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Chemical reactions can be understood as transitions from basin to basin

on a high dimensional potential energy landscape. Varying temperature only

changes the average kinetic energy of the system. While applying voltages

or external pressures directly tilts the landscape and drives the reactions in

desired directions. In solids at relatively low temperature, where the entropy

term is approximately invariant, the reaction spontaneity is determined by the

energy difference between the reactant and product basins and the reaction

rate can be calculated from the barriers in between. To achieve sufficient

accuracy to explain experimental observations we are interested in, density

functional theory (DFT) is usually employed to calculate energies. There are

two types of reactions I have studied: the first type of reaction only involves a

few number of individual atoms, corresponding to traveling in a small volume

in the high dimensional configuration space; the other type involves a large

amount of atoms moving in a concerted pattern, and the distance traveled in
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the configuration space is significantly longer. The scopes of these two in the

energy landscapes are in different scales and thus proper metrics for distance

measurements are required.

In the first case, I have mainly studied Li/Na behaviors in the cathode

materials of secondary batteries. Here resolving the energy landscape step by

step with detailed information is possible and useful. By analyzing the energy

landscapes with DFT plus the Hubbard U correction, I have explained sev-

eral phenomena related to the degradation of lithium-rich layered oxides, rate

performance of surface modified LiFePO4, and capacity of vanadium-based

fluorophosphates. Predictions on both thermodynamic and kinetic proper-

ties of materials are also made based on the calculation results and some are

confirmed by experiments.

In the second case, my focus is on solid-solid phase transitions. With

a tremendous long reaction pathway, examining every possible atomic step is

too expensive. By adopting periodic boundary conditions, a small supercell

can represent the main feature of the energy landscape in a coarse grained

way, where the connection between phases is easier to explore. After the big

picture of a phase transition mechanism learned from this simplified model,

details along the reaction pathway, like new phase nucleation and growth,

could be resolved by using a larger supercell. In the above treatment, two

types of variables, the cell vectors and atomic positions, span a generalized

configuration space. Special consideration is required to balance these two to

keep consistency under different supercells and avoid biases. A solid-state NEB
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(SSNEB) and a solid-state dimer (SSD) method are then developed to locate

saddle points in the generalized configuration space. With the methodology

well justified, we are able to efficiently find possible nucleation mechanisms, for

examples the CdSe rock salt to wurtzite and Mo A15 to BCC phase transitions.

SSNEB is also applied in studying phases transitions under pressures, including

the graphite to diamond, and CaIrO3 perovskite to post-perovskite transitions.

Combined with the adaptive kinetic Monte Carlo (AKMC) algorithm, SSD

shows the ability to find new polymorphs of CdSe and the connecting barriers

between them.
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Chapter 1

Introduction

A journey of a thousand miles begins with a single step. –Laozi

This dissertation is a collection of the work I have done during my

Ph.D. study in physical chemistry at the University of Texas at Austin. It is

the milestone of my graduate study, but in the long run, it is also the first step

of my scientific career. The same logic applies to the study of chemical reaction

pathways, the major topic of this thesis: depending on how closely we need to

look into the reaction mechanisms, different ruler scales (miles or steps) should

to taken to appropriately measure the meaningful distances in a configuration

space. The seven chapters are seven self-contained papers I have published,

all of which are related to the exploration of potential energy landscapes. The

first three chapters focus on the applications in lithium ion battery systems,

where the reactions are investigated step by step. The last four chapters focus

on the mechanisms of solid-solid phase transitions, where smaller scale (coarse-

grained) maps are needed to efficiently navigate the broader landscapes.
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1.1 Lithium/sodium ion batteries

The lithium ion batteries have been widely used for energy storage in

portable electronic devices and now even in electric vehicles. By replacing

lithium with cheaper sodium, the system can also be made economically ef-

ficient for use in large-scale energy storage in electrical grids. The increasing

demands for larger capacity and higher charging/discharging rate per unit

weight, as well as better cyclability and safety, drive the development of new

battery materials. Computational simulations are playing an import role in

understanding reaction mechanisms at the atomic scale in the batteries and

giving new directions for further experiments.

A lithium ion battery consists of three major components: the cath-

ode, the anode and the electrolyte. During discharging, lithium atoms sponta-

neously move from the anode to the cathode. The energy difference between

lithium in these two electrodes is the work available to the outside circuit.

More specifically, the lithium binding energy difference in the two materials

determines the battery voltage, and the number of available sites for lithium

in lattice determines the battery capacity. The electrolyte is electron insulat-

ing with large band gap but lithium ion conducting, which forces electrons to

separate from lithium ions and travel through the metal wire of the electrical

circuit. The cathode and anode are host materials that barely change their

structures upon lithiation or delithiation, and thus the discharging and charg-

ing reactions are ideally completely reversible. The cathode is relatively more

energetically favorable to host lithium. The cathode and anode are electrically

2



neutral in the bulk, as well as the electrolyte far from interfaces. On the in-

terfaces, small amounts of net charge can accumulate as the system fluctuates

away from equilibrium, which only affects the kinetics and is ignorable under

small charging/discharging currents. Therefore, before intercalating into the

electrode, Li+ from the electrolyte has to recombine with an e− on the inter-

face, which is usually a highly electrically conductive carbon layer coated on

the electrode. Without carbon coating, the recombination of Li+ and e− could

become the rate limiting step. In our simulations, we assume that lithium in-

tercalates as a neutral atom, and then in the host material, the electron from

lithium redistributed according to self-consistent electronic structure calcula-

tions. The applied voltage that controls the direction (charging or discharging)

and rate of lithium intercalations is understood as the amount of work put into

the system per electron passing the outside circuit, which effectively changes

the energy difference between the initial and final state (lithium being in the

cathode or anode) during cycling. Under equilibrium, i.e. the zero current

limit, the input and output work exactly cancels and the effective energy dif-

ference between lithium in the cathode and anode is zero. Inputting work to

the system can be thought of as connecting the system to another exothermic

reaction (another battery), and thus an electric field is not necessarily present.

The first three chapters discuss three cathode materials, which are all

transition metal compounds. Actually nearly all the cathodes include tran-

sition metals. Regular density functional theory (DFT) tends to artificially

delocalize electrons due to the self-interaction errors, thereby giving qualita-
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tive inaccurate pictures in describing the localized d and f electrons, especially

the 3d ones. An U term based on the Hubbard model, which accounts for the

on-site Coulomb repulsion, is needed to capture the qualitatively correct elec-

tronic structures and then the correct forces between atoms. With the help

of modern supercomputers, chemically accurate energy landscapes of these

cathodes can be depicted under the GGA+U framework. Consequent modi-

fications of the landscapes can be made towards desired features by changing

certain elements of the materials.

1.1.1 Calculations of oxygen stability in lithium rich layered cath-
odes

Stability or cyclability is a big issue for the cathode materials. In

many layered compounds oxygen evolution becomes spontaneous as lithium

concentration drops during charging. For example, LiCoO2 can only be safely

charged to Li0.5CoO2 to avoid any irreversible structure change, which limits

the practical capacity to be half of the theoretical value. This is also the

reason that keeping the laptop battery fully charged accelerates its capacity

decay. Similar problems exist in LiNi0.5Mn0.5O2. To suppress the structure

collapse of these layered compounds during charging, Li2MnO3 is introduced

as an electrochemically inactive structure component to support the whole

framework, because Mn4+ is supposed to be in the highest oxidation state

and thus its lithium are difficult to extract. However, oxygen loss is still

observed in the mixed compound, which shows clearly as a plateau in the

voltage profile. It is also found that Ti substitution in the transition metal
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layer reduces the plateau while Co increases the plateau. In this chapter, we

attribute the plateau length to the strength of oxygen binding in the material

and qualitatively explain the trend of oxygen loss upon substitution of Mn

with other transition metals.

1.1.2 Enhanced Rate performance by Anion Surface Modification
of LiFePO4

LiFePO4 is a cathode material with excellent stability developed in

Dr. Goodenough’s group in Austin. Compared with the layered materials,

LiFePO4 has a three dimensional framework with one dimensional lithium

channels along the [010] directions. The rate performance of this material has

always been a problem. The first issue is that LiFePO4 is an insulator, which

dramatically reduces Li+ and e− recombination. As we mentioned above, the

cathode can only accept neutral atoms for intercalations. Consequently, the

overall discharging rate is limited by electron transfer, or more specifically

the combination of Li+ and e− on the surfaces of the cathode particles. This

issue is solved by coating the cathode with electron conducting carbon which

provides easy pathways for e− to meet with Li+. After that, slow lithium

atom diffusion is the bottleneck of the rate performance. Another success

that finally commercialized this cathode is reducing the particle size by nano-

engineering to shorten the lithium diffusion length. But mechanisms behind

the relatively low lithium diffusion rate still remain unclear, which holds off

further improvements. Several factors have been proposed as the possible rate

limiting step, including lithium-iron antisite defects that block some lithium
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diffusion channels and the separation of lithium-rich and lithium-poor phases.

There is a lot of debate on the phase separation topic, for example: whether

there are two phases or not; if two phases form, whether it follows the core-

shell or the domino cascading mechanism. In this chapter, we study the rate

performance from the energy landscape perspective. With a pathway of atomic

resolution, we find lithium occupying the surface site is the highest energy state

along the diffusion path and can be used to approximate the overall barrier

for small particles. Any surface modification that enhances lithium binding

on the surface can thus improve the rate performance.

1.1.3 Theoretical Study of Vanadium-Based Fluorophosphates Cath-
odes for Rechargeable Batteries

Sodium is significantly more abundant in earth’s crust than lithium.

Therefore sodium ion batteries attract attention for large-sale energy storage.

Because of the larger weight compared to lithium, sodium cathodes usually

have a slightly smaller gravimetric energy density. Some people argue that

the bigger mass of sodium also causes slower diffusion and lower rate per-

formance. However, diffusion is a chemical reaction following statistical laws

rather than a physical movement governed by a single dynamical trajectory.

For any chemical reaction in solids, which is a rare event, the rate is mainly

determined by the energy barrier. Sodium atoms are also about thirty percent-

age larger in volume than lithium atoms, and therefore require larger space

in the host material to be accommodated. The bigger volume does not nec-

essarily mean slower diffusion either. In some layered materials, sodium has a

6



lower diffusion barrier than lithium. Regarding diffusion, there are two com-

peting effects related to the size: if the diffusing atom is too big compared to

the channel, Pauli repulsions contribute most to the barrier; if the atom is too

small, weakening of Coulomb attractions at the saddle point raises the barrier.

In some materials, sodium could diffuse much faster than lithium because its

radius is just right compared to the size of the diffusion channel.

1.2 Solid-solid phase transitions

Solid-solid phase transition is an interesting and challenging topic. It

involves understanding material degradation mechanisms and synthesizing new

materials under pressures. For example, Li2MnO3 undergoes layered-to-spinel

phase transition during charging; graphite can be transformed into diamond at

high temperature under extraordinary high pressure. The challenge for simu-

lation comes from the enormous number of atoms in solid materials. Periodic

boundary conditions, i.e. cell vectors that represent translational symmetry,

are usually adopted to efficiently describe bulk, which works perfectly for equi-

librium property calculations. While during phase transitions, the solid system

may have cell vector changes as well as atom movement. These two types of

variables need to be treated in an unbiased way to correctly represent the re-

action coordinates of the transitions. Therefore, a generalized configuration

space spanned by both cell and atomic degrees of freedom is introduced, along

with a metric for proper distance measurements. The nudged elastic band and

the dimer method are then adapted into the generalized space.
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1.2.1 A Generalized Solid-state Nudged Elastic Band Method

Previous efforts on calculating barriers of solid-state phase transitions

have successfully explained some important experimental phenomena, but the

methods employed cannot be directly extended to general cases. In these

studies, either the cell or atomic degrees of freedom are preselected as the

primary reaction coordinates and the unselected ones are fully relaxed as the

main coordinates change, which are typical drag methods. It is well known that

the drag variables have to be choose carefully, otherwise the atomic motion

could be noncontinuous and the reaction path calculated would be unphysical.

Without prior knowledge of the system, applying any kind of drag method

is risky. Moreover, some phase transitions may involve both cell and atomic

motion at the same time, for example a nucleation and growth process, that

dragging either of them would not give the proper reaction pathway. In this

chapter, a generalized solid-state nudged elastic band (G-SSNEB) method is

developed, which treats the cell and atomic degrees of freedom on the same

footing. It is revealed by the method whether the transition is cell-dominated,

atom-dominated, or neither, rather than predefined. With this advantage,

a minimum energy path of the nucleation process in the CdSe rock salt to

wurtzite phase transition is calculated for the first time.
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1.2.2 From Graphite to Diamond: Reaction Pathways of the Phase
Transition

Several puzzles are still unsolved in understanding the kinetics of the

phase transition from graphite to diamond. Cubic diamond is the most stable

structure among carbon allotropes, while many other structures can exist for

a long time due to kinetic barriers. For example, graphite is the most common

meta-stable phase. With the help of high pressure techniques, more meta-

stable structures are being synthesized in experiment, because the enthalpy

landscapes can be modified by the work term (PV) to tilt towards configura-

tions with smaller volumes. Barriers may also increase or decrease by pressure

depends on the reaction paths. The so-called cold compressed graphite (CCG)

is a new allotrope synthesized at room temperature by compressing graphite

to 17 GPa, whose exact structure is unsolved. Since low temperature means

a extremely low barrier to overcome, using G-SSNEB to calculate the barri-

ers from graphite to different candidate structures could help to identify the

CCG. Another interesting observation is that heating graphite under 15GPa

pressure, a hexagonal diamond structure forms at lower temperature than the

cubic diamond, which indicates a higher barrier for the latter phase transi-

tion. While previous theoretical studies were limited to concerted mechanisms

and found the opposite barrier order. With G-SSNEB, we show the phase

boundary that was missed in the concerted mechanism is responsible for the

discrepancy.
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1.2.3 Mechanism of the CaIrO3 Post-Perovskite Phase Transition
Under Pressure

In this last application of the G-SSNEB, roles of external stresses in

changing reaction barriers are discussed. Applying isotropic pressure always

stabilizes the compact phase, but does not necessarily reduce the transition

barrier. Whether the pressure decreases or increases the barrier depends on

the angle between the reaction pathway and the pressure. When CaIrO3 trans-

forms from the perovskite to the more condensed post-perovskite phase, the

volume needs to increase first to allow for IrO6 octahedron rotations, which

raises the barrier under moderate isotropic pressures. Keeping adding pres-

sures finally shifts the transition path from IrO6 rotations to direct IrO6 com-

pressions, from where the barrier starts to decrease with the pressure. While

shear stress always facilitates the transition towards the post-perovskite phase,

which agrees with experimental observations.

1.2.4 Solid-State Dimer Method for Calculating Solid-Solid Phase
Transitions

Extended from the G-SSNEBmethod, a solid-state dimer (SSD) method

is developed for single-ended saddle point searching in the generalized configu-

ration space. Different from the NEB method, where both the initial and final

states are needed to launch a saddle search, the dimer method only requires

information of one state and can locate low lying saddle points to escape the

state. Then structures of product states are obtained by minimizing the en-

ergy from the saddles found. This procedure makes the exploration of energy

10



landscapes more automatic and less biased. In studying phase transitions, how

atoms in the final phase corresponds to those in the initial phase is burden-

some to sort out manually. Moreover, the choice of cell for each phase is not

unique, which further increases the complexity of the atomic mapping. To set

a plausible initial phase transition path for SSNEB becomes a big hurdle to

study a new phase transition. The SSD does not have this issue since it traces

the atom and cell movement from a single initial point in the generalized space.

Combining the SSD with the adaptive kinetic Monte Carlo method (AKMC)

in the EON software, new phase transition mechanisms and crystal structures

can be found more easily.
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Chapter 2

Calculations of oxygen stability in lithium rich
layered cathodes

2.1 Abstract

Oxygen loss can lead to high capacity Li2MnO3-based lithium-rich lay-

ered cathodes. Substitution of Mn with other transition metals (Ti and Co)

significantly affects the amount of oxygen loss and capacity during the first

charge/discharge cycle. An explanation of these results is provided with den-

sity functional theory (DFT+U) electronic structure calculations. Oxygen is

found to bind more strongly to Ti and more weakly to Co. The influence of the

substitution is attributed to changes of the band gap. Ti lifts the non-bonding

band and increases the band gap of the compound, thus raising the energy

required to redistribute the electrons released upon oxygen loss. Co lowers the

non-bonding band and facilitates oxygen loss.

2.2 Introduction

Li2MnO3-stabilized LiMO2 (M=Mn, Co, Ni) materials are promising

cathodes for Li-ion batteries due to their higher capacity and stability as com-

pared to the parent LiMO2 layered oxides [1]. The stabilized compounds have
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a similar structure as LiMO2 except that excess Li populates the transition

metal layer. This is made clear using the notation, Li[Li1/3Mn2/3]O2, where

[...] indicates the composition of the transition metal layer; in this example 1/3

of the Mn atoms are replaced with Li. In the endpoint material, Li2MnO3,

Mn4+ cannot be oxidized further. It has been shown that the oxidation of

O2− to O2 compensates for electrons in charging process [2, 3, 4]. For the

stabilized materials, it was expected that the compensating electrons would

only come from LiMO2 (M=Mn, Co, Ni) where M can be oxidized to a +4

state. Interestingly, oxygen loss is still observed, and it continues after all the

transition metals are fully oxidized [5, 6]. This oxygen loss results in a higher

capacity than either of the endpoint materials so it is important to determine

the factors that affect it.

In a previous paper, Li[Li0.2Ni0.2Mn0.6]O2 was synthesized and the in-

fluence of different transition metal ions on oxygen loss during the first cycle

was studied [6]. The results shows that oxygen loss is sensitive to the sub-

stitution: introducing Ti into the transition metal layers reduces oxygen loss

while Co promotes it. The explanation provided is that a greater overlap be-

tween the Co3+/4+ t2g and O2− 2p bands leads to more metal-O covalency,

more delocalized electrons, and a reduced stability of O2− ions; whereas less

overlap between the Ti3+/4+ t2g and the O2− 2p bands leads to less metal-O

covalency, more localized electrons, and an increased stability of O2− ions.

Here we employ density function theory (DFT) calculations to explain the ex-

perimental results, and test this model from the perspective of oxygen binding

13



Table 2.1: The U values for different transition metals (TMs).

TM Ueff Ref. TM Ueff Ref.
Co 5.1 [7] V 4.0 [8]
Mn 5.0 [9] Cr 3.5 [10]
Ti 4.2 [11] Fe 4.3 [7]
Ni 5.96 [9]
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Figure 2.1: Correlation between band gaps of Li2MO3 calculated with DFT+U
and the HSE functional.

and electronic structure calculations.

2.3 Computational Method

To simplify the calculations, we modeled the endpoint material Li[Li1/3Mn2/3]O2

and then substituted Mn with other transition metals. All transition metals

modeled are in their +4 state, which represents the chemical environment

where oxygen loss occurs. DFT+U calculations were conducted using Vienna

ab-initio simulation package [12]. The generalized gradient approximation with

PW91 functional was chosen to describe electron exchange and correlation [13].
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All calculations included spin-polarization. Core electrons were incorporated

into pseudopotentials with the projector augmented-wave method [14, 15]. Va-

lence electrons were described with a plane wave basis set with an energy cutoff

of 400 eV. A 2×1×1 super-cell was chosen to represent the periodic crystal.

All atoms were allowed to relax, but no gross structural rearrangements were

considered. A Monkhorst-Pack k-point mesh of 2×4×4 was set for oxygen

binding energy calculations, and a 6×12×12 mesh for density of states (DOS)

calculations. An on-site Hubbard term (U) was used for the transition met-

als to avoid the delocalization of 3d electrons as a result of self-interaction.

The effective U values (Ueff=U−J) were taken from the literature; they are

summarized in Table 2.1. A comparison of band gaps calculated with DFT+U

and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [16] are plotted in

Fig. 2.1. The HSE band gaps are expected to be in fairly good agreement with

experiment, without relying on any material specific fitting parameters [17].

Although DFT+U underestimates the band gap as compared to HSE, the

correlation between the two methods validates the use of DFT+U and the

literature values of Ueff used for our analysis. Local charges were calculated

using a grid based Bader analysis method [18, 19].

2.4 Results

The effects of Ti and Co doping on oxygen loss in the first cycle are

summarized in Fig. 2.2 [6]. The width of the plateau at 4.5 V corresponds

to the amount of oxygen loss. When Mn is substituted for Ti the plateau
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Figure 2.3: Correlation between oxygen binding energy and the oxygen net
charge.

increases (indicated by the arrows in the figure); the opposite is observed for

Co substitution.

The oxygen binding energy is a direct indicator of oxygen stability in

different compounds. A stronger oxygen-metal bond makes it harder for oxy-

gen to leave the material. Using DFT, the oxygen binding energy is calculated

as the energy of the following reaction

Li2xMxO3x → Li2xMxO3x−1 +
1

2
O2. (2.1)

Our model uses a value of x=4 and an oxygen vacancy concentration of 8.3%.
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The low concentration reduces the interaction of vacancies between periodic

images so that the calculations correspond to the onset of oxygen loss, thus

simplifying the analysis. The oxygen binding energy of Li[Li1/3M2/3]O2 (M =

Co, Mn, and Ti) are shown in Fig. 2.3. Ti substitution is found to increase

the oxygen binding energy while Co decreases it, which agrees well with the

experimental trends. The average net charge on the oxygen atoms, which is

the total electric charge calculated with a Bader analysis minus the number

of protons in the nucleus, is also shown to correlate with the oxygen binding

energy. This trend has been understood in terms of the degree of covalency

between the O and transition metal [6]. Transition metals that are more

electropositive result in more ionic oxygen-metal bonds. When the bonding

electrons are relatively more localized on oxygen atoms, these oxygen atoms

are difficult to remove and the material is harder to oxidize. Transition metals

which are less electropositive lead to a greater degree of covalency with oxygen

and a greater tendency for oxygen loss.

Trends in oxygen stability can be directly understood from the elec-

tronic structure of the oxide materials, and specifically how the density of

states changes with the transition metal, as shown in Fig. 2.4(a). One thing

worth noting is that the valence bands consist of both oxygen and metal char-

acter, with oxygen dominating. There is more metal contribution in the va-

lence band for Co, which suggests more overlap between the Co and O bands

and a greater covalency. Both Mn and Ti have a greater ionic character. In

all three compounds, the conduction band primarily consists of non-bonding
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Figure 2.4: (a) Density of states of Li[Li1/3M2/3]O2, where M is Co, Mn or Ti.
In each plot, the black curve is the total density; red and blue are the partial
density of oxygen and the transition metal; and the dashed black line indicates
the Fermi-level. The band gap increases from left to right, which follows the
oxygen binding energy trend (note that Li[Li1/3Co2/3]O2 is calculated to be a
metal). The energy levels are alined by the low-lying oxygen 2s states. (b)
Electron density isosurface (yellow) of the lowest unoccupied molecular orbital
(LUMO) in Li[Li1/3Ti2/3]O2. The green spheres are Li and the red are O. The
concavity along the bond directions shows the non-bonding character of the
LUMO.
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or anti-bonding metal states. The nuclear positive charge increases from Ti

to Co and the metal states lower in the DOS due to an increased Coulomb

attraction. For Co, the non-bonding states overlap with the valence states and

the band gap vanishes.

The band gaps of the three compounds are also found to positively

correlate with their oxygen binding energy. This is not surprising: when an

O atom is removed from the material, the localized electrons on the O, which

occupied states below the Fermi level, must be accommodated in unoccupied

states. The differences in energy for oxygen removal between the different

compounds can then be correlated to the band gap. This model is supported

by calculations of the DOS of Li[Li1/3M2/3]O2−x shown in Fig. 2.5(a). Removal

of an O atom releases two electrons to the crystal which occupy a new state

above the Fermi level. In Li[Li1/3Ti2/3]O2−x, this new state is localized in an

orbital with dz2 character on the two Ti centers neighboring the O vacancy.

The dz2 states on Ti mix with the pz states of the missing O in the metal-

oxide valence band. The other end of the Ti-dz2 orbitals point to occupied

O-pz orbitals. The node between the Ti-dz2 and O-pz orbitals indicates the

anti-bonding character of the state. A small portion of the state is locating

on the second nearest neighbor Ti atom, with t2g symmetry, which indicates

non-bonding character. To summarize, the electrons left behind upon O loss

in Li[Li1/3Ti2/3]O2−x are in a non-bonding/anti-bonding mixed state.

The density of states also shows why oxygen loss is enhanced upon

delithiation. In Fig. 2.6, removal of a Li atom in Li1−x[Li1/3M2/3]O2 creates
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Figure 2.5: (a) DOS of Li[Li1/3M2/3]O2 with an oxygen vacancy in the su-
percell. The black dashed line shows the increased Fermi level after oxygen
removal as compared to before, shown by the green dotted line. (b) The elec-
tron distribution of the highest occupied orbital created by oxygen removal in
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Figure 2.6: DOS of Li[Li1/3M2/3]O2 with a lithium vacancy in the supercell.
Fermi levels drop from the green dotted lines to the black dashed lines. All of
the three materials are conductors now.

an electronic hole and lowers the Fermi level so that the material becomes a

conductor. Since the band gap is zero, oxygen loss is facilitated by the low

lying unoccupied states. This explains why Li[Li1/3M2/3]O2 is inactive as a

cathode material.

The correlation between the band gap of Li[Li1/3M2/3]O2 and the bind-

ing of oxygen extends over the first-row transition metals, as shown in Fig. 2.7.

These calculations indicate that Fe and Cr could be potential doping elements

for Li[Li1/3Mn2/3]O2, besides Ni and Co. V, on the other hand, should stabilize

oxygen as compared to Mn.

2.5 Conclusion

We have explained the effect of transition metal substitutions on oxy-

gen loss in lithium-rich layered oxides from the electronic structure calculated
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Figure 2.7: Correlation of oxygen binding in Li[Li1/3M2/3]O2 with the band
gap. The band gaps are calculated as the energy differences between the bot-
tom of the conduction bands and the top of the oxygen dominating bands
since the extra electrons come from the leaving oxygen. These are the con-
ventional band gaps for all the compounds in the figure as their oxygen bands
lie on the Fermi levels, except for vanadium whose highest occupied states are
non-bonding metallic states.

with DFT+U. The conclusion is that the band gap of the cathode determines

the oxygen binding energy, because the unoccupied metal bands provide the

empty energy levels for electrons from the removed O. Ti substitution in-

creases the band gap because the non-bonding metal band has higher energy

due to the weaker nuclear attraction as compared to Mn. Thus Ti suppresses

oxygen loss. Co substitution decreases the band gap because the low-lying

non-bonding metallic band overlaps with the valence band and makes the ma-

terial a conductor. Thus Co facilitates oxygen loss. The correlation between

band gap and oxygen binding energy is further confirmed by examining other

third period transition metals between Ti and Ni.
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Chapter 3

Enhanced Rate Performance by Anion Surface
Modification of LiFePO4

3.1 Abstract

Despite the great achievement in understanding the materials proper-

ties and powder engineering of LiFePO4, the chemical bonding at the surface

has been almost ignored. Herein, we demonstrate that the under-coordinated

Fe2+/Fe3+ redox couple at the surface gives a high barrier for charge transfer,

but it can be stabilized by nitrogen or sulfur adsorption. The surface modifi-

cation improves greatly the charge transfer kinetics and the charge/discharge

performance of the LiFePO4 cathode. The rate performance enhancement is

explained in the energy landscape picture from DFT calculations. Based on

this understanding, we predict that during discharging the rate enhancement

is a segmented function of applied voltages and it vanishes as the voltage (ab-

solute value) decreases (the anode energy level increases). The predictions

are further confirmed by following experiment where the rate constants are

measured under different voltages.
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3.2 Introduction

To reduce the effects of fossil fuels on global warming and air pollution,

alternative energy sources at an affordable price are urgently needed. The

intermittency of wind and solar energy makes mandatory large-scale energy

storage as a complement to these alternative energy sources, and rechargeable

batteries can provide both portable and stationary storage of the electrical

energy generated from wind and radiant solar power. Moreover, rechargeable

batteries that power electric vehicles offer not only a distributed energy store,

which can make the cost of battery storage more acceptable, but also a relief

from distributed sources of air pollution. LiFePO4 offers a cathode alterna-

tive for a Li-ion battery (LIB) that contains low-cost, environmentally benign

materials, is safe, and has a competitive energy density with a proven long

cycle life at high rates of charge/discharge. These features make it a wor-

thy target for further reduction of its reversible capacity loss at the highest

charge/discharge rates desired for powering an electric vehicle.

A LiFePO4 cathode has a theoretical capacity of 170 mAh g−1 and

operates at a voltage V = 3.45 V versus Lithium, which is safely above the

HOMO of the organic liquid-carbonate electrolyte. Moreover, the strong co-

valent bonding within the (PO4)3− anion keeps the top of the O-2p bands well

below the active redox energy, which prevents oxygen evolution at full charge

even at high temperatures [20, 21, 22, 23]. Although a two-phase reaction be-

tween LiFePO4 and FePO4 creates a poor electronic conductivity, which lowers

the electrochemical capacity at higher charge/discharge rates, carbon coating
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of nanosized LiFePO4 particles has largely solved this problem [24, 25, 26].

Although Li+ diffusion is confined to 1D channels along the b-axis [27, 28, 29],

the nanosized LiFePO4 particles crystallize in the form of platelets with the

b-axis perpendicular to the plates, which facilitates Li access to all the par-

ticle volume. With proper quality control, high-rate LiFePO4 cathodes have

been successfully introduced into practical LIBs of very long life. Nevertheless,

there is some reversible capacity loss at high rates owing to the resistance of

Li+ transport across the electrolyte/electrode interface.

A reduction of this charge-transfer resistance by the introduction of

nitrogen or sulfur to the surface of the LiFePO4 particles is observed in ex-

periment. The surfaces of bare LiFePO4 and FePO4 particles were modified

by NH3 gas and S vapor, and these surface-modified samples are denoted as

N-LiFePO4, N-FePO4, and S-LiFePO4, S-FePO4, respectively. The particle

size and the morphology were little changed by the postannealing treatments,

regardless of the annealing temperatures; changes in the lattice parameters are

also less than 0.05% compared to the reference values. We have undertaken

a theoretical study to explain how the barrier of Li transport between the Li

metal anode and the FePO4 cathode is modified by the substitution of nitro-

gen for surface oxygen or the absorption of sulfur on the (010) surface of the

FePO4 platelets.
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3.3 Computational Method

All the calculations were performed in the Vienna ab-initio simulation

package (VASP) at the GGA+U level of theory [30, 31]. The functional for

electron exchange and correlation was chosen as PW91, and the effective U

value, Ueff = U − J , was set to 4.3 eV, according to a self-consistent calcula-

tion [32, 33, 34]. Core electrons were described in the projected augmented

wave formalism [15]. Valence electrons were described by a plane wave basis

set with an energy cutoff at 400 eV [35, 36]. A ferromagnetic spin configura-

tion was set for the Fe ions. The supercell was constructed of 1 × 2 unit cells

on the ac plane, and 8 layers in the b direction, with a 15 Å vacuum layer

separating the periodic slabs.

3.4 Results

To correlate the presence of N and S atoms on the specific surface sites

and the improved electrochemical properties, density functional theory (DFT)

calculations of the surface- modified FePO4 have been performed. The FePO4

(010) surface is chosen for this study because it is the most stable surface

and also because it exposes the b-channels that transport Li [37]. TOF-SIMS

experiments show that N and S appears only on the surface of the material;

nitrogen is found mainly with phosphorous as P-N, while sulfur is found with

iron as Fe-S. Using these results as guidance, we replaced an O atom closest

to a b-channel with a N atom in a PO4 group in the N-FePO4 case; in the

S-FePO4 case, we put a S atom on top of a surface Fe site, forming a Fe-S
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Figure 3.1: Energy landscapes of Li moving from the surface into the b-channel
of undoped FePO4 and in the presence of N and S surface dopants.

bond. These binding sites were found to be energetically favorable.

3.4.1 Explanation of the Rate Increase

Figure 3.1 shows the calculated binding energy of a single Li atom as

it diffuses from the (010) surface of FePO4 along the b-channel. In the bare

FePO4, Li binds weakly on the surface and subsurface sites (a- and b-sites,

respectively) owing to a low coordination of Li and Fe on the surface and a

structural distortion of the subsurface site. Where Li reaches an FePO4 bulk
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site, the binding is stronger by 0.18 eV. Li binds most strongly in the LiFePO4

phase. In the FePO4 phase, there is a Coulomb attraction between Li+ and

its electron, which is located on a neighboring Fe2+ center. In the LiFePO4

phase, several Li can share the same Fe2+ center making the Coulomb energy

correspondingly lower [38]. The binding energies for the three regions (surface,

FePO4, and LiFePO4) are -3.10, -3.28, and -3.75 eV, respectively, consistent

with values reported in the literature [37, 39].

Since the barriers for Li hopping between sites are relatively small (0.2-

0.3 eV) and do not vary significantly between phases [34, 39], the binding

energies along the b-channel can serve as the minimum energy path (MEP) for

Li diffusion into and out of the material. As shown in Fig. 3.1, the weak binding

of Li to the surface site determines the overall barrier for both lithiation and

delithiation. Theoretically, if the voltage is below 3.75 V during lithiation, Li

should be able to intercalate into the cathode and form the LiFePO4 phase. In

practice, however, the rate at this voltage is too low to be measured. There are

two reasons for this observation: first, diffusion of Li into the material has to

overcome a relatively high barrier (3.75− 3.10 = 0.65 eV), and second, those

intercalating Li must agglomerate to nucleate the LiFePO4 phase. Only when

the voltage approaches 3.28 eV does the discharge current become measurable,

because at this voltage, isolated Li are stable in the FePO4 phase. Both N-

and S-modification decrease the total barrier by strengthen the Li binding on

surface sites, thus improving the rate performance. After surface modification,

the barrier is determined by the Li binding energy in the FePO4 bulk phase.
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3.4.2 Prediction of the Voltage Dependence

Focusing on the lithiation (discharge) processes, we can compare the

rate of the bare and N-/S-FePO4 to see whether experimental discharging rates

match what we expect from the calculated energy landscape (Figure 3.1). If

the anode energy level increases (by decreasing the applied voltage between

anode and cathode), the overall lithiation barrier will change. If the anode

energy level is below that of the weakest binding site, the intercalation barrier

is the energy difference between these two sites. When the anode energy level

is above the weakest binding site energy, there is no additional barrier above

the diffusion barrier between sites, and so the intercalation rate is limited by

diffusion (or other mass transport factors in the experimental apparatus).

In this high-energy anode regime, we take the diffusion barrier to be

the rate-limiting barrier for Li transport from the anode to the surface site,

denoted as ∆EN for the N-FePO4 and ∆E for the bare FePO4. ∆EN and ∆E

are independent of the applied voltage. Next, we denote the binding energy

of Li in a bulk site of N-FePO4 as EN, and the surface site binding energy

of the bare FePO4 as E. EN and E are the binding energies of Li at the

highest energy (weakest binding) sites for the N-FePO4 and the bare FePO4,

respectively. The relative rate constants for the bare and N-FePO4 case follows

Eq. 3.1. Here we assume the same prefactor A for all the lithiation processes

and use V ′ as a converted value of the applied voltage in eV scale (V ′ = −V
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in value).

k

kN
=

⎧
⎪⎨

⎪⎩

Ae−β(E−V ′)

Ae−β(EN−V ′) = e−β(E−EN) if V ′ < EN (region I)
Ae−β(E−V ′)

Ae−β(∆EN) = e−β(E−V ′−∆EN) if EN < V ′ < E (region II)
Ae−β(∆E)

Ae−β(∆EN) = e−β(∆E−∆EN) if V ′ > E (region III)

(3.1)

As shown in Eq. 3.1, if V ′ < EN or V ′ > E (regions I and III) the ratio of rate

constants is independent of the voltage, while in between, the ratio increases

as the voltage decreases (V ′ increases). In region I, V ′ < EN, the current is

too small to be measured in experiment, as discussed; in region III, the voltage

is too high and the system is far from equilibrium, which may complicate the

discussion. So we will compare with experiment the rate constant trend in

region II, EN < V ′ < E.

These same arguments hold for the dependence of rate on the applied

voltage in the S-FePO4 case.

3.4.3 Experimental Confirmation

To estimate the rate constant k from experimental data, we assume the

lithiation process as a simple first-order reaction. Because lithium diffusing

into the cathode is equivalent to vacancies moving out, the rate equation is

written in terms of vacancy concentration CV . The backward reaction can be

ignored when the discharge time t is small.

dCV (t)

dt
= −kCV (t) (3.2)

CV (t) = CV (0)e
−kt (3.3)
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Converting CV to the capacity Q gives:

Q(∞)−Q(t) = Q(∞)e−kt (3.4)

ln(1−Q(t)/Q(∞)) = −kt (3.5)

In experiment, ln(1 − Q(t)/Q(∞)) vs time curves of the bare and N-

/S-FePO4 are found to be linear in the short-time domain [40]. In this short-

time domain, the discharge reaction is interfacial charge-transfer controlled,

not diffusion controlled. From the slopes of the curves, the rate constants

are calculated. The ratio of the rate constants between the bare and N-/S-

FePO4 are plotted in Figure 3.2 to show the voltage-dependence as predicted

in Eq. 3.1. The experimental trend clearly confirms the prediction. In both

N- and S-FePO4 cells, as the applied voltage decreases, the k/kN and k/kS

ratio increases. At around 3.2 and 3.1 V, it reaches a plateau, where the ratio

stops increasing as the voltage decreases (a transition between region II and

III, where the lithium binding energy E = -3.10 eV). Since sulfur has a higher

surface coverage than N, the slope of k/kS may be higher than k/kN.

3.4.4 Understanding Li binding at the Surface

In this section, we discuss changes to the Li binding due to surface

doping. The Li binding energy has two primary contributions: the electronic

part (e−) and the ionic part (Li+). For the bare FePO4, weak binding at the

surface is primarily due to the electronic contribution. In bulk, the Fe dz2

orbital extends over two neighboring oxygen atoms; on the surface, Fe is un-

dercoordinated, and its dz2 orbital extends over only one oxygen neighbor. The
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Figure 3.2: Ratio of the rate constants between the bare and N-/S-FePO4.
The rate equation is estimated in terms of filling up vacant Li-sites in FePO4

during constant-voltage discharge by Eq. 3.5.

surface Fe-O bond is, therefore, stronger, and the energy of the corresponding

anti-bonding state (populated by the extra electron from Li) is higher. In the

b-site of Figure 3.1, the ionic part is responsible for weak binding. Li+ in this

is fully coordinated, but the cage space where Li+ can sit is bigger than a bulk

site. The distance between Li+ and half of the surrounding O2− is increased,

raising the Coulombic energy. In the a-site, Li+ is missing an attractive inter-

action from an O2− center; it is also missing a repulsion interaction from an

Fe3+ center. As a result of these two competing effects (which are comparable

in magnitude), the ionic contribution of Li binding to an a-site is comparable

to a bulk FePO4 site.

N-doping can stabilize Li in both a- and b-sites because it affects the

binding energies in both electronic part and ionic part. First, as shown in

Fig. 3.3, nitrogen provides an empty 2p state in the band gap, so that the
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Figure 3.3: Comparison of the density of states (DOS) between the bare and
N-FePO4 before and after Li absorption in the a-site. The dashed lines indicate
the Fermi levels. In the case of the bare FePO4, the electron from Li+ occupies
an Fe state high in the band gap (compare the FePO4 with (FePO4)+Li DOS).
In the presence of N, a lower energy state on the N atom is occupied instead;
the other N-electrons feel the repulsion from the new electron and their energy
levels increase (compare the N-FePO4 with (N-FePO4+Li) DOS).
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Figure 3.4: Comparison of the density of states between the bare and S-FePO4

before and after Li absorption in the a-site.

extra electron coming with Li+ does not have to go to the higher energy Fe

3d states. Nitrogen lowers the HOMO energy after Li intercalation. Second,

nitrogen is more negatively charged than oxygen and has stronger Coulomb

interaction with Li+. The comparison of the atomic structures of a-, b-, and

c-sites are shows in Fig. 3.5. As can be seen, Li+ in the b-site is displaced

towards the nitrogen as compared to the b-site in the bare material, showing

the attractive interaction.

An analysis of the S-doped surface shows that the mechanism for in-

creasing Li binding is different from that of nitrogen. Sulfur binds directly to

a surface Fe atom, providing full coordination of the Fe center. The electronic

environment of Li is similar to bulk and the binding energy is close to that of
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Figure 3.5: Atomic structures of a, b and c-sites for the bare and N-/S-FePO4.
The vertex positions are oxygen.
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Li in bulk FePO4. The binding of Li in the b- and c-subsurface sites increases

with respect to the surface a-site. The reason is not due to the electronic

structure. A comparison of the density of states (DOS) is shown in Fig. 3.4.

These data show that S raises the HOMO energy level after Li intercalation,

indicating that the electron binding energy is weaker. The stronger Li binding

is therefore due to ionic interactions. Sulfur induces a dramatic geometric dis-

tortion to the surface. The PO4 surface groups are rotated and the subsurface

Fe centers are non-coplanar (see red box). This change in geometry gives rise

to the strong Li+ binding found in the b-, c-, and d-sites.

3.5 Conclusion

In summary, we have shown that the presence of nitrogen or sulfur

on the surface of LiFePO4 can greatly improve the surface electrochemistry

during charge/discharge. The surface bonding state characterized with TOF-

SIMS indicates that nitrogen preferably substitutes for oxygen in the (PO4)3−

anions and sulfur dominantly bonds to the undercoordinated Fe site. DFT

calculations show that the total barrier for Li transfer is decreased by strong

Li binding on surface sites in the presence of N or S. The theoretical results are

backed by comparison of rate constants during potential-step chronocoulom-

etry. For N-FePO4, nitrogen can provide a more stable 2p state than surface

Fe 3d state for electron transfer and also has a stronger Coulomb interaction

with Li+ owing to the more negative charge. For S-FePO4, sulfur mainly stabi-

lizes the surface Fe 3d anti-bonding states. Modification of a surface can tune
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the surface energy levels and change the total barrier for the charge transfer

kinetics.

3.6 Acknowledgments

This material is primarily based upon work supported as part of the pro-

gram “Understanding Charge Separation and Transfer at Interfaces in Energy

Materials (EFRC:CST)”, an Energy Frontier Research Center funded by the

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

under Award No. DE-SC0001091. TOF-SIMS data were acquired on a TOF-

SIMS 5 instrument (ION-TOF GmbH, Germany, 2010) purchased through

the National Science Foundation Major Research Instrumentation program

(DMR-0923096).

38



Chapter 4

Theoretical Study of Vanadium-Based
Fluorophosphates Cathodes for Rechargeable

Batteries

4.1 Abstract

A single-phase crystalline Na3V2O2(PO4)2F material has been prepared

by the solvothermal method. Ion exchange between Na and Li was then used

to form Na3−xLixV2O2(PO4)2F. The two materials were studied as positive

cathodes by physical characterization, electrochemical measurements, and sim-

ulation. With density functional theory calculations, four stable phases of

NaxV2O2(PO4)2F were identified at the Na concentrations of x = 0, 1, 2, 3.

The transitions between these phases give rise to three values of the Na chem-

ical potential and three voltage plateaus for Na intercalation. The lower two

voltages, corresponding to removal of the first two Na per formula unit, agree

well with the corresponding experimental electrochemical measurements. Re-

moval of the third Na, however, is not observed experimentally because it is

outside of the (4.8 V) stability window of the electrolyte. This observation is

consistent with our calculations that show the last Na will only be removed at

5.3 V owing to the stability of the V-O bonding state and a strong Coulomb

attraction between the Na and the anions. Computational modifications of
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the material were considered to activate the third Na with an oxidation en-

ergy in the electrolyte stability window including swapping the anions from

O and F to less-electronegative Cl and Br. The most promising material,

Na3V2Cl2(PO4)2F, is found to be stable and a good candidate as a Na cath-

ode because all three Na ions can be reversibly removed without significant

reduction in the cell potential or energy density of the material. Finally, we

show that Li can replace two Na (per formula unit) and that these Li interca-

late into the material with a higher rate owing to a lower diffusion barrier as

compared to Na.

4.2 Introduction

Energy demand is expected to increase considerably in the coming years

as a result of population growth and economic development. However, the

dependence of modern society on fossil fuels is not sustainable. One driver

for the development of the rechargeable Li-ion battery is the need to store

electrical energy generated by wind and solar energy [41, 42, 43]. An assess-

ment of lithium reserves reveals that most of them are located in politically

sensitive areas [44], which has prompted interest in the sodium-ion battery

owing to the wide availability of low-cost Na [45]. Extensive research has

been reported recently on polyanion-based cathodes for a sodium-ion battery

with an open framework for fast diffusion of mobile ions. Examples include

sodium fluorophosphates, NaVPO4F, Na2MPO4F (M = Fe, Mn, Co) [46],

Na3V2O2(PO4)2F [47], Na3V2(PO4)2F3 [48, 49], and Li1.1Na0.4VPO4.8F0.7 [50].
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However, despite their fast ionic conduction, their low energy density makes

them less attractive as electrode materials. Na3V2O2(PO4)2F as a sodium-

ion battery cathode has a theoretical specific capacity of 130 mAh g−1 with

two Na per formula unit that can be cycled reversibly. The ability to cycle

all the Na would increase the capacity to 195 mAh g−1 [51]. While there is

a lot of experimental data on vanadium-based fluorophosphate cathodes, lit-

tle is known about structural variations of vanadium-based fluorophosphate

cathodes during the Na/Li insertion process.

In this work, a single-phase, crystalline Na3V2O2(PO4)2F material was

prepared by the solvothermal method. The Na3−xLixV2O2(PO4)2F material

was subsequently obtained from Na3V2O2(PO4)2F by Na/Li ion exchange.

Computer simulations were combined with electrochemical analysis in order

to understand the electrochemical properties of the as-prepared materials as

cathodes for rechargeable batteries and how to make these vanadium-based flu-

orophosphates cathodes offer a higher energy density. We suggest new polyan-

ion frameworks in which Cl is substituted for O as a promising way to enhance

the capacity of Na3V2O2(PO4)2F at the electrode without sacrificing voltage.

4.3 Computational Method

Global minima of NaxV2O2(PO4)2F for x = 0.125, 1.0, 1.5, 2.0, 2.53.0

were found with the basin-hopping algorithm [52]. Each move consisted of

randomly swapping the position of a Na atom to the position of a vacancy

site. The geometry of the trial configuration was optimized by DFT calcu-
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lations and, with the resultant energy, the trial configuration was either ac-

cepted or rejected. For each possible value of x (given the small unit cell) in

NaxV2O2(PO4)2F, hundreds of local minima of Na arrangements were sam-

pled.

Geometric relaxation was completed by DFT calculations with correc-

tions for on-site Coulomb interactions of transition metals (DFT+U) using

the Vienna ab initio simulation package [31]. The generalized gradient ap-

proximation with PW91 functional was chosen to describe electron exchange

and correlation [13]. All calculations included spin polarization. Core elec-

trons were incorporated into pseudopotentials with the projector augmented

wave method, and valence electrons were described with a plane-wave basis

set [14, 15]. Relaxations during basin-hopping searches were calculated with

an energy cutoff of 256 eV; a higher cutoff of 333 eV was used for relaxation of

the global minima for the convex hull construct. A Monkhorst-Pack k-point

mesh of 1×1×1 was used during search relaxations and 3×3×2 for final relax-

ations. An on-site Hubbard term (U) was used for the transition metal, V, to

avoid artificial delocalization of 3d electrons as a result of self-interaction [53].

The effective U value (Ueff = U-J) was taken from the literature, Ueff= 4.0 [54].

4.4 Results

Our theoretical study addresses the origin and magnitude of the voltage

stop after the first two Na is removed, at what voltage the third Na would be

removed if further oxidation of the framework is possible, and whether an al-
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(a) (b) (c) (d)

P1

P2

Figure 4.1: The most stable arrangement of Na in NaxV2(PO4)2FO2 for dif-
ferent compositions, x: (a) two Na positions in the V2(PO4)2FO2 framework;
(b) NaV2(PO4)2FO2; (c) Na2V2(PO4)2FO2; and (d) Na3V2(PO4)2FO2. The
red atoms are O; blue are F; yellow are Na; the red polyhedra enclose the V
atoms; and the gray enclose P.

ternative chemistry with the same framework structure can allow the third Na

to be removed at a voltage in the electrolyte window without a large sacrifice

in the overall average voltage. Finally, we compare the theoretical differences

between Li and Na intercalation in terms of voltage profiles and the rate capa-

bilities. For convenience of notation, we put the O bonded to V at the end of

the compound formula and rewrite Na3V2O2(PO4)2F as NaxV2(PO4)2FO2 to

make a more direct connection to the Na3V2(PO4)2F3 and Na3V2(PO4)2FX2,

X = -Cl or -Br, that are considered subsequently.

There are two types of sites for Na to occupy in V2(PO4)2FO2, as is

shown in Fig. 4.1 (a): the P1 site is coordinated by six O and one F with a

binding energy of 4.70 eV in the dilute limit; the P2 site is coordinated by

only six O and the binding energy is 4.62 eV. The extra Na-F bond stabilizes

the former site by 0.08 eV.

To calculate the voltage profile, formation energies of the material were
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(a)

(b)

Figure 4.2: (a) Calculated convex hull plot for NaxV2(PO4)2FO2 and (b)
the calculated voltage for Na/Li intercalation in NaxV2(PO4)2FO2/Na and
Lix−1NaV2(PO4)2FO2/Li.
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calculated as a function of Na concentration. The lowest energy structures

form the convex hull, of Fig. 4.2 (a). At each composition, hundreds of config-

urations with different Na arrangements are examined with the basin-hopping

algorithm; only the lowest energy structures are plotted [55]. The convex hull

clearly shows four Na-ordered phases at x = 0, 1, 2 and 3, each of which are

illustrated in Fig. 4.1. Any other composition has a higher energy than the

linear combination of these phases will, therefore, tend to decompose spon-

taneously into the two bracketing ordered phases on the convex hull. The

voltage profile is obtained from the slopes of the convex hull [55]. The lower

two voltage plateaus at 4.0 and 3.7 V match the experimental values. With

less than one Na per formula unit (x<1), the intercalation voltage is 5.3 V,

which is significantly above the electrochemical stability window of the elec-

trolyte. Moreover, removal of the last Na would require oxidation of the PO4.

In order to extract the last Na, the binding of Na must be weakened in the

phase where x < 1 and it must be possible to oxidize a redox couple without

decomposition of the framework. It is also advantageous to maintain a consis-

tently high voltage for phases allowing x > 1 so as not to reduce the energy

density of the material.

In the traditional view, the reason that the last Na (x < 1) is inaccessi-

ble is that the V ion cannot be oxidized to a VVI state. If the O atoms separate

from the PO4 units are replaced by halogen atoms X, the strong covalent V-O

bond is replaced by a more ionic V-X bond and the formal vanadium valence

becomes VIII. The weaker covalence of the V-X bond and the strong inductive
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effect of the PO4 complexes can be expected to lower the formal VIV/VIII redox

couple to near that of the formal VV/VIV couple; the replacement would also

provide an oxidizable redox couple for the third Na atom per formula unit.

Young-Uk Park et al. thus proposed to add more F in the formula unit as

Na3V2(PO4)2F1+yO2−y with the idea that a decrease in the V oxidation state

should improve the capacity. With y = 2, our calculations show that the first

plateau is marginally reduced from 5.3 to 4.9 V, which is still at the top of the

stability voltage window of the electrolyte. As expected, recent experimental

papers on Na3V2(PO4)2F3 reported that only two Na per formula are active

at the two plateaus, 4.1 and 3.6 V, matching our calculated values [56, 57].

These two plateaus are close to those of Na3V2(PO4)2FO2, which confirms

that the energy of the formal VIV/VIII couple is indeed lowered by changing

the strongly covalent V-O bond to a V-F bond in the traditional picture.

The same phenomena can also be understood from a perspective in

which the V oxidation states in the two materials are the same. Adding support

to this picture, the results of a charge density analysis (see Table 4.1) shows

that the partial charge on V is similar for Na3V2(PO4)2FO2 and Na3V2(PO4)2F3

and becomes even closer when two Na are extracted. The reason that the ox-

idation state of V can be the same despite the different formal charges on O

and F is that in Na3V2(PO4)2FO2 and NaV2(PO4)2FO2 the negative charge

on the dangling O is significantly less than on the O in PO4 and similar to

that on F. The actual charge state of the dangling O is closer to O− than O2−.

Additional evidence for having the same redox couple in the two materials is
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Table 4.1: Partial atomic charges from a Bader analysis.
Dangling O/F O in PO4 F V

Na3V2(PO4)2FO2 -0.89 -1.37 -0.71 1.95
Na3V2(PO4)2F3 -0.70 -1.39 -0.77 1.87
NaV2(PO4)2FO2 -0.60 -1.26 -0.68 2.03
NaV2(PO4)2F3 -0.62 -1.27 -0.61 2.02

provided by the calculated densities of states in Fig. 4.3. States near the Fermi

level are of V character mixed with O from the PO4 groups. The energy level

and the shape of this band, which make up the V redox couple at the Fermi

level, are very similar for the two materials. The states from the dangling

O/F are about 2 eV lower than those of the O in PO4, and are largely isolated

from the redox couple. One can also see a hole localized on the dangling O

in the DOS of Na3V2(PO4)2FO2, which is not present on the dangling F in

Na3V2(PO4)2F3, which supports the O− assignment from our charge density

analysis.

Since the calculations are able to reproduce the measured voltages, we

can then use computational experiments to try to reduce the Na binding in the

x < 1 phase. One strategy is to replace the bridging F in NaxV2(PO4)2FO2

with a less-electronegative ion such as Cl or Br. As shown in Fig. 4.4, the

first plateau drops to 4.8 V and the other two plateaus drop by 0.3 V with

Cl substitution. It would be just possible to extract the final Na ion and

realize the extra capacity at 4.8 V for ClO2, since it is marginally inside the

electrolyte stability window. With Br substitution, the first plateau drops to

4.4 V, which is safe for common electrolytes. However, the other two (lower
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Figure 4.3: Comparison of the density of states between Na3V2(PO4)2FO2 and
Na3V2(PO4)2F3.

Figure 4.4: Comparison of the voltage profiles of NaxV2(PO4)2M with different
anion (M) substitutions.
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(a) (b) 

Figure 4.5: Structures of (a) NaV2(PO4)2F0.5Br0.5O2 and (b)
Na3V2(PO4)2F0.5Br0.5O2.

voltage) plateaus are also reduced by about 0.5 V, which would significantly

decrease the energy density. Alternatively, F0.5Br0.5O2 gives the most desirable

voltage profile (Fig. 4.4, dashed blue line). Unlike -F0.5Cl0.5O2 , where the

plateau at 0 < x < 1 is between -ClO2 and -FO2, -F0.5Br0.5O2 results in a

remarkably low first plateau at 4.1 V, one that is even lower than with -BrO2.

The other two plateaus (1 < x < 2 and 2 < x < 3) are higher than -BrO2, as

expected, and both are close to 3.6 V.

Side views of the structures at x = 1 and x = 3 with -F0.5Br0.5O2

are shown in Fig. 4.5. The distortion of the structure at x = 1 reflects the

difference of anion radii. At x = 3, the distortion is reduced as well as the

voltage drop. While these predictions are encouraging, the difficulties associ-

ated with the synthesis of such a Br substituted material may be prohibitive.

Br escaping the half-substituted material is slightly energetically favorable as

calculated by Eq. 4.3. The half-substituted structure, however, is metastable
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(a) (b) (c)

P1

P2

Figure 4.6: Structures of (a) NaV2(PO4)2FCl2 (b) Na2V2(PO4)2FCl2 (c)
Na3V2(PO4)2FCl2. The green atoms are Cl.

and could, potentially, be synthesized.

(Na3V2(PO4)2ClO2)× 8 = (Na3V2(PO4)2Cl0.875O2)× 8 +
1

2
Cl2

∆E = 1.58 eV (4.1)

(Na3V2(PO4)2BrO2)× 8 = (Na3V2(PO4)2Br0.875O2)× 8 +
1

2
Br2

∆E = 0.90 eV (4.2)

(Na3V2(PO4)2F0.5Br0.5O2)× 8 = (Na3V2(PO4)2F0.5Br0.375O2)× 8 +
1

2
Br2

∆E = −0.2 eV (4.3)

In the transition from Na3V2(PO4)2FO2 to Na3V2(PO4)2F3 , the two O

are replaced by F. Inspired by this strategy, we try occupying the oxygen sites

with Cl instead of F to form Na3V2(PO4)2FCl2. Compared to F, Cl is less

electronegative and thus attracts less negative charge and reduces the binding

to the positive Na ions. The relative binding energies at the P1 and P2 sites

reverse in response to this substitution. The P2 site is more stable by 0.08 eV

than the P1 site and, as a result, Na atoms order in different patterns as shown

in Fig. 4.6. The voltage profile of Na3V2(PO4)2FCl2 (solid red line in Fig. 4.4)
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looks even better than that of -F0.5Br0.5O2; the average voltage of the three

plateaus is higher and the highest one is well within the stable electrolyte

voltage window. Another advantage to substitution at the O site is that it

has little influence on the framework so that the structure is more likely to

be synthesized. The stability of Na3V2(PO4)2FCl2 is tested computationally

by considering three decomposition scenarios. Eq. 4.4 describes Cl escaping

as Cl2 leaving vacancies behind; Eq. 4.5 describes Cl being substituted by

O from water. Both of these are energetically unfavorable. The last test,

considering anion disorder, involves the swap of one F with Cl in 8 formula

units, leaving the stoichiometry fixed, which results in a 0.54 eV energy rise.

This observation means that F-Cl disorder is not expected when the Cl/F

ratio is set to two. The reverse reaction of Eq. 4.5 is a possible approach to

synthesize Na3V2(PO4)2FCl2.

(Na3V2(PO4)2FCl2)× 8 = (Na3V2(PO4)2FCl1.875)× 8 +
1

2
Cl2 ∆E = 2.23 eV

(4.4)

Na3V2(PO4)2FCl2 + 2H2O = Na3V2(PO4)2FO2 + 2HCl + H2 ∆E = 2.30 eV
(4.5)

Next, we checked computationally the stabilities of these compounds during

cycling. Fully charged Na3V2(PO4)2FCl2 turns out to be stable:

(V2(PO4)2FCl2)× 8 = (V2(PO4)2FCl1.875)× 8 +
1

2
Cl2 ∆E = 0.20 eV (4.6)

(V2(PO4)2FCl2)× 8 = (V2P2O7.875FCl2)× 8 +
1

2
O2 ∆E = 3.35 eV (4.7)

while O2 formation is spontaneous when Na3V2(PO4)2FO2 is fully charged:

(V2(PO4)2FO2)× 8 = (V2(PO4)2FO1.875)× 8 +
1

2
O2 ∆E = −0.30 eV (4.8)
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Finally, we consider the replacement of Na with Li so that the material

can be used in a Li cell. Due to the strong binding of the last Na, only two

Na per formula can be substituted by Li. This result is understood both from

calculations and observed in our experiment, as well as in Parks report [50].

The energy difference to replace two Na with Li (as in Eq. 4.9) is -0.079 eV; this

result indicates that the reaction occurs spontaneously. The energy difference

to substitute the last Na with Li (as in Eq. 4.10) is 0.073 eV, so that it will

not happen spontaneously.

Na3V2(PO4)2FO2 + 2Li = NaLi2V2(PO4)2FO2 + 2Na ∆E = −0.079 eV
(4.9)

NaLi2V2(PO4)2FO2 + Li = Li3V2(PO4)2FO2 +Na ∆E = 0.073 eV (4.10)

In order to determine the lowest energy structures containing Li, we used the

basin-hopping algorithm with one Na in the formula unit as NaLix−1V2(PO4)2FO2

(1 < x < 3). The voltage profile of Li is plotted in Fig. 4.2 (b). The first

plateau (2 < x < 3) matches the experimental value, while the second one

(1 <x< 2) is lower by 0.2 V. The deviation might be due to subtle structural

changes caused by the ion exchange.

Na/Li diffusion is studied by calculating the minimum energy paths

for ion hopping with the nudged elastic band method [58, 59]. Since one Na

is always trapped inside the material, one extra Na/Li atom is added to the

structure (Fig. 4.1 (b)) to form Na1.125V2(PO4)2FO2 or NaLi0.125V2(PO4)2FO2.

The motion of this extra atom is investigated to calculate the diffusion barrier.

Our results agree with the literature; the barrier of Na diffusion is 0.37 eV and
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the barrier to Li diffusion is lower by 0.1 eV, but the two proposed diffusion

pathways from previous studies have comparable barriers because of different

Na arrangements [50]. The difference in diffusion barrier between the two

cations explains the better rate performance of the Li battery as observed in

our experiment.

4.5 Conclusion

In summary, simple and environmentally friendly solvothermal methods

provide easy routes to the synthesis of Na3V2O2(PO4)2F and then Na3−xLixV2O2(PO4)2F

by ion exchange. Through first principle calculations, we have successfully ex-

plained the two plateaus in the voltage profiles of Na3V2O2(PO4)2F/Na and

why the third Na is difficult to be extracted either electrochemically or by

chemical ion exchange. Moreover, we find a possible approach to access the

third Na per formula unit is to substitute O with Cl to form Na3V2Cl2(PO4)2F.

This compound is calculated to be stable on removal of all the Na and possible

to synthesize. Finally, we show that Na3−xLixV2O2(PO4)2F can also be used

as a cathode in a Li-ion cell with an even higher rate capability.
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Chapter 5

A Generalized Solid-state Nudged Elastic
Band Method

5.1 Abstract

A generalized solid-state nudged elastic band (G-SSNEB) method is

presented for determining reaction pathways of solid-solid transformations in-

volving both atomic and unit-cell degrees of freedom. We combine atomic

and cell degrees of freedom into a unified description of the crystal structure

so that calculated reaction paths are insensitive to the choice of periodic cell.

For the rock-salt–to–Wurtzite transition in CdSe, we demonstrate the method

is robust for mechanisms dominated either by atomic motion or by unit-cell

deformation; notably, the lowest-energy transition mechanism found by our

G-SSNEB changes with cell size from a concerted transformation of the cell

coordinates in small cells to a nucleation event in large cells. The method is

efficient and can be applied to systems in which the force and stress tensor are

calculated using density functional theory.
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5.2 Introduction

The nudged elastic band (NEB) method is widely used for calculating

reaction pathways of atomic-scale processes in chemical and materials sys-

tems [60]. When the initial and final states of a reaction are known, the NEB

relaxes an initial pathway to a minimum-energy path (MEP) between reac-

tants and products. With the climbing image NEB, the highest-energy image

converges to a transition state (saddle point) along the path. [59] While the

end points of the band need to be specified, the reaction coordinate does not.

The MEP determined from the NEB can be complex and involve degrees of

freedom (DOF) that are not anticipated. [61]

The NEB can be contrasted to a class of drag methods in which a subset

of the DOF are preselected as important for the progress of the reaction.

Popular progress coordinates include atomic positions, bond lengths, root-

mean-squared deviations from a reference structure, or energy coordinates.

The system is constrained along the progress variables and allowed to relax

in the other DOF, which are considered to be unimportant for describing the

reaction mechanism. The system is then dragged along the variables assumed

to be important with the hope that the system will be constrained to a good

transition state at some position along the path.

The distinction between the NEB and a drag method is illustrated in

Fig. 5.1. For a London-Eyring-Polanyi-Sato potential coupled to a harmonic

oscillator [62], an assumed reaction coordinate fails to constrain the system to

the transition state. The x coordinate clearly separates the initial and final
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Figure 5.1: In a drag calculation (black) x is chosen as the drag direction so
that images along the path are constrained in x and minimized in y. The
drag calculation misses the saddle point because the reaction coordinate near
the saddle is along the rAB direction and orthogonal to the drag direction. A
converged NEB (grey) finds the minimum energy pathway because the reaction
coordinate is defined by the images and not by a preconceived notion about
which DOF are important.
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states, but is not parallel to the negative curvature mode at the saddle point.

Using the drag method with x as the progress variable leads to a reaction path

which avoids the transition state; that is, the drag path misses the saddle point.

The energy profile calculated along the path (Fig. 5.1, inset) underestimates

the true barrier. In general, such drag paths can either over- or under-estimate

the barrier. The NEB, on the other hand, converges to the MEP, which follows

x near the minima and rAB at the saddle.

Here, we address the challenge of finding reaction pathways for solid-

solid transformations. The primary computational issue is that there are two

types of variables, i.e., those describing atomic motion and those describing the

geometry of the periodic cell. It is tempting to focus on either the atoms or the

lattice as important and minimize the other, as in the drag method. Trinkle

et al. showed how a NEB calculation in the atomic DOF can be coupled to a

relaxation of the lattice in order to find solid-solid transitions in titanium [63,

64]. In the other extreme, Caspersen and Carter utilized the NEB exclusively

for lattice DOF while maintaining the atoms in relaxed geometries – the rapid-

nuclear-motion (RNM) approximation [65]. While these approaches can be

appropriate for mechanisms primarily involving atomic or primarily lattice

changes, they are drag methods. Furthermore, Lui and Johnson showed for

pressure-induced bcc-to-hcp transitions in iron, such drag methods (as applied,

e.g., in Ref. [66]) yield an incorrect (and unphysical) MEP as atomic and cell

DOF are not properly coupled [67].

In this manuscript, we describe a formulation of the NEB in which
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the atomic and lattice variables are treated on equal footing so that reactions

involving changes in all DOF are properly described, permitting one to address

transformations that transcend current capabilities. Critically, the relative

weight assigned to the two sets of variables is chosen so that the resulting MEPs

are independent of the unit cell (shape and size) used to describe the transition.

This new NEB formulation is largely an integration of the standard NEB in

atomic DOF with a similar approach for determining solid-solid transitions

(e.g., from Caspersen and Carter [65]), but the formulation ensures that DOF

are properly coupled and MEPs are independent of simulation cell. While

there are differences in the details of how the lattice variables are described,

we keep a similar name for the unified method, i.e., a generalized solid-state

nudged elastic band (G-SSNEB).

5.3 Generalized NEB Algorithm

The reaction path is represented in the NEB by a set of images. The

NEB force (see Fig. 5.2) on image i is

FNEB
i = F

s∥
i + F∇⊥

i , (5.1)

where F∇⊥
i is the force due to the gradient of the potential perpendicular to

the path, and F
s∥
i is the spring force parallel to the path. F∇⊥

i is calculated

from the potential force, F∇
i , as

F∇⊥
i = F∇

i − (F∇
i · τ̂ i)τ̂ i, (5.2)
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Figure 5.2: The NEB force projections are shown for a typical image i and for
the climbing image l. The force components are defined in (5.1)-(5.5). The
translucent images are along the converged path where the NEB forces vanish.
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where τ̂ i is an up-winding tangent defined by the adjacent image with the

higher potential energy [58].

Spring forces are added to ensure the images are evenly spaced along

the transition path,

F
s∥
i = k(|∆R+|− |∆R−|)τ̂ i, (5.3)

where k is the spring constant, the distance to the next and previous images

are

∆R+ = Ri+1 −Ri

∆R− = Ri −Ri−1, (5.4)

and the vector Ri has the Cartesian positions of the atoms for image i. The

converged path is insensitive to the choice of k, but it should be chosen on the

same order as the interatomic force constants for efficient optimization.

The climbing-image NEB method (CI-NEB) is used to find saddle

points along a reaction path. The climbing image converges to the saddle

point so that no interpolation is required to approximate its energy. The im-

age along the path with the highest potential energy is designated the climbing

image l. The force on the climbing image

FCI
l = F∇

l − 2(F∇
l · τ̂ l)τ̂ l, (5.5)

is free from spring forces and points up the potential along τ̂ l and down in all

other DOF.
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Figure 5.3: (a) Any 3-dimensional unit cell is defined by 3 vectors and 6 DOF.
(b) A periodic solid can be represented by different unit cells. (c) The strain in
a material is independent of the choice of unit cell. For example, isotropically
expanded by an amount δ gives the same strain tensor ε, defined in (5.7), for
both the red and blue unit cells.

5.3.1 Stress and Strain

Infinite solids are efficiently modeled with a finite set of atoms in a

unit cell replicated by periodic boundary conditions (PBC). Figure 5.3 shows

a periodic simulation cell defined by three vectors: v1, v2, and v3. Rotational

DOF of the cell are eliminated by constraining v1 to the x-direction and v2

to the xy plane. Any cell, h, is then defined by 6 DOF arranged in a lower

triangular matrix,

h =

⎛

⎝
v1

v2

v3

⎞

⎠ =

⎛

⎝
h1x 0 0
h2x h2y 0
h3x h3y h3z

⎞

⎠ , (5.6)

where h1x is the component of v1 in the x-direction and so on. The choice of

periodic cell for a given solid is not unique; there are many representations of

the same extended solid. It is critical that any description of changes to the
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solid lattice – compression, expansion, and shear – be independent of unit cell.

A natural choice is the engineering strain, i.e.,

ε = h−1 · (hdef − h) (5.7)

where hdef is the cell for the deformed solid. Figure 5.3b shows two periodic

representations for a solid and how they deform given a strain (Fig. 5.3c). The

strain, ε, for the deformation is the same for both cells.

In the NEB method atomic configurations are moved according to the

forces on the atoms. The analogy in solid mechanics is that cell vectors are

changed according to the stress in the material. Thus, we need a relation

between the stress, the strain, and the corresponding change in cell vectors. A

simple system for determining this relationship is an isotropic elastic medium

with a Poisson ratio of zero. If the material is strained out of mechanical

equilibrium, Hooke’s law gives the induced stress

ε = Y −1σ (5.8)

where Y is Young’s modulus and the stress tensor σ is the sum of the internal

(Cauchy) stress and the external pressure,

σ = σcauchy + P I. (5.9)

Here, we have assumed a hydrostatic (isotropic) pressure, P , applied uniformly

via an identity matrix I. From the stress in a material, we would like to

calculate the strain and the change in the unit cell vectors, hdef , which will
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Figure 5.4: (a) A square cell in mechanical equilibrium (black) is uniformly
expanded (dashed). The steepest-descent directions calculated from (5.11)
and (5.10) give the same direction required to restore equilibrium. (b) When
the cell is doubled along v1, the direction from (5.11) does not restore the
solid to equilibrium. The direction from (5.10) does, and results in the same
macroscopic change to the cell as in (a).

bring the solid back into mechanical equilibrium. This deformation can be

calculated from (5.7) and (5.8)

(hdef − h) = Y −1(h · σ), (5.10)

and the steepest-descent direction to bring the solid into equilibrium is along

h · σ.

Caspersen and Carter have a different approach to calculating the

steepest-descent direction. They determine the change in energy with respect

to the components of hm,n, which they call the true stress [65],

σtrue
m,n = − ∂E

∂hm,n
= −Ω(σ · h−1)Tm,n, (5.11)

where E is the potential energy of the cell and m,n are the components of

the stress tensor. The problem with this definition is that the strain along

the steepest-descent direction is not invariant to the choice of cell. This is

illustrated graphically in Fig. 5.4. For a uniformly strained cubic cell, σtrue and
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h ·σ point in the same direction towards the unstrained geometry. If, however,

the representative cell is doubled along only one direction, σtrue no longer

points towards the unstrained geometry, so the approach does not maintain

invariance with respect to cell choice, as it should.

5.3.2 Coupling Cell and Atomic Variables

In our G-SSNEB method, the atomic and cell variables are combined

into a single vector containing forces and another containing distances. With

this unified description we can use the NEB force projections as described in

Sec. 5.3. The challenge is that the cell and atomic variables have different

units and have different scaling relations with system size. Changes in the cell

are described by strain, which is unitless, and changes to atomic position have

units of length. Similarly, the corresponding cell variable to the forces on the

atoms is the stress on the cell vectors, which has units of pressure. To combine

these quantities, a Jacobian J is needed to transform stress and strain into

the units of the atomic forces and distances. The Jacobian should also make

the cell and atomic variables scale in the same way with system size so that

converged minimum energy paths will be invariant to the choice of unit cell.

The vector describing changes in configuration is formed by concate-

nating the (scaled) strain and changes in atomic coordinates,

∆R = {Jε,∆R}. (5.12)

The strain is multiplied by J to make the units and system size scaling con-

sistent with the atomic motions. Because ε is unitless, J must have units of
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length. Our choice is the average distance between atoms in the cell

L =

(
Ω

N

)1/3

, (5.13)

where Ω = deth, i.e., the volume of the unit cell, and N is the number of

atoms in the cell.

We also require that the magnitude of Jε scale in the same way as the

magnitude of ∆R for different unit cell sizes. Consider a unit cell with a single

atom that moves by an amount ∆R0. If we take a larger cell with N atoms,

the magnitude of atomic motion becomes

∆RN =

(
N∑

i=1

∆R2
i

)1/2

=
√
N∆R0. (5.14)

The strain, however, is invariant to the system size. Thus, we need a factor of
√
N in our Jacobian, i.e.,

J = L
√
N =

(
Ω

N

)1/3

N1/2 = Ω1/3N1/6 . (5.15)

The stress is scaled to the atomic forces using similar arguments. A

given stress, σ, describes the force per unit area on the cell. With the average

distance between atoms defined as L, the average force per atom is σL2. As

with the distance, the stress needs to be multiplied by a factor
√
N to scale in

the same way as the forces with system size. The resulting G-SSNEB force,

F = (−Ωσ/J,F). (5.16)

is formed by concatenating the (scaled) stress and the atomic forces.
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5.3.3 Method Details

In the G-SSNEB method it is important to decouple motion of atomic

DOF from motion of the cell when calculating ∆R+, ∆R− and the tangent

direction from (5.3) and (5.12). When ∆R is calculated in Cartesian coordi-

nates, as in the NEB, a change in the cell coordinates will contribute to atomic

motion since the atoms are represented within the periodic cell. To decouple

the variables, ∆R should be calculated in direct coordinates, where atomic

positions are given as fractional distances along v1, v2, and v3. The difference

vectors are then converted back to Cartesian coordinates to apply the force

projections.

The vector ∆R is calculated between two configurations that may have

different cell geometries. To convert between direct and Cartesian coordinates,

we use the average cell geometry. More specifically, Ri and Ri+1 are first put

into direct coordinates using their respective cells, hi and hi+1. ∆Rdirect
+ is

then calculated by subtraction, and the resultant vector is converted back to

Cartesian using the average cell

h̄+ =
1

2
(hi + hi+1). (5.17)

This method for calculating distances is consistent with the regular NEB when

there is no change in the cell DOF.

The strain between two images, which is the fractional change in the

cell parameters, is also sensitive to which image is used for reference. In the

G-SSNEB, the vector between image i and i+1 should be the negative of that
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from i+ 1 to i. Directly using (5.7) we find

h−1
i · (hi+1 − hi) ̸= −h−1

i+1 · (hi − hi+1). (5.18)

To ensure a consistent strain between images we use the average,

ε̄+ =
1

2
(h−1

i+1 + h−1
i ) · (hi+1 − hi). (5.19)

Using a similar philosophy, we want the Jacobian J to remain constant

during the simulation. Thus, in (5.13) and (5.15), we use the average cell

volume

Ω̄ =
1

2
(Ωinital + Ωfinal) (5.20)

between the initial and final states.

5.4 Application

5.4.1 CdSe Solid-Solid Transformation

The G-SSNEB is numerically demonstrated for a solid-solid phase tran-

sition in CdSe. To illustrate the importance of including both cell and atomic

DOF in the reaction coordinate, we show two paths by which CdSe can tran-

sition from rock-salt to Wurtzite (Fig. 5.5). Transition path (a) is dominated

by atomic DOF; each row of atoms slides with respect to the adjacent row.

Path (b) is dominated by cell DOF; the atoms do not move significantly with

respect to the cell vectors.

Initially, interatomic forces are evaluated with an empirical potential

defined by Rabani [68]. In a later section, these calculations are repeated using
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Figure 5.5: Rock-salt–to–Wurtzite transformation in CdSe can occur via an
atom-dominated (a) and cell-dominated (b) mechanism. Cd atoms are lighter
and Se darker.

density functional theory (DFT). The empirical potential has two terms; a

Lennard-Jones term with a cutoff of 10 Å and a Coulomb term which is

evaluated by Ewald summation using a real-space radius of 10 Å. Forces and

stresses are evaluated using the LAMMPS program [69].

Figure 5.6 shows the energy along three paths connecting the initial

and final states for the atom-dominated mechanism. The reaction coordinate

primarily involves atomic DOF so the regular NEB is able to find the saddle

point. The MEP along this path is not smooth, however, and a discontinuity

is seen in the path between images 7 and 8 as the cell DOF suddenly relax to

give a state which is similar to the final state. In the other extreme, the RNM

approximation has only cell DOF in the reaction coordinate. Because the

process is atom-dominated, the saddle point is not found using this approxi-
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Figure 5.6: Comparison of the three algorithms used to determine the
CdSe Rock-salt–to–Wurtzite transformation along the atom-dominated path
(Fig. 5.5a). The G-SSNEB finds the saddle point. The NEB, for which the
cell DOF are always relaxed, is also able to find the saddle but the path is not
smooth because the cell DOF do not change continuously. The RNM path,
for which the atoms are always relaxed, fails to determine the saddle. Selected
configurations along each path (marked with larger open circles) are shown.
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Figure 5.7: Similar calculations as in Fig. 5.6 for the cell-dominated path
(Fig. 5.5b). In this case the RNM approximation finds the saddle but the
regular NEB, for which the cell coordinates are minimized, does not.

mation. There is also a discontinuity in the RNM path between the highlighted

images 4 and 5, at which point the atoms suddenly relax from the rock-salt to

Wurtzite structure. The G-SSNEB treats the atomic and cell DOF on equal

footing and finds a true reaction coordinate.

Figure 5.7 shows the energy along three paths for the cell-dominated

mechanism (Fig. 5.5b). Here, the RNM approximation successfully finds the

same saddle point as the G-SSNEB. The regular NEB results in a wandering

path which does not pass through the saddle. Images 1 and 2, which bracket
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mechanism, G-SSNEB paths are invariant to cell size and shape.

the saddle, have a discontinuous change in cell geometry.

5.4.2 Invariance of converged paths to cell geometry

Strain was chosen to represent cell changes in Sec. 5.3.1 because it is a

material property that is independent of the unit cell chosen to represent the

solid. In Sec. 5.3.2 a
√
N scaling factor was included in the Jacobian to ensure

that the magnitude of cell DOF changes would scale with the same power of

N as the atomic motion within the cell. Figure 5.8 shows the invariance of

converged G-SSNEB paths (Fig. 5.5b) to the cell size and shape. The eight-

atom cell is a little too small to accommodate the periodicity of the fully

relaxed MEP. The MEP for larger cells are indistinguishable.
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5.4.3 Crossover to a localized mechanism

Small cells with few atoms provide a computationally efficient repre-

sentation for calculating solid-solid phase transformations. Changes in the cell

DOF correspond to a collective motion of the atoms in the solid. The energy

barrier calculated for a transformation involving cell motion will increase as

more atoms are included in the unit cell (the energy barrier per atom becomes

constant). There will therefore always be some cell size for which it will be

energetically favorable to have a local nucleation event of one phase in the

other and a subsequent propagation of the interface across the cell.

The energy barrier for the cell-dominated transformations in CdSe is

shown as a function of cell size in Fig. 5.9. The line through the origin corre-

sponds to the scaling of the barrier for the concerted process (Fig. 5.5b). The

energy barrier scales linearly with the number of atoms, giving a unit slope

on the log plot. With increasing unit cell size, a lower saddle is found where

the concerted motion is only in one dimension. The energy barrier scales with

the length of the line defect so that increasing the cell size in two dimensions

results in a slope of 1/2. For a local transition state, the energy barrier will

not increase with the number of atoms in the cell in the limit of a large cell. In

the largest cells considered (Fig. 5.9c) a local mechanism (in two-dimensions)

is becoming apparent. As the cell is expanded in the xy-plane, the energy for

this local mechanism is expected to plateau. Increasing the cell size in the z

direction as well should lead to a local nucleation event in all three dimensions.

It should be noted, however, that the barrier for such an event will be large,
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Figure 5.10: Energy landscape of a rock-salt–to–Wurtzite transformation in a
2912 atom unit-cell. The highest transition state (a) is a line defect followed
which forms (b) a local Wurtzite domain in a rock-salt structure. The nu-
cleation volume continues to grow until transition state (c) where Wurtzite
domains dominate the cell structure.

and it is likely that defects would play a role in such a transition in a real

CdSe crystal.

In general, there can be many pathways connecting a given initial and fi-

nal state for a solid-solid phase transformation. An example of this complexity

is shown in Fig. 5.10. The transformation is initiated with a line defect which

slips into a local minimum where a Wurtzite domain is nucleated (Fig. 5.10b).

This process repeats ten times as the Wurtzite domain grows. Finally, there is

a significant change in the cell DOF and the crystal switches to the Wurtzite

structure. The G-SSNEB must then follow a minimum energy path to bring
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each atom to its specified location in the product structure. Clearly this can

happen in many ways. Because of this degeneracy, a barrier found by the

G-SSNEB should be considered an upper bound in large systems.

5.4.4 CdSe solid-solid transition using DFT

The cost of the G-SSNEB method is similar to the regular NEB so

that it can be used for systems described by DFT. The method has been

implemented both for the atomic simulation environment (ASE) [70] in the

TSASE code [71] and for the Vienna ab initio simulation package (VASP)

in the VTST code [72]. Here we consider the same transition in CdSe from

the previous sections using forces and stresses evaluated with the VASP code.

The DFT calculations were done using a plane-wave basis set up to an energy

cutoff of 455 eV. Core electrons were treated within the projector augmented

wave framework [15]. Electron exchange and correlation were modeled within

the generalized gradient approximation using the PW91 functional [32]. The

simulation cell was chosen to contain 8 atoms using a Monkhorst-Pack mesh

of 10×10×10 to sample the Brillouin zone [73]. Tests with 32 atoms per unit

cell showed that the results were converged with respect to cell size.

Figure 5.11 shows G-SSNEB calculations of both the atom- and cell-

dominated mechanisms (see Fig. 5.5). The atom-dominated path (black) fol-

lows a similar path to what is found using the empirical potential, although

the barrier is reduced by a factor of 5. Perhaps even more significantly, no

concerted cell-dominated mechanism is found. In this regard, DFT provides
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Figure 5.11: Energy landscape of the rock-salt-to-Wurtzite transformation
within DFT. The atom-dominated mechanism (black) is similar to that found
previously. The cell-dominated path (red) is different; it first follows the atom-
dominated mechanism (a-c) and then has second transformation involving ro-
tation of the atoms (c-e) to reach the specified cell in the final state.

a qualitatively different energy landscape for the transformation. Instead of

finding a concerted mechanism, the path to the cell-dominated final state (red)

follows the atom-dominated mechanism and then an atomic rotation to reach

the specified final state.

5.5 Discussion

The Jacobian in (5.15) is used to combine atomic and cell DOF so that

the MEP found by the G-SSNEB is insensitive to the choice of unit cell size

and geometry. The choice, however, is not unique. Multiplying the Jacobian

by a constant factor, for example, will change the relative weighting between

atomic and cell motion along the MEP. In some cases, the user may have to

adjust this parameter to equalize atomic and cell motion for their particular
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reaction path. While the choice of Jacobian influences the MEP (much in

the same way that mass-weighted coordinates do), the stationary points are

not affected. This is particularly relevant when using a climbing-image; if the

climbing image converges to a saddle, the barrier height is independent of the

Jacobian. For example, in our calculations, the regular climbing image NEB is

able to converge to the saddle for the atom-dominated CdSe phase transition

(Fig. 5.6) because 90% of the G-SSNEB tangent at the saddle can be projected

onto the atomic DOF. Similarly the RNM approximation is able to converge

to the cell-dominated process (Fig. 5.7) because 68% of the G-SSNEB tangent

is along cell DOF. While the reaction coordinates are not entirely along atom

and cell coordinates, respectively, the climbing image is robust enough to find

the saddle points using these approximate methods.

There is an unusual consequence of introducing cell DOF into the NEB.

The cell is used to describe the periodicity of an infinite solid, but the config-

uration of any real, finite system is fully described (at least classically) by the

coordinates of the constituent atoms. In this sense, the cell DOF are artificial

constructs for an infinite solid. In the RNM approximation, changes in the

cell are viewed as slower than atomic motion so that the atoms can always

be relaxed. This could be, in some limited cases, an appropriate view for

an experiment in which macroscopic variables, such as the external pressure

or the stress on the solid, are used to induce a solid-solid phase transition.

For a thermally-activated process, however, atomic motion should initiate the

transition. The barrier for any concerted mechanism will increase with the
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number of atoms so that in the limit of a continuum solid, no such transition

is thermally accessible. Instead, there must be a lower energy local process

that is dominated by atomic motion. For these transitions, the standard NEB

should be sufficient to describe it.

However, for any finite-cell description, the atomic and cell DOF are

coupled and must be handled such that no one set of the DOF dominate so

as to find the correct transition state and the results are independent of the

choice of simulation cell, as we have now made possible.

5.6 Conclusion

We have developed a generalization to the solid-state NEB methods

(i.e., G-SSNEB method) in which atomic and cell DOF are considered equally

for the reaction coordinate, and results do not inherently depend on the simu-

lation cell. We demonstrated that the method is robust for transitions domi-

nated by atomic motion and for processes where deformation of the simulation

cell dominants. We illustrate that the mechanism found by the G-SSNEB can

change with cell size from a concerted transformation of the cell coordinates

to nucleation involving atomic coordinates. In addition, the method was ex-

emplified both by empirical and DFT methods for system that exhibits both

atom-dominated and cell-dominated transitions.
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Chapter 6

From Graphite to Diamond: Reaction
Pathways of the Phase Transition

6.1 Abstract

Phase transitions between carbon allotropes are calculated using the

generalized solid-state nudged elastic band method. We find new reaction

mechanisms between graphite and diamond that have nucleation character-

istics and lower activation energies than concerted mechanisms. The barrier

from graphite to hexagonal diamond is lower than to cubic diamond, resolv-

ing a conflict between theory and experiment. Transitions are calculated to

three structures of cold compressed graphite: M-carbon, Z-carbon and bct C4,

which are accessible at the experimentally relevant pressures near 17 GPa.

6.2 Introduction

Carbon has many crystalline phases, including graphite, cubic diamond

(CD), hexagonal diamond (HD) and cold compressed graphite (CCG). The

transition mechanisms between these phases are not thoroughly understood.

There is no consensus, for example, of the structure of CCG [74, 75, 76].

The transitions from graphite to CD and to HD have been well documented
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in experiments. It has been found that both transitions can occur at 15 GPa

static pressure and the temperature required to form HD is lower than CD [77,

78], indicating that the barrier to form HD is lower at this pressure.

Challenges still exist in the theoretical explanation of these two-phase

transitions. Molecular dynamics studies are limited by the vibrational time

scale of atoms, and so are often done at pressures several times higher than

in experiments in order to observe a transition. The transition mechanism,

however, can change with increasing pressure [79]. Another approach is to

use transition state theory to calculate the barrier and mechanism for the

activated process. Previous saddle point calculations have focused on the

concerted mechanism, where the barrier to HD is higher than to CD, in dis-

agreement with experiments [80, 81]. The concerted mechanism can be active

at pressures higher than 15 GPa or under shock wave compression [82, 83],

but at 15 GPa static pressure there must be a lower energy pathway. Em-

ploying a neural network potential and including 145,000 atoms, Khaliullin

et al. found the structure of a stable nucleus, but not a reaction pathway of

its formation [84]. In this simulation, the lowest pressure required to stabilize

a diamond nucleus in graphite was 30 GPa, twice the experimental pressure.

CCG can also be synthesized at low pressure (17 GPa) and at lower tempera-

tures than is required to form diamond, indicating that a different mechanism

with a lower barrier is present [76]. To resolve these issues, we use a computa-

tional method that can reveal the mechanism of solid-solid phase transitions

between carbon phases in the low-pressure regime.
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In this communication, we present a new transition mechanism at low

pressure that was found using the generalized solid-state nudged elastic band

(G-SSNEB) method. Forces and energies were calculated with density func-

tional theory (DFT) using a simulation cell containing only 40 atoms. The

rate-limiting step in this mechanism corresponds to the nucleation of several

diamond layers in the graphite structure. The diamond phase then grows,

layer by layer, overcoming a series of smaller barriers. Our result shows that

the highest barrier to HD is lower than to CD at 15 GPa. The barriers to form

previously proposed structures of CCG are compared, and found to be lower

than to CD though still higher than to HD, pointing to a selection criterion

for identifying the structure of CCG.

6.3 Method

Minimum energy paths (MEPs) were calculated using the climbing-

image G-SSNEB method [85]. This nascent method is appropriate for solid-

solid phase transitions that are described by changes in both atomic coor-

dinates and lattice vectors. Neglecting to include either of these degrees of

freedom in the reaction coordinate (e.g. by minimizing them along a reac-

tion path) leads to a bias in the calculation and a risk of missing the correct

MEP [85]. An adaptive nudged elastic band approach was used to increase

the resolution near saddle points [86].

Hexagonal graphite (HG) was chosen as the initial state in the forma-

tion of HD, and rhombohedral graphite (RG) for CD, based upon symmetry
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Figure 6.1: Enthalpy landscapes and nucleation structures of (a) RG-CD and
(b) HG-HD phase transitions at 15 GPa. Arrows on the initial structures
indicate the relative movement of atoms. Two unit cells are shown for each
structure. The undulations in the minimum energy paths for the nucleation
mechanisms correspond to layer-by-layer growth of the diamond phase.

considerations [84]. Supercells of 1×1×4 unit cells were used for the HG-HD

transition and 2×1×3 for RG-CD, so that both transitions were represented

by four carbon atoms per layer and a similar number of layers (8 for HG and

9 for RG).

Energies and forces between the carbon atoms were calculated with

DFT using a plane wave basis set for valence electrons and the projector

augmented wave method for core electrons, as implemented in the Vienna ab-

initio simulation package [15]. The electron exchange-correlation energy was

calculated in the generalized gradient approximation (GGA) with the Perdew-
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Wang (PW91) functional [32]. Two levels of convergence were used, a lower

level with the standard carbon pseudopotential and a plane wave energy cutoff

of 520 eV, and then a higher level to converge the enthalpy barriers using hard

pseudopotentials and a cutoff energy of 910 eV. A semi-empirical dispersion

term was added to describe van der Waals interactions [87].

6.4 Results

Figure 6.1 shows the enthalpy landscapes of transitions from RG to

CD and from HG to HD at 15 GPa. The nucleation mechanisms (green lines)

have lower barriers than the concerted mechanisms (red lines). Furthermore,

in the nucleation mechanism, the overall barrier to form CD is higher than HD.

The common feature of the nucleation mechanisms in Fig. 6.1 is that there

are a series of barriers and minima along the path, and the initial barrier is

higher than the following ones. This landscape is characteristic of a nucleation

process followed by growth of the nucleus. Unlike the concerted mechanism,

where all the atoms in the supercell transform to the new phase simultaneously,

the nucleation mechanism involves the transformation of several layers into a

two-dimensional diamond nucleus that subsequently grows layer-by-layer into

the graphite. We note, however, that the nucleation and growth occurs along

one dimension; the transition is still concerted within each layer. The lateral

interface, which must also contribute to the energy of a truly local nucleus,

are not considered in our small simulation cells. The nucleation mechanism

found here may be observable in the case of a small graphite particle where
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the nucleus is able to extend across the particle so that the lateral interfaces

are eliminated. Despite not providing true nucleation barriers, our calculations

can be used to compare barriers to different phases when the lateral sizes of the

nuclei are comparable. We note that the barriers of the nucleation mechanisms

are largely determined by the enthalpy to form the nuclei, C1 and H1.

For the RG to CD transition, the nucleus is a mixed CD and M-carbon

phase (or W-carbon, as one cannot distinguish from one layer). In each basin

along the minimum enthalpy landscape, both ends of the nucleus are capped

with M-carbon; on the plateaus, one side is M-carbon and the other is a

CD/RG interface. The difference in termination means that the M/RG in-

terface has lower energy than the CD/RG interface, although the CD/RG

interface is unavoidable as the CD phase grows. There is no such mixed in-

terface for the HG to HD transition so the HD/HG interface is more stable.

While the enthalpy of HD is slightly higher than CD, the energy of the HD/HG

interface is much lower than that of CD/RG and the overall nucleation barrier

is also lower.

Due to our limited supercell size, the nuclei have periodic structure in

the graphite planes and the interface between phases is only present between

layers. As the nucleus grows, the interface size and structure does not change.

The enthalpy change along the reaction path is only due to differences in

enthalpy of the graphite and diamond phases. When the pressure is sufficiently

high so that the diamond phase is more stable than graphite, the enthalpy

profile is exothermic after the nucleus forms.
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Figure 6.2: The smallest nuclei of bct C4, M, and Z-carbon. Two unit cells
are shown for bct C4 and M-carbon; one unit cell is shown for Z-carbon.

HG-C4

HG-M

RG-CD

HG-HD

5.5

5.0

4.5

4.0

3.5

3.0

Ba
rri

er
 [e

V]

ΔH [eV]
3.0 3.5 4.54.0 5.0

HG-Z

Figure 6.3: Brønsted-Evans-Polanyi relationship for nuclei formation at
15 GPa.

87



Since the highest barrier along each MEP is due to the formation of

the smallest nucleus, only this barrier is calculated when considering trans-

formations from graphite to CCG. Initial structures of the CCG nuclei were

generated based upon those found for CD and HD. Each was taken as a final

state of a G-SSNEB calculation. If an intermediate state was found by the

G-SSNEB, it was set as the final state and the calculation was restarted. This

procedure was repeated until no intermediate state was found, so that the

stable nucleus was directly connected to the initial state by a single barrier.

Bct C4, M, and Z-carbon are calculated as candidates of the kinetically

accessible CCG phase [88, 89, 90, 91]. The configurations of the CCG nuclei

at 15 GPa are shown in Fig. 6.2. The structure of the Z-carbon nucleus is only

slightly distorted from bulk. Two C atoms above and below the octagon in the

center are displaced away from the 4-carbon ring positions, so the 6+4+6 rings

merge into large 12-carbon rings. Interestingly, the distortion does not occur

in bct C4, where no 6-carbon rings exist. A Brønsted-Evans-Polanyi (BEP)

relationship, showing a linear trend between the barrier and enthalpy of form-

ing the smallest nucleus, is given in Fig. 6.3. To further save computational

effort, we use the enthalpies of the critical nuclei and the BEP relationship to

determine the overall phase transition barriers.

The phase transition barriers are shown as a function of pressure in

Fig. 6.4. The barriers are only plotted at pressures where the new phases are

more stable than graphite. The three forms of CCG become stable above 15-

25 GPa, consistent with experiment and recent calculations also using GGA
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functionals with long range dispersion [92]. Earlier LDA calculations underes-

timate the enthalpy differences between graphite and CCG [81, 91].

The barriers from RG and HG to the M-phase of CCG are the same

because RG and HG differ only in their long-range stacking of layers, which

does not effect the formation energy of the critical nucleus. The barrier to Z

and M-carbon are similar, although Z-carbon has a somewhat more negative

activation volume (the slope in Fig. 6.4), so the transition to Z becomes favor-

able as compared to M above 20 GPa. An interesting and important result is

that enthalpy changes to the final phases are not proportional to the barriers

to reach them. It is the formation energy of the critical nucleus that deter-

mines the activation energy. For example, bct C4 has higher enthalpy than

M-carbon [92], but the barrier is lower due to a lower energy interface with
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graphite. In the formation of metastable forms of carbon, the kinetics can be

more important than the thermodynamics.

Figure 6.4 shows that the formation of CCG is favorable as compared to

CD below pressures of 27 GPa. This is only true for the nucleation mechanism

found here; CD is favored via the concerted mechanism [81, 93]. Our ordering

of barrier heights is consistent with the experimental observation that CCG

can be synthesized at a lower temperature than CD near 17 GPa. On the

other hand, our calculations also show that HD should form more readily than

CCG at this pressure, which is not observed. One possible resolution is that

the kinetically accessible phase of CCG has not been found yet; new forms are

still being discovered [94]. Our model also has some limitations: the lateral

interfaces of the critical nuclei are not included, nor defects, which may play

a role in the nucleation process.

6.5 Discussion

While not all issues are resolved, our calculations show that the kinet-

ics of the nucleation mechanisms are qualitatively different from the concerted

mechanisms. The nucleation mechanisms are understood in terms of the struc-

ture and energy of the critical nuclei. The nucleation barriers are described

by two components; one from the interface energy between the phases, and

the other from the enthalpy of the new phase. The enthalpy of the new phase

cannot alone determine the magnitude of the barrier. Its contribution is pro-

portional to the volume of the critical nucleus, which can vary significantly, as
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shown in Fig. 6.1. For small nuclei, the barrier is dominated by the interface

energy, which is positive with respect to graphite. As the nucleus grows, the

barrier is dominated by the enthalpy of the new phase, which is negative with

respect to graphite. In our model, any comparison of enthalpies away from the

critical nucleus is ambiguous; it is at the critical radius where the enthalpies

should be compared. This size of the critical nucleus is a function of pressure.

In Ref. [84], for example, the energy of nuclei of new phases in graphite are

calculated, but the size of the nuclei are chosen arbitrarily and there is no

guarantee that these will be close to the critical size.

Under increasingly high pressure conditions, the concerted mechanism

will be faster than nucleation. To compare these two mechanisms, we can write

the enthalpy barriers as ∆E + P∆V , where ∆E is the energy barrier, ∆V is

the activation volume, and P is the pressure. For any phase transition from

graphite, ∆V is negative in both mechanisms, as can be seen from the slopes

in Fig. 6.4. In a system with a large number of atoms, the volume at the saddle

point for the concerted mechanism is smaller than a nucleation mechanism.

At increasing pressure, the P∆V term will dominate the enthalpy barrier

and the concerted mechanism, with a more negative ∆V , will eventually be

spontaneous.

It will be interesting to investigate the size at which the reactions favor

a truly local nucleation mechanism, as was done with the G-SSNEB method

for CdSe [85]. In a large graphite simulation at pressures between 15 and

27 GPa, the critical nucleus must be limited in lateral extent, and it may
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involve more graphite layers. Our current calculations correspond to the limit

of layer-by-layer propagation of the new phase in graphite.

6.6 Conclusion

In conclusion, we are able to calculate new nucleation mechanisms with

a modest number of atoms over a wide pressure range using the G-SSNEB

method. The barrier from graphite to three candidate CCG structures, bct

C4, M, and Z-carbon, are calculated to be lower than to CD in the pressure

range at which they are synthesized in experiment. The barriers to HD and to

CD are in the same order as seen in experiments, demonstrating the usefulness

of the G-SSNEB method in exploring solid-state potential energy surfaces.
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Chapter 7

Mechanism of the CaIrO3 Post-Perovskite
Phase Transition Under Pressure

7.1 Abstract

Recent experiments have shown that the perovskite to post-perovskite

phase transformation in CaIrO3 occurs more readily at room temperature when

a shear stress is applied as compared to isotropic pressure. To understand this

mechanistically, we have calculated the minimum energy pathway of the phase

transition with density functional theory under different pressure conditions

with the generalized solid-state nudged elastic band method. Our results reveal

that shear stress significantly lowers the barrier and stabilizes the product

state, while isotropic pressure initially raises the barrier and only reduces the

barrier at pressures above 90 GPa. The non-monotonic change in barrier with

isotropic pressure is explained in terms of an increase in the activation volume

under low pressure and a decrease under high pressure.

7.2 Introduction

Aided by laser-heating in a diamond anvil cell, the principal constituent

of the Earth’s lower mantle, MgSiO3 perovskite (Pv), was recently found to
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transform into a post-perovskite (pPv) structure above 125 GPa and 2500 K,

which corresponds to the pressure and temperature conditions at the Earth’s

lowermost mantle, or D′′ layer [95, 96, 97]. Following the discovery of pPv

MgSiO3, a number of other ABO3 perovskites, e.g. CaBO3 (B=Ru, Rh, Sn,

Ir) have been transformed into the pPv structure under high-pressure and/or

high-temperature conditions [98, 99, 100, 101, 102]. Unlike MgSiO3, the Ca-

based pPv are stable at ambient conditions, which makes them excellent analog

materials of MgSiO3.

Recently, high-pressure experiments on Pv CaIrO3 demonstrate that

the Pv to pPv transition can indeed be induced at room temperature at rel-

atively low pressures in the presence of a significant shear stress [103, 104],

whereas the Pv phase remains unchanged up to 31 GPa at room temperature

under isotropic pressure conditions [105].

In order to understand the mechanism of the Pv–to–pPv transition un-

der pressure, and especially in the presence of shear stress, it is important to

determine the transition process at the atomic scale. In previous theoretical

studies of MgSiO3, the Pv–to–pPv transition has been determined under ex-

tremely high pressure conditions (≥120 GPa) [97, 106]. It was found that the

transition occurs through a shear or slide mechanism, which implies that shear

stress should facilitate the Pv–to–pPv transition. However, the pressures and

temperatures considered in the simulations were so high that the conclusions

may not be extendable to room temperature and lower pressure conditions.

All applied stresses in these previous studies were taken to be isotropic and
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the role of pressure was primarily understood as stabilizing the pPv phase;

how pressure affects the transition temperature and activation energy has not

been investigated. Another concern about these previous studies is that the

transition mechanisms were found only in the degrees of freedom used to define

the periodic cell. This so-called rapid-nuclear-motion approximation [107] can

give incorrect barriers, or fail to find a true minimum energy path if the reac-

tion mechanism also involves motions of the atoms within the cell [85]. The

focus of this work is thus to investigate the dynamics of Pv–to–pPv transition

in CaIrO3 under different pressure and shear conditions using the generalized

solid-state nudged elastic band (G-SSNEB) method [85], which treats both

cell and atomic degrees of freedom on equal footing.

A common approximation, within the context of transition state theory,

is that the most probable reaction pathway is the minimum energy path (MEP)

and the maximum energy along the path with respect to the initial state (the

barrier) largely determines the rate of the reaction at a specified temperature.

When the reaction pathway is determined, the influence of an external pressure

on the barrier can also be calculated [108]. Under constant pressure, the energy

landscape E(R) can be generalized to an enthalpy landscape H(R),

H(R) = E(R) + PV (R), (7.1)

where R represents the geometry configuration, P is the external pressure,

and V is the volume of the system. The difference between the energy and

enthalpy barrier is the P∆V work done by the external pressure. For solid
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state systems, the pressure can be anisotropic and should be expressed as a

stress tensor. The work W done by the external pressure is then written in

the general form

W = V
∑

ij

σext
ij ϵij , (7.2)

where σext
ij is the stress tensor and ϵij is the strain tensor. In the low pressure

regime, the barrier change is primarily from the work term. When the pressure

is high enough, the barrier geometry can also change, and this contribution to

the activation enthalpy cannot be ignored.[109]

The main results in this paper are as follows. First, we investigate the

atomic mechanism of the Pv–to–pPv phase transition by locating the MEP in

the enthalpy landscapes with the G-SSNEB method [85]. Our results directly

show that shear stress decreases the barrier, while the isotropic pressure in-

creases the barrier at low pressure and only decreases the barrier when the

pressure is over 90 GPa. This surprising behavior is a result of the reaction

pathway being along the shear deformation direction under all pressure con-

ditions, while the volume can either expand or shrink from the reactant to

the saddle point depending on the isotropic pressure applied. We also find

an interesting intermediate minimum between the two phases, in which every

other layer of iridium atoms are coordinated by four oxygen in a square-planar

geometry. A nucleation-like layer by layer growth of the pPv phase is observed

in a sufficiently large supercell.
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7.3 Method

For solid state systems described by periodic boundary conditions, the

geometric configuration vector R includes two types of variables: atomic posi-

tions r, and cell vectors h. To define distances in this generalized configuration

space, a Jacobian (metric) is required to balance the two vectors. Our choice

of Jacobian is made so that the ratio between distances is invariant to the su-

percell representation of the material. To satisfy this requirement, the distance

between two points in configuration space is defined as

∥∆R∥ =
√

NL2∥ε̄∥2 + ∥∆r∥2, (7.3)

which is the norm of the generalized configuration vector

∆R =
{√

NLε̄,∆r
}

(7.4)

= {J ε̄,∆r} , (7.5)

where ε̄ is the average strain, ∆r is the pure atomic motion in Cartesian

coordinates, N is the number of atoms in the supercell, L is the average

distance between atoms, and J =
√
NL is the Jacobian, which has the unit of

this length. Based on the general distance defined above, the corresponding

general force is

F =

{
Ω

J
(σcauchy + σext), f

}
, (7.6)

where Ω is the volume of the supercell; σcauchy and σext are the Cauchy and

the external stress, respectively; f is the regular atomic force. It is then clear

that

F ·∆R = ∆E + Ωσext · ε̄ = ∆H. (7.7)
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In this generalized coordination system, a structure optimization following

the steepest decent direction is simply ∆R = αF. The nudged elastic band

method implemented in the generalized coordination system is the G-SSNEB

method [85].

In our calculations, the forces and stresses are evaluated with den-

sity functional theory (DFT) [31] using the general gradient approximation

as implemented in the Vienna ab-initio simulation package [35, 36]. The

Perdew-Wang functional is adopted for the exchange-correlation energy [32].

Core electrons are described by pseudo-potentials generated from the projec-

tor augmented wave method [14, 15], and valence electrons are expanded in

a plane-wave basis set with an energy cutoff of 400 eV. A Hubbard model

correction is applied to avoid over-delocalization of iridium 5d electrons due

to self-repulsion. An effective U value of 2.8 eV is chosen to fit to the band

gap of the pPv structure [110]. Unlike the electronic structure, the reaction

pathway is not sensitive to small changes of the U value. For the same reason,

spin-orbit coupling (SOC) is not considered in our calculations either.

7.4 Results

In contrast with the Pv structure, which has a three-dimensional net-

work of corner-linked IrO6 octahedra, the pPv structure consists of IrO6 octa-

hedral layers formed by both corner and edge sharing. The phase transition

thus involves octahedral rotations and rearrangement. We started with the

atom mapping reported in Ref. [97, 106, 104] as an initial path, and then
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Figure 7.1: Properties of the minimum energy phase transformation path at
zero pressure.
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Figure 7.2: Structures along the minimum energy phase transformation path
at zero pressure. The polyhedra are IrO6; the big blue circles are Ca; the small
red circles are O.

calculated the MEP with zero external pressure using the G-SSNEB. The con-

verged MEP, shown in Fig. 7.1(a), is a concerted mechanism with a barrier

of 125 meV/atom. Structures along the MEP are shown in Fig. 7.2. Along

the transition path, the iridium atom in the center of the cell breaks two Ir-O

bonds and forms a square planer coordination, while its four neighboring IrO6

groups remain intact. Meanwhile the center IrO4 plane rotates slightly to align

the Ir-O bond parallel to the neighbors as the arrow indicates in structure B.

As the cell continues shearing, two neighboring IrO6 groups move closer to the

center iridium atom and rotate around the shared oxygen to form two newIr-

O bonds. Movies of the structural evolution can be found in the supporting

information.

The intermediate minimum along the path, labeled C in Fig. 7.2, is

characterized with alternating connected square-planar and octahedral units.

The intermediate minimum is so shallow that this structure might be difficult

to stabilize in an experiment. A Bader analysis [18, 19] for the images in

Fig. 7.1(f) shows that a charge transfer occurs between two types of iridium
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atoms; the iridium in octahedral sites lose electrons to the iridium in square-

planar sites during the transition. This can be understood from crystal field

theory. Each iridium atom in the Pv phase originally has five d-electrons in a

low-spin configuration. As some sites become less coordinated, the elongation

of the two oxygen bonds in the z-direction lowers the energy of dyz , dxz, and dz2

orbitals. When the dz2 level of the square-planar site is close to or lower than

the t2g level of the octahedral site, one paired electron from the latter level

transfers to the former one to maximize the multiplicity. The Bader charges

are not integers, but translated to the conventional picture of discrete charge

transfer, they indicate that the octahedral iridium now has four d-electrons

and the square-planar has six. This charge transfer picture is consistent with

the increase of the average spin magnetic moment of iridium in Fig. 7.1(e).

Although the value of the spin moment is not precise in the absence of SOC,

there is no doubt that the charge transfer results in a spin moment change,

which should be observable in experiment.

The volume change and shear deformation angle are plotted as a func-

tion of the reaction coordinate in Fig. 7.1(b, c). The volume increases first

and then decreases, while the shear angle increases monotonously. Bell’s

theory says that the enthalpy barrier height is a linear function of external

force [111, 109]. In a first order approximation, the positions of the saddle

point and minima are not changed by the external force so that enthalpy bar-

rier change due to the external force is only determined by the work term.

Extended to solid state systems, Bell’s theory says that in the low pressure
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regime the barrier is a linear function of the stress tensor,

H‡(σext)−H0(σext) = E‡(0)−E0(0)

−Ω0
∑

ij

σext
ij ϵ‡ij(0), (7.8)

where H0 and H‡ are the enthalpies of the reactant and transition state, re-

spectively. E0(0) and E‡(0) are the energies of the reactant and transition

state under zero pressure. The last term is the work done by the external

stress from the reactant to the transition state. The isotropic compression is

against the reaction direction (volume expansion), thus increasing the barrier;

the shear stress is along the reaction direction (shear deformation), thus de-

creasing the barrier. In the high pressure regime, shifts of the critical points

are significant so that new G-SSNEB calculations with the external stresses

applied are required.

A set of MEPs and barriers from G-SSNEB calculations at different ex-

ternal compression conditions are plotted in Fig. 7.3. As expected from Eq. 7.8,

the shear stress lowers the barrier whereas the isotropic pressure raises the bar-

rier in the low pressure regime below 20 GPa. The barrier change, however, is

clearly non-linear as the pressure increases and even drops after 30 GPa. After

90 GPa the isotropic pressure begins to lower the barrier compared to the zero

pressure case. As shown in Fig. 7.3(a), the stabilization of the pPv product

state due to isotropic pressure is significantly smaller than due to shear stress.

At 120 GPa the energies of the two phases are even closer than at 40 GP,

because the Pv phase is more compressible and has a slightly smaller equilib-
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rium volume at the high pressure. It is worth noticing that the intermediate

minimum no longer exists in the isotropic pressure calculations.

A detailed analysis at 30 GPa is plotted in Fig. 7.4. The volume shrinks

slightly at the saddle point, while the shear deformation follows the same trend

as under zero pressure. Taking the first order approximation from this point,

it is expected that increasing the isotropic or shear pressure will both lower

the barrier. The Bader analysis shows that under 30 GPa the charge transfer

between the octahedral and square-planar sites are inhibited, resulting in a

different spin moment transition along the path. As the pressure increases,

the octahedral and square-planar sites tend to have similar local environment:

both becoming stretched octahedra but with different orientations.

So far we have considered only the concerted mechanism which is de-

scribed by a small unit cell. To investigate the possibility of a more localized

phase transition mechanism, we enlarge the supercell size along the a and b

directions. The zero pressure MEP calculations for this large cell are shown in

Fig. 7.5. Instead of every other IrO6 group rotating at the same time, now one

layer transforms first and another layer follows, which agrees with the observa-

tion in Ref. [106]. A laminate structure (G) is observed as a new intermediate

minimum along the path, which is recognized as a mixture of the Pv and pPv

phases rather than a new phase. The ratio of the two phases in the laminate is

limited by the supercell size selected for the calculation; it does not reflect the

actual situation expected in experiment. The critical nucleus size of the new

phase would be interesting, but it is hard to estimate with DFT because of the
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large cell sizes necessary. Switching from the concerted to the non-concerted

mechanism, however, does not change the calculated trends of barrier as a

function of pressure and sheer stress. The non-concerted mechanism intro-

duces a phase boundary into the transition process, but the boundary does

not change the volume or shear deformation direction along the path, as shown

in Fig. 7.5(b, c).

7.5 Discussion

The role of temperature in the phase transition is to provide the system

with fluctuations to overcome the reaction barrier. A higher barrier requires a

higher temperature for the transition to occur. An applied stress can change

the enthalpy landscape and thus the barrier height, either an increase or a

decrease. At a given external pressure, the barrier height between the two

phases can be related to the onset temperature of the transition. For the

Pv–to–pPv phase transition in CaIrO3, the barrier height increases with the

external isotropic pressure, therefore we predict the onset temperature of the

transition will also increase. A suitable experiment for testing our calculated

mechanism is as follows: under a given pressure (helium mediated), gradually

increase the temperature of the Pv phase to find the temperature when the

pPv phase is first observed. Repeat the process at different pressures and

get a series of onset temperatures. One possible obstacle is that without any

shear stress, the temperature required to activate the transition might be too

high, at pressures below 30 GPa. A possible solution is to maintain a constant
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9 GPa shear stress and vary the helium gas pressure, which can bring down

the barrier to an observable region and allow the study of the unusual isotropic

stress effect. Measuring the spin magnetic moment change during the phase

transition is another possible way to verify the predicted mechanism.

The Pv–to–pPv phase transition is similar to the iron bcc–to–hcp tran-

sition. The shear effect and the microstructures we find here both agree qual-

itatively with the multi-scale model results in Ref. [112]. In that work, the

authors adopted the microstructure from experimental observations, while we

find the laminate directly from atomic simulations.

7.6 Conclusion

In conclusion, we have provided a detailed mechanism of the Pv–to–

pPv phase transition as a continuous path in the space of both atoms and

lattice parameters. Based upon this path, we have shown how pressure and

shear effects the reaction barrier. The shear stress lowers the barrier, while the

isotropic pressure first raises the barrier and then lowers it with a crossover

point of 90 GPa. These calculations explain the recent experimentally observed

phase transformations under different compression conditions. Charge transfer

between different iridium sites during the transition is predicted under low

isotropic pressure or pure shear stress, which should be accompanied by a

change in the spin magnetic moment. Bell’s theory provides a straightforward

understanding of the pressure effect from the transition path within small

pressure deviation, but it may lead to completely opposite conclusion if the
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applied stress is far from the perturbation limit.
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Chapter 8

Solid-State Dimer Method for Calculating
Solid-Solid Phase Transitions

8.1 Abstract

The dimer method is a minimum mode following algorithm for finding

saddle points on a potential energy surface of atomic systems. Here, the dimer

method is extended to include the cell degrees of freedom for period solid-state

systems. Using this method, reaction pathways of solid-solid phase transitions

can be determined without having to specify the final state structure or re-

action mechanism. Example calculations include concerted phase transitions

between CdSe polymorphs and a nucleation and growth mechanism for the

A15 to BCC transition in Mo.

8.2 Introduction

The harmonic approximation to transition state theory [113, 114] is

widely used to calculate reaction rates because it depends simply upon the en-

ergy difference between a local minimum and a saddle point connected to it by

a steepest descent path. The dimer method is an efficient way to locate these

first order saddle points on a given potential energy surface. [115, 116] Different
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from the nudged elastic band method (NEB), [59, 58] where both the reactant

and product configurations are needed to find a connecting saddle point, the

dimer method requires only initial configurations in the reactant state and can

(in principle) find all connected saddles defining the possible escape pathways

from the state. The corresponding product states are identified by minimizing

configurations displaced along the negative mode of each saddle point found.

Using dimer searches in each new state visited, the adaptive kinetic Monte

Carlo (AKMC) algorithm has been developed to explore the connectivity and

thermally accessible parts of the potential energy surface. [117] Possible reac-

tion processes and rates are calculated on the fly based on the saddles found

by the dimer method and the system is advanced from state-to-state by the

kinetic Monte Carlo (KMC) algorithm. [118, 119]

Within the dimer method the dimer consists of two configurations of

the system separated by a small distance. The vector between the two images,

τ , is an estimate of the lowest curvature mode, which is used to bring the center

of the dimer to a saddle point. There are two parts to the dimer method. First,

the dimer is rotated about its center to minimize the total dimer energy and

with this to find the lowest curvature mode. The rotation direction Θ, is along

the force difference between the two images, with the component parallel to τ

projected out. The dimer energy is a sinusoidal function of the rotation angle

on the plane spanned by Θ and τ , so the rotation angle which minimizes the

dimer energy in this plane can be determined with a single additional force

call. [120, 121] Second, the center of the dimer is translated by climbing up
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the potential energy surface along the lowest curvature mode direction and

relaxing in all perpendicular directions. The dimer converges towards first

order saddle points and is oriented along the negative curvature mode defining

the reaction coordinate.

For solid-state systems, periodic boundary conditions are adopted to

model infinite systems. Many solid-state reactions, and especially phase tran-

sitions, involve changes of both atomic positions and cell vectors. To correctly

locate saddle point configurations in these systems, it is essential to treat all

degrees of freedom on the same footing. Dragging along a chosen direction in

solid-state systems, such as moving the cell first and then relaxing the atoms

in a fixed cell, or vice versa, is not a reliable way to find saddle points. [122, 65]

Here, we show how the dimer algorithm can be extended to include the cell

degrees of freedom becoming the solid-state dimer (SSD) method. In the SSD,

both the cell and atomic degrees of freedom evolve in concert. The key to

the method is the definition of an appropriate metric to define the distance

between two structures so that the geometry of the configuration space is

independent of the supercell used.

Our approach follows that of the solid-state nudged elastic band (SS-

NEB), which was developed using the same expanded degrees of freedom to

locate saddle points of solid-solid phase transitions. [122] The limitation of

any band type method is that both the initial and final configurations must

be known to initiate the calculation, as well as a suitable initial interpolation

between the two states. This is not a problem when studying simple diffusion
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mechanisms, however the complexity of phase transitions makes this constraint

a major challenge. In the NEB, the identity of each atom in the initial state

must correspond uniquely to a specific atom in the final state. This atomic

mapping creates a combinatorial explosion of possible final states with system

size, differing only by atom identity. Moreover, the choice of unit cell for each

state is not unique, which further increases the complexity of the mapping.

The SSD method circumvents the atom permutation and cell variation issues

by automatically following the atoms along the path they naturally take to

saddle points and adjacent minima. Then, combined with the AKMC method,

the SSD is able to automatically discover new crystal structures and new phase

transformation mechanisms.

8.3 Methodology

8.3.1 Generalized Cell and Atom Configuration Space

The energy of a solid-state system represented with periodic boundary

conditions is defined by the atomic positions r and the cell matrix h (with the

cell vectors as rows). In the SSD, we aim to treat both types of variables in

a single generalized space of atomic and cell coordinates. Changes in the cell

vectors are naturally described in terms of strains which have different units

from the atomic positions. A Jacobian, or metric, is required to combine them

into a generalized displacement vector,

∆R = {Jε,∆r} . (8.1)
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Here, J is the Jacobian, ε = h−1∆h is the strain, and ∆r is the change

in the atomic positions in Cartesian coordinates. ε is still a 3 × 3 matrix.

∆R is formally a (N + 3) × 3 matrix, where N is the number of atoms in

the supercell, but the dot product and norm used in the following are just

calculated as flattened vectors. [122] The strain is calculated with respect to

the initial cell geometry. It could also be calculated with respect to deformed

cell, ε = (h+∆h)−1∆h, but this is not important for the metric because the

two expressions for ε converge in the limit of ∆h → 0, where the differential

properties of the space are defined.

To separate atomic and cell changes, it is important to define the atomic

motion in relative coordinates with respect to the cell vectors. In this way,

a pure strain ε in the generalized space does not contribute to a change in

the atomic coordinates ∆r. The separation of cell and atomic variables is ac-

complished by calculating ∆r as fractional changes along the cell coordinates,

converted into Cartesian displacements. As with the calculation of ε, h is

chosen as the reference cell for this transformation.

The most import issue for defining the space of cell vectors and atomic

positions is the choice of Jacobian. The Jacobian provides the appropriate

metric to combine strain and atom motion into a single vector. Our principle

for choosing J is that overall size and shape of the supercell should not affect
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the calculation of distances in our generalized space. Our choice of J is

J =
√
NL (8.2)

L =

(
Ω

N

)1/3

, (8.3)

where N is the number of atoms in the supercell, L is the average distance

between atoms calculated from the average volume, and Ω is the volume of

the supercell. J has units of length, which compensates for the fact that ε is

unitless. J is only calculated once in the initialization of the calculation and

kept constant thereafter. A constant J is sufficient because the precise value

is not as important as how J scales with system size. Furthermore, the saddle

points are stationary and invariant to the Jacobian.

The distance in the generalized configuration space is

∥∆R∥ =
√

NL2∥ε∥2 + ∥∆r∥2. (8.4)

One can see from this expression how J balances the relative weight between

strain ε and atomic displacements ∆r. Consider, for example, a cell that is

expanded into a supercell while maintaining the same atomic motion within

each cell. The first term under the square root, corresponding to strain, in-

creases linearly with the number of atoms in the cell, due to the
√
N term

in J (Eq. 8.2). The second term, corresponding to the atomic motion, also

increases linearly with the number of atoms in the supercell. The Jacobian

ensures that the ratio of the two terms remains the same, independent of the

choice of supercell, resulting in a proportional change of the atomic and cell
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axes in the generalized space. It is trivial to prove that the dot product and an-

gle between any two vectors also remains unchanged under different supercell

representations, which confirms that the configuration space is undistorted.

Taking the first derivative of the energy with respect to R gives the

generalized force

F =

{
Ω

J
σcauchy, f

}
, (8.5)

where f are the atomic forces and σcauchy is the Cauchy stress. One can verify

that F·∆R is the energy difference due to the displacement ∆R. The SSD can

be extended by include external stress in an enthalpy landscape by modifying

Eq. 8.5 to

F =

{
Ω

J
(σcauchy + σexternal), f

}
. (8.6)

8.3.2 Solid-state Dimer Method

The dimer is defined by a point R and a direction τ . In the generalized

space of cell and atomic degrees of freedom R has two components, h and r.

As in Eq. 8.1, the direction is defined as τ = {τ ε, τ r}, where τ ϵ and τ r are the

components from strain and atomic motions, respectively. The dimer can also

be defined by its two end points, i.e. the two images of the system at R1 and

R2, which are centered about R and separated along τ by a small distance

∥∆R∥. R1 is calculated from R and τ in the following way. First, the cell at
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the endpoint, h1 is calculated as

ε =
∥∆R∥

J
τ ϵ (8.7)

h1 = hε+ h. (8.8)

Under the strain ε, the Cartesian atomic positions are scaled from r to a new

position vector that we will call r′. Note that the relative atomic coordinates in

these cells are constant, when expressed as fractions of the cell vectors. After

transforming to the new cell, the atomic positions are updated according to

τ r,

r1 = r′ + ∥∆R∥τ r. (8.9)

With these definitions of generalized vectors, forces, and displacements, the

rest of the SSD method is the same as the regular dimer method. [115, 120, 121]

The dimer direction τ is rotated according to the force differences between the

two images; at the new orientation the end point is updated and the new forces

are calculated; after τ converges to the lowest curvature mode direction, the

center of dimer is translated up the potential along τ and down the potential

in all other directions, using any force-based optimizer, until a saddle point

is found. We note that the dimer rotation is equivalent to the Raleigh-Ritz

optimization [123] that is used in the hybrid eigenvector following method

[124], and the more recent and closely related gentlest ascent dynamics method

[125].
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8.4 Results

The SSD method is implemented as an extension of the atomic simu-

lation environment (ASE) in the companion transition state (TSASE) code.

[70, 71] Exploration of the potential energy surface is done using the AKMC

method [126, 117] as implemented in the EON simulation package. [127] We

use high temperature state-to-state AKMC dynamics to facilitate crossing of

high barriers and sampling of both low and high energy crystal structures.

Two examples are used to demonstrate the capabilities of the SSD

method. In the first example, we revisit the CdSe system previously explored

with the SSNEB. [122] In addition to the transition pathways found with

the SSNEB, the SSD finds many new structures which are illustrated in a

disconnectivity graph. [128] In the second example, we calculate a phase

transition between the A15 and BCC structures in Mo. With the SSD, two

concerted mechanisms of the phase transition are found, without an assumed

path or input from molecular dynamics. Finally, we combine the SSD and the

SSNEB methods into an efficient strategy for discovering and refining reaction

mechanisms. A small supercell representation serves as a coarse-grained model

of the system which can be quickly explored by the SSD; the finer details along

the pathway of interest, for example at the interfaces between phases, are then

refined with the SSNEB.
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8.4.1 CdSe energy landscape

Our first example is the CdSe system with eight atoms in the supercell,

which we have studied using the SSNEB method in a previous paper. [122]

The same empirical potential, consisting of long range Coulomb and short

range Lennard-Jones terms, describes the atomic interactions. [68] The initial

structures for SSD searches are generated by the EON server with random

displacements in the generalized space around the wurtzite (WZ) minimum.

After the saddles around the minimum are found, the EON server builds a table

of reaction rates based upon harmonic transition state theory, and advances

the system to a new state with the KMC algorithm. A temperature of 5000 K

is used to explore the network of stable crystal structures.

A selected set of saddle points and final state crystal phases found by

the SSD are shown in Fig. 8.1. Interestingly, two concerted mechanisms were

found for the WZ to rock salt (RS) transition. Fig. 8.2 illustrates both the

lower energy path (I), shown in Fig. 8.1, and a slightly higher energy path

(II). In path I, the cell contracts first along the c-axis and then along the a-

axis; in path II, the cell has contracted both along the a- and c-axes at the

saddle point. This example illustrates a strength of single-ended saddle search

methods which are not biased to a particular path between an initial and final

state. In contrast, the SSNEB using an initial linear interpolation between the

two states would only find one of these pathways.

The resulting energy landscape is shown in the disconnectivity graph

in Fig. 8.3 (a). The most interesting high symmetry and low energy structures
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were relaxed with density functional theory (DFT) calculations, [31] yielding

the energy landscape shown in Fig. 8.3 (b). The DFT calculations were per-

formed with the Vienna ab-initio simulation package (VASP) using the PW91

exchange-correlation functional and a basis set of plane waves with an energy

cutoff of 350 eV. [35, 36, 32] The projector augmented wave method modeled

the core electrons. [14, 15] All of the stable structures found with the empirical

potential were also found to be distinct minima when fully relaxed in DFT.

Transition states between the minima were calculated using the SSNEB within

the VASP code, using the minimum energy paths from the empirical potential

to initialize the DFT calculations.

The palm-tree shape of the energy landscape calculated with the em-

pirical potential remains intact with DFT, but the lowest barrier to escape the

WZ phase increases significantly and the RS and NiAs branches become less

stable within the tree. Overall, however, the empirical potential gives reliable

structures over the range of local minima as well as reasonable relative energy

differences between them. The phase transition barriers, however, deviate sig-

nificantly from the DFT results. A good compromise can be made by finding

structures and pathways with the empirical potential and then refining the

energetics with DFT.

Finding new crystal structures in this way can be useful for screening

of materials with interesting properties. The energy landscape also provides

information about which materials can be synthesized. [129] The WZ and

zinc blende (ZB) are the two structures that are observed in experiments at

122



low temperature and pressure. The funneled “palm-tree” energy landscape

explains why the two lowest energy states, WZ and ZB, are relatively easy

to synthesize by annealing. The NiAs structure has also been observed in a

constant pressure molecular dynamics simulation, but it may be difficult to

stabilize under experimental conditions due to the shallowness of its basin of

attraction. [130] The d-BeO and a-CdSe structures have not been reported

before. Their basins of attraction are deep, but the entrances are relatively

high in the energy funnel. If these entrances are bypassed at high temperature,

the chances to visit the d-BeO and a-CdSe structures by annealing will be low.

8.4.2 A combined dimer and NEB approach to find complex path-
ways

Typically, we are interested in phase transitions between stable crystal

structures in which the end points can be fully represented by a small supercell.

The SSD efficiently finds concerted mechanisms of phase transitions in small

cells, but these may not be sufficient to describe the details of a real transition

processes, such as one involving nucleation and growth. [131] As the cell size

is increased, complex and local mechanisms can be resolved, but it becomes

increasingly difficult for the SSD to find complete phase transition pathways

in the high dimensional configuration space.

A natural compromise between the mechanistic limitations of a small

cell and the computational cost of a large cell can be achieved by combining

the SSD and SSNEB methods. We start with a small cell and use the SSD to
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Mo. The moving atoms are labeled, and the two sub-lattices outlined for vi-
sualization purposes. Energies, listed below each structure, are in meV/atom.

find interesting concerted transitions. Then the SSNEB is used with a larger

supercell to allow for local relaxation along the path found by the SSD. Small

random displacements are made to the atoms in the SSNEB calculations in

order to break the symmetry of the concerted processes found by the SSD.

In this way, the coarse grained mechanisms are found by the SSD and the

fine grained mechanistic details, including local nucleation and growth, are

resolved by the SSNEB.

8.4.3 A15 to BCC solid-solid transformation in Mo

In our second example we show how the SSD can be combined with

the SSNEB to efficiently discover and refine details of a complex transforma-

tion process in bulk Mo. Complex crystal structures, such as the A15 phase,

can form in metal alloys with high concentrations of refractory elements (e.g.
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Mo) and significantly influence their mechanical properties, [132]. There is,

however, little understanding of the atomistic mechanisms underlying the for-

mation of these phases. The A15 phase is usually only observed in binary or

multicomponent alloys, but to a first approximation elemental Mo is a good

model system for this work since theoretical studies showed that in Mo the

A15 phase is only slightly less stable than and thus competing with the BCC

ground state. [?, 133]. Furthermore there is an embedded atom method po-

tential for Mo [134] that gives reasonable bulk properties for BCC and A15 as

well as an appropriate value for the energy difference between the two phases.

To investigate the possible transition paths, we ran several hundreds of SSD

searches initiated by making random displacements to all degrees of freedom

in the A15 structure. Two concerted mechanisms were found as shown in

Fig. 8.4. In both cases, atomic and cell motions are significant.

Based on the first concerted path in Fig. 8.4, we expand the supercell

of the initial and final structures and use the SSNEB to refine the minimum

energy pathway. This cell is expanded into a 5×5×1 supercell within the

plane shown in Fig. 8.4. In this way, we are looking at a quasi-2D system

with a periodic unit cell in the perpendicular direction. The converged MEP

is shown in Fig. 8.5. In the larger supercell, the initial path, taken to be the

concerted mechanism found by the SSD, relaxes to a lower energy local tran-

sition in which the BCC phase nucleates locally and propagates throughout

the cell. The overall barrier along the path is reduced from 286 meV/atom in

the concerted mechanism to 109 meV/atom in the local mechanism. We note,
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however, that the barriers for the concerted and local mechanisms can not be

compared directly since they scale differently with system size; the former with

the volume of the system and the later with the area of the A15-BCC interface.

By choosing a large enough supercell, the concerted mechanism can be relaxed

with the SSNEB to a lower energy nucleation and growth mechanism. [122]

The nucleus of the new phase forms in the middle of configuration

(A) with a sharp increase in energy. In (B) the nucleus takes a clear BCC

structure. The BCC phase then grows along the vertical direction unit cell by

unit cell following atomic motion similar to that shown in Fig. 8.4. The energy

increases as the nucleus grows. In principle, the state with the highest energy

corresponds to the critical nucleus, but in this simulation the critical size is

not reached before the nucleus spans the periodic boundary, in (F). From

(G), the BCC phase grows along the two phase boundary and the energy

drops due to the relative stability of BCC over A15 and the fact that the

overall length of the boundary barely increases. From (G) to (J) a complete

layer of A15 is converted into BCC, one unit cell at a time. After (J), the

BCC growth mechanism is again affected by the periodic boundary conditions.

Configuration (L) can be viewed as an A15 nucleus, which is relatively unstable

with respect to the final pure BCC phase.

8.5 Conclusion

The SSD method is designed to find saddle points in the generalized

configuration space of both atomic and cell degrees of freedom. The method
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is demonstrated to find phase transitions between different crystal structures

represented under periodic boundary conditions. Combined with the AKMC

server in EON, the energy landscape of CdSe is calculated in the form of a

disconnectivity graph. In this way, the discovery of new phases, as well as a

determination of their stability is possible, which is a helpful guide for syn-

thesis. More complex mechanisms involving both local atomic motion and

collective shifts in the cell can be found with a combination of the SSD and

SSNEB methods. The SSD efficiently finds collective transformation mecha-

nisms in a small supercell and the SSNEB is able to refine the path in terms

of local atomic motion along the path. This hybrid approach is used to deter-

mine a quasi-2D nucleation and growth pathway for the Mo A15-BCC phase

transition.
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[121] J. Kästner and P. Sherwood. Superlinearly converging dimer method
for transition state search. J. Chem. Phys., 128:014106–1–6, 2008.

[122] D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkel-
man. A generalized solid-state nudged elastic band method. J. Chem.
Phys., 136:074103, 2012.

[123] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, 1985.

142



[124] L. J. Munro and D. J. Wales. Defect migration in crystalline silicon.
Phys. Rev. B, 59:3969, 1999.

[125] W. E and X. Zhou. The gentlest ascent dynamics. Nonlinearity,
24:1831, 2011.

[126] G. Henkelman and H. Jónsson. Long time scale kinetic Monte Carlo
simulations without lattice approximation and predefined event table.
J. Chem. Phys., 115:9657–9666, 2001.

[127] S. T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen,
H. Jónsson, and G. Henkelman. Eon: Software for long time scale
simulations of atomic scale systems. Model. Simul. Mater. Sci. Eng.,
in press, 2014.

[128] O. M. Becker and M. Karplus. The topology of multidimensional po-
tential energy surfaces: Theory and application to peptide structure and
kinetics. J. Chem. Phys., 106:1495–1517, 1997.

[129] Martin Jansen. A concept for synthesis planning in solid-state chem-
istry. Angew. Chem. Int. Ed., 41(20):3746–3766, 2002.

[130] Michael Grünwald, Katie Lutker, A Paul Alivisatos, Eran Rabani, and
Phillip L Geissler. Metastability in pressure-induced structural transfor-
mations of CdSe/ZnS core/shell nanocrystals. Nano Lett., 13(4):1367–
1372, 2012.

[131] Penghao Xiao and Graeme Henkelman. Communication: From graphite
to diamond: Reaction pathways of the phase transition. J. Chem.
Phys., 137:101101, 2012.

[132] C. M. F. Rae and R. C. Reed. The precipitation of topologically close-
packed phases in rhenium-containing superalloys. Acta Mat., 49(19):4113,
2001.

[133] B. Seiser, T. Hammerschmidt, A. N. Kolmogorov, R. Drautz, and D. G.
Pettifor. Theory of structural trends within 4d and 5d transition metal
topologically close-packed phases. Phys. Rev. B, 83(22):224116, 2011.

143



[134] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat,
A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L.
Martens, and T. F. Kelly. Atomic scale structure of sputtered metal
multilayers. Acta. Mater., 49:4005–4015, 2001.

144


