6 to investigate the coordinated control of 
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residential passive TES (through the manipulation of A/C thermostat set points) when the 

homes also include rooftop PV. Centralized and decentralized model predictive control 

methods are used to minimize the peak demand in response to changes in weather, PV 

generation, residential internal loads, and occupancy. 

METHODOLOGY 

In this investigation, A/C thermostat set point control strategies are applied to the 

simulated community of 900 individual homes that was described in Chapter 6. 

Specifically, this chapter considers the benefits of thermostat set point control for peak 

demand reduction when the 900-home community has rooftop PV installed on 0%, 50%, 

or 100% of the homes. Only the centralized and decentralized peak demand reduction 

formulations—((6.7), (6.8), (6.3)-(6.5) and (6.9), (6.10), (6.3)-(6.5)), respectively—from 

Chapter 6 are considered in this investigation. 

The formulation for the model predictive controller remains unchanged from 

Chapter 6, except that PV generation data (Pi,j) are now included in the objective function 

for minimizing peak demand: 
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The PV generation data came from 226 rooftop PV arrays (one array per house) 

metered by the Pecan Street, Inc., from June 1-August 31, 2013. Of those homes, 125 had 

south-facing arrays with an average capacity of 3.57 kW. The remaining 101 arrays were 

west-facing with an average capacity of 3.24 kW. The measured PV generation data were 

averaged into hourly values, thus for a given hour j, Pi,j is the average power generation 

of the 226 arrays during hour j. Note that unlike non-HVAC data (Ei,j), Pi,j is different for 
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each day (e.g., values for Pi,j for August 1 are the average measured values from August 

1). 

Weather data were taken from a weather station located at the University of Texas 

at Austin in Austin, Texas. Weather data were collected from June 1-August 31, 2013 

and thus matched the PV generation data. 

The non-A/C energy (Ei,j) was taken directly from measurements of a set of 180 

homes from June 1-August 31, 2013. These 180 homes are part of the Pecan Street Smart 

Grid Demonstration Project.  

A total of nine scenarios are considered: no control (base case), decentralized 

control, and centralized control each with 0%, 50%, and 100% of homes having rooftop 

PV installed. The results of the various control strategies and PV adoption levels are first 

presented for a single summer day (June 28) and then presented for the entire summer 

(June-August). June 28 was chosen because it had the highest peak electricity demand of 

any summer day in the base case. All results presented are simulation results. 

RESULTS 

Figure 7.1 shows the results of using no control (the base case), decentralized 

control, and centralized control for the 900-home community for June 28, 2013, when 

none of the homes have rooftop PV. In the base case, the peak occurs at 17:00 at 4955 

kW. The peak is reduced by 365 kW (7.4%) and 488 kW (9.8%) using decentralized and 

centralized control, respectively. Because the centralized controller has knowledge of all 

the homes in the system it can coordinate the precooling of the various A/C units to 

achieve the maximum peak reduction. This peak reduction comes at the cost of increased 

overall energy consumption; the decentralized and centralized control strategies increase 

energy consumption by 10.3% and 9.9%, respectively. 
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Figure 7.1: Simulated power demand for the 900-home community on June 28, 2013, 

with no rooftop PV adoption. 

The community profile changes dramatically when all homes are assumed to have 

rooftop PV (see Figure 7.2). In the base case the peak is shifted to 20:00 and reduced to 

4386 kW, and during the middle of the day PV production nearly causes the community 

power demand to be negative (i.e., electricity is sent to the grid rather than consumed 

from the grid). The decentralized and centralized control methods are almost identical, 

reducing the peak by 345 kW (7.9%) and 374 kW (8.5%), respectively. In the absence of 

PV generation, the individual homes peak at different times. When all homes have 

rooftop PV installed, they all reach a peak at nearly the same time (when the sun goes 

down). In other words, the PV tends to temporally align the peaks of all the homes, which 

means that minimizing the peak of a single home contributes directly to minimizing the 

peak of the community. Thus, the control actions taken by the decentralized controller 

will be very similar to those taken by the centralized controller. 
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Figure 7.2: Simulated power demand for the 900-home community on June 28, 2013, 

with 100% rooftop PV adoption. 

Figure 7.3 and Table 7.1 summarize the peak demand reductions for the entire 

summer (June-August) in the nine different scenarios. More than half of the peak 

reduction benefit from the PV is captured when only 50% of homes have PV installed. 

This can be seen in both the base case scenario and in the decentralized and centralized 

control scenarios (see Table 7.1). The reason that 50% PV adoption achieves most of the 

peak reduction benefit is two-fold. The first is that once the peak has been shifted to late 

evening when the PV generation is near zero, adding more PV capacity will not lead to 

more generation (and therefore more peak reduction). The second is that nearly all homes 

are occupied during evening hours so the thermal comfort bounds are tighter, restricting 

the capability of the decentralized and centralized controllers to shift load. 
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Figure 7.3: Average simulated daily peak demand of the 900-home community for the 

summer (June-August). 

 

 Fraction of Homes with 

PV 

 0% 50% 100% 

Base Case - 9.2% 12.8% 

Decentralized Control 12.0% 18.0% 22.1% 

Centralized Control 13.8% 23.3% 24.4% 

Table 7.1: Percent reduction in average daily peak demand of the 900-home 

community for the summer (June-August). All percentages are with respect 

to the base case with 0% of the homes having PV. The 0%, base case peak is 

3913 kW. 

As noted for June 28, the controllers implemented a precooling strategy that leads 

to an increase in energy use. The average daily increase in energy use for the summer is 

summarized in Table 7.2. Additional energy use because of precooling is higher as the 

level of PV adoption increases. This high energy use happens because PV generation 

shifts the peak to later in the day, which also causes the precooling to be shifted to later in 

the day. The afternoon precooling means that the A/C is operating at a high load when it 
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is least efficient to do so (because ambient temperatures are highest, making it more 

difficult to reject heat to the outside air). Additionally, thermal gains to the house will be 

higher due to a higher indoor-to-outdoor temperature gradient. 

Both the increased energy use and the marginally lower improvements in peak 

reduction as PV adoption increases indicate that the peak reduction of precooling 

strategies is somewhat reduced as PV generation increases.  

 

 Fraction of Homes with 

PV 

 0% 50% 100% 

Base Case - - - 

Decentralized Control 5950 6500 7090 

Centralized Control 5690 7080 7300 

Table 7.2: Average daily increase in consumption (in kWh) versus the base case of the 

900-home community for the summer (June-August). For example, 

centralized control strategy with 100% of the homes having PV consumed, 

on average, 7300 kWh more electricity per day than the base case with 

100% of the homes having PV.  

In terms of percent reduction in peak demand, there was essentially no difference 

between cloudy days and sunny days. Obviously PV generation decreases considerably 

during cloudy days, but daytime clouds also reduce solar heat gains in the homes and 

tend to lower ambient dry bulb temperatures. The lower cooling loads on the buildings 

made it easier to shift a larger portion of the cooling load away from peak hours, so high 

performance was still achieved. 

CONCLUSIONS 

The following can be concluded from this investigation: 
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 High penetration of rooftop PV leads to a reduction in peak power drawn from 

the grid and shifts the peak to later in the afternoon. 

 Decentralized control performs almost identically to centralized control when 

all homes have rooftop PV. 

 The benefit of implementing decentralized or centralized control is slightly 

decreased as the fraction of homes with PV increases. However, in all cases 

implementing decentralized or centralized control led to a decrease in the 

community’s peak demand by more than 10%. 

 The centralized and decentralized precooling strategies increased overall energy 

consumption by 5600-7300 kWh (10-20%). 

 

Future work includes evaluating the significance of assuming that PV loads can 

be perfectly predicted. This work can also be expanded to include other types of 

electricity sources and sinks, such as micro-CHP units and electric vehicles. 
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Chapter 8: Optimal Electricity Rate Structures for Peak Demand 

Reduction using Economic Model Predictive Control7 

INTRODUCTION 

Economic model predictive control (EMPC) has found considerable popularity in 

managing building energy systems. This has in large part occurred as electricity rate 

structures have moved away from constant electricity prices to variable electricity prices, 

so the ability of including these variable rates in an objective function is valuable. 

Buildings inherently contain thermal mass which can be used to store thermal energy, and 

because a significant component of a building’s electricity consumption is related to the 

heating, ventilation, and air conditioning (HVAC) system, the building’s thermal mass 

can be used as thermal energy storage to shift loads in time. This thermal energy storage 

allows the building to consume electricity for the energy intensive HVAC system during 

times when electricity prices are lower, and draw from the thermal storage when prices 

are higher. However, managing this kind of thermal storage system requires advanced 

control, and, as discussed in Chapter 2, model predictive control has been found to be a 

useful tool for managing such a system. By using model predictive control, the variable 

electricity prices can be placed directly into the objective function [257], and the 

building’s energy system can be modeled using dynamic models. Thus, the EMPC 

manages the HVAC system, thermal mass, and occupant comfort requirements in a way 

that minimizes the electricity costs of the system, especially when electricity prices 

change throughout the day. Other energy systems such electric vehicle charging networks 

[258], chilling networks [259], and IGCC power plants [260] have also found success 

                                                 
7 This chapter has been submitted as W. J. Cole, D. P. Morton, and T. F. Edgar, “Optimal electricity rate 

structures for peak demand reduction using economic model predictive control,” Journal of Process 

Control, under review 2014. Morton contributed expertise and guidance in building the modified dual 

formulation, and Edgar provided general advising and editing. 
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using EMPC in the face of variable electricity prices, but this chapter will focus on 

EMPC for residential building HVAC systems. 

There are most commonly two general types of variable electricity rate structures: 

time-of-use (TOU) electricity prices and real-time or spot electricity prices, though 

variations of these rate structures exits. Time-of-use rate structures are known in advance 

and typically have several levels of electricity prices based on the time of day, day of the 

week, and season of the year. For example, the TOU rate for residential homes in Austin, 

Texas, USA, is shown in Figure 8.1. Real-time electricity rates are typically set through 

market mechanisms, where bids for buying and selling electricity are used to set the 

electricity price. These prices are generally not known in advance and can potentially 

vary quite dramatically. Figure 8.2 shows the real-time market prices for August 21, 

2011, in the Austin Load Zone of the Electricity Reliability Council of Texas (ERCOT) 

grid. 

 

 

Figure 8.1: Time-of-use prices in Austin, Texas, for a weekday in the summer [261]. 

The highest prices (“on-peak” prices) occur from 14:00-20:00. 
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Figure 8.2: Real-time settlement point prices for the Austin Load Zone in the ERCOT 

market on August 21, 2011. These prices were set every 15 minutes by a 

bidding process. Electricity demand was especially high this day, which is 

one of the reasons for the higher-than-normal price spikes during the middle 

of the day. 

One variation of TOU prices that is important to the results in this chapter is 

critical peak pricing (CPP). Critical peak pricing is typically a higher-priced, shorter 

duration TOU rate structure that is only implemented on a few days during a season. 

Customers are generally notified a day in advanced of a critical peak day, and then the 

high prices are realized. An example CPP rate structure is shown in Figure 8.3. A review 

of time-varying pricing trials by Newsham and Bowker [262] suggests that CPP is the 

most effective pricing strategy for peak reduction, yielding peak reductions of 30% when 

enabling technology is available. They also suggest that a simple TOU rate will result in a 

5% peak reduction. 
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Figure 8.3: Critical peak pricing (CPP) rate structure from a utility in Milwaukee, 

Wisconsin [263]. The CPP pricing event can be called by the utility up to 25 

times per year. Customers are notified by 19:00 on the evening before a CPP 

event occurs. 

Commercial building energy systems have received more attention in the 

literature for EMPC than residential buildings, primarily due to the larger scale of 

commercial buildings. Ma et al. [264] developed a simulation environment for EMPC of 

a commercial building using TOU electricity prices. They were able to implement the 

strategy for an actual office building [256], demonstrating its ability to reduce peak 

energy consumption. 

Henze et al. [136], [265] evaluated EMPC for active and passive thermal storage 

systems. They found EMPC to be an effective means for managing both passive and 

active systems. Similar investigations of EMPC for commercial buildings have been 

performed by a variety of other researchers [138], [139], [144], [266]. 

Oldewurtel et al. [141] used an EMPC formulation in conjunction with forecasts 

for electricity spot prices to lower peak demand. They concluded that the electricity 

prices must be properly tuned in order to optimally decrease peak demand, but do not 

investigate methods to do so. 
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Economic MPC for residential buildings has been performed, but in fewer 

instances. Touretzky and Baldea [123] compared EMPC to set point tracking MPC using 

nonlinear reduced-order models for residential homes, finding that EMPC can maintain 

the required thermal comfort while simultaneously reducing costs. Halvgaard et al. [267] 

used EMPC to manage a ground source based heat pump for providing heating to a 

residential home. They found that in the face of variable electricity prices, the EMPC 

system can reduce electricity costs by 25-35%. 

Electricity use in the residential sector is especially important in regions with high 

penetration of air conditioning because of the influence of the residential sector on peak 

demand [197]. Increasing peak demand creates challenges for utilities because peaking 

plants are generally unattractive due to the fact that they might operate for only tens or 

hundreds of hours per year. This underutilization often results in peaking plants that are 

the least capital intensive, and therefore often the most inefficient. The residential sector 

creates a ripe area for shaping demand to lower its peak, rather than increasing supply in 

order to meet that peak. 

In this chapter, a method is presented that uses a primal-dual formulation to 

determine the optimal pricing structure for reducing the peak demand in a simulated 

community of homes. Coupling the primal and dual formulations of the system makes it 

possible for the prices to become decision variables for achieving the desired peak 

reduction results. The next section gives an overview of the community of homes that 

comprises the dynamic system considered here. The following section presents the 

methodology for using the dual formulation to obtain the optimal prices. The results are 

then presented and discussed.  

The use of a dual formulation to find optimal prices for an electricity system is 

not new. Bohn et al. [268] used the dual variables of a minimum cost optimization 
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problem to find optimal electricity prices 30 years ago. The difference in this work is that 

the minimum peak problem is not an economic formulation, so the dual variables do not 

represent electricity prices. Rather in this case, the minimum peak problem is solved, and 

its solution is used in conjunction with the dual formulation of the minimum cost 

problem to determine optimal prices. While only a peak demand reduction case is 

considered here, the methodology presented can readily be applied to a wide variety of 

situations, including emissions reduction, renewable energy generation capacity, standby 

capacity, etc. 

SYSTEM DESCRIPTION 

The system considered in this chapter is a simulated community of 900 homes. 

These homes are the same community of homes that were presented in Chapter 6. Details 

of how the model of the 900 homes was created can be found there. 

Each home is assumed to have a thermostat that responds to control inputs given 

by a decentralized or centralized controller. The controller’s only action is to assign 

thermostat set points to the thermostat. It is assumed that the user cannot override the 

thermostat set point given by the controller, though in actual implementation this feature 

would be necessary. It is also assumed that there are no behavioral changes associated 

with the thermostat set points or price signals for the thermostats. While behavioral 

changes are important and can impact peak demand reduction, they are beyond the scope 

of this work. 

METHODOLOGY 

The decision variables for this system (i.e., the community of 900 homes) include 

the air conditioning electricity consumption (y), the thermostat set point (T), and the 
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amount that the upper bound of the thermostat set point is violated (δ). The vector x 

includes these decision variables: 

 

  
T

x y T   (8.1) 

 

The total number of decision variables is therefore 3PN where P is the prediction 

horizon times and N is the number of homes. 

The desired outcome of the EMPC formulation here is to minimize the peak 

demand of the community using a centralized control method. The objective is to 

minimize the maximum electricity demand of the community of homes: 
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where Ei,j is the non-HVAC (heating, ventilation, and air conditioning) energy usage for 

home i at time j, so that the sum of yi,j and Ei,j is the total energy usage for home i at time 

j. As in Chapter 6, a new variable, z is added so that this problem can be reformulated as 

a linear program 

 

 
,

min
x z

z
 

(8.3) 

   

 subject to  

   

 
 , ,

1

       1...
N

i j i j

i

z y E j P


   
 

(8.4) 

   

 
eq eqA x b

 
(8.5) 
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ineq ineqA x b

 
(8.6) 

   

 lb x ub   (8.7) 

 

where constraint (8.5) represents the equality constraints, constraint (8.6) represents the 

inequality constraints (for the violation of the upper bound of the thermostat set point), 

and constraint (8.7) represents upper and lower bounds for the decision variables. Solving 

model (8.3)-(8.7) for a prediction horizon of 24 (i.e., j = 1,…,24) yields a solution x̂, 

which contains the thermostat set points that satisfy the comfort requirements and 

minimize the peak demand of the community of homes. Now it is desirable to find a cost 

vector, c, for which those same thermostat set points (x̂) will be chosen, which is done 

using ideas from inverse optimization [269]. It begins with the minimum cost formulation 

for the system, assuming for the moment that the cost vector, c, is known: 

 

 min
x

cx
 

(8.8) 

   

 subject to  

   

 
eq eqA x b

 
(8.9) 

   

 
ineq ineqA x b

 
(8.10) 

   

 x ub  (8.11) 

   

 x lb  (8.12) 

 

Note that x̂ is a feasible solution of model (8.8)-(8.12), and that while model (8.3) 

-(8.7) must be implemented in a centralized fashion, model (8.8)-(8.12) can be 

implemented as a decentralized controller because the control actions of one home do not 
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affect the control actions of any other home. Advantages of decentralized control include 

less communication equipment and reduced privacy concerns as there is less sharing of 

personal information. Now consider the dual of (8.8)-(8.12): 
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 0   (8.16) 

   

 0   (8.17) 

 

where πeq, πineq, λ, and γ are the dual row vectors associated with the constraints given by 

(8.9)-(8.12), respectively. Strong duality indicates that at the optimum the primal and 

dual objective functions will hold the same value, that is 

 

 * * * * *

eq eq ineq ineqcx b b ub lb      
 

(8.18) 

 

where the “*” indicates the optimal values. Also, at the optimum the constraints (8.9)-

(8.12) and (8.14)-(8.17) must be satisfied. By using x̂, constraints (8.9)-(8.12) are 

satisfied because x̂ is a feasible solution to model (8.3)-(8.7). Therefore, a cost vector, c, 

that is consistent with the given solution, x̂, can be obtained by solving the following 

optimization problem: 
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minc c

 (8.25) 

 

where cmin are the lower bounds for c, and where  ·  
1
yields the one-norm of its 

argument. Because c represents electricity prices, cmin should be greater than zero. The 

optimal vector c to model (8.19)-(8.25) is denoted as c*
. Note that not all the values of c 

are decision variables; only those values of c that pertain to the variables y are decision 

variables, the others (associated with T and ρ) are fixed. In some instances it is desirable 

to allow the prices to vary only during certain peak afternoon hours (e.g., from 15:00-

17:00). For these cases, an upper bound was added to the off-peak hours restricting c for 

those hours to be less than or equal to cmin. 

When solving model (8.19)-(8.25), equation (8.20) had to be enforced as a soft 

constraint because for this system the problem becomes infeasible. This occurs because, 

as indicated above, the components of c that do not correspond to variables y are fixed. In 

implementation, a large penalty was assigned for violating the equation (8.20). 

The optimization problems (8.3)-(8.7), (8.8)-(8.12), and (8.19)-(8.25) were 

formulated and solved in MATLAB using the CLP algorithm in the OPTI Toolbox [270]. 
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Solutions are implemented using a receding horizon where only the first solution is 

implemented for a given time step. 

Results are considered using weather and occupancy information for Austin, 

Texas, for August 28, 2011. Based on simulations, August 28, 2011, yielded the highest 

peak demand for the community due to record heat during the summer of 2011. Thus, in 

minimizing peak demand for the community of homes, only the most extreme day will be 

considered because that is the day when reduction in peak demand will be most needed. 

Results for each scenario will be compared to a base case in which the thermostat is kept 

at the upper bound for the entire day (i.e., T = ub for j = 1,…,24). Weather predictions for 

the dry bulb temperature are assumed to be perfect in this analysis.  

RESULTS AND DISCUSSION 

Solving model (8.3)-(8.7) to minimize peak demand with P = 24 yields a solution 

(x̂) with a perfectly flat demand during the afternoon peak period (see Figure 8.4). 

Because this model is implemented in a centralized fashion, the controller knows the 

status of each home and can therefore manage the homes in a way that creates the flat 

afternoon demand profile. This control strategy gives the largest possible peak demand 

reduction (10.0%) versus the base case, but increases energy consumption by 11.4%. The 

controller is able to reduce the peak demand by precooling the homes, thereby storing 

cooling energy in the thermal mass of the home. During the afternoon thermostat set 

points are raised (lowering electricity consumption) but the homes remain comfortable 

due to the stored cooling energy. 
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Figure 8.4: Power consumption for the simulated 900-home community for August 28, 

2011. The centralized control strategy (model (8.3)-(8.7) with P = 24) 

reduces peak power demand by 10.0% compared to the base case and 

increases energy consumption by 11.4%. 

With x̂ now known, model (8.19)-(8.25) is solved to determine the optimal 

electricity prices for the 900 homes. These hourly prices, c*, are shown in Figure 8.5 with 

cmin set to $0.01/kWh. While these prices are specific to this particular set of homes, there 

are some interesting observations from looking at the prices. First, all 900 price profiles 

exhibit a one-hour peak period, that is, the prices are relatively low (<$0.07/kWh) for 

every hour except for one hour. And for that one peak hour, prices are very high, with 

peak prices ranging from $0.05-0.61/kWh and an average peak price of $0.31/kWh. 

These prices have the form of critical peak pricing rate structures. Second, the peak prices 

occur over a six-hour period, indicating that to minimize the community’s peak demand, 

peak demand responses need to occur over six hours. The distribution of the peak prices 

across the six hours is shown in Figure 8.6. According to this distribution, approximately 

half of the homes should be responding to the peak event at 16:00 and 17:00 hours, about 
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35% of the homes should be responding at 14:00 and 15:00, and the fewest number of 

homes (~20%) should be responding at 18:00 and 19:00. In homes that are unoccupied 

for a portion of the day, occupants tend to return home at 16:00 and 17:00, so it is not 

surprising that there are more homes with peak prices during those times than during 

other times. 

 

 

Figure 8.5: Optimal prices (c*) for the 900 homes. The peak periods are only one hour 

in duration and occur between 14:00 and 19:00. The variation in the peak 

price ranges from $0.05-0.61/kWh with an average of $0.31/kWh. 
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Figure 8.6: Distribution of the starting times of the six peak periods. Each home is 

assigned a one-hour peak period with a starting time from this distribution. 

The prices in Figure 8.5 scale linearly with the choice of cmin. In this case, cmin is 

set to $0.01/kWh. Increasing cmin to $0.05/kWh would increase all the prices (c*) by a 

factor of five. In essence, the results in Figure 8.5 show the ratio of on-peak to off-peak 

prices necessary for a home to implement precooling and reduce the peak demand of the 

community. 

Figure 8.7 shows the results from using the optimal prices (c*) from Figure 8.5 in 

the minimum cost model (8.8)-(8.12) with P = 24. The results are not identical to solving 

model (8.3)-(8.7) because the strong duality condition (equation (8.18)) cannot be met at 

equality, so there is a gap of 0.05% between the solutions achieved by the two models. 

Figure 8.8 shows the power consumption for the community using the optimal prices (c*) 

in the minimum cost model (8.8)-(8.12), but with P = 12. In this case, the peak is slightly 

increased, but the early morning energy consumption is noticeably lower. With P = 12, 

most of the homes have not been exposed to their peak prices, which occur around 16:00, 

until 4:00. 
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Figure 8.7: Power consumption for the simulated 900-home community using minimum 

cost formulation (model (8.8)-(8.12) with P = 24) with the costs (c*) 

determined from model (8.19)-(8.25). 

 

Figure 8.8: Power consumption for the simulated 900-home community using minimum 

cost formulation (model (8.8)-(8.12) with P = 12) with the costs (c*) 

determined from model (8.19)-(8.25) when P = 24. Note that when P = 12, 

the peak demand is reduced by 8.8% but the energy is increased by only 

7.5%. 
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Table 8.1 summarizes the peak demand and energy consumption results of the 

four scenarios considered in this chapter. The summary shows that reducing the 

prediction horizon from 24 to 12 results in a 0.9% loss in peak demand reduction, while 

lowering the amount of energy consumption by 2.1%. The time constants for the homes 

are on the order of 8 hours, so a 12-hour prediction horizon is able to achieve the peak 

reduction benefit without as much peak cooling. If energy were penalized, then the P = 

24 and P = 12 solutions would be very similar. 

 

Model Peak 

Demand 

(kW) 

Change vs 

Base Case 

Energy 

Consumption 

(kWh) 

Change vs 

Base Case 

Base Case 4877 - 73113 - 

Min Peak (4)-(8), P = 24 4387 -10.0% 81485 11.4% 

Min Cost (9)-(13), P = 24 4409 -9.6% 80142 9.6% 

Min Cost (9)-(13), P = 12 4447 -8.8% 78578 7.5% 

Table 8.1: Summary of peak demand and energy consumption using the indicated 

model. Percent changes are relative to the base case.  

Although the optimal price configuration for minimizing peak demand shows six 

peak periods (see Figure 8.5) it might be desirable to implement a pricing scheme with 

fewer peak periods. Figure 8.9 shows how much peak demand can be reduced when the 

number of peak pricing periods is restricted to the number indicated. Moving from six 

peak periods to five peak periods results in very little loss in peak reduction potential, 

while reducing from five periods to four periods has a considerably larger impact. It is 

interesting that having three peak periods leads to a slightly better peak reduction than 

having four peak periods. This oddity is due to the fact that solving the model (8.19)-

(8.25) results in prices that most closely match the x̂ given by model (8.3)-(8.7). The 

prices obtained when using four peak periods better match x̂ than when there are three 
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peak periods, but do not do quite as well at lowering the peak demand. Figure 8.10 shows 

the system’s energy consumption changes as the number of peak periods changes. 

 

 

Figure 8.9: Peak demand reduction compared to the base case when the number of peak 

pricing periods is varied. One peak demand period is able to achieve nearly 

half the peak reduction of the six peak demand periods. 

 

 

Figure 8.10: Increase in the total energy consumption for August 28, 2011 for the number 

peak periods indicated. Decreasing the number of peak periods leads to 

smaller increases in energy consumption. 
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When the peak electricity prices of the homes were compared to home efficiency 

metrics, it was found that the more efficient homes tended to have lower peak prices. For 

example, Figure 8.11 shows the peak electricity prices versus the model coefficient c0 

from equation (5.10). The coefficient c0 indicates the change in energy consumption that 

occurs when the thermostat set point is raised by 1°C. Homes with a lower (more 

negative) value of c0 are likely to be more efficient than those with higher values of c0. In 

general, as homes become more efficient, the magnitude of the peak price need not be as 

high for the home to gain economic value by responding to the price. It also indicates that 

inefficient homes might require extreme prices before there is sufficient incentive to 

respond via thermostat set point changes. 

 

 

Figure 8.11: Peak electricity price versus the normalized c0 coefficient in the home’s 

ARX model (see equation (6.1)) for homes that were occupied during the 

entire day. The c0 coefficient was normalized by dividing it by the air 

conditioner capacity (in kW). Homes with lower normalized values of c0 are 

more efficient (i.e., home efficiency increases as normalized c0 decreases). 

The positive correlation indicates that more efficient homes need lower peak 

electricity prices to respond optimally. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

P
e

ak
 E

le
ct

ri
ci

ty
 P

ri
ce

 (
$

/k
W

h
)

Normalized c0



 167 

CONCLUSIONS 

EMPC is a popular tool for managing building HVAC systems, as well as other 

energy systems. This work has shown that EMPC is not just useful for operating systems 

based on a variable pricing structure, but that EMPC is also a useful tool for determining 

the optimal variable prices for a given system. In this chapter, the system was a simulated 

community of residential homes where thermostat set points could be controlled. The 

community of homes was based on the physical homes in Austin, Texas, described in 

Chapter 6. By using ideas from inverse optimization, the primal-dual form of the EMPC 

was used to determine the optimal prices that would result in minimizing the peak 

electricity demand of the community. 

For the system of homes presented here, the optimal pricing profiles for the 

homes were CPP-like pricing structures with relatively low prices for every hour except 

for one peak hour. One-hour peak periods occurred between 14:00 and 19:00, with most 

homes (~50%) experiencing peak pricing at 16:00-17:00. This pricing structure was able 

to reduce peak demand by 9.6% when implemented in a decentralized control, minimum 

cost EMPC formulation, compared to the 10% peak reduction with the centralized 

control, minimum peak demand formulation. The one-hour peak prices ranged from 

$0.05-0.61/kWh with an average of $0.31/kWh. 

Reducing the number of peak pricing periods from six to five resulted in very 

little loss of peak reduction potential. Greater losses were found when the number of 

periods was reduced further. However, the amount of extra energy required to achieve the 

peak reduction decreased as the number of peak pricing periods decreased.  

Although in this case the goal was to find prices that would minimize peak 

demand, the same method could easily be applied to other criteria. For example, the same 

methods could be used to find prices that would minimize the system’s environmental 
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footprint or maximize the system’s efficiency. However, the method does require that a 

model of the system be in place. 

Future work includes adding stochastic elements to the system, both in how 

occupants behave as well as in how prices are assigned to the homes. Inclusion of these 

stochastic aspects will help provide bounds for the system estimates given in this chapter.  
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Chapter 9: Conclusions and Future Work 

How we use energy will continue to be an area of major concern throughout the 

21st century. Ensuring that we use energy in the most effective way is important both now 

and in developing future systems. This work has attempted to address some of the issues 

regarding energy use, especially as they relate to the electric grid.  

 The integration of energy systems can lead to improved system performance, but 

it is important that the systems are managed in such a way that the independent systems 

can work together synergistically. This work has integrated a number of systems, 

including 

 Commercial buildings, chillers, and thermal energy storage (Chapter 3) 

 Commercial buildings, chillers, a combined heat and power plant with turbine 

inlet cooling, and thermal energy storage (Chapter 4) 

 A community of 900 residential homes (Chapters 6-8) 

 Residential homes and solar PV (Chapter 7) 

In each case a model predictive control framework was applied to manage the integrated 

system, and in each instance the integrated system (with the control) demonstrated 

superior energy management than the systems would have in isolation. 

 In all the examples provided, some form of thermal storage was utilized in order 

to shift energy consumption in time. In some cases the thermal storage was active, such 

as with the chilled water tanks. In other cases it was passive, such as with the residential 

homes that stored thermal energy in the building thermal mass. In all cases, the thermal 

storage increased the flexibility of the system and gave the controller more degrees of 

freedom in managing the system. The storage was useful in both reducing peak demand 

and in responding to time-of-use or market electricity prices. With the active thermal 
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storage, thermal storage can also be used to reduce energy consumption (see Chapter 3). 

The reason that the passive thermal storage in the homes cannot conserve energy is that 

when the homes are cooled, it increases the heat flux into the home, thus increasing the 

energy required to maintain the temperature. The active storage units, on the other hand, 

are very well insulated and have a lower surface-area-to-volume ratio, so heat losses are 

nearly the same for both a charged and discharged tank. 

 The smart grid is a necessary component of much of the work discussed here. 

Some level of information availability is necessary for the predictive controller to be able 

to have accurate forecasts and for system models to be accurate and efficient. How these 

data are shared and managed is an area of continual development, and it is important that 

appropriate standards are in place to both facilitate and safeguard the sharing of 

information. 

FUTURE WORK 

 This dissertation has focused on integrated energy systems in a smart grid 

environment for the Austin, TX, climate. Extension of this work to other climate zones 

would be valuable because electricity markets, building codes, and resource availability 

vary considerably across the United States. New opportunities and challenges arise in 

other locations due to changing conditions. 

 This work has also only considered localized effects of implementing energy 

options such as thermal energy storage. However, if technologies such as thermal storage 

were deployed at a large scale, then they could affect other systems and change electricity 

markets [271]. Incorporating production cost models such as PLEXOS or GridView can 

account for these changes and provide insight into secondary or other effects. 
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 There are a variety of energy systems that have not been considered in this work 

that would likely prove beneficial. The broader the technology base considered, the more 

likely synergies will be identified. Denholm et al. [272] has considered the integration 

thermal storage with nuclear power and renewable energy to provide benefit. Certainly 

improvements can be made as more types of systems are considered. 

 As an obvious first step, the work in the Chapter 3-4 can be combined with the 

work in Chapter 6-7 to consider how a system that incorporates residential and 

commercial buildings, active and passive thermal storage, and solar PV can provide 

benefit. An analysis of that kind of system can provide insight into which building types 

are best suited for managing electricity loads. Additionally, because the occupancy 

patterns of commercial and residential buildings are opposite of one another (we leave 

home to go to work and vice versa), it is likely that there is some combined benefit from 

treating the two building types together. 

 There is also considerable potential to couple the commercial and residential 

sectors with the industrial sector. Industrial facilities account for approximately 30% of 

the total primary energy consumption in the United States [273]. Of that input energy, 20-

50% is lost in waste heat from hot exhaust gases, cooling water, and heat lost from hot 

surfaces and heated products [274]. Utilizing this waste heat is challenging because 

approximately 60% of waste heat is at relatively low temperatures (< 230°C) [274], 

which has limited use in an industrial facility. However, in regions with cooler climates, up 

to 50% of the total (not just industrial) energy consumption can be attributed to the 

production of low-grade heating services (<100°C) [275]. These low-grade heating services 

include space heating, water heating, and food-related activities in the commercial and 

residential sectors. Clearly, there is significant opportunity for synergies to occur between the 
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industrial sector, which has abundant low-grade heat, and the commercial and residential 

sectors, which consume sizeable amounts of energy to produce low-grade heat. 

 The final considerable to mention here is that of program implementation. One of 

the challenges in integrating energy systems is that the various energy systems are often 

owned and/or operated by different entities that often have different objectives. 

Designing policies or programs that allow the overall system to function in an optimal 

way is a challenging area that must be addressed in order to improve overall system 

efficiency. Research into developing new methods or business models might be just as 

important (and in many cases more important) than developing new algorithms, 

technologies, or control strategies. 
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Appendix 

i Variable 

 
a b c d f h 

0 0.69162 0.015821 -0.38918 0.000301 -0.00064 0.058116 

1 
 

-0.0136 0.430079 
  

0.049048 

2 
 

0.007389 -0.0421 
  

0.15815 

3 
     

0.157133 

4 
     

0.198968 

5 
     

0.208215 

6 
     

0.242481 

7 
     

0.258064 

8 
     

0.264863 

9 
     

0.223903 

10 
     

0.180865 

11 
     

0.172919 

12 
     

0.055472 

13 
     

0.163932 

14 
     

0.103703 

15 
     

0.082195 

16 
     

0.0582 

17 
     

0.052892 

18 
     

0.064628 

19 
     

0.102631 

20 
     

0.086834 

21 
     

0.069853 

22 
     

0.110427 

23 
     

0.134044 

Table A.1: Coefficients for (5.10) that are used in the MPC analysis. 

Using the coefficients from Table A.1 and setting DBT = 30°C the model in 

(5.10) becomes 

 

    0.6916 1 0.4084 ( ) 0.4301 ( 1) 0.0421 ( 2)y k y k T k T k T k        
 

(A.1) 
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where α is a term holding the constant values. Dropping the value α and applying 

the z-transform (see [226]) to (A.1) gives 

 

    1 1 20.6916 0.4084 ( ) 0.4301 ( ) 0.0421 ( )Y z z Y z T z z T z z T z     
 

(A.2) 

 

Solving for Y(z) yields 

 

 
     

1 2

1

0.4084 0.4301 0.0421
( )

1 0.6916

z z
Y z T z H z T z

z

 



  
 

  
(A.3) 

 

where H(z) is the discrete transfer function given by 

 

 1 2

1

0.4084 0.4301 0.0421
( )

1 0.6916

z z
H z

z

 



  


  
(A.4) 

 

The poles of H(z) are determined by multiplying the denominator of (A.4) by z 

and setting it equal to zero 

 

 0.6916 0z   (A.5) 

 

A single pole exists at 0.6916. Because this pole lies inside the unit circle in the 

complex z-plane, it is a stable pole. Also, because the pole is real, there are no oscillations 

in the model response. 

 The zeros of H(z) are determined by multiplying the numerator of (A.4) by 

z2 and setting it equal to zero 
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 20.4084 0.4301 0.0421 0z z     (A.6) 

 

This leads to zeros at 0.9438 and0.1092 which are both real and lie in the unit 

circle in the complex z-plane. Because the zeros are real, the model will not exhibit 

inverse response. 

 The steady-state response of the model is given by evaluating H(1) 

 

 0.4084 0.4301 0.0421
(1) 0.0663

1 0.6916
H

  
  

  
(A.7) 

 

so a step of 1°C in T (ignoring α) will lead to a steady-state change in y of -

0.0663. 
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