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We describe combinatorial techniques for studying log Calabi-Yau surfaces.

These can be viewed as generalizing the techniques for studying toric varieties in terms

of their character and cocharacter lattices. These lattices are replaced by certain in-

tegral linear manifolds described in [GHK11], and monomials on toric varieties are

replaced with the canonical theta functions defined in [GHK11] using ideas from mir-

ror symmetry. We classify deformation classes of log Calabi-Yau surfaces in terms of

the geometry of these integral linear manifolds. We then describe the tropicalizations

of theta functions and use them to generalize the dual pairing between the character

and cocharacter lattices. We use this to describe generalizations of dual cones, Newton

and polar polytopes, Minkowski sums, and finite Fourier series expansions. We hope

that these techniques will generalize to higher rank cluster varieties.
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Chapter 1

Introduction

The running theme of this thesis is that log Calabi-Yau surfaces (or in another

language, fibers of rank 2 cluster X-varieties) are a reasonably mild generalization of

toric surfaces, so one can hope to better undertand them by applying techniques from

toric geometry. Toric varieties are of course understood by studying their character

and cocharacter lattices, denoted M and N , respectively. [GHK11] generalizes the

cocharacter lattice by defining the tropicalization U trop of a log Calabi-Yau surface U .

They then use toric degenerations, modified by scattering diagrams, to construct a

mirror family V of log Calabi-Yau surfaces, with the integer points of U trop serving as

a generalization of the character lattice for V. That is, the global sections of the family

V admit a canonical module-basis of “theta functions,” parametrized by the integer

points U trop(Z) ⊂ U trop, which generalize monomials on toric varieties. In this thesis,

we carefully examine the structure of U trop and its relationship to U and V in order to

better understand the log Calabi-Yau surface.

1.0.1 Some Main Results

As mentioned, a point q ∈ U trop(Z) corresponds to a boundary divisor Dq for

some compactification of U , and also to a canonical theta function ϑq on the mirror V.

Let V be a generic fiber of the mirror ([GHK] shows that V is deformation equivalent
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to U).1 We similarly have that v ∈ V trop(Z) corresponds to a boundary divisor Dv of

certain compactifications of V , and also to a theta function ϑv on the mirror U to V .

We may view U as a fiber of U. For f a regular funciton on U and q ∈ U trop(Z), we

define f trop(q) := valDq(f). Similarly with V . Define 〈q, v〉 := ϑtrop
q (v), and similarly,

〈q, v〉∨ := ϑtrop
v (q) := valDq(ϑv). These pairings generalize the dual pairing between M

and N in the toric situation.

Theorem 1.0.1 (3.2.14). 〈·, ·〉 and 〈·, ·〉∨ are equivalent.

Generalizations of this have been conjectured in [FG09] (their Conjecture 4.3,

part 3) and [GHKK].

We define tropical functions on U trop and V trop to be the integral, piecewise-

linear functions which are “convex along broken lines” (we show this is equivalent

to [FG09]’s notion of “convex with respect to every seed” in the language of cluster

varieties). The tropical functions form a min-plus algebra, and we call a tropical

function ϕ indecomposable if it cannot be written as a minimum of two other tropical

functions, neither of which is ϕ. The tropical functions generalize convex integral

piecewise-linear functions on NR and MR, and the indecomposable functions generalize

the linear functions. [GHKK] conjectures that tropicalizations of regular functions are

tropical for any log Calabi-Yau variety, and [FG09] conjectures that the theta functions

(not their tropicalizations) satisfy a related indecomposability condition (now known

to be false in general). For the log Calabi-Yau surface cases, we show:

1We assume throughout this subsection that U is “positive,” as defined in §1.0.2, although Remark
3.2.25 explains how to extend Theorem 1.0.2 to the non-positive cases.

2



Theorem 1.0.2 (3.2.24). The tropical functions are exactly the tropicalizations of regu-

lar functions, and the indecomposable tropical functions are exactly the tropicalizations

of theta functions.

We also generalize the notion of Newton polytopes by defining Newt(
∑

q∈S ϑq)

to be the “strong” convex hull of S in U trop. We generalize notions of dual polytopes

and show that their properties and relationships to the log Calabi-Yau surfaces are

similar to in the toric case. We also define the Minkowski sum Newt(f) + Newt(g) as

Newt(fg). U trop contains a singular point that prevents addition from being defined

as easily as in the toric case. However, U trop is covered by convex cones, and addition

does of course make sense when restricting to these cones.

Theorem 1.0.3 (3.3.27). If the Minkowski sum of a collection Q1, . . . , Qs of polytopes

contains the origin, then it can be computed by taking the convex hull of the union over

all convex cones σ of all sums of s-tuples qi ∈ Qi ∩ σ, i = 1, . . . , s.

In fact, only finitely many convex cones and s-tuples are needed, so Minkowski

sums really are computable. We view this as a tropicalized version of [GHK11]’s formula

for multiplying theta functions.

1.0.2 Setup

Throughout this paper, Y will denote a smooth, projective, rational surface over

an algebraically closed field k of characteristic 0. The boundary D will denote a choice

of nodal anti-canonical divisor in Y , and U will denote Y \D. Here, D = D1 + . . . Dn

is a either a cycle of smooth irreducible rational curves Di with normal crossings, or
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if n = 1, D is an irreducible curve with one node. By a compactification of U , we

mean such a pair (Y,D) ([GHK] describes these as compactifications with “maximal

boundary”). We call (Y,D) a Looijenga pair, as in [GHK11], and we call U a log

Calabi-Yau surface or a Looijenga interior.

For a Looijenga pair (Y,D), we define a toric blowup to be a Looijenga pair

(Ỹ , D̃) together with a birational map Ỹ → Y which is a blowup at a nodal point of

the boundary D, such that D̃ is the preimage of D. Note that taking a toric blowup

does not change the interior U = Y \D = Ỹ \ D̃. We also use the term toric blowup

to refer to finite sequences of such blowups.

By a non-toric blowup (Ỹ , D̃)→ (Y,D), we will always mean a blowup Ỹ → Y

at a non-nodal point of the boundary D such that D̃ is the proper transform of D. Let

(Y ,D) be a Looijenga pair where Y is a toric variety and D is the toric boundary. We

say that a birational map Y → Y is a toric model of (Y,D) (or of U) if it is a finite

sequence of non-toric blowups. Every Looijenga pair has a toric blowup which admits

a toric model ([GHK11], Prop. 1.19).

According to [GHK], all deformations of U come from sliding the non-toric

blowup points along the divisors Di ⊂ D without ever moving them to the nodes of

D. We call U positive if some deformation of U is affine. This is equivalent to saying

that D supports an effective D-ample divisor, meaning a divisor whose intersection

with each component of D is positive. We will always take the term D-ample to imply

effective, unless otherwise stated. See §2.3.3 for equivalent characterizations of U being

positive. We will assume that U is positive throughout Chapter 3.
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1.0.3 Outline of the Paper

Cluster Varieties: §2.1 summarizes the relationship that [GHK13a] describes

between Looijenga pairs and [FG09]’s cluster varieties. Briefly, [GHK13a] explains how

to view cluster varieties as certain blowups of toric varieties. As already mentioned, log

Calabi-Yau surfaces can also be constructed by blowing up toric varieties. As shown

in §5 of [GHK13a], every log Calabi-Yau surface appears (up to codimension 2) as a

symplectic leaf in what [FG09] calls a cluster X-variety.

The Tropicalization of U : In §2.2, we review [GHK11]’s construction of the

tropicalization of U , an integral linear manifold denoted U trop. The integer points

U trop(Z) ⊂ U trop generalize the cocharacter lattice N for toric varieties. If q ∈ U trop(Z)

is primitive (i.e., nonzero and not a positive integral multiple of some other element

of U trop(Z)), then it corresponds to an irreducible divisor Dq in the boundary of some

compactification of U . If q is a multiple |q| ∈ Z≥0 times a primitive element, then the

corresponding divisor is |q|Dq. We call |q| the index of q.

U trop is homeomorphic to R2, and the integral linear structure that captures the

intersection data of the boundary divisors. This structure is singular at a point 0 ∈

U trop, and we examine the monodromy around this point. We then analyze the integral

piecewise-linear functions on U trop using the intersection theory on compactifications

of U : an integral piecewise-linear functions ϕ on U trop corresponds to a Weil divisor

Wϕ :=
∑
ϕ(vi)Dvi on a compactification (Y,D =

∑
Dvi) of U , and the “bending

parameter” of ϕ across ρvi is the intersection number Wϕ · Dvi . Let βv1,...,vs denote

a function which has bending parameter |vi| along the ray ρvi generated by vi, for

each i, and otherwise has no other bends. As a consequence of the symmetry of the
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intersection product, we find:

Proposition 1.0.4 (2.2.10). If the intersection matrix H = (Di ·Dj)ij for some com-

pactification of U is invertible, then βv is uniquely defined for each v, and βv(w) = βw(v)

for all v, w ∈ U trop(Q).

The symmetry in Theorem 1.0.1 may be viewed as a consequence of this when

both sides are negative (see Remark 3.2.15), but the proof we give actually follows a

different approach. We also give a local coordinate description of the functions βv1,...,vs

which is very useful when proving Theorem 1.0.3. At the end of §2.2, we give the

definitions of lines and polygons in U trop, as introduced in [GHK].

Classification: §2.3 offers several equivalent classifications of log Calabi-Yau

surfaces up to deformation, with characterizations based on the intersection data of

D, the regular functions on U , the geometry of U trop (including the monodromy and

properties of lines), the intersection form on the lattice D⊥ ⊂ A1(Y,Z) of curve classes

which do not intersect any component of D, and the properties of a seed S for the

cluster variety containing U as a fiber.

For example, endpoint that U corresponds to an acyclic cluster variety (i.e., the

quiver corresponding to some seed has no oriented cycles) if and only if some straight

lines in U trop do not wrap all the way around the origin. The cases where no lines wrap

are fibers of “finite-type” cluster varieties, meaning that the underlying graphs of the

corresponding quivers are simply-laced Dynkin diagrams. We show that the (inverse)

monodromy of U trop in these finite-type cases are Kodaira’s monodromy matrices In,
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II, III, and IV , from his classification of singular fibers in elliptic surfaces. Similarly,

the non-acyclic positive cases correspond to Kodaira’s matrices I∗n, II∗, III∗, and IV ∗.

Constructing the Mirror and the Theta Functions: In §3.1 we review

[GHK11]’s construction of the mirror family V of U . The theta functions ϑq, q ∈

U trop(Z), are defined in terms of broken lines, which are certain piecewise-straight lines

in U trop with attached monomials. At the end of §3.1, we review [GHK]’s construction

of compactifications of V.

Theta Functions and their Tropicalizations: In §3.2, we explicitely de-

scribe the tropicalizations of theta functions, as defined above in §1.0.1, and we inves-

tigate some of their properties. We begin by describing a way to identify U trop with

V trop for computational purposes (analogous to using the standard inner product to

identify NR with MR in the toric situation). We find an explicit description of 〈·, ·〉

in §3.2.3 and §3.2.4. For example, as investigated in §3.2.6.1, tropical theta functions

which are negative everywhere bend along at most a single ray. On the other hand,

each seed from the cluster structure induces a different integral linear structure on

U trop, and the tropical theta functions which are positive somewhere are linear with

respect to some seed.

In §3.2.5, we use these explicit descriptions to conclude Theorem 1.0.1. §3.2.7

introduces the tropical functions mentioned above in §1.0.1. Convexity along a broken

line locally means convexity with respect to a linear structure in which the broken

line is straight. Tropical functions are defined to be convex along all broken lines, and

we show that this is equivalent to being convex with respect to the linear structure

induced by each seed. We then prove Theorem 1.0.2 and make several conjectures
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about how this might generalize to higher dimensional cluster varieties and fibers of

cluster varieties.

Toric Constructions for Log Calabi-Yau’s:

In §3.3 we use the pairing 〈·, ·〉 to generalize several constructions from toric

geometry. §3.3.1 focuses on constructions involving polytopes. For example, we define

the strong convex hull of a set Q ⊂ U trop as

Conv(Q) =

{
x ∈ U trop|〈x, v〉 ≥ inf

q∈Q
〈q, v〉 for all v ∈ V trop

}
.

We call a polytope strongly convex if it equals its own strong convex hull. Such

polytopes and their Minkowski sums also appear in the literature on cluster varieties

(cf. [FG11] and [She12]). We show:

Theorem 1.0.5 (3.3.8). A rational polytope Q is strongly convex if and only if any

broken line segment with endpoints in Q is entirely contained in Q.

Consider a regular function f :=
∑

q∈Q aqϑq, Q ⊂ U trop(Z), aq 6= 0. The Newton

polytope of f is defined to be Conv(Q). On the other hand, a Weil divisor W on a

compactification of V corresponds to a piecewise-linear function ϕW on V trop, hence to

a polytope ∆W := {ϕW ≤ 1} in V trop. ∆∨W ⊂ U trop is then defined to be the Newton

polytope of a generic section of O(W ), and this agrees with the polar polytope

∆◦W := {q ∈ U trop|〈q, v〉 ≥ −1 for all v ∈ ∆W}

if W is effective. Note that the theta functions corresponding to integer points in ∆∨W

form a canonical basis of global sections for O(W ). This relationship was previously
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examined in [GHK] for W strictly effective (i.e., for ϕW ≥ 0, or for ∆∨W containing the

origin in its interior).

Other properties of polytopes from the toric situation now easily generalize. For

example, we find exactly as in the toric situation that the number of lattice points on

edges of ∆∨W is related to certain intersection numbers of W with boundary divisors

(see Proposition 3.3.16).

In §3.3.2 we note that the notion of dual cones also generalizes from toric

varieties in a very straightforeward way: the dual to a cone σ ⊂ V trop is the cone

σ∨ := {q ∈ U trop|〈q, v〉 ≥ 0 for all v ∈ V trop(Z)}. If σ∨ is two-dimensional, then Spec

of the ring generated by the ϑq’s with q ∈ σ∨ is an affine open subset of a compactifi-

cation of V (see Corollary 3.3.21). This is analogous to the usual construction of toric

varieties from fans, as seen in [Ful93].

In §3.3.3 we introduce the Minkowski sums mentioned above in §1.0.1. We prove

Theorem 1.0.3, along with a closely related tropical multiplication formula along the

way:

Theorem 1.0.6 (3.3.25). Assume we are not in one of the Ik (k 6= 0) cases of §2.3.4.1.

Let q1, . . . , qs ∈ U trop(Z) be cyclically ordered, and let +i denote addition on the com-

plement of the cone σi bounded by qi−1 and qi. Suppose
(∏k

i=1 ϑqi

)trop

(u) < 0 for all

u ∈ σi. Then (
k∏
i=1

ϑqi

)trop
∣∣∣∣∣∣
σi

= ϑtrop
q1+i...+iqn

∣∣
σi
.
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Consequently, if
(∏k

i=1 ϑqi

)trop

≤ 0 everywhere and is 0 along at most a single ray,

then (
k∏
i=1

ϑqi

)trop

=

(
n∑
i=1

ϑq1+i...+iqn

)trop

.

The strategy of the proof is to apply §2.2.4.2’s local coordinate description of

the piecewise-linear functions βq1,...,qs to the descriptions of tropical theta functions in

terms of bending parameters given in §3.2.6.1.

Integral Formulas: In §3.4, we consider integrals of the form

Trq(f) :=

∫
γ

fϑ−1
q Ω,

where γ is a certain canonical homology class in U defined in [GHK] (the class of a

conjectural SYZ fiber), and Ω is a holomorphic volume form on U with simple poles

along D, normalized so that
∫
γ

Ω = 1. The Tr0 case was examined in [GHK], where

they showed that Tr0(ϑr) = δ0,r. It was suggested by V.V. Fock, based on examples

he had computed, that one more generally has Trq(ϑr) : δq,r. S. Keel explained this

for some cases, but found that it fails in general. In §3.4 I give the following general

collection of conditions in which this relationship does hold:

Theorem 1.0.7. Let f =
∑

q cqϑq be a function on V . Suppose that at least one of

the following holds:

• r is not in the convex hull of any point q ∈ Newt(f) ∩ U trop(Z), except possibly

q = r. In particular, this includes cases where r is a vertex of Newt(f), as well

as cases where r is in the complement of Newt(f).
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• r ∈ U trop(Z) is in the cluster complex (i.e., r = 0 or 〈r, v〉 > 0 for some v).

Then cr = Trr(f). In particular, if every point of Newt(f) ∩ U trop(Z) which is not a

vertex is in the cluster complex, then

f =
∑

r∈Utrop(Z)

Trr(f)ϑr. (1.1)

The proof for the first condition is based on the residue theorem and the rela-

tionship between convex hulls and the zeroes and poles of theta functions. The proof

for the second condition follows from reducing to the toric case.

We think of Equation 3.7 as a generalization of the formula for Fourier series

expansions. Indeed, in the case that V is a toric variety, applying this theorem to

monomials and restricting to the orbits of the torus action recovers the usual formula

for (finite) Fourier expansions.
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Chapter 2

Classification of Rank 2 Cluster Varieties

2.1 Cluster Varieties as Blowups of Toric Varieties

In [FG09], Fock and Goncharov construct spaces called cluster varieties by

gluing together algebraic tori via certain birational transformations called mutations.

[GHK13a] interprets these mutations from the viewpoint of birational geometry, and

thereby relates the log Calabi-Yau surfaces of [GHK11] to cluster varieties. This section

will summarize some of the main ideas from [GHK13a].

2.1.1 Defining Cluster Varieties

The following construction is due to Fock and Goncharov [FG09].

Definition 2.1.1. A seed is a collection of data

S = (N, I, E := {ei}i∈I , F, 〈·, ·〉, {di}i∈I),

where N is a finitely generated free Abelian group, I is a finite set, E is a basis of N

indexed by I, F is a subset of I, 〈·, ·〉 is a skew-symmetric Q-valued bilinear form, and

the di’s are positive rational numbers called multipliers. We call ei a frozen vector if

i ∈ F . The rank of a seed or of a cluster variety will mean the rank of 〈·, ·〉.

We define another bilinear form on N by

(ei, ej) := εij := dj〈ei, ej〉,
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and we require that εij ∈ Z for all1 i, j ∈ I. Let M = N∗. Define

p∗ : N →M, v 7→ (v, ·).

Let K = ker(p∗), and N = im(p∗) ⊆ M . Note that K = ker [v 7→ 〈v, ·〉]. For each

i ∈ I, define d′i (the modified multipliers) by saying that p∗(ei) is d′i times a primitive

vector in M .

Remark 2.1.2. Given only the matrix (ei, ej) and the set F , we can recover the rest

of the data, up to a rescaling of 〈·, ·〉 and a corresponding rescaling of the di’s. This

rescaling does not affect the constructions below, and it is common take the scaling out

of the picture by assuming that the di’s are relatively prime integers (although we do

not make this assumption). Also, notice that 〈·, ·〉 and {d′i} together determine {di},

so when describing a seed we may at times give {d′i} instead of {di}.

Given a seed S as above and a choice of non-frozen vector ej ∈ E, we can use

a mutation to define a new seed µj(S) := (N, I, E ′ = {e′i}i∈I , F, 〈·, ·〉, {di}), where the

(e′i)’s are defined by

e′i = µj(ei) :=


ei + εijej if εij > 0
−ei if i = j
ei otherwise.

(2.1)

Mutation with respect to frozen vectors is not allowed.

1The construction of cluster varieties does not depend on the values of 〈ei, ej〉 or εij for i, j ∈ F ,
and so it is common to not include these coefficients in the data. When they are included in the data,
as in [FG09] and [GHK13a], they are not typically requried to be integers. However, as [GHK13a]
points out, if these are not integers, then the image of p∗ is not contained in M . [GHK13a] takes a
slightly different fix to this (in which the εij with i, j ∈ F are again irrelevant), but it is essentially
equivalent to our fix if we dropped the requirement that 〈ei, ej〉 = −〈ej , ei〉 when i, j ∈ F .
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Given a lattice L and some v ∈ L∗, we will denote by zv the corresponding mono-

mial on TL := L⊗ k∗ = Spec k[L∗] (or more precisely, the max-Spec of k[L∗]). Corre-

sponding to a seed S, we can define a so-called seed X-torusXS := TM = Speck[N ], and

a seed A-torus AS := TN = Speck[M ]. We define cluster monomials Xi := zei ∈ k[N ]

and Ai := ze
∗
i ∈ k[M ], where {e∗i }i∈I is the dual basis to E.

Remark 2.1.3. We are departing somewhat from a common convention. In place of

M , other authors often use the superlattice (M)◦ ⊂M ⊗Q spanned over Z by vectors

fi := d−1
i e∗i . They then take Ai := (zfi) ∈ k[M◦]. It seems to this author that this

significantly complicates the exposition and the formulas that follow, with little benefit,

and so we do not follow this convention.

For any j ∈ I, we have a birational morphism µX
j : XS → Xµj(S) (called a cluster

X-mutation) defined by

(µX
j )∗X ′i = Xi

(
1 +X

sign(−εij)
j

)−εij
for i 6= j; (µX

j )∗X ′j = X−1
j .

Similarly, we can define a cluster A-mutation µA
j : AS → Aµj(S),

Aj(µ
A
j )∗A′j =

∏
i:εji>0

A
εji
i +

∏
i:εji<0

A
−εji
i ; (µA

j )∗A′i = Ai for i 6= j.

Now, the cluster X-variety X is defined by using compositions of X-mutations to

glue XS′ to XS for every seed S ′ which is related to S by some sequence of mutations.

Similarly for the cluster A-variety A, with A-tori and A-mutations. The cluster algebra

is the subalgebra of k[M ] generated by the the cluster variables Ai of every seed that

we can get to by some sequence of mutations. In this context, the well-known Laurent
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phenomenon simply says2 that all the cluster variables are regular functions on A. The

ring of all global regular functions on A is called the upper cluster algebra.

On the other hand, the Xi’s do not always extend to global functions on X.

When a monomial on a seed torus (i.e., a monomial in the Xi’s for a fixed seed) does

extend to a global function on X, we call it a global monomial, as in [GHK13a].

2.1.1.1 Quivers and Seeds

For future reference, we mention a standard way to represent the data of a seed

with the data of a (decorated) quiver. Each seed vector ei corresponds to a vertex vi of

the quiver. The number of arrows from vi to vj is equal to 〈ei, ej〉, with a negative sign

meaning that the arrows actually go from vj to vi. Each vertex vi is decorated with

the number di. Furthermore, the vertices corresponding to frozen vectors are boxed.

Observe that all the data of the seed can be recovered from the quiver.

Now, a seed is called acyclic if the corresponding quiver contains no directed

paths that do not pass through any frozen (boxed) vertices. A cluster variety is called

acyclic if any of the corresponding seeds are acyclic. It is easy to see that a seed S

is acyclic if and only if there is some closed half-plane in N which contains p∗(ei) for

every i ∈ I \ F .

2[GHK13a] uses this observation to give a geometric proof of the Laurent phenomenon
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2.1.2 The Geometric Interpretation

As in [GHK13a], for a lattice L with dual L∗ and with u ∈ L, ψ ∈ L∗, define

mu,ψ,L : TL 99K TL

m∗u,ψ,L(zϕ) = zϕ(1 + zψ)ϕ(u) for ϕ ∈ L∗.

One can check that the mutations above satisfy

(µX
j )∗ = m∗−(·,ej),ej ,M : zv 7→ zv(1 + zej)−(v,ej) (2.2)

(µA
j )∗ = m∗−ej ,(ej ,·),N : zγ 7→ zγ(1 + z(ej ,·))−γ(ej).

The following Lemma from [GHK13a] is what leads to the nice geometric inter-

pretations of mutations and cluster varieties.

Lemma 2.1.4 ([GHK]). Suppose that u is primitive in a lattice L. Let Σ be a fan in L

with rays corresponding to u and −u. Recall that the toric variety TV (Σ) admits a P1

fibration π with Du and D−u as sections, corresponding to the projection L→ L/Z〈u〉.

The mutation µu,ψ,L is the birational map on TL ⊂ TV (Σ) coming from blowing

up the “hypertorus”

H− := {1 + zψ = 0} ∩D−u

and then contracting the proper transforms of the fibers F of π which intersect this

hypertorus. Furthermore, µX
j (and under certain conditions, µA

j ) preserve the centers

of the blowups corresponding to µX
i (and, respectively, µA

i ) for each i 6= j.
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Figure 2.1: A mutation involves blowing up a hyportorus H− in D−u (left arrow) and

then contracting the proper transform F̃ of the fibers F which hit H− (right arrow),

down to a hypertorus H+ in Du. Ẽ denotes the exceptional divisor, with E being its
image after the contraction of F̃ . The locus p = Ẽ ∩ F̃ has codimension 2 and does
not appear in the cluster variety.

Thus, a cluster X-mutation (µX
j )∗ corresponds to blowing up {Xj = −1}∩D(·,ej),

followed by blowing down some fibers of a certain P1 fibration, and repeating d′j times

(since (ej, ·) is d′j times a primitive vector). The new seed torus is only different from

the old one in that it is missing the blown-down fiber of the initial P1 fibration, but has

gained the exceptional divisor from the final blowup (except for the lower-dimensional

set of points where this exceptional divisor intersects a blown-down fiber, represented

by p in Figure 2.1).

Since the centers of the blowups corresponding to the other mutations have not

changed, this shows that the cluster X-variety can be constructed (up to codimension

2) as follows: For any seed S, take a fan in M with rays generated by ±(·, ei) for

each i, and consider the corresponding toric variety. For each i ∈ I \ F , blow up the
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hypertorus {Xi = −1} ∩D(·,ei) d
′
i times, and then remove the first (d′i− 1) exceptional

divisors. The cluster X variety is then the complement of the proper transform of the

toric boundary.

Remark 2.1.5. In this construction of X, the centers for the hypertori we blow up may

intersect if (·, ei) = (·, ej) for some i 6= j, so some care must be taken regarding the

ordering of the blowups. Fortunately, this issue only matters in codimension at least

2. See [GHK13a] for more details.

2.1.3 The Cluster Exact Sequence

Observe that for each seed there is an exact sequence

0→ K → N
p∗→M →M/p∗(N)→ 0.

This induces an exact sequence

1→ H′A → AS
p→ XS → HX → 1,

where H′A := Hom(M/p∗(N),k∗), and HX := Hom(K, k∗) = TK∗ .

As observed in [FG09], the above exact sequence commutes with mutations.3

We thus obtain the exact sequence

1→ H′A → A
p→ X

λ→ HX → 1. (2.3)

Let U := p(A) ⊂ X. The sequence 1 → H′A → A → U → 1 should be viewed

as a generalization of the construction of toric varieties as quotients, with U being the

3This is one thing that does become easier to see with the conventions mentioned in Remark 2.1.3.
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generalization of the toric variety.4 In fact, Section 4 of [GHK13a] shows that the ring

of global sections of A is (under certain conditions) the Cox ring of U.

§5 of [GHK13a] shows that Looijenga interiors (i.e., log Calabi-Yau surfaces),

as defined in §1.0.2, are exactly the surfaces (up to codimension 2 and contractible

complete subvarieties) which arise as fibers of λ for rank 2 cluster varieties. We will

explain this relationship now.

2.1.4 Looijenga Interiors

Let U be a Looijenga interior. Recall that U admits a compactification Y with

boundary D := Y \U , and we can choose this compactification to be one which admits

a toric model π : (Y,D) → (Y ,D). Let N be the cocharacter lattice of Y (this will

actually correspond to the saturation in M of what we called N before). Choose an

orientation on N and let (· ∧ ·) : N
2 → Z denote the corresponding standard wedge

form. Take a set E := {e1, . . . , em} ⊂ N of vectors generating N as a Z-module,

and a set F ⊂ I := {1, . . . ,m}, such that if {eik}k=1,...,s are the vectors on a ray ρ

corresponding to some boundary divisor Dρ ⊂ D, then
∑

ik /∈F |eik | is the number of

non-toric blowups taken on Dρ by π (recall that the index |v| of a vector v is the

positive integer such that v is |v| times a primitive vector).

Now, let S be the seed with N freely generated by a set E = {e1, . . . , em},

〈ei, ej〉 := ei ∧ ej, I and F as above, and d′i := |ei|. Recall from Remark 2.1.2 that

4This sequence actually generalizes the construction for toric varieties without boundary (i.e., just
algebraic tori). However, one may allow for boundary components by allowing compactifications of A
and U.
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this data determines {di}. Using S to construct A and X, the interpretation of X-

mutations from §2.1.2 reveals that the fibers of λ are, up to codimension 2 and a finite

collection of interior (−2)-curves, deformation equivalent to U—the deformations just

correspond to different choices of which points are blown up on each Di. We note

that these changes in codimension 2 and the removal of the complete subvarieties are

unimportant to us, since these things do not affect global sections.

Example 2.1.6. Consider the case where Y is a cubic surface, obtained by blowing

up 2 points on each boundary divisor of (Y ∼= P2, D = D1 +D2 +D3). We can take

E = {(1, 0), (1, 0), (0, 1), (0, 1), (−1,−1), (−1,−1)},

with each di = d′i = 1 and F empty. Then the fibers of X correspond to the different

possible choices of blowup points on the Di’s, up to automorphism. The fiber U is very

special, having four (−2)-curves. If we instead take E = {(1, 0), (0, 1), (−1,−1)} with

〈·, ·〉 given by

 0 1 −1
−1 0 1
1 −1 0

, and each di = d′i = 2, then the fibers of the resulting

X include only the surfaces constructed by blowing up the same point twice on each

Di and then removing the three resulting (−2)-curves, up to automorphism. U is the

fiber where the blowup points are colinear and so there is one remaining (−2)-curve.

The deformation type of the fibers of X has only changed by the removal of

certain (−2)-curves. Thus, the deformation type of the ring of global sections of the

fibers has not changed!

The above example demonstrates that we can often change the number of vec-
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tors in a seed without changing the deformation type of the affinizations.5 More

precisely, for a seed {N = Z〈E〉, I, E = {e1, . . . , em}, F, 〈·, ·〉, {di}}, and a collec-

tion of partitions d′i = d′i,1 + . . . + d′i,bi , d
′
i,j ∈ Z≥0, we can define a new seed S ′

as follows: Let E ′ : {ei,j}, i = 1, . . . ,m, j = 1, . . . , bi, and N ′ := Z〈E ′〉. Define

〈ei1,j1 , ei2,j2〉′ := 〈ei1 , ei2〉. We say the pair (i, j) ∈ F ′ if i ∈ F . Finally, d′i,j is as in the

partitions, and this determines {di,j}. The corresponding space X′ then contains X as a

subfamily (up to codimension 2 and the removal of some contractible complete subvari-

eties), and the affinizations of the fibers of the two spaces are in the same deformation

class.

Remark 2.1.7. We actually have more freedom with the frozen basis vectors, because we

can change their multipliers without affecting the cluster varieties at all. Furthermore,

we can actually remove frozen basis vectors without affecting the deformation type of

the affinizations of the fibers, so long as this removal does not change p∗(Z〈E〉).

Definition 2.1.8. For a seed S, if i 6= j implies (ei, ·) 6= (ej, ·), we call S minimal

(this means that each d′i, i /∈ F , is the total number of non-toric blowups taken on the

divisor corresponding to ei). On the other hand, if each d′i = 1, we will call S maximal.

S1 and S2 will be called equivalent if the affinizations of the fibers of the corresponding

X-varieties X1 and X2 are of the same deformation type.

Note that every seed S is canonically equivalent to a minimal seed and to a

maximal seed (up to changing the skew form and multipliers for frozen vectors).

5The affinization of a scheme is defined to be Spec of its ring of global sections.
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Example 2.1.9. The first seed for the cubic surface in Example 2.1.6 is maximal,

while the second seed is minimal.

2.1.4.1 The Canonical Intersection Form

For S a rank 2 seed with each d′i = 1, [GHK13a] describes a canonical way

to identify K with D⊥ := {C ∈ A1(Y,Z)|C · Di = 0 ∀ i}, thus inducing a canonical

symmetric bilinear form on K. This identification of K with D⊥ is as follows: an

element v of K corresponds to a relation of the form
∑
aiei = 0. Standard toric

geometry says that this determines a unique curve class Cv in π∗[A1(Ȳ )] such that

Cv ·Di =
∑
aj for each i, where the sum is over all j such that D(ej ,·) = Di. So we can

canonically define an isomorphism ι : K ∼= D⊥ by

v 7→ Cv −
∑
i

aiEi.

Finally, for v1, v2 ∈ K, define Q(v1, v2) = ι(v1) · ι(v2). We will see in §2.3 that

D⊥ together with this intersection pairing tells us quite a bit about the deformation

type of U . In particular, [GHK13a] tells us that U is positive if and only if Q is negative

definite.

Recall that varying the fiber of X corresponds to changing the choices of non-

toric blowup points on D. For some choices of blowup points, certain classes C in D⊥

may be represented by effective curves (e.g., this happens when we blowup the points

where a representative of C intersects the boundary, with the number of blowups being

at least the intersection multiplicity). Let D⊥Eff ⊆ D⊥ be the sublattice generated by

the curve classes which are represented by an effective curve on some fiber.
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Example 2.1.10. For the seed from Example 2.1.6, K is generated by {e2 − e1, e4 −

e3, e6 − e5, e1 + e3 + e5}. The corresponding curves in D⊥ are {E1 −E2, E3 −E4, E5 −

E6, L−E1−E3−E5}, where Ei is the exceptional divisor of the blowup corresponding

to ei, and L is a generic line in Y ∼= P2. Using Ei ·Ej = −δij, L ·L = 1, and L ·Ei = 0

for each i, one easily checks that this lattice has type D4. On the special fiber U, these

four curve classes are effective, so D⊥Eff = D⊥.

2.1.5 Tropicalizations of Cluster Varieties

[FG09] describes tropicalizations Atrop and Xtrop of the spaces A and X, respec-

tively. Given a seed S, Atrop can be canonically identified as an integral piecewise-linear

manifold with NR, and the integer points Atrop(Z) of the tropicalization are identified

withN . For a different seed µj(S), the identification is related by the integral piecewise-

linear function µj : NR → NR, where we use the overline to indicate that ej is mapped

by the same piecewise-linear function as the other vectors, rather than getting a special

treatment. Similarly for Xtrop and Xtrop(Z) using MR, M , and the dual seed mutations.

Our interest in this paper is primarily with the fibers U of λ in the cases where

U is two-dimensional, so we will spend the next section analyzing U trop. This may be

canonically identified with p∗(Atrop) ⊂ Xtrop. However, we will study U trop primarily

from the perspective of [GHK11], where it is seen to have a canonical integral linear

structure which is closely related to the geometry of the compactifications (Y,D). We

will briefly relate this to the cluster variety perspective in §3.1.5.
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2.1.6 Dual Canonical Bases

The Fock-Goncharov dual basis conjectures from [FG09] predict that the points

of Atrop(Z) parameterize a basis of global functions on X, and similarly, the points of

Xtrop should parametrize global functions on A.6 [GHK13a] uses the above geometric

interpretations of X and A to show that the conjecture as stated in [FG09] cannot hold

in general because X may have too few global functions, and Γ(A,O)A) may fail to

be finitely generated. Still, [GHKK] proves a formal version of the Fock-Goncharov

conjecture and examines the extent to which the formal version can be used to obtain

the original prediction from [FG09]. This involves understanding functions which are

“tropical” in the sense of our §3.2.7.

The construction in [GHK11] proves an analogue of the Fock-Goncharov con-

jecture relating the points of U trop(Z) to canonical theta functions on a family V mirror

to (Y,D). In general, this mirror is only formally defined, but if U is positive, it can

be extended to an affine variety. Furthermore, this affine variety has (the affiniza-

tions of) deformations of U as fibers, so one may view this as saying that points in

p(Atrop(Z)) = U trop(Z) parametrize functions on fibers of X, or in the other direc-

tion, points of U trop(Z) ⊂ Xtrop(Z) parametrize functions on the quotient p(A). Thus,

this construction is a simplified version of the situation from the full Fock-Goncharov

conjecture.

Conjectures 4.1, 4.2, and 4.3 of [FG09] predict not only the existence of the dual

bases, but also several properties which they should satisfy. Much of this paper will

6If (·, ·) 6= 〈·, ·〉, then we should actually use the Langland’s dual spaces X∨ and A∨, respectively.
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deal with proving analogues of these conjectures for two-dimensional U trop and U . We

hope that future work will generalize the methods here to understand the full, higher

dimensional conjectures.

2.2 The Tropicalization of U

This section examines U trop with its integral linear structure defined in [GHK11].

U trop is a natural generalization of the cocharacter space NR corresponding to a toric

variety, and the relationship between U trop and the mirror is a natural generalization

of the character space MR.

2.2.1 Some Generalities on Integral Linear Stuctures

A manifold B is said to be (oriented) integral linear if it admits charts to Rn

which have transition maps in SLn(Z). We allow B to have a set O of singular points of

codimension at least 2, meaning that these integral linear charts only cover B′ := B\O.

Our space of interest, B = U trop, will be homeomorphic to R2 and will typically have

a singular point at 0.

B′ admits a flat affine connection, defined using the charts to pull back the

standard flat connection on Rn. Furthermore, pulling back along these charts give a

local system Λ of integral tangent vectors on B′, along with a dual local system Λ∗ in

the cotangent bundle. Note that the monodromy µ of Λ is contained in SLn(Z), so the

wedge form on any exterior product Λ•TB commutes with parallel transport.

Call σ ⊂ B′ affine if it is connected and contained in the domain of some

chart for the integral linear structure (e.g., σ might be identified with a cone in Rn).
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Note that a chart with σ in its domain induces an embedding of σ into TpB
′ for

any p ∈ σ, commuting with parallel transport in σ. When we talk about addition,

scalar multiplication, or wedge products of points on σ, we will mean the operations

induced by this identification with the tangent space, if well-defined. Because of the

monodromy, these operations do depend on the choice of an affine σ, but not on the

specific choice of map. B′ also has designated integral points which come from using

the charts to pull back Zn ⊂ Rn, or alternatively, from lifting Λ to B′ via the above

identifications. These points are defined globally, independent of choices of charts.

By an integral linear map of integral linear manifolds, we mean a map which is

linear in each chart and which maps integral points to integral points.

2.2.1.1 Integral Linear Functions

Let P gp be a finite-rank lattice and P gp
R := P gp ⊗Z R. We say an function from

Rn to P gp
R is integral linear if it is linear as a map of R-vector spaces and has integral

slope, meaning it takes integral points to P gp. On an integral linear manifold B, we

can define a sheaf LP gp of integral linear functions on B′ by saying that a function

f : V → R is integral linear if and only if, for each coordinate chart ψU : U → Rn,

f |V ∩U = fU ◦ψU |V ∩U for some function fU which is integral linear on Rn. We similarly

define a sheaf PLP gp of integral piecewise-linear functions. These definitions extend to

all of B by requiring that the functions be continuous at the singular points.

We note that to specify an integral linear structure on an integral piecewise-

linear manifold (i.e., a manifold where transition functions are piecewise-linear), it

suffices to identify which piecewise-linear functions are actually linear. These func-
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tions can then be used to construct charts. It therefore also suffices to specify which

piecewise-straight lines are straight, since (piecewise-)straight lines form the fibers of

(piecewise-)linear functions. We will use this to define other linear structures on U trop

in §3.

2.2.2 Constructing U trop

Notation 2.2.1. Given a toric model (Y,D) → (Y ,D), let N be the cocharacter

lattice corresponding to (Y ,D), and let Σ ⊂ NR be the corresponding fan. Σ has

cyclically ordered rays ρi, i = 1, . . . , n, with primitive generators vi, corresponding to

boundary divisors Di ⊂ D and Di ⊂ D. We choose an orientation7 of NR so that

ρi+1 is counterclockwise of ρi. Let σu,v denote the closed cone bounded by two vectors

u, v, with u being the clockwise-most boundary ray. In particular, if u and v lie on

the same ray, we define σu,v to be just that ray. Denote σi,i+1 := σvi,vi+1
. We may use

variations of this notation, such as vρ for a primitive generator of some arbitrary ray ρ

with rational slope, but these variations should be clear from context.

We now use (Y,D) to define an integral linear manifold U trop. As a topoogical

manifold, U trop is the same as NR, and as smooth manifolds, U trop
0 := U trop \ {0} is

the same as NR \ {0}. Note that an integral Σ-piecewise-linear (i.e., bending only on

rays of Σ) function ϕ on U trop can be identified with a Weil divisor of Y via Wϕ :=

a1D1 + . . .+anDn, where ai = ϕ(vi) ∈ Z. We define the integer linear structure of U trop

7Choosing a cyclic ordering for the components of D (assuming D has at least three components)
is equivalent to choosing an orientation for NR or U trop. It is also equivalent to fixing the sign for the
holomorphic volume form Ω on U , which we will use in §3.4. We assume throughout the paper that
such a choice has been fixed.
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by saying that a function ϕ on the interior of σi−1,i∪σi,i+1
8 is linear if it is Σ-piecewise

linear and Wϕ ·Di = 0. This last condition is equivalent to

ai−1 +D2
i ai + ai+1 = 0. (2.4)

The set U trop(Z) is equal to the set N as a subset of U trop.

Remark 2.2.2. This construction of U trop naturally generalizes to higher dimensions,

but the two-dimensional case is special in that the linear structure on U trop is canoni-

cally determined by (Y,D) (it does not depend on the choice of toric model). This is

evident from the following atlas for U trop (from [GHK11]): the chart on σi−1,i ∪ σi,i+1

takes vi−1 to (1, 0), vi to (0, 1), and vi+1 to (−1,−D2
i ), and is linear in between.

Furthermore, toric blowups and blowdowns do not affect the integral linear

structure, so as the notation suggests, U trop and U trop(Z) depend only on the interior

U .

Example 2.2.3. If (Y,D) is toric, then U trop is just NR with its usual integral linear

structure. This follows from the standard fact from toric geometry that
∑

i(C·Di)vi = 0

for any curve class C. Taking non-toric blowups changes the intersection numbers,

resulting in a non-trivial monodromy about the origin.

Remark 2.2.4. Recall from standard toric geometry that any primitive vector v ∈ N

corresponds to a prime divisor Dv supported on the boundary of some toric blowup of

8We assume here that there are more than 3 rays in Σ, so that σi−1,i ∪ σi,i+1 is not all of NR.
This assumption can always be achieved by taking toric blowups of (Y,D). Alternatively, it is easy to
avoid this assumption, but the notation and exposition becomes more complicated. We will therefore
continue to implicitely assume that there are enough rays for whatever we are trying to do, without
further comment.
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(Y ,D), and a general vector kv with k ∈ Z≥0 and v primitive corresponds to the divisor

kDv. Two divisors on different toric blowups are identified if they determine the same

discrete valuation on the funciton field of Y (equivalently, if there is some common toric

blowup on which their proper transforms are the same). Since taking proper transforms

under the toric model gives a bijection between boundary components of (Y,D) and

boundary components of (Y ,D) (and similarly for the boundary components of toric

blowups), we see that points of U trop
0 (Z) correspond to the divisorial discrete valuations

of (Y,D) along which Ω has a pole. 0 of course corresponds to the trivial valuation.

Here, Ω is the canonical (up to scaling) holomorphic volume form on U with a simple

pole along D, and divisorial means the valuation corresponds to a divisor on some toric

blowup of (Y,D).

2.2.3 The Developing Map

We now describe a tool from [GHK11] that we use for doing explicit computa-

tions on U trop. Consider the universal cover ξ : Ũ trop
0 → U trop

0 . Note that Ũ trop
0 also

has a canonical integer linear structure pulled back from U trop
0 . The integer points are

Ũ trop
0 (Z) := ξ−1[U trop

0 (Z)]. Furthermore, a ray ρ ∈ U trop
0 pulls back to a family of rays

ρj, j ∈ Z, projecting to ρ (we arbitrarily choose a ray in Ũ trop
0 to be ρ0 and then assign

the other indices so that they increase as we go counterclockwise). Note that wedge

products on Ũ trop
0 are well-defined, and sums of points are well-defined whenever the

points share a convex cone.

Suppose that v ∈ ρ0 and v′ ∈ ρ′0 are primitive vectors in Ũ trop
0 spanning the

integer points of σv,v′ . Then there is a unique linear map δρ,ρ′ : Ũ trop
0 → R2 \ {0} such
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that δρ,ρ′(v) = (1, 0) and δρ,ρ′(v
′) = (0, 1). We call this the developing map with respect

to ρ and ρ′. We will often leave off the subscripts if they are not relavent, or we will

write δρ if only the image ρ of the first ray is relavent. δ is an integral linear immersion,

and δ(Ũ trop
0 (Z)) ⊆ Z2 \ {(0, 0)}.

Note that for any ray ρ ⊂ U trop
0 , we have that ξ−1(U trop

0 \ ρ) is a collection of

(not necessarily convex) open cones σ◦ρj ,ρj+1 bounded by ρj and ρj+1, and ξ|σ◦
ρj,ρj+1

is

an isomorphism onto U trop \ ρ. We will use δiρ to denote δρ restricted to σ◦ρi,ρi+1 . Thus,

for each i ∈ Z, δiρ ◦ ξ−1|Utrop\ρ is an integral linear chart. In particular, δiρ induces via

pullback a definition for addition and wedge products on U trop \ ρ, and the SL2(Z)-

invariance of these operations means that they do not depend on i.

Thus, wedge products are well-defined on the complement of any ray, and sim-

ilarly on any subcone. Addition is well-defined on any convex cone.9 Positive scalar

multiplication is of course well-defined globally. If we write u ∧ v without specifying

on which affine open set ∧ is defined, then we mean the form defined on σu,v.

Example 2.2.5. Consider the cubic surface (as in Example 2.1.6) constructed by

taking two non-toric blowups on each of the three boundary divisors D1, D2, and D3

of P2. The intersection matrix H := (Di ·Dj) is

H =

−1 1 1
1 −1 1
1 1 −1


9We will sometimes add vectors in a cone which is not convex. This is fine if we view the sum as

living in the tangent spaces of points in the cone. In §3.3.3, we talk about a set of sums of points
in cones which may not be convex, in which case we mean the set of sums which are well-defined in
U trop.
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Figure 2.2: Cubic surface developing map. We let ρji denote δjρD1
,ρD2

(ρDi).

and Equation 2.4 (or the construction from charts) implies that δ0
ρD1

,ρD2
(v3) = (−1, 1),

and δj(v) = (−1)jδ0(v). See Figure 2.2.

Example 2.2.6. Consider (M0,5, D = D1 +. . .+D5) constructed from the toric surface

(P2, D = D1 + D2 + D4) by making toric blowups at D1 ∩ D4 and D2 ∩ D4, as well

as one non-toric blowup on each of D1 and D2. We then have five boundary compo-

nents, each with self-intersection −1. A developing map takes the rays of the fan to

(1, 0), (0, 1), (−1, 1), (−1, 0), and (0,−1), respectively, and then restarts with (1,−1)

and (1, 0). See Figure 2.3.

2.2.3.1 Monodromy About the Origin

We now consider what happens when we parallel transport a tangent vector v

in TpU
trop counterclockwise around the origin. We use the embedding of a cone in the
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Figure 2.3: M0,5 developing map, with ρji labelled for j = 0, 1.

tangent spaces of its points (which are all identified via parallel transport in the cone),

and we use the notation δi := δiρD1
,ρD2

.

Example 2.2.7. Suppose Y → Y consists of a single non-toric blowup on, say, D1.

Then δ0(v1) = δ1(v1) = (1, 0). However, δ0(v2) = (0, 1) while δ1(v2) = (1, 1). We can

view parallel transporting counterclockwise around the origin as parallel transporting

up one sheet on the developing map, and then the monodromy tells us how to write

the transported vector in terms of δ1(v1) and δ1(v2). Thus, the monodromy is

µ =

(
1 1
0 1

)−1

=

(
1 −1
0 1

)
.

Similarly, the monodromy is in general given by µ = (δ1(v1) δ1(v2))
−1

with

respect to the basis and developing map {δ0(v1) = (1, 0), δ0(v2) = (0, 1)}. We therefore

use µ−k to denote the map Ũ trop
0 → Ũ trop

0 which lifts vectors up k sheets. Note that
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the monodromy determines U trop as an integral linear manifold: U trop is the quotient

of Ũ trop
0 by this Z-action.

µ and µ−1 can always be factored into a product of unipotent matrices as follows:

choose a toric model in which ki non-toric blowups are taken on the divisor Dvi , for

v1, . . . , vs ∈ N cyclically ordered. Then we have the factorization

µ−1 = µ−ksvs · · ·µ
−k1
v1

, (2.5)

where µ−kivi
is given in an oriented unimodular basis (vi, v

′
i) by the matrix

(
1 ki
0 1

)
.

More generally, in a basis where vi = (a, b), the corresponding contribution to µ−1 is

µ−ki(a,b) :=

(
1− kiab kia

2

−kib2 1 + kiab

)
. (2.6)

Now µ can of course be expressed as µk1
v1
· · ·µksvs . Alternatively (following from

the fact that AµvA
−1 = µAv), the monodromy matrix is given by the product µ =

(µ′vs)
ks · · · (µ′v1

)k1 of matrices of the form

(µ′vi)
ki := µki(ai,bi)

=

(
1 + kiaibi −kia2

i

kib
2
i 1− kiaibi

)
, (2.7)

where (a1, b1) := v1, and for i > 1, (ai, bi) := (µ′vi−1
)ki−1 · · · (µ′v1

)k1vi. This can be inter-

preted by saying that before we can apply the monodromy contribution corresponding

to vi, we have to let the modifications we have made so far act on vi.

Example 2.2.8. In Example 2.2.5, we have δ1(v1) = (−1, 0) and δ1(v2) = (0,−1), so

we thus see that the monodromy for the cubic surface is − Id.
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Example 2.2.9. Similarly, for Example 2.2.6 we have δ1(v1) = (1,−1) and δ1(v2) =

(1, 0), so the monodromy is

µ =

(
1 1
−1 0

)−1

=

(
0 −1
1 1

)
with respect to the basis {δ0(v1) = (1, 0), δ0(v2) = (0, 1)}.

Note that U trop is uniquely determined (as an integral linear manifold, up to

isomorphism) by its monodromy, and that a factorization of the monodromy into unipo-

tent elements with cyclically ordered eigenrays as above corresponds to a toric model

for a Looijenga pair (and hence to a seed as in §2.1.4). By eigenray, we mean an

eigenline with a chosen direction.

2.2.3.2 Mutations and Monodromy

We now describe the monodromy of U trop directly in terms of seed data. Use

µi,S to indicate that we are mutating a seed S with respect to a vector ei. We consider

the induced map on N (as in §2.1.4), which we denote by µi,S. This is not hard to

describe—it is given by Equation 2.1, with the ei’s replaced by ei’s, and (·, ·) replaced

by the induced non-degenerate bilinear form on N . Assume that the ei’s are positively

ordered with respect to the orientation induced by 〈·, ·〉.

Now we observe that, in the notation of Equation 2.6, µ2
i,S = µ

−d′i
ei

. Thus, the

inverse monodromy µ−1 of U trop is µ−1 =
∏
µ2
i,S, where the product is taken over all

i, with the ei’s being ordered counterclockwise as we move from right to left in the

product. Note that the ei’s in this formula are not affected by the previous mutations!

34



Alternatively, by Equation 2.7, we have µ = µ−2
n,Sn ◦µ

−2
n−1,Sn−1 ◦ · · · ◦µ−2

1,S1 , where

S1 := S, and Sk := µ−2
k−1,Sn−1(Sk−1). That is, we apply the inverse mutation twice with

respect to one vector, then twice with respect to the next vector in the new seed, and

so on.

Now, using the above composition of mutations to compute the monodromy of

U trop, we can apply §2.3 to determine whether or not a cluster variety is positive: If

Tr(µ) > 2, then we are in a negative definite case. If µ is SL2(Z)-conjugate to a matrix

of the form

(
1 a
0 1

)
with a > 0, then we are in a strictly negative semi-definite case.

Otherwise (if Tr(µ) < 2 or if µ is SL2(Z)-conjugate to

(
1 a
0 1

)
with a ≤ 0), we are in

a positive case.

2.2.4 Convex Integral Piecewise-Linear Functions on U trop

If we choose a monoid P in our lattice P gp, we can define what it means for

a PLP gp function f to be convex along some ray ρ. Let σ+ and σ− denote disjoint

open convex cones in U trop with ρ contained in each of their boundaries. Let nρ be

the unique primitive element of Λ∗ which vanishes along the tangent space to ρ and is

positive on vectors pointing from ρ into σ+. We note that nρ may be viewed as ±vρ∧·,

with the sign being positive if σ+ is chosen to be counterclockwise of ρ.

Observe than any integral linear function f can be given on a cone σ by some

fσ ∈ Λ∗, using the local embedding of σ in its tangent spaces. Since the cotangent

spaces on either side of ρ can be identified via parallel transport, we can compute

fσ+ − fσ− = pρ,fnρ.
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Here, pρ,f ∈ P gp is called the bending parameter of f along ρ. Note that this is

independent of which side of ρ we call σ+ and which we call σ−. We say that f is

convex (resp. strictly convex) along ρ if pρ,f ∈ P (resp. P \ P×, where P× denotes

the invertible elements of P ). We note that these notions naturally generalize to all

integral linear manifolds.

For the rest of this section we will assume P gp = Z and P = Z≤0.

2.2.4.1 Piecewise Linear Functions in terms of Weil Divisors

Let ϕ be a rational piecewise linear function on U trop (that is, we are allowing

rational values at integral points). We will always assume that we have taken enough

toric blowups of (Y,D) so that Dv ⊂ D for every ρv along which ϕ bends. As in §2.2.2,

we define a rational Weil divisor

Wϕ :=
∑
i

ϕ(vi)Di.

Then it follows from Equation 2.4 that pi := Wϕ · Di is the bending parameter of ϕ

along ρi. We see immediately from the definitions that ϕ is linear along ρi if and only

if pi = 0.

Conversely, for any nonsingular compactification (Y,D) of U and any rational

Weil divisor W =
∑

iwiDi supported on D, there is a unique rational piecewise linear

function ϕW taking values wi on vi and bending only on the ρi’s. ϕW is integral if and

only if W is integral. The bending parameter at ρi is given by W ·Di. That is, if we

view W as a vector W = (w1, . . . , wn) in 〈D〉 (the lattice freely generated by the Di’s),
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then the bending parameters of ϕW are given by the vector

P = (p1, . . . , pn) = HW,

where H = (Di ·Dj) is the intersection matrix. So given a collection of bending

parameters pi, there is a unique rational piecewise-linear function on U trop with these

bending parameters if and only if H is invertible, and it is given by the Q-Weil divisor

W = H−1P . We will see in §2.2.4.2 that H being invertible is equivalent to Id−µ−1

being invertible.

Assume for now that H is invertible over Q. Let v ∈ U trop
0 (Z). We have v = pvv

′

for some non-negative integer pv and some primitive vector v′ on the ray ρv. Let βv

denote the unique rational piecewise linear function on U trop which bends only on

ρv with bending parameter −pv. Note that the sums of functions of this form are

exactly the convex rational piecewise linear functions on U trop with integral bending

parameters.

Let ψρv denote the unique convex integral piecewise linear function which bends

only on ρv with the smallest (in absolute value) possible nonzero bending parameter

bv (bv may have to be less than −1 to ensure that ψρv can be integral). The following

proposition illustrates the utility of this Weil divisor perspective for understanding

functions on U trop, and we will later relate this proposition to a certain symmetry

between U and its mirror (cf. Remark 3.2.15).

Proposition 2.2.10. Assume H is invertible over Q. For v, w ∈ U trop(Z), we have

βv(w) = βw(v), and ψρv(bww
′) = ψρw(bvv

′)
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Proof. Fix a compactification (Y,D = D1 + . . . + Dn), and view Dv = pvDv′ and

Dw = pwDw′ as vectors in 〈D1, . . . , Dn〉. Then Wβv = H−1Dv, and we have

βv(w) = DT
wH

−1Dv.

So the first part of the proposition follows from the fact that the intersection form is

symmetric. The second part then follows because ψρv = βbvv′ .

2.2.4.2 Piecewise Linear Functions in Local Coordinates

We now use developing maps to describe rational piecewise linear functions in

terms local coordinates of U trop. We use the notation vi = piv
′
i, for v′i ∈ U trop(Z)

primitive and −pi ∈ Z≤0 a bending parameter. βv1,...,vk (cyclically ordered) will denote

the space of piecewise linear functions with bending parameters −pi along the ray

generated by v′i ∈ U trop for each i (so −pi ≤ 0 for all i implies convexity). In fact, we

could easily extend what follows to include rational or even real pi’s (viewing vi with

pi < 0 as the formal data of the pair v′i, pi, rather than as an element of U trop).

Choose some ρ ∈ σvk,v1 , generated by vρ, and identify the complement of ρ with

its image under the developing map δ0
ρ. Suppose ϕ ∈ βv1,...,vk . On σvρ,v1 , ϕ is given by

ϕ(w) = u∧w for some u ∈ R2. Then on σv1,v2 , we see immediately from the definition

of a bending parameter that ϕ is given by ϕ(w) = (u − v1) ∧ w. By induction, on

σvi,vi+1
we have ϕ(w) = (u− v1 − . . .− vi)∧w. This description will be crucial for our

proofs of the Minkowski sum formulas in §3.3.3.

Let ϕ̃ be the lift of ϕ to Ũ trop
0 . For ϕ to be globally well-defined on U trop, we

must have ϕ̃(w) = ϕ̃(µ−1(w)) for all w (recalling that µ−1 just lifts w up a sheet). So
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for w ∈ σvρ,v1 , we must have

u ∧ w = (u− v1 − . . .− vk) ∧ µ−1(w)

= µ(u− v1 − . . .− vk) ∧ w,

and this suffices for all w. Since the wedge is non-degenerate, we can rearrange to find

that

(
Id−µ−1

)
u = v1 + . . .+ vk. (2.8)

So if Id−µ−1 is invertible over Q (respectively, Z), we see that any collection

of integral bending parameters determines a unique rational (respectively, integral)

piecewise linear function. One easily checks that

(Id−µ−1)−1 =
1

2− Tr(µ)
(Id−µ),

unless Tr(µ) = 2, in which case both sides are undefined.

The nullity of Id−µ−1 is equal to the dimension of βv1,...,vk , which is nonempty

exactly when −(v1 + . . . + vk) ∈ (Id−µ−1)R2 (or (Id−µ−1)Z2 if we restrict to inte-

gral functions). Comparing with our previous description of rational piecewise linear

functions, we see that Id−µ−1 must have the same nullity as the intersection matrix

H (assuming D has at least 2 components). In particular, H is invertible if and only

if Tr(µ) 6= 2. We will see in §2.3 that Tr(µ) only equals 2 in what we call the Ik cases

(which are the simplest cases) and in the cases where H is negative semi-definite (but

not definite).

Examples 2.2.11.
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• Considering the space of functions β0 shows that the nullity of Id−µ−1 is equal

to the dimension of the space of global linear functions on U trop.

• In the toric case, µ = Id, so we have a 2-dimensional space of linear functions.

βv1,...,vk is then nonempty if and only if v1 + . . .+ vk = 0.

• If the null space of µ − Id is non-trivial (equivaently, if H is degenerate), then

µ has some invariant direction (i.e., an eigenspace with eigenvalue 1). Such a µ

must, up to cojugation, have the form

(
1 a
0 1

)
.

• Consider the cubic surface described in 2.2.5, with δ0(v1) = (1, 0), δ0(v2) =

(0, 1), and δ0(v3) = (−1, 1). Let ϕ be the piecewise linear function with bending

parameter −2 along ρ3. That is, ϕ = β(−2,2). Recall µ = − Id. So

v0 = (Id−µ−1)−1

(
−2
2

)
=

(
−1
1

)
, (2.9)

meaning that ϕ|σ(1,0),(−1,1)
(u) = (−1, 1) ∧ u, and ϕ|σ(−1,1),(−1,0)

(u) = [(−1, 1) −

(−2, 2)] ∧ u = (1,−1) ∧ u. We see that Wϕ = D1 + D2, which does indeed have

the correct intersection numbers. We also note that ϕ = ψρ3 , since β(−1,1) is not

integral.

2.2.5 Lines and Polygons in U trop

Understanding lines and polygons in U trop is important when studying compact-

ifications of the mirror. This will be essential when we investigate the tropicalizations

of the theta functions in §3.2.
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2.2.5.1 Lines in U trop

By a “line” in U trop, we will mean a geodesic with respect to the canonical flat

connection on U trop
0 . That is:

Definitions 2.2.12. A parametrized line in U trop is a continuous map L : R → U trop
0

such that L′(t1) and L′(t2) are related by parallel transport along the image of L for

all t1, t2 ∈ R. A line is the data of the image L(R) and the vectors L′(t) ∈ TU trop
0 ,

t ∈ R, for some parametrized line L (equivalently, a line is a parametrized line up to a

choice of shift t 7→ t + c of the domain). We may abuse notation by letting L denote

the unparametrized line or its image.

The (signed) lattice distance of a (parametrized) line from the origin is defined

to be

dist(L, 0) := L(t) ∧ L′(t)

where t is any point in R, and the point L(t) is identified with a vector in its tangent

space. Note that d(L, 0) > 0 means L is going counterclockwise about the origin.

Now, for q ∈ U trop
0 and d ∈ R, we define Ldq to be the line which goes to infinity

parallel to q and has lattice distance d from the origin. By going to infinity parallel to

q we mean that for any open cone σ 3 q, there is some tσ ∈ R such that t > tσ implies

L(t) ∈ σ and L′(t) = q under parallel transport in σ.

We may similarly define coming from infinity parallel to q by replacing t > tσ

with t < tσ and replacing L′(t) = q with −L′(t) = q. We denote the directions in which

a line L goes to and comes from infinity by L(∞) and L(−∞), respectively.
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Note that the above definitions all make sense on Ũ trop
0 . We will at times refer

to lines in Ũ trop
0 using the same notation as for U trop.

Remark 2.2.13. In general, a line need not go to or come from infinity at all. In fact,

one characterization of U being positive is that every line in U trop both goes to and

comes from infinity, cf. §2.3.

Definition 2.2.14. We define L0
q to be the limit of Ldq as d approaches 0 from below.

In other words, it consists of the ray coming in from the direction Ld<0
q (−∞) hitting

0, as well as the ray leaving the origin in the direction q = Ld<0
q (∞). When we use

the term “line,” we will be excluding the d = 0 cases unless L0
q is invariant under the

monodromy.

We say that a line Lq wraps if it intersects every ray, except possibly ρq, at least

once. It wraps k times if it hits each ray at at least k times (except possibly for ρq,

which it might only hit k − 1 times).

We call the connected component of U trop \ L containing the origin the 0-side

of L, denoted Z(L). We say a line Ldq has 0 on the left if d > 0, and on the right if

d < 0. We will write Ld>0
q or Ld<0

q when we want to clarify that 0 is on the left or right

side, respectively, without having to specify d. Let Ld,0q ⊆ Ldq denote the boundary of

the 0-side. Note that Ld,0q = Ldq exactly when the line does not self-intersect.

Examples 2.2.15.

• If (Y,D) is toric, then U trop ∼= R2, and lines are just the usual notion of lines

with a chosen constant velocity.
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• If (Y,D) is the cubic surface introduced in Example 2.2.5, then for any ray

ρ ⊂ U trop, U trop \ ρ is isomorphic (as an integral linear manifold) to an open

half-plane. Any line will go to and come from infinity in the same direction—we

call such lines self-parallel. If we now make a non-toric blowup on some Dρq , then

in the new integral linear manifold, Ldq′ (d 6= 0) will self-intersect if q′ 6= q, but

will still be self-parallel if q′ = q. We will see in §3.2 that Ld<0
q′ self-intersecting

corresponds to the theta function ϑq′ having poles along every boundary divisor.

• See Figure 3.1 for illustrations of some possible lines.

2.2.5.2 Polygons in U trop

Definitions 2.2.16. • A (convex) polytope ∆ ⊂ U trop is the closure of a set home-

omorphic to an open k-ball for some k ≤ 2 such that the boundary is a finite

union of line segments and rays. We also consider a point to be a polytope. By

polygon, we will mean a 2-dimensional polytope.

• A polytope ∆ is convex if any line segment in U trop (including those which wrap

around the origin) with endpoints ∆ is entirely contained in ∆.

• A polytope is integral (resp. rational) if all of its vertices are integral (resp.

rational) points.

• A polygon is nonsingular if at each vertex of the form v = F1 ∩ F2 (Fi edges),

we have that primitive generators of F1 and F2 generate the lattice Λp of integral

tangent vectors at p.

We will be especially interested in polygons with 0 in their interiors.
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Lemma/Definition 2.2.17. Suppose that lines in U trop all go to and come from

infinity (i.e., U is “positive,” see §2.3). Also, let P gp = Z, and P = Z≤0. We

then have:

• A star-shaped (i.e., closed under multiplication by elements of [0, 1]) polygon is

a set ∆ϕ ⊂ U trop of the form ϕ ≥ −1 for some piecewise-linear function ϕ on

U trop.

• ∆ϕ is convex if and only if ϕ is convex. Equivalently, the polygon is convex if it

is the closure of the intersection of a finite number of 0-sides of lines in U trop,

or equivalently, if it is convex on some cone-neighborhood of each vertex in the

usual sense.

• ∆ϕ is bounded if and only if ϕ < 0 everywhere on U trop
0 .

2.2.6 The Tropicalization Determines the Charge

One natural question to ask is to what extent U trop determines U . We will see

in the next section that in many cases, U is uniquely determined up to deformation

by U trop. This is not always the case though: for example, there are two degree 8

Del Pezzo’s with an irreducible choice of anti-canonical divisor which have the same

U trop but are not deformation equivalent. This subsection shows that U trop does at

least determines the number of non-toric blowups, and this at least determines U up

to homeomorphism.

Definition 2.2.18. The charge10 of a Looijenga pair (Y,D) is the number of non-toric

10More generally, the charge of a log Calabi-Yau variety (Y,D = D1 + . . . + Dn) is given by
c(Y,D) := dim(Y ) + rank(Pic(Y ))− n.
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blowups in a toric model for some toric blowup of (Y,D).

Lemma 2.2.19. A Looijenga pair (Y,D = D1 + . . .+Dn) with n > 1 and intersection

matrix H has charge

c(Y,D) = 12− 3n− Tr(H) (2.10)

Proof. First note that (for n > 1) toric blowups increase n by 1, decrease Tr(H) by

3, and keep the charge constant, so Equation 2.10 is unaffected by toric blowups and

blowdowns. Similarly, non-toric blowups decrease Tr(H) by 1 and increase the charge

by 1, so the validity of the equation is also unaffected by non-toric blowups. Since

every Looijenga pair is related to a copy of the toric pair (P2, D) by some sequence of

toric blowups, toric blowdowns, and non-toric blowups, it now suffices to just check

this case. We have c = 0, n = 3 and Tr(H) = 3, so the equation holds.

An similar formula appears in [GHK]: c(Y,D) = 12− (n+K2).

Proposition 2.2.20. Suppose that (Y,D) and (Y ′, D′) are two Looijenga pairs with

the same tropicalization U trop. Then c(Y,D) = c(Y ′, D′).

Proof. Let ΣY and ΣY ′ be the corresponding fans in U trop. There exists some non-

singular common refinement Σ which is the fan for a toric blowup of both (Y,D) and

(Y ′, D′). The intersection matrices for these two toric blowups are the same, since each

can be determined from Σ, so the claim follows from Lemma 2.2.19.
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2.3 Classification

Here we give several equivalent classifications for the possible deformation

classes of Looijenga pairs. These classifications are based on the intersection matrix H

of D, the intersection form Q on D⊥Eff ⊂ D⊥ ∼= K (see §2.1.4.1), the monodromy µ of

U trop, the properties of lines in U trop, the global functions on U , the properties of the

quiver for a corresponding cluster structure, and various other properties. This may

be viewed as a classification of rank-2 cluster varieties up to the notion of equivalence

given in Definition 2.1.8. The classification is not totally new—for example, the cases

that we refer to as “no lines wrap” or “some lines wrap” are simply the finite-type or,

respectively, acyclic cases in the cluster language. However, we do offer several new

characterizations of these cases.

Throughout this section, D will be called minimal if it has no (−1)-components.

2.3.1 The Negative Definite Case

The following are equivalent, and have all appeared (along with some other

equivalent statements) in in some form in [GHK11], [GHK], or [GHK13a].

• The intersection matrix H = (Di ·Dj) is negative definite.

• Any developing map δ as in §2.2.3 embeds the universal cover Ũ trop
0 of U trop

0

into a strictly convex cone of R2

• The monodromy satisfies Tr(µ) > 2.

• All lines in U trop wrap infinitely many times around the origin, meaning that

they hit each ray infinitely many times.
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• The quadratic form Q is not negative semi-definite.

• U admits no non-constant global functions.

• D can be blown down to get a surface Y with a cusp singularity. If D is minimal,

D2
i ≤ −2 for all i, and D2

i ≤ −3 for some i.

See Example 1.9 of [GHK11] for the relationship between µ−1 and the cusp

singularity on Y . In fact, much of [GHK11] is devoted to deformations of cusp singu-

larities.

2.3.2 The Strictly Negative Semi-Definite Case

Once again, the following statements are all equivalent and can be found in

[GHK11] and [GHK] (or follow easily).

• The intersection matrix H is negative semi-definite but not negative definite.

• Any developing map δ for U trop
0 identifies the universal cover of U trop

0 with a

half-plane in R2.

• The monodromy µ is SL2(Z)-conjugate to a matrix of the form

(
1 a
0 1

)
, where

a > 0.

• Lines in U trop can be circles, or they can wrap infinitely many times around the

origin.

• If D is minimal, then D ∈ D⊥, meaning that either D2
i = −2 for all i, or D is

irreducible with D2 = 0.

• The quadratic form Q is negative semi-definite but not negative definite (since

Q(D) = 0).
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• (Y,D) is deformation equivalent to a Looijenga pair (Y ′, D′) which admits an

elliptic fibration having D′ as a fiber.

• dim Spec(Γ(Y,OY )) = 1.

As stated above, if D is minimal then it is either irreducible or consists of n > 1

(−2)-curves. The largest possible n here is 9. This follows from Lemma 2.2.19, which

says that the charge is c(Y,D) = 12−3n−Tr(H) = 12−n. The charge is by definition

non-negative, giving us n ≤ 12. Furthermore, the classifications below then imply that

some lines do not wrap if c(Y,D) ≤ 2, so then n ≤ 9. A case with n = 9 can be

explicitely constructed.

2.3.3 The Positive Cases

As a converse to the above cases, we have that the following are equivalent:

• The intersection matrix H is not negative semi-definite.

• The developing map for U trop
0 is not injective.

• Lines in U trop wrap at most finitely many times. Each line both goes to and

comes from infinity.

• The quadratic form Q is negative definite.

• U is a minimal resolution of an affine surface with at worst Du Val singularities.

U is deformation equivalent to an affine surface, and dim Spec(Γ(Y,OY )) = 2.

• D supports a D-ample divisor.

If any of these conditions hold, we say that U is positive. We have the following

sub-cases:
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Proposition 2.3.1. All Lines Wrap (Finitely Many Times): The following are

equivalent:

1. Lines in U trop all wrap, but only finitely many times.

2. Every sheet of the developing map is convex, but the developing map is not

injective.

3. Non-zero global functions on U are not generically 0 along any boundary divisor

of any compactification (Y,D) of U (i.e, the corresponding valuations are non-

positive).

4. The inverse monodromy matrix µ−1 is conjugate to a Kodaira matrix11 of type

I∗k , II∗, III∗, or IV ∗.

5. If D is minimal, then either D = D1 +D2 with D2
1 = 0 and −1 6= D2

2 ≤ 0 (up to

re-labelling), or D is irreducible with 1 ≤ D2 ≤ 4.

6. U can be constructed from (P2, D), with D = D1 + D2 + D3 a triagle of lines,

by blowing up di times on Di for each i, with (d1, d2, d3) as in the final column

of Table 2.1. Equivalently, U corresponds to a seed with E = (e1, e2, e3), F = ∅,

〈·, ·〉 =

 0 1 −1
−1 0 1
1 −1 0

, and multipliers (d1, d2, d3) as in the final column of

Table 2.1.

11In [Kod63], Kodaira listed the matrices which can appear as monodromies about singular fibers
of elliptic fibrations of surfaces. See Tables 2.1 and 2.2 for a list of these matrices.
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7. D⊥Eff = D⊥, and the quadratic form Q is of type Dn (n ≥ 4) or En (n = 6, 7,

or 8).

Proof. (1)⇔(2) is clear from the definitions. (1)⇔(3) will be clear from the description

of tropical theta functions in terms of lines, given in §3.2.

For (1)⇒(5), using the construction of U trop from charts in Remark 2.2.2, we

can easily see that having any D2
i > 0 with D not irreducible would allow a line to

not wrap. On the other hand, having every D2
i ≤ −2 would mean we are in a negative

semi-definite case. So if D is minimal and not irreducible, then D2
i must be 0 for some

i. D having more than one additional component would allow a non-convex sheet of

the developing map, so the claim follows, except for when D is irreducible. In these

cases, if D2 > 4, then the proper transform after taking a toric blowup would have

positive self-intersection, which we have already ruled out, and D2 < 1 would mean we

are in a negative semi-definite case.

For (5)⇒(2), observe that in the D2
1 = D2

2 = 0 case, every sheet of any devel-

oping map is convex (but not strictly convex). The other cases come from non-toric

blowups and toric blow-downs of this, so the sheets of their developing maps will of

course still be convex (non-toric blowups make these sheets “more convex”).

(5)⇔(4) is a straightforward check. Note that we now have the equivalence of

(1) through (5).

(6)⇒(7) is also straightforward. For U generic, D⊥ is generated by classes of the

form Ei,j1 − Ei,j2 (where Ei,j denotes the exceptional divisor from a non-toric blowup

on Di), together with a class of the form L−E1,j1−E2,j2−E3,j3 , where L is the class of
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a generic line in P2. If we choose all the blowup points on each Di to be infinitely near,

and choose the blowup points on different Di’s to be colinear, then D⊥ is generated by

effective divisors with the correct intersections.

(7)⇒(1) because Q of type Dn or En implies that Q is negative definite, so by

the above characterizations, we are not in an H negative semi-definite case. We also

cannot be in a some lines wrap case because, as we see below, Q|D⊥Eff
in these cases is

a direct sum of Ani ’s.

It now suffices to show that (5)⇒(6) (since (4)⇔(5), this means we are showing

that U trop really does determine the deformation type of U in these cases). For the

I∗0 case, we have µ−1 = − Id. We will see in Example 3.3.18 that since such a U trop

contains a reflexive polytope with 3 integer points on the boundary, any surface with

this U trop as its tropicalization must be a degree 3 del Pezzo surface, i.e., a cubic

surface.

Now for the I∗k cases, we can choose a compactification (Y,D) of U with D2
1 =

D2
2 = −1 and D2

3 = −1− k. The divisor C := D1 +D2 has C ·D1 = C ·D2 = C2 = 0,

and C ·D3 = 2. By Riemann-Roch, dim |C| ≥ 1. If C is the only singular element of

some P1 ⊂ |C|, then (for U generic in its deformation class) Y \ C is a P1-bundle over

A1, hence has Euler characteristic 2. So then Y has Euler characteristic 5. However, we

know from §2.2.6 that U trop determines the charge c of (Y,D), which in this situation

is 6 + k. One checks that the Euler characteristic of a Looijenga pair with n boundary

components and charge c is n+ c, which in this case is 9 + k > 5. So |C| must contain

other singular curves. These must contain irreducible rational components E1, E2 with

Ei ·D3 = 1 and E2
i = −1. Blowing down either of these is a non-toric blowdown and
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reduces us to the I∗k−1 case, so the claim follows by induction.

For the IV ∗ case, we have a compactification of U with D = D1 + D2 + D3,

D2
1 = −1, D2

2 = D2
3 = −2. Note that D · D1 = 1, while D · D2 = D · D3 = 0, so

dim |D| ≥ 1. Thus, there is some point on D1 which we can blow up to get a new

pair (Ỹ , D̃), with exceptional divisor E, such Ỹ admits an elliptic fibration with D̃

being a fiber and E being a section. Such a surface can be obtained by blowing up

9 base-points for a pencil of cubics in P2, with E being the exceptional divisor of the

final blowup (cf. [HL02]). D̃ then is the proper transform of one of the cubics D in

the pencil, so there must have been 3 base-points on each component Di of D. Thus,

after blowing E down, we see that Y must contian disjoint (−1)-curves hitting each

component of D. Blowing down a (−1)-curve hitting, say, D2, reduces to the I∗1 case

we have already dealt with.

A similar argument works for the III∗ case using a compactification of U with

D = D1+D2, D2
1 = −1, D2

2 = −2, and blowing up a point in D1 to get a surface with an

elliptic fibration. The II∗ case is also similar, using D irreducible with self-intersection

1 and blowing up some point in D to get a surface with an elliptic fibration.

Table 2.1 summarizes the different cases from the above theorem.

2.3.4 Not All Lines Wrap

Proposition 2.3.2. The following are equivalent:

1. U trop contains a line which does not wrap.
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Kodaira Matrix Cartan Form Q Monodromy µ (d1, d2, d3)

I∗k (k ≥ 0) Dn+4

(
−1 n
0 −1

)
(2,2,2+n)

IV ∗ E6

(
0 1
−1 −1

)
(2,3,3)

III∗ E7

(
0 1
−1 0

)
(2,3,4)

II∗ E8

(
1 1
−1 0

)
(2,3,5)

Table 2.1: Cases where all lines wrap.

2. Some compactification of U admits a toric model for which all the non-toric

blowups are on divisors corresponding to rays in one half of N (the cocharacter

lattice of the image). I.e, there is some seed for which all of the non-frozen

vectors’ images in p∗(N) lie in one half of the plane.

3. Any cluster structure corresponding to U is acyclic.

4. The quadratic form Q on D⊥ is negative definite, and Q|D⊥Eff
is a direct sum

of Ani’s. In fact, it is Ad′1−1 ⊕ · · · ⊕ Ad′m−1, where the (d′i)’s are the modified

multipliers for a minimal acyclic seed corresponding to U (equivalently, d′i is the

number of non-toric blowups on Di in a toric model for a compactification U).

5. There exists a global monomial on U (by which we mean on an X-space containing

U as a fiber).

Proof. (1)⇔(2) follows immediately from Lemma 3.1.7. (2)⇔(3) was observed in

§2.1.1.1. (1)⇔(5) follows from Theorem 3.1.10. (4)⇒(1) because if some line does
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wrap (possibly infinitely many times), then we have seen that either Q is not negative-

definite or Q|D⊥Eff
is of type Dn or En.

For (2)⇒(4), first note that Q is negative definite on D⊥ by positivity of U .

Now, let (Y,D)→ (Y ,D) be the toric model corresponding to a seed with the images

of all rays in one half of the plane NR corresponding to Y . For any curve C in Y ,∑
C ·Divi = 0. If C is the image of a curve C ∈ D⊥, then it can only intersect blowup

points, so the only possibility is that C is supported on the exceptional divisors. Thus,

D⊥Eff is generated by classes obtained by taking the d′i blowups to be infinitely near,

and then taking the d′i − 1 exceptional divisors which do not intersect D.

2.3.4.1 No Lines Wrap

Proposition 2.3.3. The following are equivalent:

1. No Lines in U trop wrap.

2. No sheet of the developing map is convex.

3. Every global function on U is generically 0 along some boundary divisor of some

compactification (i.e, the corresponding valuations are positive). The Laurent

phenomenon holds for the X-space, meaning that each Xi is a global monomial.

Furthermore, the global monomials form an additive basis for the global function

on U (we will see that global monomials are theta functions, and in these cases,

they are all the theta functions).

4. The inverse monodromy matrix µ−1 is a Kodaira matrix of type Ik, II, III,

or IV .
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5. U (or rather, the corresponding cluster variety) is of finite-type, meaning that it

has only a finite number of seeds.

6. For some seed, the corresponding maximal quiver (after removing frozen vectors)

is of type Ak1 (k ∈ Z≥0), A2, A3, or D4.

Proof. (1)⇔(2) is obvious. (1)⇔(3) follows from Theorem 3.1.10.

Now define q± = Ld<0
q (±∞). To see that (1) implies (5), we need Lemma 3.1.7,

which shows that there are only finitely many (−1)-curves hitting boundary divisors

corresponding to rays in σq−,q+ . Since no lines wrap, we can cover U trop by finitely

many cones of the form σq−.q+ , and so there are only finitely many (−1)-curves in Y

hitting the boundary. Since seeds correspond to certain finite subsets of this collection

of (−1)-curves, the claim follows.

(5)⇔(6) follows from a well-known result of [FZ03], which says that a cluster

algebra is of finite type if and only if the underlying graph of a quiver (minus the

boxed vertices) corresponding to some seed is a simply laced (i.e., type ADE) Dynkin

diagram—one easily checks that the type ADE quivers producing rank 2 cluster va-

rieties are exactly those listed in the Proposition. One can easily check (6)⇒(4) by

explicit computation: the Ak1, A2, A3, and D4 quivers correspond to the Ik, II, III,

and IV matrices, respectively. (4)⇒(1) is now automatic.

Table 2.2 lists the cases where no lines wrap, along with their basic properties.

We once again use the notation (d1, d2, d3) to indicate that such a Looijenga pair can be
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Quiver Kodaira Matrix Cartan Form Q Monodromy µ (d1, d2, d3)

Ak1 (k ≥ 0) Ik Ak−1

(
1 −k
0 1

)
(k,0,0)

A2 II A0

(
0 −1
1 1

)
(1,1,0)

A3 III A1

(
0 −1
1 0

)
(2,1,0)

D4 IV A2

(
−1 −1
1 0

)
(3,1,0)

Table 2.2: Cases where no lines wrap.

obtained by starting with the toric variety (P2, D = D1 +D2 +D3), and then blowing

up d1, d2, and d3 points on D1, D2, and D3, respectively.

2.3.4.2 Some Lines Wrap and Some Do Not

Proposition 2.3.4. The following are equivalent:

1. Some Lines in U trop wrap, while others do not.

2. Some (but not all) sheets of the developing map are convex.

3. The monodromy satisfies Tr(µ) ≤ −2, and if there is equality, then µ is conju-

gate to

(
−1 a
0 −1

)
for some a < 0.

Proof. (1)⇔(2) is easy. (3) follows because all the other possibilities have been elimi-

nated by the previous propositions.
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Chapter 3

Theta Functions and their Tropicalizations

3.1 Construction of Theta Functions and the Mirror

This section summarizes [GHK11]’s construction of the mirror family. We as-

sume throughout this chapter that (Y,D) is positive, unless otherwise stated. This

assumption simplifies the details of the construction, the notation, and the statements

of the theorems from [GHK11], but the basic ideas of the construction are unchanged.

In §3.1.7, we describe how to obtain compactifications of the mirror as in [GHK]. These

compactifications really do require positivity.

3.1.1 Setup

Choose some lattice P gp and some finitely generated submonoid P ⊆ P gp. Recall

that Ũ trop
0 denotes the universal cover of U trop

0 . Let us define Ũ trop by adding a single

point 0 to Ũ trop
0 which is the limit lima→0 aq for every q ∈ Ũ trop

0 . We say 0 is in Ũ trop(Z),

and we extend ξ to Ũ trop by saying that ξ(0) = 0. Let r : P→ Ũ trop denote the trivial

bundle Ũ trop × P gp
R , and let P(Z) denote the subset Ũ trop(Z)× P gp. We note that P is

itself an integral linear manifold on the complement of the 0-fiber.

When constructing the mirror over Spec k[P ], we will need a choice of convex
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integral Σ-piecewise-linear function1 ϕ : Ũ trop → P gp such that, if we think of the

monodromy µ as shifting points down one sheet, ϕ ◦ µ = ϕ + ϕ0 for some globally

linear function ϕ0 (we defined µ(0) = 0 and say that piecewise-linear functions are 0

at 0). Equivalently, we require that for each ray ρ ⊂ U trop, ϕ has the same bending

parameter along every component of ξ−1(ρ). Note that we can view ϕ as a section of

P.

Note that, up to a choice of globally linear function, ϕ is determined by speci-

fying the bending parameters for each ray ρ in the fan Σ in U trop. ϕ will in fact only

matter to us up to this choice of globally linear function, so specifying the bending

parameters is enough.

For example, we may take P gp := A1(Y,Z) ∼= Pic(Y )∗ and P to be the Mori

cone NE(Y ). We will want P to be finitely generated. For P = NE(Y ), this follows

from the Cone Theorem and our assumption that (Y,D) is positive.2 We can then take

ϕ to have bending parameters [Di] along the preimages of ρi for each i, and we denote

such a ϕ by ϕNE(Y ), despite it being defined only up to a linear function.

These choices for P gp, P , and ϕ will lead to a construction of a mirror family

which is in a sense universal (see [GHK13b]). Taking another choice of P gp and P

together with a monoid homomorphism η : NE(Y ) → P will define another family

with a map to this universal one. We will always assume we have such an η.

1[GHK11] instead uses a “multi-valued” function on U trop, but this difference is not significant for
our purposes.

2When working without the positivity assumption, [GHK11] chooses a strictly convex rational
polyhedral cone σP containing NE(Y )R≥0 and lets P = σP ∩A1(Y,Z).
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Example 3.1.1. Let E1, . . . , Es denote the exceptional divisors of some toric model π

for (Y,D). Let NEπ(Y ) denote the subcone of A1(Y,Z) spanned by NE(Y ) and −[Ei],

i = 1, . . . , s. We can then take η to be the inclusion NE(Y ) ↪→ NEπ(Y ). The base of

the resulting family is what [GHK11] refers to as the Gross-Siebert locus.

3.1.1.1 The Cone Bounded by ϕ

Define τR := ϕ(U trop)+PR := {(x, ϕ(x)+y) ∈ P|x ∈ Ũ trop, y ∈ PR}, and let τ :=

τR ∩ P(Z). Consider consecutive rays ρi, ρi+1 in ξ−1(Σ) ⊂ Ũ trop, with σi,i+1 denoting

the closed cone they bound. We have a cones τi,i+1,R := τσi,i+1
:= τR ∩ r−1(σi,i+1) with

integer points τi,i+1 := τ ∩ r−1(σi,i+1).

Let ΛP denote the bundle of integral tangent vectors in TP. For any point x 6= 0

in a cone σ ⊂ Ũ trop (not necessarily convex, but at least not surjecting to R2 \ {0}

under a developing map), we consider the canonical embedding of r−1(σ) into TxP.

Note that this identifies points in r−1(σ)∩P(Z) with points in ΛxP. Furthermore, this

identification commutes with parallel transport along any path contained in σ. We

may therefore write TσP to mean TxP for any x ∈ σ, and similarly with ΛσP.

For example, we have embeddings of τi,i+1,R and τi,i+1 in Tσi,i+1
P and Λσi,i+1

P,

respectively. Similarly, we may view ϕ|σ as a map from σ to TσP. To be clear, when

viewing ϕ as locally embedding Ũ trop into TP, we will write ϕ̃, wheras ϕ will denote the

P gp
R -valued function. We also have an induced additive action of P gp

R on the tangent

spaces, and thus an identification of P gp
R with P gp

R + 0 ⊂ TσP. Note that we may view

ϕ̃(u) as u+ ϕ(u) in TuP. We will abuse notation and use these identifications freely.
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3.1.1.2 The Toric Case

If (Y,D) is a toric variety with its toric boundary, then we can choose ϕNE(Y )

to satisfy ϕNE(Y ) = ϕNE(Y ) ◦ ξ for some convex integral Σ-piecewise-linear function

ϕNE(Y ) : U trop → NE(Y ) (cf. [GHK11], Lemma 1.14). Similarly with any ϕ = η◦ϕNE(Y )

as above. We can therefore work with U trop instead of Ũ trop (but let us otherwise use

the same notation as before). U trop × P gp
R is a vector space in the toric situation,

and this induces a monoid structure on τ (usually, the monodromy about the 0-fiber

prevents τ from admitting such a structure). In this case, the mirror family V is

simply Spec(k[τ ]) → Spec(k[P ]), where the morphism comes from the inclusion of

P into r−1(0). This is the well-known Mumford degeneration. The central fiber is

Vn := A2
x1,x2
∪ A2

x2,x3
∪ . . . ∪ A2

xn,x1
⊂ An

x1,...,xn
(n ≥ 3), and the general fiber is (k∗)2

(cf. [GHK11], §1.2).

Also in the toric case, given a convex integral polygon ∆ in U trop, we can define

a convex integral polygon ∆ϕ := ϕ(∆) +PR ⊂ P. The corresponding toric variety V∆ϕ

is then a (partial) compactification of V.

In a non-toric case we do not have a natural global way to add points of τ .

However, the identification with a cone in the tangent space does give us a natural

monoid structure on r−1(σ) for any convex cone σ in Ũ trop. Consider τρi := τi−1,i +

τi,i+1 ⊂ Pρi . Now for any ρ ⊆ σ ⊂ Ũ trop (ρ and σ cones of dimension 1 or 2), define

τρ,σ := τρ − ϕ̃(σ ∩ Ũ trop(Z)) = {x− y ∈ TρP|x ∈ τρ, y ∈ ϕ̃(σ ∩ Ũ trop(Z))}. (3.1)

That is, we allow negation of integer points on the image of ϕ̃|σ. Define Rρ,σ := k[τρ,σ],

and Vρ,σ := Spec(Rρ,σ). Note that Rρ,σ is the localization of Rρ,ρ by functions of the
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form zϕ̃(x) for x ∈ σ ∩ Ũ trop(Z).

The plan for constructing the mirror family is then to glue Vρi,ρi to Vρi+1,ρi+1

for each i, via an isomorphism Rρi,σi,i+1
→̃Rρi+1,σi,i+1

. Also, if ξ(ρ) = ξ(ρ′), then ϕ

near ρ differs from ϕ near ρ′ by a linear function, and this linear function induces an

isomorphism between Rρ,ρ and Rρ′,ρ′ . We use this to identify Vρ,ρ with Vρ′,ρ′ for each

such pair of rays.

We do naturally have Rρi,σi,i+1
identified with Rρi+1,σi,i+1

by parallel transport

in σi−1,i ∪ σi,i+1, but this naive identification is not the correct gluing: it gives a flat

deformation of V0
n := Vn \{0}, but this does not extend to a deformation of Vn (except

in the toric case). The problem is essentially that locally defined functions generally

do not commute with transportation around the origin. We therefore need a modified

version of this gluing.

The correct modifications are defined in terms of a certain canonical scattering

diagram in U trop. We will also need an automorphism of Rρi,ρi for each i, and we will

think of these as isomorphisms between R+
ρi,ρi

:= Rρi,ρi (thought of as corresponding

to the cone σi,i+1) and R−ρi,ρi := Rρi,ρi (associated with the cone σi−1,i). Plus signs and

minus signs as superscripts will always have these meanings for us.

3.1.2 The Consistent Scattering Diagram

A scattering diagram d for us includes the data of a set of rays in Ũ trop with

associated functions which satisfy certain conditions. These functions are used to define

certain ring automorphisms, and for the “consistent” scattering diagram which we will

define, these automorphisms make it possible to construct the scheme we were after in
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the previous subsection.

For a ray ρ ⊂ Ũ trop with rational slope, let Dρ := Dξ(ρ) be the corresponding

boundary divisor in (Ỹ , D̃) (some toric blowup π of (Y,D)). Let β ∈ H2(Ỹ ,Z) with

kβ := β · Dρ ∈ Z, and β · Dρ′ = 0 for ξ(ρ) 6= ξ(ρ′). Let Fρ := D \Dρ, Ỹ
◦
ρ := Ỹ \ Fρ,

and D0
ρ := D \ Fρ.

Now, define M(Ỹ ◦ρ /D
◦
ρ, β) to be the moduli space of stable relative maps3 of

genus 0 curves to Ỹ ◦ρ , representing the class β and intersecting D◦ρ at one unspecified

point with multiplicity kβ. This moduli space has a virtual fundamental class with

virtual dimension 0. Furthermore, M(Ỹ ◦ρ /D
◦
ρ, β) is proper4 over Spec k. Thus, we can

define the relative Gromov-Witten invariant Nβ as

Nβ :=

∫
[M(Ỹρ/Dρ,β)]vir

1.

This is a virtual count of the number of curves in Ỹ of class β which intersect D at

precisely one point on D◦ρ. If Nβ 6= 0, we call β an A1 class.

Recall that η denotes a homomorphism from NE(Y ) to P . We now define

fρ := exp

[∑
β

kβNβz
η(π∗(β))−ϕ̃(kβvρ)

]
∈ Rρ,ρ.

Here, the sum is over all β ∈ NE(Ỹ ) which have 0 intersection with all boundary

divisors except for Dρ.

3For details on relative Gromov-Witten invariants, see [Li02], or see [GPS09] for a treatment of
this particular situation.

4See Theorem 4.2 of [GPS09], or Lemma 3.2 of [GHK11].
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Example 3.1.2. Consider Ỹ = M0,5 as in Example 2.2.6. Let β = E1, the (−1)-curve

which only hits D1. Then Nβ = 1. Due to the stacky nature of M(Ỹρ/Dρ, β), Nβ

might not always be a positive integer. For example, with Ỹ and β as above, we have

Nkβ = (−1)k−1

k2 (see [GPS09], Proposition 6.1).

These multiple covers of E1 are the only A1 classes for D1, so we can compute

fρ1 (for ξ(ρ1) corresponding to D1). Suppose P gp := A1(Y ) and η := Id. We have

fρ1 = exp

 ∑
k∈Z>0

k

(
(−1)k−1

k2

)
zk[E1]−ϕ(kvρ1 )−kvρ1


= 1 + z[E1]−ϕ(vρ1 )−vρ1 .

Suppose we instead take P := Z≤0, η(C) := −W ·C for the ample divisor W =
∑
Di.

Let t denote the generator for P . We can take ϕ(vi) = −1 = t for each i, and the

exponent becomes (W · [E1])t− t− vρ1 = −vρ1 . Then we have fρ1 = 1 + z−vρ1 .

More generally, if the only A1-classes hitting Dξ(ρ) are a set {E1, . . . , Ek} of

(−1)-curves, along with their multiple covers, then

fρ =
k∏
i=1

(
1 + zη(Ei)−ϕ̃(vρ)

)

3.1.3 Constructing the Mirror Family

The family V we wish to construct will be a flat affine deformation of Vn, but

we will first construct a flat formal deformation V̂ of Vn. This of course comes from an

inverse system of infinitesimal deformations Vk of Vn.

Note that P \ 0 corresponds to a maximal ideal m ⊂ k[P ]. Thus, for any

k[P ]-algebra R and any k ∈ Z≥0, we have an ideal mkR.
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As explained in §3.1.1.2, we want to use the scattering diagram to glue V+
ρi,ρi

to

V−ρi+1,ρi+1
by identifying Vρi,σi,i+1

with Vρi+1,σi,i+1
. Since the scattering diagram generally

has infinitely many rays, we cannot usually do this directly.

Instead, we note that there are only finitely many rays ρ in the interior of σi,i+1

for which the function fρ 6≡ 1 modulo mkRρ,ρ ⊂ mkRρi,σi,i+1
= mkRρi+1,σi,i+1

. This

is because there are only finitely many points in P \ kmP , and A1-classes with non-

vanishing contributions live in NE(Y ) \ kmNE(Y ). We therefore replace each ring R of

the construction with Rk := R/mkR.

Now, given a curve γ : [0, 1]→ U trop
0 , we will define a corresponding homomor-

phism Π
(±,±)
γ : k[Λγ(0)P

±
k ] → k[Λγ(1)P

±
k ]. The signs in the superscripts are explained

below, and the subscript k’s indicate that we are modding out by mk. This homomor-

phism comes from using parallel transport of ΛP along γ, except whenever γ crosses a

scattering ray ρ with fρ 6≡ 1 modulo mkRρ,ρ, we apply the k[ΛρPk]-automorphism

zu 7→ zuf 〈nρ,r∗(u)〉
ρ , (3.2)

where nρ is a primitive generator of Λ∗ρ which is 0 along ρ and positive on vectors

pointing into the cone from which γ came, and 〈·, ·〉 denotes the dual pairing. Of

course, if γ(0) and/or γ(1) are contained in scattering rays, we need to specify whether

or not we apply the automorphisms corresponding to these rays. If the first sign of the

superscript of Π
(±,±)
γ is + (resp. −), the decision of whether or not to begin with the

scattering automorphism corresponding to γ(0) is determined by viewing γ(0) as lying

infinitesimally counterclockwise (resp. clockwise) of the ray it sits on, and similarly for

γ(1) with the second sign.
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Now, we can identify U+
ρi,σi,i+1,k

:= Spec(R+
ρi,σi,i+1,k

) with U−ρi+1,σi,i+1,k
using the

k[Λσi,i+1
P]-automorphism given by Π+,−

γ , where γ(0) ∈ ρi, γ(1) ∈ ρi+1, and γ ⊂ σi,i+1.

We thus glue V+
ρi,ρi,k

to V−ρi+1,ρi+1,k
for all i. Similarly, for each i, we can glue U−ρi,ρi,k to

U+
ρi,ρi,k

via the automorphism Π−,+γ , where γ(t) = vi ∈ ρi for all t ∈ [0, 1]. Also, recall

that we can canonically identify U±ρ,ρ,k with U±ρ′,ρ′,k whenever ξ(ρ) = ξ(ρ′).

Preforming all these gluings yields schemes Vk which are flat infinitesimal fami-

lies over Spec(k[P ]/mk). Taking the inverse limit with respect to k yields a flat formal

deformation V̂ of Vn. Finally, we take the affinization V := Spec Γ(V̂,OV̂).

3.1.4 Broken Lines and the Canonical Theta Functions

In this section we describe a canonical k[P ]-module basis for the global sections

of OV. These sections are called theta functions.

Definitions 3.1.3. Let q ∈ Ũ trop(Z), and Q ∈ Ũ trop. A broken line γ with limits (q,Q)

is the data of a continuous map γ : (−∞, 0]→ Ũ trop, values −∞ < t0 < t1 < . . . < ts =

0, and for each t 6= ti, i = 0, . . . , s, an associated monomial ctz
mt ∈ Rγ(t) := k[Λγ(t)P]

with ct ∈ k and r∗(mt) = −γ′(t), such that:

• γ(0) = Q

• γ0 := γ|(−∞,t0] and γi := γ|[ti−1,ti] are geodesics (i.e., straight lines with constant

velocities).

• For all t� t0, γ(t) is in some fixed convex cone σq containing q, and mt = ϕ̃(q)

under parallel transport in σq.

• For all a ∈ (ti−1, ti) (or (−∞, t0) for i = 0) and b ∈ (ti, ti+1), and all relevant

Rγ(t)’s identified using parallel transport along γ, we have that γ(ti) is contained
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in a scattering ray ρ, and

cbz
mb = (caz

ma)(cρz
mρ)

where cρz
mρ is any term in the formal power series expansion of f

〈nρ,r∗(ma)〉
ρ (so

cbz
mb is a monomial term from the expansion of Equation 3.2).

Remark 3.1.4. We call the choice of monomial cρz
mρ a bend. Note that broken lines in

this setup can only bend away from the origin. If we say that a bend is maximal, we will

mean that the broken line is bending away from the origin as much as possible (that

is, the degree of z−vρ in the chosen monomial was as large as possible, so in particular

fρ must have been a polynomial). We may also call this the maximal bend away from

the origin. In §3.1.5 we will see a related scattering diagram in U trop equipped with a

different linear structure. In this situation, some broken lines may bend towards the

origin, and we will be interested in the broken lines with the maximal allowed bends

towards the origin (which in our current setup are always straight lines).

We say that two broken γ and γ′ with Limits(γ) = (q,Q) and Limits(γ′) =

(q,Q′) are equivalent if they have the same bends (so there is a natural correspondence

between the smooth segments of the broken lines, with corresponding segments being

parallel). Let [q, γ] denote the equivalence class of a broken line γ with limits (q,Q)

(the inclusion of q in the notation here is meant to simplify notation in the formulas

below).

We say that an equivalence class [q, γ] is infinitely near a ray ρ ([q, γ] IN ρ for

short) if given any open cone σ containing ρ, there exits a broken line γ′ ∈ [q, γ]
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with limits (q,Q′) such that Q′ ∈ σ. We say [q, γ] is positively infinitely near ρ

([q, γ] PIN ρ) if the same is true for any half-open cone σ+ containing ρ as a clockwise-

most boundary ray. Similarly for negatively infinitely near ([q, γ] NIN ρ) with σ− having

ρ a counterclockwise-most boundary ray.

Given a class [q, γ], let cγz
mγ denote the monomial attached to the last straight

segment of each γ′ ∈ [q, γ]. Now for any ray ρ ⊂ Ũ trop, we define

T+
q (ρ) :=

∑
[q,γ] PIN ρ

cγz
mγ , and T−q (ρ) :=

∑
[q,γ] NIN ρ

cγz
mγ .

Now at last we define the theta functions. Define ϑ0 = 1. For q ∈ U trop
0 (Z) and

ρ ⊂ Ũ trop, we define

ϑq|U±ρ,ρ =
∑

q̃|ξ(q̃)=q

T±q̃ (ρ)

Since the V±ρ,ρ’s form an open cover of V, this suffices to define the theta functions.

Remark 3.1.5. The scattering diagram we use is called “consistent” because [GHK11]

shows that for any q ∈ U trop(Z) and any curve γ in U trop
0 with γ(0) ∈ ρ0 and γ(1) ∈ ρ1,

we have (modulo any positive integer power of m)

Π(±0,±1)
γ [T±0

q (ρ0)] = T±1
q (ρ1). (3.3)

That is, the sums of monomials determining the theta functions are “parallel” with

respect to this modified parallel transport Π. Furthermore, for any ρ, ρ′ with ξ(ρ) =

ξ(ρ′), ϑq|U±ρ,ρ agrees with ϑq|U±
ρ′,ρ′

under the canonical identification of R±ρ,ρ with R±ρ′,ρ′

(when using multi-valued functions on U trop as in [GHK11] instead of our single-valued

67



ϕ on Ũ trop, Equation 3.3 holding for all γ implies this condition). These conditions are

exactly what we need for the theta functions to be well-defined globally.

Theorem 3.1.6 ([GHK11]). The theta functions form a canonical k[P ]-module basis

for the space of global sections of V. That is,

V = Spec

 ⊕
q∈Utrop(Z)

k[P ]ϑq

 .

Furthermore, the multiplication rule can be described as follows: Given q1, q2, q ∈

U trop(Q), the ϑq-coefficient of ϑq1 · ϑq2 is given by∑
([q1,γ1],[q2,γ2])

[qi,γi] IN ρq
mγ1+mγ2=q

cQ1cQ2 .

The part about the multiplication rule is easy to see after noting that ϑq is the

only theta function with a zq term along ρq.

3.1.5 Another Construction of U trop

We discuss here another point of view on the construction of U trop that will be

helpful to us later on. Recall that each seed S induces a linear structure on U trop. U trop

with this linear structure may be identified with NR = N⊗R, where (Y,D)→ (Y ,D) is

the toric model corresponding to S and N is the cocharacter lattice of Y . Suppose that

this toric model includes bi non-toric blowups on Dmi , with corresponding exceptional

divisors Eij, j = 1, . . . , bi.

Now, let d0 be the scattering diagram in NR with rays{
Rmi,

bi∏
j=1

(
1 + zϕ̃(mi)−η(Eij)

)∣∣∣∣∣ i = 1, . . . , n

}
,
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where η is as in Example 3.1.1. One may use d0 to construct a consistent scattering

diagram S(d0) as in [KS06] and [GPS09]. All of the rays added to d are outgoing,

meaning that any broken line crossing these scattering rays can only bend away from

the origin. Thus, it is only broken lines crossing R≥0mi that can bend towards the

origin.

U trop with its usual integral linear structure now comes from modifying NR so

that lines which take the maximal allowed bend towards the origin are actually straight

(cf. §2.2.1.1). Furthermore, if we break our initial scattering rays up into two outgoing

rays by negating the exponents of the R≥0mi parts of the initial rays, then S(d0)

becomes our consistent scattering diagram d in U trop from before. This construction is

carried out in detail in §3 of [GHK11].

3.1.6 The Cluster Complex

We will now show that lines which do not wrap (cf. §2.2.5.1) bound especially

nice parts of the scattering diagram and correspond to particularly simple theta func-

tions. Recall that σu,v ⊂ U trop denotes the cone with u on the clockwise-most boundary

ray and v on the counterclockwise-most boundary ray. Also recall our notation regard-

ing lines in §2.2.5.1.

Lemma 3.1.7. Let q ∈ U trop(Z) and suppose Ld<0
q does not wrap. Let

q± := Ld<0
q (±∞) ∈ U trop(Z) (so q+ = q). There is some compactification (Y,D) of U

which admits a toric model where all the non-toric blowdowns are on divisors Du with

u ∈ σq−,q+ (cf. Figure 3.1(a), where we write V− and V+ instead of q− and q+).
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Proof. Let v be any vector in σq+,q− forming nonsingular cones with L(∞) and L(−∞).

Let (Y,D) have the form D = Dq+ +Dv +Dq− +
∑
Di, where the Di’s correspond to

vectors in σq−,q+ . Note that D2
v = 0. Thus, |Dv| gives a fibration of Y over P1 with

rational fibers and with Dq+ and Dq− as sections. Let F be the fiber containing
∑
Di.

We can assume (by taking enough toric blowups) that (Y,D) was chosen so that the

P1’s in F not contained in
∑
Di do not hit nodal points of

∑
Di. These P1’s are then

(−1)-curves (for U generic in its deformation class) and can be blown down. On the

complement of Dv and F , each fiber is a chain of P1’s. We can contract all but one of

these P1’s from each chain, and then what remains on the complement of D is just a

k∗ fibration over k∗; i.e., (k∗)2. Thus, we have constructed a toric model of the desired

type.

Note that this toric model is unique except for the choices of exceptional divisors

intersecting Dq− and Dq+ .

Corollary 3.1.8. If Ld<0
q does not wrap, then for U generic, the only A1-classes cor-

responding to rays in σq−,q+ are exceptional divisors in one of these toric models.

Proof. Suppose C ⊂ (Y,D) is an A1 class for some v ∈ σq−,q+ such that C is not

contracted under one of these toric models. Then in this toric model, C ⊂ (Y ,D)

intersects only divisors corresponding to rays in one half of the plane NR. Since
∑

(C ·

Dv)v = 0 for toric varieties, this is impossible unless C only intersects Dq− and Dq+ .

In this case, C is a component of a fiber other than Dv and F in the above proof, and

such fibers are chains of (P1)’s. Since U is generic, we can assume the fiber contains
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only two P1’s, and either one can be contracted in a toric model for the proof of the

previous lemma.

Definition 3.1.9. The cluster complex is the union of the cones of the form σq−,q+ as

in Lemma 3.1.7.

Given this understanding of the scattering diagram in the cluster complex, we

can describe many of the theta functions very explicitely. Let Ld<0
q and σq−,q+ be as

above. Note that for any x ∈ σq−,q+ , the only broken lines with initial direction q and

endpoint x must be going clockwise about the origin, and so they will only hit the

scattering rays in σq−,q+ . Let σq be a top-dimensional non-singular cone with q as the

clockwise-most endpoint and containing no scattering rays in its interior5. Then on

Vσq ,σq ⊂ V, ϑq is given by zϕ̃(q).

Suppose we cross clockwise past a scattering ray in the interior of σq−,q+ to

a cone corresponding to another patch of V. Let e be a primitive generator of the

scattering ray ρe, and suppose that a toric model as in Lemma 3.1.7 consists of bv

blowups along Dv. From Example 3.1.2, we know that the scattering automorphism

for crossing ρv clockwise given by

zv 7→ zv

(
be∏
i=1

(
1 + zη(Ei)−ϕ(e)−e))e∧r∗(v)

If we choose a generic fiber of the mirror family, then that fiber can be identified (up

to codimension 2) with a fiber of the X-space.6 The above scattering automorphism is

5This is possible becuse of Lemma 3.1.7. Such cones make it possible to see patches of V without
going through the whole inverse limit construction.

6In fact, [GHK13a] shows that the X-space can be realized as a quotient of the universal mirror V

by a certain torus action.
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then exactly an X-mutation formula restricted to this fiber!

In particular, we have:

Proposition 3.1.10. For any q in the cluster complex, the theta function ϑq (restricted

to a fiber V of the mirror) is the restriction of a global monomial on the X-space.

Proof. For q in the cluster complex, the line Ld<0
q does not wrap, so the above observa-

tions apply. The intersection of Vσq ,σq with V is a seed torus on which ϑq is a monomial.

Since it extends to a global function, it is by definition a global monomial.

3.1.7 Compactifications

Let ∆ be a convex rational nonsingular polytope in U trop such that each vertex

of ∆ is contained in a ray of Σ. Note that Σ induces a polyhedral decomposition Σ∆ on

∆. As in [GHK], we construct from Σ∆ a partial (full if ∆ is bounded) compactification

VΣ∆ of V.

First we recall that in the toric situation, the compactified family is the toric

variety corresponding to the polytope Q∆ := ϕ(∆) + PR (with ϕ a function on NR =

U trop rather than on Ũ trop). The general fiber is the toric variety corresponding to

∆ ⊂ NR, while the central fiber is Vn(∆), a compactification of Vn where the irreducible

components are the toric varieties corresponding to the cells of Σ∆ (cf. [GS11]).

As in the construction of V, the idea behind the general construction is to do

the toric construction locally on Ũ trop and to use the scattering diagram for gluing. Let

Σ̃∆ be the lift ∆̃ of ∆ \ {0} by ξ with the polyhedral decomposition coming from the

lift Σ̃ of Σ\{0}. Given a maximal dimensional cell σ ∈ Σ̃∆, let Qσ denote the polytope
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ϕ(σ) +PR embedded in TσP. For any cell ρ in Σ̃∆, define Qρ =
⋃
σ⊃ρQσ ⊂ TρP, where

the union is over the maximal dimensional cells containing ρ. Now we define a cone

κρ,R ⊆ TρP generated by

{x− y ∈ TρP : x ∈ Qρ, y ∈ ϕ(ρ)}.

Let κρ denote the integer points of κρ,R. Note that if ρ ∈ Σ̃, then κρ is just τρ,ρ from

§3.1.1.1.

Thus, the new cones for this construction come from taking ρ to be in a boundary

component of ∆. If Fi,i+1 denotes the edge σi,i+1 ∩ ϕ(∂∆̃), and pi = Fi−1,i ∩ Fi,i+1 =

ρi∩ϕ(∂∆̃), then k[κpi ] is a toric subring of k[τρi,ρi ]. Spec(k[κpi ])\Spec(k[τρi ]) contains

two toric boundary divisors, corresponding to the faces sitting over Fi−1,i and Fi,i+1.

Now, the construction of the compactified family V∆ proceeds as for V, forming

inverse systems of quotients of the k[κpi ]’s and using the scattering automorphisms to

glue. V∆ \V is a set of divisors {Di} corresponding to the Fi’s, with two divisors being

identified whenever the corresponding faces of ∆̃ are related by some integer power of

µ.

To show that this construction is well-defined and that each face really gives a

single, well-defined boundary divisor, we have to check that DFi,i+1
:= Spec k[κFi,i+1

] \

Spec k[κσi,i+1
] is preserved when crossing a scattering ray in σi,i+1. Let ρu be such a

scattering ray, generated by primitive u ∈ σi,i+1. Let v be a primitive vectors tangent

to Fi,i+1. Then k[κFi,i+1
] =

√
k[z±v, z−u] (i.e., the radical of the subring of k[σi,i+1]

generated by z±v and z−u). DFi,i+1
is the zero set of z−u. This zero set is not changed by

crossing ρu because z−u is invariant under the corresponding scattering automorphism.
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Let LdF>0
vF

be the line containing some edge F of ∆. Let ρ be a ray intersecting

F . The valuation (i.e., the order of vanishing) of some z(q,p) ∈ Rρi,ρi (q = r((q, p)))

along the divisor DF is

valDF
(
z(q,p)

)
= v ∧ q. (3.4)

We will use this to explicitely describe valuations of theta functions in the next section.

3.2 Tropical Theta Functions

3.2.1 Tropicalization of the Mirror

We know from [GHK] that generic fibers of the mirror V are deformation equiv-

alent to our the original space U . Thus, the tropicalization V trop of a generic fiber V

is non-canonically isomorphic to U trop, and any construction done using U and U trop

can similarly be done using V and V trop. We describe here some ways to identifiy V trop

with U trop.

Notation 3.2.1. We will always use gothic D’s to denote divisors on the boundary

of a generic fiber V of the mirror. Script D’s denote boundary divisors for the whole

mirror family. We will use (Z,D) to denote a compactification of V .

Remark 3.2.2. Theta functions were defined using broken lines in Ũ trop, and compactifi-

cations were defined using polygons in Ũ trop which are invariant under the monodromy.

By the consistency of the scattering diagram and the monodromy invariance of the poly-

gons, we can study the images of these things in U trop rather than working in Ũ trop.

Understanding the monomials attached to the theta functions is somewhat delicate

(interpreting the exponents requires introducing a certain bundle over U trop described

74



in [GHK11]), but for the rest of this paper we only need to know the images of the

exponents under r∗, which can easily be viewed as living in the tangent space to U trop.

We thus use U trop instead of Ũ trop throughout the rest of the paper.

As we just saw in §3.1.7, lines with rational slope in U trop determine boundary

divisors of V. In the construction above, the divisor does not depend on the vector

attached to the line or on the distance of the line from the origin. Given a primitive

vector v ∈ U trop, we can associate the divisor DLd>0
v

corresponding to Ld>0
v . Similarly,

for v = |v|v′ with v′ primitive and |v| a non-negative rational number, we associate the

divisor |v|DLd>0
v

. This gives an identification of U trop(Q) with V trop(Q) which restricts

to an identification of U trop(Z) with V trop(Z). We will see that this extends to an

integral linear identification wU : U trop → V trop. This is the identification we will

primarily use.

Convention 3.2.3. We give V trop the opposite orientation of that induced by wU .

Alternatively, given v = |v|v′ as above, we can associate |v|DLd<0
v

. This is

equivalent to doing the above identification with the orientation of U trop reversed (i.e.,

using the orientation of V trop). We will not use this identification U trop → V trop, but

it is closely related to what we will call wV : V trop → U trop in §3.2.5.

As another alternative, suppose that H is invertible over Q, as in Lemma 2.2.10.

From Example 2.2.11, we know that for U positive, this only fails in the Ik cases of

§2.3.4.1 (which are the simplest cases anyways). Recall the notation ψv and bv from

Lemma 2.2.10. Given a primitive vector v ∈ U trop(Z), we can associate an edge Lψv

defined by ψρv = d < 0. We then define wψ(v) ∈ V trop(Q) to be the point corresponding
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to 1
bv
DLψv

. Scaling by Q, this is easily extended to a bijection wψ : U trop(Q) →

V trop(Q), and one can show that this extends to rational linear isomorphism wψ :

U trop → V trop.

3.2.2 Tropicalizing Functions

For any rational function f on V , we define an integral piecewise-linear function

f trop : V trop → R as follows: for v ∈ V trop(Z), f trop(v) := valDv(f). Then extend f trop

linearly to the real points of V trop.

For this section, we once again call R-valued functions convex if their bending

parameters are non-positive (i.e., we take P := Z≤0).

Lemma 3.2.4. If f is regular on V , then f trop is convex.

Proof. Let (Z,D) be a nonsingular compactification of V such that any ray on which

f trop is nonlinear corresponds to some component of D. The principal divisor corre-

sponding to f is (f) = D0
f − D∞f + V (f), where D0

f denotes the divisor of zeroes of

f on the boundary, D∞f denotes the divisor of poles of f on the boundary, and V (f)

denotes the interior zeroes of f . So f trop is the integral piecewise-linear function on

V trop corresponding to the Weil divisor D0
f − D∞f , and the bending parameter along

some ρv is given by Dv · (D0
f −D∞f ) = −Dv · V (f) ≤ 0.

The properties of valuations give us the following relations for all rational func-

tions on V :

(fg)trop = f trop + gtrop
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(f + g)trop ≥ min(f trop, gtrop) (3.5)

Furthermore, the second relation is an equality at points where f trop 6= gtrop. Suppose

that there exists a v ∈ U trop such that (f + g)trop(v) > min[f trop(v), gtrop(v)]. Then, by

continuity, there must be some open cone σ in U trop containing v where f trop = gtrop.

We will see that if f and g are theta functions, then having f |σ = g|σ for open σ

implies f = g. So the inequality in Equation 3.5 is an equality for theta functions, and

similarly for any finite sum theta functions with positive coefficients.

Remark 3.2.5. We will need that the monomials attached to the broken lines contribut-

ing to a theta function do not cancel with each other when added together. This is

proved in [GHKK].

3.2.3 The Valuation Functions

Given a vector v ∈ U trop, we define an integral piecewise-linear function valv :

U trop → R as follows. For d ≤ 0, the fiber {valv = d} is the set L−d,0v . If L−dv wraps,

then this completely defines valv.

If L−dv does not wrap, then these fibers with d < 0 miss some cone σ ⊂ U trop.

In this case, for d > 0, the fiber {valv = d} is the broken line with initial direction v

and signed lattice distance −d from the origin which takes the maximal allowed bend

across every scattering ray that it crosses. By §3.1.6, there are only finitely many such

scattering rays. We call this broken line L−dv .

By taking a toric model corresponding to scattering rays in σ as in Lemma

3.1.7, we can see that there is some seed S with respect to which each L−d>0
v and
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each L−d<0
v is straight and goes to ∞ parallel to v. Thus, valv is indeed a well-defined

integral convex piecewise-linear function. In fact, with respect to the linear structure

corresponding to this seed, valv is given by v ∧ ·.

Note that differentiating gives us a function D valv : TU trop
valv
→ R, where U trop

valV

denotes the complement in U trop
0 of the singular locus of Dvalv|Utrop

0
. Note that if we

identify q with a vector q̃ in its tangent space, then D valv(q̃) = valv(q).

Lemma 3.2.6. Let γ be a broken line with mt = −γ′(t) being (r∗ of) the attached

monomial at some time t. If t2 > t1, then D valv(mt2) ≥ D valv(mt1) (assuming the

ti’s are generic enough for each side to be defined).

As in [GHKK], we say that functions satisfying this condition for all broken

lines are decreasing along broken lines (since they decrease on the tangent directions

of the broken lines).

Proof. First note that valv being convex means that the bends of valv while moving

along γ will only increase D valv(mt), as desired. Now let ρu (the ray generated by some

primitive u) be the only scattering ray where γ bends between times t1 and t2 = t1 + ε.

Then mt2 = mt1 − ku for some k ∈ Z≥0.

Suppose that valv ≤ 0 everywhere. In particular, valv(u) ≤ 0. Then

D valv(mt2) ≥ D valv(mt1)− kD valv(u)

= D valv(mt1)− k valv(u) ≥ D valv(mt).

On the other hand, suppose valv is positive somewhere. Let σ be the cone

on which it is non-negative, and S a corresponding seed as in Lemma 3.1.7. Let γ
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bend along some ray ρu between times t1 and t2 = t1 + ε as before. If u /∈ σ, then

valv(u) ≤ 0, and we again see D valv(mt2) ≥ D valv(mt1). Otherwise, we work with

the linear structure and scattering diagram on U trop corresponding to the seed S (cf.

§3.1.5). With respect to this structure, broken lines in σ bend towards the origin, so

mt2 = mt+ku, k ∈ Z≥0, and so we still have D valv(mt2) ≥ D valv(mt1), as desired.

Define valv(ϑq) := min[q,γ]

[
mint∈(−∞,0] D valv(−γ′(t))

]
, where the first min is

over all equivalence classes of broken lines with initial direction q. More generally, for

a function f =
∑

i∈I aiϑqi with ai 6= 0 for each i ∈ I, define valv(f) = mini∈I valv(ϑqi).

The above lemma implies:

Corollary 3.2.7. valv(ϑq) = valv(q).

Lemma 3.2.8. valv(ϑq1ϑq2) = valv(ϑq1) + valv(ϑq2).

Proof. Suppose that valv is non-positive everywhere. Then it only bends along a single

ray ρ. If we take a branch cut along ρ, U trop can be identified with a convex cone on

which valv is linear. On the other hand, if valv is positive somewhere then we have

seen that there is some seed with respect to which valv is linear.

In either case, Theorem 3.1.6 and Remark 3.2.5 imply that ϑq1ϑq2 has a ϑq1+q2

term (addition performed with respect to the above-mentioned linear structure or

branch cut on U trop that makes valv linear). The linearity of valv then gives us

valv(ϑq1+q2) = valv(ϑq1) + valv(ϑq2). Similarly, Theorem 3.1.6 and Lemma 3.2.6 imply

we cannot get any larger values, so the equality holds.
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Theorem 3.2.9. Under the identification wU , valv(q) = valDv(ϑq). Thus, valv(f) =

valDv(f).

Proof. Suppose that q = Ldv(tq) ∈ Ld,0v for some d > 0. We see from Equation 3.4 and

the definition of theta functions that

valDv(ϑq) = min
[q,γ]|γ(0)=q

v ∧mγ, (3.6)

where v may be interpreted as γ′(tq). By the definition of valv and the fact that

v ∧ mγ = D valv(mγ), the right-hand side is ≥ valv(ϑq), which by Corollary 3.2.7

equals valv(q). The straight broken line contained in ρq gives us equality.

Now suppose valv(q) = d ≥ 0. Let p ∈ Lcv for some c > 0. Then, as in Equation

3.6, we have

valDv(ϑq) = min
[q,γ]|γ(0)=p

v ∧mγ,

and this is still ≥ valv(ϑq) = valv(q) = d ≥ 0.

Now, pick any q′ with valv(q
′) < −d. We can write ϑqϑq′ =

∑
r∈I arϑr, ar 6= 0,

for some I ⊂ U trop(Z). Lemma 3.2.8 tells us that valv(ϑqϑq′) = d − d′ < 0. In

particular, there is some r ∈ I with valDv(ϑr) = valv(ϑr) = d − d′ < 0, so we do not

need to worry about the r ∈ I for which valDv(ϑr) ≥ 0. The previous paragraph shows

that these are the r for which valv(r) ≥ 0.

Thus, we have

valDv(ϑqϑq′) = min
r∈I

valDv ϑr = valv(ϑqϑq′) = d− d′.

Since valuations are additive, this implies that valDv(ϑq) = d = valv(q), as desired.
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3.2.4 Tropical Theta Functions

The previous subsection tells us that ϑtrop
q (v) = valv(ϑq) = valv(q). In this

subsection we will explicitely describe the fibers of ϑtrop
q in V trop.

Notation 3.2.10. We will use the notation ∧q+ to indicate we are using the wedge

product on defined on U trop by cutting along ρq and then identifying ρq with the

clockwise-most boundary ray of U trop \ ρq (so q ∧ v ≥ 0 for nearby v in U trop \ ρq).

Similarly, for ∧q− we identify ρq with the counterclockwise-most boundary ray.

Lemma 3.2.11. If valv(q) ≤ 0, then

valv(q) = min
t∈R|Ld>0

v (t)∈ρq

{
(Ld>0

v )′(t) ∧ q
}
∪ {0}

= min
i=0,...,k

{
µ−iv ∧v+ q

}
∪ {0}

= min
i=0,...,k

{
v ∧q− µiq

}
∪ {0}

= min
t∈R|Ld<0

q (t)∈ρv

{
v ∧ (Ld<0

q )′(t)
}
∪ {0}

where k is the smallest non-negative integer such that v ∧q− µk+1q ≥ 0.

Proof. Let t1, . . . , tk be the times at which Ld>0
v (t) intersects ρq. For the first equality,

note that if for some di, L
di>0
v (ti) = q, then (Ldi>0

v )′(t) ∧ q is negative the lattice

distance of the line from the origin at that time7 (i.e., −di). Since Ld>0,0
v contains the

point of ρq ∩ Ld>0
v closest to the origin, say, Ld>0

v (tm), we have that dm is the largest

di’s. Hence, the min in the first equality is obtained at Ld>0
v (tm) ∈ Ld>0,0

v . Since

(Ld>0
v )′(tm) ∧ q = valv(q), this proves the first equality.

7When we multiply d by a positive scalar c, we map Ldv(t) to cLdv(t). That way the times t1, . . . , tk
are unchanged.
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The second equality follows by noting that each time we follow Ld>0
v around the

origin (moving backwards along the line), the tangent vector (initially v) is multiplied

by µ−1. Note that k as in the statement of the theorem is the number of times that

the Ld>0
v intersects ρq.

The third equality follows from the fact that µ ∈ SL2(Z), and so a ∧ b =

µ(a) ∧ µ(b). The fourth equality follows symmetrically to the second equality.

Corollary 3.2.12. Under the identification wU of U trop with V trop, for d < 0, Ld,0q is

the fiber {v ∈ U trop|ϑtrop
q (v) = d}.

Proposition 3.2.13. Under the identification wU of U trop with V trop, for d > 0, Ld,0q

is the fiber {v ∈ U trop|ϑtrop
q (v) = d}.

Proof. The first statement is clear from what we have already said. For the second

statement, let γq and γv be broken lines with initial tangent vectors q and v, respectively,

which are supported on Ld,0q and L−d,0v , respectively. Let q1, v1 be negative of the tangent

vectors to γq and γv, respectively, on the counterclockwise-side of a scattering ray ρv

generated by primitive vector v, and similarly for q2 and v2 on the clockwise-side of ρu.

It suffices to show that v1 ∧ q1 = v2 ∧ q2. Let bu be the degree of the scattering

function attached to ρu (so for U generic, it is the number of (−1)-curves hitting Du).

Then when crossing in the counterclockwise direction, q2 changes to q1 = q2+bu(u∧q2)u,

while v2 changes to v1 = v2 + bu(u ∧ v2)u. So indeed,

v1 ∧ q1 = v2 ∧ q2 + bu(u ∧ v2)(u ∧ q2) + bu(v2 ∧ u)(u ∧ q2) = v2 ∧ q2.
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3.2.5 Symmetry of the Dual Pairing

Note that we have a canonical pairing 〈·, ·〉Z : U trop(Z)×V trop(Z)→ Z defined by

〈q, v〉 := ϑtrop
q (v) = valDv(ϑq). This can be extended to a pairing 〈·, ·〉 : U trop×V trop →

R as follows: extending to rational points is easy because the pairing is linear with

respect to multiplication by non-negative rational (and real) numbers in either variable.

Fixing one variable gives a piecewise-linear (in particular, continuous) function in the

other, and so we can extend continuously to the real points for both variables.

On the other hand, since V is itself a log Calabi-Yau surface (deformation

equivalent to U), we could apply the mirror constructions of §3.1 to V to construct

a mirror family U to V , with points v ∈ V trop(Z) corresponding to canonical theta

functions ϑv on U. U (or at least some deformation of U) may be identified with a

fiber of U, and so we obtain a map wV : V trop → U trop analogously to how we defined

wU (here, it is important to remember that we take the orientation of V trop to be

opposite that induced by wU). Corollary 3.2.12 and Proposition 3.2.13 hold as before

with the roles of U trop and V trop interchanged. We see:

Theorem 3.2.14. For q ∈ U trop and v ∈ V trop, ϑtrop
q (v) = ϑtrop

v (q). Thus, the pairing

〈·, ·〉 does not depend on which side we view as the mirror.

Proof. Note that the support of wU(Ld,0q ) is the same as that of L−d,0wU (q), and similarly

with wU(Ld,0q ) and L−d,0wU (q). The negation of the distance comes from the difference in

orientation between U trop and V trop. We want to show that ϑtrop
q (v) = valq(v). This

follows immediately from comparing the definition of valq in §3.2.3 to the descriptions

of ϑtrop
q in Corollary 3.2.12 and Proposition 3.2.13.
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(a) (b) (c) (d)

Figure 3.1: Some lines Lq which (a) do not wrap; (b) wrap once; (c) wrap twice (as
in the E7 case); and (d) wrap three times (as in the E8 case). The dashed red rays
indicate our chosen branch cuts. The blue vectors denote the boundary vectors and
the bend bq. The green rays are the rays along which the functions bend. The curved
appearance of the lines occurs because the projection of U trop onto the page is not an
isometry.

Remark 3.2.15. If we use the identification wψ instead of wU , then for q, v ∈ U trop

with 〈q, wψ(v)〉 ≤ 0, one could show that 〈q, wψ(v)〉 = βv(q) (notation as in Lemma

2.2.10). Then the symmetry of Theorem 3.2.14 exactly means that βv(q) = βq(v),

which is precisely what Lemma 2.2.10 says. So from this perspective, the symmetry of

the pairing is essentially a consequence of the symmetry of the intersection form.

3.2.6 Bending Parameters of Tropical Theta Functions

3.2.6.1 Bends of the Negative Fibers

Let d < 0. Recall that Ld,0q is the fiber ϑtrop
q (v) = d by Corollary 3.2.12.

Either Ld,0q is unbounded as in Figure 3.1(a), or, if Ldq self-intersects, then Ld,0q is

bounded as in Figure 3.1(b,c,d). It is clear from these figures that there is some

bq ∈ V trop(Z) = wU(U trop(Z)) such that ϑtrop
q = βbq whenever both are negative (βbq is

as defined in §2.2.4.1). Furthermore, the ray ρbq should intersect the vertex of Ld,0q (if
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there is one).

To find bq, we first define the boundary vectors of Ld,0q (see Figure 3.1). If

Ld,0q is unbounded, then we say the boundary vectors of Ld,0q are V+ := Ldq(∞) = q

and V− := Ldq(−∞). Otherwise, let t1 < t2 ∈ R denote the initial and final times

times for which Ldq(t) ∈ Ld,0q . Then the boundary vectors are V+ := (Ldq)
′(t2) and

V− := −(Ldq)
′(t1) (so V+ is the outward flow, and V− is the inward flow, which we

negate). Note that V− = −µ(V+). We can add these tangent vectors and identify the

sum with a point in U trop. We claim that bq := V−+V+. In fact, this is easy to see: just

observe that when we cross the ray ρbq in the counterclockwise direction, ϑtrop
q changes

from · ∧ (−V−) to · ∧ V+ = · ∧ (−V− + bq), which indeed means that ϑtrop
q equals βbq .

It follows immediately from the above argument that if Ld>0
q wraps at most once

(Figure 3.1(a,b)), then bq = q−µq (where we choose a cut which hits Ldq exactly once).

In terms of our classification in §2.3, the Q = E7 and E8 cases are the only ones where

lines wrap more than once (Figure 3.1(c,d)). We take cuts as in the figures. In the E7

case, we still have that bq = q−µ(q). In the E8 case, we find bq = µ(q)−µ2(q) = q. In

particular, we note:

Lemma 3.2.16. The map b : U trop(Z) → U trop(Z), q 7→ bq, extends to an integral

linear endomorphism of U trop.

3.2.6.2 Bends of the Positive Fibers

We continue to use the identification wU . Let ρ ⊂ U trop be a ray along which

ϑtrop
q is non-negative. Let bρ be the degree of the scattering function fρ (so for U

generic, it is the number of (−1)-curves intersecting Dρ).
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Proposition 3.2.17. Let v ∈ U trop
0 (Z) (identified with V trop

0 (Z) by wU) be primitive,

generating a ray ρv. Suppose ϑtrop
q (v) ≥ 0, and assume that ϑtrop

q is positive somewhere.

Then the bending parameter of ϑtrop
q along ρ is −bρϑtrop

q (v).

Proof. This follows immediately from Proposition 3.2.13, the definition of broken lines,

and the description of the scattering diagram in §3.1.6. In fact, if U is generic and

E1, . . . , Ebi are the (−1)-curves intersecting Dρ, then it follows from the desription of

ϑq in Proposition 3.1.10 that valEi ϑq = ϑtrop
q (v) for each i, and all the zeroes of ϑq are

along (−1)-curves like this. The description of the bending parameters then follows

from the relationship between bending parameters and intersection numbers in Lemma

3.2.4.

Remark 3.2.18. We note that the local coordinate description of piecewise-linear func-

tions from §2.2.4.2 easily implies that the sum of the bends of ϑtrop
q must equal bq of

§3.2.6.1, and similarly for valv.

We can now prove:

Lemma 3.2.19. Suppose that two tropical theta functions ϑtrop
q1

and ϑtrop
q2

are equal on

some open cone σ ⊆ U trop. Then q1 = q2.

Proof. Suppose that there is some subcone of σ on which the functions are negative.

Then the fiber ϑtrop
q1

= ϑtrop
q2

= −1 is a line segment L in U trop, and extending this

segment to ∞ (with 0 on the right) recovers q1 = q2.

Now suppose that ϑtrop
q1

= ϑtrop
q2
≥ 0 everywhere on σ. Recall that this means

ϑtrop
qi

will bend along each ρv ⊂ σ with bending parameter −bρviϑ
trop
qi

(vi), where vi is
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primitive on ρi and bρvi is as above. Thus, we know how to extend the fibers to infinity

to determine the qi’s.

3.2.7 Convexity Properties

We saw in Lemma 3.2.4 that tropicalizations of regular functions are convex.

[GHKK] defines a stronger version of convexity, namely, convexity along broken lines.

Recall from §2.2.1.1 that to define a linear structure on a piecewise-linear manifold, it

suffices to specify which piecewise-straight lines are straight.

Definition 3.2.20. Let γ : (−∞, 0]→ U trop be a broken line, and let ϕ be a rational

piecewise linear function on U trop. In a neighborhood of a point γ(tp) = p contained

in a ray ρ, we can modify the linear structure of U trop so that γ′(t) is constant in a

neighborhood of tp (with adjacent tangent spaces identified using parallel transport

along γ). Then ϕ is said to be convex along γ at the point p if it is convex across ρ

with respect to this affine structure. We say that ϕ is convex along broken lines if it is

convex along every broken line.

Note that the usual notion of convexity is just convexity along straight lines.

Our definition is somewhat different from that used in [GHKK]. They say a function

is convex along broken lines if it is decreasing along broken lines, in the sense of §3.2.3.

These definitions are in fact equivalent:

Lemma 3.2.21. Convex along broken lines is equivalent to decreasing along broken

lines.
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Proof. This follows from recalling that the usual notion of convexity can be defined as

decreasing along straight lines.

Lemma 3.2.6 thus implies that valuation functions, and hence tropical theta

functions, are convex along broken lines. We will see this in another way below.

Definition 3.2.22. We call a function ϕ : U trop → R tropical if it is integral piecewise-

linear and convex along broken lines. Note that tropical functions are closed under

addition and min. We say ϕ is an indecomposable tropical function if it cannot be

written as a minimum of some finite collection S of tropical functions with ϕ /∈ S.

[FG09] defines another notion of convexity:

Definition 3.2.23. Recall that every seed induces a vector space structure on U trop

(viewed as a subspace of Xtrop). One says that a piecewise-linear function ϕ : U trop → R

is convex with respect to every seed if it is convex with respect to each of these vector

space structures.

Recall that we can apply the mirror construction to V and V trop, so the notion

of convexity along broken lines makes sense in V trop. Furthermore, wU identifies broken

lines in U trop with broken lines in V trop and thus preserves convexity along broken lines.

Theorem 3.2.24. If ϕ : U trop → R is piecewise-linear, then ϕ is convex along broken

lines if and only if it is convex with respect to every seed. The tropical functions on

V trop are exactly the tropicalizations of regular functions on V , and the indecomposable

tropical functions are exactly the tropicalizations of theta functions.
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Proof. In U trop (hence V trop) with its canonical integral linear structure, broken lines

can only bend away from the origin. Let Ld denote a fiber ϕ = d for some piecewise-

linear function ϕ. ϕ being convex means that when d < 0, Ld only bends towards

the origin, and when d > 0, Ld only bends away from the origin. Locally changing to

an affine structure in which some broken line is straight will only cause lines to bend

more towards the origin. Thus, on a cone where ϕ is non-positive, convexity of ϕ along

broken lines is equivalent to convexity along straight lines.

Now, suppose that ϕ is convex along straight lines and non-negative on some

(necessarily convex) cone σ. We saw in §3.1.6 that σ must live in the cluster complex.

Convexity of ϕ along broken lines is now equivalent to convexity along the broken lines

which take the maximal allowed bend across each ray in σ. Any such broken line lives

in some Ld>0
q , and it follows from Proposition 3.1.10 that there is a seed for which Ld>0

q

is straight in the corresponding linear structure.

In summary, convexity of ϕ along broken lines is equivalent to convexity along

straight lines in V trop and along maximally broken lines in the cluster complex. Any

maximally broken line in the cluster complex is straight with respect to some seed,

and the same is locally true for straight lines in V trop. Thus, convexity with respect to

every seed implies convexity along broken lines. On the other hand, every line which

is straight with respect to some seed is a broken line, so convexity along broken lines

implies convexity with respect to every seed.

Now, given any regular function f on V , we know that the restriction of f to

any seed torus is regular, and so f trop is convex with respect to any seed. This gives an

alternative proof of the fact that tropicalizations of regular functions are convex along
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broken lines.

Now suppose that ϕ is not an indecomposable tropical function. Then ϕ =

min(f1, f2) for two tropical functions f1 and f2, neither of which is globally equal to

ϕ. So we can find cones σ1, σ2 sharing a boundary ray ρ such that ϕ|σi = fi and

f1(x) 6= f2(x) for x ∈ σ2. Suppose that ϕ is linear across ρ along some broken line

γ crossing ρ. Since f1 and f2 are both convex along this broken line and ϕ is their

minimum, they must both be equal to ϕ in a neighborhood of ρ. This contradicts our

assumption that f1(x) 6= f2(x) for x ∈ σ2, so ϕ must bend across ρ along γ.

When crossing from σ1 to σ2 above, ϕ changed from f1 to f2. If we continue

going around the origin in the same direction, ϕ must eventually change back to f1

after crossing some ray (or else it would be identically equal to f2), and so we find that

there are in fact at least two rays ρ1 and ρ2 in V trop such that ϕ bends nontrivially

across ρi along any broken line crossing ρi, for each i.

If ϑtrop
q is non-positive everywhere, then there is only one ray across which

ϑtrop
q bends nontrivially along straight lines. On the other hand, if ϑtrop

q is positive

somewhere, then ϑtrop
q bends across straight lines only in the interior of σq−,q+ , but it

does not bend along Ld>0
q , which crosses any ray in the interior of σq−,q+ . Thus, the

tropicalization of any theta function is indecomposable.

On the other hand, let ϕ be an arbitrary tropical function on V trop. Suppose

that ϕ ≤ 0 everywhere, but is not identically 0 (hence has a nontrivial bend along some

ray). Then there is some compactification of V in which −ϕ corresponds to an effec-

tive boundary divisor W−ϕ which has non-negative intersection with every boundary
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component, and positive intersection with some component. The linear system |W−ϕ|

contains a pencil, and for V generic, this pencil gives a regular function on V . ϕ is the

tropicalization of this function.

Now suppose that ϕ is a tropical function such that ϕ|σ = ϑtrop
q |σ for some

q ∈ U trop(Z) and some σ ⊂ V trop, and assume that ϑtrop
q > 0 somewhere in V trop. Then

ϕ ≤ ϑtrop
q everywhere in V trop, because there is some seed with respect to which ϑtrop

q

is linear and ϕ is convex, hence equal to the minimum of its linear parts.

Let ϕ be a tropial function on V trop which is positive on some cone σ+. Let

σ ⊂ σ+ be a subcone on which ϕ is linear. We can choose a covariantly constant integral

section section qσ of Tσ such that ϕ(p) = p ∧ [qσ(p)], where p is being identified with

a vector in TpV
trop. If we view the fiber Fd := {ϕ|σ = d > 0} as part of a broken line

with qσ giving the negative tangent direction, then we can extend Fd indefinitely each

direction, taking the maximal allowed bend at each wall it crosses, to get a broken line

Ld>0
q . ϕ|σ then must equal ϑtrop

q |σ, and so ϕ ≤ ϑtrop
q everywhere on V trop.

Now let σ be a cone outside of σ+ on which ϕ is linear. We have a fiber

Fd := {ϕ|σ = d < 0} as before, and extending indefinitely in either direction (without

bends this time) gets us a line Ld<0
q′ containing Fd. If Ld<0

q′ does not wrap, then

ϕ|σ = ϑtrop
q′ |σ, and this tropical theta function is positive somewhere on V trop. So

then ϕ ≤ ϑtrop
q′ every on V trop. If Ld<0

q′ does wrap, then Fd extended in at least one

direction will enter σ+. Let σ̃ be a cone containing Fd extended in this one direction to

the point p ∈ σ+. σ̃ is convex since the extension of Fd hits both boundary rays. Let

ϕ̃σ be the function on σ̃ obtained by extending ϕσ linearly, so ϕ̃σ has the extension of

Fd as a fiber. Hence, ϕ̃σ is negative at p ∈ σ+. Since ϕ|σ = ϕ̃σ, ϕ|σ̃ is convex, and ϕ̃σ
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is linear, we then have that ϕ is negative at p ∈ σ+, a contradiction.

Thus, on every domain of linearity, ϕ is equal to the restriction of some tropical

theta function which is somewhere positive. ϕ must therefore be equal to the min of

these tropical theta functions.

Since every regular function can be written as a sum of theta functions, this

implies that any tropical function is the tropicalization of some regular function, and

also that the indecomposable tropical functions are exactly the tropical theta functions.

Remark 3.2.25. In the above theorem, we assumed U was positive. However, we can

easily extend to the negative cases. In the negative definite cases, convex (along straight

lines) functions on U trop must be positive everywhere on U trop
0 . But for a positive

function to be convex along broken lines, it must take the maximal possible bend along

every broken line it passes. Since U trop in any non finite-type case contains infinitely

many scattering rays, this is impossible. So there are no non-trivial tropical functions

on U trop in these cases. This is what we expect since there are no non-constant regular

funcitons on U in these cases.

In the strictly semi-definite cases, there are straight lines in U trop which are

circles, and these give fibers for a ray’s worth of tropical functions. In general, U

for these cases might not admit non-constant regular functions, so the theorem as

stated does not quite hold here. However, it is possible to deform such a U to a surface

admitting an elliptic fibration over A1, and powers of the fibration map give the desired

regular functions. So the theorem does hold up to deformation of U .
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Corollary 3.2.26. The identification wU : U trop(Q) → V trop(Q) really does extend to

an integral linear isomoprhism wU : U trop → V trop.

Proof. wU extends to an integral linear function because it pulls back tropical func-

tions (restricted to the rational points) to tropical functions (restricted to the rational

points). It is an isomorphism because wV gives the inverse map.

The notions of convexity along broken lines and convexity with respect to every

seed make sense in more general situations related to cluster varieties (cf. [GHKK] and

[FG09], respectively).

Conjecture 3.2.27. Convexity along broken lines is always equivalent to convexity

with respect to every seed.

The key to proving this conjecture in dimension 2 was Lemma 3.1.7, which says

that the following conjecture holds in dimension 2:

Conjecture 3.2.28. If ϕ is a tropical function on the tropicalization of a cluster variety

(or a fiber of a cluster variety) Y, and if ϕ is positive at some point on a scattering

wall w, then the wall-crossing formula for w is the formula for some mutation in some

cluster structure on Y (i.e., w lives in the cluster complex for some cluster structure

on Y).

The following conjecture is from [GHKK]:

Conjecture 3.2.29 ([GHKK]). The tropicalization of any regular function on any log

Calabi-Yau variety is convex along broken lines.
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Proving Conjecture 3.2.27 would immediately imply this, because globally reg-

ular functions are of course regular on each seed torus, and they therefore give convex

functions with respect to every seed. Of course, we also conjecture that the other parts

of Theorem 3.2.24 generalize to other cluster situations (and more generally, to other

log Calabi-Yau situations).

3.3 Toric Constructions for Log Calabi-Yau Surfaces

Throughout this section, it is always possible to switch the roles of U and V

using the symmetry of the pairing 〈·, ·〉. We will therefore only define and prove things

for one side.

3.3.1 Polytopes

Definition 3.3.1. Let Q be any subset of V trop. The polar polytope Q◦ is the set

{q ∈ U trop|〈q, v〉 ≥ −1 for all v ∈ Q}.

The strong convex hull8 of a set Q ⊂ U trop is the set

Conv(Q) =

{
x ∈ U trop|〈x, v〉 ≥ inf

q∈Q
〈q, v〉 for all v ∈ V trop

}
.

Let f =
∑

q∈Q aqϑq ∈ Γ(V,OV ), aq 6= 0, for some finite set Q ⊂ U trop(Z). The

Newton Polytope of f is the set Newt(f) := Conv(Q). Equivalently, Newt(f) = {x ∈

U trop|〈x, v〉 ≥ f trop(v) for all v ∈ V trop}.

A set Q is called strongly convex if Q = Conv(Q).

8It follows from Theorem 3.2.14 that this is equivalent to the version of convex hull used in [FG11]
and [She12]. Similarly for the Minkowski sums of §3.3.3.
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The following lemma follows directly from the definitions.

Lemma 3.3.2. For any set Q ⊆ V trop, Q ⊆ (Q◦)◦. If Q ⊆ S, then S◦ ⊆ Q◦.

Definition 3.3.3. A polytope Q is called self-polar if Q = (Q◦)◦.

Lemma 3.3.4. Q◦ is self-polar. Thus, Q being self-polar is equivalent to Q being the

polar polytope of some set.

Proof. The first statement of Lemma 3.3.2 immediately gives us P ◦ ⊆ ((P ◦)◦)◦. It also

gives us P ⊆ (P ◦)◦, and then the second statement gives us ((P ◦)◦)◦ ⊆ P ◦.

Proposition 3.3.5. A set Q ⊂ U trop is strongly convex if and only if it is an intersec-

tion of sets of the form {〈·, v〉 ≥ av}.

Proof. Conv(Q) is by definition an intersection of sets of this form, with av :=

infq∈Q〈q, v〉. So Q being convex implies it has this form.

Conversely, suppose Q =
⋂
v∈I{q ∈ U trop|〈q, v〉 ≥ av ∈ R}. If Q is not convex,

then there is some x /∈ Q such that for every v ∈ V trop, 〈x, v〉 ≥ 〈qv, v〉 for some

qv ∈ Q (since Q is closed, the infimum in the definition of Conv(Q) is obtained for

some qv ∈ Q). But this implies x is in each of the sets in the intersection defining Q,

hence in Q.

Corollary 3.3.6. Self-polar polytopes are exactly the strongly convex polytopes con-

taining the origin in their interiors, which are the same as ordinary convex polytopes

with the origin in their interiors.
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Proof. Polar polytopes by definition have the form given in Proposition 3.3.5. So self-

polar polytopes are convex. It is easy to see that they contain 0 in their interiors.

Conversely, strongly convex polytopes with 0 in their interiors have the form

given in Proposition 3.3.5 with each av < 0. Thus, by multiplying the v’s by positive

scalars, we can assume each av equals −1. The form from Proposition 3.3.5 is then the

definition for a polar polytope.

For the last statement, sets of the form {〈·, v〉 ≥ av} with av < 0 are exactly the

zero-sides of straight lines in U trop, and ordinary convex polytopes (i.e., those which

are convex with respect to the canonical integral linear structure on U trop) with the

origin in their interiors are the intersections of such sets.

Recall our notation Qϕ = {q ∈ U trop|ϕ(q) ≥ −1}, for ϕ a piecewise linear

function on U trop. We use the analogous notation in V trop.

Proposition 3.3.7. If ϕ : V trop → R is tropical, then Qϕ is self-polar. If ϕ is integral

piecewise-linear and Qϕ is self-polar and bounded, then ϕ tropical.

Proof. First suppose that ϕ is tropical. Lemma 3.3.2 gives us Q ⊆ (Q◦)◦. On the

other hand, Theorem 3.2.24 tells us that there is some regular function f on V with

f trop = ϕ. We can write f =
∑

q∈S aqϑq, aq 6= 0 for some finite set S ⊂ U trop(Z).

Since f trop(v) = minq∈S〈q, v〉 and v ∈ Q if and only if f trop(v) ≥ −1, this means that

S ⊆ Q◦. Now, v ∈ (Q◦)◦ means that 〈q, v〉 ≥ −1 for all q ∈ Q◦, hence all q ∈ S, and

this implies that f trop(v) ≥ −1. This means that v ∈ Q, as desired.

On the other hand, Qϕ being strongly convex and having the form {ϕ ≥ −1}

for ϕ integral piecewise-linear means that it has the form
⋂
q∈S{〈q, ·〉 ≥ −1} for some
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finite set S ⊂ U trop(Z). Let f =
∑

q∈S ϑq. Then Qϕ = Qf trop . Qϕ bounded implies that

ϕ < 0 everywhere on U trop
0 , so Qϕ determines ϕ. Hence, ϕ = f trop.

Recall that in the usual vector space situation, a polytope being convex means

that any line segment with endpoints in the polytope is entirely contained in the

polytope. The following theorem generalizes that characterization.

Theorem 3.3.8. If a set Q ⊆ U trop is strongly convex, then every broken line segment

with endpoints in Q is contained entirely within Q. Conversely, if Q is a rational

polytope containing every broken line segment9 with endpoints in Q, then Q is strongly

convex.

Proof. Suppose Q is strongly convex. So Q is an intersection of sets of the form

{〈·, v〉 ≥ av ∈ R}. Let γ be a segment of a broken line with endpoints in Q. We know

that each 〈·, v〉 is convex along γ, so if we give U trop a linear structure in which γ is

straight, then the usual notion of convexity tells us that indeed γ ⊂ {〈·, v〉 ≥ av ∈ R}.

Thus, γ ⊂ Q.

Now suppose that Q is a rational polytope and that every broken line with

endpoints in Q is contained entirely within Q. Assume that Q is two-dimensional (the

lower dimensional cases are easier). We claim that the boundary of Q is a finite union

of closed sets Γ each of which satisfies 〈Γ, vΓ〉 = aΓ ∈ Q for some vΓ ∈ V trop(Z) such

9Here we must include broken lines through the origin, by which we mean limits of sequence of
broken lines whch are all equivalent to eachother in the sense of §3.1.4. Alternatively, in addition to
the usual broken lines, we allow sets of the form 〈·, v〉 = 0 for v ∈ V trop(Z).
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that 〈q, vΓ〉 ≥ aΓ for all q ∈ Q. This implies that Q =
⋂

Γ{q ∈ U trop|〈q, vΓ〉 ≥ aΓ},

which by Proposition 3.3.5 means that Q is strongly convex.

It is not hard to see that each point of the boundary is contained in a closed

interval Γ (of length > 0) which can be extended to a fiber Γ̃ = {〈·, vΓ〉 = av} for some

v ∈ V trop(Z), av ∈ Q, satisfying 〈q, v〉 > av for some q ∈ Q. Suppose there is also a

q′ ∈ Q such that 〈q′, v〉 = a′v < av. Since Q is connected, we may assume a′v = av − ε

for any sufficiently small ε > 0. We may also assume q′ is a rational point. Let p

be a point in the interior of Γ. If Γ̃ is a straight line, then it is clear that rotating it

slightly about p will give a straight line connecting p to q′ which is not contained in Q

in between, a contradiction. If Γ̃ is not straight, then there is some seed with respect

to which it is straight, and here we can preform a similar rotation. This proves the

claim.

Remark 3.3.9. We note that rather than checking the above condition for every broken

line, it suffices to check for broken lines which are rational fibers of 〈·, v〉 for some

v ∈ V trop(Z). Such broken lines are either straight in U trop or are contained in the

cluster complex and are straight with respect to some seed structure. So it is not

necessary to understand the entire scattering diagram to understand strong convexity.

Similarly for convexity of functions along broken lines.

Examples 3.3.10. • Let p ∈ U trop be the self-intersection point of some straight

line L that wraps once. Then Conv(p) = Z(L). Since a point is convex with

respect to every seed, this shows that a polytope being strongly convex is stronger

than being convex with respect to every seed.
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• In the cubic surface case, the convex hull of a point q ∈ U trop(Z) is the line

segment connecting 0 to q. This illustrates the need for considering L0
q.

3.3.1.1 Line Bundles and Polytopes

Let W =
∑
aiDvi be a Q-divisor in a compactification (Z,D) of V , with Dvi

being the divisor corresponding to some primitive vi ∈ V trop(Z), and ai ∈ Q. Recall

that ϕW denotes the piecewise-linear function on V trop which takes the value ai at vi and

is linear off the rays generated by the vi’s. Let QW := Q−ϕW = {v ∈ V trop| − ϕW (v) ≥

−1}. We note that if ϕ−W is non-positive (i.e., if W is effective), then QW is the convex

hull of the points 1
ai
vi (since 0 ∈ QW , convex and strongly convex are equivalent).

Definition 3.3.11. Q∨W := Conv{q ∈ U trop|〈q, vi〉 ≥ −ai for all i}. That is, Q∨W is

the Newton polytope of a generic section of O(W ).

Note that this actually depends on W , not just on the polytope QW as the

notation suggests. It follows easily from the definitions that:

Lemma 3.3.12. If W is integral, then q ∈ Q∨W ∩ U trop(Z) if and only if ϑq ∈

Γ(Z,O(W )). Thus, as a vector space, Γ(Z,O(W )) =
⊕

q∈Q∨W∩Utrop(Z) kϑq. If W is

effective, then Q∨W = Q◦W . In general, Q∨W ⊆ Q◦W .

Proposition 3.3.13. The strongly convex integral (resp. rational) polytopes are exactly

those of the form Q∨W for some divisor (resp. some Q-divisor) W .

Proof. This follows immediately from the definition of Q∨W and Proposition 3.3.5.
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Lemma 3.3.14. Let f be a regular function on V . Let Wf be negative the boundary

divisor corresponding to f trop. Then Newt(f) = Q∨Wf
.

Proof. Once again, this follows easily from the definitions.

Using our descriptions of the fibers of valvi from Corollary 3.2.12 and Proposition

3.2.13, we can easily describe Q∨W explicitely. In particular:

Proposition 3.3.15. Use wU to identify U trop with V trop. Assume that W =
∑
aiDvi

is strictly effective (so each ai > 0). Then:

Q∨W = Q◦W =
⋂
i

Z(Laivi ).

This is analogous to the toric picture of a “normal polytope,” except that us-

ing the wedge form in place of the dot product results in “parallel polytopes.” This

description was previously observed in [GHK].

May other facts about polytopes from the toric world generalize to our situation

with virtually no change. For example:

Proposition 3.3.16. Let W =
∑
aiDvi be an integral Weil divisor, and let Fvi be the

(possibly empty) set Q∨W ∩{q ∈ U trop|〈q, vi〉 = −ai}. Let di be one less than the number

of lattice points on Fvi. If di ≥ 1, then di = W ·Di.

Proof. On any affine open subset containing part of Dvi , the global sections of OW

whose restrictions to Dvi are not 0 correspond to the lattice points on Fvi . Thus,

OW |Di ∼= OP1(di), which has degree di. So W ·Di = di by [Har77], Lemma V.1.3.
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Corollary 3.3.17. Any strongly convex polytope Q in U trop is Q∨W for some not nec-

essarily effective D-ample divisor W in some compactification of V . W is effective if

and only if Q contains the origin.

Proof. We can write Q =
⋂
v∈S{〈·, v〉 ≥ −av} with S minimal. Then W =

∑
v∈S avDv,

where if v = |v|v′ with v′ primitive, then Dv denotes |v|Dv′ . The D-ampleness follows

from the fact that since S is minimal, Fv contains at least two integer points.

[GHK] describes the corresponding maps to projective space in the cases where

the D-ample divisor W is effective. We do not need W to be effective because we do

not require the origin to be in the interior of the stongly convex polytope. However,

D-ample divisors which are not effective are typically not ample on V , even if V is

generic.

Example 3.3.18. For U the affine cubic surface, U trop contains a reflexive polytope

which includes four integer points. This shows that any surface whose tropicalization

is U trop must be a degree 3 del Pezzo surface, i.e., the cubic surface.

3.3.2 Dual Cones

Let σ be a cone in a fan Σ corresponding to some compactification (Z,D) of V .

Definition 3.3.19. The dual cone to σ is σ∨ := {q ∈ U trop|〈q, v〉 ≥ 0 for all v ∈ σ}.

Let (Zσ,Dσ) be the partial compactification of V which includes the non-nodal

points of Dρ for each boundary ray ρ of σ, along with the point Dρ ∩ Dρ′ if σ is

two-dimensional. From the definitions, we have:

101



Lemma 3.3.20. q ∈ σ∨ ∩ U trop(Z) if and only if the global regular function ϑq on V

extends to a regular function on (Zσ,Dσ).

Corollary 3.3.21. Let Aσ be the subalgebra of Γ(V,OV ) generated by the ϑq’s with

q ∈ σ∨. If σ∨ is two-dimensional, then Zσ = SpecAσ.

3.3.3 Tropical Multiplication and Minkowski Sums

The theta function multiplication formula in Theorem 3.1.6 is quite complicated.

However, tropicalization allows us to at least see which theta functions might have

nonzero coefficients in a product ϑq1ϑq2 . If f =
∑
cqϑq is a regular funciton, then

cq = 0 unless q ∈ Newt(f), and if q is a vertex10 of f , then cq 6= 0. We would therefore

like to describe Newt(ϑq1ϑq2).

Definition 3.3.22. The Minkowski sum of two strongly convex polytopes Newt(f)

and Newt(g) is Newt(f) + Newt(g) := Newt(fg).

Of course, since (fg)trop = f trop + gtrop, we have that Newt(fg) = {x ∈

U trop|〈x, v〉 ≥ f trop(v) + gtrop(v) for all v ∈ V trop}. This is enough to tell us that:

Proposition 3.3.23. For any k ∈ Z≥0, Newt(fk) = kNewt(f) := {ku|u ∈ Newt(f)}.

10We can write Newt(f) = Conv(S) for some set S ⊂ U trop(Z). By a vertex, we mean a point
q ∈ S such that Conv(S \ {q}) 6= Conv(S). For example, suppose Newt(f) is two-dimensional and is
given by ∩v∈I{〈·, v〉 ≥ av} with I being minimal in the sense that removing some v would result in the
intersection being a larger set. Then r being a vertex means that it is a point on the boundary where
{〈·, v〉 = av} intersects {〈·, v′〉 = av′} for some points v, v′ in I. In case I has only one element, r can
be a self-intersection point of {〈·, v〉 = av}. We do not, however, include points that only look like
vertices because they are kinks in some broken line (after all, such points no longer look like vertices
when viewed with respect to some seed).
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Finding a nice formula for Newt(fg) in general is a bit more complicated. We

will use a different approach, and will assume that f trop and gtrop are both non-positive

(i.e., their Newton polytopes contain 0).

Recall that βv1,...,vk denotes a piecewise-linear funciton which bends along ρvi

with bending parameter |vi|. We rely on the following lemma:

Lemma 3.3.24. Assume we are not in one of the Ik cases of §2.3.4.1 (so βv is unique

for each v ∈ V trop). Suppose that f = βv1,...,vk is a tropical function, and assume that

v1, . . . , vk ∈ U trop(Z) are cyclically ordered according to the orientation of V trop. Let

+i denote addition as defined on the complement of the interior of σvi−1,vi. Assume

that f(u) < 0 for u in the interior of σi := σvi−1,vi. Then

βv1,...,vk |σi = βv1+i...+ivk |σi .

Consequently, if f ≤ 0 everywhere and is 0 along at most a single ray, then

k∑
i=1

βvi =
k

min
i=1

βv1+i...+ivk .

Proof. If v1 +i . . .+i vk ∈ U trop \ σvi−1,vi , then the first claim follows immediately from

our analysis in §2.2.4.2, even without the assumption that f(u) < 0.

However, if v1 +i . . . +i vk is not in U trop \ σvi−1,vi , it means that there is no

convex piecewise-linear function on U trop bending along a single ray whose restriction

to σi−1,i agrees with f . But since f is tropical, we know from Theorem 3.2.24 that it

can be written as a minimum of tropical theta functions, and our analysis in §3.2.6.1

shows that the negative part of any tropical theta function is equal to some convex βq.

Thus, this case must not occur.
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The last statement follows immediately once we note that
∑k

i=1 βvi = βv1,...,vk .

Recall the function b : U trop → U trop of Lemma 3.2.16 which takes q to the

bend of 〈q, ·〉, viewed as a function on U trop using the identification wU . That is,

βwU◦b(q) = 〈q, ·〉.

Theorem 3.3.25 (Tropical Multiplication Formula). Assume we are not in one of the

Ik (k 6= 0) cases. Let q1, . . . , qs ∈ U trop(Z) be cyclically ordered, and let +i denote

addition on the complement of σi := σqi−1,qi. Suppose (
∏s

k=1 ϑqk)
trop

(u) < 0 for all

u ∈ σi. Then (
s∏

k=1

ϑqk

)trop∣∣∣∣∣
σi

= ϑtrop
q1+i...+iqs

∣∣
σi
.

Consequently, if (
∏s

i=1 ϑqi)
trop ≤ 0 everywhere and is 0 along at most a single ray, then(
s∏
i=1

ϑqi

)trop

=

(
s∑
i=1

ϑq1+i...+iqn

)trop

.

Proof. Combining Lemmas 3.2.16 and 3.2.26, we have that the map wU ◦ b : U trop →

V trop is linear. By definition, βwU◦b(q) agrees with the function 〈q, ·〉 on V trop whenever

both are non-positive. Thus(
s∏

k=1

ϑqi

)trop∣∣∣∣∣
σi

=
s∑

k=1

βwU◦b(qk)

∣∣∣∣∣
σi

= βwU◦b(q1)+i...+iwU◦b(qn)

∣∣
σi

= βwU◦b(q1+i...+iqn)

∣∣
σi

= ϑtrop
q1+i...+iqn

∣∣
σi
,
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as desired. In the second line above, +i means that addition is taken as defined on

the complement of the interior of σwU◦b(qi),wU◦b(qi−1) (the order-reversal coming from the

reversed orientation of V trop).

The second claim follows immediately.

I expect the theorem to also hold for the Ik cases, but I have not checked this.

Remark 3.3.26. Note that the above lemma and theorem still hold if we replace the

cone σi with some subcone σ′i ⊂ σi on which the tropical function is negative, even if

the tropical function is positive somewhere on σi.

Theorem 3.3.27. Let Q1, . . . , Qs be strongly convex integral polytopes such that Q1 +

. . .+Qs contains the origin (which in particular is the case if all the Qk’s contain the

origin). Let ρ1, . . . , ρm be a collection of rays in U trop not intersecting the vertices of the

Qk’s such that no two non-equal vertices from different Qk’s lie in the same component

of U trop \
⋃m
i=1 ρi. Then

Q1 + . . .+Qs = Conv

(
m⋃
i=1

(Q1 +i . . .+i Qs)

)
,

where +i denotes addition on the complement of ρi, and Q1 +i . . .+iQs := {q1 +i . . .+i

qs ∈ U trop|qk ∈ Qk}.11

Proof. Let qk,j denote the vertices of Qk, each of which is integral. Since each Qk is

the convex hull of its vertices, we can say Q1 + . . .+Qs is the convex hull of the points

q ∈ U trop(Z) whose corresponding theta functions appear in the expansion of some

11If some q1 +i . . .+i qs is not defined in U trop, we simply do not include it in the set.
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∏s
k=1 ϑqk,jk . It suffices to consider the q’s for which ϑtrop

q

∣∣
σ

=
∏s

k=1

(
ϑqk,jk

)trop
∣∣∣∣
σ

on

some cone σ ⊂ V trop.

We do not need to worry about when these tropical funcitons are positive on

σ, since we assumed the Minkowski sum contains the origin (implying that for some

choice of jk’s the function will be negative on σ). By breaking σ up into a union of

smaller cones, we may assume that σ contains none of the qk,jk ’s in its interior. Then

for some ρi, addition of the qk,jk ’s on the complement of ρi is the same as on the

complement of σ. Thus, when ϑtrop
q

∣∣
σ

is negative, we have from Theorem 3.3.25 that

q = q1,j1 +i . . .+i qs,js . The claim follows.

3.4 Integral Formulas

For this section, let k = C. Recall that since V is log Calabi-Yau like U , it has

a holomorphic volume form Ω with log poles along the boundary D of any maximal

boundary compactification (Z,D). [GHK] defines a class γ ∈ H2(V,Z) as follows.

Take any nonsingular (Z,D = D1 + . . . + Dn) as above. Then γ is the class of a

torus 0 < |zi| = |zi+1| = ε � 1, where zi and zi+1 are local coordinates for Z in a

neighborhood of p = Di ∩Di+1 such that Di is locally given by zi = 0.

Lemma 3.4.1. The class γ is canonical (it does not depend on our choice of compact-

ification or vertex p). This remains true even if we remove from Z a curve C which

intersects only one boundary divisor.

Proof. Suppose we have two different choices of compactification of V . Then we apply

the following argument to a common toric blowup of the two:
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Recall that each toric model (Z,D) → (Z,D) (i.e., each seed) gives us a torus

T = (C∗)2 in V , equal to the complement of the exceptional divisors in V . In fact,

the complement of the images of the exceptional divisors in Z can be identified with a

subvariety of Z. It is well-known that there is a “moment map” from Z to a polygon

Q in MR with D mapping to the boundary of the polygon and with fibers over the k-

dimensional faces being k-dimensional tori in the k-strata of Z. So each pi = Di∩Di+1

maps to a vertex pi of Q. zi and zi+1 can be chosen so that γ is a fiber of the moment

map over a point very close to p. Since all the fibers are homologous, the first claim

follows from taking fibers near different vertices.

Suppose we remove a curve C intersecting, say, Di. Let C denote the closure

in Z of C ∩ T . Then the image of C under the moment map only intersects the edge

Fi which is the image of Di. So even on the complement of the image of C, there is a

path in Q between any two of Q’s vertices, showing that the claim still holds.

See [GHK] for a slightly different proof of the first statement of the lemma.

Remark 3.4.2. Conjecturally, γ is the homology class of a fiber of an SYZ fibration of

V over V trop. At the very least, if we factor the singularity in V trop into focus-focus

singularities which are still contained in some convex polytope Q, then V admits a

Largangian fibration over the interior of Q. See [Sym03] for the details. This fibration

can be used for an alternative proof of the lemma.

Assume Ω is normailized12 so that
∫
γ

Ω = 1. Following [GHK], we define a

12Recall that if we take the cyclic ordering of D = D1 + . . .+Dn as part of our data, then we can
use this to orient U trop, and V trop gets the opposite orientation. This can be used to orient γ (by
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function Tr : OV (V )→ C,

Tr(f) :=

∫
γ

fΩ.

[GHK] shows that Tr(f) is equal to the coefficient of ϑ0 = 1 in the unique expression

of f as a linear combination of theta functions. We will now describe how to modify

this to give the coefficients of the other theta functions.

For q ∈ U trop(Z), define Trq : OV (V )ϑq → C by

Trq(f) :=

∫
γ

fϑ−1
q Ω

Lemma 3.4.3. Trq is well-defined.

Proof. Since ϑ−1
q is only regular on V \Z(ϑq), it is not immediately clear from Stokes’

theorem that this definition is independent of our choice of p for defining γ. If ϑtrop
q ≤ 0

everywhere, then our description of tropical theta functions shows that the zero set

V (ϑq) intersects only one boundary divisor, so the well-definedness follows from Lemma

3.4.1. If ϑtrop
q is positive somewhere, then q is in the cluster complex, and so there is

some open torus T in V on which ϑq is a monomial and therefore has no zeroes. The

claim then follows from Lemma 3.4.1 applied to T .

Lemma 3.4.4. Let q, r ∈ U trop(Z), and suppose that r /∈ Conv(q) \ {q}. Then

Trr(ϑq) = δq,r.

ordering zi and zi+1). Alternatively, we can take the sign of Ω as part of our data and say that γ is
oriented to make

∫
γ

Ω > 0.

108



Proof. If r = q, then the claim is obvious. Otherwise, r /∈ Conv(q), so there is some

primitive v ∈ V trop(Z) such that 〈r, v〉 < 〈q, v〉. Then valDv(ϑqϑ
−1
r ) > 0. Since Ω only

has a simple pole along Dv, ϑqϑ
−1
r Ω is generically regular along Dv. If we view γ as

the class of an S1 bundle over a loop γ′ in Dv, then the claim follows from the Residue

Theorem: ∫
γ

ϑqϑ
−1
r Ω =

∫
γ′

ResDv
(
ϑqϑ

−1
r Ω

)
=

∫
γ′

0 = 0.

Theorem 3.4.5. Let f =
∑

q cqϑq be a function on V . Suppose that at least one of

the following hold:

• r is not in the convex hull of any point q ∈ Newt(f) ∩ U trop(Z) with q 6= r. In

particular, this includes cases where r is a vertex of Newt(f), as well as cases

where r is in the complement of Newt(f).

• r ∈ U trop(Z) is in the cluster complex (i.e., r = 0 or 〈r, v〉 > 0 for some v).

Then cr = Trr(f). In particular, if every point of Newt(f) ∩ U trop(Z) which is not a

vertex is in the cluster complex, then

f =
∑

r∈Utrop(Z)

Trr(f)ϑr. (3.7)

Proof. If r is not in the convex hull of any point in Newt(f) ∩ (U trop(Z) \ {r}), then

the claim follows immediately from Lemma 3.4.4.

Suppose that r 6= 0 is in the cluster complex. We can refine our fan Σ from the

construction of V so that there is some cone σ 3 r which has no scattering rays on its
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interior. Then there is a torus Tσ ∼= (C∗)2 in V corresponding to σ on which ϑr is just

the restriction of the monomial zϕ̃(r), which we may view as a constant times zr. Let

Γ be a broken line in σ with attached monomial zϕ̃(r). By flowing backwards (in the

r direction) along Γ, we see that Γ does not hit any scattering walls, hence does not

bend. So zϕ̃(r) must have been the initial monomial attached to Γ. Hence, ϑr is the

only theta function whose expansion in terms of monomials in Tσ contains a zr term.

Since
∫
γ
zqz−rΩ = δq,r always holds (a standard fact about tori, and also a corollary of

Lemma 3.4.4), the claim follows. The r = 0 case was proven in [GHK11].

Remark 3.4.6. We note that Equation 3.7 resembles the formula for the Fourier series

expansion of a function on a compact torus. Indeed, in the case that V is a toric

variety, applying this theorem to monomials and restricting to the orbits of the torus

action recovers the usual formula for (finite) Fourier expansions.

Remark 3.4.7. Suppose that Newt(f)∩U trop(Z) contains points which are neither ver-

tices nor in the cluster complex. We can still use Trq with various q to get all the

coefficients in the theta function expansion for f as follows: we first use the theorem to

get the coefficients for the vertices {q1, . . . , qs} of Newt(f). We then subtract the contri-

butions of these theta functions to get f̃ := f−
∑s

i=1 Trqi(f)ϑqi . Newt(f̃) is now smaller

than Newt(f) (it is contained in the convex hull of Newt(f) ∩ U trop(Z) \ {q1, . . . , qs}),

so we have a new set of vertices and can apply the process again. Repeating this will

eventually yield all the coefficients.
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3.4.1 Theta Functions up to Linear Equivalence

Consider (Z,D), V = Z \D, as usual. Recall that if f is a regular function on

V , then f determines a divisor (f) = D(f) +V (f), where D(f) :=
∑
f trop(vi)Dvi , and

V (f) is the divisor of interior zeroes of f . Knowing V (f) of course determines f up

to scalar multiplication, and we see that knowing f trop is sufficient for determining the

linear equivalence class |D(f)| = | − V (f)|. The global sections of the corresponding

line bundle are the funcitons of the form
∑

q∈Newt(f)∩Utrop(Z) aqϑq. In particular, the

dimension of the linear system is one less than the number of integer points in Newt(f).

Examples 3.4.8. • If Newt(f) is just a single point q ∈ U trop(Z), then f is

uniquely determined up to scaling. Of course, in this case, q is in the cluster

complex, and we have already seen an explicit description of such funcitons.

• If Newt(ϑq)∩U trop(Z) is contained entirely in the cluster complex except for the

point q, then we can identify ϑq as the unique (up to scaling) nonzero global

section f of |D(ϑq)| such that Trr(f) = 0 for all r ∈ Newt(ϑq) ∩ U trop(Z) \ {q}.

• One can show that for any U trop with at least some lines wrapping, there is some

q with Conv(q)∩U trop(Z) = {q, 0}. Then ϑq is uniquely determined by ϑtrop
q and

the fact that Tr0(ϑq) = 0. For example, in the cubic surface case, any primitive

q satisfies this condition.
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